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Abstract 

‘Social learning’ (learning from others) occurs across the animal kingdom and can affect not only 

individual fitness but also the patterns of information transmission through entire social groups. An 

individual’s ability to learn from others is determined not only by its own behaviour but by the 

behaviours of those in possession of the knowledge (the ‘demonstrator’) and by the structure of the 

underlying social network. In this thesis, I use theoretical and empirical approaches to investigate the 

physical, social and behavioural factors influencing social transmission within complex, spatially 

realistic environments. I find that individual variation in space use and tendency to transmit and 

receive information influence information transmission patterns in an agent-based model of social 

insect communication (Chapter 2). I also show that the characteristics of social bonds connecting 

individuals within the larger social network determine patterns of learning in zebra finches, which 

show biases towards learning from aggressors and mates (Chapter 3). Finally, a limitation of the 

human research is restrictive laboratory environments that offer little ecological validity and make 

generalisations across the human / non-human divide difficult. I tackle this limitation through the 

development (Chapter 4) and employment (Chapter 5) of novel, three-dimensional virtual research 

environments for studying human social learning, where I demonstrate that people are biased 

towards learning asocially (independently) and towards demonstrators greater in number and success 

rates. In Chapter 6, I discuss how individual variation in the aforementioned behaviours appears to 

play a particularly important role in determining the pathways of social transmission at the population 

level and, in some cases, can result in the existence of ‘keystone’ information transmitters, which have 

a disproportionate influence over the behaviours of others. I discuss ideas for future research and the 

potential application of these findings outside of behavioural ecology and evolution in fields including 

conservation, epidemiology and education.  
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Chapter 1 | General Introduction 

1.1. Learning from others 

The way in which an individual interacts with its environment is crucially important for its 

survival, and so for the evolution of its species. These interactions can be as simple as 

temperature influencing the functioning of enzymes and as complex as socially connected 

networks of individuals harvesting resources using tools that have been developed over multiple 

generations of learning. For species capable of long-term memory – which include animals, 

plants, fungi and even unicellular organisms – learning can be a valuable way to increase fitness, 

allowing an individual to ascertain which behaviours bring about the best responses within their 

environment, build up a ‘behavioural repertoire’ and exploit these behaviours in the future 

(Witzany, 2018). However, learning comes with its own costs. The process of learning can involve 

experimenting with different behaviours and this experimentation comes with the risk of using 

maladaptive as well as adaptive behaviours – especially in fluctuating environments where 

optimal behaviours may vary – in addition to the additional time and energy costs associated 

with ‘trying out’ different behaviours (Warburton and Thomson, 2006; Dunlap and Stephens, 

2016). Furthermore, trying to learn within potentially dangerous environments can increase the 

risk of predation (Kendal et al., 2004; Webster and Laland, 2008) or ingesting toxins (Kikuchi and 

Sherratt, 2015). However, such risks can pay off if an individual manages to adopt adaptive 

behaviours which mean it can avoid these risks and additional expenses in the future. This 

behavioural refinement may be particularly beneficial in long-lived species, which have more 

time to benefit from early learning experiences – for example, long-lived migratory birds not 

only learn and remember migratory routes, but also gradually refine them over their lifetime 

(Fayet, 2020). 

One way in which an individual can reduce or even avoid the costs of learning is to learn from 

others, thus reaping the benefits of a learned behaviour without paying the costs of having to 

trial multiple behaviours themselves. ‘Social learning’ is defined as learning which is facilitated 

by the interaction with or observation of another individual, or the products of its behaviour 

(Heyes, 1994; Hoppitt and Laland, 2013). Social learning includes direct copying, but also covers 

situations such as individuals being attracted to a particular object or location due to the 

presence of another individual (known as stimulus and local enhancement, respectively; Hoppitt 

and Laland, 2013) and individuals learning from products left over from another individual’s 

behaviour (e.g. locating a novel food source that has been discovered, partially eaten or made 

accessible by another individual) (Heyes, 1994). All in all, this means that individuals learning 
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socially are being influenced in their uptake of novel behaviours by other individuals in their 

social environment. Thus, social learning is in contrast to asocial (or independent) learning such 

as trial-and-error which is done without the influence of other individuals.  

In addition to behavioural ecology and evolution, the study of social learning has important 

historical roots in the field of psychology.  Albert Bandura’s ‘social learning theory’, for example, 

was one of the first to acknowledge that humans – highly social animals by nature – learn about 

their environment not just through their individual experiences, but via ‘observational learning’ 

(Bandura, 1977). Observational learning involves first observing the behaviour of others and 

then making a cognitive decision concerning whether to adopt said behaviour – the latter being 

mediated, at least in humans, by internal cognitive processes such as positive/negative 

reinforcement and self-efficacy (Bandura, 1977; 1989). Thus, Bandura’s principles align well with 

the slightly broader definition of ‘social learning’ in the evolutionary literature and, despite its 

focus on humans, many of Bandura’s principles can be applied to other species as well. 

From a cognitive perspective, social learning does not appear to require specialised adaptations 

relating to the learning process itself and instead utilises the same cognitive mechanisms as 

asocial learning (Heyes, 2012), e.g. both involve making associations between some stimulus 

and response. This idea is highlighted by the fact that social learning has even been 

demonstrated in entirely solitary animals (e.g. the red-footed tortoise, Geochelone carbonaria, 

Wilkinson et al., 2010), which have no obvious reason to evolve specialised thought processes 

required to learn from others. Rather, what makes social learning ‘social’ are the input channels 

by which individuals obtain the information to be learned (Hill et al., 2009; Heyes, 2012). More 

social animals may, therefore, evolve specialised ‘input mechanisms’ that favour the influx of 

social information (e.g. attentional biases towards the behaviour of conspecifics) over other 

aspects of the environment (Heyes, 2012).  

Social learning is potentially a highly cost-effective way of gaining information, allowing novel 

behaviours to spread through a population (a process known as ‘social transmission’), while 

reducing costs such as time, energy and predation risk that are associated with asocial learning 

(Hoppitt and Laland, 2013). Research suggests that social learning is adaptive in many biological 

contexts, from foraging to predator avoidance (Galef and Laland, 2005) and that organisms 

ranging from vertebrates to plants to slime moulds are capable of using information provided 

by others (Hoppitt and Laland, 2013; Gorzelak et al., 2015; Briard et al., 2020). At the population 

level, social transmission can benefit entire social groups by allowing them to respond effectively 

to changes in their environment and also allowing knowledge to be retained between 
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generations. This is well illustrated by the lobtail feeding behaviour of humpback whales 

(Megaptera novaeangliae) in the Gulf of Maine, which appeared to originate in response to a 

sudden fluctuation in prey availability and has been retained in the population over three 

decades and multiple generations via social transmission (Allen et al., 2013). 

In their book “Animal Traditions: Behavioural Inheritance in Evolution”, Avital and Jablonka 

(2000) argue that, beyond the benefits to the individual alone, social transmission offers an 

alternative form of inheritance (besides genetic inheritance), and that such ‘behavioural 

inheritance’ can have important impacts on the evolution of species. For humans in particular, 

social influences can impact not only what we do but how we think. Heyes (2018), for example, 

argues that various cognitive mechanisms (ways of thinking) in humans are not instinctive and 

are instead taken up by individuals via social learning – i.e. these mechanisms are ‘cognitive 

gadgets’ that are the product of cultural, as opposed to genetic, evolution. Exposure to social 

stimuli can also influence our social behaviour, as demonstrated by Albert Bandura’s (1961) 

‘Bobo doll’ experiments, where children observing adult models acting aggressively towards a 

toy showed more aggression towards the toy themselves. The uptake of aggressive behaviour 

was more likely when children viewed the models receiving a reward for their aggressive 

behaviour (i.e. learning was subject to ‘vicarious enforcement’). Thus, social transmission has 

the potential to generate societies in which particular emotions, relationships or ways of 

interacting – especially those that are deemed more ‘socially acceptable’ – become more 

prominent than others. In cases where the social dynamics of a population both influence and 

are influenced by social learning, there is potential for interesting feedback loops to form – e.g. 

the learning of aggressive behaviours from others may either promote or inhibit an individual’s 

likelihood of being copied in the future.  

Through the sharing of information and behavioural norms, social transmission can result in the 

emergence of group-typical patterns of behaviour – thus, social learning underpins the evolution 

of local ‘traditions’ and ‘culture’ (Laland and Hoppitt, 2003). Culture and traditions have become 

an important part of human existence and understanding how we exchange information within 

our social communities is key to understanding how these cultures evolved. However, if culture 

is defined not by inherently human characteristics such as language, but by the underlying social 

processes that result in such group-typical behavioural patterns, its presence can be found 

across the animal kingdom (Laland and Hoppitt, 2003; Laland and Janik, 2006). According to 

Laland and Hoppitt (2003), culture can be broadly defined as “group-typical behaviour patterns 

shared by members of a community that rely on socially learned and transmitted information” 

(p.151). By this definition, any population-wide uptake of behavioural variants as the result of 
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social – rather than solely genetic or environmental – influences can be considered a cultural 

tradition of that particular population. Aplin et al. (2015), for example, demonstrated how 

seeding sub-populations of wild great tits (Parus major) with alternate solutions to the same 

foraging task resulted in the development of stable local traditions. Other examples of similar 

‘foraging traditions’ include differences in tool use between different populations of 

chimpanzees (Pan troglodytes) (Hobaiter et al., 2014), as well as the lobtail feeding behaviour 

of Allen and colleagues’ (2013) humpback whale population described above. ‘Vocal cultures’ 

(i.e. population-level differences in vocalisations that are mediated by social learning) have been 

identified in a number of species, including New Caledonian crows (Corvus moneduloides) (Bluff 

et al., 2010), humpback whales (Noad et al., 2000) and songbirds (Nelson et al., 2004; Williams 

et al., 2013; Whiten, 2019). Cultural traditions have the potential to set a population apart from 

its neighbours if the behavioural variations adopted by the population turn out to have adaptive 

benefits – in this sense, the cultures themselves may become subject to evolutionary selection 

(Whiten, 2019). 

In some cases, cultural traditions may accumulate over time, with additions and modifications 

of the original behaviours building up into what is known as ‘cumulative culture’ (Dean et al., 

2014; Whiten, 2019; Miu et al., 2018). Cumulative culture is often assumed to be a solely human 

process (e.g. human tools and technologies), although there is some evidence for this 

phenomenon in non-human animals, most notably tool manufacturing in New Caledonian crows 

(Hunt and Gray, 2003; Rutz et al., 2018). Cultural traditions may even become paramount to the 

survival of a population if the adoption of local behaviours has a great enough impact on 

individual fitness. For example, the erosion of vocal culture in regent honeyeaters (Anthochaera 

phrygia) as a result of habitat fragmentation preventing young males from associating with song 

tutors has very recently been identified as a major contributor to the species’ decline, as males 

singing atypical songs are less likely to attract females and so less likely to produce offspring 

(Crates et al., 2021). An understanding of how information is transmitted through animal social 

groups, and the importance of cultural norms for the survival of the population, could therefore 

have crucial impacts on conservation efforts (Brakes et al., 2019).  

 

1.2. Social information transfer: from demonstrator to observer 

In order to understand how information spreads through the population as a whole, we must 

first understand the individual-level factors influencing how social information transfers from a 

knowledged individual (the ‘demonstrator’) to a naïve individual (the ‘observer’). The majority 
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of current research focusses on information exchange from the observer’s perspective, 

examining how the observer gathers information from different potential demonstrators. 

However, this assumes that the observer has a choice between multiple sources of information 

in the first place, which may not always be the case, and does not take into account the 

underlying structure of the population social network. Here, I describe a framework in which 

social information transfer from demonstrator to observer is considered to occur across three 

stages (Figure 1.1), which aim to encompass some of the often overlooked complexities of social 

transmission.  

First, demonstrator and observer must be appropriately connected within the social network, 

such that information transfer between them is possible. This will ultimately be determined by 

the underlying social network of the population. The definition of 'connected' here will depend 

on the social dynamics of the population in question and the type of information being 

transmitted. For example, in some cases, individuals may need to be in close proximity at the 

time a novel behaviour is being performed to learn this behaviour, while in others, information 

may be transmitted only within particular social groupings. These connections may also break 

and reform over time, resulting in a dynamic social network – particularly if information transfer 

is dependent on individuals being in close proximity, as individuals are likely to move away from 

and re-join each other over time. Second, the demonstrator must be in possession of 

information novel to the observer and must be willing and able to transmit this information 

(either actively or passively) to others. Third, the ability and inclination of an observer to learn 

from a particular source will dictate whether they ultimately take up the novel behaviour. 

Viewing social information transfer in this way accounts for the fact that the behaviours of both 

demonstrator and observer, plus the underlying social connections between them, can impact 

on who learns from whom at any given time.  
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Figure 1.1. The three stages determining information transfer between an informed demonstrator (dark 

grey circle) and a naïve observer (light grey circle). (1) Demonstrator and observer must be appropriately 

connected within the social network, such that the novel information or behaviour in question can 

transmit between them. In this diagram, solid and dashed arrows represent two different types of 

connection, with information being transferred along the solid arrows only. This can be interpreted in 

different ways, depending on the social dynamics of the population and the type of information being 

transferred. For example, solid arrows could represent information transmission within family units, while 

dashed arrows represent inter-family information exchange. Alternatively, solid arrows could represent 

individuals being in close enough proximity to exchange information, while dashed arrows represent 

associations that are too distant to allow information transfer. (2) A demonstrator must be in possession 

of novel information, and must demonstrate this information to others. (3) A naïve observer must be 

receptive to the information being transmitted by the demonstrator in question and capable of learning 

this information.  

 

The majority of research in this area is focussed around the third stage of information transfer 

– i.e. how an observer chooses which sources of information to learn from. Given the benefits 

of social learning discussed above, it may seem reasonable to assume that learning from others 

will always be more adaptive than independent learning. However, if all individuals copy each 

other indiscriminately, with nobody sampling directly from the environment, information is soon 

likely to become outdated, especially in fluctuating environments, thus reducing the fitness 

benefits of learning socially. Early theoretical analyses predicted that social learning would only 

be beneficial if it was rare, reaching an equilibrium with asocial learning at a point where there 

was enough reliable and up-to-date information coming in directly from the environment (Boyd 

and Richerson, 1985; Rogers, 1988). Furthermore, indiscriminate copying can lead to the uptake 

of maladaptive behaviours if, for example, the original demonstrator is unaware that a more 

beneficial option is available. Laland and Williams’ (1998) study on guppies (Poecilia reticulata) 

illustrated this idea well. They demonstrated that individuals would copy the route-choice of 

trained demonstrators even when the demonstrated route was longer and more energetically 
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costly than an available alternative. Evolutionary theory therefore predicts that, to optimise the 

social learning process, individuals should be selective about how they use social information 

through the use of ‘social learning strategies’ (Laland, 2004; Rendell et al., 2011; Boyd and 

Richerson, 1985).  

 

1.3. Social learning strategies 

Social learning strategies describe how individuals use social information, including when they 

favour social over asocial information and what types of individual they preferentially copy. First 

coined by Laland (2004), social learning strategies are traditionally split into two categories, 

“when” strategies and “who” strategies. “When” strategies describe the hypothesised situations 

in which individuals are expected to use social information over independent learning, such as 

when their own learning is unproductive or when asocial learning is costly. “Who” strategies 

(also referred to as “directed social learning”; Coussi-Korbel and Fragaszy, 1995) describe the 

types of demonstrator an individual preferentially learns from when learning socially, such as 

more successful individuals, older individuals or dominant individuals. We can also describe 

individuals as displaying “social learning biases” towards particular types of information 

(“content-based biases”, e.g. a bias towards social information or more memorable behaviours), 

towards demonstrators with particular characteristics (“model-based biases”) and towards 

behaviours based on their frequency (“frequency-dependent biases”, e.g. copy the majority, 

copy rare behaviours) or associated payoffs (“payoff-based biases”) (Boyd and Richerson, 1985; 

Rendell et al., 2011). Below I outline some of the specific social learning strategies identified 

through both theoretical and empirical research across a range of species. 

Theoretical analyses have demonstrated a range of conditions which are expected to alter the 

use of social information. For example, an increased cost of asocial learning (Boyd and 

Richerson, 1985; Rendell, Fogarty, et al., 2010), uncertainty about the best behaviour to use 

(Boyd and Richerson, 1988) and the use of more successful variants by other individuals (Schlag, 

1998) are all predicted to increase the adaptive value of social learning. In contrast, social 

learning is expected to be less adaptive when there is a large amount of spatial or temporal 

environmental variability (Enquist et al., 2007; Rendell, Fogarty, et al., 2010; Feldman et al., 

1996). There is also a general consensus that the most adaptive behaviours should involve 

strategically switching between social and asocial learning. In particular, it is predicted that 

individuals will benefit from initially relying on social learning and switching to asocial learning 

if this proves unfavourable, even when asocial learning is not associated with a cost (Enquist et 
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al., 2007; Rendell, Boyd, et al., 2010; Rendell, Fogarty, et al., 2010) – although Rendell and 

colleagues ‘social learning strategies tournament’ additionally demonstrates that relying 

exclusively on social learning as a form of ‘information parasitism’ can prove the most successful 

individual strategy provided other members of the population are sampling the most optimal 

behaviours directly from the environment (Rendell, Boyd, et al., 2010). Theoretical analyses also 

suggest that a ‘conformist bias’ (a positive frequency-dependent strategy where individuals 

disproportionately copy the most common behaviour) should be adaptive under a wide range 

of conditions, including over spatially variable environments, as innately copying a common 

behaviour improves an individual’s chance of acquiring a favoured variant for that particular 

area (Boyd and Richerson, 1985; Henrich and Boyd, 1998; Nakahashi, 2007). However, a 

conformist bias could also be maladaptive in some situations if it prevents or slows the spread 

of more adaptive innovations (Henrich and Boyd, 1998). This may be particularly apparent in 

rapidly changing or harsh environments (Nakahashi, 2007; Whitehead and Richerson, 2009; 

Perreault et al., 2012).  

Empirical research has revealed evidence for the use of several social learning strategies by 

humans and non-human animals, plus similarities in the use of social information between very 

different species, suggesting convergent evolution due to similar selection pressures promoting 

the selective use of social information (Rendell et al., 2011). For example, human participants 

choosing the best arrowhead to use in a virtual hunting simulation tend to copy the most 

successful variant (Mesoudi, 2008; Mesoudi and O'Brien, 2008). Similarly, nine-spined 

sticklebacks (Pungitius pungitius) are more likely to copy the food patch choices of individuals 

which receive a higher payoff than themselves (Coolen et al., 2005; Kendal et al., 2009; Pike et 

al., 2010). Both nine-spined sticklebacks subjected to foraging tasks (Pike and Laland, 2010) and 

humans subjected to abstract multiple-choice tasks (Morgan et al., 2012; Efferson et al., 2008) 

conform to the majority when making decisions. There is additional evidence that humans copy 

variants which are increasing in frequency (Toelch et al., 2010) and that some individuals (known 

as ‘mavericks’) ignore social information completely (Efferson et al., 2008). Both humans and 

non-human animals are also biased towards the types of demonstrators they learn from. For 

example, humans, guppies and zebra finches show learning biases towards familiar over non-

familiar individuals (Corriveau and Harris, 2009; Swaney et al., 2001; Guillette et al., 2016); 

humans, common ravens and Siberian jays preferentially copy kin over non-kin (Henrich and 

Henrich, 2010; Schwab et al., 2008; Griesser and Suzuki, 2016) and both humans and 

chimpanzees tend to copy high-ranking and/or older individuals (Henrich and Henrich, 2010; 

Kendal et al., 2015). These model-based social learning biases can be a useful evolutionary 
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strategy if focussing one’s learning towards a certain type of individual tends to result in more 

profitable behaviours being acquired. For example, older individuals may offer a reliable source 

of adaptive behaviours because they have had more life experience to test different behaviours 

in different scenarios, and because these behaviours have enabled them to survive to an older 

age. Similarly, a dominant individual may represent a source of adaptive social information if 

their high dominance status is linked to their general success, while a prestigious individual who 

receives disproportionate attention from observers may do so because they are in possession 

of more desired skills. A naïve individual with an instinctive bias for copying demonstrators with 

characteristics that accurately predict their general success will theoretically learn adaptive 

behaviours without spending the time and effort either testing different behaviours themselves 

or assessing the actual success rates of behaviours used by others. Social learning biases have 

the potential to affect not just the information an individual gains, but also the pattern of 

information flow throughout the whole social group. 

The methods used to investigate the use of social learning strategies, however, vary between 

animal and human studies, which make generalisations across the human / non-human divide 

difficult. The types of social learning experiments used in the animal versus human literature are 

discussed in more detail below.  

 

1.4. Social learning experiments: animals 

Traditionally, research into social learning strategies in non-human animals has involved 

laboratory experiments where a naïve individual is exposed to a small number of trained 

demonstrators, each demonstrating a different behaviour. One of the best examples of this is 

Galef’s (2009) series of experiments on Norway rats (Rattus norvegicus). These experiments 

involved training a demonstrator to eat one of two different flavoured foods, pairing the trained 

demonstrator with a naïve observer, then giving the observer the choice between the two food 

types to establish whether the observer showed a significant preference for the demonstrated 

food type (or for the food type of one demonstrator over another). This same methodology was 

repeated across a number of different conditions and using pairs of demonstrators with 

different characteristics to determine when and from whom rats would selectively use social 

information. These ‘demonstrator-observer’ experiments give a lot of insight into the use of 

social learning strategies in animals but are also met with several limitations. Firstly, it could be 

argued that such highly controlled laboratory experiments limit natural behaviour by preventing 

free movement and natural interactions between individuals. Secondly, forcing a choice 
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between two possible demonstrators does not tell us whether individuals would make such a 

choice in a natural context, where other alternatives, including learning entirely asocially, would 

also be available. Thirdly, because such experiments only consider a single learning event from 

demonstrator to observer, they do not tell us about the transmission of information through an 

entire population and whether social learning biases remain consistent during population-level 

information transfer.  

In natural conditions, a variety of factors will influence how individuals learn from one another, 

from the general structure of the population’s social network to where a naïve individual is 

looking at the time a novel behaviour is demonstrated. Spatial and temporal coordination of 

behaviours between multiple individuals in a population (i.e. whether an observer was in the 

right place at the right time to directly observe a behaviour being performed, rather than 

viewing the behaviour from a distance or observing only the products of a behaviour that has 

already been performed) can determine the amount of detail an observer can gain about a 

demonstrated behaviour and so the type of learning that can occur (Coussi-Korbel and Fragaszy, 

1995). Even simple variation in individual personality traits, including movement patterns, can 

change an individual’s position in a social network (Krause et al., 2010; Aplin et al., 2013), thus 

influencing its access to social information (Aplin et al., 2012; Claidiere et al., 2013) and 

ultimately determining the possible demonstrators that it is able to selectively learn from. 

Results from theoretical and empirical experiments that do not consider such factors may 

therefore be an unrealistic representation of social information use, representing an ‘ideal’ 

situation, where all individuals have access to all available social information and can selectively 

choose between different options.  

More recently, studies on social learning strategies in non-human animals have used ‘open 

diffusion’ experiments to establish the natural patterns of information transfer in larger 

populations (Hoppitt and Laland, 2013). These experiments often involve introducing a novel 

task – for example, ‘puzzle boxes’ or ‘artificial fruit’ that can be solved using multiple techniques 

to access food rewards  – to a free-roaming captive or wild population, sometimes after seeding 

the population with one or more trained demonstrators, and then analysing how information 

spreads naturally through the population (e.g. Whiten and Mesoudi, 2008; Claidiere et al., 2013; 

Aplin et al., 2015; Canteloup et al., 2020). Open diffusion experiments are, in general, less 

restrictive on natural behaviour, allowing individuals to learn a task however they choose, be 

that socially (either indiscriminately or from particular demonstrators), independently, or not at 

all. Therefore, such experiments are likely to give a more accurate and ecologically relevant 

insight into the social learning strategies that are naturally used by a particular species. In 
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addition, open diffusion experiments allow us to analyse the patterns of information 

transmission not just between pairs of individuals, but through whole populations. However, 

because these types of experiments are less controlled and often involve simply placing a novel 

task into a population and allowing social learning processes to occur naturally, deciphering 

when individuals are learning socially, and from whom, is more difficult. Statistical approaches 

have been adapted to tackle this issue, allowing researchers to fit models corresponding to 

different hypothesised social learning strategies to data on naturally occurring task solves as a 

way of inferring how individuals are learning (McElreath et al., 2008; Franz and Nunn, 2009; 

Hoppitt et al., 2010; Hoppitt, 2017). Such methods also allow investigations into the diffusion of 

non-introduced, naturally occurring innovations – for example, the social transmission of a 

foraging technique known as ‘shelling’ through dolphin (Tursiops aduncus) populations (Wild et 

al., 2020). Such methods have allowed the study of social learning strategies in non-human 

animals to advance into more realistic and ecologically relevant scenarios. 

 

1.5. Social learning experiments: humans 

While animal studies have managed to move out of the lab and into field experiments where 

individuals can behave naturally to solve ecologically relevant tasks such as foraging or avoiding 

predators, studies on humans remain fixed in restrictive laboratory conditions. The vastly 

different methodologies used in human versus animal social learning experiments, particularly 

the lack of realism and natural relevance in human experiments (discussed below), make it 

difficult to compare human and non-human social learning strategies within a common 

evolutionary framework. Outside of social learning research, there is a general concern that 

laboratory studies on human behaviour may not accurately reflect how people would behave in 

real-life situations, that too much control over an experiment may inadvertently influence 

participants’ decisions and that participants taken only from student pools may behave 

differently to members of the general public (Levitt and List, 2007a; Levitt and List, 2007b; Vicens 

et al., 2018; Santos, 2009). In addition to this, there are several characteristics of human 

experiments that specifically make them difficult to consider in an ecological or evolutionary 

framework.  

Firstly, human studies tend to use abstract tasks with no relevance to real-life situations that 

offer little insight into the adaptive benefit of social learning strategies for human survival. 

Examples of tasks used in human experiments on social learning strategies include choosing 

between coloured options with hidden values to receive the greatest payoff (Efferson et al., 
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2008; Toelch et al., 2010), deciding which of two lines are the longest (Morgan et al., 2012) and 

building towers as tall as possible using modelling clay and spaghetti (Caldwell and Eve, 2014). 

While these studies offer some insight into how and when humans use social information when 

given a simple, abstract task, they do not tell us how humans learn more complex skills or how 

our use of social information this might have contributed to our evolution. In addition, I argue 

that using abstract tasks where individuals are not able to use their own prior knowledge or skills 

might artificially increase participants’ reliance on social information. For example, in the 

experiment by Toelch and colleagues (2010), participants had no way of independently learning 

which coloured card held the highest value other than to make a guess. In this case, it may have 

been preferable to use even potentially inaccurate social information. Very few laboratory-

based experiments on human social learning strategies have used realistic or ecologically 

relevant tasks, with the major exception of a series of experiments by Mesoudi and colleagues, 

where participants were required to design arrowheads to use in a virtual hunting ground 

(Mesoudi, 2008; Mesoudi and O'Brien, 2008). In this case, the task is more realistic and so 

participants have a greater chance of using their own intuition or knowledge to attempt the task 

themselves. 

Secondly, the methodologies used in lab-based human experiments tend to present social 

information in an unrealistic or overly simplistic way. Examples include using flashing tiles to 

represent demonstrator choices (Morgan et al., 2012) and giving a numeric value representing 

the frequency of demonstrators using a particular behaviour (Toelch et al., 2010) or the success 

rates of different individuals (Mesoudi and O’Brien, 2008; Miu et al., 2018). Essentially, this 

means that participants are being told what other individuals are doing and how useful certain 

behaviours are without having to infer this information themselves based on demonstrator 

behaviours. In addition, participants may be restricted as to when and how they are ‘allowed’ 

to use social information (e.g. Mesoudi and O’Brien, 2008). In reality, gaining social information 

requires actively observing and understanding the behaviours that are being displayed, which 

will be affected by simple factors such as the location of different individuals or where a naïve 

observer is looking at the time a particular behaviour is being demonstrated. Even something as 

simple as establishing the frequency of demonstrators using a particular behaviour would 

require observers to keep track of multiple demonstrators, potentially over large spatial and 

even temporal scales, which is relatively more complex than being given a single numerical 

value. Once in possession of social information, an individual must then decide whether, when 

and how to use that information.  Furthermore, making use of social learning strategies requires 

an individual to gather and compare information from different sources – information that will 
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not necessarily be displayed to them simultaneously – alongside their own experience. It could 

be argued, therefore, that the simplification of social information often used in human social 

learning experiments may make it ‘too easy’ for participants to gather, compare and use social 

information, and so may not reflect what would happen in reality.  

The third characteristic of most human social learning experiments that makes it difficult to 

consider their findings in an evolutionary framework is spatial scale. Almost all human social 

learning experiments take place in the laboratory or some other relatively confined indoor space 

(e.g. Reader et al., 2008; Wood et al., 2013; Whiten et al., 2016), and involve tasks such as puzzle 

boxes located in a single localised area. In reality, many tasks associated with human survival 

would take place over much larger spatial scales. In traditional hunter-gatherer communities, 

both today and in our evolutionary past, space use for activities such as foraging occurs over 

kilometre scales (Hamilton et al., 2007; Whallon, 2006). Allowing space use of this scale is not 

possible in the laboratory, but is likely to have a great influence on both an individual’s ability to 

make use of social information (e.g. are there demonstrators in the vicinity that can be learned 

from?) and the type of learning taking place (e.g. imitation, which requires close observation, 

versus local enhancement, which can likely be triggered over a longer distance) (Coussi-Korbel 

and Fragaszy, 1995). At the most extreme end of the scale, large-scale spatial movements may 

involve migrating from familiar to unfamiliar areas, which may influence how an individual 

responds to social information – e.g. migrating individuals may show an enhanced tendency to 

conform to local norms (Deffner et al., 2020).  

The study of human social learning very rarely manages to escape the lab into the field. A major 

exception to this is a set of experiments by Henrich and colleagues investigating the social 

influences on learning about toxic marine foods, crop growing and use of medicinal plants in 

Fijian hunter-gatherer populations (Henrich and Henrich, 2010; Henrich and Broesch, 2011). 

However, such an experiment cannot be easily generalised to contemporary human societies 

other than hunter-gatherers, where individuals are not routinely exposed to the same kinds of 

selection pressures. While animal research benefits from the ability to study populations in their 

natural habitats (using statistical analyses to decipher the pathways of learning) or alternatively 

to study captive individuals as an intermediate between laboratory experiments and studies on 

free-roaming individuals, human research does not benefit from such methodologies and so 

tends to be restricted to abstract lab-based tasks. Thus, human research tends to lack ecological 

validity compared to animal studies. Computer-based tasks are one way in which studies can 

incorporate evolutionary validity (e.g. Mesoudi, 2008; Mesoudi and O'Brien, 2008) and spatial 

factors (e.g. Deffner et al., 2020) into human social learning experiments. Later in this thesis 
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(Chapters 4-6), I advocate the use of complex, open-world virtual environments for studying 

human behaviour in more evolutionarily relevant scenarios than is often possible in laboratory 

settings.  

 

1.6. Physical, social and behavioural factors influencing social information 

transmission  

Social networks are dynamic and complex biological phenomena. A myriad of factors, including 

how novel information enters the population, who is in possession of this information at a 

particular time, and the spatial synchrony of different individuals at the time novel information 

is being communicated have the potential to influence exactly where and when information is 

available for an observer to learn, and how information is transmitted through social groups. In 

this thesis, I explore three key factors which I hypothesise to influence social transmission across 

the three stages of information transfer described above. 

Firstly, spatial movement patterns determine which individuals are in close enough proximity to 

exchange information at any particular time (Figure 1.2A). Individuals are likely to interact more 

within submodules (local clusters of individuals) of the wider network than with individuals from 

other submodules, while spatial isolation is likely to block information transfer entirely. Thus, 

the spatial locations of individuals at the time a particular behaviour or piece of information is 

being demonstrated will be crucial in determining whether demonstrator and observer are 

appropriately connected (as illustrated in Figure 1.1) for information exchange to theoretically 

occur. While previous studies have used proximity and association networks to analyse whether 

individuals are more likely to learn from those who they spend more time with (e.g. Allen et al., 

2013; Aplin et al., 2013), the influence of individual-level spatial movements and space-use 

behaviour on social transmission is often overlooked in the social learning research – particularly 

in the human literature, as discussed above. Social network analyses have revealed, however, 

that personality traits that correlate with movement patterns can impact on an individual’s 

connectedness within its social network (Krause et al., 2010; Aplin et al., 2013). The influence of 

individual spatial movements on information transfer is explored using a spatially explicit 

movement model in Chapter 2.  
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Figure 1.2. Three key factors predicted to influence social information flow by determining the structure 

of the underlying social network. (A) The spatial movements of individuals determine who is in close 

enough proximity to exchange information at any particular time. Spatial isolation is likely to block 

information flow between individuals who might normally learn from one another. (B) The types of 

connection between individuals. This example shows three hypothetical networks among seven 

individuals with knowledged individuals represented in dark grey. Here, the red network best predicts the 

presence of knowledge. (C) The characteristics of the demonstrators, regardless of the underlying social 

network structure. In this example, the focal individual learns preferentially from the larger demonstrator, 

despite similar proximity to smaller demonstrators. 

 

Secondly, social networks can be structured by different types of connections, and some 

networks may predict the pathways of social learning better than others (Figure 1.2B). Some 

individuals may, for example, be more likely to exchange information with those they share 

specific social relationships with, e.g. learning from kin. The importance of social relationships 

on driving information transfer is thus far limited to just a handful of studies, with most research 

focussing instead on the individual characteristics of demonstrators and observers – or their 

associations – rather than the underlying social connections between them. The idea of 

relationship-based learning is explored using a multi-network analysis on zebra finches in 

Chapter 3.  

Thirdly, regardless of the underlying social network, social learning might be determined by the 

characteristics of the demonstrators of information (Figure 1.2C). Certain types of 

demonstrators may, for example, be more prone to passing on information to others – thus 

influencing stage 2 of information transfer (Figure 1.1). Similarly, observers may be more prone 

to learning from specific types of demonstrator (e.g. large over small individuals, males over 

females, etc.) – thus influencing stage 3 of information transfer (Figure 1.1). I test several 

potential demonstrator preferences (size, dominance, gender, frequency) in a virtual reality 

experiment on humans in Chapter 5. In addition, in Chapter 2, I explore how variation in 

(A) (B) (C) 
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individuals’ tendency to pass on and receive information affects the patterning of information 

transfer through the social network. 

 

1.7. Thesis aims and outlines 

In this thesis, I investigate the impact of physical, social and behavioural factors on social 

transmission at the different stages of information transfer described above and consider how 

this impacts not only learning at the individual level, but also the transfer of information 

throughout entire populations. By conducting my investigations across different systems, I also 

make comparisons of social information use across different taxa. Throughout this thesis, I pay 

particular attention to the development of novel methodologies and expansion of past 

methodologies that aim to tackle some of the limitations of previous research and allow a more 

realistic portrayal of social transmission processes; especially by permitting more behavioural 

freedom than is typically possible in controlled, lab-based experiments and by incorporating the 

influence of spatial movements that may impact on who can learn from whom at a given time.  

Throughout the following chapters, I will focus in on some specific aspects of social transmission 

within different model systems. Here, I will briefly outline the aims of these upcoming chapters: 

 In Chapter 2, I devise an agent-based simulation model which aims to investigate how 

among-individual variation in simple behavioural axes (namely activity levels and 

movement patterns) influence the patterning of interactions and the resulting transfer 

of information at the population level. As described above, there is a serious gap in the 

literature concerning the role of individual spatial movements in the driving of 

information transfer through population networks. The agent-based simulation 

approach adopted here provides an empirical test of how the production of a particular 

network substructure – the “feed-forward loop” – is influenced by among-individual 

behavioural variations in space and time, and how the overproduction of this 

substructure affects the efficiency of information transfer through the simulated 

population. Thus, this chapter focusses on how the behaviours of the individuals can 

influence the structure of the social network at the group level. 

 

 In Chapter 3, I investigate whether the pairwise social relationships that individuals 

share influence their tendency to learn from one another within a population of social 

birds, using network-based approaches. While similar analyses have been carried out 
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before, they are usually restricted to the assessment of one or two types of association, 

e.g. proximity or affiliative interactions, rather than the influence of social relationships. 

In addition, the importance of mated pair bonds and aggressive interactions on social 

learning have received little attention in previous research. I further develop this 

network-based approach to evaluate a wide range of competing hypotheses concerning 

the importance of feeding associations, positive interactions, aggressive interactions 

and mated pair bonds in driving the transfer of information (solutions to a feeding task) 

through a freely-interacting population of zebra finches, thus building a comprehensive 

model of relationship-based social learning in this species. Thus, this chapter focusses 

on how the properties of the underlying social network can influence the transmission 

of novel information and behaviours through the population.  

 

 In Chapter 4, I describe an innovative new tool for studying social learning in humans 

using realistic virtual environments: “Virtual Environments for Research into Social 

Evolution” (VERSE). As discussed above, human social learning research is often 

restricted to abstract, lab-based experiments which often involve unrealistic sources of 

social information and do not take into account the influence of spatial factors. In other 

words, these experiments generally do not provide a realistic representation of real life 

survival scenarios, where individuals would need to actively observe informed 

demonstrators across space and time in order to gather information. Participants may 

therefore act very differently during such experiments compared to how they might 

behave in complex environments that offer them a greater degree of behavioural 

freedom. VERSE tackles many of the issues of lab-based human social learning research 

by allowing human behaviour to be studied within ecologically relevant scenarios, in 

large-scale three-dimensional environments that they can navigate freely, using 

computer-controlled humanoid figures as realistic sources of social information that can 

be actively followed and observed. This chapter is structured as a methodological article, 

giving a detailed account of the features available in VERSE and how they can be used 

to conduct more realistic human behavioural experiments. Thus, this chapter focusses 

on improving the realism and ecological validity of human social learning experiments. 

 

 In Chapter 5, I use VERSE to investigate human social learning strategies within complex 

environments in a series of experiments inspired by the animal literature. Specifically, I 

investigate whether humans are prone to using social over asocial information when 
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faced with complex, ecologically relevant tasks and whether individuals are biased 

towards learning from demonstrators with particular characteristics, as demonstrated 

previously in the human and animal literature. I place a strong focus on allowing 

complete freedom of movement and behaviour that is often not possible in human 

experiments due to the restrictions of the laboratory environment. In doing so, I aim to 

gain a more accurate understanding of how humans use social information in complex, 

naturalistic environments, to test the findings of more restrictive, lab-based 

experiments against scenarios where participants are offered a greater degree of 

behavioural freedom and to allow generalisations to be made across the human / non-

human divide. Thus, this chapter focusses on how demonstrator characteristics and 

observer biases can dictate the patterns of information exchange between individuals – 

and also on exploring the use of realistic, three-dimensional virtual environments for 

the study of human social behaviour. 

 

 In Chapter 6, I will bring the findings of these studies together into a general discussion 

about social learning, including the often overlooked social, behavioural and physical 

environmental factors influencing social transmission at both the individual and 

population level. I discuss the importance of individual behavioural variation in social 

learning in determining how information enters and transmits through the population 

and why an understanding of social influence and the patterns of information 

transmission is important both within and outside the field of behavioural ecology. 
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2.1. Abstract 

Coordinated responses in eusocial insect colonies arise from worker interaction networks that 

enable collective processing of ecologically relevant information. Previous studies have detected 

a structural motif in these networks known as the feed-forward loop, which functions to process 

information in other biological regulatory networks (e.g., transcriptional networks). However, 

the processes that generate feed-forward loops among workers and the consequences for 

information flow within the colony remain largely unexplored. We constructed an agent-based 

model to investigate how individual variation in activity and movement shaped production of 

feed-forward loops in a simulated insect colony. We hypothesised that individual variation along 

these axes would generate feed-forward loops by driving variation in interaction frequency 

among workers. We found that among-individual variation in activity drove overrepresentation 

of feed-forward loops in the interaction networks by determining the directionality of 

interactions. However, despite previous work linking feed-forward loops with efficient 

information transfer, activity variation did not promote faster or more efficient information 

flow, thus providing no support for the hypothesis that feed-forward loops reflect selection for 

enhanced collective functioning. Conversely, individual variation in movement trajectory, 

despite playing no role in generating feed-forward loops, promoted fast and efficient 

information flow by linking together unconnected regions of the nest. 

 

Keywords: network motif; social insects; feed-forward loop; agent-based model; personality; 

behavioural syndrome 
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2.2. Introduction 

In many group-living species, social interaction patterns play an important role in shaping fitness 

outcomes, such as by impacting access to social information, the likelihood of cooperation, or 

exposure to pathogens [1]. Beyond an individual’s direct connections, evolutionary fitness may 

further be influenced by the patterning of interactions at the group level. For instance, a 

minority of highly interactive individuals can accelerate the spread of information or disease 

throughout a population by linking together otherwise unconnected individuals [2] and modular 

social structures can contain the spread of information within tightly-knit communities [3]. 

These group-level properties are likely especially important in eusocial insect colonies in which 

only one or a few colony members reproduce, such that the fitness of individual workers is 

tightly linked to colony collective performance [4]. 

In the absence of any central control, interactions among workers regulate task allocation 

through a distributed process, ensuring that the effort devoted to various tasks matches a 

colony’s internal needs and external conditions [5,6]. Meeting the demands of this regulatory 

role is likely to favour different interaction patterns to those that are observed in social systems 

where individual success is key. In other words, a social insect worker’s position in the network 

is often less important for its fitness than higher-level network properties [5-7]. For instance, 

among-individual variation in interaction frequency in harvester ants (Pogonomyrmex barbatus) 

generates networks with a few highly interconnected individuals while the majority of workers 

remain only weakly connected [2]. Networks structured in this way permit rapid information 

transfer throughout a population and can thereby facilitate swift collective responses to 

changing conditions [2]. 

Social network analysis has emerged as a key approach for quantifying variation in social 

connectivity and investigating its ecological and evolutionary consequences [1,8,9]. A useful 

means to gain insight into a network’s functionality is to deconstruct it into its constituent 

subcomponents [10]. A network can, for instance, be described in terms of the different 3-node 

subgraphs (or triads) from which it is composed. Because subgraphs differ in their functional 

properties [11-13], overrepresentation of a given subgraph within a network (relative to its 

typical representation within an ensemble of appropriately randomised networks) can suggest 

the processes or functions that have helped to shape that network. For example, food webs 

display an overrepresentation of simple chains derived from trophic interactions—e.g. species 

A consumes species B, which in turn consumes C [10]—whereas gene transcription networks 

contain an overabundance of a triadic configuration known as the “feed-forward loop” (Figure 
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2.1A; [12]), whereby a gene A transcriptionally regulates the activity of a second gene B, and 

both A and B jointly regulate a third gene C. As feed-forward loops are well-suited to carry out 

signal processing tasks (e.g. amplifying responses to external environmental cues), this 

structural feature may reflect the regulatory function of these networks [11]. 

The regulatory role of interaction networks within social insect colonies may likewise be 

reflected in their constituent subcomponents. In common with other biological regulatory 

systems, the antennation patterns of harvester ants (Pogonomyrmex californicus), which play a 

key role in transmitting task-relevant information between colony members, show an 

overrepresentation of feed-forward loops [7], at least relative to their appearance in size- and 

density-matched random graphs. Similarly, dominance relationships in the eusocial wasp 

Ropalidia marginata are made up predominately of feed-forward loops and are involved in 

regulating worker activity through agonistic interactions [14]. However, the way in which such 

network structures develop in social insect colonies is unclear.  

In contrast to other biological regulatory networks, where the relationships between nodes are 

relatively stable (e.g. one gene produces a transcription factor that activates or inhibits another 

gene), the nodes in social insect interaction networks represent individual workers that engage 

in brief pairwise interactions with one another and often lack stable relationships. The 

patterning of interactions among workers instead arises from the behaviour of individuals that 

influence their likelihood of interacting. In some cases, the presence of feed-forward loops might 

simply reflect the tendency of a particular type of relationship to be transitive—e.g., in the 

dominance networks of R. marginata [14], if worker A is dominant over B and B is dominant over 

C, A is likely to also be dominant over C. Feed-forward loops consequently tend to form in the 

network. Yet even in this case, the formation of dominance relationships is dependent on other 

aspects of behaviour that influence individuals’ likelihood of interacting, such as their spatial 

location on the nest. If A and C never interact, a feed-forward loop will never form between A, 

B, and C. Furthermore, the reason for the development of feed-forward loops in interaction 

networks that lack such hierarchical organization (e.g., the antennation patterns of P. 

californicus) is less clear, and suggests that more subtle behavioural mechanisms may be 

responsible for generating this structural feature in these populations. 
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Figure 2.1. Examples of triangle configurations. (A) A transitive triangle, or feed-forward loop, in which 

one individual, A, has two outgoing edges and another, C, has two incoming edges. (B) A cyclic triangle, in 

which all individuals have one outgoing and incoming edge. (C) A triangle with a bidirectional edge 

connecting B and C. 

 

The structure of a feed-forward loop inherently implies among-individual variation in contact 

patterns, as each node differs in the number of incoming and outgoing connections (or edges). 

Insect workers express substantial among-individual variation along a number of behavioural 

axes that may contribute to the generation of such network structures [15]. For instance, 

workers vary in the proportion of time that they are actively engaged in tasks: e.g. a minority of 

workers often carry out the majority of work [16-20], with some workers even appearing to 

specialise in inactivity [21]. Workers also vary in their spatial behaviour within the nest. This can 

partly be determined by activity levels—more active individuals will tend to cover more ground 

per unit time—but can also result from variation in movement patterns. Some P. barbatus 

workers, for example, walk very sinuous paths, causing them to occupy relatively restricted 

regions within the nest, while others walk straighter paths and so roam more extensively [2]. 

Such among-individual variation in activity and space-use may play central roles in shaping social 

contact patterns by influencing the likelihood that particular individuals will contact one 

another. For example, workers that move in straighter paths will likely contact a greater number 

of nestmates than workers that remain restricted to small regions within the nest. That different 

pairs of individuals vary in their likelihood of interacting further suggests that random graph 

models, which typically assume an equal probability of interaction between any pair of nodes, 

may not be the most appropriate null model with which to assess the presence of network 

motifs in empirical social insect interaction networks. 

Here, we construct an agent-based model to investigate how among-individual variation in 

activity and movement patterns in a simulated insect colony contributes to the formation of 

interaction networks dominated by feed-forward loops. We further consider how this variation 

(A) (B) (C) 
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drives the speed and efficiency of information flow within the colony. Our model is not designed 

to reproduce the dynamics of any specific species. Rather, we seek to evaluate structural and 

functional consequences of patterns of behavioural variation that are commonly observed 

across eusocial insects [15,22], with a particular focus on how such variation shapes patterns of 

physical contact between workers (e.g., antennation), which are central in regulating collective 

behaviour [2,6,7]. We first predict that, by determining how frequently individuals contact 

others and how diverse those contacts are, among-individual variation in activity and movement 

will drive overrepresentation of feed-forward loops in the resulting interaction networks. We 

further predict that, when these sources of variation are treated as a ‘behavioural syndrome’ 

(i.e. individual activity and patterns of movement covary, such that that the most active agents 

walk the straightest paths, while the least active agents walk the most tortuous paths), they will 

have a synergistic effect on the production on feed-forward loops by emphasising among-

individual variation in space-use (i.e. highly active, straight-walking individuals will traverse the 

entire nest, while inactive individuals with tortuous walking paths will remain in restricted 

areas). Second, due to the tendency of feed-forward loops to move information in a directional 

manner [11,12], we predict that patterns of behavioural variation that generate feed-forward 

loops will also lead to faster and more efficient information flow, in the sense that fewer 

interactions will be needed to drive the spread of information throughout a colony [7]. 

 

2.3. Methods 

2.3.1. Agent-based model 

Our model was created in the agent-based modelling platform NetLogo (V5.2.0; 

https://ccl.northwestern.edu/netlogo/) and is available at the Dryad Digital Repository, 

doi:10.5061/dryad.brv15dv8f [60]. We briefly describe the model’s main processes below (also 

summarised in Figure 2.2). The full model description, which follows the ODD (Overview, Design 

concepts, Details) protocol [23], can be found in the Supplementary Material.  
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Figure 2.2. Flowchart describing the main model processes, including model initialisation, agent 

movement, agent interactions, timestep updates and data extraction. 

 

Model initialisation. The model consists of a 50 x 50 grid of square ‘patches’ (the ‘nest’) 

containing the agent population (Ndefault = 100), which represent workers within a social insect 

colony. At the beginning of each simulation, each agent (i) is placed in a random location and 

assigned its activity level (Ai) and turning index (Ti). The value of Ai determines how mobile an 

agent is within the nest and, under certain conditions, its likelihood of transmitting information 

to others upon physical contact. Conceptually, active agents represent individuals currently 

engaged in some task within the nest—e.g. nest construction, food distribution, recruitment—

with the possibility of transmitting task-relevant information to individuals that they come into 

contact with. The value of Ti determines how sinuous an agent’s walking path is—more sinuous 

paths result in greater spatial fidelity as individuals move away from their starting position more 

slowly. Agent movement occurs during discrete time steps (tdefault = 5000 steps) and the order in 

which agents act is selected randomly on each step. Once all agents have had the opportunity 

to move, agents can initiate interactions with nearby nestmates, with the order of action once 

more randomly determined. See ‘Agent movement’ and ‘Agent interactions’ below for an 

explanation of these processes. 

Activity levels and turning indices can be either uniform or variable across the population and 

are centred around the population means, Am and Tm respectively. When activity levels are 
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uniform, all agents are assigned the same value, Ai = Am. When activity levels are variable, values 

are randomly drawn from an exponential distribution with mean Am, such that most agents are 

relatively inactive, while a few are highly active. Similar distributions of activity have been 

observed across multiple social insect species (e.g. ants [24]; stingless bees: [20]; bumblebees: 

[19]). When turning indices are uniform, all agents are assigned the same value, Ti = Tm. When 

turning indices are variable, values are first randomly drawn from an exponential distribution 

with mean Tm. These values are subsequently modified (see full ODD model in the 

Supplementary Material) such that most agents have relatively high turning indices, resulting in 

more tortuous movement paths, whereas a few agents have low turning indices, and so move 

in straighter paths (as observed in [2]). In addition, when both activity levels and turning indices 

are variable, values of A and T can either be uncorrelated or negatively correlated across agents. 

If uncorrelated, these values are assigned to agents independently of each other. If negatively 

correlated, these values are paired such that the agent with the highest value of A also has the 

lowest value of T, and so on, thus generating a population where more active agents also tend 

to move in straighter paths. This was done in order to explore whether such a behavioural 

syndrome [15] may especially contribute to the formation of feed-forward loops, given that 

active individuals with a greater potential to initiate contact (see ‘Agent interactions’ below) 

would also potentially contact a greater diversity of individuals, due to reduced spatial fidelity.  

 

 

Figure 2.3. Movement and interaction processes performed by all agents each timestep. During the 

movement process, (A) an agent, i, begins the timestep as inactive (black shading). If a value, X, drawn 

from an exponential distribution with a mean of 1 is less than i’s activity level, Ai, (B) the agent becomes 

active (white shading) and updates its heading, then (C) moves forward. During the interaction process, 

(D) any agent that is currently active (white) forms a directed interaction to a randomly selected agent 

within its interaction radius (dashed circle). In this example, active agent i forms a directed interaction to 

inactive agent j. 
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Agent movement. Agents move in a correlated random walk [25] governed by their activity level 

and turning index (Figure 2.3A-C). Agent i will only move during time step t if it is ‘currently 

active’. An agent is considered to be active on a given time step if ∝ < 𝐴𝑖, where ∝ is randomly 

drawn from an exponential distribution with mean 1. Accordingly, if Am is set to 1, half of the 

agents in the population will, on average, be active on any given time step, comparable to 

observed activity patterns in several social insect species [17,18,26]. If agent i is active during 

time step t, its current heading is updated as: 𝜃𝑖,𝑡+1 = 𝜃𝑖,𝑡 + 𝛿𝜃, where 𝛿𝜃 represents the 

change in direction drawn from normal distribution with mean 0 and standard deviation 𝑇𝑖 (c.f. 

[27,28]). A higher value of 𝑇𝑖 will therefore result in a more tortuous movement path and 

consequently greater spatial fidelity within the nest. After updating its heading, agent i then 

moves forward by one body length (equivalent to 0.5 patches). Agents are prevented from 

moving past the nest boundaries to capture the physical constraints present within a social 

insect nest. If forward movement would cause i to move past a boundary, its x and/or y 

coordinate is set to that of the boundary to ensure that it does not move past. 

 

Agent interactions. Agents can form pairwise, directed interactions with one another upon 

coming into contact (Figure 2.3D). The formation and direction of interactions are both 

determined by agent activity by default (but see Experiment ii, where these constraints are 

relaxed). Each agent has an ‘interaction radius’ of 0.5 patches (equivalent to one body length) 

which determines when they are in physical contact with each other. An interaction radius equal 

to one body length was used because worker interactions often involve physical contact (e.g. 

antennation, food-sharing) and observations on multiple species suggest one body length is well 

within the range at which workers can detect nestmates [29,30]. If agent i is currently active and 

has at least one other agent within its interaction radius at timestep t, it forms an outgoing 

connection to one random agent, j, within its interaction radius. Agent i is therefore considered 

the information signaller and j the information receiver. Our assumption that information 

transfer is linked to activity in this way reflects a situation often seen in social insect species, 

where knowledgeable individuals actively transmit information to others, e.g. the honeybee 

waggle dance [31]. In other circumstances, greater activity can be positively related to the 

likelihood of acquiring information from nestmates—e.g., when an ant detects the cuticular 

hydrocarbons or food-associated odours borne by nestmates that it encounters [6]. We 

therefore investigated an alternative ‘to-active’ condition, where information tends to flow 

towards more active individuals, which produced qualitatively similar results (Figures 2.S1-2.S2). 
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2.3.2. Data collection 

For every interaction that occurred throughout the simulations, we logged the following 

information: the ID of both agents involved, the interaction’s direction, and the timestep during 

which the interaction occurred. This information was exported as a .csv file at the end of each 

simulation.  

 

2.3.3. The experiments 

Across several experiments, we investigated how the production of feed-forward loops within 

an interaction network is influenced by individual variation in activity and movement patterns, 

and the influence this has on within-colony information flow. Below, we describe the scenarios 

tested in each experiment and the statistical analyses of the data. In all cases, we used a 

population size of 100 agents and ran simulations for 5000 timesteps. All statistical analyses 

were carried out in R ver. 4.0.3 [32]. Generalized least squares (GLS) models were fit using 

maximum likelihood estimation in the nlme package [33]. A GLS framework allowed us to 

incorporate variance structures that modelled observed heterogeneity in residual spread where 

applicable [34]. Model selection was performed on the basis of Akaike’s Information Criterion 

corrected for sample size (AICc) [35]. When a single model was strongly supported by the data 

(Akaike weight ≥ 0.95), inferences were based on that model. Otherwise, model-averaging was 

used across the minimal set of models whose summed Akaike weights were ≥ 0.95. Model 

selection was carried out using the MuMIn package [36]. 

 

2.3.3.1. Effects of behavioural variation on triangle transitivity 

2.3.3.1.1. Model parameters and scenarios tested.  

By determining how agents move, among-individual variation in activity and movement pattern 

is expected to influence how frequently (and with whom) individuals interact, thereby shaping 

the structure of the resulting interaction networks. We therefore compared simulations in which 

among-individual variation was present for activity level, turning index, or both to simulations 

in which these traits remained uniform across the population (Table 2.1). We ran 100 

simulations for each of the following conditions: (i) Uniform, where Ai and Ti were set to Am and 
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Tm respectively across all agents; (ii) Activity Variable, where Ai (but not Ti) varied across agents; 

(iii) TI Variable, where Ti (but not Ai) varied across agents; (iv) Uncorrelated, where both traits 

varied within a population, but activity variation was independent of variation in turning index; 

and (v) Correlated, where both traits varied within a population and Ai was negatively correlated 

with Ti. For each condition, interaction initiation was determined by agent activity and during 

interactions, active agents generated outgoing edges. 

 

Table 2.1. The five behavioural conditions modelled in this experiment. 

Condition Activity level, Ai Turning index, Ti Behavioural syndrome? 

Uniform Uniform Uniform NA 

Activity Variable Varies Uniform NA 

TI Variable Uniform Varies NA 

Uncorrelated Varies Varies 𝐴𝑖  and 𝑇𝑖  are independent 

Correlated Varies Varies 𝐴𝑖  and 𝑇𝑖  are negatively 

correlated 

 

For all conditions, 𝐴𝑚 = 1 and 𝑇𝑚 = 60. Setting 𝐴𝑚 to 1 means that, on average, 50% of agents 

will be active on a given turn. Similar inactivity levels are commonly observed across social insect 

species [17,18,26]. A mean turning index of 60 is comparable to that observed in multiple ant 

species [2,37,38]. In addition, a sensitivity analysis showed that our results were robust to a 

range of values for 𝐴𝑚 and 𝑇𝑚 (Supplementary Material, Tables 2.S1-2.S5, Figure 2.S5). 

 

2.3.3.2. Statistical analysis 

To evaluate the role of among-individual variation in generating feed-forward loops, we 

compared mean triangle transitivity, ttri, across the different conditions [13]. Triangle transitivity 

quantifies the tendency of triangles (i.e. triadic configurations in which all three dyads are 

connected) to be transitive (i.e. form a feed-forward loop) rather than cyclic (Figure 2.1A,B). This 

value is scaled relative to the expected proportion of transitive triangles, such that a value of 0 

indicates that the proportion of transitive triangles does not differ from random expectations 

and a value of 1 indicates that all triangles are transitive (Figure 2.1A) and none are cyclic (Figure 

2.1B). 
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We first extracted weighted time-aggregated networks from the interaction lists collected after 

each simulation (see ‘Data collection’) [39]. Time-aggregated networks were then converted 

into binary directed networks as follows: non-interacting dyads received a value of 0; dyads in 

which all interactions were in a single direction were linked by a binary edge with that same 

directionality; and for dyads in which interactions occurred in both directions, directionality of 

the binary edge corresponded to whichever direction >50% of interactions occurred in. If an 

equal number of interactions occurred in both directions, that dyad was linked by a bidirectional 

binary edge (Figure 2.1C). We acknowledge that assigning edge directionality using this method 

will have converted any edges that were close to being bidirectional (e.g. those with a 49/51 

split) to edges with a single direction, which may have understated the abundance of 

bidirectional edges in our data, particularly when compared to naturally noisy ecological data. 

We therefore conducted a simple check to establish how often these ‘nearly bidirectional’ edges 

occurred in our data by calculating the proportion of dyads in which more than 0.45 but less 

than 0.5 of interactions occurred in one direction. As only 2-5% of dyads that were ultimately 

converted to single direction edges fell into this range, which we feel sufficiently low not to 

impact the overall interpretation of our results, we proceeded with the method of assigning the 

directionality of binary edges using a simple majority rule.  

For each simulation run, time-aggregated networks were built over increasingly larger time 

windows (starting from t = 0) until the resulting binary network contained at least n edges, where 

n ranged from 150 to 1500 in increments of 150. For each combination of condition (Table 2.1) 

and network density (n = 150, 300, …, 1500), ten binary networks were obtained; only one binary 

network was extracted from a given simulation run. Triangle transitivity was then calculated for 

each binary network as described in [13] (see the Supplementary Material for more details on 

triangle transitivity calculations). Triangle transitivity values were used as the response variable 

in a GLS model with behavioural condition (Table 2.1), network density, and their interaction as 

predictors. Prior to analysis, network density was standardised by subtracting the mean and 

dividing by the standard deviation. 

To further compare the structure of the time-aggregated networks, triad significance profiles 

(TSP) for the 7 possible triangle configurations were also obtained for each non-Uniform 

behavioural condition. TSPs are vectors of normalized Z-scores that quantify the representation 

of each triangle configuration relative to that expected from a null model. Here, the Uniform 

condition represented the null model of interest, where all individuals expressed the same mean 

activity and turning index. Using time-aggregated networks containing 1000 binary edges, we 

first obtained Z-scores for each triangle configuration in each non-Uniform simulation as: 
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𝑍𝑖 =
𝑁𝑂𝑏𝑠. −  𝑁𝑈𝑛𝑖𝑓𝑜𝑟𝑚

𝑠. 𝑑.𝑈𝑛𝑖𝑓𝑜𝑟𝑚
 

where 𝑁𝑂𝑏𝑠 is the frequency of a given triangle configuration in the time-aggregated network 

and 𝑁𝑈𝑛𝑖𝑓𝑜𝑟𝑚 and 𝑠. 𝑑.𝑈𝑛𝑖𝑓𝑜𝑟𝑚 are respectively the mean and standard deviation of the 

frequency of that triangle configuration across 100 networks from the Uniform condition. Z-

scores were then normalized as follows: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑍 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑍𝑖

√(∑ 𝑍𝑖
2)

 

 

2.3.3.3. Effects of activity on triangle transitivity 

2.3.3.3.1. Model parameters and scenarios tested 

As well as determining an agent’s probability of moving on timestep t, 𝐴𝑖  also directly influences 

both the initiation and directionality of interactions. To disentangle the impact of these latter 

two elements on triangle transitivity, we modified the model to run the following four 

conditions: (i) Activity determines whether interactions are initiated, but not directionality. In 

this condition, interactions are initiated only by currently active agents as described above, but 

the interaction’s direction is assigned randomly, such that both agents have a 0.5 probability of 

becoming the information signaller. (ii) Activity determines interaction directionality, but not 

initiation. In this condition, each agent, regardless of its activity status, has a 0.5 probability of 

initiating an interaction on each timestep, provided that there is at least one agent within its 

interaction radius. The direction of the interaction is then determined by the relative activity 

levels of the two agents, such that agents that tend to be more active are more likely to become 

signallers. Specifically, the probability of an interaction being directed from agent i to agent j is 

proportional to 
𝐴𝑖

𝐴𝑖+𝐴𝑗
.  (iii) Neither interaction initiation nor directionality is determined by 

activity. In this condition, all agents have a 0.5 probability of initiating an interaction on each 

timestep, with the direction of any resulting interactions determined randomly. (iv) Both 

interaction initiation and directionality are determined by activity (this is the default condition, 

as described above). For each condition, we ran 100 simulations each for the Activity Variable 

and Uniform treatments (Table 2.1). For all conditions tested here, 𝐴𝑚 = 1 and 𝑇𝑚 = 60. 
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2.3.3.3.2. Statistical analysis 

Network density had only a weak effect on triangle transitivity (see Results). As such, for each 

simulation we extracted a binary network that contained 1000 edges as previously described. 

Values of 𝑡𝑡𝑟𝑖 were then compared across conditions using GLS models. 

 

2.3.3.4. Speed and efficiency of information flow 

To evaluate how among-individual variation influenced information flow within the population, 

we simulated a simple diffusion process through 100 simulations for each condition specified in 

Table 2.1. The first agent to initiate an interaction in a simulation was treated as the initially 

informed individual. Naïve individuals that received an incoming interaction from an informed 

individual became informed themselves and capable of transmitting that information onwards. 

As in [40], we estimated transmission speed as the time step at which ≥ 50% of agents were 

informed in each simulation, T50. To evaluate how efficiently information spread, we also 

recorded the cumulative number of outgoing interactions from informed individuals (whether 

to naïve or informed agents) that occurred by T50. Our measure thus equates efficiency with 

maximizing the spread of information while minimizing the number of interactions. 

 Substantially more interactions occurred during simulations with uniform activity levels 

across agents than those in which activity levels varied. All else being equal, higher interaction 

rates should result in a more rapid spread of information [2]. To disentangle the effects of the 

patterning of interactions from the total number of interactions on the diffusion process, we 

randomly selected and removed 20% of interactions in each simulation run in which activity 

levels were uniform across agents, prior to simulating the diffusion process. This resulted in a 

similar interaction rate across all runs without systematically altering the patterning of 

interactions generated by different behavioural conditions. GLS models were used to compare 

T50 and the efficiency of information flow across behavioural conditions. Response variables 

were log-transformed to meet assumptions of normality. 

 

2.4. Results 

2.4.1. Effects of behavioural variation on triangle transitivity 
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There was strong evidence for an effect of behavioural condition on triangle transitivity, and the 

triadic configurations of the social network as a whole (Figure 2.4). Consistent across a range of 

network densities, networks were dominated by transitive (rather than cyclic) triangles 

(indicated by relatively greater ttri) when activity levels varied among individuals, whereas when 

all individuals were equally active, the number of transitive triangles matched random 

expectations—i.e., ttri ≈ 0 (Figure 2.4; Table 2.2). As binary networks became more dense (i.e. 

more connections), variation in ttri decreased across simulations, though there was little change 

in mean ttri (Figure 2.4A).  

When individuals varied in only their turning indices, the abundance of fully-connected triads on 

the whole were reduced compared to the Uniform condition (Figure 2.4B). Among-individual 

variation in turning index also altered spatial structuring within the nest. Individuals with more 

sinuous walking paths (i.e., high Ti) tended to cluster into localised areas, while those with 

straighter walking paths navigated a greater proportion of the nest (Supplementary Material, 

Figure 2.S3). 

 

Table 2.2. GLS model of triangle transitivity as a function of behavioural condition. Model-averaged 

estimates (MAE) and unconditional standard errors (USE) derived from the two best-supported models 

given in Table 2.S1 (∑ 𝑤𝑖 = 0.999). Intercept taken as Condition = Uniform. A variance structure was 

incorporated that allowed for heterogeneous residual spread across network density, dependent on 

condition. N = 1000 simulations. 

Parameter MAE USE 95% CI 

Intercept 0.007 0.010 -0.012, 0.026 

Condition = Activity Variable 0.538 0.016 0.506, 0.571 

Condition = TI Variable 0.002 0.011 -0.020, 0.023 

Condition = Uncorrelated 0.526 0.013 0.501, 0.552 

Condition = Correlated 0.518 0.012 0.494, 0.542 

Network density -0.010 0.008 -0.027, 0.006 

Activity Variable * Network density 0.024 0.016 -0.008, 0.056 

TI Variable * Network density 0.003 0.009 -0.015, 0.020 

Uncorrelated * Network density 0.013 0.012 -0.009, 0.036 

Correlated * Network density 0.010 0.010 -0.011, 0.030 
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Figure 2.4. (A) Triangle transitivity as a function of behavioural condition and network density. Active 

agents generated outgoing edges. Lines depict predicted values. (B) Triad significance profiles comparing 

the relative significance of triangle configurations across the non-Uniform behavioural conditions, relative 

to the Uniform condition. Normalized Z-scores were averaged across 100 simulation runs for each 

condition; bars indicate the standard errors. For both graphs, points are horizontally jittered to improve 

clarity. 

 

2.4.2. Effects of activity on triangle transitivity 

Triangle transitivity varied according to a three-way interaction between condition (Uniform vs. 

Activity Variable) and activity-based influences on interaction initiation and directionality (Figure 

2.5; Table 2.3). Triangle transitivity was significantly higher when activity levels varied among 

(B) 

(A) 
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individuals and activity determined interaction direction (mean ttri = 0.569) compared to 

instances in which these conditions were not met (mean ttri = 0.001; Figure 2.5) (see 

Supplementary Material, Figure 2.S4, for triad significance profiles). Put simply, 

overrepresentation of feed-forward loops emerged when some individuals were more likely 

than others to generate directed network connections. 

 

 

Figure 2.5. Boxplots depicting the effects of activity on triangle transitivity. Thick lines indicate medians, 

while the boxes indicate the interquartile range. Whiskers extend to 1.5x the interquartile range. 

Condition refers to whether activity levels varied or were uniform among agents. Interactions were either 

initiated randomly (red outlines) or by a currently active agent moving within the interaction radius of 

another agent (black outlines). The direction of an initiated interaction was either assigned randomly (blue 

fill) or according to an agent’s current activity (yellow fill). 
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Table 2.3. Parameter estimates from GLS model of triangle transitivity as a function of behavioural 

condition, interaction initiation, and interaction directionality. Estimates derived from best-supported 

model (∑ 𝑤𝑖 = 0.999). Intercept taken as Condition = Uniform with both initiation and direction of 

interactions determined by activity. A variance structure was incorporated that allowed for 

heterogeneous residual spread across both condition and directional variants.  N = 800 simulations. 

Parameter Estimate SE 95% CI 

Intercept -0.001 0.004 -0.008, 0.007 

Condition = Activity Variable 0.547 0.006 0.534, 0.559 

Random Initiation -0.0004 0.006 -0.012, 0.011 

Random Direction 0.003 0.005 -0.007, 0.013 

Activity Variable * Random Initiation 0.046 0.009 0.028, 0.064 

Activity Variable * Random Direction -0.546 0.008 -0.562, -0.530 

Random Initiation * Random Direction -0.001 0.007 -0.015, 0.013 

Activity Variable * Random Initiation * Random 

Direction 

-0.045 0.012 -0.068, -0.023 

 

2.4.3. Speed and efficiency of information flow 

The speed of information flow—measured by T50, the time step at which 50% of agents were 

informed—varied across conditions (Figure 2.6A; Table 2.4). T50 was highest (i.e. information 

spread most slowly) when individuals varied only in activity level. When individuals 

independently expressed variation in both activity and turning index, the speed of information 

flow was similar to when no variation was present in either trait. T50 was lowest (i.e. information 

spread most rapidly) either when individuals varied in turning index alone or when this variation 

was negatively correlated with variation in activity levels. 

 Efficiency of information flow, measured by the number of outgoing interactions from 

informed agents that had occurred until T50 was reached, also varied across conditions (Figure 

2.6B; Table 2.5). Information spread most efficiently (fewest outgoing connections) either when 

individuals varied only in turning index or when variation in activity level and turning index were 

negatively correlated with one another. When mean activity and turning index were 

uncorrelated, transmission efficiency was similar to the condition in which no individual 

variation was present. Information transmission was least efficient (most outgoing connections) 

when individuals varied in mean activity level alone. 
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Table 2.4. Parameter estimates from linear model of T50 (log-transformed) as a function of behavioural 

condition. Estimates derived from best-supported model (∑ 𝑤𝑖 > 0.999). Intercept taken as Condition = 

Uniform. N = 500 simulations. 

Parameter Estimate SE 95% CI 

Intercept 6.611 0.025 6.562, 6.659 

Condition = Activity Variable 0.148 0.035 0.080, 0.217 

Condition = TI Variable -0.136 0.035 -0.204, -0.068 

Condition = Uncorrelated -0.018 0.035 -0.086, 0.051 

Condition = Correlated -0.179 0.035 -0.248, -0.111 

 

 

Table 2.5. Parameter estimates from linear model of transmission efficiency (log-transformed) as a 

function of behavioural condition. Estimates derived from best-supported model (∑ 𝑤𝑖 > 0.999). 

Intercept taken as Condition = Uniform. N = 500 simulations. 

Parameter Estimate SE 95% CI 

Intercept 5.612 0.025 5.563, 5.660 

Condition = Activity Variable 0.081 0.035 0.012, 0.149 

Condition = TI Variable -0.201 0.035 -0.270, -0.133 

Condition = Uncorrelated -0.080 0.035 -0.148, -0.011 

Condition = Correlated -0.216 0.035 -0.284, -0.148 
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Figure 2.6. Speed and efficiency of information flow under different behavioural conditions. Boxplots 

show (A) T50, the timestep at which ≥ 50 individuals were informed, and (B) the cumulative number of 

outgoing interactions from informed individuals until T50. Lower values respectively correspond to faster 

and more efficient transmission. Thick lines indicate medians, while the boxes indicate the interquartile 

range. Whiskers extend to 1.5x the interquartile range. 

 

2.5. Discussion 

The superorganismal nature of eusocial insect colonies means that natural selection is 

increasingly expected to act on colony-level traits [4], such as the ability to generate robust, yet 

flexible, colony-level responses to ecological challenges. Collective coordination relies on 

interactions that transfer information between nestmates, raising the possibility that natural 

selection has acted on the behavioural algorithms that determine whether and how workers 

interact. Using a simple agent-based model, we demonstrate that among-individual variation in 

the likelihood of sending outgoing (or receiving incoming) links is sufficient to generate an over-

abundance of a triadic network substructure known as the “feed-forward loop” (Figure 2.1A). 

This motif is commonly found in biological regulatory networks where it performs various signal 

processing tasks, e.g. discriminating persistent signals from short-lived pulses [10,11], and is also 

over-represented within social insect interaction networks, where similar regulatory roles have 

been demonstrated [7,14]. Nevertheless, our model found that feed-forward loops alone had 

little impact on information transmission processes. Rather, among-individual variation in 

movement patterns (either alone or as part of a behavioural syndrome) promoted faster and 

more efficient information transfer, despite contributing little to the production of feed-forward 

(A) (B) 
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loops. Our model thus demonstrates how collective properties that support colony functioning 

can be tuned by modifying both the behavioural variation present among workers and 

correlations across traits.  

Insect workers often vary considerably in their activity levels [16-19], with a minority of 

individuals generally carrying out most of the work [19,20,24]. These individuals can also play a 

key role in transmitting task-relevant information through interactions with nestmates [15]. 

Honeybee (Apis mellifera) foragers, for example, vary dramatically in their likelihood to produce 

recruitment dances, even when collecting from identical resources [41]. Similarly, highly active 

‘keystone individuals’ catalyse worker activity in ant colonies [42]. We therefore linked activity 

in our model to the likelihood of directed information transfer between individuals and found 

that, when this criterion was satisfied, individual variation in activity drove production of feed-

forward loops within the interaction networks. However, given that other effects of activity 

variation in our model (e.g. total distance moved) were unimportant for the generation of these 

motifs, it seems likely that any behavioural trait that (i) varies among individuals and (ii) directly 

influences the directionality of pairwise interactions (e.g. the direction of information transfer) 

could drive an over-abundance of feed-forward loops. 

One such trait may be the propensity to interact with nestmates. For example, honeybees vary 

in their likelihood to engage in trophallactic food-sharing interactions [43], with some individuals 

potentially specialising in offering food [44]. Dominance interactions are also characterised by 

clear directional relationships—indeed, transitive relationships are a common feature in 

dominance hierarchies, in both insects [14] and other taxa [13]. In various ant species, for 

example, trophallaxis is generally directed from subordinate to dominant individuals [22]. 

Variation in knowledge or past experience is also likely to promote transitive network structures 

when it results in directed information transfer among workers. For example, more experienced 

Temnothorax albipennis ants are more likely to engage in tandem runs, where they directly lead 

naïve followers to a resource [45]. Similarly, it has been suggested that in the grass-cutting ant 

(Acromyrmex heyeri), workers initially sacrifice foraging efficiency in order to more rapidly 

provide nestmates with information about newly discovered foraging resources [46]. 

Nevertheless, while transitive network structures are a potentially common feature of social 

insect colonies, whether they offer any functional benefit remains unclear. Previous analyses of 

empirical social insect networks have shown that an overrepresentation of feed-forward loops 

could reflect selection for more efficient information transfer in insect colonies [7,14]. However, 

our model found that the speed and efficiency of information transfer was unrelated to the 
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proportion of transitive triangles in the population social network. For example, among-

individual variation in activity alone produced comparable triangle transitivity levels compared 

to when individuals varied in both activity and turning index, but the former was associated with 

relatively slow and inefficient transmission compared to the latter. This suggests that the effects 

of feed-forward loops on collective functioning are likely to be context-dependent. 

It is also possible that feed-forward loops confer regulatory properties beyond those considered 

here. For instance, in transcriptional networks, feed-forward loops can dampen responses to 

external signals to ensure that transient signals are ignored [11]. A similar role may be present 

in insect colonies by limiting collective responses to weak signals about low-quality resources 

and thereby promote effective worker allocation. Workers often vary in their response 

thresholds to task-related stimuli, with some requiring relatively little stimulation to begin work, 

while others must experience substantially higher intensities of task-related stimuli before 

acting [22]. Feed-forward loops may regulate worker activation by limiting responses to weak 

task-relevant stimuli, while ensuring sufficient stimulation (e.g. multiple signals from active 

workers) is received by inactive workers when more help is truly needed. It is also possible that, 

in some cases, the production of feed-forward loops is simply an inadvertent by-product of the 

behavioural variation present within insect colonies and not itself a target of selection. Previous 

work has shown, for example, that the frequency and nature of lower-level dyadic interactions 

play a key role in determining the types of triadic configurations that can arise in a network [47]. 

It is worth noting that our model assumed that behavioural variation remained constant over 

time. In reality, an individual’s activity and/or propensity to interact with others may shift in 

response to factors such as worker loss, changes in colony food stores, or the discovery of a new 

resource, and these changes may in turn influence how information is transferred through the 

colony [19,29]. Nevertheless, while our model represents a simplified transmission scenario, it 

demonstrates clearly how variation in simple individual-level behaviours can significantly impact 

colony-level information transfer. It also highlights the challenge in inferring the functionality of 

dynamic systems from knowledge of the static network structure alone. Within insect colonies, 

interactions are often brief and stable relationships between particular individuals are generally 

absent. Under such conditions, very different patterns of interaction can give rise to similar 

network structures when aggregated over time [39]. Whereas previous analyses of the function 

of feed-forward loops have focused on systems with relatively fixed relationships (e.g. gene 

regulatory networks; [11]), within insect colonies, the timing and order of interactions is of 

critical importance. Indeed, when we simulated information flow on the static networks derived 

from our time-ordered interaction lists, rather than on the time-ordered interactions 
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themselves, we found that in agreement with previous studies [11,14] information spread more 

efficiently on networks characterised by an overrepresentation of transitive triangles 

(Supplementary Material; Tables 2.S6–2.S7; Figure 2.S6). 

In contrast to among-individual variation in activity, individual variation in movement paths 

often improved both the speed and efficiency of information transfer in our model, despite 

having limited impact on the generation of network transitivity. Spatial behavioural variation 

was included in our model in terms of walking path sinuosity, causing some individuals to remain 

in restricted areas of the nest, while others traversed the entire nest space [2,28] 

(Supplementary Material, Figure 2.S3). Under certain conditions, such variation in space-use 

allowed for faster and more efficient information transfer through the colony. In particular, 

these effects were observed either when individuals varied in path sinuosity alone or when 

activity levels were negatively correlated with turning indices across the population—that is, 

agents with sinuous walking paths tended to be inactive while those with straighter walking 

paths were often active. In many eusocial insect species, similar patterns of space-use variation 

have been observed. Bumblebees (Bombus terrestris), for example, perform irregular ‘excited’ 

runs throughout the nest after returning from successful foraging trips which serve to increase 

foraging activity in other workers by rapidly distributing pheromones and potentially through 

physical contacts [48,49]. Similarly, red harvester ants (P. barbatus) vary in the sinuosity of their 

walking trajectories, which influences their interaction frequency. Ants with straighter walking 

paths contact more nestmates than those with more tortuous paths [2]. Our model is consistent 

with the hypothesis that such variation in connectivity facilitates rapid information flow 

throughout the population due to workers with straighter walking paths linking isolated clusters 

of individuals [2]. 

It should be noted, however, that the adaptiveness of fast, efficient information transfer is highly 

context-dependent. In response to predation, for example, insect colonies are likely to benefit 

from rapid alarm propagation that can quickly marshal colony defences [50,51], whereas rapid 

information transfer may be less valuable in a foraging context. Instead, the regulation of 

information transmission in response to environmental feedback is key to ensuring worker effort 

is divided according to the quality of resources [52], and colonies that show restraint in foraging 

efforts can often be more successful [53,54]. In addition, behavioural variation that promotes 

fast and efficient information transfer may also promote faster transmission of pathogens. In 

this case, we would expect natural selection to favour collective responses to the infiltration of 

pathogens that limit unnecessary interactions. On exposure to pathogens, for example, some 

ant species switch from allogrooming to self-grooming – or even isolate themselves from other 
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workers completely – thus reducing potential infection of healthy nestmates [55,56]. Similarly, 

nest architecture can influence disease spread throughout a colony, with physically or 

behaviourally segmented nests tending to dampen the spread of disease [56,57]. 

 

2.6. Concluding remarks and future directions 

Further research is required to establish whether and how feed-forward loops impact the 

collective functioning of social insect colonies. Central to these efforts is quantifying the extent 

to which feed-forward loops and other network motifs are present within colony interaction 

networks. A common approach is to compare empirical networks with Erdős-Rényi random 

networks matched for size and density, yet these null models often lack biological and physical 

relevance [58, 59]. For example, random graphs typically assume that all individuals are equally 

likely to interact, thus ignoring spatial and temporal constraints on interactions (e.g., two 

individuals that generally occupy opposite sides of the nest are unlikely to interact). A potential 

application of our model lies in the generation of spatially explicit null models, tuned to a 

particular system, that will enable realistic comparison with empirical data. To illustrate this 

point, we reanalyzed previously published data on interaction networks of the ant P. californicus 

[7], using our agent-based simulations to generate spatially explicit null models that match the 

empirical data in network size and density (see Supplementary Material, section 2.7.5, for details 

on this analysis). Comparing the empirical networks with random graph models, the original 

study concluded that feed-forward loops were overrepresented, while three-cycles (Figure 2.1B) 

matched expected frequencies (see Fig. 3 in [7]).  Conversely, our method suggests that both 

substructures are over-represented in the empirical data relative to the simulated data (Figure 

2.7). We stress that our reanalysis does not invalidate the findings of [7]—indeed, our model is 

not parameterized appropriately for their data in terms of ant worker activity and movement. 

Rather, these results emphasize the important role that selecting a null model plays in the 

interpretation of network analyses. By offering a means to generate spatially explicit null 

models, we anticipate that our model will prove useful for future investigations into the 

mechanisms that drive the structure of animal social networks. 
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Figure 2.7. Triad significance profiles comparing the relative significance (measured by Z scores) of triangle 

configurations found in Waters and Fewell’s [7] data compared to null models generated from our 

simulation using either Activity Variable or Uniform conditions. Normalized Z-scores were averaged across 

twelve networks with varied sizes, and across 100 simulation runs for each condition; bars indicate the 

standard errors. 
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2.7. Supplementary Material 

2.7.1. Full ODD model description 

Our model was created in the agent-based modelling platform NetLogo (V5.2.0; 

https://ccl.northwestern.edu/netlogo/). The model description below follows the ODD 

(Overview, Design concepts, Details) protocol [23].  

Purpose. The purpose of this model is to investigate how individual variation in worker 

movement in eusocial insect colonies, specifically in terms of activity levels and movement 

paths, contribute to the formation of networks characterised by a structural signature previously 

linked to information processing in regulatory networks, the feed-forward loop (Figure 2.1A), 

and what effect this has on the speed and efficiency of information flow within the colony.  

Entities, state variables and scale. The model consists of a population of agents (Ndefault = 100), 

which represent workers within a social insect colony. Each agent has a fixed activity level Ai and 

turning index Ti assigned at the beginning of the simulation (see Initialisation for details). The 

model is spatially explicit with agents contained within a 50 x 50 grid of square patches, 

representing an area within the nest in which workers move and interact with each other to 

share information.  

Process overview and scheduling. Time is modelled in discrete time steps, until the specified 

end time (tdefault = 5000 steps) is reached. During each time step, two processes are executed in 

the following order: ‘movement’ and ‘interactions’. Each process is performed by all agents 

(selected in a random order) before moving to the next process. Both processes are described 

in more detail in the Submodels section below. 

Design concepts. The structure of an insect colony’s interaction network emerges from the 

behaviour of the workers—specifically how they move through the nest and how they interact 

with one another [2,19,61]. By determining whether and how individuals move within the nest, 

among-individual variation in activity and space-use is expected to influence how frequently—

and with whom—individuals interact. Agent movement is modelled as a correlated random walk 

[25] based on fixed parameters (i.e. Ai and Ti) and is therefore a partially stochastic process. Ai 

and Ti are random draws from exponential distributions with specified population means. The 

location of each agent at the beginning of the simulation is randomly assigned. When individuals 

come into contact (i.e. within 1 body length), worker activity then influences whether an 

interaction occurs and its directionality (i.e. incoming vs. outgoing). Data on pairwise 

interactions is collected continuously throughout the simulation. Specifically, each time an 
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interaction occurs, the following information is logged by the model: the identities of the two 

agents involved, the direction of the interaction, and the time step on which it occurred.  

Initialisation. During setup, a population of agents (Ndefault = 100) is created and each agent is 

placed randomly within a 50 x 50 grid of square ‘patches’. Each agent i is assigned an activity 

value (𝐴𝑖) and turning index (𝑇𝑖). Activity levels and turning indices can either be variable across 

the population (centred around population means, 𝐴𝑚 and 𝑇𝑚, respectively) or set to the same 

value for all agents (‘uniform’). 

When activity levels are uniform across the population, all agents are assigned the same value, 

𝐴𝑖 =  𝐴𝑚. When activity levels are variable, values are randomly drawn from an exponential 

distribution with mean 𝐴𝑚, meaning that while most agents are relatively inactive, a few are 

highly active. Similar distributions of worker activity have been observed across multiple social 

insect species (e.g. ants [24], stingless bees [20], bumblebees [19]). 

When turning indices are uniform, all agents are assigned the same value, 𝑇𝑖 =  𝑇𝑚. When 

turning indices are variable, the values 𝑡𝑖 are first randomly drawn from an exponential 

distribution with mean 𝑇𝑚, and modified as follows: 

𝑟𝑖 = 𝑡𝑚𝑎𝑥 − 𝑡𝑖 + 0.01 

where 𝑡𝑚𝑎𝑥 is the maximum value from all generated values of 𝑡𝑖. This results in the majority of 

individuals having a relatively high 𝑟𝑖, whereas a smaller number are assigned lower values of 𝑟𝑖. 

Adding a small constant ensures no individuals will be assigned a value of 0. Then, individuals 

are assigned a turning index, 𝑇𝑖, equal to: 

𝑇𝑖 =
𝑟𝑖𝑇𝑚

𝑟𝑚
 

where rm is equal to  

𝑟𝑚 =
∑ 𝑟𝑖

𝑛
𝑖=1

𝑛
 

 

This procedure generates a distribution of turning indices such that most agents have relatively 

high turning indices, resulting in more tortuous movement paths, whereas a few agents have 

low turning indices (i.e. they tend to move in straighter paths). 

N values of A and T are generated in the way described above and distributed across the N 

agents within the population. A and T can be either uncorrelated or negatively correlated across 
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agents. If uncorrelated, the values of A and T are assigned randomly across agents. If negatively 

correlated, the highest value of A is paired with the lowest value of T, the second-highest value 

of A with the second-lowest value of T, and so forth. These paired values are then distributed 

randomly across the agents, generating a population where more active agents also move in 

straighter paths. This was done in order evaluate the potential for synergistic effects between 

activity level and turning index on the generation of feed-forward loops. In other words, if highly 

active agents not only interact more often, but also interact with a more diverse array of 

nestmates because they traverse the entire nest (while less active agents remain in more 

restricted areas), this might lead to greater overrepresentation of feed-forward loops than 

variation in activity acting alone. 

Submodels. This model has two processes: ‘movement’ and ‘interactions’. 

Movement. The ‘movement’ process is performed by all agents in a random order. An agent i 

moves through the nest in a correlated random walk [25] governed by its activity level, Ai, and 

turning index, Ti. 

Agent i will only move during time step t if it is ‘currently active’. An agent is considered active 

on a given time step if: ∝ < 𝐴𝑖, where ∝ is a random number drawn from an exponential 

distribution with mean 1. Therefore, the higher an agent’s activity level, the more likely they are 

to move in a given time step, and so will cover a greater distance across the entire simulation. 

According to these rules, if 𝐴𝑚 is set to 1, half of the agents in the population will, on average, 

be active on any given time step. This is comparable to observed patterns of activity in several 

social insect species [17, 18, 26]. 

If agent i is active during time step t, its current heading is updated as: 𝜃𝑖,𝑡+1 = 𝜃𝑖,𝑡 + 𝛿𝜃, where 

𝛿𝜃 represents the change in direction drawn from normal distribution with mean 0 and standard 

deviation 𝑇𝑖 (c.f. 27, 28). A higher value of 𝑇𝑖 means an agent tends to greatly modify its heading 

each time it moves, resulting in a more tortuous movement path. As this means an agent will be 

slower to move away from its starting location, higher values of 𝑇𝑖 also correspond to greater 

spatial fidelity within the nest. After updating its heading, agent i then moves forward by one 

body length (equivalent to 0.5 patches). Agents are prevented from moving past the world 

boundaries to capture the physical constraints present within a social insect nest. If a forward 

movement causes i to move past a world boundary, its x and/or y coordinate is set to the 

position of the boundary to ensure it does not move past. 
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Interactions. The ‘interactions’ process is performed by all agents in a random order and 

involves two sub-processes, ‘initiate interaction’ and ‘assign direction’, which are executed 

differently depending on the inputs specified by the user.  

The ‘initiate interaction’ sub-process determines whether the agent initiates an interaction with 

another agent and can be either ‘based on activity’ or ‘random’. If based on activity, only a 

‘currently active’ agent (see above) is permitted to initiate an interaction. If random, the agent 

will initiate an interaction at a 0.5 probability. When initiating an interaction, an agent (i) chooses 

another random agent (j) within its ‘interaction radius’ (0.5-patch radius, equal to one body 

length) to become its ‘interaction partner’. If no agents are available within i’s interaction radius 

or if i does not meet the criteria required to initiate an interaction as outlined above, no 

interaction is initiated and the ‘interaction’ process for agent i for the current time step is ended. 

An interaction radius equal to 1 body length was used because interactions among social insect 

workers often involve physical contact (e.g. antennation, food-sharing) and observations on 

multiple species suggest one body length is well within the range at which workers can detect 

and respond to nestmates (e.g. ants [29, 30], honeybees [62]).  

If an interaction is initiated, the ‘assign direction’ sub-process is executed, which determines 

which agent (i or j) becomes the signaller of the interaction and which becomes the receiver.  In 

the model, directionality of an interaction can be assigned ‘from active’, ‘to active’, or ‘at 

random’. When interaction direction is ‘from active’ or ‘to active’, the exact way in which 

directionality is assigned is dependent on how the interaction was initiated. If interaction 

initiation was determined by activity (see above) and interaction direction is ‘from active’, agent 

i (i.e. the agent initiating the interaction) automatically becomes the signaller and j the receiver. 

Likewise, if interaction direction is set to ‘to active’, agent i (the initiator) becomes the receiver 

and j the signaller. Note that, in both cases, the activity status of agent j has no impact on 

whether it is interacted with, thus an interaction could be formed between an active and a non-

active agent, or between two active agents. If interaction initiation is random and interaction 

direction is set to either ‘from active’ or ‘to active’, the probability of agent i becoming the 

signaller or receiver respectively is instead proportional to 
𝐴𝑖

𝐴𝑖+𝐴𝑗
, meaning the direction of the 

interaction is determined by the relative activity levels of the two agents involved. If direction is 

chosen ‘at random’, agents i and j have an equal probability of becoming the signaller of the 

interaction. This allowed us to test hypotheses regarding the effect of activity-induced 

interactions on the formation of particular network structures. 
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In many social insect species, activity is often linked with information flow. The ‘from active’ 

condition described above may be viewed as representing a situation in which knowledgeable 

individuals actively transmit information to others—e.g. via evolved signalling behaviours such 

as the honeybee waggle dance [31]. However, increased activity may also be linked with 

information-seeking behaviours. For example, honeybee foragers actively solicit information 

from other foragers by “begging” for nectar samples [63]. This latter scenario was represented 

by the ‘to active’ condition. However, this modification produced qualitatively similar results to 

the ‘from active’ condition (Figures 2.S1-2.S2). 

 

2.7.2. Calculation of triangle transitivity, ttri 

Triangle transitivity was calculated as described in Shizuka & McDonald [13]. For each binary 

network constructed from the simulated interaction lists (see main text), we first obtained the 

frequency of each of 7 possible triangle configurations using the igraph package in R ver. 4.0.3 

[64]. We then calculated the proportion of transitive triangles among all triangles: 

𝑃𝑡 =  
∑ 𝑤𝑢𝑇𝑢𝑢

𝑁𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠
 

where 𝑇𝑢 is the frequency of triangle type u, 𝑁𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 is the total number of triangles in the 

network, and 𝑤𝑢 is a weighting factor. This weighting factor takes on values of 1 and 0 for 

transitive and cyclic triangles respectively. For triangle configurations containing one or more 

bidirectional edges, 𝑤𝑢 corresponds to the probability that the configuration will become 

transitive if these ties are resolved. For example, 𝑤𝑢 = 1 for the triangle depicted in Figure 2.1C 

since whichever direction the tie is ultimately resolved in will result in a transitive triangle. 

Triangle transitivity is then calculated as: 

𝑡𝑡𝑟𝑖 = 4(𝑃𝑡 − 0.75) 
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2.7.3. Additional results 

Table 2.S1. Model set used to derive parameter estimates presented in Table 2.2. Cond. = Behavioural 

conditions; Dens. = Network density. 

Model Parameters Df log L AICc ΔAICc 𝑤𝑖 

1 Cond. + Dens. + Cond. * Dens. 16 594.19 -1239.4 0 0.753 

2 Cond. 11 608.02 -1237.1 2.23 0.247 

 

 

 

 

Figure 2.S1. Triangle transitivity as a function of behavioural condition and network density for the 

alternative ‘to active’ condition, where active agents generated incoming edges. Points are horizontally 

jittered to improve clarity. Lines depict predicted values. 
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Figure 2.S2. Speed and efficiency of information flow under different behavioural conditions for the 

alternative ‘to active’ condition, where active agents generate incoming connections. Boxplots of (A) T50 

(i.e., the time step at which ≥ 50% of agents are informed) and (B) efficiency, measured as the cumulative 

number of outgoing interactions from informed individuals until T50, for each behavioural condition. 

Thick lines indicate medians, while the boxes indicate the interquartile range. Whiskers extend to 1.5x the 

interquartile range. 

 

(A) (B) 



Chapter 2 2022 PhD thesis | C. Easter 

84 
 

 

Figure 2.S3. Heatmaps showing examples of movement patterns of six agents with different turning 

indices (TI), within a 50x50 unit environment, over 5000 timesteps. (A) TI = 5; (B) TI = 30; (C) TI = 60; (D) 

TI = 90; (E) TI = 120; (F) TI = 150. Each individual started the simulation at position (-15,-15), which is 

marked by a white star. Each 1x1 unit within each map represents a patch within the environment, and is 

coloured according to the proportion of time the agent spent at this location, proportional to the 

maximum number of timesteps it spent at any one location.   
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Figure 2.S4. Triad significance profiles comparing the relative significance of triangle configurations across 

the Activity Variable behavioural conditions, relative to the Uniform condition, when initiation and/or 

directionality of interactions were either determined at random or by the relative activity levels of the 

two interacting agents. Normalized Z-scores were averaged across 100 simulation runs for each condition; 

bars indicate the standard errors. 

 

2.7.4. Additional analyses 

2.7.4.1. Sensitivity analysis 

Model parameters and scenarios tested. In the analyses described in the main text, the mean 

activity level of agents across the population, 𝐴𝑚, was set to 1, such that on average, 50% of the 

population is active on any given time step and the mean turning index, T𝑚, was set to 60. To 

investigate the robustness of our results to these assumptions, we ran additional sets of 

simulations in which 𝐴𝑚 and T𝑚 varied. For the former, we ran simulations with 

𝐴𝑚={0.5,0.75,1,…,2.5} for each behavioural condition (Table 2.1), keeping T𝑚 = 60. Twenty 

simulations were run for each combination of behavioural condition and value for 𝐴𝑚. We 

further ran an additional set of simulations with 𝑇𝑚 = {15,30,45,…,150} for each behavioural 

condition (Table 2.1), keeping A𝑚 = 60. Twenty simulations were run for each combination of 

behavioural condition and value for 𝑇𝑚. 
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Statistical analysis. For each simulation run, ttri was measured on a binary interaction network 

that contained 1000 edges. GLS models were fit with ttri as the response variable and behavioural 

condition, mean activity level or mean turning index (depending on the analysis), and their 

interaction with condition as predictors. 

 

Results: Mean activity. The relationship between triangle transitivity and the mean level of 

activity within a colony varied across conditions (Tables 2.S2-2.S3; Figure 2.S5A). As mean 

activity increased, triangle transitivity decreased only for conditions in which individuals varied 

in their activity level. Nevertheless, across the range of values for mean activity examined here, 

among-individual variation in activity always generated an overabundance of feed-forward 

loops, relative to conditions in which all individuals were similarly active (Figure 2.S5A). 

 

Table 2.S2. Parameter estimates from GLS model of triangle transitivity as a function of behavioural 

condition, mean activity (Am), and their interaction. Estimates derived from best-supported model 

(∑ 𝑤𝑖 > 0.999). Intercept taken as Condition = Uniform. A variance structure was incorporated that 

allowed for heterogeneous residual spread across condition. N = 900 simulations. 

Parameter Estimate SE 95% CI 

Intercept 0.012 0.006 0.001, 0.024 

Condition = Activity Var 0.615 0.012 0.591, 0.638 

Condition = TI Var -0.01 0.008 -0.026, 0.006 

Condition = Uncorrelated 0.601 0.012 0.577, 0.626 

Condition = Correlated 0.616 0.012 0.593, 0.64 

Am -0.009 0.004 -0.016, -0.002 

Activity Var * Am -0.075 0.007 -0.089, -0.06 

TI Var * Am 0.005 0.005 -0.005, 0.015 

Uncorrelated * Am -0.074 0.008 -0.088, -0.059 

Correlated * Am -0.087 0.007 -0.102, -0.073 
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Table 2.S3. Estimated slopes for effect of mean activity level on triangle transitivity for each behavioural 

condition. Model fitted with generalized least squares and restricted maximum likelihood. N = 900. 

Behavioural condition Trend SE 95% CI 

Uniform -0.009 0.004 -0.016, -0.002 

Activity Variable -0.084 0.006 -0.097, -0.071 

TI Variable -0.004 0.004 -0.012, 0.003 

Uncorrelated -0.083 0.007 -0.096, -0.07 

Correlated -0.097 0.006 -0.109, -0.084 

 

 

 

Figure 2.S5. Triangle transitivity as a function of behavioural condition for different values for (A) mean 

activity level and (B) mean turning index. Active agents generated outgoing edges. Points were 

horizontally jittered to improve clarity. Lines depict predicted values. 

 

Results: Mean turning index. The relationship between triangle transitivity and the mean 

turning index also varied across conditions (Tables 2.S4-2.S5; Figure 2.S5B). As mean turning 

index increased, triangle transitivity correspondingly increased only for conditions in which 

individuals varied in their activity level. Nevertheless, across all tested values of 𝑇𝑚, triangle 

transitivity remained substantially higher for all conditions in which among-individual variation 

in activity was present, relative to those in which activity levels were uniform across agents 

(Figure 2.S5B). 

(A) (B) 
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Table 2.S4. Parameter estimates from GLS model of triangle transitivity as a function of behavioural 

condition, mean turning index (Tm), and their interaction. 

Parameter Estimate SE 95% CI 

Intercept -0.007 0.006 -0.019, 0.005 

Condition = Activity Var 0.483 0.01 0.464, 0.502 

Condition = TI Var 0.009 0.008 -0.007, 0.02 

Condition = Uncorrelated 0.475 0.01 0.455, 0.496 

Condition = Correlated 0.452 0.01 0.432, 0.472 

Tm 0.0001 0.00007 -0.00003, 0.0002 

Activity Var * Tm 0.001 0.0001 0.0009, 0.0013 

TI Var * Tm -0.0001 0.0001 -0.0003, 0.00002 

Uncorrelated * Tm 0.001 0.0001 0.0008, 0.0013 

Correlated * Tm 0.001 0.0001 0.00096, 0.0014 

Intercept taken as Condition = Uniform. A variance structure was incorporated that allowed for 

heterogeneous residual spread across condition. N = 1000 observations. 

 

 

Table 2.S5. Estimated slopes for effect of mean turning index on triangle transitivity for each behavioural 

condition. 

Behavioural condition Trend SE 95% CI 

Uniform 0.0001 6.51 x 10-5 -0.00003, 0.0002 

Activity Variable 0.0012 8.08 x 10-5 0.0011, 0.0014 

TI Variable -0.00005 5.7 x 10-5 -0.0002, 0.00007 

Uncorrelated 0.0012 9.07 x 10-5 0.001, 0.0014 

Correlated 0.0013 8.76 x 10-5 0.0011, 0.0015 

Model fitted with generalized least squares and restricted maximum likelihood. N = 1000. 
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2.7.4.2. Speed and efficiency of information flow on static networks 

We further investigated how the network structures generated by the different behavioural 

conditions (Table 2.1) influenced the flow of information among agents within static networks, 

for comparison against our dynamic interacting populations. We first extracted 100 binary, 

directed networks with a density of 450 edges for each behavioural condition, following the 

procedure described in the main text (section 2.3.3.2). This density was selected as it required a 

similar number of time steps to reach as was needed to reach T50 when simulating information 

flow on the time-ordered interaction lists. The first agent to initiate an interaction in each 

simulation was treated as the initially informed individual. On each time step, each informed 

individual randomly selected one agent with which it shared an outgoing edge. If the latter was 

not yet informed, it became informed itself and would begin to transmit that information on the 

next time step. Informed agents with no outgoing edges did not interact. We recorded the 

number of time steps until ≥ 50% of agents were informed and the number of interactions that 

occurred up to that point (regardless of whether the recipient was already informed or not). As 

the number of informed individuals varied greatly when T50 was reached, efficiency was 

measured as the number of interactions per informed agent. 

 

Statistical analysis. GLS models were used to compare the number of time steps needed to 

reach ≥ 50% informed and the efficiency of information flow across behavioural conditions. 

Response variables were log-transformed to meet assumptions of normality. 

 

Results. The number of time steps needed to reach ≥ 50% informed agents varied across 

conditions, though differences were relatively modest (Table 2.S6; Figure 2.S6A). Information 

spread most rapidly when individuals varied in turning index. Efficiency of information flow at 

T50, measured by the number of outgoing interactions from informed agents per transmission 

event, also varied across conditions (Table 2.S7; Figure 2.S6B). Consistent with previous 

investigations [11,14], information tended to spread more efficiently (i.e. fewer interactions per 

transmission event) on networks characterised by an overrepresentation of feed-forward loops. 

Information spread least efficiently over networks in which individuals did not vary in activity 

level or turning index.  
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Table 2.S6. Parameter estimates from linear model of time steps needed to reach ≥ 50% informed agents 

(log-transformed) on static networks as a function of behavioural condition. Model-averaged estimates 

(MAE) and unconditional standard errors (USE) derived from the complete model set. Intercept taken as 

Condition = Uniform. A variance structure was incorporated that allowed for heterogeneous residual 

spread across behavioural condition. N = 500 simulations. 

Parameter MAE USE 95% CI 

Intercept 2.265 0.016 2.234, 2.295 

Condition = Activity Var 0.016 0.025 -0.033, 0.064 

Condition = TI Var -0.052 0.024 -0.099, -0.004 

Condition = Uncorrelated -0.027 0.021 -0.069, 0.015 

Condition = Correlated -0.028 0.021 -0.068, 0.012 

 

 

Table 2.S7. Parameter estimates from linear model of the efficiency of information flow (log-transformed) 

on static networks as a function of behavioural condition. Estimates derived from best-supported model 

(∑ 𝑤𝑖 > 0.999). Intercept taken as Condition = Uniform. A variance structure was incorporated that 

allowed for heterogeneous residual spread across behavioural condition. N = 500 simulations. 

Parameter Estimate SE 95% CI 

Intercept 1.014 0.022 0.971, 1.056 

Condition = Activity Var -0.165 0.029 -0.223, -0.108 

Condition = TI Var -0.096 0.029 -0.153, -0.039 

Condition = Uncorrelated -0.211 0.028 -0.265, -0.156 

Condition = Correlated -0.239 0.027 -0.291, -0.186 
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Figure 2.S6. Speed and efficiency of information flow on static networks under different behavioural 

conditions. Boxplots show (A) T50, the timestep at which at least 50 individuals were informed, and (B) 

the number of interactions per transmission event. Lower values respectively correspond to faster and 

more efficient transmission. Thick lines indicate medians, while the boxes indicate the interquartile range. 

Whiskers extend to 1.5x the interquartile range. 

 

2.7.5. Potential model application: null models for empirical data 

When calculating the relative significance of different network motifs in observed data, studies 

have traditionally used Erdős-Rényi random graphs – controlled for the number of nodes and 

edges – as their null model [10]. However, this method typically does not account for non-

independence of data points commonly observed in real populations [58] and thus can lack 

biological relevance. For example, an Erdős-Rényi random graph assumes that any two 

individuals are equally likely to interact, which is often not the case (e.g., two insect workers 

that generally occupy different regions of the nest may be relatively unlikely to interact). Our 

model offers the potential to generate biologically relevant null models with spatial, temporal, 

and behavioural parameters matching the empirical data. 

To illustrate this potential application of our model, we compared the representation of network 

motifs in a previously published dataset [7] to two null models generated using our simulation. 

We ran 100 simulations (5000 timesteps each) for our Uniform and Activity Variable conditions 

(Table 2.1), using population sizes matching the twelve networks from Water and Fewell’s [7] 

experiment (N = {95, 200, 200, 200, 147, 81, 151, 113, 115, 118, 139, 147}; 2400 simulations in 

total). We then extracted networks from the simulated interaction lists with the number of 

edges matching the observed data (number of edges = {136, 158, 103, 164, 197, 131, 156, 238, 

(A) (B) 
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208, 247, 236, 324}). We generated triad significance profiles for each three-node subgraph for 

each empirical network, using our simulated networks to generate reference distributions. 

Normalized Z-scores for each subgraph were then averaged across trials. 
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Chapter 3 | Aggression-based social learning in the zebra finch 

(Taeniopygia guttata) 

(Co-authors: Andrew Rowlands, Christopher Hassall, William Hoppitt) 

 

3.1. Abstract  

Selectively learning from specific types of individuals may be adaptive if demonstrator 

characteristics can be used to identify more beneficial sources of social information. Such ‘social 

learning biases’ have been experimentally demonstrated in a number of species, but these 

experiments generally involve restricted laboratory conditions using a limited number of 

potential demonstrators and tend to consider only the characteristics of demonstrators rather 

than the importance of pairwise relationships on information transfer between individuals. In 

this study, we presented a novel foraging task to a large population of zebra finches (Taeniopygia 

guttata) housed in a free-flying aviary and used multi-network Network-Based Diffusion Analysis 

(NBDA) to establish whether birds learned from individuals they shared particular relationships 

with. Specifically, we investigated whether task solves followed social learning pathways 

representing the following relationships between individuals: feeding associations, aggressive 

interactions, positive associations (e.g. grooming) and mating pairs. We found strong evidence 

that zebra finches learn from their aggressors, irrespective of the outcome of that aggressive 

encounter. This has been previously suggested in laboratory-based studies on zebra finches, but 

never conclusively documented in a freely interacting population. We also found some weaker 

evidence to suggest that zebra finches learn from their mates – a social learning bias that has 

previously received little to no attention. However, we found that mates-based learning 

occurred infrequently and was secondary to aggression-based social learning biases. Our results 

therefore additionally highlight the importance of including combinations of multiple potential 

information pathways in social learning analyses to account for secondary learning pathways 

that may otherwise be missed.  

 

Keywords: aggressive; directed social learning; Network-Based Diffusion Analysis; social 

learning strategies; personality; relationships 
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3.2. Introduction 

Social learning (learning from others) is widespread across the animal kingdom and can be 

adaptive in a variety of biological contexts, from foraging to mate choice (Galef and Laland, 

2005). This is because social learning permits the spread of adaptive behaviours without the 

higher risk and energetic costs associated with asocial (independent) learning. However, if 

individuals are indiscriminate as to when and from whom they learn, social learning can lead to 

the spread of maladaptive behaviours or outdated information (e.g. Laland and Williams, 1998). 

Evolutionary theory therefore predicts that natural selection will favour individuals that are 

selective in how they use social information over those that learn indiscriminately from others 

(Boyd and Richerson, 1985; Boyd and Richerson, 1988).  

‘Social learning strategies’ describe how individuals choose to use social and asocial information 

(Laland, 2004); specifically, under what circumstances social learning is expected to be favoured 

(‘when’ strategies) and what types of individuals should be learned from (‘who’ strategies). 

‘Who’ strategies, also referred to as ‘directed social learning’ (Coussi-Korbel and Fragaszy, 1995), 

consider that individuals may vary in their attractiveness as demonstrators for learning based 

on their individual characteristics and therefore that observers may display ‘social learning 

biases’ towards certain types of demonstrator. A variety of these biases have been 

demonstrated in animals. To give a few examples, nine-spined sticklebacks (Pungitius pungitius) 

and white-faced capuchins (Cebus capucinus) copy successful individuals when given novel 

foraging tasks (Coolen et al., 2005; Barrett et al., 2017); common ravens (Corvus corax) and 

Siberian jays (Perisoreus infaustus) preferentially learn the behaviours of kin over non-kin 

(Schwab et al., 2008; Griesser and Suzuki, 2016); guppies and zebra finches (Taeniopygia 

guttata) copy individuals they are more familiar with (Swaney et al., 2001; Guillette et al., 2016); 

and chimpanzees (Pan troglodytes) and domestic hens (Gallus gallus domesticus), according to 

some studies, preferentially copy high-ranking demonstrators (Nicol and Pope, 1994; Kendal et 

al., 2015). In addition, individuals may be flexible in their use of social information, adaptively 

switching their preference of demonstrator depending on their situation. Juvenile zebra finches, 

for example, display a bias towards learning from their parents, but when exposed to early-life 

stress that indicates either a poor natal environment or low parental investment, they will 

instead learn from only unrelated adults (Farine, Spencer, et al., 2015).  

When considering who learns from whom within a population, studies almost always focus on 

how the individual characteristics of demonstrators affect their influence over the behaviour of 

others (e.g. do individuals preferentially copy those with higher dominance ranks?) and/or how 
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different observers vary in their tendency to copy (e.g. are less dominant individuals more prone 

to copying?). Another approach is to consider how specific relationships or pairwise interactions 

between individuals influence their tendency to learn from one another (e.g. are individuals 

more likely to learn from demonstrators who actively showed them displays of aggression, 

irrespective of their overall dominance rank?). Social animals will likely share different types of 

relationships with different members of their group and this may influence who learns from 

whom; either because individuals who share specific relationships are more likely to associate 

with one another and so offer each other more opportunities for social learning, or because 

individuals favour information displayed by those they share certain relationships with over 

alternative demonstrators. This will in turn affect how information transmits through the entire 

social group.  

For example, any relationship that results in two individuals tending to be in close proximity over 

prolonged periods will likely provide those individuals with plenty of opportunities to learn from 

each other. Individuals who tend to forage together may be more likely to learn novel foraging 

behaviours from one another, as demonstrated in wild songbirds (Aplin et al., 2012). Similarly, 

individuals who share positive associations, such as grooming or huddling, are likely to tolerate 

each other in close proximity, thus offering each other more opportunities for social learning. 

For example, patterns of information transfer have been shown to follow proximity and 

affiliative networks in zebra finches (Williams, 1990), ravens (Kulahci et al., 2016) and red-

fronted lemurs (Eulemur rufifrons) (Schnoell and Fichtel, 2012). Some species have been shown 

to selectively copy kin and/or familiar individuals (e.g. Schwab et al., 2008; Griesser and Suzuki, 

2016; Swaney et al., 2001; Guillette et al., 2016), which may again be due to close associations, 

but may also be explained by a selective bias towards learning from individuals who are likely to 

share similar genetics (and so similar behavioural capacities) and/or the same territory (and so 

similar environmental pressures). Depending on the mating system of a species, individuals that 

form part of a mated pair may also be more likely to learn from each other if they spend 

prolonged periods of time together. In addition, for species that choose their mates based on 

indicators of fitness (which suggests a tendency to use successful behaviours), selectively 

learning from these individuals is also likely to be adaptive. Despite this, studies of information 

transfer in groups of individuals tend not to include learning pathways between mates.  

Aggressive interactions have also been noted as potentially important for social learning in 

several bird species (Payne, 1981; Baptista and Petrinovich, 1984; Kulahci et al., personal 

communication). Thus, it is possible that individuals may learn from those they share aggressive 

interactions with, either selectively learning from or passing information to their aggressors. The 
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influence of negative pairwise relationships on social learning remains understudied, with most 

studies instead focussing on how an individual’s dominance rank affects their social influence. 

There are, however, some discrepancies in the reported influence of dominance on social 

learning. Several studies have suggested, for example, that individuals will preferentially copy 

higher-ranking demonstrators (e.g. Nicol and Pope, 1999; Kendal et al., 2015; Horner et al., 

2010; Coelho et al., 2015), possibly because dominance is linked to general success; while others 

have suggested that dominant individuals restrict subordinate access to a novel task and, in the 

absence of this limitation, subordinates can actually have a greater influence over the 

behaviours of others (e.g. Watson et al., 2017).  

Research into dominance-related social learning biases almost always involves using calculated 

dominance ranks to infer the direction of learning events, regardless of whether the individuals 

involved actively engage in aggressive interactions with one another. As dominance is inherently 

linked to aggression, it is possible that the aggressive interactions between dominants and 

subordinates play a larger part in information transfer than the calculated dominance ranks of 

demonstrators. For example, individuals who display aggression towards one another may do 

so because they compete over resources, which may make them more likely to be in close 

proximity at a novel foraging task and so more likely to learn from one another. The outcome of 

said aggressive interactions (i.e. who tends to win against whom) may or may not be important 

in determining the direction of information transfer (e.g. individuals who win aggressive 

interactions may be viewed as stronger, and so more likely to be in possession of adaptive 

behaviours, causing them to be more attractive as demonstrators), which could explain some of 

the discrepancies between previous studies on the influence of dominance on social learning.  

Over the past decade, Network-Based Diffusion Analysis (NBDA) has become a popular way of 

detecting social learning within freely-interacting populations, allowing social learning studies 

to escape the laboratory and move into more natural conditions. NBDA infers social transmission 

(the spread of novel behaviours via social learning) if the order in which individuals learn a novel 

behaviour follows the association network of the population (Franz and Nunn, 2009), under the 

assumption that, if social learning is occurring, individuals who associate more are more likely 

to learn from one another. Networks representing different types of connections between 

individuals can be tested to determine whether social transmission follows a particular pathway 

(Hoppitt and Laland, 2011; Hoppitt, 2017) or combination of pathways (Farine, Spencer, et al., 

2015; Farine, Aplin, et al., 2015). Altogether, this makes NBDA perfect for investigating whether 

freely-interacting individuals learn from those they share specific connections with, without the 

need for highly-controlled laboratory conditions that may mask natural behaviours or degrade 
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stable relationships. However, despite statistical advancements in the field, very few studies 

compare among networks (and even fewer among combinations of networks) to establish which 

aspect of social interaction is the primary route for social information transfer (notable 

exceptions include Farine, Spencer, et al., 2015; Farine, Aplin, et al., 2015; Barrett et al., 2017). 

Here, we investigate the influence of pairwise relationships on social transmission in a model 

species, the zebra finch. Zebra finches are highly gregarious, form strong mating pairs, display 

aggressive, dominance-related behaviours (Zann, 1996; Bonoan et al., 2013) and are capable of 

strategic social information use (e.g. Benskin et al., 2002; Katz and Lachlan, 2003; Farine, 

Spencer, et al., 2015; Guillette et al., 2016), making them an ideal study species for such 

research. Specifically, we investigate whether zebra finches preferentially learn from (i) 

individuals they associate with while feeding, (ii) individuals they share aggressive interactions 

with, (iii) individuals they share positive interactions with and/or (iv) individuals they form part 

of a mating pair with, as determined by observations of pairwise interactions. Using multi-

network NBDA, we build a comprehensive model of relationship-based learning pathways across 

our zebra finch population. 

 

3.3. Methods 

3.3.1. Study system 

Our study was carried out on a population of captive zebra finches housed at Harewood House 

Bird Garden in Leeds, UK. In total, 53 individual birds were present in the population over the 

study period, although the population size at a given time fluctuated slightly due to three natural 

deaths and one birth during the study period. Finches were housed in a semi-natural, free-flying 

aviary measuring approximately 3m x 3m x 3m (with an additional hut attached to provide 

shelter) and containing various plants, trees and rocks as well as a shallow water pool. The 

population was well-established and the finches had been housed together for their entire lives 

(since 2015), thus allowing any stable relationships to form. Housed in the same aviary was a 

small population of eight diamond doves (Geopelia cuneate), which did not form part of our 

study. The diamond doves very rarely interacted with the zebra finches, tended to isolate 

themselves at the top of the aviary and were never observed interacting with any the equipment 

we introduced, making it highly improbable that they contributed to zebra finch learning.  Birds 

had free access to food from their usual feeders at all times. Individual finches were identified 

by a combination of colour morphs and leg rings. We collected data on several types of social 
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interaction and conducted a diffusion experiment to investigate patterns of social learning of a 

novel foraging task, as detailed below. In general, data collection was carried out during 1-2 hour 

sessions over 57 non-consecutive days between 12th November 2018 and 21st March 2019 – 

allowing us to capture evidence of any stable, long-lasting relationships in the population and 

giving the majority of finches time to learn the novel task.  

 

3.3.2. Data collection of social interactions 

We collected data on four types of interactions between individuals as follows (for a more 

detailed account of this data collection, see Supplementary Material, section 3.7.1).  

 

3.3.2.1. Feeding associations.  

Feeding activity was recorded over 21 days between 12th November 2018 and 19th February 

2019 using two GoPro cameras placed at either side of each of the birds’ two regular feeders. In 

total, we recorded 30.3 hours of cumulative video footage over 21 days for feeder 1 (average: 

1.4h per day; range: 0.3-2.2h per day) and 28.3 hours of footage over 20 days for feeder 2 

(average: 1.3h per day; range: 0.6-2h per day. We analysed the entire footage, recording every 

visit to the feeders. For each visit, we recorded the bird’s ID, the time it landed and the time it 

left the feeder. Times were recorded as cumulative times across the entire set of videos. If a bird 

could not be confidently identified by either of the researchers, the visit was removed from the 

dataset prior to analysis.  A measure of the propensity each dyad of birds had for feeding 

together (henceforth, ‘feeding association’) was calculated by analysing the overlap in times for 

each dyad, as the actual versus expected proportion of time (Fij) individuals i and j spent feeding 

together, as follows: 

𝐹𝑖𝑗 =  
𝐴𝑖𝑗

𝐸𝑖𝑗
 

where Aij is the actual proportion of time individuals i and j were observed on the same feeder 

together and Eij is the expected proportion of time they would have spent together if they had 

been feeding independently, calculated as:  

𝐴𝑖𝑗 = 𝑃1,𝑖𝑗 + 𝑃2,𝑖𝑗 
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where 𝑃1,𝑖𝑗and 𝑃2,𝑖𝑗are the proportions of time individuals i and j were observed together on 

feeders 1 and 2, respectively, and 

𝐸𝑖𝑗 = (𝑃1,𝑖𝑃1,𝑗) + (𝑃2,𝑖𝑃2,𝑗) 

where 𝑃1,𝑖 and 𝑃2,𝑖 are the proportions of time individual i was observed on feeders 1 and 2, 

respectively. In all cases, proportions were calculated relative to the total cumulative video time 

for the feeder in question. Thus we obtain a measure that is 𝐹𝑖𝑗 > 1 for birds that preferentially 

feed at the same time and 0 ≤ 𝐹𝑖𝑗 < 1 for birds that preferentially feed apart. 

 

3.3.2.2. Aggressive interactions.  

To record aggressive interactions, we presented the birds with a small, 6.9cm x 6.7cm platform 

(Figure 3.1A) on which a sprig of millet was placed. The platform was small enough so that only 

a few birds could fit on it at one time and so would encourage expression of natural aggressive 

behaviours over food in an area that could be monitored closely (zebra finches generally engage 

in aggressive interactions with those who are 5-15cm from themselves; Evans, 1970). The 

platform was present in the aviary during 19 days between 23th November 2018 and 19th March 

2019 and was re-constructed halfway through the experiment due to poor weather conditions 

causing it to break. The sprig of millet was secured to the platform initially using two crossed 

nails and, after reconstruction, using an elastic band. When the millet became depleted or fell 

off the platform, the researcher entered the aviary to replace it once all birds had dispersed 

from the platform. A single GoPro camera was used to record activity on the platform – in total, 

we recorded approximately 27.7 hours of video footage over 20 days (average: 1.3h per day; 

range: 0.8-2.6h per day). We analysed the entire footage, recording the ID of each visiting bird, 

the times at which they landed on and left the platform and all aggressive interactions they 

engaged in. This included biting but was mostly in the form of ‘beak fencing’ (two birds clashing 

their beaks together). (Note that we did not include displacements as displays of aggression, 

because they occurred infrequently and because it was difficult to determine whether they were 

intentional, or simply a case of individuals losing balance when there were too many birds on 

the platform). As previous studies have demonstrated an influence of an individual’s dominance 

rank on who learns from whom, we were also interested to know whether the outcome of 

aggressive interactions influenced the direction of information transfer between aggressors. 

Thus, when an aggressive behaviour occurred, we recorded the ID of both birds involved and 

the winner of the fight. A bird was said to have ‘won’ the fight if the other bird fell or jumped off 
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the platform. If two birds stopped fighting without one falling off, the fight was considered to 

have no winner. We then calculated the overall tendency of bird i to win a fight against bird j – 

bird i was considered the ‘winning aggressor’ of the pair and bird j the ‘losing aggressor’ if the 

two engaged in at least one fight and i won more fights than it lost against j.  

 

 

Figure 3.1. (A) The platform used to monitor pairwise aggressive interactions in finches. Millet spray was 

held onto the platform using an elastic band. (B) The foraging task presented to the finches, along with 

the placement of four GoPro cameras. The task consisted of 10 transparent plastic cups stuck to a wooden 

board. Each glass contained millet seed and was covered with a cardboard lid which birds needed to 

remove to solve the task and access the seed 

 

3.3.2.3. Positive interactions and mating pairs.  

Live observations were made during 1-2 hour sessions on 17 days between 14th November 2018 

and 21st March 2019 to determine which birds engaged in positive interactions and which 

belonged to mating pairs. Positive interactions were defined as two birds either preening each 

other or perching together with their bodies touching. Mates were defined as pairs that were 

observed either copulating or nesting together. The principle investigator (who had the most 

experience identifying the birds based on their morph and leg rings) was positioned at the front 

of the aviary with a pair of binoculars. When a positive interaction or mating behaviour was 

observed occurring anywhere inside the aviary, the type of behaviour and the identity of the 

two birds involved were recorded. If both birds could not be confidently identified, the 

observation was discounted. Live observations were used rather than filming with cameras 

because, unlike feeding associations and aggressive interactions, it wasn’t possible for us to 



Chapter 3 2022 PhD thesis | C. Easter 

105 
 

focus positive interactions and mating/nesting into a single, easy-to-film area, and so live 

observations allowed us to record these interactions from across the entire aviary. In addition, 

these two types of interaction were easier to record live than feeding associations, which 

involved many individuals in a single area that were difficult to track live, or aggressive 

interactions, which were comparatively brief and easy to overlook. A total of 215 observations 

of positive interactions and 25 observations of mating / nesting behaviour were made. It is likely 

that birds who tended to interact closer to the front of the aviary were more likely to be 

accurately recorded as they were easier to see. To combat the effect of this, we used only the 

presence / absence of connections between each dyad of birds, rather than the frequency of 

interactions, in our generation of social networks below. 

 

3.3.3. Generation of social networks 

We constructed nine social networks based on the pairwise social interactions described above 

(Table 3.1; Figure 3.2). Each network represents a different social learning pathway and so a 

different hypothesis concerning how individuals learn from each other based on their social 

relationships. In the ‘feeding associations’ network, connections between dyads were equal to 

Fij, reflecting the hypothesis that birds learned from all other birds in proportion to their 

propensity to feed together. For the remaining types of social interaction (aggressive, positive, 

mates), we constructed two versions of the social network that made different assumptions 

about the influence of feeding associations on learning opportunities – a binary version, where 

a connection of a particular type either existed or didn’t exist between two individuals, and a 

feeding association-weighted version (henceforth, shortened to ‘feeder version’), where any 

non-zero connection between individuals was equal to Fij. The binary version reflects the 

hypothesis that the finches learned from those they share particular relationships with, e.g. 

individuals learning from their mates. The feeder version reflects the hypothesis that birds 

learned from those they share particular relationships with at a rate proportional to their 

propensity to feed together. In the case of aggressive interactions, we additionally considered 

that information flow may be directional (i.e. transfer from the winning aggressor to the losing 

aggressor of the dyad, or vice versa) and so divided both versions of this network into two – a 

‘winning to losing aggressor’ network and a ‘losing to winning aggressor’ network.  
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Table 3.1. Descriptions of the social networks used in the analysis, constructed from five types of social 

interaction between zebra finch individuals. 

Network name Description 

FeedingAssociations Undirected network where the strength of connections between 

each pair of individuals is proportional to the amount of time they 

were observed feeding together. 

WinningToLosingAggressor 

(Binary and feeder versions) 

Directed network where individuals who were aggressive towards 

each other are connected and information is assumed to flow 

from the winning to losing aggressor. Birds that are not connected 

were either never observed engaging in aggressive interactions 

with each other or there was no overall fight winner (i.e. they both 

won an equal number of fights against each other or the fights 

ended in a ‘draw’).  

LosingToWinningAggressor 

(Binary and feeder versions) 

Directed network where individuals who were aggressive towards 

each other are connected and information is assumed to flow 

from the losing to winning aggressor. Birds that are not connected 

were either never observed engaging in aggressive interactions 

with each other or there was no overall fight winner (i.e. they both 

won an equal number of fights against each other or the fights 

ended in a ‘draw’). 

Positive 

(Binary and feeder versions) 

Undirected network where individuals are equally connected to 

birds with which they were observed engaging in positive 

interactions. Birds that are not connected were never observed 

engaging in positive interactions with one another. 

Mates 

(Binary and feeder versions) 

Undirected network where individuals are equally connected to 

birds they were observed mating or nesting with. Birds that are 

not connected were never observed engaging in mate-related 

interactions with one another. 
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Figure 3.2. The five types of network used in our analysis. (A) Feeding association-based network. (B) 

Winning to losing aggressor network. (C) Losing to winning aggressor network. (D) Positive network. (E) 

Mates network. Networks B-E are shown in their binary forms. All networks are spring-embedded. White 

nodes represent individuals that did not solve the task. Shaded (red) nodes represent individuals that did 

solve the task, and are numbered according to the order at which they first solved the task. Lines represent 



Chapter 3 2022 PhD thesis | C. Easter 

108 
 

undirected connections between individuals (networks A, D and E). Arrows represent directed 

connections between individuals (networks B and C). Unconnected dyads were not observed interacting 

in the manner represented by that network. 

 

3.3.4. Individual-level variables (ILVs) 

In our analysis, we considered five ILVs which may have influenced individual rates of asocial 

and/or social learning. (i) The total time (seconds) each individual was recorded at the regular 

feeders was used as a measure of motivation to feed. (ii) A measure of the individual’s overall 

tendency to win aggressive encounters was calculated based on the total number of fights won 

minus the total number of fights lost while on the introduced platform. (iii) The total number of 

fights engaged in while on the platform was used as a measure of aggression. (iv) Solving of a 

former task was used as a measure of learning proficiency and past experience. This was a binary 

ILV describing whether or not each individual solved a puzzle box task (by either lifting a lid or 

pulling a door) introduced to the same population during a previous, unpublished study that 

took place between 31st October 2017 and 20th January 2018 (see Supplementary Material, 

section 3.7.1 for details). (v) Suspected sex. In absence of genetic information, this was based 

on morphological differences and singing behaviour and was used as a general indicator of 

differences in sex.  

 

3.3.5. Diffusion experiment 

The finches were given a novel foraging task during 23 days between 5th February 2019 and 21st 

March 2019. The task (Figure 3.1B) consisted of 10 transparent plastic cups (volume 50ml) glued 

to a wooden base. Each glass was filled with millet seed and covered with a round cardboard lid. 

Each lid had a loop of green string attached to make it easier for the birds to remove. We were 

interested in the diffusion of lid-removing behaviours through the population. We therefore 

defined a solve as an individual removing or partially removing the lid from one of the cups, 

regardless of whether the bird fed from the cup afterwards. Presentation of our task and 

platform was alternated so that the two were never in the aviary at the same time. This is 

because the platform attracted a lot of attention from the finches and so may have distracted 

the birds from the task. During the task presentation, birds were allowed to solve and feed from 

the task freely. In order to avoid interrupting possible learning events, the researcher would only 

go into the aviary and replace any removed lids either when the birds had completely dispersed 
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from the task or if all lids had been removed. Four GoPro cameras were used to record the task 

from all sides (positions of the cameras are shown in Figure 3.1B). We collected a total of 47.1 

hours video footage for the task across the 23 days (average: 2.0h per day; range: 1.2-2.4h per 

day). We studied the entire footage and documented each solve (i.e. when a bird removed or 

partially removed a lid from one of the cups), noting the time of solve and the identity of the 

bird. Solve times were recorded as cumulative times across the entire set of videos (i.e. the time, 

in seconds, from the start of the experiment, discounting periods of time when the task was not 

present).  

 

3.3.6. Statistical analysis  

We used NBDA to determine whether the acquisition of the novel foraging behaviour during our 

diffusion experiment followed any of our interaction-based social networks. NBDA was carried 

out in the R statistical software (v.3.5.3), using the NBDA package (Hoppitt et al., 2019) available 

at https://github.com/whoppitt/NBDA. We applied a specific type of NBDA known as Order of 

Acquisition Diffusion Analysis (OADA), which determines whether the order at which individuals 

learn the novel behaviour follows a specific social network. We used a multi-network approach 

(c.f. Farine, Spencer, et al., 2015; Farine, Aplin, et al., 2015), where multiple social networks can 

be considered in one model, which allows for the possibility that social learning may transmit 

via more than one possible pathway at the same time. We constructed separate models for all 

combinations of binary social networks and for all combinations of feeding association-based 

networks. Each network combination was considered to be a separate hypothesis as to the 

pathways of social transmission. For models which included more than one social network, we 

modelled two situations, one where the influence of each network on learning was constrained 

to be the same and one where the influence of each network was presumed to be different (as 

measured by the s parameter, described below).  

For each network combination, we ran models for all combinations of ILVs, except in the case of 

the two fights-based ILVs (number of fights engaged in and tendency to win fights). Because 

these variables were derived from the same data, we considered them as an ‘either/or’ variable 

and so did not include models with both of these ILVs at the same time. For each ILV 

combination, we generated two types of model which assume different effects of ILVs on 

learning: additive models, which assume ILVs affect the rate of asocial learning only, and 

multiplicative models, which assume ILVs have a combined effect on the rate of both asocial and 

social learning. For comparison, we also generated asocial models, which included no social 
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networks and therefore assumed individuals learned entirely asocially, for each ILV combination. 

Asocial models required only an additive version, since ILVs cannot affect social learning if 

learning is assumed to be entirely asocial. Finally, we ran a model which included no social 

networks and no ILVs. All models were generated using the ‘AICtable’ function of the NBDA 

package. 

Models were compared using the corrected Akaike information criterion (AICc), where lower 

values indicate better-fitting models. Akaike weights were calculated giving a measure of 

support for each model. Due to the large number of individual models considered, we obtained 

a measure of support for each network combination and for each ILV by summing the Akaike 

weights across any models which included that network or variable. To allow fair comparison, 

we accounted for differences in model number as follows: Firstly, when comparing network 

combinations, Akaike weights were summed separately across the additive and multiplicative 

model sets and then the best-performing version (additive/multiplicative; henceforth referred 

to as the ‘best model set’) for each network combination was selected for model comparison 

(see Supplementary Material, Table 3.S1). For the final analysis, Akaike weights were 

recalculated as percentages based on only the best model sets. This ensured that model sets for 

each social network combination contained the same number of models as the asocial set, which 

only required an additive version since social learning was absent in these models. Secondly, 

when comparing the influence of ILVs, social models with no ILVs were included twice in the 

model set to allow fair comparison (i.e. an equal model number) to with-ILV model sets, which 

included both additive and multiplicative variations. Thirdly, when assessing the performance of 

the binary versus feeder versions of the WinningToLosingAggressor, 

LosingToWinningAggressor, Positive and Mates networks, we removed the asocial models and 

any models that included the full FeedingAssociations network to ensure equal model numbers 

and then recalculated the Akaike weights.  

For our best social network combinations (those with the highest Akaike weights), we obtained 

model-averaged estimates for the social learning parameter (s) for each of the social networks 

included. The social learning parameter represents the increase in the rate at which a naïve 

individual will learn the novel behaviour per unit of association with informed individuals, 

relative to the baseline asocial rate of learning. The s parameter can, however, be difficult to 

interpret for proportional networks (as is the case for our feeding association-based networks) 

because it is scaled relative to the scale of the network itself (Hasenjager et al, 2021). This also 

means that s parameters estimated from networks of different scales cannot be directly 

compared (e.g. our binary and feeding-association based networks cannot be compared directly 
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from the estimated s parameters). Therefore, to facilitate comparison between binary and 

feeding association-based networks, which were modelled separately, we also calculated the 

estimated proportion of learning events to have occurred via social transmission (propST) via 

each network in our best network combinations (Hasenjager et al, 2021). This was calculated as 

a model-weighted average across all models for each network combination. We also calculated 

lower limit estimates for both s and propST parameters. For further information on the lower 

limit estimates and additional calculations involving propST estimates, see Supplementary 

Material, section 3.7.2.  

Note that we also ran a number of additional analyses (available in the Supplementary Material, 

section 3.7.6) to test the robustness of our findings and to explore some alternative explanations 

for the observed patterns of information transmission. The results of these analyses are referred 

to only briefly in the main text and so we refer the reader to the Supplementary Material (section 

3.7.6) for the full discussion. 

 

3.3.7. Ethical note 

This study was approved by the Animal Welfare and Ethical Review Board at the University of 

Leeds and the Harewood House Trust. The study was in line with the Harewood House Trust 

Research Policy and research guidelines. We did not physically handle the birds in any way or 

restrict their access to regular feeders. No physical injury was observed as a result of the 

presence of any of our equipment. The task provided to the study population was in no way 

invasive and may have also acted as environmental enrichment. The presence of the wooden 

platform did not appear to incite aggressive interactions, but rather focus naturally-occurring 

behaviours into an area where we could monitor them.  In addition, aggressive behaviours were 

mainly limited to beak fencing and were not observed causing physical injury.  

 

3.4. Results 

3.4.1. General observations 

The task was solved a total of 207 times (at an average rate of 4.4 times per hour) by 36 of the 

53 zebra finches. Each solver solved the task an average of 5.75 times, but this was highly 

skewed, with only four birds solving more than 10 times. The task was solved the most times by 

individual “CrL”, who solved the task 39 times over the course of the study period. Behaviours 



Chapter 3 2022 PhD thesis | C. Easter 

112 
 

used to remove or partially remove the lid included pulling the cardboard or string with the beak, 

removing lid with feet while standing on top of the task, and wedging beak into a small gap at 

the side of the lid. Solvers fed from the cup (within 10 seconds after solving) during only 55 of 

the 207 solve events. 

 

3.4.2. Presence of social learning 

There was strong evidence that social learning occurred in our study group. Our best social 

model (AICc = 236.48) fit the data substantially better than our best asocial model (AICc = 

243.72) (ΔAICc = 7.24, corresponding to 37.3x more support for the best social learning model). 

In addition, the total Akaike weight (summed across all ILV combinations) of the best-performing 

social network combination (Akaike weight = 0.107) was over 80x that of the asocial model set 

(Akaike weight = 0.001). Across the top fifteen best-performing network combinations, the 

average summed propST estimate across all included networks was 0.498 (± 0.16 SD) and the 

average summed propST lower limit estimate was 0.179 (± 0.07 SD). This suggests that, on 

average, approximately half of the learning events in the study occurred due to social learning 

via the included learning pathway(s). This provides further evidence for the presence of social 

learning in the study population, but also suggests that a large proportion of learning occurred 

either asocially or socially via a pathway not included in our analysis. 

 

3.4.3. ILVs 

There was little evidence that any of the ILVs included in this analysis had an effect on individual 

learning (Table 3.2). Models performed better without the inclusion of FeederTimes, 

LastYearSolves and SuspectedSex and the fights-based ILVs had little effect on the total Akaike 

weight. The estimated proportion of social learning events via each network were also largely 

unaffected by the inclusion of different ILV combinations (Supplementary Material, Table 3.S3). 

Additional analysis also showed that social networks based on these five ILVs did not 

convincingly explain the observed patterns of social transmission between individuals 

(Supplementary Material, Table 3.S15). 
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Table 3.2 Summed Akaike weights across all models with and without the inclusion of each ILV. 

NumberOfFights and NetFightWin were treated as a three-way either/or variable and so models without 

either of these variables are grouped together. 

 

Summed Akaike Weight 

ILV With ILV Without ILV 

FeederTimes 0.270 0.730 

NumberOfFights 0.384 
0.334 

NetFightWin 0.283 

LastYearSolves 0.238 0.762 

SuspectedSex 0.257 0.743 

 

3.4.4. Social learning pathways 

Table 3.3 shows the support, measured by summed Akaike weights, for the fifteen best-

performing social network combinations (see also Supplementary Material, Table 3.S1). The top 

fifteen network combinations accounted for >75% of the summed Akaike weights across all 84 

network combinations used in our analysis, beyond which the summed Akaike weights dropped 

below 0.012 (~1/10 the support of the best model set) (Supplementary Material, Figure 3.S1). 

The full set of network combinations is available in Supplementary Material (Table 3.S6). 

Of all the network combinations we tested, that which included the WinningToLosingAggressor 

and LosingToWinningAggressor networks (feeder versions), with the s parameters of each 

network constrained to be the same, received the most support (total Akaike weight = 0.107; 

15.9% of best model set weights; Table 3.3). This corresponds to the hypothesis that individuals 

were most likely to learn from those with whom they shared aggressive interactions (at a rate 

proportional to their propensity to feed together) and that the rate of learning was unaffected 

by the direction of the aggressive interaction within a dyad. The model-averaged s parameter 

estimate was 0.28 (95% C.I. lower limit estimate = 0.08) for both networks, meaning that a naïve 

individual learned the task an estimated 0.28x faster (relative to the baseline asocial rate of 

learning) per unit of connection to an informed aggressor, proportional to their feeding 

associations. Since the s parameter can be difficult to interpret for proportional networks 

(Hasenjager et al., 2021), the propST estimate offers a more intuitive measure of social 

transmission via each included network. The model-averaged propST estimate is 0.277 (± 0.017 
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SD) for the WinningToLosingAggressor network and 0.183 (± 0.01 SD) for the 

LosingToWinningAggressor network (Supplementary Material, Table 3.S2). In other words, an 

estimated 28% of learning events involved individuals learning from those who generally won 

against them during aggressive encounters and an estimated 18% involved individuals learning 

from those who generally lost to them during aggressive encounters – with the remainder of 

learning events being either asocial or via a social learning pathway not considered here. The 

propST lower limit estimate is 0.133 (± 0.031 SD) for the WinningToLosingAggressor network 

and 0.090 (± 0.02 SD) for the LosingToWinningAggressor network, providing further evidence 

that social transmission occurred via both networks.  
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Table 3.3 Total Akaike weight (summed across all ILV combinations) for our top fifteen network 

combinations, as a percentage of the summed Akaike weights across all network combinations in the 

analysis. Binary and feeding association-weighted networks were always modelled separately and so are 

grouped together. For each network included in each network combination, the estimated s parameter 

values are given. This is an estimate of the rate of social information transfer along the network in 

question, per connection to an informed individual. Where s parameters were estimated to be different 

across networks, higher values are additionally indicated by darker shading. The summed weights for all 

remaining social network combinations and for the asocial model (ranked 43; no social networks) are also 

included for comparison.  
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Summed Akaike weight (%) 

1  0.28 0.28       15.86 

2      1.46 1.46  1.46 14.87 

3      1.11 1.11   10.61 

4  0.26 0.38       5.97 

5 48.9 721.2 1600.67       4.70 

6      0.89 1.66   4.38 

7  0.39        3.61 

8  0.17 0.17  0.17     2.59 

9       1.75   2.55 

10      1.63   1.63 2.01 

11      1.53    1.96 

12  0.31 0.43  0.04     1.96 

13 0.04 1.21        1.88 

14      1.29 2.02  0.85 1.84 

15   0.44       1.78 

NA Remaining 68 social model sets 23.21 

43          0.20 
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The second best network combination included the WinningToLosingAggressor, 

LosingToWinningAggressor and Mates networks (binary versions) with the s parameters 

constrained to be the same (total Akaike weight = 0.100; 14.9% of best model set weights; Table 

3.3). This corresponds to the hypothesis that individuals learned both from their mates and their 

aggressors at a rate that was unaffected by either the type of interaction, direction of 

information transfer or the birds’ propensity to feed together. The model-averaged s estimate 

was 1.46 (95% C.I. lower limit estimate = 0.38) for each network. The model-averaged propST 

estimate is 0.297 (± 0.02 SD) for the WinningToLosingAggressor network, 0.189 (± 0.01 SD) for 

the LosingToWinningAggressor network and 0.083 (± 0.01 SD) for the Mates network 

(Supplementary Material, Table 3.S2). This suggests that an estimated 30% of learning events 

involved individuals learning from those who generally won against them in fights, 20% involved 

individuals learning from those who generally lost against them in fights and 8% involved 

individuals learning from their mates. The propST lower limit estimate is 0.146 (± 0.04 SD) for 

the WinningToLosingAggressor network, 0.090 (± 0.02 SD) for the LosingToWinningAggressor 

network and 0.035 (± 0.01 SD) for the Mates network.  

Overall, out of all the networks we tested, we found the strongest evidence for social 

transmission between individuals that shared aggressive interactions, in that every one of the 

top fifteen network combinations included either the WinningToLosingAggressor or 

LosingToWinningAggressor network and nine of the fifteen included both (Table 3.3). This 

includes the top two network combinations described above, which account for 31% of the 

model support over the 84 tested network combinations and, after which, model support rapidly 

drops (Supplementary Material, Figure 3.S1). Additional analyses clarified that simple 

associations on the aggression platform did not explain this pattern of social transmission 

(Supplementary Material, Tables 3.S12-3.S13), suggesting that the pairwise connections 

between aggressors were important in predicting the pattern of task solves. In addition, the 

removal of pre-task recordings of aggression had little impact on the explanatory power of these 

networks, suggesting that aggressive relationships were relatively stable in this population 

(Supplementary Material, Table 3.S14). 

Learning events occurring through the aggression-based pathways did, however, appear to 

occur more often in the winner to loser direction. The average propST estimate for the 

WinningToLosingAggressor network (averaged over the top fifteen network combinations in 

which either the binary or feeder version of this network is present) is 0.297 (± 0.06 SD), with an 

estimated lower limit of 0.121 (± 0.08 SD) (Supplementary Material, Table 3.S2). The average 

propST estimate for the LosingToWinningAggressor network is 0.220 (± 0.05 SD), with an 
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estimated lower limit of 0.089 (± 0.04 SD). This provides strong support that social transmission 

occurred via both of these pathways, and suggests that the WinningToLosingAggressor pathway 

was responsible for an estimated 1.35x as many learning events, on average, as the 

LosingToWinningAggressor pathway. The reason for this, despite the equal s parameters which 

indicate equal rates of learning along both pathways, appears to be due to three individuals with 

a disproportionate number of connections to losing aggressors acting as ‘hubs’ of information. 

All three successfully learned the task – and also learned the task quickly – giving them the 

potential to provide their many connected losing aggressors with early learning opportunities 

and promote information transfer along the WinningToLosingAggressor pathway. In addition, 

one of these highly-connected individuals, “CrL”, solved the task considerably more times than 

any other individual, allowing it to act as a particularly strong source of social information. 

(Supplementary Material, Tables S8-S11).  

In addition to aggression-based social learning, we found some support for social transmission 

between mates – five of the top fifteen network combinations contained the Mates network, 

including the second-best model. However, propST estimates for the Mates network tended to 

be < 0.1, suggesting that very little social information was actually transmitted via this pathway, 

and social transmission between mates was only apparent when the Mates network was 

included with at least one of the aggression-based networks. In addition, when interactions 

recorded prior to task introduction were removed from the analysis, the Mates networks 

received less support, suggesting either that finches learned novel behaviours from both past 

and present mates, or simply that removal of a subset of interactions made the Mates networks, 

which already contained only a few pairwise connections, too sparse to add any explanatory 

power to our models (Supplementary Material, Table 3.S14). 

We found little to no support for social transmission via pathways based on positive associations 

(none of the top fifteen network combinations included the Positive network) or via a purely 

feeding-association-based network (only two of the top fifteen network combinations included 

the FeedingAssociations network and s parameter and propST estimates were extremely varied). 

In addition, the binary and feeder versions of the WinningToLosingAggressor, 

LosingToWinningAggressor, Positive and Mates networks received a similar level of support 

(summed Akaike weights, binary: 0.529 ± 0.001 SD, feeder: 0.471 ± 0.001 SD, when asocial 

models and models including the full feeder network are disregarded), suggesting that a dyad’s 

propensity to feed together did not greatly influence their likelihood of learning from one 

another.  
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3.5. Discussion 

Within complex social groups, individuals are connected via different relationships, which may 

in turn determine the potential social learning pathways within the population. In this study, we 

examined the influence of pairwise relationships on social transmission of novel behaviours in 

zebra finches. Our results suggest that social learning in zebra finches is not homogenous, i.e. it 

does not occur indiscriminately among individuals. We also found no evidence to suggest that it 

was based primarily on simple feeding associations, as has been demonstrated in wild songbirds 

(Aplin et al., 2012). Rather, we found evidence that specific social interactions between pairs of 

individuals determine who they learn from. In particular, in our study population, zebra finches 

appeared to learn from individuals with whom they share aggressive interactions, regardless of 

the overall outcome of aggression. It is possible that this pattern occurred because aggressive 

individuals were simply more likely to interact with the task (e.g. due to correlated personality 

traits such as boldness and exploratory tendency; David et al., 2011) and so more likely to learn 

from each other; however our analysis indicated that this wasn’t the case, as we found no 

evidence to suggest that aggression affected an individual’s learning rate. In addition, since we 

were unable to control the number of learning opportunities provided by different types of 

individuals, it was difficult to say whether individuals selectively copied their aggressors over 

non-aggressors when given the opportunity to learn from either, or whether aggressors simply 

associated more often, making them more likely to witness each other performing novel 

behaviours. However, our analysis did suggest that patterns of association on the feeders and 

aggression platform did not explain the pattern of task solves, suggesting that the former is more 

likely. Either way, we have demonstrated that information about the novel task appeared to 

transmit between individuals who share aggressive interactions. We also found evidence to 

suggest that a subset of highly-connected aggressive individuals within our study population 

acted as ‘hubs’ of information that offered increased social learning opportunities for individuals 

whom they tended to win fights against.  

Aggression-based directed social learning has been previously suggested in zebra finches. 

Clayton (1987) placed broods of juvenile zebra finches with two adult males and monitored their 

behaviour to determine whether juveniles preferentially learn songs from individuals with 

certain characteristics. The results showed that the majority of juveniles copied the song of the 

demonstrator that was the most aggressive towards them. This was irrespective of the 

dominance rank of the demonstrator, measured by the level of aggression between the two 
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potential demonstrators. Clayton was unable to confirm whether juveniles were actively 

choosing more aggressive individuals to learn from or whether the aggressive behaviour of 

chosen demonstrators was simply a response to being followed in close proximity by their 

observers. However, Jones and Slater (1996) later replicated and confirmed the results of 

Clayton’s experiment, additionally demonstrating that aggression was not simply a response to 

being followed by observers. Thus, rather than displaying directed social learning based on the 

dominance rank of demonstrators, it appears to be the actual aggressive interaction between 

two individuals that is important for social learning in zebra finches, as suggested by our own 

findings.  

Our study expands on the findings of Clayton (1987) and Jones and Slater (1996) in several ways. 

Firstly, we have demonstrated that aggression-based directed social learning appears to be 

generalised across different types of behaviours – in our study, a foraging task, and in Clayton’s 

(1987) and Jones and Slater’s (1996) studies, song learning. Secondly, we demonstrated that 

that social learning between zebra finch aggressors, in a feeding context, was not influenced by 

the outcome of aggressive interactions. Clayton (1987) and Jones and Slater (1996) both studied 

song learning in juvenile zebra finches, in scenarios where both aggression and information 

transfer occurred in only one direction, from adult to juvenile, and so the importance of the 

directionality of aggressive interactions on learning was not a focus of their investigations. 

Furthermore, as our study population was almost entirely made up of adult finches, our results 

demonstrate that this social learning bias is not specific to juvenile learning, but is also present 

in adulthood. Our results also clarify that aggression-based demonstrator choice is not simply 

an artefact of confined laboratory conditions, a suggestion put forward by Clayton (1987). The 

birds used in our study inhabited a large, spacious aviary with natural features, enabling more 

natural movement and interaction than is likely to occur in the lab. They had lived together for 

their entire lives and so any relationships should be well-established. Birds were not given 

specific pre-selected demonstrators to choose from and had complete freedom to learn from 

any demonstrator they chose, much like a natural population. In addition, access to the 

introduced platform was completely voluntary, meaning that birds could easily have avoided 

aggressive interactions. Overall, this strongly suggests that aggressive interactions are not 

necessarily an artefact of being forced into close proximity together, and that aggression-based 

directed social learning occurs naturally in freely interacting populations.  

The reasons for social learning between aggressors in our study population are unclear. It is 

possible that aggression leads to hormonal changes that promote learning. For example, steroid 

hormones are believed to be associated with both aggression (Soma et al., 2008) and song 
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learning (Brainard and Doupe, 2002) in male birds. It seems unlikely, however, that sex-specific 

hormones were responsible for the patterns of social learning found in our study, since we found 

no influence of suspected sex on learning and since the task we introduced to the population 

was not sex-specific like song-learning. Rather, our results suggest that individuals were actively 

choosing to learn from, or paying more attention to, demonstrators that were aggressive 

towards them. Several studies have demonstrated that more aggressive individuals tend to solve 

cognitive tasks more quickly, potentially because they tend also to be bolder, more exploratory 

and less neophobic (David et al., 2011; Sih and Del Giudice, 2012; Guenther et al., 2014), thus 

making them more likely to approach and attempt novel tasks. While this could make more 

aggressive individuals more attractive as demonstrators of novel behaviours, we found no 

evidence to suggest this was the case in our study group, as an individual’s level of aggression 

did not influence its rate of either social or asocial learning. Alternatively, aggression may be 

used as a simple and reliable way of assessing an individual’s fitness. Aggression is often linked 

to reproductive fitness in male individuals (Darwin, 1896) and an individual who voluntarily takes 

part in an aggressive encounter, regardless of the outcome of the fight, may theoretically be 

stronger and healthier than those who avoid unnecessary confrontation. In our study, access to 

the platform where fights were recorded was entirely voluntary and an alternative food supply 

was constantly available. Thus, birds that chose to land on the platform may represent healthier 

or stronger individuals and therefore more attractive demonstrators for social learning.  

An alternative explanation for social transmission along aggression-based pathways in our zebra 

finch population, rather than aggression having a direct impact on or acting as an indicator of 

learning ability, is that aggressive individuals were more likely to observe each other perform 

the novel behaviour. This may be because aggressive acts were a direct result of close 

association, and it was these close associations specifically that resulted in increased learning 

opportunities. This, however, does not seem likely, since none of our other measures of 

association (including associations on the aggression platform itself, as analysed in the 

Supplementary Material, section 3.7.6) offered a convincing explanation for the observed 

pattern of social transmission. A more likely explanation is that birds were displaying cognitive 

biases towards aggressors as sources of social information (as described by Heyes, 2012; Coussi-

Korbel and Fragaszy, 1995). Perhaps these individuals were more salient demonstrators due to 

their aggressive behaviour towards observers, or perhaps observers actively paid them more 

attention to avoid unnecessary conflict and learned from them as a byproduct of this 

surveillance. Alternatively, the aggressive interactions that we documented may have been an 

indicator of which birds were in competition over resources – and so the aggression-based 
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networks used in our analysis may also represent context-specific association networks. For 

example, since our task was a foraging task, aggressors who compete over food may have been 

more likely to be present at the task at the same time and so able to observe each other 

performing novel behaviours. Since our focus was purely on the importance of relationship-

based pathways of social transmission, we did not document the identities of task observers – 

only task solvers – and so we are unable to comment on whether aggressors actively associated 

or competed with each other at the task location.  

While aggressive interactions had the largest influence on social transmission between zebra 

finches in our study, we also found evidence of social transmission between mates. Beauchamp 

and Kacelnik (1991) demonstrated evidence that female zebra finches with more knowledgeable 

mates are less likely to learn a novel foraging task than those with naïve mates, because a female 

foraging closely alongside an informed male is provided with more opportunities for scrounging, 

thus overshadowing opportunities for her own learning. In contrast, we found evidence that 

zebra finches, to a degree, actively learn a novel task from their mates. This may be because 

mates are more likely to follow each other around the aviary (as suggested by our personal 

observations), thus increasing the likelihood that they will learn from one another. In line with 

this, previous studies have suggested that female zebra finches tend to prefer the foraging 

choices of male over female demonstrators, which was attributed to females paying more 

attention to male conspecifics (Katz and Lachlan, 2003; Benskin et al., 2002). Avital and Jablonka 

(2000) argue that information exchange between monogamous mates can be a crucial 

component in reducing male-female conflict and permitting parental cooperation, and that the 

formation of stable, long-term pair bonds can result in the development of pair-specific 

preferences and behaviours. Thus, mate-mate information exchange may have significant 

evolutionary importance, despite receiving relatively little attention in the social learning 

literature to date. 

Our results suggested, however, that learning from mates was not the main pathway of social 

learning, offering additional explanatory power only when combined with the aggression-based 

social networks. This may be because the Mates networks were comparatively small, containing 

only a few isolated pairwise connections (see Figure 3.2E), thus restricting the number of 

possible opportunities for social learning via this pathway. This would explain why the 

proportion of social learning events attributed to mates learning from one another tended to be 

low. This result additionally reflects the importance of considering multiple pathways of learning 

at the same time when studying animal social learning, as the effect of the Mates networks may 

not have been noticeable if they were not combined with the aggression-based networks. 
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Furthermore, research into directed social learning between mates is currently lacking and we 

encourage further research into such behaviour in zebra finches and other species, keeping in 

mind that social transmission between mates may be difficult to detect if only a few pairwise 

connections exist.  

Positive relationships (specifically preening and perching in close proximity) did not have a 

strong influence on social learning in zebra finches in our study. This is in contrast to a former 

study by Williams (1990), which demonstrated that juveniles tended to learn song elements 

from adult males with whom they shared positive interactions such as preening, clumping and 

parental care. Similarly, experiments on various other species (e.g. Sturnus vulgaris; Boogert et 

al., 2014; Gasterosteus aculeatus, Atton et al., 2012; E. rufifrons,  Schnoell and Fichtel, 2012; C. 

corax, Kulahci et al., 2016) have demonstrated evidence that social information spreads through 

populations via proximity and/or affiliative networks. This did not appear to be the case in our 

study, which could suggest that the particular task provided to the study population did not 

require birds to be in such close proximity that they could only learn from their affiliates. For 

example, individuals may have been learning merely to interact with the task apparatus via 

stimulus or local enhancement (Heyes, 1994) rather than learning specific motor skills required 

to solve the task, which only required behaviours to be observed from afar, rather than imitating 

specific behaviours. This would account for the fact that the birds completed the task using a 

variety of behaviours (e.g. using either their beak or feet). More complex behaviours such as 

song learning might require demonstrators to be more familiar and have a higher tolerance of 

close observers. Alternatively, discrepancies between studies could indicate that different 

populations of the same species differ in how they learn from each other – essentially a ‘culture 

of learning’.  

 

3.6. Conclusion 

In this study, we investigated the influence of pairwise relationships on social learning in a freely 

interacting population of zebra finches in a semi-natural aviary environment. We found strong 

evidence that individuals learned a novel foraging task from demonstrators with which they had 

shared aggressive interactions, irrespective of the outcome of aggression. This has been 

previously suggested in laboratory experiments on zebra finches – and our study demonstrates 

that these previous findings are not simply an artefact of confined laboratory conditions. 

Instead, it appears to be a specific social learning strategy that also occurs in free-flying zebra 
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finches. We also found evidence for a weak, secondary social learning pathway between mates, 

which was only apparent when combined with aggression-based pathways.  
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3.7. Supplementary Material 

3.7.1. Details of a 2017-18 puzzle box study on the same zebra finch population.  

During a previous, unpublished experiment, which took place between October 2017 and 

January 2018, the same population of zebra finches as used in our experiment were presented 

with a foraging task with two possible solve options.  At the time of this experiment, the zebra 

finch population consisted of 120 individuals. The task was a wooden ‘puzzle box’ with two holes 

on top, each covered by a circular cardboard lid, and two holes at the side, each covered by a 

cardboard door (Figure 3.S1). Both lids and doors had a loop of string attached to make them 

easier for the birds to pull. This puzzle box was not novel to the population at the time and had 

in fact been presented to the same population three and a half months before, thus allowing 

naïve birds to learn how to solve the task for the first time and informed birds to reinforce any 

previously acquired knowledge. Birds were presented with two of these puzzle boxes during 

twelve 1.5-2 hour sessions, during which time each box was filmed from two angles using Go 

Pro cameras. The boxes were filled with seed and the lids and doors were closed. Birds could 

therefore ‘solve’ the task and gain access to the seed by either lifting one of the lids or pulling 

open one of the doors. The task was reset and refilled by the experimenter as and when the 

doors and lids were opened, provided the birds had dispersed from the task and so would not 

be disturbed. A record of which birds solved the task and which solve option they used was then 

made from the video footage of the puzzle boxes. 

 

 

Figure 3.S1. Puzzle box task presented to the same zebra finch population during a previous, unpublished 

study which took place between October 2017 and January 2018. The task consisted of a wooden block 

into which seed was placed, with two holes on top covered by cardboard lids and a hole at either side 

covered with cardboard doors. (A) Task in its ‘unsolved’ state. (B) Task in its ‘solved’ state, with lids and 

doors removed. 

(A) (B) 
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The task used in our experiment was novel in its appearance, but the cardboard lids covering 

the plastic glasses in our task were similar to those on top of the puzzle box in the 2017-18 

experiment. It was therefore possible that birds could be using previously learned behaviours to 

solve our task. To test this, we used a binary ILV representing whether each bird in our study 

population had previously solved the 2017-18 task (using the lid-lifting and/or door-pulling 

behaviour) in our analysis to establish whether birds who had solved the previous task were 

faster to learn the new task, either asocially or socially.  As explained in the main text, we found 

no evidence to suggest that knowledge of how to solve the 2017-18 task influenced a bird’s 

tendency to learn our task. 

 

3.7.2. Additional information on statistical analyses 

3.7.2.1. Best model sets.  

Table 3.S1. The best-performing model type (additive/multiplicative) used for each of the top 15 network 

combinations shown in Table 3.2. 

Network combination rank Best ILV model type 

1 multiplicative 

2 multiplicative 

3 multiplicative 

4 multiplicative 

5 additive 

6 multiplicative 

7 multiplicative 

8 multiplicative 

9 multiplicative 

10 multiplicative 

11 multiplicative 

12 multiplicative 

13 multiplicative 

14 multiplicative 

15 multiplicative 
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3.7.2.2. PropST calculations. 

We calculated the estimated proportion of learning events to have occurred via social 

transmission (propST) via each network in the top fifteen network combinations (Table 3.S2). 

This was calculated as a model-weighted average across all twenty-four models in the best 

model set (i.e. using either multiplicative or additive models) for each network combination. To 

provide robustness to model-selection uncertainty, we also calculated an estimate for the lower 

limit of the propST parameter, based on the 95% confidence interval for the s parameter 

(Hasenjager et al., In Press) for each network in each of the top fifteen network combinations. 

The model-weighted average of each lower limit estimate was calculated for each network 

combination.  

For each network in each of the top fifteen network combinations, we used the variation in the 

propST estimate and propST lower limit estimate among models which incorporated different 

ILV combinations to assess whether the proportion of social transmission events attributed to a 

particular network was affected by the inclusion of different ILVs. We found that the standard 

deviations of the propST estimate across the twenty-four models used for each network 

combination were very low, always less than 0.1 (Table 3.S3).  

 

Table 3.S2. propST estimates (upper cells, in bold) and propST lower limit estimates (lower cells) for each 

network in each of the top fifteen network combinations, and as a total across all networks in the 

combination. Grey cells indicate that a network was not included in a particular network combination. 

Also shown are the averages and standard deviations for each network, taken across the fifteen network 

combinations where a network of this type is present, and the combined average and standard deviation 

across binary and feeder-based networks (where applicable). 
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2  
0.30 

 
0.20 

   
0.08 

 
0.57 

0.15 0.09 0.04 0.27 

3  
0.28 

 
0.18 

     
0.47 

0.13 0.09 0.21 

4   
0.25 

 
0.21 

    
0.46 

0.04 0.05 0.09 

5 

0.40 

 

0.24 

 

0.25 

    

0.88 

0.000

3 
0.12 0.15 0.26 

6  
0.24 

 
0.23 

     
0.47 

0.01 0.06 0.07 

7   
0.38 

      
0.38 

0.21 0.21 

8   
0.22 

 
0.15 

   
0.10 0.47 

0.08 0.05 0.03 0.16 

9    
0.30 

     
0.30 

0.15 0.15 

10  
0.38 

     
0.09 

 
0.48 

0.19 0.04 0.23 

11  
0.38 

       
0.38 

0.20 0.20 

12   
0.26 

 
0.21 

   
0.04 0.52 

0.06 0.05 0 0.11 

13 
0.41 

 
0.37 

      
0.78 

0 0.24 0.24 

14  
0.27 

 
0.23 

   
0.06 

 
0.55 

0.03 0.06 0 0.10 

15     
0.29 

    
0.29 

0.14 0.14 

Combined 

network 

average 

0.40 0.30 0.22 0 0.08 

 0.000

1 
0.12 0.09 0 0.02 

Combined 

network SD 

0.02 0.06 0.05 0 0.03 

 0.000

2 
0.08 0.04 0 0.02 
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Table 3.S3. Standard deviation of the propST estimate for each network in each network combination. 

Standard deviations are calculated across the twenty-four models containing the specific network 

combination, where each model represents a different ILV combination. Grey cells indicate that a 

particular network was not used in this network combination and so a standard deviation was not 

calculated. 
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1   0.017  0.010     

2  0.018  0.009    0.007  

3  0.019  0.010      

4   0.053  0.043     

5 0.098  0.007  0.007     

6  0.060  0.043      

7   0.050       

8   0.021  0.012    0.009 

9    0.024      

10  0.048      0.015  

11  0.056        

12   0.055  0.045    0.008 

13 0.084  0.041       

14  0.063  0.046    0.008  

15     0.025     

 

In addition, for each network, we used variation in the model-averaged propST estimate (Table 

3.S4) and propST lower limit estimate (Table 3.S5) between all network combinations that 

included this network to assess whether the proportion of social transmission events attributed 

to a particular network varied depending on the other networks included in the combination. 

Again, SDs are always low, less than 0.1, suggesting that there is little variation in the estimates 

for each network, regardless of the other networks included in the combination. 
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Table 3.S4. The average propST estimate and SD for each network, averaged across the top fifteen 

network combinations where the network is present (shown in ‘number of appearances’ column). Also 

shown is the propST estimate average and SD combined across networks of the same type (e.g. the two 

Mates networks). 

Network 
Number of 

appearances 

Average 

propST 

estimate 

SD 

Combined 

average 

propST 

Combined 

SD 

FeedingAssociations 2 0.400 0.015 0.400 0.015 

WinningToLosingAggressor 

(Binary) 
6 0.308 0.061 0.297 0.062 

WinningToLosingAggressor 

(Feeder) 
7 0.287 0.061   

LosingToWinningAggressor 

(Binary) 
5 0.226 0.047 0.220 0.047 

LosingToWinningAggressor 

(Feeder) 
6 0.215 0.051   

Positive (Binary) 0 0 0 0 0 

Positive (Feeder) 0 0 0   

Mates (Binary) 3 0.080 0.017 0.077 0.025 

Mates (Feeder) 2 0.073 0.044   

 

 

Table 3.S5. The average propST lower limit estimate and SD for each network, averaged across the top 

fifteen network combinations where the network is present. Also shown is the propST lower limit estimate 

average and SD combined across networks of the same type. 

Network  

Average 

propST lower 

limit estimate 

SD  
Combined 

average lower 

limit estimate 

Combined 

SD 

FeedingAssociations  0.000 0.000  0.000 0.000 

WinningToLosingAggressor 

(Binary) 
 0.119 0.081  0.121 0.078 

WinningToLosingAggressor 

(Feeder) 
 0.126 0.076      

LosingToWinningAggressor 

(Binary) 
 0.091 0.036  0.089 0.040 

LosingToWinningAggressor 

(Feeder) 
 0.088 0.047      

Positive (Binary)  0 0  0 0 

Positive (Feeder)  0 0      

Mates (Binary)  0.025 0.022  0.021 0.020 

Mates (Feeder)  0.016 0.023      
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3.7.3. Akaike weights for all network combinations. 

Figure 3.S2 shows the total Akaike weight, summed across models using the best-performing ILV 

type, for all 84 network combinations, ranked in order of their performance. Model support 

dropped off rapidly after the best two network combinations. Therefore, rather than display the 

Akaike weights for all of our 84 network combinations, we used this drop in model support to 

determine the number of individual network combinations to display, in an analogous way to 

using a scree plot to determine how many components to retain in a Principle Components 

Analysis. The top fifteen network combinations were chosen to display individually in Table 3.3, 

beyond which, the summed Akaike weights dropped below 0.012 (>8.9x less support than the 

best combination). When considering only the best model set for each network combination, 

these top fifteen combinations accounted for over 75% of the summed Akaike weights across 

combinations.  

 

 

Figure 3.S2. Summed Akaike weight of each network combination in the analysis, summed across the 24 

models in the combination’s best model set. 
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3.7.4. Additional information and ‘raw’ Akaike weights for all network 

combinations considered. 

 

Table 3.S6. The summed Akaike weight for each network combination. Akaike weights were summed 

across the best-performing ILV type (additive versus multiplicative) for each network combination. The 

Akaike weight is also given as a percentage compared to only the best model sets. The asocial model is 

highlighted in grey. 

Rank 

Network 

combination✝ 

Best ILV model 

type 

Summed Akaike 

weight 

Percentage compared to 

model sets using only best 

ILV type 

1 0:0:1:0:1:0:0:0:0 multiplicative 0.106923587 15.85605404 

2 0:1:0:1:0:0:0:1:0 multiplicative 0.100302664 14.87421536 

3 0:1:0:1:0:0:0:0:0 multiplicative 0.071569111 10.6132213 

4 0:0:1:0:2:0:0:0:0 multiplicative 0.040230301 5.965885026 

5 1:0:2:0:3:0:0:0:0 additive 0.031705297 4.701683853 

6 0:1:0:2:0:0:0:0:0 multiplicative 0.029569621 4.384977362 

7 0:0:1:0:0:0:0:0:0 multiplicative 0.024361714 3.612679526 

8 0:0:1:0:1:0:0:0:1 multiplicative 0.017498639 2.594931328 

9 0:0:0:1:0:0:0:0:0 multiplicative 0.017188013 2.548867566 

10 0:1:0:0:0:0:0:1:0 multiplicative 0.013570336 2.012390222 

11 0:1:0:0:0:0:0:0:0 multiplicative 0.013213354 1.959452174 

12 0:0:1:0:2:0:0:0:3 multiplicative 0.013201174 1.957645962 

13 1:0:2:0:0:0:0:0:0 multiplicative 0.012701101 1.883488475 

14 0:1:0:2:0:0:0:3:0 multiplicative 0.012428752 1.843100937 

15 0:0:0:0:1:0:0:0:0 multiplicative 0.012008063 1.780715567 

16 0:0:1:0:2:0:3:0:0 multiplicative 0.011068787 1.641427207 

17 0:0:1:0:0:0:0:0:2 multiplicative 0.009754974 1.446597512 

18 0:1:0:2:0:3:0:0:0 multiplicative 0.008634465 1.280433508 

19 1:0:2:0:3:0:4:0:0 additive 0.007992919 1.18529652 

20 1:0:2:0:3:0:0:0:4 additive 0.007988052 1.184574776 

21 0:0:1:0:0:0:2:0:0 multiplicative 0.006990143 1.036591535 

22 0:0:0:1:0:0:0:1:0 multiplicative 0.006968518 1.033384692 

23 0:1:0:0:0:0:0:2:0 multiplicative 0.006495746 0.963275761 

24 0:1:0:1:0:1:0:0:0 multiplicative 0.005752445 0.853049185 

25 0:0:0:1:0:0:0:2:0 multiplicative 0.00570693 0.846299615 
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26 0:0:0:1:0:2:0:0:0 multiplicative 0.005124901 0.7599886 

27 0:1:0:1:0:1:0:1:0 multiplicative 0.005033042 0.746366524 

28 1:0:0:0:2:0:0:0:0 multiplicative 0.004609367 0.68353835 

29 0:1:0:0:0:2:0:0:0 multiplicative 0.003783189 0.561021669 

30 0:0:0:0:1:0:0:0:2 multiplicative 0.003719138 0.551523333 

31 1:0:2:0:0:0:0:0:3 multiplicative 0.003562747 0.528331592 

32 0:0:0:0:1:0:2:0:0 multiplicative 0.003506584 0.520002994 

33 0:0:1:0:0:0:0:0:1 multiplicative 0.003442222 0.510458539 

34 1:0:2:0:0:0:3:0:0 multiplicative 0.003359213 0.498148859 

35 0:0:1:0:2:0:3:0:4 multiplicative 0.003326556 0.493306044 

36 0:1:0:2:0:3:0:4:0 multiplicative 0.00313007 0.464168482 

37 0:0:1:0:0:0:2:0:3 multiplicative 0.002583404 0.383101564 

38 0:0:1:0:1:0:1:0:0 multiplicative 0.002058444 0.305253501 

39 1:0:2:0:3:0:4:0:5 additive 0.001840613 0.272950618 

40 0:1:0:0:0:2:0:3:0 multiplicative 0.001713348 0.254078069 

41 0:0:0:1:0:2:0:3:0 multiplicative 0.001544711 0.229070327 

42 1:0:1:0:1:0:0:0:0 multiplicative 0.00133941 0.19862556 

43 0:0:0:0:0:0:0:0:0 NA 0.001334995 0.197970845 

44 0:0:1:0:1:0:1:0:1 multiplicative 0.001303429 0.193289818 

45 1:0:0:0:2:0:0:0:3 multiplicative 0.001248273 0.185110551 

46 1:0:0:0:2:0:3:0:0 multiplicative 0.001247873 0.185051234 

47 1:0:1:0:1:0:0:0:1 multiplicative 0.001078417 0.159922041 

48 0:1:0:0:0:1:0:0:0 multiplicative 0.001033647 0.153282949 

49 0:0:0:0:1:0:0:0:1 multiplicative 0.001028284 0.152487651 

50 0:1:0:0:0:1:0:1:0 multiplicative 0.001015882 0.150648518 

51 0:0:0:0:1:0:2:0:3 multiplicative 0.001004082 0.148898656 

52 0:0:0:1:0:1:0:0:0 multiplicative 0.000916878 0.135966886 

53 1:0:1:0:0:0:0:0:0 multiplicative 0.000879927 0.130487299 

54 0:0:0:1:0:1:0:1:0 multiplicative 0.00087949 0.130422495 

55 1:0:2:0:0:0:3:0:4 multiplicative 0.000865374 0.128329186 

56 1:0:1:0:1:0:1:0:0 multiplicative 0.000799231 0.118520621 

57 0:0:1:0:0:0:1:0:0 multiplicative 0.000785949 0.116550989 

58 1:0:1:0:0:0:0:0:1 multiplicative 0.000739659 0.109686491 

59 1:0:1:0:1:0:1:0:1 multiplicative 0.000698707 0.103613583 

60 0:0:1:0:0:0:1:0:1 multiplicative 0.000666408 0.098823857 

61 1:0:0:0:1:0:0:0:0 multiplicative 0.000590336 0.087542887 

62 1:0:1:0:0:0:1:0:0 multiplicative 0.000583163 0.086479179 

63 1:0:1:0:0:0:1:0:1 multiplicative 0.000543437 0.080588079 
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64 1:0:0:0:1:0:0:0:1 multiplicative 0.000540479 0.080149427 

65 0:0:0:0:1:0:1:0:0 multiplicative 0.000524915 0.07784139 

66 0:0:0:0:1:0:1:0:1 multiplicative 0.000493321 0.07315621 

67 1:0:0:0:1:0:1:0:0 multiplicative 0.000478404 0.070944119 

68 1:0:0:0:1:0:1:0:1 multiplicative 0.000468322 0.069449026 

69 1:0:0:0:0:0:0:0:0 multiplicative 0.000451621 0.066972379 

70 1:0:0:0:0:0:0:0:1 multiplicative 0.0004442 0.065871894 

71 0:0:0:0:0:0:0:1:0 additive 0.000424975 0.063020955 

72 0:0:0:0:0:0:0:0:1 multiplicative 0.000423762 0.062841075 

73 1:0:0:0:0:0:1:0:1 multiplicative 0.000423511 0.062803854 

74 1:0:0:0:0:0:1:0:0 multiplicative 0.000422823 0.062701828 

75 0:0:0:0:0:1:0:1:0 multiplicative 0.000413013 0.06124707 

76 0:0:0:0:0:0:1:0:1 multiplicative 0.000412089 0.061110047 

77 0:0:0:0:0:1:0:0:0 additive 0.000412083 0.061109157 

78 0:0:0:0:0:0:1:0:0 additive 0.000412047 0.061103819 

79 1:0:0:0:2:0:3:0:4 multiplicative 0.000311315 0.046165936 

80 1:0:0:0:0:0:0:0:2 multiplicative 0.000129568 0.019214069 

81 1:0:0:0:0:0:2:0:0 multiplicative 0.000129568 0.019214069 

82 0:0:0:0:0:1:0:2:0 additive 0.000122102 0.018106911 

83 0:0:0:0:0:0:1:0:2 multiplicative 0.00012167 0.018042849 

84 1:0:0:0:0:0:2:0:3 multiplicative 3.43E-05 0.005086461 

 

✝ Network combinations are displayed in the following format FeedingAssociations : WinningToLosingAggressor(binary) : 

WinningToLosingAggressor(feeder) : LosingToWinningAggressor(binary) : LosingToWinningAggressor(feeder) : Positive(binary) : 

Positive(feeder) : Mates(binary) : Mates(feeder). If a network is included in the combination, it is indicated by a number > 0. If a 

network is absent, it is indicated by a 0. Where all s parameters were constrained to be equal, all included networks are indicated 

by a 1 (e.g. 0:1:0:1:0:0:0:0:1). Where s parameters were different, all included networks are indicated by different numbers (e.g. 

0:1:0:2:0:0:0:0:0:3). 

 

3.7.5. Investigation into the distribution of social learning events along 

aggression-based pathways. 

In our analysis (see main text), we found evidence that a higher proportion of social learning 

events occurred along the WinningToLosingAggressor pathway compared to the 

LosingToWinningAggressor pathway when both of these pathways were included in the NBDA 

model. This occurred even when s parameters were constrained to be the same (i.e. suggesting 

an equal influence of both social learning pathways). Here, we investigate the possible reasons 

for this result. 



Chapter 3 2022 PhD thesis | C. Easter 

134 
 

Firstly, we investigated whether there was evidence that fight winners tended to learn the task 

first, thus providing earlier opportunities for information transfer from winning to losing 

aggressors. For each dyad that shared an aggressive interaction, we calculated which bird(s) 

successfully learned the task and, if both, which one learned the task first. We found evidence 

that winning aggressors in a dyad were more likely to learn the task and also tended to learn the 

task before their losing aggressor (Table 3.S7). This is somewhat surprising, given that the NBDA 

results found no effect of fight wins on the rate at which individuals learned the task. Overall, 

this suggests that any influence of aggression or fight wins on individual learning ability was not 

strong enough for NBDA to detect.  

 

Table 3.S7. Which individual(s) successfully learned the task and which individual learned the task first in 

each aggression-based dyad. 

Scenario Number of occurrences 

Both learn, winning aggressor learns first. 37 

Both learn, losing aggressor learns first. 28 

Only winning aggressor learns. 11 

Only losing aggressor learns. 2 

Neither learn task. 0 

 

We then considered that there may be a difference in the distribution of connections from 

winning to losing aggressors versus those from losing to winning aggressors that might explain 

the difference in propST estimates along the different pathways. For each connected bird in the 

aggression-based networks, we counted how many of its connections were to losing aggressors 

and how many to winning aggressors. Within the aggression-related networks, there are a total 

of 78 links connecting birds who engaged in aggressive interactions. We found that connections 

to losing aggressors are distributed differently across the individuals in the network compared 

to connections to winning aggressors. Table 3.S8 shows the number of outgoing connections to 

losing aggressors and to winning aggressors for each individual in the network (which is 

equivalent to the number of birds that each individual tended to win fights against or tended to 

lose fights against, respectively).  

In the network, there are 30 individuals with outgoing connections to winning aggressors and 

most of these have only a few connections (>90% of connected individuals in the network have 

between one and four birds who tended to beat them in fights). In contrast, fewer individuals 
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(24 in total) had any outgoing connections to losing aggressors and these connections were 

more skewed in their distribution, with some birds winning fights against considerably more 

individuals than others. The majority of individuals (64%) had only one or two birds who tended 

to lose against them, but there were a few very highly connected individuals who tended to win 

fights against many birds. Specifically, there were three birds (ID numbers 20, 27 and 51) that 

had a large number of losing aggressors (>10, shown in bold in Table 3.S8). These three 

individuals accounted for >40% of all connections within the WinningToLosingAggressors 

network.  

 

Table 3.S8. The number of outgoing links to losing aggressors (i.e. the number of birds who tended to lose 

to the individual) and to winning aggressors (i.e. the number of birds who tended to win against the 

individual) for each individual in the aggression-based networks. Highly-connected individuals with >10 

links are shown in bold. 

Bird ID Number of losing aggressors  Number of winning aggressors 

1 1 3 

2 2 1 

3 1 4 

4 0 0 

5 0 0 

6 0 0 

7 0 0 

8 0 0 

9 0 0 

10 0 0 

11 0 0 

12 1 1 

13 2 0 

14 1 0 

15 0 0 

16 5 6 

17 0 3 

18 2 1 

19 0 0 

20 10 3 

21 0 0 

22 0 0 

23 0 1 

24 0 4 

25 5 1 

26 1 1 
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27 12 4 

28 1 4 

29 2 3 

30 1 1 

31 3 3 

32 2 2 

33 0 3 

34 0 0 

35 1 3 

36 0 0 

37 0 1 

38 0 0 

39 0 2 

40 0 3 

41 0 0 

42 1 8 

43 0 1 

44 0 1 

45 1 0 

46 0 0 

47 2 4 

48 0 2 

49 5 2 

50 0 0 

51 10 2 

52 6 0 

53 0 0 

 

Overall, this means there were a greater number of fight losers linked to a smaller number of 

fight winners, thus the learning of the task by a bird who tended to win fights against a lot of 

individuals would offer a greater opportunity for their losing aggressors to learn than vice versa. 

The three highly-connected individuals in particular could have acted as hubs of social 

information transfer, particularly if they learned the task early on in the experiment. Indeed, all 

three of these individuals succeeded in learning the task, and each learned the early in the 

experiment (Table 3.S9). Individuals 20, 27 and 51 first learned the task at 2162, 6171 and 8374 

seconds, respectively (taken as cumulative time across all task videos). As the entire experiment 

was approximately 170000 seconds in cumulative time, this means that these three individuals 

learned the task in the first 5% of the experiment duration, with individuals 20 and 27 learning 

particularly early on, thus giving their connected losing aggressors an early source of social 

information. This may also go some way to explaining the discrepancy between our results in 

Table 3.S7, which suggest that fight winners learned faster than their losing aggressors, and the 
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results of the NBDA, which suggest no effect of aggression or fight wins on learning. If there are 

only a few winning aggressors that tended to learn faster than a large number of losing 

aggressors, NBDA may not find an overall effect on the rate of learning.  

 

Table 3.S9. The order at which the birds first learned the task. Small numbers in the grey rows represent 

the order, large numbers in the white rows are the birds’ ID numbers, which correspond to the first 

column of Table 3.S7. Highly-connected winning aggressors (ID numbers 20, 27 and 51) are shown in bold. 

Solve order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Bird ID 13 14 37 31 39 20 35 27 16 17 12 19 51 32 29 42 3 11 

Solve order 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Bird ID 18 30 5 2 8 52 38 10 28 25 47 49 44 24 22 6 53 1 

 

Table 3.S10 shows the cumulative number of outgoing links to winning aggressors and to losing 

aggressors as each new individual learns to solve the task. This can be used as a representation 

of the potential learning opportunities along each pathway – i.e. as a new individual becomes 

informed, this individual will become a source of information for its connected winning and 

losing aggressors. Table 3.S10 shows that the cumulative number of connections from winning 

to losing aggressors is consistently higher than those from losing to winning aggressors (except 

in one early instance, where they are equal). In addition, the first individuals to solve the task 

had some outgoing connections to losing aggressors, but no connections to winning aggressors, 

thus providing early opportunities for social transmission from winning to losing aggressors. 

Taken together, this may explain why an average of 1.36x more social learning events followed 

the WinningToLosingAggressor pathway compared to the LosingToWinningAggressor pathway, 

despite the estimated s parameters being equal. 
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Table 3.S10. The cumulative number of connections from winning to losing aggressors and from losing to 

winning aggressors as the number of birds learning the task increases. 

Number of birds to 

solve the task 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Win->Lose 2 3 3 6 6 16 17 29 34 34 35 35 45 47 49 50 51 51 

Lose->Win 0 0 1 4 6 9 12 16 22 25 26 26 28 30 33 41 45 45 

 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Win->Lose 53 54 54 56 56 62 62 62 63 68 70 75 75 75 75 75 75 76 

Lose->Win 46 47 47 48 48 48 48 48 52 53 57 59 60 64 64 64 64 67 

 

In addition, individual 51 (”CrL”) solved the task the most times during the course of the 

experiment (Table 3.S11). This individual solved the task a total of 39 times (which is 17 more 

times than the next most frequent solver) and these solves occurred over a large timespan 

(159913 seconds from when it first learned the task to almost the end of the experiment). Again, 

this likely allowed individual 51 to act as an information hub. Individuals 20 and 27 also ranked 

within the top ten in terms of how often they solved the task. 

 

Table 3.S11. The number of times each bird solved the task, ordered from most to least solves. The three 

highly-connected winning aggressors are shown in bold. 

Bird ID Number of solves 

51 39 

39 22 

30 16 

52 16 

13 15 

20 12 

35 9 

19 8 

27 8 

29 7 

37 7 

8 6 

17 5 

1 3 

16 3 

28 3 

42 3 

3 2 
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6 2 

11 2 

14 2 

31 2 

49 2 

2 1 

5 1 

10 1 

12 1 

18 1 

22 1 

24 1 

25 1 

32 1 

38 1 

44 1 

47 1 

53 1 

4 0 

7 0 

9 0 

15 0 

21 0 

23 0 

26 0 

33 0 

34 0 

36 0 

40 0 

41 0 

43 0 

45 0 

46 0 

48 0 

50 0 

 

3.7.6. Additional analyses. 

3.7.6.1. The influence of associations on the aggression platform 

It is possible that the pattern of learning between aggressors was because of associations on the 

aggression platform, rather than the aggressive interactions themselves. For example, the 

aggression platform and the introduced task both share the characteristic of being novel; thus 

birds who choose to visit the platform may also be more likely to visit and subsequently solve 
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the task. To investigate this, we generated association networks for the aggression platform in 

the same way that feeding associations on the normal feeders were generated – by using landing 

and leaving times to calculate how long each dyad of birds spent together, and then calculating 

Fij (the actual versus expected proportion of time birds were together) as detailed in the main 

text. We then constructed models to test two hypotheses: (i) the FeedingAssociations network 

will receive a greater level of support if associations on the aggression platform are included in 

addition to associations on the normal feeders; and (ii) the network of associations on the 

aggression platform will receive approximately the same level of support as the combined 

WinningToLosingAggressor and LosingToWinningAggressor networks (i.e. aggressive 

interactions predict the order of learning due to associations between birds visiting novel 

objects, rather than directed learning towards aggressors).  

To test hypothesis (i), we generated a combined network of associations 

(FeederAndPlatformAssociations) where Fij represented the actual versus expected proportion 

of time each dyad of birds were together across the aggression platform and two regular 

feeders. We then substituted the FeedingAssociation network for the new 

FeederAndPlatformAssociations network and reran all NBDA models that included this network. 

Models were constructed the same way as in the main text – with all network combinations 

using both equal and differing s parameters, and all ILV combinations using both additive and 

multiplicative model versions. We then recalculated the Akaike weights for each network 

combination using their best versions (additive or multiplicative) in the same way as the main 

analysis (sections 3.3.6 and 3.3.7.2). The top model in this analysis was the same as in our original 

analysis – multiplicative model, using the feeder versions of the WinningToLosingAggressor and 

LosingToWinningAggressor networks, with total fight number as an ILV, which had an AICc of 

236.48 – and the overall pattern of the results (i.e. that aggression-based networks offered the 

best explanation for the pattern of social transmission) remained the same (Table 3.S12). 

Incorporating associations at the platform did, however, slightly improve the explanatory power 

of the feeding associations network. The most supported model that included the 

FeederAndPlatformAssociations network had an AICc of 237.30 (additive model, using 

FeederAndPlatformAssociations network and the feeder version of the 

WinningToLosingAggressor and LosingToWinningAggressor networks, with fight wins and 

suspected sex as ILVs); whereas the most supported model that included the original 

FeedingAssociations network (model using the FeedingAssociations network and the feeder 

versions of the WinningToLosingAggressor and LosingToWinningAggressor networks, no ILVs 

included) had an AICc of 238.87 (ΔAICc = 1.57). Overall, this suggests that, while support for 
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feeding-association-based social learning was improved by including associations at the 

platform, social learning pathways based on the actual aggressive interactions still offered a 

better explanation for the pattern of information transmission that we observed.  

 

Table 3.S12. The top fifteen network combinations when the original FeedingAssociations network was 

substituted with the FeederAndPlatformAssociations network, which represented the proportion of time 

each dyad of birds associated either on one of the feeders or on the aggression platform. Feeder and 

binary versions of the networks were modelled separately and so are grouped to reflect this. The networks 

included in each network combination are indicated by either SD or SE, depending on whether the s 

parameters of the model in question were different or constrained to be equal. Akaike weights for each 

network combination are given as a percentage of Akaike weights across all network combinations. Only 

the best-performing ILV model type (additive or multiplicative) for each network combination were used 

in these calculations. 
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Summed Akaike 

weight (%) 

1  SE SE       15.11 

2      SE SE  SE 14.17 

3      SE SE   10.11 

4 SD SD SD       8.73 

5  SD SD       5.68 

6      SD SD   4.18 

7  SE        3.44 

8  SE SE  SE     2.47 

9       SE   2.43 

10 SD SD SD  SD     2.14 

11 SD SD SD SD      2.13 

12      SE   SE 1.92 

13      SE    1.87 

14  SD SD  SD     1.87 

15      SD SD  SD 1.76 
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To test hypothesis (ii), we generated a network of associations on the aggression platform 

(PlatformAssociations) and reran our analysis, replacing the feeder versions of the 

WinningToLosingAggressor and LosingToWinningAggressor networks with this new network. In 

other words, we tested whether the associations on the aggression platform, without taking into 

account the actual aggressive encounters between birds, offered a better (or equally convincing) 

explanation for the pattern of learning events, or whether the more important factor was the 

connection between the aggressors themselves.  The most supported model that included the 

PlatformAssociations network (additive model, using only the PlatformAssociations network, 

with total fight number included as an ILV) had an AICc of 245.96. This is substantially larger than 

the most supported model in our original model set (AICc = 236.48; ΔAICc = 9.48). As shown in 

Table 3.S13, replacing the original aggressor networks with this network resulted in the binary 

versions of the WinningToLosingAggressor and LosingToWinningAggressor networks receiving 

more support, while the new PlatformAssociations network received little to no support. 

Replacing the original aggressor networks with a network representing associations on the 

aggression platform therefore does not offer a better fit for our data, suggesting that the 

tendency of individuals to learn from their aggressors was not simply due to birds who visited 

the novel aggression platform together being more likely to also visit the novel task together. 

Overall, these additional analyses show that individuals learning from their aggressors remains 

the most supported explanation for the observed pattern of solves, and that this does not 

appear to be due to simple associations on the aggression platform itself. 
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Table 3.S13. The top fifteen network combinations, but with the feeder versions of the 

WinningToLosingAggressor and LosingToWinningAggressor networks replaced with a new 

PlatformAssociations network, which represents the proportion of time dyads of birds were together on 

the aggression platform, without taking into account any aggressive interactions taking place between 

them. Feeder and binary versions of the networks were modelled separately and so are grouped to reflect 

this. The networks included in each network combination are indicated by either SD or SE, depending on 

whether the s parameters of the model in question were different or constrained to be equal. Akaike 

weights for each network combination are given as a percentage of Akaike weights across all network 

combinations. Only the best-performing ILV model type (additive or multiplicative) for each network 

combination were used in these calculations. 
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1     SE SE  SE 30.82 

2     SE SE   22.00 

3     SD SD   9.09 

4      SE   5.28 

5     SE   SE 4.17 

6     SE    4.06 

7     SD SD  SD 3.82 

8     SD SD SD  2.65 

9      SE  SE 2.14 

10     SD   SD 2.00 

11     SE SE SE  1.77 

12      SD  SD 1.75 

13      SD SD  1.57 

14     SE SE SE SE 1.55 

15     SD  SD  1.16 
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3.7.6.2. Removal of associations and interactions recorded prior to task introductions 

If the relationships between individuals in a population are not stable over time, with 

connections between different individuals breaking and forming, the possible pathways of social 

transmission may also change over time. In our main analysis, we began recording data on 

associations and interactions almost three months prior to the introduction of the task itself. It 

is therefore possible that, by the time the task was introduced, some of the connections present 

in our tested social networks no longer existed in the population network. We investigated this 

by regenerating all of our social networks, but with the removal of interactions that were 

observed prior to task introduction on the 5th February 2019, and then rerunning our analysis as 

described in the main text. 

As shown in Table 3.S14, the most favoured network combinations were altered somewhat by 

the removal of pre-task recordings from the social networks, although aggression-based social 

learning pathways still remain the most supported. In this analysis, there is more support for 

social transmission along the WinningToLosingAggressor networks than the 

LosingToWinningAggressor networks. The Mates network received less support than in the 

original analysis, including no longer appearing in the second best model. For example, the best 

model that included the Mates network in this analysis (multiplicative model including feeder 

versions of the WinningToLosingAggressor and Mates network, with total fight number as an 

ILV) had an AICc of 241.46; substantially higher than the best model which included the Mates 

network in our original analysis (multiplicative model including binary versions of the 

WinningToLosingAggressor, LosingToWinningAggressor and Mates networks, with total fight 

number as an ILV), which had an AICc of 236.61 (ΔAICc = 4.85).  

The Positive network, on the other hand, received slightly more support, now appearing in three 

of the top fifteen network combinations, although was still substantially less supported than the 

aggression-based networks alone. However, the best model including the Positive network in 

this analysis (multiplicative model which included the feeder versions of the 

WinningToLosingAggressor and Positive networks, with pre-task interactions removed, and with 

total fight number as an ILV; AICc = 241.46) and the original analysis (multiplicative model 

including the binary versions of the WinningToLosingAggressor, LosingToWinningAggressor and 

Positive networks, with total fight number as an ILV; AICc = 241.05) received similar levels of 

support; suggesting that the removal of the pre-task interactions did not improve the 

explanatory power of the Positive networks, but more likely reduced the explanatory power of 
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the aggression-based networks, thus making the Positive networks more supported by 

comparison. 

Overall, however, the networks used in this analysis fit the data less well than those used in the 

original analysis. The most supported model in this analysis, for example, (multiplicative model 

which included the feeder version of the WinningToLosingAggressor network, with pre-task 

interactions removed, and total fight number as an ILV) had an AICc of 239.07 (ΔAICc = 2.59 

compared to the best model in our original analysis). The higher support for the networks in our 

original analysis could suggest that both past and present relationships are important for 

transmission of information about a novel task. For example, the higher level of support for the 

Mates network in the original analysis could suggest that birds learned from both past and 

present mates. Alternatively, the removal of pre-task connections may have simply made the 

networks too sparse to account for as much of the information transfer – especially in the case 

of the Mates network, which already contained very few pairwise connections.   
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Table 3.S14. The top fifteen network combinations, using social networks in which any pre-task 

connections were removed. Feeder and binary versions of the networks were modelled separately and so 

are grouped to reflect this. The networks included in each network combination are indicated by either 

SD or SE, depending on whether the s parameters of the model in question were different or constrained 

to be equal. Model 15 is the asocial model, where no social learning pathways were included. Akaike 

weights for each network combination are given as a percentage of Akaike weights across all network 

combinations. Only the best-performing ILV model type (additive or multiplicative) for each network 

combination were used in these calculations. 
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1  SE        11.87 

2      SE    11.47 

3      SE SE   8.47 

4  SE SE       6.57 

5      SD SD   3.97 

6  SD SD       3.63 

7      SD  SD  3.54 

8 SD SD        3.41 

9  SD  SD      3.41 

10  SD   SD     3.41 

11      SD   SD 3.30 

12      SE   SE 3.14 

13      SE SE   2.67 

14      SE  SE  1.33 

15          1.21 
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3.7.6.3. The influence of ILVs on information transmission 

In our main analysis, ILVs were only included to account for any differences in learning rates 

between certain types of individuals. However, it is also possible that the ILVs we recorded may 

have influenced information transmission between individuals – e.g. information may have 

passed between individuals with the characteristics described by the ILVs. To investigate this, 

we first generated the following sets of binary networks from our five recorded ILVs: 

(i) Two directional networks based on each individual’s time spent on the regular 

feeders (i.e. their motivation to feed): 

a. HighToLowFeeder network. Each individual has an incoming binary connection 

from those who spent more time on the feeder than themselves.  

b. LowToHighFeeder network. Each individual has an incoming binary connection 

from those who spent less time on the feeder than themselves.  

(ii) Two directional networks based on each individual’s tendency to win fights:  

a. HighToLowNetFightWin network. Each individual has an incoming binary 

connection from those with a higher net fight score (fight wins – fight losses) 

than themselves.  

b. LowToHighNetFightWin network. Each individual has an incoming binary 

connection from those with a lower net fight score (fight wins – fight losses) 

than themselves. 

(iii) Two directional networks based on each individual’s total number of fights on the 

aggression platform (i.e. general aggression levels):  

a. HighToLowFightNumber network. Each individual has an incoming binary 

connection from those who fought more often than themselves.  

b. LowToHighFightNumber network. Each individual has an incoming binary 

connection from those who fought less often than themselves.  

(iv) Two bidirectional networks connecting individuals based on whether they solved a 

previous task (see section 3.7.1 for details). 

a. Solves network. Binary connections between those who solved the previous 

task. 

b. NoSolves network. Binary connections between those who did not solve the 

previous task. 

(v) Four directional networks based on suspected sex.  

a. MaleToMale network. Males have incoming binary connections only from other 

males.  
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b. FemaleToFemale network. Females have incoming binary connections only 

from other females. 

c. FemaleToMale network. Males have incoming binary connections only from 

females.  

d. MaleToFemale network. Females have incoming binary connections only from 

males.  

 

We then took the top-performing binary model from our original analysis (multiplicative model 

including the binary versions of the WinningToLosingAggressor, LosingToWinningAggressor and 

Mates networks, with s parameters constrained to be the same, and with total fight number as 

an ILV) and re-ran this model with the inclusion of each of the five sets of networks described 

above, to establish whether the inclusion of any of these networks improved the model’s fit to 

the data. Each of the five sets of networks described above were modelled separately, but with 

every possible combination of their included networks alongside the original 

WinningToLosingAggressor, LosingToWinningAggressor and Mates networks. The s parameters 

for the WinningToLosingAggressor, LosingToWinningAggressor and Mates networks were 

constrained to be the same, as in the original best model; however the s parameters of any 

additional networks were permitted to be different to account for variation in social 

transmission between the networks.  

As shown in Table 3.S15, the addition of these ILV-based networks into the top-performing 

binary model from our original analysis did not improve the fit of the original model. We 

therefore have no reason to suspect that any of our recorded ILVs influenced the pathways of 

transmission between individuals in the population.  
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Table 3.S15. AICc values for our top-performing binary model when networks constructed from our five 

recorded individual-level variables (ILVs) were added to the original model. For each ILV, a set of additional 

networks were constructed, representing different social learning pathways between individuals with the 

characteristics described by the ILV, which were added to the original model in different combinations to 

establish if the fit of the original model was improved. ΔAICc is given relative to the original model. 

 ILV Networks added AICc ΔAICc 

Original model   236.61 0 

 Feeder times HighToLowFeeder only 238.38 1.77 

  LowToHighFeeder only 239.00 2.39 

  HighToLowFeeder + 

LowToHighFeeder 

240.33 3.72 

 Net fight win HighToLowNetFightWin only 237.41 0.8 

  LowToHighNetFightWin only 239.00 2.39 

  HighToLowNetFightWin + 

LowToHighNetFightWin 

239.80 3.19 

 Total fight number HighToLowFightNumber 239.00 2.39 

  LowToHighFightNumber 237.67 1.06 

  HighToLowFightNumber +  

HighToLowFightNumber 

240.21 3.60 

 Past task solves Solves 238.15 1.54 

  NoSolves 239.00 2.39 

  Solves + NoSolves 239.93 3.32 

 Sex MaleToMale only 238.15 1.54 

  FemaleToFemale only 239.00 2.39 

  MaleToFemale only 237.99 1.38 

  FemaleToMale only 239.00 2.39 

  MaleToMale + FemaleToFemale 

(same-sex learning) 

240.55 3.94 

  MaleToMale + MaleToFemale 

(male-biased learning) 

240.52 3.91 

  MaleToMale + FemaleToMale  239.76 3.15 

  FemaleToFemale + MaleToFemale  240.24 3.63 

  FemaleToFemale + FemaleToMale 

(female-biased learning) 

241.54 4.93 
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  MaleToFemale + FemaleToMale 

(opposite-sex learning) 

239.64 3.03 

  MaleToMale + FemaleToFemale + 

MaleToFemale 

242.95 6.34 

  MaleToMale + FemaleToFemale + 

FemaleToMale 

242.47 5.86 

  FemaleToFemale + MaleToFemale 

+ FemaleToMale 

242.35 5.74 

  MaleToMale + FemaleToFemale + 

MaleToFemale + FemaleToMale 

245.20 8.59 
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Chapter 4 | Virtual Environments for Research into Social 

Evolution (VERSE): A novel experimental environment for the 

study of human social learning 

 

4.1. Abstract 

Social learning (learning from others) can be a cost-effective way of gaining information 

compared to asocial (independent) learning. However, learning from others indiscriminately can 

lead to the acquisition of maladaptive behaviours or outdated information. Evolutionary theory 

therefore predicts that individuals will use social information adaptively through the use of 

‘social learning strategies’. Restrictive laboratory conditions, however, make studying human 

learning strategies problematic. Abstract tasks, unrealistic sources of social information and 

methodologies that do not take into account the influence of physical location over large spaces 

make it difficult to ascertain if previous findings are representative of the way we would use 

social information in reality. Here I describe a novel platform for studying human social 

behaviour within immersive virtual environments: “Virtual Environments for Research into 

Social Evolution” (VERSE). Through the use of gaming technology, VERSE allows researchers to 

build realistic, three-dimensional, open world environments where participants can complete 

ecologically relevant tasks while actively observing computer-controlled artificial intelligence 

agents (AIs) that act as realistic yet controllable sources of social information. This 

methodological chapter begins by exploring what social learning strategies are and the problems 

with studying social learning behaviour in humans (compared to animal populations, for 

example). I then discuss how gaming technology can be used in behavioural research and follow 

on with a detailed account of the specific functionalities available in VERSE. I conclude with a 

worked example of how VERSE can be used to construct a novel behavioural experiment. 

Altogether, VERSE has great potential to give us insight into how human individuals learn within 

novel environments in a way that has never before been possible.  

 

4.2. Background 

Social learning (learning from others) occurs in many species and can be a highly cost-effective 

way of gaining information (Hoppitt and Laland, 2013), making it adaptive in many biological 
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contexts (Galef and Laland, 2005) over independent, or ‘asocial’, learning. There are many ways 

in which individuals can gain information from one another – from direct observation of an 

individual to interactions with the products of its behaviour – and many specific mechanisms of 

social learning – from ‘local enhancement’, where a demonstrator’s behaviour attracts an 

observer’s attention to a particular stimulus, to direct imitation of a specific behaviour or set of 

behaviours (Heyes, 1994). Research suggests that both animals and humans are also selective in 

the way they use social information, deploying ‘social learning strategies’ that dictate when, 

what and from whom they learn socially (Laland, 2004; Rendell et al., 2011). The use of such 

selective social information use is expected to be adaptive compared to copying individuals 

indiscriminately (Boyd and Richerson, 1988; Schlag, 1998; Rendell et al., 2010), as a constant 

lack of direct sampling from the environment can lead to the spread of maladaptive or outdated 

behaviours through the population (Laland and Williams, 1998; Rogers, 1988). Evidence suggests 

that both humans and non-human animals are capable of using social information adaptively 

and that there are similarities in the use of social learning strategies between different taxa.  

However, making direct comparisons between the way humans and animals use social 

information is difficult, not least because of the hugely different methodologies used to study 

humans versus non-human animals. In Chapter 1, I made the case for a lack of ecological validity 

in human social learning experiments. In summary, while animal experiments generally involve 

individuals learning ecologically relevant survival skills (e.g. foraging, predator avoidance) 

through the observations of informed demonstrators during either traditional ‘demonstrator-

observer’ experiments or larger scale, more naturalistic ‘open diffusion’ experiments, most 

human experiments are limited by highly abstract tasks that offer little in the way of behavioural 

flexibility, unrealistic sources of social information and extremely localised spatial scales. This 

makes it difficult to establish how we would use social information in real-world scenarios, as 

well as the importance of social learning for human survival in our evolutionary past. 

One largely unexploited methodology that may allow humans to be studied in more ‘natural’, 

spatially realistic conditions, and in a framework more comparable to field experiments on 

animals, is virtual reality (VR). Computer-based experiments, in general, offer a greater 

possibility of extending their reach to the general public, and hence a more diverse pool of 

participants, than lab-based experiments (Vicens et al., 2018). Relatively simple computer-based 

tasks have already proved useful in the field for the creation of novel tasks (e.g. Mesoudi 2008; 

Mesoudi and O’Brien, 2008; Morgan et al., 2012). Mesoudi and colleagues’ research in particular 

demonstrates how virtual tasks can be created that would represent real-life challenges in 

traditional human communities – in this case, designing virtual arrowheads to use in a virtual 
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hunting ground (Mesoudi 2008; Mesoudi and O’Brien, 2008). Such computer-based 

methodologies have even extended to the study of human cumulative culture – as in Miu and 

colleagues’ (2018) study of collaborative computer programming. Perhaps most importantly for 

the study of human behavioural ecology and social evolution, VR also gives us a unique 

opportunity to study human behaviour in survival situations that cannot be replicated under 

experimental conditions, e.g. the outbreak of a fire (Arias et al., 2018) or evacuation scenarios 

(Moussaïd et al., 2016).  

Large, open world, three-dimensional environments that participants can navigate freely have 

the potential to allow realistic social interactions between networks of individuals across 

realistic spatial scales, without the need to leave the lab. Massively multiplayer online role-

playing games (MMORPGs) such as World of Warcraft offer a particularly exciting opportunity 

to study real world social dynamics within VR. This potential was highlighted by a virtual ‘disease 

outbreak’ that plagued World of Warcraft in 2005 (Lofgren and Fefferman, 2007; Balicer, 2007). 

Due to the realistic movement patterns and social interactions of players, the disease was able 

to spread through the virtual population in a way analogous to real world disease dynamics. The 

virtual outbreak also gave insights into human behavioural responses to unexpected events – 

something that is notoriously difficult to model due to the complexity and unpredictability of 

human nature. MMORPGs could also act as experimental environments for studying the 

development of cultural norms across different ‘societies’ (Strimling and Frey, 2020). However, 

despite the immense potential of commercial multiplayer games for the study of human social 

evolution, these games are not purpose built for behavioural experiments. Ideally, social 

learning researchers could benefit from a VR platform built specifically to study human social 

behaviour within realistic, ecologically relevant environments. Developing complex, realistic 

virtual worlds for behavioural research is not a simple task and requires game coding expertise 

not readily available to most researchers – hence the full potential of VR for studying human 

social learning within realistic three-dimensional spaces has not been fully exploited. 

Here, I describe a novel tool specifically developed for the purpose of studying human social 

learning using virtual reality: “Virtual Environments for Research into Social Evolution” (VERSE). 

Developed using Unity3D game development technology, VERSE gives researchers the ability to 

create complex, immersive 3D environments containing ecologically relevant tasks and 

challenges, without the need for game coding knowledge. Within VERSE environments, 

participants take control of a virtual player to explore and learn within realistic 3D spaces. 

Computer-controlled artificial intelligence agents (AIs), programmed by the researcher to 

behave in a certain way, offer optional sources of social information. VERSE is designed with the 
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limitations of laboratory-based human social learning experiments in mind and offers a novel 

way for human behaviour to be studied in ‘wild’ environments. In particular, VERSE is designed 

to give participants the freedom to navigate 3D environments; allow tasks to span large spatial 

scales; provide more realistic sources of social information, in the sense that participants must 

actively observe an individual’s behaviour and decide how to use this information; allow humans 

to be studied in naturalistic environments and survival scenarios; expose participants to realistic, 

ecologically-relevant tasks that can optionally require cumulative behaviours to complete; and 

provide researchers with a flexible toolkit that can be used to create potentially infinite new 

environments, tasks and types of social information due to its modular design. VERSE, therefore, 

has great potential for human social learning research, allowing humans to be studied in a 

comparable framework to animal research, allowing the replication of animal studies using 

human subjects and giving us a glimpse into how our social behaviour may have aided us in our 

evolutionary past.  

What follows is a detailed account of VERSE, including the features already available in Unity3D 

that make it a suitable program for this type of research and features created specifically for 

VERSE to provide researchers with the ability to generate their own complex social learning 

environments. A detailed empirical experiment within VERSE can be found in Chapter 5. 

 

4.3. Unity3D in Behavioural Research 

Unity3D1 is one of a series of virtual reality packages that have been used to create realistic 

environments for use as educational tools (e.g. Houghton et al., 2015) and systems for studying 

human behaviour (e.g. Arias et al., 2018). Unity3D boasts a range of features that make it 

suitable for use within research projects on social evolution. Here, I outline some of these key 

features. Table 4.1 describes some of the main Unity3D terminology intended to aid the reading 

of this document.   

 

  

 

1 https://unity.com/ 

https://unity.com/
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Table 4.1. Descriptions of some of the Unity terminology referred to in this document. 

 

 

 

 

2 https://docs.unity3d.com/Manual/GameObjects.html  
3 https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html  
4 https://docs.unity3d.com/Manual/CreatingScenes.html  
5 https://docs.unity3d.com/ScriptReference/Camera.html  
6 https://docs.unity3d.com/ScriptReference/Collider.html  
7 https://docs.unity3d.com/Manual/class-Rigidbody.html  
8 https://docs.unity3d.com/2020.1/Documentation/Manual/UICanvas.html 
9 https://docs.unity3d.com/Manual/PublishingBuilds.html  

Feature Description 

GameObject2 Any object within the game, either a ‘physical’ object or an ‘empty’ 

placeholder. Can be set to ‘active’ or ‘inactive’. ‘Deactivating’ a GameObject 

makes it invisible and disables all functionality. ‘Activating’ an inactive 

GameObject makes it visible and enables all functionality. ‘Destroying’ a 

GameObject removes it from the environment entirely. 

Script3 A set of code (written in C# language), which is added to a GameObject to 

make it behave in a certain way. Multiple scripts can be added to a single 

GameObject. When attached to a GameObject, the script becomes a 

‘component’ of that object. 

Scene4 Essentially a game ‘level’, containing the environment and all the objects that 

will be present when the game is played. A single game can have multiple 

scenes. 

Camera5 An object that dictates the view of the scene during gameplay. 

Collider6 An invisible shape that defines the physical presence of a GameObject, 

allowing it to ‘collide’ with other GameObjects that also have colliders. 

GameObjects without colliders will not detect collisions and so will pass 

through other objects. 

Trigger6 A type of collider that does not behave as a solid object, but rather detects 

when another object (with a collider attached) passes through it.  

Rigidbody7 A component that allows a GameObject to be affected by physics forces, 

including gravity. 

AI ‘Artificial Intelligence’. A broad term used to describe an agent whose 

behaviour is controlled entirely by code. 

Canvas8 A 2D user interface (UI) component that is displayed over the top of the game 

screen. Can be used, for example, to display text or clickable 2D objects (such 

as buttons) to the user. 

Build9 The process of generating a game by compiling the scenes and scripts from 

the Unity interface into a playable application. The scenes to be included in 

the game should be specified in Unity’s ‘build settings’. 

https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/ScriptReference/Camera.html
https://docs.unity3d.com/ScriptReference/Collider.html
https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity3d.com/2020.1/Documentation/Manual/UICanvas.html
https://docs.unity3d.com/Manual/PublishingBuilds.html
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4.3.1.  Flexible coding, ScriptableObjects and inheritance  

Unity3D uses C# game coding which offers a high level of flexibility for the creation of tasks and 

character behaviours. Each section of code is contained within a script and so can be attached 

to different GameObjects in different combinations, thus allowing scripts to act as ‘building 

blocks’ for more complex character behaviour and task functionalities. Data containers called 

‘ScriptableObjects’ can also be used to store particular properties within the Unity interface, 

allowing them to be shared between different scripts or objects during gameplay10. 

ScriptableObjects are notably used within VERSE for applying modifications to ‘interactable 

objects’ (section 4.4.3) and creating ‘weather conditions’ within the environment (section 

4.4.7.1). In addition, Unity’s ‘inheritance’ system11 is particularly useful for creating ‘parent’ 

scripts which contain a number of functions and properties that are shared with (or ‘inherited’ 

by) any number of ‘child’ scripts. Thus, one can easily create multiple scripts of a particular type 

with shared functionality without having to repeat blocks of code. For example, inheritance is 

used within VERSE to create ‘interactable objects’ of various different types (section 4.4.3). 

 

4.3.2. The Asset Store 

Unity3D’s Asset Store12 allows game developers to obtain additional features for their games, 

such as 3D models or specialised scripts. VERSE uses one feature from the Asset Store, a third-

person character controller (see below), that was modified for purpose and is included within 

the VERSE system. VERSE is an inclusive package, containing all the features and coding required 

for researchers to generate their own social learning environments, and so the Asset Store is not 

essential for its use. However, researchers can benefit from the Asset Store, for example, if they 

wish to obtain 3D models to use in tasks or as other features within the environment.  

 

4.3.3. Environment creation  

Creating VERSE in Unity means that researchers can take advantage of Unity3D’s built-in terrain 

tool13, which is particularly helpful if a researcher is wishing to conduct (or replicate) a study 

 

10 https://docs.unity3d.com/Manual/class-ScriptableObject.html  
11 https://learn.unity.com/tutorial/inheritance 
12 https://assetstore.unity.com  
13 https://docs.unity3d.com/2017.4/Documentation/Manual/script-Terrain.html  

https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://learn.unity.com/tutorial/inheritance
https://assetstore.unity.com/
https://docs.unity3d.com/2017.4/Documentation/Manual/script-Terrain.html
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within a naturalistic environment. The terrain tool allows the easy creation of realistic 

environments with varied topology and allows the rapid addition of trees, vegetation and 

surface textures (Figure 4.1). This tool can also be used to convert real Ordnance Survey 2D map 

data to 3D virtual terrains (Robinson et al., 2015). Terrains can potentially be any size – the 

creation of large terrains being of particular use if a researcher wishes to allow their participants 

to have free movement over large scales. Hunter-gatherer processes, for example, occur over 

kilometre scales (90km2 to 730,000km2 according to Hamilton et al., 2007). Such scales are not 

possible in conventional lab experiments, but become relatively easy to achieve, subject to 

computational demands, in virtual reality. Terrains can also be generated that vary in their 

complexity, allowing hypotheses concerning the effect of environmental complexity on social 

information use to be investigated. Such hypotheses have been tested in animals – for example, 

Webster et al. (2013) demonstrated that threespine sticklebacks (Gasterosteus aculeatus) were 

more likely to use social information in structured environments – but current methodologies 

make comparative studies on humans difficult. 

 

 

Figure 4.1. Example of a realistic, large-scale environment created using the terrain tool within Unity3D. 

 

4.3.4. Physics 

Unity’s physics system14 allows entities within the game to respond realistically to forces such 

as gravity and collisions with other objects. This is achieved by the simple addition of a Rigidbody 

 

14 https://docs.unity3d.com/Manual/PhysicsSection.html  

https://docs.unity3d.com/Manual/PhysicsSection.html
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component15 which can be used to alter aspects such as the object’s mass or the drag applied 

during movement. This is one way in which Unity can aid researchers to move away from 

abstract tasks and towards more immersive environments which better represent reality. 

 

4.3.5. Navigation and pathfinding 

Unity’s navigation system16 allows the user to create agents that can intelligently find their way 

around an environment using ‘navigation meshes’ that are automatically generated from the 

environment’s geometry. When moving to a particular destination, agents will move over the 

geometry of the environment, using the shortest or most efficient path and avoiding obstacles, 

including each other. VERSE makes extensive use of Unity’s navigation system in programming 

artificial intelligence agents (AIs) which act as sources of social information. Unity’s navigation 

system makes AI movement much easier for researchers to achieve than, for example, hard-

wiring agents with a highly specific path. This also adds more realism, randomness and inter-

individual variability to AI movement by allowing them to, within the constraints of the specified 

parameters, find their own path to their target location. VERSE can also extract the 3D location 

information of individuals at runtime, including the exact paths taken by AIs (see ‘Tracking values 

and logging data’, section 4.4.6, below). 

 

4.3.6. Visual effects 

Unity comes with a variety of visual effects that can add an extra dimension to the environment 

by increasing the level of realism. Examples that VERSE explicitly makes use of are lights17 and 

particle systems18. Lights are glowing effects that illuminate the surrounding objects, while 

particle systems are used to emit a number of small meshes to produce a visual effect (e.g. fire, 

smoke, water splashes) according to the properties inputted by the user. 

  

 

15 https://docs.unity3d.com/Manual/class-Rigidbody.html  
16 https://docs.unity3d.com/Manual/Navigation.html  
17 https://docs.unity3d.com/Manual/Lighting.html  
18 https://docs.unity3d.com/Manual/ParticleSystems.html  

https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity3d.com/Manual/Navigation.html
https://docs.unity3d.com/Manual/Lighting.html
https://docs.unity3d.com/Manual/ParticleSystems.html
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4.3.7. Building an application with multiple scenes 

Unity allows the user to build a game or application with multiple levels or scenes. For the 

purpose of human behavioural research, this can be a useful way of organising several replicates 

into a single application, so a participant can take part in all replicates one after the other 

without the researcher having to generate many different builds. 

 

4.4. “Virtual Environments for Research into Social Evolution” (VERSE) 

The remainder of this chapter describes how I brought together these elements of Unity3D 

functionality to produce a custom tool for research. VERSE is a research tool, created using 

Unity3D (version 2017.4.23f1), designed to allow researchers to create their own realistic virtual 

environments for studying human social learning. VERSE is designed to be flexible, providing 

researchers with many different ‘building blocks’ that can be used to create tasks of different 

types, generate AIs with particular behaviours and allow environmental fluctuations. VERSE is 

also designed to give participants free movement over potentially large-scale environments, 

allowing experiments comparable to those involving wild animal populations or human hunter-

gatherer communities to be produced. VERSE has been developed in a way that makes it widely 

available to all researchers, avoiding the use of costly equipment such as VR headsets and 

providing all the code necessary to build social learning environments without the need for game 

coding knowledge. While VERSE was specifically created with the study of human social learning 

in mind, it could feasibly be expanded to study other subjects, such as epidemiology or other 

aspects of human behaviour. VERSE can be accessed at the following figshare repository: 

https://figshare.com/s/c97c305736c9a3d1c8b9 (Easter, 2022) and requires Unity to open.  

VERSE uses a combination of the standard Unity3D features, as described above, and a catalogue 

of specialised scripts coded specifically for the tool. Using VERSE will therefore require some 

basic knowledge of the Unity interface, but largely involves altering the properties of pre-

created objects and so does not require any coding knowledge unless the researcher wishes to 

make substantial changes. What follows is an account of the novel features and their associated 

scripts coded specifically for VERSE (summarised in Figure 4.2). Script names are given in italics, 

VERSE-specific GameObjects are given in courier font and computer keys are highlighted in 

bold. A basic account of the function of each script is given in the main text. For researchers 

wishing to use VERSE, a detailed instruction manual / tutorial can also be found in the figshare 

repository.  
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Figure 4.2. Schematic showing the main features of VERSE and the various scripts that control them. Script 

names are shown in italics and their descriptions and functioning can be found in the main body of the 

manuscript.  

 

4.4.1.  Characters  

VERSE uses a third person character controller asset from the Unity Asset Store19, which is 

modified to produce two different types of character – the player (which is controlled by the 

participant) and Artificial Intelligence agents (AIs; controlled by the game code and 

programmable by the researcher). The player and AIs share the same general appearance 

and animations. Some of the animations were in-built features of the third person character 

controller asset19, including walking, running, jumping and idle animations. Other animations 

were created specifically for use in VERSE, including interacting and crouching animations. Both 

character types have a ‘collider’, which gives them a physical presence and stops them being 

able to walk through solid objects, and a ‘trigger’, which allows them to register when other 

objects are nearby (Table 4.1). The player, AIs and the scripts that can be applied to each of 

them are described in more detail below. 

 

19 https://assetstore.unity.com/packages/templates/systems/3rd-person-controller-fly-mode-28647  

https://assetstore.unity.com/packages/templates/systems/3rd-person-controller-fly-mode-28647
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4.4.2.  The Player 

The player is the virtual human that a participant takes control of using the computer keys and 

is followed by a camera. The player is capable of various behaviours and can be affected by 

various elements of the game, according to the needs of the researcher. The scripts relating to 

player movement and behaviour are detailed below. Note that all computer keys described 

below are default options and can be changed via the Unity settings (e.g. to improve 

accessibility).  

 

4.4.2.1. BasicBehaviour and MoveBehaviour  

Two scripts that work in conjunction to allow a participant to control the player using the 

computer keys. These scripts are slightly modified versions of those available in the third-person 

character controller19. Default player controls are given in Table 4.2. Movement, sprinting and 

jumping behaviours were all taken from the original code. Crouching behaviour is a VERSE 

addition – its only function is to serve as an additional behaviour that can be required to 

complete certain tasks (see ‘Interactables’, section 4.4.3, below). The options within the Unity 

interface allow the researcher to alter aspects of player movement, such as walk, run and 

sprint speed. An additional option allows the researcher to disable jumping, as this may be 

unnecessary or undesirable in certain studies.  

 

Table 4.2. Default player controls according to the BasicBehaviour and MoveBehaviour scripts and Unity 

settings. 

Player control Description Computer key (default) 

Movement  Player moves along Unity’s (x,z) plane, which 

changes from walking to running depending 

on how long the key is held down. 

Arrow keys  

(←,↑,→,↓)  

Sprint Speeds up movement. Left Shift 

Crouch Player crouches down. Left Ctrl 

Jump Player jumps. Distance is further if walking 

or running at the time. 

Spacebar 
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4.4.2.2. CameraControl 

Script that is placed on a camera to allow camera rotation. The camera itself must be positioned 

correctly and connected to the player via Unity’s hierarchy system to allow player movement 

to be tracked by the camera (see instruction manual in the figshare repository for more 

information). The camera can be rotated left and right using the A and D keys, and rotated up 

and down using the W and S keys. The researcher can alter the vertical and horizontal rotation 

speeds within the Unity interface. In addition, depending on the task in question, the vertical 

rotation may be unnecessary or distracting in some studies and so can be switched off 

completely. 

 

4.4.2.3. PlayerInteraction 

Script that allows the player to interact with specific ‘interactable’ objects (see ‘Interactables’ 

below). By default, this involves the player approaching the object and pressing the ‘Interact’ 

button (default: ? key, modifiable in the Unity settings), however alternative requirements can 

be programmed for each individual interactable object, as discussed below.  

 

4.4.2.4. PlayerHealth 

Stores a numeric value representing the player’s current health and displays this as a health 

bar onscreen, which updates during gameplay. This script contains functions to add or remove 

health from the player which can be called on by interactable objects. This script also logs 

when the player’s health reaches zero, which can be used to end the level or game 

prematurely (see Manager_Scene, section 4.4.7.7, below). Adding a health component to the 

player can be useful for assessing how humans learn behaviours based on their consequences. 

One way in which a player’s health can be affected is by collecting Food interactables 

(see Interactable_Food in the ‘Interactables’ section below, section 4.4.3.3.4) – poisonous Food 

that depletes health and/or nutritious Food that increases health by different amounts can be 

created and used to study human learning about food preferences. Thus, VERSE allows the 

possibility of creating tasks with clear evolutionary significance, comparable to foraging tasks 

used in animal studies. 
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4.4.2.5. PlayerEnergy 

Stores a numeric value representing the player’s current energy level and displays this as a bar 

onscreen, which updates during gameplay. Whenever the player moves (i.e. whenever the 

participant presses down any of the movement keys), the player’s energy depletes at a 

specified rate. When running (i.e. if the participant holds down the Shift key while moving), the 

energy depletion rate is multiplied by a specified ‘sprint multiplier’. The researcher can also 

specify how much energy should be used while jumping. Energy recovery can also be enabled – 

meaning that the player’s energy value will increase by a specified rate up to a specified 

maximum whenever the player is not moving, thus giving participants the option of ‘resting’ 

when their energy is low. The researcher can also specify whether energy depletion should be 

linked to player health. If player energy is linked to player health, once the player’s energy 

reaches zero, the player’s health starts to deplete at a specified rate. Adding an energy 

component is useful in tasks that require a participant to make energetically efficient choices, 

such as the route choice tasks, mazes or foraging tasks used in some animal studies (e.g. Laland 

and William, 1998). Allowing energy depletion to have an effect on health can further reinforce 

the choices that participants make. 

 

4.4.2.6. PlayerTemperature 

Stores a numeric value representing the player’s current temperature, which is displayed as a 

temperature gage onscreen. The researcher can specify the values for the player’s ideal body 

temperature and for minimum and maximum possible temperatures, as well as the visual 

properties of the temperature bar. By default, the player’s body temperature is set to 37 and 

the minimum and maximum temperatures are set to 35 and 39, representing the temperatures 

that lead to hypothermia and hyperthermia in humans, but this can be changed according to the 

researcher’s requirements. As discussed below, the temperature of the player can be 

programmed to fluctuate in different ways according to different weather conditions, which 

can optionally be detrimental to health. 

 

4.4.2.7. PlayerWeatherResponse 

Determines how the player reacts to changes in the ‘weather’ (see Manager_Weather, section 

4.4.7.1, below). Weather can affect the player in the following ways: (i) raise/lower 
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temperature at a specified rate; (ii) raise/lower health at a specified rate; or (iii) raise/lower 

temperature to a specified maximum/minimum (according to the PlayerTemperature script, see 

above), beyond which health begins to deplete at a specified rate. These effects only occur when 

the specified weather condition is currently active. Once the weather condition has 

deactivated, or if the player moves into a weather shelter (see Manager_Weather below), 

the player’s temperature gradually returns to the ideal body temperature. However, any 

health effects incurred by the weather condition remain even after the weather 

condition has been deactivated.  

 

4.4.3.  Interactables 

This section refers to objects that can be interacted with in various ways by either the player 

or AIs with interaction capabilities enabled. To interact with an interactable, a character 

(the player or an AI) must approach it and meet a specified set of requirements for a successful 

interaction to occur. Each interactable is surrounded by a trigger6 which senses when an 

object moves through it (Table 4.1). The size of this trigger determines how close a character 

needs to be to the interactable in order to attempt an interaction (this will henceforth be 

referred to as the interactable’s ‘trigger area’). Interactables can also be ‘modified’ to 

affect their appearance and functionality (through the use of the ModifiableObject script; 

section 4.4.3.2), which provides VERSE with further flexibility for constructing novel tasks. Unless 

otherwise specified by the researcher, all interactables are coded to behave in the same 

way towards any character, whether it is a player or AI. This ensures that social information 

is realistic – i.e. a participant can observe an AI performing a particular set of behaviours and 

imitate these behaviours to achieve the same result. What follows are descriptions of all 

interactable-related scripts within VERSE. 

 

4.4.3.1. InteractableProperties 

This script is automatically added to a GameObject when any one of the Interactable scripts 

(below) is attached, and holds information about the interactable in question, including its 

‘item type’. This script also determines the fate of an interactable object once it has been 

destroyed (i.e. removed from the environment); which can occur in a number of circumstances, 

including if it is a Breakable interactable that has been broken or a Holdable 

interactable that has been deposited into a Container (see below). After an 
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interactable object is destroyed, it can either be removed from the environment entirely or 

regenerated, either in its current position or in its original position, after a specified number of 

seconds. Having an interactable regenerate once it has been destroyed may be useful if, for 

example, the researcher wishes the participant to complete the same task multiple times in 

succession without creating multiple versions or replicates. This can be likened to situations in 

animal social learning research where the researcher routinely adds an object to the subject’s 

environment during the study period (e.g. Horner et al., 2010). Regeneration can also be synced 

with that other interactables (i.e. this object will only regenerate when a set of specified 

interactables are also regenerated), which is useful if a researcher wishes to add a set of 

interactables back into the environment only when they have all been removed. 

 

4.4.3.2. ModifiableObject 

This script allows an interactable to be modified by the addition of a ‘modification’ 

(interactables with the ability to be modified in this way will henceforth be referred to as 

Modifiable Objects). Modifications can alter the interactable’s appearance and 

influence how it interacts with other interactables (via their ‘required items’, as discussed 

in the description of Interactable, below). For each Modifiable Object, the researcher 

specifies a list of ‘possible modifications’ that can be applied and how each of these should affect 

the interactable. Each modification can alter the appearance by the addition of extra 

object(s) or by switching the material (colour/texture) of the object. A researcher can create any 

number of novel modifications using a VERSE-specific menu in the Unity interface and have 

these modifications affect different Modifiable Objects in different ways. 

Modifications are stored as ScriptableObjects10, allowing them to be easily added to the 

ModifiableObject component of an object within the Unity interface. Modifications can also 

be added to a Modifiable Object during gameplay via interaction with an appropriate 

Modifier interactable (see Interactable_Modifier, section 4.4.3.3.3, below) making it 

possible to allow learning of cumulative behaviours within VERSE. An example of a Modifiable 

Object may include a ‘stick’ that can be modified using a ‘burning’ modification by the 

addition of a ‘flame’ at the end and a change in functionality.  
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4.4.3.3. Interactable (parent script)  

This script acts as a base (or ‘parent’) script for all interactables and dictates several 

properties and functions that are inherited by all the ‘child’ scripts listed below (and summarised 

in Table 4.3). For each interactable object, a particular set of conditions can be specified that 

must be fulfilled during an attempted interaction for that interaction to be successful. Firstly, 

the researcher can specify a set of ‘required keys’ that must be pressed when the player is 

within the interactable’s trigger area to attempt an interaction (by default, this is the 

‘Interact’ key: ?) and, secondly, a set of ‘required items’ that must be held by the player or AI 

during an attempted interaction for that interaction to be successful (e.g. a stick may be required 

to reach a high-up object). Each required item can either be a specific interactable object 

within the scene or can be a general item type, as identified by the ‘item type’ in an 

interactable’s InteractableProperties script (see above). For example, there are a group of 

‘keys’ (all with the item type ‘key’) located in the environment which the player can pick up 

and use to attempt to open a ‘chest’. If the chest has a specific key object set as a required item, 

the player must pick up and use that specific key for the interaction to be successful. On the 

other hand, if the required item has a general item type of ‘key’, which matches the item type 

of all the keys in the environment, any one of those keys could be used to successfully open the 

chest. In addition, for each required item, the researcher can also specify a particular 

modification (see ModifiableObject, above) that must be applied for the condition to be met 

(e.g. a ‘stick’ must have the ‘burning’ modification to allow an interaction with a ‘flammable’ 

interactable). For interactables that are intended for AI use only, player interaction 

can be completely disabled.  

The Interactable parent script contains functions that check whether all interaction conditions 

have been met and, if so, initiates a successful interaction. The response to a successful 

interaction depends on the type of interactable concerned, as explained below. What 

follows are the various types of interactables available in VERSE (summarised in Table 4.3). 

Each interactable type is a ‘child’ of the Interactable ‘parent’ script. When one of the 

following Interactable child scripts is added to an object, that object becomes an 

interactable of a specified type, ‘inheriting’ the properties and functions detailed above, 

while also containing their own individual functionality. Each type of interactable responds 

to a successful interaction in a different way and this response is dictated by its own properties, 

as specified by the researcher.  
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Table 4.3: Summary of the different types of interactable available in VERSE, how they respond to a 

successful interaction, and an example of use.  

Interactable 

type 

Response to successful 

interaction  

Optional responses  Example of use 

Breakable Object breaks and disappears.  Any number of ‘held items’ can 

be released from the object 

after it has been broken. 

Breakable ‘fruit’ that 

releases ‘seeds’. 

Holdable Object is picked up and held by 

the player or an AI.  

n/a A ‘stick’ that can be 

picked up by the player. 

Modifier Applies a specified 

‘modification’ to a compatible 

Modifiable Object currently in 

the character’s hand. 

Modification can be either 

added to or removed from the 

Modifiable Object. 

A ‘fire’ modifier that can 

change a held ‘stick’ into 

a flaming ‘torch’ by the 

addition of a ‘burning’ 

modification. 

Food Object is ‘eaten’ by the player, 

affecting their health. 

Disappears after interaction. 

Different food objects can 

increase or decrease player 

health by different amounts. 

This can occur instantaneously 

or after a delay. 

A ‘poisonous seed’ 

released by a breakable 

‘fruit’ that lowers player 

health on interaction. 

Reactable A visual reaction is switched on. Reaction can be a light or a 

release of ‘particles’. Can switch 

on and off upon successive 

interactions, or alternatively 

switch on only once.  

A ‘fire’ that releases 

sparks when interacted 

with.  

Connected A connected object is affected. 

Possible effect on connected 

object: GameObject is 

‘activated’; physics is enabled 

on object; interactable object is 

interacted with.  

Connected object can be 

affected just once or multiple 

times.  

Interaction with a ‘tree’ 

applies gravity to a 

separate ‘fruit’ object, 

causing it to fall to the 

ground. 

Container Holdable interactable currently 

in the character’s hand is 

deposited into the Container, 

provided it is one of the 

Container’s ‘accepted objects’. 

Can double up as a ‘reward 

dispenser’ that gives out 

reward(s) on deposition of a 

correct object. AI rewards can 

be disabled. 

A ‘vending machine’ 

that gives out a ‘food’ 

reward on deposition of 

a ‘coin’. 

Health 

Effect 

Adds or removes health when 

the player interacts. 

Can be instantaneous or after a 

specified delay. 

A poisonous ‘flower’ 

that lowers health that 

the player should learn 

to avoid. 

 

4.4.3.3.1. Interactable_Breakable (child script, inherits from Interactable) 

An interactable that breaks open after a successful interaction. The interactable is 

destroyed and replaced with a ‘broken parts’ GameObject that acts as a visual representation of 

the broken object. These broken parts can either remain indefinitely or disappear after a 
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specified number of seconds. One element of social learning is the influence of the products of 

a demonstrator’s behaviour on observer behaviour (Heyes, 1994). Having the broken parts of a 

Breakable object remain may therefore be useful if the researcher wishes to explore this type 

of social learning (e.g. does finding the broken remains of a ‘fruit’ encourage participants to try 

breaking the same type of fruit open themselves?). However, if a large number of Breakable 

objects are to be present in the scene and the influence of their broken remains are not a focus 

of the research in question, their removal is recommended to keep computational costs down. 

A Breakable interactable can optionally contain a number of ‘held objects’ which are 

released once the interactable has been broken. Examples may include a ‘fruit’ that breaks 

open when interacted with to release a number of ‘seeds’, or a ‘barrel’ that breaks open to 

release a number of collectable ‘coins’. 

 

4.4.3.3.2. Interactable_Holdable (child script, inherits from Interactable) 

An interactable that can be picked up and carried by a character (player or AI). Each 

character can hold a maximum of two items (one in each hand) at any given time and can 

therefore only successfully interact with a Holdable interactable if at least one of its hands 

is free. Objects held by the player can be released from the left or right hand by pressing the [ 

or ] key, respectively. AIs can be programmed to release Holdable interactables according 

to certain conditions (see AI_ItemInteractionController, section 4.4.5.6.1, below). Holdable 

interactables are especially useful because they can be specified as ‘required items’ for 

interacting with other interactables (see above).  An example may be a ‘stick’ that can be 

picked up by the player or AI and used to interact with other objects. 

 

4.4.3.3.3. Interactable_Modifier (child script, inherits from Interactable) 

An interactable that applies a specified modification to a Modifiable Object (see 

above). The researcher specifies the modification to apply and whether it should be added 

to or removed from the Modifiable Object. The Modifier can only modify compatible 

objects (i.e. a Modifiable Object with the same modification listed in its set of ‘possible 

modifications’). An example may be a ‘fire’ that, when interacted with by a character holding a 

compatible ‘stick’ object, modifies that stick by adding a ‘burning’ modification, which turns 

the stick into a flaming ‘torch’. 
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4.4.3.3.4. Interactable_Food (child script, inherits from Interactable) 

An interactable that can be ‘eaten’ (or collected) by the player or AI. Each Food item has 

a ‘nutrition value’, a ‘nutrition delay’ and a ‘food type’ specified by the researcher. Upon 

successful interaction, the Food object disappears and is considered eaten or collected by the 

character interacting with it. When a player with a PlayerHealth script attached eats a Food 

item, it can optionally affect the player’s health, adding the nutrition value to the player’s 

current health value after a delay equivalent to the nutrition delay. This effect on health can be 

either positive or adverse, allowing researchers to create foraging tasks comparable to studies 

on animals and hunter-gatherer communities, e.g. learning to avoid poisonous foods (Galef, 

2009; Henrich and Henrich, 2010). By including a nutrition delay, one can assess how social 

information use is impacted by the time taken to process information about payoffs (e.g. in 

reality, the effects of eating a toxic or inedible food item would not necessarily be instantaneous) 

or by the unpredictability of rewards gained by using a particular behaviour (c.f. Caldwell and 

Eve, 2014). The nutrition value and food type variables are also used by AIs when making 

decisions on what Food items to eat (see AI_FoodInteraction, section 4.4.5.7, below), thus 

allowing specific social information to be conveyed to participants. An example of a Food 

interactable may be an edible ‘seed’ released from a Breakable ‘fruit’ interactable, 

which increases the player’s health when eaten. Food rewards are often given to animals 

completing tasks in social learning studies and the addition of Food interactables in VERSE 

offer a comparable way of rewarding human participants – although note that the 

Interactable_Food script could also be used to create collectable, non-food items (e.g. 

collectable coins). Additional functionality relating to Food interactables, such as logs that 

keep track of the number of Food interactables collected (see FoodCounter, section 4.4.6.2, 

below), are also available in VERSE to aid data collection and allow participants to see how well 

they are doing in a task.  

 

4.4.3.3.5. Interactable_Reaction (child script, inherits from Interactable) 

An interactable that reacts to successful interactions with a visual display. This display can 

involve a light17 and/or particle system18. Successful interactions can either switch the display 

on and off (which may be more appropriate for a light or a looping particle system), or only 

switch it on (which may be more appropriate for a non-looping particle system that switches off 
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itself after a certain amount of time). This type of interactable is entirely visual. It could be 

used to draw a participant’s attention to a particular area or simply to visually enrich the 

environment. The use of a light display could also be used to illuminate a dark area as part of a 

task. An example of this type of interactable may be a ‘campfire’ that is lit (by switching on 

a particle system designed to look like fire) after a character interacts with it while holding a 

burning stick. 

 

4.4.3.3.6. Interactable_Connected (child script, inherits from Interactable) 

An interactable that affects a connected object upon successful interaction. The connected 

object can be affected in one of three ways: (i) the connected GameObject is ‘activated’, 

meaning it becomes visible if it isn’t already and all its components and behaviours are 

enabled20; (ii) the connected object’s Rigidbody component7 is enabled, allowing it to respond 

to physics forces including gravity; or (iii) the connected object, provided it is a VERSE 

interactable, is interacted with as though the player is interacting with it directly, but 

bypassing its usual conditions for interaction such as required keys or close proximity to the 

object. The researcher can additionally specify whether the effect on the connected object can 

occur multiple times or whether it should happen only once. Examples of where Connected 

interactables could be used include a ‘tree’ that, when interacted with, causes a connected 

‘fruit’ object hidden in the canopy to drop by enabling gravity; or a ‘button’ that breaks open a 

connected Breakable interactable that would normally require a required item to be held 

upon interaction, thus offering an alternative, perhaps faster, way of completing the task. 

 

4.4.3.3.7. Interactable_Container (child script, inherits from Interactable) 

An interactable into which Holdable interactables can be deposited. A list of ‘accepted 

objects’ can be specified. Only if a character is holding an accepted object while interacting with 

the Container will a successful interaction occur. A successful interaction causes the 

Holdable interactable currently in the character’s hand to be deposited into the 

Container and subsequently destroyed from the game scene entirely (the fate of the 

Holdable interactable after this is then determined by its InteractableProperties, as 

 

20 https://docs.unity3d.com/ScriptReference/GameObject.SetActive.html 

https://docs.unity3d.com/ScriptReference/GameObject.SetActive.html
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discussed in section 4.4.3.1, above). The researcher can optionally program a Container to 

give out a reward upon deposition of an accepted object. This requires the addition of an extra 

script, RewardDispenser, which contains a ‘DispenseRewards’ function that 

Interactable_Container can call on during a successful interaction:  

 

4.4.3.3.7.1. RewardDispenser 

This script allows the researcher to specify a list of ‘possible rewards’ – where each possible 

reward consists of a GameObject and quantity – and a ‘reward location’. It contains the function 

‘DispenseRewards’, which chooses one of the possible rewards at random and generates the 

chosen reward object in the specified quantity at the specified reward location. The 

‘DispenseRewards’ function is called on by the Interactable_Container script during a successful 

interaction, provided the Container has been set to give out rewards. A reward may, for 

example, consist of a number of Food interactables that can then be collected by the 

player. In some cases, it may be useful to have ‘dynamic’ reward dispensers, where the 

possible rewards swap and change between ‘rounds’. For example, a researcher may give a 

participant the task of choosing between multiple reward dispensers over a number of 

rounds and may wish to investigate how social information is being used during this task. If the 

location of the best reward was always fixed to a particular reward dispenser, it would be 

difficult to determine whether the participant was using social information or simply learning 

which reward dispenser was more profitable. To disentangle these effects, the 

Manager_RewardDistributer can be used to randomly swap the possible rewards between a set 

of specified reward dispensers (see Manager_RewardDistributer, section 4.4.7.2, below).  

 

4.4.3.3.8. Interactable_HealthEffect (child script, inherits from Interactable) 

An interactable that increases or reduces the player’s health by a specified amount after 

a specified delay upon successful interaction by the player. A Health Effect 

interactable could be used, for example, to investigate avoidance behaviour – e.g. an 

environment could feature ‘toxic’ plants or animals that reduce the player’s health when 

interacted with and that the participant must learn to avoid. Alternatively, Health Effect 

interactables that increase player health could be used to explore hypotheses concerning 

how humans use social information about medicinal plants, as in Henrich and Broesch’s (2011) 

field study on Fijian village populations.  
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Interactables example 

To illustrate how interactable scripts work together to allow complex tasks to be created, 

consider the following example: A participant is located in an environment and given a task 

to open a small wooden barrel using only the tools available. Those tools include a stick and 

a campfire. The participant is required to learn the following behaviours in order: pick up 

the stick, use the campfire to light the stick, and use the burning stick to destroy the barrel 

(as illustrated in Figure 4.3). In VERSE, this is possible using the extensive ‘interactables’ 

system. The stick, campfire and box are all different types of interactable, each 

containing scripts derived from the Interactable parent script and each requiring particular 

conditions for a successful interaction to occur. The stick is a Holdable interactable, 

containing the Interactable_Holdable script, with ‘Interact’ and ‘Crouch’ as required keys 

and no required items. This means that, if the player approaches the stick and presses the 

‘Crouch’ and ‘Interact’ keys, they will pick the stick up. The stick is also a Modifiable 

Object with one possible modification: ‘burning’, which alters the stick’s appearance 

by the addition of a ‘flame’ at the top. The campfire is a Modifier, containing the 

Interactable_Modifier script. It has ‘Interact’ as a required key and has no required items. It 

is capable of adding the ‘burning’ modification to any compatible Modifiable 

Object. In this case, this means that, if the player approaches the campfire and presses 

the ‘Interact’ key while holding the stick in hand, because the stick is a compatible 

Modifiable Object, the ‘burning’ modification will be added to it. The barrel is a 

Breakable interactable, containing the Interactable_Breakable script. It has ‘Interact’ 

as a required key and has the stick with the ‘burning’ modification as a required item. 

This means that the player must be holding the modified stick interactable for a 

successful interaction to take place and so must have completed the aforementioned 

behaviours in the correct order to break open the barrel. This example illustrates how 

different types of interactable, derived from the same parent script, can be used to 

assess cumulative learning through the use of the interaction conditions and object 

modifications available in VERSE.  
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Figure 4.3. An example of how interactables work within VERSE. In this example, the participant is 

required to pick up the ‘stick’ (a Holdable interactable) and modify it with the ‘burning’ 

modification using the ‘campfire’ (a Modifier interactable) in order to break open the ‘barrel’ (a 

Breakable interactable) to receive a reward. Attempting to interact with the barrel while holding 

the unmodified stick results in an unsuccessful interaction. The participant therefore needs to use the 

correct behaviours in the correct order to complete the task. 

 

4.4.4.  Creating food patches 

In VERSE, it is possible to create any number of food patches within the environment, which 

the player is required to find and exploit – thus allowing researchers to assess human foraging 

behaviour over large, complex envrionments. Food patch creation can be done simply by 

creating a number of Food objects and distributing manually around the environment. 

Alternatively, a researcher may wish to have Food items that are generated during gameplay 

and/or that regenerate after being ‘eaten’ (examples may include seasonal or temporal food 

supplies). This can be done using the FoodSpawner script.  
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4.4.4.1. FoodSpawner 

Spawns a specified number of a specified Food item at a specified ‘spawn location’. This occurs 

on a timer, with each spawn occurring after a specified time. Each individual Food item is 

spawned in a random position within a specified radius from the spawn location. The 

FoodSpawner can be programmed to spawn the Food items instantly at the beginning gameplay 

or wait until after the spawn time is reached before the first spawn occurs. It can also be 

programmed to reset its timer the instant it has spawned its last lot of Food items or, 

alternatively, wait until all the Food it previously spawned has become depleted before the 

timer is reset. The researcher can also limit the total number of Food items that can be spawned 

to a specified maximum. A number of FoodSpawners, each with their own specified Food items, 

can be added to the environment, or even to the exact same area to produce a patch of mixed 

Food items. It is worth noting that FoodSpawners can be programmed to spawn any object in 

this manner, not just Food items, and so can be repurposed for any task which requires objects 

to be generated on a timer during gameplay. 

 

4.4.5.  Artificial Intelligence agents (AIs) 

In VERSE, social information about a task is conveyed in the form of Artificial Intelligence agents 

(AIs) with programmable behaviours. These AIs are designed to offer realistic sources of social 

information often not possible in lab-based or simple computer-based experiments by allowing 

participants to observe human figures moving around the environment and actively performing 

tasks, while also offering the researcher control over demonstrator behaviour and the social 

information being conveyed. A number of scripts are available in VERSE which control different 

aspects of AI behaviour, which can be added to each AI in different combinations depending 

on the behaviours that are appropriate for the given environment or task (e.g. for some 

environments, the researcher may only require movement-based behaviours, while others may 

require more complex behaviours).  

 

4.4.5.1. AI_Controller 

This script is automatically added to a GameObject with any other AI-related script attached. Its 

purpose is to store a number of functions that offer overarching control over the AI and its 

behaviour and that can be called on by other AI scripts where appropriate. Functions include 
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enabling and disabling AI scripts, pausing and unpausing AI behaviours and altering the 

parameters or properties of AI behaviours. The AI_Controller is especially important for 

ensuring that different AI behaviours do not interfere with one another.  

 

4.4.5.2. AI_Movement 

A script containing functions used to instruct an AI to move to a specified destination at a 

particular walking speed, while updating character animation accordingly. The researcher can 

optionally specify whether an AI should move at an increased speed if they are moving further 

than a specified distance, which is a useful way of maintaining realistic movement speeds when 

AI behaviours span various distances. The functions in AI_Movement are called on by any AI 

scripts that require the AI to walk to a particular location. 

 

4.4.5.3. AI_RandomWalk 

Programs an AI to move around according to a random walk that is controlled by several 

parameters inputted by the researcher. The researcher can also specify a set of ‘attractive areas’ 

– locations that are favoured in the random walk procedure over choosing a completely random 

point to walk to. For each attractive area specified by the researcher, the AI is given a ‘level of 

attraction’ which determines the probability that the AI will choose to visit that area. The 

researcher can also instruct the AI to favour less-visited attractive areas.  

The random walk procedure is as follows. For each random walk cycle, the AI first waits for a 

random delay between a specified minimum and maximum. The AI then decides whether to 

visit an attractive area or walk to a random location. The probability of visiting an attractive area 

over choosing a random location is: 
∑ 𝐴𝑖

𝑛
𝑖

𝑛
 where Ai is the level of attraction towards a particular 

attractive area, i, and n is the total number of attractive areas in the list. If the AI chooses to 

visit an attractive area, it then decides which area in its list it should visit. It iterates through all 

the attractive areas in its list and the probability of choosing attractive area i is: 
𝐴𝑖

∑ 𝐴𝑖
𝑛
𝑖

. This 

formula ensures that an area is chosen and that areas further up in the list are not favoured over 

those at the bottom. If the researcher has instructed the AI to favour less-visited attractive 

areas, attractive area i will then be temporarily removed from the attractive areas list (thus 

ensuring it isn’t visited again) until all other attractive areas in the list have been visited. If the 
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AI chooses not to visit an attractive area, or if no attractive areas are specified, the AI will 

instead walk a random distance between a specified minimum and maximum in a random 

direction from their its position. Movement to the chosen destination is executed via the 

AI_Movement script. Once the AI has reached its chosen destination, the random walk 

procedure is executed again, and this repeats continuously while ever the random walk script is 

enabled (i.e. unless it is disabled by the AI_Controller while another behaviour is being 

executed). 

This random walk behaviour is designed to provide AIs with stochastic movement, while also 

allowing researchers to program AIs that provide social information about particular locations 

(e.g. foraging patches or other areas of interest). The ‘attractive areas’ feature could also be 

used for investigations into ‘local enhancement’, a social learning mechanism where a 

demonstrator’s behaviour attracts an observer to stimuli in a particular location (Heyes, 1994). 

In addition, the researcher can specify whether to allow Food detection during a random walk. 

When enabled, if an AI detects a compatible Food object while walking to its chosen location, 

it will abandon its current path and instead execute its Food interaction procedures (see 

AI_FoodInteraction, section 4.4.5.7, below). When disabled, an AI will ignore any Food items 

while on route to its chosen location. A researcher may use the first option if, for example, they 

are programming an AI that is designed to do a random search of the environment and stop off 

at any food sources that they pass by. Whereas the second option may be preferable if the 

researcher is programming an AI that is designed only to visit specific food patches, without 

becoming distracted by any other food sources it may pass. 

 

4.4.5.4. AI_Follow 

Script that instructs an AI to walk to the location of a specified target object after a specified 

delay. Movement to this location is executed via the AI_Movement script. Once it has reached 

the location of the target object, the AI will repeat the behaviour. This behaviour can be used 

in conjunction with the random walk behaviour – the AI will switch between walking to the 

location of the target object and walking to a random location according to the respective time 

delays programmed into the two behaviours. One example of where this behaviour might be 

useful is if the researcher wishes to create a number of AIs that move as a group – one AI can 

be programmed with behaviours that determine the group’s chosen destination (e.g. via the 

AI_RandomWalk script) while the remaining AIs are instructed to follow the ‘leader’ using the 

AI_Follow script. 
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4.4.5.5. AI_RouteFollow 

Script that instructs an AI to follow a route through any number of specified waypoints, after 

an initial start delay randomly selected between a specified minimum and maximum number of 

seconds. This behaviour can be used in conjunction with the random walk behaviour – the 

random walk behaviour will be temporarily disabled via the AI_Controller script until the AI has 

followed the route to its end point. This behaviour is especially useful if a researcher wishes to 

investigate social information use during route-choice tasks, as has been investigated in both 

animals (Laland and Williams, 1998) and humans (Reader et al., 2008). 

 

4.4.5.6. AI_ItemInteraction (parent script) 

Script containing functions to instruct an AI to interact with an interactable. If instructed to 

interact with a specified interactable, the AI will first check if the specified interactable 

is ‘available’. An interactable may become unavailable if (a) it is not present in the 

environment, e.g. if it has been destroyed, or (b) it is a Holdable interactable that is 

currently being held by the player, another AI or this AI itself. An AI will not attempt to walk 

to the location of or interact with an unavailable interactable. If the interactable is 

available, the AI will walk to the interactable’s location via the AI_Movement script, first 

disabling any random walk procedures via the AI_Controller script. The AI will then perform a 

second check to ensure the interactable has not become unavailable during the time the AI 

has taken to walk to it. If it is still available, the AI will attempt to interact with the 

interactable. As with the player, a successful interaction will only occur if the AI meets the 

required items condition for interacting. However, since the AI is computer-controlled, the 

required keys condition does not apply. The AI is assumed to be ‘pressing’ the correct keys and 

will play the appropriate animations associated with the required keys (e.g. playing the 

interaction animation if the ‘Interact’ key would be required by the player, or the crouching 

animation if the ‘Crouch’ key would be required). This provides a realistic source of social 

information, enabling participants to watch and imitate demonstrated behaviours to 

successfully complete a task. 
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4.4.5.6.1. AI_ItemInteractionController (child script, inherits from AI_ItemInteraction) 

This script gives the researcher control over what interactables an AI is able to interact with 

and how they interact with them, thus determining how social information about 

interactables is conveyed to participants. The researcher specifies a list of ‘potential 

interactables’ that the AI is able to interact with. For each interactable in the list, the 

researcher specifies whether the AI should interact with it only once or if multiple interactions 

are allowed. The basic procedure is as follows: An AI will interact with the interactables in 

its potential interactables list on a timer. After a random delay between a specified minimum 

and maximum number of seconds, the AI will choose an interactable (i) from its potential 

interactables list, then walk to its location and interact with it using functions inherited from the 

AI_ItemInteraction script. Once it has interacted with its chosen interactable, the timer will 

reset and the behaviour is repeated. If the researcher has specified that the AI should only 

interact with interactable i once, i is removed from the AI’s potential interactables list after 

the interaction occurs, regardless of whether said interaction was successful or not. 

The researcher has a number of options concerning how an AI will choose between the 

interactables in its potential interactables list:  

1. Interact in order. The AI will loop through the interactables in its potential 

interactables list in the order they have been inputted by the researcher within the Unity 

interface. This can be particularly useful if a researcher wishes to convey social 

information to a participant about cumulative behaviours or tasks that require multiple 

steps in a specific order to complete. The researcher can also specify whether the AI 

should continuously loop through its potential interactables list, returning to the first 

interactable once it has interacted with the last, or whether it should only iterate 

through the list once. In addition, the researcher can specify whether the AI should skip 

past any unavailable interactables, or whether it should wait for the next 

interactable in the list to become available again. 

2. Favour closest interactable. The AI will calculate the distance between itself and all 

currently available interactables in its potential interactables list, choosing the one 

that is currently closest. 

3. Favour most recent interactable. In this case, the AI will always choose the 

interactable with which it last interacted – provided that interactable is 

currently available, else it will choose its next interactable from its potential 

interactables list at random instead. This option may be useful, for example, if a 
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researcher wishes to program an AI with a repertoire of possible behaviours, but have 

it preferentially repeat the same behaviour / option once it has been selected. 

4. Choose random interactable. An interactable is selected at random from the 

currently available interactables in the AI’s potential interactables list.  

An AI can also be programmed to add new interactables to its potential interactables list 

during gameplay if it comes in contact with them. An AI is considered as coming into contact 

with an interactable if it has entered the interactable’s trigger area. Having an AI add 

new interactables to its potential interactables list may be useful if a researcher wishes to 

add an element of randomness to an AI’s behaviour. Alternatively, a researcher may not wish 

the AI to interact with objects straight away at the start of the game and instead have the AI 

‘learn’ about the interactable only after coming into contact with it, the likelihood of which 

can be controlled by the AI movement (e.g. by setting the location of the interactable as an 

attractive area, as described in AI_RandomWalk, above). 

This script also instructs the AI how to treat any Holdable interactables it has picked up. 

An AI can carry a maximum of two Holdable interactables at a time (one in each hand). 

An AI will carry a Holdable interactable around indefinitely unless the researcher 

programs the AI to either deposit it into a Container, or drop it given a specified condition. 

An AI can be programmed to drop a Holdable interactable according to any of the 

following conditions: (a) after a random number of seconds between a specified minimum and 

maximum; (b) after a specified number of interactions with other interactables in their 

potential interactables list; or (c) after the interactable has been successfully ‘used’ a 

specified number of times – with a ‘use’ defined as a successful interaction with another 

interactable, for which this Holdable interactable and its modification(s) were a 

‘required item’. Allowing an AI to pick up, use and drop Holdable interactables can be 

useful if a researcher wishes to create an environment where the player is required to observe 

how an AI uses a Holdable interactable and then attempt to replicate the demonstrated 

behaviour. 

 

4.4.5.7. AI_FoodInteraction 

This script allows AIs to collect specific Food items in order to transmit social information about 

Food types to the player or allow AIs to collect rewards after completing tasks. Despite being 

a type of interactable, Food items are dealt with in a separate AI script than other 
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interactables since different parameters and AI behaviours are required – and to allow the 

collection of Food items (which are likely to act as rewards for the successful completion of 

tasks) to be completely independent of interactions with other types of interactable.  

An AI has a specified Food detection radius and can only react to Food items within this radius. 

After a specified delay, the AI will first pause the timer in the AI_ItemInteractionController script 

to avoid interactions being missed during Food consumption, then the AI will choose a Food 

interactable within its detection radius and interact with it. If the interaction is successful, 

the Food will be collected (or ‘eaten’) by the AI, as discussed in Interactable_Food (section 

4.4.3.3.4) above. The actual interactions with Food items are dealt with via the 

AI_ItemInteraction script.  

The researcher has a number of additional options concerning how an AI responds to Food 

items: 

1. High value preference. The AI interacts with the Food items in its detection radius in 

order of their nutritional values – interacting with the highest value Food first, then the 

second highest, and so on.  

2. Avoid poisonous food. The AI will ignore any Food item that has a negative nutritional 

value (i.e. a ‘poisonous’ Food that would deduct health from the player if the player 

was to eat it). 

3. Specific food preferences. The AI will only respond to specified types of Food items 

within a ‘food preferences’ list specified by the researcher, and will ignore all other Food 

types. This can be a useful way of researching whether human food preferences are 

spread via social transmission (i.e. do people favour food types that they have witnessed 

another individual eating?), as has been investigated in various animal species.  

4. Leave food behind. Instructs an AI not to eat all the Food items in the area. An AI will 

only respond to Food if there are more than a specified number of Food items in its 

detection radius. This option is useful in situations where an informed AI is likely to visit 

a food patch before the uninformed player, to ensure there is still Food available 

when the player arrives. 

 

4.4.5.8. AI_CharacterInteraction 

Script that instructs the AI to respond in certain ways towards other AIs and the player. AIs 

can respond to other characters in three ways: an aggressive display (stand up straight and 
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punch outwards); a submissive display (hunch over, shield face and turn away); and a positive 

display (waving). When the AI comes within a certain distance of a character (i.e. within its 

trigger area), they turn to the character and, after a specified delay, perform one of the displays 

above. The type of display towards the player is explicitly chosen by the researcher, meaning 

a particular AI will always respond in the same way to the player. The AI also has a specified 

‘aggression level’, which determines how it acts towards other AIs. If two interacting AIs both 

have an aggression level of zero, each with interact with a positive display. If both have 

aggression levels above zero and there is a difference in their aggression levels, the AI with the 

highest aggression level will use an aggressive display and the one with the lowest aggression 

level will use a submissive display. If both have an aggression level of above zero, but their 

aggression levels are equal, they will both use an aggressive display. If one of the AIs does not 

possess the AI_CharacterInteraction script, no interaction will occur. Alternatively, the 

researcher can specify a ‘specific response’ towards a particular AI, which will override any 

response based on aggression levels. 

Previous research has that both human and non-human individuals are more likely to copy 

demonstrators with particular characteristics, such as dominant or familiar individuals (e.g. 

Henrich and Henrich, 2010; Horner et al., 2010; Kendal et al., 2015; Corriveau and Harris, 2009; 

Swaney et al., 2001; Guillette et al., 2016). Creating AIs within VERSE that interact with other 

characters using particular displays can enable participants to distinguish between AIs of 

different characteristics or personalities and investigate what influence this has on social 

information use. In addition, AI aggression levels and the resulting behaviours towards one 

another can also be used to generate a dominance hierarchy, which have been experimentally 

demonstrated as having an influence on social learning in animals (e.g. Kendal et al., 2015). 

 

4.4.5.9. AI_WeatherResponse 

Determines how an AI responds to different weather conditions (see Manager_Weather, 

section 4.4.7.1, below). The researcher specifies which weather condition(s) the AI will 

respond to and a list of ‘known weather shelters’. When one of these weather conditions 

is activated, the AI will, after a specified delay, run to one of the weather shelters in its list 

and stay in that shelter until the weather condition is deactivated. All other behaviours are 

disabled via the AI_Controller while an AI is shielding itself from the weather. The researcher 

can also specify whether the AI should favour the closest of its known shelters. This behaviour 

allows researchers to supply participants with social information about appropriate responses 
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to unfavourable environmental conditions within environments where these weather 

conditions have been programmed.  

 

4.4.6.  Tracking values and logging data 

Several scripts are available in VERSE for collecting and exporting various types of data that 

correspond to different types of task used in social learning research. 

 

4.4.6.1. ValueTracker 

Tracks a specified numeric value during gameplay, updating continuously and additionally 

recording the value as a percentage of a ‘maximum value’, which is calculated differently 

depending on the type of ValueTracker. ValueTrackers are useful for continuously monitoring 

important information that the researcher may, for example, wish to display to the participant 

during gameplay. There are currently three types of ValueTracker: 

1. Player energy tracker. Requires the PlayerEnergy script to be attached to the player. 

Tracks the player’s current energy as a percentage of the starting energy value. This 

can be used to monitor how energy-efficient a participant’s choices are – for example, 

in a route choice task where a number of routes of different length are available. 

2. Player health tracker. Requires the PlayerHealth script to be attached to the player. 

Tracks the player’s current health as a percentage of the maximum health. This can be 

used to monitor how adaptive a participant’s behavioural choices are – for example, in 

a foraging task where a number of possible Food types, including potentially poisonous 

items, are available. 

3. Food collection tracker. Tracks the number of Food items obtained by the player as a 

percentage of the total number of available Food items in the environment. This type 

of ValueTracker requires an additional FoodCounter script (see below) and updates its 

tracked value according to the current player food count. In environments where 

Food is generated during gameplay, calculating the total number of available Food 

items will require the Manager_TotalFoodDispensedCounter and/or 

Manager_TotalFoodSpawnedCounter scripts, depending on the way in which Food 

items are added to the environment (see sections 4.4.7.5 and 4.4.7.6, below). The food 
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collection tracker is a useful way of assessing how ‘well’ a participant is doing in terms 

of food / rewards collected.  

 

4.4.6.2. FoodCounter 

Counts the number of Food items collected by the player within the current environment. The 

researcher can specify whether this count should include the nutritional information of Food 

items or whether it should be based solely on the number of items collected.   

 

4.4.6.3. FoodPatchCollisionDetector  

Detects when a character visits a food patch (or any other specified area). This script must be 

added to a GameObject that has a trigger6 around it (Table 4.1). 

 

4.4.6.4. Logger (parent script) 

Creates a log of a specific dataset in preparation for export from the application. 

 

4.4.6.4.1. Logger_PositionData (child script, inherits from Logger) 

Records the position (x, y, z coordinates) of a specified set of monitored objects. The position of 

each object and the current time in seconds is logged throughout gameplay at a specified time 

interval. A separate dataset is created for each monitored object in preparation for export. This 

can be used to assess how a participant uses social information about particular locations or 

routes. (Note: In Unity, y coordinates corresponds to the up/down direction, while x and z are 

the left/right and forward/backward directions, which may differ from statistical programs).  

 

4.4.6.4.2. Logger_InteractionsData (child script, inherits from Logger) 

Records any interactions that a specified set of monitored characters (i.e. player or AIs) make 

with a specified set of monitored interactables. Each time a character successfully interacts 

with an interactable, the current time, the character name and the interactable name 
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are recorded. One dataset is produced containing all the interactions made by all the monitored 

characters towards any monitored interactable, in the order at which they occurred. This 

can be used to assess how a participant uses social information about particular 

interactables. 

 

4.4.6.4.3. Logger_FoodPatchVisits (child script, inherits from Logger) 

Records each time a character from a set of specified monitored characters visits one of a set of 

specified food patches. Requires a FoodPatchCollisionDetector script (section 4.4.6.3) to be 

added to each monitored food patch to register visits. A single dataset is produced showing 

all the visits made by any of the monitored characters to any of the monitored food patches 

and the times at which the visits occurred. This can be used to assess how a participant uses 

social information about the locations of food patches. (Note: This Logger can be repurposed 

to log visits to any area according to the researcher’s needs). 

 

4.4.6.4.4. Logger_FoodEatenByPlayer (child script, inherits from Logger) 

Records all the Food items ‘eaten’ by the player during the course of the game. The name of 

the Food object, its nutritional value and the time at which it was eaten are all recorded. In 

addition, a cumulative nutritional value across all consumed Food items is recorded. If AIs are 

programmed to prefer certain food types, this Logger can be a useful way of assessing whether 

participant choices have been influenced by AI preferences. 

 

4.4.6.4.5. Logger_TrackedValues (child script, inherits from Logger) 

Records the final tracked value, maximum possible value and percentage value of any 

ValueTrackers (see ValueTracker above) at the end of the current scene. 

 

4.4.6.5. SaveToCsv 

Takes the dataset from all Loggers in the current scene and exports each as a .csv file at the end 

of gameplay. All datasets are exported to the game’s directory with descriptive file names to 

make data easy to recognise and sort. The researcher can also give participants a ‘reference 
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number’ and have this number automatically added to all file names to allow data from the same 

participant to be linked together. VERSE comes with a dedicated scene where participants can 

input their reference number, which can be added to the start of the build – the SaveToCsv script 

will then save a record of this inputted number and add it to the filename of every outputted 

dataset. 

 

4.4.7.  Game managers 

Several game managers are available in VERSE which add additional features to the environment 

as a whole and/or allow a greater level of control over some of the functions already discussed.  

 

4.4.7.1. Manager_Weather 

Controls weather conditions within a VERSE environment. Each weather condition is 

saved as a ScriptableObject10 containing the following properties: visual effect, duration, time 

interval and initial delay. The Manager_Weather takes any number of weather conditions 

and enables and disables them on a loop according to their respective properties. Each weather 

condition has its own timer within the Manager_Weather. The weather condition is 

enabled after time interval, except at the beginning of the scene, when it is enabled after a delay 

equivalent to: initial delay + time interval. Once enabled, the weather condition is disabled 

again after duration, after which the timer restarts. Enabling a weather condition involves 

‘switching on’ the visual effect associated with it. Visual effects for weather conditions are 

created using particle systems18 that are placed directly in front of the camera so they are 

continuously visible to the participant while ever the weather condition is enabled, without 

the high computational demands of creating a visual effect over the entire environment. The 

effects of the weather on the player and AIs can be altered through the 

PlayerWeatherResponse (section 4.4.2.7) and AI_WeatherResponse (section 4.4.5.9) scripts as 

previously discussed.  

Any number of weather shelters can be added to an environment. These are areas or 

objects which protect the player from all weather conditions and which AIs can be 

programmed to run for when a particular weather condition is enabled. Each weather 

shelters is surrounded by a trigger6 (Table 4.1) which senses when a character enters it. 

Adding weather conditions to a social learning environment can be used both as a task in 
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itself to establish how participants use social information to learn about adverse environments 

or to increase the difficulty of another, unrelated task through environmental complexity and 

uncertainty. This function aids VERSE in generating realistic environmental features only 

currently possible in field studies, while providing researchers with experimental control only 

possible in lab studies. 

 

4.4.7.2. Manager_RewardDistributer 

Gives additional control over a set of specified reward dispensers (see RewardDispenser, 

section 4.4.3.3.7.1, above), allowing their rewards to be swapped and changed over a number 

of ‘rounds’. The researcher specifies a set of reward dispensers and, for each one, a set of 

‘possible rewards’. The researcher also specifies the total number of rounds and can optionally 

have this displayed as text onscreen for the participant to see during gameplay. At the beginning 

of each round, the Manager_RewardDistributer randomly selects a reward for each reward 

dispenser from its set of possible rewards. This reward will override any possible rewards 

already set in the RewardDispenser script of the specified reward dispenser. The researcher 

can optionally specify that equal rewards should be distributed to all reward dispensers, in 

which case the Manager_RewardDistributer will randomly select a single reward from all sets of 

possible rewards and distribute this reward to all reward dispensers. 

The Manager_RewardDistributer can also be programmed to swap the set of possible rewards 

between reward dispensers at a specified probability (where a probability of 1 means a 

definite swap) at the beginning of each round. The specific reward for each reward dispenser 

is then chosen as described above from the newly distributed sets of possible rewards. When 

swapping rewards between more than two reward dispensers, the set of possible rewards 

from each reward dispenser is distributed to one of the alternative reward dispensers 

at random. Programming a situation where rewards are swapped between rounds can allow a 

researcher to create a task where a participant is required to locate the reward dispenser 

with the highest reward and where the location of the highest reward is randomised, thus 

preventing the participant from simply learning a single location.  

The researcher is also required to specify how the Manager_RewardDistributer should define 

the beginning of a new round. A new round can begin on a timer after a specified number of 

seconds or can be synced with the regeneration of a specified interactable (see 

InteractableProperties, section 4.4.3.1, above). An example of a situation where the second 
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option would be favourable is a task where a Holdable ‘token’ must be deposited into one of 

two Containers to receive a reward, and where the token has been set to regenerate in its 

original position after being placed into a container. In this case, it may be favourable to sync 

the redistribution of rewards between the two containers with the regeneration of this token, 

therefore ensuring that the beginning of a new round, and so any change in the rewards 

dispensed by the containers, only occur after the participant has made their choice. This method 

is used for the ‘Container task’ in the experiment described in Chapter 5. 

Once the total number of rounds have been completed, all rewards are removed from the set 

of reward dispensers and no new rounds will be initiated. In addition, the 

Manager_RewardDistributer can optionally be instructed to remove a number of objects from 

the scene once all rounds are completed. This can be useful in a situation where the beginning 

of each round is defined by the regeneration of an interactable object. When all rounds are 

completed, said interactable may become redundant and having it disappear from the 

environment can make it clear to the participant that the task is complete. 

 

4.4.7.3. Manager_AiRewardDistributerResponse 

Controls how AIs respond to the reward distributions in the Manager_RewardDistributor script. 

A set of specified AIs are instructed to choose between a set of specified reward dispensers 

after a specified number of rounds. The researcher has several options influencing how AI 

choice is distributed between the specified reward dispensers:  

1. Frequency-distributed. The researcher specifies the frequency of AIs that should visit 

each reward dispenser, and AIs are distributed randomly according to this 

frequency at the beginning of each round. The specified frequencies can either be fixed 

to a particular reward dispenser across all rounds (e.g. dispenser A is always visited 

by two AIs and dispenser B by three AIs) or can be set to swap randomly between 

rounds. Note that a 1:1 frequency can be used if a researcher wishes to investigate 

biases towards particular demonstrators while controlling for the frequency of 

demonstrators using choosing each option.  

2. Payoff-based. Each AI is given a ‘tracking ability’ that determines how well it is able to 

detect the reward dispenser with the highest payoff. At the beginning of the round, 

each AI’s probability of choosing a reward dispenser with a higher payoff over one 

with a lower payoff is equal to its tracking ability. 
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3. Frequency-distributed and payoff-based. The researcher specifies the frequency of AIs 

that should visit each reward dispenser and AIs are distributed according to this 

frequency at the beginning of each round. The tracking ability of each AI acts as a weight 

that determines the likelihood that it will be chosen over other AIs to visit a higher-

payoff reward dispenser within the specified frequency distribution. The 

frequencies assigned to each reward dispenser can be either fixed across rounds, 

set to swap randomly, or distributed according to payoff (so that the highest-payoff 

interactable is always visited by the most AIs).  

4. Assigned at random. Each AI randomly chooses one of the specified reward dispensers 

at the beginning of each round.  

For each AI, the chosen reward dispenser is added to the list of potential interactables 

within its AI_ItemInteractionController script (see section 4.4.5.6.1, above), allowing the AI to 

interact with the reward dispenser according to the rules and functions of this script. 

Increasing the number of rounds that elapse before choices are redistributed among AIs can 

be used to represent a delay in demonstrators responding to changes in their environment, thus 

adding a level of uncertainty about the social information being provided. 

Overall, this manager allows the researcher to control how social information about reward 

dispensers is conveyed to the participant in a way that is specifically designed for investigating 

human social learning strategies. Frequency-, success- and model-based social learning biases 

have been demonstrated in many species (e.g. Pike and Laland, 2010; Kendal et al., 2009; Pike 

et al., 2010; Seppänen et al., 2011; Horner et al., 2010; Kendal et al., 2015), including humans 

(e.g. Morgan et al., 2012; Efferson et al., 2008; Mesoudi, 2008; Mesoudi and O'Brien, 2008; 

Henrich and Henrich, 2010; Miu et al., 2018), but are generally difficult to assess in humans in a 

realistic environment, using ecologically relevant tasks. VERSE makes it possible to test such 

hypotheses within complex and naturalistic, yet highly controlled, environments. 

 

4.4.7.4. Manager_AiSync 

Synchronises the item interaction behaviours within the AI_ItemInteractionController scripts of 

a specified set of AIs. For each AI, the researcher specifies a particular ‘sync interactable’ from 

the potential interactables list in its AI_ItemInteractionController script. When an AI interacts 

with this specified interactable, any further item interactions normally dictated by the 

AI_ItemInteractionController script are paused (via the AI_Controller) until all AIs have 
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interacted with their own sync interactables. When all AIs have reached their sync 

interactable, item interaction is enabled again. Syncing AI item interaction behaviour is 

particularly helpful in cases where multiple AIs are required to display multiple options to the 

participant at the same time and/or where differences in the timing of AI choices may cause 

confusion or influence the choice of the participant.  

 

4.4.7.5. Manager_TotalFoodDispensedCounter 

Calculates the maximum possible reward value that a player could collect from reward 

dispensers in the environment, which is used to update the maximum value in any food 

collection ValueTrackers (see ValueTracker, section 4.4.6.1, above) and to assess how ‘well’ a 

participant has completed a task involving reward dispensers. The researcher can specify 

which reward dispensers to monitor or, alternatively, specify that all reward dispensers 

in the environment should be included. The researcher can also specify whether AI rewards 

should be included in the total. A researcher may wish to include AI rewards in the total if they 

consider rewards dispensed to AIs as ‘extra opportunities’ for gaining rewards (e.g. if 

investigating ‘scrounging’ behaviour, which has been most notably demonstrated in pigeons; 

Giraldeau and Lefebvre, 1987). However, if a researcher wishes to base this total only on 

successful completion of tasks by the player, they may wish to avoid including AI rewards in 

the count.  

The maximum number of rewards from reward dispensers is calculated as follows: reward 

dispensers are defined as ‘managed’ or ‘unmanaged’ depending on whether their rewards 

are managed by a Manager_RewardDistributer script (section 4.4.7.2). For unmanaged reward 

dispensers, the total number of possible Food rewards equate to the actual number of 

rewards dispensed during gameplay. Therefore, each time an unmanaged reward dispenser 

dispenses a reward into the environment, the reward value is added to the running total. For 

managed reward dispensers, rewards are distributed between a number of reward 

dispensers across a number of rounds (see Manager_RewardDistributer, section 4.4.7.2) and 

the participant is expected to choose only one reward dispenser per round. Therefore, for 

each round, only the maximum reward distributed amongst the managed reward 

dispensers (i.e. the maximum possible reward a player would gain if they chose the ‘best’ 

reward dispenser in the set) is added to the running total. If a researcher specifies that AI 

rewards should be included, any additional rewards dispensed to AIs from managed dispensers 

are viewed as opportunities to scrounge and so are added to the total as well. When calculating 
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the total possible value from dispensed rewards, Manager_TotalFoodDispensedCounter can 

either count Food rewards by their quantity alone or can include each Food item’s nutritional 

value. This is determined by the options inputted into the FoodCounter script (see section 

4.4.6.2, above). 

 

4.4.7.6. Manager_TotalFoodSpawnedCounter 

Calculates the number of Food rewards spawned from any FoodSpawners in the environment 

(see FoodSpawner, section 4.4.4.1, above) during gameplay, which is used to update the 

maximum value in any food collection ValueTrackers (see ValueTracker, section 4.4.6.1, above) 

and to assess how ‘well’ a participant has completed a foraging task. Food rewards can either 

be counted based on their quantity alone or based on each Food item’s nutritional value. This 

is determined by the options inputted into the FoodCounter script (see section 4.4.6.2, above). 

 

4.4.7.7. Manager_Scene 

Automates the process of moving to the next scene and/or ending gameplay so that the 

researcher does not need to do this manually. The application is instructed to end the current 

scene according to one or more of the following conditions: (i) after a specified amount of time 

has elapsed since the beginning of the scene; (ii) a specified delay after a 

Manager_RewardDistributer (see section 4.4.7.2, above) has completed all its rounds; (iii) if the 

player’s health reaches zero. Once a scene has ended, all functionality is paused pending the 

beginning of the next scene. If the current scene is the last in the build, the Manager_Scene 

displays an ‘end game canvas’, a 2D canvas8 (Table 4.1) that lets the participant know they have 

completed all tasks in the application. If the current scene is not the last in the build, the 

Manager_Scene can either move automatically on to the next scene, or optionally display an 

‘end scene canvas’ which contains a button that allows the participant to decide when to move 

to the next scene. An end scene canvas may be preferred if the researcher wishes to allow 

participants a short break between scenes. In addition, one or more tracked values (see 

ValueTracker, section 4.4.6.1, above) can be optionally displayed on the end scene canvas 

and/or end game canvas, either as an absolute value or as a percentage of its maximum, to give 

the participant an idea of their performance during tasks.  
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4.5. Worked example 

What follows is an example of a social learning environment created in VERSE (shown in Figure 

4.4), which demonstrates some of the features described above. In this example, a single 

participant is placed into a small forest environment and given the task to find and break open 

fruits to collect seeds. The fruits are located in three trees within the environment and require 

a stick to reach and dislodge them. Hidden in the environment is a pile of sticks the participant 

can use. Two AIs provide a source of social information – both know the location of the stick 

pile and how to access fruit and break them open to get to the seeds, but each AI chooses to 

gather their fruit from a different tree. Data on the location of the player and AIs and all the 

interactables each character interacted with throughout gameplay are collected using the 

Logger_PositionData and Logger_InteractionsData scripts. This example environment could be 

used to investigate how social information is used when learning to use tools in a novel, realistic 

environment – and offers some direct comparisons to research on tool-use and foraging in 

animal communities (e.g. tool-use in chimpanzees; Biro et al., 2003; Musgrave et al., 2016). 

 

 

Figure 4.4. Example of a VERSE environment where the player (black figure, controlled by the 

participant) is required to obtain seeds by accessing and breaking open fruit hidden in trees. Computer-

controlled AIs (white figures) provide social information about how to complete the task. 

 

To achieve this, the environment is first created in VERSE using Unity’s terrain tool. A player is 

added to the environment that has the following three scripts attached: BasicBehaviour, 

MoveBehaviour and PlayerInteraction, which allow the participant to move the player and 

Player 

AI 

Fruit 
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interact with interactable objects within the environment. A camera is added to the player, 

which follows the player around during gameplay. The CameraControl script is attached to the 

camera to allow camera rotation.  

Three types of interactable are added to the environment: sticks, trees and fruit (Figure 4.5). 

Each interactable contains the Interactable_Properties script and one of the Interactable 

child scripts, as described below. A number of sticks are hidden in the environment. Three trees 

are placed in the environment, each with a fruit hidden in their branches. The fruit 

interactables have their ‘Rigidbody’ component disabled so they do not respond to gravity 

and so remain in the branches of the tree and out of reach of the player or AIs. 

Each stick is a Holdable interactable, containing the Interactable_Holdable script (Figure 

4.5A). One required key (‘Interact’) and no required items are specified, meaning the player 

simply needs to approach the stick and press the ‘Interact’ key (default: ?) to interact with it. A 

successful interaction results in the player picking up and carrying the stick. The stick also has 

an ‘item type’ of ‘Stick’ specified in its Interactable_Properties component.  

Each tree is a Connected interactable, containing the Interactable_Connected script (Figure 

4.5B). It has one required key (‘Interact’) and one required item (any interactable with the 

general item type ‘Stick’). This means that, in order to interact with the tree, the player must 

approach the tree with a stick in hand (any stick with the correct item type, since a general item 

type has been specified rather than a specific object) and press the ‘Interact’ key for a successful 

interaction to take place. If the player attempts to interact with the tree without the required 

item in hand, the interaction will be unsuccessful. The Interactable_Connected script is 

programmed so that a successful interaction will enable the Rigidbody component of a 

connected fruit object, allowing the fruit to respond to forces such as gravity. This means that, 

when the player successfully interacts with the tree using the stick, the fruit will drop out of 

the tree, thus allowing the player to access it and break it open.  

Each fruit is a Breakable interactable, containing the Interactable_Breakable script (Figure 

4.5C). It has one required key (‘Interact’) and no required items. It is also set to release six ‘seeds’ 

when broken. This means that the player needs to approach the fruit and press the ‘Interact’ 

key to break open the fruit and gain access to the seeds. The seeds themselves are examples of 

Food interactables, containing the Interactable_Food script. Seeds have no required keys 

or required items, meaning the player simply needs to walk into them to collect them. To gain 

access to the seeds, the player must therefore learn to perform the correct series of 

behaviours, first picking up the stick and then using the stick to interact with the tree so that the 
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fruit drops to the floor, then breaking open the fruit to access the seeds. The fruit also has an 

additional property specified in its Interactable_Properties script – it is set to regenerate in its 

original position after it is destroyed (i.e. when it is broken open, it will reappear back in the tree 

again). This gives the impression that the fruit ‘regrows’ after being hit out of the tree with the 

stick and gives both the player and AIs multiple opportunities to access fruit from the same 

tree. 

 

 

Figure 4.5. The three main types of interactable within the example VERSE environment. Left-hand 

images show their in-game representations and right-hand images show the particular Interactable script 

attached to the object, along with its properties. (A) A Holdable ‘stick’ interactable which can be 

picked up by the player by pressing the ‘Interact’ key. (B) A Connected ‘tree’ interactable that turns 

on the Rigidbody component of a connected ‘fruit’ (red ball), thus allowing it to be influenced by gravity 

and causing it to fall from the top of the tree onto the ground. The tree has one required item for a 

successful interaction to occur – the player must have a ‘stick’ in hand while interacting using the 

‘Interact’ key. (C) A Breakable ‘fruit’ interactable which breaks open upon pressing the ‘Interact’ key 

is when the player is in close vicinity. The fruit becomes a ‘broken fruit’ object (two broken halves) and 

releases six ‘seeds’ – a Food interactable that can be collected by the player. 

(A) 

(B) 

(C) 
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Social information is provided to the participant in the form of two AIs that already ‘know’ how 

to complete the task. Participants are able to observe these AIs performing the correct series 

of behaviours and imitate these behaviours to gain access to the fruit seeds. Both AIs contain 

the following scripts: AI_Controller, AI_Movement, AI_RandomWalk, 

AI_ItemInteractionController, and AI_FoodInteraction. For each AI, the AI_RandomWalk script 

is programmed so that the AI moves around randomly by 2-10 units every 1-5 seconds and is 

able to detect Food during random movement (Figure 4.6A). No ‘attractive areas’ are specified 

in this example. Movement is permitted via the AI_Movement script and is temporarily disabled 

by the AI_Controller script whenever it would interfere with other behaviours such as item 

interactions.  

 

 

Figure 4.6. Examples of the AI_RandomWalk and AI_ItemInteractionController scripts attached to one of 

the AIs in the example environment. (A) The AI_RandomWalk script, in this example, instructs the AI to 

move a random distance between 2 and 10 units every 1 to 5 seconds and allows Food detection during 

random movement. (B) The AI_ItemInteractionController script instructs the AI to interact with a 

specified set of interactables in a specified way. In this example, the AI has the potential 

interactables: ‘Stick (1)’, ‘Tree’ and ‘FruitBreakable’. The AI is instructed to interact with the stick 

object only once, after which it will be removed, and can interact with the other two interactables 

any number of times. The AI is instructed to interact with the interactables every 2 to 20 seconds in 

the order they are specified in the list (i.e. the stick first, then the tree, then the fruit) and to loop back to 

the beginning once it reaches the end of the list. This script can therefore be used to make AIs behave in 

a way that provides social information about cumulative behaviours.  

(A) (B) 
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Within the AI_ItemInteractionController script (Figure 4.6B), each AI has a list of three potential 

interactables. AIs are instructed to interact with the interactables in this list in order 

(one interaction every 2-10 seconds) and loop back to the beginning when they reach the end 

of the list. The ‘potential interactables’ list for each AI consists of one of the sticks, one of the 

trees and the fruit hidden within the branches of the chosen tree. AIs are instructed to interact 

with their chosen stick interactable only once, but can interact with the tree and fruit 

multiple times. Overall, this means that an AI will first approach and pick up one of the sticks 

(after which the stick will be removed from its potential interactables list). It will then approach 

the tree and interact with it while holding the stick. Since this meets the tree’s interaction 

requirements, the fruit will fall out of the tree, making it accessible. The AI will then approach 

and break open the fruit, thus gaining access to the seeds inside. The AI will then continue to 

loop through the interactables still remaining in its potential interactables list – interacting 

with the tree, then the fruit, then the tree again, and so on. Since it still has the stick in hand and 

has not been instructed to drop it, any future interactions with the tree will be successful and 

cause the fruit to drop. Each interaction occurs after a delay of 2-10 seconds, during which time 

the AI’s other behaviours, such as its random walk, will be in play.  

Each AI is assigned their own stick, tree and fruit interactables. This means that, while both 

AIs will demonstrate to the player how to complete the task, each AI will provide slightly 

different sources of social information (i.e. the specific tree used to get the fruit will differ). 

Finally, the AI_FoodInteraction script is set so that each AI will detect and collect any Food item 

(in this case, the seeds released from the fruit) within a 2-unit radius and the AI_RandomWalk 

script is programmed to allow Food detection during random walks. Thus, when an AI breaks 

open a fruit (or happens to pass a broken fruit while it is moving from one place to another), it 

will collect any seeds released. 

 

4.6. Discussion and Concluding Remarks 

Here I have described a novel experimental tool, VERSE, which takes advantage of gaming 

technology to allow researchers to create realistic, immersive, open world environments for 

studying human social learning. VERSE offers a unique way to bring human research in the field 

of social learning out of the laboratory and into spatially and ecologically relevant scenarios. 

Where human research has previously lagged behind animal research in the field in terms of 
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ecological validity, this technology offers huge potential for future work on human behavioural 

ecology and social evolution.  

Researchers using VERSE should, however, bear in mind that, while VERSE may offer a more 

realistic methodology for studying human social behaviour than traditional lab studies, it is still 

a simplification of real-world social environments. For example, VERSE, in its current form, fails 

to account for one key component of human social behaviour – verbal communication – which 

could be an important aspect of our social learning experiences (Rawat, 2016) (although 

previous research has suggested that children given conflicting information will trust what they 

see over what they are told; Ma and Ganea, 2010). However, it could be argued, if humans are 

studied from a behavioural ecology perspective, that not including such complex communication 

gives us a clearer picture of foundational social learning processes (such as stimulus or local 

enhancement, direct observations and visual cues) that can be analysed in a similar way (and so 

be directly compared) to studies on animal populations – as demonstrated in Chapter 5. Indeed, 

much of the previous work in the field has focussed on how individuals choose to learn based 

on the decisions of others rather than via direct communications (e.g. Mesoudi, 2008; Morgan 

et al., 2012; Toelch et al., 2014; Caldwell and Eve, 2014). VERSE could, however, be feasibly 

extended to include verbal (or written) communication in order to establish its importance in 

our cultural evolution.  

It is also possible, particularly if important aspects of social interaction such as verbal 

communication are missing, that the artificial intelligence (AI) agents used as social information 

sources in VERSE may not be viewed by players as truly social entities, but simply as a part of 

their environment. Evidence from online roleplaying games such as World of Warcraft and 

Second Life as to whether non-player characters (NPCs) are viewed as true social interactors is 

mixed. Often, the identities of NPCs, which generally exist to enrich gameplay and form 

narratives, are known to the players, which is likely to have a large impact on the extent to which 

they can be viewed as truly social entities. However, even so, players can form emotional 

connections with NPCs (Rapp, 2018) and actively collaborate with AI ‘teammates' (Zhang et al., 

2021). Some studies also show that the distinction between NPCs and real players isn’t 

necessarily clean cut. According to Crenshaw and Nardi (2015), for example, players treated 

researcher-controlled characters using scripted responses, which could easily be replaced with 

computer-controlled NPCs, as social cues. Similarly, during Banks and Martey’s (2016) attempts 

to create ‘transparent’ researcher presence in virtual research environments, a researcher-

controlled NPC had to be largely de-humanised to prevent players communicating and 

interacting with it. In their current form, VERSE AIs are intended to provide pseudo-social cues 
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to establish when and how players copy others – and how this is influenced by the physical form 

of those social cues. However, further research would be required to establish just how ‘social’ 

these AI entities are viewed as by players.  

It is also important to remember that VERSE is a virtual platform, and this sort of methodology 

naturally comes with limitations. For example, since VERSE is game-like in its design, participants 

with different levels of gaming experience may respond differently to this type of methodology 

– e.g. ‘gamers’ may pick up the computer controls more quickly, thus allowing them to focus 

their attention on the task at hand more quickly than ‘non-gamers’, who may spend a greater 

proportion of time learning how to control their player. I would therefore recommend that 

researchers using VERSE in their experiments do the following to reduce any potential impact of 

prior gaming ability: (a) allow participants to learn the controls in an initial ‘demo’ environment 

prior to starting the official experiment, and (b) collect data from each participant concerning 

prior gaming experience to include in their statistical analysis. I follow these recommendations 

in Chapter 5 during an investigation into human social information use within several VERSE 

environments and find little evidence to suggest that participants’ in-game behaviour was 

influenced by their prior gaming experience. Another limitation of VERSE is that participants 

control a virtual player using computer keys, and hence there is little scope for investigating the 

learning of motor skills. Despite this, VERSE offers much more flexibility and ecological realism 

than previous computer-based methods, for example by allowing exploration over large, three-

dimensional environments. If future researchers wish to incorporate more realistic motor 

functions into their experiments, VERSE could feasibly be extended into a fully immersive VR 

environment, compatible with commercial VR headsets and controllers (e.g. Oculus Quest or 

HTC Vive), where participants can perform tasks and pick up virtual objects using actual hand 

movements as opposed to computer keys.  In many respects, however, VERSE (or virtual 

environments in general) offers potential far beyond what is possible in the real world. For 

example, VERSE could be used to explore human behaviour in scenarios which are impossible to 

investigate in humans otherwise – such as our responses to dangerous environments, natural 

disasters and even predators.  

Overall, VERSE offers a great deal of potential for researchers wishing to study human behaviour 

and learning within large, realistic virtual environments. By allowing humans to be studied in 

spatially explicit environments with the complete behavioural freedom to attempt tasks as they 

wish, including by observing or ignoring the actions of others, VERSE also offers researchers the 

opportunity to study humans within a common evolutionary framework alongside animal 

research. This may even include directly replicating animal experiments using human 
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participants. Due to its modular design, a potentially unlimited number of experiments can be 

produced in VERSE, including completely novel tasks within completely novel environments, in 

order to investigate how human social behaviour aids us in realistic survival scenarios. I hope to 

see future work using VERSE to conduct innovative experiments into human social behaviour. 
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Chapter 5 | Human social learning biases in immersive virtual 

environments 

 

5.1. Abstract 

‘Social learning strategies’ describe what, when and from whom individuals choose to learn. 

Evidence suggests that both humans and animals are capable of strategic social learning. 

However, human research, which generally consists of small, highly abstract laboratory 

experiments, tends to lack realism, making it difficult to understand the importance of our use 

of social information in an evolutionary context. In this study, I use virtual reality to simulate 

three novel tasks inspired by the animal literature (Container, Route Choice and Foraging task) 

within complex, three-dimensional environments. In each experiment, combinations of 

demonstrators with different characteristics gave opposing solutions to the task to determine 

from whom participants preferentially learned. Importantly, participants were able to freely 

navigate the environment and attempt the task in any way they chose by using or ignoring social 

information. I found that participants displayed an overall bias towards learning asocially 

(independently) rather than socially. Asocial learning was favoured more strongly during 

complex tasks that spanned larger spatial scales, potentially due to the difficulties in keeping 

track of social information in such scenarios. When learning from others, participants displayed 

a bias towards learning from the majority over the minority (positive frequency-dependent 

social learning) and towards learning from the most successful demonstrators (payoff-based 

social learning) – which supports the findings of previous, lab-based experiments. There was no 

apparent bias with respect to demonstrator dominance status, gender and body size. My 

findings are the first to show a variation in the use of social learning across task and 

environmental complexities in humans, to carry out a comprehensive evaluation of hypothetical 

human learning biases, and to provide a methodological link between non-human and human 

social learning experiments. As demonstrated here, immersive virtual environments have great 

potential for research into human social evolution and I strongly encourage future research to 

adopt a similar approach. 

 

Keywords: Social learning; asocial learning; social learning strategies; model bias; virtual reality; 

artificial intelligence (AI) 
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5.2. Introduction 

Across the animal kingdom, individuals are routinely faced with challenges to overcome, some 

of which they have experienced before and others that are completely novel. The ability to learn 

novel behaviours and use them adaptively is therefore highly advantageous. However, learning 

comes with a cost – trying out different behaviours to find the most successful in a given scenario 

is costly in terms of time and energy and may leave an individual vulnerable to predation or toxin 

ingestion. One way to overcome many of these costs is to learn from others – a process known 

as ‘social learning’ – thus gaining information from those who already have the knowledge, while 

reducing the time, risk and energy associated with asocial (independent) learning (Hoppitt and 

Laland, 2013). Social learning can be adaptive in a wide variety of biological contexts, including 

foraging, predator avoidance and mate choice (Galef and Laland, 2005). For humans in 

particular, social evolution has also been paramount to our development of culture. However, 

indiscriminately copying others rather than sampling directly from the environment can also 

result in the spread of maladaptive behaviours or the use of outdated information (Laland and 

Williams, 1998; Rogers, 1988). Evolutionary theory therefore predicts that individuals should be 

selective in terms of how they use social information (Laland, 2004; Boyd and Richerson, 1985; 

Schlag, 1998; Rendell et al., 2010).  

‘Social learning strategies’ describe how individuals choose to use social information - 

specifically when they favour social over asocial learning, what type of information or behaviour 

they learn, and from whom they learn (Laland, 2004; Rendell et al., 2011). As discussed in 

Chapter 1, empirical research suggests that both humans and non-human animals are strategic 

in their use of social information. For example, humans and guppies both favour social learning 

when asocial learning is costly (Morgan et al., 2012; Webster and Laland, 2008; Coolen, et al. 

2003); humans, sticklebacks and capuchins all copy successful and/or proficient individuals 

(Mesoudi, 2008; Mesoudi and O'Brien, 2008; Morgan et al., 2012; Kendal, Rendell, et al., 2009; 

Pike et al., 2010; Coelho et al. 2015); and humans, sticklebacks and primates tend to conform to 

the majority or group norms (Efferson et al., 2008; Morgan et al., 2012; Pike and Laland, 2010; 

Hopper et al. 2011; Van de Waal et al., 2013). Additional evidence from humans suggests that 

people favour variants that are increasing in frequency (Toelch et al., 2010), and that they are 

more likely to make use of social information if payoffs are less predictable (Caldwell and Eve, 

2014) or if the task is perceived as difficult (Flynn et al., 2016) or unfamiliar (Morgan et al., 2012). 

Both humans and non-human animals also display ‘model-based’ biases towards learning from 
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individuals with certain characteristics. For example, various species, including humans and 

certain primates, display biases towards copying high-ranking and/or older individuals (Henrich 

and Henrich, 2010; Horner et al., 2010; Coelho et al. 2015; Kendal et al., 2015), potentially 

because these characteristics act as an indicator of an individual’s overall success. Similarly, 

individuals may display biases towards copying kin (Schwab et al., 2008; Griesser and Suzuki, 

2016) and/or familiar individuals (Swaney et al., 2001; Corriveau and Harris, 2009; Guillette et 

al., 2016), potentially because these individuals are more tolerant to being closely observed. 

There is also evidence for individual variation in the use of social information, including some 

individuals (known as ‘mavericks’) ignoring social information completely (Efferson et al., 2008).  

As discussed in Chapter 1, human social learning experiments are often highly abstract and 

restricted by laboratory environments, making it difficult to establish the validity of such 

generalisations across the human / non-human divide. In Chapter 4, I introduced the concept of 

using immersive virtual environments to conduct human social learning experiments in more 

‘natural’ conditions and described a novel research tool – “Virtual Environments for Research 

into Social Evolution” (VERSE) – specifically designed for this purpose. In VERSE, participants take 

control of a virtual player and to move freely around large-scale, naturalistic terrain, while 

solving tasks in the presence of computer-controlled agents that provide them with specific 

social information controlled by the researcher. Thus, VERSE combats many of the issues 

associated with restrictive, lab-based social learning experiments, such as abstract tasks and a 

lack of spatial realism.  

In this chapter, I use VERSE to replicate social learning experiments from the animal literature 

using human participants, thus providing a unique insight into human social information use 

within ecologically relevant scenarios. In particular, I focus on (a) whether participants 

preferentially learn socially or asocially when exposed to a series of novel tasks; (b) whether 

participants display biases towards learning from demonstrators with particular physical and/or 

behavioural characteristics and (c) whether participants are more prone to copying 

demonstrators that use more rewarding behaviours. I discuss these findings in relation to 

previous work on humans conducted in more restrictive laboratory settings and also in relation 

to the animal literature. By generating an experimental environment where participants have 

the freedom to navigate large scale landscapes and complete tasks as they wish, and where the 

use of social information requires the active observation of knowledged demonstrators, this 

study also aims to bridge the gap between animal and human research by demonstrating how 

virtual reality can offer a highly promising way of studying human social behaviour within an 

evolutionarily framework. 
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5.3. Methods 

5.3.1. Virtual Environments for Research into Social Evolution (VERSE) 

This study was conducted using VERSE (described in detail in Chapter 4) – a novel research tool 

for studying human social behaviour within immersive virtual environments. VERSE allows 

researchers to create realistic, large-scale three-dimensional environments containing 

ecologically relevant tasks that allow direct comparison to (or replication of) behavioural 

experiments on freely interacting animal populations. Within VERSE, participants take control 

of a virtual ‘player’ to explore and interact with the environment freely. Tasks can be created 

that require the player to make use of ‘interactables’ – objects that can be interacted with, 

subject to specific requirements, and that respond to interactions in different ways, e.g. by 

breaking open, releasing rewards or being held by the player. Artificial intelligence agents (AIs) 

can be added to the environment and programmed with specific behaviours such as random 

walks, route following and object interactions to provide realistic sources of social information. 

Crucially, if participants are to take advantage of this social information, they must observe AI 

behaviours and decide which aspects of those behaviours to copy – thus, VERSE immerses 

participants in a realistic social environment and avoids the oversimplification of social 

information that is often present in lab studies.  

 

5.3.2. Participant recruitment 

All participants were recruited from the Faculty of Biological Sciences, University of Leeds. Prior 

to the main experiment, 41 postgraduates and members of academic staff volunteered (in 

response to an email request) to complete a questionnaire regarding their perceptions of the AI 

models to be used in the main study. This was to explore whether the models to be used in the 

main experiment were perceived in the intended way (e.g. the ‘female’ AI as female, the 

‘dominant’ AI as dominant to the ‘subordinate’ AI, etc.). This is discussed in more detail in the 

Supplementary Material (Tables 5.S4, 5.S5) – in general, people were found to perceive the AIs 

as intended. For the main experiment, a total of 143 undergraduates (51 males, 91 females; ages 

18-31 years; mean age = 20.6 years) were recruited via a faculty-wide email advertisement. 

Participants were randomly divided into two ‘reward groups’, as discussed below. All 

participants who took part in the main experiment received a £15 Amazon voucher as 
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compensation for their time. Ethical approval for this study was obtained by the Faculty of 

Biological Sciences Research Ethics Committee (LTSBIO-029).  

 

5.3.3. General experimental design 

Participants controlled a virtual human ‘player’ within a number of realistic, three-dimensional 

virtual environments (constructed using VERSE) in a series of three experiments inspired by the 

animal literature. Each experiment required participants to complete a novel task (detailed 

below) in the presence of computer-controlled AI ‘demonstrators’, which acted as realistic 

sources of social information. Each task was repeated across six ‘demonstrator conditions’ 

(detailed below) designed to investigate specific social learning biases. The order of presentation 

for both tasks and demonstrator conditions were randomised across participants according to a 

balanced Latin square design (Supplementary Material, Tables 5.S1- 5.S3).  

The study was conducted remotely, with participants taking part on their own personal 

computers. Prior to starting the study, participants were given instructions on how to control 

the virtual player, including how to move the player, rotate the camera and interact with objects, 

and were then asked to practice this within a ‘demo’ environment. This demo ensured that all 

participants were comfortable with the game controls prior to starting the experiment, 

regardless of prior IT and/or gaming experience. Each participant was then given a reference 

number, used to anonymise their game data, and asked to complete each of the three tasks in 

order. At the beginning of each task, further instructions were given onscreen, detailing the aim 

of the specific task. Participants were notified of the presence of ‘other players’ within the game 

who they were not in competition with and who had prior knowledge of the task. They were not 

informed whether or not they were expected to use information supplied by these players. 

Game data was collected automatically during gameplay. After the completion of all three tasks, 

participants uploaded their game data anonymously to a file request link and filled in a post-

experiment questionnaire, as detailed below.  

 

5.3.4. Demonstrator conditions 

Each of the three tasks (described below) was replicated across six demonstrator conditions 

(Table 5.1), designed to identify a number of potential social learning biases highlighted 

throughout the animal and human literature. For each demonstrator condition, two sets of 
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humanoid AI ‘demonstrators’ with different physical and/or behavioural characteristics (hereon 

referred to as ‘demonstrator A’ and ‘demonstrator B’) were programmed to make opposing 

decisions about the given task. At all times during the experiment, participants were free to 

watch, copy or ignore demonstrators entirely.  

 

Table 5.1. Descriptions of the two demonstrators displaying opposing solutions to tasks in each of the six 

demonstrator conditions used in the study. In scenarios where different options resulted in different 

payoffs, ‘demonstrator A’ always displayed a more profitable solution to the tasks than ‘demonstrator B’. 

In scenarios where payoffs did not differ, both demonstrators displayed equally profitable solutions.  

Condition  

Demonstrators 

Demonstrator A Demonstrator B 

Asocial None None 

Soc/Asoc Single AI, with default appearance. None 

Dom/Sub A single ‘dominant’ AI with muscular 

appearance. Programmed to display an 

aggressive behaviour (punching outwards) 

towards the subordinate AI at the beginning 

of the game level. 

A single ‘subordinate’ AI with hunched, 

emaciated appearance. Programmed to display 

a submissive behaviour (shielding face and 

turning away) in response to the dominant AI at 

the beginning of the game level. 

Three/One Three AIs, all with default AI appearance. Single AI, with default AI appearance. 

Male/Female A single ‘male’ AI, with default AI appearance. A single ‘female’ AI, modified to enhance the 

waist-to-hip ratio and reduce muscle mass. 

Large/Small A single AI larger than the player. Otherwise 

has the default AI appearance. 

A single AI smaller than the player. Otherwise 

has the default AI appearance. 

 

5.3.5. Reward groups 

Participants were assigned to one of two ‘reward groups’ designed to investigate how 

demonstrator success (in addition to their individual characteristics) influenced their likelihood 

of being copied. In the ‘Same Rewards’ group (n = 72), the choices made by both demonstrators 

in each demonstrator condition were equally profitable and so participants received the same 

in-game payoff regardless of which demonstrator they copied. This condition was used to 

investigate participants’ innate biases towards particular demonstrators when there was no 

direct benefit of choosing to learn from specific individuals. In the ‘Different Rewards’ group (n 

= 71), different solutions to a task resulted in a different payoff. For each demonstrator 

condition, demonstrator A always provided a higher payoff solution to each task compared 

demonstrator B, thus giving participants the opportunity to learn which demonstrators tended 
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to be the most successful. Comparisons of the two reward groups were made to investigate 

whether participants tended to learn from more successful demonstrators, beyond any innate 

preferences they may hold for demonstrators with particular characteristics. 

 

5.3.6. Tasks 

5.3.6.1. Token task 

This task (inspired by Horners et al.’s 2010 experiment on chimpanzees) was designed to test 

the influence of different demonstrators on participant choices when making simple, binary 

decisions. Participants were required to pick up and deposit a token into one of two possible 

containers – blue(/left) or yellow(/right) – over 10 rounds per demonstrator condition to receive 

food rewards (Figure 5.1). Participants were instructed to gather as many food rewards as they 

could. They were informed that the rewards varied between rounds and that the number of 

rewards they received would depend on their choice of container. This task was replicated once 

per demonstrator condition (i.e. six game levels in total). 

At the start of each round, a black token for the player and a white token for each of the AIs 

were placed on the ground. Participants could pick up their own token using the ‘?’ computer 

key (following instructions given prior to the experiment), but were unable to pick up the AIs’ 

tokens in order to prevent players gaining access to additional rewards. At the start of each 

round, a ‘reward number’ was distributed to each of the two containers. The reward number 

varied between rounds in order to add uncertainty to a participant’s choice. Demonstrators 

would then pick up their tokens and deposit them into opposing containers. The reward 

dispensed to demonstrators were not visible, thus encouraging the participant to make choices 

based on the characteristics of the demonstrators rather than the number of rewards they 

witnessed each receiving. Participants deposited their token into a container by approaching 

that container and pressing the ‘?’ key. This caused a number of food rewards (equivalent to 

that container’s reward number) to be released from the container, which the player could then 

collect by walking into them. Once all tokens were deposited (by both the participant and all the 

AIs present) during a particular round, they regenerated in their original positions. This was done 

(i) to make each round distinct and prevent overlap and (ii) to force the participant and AIs to 

move back to their original position before making their next choice. The current round number 

and the total number of food items collected during the current demonstrator condition were 

displayed onscreen. After 10 rounds of token deposits were completed, there was a 5 second 
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delay to allow the player to finish collecting any dispensed food rewards. The participant was 

then given their ‘food collection score’ before moving to the next level / demonstrator condition. 

This score was the number of food items they had collected during the current level, as a 

percentage of the number of food items they could have collected if they would have chosen 

the ‘best’ container during each round.  

 

 

Figure 5.1. The Container task. (A) In-game representation. Participants control the player (black figure) 

to pick up a token (black cylinder) and deposit it in one of two possible containers (blue and yellow 

structures at the back of the environment) to receive food rewards. Two sets of demonstrator AIs (white 

figures) can be observed picking up their own tokens (white cylinders) and depositing them into one of 

the two containers. In this example, the participant is observing the choices made by a large demonstrator 

AI and a small demonstrator AI. The amount of food collected by the participant is displayed at the bottom 

of the screen and the current round is displayed at the top left. (B-C) Schematic representations of the 

task. The black circle represents the player, blue and red circles represent the demonstrator AIs, stars 

represent the tokens to be deposited into the containers, blue and yellow squares represent the 

containers (with the rewards contained within them shown as a number) and blue and red arrows 

represent AI choices. (B) In the ‘Same Rewards’ group, both containers hold equal rewards. (C) In the 

‘Different Rewards’ group, containers hold different rewards and the highest reward is always chosen by 

demonstrator A.  

(A) 

  

(B) (C) 
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For the Same Rewards group, the participant received the same number of food items regardless 

of which container they chose on a particular round, i.e. the reward number was equivalent for 

both containers (Figure 5.1B). The reward number varied between rounds and was always a 

random number between one and three. Each round, one demonstrator was randomly selected 

to deposit their token into the yellow container, while the other demonstrator chose the blue 

container. Demonstrator choices were randomised in this way so that a distinction could be 

made between participants favouring a particular demonstrator versus favouring a particular 

container.  For the Different Rewards group, the number of food items dispensed differed 

between containers (Figure 5.1C). At the start of each round, one container was randomly 

selected as the ‘best’ choice and was allocated a random reward number between four and six. 

The other container was selected as the ‘worst’ choice and was allocated a random reward 

number between one and three. For each demonstrator condition, demonstrator A always 

chose the container with the best reward. 

 

Data collection and preparation. The container chosen by the player and each demonstrator 

during each round were logged. A participant was said to have copied a particular demonstrator 

if they chose the same container as that demonstrator during a given round. Since there were 

only two possible choices in this task, participants were therefore forced to choose the same 

container as one of the demonstrators (with the exception of the Soc/Asoc condition, where one 

option was always undemonstrated). As such, there was no scope for asocial learning that was 

completely independent of demonstrator choices. For each participant, the total number of 

times each demonstrator was copied during each demonstrator condition was then calculated. 

 

5.3.6.2. Route choice task 

This task (inspired by Laland and Williams’ 1998 experiment on guppies) was designed to test 

how human route choice preferences within naturalistic, large-scale environments were 

influenced by the choices of other individuals. Participants were placed in a series of forest 

environments and instructed to find their way through the forest to a hidden cave using as little 

energy as possible. In each environment, two clear, treeless paths were available (left or right), 

both of which led to the end point (Figure 5.2). Three replicates were used for each of the six 

demonstrator conditions (18 game levels in total). Each replicate consisted of a new, visually 
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distinct environment, with the end point and two clear paths positioned differently. Participants 

began each level with an energy value of 100%. Movement caused this energy value to deplete. 

The player’s current energy value was displayed as a bar at the bottom of the screen during 

gameplay and the final energy value for that level was additionally displayed as a numerical 

value onscreen once the player reached the cave.  

 

 

Figure 5.2. The Route Choice task. (A) In-game representation. Participants control the player (black 

figure) in a large, virtual forest environment. Two clear paths through the forest are located on the left 

and right-hand sides of the player’s starting position (indicated by red arrows). Two sets of demonstrator 

AIs (white figures) make opposing decisions about which path to take. This example shows the Three/One 

demonstrator condition, where three AIs follow one of the clear paths to the end point and a single AI 

follows the alternative path. The remaining energy of the player is shown as a blue bar at the bottom of 

the screen and depletes as the player moves. (B-C) Schematic representations of the task. The black circle 

represents the player, blue and red circles represent the demonstrator AIs, the grey square represents 

the end point, light green areas represent the clear paths through the forest and blue and red arrows 

represent the paths chosen by the demonstrators. (B) In the ‘Same Rewards’ group, the two clear paths 

are of approximately the same length. (C) In the ‘Different Rewards’ group, one path is substantially longer 

than the other and the shortest path is always chosen by demonstrator A. 

 

 

(B) (C) 

(A) 
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For the Same Rewards group, the length of each clear path, and so the energy required to 

navigate them, was approximately the same (Figure 5.2B). For each level, one demonstrator was 

randomly chosen to follow the left-hand path and the other demonstrator followed the right-

hand path. For the Different Rewards group, one path was substantially longer than the other 

(Figure 5.2C) and so was more energetically costly to travel. Demonstrator A always followed 

the shorter path and demonstrator B always followed the longer path. The direction (left or 

right) of the shortest path was randomised between replicates to prevent participants basing 

their choices purely on direction. Participants were given complete freedom of movement – 

they could choose to follow the demonstrators, choose one of the paths independently, or 

ignore the clear paths entirely and attempt to navigate the trees instead. Thus, participants had 

the opportunity to use social information or make completely independent decisions. 

 

Data collection and preparation. The locations of the player and all AIs were logged at one 

second intervals throughout gameplay and this data was used to map the exact routes taken by 

each character. For each level, a participant was said to have copied a particular demonstrator 

if their location fell within the demonstrator’s path choice at least half the time. This was 

calculated in R (v.4.0.4). Using the gBuffer function from the rgeos package (Bivand and Rundel, 

2020), a 15-unit buffer, which approximately matched the width of the clear paths, was created 

around each demonstrator’s route. Using every fifth data point from the player’s location data, 

the point.in.polygon function from the sp package (Pebesma and Bivand, 2005; Bivand et al., 

2013) was used to calculate how many of the player’s location points fell within the buffer region 

of each demonstrator’s route. If ≥50% of player’s route was contained within the buffer region 

of a particular demonstrator’s route, the participant was considered to have copied the route 

choice of that demonstrator. Otherwise, the participant was considered to have navigated the 

forest independently. For each participant, the total number of times each demonstrator was 

copied and the total number of times a route was chosen asocially were calculated. 

 

5.3.6.3. Foraging task 

This task (inspired generally by experiments on free-roaming animal populations) was designed 

to test the influence of different demonstrators on participant behaviour in a realistic foraging 

scenario. Participants were given 200 seconds to explore a large, open environment in search of 

food (Figure 5.3). There was one replicate per demonstrator condition (i.e. six game levels in 
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total), each with a distinctly different environment. Within each environment, there were 8 

randomly located food patches, each containing a total of 40 food items (two sets of 20, where 

each set was a different ‘food type’). Food items all looked like mushrooms, but different food 

types were coloured differently and, in some cases, had different nutritional values 

(Supplementary Material, Table 5.S7). The player was given a food score and health bar, which 

were displayed onscreen. When the player collected a food item, its nutritional value was added 

to their food score. Food could also be poisonous (i.e. have a negative nutritional value). 

Collecting poisonous food reduced the player’s food score and health. If the player’s health 

reached zero due to eating poisonous food items, the current level ended prematurely. 

Participants were informed of this prior to starting the task. Once 200 seconds had elapsed, 

participants were given their food score as a percentage of the maximum score that could have 

been obtained if they had collected all non-poisonous foods in the area, before proceeding to 

the next level.  

For each demonstrator condition, three of the eight available food patches were visited by one 

demonstrator, another three were visited by the other demonstrator and the remaining two 

were not visited by any demonstrator (i.e. they could only be discovered independently). Each 

demonstrator visited their chosen food patches in a random order. Once they reached a food 

patch, demonstrators would ‘eat’ 10 food items from only one of the available food types 

located there, thus demonstrating food preferences to the participant while leaving the majority 

of food items for the player to collect. 
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Figure 5.3. The foraging task. (A) In-game representation. Participants control their player to explore a 

large environment in search of patches of food. Demonstrator AIs convey social information about food 

patches by visiting them. In this example, a male and female demonstrator AI display this information. 

Participants are given 200 seconds to explore the environment. The remaining time is shown at the top 

right of the screen. On the bottom left of the screen, participants can see their current number of food 

items collected. At the bottom middle of the screen, participants are shown their remaining health, which 

depletes when they collect poisonous food. (B-C) Schematics of the task. The black circle represents the 

player, blue and red circles represent demonstrator AIs, light green areas represent food patches, 

different coloured crosses represent different food types (and their size represents their nutritional value) 

and red and blue arrows represent the food patch choices made by the demonstrators. Each set of 

demonstrator AIs visits three of the eight possible food patches and eats only one food type from it. Two 

‘asocial’ food patches are not visited by any demonstrator. (B) In the ‘Same Rewards’ group, all food items 

have the same nutritional value. (C) In the ‘Different Rewards’ group, different food types have different 

nutritional values. Demonstrator A visits the three food patches containing the two most profitable food 

types and eats only the most profitable of these. Demonstrator B visits the food patches containing the 

two least profitable food types, but eats only the most profitable of these. 

 

(B) (C) 

(A) 
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For the Same Rewards group, all food patches contained the same two food types, each of which 

had the same nutritional value of +1 (Figure 5.3B). For the Different Rewards group, each food 

patch contained different food types with different nutritional values (Figure 5.3C). The three 

food patches visited by demonstrator A contained two food types with the highest nutritional 

values, +5 and +3. The three food patches visited by demonstrator B contained two food types 

with the lowest nutritional values, +1 and -1. The latter was a poisonous food type which 

depleted the player’s health and food score. In each case, the demonstrator only ‘ate’ the 

highest-value food type in their visited patches. The remaining two food patches that were 

visited by no demonstrators contained two food types, both with nutritional values of +1. Thus, 

demonstrator choices were arranged in such a way that copying the food patch choice of the 

best demonstrator would result in the most profitable food patches being found, and copying 

the exact food type preferences of demonstrators would result in the most nutritious foods 

being collected and poisonous foods being avoided. Here, I report findings for participant food 

patch choice only. For further details and analyses on specific food type preferences, please 

refer to the Supplementary Material (Tables 5.S7-S8; Figure 5.S2). 

 

Data collection and preparation. Each time the player or one of the demonstrators entered a 

food patch, the location and time of the visit was logged. A player was considered have copied 

a demonstrator’s food patch choice if they entered a food patch within 20 seconds before or 

after that demonstrator had entered the same food patch. This time window gave the player 

enough time to follow a distant demonstrator into a food patch and also gave the demonstrator 

enough time to catch up if the player had overtaken them en route to the food patch. If a player 

entered a food patch that was not visited by any demonstrators within this time window, this 

was considered an asocial food patch choice. For each participant, the total number of times 

each demonstrator was copied and the total number of times an asocial decision was made were 

calculated. 

 

5.3.7. Post-study questionnaire 

After the experiment, participants completed a post-study questionnaire. This questionnaire 

was used to gather information about individual characteristics that may influence social 

information use, including age and gender. As previous research has indicated a correlation 

between social information use and aggression levels (e.g. Chapter 3; Bandura, 1961), I also 
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obtained self-assessed aggression scores for each participant, using Bryant and Smith’s (2001) 

aggression questionnaire, to investigate whether aggression levels influenced the social 

information use in humans. Participants were given twelve statements (from Bryant and Smith, 

2001) and asked to rate each on a six-point scale from ‘Not at all characteristic of me’ to ‘Very 

much characteristic of me’. Statements related to different types of aggression (physical 

aggression, verbal aggression, anger and hostility) and were given in the randomised order 

suggested by Bryant and Smith (2001). I also considered that a participant’s tendency to play 

video games may influence their general behaviour within VERSE – e.g. those who play video 

games often may have a tendency to be more exploratory. Participants were therefore asked 

how often they played video games in their everyday lives (on a 5-point Likert scale from ‘never’ 

to ‘daily’) and whether they found the game used in the experiment easy to control (yes/no).  

 

5.3.8. Statistical analysis 

All statistical analyses were conducted in R (v.4.0.4) (R Core Team, 2022). Using the data on the 

number of times each demonstrator and no demonstrator were copied for each task, a series of 

binomial Generalised Linear Models (GLMs) with a logit-link function were used to model the 

tendency of participants to favour certain types of learning over others. Unless stated otherwise, 

I used data from the Same Rewards group in order to model general social learning biases, 

irrespective of demonstrator success or any differences in payoff. Due to the large number of 

models tested for each hypothesis, p-values were corrected for multiple comparisons using the 

false discovery rate (FDR) method (Benjamini and Hochberg, 1995; Pike, 2011) via the p.adjust 

function in R (R Core Team, 2022). I tested several hypotheses concerning participants’ use of 

social information within my environments, as detailed below.  

 

(i) Do individuals show a preference towards learning socially or asocially? 

Firstly, I used binomial GLMs to model the tendency of participants to learn socially (copy any 

demonstrator) or asocially (copy no demonstrator). This was modelled in two ways – first, as the 

tendency of participants to favour copying a single demonstrator over making an alternative, 

asocial decision in the Soc/Asoc condition and, second, as the tendency of participants to favour 

copying either demonstrator over making an independent choice across all demonstrator 

conditions. The latter was modelled for the Route Choice and Foraging tasks only, as the 

Container task permitted only binary choices that, when two demonstrators were present in the 
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environment, did not allow participants to make decisions completely independently of 

demonstrator choice. This method was applied to data from the Same and Different Rewards 

groups to establish how variation in rewards influenced social information use. 

 

(ii) Is the preference for social/asocial learning “adaptive” in the Route Choice and 

Foraging environments? 

Secondly, based on the results of the above models, I asked whether participants’ overall 

preference (if any) towards social versus asocial learning was beneficial within these virtual 

environments. The following analysis was conducted only for the Route Choice and Foraging 

tasks, i.e. the tasks in which participants had the freedom to choose their own solutions. The 

Container task is not included because it constrained participants to choosing one of two 

outcomes, each of which was equally profitable for participants in the Same Rewards group. For 

each task, I split participants into two groups – those who tended to learn socially (i.e. copied a 

demonstrator >50% of the time) and those who tended to learn asocially (i.e. copied a 

demonstrator <50% of the time) across all demonstrator conditions. I then compared the 

average success (measured as final food scores or final remaining energy values) of largely social 

versus largely asocial learners across all demonstrator conditions. Since scores could not always 

be transformed into a Normal distribution, Mann-Whitney U tests were used to determine 

whether one group was significantly more successful than the other. 

 

(iii) Do participants vary in their use of social information? 

Thirdly, based on previous research which has suggested that some individuals are mainly 

asocial learners while others are mainly social learners (Efferson et al., 2008; Toelch et al., 2014; 

Miu et al., 2020) I investigated whether participants in the Same Rewards group varied in their 

reliance on social learning. I used a series of Spearman’s rank-order correlation tests to 

determine whether participants were consistent in their use of social information across tasks – 

i.e. whether certain individuals could be categorised based on their overall reliance on social 

information across different contexts. Specifically, I obtained pairwise correlation measures for 

the proportion of times each participant learned socially within the Soc/Asoc demonstrator 

condition for all three tasks, and across all demonstrator conditions for the Route Choice and 

Foraging tasks. 
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(iv) When learning socially, do individuals display innate biases towards learning from 

specific types of demonstrators, irrespective of demonstrator success? 

Fourthly, to investigate general social learning biases towards demonstrators with particular 

characteristics, binomial GLMs were used to model likelihood that participants in the Same 

Rewards group copied one demonstrator over the other in the Dom/Sub, Three/One, 

Male/Female and Large/Small demonstrator conditions. Since all demonstrators in the Same 

Rewards group displayed equally profitable behaviours, any biases towards copying particular 

demonstrators could not be due to differences in demonstrator success.  

It is worth noting here that AIs were categorised based almost entirely on physical differences, 

and that each participant may have perceived these differences in different ways. For example, 

gender perceptions – which are culturally influenced – may not necessarily align with physical 

sex differences (although the pre-study questionnaire revealed that, on this occasion, 

participants unanimously identified the ‘male’ AI as male and the ‘female’ AI as female based on 

physical differences alone; Supplementary Material, Tables 5.S4-S5). Here, I use the term ‘sex’ 

when describing any biases toward AIs in the Male/Female demonstrator condition. The 

rationale for this choice of term is that I am interested in larger scale evolutionary patterns of 

sex bias in social learning. However, I recognise that in the context of humans there will be a 

considerable influence of social gender norms on those sex biases, such that the two are very 

difficult to disentangle. It should therefore be emphasised that this part of the experiment 

focussed on whether general biases towards certain categories of demonstrator – as defined by 

physical and, in the case of the dominant/subordinate pairing, behavioural differences – exist 

within the study group, rather than the underlying psychological processes dictating such biases. 

 

(v) Do individuals preferentially copy more successful demonstrators? 

Finally, I investigated whether participants were more likely to copy more successful 

demonstrators, beyond any innate preferences for those with particular characteristics. To do 

this, I combined data from the Same Rewards and Different Rewards groups and used binomial 

GLMs to model the tendency of participants to copy demonstrator A over demonstrator B across 

the Dom/Sub, Three/One, Male/Female and Large/Small conditions, with reward group as a 

predictor. In other words, I analysed whether participants copied demonstrator A significantly 

more when it displayed more profitable behaviours than demonstrator B, compared to when 

both demonstrators used equally profitable behaviours. An ANOVA test was then used to 
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establish whether the model that included reward group as a predictor provided a better fit to 

the data than a corresponding null model.  

 

For hypotheses i, iv and v, I additionally tested whether participants’ individual characteristics 

(age, gender, aggression, etc) influenced their choices by running a series of binomial GLMs for 

each hypothesis, as described in the main analysis but with each individual characteristic added 

as predictors. The results of these additional analyses revealed no consistent or clear pattern. 

The results and further details on the analysis of individual characteristics are therefore reported 

in the Supplementary Material (Tables 5.S11-S13). 

 

5.4. Results 

(i) Do individuals show a preference towards learning socially or asocially? 

In the Soc/Asoc demonstrator condition, where a single AI demonstrated one option and all 

other options remained undemonstrated, participants were equally likely to learn socially as 

asocially in the Container (50.0% of all learning events social) and Route Choice (47.1% social) 

tasks, but were significantly less likely to learn socially than asocially in the Foraging task, with 

only 21.4% of learning events involving copying others, when demonstrators displayed equally 

profitable solutions (i.e. in the Same Rewards group) (Figure 5.4A). This result held both in their 

initial responses and overall across all choices made (Table 5.2). In treatment conditions where 

multiple options were demonstrated by different AIs, participants still had the option to ignore 

all social information in the Route Choice and Foraging (but not the Container) tasks. Taken 

across all demonstrator conditions, social learning accounted for an estimated 41.6% of learning 

events in the Route Choice task and 33.2% of learning events in the Foraging task (Figure 5.4B) 

– a statistically significant preference for asocial learning in both cases (Table 5.2). In other 

words, across the duration of the experiment, participants generally chose to find their own 

route through the forest and visit food patches independently of demonstrators. Therefore, 

participants appeared to display a general bias towards learning asocially (e.g. through 

independent exploration of environments) rather than socially. Interestingly, in scenarios where 

rewards varied (i.e. in the Different Rewards group), there was an increased reliance on social 

learning compared to scenarios where rewards were equal. This resulted in a general preference 

towards social learning in the Container (71.8% social in the Soc/Asoc condition) and Route 

Choice (56.6% social across all demonstrator conditions) tasks, although a preference for asocial 
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learning remained in the Foraging task (41.3% social across all demonstrator conditions) (Figure 

5.4C-D) (Supplementary Material, Table 5.S6). 

 

 

Figure 5.4. The proportion of times participants learned socially (rather than asocially) across three tasks, 

in (A-B) in scenarios where demonstrators displayed equally profitable behaviours, and (C-D) in scenarios 

where demonstrated behaviours received varying rewards. (A, C) In the Soc/Asoc demonstrator condition, 

only one option was demonstrated, thus social learning involved following the demonstrated option while 

asocial learning involved choosing an alternative, undemonstrated option. (B, D) Combined across all 

demonstrator conditions, for the Route Choice and Foraging tasks only. In this case, social learning 

involved choosing one of the demonstrated options and asocial learning involved choosing an option that 

(A)  Soc/Asoc condition (B) All conditions 

Same Rewards 

(C) Soc/Asoc condition (D) All conditions 

Different Rewards 
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was not demonstrated (e.g. choosing a route that was different to both demonstrators). Error bars 

represent Clopper-Pearson 95% confidence intervals. Horizontal reference line (dashed blue) is at 0.5 and 

indicates equal amounts of social and asocial learning occurred.  

 

(ii) Is the preference for social/asocial learning “adaptive” in the Route Choice and 

Foraging environments? 

In section (i), I demonstrated that participants in the Same Rewards group showed a general 

preference for learning asocially. When summed across all demonstrator conditions, 

participants in the Same Rewards group who favoured asocial learning, on average, completed 

the Route Choice task with significantly more energy remaining (social score: 73.3%; asocial 

score: 76.7%; Mann-Whitney U test; U(1) = 191, p < 0.001) and collected significantly more food 

in the Foraging tasks (social score: 35.0%; asocial score: 41.2%; Mann-Whitney U test;  U(1) = 

213, p = 0.042) than those who favoured social learning (Figure 5.5A-B). Thus, a preference for 

asocial learning did appear to be profitable. Results were qualitatively similar when the same 

analysis was carried out on data from the Soc/Asoc demonstrator condition only (Supplementary 

Material, Figure 5.S1). However, the adaptive value of favouring asocial learning was degraded 

when rewards (and demonstrator success) varied – in the Different Rewards group, participants 

tended to be equally successful regardless of whether they favoured social or asocial learning in 

both the Route Choice (social score: 74.5%; asocial score: 74.7%; Mann-Whitney U test; U(1) = 

498, p= 0.402) and Foraging tasks (social: 43.4%; asocial: 40.2%; Mann-Whitney U test; U(1) = 

652, p = 0.221) (Figure 5.5C-D). This coincided with the general drop in reliance on asocial 

learning, described above. 
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Figure 5.5. The average success rates of participants who favoured social and asocial learning, across all 

demonstrator conditions. The top box shows the success rates in (A) the Route Choice task, measured as 

the average percentage of energy remaining, and (B) the Foraging task, measured as the average food 

score as a percentage of the maximum possible food score, when all demonstrators displayed behaviours 

of equal payoff. The bottom box shows the success rates in (C) the Route Choice task and (D) the Foraging 

task when different demonstrated behaviours received different payoffs. Thick horizontal lines represent 

medians and boxes indicate the interquartile range. Whiskers extend to 1.5x the interquartile range.     

(A)    Route Choice (B)    Foraging 

Same Rewards 

Different Rewards 

(C)    Route Choice (D)    Foraging 
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Table 5.2. Intercept estimates, standard error, z-values and p-values for binomial GLMs modelling the likelihood of participants learning socially over asocially in the Soc/Asoc 

demonstrator condition and across all demonstrator conditions, during each of the three tasks. A significant positive term indicates that participants were more likely to learn socially, 

while a significant negative intercept term indicates that participants were more likely to learn asocially. Analyses were conducted using data on (i) all choices made and (ii) just the 

initial choices made during each demonstrator condition. P-values are adjusted for multiple comparisons using false discovery rates. Significant p-values (< 0.05) are highlighted in 

bold. 

  Container  Route Choice  Foraging 

 Condition Intercept Std. Error z p 
 

Intercept Std. Error z p 
 

Intercept Std. Error z p 

All choices Soc/Asoc 0.000   0.076 0 1 
 

-0.118 0.140 -0.840 0.446 
 

-1.301 0.138 -9.439 <0.001 

 All - - - - 
 

-0.339 0.063 -5.367 <0.001 
 

-0.700 0.054 -12.900 <0.001 

                

Initial choices Soc/Asoc 0.465      0.246    1.895    0.096  -0.357      0.246 -1.448   0.185  -0.847      0.261 -3.249   0.003  

 All - - - -  -0.348   0.110    -3.170   0.004  -0.160      0.107   -1.495 0.185 
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Table 5.3. Intercept estimates, standard error, z-values and p-values for binomial GLMs modelling the likelihood of participants copying the choices of demonstrator A over 

demonstrator B when learning socially, across only the demonstrator conditions where two demonstrators were available, during each of the three tasks. A significant positive 

intercept term indicates that the participants were more likely to copy demonstrator A, while a significant negative term indicates that participants were more likely copy demonstrator 

B. Analyses were conducted using data on (i) all choices made and (ii) just the initial choices made during each demonstrator condition. P-values are adjusted for multiple comparisons 

using false discovery rates. Significant p-values (< 0.05) are highlighted in bold. 

  Container  Route Choice  Foraging 

 Condition Intercept Std. Error z p 
 

Intercept Std. Error z p 
 

Intercept Std. Error z p 

All choices Dom/Sub 0.166     0.076     2.190    0.077   0.381 0.245 1.556 0.227  0.511 0.220 2.320 0.069 

 Three/One 1.046     0.086   12.140 <0.001  1.235 0.284 4.347 <0.001  0.490 0.181 2.702 0.034 

 Male/Female 0.006    0.076    0.076      0.981  -0.249 0.214 -1.163 0.420  0.497 0.189 2.631 0.036 

 Large/Small -0.023 0.076 -0.302     0.922  0.058 0.197 0.296 0.922  -0.019 0.195 -0.098 0.981 

                

Initial choices Dom/Sub 0.465      0.246    1.895    0.139  0.647  0.372    1.737   0.178  0.916      0.418     2.190  0.077  

 Three/One 0.715      0.255    2.808   0.030  2.526   0.735    3.437 0.005  0.201      0.318    0.631 0.745 

 Male/Female -0.114      0.239   -0.478     0.844  -0.636      0.412   -1.543 0.227  0 0.324       0 1 

 Large/Small -0.057     0.239   -0.239     0.927  0.348      0.377    0.924 0.570  0.236     0.345 0.684 0.741 
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(iii) Did participants vary in their use of social information? 

In section (i), I explored whether social or asocial learning was predominant in the different 

tasks. Here, I test whether individual participants were consistent in their use of social 

information across tasks. For each task, participants in the Same Rewards group varied 

substantially in the proportion of times they chose to learn socially. This ranged from a complete 

ignorance of to a complete reliance on social information, depending on the task and participant 

in question. In the Soc/Asoc condition, the proportion of times a participant copied the single AI 

ranged from 0 to 1 in all three tasks (Container average: 0.5 ± 0.21 SD; Route Choice average: 

0.47 ± 0.38 SD; Foraging task average: 0.22 ± 0.29 SD). There was no significant correlation 

between a participant’s tendency to copy versus ignore the single AI across the three tasks in 

the Soc/Asoc condition (Spearman’s rank tests: Container—Route, rs(65) = -0.02; p = 0.87; 

Container—Foraging, rs(67) = -0.03; p = 0.81; Route—Foraging, rs(66) = 0.17; p = 0.18) (Figure 

5.6A-C). When taken across all demonstrator conditions, the proportion of times a participant 

copied either demonstrator rather than opting for an alternative, asocial option ranged from 

0.07 to 1 for the Route Choice task (average: 0.41 ± 0.27 SD) and from 0 to 0.83 for the Foraging 

task (average: 0.34 ± 0.20 SD). There was a moderate, statistically significant correlation in each 

participant’s tendency to copy rather than find an alternative solution across the Route Choice 

and Foraging tasks when data was combined across demonstrator conditions (Spearman’s rank 

test: rs(67) = 0.30; p = 0.01) (Figure 5.6D). Note that combining participant choices across all 

demonstrator conditions may give a more precise measure of social learning tendency due to 

the larger number of replicates the data is taken over (5 replicates for each participant when 

taken across all demonstrator conditions, compared to 1 replicate for the Soc/Asoc condition 

only). Overall, this suggests that participants displayed some consistency in their inclination 

towards using social information across different tasks and demonstrator conditions, but not to 

the extent that they could be categorised as solely social or asocial learners.  
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Figure 5.6. Correlations between the proportion of times each participant used social information in each 

pair of tasks. (A-C) For the Soc/Asoc condition only (i.e. when only one demonstrator was present and all 

other choices were considered asocial learning): (A) Container ~ Route Choice. (B) Container ~ Foraging. 

(C) Route Choice ~ Foraging. (D) Across all demonstrator conditions (i.e. the proportion of times any 

available demonstrator was copied as opposed to making a completely independent decision): Route 

Choice ~ Foraging. In all cases, each data point represents an individual participant. Regression lines are 

also shown. 

 

 

 

(A)  (B)  

(C)  (D)  
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(iv) When learning socially, do individuals display innate biases towards learning from 

specific types of demonstrators, irrespective of demonstrator success? 

Dominance bias. When both dominant and subordinate demonstrators were equally successful, 

participants copied the dominant demonstrator more often than the subordinate in the 

Container (54.1% of social learning events copied dominant), Route Choice (59.4% dominant) 

and Foraging (62.5% dominant) tasks (Figure 5.7A). After FDR corrections, this bias towards 

copying the dominant demonstrator was only statistically significant in the Foraging task (Table 

5.3). Participants also demonstrated a significant initial bias towards copying the dominant 

demonstrator in the Foraging task (Table 5.3). 

Frequency bias. Participants copied the majority more often than the minority in the Container 

(74.0% majority), Route Choice (77.5% majority) and Foraging (62.0% majority) tasks (Figure 

5.7B). This bias towards the majority was statistically significant across all tasks (Table 5.3). 

Participants also displayed a significant initial bias towards copying the majority in the Container 

and Route Choice tasks (Table 5.3). 

Sex bias. Participants did not display any sex-based bias in the Container task (50.1% male). The 

female demonstrator was copied more often in the Route Choice task (56.2% female) but this 

was not statistically significant (Table 5.3). The male demonstrator, however, was copied 

significantly more often in the Foraging task (62.2% male) (Table 5.3) (Figure 5.7C). 

Size bias. Participants did not display any significant bias towards demonstrators of different 

sizes in either the Container (49.4% large), Route Choice (51.5% large) or Foraging (49.5% large) 

tasks (Table 5.3; Figure 5.7D). 
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Figure 5.7. Preferences based on demonstrator characteristics. The proportion of times participants 

copied (A) the dominant over the subordinate demonstrator, (B) the majority (three demonstrators) over 

the minority (one demonstrator), (C) the male over the female demonstrator and (D) the large over the 

small demonstrator, during the Container, Route Choice and Foraging tasks. In all cases, each 

demonstrator displayed equally profitable behaviours. Error bars represent Clopper-Pearson 95% 

confidence intervals. Horizontal reference line (dashed blue) is at 0.5 and indicates no preference for 

either demonstrator.  

 

 

 

(A) Dominance bias (B) Frequency bias 

(C) Size bias (D) Sex bias 



Chapter 5 2022 PhD thesis | C. Easter 

235 
 

 

(v) Do individuals preferentially copy more successful demonstrators? 

When learning socially, participants in the Different Rewards group displayed a strong, 

statistically significant bias towards copying the more successful demonstrator (demonstrator 

A) over the less successful demonstrator (demonstrator B) in the Container (75.7% of social 

learning events copied the successful demonstrator), Route Choice (74.2% successful) and 

Foraging (72.8% successful) tasks (Table 5.4; Figure 5.8). This pattern was consistent across 

almost all demonstrator condition/task combinations (Supplementary Material, Table 5.S9), 

suggesting that a preference for copying the most successful demonstrators was not influenced 

by context or the specific demonstrators involved.  

 

 

Figure 5.8. The proportion of times participants copied the most successful over the least successful 

demonstrator (i.e. the proportion of times demonstrator A was copied over demonstrator B in scenarios 

where rewards varied) across the three tasks. Data is collated across the Dom/Sub, Three/One, 

Male/Female and Large/Small demonstrator conditions, i.e. conditions in which two demonstrators were 

present. Error bars represent Clopper-Pearson 95% confidence intervals. Horizontal reference line 

(dashed blue) is at 0.5 and indicates no preference for either demonstrator. 

 

As demonstrators A and B varied in their characteristics – which, as discussed above, influenced 

their likelihood of being copied – any innate preferences for the demonstrators themselves may 

have contributed to participants’ general inclination to copy the more successful demonstrators. 

For example, the tendency of participants in the Different Rewards group to copy the majority 

Success bias 
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in the Three/One condition (Supplementary Material, Table 5.S9) may have been because the 

majority displayed more profitable behaviours, but may have also been influenced by an innate 

bias towards copying the majority, regardless of direct payoffs, as discussed above. Indeed, 

demonstrator A was, on average, copied more often even in the Same Rewards group, when 

they did not display more profitable behaviours (Supplementary Material, Figure 5.S3) – 

although this tendency was less pronounced than when demonstrator success did vary. 

To investigate success-based biases more thoroughly, I therefore compared participants’ 

tendency to copy demonstrator A over demonstrator B in the Different Rewards group to that 

of participants in the Same Rewards group. Demonstrator A was significantly more likely to be 

copied in the Different Rewards group (i.e. when they displayed more profitable behaviours) 

than the Same Rewards group (i.e. when their behaviours were no more profitable than the 

alternative demonstrator) (Table 5.4) and GLMs predicting the likelihood of demonstrator A 

being copied performed significantly better when reward group was included as an independent 

factor (Table 5.S10). In other words, participants’ tendency to copy particular demonstrators 

was significantly enhanced beyond any innate preferences when those demonstrators displayed 

higher-payoff behaviours. This strongly suggests that participants were strategic in their social 

information use, favouring the behaviours of more successful demonstrators when learning 

socially.  

 

Table 5.4. Parameter estimates, standard error, z-values and p-values for binomial GLMs modelling the 

likelihood that participants copied demonstrator A over demonstrator B in scenarios where rewards were 

either the same or different, as measured by the RewardGroup factor, across the three tasks. The 

intercept is taken as RewardGroup = Same. The estimate for the RewardGroup (Different) parameter 

therefore represents the increase in likelihood of copying demonstrator A when demonstrator A was 

more successful than demonstrator B. Data was collated across the Dom/Sub, Three/One, Male/Female 

and Large/Small demonstrator conditions. P-values are adjusted for multiple comparisons using false 

discovery rates. Significant p-values (< 0.05) are highlighted in bold. 

Task Parameter Estimate Std. Error Z p 

Container Intercept 0.279     0.038   7.309   <0.001 

 RewardGroup (Different) 0.648     0.057   11.427 <0.001 

Route Choice Intercept 0.267 0.111 2.408 0.016 

 RewardGroup (Different) 0.790      0.153    5.163 <0.001 

Foraging Intercept 0.372    0.097    3.835 <0.001 

 RewardGroup (Different) 0.612     0.139    4.400 <0.001 
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5.5. Discussion 

In this experiment, I have demonstrated a novel approach to studying human social learning 

behaviour, through the use of specially designed, three-dimensional virtual environments that 

allow participants to express more natural behaviours, across more realistic scenarios and 

spatial scales, than is often possible in laboratory conditions. Using this technology, I explored 

the strategic use of social information by participants completing novel tasks inspired by the 

animal literature – thus allowing direct generalisations to be made across the human / non-

human divide. Overall, I found that participants generally preferred to learn asocially (although 

reliance on social information did vary between individuals and contexts) and that, in certain 

environments, asocial learning allowed participants to exploit more profitable, undemonstrated 

solutions. I also found that participants were strongly biased towards copying the majority over 

the minority and towards copying more successful demonstrators. Below, I discuss my findings 

in detail, including how they compare to previous research from more restrictive laboratory 

experiments and evidence for similarities in social information use across other, unrelated taxa.  

 

Participants displayed a strong overall preference for independent learning. 

Perhaps my most striking finding concerned the way in which participants used social versus 

asocial information. Namely, participants displayed a general preference for learning a task 

independently rather than learning socially. It is widely accepted that social learning and the 

development of cultural norms has been paramount to human survival, enabling us, across our 

evolutionary past, to adapt to many habitats across the globe, beyond what we could have 

accomplished using individual knowledge alone (Herrmann et al., 2007; Tomasello, 2009; Boyd 

et al., 2011; Whiten and Erdal, 2012; Marean, 2015). The fact that humans are highly cultural 

creatures – and culture is, by definition, the product of social transmission of behaviours through 

a population (Laland and Hoppitt, 2003) – suggests that our decisions are highly influenced by 

the decisions of those around us. Theoretical analyses also agree that social learning, provided 

it is strategic, tends to outcompete asocial learning (Rendell et al., 2010; Boyd and Richerson, 

1985). Despite this, several empirical studies have demonstrated, in agreement with my own 

findings, that adult humans are often biased towards using information they have gained 

independently (Yaniv and Kleinberger, 2000; Eriksson and Strimling, 2009; Weizsäcker, 2010). 

This has previously been attributed to the relatively simple, two-option tasks used in such 
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studies, which allow participants to be confident enough in their own decisions to avoid the use 

of social information (Morgan et al., 2012; Muthukrishna et al., 2016). On the contrary, I found 

that participants demonstrated a general bias towards asocial learning when presented with 

relatively complex tasks within complex, spatially explicit, three-dimensional environments.  

This is comparable to the information use strategies of various species, including birds, fish and 

ants, which tend to favour independently acquired over social information unless there is a good 

reason for following others, e.g. asocial information is costly or out of date (Templeton and 

Giraldeau, 1996; Kendal et al., 2004; van Bergen et al., 2004; Czaczkes et al., 2019). It is 

important to note, however, that, in many of these studies, individuals are already in possession 

of asocial information prior to acquiring social information, rather than making a decision to 

learn either socially or asocially, which differs from the methodology used here. It is therefore 

possible that individuals in these studies are favouring information already in their behavioural 

repertoire over conflicting social information, rather than favouring asocial learning per se – 

whereas here, I have demonstrated a general bias for exploring and learning independently 

rather than actively observing and copying others. A general bias for acquiring information 

independently could additionally suggest hierarchical decision making in the way participants 

chose to learn, as suggested by Laland (2004) – i.e. participants first decide whether to learn 

socially or asocially and only if a decision to learn socially is made do they then decide who to 

learn from.  

 

Participants varied, somewhat consistently, in their reliance on social information. 

While participants were generally inclined towards learning asocially, I also found substantial 

inter-individual variation in social information use, which correlated to some degree across 

different tasks. This could not be attributed to any of the individual characteristics tested here; 

namely a participant’s age, gender or aggression levels. In line with my findings, previous 

research on humans typically reports no influence of an individual’s sex on their social 

information use (Mesoudi et al., 2016) – in contrast with animals such as songbirds and 

chimpanzees, for which sex-specific social learning has been demonstrated (Aplin et al., 2013; 

Mesoudi et al., 2016). The influence of age on human social information use, however, is less 

clear. In traditional hunter-gatherer communities, children show a higher reliance on social 

information, while adults are more prone to independent learning (Hewlett et al., 2011; Demps 

et al., 2012). This is comparable to work on other species, including songbirds and otters, which 

also demonstrate higher rates of social learning in juveniles than adults (Langen, 1996; Aplin et 
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al., 2013; Farine et al., 2015; Ladds et al., 2017). While I found no obvious influence of age on 

social information use, it is important to note that the study group used in this experiment were 

all young adults and thus had a very narrow age range. A high reliance on social learning over an 

extended juvenile period in humans may result in an extensive behavioural repertoire by the 

time individuals reach adulthood – which may offer an additional explanation as to why the adult 

individuals in my study group tended to learn independently. However, Whiten et al. (2016) 

demonstrated that western adults and children were equally likely to imitate a knowledged 

individual in a real-world situation; thus, the choice of whether to learn socially or asocially – 

and the influence of age on social information use – may be context specific.  

The role of aggression on an individual’s use of social information has received little attention in 

previous studies. Research on birds has demonstrated that aggression is correlated with other 

individual traits relating to exploratory behaviour, which have been linked to social information 

use. Specifically, less neophobic, more aggressive birds that explore an environment quickly and 

with little attention to detail are more likely to copy the behaviour of tutors than their slower, 

more thorough counterparts (Marchetti and Drent, 2000). Boldness has also been linked to 

social information use in guppies, but with the opposite result – ‘shy’ fish were more likely to 

follow ‘bold’ fish to a novel feeder (Dyer et al., 2009). In the present study, I found no correlation 

between human individuals’ use of social information or preferences towards particular 

demonstrators and their score on Bryant and Smith’s (2001) aggression scale. While I did not 

explore the influence of traits such as boldness or exploratory behaviour on social information 

use in my study, the VERSE system offers a perfect environment for investigating these individual 

influences in humans. Other individual characteristics have been demonstrated to influence 

social information use in both the animal and human literature, including developmental stress, 

reproductive state, past experience (Mesoudi et al., 2016), self-confidence (Morgan et al., 2012), 

and ethnicity / cultural background (Karunanayake and Nauta, 2004; Corriveau et al., 2013, 

2017; DiYanni et al., 2015; Van Leeuwen et al., 2018). It is therefore possible that some other, 

untested traits correlated with social information use in my study group – especially as the social 

learning environments used in this experiment offered a high level of freedom in the way 

participants could behave, thus allowing plenty of opportunity for factors such as an individual’s 

prior knowledge, motivation and general skill level to aid them in completing their objectives. 

Individual variation in social information use has been highlighted in human social learning 

research before. Toelch and colleagues (2014), for example, demonstrated consistent, context-

independent individual differences in reliance on social information. Similarly, Kameda and 

Nakanishi (2002) found that information producer-scrounger dynamics emerged in groups 
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completing computer-based tasks; Eriksson and Strimling (2009) demonstrated variation in 

people’s exploration of additional options, which was linked to gender and cooperativeness; and 

Miu (2017) found that individuals demonstrated flexibility in their use of social information 

when completing a series of computer science problems. Efferson and colleagues (2008) even 

demonstrated the existence of two distinctly different groups of learners in their study group – 

‘conformists’, who show an exaggerated tendency to follow the majority, and ‘mavericks’ who 

ignore social information altogether. In the present study, I did not find evidence that 

participants could be categorised as explicitly as suggested by Efferson and colleagues, but I did 

find a correlation in participants’ reliance on social information between tasks which was 

comparable to Toelch and colleagues’ results, despite the very different methodologies used.  

In addition, as in Miu (2017) and Toelch et al. (2014), I found that individuals fell on a continuous 

spectrum between complete ignorance of and complete reliance on social information and that, 

despite individual preferences for learning socially or asocially, the vast majority of participants 

used some combination of socially and asocially acquired information – and thus, seemed to 

explore both options rather than relying solely on one type of learning. According to Campbell 

et al. (2020), such ‘partial copying’ plays a potentially important role in adaptive information 

transfer. Relying too heavily on social information diminishes opportunities to find alternative 

solutions, while partial copying allows individuals to balance the benefits of exploiting existing 

solutions and exploring new ones. In addition, flexibility in social information use is thought to 

be an important driver of the development of cumulative culture (Miu et al., 2020). Empirical 

work generally considers only when, how and who individuals copy, rather than how much they 

copy – although there is evidence that human children will incorporate both socially and 

asocially learned solutions into their repertoire when solving novel puzzles (Wood et al., 2013a). 

While it was not necessarily my intention to do so, I have demonstrated here that adult humans 

will combine both socially and asocially acquired information when learning novel, complex 

tasks in realistic environments. According to Campbell et al. (2020), such behaviour at the 

individual level should allow whole populations to maintain a diversity of possible solutions – 

including the most optimal solutions – thus offering an adaptive advantage over populations 

that copy too often or too quickly and so risk becoming fixed on sub-optimal behaviours. 

Therefore, it may be more important that a range of degrees of social learning exists at the 

population level to balance innovation and information spread, than that individuals themselves 

are consistent in their degree of social learning. 
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 Participants altered their reliance on social information depending on the context. 

I found that participants’ tendency to learn socially varied in several ways depending on the 

scenario they were faced with. Firstly, participants displayed an increased reliance on asocial 

learning as the tasks became more complex. This is somewhat surprising – one might expect 

that, when faced with more complex tasks, it would become more difficult to find solutions 

independently (e.g. require more random searches of the environment) and so informed 

demonstrators would become more valuable sources of information. Previous work tends to 

agree that both human and non-human animals are more prone to copying others when tasks 

are more difficult (Baron et al., 1996; Laland, 2004; Kendal, Kendal, et al., 2009; Morgan et al., 

2012) – although this is not the case for all species (e.g. task difficulty does not appear to 

influence social information use in otters; Ladds et al., 2017). Nevertheless, in scenarios where 

demonstrators displayed equally profitable behaviours, I found that participants who were 

prone to learning asocially tended to be more successful, suggesting that a reliance on asocial 

learning was beneficial even when tasks were complex. I therefore suggest that this pattern of 

behaviour may not be due to task complexity per se, but due to a combination of greater 

opportunities for asocial learning and increased difficulty in acquiring social information due to 

spatial factors as task complexity increased.  

The tasks used in my study essentially formed a continuum in both spatial scale and the variety 

of alternative, undemonstrated solutions that could be explored. The Container task involved 

making simple, binary decisions in a small environment where demonstrators were always in 

close proximity and where there was little to no opportunity for purely independent decisions 

to be made. The Route Choice task involved an initial decision in a localised area in the presence 

of demonstrators and required participants to locate a single end point – but ultimately required 

navigating longer distances, over which demonstrators quickly moved out of view if they were 

not closely followed, and offered more flexibility in the sense that participants could deviate 

from demonstrated paths. The Foraging task, by comparison, required participants to form 

search patterns across larger landscapes, over which demonstrators quickly became scattered, 

and offered participants a high level of flexibility in the way the task could be solved, in the sense 

that they could navigate the environment with complete freedom and could visit any of the food 

patches, in any order.  

Muthukrishna and colleagues (2016) have previously demonstrated that people are more likely 

to change their decisions in favour of demonstrated solutions as the number of possible options 

increases, which at first glance appears to contradict my results. However, in Muthukrishna and 
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colleagues’ experiment, social information was presented for all options, thus there were no 

options that could be discovered via purely independent exploration. I have, in contrast, 

demonstrated that participants will independently explore complex environments in search of 

more profitable alternative solutions (e.g. shorter routes or undiscovered food patches) than 

are currently available in the social information pool – which has clear adaptive value if it 

prevents individuals from becoming fixed on less profitable behaviours by constant copying. In 

addition, from the Container to the Foraging task, demonstrators became more scattered across 

larger spatial scales, which may have effectively increased the cost of acquiring social 

information by making it more difficult to determine what everyone is doing at a particular time. 

This may have further increased participants’ reliance on asocial learning within these larger, 

more complex environments. Social learning is often assumed to be less costly than asocial 

learning, however an increase in the cost of acquiring social information reduces its adaptive 

value (Mesoudi, 2008). Taken together, this would explain the increased reliance on asocial 

learning as task complexity increased. Due to the restrictions of laboratory conditions that more 

closely resemble my Container task, previous research has not fully considered the influence of 

spatial asynchrony of demonstrators on a participant’s ability to use social information and I 

suggest that this may lead to overestimations of human reliance on social information in more 

realistic scenarios. 

I also reported an increase in social learning when rewards and demonstrator success varied 

compared to scenarios where demonstrated behaviours received equal payoffs. Participants 

who relied more heavily on social learning were no more successful than largely asocial learners 

in these scenarios and so there appeared to be no direct benefit to this increase in social 

learning. Therefore, it may be that participants were instead responding to greater uncertainty 

about their own independent choices caused by variability in potential rewards.  This result is 

indicative of a number of potential social learning strategies, including copy-when-uncertain, 

copy-if-dissatisfied and – since asocial learning was less profitable and therefore more costly to 

acquire in terms of time and energy when the environment contained varying payoffs – copy-

when-asocial-learning-is-costly strategies (Laland, 2004; Boyd and Richerson, 1985). Theoretical 

analyses predict that individuals will increase their reliance on social information, which is 

cheaper but less reliable than sampling directly from the environment, when asocial learning is 

too costly to acquire or when it is difficult to determine the best behaviour to use by oneself – 

e.g. due to variation in yield (Boyd and Richerson, 1985) or delayed rewards (Caldwell and Eve, 

2014) – which appears consistent with the results reported here.  
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Taken together, my findings indicate that a person’s tendency to favour social over asocial 

learning was dependent on a trade-off between (a) the reliability / predictability of information 

gathered asocially, (b) the additional opportunities provided by asocial learning and (c) the 

difficulty in acquiring social information. Specifically, participants only displayed a bias towards 

learning socially when social information was relatively easy to acquire and when the benefits 

of learning asocially were less pronounced, otherwise an inclination towards independent 

learning was found. In other words, participants appeared to be adaptively weighting their 

perceived importance of social information – sampling directly from the environment rather 

than gaining potentially outdated information from others is ultimately going to be more 

profitable, provided this information is reliable, but social information may act as a cheap 

alternative if it is relatively easy to acquire. In line with each of these interpretations, previous 

studies have demonstrated that (a) people increase their use of social information when 

uncertain about their own choices (Morgan et al., 2012; Toelch et al., 2014), (b) allowing 

independent interaction with a task prior to receiving social information results in children 

exploring a greater combination of solutions to a task (Wood et al., 2013a) and (c) explicit, 

numerical costs associated with gaining information independently (Kameda and Nakanishi, 

2002; Mesoudi and O'Brien, 2008; Morgan et al., 2012) or socially (Mesoudi, 2008) increases a 

participant’s reliance on the alternative.  

I have additionally demonstrated that participants will respond in such a way not only to explicit 

costs of using information (as is used in most studies), but also to indirect costs, such as 

difficulties in obtaining social information due to spatial asynchrony of demonstrators or 

variation in payoffs rendering independent learning less profitable and thus more costly to 

implement. My findings are surprisingly comparable to work on starlings (Sturnus vulgaris) and 

nine-spined sticklebacks (Pungitius pungitius). Evidence from both species suggest that 

individuals prefer to tackle foraging problems independently, but will weight their use of social 

and asocial information depending on their reliability and how difficult they are to acquire 

(Templeton and Giraldeau, 1996; van Bergen et al., 2004). Thus, this is an excellent example of 

how studying human behaviour using the VERSE system can allow direct comparisons to the 

animal literature through the creation of more realistic, spatially complex social learning 

environments.  
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 Demonstrator physical and/or behavioural characteristics had little influence on their 

likelihood of being copied. 

Learning from individuals with particular physical and/or behavioural characteristics may be 

adaptive if those characteristics can be used as an indicator of that individual's likelihood of 

success. An individual’s size, for example, may be an indicator of its ability to gain nutrients and 

avoid toxins, thus making larger individuals worth copying. Size-based social learning has been 

demonstrated in nine-spined sticklebacks (Duffy et al., 2009) and there is some evidence that 

taller human individuals have more social influence and are perceived as stronger leaders 

(Blaker et al., 2013). However, I found no evidence to suggest that, in the contexts explored 

here, participants were any more likely to copy large over small demonstrators. A person’s 

height may also be linked to their perceived dominance (Lourenco et al., 2016) and it may be 

this that increases their influence over others, particularly if an individual’s dominance status 

can be linked to their general success and thus their likelihood of using profitable behaviours.  

A tendency to copy dominant individuals has been demonstrated in some species, most notably 

domestic hens (Gallus gallus domesticus) (Nicol and Pope, 1994; Nicol and Pope, 1999) and 

chimpanzees (Pan troglodytes) (Kendal et al., 2015); however in some cases it is unclear whether 

this is due to a genuine observer bias or whether dominant individuals simply restrict 

subordinates’ access to novel task, thus making them less effective as demonstrators (Watson 

et al., 2017). A study by Wood et al. (2013b) demonstrated that human children do selectively 

watch more dominant demonstrators in an open diffusion experiment, even when dominant 

individuals do not monopolise the novel task. I found a weak tendency to copy dominant over 

subordinate individuals – although not statistically significant when corrected for multiple 

comparisons. Thus, demonstrator dominance appeared to have little influence over the 

decisions of observers. However, the slight bias I detected could warrant further investigation, 

perhaps with a more complex dominance system. Dominance hierarchies are the product of 

many pairwise interactions and, as such, the way I represented dominance in my study was 

relatively simplistic. For example, aggressive displays gave participants information about the 

relative dominance levels of two demonstrators, but gave no information about how dominant 

each demonstrator was to the participant themselves. The effect of dominance on a 

demonstrator’s tendency to be copied could be further explored within environments where 

larger populations of individuals with stable dominance hierarchies exist – and the VERSE system 

certainly offers a lot of potential to do this. 
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I also investigated whether the sex of demonstrators – as determined by their physical 

characteristics – influenced their likelihood of being copied. Sex-based model biases have 

received little attention in the social learning literature, but where these biases have been 

identified, they usually come with clear adaptive value. For example, wild vervet monkeys 

(Chlorocebus aethiops) tend to copy female conspecifics, potentially because males disperse 

from their natal territory, while females are philopatric and so likely have more knowledge about 

food resources in their territory (Van de Waal et al., 2010). In human hunter-gatherer 

communities, individuals display strong sex-based biases when there is sexual division of labour 

– exclusively learning about fishing and yam growing from males and exclusively learning about 

medicinal plants from females (Henrich and Broesch, 2011). The only statistically significant 

evidence I found for a sex-based bias in my study group was a slight tendency to copy male 

demonstrators in the Foraging task. This may have been a chance occurrence, or could suggest 

that males were assumed to be better foragers, perhaps because they are perceived as more 

‘typical’ hunter-gatherer figures. It has been traditionally reported that men in hunter-gatherer 

populations are more mobile, display a significant advantage at tasks relating to spatial ability 

(Cashdan et al., 2012) and, as a result, are more productive than women in terms of food 

acquisition (Kaplan et al., 2000) than women, who are often assumed to be restricted in their 

foraging abilities by childcare responsibilities (Kaplan et al., 2000; Lloyd and Bunch, 2005; Gurven 

and Hill, 2009). It is possible that this perception influenced the effect of demonstrator sex on 

their likelihood of being followed in the Foraging task – although further investigation would be 

necessary to test this explanation more thoroughly. Interestingly, in actuality, men and women 

in traditional hunter-gatherer societies simply differ in their foraging roles and it appears to be 

this division of labour that has resulted in sex differences in spatial abilities. Male foraging 

(primarily hunting) is often associated with longer travel distances and a necessity to track 

mobile prey, while female foraging (primarily gathering) is associated with the exploitation of 

reliable food patches containing immobile plant resources (Hilton and Greaves, 2008; Pacheco-

Cobos et al., 2010; Kaplan et al., 2000). In this sense, if this would have been a real-life foraging 

situation, the female may have actually provided the most reliable information about food patch 

location.  

Overall, however, I found very little evidence that demonstrator characteristics influenced their 

likelihood of being copied – where a statistically significant bias was found, the bias was only 

weak. Further investigation into the correlation between a demonstrator’s characteristics and 

their social influence, perhaps using larger populations with mixed pools of characteristics more 
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representative of real social groups, could provide further insight – and VERSE offers an ideal 

platform to conduct such an experiment. 

 

Participants copied the majority over the minority. 

While demonstrator characteristics appeared not to influence participants’ use of social 

information, their frequency did. When participants chose to use social information rather than 

attempt a task independently, there was strong evidence of an innate bias towards copying the 

majority, even when it was no more profitable to do so. This occurred across all tasks and is in 

agreement with previous, lab-based human experiments (Morgan et al., 2012; Haun et al., 2012; 

Muthukrishna et al., 2016; Deffner et al., 2020), suggesting that humans possess a majority bias 

in a wide range of contexts and task complexities. An innate tendency to copy the majority (also 

known as a ‘positive frequency-dependent’ bias) is likely to be an adaptive strategy when 

learning to survive in a novel environment because, if many individuals already use a specific 

behaviour within that environment, it is likely to be an adaptive behaviour that receives 

adequate payoff to sustain those individuals. In addition, such a strategy is fairly easy to 

implement as it does not require different demonstrators to be assessed based on their 

individual characteristics or success rates. It is therefore unsurprising that a bias towards copying 

the majority strategy has been identified across a number of taxa, from humans and other 

primates to birds to fish (Morgan et al., 2012; Van de Waal et al., 2013; Aplin et al, 2015; Day et 

al., 2001) and that theoretical analyses agree on its adaptive value (Boyd and Richerson, 1985).  

In some cases, a tendency to copy the majority may occur simply because an individual is 

exposed more often to a behaviour used by a greater number of demonstrators, thus offering 

more opportunities to learn said behaviour; while in other cases, a disproportionate tendency 

to adopt the majority decision is found (Laland, 2004). I argue that I have demonstrated the 

latter here. While participants were approximately three times as likely to copy the behaviour 

of three demonstrators over a single demonstrator – which initially appears to be a linear 

relationship between demonstrator number and likelihood of copying – my experimental design 

meant that all three demonstrators displayed the same behaviour at the same time, essentially 

acting as a single unit. Therefore, a greater number of demonstrators should have had little 

influence on learning opportunities, suggesting that participants were indeed responding to 

differences in the frequency of demonstrator using the same behaviour. Despite this, it is 

important to note that, while participants did strongly favour the majority over the minority, 

demonstrator consensus still did not cause participants to favour social information over 
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independently acquired information. This may not have been the case had I used a greater 

number of demonstrators, as it has previously been shown that an increase in demonstrator 

number as well as the consensus between them increases participants’ tendency to copy 

(Morgan et al., 2012). It would therefore be interesting to see if increasing the size of the 

demonstrator population within the VERSE system affects the likelihood of participants using 

social information over their own independent exploration.  

 

 Participants copied the most successful demonstrators. 

While participants did not appear to use indirect indicators of demonstrator success, such as 

size and dominance status, in their social learning decisions, they did preferentially copy the 

behaviours of demonstrators who consistently received higher direct payoffs. This was coupled 

with an increase in reliance on social over asocial information, as discussed above. Payoff-based 

social learning has been reported in human lab studies before (Mesoudi and O'Brien, 2008; 

Mesoudi, 2011; Atkisson et al., 2012; Molleman et al., 2014; Miu et al., 2018), but using 

comparatively simple sources of social information that have disregarded the potential 

difficulties in assessing multiple behaviours being performed asynchronously in both space and 

time. Copying the most successful individuals has obvious adaptive benefits, as confirmed by 

theoretical analyses (Schlag, 1998; Grove, 2018); however, gaining this information in real world 

situations comes with the time and energy costs of tracking and comparing the success rates of 

multiple individuals for a given task, which is likely to become more difficult across larger spatial 

scales. My findings show that human participants were, within spatially complex environments 

and across multiple sets of demonstrators, able to learn which demonstrators were more 

successful at the tasks in question and selectively copy their behaviours. Interestingly, Mesoudi 

(2011) reported that participants were more likely to attempt a task independently than copy 

others even when provided with the opportunity for payoff-based social learning, which is 

comparable to the behaviour found in my Foraging task. This is despite social information being 

relatively more difficult to collect in my experiment, owing to the fact that participants had to 

actively follow, observe and compare the behaviours of multiple demonstrators, while in 

Mesoudi’s (2011) experiment, participants had only to click a button to copy the arrowhead 

design of the most successful individual. By comparison, in my Container and Route Choice tasks, 

in which social information was easier to obtain, participants preferred to make use of social 

information when the environment contained varying payoffs. 
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Strategically copying the most successful individuals is certainly not a solely human trait, and 

has been demonstrated in a number of other species, both in the lab and in open environments. 

Nine-spined sticklebacks, for example, use public information to assess the profitability of food 

patches and appear to deploy a ‘hill-climbing’ strategy when deciding where to feed, favouring 

the choices of individuals more successful than themselves until an optimal behaviour is reached 

(Coolen et al., 2003; Kendal, Rendell, et al., 2009). Similarly, field experiments on wild white-

faced capuchins (Cebus capucinus) and vervet monkeys show that both species preferentially 

learn the food extraction techniques of conspecifics who receive the highest yield (Barrett et al., 

2017; Canteloup et al., 2021). This strategic use of social information essentially allows 

individuals to reap the benefits associated with both social and asocial learning – reducing the 

time and risk associated with independent learning while ensuring that social information is 

accurate and profitable. Thus, despite the additional time and effort required to establish who 

receives a higher payoff during a given task compared to other forms of social learning, such a 

strategy clearly provides a substantial enough reward to be worthwhile and appears to be an 

adaptive social learning strategy across multiple taxa.  

 

5.6. Summary and conclusions 

In this study I have demonstrated a novel approach to studying human social learning behaviour, 

through the use of specially designed, three-dimensional virtual environments, developed using 

gaming technology, that allow participants to express more natural behaviours, across more 

realistic spatial scales, than is often possible in laboratory conditions. Using this technology, I 

explored human social learning strategies in a series of experiments inspired by the animal 

literature – thus allowing direct generalisations to be made across the human / non-human 

divide. In general, participants displayed an innate bias towards learning independently rather 

than socially in these complex environments, although this almost always involved at least some 

degree of partial copying. I also found substantial variation in social information use between 

individuals. Individuals additionally balanced their reliance on socially and asocially acquired 

information depending on their reliability and ease of acquiring. While I found little evidence to 

suggest that participants were biased towards copying demonstrators with particular individual 

characteristics, I did find clear evidence for two social learning biases previously highlighted in 

both the human and animal literature – namely a tendency to copy the majority and a tendency 

to copy successful individuals. These happen to be the two of the most extensively studied social 

learning strategies, demonstrated before both in humans and across other taxa, and there is 
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evidence to suggest that both strategies are adaptive ways of gaining the most profitable social 

information. Overall, my novel approach to studying human social learning allowed me to study 

how people learn in novel, realistic environments, taking into account the real-life complexities 

of gathering information both socially and asocially. With a good foundation of human social 

learning research already present in the literature, I encourage future researchers to focus on 

testing these foundations against more realistic scenarios in order to better understand the 

evolutionary importance of the way in which we learn from one another. 

 

Data accessibility. All raw data, organised datasets and R code required to reproduce the results 

of this study are available in the FigShare repository (doi: 10.6084/m9.figshare.19196600) 

(Easter, 2022). Additional supplementary analyses and results are provided in the 

Supplementary Material. 

Funding. This research was funded by a Leeds Doctoral Scholarship from the University of Leeds. 

Ethical approval. Ethical approval for this study was obtained by the Faculty of Biological 

Sciences Research Ethics Committee, University of Leeds (LTSBIO-029).   
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5.7. Supplementary Material 

5.7.1. Presentation order of tasks and demonstrator conditions across 

participants 

Both the order of task presentation and the order of demonstrator condition presentation were 

randomised across participants to reduce the impact of presentation order on social information 

use (Tables 5.S1, 5.S2). The order of presentation for both the tasks and the demonstrator 

conditions within each task followed a balanced Latin square design where possible. For the 

Route Choice and Foraging tasks, where several replicates were produced for each 

demonstrator condition, each with a distinctly different environment, the replicates used were 

also randomised across participants (Table 5.S3). 

 

Table 5.S1. The randomised order of tasks and demonstrator conditions for each participant. 

Demonstrator orders are represented by letters, which correspond to the appropriate rows in Table 5.S2. 

 Task 1 Task 2 Task 3 

Participant Task 
Demonstrator 

order 
Task 

Demonstrator 

order 
Task 

Demonstrator 

order 

1 Route finding A Tokens B Foraging F 

2 Route finding B Tokens C Foraging A 

3 Route finding C Tokens D Foraging B 

4 Route finding D Tokens E Foraging C 

5 Route finding E Tokens F Foraging D 

6 Route finding F Tokens A Foraging E 

7 Route finding A Foraging B Tokens F 

8 Route finding B Foraging C Tokens A 

9 Route finding C Foraging D Tokens B 

10 Route finding D Foraging E Tokens C 

11 Route finding E Foraging F Tokens D 

12 Route finding F Foraging A Tokens E 

13 Tokens A Foraging B Route finding F 

14 Tokens B Foraging C Route finding A 

15 Tokens C Foraging D Route finding B 

16 Tokens D Foraging E Route finding C 
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17 Tokens E Foraging F Route finding D 

18 Tokens F Foraging A Route finding E 

19 Tokens A Route finding B Foraging F 

20 Tokens B Route finding C Foraging A 

21 Tokens C Route finding D Foraging B 

22 Tokens D Route finding E Foraging C 

23 Tokens E Route finding F Foraging D 

24 Tokens F Route finding A Foraging E 

25 Foraging A Route finding B Tokens F 

26 Foraging B Route finding C Tokens A 

27 Foraging C Route finding D Tokens B 

28 Foraging D Route finding E Tokens C 

29 Foraging E Route finding F Tokens D 

30 Foraging F Route finding A Tokens E 

31 Foraging A Tokens B Route finding F 

32 Foraging B Tokens C Route finding A 

33 Foraging C Tokens D Route finding B 

34 Foraging D Tokens E Route finding C 

35 Foraging E Tokens F Route finding D 

36 Foraging F Tokens A Route finding E 

 

 

Table 5.S2. The six demonstrator condition orders, randomised across participants. 

  Order 

 1st 2nd 3rd 4th 5th 6th 

A Asocial Soc/Asoc Dom/Sub Three/One Male/Female Large/Small 

B Soc/Asoc Three/One Asocial Large/Small Dom/Sub Male/Female 

C Three/One Large/Small Soc/Asoc Male/Female Asocial Dom/Sub 

D Large/Small Male/Female Three/One Dom/Sub Soc/Asoc Asocial 

E Male/Female Dom/Sub Large/Small Asocial Three/One Soc/Asoc 

F Dom/Sub Asocial Male/Female Soc/Asoc Large/Small Three/One 
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Table 5.S3. The replicates used and their order of presentation for the Route Choice and Foraging tasks, 

for each of the demonstrator orders shown in Table 5.S2. 

Demonstrator 

condition order 

Route Choice   

(three of a possible five) 

Foraging 

(one of a possible three) 

A 1, 2, 3 1 

B 4, 5, 1 2 

C 3, 4, 2 3 

D 2, 1, 5 1 

E 5, 3, 4 2 

F 1, 4, 3 3 

 

 

5.7.2. Perceptions of the AI models used. 

Prior to commencing the experiment, it was important to understand whether people, in 

general, perceived the AI models in the way intended by the researchers – e.g. viewed the 

‘female’ AI as female, the ‘dominant’ AI as dominant to the ‘subordinate’ AI, etc. A group of 41 

University of Leeds postgraduate students and academic staff volunteered, in response to an 

email request, to complete an online questionnaire using Microsoft Forms, in which they gave 

their perceptions of the AI models to be used in the main experiment. In this questionnaire, 

participants were presented with four sets of images, each displaying a pair of AI models (Table 

5.S4). For each set, the following questions were asked: (i) In your opinion, what gender(s) are 

the two figures? (ii) In your opinion, does one figure appear to be more dominant than the 

other? (iii) In your opinion, which figure appears friendlier or more approachable? (iv) In your 

opinion, which figure appears more aggressive? 
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Table 5.S4. Images presented to a group of participants prior to the main experiment, showing four sets 

of two AI models. These AI models were to be used in the main experiment to detect biases towards 

learning from individuals with certain characteristics. This questionnaire was therefore used to establish 

whether people generally perceived the AIs in the intended way. 

Set Description Image displayed 

1 Figure 1 is a small AI, 

Figure 2 is a large AI. Both 

figures are the ‘default’ 

body shape used in the 

experiment. Other than 

overall size, all proportions 

are the same.  

 

2 Figure 1 is a ‘dominant’ AI, 

which is more muscular 

and stands upright. Figure 

2 is a ‘subordinate’ AI, 

which is emaciated in 

appearance and stands 

hunched. An additional 

side view was given to 

make this difference in 

posture clear.   
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3 Figure 1 is a ‘male’ AI 

(which was also used as 

the default AI in the 

Three/One and 

Large/Small demonstrator 

conditions). Figure 2 is a 

‘female’ AI.  

 

 

4 ‘Dominant’ and 

‘subordinate’ AIs with 

interaction. Figures are 

the same as in set 2, but 

now display the character 

interactions that will be 

displayed at the beginning 

of each Dom/Sub 

demonstrator condition in 

the main experiment. 
 

 

The results of the questionnaire are displayed in Table 5.S5. In response to AIs of different sizes, 

92% of participants agreed that both AIs were male. Both AIs were viewed as equally dominant 

by 48% of participants, and the larger AI was viewed as dominant to the smaller AI by 43% of 

participants. This suggests that any bias towards learning from larger AIs in the main experiment 

could be, in part, due to a dominance bias. Aggressiveness and approachability of AIs based on 

their size varied between participants.  

In response to a ‘male’ and a ‘female’ AI, 100% of participants agreed that the ‘male’ AI was 

male and the ‘female’ AI was female. Gender was therefore an easily distinguishable trait and 

participants perceived AI genders in the intended way. Interestingly, this consensus suggests 

that participants’ perception of ‘gender’ aligned with stereotypical physical sex differences. In 

general, both male and female AIs were viewed as equally dominant, approachable and 
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aggressive. Thus, I can be confident that that any learning biases detected in the Male/Female 

demonstrator condition will be due to their perceived gender differences and not due to any of 

the alternate characteristics considered here. It is also worth noting that the ‘male’ AI displayed 

here was the default AI used across demonstrator conditions that did not require physical 

characteristics to be altered (namely the Soc/Asoc and Three/One conditions), and so 

participants will likely view all AIs as male in these conditions as well.  

In response to the ‘dominant’ and ‘subordinate’ AIs, 95% of participants agreed that the 

‘dominant’ AI was dominant to the ‘subordinate’ (which dropped slightly to 87% when actions 

were added), and the ‘subordinate’ AI was never viewed as dominant to the ‘dominant’ AI. Thus, 

participants perceived the dominance status of these AIs in the intended way. When the two AIs 

were displayed with no actions, there was variation in the genders they were both perceived as, 

but the majority of participants agreed that the ‘subordinate’ was female. When actions were 

included in the image, the ‘dominant’ AI was viewed as male by 80% of participants and the 

‘subordinate’ AI was viewed as female by 72% of participants. Any dominance-based learning 

biases detected in the main experiment could therefore be due, at least in part, to perceived 

differences in their gender. Interestingly, when the AIs were displayed without associated 

actions, the majority of participants found the ‘dominant’ AI to be more approachable, despite 

a general consensus that the ‘dominant’ AI was either equally or more aggressive-looking than 

the ‘subordinate’ AI. When the AIs were shown again with their associated actions, however, 

perceptions on approachability and aggression were altered, with the ‘dominant’ AI generally 

viewed as more aggressive-looking than the ‘subordinate’ AI, and the majority of participants 

now perceiving the ‘subordinate’ AI as more or equally approachable compared to the 

‘dominant’ AI. Perceptions of aggressiveness and, in particular, approachability therefore 

appear independent of perceptions of dominance – with participants generally finding the AI 

dominant in appearance alone more approachable. This may be because the hunched, 

emaciated appearance of the ‘subordinate’ AI was viewed as intimidating. However, when the 

AIs displayed dominance-related actions, the relatively aggressive action of the ‘dominant’ AI 

made them appear less approachable. As dominance is often directly linked to aggression, 

including the dominance-related interactions between these two AIs thus seems an important 

factor to reinforce their perceived relationship.  
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Table 5.S5. Results of the pre-study questionnaire on the perceptions of different AI models, showing 

participants’ perceptions of the gender, dominance, approachability and aggressiveness of the two AIs in 

each pair. Values represent the proportion of participants expressing a particular opinion about the 

characteristics of each AI pair. 

  AI pair 

Characteristic Opinion Small/Large Male/Female Dom/Sub Dom/Sub  

(with actions) 

Gender Fig 1 male, fig 2 female. 0.04 1.00 0.38 0.54 

 Fig 1 female, fig 2 male. 0.04 0 0.05 0.03 

 Both male. 0.91 0 0.23 0.26 

 Both female. 0 0 0.35 0.18 

Dominance Fig 1 is dominant. 0.09 0.03 0.95 0.87 

 Fig 2 is dominant. 0.43 0.08 0 0 

 Both equally dominant. 0.48 0.90 0.05 0.13 

Approachability Fig 1 is more approachable. 0.30 0.08 0.68 0.08 

 Fig 2 is more approachable. 0.22 0.15 0.13 0.51 

 Both equally approachable. 0.48 0.78 0.20 0.41 

Aggressiveness Fig 1 is more aggressive. 0.13 0.03 0.40 0.84 

 Fig 2 is more aggressive. 0.35 0.13 0.08 0.03 

 Both equally aggressive. 0.52 0.85 0.52 0.13 

 

 

5.7.3. Additional analysis: How was participants’ tendency to use social over 

asocial information influenced by differences in rewards? 

To establish whether variable rewards had an influence on participants’ tendency to use social 

over asocial information, a set of binomial GLMs were run using data from both reward groups, 

using reward group as a predictor – firstly for the Soc/Asoc demonstrator condition, then (for 

the Route Choice and Foraging tasks only) across all demonstrator conditions where participants 

were able to make decisions completely independently of demonstrator choice. In the Container 

task, participants in the Different Rewards group were significantly more likely to copy the single 

AI rather than make opposing decisions than those in the Same Rewards group (Table 5.S6) 

(Figure 5.4, main text). As the single AI always demonstrated the most profitable option in this 
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scenario, this reflects an example where using rather than opposing social information also 

amounts to copying the most successful demonstrator. Participants therefore seemed to be 

aware that the demonstrated option in this scenario would result in the highest payoffs, and 

responded by copying the single AI more often.  

In the Route Choice and Foraging tasks, participants were offered a much greater degree of 

flexibility in their choices, beyond simple binary decisions, and so copying did not necessarily 

result in the most profitable behaviours being learned. In these tasks, participants in the 

Different Rewards group were no more likely, compared to participants in the Same Rewards 

group, to use social over asocial information when presented with only a single demonstrator 

(Table 5.S6). However, participants in the Different Rewards group did use social information 

significantly more often than participants in the Same Reward group on average across all 

demonstrator conditions (Table 5.S6). For the Route Choice task, this amounted to a favouring 

of social over asocial learning when there was variation in demonstrated route length, compared 

to a favouring of asocial learning when demonstrated route lengths were equal (Figure 5.4, main 

text). For the Foraging task, while participants were more likely to learn socially when foods of 

differing values were present in the environment than when those foods were of equal value, 

participants still favoured asocial learning overall (Figure 5.4, main text). Interestingly, in both 

Route Choice and Foraging tasks, the initial choice made during each demonstrator condition 

tended to involve copying (Table 5.S6). Overall, this suggests that an awareness of reward 

variation, probably accumulated over previous demonstrator conditions, made participants 

more prone to copying. However, in the Foraging task, after an initial bias towards copying, 

participants then started to engage in independent exploration.  
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Table 5.S6. Parameter estimates, standard error, z values and p-values for the intercept and the effect of variation in rewards on participants likelihood of using social over 

asocial information, in their initial choices and overall, in the Soc/Asoc demonstrator condition and as a whole over all demonstrator conditions. Intercept is taken as 

RewardGroup = Same. P-values are adjusted for multiple comparisons using false discovery rates. Significant p-values (< 0.05) are highlighted in bold. 

  Parameter Container  Route Choice  Foraging 

 Condition  Estimate Std. Error z p 
 

Estimate Std. Error z p 
 

Estimate Std. Error z p 

All choices Soc/Asoc Intercept 0.000   0.076 0 1 
 

-0.118 0.140 -0.840 0.452 
 

-1.301 0.138 -9.439 <0.001 

  RewardGroup 

(Different) 

0.937   0.113    8.292    <0.001  0.282      0.198    1.428     0.191  0.159      0.191    0.829     0.452   

 All Intercept - - - - 
 

-0.339 0.063 -5.367 <0.001 
 

-0.700 0.054 -12.900 <0.001 

  RewardGroup 

(Different) 

- - - -  0.606     0.089    6.790 <0.001  0.349     0.077     4.550 <0.001 

                 

Initial choices Soc/Asoc Intercept 0.465      0.246    1.895    0.089   -0.357      0.246 -1.448   0.191  -0.847      0.261 -3.249   0.002  

  RewardGroup 

(Different) 

-0.036  0.345   -0.105    0.964  0.738      0.348    2.123    0.060  0.702      0.355    1.976   0.080 

 All Intercept - - - -  -0.348   0.110    -3.170   0.004  -0.160      0.107   -1.495 0.191 

  RewardGroup 

(Different) 

- - - -  0.731     0.155   4.708   <0.001  0.610      0.154    3.958 <0.001  

 



Chapter 5 2022 PhD thesis | C. Easter 

259 
 

 

5.7.4. Additional analysis: Success rates of social versus asocial learners in the 

Soc/Asoc condition. 

In the main text, I compared the average success rates of participants who tended to learn 

socially versus those who tended to learn asocially, across all demonstrator conditions. Here, I 

present the same analysis, but using the Soc/Asoc demonstrator condition only – thus comparing 

the relative successes of participants who tended to copy or ignore a single demonstrator. These 

results were qualitatively the same as those presented in the main text. In the Same Rewards 

group, those who tended to learn asocially were significantly more successful than those who 

favoured social learning in both the Route Choice (Mann-Whitney U test; U(1) = 265, p < 0.001) 

and Foraging Tasks (Mann-Whitney U test; U(1) = 119.5, p = 0.012); whereas in the Different 

Rewards group, participants who learned largely asocially had similar success rates to those who 

learned largely socially (Mann-Whitney U tests; Route Choice: U(1) = 493, p = 0.295; Foraging: 

U(1) = 380; p = 0.423) (Figure 5.S1). 
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Figure 5.S1. The average success rates of participants who favoured social and asocial learning, in the 

Soc/Asoc condition only, in scenarios where demonstrators received equal rewards for their choices. The 

top box shows the success rates in (A) the Route Choice task, measured as the average percentage of 

energy remaining, and (B) the Foraging task, measured as the average food score as a percentage of the 

maximum possible food score, when all demonstrators displayed behaviours of equal payoff. The bottom 

box shows the success rates in (C) the Route Choice task and (D) the Foraging task when different 

demonstrated behaviours received different payoffs. Thick horizontal lines represent medians and boxes 

indicate the interquartile range. Whiskers extend to 1.5x the interquartile range.         

Same Rewards 

(A)    Route Choice (B)    Foraging 

Different Rewards 

(C)    Route Choice (D)    Foraging 
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5.7.5. Additional analyses of the Foraging task: Did participants learn the 

specific food type preferences of demonstrators? 

In addition to food patch choices, the influence of demonstrator food type choices on participant 

food collection behaviour was analysed for the Foraging task. For each environment in the 

Foraging task, food patches were divided into two sections, each containing twenty items of a 

different food type. Different food types were coloured differently and, in some cases, had 

different nutritional values. All food types used in the study are given in Table 5.S7. Each 

demonstrator visited three food patches and ‘ate’ only one food type from that patch, thus 

allowing participants to learn preferences for specific food types.  

 

Table 5.S7. The food types used in the foraging task, along with their nutritional values. 

Food item name Appearance Nutritional value 

YellowMushroom 

 

+5 

PinkMushroom 

 

+3 

BrownMushroom 

 

+1 

GreenMushroom 

 

+1 

WhiteMushroom 

 

+1 

DarkMushroom 

 

-5 
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For the Same Rewards group, all eight food patches contained a set of twenty BrownMushrooms 

and a set of twenty GreenMushrooms (Table 5.S7). All food items therefore had the same 

nutritional value of +1. Both demonstrators only ate the GreenMushrooms located in their 

chosen food patches. Thus, if participants were prone to copying the food preferences of certain 

demonstrators, they should be disproportionately more likely to collect the GreenMushrooms 

over the BrownMushrooms. A binomial GLM was run predicting the initial choice made by 

participants (i.e. the first food item collected during the first demonstrator condition they were 

subjected to) (n = 57). The reason that initial choices were considered here, rather than the total 

number of each food type collected by participants, is because AI demonstrators depleted the 

GreenMushrooms, leaving fewer for the player to collect and making it more likely that a GLM 

would detect a tendency to collect the BrownMushrooms more often. According to this model, 

participants did not show an initial preference towards the demonstrated food type, the 

GreenMushrooms (Table 5.S8).  

 

Table 5.S8. Intercept estimates, standard errors, Z values and p-values for GLMs predicting the likelihood 

that (i) participants in the Same Rewards group would display an initial preference for the demonstrated 

GreenMushroom food type; (ii) participants in the Different Reward group who initially visited the best 

food patch would display an initial preference for the demonstrated YellowMushroom food type; and (iii) 

participants in the Different Reward group who initially visited the worst food patch would display an 

initial preference for the demonstrated WhiteMushroom food type. 

Reward group Food patch type Intercept  Std. Error Z value p-value 

Same Rewards All -0.391      0.2700  -1.448     0.148 

Different 

Rewards 

Best food patch -0.201      0.318  -0.631     0.528 

Worst food patch 0.154      0.556    0.277     0.782 

 

For the Different Rewards group, food patches contained food items of differing nutritional 

values as follows: Three food patches contained a set of twenty PinkMushrooms and a set of 

twenty YellowMushrooms – these were visited by demonstrator A, who ‘ate’ only the 

YellowMushrooms from these patches. Three food patches contained a set of twenty 

WhiteMushrooms and a set of twenty DarkMushrooms – these were visited by demonstrator B, 

who ‘ate’ only the WhiteMushrooms. The remaining two (asocial) food patches contained a set 

of twenty BrownMushrooms and a set of twenty GreenMushrooms. Thus, demonstrator choices 
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were arranged in such a way that (i) copying demonstrator A would result in participants finding 

the most profitable food patches and (ii) copying the food type preference of any demonstrator 

would result in participants collecting the most profitable food types within a given food patch 

(and would allow participants to avoid collecting poisonous foods when foraging on the ‘worst’ 

food patches). To determine whether participants were more likely to copy the food type 

preferences of demonstrators in these environments, where rewards were uncertain and 

potentially maladaptive decisions could be made, two binomial GLMs were run, again using data 

concerning the initial choice made by each participant. The first model predicted the likelihood 

that participants who visited the best food patch first (n = 40) also displayed an initial preference 

towards the food type demonstrated by demonstrator A, i.e. collected the YellowMushroom 

first. The second model predicted the likelihood that participants who visited the worst food 

patch first (n = 13) also displayed an initial preference towards the food type demonstrated by 

demonstrator B, i.e. collected the WhiteMushroom first. These models revealed that, again, 

participants were not influenced by the specific food preferences of demonstrators (Table 5.S8). 

Once they had followed a demonstrator into a food patch, they were equally likely to collect 

either food type first.  

Overall, these analyses suggests that, while certain demonstrators influenced participants’ food 

patch choices, as discussed in the main text, the individual food type preferences of 

demonstrators were not copied. However, despite this, participants were adaptive in the way 

they collected food items. When visiting the best food patches, participants collected 

approximately equal proportions of PinkMushrooms and YellowMushrooms (Figure 5.S2A). 

However, when visiting the worst food patches, they disproportionately collected the 

WhiteMushrooms and avoided the poisonous DarkMushrooms (Figure 5.S2B). As participants’ 

initial food preferences were unaffected by demonstrator choice, it is likely that participants 

learned asocially to avoid poisonous foods, probably by sampling them first and learning that 

this food type lowered the player’s health and food score. Participants were therefore adaptive 

in the way in which they collected food from patches, collecting all food types with a positive 

nutritional score and ignoring demonstrator food preferences (which would have been 

maladaptive to copy, since participants would have avoided collecting alternative food types 

with positive nutritional values in the best food patches), while also avoiding poisonous foods. 
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Figure 5.S2. (A) The proportion of YellowMushrooms (nutritional value: +5) and PinkMushrooms 

(nutritional value: +3) collected by participants when visiting the best food patches. (B) The proportion of 

WhiteMushrooms (nutritional value: +1) and DarkMushrooms (poisonous; nutritional value: -3) collected 

when visiting the worst food patches. Proportions are taken from the total number of food items collected 

across all demonstrator conditions, within the Different Rewards group. Horizontal (dashed) reference 

line is at 0.5 and indicates no preference for either food type. 

  

(A) (B) 
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5.7.6. Additional analyses concerning participant choices of demonstrator A vs 

demonstrator B based on their relative success rates 

Table 5.S9. Intercept estimates, standard error, z-values and p-values for binomial GLMs modelling the 

likelihood that participants copied demonstrator A over demonstrator B in the Dom/Sub, Three/One, 

Male/Female and Large/Small demonstrator conditions, and overall across all four demonstrator 

conditions, for each of the three tasks, in scenarios where payoffs differed depending on which 

demonstrator was copied. P-values are adjusted for multiple comparisons using false discovery rates.  

Significant p-values (< 0.05) are highlighted in bold. 

Task 
Demonstrator 

Condition 

Intercept 

Estimate 
Std. Error Z value p-value 

Container Dom/Sub 0.930  0.083    11.090   <0.001  

 Three/One 1.266     0.091 13.870 <0.001 

 Male/Female 0.557     0.079 7.089 <0.001 

 Large/Small 1.009     0.085 11.810    <0.001 

 All (A/B) 0.927     0.042 22.110 <0.001 

Route Choice Dom/Sub 1.263  0.214      5.900 <0.001 

 Three/One 1.936 0.276    7.011  <0.001 

 Male/Female 0.177 0.180    0.983   0.326 

 Large/Small 1.299 0.246    5.278 <0.001 

 All (A/B) 1.056 0.106    10.010   <0.001 

Foraging Dom/Sub 0.922  0.206    4.482 <0.001 

 Three/One 1.266  0.197    6.421 <0.001 

 Male/Female 0.786 0.188    4.173 <0.001 

 Large/Small 0.936 0.212    4.414 <0.001 

 All (A/B) 0.984 0.100    9.857 <0.001 
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Table 5.S10. ANOVA results for GLMs modelling the likelihood of copying demonstrator A over 

demonstrator B across participants in two different groups – one where rewards were equal regardless 

of the demonstrator copied, and one where copying demonstrator A over demonstrator B resulted in 

higher payoffs (as measured by the ‘RewardGroup’ factor). For each of the three tasks, a null, intercept-

only model (representing the likelihood that demonstrator A is copied over B overall, across both reward 

groups) is compared with a model in which reward group was included as a factor. Significant p-values (< 

0.05) are highlighted in bold and indicate significant differences in demonstrator choice across the two 

reward groups. 

Task Model Deviance 
Residual 

Deviance 
p-value 

Container NULL  603.1                

 RewardGroup 129.9 138.0 < 0.001  

Route Choice NULL  245.5  

 RewardGroup 26.9 218.5 < 0.001  

Foraging NULL  433.3                

 RewardGroup 19.6  135.0      < 0.001  

 

 

 

Figure 5.S3. The proportion of times participants copied demonstrator A and demonstrator B overall, 

across the Dom/Sub, Three/One, Male/Female and Large/Small demonstrator conditions, for each of 

three tasks, in scenarios where both demonstrators displayed behaviours of equal payoff. Error bars 

represent Clopper-Pearson 95% confidence intervals. Horizontal reference line (dashed blue) is at 0.5 and 

indicates no preference for either demonstrator. 



Chapter 5 2022 PhD thesis | C. Easter 

267 
 

 

5.7.7. Additional analysis – the influence of individual characteristics on their 

use of social information 

A series of binomial GLMs were run to investigate whether participants’ individual 

characteristics influenced their tendency to learn socially over asocially (hypothesis i in the 

Statistical Analysis, section 5.3.8, of the main text), their tendency to copy demonstrators with 

certain characteristics (hypothesis iv) and their tendency to copy the most over the least 

successful demonstrators (hypothesis v). The individual characteristics tested were age, gender, 

aggression score and time spent playing video games. As recommended by Bryant and Smith 

(2001), the four subcategories of aggression – physical aggression, verbal aggression, hostility 

and anger – were modelled separately, as these describe different types of aggression that are 

not necessarily correlated. In addition, the overall aggression score, summed across each of the 

four categories, was modelled as a measure of general aggression. To avoid issues of collinearity, 

overall aggression was never included in the same model as any of the four subcategories. For 

each type of aggression, a participant’s score was averaged across all questions in the particular 

aggression category, and then scaled between 0 and 1.  

Time spent playing video games was included in this analysis to assess whether familiarity with 

video game play influenced participants’ general behaviour in VERSE, thus affecting social 

information use – e.g. if those who play video games often are more exploratory due to higher 

levels of confidence with video game controls, this may result in a higher tendency to learn 

asocially. Participants were asked to rate their usual video game usage as either “Never”, “Now 

and again”, “A few times a month”, “A few times a week” or “Daily”. For ease of analysis, these 

options were then collated into two categories, with the first three options classed as “Rarely” 

and the remaining two classes as “Often”, before insertion into the GLM.  

The influence of each individual variable was modelled separately. For each hypothesis to be 

tested, a binomial GLM was run for each individual variable (age, gender, aggression score, video 

game play), with said variable as a predictor. Where more than one individual variable was found 

to have a significant influence on the use of social information, each combination of individual 

variables were modelled and ANOVA tests and AIC values were used to establish which model 

provided the best fit to the data.  

Overall, there was no clear pattern observed for an influence of the tested individual 

characteristics on either social information use (Table 5.S11), biases towards certain 
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demonstrator characteristics (Table 5.S12) or tendency to copy more successful demonstrators 

(Table 5.S13). Most of the models tested were not statistically significant after FDR corrections 

were performed. However, regarding the influence of age on social learning, it is important to 

note the relatively narrow age range of the participants (mean: 21; range: 18-31). Different 

results may have been obtained if a wider age range would have been considered. 

Video game play did not appear to have a significant influence on participants’ behaviour within 

VERSE, with one exception: participants who played video games more often were more likely 

to copy the most successful demonstrators across demonstrator conditions – however this was 

significant in the Container task only. This could suggest that ‘gamers’ displayed some different 

behaviours to ‘non-gamers’ (e.g. a greater capacity to track the success rates of AIs) during 

relatively simple, two-option tasks, but not when exposed to more complex, exploratory tasks. 

All in all, this suggests that, in general, VERSE is well suited to studying human social behaviour 

in complex, immersive environments irrespective of whether participants are ‘gamers’ or not, 

despite VERSE being game-like in its nature.  
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Table 5.S11. Estimates, standard error, z values and p-values obtained from a series of binomial GLMs modelling the influence of each individual characteristic on participants’ 

tendency to use favour social over asocial learning across three tasks, during the Soc/Asoc demonstrator condition (where a single demonstrator displayed one option and all other 

options were undemonstrated) and altogether across all demonstrator conditions. Each individual variable was modelled separately in its own GLM. P-values are adjusted for multiple 

comparisons using false discovery rates, after which none of the tested models were found to be statistically significant (p < 0.05). 

  
Container   Route Choice   Foraging 

 

Individual characteristic 

Demonstrator 

condition Estimate Std Error z p   Estimate Std Error z p   Estimate Std Error z p 

Age Soc/Asoc 0.034 0.042 0.823 0.888 
 

0.043 0.068 0.640 0.908 
 

0.147 0.059 2.505 0.160 

Gender (male) Soc/Asoc -0.352 0.159 -2.214 0.270 
 

-0.070 0.292 -0.240 0.971 
 

0.164 0.281 0.585 0.932 

Aggression (overall) Soc/Asoc 0.449 0.603 0.744 0.888 
 

0.351 1.198 0.293 0.971 
 

0.999 1.074 0.930 0.888 

     Aggression-physical Soc/Asoc -0.063 0.616 -0.103 0.988 
 

0.098 1.222 0.080 0.988 
 

-0.236 1.111 -0.212 0.971 

     Aggression-verbal Soc/Asoc 0.079 0.397 0.198 0.971 
 

0.005 0.751 0.007 0.995 
 

1.958 0.697 2.809 0.100 

     Aggression-anger Soc/Asoc 0.933 0.447 2.085 0.296 
 

0.269 0.863 0.312 0.971 
 

-0.313 0.820 -0.382 0.971 

     Aggression-hostility Soc/Asoc -0.019 0.419 -0.047 0.988 
 

0.351 0.804 0.436 0.971 
 

0.039 0.763 0.051 0.988 

Video game play (often) Soc/Asoc -0.454 0.160 -2.844 0.100 
 

-0.320 0.303 -1.058 0.829 
 

0.253 0.282 0.897 0.888 

                
Age All (soc/asoc) - - - - 

 
0.081 0.061 1.329 0.640 

 
0.013 0.042 0.299 0.971 

Gender (male) All (soc/asoc) - - - - 
 

-0.146 0.219 -0.667 0.908 
 

0.340 0.202 1.682 0.531 

Aggression (overall) All (soc/asoc) - - - - 
 

-1.168 0.894 -1.306 0.640 
 

-0.374 0.768 -0.487 0.971 

     Aggression-physical All (soc/asoc) - - - - 
 

-0.172 0.907 -0.189 0.971 
 

-1.037 0.775 -1.338 0.640 

     Aggression-verbal All (soc/asoc) - - - - 
 

-0.418 0.553 -0.757 0.888 
 

0.748 0.497 1.507 0.640 

     Aggression-anger All (soc/asoc) - - - - 
 

-0.904 0.625 -1.447 0.640 
 

-0.174 0.564 -0.308 0.971 

     Aggression-hostility All (soc/asoc) - - - - 
 

-0.718 0.604 -1.189 0.720 
 

-0.983 0.541 -1.818 0.460 

Video game play (often) All (soc/asoc) - - - - 
 

-0.170 0.234 -0.729 0.888 
 

0.175 0.203 0.862 0.888 
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Table 5.S12. Estimates, standard error, z values and p-values obtained from a series of binomial GLMs modelling the influence of each individual characteristic on participants’ 

tendency to copy the dominant demonstrator over the subordinate in the Dom/Sub condition, three over one demonstrator in the Three/One condition, the male over the female 

demonstrator in the Male/Female condition and the large over the small demonstrator in the Large/Small condition, across the three tasks, in conditions where both demonstrator 

displayed equally profitable behaviours. Each individual variable was modelled separately in its own GLM. P-values are adjusted for multiple comparisons using false discovery rates, 

after which none of the tested models were found to be statistically significant (p < 0.05). 

  
Container   Route Choice   Foraging   

Individual characteristic 

Demonstrator 

condition Estimate Std Error z p   Estimate Std Error z p   Estimate Std Error z p 

Age Dom/Sub 0.024 0.042 0.587 0.945 
 

-0.089 0.132 -0.673 0.945 
 

0.021 0.091 0.234 0.945 

Gender (male) Dom/Sub -0.043 0.159 -0.269 0.945 
 

-0.237 0.521 -0.454 0.945 
 

2.266 0.663 3.419 0.096 

Aggression (overall) Dom/Sub 0.553 0.605 0.914 0.812 
 

0.097 2.044 0.048 0.945 
 

-4.428 2.013 -2.200 0.384 

     Aggression-physical Dom/Sub -0.243 0.617 -0.394 0.945 
 

0.593 1.824 0.325 0.945 
 

-4.761 2.036 -2.339 0.365 

     Aggression-verbal Dom/Sub -0.083 0.398 -0.210 0.945 
 

0.639 1.348 0.474 0.945 
 

-0.064 1.360 -0.047 0.995 

     Aggression-anger Dom/Sub 0.628 0.448 1.403 0.773 
 

-0.545 1.476 -0.369 0.945 
 

-3.744 1.334 -2.807 0.168 

     Aggression-hostility Dom/Sub 0.720 0.423 1.702 0.534 
 

-0.406 1.434 -0.283 0.945 
 

-1.653 1.298 -1.273 0.812 

Video game play (often) Dom/Sub -0.043 0.159 -0.269 0.945 
 

-0.219 0.579 -0.378 0.945 
 

0.288 0.461 0.625 0.945 

                
Age Three/One 0.105 0.055 1.901 0.421 

 
0.231 0.239 0.963 0.812 

 
-0.043 0.078 -0.548 0.945 

Gender (male) Three/One -0.186 0.179 -1.042 0.812 
 

0.318 0.715 0.444 0.945 
 

-0.441 0.387 -1.139 0.812 

Aggression (overall) Three/One 0.697 0.694 1.004 0.812 
 

-2.182 2.649 -0.824 0.856 
 

3.170 1.604 1.976 0.400 

     Aggression-physical Three/One -1.034 0.668 -1.549 0.645 
 

-2.552 2.670 -0.956 0.812 
 

-0.109 1.512 -0.072 0.995 

     Aggression-verbal Three/One 0.460 0.458 1.006 0.812 
 

-0.713 1.544 -0.462 0.945 
 

1.564 0.961 1.628 0.582 

     Aggression-anger Three/One 0.312 0.511 0.612 0.945 
 

-2.256 1.694 -1.331 0.793 
 

3.458 1.277 2.708 0.168 

     Aggression-hostility Three/One 1.091 0.495 2.204 0.384 
 

0.473 1.746 0.271 0.945 
 

1.265 1.089 1.161 0.812 

Video game play (often) Three/One 0.172 0.183 0.940 0.812 
 

0.337 0.840 0.401 0.945 
 

0.096 0.422 0.228 0.945 
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Age Male/Female 0.002 0.041 0.041 0.995 

 
0.200 0.180 1.113 0.811 

 
0.050 0.103 0.489 0.945 

Gender (male) Male/Female 0.000 0.158 0.000 1.000 
 

-0.309 0.511 -0.604 0.945 
 

-0.388 0.402 -0.965 0.812 

Aggression (overall) Male/Female 0.874 0.605 1.445 0.748 
 

-2.077 1.947 -1.066 0.812 
 

-1.352 1.573 -0.859 0.832 

     Aggression-physical Male/Female 0.127 0.616 0.205 0.945 
 

-0.027 1.810 -0.015 0.998 
 

0.095 1.575 0.060 0.995 

     Aggression-verbal Male/Female -0.263 0.397 -0.661 0.945 
 

-1.595 1.209 -1.320 0.793 
 

-0.285 1.027 -0.277 0.945 

     Aggression-anger Male/Female 0.878 0.447 1.963 0.400 
 

-1.375 1.466 -0.938 0.812 
 

-0.286 1.155 -0.248 0.945 

     Aggression-hostility Male/Female 1.151 0.425 2.708 0.168 
 

-0.810 1.337 -0.606 0.945 
 

-2.512 1.236 -2.033 0.400 

Video game play (often) Male/Female -0.050 0.158 -0.317 0.995 
 

-0.474 0.527 -0.899 0.812 
 

0.013 0.419 0.032 0.995 

                
Age Large/Small 0.002 0.041 0.043 0.995 

 
0.081 0.102 0.798 0.868 

 
-0.280 0.140 -2.001 0.400 

Gender (male) Large/Small -0.270 0.159 -1.700 0.534 
 

-0.509 0.410 -1.243 0.812 
 

0.507 0.442 1.147 0.812 

Aggression (overall) Large/Small 0.792 0.604 1.311 0.793 
 

-0.725 1.701 -0.426 0.945 
 

-1.432 1.575 -0.909 0.812 

     Aggression-physical Large/Small 0.344 0.617 0.558 0.945 
 

-1.329 2.196 -0.605 0.945 
 

-1.612 1.805 -0.893 0.812 

     Aggression-verbal Large/Small 0.423 0.398 1.065 0.812 
 

0.548 1.083 0.506 0.945 
 

-0.061 1.037 -0.059 0.995 

     Aggression-anger Large/Small 0.914 0.447 2.047 0.400 
 

-0.500 1.249 -0.400 0.945 
 

-0.087 1.133 -0.077 0.995 

     Aggression-hostility Large/Small 0.086 0.419 0.205 0.945 
 

-1.088 1.125 -0.967 0.812 
 

-2.015 1.118 -1.802 0.494 

Video game play (often) Large/Small -0.019 0.158 -0.117 0.995 
 

-0.266 0.427 -0.624 0.945 
 

-0.160 0.433 -0.370 0.945 
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Table 5.S13. Estimates, standard error, z values and  p-values for the interaction between the individual characteristics of participants and the ‘reward group’ they were assigned 

to, produced from binomial GLMs modelling the likelihood that participants copied demonstrator A over demonstrator B across all demonstrator conditions. Reward group is a 

binomial factor describing whether demonstrators received the same or different rewards for their actions (reference group = same). The interaction term therefore describes how 

much more likely participants with particular characteristics were to copy more successful demonstrators, relative to any innate preferences for the individual characteristics of 

those demonstrators. P-values are adjusted for multiple comparisons using false discovery rates. Statistically significant estimates (p < 0.05) are highlighted in bold and significant 

models are additionally highlighted in green. 

 
Container   Route Choice   Foraging   

Individual characteristic Estimate Std Error z p   Estimate Std Error z p   Estimate Std Error z p 

Age -0.095 0.035 -2.688 0.084 
 

-0.053 0.103 -0.512 0.745 
 

-0.071 0.077 -0.911 0.579 

Gender (male) 0.254 0.120 2.114 0.202 
 

0.445 0.344 1.293 0.465 
 

-0.667 0.295 -2.260 0.192 

Aggression (overall) -0.086 0.451 -0.192 0.885 
 

-0.140 1.293 -0.108 0.914 
 

1.781 1.119 1.592 0.331 

     Aggression-physical 0.507 0.442 1.146 0.465 
 

-0.658 1.334 -0.493 0.746 
 

1.613 1.048 1.540 0.331 

     Aggression-verbal 0.479 0.307 1.562 0.331 
 

-0.985 0.845 -1.166 0.465 
 

0.188 0.758 0.248 0.877 

     Aggression-anger -0.254 0.327 -0.778 0.656 
 

0.403 0.906 0.445 0.750 
 

0.985 0.793 1.242 0.465 

     Aggression-hostility -0.664 0.327 -2.030 0.202 
 

0.571 0.916 0.624 0.711 
 

1.538 0.800 1.923 0.216 

Video game play (often) 0.501 0.127 3.934 0.002 
 

0.206 0.347 0.594 0.711 
 

0.310 0.305 1.015 0.531 
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Chapter 6 | General Discussion 

The fitness of an individual is driven by that individual's adaptations to abiotic and biotic 

environments. Biotic drivers may include trophic interactions, where a species evolves an ability 

to capture prey or avoid becoming prey of another species. Interspecific interactions may also 

involve competition for shared resources, where greater efficiency in finding or using resources 

may confer an adaptive advantage. However, species need not rely on genetic change to 

enhance fitness. Cognitive flexibility can lead to the accumulation of adaptive behaviours 

through exploiting the individual learning of others - a process known as "social learning" - which 

can result in the transmission of novel information or behaviours through entire populations 

(Hoppitt et al., 2010). An understanding of population-level social transmission patterns requires 

an understanding of how individuals are connected within their social network and of the 

behavioural, social and physical factors that permit, promote or prevent information transfer 

from one individual to another. Examining such factors and their influence on social learning and 

information transmission across different study systems – plus the development of novel 

methodologies that allow these processes to be represented more realistically during both 

theoretical and empirical behavioural experiments – has been a major focus of this thesis. 

In this thesis, I have approached the study of social learning from a novel perspective by 

considering how individual behaviours (from simple movement patterns to complex cognitive 

processes), the underlying connections between individuals and the physical properties of their 

environment can all work together to ultimately determine how information is propagated 

through a population. What follows is an overview of the literature and hypotheses described 

in Chapter 1 and the empirical research described in Chapters 2-5, followed by a synthesis of 

some key themes drawn from across those chapters (most notably the importance of individual 

variation in driving population-level information transmission patterns) and an explanation of 

the novel methodologies explored and produced throughout this thesis. I will then conclude 

with a discussion of the potential applications for this research in fields outside of ecology and 

evolution. 

 

6.1. Chapter overview 

In Chapter 1, I introduced the concept of social information transfer between two individuals 

occurring over three key stages (Figure 1.1) – requiring firstly an appropriate connection to form 

between two individuals to permit information transfer (as discussed in Chapter 1, the definition 



Chapter 6 2022 PhD thesis | C. Easter 

285 
 

of a ‘connection’ here will depend on the particular social system and on the behaviour being 

learned); secondly, the ability and inclination of the ‘demonstrator’ to pass on novel information 

or behaviours to others; and thirdly, the ability and inclination of the ‘observer’ to learn this 

information from the demonstrator in question. I also introduced three key factors which I 

hypothesised to influence social transmission through populations – the spatial movements of 

individuals, the types of connections between those individuals and the characteristics of the 

demonstrators in question (Figure 1.2). The literature is dominated by research into social 

learning strategies, taken from the observer’s perspective, while investigations into the 

importance of spatial factors, social bonds and the information transfer capabilities of 

demonstrators are comparatively rare. As such, I have focussed on incorporating these factors 

into the social learning research to gain a more comprehensive insight into the individual-level 

factors that influence information processing at the population level. Through Chapters 2-5, I 

have explored the behavioural, physical and social factors influencing social information 

transmission across the three stages of information transfer introduced in Chapter 1. In each 

chapter, I focussed on different model systems and different methodologies, thus taking a 

comparative approach to the study of social learning.  

In Chapter 2, using a spatially explicit, agent-based simulation model, I explored how among-

individual behavioural variations influenced the population-level patterning of interactions. I 

found that among-individual differences in space-use behaviour resulted in faster, more 

efficient information transfer through the production of long-distance travellers which linked 

together spatially separate clusters of inactive individuals, while limiting the number of 

‘unnecessary’ connections that form as a result of homogeneous mixing. This finding illustrates 

how the connections between individuals necessary for information transfer to occur (Figure 

1.1, stage 1) can be broken and reformed depending on the spatial movements of those 

individuals (as hypothesised in Figure 1.2A). I also found that variation in activity (when activity 

influenced an individual’s tendency to transmit or receive information – i.e. Figure 1.1, stages 2 

and 3) altered the structure of the population social network, resulting in the overproduction of 

regulatory network motifs known as ‘feed-forward loops’ (Mangan and Alon, 2003; Waters and 

Fewell, 2012).  

In Chapter 3, using multi-network NBDA, I investigated how the social relationships connecting 

individuals (Figure 1.2B) drove the transfer of information in a population of zebra finches 

(Taeniopygia guttata). I found strong evidence that individuals learned largely from those they 

shared aggressive encounters with and, to a lesser degree, from their mates. I also found that a 

minority of highly connected individuals acted as ‘hubs’ of information for their connected 
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conspecifics by learning the solution to a foraging task quickly and solving the task often. The 

comparative multi-network approach used in this chapter allowed me to assess how different 

social bonds connected birds together within the larger social network and the relative 

importance of these bonds for driving behavioural changes throughout the social group.  

In Chapter 4, I described a novel tool – “Virtual Environments for Research into Social Evolution” 

(VERSE) – which uses gaming technology to allow the study of human social learning and 

behaviour within immersive, three-dimensional virtual environments and aims to overcome 

many of the limitations of previous research conducted in more restrictive laboratory settings 

(as discussed in Chapter 1). I gave space in the thesis for a detailed description of this 

methodology because of the clear but unexploited value of virtual reality software for the 

development of behavioural experiments. Within this chapter, I illustrated how gaming 

technology can offer researchers a way of building behavioural science experiments that parallel 

the naturalistic experiments found in the animal literature, while still offering a reasonable 

degree of experimental control. While my system may or may not be used more widely following 

publication, I hope that my illustration of what is possible using gaming environments will 

encourage others to explore this area in greater depth. The exciting findings from Chapter 5, in 

particular, demonstrate the value of such a tool very clearly. 

In Chapter 5, I used VERSE to explore human social learning biases (Figure 1.2C) within complex, 

large-scale, three-dimensional environments in a series of experiments directly inspired by the 

animal literature. I found that, in these environments, humans used a mixture of social and 

asocial learning, but tended to rely on asocial information to a greater degree, unless there was 

a clear benefit of learning from others. Reliance on social information was influenced by the 

reliability of asocial learning, extra opportunities provided by asocial learning, variation in 

possible rewards and the difficulty in acquiring social information (potentially caused by the 

spatial distribution of demonstrators, as hypothesised in Chapter 1, Figure 1.2A). This balancing 

of social and asocial information is similar to findings in unrelated taxa, e.g. starlings (Sturnus 

vulgaris) (Templeton and Giraldeau, 1996) and nine-spined sticklebacks (Pungitius pungitius) 

(van Bergen et al., 2004). I also found strong evidence to suggest that, when learning from 

others, humans will favour the decisions of the majority and of the most successful 

demonstrators. Again, this aligns with findings in unrelated taxa (e.g. fish, Day et al., 2001; 

Coolen et al., 2003; Kendal et al., 2009; birds, Aplin et al, 2015; and primates, Barrett et al., 2017; 

Canteloup et al., 2021; Van de Waal et al., 2013), suggesting similar patterns of social 

information use across the human / non-human divide. Furthermore, this finding is in agreement 

with research conducted in more restrictive laboratory settings (Morgan et al., 2012; Mesoudi, 
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2011; Molleman et al., 2014), suggesting that human social learning biases can be generalised 

across contexts of different complexities.   

In the following section, I outline some of the key themes that have emerged across the chapters 

that I have described above. 

 

6.2. The importance of individual variation in determining the pathways 

of social information transmission 

A particularly striking concept evident throughout this thesis is the existence of substantial 

behavioural variation at the individual level and its importance in determining information 

transmission dynamics at the population level. Within a social group, individuals are not all the 

same. They vary in their physical and behavioural characteristics, in their individual preferences, 

in their cognitive abilities, in the relationships they share with one another. Even the same 

individual will vary over time in their spatial movements, knowledge and experience, 

connectivity to and communications with other individuals. All of these factors and more will 

have a collective influence on who learns when, how and from whom.  

In Chapter 1, I hypothesised three key individual-level factors that would have a profound effect 

on social information transmission at the group level – namely spatial movements, social 

connections and demonstrator characteristics (Figure 1.2). For each of these factors, among-

individual variations are likely to play a key role. In the following sections, I expand on these 

earlier hypotheses and identify, based on the evidence throughout this thesis and in previous 

literature, five areas (illustrated in Figure 6.1) in which individual variation appears to play a key 

role in dictating how novel information enters and is subsequently transmitted through a 

population. 
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Figure 6.1. Five ways in which individual variation can dictate the pathways of social transmission through 

the population, from informed demonstrators (grey circles) to uninformed observers (white circles). (A) 

Some individuals may favour asocial learning (red outline) while others favour social learning (black 

outline) (as found in Chapter 5). Asocial learners allow up-to-date information, gathered directly from the 

environment, to enter the population. This information can then spread more rapidly through the 

population via social learners. (B) The tendency (indicated by the length of arrows) of individuals to 

transmit information to (thick arrows) and receive information from (thin arrows) others influences who 

learns from whom and thus the direction of social transmission (Chapter 2). A ‘successful’ exchange of 

information is represented by the two arrows meeting in the middle. Thus, in this example, information 

is only successfully transmitted from individual iii to individual vi. Individuals ii and iii have the potential 

to transmit information to individuals iv and vi, should they interact. However, individual i is unlikely to 

transmit information to others, while individual v is unlikely to receive it. (C) The types of connections 

shared by individuals (Chapter 3). These may represent, for example, different social relationships. 

Information may be transmitted through different connections at different rates. (D) The spatial locations 

of individuals (Chapter 2). Depending on the type of information being transmitted, individuals may be 

more likely to learn from those who are in close physical proximity. In this case, information is likely to 

transmit within clusters of local individuals (bounded by dashed lines) often or at a relatively fast rate 

(solid grey arrows), while social transmission between individuals who are more spatially isolated will be 

comparatively slower or occur less often (dashed blue arrows). (E) Characteristics of informed 

demonstrators (Chapter 5). An uninformed observer may choose to learn from specific demonstrators 

based on their individual characteristics (different patterned borders), even when they are equally 

connected to all possible demonstrators (e.g. all within close spatial proximity). Such preferences from 

the observer’s perspective can promote information transfer along one pathway while blocking it in other 

potential pathways. 
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6.2.1. Variation in the tendency to learn socially dictates how novel information 

enters the population 

First of all, individual variation in the tendency to learn socially versus asocially appears to be 

key in determining how novel behaviours initially enter and subsequently spread through the 

social network. Social learning is a relatively cheap and effective way of gaining information 

(Boyd and Richerson, 1985; Rendell, Boyd et al., 2010), but a population of entirely social 

learners who never sample directly from the environment would be incapable of innovation and 

so would risk becoming fixed on behaviours that are suboptimal, outdated or even maladaptive. 

Similarly, populations that rely entirely on relatively costly asocial learning are likely to be 

outcompeted by those capable of at least some level of social learning (Enquist et al., 2007; 

Rendell, Fogarty, et al., 2010). Therefore, a mixture of both social and asocial learning is 

necessary for allowing populations to maintain a steady influx of information sampled directly 

from the environment, which can then spread more rapidly and efficiently through the 

population via social transmission (Figure 6.1A). This was demonstrated in Rendell, Boyd, et al.’s 

(2010) ‘social learning strategies tournament’ where, in a population of agents programmed 

with different social learning strategies, exclusive social learners were only successful due to 

their ability to ‘parasitise’ optimal information from asocial learners. Such variations in social 

information use may be particularly important in fluctuating environments, where populations 

must respond quickly and efficiently to up-to-date external cues. Again, this idea is well 

illustrated by Rendell and colleagues’ social learning strategies tournament, where high levels 

of social learning combined with comparatively rare rates of innovation allowed the population 

to respond more effectively to changing environments through the development of a more 

extensive behavioural repertoire (Rendell, Boyd, et al., 2011). 

In line with this prediction, I demonstrated a mixture of social and asocial learning in two 

unrelated species. In Chapter 3, I estimated that around half of the learning events in a 

population of zebra finches involved social learning via a series of hypothesised pathways, 

indicating a mixture of both asocial and social learning within the population. While some of the 

remaining learning events may have involved alternative social learning pathways not included 

in the analysis, the task was introduced to a completely naïve population with no trained 

demonstrators and so at least some level of innovation must have occurred for the task solutions 

to initially enter the population. Similarly, in Chapter 5, I demonstrated considerable individual 

variation in reliance on social information in humans, ranging from complete reliance on to 
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complete ignorance to the behaviours of demonstrators, depending on the individual and 

context. I also found that there were human participants who showed some consistency in their 

use of social information. This has been demonstrated in humans before (Toelch et al., 2014), 

with some studies even categorising individuals into ‘conformists’, who disproportionately copy 

the majority, and ‘mavericks’, who ignore social information completely (Efferson et al., 2008). 

As demonstrated in Chapter 5, those with a heavier reliance on asocial learning were able to 

exploit alternative solutions to a task that proved to be more profitable than those 

demonstrated by others (i.e. shorter navigation routes and additional food resources). By 

introducing these more profitable behaviours into the population, asocial learners have the 

potential to act as important sources of information to those who rely more heavily on social 

learning. At the individual level, being a largely asocial learner in a population of largely social 

learners may be disadvantageous, allowing others to ‘scrounge’ resources from you that you 

have expended time and energy in gaining (e.g. Barnard and Sibly, 1981; Giraldeau and Lefebvre, 

1986; Rendell, Boyd, et al., 2010). However, for highly social species, in which an individual’s 

survival is linked to that of the social group, the benefits to the population as a whole may 

outweigh the costs to the individual. This is perhaps most evident in eusocial insect species such 

as honeybees (Apis mellifera), in which some individuals act as ‘scouts’, specialising in searching 

independently for resources so that this information can be transmitted to the rest of the worker 

population (Dreller, 1998).  

Once a novel behaviour has entered the population, it can then be propagated through the 

population via social learning. The specific route the information takes through the population 

will be determined by the available learning pathways between individuals. Individuals within a 

population are not connected homogeneously, and various factors can influence who is 

connected to whom within the larger social network and the direction of information transfer 

between those individuals. These factors can be as simple as variation in individual activity and 

movement patterns (Chapter 2) or as complex as variation in the social relationships between 

individuals (Chapter 3) or social learning biases towards particular demonstrators (Chapter 5) – 

and may have important implications for the development of culture by resulting in different 

behaviours being learned by different subsets of the population. 
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6.2.2. Variation in tendency to transmit and receive social information dictates 

the direction of information transfer along transmission pathways 

Among-individual variation in personality traits that correlate with social information use as part 

of a ‘behavioural syndrome’ can result in directed information transfer along particular 

behavioural axes by influencing who transmits information to (and who receives it from) others 

(Figure 6.1B). This was demonstrated in Chapter 2, where the behavioural axis in question was 

activity – with higher-activity individuals passing information on to lower-activity individuals in 

a directional manner. Activity-related information transfer is most notable in honeybees, which 

vary greatly in their propensity to transmit information to others, with highly active foragers 

being more likely to recruit less active individuals to novel resources via ‘waggle dancing’ 

behaviour (Seeley, 1994; George et al., 2020). In other species, personality traits such as 

boldness and/or exploratory behaviour can determine who transmits information to whom. For 

example, Dyer et al.’s (2009) experiment on guppies (Poecilia reticulata) demonstrated a 

tendency for ‘shy’ fish to follow ‘bold’ fish to novel feeders. Similarly, according to Marchetti 

and Drent (2000), exploratory behaviour is linked to social information use in great tits (Parus 

major). Specifically, ‘slow’ foragers, who were more thorough in their exploratory behaviour, 

were more likely to visit novel feeders when exploring alone, but less likely to visit feeders 

demonstrated by a tutor; while ‘fast’ foragers, who were less thorough, were much more likely 

to visit novel food sources that were demonstrated by a tutor than find them independently. 

Individuals may also vary in their tolerance to close – and potentially intrusive – observations by 

naïve conspecifics, in which case, more tolerant individuals are more likely than less tolerant 

individuals to transmit information to others (Kline, 2015). 

In some cases, variation in reliance on social versus asocial learning, as discussed above, may, in 

addition to dictating how information initially enters the population, drive the direction of 

information flow between individuals. Often, individuals will not rely solely on either social or 

asocial information and will instead use a mixture of the two, but may do so to different degrees. 

For example, in Chapter 5, individuals varied considerably in their use of social information, 

forming a behavioural axis ranging from complete ignorance to complete reliance on social 

information, depending on the context. Largely social learners will seek information from their 

conspecifics more readily than largely asocial learners. This may result in the kind of transitive 

network substructures and directed information transfer demonstrated in Chapter 2, with those 

who rely more heavily on asocial learning transmitting information to those who rely more 

heavily on social learning. In other cases, individuals may even specialise in information 
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transmission by actively facilitating learning in others. For example, helper meerkats (Suricata 

suricatta) ‘teach’ pups to interact with dangerous prey by disarming and introducing this prey 

to them, thus providing them with opportunities to learn prey-handling skills that would be 

potentially lethal for them to learn independently (Thornton and McAuliffe, 2006). Similarly, 

various species of ant engage in ‘tandem runs’, where a knowledged individual leads a naïve 

individual to a novel resource (Franks and Richardson, 2006). The waggle dances of informed 

honeybees also act specifically to transmit knowledge of novel floral resources to uninformed 

workers (von Frisch, 1967). In some cases, there may even be temporal variation in an 

individual’s tendency to transmit information that can act to boost information transfer through 

the population at crucial stages. Grass-cutting ants (Acromyrmex heyeri), for example, gather 

fewer resources at the beginning of their foraging bout, allowing them to return to the nest 

more quickly and inform nestmates about the location of novel resources (Bollazzi and Roces, 

2011). 

 

6.2.3. Variation in the social relationships between individuals can determine 

the possible pathways of information transmission through social groups 

Social groups can be complex and individuals can vary in the relationships or social bonds they 

share with others (Figure 6.1C). A population may, for example, be composed of kin and non-

kin, individuals who share positive associations and others who respond agonistically to each 

other, those who form mated pairs, and so on. If individuals who share specific relationships are 

more likely to associate with one another, display biases towards learning from one another, or 

actively transmit information to one another, specific relationship-based social learning 

pathways may form (as demonstrated in zebra finches in Chapter 3). By influencing the pattern 

of information transmission within the social group, relationship-based social learning may, in 

turn, result in among-individual variation in learned behaviours, e.g. knowledge / behavioural 

traits shared by friends or family. As discussed below, there are various examples of social 

relationships that can dictate information transmission through populations – some of which 

were explored in Chapter 3.  

In populations containing individuals of mixed relatedness, for example, individuals may be 

more likely to learn from kin than non-kin. Due to their shared genetics, demonstrators should 

gain indirect fitness benefits from helping relatives to learn adaptive behaviours and so may be 

more tolerable to (or even encourage) observations from kin. Within a larger population, 

relatives may therefore be more likely to associate with one another, thus making social 
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transmission within family units more likely. This is well illustrated by African elephant 

(Loxodonta africana) societies, in which females associate strongly within ‘core groups’ of 

related individuals (Archie and Chiyo, 2012). Information transmission between kin may come 

with additional benefits if relatives are more likely to occupy the same ecological niche or share 

similar behavioural capacities that make their behaviours more advantageous or easier for the 

observer to learn. Thus, individuals may develop biases towards learning from kin over non-kin. 

For example, Schwab et al. (2008) demonstrated that common ravens (Corvus corax) were more 

likely to copy the object manipulation and caching behaviour of siblings over non-siblings. 

Similarly, Siberian jay (Perisoreus infaustus) juveniles pay more attention to and are more likely 

to copy the predator mobbing behaviour of their parents over unrelated adults (Griesser and 

Suzuki, 2016), juvenile zebra finches learn foraging skills almost exclusively from their parents 

(Farine et al., 2015) and bottlenose dolphins (Tursiops aduncus) learn from their mothers how 

to use sponges as ‘tools’ (Wild et al., 2019).  

‘Vertical transmission’ from parent to offspring is likely to be particularly prevalent across the 

animal kingdom due to the clear adaptive benefits for both parties. Individuals who have 

successfully raised offspring are likely to be in possession of behaviours that are adaptive in the 

offspring’s natal environment, and so parent-to-offspring information transfer will allow 

juveniles to learn these important survival skills from more experienced adults, while also 

allowing parents to increase their offspring’s chances of survival. In some cases, parents may 

provide their offspring with learning opportunities passively, for example, by providing them 

with partly processed foods or by remaining in close proximity and thus permitting close 

observations of their behaviour (van Schaik, 2010). In other cases, parents may actively 

encourage their offspring to learn specific skills. Active teaching of skills to offspring by parents 

occurs routinely in many human societies – although is comparatively rare in traditional hunter-

gatherer communities (Boyette and Hewlett, 2018) – and has also been documented in some 

animal species. In some chimpanzee (Pan troglodytes) populations, for example, adult females 

help their offspring to learn how to foraging using tools by dropping or actively provisioning 

them with their own tools (Boesch, 1991; Musgrave et al., 2016). Similarly, rhesus macaque 

(Macaca mulatta) mothers appear to actively encourage independent locomotion skills in their 

infants (Maestripieri, 1995). Pied babblers (Turdoides bicolor) appear to teach their chicks to 

associate specific “purr” calls with food, which they later use to direct their offspring towards 

food and away from predators (Raihani and Ridley, 2008). Similarly, the Australian superb fairy-

wren (Malurus cyaneus) teaches its offspring particular identification calls while still in the egg, 
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allowing parents to distinguish their own young from parasitic cuckoos once the chicks have 

hatched (Colombelli-Négrel et al., 2012).  

Unrelated individuals within a social group may also be connected by shared characteristics or 

particular social bonds. In populations where sexual division of labour exists, for example, same-

sex social networks may become the dominant pathways of social learning. This is the case in 

some hunter-gatherer communities, where information about hunting and crop-growing is 

transmitted between males, while information about medicinal plants is transmitted between 

females (Henrich and Broesch, 2011). Individuals may share both positive (e.g. grooming, 

huddling) and negative (e.g. aggressive encounters) relationships with their conspecifics and, as 

demonstrated in Chapter 3, such relationships can dictate the pathways of social transmission 

through the population. Social learning pathways may form between individuals who associate 

positively as a direct result of these individuals being in close proximity more often, making them 

more likely to observe each other performing novel behaviours. For example, network-based 

analyses have revealed that information about novel tasks transmit along affiliative interaction 

networks in populations of starlings (Sturnus vulgaris) (Boogert et al., 2014), ravens (Kulahci et 

al., 2016) and redfronted lemurs (Eulemur rufifrons) (Schnoell and Fichtel, 2012). Similarly, 

familiarity facilitates social learning of foraging routes in guppies (Swaney et al., 2001) and nest 

building in zebra finches (Guillette et al., 2016). On the other hand, some species show the 

opposite tendency and pay more attention to unfamiliar individuals, thus essentially seeking 

information from outside their particular social group. This has been most notably demonstrated 

in Norway rats (Rattus norvegicus) (Galef and Whiskin, 2008) and may offer alternative benefits, 

such as the introduction of knowledge not already shared by closely affiliated individuals.  

One might expect aggressive interactions to hamper social learning by causing individuals to 

actively avoid each other. However, as demonstrated in zebra finches Chapter 3, aggression may 

act as an important facilitator of social transmission. Learning from aggressors has been 

demonstrated before in zebra finches (Clayton, 1987; Jones and Slater, 1996) and, more 

anecdotally, in several other bird species, including indigo buntings (Passerina cyanea) (Payne, 

1981) and white-crowned sparrows (Zonotrichia leucophrys nuttalli) (Baptista and Petrinovich, 

1984). The reasons for individuals learning from their aggressors are unclear. I speculated that 

it may be a result of aggressors paying more attention to one another in order to avoid 

unnecessary conflict – or that the aggressive interaction itself is an indicator of close association 

– although other explanations were also discussed in Chapter 3.  
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Similarly, dominant-subordinate relationships have been linked to social transmission in various 

species. The direction of social transmission along dominant-subordinate pathways, however, 

varies between studies, and a case can be made for the adaptive value of either. On the one 

hand, routinely soliciting information from subordinates can provide dominants with cheap 

access to novel behaviours, allowing them to avoid the relatively costly process of independent 

learning and innovation. For example, trophallaxis in several ant species, during which 

nutritional information is transferred, tends to be directed from subordinates to dominants 

(Jeanson and Weidenmüller, 2014). On the other hand, dominant individuals may drive 

information transfer through the rest of the population by gaining early access to novel 

resources through their status, allowing them to inadvertently provide more subordinate 

individuals with increased opportunities for learning. This has been demonstrated in 

chimpanzees and vervet monkeys (Chlorocebus aethiops), where dominant-to-subordinate 

information transmission can be explained by the dominant individuals’ tendency to monopolise 

a novel task (Kendal et al., 2015; Watson et al., 2017; Canteloup et al., 2020). Similarly, in 

Chapter 3, I demonstrated that the majority of social learning events involved fight losers 

learning from fight winners, which appeared to be due to a subset of fight winners who were 

highly connected within the social network solving the task early and often. Even within the 

same population, the direction of information transfer through dominant-subordinate networks 

can reverse depending on the context, as has been demonstrated before in Arabian babblers 

(Turdoides squamiceps). This was attributed to context-specific variations in who tended to 

innovate, with subordinates being more likely to innovate when given completely novel tasks 

(Keynan et al., 2015) and dominants being more likely to generalise previously-learned 

behaviours to new situations (Keynan, 2015, pp.69-94). This emphasises how individual 

behavioural variation within the same social group can drive information flow in a particular 

direction along specific social learning pathways. 

Individuals may also share information with their mates – as demonstrated in zebra finches in 

Chapter 3. In species that form strong pair bonds, selective learning from mates may occur, 

particularly if mates tend to associate with each other for prolonged periods, thus increasing the 

likelihood that they will observe each other using novel behaviours. In social groups where mate-

mate information transmission does occur, this may lead to the development of pair-specific 

behavioural preferences (Avital and Jablonka, 2000), which may, in turn, be passed on to 

offspring. In species where both parents contribute to the upbringing of offspring, the 

transmission of information between mates may also be an essential component of parental 

cooperation necessary to increase their offspring’s survival (Avital and Jablonka, 2000). Learning 
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from mates and the subsequent development of pair-specific behaviours may also have 

important social benefits. For example, there is evidence that certain bird species imitate the 

calls of their mates, which may contribute to pair bond formation and mate recognition (Hile et 

al., 2000; Keenan and Benkman, 2008; Sewall, 2009; Luef et al., 2017). Evidence from Chapter 3 

contributes to the relatively understudied area of mate-biased social learning by revealing mate-

mate social transmission of novel foraging skills in the highly social zebra finch. As discussed in 

Chapter 3, mate-mate information transfer is unlikely to form a primary pathway of social 

learning through large social groups due to the sparseness of such social networks. However, 

the multi-network approached used in Chapter 3 revealed how even sporadic mate-mate links 

can contribute to the flow of information through less sparse networks – potentially by linking 

together disconnected sections of the larger social network in a similar fashion to the long-

distance travellers discussed in Chapter 2. In addition, mate-biased social learning may be an 

important precursor of family norms and traditions, and so the importance of these social bonds 

on learning should not be overlooked. Further research is required to establish how important 

mate-mate relationships are in dictating the patterns of social transmission in different contexts, 

how this differs for species with and without strong pair bonds and the ultimate consequences 

of mate-biased social learning in the development of pair- or family-specific behavioural 

traditions.  

 

6.2.4. Spatial variation promotes information exchange within, while slowing it 

between, local sub-clusters of individuals 

One factor that can have a profound effect on who learns from whom, but is often not taken 

into account in more restrictive, lab-based experiments, is individual variation in space (Figure 

6.1D). The influence of spatial variation on social learning is easy to picture – in order for an 

individual to learn socially, it must be close enough to the demonstrator (or the cue left behind 

by the demonstrator) to observe a novel behaviour being performed or to receive 

communicated information. Exactly how close is ‘close enough’ is likely to be determined by the 

type of behaviour being learned and the mechanism of learning occurring. Learning via ‘local 

enhancement’, for example, which involves being attracted only to the location of a novel 

stimulus, is likely to be possible over much greater distances than imitation, which requires 

direct observation and copying of potentially complex behaviours (Hoppitt and Laland, 2013). 

Similarly, information transmitted via tactile cues (e.g. trophallaxis or antennation in social 

insect species) will require much closer contact than information transmitted via visual cues (e.g. 
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food processing skills), which will, in turn, require closer proximity than information transmitted 

via audio cues (e.g. song learning in birds). In addition, some types of social information (e.g. 

insect pheromones, food left behind by successful foragers) will last longer in the environment 

than information that can only be received instantaneously (e.g. observations of motor skills), 

thus giving distant individuals the opportunity to find and receive such information and 

potentially making social learning less susceptible to the influences of an individual’s location at 

the time a signal is transmitted.  

Variations in individual location are likely to result in dynamic social learning pathways, with 

individuals breaking and re-establishing connections over time. Even in populations where 

certain individuals display strong associations, such as the ‘core groups’ of female African 

elephants in Archie and Chiyo’s (2012) study, these groups may become divided and reorganised 

over time. At an even finer scale, small-scale movements and/or aversion of gaze may 

temporarily disconnect even two closely associating individuals at the time a particular 

behaviour is being performed, which could prevent information from being exchanged. 

Information transmission patterns within populations of mobile individuals will therefore 

depend on how this information is communicated (i.e. whether close proximity and/or active 

observation is required) and the balance between association dynamics and the rate of social 

transmission (i.e. whether information is likely to be communicated while demonstrator and 

observer are in close enough proximity for the exchange to occur). The importance of 

considering animal social networks as dynamic entities was briefly highlighted in Chapter 2, 

where analyses of time-ordered social networks from populations with moving individuals 

yielded different results to those performed on static networks.  

Where individuals vary in space, some individuals or groups of individuals may even become 

isolated from the rest of the social group. Spatial isolation may result in individuals struggling to 

gain access to social information, essentially breaking the social learning pathway. This may 

result in isolated individuals becoming more reliant on independent learning. This appeared to 

be the case in Chapter 5, where human participants were less likely to use social information in 

environments where demonstrators were spatially scattered. However, in some cases, spatial 

separation of clusters of individuals may be beneficial to the population – e.g. by helping to 

regulate information flow or hamper the spread of pathogens through a population. Lasius niger 

ants, for example, actively isolate themselves from other workers when exposed to pathogens 

(Stroeymeyt et al., 2018).  
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The experiment described in Chapter 2 revealed that among-individual variations in space use 

can result in faster, more efficient information transfer between local clusters of otherwise 

spatially isolated individuals by connecting them with few, wider roaming individuals. This ties 

in well with previous findings in hunter-gatherer communities, where few, strong connections 

between households provided by unrelated ‘friends’ were found to improve the efficiency of 

information transfer (Migliano et al., 2017). Similar clustering of individuals may also be an 

important precursor of local traditions and cumulative culture. By slowing information transfer 

through the population as a whole while encouraging localised innovations and information 

exchange, spatial separation of social groups can lead to the development of local behavioural 

traditions. For example, for species such as white-crowned sparrow (Zonotrichia leucophrys), 

corn buntings (Emberiza calandra) and sperm whales (Physeter microcephalus), spatially distant 

social groups have been known to develop local dialects (Slater, 1986; Rendell and Whitehead, 

2005), most likely because individuals learn their vocalisations from those they are in closer 

spatial proximity to. Where spatially separated groups of individuals have developed contrasting 

solutions to the same problem, loose interconnections between these local groups (e.g. through 

the movements of highly mobile individuals, as illustrated in Chapter 2) can lead to 

recombination events, where aspects of two or more local traditions are combined to produce 

a potentially more effective overall solution (Migliano et al., 2020). 

It is therefore highly important that future research takes into account the influence of spatial 

locations on learning opportunities. This is particularly the case for experiments that tend to be 

conducted in small-scale laboratory environments – e.g. many studies on social learning 

strategies in humans, as discussed in Chapter 1. I discuss opportunities for novel methodologies 

to address these deficiencies and allow the incorporation of potentially important spatial factors 

into previously restrictive behavioural experiments in section 6.3, below. 

 

6.2.5. Variation in demonstrator characteristics and observer biases determine 

which individuals are the most influential sources of information. 

The pathways of social transmission can also be dictated from the observer’s perspective by 

biases towards particular sources of information. When met with multiple information sources, 

such as incoming information from multiple social learning pathways, the observer must make 

a decision about which information to make use of. It may be possible to combine multiple 

sources of information, however this is costly in terms of time and energy, and may become 

problematic if multiple demonstrators perform behaviours asynchronously across time and 
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space. In which case, it may be more beneficial to rely on innate, potentially context-specific, 

biases towards acquiring specific types of information or learning from specific types of 

demonstrator (Figure 6.1E). Where model-based biases exist, particularly if they are shared by 

many individuals within the population, demonstrators with specific physical and/or behavioural 

characteristics may become particularly influential sources of information within their social 

networks. This may have important effects on population-level information transmission 

patterns, as there may be an extent to which the potential social learning pathways are 

constrained by the pool of traits within that population. In a population where observers 

preferentially learn from large, dominant demonstrators, for example, a small, subordinate 

individual – spatially and socially connected to others and in possession of adaptive information 

– may become an overlooked opportunity for learning. 

At the individual level and from the observer’s perspective, model-based social learning biases 

(Rendell, Fogarty, et al., 2011) can be beneficial if demonstrator characteristics can be used as a 

proxy for their likelihood of producing profitable behaviours. For example, in species where body 

size indicates an ability to gain adequate nutrition, we may expect a bias towards learning from 

larger individuals to develop. This has been most notably demonstrated in nine-spined 

sticklebacks (Duffy et al., 2009). There is also some evidence that taller humans are more 

influential (Blaker et al., 2013); although I found no evidence to suggest humans copied larger 

over smaller demonstrators in the virtual reality experiment in Chapter 5. Individuals may also 

display biases towards learning from the most dominant individuals in the social group, since 

dominance status is indicative of an individual’s overall success. Domestic hens (Gallus gallus 

domesticus), for example, tend to copy the behaviour of dominant over subordinate 

demonstrators in a foraging task (Nicol and Pope, 1994; 1999). Similarly, in Chapter 5, I found a 

marginal effect of demonstrator dominance on social influence in humans – plus, the bias 

towards taller individuals in Blaker and colleagues’ study may reflect a dominance-related bias 

in humans if participants perceived taller individuals as more dominant (as in Lourenco et al., 

2016). However, dominant individuals may not always make the best demonstrators if their 

ability to solicit information from their subordinates, as discussed above, makes them 

unmotivated to attempt novel tasks. Subordinates may therefore be more innovative than 

dominants – as demonstrated in meerkats (Thornton and Samson, 2012). In addition, if joint 

interaction with a knowledged demonstrator is required for effective social learning to occur, 

dominant individuals limiting observer access to a novel task may also limit their ability to act as 

demonstrators of information – as demonstrated in olive baboons (Papio hamadrycis anubis) 

(Caldwell, 2003). If subordinates prove to be more innovative and also more tolerant to close 
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observations, a bias towards copying subordinates may offer a more effective way of gaining 

access to novel solutions. In line with this, novel behaviours have been shown to transmit more 

effectively through chimpanzee groups when seeded with a subordinate demonstrator than 

with a dominant demonstrator (Watson et al., 2017). Biases towards learning from subordinates 

may, however, be masked by a dominant individual’s ability to monopolise novel objects 

(Watson et al., 2017).  

Sex-based biases are relatively understudied but appear more likely to develop when there is 

sex-specific knowledge of a particular environment or task. If one sex is philopatric while the 

other migrates away from the natal environment, for example, s/he who remains is more likely 

to possess useful knowledge about the natal environment, as demonstrated in vervet monkeys 

(Van de Waal et al., 2012). The dispersive sex, on the other hand, is more likely to encounter 

novel problems and this may be reflected in a tendency to be more persistent in their asocial 

learning efforts – as demonstrated in meerkats, where males (the dispersive sex) are more 

innovative than females (Thornton and Samson, 2012). Similarly, if one sex dominates a 

particular task, context-specific sex biases are likely to develop, as demonstrated in hunter-

gatherer communities, where individuals are more likely to seek advice about hunting or crop-

growing (male-dominated activities) from males and about medicinal plants (female-dominated 

activities) from females (Henrich and Broesch, 2011). When subjected to a series of virtual tasks, 

I found little evidence of any sex-based biases in humans, with the exception of a slight male 

bias in the foraging task, which could suggest that males are viewed as possessing greater 

foraging skills (Chapter 5). 

A demonstrator’s age may also mediate their social influence over others. The oldest individuals 

in the population may act as important sources of information, as these individuals must have 

developed a repertoire of behaviours profitable enough to allow them to survive to an old age. 

In support of this, preferences for observing and copying older individuals have been 

demonstrated in chimpanzees (Biro et al., 2003; Horner et al., 2010), capuchins (Coelho et al., 

2015), indigobirds (Payne, 1985) and humans (Henrich and Henrich, 2010; Wood et al., 2013). 

Similarly, older African elephant matriarchs have a greater influence over the behaviours of their 

herd than younger matriarchs, as discussed in more detail below.  

In Chapter 5, I found the strongest evidence for success-based and positive frequency-

dependent social learning biases in humans – both of which have been demonstrated in humans 

before (Morgan et al., 2012; Mesoudi, 2008; Mesoudi, 2011; Molleman et al., 2014; Miu et al., 

2018). Both strategies have clear adaptive value and may be more reliable than the model-based 
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biases discussed above, which are reliant on an individual’s characteristics acting as a reliable 

indicator of its tendency to perform more profitable behaviours. As discussed above, even 

individuals with characteristics indicative of success may vary in their willingness or ability to 

transmit information to others (demonstrated in Chapter 2 to have a profound effect on 

information transmission patterns) or in the contexts in which they tend to perform better. 

Copying the demonstrator who receives the highest payoff in a given context comes with the 

time and energy constraints of observing and comparing the actions of multiple individuals, but 

ensures that naïve individuals learn only the most profitable behaviours. Thus, it is easy to 

envisage why a tendency to copy successful individuals has been documented in a wide range 

of taxa, including insects (Czaczkes et al., 2019), fish (Coolen et al., 2005; Kendal et al., 2009), 

birds (Payne, 1985; Seppänen et al., 2011), bats (Wilkinson, 1992), humans (Mesoudi, 2008; 

Mesoudi, 2011; Wood et al., 2013; Chapter 5) and other primates (Barrett et al., 2017).  

Similarly, if a behaviour has accumulated in a population to a point where it is now used by the 

majority, said behaviour must be not only profitable, but also able to sustain use by a large 

number of individuals, making it a behaviour that is probably worth learning. This likely explains 

why a tendency to conform to local norms has been documented in a variety of different species 

and contexts, e.g. mate choice in fruitflies (Drosophila melanogaster) (Danchin et al., 2018), 

foraging in nine-spined sticklebacks (Coolen et al., 2005; Pike and Laland, 2010), great tits (Aplin 

et al., 2015) and chimpanzees (Haun et al., 2012), and problem-solving in humans (Morgan et 

al., 2012; Haun et al., 2012; Chapter 5). Positive frequency-dependent social learning biases are 

also important for the development of culture – if individuals tend to conform to a solution 

already prevalent in the population, rather than copying rarer variants or innovating novel 

solutions, stable traditions are much more likely to form (Claidière and Whiten, 2012). Both 

success- and frequency-based social learning biases can allow observers to filter out the most 

profitable behaviours to learn – and may also have important impacts on information 

transmission through the population as a whole, especially when both exist together. Individuals 

who are prone to copying only the most successful demonstrators can curb the transmission of 

suboptimal behaviours that have found their way into the population; while individuals who are 

prone to copying the majority allow the spread of these profitable behaviours to the remainder 

of the population, resulting in the formation of group-level decisions and behaviours.  
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6.2.6. Keystone information transmitters 

Where individuals in a population vary in their tendency to acquire and transmit information to 

others, a select few ‘keystone’ individuals may exist who disproportionately drive information 

transfer through their social group (Figure 6.2). In previous literature, the existence of such key 

individuals has been most notably demonstrated in ant societies, where few select individuals 

can play key roles in colony organisation and functioning. This includes ‘catalysts’, which serve 

to increase worker activity, and ‘organisers’, which initiate and maintain collective colony 

processes (Robson and Traniello, 1999). Often, insect colonies rely on a very small proportion of 

individuals to carry out most of the colony’s work (Charbonneau et al., 2017) and the work of 

these key individuals can drastically impact the efficiency of colony processes (Dornhaus et 

al. 2008). The removal of ‘organisers’ from ant colonies, for example, can result in a collective 

task not being performed at all (Robson and Traniello, 1999).  

 

 

Figure 6.2. Keystone information transmitters. Within a population, certain ‘key’ individuals (red circle) 

can have a disproportionate influence over the behaviours of others. This may be due to a number of 

individual characteristics, including their connectedness within the social network, their ability to gain 

novel information more rapidly than their peers, their tendency to transmit this information to others 

and/or any behavioural or physical characteristics that make them more appealing as demonstrators of 

information. 

 

In some animal populations, even a single individual may act as an essential communicator to 

the whole population and their individual characteristics may impact on their ability to 

coordinate group activities. For example, in African elephant communities, the vocal 

discrimination abilities of the herd is significantly influenced by the age of its matriarch. Herds 

led by older matriarchs show enhanced defensive responses (e.g. attentiveness, bunching 
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together) towards the calls of unfamiliar individuals (McComb et al., 2001) and dangerous 

predators (McComb et al., 2011). This is believed to be a direct result of older individuals, with 

a more extensive ecological knowledge built up over a longer period of time, communicating the 

most appropriate responses to the rest of the herd – thus demonstrating how a single individual 

can act as a crucial repository of social information.  

There are various reasons why a single individual (or set of individuals) may be 

disproportionately influential over the behaviours of their peers – several of which can be found 

within the chapters of this thesis. As discussed by Krause et al. (2010), a high level of connectivity 

within the social network is one reason why an individual may play a key role in information (or 

disease) transmission. I found such a pattern in zebra finches, where a select few highly 

connected individuals acted as 'hubs' of information about a novel foraging task (Chapter 3). 

However, high levels of connectivity is not the only reason why an individual may have a 

disproportionate influence over the behaviour of others. If a highly connected individual never 

gains access to a particular piece of information, for example, it will be unable to transmit this 

information to others. Individuals who gain early access to novel information (e.g. due to higher 

cognitive abilities, greater exploratory tendencies, a greater capacity to innovate or an ability to 

monopolise novel objects over its conspecifics) will have more opportunity to demonstrate this 

information to others and may therefore act as key sources of novel information. For example, 

the highly connected individuals in Chapter 3 also learned how to solve the novel foraging task 

early on in the study. As these individuals also tended to win aggressive encounters against their 

conspecifics, I concluded that their early solving of the task was an important driver of 

information in the fight winner to fight loser direction. In addition, as discussed above and in 

Chapter 2, where some individuals are more prone to passing on information to (or even 

promoting learning in) others, these individuals can act as key sources of social information 

within the population. Similarly, those individuals who provide a ‘link’ or ‘bridge’ between 

spatially or socially isolated subgroups may play a key role in information transmission. This was 

demonstrated by the long-distance travellers in Chapter 2 and in the hunter-gatherer example 

above, where friends provided important links between unrelated households (Migliano et al., 

2017). Similarly, in school organisations, individuals who serve as communication channels 

between different departments play important roles in coordination and school-wide decision 

making (Bakkenes et al., 1999). 

In addition to the behavioural characteristics of the demonstrators themselves, the identity of 

such key information transmitters may be determined by where observers choose to focus their 

attention. If many observers share a bias towards learning from the same demonstrators, for 
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example, the behaviours of these demonstrators will have a larger impact on the population 

than those who receive comparatively little attention. In some social societies, demonstrators 

who have, in the past, proved themselves in terms of skill and knowledge can gain respect and 

trust from their peers, giving them a prestigious status which can further boost their social 

influence in the future (Henrich and Gil-White, 2001; Atkisson et al., 2012; Jiménez and Mesoudi, 

2019; Brand et al., 2020; Bond and Gaoue, 2020). In addition, because prestige is maintained 

through the respect and admiration of one’s peers, prestigious individuals are highly motivated 

to build and maintain positive relationships, which may further increase their level of 

connectivity within the social network (Case et al., 2018; Ketterman and Maner, 2021). 

However, if an individual’s popularity is determined by characteristics unrelated to their ability 

to perform well in a particular task (e.g. their attractiveness or likability; Kim and Kim, 2022), 

then these influential individuals may not necessarily be in possession of the most beneficial 

information – and so learning selectively from popular individuals may come at the expense of 

ignoring less popular, but potentially more skilled, individuals. In some cases, the maintenance 

of such popularity is actually at the expense of task performance (Case et al., 2018), which 

highlights how the presence of keystone information transmitters can easily become 

disadvantageous to the population if these individuals are not in the possession of the best 

knowledge. Thus, due to their disproportionate influence over the rest of the population, the 

actions of these keystone individuals – whether adaptive or maladaptive – can have a profound 

impact on the functioning and overall survival of the entire social group, and, if their conspecifics 

are particularly dependent on these individuals as sources of information, their removal from 

the population could theoretically lead to a complete breakdown of communication.   

 

6.3. Novel methodologies for studying social learning and information 

transmission in realistic, spatially explicit environments 

A major contribution of the research described in this thesis is through the development of novel 

methodologies that permit social learning, behaviour and information transmission to be 

studied in more realistic scenarios than current methodologies often permit. The most notable 

of these is the virtual platform for studying human social learning, VERSE, presented in Chapter 

4. A major point of discussion throughout this thesis has been the lack of realism and ecological 

validity of human social learning experiments – including abstract tasks, unrealistic sources of 

social information and localised spatial scales. The potential for open-world virtual games for 

studying human behaviour has been highlighted before (Bainbridge, 2007; Lofgren and 
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Fefferman, 2007; Balicer, 2007; Johnson and Levine, 2008; Hou, 2012; Lakkaraju et al., 2018; 

Brookes et al., 2020) and an increasing body of evidence indicates that the social interactions 

and behaviours occurring within such virtual environments offer a realistic representation of 

real-life behaviours (Williams et al., 2006; Cole and Griffiths, 2007). Despite this, no tool has 

previously been built specifically for the purpose of conducting realistic social learning 

experiments in the way suggested here, within an ecology and evolution framework. VERSE has 

exciting potential to contribute greatly to social learning research by offering a novel way to 

study human behaviour in realistic scenarios, within naturalistic, large-scale, immersive 

environments – particularly if combined the experimental framework recently described by 

Brookes et al. (2020) which is specifically designed to aid researchers in creating behavioural 

experiments within Unity, the platform in which VERSE was built. As demonstrated in Chapter 

5, VERSE also offers a unique way of replicating animal behavioural experiments using human 

participants.  

In Chapter 2, I introduced an agent-based, spatially explicit model designed to investigate the 

effects of individual behaviours on social network structure in a population of mobile individuals. 

These types of models are being increasingly used as a way of investigating how fine-scale 

individual processes produce emergent, larger-scale outcomes such as habitat use patterns 

(McLane et al., 2011), disease transmission (Pie et al., 2004; Bonnell et al., 2010) and collective 

decision-making  (Strandburg-Peshkin et al., 2013; Yang et al., 2019; Watzek et al., 2021). My 

model allows factors such as individual behavioural variation, temporal changes in spatial 

location, interaction / communication distances and population size to be incorporated into 

social learning models, either as variables of interest or as a way of improving model realism 

through the incorporation of stochastic or partly stochastic processes.  

The zebra finch experiment described in Chapter 3 expanded on a relatively recent method of 

detecting social transmission through several potential social learning pathways, known as 

multi-network NBDA (Farine et al., 2015; Hoppitt, 2017), to study social transmission using a 

novel approach. While most social learning experiments consider how social information is 

transmitted through association or proximity networks, under the assumption that closely 

associating individuals are more likely to learn from one another (e.g. Allen et al., 2013; Boogert 

et al., 2014; Aplin et al., 2015), I investigated the possibility that the social relationships 

connecting pairs of individuals within the social network determined the pathways of social 

transmission through the group. So far, this has only been done in a handful of other studies – 

most notably Farine et al.’s (2015) work on zebra finches, which focussed on the connections 

between adults and juveniles, Kulahci et al.’s (2016) study on ravens, which focussed on 
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affiliative and agonistic relationships, and Wild et al.’s (2019) recent work on parent-offspring 

social transmission in bottlenose dolphins. Chapter 3 expands on this methodology even further 

by taking a greater number of social relationships, considering each as a potential social 

transmission pathway and treating every possible combination of these pathways as a 

hypothesis as to the overall pattern of learning in the population. While this method may be 

more time-consuming and computationally intensive than examining the influence of each 

relationship separately, it is certainly a worthwhile method to consider – particularly because 

the influence of comparatively sparse networks may not be detectable unless combined with 

denser networks. This was demonstrated in Chapter 3, where networks connecting mated pairs 

(and therefore consisting of only a few sporadic connections) did not explain the observed 

patterns of information exchange, but did add to the explanatory power of alternative networks.  

 

6.4. Future research 

Throughout this summary chapter, I have pointed out various areas for potential novel research. 

In the following paragraphs, I lay out some more specific ideas in relation to the findings 

discussed throughout this thesis.  

Social transmission of novel behaviours is a complex process which, as discussed extensively 

throughout this thesis, is dependent on a number of social, spatial and behavioural factors. First 

and foremost, future social learning research – both theoretical and empirical – should aim to 

incorporate these factors in order to gain a more realistic picture of social learning processes. 

Theoretical models should particularly aim to incorporate spatial factors and individual 

behavioural variations which, as discussed in Chapter 2, can have pronounced effects on group-

level interaction patterns compared to analyses of fixed social networks. An interesting next step 

would be to expand the model in Chapter 2 to incorporate resources external to the nest and 

pit colonies with different pools of individual-level characteristics against each other to 

determine which characteristics contribute to colony success. For example, do individual 

variations in spatial movements, shown in Chapter 2 to increase the efficiency of information 

transfer, improve colony responses to varying resources? 

Agent-based models have a lot of potential to investigate how individual-level behaviours can 

dictate population-level information transmission. Depending on the system and type of 

information being modelled, the realism of simulations such as that presented in Chapter 2 could 

be improved further by having agents base their decisions on visual sensing (as in Strandburg-
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Peshkin et al., 2013). The incorporation of environmental structuring (similar to Pie et al., 2004) 

would allow more in-depth investigations into the importance of physical barriers for 

information transmission. In addition to modelling information flow, models such as these could 

offer important insights into the factors influencing disease dynamics and gene flow. 

Interestingly, a recent paper unearthed an additional potential application for agent-based, 

spatially explicit simulation models, such as that described in Chapter 2, in the production of 

biologically relevant null models for network motif analyses. Traditionally, when determining 

the significance of particular substructures within population social networks, researchers 

compare their relative abundances to those of randomly-generated networks (e.g. Waters and 

Fewell, 2012). Hart and colleagues (2021), however, argue that random networks do not account 

for the non-independence commonly seen in natural systems – for example, it is assumed that 

any two nodes, regardless of their individual characteristics, spatial location and so on, are 

equally likely to be connected to one another. In Chapter 2, my approach was to compare 

population social networks generated by simulations with inter-individual behavioural 

variations to a null ‘Uniform’ condition where these variations did not exist. Thus, the null model 

was able to incorporate the influences of individual movements and interactions on social 

network structure. This highlights the potential for such models in the development of more 

biologically and physically realistic null models, which account for the natural non-independence 

of interactions, for comparison with empirical data. Since the study described in Chapter 2 was 

conducted prior to the publication of Hart et al. (2021), this potential application was not 

explored in its entirety in this thesis, however the concept is briefly illustrated at the end of 

Chapter 2.  

Empirical studies should aim to promote natural interactions and learning processes. Animal 

studies have already taken great steps in this direction through the use of statistical approaches 

such as NBDA which allow populations of individuals to navigate their environment and interact 

with each other naturally. NBDA offers a way of analysing the importance of social bonds (e.g. 

Chapter 3; Wild et al., 2013; Farine et al., 2015), spatial proximity (e.g. Boogert et al., 2014; 

Kulahci et al., 2016; van Leeuwen et al., 2020) and individual personalities (e.g. Hasenjager et 

al., 2020) for information transmission through networks of individuals. Multi-network NBDA 

has been particularly productive in allowing the transmission of behaviours along multiple 

pathways to be identified. By building comprehensive models of social transmission through 

multiple social learning pathways, multi-network NBDA also allows the additive effects of sparse 

networks to be identified by combining them with more highly connected networks, as 

illustrated by the Mates network in Chapter 3. Based on my work in Chapter 3, I suggest that 
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future work should delve deeper into the importance of social relationships on learning 

processes. Social transmission between mates is particularly understudied – despite the 

potential adaptive benefits of pair specific preferences due to a mated pair’s shared goal of 

producing surviving offspring and, in some species, their dependence on each other for their 

own survival (Avital and Jablonka, 2000). I therefore hope that my detection of (albeit relatively 

weak) mate-mate social transmission in zebra finches will encourage further study in this area – 

with the aforementioned caveat that the influence of sporadic mate-mate connections may be 

difficult to detect using network-based approaches if not viewed as a small part of a larger, more 

highly connected social network. 

Human studies, on the other hand, are often limited to restrictive, unnatural laboratory 

environments. Therefore, future work on humans should focus on investigating our social 

behaviour in more realistic, open environments. Open diffusion experiments, for example, have 

only been used in a limited number of studies (e.g. Whiten and Flynn, 2010; Flynn and Whiten, 

2012) and network-based analyses such as NDBA (Franz and Nunn, 2009; Hoppitt et al., 2010; 

Hoppitt, 2017), to the best of my knowledge, have not been applied to human populations. In 

this thesis, I have explored the use of virtual reality as a way of studying human social learning 

within more realistic, three-dimensional environments and have developed VERSE specifically 

for this function. I strongly encourage future researchers to use VERSE to create more 

naturalistic experiments than is often possible in the lab. 

VERSE is designed as a highly flexible tool which harnesses the benefits of gaming technology in 

order to produce experimental environments not easily created within laboratory conditions. As 

such, its potential applications are vast. Just a few examples of how VERSE could be used within 

the social learning research are: replicating human experiments formerly conducted in more 

restrictive laboratory conditions, replicating studies from the animal literature using human 

subjects (as I did in Chapter 5) and creating completely novel survival scenarios (e.g. foraging, 

predator avoidance, toxin aversion) not usually possible with human subjects. As suggested in 

Chapter 4 (section 4.6), research could also focus on VERSE’s AI system to establish whether 

computer-controlled entities are viewed as true social cues, and what behavioural 

characteristics makes them integrate more realistically into a player’s social landscape. If 

expanded to support multiple players, VERSE could also offer a unique, real-time perspective 

into human population-level information transmission patterns – including the use of specialised 

statistical methods, such as NBDA (Franz and Nunn, 2009; Hoppitt et al., 2010; Hoppitt, 2017), 

which are frequently used on animal populations (e.g. Chapter 3) but, so far, have not been 

applied to human groups – as well as allowing investigations into the behavioural, physical and 
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environmental factors that influence social processes at the population level, some of which 

have been discussed throughout this thesis.  Social groups could even be studied over prolonged 

periods to allow investigations into human behavioural evolution and the development of 

group-specific cultural traditions (in small-scale versions of the often decades-long observations 

of animal populations, e.g. Allen et al., 2013). 

 

6.5. Potential applications  

An understanding of the factors that influence population social networks, social learning, and 

the subsequent patterns of information transmission through groups of individuals is important 

not only within the fields of behavioural ecology, sociobiology and evolution, but could also have 

wider reaching consequences in various fields outside of academic research. Some examples are 

discussed below. 

 

6.5.1. Conservation, translocation and reintroduction: the importance of social 

factors 

Increasingly, the importance of integrating behavioural ecology with conservation is being 

recognised (Angeloni et al., 2008; Merrick and Koprowski, 2017; de Azevedo and Young, 2021). 

Individual behaviours and personality traits can impact on a number of factors relating to the 

conservation, translocation and reintroduction of different species – including habitat use 

patterns, migration patterns, stress levels in response to disturbance, translocation and human 

handling, breeding success in captivity, responses to novel environments and the impact of 

anthropogenic disturbances (Merrick and Koprowski, 2017; de Azevedo and Young, 2021). An 

understanding of individual habitat preferences and movement patterns is also crucial for the 

identification of areas in need of protective status (Caro and Berger, 2019).  

One of the key concepts discussed in this summary chapter is individual behavioural variability. 

In conservation science, failing to account for such variability can result in inaccurate predictions 

of population-level patterns. For example, Lesmerises and St-Laurent (2017) demonstrated that 

using population-level averages resulted in weak models of habitat use in black bears (Ursus 

americanus) by masking important individual differences. One could also argue that behavioural 

variants are themselves an important component of biodiversity – especially if these variants 

are socially transmitted to others in a form of behavioural inheritance that can drive changes in 
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whole populations – and that conservationists should be seeking to maintain behavioural 

diversity (or even focus on particular behavioural variants) just as much as genetic diversity 

(Whitehead, 2010; Cordero-Rivera, 2017; Greggor et al., 2017; Brakes and Rendell, 2022). 

Despite this, a large proportion of conservation research still fails to consider behaviour and 

personality traits at the individual level (Angeloni et al., 2008) – and even fewer consider the 

importance of social factors.  

Social species are particularly sensitive to rapid human-induced environmental changes, 

partially because human activities can disrupt the transmission of crucial information through 

the population, but also because reliance on social learning and the establishment of local 

traditions can impede rapid responses to anthropogenic forces if these forces cause local norms 

to become maladaptive (Whitehead and Richerson, 2009; Barrett et al., 2019). Social species 

also pose additional conservation challenges because they are reliant on each other for their 

survival. In particularly close-knit groups, social bonds may be so strong that Individuals act 

collectively as one, potentially leading one another into dangerous, human-induced situations. 

For example, social organisation may be an important factor influencing the mass stranding 

events of Gray’s beaked whales (Mesoplodon grayi), which strand in large, unrelated groups in 

response to anthropogenic noise (Hooker et al., 2019; Brakes and Rendell, 2022). Conservation 

efforts for social species should therefore view the social group as a unit of conservation and 

focus not only on the conservation of populations and their habitats, but also on the 

preservation and understanding of important social bonds within those populations. How 

individuals interact with one another, how the social upbringing of an individual impacts on its 

future prospects, how adaptive and maladaptive information transmits through populations, the 

contexts that alter the pathways of social transmission and the role of cultural traditions for the 

survival of species are all important considerations in the conservation management of social 

species (Whitehead, 2010; Brakes et al., 2019; Brakes et al., 2021). Considering these often 

overlooked social aspects of animal behaviour may make us better able predict, and potentially 

mitigate against, the impacts of anthropogenic disturbances on animal populations, as discussed 

in more detail below.  

A wide variety of human activities can reduce behavioural diversity and interrupt essential social 

interactions and communication channels in animal populations, thus impacting on the 

transmission and maintenance of adaptive behaviours in the face of population disturbances 

(Laiolo 2010; Greggor et al., 2017). Chemical pollution, for example, can impede learning of 

antipredator behaviour in fish by impairing their ability to respond to the olfactory alarm cues 

of conspecifics (Mirza et al., 2009). Anthropogenic noise pollution can have very similar effects. 
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Boat noise, for example, reduces the survival of juvenile coral reef fish by impacting on their 

ability to learn socially about novel predators (Ferrari et al., 2018). For marine mammals, fishing, 

hunting and anthropogenic noise can all impact social dynamics and important dyadic 

relationships (e.g. the mother-calf bond), sometimes resulting in the fragmentation of entire 

social groups (Brakes, 2019; Brakes and Rendell, 2022). Similarly, noise pollution has been shown 

to erode male-female pair bonds in zebra finches, possibly due to masking of bond-maintaining 

calls (Swaddle and Page, 2007), which, given the potential importance of mate-mate 

communication for the social learning of foraging techniques in this species (Chapter 3), could 

result in disrupted population-level social transmission pathways. In the face of anthropogenic 

noise, some species are able to adaptively alter their vocalisations (e.g. by changing the timing, 

amplitude and frequency) in order to stay heard; however, these alterations may come with 

other fitness costs, such as a reduction in attractiveness to potential mates, and species that are 

unable to alter their vocalisations in such a way may be forced to either avoid noisy 

environments entirely or suffer the fitness disadvantages of settling there (Laiolo 2010). The 

direct removal of individuals from the population can also significantly impact social 

transmission of crucial information through populations, particularly if the individual that is 

removed happens to be a keystone information transmitter. For example, in species such as 

elephants, older individuals are often the targets of hunting and, as older individuals also act as 

essential sources of social knowledge due to their accumulated experience over time, their 

removal from the population can have disproportionate effects on the survival of their group 

(McComb et al., 2001).  

Habitat loss and fragmentation can have profound consequences not only on genetic diversity, 

species richness and population sizes (Fahrig, 2003), but also on animal behaviour, including 

their social behaviour (Yahner and Mahan, 2002). Anthropogenically driven changes to habitats 

can result in changes to population social structure and organisation, including the type and 

frequency of social interactions (Yahner and Mahan, 2002). For example, Arroyo‐Rodríguez et 

al. (2010) reported that habitat fragmentation and disturbance led to increased fission-fusion 

dynamics, changes in the composition of social groups and overall reduced rates of social 

interaction and activities in howler monkeys (Alouatta spp.). Where changes in land use alter 

the spatial distributions of groups of individuals (e.g. due to the production of heterogeneous, 

patchy landscapes), the patterning of social interactions at the population level can be 

substantially altered, as indicated by the results of Chapter 2. In addition to its influence on social 

transmission, the spatial distribution of individuals can have important impacts on disease 

dynamics. For example, differences in the number and size of habitable patches in fragmented 
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landscapes, combined with inter-patch distance, can determine whether individuals tend to 

remain in the same patch for prolonged periods or frequently move between them, which 

subsequently influences both within- and between-patch disease transmission (Tracey et al., 

2014). Similarly, the presence of few, isolated high resource patches within heterogeneous 

environments can result in ‘hot spots’ of disease transmission by encouraging high densities of 

social interaction at the high resource sites (Bonnell et al., 2010). 

As non-habitat permeability decreases, e.g. due to physical barriers or behavioural avoidance of 

urbanised areas, between-patch movement eventually ceases (Tracey et al., 2014). Thus, habitat 

fragmentation has the potential to isolate groups – or even single individuals – from the rest of 

the population. Similar social isolation may be observed due to declining population sizes, which 

result in sparser distributions of individuals, thus decreasing the overlap between territories and 

making social interactions less likely. Spatial isolation of groups due to habitat fragmentation is 

likely to increase within-group transmission due to individuals being forced into closer proximity, 

while decreasing between-group transmission (Chapter 2; Laiolo and Tella, 2005; Tracey et al., 

2014), which may have important implications for the uptake and transmission of novel 

behaviours. If social groups become too sparse, leading to single individuals becoming isolated, 

locating suitable demonstrators can become difficult, and individuals may become more reliant 

on their own personal experiences (Chapter 5; Crates et al., 2021). This may exacerbate species 

decline by limiting social interactions essential to sustain the population, such as mating (Banks 

et al., 2007). Plus, for species that rely on social learning to gain important survival skills, social 

isolation threatens to limit the maintenance of adaptive behaviours.  

Thus, depending on a species’ reliance on social interactions with conspecifics, social isolation 

alone may have a profound impact on its survival, even if the fragmented habitat theoretically 

contains enough resources to sustain them. Recent work, for example, has revealed that 

population decline has resulted in a degradation of vocal culture in critically endangered regent 

honeyeaters (Anthochaera phrygia) because their sparse distributions mean that juvenile males 

are unable to locate male tutors to learn their songs from.  As songs are used to attract females 

in this species, the increase of atypical songs by socially isolated males is contributing to the 

species’ decline by reducing successful pairings (Crates et al., 2021). This illustrates how a 

species’ dependence on particular social interactions can produce Allee effects (Stephens et al., 

1999) that are highly sensitive to anthropogenic activities. Similar patterns of reduced acoustic 

connectivity and erosion of vocal culture due to habitat fragmentation have been documented 

in the Dupont's lark (Chersophilus duponti) (Laiolo and Tella, 2005, 2007; Laiolo et al., 2008) and 

Grey Shrikethrush (Colluricincla harmonica) (Pavlova et al., 2012). Even when individuals are not 
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geographically isolated, alterations to habitat composition caused by human activities, such as 

the removal of mature trees, can drive acoustic changes in vocalisations, which may ultimately 

have an impact on important social interactions (Goretskaia et al., 2018). Interestingly, because 

behavioural inheritance occurs over much shorter timescales than genetic inheritance, cultural 

erosion (e.g. loss of diversity in bird song) could be used as an early warning sign for detecting 

population disturbances (Laiolo and Tella, 2005; Laiolo, 2010), which may allow us to deploy 

conservation management strategies before these disturbances become too severe to combat. 

Predicting how species will respond to environmental change and anthropogenic disturbances 

therefore requires an understanding of the importance of that species’ social behaviour on its 

survival. A population’s reliance on social interactions, plus their natural movement and 

dispersal patterns, for example, will likely determine how impacted they are by habitat 

fragmentation. Models of gene flow on Australian woodland birds have revealed that habitat 

fragmentation adversely affects both sedentary and mobile species – and both philopatric and 

dispersive individuals – in different ways. While sedentary individuals are forced into smaller 

and smaller habitats due to their resistance to crossing over non-habitat areas, novel barriers to 

movement can impede the dispersal abilities of mobile individuals (Amos et al., 2014). In 

Chapter 2, I demonstrated how a subset of highly mobile individuals can act as important 

connectors of more sedentary subgroups. In addition to the adverse effects on gene flow, 

anthropogenic barriers to dispersal may block important information channels by disrupting the 

natural movement patterns of such individuals. The resilience of social networks should 

therefore be considered in our conservation efforts – perhaps even treated as a conservation 

goal. Spatially explicit, agent-based models such as that described in Chapter 2 could offer a very 

promising way of establishing the individual-level characteristics that make a population more 

vulnerable (or more robust) to habitat fragmentation, thus allowing us to identify species that 

are more at risk and mitigate against the effects of anthropogenic activities on these species. In 

the case of habitat fragmentation described above, for example, conservation planning may 

wish to consider differences in the dispersal abilities of different individuals and plan 

accordingly, e.g. by focussing efforts on (i) improving the habitat quality for philopatric 

individuals and (ii) identifying highly dispersive individuals and reducing their barriers to 

movement. 

We may also be able to take advantage of the natural social learning capabilities of animals to 

aid active conservation efforts. If we can understand, for example, which survival skills are best 

learnt independently and which are best learnt socially, while accounting for variation in 

learning preferences and abilities between individuals, and the best ways to teach these skills to 
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individuals, we may be able to help buffer populations against anthropogenic change and boost 

the success rates of wildlife reintroductions. For example, reintroduction programmes of the 

Mississippi sandhill cranes (Grus canadensis pulla) – a species with prolonged periods of parental 

care – became substantially more successful after the incorporation of anti-predator 

conditioning, which involved exposing naïve individuals to live, tame predators in the presence 

of adult cranes that were known to use appropriate predator responses (Heatley, 2002). 

Similarly, captive-reared juvenile black-tailed prairie dogs (Cynomys ludovicianus) were more 

adept at recognising and responding appropriately to a variety of predators and had higher post-

release survival rates – comparable to those of wild-reared juveniles – when trained in the 

presence of an adult female demonstrator compared to when trained alone (Shier and Owings, 

2007). Anti-predator training programs such as these could be beneficial for the reintroduction 

of a wide variety of endangered species, from fish to birds to mammals – particularly for species 

with predator-induced alarm calls that conspecifics must learn to respond to appropriately 

(Griffin, 2004). The incorporation of social learning into hatchery rearing practices also has the 

potential to significantly impact post-release survival rates of fish (Brown and Laland, 2001). This 

includes the learning of important foraging skills – for example, pairing juvenile Atlantic salmon 

(Salmo salar) with demonstrators trained to target benthic prey items substantially increased 

their benthic foraging success (Brown et al., 2003). We may even be able to tap into animals’ 

natural abilities to learn from each other to train populations to avoid anthropogenic dangers 

such as roads (Proppe et al., 2017) and windfarms (May, 2015). 

Most conservation efforts of this type involve training animals individually, however if we can 

harness the natural social learning processes of a population, we should be able to improve the 

efficiency and lower the costs of such training programs by introducing a desired behaviour into 

the population and then allowing it to diffuse naturally. If we have enough understanding of the 

population in question, including inter-individual variations in behaviours, preferences, learning 

abilities and social relationships – all of which have been demonstrated throughout this thesis 

to have important influences on information transmission dynamics – we may even be able to 

identify candidate individuals (i.e. those who are likely to transmit novel behaviours efficiently 

to the larger social group) to focus our training efforts on. Identification of a suitable candidate 

would depend on the characteristics of the population in question. If many individuals share a 

bias towards learning from dominant individuals, for example, then prioritising the training of 

dominant individuals may be the best way to introduce a desired behaviour into the population. 

On the other hand, it may also be possible to arbitrarily choose a candidate for teaching and 

artificially boost its influence over others – if individuals tend to learn from more successful 
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demonstrators, for example, then artificially increasing the success rates of individuals 

performing the desired behaviour may be sufficient for others to begin copying. In many species, 

social learning is frequency-dependent (e.g. Coolen et al., 2005; Pike and Laland, 2010; Aplin et 

al., 2015; Danchin et al., 2018) and so a large proportion of the social group may need to be 

trained before the information starts to be transmitted naturally. In other cases, efforts may be 

best placed identifying and training specific ‘keystone’ individuals who, for whatever reason – 

be it a tendency to learn a task rapidly or attend to a task more often, a high level of connectivity 

to others, some characteristic that makes them receive high levels of attention, a willingness to 

actively display novel information to others, or some combination of these factors – have a 

disproportionately large influence over the behaviours of their conspecifics, as discussed above.  

Once a candidate is chosen, an understanding of its individual preferences and learning skills 

could then help inform the best way to train it. Is it best to allow it to learn the novel skill 

asocially, for example? If it tends to learn from others rather than by itself, is it possible for a 

human demonstrator to teach the skill, or must this information come from a member of its own 

species? If the latter is true, a second candidate may need to be identified (perhaps an individual 

who lacks the desired level of influence over its social group but is more capable of independent 

learning and therefore easier to teach) who can then be partnered with the original candidate 

to allow it to learn the task from a conspecific. In some cases, rather than teaching a candidate 

individual a novel behaviour, it may be enough to simply introduce a novel task – something that 

represents the conservation issue in question – to the population and allow each individual to 

learn naturally and at their own pace. Of course, all this is easier said than done. Actually 

implementing such a scheme would require an in-depth knowledge not just of the species, but 

of the population and the individual personalities of its members – and while it may be possible 

to successfully emulate natural experiences through training programs (Shier and Owings, 

2007), it will always be difficult to predict exactly how animal populations will respond. However, 

if anyone is best placed to have this knowledge, it will be the people already placed in the front 

line, working hard to preserve these populations, both in captivity and in the wild, and save 

these species from decline.  

Finally, the most effective conservation efforts gain the support of the local human 

communities, and successfully engaging these communities in conservation requires an 

understanding of local opinions, social influences and cultural traditions. Recognising which 

species are best chosen as flagship species for conservation efforts in different regions and 

determining the best methods for gaining public support may, for example, depend on the 

attitudes and underlying culture of local residents. For example, attitudes towards eighteen 
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animal species in Valparai, India varied depending on audience characteristics, including 

stakeholder group (i.e. whether they were locals, tourists or conservation practitioners), gender, 

religion and education (Kanagavel et al., 2014). Negative attitudes were often associated with 

human-wildlife conflict and female opinions were strongly influenced by how threatening the 

species was perceived as – e.g. women showed an increased dislike for king cobras 

(Ophiophagus hannah) and lion-tailed macaques (Macaca silenus) compared to men, but were 

more willing to support the conservation of bird species. In some societies, the level of support 

for animal conservation is directly related to how aesthetically pleasing the species in question 

is (Liordos et al., 2017). In such cases, conservation projects might be aided by raising awareness 

for the importance of species that are generally perceived as less attractive for ecosystem 

functioning – e.g. educated women in Greece were more likely to support conservation efforts 

for species that they perceived as fearsome (Liordos et al., 2017). In other societies, placing an 

emphasis on ‘cultural keystone species’ (species of plants and animals that directly underpin 

local cultures) may be the best way to engage local people in conservation efforts (Garibaldi and 

Turner, 2004). In addition, recognising the local public’s preferences for conservation 

management policies may help to gain their support and even encourage them to get actively 

involved. An online assessment of public conservation preferences in the USA, for example, 

revealed that, when presented with five case studies in which one species was pitted against 

another, the majority of participants favoured habitat protection as the best solution (over lethal 

control or no action) in almost all cases and the level or support for lethal control methods was 

extremely low (Lute and Attari, 2017). Listening to public opinion in such cases may avoid conflict 

over how species should be conserved and encourage active involvement. 

 

6.5.2. Human-animal interactions and conflict 

Understanding how animals learn from each other – and how humans learn from each other – 

has important implications for understanding and regulating human-animal interactions and 

conflict. From the animal perspective, if we can identify how individuals learn conflict 

behaviours, we may be able to discourage the transmission of such behaviours through animal 

populations or even encourage human avoidance behaviours. Grizzly bear offspring, for 

example, appear to learn conflict behaviours from their mothers (Morehouse et al., 2016). Thus, 

discouraging conflict behaviours in female bears has the potential to reduce conflict in 

subsequent generations. Similarly, from the human perspective, understanding how and why 

prejudices towards certain species arise, and how these prejudices are transmitted through local 
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populations, may aid outreach programs and mitigation strategies that allow us to better coexist 

with nature. For example, in India, where compensation schemes are in place to help resolve 

issues of human-wildlife conflict within human settlements located in or around protected 

areas, a lack of participation in these schemes was found to be a critical problem for the 

resolution of conflict (Ogra and Badola, 2008). The likelihood of participation was influenced by 

individual factors such as wealth and gender, but was also impeded by ineffective 

communication, delays in receiving compensation and a lack of trust in the officials overseeing 

the scheme. In particular, illiteracy, policy biases and lack of connections to powerful advocates 

often discouraged poor and female-headed households to apply for compensation (Ogra and 

Badola, 2008) – despite women generally bearing the brunt of the conflict (Ogra, 2008). 

Understanding the best way to communicate necessary information about conflict resolution 

schemes to the affected communities, including encouraging members of the community to 

communicate this information amongst themselves and selecting more trusted advocates, could 

go a long way to improving participation rates. This would require knowledge of who the most 

influential and/or highly connected individuals are in the community.  

 

6.5.3. Epidemiology 

The underlying interaction network of a population determines not only the transmission of 

information, but also the transmission of pathogens. Therefore, research on social transmission 

pathways, including the use of network-based analyses and knowledge of the factors that 

promote or inhibit interactions between individuals, can be also applied to epidemiological 

research. As many pathogens are transmitted through direct contact between individuals, 

spatially explicit models are a particularly important asset for predicting the spread of disease 

in different scenarios. For example, social network and spatial analyses by Emch et al. (2012) 

demonstrated that cholera and shigellosis transmission patterns in Bangladesh were always 

clustered in space and, to a lesser degree, followed kinship-based social networks. Similarly, in 

Chapter 2, I demonstrated that variation in space use, where clusters of individuals are 

connected to each other via a minority of long-distance travellers, has the potential to rapidly 

speed up disease transmission. Such movement patterns are akin to the connection of distant 

human populations by bouts of high mobility, such as air travel, which have resulted in a growing 

number of epidemics by allowing pathogens to move beyond their natural geographic 

boundaries (Findlater and Bogoch, 2018). Due to the human-aided ability of pathogens to move 

rapidly into novel regions, it is crucial that we focus our research efforts on the early detection 
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of potentially dangerous pathogens while transmission is still limited to localised areas in order 

to effectively mitigate against the global spread of dangerous diseases. In the face of a potential 

pandemic, imposing air travel restrictions, particularly in countries that act as transportation 

hubs, may be the most effective way to contain disease transmission to more manageable 

localised regions where public health measures can then be focussed – as demonstrated in 

network analyses of Covid-19 transmission (Chu et al., 2020; Lai et al., 2020; Tiwari et al., 2021). 

From a conservation perspective, environmental changes that result in unnatural clustering of 

animal populations could increase the population’s vulnerability to the spread of disease. For 

example, Bonnell et al. (2010) demonstrated that habitat alterations resulting in a 

heterogeneous landscape in which few resource-rich sites are scattered may increase the spread 

of parasites through populations of the already endangered red colobus monkey (Procolobus 

rufomitratus) by increasing contact rates at the resource-rich sites.  

 

6.5.4. Understanding and preserving plant-plant communication 

Communication and social transmission of information are important not only for animal 

species, but for plants as well. Inter-plant communication is possible both through the 

production of volatile organic compounds (VOCs) (Bouwmeester et al., 2019; Ninkovic et al., 

2021) and via networks of symbiotic mycorrhizal fungi under the soil that allow the transfer of 

nutrients and chemical signalling between the roots of individual trees (Gorzelak at al., 2015; 

Simard, 2018; Baluška and Mancuso, 2020). In response to signals from neighbours, plants can 

show adaptive responses in their own behaviour, such as increased defences against herbivores 

in response to warnings from attacked neighbours (Engelberth et al., 2004; Markovic et al., 

2021) or changes in growth and allocation of biomass when neighbouring plants detect abiotic 

fluctuations (Kegge et al., 2015). Plants are also capable of learning from past experiences 

(Karban, 2008; Gagliano et al., 2016). Therefore, just like animals, plants can be viewed as 

belonging to social communities and, while very different communication mechanisms are 

involved, research into plant-plant communication and learning – which is currently in its infancy 

– can potentially be informed by research on social transmission in animals.  

Based on the findings of this thesis alone, a number of striking parallels can be identified in the 

patterns of social transmission between animal and plant populations. In tree populations, for 

example, individual trees (and/or mycorrhizae) are connected in a non-random, scale-free 

topology, resulting in strongly connected clusters of individuals with weaker connections 

between those clusters (Simard, 2018). Despite the sedentary nature of trees, this pattern of 
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connectivity is remarkably similar to the structuring of social networks resulting from the varied 

spatial movements of individuals described in Chapter 2 and could suggest selection for efficient 

information transfer. Rapid growth of mycorrhizae in response to environmental cues such as 

novel resources can connect distant plants together (Agerer, 2006; Simard, 2018) much like the 

long-distance travellers in the simulated population described in Chapter 2. Minorities of highly 

connected individual plants can also act as ‘hubs’ of information (Simard, 2018) – just as the 

zebra finch aggressors discussed in Chapter 3.  

In common with animal populations, anthropogenic activities can adversely affect plant 

communities by interfering with their pathways of communication. Air pollutants, for example, 

significantly reduce the distance at which plants can communicate via airborne VOCs (Blande et 

al., 2010). Logging activities, even if very few individuals are harvested, may have a 

disproportionate impact on tree communities if highly connected keystone individuals are 

removed. Spatial isolation caused by habitat fragmentation will likely have adverse effects on 

plants that would normally gain adaptive benefits from communicating with their conspecifics. 

Fragmented habitats containing patches of plant life – or even single, isolated individuals – that 

are too distant from one another to be connected by mycorrhizal networks may become 

especially vulnerable to environmental changes that they can no longer communicate to one 

another. As plants form the basis of many ecosystems, their responses to anthropogenic 

activities and environmental changes will have a knock-on effect on the organisms that depend 

on them – including us. In addition, the physical and chemical activities of plants can significantly 

manipulate both their biotic and abiotic environment, making them significant players in the 

fight against climate change (Baluška and Mancuso, 2020). Considering plants as intelligent 

organisms capable of communication and the development of complex societies is therefore 

essential if we are going to successfully predict future climate patterns and mitigate against 

anthropogenic effects on the environment.  

 

6.5.5. Education 

One of the key findings of this thesis is that individuals vary in how they learn. Traditionally, 

education in schools consists of a single teacher mentoring a class of students, however, we 

have known for some time that students differ in their cognitive styles, which means they 

respond differently to different types of task, different modes of presentation, different 

teaching styles, and so on (Riding, 1997; Riding, 2013). For example, some students respond 

better to verbal presentations while others respond better to pictorial presentations (Riding, 
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1997), and some respond better to traditional teaching styles while others respond better to 

computer-aided teaching (Riding and Grimley, 1999; Atkinson, 2004). Individual characteristics 

such as gender (Riding and Grimley, 1999; Arnup et al., 2013) and ethnic background (Shade, 

1982) can also influence how a student learns best. This has important implications for the 

development of effective teaching strategies – if individual differences in learning styles are not 

taken into account, students who do not respond well to the chosen method of teaching will 

have their performance adversely affected. Differences in student performance may be 

incorrectly identified as differences in cognitive ability, which is likely to demotivate students 

who are simply not being taught in a manner that they respond to effectively. The best teaching 

strategies should therefore allow individual students to choose a learning style that suits them 

best (Riding, 2013).  

In addition to individual differences in independent learning styles, education management 

should consider social influences on student learning. As demonstrated in Chapter 5, some 

individuals put more effort into independent learning, while others rely more heavily on others 

for information – thus, some students may learn better left to their own devices while others 

may learn better in a group. Individuals also vary in who they preferentially learn from and can 

alter these preferences in a context-dependent manner – thus, students may respond differently 

depending the individual characteristics of teachers (e.g. age, gender, race, personality traits) 

and these preferences may vary depending on the subject being taught (Chudgar and Sankar, 

2008). Where possible, having a varied pool of teachers of different ages, genders and 

backgrounds, and assigning these teachers to the students who are likely to learn from them the 

most efficiently, may help to improve student achievement. For example, Chudgar and Sankar 

(2008) suggested that more female teachers in Indian classrooms would enhance the learning 

of languages, but not mathematics. In many cases, however, student-teacher relationships, 

including the attitudes of teachers towards students with different characteristics, may be more 

important than the individual characteristics of teachers (Sansone, 2017). Thus, teachers who 

maintain positive learning environments and motivational relationships with students from all 

walks of life have the most potential to act as keystone information transmitters within the 

school environment.  

Similarly, it is important to consider that teachers, too, learn from one another and the way in 

which they communicate information can have an influence on the overall functioning of the 

school. Educational environments are composed of subgroups of teachers and non-teaching 

staff connected together within a school-wide network. Certain individuals play key roles in 

communicating information between departments and the social isolation of teachers can 
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significantly reduce their motivation for institutional tasks within the school (Bakkenes et al., 

1999). The behavioural characteristics of teachers and their actions within the school 

environment can determine how influential they are amongst both their students and their 

colleagues. Naidoo (2014) discusses extensively how teachers with certain characteristics act as 

‘keystone species’ who play a significant role within the school environment. These 

characteristics include having a confident, committed, proactive attitude towards their work, a 

passion for their subject, a tendency to use innovative approaches to their teaching and a 

willingness to volunteer for extra tasks outside their required work. This was irrespective of titles 

or hierarchical order. These keystone teachers also showed a passion for assisting their 

colleagues and were found to promote collaborative efforts and actively share their knowledge 

with others – thus making them directly comparable to the keystone information transmitters 

discussed in this thesis. Passionate, innovative teachers are therefore highly likely to be central 

to the social networks of school environments, both due to development and maintenance of 

positive connections with other teachers and their active transmission of knowledge to both 

teachers and students. 

It is also important to consider that students learn not just from their teachers but from each 

other. Peer learning can be extremely effective and its importance has been increasingly 

emphasised for higher education over the years (Boud and Lee, 2005). However, peer learning 

tends to be used only informally by students, particularly due to the complexities of integrating 

it into formal learning practices (Boud and Cohen, 2014). Peer learning can also be impeded by 

assessment practices that put too much emphasis on individual achievement and so cause 

collaborative work to be viewed as cheating (Boud et al., 1999). It is therefore important that 

we understand when and how to promote peer learning, while avoiding disruptions to other 

students. As a hypothetical example, two friends sit together in class and learn more effectively 

together than when they are apart. However, part of this learning experience involves 

behaviours (e.g. joking, loud talking) that may become disruptive to the rest of the class. In this 

scenario, a teacher may instinctively wish to separate the friends to avoid disruption and, in 

some cases this may be the most effective course of action, but it may also risk lowering the 

performance of the students who have been separated. A better approach may be to allow the 

friends to remain sitting together, but to encourage them to help each other quietly and respect 

the feelings of their classmates.  

If schools are viewed as social communities, within which information flows not just from 

teacher to student, but throughout the entire social network (including teacher-student, 

teacher-teacher and student-student learning), this opens up opportunities to use network-
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based statistical analyses normally restricted to animal studies (e.g. Chapter 3; Allen et al., 2013; 

Aplin et al., 2015) to investigate information transmission patterns within school environments 

(c.f. Bakkenes et al., 1999). This could include identifying the most efficient social transmission 

pathways and factors that promote or inhibit learning from others. For example, do students 

display relationship-based social learning such as those demonstrated in Chapter 3 – e.g. are 

they more likely to learn from friends? Do the individual characteristics of students, such as their 

popularity or general knowledge, influence their ability to act as keystone information 

transmitters? Do some individuals act as vessels of information linking otherwise disconnected 

social groups (e.g. acting as links between different classes), akin to the long-distance travellers 

described in Chapter 2? Are the teachers identified as ‘keystone species’ by Naidoo (2014) more 

central to networks of teacher-teacher and teacher-student information transmission? Thus far, 

network-based statistical analyses have not been applied to educational environments and 

there is certainly a lot of potential for future research in this area.  

 

6.6. Conclusion 

Across the animal kingdom, individuals can gain beneficial information or behaviours by learning 

from their conspecifics in a process known as ‘social learning’. The study of social learning has 

continued to gain interest over the past few decades, with a lot of focus on how naïve observers 

choose to learn. However, information exchange processes may not always lie solely in the 

choices of the observer. In this thesis, I have argued that the behaviours of both observer and 

demonstrator, plus the spatial and social factors influencing the connections between them 

within the larger social network, should all be taken into account to give a more comprehensive 

and realistic picture of information transmission processes. Through the development of novel 

methodologies (and the expansion of existing methodologies) designed to promote behavioural 

freedom and natural social learning processes, I set out to investigate how spatial, social and 

behavioural factors can all contribute to the patterns of social transmission at both the individual 

and group level. Spatially explicit, agent-based modelling revealed that behavioural variations 

at the individual level can have a profound effect on social network structure and information 

transmission processes at the population level (Chapter 2). Specifically, among-individual 

variation in the tendency to transmit and receive information produces an overabundance of a 

regulatory network motif known as the ‘feed-forward loop’, while variations in spatial 

movement increase the speed and efficiency of information transfer by linking localised clusters 

of individuals via a subset of long-distance travellers. A comprehensive model of social learning 
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in a population of zebra finches, produced using a series of multi-network NBDA models, 

revealed the potential importance of social relationships in dictating patterns of information 

transmission through social groups (Chapter 3). Specifically, aggressive interactions appeared to 

be the main driver of information exchange about a novel foraging task, with a potential 

secondary social learning pathway between mates. Through the development of VERSE, a 

research tool used to create realistic, three-dimensional virtual social learning environments 

(Chapter 4), I then investigated human social learning biases within spatially and ecologically 

realistic scenarios (Chapter 5). Human participants showed substantial variation in their reliance 

on social information, but displayed an overall bias for learning independently, particularly in 

complex, large-scale environments. The use of social versus asocial information appeared to be 

weighted depending on the reliability of rewards in the environment, the additional, 

undemonstrated opportunities available via asocial learning and the difficulties in acquiring 

social information due to the movements of demonstrators over different spatial scales. When 

learning socially, participants displayed significant positive frequency-dependent (‘copy the 

majority’) and payoff-based (‘copy successful demonstrators’) biases. Thus, humans learning in 

complex environments appear to be strategic in their use of social information and display 

strong similarities to the behavioural adaptations of unrelated species. Taken together, this 

research has revealed how the behaviours and spatial movements of individuals, plus their social 

connections, can influence who learns from whom and when. Individual behavioural variations, 

in particular, appear to play an important role in dictating the patterns of information 

transmission at the population level – in some cases, resulting in the presence of highly 

influential ‘keystone’ information transmitters. The thesis closes with a call for acknowledging 

the importance of permitting unrestricted behavioural freedom and spatial realism into future 

work and highlights potential applications of this research in fields outside of behavioural 

ecology and evolution such as conservation, epidemiology, plant science and education. 
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