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Abstract  

Ultraviolet irradiation of CpRh(PMe3)(C2H4) in the presence of 

pentafluoropyridine C5F5N yields an isolable η
2-C,C-coordinated 

pentafluoropyridine complex. This is the first crystallographically characterised 

example of η2-coordination of pentafluoropyridine to a metal centre. Photolysis 

of CpRh(PMe3)(C2H4) in the presence of C5F4HN affords cleanly the C-H 

activated product. 

In contrast, photochemical reaction of CpRh(PMe3)(C2H4) in hexane in the 

presence of OMe- or NMe2- substituted tetrafluoropyridine results in the 

formation of metallacycles [Cp(PMe3)Rh(κ2–C,C)CH2N(CH3)C5F3N] and 

[Cp(PMe3)Rh(κ2-C,C)CH2OC5F3N], fully characterized by spectroscopic and 

spectrometric techniques and X-ray crystallography. NMR studies suggest the 

need of the heteroatom and a primary carbon as in NMe2 and OMe for the ring 

closure. Elimination of HF provides the driving force for the formation of the 

cyclometallated species.  

The ability of Tp`Rh(PMe3)H2 and Tp`Rh(CNneopentyl)(η2-PhN=C=N-R) 

complexes to activate B-H, Si-H and C-F bonds in photochemical reactions at 

room temperature in neat substrate (HBpin, Et3SiH/Et2SiH2/PhSiH3, 

C5F5N/C5F4NH) is presented. The complexes exhibit a remarkable preference 

for activating these bonds over the aliphatic or aromatic C-H bonds present on 

the substrates. The thermal stabilities of the products have been tested by 

heating in C6D6 up to 140ºC. Products Tp`Rh(PMe3)H(Bpin), 

Tp`Rh(PMe3)H(Et2SiH) and Tp`Rh(PMe3)(pyridyl)(FHF) have been isolated and 

their molecular structures determined crystallographically. All the structures 

show characteristic bond lengths for a complete oxidative addition reaction. 

Competition reactions are performed in the presence of substrates and 

benzene simultaneously. 

The photoreactivity of CpRh(PR3)(C2H4) complexes (R = Me, Ph, Me2Ph) is 

explored in reactions with (iPr)2NBH2. Oxidative addition of the B-H bond is 

established for all the reactions to form the [CpRh(PR3)H(BHN(iPr)2)]. These 
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complexes are the first examples of oxidative addition of a B-H bond of 

aminoboranes to a 16-electron rhodium fragment.  

Laser flash photolysis of Ru1, cis-[Ru((R,R)-Me-BPE)2(H)2] and Ru2, cis-

[Ru((R,R)-Me-DuPHOS)2(H)2] generates the square planar Ru(PP*)2 transient 

and allows measurement of reaction rates with different substrates. The data 

indicate that rate constants are smaller than those of analogues with less 

hindered achiral bidentate phosphines. The regeneration of the dihydride 

occurs with a higher rate constant than formation of either the hydrido-silyl or 

hydrido-boryl complexes. Moreover, the reactions of Ru2 are about ten times 

slower than those of Ru1. 
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1 Introduction 
1.1 Photochemical reactivity 

The photochemistry of rhodium and ruthenium complexes in the presence of 

substrates containing C-H, C-F, B-H, B-B and Si-H bonds is described in this 

thesis. In addition to steady state studies, time-resolved experiments were 

performed for a novel class of ruthenium phosphine complexes. The aim of this 

introduction is to explain the photochemical process for such transition metal 

complexes and give an overview on the photochemistry of cyclopentadienyl 

rhodium and ruthenium dihydride compounds. When a photochemical reaction 

takes place, an electron is promoted from the ground state to the excited state 

causing a rearrangement in electronic distribution and a change in the 

reactivity of the species.  

Photochemistry in organometallic chemistry is used to activate a metal centre 

and gain reactivity creating an excited state with a vacant site. However, the 

greatest advantage of the use of light in catalytic reactions by comparison with 

those which proceed thermally arises from the possibility of monitoring the 

reaction at low temperature in order to observe intermediates and have a 

deeper understanding of the reaction dynamics. Furthermore the use of 

photochemistry can lead to chemical processes which are not observed under 

thermal conditions. 

Excited states have a very short life-time (microseconds to femtoseconds) and 

they can be classified on the basis of the electronic properties, reactivity and 

orbital parentage. Different excited states can arise from a photoreaction of an 

organometallic compound such as ligand-field, charge-transfer (MLCT or 

LMCT) and intra-ligand excited states.1 The unsaturated species formed under 

photochemical conditions will be strongly reactive and therefore prone to 

substitution reactions with substrates.  

Common photoactive ligands encountered in organometallic photochemistry are 

CO,2 H2,
3 and C2H4,

4 but examples of uncommon photolabile ligands have also 

been reported. Reaction of LCr(CO)5, for instance, where L = PR3, NR3 shows L 

to be extruded in preference of the CO ligand depending on the choice of 
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wavelength.5,6 The loss of phosphine in ReH5(PR3)3 competes with H2 reductive 

elimination upon changing the wavelength of irradiation (Scheme 1).7 Finally, 

competing loss of ligands was also observed for the Ru(PPh3)2(IEt2Me2)(CO)H2 

complex which can extrude PPh3 or H2 through an isomerization process.8 

 

Scheme 1. Preference in photo-dissociation of phosphine instead of dihydrogen. 

 

The choice of the wavelength is therefore important, different σ* orbitals can be 

populated depending on λ and cause the dissociation of different ligands. More 

importantly, when low-lying MLCT absorption is exhibited, equilibrated excited 

states are formed on irradiation into this transition; their population from higher 

level orbitals may prevent the expulsion of ligands as in Re(CO)3(bpy)X. 

However commonly, the photochemical process takes place by prompt 

photodissociation, where no equilibrated excited states are formed. The labile 

ligand is therefore “kicked off” on a femtosecond timescale and therefore the 

excited state formed has no time to relax back. 

The photochemistry carried on in this thesis involves mostly ligand field excited 

states arisen from photolabilization at Rh and Ru centres having C2H4 and H2 

as photoactive ligands respectively. Therefore a brief explanation of the photo-

physics for ligand field excited states will be given.  

It is also important to mention that the analysis of the UV-vis spectrum of these 

species is not very helpful showing few broad bands and no clear maxima at 

all, likewise the spectra of the photoproducts. As a consequence, the 

determination of a quantum yield of reaction is not straightforward. 

1.2 Ligand Field excited states (LF) 

Labilization of a ligand is achieved in LF excited states; this will cause an 

increase in metal-ligand repulsion and possibly will lead to ligand-dissociation.  

The electronic transition which generates LF excited states directly is a d-d 

transition. The promotion of an electron into the M-L σ* orbital (antibonding 
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character) from a π-bonding orbital will considerably weaken the M-L bond 

(Figure 1). Considering the antibonding nature of the eg orbitals in octahedral 

complexes, an electron placed in a eg orbital, which is directed from the metal 

towards the ligand, will increase metal-ligand repulsion leading to the ligand 

dissociation. At the same time, the free t2g orbital (with bonding character for 

octahedral complexes), available for new bond formation at the metal centre will 

allow the entrance of a new reactive species. LF excited states may also be 

formed indirectly as recently demonstrated in metal-carbonyl chemistry.2 

 

M

d

s

p

MLn

nL

n

9-n

n

 

Figure 1. Simplified molecular orbital diagram for the interaction of a metal centre with 
n ligands showing a d-d transition (LF). 

 

The photochemistry of metal-carbonyls was the classic example given for ligand 

– field excited states (Scheme 2). The topic has been recently reviewed.2 DFT 

calculations with Cr as the metal centre showed that metal to CO charge 

transfer (MLCT-CO) excited states can also play a role in the photo-dissociation 
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of a metal-CO bond.9 Extensive electron delocalization and state mixing make 

the choice of one excited state instead of the other not definitive in metal 

carbonyl chemistry. However, the initial population of the MLCT(CO) state and 

its smooth conversion to the dissociative d→d excited state has been proposed 

where the MLCT(CO) state acquires d→d character upon passing through the 

avoided crossing region and finally dissociate the M-CO bond through an 

indirectly formed LF excited state. 

 

 

Scheme 2. Photodissociation of a CO from a metal-carbonyl.  

 

 

Metal – dihydrides also photo-dissociate H2 as a result of an electron promoted 

into the σ* orbital of the MH2 system.10 This will lead to an excited electronic 

state where the populated molecular orbital has H-H bonding character but is 

M-H antibonding (Figure 2).11 The fragment generated is usually unstable and 

can undergo oxidative addition in the presence of substrates.  

 

 

Figure 2. Overlap diagram showing σg
* molecular orbital populated in the excited state 

which is M-H antibonding and H-H bonding. 

 

Ligand field excitation leads also to dissociation of π-coordinated species; the 

η6-arene ligand of the [CpFe(η6-arene)+]X- complex was found to flip to an η4-

coordination upon irradiation. One bond was labilized upon light absorption 

making a coordination site on the metal centre available. The presence of a 
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nucleophile in the reaction mixture led to the cleavage of the other arene and 

formation of the ligand-exchange product.12  

1.3 Photochemistry of half-sandwich Rh compounds: C-H, Si-H, 
B-H and C-F activation and their coordination modes 

Photochemical reactions of half sandwich compounds which implies loss of a 

strongly bound ligand and generation of a 16-electron fragment has been widely 

investigated by Bergman,13,14 Graham,15,16 Jones17-21 and Perutz22 groups using 

Rh and Ir centres.  

1.3.1 C-H activation 

The photo-activity of the complexes (η5-C5R5)ML2, (η5-C5R5)M(H)(C6H5) and 

(η5-C5R5)ML(H2) where M = Ir, Rh; L = CO, PR3, C2H4 and R = H, Me, have 

been deeply explored in the presence of different C-H-containing substrates. 

The 16-electron species (η5-C5R5)ML, generated in situ, has been shown to 

undergo oxidative addition of aliphatic, aromatic and fluoro-aromatic C-H bonds 

to afford the corresponding alkyl/aryl hydride complexes. Formation of the η2-

adduct has also been detected. Different methods have been used for the 

understanding of the reaction mechanism such as low temperature matrix 

isolation,23-26 laser flash photolysis,27,28 photochemistry of complexes dissolved 

in liquefied or supercritical noble gases29,30 and isotopic labelling.31 

•  

 

Scheme 3. C-H bond activation by a transition metal centre. 
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The relative stability of M(η2-arene) and M(aryl)H depends on the metal and the 

other ligands; likewise for alkanes. While the observation of the metal-hydride 

complex is often easy, the detection of alkane/arene η2-species may be 

different because they show poor stability and require low temperature 

techniques to be detected. Nevertheless the participation of σ-complexes as 

intermediates in C-H oxidative addition reactions is nowadays well established 

(Scheme 3).19,32-39 

1.3.2 Si-H activation 

The photochemistry of (η5-C5R5)M(C2H4)2 (M = Ir, Rh; R = H, Me) has also been 

investigated by Maitlis40 and Perutz41,42 in the presence of silanes; silyl metal 

complexes are commonly used as reactants in the preparation of silicon 

containing compounds.43,44 CpRh(PR3)(C2H4) complexes (R = PPh3, PMe3) 

were found to be suitable precursors for Si-H bond activation too.45 The 

mechanism has been found to proceed either through a direct oxidative addition 

to an unsaturated fragment or through a η2-intermediate.46 

 

 

Scheme 4. Possible coordination modes in Si-H activation by a Rh centre. 

 

To distinguish the formation of a η2-complex from an oxidative addition product 

(Scheme 4) the analysis of coupling constants is very useful since they reflect 

the strength of the Si-H bond. The value of JSiH is usually about 200 Hz for free 

silanes; a coupling between 20 and 100 Hz is expected when a σ-coordination 

takes place and a value of JSiH smaller than 20 Hz for a complete oxidative 

addition. Crystal structure determination and bond length analysis also help to 
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discriminate one coordination mode from the other. More recently the field took 

advantage of the help of DFT calculations.47 Nevertheless, the first example of 

a σ-silane complex goes back to the 1969; the authors describe the interaction 

between the silane and the metal in Ph2SiH2Re(CO)8 complex as a “three 

centre, two electron bond with the two electrons supplied by the original Si-H 

bond”.48  

1.3.3 B-H and B-B activation 

The activation of B-H and B-B bonds has also been extensively investigated. 

The first report of photochemical reactions of metal complexes in the presence 

of boranes was published by Hartwig.49,50 He found that Cp2WH2 was able to 

activate B-B bonds in preference to C-H bonds of the C6H6 solvent. Following 

those results, the same group also succeeded in the photoactivation of B-H/B-B 

bonds using Fe51 and Re52 metal centres and discovered that borylation of 

alkanes was achieved by further photolysis of the metal-boryl complex.53 Later, 

Rh was discovered as an excellent catalyst in alkane-borylation catalysed 

reactions, the complex CpRh(η4-C6Me6) reacted with HBpin to yield a mixture of 

two rhodium(V)boryl hydrides, CpRh(H)2(Bpin)2 and CpRh(H)(Bpin)3. The 

catalytic product was the boryl functionalised alkane. DFT calculations 

suggested a partial B…H residual bond for those species suggesting formation 

a Rh(III) oxidation state instead of Rh(V).54 

The photochemical reaction of CpRh(PR3)(C2H4), (R = PPh3, PMe3) in the 

presence of HBpin and B2pin2 was reported by Perutz.45 Products formed by 

oxidative addition reaction were characterised in solution, and a crystal 

structure of the CpRh(H)(PPh3)(HBpin) was obtained.  

η2-Borane metal complexes have been experimentally isolated55,56 and 

proposed as intermediates in catalytic reactions by DFT calculations. The 

distinction between the two coordination modes is difficult just on the basis of 

NMR data, in this case even more difficult than silanes due to the 

quadrupolarity of boron which broadens the NMR resonances and make it 

impossible to measure coupling constants for σ-boranes complexes.  
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In order to understand the reactivity of boron-containing compounds it is 

fundamental to consider the presence of the empty p-orbital on the boron which 

contributes to the classical Chatt, Dewar and Duncanson bonding model 

(Figure 3). The empty p orbital allow back donation from the HOMO of the metal 

fragment to boron, whereas for other σ-complexes this occurs at the ligand σ* 

orbital. 

 

LnM
H

E

H-E

DONATION

LnM

H-E

E

H

BACK-DONATION
 

 

 

 

Figure 3. Top: Classical Chatt-Dewar-Duncanson bonding model. Bottom: Bonding 

scheme for boranes σ-coordination where the p orbital on boron contribute to the 
classical model. X = O, M = Ru, Rh. 
 

The different substituents at the boron centre and the asymmetric character of 

the B-H bond compared to H-H can tune the binding mode. Distinction between 

σ-borane metal complexes with or without agostic interaction should also be 
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mentioned. In the first case the B-H moiety is coordinated in a three centre two 

electron fashion with no additional intramolecular binding. When an agostic 

interaction is present an additional contact arises intramolecularly between the 

metal and the coordinated ligand (Figure 4).57 Finally, when back donation is 

predominant a complete oxidative addition is achieved and a metal-boryl 

hydride is formed. 

 

Figure 4. Two possible coordination modes of a borane to a metal complex. 

 

1.3.4 C-F activation 

Cyclopentadienyl rhodium compounds have been employed for thermal and 

photochemical C–F bond cleavage reactions of aromatics in solution, and 

oxidative addition steps have also been investigated in matrix isolation studies 

at low temperature. Those types of complexes are good tools for C-F 

activation.58 Perutz et al. found that photochemical reaction of 

CpRh(PMe3)(C2H4) complex in the presence of C6F6 led to the formation of the 

η2-complex CpRh(η2-C6F6)(PMe3);
33 oxidative cleavage of the C-F bond was 

obtained replacing the Cp ligand with the Cp*.59,60 The topic will be introduced 

more in details in Chapter two. Generally a preference for C-H activation is 

shown by these type of complexes.61 However if employed avoiding C-H 

sources they can act as excellent activators of a large variety of bonds.  
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1.4 Photochemistry of Ru(PP)2 dihydride complexes 

The photochemistry of metal hydrides is shown in Scheme 5. Complexes 

containing cis hydrides reductively eliminate molecular hydrogen leading to 

highly reactive 16 electron intermediates.11 A reduction in oxidation state of two 

is achieved. While the photochemistry of cis dihydrides has been extensively 

explored, very few polyhydrides have been investigated photochemically.  

Prompt photodissociation of dihydrogen was experimentally observed and 

proposed to take place for the formation of the coordinatively unsaturated 

fragment Ru(dmpe)2 which was found to be completed within the instrumental 

rise time of ca. 16 ps by UV/Vis ultrafast (ps) spectroscopy of Ru(dmpe)2H2 

under an atmosphere of H2.
62 Subsequent studies on Ru(depe)2H2 indicated 

that transient Ru(depe)2 was formed within ca. 1 ps.63  

 

 

Scheme 5.The photochemistry of metal hydride complexes. 

 

The photochemistry of group eight metal dihydrides of the type M(PP)2H2 (M = 

Ru, Os, Fe; PP = dmpe, depe, dppe) complexes has been extensively explored 

by Perutz.62,64-68 Their reactions in the presence of substrates such as silanes 

and H2 led to the oxidative addition products to form the M(PP2)H(SiRmHn-m) and 

to regenerate the starting material respectively. The photochemical activity of 

those complexes towards C-H activation was found to be poor due to the rapid 

recombination with H2. An improvement in the reactivity for aromatic and 

aliphatic C-H bonds was achieved using a tridentate phosphine instead of a 

bidentate in reactions of the Os(PP3)H2 complex where PP3 = 

P(CH2CH2PPh2)3.
69 Reactivity for CO, and C2H4 has been achieved by steady 

state photolysis and rate constants for these reactions established. B-H 
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activation has been achieved mainly for reactions of Ru(PP)2H2 in the presence 

of HBpin.3,70 η2 - Coordination species for this kind of complexes have not been 

observed. A more detailed explanation will follow in chapters three and six. 

 

1.5 Time resolved methods and detection of transients 

Time resolved methods are among the most used for experimental 

characterization of reaction intermediates. The rapid development in laser 

technology, digital electronics and fast detection systems gave access to 

methods of monitoring very short-lived reaction intermediates allowing their 

detection down to the nano, pico, femto second time domain. The spectral 

evolution followed at very short time intervals can be achieved by laser flash 

photolysis71 (LFP). In this way, a very short pulse of high intensity radiation 

(laser or flash lamp) initiates the reaction which is then followed by monitoring 

the changes in absorption or emission. The intermediate generated by the 

rapid photoexcitation is formed in acceptable yield to be detected by UV/vis or 

IR spectroscopy. 

Spectral and kinetic information are obtained by the use of time resolved 

methods. A point-by-point spectrum can be built by looking at different 

frequencies at one moment in time while a transient decay can be obtained at 

one wavelength. Laser flash photolysis has been used in these studies to obtain 

information about reactive intermediates formed after flash photolysis of 

complexes cis-[Ru((R,R)-Me-BPE)2(H)2] and cis-[Ru((R,R)-Me-DuPHOS)2(H)2].
3 
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1.6 Outline of the thesis 

An outline of the thesis is provided below. A more detailed introduction is 

provided in each chapter. 

Chapter two. The photochemical reactions of complex CpRh(PMe3)(C2H4) in 

the presence of pentafluoropyridine, 2,3,5,6 tetrafluoropyridine and 4-

substituted analogues are explored. The mechanism for reactions with the 4-

functionalised tetrafluoropyridines assessed by NMR spectroscopy, KIE and 

DFT calculations. Reaction products are fully characterised by multinuclear 

NMR spectroscopy, mass spectrometry and X-ray crystallography. 

Chapter three. The photochemical reaction of the bidentate-phosphine 

ruthenium complex Ru(dppe)2H2 in the presence of borolanes HBpin and HBcat 

is investigated by NMR spectroscopy. The nature of the products is discussed 

by comparison with previously isolated ruthenium-boryl complexes. On the 

same lines, the photoreactivity of CpRh(C2H4)2 in the presence of HBpin and 

B2pin2 is tested in hexane as solvent in order to detect reaction intermediates. 

The catalytic ability towards borylation of heptane for the system is also 

determined by GC-MS method. 

Chapter four. The photo-reactivity of CpRh(PR3)(C2H4) complexes (R = PMe3, 

PPh3, PMePh2 ) towards the aminoborane H2BN(iPr)2 is investigated by NMR 

spectroscopy and X-ray crystallography. The photochemical reaction of 

[CpRh(C2H4)2] in the presence of a silazane is also studied by NMR 

spectroscopy. 

Chapter five. The photochemistry of Tp`Rh(PMe3)H2 and 

Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) is investigated in the presence of 

C5F5N, HBpin, primary, secondary and tertiary silanes. The reactions are 

followed by NMR spectroscopy; photoproducts are isolated and fully 

characterized. Competition reactions are carried out and kinetic selectivity 

determined. 

Chapter six. Laser flash photolysis of three ruthenium complexes with 

bidentate chiral phosphines is performed in the presence of different quenching 

ligands. The spectral information is analyzed as well as kinetic rate constants. 
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LFP is also performed on a ruthenium complex with a bidentate non chiral-

phosphine. The results are discussed in comparison to data previously 

observed. 

Chapter seven. Crystallographic analyses of different ruthenium and rhenium 

complexes are given. 

1.7 Aim of the project 

The project was designed to probe comparisons between different substrates in 

oxidative addition reaction and especially to discover more about B-H and B-B 

oxidative addition. The main strands of the project were: 

• Competition between C-H and C-F activation. 

• Target the selectivity for C-H bonds relative to B-B, B-H or Si-H bonds 

comparing different metals and ancillary ligands. 

• Measure the rates of B-B and B-H oxidative addition reactions by laser flash 

photolysis. 

• Search for reaction intermediates. 

• Determine the rates and activation energies for their conversion to 

products. 

• Investigate the reaction via theoretical calculations in collaboration with 

Prof. Eisenstein. 

• Investigate precursors that are sensitive to visible light. 
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2. Photochemical cyclometallation via HF elimination: 
synthesis and mechanism 
2.1. Introduction  

The activation of strong carbon-fluorine bonds is a great challenge in 

organometallic chemistry. Many reviews have been published looking at 

different aspects of the topic.1-3 Nevertheless, not many examples of 

cyclometallation via C-F activation have been reported.  

Albrecht reviewed cyclometallation reactions using d-block transition metals 

showing metallacycles have been successfully applied in organic 

transformations, catalysis and in various other domains of materials 

science.4 Since then, many other papers have been published presenting 

characterisations of new metallacycles,5,6 applications in hydrodefluorination 

catalysis,7 oxygen sensing8 and transfer hydrogenation.9 

The reactivity of rhodacycles and iridacycles, for instance, has been 

described by the work of Jones and Li, where a wide range of metallacycles 

is involved in insertion reactions with different unsaturated ligands.10 

Palladacycles have been investigated in reactions with phosphines to form 

new Pd complexes,11 and cycloplatinated complexes have showed great 

photophysical properties opening themselves to a wide set of applications as 

light emitting devices or luminescent molecular sensors.12-14 A search into 

the literature highlighted few papers with metallacycles formed by C-F 

activation. Most of them proceed by intramolecular C-F oxidative addition 

favoured by the presence of a chelating ligand. The ligands coordinate firstly 

through the hetero atom (N or S) to the metal centre and the C-F bond is 

then oxidatively added. A metal fluoride is detected in all the following 

examples, either as final product or as intermediate in the catalytic cycle. No 

formation of HF has been detected or mentioned as side product in any of 

these publications. 

C-F activations to form a metallacycle have been achieved thermally using a 

Co(I) centre with an aldazine-N atom as an anchoring group to afford an 

ortho-chelated cobalt(III) complex containing a [C-Co-F] fragment (Scheme 

1). Intramolecular C-F activation precedes cyclometallation and it is favoured 

by the chelating effect of the imine ligand. No cyclometallation or C-F 
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activation were in fact observed using π-coordinated cobalt(0) compounds.15 

Following their previous work, Li and coworkers looked at the reaction also 

from the catalytic side; they reported later that new organic fluorides are 

formed by carbonylation reactions of cobaltacycles (Scheme 2).16 

 

 

 

Scheme 1. Formation of a cobaltacycle from C-F activation of an aldazine. 
 

 

 

 

Scheme 2. Carbonylation of the cobaltacycle to give the organic product. 
 

The second example presents the reaction of OsO4 in the presence of HSR 

(R = C6F5, C6F4H) to afford different metallacycles through a process 

involving sulfur coordination in the first step and rupture of one or two ortho 

C-F bonds. Five coordinate Os complexes have been crystallographically 

characterised and shown to have trigonal-bipyramidal geometry (Scheme 

3).17  
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Scheme 3. Five coordinate Os metallacycle formed by C-F activation of 
thiofluoroarenes. 
 

Love et al. have also shown the activation of a C-F bond in ortho position to 

an imine substituent of polyfluorinated arenes catalyzed by Pt. The reaction 

proceeds through the formation of a cyclometalated Pt complex subsequent 

to ortho C-F activation. Reaction of the Pt-F complex with Zn(CH3)2 leads to 

the methylation of the polyfluorinated aryl imine ligand. The mechanism 

proposed involves transmetalation and reductive elimination steps to give 

the C-C coupling product (Scheme 4).18  

 

 

 

Scheme 4. Top: Formation of the platinacycle after C-F activation of an imine-
substituted fluoroarene. Bottom: Catalytic methylation of polyfluorinated imines by a 
Pt complex. 
 

The understanding of a cyclometallation mechanism is not always trivial. 

Despite this, many cyclometallation reactions involving C-H activation have 

been proved to undergo base-assisted mechanism, where the ligand plays 
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an important role.19-21 The solvent has been shown to play a part in the 

determination of the transition state.22,23  

Many examples of rhodacycles are found in the literature, mostly as 

intermediates in catalytic reactions to form functionalised organic 

compounds. C-H activation of heterocycles previously coordinated to the 

metal centre via the heteroatom seems to be the preferred route in order to 

achieve cyclometallation. A five-membered rhodacycle, for instance, has 

been recently reported and spectroscopically characterised, as intermediate 

in pyrinidyl directed alkenylation of secondary alcohols with olefins using a 

Rh(III) catalyst (Scheme 5).24 

 

 

 

Scheme 5. Catalytic cycle for pyridinidyl directed alkenylation of alcohols. A five 
membered rhodacycle is intermediate in the cycle. RhLn = [Cp*RhCl2]2. 
 

The first example of an eight-membered oxo-rhodacycle has been proposed 

as intermediate in cycloaddition reactions of [Rh(IMes)(cod)]ClO4 and 

different allenal to obtain bicyclic ketones derivatives. The cyclometalation 

step to form the oxo-rhodacycle H` (Scheme 6) is followed by the insertion of 

the metal centre into the multiple bond. Reductive elimination of the organic 

bicyclic product regenerates the catalyst to start the loop over.25  
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Scheme 6. Eight membered oxo-rhodacycle found to be an intermediate in 
cycloaddition reactions, Ln = (IMes)(COD). 
 

Finally, a five membered ring rhodacycle, formed by C-H/N-H activation has 

been proposed as intermediate in the Rh-catalysed oxidative cycloaddition 

of benzamides and alkynes to give isoquinolones (Scheme 7). The free 

coordination site at the metal is available for reaction with the unsaturated 

compound; the product is then formed by reductive elimination. The catalyst 

Rh(III)Ln is also regenerated.26  

 

 

 

Scheme 7. Rh-catalysed cyclo-addition reaction. RhLn = [Cp*RhCl2]2 
 

Rhodium is certainly a widely used metal for C-F activation reactions; the 

topic has been recently reviewed by Braun et al.27 Particularly, phosphine-

rhodium complexes show great capability in C-F activation; here some of the 

recent examples are cited.  

Yamaguchi and co-workers published a cross-coupling reaction of 

polyfluoroarenes and disulfides catalysed by a RhH(PPh3)4 complex to 

obtain preferentially para-difluorobenzene with thiolate groups at the 2,3,5 

and 6 positions.28 Braun et al. found that RhH(PEt3)3 is capable of 

stoichiometric C-F activation by nucleophilic attack in 4-position of 

pentafluoropyridine to form a rhodium tetrafluoropyridyl complex. The latter 
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can then undergo oxidative addition with different oxidizing agents such as 

methyl iodide or carbon monoxide to form an unstable complex that further 

reacts thermally in solution either with CH3I or CO, giving 4-functionalised 

tetrafluoropyridine (Scheme 8).29  

More recently, they also prepared the first 16-electron Rh(I)-boryl complex, 

which is capable of ortho C-F activation of pentafluoropyridine. DFT 

calculations on the same system suggested a boryl-assisted mechanism and 

showed that the regioselectivity derives from a nitrogen participation in the 

relevant transition state.30  

 

 

 

Scheme 8. Para C-F activation of C5F5N by a rhodium-hydride complex. 
 

The work carried out in our group in the past few years has also contributed 

to the field. The photochemistry of 1 was extensively explored at room 

temperature. Upon photolysis loss of ethene leads to the formation of an 

unsaturated 16e- complex capable of activating a wide range of bonds 

(Scheme 9). 

 

 

 

Scheme 9. Photo-dissociation of C2H4 from complex 1 to form the 16-electron 
complex. 
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The CpRh(PMe3) fragment reacts with benzene to yield CpRh(PMe3)(C6H5)H 

via a short-lived η2-arene complex; photolysis with C6F6 results in the 

isolation of a stable η2-hexafluorobenzene complex, CpRh(PMe3)(C6F6)
31 

and reaction in pentafluoroanisole generates the metallacycle 

Cp(PMe3)Rh(CH2OC6F4) characterized by multinuclear NMR spectroscopy 

(Scheme 10).32 
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Scheme 10. Reaction of complex 1 with different substrates to afford different 
coordination type products. 
 

C-F bond cleavage of hexafluorobenzene was achieved in reaction with (η5-

C5Me5)Rh(PMe3)(C2H4) where a more electron-donating ligand was 

employed (C5Me5 instead than C5H5). C-F activation took place upon further 

photolysis following η2-coordination of the perfluorobenzene.33 Studies in Ar 

matrices at 12 K confirmed that while complex 1, CpRh(PMe3)(η
2-C6F6), 

prefers to eliminate C6F6  to form the 16-electron fragment and a small 

quantity of C-F oxidative addition product, the more crowded 

(C5Me5)Rh(PMe3)H2 produces preferentially the C-F activated product with a 

small amount of unsaturated complex.34 This explains the observation that 

no oxidative addition was observed for reaction of complex 1 with C6F6 in 

solution. 

Considering the results above we thought it would be interesting to explore 

the behaviour of complex 1 in the presence of pentafluoropyridine, 
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tetrafluoropyridine and substituted analogues (Scheme 11. a-b-c-d) to obtain 

information about coordination modes, substituent effects and reaction 

mechanisms. Below we report the formation of two metallacycles 4 and 5 by 

intramolecular C-F activation of 4-substituted tetrafluoropyridines at the Rh 

centre. Reaction with 2,3,5,6 – tetrafluoropyridine formed selectively the C-H 

activated product whereas reaction with pentafluoropyridine allowed us to 

isolate the η2 - complex. 
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Scheme 11. Fluorinated hetero-aromatics investigated. 
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2.2. Results 

2.2.1 Irradiation of 1 with pentafluoropyridine 

The reaction of complex 1 in the presence of pentafluoropyridine was 

previously investigated in our group by a visiting student and a masters 

student. They found that the irradiation of 1 in hexane with excess 

pentafluoropyridine (λ > 290 nm, 8 h, room temperature) generates a large 

number of products with scarce selectivity for the formation of one 

particularly. They were able to identify and isolate some of the products.  

On performing the reaction at low temperature (-20ºC), the formation of one 

complex is preferred, leading to an NMR yield for complex 2 of > 60%. This 

product was purified by sublimation followed by crystallization giving an 

orange product characterised by multinuclear NMR spectroscopy, EI mass 

spectrometry and X-ray crystallography. The 31P{1H} NMR spectrum shows 

a resonance at δ 4.28, as a doublet of doublets of doublets (JRhP = 192, JPF = 

56, 52 Hz) (Figure 1). The value of JRhP indicates a Rh(I) oxidation state31 

and the values of JPF are similar to those for Rh(η2-C6F6) complexes.31 We 

therefore assign complex 2 as CpRh(PMe3)(η
2-C4F5N) with the 

pentafluoropyridine bonded in an η2-C,C-mode. The distinction between 

coordination at C2-C3 and C1-C2 may be made through the 19F NMR 

spectrum (Figure 2). The spectrum provides evidence of two fluorines close 

to the nitrogen δ  - 55.5 and δ - 119.8. 19F{31P} NMR spectrum previously run 

by the masters student, allowed the exact assignments for the five 

inequivalent fluorine enviroments on the pyridine ring suggesting the two F 

close to N (F1, F5) to be at δ -55.5 and δ  - 119.8, F4 not involved in the η2 

coordination being at δ -155.7, and the two ones left at δ -157.3 (F3,on the 

side of the uncoordinated one) and F2 at δ -169.0. Changes in coupling 

constants on decoupling from 31P were observed just for these two 

resonances confirming them to be the two fluorines involved in the η2-

coordination. We conclude that the pentafluoropyridine is coordinated η2-

C2,C3. Selected NMR data for complex 2 are listed in Table 4 (Scheme 12).  
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Scheme 12. Photochemical reaction between complex 1 and pentafluoropyridine to 
form complex 2. 
 

 
Figure 1. 31P{1H} NMR spectrum for complex 2 in C6D6 showing a doublet of 
doublets of doublets due to coupling of 31P to 103Rh and two inequivalent fluorines. 
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Figure 2. Enlargement of the five resonances from 19F NMR spectrum in C6D6 
belonging to the five inequivalent fluorines on the pyridyl ring. 
 
 
The crystal structure of 2 was determined previously by the visiting student. 

It shows the coordination of pentafluoropyridine but is complicated by 

disorder of the pyridine ring between the C5 and the N1 due to the symmetry 

of the pentafluoropyridine; F5A and F5B are also disordered (Figure 3,a). 

Further attempts at crystallisation of 2 were tried in these studies, changing 

the conditions in order to obtain a different packing system and perhaps to 

avoid the disorder. Two crystal structure determinations were carried out, but 

both of them show the same disorder. The structure of 2 shows a planar 

C5F3N unit with the two fluorines involved in the η2 coordination bent out of 

the plane by 42.02º (Figure 3, b) in agreement with the Rh(η2 - C6F6) 

analogue previously reported.31 All the crystal structures reported in the 

literature of coordinated pentafluoropyridine or pyridine show the ligand 

bound through N;35,36 to our knowledge this is the only η2-CC-coordinated 

pentafluoropyridine structure reported. Johnson et al have recently reported 

extensive NMR characterization of η2 - coordinated pentafluoropyridine and 

tetrafluoropyridine at a nickel centre.37 Such complexes have often been 

proposed as intermediates in C-F activation reactions.31,32  
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Figure 3. Left. Molecular structure of 2. Right. Plane 1 C2F2, Plane 2 C5N, Plane 1 - 
Plane 2 42.02º, Hydrogen atom are omitted for clarity. Ellipsoids for the anisotropic 
displacement parameters are shown at the 50% level.  
 

Selected bond distances and angles are given in Table 1. The co-ordinated 

C-C bond is extended to 1.443(8) Å relative to free C5F5N [1.379(4) Å]. A 

diene pattern is instead observed for the uncoordinated C-C bonds (Figure 

4). The coordinated C-F bonds average 1.384 Å, an extension of about 0.05 

Å is observed compared to C-F bond length of free pentafluoropyridine. 

Refinement and crystallographic data for complex 3 are reported in Table 3. 

 

 

Figure 4. Bond lengths in Å for the η2-coordinated pyridyl moiety. 
 

Table 1. Selected bond lengths and angles for complex 2. 
 

Bond length / Å 

C(2)-Rh(1) 2.042(5) 

C(3)-Rh(1) 2.049(4) 

C(2)-C(3) 1.443(8) 

C(1)-F(1) 1.339(5) 

C(2)-F(2) 1.390(5) 

C(3)-F(3) 1.378(5) 

C(4)-F(4) 1.339(5) 

42.02º 

42.02º 
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Angles between planes 

Plane 1 = RhC(2)C(3) 
Plane 2 = C(2)C(3)F(2)F(3) 

Plane 3 = C5N 
Plane 1 - Plane 2 64.60º 

Plane 1 - Plane 3 73.33º 

Plane 2 - Plane 3 42.02º 

 

2.2.2 Irradiation of 1 with 2,3,5,6-tetrafluoropyridine  

The irradiation of 1 in C6D12 with excess 2,3,5,6-tetrafluoropyridine b, (λ > 

290 nm, 8 h, room temperature) leads to the clean formation of the C-H 

activated product. The doublet at δ 12.6 in the 31P{1H} NMR spectrum was 

identified as due to complex CpRh(PMe3)(C5F4N)(H), 3 (Figure 5). It results 

from coupling to 103Rh (JP-Rh 141.9 Hz) and these values are consistent with 

those found for the reaction of CpRh(PMe3)(C6H5)H with partially fluorinated 

arenes.38 In the 1H NMR spectrum the hydride signal resonates at δ -12.9 as 

a doublet of doublets with JH-P and JH-Rh of 40 Hz and 22.8 Hz, respectively 

(Figure 6). The 19F NMR spectrum is consistent with two sets of equivalent 

fluorine nuclei in a 1:1 ratio (Figure 7). 

 

 
Figure 5. 31P{1H} NMR spectrum in C6D6 for complex 3 showing a doublet arisen 
from coupling to 103Rh. 
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Figure 6. 1H NMR spectrum in C6D6 of the hydride resonance for complex 3. The 
doublet of doublets is due to coupling to 31P and 103Rh. 
 

 
Figure 7. 19F spectrum in C6D6 for complex 3. The two resonances belong to the 
two sets of inequivalent fluorines. 
 

2.2.3 Irradiation of 1 with 4-dimethylamino-2,3,5,6-tetrafluoropyridine  

The irradiation of 1 in hexane with excess substituted tetrafluoropyridine c, 

(2,3,5,6-tetrafluoro-N,N-dimethylpyridin-4-aminopyridine, broadband UV, 8 h, 

room temperature) generates the metallacycle [Cp(PMe3)Rh(κ2 – C,C) - 

(CH2N(CH3)C5F3N)], 4 with an NMR yield of 85% (Scheme 13). Upon scaling 

up, the complex crystallised out of the reaction mixture during photolysis as 

an isolable air-stable pale orange solid characterized by EI mass 

spectrometry, multinuclear NMR spectroscopy, X-Ray crystallography and 

microanalysis. The 1H NMR spectrum (Figure 8) shows the protons of the 

CH2 group of the metallacycle 4 to be diasterotopic because it is bonded to a 

chiral centre, Rh. The two resonances are correlated by COSY NMR 
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spectroscopy and appeared at δ 3.04 (ddd) and at δ 4.87 (m) with different 

P-H and H-H coupling constants. 

 

hv,hexane 

 

 

Scheme 13. Photochemical reaction of complex 1 with 4-substituted 
tetrafluoropyridines c, d to afford metallacycles 4 and 5. 
 

 

This very low-field chemical shift for the diasterotopic proton compares with 

shifts of δ 6.82 and 5.24 for the diasterotopic proton of the complex 

[Cp(PMe3)Rh(CH2OC6F4)] previously observed.32 The 31P{1H} NMR 

spectrum displays a doublet, with a coupling constant typical of a Rh(III) 

species (JPRh = 160 Hz).39 The 19F NMR spectrum displays three different 

peaks for the three inequivalent fluorines, two at lower field for the fluorines 

ortho to nitrogen and one at higher field. Finally the 13C DEPT spectrum of 4 

confirms the group resonating at δ 40 as a CH2 group (dd, JCRh = 29.8 Hz, 

JCP = 13.8 Hz). A complete set of chemical shifts and coupling constants is 

given in Table 4. 
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Figure 8. 1H NMR spectrum of complex 4 in C6D6. 
 

Complex 4 was isolated as small pale orange crystals by crystallisation from 

hexane and its structure was determined by X-ray crystallography (Figure 9). 

Refinement data are summarized in Table 3. A list of selected bond lengths 

and angles is given in Table 2. The rhodacycle and the pyridine ring fused to 

it are planar as confirmed by the sum of the internal angles (539.89º). The 

angle C6-Rh1-C11 is 79.8(1)º, consistent with the data previously 

determined for a similar Cp*Ir cyclometallated species.10 The Rh-C6 and Rh-

C11 bond lengths are also consistent with bond length previously observed 

for the iridium complex.10 

 

 

Figure 9. Molecular structure of 4. Hydrogen atoms are omitted for clarity. 
Ellipsoids for the anisotropic displacement parameters are shown at the 50% level. 
 

Cp PMe3 

CH3 

CH CH 
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Table 2.  Selected bond lengths and angles for complex 4. 
 

Bond length/ Å 

C(6)-Rh(1) 2.023(3) 

C(11)-Rh(1) 2.069(3) 

C(11)-N(2) 1.463(3) 

C(10)-N(2) 1.346(3) 
Angles / Degrees 

P(1)-Rh(1)-C(11) 89.58(7) 

P(1)-Rh(1)-C(6) 87.87(7) 

 

Table 3. Crystallographic data and refinement data for complex 2 and 4. 
 

 2 4 
Formula C13H14F5NPRh C15H19F3N2PRh 

M 413.13 418.20 
a/Å 10.0121(13) 8.4609(14) 
b/Å 12.8944(16) 16.312(3) 
c/Å 10.9517(14) 11.9985(19) 

α/deg 90.00 90.00 
β/deg 90.00 100.907(3) 
γ/deg 90.00 90.00 
V/ Å3 1413.9(3) 1626.1(5) 
T/K 110(2) 110(2) 

Space group Pna21 P2(1)/c 
Z 4 4 

µ(Mo Kα)/mm-1 0.71073 0.71073 
Reflns meads 14753 16531 
Reflns indep 4060 4045 

Rint 0.0660 0.0362 
FinalR [I> 2σ(I)] R1 = 0.0393 R1 = 0.0312 

 wR2 = 0.0922 wR2 = 0.0770 
FinalR (all data) R1 = 0.0439 R1 = 0.0398 

 wR2 = 0.0953 wR2 = 0.0809 

2.2.4 Irradiation of 1 with 4-methoxy- 2,3,5,6 tetrafluoropyridine  

The irradiation of 1 in hexane with excess substituted tetrafluoropyridine d 

(4-methoxy- 2,3,5,6 tetrafluoropyridine, broadband UV, 6 h, room 

temperature) generates the metallacycle Cp(PMe3)Rh(κ2 – 

C,C)(CH2OC5F3N), 5, with an NMR yield of 20%. The formation of 5 

appeared to be blocked after that conversion; a dark film is formed on the 

glass wall of the NMR tube. Low temperature (-20ºC) photolysis and use of a 

λ > 350 nm UV filter did not improve the conversion. The 1H NMR spectrum 
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shows again the CH2 group of the metallacycle 5 to be diasterotopic (Table 

4). The two resonances appeared at lower field than the ones observed for 

5, δ 5.25 (ddd) and 6.90 (m), due to presence of oxygen instead than 

nitrogen. The 19F spectrum shows three different resonances for the three 

inequivalent fluorines (Figure 10). Complex 5 was isolated as small pale 

orange crystals by crystallisation from hexane. A crystal structure 

determination was attempted (Figure 11), but the refinement never 

converged satisfactorily because of twinning. Nevertheless, the identity of 

complex 5 was confirmed.  

 

-64.2 -64.4 -64.6 -64.8 -65.0 ppm         -98 -99 -100 -101 ppm 

-171.5 -172.0 -172.5 ppm 

 

Figure 10. Three 19F resonances for complex 5 in C6D6. 
 

 

 

Figure 11. Molecular structure of 5. Hydrogen atoms are omitted for clarity. 
Ellipsoids for the anisotropic displacement parameters are shown at the 50% level. 
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Table 4. NMR data in C6D6 for Precursor and Photoproducts δ(J/Hz). 
 

 31P{1H} 1H 19F 

1 4.4 (d, JRh-P 200) 
 

0.77 (d, JP-H 9.2, PMe3) 
2.74 (m , C2H4) 
1.46 (m, C2H4) 
5.09 (s, Cp) 

 

2 
3.0 (ddd, JRh-P 

192, JP-F 56, 52) 
 

 
0.79 (d, JP-H 10.5, 
PMe3) 
4.37(s , Cp) 
 

-55.5 (m, FA) 
-119.8 (t, JF-F 

11.4, FB) 

-155.7(tdd, JF-

F 11.4, 15.3, 
34.3, FC) 

-157.3 (m, FD) 

-169.0 (m, FE) 

3 12.6 (d, JRh-P 142) 
 

-12.9 (dd, JP-H 22.8, 
JRh-H  40, Rh-H) 
1.35 (d,JP-H 10.9, PMe3) 
5.25 (s, Cp) 

-100.7 (m, 2F) 
-113.6 (m, 2F) 

4 13.8 (d, JRh-P 158) 
 

 
0.65 (d,JP-H 10.6, PMe3) 
2.96 (d, JH-H 2.93, CH3) 
3.04 (ddd, JP-H 1.93, 
JRh-H 6.69, JH-H 16.06, 
HA,CH2)  
4.87 (d, JRh-H 1.3,Cp) 
4.98 (dd, JH-H 4.92, 
6.71, HB, CH2) 
 

-66.5 (dd, JF-F 

22.3, 34.2, FA) 
-100.1(dd, JF-F 

23.5, 37.9, FB) 
-180.2 (t, JF-F 

24.2, FC) 

 

5 14.0 (d, JRh-P 159) 
 

 
0.54 (d, JP-H 10.5, 
PMe3) 
4.73 (d, JRh-H 1.3, Cp) 
5.12 (ddd, JP-H 1.42, 
JRh-H 5.40, JH-H 17.4, 
HA, CH2) 
6.77 (m, HB) 
 

-64.6 (dd, JF-F 

24.2, 38.1, FA) 
-99.1 (dd, JF-F 

21.2, 36.1, FB) 
-172.0 (t, JF-F 

23.7, FC) 
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2.3. Mechanistic studies 

2.3.1  Reaction of complex 1 with pentafluoropyridine and 2,3,5,6-
tetrafluoropyridine 

Reaction of complex 1 with pentafluoropyridine produces a mixture of 

compounds; complex 2 was identified as the only one with a coupling 

constant JPRh characteristic of Rh(I), all the rest are Rh(III) species. The 

selectivity towards formation of 2 was achieved by performing photolysis at 

low T in hexane with a ten-fold excess of pentafluoropyridine. Variable 

temperature NMR spectroscopy (210 K to 320 K) was performed in order to 

look for any other isomer, but no new compounds were detected apart from 

the CpRh(PMe3)(η
2-C4F5N) complex 2, confirming that the reaction is 

regioselective towards C2-C3 position. It was not possible to characterise all 

the products formed at room temperature due to decomposition of some 

after pumping off the reaction mixture. The unexpected presence of a 

hydride resonance at δ - 12.42 (dd, JP-H 39.9 Hz, JRh-H 22.9 Hz) suggested 

hydrogen-source compounds being involved in the reaction mixture. The 

hydride containing product was identified as complex 3. Probably reaction of 

C5F5N with some species formed in the reaction mixture led to 

hydrodefluorination of it to form C5F4HN as already reported.40 It is clear 

from these experiments that complex 2 is stabilised enough for isolation and 

that C-F oxidative addition certainly does not occur under mild conditions. 

The complex appeared to be stable in solution upon heating up to 100º C. 

The reaction of 1 with 2,3,5,6-tetrafluoropyridine produces cleanly the C-H 

activation product in 100% yield. Even when the sample was over-

photolysed no evidence for C-F activation was found, complex 3 was the 

only observed product.  

 

2.3.2 Reaction of complex 1 with 4-substituted 
tetrafluorofluoropyridines 

The reaction of 1 with 4-substituted tetrafluoropyridines (OMe or NMe2) 

yields metallacycles 4 and 5. We also investigated these reactions in NMR 

experiments to search for reaction intermediates. The expected by-product, 
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free HF, was observed in the 1H NMR spectrum as a low field broad peak at 

δ 14.7 (Figure 12, b). The photochemical reaction of 1 with c will result in 

initial photodissociation of C2H4 from 1; possible reaction intermediates could 

arise by coordination of the substrate by η2-coordination and/or C-F or C-H 

oxidative addition. When the reaction is conducted in hexane or in 

cyclohexane-d12 and followed by 1H NMR spectroscopy a hydride is 

detected (Figure 12, a) at δ -14 (dd, JP-H = 38.6, JRh-H = 28.9 Hz) as a minor 

product in addition to the metallacycle. The hydride was identified as 

CpRh(PMe3)H2 by comparison with work done previously.41 When the 

reaction was followed by 31P and 19F NMR spectroscopy, we did not notice 

any evidence of a Rh(I) complex characteristic of η2-coordination or 19F 

resonance at high field characteristic of a fluoride complex. Even when the 

reaction was carried out at 253 K and the NMR spectrum taken at 200 K, no 

such species were observed. In contrast to our experimental evidence, it 

was established before that cyclometallation occurred via η2
-coordination on 

reaction with C6F5OMe.31,32 

-13.8 -14.0 ppm

a

 

14.014.515.015.5 ppm

b

 
Figure 12. (a) Hydride resonance in the 1H NMR spectrum after reaction of 1 with 
b. (b) broad peak at low field in the 1H NMR spectrum assigned to HF. 
 

In order to elucidate the role of the substituent on the fluoropyridine ring, we 

also examined the photo reactions of 1 with 4-ethyl-tetrafluoropyridine and 
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with 4-ethoxy-tetrafluoropyridine. Neither reaction showed any 

cyclometallated products. We conclude that cyclometallation requires a 

heteroatom substituent and a primary C-H bond as in -NMe2 or -OMe. The 

preference for the metal centre to activate a primary CH bonds has already 

been observed by Jones et al.42,43  

 

2.3.3 Kinetic Isotopic Effect (KIE) 

The isotopic effect was also explored. A large isotopic effect was reported 

for an Ir-PCP/ 4-methoxy-2,3,5,6-tetrafluorotoluene system to form the C-O 

activated product where neither a direct oxidative addition nor a simple SN2 

mechanism were observed.44  

The deuterated analogue of 2,3,5,6-tetrafluoro-4-methoxypyridine 

C5NF4OCD3 was synthesized and fully characterized by NMR spectroscopy, 

mass-spectrometry and IR absorption. The irradiation of 1 in hexane with 

excess of both substituted tetrafluoropyridines c (Scheme 11, page 21) and 

O-CD3, present in 1:5:5 ratio (broadband UV, 12 h, room temperature) 

generates a mixture of the metallacycles [CpRh(PMe3)(CH2OC5F3N)], 5, and 

the deuterated analogue [CpRh(PMe3)(CD2OC5F3N)], 6, with an NMR yield 

of 30%. Since the two cyclometallated species are coincident in 19F and 31P 

NMR spectra, EI Mass spectrometry was employed to determine the KIE. 

Reproducible results were obtained from two parallel experiments that 

showed a product ratio of 0.94 ± 0.04. We conclude that the KIE is very 

small.  
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2.4. Discussion 

It was established that reaction of Ni(COD)2 in the presence of excess of 

PEt3 and pentafluoropyridine leads to an ortho activated Ni(F)(C5F4N) 

complex. The difference in rate of reaction between hexafluorobenzene and 

pentafluoropyridine was remarkable, the latter being much faster and highly 

regioselective.45 DFT calculations based on a model Ni(PMe3)2 show that the 

regioselectivity derives from a neighbouring group effect with co-participation 

of the phosphine and the nitrogen of the pentafluoropyridine. This effect 

occurs only when the attack takes place in ortho-position and in the 

presence of a phosphine ligand (the activation takes place in 4-position 

when the phosphine is replaced by a carbene).46 Para C-F activation of 

pentafluoropyridine with Pt(PCy3)2 and Pd(PCy3)2 forms pyridyl complexes 

through two different mechanisms: phosphine assistance for the platinum 

complex and C-F oxidative addition for the palladium one.47 Regioselectivity 

is still conserved moving from Ni to Rh whereas the change in reaction rate 

is not relevant moving from hexafluorobenzene to pentafluoropyridine.31 In 

different behaviour from what was observed before, Rh appeared to be the 

suitable metal centre for isolation of the η2 adduct as an intermediate step 

towards C-F oxidative addition. In order to explore the preference for C-H 

compared to C-F activation, reaction of complex 1 with 2,3,5,6-

tetrafluoropyridine was investigated. It produces cleanly the C-H activated 

product, differently from what was observed for Ni(COD)2 where C-F 

activation was preferred to form the ortho C-F activated isomer as the major 

product at room temperature.45 Recently Johnson and co-workers isolated 

the C-H activated product of tetrafluoropyridine as the major species for 

reaction of the phenanthrene adduct (PEt3)2Ni(η2-C14H10) at temperatures 

lower than 193 K demonstrating that small changes in reaction condition 

could drastically influence the selectivity.37 

MeO and NMe2 derivatives react at Ni(PEt3)2 to give C-F oxidative addition 

at the 2-position, the same reactivity as was shown by pentafluoropyridine 

and the substituents were found not to play any role in reactions at Ni 

centres.48 The role played by the substituent is instead crucial in reactions of 

complex 1 with 4-substituted fluorinated pyridines. The complex needs a 
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primary carbon as in OMe or NMe2 to cyclometallate as well as the presence 

of the heteroatom on the substituent. Different reactivity is shown employing 

complex 1 in reactions with ethoxy and ethyl tetrafluoropyridines. The 

formation of the five-membered ring presumably provides the driving force 

for the formation of 4 and 5.  

To our knowledge there are few reported reactions which similarly produce 

HF. Two mechanisms are proposed to explain the formation of HF: electron 

transfer or nucleophilic attack. Ru(dmpe)2H2 reacts at -78ºC with 

hexafluorobenzene (Scheme 14) to give the pentafluorophenyl hydride 

complex through an electron-transfer process where HF is lost and acts as a 

thermodynamic sink for the reaction.49  

 

RuH2 + C6F6
RuH2 + C6F6

- HF

RuH + C6F5PRODUCTS  
Scheme 14. Electron transfer mechanism where HF is eliminated to form the 
products. 
 

Cp*Rh(PMe3)H2 activates C-F bonds thermally of a variety of 

fluoroaromatics by a nucleophilic aromatic substitution (Scheme 15). 

Pyridine or fluoride act as bases to produce the metal anion, which is the 

active species in the C-F activation. HF is produced in this reaction along 

with the C-F activated product.50 

 

Cp*Rh(PMe3)H2 base [Cp*Rh(PMe3)H] baseH

CF activation product + F

aryl-F

base-HF

 

 

Scheme 15. Mechanism for nucleophilic aromatic substitution which produce HF as 
by-product. 
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Cp*Re(CO)3 complex photochemically inserts into C-F bond of 

hexafluorobenzene with concomitant C-H activation of a methyl of the Cp* 

ligand to form Re(η6-C6Me4H2)(CO)2(C6F5). The reaction was found to be 

driven by the production of HF.51 

Recently, DFT studies on Ru(NHC)(PPh3)3(CO)H2 in the presence of 

fluorinated arenes outlined a novel mechanism where a metal hydride reacts 

intermolecularly with C6F5H by an ortho-regioselective nucleophilic attack 

forming HF.10 

We carried out a few experiments to try to understand the route followed by 

our reaction: addition of CsF neither promotes the formation of the 

cyclometallated species nor inhibits it, this cuts out the possibility of having a 

base assisted mechanism. It was already established that the Rh(η5-

C5H5)PMe3 fragment activates C-H bonds selectively over C-F bonds and 

the C-F oxidative addition product was observed only in low temperature 

matrices for reaction with hexafluorobenzene. η2-Coordination takes place 

for the reaction of the same Rh fragment with a methoxy group as 

substituent on the fluoroarene. The reaction then proceeds through a 

cyclometallation pathway liberating HF. A methoxy group or a dimethylamino 

group seem to enhance photochemical C-F activation. Displacement of HF 

and ring closure would give rise to the cyclometallated species. In order to 

elucidate the mechanism, preliminary DFT calculations were performed by 

the Eisenstein group. The possible mechanistic pathways were explored 

(Figure 14): C-F activation followed by C-H activation and C-H activation 

with subsequent C-F insertion. Two different possibilities were investigated 

for the latter, one which involves Cp protons and the second one which 

involves a migration of the hydride to the pyridine ring and a fluoride passed 

onto the metal centre. Since calculations for the Cp –involved pathway did 

not find a transition state for the ring closure we excluded it and compared 

the two remaining. From the results obtained, the C-F/C-H pathway seems 

to be the favoured one (Figure 13). The first two steps are energetically less 

favoured, but after η2-coordination it goes energetically downhill towards the 

cyclometallation product. In contrast, C-H/C-F route is energetically favoured 
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in the first two steps which lead to the formation of the Rh-hydride, but it 

becomes energetically unfavoured towards the last steps of the mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Energy profile for the possible mechanisms. Blue: C-F/C-H; Red: C-H/C-
F. 
 

As already mentioned, we did not succeed experimentally in obtaining 

evidence to choose one mechanism instead of the other. No Rh-F or η2 – 

intermediates were detected in low T 31P{1H} and 19F NMR and neither did in 

situ photolysis succeeded in finding the transient. Addition of CsF (a base 

which should promote C-F/C-H pathway) did not influence the reactivity; a 

hydride is formed during photolysis which was found not to take part in the 

reaction mechanism. Nevertheless, on the basis of previous results32 and 

results from DFT calculations, the C-F/C-H route might be the followed one. 

The intermediates formed are surely very short – lived species, not possible 

to be detected by the technique we used.  

∆E 
(∆G) 

Kcal/mol 
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Figure 14. DFT calculations for the possible reaction mechanism. Numbers are 
∆E/(∆G) in Kcal/mol. 
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2.5. Summary 

The current experiments demonstrate the formation by photochemical 

reaction of CpRh(PMe3)(η
2-C5F5N) as an isolable solid. Reaction with 2,3,5,6 

tetrafluoropyridine was selective for C-H activation. We also show the effect 

of substituents on the fluoropyridine demonstrating that cyclometalation 

occurs to form new air- stable rhodacycle species by both CH and CF 

insertion (Scheme 16). 

 

Rh
Me3P
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Me3P

NH

Rh
Me3P

N

F

F

F
F
F

hνννν    ////    - C2H4

N

F

F F

X
C

Rh

PMe3

HH

Cp

1

F

F
F

F

X = NMe, O

hνννν    ////    - C2H4

hνννν    ////    - C2H4

- HF

3 2

4 - 5

 

Scheme 16. Reaction of complex 1 with pyridines to afford different coordination 
type products. 
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2.6. Experimental section 

2.6.1 General Procedures 

All operations were performed under an argon atmosphere, either on a high-

vacuum line (10-4 mbar) using modified Schlenk techniques, on standard 

Schlenk (10-2 mbar) lines, or in a glovebox. Solvents for general use 

(benzene, toluene) were of AR grade, dried by distillation over classical 

reagents, and stored under Ar in ampoules fitted with Young’s PTFE 

stopcocks. Hexane was collected from the solvent purification system 

(equipped with two purifying columns: one alumina and one copper catalyst) 

and dried again by distillation. Deuterated solvents were dried by stirring 

over potassium and were distilled under high vacuum into small ampoules 

with potassium mirrors. Pentafluoropyridine and 2,3,5,6 - tetrafluoropyridine 

were purchased from Sigma-Aldrich and dried over molecular sieves. 

Photochemical reactions, at room temperature, were performed in glass 

NMR tubes fitted with PTFE taps, using a 125 W medium pressure mercury 

vapor lamp with a water filter (5 cm). UV-vis irradiations, at lower 

temperatures, were performed using a 300 W Oriel 66011 xenon lamp with a 

thermostatically controlled cooling system based on gaseous nitrogen boil-

off obtained from a JEOL NMR spectrometer. All NMR spectra were 

recorded on Bruker AMX500 spectrometers in glass tubes fitted with 

Young’s PTFE stopcocks. All 1H and 13C chemical shifts are reported in (δ) 

relative to tetramethylsilane and are referenced using the chemical shifts of 

residual protio solvent resonances (benzene, δ 7.15 for 1H and δ 128.0 for 
13C). 19F NMR spectra were recorded at 470.5 MHz and referenced to 

external CFCl3 at δ 0. The 31P{1H} NMR spectra were recorded at 202.5 MHz 

and are referenced to external H3PO4.  

 

2.6.2 Mass spectrometry 

EI mass spectra were measured on a Waters Micromass GCT Premier 

orthogonal time-of-flight instrument set to one scan per second with 

resolution power of 6000 fwhm. 
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2.6.3 X-ray crystallography  

Diffraction data for CpRh(PMe3)(η
2-C5F5N) were collected at 110 K on a 

Bruker Smart Apex diffractometer with MoKα radiation (λ = 0.71073 Å) using 

a SMART CCD camera. Diffractometer control, data collection, and initial 

unit cell determination was performed using "SMART" (v5.625 Bruker-AXS). 

Frame integration and unit-cell refinement software was carried out with 

"SAINT+" (v6.22, Bruker AXS). Absorption corrections were applied using 

SADABS (v2.03, Sheldrick). The structure was solved by direct methods 

using SHELXS-97 (Sheldrick, 1997) and refined by full-matrix least squares 

using SHELXL-97 (Sheldrick, 1997).52 Diffraction data for [(η5-

C5H5)(PMe3)RhCH2N(CH3)C5F3N] were collected at 110 K on an Agilent 

SuperNova diffractometer with MoKα radiation (λ = 0.71073Å). Data 

collection, unit cell determination and frame integration were carried out with 

“CrysalisPro”. Absorption corrections were applied using crystal face-

indexing and the ABSPACK absorption correction software within 

CrysalisPro. Structures were solved and refined using Olex253 implementing 

SHELX algorithms. Structures were solved by either Patterson or direct 

methods using SHELXS-97 and refined by full-matrix least squares using 

SHELXL-97. All non-hydrogen atoms were refined anisotropically. Carbon-

bound hydrogen atoms were placed at calculated positions and refined using 

a “riding model”.  

 

2.6.4 IR experiment 

The IR experiments were performed using a "Unicam RS 10000E FTIR 

instrument. The spectrum was recorded on a liquid film averaging sixteen 

scans at 1cm-1 resolution. 

 
2.6.5 Synthesis and NMR Experiments 

Rh(η5-C5H5)(PMe3)(C2H4) was synthesized by literature procedures, but 

replacing TlCp by LiCp.54 4-dimethylamino-2,3,5,6 tetrafluoropyridine and 4-

methoxy- 2,3,5,6 tetrafluoropyridine were also synthesized by literature 
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procedures.55 The pyridines were additionally characterised by NMR 

spectroscopy and EI mass spectrometry. 

 

2.6.6 Preparation of [(ηηηη5-C5H5)(PMe3)Rh(ηηηη2-C5F5N)], 2 

An 8 mm diameter NMR tube, fitted with a Young’s tap, was charged with 

complex 1 (50 mg) and pentafluoropyridine (2 fold excess) in hexane and 

irradiated at -20 °C with an Oriel Xe arc lamp (8 h), resulting in 60% 

conversion to 2. The excess of pentafluoropyridine and solvent were 

removed under vacuum and part of the unreacted starting material and other 

products were sublimed at 25 ºC and 1 × 10-4 mbar onto a liquid nitrogen 

cold finger, leaving a brown residue. The brown residue was suspended in 

dry hexane, heated to 60 ºC and filtered under argon. The orange solution 

was then cooled at -20 ºC for a few days to obtain small orange crystals of 

complex 2.  
1H NMR (C6D6, 300 K), : δ  4.37 (s, 5H, C5H5), δ  0.79 (d, 9H, JP-H 10.6 Hz 

PMe3).  
31P{1H} NMR: δ 3.09 (ddd, JRh-P 192 Hz, JPF 56 Hz, JPF 52 Hz).  
13C{1H} NMR: δ 91.44 (t, C5H5), δ 21.90 (d, PMe3), there is no indication in 

the spectrum of carbons corresponding to the pentafluoropyridine ring.  
19F NMR: FA δ - 55.5 (tt, 1F), FB δ - 119.8 (t, 1F), FC δ - 155.7 (tdd, 1F), FD δ -

157.3 (m, 1F), FD δ -169.0 (m, 1F). 

EI mass-spec.: m/z 412.9876 (M+) 100% (calculated 412.9839, difference 

0.4 mDa). 

 

2.6.7 Preparation of [(ηηηη5-C5H5)(PMe3)Rh(C5F4N)H], 3 

An NMR tube, fitted with a Young’s tap, was charged with complex 1 (15 

mg) and 2,3,5,6-tetrafluoropyridine (2 fold excess) in C6D12 and irradiated at 

room temperature (8 h), resulting in 100% conversion to 3.  
1H NMR (C6D12, 300 K): δ  5.25 (s, 5H, C5H5), δ 1.35 (d, JP-H 12.6 Hz, 9H, 

PMe3) δ - 12.42 (dd, JP-H 39.9 Hz, JRh-H 22.9 Hz, 1H, Rh-H).  
31P{1H} NMR: δ 11.1 (dd, JRh-P 142 Hz, JF-P 22.5 Hz).  
19F NMR: δ - 100.67 (m, 2F),δ - 113.7 (m, 2F). 
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2.6.8 Preparation of [(ηηηη5-C5H5)(PMe3)Rh - (κκκκ2 C,C) CH2N(CH3)C5F3N], 4 

An 8 mm diameter NMR tube, fitted with a Young’s tap, was charged with 

complex 1 (50 mg) and 4-dimethylamino-2,3,5,6 tetrafluoropyridine 

previously degassed, (5 fold excess) in hexane and irradiated at room 

temperature (8 h), resulting in 85% conversion to 3. The excess of pyridine 

and solvent were pumped down under vacuum and part of the unreacted 

starting material and other by-products were sublimed at 25 ºC and 1 × 10-4 

mbar onto a liquid nitrogen cold finger, leaving a sticky brown residue. The 

brown residue was then washed with hexane (x 3 times), dried and 

dissolved in C6D6 in order to obtain NMR characterisation. Pure crystals 

appeared as light orange blocks at low T (-20 ºC) from dry hexane. Suitable 

material for elemental analysis was obtained by washing the solid with a cold 

mixture of degassed ethanol/water. 
1H NMR (C6D6, 300 K) :δ 4.98 (dd, CH2, Hb JH-Rh 4.7 Hz, JH-H 6.7 Hz), δ 4.87 

(d, JRh-H 1.3 Hz C5H5), δ 3.04 (ddd, CH2, Ha, JP-H 1.8 Hz, JRh-H 6.7 Hz, JH-H 16 

Hz), δ 2.96 (d, CH3 J H-H 2.93 Hz), δ 0.65 (d, JP-H 10.6 Hz PMe3).  
31P{1H} NMR: δ 13.8 (d, JRh-P 158 Hz).  
13C{1H} NMR: δ 90 (t, JC-P 2.70 Hz,C5H5), 41 (ddd,  JC-Rh 30Hz, JC-P 14.3 Hz 

JC-C 1.3 Hz,CH2),δ 40 (dd, JC-P 12 Hz JC-C 1.8 Hz,CH3), δ 18 (d, JC-P 31.7 Hz 

PMe3).  
19F NMR: FA δ - 66.5 (dd, JF-F 13Hz, 23 Hz) FB δ -100 (dd, J F-F 13 Hz,  24 Hz) 

FC δ - 180 (t, JF-F 23 Hz).  

EI mass-spec., m/z 418.0299 (M+) 100%, (calculated 418.0293, difference 

0.6 mDa).  

Anal. Calcd. for C15H19N2F3P1Rh : C, 43.08; H, 4.58; N, 6.70. Found: C, 

43.21; H, 4.56; N, 6.54. 

 

2.6.9 Preparation of [(ηηηη5-C5H5)(PMe3)Rh – (κκκκ2 C,C)CH2NC5F3], 5 

An 8 mm diameter NMR tube, fitted with a Young’s tap, was charged with 

complex 1 (50 mg) and 4-methoxy-2,3,5,6 tetrafluoropyridine previously 

degassed, (5 fold excess) in hexane and irradiated at room temperature (6 
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h), resulting in 20% conversion to 4. The excess of pyridine and solvent 

were removed under vacuum and part of the unreacted starting material and 

other by-products were sublimed at 25 ºC and 1 × 10-4 mbar onto a liquid 

nitrogen cold finger, leaving a brown sticky residue. The brown residue was 

then washed with hexane (x 3 times), dried and dissolved in C6D6 in order to 

get NMR characterisation. Crystals appeared as light orange blocks at low T 

(-20º C) from dry hexane. 
1H NMR (C6D6, 300 K) : δ 6.77 (dt, CH2, 1H, Hb JH-H 5.3. Hz, JH-Rh 1.4 Hz ), 

δ 5.1 (ddd, CH2, 1H, Ha JP-H 1.3 Hz, JRh-H 5.6 Hz, JH-H 17.6 Hz), δ 4.73 (d, JRh-

H 1.3 Hz, 5H, C5H5), δ 0.55 (d, JP-H 10.5 Hz, 9H, PMe3).  
31P{1H} NMR: δ 14.0 (d, JRh-P 159 Hz). 
13C{1H} NMR: δ 89.7 (t, JC-C 3.2 Hz, C5H5), δ 17.9 (d, J C-P 33Hz, PMe3),δ 41 

(ddd,  JC-Rh 30Hz, JC-P 14.3 Hz JC-C 1.3 Hz,CH2).  
19F NMR: FA δ - 64.5 (dd, JF-F 13Hz, 23 Hz, 1F), FB δ  - 99 (dd, JF-F 13 Hz, 23 

Hz, 1F), FC δ -171.9 (t, JF-F 23 Hz, 1F).  

EI mass-spec.: m/z 404.9975 (M+) 100%, (calculated 404.9977, difference 

0.2 mDa). 

2.6.10 Preparation of C5F4N(OCD3) 

Na (68 mg, 2.96 mmol) was slowly added to a solution of deuterated 

methanol (5 ml). Upon complete reaction of Na, 500 mg of C5F5N (2.96 

mmol) was added drop-wise and the solution was stirred and heated under 

reflux for 30 min. The product was treated with water (15 ml) and extracted 

with ether (3×10 ml). The organic extract was dried over MgSO4 and the 

solvent removed by rotary evaporator giving a colourless oil.  
2D NMR (C6H6, 300 K): δ 3.28 (CD3).  
19F NMR: δ - 91.9 (2 F,m) δ - 160.9 (2 F,m).  

EI mass-spec.: m/z 184.0336 (M+) 100%, (calculated 184.0339).  

IR (liquid film) ν(CD) / cm-1 2082 (s), ν(CF) / cm-1  900-1000 (s), ν(CN) / cm-

1  1648 (s), ν(ring vibration) 1480 (s). 
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3 Photochemical oxidative addition of B-H bonds at Ru 
and Rh centers: solution photochemistry 

3.1 Introduction  

Borane reagents are used in a wide range of applications, especially in organic 

synthesis due to the versatility of boron chemistry. Organoboron compounds 

can in fact act either as electrophiles, because of their Lewis acidity, and as 

nucleophiles.1 The interest in boron chemistry from the organometallic 

community has greatly expanded in the last twenty years resulting in the 

formation of three main areas of research: cross-coupling reactions to form C-C 

bonds, borylation of alkane C-H bonds, and hydroboration of alkenes. 

The advent of metal-catalyzed cross-coupling reactions between aryl or 

alkylboron compounds and organic halides has expanded the use of 

organoboron reagents in synthetic methodology (Scheme 1); furthermore 

organoboron reagents are neither water nor oxygen sensitive and can be used 

under mild conditions. That is the reason why these reactions are among the 

most used in C-C bond formation.2  

 

 
Scheme 1. Schematic representation of cross-coupling reactions between an 
organoboron reagent and an organohalide. 
 

Palladium(0) complexes, such as Pd(PPh3)4, are among the best catalysts in 

Suzuki-Miyaura coupling reactions, but Pd(II) precursors can also be employed 

to generate the active unsaturated Pd(0) species in situ. Currently, studies on 

Suzuki-Miyaura reactions aim to develop more efficient Pd-catalysts,3 as well as 

to improve methodologies to achieve more challenging targets.4 Scheme 2 

shows the proposed catalytic cycle for C-C coupling reactions where oxidative 
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addition of the organo-halides takes place in first step, followed by 

transmetalation of the organoboron reagent to form a Pd(II) intermediate. 

Reductive elimination of the two organic parts leads to the formation of the C-C 

coupled product and regeneration of the active catalyst Pd(0).2 

 

 
Scheme 2. Proposed catalytic cycle for Suzuki-Miyaura coupling reactions, Y = O, OH, 

OiPr. 

 

Based on this main catalytic cycle, further developments have improved the 

understanding of the mechanism for reactions with different coupling partners; 

Marder and co-workers for instance, investigated by DFT calculations the 

reaction of aryl-halides with HBpin (for structure see Scheme 18, page 61) 

catalysed by Pd(0). As a result they published a novel mechanism where σ-

bond metathesis takes place in the transmetalation process to afford the 

organoboron compound.5  

Studies are also looking at C-C coupling methods employing less expensive 

metals; for example a novel, clean, one-step reductive coupling between benzyl 

halides and HBpin was reported involving Mg(0) as a catalyst to make benzyl-

boronic esters in good yields.6 

Borylations of alkyl, aryl and heteroaromatic C-H bonds have also seen an 

impressive development in the last two decades, especially due to the 

pioneering work of Hartwig and coworkers (Scheme 3). The topic has been 

extensively reviewed;7 simplistically it combines the activation of two bonds (C-

H and B-H/B-B) by a metal centre to form a C-B bond. Calculations highlighted 
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that the process is thermodynamically8 and kinetically favored;9 the downhill 

energetic values are attributed to the strong σ-donation character of the boryl 

group which helps to deprotonate the acidic C-H bond of the σ-alkane complex 

formed, plus the presence of an empty p-orbital on the boron which makes the 

transition state for C-H bond cleavage more stable.  

 

Scheme 3. General reaction scheme for borylations involving boranes and diboranes 
substrates. 
 

Differently from other C-H functionalisation methodologies, C-H borylation has 

the unique feature of high regioselectivity; rhenium, rhodium and iridium 

complexes are invaluable in the regiospecific borylation of alkanes, arenes and 

heteroaromatics.10 The first catalytic terminal functionalisation of an alkane by 

Cp*Rh(η4-C6Me6) in the presence of HBpin or B2pin2 (for structure see Scheme 

18, page 61) was reported by Hartwig; the method afforded different 

organoboron compounds that are very useful in various organic syntheses.11 

The mechanism proposed originally involved oxidative addition of the B-H/B-B 

bond at the metal centre to form a rhodium-boryl-hydride complex; reductive 

elimination of H2/borane created the free coordination site for the alkane to 

insert and to afford a rhodium-alkyl-boryl complex (Scheme 4). Finally the 

product was formed by rapid and thermodynamically favored B-C coupling.  

 
 

Scheme 4. General proposed mechanism for borylation reaction of primary C-H bonds 
via oxidative addition. X, Y = H or Bpin. 
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Further theoretical calculations suggested a metal assisted σ-bond metathesis 

mechanism (σ-CAM mechanism) for the formation of the borane complex; the 

latter follows rearrangement to form a complex with the suitable geometry for C-

B bond formation (Scheme 5). The boryl ligand and the alkyl group need to be 

mutually cis for a second σ-bond metathesis to take place and generate the 

terminally functionalized alkane.9 The σ-CAM mechanism proposed by Perutz 

and Sabo-Etienne involves the participation of σ-complexes as intermediates 

which through dynamic rearrangement participate in the catalytic cycle at a 

constant oxidation state.12 

 

 

Scheme 5. Mechanism of methane borylation with σ-CAM step. 

 

Several studies have been carried out on the borylation of hydrocarbons by Ru 

complexes. [Cp*RuCl2]2 and [Cp*RuCl]4, were found to be good catalysts to 

functionalize primary C-H bonds in the presence of B2pin2. In contrast, they did 

not show high activity in aromatic C-H borylation reactions. The reactivity and 

dynamics of a novel ruthenium complex (Scheme 6) incorporating an unusual 

phosphorus-coordinated N-heterocyclic carbene was explored by Stradiotto et 

al. It was found that upon reaction with HBcat (for structure see Scheme 18, 

page 61), 1,2 hydrogen transfer [Step 1] occurred to give a coordinatively 

unsaturated species 11, followed by oxidative cleavage of the B-H bond [Step 
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2] 12, and finally loss of H2 to generate the boryl-carbene species 13. Notably, 

the reaction did not occur under similar conditions with HBpin.13 

 

 

Scheme 6. Oxidative addition of HBcat at a Ru centre, phosphine coordinated, N-
heterocyclic carbene species. 
 

While Rh and Ru complexes provide the best tools to use in selective 

functionalization of aliphatic primary C-H bonds over secondary or tertiary, Ir 

complexes direct aromatic C-H borylation with high steric control; hence C-H 

bonds lacking ortho substituents are preferred.10 The best Ir-catalyst for these 

type of reactions was formed in situ by reacting [Ir(COD)OMe]2 dimer with di-t-

butyl-bipyridine in the presence of excess of diborane reagent. The reaction 

proceeds faster than the one to functionalize alkanes; the reason for this is the 

milder conditions required to generate the unsaturated intermediate.14  

Electronic effects were found not to influence the selectivity of the process, but 

the rates were different when employing electron-rich in place of electon-poor 

arenes. Surprisingly, reactions were faster when electron poor reagents were 

employed. A highly reactive tris-boryl-Ir(III) species was isolated and proposed 

as intermediate.15 

In contrast, electronic effects are important in Ir-catalysed C-H borylation of 

heteroaromatics; the α-position to the heteroatom is functionalized in a five-

member heterocycle; however, the reactivity of pyridines showed selectivity for 

the β-position to nitrogen. The different behavior was tentatively explained by 

proposing nitrogen coordination of the pyridine to the metal centre which would 

sterically block the C-H functionalisation in alpha position.16 Finally, a highly 

selective method for the Ir-catalyzed directed C-H borylation was achieved 

introducing a hydrosilyl functionality as directing group. The methodology was 
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developed in first for substituted-arenes17 and expanded afterwards to N-

containing heteroaromatics.18  

Metal-catalyzed hydroboration of alkenes is also a much investigated field due 

to the vast applications of alkene boronic esters in organic synthesis. Since the 

first example involving rhodium and HBcat was reported in 198519 many papers 

were published presenting different metals as catalysts and different boranes as 

boronating reagents. The [Ir(COD)Cl2]2 dimer was reported as a precursor to 

catalytic terminal hydroboration of cyclohexene and cyclopentene in the 

presence of B2pin2; the selectivity towards allylic over vinylic C-H bonds for 

cyclic alkenes was controlled by proper choice of reaction conditions. 

Preference for allyl C-H functionalisation was determined for acyclic 

substrates.20 The same Ir-dimer was recently employed as a precursor in the 

reaction with an unusual bulky boron reagent (Scheme 7). The experiments 

afforded the desired products with aliphatic alkenes but failed with vinyl 

arenes.21 
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Scheme 7. Structure of the bulky dioxaborocine used in hydroboration reactions. 
 

A study which combines hydroboration and dehydrogenative borylation of 

alkenes was published by Sabo-Etienne and co-workers. The complex 

RuH2(H2)2(PCy3)2 was established to catalyze borylation of linear and cyclic 

alkenes in the presence of HBpin with good yields. Dehydrogenative borylation 

competed with hydroboration in reactions with large ring cyclic alkenes affording 

the diboronated products. The unsaturated complex 3, RuH(Bpin)(C2H4)(PCy3)2, 

was observed in solution and proposed as intermediate in the catalytic cycle 

(Scheme 8).22 
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Scheme 8. Formation of the unsaturated intermediate 3 in the hydroboration reaction 
of RuH2(H2)2(PCy3)2 in the presence of HBpin. 
 

There is a growing interest in the earlier transition metals as inexpensive 

alternatives to their heavier cogeners; Wu et al. reported a chemo-, regio-, and 

stereoselective Fe-catalyzed hydroboration of 1, 3-dienes to afford linear (E)-γ-

disubstituted allylboranes. In addition to giving access to highly functionalized 

molecules that are otherwise very hard to synthesize, the Wu reaction showed 

an unprecedented reactivity for an iron catalyst.23 

The proposed catalytic cycle has still a few unsolved points and it is based on 

experimental studies using deuterated HBpin; the diene coordinates to the iron 
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centre in first place, oxidative addition of the borane substrate generates a Fe-

boryl deuteride complex. Since the deuterium atom was found on the final 

product, a migratory insertion step has been postulated even though no 

experimental evidence was found for complexes 29a and 29b. Finally, reductive 

elimination occurs to form the hydro-borated product and regenerate the 

catalyst (Scheme 9).  

 

 

Scheme 9. Proposed catalytic cycle for the Fe mediated hydroboration reaction of 
diene in the presence of HBpin. 
 

Very recently, a Ca- mediated hydroboration of diphenylethylene has also been 

reported. Decomposition of HBcat by organo-calcium compounds produces 

species such as B2pin3 and BH3 which are the active hydroborating agents. The 

same reactivity was not observed with HBpin.24  

Mechanistically, the reactions of late transition metals with boranes can follow 

two different pathways: oxidative addition of the B-H bond to the metal centre or 

η2-coordination to form a σ-complex; certainly one route does not exclude the 
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other. Many reactions have been reported where η2-coordination is an essential 

step for achieving oxidative addition or reductive elimination.  

Sabo-Etienne and coworkers explored the coordination modes of the complex 

RuH2(H2)(PCy3)2 towards different boranes. The Ru complex used is a perfect 

illustration of an ideal balance between σ-donation and back-donation with two 

unstretched dihydrogen ligands that proved to be very labile. Because of the 

peculiar electronic features of this complex they were able to isolate a σ-

complex of Ru showing HBpin coordinated in two different fashions: σ-borane 

and dihydroboration (Scheme 10).25 Theoretical calculations on the system 

suggested σ-coordination as the favored mode with less acidic boranes such as 

HBpin and HBcat, while dihydroboration was achieved when a more Lewis 

acidic borane was used.26  

 

 
Scheme 10. Possible coordination modes of a secondary borane to a metal hydride 
fragment. 
 

Further studies with RuH2(H2)(PCy3)2 and mesityl borane highlighted another 

possible coordination mode where the B-H moieties are both bound in an η2-

fashion to the metal centre (Scheme 11).27 The bis σ−bond borane ruthenium 

complexes present great potential for reversible hydrogen release.28 Sabo-

Etienne group has also recently published a borane mediated CO2 reduction 

using the same Ru complex, where HBpin acts as “activator and oxygen 

scavenger” in reducing CO2 to form C1 and C2 compounds such as pinBOCH3 

and pinBOCH2OCHO.29 
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Scheme 11. Bis σ-borane complex of H2BMes. 

 

An unusual cationic ruthenium species was reported by Stradiotto et al., 

showing the B-H moiety of mesitylborane also bound in a double η2 fashion 

(Scheme 12).30  

 

 

Scheme 12. Cationic Ru complex of mesitylborane. 

 

Besides all these “fashionable” coordination modes, simple oxidative addition at 

the metal centre has also been reported. Hartwig and co-workers, for instance, 

isolated and characterized crystallographically Ir(V) boryl complexes postulating 

them as intermediates in the regioselective borylation of alkenes.31 

Photochemical oxidative addition of HBpin and B2pin2 at CpRh-phosphine 

centers was investigated in our group (Scheme 13); the corresponding oxidative 

addition products were characterized by NMR spectroscopy and a X-ray crystal 

structure was obtained for the complex CpRhH(Bpin)(PPh3).  
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Scheme 13. Photochemical reactions of CpRh-phosphine complexes in the presence 
of HBpin and B2pin2 affording the oxidative addition products. 
 

A very weak interaction between boron and hydrogen (B…H = 2.09(2) Å) was 

observed in the structure; nevertheless bond lengths and angles were much 

closer to the ones expected for the oxidative addition process. Similar 

Rh(boryl)H complexes were previously crystallographically characterised by the 

Hartwig9 and Marder32,33 groups. Comparison between those structures and the 

CpRh(PPh3)H(Bpin) complex led to conclude that different degrees of oxidative 

addition are achieved with respect to the electronic properties of the ligands 

around the metal centre.34 Further studies introduced a chiral phosphine at the 

metal centre and allowed to identify two different isomers formed upon oxidative 

addition of HBpin which underwent intermolecular exchange. DFT calculations 

suggested a σ-borane complex as a transition state for the exchange process 

(Scheme 14).35 
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Scheme 14. Two different isomers formed in oxidative addition reactions of HBpin to a 
chiral phosphine-rhodium centre. The σ-compound was postulated as transition state 
by DFT calculations. 
 

Finally, our group has also recently succeeded in the isolation and 

characterization by NMR spectroscopy of Ru(PP)2(H)(Bpin), (PP = BPE and 

DuPhos) complexes formed photochemically by reacting (PP)2RuH2 in the 

presence of HBpin. The structure of the (BPE)2Ru(H)(Bpin) complex was 

confirmed crystallographically, bond lengths and angles were found to be 

consistent with an oxidative addition product rather than a  σ-borane 

coordination.36 
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3.2 Results 
3.2.1 Ruthenium dihydride complexes 

Ruthenium dihydride complexes have been extensively studied in our group. 

Their photolysis induces reductive elimination of dihydrogen to form a highly 

reactive electronically unsaturated square planar metal complex Ru(PP)2 

(Scheme 15), followed by oxidative addition of different ligands.37 Multidentate 

phosphine ligands are found to give greater selectivity to the photochemistry of 

these complexes, selectivity improves compared to the monodentate analogues 

due to increased kinetic stability owing to the chelate effect.  

 

 

 

Scheme 15. Photoelimination of dihydrogen from (PP)2RuH2 complexes to form the 
square-planar 16-electron intermediate Ru(0)(PP)2. 

 

Kinetic studies of the oxidative addition at Ru(PP)2 (PP, depe = 1,2-bis-

diethylphosphinoethane, dmpe = 1,2-bis-dimethylphosphinoethane) initiated by 

laser flash photolysis found that the rate constants of reaction followed the 

order k(H2) > k(HBpin) > k(Et3SiH); hence the regeneration of the dihydride 

occurs with a higher rate constant than formation of either the hydrido-boryl or 

hydrido-silyl complexes.37,38 It was also found that upon photolysis in the 

presence of a borane compound such as HBpin, coordinatively unsaturated 

complexes of the type Ru(0)(PP)2  undergo oxidative addition of the B-H bond 

to form trans and cis Ru(PP)2(H)Bpin (Scheme 16).  
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Scheme 16. Photochemical reaction of (PP)2RuH2 complexes with HBpin to form cis 
and trans (PP)2RuH(Bpin). 
 

Formation of the ruthenium boryl hydride complexes was demonstrated by the 

combined use of NMR spectroscopy and time resolved studies without the 

support of crystallographic structures for reaction of Ru(depe)2H2 and 

Ru(dmpe)2H2 in the presence of HBpin.39 My studies followed the results 

reported in 2004, moving on to investigate the reactivity of a Ru-dihydride 

complex coordinated to a sterically demanding and electron poor phosphine 

dppe (dppe = diphenylphosphinoethane) (Scheme 17). In addition the reactivity 

of CpRh(C2H4)2 towards boranes was also explored. 
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Scheme 17. Structure of the Ru complex investigated. 

 

3.2.2 Ru(dppe)2H2 in the presence of HBpin and HBcat 

Scheme 17 shows the structure of the Ru(dppe)2H2 complex investigated. The 

corresponding 4-coordinate 16-electron Ru(dppe)2 species is formed via 

photodissociation of dihydrogen; the previous studies had provided strong 

evidence that Ru(dppe)2  has a structure close to square planar, and the 
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coordinatively unsaturated complex reacts with different quenching molecules.37 

Photolysis of the complexes is carried out in C6D6, at room temperature with a 

broadband UV source in the presence of excess of pinacolborane, HBpin, and 

catecholborane, HBcat (Scheme 18). 

 

 

Scheme 18. Boranes used in these studies. 

 

3.2.3 Analysis of Ru(dppe)2H2 complex 

The NMR hydride signal of Ru(dppe)2H2 in the 1H NMR spectrum is centred at δ 

-8.30 ppm. The signal is a second order multiplet which comprises signals of 

both cis- and trans- isomers in a narrow δ-range (Figure 1, top). However, 

recording a 1H{31P} NMR spectrum, it is possible to see singlets due to each 

isomer. The simplified spectrum gives two peaks, one at δ -8.30, and another at 

δ -8.10, in a 20:1 ratio, representing cis and trans respectively (Figure 1, 

bottom). The two isomers are seen very clearly in the 31P{1H} NMR spectrum 

because all phosphorus atoms in the trans complex are magnetically 

equivalent, and the signal is simply a singlet at δ 83.9. In the cis complex, there 

are two sets of two equivalent P atoms, and so we see two triplets at δ 79.5 and 

δ 66.2 (Figure 2).  

 

-8.0 -8.2 -8.4 ppm 
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Figure 1. 1H NMR spectrum of hydride region for complexes cis/trans Ru(dppe)2H2 in 
C6D6 (top), and 1H{31P} NMR spectrum of hydride region for complexes cis/trans 
Ru(dppe)2H2 in C6D6 (bottom). 
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Figure 2. 31P{1H} NMR spectrum of complexes cis-Ru(dppe)2H2 and trans-Ru(dppe)2H2  
in C6D6. 
 

3.2.4 Solution photochemistry: Ru(dppe)2H2 complex with HBpin 

Complex 1 does not react thermally at room temperature in the presence of an 

excess (10 fold) of HBpin, but a pale yellow solution of complex 1 reacted upon 

irradiation at room temperature for 15 hours. After that time the reaction was 

complete, and it was analyzed by NMR spectroscopy at room temperature.  

The 31P{1H} NMR spectrum shows the formation of a single product where all of 

the phosphorus atoms are now magnetically inequivalent, leading to the 

appearance of a rather interesting ABMQ spin system. The resonances for the 

mutually trans phosphorus PA and PX present features of an AB quartet (Figure 

3) (Scheme 19); the AB spin system is centered at δ 75.9. Each component 
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split into apparent doublet of doublet of doublets, with coupling constants of JAM 

= 21, JAQ = 10 Hz; and JXM = 16 JXQ = 10 Hz. JAX was measured to be 249 Hz. 

There are two further resonances on the 31P{1H} NMR spectrum: a broad one at 

δ 57.3 assigned to the phosphorus in trans position to boron, PQ, and a quartet 

at δ  53.7 for the phosphorus trans to the hydride, PM.  

 

 
Scheme 19. Scheme for a cis Ru boryl complex which shows four different phosphorus 
environments. 
 

The 1H spectrum shows the appearance of a new hydride resonance as a 

doublet of quartets at δ - 8.30 (JPH = 20.7 Hz, 58 Hz) (Figure 4, bottom). The 

reaction proceeded cleanly to the formation of only one species; no other 

hydride resonances are present and no other products are detected on the 
31P{1H} NMR spectrum. Upon decoupling from 31P the doublet of quartets 

simplifies to a singlet confirming coupling to four inequivalent phosphorus atoms 

in a cis arrangement (Figure 4). 
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Figure 3. 31P{1H} NMR spectrum of reaction of the complex Ru(dppe)2H2 with HBpin in 
C6D6 after 12 hours of photolysis at 90% of conversion. The stars referred to starting 
material left. Top: Enlargement of the resonances for Ru(dppe)2H(Bpin). 
 

-8.0 -8.2 -8.4 ppm 

-8.0 -8.2 -8.4 -8.6 ppm 

 

Figure 4. Hydride region of the 1H NMR spectrum (bottom) and 1H{31P} NMR spectrum 
(top) of photochemical reaction of complex Ru(dppe)2H2 with HBpin in C6D6.The minor 
peak in the 1H{31P} NMR spectrum is the starting complex Ru(dppe)2H2. 
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The 31P-1H{31P} correlation spectrum shows cross peaks between the hydride 

for the product and the signals corresponding to the ABMQ system in the 31P 

NMR spectrum (Figure 5). Unfortunately, no evidence of Ru-boryl resonances 

has been observed measuring 11B NMR spectra, but we are confident because 

of the fact that one of the peaks in the 31P{1H} NMR spectrum (δ 57.3 ppm) 

appears to be broader than the rest indicative of a trans coupling with a 

quadrupolar nucleus. Unfortunately no resonances were detected in the 11B 

NMR spectrum, due to the excess of HBpin and broadness of the peak 

corresponding to the metal boryl. Attempts to purify the complex, in order to 

remove the excess of ligand and obtain better 11B NMR characterization failed 

due to regeneration of the starting material Ru(dppe)2H2 upon pumping off the 

reaction mixture. Attempts to crystallize the complex were also unsuccessful; 

the product decomposes to regenerate the starting ruthenium dihydride 

complex when left in solution for crystallization. LIFDI mass spectrometry 

showed the presence of the fragment Ru(dppe)2, but no peak for the Ru-boryl 

hydride was detected. This is not surprising if it is considered that the complex 

appeared to be unstable under very mild conditions (solution, room 

temperature). 

ppm
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70

80

 

 

Figure 5. 1H{31P}-31P NMR spectrum of photochemical reaction of complex 
Ru(dppe)2H2 with HBpin in C6D6. 
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The complex was assigned as cis-Ru(dppe)2H(Bpin), (Scheme 20). The 13C{1H} 

spectrum shows a resonance at δ 79.9 assigned to the BOC carbon, 

considerably shifted upfield compared to free HBpin (δ 82.9). The presence of 

B2pin3 (
11B NMR δ 21.9) was also detected after photolysis. The solvent was 

changed in the attempt to stabilize the Ru boryl complex, but no difference in 

reactivity was observed on moving to toluene. Hexane, cyclohexane and 

hexamethyldisiloxane were also tried but the starting Ru dihydride complex 

showed low solubility in all of them. Reaction in neat HBpin did not improve the 

stability of the boryl-ruthenium complex formed either. 
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Scheme 20. Reaction scheme for oxidative addition of HBpin to RuH2(dppe)2 to form 
the cis isomer Ru(dppe)2H(Bpin). 

 

3.2.5 Solution photochemistry: Ru(dppe)2H2 complex with HBcat 

A pale yellow solution of the complex Ru(dppe)2H2 in C6D6 was irradiated at 

room temperature for 30 min in the presence of 10 equivalents of HBcat. After 

that time the reaction was complete, and it was analyzed by NMR spectroscopy 

at room temperature. The complex did not react thermally in the presence of 

HBcat, but its photolysis in C6D6 led to the detection of two new hydride 

resonances attributed to the cis and trans isomers of the Ru(dppe)2H(Bcat) 

complexes (cis:trans ratio is ca. 7:2) (Scheme 21) and new resonances in the 
31P{1H} NMR spectrum. 
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Scheme 21. Cis and trans isomers formed for reaction of Ru(dppe)2H2 with HBcat. 

 

The new hydride containing products resonated at δ -7.89 (cis, JPH 20 Hz, 59.3 

Hz, doublet of quartets) and δ -6.37 (trans, JPH 19.3 Hz, quintet) in the 1H 

spectrum (Figure 7). Upon 31P decoupling both the hydride resonances 

simplified to singlets. The cis Ru(dppe)2H(Bcat) product exhibited the same 

ABMQ system in the 31P{1H} NMR spectrum previously observed for the cis-Ru-

HBpin analogue and a new peak was found for the trans isomer as a singlet at 

δ 80. 

 

606264666870727476788082 ppm

Trans isomer

Cis isomer

 

 

Figure 6. 31P{1H} NMR spectrum of photochemical reaction of complex Ru(dppe)2H2 
with HBcat in C6D6 showing the singlet for the trans isomer and the ABMQ system for 
the cis one. 
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Figure 7. Hydride region of the 1H NMR spectrum of photochemical reaction of 
complex Ru(dppe)2H2 with HBcat in C6D6 to form the new species cis-
Ru(dppe)2H(Bcat) and trans-Ru(dppe)2H(Bcat). 
 

The 31P{1H} -1H correlation spectrum showed cross peaks between the hydrides 

for the products and the signals corresponding to the cis and trans species in 

the 31P{1H} NMR spectrum (Figure 8). Purification and isolation of the products 

were not possible for the same reasons mentioned for the HBpin analogue. The 

complex is unstable in solution and under vacuum conditions, reforming the 

starting material. 
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Figure 8. 1H -31P{1H} NMR spectrum of photochemical reaction of complex 
Ru(dppe)2H2 with HBcat in C6D6 showing the ABMQ system in the 31P{1H} correlated to 
the cis hydride and a cross peak between the singlet in the 31P{1H} and the quintet 
resonance in the 1H spectrum for the trans hydride. 
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3.3 Cyclopentadienyl Rh complexes in B-H and B-B activation 

As already mentioned, CpRh complexes have been investigated in the 

presence of boranes; our group reported studies of CpRh(PR3)(C2H4) in the 

presence of HBpin and B2pin2
34 as well as investigations using chiral 

phosphines.35 

Hartwig and coworkers explored the thermal reaction of Cp*Rh(C2H4)2 in the 

presence of B2pin2 for the regioselective functionalization of alkanes, they found 

the catalyst to be very active (84% conversion to the alkyl-Bpin). However, by-

products from the borylation of the alkene were detected and therefore they 

tested a different complex where reaction between the extruded ligand and the 

substrate did not take place. They found that Cp*Rh(η4-C6Me6) was also an 

active catalyst in the same type of reaction showing a longer lifetime than the 

bis-ethylene analogue.11 

The group of Perutz has investigated an analogue of Cp*Rh(C2H4)2, but 

employing the less electron-rich and less sterically demanding C5H5 (Cp) as a 

ligand instead of C5Me5. 

 

 

 

Scheme 22. Structure for the rhodium complex investigated. 

 

It was found that under photochemical conditions CpRh(C2H4)2  loses one or 

both the ethylene ligands and undergoes reaction with PPh3 to form the mono 

or disubstituted analogues. It also showed reactivity towards thermal C-H 

activation of C6H6 at 130ºC where isotopic hydrogen exchange introduced 

deuterium into the Cp and C2H4 ligand.40 Finally reactions with silanes proceed 

photochemically through Si-H oxidative addition to form hydrosilylation 



Chapter 3: Photochemical oxidative addition of BH/BB bonds at Ru and Rh centres 

 70 

products.41 The mechanism was also investigated.42 
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Scheme 23. Photoactivity of the CpRh(C2H4)2 complex in the presence of different 
substrates. 
 

The photochemical reaction of CpRh(C2H4)2 in the presence of boranes was not 

explored previously, and therefore it was of interest to look at the reactivity of 

the complex towards HBpin and B2pin2 and compare the results to those 

reported for the Cp* analogue. 

 

3.3.1 Analysis of the CpRh(C2H4)2 complex starting material 

CpRh(C2H4)2 was previously spectroscopically characterized.43 The 1H NMR 

spectrum exhibits a resonance at δ 4.83 for the Cp ligand and two complex 

doublets at δ 2.88 and δ 1.11 assigned to two protons of each coordinated 

C2H4. The integration ratio is 5:4:4.(Figure 9). The C2H4 protons are broad at 

room temperature because of exchange. 
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Figure 9. 1H NMR spectrum of complex CpRh(C2H4)2 in C6D6. 

 

3.3.2 Solution photochemistry: CpRh(C2H4)2 complex with HBpin 

Thermal reaction of complex CpRh(C2H4)2 with excess HBpin (5 fold) in hexane 

did not occur, but photolysis (λ > 290 nm, 2 h, room temperature) of the same 

reaction mixture led to the formation of new species. A typical broad resonance 

at δ  -14.37 was observed in the hydride region of the 1H NMR spectrum upon 

following the reaction during photolysis. The full set of resonances for the new 

complex was determined after removal of volatile components and redissolving 

the brown solid in C6D6. The product displays a singlet for the Cp at δ  5.17, the 

methyl groups on the borane ring resonate as a singlet at δ 1.09 since they are 

all chemically equivalent and a broad resonance is observed for the C2H4 group 

at δ 2.86. The broad peak for the hydride sharpened into a doublet upon 

decoupling from 11B, a coupling constant of 37.7 Hz between 103Rh and 1H was 

also observed. 11B NMR spectroscopy shows the typical broad resonance for 

Rh-boryl complexes at δ 39.9. Attempts to crystallize the complex failed due to 

its high instability in solution. The complex was found to be stable upon 

pumping to dryness but decomposition was observed upon leaving it in solution 

for a few hours. The reaction was also performed in neat HBpin in order to 

improve the stability, but the same behavior was detected. The by-product 
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B2pin3, formed during photolysis, was also observed in both 11B and 1H NMR 

spectra (11B, δ 21.9, 1H, δ 1.01). Because it was impossible to get a crystal 

structure, the identity of the product remained unclear; no distinction could be 

made between an oxidative addition and a σ-coordination of the B-H bond on 

the basis of NMR analysis. These results will be discussed later in the Chapter. 

 

 

Scheme 24. Photochemical reaction of complex CpRh(C2H4)2 in the presence of 
HBpin. 
 

 

Figure 10. 1H NMR spectrum: hydride resonance for complex 
CpRh(C2H4)H(Bpin)/CpRh(C2H4)(η

2-HBpin). The broad peak is due to coupling to 11B. 
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Figure 11. {11B}1H NMR spectrum of the hydride region for complex 
CpRh(C2H4)H(Bpin)/CpRh(C2H4)(η

2-HBpin) in C6D6. 
 

 

3.3.3 Solution photochemistry: CpRh(C2H4)2 complex with B2pin2 

Photochemical reaction of CpRh(C2H4)2 in the presence of the diborane B2pin2 

in a 1:1 ratio resulted in B-B oxidative addition to form one major product. The 

reaction mixture was pumped off and the solid redissolved in C6D6. The broad 

peak at 37.0 ppm present in the 11B NMR spectrum (Figure 12) confirmed the 

formation of a rhodium-boryl species; the 1H NMR spectrum shows the 

presence of one major Cp resonance at δ 5.3. LIFDI mass-spectrometry 

elucidates the nature of the complex to be the bis-boryl rhodium complex 

CpRh(C2H4)(Bpin)2 formed by the photochemical reaction shown in Scheme 25. 

Attempts to crystallize the complex were unsuccessful since it showed high 

instability in solution as the Bpin analogue. 
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Scheme 25. Photochemical reaction of CpRh(C2H4)2 and B2pin2. 
 

 

Figure 12. 11B NMR spectrum showing the broad resonance for the CpRh(C2H4)(Bpin)2 
complex in C6D6. 

 

3.3.4 Catalytic activity of CpRh(C2H4)2 in the presence of HBpin and 
heptane 

A solution of complex CpRh(C2H4)2 (ca 8 mg) in the presence of excess HBpin 

(10 fold) in heptane was photolyzed for four hours and the reaction mixture 

analyzed by gas chromatography-mass spectrometry (GC-MS) to look for the 

borylated alkane product. The peak for the heptyl-Bpin was found in the 

chromatogram (m/z 226.2117) along with other byproducts formed by reaction 

of HBpin with ethylene. These preliminary results encourage the investigation of 

the reaction in the presence of different linear alkanes and the optimization of 

reaction conditions.  
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3.4 Discussion 

Photochemical reaction of Ru(dppe)2H2 in the presence of the monoboron 

reagents HBpin and HBcat, leads to the selective formation of the B-H oxidative 

addition product as confirmed by NMR spectra analysis.  

The reaction of Ru(dppe)2H2 is regioselective for the formation of the cis 

stereoisomer, unlike the Ru(dmpe)2H2 and the Ru(depe)2H2 reactions where 

both the isomers were observed.39 Regioselectivity probably derives from the 

steric hindrance of the phosphine compared with Ru(dmpe)2H2 and 

Ru(depe)2H2. In contrast just one isomer was formed from reaction of RuH2 

complexes with bulky chiral phosphines, BPE and DuPhos in the presence of 

HBpin. The Ru(BPE)2H(Bpin) structure was confirmed crystallographically and 

by NMR analysis.36 The similarity between 31P{1H} NMR coupling constants for 

Ru(dppe)2H(Bpin) and the ones reported for the BPE and DuPhos analogues 

reinforce our proposal of B-H oxidative addition rather than C-H activation of the 

methyl groups on the borolane ring (Table 1). 

 

Table 1. Chemical shifts δ (ppm) and coupling constants J (Hz) for complexes 
Ru(BPE)2H(Bpin), Ru(DuPhos)2H(Bpin) and Ru(dppe)2H(Bpin). 
 

 Ru(BPE)2H(Bpin) Ru(DuPhos)2H(Bpin) Ru(dppe)2H(Bpin) 

PA 
110.2 

(dt, JAX = 237, JAM = 
JAQ = 16) 

110.4 
(dt, JAX = 239, JAM = JAQ 

= 14) 

77.6 
(ddd, JAX = 249, JAM 

=21, JAQ = 10) 

PM (trans to H) 
91.56 

(q, JMA = 16, JMQ = 
JMX = 18) 

92.2 
(m, overlapping with δX, 

JMA = JMQ = JMX = 19) 

53.7 
(m) 

PQ(trans to B) 89.1 
(br) 

82.47 
(br) 

57.3 
(br) 

PX 
88.1 

 (dt, JXA = 237, JXM = 
JXQ = 18) 

93.0 
(dt, JXA = 239, JXM = JXQ 

= 19) 

74.3 
(ddd, JAX = 249, JXM 

= 16, JXQ = 10) 
 

Regeneration of starting Ru dihydride complex happens either in C6D6 or in 

neat HBpin. We hypothesized that the back reaction with the benzene 

regenerates the dihydride complex along with PhBpin when the reaction is in 
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benzene, and back reaction with HBpin reforms the starting material and 

possibly B2pin2 when the reaction is performed in neat HBpin (Scheme 26). We 

can also conclude that the boryl-Ru complex formed may act as a good 

aromatic C-H activator; possible sources of H2 to regenerate the starting Ru 

dihydride complex could be HBpin itself, phenyl groups on the phosphine 

ligands, traces of H2O, and OH groups from the glassware, or H2 reductively 

eliminated during photolysis and still in solution (evidence of it in the 1H NMR 

spectrum). The instability of boryl complexes in C6D6 solution was already 

observed by Braun and coworkers.44 According to laser flash photolysis results, 

(see Chapter 6), the primary reaction of Ru(dppe)2 and HBpin is very fast (k2 = 

(8.9±0.3)x105 dm3 mol-1 s-1). Therefore the very long photolysis time needed to 

take the reaction to completion is due to secondary parallel reactions which 

take place during photolysis and compete to slow down the conversion to the 

product. 

A complete NMR study has also been carried out on the products of the 

photochemical reaction between Ru(dppe)2H2 and HBcat in C6D6. In contrast to 

the reaction with HBpin both the stereoisomers are observed. The reaction is 

considerably faster than the one with HBpin, and back reaction to regenerate 

the starting complex occurs much more slowly. Large P-H couplings and sharp 

hydride resonances (JPH observed) are consistent with the formation of Ru(II) 

hydrides rather than η2-borane complexes which usually show very broad 

hydride resonances.28  
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Scheme 26. Possible scheme for the regeneration of the starting complex Ru(dppe)2H2 

upon reaction with C6D6 or HBpin. 
 

Even greater instability on standing in solution than the Ru-boryl complexes 

discussed above, is shown by the rhodium complexes formed by photochemical 

reaction of CpRh(C2H4)2 in the presence of HBpin and B2pin2. Attempts at 

crystallization were not successful, but both the products were characterized by 

NMR spectroscopy and LIFDI mass-spectrometry. The reactions proceed 

through photo-elimination of one C2H4 ligand to form the unsaturated reactive 

complex CpRh(C2H4) which then either inserts into B-H/B-B bond to form the 

oxidative addition product or coordinates to it to give the η2 adducts. 

Discrimination between a σ-borane complex and a hydrido(boryl) oxidative 

addition product can not really be achieved just on the basis of NMR 

spectroscopy. Since both the species exhibit quite similar chemical shifts either 

in 1H and in 11B NMR spectra, choosing a bonding mode on the basis of 

chemical shifts is not possible.45 Analysis of B-H coupling constants is also 

quite uninformative; a σ-borane resonance is always too broad to allowed the 

determination of JB-H. The resonance for the hydride formed after reaction of 
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complex CpRh(C2H4)2 in the presence of HBpin was broad suggesting B-H 

bonding interaction, an estimation of the B-H coupling was attempted by 

measuring the width at half-height of the peak and determined to be 30 Hz. This 

resonance sharpened to a doublet upon 11B decoupling (JRh-H = 37.0). 

Comparison with studies carried on by Hartwig and co-workers helped to 

confirm the nature of the products as well as to highlight the difference in 

reactivity moving from Cp* to Cp as a ligand.9 The broad resonances observed 

in the 11B NMR spectrum are consistent with a boryl group bound to the metal 

and the presence of a resonance for the C2H4 group in the 1H NMR spectrum 

confirms that one ethene is kept by the complex after photolysis unlike what 

was observed for the reactions with the Cp* analogue. The C2H4 group 

resonates at δ 2.86 for the HBpin complex and at δ 3.09 for the B2pin2 one.  

Small quantities of other species were detected by 1H and 11B NMR 

spectroscopy; reaction of CpRh(C2H4)2 in the presence of HBpin produces 

CpRh(C2H4)(Bpin)2 as minor species (evidence on LIFDI-MS) along with other 

by-products possibly formed by borylation of ethene. The possible Rh(V) 

complexes CpRhH2(Bpin)2 and CpRh(Bpin)4 were not detected. Nevertheless, 

Rh(V) species were proposed as intermediates in borylation reactions of 

alkanes by Hartwig; experimental evidence and theoretical calculations 

supported the activity of these compounds in the catalytic cycle and 

energetically favored compared with Rh(III) intermediates.9 Our experiments 

demonstrate instead the formation of Rh(III)/Rh(I) complexes stable enough to 

be spectroscopically characterized. X-ray analysis was not possible due to 

instability in solution, in contrast to Tp`Rh(PMe3)H(Bpin) where a crystal 

structure determination was achieved. (See Chapter five). The complexes 

obtained by photochemical reaction of CpRh(C2H4)2 in the presence of HBpin 

and B2pin2 are formed preferentially with respect to the high-valent 

intermediates observed for reactions of the Cp* analogue. Preliminary results 

demonstrate a potential catalytic ability for the system, reaction of the 

CpRh(C2H4)2 with excess HBpin in heptane resulted in the formation of the 

functionalized alkane. 
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3.5 Summary 

We have demonstrated here that UV photolysis of the metal phosphine hydride 

complex Ru(dppe)2H2 in the presence of HBpin and HBcat yields metal 

phosphine boryl hydrides identified by the use of NMR criteria in the absence of 

crystallographic data. The complex CpRh(C2H4)2 also shows photochemical 

activity in the presence of HBpin and B2pin2 yielding the analogous borylated 

complexes. All of these complexes proved to be thermally unstable at ambient 

temperature. The CpRh(Bpin)H(C2H4) appeared to be a catalyst in the 

borylation of linear alkanes. Reaction of CpRh(C2H4)2 in the presence of excess 

HBpin in heptane afforded the heptyl-Bpin functionalized species. 
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3.6 Experimental 
3.6.1 General procedures 

All operations were performed under a argon atmosphere, either on a high-

vacuum line (10-4 mbar), standard Schlenk (10-2 mbar) lines or in a glovebox. 

Solvents for general use (benzene, toluene) were of AR grade, dried by 

distillation over sodium and stored under Ar in ampoules fitted with a Young’s 

PTFE stopcock. Hexane was collected from the purification system and dried 

again by distillation. Deuterated solvents were dried by stirring over potassium 

and distilled under high vacuum into small ampoules with potassium mirror. 

HBpin and HBcat were bought by Aldrich and purified by vacuum distillation. 

Photochemical reactions at room temperature were performed in pyrex NMR 

tubes fitted with Young’s PTFE stopcocks by using a Philips 125 W medium-

pressure mercury vapor lamp with a water filter (5 cm).  

3.6.2 Mass spectra  

LIFDI mass spectra were measured on a Waters Micromass GCT Premier 

orthogonal time-of-flight instrument set to one scan per second with resolution 

power of 6000 FWHM and equipped with a LIFDI probe from LINDEN GmbH. 

The design is very similar to that described by Gross et al.46 Toluene was used 

for tuning the instrument. The polyethylene glycol probe was kept at ambient 

temperature with the emitter potential at 12 kV. Activated tungsten wire LIFDI 

emitters (13 µm tungsten from LINDEN) were ramped manually up to 100 mA 

for the emitter heating current during the experiment. The m/z values are 

accurate to 0.01 Da. M/z values are quoted for 11B and 103Rh. 

3.6.3 NMR spectroscopy  

All standard NMR spectra were recorded on a Bruker AMX500 spectrometer, in 

tubes fitted with Young’s PTFE stopcocks. All 1H and 13C chemical shifts are 

reported in ppm (δ) relative to tetramethylsilane and referenced using the 

chemical shifts of residual protio solvent resonances (benzene, δ 7.16 for 1H 

and δ 128.06 for 13C). The 31P{1H} NMR spectra were referenced to external 

H3PO4.
 11B NMR spectra were referenced to external BF3·Et2O. 
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3.6.4 Synthesis of Ru(dppe)2H2
47 

A 250 mL Schlenk flask containing a teflon-coated magnetic stirring bar was 

charged with NaOH (1.00 g, 25 mmol), [RuCl2(COD)]x (0.352 g, 1.25 mmol) and 

dppe (1.03 g, 2.5 mmol) were added to the reaction vessel, the vessel was then 

connected to the Schlenk line, degassed and refilled with argon three times. 

Degassed sec-butyl alcohol (80 mL) was added via a cannula, and the reaction 

was then sealed and heated at 80 °C for three hours, the solution’s color 

changed from brown to yellow. The reaction was then allowed to cool to room 

temperature, and degassed water (100 mL) was added to dissolve the excess 

NaOH. The liquid portion was removed through a cannula and the solid was 

washed with degassed methanol, dried in vacuum and redissolved in benzene. 

The solution was filtered off by cannula under an argon atmosphere, the 

benzene removed by evaporation under vacuum and the compound dried in 

vacuum.  
1H NMR (C6D6, 300K) δ -8.3 (m, JPH 53, 39, 21 Hz, 2H, cis isomer), δ -8.1 (q, 

JPP 19.4 Hz, 2H, trans isomer), 1.5 (m, 2H, C2H4), 1.7 (m, 2H, C2H4), 2.0 (dd, 

JHH 11.6, JPH, 34.1, 2H, C2H4), 2.7 (dd, JHH 14.1, JPH, 44.6, 2H, C2H4), 6.1, 7.33, 

7.42, 7.73 (t, JPH 8.2 Hz, JHH 7.4 Hz, 4 phenyl protons each resonance), 6.76, 

6.85, 6.95, the resonance of the remaining protons on the phenyls ring overlap 

and precise assignment was not possible, but the total integration count is 

consistent with the presence of 40 aryl protons.  
31P{1H} NMR  δ 65.7 (t, JPP 15.5 Hz 2P, cis isomer),  79.6 (t, JPP 15.5 Hz 2P, cis 

isomer)  83.9 (s, 4P, trans isomer).  

13C NMR δ 28.2, (dt, JCH 20.9, 12.7 Hz, C2H4),  33.7, (dt, JCH 25.1, 13.7 Hz, 

C2H4),  135.2 to 127.6, (set of resonances for the CH),   141.1 to 143.7, (set of 

resonances for qC of phenyl).  

3.6.5 Synthesis of trans-Ru(dppe)2H(Bpin) 

An NMR tube, fitted with a Young’s tap, was charged with complex Ru(dppe)2H2 

(20 mg) and HBpin (10 fold excess) in C6D6 and irradiated for 15 h, resulting in 

100% conversion to trans Ru(dppe)2H(Bpin). Purification and isolation of the 
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complex was not possible because of back reaction under mild condition to 

regenerate the starting complex. NMR characterisation was done in C6D6.  
1H NMR (C6D6, 300 K): δ -8.3 (dq, JPH 38.1, 20 Hz, RuH), δ  2.94 (m), 2.43 (m), 

2.09 (m, very broad), 1.86 (m), 1.66 (m), the C2H4 protons are in a 2:1:1:2:1:1 

integration ratio; δ 8.58, 8.31, 7.97, 7.57, 7.05, 7.02, 6.82, 6.30 (t, JPH 7.9 Hz, 

JHH 8.5 Hz, 2 phenyl protons each resonance), the resonances of the remaining 

protons on the phenyls ring are overlapping and precise assignment was not 

possible, but the total integration count is consistent with the presence of 40 

aryl protons.  
31P{1H} NMR:  δ 78.0 (AB system, ddd, JPP 21 Hz PA), 74.2(AB system, ddd, JPP 

16 Hz, PQ),δ 57.3, (b, JPP 15.5 Hz 1P, trans to B) 53.7, (dd, JPP 25.9 Hz; 15.7 Hz 

1P). 
13C NMR:   δ 146.5 to 139.0, (set of resonances for the qC of phenyl), δ 135.4 

to128.4, (set of resonances for the CH of phenyls), δ 79.9, (s, BOC),  δ 33.5, (t, 

JCH 25.4,C2H4), δ 32.4, (t, JCH 22.3,C2H4), δ 30.84, (b,C2H4), δ 26.72, (t, JCH 

20.4,C2H4),δ 26.06, (s, BOCMe). 

3.6.6 Synthesis of trans and cis-Ru(dppe)2H(Bcat) 

An NMR tube, fitted with a Young’s tap, was charged with complex Ru(dppe)2H2 

(20 mg) and HBcat (10 fold excess) in C6D6 and irradiated for 30 min resulting 

in 100% conversion to trans and cis Ru(dppe)2H(Bcat). Purification and isolation 

of the complex was not possible because of back reaction under mild condition 

to regenerate the starting complex. NMR characterisation was done in C6D6. 
1H NMR (C6D6, 300 K): δ -7.89 (dq, JPH 59.3, 20 Hz, cis-RuH), δ -6.37 (q, JPH 

19.3, trans-RuH), δ  2.87 to 1.82 (set of broad multiplets for the cis-trans C2H4), 

δ 8.79 to 6.16 (set of multiplets for the aryl protons and the catechol ones for cis 

and trans, all the resonances overlap and integration was no possible.).  
31P{1H} NMR:   δ 76 (s, trans isomer), 76.5 (dd) and 75.3(t) (δABquartet, JAB = 240, 

JAM = 21 JAQ = 11, JBM = JBQ = 14, cis isomer), 56.6 (δM, br, PtransB, cis isomer), 

55.6 (δQ, m, PtransH, cis isomer).  
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3.6.7 Synthesis of CpRh(C2H4)2 

The complex was prepared by standard methods,43 but replacing TlCp with 

LiCp. It was extracted with hexane, the resulting yellow solution was pumped to 

dryness, and the product was sublimed under vacuum onto a liquid nitrogen-

cooled finger. Yield: 85%.  
1H NMR (C6D6) δ 1.09 (b, C2H4), δ 2.87 (b, C2H4), δ  5.17 (s, Cp). 

3.6.8 Synthesis of CpRh(C2H4)H(Bpin) 

An NMR tube, fitted with a Young’s tap, was charged with complex 

CpRh(C2H4)2 (20 mg) and HBpin (5 fold excess) in hexane and irradiated for 2 

hours, resulting in 90% conversion to CpRh(C2H4)H(Bpin). The reaction mixture 

was pumped to dryness and the solid redissolved in C6D6 for NMR 

characterisation. Purification was not possible due to decomposition of the 

product upon passing the solution through an alumina column.  
1H NMR (C6D6) δ -14.34 (br, 1H, RhH),  δ 1.09 (s, 12H, BO2C2(CH3)4), δ 2.86 (b, 

4H, C2H4), δ  4.83 (s, 5H, Cp).  
11B NMR δ 39.9 (b).  

LIFDI mass-spec: m/z 324.07 (calculated: 324.08, difference 10 mDa). 

3.6.9 Synthesis of CpRh(C2H4)(Bpin)2 

An NMR tube, fitted with a Young’s tap, was charged with complex 

CpRh(C2H4)2 (20 mg), and B2pin2 (1:1 ratio) in hexane and irradiated for 3 

hours, resulting in 70% conversion to CpRh(C2H4)(Bpin)2. The reaction mixture 

was pumped to dryness and the solid redissolved in C6D6 for NMR 

characterisation. Purification was not possible due to decomposition of the 

product upon passing the solution through an alumina column.  
1H NMR (C6D6):  δ 1.16 (d, 24H, BO2C2(CH3)4), δ 3.09 (d, 4H, C2H4), δ  5.34 (s, 

5H, Cp).  
11B NMR (C6D6): δ 37.0 (b).  

LIFDI mass-spec: m/z 450.162 (calculated: 450.162). 
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4 Oxidative addition of (iPr)2N-BH2 at rhodium centres 
4.1 Introduction 

Ammonia-borane and amine-boranes contain a high percentage by weight of 

available hydrogen (~ 28%)1 and they are isoelectronic with alkanes. The 

interest in looking at the reaction of transition metal centres in the presence of 

amine-boranes has increased in the last years (Scheme 1), especially 

considering their applications in hydrogen release and storage.2 The proved 

capability of some homogeneous catalysts to be active in dehydrogenation of 

alkanes inspired the use of similar systems in reactions with amine-boranes. 

Many metals have been shown to be effective in this type of reactions, from 

early transition metals (Ti, Zr)3 to late ones (Rh and Ir).4-8 Metal free methods 

have also been recently reported by Manners and coworkers.9 

 
Scheme 1. General scheme for the metal assisted dehydrogenation of amine-borane. 
 

Primary or secondary amine-boranes have been employed in order to produce 

dihydrogen. Tertiary amine-boranes showed reactivity of the B-H bond to 

produce η1-coordinated metal-complexes (Figure 1).10  

 

 
Figure 1. Structure of possible substituted amine-boranes. 
 

The mechanism of metal-catalysed dehydrogenation reactions has been 

explored experimentally and theoretically,11 different routes have been 

proposed which strongly depend on the organometallic complex employed 

(Scheme 2). However the nature of the intermediates involved in the catalytic 

cycle is relatively unknown. Recently, the first step in the insertion of an 

amineborane into an Ir(PCy3)2 centre has been reported to yield 

[Ir(PCy3)2(H)2(η
2-H3BNMeHBH2-NMeH2)][BArF

4]. Dehydrogenation to form an 
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aminoborane ligated complex was not observed and the reaction was found to 

be catalytic for the dehydropolymerization of H3B-NMeH2 to form the simplest 

oligomeric species.12  
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Scheme 2. Proposed mechanisms for amine-borane dehydrogenation. 
 

The loss of dihydrogen from amine-boranes forms the corresponding amino-

boranes which are isoelectronic with alkenes; the instability of these species 

leads to the formation of dimeric cyclic products by dehydrocoupling reactions.2 

The introduction of steric hindrance with bulky substituents at the nitrogen 

centre (iPr instead of H) improved the stability of the amino-borane allowing 

isolation as monomeric species. The role played by these compounds in the 

catalytic cycle is not well defined and a deeper understanding of their reactivity 

towards metal centres would be useful to clarify the mechanistic pathways 

followed by the dehydrogenative coupling reactions. 

Therefore, the interest in aminoboranes H2B=NR2, the unsaturated analogues of 

amine-boranes has increased; furthermore they are the basic monomers from 

which metal-mediated polymerisation gives access to novel materials. 
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Sabo-Etienne and co-workers reported the first ruthenium complex where a 

monomeric amino-borane coordinates to the metal centre via a bis(σ-B-H) 

bonds. They found that the thermal reaction of RuH2(η
2-H2)2(PCy3)2 in the 

presence of three different amine-boranes led to the release of H2 and 

coordination of the corresponding amino-borane to the unsaturated fragment 

(Figure 2).10  

 

 

Figure 2. The bis-(σ-BH) coordination product formed by thermal reaction of complex 
RuH2(η

2-H2)2(PCy3)2 in the presence of amine-borane. 
 

The same reactivity was observed on changing the phosphine ligands at the 

ruthenium centre and breaking the symmetry of the complex by introducing a 

chloride instead of a hydride. Reaction of RuHCl(η2-H2)(PiPr3)2 in the presence 

of cyclodiborazane [Me2N-BH2]2 gave the same type of product as observed 

previously.13 The complex RuHCl(H2BNMe2)(PiPr3)2 was found to be very 

stable under vacuum/standard conditions and did not undergo borylene 

formation as found for reaction of the same complex in the presence of mesityl 

borane.14 Comparison with the same type of complexes using osmium15 instead 

of ruthenium demonstrated that Ru prefers σ-coordination while osmium 

oxidatively adds the B-H bond of the cycloborazane.13 

Shimoi-type complexes16 of amine-boranes have been reported by Weller group 

using rhodium as metal centre (Figure 3). They isolated and characterized the 

first Rh(I) and Rh(III) σ-amine-borane species by reacting [Rh(PiBu3)2][BArF
4] in 

the presence of DMAB (dimethylamine-borane).17 
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Figure 3. Structures for the Rh(I) and Rh(III) Shimoi-type complexes of amine-borane. 
 

They also noticed different reactivity on changing the phosphine ligands.18 On 

introducing PiPr3 instead of PiBu3 the Rh(III) complexes formed were found to 

be more stable than those with PiBu3.  

A collaboration of Sabo-Etienne and Weller group reported a series of Ru, Ir, 

Rh σ-borane complexes of H2B-NiPr2, which were characterized by NMR 

spectroscopy and confirmed by X-Ray analysis (Figure 4). A stronger M-B 

interaction was observed for the Ru/Ir complexes than for the Rh one. 

Theoretical calculations agreed with the experimental trend placing Ru as the 

metal which forms the strongest metal-boron bond.18 

Aldridge and coworkers demonstrated that replacing the phosphine ligand with 

a carbene did not affect the reactivity; bis(σ-B-H) diisopropylaminoborane 

cationic rhodium and iridium complexes [MH2(η
2:η2-H2B-NiPr2)(IMes)2][BArF

4] 

(M = Rh, Ir, IMes=2,5-Mes2-N2C3H2) were isolated upon dehydrogenation of 

diisopropylamine-borane by rhodium centres.19 

 

 

 

Figure 4. Crystal structures for Ru, Rh, Ir σ-borane complexes of H2B-NiPr2.
18 
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The same group recently reported the first example of H2B=NCy2 coordinated to 

a sixteen-electron Ru-complex [CpRu(PPh3)2] via a mono (σ - B-H) bond. The 

capability of these ligands to act as two electron donors was shown.20 The first 

example of oxidative addition of an amino-borane B-H bond to a metal centre 

was also achieved by the group of Aldridge. The [Ir(PMe3)3]
+ fragment 

oxidatively added H2B=NR2 (R= iPr, Cy) in the first step to form an Ir-boryl 

hydride complex 2; a novel mechanism was proposed for the subsequent 

formation of a borylene species 3 where a B-to-M α-hydride migration took 

place after Cl- abstraction (Figure 5).21  

 

 
Figure 5. 2: Product formed by oxidative addition of H2BNR2 at Ir centre, (a) 
Ir(PMe3)3Cl(coe), toluene. 3: Ir-borylene species formed by chlorine abstraction form 
complex 2, (b) Na[BAr4], C6H5F. 
 

CpRh(PR3)(C2H4) complexes (R = PMe3, PPh3) have been already employed in 

reactions with boranes.22 It has been proved that their photochemical reaction 

generates the unsaturated 16-electron fragment CpRh(PR3) which, in the 

presence of HBpin and B2pin2, can insert into the B-H and B-B bond to form the 

oxidative addition products. The crystal structure of the complex Rh(η5-

C5H5)(H)(Bpin)(PPh3) was determined and a residual B…H interaction found, 

confirming that a partial B-H oxidative addition took place.22 
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Scheme 3. Photochemical reaction of CpRh(PR3) complexes in the presence of HBpin 
and B2pin2 to give the oxidative addition products. 
 

Considering the reactivity of the CpRh-phosphine complexes towards B-H 

bonds of boranes and the few examples of simple oxidative addition of amino-

boranes to a 16 electron Rh centre we thought it would be interesting to explore 

the photochemical reactions of CpRh(PR3)(C2H4) complexes (R = PMe3, PPh3, 

PhMe2) in the presence of H2B=N(iPr)2. 

 

 

N
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Scheme 4. Top: Structure of the CpRh(PR3)(C2H4) complexes investigated; Bottom: 
Structure of the amino-borane used in these studies.
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4.2 Results 
4.2.1 Photochemical reaction of CpRh(PMe3)(C2H4) in the presence of 
H2B=N(iPr)2 

An excess of H2B=N(iPr)2 (5 fold) was added to a hexane solution of 

CpRh(PMe3)(C2H4) (10 mg). The mixture did not react thermally, but its 

photochemical reaction showed the appearance of a new phosphorus 

containing product with a JRh-P of 175.8 Hz. After 3.5 hours of photolysis the 

reaction was complete, the reaction mixture was pumped down under vacuum 

and the solid redissolved in C6D6. NMR characterization showed a doublet in 

the 31P NMR spectrum at δ 12.2 as the major product (NMR yield > 98%) with a 

coupling constant consistent with a Rh(III) oxidation state.22 The 1H NMR 

spectrum exhibits a hydride resonance as a doublet of doublets at δ  - 14.7 (JH-

Rh = 35.9, JH-P = 42.0 Hz), a single resonance for the Cp at δ 5.27 and a broad 

peak at δ 7.49 which sharpens to a doublet upon decoupling from 11B (Figure 

6), suggesting a proton remaining on the aminoborane moiety as previously 

observed.21 11B NMR spectroscopy showed the presence of a typical metal 

boryl peak at δ 56 (Figure 7). On the basis of this evidence we assign the new 

species as CpRh(PMe3)H(BHN(iPr)2). LIFDI mass spectrometry confirmed the 

nature of the product. 

 

6.87.07.27.47.67.88.0 ppm 
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6.97.07.17.27.37.47.57.67.77.87.9 ppm 

 

Figure 6. Top: 1H NMR spectrum in C6D6 of complex CpRh(PMe3)H(BHN(iPr)2) 
showing the broad resonance for the B-H proton. Bottom: 1H{11B} NMR spectrum of 
the same complex showing how the resonance sharpened under 11B decoupling. 
 

 

51525354555657585960616263 ppm 

 

Figure 7. 11B NMR spectrum showing the broad resonance for the 
CpRh(PMe3)H(BHN(iPr)2) complex in C6D6. 
 

4.2.2 Photochemical reaction of CpRh(PPh3)(C2H4) in the presence of 
H2B=N(iPr)2 

Photochemical reaction of the CpRh(PPh3)(C2H4) complex, (5 mg) in the 

presence of a 5 fold excess H2BN(iPr)2 in hexane showed the same features as 

for the PMe3 analogue. The CpRh(PPh3)(C2H4) complex exhibited low solubility 

in hexane, however the reaction was complete after 5 hours of photolysis. A 

new product appeared in the 31P{1H} NMR spectrum at δ 63.0 with a JRhP of 

186.2 Hz (Figure 8). This peak was found to be linked to a hydride resonance in 

the 1H NMR spectrum by {31P-1H} 2D NMR spectroscopy. Selected NMR data 

are summarized in Table 1. 
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586062646668 ppm 

 

Figure 8. 31P{1H} NMR spectrum for complex CpRh(PPh3)H(HBN(iPr)2). 

4.2.3 Photochemical reaction of CpRh(PMe2Ph)(C2H4) in the presence of 
H2B=N(iPr)2 

Excess of H2BN(iPr)2 (5 fold) was added to a hexane solution of 

CpRh(PMe2Ph)(C2H4) (10 mg). The appearance of a new phosphorus 

containing product with a JRh-P of 180.9 Hz was observed by 31P{1H} NMR 

spectroscopy. After 6 hours of photolysis the reaction was complete, the 

volatiles pumped down by vacuum and the solid redissolved in C6D6. NMR 

characterization showed a doublet in the 31P{1H} NMR spectrum at δ 27.6 as 

major product (NMR yield > 90%) with a Rh(III) oxidation state coupling 

constant (JPRh = 181.6).22 Further NMR data are reported in Table 1. 11B NMR 

spectroscopy showed the presence of a typical metal boryl peak at δ 55.7 

(Figure 9). On the basis of these evidence we assign the new species as 

CpRh(PMe2Ph)H(HBN(iPr)2).  

 

464850525456586062646668 ppm 

 

Figure 9. 11B spectrum showing the broad resonance for the 
CpRh(PMe2Ph)H(BHN(iPr)2) complex in C6D6. 
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Table 1. Selected NMR data in C6D6 for Precursor and Photoproducts δ(J/Hz). 
 

 31P{1H} 1H 11B 1H{11B} LIFDI MS 
CpRh(PMe3) 

(C2H4) 
4.4, d,  
JPRh = 
201 

5.09, s, Cp - - - 

CpRh(PPh3) 
(C2H4) 

59.5, d, 
JPRh = 
210 

5.06, s, Cp - - - 

CpRh(PMe2Ph)(
C2H4) 

21.0, d, 
JPRh = 
204 

5.11, s, Cp    

CpRh(PMe3)H 
(BHN(iPr)2) 12.2, d,  

JPRh = 
176 

- 14.7,dd,  
JH-Rh = 35.9, 
JH-P = 45.0, 

RhH 
5.27, s, Cp 

55.9, br 
7.5,d, 
 JH-P = 
22.9 

357.148 
Exp 

357.127 

CpRh(PPh3)H 
(BHN(iPr)2) 63.0, d,  

JPRh = 
186 

- 14.0,dd,  
JH-Rh = 33.4, 
JH-P = 40.3, 

RhH 
5.30, s, Cp 

56.0, br  
543.176 

Exp 
543.174 

CpRh(PMe2Ph)H
(BHN(iPr)2) 27.6, d,  

JPRh = 
182 

- 14.4,dd,  
JH-Rh = 35.1, 
JH-P = 40.9, 

RhH 
5.26, s, Cp 

55.7, br 
7.5,d,  
JH-P = 
21.4 

419.14 
Exp 

419.14 
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4.3 Discussion 

The photochemical reaction of the complexes CpRh(PR3)(C2H4), (R = PMe3, 

PPh3, PMe2Ph) forms the unsaturated fragment CpRh(PR3) as previously 

observed.22 The sixteen electron complex CpRh(PR3) has been demonstrated 

to insert into the B-H bond of the diisopropyl-aminoborane by these preliminary 

experiments, to afford cleanly the oxidative addition product (Scheme 5), 

formed with a high yield (>90%). The sharp signals observed for the hydride 

resonances suggest oxidative addition rather than σ-coordination.18 1H{11B} 

NMR spectroscopy showed the presence of the B-H proton at low field (δ  7.50) 

in agreement with what was observed by Aldridge et al.21 This resonance was 

not found for the CpRh(PPh3)H(HBN(iPr)2) probably because it overlaps with 

the phenyl protons of the phosphine ligand. The shape of the 11B resonance for 

the PMe3 complex shows coupling to 1H (JBH = 135 Hz), the same coupling 

constant is observed in the 1H NMR spectrum on the resonance at 7.50 ppm. 

The capability of rhodium to activate B-H bonds of boranes has been 

demonstrated frequently, but we are not aware of reported oxidative addition of 

the B-H bond of amino-borane at rhodium centres. The literature is rich in 

examples of σ-coordination of amino-borane 18 as well as Shimoi-type 

complexes of rhodium.17 Clearly electronics and sterics of the ligands play a 

role in the different coordination modes. Different metal centres also give 

different reactivity. Reaction of the [CpRu(PR3)2]
+ fragment (R = PPh3) with 

H2B=NCy2 afforded the mono(σ-BH) mode of amino-borane ligation.20 
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Scheme 5. Photochemical reaction of complexes CpRh(PR3)(C2H4) in the presence of 
amino-borane to form the oxidative addition products. 
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These studies are encouraging for a deeper investigation of the process. It 

would be interesting to characterize the complexes crystallographically to see if 

any B…H interaction is still present. Performing the reaction in the presence of 

[Ph3C][PF6] acting as hydride abstractor would show if the complexes evolve to 

the formation of the borylene analogues as observed by Aldridge and 

coworkers for the [Ir(PMe3)3]
+ system.21 An alternative route to the use of 

[Ph3C][PF6] to create a vacant site on the metal centre could be to convert the 

Rh-hydride species to a Rh-chloride complexes and use [Na][BAr4] [Ar = ArF = 

C6H3(CF3)2-3,5 or ArCl = C6H3Cl2-3,5] as chloride abstractor. The reaction of 

complex CpRh(PMe2Ph)H(HBN(iPr)2) in the presence of a stoichiometric 

amount of [Ph3C][PF6] in THF was attempted. The reaction was monitored by 

low temperature NMR spectroscopy (220 K to 260 K) and the appearance of a 

resonance at δ 10.8 as a singlet suggested the formation of a short lived 

species [CpRh(PMe2Ph)(HBN(iPr)2)]
+ (Figure 10). The chemical shift for the B-

H proton is similar to that previously observed for a C-H carbene proton of a 

analogue Rh complex which was found at δ 13.1.24 No new resonances were 

detected in the 11B NMR spectrum at low temperature. 

10.610.710.810.911.0 ppm 
Figure 10. 1H NMR spectrum at 240 K showing the low field peak for the cationic 
rhodium complex. 
 

Although very preliminary results, they show potential for optimization and 

further investigations of the process. Changing the alkyl groups of the amino-

borane could also be a possibility in order to assess how the reactivity will be 

influenced.  
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4.4 Photochemical reaction of CpRh(C2H4)2 in the presence of 2-
pyridine-N-methyldimethylsilazane 

Silazanes are of great interest for their use in materials chemistry, especially for 

the preparation of non-oxidizing silicon-based ceramic materials.25 Ru-catalyzed 

dehydrocoupling reactions of poly(N-methylsilazane) and poly(Si-

methylsilazane) have been demonstrated to increase the molecular weight 

significantly.26 The multicenter reactivity offered by these types of ligands is 

very interesting. Different coordination modes have been reported; 

lanthanocene coordinates through two or one agostic σ -Si-H interactions,27,28 

whilst the ruthenium centre has been proved to coordinate 1,1,3,3-

tetramethyldisilazane via two σ-Si-H bonds without N-coordination. The isolated 

Ru-complex exhibited secondary interactions between the hydrides and the 

silicon atoms (SISHA) which held together the structure in this unusual 

coordination mode.29 The coordination of 2-pyridine-N-methyldimethyldisilazane 

at Ru centers has also been investigated by Sabo-Etienne and coworkers. They 

found that N-coordination of the pyridine group at the metal centre was always 

favored and σ-coordination was not observed.30 

Perutz and coworkers explored the photochemical reaction of the complex 

Cp*Rh(C2H4)2 in the presence of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 

(CH2=CHSiMe2)2O, and its disilazane analogue (CH2=CHSiMe2)2-NH. The 

products were formed by coordination through the vinyl groups as for a diene 

and were found to undergo photoisomerization.31 More interestingly, complex 

CpRh(C2H4)2 reacted photochemically in neat HSiMe2OSiMe2OSiMe2H 

(hexamethyltrisiloxane) to afford the Rh(V) species 

CpRh(SiMe2OSiMe2OSiMe2H)2H2 and CpRh(κ2-Si,Si-(SiMe2OSiMe2OSiMe2))H2 

in a ratio 1:4.8 (Figure 11).32 
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Figure 11. Products formed from photochemical reaction of CpRh(C2H4)2 with 
HSiMe2OSiMe2H. 
 

In order to determine the reactivity of Si-N containing species towards Rh, we 

have investigated the reactions of the CpRh centres in the presence of 2-

pyridine-N-methyldimethylsilazane (Figure 12). The photochemistry of 

CpRh(PR3)(C2H4) complexes (R = PMe3, PPh3) in the presence of 2-pyridine-N-

methyldimethylsilazane has been explored. The reactions appeared not to be 

very selective for the formation of one product; however the same reaction was 

repeated using the bis-ethylene analogue CpRh(C2H4)2 and greater selectivity 

was achieved. 

 

 

 

Figure 12. Structure of the silazane used in this work. 

4.4.1 Results 

Photochemical reaction of CpRh(C2H4)2 (10 mg) in the presence of excess 2-

pyridine-N-methyldimethylsilazane (5 fold) in hexane led to the formation of new 

hydride resonances (Figure 13). After 6 hours of photolysis the reaction was at 

70% of conversion. The volatile components were removed and the crude 

material redissolved in C6D6. The major product displayed a hydride resonance 

at δ -14.9 as a doublet, (JHRh = 30.1 Hz), a new Cp resonance was also present 

in the 1H NMR spectrum at δ 5.05. {29Si-1H} 2D NMR spectroscopy showed the 
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hydride to be linked to a 29Si resonance which contained two inequivalent 

silicon moieties (Figure 14). This species was the only silicon-containing 

hydride; two minor hydrides were also detected and not identified (δ - 13.6, JRh-H 

31.5Hz and δ - 16.1, JRh-H 19.6 Hz). The impossibility of a total removal of the 

silazane under vacuum conditions obscured some of the resonances. The 

solution was therefore passed through an alumina flash-column in order to 

obtain complete NMR characterization. The hydride species decomposed after 

attempted purification by flash chromatography and no hydride resonances 

were found in the 1H NMR spectrum. 

 

-14 -15 -16 ppm 

Figure 13. 1H NMR spectrum in C6D6 showing the hydride region. The major doublet 
belongs to the silicon containing complex. 
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Figure 14. {1H-29Si} 2D NMR spectrum showing correlation between the hydride 
resonance and the 29Si signal. The 29Si signal is two resonances, confirming the 
presence of two inequivalent 29Si environments. 
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A solution of the reaction was left in a vial for crystallization after purification; 

crystals were found and were analyzed by X-ray diffraction. The resulting 

structure was found to be an octahedral rhodium tris-silazane complex where 

three silazane units are bound the metal centre through the silicon and the 

pyridyl – nitrogen (Figure 15). Refinement data were satisfactory as shown in 

Table 2.  

 

Figure 15. Crystal structure for the rhodium-tris-silazane complex; hydrogen atoms are 
omitted for clarity. Ellipsoids for the anisotropic displacement parameters are shown at 
the 50% level.  
 
Table 2. Crystallographic data and refinement data for the rhodium tris-silazane 
complex. 
 

Formula C24H39N6RhSi3 
M 598.79 

a/Å 16.1618(6)  
b/Å 9.5340(3)  
c/Å 18.5846(5) 

α/deg 90.00 
β/deg 100.828(3) 
γ/deg 90.00 
V/ Å3 6601.3(4) 
T/K 110(2) 

Space group P21/c 
Z 4 

µMo Kαmm-1 0.663 
Reflns meads 44756 
Reflns indep 9319 

Rint 0.0357 
Final R [I> 2σ(I)] R1 = 0.0293 
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 wR2 = 0.0664 
Final R (all data) R1 = 0.0374 

 wR2 = 0.0712 
 

Selected distances and angles are given in Table 3. The mean Rh-Si distance 

of 2.2707(4) Å is slightly shorter than distances found before for 

RuH{(SiMe2)N(κN-C5H4N)(SiMe2H)}3 (Ru-Si = 2.32 Å)30 as well as than those 

observed for the complex Tp`RhH(Et2SiH)(PMe3) reported in Chapter five 

where the Rh-Si distance was found to be 2.315(2) Å. The N-Rh-Si angles are 

also consistent with data obtained for the RuH{(SiMe2)N(κN-C5H4N)(SiMe2H)}3 

complex (N-Rh-Si = 80.32(6) Å). 

 

Table 3. Selected bond lengths and angles. 
 

Bond length / Å 

Rh1-N1 2.215(1) 

Rh1-N3 2.215(1) 

Rh1-N5 2.209(1) 

Rh1-Si1 2.2711(5) 

Rh1-Si2 2.2709(4) 

Rh1-Si3 2.2702(5) 

Angles / Deg 

N1-Rh1-Si1 82.57(4) 

N3-Rh1-Si2 82.27(4) 

N5-Rh1-Si3 82.21(4) 

 

The crystals were redissolved in C6D6 in order to obtain NMR data. The 1H 

NMR spectrum shows four different resonances for the pyridyl protons in a ratio 

1:1:1:1, a singlet for the methyl group bound to N at δ 2.6 and two resonances 

for the diastereotopic methyl groups on the silicon atom at δ 0.7 and δ 0. The 
29Si resonance was found to be at δ 53.6 by {29Si-1H} 2D NMR spectroscopy. 

The complex was further characterized by 13C NMR spectroscopy and LIFDI 

mass-spectrometry. 
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Figure 16. 1H NMR spectrum for the rhodium-tris silazane complex in C6D6. 
 

The tris-silazane rhodium compound was probably formed by decomposition of 

the silicon containing product upon interaction with alumina (Scheme 6). Its 

formation was not observed under photochemical or thermal conditions, but it 

was always found in solution after attempted column purification. 

 

 

 

Scheme 6. Proposed decomposition mechanism of the silicon containing rhodium 
complex leading to the formation of the Rh tris-silazane complex. 
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A deeper investigation of the reaction mechanism is needed in order to 

understand better the reactivity and fully characterize the intermediates. Low 

temperature photolysis could be employed in order to control better the product 

distribution for the reactions of the Rh(PR3) complexes in the presence of the 

silazane and improve the selectivity in Si-H activation. 

4.5 Summary 

Photochemical oxidative addition of the B-H bond of the aminoborane 

H2BN(iPr)2 has been proved to take place at CpRh(PR3) fragments, (PR3 = 

PMe3, PMe2Ph, PPh3) to afford the CpRh(PR3)H(HBN(iPr)2) complexes. The 

complexes were fully characterized by NMR spectroscopy and mass 

spectrometry. Photochemical reaction of CpRh(C2H4)2 with 2-pyridine-N-

methyldimethylsilazane, followed by column purification of the product yielded a 

cyclometallated Rh(III) complex that was characterized crystallographically. 
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4.6 Experimental 
4.6.1 General procedures 

All operations were performed under an argon atmosphere, either on a high-

vacuum line (10-4 mbar), standard Schlenk (10-2 mbar) lines or in a glovebox. 

Solvents for general use (hexane) were of AR grade, dried by distillation over 

sodium and stored under Ar in ampoules fitted with a Young’s PTFE stopcock. 

Deuterated solvents were dried by stirring over potassium and distilled under 

high vacuum into small ampoules with potassium mirror. [CpRh(PMe3)(C2H4)],
33 

[CpRh(PPh3)(C2H4)]
34 and [CpRh(PMe3)(C2H4)]

35 complexes were synthesized 

by literature procedures, but replacing TlCp by LiCp. [CpRh(PMe2Ph)(C2H4)] 

was synthesized following literature preparative33 by my colleague Marius 

Câmpian. H2B-N(iPr)2 and SiH(Me2)-N(Me)(C5H4N) were supplied by the Sabo-

Etienne group in Toulouse and dried over molecular sieves. Photochemical 

reactions at room temperature were performed in pyrex NMR tubes fitted with 

Young’s PTFE stopcocks by using a Philips 125 W medium-pressure mercury 

vapor lamp with a water filter (5 cm).  

4.6.2 Mass spectra  

LIFDI mass spectra were measured on a Waters Micromass GCT Premier 

orthogonal time-of-flight instrument set to one scan per second with resolution 

power of 6000 FWHM and equipped with a LIFDI probe from LINDEN GmbH. 

The design is very similar to that described by Gross et al.36 Toluene was used 

for tuning the instrument. The polyethylene glycol probe was kept at ambient 

temperature with the emitter potential at 12 kV. Activated tungsten wire LIFDI 

emitters (13 µm tungsten from LINDEN) were ramped manually up to 100 mA 

for the emitter heating current during the experiment. m/z values are quoted for 
11B, 103Rh and 28Si. m/z values are accurate to 0.01 Da 
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4.6.3 X-ray crystallography 

Diffraction data were collected at 110 K on an Agilent SuperNova diffractometer 

with MoKα radiation (λ = 0.71073Å). Data collection, unit cell determination and 

frame integration were carried out with “CrysalisPro”. Absorption corrections 

were applied using crystal face-indexing and the ABSPACK absorption 

correction software within CrysalisPro. Structures were solved and refined using 

Olex237 implementing SHELX algorithms. Structures were solved by either 

Patterson or direct methods using SHELXS-97 and refined by full-matrix least 

squares using SHELXL-97. All non-hydrogen atoms were refined 

anisotropically. Carbon-bound hydrogen atoms were placed at calculated 

positions and refined using a “riding model”. Hydrogen atoms bound to rhodium 

and silicon in were found by difference map and refined. 

4.6.4 NMR spectroscopy  

All standard NMR spectra were recorded on a Bruker AMX500 spectrometer in 

tubes fitted with Young’s PTFE stopcocks. All 1H and 13C chemical shifts are 

reported in ppm (δ) relative to tetramethylsilane and referenced using the 

chemical shifts of residual protio solvent resonances (benzene, δ 7.15 for 1H 

and δ 128.06 for 13C). The 31P{1H} NMR spectra were referenced to external 

H3PO4.
 11B NMR spectra to were referenced external BF3·Et2O. 

4.6.5 NMR experiments 

The products were synthesized by irradiating ~ 10 mg of complex in hexane in 

the presence of 5 fold H2B-N(iPr)2. The reaction was taken to completion, the 

mixture pumped off by vacuum and the crude redissolved in C6D6 in order to 

obtain NMR characterization. 

4.6.6 CpRh(PMe3)H(BHN(iPr)2) 

1H NMR (C6D6, 300 K): δ  - 14.7 (JH-Rh = 35.9, JH-P = 42.01, RhH), 1.1 (d, 9H, 

2JPH = 10.1 Hz, P(CH3)3), 1.2 (d, 6 H, JH-H 5 Hz, iPrCH3), 1.3 (d, 6.0 H, JH-H 6 Hz, 
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iPrCH3), 3.3 (sept, 1H, JH-H  = 6.7 Hz, iPrCH), 5.2 (sept, JH-H  7 Hz, 1H, iPrCH), 

5.8 (s, 5H, Cp), 7.5 (b, 1 H, BH).  
1H{11B} NMR (C6D6): δ 7.5 (d, JPH = 22.9 Hz, BH).  
31P{1H} NMR (C6D6): δ 12.2 (d, JRhP = 175.8 Hz).  

11B NMR (C6D6): δ 55.9 (b, Rh-B).  
13C NMR (C6D6): δ 22.9 (dd, JPC = 32.5, JRhC = 1.8 Hz, PMe3), 21.9, 23.7 (CH3 

of iPr), 44.8, 55.6, (CH of iPr), 87.0 (dd, JC-P = JRhP = 2.7 Hz, Cp). 

Mass Spectra (LIFDI, m/z): 357.148 (100%, M+), exp 357.127, calcd for 

C14H30PNBRh.  

4.6.7 CpRh(PPh3)H(BHN(iPr)2) 

1H NMR (C6D6, 300 K): δ - 14.0 (JH-Rh = 33.4, JH-P = 40.3, RhH), 1.1 (d, 6H, JHH = 

6.7 Hz, iPrCH3), 1.2 (d, 6 H, JH-H = 6.0 Hz, iPrCH3), 3.1 (sept, 1 H, JH-H  = 6.7 Hz, 

iPrCH), 5.2 (sept, 1 H, JH-H  = 6.7 Hz, iPrCH), 5.3 (s, 5 H, Cp), 7.0 (m, 9 H, Ph), 

7.7 (m, 6 H, Ph), the resonance for the B-H proton overlaps with the phenyl 

peaks, even upon 11B decoupling was not found. 
31P{1H} NMR (C6D6): δ 63 (d, JRhP = 186.2 Hz).  

11B NMR (C6D6): δ 56.0 (br, Rh-B).  
13C NMR (C6D6): 21.8, 23.7 (s, CH3 of iPr), 44.9, 55.8, (s, CH of iPr), 88.6 (dd, 

JC-P = JRhP = 2.3 Hz, Cp), 134.2 (d, JPC = 11.1 Hz, o-Ph), 138.5 (s, m-Ph), 138.9 

(s, p-Ph).  

Mass Spectra (LIFDI, m/z): 543.176 (100%, M+), exp 543.174, calcd for 

C29H36PNBRh. 

4.6.8 CpRh(PMe2Ph)H(BHN(iPr)2) 

1H NMR (C6D6, 300 K): δ  - 14.4 (JH-Rh = 35.1, JH-P = 40.9, RhH), 1.1 (d, 6 H, JH-

H 7.0 Hz, iPrCH3), 1.2 (d, 6 H, JH-H 6.4 Hz, iPrCH3), 1.4 (d, 6 H, JPH = 9.3 Hz, 

P(CH3)2), 3.2 (sept, 1 H, JH-H  = 6.7 Hz, iPrCH), 5.2 (sept, 1 H, JH-H  = 6.7 Hz, 

iPrCH), 5.3 (s, 5H, Cp), 7.1 (m, 3 H, Ph), 7.6 (m, 2 H, Ph), 7.5 (b, 1H, BH). 
1H{11B} NMR (C6D6): δ 7.5 (d, JPH = 21.4 Hz, BH).  
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31P{1H} NMR (C6D6): δ 27.6, (d, JRhP = 181.6 Hz).  

11B NMR (C6D6): δ 55.7 (b, Rh-B).  

13C NMR (C6D6): δ 18.1 (d, JPC = 70 Hz, PMe2), 21.9, 27.4 (CH3 of iPr), 44.9, 

55.7, (CH of iPr), 87.5 (dd, JC-P = JRhP = 2.5 Hz, Cp), 130.1 (d, JPC = 9.7 Hz, o-

Ph), 131.3 (d, JPC = 11.4 Hz, m-Ph).  

Mass Spectra (LIFDI, m/z): 419.14 (100%, M+), exp 419.14, calcd for 

C19H32PNBRh. 

4.6.9 CpRh((SiMe2)N(κκκκN-C5H4N))3 

1H NMR (C6D6, 300 K): δ  0 (s, 3 H, SiCH3), 0.7 (s, 3 H, SiCH3), 2.6 (s, 3 H, 

NCH3), 5.9 (d, 1 H, JHH = 6.2 Hz, Py), 6.1 (d, 1 H, JH-H  = 8.8 Hz, Py), 7.0 (m, 1 

H, Py), 7.5 (m, 1 H, Py). 
29Si NMR (C6D6): δ 53.6. 
13C NMR (C6D6): δ 3.2 (s, SiMe), 6.4 (d, SiMe), 31.9, (s, NMe), 107.3, 111.3, 

137.3, 148.0 (s, C-Py), 164.3 (s, qC-Py).  

Mass Spectra (LIFDI, m/z): 598.17 (100%, M+), exp 598.16, calcd for 

C24H39PN6Si3Rh. 
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5 C-F, B-H, and Si-H activation at Tp'Rh complexes 
5.1 Introduction 

Tris(pyrazolyl)borate - metal complexes have been extensively studied since 

the advent of Tp ligands in organometallic chemistry in 1970.1 The chemistry of 

group 9 tris(pyrazolyl)borate complexes has been reviewed in detail presenting 

these complexes as good activators of C-H bonds either photochemically or 

thermally.2 This Chapter will be focused on the reactivity of Tp`Rh(PMe3)H2 and 

Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) complexes shown in Scheme 1 

where Tp` = tris(2,4 – dimethylpyrazolyl) borate. 

 
 
 
 
 
 
 
 
 
 
 
Scheme 1. Structures of the Tp`Rh complexes investigated. 
 
Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) is a well known complex; 

synthesis and photoactive properties of the complex were reported for the first 

time by Jones and coworkers in 1992.3 The photochemistry of the complex was 

further investigated in the presence of a wide variety of ligands looking at 

selectivity towards C-H activation (Scheme 2). The complex showed preference 

towards primary C-H bonds of alkanes over secondary. Aromatic and benzylic 

C-H activation were also both achieved, with the aromatic C-H activated 

product being the thermodynamic products. Aromatic C-H activation was 

established to be preferred to the aliphatic one, even though aliphatic C-H 

bonds are weaker.  

The stronger Rh-C bond formed in activation of aromatic C-H bonds was given 

as the reason for aromatic C-H oxidative addition over the aliphatic.4 
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Scheme 2. C-H activation achieved in photochemical reactions of complex 
Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) with different aromatic and aliphatic 
hydrocarbons. 
 

Comparison with the previously studied unsaturated fragments Cp*Rh(PMe3) 

and Cp*Ir(PMe3) highlighted a similar reactivity towards C-H bonds, suggesting 

that selectivity is not strongly influenced by the ligand-type or the nature of the 

metal centre. The combination between kinetic selectivity and reductive 

elimination allowed the authors to determine the thermodynamic barriers for the 

activation of different C-H bonds.4 A similar investigation was conducted for 

reactions of the same unsaturated fragment Tp`Rh(CNneopentyl) in the 

presence of vinylic and allylic C-H bonds; the trend in Rh-C bond strength was 

found to follow the one previously determined for hydrocarbons (Scheme 3),5 

but with a steeper gradient. In other words, although M-C bonds are weaker 

than H-C bonds, they strengthen more rapidly as the substituent changes. 
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Scheme 3. Trend for Rh-C bond strengths for the activation of aliphatic, aromatic 
vinylic and allylic C-H bonds. 
 

The majority of the metal-hydrides formed in reactions of complex 

Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) in the presence of vinyls and 

allyls were observed to be thermally unstable and rearrange to the η2-olefin 

analogues. Increasing the steric hindrance of the alkene afforded stable Rh-

allyl-hydrides.5 

The behavior of the same complex in the presence of mono-chloroalkanes 

showed that C-H activation of the terminal methyl group was the only observed 

product, no evidence of C-Cl oxidative addition was detected (Scheme 4).6  

 

 

Scheme 4. Photochemical reaction of complex Tp`Rh(CNneopentyl)(η2-PhN=C=N-
neopentyl) in the presence of chloroalkanes. 
 

Further experiments highlighted also a slight preference for the unsaturated 

fragment Tp`LRh to coordinate in the first place to secondary C-H bonds to form 

a σ-alkane complex. The selectivity for C-H oxidative addition of primary 

carbons previously observed was justified proposing a migration step from a 

secondary σ-alkane complex to a primary one (Scheme 5). 
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Scheme 5. Migration from a secondary σ-alkane complex to a primary one to favor the 
activation of primary C-H bonds in chloroalkanes.  
 

More recently the complex Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) was 

investigated in the presence of partially fluorinated arenes in order to assess 

selectivity between C-H and C-F activation (Scheme 6). The results were also 

used to determine the thermodynamics of the process. A wide range of 

fluoroarenes were tested and a variety of complexes of the type 

[Tp′Rh(CNneopentyl)(arylF)H] were isolated.7 The unsaturated fragment 

[Tp′Rh(CNneopentyl)], formed after photochemical loss of the carbodiimide 

ligand, showed selectivity towards the activation of the C-H bond and the 

results confirmed experimentally the theory of the ortho fluorine effect 

previously proposed by Perutz and Eisenstein.8,9 Thermodynamic selectivity 

was found to be controlled by the presence of ortho fluorines: all the 

compounds formed converted thermally to the C-H activated product with the 

maximum number of ortho fluorines, even when more than one isomer was 

kinetically formed. No evidence of C-F activation was found for reactions of the 

complex in neat fluorinated arenes. 

The tris(pyrazolyl)borate dihydride rhodium complex Tp`Rh(PMe3)H2 is 

“younger” than the carbodiimide analogue. It was first synthesised by 

hydrogenation of the ethylene precursor10 and its photochemistry was explored 

in the presence of C6H6 to afford the C-H activated product.11 

A direct alternative route for the synthesis of the complex was proposed by 

Jones and co-workers and reported in 2009.12 They also showed the capability 

of the fragment Tp`Rh(PMe3), formed after losing H2 under photochemical 
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conditions, to activate the C-C bond of biphenylene and to be an active catalyst 

in the hydrogenation of the latter to form the biphenyl product. 

 

 

 

 

Scheme 6. Top: Partially fluorinated arenes investigated. Bottom: Reactions of 
complex Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) in the presence of partially 
fluorinated arenes. 
 

Additionally, Jones` work looked at the trend in C6D6 reductive elimination of 

different Tp`Rh fragments and compared it with the Cp* ligand previously 

explored. The authors showed how both electronic and steric features of the 

ligands around the metal centre play a fundamental role in C6H6 reductive 

elimination which was established to be 250 times slower for the Tp` complex 

than the Cp* complex (Scheme 7). This was explained on the basis of a 

different steric demand of the two substituents which are electronically very 

similar.12 
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Scheme 7. Trend for reductive elimination of C6H6 between different Tp`Rh complexes 
and comparison with the Cp* previously observed. In brackets are relative rates at 100º 
C. 
 

The complex was also tested in photochemical reactions with partially 

fluorinated arenes (Figure 1); the authors isolated and characterised a number 

of Tp`Rh(PMe3)(H)(ArF) where C-H activation took place preferentially where 

the C-H bond had fluorines in ortho position (Scheme 8).13 

 

 

 

Figure 1. Partially fluoroarenes investigated in photochemical reactions of the complex 
Tp`Rh(PMe3)H2. 
 

 

Scheme 8. Photochemical reaction of complex Tp`Rh(PMe3)H2 in neat fluoroarenes to 
form the Tp`Rh(PMe3)(ArF)(H) products. 
 

The determination of the kinetics of reductive elimination for the fluoroarenes in 

C6H6 was attempted, but they were complicated by the formation of the 



Chapter 5: CF, BH, SiH activation at Tp`Rh complexes 

 113 

Tp`Rh(PMe3)2 complex under thermal conditions. Therefore the 

Tp`Rh(PMe2Ph)H2 complex was synthesized and used for this purpose, the 

“ortho fluorine effect theory” was again proved experimentally through 

combination of results from kinetics of reductive elimination and selectivity. 

Similarly to what previously observed in reaction of the Tp`Rh(CNneopentyl)(η2-

PhN=C=N-neopentyl) complex, no C-F activation was observed for any of the 

fluoroarenes investigated.  

Activation of C-H and C-CN bonds was also recently reported using the same 

Tp`Rh(PMe3) fragment. The complex was found to undergo photochemical C-H 

activation of CH3CN in first place, to form the kinetic product 

Tp`Rh(PMe3)(CH2CN)H, conversion to the thermodynamic product was then 

achieved by heating the reaction mixture at 100˚C. This afforded the 

Tp`Rh(PMe3)(CH3)(CN) complex (Scheme 9). 

 

 

 

Scheme 9. Activation of C-H and C-CN bonds in reaction of complex 
Tp`Rh(PMe3)ArFH with CH3CN. 
 

The extensive work done with these complexes focused mainly on aliphatic and 

aromatic C-H activation, but almost nothing is known about their reactivity 

towards different types of bonds. No reactivity towards C-F bonds was 
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observed by Jones et al. in reactions with fluorinated arenes, and the fragment 

Tp`Rh(PMe3) appeared not to react in the presence of Et3SiH.13  

Our work shows the capability of these complexes to react with different bonds 

than C-Hs and an unexpected selectivity when a C-H bond is present within the 

ligand is observed. The photochemistry of both complexes was explored in the 

presence of C5F5N, HBpin and silanes (Scheme 10), intramolecular and 

intermolecular competition reactions were also carried out to see the selectivity 

towards one bond with respect to the other.  

 

 
Scheme 10. Structures of the substrates investigated. 

SiH
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5.2 Results 
5.2.1 Starting material Tp`Rh(PMe3)H2 

The starting complex Tp`Rh(PMe3)H2 was provided by the Jones group in 

Rochester. It was synthesised following literature procedures.12 The complex is 

a Rh(III) species, that displays a doublet  in the 31P{1H} NMR spectrum at δ 3.04 

with a JPRh of 138 Hz (Figure 2). The 1H NMR exhibits a hydride resonance at δ 

-17.09 (dd, JRhH = 21 Hz, JPH = 36 Hz), a doublet for the PMe3 at δ 1.21, four 

resonances for the CH3 groups of the Tp` ligand in a 1:2:2:1 ratio and two 

signals for the CHs of the Tp` in a 2:1 ratio at δ 5.52 and 5.77 (Figure 3). 

6 5 4 3 2 1 0 ppm 
Figure 2. 31P{1H} NMR spectrum in C6D6 for the Tp`Rh(PMe3)H2 starting material. 
 

1.01.52.02.53.03.54.04.55.05.56.0 ppm

-16.5 -17.0 -17.5 ppm

 
Figure 3. 1H NMR spectrum in C6D6 for the Tp`Rh(PMe3)H2 starting material. The inset 
shows the hydride resonance. 
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5.2.2 Photochemical reaction of Tp`Rh(PMe3)H2 in the presence of C5F5N 

The irradiation of Tp`Rh(PMe3)H2 in neat pentafluoropyridine (λ > 290 nm, 5 h, 

room temperature) generates one product cleanly, leading to an NMR yield for  

the new complex > 80%. This product was purified by removing the volatiles 

and washing the solid with hexane; the white solid was redissolved in C6D6 and 

characterised by multinuclear NMR spectroscopy and LIFDI mass 

spectrometry. The 31P{1H} NMR spectrum shows a resonance at δ 6.67, as a 

doublet of doublets (JRhP = 129, JPF = 17 Hz) (Figure 4). The value of JRhP 

indicates a Rh(III) oxidation state14 and the values of JFP are similar to those for 

Cp*Rh(C6F5)F(PMe3) complexes.15  

 

4.55.05.56.06.57.07.58.08.59.0 ppm 
Figure 4. 31P{1H} NMR spectrum of the complex Tp`Rh(C5F4N)(PMe3)F.  
 

A typical Rh-F broad resonance was found in the metal-fluoride region of the 
19F NMR spectrum at  δ - 429 consistent with a Rh-F bond. Low temperature 19F 

NMR sharpened the resonance enabling JRhF to be measured as 182 Hz. The 

product was assigned as the Tp`Rh(C5F4N)(PMe3)F complex. The presence of 

a second isomer was also detected by low temperature 19F NMR; the weak and 

broad resonance at  δ - 455.4, not visible at room temperature, sharpened upon 

cooling (Figure 5). The two species were assigned as two ortho conformers in a 

10:1 ratio. The assignment was possible by analysing the aromatic part of the 
19F NMR spectrum where two sets of four inequivalent fluorines were detected 
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in a 10:1 ratio. The presence of only two fluorine resonances close to N 

discarded the possibility of having the ortho and meta isomers. The meta 

isomers would have displayed two peaks for fluorine atoms adiacent to 

nitrogen, for a total of three resonances for the two regioisomers. Instead a set 

of similar chemical shifts was observed (δ -85.9/84.6; 133.0/129.9; 148.3/146.6; 

169.0/168.5) suggesting the two species to be rotamers. The chirality at 

rhodium was demonstrated by the appearance of three singlets for the Tp`- 

methine groups and six resonances for the inequivalent Tp`-methyls. The 

complexes were fully characterized by NMR spectroscopy and LIFDI mass-

spectrometry. 

 

-425 -430 -435 -440 -445 -450 -455 ppm 
Figure 5. Low temperature 19F NMR spectrum showing the presence of the two ortho 
conformers. 
 

The reaction was scaled up in order to isolate the major species; crystals were 

obtained from a hexane solution and the structure determined to be the 

bifluoride analogue Tp`Rh(FHF)(2-C5NF4)(PMe3), where a molecule of HF is 

coordinated to the fluoride atom (Figure 6). More details are given below. 
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Figure 6. Crystal structure of the complex Tp`Rh(FHF)(C5NF4)(PMe3), hydrogen atoms 
are omitted for clarity apart from the bifluoride. Ellipsoids for the anisotropic 
displacement parameters are shown at the 50% level.  
 

Spectroscopic characterization of the bifluoride complex 

Tp`Rh(FHF)(C5NF4)(PMe3) was also carried out. NMR analysis showed the 

typical features for this kind of complexes: a broad low-field resonance (δ 10.7) 

found in the 1H NMR spectrum which resolves to a doublet on exchanging the 

solvent from C6D6 (Figure 7) to C7D8 (Figure 8) due possibly to higher dryness 

of toluene. This resonance is assigned to the hydrogen of the FHF ligand and 

exhibits a large coupling (JHF = 447 Hz) associated with the distal fluorine of the 

bifluoride. The 31P{1H} NMR spectrum shows a doublet of doublets at δ 6.70 

with very similar coupling constants to those observed for the fluoride analogue.  
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9.510.010.511.011.512.012.5 ppm 

 

Figure 7. 1H NMR spectrum in C6D6 showing the broad low field peak belonging to the 
bifluoride proton. 
 

9.510.010.511.011.512.012.5 ppm 

 

Figure 8. 1H NMR spectrum in C7D8 showing a doublet at low field belonging to the 
bifluoride proton. 
 

The 19F NMR spectrum at 205 K shows two resonances assigned to the 

proximal fluorine (directly bonded to Rh) and for the distal one respectively 

(Figure 9). The first one resonates as a broad peak at δ 398.9 while the second 

one appears as a doublet at δ -178.7, showing the same large coupling 

constant observed in the 1H NMR spectrum (JHF = 447 Hz). All the NMR data for 

the bifluoride complex are consistent with what previously observed for the 

bifluoride analogues of Ru(PP)2.
16 

The crystal structure for complex Tp`Rh(FHF)(2-C5F4N)(PMe3) was determined 

as shown in Figure 6. Refinement data were satisfactory (Table 1). 
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Table 1. Refinement data for complex Tp`Rh(FHF)(C5NF4)(PMe3). 
 

Formula C23H32BF6N7PRh 
M 834.31 

a/Å 34.358(13) 
b/Å 8.538(3) 
c/Å 22.805(9) 

α/deg 90.00 
β/deg 99.322(4) 
γ/deg 90.00 
V/ Å3 6601.3(4) 
T/K 110(2) 

Space group C2/c 
Z 8 

µMo Kα/mm-1 0.663 
Reflns meas 16457 
Reflns indep 9556 

Rint 0.0252 
Final R [I> 2σ(I)] R1 = 0.0356 

 wR2 = 0.0785 
Final R (all data) R1 = 0.0458 

 wR2 = 0.0831 
 

The structure shows the presence of the bifluoride, FHF, coordinated to the 

rhodium; the acidic proton was not found by difference map and was located 

taking into account the known HF bond distance.17 Selected bond lengths and 

angles are summarized in Table 2. 
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Table 2. Selected bond lengths and angles for complex Tp`Rh(FHF)(2-C5NF4)(PMe3). 

 

Bond length / Å 

F1-Rh1 2.0107(12) 

C1-Rh1 2.005(2) 

N2-Rh1 2.0452(17) 

N4-Rh1 2.1138(16) 

N6-Rh1 2.1869(17) 

P1-Rh1 2.2927(6) 

F1...F6 2.334(2) 

F1...H1A 1.441(1) 

Angles / Deg 

P1-Rh1-F1 89.35(4) 

N2-Rh1-C1 93.75(8) 

N4-Rh1-C1 92.55(8) 

N6-Rh1-C1 172.47(8) 

Rh1-F1-F6 139.28(8) 

 

The Rh-F bond length (2.0107(12) Å) is considerably shorter than the one 

observed for the [Rh(FHF)(COD)(PPh3)] complex (2.083(2) Å). It is actually 

closer to the bond length observed for the fluoride analogue (2.0214(12) Å).18 

This is probably reflected in a very weak hydrogen bonding between HF and the 

rhodium fluoride complex, as also confirmed by the fact that HF gets 

uncoordinated when the complex is left in solution for few days. The Rh-F…F 

angle was found to be 139.28(8) and it is similar to the one reported for the 

trans-[(Ph3P)2Rh(Ph2PF)(FHF)].19 The F1…F6 distance is also consistent with 

previous observation; a distance of 2.329 Å was given for the trans-

[(Ph3P)2Rh(Ph2PF)(FHF)] complex. 
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Table 3. Selected torsional angles. 
 

Torsional angles / Deg 

C5F4N-Rh1N2P1 81.35 

C5F4N-Rh1N4P1 51.79 

C5F4N-Rh1N6P1 42.78 

 

A slightly distorted octahedral geometry is observed around the Rh centre, the 

plane of the fluoropyridine ring bisects the trispyrazolylborate group almost 

perfectly. A list of torsional angles is reported (Table 3). A short contact of 2.575 

Å was found in the molecule between the pyridyl nitrogen and the HF proton. A 

molecule of pentafluoropyridine was found as solvent of crystallization.  

 

-396 -397 -398 -399 -400 -401 ppm 

 

-176 -177 -178 -179 -180 ppm 
Figure 9. 19F NMR spectrum of complex Tp`Rh(FHF)(C5NF4)(PMe3) showing: top, 
broad resonance assigned to the proximal fluorine of the bifluoride; bottom: doublet 
assigned to the distal fluorine of the bifluoride. 
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5.2.3 Photochemical reaction of complex Tp`Rh(PMe3)H2 in the presence 
of 2,3,5,6 - tetrafluoropyridine 

The photochemical reaction of complex Tp`Rh(PMe3)H2 in neat 2,3,5,6- 

tetrafluoropyridine was investigated in order to explore intramolecular 

competition between C-H and C-F activation and to confirm the selectivity for C-

H activation previously observed in partially fluorinated benzenes.20 After 5 

hours of photolysis the reaction reached 30% conversion; the volatiles were 

removed and the solid redissolved in C6D6. The 31P{1H} NMR spectrum showed 

the appearance of two new products, both resonating as doublets of doublets at 

δ - 2.33, (dd, JRhP = 127.3, JPF = 19.7 Hz) and 4.6, (dd, JRhP = 132.1, JPF = 17.5 

Hz) respectively, suggesting coupling to 103Rh and to 19F (Figure 10). The 1H 

NMR spectrum shows the presence of a new hydride resonance at δ - 15.5 

(ddd, JRhH = 14.3, JFH = 19.1 Hz, JPH = 24.6 Hz) (Figure 11, top), which was 

found linked by {1H -31P} HMQC NMR to the doublet of doublet at δ - 2.33 in the 
31P{1H} NMR spectrum. The coupling to 31P was assigned upon running 1H{31P} 

NMR spectroscopy. This species was assigned as Tp`Rh(H)(C5F4N)(PMe3). 

The 19F NMR spectrum shows a characteristic rhodium-fluoride peak at δ - 

430.1, it appears as a doublet with a JFRh of 181.3 Hz (Figure 11, bottom). On 

the basis of these results, we assigned the second product to the C-F activated 

complex Tp`Rh(F)(C5F3NH)(PMe3). The aromatic proton was also detected at δ 

6.2. The two products were found to be in a 1:4 ratio in favor of C-H activation, 

but to our surprise C-F activation also took place. This contrasts with the results 

in the presence of fluorinated arenes previously published, where no detection 

of C-F activation was mentioned.20 

 



Chapter 5: CF, BH, SiH activation at Tp`Rh complexes 

 124 

-5-4-3-2-17 6 5 4 3 2 1 0 ppm

4.
03

1.
00

C-F activated product
C-H activated product

Starting complex

 
Figure 10. 31P{1H} NMR spectrum for reaction of Tp`Rh(PMe3)H2 in the presence of 
C5F4HN after 5 hours of irradiation. 
 

 

-15.4 -15.5 -15.6 ppm 

 

-425 -430 -435 ppm 
Figure 11. Top: 1H NMR spectrum, hydride resonance for the complex 
Tp`Rh(C5F4N)(PMe3)H in C6D6. Bottom: 19F NMR spectrum, fluoride resonance for the 
complex Tp`Rh(C5F3NH)(PMe3)F in C6D6.  
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5.2.4 Photochemical reaction of Tp`Rh(PMe3)H2 in the presence of HBpin 

The irradiation of Tp`Rh(PMe3)H2 in neat HBpin (λ > 290 nm, 1 h, room 

temperature) generates cleanly one product, leading to an NMR yield for the 

new complex > 90%. This product was purified by removing the volatiles, 

washing the solid with hexane and passing it through an alumina column. The 

solid was redissolved in C6D6 and the characterization was done by multinuclear 

NMR spectroscopy, LIFDI mass spectrometry and X-ray crystallography. The 
31P{1H} spectrum shows a resonance at δ 5.2, as a doublet (JRhP = 145 Hz) 

(Figure 12). The value of JRhP indicates a Rh(III) oxidation state typical of Rh-

half-sandwich complexes.21 The 1H NMR spectrum reveals a hydride resonance 

at δ -16.8 as a doublet of doublets (JRh-H 25.5, JP-H 30.9 Hz) and finally the 11B 

NMR spectrum shows a broad peak at 39.2 typical of a rhodium boryl species 

(Figure 13).  

 

3.03.54.04.55.05.56.06.57.07.5 ppm 

 

Figure 12. 31P{1H} NMR spectrum for the complex Tp`RhH(Bpin)(PMe3) in C6D6. 
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26 28 30 32 34 36 38 40 42 44 46 48 ppm 

 

Figure 13. 11B NMR spectrum of the Tp`RhH(Bpin)(PMe3) complex in C6D6 showing 
the typical broad resonance for metal-boryl complexes. 
 
Finally the 13C NMR spectrum reveals the quaternary carbon of the Bpin moiety 

at δ 81.8, being upfield shifted from the free HBpin (δ  83.1). We therefore 

assign the new species as the Tp`RhH(Bpin)(PMe3) complex. The crystal 

structure was determined and it confirmed the identity of the product (Figure 

14). Refinement parameters are given below in Table 4. 

 

Table 4. Refinement and crystallographic data for complex Tp`RhH(Bpin)(PMe3). 
 

Formula C24H44B2N6O2PRh 
M 604.15 

a/Å 25.996(12) 
b/Å 10.660(2) 
c/Å 21.452(5) 

α/deg 90.00 
β/deg 101.455(3) 
γ/deg 90.00 
V/ Å3 5819.4(12) 
T/K 110(2) 

Space group C2/c 
Z 8 

µMo Kαmm-1 0.674 
Reflns meads 11082 
Reflns indep 5832 

Rint 0.0249 
Final R [I> 2σ(I)] R1 = 0.0307 

 wR2 = 0.0660 
Final R (all data) R1 = 0.0384 

 wR2 = 0.0699 
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Figure 14. Crystal structure for complex Tp`RhH(Bpin)(PMe3), hydrogen atoms are 
omitted for clarity except of the hydride. Ellipsoids for the anisotropic displacement 
parameters are shown at the 50% level.  
 

As can be seen from Figure 14, the structure is complicated by disorder in the 

borolane ring; the structure was modeled with one oxygen occupying two 

alternative positions. These oxygens found with 88% probability in one position 

and 12% in the other one. Consequently, also the quaternary carbon bonded to 

it and the methyl groups attached to the moiety are disordered, showing the 

same occupancy. Selected bond lengths and angles are reported in Table 5. 

 

 

Table 5. Selected bond length and angles for complex Tp`RhH(Bpin)(PMe3). 
 

Bond length/ Å 

B1-Rh1 2.028(3) 

P1-Rh1 2.2377(7) 

H1-Rh1 1.50(2) 

B...H 2.43(2) 

Rh-N1 2.297(2) 

Rh-N3 2.241(2) 

Rh-N5 2.124(2) 
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Angles / Deg 

B1-Rh1-H1 85.8(9) 

P1-Rh1-B1 86.78(8) 

 

The Rh-B distance was determined as 2.028(3) Å in agreement with the length 

previously observed for the complex [Rh-(η5-C5H5)(H)(Bpin)(PPh3)].
21 The 

hydride was located in the difference map and after refinement found at a 

distance Rh-H of 1.50(2) Å; the B…H separation was determined as 2.43(2) Å, 

considerably longer than what was found for the [Rh-(η5-C5H5)(H)(Bpin)(PPh3)]. 

This observation supports an oxidative addition to form a rhodium-boryl 

complex rather than η2-coordination. The B-Rh-H angle of 85.8(9) is also larger 

than that determined for the [Rh-(η5-C5H5)(H)(Bpin)(PPh3)] complex, where a 

residual B…H interaction was suggested.21  

The complex Tp`RhH(Bpin)(PMe3) does not reductively eliminate HBpin under 

mild conditions. It proved to be stable upon heating up to 140º C in benzene 

solution. Decomposition was detected on pushing the reaction at higher 

temperatures, but no formation of the rhodium–phenyl hydride was observed. 

 

5.2.5 Photochemical reaction of Tp’Rh(PMe3)H2 in the presence of silanes 

Complex Tp`Rh(PMe3)H2 was irradiated in different neat silanes (Et3SiH, 

Et2SiH2 and PhSiH3) at room temperature on an NMR scale. The most 

thoroughly characterized reaction was that of Tp`Rh(PMe3)H2 with Et2SiH2 to 

generate Tp`RhH(Et2SiH)(PMe3) with an NMR yield of 75%. The product 

exhibits a characteristic doublet of doublets in the 1H NMR spectrum (JHRh= 

20.8, JHP= 32.4) at  δ -17.9,  assigned to the hydride, and a doublet in the 
31P{1H} NMR spectrum at δ − 0.9 with a JPRh of 139.8 Hz. The {1H-29Si} 

correlation linked the hydride resonance to a 29Si resonance at δ 31.8, the ethyl 

protons also correlate to the same 29Si resonance (Figure 15). 
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Figure 15. {1H-29Si} 2D NMR spectrum showing correlation between the hydride 
resonance for the complex Tp`RhH(Et2SiH)(PMe3) and the 29Si signal. The ethyl 
protons are also linked to the 29Si resonance. The second hydride belongs to starting 
material left. 
 

Crystals of the complex were grown from hexane solution and the structure was 

confirmed as Tp`RhH(Et2SiH)(PMe3) (Figure 16). Selected bond lengths and 

angles are reported in Table 6. 

 

 

Table 6. Selected bond lengths and angles for complex Tp`RhH(Et2SiH)(PMe3). 
 

Bond length/ Å 

Si1-Rh1 2.315(1) 

P1-Rh1 2.2373(8) 

H1A-Rh1 1.52(3) 

Si...H1A 2.62(3) 

Si-H1B 1.53(3) 

Rh-N1 2.247(2) 

Rh-N3 2.299(3) 

Rh-N5 2.124(2) 
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Angles / Deg 

Si1-Rh1-H1A 83.4(2) 

P1-Rh1-Si1 89.89(3) 

 

 

Figure 16. Crystal structure for complex Tp`RhH(Et2SiH)(PMe3), hydrogen atoms are 
omitted for clarity apart from the RhH and SiH. Ellipsoids for the anisotropic 
displacement parameters are shown at the 50% level.  
 

The Rh-Si bond was found to be 2.315(2) Å, the hydride and the proton bound 

to the Si atom were located by difference map after refinement; the Rh-H1A 

bond length was determined as 1.52(3) Å and the Si…H1A distance as 2.62(3) 

Å. This value is considerably larger than what is expected for SISHA secondary 

interactions (secondary interaction between silicon and hydrogen atoms),22 

confirming that a complete oxidative addition took place. The values for the P-

Rh-H and the Si-Rh-H angles are 82.2(1)º and 83.4(2)º respectively, also 

confirming that no residual Si…H interaction is present.21 

Refinement indicators for the structure are listed in Table 7. They all converged 

satisfactorily. 
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Table 7. Refinement and crystallographic parameters for complex 
Tp`RhH(Et2SiH)(PMe3). 
 

Formula C22H43BN6SiPRh 
M 564.4 

a/Å 10.840(7) 
b/Å 11.533(9) 
c/Å 13.546(11) 

α/deg 65.602(8) 
β/deg 72.784(7) 
γ/deg 65.226(7) 
V/ Å3 1384.81(18) 
T/K 110(2) 

Space group P-1 
Z 2 

µMo Kα/mm-1 0.739 
Reflns meas 12496 
Reflns indep 5656 

Rint 0.0294 
Final R [I> 2σ(I)] R1 = 0.0329 

 wR2 = 0.0708 
Final R (all data) R1 = 0.0414 

 wR2 = 0.0764 
 

Photochemical reactions of complex Tp`Rh(H2)(PMe3) in the presence of other 

silanes led to the formation of the corresponding Tp`Rh(PMe3)H-silyl 

complexes, which exhibit similar spectroscopic features to those observed for 

the complex reported above. All the products show hydride in the 1H NMR 

spectrum which is correlated by {1H-29Si} 2D-NMR to a peak in the 29Si 

spectrum. A selection of NMR data for all the products are reported in Table 8. 

They all show very similar coupling constants as confirmation that the same 

type of products are formed. 
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Table 8. NMR Spectroscopic Data (solvent C6D6, δ,   (J/Hz)) for Products of 
Photoreaction of Tp`Rh(PMe3)H2 with Silanes. 
 

 Tp`RhH(Et2SiH)(PMe3) Tp`RhH(Et3Si)(PMe3) Tp`RhH(PhSiH2)(PMe3) 

1H 

hydride 

 δ -17.9 (dd) 
JHRh= 20.8 
JHP= 32.4 

 δ -18.1 (dd) 
JHRh= 19.7 
JHP= 30.9 

 δ -16.7 (dd) 
JHRh= 19.9 
JHP= 30.6 

31P{1H} δ − 0.9 (d) 
JPRh = 139.8 

δ  -3.4 (d) 
JPRh = 145.4 

δ  1.9 (d) 
JPRh = 130.9 

29Si δ 31.8 δ 31.6 δ -15.8 

 

 

Reactions with diethylsilane showed more selectivity towards the formation of 

the silyl hydride product than the triethyl and phenyl silanes where other minor 

species were observed in the 31P{1H} NMR spectrum that were not identified. 

The identity of all the rhodium-silyl products was also confirmed by LIFDI mass-

spectrometry. 

 

-5-4-3-2-13 2 1 0 ppm

Et2SiH2
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PhSiH3

 

 

-5-4-3-2-17 6 5 4 3 2 1 0 ppm

Et3SiH

 

 

Figure 17. 31P{1H} NMR spectra for the reactions of complex Tp`Rh(H2)(PMe3) with the 
different silanes. 
 

5.2.6 Starting material Tp`Rh(CNneopentyl)(ηηηη2-PhN=C=N-neopentyl) 

Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl), (neopentyl = CH2C(Me3) 

complex was provided by Jones group. It was prepared following reported 

procedures.3 As shown in Figure 18, the 1H NMR spectrum for this species is 

very rich. It exhibits the two singlets at high field for the neo-pentyl methyl 

groups in a ratio 1:1, the Tp` resonances consist of a set of six singlets for the 

CH3 groups and three for the CH ones indicating chirality at rhodium, and finally 

the CH2 protons of the neopentyl moiety resonate between δ 3.9 and 4.4. 
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Figure 18. 1H NMR spectrum of complex Tp`Rh(CNneopentyl)(η2-PhN=C=N-
neopentyl) in C6D6.The spectrum shows the presence of some impurities. 
 

5.2.7 Photochemical reaction of Tp`Rh(CNneopentyl)(ηηηη2-PhN=C=N-
neopentyl) in the presence of C5F5N 

The irradiation of Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl), in neat 

pentafluoropyridine (λ > 290 nm, 40 min, room temperature) generates three 

products detected by 19F NMR spectroscopy. These products were purified by 

removing the reaction mixture and washing it with hexane; the solid was 

redissolved in C6D6 and characterised by multinuclear NMR spectroscopy and 

LIFDI mass spectrometry. The appearance of three sets of three resonances 

between δ 5.3 and δ 5.8 for the Tp` methine hydrogens and three sets of six 

resonances between δ 1.5 and δ 2.8 for the Tp` methyl groups indicated 

chirality at rhodium. The 19F NMR spectrum showed three broad resonances at 

δ  - 417.8, - 435.0 and -457.5 in the Rh-fluoride region which sharpened upon 

cooling down to 220 K. They all resolved as doublets with a JFRh of about 148 

Hz. Distinction between conformational isomerism, observed for the PMe3 

analogue, or regioisomerism could not be achieved. The products were 

assigned as the three isomers of the complex Tp`Rh(CNneopentyl)(C5F4N)F in 

a 4.6:2:1 ratio (Figure 19). No evidence of HF coordination was detected by 1H 

NMR upon scaling up the reaction and furthermore the resonance for the 

(FHF)Rh(PMe3) complex did not resolve upon cooling, but all the three 
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resonances observed here sharpened at low temperature. Attempts at 

crystallisation failed, the complex tends to form a non-crystalline precipitate in 

different conditions and using different combinations of solvents. 
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Figure 19. Low temperature 19F NMR spectrum after photochemical reaction of 
complex Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) in the presence of C5F5N.  
 

5.2.8 Photochemical reaction of Tp`Rh(CNneopentyl)(ηηηη2-PhN=C=N-
neopentyl) in the presence of HBpin 

The irradiation of Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) in neat HBpin 

(λ > 290 nm, 40 min, room temperature) generates preferentially one product, 

leading to an NMR yield for the new complex > 90%. The new product was 

purified by removing the reaction mixture, washing it with hexane and passing it 

through an alumina column. The solid was redissolved in C6D6 and 

characterized by multinuclear NMR spectroscopy and LIFDI mass 

spectrometry. The 1H NMR spectrum reveals a hydride resonance at δ -14.2 as 

a doublet (JRh-H 25.7 Hz) (Figure 20), the 11B NMR spectrum shows a broad 

peak at 39.1 typical of a rhodium boryl species (Figure 21). A chiral Rh centre is 

also formed as confirmed by the three sets of methine resonances and six sets 

of methyl resonances for the Tp` ligand. 
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Figure 20. 1H NMR spectrum in C6D6 for the photochemical reaction of complex 
Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) in neat HBpin showing the hydride 
resonance arising from it. 
 

3234363840424446485052 ppm 

 

Figure 21. 11B NMR spectrum showing the broad resonance for the rhodium-boryl 
complex. 
 

The product was therefore assigned as Tp`Rh(CNneopentyl)(Bpin)(H). The {1H-
13C} correlation linked the methyl resonances of the borane ring on the 1H 

spectrum to the BOC quaternary carbon on the 13C NMR spectrum, to reinforce 

our proposal of oxidative addition of the HBpin to the Rh centre (Figure 22). 

Reductive elimination of HBpin was tested in C6H6 solution, the complex was 

found to be stable upon heating up to 140º C, a very strong Rh-B bond is 

therefore formed. 
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Figure 22. {1H-13C} 2D NMR spectrum in C6D6 showing correlation between the BOC 
quaternary carbon and the methyl groups on the borane ring. 
 

5.2.9 Photochemical reaction of Tp`Rh(CNneopentyl)(ηηηη2-PhN=C=N-
neopentyl) in the presence of silanes 

The photochemical reactions of complex Tp`Rh(CNneopentyl)(η2-PhN=C=N-

neopentyl) in the presence of neat silanes were less selective towards the 

activation of the Si-H bond than the Tp`Rh(PMe3)(H2). All the reactions were 

completed within about 30 min of photolysis. Evidence of Si-H activation was 

observed for Et2SiH2 and PhSiH3 generating products with a hydride resonance 

with a coupling JRhH of about 20 Hz. The {29Si-1H} 2D spectrum showed 

correlation between those hydrides and resonances in the 29Si NMR spectrum. 

The NMR yield was determined to be greater than 70%. The photochemical 

reaction in neat Et3SiH produced a second non silicon-linked containing product 

in a 1:1 ratio with the Si-H activated species, that prevented the full 

characterization. The formation of silane polymers or oligomers as by-products, 

made the full characterization of these complexes difficult; they were resistant 

both to high-vacuum pumping and to flash-chromatography. The identity of the 

rhodium silyl hydrides was also confirmed by LIFDI mass spectrometry. They 
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were assigned as Tp`Rh(CNneopentyl)H(Et2SiH2), 

Tp`Rh(CNneopentyl)H(PhSiH2) and Tp`Rh(CNneopentyl)H(Et3Si). Selected 

NMR data for the complexes are summarized in Table 9. 

 

Table 9. NMR spectroscopic data (solvent C6D6, δ,  (J/Hz)) for products of 
photoreaction of Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) with silanes. 
 

 Tp`Rh(CNneopentyl) 

H(Et2SiH2) 

Tp`Rh(CNneopentyl) 

H(PhSiH2) 

Tp`Rh(CNneopentyl) 

H(Et3Si) 
1H 

hydride 

 δ -14.9 (d) 
JHRh= 21.5 

 δ -14.1(d) 
JHRh= 19.7 

 

 δ -15.3 (d) 
JHRh= 21.7 

 
29Si δ 23.2 δ - 22.7 δ 32.8 

 

 

5.2.10 Competition reactions 

In order to investigate the selectivity of complex Tp’Rh(PMe3)H2 for the 

activation of C-F, B-H, and Si-H bonds against aromatic C-H bonds we 

conducted photochemical experiments in the presence of different volumes of 

two substrates simultaneously. The same ratio was observed during photolysis 

as well as at reaction completion. The results are summarised in Table 10. 

 

Table 10. Results of competition reactions, measured by integration of the 31P{1H} 
resonance. All measurements after 120 min irradiation. 
 

Substrates 

 C5F5N/C6H6 HBpin/C6H6 PhSiH3/C6H6 

Ratio substrates 1/1 1/1 1/1 

 0:1 1:3.5 1:1 

Ratio substrates  5/1  

  1:1  

Ratio substrates 40/1   

 5:1   
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Complex Tp’Rh(PMe3)H2 was irradiated in 50/50 volume of C6H6 and C5F5N, 

product formation was followed by 31P{1H} NMR spectroscopy. A total 

preference for activation of the C-H bond of benzene, to form the already known 

Tp’Rh(PMe3)H(Ph),12 was observed after 2 hours and also at completion of the 

reaction (Figure 23). The experiment was repeated increasing the amount of 

C5F5N to 40 times more than the quantity of C6H6 in order to push the reaction 

towards activation of the C-F bond. A ratio of 5:1 between C-F and C-H 

activation was determined after 2 hours of photolysis. 

 

8 7 6 5 4 3 2 1 ppm

C-H activated product

 

 

Figure 23. 31P{1H} NMR spectrum for competition reaction of Tp’Rh(PMe3)H2 in 50/50 
volume of C6H6/C5F5N at reaction completed. 
 

Again, a preference for activation of the C-H bond of benzene was observed in 

50/50 volume competition reaction between C6H6 and HBpin. NMR integration 

gave a ratio of 3.5:1 in favour of C-H activation of the aryl bond (Figure 24). 

Increasing the volume of HBpin by five times in the reaction mixture led to a 

ratio of B-H/C-H activation of 1:1, confirming that the reaction is concentration 

dependent.  
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Figure 24. 31P{1H} NMR spectrum for competition reaction of Tp’Rh(PMe3)H2 in 50/50 
volume of C6H6/HBpin at completion of reaction. 
 
Less selectivity was instead shown in the competition reaction performed in 

50/50 volume of C6H6 and PhSiH3 where 31P{1H} NMR integration gave a 1:1 

ratio between C-H and Si-H activation. 

 

-2-15 4 3 2 1 0 ppm
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Figure 25. 31P{1H} NMR spectrum for competition reaction of Tp’Rh(PMe3)H2 in 50/50 
volume of C6H6/PhSiH at completion of reaction. 
 
The results of competition reactions could reflect kinetic or thermodynamic 

selectivity. Thermal equilibration of the final products was excluded considering 

that the complexes were found to be stable in benzene solution heating up to 

140º C. Photochemical equilibration was also explored; since the reactions were 

taken to relatively small conversion and the product distribution varied only 

slightly with photolysis time, we conclude that it did not play any role in the 

product ratio. However, a solution of the complex Tp`RhH(Bpin)(PMe3) was 

photolysed in benzene solution for six hours and the reaction followed by 
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31P{1H} NMR spectroscopy. The disappearance of the doublet for the Rh-boryl 

species and appearance of a new resonance for the Rh-phenyl species after six 

hours of photolysis, confirmed that the complex Tp`RhH(Bpin)(PMe3) absorbs at 

λ > 290 nm and shows photo-activity. A similar experiment was performed for 

Tp`Rh(C5F4N)(PMe3)F which, however was photo-stable upon photolysis in 

benzene solution. 
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5.3 Discussion 

The complexes Tp`Rh(PMe3)H2 and Tp`Rh(CNneopentyl)(η2-PhN=C=N-

neopentyl) are well known to generate photochemically the very reactive 

fragments Tp`Rh(PMe3) and Tp`Rh(CNneopentyl) respectively. All the reactions 

mentioned above are conducted in neat substrates to avoid any source of C-H 

bonds coming from a solvent, which would be kinetically favored. To our 

surprise, since well known as excellent C-H activators, the complexes were 

selective for the activation of C-F; B-H and Si-H bonds with respect to the C-H 

bonds within the ligands. Rhodium-fluorides, rhodium-boryls and rhodium-silyls 

were therefore the major products in the reactions investigated. 

The photochemical reactions of Tp`Rh(PMe3)H2 in neat C5F5N proved to be 

regioselective in C-F actvation of the ortho position; two conformers were 

observed in the reaction. The Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) 

complex showed less selectivity than the PMe3, three products arose and 

distinction between regioisomers or conformers was not possible due to the 

overlapping of some resonances in the aromatic part of the 19F NMR spectrum. 

The Tp`Rh(PMe3)F(C5F4N) acted as a trap for HF, as confirmed by the isolation 

of the bi-fluoride complex, the same behaviour was not seen for the CDI 

complex where the scaled up reaction did not produce any (FHF)-species. This 

could imply participation of the PMe3 ligand in the mechanism to produce HF. 

Braun and co-workers have previously observed that reactions between 

phosphine complexes and C5F5N hydro-defluorinate pyridines.23 The presence 

in our reaction mixture of a hydride (1H NMR: dd, δ  -16.6, JPH 27.4, JRhH 11.2 

Hz, 31P{1H} NMR: d, δ  4.28, JPRh 119 Hz) suggests hydrogen sources, and 

possibly a similar type of reaction takes place to the one observed by Braun. 

Unexpectedly, the reaction in neat HBpin results in high selectivity for the 

activation of the B-H bond with both the starting complexes. The presence of 

primary C-H bonds in the ligand, activation of which is well known to happen 

preferentially and with a very small energy barrier,24 did not affect the clean 

formation of rhodium-boryl hydrides. This suggests an even smaller energy 
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barrier for the B-H oxidative addition than C-H one, and furthermore the 

formation of a very strong and stable Rh-B bond. This is also confirmed by the 

reductive elimination experiments where the complexes are stable in C6H6 

solution up to high temperature. 

The preference for the activation of the Si-H bond was also striking compared to 

C-H bonds in the ligands. Even in the presence of aromatic C-H bonds 

(PhSiH3), the major product was the Si-H activated complex. This confirms 

again that there is a smaller energy barrier for Si-H activation than C-H 

activation. We can conclude therefore that rhodium-silyl hydrides are the kinetic 

products in these types of reactions. 

Competition reactions in C6H6 solution allowed the determination of a scale for 

the activation of the “hetero-bonds”, Si-H oxidative addition competes with C-H 

activation more effectively than does B-H activation, which competes more 

favorably than C-F bond cleavage. The latter is not observed at all in 

intermolecular competition reaction with 50/50 volume of C6H6 and C5F5N, but 

becomes instead competitive when the ratio between the two substrates is 

greatly increased in favor of pentafluoropyridine. A statistical ratio on preference 

for activated bond in favor of C6H6 was calculated. The C-H bond was activated 

eight times faster than the C-F ones. Competition takes place between C-H and 

B-H per activated bond (statistical ratio of 6:3.5 for C-H), while Si-H activation of 

phenylsilane occurred at half the rate of C-H activation of C6H6. 

From these experiments we can conclude that kCH = kSiH = 3.5 kBH = 8 kCF and if 

the statistical correction is taken into account the trend is k`CH = 2 k`SiH = 1.7 

k`BH = 0.37 k`CF, therefore as shown in Table 11, the kinetically favored bonds 

resulted to be Si-H, and B-H. 

Competition between C-H and C-F was established to happen also 

intramolecularly. Surprisingly the reaction of the PMe3 complex with 2,3,5,6 - 

tetrafluropyridine afforded the C-F activated product. 
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Table 11. Rate constants for reactions of complex Tp`Rh(PMe3)H2 in the presence of 
C6H6, PhSiH3, HBpin, C5F5N deducted from competition reactions. 
 

 kCH kSiH kBH kCF 

Without statistical correction 8 8 8/3.5 1 

Number of activatable bonds 6 3 1 2 

With statistical correction 
16/6 

2.7 

16/3 

5.3 

16/3.5 

4.6 

2/2 

1 

 

Comparison with the previously investigated systems CpRh(PR3)(C2H4) in the 

presence of the same ligands (borane and silanes) highlights a very similar 

reactivity confirming that changing from Cp to Tp` does not influence the 

selectivity of the unsaturated fragment.21  

The value of JRhP for the Tp`Rh(PMe3)(Bpin)H and Tp`Rh(H)(PMe3)(silyl) shows 

a consistent decrease of 30 - 40 Hz with respect to those determined for 

CpRh(PMe3) analogues. The value of JRhH is also about 10 Hz smaller than the 

ones previously observed.21 The JRhP coupling constants follow the order 

B(OR2) (145 Hz) > Hn-mSiRm (140 Hz) > C5F4N (128 Hz) reflecting the σ-donor 

strength of the ligands.25 

5.4 Summary 

These experiments show that the Tp`RhL systems can activate a much wider 

variety of bonds that had been previously realized, opening up the possibilities 

of new applications. The complexes Tp`Rh(C5F4N)(PMe3)(FHF), 

Tp`Rh(PMe3)H(Bpin) and Tp`Rh(PMe3)H(Et2SiH) have been isolated and the 

crystal structures determined. The kinetic selectivity of the fragment follows the 

order Si-H(PhSiH3), B-H(HBpin), C-H(C6H6), C-F(C5F5N) with a range spanning 

a factor of 5.4. In contrast to the compounds described in Chapter 3, the 

products are thermally stable. 
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5.5 Experimental 
5.5.1 General procedures 

All operations were performed under a nitrogen or argon atmosphere, either on 

a high-vacuum line (10-4 mbar), standard Schlenk (10-2 mbar) lines or in a 

glovebox. Solvents for general use (benzene) were of AR grade, dried by 

distillation over sodium and stored under Ar in ampules fitted with a Young’s 

PTFE stopcock. Hexane was collected from the solvent purification system and 

dried again by distillation. Deuterated solvents were dried by stirring over 

potassium and distilled under high vacuum into small ampules with potassium 

mirror. Tp`Rh(PMe3)H2 and Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) were 

supplied by William Jones group in Rochester. The fluoropyridines used were 

bought from Aldrich and dried over molecular sieves. HBpin was also bought 

from Aldrich and purified by vacuum distillation. Photochemical reactions at 

room temperature were performed in pyrex NMR tubes fitted with Young’s 

PTFE stopcocks by using a Philips 125 W medium-pressure mercury vapor 

lamp with a water filter (5 cm).  

5.5.2 Mass spectra.  

The LIFDI mass spectra were measured on a Waters Micromass GCT Premier 

orthogonal time-of-flight instrument set to one scan per second with resolution 

power of 6000 FWHM and equipped with a LIFDI probe from LINDEN GmbH. 

The design is very similar to that described by Gross et al.26 Toluene was used 

for tuning the instrument. The polyethylene glycol probe was kept at ambient 

temperature with the emitter potential at 12 kV. Activated tungsten wire LIFDI 

emitters (13 µm tungsten from LINDEN) were ramped manually up to 100 mA 

for the emitter heating current during the experiment. m/z values are accurate to 

0.01 Da. m/z values are quoted for 11B, 28Si. 

5.5.3 X-ray crystallography 

Diffraction data were collected at 110 K on an Agilent SuperNova diffractometer 

with MoKα radiation (λ = 0.71073Å). Data collection, unit cell determination and 
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frame integration were carried out with “CrysalisPro”. Absorption corrections 

were applied using crystal face-indexing and the ABSPACK absorption 

correction software within CrysalisPro. Structures were solved and refined using 

Olex227 implementing SHELX algorithms. Structures were solved by either 

Patterson or direct methods using SHELXS-97 and refined by full-matrix least 

squares using SHELXL-97. All non-hydrogen atoms were refined 

anisotropically. Carbon-bound hydrogen atoms were placed at calculated 

positions and refined using a “riding model”. Hydrogen atoms bound to rhodium 

and silicon were found by difference map and refined. 

5.5.4 NMR spectroscopy 

All standard NMR spectra were recorded on a Bruker AMX500 spectrometer in 

tubes fitted with Young’s PTFE stopcocks. All 1H and 13C chemical shifts are 

reported in ppm (δ) relative to tetramethylsilane and referenced using the 

chemical shifts of residual protio solvent resonances (benzene, δ 7.16 for 1H 

and δ 128.06 for 13C). The 31P{1H} NMR spectra were referenced to external 

H3PO4.
 11B NMR spectra to external BF3·Et2O, 19F spectra to external CFCl3 

and 29Si spectra to external TMS. 2D NMR spectra were recorded with a 

standard HMQC pulse program varying the values of cnst2 from 2 to 200 Hz.  

5.5.5 Syntheses and NMR Experiments 

All the products were synthesized by irradiating ~ 10 mg of complex in neat 

substrates. Purification, when achieved, was done by passing the reaction 

mixture through an neutral alumina column. This method was efficient for the 

Rh- fluoride and Rh-boryl complexes, but not for the Rh-silyl products where 

silane polymers were formed during photolysis. Even though the purity of the 

complex improved after passing the solution through the column, total 

purification was not achieved, especially for the isonitrile complex. Some 

resonances were not found on the spectra because they were obscured by 

impurities. 
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5.5.6 Tp`Rh(C5F4N)(PMe3)F – major rotamer 

1H NMR (C6D6, 300 K): 1.11 (d, JPH 10.1 Hz, 9H, P(CH3)3), 1.37 (s, 3H, pzCH3), 

1.93 (s, 3H, pzCH3), 2.07 (s, 3H, pzCH3), 2.18 (s,3H, pzCH3), 2.24 (s, 3H, 

pzCH3), 2.47 (s, 3H, pzCH3), 5.44 (s, 1H, pzH), 5.53 (s, 1H, pzH), 5.63 (s, 1H, 

pzH).  
19F{1H} NMR (C6D6): δ - 85.9 (m, 1F), - 133.0 (m, 1 F), -148.3 (m, 1 F), -169.0 

(m, 1 F), -428.8 (b, 1 F, JRhF = 185, RhF).  
31P{1H} NMR (C6D6): δ 6.67, (dd, JRhP = 128.7, JPF = 17 Hz).  

Mass Spectra (LIFDI, m/z): 645.12 (100%, M+), 625.10 (20%, [M+] - HF), exp 

645.12, calcd for C23H31N7PF5BRh. 

5.5.7 Tp`Rh(C5F4N)(PMe3)F – minor rotamer 

1H NMR (C6D6, 300 K): δ 1.04 (d, JPH 9.6 Hz, 9H, P(CH3)3), 1.32 (s, 3H, pzCH3), 

1.78 (s, 3H, pzCH3), 1.98 (s, 3H, pzCH3), 2.13 (s,3H, pzCH3), 2.22 (s, 3H, 

pzCH3), 2.49 (s, 3H, pzCH3), 5.42 (s, 1H,pzH), 5.54 (s, 1H, pzH), 5.62 (s, 1H, 

pzH).  
19F{1H} NMR (C6D6): δ -84.6 (m, 1F), -129.8 (m, 1 F), -146.6 (m, 1 F), -168.5 

(m, 1 F), -455.4 (b, 1 F, JRhF = 183, RhF). 

 31P{1H} NMR (C6D6): δ 2.4, (dt, JRhP = 125.9, JPF = 17.9 Hz).  

5.5.8 Tp`Rh(C5F4N)(PMe3)(FHF) 

1H NMR (C6D6, 300 K): δ 1.13 (d, 9H, P(CH3)3), 1.39 (s, 3H, pzCH3), 1.83 (s, 

3H, pzCH3), 2.11 (s, 3H, pzCH3), 2.21 (s,3H, pzCH3), 2.25 (s, 3H, pzCH3), 2.42 

(s, 3H, pzCH3), 5.40 (s, 1H,pzH), 5.49 (s, 1H, pzH), 5.59 (s, 1H, pzH), 11 (b, 

1H, FHF).  
13C NMR (C6D6): δ 12.4, 12.43, 13.5, 14.5, 14.8, 16.5 (s, pzCH3), 16.08 (dd, JPC 

= 32.5 Hz, JRhC = 3 Hz, P(CH3)3), 107.0 (d, JPC =4.4Hz, pzCH),108.1 (s, pzCH), 

108.2 (s, pzCH), 142.9 (d, JPC = 3 Hz, pzCq), 144 (s, pzCq), 146 (s, pzCq), 

151.1 (d, JPC =4 Hz, pzCq), 151.9 (s, pzCq), 152.8 (s, pzCq), Signals 
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assignable to the five carbons of C5F4N group were not detected because of 

multiple coupling with fluorines.  
19F{1H} NMR (C6D6): δ - 84.9 (m, 1F), -133.5 (m, 1F), -147.1 (m, 1F), -167.1 (m, 

1F),-178.7 (d, JRhF 447.6, FHF), - 398.9 (b, 1 F, RhF).  
31P{1H} NMR (C6D6): δ 6.67, (dd, JRhP = 128.7, JPF = 17 Hz).  

Mass Spectra (LIFDI, m/z): attempts to observe parent ion failed due to loss of 

HF. The peak for the Tp`Rh(C5F4N)(PMe3)F was observed instead. 

5.5.9 Tp`Rh(C5F3NH)(PMe3)F 

1H NMR (C6D6, 300 K): δ 1.16 (d, 9H, JPH = 11.07 Hz, P(CH3)3), 1.42 (s, 3H, 

pzCH3), 1.84 (s, 3H, pzCH3), 2.10 (s, 3H, pzCH3), 2.24 (s,3H, pzCH3), 2.26 (s, 

3H, pzCH3), 2.46 (s, 3H, pzCH3), 5.48 (s, 1H,pzH), 5.56 (s, 1H, pzH), 5.64 (s, 

1H, pzH), 6.20 (m, 1H, pyrH).  

19F{1H} NMR (C6D6): δ - 111.6 (m, 1 F), - 126.9 (m, 1 F), 146.3 (m, 1 F), - 430.1 

(d, JFRh 181.3, 1F, RhF). 
31P{1H} NMR (C6D6): δ 4.6, (dd, JRhP = 132.1, JPF = 17.5 Hz). 

5.5.10 Tp`Rh(C5F4N)(PMe3)H 

1H NMR (C6D6, 300 K),: δ - 15.51 (ddd, JRhH = 14.3, JFH = 19.1 Hz, JPH = 24.6 

Hz, 1H, RhH), 0.94 (d, 9H, JPH = 9.55 Hz, P(CH3)3), 1.48 (s, 3H, pzCH3), 1.77 (s, 

3H, pzCH3), 2.01 (s, 3H, pzCH3), 2.14 (s,3H, pzCH3), 2.16 (s, 3H, pzCH3), 2.33 

(s, 3H, pzCH3), 4.68 (b,JBH 113.1 Hz,1H, pzBH), 5.34 (s, 1H,pzH), 5.55 (s, 1H, 

pzH), 5.80 (s, 1H, pzH).  

19F{1H} NMR (C6D6): δ - 100.6 (m, 2F), - 125.2 (m, 2 F).  
31P{1H} NMR (C6D6): δ - 2.33, (dd, JRhP = 127.3, JPF = 19.7 Hz). 

5.5.11 Tp`RhH(Bpin)(PMe3) 

1H NMR (C6D6, 300 K): δ - 16.77 (dd, JRh-H 25.5, JP-H 30.9, RhH),1.16 (s, 6H, 

BOC-CH3), 1.21 (s, 6H, BOC-CH3), 1.35 (d, 9H, 
2JPH = 9.3 Hz, P(CH3)3), 2.07 (s, 

3H, pzCH3), 2.29 (s, 3H, pzCH3), 2.30 (s, 3H, pzCH3), 2.31 (s,3H, pzCH3), 2.41 
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(s, 3H, pzCH3), 2.49 (s, 3H, pzCH3), 4.75 (b,JBH 121 Hz,1H, pzBH), 5.54 (s, 

1H,pzH), 5.70 (s, 1H, pzH), 5.86 (s, 1H, pzH).  
13C NMR (C6D6): δ 11.34, 13.67, 13.84, 16.9, 18.03, 18.14 (s, pzCH3), 22.14 (d, 
1JPC = 33.5 Hz, P(CH3)3), 22.0, 25.2, 26.3, 27.7 (s, BOC-CH3), 81.79 (s, BOC), 

106.4 (d, 4JPC = 2.8Hz, pzCH),106.5 (s, pzCH), 106.7 (s, pzCH), 143.8 (s, 

pzCq), 144.2 (s, pzCq), 144.8 (s, pzCq), 149.2 (s, pzCq), 150.2 (d, pzCq), 150.6 

(s, pzCq).  
11B NMR (C6D6): δ 39.25 (b, Rh-B), -8.72 (b, pzB-H).  
31P{1H} NMR (C6D6): δ 5.25, (d, JRhP = 145 Hz).  

Mass Spectra (LIFDI, m/z): 604.21 (100%, M+), exp 604.21, calcd for 

C24H44N6PO2B2Rh 604.25, difference 40 mDa. 

5.5.12 Tp`RhH(Et2SiH)(PMe3) 

1H NMR (C6D6, 300 K),: δ - 17.89 (dd, JRh-H 20.3, JP-H 32.3, RhH),1.14 (m, 2H, 

SiCH2), 1.25 (d, 9H, 
2JPH = 11.1 Hz, P(CH3)3), 1.36 (m, 2H, SiCH2), 1.43 (d, 6H, 

SiCH3), 2.13 (s, 3H, pzCH3), 2.19 (s, 3H, pzCH3), 2.22 (s, 3H, pzCH3), 2.30 

(s,3H, pzCH3), 2.39 (s, 3H, pzCH3), 2.52 (s, 3H, pzCH3),4.36 (bd, JPH 15 Hz, Si-

H), 5.56 (s, 1H, pzH), 5.64 (s, 1H, pzH), 5.82 (s, 1H, pzH).  
29Si NMR (C6D6): δ 31.84 (b, Rh-Si).  
31P{1H} NMR (C6D6): δ 0.87, (d, JRhP = 140 Hz).  

Mass Spectra (LIFDI, m/z): 564.19 (100%, M+), exp 564.19, calcd for 

C22H43N6PSiBRh 564.220, difference 30 mDa. 

5.5.13 Tp`RhH(PhSiH2)(PMe3) 

1H NMR (C6D6, 300 K): δ - 16.7 (dd, JRh-H 19.9, JP-H 30.6, Hz, RhH), 1.17 (d, 9H, 

2JPH = 9.4 Hz, P(CH3)3), 2.14 (s, 3H, pzCH3), 2.27 (s, 3H, pzCH3), 2.32 (s, 3H, 

pzCH3), 2.35 (s,3H, pzCH3), 2.37 (s, 3H, pzCH3), 2.39 (s, 3H, pzCH3), 4.98 

(bdd, Si-H), 5.28 (m, Si-H), 5.44 (s, 1H,pzH), 5.73 (s, 1H, pzH), 5.84 (s, 1H, 

pzH), the phenyl resonances overlap with resonances of silanes polymers.  
29Si NMR (C6D6): δ -15.8 (b, Rh-Si). 
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31P{1H} NMR (C6D6): δ 1.9 (d, JRhP = 131 Hz).  

Mass Spectra (LIFDI, m/z): 584.15 (100%, M+), exp 584.19, calcd for 

C24H39N6PSiBRh 584.19, difference 40 mDa. 

5.5.14 Tp`RhH(Et3Si)(PMe3) 

1H NMR (C6D6, 300 K): δ - 18.1 (dd, JRh-H 19.7, JP-H 30.9, Hz, RhH), 1.27 (d, 9H, 

2JPH = 9.3 Hz, P(CH3)3), 2.15 (s, 3H, pzCH3), 2.18 (s, 3H, pzCH3), 2.22 (s, 3H, 

pzCH3), 2.27 (s,3H, pzCH3), 2.35 (s, 3H, pzCH3), 2.45 (s, 3H, pzCH3), 5.56 (s, 

1H,pzH), 5.61 (s, 1H, pzH), 5.85 (s, 1H, pzH), the resonances for the ethyl 

group were not found due to the presence of by-products.  
29Si NMR (C6D6): δ 31.6 (b, Rh-Si).  
31P{1H} NMR (C6D6): δ -3.4 (d, JRhP = 145.4 Hz).  

Mass Spectra (LIFDI, m/z): 592.23 (100%, M+), exp 592.25, calcd for 

C24H47N6PSiBRh 584.25, difference 20 mDa. 

5.5.15 Tp`Rh(CNneopentyl)F(C5F4N)  

1H NMR (C6D6), 2 isomers (the quantity of the third is too small to be observed): 

δ, 0.55/0.77 (s, 9 H, C(CH3)3), 1.58 (s, 3 H, pz CH3), 1.62 (s, 3 H, pz,CH3), 1.89 

(s, 3 H, pz CH3), 1.97 (s, 3 H, pz CH3), 2.02 (s, 3H, pz CH3), 2.05 (s, 3 H, pz 

CH3), 2.11 (s, 3 H, pz CH3), 2.14 (s, 3 H, pz,CH3), 2.18 (s, 3 H, pz CH3), 2.21 (s, 

3 H, pz CH3), 2.72 (s, 3H, pz CH3), 2.76 (s, 3 H, pz CH3), 2.54 (ABq, JRh-H  14.8 

Hz, 2 H, NCH2), 5.45 (s, 1 H, pz H), 5.47 (s, 1 H, pz H), 5.52 (s, 1 H, pz H), 5.56 

(s, 1 H, pz H), 5.69 (s, 1 H, pz H), 5.70 (s, 1 H, pz H).  
19F NMR (C6D6), 3 isomers: δ - 457 (b, 1 F, JRhF 156 Hz, RhF regioisomer / 

rotamer), - 435 (b, 1 F, JRhF 150 Hz, RhF), - 418 (b, 1 F, JRhF 153 Hz, RhF). 

Aromatic fluorines: - 84.8 (m, 1 F,), - 85.1 (m, 1 F), - 88.5 (m, 2 F, para isomer), 

- 146.8 (m, 1 F), - 147.0 (m, 1 F), - 147.6 (m, 2 F, para isomer), - 159.9 (m, 1 F), 

- 161.6 (m, 1 F), - 168.4 (m, 1 F), - 168.6 (m, 1 F). The distinction between 

different regioisomers / rotamers was not possible. 

Mass Spectra (LIFDI, m/z): 666.18 (100%, M+), exp 666.18, calcd for 

C26H33N8F5BRh 666.18 difference 10 mDa. 
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5.5.16  Tp`Rh(CNneopentyl)H(Bpin) 

1H NMR (C6D6): δ, -14.20 (d, JRhH 25.7,1 H, RhH), 0.80 (s, 9 H, C(CH3)3), 1.19 

(s, 6 H, BOC(CH3)2), 1.21 (s, 6 H, BOC(CH3)2), 2.10 (s, 3 H, pz CH3), 2.25 (s, 3 

H, pz CH3), 2.26 (s, 3H, pz CH3), 2.46 (s, 3 H, pz CH3), 2.53 (s, 3 H, pz CH3), 

2.55 (s, 3 H, pz,CH3), 2.69 (ABq, JRh-H  14.0 Hz, 2 H, NCH2), 5.64 (s, 1 H, pz H), 

5.69 (s, 1 H, pz H), 5.84 (s, 1 H, pz H).  
11B NMR (C6D6): δ 39.1 (b, Rh-B), - 8.08 (b, pzB-H).  

Mass Spectra (LIFDI, m/z): 625.29 (100%, M+), exp 625.29, calcd for 

C27H46N7O2B2Rh 625.295, difference 5 mDa. 

5.5.17 Tp`Rh(CNneopentyl)H(Et2SiH) 

1H NMR (C6D6, 300 K),: δ - 14.88 (d, JRh-H 20.8, RhH), 0.66 (s, 9 H, C(CH3)3), 

1.06 (m, 4H, SiCH2), 1.46 (d, 6H, SiCH3), 2.17 (s, 3H, pzCH3), 2.22 (s, 3H, 

pzCH3), 2.28 (s, 3H, pzCH3), 2.42 (s,3H, pzCH3), 2.46 (s, 3H, pzCH3), 2.66 (s, 

3H, pzCH3), 4.36 (bd, JPH 15 Hz, Si-H), 5.60 (s, 1H,pzH), 5.68 (s, 1H, pzH), 

5.81 (s, 1H, pzH). The missing resonances are obscured by by-products and 

not found.  
29Si NMR (C6D6): δ 23.17 (b, Rh-Si).  

Mass Spectra (LIFDI, m/z): 564.19 (100%, M+), exp 564.22, calcd for 

C22H43N6PSiBRh 564.2204, difference 25.6 mDa. 

 

5.5.18 Tp`Rh(CNneopentyl)H(PhSiH2) 

1H NMR (C6D6, 300 K): δ - 14.10 (d, JRh-H 19.9, RhH), 0.59 (s, 9 H, C(CH3)3), 

2.16 (s, 3H, pzCH3), 2.23 (s, 3H, pzCH3), 2.28 (s, 3H, pzCH3), 2.39 (s,3H, 

pzCH3), 2.42 (s, 3H, pzCH3), 2.52 (s, 3H, pzCH3), 5.46 (s, 1H, pzH), 5.71 (s, 

1H, pzH), 5.77 (s, 1H, pzH). The missing resonances are obscured by by-

products and not found.  
29Si NMR (C6D6): δ -22.7 (b, Rh-Si).  
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Mass Spectra (LIFDI, m/z): 590.20 (100%, M+), exp 590.20, calcd for 

C26H38N7PSiBRh 590.210, difference 10 mDa. 
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6. Laser flash studies of Ru(PP)2H2 complexes 

6.1. Introduction  

The steady state and laser flash photochemistry of cis or trans-[Ru(drpe)2(H)2] 

(drpe = R2PCH2CH2PR2, R = CH3 (dmpe), C2H5 (depe), C6H5 (dppe), C2F5 

(dfepe)) type complexes has been studied intensively in our group.1-9 By 

employing inert matrices and laser flash experiments, it has been demonstrated 

that the loss of H2 and formation of a transient [Ru(drpe)2] with a square planar 

configuration at Ru occurs upon irradiation with broad band UV light. The 

intermediates [Ru(drpe)2] are exceptionally well suited to transient absorption 

investigation, since they exhibit a rich optical absorption spectrum with several 

bands spanning the visible region. A multiband UV/Vis spectrum with a low 

energy absorption band between 800 and 735 nm was determined for the 

primary photoproducts M(drpe)2 (M = Ru,3 drpe = dmpe, depe, dppe; M = Os,1 

drpe = dmpe) (Figure 1). 
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Figure 1.Transient UV/Vis spectra measured after solution laser flash photolysis (a)(d) 
400 ns after flash and (e) 300 ns after flash. (a) Spectrum of Ru(dmpe)2 in cyclohexane 
under argon, (b) spectrum of Ru(depe)2 in heptane under 11 torr of H2, (c) spectrum of 
Ru(dppe)2 in cyclohexane under 760 torr of H2, (d) spectrum of Ru(dfepe)2 under 760 
torr of H2and (e) spectrum of Ru(dmpm)2 under 100 torr of H2.

3  

 

The long wavelength bands have been assigned to a M(dz
2) - M(pz) transition by 

comparison with isoelectronic square planar Rh and Ir species.10 Theoretical 

calculations also supported this assignment.11 Square planar complexes exhibit 

bands at low energy with high extinction coefficients (ε ≈ 800 – 15000 dm3 mol-1 

cm-1) which is much too intense for a d-d transition typical of  octahedral 

complexes (ε between 10 - 100 dm3 mol-1 cm-1).10 The lowest energy band in 

Rh (I) and Ir (I) chelating diphosphine complexes [M(dppe)2]
+ and [M(diphos)2]

+ 

(diphos = Ph2PCH=CHPPh2) were assigned to the allowed transition a1g(dz
2) → 

a2u(pz) in D4h symmetry.10  

Figure 2 shows the molecular orbital diagram for these complexes; the lowest 
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band was interpreted in terms of a1g(dz
2) → a2u(pz) transition and the next 

transition to higher energy to eg(dxz,yz) → a2u(pz). The two lowest energy 

absorption bands arise therefore from different orbital types as demonstrated by 

low temperature excitation polarisation experiments on the same compounds  

where different signs of polarisation were observed.12 Perutz et al. suggested 

that the dz
2 - pz transition should move to higher energy in D2d symmetry due to 

the fact that the pz orbital acquires b2 symmetry and becomes σ antibonding.3,5 

 

Figure 2. The molecular orbital energy diagram proposed for a square planar MP4 
complex with a 1A1g ground state assuming D4h symmetry.12 

 

The reaction rates measured in the presence of substrates (H2, CO, Et3SiH, 

C2H4, HBpin (pin = pinacolate)) are influenced by the nature of the substituent 

on the phosphorus atom and by the substrate resulting an increase in reactivity 

in the order: Ru(dfepe)2 < Ru(dppe)2 < Ru(depe)2 < Ru(dmpe)2. Steady-state 

solution photochemistry revealed that the transient species reacts with 

substrates to give addition or oxidative addition products (Scheme 1) but no 

products were observed due to the activation of solvent (C6D6, THF, 

heptane).3,6,7  
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Scheme 1. Reactions of Ru(drpe)2 complexes with different quenching ligands. 

 

The effect of a C1 bridge in place of a C2 bridge has also been reported,13 and it 

has been shown that competing photodissociation of phosphine is favored in 

solution over the dissociation of the dihydride ligand for cis-[Ru(PMe3)4(H)2].
8 

The same methodology has also been applied to Fe(dmpe)2H2 and 

Os(dmpe)2H2.
1,2 

Fe(dmpe)2H2 contrasts with its Ru analogue both spectroscopically and in its 

reactivity (Scheme 2). Fe(dmpe)2 shows, in fact, just one UV-vis band at very 

short wavelength (355 nm in solution) and rate constants for the reaction of 

Fe(dmpe)2 with H2 and Et3SiH are considerably smaller than the ones observed 

for Ru(dmpe)2 by a factor of 7500. It readily reacts with benzene and toluene (k2 

ca 106 dm3 mol-1 s-1), as well as with alkanes (k2 in the range of 10 – 102 dm3 

mol-1 s-1), the different reactivity leads to the conclusion that the transient 

species adopts a different geometry than Ru(dmpe)2 (Scheme 2, inset). The 

structure of the Ru(dmpe)2  was proposed to be square planar D2h whereas that 

of the Fe(dmpe)2 is probably puckered C2v.  
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Scheme 2. Scheme for reaction of Fe(dmpe)2H2 in the presence of different substrates. 
Inset: different geometries adopted by the Ru and Fe transients. 
 

Laser flash photolysis of Os(dmpe)2H2 fully agreed with data previously 

observed for Ru(dmpe)2H2; the intermediate Os(0) is generated within the laser 

flash and it reacts with CO and H2 with essentially no energetic barrier towards 

the formation of the photoproducts. Reactions with different substrates (C2H4, 

Et3SiH, N2) were also observed, giving second order rate constants all close to 

108 dm3 mol-1 s-1. The UV-vis spectrum indicated a structure close to square 

planar showing a striking resemblance to that of Ru(dmpe)2 (Figure 3). 

 

Figure 3. UV- vis spectra for complex Ru(dmpe)2, a, and Os(dmpe)2, b in low 

temperature matrix. 
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Laser flash photolysis was also employed on dihydride complexes of 

tetradentate phosphines [M(PP3)(H)2] (M = Ru, Os; PP3 = P(CH2CH2PPh2)3). 

Notably, [Ru(PP3)] undergoes cyclometalation in the absence of substrate and 

oxidative addition with benzene (Scheme 3), whereas [Os(PP3)] does not 

undergo cyclometalation but forms oxidative addition products with alkanes and 

with benzene (Scheme 4).9  
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Scheme 3. Reaction scheme for RuH2 complexes with tetradentate phosphines. 

 

A narrow range of rate constants, going for Ru(PP3) from 105 dm3 mol-1 s-1 to 

106 dm3 mol-1 s-1 and for Os(PP3) from 103 dm3 mol-1 s-1  to 106 dm3 mol-1 s-1 

outlined a lack of selectivity towards the substrates in contrast with the behavior 

of the bidentate Ru analogues. Despite this, the reactivity of tetradentate ligand 

Ru/Os complexes was enhanced relative to bidentate with regards to Et3SiH 

and C6H6, as a result of a reduced selectivity toward hydrogen. Closely related 

bidentate complexes Ru(dppe)2 and Ru(depe)2 did not show reactivity in the 

presence of C6H6. 
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Scheme 4. Reaction scheme for laser flash photolysis of Os(PP3)H2 complexes in the 
presence of different ligands. 

 

The UV-vis spectrum for the M(PP3) transients showed a single absorption 

maximum at 350 nm (M = Ru) and 390 nm (M = Os) respectively, in contrast 

with those of Ru(drpe)2
3 and Os(dmpe)2

1 but consistently with the UV/vis 

spectrum of Fe(dmpe)2 which exhibits a single maximum.2 A different geometry, 

than the square planar typical of M0 complexes, is therefore proposed for the 

Os/Ru (PP3) transients. The change reflects the enforced C3v or Cs structure 

and the likely agostic interaction of a phenyl group. This change in conformation 

successfully prepared the M(PP3) transient for C-H and Si-H activation, lowering 

the energy barrier in comparison with the square planar analogues. Figure 4 

shows a schematic summary of the rate constants for reactions of M(PP3) in 

comparison with those for Fe(dmpe)2, Ru(depe)2 and Ru(dppe)2. 

 



Chapter 6: LFP of Ru(PP)2H2 complexes 

 160 

 

Figure 4. Schematic diagram comparing the rate constants for the investigated 
complexes.9 

 

The related ruthenium carbonyl dihydride complexes [Ru(PPh3)3(CO)(H)2] and 

[Ru(etp)(CO)(H)2] (etp = PhP(CH2CH2PPh2)2) were studied by laser flash 

photolysis and revealed reductive elimination of the hydride ligands14,15 

(Scheme 5), but when a carbene is incorporated [Ru(PPh3)2(IEt2Me2)(CO)(H)2] 

(IEt2Me2 = 1,3-bis(ethyl)-4,5-dimethylimidazol-2-ylidene) the photochemistry is 

different; loss of both H2 and PPh3 was observed.16 
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Scheme 5. Photochemistry of ruthenium carbonyl hydride. 

 

Further mechanistic information has been obtained by employing para-

hydrogen induced polarization (PHIP) of NMR spectra.17 Competing loss of 
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ligands also occurs in Ru(0) complexes such as [Ru(dppe)(PPh3)(CO)2].
16 

For [Ru(PPh3)3(CO)(H)2] and [Ru(PH3)4(H)2] complexes, DFT studies of 

photodissociation of H2 showed fast (100 fs) elimination when the system is 

constrained to freeze the Ru-H and H-H distances.11 In another report, DFT 

calculations showed that the calculated UV-Vis spectra of [Ru(PH3)4] reproduce 

the experimental ones with a square planar geometry around ruthenium.18 The 

reactivity of [Ru(PH3)4] was modeled for addition of H2 and CO and found to be 

very exothermic in both cases, with an η1 approach for H2 to the [Ru(PH3)4] at 

an early stage of the reaction which changes to η2 at later stages while 

elongation of the H...H distance also occurs late in the reaction profile (Figure 

5).11  

 

Figure 5. Calculated reaction profile and representation of changes for the η1 and η2 
approaches of H2 to [Ru(PH3)4].

11 
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π−Acceptor ligands were found to contribute to the tendency for d8 ML4 systems 

to deviate from square planar geometry as observed for Ru(CO)4 and 

Ru(CO)2(PH3)2.
19 The very small deviation from square planarity of Ru(PH3)4 is 

consistent with the weak π−acceptor capability of the phosphine ligands. The 

metal centre also plays a role in distortion from square planar geometry. 

[Rh(CO)2(PH3)2]
+ has a square planar geometry, while the isoelectronic 

Ru(CO)2(PH3)2 exhibits a C2v structure promoted by strong π-back donation 

from the high-lying metal based orbitals. The metal-based orbitals for the Rh 

cation are significantly lower in energy than those of Ru.11 This demonstrates 

that the presence of a π-acceptor ligand is a necessary but not sufficient 

condition for a non planar d8 ML4 complex.20,21 
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6.2. Results 

6.2.1. Λ-[cis-Ru((R,R)-Me-BPE)2(H)2] and ∆-[cis-Ru((S,S)-Me-
DuPHOS)2(H)2]: laser flash studies 

The dihydride complexes Λ-[cis-Ru((R,R)-Me-BPE)2(H)2], Ru1H2, Λ-[cis-

Ru((R,R)-Me-DuPHOS)2(H)2], Ru2H2 and Λ-[cis-Ru((R,R)-iPr-BPE)2(H)2], 

Ru3H2 have been synthesized and fully characterized by Dr Marius Campian, 

and their photo-induced reactions studied (Scheme 6). BPE and DuPHOS22 

phosphine ligands were chosen in order to test the diasteroselectivity of the 

photoreactions with the combination of stereogenic centres on the ligands and 

the metal. These particular phosphines are suitable because they contain no 

functionalities other than alkyl and aryl groups; they contain the same 

phospholane ring, {PhP(2R,5R-Me2C4H6)}, as that used in previous studies at 

Rh.23 
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Scheme 6. Different phosphines used for the Ru(PP)2H2 complexes investigated. 

 

The reactions investigated included examples of B-H, Si-H, and C-H bond 

activation to [Ru(PP*)2], as well as addition of CO and C2H4. This work showed 
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that the ligands control the configuration at the metal and exercise steric control 

over substrate attack (Scheme 7). My contribution to this work aimed to look at 

the laser flash photolysis of complexes Ru1H2 and Ru2H2 in solution. 
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Scheme 7. Scheme for reactions of Ru1H2 and Ru2H2 in the presence of different 
quenching ligands. 

 

The transient photochemistry of Λ-R,R-Ru1H2 and Λ-R,R-Ru2H2 was 

investigated on nanosecond and microsecond timescales in order to determine 

the UV/vis spectra of the reaction intermediates of the type [Ru(PP)2] and to 

determine the rates of reaction of the intermediates with hydrogen and with the 

substrates used in the steady-state reactions. 

Reactions were initiated with a XeCl laser (308 nm, 10 ns pulsewidth) and 

spectra were recorded point-by-point in cyclohexane solution at 295 K. 

The spectra of the transient species formed from Λ-R,R-Ru1H2 and Λ-R,R-

Ru2H2 were recorded under a hydrogen atmosphere (1 atm) in order to ensure 

the complete reversibility of the reaction. The transient spectra derived from 

both the dihydride complexes exhibit at least three absorption maxima between 

400 nm and 800 nm and resemble those recorded previously for other 

complexes of the type [Ru(PP)2].
3 The decay kinetics of the transients were 

measured at each of the maxima confirming that they were indistinguishable 

and that they rose within the instrument response time. They are assigned to a 

single intermediate in each case, [Ru(BPE)2] and [Ru(DuPHOS)2], respectively. 

The most intense lies at 500 nm for [Ru(BPE)2] and 560 nm for [Ru(DuPHOS)2]; 
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there is a long wavelength feature at 740 nm for [Ru(BPE)2] and at 700 nm for 

[Ru(DuPHOS)2] (Figure 6 a, b). 

 

 

 

Figure 6. Left: transient UV-Vis spectra measured point-by-point at 295 K in 
cyclohexane on laser flash photolysis under 1 atm H2 (308 nm) of: (a) Λ-R,R-Ru1H2 
and (b) Λ-R,R-Ru2H2. Right: transient decay after photolysis of (c) Λ-R,R-Ru1H2 
recorded at 500 nm and (d) Λ-R,R-Ru2H2 followed at 560 nm. The red lines show the 
fit to first order kinetics. The difference between the observed and the fitted decays are 
shown under the transient decays. 

 

Laser flash photolysis of Λ-R,R-Ru1H2 and Λ-R,R-Ru2H2 under argon results in 

the formation of the transient species which decay with pseudo-first-order 

kinetics over a timescale of hundreds of microseconds (1.1 × 104 s-1) for Λ-R,R-

Ru1H2 or even milliseconds (2.6 × 103 s-1) for Λ-R,R-Ru2H2. However, after 

laser flash photolysis of Λ-R,R-Ru1H2 and Λ-R,R-Ru2H2 under a hydrogen 

atmosphere, the transient absorbance returns to the baseline restoring the 

initial absorbance, indicating back reaction with H2. The transients decay with 

pseudo-first-order kinetics (Figure 6 c, d) on a timescale of ca 40 µs (Λ-R,R-

Ru1H2) and ca 100 µs (Λ-R,R-Ru2H2). 
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Complexes Λ-R,R-Ru1H2 and Λ-R,R-Ru2H2 have also been tested under 

higher pressures of hydrogen (from 1 to 5 bar) (Table 1), and both of the 

resulting transients showed a linear dependence of kobs on p(H2) (Figure 7). The 

second order rate constants, k2, for the regeneration of the precursor in the 

presence of hydrogen were determined to be (1.8 ± 0.1) × 107 dm3 mol-1 s-1 for 

[Ru(BPE)2] and (5.6 ± 0.4) × 106 dm3 mol-1 s-1 for [Ru(DuPHOS)2]. The solubility 

of H2 was taken as 4.7 × 10-3 mol dm-3 atm-1.24  

The kinetic isotopic effects (KIE) were investigated, under different deuterium 

pressures (from 1 bar to 5 bar, Figure 7, Table 1). The KIEs are small for both 

intermediates but slightly greater for [Ru(DuPHOS)2] (1.6 ± 0.1) than for 

complex [Ru(BPE)2] (1.2 ± 0.1) (Table 2). The error bars represent statistical 

95% confidence limits derived from the measurements shown. The second 

order rate constant for reaction of [Ru(DuPHOS)2] with H2 was also determined 

in benzene as solvent and was found to be insignificantly different from the 

value measured in cyclohexane. The spectra and reactivity of [Ru(PP*)2] toward 

hydrogen are consistent with prompt photoelimination of H2 and thermal 

regeneration of [Ru(PP*)2(H)2] at room temperature under H2 (Scheme 3). 

 

 

 

Figure 7. Plots of pseudo-first-order rate constants for the decay of the transients 
obtained upon laser flash photolysis (308 nm) of complexes Λ-R,R-Ru1H2 and Λ-R,R-
Ru2H2 in cyclohexane vs the pressure of quenching gas (H2 and D2). The lines through 
the points show the best fits and the colored lines show the 95% confidence limits. 
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Scheme 8. Photodissociation of H2 and regeneration of the starting material upon laser 
flash photolysis.  
 

Laser flash photolysis in the presence of HBpin, PhSiH3 and C6F5H of Λ-R,R-

Ru1H2 and Λ-R,R-Ru2H2 resulted in rapid quenching of the transient both for Λ-

R,R-Ru1H2 and Λ-R,R-Ru2H2. The formation and the decay of the transients 

were followed at the absorption maximum under Ar with a range of quencher 

concentrations (Table 1). The measured absorbance differences always return 

to the baseline after several microseconds, indicating that the transient complex 

is completely consumed leading to the Ru(II) product. 

 

Table 1. Pseudo-first-order rate constants for reaction of transient species at 295 K in 
cyclohexane with different quenching ligands. 

 

pH2, bar/kobs, s
-1

 

Ru(BPE)2 – H2 Ru(DuPHOS)2 – H2 

1.296 1.42×105 1.394 3.38×104 

1.946 1.71×105 2.33 5.0×104 

2.513 2.32×105 3.324 8.62×104 

3.429 3.32×105 4.341 1.14×105 

5.108 4.52×105 5.042 1.23×105 

 

 

pD2, bar/kobs, s
-1

 

Ru(BPE)2 – D2 Ru(DuPHOS)2 – D2 

0.949 6.85×104 0.978 2.13×104 

1.864 1.12×105 1.664 3.12×104 
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2.769 1.85×105 3.683 6.45×104 

3.548 2.52×105 4.624 7.84×104 

4.55 3.17×105   

 

[HBpin], M/kobs, s
-1

 [PhSiH3], M/kobs, s
-1 

Ru(BPE)2 – HBpin Ru(BPE)2 – PhSiH3 

0.039 1.08×104 0.4 3.52×105 

0.075 1.84×104 0.8 5.71×105 

0.22 3.25×104 1.23 9.26×105 

0.44 4.95×104 1.66 1.06×106 

0.59 6.90×104 2.14 1.38×106 

 

[HBpin], M/kobs, s
-1

 [PhSiH3], M/kobs, s
-1 [C6F5H], M/kobs, s

-1
 

Ru(DuPHOS)2 – HBpin Ru(DuPHOS)2 – PhSiH3 Ru(DuPHOS)2 – C6F5H 

0.0331 1.35×103 0.4 5.71×104 0.03 1.64 ×103 

0.0825 1.75×103 0.72 1.00×105 0.18 2.44×103 

0.241 4.00×103 0.8 1.09×105 0.5401 3.87×103 

0.481 6.25×103 1.23 1.48×105 0.9 4.61×103 

0.646 7.69×103     

 

Plots of kobs against [HBpin] were linear and gave second-order rate constants 

for Λ-R,R-Ru1H2 of (9.90 ± 0.6) × 104 dm3 mol-1 s-1 and (1.05 ± 0.5) × 104 dm3 

mol-1 s-1 for Λ-R,R-Ru2H2 (Figure 8). Analogous measurements with PhSiH3 

(Figure 9) showed that the transient is quenched 10 times faster than in the 

presence of HBpin (Table 2). A rate constant k2 of (3.06 ± 0.6) × 103 was 

determined for the reaction of [Ru(DuPHOS)2] in the presence of 

pentafluorobenzene (Figure 10). The corresponding measurement was not 

possible for [Ru(BPE)2] since no reaction occurs. 
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Figure 8. Plot of the pseudo first order rate constants, kobs vs the concentration of 
HBpin: Λ-R,R-Ru1H2 – left, Λ-R,R-Ru2H2 − right. 

 

 

Figure 9. Plot of the pseudo first order rate constants, kobs vs the concentration of 
PhSiH3: Λ-R,R-Ru1H2 – left, Λ-R,R-Ru2H2 − right. 
 

 
Figure 10. Plot of the pseudo first order rate constants, kobs vs the concentration of 
C6F5H: Λ-R,R-Ru2H2 − right. 
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The effect of ethene (1 atm) on the transient kinetics was investigated for Λ-

R,R-Ru2H2. The transient decayed with pseudo-first order kinetics back to the 

baseline. Similar results were obtained with a cyclohexane solution of Λ-R,R-

Ru2H2 under 1 atm of CO. The values are not very different from those 

obtained under an Ar atmosphere and the characteristic residual absorbance of 

Ru(0) complexes was not observed, suggesting that these substrates are poor 

quenchers for [Ru(DuPHOS)2]. 

 

Table 2. Second-order rate constants and kinetic isotope effects for reaction of 
transient species at 295 K in cyclohexane 

 

k2, dm3 mol-1 s-1 

Quencher ΛΛΛΛ-R,R-Ru1H2 ΛΛΛΛ-R,R-Ru2H2 

H2 (1.8 ± 0.1) × 107 (5.6 ± 0.4) × 106 

D2 (1.52 ± 0.07) × 107 (3.37 ± 0.05) × 106 

kH2
/kD2

 1.2 ± 0.1 1.6 ± 0.1 

PhSiH3 (5.9 ± 0.4) × 10
5
 (1.10 ± 0.9) × 10

5
 

HBpin (9.90 ± 0.6) × 104 (1.05 ± 0.5) × 104 

C6F5H - (3.06 ± 0.6) × 10
3
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6.3. Λ-[cis-Ru((R,R)-iPr-BPE)2(H)2], Ru3H2: preliminary laser 
flash study 

Preliminary studies were carried out on Λ-R,R-Ru3H2 complex, the isopropyl 

analogue of Λ-R,R-Ru1H2. The difference between the two complexes is just in 

the phospholane ligand which contains isopropyl substituents on the ring 

instead of methyls (Scheme 9). 

 

 

Scheme 9. Structure of the phosphine used for Ru3H2 complex. 

6.3.1. Transient spectra 

The spectrum of the transient species formed from Λ-[cis-Ru((R,R)-iPr-

BPE)2(H)2], Λ-R,R-Ru3H2, was recorded under a hydrogen atmosphere (1 atm) 

in order to ensure the complete reversibility of the reaction. The transient 

spectra exhibit two absorption maxima, the first one and more intense at 480 

nm, the second one at 770 nm, as observed for the complexes Λ-R,R-Ru1H2 

and Λ-R,R-Ru2H2 (Figure 11, left). 
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Figure 11. Left: transient UV-Vis spectra measured point-by-point at 298 K in 
cyclohexane on laser flash photolysis under 1 atm H2 (308 nm) of Λ-R,R-Ru3H2. Right: 
transient decay after photolysis of Λ-R,R-Ru3H2 recorded at 470 nm under 1 atm of H2 
at 298 K.  

6.3.2. LFP in the presence of Hydrogen 

The transient decays back to the baseline with a pseudo-first-order kinetics on a 

second timescale (Figure 11, right). Pressure dependence studies gave a linear 

plot of kobs versus [H2] (Figure 12). k2 for the regeneration of the precursor in the 

presence of hydrogen was determined to be (1.3 ± 0.1) x 102 dm3 mol-1 s-1.  

 

 

Figure 12. Plots of pseudo-first-order rate constants for the decay of the transient 
obtained upon laser flash photolysis (308 nm) of complexes Λ-R,R-Ru3H2 in 
cyclohexane vs the pressure of hydrogen. The line through the points show the best 
fits and the colored lines show the 95% confidence limits. 
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6.4. Ru(dppe)2H2: Laser Flash studies in the presence of HBpin 

The laser flash photolysis of the complex Ru(dppe)2H2 was previously studied 

and rate constants determined in the presence of hydrogen and tertiary 

silanes.3 In these studies, LFP of Ru(dppe)2H2 was carried out in the presence 

of different concentrations of HBpin in cyclohexane (Table 3). The Ru0P4 

transient decayed with pseudo first order kinetics restoring the original 

absorbance (Figure 13, left). The second order rate constant k2, of (8.9 ± 0.3) x 

105 dm3 mol-1 s-1 was obtained from the plot of kobs against the concentration of 

the quencher HBpin (Figure 13, right). Laser flash photolysis of Ru(dppe)2H2 in 

the presence of HBcat was not successful.  

 

 

 

Figure 13. Left: transient decay after photolysis of Ru(dppe)2H(Bpin) recorded at 470 
nm at 298 K. Right: plot of the pseudo first order rate constants, kobs vs the 
concentration of HBpin. 
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Table 3. Pseudo-first-order rate constants for reaction of transient species 
Ru(dppe)2 at 295 K in cyclohexane with HBpin. 

 

[HBpin], M/kobs, s
-1

 

Ru(dppe)2 - HBpin 

0.02 3.51×104 

0.04 4.85×104 

0.103 1.24×105 

0.301 3.1×105 

0.601 5.18×105 

0.807 7.63×105 

 

6.5. Discussion 

The primary photochemical step in the reaction of [Ru(PP*)2]H2 is reductive 

elimination of dihydrogen as proved by the observation of the characteristic 

multiband UV/vis spectra3 of the 4-coordinate [Ru(PP*)2] within the instrumental 

rise time (< 20 ns) on laser flash photolysis of ΛΛΛΛ-R,R-Ru1H2, ΛΛΛΛ-R,R-Ru2H2 and 

ΛΛΛΛ-R,R-Ru3H2. Similar multiband spectra for [Ru(PP)2] have been observed 

previously for PP = dmpe, depe, dppe, dfepe and have been shown to be 

characteristic of an approximate square planar geometry. The lowest energy 

band was previously assigned to a dz
2-pz transition;3 it is observed at 740 nm, 

700 nm and 750 nm for ΛΛΛΛ-R,R-Ru1H2, ΛΛΛΛ-R,R-Ru2H2 and ΛΛΛΛ-R,R-Ru3H2 

respectively, close to observations on the analogues Ru(dmpe)2H2, 

Ru(depe)2H2 and Ru(dppe)2H2 which present bands up to 760 nm. At higher 

energy, we note that the most intense absorption band of ΛΛΛΛ-R,R-Ru2H2 is red-

shifted significantly (560 nm) relative to the spectra of the other complexes; ΛΛΛΛ-

R,R-Ru1H2 shows it at 520 nm and ΛΛΛΛ-R,R-Ru3H2 at 480 nm. The crystal 

structures of the trans complexes provide models for the structures of 

[Ru(BPE)2] and [Ru(DuPHOS)2]. In trans-R,R-Ru1(Cl2) and trans-R,R-

Ru1(Br)(H), the [Ru(BPE)2] moiety approximates to D2 symmetry while the 
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[Ru(DuPHOS)2] moiety of trans-R,R-Ru2(C6F5)(H) shows a significant twisting 

of Ru-P(1)-P(2) relative to Ru-P(3)-P(4) (18.4°) (Figure 14). This torsion may 

account for the shift observed in the UV/vis spectrum. 

 

 

 

Figure 14. From the left: molecular structures of trans-R,R-Ru1(Cl)2; trans-R,R-

Ru1(Br)(H) and trans-R,R-Ru2(C6F5)(H).26 
 

6.5.1. Kinetics 

The reactivity of the intermediates [Ru(BPE)2] and [Ru(DuPHOS)2] has been 

explored by transient kinetics. The second order rate constant for back reaction 

of [Ru(BPE)2] with H2 ((1.8 ± 0.1) × 107 dm3 mol-1 s-1) is similar to that for 

[Ru(dppe)2] but substantially smaller than those for [Ru(dmpe)2] and 

[Ru(depe)2].
3 The rate constant for reaction of [Ru(DuPHOS)2] with H2 is three 

times smaller than that for reaction with [Ru(BPE)2]. The kinetic isotope effects 

(KIE) for these reactions are 1.18 ± 0.08 and 1.63 ± 0.12, respectively. These 

reactions have very small barriers that are almost certainly created by steric 

hindrance and the KIE is correspondingly small. 

The rate constants for reaction of the three oxidative addition substrates with 

[Ru(BPE)2] span a factor of 200 and follow the order H2 > PhSiH3 > HBpin. The 

corresponding rate constants for reaction of [Ru(DuPHOS)2] are between three 

and nine times smaller, but follow the same order (Figure 15, Table 2). Notably, 

this order still applies if a statistical correction is applied for the number of 

hydrogen atoms available for activation. The rate constant for reaction of 

[Ru(DuPHOS)2] with C6F5H was even smaller than for other substrates (1800 
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times smaller than for reaction with H2). The reaction rate with Et2SiH2 was too 

slow to determine by these methods. 

 

 

Figure 15. Plot of log10 k2 versus the different quencher for Λ-R,R-Ru1H2 (stipple) and 
Λ-R,R-Ru2H2 (hatched) where k2 is the second order rate constant. 

 

The reason that the reactions of [Ru(BPE)2] and [Ru(DuPHOS)2] are slower 

than those of [Ru(dmpe)2] and [Ru(depe)2] almost certainly lies with blocking 

action of the methyl substituents on the phospholane rings (Figure 16). 

Examination of the crystal structures of Λ-R,R-Ru1H2 and Λ-R,R-Ru2H2 

indicates that the steric constraints are greater for Λ-R,R-Ru1H2, but it is 

[Ru(DuPHOS)2] that reacts more slowly, probably because the C6H4 link is 

more rigid than the CH2CH2 link between the phosphorus atoms. 

 

 

Figure 16. Molecular structures of ΛΛΛΛ-R,R-Ru1H2 (left) and ΛΛΛΛ-R,R-Ru2H2 (right) (50% 
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thermal ellipsoids), all hydrogen atoms omitted for clarity except for H(1) and H(2). 

Note that one phospholane ring in ΛΛΛΛ-R,R-Ru1H2 is disordered; just one form is 
shown.26 

 

In addition to transient kinetic measurements, my colleague Marius Câmpian 

performed competition reactions in which the photoreaction of Λ-R,R-Ru1H2 or 

Λ-R,R-Ru2H2 was followed in the presence of two substrates. These tests 

demonstrated that the selectivity PhSiH3 > HBpin > Et2SiH2 can be observed in 

steady state photochemical experiments, just as in transient spectroscopy. 

However, exchange between substrates also occurs on photolysis of Λ-R,R-

Ru1(Et2SiH)(H) in the presence of HBpin or PhSiH3 indicating that the product 

distribution represents a photostationary state. 

Very surprisingly complex Λ-R,R-Ru3H2 appears to react 100000 times slower 

with H2 than Λ-R,R-Ru1H2 ((1.8 ± 0.1) x 107 dm3 mol-1 s-1). Isopropyl groups are 

sterically more demanding than methyl groups; as a result reaction with a small 

substrate such as hydrogen takes place on the second timescale. Moreover this 

very low timescale could suggest an agostic interaction taking place between 

the metal centre and the isopropyl groups which would enhance the selectivity. 

Steady state photolysis with Λ-R,R-Ru3H2 was not successful due to the need 

for very long photolysis times and lack of selectivity in product formation. The 

validity of the data measured by laser flash photolysis for complex Λ-R,R-

Ru3H2 could be called into question due to errors in the estimation of the 

pseudo first order rate constants. Diffusion of species outside the monitoring 

beam is a source of errors for slow kinetics measurements.25 Nevertheless, the 

good linear fit obtained by plotting kobs against pressure of H2 for complex Λ-

R,R-Ru3H2 encourages confidence in the validity of the experiment. It would be 

interesting to carry out kinetic experiments with complex Λ-R,R-Ru3H2 and 

different quenching ligands. Since laser flash photolysis is not the best tool to 

look at such slow kinetics, a rapid scan UV-spectrometer set up with a flash 

lamp could be used to get rate constants.  

In order to complete the reactivity trend of Ru(PP)2H2 complexes, laser flash 

photolysis for the reaction of the Ru(dppe)2H2 complex in the presence of HBpin 
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was also explored. A return to the pre-flash level indicates that the oxidative 

addition of HBpin is complete within less than 100 µs for a concentration of 

HBpin of 0.02 M. This is consistent with the formation of a Ru(II) species. As 

expected the rate constant for reaction of Ru(dppe)2H2 lies between the ones 

observed previously for Ru(dmpe)2H2 and Ru(depe)2H2 
6 and those previously 

discussed for the Ru(BPE)2 and Ru(DuPHOS)2 dihydride species26(Table 4). 

 

Table 4. Second order rate constants, k2 dm3 mol-1 s-1, for reaction of RuH2 complexes 
with HBpin and H2. 
 

 Ru(dmpe)2 Ru(depe)2 Ru(dppe)2 Ru(BPE)2 Ru(DuPHOS)2 

HBpin (1.3±±±±0.2)x10
9
 (1.3±±±±0.1)x10

7
 (8.9±±±±0.3)x10

5
 (9.9±±±±0.6)x10

4
 (1.1±±±±0.5)x10

4
 

H2 (6.2±±±±0.3)x10
9
 (1.3±±±±0.1)x10

7
 (2.4±±±±0.2)x10

7
 (1.8±±±±0.1)x10

7
 (5.6±±±±0.4)x10

6
 

 

Reductive elimination of the dihydrogen occurs within the instrumental rise time 

(< 20 ns) upon flash photolysis for all the complexes shown in Table 4. There is 

clearly a trend in the k2 values (Figure 17), which are larger for complexes with 

less bulky phosphines, (e g dmpe and depe) for both the reactions with HBpin 

and H2. Ru(dppe)2 shows 10 times more reactivity towards HBpin than the BPE 

analogue. The Ru(DuPHOS)2 is almost 100 times slower in reaction with HBpin 

than the Ru(dppe)2 complex; this difference in reactivity can surely be explained 

by the use of stereogenic phoshines BPE and DuPHOS where the methyl 

substituent on the phosholane ring exercise a blocking action, congesting the 

access for the ligands towards the unsaturated metal centre.  

The reduction in reactivity towards HBpin observed on going from Ru(dmpe)2 to 

Ru(dppe)2 spans a factor of 1500 and it is probably due to the sum of a steric 

effect played by the bulkier dppe bidentate phosphine and the smaller electron 

donation from the ligand to the Ru centre. The same trend is observed for 

reactions with H2 (Table 4, Figure 17), Ru(dppe)2 is again less reactive than 

Ru(depe)2 and Ru(dmpe)2, the rate constants for complexes Ru(BPE)2 and 

Ru(DuPHOS)2 are still smaller than for Ru(dppe)2. However, since hydrogen is 
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a really small ligand, the blocking action exercised by the methyl groups on the 

phospholane ring is less significant than in reactions with HBpin (Figure 17). A 

reduction in rate constant by a factor of 80 is in fact observed from Ru(dppe)2 to 

Ru(DuPHOS)2 for reactions with HBpin, while rate constants for reactions with 

hydrogen span just a factor of 4. On the other hand, a huge effect is observed 

with Ru(iPr-BPE)2 in which the rate constant for reaction with H2 is massively 

reduced. 

dmpe depe dppe Me-BPE DuPhos iPr-BPE
0

2

4

6

8

10
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 H
2
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g

1
0
 k

RuH
2
 complex

 

Figure 17. Plot of log10 k2 versus the different Ru(PP)2H2 complexes in the presence of 
HBpin (blue) and H2 (orange) where k is the second order rate constant. 

 

6.6. Summary 

We can conclude that the primary photoproducts of Ru(drpe)2H2 (drpe = dppe, 

BPE, DuPhos and iPr-BPE) are the 4-coordinate complexes Ru(drpe)2. Each of 

the complexes Ru(drpe)2 exhibits a multiband UV-visible spectrum including a 

long-wavelength band assigned to a M(dz
2)-M(pz) transition. The spectra are 

characteristic of a structure close to square planar. The reactivity of the 

complexes increases in the order Ru(iPr-BPE) < Ru(duphos)2 < Ru(BPE)2 < 

Ru(dppe)2. The 2nd order rate constants follow the order H2 > H3SiPh > HBpin. 
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6.7. Experimental 

6.7.1. General procedures  

All operations were performed under an argon atmosphere on a high-vacuum 

line (10-4 mbar), or in a glovebox. Solvents for general use (cyclohexane, 

benzene) were of AR grade, dried by distillation over sodium and stored under 

Ar in ampoules fitted with a Young’s PTFE stopcock. Cyclohexane used for LFP 

experiments was dried in the same way and used just for LFP experiments to 

avoid contaminations. HBpin was bought from Aldrich and purified by vacuum 

distillation. Λ-R,R-Ru1H2, Λ-R,R-Ru2H2, Λ-R,R-Ru3H2 were synthesized by Dr. 

Marius Câmpian as reported in the literature26 and Ru(dppe)2H2 was prepared 

as reported in Chapter three.27 

6.7.2. Laser Flash Photolysis.  

Samples were prepared exclusively in the glove box. They were loaded into a 

quartz cuvette (10 mm path-length) fitted with a Young`s PTFE stopcock, a 

degassing bulb, and a greaseless Young’s connection. The complex (ca 2-3 

mg) was dissolved in cyclohexane (5 mL) in an argon-filled glove box with a 

concentration selected to have an absorbance at the laser wavelength (308 nm) 

between 0.6 and 0.85 checked by UV/vis. Liquid quenchers were added with a 

micro liter syringe to the solution containing the complexes. The solution was 

then degassed by freeze-pump-thaw cycle (3 times) on a high-vacuum Schlenk 

line before being backfilled with the appropriate gas. The gaseous quencher (or 

argon) was admitted up to 1 atm pressure on the high vacuum Schlenk line. For 

high pressure work the window edges of the cuvette were flamed to secure the 

seal and the Young’s connection was replaced by a glass-to-metal seal and a 

Swagelok fitting. The gas was admitted on a high pressure line and the 

pressure measured with an MKS Baratron capacitance manometer. The cell 

was held in a metal container for safety. A single sample was used for each run 

with increasing gas pressure. The results were consistent with a corresponding 

run with decreasing gas pressure. The variable pressure measurements were 
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performed on two different samples each for H2 and D2 and were carried out 

side-by-side on the same day. The gases were of Research Grade: deuterium 

99.96 atom % D, Isotec; hydrogen N5.5, BOC; argon N5.5, BOC. 

The apparatus consists of an excimer laser (MPB Technologies Inc, MSX-250) 

operating at 308 nm (XeCl) as the exciting source, coupled to an Applied 

Photophysics laser kinetic spectrometer with a Xe arc lamp (XM-300-5 HS 

made by ORC) as a white light source (Scheme 10). The laser pulse (ca 11 ns) 

is focused into a beam of ca 1-mm diameter and directed through the sample 

together with the monitoring beam in a collinear arrangement by means of a 

quartz beam splitter. Light falling on the photomultiplier detector is sampled by a 

Tektronix TDS 520 oscilloscope and transferred to a computer for data analysis 

and storage. Transient decays are usually analyzed as 15 shot averages. The 

computer is used to fire the laser and the oscilloscope is triggered by diverting 

part of the laser beam and focusing onto a photodiode. Transient spectra are 

obtained by the point-by-point method and correspond to difference spectra 

after particular fixed times following the laser flash. The samples were 

maintained at 295 K. 

 

 

Scheme 10. Schematic representation of the LFP apparatus. 
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7 X-Ray Crystallography 
7.1 Introduction 

Single crystal X-ray diffraction is nowadays one of the most frequently used 

techniques for the structural characterisation of molecules. The technique has 

evolved immensely in the last 50 years coupled to the improvement of computer 

power and lead to extraordinary results in different areas of research; many 

Nobel Prizes in chemistry have been awarded for work based on 

crystallographic results.1 Obtaining a structure at atomic resolution is very good 

evidence; knowing the geometry of the compounds you are investigating is 

helpful to understand the reactivity for further studies. The great majority of 

organic, organometallic and inorganic molecular structures have been also 

determined in this way; the number of structures deposited in the CSD clearly 

reflects the potential of this technique. I considered fundamental at my stage of 

study to have a deeper understanding of the strength, the precision and the 

limitations of X-ray crystallography and be trained in doing it. In this Chapter the 

crystallographic analysis of some of the structures obtained in the group is 

attempted. Different ruthenium and rhenium complexes are structurally 

analysed and compared to data already known in the literature. 

7.2 Crystal structure analysis 
7.2.1 Ruthenium hydride complexes 

Complexes 1 and 2 (Figure 1) are ruthenium hydride compounds formed by 

photochemical reactions of the analogue Λ-[cis-Ru((R,R)-Me-BPE)2(H)2] and Λ-

[cis-Ru((R,R)-Me-DuPHOS)2(H)2] species in the presence of phenyl silane and 

pentafluorobenzene respectively. Their crystal structures have been determined 

by X-ray diffraction and the results interpreted. Crystallographic data for 

complexes 1 and 2 are reported in Table 1.  
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Figure 1. Molecular structure of ∆-R,R-Ru(PhSiH2)(H), 1 (left, top-bottom), and trans-
R,R-Ru(C6F5)(H),2 (right, top-bottom). Hydrogen atoms are omitted for clarity apart 
than the hydrides and the hydrogens bounded to the silicon. Ellipsoids for the 
anisotropic displacement parameters are shown at the 50% level.  
 

Both the complexes 1 and 2 crystallised in the space group P21. They belong to 

a monoclinic crystal system with a primitive lattice. The P21 space group is 

enantiomorphic with two fold axes, 2 (no improper rotation are present), as well 

as polar axes (every operation leaves more than one common point unmoved) 

and it has a two-one screw axis where a two fold rotation and a translation are 

combined together. Complex 1 shows optical activity, as suggested by the 

space group of crystallization. 
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Table 1. Crystallographic data for complexes 1 and 2. 
 

 1 2 
Formula C42H64P4RuSi C42H57F5P4Ru 

M 821.97 881.83 
a/Å 11.6044(3) 12.525(14) 
b/Å 16.5646(2) 12.651(13) 
c/Å 12.0137(3) 12.530(13) 

α/deg 90.00 90.00 
β/deg 118.031(3) 92.913(10) 
γ/deg 90.00 90.00 
V/ Å3 2038.40(8) 1982.84(4) 
T/K 110(2) 110(2) 

Space group P21 P21 
Crystal system Monoclinic Monoclinic 

Z 2 2 
Reflns meads 18688 14233 
Reflns indep 11806 8822 

Rint 0.0222 0.0222 
Final R [I> 2σ(I)] R1 = 0.0273 R1 = 0.0257 

 wR2 = 0.0584 wR2 = 0.0530 
Final R (all data) R1 = 0.0307 R1 = 0.0278 

 wR2 = 0.0600 wR2 = 0.0541 
GooF on F2 1.015 1.035 

 

Unit cell dimensions and angles are consistent with a monoclinic crystal system 

where α should be equal to γ and both equal to 90º. The presence of a two-fold 

axis also confirms the minimum rotation symmetry required for the molecule to 

crystallise in this system. 

Both the data sets merged satisfactorily as confirmed by the low values of Rint 

(0.0222 for both complexes) and the discrepancy indices showed a very good 

agreement between the calculated models and the observed ones. Goodness 

of Fit was for both complex 1 and 2 close to 1 (1.015 and 1.035 respectively), 

demonstrating again that a consistent model was created. Finally, no major 

peak or holes were found in the electron density map. The Ru-H and Si-H 

hydrogen atoms were located by difference map and refined. The remaining 

hydrogens were placed at fixed distances with a riding model. 

Table 2 shows some of the main bond lengths and angles, no anomalies were 

detected with the values being consistent with what was previously observed for 
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analogous Ru species. The Ru-Si and Ru-H bond lengths of 2.4064(6) Å and 

1.52(3) Å are in agreement with those found in [Ru(PMe3)4(SiR3)(H)].2 The 

hydride−silicon distance H(1)···Si(1) to 2.20(4) Å indicates a residual interaction 

between the Si and H resulting in less complete oxidative cleavage of the Si−H 

bond.3 The absolute configuration is ∆, opposite to that of the starting material 

Λ-[cis-Ru((R,R)-Me-DuPHOS)2(H)2]. The rigid benzene backbone makes the 

access of phenyl silane to the ruthenium center difficult. The residual interaction 

is reflected also in the angles P(1)−Ru(1)−Si(1) (146.61(2)°) and 

P(4)−Ru(1)−Si(1) (111.57(2)°) which are very different compared to those in Λ-

R,R-Ru1(PhSiH2)(H) of 164.14(3)°, 87.12(2)° where oxidative addition is 

complete and no residual interactions are observed.4 

The Ru−C bond length (2.229(2) Å) for complex 2 lies in between those 

reported for the other known similar structures which are trans-

[Ru(dmpe)2(C6F5)(H)],5 and a cis carbene complex 

[Ru(dppp)(ICy)(CO)(C6F5)(H)].6 For complexes X and Y the C6F5 plane almost 

bisects the C−C bonds of the C6H4 units of the DuPHOS ligands. The angle 

between the plane defined by the C6F5 group and the Ru−H bond vector is 

6.39°, and the angle between the same plane and the one defined by the RuP4 

skeleton is 81.63°, the arene moiety results almost perpendicular to the RuP4 

part. The RuP4 skeleton is significantly distorted from planarity, with a torsional 

angle of 18.4° between the planes Ru−P(1)−P(2) and Ru−P(3)−P(4). The 

hydride was located at 1.68(2) Å from Ru, compared to a Ru−H distance of 

1.59(5) Å found in the Ru(dmpe)2(C6F5)H.5 
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Table 2. Selected Bond Lengths (Å) and Angles (deg) for complexes 1 and 2. 
 

Bond (Å) 
∆∆∆∆-R,R-Ru2 

(PhSiH2)(H),1 
Bond (Å) 

trans-R,R- 

Ru2(C6F5)(H),2 

Ru-H(1) 1.52(3) Ru-H(1) 1.68(2) 

Ru-Si 2.4064(6) Ru-C 2.229(2) 

Si···H(1) 2.20(4)   

Angles (deg)  Angles (deg)  

P(1)-Ru-Si 146.61(2) P(1)-Ru-C 91.93(6) 

P(4)-Ru-Si 111.57(2) P(4)-Ru-C 92.11(6) 

P(4)-Ru-H(1) 171.7(9) P(4)-Ru-H(1) 88.6(8) 

 

7.2.2 Ruthenium hydride dihydrogen complexes 

 

Figure 2. Molecular structure of [Ru(BPE)2(H2)(H)]+[Bcat2]
-, 3. Hydrogen atoms are 

omitted for clarity apart from the hydride and dihydrogen. Ellipsoids for the anisotropic 
displacement parameters are shown at the 50% level. 
 

Compounds 3 (Figure 2) and 4 (Figure 5) are ruthenium dihydrogen hydride 

complexes obtained by thermal reaction of the Ru(BPE)2H2 precursor with 

HBcat and HBArF
4. Complex 3 crystallized in an orthorhombic crystal system 

where all the three angles are 90º and there are no restrictions on unit cell 

lengths. As shown in Table 3, a is different from b which is different from c. 



Chapter 7: X- ray crystallography 

 187 

 

Table 3 Crystallographic data for complexes 3 and 4. 
 
 

 

P212121 has three mutually perpendicular C2 axes and is one of the 

enanthiomorphic point groups. The asymmetric unit carries a solvent molecule 

of crystallization (CH2Cl2) and there are four repeating building blocks in the unit 

cell (Z = 4). Figure 2 shows the Ortep diagram of the [Ru(BPE)2(H2)(H)]+ cataion 

plus the counter ion B(cat)2
-. The closest contact with the counter ion occurs at 

2.51 Å between the oxygen of the borolane ring and a hydrogen atom of the 

methyl group of the phospholane moiety. The metal centre appears to be 

disordered over two sites (Ru1, Ru1A; Figure 3); the disorder was successfully 

modeled with 80:20 occupancy. The phosphorus atom P3 is also disordered 

over two positions along with the phospholane moiety (Figure 3).  

Hydride and dihydrogen ligands were not found by difference maps and were 

located by comparison with the [Ru(η2-H2)H(DuPHOS-Me)2]
+ previously 

reported. 7 They lie trans to each other and are disordered with 80% probability 

in one position and 20% in the other one (Figure 4).  

 3 4 

Formula C41H69BCl2O4P4Ru C60H71BF24P4Ru 
M 932.62 1483.93 

a/Å 11.4288(3) 13.1108(5) 
b/Å 13.3751(3) 13.1152(6) 
c/Å 28.8585(8) 22.1948(10) 

α/deg 90.00 104.829(4) 
β/deg 90.00 92.187(4) 
γ/deg 90.00 118.293(4) 
V/ Å3 2038.40(8) 1982.84(4) 
T/K 110(2) 110(2) 

Space group P212121 P1 
Crystal system Orthorhombic Triclinic 

Z 4 2 
Reflns meads 20794 31471 
Reflns indep 13722 24661 

Rint 0.0245 0.0424 
Final R [I> 2σ(I)] R1 = 0.0435 R1 = 0.0863 

 wR2 = 0.0895 wR2 = 0.2370 
Final R (all data) R1 = 0.0522 R1 = 0.0933 

 wR2 = 0.0951 wR2 = 0.2524 
GooF on F2 1.067 1.069 
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Figure 3. Phospholane moiety of complex 3 showing the disorder. Hydrogen atoms are 
omitted for clarity. Ellipsoids for the anisotropic displacement parameters are shown at 
the 50% level. 
 

 
 

Figure 4. [Ru(PP)2(H2)(H)] fragment for complex 3 showing the disorder of the metal 
centre Ru1 / Ru1A, hydrides H1AA / H1C and dihydrogen H1AB-H1AC / H1B-H1A 
ligands. 
 
The dihydrogen ligand appears almost totally eclipsed by the P2-Ru1-P3 unit as 

already observed in the DuPHOS complex, and bond lengths are consistent 

with those found for the DuPHOS analogue (Table 4). 

Refinement indicators for complex 3 are quite satisfactory; Goodness of Fit is 

very close to 1; R factors are low enough to be confident about the correctness 

of the structure and the low value for Rint proves that the data merged very well 

(Table 3). 
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Figure 5. Molecular structure of [Ru(BPE2)(H2)(H)]+[BArF

4]
-, 4. Hydrogen atoms are 

omitted for clarity apart from the hydride and dihydrogen. Ellipsoids for the anisotropic 
displacement parameters are shown at the 50% level. 
 
Complex 4 is analogous to complex 3, but with a different counter ion. The data 

set was much poorer than for complex 3 since the crystals were very thin 

plates; refinement indicators are in fact worse (Table 3). The structure is not 

disordered as observed for complex 3; the shortest contact between the anion 

and cation occurs at 2.60 Å, between a fluorine atom of the BArF
4 cation and a 

hydrogen atom on the phosholane moiety. 

The molecule crystallizes in a triclinic crystal system; it exhibits a primitive 

lattice in a P1 space group where no rotational symmetry and cell dimensions 

restrictions are required.  

Table 4 shows a comparison between selected bond lengths for complexes 3 

and 4 with the previously reported [Ru(DuPHOS)2(H2)H][PF6]
7, X. Bond lengths 

are very similar, even though [Ru(BPE)2(H2)H]+ complexes 3 and 4 show 

shorter Ru-P interactions than the previously reported ones. The differences in 

Ru-H distances are not statistically significant, but the differences in Ru-P 

distances are significant. Thus the mean Ru-P distances for 3, 4, and X are 

2.3356, 2.323 and 2.365 respectively. This is possibly a consequence of 

smaller steric constraints because of the absence of the phenyl moiety on the 

phospholane bridge which reduces backbonding. 
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Table 4. Selected bond lengths (Å) for complexes 3 and 4 and comparison with the 
[Ru(DuPHOS)2(H2)H]+ complex, X, previously reported. 
 

 3 4 X 

Ru-H1A 1.90(1) 1.928(7) 1.93(9) 

Ru-H1B 1.77(9) 1.78(6) 1.78(7) 

Ru-H1C 1.80(1) 1.77(6) 1.78(7) 

Ru-P1 2.3536(12) 2.320(3) 2.393(14) 

Ru-P2 2.3302(11) 2.322(3) 2.372(12) 

Ru-P3 2.3332(14) 2.317(3) 2.350(4) 

Ru-P4 2.3253(12) 2.333(3) 2.346(4) 

 

7.2.3 Rhenium Carbonyl compounds. 

Rhenium tricarbonyl compounds are well known for their photophysical 

properties and recently for their applications in solar energy conversion.8,9 Our 

group has explored these compounds as catalysts in CO2 to CO photoreduction 

either used as single components10 or as part of photoactive dyads.11 The 

molecular structures of complexes Re(CO)3(4,4`-BMCbpy)(OPF2O) 5, 

[Re(CO)3(bpy)(Pic)][PF6] 6 and [Re(CO)3(4,4`-BMCbpy)(NCCH3)][PF6] 7 were 

characterized by X-ray diffraction (Figure 6) and the results interpreted. The 

4,4`-BMCbpy displays  two methoxy carbonyls (BMC) group as substituents on 

the bipyridyl ring for complexes 5 and 7. 
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Figure 6. Molecular structure of Re(CO)3(5,5`-BMCbpy)(OPF2O), 5 (top left); 
[Re(CO)3(bpy)(Pic)][PF6], 6 (top right); and [Re(CO)3(5,5`-BMCbpy)(NCCH3)][PF6], 7 
(bottom). Hydrogen atoms are omitted for clarity. Ellipsoids for the anisotropic 
displacement parameters are shown at the 50% level. 
 
Refinement indicators were good for all the three complexes (Table 5), and no 

disorder was showed by any of the structures. P21/c was determined as space 

group of crystallisation for all the complexes; this is a monoclinic crystal system 

with primitive lattice. The space groups have a two-fold screw axis and a glide 

plane perpendicular to b, finally an inversion centre is present and therefore 

P21/c is one of the centrosymmetric space groups (Figure 7).  

 

 

 

 

5 6 

7 
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Table 5. Crystallographic data for complexes 5, 6 and 7. 

 

 

Complex 5 is neutral while complexes 6 and 7 are cationic with PF6
- as counter 

ion. The shortest interaction between anion and cation occurs at 2.639 Å for 

complex 6 and at 2.609 Å for complex 7. 

 
Figure 7. View of the crystal packing in P21/c for complex 5 along b with representation 
of the symmetry elements. Green: Two-fold screw axes; Pink: Glide planes 
perpendicular to b; Light orange: Inversion centers. 

 5 6 7 

Formula C17H12N2O9F2ReP C19H15F6N3O3PRe C19H15F6N3O7PRe 
M 643.46 664.51 728.51 

a/Å 12.9895(5) 13.1006(4) 10.3451(5) 
b/Å 12.1469(2) 11.27050(13) 14.1259(5) 
c/Å 14.2301(11) 14.57937(17) 16.5788(9) 

α/deg 90.00 90.00 90.00 

β/deg 113.667(7) 98.5041(14) 101.453(6) 

γ/deg 90.00 90.00 90.00 
V/ Å3 2056.44(18) 2128.98(7) 1982.84(4) 
T/K 110(2) 110(2) 110(2) 

Space group P21/c P21/c P21/c 
Crystal system monoclinic monoclinic monoclinic 

Z 4 4 4 
Reflns measd 23575 20436 9564 
Reflns indep 8049 6851 4781 

Rint 0.0364 0.0267 0.0226 
Final R [I> 2σ(I)] R1 = 0.0289 R1 =  0.0200 R1 = 0.0263 

 wR2 = 0.0647 wR2 =  0.0405 wR2 = 0.0578 

GooF on F2 1.055 1.039 1.041 
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Selected bond distances and angles are listed in Table 5; the two ionic 

complexes 6 and 7 exhibit very similar bond lengths with the exception of the 

Re-X distance, where X is the picoline nitrogen for 6 and the acetonitrile 

nitrogen for complex 7. This bond length is significantly shorter for complex 7 

but consistent with what was previously reported for Re-NC(CH3) complexes. 12 

Bond distances for complex 5 are also similar to the one observed for 

complexes 6 and 7 apart from the Re-CAx bond which is the shortest for 

complex 5, but the longest for the other two complexes. This could be explained 

assuming a smaller trans-effect exercised by the difluorophosphate ligand 

compared with the picoline or acetonitrile ligands. The Re-N(bpy) bond lengths 

for 5-7 are comparable with Re-sp2 nitrogen bond lengths (2.14 to 2.18 Å);13  

however Re-N(picoline) (2.2081(18) Å) is longer compared with the other ones in 

this analysis and with the one reported in the literature for the complex cis-

[ReCl(picoline)(en)2]
2+.14 Such elongated bond length has been observed for the 

complex [H4Re3(CO)9L]-[LH]+ (L = α-picoline) which shows a Re-N distance of 

2.235(15) Å.15 

 

Table 6. Selected Bond Lengths (Å) and Angles (deg) for complexes 5, 6 and 7. 

 
Complex 5 (X=O) 6 (X=N) 7 (X=N) 

Re-N1 2.172(2) 2.1730(17) 2.176(3) 

Re-N2 2.148(2) 2.1672(17) 2.168(3) 

Re-CAx 1.903(3) 1.933(2) 1.930(4) 

Re-CEq 1.930(3) 1.918(2) 1.918(4) 

Re-CEq 1.921(3) 1.917(2) 1.924(4) 

Re-X(ligand) 2.1541(19) 2.2081(18) 2.120(4) 

N1-Re-N2 74.76(8) 75.14(7) 75.48(11) 

N1-Re-X 78.66(8) 84.15(6) 83.21(12) 

N2-Re-X 79.23(8) 85.74(7) 81.64(12) 
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While N1-Re-N2 angles are very similar for all the three compounds, N1-Re-X 

and N2-Re-X angles are considerably smaller for complex 5 than for complexes 

6 and 7. The structure of 5 appears as a strongly distorted octahedron. 

Crystallographic data16 previously reported for the Re(CO)3(bpy)(OPF2O) 

complex are comparable to those observed for complex 5 with the only 

exception of the Re-O bond which is 0.03 Å shorter in our studies confirming 

stronger interaction with the rhenium centre.  

The O-Re-P angle is also significantly different; it was observed to be 133.2(9) 

Å for the Re(CO)3(bpy)(OPF2O) complex and it is 138.98(12) for complex 5 

suggesting a stronger steric repulsion.16  

Overlay of the structures 5 and 7 (Figure 8) highlighted the different orientation 

of one of the methoxy-carbonyl group on the bipyridyl ring for complex 7 (green, 

COOCH3 on the right). Short interactions between one H on the methyl group 

with the anion PF6
- in the crystal packing blocked the COOCH3 arm and 

consequently it is rotated about 90˚ compared to the same fragment in structure 

5 (red). 

 

 
Figure 8. Overlay of Re, O1, O2 and O3 atoms of the carbonyl ligands of 
Re(CO)3(4,4`-BMCbpy)(OPF2O) 5, (red) and [Re(CO)3(4,4`-BMCbpy)(NCCH3)][PF6] 7, 
(green), showing the different orientation of the two COOCH3 ligands. 
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8 SUMMARY AND CONCLUSIONS 

The aim of this thesis was the investigation of the photochemical behavior of Rh 

and Ru phosphine complexes in the presence of a variety of bonds (C-H, C-F, 

B-H, B-B, Si-H) to determine new mechanistic routes in those processes. The 

full characterization and isolation of new compounds has been presented along 

with mechanistic findings. 

8.1 C-F 

1. Cleavage of C-F bonds was achieved at rhodium metal centres. Both 

CpRh(PMe3)(C2H4) and Tp`Rh(PMe3)H2 has been demonstrated to act as good 

C-F activators. While the former gives a cyclometallation product in the 

presence of 4-substituted tetrafluoropyridines (OMe, NMe2), the latter proceeds 

through intermolecular oxidative addition to form the Rh-F analogue in its 

photochemical reaction with C5F5N. Upon scaling up the reaction, crystals were 

obtained; the crystal structure demonstrated that the Tp`Rh-F complex acts as 

trap for HF since a molecule of HF was found coordinated to the fluoride, held 

by hydrogen bonding. In contrast, the reaction of the CpRh(PMe3)(C2H4) 

complex in the presence of C5F5N allowed isolation of the η2–C2,C3 –pyridine 

complex and no C-F activation was detected upon photochemical or thermal 

conditions. C-F activation at Tp`Rh centres is regioselective for the ortho 

position whereas the CpRh(PMe3) fragment inserts into the C-F bond at the 

meta position of the 4-substituted tetrafluoropyridines. Mechanistic studies 

suggested that a five membered ring is preferred to a six membered and that 

cyclometallation takes place only if the substituent in four-position contains a 

primary carbon at the β-position. From these results we can conclude that the 

nature of the ligands around the metal centre is fundamental in determining one 

coordination mode rather than the other, while Cp allows η2 coordination in the 

presence of C5F5N, Tp` directs intermolecular oxidative addition; this is probably 

due to the different steric bulk of the two ligands. 
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8.2 B-H 

1. Irradiation of the complex Ru(dppe)2H2 in the presence of substrates 

containing a B-H bond (HBpin and HBcat) leads to the formation of new Ru-

boryl cis-Ru(dppe)2H(Bpin) and cis-Ru(dppe)2H(Bcat) compounds along with 

byproducts. The species were found to be unstable under vacuum conditions 

and therefore isolation and purification was not achieved; nevertheless 

comparison of the NMR data and the coupling constants with those of 

ruthenium boryl complexes previously characterized crystallographically 

supports our hypothesis of oxidative addition of the B-H bond. The broadness of 

one of the peaks in 31P{1H} NMR spectrum for both the complexes cis 

Ru(dppe)2H(Bpin) and cis Ru(dppe)2H(Bcat) strongly suggests a phosphorus 

trans to boron.  

2. In contrast, photochemical reaction of complexes Tp`Rh(PMe3)H2 and 

Tp`Rh(CNneopentyl)(η2-PhN=C=N-neopentyl) in neat HBpin leads to the 

formation of two stable Rh-boryl complexes fully characterized by multinuclear 

NMR spectroscopy and mass spectrometry. The structure of 

Tp`Rh(PMe3)H(Bpin) was determined crystallographically. The Rh-B bond was 

found to be very stable even at high temperature (140ºC). Surprisingly the 

activation of the B-H bond occurs in preference to C-H activation of the alkyl 

groups on the substituent for both the starting complexes. 

3. Interestingly, the complex CpRh(C2H4)2 reacts in the presence of HBpin 

and B2pin2 under photochemical conditions to extrude one ethylene and to form 

the corresponding boron containing adduct characterized by NMR spectroscopy 

and mass spectrometry. No crystals were obtained because of the instability of 

the products in solution (few hours). The lack of structural information made the 

distinction between a σ-coordination and an oxidative addition path for the 

reaction with HBpin impossible. Nevertheless preliminary calculation suggested 

η2 coordination as favorite. The catalytic ability of the system was tested in the 

presence of heptane and the functionalized heptyl-Bpin detected by GC-MS.  

4. Three different CpRh(PR3)(C2H4), (R = PMe3, PMe2Ph, PPh3) complexes 

were photolysed in hexane solution in the presence of H2BN(iPr)2. The reactions 
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cleanly formed the B-H activated products CpRh(PR3)H(BHN(iPr)2) which were 

characterized by multinuclear NMR spectroscopy. The Rh centres did not show 

any reactivity toward N coordination or C-H activation of the iPr groups. 

8.3 Si-H 

1. Irradiation of Tp`Rh(PMe3)H2 and Tp`Rh(CNneopentyl)(η2-PhN=C=N-

neopentyl) in the presence of silanes (Et2SiH2, Et3SiH, PhSiH3) was also 

investigated. The reactions were selective for the activation of the Si-H bond; 

new Rh-silyl complexes were formed and characterized spectroscopically. The 

crystal structure for the Tp`Rh(PMe3)H(Et2SiH) was determined, no residual 

Si…H interaction were found.  

8.4 LFP 

1. Laser flash photolysis of the complexes Ru1, cis-[Ru((R,R)-Me-

BPE)2(H)2], Ru2, cis-[Ru((R,R)-Me-DuPHOS)2(H)2] and Ru3, cis-[Ru((R,R)-iPr-

BPE)2(H)2] demonstrates that the primary photoproducts are the four-coordinate 

complexes Ru(PP)2. Each of the complexes Ru(PP)2 exhibits multibands UV-vis 

spectra which are characteristic of a structure close to square planar. A long 

wavelength band is included in all the spectra assigned to a M(dz
2) - M(pz) 

transition. The reactivity of the complexes decreased in the order Ru1 > Ru2 > 

Ru3. The rates of their reactions with H2, D2, HBpin, and PhSiH3 were 

measured by transient kinetics. Rate constants are significantly faster for Ru1 

than for Ru2 and follow the substrate order H2 > D2 > PhSiH3 > HBpin. The rate 

constant for reaction of Ru3 with H2 span a factor 100000 from that of Ru1. 

9 Future work 

• The isolation of the B-H activation products in reactions of both Ru(dppe)2H2 

and CpRh(C2H4)2 complexes. Conversion to metal-boryl halide could be an 

option to improve the stability and allow isolation. IR spectroscopy of the Ru- 

and Rh-boryl complexes looking for the B-H stretch and same analysis in 

the presence of deuterated HBpin could also be performed. 
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• Further investigation of the reactions of CpRh(PR3)(C2H4) complexes with 

the amino-borane substrate in the presence of hydride abstractor compound 

to see the next step after oxidative addition in coordination modes. 

Structural determination of the B-H oxidative addition products.  

• Follow up the catalytic potential towards the functionalization of alkanes in 

the presence of HBpin shown by the CpRh(C2H4)2 system. The reaction 

conditions need to be optimized and yields quantified. 

• Carry out kinetic experiments with complex Λ-R,R-Ru3H2 and different 

quenching ligands by a rapid scan UV-spectrometer set up with a flash 

lamp.  
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I. Appendix to chapter seven 
I.II. Crystals and their internal structure 

A crystal is a highly ordered structure, where the assembly of identical 

molecules which form it, are repeated by 3D translation. The repeating building-

block in three dimensions is called a unit cell and it is defined by 3 unit cell 

lengths (a,b,c), and 3 angles (α, β, γ), (Figure 1, a). In a simplified manner (for a 

primitive lattice) each unit cell contains the equivalent of one lattice point; 

replacing each repeating unit with a lattice point leads to a crystal lattice (Figure 

1, b). In the crystal lattice every point is generated by the translational symmetry 

of the starting point such as the view in a given direction from each point is 

identical with the view in the same direction from any other lattice point.  

 

       

 

Figure 1. (a) Representation of a unit cell where a,b,c are the unit cell lengths and 
α, β, γ  the angles.1 (b) Schematic representation of a crystal lattice where every point is 
a lattice point.2 
 

The unit cell usually carries internal symmetry, the smallest part of the unit cell 

to which symmetry elements are applied is called asymmetric unit. The internal 

symmetry characterises the space group of the crystal, 230 possible 

combinations exists, and therefore there are 230 space groups allowed in the 

solid state.3 A space group arises from the different allowed combinations 

between crystal system, lattice centering, point groups and symmetry: 

• The lengths and angles of the unit cell are restricted to certain values 

depending on the symmetry. Crystals can have rotational symmetry of only 2, 3, 
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4 and 6. Based on these restrictions, there are seven types of crystal symmetry 

called the seven crystal systems (Table 1). 

 

Table 1. Crystal systems with point group symmetry restrictions and cell-dimensions 
restrictions. 
 

Crystal system Rotational symmetry 
elements 

Restriction on unit cell 

Triclinic none none 

Monoclinic One two-fold rotation 
axis. α = γ = 90º 

Orthorhombic Three two-fold rotation 
axes. α = β = γ = 90º 

Tetragonal One four-fold rotation 
axis. 

a = b 
α = β = γ = 90º 

Rhombohedral One three-fold rotation 
axis. 

a = b = c 
α = β = γ ≠ 90º 

Hexagonal One six-fold-rotation axis. a = b, α = β =  90º γ = 120º 

Cubic Four three-fold rotation 
axes. 

a = b = c 
α = β = γ = 90º 

 

• A crystal system can be primitive, P, where there is a lattice point only at the 

eight corners of the unit cell; face centred F with lattice points at the centre of all 

the faces; face centred A, B and C, if only one pairs of opposite faces has 

lattice points. Finally body centred, I, where there is a lattice point at the very 

centre of the unit cell. A combination between the seven crystal systems and 

the lattice centring gives the 14 Bravais lattices. 

• The sum of the 32 point groups, which describes in term of symmetry an 

isolate object, plus translational symmetry (e.g. simple translation, screw axes 

and glide planes) gives as result the space group. A space group may be 

considered as the result of operation that converts the asymmetric unit into an 

infinitely extending pattern (crystal lattice).  
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I.III. X-ray in crystallography and diffraction 

In order to “see” a molecular structure at atomic resolution we need to use 

radiation comparable or smaller than the distance between atoms, and 

considering that a C-H bond is ~ 1.1 Å, X-rays produce the suitable wavelength 

(0.1 to 100 Å) for this type of investigation. 

Figure 2 shows the electromagnetic spectrum; high frequency radiation such as 

X-rays have shorter wavelength and therefore higher energy. X-rays are 

scattered by the electrons in the atoms; upon interaction with the electric 

component of the beam, electrons starts to oscillate behaving as a source of 

radiation with the same wavelength as that of the incident X-ray. 

 

 

Figure 2. Electromagnetic spectrum of light.4 
 

Scattering by a single molecule is too weak to be detected and the high energy 

of X-rays would degrade the molecule before a meaningful scattering pattern 

can be recorded. The use of crystals solves this problem, in fact the scattering 

of many molecules present in the crystalline sample is amplified by constructive 

interference and the damage of a small proportion of the molecules by the 

ionizing radiation can be accepted. Furthermore, no lenses can focus such high 

energy electromagnetic radiation and recombine it physically to form an image; 

therefore the position and intensity of the scattered rays are recorded by a 

detector (with the unavoidable loss of the phase information). An image is then 

created mathematically as the result of calculation carried out on a time-

averaged electron density map where atomic positions are locations of electron 

density, and concentration of electron density distinguishes the atoms. The 

need to split the process into two parts (recording the X-ray pattern and 
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recombining it by maths) lead to the loss of some information; since intensity is 

proportional to the square of wave amplitude, this information is retained while 

relative phases are lost. To obtain a 3D image of the molecules, position, 

amplitude and phase for every reflection need to be known. The electron 

density map cannot be computed by a Fourier series without knowing the 

phase. The different methods for solving the phase problem are based on 

estimating the position of some of the atoms to obtain approximate values for 

the phases; improvement of the accuracy of the phase is achieved at a later 

stage during refinement. Only the asymmetric unit is refined since the rest of 

the molecules in the unit cell are related by crystallographic symmetry. Direct 

methods and the Patterson function are the two methods used to get an 

estimate of the phases in small molecule X-ray crystallography. 

Diffraction from the crystal produces a scattering pattern which is the result of 

the scattering average unit cell, but only sampled at discrete points at angles 

when Bragg’s law is fulfilled. Diffraction maxima occur when the distance 

between imaginary planes of atoms is such that paths from successive planes 

differ by an integral number of wavelengths. The scattered X-rays then interfere 

constructively and produce a reflection (Figure 3). 

 

 
Figure 3. (Left) Geometric representation of Bragg`s law; (Right) Bragg`s law. 

 

Miller indices (h,k,l), classify every allowed diffracted beam (or every reflection) 

from the origin (0,0,0); they increase in number as the distance from the centre 

increases. The Miller indices specify a single reflection and correspond to the 

set of planes that slice the unit cell in different directions (Figure 4). The three 

       nλ = 2λ = 2λ = 2λ = 2d sinθθθθ    

    
n = integer number 
λ = wavelength of radiation 
d = perpendicular space 
between the lattice planes 
θ = complement of the angle 
of incidence. 
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integers are needed to specify the orientation of the planes with respect to the 

unit cell dimensions (a,b,c). 

 

 

 

Figure 4. Miller indices in cubic crystals. 
 

A crystal lattice and its diffraction pattern are geometrically related in a 

reciprocal (or more intuitively should be said “inverse”) way, such that widely 

spaced reflections are observed for unit cells with small dimensions and vice 

versa. For the same reason, reflections closer to the origin will carry less 

detailed information compared with reflections at higher angle, as high order 

reflections will slice the unit cell into more parts. Every diffracted beam accounts 

for contributions from each bit of the structure and it is mathematically 

described by the structure factor F. The level of details obtained depends on the 

resolution. The resolution is the process of distinguish individual parts of objects 

when examined with a radiation. For small molecules the major of X-ray 

structures are determined to a resolution of 0.8 – 1.0 Å, each atom therefore 

can be fairly distinguished. 

The conversion of a diffraction pattern to an image in real space (full 3D 

electron density of the unit cell) can be achieved using a reverse Fourier 

transform (Scheme 1) where each structure factor (Fhkl) contains amplitude, 

position and phase information (Equation 1; FT-1). The intensity and position of 
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every reflection are measured experimentally while the phases must be 

calculated with any of the available methods.  

The forward Fourier transform (Equation 2; FT) of the electron density is the 

diffraction pattern, hence, once the electron density model has been built a 

calculated diffraction pattern can be created to improve the phases and validate 

the crystallographic process (Scheme 1). 

 

 

 

Scheme 1. Schematic representation of the use of the Fourier Transform in crystal 
structure determination. The two pictures are not related to each other.5 
 

F(hkl) = Σ fj
`(θ) exp[ 2πi (hxj + kyj + lzj)]                (FT) 

          
Equation 1. 

 

ρρρρ(xyz) =  1/V Σ Σ Σ |F(hkl)| exp[ -2πi (hx + ky + lz)]      (FT-1) 
                        All h,k,l 

Equation 2. 
 
Finally, materials commonly used to generate X-rays are copper and 

molybdenum with wavelengths of 1.54 Å and 0.71 Å, respectively. These metal 

targets are bombarded with electrons to cause electrons from core orbitals to 

be ejected and to be replaced by electrons from higher energy orbitals. The 

energy released from this process cause emission of radiation from where X-

rays are generated. A number of devices between the source and the detector 

(monochromator, collimators and mirrors) will improve the beam quality. If a 

much more intense X-ray beam is needed, synchrotron radiations are available 

FT 

FT
-1
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to collect X-ray diffraction data. Figure 5 shows a schematic flowchart with all 

the steps needed during a crystal structure determination, every step will be 

briefly analysed.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5. Flowchart for the steps of a crystal structure determination. 
 

Get the compound pure and 
choose the best crystallisation 

method. 

Obtain unit cell geometry and 
preliminary symmetry info. 

Choose a 
suitable crystal 
and mount it. 

Data Collection. 

Data Reduction (dataset can 
be improved applying 

correction to it.). 
 

Solve the structure choosing 
the suitable method. 

 
Complete the structure finding 

all the atoms. 
 

Refine the structure model till all 
the indicators converge 

satisfactorily. 

Interpret the results. 
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I.IV. Purification and crystal growth. 

Once the desired compound has been identified and characterised in solution, 

the first step in order to get crystals is crystallisation, a process which is not 

always successful. An initial bulk recrystallization of a substance can commonly 

be insufficient to obtain single crystals for XRD and therefore, different methods 

of recrystallization may need to be employed. 

Solution methods with careful choice of solvents are commonly used, as well as 

slow evaporation of solvent and slow cooling. The choice of the solvent is 

fundamental. It needs to be kept in mind that “like dissolves like”, e g. polar 

compounds dissolved in polar solvents have to be layered with non polar 

solvents. From my experience benzene is a good solvent for crystallisation as 

well as hexane even though long alkyl chains are discouraged since they might 

cause disorder in the lattice. However, every compound is unique and 

generalising is not a good rule for growing crystals. Combinations of solvents 

need to be tested, with regard to the physical and chemical properties of the 

substance to be crystallised. Crystal growth can be time consuming. 

Crystallisation is the sum of three different stages controlled by kinetic and 

thermodynamic factors: nucleation, growth and cessation of growth. 

1. Nucleation: nucleation is the initial process and the most critical. 

Enthalpy and entropy play against each other in this step, aggregation of 

molecules to form nuclei is in fact entropically disfavoured and the gain in 

enthalpy due to initial aggregation is small. Therefore the “potential” crystal 

needs to overcome a free energy barrier in order to grow. The use of a 

saturated solution is the way to reach the top of the energetic hill and eventually 

start the descent to the formation of ordered crystals. There are two different 

types of nucleation, homogeneous and heterogeneous. The first one involves 

just the same species participating in the process while in the latter; it is the 

surface of particles such as dust that favour the crystallisation process. 

2. Growth: once the nucleation has happened, the second step is the 

growth phase, a process that is thermodynamically favored. The growth occurs 

when there is not enough energy for new nuclei to form but there is a high 



Appendix to chapter seven 

 207 

compound concentration that helps the crystal in the growth process 

(metastable phase). 

3. Cessation of growth: no more molecules are added to the crystals. 

Two factors influence this stage: no more compound left or introduction of 

impurities which make the process thermodynamically unfavourable.  

Listed below are some of the common crystallisation methods we perform in our 

lab to get suitable crystals of organometallic compounds.  

• Slow evaporation of solvent. 

 Slow evaporation is one of the most used and easiest methods for 

crystallisation of organometallic compounds. It does not always give the best 

quality crystals, slow evaporation might in fact produce crystals stuck to each 

other since the crystallisation starts only when little solvent is left. Crystals might 

also grow when stuck to the vessel wall, making it harder to get the crystal 

without damaging it.  

• Solvent layering. 

The compound is dissolved in a solvent where it is soluble and layered with 

another one where it appears insoluble. It is essential not to physically disturb 

the vessel for at least more than a week in order to get good size crystals. 

• Slow cooling. 

The crystals are formed very slowly; therefore the cooling time needs to be 

reduced. There are different ways of achieving a reduction in cooling time, 

placing the vessel in another container can help as well as adding some 

insulating protection. Very often this method is combined with other ones, 

solvent layering/slow cooling is quite usual. 

These are just a few of the methods that can be used for growing crystals; 

vapour diffusion, sublimation, thermal gradient and many more could also work.  

I.V. Choose a suitable crystal 

The crystal must be a single one, where all the unit cells are identical and 

aligned in the same direction. In reality all the crystals have imperfections; the 

smallest is the “mosaic spread” (range of misalignment of unit cells), the biggest 
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is the chance to get a well diffracting single crystal. The first check takes place 

under the microscope, where the crystallographer looks for regular polyhedral 

shapes with well defined edges; a microscope with a polariser also helps in 

choosing the right crystal. When dealing with air-sensitive compounds it is vital 

to use an argon atmosphere to prevent decomposition. Once the crystal is 

coated with oil is mostly safe, unless it is of extreme air sensitivity where special 

manipulations are required. The crystal is “fished” on a loop and the loop 

mounted on a goniometer head which allows the crystal to be centred in the X-

ray beam. The goniometer head is positioned between the X-ray source and the 

detector and allow the crystal to be rotated in three directions (φ, ω, χ) during 

data-collection (Figure 6). The detector can also rotate (θ, Figure 6) (four-circle 

diffractometer).  

 
 

Figure 6. Schematic diagram of a four circle diffractometer.6 
 

Before moving to the next step of the process, a “still image” of the crystal is 

acquired in order to get an idea about the quality: if the spots are well 

separated, there are no signs of twinning, and the crystal diffracts to a 

satisfactory angle (> 50º), it is worth performing a unit cell run. 
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I.VI. Obtaining unit cell geometry and preliminary symmetry information 

Using a diffractometer equipped with an area detector gives the possibility of 

obtaining information about unit cell and symmetry for the crystal in few 

minutes. The quality of the diffraction pattern can be assessed from the pre-

experiment and considering the internal symmetry a data collection strategy will 

be suggested by the software. The purpose of an ideal data collection is to 

obtain a data set that is 100% complete, with high quality data to as high 

resolution as possible. This is clearly not achievable in reality, since the quality 

of the data depends on many factors (diffraction resolution, mosaicity, internal 

order, internal symmetry and noise). A good agreement (> 80%) between the 

reflections observed experimentally during pre-experiment and those fitted in 

the chosen unit cell will be indicative of obtaining a good quality data set for the 

full experiment. 

I.VII. Data acquisition 

A data collection can take few hours or maybe a day, depending on the quality 

of the crystal, on acquisition of redundant data, on the maximum Bragg angle to 

be measured and on the space group. The crystallographer must take some 

decisions about the intended strategy; every case is different, but mostly a data 

set need to have completeness as closer as possible to 100%, the Bragg angle 

measured has to be greater than 50˚ (circa 0.8 Å) and the signal to noise 

ratio, Ι/σ(Ι), greater than 15. Other parameters can be varied with respect to the 

individual case. The result of the data acquisition is a set of reflections, each 

with different Miller indices (hkl) and recorded intensities (Ι). 

 

I.VIII. Data reduction, solving the structure and refinement 

The frames collected are processed in this step. All the reflections are 

measured and their intensity and positions recorded. Absorption correction is 

also carried out in order to improve the quality of the data, each reflection will 
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be affected differently by X-ray absorption since the latter vary with the rotation 

of the crystal. At this stage any systematic error occurred during data 

acquisition, will be also treated. The outcome of the data reduction is therefore 

a unique set of data where all the symmetry-related reflections are merged and 

averaged. The intensities are estimated along with the standard uncertainty and 

converted to structure factors. The right space group is also determined. 

One measure of how well the data merge together is given by the term Rint. 

Global data quality check starts together with data reduction; in fact Rint below 

0.1 is a satisfactory value for starting the refinement process. Rint is defined as: 

 

                                     
   

   
Equation 3. 

 
where the inner sums are over the symmetry-equivalent reflections and the 

outer sums are over the unique hkl data (Equation 3). At this stage the “phase 

problem” becomes relevant. As already mentioned, since it is not possible to 

built a 3D image of the electron density without information about the phase, the 

phase term in the Fourier transform cannot be solved. Estimating the position of 

some of the atoms (especially those with more electrons) is the way of solving 

the phase problem. Obtaining approximate values for the phases will allow 

generation of a set of different structure factors and comparison of these with 

the experimental will optimize the accuracy of the phase at a later stage during 

refinement. The different methods for solving the phase problem are based on 

this basic concept.  

Two of the commonly used methods to solve the “phase problem” for small 

molecules are Direct methods and Patterson methods. Direct methods work 

better for structures with heavy atoms, while Patterson is better used for 

structures where atoms have equal number of electrons. While the first one 

attempts to work out the phases of reflections considering just the most intense 

diffracted beams (based on the conditions that electron density must be or 

positive or zero everywhere only certain values of the phases are allowed), the 

Rint = ∑ [ ∑ |Fj
2
 - <F2

>| ] / ∑ [ (∑ Fj
2
) ] 
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second build a map of electron density peaks, with the peaks representing the 

end points of vectors between atoms and having common origin. 

The refinement (“playing” with positions and vibrations) can be started once an 

approximate model has been built, and it consists in systematically varying the 

atomic parameters in order to get the best agreement between the observed 

structure factors F0 and the calculated ones, FC. While varying the FC, F0 

remains fixed, and the aim is to minimize the sum of the squares of the 

deviations of the experimentally observed values from their respective 

calculated (Least Squares method). Least Square refinement can be done on F 

(Equation 4) or on F2 (Equation 5), the latter becoming nowadays more popular 

and important. The sums are taken over h,k,l. 

 

    ΣΣΣΣ    w (| F0 | - | FC |)2                                              
Equation 4. 

    ΣΣΣΣ    w (F0
2 - FC

2)2            w = 1/σσσσ2 (F0
2)                       

Equation 5. 
 

The calculations needs to be iterated until the change in the parameters are 

insignificant and convergence is achieved. This is because the linear 

approximation improves as the final solution is approached. The parameters 

that need to be refined include the coordinates of the model (x,y,z of every 

atom), the displacement parameters (isotropic and anisotropic), occupancies (if 

more than one conformation is seen) and twin fraction (if twinning is present). 

Refinement also accelerates with the introduction of constraints and restraints, 

which means that fewer variables to be refined. Hydrogen atoms, for instance, 

are usually placed in calculated positions (restrained), in fact the information 

carried by the hydrogen parameters usually has large errors because of their 

weak contribution to the diffraction. As the refinement process converges, its 

correctness must be checked. A consistent number of statistical parameters 

exist in order to produce a correct structure determination. 
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R factors (discrepancy indices, R and wR2) are useful but not definitive indices 

of correctness. As shown in Equation 6 and     Equation 7 residual factors are 

an assessment of the agreement between the calculated diffraction pattern and 

the observed one.  

The wR2 is a discrepancy factor where the weights are included and the 

calculation is carried out over F2 instead than F. If the data set is good, small 

molecules usually refine to R values of 0.05 or even lower, while wR2 will be 

roughly double the value of R. The sums are taken over h,k,l. 

 

 
       

      
      
      

    Equation 6. 
 

 

 

    

    Equation 7. 
 

Goodness of fit also shows how reliable the standard deviations of the 

positional and displacement parameters of the atoms really are and for a 

correct weighting scheme it should be close to unity. Finally no fluctuations 

should be present on the electron density map and no anomalies in the 

geometry of the structure. 

 

 

              Σ w(F0
2 - FC

2)2         
wR2 = [                         ]1/2  
                  Σ w(F0

2)2 
 

         Σ | |F0| - |FC| |         

R =                                     
             Σ |F0|                  
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II. LIST OF ABBREVIATIONS 

 

Chemicals 

HBpin  pinacol borane, 4,4,5,5-tetramethyl- 1,3,2,-dioxaborolane 

B2pin2 bis(pinacolato)diborane, 4,4,4`,4`,5,5,5`,5`-octamethyl-2,2`-bi-   
1,3,2- dioxaborolane 

B2pin3  ( 2-pinacolato-O,O')-bis(pinacolato-O,O')diboron 

Cat  catecholato, 1,2-O2C6H4 

Me  methyl, CH3 

Et  ethyl, CH2CH3 

iPr  iso-propyl, CH(CH3)2 

Cp  cyclopentadienyl, η5-C5H5 

Cp*  pentamethylcyclopentadienyl, η5-C5Me5 

Ph  phenyl, C6H5 

Dppe   diphenylphosphinoethane 

Depe   diethylphosphinoethane 

Dmpe  dimethyphosphinoethane 

BPE  {C2H4P(2R,5R-Me2C4H6)} 

DuPhos {PhP(2R,5R-Me2C4H6)} 

iPrBPE {(C2H4)P(2R,5R-iPr2C4H6)} 

IMes  2,5-Mes2-N2C3H2 

IEt2Me2 1,3-bis(ethyl)-4,5-dimethylimidazol-2-ylidene 

COD  1,5-cyclooctadiene 

Ru1H2  Λ-[cis-Ru((R,R)-Me-BPE)2(H)2] 

Ru2H2  Λ-[cis-Ru((R,R)-Me-DuPHOS)2(H)2] 

Ru3H2  Λ-[cis-Ru((R,R)-iPr-BPE)2(H)2] 

Tp`  tris(2,4 – dimethylpyrazolyl) borate 
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CDI  carbodiimide, η2-PhN=C=N-neopentyl 

Pic  picoline 

 

Units 

Å  ångström 

atm  atmosphere 

Hz  hertz 

h  hours 

K  kelvin 

s  second 

J  joule 

mol  mole 

g  gram 

mg  milligram 

 

Spectroscopy 

IR  infra red 

UV  ultra violet 

Vis  visible 

LFP  laser flash photolysis 

MS  mass spectroscopy 

EI  electron impact 

LIFDI  liquid injection field desorption/ionization 

NMR  nuclear magnetic resonance 

COSY  correlation spectroscopy 

HMQC heteronuclear multiple quantum coherence 

δ  chemical shift (in ppm) 
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ppm  parts per million 

J  coupling constant 

s  singlet 

d  doublet 

t  triplet 

q  quartet 

m  multiplet 

br  broad 

dd  doublet of doublets 

ddd  doublet of doublet of doublets 

dt  doublet of triplets 

 

Special terms 

DFT  density functional theory 

KIE  kinetic isotopic effect 

MLCT  metal to ligand charge transfer 

LMCT  ligand to metal charge transfer 

LF  ligand field 

FT  fourier transform 
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