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Abstract 

Previous work indicates that ongoing thought varies between contexts and that the adaptive 

nature of different features of thought depends on the context in which they emerge. 

However, prior investigations have primarily examined specific features of thought in a 

limited range of laboratory tasks. In doing so, they do not consider the multidimensional and 

heterogeneous nature of thought, nor reflect the many and varied situations we encounter in 

everyday life. Accordingly, a core aim of this thesis was to use Multidimensional Experience 

Sampling (MDES) to empirically map different patterns of thought across a wider range of 

situations to build a more comprehensive account of context-dependent cognition. In parallel, 

this thesis capitalises on contemporary methods to map differences in thought to differences 

in neural architecture to understand the distributed mechanisms supporting different forms of 

thought, allowing us to go beyond describing experiences. By examining MDES data 

collected before and during the UK’s first COVID-19 lockdown, Study 1 highlights that daily 

activities play an important role in shaping patterns of thought and that differences in age 

moderate thought-situation relationships. By examining MDES data collected in the 

laboratory while watching videos and in daily life during the COVID-19 pandemic, Study 2 

identified a generalisable pattern of socio-emotional and future-directed problem-solving that 

consistently emerges under conditions of uncertainty. Finally, Study 3 suggests that past-

related thought and problem-solving at rest differentially predict the relative functional 

integration and segregation of unimodal systems (visual and sensorimotor). This thesis, 

therefore, demonstrates the utility of MDES for building a comprehensive account of 

cognition since it can be used to understand between- and within-person differences in 

ongoing thought across a wide range of situations, understanding that can be leveraged in the 

future to understand how thought-situation relationships contribute to aspects of wellbeing 

and how the brain supports these experiences.  
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Chapter 1- Introduction and Review of the Literature 

Our train of conscious thought is an integral feature of the human experience, and the 

contents of these ongoing thoughts vary substantially between different situations, people, 

and over time (Smallwood et al., 2021). In some moments, our thoughts are closely tied to the 

situation we are in, or the task we are performing. For example, evaluating an author’s point 

of view while reading an article, or pondering over the beauty of the sun as it rises. However, 

in other moments, our minds wander further away to events, people, and places that extend 

beyond the physical here-and-now (Smallwood & Schooler, 2006). For instance, anticipating 

future scenarios for an upcoming work meeting while getting ready for the day, or reflecting 

on a recent social interaction while lying in bed at night. 

Prior work indicates that our ongoing thoughts change substantially between different 

contexts and that the costs and benefits associated with different features of thought depend 

on the context in which they are experienced (Smallwood & Andrews-Hanna, 2013). 

Contexts can be both internal and external. Internal contexts refer to elements of our internal 

experience, including cognitive, emotional, and physiological states, while external contexts 

refer to elements of our external environment, including locations, social environments, and 

activities. Historically, previous research has focused on investigating specific dimensions of 

thought (e.g., task focus; Giambra, 1989) in a limited range of task contexts in the laboratory 

(e.g., sustained-attention-to-response tasks; McVay & Kane, 2009). In doing so, these 

investigations do not consider the multidimensional and heterogeneous nature of thought, nor 

reflect the many and varied situations we encounter in our daily lives. Consequently, our 

understanding of how our ongoing thoughts are influenced by changes in context, particularly 

those that are demanding, personally-meaningful, and naturally-occurring, remains limited. In 

turn, this limits our understanding of the psychological nature of different patterns of thought 

experienced in day-to-day life. 

Accordingly, empirically mapping different patterns of thought across a wider range of 

contexts—in both controlled laboratory and naturalistic real-world settings—is an important 

step for ultimately understanding how individual differences in ‘thought-situation’ 

relationships contribute to aspects of health and wellbeing in the future (Smallwood et al., 

2021). In parallel, capitalising on contemporary methods to map individual differences in 

thought content to individual differences in neural architecture provides valuable insights into 

the neural mechanisms supporting different forms of thought—allowing us to go beyond 
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simply describing experiences—and provides important validation of self-report methods 

used to sample ongoing thought (Martinon et al., 2019b). 

The current thesis uses a technique known as Multidimensional Experience Sampling 

(MDES; Smallwood et al., 2016) to address these broad aims. MDES asks participants to 

describe their experience by rating multiple items assessing different dimensions of thought 

(e.g., task focus, temporal orientation, self- and other-focus). Study 1 uses MDES to 

understand how changes to daily life activities during the UK’s first COVID-19 lockdown 

related to changes in ongoing thought patterns and examines how thought-situation 

relationships in daily life vary between younger and older individuals. Study 2 uses MDES to 

understand how people think when they are uncertain —and how this varies according to trait 

anxiety—under controlled laboratory conditions and in daily life during the COVID-19 

pandemic. Finally, Study 3 uses MDES to understand how individual differences in ongoing 

thought content at rest relate to individual differences in neural architecture. The theoretical 

insights and methodological advancements emerging from these complementary avenues of 

research can ultimately be leveraged in the future to improve our understanding of how, 

when, and for whom thought patterns are helpful or detrimental and how the brain supports 

these experiences. 

1.1 Outline 

This introductory chapter will first provide a conceptual framework and a set of 

methodological criteria necessary for understanding differences in ongoing thought, and 

explain how MDES can address these criteria (section 1.2). It will then discuss the value of 

using naturalistic viewing paradigms in the laboratory, but also highlight the importance of 

sampling experience in daily life and the need for methods that assess the generalisability of 

MDES findings in real-world situations (section 1.3). Next, it will consider how sampling 

ongoing thought in neuroimaging contexts offers valuable insights into these experiences by 

providing insight into the neural mechanisms as well as important validation of self-report 

methods used to sample ongoing thought (section 1.4). Finally, it will summarise the aims of 

each empirical study presented in the current thesis (section 1.5). 

1.2 Ongoing Thought is Multidimensional and Heterogeneous  

Contemporary accounts of cognition highlight that ongoing thought is multidimensional 

since it varies in focus, form, and content (Mildner & Tamir, 2019; Seli et al., 2018; 

Smallwood & Andrews-Hanna, 2013; Smallwood et al., 2016; Smallwood et al., 2021). It is 
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also heterogeneous because not all individuals experience the same patterns of thoughts in all 

situations. For example, individuals scoring higher in autistic traits show a tendency to think 

more in words than in images (Turnbull et al., 2020a), while unhappy individuals tend to 

focus on the past (Smallwood & O'Connor, 2011). Despite both the multidimensionality and 

the heterogeneity, scientific investigations have often focused on examining specific 

dimensions of thought in isolation. For example, significant advancements have been made in 

understanding the functional outcomes associated with ‘mind-wandering’ (e.g., Killingsworth 

& Gilbert, 2010; Mrazek et al., 2012; Smallwood et al., 2008b) and the variables that 

determine the prevalence of mind-wandering (e.g., Giambra, 1989; Smallwood et al., 2002). 

For instance, the prevalence of mind-wandering increases as task block duration increases in 

tasks that do not require controlled processing, while this effect is not observed in tasks that 

require controlled processing (Smallwood et al., 2002). Similarly, substantial progress has 

been made in understanding the role that mental time travel (MTT; Suddendorf & Corballis, 

2007; Tulving & Kim, 2007) plays in our everyday lives (e.g., D'Argembeau et al., 2011), the 

frequency and phenomenological characteristics of voluntary and involuntary MTT 

(Berntsen, 2021; Cole et al., 2016; Rubin & Berntsen, 2009; Schlagman & Kvavilashvili, 

2008), and how these experiences are supported by the brain (Schacter et al., 2017). For 

example, compared to their voluntary equivalents, involuntary future- and past-oriented 

thoughts emerge faster, are more specific, and have a stronger impact on mood (Cole et al., 

2016). Although valuable, by focussing on specific dimensions of thought in isolation, these 

investigations do not adequately capture the complex, multidimensional and heterogeneous 

features of ongoing thought, leading to two important consequences. 

First, assessing only a limited range of cognitive dimensions of experience can make it 

ambiguous whether participants’ responses capture the most salient aspect of their 

experience. This ambiguity makes it harder to draw firm conclusions regarding the 

psychological consequences of cognitive experiences and the neural mechanisms 

underpinning these states. For example, initial investigations in the mind-wandering literature 

found that mind-wandering is associated with subsequent negative mood, leading to the 

conclusion that mind-wandering represents a maladaptive cognitive process contributing to 

unhappiness (Killingsworth & Gilbert, 2010). However, subsequent studies suggest that the 

association between mind-wandering and subsequent negative mood is driven by the 

heterogeneous contents of these experiences rather than the occurrence of mind-wandering 

itself (Poerio et al., 2013; Ruby et al., 2013a). For example, Poerio et al. (2013) found no 
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relationship between instances of mind-wandering and subsequent feelings of sadness or 

anxiety. However, they found that mind-wandering with negative affective content predicted 

sadness while mind-wandering with anxious content predicted anxiety. This study suggests 

that it was features of the content of these experiences, not mind-wandering itself, that 

determined how these experiences related to mood. However, the absence of questions 

relating to these features in the study by Killingsworth and Gilbert (2010) meant that this 

association was impossible to identify. Accordingly, unless we adequately map multiple 

features of ongoing thought, it is unclear whether we have captured the unique contributions 

of distinct aspects of thought to other features of experience. 

Similar to work on mood, failure to adequately map multiple dimensions of thought can 

make it difficult to determine the unique neural mechanisms underlying distinct aspects of 

cognition. For example, initial work examining the neural correlates of mind-wandering 

found that the default mode network (DMN; Raichle et al., 2001) was consistently recruited 

during these experiences (Christoff et al., 2009; Fox et al., 2015; Mason et al., 2007). 

However, subsequent studies assessing different dimensions of these experiences highlight 

that distinct dimensions of mind-wandering have unique neural correlates. For example, 

O’Callaghan et al. (2015) found that memory-based construction/simulation mind-wandering 

was associated with increased functional connectivity between the bilateral temporal pole and 

bilateral hippocampal formation. In contrast, metacognitive/introspective mind-wandering 

was associated with increased connectivity between the right hippocampal formation and 

bilateral posterior cingulate cortex (pCC), suggesting that distinct dimensions of mind-

wandering experiences are associated with unique patterns of neural activity. Similarly, 

Smallwood et al. (2016) found that functional connectivity between different regions of the 

DMN and pCC was associated with a range of different features of ongoing thoughts. As with 

investigations of affect, therefore, investigations of brain function demonstrate the need to 

examine multiple dimensions of experience in order to accurately establish the thought-brain 

relationships that underpin different features of ongoing experience. 

A second consequence of assessing specific dimensions of thought in isolation is that it 

precludes examining the covariation between different dimensions to characterise common 

‘patterns of thought’. For example, prior work highlights that multiple dimensions of thought 

often emerge simultaneously and that the same dimensions of thought can emerge in 

seemingly opposing states (Smallwood et al., 2021). For instance, when people report being 

‘off-task’, they are often also thinking about the future and other people (Baird et al., 2011; 
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Konu et al., 2020), and off-task thoughts can emerge in both deliberate and spontaneous 

cognitive states (Seli et al., 2017b). Therefore, studies suggest that ongoing thought is often 

multidimensional, and so characterising ‘patterns of thought’ allows us to describe cognition 

in its’ complexity and may better reflect how it is actually experienced. In MDES studies, this 

is typically achieved using decomposition techniques like Principal Components Analysis 

(PCA) that quantify the covariation between questions assessing different dimensions of 

thought and describe the data in a smaller number of dimensions. For example, using PCA, 

Ruby et al. (2013a) identified two patterns of off-task thinking that varied in their temporal 

and social focus (future-directed and self-related vs past- and other-focused). Notably, 

patterns of future-directed and self-related off-task thought predicted subsequent positive 

mood, while patterns of past- and other-focused off-task thought predicted subsequent 

negative mood. This study highlights the possibility that there are (at least) two patterns of 

off-task thinking and that they may not have the same psychological associations. Therefore, 

when multiple features of thought are measured, the statistical covariation between different 

dimensions of thought may be used to estimate features of common ‘patterns of thought’ that 

people experience. By studying these thought patterns, we may be able to study cognition in a 

way that better reflects ongoing thought as it actually happens. 

In summary, the multidimensional and heterogeneous nature of thought requires it to be 

described along multiple dimensions since this allows us to (a) better understand the causal 

mechanisms linking cognition to other attributes (e.g., mood or brain) in a way that is more 

accurate than unidimensional accounts would allow and (b) characterise the complex features 

that ongoing thought has by examining the covariation between different dimensions (e.g., 

the identification that there may be multiple patterns of off-task thinking with different 

features). 

1.2.1 Context and Individual Differences 

As well as mapping the multidimensionality and heterogeneity of thought, understanding 

the psychological nature of different features of thought requires that we can map thought 

content in a situation-specific manner and that we sample experience across a wide range of 

situations. Prior work highlights that ongoing thought varies substantially between different 

external contexts. For example, Barsics et al. (2016) found that the prevalence of emotional 

future thinking in daily life varied according to ongoing activities, such that working was 

associated with the most (29%) and leisure activities were associated with the least (3%). 

Furthermore, Sellen et al. (1997) reported that participants thought more about an upcoming 
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task in daily life in ‘transitional’ locations, including staircases and corridors, compared to 

their offices where they would be engaged in more cognitively demanding activities. 

Similarly, Kvavilashvili and Fisher (2007) found that thinking about an upcoming task was 

more common during habitual, automatic activities (62%), such as having a shower or 

brushing teeth, compared to demanding, controlled activities (38%), such as being in a lecture 

or reading a book. In addition, laboratory evidence suggests that the prevalence of 

spontaneous social thought is closely linked to the availability of social interactions, such that 

social thinking reduces following periods of solitude and increases following periods of 

social interaction (Mildner & Tamir, 2021). Accordingly, previous research highlights that 

different situations and activities (i.e., external contexts) are associated with differences in 

ongoing thought content. 

Accounting for the context within which ongoing thoughts emerge has important 

explanatory power when investigating the psychological nature of different forms of thought 

(Smallwood & Andrews-Hanna, 2013). For example, in the mind-wandering literature, 

conflicting findings led some to conclude that mind-wandering is simply a failure of 

executive control (McVay & Kane, 2010), while others argued that mind-wandering depends 

on working memory to provide a workspace for the experience to emerge (Smallwood & 

Schooler, 2006). However, as formalised under the content- and context-regulation 

hypotheses (Smallwood & Andrews-Hanna, 2013), adaptive cognition depends on regulating 

ongoing thought content to match the specific demands of different contexts. For example, 

while allowing one’s mind to wander during complex, demanding tasks detracts from 

concentration and impairs performance (Mooneyham & Schooler, 2013; Smallwood et al., 

2003; Smallwood et al., 2008b), doing so during less demanding conditions is associated with 

beneficial features of behaviour including lower impulsivity when making economic choices 

(Smallwood et al., 2013) and greater fluid intelligence (Turnbull et al., 2019a). Therefore, 

understanding the psychological nature of different forms of thought requires that we 

consider the context in which experience unfolds and that we can map multiple features of 

thought in a situation-specific manner. Moreover, since prior work has primarily focused on 

assessing a limited range of cognitive features (e.g., task focus or future thinking) in a limited 

range of controlled task contexts (e.g., working memory), an important goal of the current 

thesis is to map multiple patterns of thought across a wide range of naturalistic contexts that 

better reflect the many and varied situations we encounter in our day-to-day lives. For 
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example, Study 1 examines how social interactions and working influence the prevalence of 

patterns of ongoing thought in daily life. 

Relatedly, prior work highlights important links between changes in internal contexts 

and differences in ongoing thought. Internal contexts include changes in emotional, cognitive, 

and physiological states. For example, inducing negative affect in the laboratory is associated 

with an increase in mind-wandering generally (Seibert & Ellis, 1991; Smallwood et al., 2009) 

and, in particular, mind-wandering with a focus on the past (Smallwood & O'Connor, 2011; 

Stawarczyk et al., 2013b). In daily life, Poerio et al. (2013) found that sadness—but not 

anxiety—predicted subsequent increases in mind-wandering frequency. In addition, they 

found that sadness and anxiety predicted mind-wandering with sad and anxious content, 

respectively, and sadness predicted more retrospective mind-wandering while anxiety 

marginally predicted more future-directed mind-wandering. Finally, physiological needs such 

as nicotine cravings (Sayette et al., 2010) and hunger (Rummel & Nied, 2017) are associated 

with increased rates of mind-wandering. Accordingly, prior work suggests that our ongoing 

thoughts are influenced by changes in internal context and therefore highlights the need for 

methods that can map multiple features of thought according to changes in internal 

experience. In addition, since prior investigations have predominantly focused on examining 

how negative versus positive internal contexts relate to specific features of thought, our 

understanding of how common patterns of thought change in response to other important 

features of internal experience remains limited. Accordingly, an important contribution of the 

current thesis is that it explores how the prevalence of different thought patterns varies 

according to internal states of uncertainty, arousal, and threat across different external 

contexts (Study 2). 

As well as being context-dependent, previous research highlights that ongoing thought 

varies substantially between individuals. For example, a large body of work suggests that 

older individuals report lower levels of mind-wandering compared to younger individuals 

(Diede et al., 2022; Frank et al., 2015; Jackson & Balota, 2012; Jordão et al., 2019a; Krawietz 

et al., 2012; Maillet et al., 2018; Maillet & Schacter, 2016; McVay et al., 2013; Seli et al., 

2017a). In addition, there is some evidence to suggest that older adults report lower levels of 

spontaneous future thoughts compared to younger adults (Berntsen et al., 2015; Giambra, 

2000; Irish et al., 2019). Although, it is worth noting that some studies have failed to detect 

age-related differences in ongoing thought. For example, Warden et al. (2019) found no age-

related differences in the frequency of spontaneous future thoughts in daily life, Jordão et al. 
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(2019b) found no age-related differences in the frequency of either past- or future-directed 

spontaneous thoughts while completing a vigilance task in the laboratory, and Berntsen et al. 

(2017) found no age-related differences in the frequency of involuntary episodic memories in 

either the laboratory or daily life. In addition, variables such as task motivation (Frank et al., 

2015) and reporting method (self-caught versus probe-caught; Jordão et al., 2019a) appear to 

contribute to some of the observed age-related differences in ongoing thought. Nonetheless, 

meta-analyses suggest mind-wandering is reliably reduced in older adults (Jordão et al., 

2019a; Maillet & Schacter, 2016) and mixed evidence regarding age differences in future 

thinking warrants further investigation across a wider range of contexts to understand the 

situations in which younger and older adults think differently (Berntsen et al., 2015; Cole & 

Kvavilashvili, 2019; Floridou et al., 2019; Irish et al., 2019). As well as age-related 

differences, prior work suggests that individual differences in clinical disorder symptomology 

are associated with differences in ongoing thought. For example, attention-deficit 

hyperactivity disorder (ADHD) and obsessive-compulsive symptomology are associated with 

elevated levels of spontaneous mind-wandering (Cole & Tubbs, 2021; Seli et al., 2015). In 

addition, individual differences in neural structure and function are associated with individual 

differences in ongoing thought. For example, Golchert et al. (2017) found that greater cortical 

thickness in the retrosplenial cortex and lingual gyrus in the left hemisphere was associated 

with an increased trait-level tendency to engage in spontaneous mind-wandering, while less 

cortical thickness in these regions in the right hemisphere was associated with a greater 

tendency to engage in deliberate mind-wandering. Accordingly, prior work highlights the 

importance of using methods that are sensitive to individual variation in ongoing thought 

content and can map individual differences in thought content to differences in individuals’ 

traits and neural architecture. The current thesis examines how ongoing thought patterns and 

thought-situation relationships vary according to individual differences in age (Study 1) and 

trait anxiety (Study 2) and how individual differences in ongoing thoughts at rest relate to 

individual differences in whole-brain functional organisation (Study 3). 

1.2.2 Multidimensional Experience Sampling (MDES) 

The literature reviewed thus far highlights that building a comprehensive account of 

cognition requires that we sample experience across a wide range of situations and use 

methods that can (a) assess multiple features of thought simultaneously and (b) allow 

heterogeneous thought content to be compared between contexts and individuals. As 

described earlier, the current thesis uses Multidimensional Experience Sampling (MDES; 
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Smallwood et al., 2016) to achieve these goals (see Table 1.1). This experience sampling 

method asks participants to describe the focus, form, and contents of their thoughts by rating 

several items assessing different dimensions of ongoing thought (e.g., task focus, temporal 

orientation, valence, spontaneity, and relationship to self or others). 

Since MDES allows cognition to be mapped in multiple dimensions, it can be used to (a) 

identify the dimensions of thought that are most related to the outcome measures of interest 

and (b) map the covariation between different items to identify common ‘patterns of thought’ 

across participants. First, the unique contributions that different dimensions make to other 

variables of interest can be identified by MDES when all items are used as predictors within 

the same statistical model. In the current thesis, Study 3 uses this approach to map the unique 

associations between MDES items and brain activity at rest. Second, by applying PCA to the 

MDES data, we can describe the covariation within the data to highlight ‘patterns of thought’. 

In this thesis, Studies 1 and 2 will utilise PCA to characterise the MDES data to provide 

important insights into the patterns of thought experienced in the laboratory and real world. 

Importantly, previous studies demonstrate that the MDES approach is sensitive to 

changes in both external and internal contexts. For example, MDES studies indicate that low-

demand task conditions are associated with elevated levels of off-task social and temporal 

thoughts, future-directed and self-relevant thoughts, imagery-based thoughts, and intrusive 

thoughts (Konishi et al., 2017; Sormaz et al., 2018; Turnbull et al., 2020a; Turnbull et al., 

2019b). In contrast, patterns of detailed and deliberate task-focus are higher in high-demand 

conditions (Turnbull et al., 2020a). Similarly, deliberate, externally-focused, and goal-

directed thought is more prevalent in daily life during demanding versus undemanding 

activities (Turnbull et al., 2021). In addition, MDES is sensitive to changes in physiological 

and subjective stress levels in the laboratory and in daily life (Engert et al., 2014; Linz et al., 

2019). 

Prior work further demonstrates that MDES is sensitive to individual differences. For 

example, Hoffmann et al. (2016) found that depressed individuals reported thoughts that were 

more negative, self-related, and past-focused compared to controls, while Turnbull et al. 

(2020a) found that autistic symptomology was associated with thinking more in words than 

images, particularly in individuals showing stronger functional connectivity between the 

lingual gyrus and motor cortex at rest. In addition, Turnbull et al. (2019b) found that 

individuals with greater executive control refrain from engaging in off-task social episodic 
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thoughts until task demands are low. Furthermore, Karapanagiotidis et al. (2017) found that 

the extent to which individuals engage in patterns of mental time travel is associated with 

individual differences in the functional connectivity between the right hippocampus and a 

core region of the DMN, the dorsal anterior cingulate. Taken together, therefore, prior work 

demonstrates that MDES can be used to map multidimensional and heterogeneous thought 

content in a context-specific and person-specific manner.  

Table 1.1. Methodological criteria for understanding differences in ongoing thought. 

Criteria How MDES addresses these criteria 

Assess multiple features of 

thought simultaneously 

MDES asks participants to describe their experience by 

rating multiple items assessing different dimensions of 

thought (e.g., temporal focus, self- and other- focus, 

valence) 

Map multidimensional 

thought content within- and 

between individuals across 

situations 

Dimension reduction techniques can be applied to MDES 

data to identify ‘patterns of thought’ to examine 

multidimensional thought within- and between individuals 

across situations (Studies 1 and 2) 

Identify the unique 

contribution of different 

dimensions 

MDES items can be used as simultaneous predictors 

within the same model to identify the unique contribution 

that specific experiential dimensions make to a given 

outcome (Study 3) 

 

In the current thesis, Study 1 uses MDES and PCA in daily life to compare ongoing 

thought patterns between different social environments and activities, and understand how 

these relationships differ between younger and older individuals. Study 2 uses MDES and 

PCA in the laboratory and daily life to examine how ongoing thought patterns vary between 

different external contexts and internal emotional states, and how these relationships vary 

according to individual differences in trait anxiety. In these two studies, applying PCA to the 

thought data allows us to understand how common patterns of thought emerge within- and 

between individuals across different situations in both laboratory and daily life contexts. 

Finally, Study 3 capitalises on the sensitivity of functional magnetic resonance imaging 

(fMRI) to provide insights into the underlying mechanisms behind cognition and uses the 



23 

 

MDES data in a multivariate regression to isolate the unique relationships between distinct 

aspects of thought and patterns of whole-brain functional connectivity at rest. 

1.3 MDES in the Laboratory and Daily Life 

Since prior work highlights the importance of measuring cognition across multiple 

situations, a key advantage of MDES is that it can be used in the laboratory while participants 

complete a range of tasks and in the real world as participants go about their daily lives 

(using smartphones to gain in-the-moment reports). Examining ongoing thought in the 

laboratory is valuable because we have a high level of control over the environment in which 

experience is sampled, and we can directly manipulate variables of interest. For example, 

laboratory paradigms have been valuable for examining the similarities and differences 

between voluntary and involuntary mental time travel (Cole et al., 2016; Rubin & Berntsen, 

2009; Schlagman & Kvavilashvili, 2008), for understanding the effect of cues on ongoing 

thought content (Kvavilashvili & Fisher, 2007; Vannucci et al., 2017), and for investigating 

how ongoing thought patterns vary according to changes in task difficulty (Konishi et al., 

2017; Sormaz et al., 2018; Turnbull et al., 2020a; Turnbull et al., 2019b). 

However, while controlled, laboratory investigations often suffer from low ecological 

validity since they do not reflect the many and varied situations that we encounter in daily 

life, and recent work highlights important differences between thinking in laboratory and 

daily life contexts (Ho et al., 2020; Kane et al., 2017; Linz et al., 2019). For example, Kane et 

al. (2017) examined personality factors associated with increased levels of mind-wandering 

in both the laboratory and daily life. They found that only neuroticism predicted the 

prevalence of off-task thoughts in the laboratory, while only openness predicted the 

prevalence of off-task thoughts in daily life. Therefore, this study suggests that associations 

identified in the laboratory between ongoing thought and other variables do not necessarily 

generalise to the real world. In addition, Ho et al. (2020) used the MDES approach to 

examine how patterns of thought differed between the laboratory and daily life. While their 

analyses indicated that laboratory and daily life patterns were broadly similar, laboratory off-

task thoughts tended to be more social and occurred more spontaneously than daily life off-

task thoughts. In addition, they found that daily life deliberate thoughts were more positive 

than laboratory deliberate thoughts. Accordingly, prior work highlights the importance of (a) 

developing more ecologically valid paradigms in the laboratory, (b) sampling experience in 

daily life, and (c) directly assessing the generalisability of laboratory findings in real-world 

situations. 
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In the laboratory, naturalistic viewing paradigms (Finn et al., 2020) offer a compromise 

between controlled laboratory conditions and ecological validity to examine context-

dependent changes in thought. These paradigms typically present participants with film clips, 

TV shows, news items, or gaming environments. These naturalistic stimuli mimic the 

dynamic, rich, multimodal sensory and contextual features that make up our real-life 

experiences (Sonkusare et al., 2019), thereby maximising the generalisation of thinking 

between laboratory and daily life contexts. Importantly, however, they also allow for direct 

manipulation of variables of interest, including changes in external context, and the induction 

of specific internal contexts in controlled environments. For example, Antrobus et al. (1966) 

found that off-task thinking was higher during an ongoing task when participants had 

previously listened to a radio broadcast announcing that Communist China had declared war 

on the United States than when participants listened to music. This study highlights that 

naturalistic paradigms can successfully induce changes in context and thought in the 

laboratory. However, as with other studies in the literature, a limitation of this study is that it 

focused on a specific dimension of thought (off-task thinking) and did not examine how 

multiple dimensions of thought varied according to this manipulation. In the current thesis, 

Study 2 uses MDES alongside TV-watching paradigms in the laboratory to understand how 

people think under conditions of uncertainty. 

While naturalistic paradigms are useful for overcoming issues with ecological validity, 

laboratory investigations are nevertheless limited because they place significant onus on the 

researcher to select relevant contexts that may not adequately reflect the many and varied 

situations we encounter in our day-to-day lives. Accordingly, examining ongoing thought in 

daily life is helpful for understanding how cognition emerges under real-world conditions that 

occur naturally, and are likely to be more personally-meaningful. The value of sampling 

experience in daily life to efficiently capture changes in context and thought is well illustrated 

by a study by Killingsworth and Gilbert (2010). This study examined the relationships 

between mind-wandering, mood, and daily activities in the real-world using smartphone 

technology. They found that mind-wandering was frequent (occurring in 47% of samples), 

but daily activities had only a relatively small effect on the prevalence of mind-wandering 

and almost no effect on the pleasantness of mind-wandering experiences. They also found 

that mind-wandering was associated with lower levels of happiness across all activities, and 

overall, mind-wandering was a better predictor of happiness than daily activities. The authors 

concluded that “a human mind is a wandering mind, and a wandering mind is an unhappy 
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mind”. However, as already discussed, this study only examined the pleasantness of mind-

wandering experiences, and did not examine the contents of these thoughts (e.g., temporal 

focus or social content). Accordingly, there is a need to examine how multidimensional 

thought content emerges during different activities in daily life. In the current thesis, Study 1 

uses MDES to understand how the prevalence of multiple thought patterns varies between 

social environments and daily activities such as work and leisure during the COVID-19 

pandemic. 

Although applying dimension reduction techniques to MDES data to identify patterns of 

thought is valuable, data-driven approaches make it difficult to assess the generalisability of 

laboratory findings in real-world situations since the thought patterns identified in each 

dataset will necessarily be different to a greater or lesser degree. Consequently, it becomes 

unclear whether discrepancies in how thoughts relate to other features of experience are 

driven by the thought patterns themselves being different, or by important differences in the 

context in which experience was sampled (i.e., naturally-occurring and personally-

meaningful vs artificially induced). However, the current thesis employs a novel projection 

technique to overcome this limitation. In this context, projection involves computing the dot 

product between the component loadings from one dataset and the MDES items from 

another. Projecting patterns in this way allows us to examine patterns from different datasets 

in the same multidimensional space to understand how the same patterns of thought relate to 

other variables between different situations and samples. Study 2 uses this approach to 

understand how patterns of thought identified in the laboratory while watching videos relate 

to uncertainty experienced in both the laboratory and in daily life during the COVID-19 

pandemic. While this statistical technique has been used in other research domains (e.g., 

Farah & McClelland, 1991), it has not been used to directly relate thought patterns between 

datasets. If the validity of this projection approach to relate thought patterns between datasets 

can be established, it will be useful for developing more ecologically valid accounts of 

cognition in the future (Kingstone et al., 2008; Kingstone et al., 2003). 

1.4 MDES in Neuroimaging Contexts 

MDES can also be used in neuroimaging contexts to investigate how differences in 

neural function and structure relate to differences in ongoing thought. While laboratory and 

daily life studies offer the opportunity to examine thought in more naturalistic conditions, 

relying solely on self-reports can be problematic since they are influenced by confounding 

variables, including contextual and motivational biases (Nisbett & Wilson, 1977; Vinski & 
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Watter, 2012). Moreover, self-reports primarily offer a description of ongoing experience and 

tell us little about the underlying mechanisms supporting these experiences (Martinon et al., 

2019b). However, using neuroimaging techniques in combination with self-report measures 

allows us to overcome some of these limitations since measures of neural function provide 

objective indices for self-reported differences in experience and allow us to investigate the 

neural mechanisms underpinning these experiences (Martinon et al., 2019b). Across studies, 

if similar neural regions or systems are associated with the same types of thought, this (a) 

suggests that those systems play a key role in supporting these experiences and (b) provides 

further validity to the methods used to sample these experiences (Turnbull, 2020). In the 

current thesis, Study 3 uses MDES at the end of a resting-state fMRI scan to identify which 

dimensions of thought are most related to ongoing patterns of brain activity at rest. While 

retrospective sampling does not allow introspective reports to be linked to a specific point in 

time, an important advantage is that these approaches allow the contents of thoughts, and the 

dynamics of the brain, to unfold naturally since participants do not need to be interrupted 

(Martinon et al., 2019b; Smallwood & Schooler, 2015). 

Contemporary views of cognition assume that complex mental states—such as thinking 

about the future or the past—rely on the flexible combination of multiple subprocesses 

supported by multiple systems across the cortex, and that different features of thought are 

supported by both unique and overlapping neural substrates (Fox et al., 2015; Moscovitch et 

al., 2016; Smallwood & Schooler, 2015; Smallwood et al., 2021). For example, activity in the 

DMN has been linked to various aspects of higher-order cognition, including mind-

wandering (Fox et al., 2015; Smallwood et al., 2016), future- and past-oriented mental time 

travel (Addis et al., 2007; Konu et al., 2020; Spreng et al., 2009), and detailed task-relevant 

cognition during working memory maintenance (Sormaz et al., 2018). For instance, 

converging evidence indicates that a common ‘core network’ is recruited when participants 

remember the past (episodic memory) or imagine the future (episodic simulation) (Benoit & 

Schacter, 2015; Schacter et al., 2017). This core network shows substantial overlap with the 

DMN and includes regions in the medial temporal lobe, ventromedial prefrontal cortex 

(vmPFC), posterior cingulate, and lateral temporal and parietal regions (Benoit & Schacter, 

2015). In addition, lesion studies indicate that damage to the vmPFC is associated with 

impairments in remembering the past and imagining the future (Bertossi et al., 2016) and a 

reduction in mind-wandering frequency (Bertossi & Ciaramelli, 2016). At the same time, 

these features of cognition are related to neural processing in other large-scale networks. For 
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example, activity in the frontal parietal network (FPN) has been linked to mind-wandering 

(Christoff et al., 2009; Fox et al., 2015), episodic simulation (Benoit & Schacter, 2015), and 

planning of future events (Spreng et al., 2010). Indeed, damage to regions of the FPN is 

associated with a reduction in mind-wandering frequency (Philippi et al., 2021). Moreover, 

prior work indicates that the DMN and FPN contribute to different aspects of cognition 

through their interactions with other neural systems. For example, connectivity between the 

FPN and the right ventral visual cortex is linked to patterns of detailed thought when 

individuals complete a working memory task (Vatansever et al., 2019), while connectivity 

between the DMN and medial visual regions is associated with increased levels of mind-

wandering when individuals are reading (Zhang et al., 2019). At the same time, regions 

outside the FPN and DMN are implicated in aspects of spontaneous thought, including the 

right secondary somatosensory cortex and left lingual gyrus (Fox et al., 2015). Accordingly, 

prior work highlights the importance of whole-brain analytical approaches to understand how 

interactions between large-scale systems relate to differences in ongoing thought. 

Importantly, prior work using MDES (a) demonstrates that this approach is sensitive to 

individual variation in neural function, (b) highlights the mechanistic insights gained from 

investigating ongoing thought in neuroimaging contexts, and (c) provides further support for 

the idea that different features of ongoing thought are supported by a distributed set of 

regions across the cortex (Gorgolewski et al., 2014; Ho et al., 2020; Ho et al., 2019; 

Karapanagiotidis et al., 2017; Karapanagiotidis et al., 2021; Konu et al., 2020; Martinon et 

al., 2019a; Medea et al., 2018; Turnbull et al., 2020a; Turnbull et al., 2020b; Vatansever et 

al., 2020; Wang et al., 2018b). For example, Turnbull et al. (2019b) examined how 

individuals prioritise on- and off-task thoughts according to external demands. Their analyses 

indicated that the left dorsolateral prefrontal cortex (DLPFC) plays a key role in the 

prioritisation of off-task thoughts when external demands are low. Critically, this study 

demonstrates how the combination of self-report and neural measures allows researchers to 

go beyond describing experiences (i.e., off-task thoughts are more common under less-

demanding conditions) to understand the mechanisms underlying differences in ongoing 

thought (i.e., DLPFC plays a common role in prioritisation of thought patterns based on their 

relevance to the context in which they occur). In addition, Wang et al. (2018a) 

simultaneously decomposed resting-state fMRI data and MDES data to identify whole-brain 

connectivity patterns associated with different types of thought at rest. This analysis 

identified four components, each describing unique patterns of variation in both the neural 
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and thought data. For example, component one identified a pattern linking purposeful, 

temporal, and social thoughts with reduced connectivity between sensorimotor regions and all 

other networks, and a decoupling between the DMN and attentional networks. Therefore, this 

study demonstrates how using MDES in conjunction with whole-brain analysis techniques 

provides important insights into how macroscale features of the cortex relate to different 

types of ongoing thought. 

In the current thesis, Study 3 adopts a ‘gradient’ approach to investigate which MDES 

items are most related to patterns of whole-brain function at rest. This approach applies 

dimension reduction techniques to resting-state fMRI data to identify patterns of whole-brain 

connectivity. These are often referred to as ‘cortical gradients’ (Margulies et al., 2016) and 

explain whole-brain connectivity variance in descending order. Along each gradient, brain 

regions with similar connectivity profiles (to the rest of the brain) fall close together, while 

regions with more distinct connectivity profiles fall further apart (Huntenburg et al., 2018). 

Importantly, this approach does not localise neural activity to specific regions, but instead 

describes similarities and differences in connectivity between large-scale functional networks 

across the cortex. Prior studies have highlighted three gradients that relate to important 

features of cognition (Hong et al., 2019; Murphy et al., 2018; Turnbull et al., 2020b). The 

first gradient describes the difference between regions of ‘unimodal’ (e.g., visual and 

sensorimotor regions) and ‘transmodal’ (e.g., DMN and limbic regions) cortex (Margulies et 

al., 2016). The second gradient describes the difference between unimodal regions, separating 

visual and sensorimotor systems. Finally, the third gradient describes the difference between 

DMN and task-positive systems (i.e., the FPN). Therefore, this gradient approach—coupled 

with MDES—allows for the investigation of how different features of ongoing thought relate 

to macroscale features of cortical organisation. 

1.5 Summary and Aims of the Current Thesis 

Contemporary accounts of cognition highlight that ongoing thought is multidimensional, 

varying in focus, form, and content, often in a heterogeneous manner. We can use MDES to 

capture this complexity and the current thesis uses this technique to address two broad aims. 

First, by mapping common ‘patterns of thought’ across a wide range of situations in both the 

laboratory and in daily life, it aims to improve our understanding of how context shapes our 

cognition and how this varies between individuals (Studies 1 and 2). Second, by capitalising 

on contemporary methods to map differences in ongoing thought content to differences in 

whole-brain functional organisation, it aims to improve our understanding of the neural 
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mechanisms underlying distinct features of thought (Study 3). A high-level summary of the 

aims of each empirical study is shown in Table 1.2. 

Table 1.2. A high-level summary of the aims of each empirical study included in the current 

thesis. 

Study Aims 

Study 1 Map ongoing thought patterns to changes in external context and individual 

differences in age in daily life 

Study 2 Map ongoing thought patterns to changes in external and internal context, and 

individual differences in trait anxiety in the laboratory and daily life 

Study 3 Map individual differences in ongoing thought content to individual differences 

in whole-brain functional connectivity during resting-state fMRI scan 

 

Study 1 uses MDES in daily life to compare ongoing thought patterns between different 

social environments and activities, and understand how individual differences in age 

moderate these relationships. Specifically, this study investigates how changes to daily life 

activities during the UK’s first COVID-19 lockdown corresponded to changes in ongoing 

thought patterns observed during this time in younger and older individuals. Prior studies 

investigating the psychological impact of the COVID-19 pandemic have largely focused on 

mental health outcomes (e.g., Banks & Xu, 2020; O'Connor et al., 2020; White & Van Der 

Boor, 2020). However, several studies have also examined the impact of COVID-19 and its 

associated restrictions on individuals’ cognition (Clayton McClure & Cole, 2022; Fiorenzato 

et al., 2021; Hart et al., 2022; Niziurski & Schaper, 2021; Öner et al., 2022). For example, 

Fiorenzato et al. (2021) found that for younger individuals (18-45 years), COVID-19 

restrictions in Italy were associated with poorer subjective cognitive functioning in everyday 

tasks requiring attention and concentration, temporal orientation, and executive functions. 

However, COVID-19 restrictions were also associated with improved subjective memory 

functioning across age groups (i.e., reduced forgetfulness in daily activities), which the 

authors attribute to changes in daily routine during lockdown. Furthermore, Öner et al. (2022) 

found clear evidence of collective remembering and forecasting of national and global events 

during the COVID-19 pandemic. For example, they found that themes of infections and 

lockdowns dominated global and national past events, while themes of economy and a second 

wave dominated future events. In addition, Hart et al. (2022) found that during the early 
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stages of the COVID-19 pandemic, consuming news related to COVID-19 was associated 

with greater task-unrelated thoughts in everyday life. Accordingly, Study 1 complements 

these studies by examining how changes to daily life activities during the UK’s first COVID-

19 lockdown corresponded to changes in ongoing thought patterns observed during this time. 

In doing so, this study improves our theoretical understanding of how naturally-occurring and 

personally-meaningful contexts shape our cognition in daily life and how this changes across 

the life span. This study was published in the Proceedings of the National Academy of 

Sciences (PNAS) in 2021. 

Study 2 uses MDES in the laboratory and daily life to examine how ongoing thought 

patterns vary between external contexts and internal emotional states, and how these 

relationships vary according to individual differences in trait anxiety. Specifically, this study 

investigates how people think under conditions of uncertainty, arousal, and threat. In the 

laboratory, states of arousal and uncertainty are induced using TV-watching paradigms and 

ongoing thought patterns identified in the laboratory MDES data are related to changes in 

video condition (external context), differences in subjective arousal and uncertainty (internal 

context), and levels of trait anxiety. To assess the generalisability of our laboratory findings 

in a real-world situation, laboratory thought patterns are projected directly onto daily life data 

collected during the COVID-19 pandemic. These projected patterns are related to differences 

in subjective threat, subjective uncertainty, and levels of trait anxiety. In doing so, this study 

improves our theoretical understanding of how we think under conditions of uncertainty, 

arousal, and threat and how this differs between low- and high-trait-anxiety individuals. 

Moreover, this study establishes that projecting thought patterns between laboratory and daily 

life datasets allows us to directly assess the generalisability of laboratory MDES findings in 

real-world contexts. This study is currently under review (at the time of submission) at PloS 

one. 

Finally, Study 3 investigates which features of thought assessed using MDES are most 

related to macroscale features of cortical organisation at rest. Specifically, this study explores 

whether individual variation along three reasonably well-explained ‘cortical gradients’—

describing whole-brain functional connectivity patterns—are related to individual differences 

in ongoing thought during a resting-state fMRI scan. In doing so, this study provides 

theoretical insights into how macroscale features of the cortex support different forms of 

thought. This study was published in Neuroimage in 2020.  
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Chapter 2- The impact of social isolation and changes in work 

patterns on ongoing thought during the first COVID-19 lockdown 

in the United Kingdom 

This chapter is adapted from: 

Mckeown, B., Poerio, G. L., Strawson, W. H., Martinon, L. M., Riby, L. M., Jefferies, E., 

McCall, C., & Smallwood, J. (2021). The impact of social isolation and changes in work 

patterns on ongoing thought during the first COVID-19 lockdown in the United 

Kingdom. Proceedings of the National Academy of Sciences, 118(40). 
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2.1 Abstract  

The COVID-19 pandemic led to lockdowns in countries across the world, changing the 

lives of billions of people. The United Kingdom’s first national lockdown, for example, 

restricted people’s ability to socialize and work. The current study examined how changes to 

socializing and working during this lockdown impacted ongoing thought patterns in daily 

life. We compared the prevalence of thought patterns between two independent real-world, 

experience-sampling cohorts, collected before and during lockdown. In both samples, young 

(18 to 35 y) and older (55+ y) participants completed experience-sampling measures five 

times daily for 7 d. Dimension reduction was applied to these data to identify common 

“patterns of thought.” Linear mixed modeling compared the prevalence of each thought 

pattern 1) before and during lockdown, 2) in different age groups, and 3) across different 
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social and activity contexts. During lockdown, when people were alone, social thinking was 

reduced, but on the rare occasions when social interactions were possible, we observed a 

greater increase in social thinking than prelockdown. Furthermore, lockdown was associated 

with a reduction in future-directed problem solving, but this thought pattern was reinstated 

when individuals engaged in work. Therefore, our study suggests that the lockdown led to 

significant changes in ongoing thought patterns in daily life and that these changes were 

associated with changes to our daily routine that occurred during lockdown. 

2.2 Introduction 

On March 23, 2020, the United Kingdom entered a nationwide lockdown to curb the 

spread of COVID-19. This first national lockdown required people to stay at home and not 

meet with anyone outside their household. Social gatherings were banned, and “nonessential” 

industries were closed, reducing opportunities for work (Chiripanhura et al., 2020). There 

were also large economic changes (Stephens et al., 2020), and death rates increased 

substantially (Campbell & Caul, 2020). Studies show the lockdown had widespread 

psychological and behavioral consequences including elevated anxiety and depression levels 

(White & Van Der Boor, 2020), overall deterioration of mental health (Banks & Xu, 2020), 

changes to diet and physical activity (Giuntella et al., 2021; Huckins et al., 2020; Robinson et 

al., 2020), high levels of loneliness (Groarke et al., 2020), and increasing suicidal ideation 

(O'Connor et al., 2020). Our study used experience sampling to measure patterns of ongoing 

thoughts before and during lockdown in the United Kingdom, with the aim of understanding 

how specific features of the stay-at-home order impacted people’s thinking in daily life, and 

to use this data to inform contemporary theoretical views on ongoing thought. 

Our investigation served three broad goals. First, the lockdown led to changes in 

opportunities for socializing, and contemporary theories of ongoing thought suggest that 

social processing is an important influence on our day-to-day thinking (Mildner & Tamir, 

2021; Poerio & Smallwood, 2016). For example, previous research indicates that individuals 

spend a lot of time thinking about other people in daily life (Mar et al., 2012; Song & Wang, 

2012) or when performing tasks dependent on social cognition in the laboratory (Konu et al., 

2021). Importantly, spontaneous social thoughts decline following periods of solitude and 

increase following periods of social interaction in the laboratory (Mildner & Tamir, 2021). 

They can also facilitate socioemotional adjustment during important life transitions, such as 

starting university (Poerio et al., 2016). Furthermore, ongoing thought patterns with social 

features are associated with increased neural responses to social stimuli (in this case, faces) 
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(Ho et al., 2020). Such evidence suggests that the social environment can shape ongoing 

thought, leading to the possibility that changes in opportunities for socialization following the 

stay-at-home order could have changed the expression of social thinking in daily life. 

Second, lockdowns also disrupted individuals’ normal working practices, forcing people 

to reassess their goals. Prior work highlights that ongoing thought content is linked to an 

individual’s current concerns and self-related goals (Baird et al., 2011; Gold & Reilly III, 

1985; Klinger et al., 1980; Stawarczyk et al., 2011) and that experimentally manipulating an 

individual’s goals can prime ongoing thought to focus on these issues (Antrobus et al., 1966; 

Kappes et al., 2012; Stawarczyk et al., 2011). In particular, a substantial proportion of 

ongoing thoughts are future directed (Baird et al., 2011; D'Argembeau et al., 2011; Ruby et 

al., 2013a; Song & Wang, 2012; Stawarczyk et al., 2013a; Stawarczyk et al., 2011), and this 

“prospective bias” is thought to support the formation and refinement of personal goals for 

future behavior (Baird et al., 2011; Klinger et al., 2018; Medea et al., 2018; Stawarczyk et al., 

2011). Notably, this type of thought is also important in maintaining mental health through 

associations with improved subsequent mood (Ruby et al., 2013a) and reduced suicidal 

ideation (Hunter & O'Connor, 2003; O'Connor et al., 2004). Changes to opportunities for 

working during the lockdown, therefore, provide a chance to understand whether prospective 

features of ongoing thought are altered when important external commitments change. 

Third, previous work indicates that the contents of thought vary across the life span. For 

example, during periods of low cognitive demand, younger adults report significantly more 

future-directed thoughts, while older adults report significantly more past-related thoughts 

(Irish et al., 2019). At rest, older adults report more “novel” and present-oriented thoughts 

compared to younger adults (Maillet et al., 2019). In daily life, older adults tend to report 

fewer “off-task” thoughts than younger adults, and their thoughts are rated as more 

“pleasant,” “interesting,” and “clear” (Maillet et al., 2018). Finally, aging is associated with a 

decline in daydreaming, particularly a reduction in topics such as the future, fear of failure, or 

guilt (Giambra, 1974). However, the degree to which these age-related changes are explained 

by lifestyle differences between young and older individuals is unclear. The lockdown may 

have altered key contextual factors that, under normal circumstances, differ systematically 

between younger and older adults. For example, increasing age is associated with more 

interactions with family members and fewer with “peripheral partners” (e.g., coworkers, 

acquaintances, and strangers) (Zhaoyang et al., 2018), a pattern that may be common in 

younger people during lockdown. With all this in mind, the lockdown provided an 
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opportunity to examine whether changes to daily life during the lockdown differentially 

impacted ongoing thought patterns in younger and older individuals. 

Our study used an experience-sampling methodology in which people are signaled at 

random times in their daily lives to obtain multiple reports describing features of their 

ongoing thoughts and the context in which they occur (e.g., social environment, activity, and 

location) (Larson & Csikszentmihalyi, 2014). To examine the contents of people’s thoughts, 

we used multidimensional experience sampling (MDES) (Smallwood et al., 2016). In this 

method, participants describe their in-the-moment thoughts by rating their thoughts on 

several dimensions (e.g., temporal focus or relationship to self and others) (Martinon et al., 

2019b). Dimension reduction techniques can then be applied to use covariation in the 

responses to different questions to identify “patterns of thought” (Smallwood et al., 2016; 

Smallwood et al., 2021). Previous studies have used MDES to identify common patterns of 

ongoing thought, varying in both form and content, often with distinct neural correlates 

(Karapanagiotidis et al., 2020; Konu et al., 2020; Medea et al., 2018; Smallwood et al., 2016; 

Smallwood et al., 2021; Turnbull et al., 2019b; Wang et al., 2018b). For example, a pattern of 

episodic social cognition is associated with increased activity within regions of the 

ventromedial prefrontal cortex associated with memory and social cognition (Konu et al., 

2020), while a pattern of external task focus is associated with increased activity in the 

intraparietal sulcus (Turnbull et al., 2019b). In addition, at rest, visual imagery is associated 

with stronger interactions between the precuneus and lateral frontotemporal network 

(Karapanagiotidis et al., 2021), while detailed task focus is high during working memory 

tasks (Konu et al., 2021) and other complex tasks (Turnbull et al., 2019a) and linked to 

activity in the default mode network during working memory maintenance (Sormaz et al., 

2018). 

In summary, our study set out to examine whether ongoing thought patterns experienced 

during lockdown differed from those normally reported in daily life, focusing on the 

consequences of changes in opportunities for socialization and work. The prelockdown 

sample was an existing dataset used to provide a baseline for ongoing thought patterns in 

daily life before lockdown restrictions. In both samples, young (18 to 35 y) and older (55+ y) 

participants completed surveys five times daily over 7 d. Each sampling point obtained in the 

moment measured key dimensions of ongoing thought using MDES (Smallwood et al., 

2016). Participants also provided information regarding the social environment in which the 

experience occurred. Dimension reduction was applied to both samples’ thought data to 
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identify common patterns of thought. We then used linear mixed modeling (LMM) to explore 

the prevalence of each thought pattern 1) before and during lockdown, 2) in different age 

groups, and 3) across social contexts. In the lockdown sample, participants provided 

additional information regarding their current activity (e.g., working or leisure activities) and 

virtual social environment, which we used to explore how specific features of daily life 

during lockdown corresponded with patterns of thought. 

2.3 Results 

2.3.1 Changes to Daily Life during Lockdown 

In both samples, after first assessing the contents of their thoughts, participants were 

asked about their social environment immediately before being signaled. We expected that 

the percentage of responses for which participants reported being alone would be higher in 

the lockdown sample than the prelockdown sample. To test this, we calculated the percentage 

of each participant’s responses in which they said they were 1) alone, 2) around people but 

not interacting, and 3) around people and interacting. Sample means for each of the three 

percentages, for young and older participants, are shown in Figure 2.1A. A two-way ANOVA 

confirmed that during lockdown, the “alone” percentage was significantly higher compared to 

prelockdown [F(1, 191) = 12.03, P < 0.001, ηp2 = 0.06] and significantly higher for younger 

compared to older participants across both samples (pre- and during lockdown) [F(1, 191) = 

13.25, P < 0.001, ηp2 = 0.06]. Participants in the lockdown sample also reported their 

location immediately before completing the survey. Overall percentages for each option are 

shown in Figure 2.1B, revealing that 85% of responses were “inside at home.” These 

analyses establish that people spent more time alone during lockdown and most of their time 

inside at home. 

2.3.2 Patterns of Thought 

To identify common patterns of thought across both samples, we combined the thought 

data from both samples (SI Appendix, Table S1) and decomposed these in a single principal 

components analysis (PCA). Based on eigenvalues >1, five components—accounting for 

53% of the total variance—were retained for further analysis (see SI Appendix, Fig. S1 for 

scree plot): 1) “future-directed problem solving”— describing patterns of thought with the 

highest loadings on “problem solving,” “future goals,” “controlled,” and “rehearsing future”; 

2) “pleasant engagement”—with the highest loadings on “positive,” “wanted,” “current 

goals,” and “task”; 3) “episodic social cognition”—with the highest loadings on “close 



36 

 

others,” “important,” “self,” and “future”; 4) “imagery”—with the highest loadings on 

“vivid,” “images,” and “detailed”; and 5) “detailed task focus”—with the highest loadings on 

“words,” “task,” “detailed,” and “current goals.” Item loadings on these components are 

presented as word clouds in Figure 2.1C (see SI Appendix, Table S2 for exact component 

loadings). To ensure that the thought patterns identified across samples were present in both 

samples, we ran a PCA on each sample separately (specifying five components for 

extraction) and correlated each participant’s PCA score from this analysis with their PCA 

score from the combined analysis, revealing a high correspondence between patterns seen in 

the two samples (see SI Appendix, Fig. S2 for scatterplots). 

 

Figure 2.1. Changes to daily life during lockdown and patterns of ongoing thought identified 

across both experience-sampling datasets (pre- and during lockdown). (A) Bar chart 

comparing the mean percentage of experience-sampling responses in which participants said 

they were 1) alone, 2) around other people but not interacting, or 3) around people and 

interacting, between age groups and samples, demonstrating that during lockdown, both age 

groups reported being alone more than prelockdown. Error bars represent 95% CIs 

(N observations = 4,955). (B) The pie chart shows the percentage of responses for each 

location option in the lockdown sample, demonstrating that the majority (85%) of responses 

were “inside at home” (N observations = 1,865). (C) Word clouds representing the item 

loadings on the five patterns of thought identified in the thought data from both samples (pre- 

and during lockdown) (N observations = 4,876) using PCA. Each word represents an 

experience-sampling item (22 items; SI Appendix, Table S1). Font size represents the 

magnitude of the loading, and the color describes the direction. Warm colors reflect positive 

loadings, while cool colors reflect negative loadings (see SI Appendix, Table S2 for exact 

component loadings). 
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2.3.3 Comparing Thought Patterns between 1) Pre- and during Lockdown Samples, 2) 

Age Groups, and 3) Social Environments 

Having identified five patterns of thought, we examined the influence that lockdown, 

and changes to social interactions during lockdown, had on ongoing thought by comparison 

with the baseline group. We performed a series of LMMs in which each of the five thought 

patterns was the outcome measure (see Materials and Methods). These models included three 

explanatory variables and their interactions: 1) whether the sample was pre- or during 

lockdown, 2) whether the individual was young or older, and 3) the nature of the social 

environment in which the experience occurred (alone, with others not interacting, or with 

others and interacting). For each model, alpha was set to <0.01 (two tailed) to account for 

family-wise error emerging from conducting five models (i.e., 0.05/5). The reported alpha 

levels in our paper are unadjusted; main effects and interactions are considered significant 

only at the P < 0.01 level. When probing these significant main effects and interactions using 

pairwise comparisons, the alpha level was Bonferroni adjusted to account for the number of 

tests being conducted; here, the adjusted alpha levels are reported in parentheses. Estimates 

are unstandardized and reflect the difference between each factor level and the intercept 

(grand mean of all conditions). These results are summarized in Figure 2.2 (see SI Appendix, 

Tables S3–S5 for ANOVA output, parameter estimates, and the variance explained by 

random effects). 
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Figure 2.2. A summary of the LMMs’ results comparing the prevalence of each thought 

pattern between 1) pre- and during-lockdown samples, 2) age groups, and 3) social 

environments. On the left-hand side, there are the word clouds representing each thought 

pattern. Each word represents an experience-sampling item (SI Appendix, Table S1). Font 

size represents the magnitude of the loading, and the color describes the direction. Warm 

colors reflect positive loadings, while cool colors reflect negative loadings. The y-axis of 

each graph shows the predicted means for each thought pattern. The x-axis shows the social 

environment options: 1) alone, 2) around people but not interacting, and 3) around people and 

interacting. White bars represent the prelockdown sample, and gray bars represent the 

lockdown sample. Each bar graph is split by age group, with young participants on the left 

and older on the right. Error bars represent the 95% CIs for each predicted mean. In total, 195 

participants (4,870 observations) were included in this analysis. 

2.3.3.1 Model 1: Future-directed problem solving 

There was a significant main effect of sample (pre- versus during lockdown) [F(1, 191) 

= 16.19, P < 0.001]. Future-directed problem solving was lower in the lockdown sample [b = 

−0.15, 95% CI (−0.23, −0.08), t(191) = −4.02, P < 0.001]. There was also a significant main 

effect of age group [F(1, 188) = 6.33, P = 0.013], with future-directed problem solving higher 

in younger participants [b = 0.10, 95% CI (0.02, 0.17), t(188) = 2.52, P = 0.012]. There was 

also a significant main effect of social environment [F(2, 4824) = 31.36, P < 0.001], with 
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future-directed problem solving lower when interacting with other people [b = −0.17, 95% CI 

(−0.21, −0.12), t(4850) = −7.52, P < 0.001]. Therefore, the lockdown was associated with a 

reduction in future-directed problem solving regardless of social environment or age group. 

2.3.3.2 Model 2: Pleasant engagement 

Levels of pleasant engagement significantly varied by age group [F(1, 191) = 19.82, P < 

0.001] and were lower in younger participants [b = −0.19, 95% CI (−0.27, −0.10), t(191) = 

−4.45, P < 0.001). There was a significant main effect of social environment [F(2, 4823) = 

5.43, P = 0.004], with pleasant engagement highest when participants were interacting with 

others [b = 0.07, 95% CI (0.03, 0.11), t(4833) = 3.29, P < 0.001] and lowest when around 

people but not interacting [b = −0.05, 95% CI (−0.10, −0.00), t(4802) = −1.99, P = 0.046]. 

There was also a significant interaction between age group and social environment [F(2, 

4823) = 5.60, P = 0.004]. Pairwise comparisons at each level of social environment split by 

age group (Bonferroni adjusted for six tests) revealed that for younger participants, pleasant 

engagement was significantly higher when interacting with other people compared to when 

alone [b = 0.20, 95% CI (0.09, 0.31), t(4808) = 4.90, P < 0.001] or when around other people 

but not interacting [b = 0.22, 95% CI (0.09, 0.36), t(4786) = 4.43, P < 0.001]. For older 

participants, however, pleasant engagement did not significantly vary across social 

environments (P > 0.05). Regardless of the lockdown, therefore, social situations were 

characterized by higher levels of pleasant engagement for younger individuals. 

2.3.3.3 Model 3: Episodic social cognition 

There was a significant main effect of social environment [F(2, 4827) = 35.20, P < 

0.001] with episodic social cognition highest when interacting with others [b = 0.19, 95% CI 

(0.14, 0.23), t(4840) = 8.37, P < 0.001] and lowest when around people but not interacting 

[b = −0.11, 95% CI (−0.16, −0.06), t(4815) = −4.35, P < 0.001). There was a significant main 

effect of age group [F(1, 193) = 6.10, P = 0.014]. Episodic social cognition was higher in 

younger participants [b = 0.10, 95% CI (0.02, 0.18), t(193) = 2.47, P = 0.014]. There was also 

a significant interaction between sample (pre- versus during lockdown) and social 

environment [F(2, 4826) = 6.06, P = 0.002]. This interaction indicated that although episodic 

social cognition was most prevalent when interacting with others in both samples, the 

increase in episodic social cognition between “interacting” with both “alone” [unadjusted, b = 

0.25, 95% CI (0.11, 0.39), t(4844) = 3.44, P < 0.001] and “not interacting” [unadjusted, b = 

0.17, 95% CI (0.01, 0.34), t(4795) = 2.03, P = 0.042] was greater in the lockdown sample. 
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During lockdown, therefore, although social interactions were less frequent, when they did 

occur, they were associated with greater evidence of episodic social cognition. 

2.3.3.4 Model 4: Imagery 

There was a significant three-way interaction between sample, age group, and social 

environment [F(2, 4778) = 5.85, P = 0.003]. Pairwise comparisons at each level of social 

environment, split by sample and age group (Bonferroni adjusted for 12 tests), revealed that 

for younger participants, the direction of the effect of social environment on levels of 

imagery differed between samples. Prelockdown, younger participants reported less imagery 

when they were alone compared to when they were interacting with others [b = −0.14, 95% 

CI (−0.27, −0.01), t(4745) = −2.98, P = 0.035], and during lockdown, younger participants 

reported more imagery when they were alone compared to when they were interacting with 

others [b = 0.20, 95% CI (0.01, 0.38), t(4855) = 3.05, P = 0.028]. A comparison of these 

contrasts confirmed that this difference was significant [unadjusted, b = −0.33, 95% CI 

(−0.49, −0.18), t(4845) = −4.21, P < 0.001]. Therefore, during lockdown, younger 

participants reported more imagery when they were alone compared to when interacting with 

others. 

2.3.3.5 Model 5: Detailed task focus 

There were no significant main effects or interactions (P > 0.05). Therefore, the 

lockdown had no significant impact on the overall prevalence of detailed task focus. 

2.3.4 Comparing Thought Patterns between 1) Current Activities and 2) Age Groups 

during Lockdown 

To understand how changes to people’s daily routine, including changes to working, 

influenced patterns of ongoing thought during lockdown, we next explored the links between 

ongoing thought patterns and ongoing activities. In the baseline sample, we had not obtained 

information about concurrent activities; however, in the lockdown sample, we asked 

participants to describe the primary activity they were performing (see Materials and 

Methods). The 24 options were condensed into five categories for analysis: 1) working, 2) 

leisure activities, 3) social interactions, 4) media consumption, and 5) essential tasks (SI 

Appendix). We conducted a series of models examining whether patterns of thought varied 

significantly between activity categories and whether there were age-related differences 

(see Materials and Methods). As before, the alpha level was set to <0.01 (two tailed) to 

account for family-wise error emerging from conducting five models. These results are 
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summarized in Figure 2.3 (see SI Appendix, Tables S7–S9 for ANOVA output, parameter 

estimates, and the variance explained by random effects). 

 

Figure 2.3. A summary of the LMMs’ results comparing the prevalence of each thought 

pattern between 1) current activities and 2) age groups in the lockdown sample. On the left-

hand side, there are the word clouds representing each thought pattern. Each word represents 

an experience-sampling item (SI Appendix, Table S1). Font size represents the magnitude of 

the loading, and the color describes the direction. Warm colors reflect positive loadings, 

while cool colors reflect negative loadings. The y-axis of each graph shows the predicted 

means for each thought pattern. The x-axis shows the five activity categories: 1) working, 2) 

leisure activities, 3) social interactions, 4) media consumption, and 5) essential tasks (see SI 

Appendix for details). White bars represent young participants, and gray bars represent older 

participants. Error bars represent the 95% CIs for each predicted mean. In total, 81 

participants (1,777 observations) were included in this analysis. 

2.3.4.1 Model 1: Future-directed problem solving 

There was a significant main effect of activity [F(4, 1712) = 33.67, P < 0.001]. Future-

directed problem solving was higher when participants were working during lockdown [b = 

0.62, 95% CI (0.48, 0.77), t(1689) = 8.62, P < 0.001] and lower when consuming media [b = 

−0.36, 95% CI (−0.44, −0.28), t(1743) = −8.92, P < 0.001] or engaging in essential tasks [b = 

−0.22, 95% CI (−0.30, −0.14), t(1727) = −5.59, P < 0.001]. Therefore, while future-directed 
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problem solving was significantly lower in the lockdown sample, this pattern of thought was 

reinstated when individuals engaged in work. 

2.3.4.2 Model 2: Pleasant engagement 

There was a significant main effect of activity [F(4, 1699) = 18.93, P < 0.001]. Pleasant 

engagement was higher during leisure activities [b = 0.27, 95% CI (0.19, 0.36), t(1712) = 

6.36, P < 0.001] and lower when participants consumed media [b = −0.21, 95% CI (−0.29, 

−0.13), t(1730) = −5.14, P < 0.001] or during social interactions [b = −0.12, 95% CI (−0.23, 

−0.00), t(1719) = −2.03, P = 0.043]. There was also a significant interaction between activity 

and age group [F(4, 1699) = 5.71, P < 0.001]. Pairwise comparisons at each level of age 

group split by activity (Bonferroni adjusted for five tests) revealed that pleasant engagement 

was higher for older participants when working compared to younger participants [b = 0.78, 

95% CI (0.19, 1.37), t(350) = 3.43, P = 0.003]. 

2.3.4.3 Model 3: Episodic social cognition 

There was a significant main effect of activity [F(4, 1718) = 25.58, P < 0.001]. Episodic 

social cognition was higher during social interactions [b = 0.52, 95% CI (0.40, 0.64), t(1738) 

= 8.72, P < 0.001] and lower when consuming media [b = −0.23, 95% CI (−0.31, 

−0.14), t(1752) = −5.42, P < 0.001] or working [b = −0.35, 95% CI (−0.50, −0.20), t(1696) = 

−4.68, P < 0.001]. 

2.3.4.4 Model 4: Imagery 

There was a significant main effect of activity [F(4, 1690) = 6.52, P < 0.001]. Imagery 

was higher when participants consumed media [b = 0.17, 95% CI (0.09, 0.26), t(1719) = 

4.21, P < 0.001] and lower when engaging in essential tasks [b = −0.09, 95% CI (−0.17, 

−0.01), t(1,700) = −2.30, P = 0.022]. 

2.3.4.5 Model 5: Detailed task focus 

There was a significant main effect of activity [F(4, 1713) = 13.38, P < 0.001]. Detailed 

task focus was higher when working [b = 0.39, 95% CI (0.25, 0.53), t(1,656) = 5.44, P < 

0.001] or during social interactions [b = 0.13, 95% CI (0.02, 0.24), t(1730) = 2.30, P = 0.021] 

and lower when engaging in essential tasks [b = −0.16, 95% CI (−0.24, −0.09), t(1,733) = 

−4.13, P < 0.001], leisure activities [b = −0.19, 95% CI (−0.27, −0.11), t(1,731) = −4.48, P < 

0.001), or when consuming media (b = −0.17, 95% CI (−0.25, −0.09), t(1,741) = −4.23, P < 

0.001). There was also a significant interaction between activity and age group [F(4, 1713) = 
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5.04, P < 0.001]. Pairwise comparisons at each level of age group split by activity 

(Bonferroni adjusted for five tests) revealed that detailed task focus was higher when older 

participants engaged in social interactions compared to younger participants [b = 0.48, 95% 

CI (0.02, 0.93), t(308) = 2.72, P = 0.034]. 

2.3.5 Comparing Thought Patterns between 1) Virtual and Physical Social 

Interactions and 2) Age Groups during Lockdown 

During lockdown, while people were unable to socialize in person with people outside of 

their household, they could still interact virtually. In the baseline group, we did not collect 

information regarding whether social interactions were virtual. However, in the lockdown 

sample, participants reported on both their physical and virtual interactions. To examine the 

effects of virtual social interaction on thoughts in the lockdown sample, we conducted a 

series of models in which each thought pattern was the outcome measure, and interaction 

type and age group were the explanatory variables (SI Appendix). Interaction type had four 

levels: 1) no interaction at all, 2) virtual interaction only, 3) physical interaction only, and 4) 

both virtual and physical interaction (see SI Appendix, Table S10 for how this variable was 

coded). As before, the alpha level was set to <0.01 (two tailed) to account for family-wise 

error emerging from conducting five models. These results are summarized in SI Appendix, 

Fig. S3; see SI Appendix, Tables S11–S13 for ANOVA output, parameter estimates, and 

variance explained by random effects. 

We found that future-directed problem solving was less prevalent when participants 

were physically compared to virtually interacting, while episodic social cognition was more 

prevalent across all forms of interaction when compared to not interacting at all. In addition, 

although the effects did not pass the Bonferroni correction, patterns of imagery were less 

prevalent when physically interacting compared to virtually interacting, particularly for 

younger participants. Finally, detailed task focus was more prevalent when virtually 

interacting compared to when interacting both virtually and physically and not interacting at 

all. Notably, for older participants, detailed task focus was more prevalent during virtual 

interactions compared to all other forms of interaction and when not interacting at all. 

However, it is worth noting that the cells of this analysis were unbalanced, with fewer 

observations for interacting—particularly virtually—compared to not interacting at all (see SI 

Appendix, Table S14 for number of observations per factor level by age group), so these 

results should be interpreted with caution. 
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2.3.6 Relationship to Affect 

Finally, we conducted an exploratory analysis to understand whether the lockdown-

related changes in ongoing thought identified in our prior analysis were independent of 

changes in affect (SI Appendix). Importantly, including affect did not substantially change the 

lockdown-related results reported in models 1, 3, and 4 comparing thought patterns between 

samples, age groups, and social environments. However, the main effects of age group for 

models 1 through 3 no longer reached significance (SI Appendix). In addition, we ran a 

parallel analysis in which we compared the prevalence of negative and positive affect 

between samples, social environments, and age groups to examine how state affect may have 

changed during lockdown (see SI Appendix for further details). 

2.4 Discussion 

Our study set out to determine how specific features of the United Kingdom’s first 

lockdown corresponded with changes in ongoing thought patterns in daily life, focusing on 

changes to socializing and working. The contents of ongoing thoughts were assessed using 

MDES (Smallwood et al., 2016), an established method with documented neural (e.g., 

Karapanagiotidis et al., 2020; Konu et al., 2020; Sormaz et al., 2018; Wang et al., 2018b) and 

behavioral correlates (e.g., Medea et al., 2018; Turnbull et al., 2020b). Our analysis identified 

five thought patterns: future-directed problem solving, pleasant engagement, episodic social 

cognition, imagery, and detailed task focus. Importantly, these five thought patterns are 

consistent with previous research using this method (Ho et al., 2020; Karapanagiotidis et al., 

2020; Konu et al., 2021; Konu et al., 2020; Sormaz et al., 2018; Turnbull et al., 2019a). 

One goal of our study was to assess how changes in socialization during lockdown 

impacted patterns of social thought in daily life. Across both samples, in-person social 

interaction was associated with increased episodic social cognition, reduced future-directed 

problem solving, and greater pleasant engagement in younger individuals. During lockdown, 

opportunities for social interactions were reduced, but when social interactions did occur, 

episodic social cognition was especially prevalent. So, although participants were less able to 

engage in in-person social interactions during lockdown, when those interactions were 

possible, they promoted greater increases in social thinking than would normally occur. 

Furthermore, during lockdown, all types of interaction—both virtual and in person—were 

associated with increased episodic social cognition, suggesting that online interactions may 

partly ameliorate the consequences of lockdown on social cognition. Importantly, since the 
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lockdown was a natural experiment in how changes in socialization affect our thinking in 

daily life, our findings provide real-world confirmation of laboratory evidence linking social 

thinking to the availability of social interactions (Mildner & Tamir, 2021) and are consistent 

with the possibility that ongoing thought helps facilitate interactions either in the moment or 

in the future (Meyer, 2019; Mildner & Tamir, 2021). Our study, therefore, provides 

ecologically valid evidence to support theoretical perspectives that highlight how social 

interactions shape social thought patterns in daily life (Mildner & Tamir, 2021; Poerio & 

Smallwood, 2016).  

The second goal of our study was to understand how changes in opportunities for 

working during lockdown influenced ongoing thought patterns in daily life. Future-directed 

problem solving, something generally prevalent in younger individuals, was 1) significantly 

reduced during lockdown relative to prelockdown but 2) was highest during lockdown when 

individuals were working. Our results, therefore, suggest that when external commitments are 

disrupted (in this case, via lockdown), future-directed problem solving is reduced unless 

people are working. Thus, our data support theories suggesting that the “prospective bias” in 

ongoing thought is related to goal-related processes, since it was disrupted by lockdown 

unless people were actively engaged in work (Baird et al., 2011; D'Argembeau et al., 2011; 

Klinger et al., 2018; Kvavilashvili & Rummel, 2020; Medea et al., 2018; Stawarczyk et al., 

2013a). Moreover, given research showing goal-directed planning is reduced in dysphoric 

individuals (Plimpton et al., 2015) and that future thinking is important for maintaining 

mental health (Hunter & O'Connor, 2003; O'Connor et al., 2004; Ruby et al., 2013a), our 

study raises the possibility that reduced opportunities for work may contribute to the negative 

emotional changes documented during lockdown (Banks & Xu, 2020; O'Connor et al., 2020; 

White & Van Der Boor, 2020) via a reduction in future-related thinking—an important 

question for future work to explore. 

Our final goal was to understand whether lockdown differentially impacted thinking 

patterns in older and young individuals. Consistent with prior research (Irish et al., 2019; 

Maillet et al., 2019; Maillet et al., 2018), we found evidence for age differences in ongoing 

thought patterns. For example, younger individuals reported higher levels of future-directed 

problem solving and episodic social cognition and lower levels of pleasant engagement 

during activities than older adults. We also found that before lockdown, younger individuals 

reported more imagery when interacting with others, whereas during lockdown, imagery was 

higher when younger individuals were alone. This thought pattern was associated with media 
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consumption during lockdown, so it is plausible that this increased imagery in younger adults 

when alone was related to an increase in media usage (Vassilev, 2020). Finally, for older 

participants, virtual interactions during lockdown were linked to increased detailed task 

focus, a pattern that might reflect the effort required when interacting online, possibly 

capturing the phenomenon of “Zoom fatigue” (Cranford, 2020). 

In summary, the restrictions introduced during the United Kingdom’s first national 

lockdown brought reduced opportunities for socialization and working. In parallel with these 

changes in daily routine, we found changes in the patterns of thinking associated with these 

activities. Specifically, during lockdown, social interactions promoted a greater increase in 

episodic social thinking than prelockdown and while future-directed problem solving was 

significantly reduced during lockdown, this thought pattern increased when individuals 

engaged in work. Therefore, on the limited occasions that individuals were able to socialize 

or work during lockdown, these activities had a significant effect on relevant thought 

patterns, highlighting the important role that our daily routine has in shaping our thinking. 

Although our study sheds light on how lockdown changed ongoing thought patterns in 

daily life, several limitations should be considered when interpreting these results. First, our 

study capitalized on an existing dataset to provide a baseline to understand how thought 

patterns changed during lockdown. While this design feature was unavoidable given the 

pandemic’s unforeseen nature, conclusions regarding the impact of lockdown would have 

been stronger if we could have examined within-person changes in the same participants over 

time. Importantly, however, we established that the underlying structure of ongoing thought 

was almost identical in both samples (SI Appendix, Fig. S2), supporting the validity of the 

prelockdown sample as a baseline. Future work should aim to track people’s thoughts in the 

moment longitudinally, through periods of lockdown and during periods of lockdown 

relaxation. Second, our analyses of the relationship between current activities (e.g., working) 

and ongoing thought are based only on the lockdown sample. Therefore, while our data allow 

the determination of how changes in working opportunities contributed to cognition during 

lockdown, it is unclear how working influences thought patterns in a more normal context. 

Finally, it is important to note that there are other influences on people’s ongoing thoughts 

during lockdown beyond those assessed in our study. For example, the current study did not 

account for economic changes, fear of illness, whether an individual (or close friend/family 

member) contracted COVID-19 during the study, or bereavements. Nonetheless, our study 

suggests that in addition to other changes in life circumstances, changes to socialization and 
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opportunities for work are important contributors to how lockdowns influence the contents of 

people’s thoughts in daily life. 

Our examination of how broad, naturally occurring changes in society influence 

cognition also raises important questions for future investigations of ongoing thought. 

Emerging evidence highlights the lockdown’s consequences on mental health (Banks & Xu, 

2020; O'Connor et al., 2020; White & Van Der Boor, 2020), so future studies should examine 

relationships between risk factors such as anxiety and depression and ongoing thought in 

daily life and during lockdowns. Furthermore, our data indicate that both younger and older 

adults reported being alone more in the lockdown sample than prelockdown. However, we 

could not make an equivalent comparison of changes in specific daily activities (including 

work). Therefore, it remains unclear the extent to which different daily routines in younger 

and older adults may contribute to age differences in thought patterns. Finally, although 

studies conducted before the pandemic show that features of ongoing thoughts (e.g., a focus 

on the future) are prevalent across cultures (Song & Wang, 2012), our study used a UK 

sample, so it is important to understand how lockdowns change ongoing thought patterns 

across cultures. 

We close by considering the implications of our study for understanding ongoing 

thought patterns in daily life. Prior studies investigating ongoing thought have focused on 

assessing thought within laboratory and neuroimaging contexts, revealing links between 

thought content and neural activity (e.g., Konu et al., 2020; Smallwood et al., 2016; Turnbull 

et al., 2020b; Wang et al., 2018b), cognitive ability (e.g., Kane et al., 2007; Rummel & 

Boywitt, 2014), affective style (e.g., Deng et al., 2014; Hoffmann et al., 2016; Konu et al., 

2021), and task and social contexts (e.g., Konu et al., 2021; Mildner & Tamir, 2021). Our 

study complements these findings by highlighting the role that aspects of our daily routines—

particularly social interactions and work—play in shaping our cognition. It is perhaps 

unsurprising that ongoing thought patterns are shaped by these activities since 1) we spend a 

large proportion of our lives interacting with others (Mildner & Tamir, 2021) and working 

and 2) that successful adaptation within both of these domains is critical for well-being. For 

example, loneliness increases the likelihood of death by 26% (Holt-Lunstad et al., 2015), 

while unemployment is associated with reduced psychological and physical well-being 

(McKee-Ryan et al., 2005). In this way, our study illustrates that features of a person’s daily 

routine are important in scaffolding their ongoing thought patterns and highlights that 

experience sampling in naturalistic contexts is an important way to understand when and how 
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what we do influences ongoing human cognition both during lockdowns and in more normal 

times. 

2.5 Materials and Methods 

2.5.1 Participants 

The full study protocol was approved by the Psychology Department’s ethics committee 

at the University of York. All participants gave informed consent (either written or online) 

before taking part and were debriefed upon completion. In the prelockdown sample, younger 

participants were recruited between October 2016 and March 2017 from undergraduate and 

postgraduate student bodies and were either paid or given course credits. A total of 78 

younger participants completed experience-sampling surveys (female = 57, male = 21; age: 

M = 19.64; SD = 1.62; and range = 18 to 27). These data have been analyzed and reported 

previously by Ho et al. (2020). In the prelockdown sample, older participants were recruited 

between August 2016 and November 2016 and were paid for their time. A total of 35 older 

participants completed experience-sampling surveys (female = 20, male = 15; age: M = 

66.80; SD = 6.88; and range = 55 to 87). In the lockdown sample, all participants were 

invited to participate in the daily-life experience sampling after completing an initial survey, 

as part of a larger project, on Prolific (https://www.prolific.co). All participants were paid for 

their time. A total of 91 participants completed experience-sampling surveys between April 

29, 2020 and May 13, 2020. Two participants were removed from the study on day 1, as they 

were not currently residing in the United Kingdom, and their data were excluded. Two 

participants were excluded for having missing age data. Five participants were excluded 

because they did not fall into either the young (18 to 35 y) or older (55+ y) age groups. The 

final sample comprised 59 younger participants (female = 40, male = 17, self-described = 1, 

and prefer not to say = 1; age: M = 24.22; SD = 4.07; and range = 18 to 35) and 23 older 

participants (female = 13, male = 9, and self-described = 1; age: M = 63.91; SD = 7.06; and 

range = 55 to 78). 

2.5.2 Procedure 

Participants received a text message with a link to an online Qualtrics survey five times 

daily for 7 d at quasirandom intervals between 9:00 AM and 9:00 PM (8:45 PM in the 

lockdown sample) administered via SurveySignal (Hofmann & Patel, 2015). Each survey link 

expired after 2 h. In the prelockdown sample, seven older participants completed up to eight 

surveys a day for 10 d. However, this procedure was shortened after participant feedback that 

https://www.prolific.co/
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the procedure was too intensive. Rerunning our analyses after removing these additional 

observations did not substantially change the results. Additionally, in the prelockdown 

sample, 23 older participants and one younger participant opted to complete the study on 

paper. They were provided with a phone on which texts acted as signals (see SI Appendix for 

comparison of completion type). Participants in both samples also completed daily diary 

questionnaires, and participants in the lockdown sample completed an exit questionnaire at 

the end of the study. These questionnaires did not sample ongoing thought and are therefore 

not reported here. 

2.5.3 Experience-Sampling Surveys 

The experience-sampling survey first asked participants to consider the contents and 

form of their thoughts immediately before being signaled on various dimensions using a 1 to 

5 Likert scale. We sought to compare thought patterns observed across both samples, so we 

focused on the 22 items present in both (SI Appendix, Table S1). The survey then asked 

participants to rate their emotions and feelings on various dimensions using a 1 to 5 Likert 

scale (see SI Appendix, Table S15 for the 12 affect items present in both samples that were 

included in supplementary analyses). Participants were also asked “Were you alone or with 

other people just before taking this survey?” (in the lockdown sample, the question specified 

“physically and not virtually”). Response options were: “Alone,” “Around people but NOT 

interacting,” or “Around people and interacting.” In the lockdown sample, participants were 

also asked “Virtually, were you alone or with other people just before taking this survey?” 

Response options were the same as those for the physical interaction question. Additionally, 

in the lockdown sample, participants were asked to indicate their location (seven options; see 

Figure 2.1B) and primary activity (24 options; SI Appendix) immediately before answering 

the survey. The activity options were based on those used in the “day reconstruction method” 

(Kahneman et al., 2004) and modified to include activities that were likely to be prevalent 

during lockdown. In both samples, participants were also asked several other questions about 

their ongoing experience (e.g., whether they had recently accessed new information regarding 

COVID-19), which are not the focus of this paper. All experience-sampling survey questions 

and response options included in the current study are available in SI Appendix, Tables S1, 

S15, and S23. 
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2.6 Analysis 

2.6.1 Data and Code Availability Statement 

For details of the R packages used in analysis, see SI Appendix. All code used in the 

analysis and preparation of figures is available online at https://github.com/Bronte-

Mckeown/pre_vs_during_lockdown_ESQ_analysis. All anonymized data used in the 

preparation of this manuscript is openly available via Mendeley data 

(http://dx.doi.org/10.17632/n3wz7y8mhs.1). 

2.6.2 Assessing Changes to Daily Life during Lockdown 

To assess whether the percentage of responses for which participants reported being 

alone was higher in the lockdown sample than the prelockdown sample, we first calculated 

the percentage of each participant’s responses in which they said they were 1) alone, 2) 

around people but not interacting with them, or 3) around people and interacting with them. 

We then ran a two-way ANOVA with each participant’s “alone” percentage as the outcome 

variable and sample (pre- versus during lockdown) and age group (young versus older) as the 

predictors. To examine where participants were located in the lockdown sample, we 

calculated the overall percentage of responses for each “location” option. 

2.6.3 Preparing Data for PCA 

Two experience-sampling questions (“positive” and “deliberate”) in the prelockdown 

sample were measured on 7- rather than 5-point scales. All questions were therefore rescaled 

using the following computation: (observed score − 1)/(highest possible score on that scale − 

1). The rescaled questions were then z-scored before applying PCA to the combined data. 

2.6.4 PCA 

To identify common patterns of thought across both samples, PCA with varimax rotation 

was applied to the combined thought data from both samples (22 items; SI Appendix, Table 

S1) using IBM SPSS Statistics (version 26). PCA was applied at the observation level in the 

same manner as in our previous studies (e.g., Konu et al., 2021; Ruby et al., 2013a; Wang et 

al., 2018b). The Kaiser–Meyer–Olkin measure of sampling adequacy was 0.84, above the 

commonly recommended value of 0.6, and Bartlett’s test of sphericity was significant 

[χ2(231) = 28737.22, P < 0.001]. Five components, with an eigenvalue >1, were retained for 

inclusion as outcome variables in the LMMs. To ensure that the thought patterns identified 

across samples were present in both samples separately, we ran a PCA on each sample 

https://github.com/Bronte-Mckeown/pre_vs_during_lockdown_ESQ_analysis
https://github.com/Bronte-Mckeown/pre_vs_during_lockdown_ESQ_analysis
http://dx.doi.org/10.17632/n3wz7y8mhs.1
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separately (specified five components for extraction) and correlated each participant’s PCA 

score from this analysis with their PCA score from the combined analysis (see SI Appendix, 

Fig. S2 for scatterplots). 

2.6.5 LMMs 

LMMs were fitted by restricted maximum-likelihood estimation in R (4.0.2; R Core 

Team, 2020) using the lme4 package (1.1.26; Bates et al., 2015). We used the lmerTest 

package (3.1.3; Kuznetsova et al., 2017) to obtain P values for the F- and t tests returned by 

the lme4 package. For each set of models, the alpha level was set based on 0.05 divided by 

the number of models (i.e., Bonferroni-corrected alpha level). Degrees of freedom were 

calculated using the Satterthwaite approximation. For F-tests, type 3 sum of squares was 

chosen because imbalances in the data are assumed to occur randomly and not due to 

differences in the population (Singmann & Kellen, 2019). Contrasts were set to “contr.sum,” 

meaning that the intercept of each model corresponds to the grand mean of all conditions and 

that when a factor has two levels, the parameter estimate is equal to half of the difference 

between the two levels (Singmann & Kellen, 2019). Estimated marginal means were 

calculated using the emmeans package (1.5.3; Lenth, 2020). Post hoc pairwise comparisons 

were also calculated using the emmeans package (Lenth, 2020) and corrected for multiple 

comparisons using the Bonferroni adjustment, which adjusts both the CIs and P values 

associated with each estimate and test. For contrasts of contrasts, custom contrasts were set 

manually and so could not be adjusted for multiple comparisons. Across all models, to 

account for multiple observations per participant, day number was nested within participant 

as a random intercept. 

2.6.5.1 Comparing Thought Patterns between 1) Pre- and during Lockdown Samples, 

2) Age Groups, and 3) Social Environments 

We ran five LMMs—one with each thought component as the outcome variable 

modeling the following fixed factors and their interactions: 1) “sample” (two levels: pre- and 

during lockdown), 2) “age group” (two levels: younger and older), and 3) “social 

environment” (three levels: alone, around people but not interacting, and around people and 

interacting). Age group mean-centered age was included in all models as a nuisance covariate 

to control for age differences within age groups between the two samples. In total, 195 

participants (4,870 observations) were included in these models. 
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Example model formula: lmer(Thought component × ∼ Sample * Age group * Social 

environment + Age group mean-centered age + (1|Participant/Day number)) 

In addition, to account for differences in age range in the younger groups between pre- 

and during lockdown samples, we reran these analyses while limiting the age range for the 

younger group to 18 to 27 y in both samples. Rerunning our analyses in this way did not 

change the overall interpretations of the paper (SI Appendix). 

2.6.5.2 Comparing Thought Patterns between 1) Current Activities and 2) Age Groups 

in the Lockdown Sample 

We ran five LMMs—one with each thought component as the outcome variable 

modeling the following fixed factors and their interactions: 1) “activity” (five levels) and 2) 

“age group” (two levels). The “activity” question had 24 options, which we condensed for 

analyses. Any observations containing the option “other” (n = 88) were removed, leaving 81 

participants (1,777 observations) in the model. The remaining options were grouped into five 

categories: 1) working, 2) leisure activities, 3) social interactions, 4) media consumption, and 

5) essential tasks (see SI Appendix for details). 

Example model formula: lmer(Thought component × ∼ Activity * Age group + 

(1|Participant/Day number)) 
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Chapter 3- What happens next? Ongoing thoughts about the 

future in the laboratory and daily life 

This chapter is currently under review (at the time of thesis submission) at PloS one, as: 

Mckeown, B., Konu, D., Strawson, W., Poerio, G., Turnbull, A., Karapanagiotidis, T., Ho, 

N.S.P., Jefferies, E., McCall, C., & Smallwood, J. (under review). What happens next? 

Ongoing thoughts about the future in the laboratory and daily life. PloS one.  

Acknowledgements and authors’ contributions: 

Brontë Mckeown designed and implemented the affective laboratory paradigm for laboratory 

Sample 1, designed and implemented the laboratory paradigm for laboratory Sample 2, 

collected data for laboratory Sample 1, supervised data collection for laboratory Sample 2, 

designed the lockdown study, prepared the lockdown study materials, collected the lockdown 

data, performed the statistical analyses, interpreted the results, prepared visualisation of 

results, and wrote the manuscript for publication under the supervision of Dr Cade McCall, 

Prof. Elizabeth Jefferies, and Prof. Jonathan Smallwood. Delali Konu and Dr Adam Turnbull 

assisted in data collection for laboratory Sample 1, and Dr Adam Turnbull designed and 

implemented the documentary laboratory paradigm. Dr Theo Karapanagiotidis helped 

implement the TV-watching paradigms in PsychoPy. Dr Giulia Poerio and Will Strawson 

provided feedback on the design of the lockdown study and helped prepare lockdown study 

materials. Before the start of Brontë Mckeown’s research degree, Prof. Jonathan Smallwood, 

Prof. Elizabeth Jefferies, Prof. Leigh Riby, and Dr Giulia Poerio designed the pre-lockdown 

study, and Dr Giulia Poerio and Dr Lea Martinon collected the pre-lockdown data. All co-

authors contributed to reviewing and editing the manuscript for publication. 

3.1 Abstract 

How do people think under conditions of uncertainty? Our study used Multidimensional 

Experience Sampling to examine patterns of thought associated with uncertainty in the 

laboratory while watching videos and assessed the extent to which these laboratory findings 

generalised to uncertainty experienced in daily life during the COVID-19 pandemic. In the 

laboratory, participants watched videos in which either no threatening events unfolded 

(‘control’) or unfolded in either the first (‘action’) or last-minute (‘suspense’). While 

watching ‘action’ and ‘suspense’ threat videos, laboratory participants reliably described 

thoughts with negative, social content related to future problem resolution. Critically, this 
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future-directed thought pattern was positively associated with subjective uncertainty in the 

laboratory and subjective uncertainty in daily life during the COVID-19 pandemic. Notably, 

in the laboratory, when subjective uncertainty was low, high-trait-anxiety individuals 

reported elevated levels of this pattern compared to low-trait-anxiety individuals. By 

examining the relationships between uncertainty and thought in laboratory and real-world 

contexts, our study establishes a generalisable pattern of thought that emerges under 

conditions of uncertainty that may reflect a process through which future situations are 

simulated to select appropriate actions, an important question for future research to address. 

3.2 Introduction 

Cognition supports behavioural flexibility. In some situations, we have a reasonable idea 

of what to do next, while in others, the best course of action is uncertain. When the outside 

world lacks compelling demands, we often engage in ‘self-generated’ thoughts that are 

largely unrelated to the external environment and deal with topics of greater personal 

relevance, including future events and other people (e.g., Mar et al., 2012; O’Callaghan et al., 

2015; Song & Wang, 2012; Taatgen et al., 2021). Self-generated future-directed and social 

thoughts can be associated with benefits, including refining personal goals (Medea et al., 

2018), creative problem-solving (Baird et al., 2012), and greater social wellbeing (Poerio & 

Smallwood, 2016). These data can be parsimoniously explained by assuming that 

perceptually-decoupled social-episodic thinking allows consideration of long-term priorities 

for behaviour (Cole & Kvavilashvili, 2019; D'Argembeau et al., 2011; Poerio & Smallwood, 

2016; Ruby et al., 2013b; Smallwood & Andrews-Hanna, 2013). However, ongoing thought 

may shape actions more directly by adjusting goals in a manner sensitive to events in the 

immediate environment (Huijser et al., 2021). Our study explored the hypothesis that specific 

patterns of thought emerge when we feel uncertain about the world around us. 

Uncertainty is also associated with anxiety and stress (Hirsh et al., 2012). In general, 

anxiety disorders are characterized by pervasive negative thinking about possible future 

events (American Psychiatric Association, 1980; Watkins et al., 2005), and anxious 

individuals generate negative future events more easily than controls (MacLeod & Byrne, 

1996; Miloyan et al., 2014). But trait anxiety is also linked to sensitivity to, and intolerance 

of, uncertainty (Carleton et al., 2012) and a common feature of anxiety disorders is 

exaggerated responding to threat and uncertainty (Grupe & Nitschke, 2013). Therefore, if 

trait anxiety is linked to patterns of thought associated with uncertainty, anxious individuals 

may either show 1) a heightened response to uncertainty or 2) more inflexible thinking, 
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changing the situations in which thought patterns emerge. Our study also explored how trait 

anxiety moderated the relationships between uncertainty and patterns of thought, facilitating 

contextualization of the psychological meaning of thought patterns related to uncertainty. 

A key goal of our study was to explore how states of uncertainty predict patterns of 

thought under controlled laboratory conditions—where uncertainty can be induced 

experimentally—and in naturally-occurring and personally-meaningful circumstances as 

people go about their daily lives (Smallwood et al., 2021). Since prior studies document both 

similarities and differences between thinking in the laboratory and the real world (e.g., Ho et 

al., 2020; Kane et al., 2017; McVay et al., 2009), our study explicitly examined links between 

uncertainty and ongoing thought patterns across both contexts to assess the generalizability of 

our findings. To facilitate this goal, we used laboratory-based naturalistic viewing paradigms, 

which mimic the rich multimodal sensory and contextual features of real-world experiences 

(Sonkusare et al., 2019), a choice that should maximize the generalization of thinking 

between laboratory and daily life contexts. To experimentally induce states of uncertainty and 

arousal, we selected clips from television shows in which either no threatening events 

unfolded (‘control’) or unfolded in either the first (‘action’) or last-minute (‘suspense’). 

Implementing this paradigm in two independent samples allowed us to assess the replicability 

of our manipulation.  

To examine thoughts under naturally-occurring states of uncertainty and threat, we 

capitalized on data collected in daily life before and during the COVID-19 pandemic in the 

United Kingdom (Mckeown et al., 2021). We expected that individuals would find the 

COVID-19 situation threatening and uncertain since the virus was poorly understood, 

potentially fatal, and it was unclear how the situation would unfold. Accordingly, our 

projection of thought patterns from the laboratory directly onto the daily life data allowed us 

to test whether patterns experienced while watching threatening and uncertain videos in the 

laboratory are correlated with uncertainty as it occurs in a real-world situation. 

To measure thought patterns across situations, we used Multidimensional Experience 

Sampling (MDES; Smallwood et al., 2016). MDES asks participants to describe the contents 

of their thoughts by rating momentary experiences along several dimensions (e.g., temporal 

focus, relationship to self or other). Dimension reduction techniques can then be applied to 

use covariation in the responses to different items to identify ‘patterns of thought’ 

(Smallwood et al., 2021). Previous MDES studies have identified common patterns of 
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thought across both laboratory and daily life contexts (Ho et al., 2020; Konu et al., 2021; 

Turnbull et al., 2021; Wang et al., 2018b).  

In the current study, we first identified patterns of thought in the laboratory data (n = 

119) using Principal Components Analysis (PCA). We then projected these thought patterns 

onto MDES data recorded in daily life before and during the COVID-19 pandemic (n = 137). 

This projection step allowed us to examine data from different datasets in the same 

multidimensional space, thereby allowing us to investigate how the correlates of thought 

patterns induced by a manipulation within the laboratory relate to the thinking that happens in 

daily life. In both the laboratory and daily life, we were interested in links with subjective 

uncertainty and trait anxiety (Figure 3.1 shows a schematic of the current study’s workflow). 

In summary, the main aims of the current study were to 1) understand how people think 

under conditions of uncertainty and 2) directly assess the generalisability of laboratory 

findings in a real-world situation. Our analyses identified a generalisable pattern of 

emotional, social, and future-directed problem-solving that consistently emerges when people 

feel uncertain, in both the laboratory while watching videos and in daily life during the 

COVID-19 pandemic. 
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Figure 3.1.Schematic of the workflow of the current study. In two independent samples in 

the laboratory (n = 70 & n = 49), participants watched TV clips depicting varying levels of 

threat and uncertainty (3 conditions: ‘control’, ‘action’, and ‘suspense’). Participants 

completed MDES probes at the end of each clip to assess ongoing thoughts and emotional 

states. Dimension reduction was applied to the combined thought data (n = 119) to identify 

common ‘patterns of thought’. We then projected these patterns onto the daily life data 

collected before- (n = 78) and during (n = 59) the COVID-19 pandemic in the UK. Linear 

Mixed Models determined 1) how the prevalence of thought patterns differed between 

external contexts (laboratory: video conditions, daily life: before vs during the COVID-19 

pandemic), 2) how thought patterns varied with uncertainty, and arousal or threat, and 3) how 

trait anxiety relates to these patterns. 

3.3 Methods 

3.3.1 Participants 

The Department of Psychology’s ethics committee at the University of York approved 

the laboratory and daily life experience-sampling studies. All participants provided informed 

written consent (either in person or online) and were debriefed at the end of the study. All 

participants received either course credit or monetary compensation for their participation, 

except for participants in laboratory Sample 2, in which they participated voluntarily as part 

of a final year undergraduate project. 

3.3.1.1 Laboratory Samples 

Both laboratory samples were recruited from undergraduate and postgraduate student 

bodies at the University of York. Sample 1 comprised 70 participants (female = 60, male = 

10, Age: M = 20.60, SD = 2.10, range = 18-34) and Sample 2 comprised 50 participants (age 
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and gender not recorded; although, likely to be similar to Sample 1 as participants were 

drawn from the same student population). In Sample 2, one participant’s data were excluded 

since they had taken part in the first study, leaving 49 participants in Sample 2. The thought 

data from Sample 1 has been analysed and reported previously by Konu et al. (2021).  

3.3.1.2 Daily Life Samples 

In the ‘pre-COVID’ daily life sample, participants were recruited between October 2016 

and March 2017 from undergraduate and postgraduate student bodies at the University of 

York. Seventy-eight participants completed experience-sampling surveys (female = 57, male 

= 21, Age: M = 19.64, SD = 1.62, range = 18-27) and 70 of these participants completed the 

trait anxiety questionnaire (female = 52, male = 18, Age: M = 19.56, SD = 1.39, range = 18-

25). This thought data has been analysed and reported previously by Ho et al. (2020), 

Mckeown et al. (2021), and Turnbull et al. (2021). In the ‘COVID’ daily life sample, all 

participants were invited to participate in the daily-life experience sampling after completing 

an initial survey, as part of a larger project, on Prolific (www.prolific.co). This initial survey 

included the trait anxiety questionnaire. Fifty-nine participants residing in the United 

Kingdom completed experience-sampling surveys between April 29th, 2020, and May 13th, 

2020 (female = 40, male = 17, self-describe = 1, prefer not to say = 1, Age: M = 24.22, SD = 

4.07, range = 18-35). This thought data has been analysed and reported previously by 

Mckeown et al. (2021). The key details for each of the four samples examined in the current 

study are summarized in Table 3.1. 

  

https://prolific.co/
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Table 3.1. A summary of the four samples examined in the current study. 

Context Sample MDES 

N 

Anxiety 

N 

Exc. 

N 

PCA 

N 

LMM 

N 

LMM 

N obs 

Gender Age 

Lab Sample 1 70 70 0 70 70 763 F = 60 

M = 10 

M = 20.60 

SD = 2.10 

Range = 

18-34 

Lab Sample 2 50 0 1 49 49 575 Not 

Recorded 

Not 

Recorded 

 

Daily 

Life 

Pre-

COVID 

78 70 0 78 70 1843 PCA: 

F = 57 

M = 21 

 

 

 

LMM: 

F = 52 

M = 18 

PCA: 

M = 19.64 

SD = 1.62 

Range = 

18-27 

 

LMM: 

M = 19.56 

SD = 1.39 

Range = 

18-25 

 

Daily 

Life 

COVID 59 59 0 59 59 1256 F = 40 

M = 17 

Self-

describe = 

1 

Prefer not 

to say = 1 

M = 

24.22 

SD = 4.07 

Range = 

18-35 

Note: ‘Lab’ = laboratory. ‘MDES N’ = number of participants that completed 

Multidimensional Experience Sampling. ‘Anxiety N’ = number of participants that completed 

the trait anxiety questionnaire. ‘Exc. N’ = number of participants excluded from all analyses. 

‘PCA N’ = number of participants included in Principal Components Analyses. ‘LMM N’ = 

number of participants included in Linear Mixed Models. ‘LMM N obs’ = minimum number 

of complete observations included in Linear Mixed Models. ‘F’ = female, ‘M’ = male. 

 

3.3.2 Multidimensional Experience Sampling (MDES) 

3.3.2.1 Laboratory 

In both laboratory samples, ongoing thought and emotional states were assessed using 

Multidimensional Experience Sampling (MDES). In total, 16 MDES items were presented to 

participants at the end of each video clip (each set of 16 items = 1 MDES probe). Thirteen of 

these items assessed the focus, form, and content of ongoing thoughts, while three items 

assessed emotional states. Participants were first asked how much their thoughts were 
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focused on the task (i.e., the video) and to report on their levels of arousal (‘The level of my 

arousal was:’), tension (‘I felt tense:’) and uncertainty (‘I felt uncertain:’), followed by 12 

items assessing the content and form of thoughts presented in a random order (see Table A in 

S1 Text for all 13 thought items). The ‘tension’ item was included as part of a larger project 

but was not examined in the current study. All items were rated on a continuous scale from 1 

to 10 using a slider. Once participants were satisfied with their response, they clicked a key to 

move on to the next item. 

3.3.2.2 Daily Life 

In both daily life samples, the MDES survey first asked participants to describe the 

focus, form, and content of their ongoing thoughts immediately before being signalled by 

rating multiple items on a 1-5 Likert scale (see Table A in S1 Text for items included in the 

current study’s analyses that have the best correspondence with items used in the laboratory). 

As in the laboratory, the first item always assessed the focus of their thoughts, and the 

remaining thought items were randomized. In both daily life samples, the survey then asked 

participants to describe their emotions and feelings immediately before being signalled by 

rating multiple items on a 1-5 Likert Scale. In the COVID sample, this section of the survey 

included an ‘uncertainty’ item (‘I felt uncertain’) that was examined in the current study. The 

remaining affect items were not examined in the current study (see Mckeown et al. (2021) for 

more details). In addition, to assess in-the-moment levels of threat caused by the COVID-19 

pandemic, participants were asked, ‘Right now, how threatening is the COVID-19 situation 

to you?’ (1-100 scale, anchored from ‘not at all’ to ‘extremely’). Finally, to assess in-the-

moment levels of uncertainty caused by the COVID-19 pandemic, participants were asked, 

‘Right now, how much uncertainty is the COVID-19 situation causing you?’ (1-100 scale, 

anchored from ‘none at all’ to ‘a great deal’). The presentation of these two questions was 

randomized. In both samples, participants were also asked several other questions about their 

ongoing experience (e.g., location, activities, and social interactions; see Mckeown et al. 

(2021)), which are not the focus of this paper. 

3.3.3 Trait Anxiety 

To assess participants’ trait-level anxiety in laboratory Sample 1 and in the daily life 

samples, we administered the State and Trait Anxiety Inventory (STAI) (Spielberger, 1983). 

This inventory includes 20 items for assessing trait-level anxiety, and participants rate 

themselves on each item using a 1-4 Likert scale. In the laboratory, this questionnaire was 
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completed during the ‘task’ session (alongside several other questionnaires collected as part 

of a larger project that are not the focus of the current study; see Konu et al. (2021) for 

details) and was administered using Qualtrics software (Copyright © 2019 & 2020 Qualtrics, 

Qualtrics and all other Qualtrics product or service names are registered trademarks or 

trademarks of Qualtrics, Provo, UT, USA, https://www.qualtrics.com). Due to a technical 

error, responses to one question for three participants on the Trait Anxiety Inventory of the 

STAI were not recorded. In both daily life samples, the questionnaire was administered via 

Qualtrics alongside several other questionnaires prior to completing the MDES surveys (pre-

COVID sample: ~three months before; COVID sample: one day before). In the pre-COVID 

sample, eight participants did not have trait anxiety data, so they were excluded from the 

Linear Mixed Model analyses. Across all samples, the mean score of the 20 trait-anxiety 

items (19 items for three participants with missing responses in the laboratory) was calculated 

to provide each participant’s trait anxiety score (higher scores indicate higher levels of trait 

anxiety). Violin plots showing the distribution of trait anxiety scores across all samples 

examined are presented in Fig A in S1 Text. 

3.3.4 Laboratory Procedure 

3.3.4.1 Sample 1 

In laboratory Sample 1, participants took part in a two-day study (~2 hours of testing per 

day) in which they completed a range of tasks (total = 9) and reported their ongoing thoughts 

and emotional states using MDES at the end of each task block (for full details of the two-day 

study, see Konu et al., 2021). The order of session and task was counterbalanced across 

participants using a pseudo-random fixed order. In one session—that the current study 

focuses on—participants completed two TV-based paradigms (‘documentary’ and ‘affective’) 

and MDES probes. They also completed a state-anxiety questionnaire (STAI; Spielberger 

(1983)) before and after the ‘affective’ TV paradigm, a comprehension questionnaire after the 

‘documentary’ paradigm, and a debrief questionnaire at the end of the session asking whether 

they had seen the ‘action’ and ‘suspense’ clips before. These additional questionnaires were 

collected (via Qualtrics) as part of a larger project and are not considered in the current study. 

Congruent audio-visual clips from the ‘documentary’ paradigm were selected as the ‘control’ 

videos in the current study as they were low in threat and uncertainty. In both paradigms, no 

clips were shown twice to the same participant.  

https://www.qualtrics.com/
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In the affective TV-based paradigm, participants were instructed to attend to the screen 

as they watched and listened to 3–4-minute clips from a range of BBC TV crime dramas and 

thrillers: Happy Valley (BBC One, 2014), Line of Duty (BBC One/Two, 2012), Luther (BBC 

One, 2010) and Bodyguard (BBC One, 2018). These clips were selected to include a 

threatening event. There were two conditions that varied in the timing of the threatening 

event: 1) ‘action’ clips depicting direct threat in the first minute with the remainder of the clip 

following the protagonist(s)’ response to the threat and 2) ‘suspense’ clips depicting a 

potential threat, high in uncertainty, early on in the clip with the direct threat only occurring 

in the last minute. Three independent raters identified when the direct threat occurred in each 

clip. An example of an ‘action’ clip is a scene from Bodyguard (Season 1, Episode 2). Within 

the first minute, gunshots from a roof are fired (threatening event) at the protagonists, and the 

remainder of the clip follows the protagonists’ reaction to continuing shots. An example of a 

‘suspense’ clip is a scene from Luther (Season 3, Episode 2) in which two characters, 

believing to be at home alone, hear a noise and go upstairs to investigate; in the last minute of 

the clip, the characters are attacked (threatening event after a period of uncertainty and 

suspense).  

The order of the affective TV conditions was pseudo-randomized such that the first clip 

was either from the ‘action’ or ‘suspense’ condition (counterbalanced across participants). 

The remaining clips were pseudo-randomized such that each condition would not be shown 

more than twice consecutively. Each session had eight clips, with four in each condition. 

Participants were informed that the clips involved dangerous behaviour, strong language, and 

violence on several occasions prior to starting, and they were reminded repeatedly that they 

had the right to withdraw at any time, without giving reason and without prejudice. After 

each clip and answering the MDES questions, participants were invited to 1) take a break for 

as long as they needed and 2) withdraw from the task if they were feeling distressed.  

In the documentary TV-based paradigm, participants were instructed to attend to the 

screen as they watched and listened to 3–4-minute clips from Season 1 of a BBC 

documentary series called ‘Connections’ (BBC One, 1978) that reviews the history of science 

and innovation. Nine clips were presented under three audio-visual conditions with three 

clips per condition: 1) congruent visual and auditory presentation in which participants 

watched and listened to the documentary TV clips, 2) audio condition in which participants 

had audio input of the documentary clip accompanied by a white fixation cross, and 3) 

Inscapes in which participants had audio input of the documentary clip with visuals from 
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Inscapes (a nonverbal, non-social TV paradigm that features slowly moving abstract shapes; 

Vanderwal et al., 2017; Vanderwal et al., 2015).  

The order of audio-visual conditions was pseudo-randomized, such that three 

consecutive clips always included one from each condition. Participants were informed that 

they would watch documentary TV clips with varying visual input but were unaware of 

which condition they were in before starting the block. At the end of the paradigm, 

participants were asked questions about the content of the TV clips in a comprehension 

questionnaire (this data was part of a larger project and has not been examined in the current 

study). Seven participants were informed that they would be required to answer 

comprehension questions about the clips before the protocol was changed; the remaining 

participants were unaware that this was required. The current study only included the MDES 

probes following the congruent audio-visual documentary clips (three per participant) in 

analyses, which served as a ‘control’ condition (low in threat and uncertainty). 

In total, four ‘suspense’, four ‘action’, and three ‘control’ MDES probes for each 

participant in laboratory Sample 1 were included in analyses. It is worth noting that, while the 

eight affective video clips shown were the same across all participants, the three ‘control’ 

videos varied across participants (i.e., nine clips in total, but each participant only saw three). 

In addition, seven participants completed seven MDES probes rather than eight in the 

affective TV-based task due to a technical error, and two participants completed the sessions 

in a different order compared to the rest of the cohort. 

3.3.4.2 Sample 2 

In Sample 2, participants took part in a one-session study (~one hour of testing) during 

which they watched both ‘affective’ and ‘control’ video clips and reported ongoing thought 

and emotional states via MDES probes at the end of each video clip. Participants watched 12 

clips: four ‘action’, four ‘suspense’, and four ‘control’. The ‘action’ and ‘suspense’ clips were 

the same as Sample 1 (described above). The ‘control’ clips for Sample 2 were 3–4-minute 

TV clips from Episode 9 of a BBC documentary series called ‘Life’ (BBC One, 2009) that 

reviews various types of plants in different climates across the planet. The order of the video 

conditions in this paradigm was pseudo-randomized such that the first TV clip presented was 

either from the ‘action’, ‘suspense’, or ‘control’ condition (counterbalanced across 

participants). The remaining clips were pseudo-randomized so that each condition would not 

be shown more than twice consecutively. Participants were provided with the same warnings 
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about the affective video clips as in laboratory Sample 1. They were also invited to take 

breaks between video clips and withdraw from the task if they felt distressed. Due to 

technical errors, one participant had a missing response for a ‘focus’ item, one participant had 

missing responses for six ‘focus’ items, and one participant had six full MDES probes 

missing out of 12. The seven observations with missing values for the ‘focus’ item were 

excluded from analyses. 

3.3.5 Daily Life Procedure 

In daily life, to complete MDES probes, participants received a text message with a link 

to an online Qualtrics survey five times daily for seven days at quasi-random intervals 

between 09:00 and 21:00 (20:45 in the COVID sample) administered via SurveySignal 

(Hofmann & Patel, 2015). Each survey link expired after two hours. In the pre-COVID 

sample, one participant opted to complete the study on paper and was provided with a phone 

where texts acted as signals. Participants in both samples also completed daily diary 

questionnaires, and participants in the COVID sample completed an exit questionnaire at the 

end of the study. These questionnaires did not sample ongoing thought and are therefore not 

reported here. In both samples, trait anxiety was assessed using the STAI via Qualtrics in a 

separate questionnaire prior to completing MDES surveys. 

3.4 Analysis 

3.4.1 Principal Components Analysis (PCA) to Identify ‘Patterns of Thought’ in the 

Laboratory 

To identify common ‘patterns of thought’ across both laboratory samples (n = 119), 

PCA with varimax rotation was applied to the combined thought data from both samples (13 

items; see Table A in S1 Text) using python (3.8.10). In the same manner as our previous 

studies (e.g., Ho et al., 2020; Konu et al., 2021; Konu et al., 2020; Mckeown et al., 2021; 

Smallwood et al., 2016), PCA was applied at the observation level, and items were z-scored 

prior to applying PCA. In total, 1338 observations were included in the PCA. The Kaiser–

Meyer–Olkin measure of sampling adequacy was 0.73, above the commonly recommended 

value of 0.6, and Bartlett’s test of sphericity was significant (χ2[78] = 2992.36, p < .001). 

Based on the elbow of the scree plot (see Fig B in S1 Text), three components were retained 

for further analysis (see Results and see Table B in S1 Text for exact component loadings). 

Violin plots showing the distribution of each component are shown in Fig C in S1 Text. 

While applying varimax rotation to the PCA solutions is consistent with our previous studies 
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(e.g., Ho et al., 2020; Konu et al., 2021; Konu et al., 2020; Mckeown et al., 2021; Smallwood 

et al., 2016), in the current study, we also conducted supplementary analyses to demonstrate 

that the PCA solutions are highly similar when using other forms of rotation (see Fig D in S1 

Text for scatterplots). 

To ensure that the thought patterns identified across both laboratory samples were 

present in both samples separately, we ran a PCA on each sample separately (z-scored each 

sample separately and specified three components for extraction; see Figs E and F in S1 Text 

for scree plots and Tables C and D in S1 Text for component loadings) and correlated each 

participant’s PCA score from this analysis with their PCA score from the combined analysis. 

This analysis revealed a high correspondence between the two-sample and one-sample 

solutions (see S1 Text for more details and Fig G in S1 Text for scatterplots). In addition, we 

ran a PCA on each sample and video condition separately (z-scored each sample and 

condition separately and specified three components for extraction; see Fig H in S1 Text for 

scree plots) and correlated each participant’s PCA score from this analysis with their PCA 

score from the combined analysis (see Figs I-K in S1 Text for scatterplots).  

Finally, we also projected the three thought patterns identified in each sample separately 

onto the other respective sample’s data. In this context, projection means computing the dot 

product between the component loadings from one laboratory sample and the z-scored 

experience-sampling items from the other laboratory sample (see Fig L in S1 Text for 

correspondence between one-sample projected and one-sample normal solutions). We used 

these projected solutions, as well as solutions derived from applying PCA to each sample 

directly, in supplementary analyses to assess the reliability of findings across laboratory 

samples and to establish that the various solutions are largely interchangeable (see Results).  

3.4.2 Projecting Laboratory Thought Patterns onto Daily Life Data 

To examine the same patterns of thought in the laboratory and in daily life, we projected 

the three components identified from the laboratory data onto the daily life data using the 

same method described above (calculated dot product between laboratory component 

loadings and z-scored items from daily life data). Since two items (‘emotion’ and 

‘deliberate’) in the pre-COVID daily life sample were measured on 7- rather than 5-point 

scales, all daily life thought items were rescaled using the following computation before z-

scoring: (observed score − 1)/(highest possible score on that scale − 1) (as in Mckeown et al., 

2021). 
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Out of the 13 items used in the laboratory PCA, eight of these items had like-for-like 

equivalents in the daily life data, and three items had approximate equivalents in the daily life 

data: 1) ‘modality’ = ‘words’, 2) ‘person’ = average of ‘close-other’ and ‘not-close others’, 

and 3) ‘intrusive’ = reverse of ‘wanted’. In the laboratory, the ‘modality’ item had ‘images’ at 

the negative end of the scale and ‘words’ at the positive end. In daily life, there were two 

separate questions to assess the modality of thought (‘images’ and ‘words’), so we included 

the ‘words’ item in the projection. In the laboratory data, the ‘person’ item did not 

differentiate between ‘close’ and ‘not-close’ others, while in the daily life data, there were 

two separate items to assess thoughts about both ‘close’ and ‘non-close’ others. Accordingly, 

we computed the average of the two ‘person’ items in the daily life data and used this 

averaged item in the projection. In addition, while there was no ‘intrusive’ item in the daily 

life data, there was a question assessing how ‘wanted’ participants’ thoughts were, and so we 

reverse-scored this question for inclusion in the projection. Finally, two items (‘diverse’ and 

‘source’) included in the laboratory PCA did not have any equivalents in the daily life data, 

leaving a total of 11 items that were used in the projection between the laboratory 

components and the daily life data (see Table A in S1 Text for a summary of items used in 

analyses).  

To support the validity of the projection using only 11 items, we ran a PCA on these 11 

items in the combined laboratory data (specified three components for extraction; see left-

hand-side of Fig M in S1 Text for scree plot and Table E in S1 Text for component loadings) 

and correlated each participant’s PCA score from this analysis with their 13-item PCA score. 

This analysis revealed a high correspondence between the 11-item and 13-item patterns (see 

S1 Text for more details and Fig N in S1 Text for scatterplots). In addition, we ran a PCA on 

the eight items in the combined laboratory data that had like-for-like equivalents in the 

laboratory and daily life data (specified three components for extraction; see right-hand-side 

of Fig M in S1 Text for scree plot and Table F in S1 Text for component loadings) and 

correlated each participant’s PCA score from this analysis with their 13-item PCA score. This 

analysis revealed a high correspondence between the eight-item and 13-item patterns (see S1 

Text for more details and Fig N in S1 Text for scatterplots). 

Finally, to understand how the projected laboratory patterns related to patterns present in 

the daily life data, we ran a PCA on the combined daily life data (11 items; specifying three 

components for extraction, see Fig O in S1 Text for scree plot and Table G in S1 Text for 

component loadings) and correlated each participant’s PCA score from this analysis with 
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their projected PCA score. This analysis revealed a moderate correspondence between the 

direct and projected patterns (see S1 Text for more details and Fig P in S1 Text for 

scatterplots). In addition, we ran a PCA on each sample separately (z-scored items in each 

sample separately) in the daily life data (before- and during-COVID; specified three 

components for extraction, see Figs Q and R in S1 Text for scree plots and Tables H and I in 

S1 Text for component loadings) and correlated each participant’s PCA score from this 

analysis with their projected PCA score (see S1 Text for more details and Figs S and T in S1 

Text for scatterplots). 

3.4.3 Preliminary Correlation Analyses 

3.4.3.1 Mean Ongoing Thought Patterns and Trait Anxiety 

Owing to the complexity of Linear Mixed Models, we first examined the relationship 

between thought patterns and trait anxiety using a series of Pearson correlations between 

mean thought patterns and trait anxiety scores in 1) each video condition separately in the 

laboratory (n = 70) and 2) each sample separately in daily life (n = 129).  

3.4.3.2 Mean Emotional States and Trait Anxiety 

To aid the interpretation of any thought-anxiety relationships identified in our analyses, 

we examined the relationships between emotional states and trait anxiety in the laboratory 

using a series of Pearson correlations between trait anxiety scores, and mean subjective 

arousal and mean subjective uncertainty, for each video condition separately (n = 70). To 

examine the relationships between emotional states and trait anxiety in the daily life COVID 

sample, we ran also ran a series of Pearson correlations between trait anxiety scores, and 

mean COVID threat, mean COVID uncertainty, and mean subjective uncertainty (n = 59).  

3.4.4 Linear Mixed Models (LMMs) 

LMMs were fitted by restricted maximum-likelihood estimation in R (4.1.1; R Core 

Team, 2021) using the lme4 package (1.1.27.1; Bates et al., 2015). We used the lmerTest 

package (3.1.3; Kuznetsova et al., 2017) to obtain p values for the F-tests and t-tests returned 

by the lme4 package. For each set of models, the alpha level was set based on 0.05 divided by 

the number of models (i.e., Bonferroni-corrected alpha level). The reported alpha levels for 

main effects and interactions in our paper are unadjusted and are only reported as significant 

if they passed the Bonferroni-corrected alpha level (0.05/3 = .017). Degrees of freedom were 

calculated using the Satterthwaite approximation. For F-tests, type 3 sum of squares was 
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chosen because imbalances in the data are assumed to occur randomly and not due to 

differences in the population (Singmann & Kellen, 2019). Contrasts were set to ‘contr.sum,’ 

indicating that the intercept of each model corresponds to the grand mean of all conditions. 

Estimated marginal means (i.e., predicted means) and simple slopes were calculated using the 

emmeans package (1.7.0; Lenth, 2021). Post hoc pairwise comparisons of estimated marginal 

means and simple slopes were also calculated using the emmeans package (Lenth, 2021) and 

were corrected for multiple comparisons using the Bonferroni adjustment, which adjusts both 

the CIs and p values associated with each estimate and test. In these cases, the adjusted alpha 

levels are reported in parentheses. 

Across all laboratory LMMs, to account for multiple observations per participant, 

participant was included as a random intercept and to account for variation between specific 

videos, video name was also included as a random intercept. Across all daily life LMMs, to 

account for multiple observations per participant, day number was nested within participant 

as a random intercept. Across all LMMs, continuous independent and dependent variables 

were z-scored prior to analysis to provide standardized parameter estimates. 

3.4.4.1 Manipulation Check of Video Condition 

Before considering the thought patterns evoked by each video condition, we first 

established that the video conditions changed arousal and uncertainty ratings in the expected 

manner. We ran two LMMs— one with ‘arousal’ as the outcome variable and one with 

‘uncertainty’ as the outcome variable— with ‘video condition’ as a fixed effect in both cases 

(three levels: ‘control’, ‘action’, and ‘suspense’). In total, 119 participants (1338 

observations) were included in these models. Since the residual plots from these models 

indicated non-randomness of the residuals (see Fig A in S2 Text), we also performed a series 

of one-way repeated measures ANOVAs (as well as non-parametric Friedman tests with and 

without outliers) using mean ratings for ‘arousal’ and ‘uncertainty’ for each video condition 

as outcome variables and ‘video condition’ as a predictor variable (see S2 Text for more 

details, Figs B-D in S2 Text for box plots showing results and Fig E in S2 Text for QQ plots). 

3.4.4.2 Laboratory: Ongoing Thought Patterns by 1) Video Condition and 2) 

Emotional States (n = 119) 

To examine how ongoing thought patterns varied by video condition and emotional 

states in the laboratory, we ran three LMMs— one with each thought component as the 

outcome variable—modelling the following fixed effects and their two-way interactions: 1) 
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‘video condition’ (three levels: ‘control’, ‘action’, and ‘suspense’), 2) ‘subjective 

uncertainty’, and 3) ‘subjective arousal’. In total, 119 participants (1338 observations) were 

included in these models.  

Example model formula: lmer(z-scored thought component x ~ z-scored arousal + z-scored 

uncertainty + condition + z-scored arousal : z-scored uncertainty + condition : z-scored 

arousal + condition : z-scored uncertainty + (1|participant) + (1|video)) 

To understand whether the thought components used in this omnibus analysis 

generalised across both laboratory samples, we repeated this analysis in each sample 

separately using 1) one-sample thought components and 2) projected one-sample thought 

components. These supplementary analyses demonstrated that the decompositions are largely 

interchangeable and do not substantially influence the interpretation of the results. These 

analyses also demonstrate the reliability of our findings since they indicate a high degree of 

consistency in the patterns derived from both samples and in how these patterns relate to 

video condition and emotional states (see Table A in S2 Text for a summary of the 

consistency of the main effects and interactions using the different decompositions). 

3.4.4.3 Laboratory: Ongoing Thought Patterns by 1) Video Condition, 2) Emotional 

States, and 3) Trait Anxiety (n = 70) 

To examine how ongoing thought patterns varied by video condition, emotional states, 

and how this interacted with trait anxiety in the laboratory, we ran three LMMs— one with 

each thought component as the outcome variable—modelling the following fixed effects and 

their two-way interactions: 1) ‘video condition’ (three levels: ‘control’, ‘action’ and 

‘suspense’), 2) ‘subjective uncertainty’, 3) ‘subjective arousal’, and 4) ‘trait anxiety’ (mean 

score). In total, 70 participants (763 observations) from laboratory Sample 1 were included in 

these models since trait anxiety was not assessed in laboratory Sample 2.  

Example model formula: lmer(z-scored thought component x ~ z-scored arousal + z-scored 

uncertainty + z-scored trait anxiety + condition + z-scored arousal : z-scored uncertainty + z-

scored arousal : z-scored trait anxiety + z-scored uncertainty : z-scored trait anxiety + 

condition : z-scored arousal + condition : z-scored uncertainty + condition : z-scored trait 

anxiety +  (1|participant) + (1|video)) 
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3.4.4.4 Daily Life: Ongoing Thought Patterns by 1) Sample (pre- vs during-COVID) 

and 2) Trait Anxiety (n = 129) 

To examine how the prevalence of the projected thought patterns differed before and 

during COVID and how this interacted with trait anxiety in daily life, we ran three LMMs— 

one with each projected thought component as the outcome variable—modelling the 

following fixed effects and their interaction: 1) ‘sample’ (two levels: ‘pre-COVID’ and 

‘during-COVID’) and 2) ‘trait anxiety’ (mean score). In total, 129 participants (3100 

observations) were included in these models. In all models, age was included as a nuisance 

covariate to account for differences in age between the two daily life samples. 

Example model formula: lmer(z-scored thought component x ~ sample : z-scored trait 

anxiety + z-scored age + (1|participant/day)) 

3.4.4.5 Daily Life during COVID-19 Pandemic: Ongoing Thought Patterns by 1) 

Subjective Uncertainty and 2) Trait Anxiety (n = 59) 

To examine how the projected thought patterns related to subjective uncertainty (same 

item as examined in the laboratory) and how this interacted with trait anxiety in the COVID 

daily life sample, we ran three LMMs—one with each projected thought component as the 

outcome variable—modelling the following fixed effects and their interaction: 1) ‘subjective 

uncertainty’ (item: ‘I felt uncertain’) and 2) ‘trait anxiety’ (mean score). In total, 59 

participants (1257 observations) were included in these models. To maintain consistency with 

the previous daily life models, age was also included as a nuisance covariate. 

Example model formula: lmer(z-scored thought component x ~ z-scored uncertainty : z-

scored trait anxiety + z-scored age + (1|participant/day)) 

3.4.4.6 Daily Life during COVID-19 Pandemic: Ongoing Thought Patterns by 1) 

COVID Uncertainty, 2) COVID Threat, and 3) Trait Anxiety (n = 59) 

Finally, to examine how the projected thought patterns related to the uncertainty and 

threat caused by the COVID-19 pandemic specifically and how this interacted with trait 

anxiety in the COVID daily life sample, we ran three LMMs—one with each projected 

thought component as the outcome variable—modelling the following fixed effects and their 

two-way interactions: 1) ‘COVID uncertainty’ (item: ‘Right now, how much uncertainty is 

the COVID-19 situation causing you?’), 2) ‘COVID threat’ (item: ‘Right now, how 

threatening is the COVID-19 situation to you?’), and 3) ‘trait anxiety’ (mean score). In total, 
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59 participants (1256 observations) were included in these models. To maintain consistency 

with the previous daily life models, age was also included as a nuisance covariate.  

Example model formula: lmer(z-scored thought component x ~ z-scored COVID uncertainty 

+ z-scored COVID threat + z-scored trait anxiety + z-scored COVID uncertainty : z-scored 

COVID threat + z-scored COVID uncertainty : z-scored trait anxiety + z-scored trait anxiety : 

z-scored COVID threat + z-scored age + (1|participant/day)) 

3.5 Results 

3.5.1 Patterns of Thought 

To identify common ‘patterns of thought’ in the laboratory, we combined the thought 

data from the two laboratory samples (n = 119) and decomposed these in a single PCA (see 

Methods). Based on the elbow of the scree plot, three components—accounting for 48% of 

the total variance—were retained for further analysis: 1) ‘self-relevant and past-focused off-

task thought’—describing patterns of thought with the highest loadings on ‘Self’, ‘Memory’, 

‘Past’, ‘Diverse’, and ‘Off-task’; 2) ‘emotional, social and future-directed problem-

solving’—with the highest loadings on ‘Person’, ‘Future’, ‘Intrusive’, ‘Negative’, and 

‘Problem’; and 3) ‘detailed deliberate thought’—with the highest loadings on ‘Deliberate’, 

‘Detail’, ‘Problem’, and ‘Words’. These thought patterns are represented as word clouds in 

panel B of Figure 3.2 and see Table B in S1 Text for exact component loadings. 
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Figure 3.2. Summary of the LMMs’ results comparing (a) arousal and uncertainty ratings 

between video conditions and (b) ongoing thought patterns between video conditions in the 

combined laboratory samples. Panel (a) shows the predicted means (y-axis) of arousal (top) 

and uncertainty (bottom) ratings for each video condition (x-axis). Left-hand side of panel (b) 

shows word clouds representing the three thought patterns identified by applying PCA to the 

combined laboratory thought data. Each word represents an experience-sampling item (13 

items; see Table A in S1 Text). Font size represents the magnitude of the loading, and colour 

describes the direction (warm = positive, cool = negative). Right-hand side of panel (b) 

shows the predicted means (y-axis) of each thought pattern (represented as word clouds) for 

each video condition (x-axis). Error bars represent the 95% CIs for each predicted mean. In 

total, 119 participants (1338 observations) were included in these analyses. All continuous 

variables were z-scored before analysis. 

3.5.2 Laboratory: Manipulation Check of Video Condition 

The LMMs comparing subjective arousal and subjective uncertainty between video 

conditions confirmed that relative to control conditions, the ‘action’ and ‘suspense’ 

conditions had higher arousal (Bonferroni adjusted for 3 tests; ‘action’ – ‘control’: b = 1.28, 

95% CI (1.07, 1.49), t(13) = 16.56, p < .001; ‘suspense’  – ‘control’: b = 1.18, 95% CI (0.97, 

1.39), t(13) = 15.25, p < .001) and higher uncertainty (Bonferroni adjusted for 3 tests; 

‘action’ – ‘control’: b = 1.30, 95% CI (1.14, 1.46), t(16) = 21.90, p  < .001; ‘suspense’ – 

‘control’: b = 1.51, 95% CI (1.35, 1.66), t(16) = 25.29, p < .001). These results are 

summarised in panel A of Figure 3.2 and see Tables B-D in S2 Text for ANOVA tables, 

parameter estimates, and variance explained by random effects. 

The supplementary ANOVAs comparing mean arousal and mean uncertainty ratings 

between video conditions revealed a similar pattern of results (see S2 Text), with the addition 

that arousal was significantly higher in the ‘action’ video condition compared to the 



73 

 

‘suspense’ condition (Bonferroni adjusted for 3 tests; ‘action’ – ‘suspense’: b = 0.28, 95% CI 

(0.08, 0.49), t(118) = 2.70, p  < .001) and uncertainty was significantly higher in the 

‘suspense’ video condition compared to the ‘action’ condition (Bonferroni adjusted for 3 

tests; ‘suspense’ – ‘action’: b = 0.61, 95% CI (0.37, 0.86), t(118) = 5.00, p  < .001). In 

addition, the non-parametric Friedman tests (with and without outliers) revealed a similar 

pattern of results (see S2 Text). Therefore, these results suggest that the video conditions 

evoked emotional states in the expected manner. However, it is worth noting that the 

difference in uncertainty ratings between the ‘action’ and ‘suspense’ conditions was smaller 

than anticipated, potentially undermining the ability of the experimental manipulation to 

detect differences in thought between the ‘action’ and ‘suspense’ videos. 

3.5.3 Laboratory: Thought Patterns by Video Condition, Subjective Uncertainty, and 

Subjective Arousal 

3.5.3.1 Video Condition 

Having established that the video conditions evoked emotional states in the expected 

manner, we assessed whether they also elicited robust differences in patterns of thought. The 

LMMs examining how each thought pattern varied by video condition and emotional states in 

the combined laboratory samples (n = 119) revealed a significant main effect of video 

condition for self-relevant and past-focused off-task thought (F(2, 16) = 10.10, p = .001). 

This off-task pattern was significantly higher in the ‘control’ condition compared to the 

‘action’ and ‘suspense’ conditions (Bonferroni adjusted for 3 tests; ‘control’ – ‘action’: b = 

0.46, 95% CI (0.14, 0.78), t(37) = 3.60, p < .001; ‘control’ – ‘suspense’: b = 0.55, 95% CI 

(0.23, 0.88), t(37) = 4.34, p < .001). There was also a significant main effect of video 

condition for emotional, social future-directed problem-solving (F(2, 17) = 12.14, p < .001). 

This future-directed pattern was significantly higher in the ‘action’ and ‘suspense’ conditions 

compared to the ‘control’ condition (Bonferroni adjusted for 3 tests; ‘action’ – ‘control’: b = 

0.52, 95% CI (0.21, 0.83), t(38) = 4.26, p < .001; ‘suspense’ – ‘control’: b = 0.55, 95% CI 

(0.25, 0.86), t(38) = 4.56, p < .001). However, there was no significant difference between 

the ‘action’ and ‘suspense’ conditions (Bonferroni adjusted for 3 tests; ‘action’ – ‘suspense’: 

b = -0.04, 95% CI (-0.34, 0.27), t(10) = -0.33, p = 1.000). Finally, there was no significant 

main effect of video condition for detailed deliberate thought (F(2, 19) = 0.60, p = .561). 

Therefore, while watching ‘action’ and ‘suspense’ video clips in the laboratory, emotional, 

social future-directed problem-solving was more prevalent and self-relevant and past-focused 
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off-task thought was less prevalent (see Figure 3.2, panel B and Tables E-G in S2 Text for 

ANOVA tables, parameter estimates, and variance explained by random effects). 

3.5.3.2 Uncertainty and Arousal 

We also sought to map how the patterns of thought linked to each video condition 

related to measures of emotional state (uncertainty and arousal). The LMMs examining how 

each thought pattern varied by video condition and emotional states revealed that there was a 

significant main effect of arousal (F(1, 1308) = 83.58, p < .001) and uncertainty (F(1, 1323) 

= 14.79, p < .001) on levels of self-relevant and past-focused off-task thought. Higher arousal 

(b = -0.29, 95% CI (-0.36, -0.23), t(1308) = -9.14, p < .001) and higher uncertainty (b = -

0.13, 95% CI (-0.20, -0.07), t(1323) = -3.85, p < .001) were both associated with reduced 

self-relevant and past-focused off-task thought. However, a significant two-way interaction 

between uncertainty and video condition (F(2, 1252) = 5.82, p = .003) indicated that the 

negative relationship between uncertainty and this off-task thought pattern was only present 

in the ‘action’ (b = -0.27, 95% CI (-0.36, -0.18), t(1305) = -5.93, p < .001) and ‘suspense’ (b 

= -0.12, 95% CI (-0.21, -0.03), t(1303) = -2.53, p = .012) conditions, and not the ‘control’ 

condition (b = -0.01, 95% CI (-0.16, 0.15), t(1280) = -0.08, p = .936). Therefore, higher 

arousal was consistently related to reduced off-task thought in the laboratory independent of 

video condition, whereas higher uncertainty was only related to reduced off-task thought in 

the ‘action’ and ‘suspense’ conditions. 

There was also a significant main effect of arousal (F(1, 1310) = 20.13, p < .001) and 

uncertainty (F(1, 1322) = 74.52, p < .001) on levels of emotional, social future-directed 

problem-solving. Higher arousal (b = 0.14, 95% CI (0.08, 0.20), t(1310) = 4.49, p < .001) and 

higher uncertainty (b = 0.28, 95% CI (0.22, 0.35), t(1322) = 8.63, p < .001) were both 

associated with greater emotional, social future-directed problem-solving. Therefore, 

subjective uncertainty and subjective arousal were consistently related to increased future-

directed problem-solving in the laboratory independent of video condition. Finally, there was 

no significant main effect of arousal (F(1, 1284) = 1.13, p = .288) or uncertainty (F(1, 1326) 

= 0.38, p = .536) on levels of detailed deliberate thought. The results from these LMMs are 

summarised in the left-hand panel of Figure 3.3 under the ‘Laboratory’ heading and see 

Tables E-G in S2 Text for ANOVA tables, parameter estimates, and variance explained by 

random effects. 
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Figure 3.3. Ongoing thought patterns by emotional states in the laboratory and daily life. 

Left-hand side shows word clouds representing the three thought patterns identified by 

applying PCA to the combined laboratory thought data (n = 119). Each word represents an 

experience-sampling item (13 items; see Table A in S1 Text). Font size represents the 

magnitude of the loading, and colour describes the direction (warm = positive, cool = 

negative). Plots under the ‘Laboratory’ heading (n = 119) show predicted values for each 

thought pattern (y-axis) by 1) arousal, 2) uncertainty, 3) arousal : condition, and 4) 

uncertainty : condition. The predictor variable is shown on the x-axis of each plot. Legend 

shows the three video conditions. Plots under the ‘Daily life, During COVID’ heading (n = 

59) show the predicted values for each projected thought pattern (y-axis) by 1) uncertainty, 2) 

COVID-specific uncertainty, and 3) COVID-specific threat. The predictor variable is shown 

on the x-axis of each plot. Plots under the ‘Daily life, Pre vs During COVID’ heading (n = 

129) show the predicted values for each projected thought pattern (y-axis) by 1) sample (pre-

COVID vs during-COVID) (x-axis). P-values for the F-test for each main effect or interaction 

are shown in the top right of each plot. P-values < .05 are shown in red and p-values > .05 are 

shown in black. Error bars represent the 95% CIs for each predicted slope or mean. All 

continuous variables were z-scored before analysis. 

3.5.4 Laboratory: Thought Patterns and Trait Anxiety 

Next, we examined how patterns of ongoing thought related to levels of trait anxiety in 

laboratory Sample 1 (n = 70). The preliminary correlational analyses examining how mean 

thought patterns varied by trait anxiety—split by video condition—revealed that self-relevant 

and past-focused off-task thought was significantly positively correlated with trait anxiety in 

the ‘control’ condition only (r = 0.36, p = .002) but not in the ‘action’ (r = 0.14, p = .241) or 

‘suspense’ (r = 0.20, p = .094) conditions. In addition, emotional, social future-directed 

problem-solving was significantly positively correlated with trait anxiety in the ‘control’ 

condition only (r = 0.30, p = .012) but not in ‘action’ (r = 0.12, p = .328) or ‘suspense’ (r = 
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0.10, p = .394) conditions. These results indicate that these thought patterns may be linked to 

trait anxiety only in low threat and low uncertainty conditions in the laboratory (i.e., ‘control’ 

condition). The results from these correlational analyses are summarised in Fig F in S2 Text.  

The LMMs examining how each thought pattern varied by video condition, emotional 

states, and trait anxiety in the laboratory revealed that the positive relationship between self-

relevant and past-focused off-task thought and trait anxiety did not reach significance (b = 

0.12, 95% CI (-0.01, 0.26), t(72) = 1.86, p = .068), nor did the positive relationship between 

emotional, social future-directed problem-solving and trait anxiety (b = 0.13, 95% CI (-

0.01, 0.28), t(71) = 1.85, p = .069). However, a significant two-way interaction between trait 

anxiety and uncertainty (F(1, 725) = 7.38, p = .007) indicated that while there was a 

significant positive relationship between uncertainty and emotional, social future-directed 

problem-solving for low- or moderate-trait-anxiety individuals (when trait anxiety = -2: b = 

0.44, 95% CI (0.27, 0.61), t(728) = 5.10, p < .001; when trait anxiety = 0: b = 0.24, 95% CI 

(0.16, 0.32), t(728) = 5.64, p < .001), there was no significant relationship between this 

thought pattern and uncertainty for high-trait-anxiety individuals (when trait anxiety = 2: b = 

0.04, 95% CI (-0.12, 0.20), t(725) = 0.49, p = .626). In addition, high-trait-anxiety individuals 

reported higher levels of this thought pattern when uncertainty was low compared to low-

trait-anxiety individuals (when trait anxiety = 2 and uncertainty = -1 – when trait anxiety = -2 

and uncertainty = -1: b = 0.93, 95% CI (0.30,1.56), t(106) = 2.92, p = .004). This interaction 

indicates that high-trait-anxiety individuals show a weaker association between the future-

directed thought pattern and subjective uncertainty and tend to report higher levels of this 

thought pattern when uncertainty is low compared to low-trait-anxiety individuals. 

Finally, although it did not pass the Bonferroni-adjusted alpha level, a two-way 

interaction between trait anxiety and arousal (F(1, 705) = 5.15, p = .024) indicated that while 

there was a positive relationship between arousal and detailed deliberate thought for low-

trait-anxiety individuals (when trait anxiety = -2: b = 0.27, 95% CI (0.06, 0.49), t(736) = 

2.50, p = .013), there was no significant relationship between this thought pattern and arousal 

for moderate- or high-trait-anxiety individuals (when trait anxiety = 0: b = 0.07, 95% CI (-

0.05, 0.18), t(722) = 1.16, p = .245; when trait anxiety = 2: b = -0.14, 95% CI (-0.35, 0.07), 

t(713) = -1.34, p = .180). The results from these LMMs are summarized in the left panel of 

Figure 3.4 and see Tables H-J in S2 Text for ANOVA tables, parameter estimates, and 

variance explained by random effects. 
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Figure 3.4. Ongoing thought patterns and trait anxiety in the laboratory and daily life. Left-

hand side shows word clouds representing the three ongoing thought patterns identified by 

applying PCA to the combined laboratory thought data (n = 119). Each word represents an 

experience-sampling item (13 items; see Table A in S1 Text). Font size represents the 

magnitude of the loading, and colour describes the direction (warm = positive, cool = 

negative). Plots under the ‘Laboratory’ heading (n = 70) show the predicted slopes for each 

thought pattern (y-axis) by 1) trait anxiety, 2) trait anxiety : arousal, and 3) trait anxiety : 

uncertainty. The predictor variable is shown on the x-axis of each plot. Legend shows 

different levels of trait anxiety. Plots under the ‘Daily Life’ heading (n = 59) show the 

predicted slopes for each projected thought pattern (y-axis) by 1) trait anxiety : uncertainty in 

the during-COVID daily life sample. P-values for the F-test for each main effect or 

interaction are shown in the top right of each plot. P-values < .05 are shown in red and p-

values > .05 are shown in black. In all plots, error bars represent the 95% CIs for each 

predicted slope. All continuous variables were z-scored before analysis. 

3.5.5 Laboratory: Emotional States and Trait Anxiety 

The correlational analyses examining how emotional states related to trait anxiety—split 

by video condition—in the laboratory revealed that trait anxiety was negatively correlated 

with mean arousal in the ‘control’ (r = -0.25, p = .033) and ‘action’ (r = -0.29, p = .014) 

conditions, but not the ‘suspense’ condition (r = -0.16, p = .174) (see left-hand-side of Fig G 

in S2 Text). In addition, there was no relationship between mean uncertainty and trait anxiety 

across all video conditions (p > .5) (see right-hand-side of Fig G in S2 Text). Therefore, in the 

laboratory, high-trait-anxiety individuals generally reported lower levels of arousal and 

comparative levels of uncertainty compared to low-trait-anxiety individuals.  
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3.5.6 Laboratory Results Summary 

In summary, we successfully induced states of uncertainty and arousal in participants via 

video watching (Figure 3.2). A pattern of social and future-directed problem-solving with 

emotional features was significantly higher in both the ‘action’ and ‘suspense’ threat video 

conditions compared to the ‘control’ conditions (Figure 3.2). While there was no significant 

difference in this future-directed pattern between ‘action’ and ‘suspense’ videos, this pattern 

was positively associated with the continuous measure of subjective uncertainty across all 

video conditions (Figure 3.3). Notably, high-trait-anxiety individuals reported more of this 

future-directed pattern than low-trait-anxiety individuals when subjective uncertainty was 

low, but not high. Overall, therefore, they showed a weaker relationship between this future-

directed pattern of thought and uncertainty (Figure 3.4). 

3.5.7 Daily Life: Thought Patterns between Pre- and during COVID Samples 

Having identified patterns of thoughts associated with uncertainty in the laboratory, we 

next examined how the prevalence of these patterns varied between the daily life pre- and 

during-COVID samples. The LMMs examining how each thought pattern varied by sample 

(pre- vs during-COVID) and trait anxiety (n = 129) revealed a significant main effect of 

sample for emotional, social future-directed problem-solving (F(1, 125) = 15.39, p < .001). 

This pattern was significantly lower in the COVID sample compared to the pre-COVID 

sample (b = -0.23, 95% CI (-0.35, -0.12), t(125) = -3.92, p < .001). In addition, although it 

did not pass the Bonferroni-adjusted alpha level, there was a main effect of sample for 

detailed deliberate thought (F(1, 126) = 5.02, p = .027). This pattern was lower in the COVID 

sample compared to the pre-COVID sample (b = -0.13, 95% CI (-0.24, -0.02), t(126) = -2.24, 

p = .027). Therefore, levels of emotional, social future-directed problem-solving and detailed 

deliberate thought were lower in the COVID sample compared to the pre-COVID sample. 

These results are summarised in Figure 3.3 and see Tables K-M in S2 Text for ANOVA 

tables, parameter estimates, and variance explained by random effects. 

3.5.8 Daily Life during COVID-19 Pandemic: Thought Patterns and Subjective 

Uncertainty 

We next examined how the laboratory results relating to thought patterns and uncertainty 

generalised to data collected in daily life. Although there was a general tendency for 

emotional, social future-directed problem-solving to be lower during COVID compared to 

pre-COVID, subsequent LMM analyses examining the effect of subjective uncertainty and 
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trait anxiety on thought patterns revealed that, during COVID, higher levels of uncertainty 

were associated with increased emotional, social future-directed problem-solving (b = 0.37, 

95% CI (0.31, 0.43), t(1208) = 11.89, p < .001). In addition, these models revealed that 

higher uncertainty was also associated with increased self-relevant and past-focused off-task 

thought (b = 0.10, 95% CI (0.03, 0.16), t(1231) = 2.99, p = .003). Therefore, during the 

COVID-19 pandemic, feeling uncertain was associated with an increase in daily life thoughts 

that reflected 1) self-relevant and past-focused off-task thought and 2) emotional, social 

future-directed problem-solving. These results are summarised in Figure 3.3 and see Tables 

N-P in S2 Text for ANOVA tables, parameter estimates, and variance explained by random 

effects. 

3.5.9 Daily Life during COVID-19 Pandemic: Thought Patterns, COVID Uncertainty, 

and COVID Threat 

Having identified patterns of thought associated with subjective uncertainty in daily life, 

we next examined the relationship between these thought patterns and uncertainty caused 

specifically by the COVID-19 situation, as well as its perceived threat. The LMMs examining 

how each thought pattern varied by COVID uncertainty, COVID threat, and trait anxiety in 

the COVID daily life sample revealed that higher COVID uncertainty was associated with 

increased emotional, social future-directed problem-solving (b = 0.14, 95% CI (0.03, 0.24), 

t(991) = 2.55, p = .011). However, COVID uncertainty showed no significant association 

with self-relevant and past-focused off-task thought (b = 0.05, 95% CI (-0.06, 0.15), t(1017) 

= 0.90, p = .367) or detailed deliberate thought (b = -0.06, 95% CI (-0.16, 0.05), t(945) = -

1.04, p = .298). Finally, higher COVID threat was associated with increased detailed 

deliberate thought (b = 0.13, 95% CI (0.03, 0.24), t(786) = 2.48, p = .013) but showed no 

significant relation to either emotional, social future-directed problem-solving (b = 0.06, 95% 

CI (-0.04, 0.17), t(832) = 1.14, p = .256) or self-relevant and past-focused off-task thought (b 

= 0.06, 95% CI (-0.05, 0.17), t(867) = 1.13, p = .259). Therefore, in daily life during the 

COVID-19 pandemic, COVID-related uncertainty was associated with an increase in 

emotional, social future-directed problem-solving whereas COVID-related threat was 

associated with an increase in detailed deliberate thought. These results are summarized in 

Figure 3.3 and see Tables Q-S in S2 Text for ANOVA tables, parameter estimates, and 

variance explained by random effects. 
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3.5.10 Daily Life: Thought Patterns and Trait Anxiety 

3.5.10.1 Sample and Trait Anxiety 

Next, we examined whether the relationships between trait anxiety and ongoing thoughts 

differed between pre- and during-COVID daily life samples. The preliminary correlational 

analyses examining how mean thought patterns varied by trait anxiety—split by sample—in 

daily life indicated that emotional, social future-directed problem-solving was significantly 

positively correlated with trait anxiety in the COVID sample (r = 0.34, p = .009) but not in 

the pre-COVID sample (r = 0.03, p = .787). The results from these correlational analyses are 

summarised in Fig H in S2 Text. 

The LMMs examining how each thought pattern varied by sample (pre- vs during-

COVID) and trait anxiety in the daily life samples (n = 129) revealed that the positive 

relationship between trait anxiety and emotional, social future-directed problem-solving did 

not reach significance (b = 0.09, 95% CI (-0.00, 0.18), t(121) = 1.92, p = .057). In addition, 

there was no significant relationship between trait anxiety and self-relevant and past-focused 

off-task thought (b = -0.02, 95% CI (-0.11, 0.07), t(124) = -0.52, p = .603) or detailed 

deliberate thought (b = -0.05, 95% CI (-0.14, 0.04), t(123) = -1.11, p = .269). Finally, there 

were no significant interactions between sample and trait anxiety for any of the three thought 

patterns (see Tables K-M in S2 Text for ANOVA tables, parameter estimates, and variance 

explained by random effects). 

3.5.10.2 Subjective Uncertainty and Trait Anxiety 

We next examined whether the relationship between trait anxiety, social and future-

directed problem-solving, and uncertainty observed in the laboratory extended to daily life. 

The LMMs examining how each thought pattern varied by subjective uncertainty and trait 

anxiety in the COVID daily life sample revealed that the two-way interaction between trait 

anxiety and uncertainty for emotional, social future-directed problem-solving did not reach 

significance (F(1, 1078) = 3.37, p = .066). However, for completeness, it is worth noting that 

the underlying pattern of results was consistent with those found in the laboratory since high-

trait-anxiety individuals (when trait anxiety = 2: b = 0.26, 95% CI (0.13, 0.38), t(1098) = 

4.04, p < .001) showed a weaker positive relationship between uncertainty and this thought 

pattern than low-trait-anxiety individuals (when trait anxiety = -2: b = 0.48, 95% CI 

(0.34, 0.61), t(1125) = 6.89, p < .001). 
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While it did not pass the Bonferroni-adjusted alpha level, there was also a two-way 

interaction between trait anxiety and uncertainty for self-relevant and past-focused off-task 

thought (F(1, 1132) = 5.07, p = .025). This interaction indicated that while there was a 

significant positive relationship between uncertainty and this thought pattern for low- or 

moderate-trait-anxiety individuals (when trait anxiety = -2: b = 0.23, 95% CI (0.09, 0.37), 

t(1167) = 3.26, p = .001; when trait anxiety = 0: b = 0.10, 95% CI (0.03, 0.16), t(1231) = 

2.99, p = .003), there was no significant relationship between uncertainty and this thought 

pattern for high-trait-anxiety individuals (when trait anxiety = 2: b = -0.04, 95% CI (-

0.17, 0.09), t(1151) = -0.64, p = .524). These results are summarized in Figure 3.4 and see 

Tables N-P in S2 Text for ANOVA tables, parameter estimates, and variance explained by 

random effects. 

3.5.10.3 COVID Uncertainty, COVID Threat, and Trait Anxiety 

The LMMs examining how each thought pattern varied by COVID uncertainty, COVID 

threat, and trait anxiety in the COVID daily life sample revealed that there was no significant 

main effect of trait anxiety for self-relevant and past-focused off-task thought (F(1, 58) = 

2.00, p = .163), emotional, social future-directed problem-solving (F(1, 59) = 1.83, p = .182), 

or detailed deliberate thought (F(1, 60) = 1.82, p = .182) (see Tables Q-S in S2 Text for 

ANOVA tables, parameter estimates, and variance explained by random effects).  

3.5.11 Daily Life during COVID-19 Pandemic: Emotional States and Trait Anxiety 

In daily life during the COVID-19 pandemic, trait anxiety was positively correlated with 

both the threat (r = 0.43, p < .001) and uncertainty (r = 0.41, p = .001) caused by the COVID-

19 situation, and subjective uncertainty generally (r = 0.39, p = .002) (see Fig I in S2 Text for 

scatterplots). 

3.5.12 Daily Life Results Summary 

In summary, projection of the laboratory thought patterns directly onto the daily life data 

demonstrated that the pattern of social and future-directed problem-solving that was 

positively related to subjective uncertainty in the laboratory was also positively related to 

subjective uncertainty in daily life during the COVID-19 pandemic as well as COVID-

specific uncertainty (Figure 3.3). In addition, although it did not reach significance, there was 

weak evidence to suggest that the two-way interaction between trait anxiety and uncertainty 

for this future-directed pattern identified in the laboratory was also present in the COVID 
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daily life sample, indicating that high-trait-anxiety individuals show a weaker relationship 

between uncertainty and this future-directed pattern (Figure 3.4). 

3.6 Discussion 

Our study established a pattern of social and future-directed problem-solving with 

emotional features that is commonly engaged during periods of uncertainty across situations: 

both under experimentally induced conditions of uncertainty (Figures 3.2 and 3.3) and in 

daily life under conditions of naturally-occurring uncertainty elicited by the COVID-19 

pandemic (Figure 3.3). Our findings are consistent with a broad view of the function of 

ongoing thought in supporting a ‘predictive mode’ aimed at resolving or reducing 

uncertainty, allowing individuals to imagine and select appropriate future actions. This 

interpretation aligns with prior work highlighting that future-directed thinking can help 

resolve uncertainty through forming and refining concrete personal goals (Medea et al., 

2018), planning actions, and making decisions (D'Argembeau et al., 2011). Furthermore, 

similar to our current findings, future thinking is often social (e.g., Konu et al., 2021), and 

prior studies indicate that social cognition can help individuals prepare for and adapt to 

anticipated, or actual, threats to socio-emotional wellbeing (Poerio & Smallwood, 2016; 

Poerio et al., 2016). Notably, while previous research highlights that potentially-adaptive 

future thinking occurs when thoughts are unrelated to events taking place in the here-and-

now, our study shows a similar externally-focused predictive mode (positive loading on 

‘task’ item; Figure 3.2) emerges when the environment leads us to feel uncertain. 

Importantly, although our study identified a predictive mode of social problem-solving 

related to uncertainty across situations, it remains to be determined whether this contributes 

to future actions, an important limitation of our current study. 

Our results also highlight that uncertainty may contribute to both perceptually coupled 

and decoupled modes of thinking. As previously highlighted, a pattern of externally-focused 

future-directed thought was positively related to uncertainty across contexts (Figure 3.3). At 

the same time, we found that the relationship between uncertainty and internally-focused, 

self-relevant and past-focused thought varied between contexts (Figure 3.3). In the 

laboratory, uncertainty was negatively related to this form of decoupled thought, while in 

daily life, it showed a positive relationship. Together, our results suggest that context might 

determine when uncertainty is associated with perceptually coupled versus decoupled modes 

of thinking. Regardless, there may be similarities in the processes underlying both coupled 

and decoupled thought patterns when they emerge during states of uncertainty. For example, 
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resolving uncertainty may rely on cognitive control processes required to plan and evaluate 

different possible actions. Indeed, emerging evidence suggests that neural processes in the 

dorsolateral prefrontal cortex organize both on- and off-task modes of thought (Turnbull et 

al., 2019b). Similarly, information from memory helps shape actions in the moment (Behrens 

et al., 2007; Jefferies et al., 2020) and is also an important feature in states of decoupled 

thinking (Wang et al., 2020). 

As well as examining links between thinking and uncertainty, our study explored how 

these patterns relate to trait anxiety, with the aim of 1) understanding how anxious 

individuals’ thought patterns differ from non-anxious individuals and 2) further 

contextualising the patterns of thought identified in the current study. While there was weak 

evidence that high-trait-anxiety individuals reported more emotional, social and future-

directed problem-solving than low-trait-anxiety individuals (see Figure 3.4 and Figs F and H 

in S2 Text), our findings are not consistent with the idea that the link between this thought 

pattern and uncertainty are synonymous with the repetitive pattern of worry that characterises 

anxious thoughts. For example, in the laboratory, while this future-directed pattern was 

generally positively related to subjective uncertainty, anxious individuals reported this pattern 

in an uncertainty-independent manner, consistent with prior work highlighting that anxiety 

and related phenomena such as trait rumination are linked to cognitive, autonomic, and neural 

inflexibility (Ottaviani et al., 2015; Ottaviani et al., 2013; Ottaviani et al., 2016; Raffaelli et 

al., 2021). However, our participants were not clinically anxious, so firm conclusions 

concerning anxiety must wait until we replicate these findings in patients.  

We also found evidence of general links between ongoing thought and affective 

processing. In daily life, COVID-related threat positively correlated with detailed deliberate 

thought. This same thought pattern was associated with high arousal states in the laboratory 

(specifically among low-trait-anxiety individuals). These findings align with our prior work, 

demonstrating that detailed deliberate cognition is higher during demanding tasks (e.g., Konu 

et al., 2021; Mckeown et al., 2021; Sormaz et al., 2018). Together, they also suggest that this 

pattern may emerge when individuals are motivated to engage with the outside world. More 

generally, these findings and prior work (Engert et al., 2014; Poerio et al., 2013; Smallwood 

& O'Connor, 2011; Stawarczyk et al., 2013b) highlight the importance of an integrated 

multidimensional view of affective experience (Barrett et al., 2007) when investigating 

patterns of ongoing thought. 
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A methodological goal of our study was to examine how thought patterns identified in 

the laboratory, under controlled conditions, relate to uncertainty experienced in daily life. 

Although prior work has examined ongoing thought in laboratory and daily life contexts (e.g., 

Ho et al., 2020; Kane et al., 2017; McVay et al., 2009), our study extends this by directly 

projecting patterns identified in the laboratory onto daily life data. Importantly, this 

projection technique demonstrates an empirical link between social and future-directed 

cognition and uncertainty in both settings, offering support for the generalisability of this 

relationship across contexts. Furthermore, this approach also allows for identifying 

inconsistent relationships across situations (e.g., the differing relationship between off-task 

thinking and uncertainty in the laboratory versus daily life), confirming prior work that 

laboratory-based experience sampling reveals different cognitive features than daily life 

(Kane et al., 2017). Together, this study highlights MDES as a useful tool for bridging the 

gap between controlled laboratory paradigms and real-world experiences that may help 

develop more ecologically valid paradigms and theories in the future (Kingstone et al., 2008; 

Kingstone et al., 2003). 

Although our study established a pattern of cognition linked to uncertainty in the 

laboratory and daily life, it leaves several questions open. First, although ‘action’ and 

‘suspense’ videos both elicited high levels of arousal, the difference in uncertainty ratings 

between these conditions was lower than anticipated, perhaps because a direct threat event 

occurred by the end of each clip. This may have impacted our ability to detect differences in 

thought between these conditions. Future work, therefore, should sample thoughts 

intermittently while watching events unfold over time to assess changes in thought that occur 

before and after threatening events. Second, although examining two laboratory samples 

allowed replication of findings relating to video condition and emotional states (see Table A 

in S2 Text), we could not replicate findings related to trait anxiety because anxiety was only 

measured in one laboratory sample. Moreover, although we found a significant interaction 

between subjective uncertainty and anxiety for levels of future-directed problem-solving in 

the laboratory, this interaction did not reach significance in daily life (p = .066). Therefore, 

although we found broadly similar patterns in both cases, firm conclusions on associations 

with anxiety require future work to establish their reliability. Third, while our analyses 

identified links between arousal and detailed thought in the laboratory and between threat and 

detailed thought in daily life, we were unable to assess the consistency of these effects across 

contexts as we did not collect the same measures in both contexts. Finally, since prior work 
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highlights age-related differences in ongoing thought and how factors, including activity 

context, differ between younger and older individuals (e.g., Maillet & Rajah, 2013; Mckeown 

et al., 2021; Turnbull et al., 2021), it will be important to examine whether the relationships 

we find in younger individuals generalise to older people. 

In closing, it is worth noting that our prior work highlights important links between 

ongoing thought patterns and the activities individuals engage in when these thoughts emerge 

(Mckeown et al., 2021; Turnbull et al., 2021). It will be important for future studies to map 

how thought patterns identified in laboratory settings correspond to the many and varied 

activities that individuals engage in as they go about their daily lives. Such an endeavour will 

improve our understanding of how internal states and daily activities relate to how we think 

and what we think about, insights that will be helpful for understanding how these factors 

interact to predict mental health and wellbeing outcomes. Our current findings highlight that 

there is not always a one-to-one mapping between ongoing thought patterns and affective 

factors across all contexts: future work should focus on understanding how, when, and for 

whom thought patterns emerge since there appear to be multiple ‘routes’ to the same types of 

thinking (Cole & Kvavilashvili, 2021). 
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Chapter 4- The relationship between individual variation in 

macroscale functional gradients and distinct aspects of ongoing 

thought 

This chapter is adapted from:  

Mckeown, B., Strawson, W. H., Wang, H. T., Karapanagiotidis, T., Vos de Wael, R., 

Benkarim, O., Turnbull, A., Margulies, D., Jefferies, E., McCall, C., Bernhardt, B., & 

Smallwood, J. (2020). The relationship between individual variation in macroscale functional 

gradients and distinct aspects of ongoing thought. Neuroimage, 220, 117072. 

Acknowledgements and authors’ contributions: 

Brontë Mckeown developed the research question, implemented the BrainSpace pipeline, 

performed the inferential analyses, interpreted the results, prepared visualisation of results, 

and wrote the manuscript for publication under the supervision of Dr Cade McCall, Prof. 

Elizabeth Jefferies, and Prof. Jonathan Smallwood. Will Strawson, Dr Hao-Ting Wang, and 

Dr Daniel Margulies contributed to study conceptualization. Prior to the start of Brontë 

Mckeown’s research degree, Dr Hao-Ting Wang collected the resting-state fMRI dataset and 

Dr Theo Karapanagiotidis performed pre-processing on this resting-state fMRI dataset. Dr 

Theo Karapanagiotidis also helped implement the BrainSpace pipeline. Dr Hao-Ting Wang, 

Dr Reinder Vos de Wael, Dr Oualid Benkarim, Dr Daniel Margulies, and Dr Boris Bernhardt 

provided guidance on the methodology and software implementation. Will Strawson, Dr 

Hao-Ting Wang, Dr Reinder Vos de Wael, Dr Oualid Benkarim, Dr Adam Turnbull, and Dr 

Boris Bernhardt contributed to reviewing and editing the manuscript for publication. 

4.1 Abstract 

Contemporary accounts of ongoing thought recognise it as a heterogeneous and 

multidimensional construct, varying in both form and content. An emerging body of evidence 

demonstrates that distinct types of thought are associated with unique neurocognitive profiles, 

that can be described at the whole-brain level as interactions between multiple large-scale 

networks. The current study explored the possibility that whole-brain functional connectivity 

patterns at rest may be related to distinct aspects of ongoing thought reported over this period. 

Participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) 

followed by a questionnaire retrospectively assessing the content and form of their ongoing 
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thoughts during the scan. A non-linear dimension reduction algorithm was applied to the rs-

fMRI data to identify components explaining the greatest variance in whole-brain 

connectivity patterns. Using these data, we examined whether specific types of thought 

measured at the end of the scan were predictive of individual variation along the first three 

low-dimensional components of functional connectivity at rest. Multivariate analyses 

revealed that individuals for whom the connectivity of the sensorimotor system was 

maximally distinct from the visual system were most likely to report thoughts related to 

finding solutions to problems or goals and least likely to report thoughts related to the past. 

These results add to an emerging literature that suggests that unique features of experience 

are associated with distinct distributed neurocognitive profiles and highlight that unimodal 

systems may play an important role in this process. 

4.2 Introduction  

When unoccupied by events in the immediate environment, such as during the so-called 

resting-state, humans often spend substantial amounts of time focused on information that is 

relevant to themselves but absent from the here and now. These self-generated experiences 

can be a source of unhappiness and distress (Killingsworth & Gilbert, 2010; Poerio et al., 

2013). However, they can also allow individuals to mentally reframe their goals in a more 

concrete way (Medea et al., 2018), and reduce loneliness (Poerio et al., 2015), perhaps 

because of links between self-generated thought with creativity (Baird et al., 2012; Gable et 

al., 2019; Smeekens & Kane, 2016; Wang et al., 2018b), social problem solving (Ruby et al., 

2013b), or generation of information based on semantic knowledge (Wang et al., 2020). 

Understanding the neural basis of these experiences is, therefore, an important goal for 

cognitive neuroscience because it may help describe the underlying neural architecture which 

supports aspects of human cognition that are both beneficial and detrimental to health and 

well-being. In this study, we examined whether an individual’s ongoing thoughts could 

predict individual variation in their functional organization at rest. 

Contemporary views on how the structure of the cortex constrains its functions have 

identified the important roles that macroscale patterns of cortical organization play in 

determining cognition (Margulies et al., 2016; Mesulam, 1998). These patterns, or motifs, can 

be well captured by dimension reduction techniques that identify low-dimensional manifold 

spaces, often referred to as ‘cortical gradients’. This approach has been important in 

characterizing the axis upon which cortical structure is organized (Paquola et al., 2019; 

Vázquez-Rodríguez et al., 2019) and how the specific topological features of the cortex give 
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rise to different functional hierarchies (Margulies et al., 2016). This approach has also been 

used to describe changes in brain function in developmental disorders (Hong et al., 2019) and 

across primate species (Xu et al., 2020) and to capture dynamic changes between states of 

external task focus and self-generated social episodic thought (Turnbull et al., 2020b). One 

advantage of gradient approaches to neural function is that they describe multivariate whole-

brain patterns of organization (i.e., the relationship between different neural systems), and so 

allow the investigation of whether macroscale features of cortical organization relate to 

features of cognition. This approach is particularly useful for understanding features of 

higher-order cognition hypothesised to depend upon the interaction between multiple neural 

systems (e.g., Jefferies et al., 2020; Smallwood et al., 2011; Smallwood & Schooler, 2015).  

Our current study, therefore, explores the possibility that macroscale properties of the 

cortex captured by low-dimensional descriptors of functional organization at rest are related 

to individual variation in ongoing experience that emerges during this period. Resting-state 

fMRI was used to record patterns of intrinsic neural activity in a large cohort (N = 277). We 

employed the BrainSpace toolbox (Vos de Wael et al., 2020) to calculate the dimensions that 

characterize the functional connectivity of the brain at rest. At the end of the scan, 

participants completed a questionnaire that retrospectively assessed their experiences during 

the scan. The questions were based on those used in previous studies exploring population 

variation in functional connectivity and aimed at capturing the heterogeneity of ongoing 

thought (Karapanagiotidis et al., 2017; Smallwood et al., 2016). While retrospective 

experience-sampling sacrifices temporal specificity, it is particularly beneficial for 

understanding the neural basis of ongoing experience because the absence of interruptions 

ensures that neural dynamics unfold in a relatively natural way (Smallwood & Schooler, 

2015). Using these data, we examined whether specific types of thought measured at the end 

of the scan were predictive of individual variation along low-dimensional gradients of 

macroscale functional connectivity at rest. These data have previously been examined by 

Karapanagiotidis et al. (2019), who applied Hidden Markov modelling to identify neural 

states occurring at rest. They found states linked to autobiographical planning and intrusive 

rumination that were related to differences in the relative dominance of frontoparietal and 

motor systems, and default mode and visual systems. 

Prior studies have highlighted three cortical gradients which each relate to meaningful 

features of cognition. The first gradient describes the difference between regions of unimodal 

and transmodal cortex (Margulies et al., 2016). Studies have shown that this neural motif is 
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observed when participants must use information from memory to guide behaviour, such as 

when visuospatial decisions must be made with previously encountered information rather 

than immediate perceptual information (Murphy et al., 2018; Murphy et al., 2019). The 

second gradient is related to the dissociation between unimodal systems concerned with 

vision and sensorimotor functions (Margulies et al., 2016). Finally, the third gradient 

describes a distinction between the so-called default mode and task-positive systems 

(Margulies et al., 2016). This pattern is often observed when researchers compare easy and 

demanding cognitive tasks (Cole et al., 2013; Duncan, 2010). Prior studies have shown that 

this pattern is linked to the difference between on- and off-task states and that this distinction 

also helps describe neurocognitive changes related to the passage of time (Turnbull et al., 

2020b). Our study aimed to explore whether any of these macroscale neural motifs were 

related to the participants’ reports at the end of the experimental session. 

4.3 Methods 

4.3.1 Participants 

Two hundred and seventy-seven healthy participants were recruited from the University 

of York. Written informed consent was obtained for all participants and the study was 

approved by the York Neuroimaging Centre Ethics Committee. Twenty-three participants 

were excluded from analyses; two due to technical issues during the neuroimaging data 

acquisition and twenty-one for excessive movement during the fMRI scan (mean framewise 

displacement (Power et al., 2014) > 0.3 mm and/or more than 15% of their data affected by 

motion), resulting in a final cohort of n = 254 (169 females, mean ± SD age = 20.7 ± 2.4 

years). The questionnaire and functional MRI data in this study are the same as those reported 

in Karapanagiotidis et al. (2019).  

4.3.2 Data and Code Availability Statement 

Gradient maps one to ten from the group-averaged dimension reduction analysis 

described in section 4.3.5.3 below are publicly available on NeuroVault in a collection with 

the title of this article (https://neurovault.org/collections/6746/). Raw fMRI and questionnaire 

data are restricted in accordance with ERC and EU regulations. All code used in the 

production of this manuscript is publicly available online in the following repository: 

https://github.com/Bronte-Mckeown/GradientAnalysis. 

https://neurovault.org/collections/6746/
https://github.com/Bronte-Mckeown/GradientAnalysis
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4.3.3 Retrospective Experience-Sampling 

Participants’ experience during the resting-state fMRI scan was sampled by asking them 

to retrospectively report their thoughts during the resting-state period at the end of the scan. 

Experience was measured using a 4-point Likert scale with the question order randomised (all 

25 questions are shown in Table 4.1). 
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Table 4.1. 25-item experience-sampling questionnaire completed at the end of the resting-

state fMRI scan. Answers were given on a 4-point Likert scale ranging from "Not at all" to 

"Completely". 

Dimension Question (My thoughts…) 

Vivid … were vivid as if I was there 

Normal … were similar to thoughts I often have 

Future … involved future events 

Negative … were about something negative 

Detail … were detailed and specific 

Words … were in the form of words 

Evolving … tended to evolve in a series of steps 

Spontaneous … were spontaneous 

Positive … were about something positive 

Images … were in the form of images 

People … involved other people 

Past … involved past events 

Deliberate … were deliberate 

Self … involved myself 

Stop … were hard for me to stop 

Distant time … were related to a more distant time 

Abstract … were about ideas rather than events or objects 

Decoupled … dragged my attention away from the external world 

Important … were on topics that I care about 

Intrusive … were intrusive 

Problem Solving … were about solutions to problems (or goals) 

Here and Now … were related to the here and now 

Creative … gave me a new insight into something I have thought about 

before 

Realistic … were about an event that has happened or could take place 

Same Theme … at different points in time were all on the same theme  
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4.3.4 Procedure 

All participants underwent a 9-minute resting-state fMRI scan. During the scan, they 

were instructed to passively view a fixation cross and not to think of anything in particular. 

Immediately following the scan, they completed the 25-item experience-sampling 

questionnaire while still in the scanner. 

4.3.5 Resting-state fMRI 

4.3.5.1 MRI Data Acquisition 

MRI data were acquired on a GE 3 T Signa Excite HDxMRI scanner, equipped with an 

eight-channel phased array head coil at York Neuroimaging Centre, University of York. For 

each participant, we acquired a sagittal isotropic 3D fast spoiled gradient-recalled echo T1-

weighted structural scan (TR = 7.8 ms, TE = minimum full, flip angle = 20°, matrix = 

256x256, voxel size = 1.13x1.13 × 1 mm3, FOV = 289 × 289 mm2). Resting-state fMRI data 

based on blood oxygen level-dependent contrast images with fat saturation were acquired 

using a gradient single-shot echo-planar imaging sequence (TE = minimum full (≈19 ms), flip 

angle = 90°, matrix = 64x64, FOV = 192 × 192 mm2, voxel size = 3x3x3 mm3, TR = 3000 

ms, 60 axial slices with no gap and slice thickness of 3 mm). Scan duration was 9 minutes 

which allowed us to collect 180 whole-brain volumes. These acquisition details are identical 

to the ones described in Karapanagiotidis et al. (2019). 

4.3.5.2 MRI Data Pre-Processing 

fMRI data pre-processing was performed using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm) and the CONN toolbox (v.18b) 

(https://www.nitrc.org/projects/conn) (Whitfield-Gabrieli & Nieto-Castanon, 2012) 

implemented in Matlab (R2018a) (https://uk.mathworks.com/products/matlab). Pre-

processing steps followed CONN’s default pipeline and included motion estimation and 

correction by volume realignment using a six-parameter rigid body transformation, slice-time 

correction, and simultaneous grey matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF) segmentation and normalisation to MNI152 stereotactic space (2 mm isotropic) of both 

functional and structural data. Following pre-processing, the following potential confounders 

were statistically controlled for: 6 motion parameters calculated at the previous step and their 

1st and 2nd order derivatives, volumes with excessive movement (motion greater than 0.5 

mm and global signal changes larger than z = 3), linear drifts, and five principal components 

of the signal from WM and CSF (CompCor approach) (Behzadi et al., 2007). Finally, data 

http://www.fil.ion.ucl.ac.uk/spm
https://www.nitrc.org/projects/conn
https://uk.mathworks.com/products/matlab
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were band-pass filtered between 0.01 and 0.1 Hz. No global signal regression was performed. 

The pre-processing steps reported here are identical to the ones described in Karapanagiotidis 

et al. (2019).  

4.3.5.3 Whole-brain Functional Connectivity: Dimension Reduction 

Following pre-processing, the functional time-series from 400 ROIs based on the 400 

Schaefer parcellation (Schaefer et al., 2018) were extracted for each individual. A 

connectivity matrix for each individual was then calculated using Pearson correlation 

resulting in a 400x400 connectivity matrix for each participant. These individual connectivity 

matrices were then averaged to calculate a group-averaged connectivity matrix. The 

BrainSpace Toolbox (Vos de Wael et al., 2020) was then used to extract ten group-level 

gradients from the group-averaged connectivity matrix (dimension reduction technique = 

diffusion embedding, kernel = normalized angle, sparsity = 0.9). Although we were only 

interested in the first three gradients, as they all have reasonably well described functional 

associations, we extracted ten gradients to maximize the degree of fit between the group-

averaged gradients and the individual-level gradients (see Table S1 for the average degree of 

fit for gradients one to three when extracting ten gradients compared to three). These group-

averaged gradients act as a template to which individual gradients can be compared, to allow 

an investigation of individual differences along each gradient in the current sample. The 

variance explained by each group-averaged gradient one to ten is shown in Figure S1. 

The group-level gradient solutions were aligned using Procrustes rotation to a subsample 

of the HCP dataset ([n = 217, 122 women, mean ± sd age = 28.5 ± 3.7 y]; for full details of 

subject selection see Vos de Wael et al. (2018)) openly available within the BrainSpace 

toolbox (Vos de Wael et al., 2020)). This alignment step improves the stability of the group-

level gradient templates by maximising the comparability of the solutions to those from the 

existing literature (i.e., Margulies et al., 2016). The first three group-averaged gradients, with 

and without alignment to the HCP data are shown in Figure S2. To demonstrate the benefits 

of this alignment step, we calculated the similarity using Spearman Rank correlation between 

the first five aligned and unaligned group-level gradients with the first five gradients reported 

in Margulies et al. (2016) which were calculated using 820 participants over an hour resting-

state scan. Aligning our gradients with a subsample of the HCP data increased the similarity 

between our gradients and Margulies’ et al. (2016) gradients (see Table S2). 
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Using identical parameters, individual-level gradients were then calculated for each 

individual using their 400x400 connectivity matrix. These individual-level gradient maps 

were aligned to the group-level gradient maps using Procrustes rotation to improve the 

comparison between the group-level gradients and individual-level gradients (N iterations = 

10). This analysis resulted in ten group-level gradients and ten individual-level gradients for 

each participant explaining maximal whole-brain connectivity variance in descending order. 

All ten group-level gradients are shown in Figure 4.1, however, only the first three gradients 

were retained for further analysis. To demonstrate the variability of individual-level 

gradients, Figure S3 shows the highest, lowest, and median similarity gradient maps for 

gradients one to three. 

 

Figure 4.1. Group-averaged gradients one to ten (left and right lateral views) explaining 

maximal variance in whole-brain functional connectivity patterns. Regions that share similar 

connectivity profiles fall close together along each gradient (similar colours), and regions that 

have more distinct connectivity profiles fall further apart (different colours). The positive and 

negative loading is arbitrary. Regions which fall at the extreme end of each gradient have the 

greatest dissimilarity in their connectivity profiles. Only gradients one to three were included 

in the multivariate analysis. These ten group-averaged gradient maps are publicly available 

on NeuroVault (https://neurovault.org/collections/6746/). 

https://neurovault.org/collections/6746/
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4.3.5.4 Individual-Level Similarity Analysis: Spearman’s Rank Correlation 

In order to investigate individual differences for each of the three connectivity gradients, 

a Spearman’s rank correlation was used to calculate the extent to which each individual-level 

gradient was related to each group-level gradient. In this way, the correlation coefficient 

calculated for each participant for gradients one to three is used as a second-order statistic 

indicating the similarity between the group-level and individual-level gradients. Fishers R-to-

Z transformation was applied to these correlation coefficient scores. These z-transformed 

correlation coefficients will be referred to as ‘gradient similarity scores’ from this point 

onwards. These similarity scores were then entered as dependent variables in subsequent 

multivariate regression analyses to investigate whether individual variation in ongoing 

thought could predict individual variation along the first three whole-brain connectivity 

gradients. A schematic for the analysis pipeline is shown in Figure 4.2.  

 

Figure 4.2. Summary of the analysis pipeline. Numbers represent the order of the analysis 

step. The top panel in bold describes the overarching goal of each step. The middle panel 

specifies the data used. The bottom panel indicates which analysis or statistical test was used 

to achieve the step. 

4.4 Results 

4.4.1 Experience-Sampling Responses 

The experience-sampling data are summarised in Figure 4.3, revealing the distribution of 

responses for each item as well as the covariance between each item. While some 

questionnaire items are significantly correlated, the variance inflation factor for each 

questionnaire item was <2, indicating that multicollinearity is not a concern in the 

multivariate regression analysis described below. 
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Figure 4.3. Summary information describing the distribution of the retrospective measures of 

ongoing experience recorded in our study. In the left-hand panel, the bar graph shows the 

average loading on each question relative to the mid-point of the scale (indicated by the 

dashed line). The error bars reflect 95% confidence intervals, adjusted to account for family-

wise error (i.e., the 25 items). The word cloud shows this information in a different form in 

which the size of the word describes its distance from the mid-point and its colour 

(cold/warm) reflects its direction (negative/positive). The right-hand panel illustrates the 

patterns of covariation between these items (Pairwise Pearson correlation). 

4.4.2 Multivariate Analysis 

We examined whether there was any relationship between the low-dimensional 

representations of the macroscale organization of neural function and the experience of 

participants during the scanning. We used a multivariate linear regression (SPSS; version 26) 

in which individual items from the experience-sampling questionnaire were included as 

explanatory variables and the similarity scores for gradients one to three were entered as 

dependent variables. Age, gender, and mean movement during the scan were entered as 

nuisance covariates. This analysis revealed that there was a multivariate effect for the 

‘problem-solving’ item [Pillai’s trace = 0.046, F(3, 223) = 3.54, p = .015] and the ‘past’ item 

[Pillai’s trace = 0.051, F(3, 223) = 3.97, p = .009]. These results establish that these two 

aspects of the questionnaire varied significantly with the similarity scores for the functional 

motifs apparent at rest. 

We calculated the parameter estimates for these multivariate effects for ‘past’ (Gradient 

one (b = −0.018, 95% CI = [-0.042, 0.006], p = .137), Gradient two (b = −0.032, 95% CI = [-

0.056, −0.008], p = .009) and Gradient three (b = 0.006, 95% CI = [-0.011, 0.024], p = .490) 

and for ‘problem-solving’ (Gradient one (b = 0.020, 95% CI = [-0.005, 0.044], p = .112), 
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Gradient two (b = 0.036, 95% CI = [0.011, 0.061], p = .004) and Gradient three (b = −0.001, 

95% CI = [-0.019, 0.018], p = .951)). In both cases, therefore, the only association in which 

the confidence intervals did not overlap with zero was with Gradient two. 

Together, these analyses revealed that the multivariate effect for the ‘problem-solving’ 

item is most clearly positively associated with gradient two while the multivariate effect for 

the ‘past’ item shows the reverse pattern. To understand these associations, we visualised the 

average map of gradient two for individuals in the top and bottom third of similarity with the 

group-level description, and also calculated the difference. This data is presented in the left-

hand panel of Figure 4.4, where it can be seen that individuals with higher similarity to 

group-averaged gradient two showed decreased shared connectivity between the visual and 

sensorimotor systems. 

To visualise the associations between the ‘problem-solving’ and ‘past’ questionnaire 

items with gradient two, we calculated the unique variance associated with gradient two and 

both questionnaire items separately. To do this, we calculated the residual variance linked to 

both types of thoughts using linear regressions in which the dependent variable was gradient 

two similarity scores and the explanatory variables were all of the questionnaire items (as 

well as age, gender, and mean movement) except for the relevant item (either ‘problem-

solving’ or ‘past’). We performed a comparable analysis to identify the residual variance in 

gradient two. Together this data is presented in the right-hand panel of Figure 4.4, where it 

can be seen that individuals with high similarity scores for gradient two reported more 

problem-solving thoughts and fewer past-related thoughts. 

  



98 

 

 

Figure 4.4. Greater functional segregation between visual and sensorimotor cortices was 

positively associated with reports of problem-solving thoughts during rest and negatively 

associated with reports of thoughts about past events. Left panel: group-averaged maps for 

high (top) and low (middle) similarity scores for gradient two as well as the difference 

between these groups (bottom). The top colour bar reflects the scale of the high and low 

similarity group-averaged maps while the bottom colour bar reflects the scale of the 

difference map. Individuals with high similarity scores showed more functional segregation 

between visual (blue) and sensorimotor cortices (orange). The proximity of colours reflects 

greater similarity in connectivity patterns between regions. Right panel (upper): Scatterplot of 

residuals describing the positive relationship between gradient two similarity and the 

‘problem-solving’ questionnaire item. Each point is a participant. Right panel (lower): 

Scatterplot of residuals describing the negative relationship between gradient two similarity 

and the ‘past’ questionnaire item. Using raw scores, a Pearson correlation confirmed the 

positive association with problem solving thoughts (r(252) = 0.16, p = .013) and the negative 

relationship with past related thoughts (r(252) = -0.13, p = .040). 

4.5 Discussion 

The current study employed a data-driven approach to identify whole-brain connectivity 

patterns associated with distinct aspects of ongoing thought at rest. Specifically, we were 

interested in identifying whether three reasonably well-described macroscale patterns of 

neural function (‘cortical gradients’) were related to the experiences an individual had at rest. 

Participants completed a rs-fMRI scan followed by an experience-sampling questionnaire 

retrospectively assessing the content and form of their ongoing thoughts during the scan. To 

reduce the dimensional structure of the rs-fMRI data, we used a non-linear dimension 

reduction algorithm to embed the functional connectivity in a low-dimensional space. We 

found that individuals with less similarity between the pattern of functional connectivity in 

visual and sensorimotor cortices were more likely to report thoughts related to finding 
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solutions to problems or goals and less likely to report thoughts related to past events (as 

demonstrated in Figure 4.4). 

It is worth considering the relationship between the current results and previous findings 

reported by Karapanagiotidis et al. (2019). They used the same dataset as the current study 

and applied Hidden Markov modelling to identify neural states. This analysis found two 

states which were associated with measures of experience. One state was linked to patterns of 

autobiographical planning (future-oriented problem-solving) and was associated with the 

dominance of the motor system relative to the visual system. In contrast, a second state was 

linked to intrusive rumination about the past and exhibited reasonably similar levels of 

activity in both the visual and motor systems. There is, therefore, an encouraging 

correspondence between the results of the current analysis, which entails a decomposition of 

the resting-state data into low dimensional manifolds, and the prior analyses identifying 

neural states that reoccur at rest. 

Together, these results add to a growing body of evidence that suggests neural 

processing in either the primary motor or visual cortex may play an important role in aspects 

of higher-order cognition, especially those that involve imagining events other than those in 

the immediate environment. For example, Medea and colleagues asked participants to 

complete two writing sessions in which they either wrote about three personal goals or three 

TV programmes (Medea et al., 2018). Before and after each writing session, participants 

completed an experience-sampling session. They found that if participants reported future-

directed thought between writing session one and two, the concreteness of their personal 

goals increased between sessions. Importantly, this pattern was most pronounced for 

individuals who showed stronger connectivity between the hippocampus and a region of the 

motor cortex at rest. Consistent with the possibility that motor cortex activity can be 

important during periods of self-generated thought, Sormaz and colleagues used online 

experience-sampling and found that neural patterns in regions of the motor cortex were able 

to differentiate between thoughts related to a working memory task and those related to 

personal concerns about the future (Sormaz et al., 2018). Matheson and Kenett (2020) 

propose that the motor system is likely to be important in creative problem solving because of 

the capacity for this system to model the simulation of possible actions. Future work will be 

needed to understand the precise role that motor cortex activity plays in different features of 

ongoing thought.  
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There is also converging evidence from fMRI studies that suggests that the primary 

visual cortex is recruited during internal processing independent from external stimuli 

(Muckli, 2010). For example, activity in the visual cortex has been observed during the 

retention period of a working memory task in which no external stimulus was presented 

(Harrison & Tong, 2009), while Japardi et al. (2018) found that visual system connectivity 

was important during periods of creativity for visual artists. Furthermore, Villena-Gonzalez et 

al. (2018) found that the degree of connectivity between the visual cortex and retrosplenial 

cortex was associated with a tendency to employ social information when engaged in task-

based prospection. Together with these prior studies, the current work provides converging 

evidence linking processes in unimodal cortex to aspects of imaginative thought, an 

important question for future work to explore. 

More generally our data suggest that different aspects of ongoing thought may vary in 

the degree to which unimodal systems are integrated. Mesulam (1998) argued that if a 

cortical system only contained unimodal regions, it would have difficulties in performing 

cognitive acts that depended on regularities that spanned multiple modalities. The 

connectivity pattern identified in gradient two recapitulates this theoretical functional 

organization proposed by Mesulam; the relative segregation of the unimodal systems coupled 

with common connectivity with transmodal and integrative systems such as the default mode 

network (see Figure 4.5 for a schematic of this architecture). It is possible that the degree of 

integration between these unimodal systems may help encode and retrieve visual and auditory 

features of an experience, a process for which regions in the medial temporal lobe such as the 

hippocampus (Moscovitch et al., 2016) or the anterior temporal lobe (Ralph et al., 2017) may 

be particularly important. Based on our data, we hypothesize that different types of 

experience may vary with the degree of overlap between these primary systems. Plausibly, a 

focus on thoughts relating to the past can rely on co-recruitment in both visual and motor 

regions because these experiences can capitalize on pre-existing memory traces, which may 

have been particularly strongly encoded if they spontaneously come to mind in a fluent 

fashion. In contrast, when attempting to generate a novel solution to a problem, it is less easy 

to capitalize directly on whole-brain associations from the past. Problem solving, therefore, 

may depend to a greater extent on processes that simulate the specific sequence of actions 

that should be performed, or the arrangement of specific features of the environment, which 

may be relatively achievable without interactions across different forms of unimodal cortex. 
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Figure 4.5. Schematic of a hypothesized relationship between macroscale functional 

organization and distinct features of ongoing thought. Left panel (top): Simplified schematic 

of gradient two representing the segregation of unimodal systems with intermediary 

transmodal regions in between. Left panel (bottom): Word cloud representing the Neurosynth 

terms associated with the positive (red) and negative (blue) end of gradient two, 

demonstrating the differences in function in the different unimodal systems. Font size 

represents the magnitude of the relationship, while the colour illustrates the associated system 

(blue = visual and red = sensorimotor). Right panel (top): Modified illustration of Mesulam’s 

(1998) proposal of how the cortex is organized according to a functional hierarchy of 

processing from distinct unimodal systems to integrative transmodal regions. Gradient 1 and 

2 labels correspond to the results reported in Margulies et al. (2016). Right panel (bottom): 

Schematic illustration of how unimodal segregation and integration may be differentially 

associated with distinct aspects of experience. We divided individuals into low, medium, and 

high groups based on the similarity between visual and sensorimotor systems and plotted the 

mean scores for problem-solving and past-related thoughts. It can be seen that based on our 

data individuals showing less segregation between unimodal systems reported more thoughts 

about past events and fewer problem-solving thoughts (and vice versa). Error bars indicate 

the 95% confidence intervals. 

Finally, the current results lend further support to the view that it is necessary for 

researchers to distinguish between distinct types of ongoing thought (Seli et al., 2018). Our 

study shows that different types of ongoing thought are differentially associated with 

macroscale connectivity patterns, suggesting that different types of ongoing thought are 

supported by related but distinct mechanisms. Previously, many researchers have conflated 

various types of ongoing thought under one unitary measure (e.g., Mason et al., 2007; 

Smallwood et al., 2008a). The current results suggest that in doing so, researchers may have 

made erroneous conclusions regarding the neural correlates of states that may often be 

discussed together under broad umbrella concepts such as ‘mind-wandering’. Accordingly, 

our results demonstrate the value of the family-resemblances view of mental states which 
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stresses the importance of operationalizing and describing the specific type of experience 

under investigation (Seli et al., 2018).  

Although our study highlights a relationship between the macroscale organization of 

neural function at rest and concurrent features of ongoing experience, it nonetheless leaves 

several important questions unanswered. First, the present study focused on assessing static 

rather than dynamic functional connectivity and so cannot address important questions 

regarding the relationship between neural dynamics and ongoing experience (Kucyi, 2018; 

Lurie et al., 2018). The choice of static functional connectivity coupled with retrospective 

sampling at the end of the scan means that the current study is unable to identify neuro-

experiential associations that are highly transient and dynamic. One way to extend the current 

findings could be to incorporate sliding window analysis which consists of calculating a 

given functional connectivity measure (e.g., correlation) over consecutive windowed sections 

of data and to measure experience on multiple occasions. This method results in a time series 

of functional connectivity values which can then be used to assess the temporal fluctuations 

in functional connectivity within a scanning session (Hutchison et al., 2013). Future work 

combining gradient analyses with dynamic functional connectivity techniques such as Hidden 

Markov modelling (Vidaurre et al., 2018) or time-varying multi-network approaches (Betzel 

& Bassett, 2017) with multiple online experience-sampling measures, could help understand 

how macroscale connectivity patterns and ongoing thoughts fluctuate together over time. 

While retrospective sampling was chosen in the current study to allow neural dynamics 

to unfold in a relatively natural way over the scan period (Smallwood & Schooler, 2015), this 

method is not without its limitations which are important to consider when interpreting the 

current results. For example, retrospective sampling, compared to online sampling, relies 

more heavily on the participant’s ability to remember their own thoughts. This introduces a 

number of potential confounds such as participants only reporting their most salient thoughts 

over the scanning period or some participants being more able than others to accurately recall 

their own thoughts. However, it is important to note that with more frequent sampling of 

ongoing experience the time series upon which cortical gradients are calculated would be 

shortened and this could temper the reliability of these metrics as indicators of neural 

function (Hong et al., 2020). Another limitation of the current study is that there was no 

experimental manipulation, making the causal link between macroscale patterns of neural 

activity and ongoing thoughts unclear. This issue could be fruitfully explored by priming 

participants to think about finding solutions to problems or goals and observe the changes in 
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ongoing neural connectivity, or through the use of techniques such as trans-magnetic 

stimulation to disrupt either the visual or motor cortex and observe the subsequent changes in 

ongoing thought. 

Finally, it is important to note that it is not necessarily the case that the absence of 

associations with the majority of the items in this battery indicates that these aspects of 

experience are unimportant at rest. It is possible that other types of neural metric that focus 

on local patterns are important (such as fractional amplitude of low-frequency fluctuations 

[fALFF] or regional homogeneity [ReHo]; for example, see Gorgolewski et al. (2014)) and 

that these types of relationship would be missed by our current analytic approach which 

focused on macroscale patterns of neural organization. It is also possible that other features of 

experience are more state-like and detecting these types of patterns would require the 

capacity to measure both ongoing experience and neural experience across several time 

points (see Vatansever et al. (2020) for an exploration of this question). Finally, although 

resting-state is a common method for acquiring brain data and one in which patterns of 

ongoing experience are important, it is also possible that other contexts provoke different 

types of experience (for example see Ho et al. (2020)). Thus, while our study shows that 

problem-solving and past related thoughts are likely to be important aspects of a participants 

experiences at rest, in the future, it will be important to carefully determine the most 

appropriate items for efficiently describing different features of experience in different 

situations and examining their relationships to a range of different metrics of static and 

dynamic neural function. 

4.6 Conclusions 

The current study investigated whether individual variation in ongoing thought is 

associated with low-dimensional representations of macroscale functional connectivity at 

rest. Results revealed that reports of thoughts about finding solutions to problems or goals 

were linked to greater segregation between the visual and sensorimotor systems, while 

thoughts about past events were linked to less segregation. These associations suggest that the 

degree of segregation of unimodal systems determines important features of ongoing 

experience. Future work could investigate the extent to which priming individuals to think 

about particular topics changes patterns of ongoing neural activity, or use neurostimulation 

techniques to alter neural activity and examine how this changes ongoing experience. Such 

studies would provide important causal evidence on the relationship between macroscale 

patterns of neural activity and features of ongoing thought. Moving forward, it is likely to be 
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increasingly important for scientists studying patterns of functional connectivity in states 

such as rest, or even tasks, to acquire measures of ongoing experience in order to fully 

appreciate the significance of neural motifs that are revealed through the application of 

advanced analysis methods. Likewise, it will be important for researchers studying ongoing 

thought to recognize that these states are sometimes encoded in complex distributed whole-

brain patterns of neural activity, and are not always localizable to a specific modular region 

of cortex. 
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Chapter 5- General Discussion 

In laboratory, neuroimaging, and daily life contexts, the current thesis used 

Multidimensional Experience Sampling (MDES) in three studies to explore how differences 

in ongoing thought relate to: (a) changes in external contexts (Studies 1 and 2), (b) changes in 

internal contexts (Study 2), and (c) individual differences in age (Study 1), trait anxiety 

(Study 2), and neural architecture (Study 3). In doing so, these investigations have improved 

our theoretical understanding of: 

• How common ‘patterns of thought’ emerge across a wider range of situations, 

• How individual differences in age and anxiety moderate these thought-situation 

relationships, and 

• The neural basis of distinct features of ongoing thought at rest. 

This general discussion will first summarise each empirical study’s primary aims and 

findings (section 5.1). Then, the key theoretical and methodological contributions will be 

considered (section 5.2), including the role that social and future-directed thoughts play in 

everyday life and the value of MDES for building a comprehensive account of cognition. 

Finally, the limitations of the thesis will be discussed (section 5.3), and future directions 

outlined (section 5.4), focusing on how the techniques developed in the current thesis can be 

leveraged in the future for mental health applications. 

5.1 Summary of Empirical Studies 

Study 1 examined MDES data collected in daily life before and during the UK’s first 

COVID-19 lockdown to understand how changes in daily activities related to changes in 

ongoing thought patterns. This study had two key findings. First, under conditions of social 

isolation during lockdown, episodic social thinking was reduced compared to pre-lockdown. 

However, on the rare occasions in which social interactions were possible, episodic social 

thinking increased to a greater extent than was observed pre-lockdown. Second, the lockdown 

was associated with an overall reduction in future-directed problem-solving, but this thought 

pattern was reinstated when individuals were actively engaged in work. Together, these 

findings suggest that the lockdown was associated with significant changes in ongoing 

thought patterns in daily life and that these changes were linked to disruptions to daily 

routines imposed by lockdown restrictions. More generally, these results highlight the 

important role of external contexts in shaping patterns of ongoing thought in everyday life 
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because changes in behaviour and daily life activities during lockdown were associated with 

changes in the prevalence of different patterns of thought. 

Study 2 examined MDES data collected in the laboratory and in daily life to understand 

how people think under conditions of uncertainty and whether individual differences in trait 

anxiety moderate the relationship between affective states and ongoing thought patterns. 

Study 2 identified a pattern of social and future-directed problem-solving with emotional 

features that consistently emerged during periods of uncertainty across situations: both under 

experimentally induced conditions of uncertainty and in daily life under conditions of 

naturally-occurring uncertainty elicited by the COVID-19 pandemic. Notably, in the 

laboratory, high-trait-anxiety individuals reported elevated levels of this future-directed 

pattern when subjective uncertainty was low compared to less anxious individuals. Overall, 

therefore, Study 2 established a generalisable pattern of socio-emotional and future-directed 

problem-solving, perhaps reflecting a process through which possible actions are considered 

to adjust future behaviour. More generally, these results highlight important links between 

internal contexts—going beyond positive and negative affect—and differences in ongoing 

thought patterns since thought patterns varied significantly according to states of uncertainty, 

arousal, and threat. 

Study 3 examined the neural basis of distinct features of ongoing thought by exploring 

whether individual differences along three reasonably well-explained ‘cortical gradients’—

describing patterns of whole-brain connectivity—were related to individual differences in 

ongoing thought at rest. Analyses indicated that individuals with higher functional 

segregation between visual and sensorimotor cortices were more likely to report thoughts 

related to finding solutions to problems or goals and less likely to report past-related 

thoughts. These results suggest that neural activity in unimodal regions may contribute to 

aspects of imaginative thought since past-related thought and problem-solving differentially 

predicted these systems’ relative integration and segregation. More generally, this study 

established a role for macroscale features of functional neural organisation in individual 

differences in ongoing thought. 

5.2 Theoretical and Methodological Contributions 

The following section will first discuss how this thesis has advanced our understanding 

of situations in which social thinking is especially prevalent and its potential functional 

benefits (section 5.2.1). Then, it will discuss how this thesis contributes to our understanding 
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of situations in which future-directed problem-solving is prevalent—and potentially 

helpful—in everyday life and the neural mechanisms underlying problem-solving at rest 

(section 5.2.2). Next, it will discuss how the findings highlight the need to consider the 

context in which experience unfolds to provide a more comprehensive understanding of 

differences in ongoing thought (section 5.2.3). It will then discuss the implications of findings 

highlighting a one-to-many mapping between different patterns of thought and the situations 

in which they emerge (section 5.2.4). Finally, it will discuss how the current thesis 

demonstrates the value of MDES for building a complete account of cognition (section 5.2.5), 

the value of cortical gradients for understanding the neural basis of a broad range of cognitive 

features (section 5.2.6), and the value of naturalistic viewing paradigms for understanding 

context-dependent cognition in controlled laboratory conditions (section 5.2.7). 

5.2.1 Social Thoughts in a Social World 

This thesis has advanced our understanding of situations in which social thinking is 

especially prevalent in everyday life and, consequently, the potential functional benefits that 

this form of cognition may serve. It has been established that individuals spend a lot of time 

thinking about other people in their daily lives (Mar et al., 2012; Song & Wang, 2012). More 

recently, Mildner and Tamir (2021) implemented a series of laboratory-based experiments to 

arbitrate between two hypotheses explaining the predominance of social thought. The ‘social 

needs hypothesis’ predicts that when an individual’s environment is insufficiently social, 

their thoughts should become increasingly social since this account argues that the role of 

social thinking is to help individuals fulfil their innate social needs (Mildner & Tamir, 2021). 

In support of this account, evidence suggests that social thinking helps individuals regulate 

their social needs (Mar et al., 2012; Poerio & Smallwood, 2016; Poerio et al., 2016). For 

example, prior work indicates that during the transition to university, social thoughts are 

associated with feeling more socially connected and less lonely over time (Poerio et al., 

2016). However, according to the ‘social processing hypothesis’, social thoughts are so 

prevalent because we live in a social world (Mildner & Tamir, 2021), and they help process 

incoming social information and prepare individuals for social interactions (Meyer, 2019). 

This hypothesis predicts that if social interactions are reduced, individuals should think less 

about other people and that if social interactions increase, individuals should think more 

about other people. 

In support of the social processing hypothesis, Mildner and Tamir (2021) found that 

spontaneous social thoughts declined following periods of solitude and increased following 
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periods of social interaction in the laboratory. However, a limitation of this study is that the 

periods of solitude were artificially enforced by researchers and may, therefore, not reflect 

how cognition emerges under these circumstances in everyday life. Critically, this thesis 

(Study 1) provides real-world support for the social processing hypothesis, demonstrating that 

social thinking fluctuates with levels of social interaction. Across both daily life samples, 

episodic social cognition was lower when individuals were alone and higher when individuals 

were socially interacting. In the lockdown sample—when social interactions were less 

common— these associations were even more apparent: episodic social thinking was further 

reduced under solitude and further increased during social interaction. Therefore, this thesis 

offers ecologically valid support for the view that the prevalence of social thinking is linked 

to the availability of social interactions. To provide additional support for the social 

processing hypothesis, it will be important for future work to examine the extent to which this 

form of thinking in daily life facilitates the consolidation of incoming social information and 

whether it helps individuals prepare for future social interactions. 

It is important to note that the two hypotheses proposed by Mildner and Tamir (2021) 

are not mutually exclusive, and the findings of the current thesis are not necessarily 

incompatible with prior work demonstrating that social thinking is linked to the regulation of 

socio-emotional needs (Poerio et al., 2015, 2016). Based on prior work and findings from the 

current thesis, it is likely that social thoughts can serve multiple functional benefits, 

depending on the specific content and quality of these thoughts, the situations in which they 

emerge, and individual differences in cognitive and affective style. For example, prior work 

highlights that the functional outcomes associated with mind-wandering depend on the 

contents of these experiences (e.g., Ruby et al., 2013a), the context in which they occur 

(Smallwood & Andrews-Hanna, 2013), and that individual differences in factors such as 

intelligence and depression determine when and how individuals mind-wander (Hoffmann et 

al., 2016; Turnbull et al., 2019a). Furthermore, prior work indicates that the contents of social 

thoughts, such as whether they are about close- or not-close others, determine how they relate 

to outcomes such as loneliness (Mar et al., 2012).  

The current thesis also highlights a complex interplay between changes in context, 

individual differences such as age or trait anxiety, and ongoing thought patterns. For 

example, in Study 1, older (but not younger) adults, reported higher levels of a pattern of 

pleasant engagement while working in daily life, highlighting age as one reason why thought 

content can be heterogeneous. Accordingly, building a comprehensive account of the 
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functional roles that episodic social cognition plays in daily life requires that future work 

explores how, when, and for whom social thinking confers adaptive benefits. For example, it 

may be that individuals higher in extraversion are more likely to engage in social thinking 

when alone to address their innate social needs compared to those higher in introversion. 

Since prior work indicates that extraversion was associated with higher levels of depression 

and loneliness during COVID-19 restrictions (Alt et al., 2021), future work could also 

examine whether patterns of episodic social cognition act as a protective mechanism against 

the negative effects associated with prolonged social isolation in extraverted individuals.  

More generally, Study 2 indicates that episodic social thinking in everyday life may help 

individuals resolve uncertainties arising from the complex social environment in which we 

live. A pattern of social and future-directed problem-solving was reliably described under 

conditions of threat and uncertainty in the laboratory and was positively related to subjective 

uncertainty in the laboratory and in daily life during the COVID-19 pandemic. These findings 

provide empirical, ecologically valid support for the view that individuals are motivated to 

reduce social uncertainty and may do so through various social cognitive processes, including 

making predictions about other people’s intentions and actions (FeldmanHall & Shenhav, 

2019). However, future work is needed to determine the extent to which this form of thought 

is associated with functional advantages, perhaps through the formulation of appropriate 

goals to reduce levels of uncertainty (Medea et al., 2018). For example, it will be important to 

establish whether engaging in this form of thought when uncertainty is high in daily life is 

associated with subsequently reduced uncertainty at a later point in time.  

5.2.2 Problem-solving: Contextual Influences and Neural Mechanisms 

This thesis also advances our understanding of situations in which future-directed 

problem-solving is prevalent—and potentially helpful—in everyday life and the neural 

mechanisms underlying problem-solving at ‘rest’. In daily life, Studies 1 and 2 indicate that 

the prevalence of future-directed problem-solving is linked to the relative demands of the 

future. Both studies found that during the UK’s first national lockdown—when socialising, 

travel, and work were restricted—future-directed problem-solving was significantly reduced 

overall. However, future-directed problem-solving was prevalent during lockdown when 

people were actively engaged in work (Study 1) or when they felt uncertain during the 

pandemic (Study 2). These results suggest that future-directed problem-solving is especially 

prevalent when demands from the future are higher (e.g., when working or when feeling 

uncertain). These findings are consistent with the view that our ongoing thought content 
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reflects our current concerns (Gold & Reilly III, 1985; Klinger, 2013; Klinger et al., 2018) 

since the prevalence of future-directed problem-solving was related to whether an individual 

was working (Study 1) and how much uncertainty an individual was experiencing (Study 2). 

Moreover, these findings are consistent with the ‘pragmatic’ theory of prospection 

(Baumeister et al., 2016), which argues that we predominantly think about the future in order 

to guide our actions to reach desirable outcomes, since patterns of future-directed problem-

solving were more prevalent when individuals were working (Study 1) or experiencing high 

levels of uncertainty (Study 2). Accordingly, these results suggest that patterns of future-

directed problem-solving in daily life may help individuals meet the demands of their 

anticipated futures (Baird et al., 2011; Cole & Berntsen, 2016; D'Argembeau et al., 2011; 

Klinger et al., 2018; Kvavilashvili & Rummel, 2020; Medea et al., 2018). It will be important 

for future work to test this hypothesis empirically. For example, while Study 1 highlights that 

future-directed problem-solving commonly emerges when individuals are actively engaged in 

work, future research is needed to assess the extent to which this thought pattern confers 

adaptive benefits such as improved productivity or attainment of long-term work-related 

goals over time (Eubanks et al., 2022). 

Study 3 indicated that problem-solving at rest is associated with higher functional 

segregation between visual and sensorimotor cortices. This finding adds to an emerging body 

of work suggesting that neural processing in unimodal systems may contribute to aspects of 

higher-order imaginative thought (Danker & Anderson, 2010; Medea et al., 2018; Sormaz et 

al., 2018; Villena-Gonzalez et al., 2018). For example, Medea et al. (2018) found that 

individuals whose personal goals became more concrete following a period of future-directed 

thinking showed stronger functional connectivity between the hippocampus and a region of 

the motor cortex at rest. Furthermore, Villena-Gonzalez et al. (2018) found that the tendency 

to employ social information when engaged in task-based prospection was associated with 

increased functional connectivity between the visual cortex and retrosplenial cortex, a region 

linked to spatial navigation, scene construction, episodic memory, and future thinking (Vann 

et al., 2009). Therefore, the current thesis, along with prior work, suggests that functional 

connections between unimodal systems and other regions of the cortex may differentially 

support specific features of higher-order thought. For example, these results are consistent 

with the view that the motor system plays a functional role in creative problem-solving 

because it enables the mental simulation of possible actions (Albus, 1979; Matheson & 

Kenett, 2020). Moving forward, however, it will be important to provide causal evidence 
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regarding the relationship between macroscale patterns of neural activity and distinct features 

of thought. For example, future work could examine the extent to which priming individuals 

to think about particular topics (e.g., by using naturalistic viewing paradigms) induces 

changes along each cortical gradient describing patterns of whole-brain connectivity. 

Across all three studies, this thesis highlights two different types of thought, one focused 

on the past and related to information from memory, and another focused on the future and 

related to attempts at problem-solving. For example, Study 1 identified a pattern of future-

directed problem-solving that was reduced during lockdown but reinstated when individuals 

engaged in work and a pattern of past-focused visual imagery positively associated with 

consuming media during lockdown. Study 2 identified a pattern of future-directed problem-

solving that was most common when watching emotional videos in the laboratory and a 

pattern of past-focused off-task thought that was most common when watching documentary 

videos. Finally, Study 3 suggests that these two types of thought may depend on the relative 

functional segregation and integration between unimodal regions in the cortex. At rest, 

problem-solving was associated with greater segregation between unimodal systems, while 

past-related thought was associated with greater integration between these systems. 

Contemporary views on how the cortex constrains its functions highlight that some brain 

regions serve more segregated functions while others can serve more integrated functions; 

critically, however, the balance between these two processes can vary over time (Sporns, 

2013). Accordingly, it is possible that these two broad modes of thinking identified in the 

current thesis may depend on time-varying integration and segregation between unimodal 

regions of the cortex. It will, therefore, be important for future work to examine how the 

integration and segregation of regions of the cortex differentially relate to these two modes of 

operation over time. For example, it may be that the off-task pattern observed while watching 

documentary videos in Study 2 is associated with increased integration, while the future-

directed pattern observed while watching emotional videos in Study 2 is associated with 

increased segregation. More generally, the studies in this thesis suggest that different 

situations in daily life may vary on their need for brain activity to exhibit high degrees of 

segregation or integration, with conditions that promote uncertainty relying to a greater extent 

on the former. 

Although the results from Study 3 describe patterns of whole-brain connectivity 

associated with problem-solving and past-related thought at rest, highlighting that unimodal 

regions may play a role in aspects of imaginative thought, it is worth noting that, 
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mechanistically, it is possible that regions in the medial temporal lobe (MTL) and prefrontal 

cortex (PFC) may be important for organising these processes. For example, the MTL (a) is 

thought to play a role in organising multiple features of cognition including memory (Horner 

et al., 2015; Moscovitch et al., 2016) and future thinking (Addis et al., 2007; Buckner, 2010; 

Schacter & Addis, 2007), (b) has been shown to contain gradients that map on to the whole-

brain gradients examined in Study 3 (Paquola et al., 2020), and (c) is theorised to support the 

partial reactivation of brain regions involved during the encoding of an episode when 

remembering that episode (Buckner & Wheeler, 2001). At the same time, the PFC is thought 

to be important for various features of cognition including episodic memory and simulation, 

planning, and problem-solving (Benoit & Schacter, 2015; Fuster, 2014; Mushiake et al., 

2009; Tanji & Hoshi, 2001). It will, therefore, be valuable for future work to investigate how 

regions of the MTL and PFC interact with unimodal regions (e.g., visual or motor) when 

individuals think about the past or think about solutions to problems or goals (Danker & 

Anderson, 2010). 

5.2.3 Importance of Context 

The current thesis also lends further support to the view that considering the context in 

which experience unfolds has important explanatory power for understanding differences in 

ongoing thought (Konu et al., 2021; Smallwood & Andrews-Hanna, 2013; Smallwood et al., 

2021; Turnbull et al., 2020b; Turnbull et al., 2021). For example, in daily life during 

lockdown, patterns of pleasant engagement were prevalent when individuals engaged in 

leisure activities, while patterns of detailed task focus and future-directed problem-solving 

were prevalent when individuals were working. The variation of ongoing thought patterns 

according to activity highlights the importance of our external environment and daily routine 

in shaping our internal experiences. These findings emphasise the value of MDES in real-

world contexts for understanding how our behaviour influences our ongoing cognition since 

it facilitates an efficient mapping between ongoing thought patterns and naturally-occurring 

contexts in daily life. Accordingly, future work examining differences in ongoing thought and 

how they relate to other outcomes should consider the context in which experience is 

sampled. For example, recent work suggests that associations between thought and variables 

such as mood vary across different situations in daily life (Nyklíček et al., 2021). 

The current thesis further highlights important links between ongoing thought patterns 

and internal contexts, going beyond patterns of off-task thinking during states of positive 

versus negative affect (e.g., Smallwood et al., 2009) towards an understanding of affective 
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states with specific meanings and relevance for individuals. For example, Study 2 found that 

states of uncertainty were significantly related to differences in self-relevant and past-focused 

off-task thought and socio-emotional and future-directed problem-solving in the laboratory. 

In addition, in daily life, COVID-related uncertainty was associated with higher levels of 

socio-emotional and future-directed problem-solving, while COVID-related threat was 

associated with higher levels of detailed and deliberate thought. Moreover, Study 2 highlights 

that internal and external contexts can interact to differentially predict differences in ongoing 

thought. For example, the association between uncertainty and off-task thinking in the 

laboratory depended on the video condition; the negative association was stronger in the 

‘suspense’ and ‘action’ threat videos compared to the ‘control’ videos. These findings 

suggest that simultaneously assessing changes in internal and external contexts is valuable for 

building a more comprehensive account of cognition since the relationship between 

uncertainty and off-task thought varies depending on the external context in which 

uncertainty emerges. 

5.2.4 Thoughts and Situations: One-to-Many Mapping 

More generally, findings from the current thesis demonstrate that there is more than one 

‘route’ to thoughts that share similar features (Cole & Kvavilashvili, 2021). For example, off-

task thinking was higher in the laboratory when participants watched ‘control’ videos 

associated with low levels of arousal and uncertainty, but this thought pattern was also higher 

in daily life during the COVID-19 pandemic when individuals felt uncertain. In addition, 

future-directed thought tended to be higher in the laboratory when concurrent uncertainty was 

high. However, high-trait-anxiety individuals reported this thought pattern in an uncertainty-

independent manner, suggesting that reasons other than in-the-moment uncertainty may be 

contributing to the emergence of this thought for highly anxious individuals, an important 

avenue for future work to explore. Finally, detailed, deliberate thought was linked to both 

high levels of perceived COVID-related threat and being actively engaged in work in daily 

life. Other studies have found a similar thought pattern is engaged during working memory 

(Sormaz et al., 2018) and in other executively demanding tasks (Konu et al., 2021).  

Therefore, based on the work in this thesis, it is important for future work to understand 

the many and varied situations in which specific thought patterns emerge, and to understand 

how these situations differ between individuals. In turn, this will improve our theoretical 

understanding of why these patterns emerge and their consequences for wellbeing and 

productivity. There has been a historical tendency to categorise specific types of thought as 
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either ‘good’ or ‘bad’ (e.g., Killingsworth & Gilbert, 2010). However, this thesis highlights 

such a perspective may be too narrow and instead suggests that a one-to-many mapping 

between different patterns of thought and the situations in which they emerge is more likely. 

Accordingly, future work could focus on understanding how, when and for whom different 

thought patterns are helpful or detrimental in daily life rather than assuming that specific 

thought patterns are necessarily better or worse. 

5.2.5 The Value of MDES for Building a Comprehensive Account of Cognition 

The current thesis highlights that we can use MDES to understand both internally- and 

externally-focused cognition across a wide range of situations. Traditionally, internally- and 

externally-focused experiences have been examined using different approaches; internally-

focused cognition via experience sampling and external via performance on tasks. However, 

the current thesis demonstrates that MDES can be successfully implemented to understand 

both states simultaneously across a wide range of situations within the same framework. For 

example, Study 2 indicates that while watching videos in the laboratory, a pattern of 

internally-focused cognition was negatively correlated with uncertainty, and a pattern of 

externally-focused cognition was positively correlated with uncertainty. In daily life during 

the COVID-19 pandemic, however, both internally- and externally-focused patterns were 

positively correlated with uncertainty. These results indicate that both internally- and 

externally-focused cognitive states may emerge during periods of uncertainty, depending on 

the context in which uncertainty is experienced. Moreover, these findings highlight the value 

of MDES for building a more comprehensive account of cognition since it can 

simultaneously and parsimoniously examine how a broad range of cognitive features—

including internally- and externally-focused cognition—emerge across a wide range of 

situations in both laboratory and daily life contexts.  

These findings also demonstrate the utility of directly projecting thought patterns 

between MDES datasets to examine multidimensional cognition across contexts. Although 

prior work has compared ongoing thought in both the laboratory and daily life (e.g., Ho et al., 

2020; Kane et al., 2007; Kane et al., 2017; Linz et al., 2019), projecting patterns directly from 

one context to another allows for the empirical examination of how laboratory MDES 

findings generalise to real-world situations. Since this thesis has established that this novel 

method can be used to assess the generalisability of laboratory-based findings, it will be 

helpful for developing more ecologically valid paradigms in laboratory and neuroimaging 

contexts in the future (Kingstone et al., 2003). In addition, this projection technique could be 



115 

 

leveraged to examine the neural basis of different types of naturally-occurring thoughts in 

daily life. For example, it would be possible to first identify patterns of thought in daily life 

contexts using MDES and then project these patterns onto MDES data collected following 

resting-state fMRI. This approach would improve the ecological validity of thought-brain 

relationships since the thought patterns identified would be grounded in real-world 

experiences.  

Importantly, the current thesis demonstrates that dimension reduction techniques applied 

to MDES data can robustly identify ‘patterns of thought’ across a wide range of situations. 

For example, using this approach, Study 1 demonstrated highly consistent patterns of thought 

between the before- and during-lockdown samples (see Appendix 1, Fig. S2). In addition, 

Study 2 identified highly consistent patterns of thought between the two laboratory samples 

(see Appendix 2, S1 text, Fig G) and confirmed the reliability of thought-situation 

associations between the laboratory samples (see Appendix 2, S2 text, Table A). 

Accordingly, the current thesis demonstrates that MDES is a robust method for characterising 

ongoing thought patterns in laboratory and daily life contexts and shows that these patterns 

are reliably and meaningfully related to other aspects of experience.  

5.2.6 Cortical Gradients 

Another methodological contribution of this thesis is demonstrating that cortical 

gradients provide a compact method for examining how interactions between large-scale 

networks relate to differences in the types of thought people have at rest (Study 3). As 

previously discussed, it will be important for future work to provide causal evidence 

regarding the relationships between macroscale patterns of activity and distinct forms of 

thought (e.g., using naturalistic viewing paradigms). In addition, since Study 3 was based on 

retrospective reports of problem-solving over a 9-minute resting-state scan, it will be 

important for future work to incorporate dynamic measures of neural activity and online 

measures of ongoing thought to pinpoint state, over more trait-like, influences. For example, 

Study 3 may have identified a trait-level tendency to engage in problem-solving at rest with a 

trait-level pattern of whole-brain organisation that may be partially constrained by underlying 

differences in structural architecture. Nonetheless, Study 3 highlights the utility of the 

gradient approach for understanding the mechanisms underlying features of higher-order 

cognition that are hypothesised to depend upon the interaction between multiple neural 

systems (e.g., Smallwood et al., 2011; Smallwood and Schooler, 2015; Jefferies et al., 2020). 

For instance, using this approach, subsequent research has identified how individual 



116 

 

differences along cortical gradients relate to distinct aspects of semantic cognition (Gonzalez 

Alam et al., 2022; Shao et al., 2022). Shao et al. (2022) found that within the semantic 

network, individuals whose intrinsic connectivity showed higher similarity to the gradient 

describing segregation between unimodal and transmodal cortices were faster at identifying 

weak semantic associations, while those who showed higher similarity to the gradient 

describing segregation between visual and sensorimotor cortices were faster on picture 

semantic judgements. Accordingly, cortical gradients provide a common space within which 

to understand the broad similarities and differences in whole-brain patterns of connectivity 

underlying multiple features of cognition.  

5.2.7 Naturalistic Viewing Paradigms  

A final methodological contribution of this thesis is the demonstrated utility of 

naturalistic viewing paradigms to robustly induce emotional states and accompanying 

changes in ongoing thought in the laboratory. For example, in Study 2, ‘action’ and 

‘suspense’ threat videos increased levels of subjective arousal, subjective uncertainty, and 

social and future-directed problem-solving. Importantly, laboratory findings generalised to 

the real world: social and future-directed problem-solving was positively associated with 

subjective uncertainty in both the laboratory and in daily life during the COVID-19 

pandemic. This study, therefore, adds to a growing body of research demonstrating that 

naturalistic viewing paradigms can be leveraged to simulate the richness of real-world 

experiences to examine cognition and emotion in controlled laboratory and neuroimaging 

contexts (Sonkusare et al., 2019).  

Given the success of this approach for manipulating emotion and ongoing thought, 

future work could use naturalistic viewing paradigms to examine the effect of external and 

internal contexts on changes in ongoing thought in neuroimaging contexts. Such an approach 

would help identify the neural mechanisms underlying different thought patterns across 

different situations. For example, one could sample ongoing thoughts and record neural 

activity via fMRI while participants watched the video clips used in Study 2 to understand 

how the changes in thought induced by the videos relate to changes in macroscale 

connectivity patterns using gradient analyses. This approach would allow us to go beyond 

simply describing experiences to identify how the brain’s functional architecture supports 

these experiences. In addition, this would allow for the examination of whether differences in 

thought-uncertainty relationships reported by high-trait-anxiety individuals are associated 
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with differences in underlying neural substrates (Kirk et al., 2022). In doing so, this would 

provide important validation of these self-reported findings. 

5.3 Key Limitations 

Although the current thesis has made significant theoretical, conceptual, and 

methodological contributions to understanding ongoing thought, several key limitations 

should be noted. First, while Studies 1 and 2 identified situations in which social and future-

directed cognition are especially prevalent (e.g., during social interactions or when 

uncertainty is high), they did not directly assess the extent to which these thought patterns 

actually help individuals successfully navigate their social environments, resolve uncertainty, 

or prepare for the future. To understand the (mal)adaptive nature of these patterns in daily 

life, future work should capitalise on the methods developed in the current thesis to assess the 

extent to which thought-situation associations predict subsequent functional outcomes using 

time-lagged analyses. For instance, it would be useful to use MDES in daily life to 

understand whether engaging in episodic social cognition following or preceding social 

interactions is associated with more successful social interactions. For example, one could 

assess whether engaging in episodic social cognition prior to different types of interactions 

(e.g., work meetings) predicts better mood following those interactions (e.g., Quoidbach et 

al., 2019). It will also be important to determine situations where the relationship between 

contexts and thought might be maladaptive. For example, excessively or inflexibly engaging 

in episodic social cognition preceding or following social interactions may be associated with 

poorer social well-being (Katz et al., 2019). Likewise, engaging in future-directed problem-

solving while working may be associated with improved productivity over time (Baer et al., 

2021). However, indiscriminately engaging in this form of thought may also be associated 

with emotional and cognitive costs, such as an inability to disengage from work-related 

stressors or focus on ongoing tasks. 

While Study 2 examined how trait anxiety moderated the relationships between thought 

patterns and uncertainty, the reliability of these associations remains to be established, and 

the reasons underlying these associations remain a matter of debate. For example, in the 

laboratory, compared to less anxious individuals, high-trait-anxiety individuals reported 

elevated levels of social and future-directed thinking under conditions of low subjective 

uncertainty and overall showed a weaker relationship between this pattern and concurrent 

uncertainty. However, since trait anxiety was not examined in both laboratory samples, the 

reliability of this interaction could not be established. Nonetheless, in daily life during the 
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COVID-19 pandemic, although the interaction did not reach significance (p = .066), the 

underlying pattern was similar since anxious individuals showed a weaker relationship 

between future thinking and concurrent uncertainty. Taken together, these results provide 

some evidence that anxious individuals show differences in how state uncertainty relates to 

levels of future thinking and are generally consistent with the view that trait anxiety is 

characterised by cognitive inflexibility (Ottaviani et al., 2016). However, the nature of the 

study design precludes firm conclusions regarding the origin of this interaction and its 

clinical relevance. Future work could, therefore, focus on tracking these relationships 

longitudinally in daily life using MDES (Bosquet & Egeland, 2006; Fortea et al., 2021; 

Pawluk et al., 2021; Sun et al., 2019)—from early development to later life—to examine how 

these thought-uncertainty relationships emerge over time to understand the causal nature and 

clinical relevance of these differences. 

5.4 Future Directions: Mental Health 

The theoretical and methodological advancements made in the current thesis are 

important for future work investigating how thought-situation relationships relate to aspects 

of mental health and well-being. Prior work indicates that behaviour and cognition are both 

important predictors of mental health. For example, depression can be maintained by an 

absence of reinforcing activities (Hopko et al., 2003; Lewinsohn & Graf, 1973) and anxiety 

disorders can be maintained by behavioural avoidance of situations that cause worry or 

concern (Whiteside et al., 2013). At the same time, depression and anxiety are both 

associated with perseverative thinking styles, including worry and rumination (Drost et al., 

2014; MacLeod & Byrne, 1996; Miloyan et al., 2014; Ottaviani et al., 2013; Ottaviani et al., 

2016; Seli et al., 2019). Finally, interventions targeting behavioural avoidance in these types 

of disorders can reduce cognitive symptoms (Dimidjian et al., 2006). Therefore, a large body 

of work highlights important links between behaviour, cognition, and features of mental 

health.  

However, to date, there has been little research examining how multiple patterns of 

thought (going beyond rumination and worry) differentially emerge in the many and varied 

situations we encounter in daily life and how these thought-situation relationships predict 

aspects of mental health. Using MDES, this thesis has demonstrated that: (a) internal and 

external contexts play a key role in shaping patterns of ongoing thought, (b) MDES is 

sensitive to thought-situation relationships in the laboratory and daily life, and (c) MDES is 

sensitive to individual variation in thought-situation relationships. Future work should 
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capitalise on these methodological advances to understand which thought-situation 

relationships are associated with positive and negative mental health outcomes in daily life. 

For example, MDES in daily life could be used to identify mappings between ongoing 

thought and activities associated with worsened symptomology over time in non-clinical 

samples that may contribute to the development of psychiatric conditions. In addition, MDES 

in daily life could be used to identify thought-situation relationships that differ in a range of 

clinical samples and how changes in the mapping between thought and activities relate to 

longitudinal changes in the prognosis of various clinical disorders like depression and 

anxiety. Such investigations would simultaneously improve our theoretical understanding of 

the psychological nature of different thought patterns and affective disorders associated with 

disrupted cognitive styles. 

Ultimately, if future work establishes that MDES can map reliable relationships between 

thoughts, contexts, and mental health outcomes, it is a method that could be used in clinical 

settings as both a diagnostic tool and to inform and assess clinical interventions. From a 

diagnostic standpoint, many mental health disorders have high levels of comorbidity and 

share multiple cognitive and emotional features. For example, prior work suggests that the 

high comorbidity between generalised anxiety disorder (GAD) and major depressive disorder 

(MDD) is, in part, influenced by the diagnostic overlap between these two conditions 

(Zbozinek et al., 2012). Accordingly, MDES-based research could be used to identify key 

differences in thought-situation relationships between these disorders that could ultimately be 

used to differentiate between these disorders during diagnosis. For example, individuals 

presenting with symptoms common to both disorders upon initial evaluation could be asked 

to track their thoughts, activities, and internal states using MDES via smartphones in their 

daily lives. Clinicians could use this data to inform their diagnosis if MDES-based research 

has successfully identified important thought-situation relationships that differ between 

anxious and depressed individuals. 

MDES could also be used to inform and assess clinical interventions. For example, 

MDES could be used to identify activities in daily life that lead to changes in thought patterns 

associated with improved well-being, and these activities could be promoted to individuals 

reporting relevant mental health issues. Moreover, recent work has begun to use various 

forms of experience sampling in daily life to aid individualised diagnosis and treatment of 

disorders, often referred to as ‘precision psychiatry’ (Fortea et al., 2021; Pawluk et al., 2021; 

Robinaugh et al., 2020). For example, Robinaugh et al. (2020) had two patients diagnosed 
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with panic disorder complete five experience-sampling measures daily for two weeks before 

and after a cognitive-behavioural therapy intervention. Each probe asked them to rate their in-

the-moment experience according to 20 different panic symptoms. In contrast to traditional 

psychiatric assessments—which ask participants to self-report their symptoms over 

prolonged periods (e.g., over the past week) to provide an overall score of symptom 

severity—this approach provides key information about symptom dynamics and information 

on the relationships between symptoms as they unfold over time within patients (Robinaugh 

et al., 2020). For example, both patients reported comparable mean levels of feelings of 

anxiety and panic. However, one patient’s variance was almost twice as big as the other, 

suggesting that these patients have heterogeneous experiences with feelings of anxiety and 

panic, and consequently suggests that their optimal treatment plans may differ. Although this 

study demonstrates the utility of daily life experience sampling for individualised psychiatric 

diagnosis and treatment, this study only assessed panic-related symptoms and did not assess 

patterns of ongoing thought or the contexts in which experiences occurred. Moving forward, 

it will be useful if studies like these incorporated MDES in their experience-sampling 

procedures. This approach would improve our understanding of the similarities and 

differences in common patterns of thought across a wide range of psychiatric disorders, 

thereby improving our understanding of the shared and unique cognitive and behavioural 

profiles associated with different disorders. 

5.5 Concluding Remarks 

This thesis has integrated multiple methods across three studies to shed light on the 

factors contributing to differences in ongoing thought in the laboratory and in daily life. 

These investigations have improved our theoretical understanding of situations in which 

social and future-directed thoughts are especially prevalent in everyday life, how macroscale 

connectivity patterns relate to distinct types of imaginative thought at rest, and highlight the 

importance of context in understanding differences in ongoing thought. Moreover, it 

highlights the value of MDES for building a comprehensive account of cognition since it has 

demonstrated that it can be used to understand between- and within-person differences in 

both internally- and externally-focused cognition across a wide range of situations in both the 

laboratory and daily life. Moving forward, it will be important for future work to build on the 

methods and findings described here to assess the functional outcomes associated with 

thought-situation relationships, understanding which might ultimately be leveraged for 

practical applications in mental health settings. In summary, therefore, this thesis emphasises 
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the power of MDES to reliably capture ongoing thought patterns across contexts, a tool that 

will ultimately help answer important questions regarding how our brains and the world 

around us shape our thoughts and how our thoughts shape our lives. 
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Appendices  

A.1 Supplementary Materials: Chapter 2 

This section contains the supplementary materials for Chapter 2 including: 

• SI Appendix 

o Supplementary Text 

o Figures S1 to S7  

o Tables S1 to S26 

Supplementary Text 

Paper vs Online Completion of Experience-Sampling Surveys 

In the prelockdown sample, twenty-three older participants and one younger participant 

opted to complete the study on paper. They were provided with a phone where SMS 

messages acted as signals prompting the participant to complete a paper version of the 

survey. To ensure that the different completion methods did not significantly alter participant 

responses, we conducted a series of ANCOVAs using IBM SPSS Statistics (Version 26), in 

which mean factor scores (1-5) were the outcome variables, the completion method (online vs 

paper) was the predictor variable, and age was included as a nuisance covariate. All older 

participants from the prelockdown sample were included in this analysis (N = 35). The results 

showed no significant main effects of the completion method on any of the five thought 

patterns (P > .234), allaying concerns that the paper vs online completion may have affected 

our key measurement. 

R Packages and Code used in Analysis 

To conduct the two-way ANOVA assessing whether the ‘alone’ percentage differed 

significantly between samples (pre- vs during lockdown) or age groups (young vs older), we 

used the car package (3.0.10; Fox & Weisberg, 2019). In addition, partial eta squared for this 

ANOVA was calculated using the effectsize package (0.4.1; Ben-Shachar et al., 2020). All 

graphs included in the main text and supplementary materials were created and collated using 

the ggplot2 (3.3.2; Wickham, 2016), ggthemes (4.2.0; Arnold, 2019), and patchwork (1.1.0; 

Pedersen, 2020) packages, and supplementary tables were made using the sjPlot package 

(2.8.7; Lüdecke, 2021b). All code used in the analysis and preparation of figures is available 

online at https://github.com/Bronte-Mckeown/pre_vs_during_lockdown_ESQ_analysis. 

https://github.com/Bronte-Mckeown/pre_vs_during_lockdown_ESQ_analysis
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Grouping of ‘Activity’ Options for Analysis 

In the lockdown sample, participants reported their primary activity immediately before 

being signalled from a list of twenty-four options. To condense the activity options for 

analysis, we first excluded the ‘other’ option (N observations = 88). We then grouped the 

remaining twenty-three options: 1) thematically while 2) maintaining an approximate balance 

of the number of observations for each higher-order category. Two authors (BM & CM) 

independently assigned the activities to higher-order categories in line with these two aims, 

leading to highly similar allocations. Any differences in category coding were identified and 

were resolved through discussion between the two independent coders. The five activity 

categories were: 1) Working (N observations = 212) comprising ‘Working,’ 2) Social 

interactions (N observations = 152) comprising ‘Talking/conversation’ both virtually and in 

person, 3) Media consumption (N observations = 549) comprising ‘Social media,’ ‘Watching 

TV/film,’ ‘Listening to music,’ ‘Listening to radio/podcast,’ ‘Reading/listening to/watching 

the news,’ ‘Reading for pleasure,’ 4) Leisure activities (N observations = 375) comprising 

‘Other leisure activity,’ ‘Arts and crafts,’ ‘Gardening,’ ‘Playing a game,’ ‘Exercising,’ and 5) 

Essential tasks (N observations = 489) comprising ‘Caring for an adult,’ ‘Childcare,’ 

‘Cooking,’ ‘Eating and/or drinking,’ ‘Getting ready for bed,’ ‘Getting ready for the day,’ 

‘Household chores,’ ‘Shopping,’ and ‘Sleeping’. Analyses using these activity categories as 

predictors are based on 1777 observations from a total of 81 participants. Counts for each 

activity category split by age group are displayed in Table S6.  

Comparing Thought Patterns between 1) Virtual and Physical Social Interactions and 

2) Age Groups during Lockdown 

To examine the effects of virtual social interaction on thoughts in the lockdown sample, 

we conducted a series of linear mixed models (LMMs) in which each thought pattern was the 

outcome measure, and 1) ‘interaction type’ and 2) ‘age group’ were the explanatory 

variables. Interaction type had four levels: 1) no interaction at all, 2) virtual interaction only, 

3) physical interaction only, and 4) both virtual and physical interaction (see Table S10 for 

how this variable was coded). The alpha level was set to < .01 (two-tailed) to account for 

family-wise error emerging from conducting five models (i.e., .05/5). The reported alpha 

levels below are unadjusted; main effects and interactions are considered significant only at 

the p < .01 level. When probing these significant main effects and interactions using pairwise 

comparisons, the alpha level was Bonferroni adjusted to account for the number of tests being 

conducted; here, the adjusted alpha levels are reported in parentheses. To account for 



124 

 

multiple observations per participant, day number was nested within participant as a random 

intercept. In total, 82 participants (1865 observations) were included in these models. 

Estimates reported below are unstandardized and reflect the difference between each factor 

level and the intercept (grand mean of all conditions). These results are summarized in Fig. 

S3 (see Tables S11-S13 for ANOVA output, parameter estimates, and the variance explained 

by random effects). It is worth noting that the cells of this analysis were unbalanced, with 

fewer observations for interacting—particularly virtually—compared to not interacting at all 

(see Table S14 for the number of observations per interaction type for each age group), so 

these results should be interpreted with caution.  

Example model formula: lmer(Thought component x ~ Interaction type * Age group + 

(1|Participant/Day number)) 

Model 1: Future-directed problem solving  

There was a significant main effect of interaction type (F(3, 1830) = 10.39 , p < .001). 

Pairwise comparisons (Bonferroni adjusted for 6 tests) revealed that future-directed problem 

solving was significantly lower when ‘physically interacting’ compared to ‘virtually 

interacting’ (b = -0.42, 95% CI [-0.63, -0.12], t(1833) = -5.11, p < .001) and ‘no interaction’ 

(b = -0.28, 95% CI [-0.44, -0.12], t(1836) = -4.66, p < .001).  

Model 2: Pleasant engagement 

There were no significant main effects or interactions for levels of pleasant engagement 

(p > .05). 

Model 3: Episodic social cognition  

There was a significant main effect of interaction type (F(3, 1834) = 29.05 , p < .001). 

Pairwise comparisons (Bonferroni adjusted for 6 tests) revealed that episodic social cognition 

was significantly higher: 1) when ‘physically interacting’ compared to ‘no interaction’ (b = 

0.44, 95% CI [0.29, 0.60], t(1829) = 7.54, p < .001), 2) when ‘virtually interacting’ compared 

to ‘no interaction’ (b = 0.37, 95% CI [0.19, 0.55], t(1829) = 5.34, p < .001), and 3) when 

‘interacting both virtually and physically’ compared to ‘no interaction’ (b = 0.46, 95% CI 

[0.26, 0.66], t(1829) = 6.13, p < .001). 

Model 4: Imagery  

While it did not pass the Bonferroni cut-off (p > .01), there was a main effect of 

interaction type (F(3, 1795) = 2.62, p = .049) and a two-way interaction between interaction 
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type and age group (F(3, 1795) = 2.83, p = .037). While it did not reach significance, for 

completeness, pairwise comparisons (Bonferroni adjusted for 6 tests) indicated that imagery 

tended to be lower when ‘physically interacting’ compared to ‘virtually interacting’ (b = -

0.19, 95% CI [-0.40, 0.02], p = .096). Furthermore, while it did not reach significance, for 

completeness, pairwise comparisons (Bonferroni adjusted for 12 tests) indicated that imagery 

tended to be lower when ‘physically interacting’ compared to ‘virtually interacting’ for 

younger participants only (b = -0.26, 95% CI [-0.53, 0.01], p = .070). 

Model 5: Detailed task focus  

There was a significant main effect of interaction type (F(3, 1835) = 6.10, p < .001). 

Pairwise comparisons (Bonferroni adjusted for 6 tests) revealed that detailed task focus was 

significantly higher when ‘virtually interacting’ compared to 1) ‘interacting both virtually and 

physically’ (b = 0.28, 95% CI = [0.04,0.51], t(1827) = 3.08, p  = .013), and 2) ‘no interaction’ 

(b = 0.28, 95% CI = [0.10,0.45], t(1826) = 4.13, p  < .001). There was also a significant two-

way interaction between interaction type and age group (F(3, 1835) = 4.29, p  = .005). 

Pairwise comparisons (Bonferroni adjusted for 12 tests) revealed that for older participants, 

but not younger participants, detailed task focus was significantly higher when ‘virtually 

interacting’ compared to 1) ‘physically interacting’ (b = 0.39, 95% CI = [0.03, 0.76], t(1831) 

= 3.15, p  = .020), 2) ‘interacting both virtually and physically’ (b = 0.53, 95% CI = 

[0.13,0.92], t(1826) = 3.80, p  = .002), and 3) ‘no interaction’ (b = 0.50, 95% CI = 

[0.20,0.81], t(1815) = 4.68, p  < .001).  

Principal Components Analysis (PCA) applied to State Affect Data from Pre- and 

during Lockdown Samples 

To identify common patterns of state affect across both samples (pre- and during 

lockdown), PCA with varimax rotation was applied to the combined z-scored affect data from 

both samples (12 items which asked about current affect; see Table S15) using IBM SPSS 

Statistics (Version 26). PCA was applied at the observation level in the same manner as the 

PCA applied to the thought data. The Kaiser-Meyer-Olkin measure of sampling adequacy 

was .88, above the commonly recommended value of .6, and Bartlett’s test of sphericity was 

significant (χ2(66) = 26070.84, p < .001). Based on an eigenvalues >1, two components — 

explaining 57% of the variance — were retained for inclusion as 1) nuisance covariates and 

2) outcome variables in LMMs (see Fig. S4. for scree plot): 1) ‘Negative affect’- with the 

highest loadings on ‘Sad,’ ‘Negative,’ ‘Anxious,’ and ‘Lonely,’ and 2) ‘Positive affect’- with 
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the highest loadings on ‘Excited,’ ‘Happy,’ ‘Positive,’ and ‘Energized’. Item loadings on 

these components are presented as word clouds in the left-hand side of Fig. S6, and see Table 

S16 for exact component loadings. To ensure that the affect patterns identified across samples 

were present in both samples separately, we ran a PCA on each sample separately (specified 

two components for extraction) and correlated each participant’s PCA score from this 

analysis with their PCA score from the combined analysis (see Fig. S5 for scatterplots). 

Including Affect Components as Nuisance Covariates when Comparing Thought 

Patterns between 1) Samples, 2) Age Groups, and 3) Social Environments 

To examine whether the lockdown-related changes in ongoing thought identified in our 

prior analysis were independent of changes in affect, we ran an additional analysis in which 

the two affect components (positive and negative) derived from the PCA across both samples 

were included as nuisance covariates. We ran 5 LMMs — one with each thought component 

as the outcome variable — modelling the following fixed effects and their interactions: 1) 

‘sample’ (2 levels: pre- and during lockdown), 2) ‘age group’ (2 levels: younger and older) 

and 3) ‘social environment’ (3 levels: alone, around people but not interacting, around people 

and interacting). Age group mean-centered age and the two affect components (negative and 

positive) were included in all models as nuisance covariates. To account for multiple 

observations per participant, day number was nested within participant as a random intercept. 

In total, 195 participants (4850 observations) were included in these models. The alpha level 

was set to < .01 (two-tailed) to account for family-wise error emerging from conducting five 

models (i.e., .05/5). Importantly, the significant effects relating to lockdown (i.e., changes to 

future-directed problem-solving, episodic social cognition and imagery) held when we 

controlled for state affect. Differences in the results are summarized below and see Tables 

S17-S19 for ANOVA output, parameter estimates, and the variance explained by random 

effects.  

Example model formula: lmer(Thought component x ~ Sample * Age group * Social 

environment + Negative affect + Positive affect + Age group mean-centered age + 

(1|Participant/Day number)) 

With the inclusion of the two affect covariates, the main effects of age group for models 

1-3 were no longer significant (P > .05). However, it is worth noting that the effect of age 

group on levels of future-directed problem-solving still approached significance (p = .071). A 

new effect of sample (pre- vs during lockdown) emerged for pleasant engagement (p = .003), 
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with pleasant engagement significantly higher in the lockdown sample compared to 

prelockdown. Without controlling for affect, this effect approached significance (p = .067). In 

addition, the two-way interaction between age group and social environment for pleasant 

engagement no longer passed the Bonferroni-adjusted alpha level (p = .026). Pairwise 

comparisons (Bonferroni adjusted for 6 tests) indicated that the interpretation of this 

interaction also differed. Older participants reported significantly higher levels of pleasant 

engagement when alone compared to when interacting (b = 0.15, p = .013). Whereas, for 

younger participants, there was no significant difference (b = 0.06, p = .738). Without 

controlling for affect, this interaction indicated that younger individuals reported significantly 

higher levels of pleasant engagement when interacting with others compared to when alone, 

while levels of pleasant engagement did not differ significantly between social environments 

for older individuals. 

Furthermore, while the two-way interaction between sample (pre- vs during lockdown) 

and social environment for episodic social cognition remained significant (p < .001), the 

interpretation of this interaction varied slightly. In the prelockdown sample, there was no 

significant effect of social environment on levels of episodic social cognition (p > .05). 

Whereas, during lockdown, there was a significant effect of social environment (significantly 

higher when ‘interacting’ compared to when ‘alone’ or ‘around people but not interacting’). 

Without controlling for affect, this interaction indicated that although there was an effect of 

social environment in both samples, the increase in episodic social cognition between 

‘interacting’ with both ‘alone’ and ‘not interacting’ was greater in the lockdown sample. 

Therefore, in both cases, social interactions promoted a greater increase in episodic social 

cognition during lockdown than prelockdown. In addition, while it did not pass the 

Bonferroni correction of p < .01, there was also a new three-way interaction for episodic 

social cognition (p = .025). This interaction indicated that the effect of social environment on 

episodic social cognition was present for younger participants, and not older participants, in 

the lockdown sample when controlling for state affect. 

Finally, while the three-way interaction between sample, age group and social 

environment for imagery remained significant, the breakdown of this interaction changed 

such that the effect of social environment on imagery was only present for young participants 

in the lockdown sample (higher when alone compared to when interacting). Without 

controlling for affect, for younger participants, the direction of the effect of social 

environment on levels of imagery differed between samples: 1) prelockdown, younger 
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participants reported significantly less imagery when they were alone compared to when they 

were interacting with others, 2) during lockdown, younger participants reported significantly 

more imagery when they were alone compared to when they were interacting with others. In 

both cases, therefore, younger participants reported significantly higher levels of imagery 

when alone compared to when interacting during lockdown. 

Comparing State Affect between 1) Samples, 2) Age Groups, and 3) Social 

Environments 

To examine the influence that lockdown had on state affect, we performed a series of 

LMMs with each of the two affect components as the outcome measures. We modelled the 

following fixed effects and their interactions: 1) ‘sample’ (2 levels: pre- and during 

lockdown), 2) ‘age group’ (2 levels: younger and older), and 3) ‘social environment’ (3 

levels: alone, around people but not interacting, around people and interacting). Age group 

mean-centered age was included in all models as a nuisance covariate to control for age 

differences, within age groups, between the two samples. Alpha level was set to < .025 (two-

tailed) to account for family-wise error emerging from conducting two models (i.e., .05/2). 

The reported alpha levels below are unadjusted; main effects and interactions are considered 

significant only at the p < .025 level. When probing these significant main effects and 

interactions using pairwise comparisons, the alpha level was Bonferroni adjusted to account 

for the number of tests being conducted; here, the adjusted alpha levels are reported in 

parentheses. To account for multiple observations per participant, day number was nested 

within participant as a random intercept. In total, 195 participants (4926 observations) were 

included in these models. Estimates reported below are unstandardized and reflect the 

difference between each factor level and the intercept (grand mean of all conditions). These 

results are summarized in Fig. S6 (see Tables S20-S22 for ANOVA output, parameter 

estimates, and the variance explained by random effects). It is worth noting that the residual 

plots for model 1 indicated heteroskedasticity of the residuals (see Fig. S7), so these results 

should be interpreted with caution. 

Example model formula: lmer(Affect component x ~ Sample * Age group * Social 

environment + Age Group mean-centered age + (1|Participant/Day number)) 

Model 1: Negative affect  

There was a significant main effect of age group (F(1, 188) = 33.61, p < .001). Negative 

affect was higher in younger participants compared to older participants (b = 0.34, 95% CI 
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[0.23, 0.46], t(188) = 5.80, p < .001). There was also a significant interaction between age 

group and social environment (F(2, 4634) = 8.41, p < .001). Pairwise comparisons 

(Bonferroni adjusted for 6 tests) revealed that for younger participants, negative affect was 

significantly higher when alone compared to when interacting with others (b = 0.09, 95% CI 

[0.01, 0.17), t(4783) = 2.97, p = .018). Whereas, for older participants, negative affect was 

significantly lower when alone compared to when interacting with others (b = -0.12, 95% CI 

[-0.23, -0.01], t(4602) = -2.88, p = .024). 

Model 2: Positive affect 

There was a significant main effect of social environment (F(2, 4652) = 147.53, p < 

.001). Positive affect was lowest when alone (b = -0.19, 95% CI [-0.23, -0.16], t(4730) = -

11.02, p < .001) and highest when interacting with others (b = 0.29, 95% CI [0.25, 0.32], 

t(4615) = 16.32, p < .001). There was also a significant interaction between sample (pre- vs 

during lockdown) and social environment (F(2, 4653) = 5.28, p = .005). This interaction 

indicated that although positive affect was highest when interacting with others in both the 

pre- and during lockdown samples, there was a smaller increase in positive affect between 

‘interacting’ with both ‘alone’ (unadjusted, b = -0.18, 95% CI[-0.30, -0.06], t(4704) = -3.11, 

p = .002) and ‘not interacting’ (unadjusted, b = -0.15 , 95% CI[-0.28, -0.02], t(4572) = -2.23, 

p = .026) in the lockdown sample. During lockdown, therefore, social interactions promoted a 

smaller increase in positive affect than prelockdown. While it did not pass Bonferroni 

correction, there was also a three-way interaction between sample, age group, and social 

environment (F(2, 4653) = 3.12, p = .044). This interaction indicated that the difference in 

positive affect when ‘interacting’ compared to when ‘alone’ (unadjusted, b = -0.25, 95% CI [-

0.38, -0.11], t(4812) = -3.58, p < .001) and ‘not interacting’ (unadjusted, b = -0.31, 95% CI [-

0.48, -0.15], t(4647) = -3.74, p < .001) during lockdown was significantly reduced for 

younger participants only. 

Comparing Thought Patterns between 1) Samples, 2) Age groups, and 3) Social 

Environments while Restricting the Young Age Group Range to 18-27 years in Both 

Samples  

The age range of the young age group in the lockdown sample was greater than the age 

range of the young age group in the prelockdown sample. In the models reported in the main 

manuscript, we included age group mean-centred age as a nuisance covariate to account for 

these differences. However, to ensure that the lockdown-related differences observed were 
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not due to differences in age between the two samples, we also re-ran these analyses while 

limiting the young age group age range to be 18-27 years in both samples. In total, 188 

participants (4715 observations) were included in these analyses (7 participants removed). 

Removing these participants did not substantially change the results of the overall 

interpretations of the paper. See Tables S24-S26 for ANOVA output, parameter estimates, 

and the variance explained by random effects. 
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Supplementary Figures 

 

Fig. S1. Scree plot from the PCA applied to the thought data from both experience-sampling 

datasets (pre- and during lockdown) to identify common “patterns of thought” (x-axis = 

component number and y-axis = eigenvalue). Based on eigenvalues >1, five components 

were retained as outcome variables for LMM analyses. These five components accounted for 

53% of the total variance. Component 1 (future-directed problem-solving) accounted for 23% 

of variance, component 2 (pleasant engagement) accounted for 11% of variance, component 

3 (episodic social cognition) accounted for 8% of variance, component 4 (imagery) accounted 

for 6% of variance and component 5 (detailed task focus) accounted for 5% of variance. 

  



132 

 

 

Fig. S2. Scatterplots demonstrating the high correspondence between PCA solutions 

(varimax rotated) applied to 1) combined thought datasets (pre- and during lockdown) and 2) 

each thought dataset separately (specifying five components for extraction). The top panel 

shows the correlation between PCA components using both samples (x-axis) and 

prelockdown sample only (y-axis) (N observations = 3005). The bottom panel shows the 

correlation between PCA components using both samples (x-axis) and during lockdown 

sample only (y-axis) (N observations = 1865). Pearson correlation R and p-values were 

calculated using the stat_cor function as part of the ggpubr R package (Kassambara, 2020). 
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Fig. S3. A summary of the LMMs’ results comparing the prevalence of each thought pattern 

between 1) interaction type and 2) age groups in the lockdown sample. The y-axis of each 

graph shows the predicted means for each thought pattern. The x-axis shows the four 

interaction types: 1) physical interaction only, 2) virtual interaction only, 3) no interaction, 

and 4) interacting both virtually and physically (see Table S10 for how this variable was 

coded). White bars represent young participants, and gray bars represent older participants. 

Error bars represent the 95% Confidence intervals for each predicted mean. In total, 82 

participants (1865 observations) were included in this analysis. It is worth noting that the 

cells of this analysis were unbalanced, with fewer observations for interacting—particularly 

virtually—compared to not interacting at all (see Table S14 for the number of observations 

per factor level by age group), so these results should be interpreted with caution. 
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Fig. S4. Scree plot from the PCA applied to the affect data from both experience-sampling 

datasets (pre- and during lockdown) to identify common affect patterns (x-axis = component 

number and y-axis = eigenvalue). Based on eigenvalues >1, two components were retained as 

outcome variables and nuisance covariates for LMM analyses. These two components 

accounted for 57% of the total variance. Component 1 (negative affect) accounted for 41% of 

the variance, and component 2 (positive affect) accounted for 15% of the variance.  
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Fig. S5. Scatterplots demonstrating the high correspondence between PCA solutions 

(varimax rotated) applied to 1) combined affect datasets (pre- and during lockdown) and 2) 

each affect dataset separately (specifying two components for extraction). The top panel 

shows the correlation between PCA components using affect data from both samples (x-axis) 

and prelockdown sample only (y-axis) (N observations = 3061). The bottom panel shows the 

correlation between PCA components using both samples (x-axis) and during lockdown 

sample only (y-axis) (N observations = 1865). Pearson correlation R and p-values were 

calculated using the stat_cor function as part of the ggpubr R package (Kassambara, 2020). 
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Fig. S6. A summary of the LMMs’ results comparing the prevalence of each affect 

component between 1) pre- and during lockdown samples, 2) age groups and 3) social 

environments. Word clouds representing the item loadings on the two affect components 

identified in the affect data from both samples (pre- and during lockdown) using PCA are 

shown on the left-hand side (N observations = 4929). Each word represents an affect item (12 

items; see Table S15). Font size represents the magnitude of the loading, and the color 

describes the direction. Warm colors reflect positive loadings, while cool colors reflect 

negative loadings (see Table S16 for exact component loadings). The y-axis of each graph 

shows the predicted means for each affect component. The x-axis shows the social 

environment options: 1) alone, 2) around people but not interacting, and 3) around people and 

interacting. White bars represent the prelockdown sample, and gray bars represent the 

lockdown sample. Each bar graph is split by age group, with young participants on the left 

and older on the right. Error bars represent the 95% confidence intervals for each predicted 

mean. In total, 195 participants (4926 observations) were included in this analysis. 
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Fig. S7. Residual plot for LMM 1 assessing whether negative state affect significantly varied 

between 1) samples, 2) age groups, and 3) social environments, demonstrating 

heteroskedasticity of the residuals. The residuals are more varied at the positive end of fitted 

values than the negative end of fitted values. Accordingly, these results should be interpreted 

with caution.



138 

 

Supplementary Tables 

Table S1. Multidimensional experience-sampling (MDES) questions included in the PCA to identify common “patterns of thought” across both experience-sampling datasets (pre- and during lockdown). 

Dimension Wording Low High 

Task My thoughts were related to my current activity and/or external environment Not at all Completely 

Conflicting My thoughts were conflicting or interfering with what I am trying to achieve right now Not at all Completely 

Current-goals My thoughts were helpful for goals that I am trying to achieve right now Not at all Completely 

Future-goals My thoughts were helpful for goals that I am trying to achieve (or avoid) in the future Not at all Completely 

Close-others My thoughts involved other people close to me Not at all Completely 

Distant-others My thoughts involved other people NOT close to me Not at all Completely 

Self My thoughts involved myself Not at all Completely 

Future  My thoughts were about the future Not at all Completely 

Past My thoughts were about the past Not at all Completely 

Important Prelockdown: The content of my thoughts is important to me (i.e., it deals with something important in my life) 

Lockdown: I was thinking about things that are important to me  

Not at all Completely 

Controlled I was trying to control the progression of my thoughts Not at all Completely 

Wanted I wanted to have my thoughts Not at all Completely 

Evolving My thoughts tended to evolve in a series of steps Not at all Completely 

Normal My thoughts had recurrent themes similar to those that I have had before Not at all Completely 

Images My thoughts were in the form of visual images Not at all Completely 

Words My thoughts were in the form of words Not at all Completely 

Detailed My thoughts were detailed and specific Not at all Completely 

Vivid My thoughts were vivid Not at all Completely 

Positive My thoughts were....  Very negative Very positive 

Deliberate My thoughts were....  Completely spontaneous Completely deliberate 

Problem-Solving Prelockdown: To what extent are your thoughts... -Focused on solving a problem? 
Lockdown: I was thinking about solutions to problems (or goals)  

Not at all Completely 

Rehearsing-Future Prelockdown: To what extent are your thoughts... -Focused on rehearsing or simulating a future situation? 

Lockdown: I was focused on rehearsing or simulating a future situation 

Not at all Completely 

Note. The wording for ‘Important’, ‘Problem-solving’ and ‘Rehearsing-future’ differed slightly between pre- and during lockdown samples. All questions were answered on a 1 to 5 Likert scale, with the exception of 

‘Positive’ and ‘Deliberate’ in the prelockdown sample (answered on a 1 to 7 scale; see main Methods for rescaling procedure). Participants were instructed as follows: “Below are several statements which people have 

used to describe their thoughts. We're interested in the extent to which your thoughts JUST BEFORE starting this survey relate to these statements. Please read each statement and then select the option which 
best describes what you were thinking about just before taking this survey. This can be hard so don't think too much about it - go with your initial reaction.” 
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Table S2. Rotated component matrix for the PCA applied to the thought data (22 items; see Table S1) obtained from both samples (pre- and during lockdown). 

Questionnaire item Component 

  1 
(future-directed problem-solving) 

2 
(pleasant engagement) 

3 
(episodic social) 

4 
(imagery) 

5 
(detailed task focus) 

Task 0.08 0.51 -0.09 0.21 0.42 

Conflicting 0.11 -0.63 0.16 0.13 0.03 

Current-goals 0.50 0.54 0.05 0.03 0.29 

Future-goals 0.67 0.24 0.27 -0.01 0.10 

Close-others -0.11 -0.01 0.70 0.09 -0.04 

Distant-others 0.04 -0.22 -0.26 0.48 0.02 

Self 0.18 0.00 0.60 -0.03 0.01 

Future 0.53 -0.10 0.54 -0.05 -0.20 

Past -0.09 -0.38 0.27 0.39 0.11 

Important 0.29 0.10 0.63 0.15 0.15 

Controlled 0.60 -0.07 0.04 0.21 0.20 

Wanted 0.28 0.66 0.14 0.27 0.13 

Evolving 0.57 0.12 0.14 0.34 0.20 

Normal 0.18 -0.03 0.46 0.18 0.21 

Images -0.02 0.18 0.13 0.68 -0.46 

Words 0.19 -0.05 0.15 0.01 0.75 

Detailed 0.35 0.26 0.19 0.51 0.28 

Vivid 0.14 0.16 0.24 0.73 0.09 

Positive -0.01 0.70 0.18 0.05 -0.20 

Deliberate 0.53 0.37 -0.09 0.06 0.04 

Problem-solving 0.76 0.00 0.11 -0.04 0.09 

Rehearsing-future 0.58 -0.19 0.39 0.02 -0.25 

Note. Rotation Method: Varimax with Kaiser Normalization. Rotation converged in 10 iterations. Values indicate the item’s loading on each component.  
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Table S3. Type 3 Sum of Squares ANOVA table for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) samples (pre- vs during lockdown), 2) age groups (young vs older), and 3) social 
environments (alone, around people but not interacting and around people and interacting).  

 

 Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

Main effects & interactions SS DF F p SS DF F p SS DF F p SS DF F p SS DF F p 

Sample (pre- vs during 

lockdown) 

12.12 1, 191 16.19 <.001 2.33 1, 193 3.38 .067 0.05 1, 196 0.07 .797 0.05 1, 193 0.09 .764 0.00 1, 196 0.00 .984 

Age group 4.74 1, 188 6.33 .013 13.64 1, 191 19.82 <.001 4.43 1, 193 6.10 .014 0.33 1, 192 0.56 .455 0.63 1, 194 0.92 .338 

Social environment  46.94 2, 4824 31.36 <.001 7.48 2, 4823 5.43 .004 51.15 2, 4827 35.20 <.001 1.52 2, 4777 1.28 .278 0.34 2, 4808 0.25 .782 

Age group mean-centered 

age 

0.30 1, 176 0.40 .529 0.29 1, 181 0.42 .518 4.46 1, 182 6.14 .014 1.41 1, 184 2.38 .125 0.58 1, 185 0.85 .358 

Sample * Age group 0.14 1, 187 0.18 .669 2.44 1, 190 3.55 .061 0.05 1, 193 0.07 .789 0.03 1, 191 0.05 .818 0.45 1, 193 0.65 .420 

Sample * Social 
environment 

0.53 2, 4823 0.36 .701 3.02 2, 4823 2.20 .111 8.81 2, 4826 6.06 .002 2.41 2, 4777 2.02 .132 0.54 2, 4809 0.39 .677 

Age group * Social 

environment 

3.71 2, 4822 2.48 .084 7.71 2, 4823 5.60 .004 0.07 2, 4826 0.05 .956 3.81 2, 4778 3.20 .041 1.93 2, 4809 1.40 .246 

Sample * Age group * 

Social environment 

0.54 2, 4823 0.36 .699 3.21 2, 4823 2.33 .098 3.68 2, 4826 2.53 .080 6.95 2, 4778 5.85 .003 0.51 2, 4809 0.37 .692 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values <.01 are in bold. Age group mean-centered age was included as a nuisance covariate in all models. Information in this table 

obtained using anova() function as part of the lmerTest package (Kuznetsova et al., 2017).  
  



141 

 

Table S4. Unstandardized parameter estimates for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) samples (pre- vs during lockdown), 2) age groups (young vs older), and 3) social 
environments (alone, around people but not interacting, around people and interacting).  

 Future-directed problem-solving Pleasant engagement Episodic social cognition Imagery Detailed task focus 

Factor level b 95% CI t p b 95% CI t p b 95% CI t p b 95% CI t p b 95% CI t p 

(Intercept) -0.07 -0.14 – 0.01 -1.81 .070 0.08 0.00 – 0.16 1.97 .049 -0.02 -0.09 – 0.06 -0.40 .691 0.01 -0.09 – 0.11 0.19 .849 -0.02 -0.11 – 0.07 -0.46 .649 

Lockdown -0.15 -0.23 – -0.08 -4.02 <.001 0.08 -0.00 – 0.16 1.84 .066 0.01 -0.07 – 0.09 0.26 .797 0.01 -0.08 – 0.11 0.30 .764 -0.00 -0.09 – 0.09 -0.02 .984 

Younger 0.10 0.02 – 0.17 2.52 .012 -0.19 -0.27 – -0.10 -4.45 <.001 0.10 0.02 – 0.18 2.47 .014 -0.04 -0.13 – 0.06 -0.75 .454 0.04 -0.05 – 0.14 0.96 .336 

Alone 0.11 0.07 – 0.15 5.01 <.001 -0.02 -0.06 – 0.02 -1.07 .286 -0.08 -0.12 – -0.03 -3.52 <.001 -0.03 -0.07 – 0.01 -1.46 .146 0.01 -0.03 – 0.06 0.65 .513 

Interacting -0.17 -0.21 – -0.12 -7.52 <.001 0.07 0.03 – 0.11 3.29 .001 0.19 0.14 – 0.23 8.37 <.001 0.02 -0.02 – 0.06 1.15 .249 -0.01 -0.05 – 0.03 -0.47 .636 

Age group mean-centered age 0.00 -0.01 – 0.02 0.63 .528 0.01 -0.01 – 0.02 0.65 .518 -0.02 -0.03 – -0.00 -2.48 .013 -0.02 -0.03 – 0.00 -1.54 .123 -0.01 -0.03 – 0.01 -0.92 .357 

Lockdown * Younger -0.02 -0.10 – 0.06 -0.43 .668 0.08 -0.00 – 0.17 1.88 .060 0.01 -0.07 – 0.09 0.27 .788 0.01 -0.09 – 0.11 0.23 .818 -0.04 -0.14 – 0.06 -0.81 .419 

Lockdown * Alone -0.01 -0.05 – 0.04 -0.27 .789 0.03 -0.01 – 0.07 1.54 .125 -0.06 -0.10 – -0.01 -2.51 .012 0.02 -0.02 – 0.06 0.86 .389 0.01 -0.03 – 0.05 0.40 .692 

Lockdown * Interacting 0.02 -0.03 – 0.06 0.84 .400 -0.04 -0.08 – 0.00 -1.89 .059 0.07 0.03 – 0.11 3.16 .002 -0.04 -0.08 – -0.00 -2.01 .045 0.01 -0.03 – 0.05 0.59 .555 

Younger * Alone -0.02 -0.06 – 0.02 -0.93 .355 -0.04 -0.08 – 0.00 -1.73 .083 -0.00 -0.05 – 0.04 -0.12 .907 0.05 0.01 – 0.09 2.30 .022 -0.04 -0.08 – 0.01 -1.67 .095 

Younger * Interacting 0.05 0.01 – 0.09 2.22 .026 0.07 0.03 – 0.11 3.30 .001 -0.00 -0.05 – 0.04 -0.22 .830 -0.04 -0.08 – 0.00 -1.83 .067 0.02 -0.03 – 0.06 0.74 .460 

Lockdown * Younger * 

Alone 

-0.02 -0.06 – 0.03 -0.81 .416 -0.04 -0.08 – 0.00 -1.90 .058 -0.05 -0.09 – -0.01 -2.25 .024 0.07 0.03 – 0.11 3.34 .001 0.01 -0.03 – 0.05 0.57 .566 

Lockdown * Younger * 
Interacting 

0.01 -0.03 – 0.06 0.51 .610 -0.01 -0.05 – 0.04 -0.28 .783 0.02 -0.03 – 0.06 0.79 .428 -0.04 -0.08 – 0.00 -1.92 .055 0.01 -0.03 – 0.05 0.38 .701 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model and each estimate (b) reflects the difference between the factor level and the intercept. P-values 
<.05 are in bold. Information in this table obtained using summary() function as part of the lmerTest package (Kuznetsova et al., 2017).  
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Table S5. A summary of the variance explained by random effects for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) samples (pre- vs during lockdown), 2) age groups (young vs 
older), and 3) social environments (alone, around people but not interacting, around people and interacting). 

  Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

σ2 0.75 0.69 0.73 0.59 0.69 

τ00 0.05 DAY: IDNO 0.03 DAY: IDNO 0.05 DAY: IDNO 0.07 DAY: IDNO 0.03 DAY: IDNO 
 

0.17 IDNO 0.22 IDNO 0.19 IDNO 0.33 IDNO 0.28 IDNO 

N 10 DAY 10 DAY 10 DAY 10 DAY 10 DAY 
 

195 IDNO 195 IDNO 195 IDNO 195 IDNO 195 IDNO 

Observations 4870 4870 4870 4870 4870 

Note. σ2 = population variance, τ00 = random intercept variance. IDNO = participant identifier, DAY = day number. Information in this table obtained using summary() function as part of the lmerTest package 
(Kuznetsova et al., 2017). 
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Table S6. Number of observations per higher-order activity category split by age group in the lockdown sample. 

Age group Activity category 

 Working Social interactions Media consumption Leisure activities Essential tasks 

Younger 186 82 380 228 326 

Older 26 70 169 147 163 
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Table S7. Type 3 Sum of Squares ANOVA tables for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) current activities (work, leisure, social, media, and essentials) and 2) age groups 
(young vs older) in the lockdown sample. 

 Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

Main effects & interactions SS DF F p SS DF F p SS DF F p SS DF F p SS DF F p 

Activity 78.00 4, 1712 33.67 <.001 45.37 4, 1699 18.93 <.001 62.93 4, 1718 25.58 <.001 15.17 4, 1690 6.52 <.001 31.30 4, 1713 13.39 <.001 

Age Group 0.45 1, 83 0.77 .383 1.77 1, 81 2.96 .089 1.03 1, 87 1.67 .200 0.05 1, 80 0.08 .778 0.47 1, 86 0.80 .373 

Activity * Age Group 5.88 4, 1712 2.54 .038 13.69 4, 1699 5.71 <.001 2.08 4, 1718 0.85 .497 3.88 4, 1690 1.67 .155 11.80 4, 1713 5.04 <.001 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values <.01 are in bold. Information in this table obtained using anova() function as part of the lmerTest package (Kuznetsova et al., 

2017).  
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Table S8. Unstandardized parameter estimates for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) current activities (work, leisure, social, media and essentials) and 2) age groups 
(young vs older) in the lockdown sample. 

 Future-directed problem-solving Pleasant engagement Episodic social cognition Imagery Detailed task focus 

Factor 
level 

b 95% CI t p b 95% CI t p b 95% CI t p b 95% CI t p b 95% CI t p 

(Intercept) -0.12 -0.25 – 0.01 -1.86 .063 0.19 0.03 – 0.34 2.40 .017 -0.01 -0.13 – 0.11 -0.11 .914 -0.00 -0.16 – 0.16 -0.01 .990 0.05 -0.07 – 0.18 0.85 .394 

Working 0.62 0.48 – 0.77 8.62 <.001 0.13 -0.01 – 0.27 1.76 .078 -0.35 -0.50 – -0.20 -4.68 <.001 -0.12 -0.26 – 0.03 -1.59 .113 0.39 0.25 – 0.53 5.44 <.001 

Leisure 0.06 -0.03 – 0.14 1.34 .181 0.27 0.19 – 0.36 6.36 <.001 0.00 -0.08 – 0.09 0.04 .969 0.06 -0.03 – 0.14 1.38 .168 -0.19 -0.27 – -0.11 -4.48 <.001 

Social -0.10 -0.21 – 0.02 -1.67 .094 -0.12 -0.23 – -0.00 -2.02 .043 0.52 0.40 – 0.64 8.72 <.001 -0.02 -0.14 – 0.09 -0.37 .714 0.13 0.02 – 0.24 2.30 .021 

Media -0.36 -0.44 – -0.28 -8.92 <.001 -0.21 -0.29 – -0.13 -5.14 <.001 -0.23 -0.31 – -0.14 -5.42 <.001 0.17 0.09 – 0.26 4.21 <.001 -0.17 -0.25 – -0.09 -4.23 <.001 

Younger 0.06 -0.07 – 0.18 0.88 .381 -0.13 -0.28 – 0.02 -1.72 .086 0.08 -0.04 – 0.20 1.29 .197 -0.02 -0.18 – 0.14 -0.28 .777 -0.06 -0.18 – 0.07 -0.89 .371 

Working * 
Younger 

0.03 -0.11 – 0.17 0.43 .665 -0.26 -0.40 – -0.11 -3.52 <.001 0.04 -0.11 – 0.18 0.48 .632 0.08 -0.07 – 0.22 1.01 .315 0.04 -0.10 – 0.18 0.60 .549 

Leisure * 
Younger 

-0.05 -0.14 – 0.03 -1.24 .215 0.00 -0.08 – 0.09 0.06 .953 0.05 -0.03 – 0.14 1.19 .234 -0.02 -0.11 – 0.06 -0.51 .608 0.15 0.06 – 0.23 3.47 .001 

Social * 

Younger 

-0.09 -0.20 – 0.03 -1.50 .134 0.14 0.02 – 0.25 2.35 .019 -0.01 -0.13 – 0.11 -0.14 .891 -0.04 -0.16 – 0.08 -0.65 .513 -0.18 -0.30 – -0.07 -3.18 .001 

Media * 

Younger 

0.11 0.03 – 0.19 2.63 .009 0.14 0.06 – 0.22 3.36 .001 -0.05 -0.13 – 0.04 -1.09 .276 -0.07 -0.15 – 0.01 -1.76 .078 -0.03 -0.11 – 0.04 -0.85 .398 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model and each estimate (b) reflects the difference between the factor level and the intercept. P-values 
<.05 are in bold. Information in this table obtained using summary() function as part of the lmerTest package (Kuznetsova et al., 2017).  
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Table S9. A summary of the variance explained by random effects for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) current activities (work, leisure, social, media and essentials) 
and 2) age groups (young vs older) in the lockdown sample. 

  Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

σ2 0.58 0.60 0.62 0.58 0.58 

τ00 0.04 DAY: IDNO 0.03 DAY: IDNO 0.04 DAY: IDNO 0.07 DAY: IDNO 0.01 DAY: IDNO 
 

0.22 IDNO 0.33 IDNO 0.18 IDNO 0.36 IDNO 0.20 IDNO 

N 7 DAY 7 DAY 7 DAY 7 DAY 7 DAY 
 

81 IDNO 81 IDNO 81 IDNO 81 IDNO 81 IDNO 

Observations 1777 1777 1777 1777 1777 

Note. σ2 = population variance, τ00 = random intercept variance. IDNO = participant identifier, DAY = day number. Information in this table obtained using summary() function as part of the lmerTest package 
(Kuznetsova et al., 2017). 
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Table S10. Demonstration of how the ‘interaction type’ variable was coded for the LMMs examining whether each thought pattern varied significantly between 1) interaction type and 2) age groups in the lockdown 
sample. 

Original variables Recoded variable 

Physical social environment Virtual social environment Interaction type 

Alone Alone No interaction 

Around people but NOT interacting Around people but NOT interacting No interaction 

Alone Around people but NOT interacting No interaction 

Around people but NOT interacting Alone No interaction 

Alone Around people and interacting with them Virtual interaction 

Around people but NOT interacting Around people and interacting with them Virtual interaction 

Around people and interacting with them Alone Physical interaction 

Around people and interacting with them Around people but NOT interacting Physical interaction 

Around people and interacting with them Around people and interacting with them Interaction both 

 

  



148 

 

Table S11. Type 3 Sum of Squares ANOVA table for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) interaction type (physical interaction, virtual interaction, no interaction, and 
interaction both) and 2) age group (younger vs older) in the lockdown sample. 

 Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

Main effects & interactions SS DF F p SS DF F p SS DF F p SS DF F p SS DF F p 

Interaction type 20.31 3, 1830 10.39 <.001 0.65 3, 1822 0.35 .792 54.34 3, 1834 29.05 <.001 4.57 3, 1795 2.62 .049 10.95 3, 1835 6.10 <.001 

Age group 1.31 1, 85 2.01 .160 0.63 1, 84 1.01 .319 0.10 1, 89 0.16 .694 0.45 1, 82 0.78 .380 0.40 1, 89 0.66 .418 

Interaction type * Age group 3.75 3, 1830 1.92 .125 3.45 3, 1822 1.83 .140 2.86 3, 1834 1.53 .205 4.93 3, 1795 2.83  .037 7.70 3, 1835 4.29 .005 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values <.01 are in bold. Information in this table obtained using anova() function as part of the lmerTest package (Kuznetsova et al., 
2017).  
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Table S12. Unstandardized parameter estimates for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) interaction type (physical interaction, virtual interaction, no interaction, and 
interaction both) and 2) age group (younger vs older) in the lockdown sample. 

 Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

Factor levels b 95% CI t p b 95% CI t p b 95% CI t p b 95% CI t p b 95% CI t p 

(Intercept) -0.21 -0.34 – -0.08 -3.06 .002 0.18 0.03 – 0.32 2.38 .017 0.11 -0.01 – 0.22 1.84 .066 0.05 -0.11 – 0.21 0.61 .545 0.02 -0.10 – 0.15 0.39 .693 

Physical 

interaction 

-0.22 -0.31 – -0.13 -4.86 <.001 0.01 -0.08 – 0.09 0.16 .873 0.13 0.04 – 0.21 2.84 .004 -0.10 -0.19 – -0.02 -2.31 .021 -0.00 -0.09 – 0.08 -0.11 .915 

Virtual 
interaction 

0.20 0.09 – 0.30 3.73 <.001 0.02 -0.08 – 0.12 0.34 .732 0.05 -0.05 – 0.15 0.93 .354 0.09 -0.01 – 0.19 1.75 .080 0.18 0.09 – 0.28 3.69 <.001 

No interaction 0.06 -0.01 – 0.13 1.66 .097 -0.04 -0.10 – 0.03 -1.00 .317 -0.32 -0.39 – -0.25 -9.09 <.001 -0.04 -0.11 – 0.02 -1.29 .197 -0.09 -0.16 – -0.02 -2.64 .008 

Younger 0.10 -0.04 – 0.23 1.42 .156 -0.07 -0.22 – 0.07 -1.00 .316 0.02 -0.09 – 0.14 0.39 .693 -0.07 -0.23 – 0.09 -0.88 .378 -0.05 -0.17 – 0.07 -0.81 .416 

Physical 

interaction * 
Younger 

0.10 0.01 – 0.19 2.14 .033 0.04 -0.05 – 0.13 0.84 .399 0.08 -0.01 – 0.17 1.80 .072 -0.04 -0.12 – 0.05 -0.80 .426 0.03 -0.05 – 0.12 0.78 .435 

Virtual 
interaction * 

Younger 

-0.08 -0.18 – 0.03 -1.48 .139 -0.02 -0.12 – 0.09 -0.29 .769 -0.07 -0.18 – 0.03 -1.45 .147 0.03 -0.07 – 0.13 0.66 .509 -0.17 -0.27 – -0.07 -3.42 .001 

No interaction 

* Younger 

-0.03 -0.10 – 0.04 -0.78 .438 -0.08 -0.15 – -0.01 -2.18 .029 0.03 -0.04 – 0.10 0.86 .390 0.09 0.02 – 0.16 2.62 .009 0.06 -0.01 – 0.13 1.73 .084 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model and each estimate (b) reflects the difference between the factor level and the intercept. P-values 
<.05 are in bold. Information in this table obtained using summary() function as part of the lmerTest package (Kuznetsova et al., 2017).  
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Table S13. A summary of the variance explained by random effects for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) interaction type (physical interaction, virtual interaction, no 
interaction, and interaction both) and 2) age group (younger vs older) in the lockdown sample. 

  Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

σ2 0.65 0.63 0.62 0.58 0.60 

τ00 0.04 DAY: IDNO 0.04 DAY: IDNO 0.05 DAY: IDNO 0.07 DAY: IDNO 0.03 DAY: IDNO 
 

0.24 IDNO 0.30 IDNO 0.16 IDNO 0.36 IDNO 0.20 IDNO 

N 7 DAY 7 DAY 7 DAY 7 DAY 7 DAY 
 

82 IDNO 82 IDNO 82 IDNO 82 IDNO 82 IDNO 

Observations 1865 1865 1865 1865 1865 

Note. σ2 = population variance, τ00 = random intercept variance. IDNO = participant identifier, DAY = day number. Information in this table obtained using summary() function as part of the lmerTest package 
(Kuznetsova et al., 2017). 
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Table S14. Number of observations for each level of the variable ‘interaction type’ by levels of age group. 

Age group Interaction type 

 Physical interaction Virtual interaction Interaction both No interaction 

Younger 224 141 86 805 

Older 125 71 73 340 
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Table S15. All 12 affect items presented to participants in both samples included in the PCA to identify common patterns of affect.   

Affect item Low High 

Positive Not at all  Extremely  

Calm Not at all  Extremely  

Happy Not at all  Extremely  

Fatigued Not at all  Extremely  

Excited Not at all  Extremely  

Lonely Not at all  Extremely  

Anxious Not at all  Extremely  

Energized Not at all  Extremely  

Negative Not at all  Extremely  

Sad Not at all  Extremely  

Connected with other people Not at all  Extremely  

Bored Not at all  Extremely  

Note. Participants were instructed as follows: “Below are a list of different types of emotions and feelings. For each emotion or feeling, 

please select the option which best describes how you were feeling just before taking this survey.” All questions were answered on a 1-5 
Likert scale.  
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Table S16. Rotated component matrix for the PCA applied to the affect data (12 items; see Table S15) obtained from both samples (pre- and 
during lockdown). 

Questionnaire items Components 

 1 

(negative) 

 2 

(positive) 

Positive -0.37 0.79 

Negative 0.80 -0.23 

Happy -0.36 0.79 

Sad 0.80 -0.13 

Anxious 0.78 -0.10 

Calm -0.43 0.46 

Excited 0.00 0.79 

Bored 0.58 -0.12 

Energized -0.17 0.76 

Fatigued 0.59 -0.19 

Connected -0.04 0.65 

Lonely 0.73 -0.11 

Note. Rotation Method: Varimax with Kaiser Normalization. Rotation converged in 3 iterations. Values indicate the item’s loading on each 
component. 
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Table S17. Type 3 Sum of Squares ANOVA table for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) samples (pre- vs during lockdown), 2) age groups (young vs older), and 3) 
social environments (alone, around people but not interacting and around people and interacting) while including negative and positive affect components as nuisance covariates to control for state affect. 

 Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

Main effects & Interactions SS DF F p SS DF F p SS DF F p SS DF F p SS DF F p 

Sample 14.22 1, 190 18.98 <.001 4.50 1, 194 8.92 .003 0.02 1, 196 0.04 .851 0.02 1, 191 0.03 .871 0.03 1, 195 0.04 .840 

Age group 2.47 1, 196 3.30 .071 0.43 1, 198 0.84 .359 0.55 1, 202 0.82 .366 0.99 1, 195 1.69 .195 0.00 1, 198 0.01 .945 

Social environment 50.67 2, 4790 33.80 <.001 5.71 2, 4797 5.67 .003 12.59 2, 4789 9.37 <.001 0.90 2, 4771 0.76 .467 0.18 2, 4779 0.13 .875 

Negative affect 15.91 1, 3070 21.23 <.001 440.07 1, 3731 872.99 <.001 74.52 1, 3084 110.95 <.001 7.38 1, 4290 12.55 <.001 30.89 1, 4124 45.58 <.001 

Positive affect 6.95 1, 3837 9.27 .002 380.81 1, 4250 755.43 <.001 281.02 1, 3844 418.38 <.001 60.99 1, 4603 103.80 <.001 11.97 1, 4426 17.67 <.001 

Age group mean-centered 

age 

0.59 1, 175 0.79 .377 0.70 1, 182 1.40 .239 1.62 1, 181 2.42 .122 0.90 1, 181 1.54 .216 0.55 1, 185 0.81 .368 

Sample * Age group 0.13 1, 187 0.17 .678 1.93 1, 191 3.83 .052 0.07 1, 193 0.10 .750 0.03 1, 188 0.06 .811 0.38 1, 192 0.55 .458 

Sample * Social 
environment 

0.53 2, 4796 0.35 .705 0.57 2, 4801 0.56 .569 14.01 2, 4796 10.43 <.001 1.37 2, 4769 1.16 .312 0.42 2, 4782 0.31 .734 

Age group * Social 

environment 

4.15 2, 4796 2.77 .063 3.68 2, 4802 3.65 .026 0.38 2, 4796 0.28 .756 3.14 2, 4769 2.67 .069 2.95 2, 4783 2.18 .113 

Sample * Age group * 

Social environment 

0.79 2, 4795 0.53 .589 2.08 2, 4801 2.07 .127 4.95 2, 4795 3.69 .025 6.53 2, 4771 5.55 .004 0.23 2, 4782 0.17 .846 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values <.01 are in bold. Age group mean-centered age was included as a nuisance covariate in all models. Information in this table 

obtained using anova() function as part of the lmerTest package (Kuznetsova et al., 2017). 
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Table S18. Unstandardized parameter estimates for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) samples (pre- vs during- lockdown), 2) age groups (younger vs older), and 3) 
social environments (alone, around people but not interacting, around people and interacting) while including negative and positive affect components as nuisance covariates to control for state affect. 

 

  Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

Factor levels & continuous 
predictors 

b 95% CI t p b 95% CI t p b 95% CI t p b 95% CI t p b 95% CI t p 

(Intercept) -0.06 -0.14 – 0.01 -1.76 .078 0.02 -0.05 – 0.09 0.60 .548 -0.02 -0.08 – 0.05 -0.45 .652 0.01 -0.08 – 0.10 0.13 .897 -0.01 -0.10 – 0.08 -0.15 .884 

Lockdown -0.16 -0.23 – -0.09 -4.36 <.001 0.11 0.04 – 0.17 2.99 .003 -0.01 -0.07 – 0.06 -0.19 .850 0.01 -0.08 – 0.10 0.16 .871 -0.01 -0.10 – 0.08 -0.20 .840 

Younger 0.07 -0.01 – 0.14 1.82 .070 -0.03 -0.10 – 0.04 -0.92 .358 0.03 -0.04 – 0.10 0.91 .365 -0.06 -0.15 – 0.03 -1.30 .193 0.00 -0.09 – 0.10 0.07 .945 

Alone 0.12 0.07 – 0.16 5.25 <.001 0.05 0.02 – 0.09 2.94 .003 -0.01 -0.06 – 0.03 -0.69 .492 0.00 -0.04 – 0.04 0.04 .964 0.00 -0.04 – 0.04 0.01 .992 

Interacting -0.18 -0.23 – -0.14 -7.85 <.001 -0.05 -0.09 – -0.01 -2.64 .008 0.09 0.05 – 0.13 4.22 <.001 -0.02 -0.07 – 0.02 -1.16 .248 0.01 -0.03 – 0.05 0.47 .636 

Negative affect 0.09 0.05 – 0.12 4.61 <.001 -0.46 -0.49 – -0.43 -29.55 <.001 0.19 0.15 – 0.22 10.53 <.001 0.06 0.03 – 0.10 3.54 <.001 0.12 0.09 – 0.16 6.75 <.001 

Positive affect 0.05 0.02 – 0.09 3.05 .002 0.39 0.37 – 0.42 27.49 <.001 0.33 0.30 – 0.36 20.45 <.001 0.16 0.13 – 0.20 10.19 <.001 -0.07 -0.10 – -0.04 -4.20 <.001 

Age group mean-centered age 0.01 -0.01 – 0.02 0.89 .375 0.01 -0.01 – 0.02 1.18 .237 -0.01 -0.02 – 0.00 -1.55 .120 -0.01 -0.03 – 0.01 -1.24 .215 -0.01 -0.03 – 0.01 -0.90 .367 

Lockdown * Younger -0.02 -0.09 – 0.06 -0.42 .677 0.07 -0.00 – 0.15 1.96 .050 0.01 -0.06 – 0.08 0.32 .750 0.01 -0.08 – 0.11 0.24 .811 -0.04 -0.13 – 0.06 -0.74 .457 

Lockdown * Alone -0.01 -0.05 – 0.04 -0.28 .777 0.02 -0.02 – 0.06 1.06 .288 -0.07 -0.11 – -0.03 -3.29 .001 0.01 -0.03 – 0.05 0.66 .511 0.01 -0.03 – 0.05 0.57 .568 

Lockdown * Interacting 0.02 -0.03 – 0.06 0.84 .403 -0.01 -0.04 – 0.03 -0.36 .719 0.09 0.05 – 0.13 4.13 <.001 -0.03 -0.07 – 0.01 -1.52 .128 0.01 -0.04 – 0.05 0.29 .768 

Younger * Alone -0.02 -0.07 – 0.02 -1.07 .286 -0.00 -0.04 – 0.03 -0.10 .922 -0.02 -0.06 – 0.03 -0.75 .455 0.04 0.00 – 0.08 2.17 .030 -0.04 -0.09 – -0.00 -2.06 .039 

Younger * Interacting 0.05 0.01 – 0.10 2.34 .019 0.05 0.01 – 0.08 2.55 .011 0.01 -0.04 – 0.05 0.27 .791 -0.03 -0.07 – 0.01 -1.54 .123 0.02 -0.02 – 0.06 1.07 .286 

Lockdown * Younger * Alone -0.02 -0.07 – 0.02 -0.99 .325 -0.04 -0.07 – -0.00 -2.02 .044 -0.06 -0.10 – -0.01 -2.66 .008 0.07 0.03 – 0.11 3.28 .001 0.01 -0.03 – 0.05 0.47 .638 

Lockdown * Younger * 

Interacting 

0.01 -0.03 – 0.06 0.63 .528 0.02 -0.02 – 0.05 0.97 .334 0.03 -0.01 – 0.07 1.45 .148 -0.04 -0.08 – 0.00 -1.74 .082 0.00 -0.04 – 0.04 0.14 .888 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model and each estimate (b) reflects the difference between the factor level and the intercept. P-values 

<.05 are in bold. Information in this table obtained using summary() function as part of the lmerTest package (Kuznetsova et al., 2017). 
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Table S19. A summary of the variance explained by random effects for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) samples (pre- vs during- lockdown), 2) age groups (younger 
vs older), and 3) social environments (alone, around people but not interacting, around people and interacting) while including negative and positive affect components as nuisance covariates to control for state affect. 

 Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

σ2 0.75 0.50 0.67 0.59 0.68 

τ00 0.04 DAY: IDNO 0.03 DAY: IDNO 0.04 DAY: IDNO 0.07 DAY: IDNO 0.03 DAY: IDNO 
 

0.16 IDNO 0.16 IDNO 0.14 IDNO 0.28 IDNO 0.29 IDNO 

N 10 DAY 10 DAY 10 DAY 10 DAY 10 DAY 
 

195 IDNO 195 IDNO 195 IDNO 195 IDNO 195 IDNO 

Observations 4850 4850 4850 4850 4850 

Note. σ2 = population variance, τ00 = random intercept variance, IDNO = participant identifier, DAY = day number. Information in this table obtained using summary() function as part of the lmerTest package 

(Kuznetsova et al., 2017). 
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Table S20. Type 3 Sum of Squares ANOVA table for LMMs 1-5 assessing whether each affect component varied significantly between 1) 
samples (pre- vs during lockdown), 2) age groups (young vs older), and 3) social environments (alone, around people but not interacting and 
around people and interacting). 

 Negative Affect Positive Affect 

Main effects & interactions SS DF F p SS DF F p 

Sample 0.65 1, 189 1.96 .163 0.02 1, 185 0.04 .848 

Age group 11.16 1, 188 33.62 <.001 0.02 1, 184 0.05 .817 

Social environment 0.25 2, 4634 0.38 .683 123.10 2, 4652 147.53 <.001 

Age-Group mean centered age 0.40 1, 184 1.20 .276 1.36 1, 179 3.27 .072 

Sample * Age group 0.00 1, 188 0.00 .991 0.05 1, 184 0.11 .738 

Sample * Social environment 0.38 2, 4634 0.58 .561 4.41 2, 4653 5.28 .005 

Age group * Social environment 5.58 2, 4634 8.41 <.001 0.01 2, 4653 0.01 .990 

Sample * Age group * Social environment 1.40 2, 4634 2.10 .122 2.60 2, 4653 3.12 .044 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values <.01 are in bold. Age group mean-centered age 

was included as a nuisance covariate in all models. Information in this table obtained using anova() function as part of the lmerTest package 

(Kuznetsova et al., 2017).  
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Table S21. Unstandardized parameter estimates for LMMs 1-5 assessing whether each affect component varied significantly between 1) 
samples (pre- vs during lockdown), 2) age groups (young vs older), and 3) social environments (alone, around people but not interacting, 
around people and interacting). 

  Negative Affect Positive Affect 

Factor level b 95% CI t p b 95% CI t p 

(Intercept) -0.07 -0.19 – 0.04 -1.26 .208 0.07 -0.04 – 0.17 1.20 .231 

Lockdown 0.08 -0.03 – 0.20 1.40 .161 0.01 -0.10 – 0.12 0.19 .848 

Younger 0.34 0.23 – 0.46 5.80 <.001 0.01 -0.10 – 0.12 0.23 .816 

Alone -0.01 -0.04 – 0.02 -0.84 .400 -0.19 -0.23 – -0.16 -11.02 <.001 

Interacting 0.00 -0.03 – 0.03 0.09 .925 0.29 0.25 – 0.32 16.32 <.001 

Age group mean-centered age -0.01 -0.04 – 0.01 -1.09 .274 -0.02 -0.04 – 0.00 -1.81 .071 

Lockdown * Younger -0.00 -0.12 – 0.12 -0.01 .991 0.02 -0.09 – 0.13 0.33 .738 

Lockdown * Alone -0.01 -0.04 – 0.02 -0.47 .637 0.04 0.00 – 0.07 2.04 .041 

Lockdown * Interacting 0.02 -0.01 – 0.05 1.07 .284 -0.05 -0.09 – -0.02 -3.11 .002 

Younger * Alone 0.06 0.03 – 0.09 3.63 <.001 -0.00 -0.04 – 0.03 -0.10 .919 

Younger * Interacting -0.05 -0.08 – -0.02 -3.12 .002 -0.00 -0.04 – 0.03 -0.05 .959 

Lockdown * Younger * Alone 0.00 -0.03 – 0.04 0.29 .770 -0.01 -0.04 – 0.03 -0.32 .750 

Lockdown * Younger * Interacting 0.03 -0.00 – 0.06 1.78 .076 -0.04 -0.07 – -0.00 -2.18 .029 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model and each estimate (b) 

reflects the difference between the factor level and the intercept. P-values <.05 are in bold. Information in this table obtained using 

summary() function as part of the lmerTest package (Kuznetsova et al., 2017).  
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Table S22. A summary of the variance explained by random effects for LMMs 1-5 assessing whether each affect component varied 
significantly between 1) samples (pre- vs during lockdown), 2) age groups (young vs older), and 3) social environments (alone, around 
people but not interacting, around people and interacting). 

 Negative Affect Positive Affect 

σ2 0.33 0.42 

τ00 0.09 DAY: IDNO 0.11 DAY: IDNO 

 
0.50 IDNO 0.42 IDNO 

N 10 DAY 10 DAY 

 
195 IDNO 195 IDNO 

Observations 4926 4926 

Note. σ2 = population variance, τ00 = random intercept variance. IDNO = participant identifier, DAY = day number. Information in this table 

obtained using summary() function as part of the lmerTest package (Kuznetsova et al., 2017).  
 

  



160 

 

Table S23. Additional experience-sampling questions (beyond those assessing thoughts and affect) reported in the main manuscript. 

Measure name Question phrasing Sample Possible responses 

Social 

environment 

“Were you alone or with other people 

(physically and not virtually) just before taking 

this survey?” 

Both (pre- and 

during lockdown) 

“Alone”, “Around people but not interacting”, 

“Around people and interacting” 

 

Virtual social 
environment 

“Virtually, were you alone or with other 
people just before taking this survey? 

Interacting = direct communication with 

another person/people by text, instant 
messaging, calling, or video calling etc.   

Around but not interacting = reading messages 

but not replying, being on a video call but not 
talking/participating etc.”  

During lockdown 
only 

“Alone”, “Around people but not interacting”, 
“Around people and interacting” 

Location “WHERE were you just before taking this 

survey?” 

During lockdown 

only 

“Inside at home”, “Inside at workplace”, 

“Inside shop”, “Outside in nature”, “Outside 

in town/city”, “Outside (other)”, “Inside 
(other)” 

Activity “What were you DOING just before taking 
this survey? 

If you were doing more than one thing, please 

select your PRIMARY activity…” 

During lockdown 
only 

"Caring for an adult(s)", "Childcare", 
"Cooking", "Eating and/or drinking", 

"Exercising", "Getting ready for bed", 

"Getting ready for the day", "Household 
chores", "Leisure: arts and crafts", "Leisure: 

gardening", "Leisure: listening to music", 

"Leisure: listening to radio/podcast", "Leisure: 
other", "Leisure: playing a game", "Leisure: 

reading for pleasure", "Leisure: watching 

TV/film", "Reading/listening to/watching the 
news", "Shopping", "Sleeping", "Social 

media", "Talking/conversation (in person)", 

"Talking/conversation (virtually)", 
"Working", "Other" 

Note. At the beginning of the survey, participants were told: “This survey will ask you what you were thinking, feeling, and doing JUST 
BEFORE you were signalled via text to complete this survey. There are no right or wrong answers. Please answer as honestly as possible 

and don't spend too long on each question. This survey should take no longer than 3-4 minutes to complete.” 
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Table S24. Type 3 Sum of Squares ANOVA table for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) samples (pre- vs during lockdown), 2) age groups (young vs older), and 3) 
social environments (alone, around people but not interacting and around people and interacting) while limiting age range of young age group to 18-27 in both samples (N= 188). 

 Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

Main effects and 

interactions 

SS DF F p SS DF F p SS DF F p SS DF F p SS DF F p 

Sample 11.69 1, 186 15.43 <.001 2.59 1, 189 3.74 .055 0.12 1, 191 0.17 .685 0.08 1, 187 0.14 .711 0.01 1, 190 0.01 .925 

Age group 4.72 1, 184 6.23 .013 12.90 1, 187 18.63 <.001 4.86 1, 189 6.67 .011 0.29 1, 186 0.48 .491 0.54 1, 189 0.78 .379 

Social environment 49.16 2, 4670 32.45 <.001 7.61 2, 4670 5.50 .004 46.72 2, 4674 32.10 <.001 0.79 2, 4626 0.66 .518 0.63 2, 4658 0.46 .634 

Age group mean-centered 

age 

0.06 1, 169 0.09 .771 0.50 1, 174 0.73 .395 3.68 1, 174 5.05 .026 0.82 1, 177 1.37 .244 0.60 1, 177 0.88 .351 

Sample * Age group 0.09 1, 182 0.11 .737 2.55 1, 185 3.69 .056 0.12 1, 187 0.17 .683 0.03 1, 185 0.05 .818 0.50 1, 187 0.72 .396 

Sample: * Social 

environment 

0.15 2, 4670 0.10 .904 2.44 2, 4670 1.76 .171 8.46 2, 4674 5.81 .003 3.53 2, 4626 2.96 .052 0.94 2, 4658 0.68 .506 

Age group * Social 

environment 

2.36 2, 4670 1.56 .211 8.08 2, 4670 5.84 .003 0.39 2, 4674 0.27 .765 5.13 2, 4626 4.30 .014 1.28 2, 4658 0.93 .395 

Sample * Age group * 

Social environment 

0.72 2, 4670 0.48 .622 3.55 2, 4670 2.57 .077 4.68 2, 4674 3.22 .040 8.42 2, 4626 7.05 .001 0.95 2, 4658 0.69 .502 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values <.01 are in bold. Age group mean-centered age was included as a nuisance covariate in all models. Information in this table 

obtained using anova() function as part of the lmerTest package (Kuznetsova et al., 2017).  
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Table S25. Unstandardized parameter estimates for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) samples (pre- vs during lockdown), 2) age groups (young vs older) and 3) social 
environments (alone, around people but not interacting, around people and interacting) while limiting age range of young age group to 18-27 in both samples (N = 188). 

  Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

Factor level b 95% CI t p b 95% CI t p b 95% CI t p b 95% CI t p b 95% CI t p 

(Intercept) -0.07 -0.15 – 0.01 -1.79 .073 0.09 0.01 – 0.17 2.08 .037 -0.01 -0.09 – 0.07 -0.23 .817 0.01 -0.08 – 0.11 0.30 .766 -0.02 -0.12 – 0.07 -0.53 .595 

Lockdown -0.15 -0.23 – -0.08 -3.93 <.001 0.08 -0.00 – 0.16 1.93 .053 0.02 -0.06 – 0.09 0.41 .685 0.02 -0.08 – 0.12 0.37 .711 -0.00 -0.10 – 0.09 -0.09 .925 

Younger 0.10 0.02 – 0.17 2.50 .013 -0.18 -0.26 – -0.10 -4.32 <.001 0.10 0.03 – 0.18 2.58 .010 -0.03 -0.13 – 0.06 -0.69 .490 0.04 -0.05 – 0.13 0.88 .377 

Alone 0.11 0.06 – 0.15 4.77 <.001 -0.03 -0.07 – 0.02 -1.26 .209 -0.08 -0.13 – -0.04 -3.77 <.001 -0.02 -0.06 – 0.02 -1.11 .267 0.02 -0.02 – 0.06 0.95 .341 

Interacting -0.18 -0.23 – -0.13 -7.74 <.001 0.07 0.03 – 0.12 3.31 .001 0.18 0.14 – 0.23 7.94 <.001 0.01 -0.03 – 0.06 0.66 .511 -0.01 -0.05 – 0.03 -0.40 .686 

Age group mean-centered age 0.00 -0.01 – 0.02 0.29 .771 0.01 -0.01 – 0.02 0.85 .394 -0.02 -0.04 – -0.00 -2.25 .025 -0.01 -0.03 – 0.01 -1.17 .242 -0.01 -0.03 – 0.01 -0.94 .350 

Lockdown * Younger -0.01 -0.09 – 0.07 -0.34 .737 0.08 -0.00 – 0.17 1.92 .055 0.02 -0.07 – 0.10 0.41 .683 0.01 -0.09 – 0.11 0.23 .818 -0.04 -0.14 – 0.05 -0.85 .395 

Lockdown * Alone -0.01 -0.05 – 0.04 -0.38 .703 0.03 -0.01 – 0.07 1.29 .196 -0.06 -0.11 – -0.02 -2.75 .006 0.02 -0.02 – 0.06 1.15 .248 0.02 -0.03 – 0.06 0.70 .482 

Lockdown * Interacting 0.01 -0.04 – 0.05 0.36 .722 -0.04 -0.08 – 0.01 -1.73 .084 0.06 0.02 – 0.11 2.84 .005 -0.05 -0.09 – -0.01 -2.41 .016 0.01 -0.03 – 0.06 0.63 .529 

Younger * Alone -0.02 -0.07 – 0.02 -1.03 .303 -0.04 -0.08 – 0.00 -1.91 .056 -0.01 -0.05 – 0.03 -0.41 .682 0.05 0.01 – 0.09 2.56 .011 -0.03 -0.07 – 0.01 -1.32 .187 

Younger * Interacting 0.04 -0.01 – 0.08 1.70 .090 0.07 0.03 – 0.12 3.32 .001 -0.01 -0.05 – 0.03 -0.43 .667 -0.05 -0.09 – -0.01 -2.24 .025 0.02 -0.03 – 0.06 0.78 .438 

Lockdown * Younger * 
Alone 

-0.02 -0.07 – 0.02 -0.93 .353 -0.05 -0.09 – -0.00 -2.07 .038 -0.06 -0.10 – -0.01 -2.52 .012 0.07 0.03 – 0.12 3.58 <.001 0.02 -0.02 – 0.06 0.88 .381 

Lockdown * Younger * 

Interacting 

0.00 -0.04 – 0.05 0.04 .970 -0.00 -0.05 – 0.04 -0.15 .883 0.01 -0.03 – 0.06 0.56 .574 -0.05 -0.09 – -0.01 -2.32 .020 0.01 -0.03 – 0.05 0.43 .668 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model and each estimate (b) reflects the difference between the factor level and the intercept. P-values 
<.05 are in bold. Information in this table obtained using summary() function as part of the lmerTest package (Kuznetsova et al., 2017).  
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Table S26. A summary of the variance explained by random effects for LMMs 1-5 assessing whether each thought pattern varied significantly between 1) samples (pre- vs during lockdown), 2) age groups (young vs 
older), and 3) social environments (alone, around people but not interacting, around people and interacting) while limiting age range of young age group to 18-27 in both samples (N = 188). 

 Future-directed problem-solving Pleasant engagement Episodic social Imagery Detailed task focus 

σ2 0.76 0.69 0.73 0.60 0.69 

τ00 0.04 DAY: IDNO 0.03 DAY: IDNO 0.05 DAY: IDNO 0.07 DAY: IDNO 0.03 DAY: IDNO 
 

0.18 IDNO 0.22 IDNO 0.19 IDNO 0.32 IDNO 0.28 IDNO 

N 10 DAY 10 DAY 10 DAY 10 DAY 10 DAY 
 

188 IDNO 188 IDNO 188 IDNO 188 IDNO 188 IDNO 

Observations 4715 4715 4715 4715 4715 

Note. σ2 = population variance, τ00 = random intercept variance. IDNO = participant identifier, DAY = day number. Information in this table obtained using summary() function as part of the lmerTest package 
(Kuznetsova et al., 2017).  
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A.2 Supplementary Materials: Chapter 3  

This section contains the supplementary materials for Chapter 3 including: 

• S1 Text 

o Supplementary Analysis  

o Tables A-I 

o Figures A-T 

• S2 Text 

o Supplementary Analysis  

o Tables A-S 

o Figures A-I 

S1 Text 

Supplementary Analysis 

Principal Components Analysis (PCA) on Separate Laboratory Samples 

To ensure that the thought patterns identified across both laboratory samples (n = 119) 

were present in both samples separately, we ran a PCA on each sample separately (z-scored 

each sample separately and specified three components for extraction) and correlated each 

participant’s PCA score from this analysis with their PCA score from the combined analysis. 

This analysis revealed a high correspondence between the two-sample and one-sample 

solutions (see Fig G for scatterplots). For laboratory Sample 1 (n = 70), the Kaiser–Meyer–

Olkin measure of sampling adequacy was 0.72, above the commonly recommended value of 

0.6, and Bartlett’s test of sphericity was significant (χ2[78] = 1582.26, p < .001). The three 

components explained 46% of the total variance and see Fig E for scree plot and Table C for 

component loadings. For laboratory Sample 2 (n = 49), the Kaiser–Meyer–Olkin measure of 

sampling adequacy was 0.73 and Bartlett’s test of sphericity was significant (χ2[78] = 

1618.08, p < .001). The three components explained 51% of the total variance and see Fig F 

for scree plot and Table D for component loadings.  

Correspondence between 13-item, 11-item, and 8-item PCAs in Combined Laboratory 

Samples 

To support the validity of the projection of laboratory patterns on to daily life data using 

only 11 items, we ran a PCA on these 11 items in the combined laboratory data (specified 

three components for extraction; see Fig M for scree plot and Table E for component 
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loadings) and correlated each participant’s PCA score from this analysis with their 13-item 

PCA score. This analysis revealed a high correspondence between the 11-item and 13-item 

patterns (see Fig N for scatterplots). The Kaiser–Meyer–Olkin measure of sampling adequacy 

was 0.68, above the commonly recommended value of 0.6, and Bartlett’s test of sphericity 

was significant (χ2[55] = 2165.67, p < .001). The three components explained 50% of the 

total variance. 

In addition, we ran a PCA on the 8 items in the combined laboratory data that had like-

for-like equivalents in the laboratory and daily life (specified three components for 

extraction; see Fig M for scree plot and Table F for component loadings) and correlated each 

participant’s PCA score from this analysis with their 13-item PCA score. This analysis 

revealed a high correspondence between the 8-item and 13-item patterns (see Fig N for 

scatterplots). The Kaiser–Meyer–Olkin measure of sampling adequacy was 0.64, above the 

commonly recommended value of 0.6, and Bartlett’s test of sphericity was significant (χ2[28] 

= 1277.87, p < .001). The three components explained 60% of the total variance.  

Correspondence between Projected and Direct PCA solutions in Daily Life Data 

To understand how the projected laboratory patterns related to patterns present in the 

daily life data, we ran a PCA on the combined daily life thought datasets (11 items; specified 

three components for extraction) and correlated each participant’s PCA score from this 

analysis with their projected PCA score (see Fig P for scatterplots). The Kaiser–Meyer–Olkin 

measure of sampling adequacy was 0.67, above the commonly recommended value of 0.6, 

and Bartlett’s test of sphericity was significant (χ2[55] = 5471.21, p < .001). The three 

components explained 49% of the total variance and see Fig O for scree plot and Table G for 

component loadings. 

In addition, we ran a PCA on each daily life sample separately (before- and during-

COVID; specified three components for extraction) and correlated each participant’s PCA 

score from this analysis with their projected PCA score (see Figs S and T for scatterplots). 

For the pre-COVID sample, the Kaiser–Meyer–Olkin measure of sampling adequacy was 

0.61, above the commonly recommended value of 0.6, and Bartlett’s test of sphericity was 

significant (χ2[55] = 3314.90, p < .001). The three components explained 48% of the total 

variance and see Fig Q for scree plot and Table H for component loadings. For the post-

COVID sample, the Kaiser–Meyer–Olkin measure of sampling adequacy was 0.79, above the 

commonly recommended value of 0.6, and Bartlett’s test of sphericity was significant (χ2[55] 
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= 2602.18, p < .001). The three components explained 53% of the total variance and see Fig 

R for scree plot and Table I for component loadings. 
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Supplementary Tables 

Table A. Multidimensional experience-sampling items used in Principal Components Analyses (PCA). 
 

Item Context Wording Low High 

Task All Lab: My thoughts were focused on the task. 
Daily Life: My thoughts were related to my current activity and/or external environment. 

Not at all Completely 

Future All Lab: My thoughts involved future events. 

Daily Life: My thoughts were about the future. 

Not at all Completely 

Past All Lab: My thoughts involved past events. 

Daily Life: My thoughts were about the past. 

Not at all Completely 

Self All My thoughts involved myself Not at all Completely 

Person 1 All Lab: My thoughts involved other people 
Daily Life: My thoughts involved other people close to me 

Daily Life: My thoughts involved other people NOT close to me 

Not at all 
 

Completely 
 

Positive All Lab: The emotion of my thoughts was… 

Daily Life:  My thoughts were.... 

Lab: Negative 

Daily Life: Very negative 

Lab: Positive 

Daily Life: Very positive 

Words 2 All Lab: My thoughts were in the form of: 
Daily Life:  My thoughts were in the form of words 

Lab: Images 
Daily Life: Not at all 

Lab: Words 
Daily Life: Completely 

Detailed All My thoughts were detailed and specific Not at all Completely 

Deliberate All My thoughts were… 

 

Lab: Spontaneous 

Daily Life: Completely spontaneous 

Lab: Deliberate 

Daily Life: Completely deliberate 

Problem-

Solving 

All Lab & COVID: I was thinking about solutions to problems (or goals): 

Pre-COVID: To what extent are your thoughts... Focused on solving a problem? 

Not at all Completely 

Diverse Lab, 
COVID 

Lab: My thoughts were… 
COVID: My thoughts were about… 

One topic Many topics 

Intrusive 3 All Lab: My thoughts were intrusive 
Daily Life: I wanted to have my thoughts 

Not at all Completely 

Memory Lab, 

COVID 

Lab: My thoughts were linked to information from: 

COVID: My thoughts were linked to information from my… 

Environment Memory 

Note. ‘Context’ column indicates which contexts the item was used in. 'Lab' refers to the laboratory samples. ‘COVID’ refers to the COVID daily life sample and ‘Pre-COVID’ refers to the Pre-COVID daily life 

sample. 1) Average of the two items from daily life data used as ‘Person’ item when projecting the PCA components derived from the combined laboratory thought datasets on to the daily life data. 2) In the laboratory 

data, the ‘Words’ item had ‘images’ and ‘words’ at either end of the scale, while in the daily life data, the ‘Words’ item had ‘Not at all’ and ‘Completely’ at either end of the scale. 'Words' items from daily life data 

used when projecting the PCA components derived from the combined laboratory thought datasets on to the daily life data. 3) Reverse scored ‘Wanted’ item from daily life data to use as ‘Intrusive’ item when 
projecting the PCA components derived from the combined laboratory thought datasets on to the daily life data.
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Table B. Varimax rotated component matrix for the PCA applied to the thought data (13 items; see Table A) obtained from both laboratory 
samples (n = 119). 

Questionnaire items Components 

 1 2 3 

Task -0.35 0.22 0.12 

Future 0.19 0.43 0.03 

Past 0.43 0.08 -0.03 

Self 0.46 0.07 -0.06 

Person 0.03 0.48 -0.08 

Emotion 0.29 -0.39 0.10 

Words 0.07 -0.09 0.19 

Detail 0.02 0.15 0.60 

Deliberate -0.02 -0.12 0.69 

Problem 0.02 0.37 0.26 

Diverse 0.38 0.08 -0.05 

Intrusive 0.00 0.42 -0.08 

Memory 0.45 -0.04 0.12 

Note. Values greater than 0.4 and values less than -0.4 are in bold. 
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Table C. Varimax rotated component matrix for the PCA applied to the thought data (13 items; see Table A) obtained from laboratory 

Sample 1 (n = 70). 

Questionnaire items Components 

 1 2 3 

Task -0.36 -0.22 0.08 

Future 0.12 -0.46 -0.03 

Past 0.42 -0.08 0.03 

Self 0.48 -0.05 -0.12 

Person -0.06 -0.41 -0.07 

Emotion 0.32 0.26 0.19 

Words 0.00 0.10 0.39 

Detail 0.01 -0.34 0.46 

Deliberate 0.00 0.05 0.67 

Problem -0.06 -0.43 0.22 

Diverse 0.38 -0.20 -0.06 

Intrusive 0.08 -0.38 -0.23 

Memory 0.44 0.02 0.15 

Note. Values greater than 0.4 and values less than -0.4 are in bold. 
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Table D. Varimax rotated component matrix for the PCA applied to the thought data (13 items; see Table A) obtained from laboratory 
Sample 2 (n = 49). 

Questionnaire items Components 

 1 2 3 

Task -0.32 -0.23 0.15 

Future 0.27 -0.34 0.08 

Past 0.46 -0.05 -0.08 

Self 0.46 -0.05 0.00 

Person 0.15 -0.48 -0.02 

Emotion 0.20 0.51 0.09 

Words 0.07 0.07 0.18 

Detail 0.01 0.02 0.67 

Deliberate -0.04 0.06 0.60 

Problem 0.08 -0.30 0.31 

Diverse 0.36 0.07 -0.01 

Intrusive -0.01 -0.48 -0.06 

Memory 0.45 0.05 0.08 

Note. Values greater than 0.4 and values less than -0.4 are in bold. 
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Table E. Varimax rotated component matrix for the PCA applied to the 11 thought items that have approximate equivalents in the daily life 
data (see Table A) obtained from the combined laboratory samples (n = 119). 

Questionnaire items Components 

 1 2 3 

Task 0.23 -0.43 0.08 

Future 0.42 0.26 0.08 

Past 0.09 0.52 -0.03 

Self 0.07 0.59 -0.02 

Person 0.48 0.05 -0.06 

Emotion -0.40 0.34 0.13 

Words -0.12 0.08 0.26 

Detail 0.14 0.00 0.60 

Deliberate -0.13 -0.04 0.67 

Problem 0.36 0.04 0.28 

Intrusive 0.43 0.01 -0.08 

Note. Values greater than 0.4 and values less than -0.4 are in bold. 
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Table F. Varimax rotated component matrix for the PCA applied to the 8 thought items that have like-for-like equivalents in the daily life 
data (see Table A) obtained from the combined laboratory samples (n = 119). 

Questionnaire items Components 

 1 2 3 

Task -0.48 0.22 0.02 

Future 0.16 0.59 -0.08 

Past 0.49 0.14 0.03 

Self 0.57 0.21 -0.09 

Emotion 0.42 -0.35 0.18 

Detail -0.03 0.28 0.56 

Deliberate 0.00 -0.09 0.80 

Problem -0.04 0.57 0.07 

Note. Values greater than 0.4 and values less than -0.4 are in bold. 
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Table G. Varimax rotated component matrix for the PCA applied to the thought data (11 items; see Table A) obtained from both daily life 
samples (pre- and during-COVID; n = 137). 

Questionnaire items Components 

 1 2 3 

Task 0.05 -0.34 0.27 

Future 0.43 0.28 -0.02 

Past 0.02 0.52 -0.06 

Self 0.31 0.25 -0.03 

Emotion -0.18 0.12 0.64 

Detail 0.35 0.06 0.21 

Deliberate 0.28 -0.18 0.30 

Problem 0.56 -0.11 -0.11 

Words 0.39 -0.11 -0.09 

Person -0.04 0.63 0.15 

Intrusive -0.11 0.02 -0.58 

Note. Values greater than 0.4 and values less than -0.4 are in bold. 
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Table H. Varimax rotated component matrix for the PCA applied to the thought data (11 items; see Table A) obtained from the pre-COVID 
daily life sample (n = 78). 

Questionnaire items Components 

 1 2 3 

Task -0.28 -0.31 -0.21 

Future -0.05 0.65 0.02 

Past 0.02 -0.06 0.60 

Self 0.08 0.56 0.06 

Emotion -0.32 -0.05 0.16 

Detail -0.45 -0.01 0.22 

Deliberate -0.44 0.12 -0.17 

Problem -0.21 0.38 -0.27 

Words -0.22 -0.03 -0.03 

Person -0.06 0.08 0.65 

Intrusive 0.56 0.01 -0.04 

Note. Values greater than 0.4 and values less than -0.4 are in bold. 
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Table I. Varimax rotated component matrix for the PCA applied to the thought data (11 items; see Table A) obtained from the COVID daily 
life sample (n = 59). 

Questionnaire items Components 

 1 2 3 

Task 0.00 -0.08 0.44 

Future 0.47 0.12 -0.06 

Past 0.08 0.62 -0.12 

Self 0.36 -0.12 0.03 

Emotion -0.13 0.05 0.61 

Detail 0.35 0.10 0.18 

Deliberate 0.26 -0.17 0.23 

Problem 0.56 -0.07 -0.11 

Words 0.32 0.06 0.03 

Person -0.05 0.73 0.11 

Intrusive -0.07 -0.05 -0.55 

Note. Values greater than 0.4 and values less than -0.4 are in bold. 
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Supplementary Figures 

 

Fig A. Violin plots showing the distribution of trait anxiety (mean scores) in laboratory 

Sample 1 (left; n = 70) and in the pre- (n = 70) and post-COVID (n = 59) daily life samples 

(right). Within each violin plot, box plots are also presented. The middle line of each box plot 

represents the median value. The lower and upper hinges represent the first and third quartiles 

(25th and 75th percentiles). The upper whisker extends from the upper hinge to the largest 

value no further than 1.5 * inter-quartile range from the hinge and the lower whisker extends 

from the lower hinge to the smallest value at most 1.5 * inter-quartile range of the hinge. 

Data beyond the end of the whiskers are plotted individually. 
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Fig B. Scree plot from the PCA applied to the thought data from both laboratory samples (n = 

119; n observations = 1338) to identify common “patterns of thought” (x-axis = component 

number and y-axis = % variance explained by each component). Based on the elbow of the 

scree plot, three components were retained for further analysis.  
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Fig C. Violin plots showing the distribution of each thought component in the laboratory 

samples (left) and in the daily life samples (right). Within each violin plot, box plots are also 

presented. The middle line of each box plot represents the median value. The lower and upper 

hinges represent the first and third quartiles (25th and 75th percentiles). The upper whisker 

extends from the upper hinge to the largest value no further than 1.5 * inter-quartile range 

from the hinge and the lower whisker extends from the lower hinge to the smallest value at 

most 1.5 * inter-quartile range of the hinge. Data beyond the end of the whiskers are plotted 

individually. There were 70 participants in laboratory Sample 1, 49 participants in laboratory 

Sample 2, 78 participants in the pre-COVID daily life sample, and 59 participants in the 

COVID daily life sample. 
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Fig D. Scatterplots and correlations demonstrating the high correspondence between varimax 

rotated PCA components (x-axis) and other rotation methods (y-axis). Top panel shows the 

correlation between varimax-rotated (orthogonal rotation) (x-axis) and oblimin-rotated 

(oblique rotation) (y-axis) PCA component scores. Middle panel shows the correlation 

between varimax-rotated (orthogonal rotation) (x-axis) and promax-rotated (oblique rotation) 

(y-axis) PCA component scores. Bottom panel shows the correlation between varimax-

rotated (orthogonal rotation) (x-axis) and oblimax-rotated (orthogonal rotation) (y-axis) PCA 

component scores. Pearson correlation R and p-values were calculated using the ‘pearsonr’ 

function from the ‘scipy’ library (Virtanen et al., 2020). In each plot, the word clouds 

representing the PCA components on the y-axis are in the top left corner and the word clouds 

representing the PCA components on the x-axis are in the bottom right corner. 
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Fig E. Scree plot from the PCA applied to the thought data from laboratory Sample 1 (n = 70; 

n observations = 763) to identify “patterns of thought” (x-axis = component number and y-

axis = % variance explained by each component).  
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Fig F. Scree plot from the PCA applied to the thought data from laboratory Sample 2 (n = 49; 

n observations = 575) to identify “patterns of thought” (x-axis = component number and y-

axis = % variance explained by each component).  
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Fig G. Scatterplots and correlations demonstrating the high correspondence between PCA 

components (varimax rotated) derived from 1) combined laboratory thought datasets (n = 

119; n observations = 1338) and 2) each laboratory thought dataset separately (n = 70 & n = 

49; specified three components for extraction). Top panel shows the correlation between PCA 

components derived from combined laboratory thought datasets (x-axis) and laboratory 

Sample 1 only (y-axis; n = 70; n observations = 763). Bottom panel shows the correlation 

between PCA components derived from combined laboratory thought datasets (x-axis) and 

laboratory Sample 2 only (y-axis; n = 49; n observations = 575). Pearson correlation R and p-

values were calculated using the ‘pearsonr’ function from the ‘scipy’ library (Virtanen et al., 

2020). In each plot, the word clouds representing the PCA components on the y-axis are in 

the top left corner and the word clouds representing the PCA components on the x-axis are in 

the bottom right corner. 
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Fig H. Scree plots from the PCA applied to the thought data from each laboratory sample (n 

= 70 and n = 49) and video condition (‘control’, ‘suspense’ & ‘action’) separately to identify 

“patterns of thought” (specifying three components for extraction). In each plot, the x-axis 

reflects the component number, and the y-axis reflects the % variance explained by each 

component. The top panel shows the scree plots from laboratory Sample 1 (n = 70; n 

observations = 763) and the bottom panel shows the scree plots from laboratory Sample 2 (n 

= 49; n observations = 575).  
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Fig I. Scatterplots demonstrating the correspondence between PCA components (varimax 

rotated) derived from 1) combined laboratory datasets (all video conditions; n = 119; n 

observations = 1338) and 2) the ‘control’ video condition in each laboratory thought sample 

separately (n = 70 & n = 49; specified three components for extraction). Top panel shows the 

highest correspondence between the combined components on the x-axis and laboratory 

Sample 1’s ‘control’ condition components on the y-axis (n = 70, n observations = 210). 

Second panel shows the highest correspondence between laboratory Sample 1’s ‘control’ 

condition components on the x-axis (n = 70; n observations = 210) and the combined 

components on the y-axis. Third panel shows the highest correspondence between the 

combined components on the x-axis and laboratory Sample 2’s ‘control’ condition 

components on the y-axis (n = 49; n observations = 191). Fourth panel shows the highest 

correspondence between laboratory Sample 2’s ‘control’ condition components on the x-axis 

(n = 49; n observations = 191) and the combined components on the y-axis. Pearson 

correlation R and p-values were calculated using the ‘pearsonr’ function from the ‘scipy’ 

library (Virtanen et al., 2020). In each plot, the word clouds representing the PCA 

components on the y-axis are in the top left corner and the word clouds representing the PCA 

components on the x-axis are in the bottom right corner.  
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Fig J. Scatterplots and correlations demonstrating the correspondence between PCA 

components (varimax rotated) derived from 1) combined laboratory thought datasets (all 

video conditions; n = 119; n observations = 1338) and 2) the ‘suspense’ video condition in 

each laboratory thought sample separately (n = 70 & n = 49; specified three components for 

extraction). Top panel shows the highest correspondence between the combined components 

on the x-axis and laboratory Sample 1’s ‘suspense’ condition components on the y-axis (n = 

70, n observations = 274). Second panel shows the highest correspondence between 

laboratory Sample 1’s ‘suspense’ condition components on the x-axis (n= 70; n observations 

= 274) and the combined components on the y-axis. Third panel shows the highest 

correspondence between the combined components on the x-axis and laboratory Sample 2’s 

‘suspense’ condition components on the y-axis (n = 49; n observations = 192). Fourth panel 

shows the highest correspondence between laboratory Sample 2’s ‘suspense’ condition 

components on the x-axis (n = 49; n observations = 192) and the combined components on 

the y-axis. Pearson correlation R and p-values were calculated using the ‘pearsonr’ function 

from the ‘scipy’ library (Virtanen et al., 2020). In each plot, the word clouds representing the 

PCA components on the y-axis are in the top left corner and the word clouds representing the 

PCA components on the x-axis are in the bottom right corner. 
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Fig K. Scatterplots and correlations demonstrating the correspondence between PCA 

components (varimax rotated) derived from 1) combined laboratory thought datasets (all 

video conditions; n = 119; n observations = 1338) and 2) the ‘action’ video condition in each 

laboratory thought sample separately (n = 70 & n = 49; specified three components for 

extraction). Top panel shows the highest correspondence between the combined components 

on the x-axis and laboratory Sample 1’s ‘action’ condition components on the y-axis (n = 70, 

n observations = 279). Second panel shows the highest correspondence between laboratory 

Sample 1’s ‘action’ condition components on the x-axis (n = 70; n observations = 279) and 

the combined components on the y-axis. Third panel shows the highest correspondence 

between the combined components on the x-axis and laboratory Sample 2’s ‘action’ 

condition components on the y-axis (n = 49; n observations = 192). Fourth panel shows the 

highest correspondence between laboratory Sample 2’s ‘action’ condition components on the 

x-axis (n = 49; n observations = 192) and the combined components on the y-axis. Pearson 

correlation R and p-values were calculated using the ‘pearsonr’ function from the ‘scipy’ 

library (Virtanen et al., 2020). In each plot, the word clouds representing the PCA 

components on the y-axis are in the top left corner and the word clouds representing the PCA 

components on the x-axis are in the bottom right corner.  
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Fig L. Scatterplots and correlations demonstrating the correspondence between PCA 

components (varimax rotated) derived from 1) each laboratory thought dataset separately (n = 

70 and n = 49; specifying three components for extraction) and 2) projecting components 

from one laboratory thought dataset to the other. Top panel shows the highest correspondence 

between PCA components derived from laboratory Sample 1 directly (x-axis; n = 70; n 

observations = 763) and PCA components derived from laboratory Sample 2 (n = 49; n 

observations = 575) in laboratory Sample 1 (y-axis; n = 70; n observations = 763). Bottom 

panel shows the highest correspondence between PCA components derived from laboratory 

Sample 2 directly (x-axis; n = 49; n observations = 575) and PCA components derived from 

laboratory Sample 1 (n = 70; n observations = 763) in laboratory Sample 2 (y-axis; n = 49; n 

observations = 575). Pearson correlation R and p-values were calculated using the ‘pearsonr’ 

function from the ‘scipy’ library (Virtanen et al., 2020). In each plot, the word clouds 

representing the PCA components on the y-axis are in the top left corner and the word clouds 

representing the PCA components on the x-axis are in the bottom right corner. 
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Fig M. Scree plots from the PCA applied to the 11-item (left) and 8-item (right) thought data 

from the combined laboratory samples (n = 119; n observations = 1338) to identify “patterns 

of thought” (x-axis = component number and y-axis = % variance explained by each 

component).  
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Fig N. Scatterplots and correlations demonstrating the high correspondence between PCA 

components (varimax rotated) derived from 1) 13-item combined laboratory samples and 2) 

11- and 8-item combined laboratory samples (n = 119, n observations = 1338; specifying 

three components for extraction). Top panel shows the highest correspondence between PCA 

components derived from 13-item combined laboratory samples (x-axis; n = 119; n 

observations = 1338) and PCA components derived from 11-item combined laboratory 

samples (y-axis; n = 119; n observations = 1338). Bottom panel shows the highest 

correspondence between PCA components derived from 13-item combined laboratory 

samples (x-axis; n = 119; n observations = 1338) and PCA components derived from 8-item 

combined laboratory samples (y-axis; n = 119; n observations = 1338). Pearson correlation R 

and p-values were calculated using the ‘pearsonr’ function from the ‘scipy’ library (Virtanen 

et al., 2020). In each plot, the word clouds representing the PCA components on the y-axis 

are in the top left corner and the word clouds representing the PCA components on the x-axis 

are in the bottom right corner. 
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Fig O. Scree plot from the PCA applied to the thought data from both daily life samples (pre- 

and during-COVID) to identify “patterns of thought” (x-axis = component number and y-axis 

= % variance explained by each component). In total, 137 participants (pre-COVID = 78, 

during-COVID = 59) and 3252 observations (pre-COVID = 1995; during-COVID = 1257) 

were included in this analysis. 
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Fig P. Scatterplots and correlations demonstrating the correspondence between PCA 

components (varimax rotated) derived from 1) combined daily life thought datasets (pre- and 

during-COVID; specified three components for extraction) and 2) projecting the PCA 

solutions derived from the combined laboratory thought datasets on to the combined daily life 

thought datasets. Top panel shows the correspondence between the first projected component 

(x-axis) and the three components derived directly from the daily life combined data (y-axis). 

Second panel shows the correspondence between the second projected component (x-axis) 

and the three components derived directly from the daily life combined data (y-axis). Third 

panel shows the correspondence between the third projected component (x-axis) and the three 

components derived directly from the daily life combined data (y-axis). Pearson correlation R 

and p-values were calculated using the ‘pearsonr’ function from the ‘scipy’ library (Virtanen 

et al., 2020). In each plot, the word clouds representing the PCA components on the y-axis 

are in the top left corner and the word clouds representing the PCA components on the x-axis 

are in the bottom right corner. In total, 137 participants (pre-COVID = 78, during-COVID = 

59) and 3252 observations (pre-COVID = 1995, during-COVID = 1257) were included in 

this analysis. 
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Fig Q. Scree plot from the PCA applied to the thought data from the pre-COVID daily life 

sample to identify “patterns of thought” (x-axis = component number and y-axis = % 

variance explained by each component). In total, 78 participants and 1995 observations were 

included in this analysis.  
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Fig R. Scree plot from the PCA applied to the thought data from the COVID daily life 

sample to identify “patterns of thought” (x-axis = component number and y-axis = % 

variance explained by each component). In total, 59 participants and 1257 observations were 

included in this analysis.  
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Fig S. Scatterplots and correlations demonstrating the correspondence between PCA 

components (varimax rotated) derived from 1) the pre-COVID daily life sample directly 

(specified three components for extraction) and 2) projecting the PCA solutions derived from 

the combined laboratory thought datasets on to the pre-COVID daily life sample. Top panel 

shows the correspondence between the first projected component (x-axis) and the three 

components derived directly from the pre-COVID daily life data (y-axis). Second panel 

shows the correspondence between the second projected component (x-axis) and the three 

components derived directly from the pre-COVID daily life data (y-axis). Third panel shows 

the correspondence between the third projected component (x-axis) and the three components 

derived directly from the pre-COVID daily life data (y-axis). Pearson correlation R and p-

values were calculated using the ‘pearsonr’ function from the ‘scipy’ library (Virtanen et al., 

2020). In each plot, the word clouds representing the PCA components on the y-axis are in 

the top left corner and the word clouds representing the PCA components on the x-axis are in 

the bottom right corner. In total, 78 participants and 1995 observations were included in this 

analysis. 
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Fig T. Scatterplots and correlations demonstrating the correspondence between PCA 

components (varimax rotated) derived from 1) the COVID daily life sample directly 

(specified three components for extraction) and 2) projecting the PCA solutions derived from 

the combined laboratory thought datasets on to the COVID daily life sample. Top panel 

shows the correspondence between the first projected component (x-axis) and the three 

components derived directly from the COVID daily life data (y-axis). Second panel shows 

the correspondence between the second projected component (x-axis) and the three 

components derived directly from the COVID daily life data (y-axis). Third panel shows the 

correspondence between the third projected component (x-axis) and the three components 

derived directly from the COVID daily life data (y-axis). Pearson correlation R and p-values 

were calculated using the ‘pearsonr’ function from the ‘scipy’ library (Virtanen et al., 2020). 

In each plot, the word clouds representing the PCA components on the y-axis are in the top 

left corner and the word clouds representing the PCA components on the x-axis are in the 

bottom right corner. In total, 59 participants and 1257 observations were included in this 

analysis. 
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S2 Text 

Supplementary Analysis 

ANOVAs Comparing Mean Arousal and Mean Uncertainty Ratings between Video 

Conditions in the Combined Laboratory Samples (n = 119) 

Since the residual plots from the Linear Mixed Models (LMMs) comparing arousal and 

uncertainty ratings between video conditions indicated non-randomness of the residuals (see 

Fig A), we performed two one-way repeated measures ANOVAs using the mean ratings for 

arousal and uncertainty for each video condition as outcome variables and ‘video condition’ 

as the predictor variable with three levels (‘control’, ‘action’, and ‘suspense’). To perform 

these analyses, we used the anova_test function as part of the rstatix package (Kassambara, 

2021). We used the get_anova_table function to extract the anova table and automatically 

apply the Greenhouse-Geisser sphericity correction if the sphericity assumption is violated.  

We found that mean arousal ratings (F(1.31, 155.14) = 219.44, p < .001, eta2[g] = 0.42) 

and mean uncertainty ratings (F(1.55, 183.18) = 371.63, p < .001, eta2[g] = 0.57) were 

significantly different between video conditions. Post-hoc pairwise t-tests with a Bonferroni 

adjustment (3 tests) revealed that arousal was significantly higher in the ‘action’ condition 

compared to the ‘suspense’ (‘action’ – ‘suspense’: b = 0.28, 95% CI (0.08, 0.49), t(118) = 

2.70, p  < .001) and ‘control’ (‘action’ – ‘control’: b = 3.70, 95% CI (3.24, 4.17), t(118) = 

15.7, p  = .024) conditions. In addition, uncertainty was significantly higher in the ‘suspense’ 

condition compared to the ‘action’ (‘suspense’ – ‘action’: b = 0.61, 95% CI (0.37, 0.86), 

t(118) = 5.00, p  < .001) and ‘control’ condition (‘suspense’ – ‘control’: b = 4.54, 95% CI 

(4.14, 4.94), t(118) = 22.30, p  < .001). The results from these ANOVAs are summarized in 

Fig B.  

However, the Shapiro-Wilk test and QQ plots both suggested the data violated the 

assumption of normality (see Fig E for QQ plots). Therefore, we repeated these analyses 

using the Friedman test (non-parametric equivalent of ANOVA). Importantly, the Friedman 

tests revealed consistent results with the repeated measures ANOVAs (see Fig C). Finally, 

since outliers (arousal: 15 observations, uncertainty: 14 observations) were also identified 

using the identify_outliers function as part of the rstatix package, we re-ran the Friedman 

tests with the outliers removed (arousal: n = 109 & uncertainty: n = 106). Importantly, there 

were no substantial differences between these results and the results including outliers (see 

Fig D). 
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Supplementary Tables 

Table A. Summary of the consistency of ANOVA results across all LMMs assessing whether each thought pattern varied significantly by 1) video condition (3 levels: ‘control’, ‘action’, and ‘suspense’), 2) subjective 
arousal, and 3) subjective uncertainty using thought components derived either by 1) applying PCA to combined laboratory samples, 2) applying PCA to each sample separately or 3) projecting patterns from one 
laboratory sample to the other.  

  Factor 1 Factor 2 Factor 3 

N Analysis Cond Arou Uncert Cond * 

Arou 

Cond * 

Uncert 

Arou* 

Uncert 

Cond Arou Uncert Cond * 

Arou 

Cond * 

Uncert 

Arou* 

Uncert 

Cond Arou Uncert Cond * 

Arou 

Cond * 

Uncert 

Arou* 

Uncert 

119 Combined .001 <.001 <.001 .576 .003 .081   .001 <.001 <.001 .180 .054 .443 .561 .288 .536 .059 .067 .309 

70 Combined .025 <.001 .001 .910 .553 .212   .003 <.001 <.001 .048 .034 .918 .986 .310 .358 .246 .009 .664 

70 Separate .011 <.001 <.001 .975 .402 .289    .021 <.001 <.001 .040 .007 .927 .568 .662 .037 .637 .058 .399 

70 Projected  .082 <.001 .014 .707 .625 .203 <.001 <.001 <.001 .032 .078 .568 .899 .129 .936 .132 .004 .713 

49 Combined .007 <.001 .016 .501 .001 .136     .001     .081 <.001 .271 .137 .429 .297 .534 .967 .196 .940 .581 

49 Separate .053 <.001 .146 .423 .002 .146  <.001     .025 <.001 .063 .197 .385 .209 .416 .604 .292 .893 .773 

49 Projected  .002 <.001 .005 .529 .001 .110     .009    .153 <.001 .579 .115 .411 .429 .476 .210 .230 .945 .510 

Note. N = number of participants included in the LMM analysis. Analysis = which thought components were used in analysis (combined = PCA applied to both laboratory samples; Separate = PCA applied to that 

sample only; Projected = PCA applied to other sample and projected onto that sample). ‘Cond’ = Video condition predictor. ‘Arou’ = Subjective arousal predictor. ‘Uncert’ = Subjective uncertainty predictor. P-values 

shown are for F-tests returned by the package ‘lmerTest’ (Kuznetsova et al., 2017) and P-values <.05 highlighted in bold. Main effects that are consistently significant across all model combinations are highlighted in 
yellow. 
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Table B. Type 3 Sum of Squares ANOVA table for LMMs assessing whether subjective arousal and subjective uncertainty varied 
significantly by video condition (three levels: control, action, suspense) in the combined laboratory samples (n = 119). 

 Arousal Uncertainty 

Fixed effects SS DF F p SS DF F p 

Video condition 149.38 2, 12 189.91 <.001 313.09 2, 14 402.87 <.001 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values < .05 are in bold. Information in this table 
obtained using anova function as part of the lmerTest package (Kuznetsova et al., 2017). 
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Table C. Standardized parameter estimates for LMMs assessing whether subjective arousal and subjective uncertainty varied significantly 
by video condition (three levels: control, action, suspense) in the combined laboratory samples (n = 119). 

  Arousal Uncertainty 

Predictors b 95% CI t p b 95% CI t p 

(Intercept) -0.03 -0.14 – 0.09 -0.46 .643 -0.04 -0.13 – 0.05 -0.91 .364 

Control 

condition 

-0.82 -0.90 – -0.74 -19.46 <.001 -0.94 -1.00 – -0.87 -28.22 <.001 

Action 

condition 

0.46 0.36 – 0.56 9.34 <.001 0.37 0.29 – 0.44 10.00 <.001 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model. Therefore, for 

different video conditions, each estimate (b) reflects the difference between the factor level and the intercept. P-values < .05 are in bold. P-

values and confidence intervals calculated using Satterthwaite approximation. Information in this table obtained using tab_model function as 
part of the sjPlot package (Lüdecke, 2021a). All dependent variables were z-scored prior to analysis. 
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Table D. A summary of the variance explained by random effects for LMMs assessing whether subjective arousal and subjective 
uncertainty varied significantly by video condition (three levels: control, action, suspense) in the combined laboratory samples (n = 119). 

 Arousal Uncertainty 

σ2 0.39 0.39 

τ00 0.25 Participant 0.18 Participant 
 

0.01 Video 0.01 Video 

N 119 Participant 119 Participant 
 

21 Video 21 Video 

Observations 1338 1338 

Note. σ2 = population variance, τ00 = random intercept variance. Video = video name. Information in this table obtained using tab_model 
function as part of the sjPlot package (Lüdecke, 2021a). 
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Table E. Type 3 Sum of Squares ANOVA table for LMMs 1-3 assessing whether each thought pattern varied significantly by 1) video 
condition, 2) subjective arousal, and 3) subjective uncertainty in the combined laboratory samples (n = 119). 

 Factor 1 Factor 2 Factor 3 

Fixed 

effects 

SS DF F p SS DF F p SS DF F p 

Condition 9.50 2, 16 10.10 .001 10.23 2, 17 12.14 .001 0.83 2, 19 0.60 .561 

Arousal 39.31 1, 1308 83.58 <.001 8.48 1, 1310 20.13 <.001 0.79 1, 1284 1.13 .288 

Uncertainty 6.96 1, 1323 14.79 <.001 31.38 1, 1322 74.52 <.001 0.27 1, 1326 0.38 .536 

Arousal * 

Uncertainty 

1.44 1, 1314 3.05 .081 0.25 1, 1314 0.59 .443 0.72 1, 1322 1.04 .309 

Condition * 

Arousal 

0.52 2, 1245 0.55 .576 1.44 2, 1245 1.72 .180 3.97 2, 1243 2.84 .059 

Condition * 

Uncertainty 

5.48 2, 1252 5.82 .003 2.46 2, 1253 2.92 .054 3.79 2, 1263 2.71 .067 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values < .05 are in bold. Information in this table 
obtained using anova function as part of the lmerTest package (Kuznetsova et al., 2017). 

  



202 

 

Table F. Standardized parameter estimates for LMMs 1-3 assessing whether each thought pattern varied significantly by 1) video condition, 
2) subjective arousal, and 3) subjective uncertainty in the combined laboratory samples (n = 119). 

 

  Factor 1 Factor 2 Factor 3 

Predictors b 95% CI t p b 95% CI t p b 95% CI t p 

(Intercept) 0.08 -0.05 – 0.21 1.18 .243 0.03 -0.10 – 0.16 0.45 .652 0.06 -0.08 – 0.20 0.89 .375 

Control 

condition 

0.34 0.18 – 0.49 4.41 <.001 -0.36 -0.50 – -0.21 -4.92 <.001 -0.08 -0.24 – 0.08 -0.95 .341 

Action 

condition 

-0.12 -0.27 – 0.02 -1.79 .093 0.16 0.02 – 0.30 2.48 .025 0.06 -0.06 – 0.19 1.03 .314 

Arousal -0.29 -0.36 – -0.23 -9.14 <.001 0.14 0.08 – 0.20 4.49 <.001 0.04 -0.03 – 0.12 1.06 .288 

Uncertainty -0.13 -0.20 – -0.07 -3.85 <.001 0.28 0.22 – 0.35 8.63 <.001 -0.03 -0.11 – 0.06 -0.62 .536 

Arousal * 

Uncertainty 

-0.06 -0.12 – 0.01 -1.75 .081 -0.02 -0.08 – 0.04 -0.77 .443 -0.04 -0.12 – 0.04 -1.02 .309 

Control 

condition * 
Arousal 

-0.05 -0.14 – 0.04 -1.05 .294 -0.08 -0.16 – 0.01 -1.73 .084 -0.02 -0.13 – 0.09 -0.42 .675 

Action 
condition * 

Arousal 

0.02 -0.05 – 0.09 0.56 .575 0.02 -0.05 – 0.08 0.44 .661 -0.08 -0.16 – 0.01 -1.70 .089 

Control 

condition * 
Uncertainty 

0.13 0.01 – 0.24 2.13 .034 0.11 0.00 – 0.22 1.99 .047 0.10 -0.04 – 0.24 1.35 .178 

Action 
condition * 

Uncertainty 

-0.14 -0.22 – -0.06 -3.38 .001 -0.02 -0.09 – 0.06 -0.47 .641 0.02 -0.08 – 0.12 0.36 .716 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model. Therefore, for 

different video conditions, each estimate (b) reflects the difference between the factor level and the intercept. P-values < .05 are in bold. P-

values and confidence intervals calculated using Satterthwaite approximation. Information in this table obtained using tab_model function as 
part of the sjPlot package (Lüdecke, 2021a). All dependent and continuous independent variables were z-scored prior to analysis. 
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Table G. A summary of the variance explained by random effects for LMMs 1-3 assessing whether each thought pattern varied significantly 
by 1) video condition, 2) subjective arousal, and 3) subjective uncertainty in the combined laboratory samples (n = 119). 

 Factor 1 Factor 2 Factor 3 

σ2 0.47 0.42 0.70 

τ00 0.23 Participant 0.21 Participant 0.28 Participant 
 

0.02 Video 0.02 Video 0.01 Video 

N 119 Participant 119 Participant 119 Participant 
 

21 Video 21 Video 21 Video 

Observations 1338 1338 1338 

Note. σ2 = population variance, τ00 = random intercept variance. Video = video name. Information in this table obtained using tab_model 

function as part of the sjPlot package (Lüdecke, 2021a). 
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Table H. Type 3 Sum of Squares ANOVA table for LMMs 1-3 assessing whether each thought pattern varied significantly by 1) video 
condition, 2) subjective arousal, 3) subjective uncertainty, and 4) trait anxiety in laboratory Sample 1 (n = 70). 

 Factor 1 Factor 2 Factor 3 

Fixed effects SS DF F p SS DF F p SS DF F p 

Arousal 15.49 1, 736 36.25 <.001 10.39 1, 727 26.77 <.001 0.92 1, 722 1.36 .245 

Uncertainty 5.01 1, 739 11.72 .001 12.37 1, 728 31.84 <.001 0.71 1, 737 1.05 .306 

Trait anxiety 1.47 1, 72 3.44 .068 1.33 1, 72 3.42 .069 0.40 1, 71 0.59 .446 

Condition 4.16 2, 15 4.87 .023 5.86 2, 20 7.55 .004 0.02 2, 15 0.02 .985 

Arousal * Uncertainty 0.48 1, 718 1.13 .289 0.01 1, 718 0.02 .882 0.00 1, 732 0.00 .990 

Arousal * Trait anxiety 0.12 1, 728 0.27 .604 0.16 1, 744 0.42 .518 3.49 1, 705 5.15 .024 

Uncertainty * Trait 

anxiety 

0.02 1, 725 0.04 .845 2.86 1, 725 7.38 .007 1.79 1, 741 2.64 .104 

Arousal * Condition  0.04 2, 701 0.05 .956 2.69 2, 700 3.46 .032 1.41 2, 696 1.04 .354 

Uncertainty * Condition 0.43 2, 692 0.50 .607 2.65 2, 693 3.42 .033 5.68 2, 701 4.18 .016 

Trait anxiety * Condition 1.18 2, 698 1.38 .251 0.10 2, 702 0.13 .878 0.84 2, 704 0.62 .539 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values < .05 are in bold. Information in this table 
obtained using anova function as part of the lmerTest package (Kuznetsova et al., 2017). 
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Table I. Standardized parameter estimates for LMMs 1-3 assessing whether each thought pattern varied significantly by 1) video condition, 
2) subjective arousal, 3) subjective uncertainty, and 4) trait anxiety in laboratory Sample 1 (n = 70). 

 

  Factor 1 Factor 2 Factor 3 

Predictors b 95% CI t p b 95% CI t p b 95% CI t p 

(Intercept) 0.06 -0.12 – 0.24 0.64 .525 -0.04 -0.20 – 0.13 -0.45 .652 0.05 -0.13 – 0.23 0.59 .559 

Arousal -0.28 -0.37 – -0.19 -6.02 <.001 0.23 0.14 – 0.31 5.17 <.001 0.07 -0.05 – 0.18 1.16 .245 

Uncertainty -0.15 -0.24 – -0.07 -3.42 .001 0.24 0.16 – 0.32 5.64 <.001 -0.06 -0.16 – 0.05 -1.02 .306 

Trait anxiety 0.12 -0.01 – 0.26 1.85 .068 0.13 -0.01 – 0.28 1.85 .069 -0.06 -0.21 – 0.09 -0.77 .446 

Control condition 0.32 0.11 – 0.52 3.06 .003 -0.32 -0.49 – -0.16 -3.81 <.001 -0.02 -0.23 – 0.20 -0.16 .869 

Action condition -0.12 -0.30 – 0.07 -1.31 .211 0.13 0.01 – 0.25 2.19 .036 0.01 -0.14 – 0.16 0.16 .877 

Arousal * 

Uncertainty 

-0.05 -0.14 – 0.04 -1.06 .289 -0.01 -0.10 – 0.08 -0.15 .882 0.00 -0.11 – 0.12 0.01 .990 

Arousal * Trait 

anxiety 

-0.02 -0.09 – 0.05 -0.52 .604 0.02 -0.05 – 0.09 0.65 .518 -0.10 -0.19 – -0.01 -2.27 .024 

Uncertainty * 
Trait anxiety 

-0.01 -0.08 – 0.07 -0.20 .845 -0.10 -0.17 – -0.03 -2.72 .007 0.08 -0.02 – 0.17 1.63 .104 

Arousal * Control 
condition 

0.00 -0.12 – 0.12 0.02 .981 -0.14 -0.25 – -0.02 -2.39 .017 -0.00 -0.15 – 0.14 -0.04 .968 

Arousal * Action 

condition 

-0.01 -0.12 – 0.09 -0.27 .787 0.01 -0.09 – 0.11 0.23 .822 -0.08 -0.21 – 0.05 -1.23 .218 

Uncertainty * 

Control condition 

0.02 -0.14 – 0.17 0.21 .830 0.08 -0.07 – 0.22 1.01 .313 0.14 -0.06 – 0.33 1.40 .161 

Uncertainty * 

Action condition 

-0.04 -0.15 – 0.06 -0.82 .413 0.05 -0.05 – 0.15 0.90 .370 0.05 -0.08 – 0.18 0.70 .486 

Trait anxiety * 

Control condition 

0.06 -0.05 – 0.17 1.14 .255 -0.03 -0.13 – 0.08 -0.51 .611 0.08 -0.06 – 0.21 1.10 .270 

Trait anxiety * 
Action condition 

-0.07 -0.14 – 0.01 -1.66 .097 0.01 -0.06 – 0.09 0.34 .731 -0.03 -0.13 – 0.07 -0.63 .526 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model. Therefore, for 

different video conditions, each estimate (b) reflects the difference between the factor level and the intercept. P-values < .05 are in bold. P-
values and confidence intervals calculated using Satterthwaite approximation. Information in this table obtained using tab_model function as 
part of the sjPlot package (Lüdecke, 2021a). All dependent and continuous independent variables were z-scored prior to analysis.  
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Table J. A summary of the variance explained by random effects for LMMs 1-3 assessing whether each thought pattern varied significantly 
by 1) video condition, 2) subjective arousal, 3) subjective uncertainty, and 4) trait anxiety in laboratory Sample 1 (n = 70). 

 Factor 1 Factor 2 Factor 3 

σ2 0.43 0.39 0.68 

τ00 0.26 Participant 0.31 Participant 0.31 Participant 
 

0.03 Video 0.01 Video 0.00 Video 

N 70 Participant 70 Participant 70 Participant 
 

17 Video 17 Video 17 Video 

Observations 763 763 763 

Note. σ2 = population variance, τ00 = random intercept variance. Video = video name. Information in this table obtained using tab_model 

function as part of the sjPlot package (Lüdecke, 2021a). 
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Table K. Type 3 Sum of Squares ANOVA table for LMMs 1-3 assessing whether each thought pattern varied significantly by 1) sample 
(pre- vs during-COVID) and 2) trait anxiety in the combined daily life samples (n = 129). 

 Factor 1 Factor 2 Factor 3 

Fixed effects SS DF F p SS DF F p SS DF F p 

Sample 0.01 1, 127 0.02 .894 10.61 1, 125 15.39 < .001 3.69 1, 126 5.02 .027 

Trait anxiety 0.20 1, 124 0.27 .603 2.54 1, 122 3.69 .057 0.91 1, 123 1.23 .269 

Age 1.64 1, 124 2.23 .138 0 1, 122 0.00 .986 0.93 1, 124 1.26 .264 

Trait anxiety * Sample 0.38 1, 124 0.52 .472 1.32 1, 122 1.92 .169 0.1 1, 123 0.13 .720 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values < .05 are in bold. Information in this table 
obtained using anova function as part of the lmerTest package (Kuznetsova et al., 2017). 
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Table L. Standardized parameter estimates for LMMs 1-3 assessing whether each thought pattern varied significantly by 1) sample (pre- vs 
during-COVID) and 2) trait anxiety in the combined daily life samples (n = 129). 

 

  Factor 1 Factor 2 Factor 3 

Predictors b 95% CI t p b 95% CI t p b 95% CI t p 

(Intercept) 0.03 -0.06 – 0.12 0.62 .538 -0.05 -0.15 – 0.04 -1.10 .274 -0.02 -0.11 – 0.07 -0.45 .654 

Pre-COVID 0.01 -0.11 – 0.12 0.13 .894 0.23 0.12 – 0.35 3.92 <.001 0.13 0.02 – 0.24 2.24 .027 

Trait anxiety -0.02 -0.11 – 0.07 -0.52 .603 0.09 -0.00 – 0.18 1.92 .057 -0.05 -0.14 – 0.04 -1.11 .269 

Age -0.09 -0.20 – 0.03 -1.49 .138 0.00 -0.12 – 0.12 0.02 .986 0.07 -0.05 – 0.18 1.12 .264 

Trait anxiety * 

Pre-COVID 

0.03 -0.06 – 0.12 0.72 .472 -0.06 -0.16 – 0.03 -1.38 .169 0.02 -0.07 – 0.11 0.36 .720 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model. P-values < .05 are in 

bold. P-values and confidence intervals calculated using Satterthwaite approximation. Information in this table obtained using tab_model 

function as part of the sjPlot package (Lüdecke, 2021a). All dependent and continuous independent variables were z-scored prior to analysis.  
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Table M. A summary of the variance explained by random effects for LMMs 1-3 assessing whether each thought pattern varied 
significantly by 1) sample (pre- vs during-COVID) and 2) trait anxiety in the combined daily life samples (n = 129). 

 Factor 1 Factor 2 Factor 3 

σ2 0.74 0.69 0.74 

τ00 0.05 Day : Participant 0.03 Day : Participant 0.06 Day : Participant 

 0.21 Participant 0.22 Participant 0.20 Participant 

N 7 Day 7 Day 7 Day 

 129 Participant 129 Participant 129 Participant 

Observations 3100 3100 3100 

Note. σ2 = population variance, τ00 = random intercept variance. Day = Day number. Participant = Participant identifier. Information in this 

table obtained using tab_model function as part of the sjPlot package (Lüdecke, 2021a). 
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Table N. Type 3 Sum of Squares ANOVA table for LMMs 1-3 assessing whether each thought pattern varied significantly by 1) subjective 
uncertainty and 2) trait anxiety in the COVID daily life sample (n = 59). 

 Factor 1 Factor 2 Factor 3 

Fixed effects SS DF F p SS DF F p SS DF F p 

Uncertainty 5.39 1, 1231 8.93 .003 82.08 1, 1208 141.42 <.001 0.11 1, 1207 0.16 .690 

Trait anxiety 0.89 1, 56 1.47 .231 0.32 1, 56 0.55 .461 0.38 1, 58 0.57 .452 

Age 1.04 1, 53 1.73 .194 0.03 1, 52 0.05 .821 0.56 1, 54 0.85 .359 

Uncertainty * Trait anxiety 3.06 1, 1132 5.07 .025 1.96 1, 1078 3.37 .066 2.16 1, 1115 3.27 .071 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values < .05 are in bold. Information in this table 

obtained using anova function as part of the lmerTest package (Kuznetsova et al., 2017).  
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Table O. Standardized parameter estimates for LMMs 1-3 assessing whether each thought pattern varied significantly by 1) subjective 
uncertainty and 2) trait anxiety in the COVID daily life sample (n = 59). 

 

  Factor 1 Factor 2 Factor 3 

Predictors b 95% CI t p b 95% CI t p b 95% CI t p 

(Intercept) 0.07 -0.09 – 0.23 0.85 .401 0.02 -0.12 – 0.16 0.30 .767 0.03 -0.12 – 0.19 0.41 .684 

Uncertainty 0.10 0.03 – 0.16 2.99 .003 0.37 0.31 – 0.43 11.89 <.001 -0.01 -0.08 – 0.05 -0.40 .690 

Trait anxiety -0.10 -0.26 – 0.06 -1.21 .231 0.05 -0.09 – 0.20 0.74 .461 -0.06 -0.22 – 0.10 -0.76 .452 

Age -0.11 -0.27 – 0.06 -1.31 .194 -0.02 -0.16 – 0.13 -0.23 .821 0.07 -0.09 – 0.24 0.92 .359 

Uncertainty * 

Trait anxiety 

-0.07 -0.13 – -0.01 -2.25 .025 -0.05 -0.11 – 0.00 -1.84 .066 -0.06 -0.12 – 0.00 -1.81 .071 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model. P-values < .05 are in 

bold. P-values and confidence intervals calculated using Satterthwaite approximation. Information in this table obtained using tab_model 

function as part of the sjPlot package (Lüdecke, 2021a). All dependent and continuous independent variables were z-scored prior to analysis. 
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Table P. A summary of the variance explained by random effects for LMMs 1-3 assessing whether each thought pattern varied significantly 
by 1) subjective uncertainty and 2) trait anxiety in the COVID daily life sample (n = 59). 

 Factor 1 Factor 2 Factor 3 

σ2 0.60 0.58 0.66 

τ00 0.08 Day : Participant 0.06 Day : Participant 0.04 Day : Participant 
 

0.29 Participant 0.23 Participant 0.29 Participant 

N 7 Day 7 Day 7 Day 
 

59 Participant 59 Participant 59 Participant 

Observations 1257 1257 1257 

Note. σ2 = population variance, τ00 = random intercept variance. Day = Day number. Participant = Participant identifier. Information in this 
table obtained using tab_model function as part of the sjPlot package (Lüdecke, 2021a).  
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Table Q. Type 3 Sum of Squares ANOVA table for LMMs 1-3 assessing whether each thought pattern varied significantly by 1) COVID 
uncertainty, 2) COVID threat, and 3) trait anxiety in the COVID daily life sample (n = 59). 

 Factor 1 Factor 2 Factor 3 

Fixed effects SS DF F p SS DF F p SS DF F p 

COVID threat 0.78 1, 867 1.28 .259 0.83 1, 832 1.29 .256 4.06 1, 786 6.15 .013 

COVID uncertainty 0.50 1, 1017 0.82 .367 4.17 1, 991 6.50 .011 0.72 1, 945 1.08 .298 

Trait anxiety 1.22 1, 58 2.00 .163 1.17 1, 59 1.83 .182 1.20 1, 60 1.82 .182 

Age 1.00 1, 51 1.64 .206 0.14 1, 52 0.22 .641 0.81 1, 53 1.22 .274 

COVID threat * 

COVID uncertainty 

0.16 1, 1030 0.26 .608 0.00 1, 985 0.00 .967 0.06 1, 940 0.08 .773 

COVID threat * 

Trait anxiety 

1.06 1, 728 1.74 .188 1.68 1, 707 2.62 .106 0.22 1, 673 0.34 .562 

COVID uncertainty 
* Trait anxiety 

0.03 1, 1028 0.04 .840 0.25 1, 999 0.39 .532 0.14 1, 952 0.21 .646 

Note. SS = Sum of Squares. DF = numerator and denominator degrees of freedom. P-values < .05 are in bold. Information in this table 
obtained using anova function as part of the lmerTest package (Kuznetsova et al., 2017). 
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Table R. Standardized parameter estimates for LMMs 1-3 assessing whether each thought pattern varied significantly by 1) COVID 
uncertainty, 2) COVID threat, and 3) trait anxiety in the COVID daily life sample (n = 59). 

  Factor 1 Factor 2 Factor 3 

Predictors b 95% CI t p b 95% CI t p b 95% CI t p 

(Intercept) 0.04 -0.13 – 0.21 0.44 .662 0.04 -0.13 – 0.21 0.46 .645 -0.02 -0.18 – 0.14 -0.25 .805 

COVID threat 0.06 -0.05 – 0.17 1.13 .259 0.06 -0.04 – 0.17 1.14 .256 0.13 0.03 – 0.24 2.48 .013 

COVID uncertainty 0.05 -0.06 – 0.15 0.90 .367 0.14 0.03 – 0.24 2.55 .011 -0.06 -0.16 – 0.05 -1.04 .298 

Trait anxiety -0.12 -0.29 – 0.05 -1.41 .163 0.11 -0.05 – 0.28 1.35 .182 -0.11 -0.27 – 0.05 -1.35 .182 

Age -0.11 -0.28 – 0.06 -1.28 .206 -0.04 -0.20 – 0.13 -0.47 .641 0.09 -0.07 – 0.24 1.10 .274 

COVID threat * 
COVID uncertainty 

-0.02 -0.11 – 0.06 -0.51 .608 0.00 -0.08 – 0.09 0.04 .967 0.01 -0.07 – 0.10 0.29 .773 

COVID threat * 
Trait anxiety 

0.07 -0.03 – 0.17 1.32 .188 -0.08 -0.19 – 0.02 -1.62 .106 0.03 -0.07 – 0.13 0.58 .562 

COVID uncertainty 
* Trait anxiety 

-0.01 -0.11 – 0.09 -0.20 .840 0.03 -0.07 – 0.14 0.62 .532 0.02 -0.08 – 0.13 0.46 .646 

Note. Summed contrasts were used meaning that the intercept reflects the grand mean of all conditions for each model. P-values < .05 are in 
bold. P-values and confidence intervals calculated using Satterthwaite approximation. Information in this table obtained using tab_model 
function as part of the sjPlot package (Lüdecke, 2021a). All dependent and continuous independent variables were z-scored prior to analysis. 
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Table S. A summary of the variance explained by random effects for LMMs 1-3 assessing whether each thought pattern varied significantly 
by 1) COVID uncertainty, 2) COVID threat, and 3) trait anxiety in the daily life sample (n = 59). 

 Factor 1 Factor 2 Factor 3 

σ2 0.61 0.64 0.66 

τ00 0.08 Day : Participant 0.05 Day : Participant 0.04 Day : Participant 
 

0.31 Participant 0.30 Participant 0.27 Participant 

N 7 Day 7 Day 7 Day 
 

59 Participant 59 Participant 59 Participant 

Observations 1256 1256 1256 

Note. σ2 = population variance, τ00 = random intercept variance. Day = Day number. Participant = Participant identifier. Information in this 
table obtained using tab_model function as part of the sjPlot package (Lüdecke, 2021a). 
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Supplementary Figures 

 

Fig A. Residual plots for Linear Mixed Models assessing whether arousal and uncertainty 

ratings significantly varied between video conditions in the combined laboratory samples (n 

=119; n observations = 1338), demonstrating non-randomness of the residuals. 
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Fig B. Results from the one-way repeated measures ANOVAs comparing mean arousal and 

mean uncertainty ratings between video conditions in the laboratory samples (n = 119). On 

the left-hand side is the boxplot for mean arousal ratings (y-axis) by video condition (x-axis) 

with the ANOVA results at the top and the significance of the pairwise comparisons (t-test; 

Bonferroni adjustment) are displayed using asterisks (* = p < .05, ** = p <.01, *** = p 

<.001). On the right-hand side is the boxplot for mean uncertainty ratings (y-axis) by video 

condition (x-axis) with the ANOVA results at the top and the significance of the pairwise 

comparisons (t-test; Bonferroni adjustment) are displayed using asterisks (* = p < .05, ** = p 

<.01, *** = p <.001). However, these results should be interpreted with caution since the 

Shapiro-Wilk test and QQ plots (see Fig E) indicated non-normality of the data. 
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Fig C. Results from the non-parametric Friedman’s test comparing mean arousal and mean 

uncertainty ratings between video conditions in the laboratory samples (n = 119). On the left-

hand side is the boxplot for mean arousal ratings (y-axis) by video condition (x-axis) with the 

Friedman test results at the top and the significance of the pairwise comparisons (Wilcoxon 

test; Bonferroni adjustment) are displayed using asterisks (* = p < .05, ** = p <.01, *** = p 

<.001). On the right-hand side is the boxplot for mean uncertainty ratings (y-axis) by video 

condition (x-axis) with the Friedman test results at the top and the significance of the 

pairwise comparisons Wilcoxon test; Bonferroni adjustment) are displayed using asterisks (* 

= p < .05, ** = p <.01, *** = p <.001).  
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Fig D. Results from the non-parametric Friedman’s test comparing mean arousal (n = 109) 

and mean uncertainty (n = 106) ratings between video conditions in the laboratory samples 

with outliers removed. On the left-hand side is the boxplot for mean arousal ratings (y-axis) 

by video condition (x-axis) with the Friedman test results at the top and the significance of 

the pairwise comparisons (Wilcoxon test; Bonferroni adjustment) are displayed using 

asterisks (* = p < .05, ** = p <.01, *** = p <.001). On the right-hand side is the boxplot for 

mean uncertainty ratings (y-axis) by video condition (x-axis) with the Friedman test results at 

the top and the significance of the pairwise comparisons Wilcoxon test; Bonferroni 

adjustment) are displayed using asterisks (* = p < .05, ** = p <.01, *** = p <.001). 
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Fig E. QQ-plots for mean arousal and mean uncertainty ratings by video condition in the 

laboratory samples (n = 119) demonstrating non-normality. 
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Fig F. Scatterplots showing the correlation between trait anxiety and mean scores for each 

thought pattern split by video condition in laboratory Sample 1 (n = 70; n observations = 

210). The top panel shows the correlations between trait anxiety and mean self-relevant and 

past-focused off-task thought, the middle panel shows the correlations between trait anxiety 

and mean emotional, social future-directed problem-solving, and the bottom panel shows the 

correlations between trait anxiety and mean detailed deliberate thought. Each thought pattern 

is represented here as word clouds where the size of the word reflects the importance of the 

item, and the colour reflects the polarity (warmer colours = positive, cooler colours = 

negative). Red corresponds to the control condition, green corresponds to the action 

condition, and blue corresponds to the suspense condition. Pearson correlation R and p-values 

were calculated using the ‘stat_cor’ function from the ‘ggpubr’ library in R (Kassambara, 

2020). 
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Fig G. Scatterplots showing the correlation between trait anxiety and emotional states by 

video condition in laboratory Sample 1 (n = 70, n observations = 210). The left-hand side 

shows the correlation between mean arousal by video condition and trait anxiety, while the 

right-hand side shows the correlation between mean uncertainty by video condition and trait 

anxiety. Red corresponds to the control condition, green corresponds to the action condition, 

and blue corresponds to the suspense condition. Pearson correlation R and p-values were 

calculated using the ‘stat_cor’ function from the ‘ggpubr’ library in R (Kassambara, 2020). 
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Fig H. Scatterplots showing the correlation between trait anxiety and mean scores for each 

projected thought pattern split by sample (pre- vs during-COVID) in daily life (n = 129). The 

top panel shows the correlations between trait anxiety and mean self-relevant and past-

focussed off-task thought, the middle panel shows the correlations between trait anxiety and 

mean emotional, social future-directed problem-solving, and the bottom panel shows the 

correlations between trait anxiety and mean detailed deliberate thought. Each thought pattern 

is represented here as word clouds where the size of the word reflects the importance of the 

item, and the colour reflects the polarity (warmer colours = positive, cooler colours = 

negative). Pearson correlation R and p-values were calculated using the ‘stat_cor’ function 

from the ‘ggpubr’ library in R (Kassambara, 2020). 
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Fig I. Scatterplots showing the correlation between trait anxiety, mean threat caused by 

COVID-19, mean uncertainty caused by COVID-19, and mean uncertainty generally in the 

daily life COVID sample (n = 59). Pearson correlation R and p-values were calculated using 

the ‘stat_cor’ function from the ‘ggpubr’ library in R (Kassambara, 2020). 
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A.3 Supplementary Materials: Chapter 4 

This section contains the supplementary materials for Chapter 4 including: 

• Figures S1 to S3  

• Tables S1 to S2 

Supplementary Figures 

 

Figure S1. Scree plot showing the proportion of variance explained by each of the group-

level whole-brain connectivity gradients one to ten. Y-axis shows the eigenvalues scaled to a 

sum of 1. X-axis shows the gradient number. The first three gradients were retained for 

further multivariate analyses as these gradients have the clearest mapping to cognitive 

function (e.g., Murphy et al., 2018; Murphy et al., 2019; Turnbull et al., 2020b). 

  



226 

 

 

Figure S2. Demonstration of how aligning the group-level gradients to a subsample of the 

HCP dataset using Procrustes rotation changes the first three group-level gradients. Regions 

that share similar connectivity profiles fall together along each gradient (similar colours) and 

regions that have more distinct connectivity profiles fall further apart (different colours). It is 

important to note that the positive and negative loading is arbitrary and can flip each time the 

diffusion embedding is applied to the data. For example, in this figure, the visual cortex along 

gradient two has a positive loading in the unaligned map but has a negative loading in the 

aligned map. Thus, differences in loadings are not meaningful and occur randomly. 
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Figure S3. Individual-level connectivity gradients one to three which have the highest (left), 

median (middle) and lowest (right) similarity with the respective group-level gradients to 

demonstrate the variability of gradients across participants in the current sample. Regions that 

share similar connectivity profiles fall together along each gradient (similar colours) and 

regions that have more distinct connectivity profiles fall further apart (different colours). The 

positive and negative loading is arbitrary. 
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Supplementary Tables 

Table S1. Improvement in the degree of fit (or similarity) between individual-level and group-level gradients when extracting ten gradients 
compared to only extracting three gradients. Mean similarity was calculated by averaging all participant’s R-to-Z transformed Spearman 
Rank correlation coefficients for each respective gradient. 

N gradients extracted Gradient Minimum Maximum Mean Std. Deviation 

3 1 0.31 1.31 0.84 0.21 

10 1 0.70 1.76 1.36 0.16 

3 2 0.28 1.48 0.84 0.25 

10 2 0.90 1.85 1.37 0.16 

3 3 -0.07 1.04 0.57 0.19 

10 3 0.58 1.38 1.12 0.12 
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Table S2. Spearman rank correlation values for the first five aligned and unaligned group-level gradients with the first five group-level 
gradients reported in Margulies et al. (2016). This demonstrates that aligning the group-level gradients to the subsample of HCP data 
improves correspondence between the gradients calculated in the current study and previous literature. 

Gradient Aligned to HCP Unaligned to HCP 

1 0.62 0.40 

2 -0.47 0.23 

3 -0.45 -0.38 

4 -0.20 0.07 

5 -0.18 -0.03 
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