
University of Sheffield

Efficient Representations over Multiple
Timescales

Luca Manneschi

Supervisors: Eleni Vasilaki, Andrew C. Lin

A report submitted in partial fulfilment of the requirements
for the degree of PhD in Computer Science

in the

Department of Computer Science

August 30, 2022

Declaration

All sentences or passages quoted in this document from other people’s work have been

specifically acknowledged by clear cross-referencing to author, work and page(s). Any

illustrations that are not the work of the author of this report have been used with the

explicit permission of the originator and are specifically acknowledged. I understand that

failure to do this amounts to plagiarism and will be considered grounds for failure.

Name:

Signature:

Date:

Acknowledgements

To all the people that helped and accompanied me during this path.

To the people I miss, to my friends, to Marta, to my family. In particular, to my

mother and dad, who supported me all these years and made me grow in an incredibly

stimulating environment, from which I am still trying to learn. I will always be thankful.

To Paolo and Guido, for being the firsts to show me the wonders of learning. Paolo,

in your loving memory.

To my supervisor, Eleni, who believed in me and helped me to grow as a person and a

young researcher. For the freedom and the support she gave me, as a mentor and a friend.

Thank you.

1

Contents

1 Introduction 3

1.1 Echo states . 7

1.2 Achieving meaningful representations . 10

1.3 Learning Algorithms . 13

2 Publications 16

2.1 Paper I . 16

2.2 Paper II . 66

2.3 Paper III . 122

3 Discussion 170

3.1 Contributions and limitations . 170

3.2 Future Work . 173

4 Appendix 178

2

Chapter 1

Introduction

Despite the recent success of artificial neural networks in solving complex tasks and achiev-

ing superhuman performance in a variety of tasks, the ability of biological brains to gen-

eralise the learnt knowledge and to quickly adapt to novel situations remains unmatched.

This gap between specialised models and behavioural flexibility demonstrated by bio-

logical systems encourages researchers to weigh biological plausibility in the process of

formulating machine learning models. In this sense, works in the broad field of optimisa-

tion and learning lie on a spectrum whose extremes have two diverse research approaches:

the first can be described as a virtuous race toward higher performance and more chal-

lenging applications, often met at the cost of interpretability of the model and biological

plausibility; the second tries to replicate how biological systems operate at a functional

scale of modelling detail and gives higher priority to the system understanding rather than

performance measures. We believe that the present work lies in between these comple-

mentary approaches, also definable as machine learning and computational neuroscience

respectively. In this thesis, we will take inspiration from biology to develop machine learn-

ing models, but without the certainty that the formulated systems fall within the limits

dictated by biological plausibility. Of course, the novel bio-inspired models are required

to have practical advantages, measured in terms of performance, interpretability or com-

putational cost, in comparison to pre-existing models. While an example of this line of

3

thought can be found in the first two papers reported in the thesis, the third publication

reported arises from a different, but complementary reasoning process. In the latter, we

first formulated theoretically the model from abstract and desirable principles and then

demonstrated its ability to explain neuroscientific, experimental findings. In summary,

the connection, or flow of information, between the neuroscientific and machine learning

fields is bi-directional across the thesis.

A fascinating and inspiring ability of the brain is the capacity to retain and accu-

mulate information over a wide range of timescales. In other words, we can integrate

information over different temporal lengths, from the order of seconds, of days, to years,

and plan a succession of action to achieve a desirable outcome. A typical example of

activity where the concept of multiple timescales plays a fundamental role is the process

of reading a book. In this act, the brain can recognise words thanks to the short-term

correlations among letters and understand the context of the situation described because

of correlations among sentences and chapters. The necessity of neural representations that

carry information over different temporal lengths is consequently evident. Nevertheless,

the concept of multiple timescales is not often considered or studied in machine learning

models that deal with tasks characterised by short and long temporal dependencies. Such

models are often, despite their success, computationally expensive, biologically unrealistic

and hardly interpretable, in particular from the point of view of the temporal dynamics

exhibited by the associated dynamical system. In contrast, the present study will focus on

the concept of timescales to gain insights in the process of defining useful representations

and developing machine learning algorithms. Thus, multiple timescales constitute an un-

derlying feature of all the research works exposed here, where they are expressed directly

by the rate at which information is integrated and/or by the recurrent connectivity of a

neural network called echo state network (ESN).

Echo state networks are the theoretical prototype of the reservoir computing paradigm,

where the properties of a dynamical system, called the reservoir, are exploited for com-

putation (see Section 1.1). Learning is traditionally characterised by simple optimisation

4

techniques on the read-out from the representation of the reservoir, which can be viewed

as a system with a rich repertoire of dynamical behaviours and intrinsic computation ca-

pabilities [1]. The application of simple learning algorithms is possible because the system

acts as a non-linear, high dimensional kernel that transforms inputs into representations

where data are linearly separable. In this regard, the first publication reported in the

thesis aims to formulate a methodology to define efficient reservoirs that exploit a rich

repertoire of timescales and that can spontaneously adapt to the temporal features of

the task considered (see Section 2.1). The idea behind echo state networks, a multitude

of nodes connected through random topological graph structures where learning can lo-

cally occur between the reservoir and a set of output neurons, resonates with the current

understanding of the working process of various biological networks.

An example of biological circuit that shares similar features to echo state networks is

the mushroom body of the Drosophila fruit fly. Dimensionality expansion, non-linearity

and synaptic plasticity that seems to exclusively occur on the output of the mushroom

body [2], are indeed the distinctive features of such a circuit [3]. In contrast to echo

state networks, neurons in the MB respond selectively to different stimuli [4]. Specialised

neuronal activities can be achieved through sparsity, which do not only favour savings of

neural resources but facilitates learned discrimination between similar stimuli [4]. Thus,

taking inspiration from the mushroom body, we developed a normalisation technique that

adds learnable thresholds on the read-out from the reservoir representation to introduce

sparsity and improve the performance of the system in the context of classification tasks.

The second publication of the following is dedicated to the formulation of such a model

and its consequences in terms of learning facilitation (see Section 2.2). A hierarchical

model of reservoirs with a rich variety of timescales is adopted in conjunction to learnable

thresholds to achieve leading performance on the psMNIST task, a popular benchmark to

measure the ability of recurrent neural networks to understand temporal dependencies.

After having focused on echo state networks on supervised learning tasks, we desired

to study the concept of multiple timescales in reinforcement learning environments. In

5

particular, the aim of the third publication (see Section 2.3) reported is to develop a

model over multiple timescales for the decision-making process, possibly showing how the

adoption of a variety of integration times can lead to robust decision strategies. The simple,

yet rich, model developed will demonstrate the fundamental role of multiple timescales to

achieve robust performance and reproduce important, experimentally observed, features,

to which we will refer with the names of scalar property, signal neutrality and collapsing

boundaries. From our knowledge, this is the first model that can spontaneously reproduce

such experimental results through learning and reward maximisation, suggesting novel

and different interpretations to established neuroscientific observations.

Fig.1.1 highlights the common concepts of the publications through a Venn diagram

and aims to facilitate the understanding and reading of the thesis.

Iterative, Online
Learning

Timescales

Supervised Learning
on ESNs

Reinforcement Learning
on leaky integrators

Paper I Paper II Paper III

Figure 1.1: Conceptual scheme of the work, highlighting the common ideas of the three publica-
tions reported.

6

1.1 Echo states

Reservoir computing is a computational paradigm where an input signal is processed by a

higher dimensional, non-linear dynamical system, called the reservoir. The representation

of the reservoir should be dynamically rich in order to capture temporal features of the

driving signal and to be exploited for temporally driven machine learning tasks that can

not be solved through a linear layer. Traditionally, learning occurs on the read-out of the

reservoir exclusively. Now, we introduce reservoir computing by describing its theoretical

genesis, which goes by the names of echo state networks (ESN) [5] and liquid state machines

[6]. In particular, we will focus on echo state networks in the following. An ESN is an

ensemble of recurrently connected nodes, described by the evolution of an N-dimensional

variable x(t) that respond to a M-dimensional external signal s(t) and that produce a

K-dimensional output y(t). The equations describing this system in continuous time are

τ
dx(t)

dt
= −x(t) + f

[
Wins(t) + Wx(t) + Wbacky(t)

]
(1.1)

τy
dy(t)

dt
= −y(t) + fy

[
Wout,ss(t) + Wout,xx(t) + Wout,yy(t)

]
(1.2)

where Win, W, Wback and Wout,x (Wout,s, Wout,y) represent the input, recurrent,

feedback and output connectivity matrices, whose dimensions are N×M, N×N, N×K and

K × N (K × M, K × K) respectively. While f and fy are non-linear activation functions,

τ and τy define the timescales of the reservoir and the output nodes respectively. Eq.

1.1 and 1.2 are derived considering a general neural architecture (Fig.1.2), which unifies

the vast majority of previous research works on echo state networks. An alternative

definition of Eq. 1.1 (and similarly of 1.2) is possible by applying the non linear function

f exclusively on the term Wx(t) coming from the recurrency of the system [7]. The

7

discretised approximate versions of the above equations are

x(t) = (1 − α)x(t − δt) + αf
[
Wins(t) + Wx(t − δt) + Wbacky(t − δt)

]
(1.3)

y(t) = (1 − αy)y(t − δt) + αyfy

[
Wout,ss(t) + Wout,xx(t) + Wout,yy(t − δt)

]
(1.4)

where δt is the discretisation step and α = δt/τ . Drawing the recurrent connectivity

W of the system from any random distribution would probably lead the system to exhibit

a chaotic behaviour, where a small difference in the initial conditions of the network is

exponentially amplified across time. In this scenario, the representation of the network

would be unreliable and extremely difficult to use for computation purposes. To avoid

such chaotic behaviours, we can guarantee the echo state property [5].

Figure 1.2: General architecture of an Echo State Network.

Definition. Assume that network activities lie in a compact 1 space X , that inputs are

drawn from a compact space S, and that the output feedback is absent (Wback = 0). The

network has echo states if for every infinite input sequence s(1), ..., s(t − 1), s(t) and for
1Explain...

8

all sequences of activities x(1), ..., x(t−1), x(t) and x̃(1), ..., x̃(t−1), x̃(t), where x̃(t) =

F
(
x̃(t − 1), u(t)

)
and x(t) = F

(
x(t − 1), u(t)

)
∀t, it holds that limt→∞||x̃(t) − x(t)|| = 0

regardless to the initial conditions x̃(0), x(0).

In other words, the network becomes independent of its initial conditions, that is the

starting value of x, and is univocally characterised by the considered infinitely long input

sequence. In the paper of 2001, Jaeger introduced a practical recipe to achieve the echo

state property which is reported below and that will be implicitly used in the rest of the

works proposed here

Proposition. Assume a network with sigmoid-like activation functions, as f = tanh.

Then:

i) The echo state property is guaranteed if the maximum singular value Λ of the connec-

tivity matrix W satisfies Λ < 1.

ii) The echo state property is violated for any input containing the zero state 0 if the spec-

tral radius σ = max(| eig(W)|) > 1.

Proof. Appendix I1 contains a reworked version of the original proof.

While condition i) guarantees the echo state network property, condition ii) is only nec-

essary (in the case of zero inputs) for the achievement of the latter. From a practical

point of view, constraining the spectral radius is often enough to achieve echo states in a

large variety of situations. Such a constraint provides a softer bound for the definition of

ESNs in comparison to condition i), which can lead to networks with limited dynamical

properties. For this reason, the second constraint has been widely adopted by the research

community as a practical recipe to rescale the connectivity matrix of the reservoir. We

will follow the same approach in the following. In the paper [8], the authors provided a

new sufficient condition for the ESN property that is less restrictive than the one con-

sidered above, where the maximum singular value of the connectivity matrix needs to be

9

lower than one. In the new condition, the property is guaranteed if W is diagonally Schur

schedule, that means if a diagonal matrix D exists such that WTDW − D is negative

definite.

We note how the above demonstration holds for the case without output feedback,

which can lead to delayed effects in the reservoir dynamics that are difficult to control

when adaptation occurs on the output weights. In this work, we will focus on echo state

networks without output feedback, where the evolution of the network can be described

by the following

x(t) = (1 − α)x(t) + αf
[
Wins(t) + Wx(t − δt)

]
(1.5)

1.2 Achieving meaningful representations

For simplicity and clarity of exposition, we will consider learning in a reservoir described

by Eq. 1.5 and refer to this specific case unless stated otherwise. So far, we have not

discussed how to set the different terms in Eq.1.5 in order to define a working reservoir

and control its dynamical properties. Each parameter of Eq.1.5 impacts differently the

behaviour of the network and needs to be tuned to the temporal features of the specific

task considered. Thus, we will now focus on the meaning of such parameters and share

our experience to guide the application of echo state networks.

• The leakage term α. By definition, α defines the rate of integration of the network

and must be set in the interval [0, 1]. A value of α close to one corresponds to a

quickly reacting reservoir, desirable when the driving signal carries relevant infor-

mation over high frequencies. However, this implies that the system is also forgetful

and that its memory is supported by the timescales introduced only by the recur-

rency. On the contrary, a value of the leakage term close to zero corresponds to a

slowly reacting reservoir, capable of capturing ’smooth’, continuous, and long tem-

poral dynamics of the input signal at the cost of losing information that lies on the

10

fast timescales. Echo state networks were first introduced with α = 1 [5] [9], but it

is evident that different tasks require the adoption of diverse leakage terms’ values

[10]. This trade-off among reaction speed and memory that lies in the interval [0, 1]

of possible values of α is one of the reasons that led some researchers to introduce

systems composed by multiple, and differently tuned echo state networks.

• The connectivity matrix W. The connectivity adopted dictates what is the topologi-

cal graph structure of the network. We describe here the most common methodology

to define the connectivity matrix and we will introduce the diverse alternatives that

have been explored by the reservoir community only later. Traditionally, W [9] has

been a sparse matrix reflecting an Erdos-Renyi structure where each node is con-

nected to Nc other random nodes on average. A pair of nodes is connected, or in

other words an element of the matrix is non-zero, with some probability pER = Nc/N.

Once connections have been defined, each connection strength is drawn from a de-

sirable random distribution, which is usually uniform in the interval [−1, 1]. If we

call the random matrix defined with the above procedure W̃, the connectivity W

adopted in Eq.1.5 can be written as

W = ρW̃
max |eig(W̃)| (1.6)

where the denominator normalises the matrix (see the previous paragraph for more

details regarding conditions for the Echo State property) and the additional param-

eter ρ ∈ [0, 1] serves to further control the value of the spectral radius. A higher

value of ρ gives more importance to the connectivity matrix and introduces longer

timescales in the system. For this reason, values of ρ close to one are optimal when

the task considered has long temporal dependencies and requires a larger range of

timescales 2. Regarding the choice of ρ, previous research works have also adopted

values greater than one, demonstrating that a spectral radius above unity is optimal
2More details on this will be given in Paper I.

11

for specific tasks. To understand this choice, one needs to consider that the nec-

essary condition introduced in the previous paragraph is derived by considering all

possible sequence of inputs, and in particular the null sequence. For specific cases,

the echo state network can be well defined even for ρ > 1 [8]. We emphasise once

more how this procedure described is a practical recipe and does not guarantee the

echo state property. An alternative, more restrictive approach, is to apply the suffi-

cient condition in [8]. Following the latter, one should define the random matrix W

with all positive values, rescale the spectral radius inside the unit circle, and finally

switch the signs of some desired connections.

We want to notice how the sparsity level of the connectivity pER can be another

important parameter of the reservoir. Practically speaking, it has been noticed that

Nc ≈ 10 [11] is a good starting value for many applications, but often sub-optimal.

To understand this, one can think that if Nc is excessively high, nodes’ activities

become susceptible to perturbations. A perturbation of the signal or node activity

at a given time could indeed propagate rapidly in the network, leading to correlated

states and reducing the global amount of information carried by the system. On the

contrary, a low intra-connectivity would correspond to a silent network, where per-

turbations would not propagate and thus remain practically undetected. As often, an

effective operational regime lies in the middle. Unfortunately, it is difficult to guess

a priori an optimal sparsity level, since the latter leaves unaltered the eigenvalues of

the system and consequently the timescales exhibited by the reservoir.

• The input matrix Win. From the first introduction of echo state networks, the input

connectivity has been written as

Win = γW̃in (1.7)

to give emphasis to the rescaling factor γ and to the variance of the random distri-

bution from which the connectivity is defined. In this case, W̃in is typically fully

12

connected and drawn from a random Gaussian distribution with unitary variance.

However, there are many considerations that needs to be done. First, γ should be

chosen to confine the network activities well outside the saturation regime of the

activation function f considered. This can be achieved by computing the average

input signal to a node for a given task or by simple visual inspection of the evolution

of the system across time. For the example case of f = tanh, activities should not

frequently populate intervals of values close to ±1.

Second, the optimal level of sparsity of the input connectivity matrix can depend

on the input dimensionality. For instance, we have observed that a binary diag-

onal matrix of randomly placed ±1 values can lead to better performance than a

full Gaussian connectivity matrix when the driving signal is uni-dimensional, since

different nodes are not erroneously weighted differently beforehand. However, as

the dimensionality of the signal increases, it is important to consider different linear

combination of the input features and to reduce the sparsity level of Win.

Having analysed the different roles of the factors that appear in Eq. 1.5, the following

hyperparameters appear to be critical for the definition of an efficient ESN: α, ρ, Nc and γ.

To explore all the dynamic behaviours that the hyperparameters’ space has to offer and to

find the best operational regime for the considered task is often prohibitive. This expensive

tuning procedure and the lack of understanding of the relation between hyperparameters

and single task performance constitute an unsolved research challenge in the application

of ESNs and reservoirs. A list of possible strategies explored by different research works

to mitigate this difficult exploration and tuning problem is reported in appendix I2.

1.3 Learning Algorithms

Finally, we want to focus on the final stage of the reservoir computing paradigm: the

learning process. The most standard application of ESN is a regression task, where the

13

output of the system and the error function E to be minimised are

y(t) = Woutx(t)

E =
∑

t

[
ỹ(t) − y(t)

]2

ỹ(t) is the desired output value and y is the output of the network. In the case without

output feedback of Eq. 1.5 and a linear output y, a closed-form solution to this minimisa-

tion problem exists and can be found by setting the gradient of E equal to zero. Following

this procedure from a squared error function with an additional L2 penalty term on the

output weights leads to ridge regression, which is the most common learning algorithm

to train an ESN. Ridge regression, described in more details in Appendix I3, is an offline

algorithm that offers a one step solution to the optimisation problem. In the case where

the output feedback is present, Wfeed �= 0 in Eq.1.4, a change in the output weights has

consequences on the dynamic of the reservoir, and a straightforward application of the

closed-form solution is not possible.

Despite the success of ridge regression across the reservoir computing community, it

can be challenging to apply Eq.4.3 when the matrix to be inverted is rank deficient. More-

over, it could be necessary to adapt the output weights in an online fashion for some tasks,

as for instance in robotics or reinforcement learning applications, and it is extremely dif-

ficult to consider the offline ridge regression solution as biologically plausible.

For this reason, previous research have also adapted iterative learning algorithms to min-

imise a generic error function, that in this case is not constrained to the mean-squared

error. In other words, given an arbitrary cost function E, the output weights are optimised

iteratively through gradient descent

Wout(n + 1) = Wout(n) − η∇WoutE (1.8)

where n refers to the iteration number. Of course, it is possible to use more complex

14

gradient descent methods as RMSProp or Adam [12] [13], which exploits the first and sec-

ond order momentum of the derivatives. Finally, learning algorithms that are formulated

to deal with the presence of output feedbacks without the utilisation of teacher forcing,

and by learning the output weights online as the feedback affects the reservoir dynamics,

exist [14]. Important examples of such algorithms are FORCE [15] and BackPropagation-

DeCorrelation [14].

We want to notice how ridge regression is the most utilised method because it can be

difficult to apply online learning algorithms to ESNs representations and find an optimal

solution. In other words, the closed form solution usually outperforms, when applicable,

an iterative gradient approach. From our experience, the reason for this lies in the complex

reservoir dynamics, which leads gradient descent methods to get trapped in local minima

in many tasks.

15

Chapter 2

Publications

2.1 Paper I

One of the main challenge of reservoir computing and, in particular, of echo state networks

is to understand how the hyperparameters of the model are related to a specific task.

The first contribution of the paper is to provide a survey of previous theoretical results

regarding dynamical systems and reinterpret the latter in the context of echo state net-

works. In more details, we quantify pseudo-analytically the repertoire of timescales of the

network and their link to the hyperparameters’ values in order to guide the fine-tuning

procedure of the network dynamical properties to a given task.

The second contribution of the paper is to interpret the performance of models composed

by multiple echo state networks. Interestingly, the most efficient structure is composed by

multiple networks connected hierarchically, where deeper reservoirs have lower timescales

than the ones closer to the external signal. This hierarchy of timescales is also reflected

in the modularity of various biological networks, where sensory information needs to be

rapidly represented and then fed to circuits where integration occurs over a variety, but

more importantly slow, timescales.

Finally, we developed a learning rule to adapt the hyperparameters of the system and

change the timescales of the model in a data-driven fashion. The learning rule is derived

through gradient descent and from recently proposed approximations of backpropagation

through time. The derived optimisation method can be computed online, but the intrinsic

16

nature of the hyperparameters of the system leads inevitably to a non-local learning rule.

Simulations are performed in standard reservoir computing benchmarks, but also in more

complex tasks that were not previously faced with echo state networks.

The paper has been published under Frontiers in Applied Mathematics and Statistics (Front. Appl.

Math. Stat., 17 February 2021 Sec.Dynamical Systems).

My contributions to the work were: model development, coding, testing, writing of the paper.

17

��
�������������������
�

��
�����������
	��������������
����������������
� ��	�	��������
���������
�����������������

����������������������������������
������
��	���
��	��	������������	�������������������������������
������������������������������������
������
��	���
 ������	���������	��������
������
��	���������������������������������������
­�������	������������	����

Abstract

Echo state networks (ESNs) are a powerful form of reservoir computing that only
require training of linear output weights whilst the internal reservoir is formed of
fixed randomly connected neurons. With a correctly scaled connectivity matrix, the
neurons’ activity exhibits the echo-state property and responds to the input dynam-
ics with certain timescales. Tuning the timescales of the network can be necessary
for treating certain tasks, and some environments require multiple timescales for an
efficient representation. Here we explore the timescales in hierarchical ESNs, where
the reservoir is partitioned into two smaller linked reservoirs with distinct properties.
Over three different tasks (NARMA10, a reconstruction task in a volatile environment,
and psMNIST), we show that by selecting the hyper-parameters of each partition such
that they focus on different timescales, we achieve a significant performance improve-
ment over a single ESN. Through a linear analysis, and under the assumption that
the timescales of the first partition are much shorter than the second’s (typically cor-
responding to optimal operating conditions), we interpret the feedforward coupling
of the partitions in terms of an effective representation of the input signal, provided
by the first partition to the second, whereby the instantaneous input signal is ex-
panded into a weighted combination of its time derivatives. Furthermore, we propose
a data-driven approach to optimise the hyper-parameters through a gradient descent
optimisation method that is an online approximation of backpropagation through
time. We demonstrate the application of the online learning rule across all the tasks
considered.

1 Introduction

The high inter-connectivity and asynchronous loop structure of Recurrent Neural Networks

(RNNs) make them powerful techniques for processing temporal signals[1]. However,

the complex inter-connectivity of RNNs means that they cannot be trained using the

conventional back-propagation (BP) algorithm[2] used in feed-forward networks, since

Timescales in hierarchical ESNs Paper I

each neuron’s state depends on other neuronal activities at previous times. A method

known as Back-Propagation-Through-Time (BPTT) [3], which relies on an unrolling of

neurons’ connectivity through time to propagate the error signal to earlier time states,

can be prohibitively complex for large networks or time series. Moreover, BPTT is not

considered biologically plausible as neurons must retain memory of their activation over

the length of the input and the error signal must be propagated backwards with symmetric

synaptic weights [4].

Many of these problems can be avoided using an alternative approach: reservoir com-

puting (RC). In the subset of RC networks known as Echo State networks, a fixed ‘reser-

voir’ transforms a temporal input signal in such a way that only a single layer output

perceptron needs to be trained to solve a learning task. The advantage of RC is that the

reservoir is a fixed system that can be either computationally or physically defined. Since

it is fixed it is not necessary to train the reservoir parameters through BPTT, making

RC networks much simpler to train than RNNs. Furthermore, the random structure of

a RC network renders the input history over widely different time-scales, offering a rep-

resentation that can be used for a wide variety of tasks without optimising the recurrent

connectivity between nodes.

Reservoirs have biological analogues in cerebellum-like networks (such as the cerebel-

lum, the insect mushroom body and the electrosensory lobe of electric fish), in which input

signals encoded by relatively few neurons are transformed via ‘expansion re-coding’ into a

higher-dimensional space in the next layer of the network, which has many more neurons

than the input layer [5, 6, 7, 8]. This large population of neurons (granule cells in the

cerebellum; Kenyon cells in the mushroom body) acts as a reservoir because their input

connectivity is fixed and learning occurs only at their output synapses. The principal

neurons of the ‘reservoir’ can form chemical and electrical synapses on each other (e.g.

Kenyon cells: [9, 10, 11]), analogous to the recurrent connectivity in reservoir comput-

ing that allows the network to track and transform temporal sequences of input signals.

In some cases, one neuronal layer with recurrent connectivity might in turn connect to

19

Timescales in hierarchical ESNs Paper I

another neuronal layer with recurrent connectivity; for example, Kenyon cells of the mush-

room body receive input from olfactory projection neurons of the antennal lobe, which are

connected to each other by inhibitory and excitatory interneurons [12, 13]. Such cases can

be analogised to hierarchically connected reservoirs. In biological systems, it is thought

that transforming inputs into a higher-dimensional neural code in the ‘reservoir’ increases

the associative memory capacity of the network [5]. Moreover, it is known that for the

efficient processing of information unfolding in time, which requires networks to dynam-

ically keep track of past stimuli, the brain can implement ladders of neural populations

with hierarchically organised ‘temporal receptive fields’ [14].

The same principles of dimensional expansion in space and/or time apply to artificial

RC networks, depending on the non-linear transformation of the inputs into a represen-

tation useful for learning the task at the single linear output layer. We focus here on a

popular form of RC called Echo State Networks [15], where the reservoir is implemented

as a RNN with a fixed, random synaptic connection matrix. This connection matrix is set

so the input ‘echoes’ within the network with decaying amplitude. The performance of an

Echo State Network depends on certain network hyper-parameters that need to be opti-

mised through grid search or explicit gradient descent. Given that the dependence of the

network’s performance on such hyper-parameters is both non-linear and task-dependent,

such optimisation can be tedious.

Previous works have studied the dependence of the reservoir properties on the structure

of the random connectivity adopted, studying the dependence of the reservoir performance

on the parameters defining the random connectivity distribution, and formulating alterna-

tives to the typical Erdos-Renyi graph structure of the network [16, 17, 18]. In this sense,

in [17] a model with a regular graph structure has been proposed, where the nodes are

connected forming a circular path with constant shortest path lengths equal to the size of

the network, introducing long temporal memory capacity by construction. The memory

capacity has been studied previously for network parameters such as the spectral radius

(ρ) and sparsity; in general memory capacity is higher for ρ close to 1 and low sparsity,

20

Timescales in hierarchical ESNs Paper I

but high memory capacity does not guarantee high prediction [19, 20]. ESNs are known

to perform optimally when at the “edge of criticality”[21], where low prediction error and

high memory can be achieved through network tuning.

More recently, models composed of multiple reservoirs have gathered the attention

of the community. From the two ESNs with lateral inhibition proposed in [22], to the

hierarchical structure of reservoirs first analysed by Jaeger in [23], these complex archi-

tectures of multiple, multilayered reservoirs have shown improved generalisation abilities

over a variety of tasks [24, 23, 25]. In particular, the works [26] [27] have studied different

dynamical properties of such hierarchical structures of ESNs, while [28] have proposed

hierarchical (or deep) ESNs with projection encoders between layers to enhance the con-

nectivity of the ESN layers. The partitioning (or modularity) of ESNs was studied by [29],

where the ratio of external to internal connections was varied. By tuning this partitioning

performance can be increased on memory or recall tasks. Here we demonstrate that one

of the main reasons to adopt a network composed by multiple, pipelined sub-networks,

is the ability to introduce multiple timescales in the network’s dynamics, which can be

important in finding optimal solutions for complex tasks. Examples of tasks that require

such properties are in the fields of speech, natural language processing, and reward driven

learning in partially observable Markov decision processes [30]. A hierarchical structure of

temporal kernels [31], as multiple connected ESNs, can discover higher level features of the

input temporal dynamics. Furthermore, while a single ESN can be tuned to incorporate a

distribution of timescales with a prefixed mode, optimising the system hyper-parameters

to cover a wide range of timescales can be problematic.

Here, we show that optimisation of hyper-parameters can be guided by analysing how

these hyper-parameters are related to the timescales of the network, and by optimising

them according to the temporal dynamics of the input signal and the memory required

to solve the considered task. This analysis improves performance and reduces the search

space required in hyper-parameter optimisation. In particular, we consider the case where

an ESN is split into two sections with different hyper-parameters resulting in separate

21

Timescales in hierarchical ESNs Paper I

temporal properties. In the following, we will first provide a survey of timescales in ESNs

before presenting the comparative success of these hierarchical ESNs on three different

tasks. The first is the non-linear auto-regressive moving average 10 (NARMA10) task

which requires both memory and fast non-linear transformation of the input. Second, we

explore the performance of the network in a reconstruction and state “perception” task

with different levels of external white noise applied on the input signal. Finally, we apply

the hierarchical ESN to a permuted sequential MNIST classification task, where the usual

MNIST hand written digit database is serialised and permuted as a 1d time-series.

2 Survey of timescales in Echo State networks

We begin by describing the operations of an ESN and present a didactic survey of the

inherent timescales in ESNs, which will be drawn upon in later sections to analyse the

results.

As introduced in the previous section, an ESN is a recurrent neural network and the

activity, x(t), of the neurons due to a temporal input signal s(t) is given by

x(t + δt) = (1 − α)x(t) + αf (h(t)) , (1)

h(t) = γWins(t) + ρWx(t), (2)

where W is a possibly sparse random matrix defining the connectivity of the network,

Win defines the input adjacency matrix, and γ is a rescaling factor of the input weights.

α = δt/τ is the leakage term of the node, and ρ is a scaling factor for the spectral radius of

the connectivity matrix and will be discussed in more detail in the following. f() is a non-

linear function, which in this work we define as the hyperbolic tangent. A good practical

condition for the Echo-State property [15] is to rescale the initial random connectivity

matrix W by its maximum eigenvalue magnitude (spectral radius), |λmax
W | = max |eig(W)|,

22

Timescales in hierarchical ESNs Paper I

thus ensuring a unitary spectral radius which can be tuned using ρ as a hyper-parameter.

In practice, W is constructed from a matrix of Normally distributed random numbers and

the sparseness is enforced by randomly setting to zero a fixed proportion of these elements.

Typically 10 non-zero connections per node are retained in W.

The timescales of this dynamical system are closely linked to the specific structure of W

and to the two hyper-parameters; α and ρ. Since α is the leakage rate, it directly controls

the retention of information from previous time steps, while ρ specifies the maximum

absolute magnitude of the eigenvalues and as such tunes the decay time of internal activity

of the network. Thus, the basic hyper-parameters that need to be set are γ, α and

ρ. Considering the nonlinear dependence of the network performance on these values and

the task-dependent nature of an efficient parameterisation, this process can be challenging.

Such hyper-parameters are commonly optimised through a grid search or through explicit

gradient descent methods in online learning paradigms [32]. However, the fine tuning

procedure can be guided, and the searchable space reduced, using a simple analysis of the

hyper-parameters’ relation to the timescales of the network, the external signal’s temporal

dynamics, and the memory required to solve the considered task.

Considering that the eigenvalues λW of the connectivity matrix are inside the imagi-

nary unit circle due to the normalisation procedure described previously, and that α is a

constant common to all neurons, the eigenvalues of the linearised system given by Eq. 1

are

λ = 1 − α(1 − ρλW). (3)

This corresponds to a rescaling of value αρ and to a translation of value 1 − α across

the real axis of the original λW. This operation on the eigenvalues of W is depicted in

Fig. 1A. Thus, considering that each eigenvalue λi can be decomposed in its correspond-

ing exponential decaying part exp(−δt/τi) and its oscillatory imaginary component, the

timescales of the linearised system are

23

Timescales in hierarchical ESNs Paper I

Delay Line
ESN

2 ESN
0.37 0.51 0.70 0.970.01 0.08 0.290.02

A

C

B

D

E

Figure 1: The analysis of the timescales of the system in the linear regime can guide the search for
the optimal values of the hyper-parameters α and ρ. A: Translation and scaling of the eigenvalues
of the system due to the presence of the leakage factor. B: Example of distribution of timescales,
computed analytically (red line) and computationally (black points) estimated from the eigenvalues
of W. C: Pirate plot of the distributions of timescales as α increases. Both axes are logarithmic.
Higher α values correspond to longer timescales and to a more compressed range of timescales
(logarithmic y-axis). D: Pirate plot of the distributions of timescales: as ρ increases, the range of
timescales expands. Again, both axes are logarithmic. E: Example distributions of timescales for
reservoirs with different connectivity structure. From left to right, a delay line, single ESN, 2 ESNs
(connected and unconnected, see text for the reason why the timescales for these two structures
are the same in the linear regime). The higher complexity of the models reported is reflected in a
richer distribution of timescales.

τ = δt

1 − Re(λ) (4)

= δt

α(1 − ρRe(λW)) (5)

When the connectivity matrix, W, is given by a sparse matrix with non-zero elements

drawn randomly from a uniform distribution with the range [−1, 1], then the correspond-

ing eigenvalues will be uniformly distributed within a circle with a radius of max(|λW|)

in the complex plane [33]. These eigenvalues are then re-scaled by max(|λW|) to en-

24

Timescales in hierarchical ESNs Paper I

sure they are within the unit circle. The distribution of the eigenvalues then reveals the

distribution of timescales of the linearised system. Indeed, given p (Re(λ), Im(λ)), the

distribution of timescales can be found through computation of the marginal p
(
Re(λ)) =

∫
p
(
Re(λ), Im(λ)

)
dIm(λ) and the change of variable defined in equation 5, giving

p(τ) = 2δt2

πα2ρ2τ2

√
α2ρ2 − (α − δt/τ)2 (6)

Importantly we note that whilst the eigenvalues are uniformly distributed over the unit

circle, the timescales are not due to the inverse relationship between them. The resulting

distribution of the linearised system, shown in Fig. 1B (red line), is in excellent agreement

with the numerically computed distribution for a single ESN (black points + shaded area).

The analytical form of the distribution, together with Eq. 5, allows us to explicitly

derive how changes in α and ρ affect the network timescales. Notably we can obtain

analytical expression for the minimum, maximum and most probable (peak of the distri-

bution) timescale:

τmin = δt

α(1 + ρ) , (7)

τmax = δt

α(1 − ρ) , (8)

τpeak = 5δt

4α(1 − ρ2)

(
1 −

√
1 − 24

25(1 − ρ2)
)

(9)

where Eq. 8 and 7 can be derived directly from Eq. 5, while Eq. 9 follows from maximisation

of Eq. 6. As expected, α strongly affects all these three quantities; interestingly, though,

α does not influence the relative range of the distribution, τmax/τmin = (1 + ρ)/(1 − ρ).

Indeed α plays the role of a unit of measure for the τs, and can then be used to scale

the distribution in order to match the relevant timescales for the specific task. On the

other hand, ρ does not strongly affect the shape of the distribution, but determines how

dispersed the τs are. Given the finite number of τs expressed by a finite ESN, the hyper-

25

Timescales in hierarchical ESNs Paper I

parameter ρ can be used to balance the raw representation power of the network (how

wide the range of timescales is) with the capacity to approximate any given timescale in

that range. Fig. 1C and D give a more detailed view of how the distribution of timescales

changes as α and ρ, respectively, vary; note the logarithmic scale on the y-axis, that makes

the dependence on α linear. The link between the eigenvalues and the reservoir dynamics

can be shown through the analysis of the network response to an impulsive signal, shown

in Section 5.2, where the experimental activities are compared with the theoretical ones

expected from the linearised system.

2.1 Hierarchical Echo-State Networks

Different studies have proposed alternatives to the random structure of the connectivity

matrix of ESNs, formulating models of reservoirs with regular graph structures. Examples

include a delay line [17], where each node receives and provides information only from the

previous node and the following one respectively, and the concentric reservoir proposed

in [18], where multiple delay lines are connected to form a concentric structure. Further-

more, the idea of a hierarchical architecture of ESNs, where each ESN is connected to

the preceding and following one, has attracted the reservoir computing community for its

capability of discovering higher level features of the external signal [34]. Fig. 2 schemat-

ically shows the architecture for (A) a single ESN, (B) 2 sub-reservoir hierarchical ESN

for which the input is fed into only the first sub-reservoir which in turn feeds into the

second and (C) a parallel ESN, where two unconnected sub-reservoirs receive the same

input. These heirarchical ESNs are identical to the 2 layer DeepESN given by [27]. A

general ensemble of interacting ESNs can be described by

x(k)(t + δt) = (1 − α(k))x(k) + α(k)f
(
h(k)(t)

)
, (10)

h(k)(t) = γ(k)W(k)
in s(k)(t) +

NESN∑

l

ρ(kl)W(kl)x(l)(t), (11)

26

Timescales in hierarchical ESNs Paper I

where the parameters have the similar definitions as in the case of a single ESN in Eq.

1. The index k indicates the network number and NESN is the total number of networks

under consideration. In a hierarchical structure of ESNs W(kl) �= 0 for k = l or k = l + 1

only, and W(kl) can be drawn from any desirable distribution thanks to the absence of

feedback connections to higher-order reservoirs. Indeed, in this case, a good practical

condition for the Echo-State network property is that all the inner connectivity matrices

W(kk) have eigenvalues with an absolute value less or equal than one. Furthermore, in the

typical hierarchical structure proposed in previous works [23, 24, 27, 25, 35], the input is

fed to the first network only, and W(k)
in �= 0 if k = 1 only. We emphasise that the values

of α(k) and ρ(k), which are closely related to the timescales and repertoire of dynamics

of network number k (and, in the case of hierarchical reservoirs, also to all subsequent

networks), do not have to be equal for each ESN, but can be chosen differently to fit the

necessity of the task. In particular, some tasks could require memory over a wide range

of timescales that could not effectively be covered by a single ESN.

In Fig. 1E we show examples of the timescale distributions of the corresponding lin-

earised dynamical systems for different ESN structures, from the simple delay line model

to the higher complexity exhibited from two hierarchical ESNs. In order from left to right,

the histograms of timescales are for a delay line, a single ESN, and two ESNs (whether

hierarchically connected or unconnected; see below for clarification). All the models share

an ESN with ρ = 0.9 and α = 0.9; where present, the second reservoir has α = 0.2. By

construction, the richness and range of timescales distributions reported increases with

the complexity of the models. However, we note how a simple delay line could exhibit

longer temporal scales than the other structures analysed thanks to its constant and high

value of minimum path length between any pairs of nodes. Nevertheless, its limited dy-

namics restricts its application to simple tasks. The cases with two ESNs show a bimodal

distribution corresponding to the two values of α.

Yet, the spectrum of the eigenvalues of the linearised system is only partially infor-

mative of the functioning and capabilities of an ESN. This is clearly demonstrated by the

27

Timescales in hierarchical ESNs Paper I

Input

Output

R1 : α(1), ρ(11)W(11)

R2 : α(2), ρ(22)W(22)

ρ(12)W(12)

Wout

γ(1)W(1)
in

Input

Output

R : α, ρW

Wout

γWin

A. ESN B. Hierarchical ESN C. Parallel ESN
Input

Output

R1 : α(1), ρ(11)W(11)

R2 : α(2), ρ(22)W(22)

γ(2)W(2)
in γ(1)W(1)

in

Wout

Figure 2: Single and hierarchical echo-state network (ESN) architectures. A: A single
ESN with internally connected nodes with a single set of hyper-parameters α and ρ. B: A
hierarchical ESN composed of 2 connected reservoirs where the input is fed into reservoir
1 only and the connection is unidirectional from R1 to R2, which is identical to the 2 layer
DeepESN of [27]. C: A parallel (or unconnected hierarchical) ESN where the network is
partitioned into 2 reservoirs, R1 and R2, which each receive the input and provide output
but have distinct hyper-parameters.

fact that a hierarchical and a parallel ESN share the same spectrum in the linear regime.

Indeed, for a hierarchical ESN, whose connectivity matrix of the linearised dynamics is

given by:

W̃ =




W(11) 0

W(12) W(22)


 , (12)

it is easy to demonstrate that every eigenvalue of W(11) and W(22) is also an eigenvalue of

W̃, irrespective of W(12), not unlike what happens for a parallel ESN (where W(12) = 0,

and hence the demonstration follows immediately). Nonetheless, as we will see in the next

sections, the hierarchical ESN has better performance on different tasks compared to the

other structures considered, including the parallel ESN.

It is interesting to note, in this respect, that the success of the hierarchical ESN is

generally achieved when the leakage term of the first reservoir is higher than the leakage

28

Timescales in hierarchical ESNs Paper I

term of the second (or, in other words, when the first network has much shorter timescales).

Such observation opens the way to an alternative route to understand the functioning of

the hierarchical structure, as the first reservoir expanding the dimensionality of the input

and then feeding the enriched signal into the second network. Indeed, in the following,

we will show how, in a crude approximation and under the above condition of a wide

separation of timescales, the first ESN extracts information on the short term behaviour

of the input signal, notably its derivatives, and the second ESN integrates such information

over longer times.

We begin with the (continuous time) linearized dynamics of a Hierarchical ESN is

given by

ẋ(1)(t) = −M(1)x(1)(t) + W(1)
in s(t), (13)

ẋ(2)(t) = −M(2)x(2)(t) + W(12)x(1)(t), (14)

where, for simplicity, we have reabsorbed the ρ(kl) and γ(k) factors into the definitions of

W(kl) and W(k)
in respectively, and the new constants can be derived with reference to Eq. 1

and 2; for example:

M(k) = α(k)

δt

[
1 − f ′(0) ρ(k) W(kk)]. (15)

The neuron activity can be projected on to the left eigenvector of each of the M(i) matrices.

As such we define the eigenvector matrices, V(i), where each row is a left eigenvector and

so satisfies the equation V(i)M(i) = Λ(i)V(i). Λ(1) and Λ(22) are the diagonal matrices of

the eigenvalues of the two M matrices. Using these we can define y(k) ≡ V(k) x(k), and so

the dynamical equations can be expressed as

ẏ(1)(t) = −Λ(1) y(1)(t) + W̃(1)
in s(t), (16)

ẏ(2)(t) = −Λ(2) y(2)(t) + W̃(12) y(1)(t), (17)

where W̃(1)
in = V(1)W(1)

in and W̃(12) = V(2) W(12)
(
V(1)

)−1
are the input and connection

29

Timescales in hierarchical ESNs Paper I

matrices expanded in this basis. Taking the Fourier transform on both sides of Eq. 16,

such that FT
[
y(1)(t)

]
= ỹ(1)(ω) and FT

[
ẏ(1)(t)

]
= −iωỹ(1)(ω), where i is the imaginary

unit. The transform ỹ(2)(ω) of y(2)(t) can now be expressed as a function of the transform

of the signal s̃(ω) giving

(Λ(1) − iωI)ỹ(1)(ω) = W̃(1)
in s̃(ω) (18)

where I is the identity matrix of the same size as Λ(1). If the second ESN’s timescale are

much longer than that of the first one (i.e., Λ(1) � Λ(2)), then we can expand the inverse

of the ỹ(1) coefficient on the LHS of Eq. 18 when Λ(1) → ∞ as

(Λ(1) − iωI)−1 = (Λ(1))−1
(
1 − iω(Λ(1))−1

)−1
(19)

≈ (Λ(1))−1
∞∑

n=0
(iω(Λ(1))−1)n (20)

By applying this approximation to Eq. 18, and by defining the diagonal matrix of charac-

teristic times T(1) ≡ −(Λ(1))−1, the relation between the activity of reservoir 1 and the

input in Fourier space is given by

ỹ(1)(ω) = −T(1)
∞∑

n=0
(−iωT(1))nW̃(1)

in s̃(ω). (21)

The coefficients of this series are equivalent to taking successive time derivatives in Fourier

space, such that (−iω)ns̃ = d(n)s̃/dt(n). So by taking the inverse Fourier transform we

find the following differential equation for y(1)

y(1)(t) = −T(1)
∞∑

n=0
(T(1))nW̃(1)

in
d(n)s(t)

dt(n) , (22)

which can be inserted into Eq. 17 to give

ẏ(2) = Λ(2) y(2) − W̃(12) T (1)
[
W̃(1)

in s(t) +
∞∑

n=1
(T(1))nW̃(1)

in
d(n)s(t)

dt(n)

]
. (23)

30

Timescales in hierarchical ESNs Paper I

Thus the second ESN integrates the signal with a linear combination of its derivatives.

In other words, the first reservoir expands the dimensionality of the signal to include

information regarding the signal’s derivatives (or, equivalently in discretised time, the

previous values assumed by the signal). In this respect, Eq. 23 is key to understanding

how the hierarchical connectivity between the two reservoirs enhances the representational

capabilities of the system. The finite-difference approximation of the time derivatives

appearing in Eq. 23 implies that a combination of past values of the signal appears, going

back in time as much as the retained derivative order dictates.

2.2 Online learning of hyper-parameter

Selecting the hyper-parameters of such systems can be challenging. Such selection process

can be informed by the knowledge of the natural timescales of the task/signal at hand.

Alternatively one can resort to a learning method to optimise the parameters directly.

The inherent limitation of these methods is the same as learning the network weights

with BPTT: the whole history of network activations is required at once. One way to

by-pass this issue is to approximate the error signal by considering only past and same-

time contributions, as suggested by Bellec et al. [4] in their framework known as e-prop

(see also [36]), and derive from this approximation an online learning rule for the ESN

hyper-parameters. Following their approach, we end up with a novel learning rule for the

leakage terms of connected ESNs that is similar to the rule proposed by Jaeger et al. [32]

but extended to two hierarchical reservoirs. The main learning rule is given by:

dE

dα(i) (t) =
NESN∑

k=1

∂E

∂x(k)(t)
e(ki)(t) (24)

where e(ki)(t) = dx(k)(t)/dα(i) is known as the eligibility trace which tracks the gradient

of neuron activities in the reservoir number k with respect to the i-th leakage rate. Given

the closed form for the hierarchical ESNs in Eqs. 10 and 11 these terms can be readily

calculated. For our NESN sub-reservoirs in the hierarchical structure there will be N2
ESN

31

Timescales in hierarchical ESNs Paper I

eligibility traces to track how each sub-reservoir depends on the other leakage rates. In

the hierarchical case of a fixed feed-forward structure some of these traces will be zero,

and the number of non-zero eligibility traces would be N(N + 1)/2. Since the update of

the neuron’s activity depends on its previous values, so do the eligibility traces; therefore,

they can be calculated recursively through

e(ki)(t + δt) = (1 − α(k))e(ki)(t) + δki(f(h(k)(t)) − x(k)(t))

+ α(k)f ′(h(k)(t))
∑

l �=k

ρ(kl)W(kl)e(li)(t), (25)

where δki = 1 if k = i and 0 otherwise, i.e the Kronecker delta. The update of equations

25 for each k-i pair needs to follow the order of dependencies given by the structure

of connected reservoirs considered. The eligibility trace is an approximation that only

includes same-time contributions to the gradient but has the advantage that is can be easily

computed online. A complete description of our method is given in the Supplementary

Material. For an example where the mean squared error function E(t) = 1
2
[
ỹ(t) − y(t)

]2

is used in a regression task and a structure composed by two reservoirs, the updating

equations on the leakage terms are

α(1) ← α(1) − ηα
[
ỹ(t) − y(t)

]
Wout




e(11)(t)

e(12)(t)




α(2) ← α(2) − ηα
[
ỹ(t) − y(t)

]
Wout




e(21)(t)

e(22)(t)




(26)

where ηα is the learning rate on the leakage terms and
(
e(k1)(t), e(k2)(t)

)
(k = 1, 2 in

this case with two reservoirs) is a vector composed by the juxtaposition of the eligibility

traces, which can be computed through Eq. 25. Of course, the gradient can be combined

with existing gradient learning techniques, among which we adopt the Adam optimiser,

32

Timescales in hierarchical ESNs Paper I

described in the Supplementary Material. In all online learning simulations, training is

accomplished through minibatches with updates at each time step. Training is stopped

after convergence. When learning αs and the output weights simultaneously, the learning

rates corresponding to these hyper-parameters need to be carefully set, since the weights

need to adapt quickly to the changing dynamic of the network, but a fast convergence of

Wout can trap the optimisation process around sub-optimal values of the leakage terms.

For a reservoir with trained and converged output weights, a further variation of α’s, even

in the right direction, could correspond to an undesirable increase in the error function. We

found that this problem of local minimum can be avoided by applying a high momentum

in the optimisation process of α and randomly re-initialising the output weights when the

α’s are close to convergence. The random re-initialisation functions to keep the output

weights from being too close to convergence. Thus, we defined the convergence of the

algorithm for α’s as when the α’s do not change considerably after re-initialisation. When

this happens, it is possible to turn off the learning on the leakage terms and to optimise

the read-out only. More details about online training can be found in the discussions

related to each task.

3 Results

The following sections are dedicated to the study of the role of timescales and the particular

choices of α and ρ in various tasks, with attention on networks composed by a single ESN,

2 unconnected ESNs and 2 hierarchical ESNs. The number of trainable parameters in

each task for the different models will be preserved by using the same total number of

neurons in each model. The results analysed will be consequently interpreted through the

analysis of timescales of the linearised systems.

33

Timescales in hierarchical ESNs Paper I

3.1 NARMA10

A common test signal for reservoir computing systems is the non-linear auto-regressive

moving average sequence computed with a 10 step time delay (NARMA10) [37, 38]. Here

we adopt a discrete time formalism where n = t/δt and the internal state of the reservoir

is denoted as xn = x(nδt). The input, sn, is a uniformly distributed random number in

the range [0, 0.5] and the output time-series is computed using

yn = yn−1

(
a + b

D∑

k=1
yn−k

)
+ csn−1sn−D + d, (27)

where D = 10 is the memory length, a = 0.3, b = 0.05, c = 1.5, and d = 0.1. The

task for the network is to predict the NARMA10 output yn given the input sn. We have

adapted this to also generate a NARMA5 task where D = 5 but the other parameters

are unchanged. This provides an almost identical task but with different timescales for

comparison.

The task of reconstructing the output of the NARMA10 sequence can be challenging

for a reservoir as it requires both a memory (and average) over the previous 10 steps and

fast variation with the current input values to produce the desired output. A typical input

and output signal is shown in Fig. 3A and the corresponding auto-correlation function of

the input and output in B. Since the input is a random sequence it does not exhibit any

interesting features but for the output the auto-correlation shows a clear peak at a delay

of 9 δt in accordance with the governing equation. For a reservoir to handle this task well

it is necessary to include not only highly non-linear dynamics on a short timescale but

also slower dynamics to handle the memory aspect of the task.

This regression task is solved by training a set of linear output weights to minimise

the mean squared error (MSE) of the network output and true output. The predicted

output is computed using linear output weights on the concatenated network activity

(xn =
(
x(1)

n , x(2)
n

)T
), such that

ỹn = xT
n Wout (28)

34

Timescales in hierarchical ESNs Paper I

where W is the weight vector of length N+1 when an additional bias unit is included.

The MSE is minimised by using the ridge regression method [39] such that the weights

are computed using

Wout =
(
xT x − λI

)−1
xT y (29)

where x is a matrix formed from the activation of the internal states with a shape of number

of samples by number of neurons, y is the desired output vector, λ is the regularisation

parameter that is selected using a validation data set and I the identity matrix. To analyse

the performance of the ESNs on the NARMA10 task we use the normalised root mean

squared error as

NRMSE =
√

1
Ns

∑Ns
n (ỹn − yn)2

Var(y) , (30)

where ỹn is the predicted output of the network and yn is the true output as defined by

Eq. 27.

35

Timescales in hierarchical ESNs Paper I

 

 

 

 

























Figure 3: Performance of single or hierarchical ESNs on the NARMA10 and NARMA5 task. A:
Example input signal (black) and desired output (red) for the NARMA10 task. B: The auto-
correlation function of the (black) input, (red) NARMA10 and (blue) NARMA5 desired output
signals, showing a second peak at about 9 delay steps for the NARMA10 and 4 for the NARMA5.
C: The NRMSE for a single ESN for with ρ = 1.0 and 0.63 over a range of α. The NRMSE is
lower for ρ ≈ 1 and α = 1. The solid lines show the minimum NRMSE for the unconnected (blue
line) and connected (red line); for the unconnected case the minimum NRMSE is similar to the
single ESN while the connected case has a smaller NRMSE by about 10%. D: Average NRMSE
of a single ESN for various α compared to the hierarchical ESNs for the NARMA5 task. E-N:
The average NRMSE surface using a hierarchical ESN computed for varying the leakage rates α(k)

of both the reservoir components for E and I (no coupling, ρ(12) = 0), F and L (weak coupling,
ρ(12) = 0.1), and G and M (strong coupling, ρ(12) = 1). Panels I-N show a close up in region for
the range α(k) = [0.1, 1] to highlight the changing behaviours. The lines on these panels show the
trajectory of the α(k) values trained directly using the online method. For each case of the coupling
the online learning trends towards the approximate error minimum. H shows the NRMSE surface
for the NARMA5 task using a strongly connected hierarchical ESN, with N again showing a zoom
of the α = [0.1, 1] region. The region of best performance is with α(2) ≈ 0.5 which matches the
shorter timescale demonstrated in the auto-correlation in B.

36

Timescales in hierarchical ESNs Paper I

To test the effectiveness of including multiple time-scales in ESNs, we simulate first

a single ESN with N = 100 neurons and vary both α and ρ to alter the time-scale

distribution. Secondly, we simulate a hierarchical ESN split into 2 reservoirs each with

N = 50 neurons, where we vary α(1) and α(2) with ρ(1) = ρ(2) = 0.95. The input factor

was set as γ(1) = 0.2 and γ(2) = 0 for the connected hierarchical ESN but when they

are unconnected the input is fed into both, such that γ(1) = γ(2) = 0.2. In all cases the

NRMSE is computed on an unseen test set and averaged over 20 initialisations of the ESN

with a running median convolution is applied to the error surfaces to reduce outliers. In

parallel to this we have also applied the online training method for the α hyper-parameters.

The hyper-parameters used for the gradient descent learning are summarised in Table 1.

Figure 3E-G and I-M show the NRMSE depending on α(1) and α(2) for 3 variations

of the hierarchical ESN connection strength on the NARMA10 task. In the unconnected

case (ρ(21) = 0, panels E and I), we find that the NRMSE drops by increasing both leakage

rates but the minimum is when one of the leakage rates is ≈ 0.5. This is in agreement with

the online learning method for the αs in shown in I but the error minimum is shallow and

prone to noise in the signal or ESN structure. For the weakly connected hierarchical ESN

(ρ(21) = 0.1, panels F and L) we find again that when the sub-reservoirs have different

timescales the NRMSE is reduced. In comparison to the unconnected case the error

surface is asymmetric with a minimum at approximately α(1) = 1.0 and α(2) ≈ 0.5. As

the strength of the connection is increased (ρ(21) = 1.0, Panel G and M), the minimum

error moves to a lower leakage rate in the second reservoir (α(2) ≈ 0.2) which reflects a

better separation of the timescale distributions. This is a gradual effect with respect to the

connection strength since stronger connection allows for a relative increase of the expanded

input from the first reservoir compared to the base input signal. Since the input feeds

into reservoir 1, a high α provides a transformation on the input over short time-scales,

expanding the dimensionality of the signal, offering a representation that preserves much

of the dynamic of the driving input and that is fed to the second reservoir. Then, since

the latter does not have a direct connection to the input it performs a longer timescale

37

Timescales in hierarchical ESNs Paper I

transformation of the internal states of reservoir 1. In this way the reservoirs naturally

act on different parts of the task, i.e. reservoir 1 provides a fast non-linear transformation

of the input while reservoir 2 follows the slower varying 10-step average of the signal, and

thus returning a lower NRMSE. As a side note, we can demonstrate the validity of the

theoretical analysis in Section 2.1 by replacing the first reservoir by Eq. 23 on the NARMA

task (see Section 3 Supplementary Material), resulting in a similar landscape as in Fig.

3G and a similar optimal value for α(2).

Figure 3C shows the relative performance of the single ESN to the minimum values for

the unconnected (ESNu
2) and connected (ESNc

2) hierarchical reservoirs. The single ESN

shows the similar decrease in NRMSE with increasing α and reaches a similar minimum

NRMSE as the unconnected case. In comparison with the connected cases the multiple

timescales provides a more optimised result. If we consider the analysis of the timescales

discussed in the previous section the choice of these hyper-parameters becomes more ev-

ident. With α = 1 the timescale distribution of the network is sharply peaked close to

the minimum timescale of 1 discrete step while when α = 0.1 this peak is broader and

the peak of the distribution is closer to the second peak present in the auto-correlation

function shown in Panel B. We note that whilst the most likely timescale is τpeak ≈ 6 for

α = 0.1, ρ = 0.95 which is lower than the natural timescale of the problem, the increased

width of the distribution increases the number of timescales at τ = 10 dramatically which

maybe why a lower α is not necessary.

To further investigate the effect of the inherent timescale of the task on the timescales

we performed a similar analysis on the NARMA5 task. Figure 3H and N show the NRMSE

surface for the strongly connected case. The minimum error occurs at α(1) ≈ 1.0 (similar

to the NARMA10 results in G and M) but α(2) ≈ 0.5 (as opposed to ≈ 0.2 for NARMA10).

This is due to the shorter timescales required by the NARMA5 task and the peak timescale

for these values is much closer to the peak in the auto-correlation shown in B. Panel D

shows the performance of the single ESN where again the optimal leakage rate is α = 1

and similar to the unconnected cases but the NRMSE is higher than the connected cases.

38

Timescales in hierarchical ESNs Paper I

In this theoretical task where the desired output is designed a priori, the memory

required and the consequent range of timescales necessary to solve the task are known.

Consequently, considering the mathematical analysis in section 2.1, and that for hierar-

chical ESNs the timescales of the first ESN should be faster than those of the second

Fig. 3), the best-performing values of the leakage terms can be set a priori without the

computationally expensive grid search reported in Fig. 3E-I. However, it can be difficult

to guess the leakage terms in the more complex cases where the autocorrelation structure

of the signal is only partially informative of the timescales required.

This problem can be solved using the online learning approach defined through Eq.

24. In this case, learning is accomplished through minibatches and the error function can

be written explicitly as

E(t) = 1
2Nbatch

Nbatch∑

m=1

[
ỹ(t, m) − y(t, m)

]2 (31)

where Nbatch is the minibatch size and m is its corresponding index. A minibatch is

introduced artificially by dividing the input sequence into Nbatch signals or by generating

different NARMA signals. Of course, the two methods lead to equivalent results if we

assure that the Nbatch sequences are temporally long enough. A learning rate ηα/ηW ≈

10−2−10−3 was adopted. The optimiser used for this purpose is Adam, with the suggested

value of β1 = 0.9 adopted for the output weights and a higher first momentum β1 = 0.99

adopted for the leakage terms. Instead, we set β2 = 0.999 of the second momentum for

both types of parameters (See section 5.1 for a description of the updating rules). Panels

I-N show a zoomed in region of the error surface with the lines showing the online training

trajectory of the α hyper-parameters. In each case the trajectory is moving towards the

minimum NRMSE of the α phase space.

39

Timescales in hierarchical ESNs Paper I

Learning hyper-parameters
NARMA/Telegraph psMNIST

Network size, N 100 1200
Minibatch size, Nbatch 10 50

Learning Wout
ηW 10−3 5e − 2 [5e − 3]†
β1 0.9 0.9
β2 0.999 0.999
ε 10−8 10−8

Learning α

ηα 5 × 10−6 10−4

β1 0.99 0.999
β2 0.999 0.999
ε 10−8 10−8

Table 1: Table of the hyper-parameters adopted in the online learning process. η is the learning
rate in each case, while β1, β2 and ε are parameters for the Adam optimiser (further details are
given in the Supplementary Material). The † symbol indicates that the learning rate 5e − 2 is for
the case with 4 hidden states, while the learning rate 5e − 3 is for the case with 28 hidden states.
This decrease of η is due to the increase in the dimensionality of the representation for the latter
case in comparison to the situation where the read-out is composed by four concatenated values
of activity. Furthermore, such learning rates are 10 times higher than the case in which only the
read-out is trained (only in the psMNIST task). Thus, the high learning rate adopted has the
purpose to introduce noise in the learning process and to avoid local minima in the complex case
where α and Wout are optimised simultaneously.

3.2 A volatile environment

We now turn to study the reservoir performance on a task of a telegraph process in a

simulated noisy environment. The telegraph process s(1)(t) has two states that we will

call up (1) and down (0), where the probability of going from a down state to an up state

p(s = 1|s = 0) (or the opposite p(s = 0|s = 1)) is fixed for any time step. The environment

is also characterised by a telegraph process s(2)(t), but the transition probability is much

lower and controls the transition probability of the first signal. To simplify the notation in

the following we denote the probability of the signal i transitioning from state a to state

b as P (s(i)(t) = a|s(i)(t − δt) = b) = p
(i)
ab (t). The signal taken under consideration is then

composed by a fast telegraph process with probabilities p
(1)
01 (t) and p

(1)
10 (t), whose values

are interchanged by following the dynamic of a slower telegraph process s(2)(t). Every

40

Timescales in hierarchical ESNs Paper I

time the slower environment signal changes its state, the probabilities of the first signal

are changed, i.e p
(1)
01 (t) ↔ p

(1)
10 (t). The resulting signal is then characterised by

p
(1)
10 (t) =





p1, if s(2)(t) = 0

p2, if s(2)(t) = 1
(32)

p
(1)
01 (t) =





p2, if s(2)(t) = 0

p1, if s(2)(t) = 1
(33)

The transition probabilities of the second signal are fixed and symmetric such that

p
(2)
01 (t) = p

(2)
10 (t) = p3, (34)

The probabilities p1, p2 and p3 are fixed parameters of the signal that define the process.

Given that the second signal controls the probabilities of the first telegraph process, we

say that it defines the regime of the input, while we refer to the up and down values

of the first process simply as states. Thus, the reconstruction of s(1)(t) from the input

will be called state reconstruction, while reconstruction of s(2)(t) will be called regime

reconstruction. These reconstructions can be considered separately or as a joint task

requiring the system to be modeled on long and short timescales simultaneously. Due to

the probability transition caused by s(2)(t), both states and regime will be equally present

over a infinitely long signal. The values adopted for the simulation are p1 = 0.05, p2 = 0.1

and p3 = 0.0005.

The input signal corresponds to s(1)(t) + σN (0, 1), that is the faster telegraph process

with additional white noise. The input signal constructed is a metaphor of a highly

stochastic environment with two states and two possible regimes that define the probability

of switching between the two states. The reservoir will be asked to understand in which

state (s(1)(t) = 1 or 0) and/or regime (s(2)(t) = 1 or 0) it is for each time t, measuring

41

Timescales in hierarchical ESNs Paper I

the understanding of the model to estimate the state of the input signal. The input signal

and telegraph processes is shown in Fig. 4A, while the B shows the corresponding auto-

correlation structure of the processes. The auto-correlation shows that the input has a

temporal structure of around 10 δt while the slow ‘environment’ process has a structure

close to 1000 δt. This corresponds directly to the timescales defined by the probabilities

of the signals.

  

  





Figure 4: The best structure and parameters of the model depend on the specific environment
considered, that is different values of the additive noise in the input signal, and on the specific
desired output. A: Example of input signal and of its generative processes, which have a faster
and a slower dynamic respectively. When the slower process (red line) is up (down), the other
signal is in a regime where the average time in the zero (one) state is greater than the average
time spent in the other state. The input signal (grey line) corresponds to the faster process (black
line) with additional white noise. B: Auto-correlation structure of the two generative processes.
C: The accuracy surface for a single ESN on the state recognition sub-task for varying level of
noise (σ) and leakage rate of the network showing that for increasing levels of noise a lower leakage
rate is needed to determine the state. The line shows the trajectory of α using the online learning
method when the strength of the noise is changed. D: The accuracy for a single ESN on the
regime recognition sub-task for varying noise and leakage rate. In this case the low leakage rate
is preferred for all values of noise. E: Accuracy surface for the state recognition sub-task for an
unconnected hierarchical ESN showing how either of the leakage rates must be low while the other
is high. F: Accuracy surface for the regime recognition sub-task for a hierarchical ESN showing
the first reservoir must have a high leakage rate and the second a low leakage rate.

Panels C and D of Fig. 4 show the performance of a single ESN when it is tasked

to reconstruct the processes s(1)(t) (state recognition) and s(2)(t) (regime recognition)

42

Timescales in hierarchical ESNs Paper I

  

Figure 5: The online training of the leakage terms can adapt to the changing environment, that
is the signal probabilities are increased or decreased periodically. A: Scheme of the change of the
values of probabilities, where high probabilities of switching are referred to as fast phase of the
telegraph process, while low probabilities as slow phase. B: Running average of the gradients of
α(1) and α(2) as time varies. C: Online adaptation of the leakage terms.

respectively. In this simulation, learning is always accomplished online and the error

function is the same as Eq. 31. First, panel C demonstrates how the leakage term, α,

must be tuned to the level of noise of the environment, and how lower values of α are

desirable for noisier signals, in order to solve the state recognition problem. Indeed, the

need to smooth the fluctuations of the input signal increases with σ, while for low values

of noise the network should simply mimic the driving input. Second, panel D shows how

the desirable values of α must be lower in the case where the network is asked to reproduce

the slower dynamic of s(2)(t) independently of having to output the fast signal, in order to

solve the regime recognition problem. This result exemplifies how the timescales of the

network must be tuned depending on the desired output. It demonstrates that, even in

this relatively simple environment, it is crucial to adopt multiple timescales in the network

to obtain results that are robust with respect to a variation of the additional white noise

σ.

Finally, panels E and F of Fig. 4 show the accuracy of two unconnected (E) and

connected (F) reservoirs when the network has to classify the state and the regime of

the input signal at the same time. In this case, the desired output corresponds to a four

dimensional signal that encodes all the possible combinations of states and regimes; for

43

Timescales in hierarchical ESNs Paper I

instance, when the signal is in the state one and in the regime one, we would require the

first dimension of the output to be equal to one and all other dimensions to be equal to

zero, and so on. The best performance occurs when one leakage term is high and the

other one is low and in the range of significant delays of the auto-correlation function.

This corresponds to one network solving the regime recognition and the other network

solving the state recognition. For the unconnected reservoirs, it does not matter which

reservoir has high vs. low leakage terms, reflected by the symmetry of Fig. 4E, while

for the connected reservoirs, the best performance occurs when the first reservoir has the

high leakage term and the second the low leakage terms, see Fig. 4F, similar to Fig. 3.

Both two-reservoir networks can achieve accuracy 0.75, but the single ESN can not solve

the task efficiently, since it cannot simultaneously satisfy the need for high and low αs,

reporting a maximum performance of about 0.64.

The path reported in panel C of Fig. 4 and all panels in Fig. 5 show the application

of the online training algorithm in this environment. The values of the hyper-parameters

adopted in the optimisation process through the Adam optimiser are the same as in sec-

tion 3.1, where we used a slower learning rate and a higher first momentum on the leakage

terms in comparison to the values adopted for the output weights. The line of panel

C (Fig. 4) shows the online adaptation of α for a simulation where the external noise

increases from one to four with six constant steps of 0.5 equally spaced across the com-

putational time of the simulation. The result shows how the timescales of the network

decrease for each increase in σ, depicted with a circle along the black line. The path of

online adaptation reports a decrease of the α value for noisier external signals. This re-

sult occurs because as the signal becomes noisier (σ rises), it becomes more important to

dampen signal fluctuations. This result also shows that the online algorithm can adapt in

environments with varying signal to noise ratio. Panels A, B, C of Fig. 5 show the online

training of α(1) and α(2) for an environment composed by a faster and a slower compo-

sition of telegraph processes. This specific simulation is characterised by the alternation

of two signals defined by Eq. 32, 33 and 34, each with different values of p1 and p2. In

44

Timescales in hierarchical ESNs Paper I

particular, while p1 = 0.5 and p2 = 0.1 for the ’fast’ phase of the external signal, p1 = 0.1

and p2 = 0.05 for the ’slow’ phase. In contrast, the slower timescale of the task defined

by p3 = 0.0005 remains invariant across the experiment. Panel C shows the adaptation

of the leakage terms for this task in the case of a hierarchical structure of ESNs. While

α(2) adapts to the change of p1 and p2 following the transition between the two phases of

the external signals, the relatively constant value of α(1) indicates how the first network

sets its timescales to follow the slower dynamic of the signal, characterised by the con-

stant value of p3. Thus, the composed network exploits the two reservoirs separately, and

the first (second) reservoir is used to represent the information necessary to recognise the

regime (state) of the external signal.

3.3 Permuted Sequential MNIST

The Permuted Sequential MNIST (psMNIST) task is considered a standard benchmark for

studying the ability of recurrent neural networks to understand long temporal dependen-

cies. The task is based on the MNIST dataset, which is composed of 60, 000 handwritten

digits digitised to 28x28 pixel images. In the standard MNIST protocol every pixel is

presented at the same temporal step so a machine has all the information of the image

available at once and needs to classify the input into one out of ten classes. In contrast, in

the psMNIST task, the model receives each pixel sequentially once at a time, so that the

length of the one dimensional input sequence is 784. Thus, the machine has to rely on its

intrinsic temporal dynamic and consequent memory ability to classify the image correctly.

Furthermore, each image in the dataset is transformed through a random permutation of

its pixels in order to include temporal dependencies over a wide range of input timescales

and to destroy the original images’ structure. Of course, the same permutation is ap-

plied on the entire dataset. The performance of ESNs on the MNIST dataset, where each

columns of pixels in a image is fed to the network sequentially (each image corresponds

to a 28 dimensional signal of length 28 time steps), has been analysed in [40] and in [41].

45

Timescales in hierarchical ESNs Paper I

In [40] the original dataset was preprocessed through reshaping and rotating the original

image to enhance the network’s ability to understand high level features of the data. In

this case, the original dataset is used. In [41], the addition of thresholds and the intro-

duction of sparse representation in the read-out of the reservoir was used to improve the

performance of the network in the online learning of the standard MNIST task through

reservoir computing. This section is focused on the analysis of the performance of ESNs

on the psMNIST task and on their dependence on the range of timescales available in the

network, i.e. the values of α and ρ chosen. In contrast to the previous sections where

ESNs are trained through ridge regression, we have applied an online gradient descent

optimisation method. The cost function chosen to be minimised is the cross entropy loss

E = − 1
Nbatch

Nbatch∑

m=1

Nclass∑

j=1

[
yj(m) log

(
ỹj(m)

)
+

(
1 − yj(m)

)
log

(
1 − ỹj(m)

)]
, (35)

where m is the minibatch index, Nbatch corresponds to the minibatch size and Nclass is the

number of classes. For this task the desired output, yj , is a one-hot encoded vector of the

correct classification while the desired output is a sigmoid function of the readout of the

reservoir nodes. Furthermore, instead of reading out the activity of the reservoir from the

final temporal step of each sequence only, we have expanded the reservoir representation

by using previous temporal activities of the network. In practice, given the sequence of

activities x(0), x(δt), ..., x(δtT) (T = 784) that defines the whole temporal dynamic of the

network subjected to an example input sequence, we trained the network by reading out

from the expanded vector X =
[
x(Mδt), x(2Mδt), ..., x(Tδt)

]
, where M defines the ’time

frame’ used to sample the activities of the evolution of the system across time.

ỹ = sigm




T/M∑

n=1
W(n)

outx(nMδt)


 (36)

46

Timescales in hierarchical ESNs Paper I

, where sigm stands for sigmoid activation function. We then repeat the simulation for

two different time frames of sampling for each different model, that is a single ESN and a

pair of unconnected or connected ESNs, as in the previous sections.

The two values of M used are 28 and 196, corresponding to a sampling of 28 and

4 previous representations of the network respectively. Of course, a higher value of M

corresponds to a more challenging task, since the network has to exploit more its dynamic

to infer temporal dependencies. We note, however, that none of the representation ex-

pansions used can guarantee a good understanding of the temporal dependencies of the

task, or in other words, can guarantee that the system would be able to discover higher

order features of the image, considering that these features depend on events that could

be distant in time.

47

Timescales in hierarchical ESNs Paper I















































Figure 6: The additional non linearity added by the hierarchical reservoir structure is responsible
for a relevant modification and increase of the performance surface. A,C: Auto-correlation struc-
ture of the MNIST dataset for two examples of digits, where each pixel is presented one after the
other (C), and auto-correlation structure of the data after the random permutation(A). The oscil-
latory trend in C reflects the form of the written digits, when this is seen one pixel after the other.
The auto-correlation function of the permuted data is low, but not negligible, for all the temporal
steps, showing the necessity to have a wide repertoire of timescales in the interval corresponding
to the image size. B,D: Accuracy of a single ESN for various α values compared the maximum ac-
curacy of the hierarchical ESNs with 4 hidden states (B) or 28 hidden states (D). E-F: Case with
low sampling frequency of the ESNs which corresponds to a higher demand of internal memory in
the reservoir. While the best region of accuracy for the unconnected reservoirs is characterised by
intermediate values of the leakage factors, the hierarchically connected network structure reports
the best performance when the second network has slower dynamics. G-H: The utilisation of a
high sampling frequency alleviates the need for long term memory, and the reservoirs prefer the
regions with fast timescales. In both cases analysed, the additional complexity of the hierarchical
model leads to a considerable boost in performance. I-N: Paths (black line, starting from the circle
and ending in the star) that describe the online changes of the leakage terms achieved through
the online training algorithm in a zoomed region of the performance surface of α(1) and α(2). The
paths are smoothed through a running average.

48

Timescales in hierarchical ESNs Paper I

In Fig. 6 we again analyse the performance of two connected or unconnected ESNs

varying α(1) and α(2) for both M = 28 and 196. In contrast to the previous sections, we

now use gradient descent learning on the output weights instead of ridge regression and

increase the total number of neurons in each model to N = 1200 due to the complexity of

the task. The Adam optimiser is used; its parameters, for both the output weights and α

learning, are in Table 1. As previously, we have trained the output weights over a range

of fixed αs and report the performance on an unseen test data set. In parallel to this we

have trained both the output weights and α values which, as shown by the lines on the

contour plots, converge towards the minimum computed using the fixed α’s.

As in the other simulations, we found that the values of ρ corresponding to the best

performance was approximately one, which maximises the range of timescales and the

memory available in the network. Fig. 6E-F shows the case with M = 28, while Fig. 6G-H

reports the accuracy for the simulation with M = 196 where E and G are unconnected

and F and H connected reservoirs. The accuracy surface demonstrates how, in the case

of the unconnected ESNs with a fast sampling rate in panel G, the best performance is

achieved when at least one of the two values of α is close to one. The result is due to the

fast changing dynamic of the temporal sequence that is introduced through the random

permutation of the pixels. On the contrary, in the case of the unconnected ESNs with a

slow sampling rate in panel E the best accuracy is in a range of intermediate timescales

since both partitions must respond to both fast and slow timescales.

This relatively simple behaviour of the dependence of the accuracy on the setting

of the hyper-parameters changes in the cases of two connected ESNs, whose additional

complexity corresponds to a considerable increase in the performance. Fig. 6H reports how

the network prefers a regime with a fast timescale in the first reservoir and a intermediate

timescale in the second, which acts as an additional non-linear temporal filter of the

input provided by the first network. The need of memory of events distant in time is

emphasised in 6F, where the best performing network is composed by reservoirs with fast

and slow dynamics respectively. The performance boost from the panels E-G to the ones

49

Timescales in hierarchical ESNs Paper I

F-H has only two possible explanations: first, the timescales of the second network are

increased naturally thanks to the input from the first reservoir; second, the connections

between the two reservoirs provide an additional non-linear filter of the input that can

be exploited to discover higher level features of the signal. Thus, we can conclude once

again that achieving high performance in applying reservoir models requires (1) additional

non-linearity introduced through the interconnections among the reservoirs and (2) an

appropriate choice of timescales, reflecting the task requirements in terms of external

signal and memory.

Panels I, L, M and N show the application of the online training of αs for the var-

ious cases analysed. In the psMNIST task we found that the major difficulties in the

application of an iterative learning rule on the leakage terms are: the possibility to get

trapped in local minima, whose abundance can be caused by the intrinsic complexity of

the task, the intrinsic noise of the dataset, the randomness of the reservoir and of the

applied permutation; the high computational time of a simulation that exploits an itera-

tive optimisation process on αs arising from a practical constraint in the implementation.

Indeed, while the activities of the reservoir can be computed once across the whole dataset

and then saved in the case of untrained values of αs, the activities of the nodes need to be

computed every time the leakage terms change in the online learning paradigm. However,

we found that using a higher learning rate ηW on the output weights, compared to the

value adopted in the paradigm where the leakage terms are not optimised (as in Panels

E, F, G and H), can introduce beneficial noise in the learning process and help to avoid

local minima. Furthermore, a higher value of the learning rate on the output weights

corresponds to an increased learning rate on the thresholds, as shown from Eq. 43 and

from the dependence of the updating equations on Wout. As in the previous simulations

of Sections 3.1 and 3.2, the output weights are randomly reinitialised after the convergence

of αs, helping the algorithm to avoid an undesirable quick convergence of weights. The

online process is then ended when the leakage terms remain approximately constant even

after the re-initialisation. Following this computational recipe, it possible to avoid the

50

Timescales in hierarchical ESNs Paper I

difficulties found and train the leakage terms efficiently.

Finally, we note how the best accuracy of 0.96 reached throughout all the experiments

on the psMNIST is comparable to the results obtained by recurrent neural networks trained

with BPTT, whose performance on this task are analysed in [42] and can vary from 0.88

to 0.95. In comparison to recurrent structures trained through BPTT, a network with two

interacting ESNs provide a cheap and easily trainable model. However, this comparison

is limited by the necessity of recurrent neural networks to carry the information from the

beginning to the end of the sequence, and to use the last temporal state only or to adopt

attention mechanisms.

4 Conclusion

In summary, ESNs are a powerful tool for processing temporal data, since they contain

internal memory and time-scales that can be adjusted via network hyper-parameters. Here

we have highlighted that multiple internal time-scales can be accessed by adopting a split

network architecture with differing hyper-parameters. We have explored the performance

of this architecture on three different tasks: NARMA10, a benchmark composed by a

fast-slow telegraph process and PSMNIST. In each task, since multiple timescales are

present the hierarchical ESN performs better than a single ESN when the two reservoirs

have separate slow and fast timescales. We have demonstrated how choosing the optimal

leakage terms of a reservoir can be aided by the theoretical analysis in the linear regime of

the network, and by studying the auto-correlation structure of the input and/or desired

output and the memory required to solve the task. The theoretical analysis developed

needs to be considered as a guide for the tuning of the reservoir hyper-parameters, and

in some specific applications it could be insufficient because of the lack of information

about the nature of the task. In this regard, we showed how to apply a data-driven

online learning method to optimise the timescales of reservoirs with different structures,

demonstrating its ability to find the operating regimes of the network that correspond to

51

Timescales in hierarchical ESNs Paper I

high performance and to the best, task-dependent, choice of timescales. The necessity of

adopting different leakage factors is emphasised in the case of interactive reservoirs, whose

additional complexity leads to better performance in all cases analysed. Indeed, the second

reservoir, which acts as an additional non linear filter with respect to the input, is the

perfect candidate to discover higher temporal features of the signal, and it consequently

prefers to adopt longer timescales in comparison to the first reservoir, which has instead the

role of efficiently representing the input. We believe such hierarchical architectures will

be useful for addressing complex temporal problems and there is also potential to further

optimise the connectivity between the component reservoirs by appropriate adaptation of

the online learning framework presented here.

52

Timescales in hierarchical ESNs Paper I

5 Appendix

5.1 Online Learning

The online learning method formulated is similar to the approach followed in e-prop by [4]

(see also [36]), a local learning rule for recurrent neural networks that exploits the concept

of an eligibility trace, and in [32]. As in these previous works, we approximated the error

function to neglect the impact that the instantaneous and online changes of the network’s

parameters have on future errors. In particular, considering a recurrent neural network as

the one depicted in the computational graph in Fig. 7A and the dependencies of the error

function E on the activities x(t)

dE

dα
=

∑

t

dE

dx(t)
dx(t)
dα

=
∑

t

{
∂E(t)
∂x(t) + ∂E(t + 1)

∂x(t + 1)
∂x(t + 1)

∂x(t) + ∂E(t + 2)
∂x(t + 2)

∂x(t + 2)
∂x(t + 1)

∂x(t + 1)
∂x(t) + ...

}
dx(t)
dα

=
∑

t

{ ∑

t′ ≥t

∂E(t′)
∂x(t′) Jt′ t

}
dx(t)
dα

, (37)

Jt′ t = ∂x(t′)
∂x(t′ − 1) · · · ∂x(t + 1)

∂x(t) (38)

Eq. 37 and 38 define the algorithm back-propagation through time, where the de-

pendencies of dE

dx(t) on activities at future time t′ do not permit the definition of an

online learning rule. As in the works of [32] and [4] we decided to adopt the following

approximation

dE

dα
=

∑

t

{ ∑

t′≥t

∂E(t′)
∂x(t′) Jt

′
t

}
dx(t)
dα

≈
∑

t

∂E(t)
∂x(t)

dx(t)
dα

(39)

53

Timescales in hierarchical ESNs Paper I

We will now derive the equations defining the iterative learning approach for the ex-

ample cost function

E(t) = 1
2

[
ỹ(t) − y(t)

]2 (40)

where ỹ is the desired output and y = Woutx(t) is the output of the ESN. Then, we

desire to compute ∂E/∂α(k), which describes the leakage term k for a network compose

by multiple reservoirs. In particular, the case of two connected ESNs in considered and

analysed here, while the more general case with N interacting ESNs can be easily derived

following the same approach. In this case, the vector of activities x(t) =
(
x1(t), x2(t)

)
is

composed by the juxtaposition of the vectors of activities of the two reservoirs.

x(1)(t + 1) = (1 − α(1))x(1)(t) + α(1)f
[
Wins(t) + W(11)x(1)(t)

]
(41)

x(2)(t + 1) = (1 − α(2))x(2)(t) + α(2)f
[
W(21)x(1)(t) + W(22)x(2)(t)

]
(42)

dE(t)
dα(1) = −[

ỹ(t) − y(t)
]
Wout




dx(1)(t)
dα(1)

dx(2)(t)
dα(1)




dE(t)
dα(2) = −[

ỹ(t) − y(t)
]
Wout




dx(1)(t)
dα(2)

dx(2)(t)
dα(2)




(43)

54

Timescales in hierarchical ESNs Paper I

dx(1)(t)
dα(1) = (1 − α(1))dx(1)(t − 1)

dα(1) − x(1)(t − 1)+

+ α(1)f ′[Wins(t) + W(11)x(1)(t − 1)
]
W(11) dx(1)(t − 1)

dα(1) +

+ f
[
Wins(t) + W(11)x(1)(t − 1)

]
(44)

dx(2)(t)
dα(2) = (1 − α(2))dx(2)(t − 1)

dα(2) − x(2)(t − 1)+

+ α(2)f ′[W(21)x(1)(t − 1) + W(22)x(2)(t − 1)
]
W(22) dx(2)(t − 1)

dα(2) +

+ f
[
W(21)x(1)(t − 1) + W(22)x2)(t − 1)

]
(45)

dx(1)(t)
dα(2) = 0 (46)

dx(2)(t)
dα(1) = (1 − α(2))dx(2)(t − 1)

dα(1) +

+ α(2)f ′[W(21)x(1)(t − 1) + W(22)x(2)(t − 1)
][

W(22) dx(2)(t − 1)
dα(1) +

+ W(21) dx(1)(t − 1)
dα(1)

]
(47)

That can be computed online tracking the eligibility traces dx(1)(t)
dα(1) = e(11)(t), dx(2)(t)

dα(1) =

e(21)(t), dx(2)(t)
dα(2) = e(22)(t) and updating them in an iterative way. Of course, for the more

general case of N connected reservoirs, the number of eligibility traces to be computed

would be N2. We note how the differences between the connected and unconnected reser-

voirs are: e(21)(t) = 0 in the latter case, since the activity of the second reservoir does

not depend on the activities of the first; e(22)(t) would have an analogous expression to

e(11)(t) in the case of unconnected reservoirs.

In order to understand the meaning of the approximation in Eq. 39, we can consider

55

Timescales in hierarchical ESNs Paper I

the psMNIST task defined in section 3.3, in which two different numbers of previous

hidden states are used for classification. In this example, the future terms t′ from which
dE

dx(t) depends correspond to the concatenated temporal steps
{
tl

}
l=1,...,Nconc

used for the

readout. Following the computational graph in panel B of Fig. 7 , the approximation of

BPTT is

dE

dα
=

∑

l

{ ∑

q≥l

∂E(tq)
∂x(tq) Jtqtl

}
dx(tl)

dα

≈
∑

l

∂E(tl)
∂x(tl)

dx(tl)
dα

(48)

where the contribution of the terms corresponding to ∑
q>l

∂E(tq)
∂x(tq) Jtqtl

are neglected.

The number of these terms increases as the number of hidden states used to define the

read-out rises, and the contribution of the matrices Jtqtl
becomes more important when

the hidden states utilised are in closer proximity. Thus, the approximation used to define

the online training algorithm is less precise for an increasing number of hidden states

used. This consideration can be observed in Panels C and D of Fig. 7, in which the values

of the gradients are compared to those given by BPTT for the two different numbers of

concatenated values adopted in Section 3.3.

56

Timescales in hierarchical ESNs Paper I

A

B D

C

Figure 7: The online training algorithm used [4] maintains the majority of the temporal informa-
tion of BPTT, while the approximation becomes less precise as the number of concatenated steps
increases. A-B: Scheme of the computational graph for the contribution of dE

dx(t) for the case where
the error function is ’continuous’ across time A, and the case where the error function is sparse
across time B. The blue arrows represent the factors considered, while the red arrows correspond
to the factors that are neglected in the approximation. Each mathematical term adjacent to an
arrow is a multiplicative factor in the contribution of a path of dependencies in the computation
of dE

dx(t) . C-D: Comparison of a running average of the derivative estimated through the online
training algorithm used (red and blue lines) and BPTT (dots and triangles). The approximation
is less precise when the number of hidden states used for the read-out increases, as it is evident
from the greater distance between the blue trend and the dots in panel D.

57

Timescales in hierarchical ESNs Paper I

Given the gradients with respect of the parameters of the network dE
dα(k) and dE

dWij

(W are the output weights here) in our simulations, we used the Adam optimisation

algorithm, described below for completeness for a general parameter α (that could be one

of the leakage terms or Wij).

mt ← (1 − β1)mt−1 + β1
dE

dα
(49)

vt ← (1 − β2)vt−1 + β2
(dE

dα

)2 (50)

m̃t ← mt/(1 − βt
1) (51)

ṽt ← vt/(1 − βt
2) (52)

αt = αt−1 − ηα(m̃t/(
√

ṽt + ε)) (53)

where t is the index corresponding to the number of changes made and m0 = 0, v0 = 0.

5.2 Timescales, oscillations and eigenvalues

A B

Figure 8: The analysis of the eigenvalues in the linear regime can offer insights in the under-
standing of the dynamical behaviour of the network. A: Experimental (black dots) and theoretical
(coloured lines) response computed though Eq. (56). The timescales estimated are reflected in the
exponentially decaying trends shown, while the oscillations are consequent to the imaginary parts
of the eigenvalues. B: RMSE (blue) and NRMSE (red) between the activities of the nodes and the
dynamic estimated in the linear regime as γ, the input strength, varies.

58

Timescales in hierarchical ESNs Paper I

We stimulated the reservoir with a square wave of duration 200δt (the time frame of

the considered simulation) and analysed the system activity after the impulse to study

its relaxation dynamics. Thus, we exploited the fact that, given a system described by
dx
dt = Mx(t) and where V are the left eigenvectors of M, i.e

VT dx
dt

= VT Mx(t) = Λx(t), (54)

Thus the dynamics of the eigenvectors will be given by

VT x(t) = eΛtVT x(0), (55)

where Λ is the diagonal matrix composed by the eigenvalues of the matrix M. Of course,

in the case considered M = (1 − α)I + αW and Re(λ) = 1 − α + αλW, Im(λ) = αλW.

Thus, considering a column v of V and the corresponding eigenvalue λ

vT x(t) = eRe(λ)t
[
Re

(
vT x(0)

)
cos

(
Im(λ)t

) − Im
(
vT x(0)

)
sin

(
Im(λ)t

)]
, (56)

can be used to compare the true dynamic VT x(t) with the linearised one. Fig. 8 shows the

result of this procedure for each dimension of VT x(t). Panel A reports example activities

and their corresponding theoretical trend for the case of small input values (γ = 0.05, see

2), case in which the system can be well approximated through a linear behaviour. Panel

B shows the RMSE and NRMSE1 between the experimental activities and the theoretical

one as γ increases. In this case, with yi(t) = vT x(t) experimentally observed, while ỹi(t)

estimated through the right side of Eq. 56

NRMSE1 =
∑

i

1
N| max(yi) − min(yi)|

∑

t

√(
ỹi(t) − yi(t)

)2

T − 1 (57)

59

Timescales in hierarchical ESNs Paper I

NRMSE

Figure 9: Performance of an ESN when the signal is expanded by addition of its previous
temporal steps in the NARMA10 task. The lowest error corresponds to a leakage term α(2) that
is in agreement with the optimal value of α(2) of the connected ESN structure reported Section
3.1 (Main Text).

5.3 Delayed Signal to ESN

We computationally validate the equation 58 (below), derived in Section 2.1, on the

NARMA10 task. The NARMA10 task is described in full in Section 3.1 (Main Text).

ẏ(2) = Λ(2) y(2) − W̃(12) T(1)
[
W̃(1)

in s(t) +
∞∑

n=1
(T(1))nW̃(1)

in
d(n)s(t)

dt(n)

]
. (58)

In order to approximate the scaling of the coefficients of the derivatives in Eq. 58, we

incorporate a delay into the input signal such that the activity of the first reservoir is

replaced by

x
(1)
i (t) =

Delay∑

j=0
ξij 0.8j s(t − j) (59)

where ξij are independent Gaussian variables of variance σ2
ξ chosen such that Var[x(1)

i] = 1

for every i and every value of Delay. In practice, we adopted the following approximation;

xi(t) ∼= T(1)
[
W̃(1)

in s(t) +
∞∑

n=1
(T(1))nW̃(1)

in
d(n)s(t)

dt(n)

]
. (60)

The stochastic elements ξij emulate the random mixing matrix that, in Eq. 58, projects

60

Timescales in hierarchical ESNs Paper I

the expanded input onto the second reservoir network.

We compare the result obtained for the hierarchical network, reported in Fig. 3G,

with the one illustrated in Fig. 9, where the first network has been replaced by Eq. 58,

for different delays (equivalent to different orders of retained derivatives). Figure 9 shows

that as the delay increases, thus higher derivatives are included, the performance appears

to converge to an optimal value of α(2) very close to the one in Fig. 3G. We also notice

that the analysis illustrated earlier suggests that optimal performances are obtained for

small α(1). The agreement of results confirms the validity of the approximation used in

deriving Eq. 58.

61

Timescales in hierarchical ESNs Paper I

References
[1] J. Ludik, W. Prins, K. Meert, and T. Catfolis. A comparative study of fully and

partially recurrent networks. In Proceedings of International Conference on Neural
Networks (ICNN’97), volume 1, pages 292–297 vol.1, 1997.

[2] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science, 1985.

[3] P. J. Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990.

[4] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj,
Robert Legenstein, and Wolfgang Maass. A solution to the learning dilemma for
recurrent networks of spiking neurons. Nature Communications, 11(1):3625, Jul 2020.

[5] D Marr. A theory of cerebellar cortex. The Journal of physiology, 202(2):437–470,
June 1969.

[6] Sarah M Farris. Are mushroom bodies cerebellum-like structures? Arthropod
Structure and Development, 40(4):368–379, July 2011.

[7] Gilles Laurent. Olfactory network dynamics and the coding of multidimensional
signals. Nature Reviews Neuroscience, 3(11):884–895, November 2002.

[8] Richard Warren and Nathaniel B Sawtell. A comparative approach to cerebellar
function: insights from electrosensory systems. Current Opinion in Neurobiology,
41:31–37, December 2016.

[9] Shin-Ya Takemura, Yoshinori Aso, Toshihide Hige, Allan Wong, Zhiyuan Lu, C Shan
Xu, Patricia K Rivlin, Harald Hess, Ting Zhao, Toufiq Parag, Stuart Berg, Gary
Huang, William Katz, Donald J Olbris, Stephen Plaza, Lowell Umayam, Roxanne
Aniceto, Lei-Ann Chang, Shirley Lauchie, Omotara Ogundeyi, Christopher Ordish,
Aya Shinomiya, Christopher Sigmund, Satoko Takemura, Julie Tran, Glenn C Turner,
Gerald M Rubin, and Louis K Scheffer. A connectome of a learning and memory center
in the adult Drosophila brain. eLife, 6:5643, July 2017.

[10] Zhihao Zheng, J Scott Lauritzen, Eric Perlman, Camenzind G Robinson, Matthew
Nichols, Daniel Milkie, Omar Torrens, John Price, Corey B Fisher, Nadiya Sharifi,
Steven A Calle-Schuler, Lucia Kmecova, Iqbal J Ali, Bill Karsh, Eric T Trautman,
John A Bogovic, Philipp Hanslovsky, Gregory S X E Jefferis, Michael Kazhdan,
Khaled Khairy, Stephan Saalfeld, Richard D Fetter, and Davi D Bock. A Complete
Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell,
174(3):730–743.e22, July 2018.

[11] Q Liu, X Yang, J Tian, Z Gao, M Wang, Y Li, and A Guo. Gap junction networks
in mushroom bodies participate in visual learning and memory in Drosophila. eLife,
2016.

62

Timescales in hierarchical ESNs Paper I

[12] Yuhua Shang, Adam Claridge-Chang, Lucas Sjulson, Marc Pypaert, and Gero Miesen-
böck. Excitatory local circuits and their implications for olfactory processing in the
fly antennal lobe. Cell, 128(3):601–612, February 2007.

[13] Shawn R Olsen and Rachel I Wilson. Lateral presynaptic inhibition mediates gain
control in an olfactory circuit. Nature, 452(7190):956–960, March 2008.

[14] Yaara Yeshurun, Mai Nguyen, and Uri Hasson. Amplification of local changes along
the timescale processing hierarchy. Proceedings of the National Academy of Sciences,
114(35):9475–9480, 2017.

[15] Herbert Jaeger. The âecho stateâ approach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany: German National Research Center
for Information Technology GMD Technical Report, 148(34):13, 2001.

[16] Zhidong Deng and Yi Zhang. Collective behavior of a small-world recurrent neu-
ral system with scale-free distribution. IEEE Transactions on Neural Networks,
18(5):1364–1375, 2007.

[17] Ali Rodan and Peter Tino. Minimum complexity echo state network. IEEE
transactions on neural networks, 22(1):131–144, 2010.

[18] Davide Bacciu and Andrea Bongiorno. Concentric esn: assessing the effect of modu-
larity in cycle reservoirs. In 2018 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2018.

[19] Igor Farkaš, Radomír Bosák, and Peter Gergel’. Computational analysis of memory
capacity in echo state networks. Neural Networks, 83:109–120, 2016.

[20] Sarah Marzen. Difference between memory and prediction in linear recurrent net-
works. Phys. Rev. E, 96:032308, Sep 2017.

[21] L. Livi, F. M. Bianchi, and C. Alippi. Determination of the edge of criticality in
echo state networks through fisher information maximization. IEEE Transactions on
Neural Networks and Learning Systems, 29(3):706–717, 2018.

[22] Yanbo Xue, Le Yang, and Simon Haykin. Decoupled echo state networks with lateral
inhibition. Neural Networks, 20(3):365–376, 2007.

[23] Herbert Jaeger. Discovering multiscale dynamical features with hierarchical echo
state networks. Technical report, Jacobs University Bremen, 2007.

[24] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Deep echo state networks for
diagnosis of parkinson’s disease. arXiv preprint arXiv:1802.06708, 2018.

[25] Zeeshan Khawar Malik, Amir Hussain, and Qingming Jonathan Wu. Multilayered
echo state machine: a novel architecture and algorithm. IEEE Transactions on
cybernetics, 47(4):946–959, 2016.

63

Timescales in hierarchical ESNs Paper I

[26] Claudio Gallicchio and Alessio Micheli. Echo state property of deep reservoir com-
puting networks. Cognitive Computation, 9(3):337–350, 2017.

[27] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Design of deep echo state
networks. Neural Networks, 108:33–47, 2018.

[28] Qianli Ma, Lifeng Shen, and Garrison W. Cottrell. Deepr-esn: A deep projection-
encoding echo-state network. Information Sciences, 511:152 – 171, 2020.

[29] Nathaniel Rodriguez, Eduardo Izquierdo, and Yong-Yeol Ahn. Optimal modularity
and memory capacity of neural reservoirs. Network Neuroscience, 3(2):551–566, 2019.

[30] István Szita, Viktor Gyenes, and András Lőrincz. Reinforcement learning with echo
state networks. In International Conference on Artificial Neural Networks, pages
830–839. Springer, 2006.

[31] Michiel Hermans and Benjamin Schrauwen. Recurrent kernel machines: Computing
with infinite echo state networks. Neural Computation, 24(1):104–133, 2012.

[32] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. Optimiza-
tion and applications of echo state networks with leaky-integrator neurons. Neural
networks, 20(3):335–352, 2007.

[33] Vyacheslav L Girko. Circular law. Theory of Probability & Its Applications,
29(4):694–706, 1985.

[34] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Deep reservoir computing:
A critical experimental analysis. Neurocomputing, 268:87 – 99, 2017. Advances in
artificial neural networks, machine learning and computational intelligence.

[35] Xiaochuan Sun, Tao Li, Qun Li, Yue Huang, and Yingqi Li. Deep belief echo-state
network and its application to time series prediction. Knowledge-Based Systems,
130:17–29, 2017.

[36] Luca Manneschi and Eleni Vasilaki. An alternative to backpropagation through time.
Nature Machine Intelligence, 2(3):155–156, 2020.

[37] A. F. Atiya and A. G. Parlos. New results on recurrent network training: unifying
the algorithms and accelerating convergence. IEEE Transactions on Neural Networks,
11(3):697–709, 2000.

[38] Alireza Goudarzi, Peter Banda, Matthew R Lakin, Christof Teuscher, and Darko Ste-
fanovic. A comparative study of reservoir computing for temporal signal processing.
arXiv preprint arXiv:1401.2224, 2014.

[39] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recur-
rent neural network training. Computer Science Review, 3(3):127–149, 2009.

64

Timescales in hierarchical ESNs Paper I

[40] Nils Schaetti, Michel Salomon, and Raphaël Couturier. Echo state networks-
based reservoir computing for mnist handwritten digits recognition. In 2016
IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE
Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl
Symposium on Distributed Computing and Applications for Business Engineering
(DCABES), pages 484–491. IEEE, 2016.

[41] Luca Manneschi, Andrew C Lin, and Eleni Vasilaki. Sparce: Sparse reservoir com-
puting. arXiv preprint arXiv:1912.08124, 2019.

[42] Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou,
and Yoshua Bengio. Towards non-saturating recurrent units for modelling long-term
dependencies. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 3280–3287, 2019.

65

2.2 Paper II

The context of this second paper is again reservoir computing. The aim is to develop a learning

algorithm that can improve the ability of ESNs, more commonly adopted for regression problems,

to deal with classification tasks. In order to achieve this, we added thresholds on the read-out level

of the reservoir to introduce specialised activities. Thanks to the proposed technique, representa-

tions of data belonging to different classes, or tasks, do not completely overlap, thus facilitating

learning of associations, or the ability of the system to learn multiple tasks sequentially. The idea

to introduce a thresholding mechanism that can control the sparsity level of a representation is

inspired by the sparse coding observed in biological neural networks, where neurons are specialised

and react to specific stimuli. In particular, an example of biological network that exhibits sparse

coding and that acts similarly to a reservoir is the mushroom body (MB) of the Drosophila. In

the MB, dimensionality expansion occurs from the input, encoded as neuronal activity of projec-

tion neurons, to Kenyon cells (KCs), which can be thought as a biological analogous of the nodes

in a reservoir. Adaptation is driven by dopaminergic signals and occurs on the synapses among

KCs and output neurons. There are two interesting features, experimentally observed in the MB

and across a multitude of biological networks, that inspired the following work. First, the high

intrinsic neuronal thresholds and the presence of inhibitory feedback loops can control the level

of specialisation of a population of neurons [4]. Second, neurons can be recurrently connected

and affect each other through sub-threshold activities [16]. Similarly to this biological findings,

we formulated a model (SpaRCe) where thresholds are introduced on the read-out level without

affecting the reservoir dynamics. Thresholds will be optimised to discover the optimal sparsity

level for a given task. Similarly to the learning process of the leakage terms in Paper I, the hi-

erarchical dependence of the output weights on the thresholds’ has consequences on the optimal

learning regime of the model. Indeed, we will find that output connections need to adapt at a

much faster timescale in comparison to thresholds in order to exploit the proposed algorithm best.

Consequently, the concept of multiple timescales can be found in the different rates of adaptation

of the trainable parameters. In the future, the model proposed could be also applied to physical

reservoir computing devices.

The paper has been published under IEEE: Transcations on Neural Networks and Learning

Systems (doi: 10.1109/TNNLS.2021.3102378).

My contributions to the work were: model development, coding, testing, writing of the paper.

66

���������������������������
����������������
�����	�
����

����������������������
�
����

��
���������
����	���
�������

����������������������������������
������
��	���
������������������������������������
������
��	���

Abstract

“Sparse” neural networks, in which relatively few neurons or connections are active,
are common in both machine learning and neuroscience. Whereas in machine learning,
“sparsity” is related to a penalty term that leads to some connecting weights becoming
small or zero, in biological brains, sparsity is often created when high spiking thresh-
olds prevent neuronal activity. Here we introduce sparsity into a reservoir computing
network via neuron-specific learnable thresholds of activity, allowing neurons with low
thresholds to contribute to decision-making but suppressing information from neurons
with high thresholds. This approach, which we term “SpaRCe", optimises the sparsity
level of the reservoir without affecting the reservoir dynamics. The read-out weights
and the thresholds are learned by an on-line gradient rule that minimises an error
function on the outputs of the network. Threshold learning occurs by the balance
of two opposing forces: reducing inter-neuronal correlations in the reservoir by deac-
tivating redundant neurons, while increasing the activity of neurons participating in
correct decisions. We test SpaRCe on classification problems and find that threshold
learning improves performance compared to standard reservoir computing. SpaRCe
alleviates the problem of catastrophic forgetting, a problem most evident in standard
echo state networks and recurrent neural networks in general, due to increasing the
number of task-specialised neurons that are included in the network decisions.

1 Introduction

The performance of artificial neural networks is often improved by adopting “sparse" rep-

resentations, in which relatively few neurons or connections are active. Previous research

has studied the role of sparse connectivity, in terms of memory, in Hopfield networks,

demonstrating how sparse connectivity increases storage capacity [1] [2] [3] [4]. Memory

retrieval and associative learning have been studied in the context of neural network at-

tractors, and the work in [5] has provided an abstract mathematical analysis of retrieval

capacity. From the machine learning perspective, adopting sparse connectivity can lead

to more interpretable models [6], a reduced computational cost [7], and can help solve

SpaRCe: sparse reservoir computing algorithm Paper II

overfitting problems [8]. Sparsity in machine learning is typically introduced to artificial

networks through regularisation, in which a penalty term leads to the reduction of the con-

nection weights. In this regard, the work in [7] demonstrated how structured sparsity can

improve computational speed and accuracy in a convolutional neural network. Rasmussen

et al. [9] showed how the choice of regularization parameters of the model can impact the

interpretability and the reproducibility of a classifier of neuroimaging data, and showed

the existence of a trade-off between pure classification accuracy and reproducibility.

Sparsity is also a well-known concept in neuroscience: biological neurons are highly

selective in systems ranging from mammalian sensory cortex [10] to the insect mushroom

body [11] [12]. However, unlike in typical machine learning approaches, biological sparsity

is introduced not only by reducing connection weights between neurons, but also by the

fact that neurons have spiking thresholds: they only fire when their summed inputs exceed

a certain threshold. High spiking thresholds relative to the size of synaptic inputs can often

contribute to high selectivity of neurons, as with Kenyon cells (KCs), the principal neurons

of the insect mushroom body, which fire sparsely in response to odor stimuli [13] [14] [15]

[16]. In the fruit fly Drosophila, this sparse odor coding enhances learned discrimination

of similar odors [12]. Moreover, spiking thresholds vary across neurons [13] and over time

for the same neuron [17] [18], and spiking thresholds for different neurons are adapted to

neurons’ particular input statistics [17] and past activity [19].

Previous efforts that introduce sparsity inspired by neuroscience findings are based on

the BCM learning rule [20] and on intrinsic plasticity [21]. Both these concepts introduce a

“soft” regulation of network activity and have been applied to reservoir computing [22] [23]

[24]. Here we are taking a different approach to regulate sparsity in reservoir computing:

we introduce hard, adaptable activity thresholds to create SpaRCe.

Reservoir computing takes inspiration from the complex non-linear behavior of recur-

rent neural networks and their abilities to process temporal information. Such a comput-

ing paradigm exploits the inherent complexity of a dynamical system, which is called the

reservoir and that can be virtually or physically defined, to represent a stream of data

68

SpaRCe: sparse reservoir computing algorithm Paper II

into a high dimensional space useful for learning. In the classical learning framework of

such systems, training occurs on the read-out connections only, which connect the activ-

ities of the non-linear reservoir components to the output neurons. The advantages of

the reservoir computing framework are: first, the system can be physically defined as in

[25, 26, 27, 28, 29], an aspect that can dramatically reduce the computational and ener-

getic cost [30]; second, the response of the reservoir can exhibit memory over a range of

timescales without training the internal dynamic of the system. In the latter aspect, the

reservoir computing framework contrasts with that of standard recurrent neural networks,

whose connectivity is trained through the computationally expensive backpropagation

through time (BPTT) algorithm.

In this work, we model the reservoir as a recurrent network of leaky integrators [31]

known as an echo state network (ESN). The connectivity between the nodes is repre-

sented through a random sparse fixed adjacency matrix, whose spectrum of eigenvalues

allows the system to exhibit a wide range of timescales and to efficiently represent tem-

poral information. Previous works have explored alternatives to the typical Erdos-Renyi

connectivity of the reservoir, imposing a regular structure as a delay line [32], where the

nodes are connected unidirectionally composing a circular graph, or defining the graph

connectivity through more complex topologies [33] as scale-free or small world. Further-

more, complex structures composed by multiple, interconnected ESNs have been recently

studied, and the works [34] [35] demonstrate how the use of different hyperparameters for

different ESNs can expand the range of timescales that is accessible by the system and

consequently increase the quality of the reservoir representation for temporal tasks with

complex temporal dynamic. In this regard, the work [35] gives insights into the under-

standing of hierarchical systems from the point of view of accessible timescales, offering a

theoretical and a practical analysis on how to tune the hyperparameters of the system to

a considered task.

While ESNs are most traditionally adopted by the machine learning community for

time-series prediction and forecasting [31], more recent works have studied their behav-

69

SpaRCe: sparse reservoir computing algorithm Paper II

ior for time-series classification [36]. In particular, [36] studies and compares different

methods to exploit the representation of the reservoir as input to more complex ma-

chine learning algorithms as multilayer perceptrons or SVM. In this work, we formulate

a different approach to improve the classification ability of reservoir systems in general

while maintaining the low cost of computation that is intrinsic to the concept of reservoir

computing. Analogously to the concept of firing thresholds, SpaRCe exploits learnable

thresholds to optimize the level of sparsity inside the network, without disturbing the

underlining network dynamics. Both the learnable thresholds and the read-out weights

(but not the recurrent connections within the reservoir) are optimised by minimising an

error function that does not include any normalization term. We analysed the learning

rule derived from this error minimisation and found that learning occurs by two antago-

nist factors: the first raises the thresholds proportionally to the correlated activity of the

nodes (thus silencing nodes that are correlated and therefore redundant), while the second

lowers the thresholds of nodes that contribute to the correct classification (Fig. 2). The

novelty of our work lies in the fact that a sparsity level is reached due to the presence of

on-line learnable firing thresholds, rather than to penalty terms [37] [6] [38], as well as

in the detailed analysis on how such thresholds enable ESNs to perform competitively in

tasks where their performance was lacking.

2 Methods

2.1 Standard Echo State Network

An echo state network (ESN) is composed of randomly connected neurons. The activity

of such a system is commonly defined through the following equation [31]:

V(t + δt) = (1 − α)V(t) + αf
[
γWins(t) + ρWV(t)

]
(1)

70

SpaRCe: sparse reservoir computing algorithm Paper II

where α = δt
τ is the leakage term, τ defines the temporal scale of integration of the nodes,

V(t) is the activity vector of the integrators and s(t) is the input signal. W is the fixed

sparse random matrix that describes the recurrency of the reservoir. The matrix W is

random and sparse, corresponding to an Erdos-Renyi graph where the probability of a

connection is pER. The eigenvalues of W are rescaled to be confined inside the unit circle

of the imaginary plane, necessary condition for the echo state property. Considering the

parameterisation of the network in Eq. 1, this condition is equivalent to the one proposed

in [34] and guarantees that the eigenvalues of the associated, linearised dynamic system

are also confined in the unit circle of the imaginary plane. The hyperparameter ρ (between

0 and 1) controls further the radius of the spectrum of the system’s eigenvalues. Finally,

γ is a gain factor of the input signal. The specific form of the input matrix Win and the

activation function f is task-dependent and will be specified in sections 3.1 and 3.2.

It is possible to control a priori the range of timescales that the reservoir exhibits by

appropriately choosing α and ρ as described in the methodology reported in Appendix

A.1 and our earlier work [35]. In the standard ESN learning protocol, learning occurs

exclusively on the read-out defined from a vector Ṽ that represents an ensemble of the

reservoir activities V. The output of the system is then computed through

y = WoṼ (2)

E = 1
2

[
ỹ − y

]2
(3)

where ỹ denotes the desired output values, and the output connectivity Wo is optimised

to minimise the cost function E through ridge regression [31] or through gradient descent

methods [39]. We note that, depending on the task and on the learning framework,

the Ṽ vector can be defined from different ensembles of activities of the reservoir across

time. The idea to exploit the dynamic of the ESNs, instead of using its activities at one

step only, is particularly useful for classification tasks. Previous works have introduced

different techniques to define a Ṽ vector from the ESN’s dynamic: adopting PCA on

71

SpaRCe: sparse reservoir computing algorithm Paper II

the multidimensional response of the reservoir across time [36], introducing a learnable

temporal kernel to define the read-out [40], or concatenating the past activities of the

reservoir to define a higher dimensional vector Ṽ [39] [41]. In this work, we will exploit the

latter approach, while other techniques such as PCA, which reduces the dimensionality of

the ESN’s representation, are more desirable in the case of overfitting. In this regard, while

the most spontaneous choice for time-series prediction would be Ṽ = V(t), corresponding

to the activity of the reservoir at the current time, it is also possible to expand the

dimensionality of the system by including previous reservoir representations at times tl

and define a vector Ṽ = C
({

V(tl)
}

tlεT

)
, where C denotes the concatenation operator

and T the ensemble of time steps tl considered. This latter approach has been adopted

also in physical reservoir models through the use of virtual nodes [42] [43]. Of course,

such dimensionality expansion leads to an artificial increase of the memory of the system.

However, the concatenation of previous activities does not guarantee the understanding

of the dependencies among events that are distant in time, because the memory of a past

input signal could have faded away when a new stimulus s(t) comes. A scheme of this

procedure for time-series classification can be found in Fig. 1 A.

2.2 Sparse Reservoir Computing

In contrast to previous models that define the output of the neural network through a

read-out of the Ṽ vector, i.e. the activities of the reservoir considered for the learning

process, we introduced another variable xi for each dimension of Ṽ, defined as follows:

xi = sign
(
Ṽi

)
ReLU

{
|Ṽi| − θi

}
(4)

θi = Pn

(
|Ṽi|

)
+ θ̃i (5)

where ReLU stands for rectified linear unit, sign is the sign function (1 if Ṽi > 0, -1 if

Ṽi < 0, 0 if Ṽi = 0), and θi is a threshold that enables xi to be sparse. Thus, the variable

72

SpaRCe: sparse reservoir computing algorithm Paper II

xi is zero if the absolute value of the variable Vi is lower than the corresponding threshold.

We term this variant SpaRCe for sparse reservoir computing. Of course, x = Ṽ if θ = 0,

which is the case where the formulated learning procedure coincides with the standard

ESN paradigm. Considering Eq. 5, each threshold is composed by two factors:

• Pn(|Ṽi|), defined as the percentile n of the distribution of activity of the i-th compo-

nent of |Ṽ| across a dataset, where the same value of n is applied to all dimensions of

Ṽ. Given that the response Ṽ of the reservoir to a specific input remains unchanged

across learning, this term can be computed over the training dataset and maintained

constant throughout the simulation. Thus, the role of Pn(˜|Vi|) is to initialise the

thresholds from an initial condition where the sparsity level of all dimensions of x is

n/100. The thresholding mechanism introduced is symmetric with respect to zero,

as is visible from the examples in Fig. 1D-E. While panel D highlights the portions

of the distributions that are positive after normalisation, panel E shows the resulting

distributions after application of Eq. 5, but before learning, that is when θ̃i ≈ 0. In

this formulation, the value of n needs to be considered as an additional, interpretable

hyperparameter. However, we will show that all the sensible choices of n will cor-

respond to faster convergence and better performance of the formulated algorithm

in comparison to the standard ESN learning paradigm across all tasks considered.

We note that, even for P0, SpaRCe and a vanilla ESN would differ, because the

threshold values for P0 are non-zero and the activities of the reservoir would be

shifted. More specifically, choosing P0 will lead to a shift to the distributions of |Ṽ|,

whose minimum value will now become approximately zero. Throughout this paper,

the same values of Pn(|Ṽi|) computed over the training dataset will be used for the

validation and test dataset.

• An adaptable component θ̃i optimised through gradient descent learning rules. This

parameter adapts the sparsity level for the considered task and can rediscover the

73

SpaRCe: sparse reservoir computing algorithm Paper II

standard learning paradigm in the case where θ̃i = −Pn(|Ṽi|), ∀i.

The additional complexity arising from Eq. 4 is summarized by Fig. 1 B, which depicts

the difference between the read-out of a standard Echo-State network and our formulation.

Eq. 4 acts as normalisation operator that directly controls sparsity in the reservoir rep-

resentation and that, thanks to the learnable components θ̃, works as a feature-selection

mechanism. In the latter sense, we can now demonstrate the interpretability of the up-

dating equations on θ derived from a gradient descent approach.

For the case of a mean squared error function, the learning rule can be separated in

two terms:

∆θk = ηθ

[
∆θ

(1)
k + ∆θ

(2)
k

]
(6)

∆θ
(1)
k =

Nclass∑

j=1
yjW o

jksign
(
xk

)
=

=
Nclass∑

j=1

N∑

l=1

[
W o

jlxl

][
W o

jksign
(
xk

)]
(7)

∆θ
(2)
k = −W o

j̃k
sign

(
xk

)
(8)

where ηθ is the learning rate on the thresholds, j̃ refers to the correct output class for

the sample considered, Wo is the output connectivity matrix. Eq. 7 and 8 are derived by

assuming one-hot encoding (Appendix B.2). Considering xk > 0 (analogous considerations

are valid for xk < 0), the factor ∆θ(2) decreases (increases) the threshold value of nodes

with W o
j̃k

> 0 (W o
j̃k

< 0) that help (hinder) the network to reach the right classification.

Thus, ∆θ(2) is driven by the output weight between the considered node (if it is active)

and the desired class. In contrast, ∆θ(1) is a measure of correlation of weighted activities

between different nodes in the reservoir and increases (decreases) the thresholds of neurons

that have coherent (opposite sign) contributions and therefore reduces redundancy in the

reservoir.

We examined the two factors ∆θ(1) and ∆θ(2) across learning for an example of se-

74

A B C

D E

Figure 1: Comparison between the basic reservoir computing framework and SpaRCe, which
exploits the concepts of adaptable thresholds to introduce sparsity in the representation of the ESN.
A: The typical reservoir computing sampling paradigm for a time-series classification task. Time
flows from top to bottom. The input signal s(t) is fed into the ESN through the input connectivity
matrix γWin. An ensemble of the activities V(t) across time is selected and concatenated to
compose a vector Ṽ, which is then used to define the read-out. Typical choices of ESN activities
used to define the read-out are Ṽ = V(T), where T denotes the final temporal step of the input
sequence, or Ṽ = C

({
V(t)

}
∀t

)
, denoting the concatenation of all the reservoir dynamic across the

temporal length of s(t). Of course, while the first approach relies on the ESN intrinsic memory
capacity, the latter case corresponds to a dimensionality expansion that contributes artificially
to the memory of the system. Both these approaches and intermediate cases, i.e. where the
dynamic of the reservoir across time is sampled with low frequency to compose the read-out, will
be exploited in the tasks studied. B-C: Comparison between the typical reservoir computing
read-out (B) and the SpaRCe model (C). Considering that Ṽ is used for the read-out, we define
a threshold for each dimension of Ṽ. The result of this approach is the definition of different
thresholds across time in the case where the representation is enriched through concatenation of
the history of activities of the reservoir. In this way, the approach defined is general and can be
applied regardless of the technique used to define the representation Ṽ for the read-out of the
system. Furthermore, the initialisation of different thresholds across time can be helpful to the
case where there is temporal drift in the dataset, leading the activity x of the reservoir to exhibit
a more stationary behaviour across time. B: The ESN output y = WoṼ is responsible for the
classification process of the example sequence s(t). In this paradigm, learning occurs exclusively
on Wo. C: Scheme of the SpaRCe model. Thresholds are introduced at the level of the Ṽ vector,
leaving unaffected the dynamic of the reservoir and making the approach applicable to any physical
or virtual reservoir model. Each threshold value is composed by a normalisation term Pn(|Ṽi|),
defined as the n-th percentile of the activity distribution of the i-th component across the data,
plus an adaptable term θ̃i (see text for more details). D-E: Activity distributions of Ṽ (D) and
x (E) before the training process, where θ̃ ≈ 0, for three example nodes. Each distribution is
fitted through two Gaussians for clarity purposes. The highlighted red region in D corresponds to
the values for which the nodes would be active if the normalisation mechanism proposed in Eq.4
would be applied (percentile P50 in this case). From E, it is clear that Eq.4 also shifts the activity
distributions acting as a normalisation mechanism.

SpaRCe: sparse reservoir computing algorithm Paper II

quence classification and for different initial sparsity levels. These are plotted in Fig. 2C,

with ∆θ(2) on the positive y-axis and ∆θ(1) on the negative y-axis. The two forces are

almost symmetric, but their slight imbalance provides the direction to change the thresh-

old values. Indeed, if the starting sparsity level is high, the total force is negative and the

factor ∆θ(1) dominates, while if the sparsity level is low, the correlation term ∆θ(2) wins

and the thresholds increase on average (compare P60 and P95 in Fig. 2D, which shows the

effect of learning the thresholds in terms of average percentile (sparsity) change across the

network. The reason that the magnitudes of the forces are larger for a higher starting

sparsity (Fig. 2C) is that stimulus representations overlap less when the sparsity level is

higher and neurons are more specialised, i.e. preferably fire for one pattern over the others.

This leads to more coherent sign of the output weights of the nodes belonging to a cluster

toward a specific class, which increases ∆θ(1) according to Eq. 7. A similar analysis of

the learning rule for a cross entropy cost function is reported in Appendix B.2. Fig. 2A,B

describes the benefits due to the application of the proposed normalisation mechanism:

first, it directly controls sparsity and introduces specialised neurons (Fig. 2B); second,

it shifts the activity distributions Ṽ of the network into a more stereotyped response x,

avoiding the possibility that learning could be dominated by the nodes with highest ac-

tivities (Fig. 2A). Finally, it stabilises the learning process for a wide range of possible

learning rates that would not be accessible without thresholds (Appendix B.2, Fig. 2).

This specific formulation allows the model to use local information to learn the threshold

values and optimize sparse representations. We note also how Eq. 4 does not affect the

timescales of the network and consequently preserves the idea of reservoir computing as a

fixed, dynamically rich representation. Furthermore, the method formulated constitutes

a computationally inexpensive procedure that is easily applicable to any type of reservoir,

virtually or physically defined.

76

SpaRCe: sparse reservoir computing algorithm Paper II

A

C

B

D

10

50

90 Pn

Figure 2: The SpaRCe read-out proposed leads to decreased variability in the ESN representa-
tion, to specialised responses, and to a interpretable learning rule that acts as feature selection
mechanism. The learning rule for the thresholds is driven by the imbalance between two antago-
nist forces. A Distributions of the average activities of nodes across an example dataset (MNIST,
section 2.3) for the standard ESN and for SpaRCe as the percentile of the normalisation mech-
anism changes at the beginning of training (when θ̃ = 0). SpaRCe decreases the variability of
the activity distributions, acting as a normalisation mechanism. B: Frequency of active nodes
for different starting sparsity levels and different number of classes for a classification task with
ten classes (MNIST, section 2.3) before training (θ̃ = 0). We note that Nclass refers to the total
number of classes to which a node responds. In particular, nodes that are active for Nclass = 10
are responding to all ten classes, while nodes that react for Nclass = 6 are responding to six classes
only. As sparsity (Pn) increases, nodes respond to a smaller number of classes becoming more
specialised. C: Analysis of the two forces ∆θ(1) and ∆θ(2) involved in the learning rule for the
thresholds. The positive y-axis shows a running average of ∆θ(2), while the negative y-axis shows
a running average of ∆θ(1). 〈〉 indicates averaging across all neurons. ∆θ(2) increases (decreases)
the threshold values for nodes that are equally (differently) contributing to the classification pro-
cess. ∆θ(1) decreases (increases) the threshold values thanks to the positive (negative) contribution
of the output weights connected to the correct output. Colours correspond to initial conditions
(P60, P95). D: Average cumulative change of a threshold in terms of percentile change due to adap-
tation of θ̃. If the starting level of sparsity is suboptimal and low (high) the average percentile
change is positive (negative).

77

SpaRCe: sparse reservoir computing algorithm Paper II

2.3 Benchmarks

We tested the proposed model on the following benchmarks, comparing its performance

to the standard read-out of an ESN:

• A biologically inspired task to test the storage capacity of the system in the mem-

orisation of associations between sequences and desired output values. In this case,

the model is tested on the same associations used for training, but with different

realisations of multiplicative white noise inserted on the sequences. The dependence

of SpaRCe on the starting sparsity level is analysed along comparisons of the perfor-

mance achieved with other methods for reading out from the ESN representation,

including deep feedforward networks.

• Three variants of classification tasks based on the MNIST dataset, where data are

presented to the system as temporal varying sequences. In the first task, we stud-

ied the performance of the model when each image, composed by 28 × 28 pixels, is

presented column by column as a 28-dimensional sequence of 28 time steps (MNIST

[41]). In the second, the input is processed in the same way, but a random permu-

tation of the pixels is applied to all data to make the task more challenging and to

randomise the structures of the images (pMNIST). In the third, we applied a ran-

dom permutation of the data as in the second paradigm, but each image is presented

pixel by pixel as a one dimensional sequence of 784 temporal steps (psMNIST [44]).

When the initial conditions of the model are studied, the performance are computed

and shown on the test set as Pn varies for comparison, but to select the best Pn

value and report the highest performance we used a validation dataset. Of course,

we selected the hyperparameters corresponding to the highest accuracy on the vali-

dation set and then computed the performance on the test dataset.

78

SpaRCe: sparse reservoir computing algorithm Paper II

• Two tasks that involve sequential learning. In the first case, we applied ten different

permutations to the MNIST data and trained the model processing the tasks one

after the other [45] [46]. In the second, the network is trained on the MNIST

data belonging to different classes sequentially [45] [46]. In both cases, the network

can access a specific dataset (corresponding to a permutation or a class) only once

during training. As before, a validation dataset is adopted when selecting the best

hyperparameters (in particular Pn) of the proposed model.

3 Results

3.1 Threshold learning increases storage capacity

We evaluated the performance of a standard ESN and SpaRCe in classifying an ensemble

of sequences {Si}i=1,..,Nseq of three successive stimuli, where the dimensionality of the

signal is NIn = 24. Each stimulus of a sequence is derived from the simulated response of

NIn = 24 projection neurons (PNs, in the fly olfactory system) to 110 different odors [47]

[48]. This simulated activity, which we call sHO (HO for Hallem-Olsen), has previously

been used in computational analyses of fly olfaction [49] [50] [51].

Sequences are generated to test the storage capacity of the system in memorising

associations between input signals and desired output values. The procedure for building

different sequences from single stimuli is described the Appendix (section C.1, Fig. 1),

but essentially, it guarantees that each sequence has to be classified as independently

as possible from other sequences, and that there are no correlations of elements among

different inputs that can inform the classification process. Thus, the system can only

memorise the associations among a specific succession of elements and the corresponding

output value.

There are three stimuli in a sequence, each of them is presented for a time interval

79

SpaRCe: sparse reservoir computing algorithm Paper II

∆t = 0.1s in order to allow the network to integrate the information. The total duration

of an input sequence is T = 0.3s. Given a sequence si(t), we inserted multiplicative white

noise to each separate dimension to make the task more complex. Thus, the i-th dimension

of the final sequence Si(t) to be classified is Si(t) = si(t) + σsξi(t)si(t), where ξi(t) is a

Gaussian distributed random variable with zero mean and unitary variance and σs is the

noise variance.

For this specific task, the activation function f of Eq. 1 is a rectified linear unit and

the connections of the input adjacency matrix Win follow a lognormal distribution. This

particular form of Win is inspired by the biological results in [13] [52] [53]. In this case,

Ṽ = V(T), meaning that only the activities at the last temporal step of a sequence are

adopted for the read-out, and the memory of past events is left to the internal dynamic

of the ESN. A schematic representation of the task can be found in the Appendix.

We first investigated how the model depends on initial sparsity, and found an optimal

sparsity level for the task. We initialized the network with different initial sparsity per-

centiles (i.e., thresholds at different percentiles of the V distribution, n = [10, 20, 30, 40, 50,

, 60, 70, 80, 90]), and tracked the mean square error over the learning process (Fig. 3A).

Errors decreased as learning proceeded, but at each time point, the lowest error occurred

for an initial sparsity of about 50%. Furthermore, models initialized with sparsity values

other than 50% (an explanation of why 50% can be found in the Appendix) converged

toward 50% as training proceeded, as shown by the black dashed lines connecting dots of

training instances from the top to the bottom of the graph (Fig. 3A). This shows how the

learning rule pushes the percentage of active nodes toward the optimal sparsity level.

Notably, the error is smallest when specialisation is highest (for a definition of special-

isation, see Appendix A.2, Eq. A5; conceptually, specialisation represents to what extent

a node is active for stimuli of one class, not stimuli of other classes), as shown in Fig.

3B, which reports the error as a function of sparsity and specialisation. For all training

instances analysed, the lowest error corresponds to the highest specialisation value. Thus,

specialisation provides a systematic way to choose the starting condition of the network.

80

SpaRCe: sparse reservoir computing algorithm Paper II

Indeed, it is possible to select the thresholds using the percentile value that yields the

highest specialisation measure. However, there is no need to excessively fine-tune the ini-

tialization, since the learning rule will optimize the threshold values anyway. We note also

that this simulation is performed through a simple gradient descent algorithm, and that

the model’s dependence on initial conditions can be ameliorated by using more complex

optimizers, as will be shown in section 3.2.

A BTraining Time

1.5

0.3

X 105

0.6

0.9

1.2

Figure 3: The learning process modulates the network’s sparsity level toward an optimal percent-
age of active nodes. A: Performance as a function of sparsity for different training instances of
the model (a color represents a specific training time, which increases from top to bottom). For
each instance the results are fitted with a second degree polynomial (χ2 = 310−4, R2 = 0.98),
demonstrating the existence of an optimal percentage of active nodes, which is around 50% for the
sequence classification task (note that the optimal sparsity level is task-dependent). The dashed
line connecting the results for diverse training time highlights the change in the sparsity level
achieved through the learning rule. B: Performance as a function of sparsity and specialisation.
The best performance corresponds to the highest specialisation values for all training instances,
demonstrating the interpretability of the model.

Finally, we compared the performance of the SpaRCe model with:

1) Echo state network (ESN) without thresholds, where the same on-line learning is

applied to the output weights W out only. We note that the algorithm SpaRCe

learns N more parameters (the thresholds) in comparison to the Echo State Network

without thresholds.

2) Hidden layer (HL), where we added a full hidden layer of Nh nodes on the top of

81

SpaRCe: sparse reservoir computing algorithm Paper II

the reservoir. This approach learns an additional connectivity matrix between the

reservoir and the hidden layer, dramatically increasing the number of parameters by

a factor of approximately NhN .

3) Echo state network (ESN) with online learning and L1 or L2 regularization terms

on the output weights.

The SpaRCe model outperforms the standard ESN with or without the regularization

terms, based on classification accuracy and root mean square error (Fig. 4A,C,D). This

advantage is consistent across different levels of external noise (σs) and different numbers

of stimuli (Fig. 4C,D). Furthermore, SpaRCe performs comparably to a network with an

additional full hidden layer with Nh ≈ 100 nodes, even though the hidden layer dramat-

ically increases the number of learnable parameters compared to SpaRCe (Fig. 4A,B,D).

In comparison to the addition of a hidden layer, the model SpaRCe provides a cheap for-

mulation to achieve an optimal and reliable sparsity level (see Fig. 4B, where the number

of learnable parameters for the models are reported with the corresponding performance).

In general, when introducing a hidden layer of Nh neurons trained with backpropaga-

tion, for a network of No output neurons, we would learn a number of parameters equal

to N × Nh + Nh + Nh × No + No (weights + biases + output weights + biases) which can

be approximated by Nh × N (assuming No � N , i.e. 1000 × 100 + 100 + 100 × 2 + 2 ≈ 105

for the case with Nh = 100), while for a classical reservoir we learn N × No + No ≈

N × No (1000 × 2 + 2 ≈ 2 × 103) and for SpaRCe N × No + N + No ≈ (No + 1) × N

(1000 × 2 + 1000 + 2 ≈ 3 × 103). While adding a hidden layer goes against the principle of

ESN of exploiting the network dynamics while using simple learning methods, it remains

an interesting comparison for quantifying the efficiency of the proposed method. With

Nh = 100 and while No � Nh our proposed thresholded architecture is efficient in terms

of numbers of learnable parameters in comparison to adding a fully trained hidden layer

to an ESN.

We conclude that the SpaRCe model considerably improved the performance and the

82

SpaRCe: sparse reservoir computing algorithm Paper II

A

C

B

D
chance level

ESN

ESN+SpaRCe

Figure 4: The SpaRCe algorithm increases the memory capacity of the ESN and the stability
of the found solution. A: Classification accuracy and root mean square error of the models for
a case where the number of sequences to be classified is 192. Each minibatch corresponds to the
presentation of 20 training samples. In this case, the performance of SpaRCe are related to a
starting Pn = 50, while the hidden layer has Nh = 100 nodes. Dots correspond to the training
instances in which the considered models solve the task (for the models that can solve the task),
thus showing the training speed of the algorithms analysed. B: Performance of SpaRCe for three
different starting sparsity levels (red, orange colours), for a standard ESN (black) and of HL (blue
colours) for diverse Nh nodes. The x-axis reports the number of trainable parameters and is
shown in a logarithmic scale. The graph shows how SpaRCe is able to reach good performance
while maintaining a low number of trainable parameters. C: Comparison of the root mean square
error for the ESN and the ESN with thresholds as the external noise σs and the number of stimuli
vary. The introduction of thresholds lead to robust result. D: Performance as the number of inputs
to be classified increases, for the hidden layer model with Nh = 100 (blue), SpaRCe (red) with
Pn = 50 and a standard ESN (black). SpaRCe and HL solves the tasks considered, but the latter
uses a number of trainable parameters (reported along the performance with the colour scheme
that reflects the referred model) that is of two magnitudes higher than the first. The accuracy of
the standard ESN drops considerably as the number of sequences increases. The inset shows the
root mean square error for SpaRCe and for HL, varying the starting condition Pn and number of
nodes Nh respectively. The errors shown correspond to the training instance in which the fastest
model reaches perfect classification accuracy. Numbers reflect the number of trainable parameters
for example cases.

83

SpaRCe: sparse reservoir computing algorithm Paper II

convergence time of a reservoir on this biologically inspired benchmark task, with the

relatively small overhead of N additional parameters, one per reservoir node. Finally, we

investigated the cost of the additional complexity of SpaRCe, composed by an initialisation

procedure (the quantile operation over the training data) and threshold learning, in terms

of computational time. Considering a training example for this task, SpaRCe required

approximately 1234.6 seconds, while an ESN required 1233.98 seconds. The values of

the hyperparameters adopted for the task and more details about the evaluation of the

computational time required for different models, with the specifics of the computer used

for the simulations, can be found in Appendix E.

3.2 Threshold learning increases performance

In this section we faced three variants of classification tasks using the MNIST dataset.

Each image is fed into the network sequentially either one column at a time or one pixel

at a time to make the task temporally dependent. Thus, one written digit corresponds to

a sequence of 28 time steps of a 28 dimensional input in the column by column paradigm,

or to a sequence of 728 time steps of a one dimensional input (psMNIST). The tasks

considered require representations over multiple timescales to achieve competitive per-

formance, and thus serve as benchmarks to study the ability of the network to discover

temporal dependencies. In this regard, the psMNIST problem constitutes a challenge and

a benchmark for recurrent neural networks and has been often considered as a metaphor

of practical applications where long temporal dependencies are present. Prime examples

of such applications are in the fields of language, decision-making, Reinforcement Learn-

ing in partially observable Markov processes. We want to emphasize how all the tasks

considered, even the MNIST and pMNIST, are processed by the network temporally. For

this reason, the performance reported of static networks, as multilayer perceptrons (MLP)

and convolutional neural networks, serve only as a baseline, since these networks could

not solve the temporally dependent task faced. The activation function f used for these

tasks is a hyperbolic tangent.

84

SpaRCe: sparse reservoir computing algorithm Paper II

MNIST, column by column

The application of ESNs on this specific task was previously analysed in [41], in which the

original dataset was preprocessed and augmented by resizing and deforming the original

images. Without such a preprocessing, the ESN could not outperform a simple perceptron

[41]. In contrast, in this work we use the original dataset, without any additional trans-

formations. In this experiment, the pixels of each image are fed to the ESN sequentially

column by column; thus, the input signal s(t) corresponding to an example image is a

28-dimensional sequence of temporal length 28. In this case, Ṽ = C
({

V(t)
}

∀t

)
, meaning

that all the dynamic of the recurrent network across time is used to define the read-out of

the system. The cost function adopted is a sigmoidal cross entropy

E = −
[∑

j

ỹj log
(
σ(yj)

)
+ (1 − ỹj)log

(
1 − σ(yj)

)]
(9)

which is analysed in B.2 (Appendix). The optimizer used is Adam [54]. We first tested the

SpaRCe model with various initial sparsity levels (Fig. 5A, different colours). Regardless

of the initial condition, the final performance was similar, as was the final level of sparsity

(the size of dots in Fig. 5A shows the percentage of active nodes in the network). The

error achieved by SpaRCe is 1.9%. The hyperparameter values are given in Appendix E.

The model reaches performance levels comparable to those achieved with a three-layer

neural network with backpropagation [55]. However, the task faced here with SpaRCe

(column-by-column MNIST) is more challenging than the common approach used to train

neural networks on the MNIST dataset, in which the whole image is fed into the network

at once. The performance of convolutional neural networks and of multilayer perceptrons

are reported in Table 4 as a benchmark for the results obtained with ESN with SpaRCe.

Convolutional neural networks are best suited for image classification problems and nev-

ertheless SpaRCe is only 0.2% from the lower reported performance. In this comparison,

we have not matched the number of parameters between SpaRCe and the other models;

we have used a reservoir with 1000 neurons. To demonstrate the importance of thresholds

85

SpaRCe: sparse reservoir computing algorithm Paper II

in the SpaRCe model, we compared the performance of SpaRCe to that of an ESN with-

out thresholds trained online with the same optimizer, using a learning rate optimized

through grid search. SpaRCe outperformed the ESN in both classification accuracy and

convergence time (Fig. 5B, ‘MNIST’). We also found that the normalisation mechanism

introduced thanks to SpaRCe stabilises the learning process for relatively higher learning

rates vs standard ESNs. For this simulation, the total computational time required by

SpaRCe is 579.81 seconds, while for a standard ESN is 474.51 seconds (as before, see

Appendix E for more information). As a second task, we applied the same model to the

MNIST dataset where the pixels of each image are reordered through a permutation of

the data. Each image is again fed one column at a time. Again, SpaRCe outperformed

the ESN without thresholds (Fig. 5B, ‘pMNIST’).

Results
MNIST

ESN 95.2
SpaRCe 98.1
MLP 97.0|98.5∗

Conv. 98.3|99.6∗

psMNIST
Reservoir size 500 1000 1500
ESN2 95.6 95.9 96.3
SpaRCe2 96.2 96.6 96.9
LSTM 89.9∗∗

NRU 95.4∗∗

Table 1: The asterisks ∗ ∗∗ indicate that the results are taken from [55] and [44] respectively.
MLP stands for multilayer perceptron (three layers and without distortions), Conv. for single
convolutional networks (without distortions), NRU for Non-gated Recurrent Unit and LSTM for
Long Short Term Memory. The superscripts in ESN2 and SpaRCe2 indicate that each network
was composed by two reservoirs (see text). The paramteter “reservoir size” corresponds to the
total number of neurons in both reservoirs (see also Appendix E).

86

SpaRCe: sparse reservoir computing algorithm Paper II

psMNIST

We next analysed the performance of the SpaRCe model and of ESNs in general on the

psMNIST (permuted sequential MNIST) task, which has became a standard benchmark

for recurrent neural networks [44]. In this case, each image is reordered through a fixed

permutation and fed into the recurrent network one pixel at a time. The task is particularly

challenging because temporal dependencies must be learned between widely-separated

time steps of an image. Since each sequence is a succession of 784 pixels, we decided to

sample the dynamic of the reservoir across time at constant steps multiples of 28, defining

Ṽ = C
({

V(t) : 28|t}
)
, where 28|t indicates that t has to be divisible by 28. This sampling

procedure at constant temporal time steps could be suboptimal compared to an approach

where the most informative time steps are selected. However, an analysis of optimal

sampling procedures goes beyond the scope of this paper.

Our first attempts to solve the task with a single ESN gave performance comparable

to or worse than a standard perceptron model trained on the whole image, because the

ESN could not simultaneously discover long time dependencies and quickly adapt to new

inputs. Indeed, in any network of randomly-connected low pass filters such as ours, it

can be difficult to associate events that are distant in time, as it may be impossible to

find a workable balance in the trade-off between keeping a memory of past events (which

requires each node’s activity to have a long time constant, i.e., slow decay) vs. allowing

the network to evolve dynamically over time (which requires a short time constant, i.e.,

fast decay).

To overcome this difficulty, we used an architecture composed of two reservoirs. The

first has 200 nodes with fast time constants, and the second has 300 nodes with slower

time constants (the parameters for the two reservoirs are reported in Table 2 of Appendix

E). The faster reservoir signals unidirectionally to the slower one, and nodes of both

reservoirs are used for the read-out. This type of structure, where the timescales of the

first network are faster than the second, was found to be optimal in previous works [35].

87

SpaRCe: sparse reservoir computing algorithm Paper II

The sparsity level in the connectivity of the faster reservoir is important: it regulates a

trade-off between too much connectivity (the relation between the input information to the

second reservoir and the input signal becomes too complex) vs. not enough connectivity.

The best performance arises when the network has the shortest path lengths between two

nodes that could permit a sufficient amount of memory.

Using this architecture, SpaRCe outperforms published methods despite using a much

simpler training algorithm. As with MNIST and pMNIST, on psMNIST SpaRCe reaches

higher accuracy and converges faster than the threshold-less ESN (Fig. 5B). To compare

SpaRCe with published models, two ESNs with a total of N = 500 nodes (thus 154 × 103

parameters) were adopted. The model gave an accuracy > 0.96, higher than the best, more

complex recurrent neural networks that exploit backpropagation through time (BPTT),

whose performance are 0.954 (NRU) and 0.899 (LSTM) [44] (Table 4) with a comparable

number of parameters (≈ 167 × 103). While BPTT needs to unroll all the dependencies of

the neural network activities across time, ESNs have the advantage to train a much sim-

pler perceptron on top of the reservoir representation. In particular, considering that the

dynamic of a reservoir across datasets can be computed once only and then used to train a

high dimensional perceptron, the computational cost of ESNs is lower than the computa-

tional cost of RNNs. We emphasize that the procedure of concatenating previous temporal

representations is not simply a shortcut, but it is necessary to increase the dimensionality

of the representation in order to solve complex machine learning tasks through a reservoir

computing approach. Indeed, the idea behind reservoir computing is to exploit the tem-

poral dynamic of a system as a fixed and higher dimensional representation that allows

it to separate the classes of a classification task through an hyperplane. This approach

contrasts with the learning process of a recurrent neural network with backpropagation

through time, which trains the dynamics of the system and draws a nonlinear manifold to

solve the classification task. Furthermore, the concatenating procedure does not guarantee

any understanding of the long temporal dependencies among pixels that are necessary to

effectively solve the problem. It is therefore of interest that ESNs using SpaRCe could

88

SpaRCe: sparse reservoir computing algorithm Paper II

perform comparably to state of the art recurrent networks, whose parameters are trained

via a far more complex algorithm, backpropagation through time. Finally, we repeated

the experiment by changing the total number of nodes in the network, therefore increas-

ing the dimensionality of the representation and the number of trainable parameters. In

such a way, it is possible to understand if the performance difference between SpaRCe

and vanilla ESN can be alleviated by simply increasing the network size of the latter.

The results of this analysis are reported in Table 4 for three different numbers of nodes

(N = 500, 1000, 1500). Since the model is composed by two reservoirs in this case, N

indicates the total number of nodes in the network (see Appendix E for more details).

The standard ESN reaches the accuracy of SpaRCe only when its number of trainable

parameters is approximately tripled (similar performance of SpaRCe2 with N = 500 and

ESN2 with N = 1500), while the performance difference remains unaltered if we increase

the network size for both models. The difficulty found in the attempt to compensate for

the performance improvement of SpaRCe permits us to evaluate the relatively small dif-

ference between the two models (ESN and SpaRCe) and to demonstrate how the impact

of the proposed model is meaningful even on the psMNIST. This result, and the small

computational time required by SpaRCe (reported and compared to ESN gradient descent

training in Appendix), shows how the proposed model constitutes a relatively inexpensive

procedure considering its impact in terms of performance benefit.

3.3 SpaRCe alleviates catastrophic forgetting

Catastrophic forgetting refers to the inability of standard neural networks to learn different

tasks sequentially. If a neural network is trained on a specific dataset and then retrained

to perform a novel task, it will probably forget what it has learned before. This unsolved

problem [45] is critical for the future development of neural networks in general. Previous

research formulated models that mitigate catastrophic forgetting, using a variety of tech-

niques categorised by Kemker et al. [45]. These techniques include regularization (impose

a cost to changing the weights that contribute to previous tasks, as in Elastic Weight

89

SpaRCe: sparse reservoir computing algorithm Paper II

A B

MNIST pMNIST psMNIST

Figure 5: The SpaRCe model shows comparable performance to a 2/3 hidden layer neural network
on the MNIST dataset and accuracy comparable to more complex RNNs trained with BPTT on
the psMNIST task. On the contrary, the standard ESN with on-line training leads to lesser per-
formance. A: The sizes of the dots reflect the percentage of active nodes (sparser network=smaller
dots) in the network. Each minibatch corresponds to the presentation of 20 training samples. The
abscissa of the inset figure is scaled logarithmically. B: Performance of ESN with (red) and with-
out (grey) threshold learning on the three tasks analysed, measured by accuracy and convergence
time (C.T.). The network with the SpaRCe model outperforms the standard ESN read-out on
all the benchmarks, but the contribution of the thresholds decreases as the task becomes more
complex. This can be understood by considering that the increasing complexity of the tasks from
left to right of the graph arises from a greater demand of the network’s ability to understand long
term dependencies. This aspect depends on the system dynamics and is not strongly related to
threshold learning. Furthermore, the SpaRCe model converges about 5 times faster than an ESN
without thresholds.

Consolidation, or EWC), rehearsal (re-playing previously learned data during subsequent

training, as in GeppNet), and sparse coding (reducing the fraction of active nodes, as

in the Fixed Expansion Layer model, or FEL, and Hard Attention to the Task, or HAT

[46]). Sparse coding is also the approach we use here, with SpaRCe. However, in contrast

to these techniques that exploit additional information, such as model awareness of the

task identity, and the computation of ad-hoc quantities, such as the importance of specific

parameters (EWC) or nodes (HAT) for a given task, we will demonstrate how the applica-

tion of Eq. 4 alone with a high starting sparsity level can alleviate catastrophic forgetting.

Notably, the same methodology applied in the previous simulations, to improve conver-

gence time and performance of reservoir computing, can improve the ability of an ESN to

90

SpaRCe: sparse reservoir computing algorithm Paper II

learn different tasks sequentially. The difference between the application of SpaRCe in a

single task and in a sequential tasks paradigm is the tuning of the hyperparameters of the

proposed model, in particular the percentile value n and the learning rates ηW and ηθ.

We will demonstrate how sparsity regulates a trade-off between initial learning speed vs.

memory retention because high sparsity decreases overlaps among representations, which

prevents new learning from disrupting old memories, whereas low sparsity means more

nodes are active, allowing memories to be formed faster on new tasks.

This trade-off between initial learning vs. preventing forgetting is studied in detail

for two paradigms that are commonly used to measure catastrophic forgetting in neural

networks:

• Sequential data permutations. A different permutation is applied to the considered

dataset Ntask times. These new Ntask reshuffled datasets are then learned sequen-

tially by the system. In our simulation, Ntask = 10. In such a scenario, the complex-

ity of the different datasets is the same, and we trained SpaRCe for approximately

two epochs for each task.

• Sequential classes. The first task is composed by the data corresponding to half of

the possible classes, while the other classes are trained sequentially. Since in the

dataset considered there will be 10 classes, the number of tasks that the network

has to learn sequentially is six. In this case, we trained the model for approximately

one epoch for each task.

The dataset used is MNIST, where the reservoir processed every image column by

column as in Section 3.2, adopting Ṽ = C
({

V(t)
}

∀t

)
as before. Of course, the model is

able to learn from the data corresponding to a task only once. We learn from the training

dataset and compute the accuracy on the testing dataset by varying the initial starting

sparsity levels through grid search of the value of n in Eq. 4 and as the number of tasks

considered varies (Fig. 6C,D). These performances are used for comparison and demon-

stration only, and a validation dataset will be used to select the best hyperparameters

91

SpaRCe: sparse reservoir computing algorithm Paper II

setting. In comparison to previous simulations, the learning rate for the thresholds is

smaller (see also Table 3 of Appendix E), because it was crucial to prevent a dramatic

change of sparsity levels during learning, as such an abrupt change in the percentage of

active nodes would alter stimulus representations and thereby affect previously learned

tasks. In both tasks, lower sparsity levels allowed better initial learning on novel data

(Accuracy across Ntask = 1, Fig. 6C,D), while higher sparsity levels alleviated forgetting

of previous tasks during subsequent training. In other words, low sparsity allows good

performance when the number of tasks is low, but the accuracy decreases quickly when

Ntask increases. On the contrary, at optimal sparsity levels, accuracy remains high even as

the number of tasks increases (highlighted path on the surface plot in Fig. 6C,D). These

two conflicting trends combined make the total accuracy across all datasets an inverted U

when plotted against sparsity level (Fig. 6A,B).

Moreover, we computed the following quantities to measure the alleviation of catas-

trophic forgetting in more detail:

αOverall = 1
Ntask − 1

Ntask∑

n=2

accn

acc(1, 1) (10)

αMemory = 1
Ntask

Ntask∑

n=1
[acc(n, Ntask) − acc(n, n)] (11)

αNew = 1
Ntask

Ntask∑

n=1
acc(n, n) (12)

where accn is the accuracy computed on the datasets seen until task number n (included),

and acc(1, 1) is the accuracy of the first dataset immediately after its learning, which is

considered as the ideal baseline. In general, we denote with acc(n, m) the accuracy of the

n-th dataset after the presentation of m datasets. The performance metric αMemory mea-

sures model’s ability to remember previous tasks, i.e., to alleviate catastrophic forgetting,

while the metric αNew measures the model’s ability to learn new tasks. In other terms,

αMemory is the average difference over tasks between the performance obtained after the

whole training and immediately after the presentation of a specific dataset, while αNew

92

SpaRCe: sparse reservoir computing algorithm Paper II

is the average performance of a dataset after its presentation. These metrics and αOverall

are taken from [45], where the performance of various models that alleviate catastrophic

forgetting in multilayer perceptrons are compared.

Finally, we repeated the simulation ten times for each of the two paradigms considered,

averaged over different possible permutations (sequential data permutations) and for dif-

ferent ways of dividing the data into separate classes and corresponding tasks (sequential

classes), selected the best performing algorithm based on the validation dataset and com-

puted its performance αoverall on the test dataset. The performance obtained is reported

in Table 5 together with the results obtained by a standard ESN and published models

that use a variety of strategies to prevent catastrophic forgetting in multilayer perceptrons.

Of course, we do not expect to compete with newer Deep learning methods that exploit

additional information and many more parameters. The results reported are obtained

following, to the best of our knowledge, the same methodology as [45], and differ only in

the necessity of an ESN to process the data temporally, rather than feeding the whole

image to the network at once. In this aspect, the temporal processing of the data can

make the task only more challenging for our model, since catastrophic forgetting appears

to constitute an even more difficult problem to recurrent neural networks [56]. We need to

highlight, however, a drawback of our model: the tuning of an additional hyperparameter,

that is the starting sparsity level Pn regulated by the proposed normalisation mechanism.

However, we note that all other methods that alleviate catastrophic forgetting in neural

networks usually have additional hyperparameters (set through heuristics or grid search),

as the learning rate of the penalty term in EWC.

If the results on multilayer perceptrons can be considered exclusively as a useful base-

line, we notice from Table 5 the complete inability of an ESN to solve sequential learning.

Indeed, the training of the read-out weights of an ESN in the standard reservoir com-

puting paradigm causes a complete forgetting of previous tasks, resulting in an overall

performance that corresponds to the learning of the last task processed by the model.

The success of SpaRCe on these catastrophic forgetting tasks arises from both the

93

SpaRCe: sparse reservoir computing algorithm Paper II

initial sparsity and from threshold learning. We analysed the relative importance of the

starting sparsity level vs. the online threshold adaptation introduced by the learning rule

in the Appendix.

A

C

B

D

Sequential classes Sequential permutations

Figure 6: SpaRCe helps to prevent catastrophic forgetting on the two analysed benchmarks.
Different data points correspond to diverse repetitions of the experiment. A: Results on the
MNIST dataset in the sequential classes paradigm (see text). B: Results on the permuted datasets
paradigm. C-D: Performance as function of the starting percentage of active nodes and the number
of tasks that are learned in the catastrophic forgetting simulations (C refers to sequential classes
and D for permuted datasets). The surface is a cubic interpolation of the accuracy as the number
of datasets and the starting sparsity level vary. The path shows the best performing sparsity
levels across various number of tasks; its movement from right to left demonstrates the necessity
of adopting increasing level of sparsity as the number of datasets increases and the memory of
previous tasks becomes more relevant.

94

SpaRCe: sparse reservoir computing algorithm Paper II

Results, αoverall

Sequential classes Sequential permutations
ESN 0.1 ESN 0.1
SpaRCe 0.870 SpaRCe 0.897
EWC 0.133+ EWC 0.746+

FEL 0.439+ FEL 0.279+

GeppNet 0.922+ GeppNet 0.364+

Table 2: SpaRCe performs comparably to the best of the ad hoc models, which tend to perform
well only on one of the two tasks analysed. The symbol + indicates that the results were taken
from [45].

4 Discussion

It is customary in Machine Learning to introduce sparsity via regularisation: an ad-hoc

penalty term is added to the network’s error function to penalise the use of the weight

parameters, leading to solutions with smaller (or sparser) weight values. In this work,

inspired by the insect mushroom body, we propose a simple and elegant modification

on the standard ESN that leads to sparse representations. We introduce a threshold

per reservoir neuron, adaptable via on-line gradient learning, thereby associating sparsity

directly to network performance. This results in active neurons that preferentially fire for

one class vs another, which, in turn, leads to improved performance without disturbing

the reservoir dynamics. In our setup, threshold learning and weight learning is a two-way

interaction: the threshold changes are proportional to the weight values. In practice, we

have found that in most cases an increase in neuronal specialisation follows large weight

changes.

The threshold learning rule is structurally identical to the update rule for the bias

in backpropagation. This is not surprising as our formulation is equivalent to the in-

troduction of a hidden layer with as many neurons as the reservoir and a one-to-one

fixed connectivity. The only learnable parameters are therefore the neuronal thresholds in

the hidden layer. However, we demonstrated that it is advantageous to only learn these

thresholds in comparison to the full hidden layer. In our simulations, a hidden layer with

approximately 105 learnable parameters was required to catch up with SpaRCe, which

95

SpaRCe: sparse reservoir computing algorithm Paper II

required only 3 × 103 learnable parameters, and training was twice slower. Our technique

is also conceptually similar to the Extreme Learning Machines, which has been also ap-

plied in reservoir computing [57]. Nevertheless, allowing for threshold learning increases

the memory capacity of the network and we have demonstrated that it can discover the

optimal sparsity level.

We also found that the threshold learning helps stabilising the network in the case

that a large learning rate has been selected. We have demonstrated (Appendix B.2) that

high learning rates that lead to instabilities in the non-threshold model are appropriate for

the threshold model: the thresholds act as a stabilisation mechanism, by decreasing the

activity of the network through neuronal deactivation. This allows for larger parameter

areas and reduces the requirement of fine tuning for the learning rates.

Notably, our model competes with feedforward and recurrent networks on standard

benchmark problems (MNIST, sequential MNIST and permuted sequential MNIST), and

is always best or close to the best alternative algorithm. This is an impressive result given

the simplicity of our model. While in general an ESN is unlikely to compete with more

complex networks, SpaRCe permits ESNs to achieve performance levels that were not

possible before, at least not without augmentation of the dataset or in combination with

other algorithms (e.g. [58]).

Perhaps less obviously, threshold initialisation is key to achieving consistent perfor-

mances. If the initialisation is entirely random, neurons with excessively high initial

thresholds would never fire during the stimulus presentation. Effectively, such neurons

would be removed from the network for the whole duration of the simulation. To pre-

vent this issue, the training dataset is first presented to the recurrent network, and we

observe the operational activity range of each neuron. This allows us to set up a threshold

within this regime in a “fair” way, making sure that each neuron is active for a pre-

decided percentage of time, across all stimulus presentations. This process has a relatively

small computational overhead over the ESN; however, it is possible to learn the activity

percentile entirely on-line (Appendix B.3) without significant performance loss.

96

SpaRCe: sparse reservoir computing algorithm Paper II

Our model competes with published models across two standard tests for catastrophic

forgetting. In fact, sparsity alone, without threshold learning, significantly helps in the

case of catastrophic forgetting, but threshold learning adds to the ability of better learning

newer sets. In general, however, we do not expect to outperform complex new methods

that exploit additional information: our model, following the principle of ESN and reser-

voir computing in general, uses inherent properties of the network (e.g. dynamics, sparsity)

to boost performance in classification tasks and in catastrophic forgetting.

Our work may lead to a reinterpretation of the role of thresholds in neural networks.

We have shown that by having a layer where learning takes place via threshold adaptation

only and by disentangling the learning of the thresholds from the learning of the weights,

via different learning rates, we were able to achieve sparse solutions. We were also able to

demonstrate mathematically that sparsity is shaped by effectively “removing” redundant

neurons from the reservoir. We believe that this work might be applicable to network

structures beyond ESNs.

Finally, reservoir computing is of increasing interest to the neuromorphic computing

community, particularly to those who aim to use material dynamics for computation. For

instance, in the spintronic community, magnetic devices are proposed as reservoir replace-

ments, and more complex methods such as deep learning could not be implemented in the

material level. In the context of the ESN, the reservoir serves only as a spatiotemporal

kernel [59, 60], i.e. it increases the dimensionality of the input signal in order to allow a

linear model (a perceptron) to separate the classes. Therefore, it can be replaced by any

highly non-linear but non-chaotic system able to transform its input to an appropriate

higher dimensional space. Such proof of concept systems can be found for instance in [61]

[62]. Our algorithm does not impose any modification to the reservoir itself, which allows

its use even when the recurrent network is replaced by a physical material.

97

SpaRCe: sparse reservoir computing algorithm Paper II

5 APPENDIX

APPENDIX A: INITIALISATIONS

Reservoir initialization

The equation describing the dynamic of reservoir of leaky integrators is

V(t + 1) = (1 − α)V(t) + αf
[
γWins(t) + ρWV(t)

]
(A1)

where W is a random sparse connectivity matrix whose eigenvalues are uniformly dis-

tributed inside the unit circle of the imaginary plane, γ the gain factor of the input signal

and 0 < ρ < 1 is a constant. The rescaling factor ρ is called spectral radius and it is

explicitly defined to control the maximum absolute value of the eigenvalues of the matrix

ρW. The fact that the eigenvalues of the connectivity matrix ρW are constrained inside

the unit circle of the imaginary plane is a necessary condition for the Echo State prop-

erty of the network. Given the eigenvalues λW of W, the eigenvalues λ of the linearised

dynamic system associated to Eq. A1 are

λ = (1 − α) + αρλW (A2)

and thus λW are compressed by a factor α and translated by a factor 1−α in the imaginary

plane. As a consequence, λ follows the probability distribution

p(x, y) =





1
πα2ρ2 , if

[
x − (1 − α)

]2 + y2 ≤ α2ρ2

0, otherwise
(A3)

where x = Re(λ) and y = Im(λ) for simplicity of notation. Since the real part of the

eigenvalues is associated to the timescales τ of the dynamic system as Re(λ) = exp(−δt

τ
) ≈

1− δt

τ
, it is possible to compute the marginal distribution over x of p(x, y) for the real part,

and then compute the distribution of timescales. A simple strategy to choose α and ρ by

98

SpaRCe: sparse reservoir computing algorithm Paper II

knowing the range of the timescales [τm, τM] that the network should exhibit is to notice

how the fastest (slowest) timescale τm (τM) is given by the minimum (maximum) real

eigenvalue of the dynamic system. Calling λm = min
{
Re(λ)

}
and λM = max

{
Re(λ)

}
,

and recalling we have

λm = 1 − α + αρ (−1) = 1 − α(1 + ρ) =

= exp(−δt/τm) ≈ 1 − δt

τm
→

→ α(1 + ρ) ≈ δt

τm

and

λM = 1 − α + αρ (+1) = 1 − α(1 − ρ) =

= exp(− δt

τM
) ≈ 1 − δt

τM
→

→ α(1 − ρ) ≈ δt

τM

Solving the system above, we end up with

α ≈ δt

2τm
+ δt

2τM

and

ρ ≈ δt

2ατm
− δt

2ατM

that are relations between α, ρ and the minimum and maximum timescales that the model

can exhibit. In this way, it is possible to choose the hyperparameters α and ρ by selecting

99

SpaRCe: sparse reservoir computing algorithm Paper II

a priori the more interpretable parameters τm and τM . We want to emphasize that this

procedure does not guarantee an optimal choice of the hyperparameters, but it can guide

the search and it assures a good choice in terms of temporal memory of the reservoir.

Thresholds initialization

Imposing a democratic initialisation where each node has the same probability to be

active, the initial condition and sparsity level are defined by the choice of the starting

percentile Pn. Here we defined two approaches to choose Pn:

• A simple grid search over n. Here, NP reservoirs are trained in parallel for the

first 10% of time steps in the training instance, and the best performing reservoir

is selected for the remainder of training. From our results, a small fraction of the

training time is enough to choose the starting condition without any loss in the

performance.

• Select the sparse representation that leads to the highest value of specialisation, a

measure of the quality of the sparse representations that is defined below.

The measure of specialisation (Sp) reflects how a level of sparsity can facilitate the learning

process in a classification task. The assumption behind the following formulation is that

for a good sparse representation the ensembles of active nodes for different classes should

overlap as little as possible. Let us consider two classes j and k and a neuron i. The node

is specific if there is an asymmetry in the number of times it is active for one class with

respect to the other. Generalizing this idea it is possible to build a measure specijk for a

node i defined as

specijk = |Nij

Mj
− Nik

Mk
| (A4)

where Nij (Nik) is the number of times the neuron i was active after the presentation of

a stimulus of class j (k) and Mj (Mk) is the total number of presentations of the stimuli

belonging to class j (k). Since the denominator of Eq. A4 contains the total number of

100

SpaRCe: sparse reservoir computing algorithm Paper II

presentations, specijk does not simply increase with the level of sparsity introduced. Let

us focus on the particular case where Mj ≈ Mk. A too high level of sparsity would lead

the node to be almost silent, with a consequent poor specialisation value due to Nij and

Nik being both close to zero. On the contrary, a too low sparsity level would lead the

neuron to be excessively responsive, and specijk would be poor because Nij ≈ Nik even if

Nij and Nik are both high.

Given specijk it is possible to compute a measure of specialisation for each single

neuron as

Spi = 〈specijk〉(>0)
jk (A5)

where 〈· 〉(>0)
jk is the average over positive elements for the indexes jk. It is possible to

select the starting initial values of the thresholds as the n-th percentile of the distribution

V that leads to the highest specialisation measure. Figure 3 (Main text) shows how the

best performing sparse representation corresponds approximately to the maximum value

of the average specialisation across neurons Sp = 1
N

∑N
i Spi.

APPENDIX B: THRESHOLD LEARNING

Gradients on thresholds

The training procedure minimizes a measure of the distance E(t) between the output

y = Wox of the neural network and the desired value ỹ. Theoretically,

E = dist2
(
ỹ, y

)
(B1)

We will now apply a gradient based optimization on an example cost function, and show

how the resulting learning rule for the thresholds can be interpreted.

Gradient on θ, Mean Square Error (MSE)

101

SpaRCe: sparse reservoir computing algorithm Paper II

A B

C D

Figure 7: ∆θ(1) and ∆θ(2) drive the learning process of the thresholds. A-C: Values of ∆θ(1) and
∆θ(2) averaged across the population of nodes for two different starting sparsity levels. These two
factors have interpretable meaning (see Main text). B-D: Average of the cumulative threshold
change. If the starting condition is suboptimal and low (high), such an average will be positive
(negative) and consequently increasing (decreasing) the level of sparsity. Panels A and B refer
to the storage capacity task of Section 3.1, where the cost function is a mean square error, while
panels C and D refer to the classification of the MNIST dataset in the column by column paradigm
of Section 3.2, where a sigmoid cross-entropy function was adopted. In the latter case, the two
factors are defined in Eq. B10 and B9.

Let us consider the mean square cost function, given by

E = dist
(
ỹ, y

)
=

=
∑

j

[
ỹj − yj

]2
=

=
∑

j

[
ỹj −

∑

i

W o
jixi

]2
=

=
∑

j

[
ỹj −

∑

i

W o
jisign(Ṽi)ReLU

(
|Ṽi| − Pn(|Ṽi|) − θ̃i

)]2
(B2)

102

SpaRCe: sparse reservoir computing algorithm Paper II

A BAccuracy Fraction of active nodes

‘Unstable’ training of ESN ‘Unstable’ training of ESN

Figure 8: The proposed model acts as a stabilisation mechanism that permits the utilisations
of higher learning rates in comparison to the values adopted in the standard ESN read-out. The
result are obtained on the MNIST task of Section 3.2 in the column by column paradigm. For
all the results shown, the model is initialised from a starting sparsity level Pn = 50. We plot
the accuracy (A) and the sparsity level (B) as the learning rates ηW and ηθ vary. A: The best
performance of the algorithm corresponds to a region where the learning rate on the thresholds is
at least 10−1 times lower than the learning rate on the output weights. This result is expected,
considering that the learning rule on the thresholds depend explicitly on the output weights (Eq.
B3), and thus thresholds can be accurately learnt when the output weights carry information on
the classification process, i.e. weights are learnt faster than thresholds. B: The percentage of active
nodes decreases as the learning rates ηW and ηθ increase. This can be understood considering that,
when the learning rates are high, the model avoids abrupt changes on the output y by decreasing
the activities of the representation, i.e. increasing the sparsity level of the network. The parameter
space above the white horizontal line corresponds to a region where learning with the standard
ESN read-out is unstable because of the too high value of ηW adopted. In that region, training is
characterised by an undesirable increase of the cost function across learning for the ESN but not
for SpaRCe.

where we have used a read-out of Eq. 2 (Main text) to define the output of the neural

network. A gradient based approach that minimizes E leads to the following learning rule

on the output weights

∆W o
lk = −ηW

∂E

∂W o
lk

=

= ηW

[
ỹl − yl

]
xk

103

SpaRCe: sparse reservoir computing algorithm Paper II

and to the following learning rule for the thresholds

∆θk = −ηθ
∂E

∂θk
= −ηθ

∂E

∂θ̃k

=

= ηθ

Nclass∑

j=1

[
ỹj − yj

] ∂

∂θ̃k

{ ∑

i

W o
jixi

}
=

= −ηθ

Nclass∑

j=1

[
ỹj − yj

]
W o

jksign(Ṽk)H
(
|Ṽk|−

−Pn(|Ṽk|) − θ̃k

)
=

= −ηθ

Nclass∑

j=1

[
ỹj − yj

]
W o

jksign(xk) =

= −ηθ

Nclass∑

j=1
ỹjW o

jksign
(
xk

)
+

+ηθ

Nclass∑

j=1
yjW o

jksign
(
xk

)
(B3)

By taking into account the specific case of a classification task where ỹj is positive for

j that corresponds to the desired class and zero otherwise, it is possible to manipulate

Eq. B3 and to separate it in two terms to uncover the meaning of the learning on the

thresholds.

∆θk = −ηθβW o
j̃k

sign
(
xk

)
+

+ηθ

Nclass∑

j=1
yjW o

jksign
(
xk

)

= −ηθβW o
j̃k

sign
(
xk

)
+

+ηθ

Nclass∑

j=1

N∑

l=1
W o

jlW
o
jkxlsign

(
xk

)
(B4)

where j̃ indicates the correct class for the considered input, and β is the positive quantity

equal to the correct desired output value ỹj̃ (in main text β=1). Eq. B4 contains two

104

SpaRCe: sparse reservoir computing algorithm Paper II

clearly interpretable factors:

∆θ(1) =
Nclass∑

j=1

N∑

l=1
W o

jlW
o
jkxlsign

(
xk

)
(B5)

∆θ(2) = −βW o
j̃k

sign
(
xk

)
(B6)

Gradient on θ, cross entropy

The error function has the form

E = −
[∑

j

ỹj log
(
σ(yj)

)
+ (1 − ỹj)log

(
1 − σ(yj)

)]

In this case, the learning rule for the thresholds is

∆θk = −ηθ

∑

j

ỹj
(
1 − σ(yj)

)
W o

jksign(xk)+

−ηθ

∑

j

(
1 − ỹj

)
σ(yj)W o

jksign(xk) =

= −ηθ

∑

j

ỹjW o
jksign(xk)+

+ηθ

∑

j

yjσ(yj)W o
jksign(xk) (B7)

The two terms in Eq. B7 have comparable meaning to ∆θ(2) and ∆θ(1) of Eq. B5 and B6

computed for the mean square error, To demonstrate this, we can consider the case of a

classification task where ytrue
j = 1 for the correct class and zero otherwise. Furthermore,

considering that the neural network output is not in the saturating regime of the sigmoid

function when the majority of the learning happens, we can use the dominant first term

105

SpaRCe: sparse reservoir computing algorithm Paper II

of the Taylor series of the sigmoid and approximate the second term of Eq. B7

∆θk = −ηθW o
j̃k

sign(xk)+

+ηθ

∑

j

σ(yj)W o
jksign(xk) =

= −ηθW o
j̃k

sign(xk)+

+ηθ

∑

j

[1
2 + 1

4yj + ...
]
W o

jksign(xk) =

= −1
2ηθW o

j̃k
sign(xk) + 1

2ηθ

∑

j �=j̃

W o
jksign(xk)

+ηθ

∑

j

[1
4yj + ...

]
W o

jksign(xk) (B8)

where we can define

∆θ(2) = −1
2ηθW o

j̃k
sign(xk) + 1

2ηθ

∑

j �=j̃

W o
jksign(xk) (B9)

∆θ(1) = ηθ

∑

j

[1
4yj + ...

]
W o

jksign(xk) (B10)

Eq. B9 has an analogous meaning to Eq. B6 with the additional term ∑
j �=j̃ W o

jksign(xk)

that increases (decreases) thresholds of nodes that are helping (impeding) the wrong clas-

sification process. Considering only the linear term of the Taylor expansion of the sigmoid

function, Eq. B10 has the exact same form as Eq. B5. To demonstrate its role as balanc-

ing term that deactivates nodes that are helping in a similar way the classification process

(their contribution has the same sign of yj), we estimated Eq. B10 by subtracting ∆θ(2)

to the value of the gradient. The result of this procedure is shown in Panel C of Fig. 7

(Appendix).

Finally, the sparsity level reached after optimisation depends on the values of the

learning rates ηW and ηθ used. Indeed, threshold learning can act as a balancing force

106

SpaRCe: sparse reservoir computing algorithm Paper II

that, in the case of high learning rates, decreases the percentage of active nodes in the

network and stabilizes the training phase. In this regard, Fig. 8 (Appendix) shows the

accuracy and the corresponding sparsity level after optimisation as ηW and ηθ vary for

the MNIST classification task faced in Section 3.2 where the input is given to the network

column by column (as a 28-th dimensional sequence of 28 time steps).

Initialisation and threshold adaptation in sequential learning

A B

Figure 9: The initialisation procedure is the key element to alleviate catastrophic forgetting. A:
Difference between the full SpaRCe model and a network where the thresholds are exclusively ini-
tialised for two metrics (Eq. B11 and B12), which measure the ability of the network to remember
(red) and to learn novel tasks (blue) respectively. B: Overall accuracy with and without thresh-
olds adaptation, which leads to an increase in the maximum performance of approximately five
percent. The high accuracy reached exclusively with the initialisation demonstrates its importance
to alleviate catastrophic forgetting.

We used Eq. 10, 11 and 12 introduced in the Main Text to calculate the differences

∆αMemory = αMemory − αMemory,θ0 (B11)

∆αNew = αNew − αNew,θ0 (B12)

between a model where thresholds are initialised and then learned and a model where the

thresholds are initialised only (as marked by the subscript θ0). Up to high sparsity levels,

threshold learning reduces the model’s ability to remember previous tasks by changing

107

SpaRCe: sparse reservoir computing algorithm Paper II

and compromising the parameters optimised on past datasets (seen as ∆αMemory < 0

in Fig. 9A, Appendix). However, at initial sparsity above Pn = 94, the initial memory

capacity of the network is reduced by the small number of active nodes; threshold learning

helps to recruit inactive neurons and to increase the amount of resources available. This

leads to a consequent increase of αMemory for high sparsity levels. At the same time,

threshold optimisation facilitates the learning of new datasets by adapting the parameters

to the new incoming stimuli (∆αNew > 0, Fig. 9A, Appendix, blue trend). Altogether,

the trade-off between memory and adaptability on novel data results in the trend seen

in Fig. 9B (Appendix): at lower initial sparsity levels, threshold learning worsens overall

performance (because it reduces αMemory), while at higher initial sparsity levels, threshold

learning improves overall performance (because high sparsity prevents threshold learning

from worsening αMemory while still allowing it to improve αNew). In summary, thresh-

old learning modulates the starting condition and increases the maximum performance

(αoverall) by about five percent.

Alternatives to threshold initialisation

In the main text, thresholds are initialised by computing percentiles over the ESN

activities across a training dataset. Thus, data needs to be available before learning

and the initialisation technique seems to be restricted to applications where a training

dataset is known beforehand, apparently limiting the application of the proposed model.

In this section we will discuss two alternatives to the procedure adopted in the main text,

showing how SpaRCe initialisation criterion can be easily generalised to cases where a

training dataset is not available a priori.

• Use of mini-batch statistics. Taking inspiration from batch normalisation, it is possi-

ble to compute Pn(|V |) using the mini-batch data sampled at each training iteration.

Of course, the overall computational time of the model will increase considerably,

since the percentile operation needs to be computed every training step. For the

108

SpaRCe: sparse reservoir computing algorithm Paper II

testing phase of the algorithm, a better estimate of the percentile over a larger sam-

ple can be computed through Eq. (B13), where the suffix l of Pn,m(|V |i) indicates

the training step number l, while n and i refer to the percentile and node numbers

as usual.

• Accumulation of data. An efficient alternative to the proposed initialisation is to

accumulate M data samples and use Eq. B13 to set the percentile operation also

for the training phase. Then, the update of the percentile estimate is stopped once

its variation becomes negligible and the estimate has converged. While this method

is computationally cheaper than the previous one and can be applied also to full

online learning (where training is accomplished one sample at a time), it needs to

accumulate statistics across a phase of training during which the dynamics of the

network needs to be unchanged. Thus, the application of this methodology becomes

more difficult when online adaptation of parameters that affect the ESN dynamic,

as α or ρ [31] [35], is desirable.

Pn,m
(|Vi|

)
= m − 1

m
Pn,m−1

(|Vi|
)

+ 1
m

Pn,m
(|Vi|

)
(B13)

Both these alternative methods reached comparable performance to the initialisation

criterion adopted on the benchmarks of Section 3.2 of the main text.

APPENDIX C: Procedure for building sequences

Given an ensemble of elements E =
{
A, B, C, ...

}
, we formulated a systematic procedure

to build sequences of Nt (in the case analysed, Nt = 3) elements from E . Our goal is to

test the storage capacity of the model to learn associations between sequences and desired

outputs. To achieve this, we prevented correlations between similar sequences from helping

classification, by placing similar sequences in different classes. As described in Fig. 11A

(Appendix), the procedure is based on the repetition of the following two steps:

109

SpaRCe: sparse reservoir computing algorithm Paper II

A B C

Figure 10: Example of threshold distributions before and after training. A: Distributions of
thresholds when the initial percentile is twenty. It is evident how the learning process of θ̃ increases
the values of the thresholds on average. B: Distributions of thresholds when the initial percentile
is eighty. The learning process decreases the values of the thresholds in this case. The results are in
agreement with the optimal sparsity level for the task, that was about 25−40% for the MNIST (see
also Fig. 2 in the Appendix). C: Online estimates of percentiles through Eq. B13. The estimates
converge and becomes accurate after 100 iterations, showing how a fully online computation of the
percentiles is possible.

1. Given a number of output classes Nclass, we picked NtNclass random elements with

repetitions from E and composed the successions as in Fig. 11 (Appendix), where

the simple case of two output classes is considered.

2. We picked other NtNclass random elements with no repetitions. Then, we changed

the last temporal elements of the sequences generated before with Nclass of the new

picked stimuli, associating the new sequences to different desired output values as

shown in the figure. Finally, we proceed in this way for all the previous temporal

elements of the considered Nclass successions from which we started (point 1).

We notice how the similarities between sequences can not be used to infer the right

classification, since correlations among elements are associated to different output classes.

Each element is associated to a multidimensional signal that, with addition of multiplica-

tive white noise, is presented to the network (Fig. 11 B, Appendix).

110

SpaRCe: sparse reservoir computing algorithm Paper II

A

N
C

A B D
A C H

A B N
A C N

A

N
C

A B P
A C P

N, P,
S, T…

A, B, D,
A, C, H

1 0
0 1

0 1
1 0

1)

2)

A S D
A S H

A T D
A T H

1 0
0 1

0 1
1 0

Succession
Desired
output

Succession Desired
output

…

.

.

.

a.

b.

c.

A

S

N

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A B

Figure 11: Task diagrams. A: Schematic of the procedure to define sequences. We notice how
similarities among sequences are associated to different desired outputs, making the task a test
of the storage capacity of the network. B: Schematic of the task on the biological data. Input
example, succession of three stimuli (A,S,N) of time duration ∆t = 0.1s each. Multiplicative
white noise σsN(0, 1) is added throughout all the sequence, with different realisations of N(0, 1)
(gaussian with zero mean and unitary variance) for each temporal step. Only the last activities of
the nodes in the reservoir is used for the read-out, which is divided into three models (a, standard
ESN, b, SpaRCe, c, additional hidden layer) of increasing complexity and whose performance are
tested and reported in the main text.

5.1 APPENDIX D: Mathematical Insights

Necessity of neuronal specialisation for obtaining an optimal solution with

positive output weights

The following section contains a formal proof of how sparsity is necessary to find an

optimal solution of a classification problem when the output weights are constrained to

be positive. The cost function E in a classification task and for the entire dataset can be

written as:

E =
∑

k

∑

µεCk

Nclass∑

j

[
ỹµk

j − yµk
j

]2 (D1)

where k indicates the correct class and the expression µ ε Ck can be read as all datapoints

µ that belongs to the cluster Ck from which we desire output k. We assume that the target

111

SpaRCe: sparse reservoir computing algorithm Paper II

is 1 for the correct class and 0 otherwise. An ideal solution of this problem with an online

learning learning algorithm can be defined as:

∀ ε > 0, ∃ n | En ≤ ε (D2)

where n is the minibatch (or batch) number and it is a measure of the training time.

Thus, Eq. D2 means that the cost function can be made as small as desired by going

through enough training instances. The fact that the sum of the quadratic terms of the

cost function has to be less than or equal to a desired ε value means that

[ỹµk
j − yµk

j]2 ≤ ε, ∀µ, ∀k

→ −√
ε ≤ ỹµk

j − yµk
j ≤ √

ε, ∀µ, ∀k

Thus, for each datapoint µk and each output class j





1 − √
ε ≤ yµk

j ≤ 1 +
√

ε, if j = k

−√
ε ≤ yµk

j ≤ √
ε if j
= k

which, by considering separately all different classes, becomes





1 − √
ε ≤ yµ1

1 ≤ 1 +
√

ε,

−√
ε ≤ yµk

1 ≤ √
ε if k
= 1

1 − √
ε ≤ yµ2

2 ≤ 1 +
√

ε,

−√
ε ≤ yµk

2 ≤ √
ε if k
= 2

...

1 − √
ε ≤ yµC

C ≤ 1 +
√

ε,

−√
ε ≤ yµk

C ≤ √
ε if k
= C

(D3)

112

SpaRCe: sparse reservoir computing algorithm Paper II

Trivially, the difficulty of the classification task lies in the requirement that the activity

of the same output node has to be close to one for some datapoints and close to zero for

others; this condition is highlighted explicitly by the above set of inequalities, which can

be rewritten 



1 − √
ε ≤ ∑

l W o
1lReLU(V µ1

l − θl) ≤ 1 +
√

ε,

−√
ε ≤ ∑

l W o
1lReLU(V µk

l − θl) ≤ √
ε, if k
= 1

...

Since we required positive output weights we find

−√
ε ≤

∑

l

W o
1lReLU(V µk

l − θl) ≤ √
ε (D4)

→ W o
1q ≈ O(

√
ε), ∀q, k | V µk

q > θq (D5)

1 − √
ε ≤

∑

l

W o
1lReLU(V µ1

l − θl) ≤ 1 +
√

ε (D6)

→ W o
1m � O(

√
ε), ∀m | V µ1

m > θm (D7)

the conditions above can be satisfied only when the indexes q do not completely overlap

with the indexes m, i.e. the representations do not totally overlap and a vector of thresh-

olds is introduced to separate the ensemble of nodes that are active for different classes.

We note that this simple proof holds in the case of positive output weights and positive

reservoir activities only.

Interpretation of the optimal fifty percent of active nodes for memory

capacity

The aim of the task faced in section 2.2 (Main text) is to measure the memory ca-

pacity of the model and the stability of the solution found by the model. The results

show a robust optimal level of sparsity of 0.5 despite the specific values of noise level and

number of output classes. Such level of sparsity maximises the probability that different

representations have at least one node that is not in common. Given N nodes and an un-

113

SpaRCe: sparse reservoir computing algorithm Paper II

defined input si, the ensemble of active nodes for that signal can be imagined as a random

sample of p × N nodes from the total possible ensemble of neurons. Thus, each represen-

tation can be imagined as the extraction of p × N elements from an urn of N elements,

where p is the imposed percentage of active nodes. In order to have representations that

do not completely overlap we need to maximise the number of possible outcomes of the

extraction, and this will guarantee that at least one node is different among the various

representations. The number of possible extractions of active nodes corresponds to the

number of combinations without repetitions:

Ñ = N !
(N − p × N)!(p × N)! (D8)

which has a maximum at p = 0.5. Thus, p = 0.5 is the sparsity level that maximises

the probability that, given an undefined ensemble of input stimuli, the corresponding

representations will have at least one non-overlapping neuron.

APPENDIX E: Hyperparameters

The parameters for the tasks faced are reported in the following three tables, respectively

related to the storage capacity task of Section 3.1, the benchmarks that adopt the MNIST

dataset of Section 3.2, and the application on catastrophic forgetting of Section 3.3 in the

main text. The simulations were performed on a Windows PC with a gtx 1050Ti and

Intel(R) Core(TM) i7-8750H CPU using Tensorflow on the GPU.

114

SpaRCe: sparse reservoir computing algorithm Paper II

Storage capacity Task
Hyperparameters

σ 0.3
∆t 0.1s
T 0.3s
δt 0.01s

α 0.1
ρ 0.95
N 1000
γ 1
pER 0.001
ηW 4 × 10−2

ηθ 4 × 10−3

minibatch size 20
Computational Time

Initialisation Training
ESN 0s 1233.98s
SpaRCe 0.3s 1234.31s

Table 3: The table reports the parameters defining the task, the hyperparameters of the ESN and
the training hyperparameters for the storage capacity task. The computational time for the models
is reported in terms of initialisation, computation of the percentile operation before learning, and
training time, which corresponds to 3 × 105 iterations (minibatches) and ten evaluations of the
performance across training.

115

SpaRCe: sparse reservoir computing algorithm Paper II

MNIST based benchmarks
MNIST/sMNIST psMNIST

α 0.17 α2 0.017
ρ 0.97 ρ2 0.99
N 1000 N2 300|600|900
γ 0.1 γ21 0.15
pER 0.01 pER2 0.01

α1 1
ρ1 1
N1 200|400|600
γ1 1
pER1 0.01

ηW 1 × 10−5 ηW 1 × 10−5

ηθ 1 × 10−6 ηθ 1 × 10−6

minibatch 20 minibatch 20
Computational Time

Initialisation Training
ESN 0s 474.51s
SpaRCe 34.84s 544.97s

Table 4: Table of the hyperparameters for the three benchmark tasks in Section 3.2. The hyper-
parameters for the psMNIST are double since two ESNs are used for this task (as the symbol 2

over SpaRCe highlights). The three values reported for the two network sizes correspond to the
three different simulations performed as the total number of nodes (500,1000,1500) changes (Main
text, Table 1). The suffix one corresponds to the first reservoir and the suffix two to the second
reservoir. γ21 indicates the input gain of the adjacency matrix from the first to the second ESN.
The computational time for the models is reported in terms of initialisation, computation of the
percentile operation before learning, and training time, which corresponds to 1 × 105 iterations
(minibatches) and ten evaluations of the performance across training for the MNIST task with
N = 1000.

Catastrophic Forgetting
Sequential classes Sequential permutations

α 0.17 α 0.17
ρ 0.97 ρ 0.97
N 1000 N 1000
γ 0.1 γ 0.1
pER 0.01 pER 0.01
ηW 2 × 10−6 ηW 5 × 10−6

ηθ 2 × 10−7 ηθ 5 × 10−8

minibatch 20 minibatch 20

Table 5: Table of parameters used in the catastrophic forgetting tasks. We note that the learning
rates used for the thresholds is smaller than in the previous simulations, since we needed to avoid
changing the sparsity level quickly, in order to keep the optimised sparsity level near the starting
value imposed (Pn).

116

SpaRCe: sparse reservoir computing algorithm Paper II

References
[1] Mikhail V Tsodyks and Mikhail V Feigel’man. The enhanced storage capacity in

neural networks with low activity level. EPL (Europhysics Letters), 6(2):101, 1988.

[2] MV Tsodyks. Associative memory in asymmetric diluted network with low level of
activity. EPL (Europhysics Letters), 7(3):203, 1988.

[3] Bernard Derrida, Elizabeth Gardner, and Anne Zippelius. An exactly solvable asym-
metric neural network model. EPL (Europhysics Letters), 4(2):167, 1987.

[4] Daniel J Amit, Hanoch Gutfreund, and Haim Sompolinsky. Storing infinite num-
bers of patterns in a spin-glass model of neural networks. Physical Review Letters,
55(14):1530, 1985.

[5] Sandro Romani, Itai Pinkoviezky, Alon Rubin, and Misha Tsodyks. Scaling laws of
associative memory retrieval. Neural computation, 25(10):2523–2544, 2013.

[6] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with
sparsity: the lasso and generalizations. Chapman and Hall/CRC, 2015.

[7] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning struc-
tured sparsity in deep neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 29, pages 2074–2082. Curran Associates, Inc., 2016.

[8] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[9] Peter M Rasmussen, Lars K Hansen, Kristoffer H Madsen, Nathan W Churchill, and
Stephen C Strother. Model sparsity and brain pattern interpretation of classification
models in neuroimaging. Pattern Recognition, 45(6):2085–2100, 2012.

[10] Edmund T Rolls and Martin J Tovee. Sparseness of the neuronal representation of
stimuli in the primate temporal visual cortex. Journal of neurophysiology, 73(2):713–
726, 1995.

[11] Kyle S Honegger, Robert AA Campbell, and Glenn C Turner. Cellular-resolution
population imaging reveals robust sparse coding in the drosophila mushroom body.
Journal of Neuroscience, 31(33):11772–11785, 2011.

[12] Andrew C Lin, Alexei M Bygrave, Alix De Calignon, Tzumin Lee, and Gero Miesen-
böck. Sparse, decorrelated odor coding in the mushroom body enhances learned odor
discrimination. Nature neuroscience, 17(4):559, 2014.

[13] Glenn C Turner, Maxim Bazhenov, and Gilles Laurent. Olfactory representations
by drosophila mushroom body neurons. Journal of neurophysiology, 99(2):734–746,
2008.

117

SpaRCe: sparse reservoir computing algorithm Paper II

[14] Eyal Gruntman and Glenn C Turner. Integration of the olfactory code across dendritic
claws of single mushroom body neurons. Nature neuroscience, 16(12):1821, 2013.

[15] Hao Li, Yiming Li, Zhengchang Lei, Kaiyu Wang, and Aike Guo. Transformation of
odor selectivity from projection neurons to single mushroom body neurons mapped
with dual-color calcium imaging. Proceedings of the National Academy of Sciences,
110(29):12084–12089, 2013.

[16] Javier Perez-Orive, Ofer Mazor, Glenn C Turner, Stijn Cassenaer, Rachel I Wilson,
and Gilles Laurent. Oscillations and sparsening of odor representations in the mush-
room body. Science, 297(5580):359–365, 2002.

[17] James M Jeanne and Rachel I Wilson. Convergence, divergence, and reconvergence in
a feedforward network improves neural speed and accuracy. Neuron, 88(5):1014–1026,
2015.

[18] Rony Azouz and Charles M Gray. Dynamic spike threshold reveals a mechanism for
synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National
Academy of Sciences, 97(14):8110–8115, 2000.

[19] Matthew S Grubb and Juan Burrone. Activity-dependent relocation of the axon
initial segment fine-tunes neuronal excitability. Nature, 465(7301):1070, 2010.

[20] Nathan Intrator and Leon N Cooper. Objective function formulation of the bcm
theory of visual cortical plasticity: Statistical connections, stability conditions. Neural
Networks, 5(1):3–17, 1992.

[21] Jochen Triesch. A gradient rule for the plasticity of a neuron’s intrinsic excitability. In
Włodzisław Duch, Janusz Kacprzyk, Erkki Oja, and Sławomir Zadrożny, editors, Ar-
tificial Neural Networks: Biological Inspirations – ICANN 2005, pages 65–70, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[22] Mohd-Hanif Yusoff, Joseph Chrol-Cannon, and Yaochu Jin. Modeling neural plas-
ticity in echo state networks for classification and regression. Information Sciences,
364-365:184–196, 2016.

[23] Jochen J. Steil. Online reservoir adaptation by intrinsic plasticity for backpropaga-
tionâdecorrelation and echo state learning. Neural Networks, 20(3):353–364, 2007.
Echo State Networks and Liquid State Machines.

[24] Benjamin Schrauwen, Marion Wardermann, David Verstraeten, Jochen J. Steil, and
Dirk Stroobandt. Improving reservoirs using intrinsic plasticity. Neurocomputing,
71(7):1159–1171, 2008. Progress in Modeling, Theory, and Application of Computa-
tional Intelligenc.

[25] Chao Du, Fuxi Cai, Mohammed A Zidan, Wen Ma, Seung Hwan Lee, and Wei D Lu.
Reservoir computing using dynamic memristors for temporal information processing.
Nature communications, 8(1):1–10, 2017.

118

SpaRCe: sparse reservoir computing algorithm Paper II

[26] Manjari S Kulkarni and Christof Teuscher. Memristor-based reservoir comput-
ing. In 2012 IEEE/ACM international symposium on nanoscale architectures
(NANOARCH), pages 226–232. IEEE, 2012.

[27] Xiaojian Zhu, Qiwen Wang, and Wei D Lu. Memristor networks for real-time neural
activity analysis. Nature communications, 11(1):1–9, 2020.

[28] Kristof Vandoorne, Pauline Mechet, Thomas Van Vaerenbergh, Martin Fiers, Geert
Morthier, David Verstraeten, Benjamin Schrauwen, Joni Dambre, and Peter Bienst-
man. Experimental demonstration of reservoir computing on a silicon photonics chip.
Nature communications, 5(1):1–6, 2014.

[29] Yvan Paquot, Francois Duport, Antoneo Smerieri, Joni Dambre, Benjamin
Schrauwen, Marc Haelterman, and Serge Massar. Optoelectronic reservoir computing.
Scientific reports, 2:287, 2012.

[30] Kohei Nakajima. Physical reservoir computingâan introductory perspective. Japanese
Journal of Applied Physics, 59(6):060501, 2020.

[31] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. Optimiza-
tion and applications of echo state networks with leaky-integrator neurons. Neural
networks, 20(3):335–352, 2007.

[32] Ali Rodan and Peter Tino. Minimum complexity echo state network. IEEE transac-
tions on neural networks, 22(1):131–144, 2010.

[33] Hongyan Cui, Xiang Liu, and Lixiang Li. The architecture of dynamic reservoir in
the echo state network. Chaos: An Interdisciplinary Journal of Nonlinear Science,
22(3):033127, 2012.

[34] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Deep reservoir computing: A
critical experimental analysis. Neurocomputing, 268:87–99, 2017.

[35] Luca Manneschi, Matthew O. A. Ellis, Guido Gigante, Andrew C. Lin, Paolo Del Giu-
dice, and Eleni Vasilaki. Exploiting multiple timescales in hierarchical echo state
networks. Frontiers, 2021.

[36] Filippo Maria Bianchi, Simone Scardapane, Sigurd Løkse, and Robert Jenssen. Reser-
voir computing approaches for representation and classification of multivariate time
series. IEEE Transactions on Neural Networks and Learning Systems, 2020.

[37] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with structured spar-
sity. Journal of Machine Learning Research, 12(Nov):3371–3412, 2011.

[38] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity
by reweighted l 1 minimization. Journal of Fourier analysis and applications, 14(5-
6):877–905, 2008.

[39] Mantas Lukoševičius. A practical guide to applying echo state networks. In Neural
networks: Tricks of the trade, pages 659–686. Springer, 2012.

119

SpaRCe: sparse reservoir computing algorithm Paper II

[40] Qianli Ma, Lifeng Shen, Weibiao Chen, Jiabin Wang, Jia Wei, and Zhiwen Yu. Func-
tional echo state network for time series classification. Information Sciences, 373:1–20,
2016.

[41] Nils Schaetti, Michel Salomon, and Raphaël Couturier. Echo state networks-based
reservoir computing for mnist handwritten digits recognition. In 2016 IEEE Intl
Conference on Computational Science and Engineering (CSE) and IEEE Intl Con-
ference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on
Distributed Computing and Applications for Business Engineering (DCABES), pages
484–491. IEEE, 2016.

[42] Jacob Torrejon, Mathieu Riou, Flavio Abreu Araujo, Sumito Tsunegi, Guru Khalsa,
Damien Querlioz, Paolo Bortolotti, Vincent Cros, Kay Yakushiji, Akio Fukushima,
et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature,
547(7664):428–431, 2017.

[43] Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki
Kanazawa, Seiji Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent
advances in physical reservoir computing: A review. Neural Networks, 115:100–123,
2019.

[44] Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou,
and Yoshua Bengio. Towards non-saturating recurrent units for modelling long-term
dependencies. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 3280–3287, 2019.

[45] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes, and Christopher
Kanan. Measuring catastrophic forgetting in neural networks. In Thirty-second AAAI
conference on artificial intelligence, 2018.

[46] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming
catastrophic forgetting with hard attention to the task. Proceedings of the 35th In-
ternational Conference on Machine Learning, 80:4548–4557, 10–15 Jul 2018.

[47] Elissa A Hallem and John R Carlson. Coding of odors by a receptor repertoire. Cell,
125(1):143–160, 2006.

[48] Shawn R Olsen, Vikas Bhandawat, and Rachel I Wilson. Divisive normalization in
olfactory population codes. Neuron, 66(2):287–299, 2010.

[49] Sean X Luo, Richard Axel, and LF Abbott. Generating sparse and selective third-
order responses in the olfactory system of the fly. Proceedings of the National Academy
of Sciences, 107(23):10713–10718, 2010.

[50] Moshe Parnas, Andrew C Lin, Wolf Huetteroth, and Gero Miesenböck. Odor discrim-
ination in drosophila: from neural population codes to behavior. Neuron, 79(5):932–
944, 2013.

120

SpaRCe: sparse reservoir computing algorithm Paper II

[51] Kamesh Krishnamurthy, Ann M Hermundstad, Thierry Mora, Aleksandra M Wal-
czak, and Vijay Balasubramanian. Disorder and the neural representation of complex
odors: smelling in the real world. arXiv preprint arXiv:1707.01962, 2017.

[52] Sophie JC Caron, Vanessa Ruta, LF Abbott, and Richard Axel. Random convergence
of olfactory inputs in the drosophila mushroom body. Nature, 497(7447):113, 2013.

[53] Sen Song, Per Jesper Sjöström, Markus Reigl, Sacha Nelson, and Dmitri B Chklovskii.
Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS
biology, 3(3):e68, March 2005.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[55] Li Deng. The mnist database of handwritten digit images for machine learning re-
search [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[56] Gaurav Arora, Afshin Rahimi, and Timothy Baldwin. Does an lstm forget more than
a cnn? an empirical study of catastrophic forgetting in nlp. In Proceedings of the The
17th Annual Workshop of the Australasian Language Technology Association, pages
77–86, 2019.

[57] John B Butcher, David Verstraeten, Benjamin Schrauwen, Charles R Day, and Pe-
ter W Haycock. Reservoir computing and extreme learning machines for non-linear
time-series data analysis. Neural networks, 38:76–89, 2013.

[58] Levy Boccato, Amauri Lopes, Romis Attux, and Fernando J Von Zuben. An extended
echo state network using volterra filtering and principal component analysis. Neural
Networks, 32:292–302, 2012.

[59] Michiel Hermans and Benjamin Schrauwen. Recurrent kernel machines: Computing
with infinite echo state networks. Neural Computation, 24(1):104–133, 2012.

[60] Jonathan Dong, Ruben Ohana, Mushegh Rafayelyan, and Florent Krzakala. Reservoir
computing meets recurrent kernels and structured transforms. Advances in Neural
Information Processing Systems, 33, 2020.

[61] Danijela Marković, Nathan Leroux, Mathieu Riou, Flavio Abreu Araujo, Jacob Torre-
jon, Damien Querlioz, Akio Fukushima, Shinji Yuasa, Juan Trastoy, Paolo Bortolotti,
et al. Reservoir computing with the frequency, phase, and amplitude of spin-torque
nano-oscillators. Applied Physics Letters, 114(1):012409, 2019.

[62] Miguel Romera, Philippe Talatchian, Sumito Tsunegi, Flavio Abreu Araujo, Vincent
Cros, Paolo Bortolotti, Juan Trastoy, Kay Yakushiji, Akio Fukushima, Hitoshi Kub-
ota, et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature,
563(7730):230, 2018.

121

2.3 Paper III

The aim of this work is to define a decision-making model from abstract, desirable principles and

to demonstrate its improved behaviour in terms of robustness, performance and agreement with

neuroscientific findings in comparison to alternative model published in the literature [17]. In this

research, we found that three key concepts were fundamental for the achievement of the proposed

goal. First, the model should exploit the concept of multiple timescales, since diverse environments

and tasks require accumulation of information at different speeds. Thus, the concept of multiple

timescales is, as in the first papers, an important principle of the work, now encoded explicitly

through the characteristic times of multiple integrators. Second, the model should have awareness

of the passage of time and exploit an internal clock mechanism. The ability to estimate temporal

lengths is an important requirement when actions needs to be timed and decisions must be taken

in a given temporal window. For instance, classical musicians need to measure the time before

the start of a specific part, and must be able to play at a high level of synchronism. Finally,

adaptation of the parameters of the model should be driven by reward maximisation. This feature

is necessary from a theoretically optimal perspective, where the simulated agent seeks to maximise

a notion of the reward delivered by the environment. The model formulated is simple, describ-

able as an actor-critic reinforcement learning agent parametrised by the read-out of a reservoir of

unconnected, leaky integrators with different characteristic times. Yet, its behaviour is rich and

capable of capturing different features of established experimental results. The model would also

show improved robustness to environmental changes in comparison to other, more “standard”, al-

ternatives where accumulation of information occurs on a single and fixed timescale. The presence

of a maximum allowed time to make a decision and the knowledge of the passage of time will lead

to the discovery of a non-constant decision threshold which is in agreement with the mathematical

findings in [18].

The paper is under correction after positive review on PLOS Computational Biology.

My contributions to the work were: model development, coding, testing, writing of the paper. The

author GG equally contributed to the writing of this manuscript, improving extensively the first ver-

sion that I personally wrote. GG also formulated the analytical argument to support the necessity

of multiple time constants.

122

���
�������������
��������������������������
����	��
����������������

���
��������
����	���
����������
����
������������

����������������������������������
������
��	���
��	��	������������	�������������������������������
�������� �	��������	���
­������	���

Abstract
We postulate that three fundamental elements underlie a decision making process:

perception of time passing, information processing in multiple timescales and reward
maximisation. We build a simple reinforcement learning agent upon these principles
that we train on a random dot-like task. Our results, similar to the experimental
data, demonstrate three emerging signatures. (1) Signal neutrality: insensitivity to
the signal coherence in the interval preceding the decision. (2) Scalar property: the
mean of the response times varies widely for different signal coherences, yet the shape
of the distributions stays almost unchanged. (3) Collapsing boundaries: the “effective”
decision-making boundary changes over time in a manner reminiscent of the theoretical
optimal. Removing the perception of time or the multiple timescales from the model
does not preserve the distinguishing signatures. Our results suggest an alternative
explanation for signal neutrality. We propose that it is not part of motor planning. It
is part of the decision-making process and emerges from information processing on
multiple timescales.

Author summary

Humans and animals integrate sensory information before making a decision. The inte-

gration rate varies depending on the task. While driving could require quick reactions,

evaluating the authenticity of a painting typically requires long observations. Consequently,

the concept of representations created over multiple timescales appears necessary. Nev-

ertheless, there is a lack of theoretical research that exploits multiple timescales, despite

experimental evidence for the variety of integration rates. We, therefore, developed a

decision-making model based on simple integrators with multiple characteristic times. We

analysed its behaviour on a highly volatile, biologically relevant task. Through reward

maximisation based on trial and error, the model discovers an effective strategy that is

surprisingly different and more robust than the “classical” single timescale approach. This

Signal neutrality, Scalar property and collapsing boundaries

learned strategy exhibits a remarkable agreement with experimental findings, suggesting a

fundamental role of multiple timescales for decision-making. Our abstract model achieves

a degree of biological realism while performing robustly in different environments.

1 Introduction

Perceptual decision-making is one of the most fundamental interactions of a biological

agent with its environment. Perceptual decision-making processes have been long studied

in the context of operant conditioning [1]. In these scenarios, an animal learns to associate

choices and consequences by trial and error. Sub-optimal performance is considered a

consequence of imperfect learning or the reflex of the learning strategy itself [2].

Outside this context, the research on perceptual decision-making has mainly focused on

tasks where uncertainty (typically in the form of noisy signals) and time (e.g., duration of

the observation and response delays) play a pivotal role [3–7]. In such scenarios, the errors

made by the subject at the end of a training phase, as well as the relevant performance

metrics (e.g. accuracy or speed of response), are deemed informative of the cognitive

mechanisms involved [8–11]. There have been numerous attempts to compare the behaviour

of animal subjects to the performance of different algorithms and determine how optimal

the displayed behaviour is [8, 12–16].

One of the key ideas in perceptual decision-making is accumulating evidence over time

[6,8,17–20]. The drift-diffusion model (also known as the ‘bounded evidence accumulation’

model) consists of two or more competing traces. These traces accumulate sensory evidence

for different choices; the first trace to hit a threshold makes the associated option the

final decision [21]. The drift-diffusion model is a continuous-time variant of the sequential

probability ratio test [22, 23]. In the case of two-alternative forced choices, it is optimal in

selecting between two hypotheses. Despite its simplicity, this model accounts for many

psychophysical and neural observations. Examples are the distribution of response times

and performance when varying sensory coherence [22,23].

124

Signal neutrality, Scalar property and collapsing boundaries

Notwithstanding its success, there are several alternatives to the standard drift-diffusion

model [8, 24, 25] to account for unexplained phenomena such as primacy and recency

effects, asymptotic accuracy, and “fast errors” [26–28]. Of notable importance is the

Ornstein–Uhlenbeck model, which modifies the standard drift-diffusion model by including

a decay term in the dynamics of the accumulation. Although the Ornstein–Uhlenbeck

model can account for many experimental observations, including neurophysiological

ones [24,28], it introduces a characteristic timescale over which the model ‘forgets’ the past

sensory information. A common approach in the literature is to treat the timescale of the

accumulation as a free parameter that is optimised to match experimental data [28,29].

Here we take a different approach. We study a decision-making problem within the

context of reinforcement learning. The task is is intended to mimic a typical perceptual

decision making setup [30]: an actor-critic agent has the task of determining whether a

noisy signal has a positive or negative mean value. This agent can also decide when to

decide, i.e., it can choose to wait instead of making a decision. We, thereby, postulate that

the concept of reward maximisation is inherent in such problems.

Whilst not theoretically impossible, it is not straightforward to devise a biologically

plausible mechanism to tune a single timescale parameter to the statistics of a task. To

circumvent this issue, we propose a more biologically plausible process. The agent receives

the signal from multiple integrators, each with a different time constant. Via reinforcement

learning, the agent learns how to weigh them appropriately to maximise the collected

reward. We hypothesise that multiple timescales lead to robust performance across different

tasks since it is unrealistic to expect one time constant to fit any problem. In the context

of our model, we will explore robustness when varying the task difficulty, i.e. the signal to

noise ratio, and contrast it with models of one time constant.

Beyond the computational advantage, such approach is consistent with the ample

evidence of the coexistence of many timescales in brain functionality [31–35], even at the

single neuron level [36–38], and for reward memory in reinforcement learning [39].

Another fundamental element of our model is that the agent perceives the passage of

125

Signal neutrality, Scalar property and collapsing boundaries

time. The agent has a “clock” available, several integrators with various time constants

that increase by a fixed amount at each time step. In our model, we pair the clock’s

time constants with the time constants of the signal integrators. We do this to facilitate

our mathematical analysis. However, we expect multiple time constants in the clock to

implement a scalable population code for time, akin to what experimentally observed [40].

And, more specifically, to allow for more complex decision-making boundaries. We contrast

an agent without any clock mechanism, an agent with a “single time constant” clock,

and an agent with a multiple timescales clock. Our results highlight the performance

advantages that a multiple timescales clock brings in.

We evaluate our agent concerning three properties observed in experimental data or

theoretical analyses of decision-making processes. (1) Signal neutrality. We use this term

as a shorthand to denote the observation that, for several hundred of milliseconds before

the decision, the neurons in the lateral intraparietal cortex that correlate with the decision

show the same response to different signal-to-noise ratios, with a time course of the firing

activity that is indistinguishable in the different cases [5,41]. One prior explanation is that

the signals in that stage prepare the motor action. Here we evaluate this behaviour as part

of the decision making process. (2) Scalar property or Weber’s law [42]. The coefficient of

variation (CV, the ratio of the standard deviation to the mean) remains constant as the

task difficulty varies. (3) Collapsing boundaries. In the beginning, the agent should wait

to integrate information to make an informed decision. However, the decision time is not

unlimited; as time passes, the decision boundaries decrease to force the agent to act.

Our setup has similarities to a Partially Observable Markov Decision Process [43] with

opportunity costs. The agent cannot access its state consisting of the signal sign and the

clock. Instead, it has access to several observations at each time step. These observations

are continuous variables that integrate noisy information about the state in terms of signal

information and the time passed. These observations progressively correlate with the

agent’s “true” state as the integration filters out the noise. The option to defer this decision

in case of insufficient evidence complements the desirable action to find the sign of the

126

Signal neutrality, Scalar property and collapsing boundaries

stimulus. Yet, the presence of a time limit effectively imposes a cost on deferring the

decision to accumulate more evidence.

2 Methods

2.1 Task definition

Inspired by classical random dots experiments [30], we model a two-alternative forced-

choice task as a decision over the sign of the mean value of a noisy signal s(t) (see Fig 1).

The signal (black line) consists of independent samples from a Gaussian distribution of

mean µ and standard deviation σ, each drawn every time step ∆t = 10 ms.

The agent is not required to decide at a prescribed time, it has the option to wait and

then see another sample, or to perform one of two actions, ‘left’ and ‘right’, respectively

associated with the decision µ < 0 and µ > 0 at each step. When an action is made, the

episode ends, and a reward is delivered only if the agent correctly guessed the sign of µ;

otherwise, the agent receives nothing. Each episode has a maximum duration Tmax. When

Tmax is reached, another ‘wait’ from the agent leads to the end of the episode and no

reward is delivered.

Whilst σ is constant, the value of µ is instead re-sampled at the beginning of each

episode from a Gaussian distribution p(µ) of zero mean and variance σµ. This second-order

uncertainty makes the agent experience a wide range of values of µ, putting severely to the

test its ability to generalise to episodes of varying signal-to-noise ratios.

2.2 Relationship between µ and random dots coherence

In random dots experiments, usually a number of dots moves randomly on a screen, with a

fraction of them moving instead coherently in one direction (either left or right in different

episodes). The percentage of coherently moving dots (‘coherence’) is a measure of how

difficult an episode is, not unlike |µ| in the model (with sign of µ corresponding to a

coherent movement towards left or towards right respectively). To make the parallel

127

Signal neutrality, Scalar property and collapsing boundaries

between the present task and the experimental settings more evident, in the following we

will show results using either |µ| or the coherence of the signal, the two measures being

related by:

|µ| = 0.216 coherence√
100 − coherence

. (1)

In fact, in [5], every three frames on the screen, a fraction c (‘coherence’) of dots are moved

coherently in the chosen direction by dx, while the other 1 − c dots are randomly displaced.

We assume that each of the randomly moving dots is subjected to a change ∆x in their

position following a probability distribution, with 〈∆x〉 = 0 and Var[∆x] = σ2
x. Imagining

that neurons with different receptive fields help to estimate the average movement of the

dots at each time step, we end up with a signal s of mean:

µ ≡ 〈s〉 = c dx (2)

and variance:

σ2 ≡ Var[s] = (1 − c) σ2
x (3)

Then, we have the relationship:

µ

σ
= c√

1 − c

dx

σx
(4)

or:

µ ∝ coherence√
100 − coherence

, (5)

where we have expressed the coherence as a percentage. Eq 1 is a special case of this one,

with a proportionality constant chosen to match experimental ranges.

128

Signal neutrality, Scalar property and collapsing boundaries

2.3 An agent over multiple timescales

The section is dedicated to the definition of the proposed model. In contrast to previous

research works on the decision making process, the agent makes decisions thanks to a

reservoir of multiple timescales of integration and an estimate of the passage of time.

The agent comprises nτ = 10 leaky integrators xs
τ (dark blue to cyan lines in Fig 1) that

independently integrate the noisy signal s(t) over different timescales τ :

ẋs
τ = −xs

τ − s(t)
τ

, (6)

and correspondingly nτ leaky integrators xc
τ (yellow to red lines in Fig 1) that integrate a

constant input (a ‘time signal’, here valued 1), to account for the possible effects of an

internal ‘clock’:

ẋc
τ = −xc

τ − 1
τ

. (7)

Both the xs
τ and the xc

τ are reset to 0 at the beginning of each episode (note, therefore, that

xc
τ (t) = 1 − e− t

τ ≥ 0 for all t). Moreover, we added noise to the values of the integrators at

a given time (Eqs 6 and 7) redefining:

xs
τ (t) ← xs

τ (t) + ξs
τ (8)

xc
τ (t) ← xc

τ (t) + ξc
τ (9)

ξs
τ (t) and ξc

τ (t) are drawn independently for each t and each τ from a Gaussian distribution

with zero mean and standard deviation σI . The ξs
τ (t)s and ξc

τ (t)s are introduced to model

the intrinsic noise implied in any plausible biological implementation of the integration

process, such as fluctuations in the instantaneous firing rate of a network of neurons.

The τs are chosen on a logarithmic scale (i.e., τi = α τi−1, with α a suitable constant),

with τ1 = τmin = 100 ms and τnτ = τmax = 10 s, so as to allow the agent to accumulate

information over a wide range of different timescales. The specific choice of the distribution

129

Signal neutrality, Scalar property and collapsing boundaries

of timescales is not critical to the following results, assuming that the values of τs are

densely spread over a wide range (see Results and Supplementary Material).

At each time step t, the agent computes six weighted sums, three for the signal xs
τ (t)

and three for the clock xc
τ (t). The first four of these weighted sums are related to the two

possible actions:

Σs
right(t) ≡

∑

τ

θs
right,τ xs

τ (t) (10)

Σc
right(t) ≡

∑

τ

θc
right,τ xc

τ (t) + bright (11)

Σs
left(t) ≡

∑

τ

θs
left,τ xτ (t) (12)

Σc
left(t) ≡

∑

τ

θc
left,τ xc

τ (t) + bleft (13)

where bright and bleft are constants and can be described as the propensity of the agent to

make the corresponding actions before the beginning of an episode. The Σss and the Σc

carry information, respectively, on the signal and the time elapsed since the beginning

of each episode. Even though the xc
τ increase with time, the Σcs can be non-monotonic,

something that will play an important in role in implementing an effective ‘moving threshold’

for the decision mechanism.

The other two sums are instead related to the ‘wait’ option:

Σs
wait(t) ≡

∑

τ

θs
wait,τ |xs

τ (t)| (14)

Σc
wait(t) ≡

∑

τ

θc
wait,τ xc

τ (t) + bwait, (15)

where the absolute value in Eq 14 is taken to account for the intuition that a signal and

its negative mirror should equally affect the agent’s propensity to defer a decision. The

constant bwait has similar meaning to the biases bright and bleft, but related to the ‘wait’

action. By setting:

Σx ≡ Σs
x + Σc

x (16)

130

Signal neutrality, Scalar property and collapsing boundaries

(with x ∈ {left, right, wait}), the six sums are then non-linearly combined through a

softmax function (the circles corresponding to the actor on the right of Fig 1) to define a

probability distribution over the possible actions:

pright(t) = eΣright(t)

eΣleft(t) + eΣwait(t) + eΣright(t) (17)

and analogous expressions for ‘left’ and ‘wait’. By definition, pleft(t)+pwait(t)+pright(t) = 1

for every t. The agent then randomly chooses an option according to the three probabilities.

The agent is thus completely determined by the choice of the six sets of nτ weights:

θs
left,τ , θs

wait,τ , θs
right,τ , θc

left,τ , θc
wait,τ , θc

right,τ , and three constant offsets bleft, bwait, and bright.

We note how this set of parameters is redundant, because of the way they enter Eq 17.

For example, we could make the substitution bright ← bright − bwait, bleft ← bleft − bwait,

and bwait = 0 and the resulting agent would be mathematically equivalent to the original

one. We use such redundant definition in order to simplify the description of the model,

making it the most symmetric for ‘left’, ‘right’, and ‘wait’. These weights and offsets are

learned by trial-and-error through a reinforcement learning procedure aiming to maximise

reward. All the results shown, if not otherwise stated, are obtained using the same set of

weights, at the end of the training procedure, with Tmax = 2 s, σ = 0.18 s− 1
2 , σµ = 0.25,

and σI = 0.02. Training of the parameters of the model is achieved through a standard

actor-critic reinforcement learning algorithm [43], which is described in Supplementary

Material. During learning, the model estimates at each step t the total future expected

reward V(t) for the current episode. Such estimate is computed by a linear summation of

the integrators (Fig 1, bottom-right) and is used to establish a moving baseline to modulate

the changes in the model’s weights during training. The parameters of the actor and the

critic are then updated thanks to the utilisation of eligibility traces [43].

131

Signal neutrality, Scalar property and collapsing boundaries

2.4 Comparative models

To understand the role of multiple timescales and of the internal clock in the results, we

compare the performance of the proposed agent with other decision making models.

1. Single integrator with optimised threshold. This refers to the Ornstein-Uhlenback

decision process [24, 28], which is a generalisation of the standard drift diffusion

model [21]. The model is composed by an integrator over one timescale and a

threshold. The dynamic of the integrator is given by Eqs 6 and 8. A decision is

triggered when the latter activity reaches ± a threshold value Θτ . In our case, the

action ‘right’ is made when xs
τ (t) ≥ Θτ , while the agent performs the ‘left’ action

when xs
τ (t) ≤ −Θτ . Considering the presence of a single timescale of integration, we

will consider multiple versions of the process, each with a different value of τ . For

each model with a specific τ , the threshold Θτ will be optimised through grid search

by maximising the accuracy on the considered task. In this way, we are certain that

the process will exhibit the highest possible performance on the considered task, or

performance that are negligibly distant to its theoretical optimal.

2. Agent with a single timescale. The model refers to a reinforcement learning agent

similar to the proposed one, but with only one timescale of integration. Practically,

the agent definition is again based on Eqs 10– 14, but every summation over τ

reduces to a single term. The total number of parameters in this case is thus nine

(θs
left, θs

wait, θs
right, θc

left, θc
wait, θc

right, bleft, bwait, and bright). As for the single integrator

with optimised threshold, we will simulate multiple versions of the model to vary the

timescale of integration τ . We note how, in contrast to the previous comparative

model, this process has an estimate of the passage of time over one single time

constant. For this feature, the process departs from the other decision making models

in the literature. This agent will help us to understand the role of multiple timescales

further, providing a baseline where a basic knowledge of the internal clock is present,

but where integration occurs over a single τ .

132

Signal neutrality, Scalar property and collapsing boundaries

3. Agent with multiple signal integrators, but without internal clock. The model is

again defined by Eqs 10– 14, but without temporal information, that is θc
left = θc

wait =

θc
right ≡ 0. The model will constitute an additional comparison to separate the roles

of the availability of multiple timescales on the signal and on the internal clock

mechanism.

Because of the presence of multiple integrators, the proposed agent effectively lowers

the total noise by summing up nτ integrators xs
τ affected by independent sources of noise

ξs
τ (Eq 8). Thus, when comparing the proposed agent with one of the above models that

exploits a single time constant, we rescaled the amount of noise σI affecting the single

integrator by a factor αI , defined as

αI = 1√∑
τ θ

2
∗,τ /max

τ
(θ2

∗,τ)
≤ 1 (18)

where θ∗,τ refers to the optimal weights θright,τ found after training of the proposed model

(we could equivalently use the optimal θleft,τ , since after training θleft,τ � −θright,τ as it

will be shown in Fig 10 D). Thus, αI = 1 when just one of the θ∗,τ is different from 0, i.e.

when the agent utilises just one integrator. On the other hand, the maximum αI = 1√
nτ

is

attained when the agent weights equally all the integrators. In this way, the total amount

of noise in the single timescale model is effectively equivalent to the one present in the

multiple timescales agent.

2.5 Signal neutrality and scalar property measures

To measure signal neutrality, we take the average ∆Σright(t) (see Eq 21), aligned to decision

time, for six different coherences (0%, 3.2%, 6.4%, 12.8%, 25.6%, 51.2%); each curve is

considered for an interval between 0 and 600 ms before the decision is taken; if the number

of points to average for a given coherence drops below 100 before the 600 ms, the interval

of definition of that curve is shrunk accordingly. We then rescale all the curves to fit inside

133

Signal neutrality, Scalar property and collapsing boundaries

the range 0-1, so that the minimum of the minimum values attained by each curve is 0;

and the maximum of the maxima is 1. Then we compute, for each time, the maximum

distance between any pairs of rescaled curves (this distance is of course always ≤ 1 thanks

to the rescaling). Finally we take the average of such maximum distance, and take the

inverse: this is the operative measure of signal neutrality used throughout the paper.

To give a measure of scalar property, we compute the coefficient of variation CV for the

distribution of response times corresponding to six values of coherence (0%, 3.2%, 6.4%,

12.8%, 25.6%, 51.2%). We then take the inverse of the difference between the maximum

and the minimum value of CV: this is the reported measure of the scalar proprety (see

Fig 7).

134

Signal neutrality, Scalar property and collapsing boundaries

‘Right’

‘Left’

‘Wait’

Reward

Critic

Actor

Action

Episode start

Environment
Figure 1. Task and model schematic. The environment corresponds to the random movement of
a group of dots on a screen, which is represented as a uni-dimensional noisy signal s(t) (black line),
sampled at discrete time steps ∆t = 10 ms from a Gaussian distribution of mean µ and variance
σ2. The task requires the subject to guess the sign of µ, by moving a lever to the right (positive
sign) or to the left (negative sign); the subject can ‘choose when to choose’, within a maximum
episode duration Tmax. The learning agent integrates the signal over different timescales τ (xs

τ (t)s,
blue lines); the agent integrates a constant input (depicted in red as a constant from the start of
the episode) over the same timescales (xc

τ (t)s, yellow-red lines) to simulate an internal clock
mechanism estimating the passage of time. In both cases, the darker the colour the longer the
corresponding timescale. At each time instance, the weighted sums of the integrators (far right) are
fed into a decision layer (the actor) that computes the probability of choosing ‘left’ and ‘right’, thus
terminating the episode, or to ‘wait’ to see another sample of s(t). If the subject gives the correct
answer (the guessed sign coincides with the actual sign of µ) within the time limit, a reward is
delivered; otherwise, nothing happens. In any case, a new episode starts. The agent learns by
observing the consequences (obtained rewards) of its actions, adapting the weights assigned to the
xs

τ (t)s and xc
τ (t)s. During learning, the model estimates at each step t the total future expected

reward V (t) (the critic) for the current episode as a linear summation of the integrators. Learning
of the parameters is accomplished through a standard actor-critic reinforcement learning model,
where the reward delivered by the environment is used to update the V value function, which is
then used to update the actor’s parameters (see Supplementary Material for more details)

135

Signal neutrality, Scalar property and collapsing boundaries

3 Results

First, we analyse how the behaviour of the optimised agent is different than the standard

drift to diffusion model by exploiting integration over a variety of timescales. Fig 2

shows the evolution of pright(t) (blue line) and pleft(t) (red) during an episode where the

correct action is ‘right’ (that is, µ > 0). As expected, pright(t) is for the most part greater

than pleft(t) (although this is unnoticeable in the plot where the probabilities are very

small), signalling that the agent favours the action associated with the correct decision.

Nevertheless, both probabilities are very low most of the time, implying that pwait(t) is

often close to one (not shown). Thus, the agent appears to select a strategy in which

decisions are made within short ‘active’ windows of time during which fleeting bursts of

pleft(t) or pright(t) make an action possible. Such strategy is not trivially associated with

the intuitive picture of a process accumulating information over time until some threshold

is met (for instance, see model 1. in section 2.4).

In fact, the agent exploits the information carried by the different integrators by

waiting for their consensus, akin to a majority vote. A short-lived fluctuation in the fastest

integrators would not be enough for a decision. Yet, in conjunction with a longer-lived

fluctuation of the slower integrators, a burst in one of the actions is triggered. Such

probability bursts are usually quite low (they often stay below a probability of 0.1) and

therefore function as ‘open windows’ paving the way to a decision, more than as ‘funnels’

forcing it. Decisions therefore happen when the different timescales stay in agreement for

an extended period (roughly 100 ms).

This is illustrated in Fig 2 with coloured circles, each row representing the evolution of

one integrator (for a subset of 5 of the 10 integrators, with slow to fast timescales from

top to bottom). As expected, inside a burst of pright(t) almost all the integrators present

large positive values (dark blue, see for example temporal instance number 1 in Fig 2).

On the other hand, integrators typically assume negative values (light to dark red) in

correspondence of bursts of pleft(t), as it is shown in the temporal instance number 2. The

136

Signal neutrality, Scalar property and collapsing boundaries

converse is not true: in absence of probability bursts, not all the integrators assume low

absolute values (see, for example, coloured circles corresponding to number 3). This is due

to the fact that the integrators, though correlated, detect fluctuations in the signal over

different timescales. Moreover, the non-linear nature of the probability function (Eq 17)

dampens integrators’ fluctuations falling below a given range of values. When a burst fades

away (see for example points between 2 and 4) not all the integrators go down together.

Initially the faster integrators become neutral or even slightly change sign. Afterwards

the slower integrators follow suit. Of course, the process is not completely linear, and

intermediate integrators can assume (see instance number 4 and neighbouring points)

higher values, while the slowest (fastest) ones are still decreasing (fluctuating rapidly).

A more detailed analysis of the behaviour of the agent can be found in Supplementary

Material and Fig 11.

3.1 Model’s performance

Fig 3A shows the fraction of correct choices as a function of the decision time, both for the

agent at the end of training (black line) and for the optimal fixed-t observer (blue line)

that, at each time t, simply chooses according to the sign of the sum of the signal up to

time t. Its performance can be derived analytically:

Fraction Correct(t) = 1
2 + 1

π
arctan

√
σ2

µ t

σ2 (19)

If the task were to decide exactly at time t, no other decision maker could outperform it;

for this reason it is deemed optimal. The comparison with the fixed-t observer sheds light

on the agent’s strategy and the underlying trade-offs.

The agent is free to“choose when to choose”, thus it is not surprising that its performance

is higher than the optimal fixed-t observer for shorter decision times (the inset of Fig 3A

shows the distribution of decision times for the agent). We see that the two performances

cross slightly above the average decision time for the agent. Beyond this point, the fixed-t

137

Signal neutrality, Scalar property and collapsing boundaries

12 34

Neutral

Left

Right

Figure 2. Learned decision strategy. Evolution of pright(t) (blue line) and pleft(t) (red) during an
episode (signal s(t) in dashed grey) where the correct action is ‘right’ (that is, µ > 0). Decisions
are made within short ‘active’ windows of time during which fleeting bursts of pleft(t) or pright(t),
corresponding to the alignment of many integrators, make an action possible. The coloured circles
correspond to the values of a subset of 5 of the 10 integrators (slow to fast associated timescales
from top to bottom). The colours (blue to red) represent the ‘tendency’ of an integrator toward a
decision. Blues correspond to positive (toward the ‘right’ action) values, while reds to negative
values (toward the ‘left’ action). These tendencies are computed using the average behaviour of the
specific integrator as a reference value. In other words, if the circle is blue, it means that the value
assumed by the integrator was higher than usual at that specific time. Uniformly positive
(negative) values for the integrators are associated with bursts of pright (pleft, see times denoted
with 1 and 2 in the plot). Outside bursts (point 3) or when a burst withers (point 4), not all the
integrators assume low absolute values.

observer dominates. Indeed, the agent can make the easy decisions early on and wait to

see how the signal evolves when the choice appears more uncertain. In contrast, the fixed-t

observer is bound to decide at time t, no matter how clear or ambiguous the observed

signal was up to that point. The steep rise of the agent’s performance for very short

decision times is mainly a reflection of its ability to tell apart the easy episodes from the

hard ones. The fixed-t observer catches up for longer times, where the agent is left with

only the most difficult decisions and its performance consequently declines. For the fixed-t

observer, instead, larger ts always mean more information and therefore its performance

monotonically increases. We notice how at the crossing point, the agent has already made

138

Signal neutrality, Scalar property and collapsing boundaries

the large part of its decisions, as it is apparent from the distribution of decision times.

Fig 3B shows how the agent (horizontal line) outperforms all the single integrators with

optimised thresholds (circles, see section 2.4 for the model definition). The performance of

the single-timescale integrator peaks for intermediate values of the associated timescale

τ , though it always stays well below the performance attained by the agent. The agent,

therefore, is able to leverage the information on multiple timescales from the signal and

the internal clock to gain a clear performance advantage with respect to the drift-diffusion

model on the whole spectrum of τs. A more detailed comparison between the performance

of the different models considered will be given in section 3.5.

Fig 3C and 3D show the accuracy and the mean response time of the agent as the

coherence of the signal varies (Eq 1). The black line in panel Fig 3C is computed as:

Fraction Correct(coherence) = 1 − 1
2 exp

[
− (coherence

7.97
)1.62]

(20)

as in Fig 3 of [5], where the parameters of the curve were fitted to experimental data. The

match between the experimental fit and the result of the agent is striking. In Fig 3D,

instead, the black line is a generic sigmoidal function plotted for illustration purposes. As

found in the experiments, the agent’s responses become faster as the task becomes easier

(larger coherences).

3.2 Signal neutrality

A more microscopic look at the decision process surprisingly uncovers shared features

between the internal dynamics of the artificial agent and the activity observed in neurons

in the lateral intraparietal cortex (LIP) during a random dots task [5, 41].

We now define a key observable of the model that will be central in the following (see

Eqs 16, 10 and 11):

∆Σright(t) ≡ Σright(t) − Σwait(t) (21)

139

Signal neutrality, Scalar property and collapsing boundaries

A B

C D

Figure 3. Performance after training. A: Fraction of correct choices as a function of the decision
time, both for the agent at end of training (black line) and for optimal fixed-t observer (blue line)
that simply chooses according to the sign of the accumulated signal up to time t (see text). The
agent clearly outperforms the fixed-t observer for shorter decision times, thanks to its freedom to
‘choose when to choose’. The steep rise of the agent’s performance for very short decision times is
mainly a reflection of its ability to tell apart the easy episodes from the hard ones. Inset: response
time histograms for correct (grey) and wrong (green) decisions B: the agent (horizontal line)
outperforms, considering the fraction of correct choices on a sample of episodes, all the
single-timescale integrators with optimised decision threshold (dots; the continuous line is a
second-degree polynomial fit for illustration purposes). The performance of the single-timescale
integrator peaks for intermediate values of the associated timescale τ , though it always stays below
the performance attained by the agent. The grey strip around the agent’s line marks the 25%-75%
of the values obtained for the performance upon 100 repetitions of the training procedure (see
Fig 5 for further details). C and D: Accuracy and mean response times for different values of
coherence (dots). C: The accuracy curve for the agent is in very good agreement with
experimental findings: the black line is the result of a fit on experimental data ([5]; see text for
more details). D: As accuracy increases, responses become faster, as found in experiments (black
line: fit with a sigmoid-like function).

and its ‘left’ counterpart ∆Σleft(t) ≡ Σleft(t) − Σwait(t). Eq 21 (∆Σleft) provides a direct

measure of the propensity of the agent to make a ‘right’ (‘left’) decision at time t.

140

Signal neutrality, Scalar property and collapsing boundaries

A B

C

s
Figure 4. Signal neutrality. ∆Σright(t) (see Eq 21) provides a direct measure of the propensity
of the agent to make a ‘right’ decision at time t. A Evolution of ∆Σright, averaged over many
successful episodes with the same signal coherence. On the left, the episodes are aligned to the
beginning of the episode and ∆Σright shows a marked sensitivity to the coherence of the signal.
When the average is performed by aligning all the episodes to the time of the decision (right),
signal neutrality clearly appears: the sensitivity to the signal strength is completely lost and all the
lines collapse on the same curve for several hundreds of milliseconds. Inset: the same analysis on
wrong episodes. The similarities with what is found in the discharge of LIP neurons during a
motion-discrimination task are striking (see, e.g., Fig 7 in [5]). B: Time course of xs

τ for a
single-timescale integrator with τ = 2s and optimised decision threshold (xs

τ , for an integrator with
threshold, plays the role that ∆Σright has in the agent). C: Time course of ∆Σright (see Eq 21 for
an agent optimised with a single timescale τ = 2s). In both B and C the collapse of the curves for
different signal coherences is imperfect (rightmost part of the plots).

Fig 4A shows the evolution of ∆Σright, averaged over many episodes in which the agent

has made the correct decision ‘right’. The traces are grouped by signal coherence. The

left part of Fig 4A shows the evolution of the average ∆Σright, with traces aligned to the

beginning of the episode (onset of the external signal). ∆Σright shows a marked sensitivity

to the coherence of the signal. Moreover, the traces do not saturate over several hundreds

of milliseconds, highlighting how the agent is making use of its slower integrators.

Ramp-like changes in the discharge of LIP neurons have been repeatedly observed,

141

Signal neutrality, Scalar property and collapsing boundaries

A B

Figure 5. Comparison of signal neutrality (A) and performance (B) for the single-τ agent and
the single-timescale integrator as τ varies. The proposed model (black horizontal lines) shows
better accuracy while exhibiting the experimentally observed collapse of the time course of
neuronal activity aligned at the decision time. The grey area marks the 25%-75% of the values
obtained for each of the two observables upon 100 repetitions of the training procedure; more
specifically, each independent training has been halted where signal neutrality peaked, conditioned
to having already reached a performance of 0.81 or above; this translates to an average training
length of about 73000 episodes (10%-90% range: 39000–110000).

with steeper rise in spike rate for higher stimulus coherence (see, e.g., Fig 7 in [5]). Such

ramps, originating in the extrastriate visual cortex in the case of LIP neurons, have

been interpreted as a signature of the accumulation of evidence for or against a specific

behavioural response [10,17]. This interpretation is fully compatible with what is seen in

the agent.

However, when the averages of the ∆Σright traces (or of the activity of LIP neurons) are

performed by aligning the episodes to the time of the decision, a clear signature of signal

neutrality emerges. The sensitivity to the stimulus’s coherence is lost and all the lines

surprisingly collapse on the same curve for several hundreds of milliseconds (Fig 4A, right).

We emphasise that such collapse over an extended period of time is key to recognise signal

neutrality: any decision model with a deterministic threshold, for example, would display

a collapse at decision time (exactly at the threshold), but not necessarily at previous times;

in this case, according to our definition, the model would not display signal neutrality.

142

Signal neutrality, Scalar property and collapsing boundaries

For the experimental data, a reasonable explanation for such collapse is that the

neuronal circuitry is engaged in stereotyped dynamics, independent from the signal, just

after a decision is made and before it is manifested with a physical action, perhaps as the

result of a feedback from downstream areas.

But this cannot hold for the agent, where instead signal neutrality arises precisely from

the presence of multiple timescales. Fig 4B and 4C show the time course of the equivalent

of ∆Σright for the models with a single timescale (see Section 2.4). For both these models,

we display the results obtained from an example time constants of τ = 2.0 s. In the single

integrator with optimised threshold, xs
τ plays the role that ∆Σright has in the agent.

In the latter, the collapse of the curves for different signal coherences is not as evident

(Fig 4B and 4C, rightmost part). To make this statement more systematic, we introduce an

operative measure of signal neutrality. We computed the inverse of the maximum distance

between the curves for different coherences averaged over an interval of up to 600 ms prior

to the decision (see Methods). In Fig 5A we report this measure for the agent (horizontal

line) and the models with a single timecale (coloured upper bars). The comparative models

report lower values in terms of signal neutrality and accuracy (Fig 5B).

The propensity of the agent ∆Σleft to make the erroneous ‘left’ decision does not display

signal neutrality. The same holds true for its experimental counterpart, that is the activity

of LIP neurons when the random dot motion is away from their receptive field (see Fig 7

in [5], dashed lines). Finally, the comparison between the models in Fig 4 emphasises how

in our simulations the signal neutrality is a consequence of the availability of multiple

timescales.

3.3 The scalar property

The agent’s behaviour conforms to one of the hallmarks of temporal cognition: the scalar

property or Weber’s law for interval timing [42]. This is illustrated in Fig 6A, where the

distributions of response times of the agent are shown for three different values of coherence.

As the coherence increases, the average response time of the agent decreases from 4.6 s to

143

Signal neutrality, Scalar property and collapsing boundaries

370 ms.

Simply stated, the scalar property — as observed for example in interval timing [42],

and multistable perception [44] — implies that higher moments of the intervals’ distribution

scale as appropriate powers of the mean. This implies a constant coefficient of variation.

In other words, the shape of the distribution does not change when its mean varies even

over wide ranges.

Notwithstanding a mean value that varies by more than one order of magnitude, the

coefficient of variation of the agent moves in a very narrow range which is compatible with

the experimental findings [42, 44]. The invariance of the shape of the distribution is made

immediately evident in the inset of Fig 6A. Here the fitted Gamma distributions (black

lines in the main plot) are rescaled to have mean equal to 1. The similarity of the three

curves is striking. Fig 6B shows the coefficient of variation CV as the coherence varies for

the proposed agent (black) and the comparative models (blue and red colours, see Section

2.4 for more details). The coefficient of variation has an approximately constant value for

the proposed agent only. We remark that an agent with a single integrator has information

regarding the passage of time over a single time constant, and that the model depicted

in blue has multiple integrators but lacks any explicit temporal information. Thus, the

key ingredient for the scalar property is again the availability of multiple timescales, in

particular on the estimate of the passage of time.

On the other hand, it is not surprising that the single integrator with optimised

threshold is unable to display the scalar property. In fact, for the pure drift-diffusion model

(τ = ∞), the coefficient of variation as a function of the coherence c can be computed

analytically [45] (see also Eq 1):

CV =
(100 − c

c2

)1/4
, (22)

and it is clearly not constant.

Lastly, we note how the highest values of coherence reported in the plots are very

144

Signal neutrality, Scalar property and collapsing boundaries

unlikely under the distribution used during the training phase. A coherence of 50% roughly

corresponds to a value of µ that is five times the standard deviation σµ of the distribution

of µ. Thus, the scalar property appears to be a very robust property of the learned decision

strategy of the proposed agent, holding well beyond the range of functioning to which the

agent has been accustomed during training.

In view of the above considerations, signal neutrality and the scalar property share a

similar origin. Further evidence of this can be found in the evolution of the two measures

during the training phase.

Fig 7 shows the average evolution of signal neutrality (black line; the same measure

reported in Fig 4D), scalar property (blue line; see Methods for the definition of the metric),

and accuracy (dashed red line, scale on the right y-axis) during training. All the lines are

computed by averaging the results of 100 different realisations of the training.

The evolution of signal neutrality and the scalar property are highly correlated for much

of the training phase, with an initial fast increase that continues up to about 104 − 105

episodes, where the accuracy has almost plateaued (the region used for the results of

Figs 4A and 6; note how, after the first 105 episodes, the following 9 · 105 lead to a modest

performance gain of � 1%). Such correlated progress naturally hints to a common origin

for the two measures, and makes us advance the hypothesis that a behavioural policy

displaying these two properties could represent an ‘optimal’ information-extraction strategy

for dealing with a decision task in a volatile environment. It wouldn’t be by chance that

the agent robustly finds such a strategy by tuning its parameters in a ecologically plausible

way.

Yet, after about 105 training episodes, and therefore probably far beyond the experi-

mental training duration, the behaviour of the two curves in Fig 7 starts to diverge. Whilst

the scalar property keeps improving, signal neutrality attains a broad peak, after which it

gradually breaks down in the face of very modest performance gains. Therefore, the scalar

property seems to be more fundamental than signal neutrality, at least for what concerns

the strategy asymptotically discovered by the learning agent.

145

Signal neutrality, Scalar property and collapsing boundaries

In this sense, signal neutrality cannot be viewed per se as signature of an optimal

strategy for the agent, but rather of a ‘satisficing’ one [46]. Faced with a wide distribution

of coherences, the agent pretty quickly finds a robust strategy that, at around decision

time, disregards coherence by relying on fluctuations to make decisions, and still ensures

a very good performance. Nevertheless, the agent can do slightly better, given enough

training time, by giving more weight to the ‘drift’ component and less to the ‘diffusion’

component: this is what happens on the far right of the plot. In this region, we postulate,

the learning enters an ‘overfitting’ phase, meaning that the agents become finely attuned

to the exact statistics of the task: any slight changes, for example, in the shape of p(µ)

would require many training episodes to revert to a good performance. In this sense, the

signal neutral strategy generalises better to novel situations. This is something we plan

to study elsewhere. Finally, it is tempting to hypothesise that animal subjects, during

perceptual decision experiments, display signal neutrality as a reflex of adopting such a

satisficing strategy, given also the high number of training episodes the model needs to

refine its strategy beyond signal neutrality.

3.4 Collapsing boundaries

It is known that in the presence of a distribution of signal-to-noise ratios and limited

decision time, as in the task at hand, the drift-diffusion model is not optimal anymore [15].

More specifically, one ingredient that allows to re-establish optimality is a time-varying

threshold. As it has been observed in [9] [11], the optimal decision threshold is not constant

when the agent has a finite amount of time to make decisions, but is characterised by a

non-monotonic trend across time. This optimal moving threshold is defined as collapsing

boundaries. In this sense, the hypothesised optimality of the agent’s strategy finds indirect

support in the behaviour displayed by the component of ∆Σ that depends only on the

passage of time and not on the signal. As we will show, this perception of the passage of time,

defined in the model as integration of a constant input over multiple timescales, permits

146

Signal neutrality, Scalar property and collapsing boundaries

A B

Figure 6. Scalar property. A: The average response time of the agent decreases as the signal
coherence increases; still the coefficient of variation of the response times varies in a very narrow
range (see legend). The black lines are the best fit of the simulation histograms with a Gamma
distribution. Inset: the fitted Gamma distributions are rescaled to have mean equal to 1, making
immediately evident how the shape of the distribution stays almost unchanged as its average
moves over almost one order of magnitude (colours consistent with the histograms in the main
plot). Note how the highest value of coherence is very unlikely under the distribution used for
training the agent (corresponding to a value of µ five times the standard deviation σµ of the
distribution of µ). The ‘invariant shape’ property of the response time distribution therefore holds
well beyond the typical range of functioning of the agent. B: Coefficient of variation (CV) of the
different models as the coherence increases. The scalar property is satisfied exclusively by the
proposed agent (black line). The single timescale models are reported with two different values of
τ . Other choices of τ give comparable results.

the agent to discover the collapsing boundaries. We rewrite Eq 21 as (see Eqs 10-16):

∆Σright = ∆Σs
c − ∆Σc (23)

where:

∆Σs
right ≡ Σs

right − Σs
wait (24)

is a term that provides information on the signal only. And:

∆Σc ≡ Σc
wait − Σc

right (25)

carries information on the passage of time only. We note that on the r.h.s. of Eq 25

we could insert Σc
left in place of Σc

right with no notable numerical difference in the result.

147

Signal neutrality, Scalar property and collapsing boundaries

Figure 7. Signal neutrality and scalar property during training. Evolution of signal neutrality
(black line), scalar property (blue line), and accuracy (dashed red line, scale on the right) as the
training progresses. Signal neutrality attains a broad maximum where the performance has almost
plateaued. Thus signal neutrality can be interpreted as the signature of a ‘satisficing’ strategy,
rather than of an optimal one. The scalar property, on the other hand, keeps growing even for very
long training. Yet, the evolution of signal neutrality and the scalar property are highly correlated,
suggesting a common origin for the two (see text for discussion).

This is because the right and left choices are a priori equivalent in the present task, and

therefore the inferred θc
right,τ and θc

left,τ are in fact very similar. For this reason ∆Σc does

not carry a ‘right’ label.

∆Σc(t) measures the propensity of the agent at time t to wait for another input instead

of making a (either right or left) decision, independently from the signal. Looking back

at Eq 23, ∆Σc effectively acts as a time-dependent bias term that, in the context of a

drift-diffusion model, could be easily interpreted as a time-dependent threshold. Despite

the lack of an explicit threshold mechanism for the proposed agent, it is reasonable to

expect that the range of values attained by Σs
right at decision time shifts in accordance

with the time-dependent bias. This is indeed the case.

Fig 8A shows (black thick line) the evolution of ∆Σc(t) from 0 to Tmax = 2 s for the

proposed agent. In addition, three sample trajectories of ∆Σs(t) (coloured lines) are shown

from t = 0 to decision time (marked by the big coloured circles). The shaded grey area

148

Signal neutrality, Scalar property and collapsing boundaries

marks the region of values assumed by Σs
right where 80% of the (correct) decisions are

made. As expected, this region mostly run parallel to ∆Σc(t), demonstrating how the

latter observable can be interpreted as a soft threshold for the decision that arises from the

time integrators. Such threshold drops at longer times, a behaviour that finds normative

support in the study of perceptual decision making [20,47]. Conversely, looking at Eq 23,

one can view −∆Σc as an ‘urgency’ signal that pushes for a decision as the episode time

elapses, not unlike what has been observed experimentally in the lateral intraparietal

area [48].

Fig 8B and 8C report the same analysis for an agent with a single timescale (panel B)

and an agent with multiple timescales on the signal but without the internal clock (panel C).

It is evident how the agent in Fig 8B exploits the unique timescale available for the internal

clock to implement a monotonically decaying threshold. In contrast, the agent without

internal clock is unable to create such mechanism, considering that the large majority of

the decisions occur in an area that is parallel to the constant bias bwait − bright. The agent

of panel C is unable to clearly infer the passage of time from the multiple timescale of

the signal. If this limited behaviour can be surprising at first, it can be understood by

considering that the present task is highly volatile, with a broad range of signal to noise

ratios. Since specific values of the signal integrators xs
τ can be reached rapidly (slowly) for

episodes with high (low) coherences of the signal, such features do not constitute a reliable

estimate of the passage of time. Indeed, the model in panel C fails in the implementation

of any form of urgency signal.

In this respect we want to point out how the soft threshold ∆Σc of the proposed model

(panel A) does not simply behave as an urgency signal. In fact the decision is made more

and more likely as the time passes only after about 200 ms (when ∆Σc reaches a peak).

Initially, earlier decisions are discouraged by a rise of the threshold. Interestingly, such a

non-monotonic trend of the moving threshold has been demonstrated to be theoretically

optimal in [9] (see Fig 2B therein; see also [11]).

Even if the models in the references and in the present paper are not structurally

149

Signal neutrality, Scalar property and collapsing boundaries

equivalent, it is nonetheless striking that the agent can approximate such optimal behaviour

by trial-and-error. We note how the monotonically decreasing ∆Σc shown in panel B is

consequently suboptimal. Thus, the results of Fig 8 demonstrate the necessity of multiple

timescales also for an efficient implementation of the collapsing boundaries.

C

A

B

Agent

Agent with single timescale Agent without internal clock

Figure 8. Collapsing boundaries. ∆Σright (see Eqs 21 and 23) can be decomposed in a
signal-dependent part (∆Σs

right) and a time-dependent part (∆Σc; see Eq 25), that measures the
propensity of the agent at each time to wait for another input instead of making a decision. In all
panels, ∆Σs

right (coloured lines) is depicted for three sample episodes, alongside ∆Σc (thick black
line). The big coloured circles correspond to the decision times. A: The behaviour of the proposed
agent. ∆Σc acts as a time-dependent threshold: most of the decisions fall inside a strip running
parallel to it (the grey area is where 80% of the decisions are made). The resulting boundaries
collapse for longer response times. Until about 200 ms, a rise of the effective threshold discourages
early decisions. This trend is analogous to the theoretically optimal decision threshold when the
trial has a maximum allowed time to make a decision [9, 11]. B: The behaviour of an agent with a
single integrator (see Section 2.4). Thanks to the internal clock over a single timescale, the agent
can implement a suboptimal, monotonically decreasing threshold. C: Behaviour of the agent
without internal clock, but with multiple signal integrators. The model is unable to exhibit the
collapsing boundaries.

150

Signal neutrality, Scalar property and collapsing boundaries

3.5 Robustness

The utilisation of a wide range of timescales makes the performance of the agent robust to

variation of the task and to the intrinsic noise. This is shown in Fig 9A and 9B. We varied

Tmax (the maximum duration of an episode) and σI (the standard deviation of the intrinsic

noise, ξs
τ s and ξc

τ s in Eqs 10-15) systematically and, for each value, run the learning process

from scratch. The results of the agent are then compared to the models of Section 2.4.

While Fig 9 reports the comparison with the single integrators with optimised thresholds,

the results for the agent with a single timescale can be found in Supplementary Material

and Fig 11.

In Fig 9A, as Tmax increases (and σI stays at its reference point of 0.02), the fraction

of correct responses rises monotonically for all models, with the performance of the agent

staying superior on the whole range of Tmax explored. Two features are noteworthy. First,

the lines for the single integrators (τ = 0.1 s and τ = 10 s respectively) cross at intermediate

values of Tmax, with the longer τ surpassing the shorter ones for higher episode durations.

Second, the advantage of the proposed agent shrinks in comparison to the longer τ for

longer Tmax. These features have a common origin. From Eq 6, a signal s(t) of mean µ will

asymptotically lead all the integrators to the same (statistically) stationary value of µ, but

with different levels of noise. Integrators with longer τs will have a smaller variance and

thus will be more reliable in detecting whether µ > 0 or µ < 0. On the other hand, the

time needed to reach the stationary state will be longer for larger τs. Slower integrators

will still be integrating the signal for shorter Tmax and, as a consequence, their value will

carry less information on the µ. Hence, the smaller τs will dominate for shorter Tmax, the

larger τ for longer Tmax.

In Fig 9B, the level σI of intrinsic noise is varied, with Tmax kept constant at 2 s.

The performance of the agent (black line) is always substantially higher than that of the

single integrators (coloured lines). As expected, performance deteriorates as σI increases

from 0 to 0.2; yet the decrease is only surprisingly slight, considering that the maximum

151

Signal neutrality, Scalar property and collapsing boundaries

value attained by σI is comparable with the typical dynamical range of the integrators

xτ . Such range is determined by the distribution p(µ) (here, a Gaussian of standard

deviation σµ = 0.25). It is then clear that the highest levels of intrinsic noise really affect

the typical value of the integrators. This is even more true taking into account that the

slowest integrators operate far from the asymptotic value, given the limited integration

time. This consideration is clearly reflected in the behaviour of the single integrators. The

fast integrators (τ = 0.1 s and τ = 2.1 s) indeed are scarcely affected by the increase in

noise. On the other hand, the slowest integrator (τ = 10 s) shows good accuracy for very

low levels of noise, but then becomes rapidly ineffective for higher values of σI .

The agent without the internal clock reports robust performance as Tmax and σI

vary, demonstrating its capability to select the appropriate signal integrator for different

conditions. However, this agent can also report lower performance in comparison to

the best single integrators. This phenomenon is a consequence of the reduction of the

noise performed on the model with optimised threshold. Indeed, integration of the signal

over a single timescale can carry the large majority of the relevant information for a

specific simulation. In a specific parameters’ setting and in terms of accuracy only, the

performance of this agent can be consequently inferior to the model with a single integrator

with an optimal value of τ . However, it is clear how the agent depicted in blue is more

robust over the range of values shown in the figure, having the possibility to choose the

appropriate integration time. For the sake of accuracy optimisation, the role of the reservoir

of integrators is to select the appropriate timescale for the considered situation. Instead,

the advantage of an internal clock parameterised by multiple timescales is to implement the

optimal shape of collapsing boundaries of Fig 8. The latter statement is emphasised by the

improved performance of the proposed model also over the agent with a single timescale

(S3 Fig), which has information about the passage of time limited over a single τ .

Fig 9C shows the evolution of the ‘moving threshold’ ∆Σc (Eq 25, proposed agent)

for three values of Tmax. For very low Tmax (black line) the threshold only decays, always

pushing for a decision. For higher values of Tmax, instead, as we have already seen in Fig 8,

152

Signal neutrality, Scalar property and collapsing boundaries

the moving threshold initially rises; it reaches a peak and then decays afterwards, making

a decision ever more likely. Such peak shifts with Tmax and so does, even more clearly, the

time at which the threshold reaches back its initial value (around 1 s for Tmax = 2.0 s, and

around 5 seconds for Tmax = 10 s).

Fig 9D shows θs
right,τ after training (θs

right,τ � −θs
left,τ for the symmetry of the problem

after optimisation, as it is shown in Fig 10 D) for different values of intrinsic noise σI

(continuous lines are fourth degree polynomial fits for illustrative purposes). Coherently

with what we have seen in Fig 9B, the peak of the lines, corresponding to the most exploited

timescale, shifts towards lower τ values as σI increases.

3.6 Evolution during training

Fig 10 illustrates how the behaviour of the agent evolves as it encounters new episodes

during learning. Fig 10A shows the performance attained on average for four different

values of signal coherence at different times during the training phase. The performance

is of course always higher for higher values of coherence (‘easier’ episodes), and tends to

increase monotonically for all the values of coherence during training.

This monotonic trend is not preserved, instead, looking at the average response time

(Fig 10B). The response time drops at the beginning of training with values that are very

close for every value of coherence. The reason for such behaviour is related to how the

agent is initialised. At the beginning, the agent is ignorant about the rules of the task

and pre-programmed to make a random choice after having waited for a finite random

length of time. Without such random initialisation, the learning would not proceed, since

the agent needs to perform actions to learn the relative consequences. While the agent is

unable to tell apart signals with different coherences, the response time then decreases.

In fact, longer average response times are detrimental due to late responses (no decision

before the maximum time allowed Tmax) that are not rewarded.

This is made clear in Fig 10B, that shows how the fraction of late responses quickly

drops to almost zero, and it stays there. Afterwards, the model starts to statistically

153

Signal neutrality, Scalar property and collapsing boundaries

A B

DC

Figure 9. The wide range of timescales makes the agent’s performance robust to variations of
the task and to the intrinsic noise. A: as Tmax increases, the fraction of correct responses rises
monotonically both for the agent (dashed black line) and for all the single integrators, with the
performance of the agent staying superior on the whole range of Tmax explored. B: varying the
level σI of intrinsic noise, the performance of the agent (dashed black line) stays always
substantially higher than that of the single integrators, notably for stronger noise. As expected,
the performance does deteriorate, but the decrease is surprisingly slight, considering that the
maximum value attained by σI is comparable with the typical dynamical range of the integrators
xτ . The performance of the agent without internal clock (dashed blue in panels A and B) are close
(or superior to) the best single integrators reported. However, this agent is more robust than the
single integrators over the range of parameters’ values considered. Thus, the results show how the
model (dashed blue) is able to select the appropriate timescale for different situations (see text for
more details). C: evolution of the ‘moving threshold’ ∆Σc (Eq 25) for three values of Tmax. For
higher values of Tmax (see also Fig 8), the moving threshold presents a peak whose position shifts
with Tmax. D: θs

right,τ after training (Eq 10) for different values of intrinsic noise σI (continuous
lines are fourth degree polynomial fits for illustrative purposes). The peak of the lines,
corresponding to the most exploited timescale, shifts towards lower τ values as σI increases.

differentiate between signals with different coherences (the four lines diverge in Fig 10B)

and the response time begins to rise. In this regime, waiting means accumulating more

154

Signal neutrality, Scalar property and collapsing boundaries

A B C

D E F

Figure 10. Learning is characterised by a non-monotonic adaptation of the average response
time that is consequent to the necessity of finding a fine balance between integrating information
and the cost of waiting to make decisions. A: Accuracy of the model for signals with different
coherences across learning. B: Average response times. Trials with increasing level of coherences
correspond to greater response times and greater probabilities of ‘late’ responses. The initial
descending trend (around 100 episodes) of the response times common to all coherences is due to
the initial ignorance of the agent about the nature of the task, on the tendency to avoid late
decisions and to prefer immediate rewards. C: Probability of not making a decision before the end
of the episode, i.e. after Tmax. D-E-F: Evolution of different parameters and of the collapsing
boundaries for the training instances corresponding to the vertical grey lines of the top panels. D:
Evolution of the weights corresponding to the integrators of the signal. The weights are positive
(negative) for the ‘right’ (‘left’) action. E-F: Values of the parameters (E) defining the contribution
of the internal clock to the decision making process and relative collapsing boundaries (F).

information and helps to improve the performance.

Fig 10D and 10E show the evolution of θs
right,τ , θs

left,τ , and of θc
wait,τ −θc

right,τ respectively

(the shape of θc
wait,τ − θc

left,τ is similar). The different colours (grey scale) and line styles

correspond to the training instances highlighted with the vertical lines of the above panels.

Each set of weights is separately rescaled, for each instance, by its absolute maximum

value. This has been done to emphasise the relative importance among the parameters

155

Signal neutrality, Scalar property and collapsing boundaries

rather than their magnitude. At the beginning of training (light grey lines) and despite

the rescaling, the weights are close to zero because we initialised the biases of the model

at higher absolute values. We chose this initialisation so that the model could exhibit

reasonable starting response times without weighting the contribution of the different

timescales a priori.

As the simulation progresses, the weights for the signal integration toward the ‘right’

and ‘left’ actions become stronger while maintaining an approximately symmetric trend

with respect to zero (panel D). Also the parameters reflecting the internal clock in panel E

grow across training, but fast (slow) timescales become positively (negatively) weighted.

Thus, the weights at a given instance compose an overall descending trend. To understand

this, we need to make two simple observations. First, time integrators receive a constant

positive signal of one as input. Thus, the sign of the contribution of a time integrator to

the decision process corresponds to the sign of its relative weight. Second, such weights are

the ones responsible for the implementation of the collapsing boundaries (Fig 10F shows

the boundaries corresponding to the considered training instances). By giving positive

importance to the fast integrators, which are dominant at the beginning of an episode,

the agent is implementing the initial rise of the effective, moving threshold (panel F). In

contrast, the negative contribution from the slow τs is responsible for the collapsing trends

reported in panel F.

156

Signal neutrality, Scalar property and collapsing boundaries

4 Discussion

Decision making and reinforcement learning are fields with overlapping contributions that

attempt to demystify how humans and animals make decisions. Our work unifies the two

approaches by using a reinforcement learning agent to solve a task reminiscent of a classical

perceptual decision making setup, similar to [10,49–51].

The reinforcement learning agent receives sensory information and information from

various “clocks” integrated on multiple timescales. Timescales have been implicit in

the reinforcement learning framework, in the context of propagating information about

the success (or failure) of the task in cases where the reward is not immediate, see

eligibility traces [43, 52]. However, this is not the same as the concept of timescales in

this model, where the emphasis is on acquiring and retaining sensory information from

the environment, not unlike what happens in the field of Reservoir Computing [53]. We

argue that reward maximisation, multiple time constants and perception of time are the

fundamental ingredients for faithfully reproducing (i) an optimal decision-making boundary,

(ii) the scalar property, and (iii) signal neutrality.

Indeed, the agent learns to solve the task in a relatively small number of episodes,

performing better than any single-timescale drift-diffusion integrator while fitting well the

psychophysical data. The agent’s policy is markedly different from the drift-diffusion model,

where a decision happens when one of the integrating processes reach the decision threshold.

The reinforcement learning agent makes decisions within short ‘active’ time windows when

fleeting bursts in the probability of choosing an action make that action possible. These

“bursts” result from the broad agreement on the decision of many integrators with different

timescales, akin to the concept of majority voting. The behaviour of our agent is compatible

with the analysis performed in [54] on single-neuron single-trial spike trains in LIP area to

uncover sudden activity jumps and their informativeness about choice.

The multiple clock time constants lead to a decision boundary with a shape similar to

the theoretical optimal for decisions with bounded time. We demonstrate in simulations

157

Signal neutrality, Scalar property and collapsing boundaries

that such a complex boundary is not learnable with a single timescale in the clock or

without using a clock. The initial increment and then collapse of the decision boundary

happen due to the interplay of clock integrators with multiple time constants.

Another direct consequence of the clock with multiple timescales is the scalar property

[42,44], i.e. the ratio of the standard deviation over the mean of the response times remains

constant. The removal of the clock results in a fixed boundary over time and cannot exhibit

the scalar property. Even a single timescale clock, which leads to a non-optimal decaying

decision boundary, fails to capture the scalar property. Our results suggest that an optimal

decision-making boundary may lead to the scalar property.

As a side note, and contrary to [42, 44], the experimental results reported in [55]

seem to support a linear relationship between response means and standard deviations

(y = ax + b) rather than an exact scalar property (y = ax). Yet the very low coefficients

of variation for fast responses could result from ignoring the effect of non-decision times,

which can be assumed to have low variability [20]. In principle, the drift-diffusion model is

capable of exhibiting a linear relationship between the mean response time and its standard

deviation [55]. Yet, it seems difficult to display the scalar property (see Eq 22).

The multiple timescale signal integrators offer a way to “learn” the integration time

constant from the data instead of treating it as a free parameter. Their presence makes

the agent robust, as it can perform well with various task difficulties (expressed as a

signal to noise ratio or signal coherence). There are optimal integration time constants for

specific task difficulties. Varying much the signal to noise ratio would inevitably reduce

the performance of an integrator with a single time constant.

A consequence of signal integration with multiple time constants is signal neutrality,

the stereotypical collapse of the decision-making signal just before the agent decides.

This characteristic is noticeable in the activity of neurons in LIP area during a motion-

discrimination task [5,41]. We can intuitively understand this characteristic in the following

way. The agent has to find a policy that works across various coherences. A strategy

independent of the specific coherences, if achievable, is an appropriate solution to the

158

Signal neutrality, Scalar property and collapsing boundaries

problem. The simulations suggest the agent discovers such a policy. To some extent, also

the single integrator agents find such a policy. However, if we vary the coherence much,

signal neutrality progressively fails.

Fluctuations play a significant role in signal neutrality. And indeed, as far as we

can discern, the observation of the phenomenon in [17], where no multiple timescales are

present, is rooted in the presence of large fluctuations in the activity traces being averaged.

These fluctuations are smoothed out by a first-order filter and a random post-decision

time. Nonetheless, they contribute significantly to the observed collapse, as testified by

peak values well above the decision threshold.

In summary, our agent learns solely by maximising its reward. There is no strategy

a priori prescribed, similar to a biological agent during a perceptual decision-making

experiment. And yet, our model provides little information about the corresponding

mechanisms at the circuit level. Nevertheless, it offers insights into complex processes. We

argue that it is a good trade-off between complexity and simplicity [56]: the agent learns

when to take actions in an “optimal” way. The learning process suggests that the optimal

decision boundary is a consequence of time perception in multiple timescales.

We underline how the proposed agent could be extended to tackle different perceptual

decision tasks. For example, being probabilistic, the agent inherently computes an ongoing

estimate of the confidence related to each of the possible options. Thus the agent could be

presented with the possibility to opt-out from a trial when the choice appears too uncertain.

Confidence has moreover been related, in the perceptual decision making literature, to

optimal learning [47, 57]. It is interesting to note, in this respect, that the learning

rate for the proposed agent is indeed strongly modulated by confidence: an easy correct

decision would trigger little learning; on the other hand, a confident but wrong decision

would engender large changes in the model’s parameters. In [47], moreover, parameters’

fluctuations due to the ongoing learning have been shown to account for differences in

psychometric curves in an identification task, not unlike the one examined here, versus a

categorisation task, to which the multi-τ agent could be adapted with minor modifications.

159

Signal neutrality, Scalar property and collapsing boundaries

Since we have largely focused the attention on the post-learning phase, the role of such

fluctuations in the agent remains an open, and stimulating, issue.

The building blocks of the present model, i.e. the signal accumulators, may have

biological counterparts [58, 59]. It is possible to use pools of noisy attractors to implement

integrators with wildly different timescales, as required by a multi-scale system. Attractor

dynamics has been long one of the main staples of theoretical neuroscience [60]. Several

winner-take-all spiking networks capable of implementing a probabilistic classification

of the noisy signal have been described in the literature [61, 62]. Therefore we see no

conceptual barriers to a more detailed, spiking model mimicking the workings of the agent.

Beyond specific interpretations in this work, we would like to advocate the consideration

of multiple timescales in models handling non-stationary and noisy information. There

is increasing evidence that performance improves or becomes more robust to changes in

the environment when various elements are performing nearly the same task. Adapting to

different conditions becomes possible by selectively choosing among those. We notice this

general strategy, known as “degeneracy”, is present in many biological systems [63–66].

Degeneracy permits rapid adaptation to novel conditions leading to robust performance,

adaptability and survivability.

5 Supplementary Material

5.1 Learning

The learning algorithm adopted is a reinforcement learning actor-critic model with eligibility

traces [43]. The goal of reinforcement learning is to maximise the cumulative reward:

Gt = Rt+1 + γRt+2 + ... + γt+N−1Rt+N (26)

where 0 ≤ γ ≤ 1 is a discount factor that describes the tendency of the agent to invest in

future rewards (here γ � 1 − 10−7). In our specific case, an episode ends when the agent

160

Signal neutrality, Scalar property and collapsing boundaries

chooses ‘left’ or ‘right’, or the maximum allowed time Tmax is reached without a decision.

Rewards are given at the end of the episode only. The reward is 1 for the case of correct

decision, and 0 otherwise. The policy (the actor) is embodied by the probabilities pa (a =

‘right’, ‘left’ or ‘wait’) defined in Eq. 17, Main Text. Instead, the parametrisation defining

the critic, i.e. the value function V (t) = Ep{Gt|st}, is:

V (t) =
∑

τ

{
W s

τ |xs
τ (t)| + W c

τ xc
τ (t)

}
+ bv (27)

where the weights W are learned alongside θ (with W and θ we refer to all the parameters

for the critic and actor respectively), and we used the absolute value of the integrators

because, similarly to the definition of Σwait, positive and negative fluctuations of the signal

should contribute in the same way to the expected reward. For each episode, the algorithm

defines two sets of eligibility traces, eW
t and eθ

t , for the critic and the actor respectively:

eW
t = γλW eW

t−∆t + γt∇W V (t)

eθ
t = γλθeθ

t−∆t + γt∇θ pa(t)

where t is the time inside an episode, and 0 ≤ λθ ≤ 1 and 0 ≤ λW ≤ 1 are the traces decay

parameters (here λθ = λW = 1 − 10−5). The parameters are then updated according to:

δ ≡ Rt+∆t + γV (t + ∆t) − V (t)

θ ← θ + ηθ δ eθ

W ← W + ηW δ eW .

5.2 Interpretation as majority voting

Fig 11 shows the tendency of the agent to make decisions when there is a coherent alignment

of the contributions of the different integrators of the signal.

161

Signal neutrality, Scalar property and collapsing boundaries

Figure 11. The agent waits for an alignment of the different integrators before making a
decision. The measures are computed for the episodes where the agent correctly selects
the ‘right’ action. A: Fraction of integrators that are positively contributing to the ‘right’
action. The measure is aligned with the decision time (extreme right at zero). When a
decision is made, more than nine (out of ten) integrators have a positive contribution to
the decision on average. B: Probability of the ‘right’ action as the fraction of positively
contributing integrators changes. The probability of making a decision is considerably
different than zero when the majority of the integrators align.

5.3 Distribution of τ

In this section, we quantify the dependence of the performance of the proposed agent on

the number, range and distribution of τs adopted. Fig 12 shows an accuracy surface as

the number of integrators (Nτ ,x-axis) and the maximum timescale (τM , y-axis) of the

distribution vary. In this case, only, we did not rescale the intrinsic noise σI for the different

models. It is evident how increasing the number of integrators always improves performance.

Moreover, accuracy is more clearly rising along the diagonal from the bottom-left to the

top-right corners of the surface. Following such diagonal, we are indeed increasing the

variety of time constants and the number of integrators available at the same time. This

clear trend shows that the model prefers non-redundant features, defined over sufficiently

diverse values of τ when there is the possibility to ‘recruit’ more integrators. In contrast,

to move upwards on the y-axis while maintaining a fixed number of integrators is typically

162

Signal neutrality, Scalar property and collapsing boundaries

characterised by a performance increase until τM ≈ 10, and then by a subsequent decrease.

The reason is that for the usual setting considered (σI = 0.02 and Tmax = 2 s) integrators

with a timescale lower than 10 s can carry more relevant information than the slower ones.

Thus, if we keep the number of features constant, the accuracy would be higher for the

region with the most appropriate integrators. At the same time, variety is always preferred

when increasing Nτ .

Fig 13 reports the performance of two agents, one with the exponential distribution of

τ adopted in the paper (black line as usual), and the second with a linear distribution of τ

over the same range (red lines). The performance of the two models remain comparable as

Tmax (panel A) and σI (panel B) vary. The result suggests how the specific distribution of

timescales chosen does not impact considerably the results. Thus, it is more important

than the τs are sufficiently spread over different magnitudes with enough density to cover

the considered range. Moreover, Fig 13 shows the performance of the agent with a single

integrator (see Section 2.4, Main Text). The behaviour of the different timescales as the

parameters vary (x-axis of the panels) are analogous to the ones reported in Fig 13 for the

single integrator with optimised thresholds. However, for the case of the agent reported

here, the performance is usually higher than the single timescales of Fig 13, since this

model can also exploit some temporal information.

163

Signal neutrality, Scalar property and collapsing boundaries

Figure 12. Surface of accuracy as the number of integrators (Nτ , x-axis) and maximum
timescale (τM , y-axis) vary. For this specific result, σI has not been rescaled for the
different models.

Figure 13. Robustness of the proposed model to different parameters’ settings and
comparison with an agent that exploits a different distribution of characteristic times and
an agent with a single integrator (see Section 2.4, Main Text). A-B: The model with a
linear distribution of timescales (red, dashed line) reports comparable performance to the
one proposed (black, exponential distribution). This demonstrates that the performance of
the proposed agent is robust with respect to changes in the distribution of τ , assuming
that the chosen distribution has time constants over different order of magnitudes and
that is enough dense to cover the range considered. The performance of the agents with
single integrators shows similar trends to the one reported in Fig 9 in the Main Text for
the integrators with optimised thresholds. Thus, we refer to Fig 9 in the Main Text
(Panels A and B) for more details.

164

Signal neutrality, Scalar property and collapsing boundaries

References
[1] Burrhus F Skinner. Operant behavior. American psychologist, 18(8):503, 1963.

[2] Sashank Pisupati, Lital Chartarifsky-Lynn, Anup Khanal, and Anne K Churchland.
Lapses in perceptual decisions reflect exploration. Elife, 10:e55490, 2021.

[3] SW Link and RA Heath. A sequential theory of psychological discrimination.
Psychometrika, 40(1):77–105, 1975.

[4] Hauke R Heekeren, Sean Marrett, and Leslie G Ungerleider. The neural systems that
mediate human perceptual decision making. Nature reviews neuroscience, 9(6):467–
479, 2008.

[5] Jamie D Roitman and Michael N Shadlen. Response of neurons in the lateral
intraparietal area during a combined visual discrimination reaction time task. Journal
of neuroscience, 22(21):9475–9489, 2002.

[6] Joshua I Gold and Michael N Shadlen. The neural basis of decision making. Annual
review of neuroscience, 30, 2007.

[7] Timothy D Hanks, Mark E Mazurek, Roozbeh Kiani, Elisabeth Hopp, and Michael N
Shadlen. Elapsed decision time affects the weighting of prior probability in a perceptual
decision task. Journal of Neuroscience, 31(17):6339–6352, 2011.

[8] Rafal Bogacz, Eric Brown, Jeff Moehlis, Philip Holmes, and Jonathan D Cohen. The
physics of optimal decision making: a formal analysis of models of performance in
two-alternative forced-choice tasks. Psychological review, 113(4):700, 2006.

[9] Jan Drugowitsch, Rubén Moreno-Bote, Anne K Churchland, Michael N Shadlen, and
Alexandre Pouget. The cost of accumulating evidence in perceptual decision making.
Journal of Neuroscience, 32(11):3612–3628, 2012.

[10] Rajesh PN Rao. Decision making under uncertainty: a neural model based on partially
observable markov decision processes. Frontiers in computational neuroscience, 4:146,
2010.

[11] Tarryn Balsdon, Valentin Wyart, and Pascal Mamassian. Confidence controls percep-
tual evidence accumulation. Nature communications, 11(1):1–11, 2020.

[12] Joshua I Gold and Michael N Shadlen. Banburismus and the brain: decoding the
relationship between sensory stimuli, decisions, and reward. Neuron, 36(2):299–308,
2002.

[13] Yong Liu and Steven D. Blostein. Optimality of the sequential probability ratio test for
nonstationary observations. IEEE Transactions on Information Theory, 38(1):177–182,
1992.

[14] Rafal Bogacz. Optimal decision-making theories: linking neurobiology with behaviour.
Trends in cognitive sciences, 11(3):118–125, 2007.

165

Signal neutrality, Scalar property and collapsing boundaries

[15] Rani Moran. Optimal decision making in heterogeneous and biased environments.
Psychonomic bulletin & review, 22(1):38–53, 2015.

[16] Dobromir Rahnev and Rachel N Denison. Suboptimality in perceptual decision making.
Behavioral and Brain Sciences, 41, 2018.

[17] Mark E Mazurek, Jamie D Roitman, Jochen Ditterich, and Michael N Shadlen. A role
for neural integrators in perceptual decision making. Cerebral cortex, 13(11):1257–
1269, 2003.

[18] Scott D Brown and Andrew Heathcote. The simplest complete model of choice
response time: Linear ballistic accumulation. Cognitive psychology, 57(3):153–178,
2008.

[19] Mads Lund Pedersen, Tor Endestad, and Guido Biele. Evidence accumulation and
choice maintenance are dissociated in human perceptual decision making. PloS one,
10(10):e0140361, 2015.

[20] Gabriel M Stine, Ariel Zylberberg, Jochen Ditterich, and Michael N Shadlen. Differ-
entiating between integration and non-integration strategies in perceptual decision
making. Elife, 9:e55365, 2020.

[21] Roger Ratcliff. A theory of memory retrieval. Psychological review, 85(2):59, 1978.

[22] Abraham Wald and Jacob Wolfowitz. Optimum character of the sequential probability
ratio test. The Annals of Mathematical Statistics, pages 326–339, 1948.

[23] Alex Roxin. Drift–diffusion models for multiple-alternative forced-choice decision
making. The Journal of Mathematical Neuroscience, 9(1):5, 2019.

[24] Roger Ratcliff and Philip L Smith. A comparison of sequential sampling models for
two-choice reaction time. Psychological review, 111(2):333, 2004.

[25] Philip L Smith and Roger Ratcliff. Psychology and neurobiology of simple decisions.
Trends in neurosciences, 27(3):161–168, 2004.

[26] Jerome R Busemeyer and James T Townsend. Decision field theory: a dynamic-
cognitive approach to decision making in an uncertain environment. Psychological
review, 100(3):432, 1993.

[27] Marius Usher and James L McClelland. The time course of perceptual choice: the
leaky, competing accumulator model. Psychological review, 108(3):550, 2001.

[28] Roger Ratcliff, Yukako T Hasegawa, Ryohei P Hasegawa, Philip L Smith, and Mark A
Segraves. Dual diffusion model for single-cell recording data from the superior colliculus
in a brightness-discrimination task. Journal of neurophysiology, 97(2):1756–1774, 2007.

[29] Ori Ossmy, Rani Moran, Thomas Pfeffer, Konstantinos Tsetsos, Marius Usher, and
Tobias H Donner. The timescale of perceptual evidence integration can be adapted to
the environment. Current Biology, 23(11):981–986, 2013.

166

Signal neutrality, Scalar property and collapsing boundaries

[30] William T Newsome and Edmond B Pare. A selective impairment of motion perception
following lesions of the middle temporal visual area (mt). Journal of Neuroscience,
8(6):2201–2211, 1988.

[31] Walter S Pritchard. The brain in fractal time: 1/f-like power spectrum scaling of the
human electroencephalogram. International Journal of Neuroscience, 66(1-2):119–129,
1992.

[32] Stefan J Kiebel, Jean Daunizeau, and Karl J Friston. A hierarchy of time-scales and
the brain. PLoS computational biology, 4(11), 2008.

[33] Catherine Wacongne, Etienne Labyt, Virginie van Wassenhove, Tristan Bekinschtein,
Lionel Naccache, and Stanislas Dehaene. Evidence for a hierarchy of predictions and
prediction errors in human cortex. Proceedings of the National Academy of Sciences,
108(51):20754–20759, 2011.

[34] Klaus Linkenkaer-Hansen, Vadim V Nikouline, J Matias Palva, and Risto J Ilmoniemi.
Long-range temporal correlations and scaling behavior in human brain oscillations.
Journal of Neuroscience, 21(4):1370–1377, 2001.

[35] Christopher J Honey, Rolf Kötter, Michael Breakspear, and Olaf Sporns. Network
structure of cerebral cortex shapes functional connectivity on multiple time scales.
Proceedings of the National Academy of Sciences, 104(24):10240–10245, 2007.

[36] Giancarlo La Camera, Alexander Rauch, David Thurbon, Hans-R Luscher, Walter
Senn, and Stefano Fusi. Multiple time scales of temporal response in pyramidal and
fast spiking cortical neurons. Journal of neurophysiology, 96(6):3448–3464, 2006.

[37] Dante Francisco Wasmuht, Eelke Spaak, Timothy J Buschman, Earl K Miller, and
Mark G Stokes. Intrinsic neuronal dynamics predict distinct functional roles during
working memory. Nature communications, 9(1):1–13, 2018.

[38] Sean E Cavanagh, John P Towers, Joni D Wallis, Laurence T Hunt, and Steven W
Kennerley. Reconciling persistent and dynamic hypotheses of working memory coding
in prefrontal cortex. Nature communications, 9(1):1–16, 2018.

[39] Alberto Bernacchia, Hyojung Seo, Daeyeol Lee, and Xiao-Jing Wang. A reservoir of
time constants for memory traces in cortical neurons. Nature neuroscience, 14(3):366–
372, 2011.

[40] Gustavo BM Mello, Sofia Soares, and Joseph J Paton. A scalable population code for
time in the striatum. Current Biology, 25(9):1113–1122, 2015.

[41] Michael N Shadlen and William T Newsome. Neural basis of a perceptual decision
in the parietal cortex (area lip) of the rhesus monkey. Journal of neurophysiology,
86(4):1916–1936, 2001.

[42] John Gibbon, Chara Malapani, Corby L Dale, and Charles R Gallistel. Toward a
neurobiology of temporal cognition: advances and challenges. Current opinion in
neurobiology, 7(2):170–184, 1997.

167

Signal neutrality, Scalar property and collapsing boundaries

[43] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[44] Robin Cao, Alexander Pastukhov, Maurizio Mattia, and Jochen Braun. Collective
activity of many bistable assemblies reproduces characteristic dynamics of multistable
perception. Journal of Neuroscience, 36(26):6957–6972, 2016.

[45] David Roxbee Cox and Hilton David Miller. The theory of stochastic processes.
Routledge, 2017.

[46] Herbert A Simon. Rational choice and the structure of the environment. Psychological
review, 63(2):129, 1956.

[47] André G Mendonça, Jan Drugowitsch, M Inês Vicente, Eric EJ DeWitt, Alexandre
Pouget, and Zachary F Mainen. The impact of learning on perceptual decisions and its
implication for speed-accuracy tradeoffs. Nature communications, 11(1):1–15, 2020.

[48] Anne K Churchland, Roozbeh Kiani, and Michael N Shadlen. Decision-making with
multiple alternatives. Nature neuroscience, 11(6):693–702, 2008.

[49] Chi-Tat Law and Joshua I Gold. Reinforcement learning can account for associative
and perceptual learning on a visual-decision task. Nature neuroscience, 12(5):655,
2009.

[50] Nathan F Lepora. Threshold learning for optimal decision making. In Advances in
Neural Information Processing Systems, pages 3763–3771, 2016.

[51] Mads Lund Pedersen, Michael J Frank, and Guido Biele. The drift diffusion model as
the choice rule in reinforcement learning. Psychonomic bulletin & review, 24(4):1234–
1251, 2017.

[52] Eleni Vasilaki, Nicolas Frémaux, Robert Urbanczik, Walter Senn, and Wulfram
Gerstner. Spike-based reinforcement learning in continuous state and action space:
when policy gradient methods fail. PLoS Comput Biol, 5(12):e1000586, 2009.

[53] Luca Manneschi, Matt OA Ellis, Guido Gigante, Andrew C Lin, Paolo Del Giudice,
and Eleni Vasilaki. Exploiting multiple timescales in hierarchical echo state networks.
arXiv preprint arXiv:2101.04223, 2021.

[54] Kenneth W Latimer, Jacob L Yates, Miriam LR Meister, Alexander C Huk, and
Jonathan W Pillow. Single-trial spike trains in parietal cortex reveal discrete steps
during decision-making. Science, 349(6244):184–187, 2015.

[55] Eric-Jan Wagenmakers and Scott Brown. On the linear relation between the mean
and the standard deviation of a response time distribution. Psychological review,
114(3):830, 2007.

[56] Robert C Wilson and Anne GE Collins. Ten simple rules for the computational
modeling of behavioral data. Elife, 8:e49547, 2019.

168

Signal neutrality, Scalar property and collapsing boundaries

[57] Jan Drugowitsch, André G Mendonça, Zachary F Mainen, and Alexandre Pouget.
Learning optimal decisions with confidence. Proceedings of the National Academy of
Sciences, 116(49):24872–24880, 2019.

[58] Roozbeh Kiani, Timothy D Hanks, and Michael N Shadlen. Bounded integration
in parietal cortex underlies decisions even when viewing duration is dictated by the
environment. Journal of Neuroscience, 28(12):3017–3029, 2008.

[59] Miriam LR Meister, Jay A Hennig, and Alexander C Huk. Signal multiplexing
and single-neuron computations in lateral intraparietal area during decision-making.
Journal of Neuroscience, 33(6):2254–2267, 2013.

[60] Daniel J Amit and Nicolas Brunel. Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cerebral cortex (New
York, NY: 1991), 7(3):237–252, 1997.

[61] Xiao-Jing Wang. Probabilistic decision making by slow reverberation in cortical
circuits. Neuron, 36(5):955–968, 2002.

[62] Xiao-Jing Wang. Decision making in recurrent neuronal circuits. Neuron, 60(2):215–
234, 2008.

[63] Gerald M Edelman and Joseph A Gally. Degeneracy and complexity in biological
systems. Proceedings of the National Academy of Sciences, 98(24):13763–13768, 2001.

[64] Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey, Kevin S Brown, Christopher R
Myers, and James P Sethna. Universally sloppy parameter sensitivities in systems
biology models. PLoS Comput Biol, 3(10):e189, 2007.

[65] Bryan C Daniels, Yan-Jiun Chen, James P Sethna, Ryan N Gutenkunst, and Christo-
pher R Myers. Sloppiness, robustness, and evolvability in systems biology. Current
opinion in biotechnology, 19(4):389–395, 2008.

[66] Dagmara Panas, Hayder Amin, Alessandro Maccione, Oliver Muthmann, Mark van
Rossum, Luca Berdondini, and Matthias H Hennig. Sloppiness in spontaneously active
neuronal networks. Journal of Neuroscience, 35(22):8480–8492, 2015.

169

Chapter 3

Discussion

3.1 Contributions and limitations

What are the principles to define efficient representations for learning? Across all the thesis, we

have tried to provide answers to this question, analysing learning from representations that are

definable as the evolution of a fixed1 dynamical system. This research for principles has been fa-

cilitated by analysing the question in the context of reservoir computing. In particular, we focused

on ensembles of unconnected (Paper III) or connected (ESN, Paper I and II) leaky integrators,

where the dynamical properties of the system are governed by clearly interpretable parameters.

We found, without surprise, that the concepts of hierarchical connectivity structure, neuronal spe-

cialisation, and multiplicity of integration rates, can dramatically affect the ability of reservoirs,

as of any neural networks, to learn. Thus, we developed techniques and models to further exploit

such features. Following the order of publications reported across the thesis, the focus shifts from

the concept of hierarchical connectivity (Paper I), to the introduction of sparsity and specialisation

(Paper II) in reservoir responses, to the study of decision-making when a reservoir of integration

times is available (Paper III). Timescales are the underlying theme of the thesis, intimately linked

to the ability of a system to retain temporal information. Across all the works, the role of timescales

is explicitly studied trough the values of the leakage terms adopted. In paper I and II, multiple

timescales appear also through the different rates of parameters’ adaptations. Indeed, learning on
1The only exception to this was in the case where the leakage terms were subjected to adaptation (Paper

I), but such learning can be seen as a procedure to tune the hyperparameters to the tasks considered.

170

the leakage terms (Paper I) or on the thresholds (Paper II) needed to occur on a much lower time

constant in comparison to the adaptation of the synaptic weights.

We want to provide a summary of the research works highlighting the novelties and the lim-

itations of each paper. Particular emphasis will be given to a critical analysis of the different

works.

Paper I

Novelty and Contributions

- Interpretation of the systems’ behaviour and results from the point of view of timescales

and connectivity structure. To the best of our knowledge, the work constitutes the first

empirical study where the interplay between connectivity structure and time constants was

studied and characterised for different tasks with interpretable results.

- Formulation of a learning rule on the leakage terms and application of the latter on

multiple, connected or unconnected, reservoirs.

- Utilisation of benchmarks that have not been previously adopted in the field of reservoir

computing and that can provide novel understanding of reservoirs’ behaviour.

Critical Analysis

Online adaptation of the leakage terms can be computationally challenging in terms of

convergence time. Learning has been successfully accomplished only through the adoption of a

lower timescale of adaptation on α (in comparison to the output weights) and through a ’phasic’

re-initialisation of the weights to avoid local minima. Thus, optimisation of the leakage terms is

more computationally expensive in comparison to the case where the read-out is trained

exclusively. However, the method proposed is also considerably more efficient than grid-search or

evolutionary algorithms. As we will discuss in Section 3.2 Future Works, this difficulty in the

training procedure could also be further alleviated thanks to normalisation algorithms that can

prevent covariate shifts.

While the above limitation is computational and technical, it is also important to notice how the

leakage term constitutes a global parameter of the network. Consequently, adaptation of

parameters as α through gradient descent is not local and difficult to apply on physically defined

reservoirs. Nevertheless, the approximation and the consequent learning rule proposed can be

171

still adopted in a mathematical model of the system and generalised to other hyperparameters,

as for instance the input connectivity matrix.

Paper II

Novelty and Contributions

- Formulation of the model SpaRCe, which is composed by an initialisation and a learning

phase of thresholds with ’hard’ boundaries.

- Improved performance of ESNs on classification tasks and catastrophic forgetting,

demonstrating the importance of specialisation and sparsity as features that can enhance

the ability of the network to learn in an online fashion.

Critical Analysis

The introduction of specialised representations increases the ability of the network to memorise

associations, as shown in the results on the biologically inspired task. This improved memory

capacity is usually a desirable feature of the system, but can sometimes lead to overfitting.

Indeed, if the memory capacity is high enough, the system has the possibility to memorise the

associations on the training data without discovering relevant and transferable features. This can

happen if learning is driven by nodes that are specialised because of noise in the data, and in

particular when the dimensionality of the reservoir is high and disproportionate for the task

considered. However, it should be possible to avoid this regime if the model is appropriately

tuned in the vast majority of the cases, since the formulation of SpaRCe enables learning to

rediscover the situation when thresholds are equal to zero at worst.

The algorithm can be efficiently and directly applied if the representation of the reservoir

considered is continuous. In section 3.2 we will discuss possible extensions of this work,

considering situations where sparse activities can lead to learning advantages.

Paper III

Novelty and Contributions

- Introduction of multiple timescales and of an explicit clock mechanism in the

decision-making process.

- The model led to novel interpretations of established experimental results, for which the

presence of multiple timescales appear to be necessary. Interestingly, learning is

172

accomplished exclusively through reward maximisation, which leads to remarkable

agreements with experimental data when the reservoir of integrators has a wide range of

characteristic times.

Critical Analysis

We consider the model to be elegant and abstract, but it can arguably lack of biological realism.

While this does not impact the contribution of the paper, the hypothesis drawn could be tested

by using a more realistic model, where multiple timescales could arise through the recurrency of

a network of spiking neurons. This variation could clarify and better establish the connections

among the observables studied in the model and the experimental results on the neuronal

activities of LIP. In the way, the analogy between ∆Σright or ∆Σleft and the LIP activities could

be better established. Despite the extensive number of results provided in the paper, the model

has been tested only on a two choice decision-making experiment, and further analysis could be

performed for other environments.

3.2 Future Work

We believe that the works reported here have the potential of finding applications across different

fields and give inspiration for future theoretical developments. This section will be divided in

three parts: in the first (Applications), we will discuss applications of the models proposed for

complex machine learning tasks and physical reservoirs; in the second (Improvements to ESN

techniques), possible extensions of the works will be presented with the aim to overcome some

limitations and generalise previous works; in the third (Generalisation to other methods), the

conceptual results of Paper II will be exploited to define a future research project on sequential

learning.

Applications. Our results suggested how sophisticated variations of ESNs can lead to good

performance in problems that require multiple timescales while maintaining the high degree of

generality and intepretability that distinguish them. The low computational cost of these systems

makes them easily usable in architectures composed by other types of neural networks.

One promising example of application of the models developed is in Visual Place Recognition tasks

(VPR) [19], where a model is asked to recognise previously visited locations from a sequence of im-

173

ages that have been captured during navigation. The difficulty of this problem lies on the fact that,

during testing, locations are visited on different environmental conditions, and the model needs

to discover features that are robust with respect to lighting, weather, and/or angular changes.

Considering that datasets are acquired with a specific time frame during navigation, the signal is

dynamic.

In the work [19] we proposed a network architecture in which ESNs were added after a pre-processed

convolutional neural network to provide a form of working memory and capture temporal infor-

mation about the navigation process. Thanks to such composed architecture, ESNs can focus on

the temporal features of the problem. In [19], we demonstrated how SpaRCe and systems with

multiple leakage terms can reach leading performance in a variety of VPR datasets .

Considering these results, we hypothesize that an architecture composed by a convolutional neural

network and the more complex variants of ESNs proposed could also be applied in partially ob-

servable Markov decision processes. In particular, some of the methodology developed for the VPR

benchmarks could also be used for Reinforcement Learning problems where an agent navigates an

environment and needs to make decisions from visual input.

The understanding developed in the papers reported can also be used in the context of reser-

voir computing. One main challenge that such a research field is facing is the development of a

methodology that can guide the tuning of the parameters that affect the properties of a specific

device. This challenge is not only task-dependent, but also reservoir-dependent, and it can require

a considerable amount of time to acquire an understanding on how to exploit the computation

abilities of a specific reservoir. When a mathematical model of the system is available, a general

solution to this problem is gradient descent optimisation. A generalisation of the learning rule

proposed in paper I can be used to guide the search on the considered hyperparameters.

Improvements to ESN techniques An intriguing idea is to generalise the hierarchical archi-

tecture proposed in the first paper to a feedforward network, where each layer is composed by

multiple ESNs. A specific layer would contain reservoir with different timescales, and the leakage

terms of different networks can be drawn from some fat-tailed distribution as in paper III. From

the analysis accomplished in the first paper, we already know that parameters as γ(21), defining

the strength of interaction among two networks, and α(1,2), are critical. While we can alleviate the

174

necessity of an extensive optimisation on αs by exploiting a high number of ESNs and a wide range

of characteristic times, the connection strengths among two reservoirs γ(ij) needs to be carefully

optimised. Optimisation of γ(ij) could provide insights on how to connect multiple reservoirs, and

can be accomplished by adapting the learning rule that was used in the first paper on the leakage

term. Thanks to the multiplicity of dynamical properties available at the starting condition, the

system should exhibit good generalisation properties and be robust to different tasks. At the same

time, instead of learning only the read-out as in a standard ESN or optimising all the connectivity

structure as in another recurrent neural network [20], we would adapt the output weights, the

coupling strengths γ(ij) and/or the leakage terms. Thus, the number of parameters would scale

linearly with number of total nodes and quadratically with the number of ESNs considered at

worst.

We want now to notice how learning of the parameters γ(ij) and/or the leakage terms of the

system would probably require a lower learning rate in comparison to the output weights. Indeed,

we know from the training of αs and of the thresholds θ (first and second work respectively) that

different rates of adaptation can be necessary when there is a clear hierarchy among the parameters

of the system. In both cases, the learning rules on the leakage terms or thresholds depended on the

output weights. Consequently, the latter parameters needed to change at a faster rate to provide

a clear signal in the gradients of α or θ. Moreover, in these situations initial conditions matter. In

SpaRCe, the dependence on the starting conditions has been overcome by considering the starting

percentile Pn as a hyperparameter. In training the αs, this problem has been alleviated through

a phasic re-initialisation of the output weights. Thus, we can expect that learning of γ(ij) and/or

α(i) would be subjected to similar difficulties also in the feedforward architecture of ESNs proposed

here. Nevertheless, the multiplicity of available values of αs should alleviate this problem at least

in the adaptation of the latter, offering a dynamical repertoir as starting condition.

This learning difficulty is even emphasized for hierarchically connected systems, where deeper “lay-

ers” need to adapt to the statistical changes of previous ones [21]. For instance, a relatively small

change of α can completely alter the statistical properties of the ESN considered, to which deeper

layers or output weights need to adapt. For this reason, it could be beneficial to consider normal-

isation techniques that can stabilise some properties of the statistics of activities during training.

As with the previous works in [21] [22], SpaRCe can be applied as a batch or “layer” normalisation

technique to achieve this purpose. Indeed, after the application of SpaRCe (see definition of the

175

model in Paper II) the new distribution of activities x of the reservoir is zero at the percentile

value Pn by construction, regardless of the changes in the dynamic of the ESN.

Generalisation to other methods. In Paper II, we have showed how the concept of spe-

cialised neurons can improve the ability of a model to face sequential learning problems. In that

scenario, we introduced thresholds and sparse representations on the read-out level of an ESN.

The algorithm proposed (SpaRCe) is simple and does not make explicit use of the task identity

for learning, in contrast to other machine learning models as [23] [24] [25], defined to alleviate

catastrophic forgetting. Thus, we believe that the introduction of a controllable level of sparsity

can be beneficial not only for ESNs, and a possibility is to generalise SpaRCe to networks with mul-

tiple hierarchical dependencies as multi-layer perceptrons. In this case, sparsity can be controlled

thanks to a normalisation mechanism (as the percentile operation defined in paper II) across the

statistics of the activities of the nodes belonging to a layer. For instance, a node of the MLP can be

defined as active if its value is greater than the n percent of the other neurons in the layer. In other

words, Eq. 4 and 5 of paper II (Main Text) could be exploited by using the layers’ statistics of a

MLP. However, a possible variation of the model could be required, considering that the percentile

operation used in Eq. 4 and 5 is not differentiable and that this could negatively affect backprop-

agation. To describe methodologies to practically perform this operation is outside the scope of

the manuscript, but an idea could be to train a feedback loop with the aim of imposing the desired

sparsity level in the considered layer. Once a controllable level of sparsity can be imposed, it would

be possible to dynamically change the percentage of active nodes on the base of an estimate of

the novelty of the data. If the last stimuli were “predictable”, the sparsity level should increase to

discover the minimal part of the network that can solve the task processed. If stimuli are novel and

data belong to a previously unseen task, the sparsity level should decrease to recruit new neurons.

In this way, the definition of sparse representations as a function of novelty, of the error function

and of the layer depth could permit an indirect optimisation of the available resources in sequential

learning paradigms. While the proposed methodology is based on neuronal representations, it is

also beneficial to avoid adaptation of weights that were critical for the previously learnt task. This

could be accomplished by computing an online estimate of Fisher information matrix [25]), which

can provide a measure of the importance of the parameters for a given task.

176

In summary, this thesis has been a search for mathematically tractable models with intrinsic,

desirable properties as multiple timescales and neuronal specialisation. The availability of such

concepts, introduced through arguably simple definitions, led to improved performance, robust-

ness with respect to different tasks, and to an increased ability to learn multiple tasks sequentially.

Perhaps, these principles will be also important for the formulation of models that can exhibit

more generalised forms of intelligence. In this sense, the concepts within this thesis constitute a

personal starting point for future research works that focuses on defining robust models that can

quickly adapt to different tasks while retaining the information learnt on previous ones.

177

Chapter 4

Appendix

I1. Proof of conditions for the Echo State Property

i) Let us consider two possible network activities x and x′, a general input s and a sigmoid-like

activation function as hyperbolic tangent, then the distance d
(

F(x, s), F(x′, s)
)

between the next

states of the network driven by s from such activities can be bounded by noticing

d
(

F(x, s), F(x′, s)
)

= d
{

(1 − α)x + αf
[
Wins + Wx

]
, (1 − α)x′ + αf

[
Wins + Wx′

]}
=

= ||(1 − α)(x − x′) + αf
[
Wins + Wx

]
− αf

[
Wins + Wx′

]
|| ≤

≤ ||(1 − α)(x − x′)|| + ||αf
[
Wins + Wx

]
− αf

[
Wins + Wx′

]
|| ≤

≤ ||(1 − α)(x − x′)|| + ||α
[
Wins + Wx

]
− α

[
Wins + Wx′

]
|| =

= ||(1 − α)(x − x′)|| + ||αW(x − x′)|| ≤

≤ (1 − α)d(x, x′) + αΛd(x, x′) = (1 − α + αΛ)d(x, x′)

where, considering that 0 ≤ Λ < 1 and that the leakage term 0 < α ≤ 1, implies (1 − α + αΛ) =

Λ′ < 1. In the above, the activation function f is neglected (line three to four) because less or

equal than its argument by construction, and the last passage exploits the definition of maximum

singular value. Thus, the distance between the states x and x′ shrinks by a factor Λ′ < 1 at each

time step, leading to the echo state property.

ii) For the null input sequence s(t) = 0 ∀t the system is autonomous, that is its dynamics across

178

time can be described as dx
dt

= g
(
x(t)

)
. In this case, it is possible to study the stability of

the equilibrium point x̃ = 0 without loss of generality, since any other equilibrium point can be

translated to 0 thanks to a simple change of variable.

The concept of asymptotic stability can be described as follows. A system is asymptotically

stable if, give any ε > 0, a δ(ε) exists such that ||x(0)|| < δ → ||x(t)|| < ε ∀t, and limt→∞ ||x(t)|| =

0. For an autonomous system, the equilibrium point x̃ = 0 is not asymptotically stable when the

spectral radius of the system is above unity ([26]). In other words, the dynamic of the system

can not be confined on an arbitrary small region centered in zero and will tend to go away from

the equilibrium point. Considering this, it is now trivial to understand why the ESN property is

not satisfied for the null sequence s = 0 when the spectral radius is above unity. Of course, if

x(0) = 0 and s(0) = 0, x(t) = 0 ∀t. Thus, a possible response of the system to zero external signal

is the null response. However, if the initial condition is x(t) �= 0, the system will diverge from the

null response. Consequently, there are two different possible responses to the null sequence given

diverse initial conditions, and this violates the echo state network property.

I2. Hyperparameters in ESNs

In this section, we will consider the possible methodologies to set the hyperparameters of ESN

and/or reservoirs.

i) Grid search on a subset of hyperparameters, which in computationally expensive tasks are

considered independently, or applications of evolutionary algorithms on the hyperparameter

space.

ii) Definition and adoption of task-independent measurements that help to interpret the reser-

voir behaviour and its dynamical properties. Example of these can be the memory capacity

[27], quantifying the ability of the network to recall past temporal information, or the ker-

nel generalisation, which quantifies the ability of the model to generalise to similar, but

previously unseen, data [27].

iii) Utilisation of pseudo-analytical arguments with known task characteristics/requirements to

limit the region of parameters to be explored, or to simply perform an educated guess. For

instance, α and ρ are related to the range of timescales of the network. Their exploration

179

can therefore be limited in the space of values that reflect the temporal dependencies of the

task (when these are known a priori).

iv) Direct gradient descent methods on the values of the hyperparameters. All the hyperpa-

rameters considered affect the dynamic of the system, thus minimisation of a cost func-

tion through exact gradient descent methods would require backpropagation through time

(BPTT). BPTT unrolls all dependencies in the succession of mathematical operations that

result in the definition of the output function. Given that the system is dynamically changing

across time, such minimisation needs to unravel all temporal dependencies.

Learning Algorithms

Ridge Regression

Let us consider the cost function

E =
Ndata∑

i=1

K∑

j=1

[
Wijxj − ỹ

]2
+ β

∑

i,j
W2

ij (4.1)

where with W we refer to the output weights Wout, neglecting the subscript for convenience

and β is the scaling factor of the L2 penalty term. As in the main text (Introduction), N is

the number of reservoir nodes and K the output dimensionality, while Ndata corresponds to the

number of samples. The above error function can be written in matrix notation for the case with

one output node as

E =
(

WX − Ỹ
)(

WX − Ỹ
)T

+ β2WWT (4.2)

where X and Ỹ are N×Ndata and K×Ndata (K = 1 for one output node) matrices obtained through

concatenation (across columns) of the network activities and the desired outputs respectively. The

180

algorithm can be found by setting to zero the gradient of the cost function as follows

∇W
(

WX − Ỹ
)(

WX − Ỹ
)T

+ ∇Wβ2WWT = 0

∇W
(

WXXTWT − WXỸT − ỸXTWT + ỸỸT
)

+ 2βW =

= WXXT +
(
XXTWT)T −

(
XỸT)T − ỸXT + 2βW =

= WXXT + WXXT − ỸXT − ỸXT + 2βW = 0

→ W
(

XXT + βIN

)
= ỸXT

→ W = ỸXT
(

XXT + βIN

)−1
(4.3)

where IN is the identity matrix and Eq.4.3 corresponds to the ridge regression algorithm. We

notice how Eq. 4.3 holds trivially also for the case where K > 1. The purpose of the penalty term

is to avoid large values of the output weights W that would render the solution susceptible to

small variations of the data. The consequence is that, in particular for β → 0, W can overfit the

training data and that the solution can not generalise to the test set.

181

Bibliography

[1] Michiel Hermans and Benjamin Schrauwen. Recurrent kernel machines: Computing with
infinite echo state networks. Neural Computation, 24(1):104–133, 2012.

[2] Hoger Amin and Andrew C Lin. Neuronal mechanisms underlying innate and learned olfactory
processing in drosophila. Current opinion in insect science, 36:9–17, 2019.

[3] Mehrab N Modi, Yichun Shuai, and Glenn C Turner. The drosophila mushroom body: from
architecture to algorithm in a learning circuit. Annual review of neuroscience, 43:465–484,
2020.

[4] Andrew C Lin, Alexei M Bygrave, Alix De Calignon, Tzumin Lee, and Gero Miesenböck.
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination.
Nature neuroscience, 17(4):559, 2014.

[5] Herbert Jaeger. The echo state approach to analysing and training recurrent neural networks-
with an erratum note. Bonn, Germany: German National Research Center for Information
Technology GMD Technical Report, 148(34):13, 2001.

[6] Thomas Natschläger, Wolfgang Maass, and Henry Markram. The" liquid computer": A novel
strategy for real-time computing on time series. Telematik, 8(ARTICLE):39–43, 2002.

[7] Christian Klos, Yaroslav Felipe Kalle Kossio, Sven Goedeke, Aditya Gilra, and Raoul-Martin
Memmesheimer. Dynamical learning of dynamics. Physical Review Letters, 125(8):088103,
2020.

[8] Izzet B Yildiz, Herbert Jaeger, and Stefan J Kiebel. Re-visiting the echo state property.
Neural networks, 35:1–9, 2012.

[9] Herbert Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF
and the" echo state network" approach, volume 5. GMD-Forschungszentrum Informationstech-
nik Bonn, 2002.

[10] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. Optimization and
applications of echo state networks with leaky-integrator neurons. Neural networks, 20(3):335–
352, 2007.

[11] Mantas Lukoševičius. A practical guide to applying echo state networks. In Neural networks:
Tricks of the trade, pages 659–686. Springer, 2012.

[12] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

182

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[14] Jochen J Steil. Backpropagation-decorrelation: online recurrent learning with o (n) com-
plexity. In 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.
04CH37541), volume 2, pages 843–848. IEEE, 2004.

[15] David Sussillo and Larry F Abbott. Generating coherent patterns of activity from chaotic
neural networks. Neuron, 63(4):544–557, 2009.

[16] Eleftheria Vrontou, Lukas N Groschner, Susanne Szydlowski, Ruth Brain, Alina Krebbers, and
Gero Miesenböck. Response competition between neurons and antineurons in the mushroom
body. Current Biology, 2021.

[17] Roger Ratcliff and Philip L Smith. A comparison of sequential sampling models for two-choice
reaction time. Psychological review, 111(2):333, 2004.

[18] Jan Drugowitsch, Rubén Moreno-Bote, Anne K Churchland, Michael N Shadlen, and Alexan-
dre Pouget. The cost of accumulating evidence in perceptual decision making. Journal of
Neuroscience, 32(11):3612–3628, 2012.

[19] Anil Ozdemir, Andrew B Barron, Andrew Philippides, Michael Mangan, Eleni Vasilaki, and
Luca Manneschi. Echovpr: Echo state networks for visual place recognition. arXiv preprint
arXiv:2110.05572, 2021.

[20] Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou, and
Yoshua Bengio. Towards non-saturating recurrent units for modelling long-term dependencies.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3280–3287,
2019.

[21] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[22] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[23] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catas-
trophic forgetting with hard attention to the task. Proceedings of the 35th International
Conference on Machine Learning, 80:4548–4557, 10–15 Jul 2018.

[24] Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Con-
tinual learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

[25] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

[26] H. K. Khalil. Nonlinear systems. Prentice Hall, 2000.

[27] Matthew Dale, Julian F Miller, Susan Stepney, and Martin A Trefzer. A substrate-
independent framework to characterize reservoir computers. Proceedings of the Royal Society
A, 475(2226):20180723, 2019.

183

