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Abstract

Sensitivity analysis has become an essential tool for assessing the importance of inputs in

mathematical models or computer models. The models could be simple or complex and

might not be formulated transparently. Model input uncertainty is often quantified using

expert judgement, but obtaining or eliciting expert judgement can be time-consuming. It

may not be practical to elicit distributions for all inputs in the model, especially when the

number of inputs is large. Eliciting inputs that have a small effect on the output may not

be worth it.

In this thesis, we explore sensitivity analysis methods and develop criteria for establishing

when inputs are unimportant. We also study how to make elicitation for model inputs

efficient, by employing sensitivity analysis to select which inputs are a priority for elicita-

tion. However, we find that ’standard’ application of sensitivity analysis for prioritising

elicitation may not give the right results. We propose a novel model for expert judgement

which we call the Beta Model. The Beta model is easy to implement compared with other

previous models for expert opinion. Sensitivity analysis is proposed on the parameters

of this model, and a grid-based computational method is proposed to compute suitable

sensitivity indices.
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Chapter 1

Introduction

In this thesis, we investigate global sensitivity analysis and its application in eliciting

probability distribution from experts. The context of the investigation is in computer

modelling with uncertain inputs, where there has been much development of sensitivity

analysis methods. The term global sensitivity analysis involving understanding how model

outputs are sensitive to changes in model inputs over some range. Whereas, elicitation is

a process of obtaining the expert beliefs about uncertain quantities and representing them

with probability distributions. Elicitation is time consuming, and a modelling problem

may require elicitation of a large number of input variables. Global sensitivity analysis

concepts are explored deeply to determine whether they can support and prioritise elicita-

tion. We first give a short overview of computer modelling and statistical issues, including

elicitation and then outline the content of the thesis.

§ 1.1 Computer models and their issues

Mathematical modelling is essential in science and is an integral part of implementing

scientific research and discovery. The models might involve non-linear or complex forms

that are challenging to work with. Complex mathematical models are implemented in

computer codes and are also called computer models. Computer models are used for

many purposes. For instance, computer models are used to design a product, model the

movement of the drug to various parts of a patient’s body, and understand the behaviour of

large-scale physical systems in astronomy. Computer models conduct ‘virtual experiments’

when physical experiments may be impractical or too costly.

1
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In the following sections, we describe some general analysis problems involving computer

models and understanding how the model output responds to changes in model inputs.

Some problems that arise when using computer models or mathematical models are dis-

cussed, such as optimisation, prediction, and calibration. We also comment on the role of

sensitivity analysis in the problems.

1.1.1 Optimisation of computer models

Computer models play an essential role in designing a product, especially when involving

expensive materials. For example, a computer model is used to simulate car crashes to

a solid target and determine the responsiveness of the airbag system in the car. How-

ever, performing such simulation using computer models mathematically will take a while

as some complex functions need to be solved. Therefore, it is a great challenge to do

optimisation for the models.

More specifically, let us consider the design of physical system in which we wish to max-

imise or minimise some target quantities. This system is represented by a function f that

maps an input domain X onto the real sets R, expressed as f : X → R. Let us suppose a

vector of input is x = (x1, ..., xp) ∈ X , where p is the number of inputs in the model, while

y is the output. The relationship between inputs and output through a mathematical

model is represented as y = f(x).

The goal of optimisation is to maximise or minimise f(x) with respect to the inputs x.

The optimisation process will depend on the model under study. If the model is simple

and the function is not complex, it takes less time to find the solution. On the other

hand, if the model consists of many inputs and has complex forms or non-closed forms,

the optimisation will be time-consuming or computationally expensive.

An illustration of the optimisation of a mathematical model is provided by Tohsato et al.

(2013). They considered a large number of inputs when studying kinetic model optimisa-

tion. Some studies on the optimisation of expensive functions or solution evaluations are

conducted by Jones et al. (1998), and Knowles (2006). Jones et al. (1998) proposed the

use of response surface methodology to approximate f and employed the approximation

to construct an algorithm for efficient global optimisation. Another algorithm to perform

an efficient global optimisation (EGO) was developed by Knowles (2006). He developed

an algorithm ParEGO which stands for Pareto Efficient Global Optimisation which is an

extension of the single-objective algorithm introduced by Jones et al. (1998). The ParEGO

algorithm can be used for multiobjective optimisation problems.
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What is the role of sensitivity analysis here? It may be helpful to understand the model

better before conducting the optimisation. In particular, if we discover that only some

inputs make significant changes to the output, this would reduce the complexity of the

optimisation problem. We might only optimise the prioritised inputs and let the other

input be constant.

In order to support the optimisation of computer models using this perspective, it is

reasonable to ask a question: “how to detect inactive inputs that are not necessary to be

involved in the optimisation”?

1.1.2 Prediction with uncertain inputs

Another role of a computer or mathematical model is to predict the output based on a

set of inputs. The output of the computer model is the value that the analyst or the

product designer wants to investigate. The model’s output is used to adjust the system

if it is unsuitable for the initial target or goal. However, if there is uncertainty on the

true values of the inputs, the prediction would also lead to uncertainty. The problem

of making a good prediction with a large number of inputs in the biochemical networks

model was discussed by Vanlier et al. (2012). Another study on the ability of chemical

kinetics models to provide a reliable prediction was addressed by Russi et al. (2008).

In order to understand the idea of prediction issue in the mathematical or computer model

technically, let us consider a model y = f(x). The true and uncertain inputs are denoted

by X = (X1, . . . , Xp). The uncertainty about these inputs is represented by a probability

distribution P (X1, . . . , Xp) and the corresponding uncertain output is Y = f(X1, . . . , Xp).

The issue arises when the input uncertainty is high, which is indicated by a wide range

of input space or a big variance. The high uncertainty in the inputs leads to the poor

prediction of Y . Even though uncertainty in the inputs is unavoidable, the prediction of

Y should also be accurate.

Therefore, prediction in computer models aims to predict Y with as little uncertainty as

possible. One possible way to deal with this situation is the idea that it could be helpful

to consider how the model output responds to changes in model inputs by considering

sensitivity over the region of the input space described by P (X1, . . . , Xp). It might also be

helpful to consider if the uncertainty in Y depends only on some subsets of inputs. One

might ask: “Can uncertainty about Y be reduced effectively by learning a subset of inputs

(X1, . . . , Xp)?”.
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1.1.3 Calibration

A mathematical or computer model is intended to represent a real physical system. Hence,

it is crucial to check the model and fit it based on physical observations. The process of

fitting the model to the observed data by adjusting the parameters in the model is known

as calibration (Kennedy & O’Hagan, 2001). Nevertheless, undertaking calibration for

complex computer models is challenging as it is highly computationally expensive, and it

cannot run all possible simulations to check with the available observations. A complex

computer model may take hours or days to run a single simulation.

An example of a computer model by which calibration is challenging to carry out is

the Long-term Generation Investment (LTGI) model (Xu et al., 2016). Policymakers

use the LTGI model for predicting real-world generation projections to make decisions

on investment and energy design policy. Klepper (1997) raised an issue of conducting

calibration for environmental models that have high order characteristics. In this case,

calibrating a non-linear model with a medium number of inputs (e.g. 10) is an intractable

problem.

Performing calibration involves collecting the data related to the outputs of the model. We

want to study how the observed data affects model inputs’ uncertainty. Suppose we have

a prior probability distribution P (X). If we collected some observations from real physical

system Z with noise ϵ, its relationship with the model f(X) would be Z = f(X) + ϵ. The

question regarding the calibration are: Would Z be informative for any elements of X? Is

the likelihood for Z responsive to changes in elements of X?

§ 1.2 Problems in Elicitation

Having considered some problems in computer models, we also study the problem of

elicitation. Elicitation is defined as the process of expressing expert judgment in the

form of statistical distributions. We will discuss elicitation in detail in Chapter 4. The

elicitation can be used in Section 1.1.2 to obtain input distribution and Section 1.1.3 as

a prior for calibrating inputs. Nevertheless, the process is difficult and time-consuming.

It is also possible that not all inputs are important. In particular, important means that

output is not sensitive to all inputs. Therefore, it motivates the author to use sensitivity

analysis methods to help prioritise expert judgment.
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§ 1.3 Chapter Overview

This thesis consists of seven chapters, and the following chapters are outlined below.

Chapter 2 presents the concept of sensitivity analysis and some sensitivity measures or

importance measures used to determine the important inputs in the computer or mathe-

matical models. The importance measures methods based on different approaches such as

derivative-based methods, regression-based methods, variance-based methods, and value

of information-based methods. In this chapter, we replicate and extend an example pre-

sented of a flood model (see Iooss & Lemâıtre, 2014) to compare different sensitivity

analyses.

Chapter 3 investigates the concept of ‘unimportant’ model inputs. We formalise this

concept by developing two scenarios where the model user considers specific actions. Sub-

sequently, we evaluate some methods proposed in the literature against these scenarios.

Chapter 4 reviews elicitation methods such as SHELF, IDEA, and classical methods.

This chapter provides an example of elicitation using the SHELF method to determine

the distribution of regular smokers in Indonesia.

Chapter 5 sets out a framework for using sensitivity analysis to prioritise expert elicitation.

This chapter also reviews robust global sensitivity analysis methods and establish the need

for a novel approach.

Chapter 6 develops a novel solution to the problem set out in Chapter 5 involving a model

for expert judgment. We use some relevant sensitivity measures, as we found as findings

in Chapter 3 and implement the measures. We also develop and test the computational

methods.

Chapter 7 concludes the thesis and discusses the findings.

§ 1.4 The novelty

This thesis contains some novelties as a result of the research findings. These novelties

are expected to contribute to the sensitivity analysis field’s development and elicitation.

Three novelties are achieved from the research and presented in the specified chapters

below.

The first novelty is in Chapter 3, which introduces criteria for identifying unimportant

inputs in computer models via two scenarios. These criteria are explicit rules in deter-
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mining unessential inputs, and we find that none of the methods considered meets the

requirements set out in both scenarios.

The second novelty is in Chapter 5. Through a counter-example, we show that the problem

of prioritising expert judgement is not a ‘standard’ sensitivity analysis problem. Thus, a

new framework is needed.

Chapter 6 provides novel methods of implementing sensitivity analysis in the context

of elicitation. We propose the Beta model, which enables the analyst to capture the

possibility of expert distributions by providing prior distributions for the parameters in

the Beta model. We use the sensitivity analysis to select the necessary inputs and keep

the rest elicited by analysts instead of experts. This chapter provides the algorithm and

computational method for computing the measure of importance for assessing both inputs

and parameters in the beta models.



Chapter 2

Sensitivity Analysis

§ 2.1 Introduction

As discussed in Chapter 1, some issues in computer models need to be tackled. Most of

the issues are related with the relationship between uncertain inputs in the models, which

affect the outputs. In this chapter, we consider how the concept sensitivity analysis may be

used to help with these issues. Some settings and existing methods in sensitivity analysis

are discussed, focusing on the factor prioritisation setting. We illustrate the methods by

implementing the sensitivity measures on the flood model and comparing the results.

§ 2.2 Sensitivity analysis and importance measures

According to Saltelli et al. (2004), sensitivity analysis is defined as the study of how the

uncertainty in the output of a model (numerical or otherwise) can be apportioned to

different sources of uncertainty in the model input. Uncertainty in the model output is

affected by uncertainty in inputs via a function or system. Using the sensitivity analysis,

we can measure how sensitive the change in output of a model as a result of changes in

the input. The next section introduces some basic notations of the functional relationship

between input and output.

2.2.1 Notation

Let us suppose we have a vector of inputs x = (x1, ..., xp), where p is the number of inputs

and the output is denoted by y. The relationship between inputs and output f : Rp → R

7
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can be represented in the form of a mathematical function

y = f(x). (2.1)

A “local” sensitivity analysis may involve considering some point x0 in input space and

investigating how the output responds to small changes to the input in the neighbourhood

of x0.

In “global” sensitivity analysis, we consider how the output responds to changes of the

input over some region. This region can be defined by treating the inputs as random

variables, represented in a random vector X = (X1, ..., Xp). In particular x = (x1, ..., xp)

denotes one of the possible input realizations of X. The probability distribution for X

describes the input region of interest. Global sensitivity analysis then involves an investi-

gation of the random variable Y = f(X).

2.2.2 The Flood model

In this section, we replicate and extend an example presented of a flood model (see Iooss

& Lemâıtre, 2014) to compare different sensitivity measures. The notation used in the

flood model has been changed from the original notation to variabel xi, where i = 1, ..., 8

y = x1 − x2 − x3 +

 x4

x5x6

√
x7−x1
x8

0.6

. (2.2)

The model describes factors that influence maximal annual overflow (in meters). In par-

ticular, maximal annual overflow is the model’s output and is denoted by y. Some factors

that affect y are river downstream level (in meters) denoted by x1, dyke height (in meters)

denoted by x2, bank-level (in meters) denoted by x3, and the maximal annual height of

the river (in meters) which is expressed by the last term of the model.

The maximal annual height of the river is computed from some other factors such as max-

imum annual flow rate (x4) in m
3/s, river width (x5) in m, Strickler coefficient (x6), river

upstream level (x7) in m, and the length of the river stretch (x8) in m. The uncertainty

in the factors/inputs is represented in the form of probability distributions. The distri-

butions for inputs are provided in Table 2.1. The flood model will be used as a model

example throughout this thesis.
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Table 2.1: Inputs of the flood model and their probability distributions

Input Description Probability Distribution
X1 River downstream level Triangular(49, 50, 51)
X2 Dyke height Uniform(7,9)
X3 Bank level Triangular(55, 55.5, 56)
X4 Maximum annual flow rate Truncated Gumbel (1013, 558) on [500, 3000]
X5 River width Triangular(295, 300, 305)
X6 Strickler coefficient Truncated Normal(30, 8) on [15, ∞]
X7 River upstream level Triangular(54, 55, 56)
X8 Length of the river stretch Triangular(4990, 5000, 5010)

2.2.3 Objectives for Sensitivity Analysis

There might be different motivations for analysts in performing a sensitivity analysis.

Different research questions and goals could lead to distinct sensitivity analyses regarding

how the sensitivity analysis was conducted. Factor settings were introduced to provide

a direction for analysts on what appropriate types of sensitivity analysis should be used.

According to Saltelli et al. (2008), a setting is a way of framing the sensitivity quest in such

a way that the answer can be confidently entrusted to a well-identified measure. They

proposed four different settings in the sensitivity analysis: factor prioritisation, factor

fixing, variance cutting, and factor mapping. Each setting is used for different tests of

sensitivity analysis, and it is important to choose the appropriate setting to solve the

problem at hand. The settings are briefly described below. Note that ”factor” here means

a random input Xi.

a) Factor Prioritisation

Factor prioritisation is used to identify a factor (in this context is a model input) Xi

in a mathematical model or computer model which gives the greatest reduction in

the variance of Y , when the input is fixed to its true value. The factor that has been

identified by this setting is called the most important factor. First-order sensitivity

or main effect index is used as a measure in this setting which will be discussed in

Section 2.2.7.

b) Factor Fixing

Factor fixing is used to identify factors that make no significant contribution to

V ar(Y ). Factors that are identified with this setting are considered non-influential

factors. This setting is very useful when our purpose is to do a model simplification.

Commonly, the “total effect index” is used in this setting to identify non-influential
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factors in the model. The detail of the factor fixing and its development will be

provided in the next chapter.

c) Variance Cutting

In variance cutting, the aim is to reduce V ar(Y ) to below a given tolerance by fixing

the factors. The factors are fixed one at a time until V ar(Y ) is below some specified

bound. The goal is to fix the smallest possible number of factors; hence we know

which factors can be set into constants to obtain the target value on V ar(Y ).

d) Factor Mapping

Factor mapping is used to identify factors responsible for the output realisation Y

in a certain region. The region of the output realisation could be split into two areas

based on, for example, its percentile. The goal is to find factors that contribute to

the realisation of output in each area or factors that are influencing the splitting

of output realisation. This setting is useful for determining a good combination of

factors that are used to minimise the loss or risk.

In this chapter, the scope of factor setting is limited to factor prioritisation. The following

section provides a detailed explanation of the factor prioritisation by providing various

types of importance measures used in the sensitivity analysis that are available in the

literature. The measures are based on different approaches such as derivative-based meth-

ods, regression-based methods, and variance-based methods. Each of these methods has

its unique use and benefit.

Derivative-based methods are the simplest method of sensitivity analysis which consider

only the partial derivatives of a model concerning an input. The method helps undertake

sensitivity analysis in a fast way as long as the model is differentiable without taking

into account the probabilistic analysis. The method is a mathematical approach and does

not need any numerical computations. On the other hand, regression-based methods are

used when the relationship between input and output becomes the analyst’s concern. The

regression-based methods are suitable for performing sensitivity analysis if the relation-

ship pattern between inputs and output is linear. Some measures are based on quantities

computed from the regression model, such as parameter estimates and model prediction.

This method also considers other statistical methods such as correlation and association

analyses. Unlike the regression-based methods, the variance-based method does not re-

quire a linear relationship between inputs and output; thus, it can be used for any type
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of mathematical model, both linear and non-linear. It is widely used in practice as it ac-

commodates global sensitivity analysis and has desirable properties, which were discussed

in (Saltelli et al. 2000, pages 123-124). One of the properties is that the variance-based

methods do not depend on the form of mathematical models, making them independent

in performing sensitivity analysis.

2.2.4 Sensitivity analysis given data approaches

In this thesis, we will use the ”given data” approaches in undertaking sensitivity analysis

with different methods and models. Given data approaches are commonly used in sensi-

tivity analysis when the data about inputs are available or the distribution of inputs that

indicates their uncertainty is provided. When data are available, statistical approaches

for modelling such as regression and correlation to investigate the relationship between

variables are convenient to perform. The form of relationship could be linear, quadratic,

cubic, or quartic depending on the pattern plot between variables. However, when the

amount of data is too small or sparse, then the correlation is skewed. To overcome this

issue, Pearson (1905) introduced a general method when dealing with non-linear regression

and the variability of arrays in the case of skew correlation. In this case, one can calculate

second and third-order moments to describe the deviation from the linearity and skewness

of the regression line.

Another work that uses ”given data” or data-driven to conduct sensitivity analysis is

presented by Strong et al. (2012). The data is sampled using Monte Carlo sampling from

the probability distribution of inputs. This is one way of quantifying input uncertainty by

specifying a probability distribution for the true value of the inputs. Using this approach,

the probabilistic sensitivity analysis focuses on quantifying uncertainty in the model output

based on the uncertainty in the model input. If uncertainty arises in the model structure,

Strong et al. (2012) proposed to use the discrepancy method. The Monte Carlo procedure

is also used to estimate the Expected Value of Perfect Information (EVPI). The EVPI

quantifies the value of learning input in the decision model. The computation of EVPI

requires a two-level monte Carlo approach and is estimated using MCMC. Strong & Oakley

(2013) proposed a faster and straightforward method using a single set method.

A new strategy for estimating global sensitivity measures from given data is proposed by

Plischke et al. (2013). Using this strategy, a notable reduction in computational burden

is achieved which makes the estimation cost independent of factors. This strategy is

appropriate to implement in factor prioritisation and factor settings for a model with a
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large number of inputs. According to Plischke et al. (2013), there are several ways of

generating random inputs from a joint probability distribution: crude Monte Carlo, Latin

hypercube sampling, and quasi-random low-discrepancy sequences. The input sample is

then fed into the model to obtain the output distribution.

We implement the sensitivity analysis using given data to importance measure methods

in the following section. The details of each method will be provided in the following

subsections, along with some other approaches. Note that there are other sensitivity

measures (Shapley values and distribution-based indices) that can be applied in the factor

fixing setting, and we will discuss them in Chapter 3.

2.2.5 Derivative-based method

The derivative-based method is frequently named local sensitivity analysis (LSA). Accord-

ing to Saltelli et al. (2004), a local sensitivity measure that looks at the relation between

input and output at a specified point in the space of the inputs. Let us consider a reference

point

y0 = f(x0) (2.3)

with x0 = (x01, . . . , x
0
k). One derivative-based sensitivity measure would be

Su
i =

∂y

∂xi
(2.4)

evaluated at x = x0. Local sensitivity measures are usually normalised by some reference

values to remove the effect of measurement unit of Xi (e.g. meter, pounds, kg, etc.). A

normalised measure would be

Sn
i =

x0i
y0

∂y

∂yi
. (2.5)

Both measures, Su
i and Sn

i , are local sensitivity measures as they do not require any

assumptions on the range of input variation.

LSA is efficient in terms of computation time but has two limitations. Firstly, the

derivative-based method is only informative at the base point, yet it does not provide

information about the other points in the input spaces. That makes the method is un-

able to capture the uncertainty in the input. Secondly, it is very challenging to use the

derivative approach when the model is not linear, has a complex form, or the input-output

model is not in a closed form. Such that derivatives are not easily obtained.
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2.2.6 Regression-based methods

The regression-based method can be used when both inputs and output samples are avail-

able. In this case, the relationship between inputs and output should be linear. To

investigate whether there is a linear relationship between inputs and output, we can use

the coefficient of determination R2 of the model or Nash-Sutcliffe model efficiency, which

is recommended by Iooss & Lemâıtre (2014). We collect n samples (x1i, ..., xpi, yi), where

i = 1, ..., n and n > p, and each input vector is sampled from the probability distribu-

tion for X. The relationship between inputs and output are fitted by a linear model or

approximated by a regression model

y = f(x1, ..., xp) ≈ β̂0 +
p∑

i=1

β̂ixi.

According to Borgonovo (2017) some important sensitivity measures can be obtained from

linear models.The measures are as following.

(i) Standardized regression coefficient (SRC). The sensitivity formula for SRC is

SRCi = β̂i

√
V ar(Xi)

V ar(Y )
(2.6)

where Xi is the sample data for input ke-i in the linear model and Y is the sample

data for output.

(ii) Pearson’s correlation coefficient (ρ). The correlation coefficient is also can be used

as a sensitivity measure with the formula

ρ(Y,Xi) =
Cov(Y,Xi)√

V ar(Xi)
√
V ar(Y )

(2.7)

(iii) Partial Correlation Coefficient (PCC). The PCC can be expressed as

PCCi = ρ(Xi − X̂−i, Y − Ŷ−i) (2.8)

where X̂−i is the prediction of linear model when Xi is treated as an output while

the rest of the inputs remain in the model. Ŷ−i is the prediction of the linear model

when Xi is not involved in the model.

When inputs and output has non-linear relationship, Iman & Conover (1979) suggested

to transform the samples (x1i, ..., xpi, Yi) into ranks (R(x1i), ..., R(xpi), R(yi)). Sensitivity
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indices are measured using the previous measures on the rank values producing the Stan-

dardized Rank Regression Coefficient (SRRC), Spearman correlation coefficient (Spearman

1987), and the Partial Rank Correlation Coefficient (PRCC).

There are some advantages and disadvantages of the use of regression-based methods. The

advantages are: (i) Sensitivity indices can be estimated straightforward using a Monte

Carlo sample, (ii) Non-parametric sensitivity measures such as SRRC and PRCC can

be computed without a specific design. The disadvantages are (i) If R2 (determination

coefficient) is too small, then the regression is poor fitted and the importance measures

become unrealistic; (ii) If the model is non linear or there is interaction between inputs,

then the regression models is not fit and the sensitivity measure derived from the regression

model is not correct.

2.2.7 Variance-based methods

The variance-based approach to sensitivity analysis involves investigating how uncertain

input in X contribute to the variance of Y = f(X). In particular, a decomposition of the

function f is used to decompose V ar(Y ) into terms associated with different inputs.

In mathematical modelling, we always deal with a function f of inputs x = (x1, ..., xp)

where p is the number of input. The question is how to represent the function f(x)?

Sobol (1993) describes an expansion of function f(x) into summands (summation) of

different dimensions. The function f(x) must be an integrable function on input space

xi ∈ [0, 1]p. This corresponds to supposing that each Xi ∼ U [0, 1] and independent; other

distributions can be assumed, as long as independence is maintained. An expansion of

f(x) is represented as

f(x) = f0 +

p∑
i

fi(xi) +
∑
i

∑
j>i

fij(xi, xj) + ...+ f12...p(x1, ..., xp) (2.9)

where f0 is a constant. This expression is unique under conditions∫ 1

0
fi1,...,is(xi1 , ..., xis)dxik = 0, (2.10)

where 1 ≤ k ≤ s and {i1, ..., is} ⊆ {1, ..., p}. According to Sobol (1993) based on the

conditions, the constant term is

f0 =

∫
x
f(x)dx (2.11)
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Now, let us consider a function

gi(xi) =

∫ 1

0
. . .

∫ 1

0
f(x)dx/dxi (2.12)

where dx/dxi is the product of all dx except dxi. By integrating (2.9) with respect to all

inputs except xi, the function gi(xi) can be simplified into

gi(xi) = f0 + fi(xi). (2.13)

Therefore for a single input function, fi(xi) can be expressed as

fi(xi) = gi(xi)− f0. (2.14)

Let us consider another functions with two inputs gij(xi, xj) which is obtained from the

integration

gij(xi, xj) =

∫ 1

0
...

∫ 1

0
f(x)dx/dxidxj (2.15)

where i < j. We obtain the following formula

gij(xi, xj) = f0 + fi(xi) + fj(xi) + fij(xi, xj). (2.16)

Obviously, from (2.16) the two-input function is

fij(xi, xj) = gij(xi, xj)− fi(xi)− fj(xi)− f0. (2.17)

In the global sensitivity analysis, input vector x is uncertain and treated as random vector

X = (X1, ..., Xp) which are mutually independent. Consequently, the output Y = f(X)

turns into random variable as well. We can rewrite (2.9) as an expansion of function in

term of random variables

Y = f(X) = f0 +

p∑
i

fi(Xi) +
∑
i

∑
j>i

fij(Xi, Xj) + . . .+ f12...p(X1, . . . , Xp). (2.18)

In the variance-based method, we aim to evaluate the variance of Y in (2.18). As a result,

we obtain the following variance decomposition

V ar(Y ) =

p∑
i

V ar{fi(Xi)}+
∑
i

∑
j>i

V ar{fij(Xi, Xj)}+ ...+ V ar{f12...p(X1, . . . , Xp)}

(2.19)
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In the context of random variables, the expression of (2.11), (2.14), and (2.17) turn into

f0 = E[f(X )] (2.20)

fi(xi) = E[f(X )|Xi = xi]− f0 (2.21)

fij(xi, xj) = E[f(X )|Xi = xi, Xj = xj ]− fi(xi)− fj(xj)− f0 (2.22)

The functions for more than two inputs are derived using the similar fashion. Based on

the variance decomposition in (2.19) and the component function in (2.21), we can derive

the expression for variance of a single input function as

V ar{fi(Xi)} = V arXi [E{f(X)|Xi} − f0]

= V arXi [E(Y |Xi)]
(2.23)

and the variance for two input functions using (2.22) is

V ar{fij(Xi, Xj)} = V arXiXj [E{f(X)|Xi, Xj} − fi(Xi)− fj(Xj)− f0]

= V arXiXj [E(Y |Xi, Xj)]− V arXi [E(Y |Xi)]− V arXj [E(Y |Xj)].

(2.24)

We can also derive the variance decomposition for the sum of two component functions, a

single input functions and two inputs function

V ar
(
fi(Xi)+fi,j(Xi, Xj)

)
= V arXi,Xj

(
E(Y |Xi, Xj)

)
+2V arXi

(
E(Y |Xi)

)
+V arXj

(
E(Y |Xj)

)
.

(2.25)

The proof for equation (2.25) is in the Appendix.

If we divide equation (2.23) by the unconditional variance V ar(Y ), we obtain the variance-

based measure for input Xi as following

Si =
V arXi [EX−i(Y |Xi)]

V ar(Y )
. (2.26)

Si is called the main effect index or first-order effect index or importance measure and

is used as an instrument to measure important inputs in the factor prioritisation setting.

We can write Equation (2.26) as the expected reduction in variance and scaled it with the

variance of Y as

Si =
V ar(Y )− EXi [V ar(Y |Xi)]

V ar(Y )
. (2.27)
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As we can see that the main effect index formulae in (2.26) and (2.27) consider the dif-

ference between the unconditional variance of Y and the expected conditional variance of

Y |Xi. This difference is derived from the general principle of global sensitivity analysis

which has been discussed in Section 2.2.12. This also applies to the total effect index.

According to Borgonovo et al. (2014), the variance-based measures are derived from the

global sensitivity measure for input Xi

γY (Xi) = E{T (Xi)} = E{t(P,PY |Xi
)} (2.28)

where t(·, ·) is a function that measures the discrepancy between PY and PY |Xi
. The main

effect index is obtained by setting

T (xi) =
V ar(Y )− V ar(Y |Xi = xi)

V ar(Y )
, (2.29)

and the total effect index is obtained by setting

T (xi) =
V ar(Y |X−i = x−i)

V ar(Y )
. (2.30)

Nevertheless, according to Borgonovo et al. (2014), not all of function t(·, ·) can produce the

appropriate main effect index or total effect index formula. This is because the expectation

of conditional variance might be zero which is unwanted. Some families of functions may

cause the null expectation if we apply statistic T (xi) in (2.29) and (2.30). The general

family of functions is presented by Plischke et al. (2013) as follows

y = z(x1, · · · , xp) = a(xJ)g(xj) + b(xJ ′),

J ⊕ {j} ⊕ J ′ = {1, · · · , p}
(2.31)

where J and J ′ indicates two subsets of indices such that j ∈ J ∪ J ′, J ∩ J ′ = ∅. Whereas

g(xj), a(·), and (
¯
·) depend on xj . In the case that random vector Xj is independent

with XJ ′ , it is shown that if E{g(Xj)} = 0 then the global sensitivity measure for Xi,

ηY1 (Xi) = 0 for all j. In addition, if the probabilities Py and PY |Xi
follow the Pareto law

with a shape parameter smaller than two, the variance cannot be used to measure the gap

between these probabilities (Soofi 1994).

The advantages of the variance-based method are: (i) The method works well for mea-

suring the sensitivity of the output for non-linear models or models with interaction; (ii)

The method is able to compute some terms such as the main effect, interaction effect, and

”total effect” for an input (which we will discuss in Chapter 3).

The variance-based method has some drawbacks: (i) This measure is intertwined with

the functional ANOVA decomposition. There is no longer linkage between functional
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decomposition and variance decomposition when inputs are correlated. As a result, the

integration measure is not a product measure, variance decomposition cannot be derived

from the functional ANOVA decomposition; (ii) Variance-based method is based on one

moment, which cannot be used to fully describe the uncertainty of an input.

A substantial application of variance-based sensitivity analysis is given in Lee et al. (2011).

In this example, the researchers investigate the effect of parameter uncertainty in a 3-D

global aerosol model. The aerosol model, which represents the climate model, has a com-

plex form and is not in a closed form. Therefore, they used a complex computer model

in conducting the GSA. This process employs a Bayesian approach that uses prior distri-

bution and data from model runs to predict the uncertainty on model output. Lee et al.

(2011) used a subgroup of aerosol particles, which is named cloud condensation nuclei

(CCN), as the output of interest. The CCN concentration (Y ) is depend on eight pa-

rameters: diameter of oxidation activation (X1), coefficient of mass accommodation (X2),

threshold for H2SO4 nucleation (X3), crucial cluster size of nucleation (X4), particulate

emissions associated with anthropogenic SO2 (X5), cloud nucleation scavenging diameter

(X6), sulphur emissions (X7) and sea spray emissions (X8).

2.2.8 Value of information - based method

In the value of information approach, sensitivity measures are related to a decision problem

and how inputs may influence a decision. Let yd be the output of the model for a quantity

of interest such as payoff, loss, utility, or other criteria, under a decision option d, where

d = 1, ..., D and D is a set of possible choices. The relationship between input and output

is Yd = gd(X), where gd would be a function of the model output f(X) and other quantities

related to the choice of decision d. Subsequently, we assume that gd(x) is the decision-

maker’s utility for decision d and input x. A decision-maker is then needed to solve the

problem below.

max
d=1,...,D

{E[Yd]} = max
d=1,...,D

{E[gd(X)]} (2.32)

Value of information was introduced by Howard (1966) and defined as a gap between

the expected utilities. The first expected utility is someone who knows the true value of

Xi and the expected utility someone would obtain if the decision is made without this

knowledge. The following formula expresses it

ϵi = E[maxj{Yj}|Xi]−maxj{E[Yj(X)]} (2.33)
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Examples of using this for sensitivity analysis are given in Oakley (2009) and Strong et al.

(2012) where it is referred to as the (partial) expected value of perfect information (EVPI).

The advantage of the information-based method is that it uses another perspective to

determine sensitivity measures that can be directly implemented to solve decision theory

problems. The disadvantage of the method is that it requires decision problems before the

sensitivity measure calculation, which is a particular case. Many mathematical models do

not have a problem definition for calculating the sensitivity index.

We implement the EVPI method to compute the sensitivity indices for the flood model. To

compute the EVPI, we start by defining two possible decisions according to the criteria.

Let us suppose that we are interested in the output Y will exceed a threshold c. For

illustration, we choose c to be -10.8. Two decisions are defined as follows.

Decision d1: state that Y ≤ c

Decision d2: state that Y > c

If we choose the decision ’correctly’, then there is no loss, but if we choose ’incorrectly’,

the loss is 1. The expected loss of d1 is

0× P (Y ≤ c) + 1× P (Y > c) = 0.446

and the expected loss of d2 is

1× P (Y ≤ c) + 0× P (Y > c) = 0.554

d1 has lower expected loss than d2 and the baseline expected loss is L∗ = 0.446. The EVPI

for input Xi is

EVPIi = L∗ − EXi [g(Xi)]

where

g(Xi) = min
[
E
(
L(d1)|Xi), E(L(d2)|Xi

)]
.

and

E(L(d1)|Xi) = 0× P (Y ≤ c|Xi) + 1× P (Y > c|Xi)

and

E(L(d2)|Xi) = 1× P (Y ≤ c|Xi) + 0× P (Y > c|Xi).

We normalise by the baseline expected loss L∗ to give an EVPI index.

Some importance measure methods that have been discussed in the previous section are

applied for analysing the Flood model in Equation (2.2). The computation of sensitivity

indices is performed using a simulation of 100,000 samples.
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The results of the importance measure index computation are provided in Table 2.2. The

table indicates that SRC and Pearson correlation provide relatively close results. The

variance-based method (Si) produced relatively close indices with the EVPI. On the other

hand, PCC tends to produce larger values for most inputs. The largest sensitivity index

for all importance measures is X4, implying that X4 is the most important input in the

Flood model. In contrast, X8 is the least important input with the lowest index.

Table 2.2: Sensitivity indices using different importance measures

Input SRCi Pearson ρi PCCi Si EVPIi
X1 0.4663 0.4649 0.9881 0.2196 0.2451
X2 -0.5743 -0.5719 -0.9921 0.3323 0.3622
X3 -0.2032 -0.2046 -0.9417 0.0425 0.0908
X4 0.6203 0.6191 0.9932 0.3894 0.3912
X5 -0.0099 -0.0070 -0.1350 0.0000 0.0621
X6 -0.1431 -0.1384 -0.8919 0.0195 0.0717
X7 -0.0621 -0.0651 -0.6499 0.0043 0.0621
X8 0.0008 -0.0028 0.0115 0.0000 0.0621

2.2.9 The screening method

Often, mathematical models have so many inputs which cause the computational time to

evaluate the model takes quite a while. The model might be only has a few important

inputs and some other inputs might be negligible. To screen a bunch of inputs and identify

which input is important and which ones can be negligible, Morris (1991) proposed a

method called the elementary effect. The elementary effects is computed using discretised

approach. Let us suppose a model has p inputs x1, . . . , xp that varies in the p dimensional

unit cube accross k, with k is the number of levels. These levels represents the number of

grid used to discretise the input space. In particular, xi may take values from {0, 1/(k −
1), 2/(k − 1), . . . , 1} and x = (x1, . . . , xp). The elementary effect of the i-th input is

expressed by

di(x) =
(y(x1, x2, . . . , xi−1, xi +∆, xi+1, . . . , xp)− y(x))

∆
(2.34)

where ∆ is specified as the multiple of 1/(k − 1). For convenient purposes, the number

of input p is even and ∆ = k/(2(k − 1)). The elementary effect for input xi has a

distribution Fi as it is randomly sampled from different x. The Morris’ sensitivity measures

are obtained from the estimates of the mean, µ and the standard deviation σ of the

distribution of Fi.
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Campolongo et al. (2007) revised the method of elementary effect by proposing a better

sampling technique. The sampling is performed by choosing r trajectories in the input

region to maximise the dispersion. The sample chosen should have the highest spread or

distance between a pair of trajectories. If there are two trajectories t1 and t2, the distance

between the two is measured by

dt1t2 =


∑k+1

i=1

∑k+1
j=1

√∑k
z=1[X

t1
i (z)−Xt2

j (z)]2 , for t1 ̸= t2

0 , otherwise

where k is the number of inputs and Xt1
i (z) denotes the zth coordinate of the ith point

of the mth trajectory. Campolongo et al. (2007) had also refined the measure µ used

in the screening method used by Morris (1991) and denoted by µ∗. This refinement is

expected to overcome the inefficiency of the use of two measures µ and σ when the model

is complex. The new measures µ∗ is computed as the mean of the absolute value of the

elementary effects. The elementary effect, di(x), is computed for r grid points and the

average of the effect for each input is

µ∗i =
1

r

r∑
j=1

| dij(x) | (2.35)

and

σ2i =
1

r − 1

r∑
j=1

(
dij(x)− µ

)2
. (2.36)

Example 2.1. The Morris method will be used to screen the inputs in the flood model.

The Morris’ sensitivity measures are represented in a graphic of µ∗ and σ as axes as

follows. Based on Figure 2.1, the input X4 has the biggest mean indicating it is the most

important inputs. Following X4, there are X1, X2, X6 and X3. While X5 and X8 are

negligible as their means are around zero.

2.2.10 Active Subspace method

A slightly different sensitivity measure is developed by Constantine & Doostan (2017) and

is named activity scores. The key idea is to utilise the active subspaces, which are used to

determine critical directions in the parameter space of an input. Let us consider an input

vector x = (x1, . . . , xp)
T where x ∈ [−1, 1]p, the function of the inputs is denoted by f(x)

which is differentiable and square-integrable, and the density of x is uniform, ρ(x) = 2−p
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Figure 2.1: Screening of inputs in the flood model using the Morris method. The inputs

are located in the µ∗ and σ axis.

for x ∈ [−1, 1]p. The active subspace is represented by an eigenvector of the p× p matrix

below

C =

∫
∇f(x)∇f(x)Tρ(x)dx = WΛWT (2.37)

where W = [w1, . . . ,wp] is the eigenvectors matrix and Λ = diagλ1, . . . , λp is the diagonal

eigenvalues. The eigenpairs of C is defined by

λi = wT
i Cwi, (2.38)

and it is similar to the total sensitivity indices. The matrixC in Equation 2.37 is estimated

using Monte Carlo method. For M samples obtained from an input space, the estimate

of C is given as

Ĉ =
1

M

M∑
i=1

∇f(xi)∇f(xi)
T . (2.39)

Example 2.2. The active subspace method is implemented in the Flood model. We have

simplified the equation in the flood model as

y = f(x) = x1 − x2 − x3 + x0.64

(
x−0.6
5 · x−0.6

6 · (x7 − x1)−0.3 · x0.38

)
(2.40)
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The derivative of function f(xi), ∇f(xi), is the derivation of the function f(x) that is

evaluated at xi, i.e.

∇f(xi) =



∂f
∂x1

∂f
∂x2

∂f
∂x3

∂f
∂x4

∂f
∂x5

∂f
∂x6

∂f
∂x7

∂f
∂x8



=



1 + 0.3(x7 − x1)−1.3 · x0.64 · x
−0.6
5 · x0.38

−1

−1

0.6x−0.4
4 · x−0.6

5 · x−0.6
6 · (x7 − x1)−0.3 · x0.38

−0.6x−1.6
5 · x−0.6

4 · x−0.6
6 · (x7 − x1)−0.3 · x0.38

−0.6x−1.6
6 · x0.64 · x

−0.6
5 · (x7 − x1)−0.3 · x0.38

−0.3(x7 − x1)−1.3 · x0.64 · x
−0.6
5 · x−0.6

6 · x0.38

0.3x−0.7
8 · x0.64 · x

−0.6
5 · x−0.6

6 · (x7 − x1)−0.3



The derivative matrix ∇f(xi) is evaluated at x = xi, where xi is obtained by sampling the

value of input from their sample spaces. In this example, the sampling size is M = 1000

and the estimated matrix Ĉ is

Ĉ =



4.877 −2.180 −2.180 0.003 0 −0.115 −0.352 0

−2.180 1.000 1.000 −0.001 0 0.051 0.154 0

−2.180 1.000 1.000 −0.001 0 0.051 0.154 0

0.003 −0.001 −0.001 0.000 0 0.000 0.000 0

0.000 0.000 0.000 0.000 0 0.000 0.000 0

−0.115 0.051 0.051 0.000 0 0.003 0.008 0

−0.352 0.154 0.154 0.000 0 0.008 0.026 0

0.000 0.000 0.000 0.000 0 0.000 0.000 0



Next, we compute the eigenvalues and the corresponding eigenvector matrix from the

matrix Ĉ. We obtain Λ as the diagonal matrix of the eigenvalues in descending order.
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Λ =



6.96053 0 0 0 0 0 0 0

−0 0.03623 0 0 0 0 0 0

0 0 0.00048 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −0.00001 0

0 0 0 0 0 0 0 −0.00023



and the orthogonal matrix W as the eigenvector

W =



0.844 −0.519 0.106 0 0 0.000 −0.003 0.084

−0.377 −0.594 0.048 0 0 0.707 −0.008 0.049

−0.377 −0.594 0.048 0 0 −0.707 −0.008 0.049

0.000 −0.010 0.467 0 0 0.000 −0.567 −0.678
0.000 0.000 0.000 0 −1 0.000 0.000 0.000

−0.020 0.019 0.519 0 0 0.000 0.796 −0.309
−0.061 0.152 0.704 0 0 0.000 −0.209 0.658

0.000 0.000 0.000 1 0 0.000 0.000 0.000



According to the eigenvalue Λ, we can partition it into two pairs based on the cut-off of

λi > 0 and λi ≤ 0 in three decimal places.

Λ1 =

[
6.96053 0

−0 0.03623

]
;Λ2 =



0.00048 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −0.00001 0

0 0 0 0 0 −0.00023



and the corresponding partition of matrix W are



CHAPTER 2. SENSITIVITY ANALYSIS 25

W1 =



0.844 −0.519
−0.377 −0.594
−0.377 −0.594
0.000 −0.010
0.000 0.000

−0.020 0.019

−0.061 0.152

0.000 0.000


;W2 =



0.106 0 0 0.000 −0.003 0.084

0.048 0 0 0.707 −0.008 0.049

0.048 0 0 −0.707 −0.008 0.049

0.467 0 0 0.000 −0.567 −0.678
0.000 0 −1 0.000 0.000 0.000

0.519 0 0 0.000 0.796 −0.309
0.704 0 0 0.000 −0.209 0.658

0.000 1 0 0.000 0.000 0.000


Matrices Λ1 and W1 are called the first eigenvalues and the first eigenvectors, respectively.

The active subspace is identified from W1, which inform us that input x1, x2, and x3 are

important inputs in the Flood model.

2.2.11 The PAWN method

Pianosi &Wagener (2015) introduced an efficient method to compute the sensitivity indices

obtained using the density-based approach. The method uses the cumulative distribution

function of the model’s output instead of the probability density function as it is easier to

derive. The definition of the PAWN method is presented below.

Let us consider a model y = f(x) where x = (x1, . . . , xp) where p is the number of input

in the model. The PAWN sensitivity index is defined as

Ti = stat
xi

[KS(xi)] (2.41)

where

KS(xi) = max
y
| Fy(y)− Fy|xi

(y) | (2.42)

and stat is a statistic that can be the maximum or the median value of xi. The PAWN

method is practical to compute when we have find out the cumulative distribution for

unconditional Y and the conditional Y |Xi. The interpretation of the index is also practical

as it does not depend on the measurement unit of y.

Based on sensitivity measure using The PAWN method in Figure 2.2, the most important

input is X4, the second important one is X2 and followed by X1. The least important

inputs are X5 and X8.
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Figure 2.2: The PAWN sensitivity indices (Ti) for the Flood model.

2.2.12 General principle of Global Sensitivity Analysis

We have presented some sensitivity measures which mostly belong to the global sen-

sitivity analysis scope and computed the sensitivity indices. Some measures such as

variance-based methods, EVPI, and the PAWN method seem to have a similar princi-

ple. In the variance-based method, the sensitivity index is computed using the differ-

ence between the unconditional variance (V ar(Y )) and the expected conditional variance

(V ar(Y |Xi)). EVPI computes the difference between the expected of the maximum of

conditional expectation (maxj(Yj)|Xi)) and the maximum of expected unconditional ex-

pectation (maxj(E(Yj(X))). While in the PAWN method, the index is computed using

the difference between the unconditional cumulative distribution function (FY (y)) and the

conditional cumulative distribution function (FY |Xi
(y)). The latter uses the cumulative

distribution function method which will be discussed in Chapter 3.

We will also investigate other methods of sensitivity analysis in Chapter 3 which is a

distribution-based method, such as the quantile-based method (Chun et al. (2000)) and

the density-based method (Borgonovo (2007)). These methods have also a common ratio-

nale as the previous ones which take into account the differences between two quantities.

The quantile-based method considers the difference between the quantile of the base case

and the sensitivity case. The base case is the quantile of the unconditional distribution of

output Y , while the sensitivity case is the quantile of the conditional distribution Y |Xi.
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On the other hand, the density-based method calculates the difference between the un-

conditional density function (fY (y)) and the conditional density function (fY |Xi
(y)).

These common rationales for the GSA have been formalised by Borgonovo et al. (2016).

Generally, the global sensitivity analysis measures the discrepancy between the uncon-

ditional probability PY (y) and the conditional probability PY |Xi
(y). The discrepancy

between the two probabilities is defined by an inner statistic γi(xi) = ζ(PY (y),PY |Xi
(y)),

where ζ(·, ·) is an inner operator which fulfill the condition of ζ(P,P) = 0 for all distribu-

tion of P . Using this definition, the global sensitivity analysis measures for input Xi is

formulated as E{γi(Xi)}.

The next section provides some methods for computing the sensitivity indices which are

based on the Monte Carlo sampling algorithm as it uses the given-data approach.

2.2.13 Computational Methods

We consider three types of computational methods used in global sensitivity analysis

literature and apply the methods for computing sensitivity indices for the flood model.

The methods are Pick and freeze method (Sobol (2001)), Fourier Analysis Sensitivity Test

(Cukier et al. (1977)), and The Generalized Additive Model (Hastie & Tibshirani (1990)).

Pick and freeze method

A computation method to compute the global sensitivity indices for moderate complex

model based on Monte Carlo algorithm was proposed by Sobol (2001). This method

considers a set of inputs which are split into two subsets. We can select which inputs

as the first subset and which inputs belong to another subset and then compute the

sensitivity index for the subset of interest. Let us suppose that x = (x1, . . . , xp) is a vector

of p dimensional input in a mathematical model y = f(x). We consider an arbitrary m

inputs as a subset of x, where m < p and denotes the subset as u = (xj1 , . . . , xjm) where

1 ≤ j1 ≤ . . . ≤ jm ≤ p. We define the complementary subset of v which has p−m inputs

so that x = (u,v).
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The main effect index and the total effect index for the subset u are

Su =
Vu
V

(2.43)

and

Stot
u =

V tot
u

V
(2.44)

respectively, where Stot
u = 1 − Sv. According to Sobol (2001), the variance of subset u,

Vu, is calculated by the following integration

Vu =

∫
f(x)f(u,v

′
)dxdv

′ − f20 (2.45)

where f0 =
∫
f(x)dx and the variance for subset v, Vv, is obtained using the similar

fashion as Equation (2.45) as follows.

Vv =

∫
f(x)f(u

′
,v)dxdu

′ − f20 (2.46)

A Monte Carlo method is employed to solve the integration parts in Equation (2.45) and

(2.46). The Monte Carlo estimates are computed using N iterations using the following

formulae

f0 ≈
1

N

N∑
i=1

f(τi) (2.47)

V + f20 ≈
1

N

N∑
i=1

f2(τi) (2.48)

Vu + f20 ≈
1

N

N∑
i=1

f2(τi)f(τ1i, τ
′
2i) (2.49)

Vv + f20 ≈
1

N

N∑
i=1

f2(τi)f(τ
′
1i, τ2i) (2.50)

In this case, two independent random points τ and τ
′
are considered in the computation.

In addition, each random point has its own subsets, τ = (τ1, τ2) and τ
′
= (τ

′
1, τ

′
2). The

application of the pick and freeze method to the flood model produces the main effect

indices for each input as shown in Figure 2.3. The Figure shows that input X4 is the

most important input, X2 and X3 are the second and the third most important inputs

respectively.
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Figure 2.3: Main effect indices for inputs in the Flood Model obtained using the Pick and

Freeze method

Fourier Analysis Sensitivity Test (FAST)

Cukier et al. (1977) introduced a method that relates the probability distribution for

each input in the model to a frequency. This approach is called the Fourier Amplitude

Sensitivity Test (FAST) method. In this method, the parameters kl is defined in the range

of [−∞,∞]. The parameter kl is a function of ul and is written as

kl = gl(ul), −∞ < ul <∞, l = 1, 2, ..., n, (2.51)

where g is a function. Equation 2.51 determines the range of parameter kl is affected by

variable ul. Furthermore, variable ul is assumed to be independent with their respective

probability distribution Pl(ul). The probability density of u is expressed as

P (u) =

n∏
l=1

Pl(ul) (2.52)

The average over the density is introduced by Cukier et al. (1977) using the following

relation.

< f(u) >≡
∫
duf(u)P (u) (2.53)

Cukier et al. (1977) constructs a search curve in the u-space which is parameterised by a

search variable s. The translation of variable ul into s is performed by a transformation
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function Gl so that

ul = Gl(sinωls). (2.54)

where ωl are a set of frequencies which each frequency is assigned to each variable ul. FAST

is appropriate when the number of input variables is less than 10. Otherwise, it becomes

costly, unstable, and biased. Saltelli et al. (1999) made an extension of FAST which is

called the extended FAST (eFAST). To gain a more flexible sampling, they modified the

transformation of nominal value inputs xi from frequencies ωi. This method can be used to

estimate both first-order indices and total effect indices. An example of the eFAST method

Figure 2.4: Main effects and interaction effects of the Flood Model computed using ex-

tended FAST method

is implemented to the Flood model, and the result is given in Figure 2.4. According to

the figure, X4 has the largest main effect indicating it is the most important input, X2

is the second-largest and X3 has the third-largest main effects. For most of inputs, the

interaction effects are small and give a tiny contribution to the total effects.

Generalised Additive Models (GAM)

According to Hastie & Tibshirani (1990), Generalised Additive Models (GAMs) were

introduced to overcome the non-linearity relationships between inputs and output vari-

ables. For some cases, it can also be used to solve the problem of modelling when the

model specification is hard to determine. This circumstance might happen when the data
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points obtained from the measurements have no specific pattern matching with any pre-

determined literature models. Therefore, it is hard to use any existing model such as linear

regression, polynomial regression or generalised linear models.

Let us suppose that we have a model y = f(x1, . . . , xp) and the inputs are uncertain

and denoted as X = (X1, . . . , Xp). We are interested in the model of output uncertainty

Y = f(X) with f is a function that connects input X to the output Y . The idea of GAMs

is to approach each inputs in the model Y = f(X) by a function and make the whole

function in an additive form. Therefore the model Y = f(X) can be represented in GAMs

model in the following form

E (Y |X1, X2, ..., Xk) = f0 + f1(X1) + f2(X2) + ...+ fk(Xk) (2.55)

where f ′is are unspecified smooth(non-parametric) functions. In order to fit the functions

f ′is, cubic smoothing splines are frequently used. The principle of this smoothing spline

is to find one function among all functions f(xi) that minimize the penalized least square

below
n∑

i=1

(yi − f(xi))2 + λ

∫ b

a

[
f”(x)

]2
dx (2.56)

where λ is a non-negative smoothing parameter and a ≤ x1 ≤ ... ≤ xn ≤ b. In addition,

(a, b) is a possible range of xi’s.

The next step is to estimate the additive models. A general algorithm to fit these mod-

els is called the back-fitting algorithm. In order to undertake the estimation using this

algorithm, firstly, we need to define the partial residual

Rj = Y − f0 −
∑
k ̸=j

fk(Xk) (2.57)

then E(Rj |Xj) = fj(Xj). This conditional expectation produce a path to estimate each

smoothing function f̂j .

Furthermore, suppose that there are set of observation (xi, yi), then the penalized least

square in (2.56) has turn into

p∑
j=1

(yj − f0 − fj(xj))2 +
p∑

j=1

λj

∫ [
f”j (tj)

]2
dtj (2.58)

Based on that penalized least square function, the procedure of the back-fitting algorithm

are
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1 Initialize:

f̂0 =
1

n

n∑
i=1

yi,
ˆ
f j1 = 0,m = 1

2 Iterate:

m⇐ m+ 1, j = 1, 2, ..., p

fmj (xj)← Sj

{yi − f̂0 − j−1∑
k=1

f̂mk (xk)−
p∑

k=j+1

f̂m−1
k (xk)

}n

1

 (2.59)

3 Repeat until:

RSS = S

(
Y − f̂0 −

p∑
k=1

f̂mk (xk)

)2

fails to decrease, which means f̂ j is tends to have a stable form.

fmj (.) denotes the estimate of fj(.) at the m
th iteration. Each of the functions fj is a cubic

spline in the component xj , with knots at each of unique value of xij , j = 1, 2, ..., p.

A convergence criterion for the back-fitting algorithm is as following∑p
j=1

∑n
i=1(f

m−1
j (xij)− fmj (xij)

2∑p
j=1

∑n
i=1 f

m−1
j (xij)2

≤ ϵ (2.60)

where ϵ is a very small number which usually less than 10−6.

The example of computing the sensitivity indices using GAM method for The Flood Model

will be discussed in Chapter 6.

2.2.14 Meta-modelling Based Methods

Some different ways aim at minimising cost to estimate global sensitivity indices. These

approaches are called meta-models that use N model runs to fit a meta-model (an emula-

tor). The emulator representing the relation between input and output based on a sample

will be used as a surrogate model.

Gaussian Process meta-modelling

A Bayesian approach for estimating the sensitivity indices were developed by Oakley &

O’Hagan (2004). In this approach, the main model is treated as an unknown function. The
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prior model is a Gaussian process distribution, and the posterior distribution is obtained.

Subsequently, the posterior mean of main effects or interaction effects will be determined.

Let suppose the uncertainty of the output Y is the function of the uncertain input X such

that Y = f(X). The main effect and the interaction effects are derived from variance

decomposition in Equation (2.18). The posterior mean of the main effect is

E∗{fi(xi)} = {Ri(xi)−R}β̂ + {Ti(xi)− T}e (2.61)

and the posterior mean for the interaction effect is

E∗{fi,j(xi,j)} = {Ri,j(xi,j)−Ri(xi)−Rj(xj)−R}β̂ + {Ti,j(xi,j)− Ti(xi)− Tj(xj)− T}e.
(2.62)

where

e = A−1(y−H β̂)

β̂ = V ∗(V −1z+HTA−1y)

V ∗ = (V −1 +H TA−1H )−1

HT = (h(x1)
T , . . . ,h(xn)

T )

A =


1 c(x1,x2) · · · c(x1,xn)

c(x2,x1) 1
...

...
. . .

c(xn,x1) · · · 1


The notation y denotes the output of a model, c(x,x

′
) is a function which decreases as

|x − x
′ | increases and satisfies c(x,x) = 1 for all x. In addition the other terms, Ri(xi)

and Ti(xi) can be obtained using the following formulae

Ri(xi) =

∫
X−i

h(x)TdG−i|i(x−i|xi) (2.63)

Ti(xi) =

∫
X−i

t(x)TdG−i|i(x−i|xi) (2.64)

where h(x) is a vector which consist of regression functions of x and

t(x)T = (c(x,x1), . . . , c(x,xn)),



34

while R and T are special cases of Ri(xi) and Ti(xi) respectively when i is the null set.

Another work in this method was conducted by Srivastava et al. (2017). They made a

comparison between the model which uses Gaussian Process from Kennedy & O’Hagan

(2001) which is called Bayesian Hybrid Model, and with the analytical approach. The

analytical approach calculates the sensitivity indices by Sobol’s formulae. The comparison

was also considered about the correlated inputs in the model.

The Bayesian model averaging framework was used by Shao et al. (2017) in determining

plausible competing sparse PCE models to estimate the posterior probability for each

model to be the best one among the competing models. A meta-model with correlated

inputs was proposed by Gauchi et al. (2017). To build the meta model, they employed a

multivariate Legendre truncated Polynomial Chaos Expansion (PCE). Furthermore, they

used Partial Least Square Regression (PLSR) to estimate the regression coefficients of the

PCE.

State Dependent Parameter meta-modelling

Ratto et al. (2007) proposed a method to estimate the terms in functional decomposition

in (2.18). They used a recursive fixed interval smoothing algorithm to estimate the pa-

rameters in a State-Dependent Parameter (SDP) formulation. The formulation describes

the relationship between input and output. They considered the first order of terms in

Equation (2.18) and simplified it as

Yt − f0 = f1(X1,t) + f2(X2,t) + . . .+ fk(Xk,t) + o(XXT ) (2.65)

The model in Equation (2.65) is regarded as State Dependent Regression (SDR) and can

be reconstruct as

Yt − f0 = XT
t pt + et (2.66)

where pt = p1,t, . . . , p2,t are called the state dependent parameters.

We have discussed various methods in sensitivity analysis and provided examples. Next,

we discuss sensitivity analysis status and how sensitivity can be developed to support

recent issues.
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§ 2.3 The Future of Sensitivity Analysis

Razavi et al. (2021) provide the state-of-the-art of SA initially started with Local Sen-

sitivity Analysis and has developed into a Global Sensitivity Analysis (GSA). The cat-

egories of GSA described in the previous section are the regression-based approach and

the variance-based approach. Another sensitivity measure will be discussed later, which is

the distribution-based approach. A sensitivity measure that comes later is the variogram-

based approach (VARS) proposed by Razavi & Gupta (2016a). VARS involves using a

variogram function that computes the difference of response surface values of two points

within the factor space. VARS has some advantages such as computationally efficient,

robust, and stable estimates even using a small number of model runs. Some progression

indicates the development of computation in sensitivity analysis in computing the sensitiv-

ity measure when SA has a connection with DACE. In particular, the sensitivity measure is

approximated using response surface when the models are computationally expensive. The

recent research of SA has also considered the correlated inputs in the mathematical model.

Many packages or functions have been developed to assist the SA computation based on

various computer programs such as R (’sensitivity’ package, SAFE), Phyton (SobolGSA,

SALib), MATLAB (UQLab, VARS-Tool), C (PSUADE), C++ (Dakota, OpenTURNS),

and Julia (MADS.jl).

According to Razavi et al. (2021), there are six main themes of challenges and outlooks

in SA: (1) SA should be structured and standardised as a discipline, (2)Introduce SA for

system modelling, (3) overcome the computational challenges of SA, (4) Connect SA for

supporting machine learning, (5) clearing up the connection between SA and what role can

SA provide for uncertainty quantification, and (6) optimising the use of SA for decision

making.

The first outlook is that SA should be structured and standardised as a discipline. The

challenge to this outlook is that the terminology, fundamental definitions, and methodol-

ogy is not consistent. This challenge needs to be tackled to create a standard perception

and understanding. There is an opportunity for teaching SA as a discipline more broadly

and consistently in the future because standardising SA is visible.

The second theme is that SA has the potential to be implemented in mathematical mod-

elling for management uncertainty, model reduction, model verification and diagnostic

testing and non-identifiability. SA can map the uncertainty in every model assumption

in managing uncertainty and help answer a critical question: when and how does the un-

certainty matter? In diagnostic and model verification, SA can diagnose a mathematical
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model behaviour and assess how the model mimics the investigated system. For example,

the current development of the given-data SA method will enable it to perform model

diagnostic testing. SA can also identify a model component due to over parameterisation,

which makes it non-identifiable.

The third challenge for SA is how to overcome the potential burden when performing the

analysis for complex mathematical models. Mathematical models can have lots of fac-

tors or parameters which will increase the computation time and require more computing

power. Therefore, SA needs a new generation of algorithms to handle the progression of

model complexity. Furthermore, the SA algorithm must also be efficient and can reach

convergence. In addition, the algorithm should be reliable and robust. Efficiency means

the time required for the algorithm to undertake the computation of SA. The convergence

of an SA algorithm is not easy to assess. It depends on some aspects such as the com-

plexity of a model, the aim of performing SA, SA methods, and the convergence criteria.

Reliability means the correctness of SA results indicated by a particular measure. Robust-

ness refers to the consistency measure of an algorithm to produce a similar output when

the parameters of a model are changed.

The fourth outlook is the possibility of implementing SA in machine learning. SA can offer

the development and application of machine learning as they have a similar way of ad-

dressing the problem but with different approaches. Machine learning aims to construct a

function that relates input space to those in an output space using a data-driven approach.

On the other hand, SA investigates the relationship between inputs and outputs without

developing a relationship function. Instead, it estimates the magnitude of the relationship

using sensitivity indices. Nevertheless, the difference between SA and machine learning

should also need to be considered. The major difference is in the source of data. Data for

SA is obtained from computer experiments, while data for machine learning comes from

more general experiments, such as laboratory or field experiments.

The fifth is to clarify the role of SA in uncertainty quantification. By definition, uncer-

tainty quantification is the science of quantitative characterisation with aims to reduce

the uncertainty regarding a particular output of a model. Even though SA has been

used in uncertainty quantification, there are still some challenges. Some challenges which

need to be considered are as follows. (1) potential misconception in framing an SA for

an uncertainty quantification goal, (2) some of SA frameworks cannot be used for some

model types, (3) It is complicated to use SA when inputs are correlated or in the case

of multivariate inputs (4) sensitivity of uncertainty quantification to problem setup, and

(5) uncertainty could also be investigated in the SA results. Razavi et al. (2021) provides
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some explanations and suggestions to address the challenges.

The final review is the role of SA in decision making. SA has widely used in the decision-

making process, such as in shadow prices concept and scenario analysis. Recently SA

has been used to help in making a decision under uncertainty. In this case, SA can

parse the outcome uncertainty of a decision option and assign it to different sources of

uncertainty. There are challenges and opportunities in developing SA to make robust

decisions under deep uncertainty. In this case, stakeholders do not know or disagree

about the probability distributions of inputs in the model, so the best way to perturb the

inputs can be developed. SA in the context of qualitative decision making has also been

developed. The framework for sensitivity auditing is proposed to frame a decision analysis

with the involvement of researchers, stakeholders and policymakers.

In conclusion, SA currently has many roles in various fields and research topics. Also, SA

has lots of opportunities to get involved more in supporting other research areas. However,

some existing challenges need to be handled to enable SA to play a more critical role in

advancing scientific methods and model complexity.

§ 2.4 Summary

Analysing complex computer models involving optimisation, prediction, and calibration

is challenging for a modeller, especially when the model has many inputs. We propose

learning and investigating inputs utilising sensitivity analysis to detect inputs that should

be considered or not in the model for those analyses. We consider some important mea-

sures in the sensitivity analysis using different methods such as regression-based methods,

variance-based methods, and the value of the information-based method to determine the

prioritisation of inputs from the most important input to the least important one. Based

on the order of importance, we can only focus on the important input to perform further

analysis.

The next chapter explores some limitations of the factor prioritisation setting, especially

the main effect index, and proposes another approach based on the factor fixing setting

to learn and investigate inputs in the computer model.





Chapter 3

Identifying Unimportant Inputs

§ 3.1 Introduction

In the previous chapter, we considered the factor prioritisation setting to identify unim-

portant inputs in a mathematical model. In particular, the main effect index is used to

measure the expected reduction in variance when input is fixed on its true value. A rela-

tively large main effect index implies that there is a value in learning an input. In other

words, the input is important. Conversely, a small main effect does not imply that input is

unimportant especially when the model has interaction terms. The main effect is not able

to measure the joint effect of the input of interest with the other inputs. Consequently, a

zero main effect does not imply that input is unimportant as interaction terms might not

be zero.

As a result, identifying unimportant inputs using the main effect is not obvious. Further-

more, in factor prioritisation, ‘choosing an input to learn’ is a clearly defined action, but

it is less clear what the consequences would be of declaring an input to be ‘unimportant’.

Therefore, two questions arise.

1 How can we define an input as unimportant with regard to actions that a modeller

might take?

2 What are appropriate sensitivity measures to identify unimportant inputs?

This chapter aims to answer these questions. This chapter is organised in the following

way. Section 3.2 describes examples of main effect index limitations, Section 3.3 proposes

39
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two scenarios for identifying unimportant inputs, Section 3.4 discusses some existing im-

portance measures with independent and dependent input cases, and Section 3.5 presents

the conclusions.

§ 3.2 Main effect index limitations

As mentioned in the previous section, the main effect index does not provide a full picture

of importance. This is because a large value of a main effect index indicates an important

input but a small value of main effect index does not imply that an input is unimportant.

The following are two different examples to show the limitations of main effect indices.

Example 3.1. Let us consider a function f : R4 → R with

f(x1, . . . , x4) = x1x2 + x3 + 0.01x4. (3.1)

Define Y = f(X1, . . . , X4) with X1, . . . , X4 identical, independent and normally dis-

tributed random variables with mean 0 and variance 1. The (unnormalised) main effect

index V1 of X1 is calculated as follows.

V1 = V arX1 [E(Y |X1)]

= V arX1 [E(X1X2 +X3 + 0.01X4|X1)]

= V arX1 [X1E(X2) + E(X3) + 0.01E(X4)]

= 0.

The main effect indices of other inputs are obtained using the similar way and the results

are V2 = 0, V3 = 1, and V4 = 0.0001. The interaction effect for X1 and X2 is calculated

as below.

V12 = V arX1,X2 [E(Y |X1, X2)]− V1 − V2
= V arX1,X2 [E(X1X2 +X3 + 0.01X4|X1, X2)]

= V arX1,X2 [X1X2 + E(X3) + 0.01E(X4)]

= V arX1,X2(X1X2)

= E[(X1X2)
2]− [E(X1X2)]

2

= E(X2
1 )E(X2

2 )− E(X1)
2E(X2)

2 (sinceX1 andX2 are independent)

=
[
V ar(X1) + E(X1)

2
] [
V ar(X2) + E(X2)

2
]
− E(X1)

2E(X2)
2

= 1.
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The main effect indices of X1 and X2 are zero but we could not conclude the inputs as

unimportant because the interaction effect is not zero. The main effect indices of X3 and

X4 do, however, better indicate these inputs’ respective importance.

Example 3.2. Let us consider another function f : R4 → R, with

f(x1, . . . , x4) = x1 + x2 + x3 + 0.01x4, (3.2)

and define Y = (X1, . . . , X4). Now suppose X1 and X2 are correlated with Cor(X1, X2) =

ρ and have bivariate normal distribution with mean vector µ = (0 0)T and a covariance

matrix

Σ =

[
1 ρ

ρ 1

]
.

Suppose X3 and X4 are independent and normally distributed with mean 0 and variance

1. The main effect of X1 is calculated by taking into account the conditional expectation

of X1|X2 in the following expectation

E(Y |X1) = E[X1 +X2 +X3 + 0.01X4|X1]

= X1 + E(X2|X1) + E(X3) + 0.01E(X4)

= X1 + ρX1

and the main effect ofX1 is attained by working out the variance of conditional expectation

of Y |X1

V1 = V arX1 [E(Y |X1)]

= V arX1 [X1 + ρX1]

= (1 + ρ)2.

The main effect index of X1 (and of X2) tends to 2 as ρ → 1. Main effect indices of X3

and X4 are unchanged from those in Example 3.1. It seems that X1 and X2 are worth

learning like X3. However, since X1 and X2 are correlated it may not be worth learning

both these inputs separately (we would not pay for two independent experiments to learn

X1 and to learn X2).

If the correlation between those inputs is very high (ρ close to 1) then we could write

Y ≃ 2X1 +X3 + 0.01X4. (3.3)
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Therefore, one of X1 or X2 could be considered unimportant, although the main effect is

two. This contradictory result shows that input can have a large main effect yet still be

‘removed’ from a model.

The examples show that the main effect index cannot delineate unimportant inputs prop-

erly, mainly when the interaction between inputs exists, or inputs are correlated. There-

fore, an unimportant input could not be determined from its main effect index. For this

reason, it is helpful to establish definitions of unimportant inputs. We propose two sce-

narios as ways of formulating the definitions.

§ 3.3 Scenarios for identifying unimportant inputs

Two scenarios for unimportant input identification are proposed. The first scenario is

based on a notion of the loss function used in statistical decision theory. The second

scenario is motivated by model simplification through factor fixing or factor replacing.

The details of each scenario are discussed below.

3.3.1 Scenario 1

In Example 3.1, the main effect of X1 was zero, but the interaction effect was not, indi-

cating that X1 could not be neglected as it would have an effect when combined with X2.

In other words, it is worth learning X1 if we also plan to learn X2, whereas learning X1

or X2 individually is not worth it.

Hence an input could be classified as unimportant if it is not worth learning in any cir-

cumstances, individually or in combination with others. In this example, input X1 is

unimportant if the main and interaction effects are zero.

For this reason, we propose a scenario in which an unimportant input is defined. The

notion of developing the first definition emerges from a decision theoretic approach to

sensitivity analysis (see for example Oakley 2009). Formally, let us define a true and

uncertain input vector X = (X1, . . . , Xp), where p is the number of inputs in the model

f and the output of interest is Y = f(X). Next, we consider choosing a decision d from

a set of possible decisions D, with loss function L(d, Y ) = L(d, f(X)). For example, if

the decision problem was to supply an estimate d of Y , we might have a quadratic loss

function L(d, Y ) = (d−Y )2. The aim here is to choose d which minimise the loss function

L(d, Y ).
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Let us define d∗ to be the decision that minimises the expected loss given our current

information and define

L∗ = EY [L(d
∗, Y )],

which we refer to as the baseline minimised expected loss.

Furthermore, let u be a subset of {1, ..., p} with X u is the corresponding sub vector of X .

We define

L∗
u = EXu

[
min
d

EX |Xu
[L(d, Y )]

]
(3.4)

to be the minimised expected loss, if we can observe X u before making a decision d. If

u = ∅ then we write L∗
u = L∗

∅ = L∗ as the baseline of the minimised expected loss. If

u = 1 then we write L∗
u = L∗

1 as the minimised expected loss if we can observe X1 before

making a decision d. Using the expected loss concept and the formula in Equation (3.4),

we propose the definition of an unimportant input as follows.

Definition 1. An input Xi is unimportant if, for any subset u of {1, . . . , p} where i /∈ u,

L∗
u∪{i} = L∗

u (3.5)

As we can see in (3.5), an unimportant input Xi is determined by the equality of two

expected loss functions. This equation means that there is no reduction in expected loss

if we learn Xi in addition to Xu for any set u.

To illustrate Definition 1, let us suppose that we have three inputs in a model: X1, X2,

and X3. We want to identify whether X1 is unimportant or not, so we set i = {1} and we

make several comparisons by including u = {∅}, {2}, {3}, and {2, 3} in the loss function in

Equation (3.5). X1 is identified as an unimportant input if all of the following comparisons

are hold

(i) L∗
{1,∅} = L∗

{∅}

(ii) L∗
{1,2} = L∗

{2}

(iii) L∗
{1,3} = L∗

{3}

(iv) L∗
{1,2,3} = L∗

{2,3}

Example 3.3. Let us implement Definition 1 for the model in Example 3.1. Recall the

model in Equation (3.1) in the form of Y = f(X) as

Y = X1X2 +X3 + 0.01X4
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where Xi ∼ N(0, 1). We suppose the decision problem is to estimate Y , with a quadratic

loss function L(d, Y ) = (d − Y )2. We would like to examine whether X1 in the model is

unimportant or not.

Firstly, we calculate the baseline of expected loss function L∗
u where u = ∅. In this case,

we have obtained d∗ = EX[f(X)] and L∗ = V ar[f(X)] = 2.0001. Secondly, we need to

calculate L∗
1: the expected loss if we first learn X1. The expression for the expected loss

for X1 derived from (3.4) using a quadratic loss function is

L∗
{1} = EX1

[
min
d

EX |X1

[
(d− f(X))2

]]
(3.6)

Similarly, we would obtain the optimal d∗ = EX|X1
[f(X)] so

EX |X1

[
(d∗ − f(X))2

]
= EX |X1

[
(EX|X1

[f(X)]− f(X))2
]

consequently,

L∗
{1} = EX1 [V ar(f(X)|X1)] . (3.7)

By evaluating the conditional variance, it would give V ar(f(X)|X1) = X2
1 + 1.0001 and

its expected value or the loss for X1 is L∗
{1} = EX1 [X

2
1 + 1.0001] = 2.0001. Therefore,

L∗
{1} = L∗ which means there is no reduction in the expected loss from learning X1 on its

own.

Next, we examine the effect of the combination of X1 and X2 in terms of their loss. We

first calculate L∗
{2} = EX2 [V ar(f(X)|X2)] = 2.0001. Afterwards, we calculate the loss for

combination of X1 and X2, L
∗
{1,2} = EX1X2 [V ar(f(X)|X1, X2)] = 1.0001. We notice that

L∗
{1,2} is smaller than L∗

{2} meaning that there is a reduction in the loss function if we

learn both inputs X1 and X2. In conclusion, learning X1 on its own does not have value

but learning X1 and X2 does have value.

Example 3.4. Let us consider an example on alternative loss function using the following

model

y = x1x2 + 0.01x3 (3.8)

where x1, x2, x3 are uncertain inputs and are represented as random variables X1, X2, X3

which are i.i.d. and normally distributed with mean 0 and variance 1. Thus, we have a

vector of input X = (X1, X2, X3) and we define Y = f(X).

We consider two possible decisions d1 and d2. These decisions relate to the prediction of

Y based on a threshold c and are defined as follows.
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� d1: predict that Y is greater than or equal to c;

� d2: predict that Y is less than c

The decision will have a consequence because our prediction can be right or wrong. Table

3.1 shows the losses for the wrong prediction (a1 and a2) and no losses for the correct

prediction.

Table 3.1: The loss of choosing a certain decision

Decision
Truth

Y < c Y ≥ c

d1 a1 0

d2 0 a2

Let us suppose we choose d1. If Y ≥ c then the loss is 0 or we can write it as a loss

function below

L(d1, Y ) = 0,

and if Y < c then the loss is a1 or we write

L(d1, Y ) = a1.

Alternatively, if we choose d2 then the loss is

L(d2, Y ) = 0,

if Y < c, and

L(d2, Y ) = a2

otherwise. For illustration, suppose we choose c = 2, with P (Y ≤ c) = 0.931 to three

decimal places. Now, let us suppose we have the losses of wrong predictions a1 = 1 and

a2 = 10. The values indicate a relatively small penalty if we predict Y ≥ c and we are

wrong. In contrast, we set a larger penalty if we predict Y < c and we are wrong. There

is no penalty if the prediction is correct.

The next step is to determine the baseline decision. The baseline decision for d1 is derived
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from the expected loss function of choosing d1 with respect to Y , E(L(d1, Y )), which is

E(L(d1, Y )) =

∫ ∞

−∞
L(d1, y)pY (y)dy

=

∫ c

−∞
L(d1, y)pY (y)dy +

∫ ∞

c
L(d1, y)pY (y)dy

=

∫ c

−∞
a1pY (y)dy +

∫ ∞

c
0pY (y)dy

= a1P (Y ≤ c) + 0× P (Y > c)

= a1P (Y ≤ c)

while the expected loss for d2 is

E(L(d2, Y )) = 0× P (Y ≤ c) + a2P (Y > c)

= a2P (Y > c)

In case of Example 3.4, the baseline decision for d1 is 0.969 while for d2 is 0.311. d2 has

the lower loss, so we choose d2 as our baseline decision with L = 0.311.

To identify whether X1 is unimportant or not, we need to calculate the expected loss for

each decision if we learn X1. The expected loss if we learn X1 by choosing decision d1 is

E(L(d1|X1 = x1, Y )) while the expected loss if we learn X1 by choosing d2 is E(L(d2|X1 =

x1, Y )). For a given x1, we choose a decision which has the minimum loss or

min
(
E
(
L(d1|X1 = x1, Y )

)
,E
(
L(d2|X1 = x1, Y )

))
.

As we do not know about the true value of X1, we calculate the expected of the minimum

loss and denote it as L{1} as below

L{1} = EX1

[
min

(
E
(
L(d1|X1 = x1, Y )

)
,E
(
L(d2|X1 = x1, Y )

))]
. (3.9)

Using simulation, we obtain L{1} = 0.222 which is less than our baseline L. Since L{1} < L

we identify that X1 is not an unimportant input under Scenario 1. In other words, learning

X1 has value as it reduces the loss.

In general, the expected loss when we learn an input Xi under two possible decisions d1

and d2 is

L{i} = EXi

[
min

(
E
(
L(d1|Xi = xi, Y )

)
,E
(
L(d2|Xi = xi, Y )

))]
(3.10)

We can calculate the expected loss for other inputs in the model (3.8) using (3.10). We

obtain the expected loss if we learn X2 is L{2} = 0.220. It is clear that X2 is also not an

unimportant input as L{2} < L.
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The expected loss for learning input X3 is L{3} = 0.309. It is relatively similar with the

baseline yet we need to examine the expected loss for other possible set of inputs withX3 to

ensure that it is an unimportant input. Based on the simulation we obtain L{1,3} = 0.217,

L{2,3} = 0.212, L{1,2} = 0.000, and L{1,2,3} = 0. If we compare the expected loss for the

addition X3 to other possible set of inputs we obtained the following comparisons

� L{3} ≈ L

� L{1,3} ≈ L{1}

� L{2,3} ≈ L{2}

� L{1,2,3} = L{1,2}

These results match Definition 1, so we can conclude that X3 is an unimportant input.

3.3.2 Scenario 2

Let us recall Example 3.2 and focus our attention on X1 and X2. Learning either X1 or

X2 would reduce uncertainty about Y ; neither input would be classified as unimportant in

Scenario 1. However, the output Y could be simplified, expressed as dependent on three

inputs only due to the strong correlation. In that sense, we might wish to classify one of

X1 or X2 as unimportant.

We proposed another scenario to tackle this issue, and we called it Scenario 2. In this

scenario, the modeller wishes to simplify the model by reducing the number of model

inputs. The idea is that the model can be simplified by fixing one or more inputs to be

functions of the remaining inputs.

Definition 2. Let X−i denote a set of all inputs which does not include Xi. An input Xi

is unimportant if

P [f(X−i, Xi)] = P [f(X−i, Xi = g(X−i)] . (3.11)

where g is a known function, or it might be a constant. If the full probability distributions

are not known, we might consider using variance instead as defined in Definition 3.
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Definition 3. Let X−i denote a set of all inputs which does not include Xi. An input Xi

is unimportant if

V ar [f(X−i, Xi)] = V ar [f(X−i, Xi = g(X−i)] . (3.12)

Definition 2 or 3 could be used to identify an input with a small weight in a model. For

instance, we want to identify input X4 in the model in equation (3.3) which has a small

weight, 0.01. Using Definition 3, we calculate

V ar [f(X1, X2, X3, X4)] = V ar [2X1 +X3 + 0.01X4]

= 5.0001

Following Definition 3, let us suppose to set X4 to a constant k = 1 or formally we can

write it as X4 = g(X−4) = k, then we calculate the associated variance

V ar [f(X1, X2, X3, X4 = 1)] = V ar [2X1 +X3 + 0.01]

= 5.

As the variances are similar, we could classify X4 is unimportant and replace it by a

constant 1.

In Example 3.2, since X1 is correlated with X2, we could replace the input X1 with a

function g(X2) = E(X1|X2) and calculate the variance difference. The variance if we

replace X1 with E(X1|X2) is

V ar [f(E(X1|X2), X2, X3, X4)] = V ar [2E(X1|X2) +X3 + 0.01X4]

= 4V ar(ρX2) + 1 + 0.0001

= 4ρ2 + 1.0001.

Thus, if |ρ| is close to 1 we can conclude that X1 is unimportant under Definition 3.

The following sections review some alternative importance measures to main effect in-

dices and analyse their suitability for identifying unimportant inputs within each of these

scenarios.
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§ 3.4 Total effect indices

In Chapter 2, we described the functional decomposition of f(x) and the corresponding

variance partition of Y = f(X) in the case of independent inputs:

f(x) = f0+

p∑
i=1

fi(xi)+
∑
i<j

fij(xi, xj)+
∑

i<j<k

fijk(xi, xj , xk)+ . . .+f1,...,p(x1, ..., xp) (3.13)

where each function in the decomposition is defined as below

f0 = E[f(X )] (3.14)

fi(xi) = E[f(X )|Xi = xi]− f0 (3.15)

fij(xi, xj) = E[f(X )|Xi = xi, Xj = xj ]− fi(xi)− fj(xj)− f0 (3.16)

fijk(xi, xj , xk) = E[f(X )|Xi = xi, Xj = xj , Xk = xk]− fi(xi)− fj(xj)− fk(xk)

− fi,j(xi, xj)− fi,k(xi, xk)− fj,k(xj , xk)− f0
(3.17)

and

V ar(Y ) =

p∑
i=1

V ar[fi(Xi)] +
∑
i<j

V ar[fij(Xi, Xj)] +
∑

i<j<k

V ar[fijk(Xi, Xj , Xk)] + . . .

+ V ar[f1,...,p(X1, ..., Xp)]

(3.18)

The (unnormalised) total effect index for Xi denoted by Ti is defined by summing all of

the variance components in (3.18) with indices i. According to Saltelli et al. (2008), in

general, total effect can be obtained from the following equation

Ti = V ar[fi(Xi)] +
∑
j

V ar[fij(Xi, Xj)] +
∑
j

∑
k

V ar[fijk(Xi, Xj , Xk)] + . . . (3.19)

Note that

Ti = V ar(Y )− V arX−i(E(Y |X−i)) (3.20)

The expression in (3.20) can be seen as an algebraic rule of variance

V ar(Y ) = V arX−i(E(Y |X−i)) + EX−i(V ar(Y |X−i)). (3.21)
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Therefore the total effect can be obtained by the expectation of conditional variance of

the remaining inputs

Ti
∼

= EX−i(V ar(Y |X−i)). (3.22)

3.4.1 Identifying unimportant input with total effects

If a total effect Ti is zero then the component of variance decomposition: V ar
(
fi(Xi)

)
= 0,

V ar
(
fi,j(Xi, Xj)

)
= 0 for ∀j, V ar

(
fi,j,k(Xi, Xj , Xk)

)
= 0 for ∀j, k and so forth. Each

function has expectation zero, for example

V ar
(
fi(Xi)

)
=

∫
X⟩

fi(xi)
2dp(xi) = 0,

hence fi(Xi) = 0 almost everywhere on Xi. (If Xi has a continuous distribution, then

fi(Xi) = 0 ∀Xi). Consequently, all functions involving xi in the decomposition of f are

zero. Therefore, in the case of independent inputs, a total effect index of zero would tell

us that an input is unimportant under either scenario.

3.4.2 Total effect indices and correlated inputs

If the inputs are correlated, the variance decomposition in (3.18) does not hold. To

illustrate this, let us consider the following example.

Example 3.5. Let us suppose that we have a function f(·) : R2 → R with f(x1, x2) =

x1 + x2. Define Y = f(X1, X2) with(
X1

X2

)
∼ N

([
0

0

]
,

[
1 ρ

ρ 1

])

where ρ is the correlation coefficient. We can calculate the variance of output

V ar(Y ) = V ar(X1) + V ar(X2) + 2Cov (X1, X2)

= 1 + 1 + 2ρ

= 2 + 2ρ.

Now, if we consider the terms in the functional decomposition which are used for the

independent input case, we obtain
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f0 = 0

f1(x1) = E[Y |X1]− f0 = X1 + ρX1

f2(x2) = E[Y |X2] = X2 + ρX2

f1,2(x1, x2) = E[Y |X1, X2]− f1(x1)− f2(x2) = −(X1 +X2).

If we sum the variance of the functional decomposition we will get

2∑
i=1

V ar(fi(Xi)) + V ar(f1,2(X1, X2)) = V ar(X1 + ρX1) + V ar(X2(1 + ρ)) + V ar[−(X1 +X2)]

= (1 + ρ)2 + (1 + ρ2) + (2 + 2ρ)

= (2 + 2ρ2) + (2 + 2ρ),

thus

V ar(Y ) ̸= V ar(f1(X1)) + V ar(f2(X2)) + V ar(f1,2(X1, X2)). (3.23)

The result confirmed that the variance decomposition does not hold when inputs are

correlated. Additionally, we find that

T1
∼

= EX2

(
V ar(Y |X2)

)
= 1− ρ2,

and

V1 = V arX1

(
E[Y |X1]

)
= (1 + ρ)2.

We can notice that the main effect ofX1 is greater than the total effect when the correlation

exist, i.e. if ρ > 0 then T1
∼
< V1. This is not helpful to describe the variance contribution

of X1 to Y .

However, following Kucherenko et al. (2012), we could still define a ‘total effect index’ as

T̃i := EX−i(V ar(Y |X−i)),

and consider whether this sensitivity measure is appropriate for identifying unimportant

inputs in either of our two scenarios. We can easily see that this is not appropriate in

Scenario 1: in Example 3.2, with ρ = 1, we have T̃1 = T̃2 = 0, but there is clearly value in

learning either input.
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In Scenario 2, T̃ is potentially still valid for identifying unimportant inputs and is more

appropriate to use. Consider Definition 2 in Scenario 2, and suppose we choose

g(X−i) = E(Xi|X−i).

In Definition 3, the requirement is that simplifying the model by setting Xi = g(X−i) does

not change V ar(Y ). Now define

Di := V ar(Y )− V ar(f(Xi = g(X−i),X−i)) (3.24)

so that, in Definition 2, we classify Xi as unimportant if Di = 0. If we compare this with

T̃i = V ar(Y )− V ar(E[f(X)|X−i]), (3.25)

we see that if f is linear in Xi, then T̃i = Di, as

f(E(Xi|X−i),X−i) = E[f(X)|X−i]. (3.26)

Additionally, T̃i may still be close to Di if f is ‘locally linear’ in xi: linear over the main

support of Xi conditional on X−i.

The illustration of locally linear is provided in Figure 3.1. The figure shows that the two

curves (blue and black curves) are intersected with each other. The intersection of the

blue curve (curve for y = f(x1, x2) with x2 is fixed) inside the black curve (curve for

P (X1|X2)) is indicated by a red line. The red line looked linear inside the black curve,

which indicates that it is locally linear. Locally linear means that it is linear on some

parts of the blue curve, but it is no longer linear on the other parts.

Continuing Example 3.5, we can see that as ρ → 1, both T̃1 and T̃2 tend to 0, and that

we could indeed simplify the function without changing the variance. If for example we

write replace X1 with E[X1|X2], where

E[X1|X2] = ρX2 (3.27)

then

V arX2(ρX2 +X2) = (1 + ρ)2V ar(X2) = (1 + ρ)2 (3.28)

and both this variance and V ar(Y ) tend to 4 as ρ→ 1.

In conclusion, we can use Scenario 2 for correlated input by replacing input of interest, Xi,

with a function g(Xu\{i}) = E[Xi|Xu\{i}] if f is locally linear in Xi. This setting is also

useful for independent input cases. If inputs are independent then Xi does not depend on

Xu\{i} and we simply replace Xi with its expectation E(Xi).
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Figure 3.1: An illustration of locally linear. The red line in the small distribution curve

of P (X1|X2) indicates the function y = f(x1, x2) is linear. Nevertheless, it is not linear

on the other part of the blue curve.

§ 3.5 Shapley Effects

Owen (2014) proposed a new sensitivity measure based on the concept of the Shapley

value in game theory. This new measure can be used to guarantee that the sums of input

effects equal the output variance. Shapley value is used to evaluate the “fair share” of a

player in a cooperative game. Let us suppose that there is a set of players K = {1, ..., k},
where k is the number of players. There is a cost of involving players in the game and it

is denoted by c(.). If a subset of players J joins the game where J ⊆ K then the cost of

involving subset J is c(J).



54

The Shapley effect of player i with respect to cost, c(.), is defined as

Shi =
∑

J⊆K\{i}

(k − |J | − 1)!|J |!
k!

(c(J ∪ {i})− c(J)) (3.29)

where |J | indicates the size of J while K \ {i} denotes the subset of players not involving

player i in the game. In the context of global sensitivity analysis, the set of player K is

regarded as the set of inputs in a mathematical model, and a cost function c(.) involving

variance can be chosen. In this case, c(J) measures the variance of Y caused by the

uncertainty of the inputs in J . The cost value of ∅ and K are c(∅) = 0 and c(K) = V ar[Y ]

respectively. Owen (2014) suggested the cost function which suitable in term of global

sensitivity analysis. The cost function is

c(J) = V ar[E(Y |XJ)] (3.30)

Song et al. (2016) showed that using the cost function

c̃(J) = E[V ar(Y |XJ)] = V ar(Y )− V ar[E(Y |XJ)], (3.31)

where X−J = XK\{J}, results in the same Shapley value Shi. The choice of this cost

function will be interpreted similarly with total effect in the global sensitivity analysis.

Example 3.6.(Correlated inputs). Let us consider a model.

y = x1 + x2 + x3

and we define Y = f(X1, X2, X3) whereX1

X2

X3

 ∼ N

00
0

 ,
1 0 ρ

0 1 0

ρ 0 1




where −1 ≤ ρ ≤ 1. In this case, we have k = 3 and K = 1, 2, 3 and the possible subsets

of K \ {1} are {∅}, {2}, {3}, and {2,3}. The Shapley Effect formula for X1 is

Sh1 =
∑

J⊆K\{1}

(3− |J | − 1)!|J |!
3!

(c(J ∪ {1})− c(J))

=
∑

J⊆{∅,{2},{3},{2,3}}

(2− |J |)!|J |!
3!

(c(J ∪ {1})− c(J))
(3.32)
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The calculation of the Shapley effect forX1 was carried out by subtracting the cost function

involving X1 with the cost function of other possible subsets of K\{1} as follows

Sh1 =
2!0!

3!
(c({1})− c({∅})) + 1!1!

3!
(c({1, 2})− c({2}))

+
1!1!

3!
(c({1, 3})− c({3})) + 1!2!

3!
(c({1, 2, 3})− c({2, 3}))

=
1

3
(c({1})− c({∅})) + 1

6
(c({1, 2})− c({2}))

+
1

6
(c({1, 3})− c({3})) + 1

3
(c({1, 2, 3})− c({2, 3}))

(3.33)

We choose the cost function in (3.30) for each element in (3.33). The cost for each input

can be obtained as below.

c({∅}) = V ar[E(Y |X{∅})] = 0,

c({1}) = V ar[E(Y |X{1})]

= V ar[E(X1 +X2 +X3|X1)]

= V ar[X1 + E(X2) + E(X3|X1)]

= V ar[X1 + 0 + ρX1]

= (1 + ρ)2.

Similarly, we can obtain the cost function for the other inputs and their combinations:

c({2}) = 1, c({3}) = (1 + ρ)2, c({1, 2}) = c({2, 3}) = 2 + ρ2, c({1, 3}) = 2ρ2 and

c({1, 2, 3}) = 1 + 2ρ2. Therefore the Shapley effect for X1 is

Sh1 =
1

3
(1 + ρ)2 +

1

6
(2 + ρ2 − 1) +

1

6
(2ρ2 − (1 + ρ)2) +

1

3
(1 + 2ρ2 − 2− ρ2) = ρ2 +

1

3
ρ.

The Shapley effects for X2 and X3 are obtained using the same way, and the results are

Sh2 = 1− 1
3ρ and Sh3 = ρ2 + 1

3ρ.

3.5.1 Identifying unimportant inputs with Shapley Effects

As we notice in equation (3.29), the Shapley effect for Xi is calculated from the sum of

the incremental cost of adding input Xi to every possible subset. If Shi = 0 then there is

no incremental cost for adding input i to any subset J . This matches Scenario 1, where

we consider the incremental reduction in loss from learning Xi in addition to a subset of

inputs J . Therefore, if Shi = 0 we can conclude that Xi is unimportant within Scenario

1.
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Shapley effects for correlated inputs have a similar principle with the independent inputs.

When calculating the cost functions, the correlated inputs are treated as a conditional

variance.

The Shapley effect would not identify an unimportant input under Scenario 2, but an

individual term in the sum that defines Shi would. We can identify Xi as an unimportant

input using the cost function in the Shapley effect which satisfies the following condition

c(K\{i} ∪ {i})− c(K\{i}) = 0. (3.34)

§ 3.6 Distribution-based methods

According to Park & Ahn (1994) distribution-based sensitivity analysis (DSA) computes

sensitivity of the input random concerning the change in the distribution of output re-

sponse. These methods are also called moment-independent methods since we are not

analysing particular moments of the output distribution, as would do with variance-based

methods. Some of the methods using this approach are described in Chun et al. (2000),

Borgonovo (2007) and Plischke et al. (2013).

3.6.1 Difficulties with distribution-based methods: an example

The distribution-based methods might have a potential problem, especially with the dif-

ficulty of its interpretation. To illustrate the issue, let us consider the following example.

Example 3.7. Let us suppose a model with the interaction of two inputs

Y = X1X2

with X1 ∼ N(0, 1) and X2 is a discrete distribution where P (X2 = −1) = 0.5 and

P (X2 = 1) = 0.5. We can notice that the distribution of Y is also Normal (0,1) as,

in theory, the standard normal distribution remains the same if we multiply it by -1.

This means that learning the value of X2 will not change the distribution of Y . If we

identify X2 using the distribution-based methods, we see that it is an unimportant input.

Nevertheless, if we look at the model, we cannot say that X2 is unimportant as it still has

a value of learning the input because of its interaction with X1.
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3.6.2 Chun-Han-Tak Index

A sensitivity index that is based on moment independent and looks at the entire distri-

bution of the model output is developed by Chun et al. (2000). The name of the index is

Chun-Han-Tak (CHT) and is formulated as follows.

CHTi =

( ∫ 1
0 [y

i
α − yoα]dα]

)
E(Y o)

1/2

(3.35)

where yiα is the αth quantile of Y for the “sensitivity case” and yoα is the αth quantile of Y

for the base case. The base case is a case when we obtain the distribution of output with

all inputs included in the model with their distributions: the base case is the distribution

of Y = f(X1, . . . , Xp). The sensitivity case is a case when the distribution of output

is obtained by changing a particular input distribution in the model: we change the

distribution of Xi in some way (which could mean holding Xi fixed).

If we implement the CHT measure to Example 3.1, we will get the value of CHTs for X1

= 20.0371, X2 = 20.0371, X3 = 1.5338, and X4 = 0.032. Based on this result, the CHT

index correctly identifies that X1 and X2 has some effects.

3.6.3 Identifying unimportant inputs with the Chun-Han-Tak index

According to Example 3.1 above, a small CHT index does not guarantee unimportance

under Scenario 1. A small value of CHT index occurs when yiα ≈ yoα for ∀α and this is only

one part of the unimportance criteria in Scenario 1 which corresponds to L∗
{i} = L∗

{∅}. The

CHT index can be used for Scenario 2 if in the sensitivity case; we fix Xi as an appropriate

function of X−i.

3.6.4 Borgonovo’s δ and The Kolmogorov-Smirnov Index

Another distribution-based index was introduced by Borgonovo (2007). He developed an

index δi as following

δi =
1

2
EXi [s(Xi)] (3.36)

where

s(Xi) =

∫
y
|fY (y)− fY |Xi

(y)|dy (3.37)

We can see that s(Xi) is the shift of two distributions, fY (y) and fY |Xi
(y).
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A similar importance measure was proposed in Baucells & Borgonovo (2013), based on

the conditional distribution function rather than conditional density function:

βdi = E[d{FY , FY |Xi=xi
}] (3.38)

with d{., .} is a probability metric between the distributions. If we choose the Kolmogorov-

Smirnov distance

dKS{FY , FY |Xi=xi
} = sup

y
|FY (y)− FY |Xi=xi

(y)| (3.39)

we will obtain The Kolmogorov-Smirnov’s (K-S) importance measure

βKS
i = E[sup

y
|FY (y)− FY |Xi=xi

(y)|]. (3.40)

Baucells & Borgonovo (2013) explains that an advantage of βdi is that it is transformation

invariant: transforming the output (e.g. to a log scale) does not change the sensitivity

measure.

Let us recall the problem in Example 3.1 and apply these two measures. If we use Bor-

gonovo’s δ we will get the δs for each input δ1 = 0.0077, δ2 = 0.0077, δ3 = 0.0170, and δ4

= 0.0000. The delta indices for X1 and X2 are very small but they still have some effects.

X3 has the largest index amongst other input indicating it gives the effect to the output.

In contrast, X4 has the smallest index which is likely not having any effect to the output

Y .

Alternatively, if we use the K-S measures, we will obtain the value for each input βKS
1 =

0.0768, βKS
2 = 0.0772 , βKS

3 = 0.1580, and βKS
4 = 0.0061. According to these results, in-

puts X1 and X2 have some effects to the output Y although their indices are very small.X3

has the biggest effect on Y while X4 only gives a very small effect.

3.6.5 Identifying unimportant inputs with Borgonovo’s index and The

Kolmogorov-Smirnov index

We review the use of Borgonovo’s δ and K-S index for identifying unimportant inputs

based on our definition in Scenario 1 and 2. We observed that these measures do not

guarantee unimportance under Scenario 1, as they do not consider the comparison of

all possible subsets which includes Xi. They only consider one comparison of the loss

functions in Definition 1 which is L∗
{i} = L∗

{∅}.
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Under Scenario 2, the measures would work if Xi could be fixed at any constant without

changing distribution of Y , but they would not detect the case if we set Xi to be some

functions of X−i. Therefore, if we fix Xi = k then using Borgonovo’s measure, input

Xi is unimportant if it satisfies f(y) = fY |Xi=k(y) and using K-S measure if it satisfies

F (y) = FY |Xi=k(y). Nevertheless, if we set Xi = g(X−i) it is very unlikely that we would

obtain the condition such that f(y) = fY |Xi=g(X−i)(y) or F (y) = FY |Xi=g(X−i)(y). This is

because the density function and the distribution function will change given the value of

g(X−i).

§ 3.7 Conclusion

According to the review and comparison in this chapter, we can now tabulate the re-

lationship between the proposed scenarios and importance measures. The tabulation of

suitability between scenarios and importance measures are provided in Table 3.2.

Table 3.2: The suitability between proposed scenarios and importance measures

Importance Measures
Scenario 1 Scenario 2

Independent

Inputs

Correlated

Inputs

Independent

Inputs

Correlated

Inputs

Total Effect Indices ✓ ✕ ✓ ✓a

Shapley Effects ✓ ✓ ✕ ✕

Chun-Han-Tak ✕ ✕ ✓ ✓b

Borgonovo’s δ ✕ ✕ ✓ ✓b

Kolmogorov-Smirnov ✕ ✕ ✓ ✓b

aIf the function used is g(x−i) = E[Xi|X−i] and f is locally linear in Xi.
bIf the number of correlated inputs is small.

The table summarises that we would not expect a single importance measure to cover

all scenarios/cases because each measure has a different approach to expressing the input

unimportance. Total effect indices and Shapley effects identify unimportant inputs based

on the variance comparisons, including the input of interest with other subsets of input.

This type of comparison closely links with the Scenario 1 principle, which investigates

whether there is a value in adding input of interest to other subsets of input. Therefore, if
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the total effect and Shapley effects are zero, then all element comparisons in their formula

regarding the input of interest are zero including the interaction. These indicate that the

input is unimportant. Note that this does not apply to correlated input for the total effect

indices as the variance decomposition is not held when the inputs are correlated.

However, it is interesting to note that the total effect index comes close, as it also matches

Scenario 2. As discussed in Section 3.4.2, conditional expectation term, E(f(X)|X−i), in

Equation (3.25) can be replaced by the function of f(E(Xi|X−i),X−i). For independent

inputs, the function is in the form of f(E(Xi),X−i) and for dependent inputs, we can use

the function with the condition of locally linear must be fulfilled.

On the other hand, some importance measures such as Chun-Han-Tak, Borgonovo’s δ, and

Kolmogorov-Smirnov consider the differences in the unconditional distribution (quantile,

density, or cumulative) of the output with the conditional distribution of output given

the input of interest. These approaches match with Scenario 2 Definition 2, which com-

pares the probability distribution of the output with the probability distribution when

an input of interest Xi is set to the function g(X−i). The choice of this function for in-

stance g(X−i) = k as discussed in Section 3.6.5, or g(X−i) = E(Xi|X−i). In the case of

independent input, the later function simplifies to g(X−i) = E(Xi). Therefore, if δi = 0,

βKS
i = 0, or CHTi = 0 indicates that input Xi is unimportant under Scenario 2. When

inputs are correlated, then we can use g(X−i) = E(Xi|X−i) instead. Nevertheless, as

discussed in Section 3.6.5, if we use this function, it is difficult to satisfy the condition, for

example f(y) = fY |Xi=E(Xi|X−i)(y), as the conditional density function will always change

and depend on the rest of inputs. It is possible to have a similar condition if there are

only a few numbers of correlated inputs in the model.

The distribution-based methods are not suitable for Scenario 1, as we need to modify

these methods for appropriate comparisons. For example, if we want to investigate input

Xi to be an unimportant input, then there are some density comparisons for the input.

For example, if we use δi then we need to compute some different comparisons of density

functions. If we had three inputs in the model say Xi, Xj , and Xk where i ̸= j ̸= k, and

our interest is in identifying whether input Xi is unimportant, then we need to compute

some density differences as follows.

fY (y)− fY |Xi
(y),

fY |Xj
(y)− fY |Xi,Xj

(y), where i ̸= j, and

fY |Xj ,Xk
(y)− fY |Xi,Xj ,Xk

(y), where i ̸= j ̸= k.
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Thus, if we use one single function difference, it is not sufficient to conclude that an input

Xi is unimportant under Scenario 1. In other words, if δi in (3.36) is zero, it does not imply

that input Xi is unimportant under Scenario 1. A similar reason applies to Chun-Han-Tak

and Kolmogorov-Smirnov methods.





Chapter 4

Elicitation

§ 4.1 Introduction

This chapter explains the elicitation concept, including the definition, an example, and

some established elicitation protocols. The structure of this chapter is organised as follows.

Section 4.1 provides the chapter overview, Section 4.2 defines elicitation and its connection

with the computer models, Section 4.3 presents an example of elicitation with a single

judgment, Section 4.4 discusses the general elicitation process, Section 4.5 introduces some

existing elicitation protocols and Section 4.6 is the summary of this chapter.

§ 4.2 Elicitation and computer models

In the previous chapter, we presented the criteria for identifying unimportant inputs in the

mathematical or computer models. In this chapter, we will be focusing on the elicitation

of inputs in the computer models, which is essential before performing the sensitivity

analysis.

Complex computer models are advantageous to simulate actual physical phenomena; how-

ever, they are computationally expensive. Lee et al. (2011) used the emulation tech-

nique to reduce the computational time for analysing the global model of aerosol process

(GLOMAP). Using the emulation, the computer model is replaced by a statistical surro-

gate model to make the computation time more efficient. In the basic procedure of the

emulation study carried out by Lee et al. (2011), an elicitation step is included before

running the computer model. Although the elicitation of parameter uncertainties was not

63



64

carried out in the initial step in their study, this step will affect the model output and

influence the sensitivity analysis results. The following describes the fundamental concept

of elicitation.

Experts are often involved in supporting a decision-maker to make a decision in various

fields, such as in public policy or risk analysis. Their opinions or judgments are frequently

used as a fast and efficient way for assisting in making such decisions. Furthermore, the

expert’s judgment must be quantitatively expressed formally, i.e., statistical probability

distribution. This leads to a concept called elicitation.

According to O’Hagan (2019), elicitation is defined as the process of expressing expert

knowledge in the form of a probability distribution for uncertain quantities. Another def-

inition of probability elicitation represents subjective uncertainty about a fixed quantity

using a probability distribution. Therefore, the goal of the elicitation is to construct a prob-

ability distribution that properly represents the expert’s knowledge/uncertainty (O’Hagan

et al. 2006). The probability distribution produced from the elicitation is subjective to

an expert. Morgan (2014) provided a guideline on how to conduct a sensible elicitation

and how the best way to do the elicitation. Some experts involved in the elicitation might

provide different probability distributions based on their own judgments. Therefore some

elicitation protocols are required to combine the expert distribution. Some established

elicitation protocols such as SHELF, IDEA, and the classical model. Hanea et al. (2021)

made a review of the three established elicitation protocols regarding their characteristics.

The following section illustrates an example of elicitation for an uncertain quantity using

an individual judgment.

§ 4.3 An elicitation example

Let X be the proportion of all adults in Indonesia who will be regular smokers (at least one

cigarette per day) in 2030. In this example, the author’s own judgments will be elicited to

provide a probability distribution for this uncertain quantity X. In order to make sensible

judgments, it is worth searching for relevant time-series data available in the literature or

websites.

There are two sources of data that can be used to make appropriate judgments. The

first data set is from Statistics Indonesia which records the percentage of smokers aged

≥ 15 years from 2015 to 2020. The data was obtained from the annual Indonesian socio-

economic survey (Indonesia 2021). The second data set is obtained from research con-
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ducted by the Department of Research and Development for health, Indonesian Ministry

of Health (Health 2018). The research aimed to capture the prevalence of smokers aged

≥ 10 collected in 2007, 2010, 2013, and 2018.

(a) Percentage of smokers aged ≥ 15 years from Statistics

Indonesia

(b) Prevalence of smoker aged ≥ 10 years from reports of the

research and development, Ministry of Health

Figure 4.1: The trend of percentage of smokers recorded by two different institutions

The available data do not directly estimate the uncertain quantity X. The first reason

is that X should represent the adult smokers whose ages are ≥ 18 years. Secondly, the

available data are insufficient to predict adult smokers in 2030. The author will make a

judgment based on the data even if the range of ages includes the teenager, but it will

not reduce the proportion of adult smokers as the author thought that adults would more

likely smoke than teenagers.
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The first step of making a judgment is to consider the plausible range of X. Two bounds

need to be set up, the lower bound (L) and the upper bound (U). The plausible range

of X should lie between L and U with the probability greater than 98%, and it is very

unlikely that the value of X will fall below L or greater than U i.e., the probability of

those occurrences are less than 1%. In terms of probabilistic judgments, we can represent

them as P (L < X < U) ≥ 0.98, P (X < L) < 0.01, and P (X > U) < 0.01. The next step

is to implement the tertiles or quartiles method to make other judgments about the value

of X, which should lie inside the plausible range [L, U ]. In this example, the quartiles

method will be used and the expert will be asked to make their judgments about the value

of X based on Median (M), the first quartile (Q1), and the third quartile (Q3).

Based on the time series data in Figure 4.1a and Figure 4.1b, the author makes the

following judgments. The author believes that the proportion of smokers will fall unlikely

below 20% nor exceeds 40%; therefore, the author sets the L = 20% and U = 40%. The

next judgments on the quartiles will be bounded between 20 - 40%. According to the

figures, the proportions of smokers in six years were around 30%. Thus, the author judges

the median (M) to be 30% with Q1 = 26% and Q3 = 31%.

We can represent the judgment values in the form of cumulative probability distributions

as below.

P (X ≤ 26) = 0.25, P (X ≤ 30) = 0.5, P (X ≤ 31) = 0.75.

Next, we can use the quantile values to fit a distribution using an R package, SHELF. A

Beta distribution (a, b) was chosen as the general distribution of X whose values between

zero and one. The parameters θ = (a, b) are estimated numerically by minimising the

following function

H(θ) =
(
F (26; θ)− 0.25

)2
+
(
F (29; θ)− 0.5

)2
+
(
F (31; θ)− 0.75

)2
, (4.1)

where F (·; θ) is the cumulative distribution function of the Beta distribution with param-

eters θ = (a, b). In general, the estimates of parameter θ are achieved by

θ̂ = argmin
θ
H(θ).

The minimisation process in SHELF is done numerically using the Nelder-Mead optimisation

method to get the best estimates. The fitted beta distribution is shown in Figure 4.2.

The graph in Figure 4.2 indicates that the proportion of Indonesian adult smokers in 2030

has a Beta distribution with parameters (2.67, 3.17). The beta distribution plot indicates

that the proportion of adult smokers is likely to be around 29%.
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Figure 4.2: The fitted distribution Beta distribution of the initial judgment for X

Feedback is required to the fitted distribution to check whether the distribution satisfies

our judgment or not. To do so, we can compute the 1%, 10%, 90%, and 99% quantiles of

the fitted Beta distribution (2.67, 3.17) and observe the values. The values of the quantiles

are 0.0807, 0.2073, 0.7176, and 0.8735, respectively. The 1%, 10%, and 99% quantiles seem

to be sensible. However, it is very unlikely that the smoker proportion could be greater

than 0.9 quantile, i.e. 71.76%, which means more than half of the adults will be regular

smokers.

Therefore, another judgment to adjust X is made using the following values: L = 20%,

U= 45%, M = 28%, Q1 = 25%, and Q3 = 29%. Similarly, we can represent them as

cumulative distribution functions

P (X ≤ 25) = 0.25, P (X ≤ 28) = 0.5, P (X ≤ 29) = 0.75

and re-fit the distribution. The distribution of the later judgment fits with Beta (3.61,

8.26) as shown in Figure 4.3. The mode of the distribution indicates that the proportion

of adult smoker is likely to be 27%. Again, we clarify the distribution by computing

other quantiles. The results for quantiles 1%, 10%, 90%, 99% are 0.067, 0.144, 0.478, and

0.633 respectively. The proportion of adult smokers is very unlikely to be less than 6%

(1% quantile) or greater than 63% (99% quantile). There is a genuine possibility that

the proportion of smokers could be less than 14% (10% quantile) or greater than 48%

(90% quantile). Now, all four quantiles have confirmed the sensible proportions of adult

smokers.
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Figure 4.3: The fitted Beta distribution of the second judgment for X

§ 4.4 The general elicitation process

There are five steps of the elicitation process which are generally used for obtaining expert

probability distribution (O’Hagan et al. 2006). The steps are discussed below.

1) Background and preparation

The initial step of the elicitation process is to identify variables that are needed

to be elicited. The elicitation user or the client commonly carries out this step

with support from a statistician. Once the variables of interest have been identified,

the statistician or the facilitator of elicitation is able to understand the scope of

the field and the relevant expertise. Subsequently, a document is created based on

the background of the study and the identified variables as prior information for

the experts. The supporting documents such as the elicitation plan and a list of

questions are also prepared.

2) Identify and recruit experts

The next step is to identify suitable experts for eliciting the variables of interest.

According to O’Hagan et al. (2006), an expert should fulfill some criteria: (i) tangible

evidence of expertise, (ii) having a good reputation, (iii) availability and willingness

to participate, (iv) understanding of the general problem area, (v) impartiality, and

(vi) lack of economic or personal stake in the potential findings.
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3) Motivating and training the experts

Experts might have different backgrounds, and possibly it is the first time they make

judgments in the form of probability. Therefore, it is essential to provide sufficient

information about the elicitation to the expert. The information which can mo-

tivate experts involves the need of their appropriate judgments for supporting the

decision-making required by the client. In addition, the nature of uncertainty for

their judgments required to be minimised, and the way of expressing their judgment

into a probability distribution by the support of a facilitator. The elicitation training

for experts is then carried out to equip them with the following knowledge: Proba-

bility and probability distributions, information about the most common judgment

heuristics and biases, including advice about how to overcome them, and practising

an elicitation using a given example.

4) Structuring and decomposition

An effort to ensure elicitation works well when the expert is ready to do their task

elicits structure such as dependencies and functional relationships. The experts

should agree upon such a relationship before they are used to providing a similar

initial perception of the problem of interest. A precise definition of the quantity of

interest is essential for the elicitation process. This definition includes the measure-

ment unit of the variables. The expert will need to use some evidence or information

associated with the variables to make their judgments.

5) The Elicitation

The elicitation step is an iterative process that involves the following actions: Elicit

specific summaries of expert’s distribution, fit a probability distribution to those

summaries, and assess the adequacy: if the probability distribution is adequate then

it stops otherwise the process is repeated by asking the expert to make adjustment.
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§ 4.5 Elicitation protocols

The elicitation will produce a probability distribution based on the judgment made by an

expert. In the previous example, in Section 1.3, the author has performed an elicitation

to determine the proportion of Indonesian adult smokers in 2030, and the final judgment

is fitted by Beta (3.61, 8,26). Multiple experts might get involved in the real elicitation

and might arise additional problems: How to manage the interaction between experts?

Furthermore, how to produce a single distribution from the variety of expert distributions?

An elicitation protocol is then required to accommodate the issues. There are some estab-

lished elicitation protocols in the literature, such as IDEA, SHELF, and Cooke’s protocol

or classical model. The protocols are described as follows.

1) IDEA

The IDEA protocol was introduced by Hemming et al. (2018) and is an acronym of

Investigate, Discuss, Estimate and Aggregate, which represent the steps in under-

taking the elicitation. The elicitation involves multiple experts with an extensive

discussion between experts to obtain a group judgment.

The protocol advises the expert judgment is conducted in two rounds. In the first

round, the “Investigate” step, the experts are given a set of questions. The experts

should answer the questions in the form of probabilities or quantities (e.g. mean)

about the uncertain quantity X. These types of judgments (in the form of prob-

abilities or quantities) depend on format is used in the elicitation. There are two

elicitation formats in the IDEA protocols: the three-step elicitation and the four-step

elicitation. In the three-step elicitation, experts will be asked to provide the lowest,

the highest, and the best plausible probabilities of an event will occur. While in the

four-step elicitation the experts will need to provide three plausible quantities: the

lowest (L), the highest (U) and the best guess (B) for X and the expert also need

to specify the level of confidence (C). The data obtained from the first round using

the four-step elicitation method are then standardised using the following formulae:

Lower standardised level = B − ((B − L))× (S/C))

Upper standardised level = B + ((U − L))× (S/C))

where S is the level of credible intervals (typically to 80% or 90% credible intervals).

Next, the standardised values of the lower and upper levels and the best guess

value are aggregated using mathematical aggregation. In particular, one type of
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mathematical aggregation i.e., quantile aggregation, is used by taking the mean of

each of those values. Graphical feedback containing the expert’s responses and the

quantile aggregate is created and is reported to the experts.

The expert are invited to discuss the graphical feedback from Round 1. This step is

in the “Discuss” step by the guidance of a facilitator. The facilitator will clarify the

judgments made by experts by asking for their reason and evidence.

In Round 2, the “Estimate” step, the experts are given similar questions and are

asked to re-answer the questions. After attending the discussion session, they might

change or revise their judgments by providing their reason and comments.

The updated judgment results in Round 2 are aggregated similarly to Round 1, pro-

ducing the final aggregation estimate. This final aggregation is in the “Aggregate”

step.

2) SHELF

The SHELF protocol was developed by Oakley & O’Hagan (2019) and stood for

SHeffield ELicitation Framework. Multiple experts are also required to carry out the

elicitation, and a facilitator will assist the discussion between experts. Unlike the

IDEA, SHELF uses behavioural aggregation to obtain the expert’s group judgment

via a consensus. Each expert will be asked for their judgment about an uncertain

quantity using quantiles or tertiles, and a distribution will be fitted according to their

judgment’s values. Afterwards, all experts with their probability distribution will be

asked to make a consensus judgment from potential differences in their distributions.

This protocol uses an R package SHELF to fit the expert’s distribution which was

developed by Oakley (2020).

3) Classical Model

The classical model is referred to the Cooke’s protocol (Cooke 1991) which also

involves multiple experts to obtain a group judgment. A facilitator of the elicitation

must have a good understanding of the aggregation method but not necessarily have

the ability to manage the expert’s discussion. Likewise, in IDEA, the mathematical

aggregation is used to obtain the group judgment. In the classical model, the expert’s

initial judgments can be used to formulate an aggregate result. The aggregate result

is obtained by a pooling rule considering the weight of the expert’s performance on

making a judgment on seed variables (variables whose true values are known by the

facilitator).
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The number of experts involved in the structured elicitation, such as IDEA, SHELF, and

the Classical Model, will affect the aggregate result or the final distribution. Therefore, an

optimum number of experts recruited in the elicitation is essential to be predetermined.

Hanea & Nane (2021), and O’Hagan (2019) advised that the number of experts for all

protocols is anything between four and ten.

A formal elicitation framework requires a great effort as the experts are expected to gather

in a particular place and time. It is challenging as genuine experts are usually busy and

do not have much time to attend a long meeting. Additionally, some selected experts

might live in remote places that are not practical if they come to the specified place for an

elicitation. To overcome this issue, it is worth considering a remote elicitation. Grigore

et al. (2017) developed a tool for supporting this type of elicitation which is based on Excel

software called EXPert eliCItation Tool (EXPLICIT). The experts do not need to gather

in a specific place; instead, they are given a question template in which they can fill up

on their own based on their judgment, and the distribution will show up in the template

afterwards. The experts might revise their judgment if they feel the resulting distribution

is not appropriate.

Online training for experts is necessary to provide the background of elicitation to support

a remote elicitation. Training materials also consist of probability concept and probability

distributions, and also how to make a judgment in terms of probability. A very useful

online training of probabilistic judgments was provided by O’Hagan (2018b).

§ 4.6 Summary

Elicitation is a way of obtaining the expert’s qualitative judgment into quantitative in-

formation in the form of probability distributions about uncertain quantities of interest.

The method is very useful in supporting a decision-maker to make a fast decision when

the data or information is not available or insufficient. The data collection using standard

research methodology is expensive, or experiments are impractical.

Nevertheless, a formal elicitation workshop using protocols such as IDEA, SHELF, or

Classical Model is expensive to carry out in terms of time. In particular, the quantity of

interest that needs to be elicited will affect the duration of the elicitation process. If the

number of inputs in the mathematical models as the quantity of interest was very large,

say more than ten. The elicitation would be very time-consuming, even if it uses a remote

elicitation.
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To overcome this issue, it is worth thinking about prioritising the quantity of interest

that will be elicited. For instance, if we had ten inputs in the mathematical model as the

quantity of interest, then we might order them from the most important input to the least

important input. We might only choose the top five from the order of the inputs required

to be elicited and keep the rest of the inputs as they were less important in the model or

set them as constants. This strategy will save much time and make the elicitation more

efficient.

In conclusion, we need to prioritise the uncertain quantities (in this case, inputs in the

mathematical model) before the formal elicitation is carried out to choose based on the

priority which inputs will be elicited and which ones will not. The next chapter discusses

the methodology of prioritising expert judgments.





Chapter 5

Prioritising Elicitation and Robust

Global Sensitivity Analysis

§ 5.1 Motivation

The previous chapter discussed elicitation and reviewed some elicitation protocols. The

elicitation is a valuable technique for quantifying uncertain quantities when the data are

unavailable or insufficient. However, the process of conducting an elicitation is time-

consuming, especially when the number of uncertain quantities is large. In computer

models, uncertain quantities are present in the model’s inputs. If a model has many

inputs, the number of uncertain quantities to be elicited will also increase. Eliciting an

input means that the analyst should determine a suitable distribution, and it may not be

feasible to elicit all of the input’s distributions. Nevertheless, the analyst can elicit some of

the inputs. The issue is that the analyst should choose some inputs from the model to be

elicited. It means that the analyst needs to prioritise inputs before conducting elicitation.

The elicitation will only be performed for inputs that have a high priority, while inputs

with low priority will not be elicited. Based on this motivation, the research question is:

“How might the analyst prioritise the elicitation?”.

In this chapter, we will consider making prioritisation for input elicitation. We provide an

example to show whether it is correct to use sensitivity measures in the standard sensitivity

analysis for making such prioritisation. In addition, we also review some literature on

robust global sensitivity analysis to study how sensitivity analysis results will be affected

if the uncertainty in the input of a model changes. The following section discusses two
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types of distributions considered in this chapter, the analyst’s distribution and the expert’s

distribution.

§ 5.2 The analyst’s distribution and expert’s distribution

We now distinguish between two possible distributions for any input. The two distributions

are the analyst’s distribution and the expert’s distribution. The analyst’s distribution is a

distribution specified by an analyst using his or her own belief about the uncertainty of an

input. In comparison, the expert’s distribution is the distribution provided by an expert

about uncertainty in an input based on expertise. The analyst’s distribution is quick to

obtain but has high uncertainty. In contrast, the expert’s distribution is slow to obtain

but less uncertain.

To illustrate the two distributions, let us define a mathematical model y = f(x1, . . . , xp),

where p is the number of inputs. Inputs x1, . . . , xp in the model are uncertain and denoted

by X1, . . . , Xp. Because inputs are uncertain and the true value of input Xi is unknown,

using the elicitation concept, we can elicit the distribution for Xi, π(Xi). Let us suppose

that πA(Xi) and πE(Xi) denote the analyst’s distributions and the expert’s distributions

for input Xi. The analyst might specify a simple, crude and uninformative distribution

πA(Xi) with wide support from a to b. On the other hand, experts might specify another

distribution πE(Xi) that is more suitable, more informative, and might have narrower

support than the analyst’s distribution. The illustration of both distributions is shown in

Figure 5.1.

Figure 5.1: An illustration of an analyst’s distribution (πA(Xi)) and an expert’s distribu-

tion (πE(Xi)) for quantifying the uncertainty of an input. The distribution indicated by

a dash line is the analyst’s distribution and the distribution indicated by the solid line is

the expert’s distribution.
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In a mathematical or a computer model, there are p uncertain inputs and the analyst

or the expert should elicit all of those inputs. However, it is unlikely that all inputs are

equally important. Thus, it appears that we have another sensitivity analysis problem. It

is reasonable to rank inputs in the model based on their importance level, which is related

to the factor prioritisation problem in the previous chapter. Therefore we have questions:

Can we apply methods from previous chapters to decide how to prioritise expert elicita-

tion? Can we consider sensitivity analysis methods where input uncertainty is described

by πA(Xi)?

As an illustration, let us consider two inputs in a model, X1 and X2, and we want to

determine which inputs should be elicited by the expert. If the expert elicits X1 then the

distribution for X1 from the expert is πE(X1) and if expert elicits X2 then we will obtain

the distribution for X2 instead of X1, πE(X2). To decide which input should be elicited,

we might prioritise inputs using factor prioritisation based on their level of importance.

For example, the analyst might use the main effect measures for X1 and X2 based on the

analyst distribution πA(Xi). In this case, the analyst’s distribution for X1 and X2 are

πA(X1) and πA(X2) respectively. Applying the main effect formula, we will obtain the

main effect for X1 is

V1 = V arπA(X1)(E(Y |X1))

and the main effect for X2 is

V2 = V arπA(X2)(E(Y |X2)).

Based on this measure, we might elicit πE(X1) if V1 > V2. This is because the expected

reduction in the output variance in learning X1 is greater than X2 if we know the true

value of X1 and X2. However, another question will arise: Is it correct to prioritise inputs

using this approach for choosing inputs for elicitation?

In particular, we will not learn the true value of Xi; instead, we just obtain a differ-

ent distribution for Xi after elicitation from the expert where πE(Xi) is more informative

than πA(Xi). Does this difference in the distributions matter? We provide a counter-

example to show that main effects do not necessarily rank inputs in order of ’correct’

priority for elicitation.
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§ 5.3 A counter-example

In this example, we consider a non-linear function with two inputs x1 and x2. We created

our own function as a model for the counter-example purpose. The model is non-linear

by employing the sinus function and is additive where the first term involves x1 while the

second involves x2. The model has the following form.

f(x1, x2) = 10 sin
(10πx1

2

)
+

1

sin(2π/5)
sin
(
− πx2 +

π

2

)
, (5.1)

and we are interested in

Y = f(X1, X2)

with X1 and X2 are uncertain. For i = 1, 2 let

Xi = θi + ϵi (5.2)

with ϵ1 and ϵ2 are independent, and

p(ϵi = −0.1) = p(ϵi = 0.1) = 0.5.

In particular, the expert will change our distribution for Xi by telling us the true value of

θi but the expert will not change our belief about ϵi. For i = 1, 2, we think that expert

will either tell us θi = 0 or θi = 1, with probabilities

p(θi = 0) = p(θi = 1) = 0.5.

We use the main effect measures to make the prioritisation of inputs. We consider two

types of main effects calculation for the model in the counter-example. The first calculation

calculates main effects for X1 and X2 using the standard sensitivity analysis, while the

second calculates main effects for θ1 and θ2.

5.3.1 Main effects for X1 and X2

To calculate the main effects forX1 andX2, we need to determine the marginal distribution

for Xi. We use the list of possible values of Xi, θi and ϵi in Table 5.1 for obtaining the

marginal distribution for Xi.
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Table 5.1: Possible values for Xi given θi and ϵi

Xi θi ϵi

-0.1 0 -0.1

0.1 0 0.1

0.9 1 -0.1

1.1 1 0.1

According to Table 5.1 the conditional probability distribution for Xi = −0.1 and Xi = 0.1

given θi = 0 are 0.5 as there are only two possible outcomes of Xi when we know the true

value θi = 0. The conditional probability of Xi = 0.9 and Xi = 1.1 given θi = 1 are zero

as there are no possibilities of outcome Xi equals those values when we know the true

value of θi is equal to one. Thus, we obtain the probability for each value for inputs Xi

(which is the analyst’s distribution for Xi) as

p(Xi = −0.1) = p(Xi = 0.1) = p(Xi = 0.9) = p(Xi = 1.1) = 0.25.

Now, we compute the main effect for X1 and X2 as below. The main effect for X1 is

computed using the formula

V arX1

[
E(Y |X1)

]
= V arX1

[
E(f1(X1)|X1)

]
+ V arX1

[
E(f2(X2)|X1)

]
= V arX1

[
E(f1(X1)|X1)

]
= V arX1

[
f1(X1)

]
= E

[
f1(X1)

2
]
− E

[
f1(X1)

]2
.

In this case,

E
[
f1(X1)

2
]
=

∑
Xi∈RX1

f1(X1)
2 · 0.25

= 0.25 ·
[
f1(−0.1)2 + f1(0.1)

2 + f1(0.9)
2 + f1(1.1)

2
]

= 100,

and E
[
f1(X1)

]
= 0. Therefore, the main effect for X1 is

V1 = V arX1

[
E(Y |X1)

]
= 100

and the main effect for X2 is
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V2 = V arX2

[
E(Y |X2)

]
= 1.

The main effect for input X1 is bigger than X2 (V1 > V2), indicating the expected variance

reduction in the output if we learn the true value of X1 is much bigger than the one of

learning X2. Using this result, we will choose X1 to be elicited by the expert rather than

X2.

5.3.2 Main effects for θ1 and θ2

The second way for making prioritisation is by calculating the main effects for the param-

eters θ1 and θ2.The main effects for θ1 and θ2 are calculated as below

V arθ1
[
E(Y |θ1)

]
= V arθ1

[
E(f1(X1)|θ1)

]
+ V arθ1

[
E(f2(X2)|θ1)

]
= V arθ1

[
E(f1(X1)|θ1)

]
.

Let
[
E(f1(X1)|θ1)

]
= h(θ1), and we need to calculate

V arθ1
[
h(θ1)

]
= E[h(θ1)

2]− (E[h(θ1)])
2.

Since p(θ1 = 0) = p(θ1 = 1) = 0.5 then

E[h(θ1)
2] =

∑
θ1∈Rθ1

h(θ1)
2p(θ1)

= h(θ1 = 0)2p(θ1 = 0) + h(θ1 = 1)2p(θ1 = 1)

= 0.5 · [h(θ1 = 0)2 + h(θ1 = 1)2]

= 0.5 ·
[
E
(
f1(X1)|θ1 = 0

)2
+ E

(
f1(X1)|θ1 = 1

)2]
= 0.5 ·

[(
f1(−0.1)p(θ1 = 0) + f1(0.1)p(θ1 = 0)

)2
+
(
f1(0.9)p(θ1 = 1) + f1(1.1)p(θ1 = 1)

)2]
= 0.5

[
(−10× 0.5 + 10× 0.5)2 + (10× 0.5− 10× 0.5)2

]
= 0.

and E[h(θ1)] = 0. Therefore, the main effect for θ1 is

V arθ1 [E(Y |θ1)] = 0

and the main effect for θ2 is

V arθ2 [E(Y |θ2)] = 1.
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According to these results, the expected reduction in output variance from eliciting the

expert’s belief about θ1 is zero. This means that the analyst will not ask the expert to

elicit the distribution for X1; instead, the expert will be asked to elicit the distribution

for X2.

The conclusion now is contradictory with the previous main effects measures, V1 and V2.

We have shown through the counter-example that if V1 > V2 does not necessarily imply

better to elicit πE(X1). Therefore, the direct application of, e.g. main effects in the

sensitivity analysis using analyst’s distribution may not be appropriate.

Previously, we considered two distributions, the analyst’s distribution and the expert’s

distribution. The analyst will specify a ”crude” distribution for input Xi while the expert

will give a ”smooth” distribution. The expert’s distribution for a particular input Xi is

likely to differ from the analyst’s distribution, so the expert elicitation changes the distri-

bution for input Xi. There is also literature that considers changing the input distribution

on sensitivity analysis results, and the concept is called robust sensitivity analysis. We

will now review some of this literature to investigate if anything might be applied to our

problem.

§ 5.4 A review on robust global sensitivity analysis methods

In general, we denote the distribution for input Xi as P (Xi). Changing P (Xi) might

change V ar(E(Y |Xi)) but not the V ar(E(Y |Xi))
V ar(Y ) because if V ar(E(Y |Xi)) changes, then

V ar(Y ) can change too. Thus we would be more interested in V ar(E(Y |Xi)) when using

robust sensitivity analysis. How might Robust sensitivity analysis method helpful in terms

of the following points?

(a) Useful methods for modifying P (Xi), or describing range of distributions for Xi.

(b) Useful measures of robustness.

(c) Useful computational tools for doing GSA with lots of different input distributions.

The following are a review of some robust GSA methods in the literature.

5.4.1 Gao & Bryan method

Gao & Bryan (2016) proposed robust sensitivity indicators based on concepts from decision

theory, such as maximax, weighted average, minimax regret, and the limited degree of
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confidence. In the first stage of the analysis, GSA was carried out to analyse a Land-Use

Trade-Offs (LUTO) model with 50 inputs. The GSA is conducted for a scenario with a

specific setting for the input parameter distributions. The influential inputs are identified

using the main effect index and the total effect index. The GSA is then repeated for the

other scenarios with different input parameter distributions. The result of the first stage

of the analysis is a small number of inputs influential to the output for each Scenario.

The subsequent analysis stage is to apply the robust sensitivity indicators: maximax,

weighted average, minimax regret and the limited degree of confidence. These indicators

are calculated based on the total effect indices to determine which inputs are robust

regarding their effect on the output for all scenarios.

Example 5.1. To illustrate minimax regret, let us consider the following model.

y = x1 + x2 + x1x2

where input xi are uncertain and have three scenarios as follows:

(a) X1 ∼ N(0, 1) and X2 ∼ U(0, 1)

(b) X1 ∼ N(0, 2) and X2 ∼ U(0, 4)

(c) X1 ∼ N(0, 4) and X2 ∼ U(0, 12)

The objective of the minimax regret is to determine which choice of input distribution is

the most robust. The regret is computed using the total effect index. The total effect

indices for each Scenario is shown in Table 5.2.

Table 5.2: Total effect indices for each Scenario

Scenario ST1 ST2

a 0.9656 0.0692

b 0.9691 0.1559

c 0.9883 0.2081

A robust sensitivity indicator, minimax regret, is applied to the example. The regret is

calculated based on the absolute difference of the total effect indices from two scenarios

(Scenario a and b) as below.

ra,b = |ST i,a − ST i,b| (5.3)
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A scenario which has the lowest maximum regret value is chosen using the following

argument

min
a

(
max

b
(ra,b)

)
(5.4)

and the calculation is indicated using Tables 5.3 and 5.4 below.

Table 5.3: Regrets for total effect index X1

Scenario a Scenario b Scenario c max

Scenario a 0.0000 0.0035 0.0227 0.0227

Scenario b 0.0035 0.0000 0.0192 0.0192

Scenario c 0.0227 0.0192 0.0000 0.0227

Table 5.4: Regrets for total effect index X2

Scenario a Scenario b Scenario c max

Scenario a 0.0000 0.0867 0.1389 0.1389

Scenario b 0.0867 0.0000 0.0522 0.0867

Scenario c 0.1389 0.0522 0.0000 0.1389

According to Table 5.3, the minimum of the maximum values of regrets for X1 is 0.0192

which indicates that Scenario b satisfies the minimax regret indicator. Similarly, for input

X2 in Table 5.4, the minimax regret indicator chooses Scenario b. In other words, Scenario

b is chosen for input X1 and X2 to minimise the regret (opportunity loss) of accepting

total effect indices that does not occur. As a result, the total effect indices obtained from

Scenario b, are selected to represent the robust sensitivity indicators and are written as

Sreg
RT1

= 96.91% and Sreg
RT2

= 15.15%.

If different scenarios are the minimax regrets for input X1 and X2, then we can use these

scenarios to perform robust sensitivity analysis. There might be a case when we can choose

more than one scenario because the minimax regrets for input X1 and X2 are similar for

these scenarios. If the minimax regret for X1 lead to a different choice of scenario than

for X2, one might set some other scenarios with different choices of the input distribution

and repeat the analysis. If we cannot change the distribution of inputs and define other

scenarios for some reason, then we do not have scenarios for robust sensitivity analysis.

In this case, the scenario might be provided by experts or it may not realistic if the

distribution of inputs is changed.

The similarity of Gao & Bryan method with the elicitation is it considers the different
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possibilities of input distributions. In the elicitation, we also consider two different distri-

butions, the analyst’s distribution (πA(Xi)) and the expert’s distribution (πB(Xi)).

The difference between Gao & Bryan method and the elicitation is, in the elicitation, if

πA(Xi) and πE(Xi) are both known, we will choose πE(Xi). In the initial analysis, we

begin with the πA(Xi) while πE(Xi) is unknown.

In conclusion, if we propose possibilities for πE(Xi), we could use regret (perhaps based on

Var(Y) rather than total effect) to measure switching from πA(Xi) to πE(Xi). We would

need our own method for proposing possibilities for πE(Xi). For instance, in Example 5.1,

suppose the analyst’s distribution is Scenario (a). The expert will either give us (b) or

(c). Given the distribution possibilities, we can use maximax regret to choose either X1

or X2 as the most important elicitation input.

5.4.2 Lacirignola et al. method

Lacirignola et al. (2017) developed a methodology to inspect the sensitivity of global

sensitivity analysis. They considered a model called the life cycle assessment (LCA) model.

The inputs of the model were analysed by considering different types of distributions. The

GSA was performed using a one factor at a-time approach for repeating the analysis. In

the first iteration of GSA, the inputs are set into their baseline distributions, and the

Sobol’s indices were computed. The inputs are then ranked based on the largest index

to the lowest. The second iteration of GSA was carried out by changing the first input

by an alternative distribution while other inputs were set to their baseline distributions.

The Sobol’s indices were recalculated, and the inputs were re-ranked according to the

new indices. This analysis is repeated for other inputs, and the sensitivity of the input

ranking based on different input distribution sets is investigated. The key parameters are

determined based on the ranking. The key parameters are inputs that have the highest-

ranking positions. The number of key parameters is determined by summing the Sobol’s

indices of the inputs, and it exceeds the required percentage of the overall variability of

the output, for instance, 60%. The inputs that are not included in the key parameter are

called the non-key parameters. The effect of the modification in the input distributions is

observed during the GSA iteration. Suppose the change of the input distribution affects

the input status from key parameters to non-key parameters. In that case, the input

influences the identification of the key parameters.

The focus of the Lacirignola et al. method was to investigate whether the importance of

input will change as we change the input distribution. On the other hand, our situation
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is that input could be consistently important under πA(Xi) or πE(Xi), but changing from

πA(Xi) to πE(Xi) has little effect. Therefore, it does not necessarily give priorities for

elicitation.

5.4.3 Borgonovo et al. method

Borgonovo et al. (2018) investigate the impact of relaxing the unique distribution assump-

tion on the classical functional ANOVA expansion. As we know that functional ANOVA is

used based on the unique probability distribution assumption for factors or inputs. How-

ever, this assumption does not always hold due to some situations, such as insufficient data,

different expert opinions, or measurement errors. Therefore, there might be some possible

set of the probability distribution for inputs that the analyst can apply. Suppose that

analyst have w plausible set of probability distribution for inputs, P = (P 1
X(x), ..., Pw

X(x)),

where X = (X1, ..., Xp). As a result, the associated functional ANOVA is potentially

different, and the sensitivity measures produced from each functional ANOVA are eval-

uated for robustness. There are two ways used for evaluating the sensitivity measures

based on the probability input set, called without-prior path and with-prior path. In the

without-prior path, the model is evaluated for each P i
X(x), and the sensitivity measures

are obtained. Whereas, in the second path, the analyst assigns a prior for P i
X(x). The

robustness of sensitivity analysis is discussed in these two paths in the context of sen-

sitivity analysis settings such as factor prioritisation. The setting for the robust SA in

without-prior path is We are asked to bet a model input if fixed to its true value, would

lead to the greatest expected reduction in the variance of the output under all pm in P.
A robust factor prioritisation setting searches for model inputs that satisfy the following

condition:

S i > S̄j , for all j ̸= i, j = 1, ..., n, (5.5)

where

S i = suppm∈PS
pm

i and S̄j = infpm∈PS
pm

i . (5.6)

In the with-prior path, the analyst can average the sensitivity indices over the probability

measures in P.

There is slight suitability in the perspective of the with-prior approach with our concept.

The analyst has some sets of input distributions, and because one is uncertain about the

inputs, then a prior is assigned. In our case, the posit distributions are obtained from

experts, and as the analyst does not know what distribution that expert will provide, then

the prior is assigned to the parameter of the input distribution. The difference would
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be the effect of a different set of input distributions investigated through the resulting

sensitivity indices in Borgonovo et al. (2018). While in our cases, the effect of changes in

individual input distribution from the analyst distribution πA(x) to the expert distribution

πE(X) becomes our concern.

5.4.4 Meynaoui et al. method

Meynaoui et al. (2019) employed the Hilbert-Schmidt Information Criterion (HSIC) sensi-

tivity analysis measures for performing GSA and developed it to second-level GSA (GSA2).

The HSIC is estimated using a sample generated from a probability distribution of inputs,

not their prior distribution. This sampling distribution is called the alternative law or the

modified law. The GSA is not repeated in this method, but inputs are generated using

the importance sampling.

We do not provide details of this sensitivity as HSIC is too technical to be discussed in

this section. We note that the Meynaoui et al. method measure can be re-computed

for different input distributions using importance re-weighting. However, importance re-

weighting needs two distribution functions to be similar, and it will not work if the two

distributions are different in their supports. In our cases of elicitation, importance re-

weighting is unlikely to help with the computation if πA(Xi) and πE(Xi) are very different.

5.4.5 Hart & Gremaud method

The method proposed by Hart & Gremaud (2019a) and Hart & Gremaud (2019b) aimed

at quantifying the robustness of Sobol’s indices to changes in the input distributions. Let

us assume a baseline distribution φ(x), and the alternative distributions are not directly

specified. A Frechet derivative of the Sobol index is derived with the input distribu-

tion evaluated at φ(x). Next, we find that the direction of perturbation maximises the

derivative. Afterwards, compute the Sobol’s index at a perturbed input distribution some

distance along this direction. There is a restriction on the perturbation as follows. Sup-

pose the baseline distribution for d inputs is represented as φ = (φ1, . . . , φd) and there is

another function ψ = (ψ1, . . . , ψd) ∈ V with ||ψ − φ||V ≤ 1. In addition, ψi, is a function

with the following norm

∥ ψi ∥Vi = ∥
ψi

φi
∥L∞(Ωi) (5.7)

= sup
x

{ψi(x)

φi(x)
| x ∈ Ωi

}
(5.8)
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In other words, ∥ ψi ∥Vi describes how far ψi from φi. If ∥ ψ − φ ∥V≤ 1 then

sup
x

{ψi(x)

φi(x)
− φi(x)

φi(x)
| x ∈ Ωi

}
= 1

sup
x

{ψi(x)

φi(x)
− 1 | x ∈ Ωi

}
= 1

sup
x

{ψi(x)

φi(x)

}
= 2,

so ψi(x) ≤ 2φi(x) ∀x. The implication for the alternative distribution due to the restriction

is

0 ≤ ψ(xi) ≤ 2φi(x).

For an illustration, let the baseline distribution, φ(xi), is a uniform distribution and the

alternative distribution, ψ(xi) is also uniform. The maximum possible values of ψ(xi) are

twice as φ(xi) as shown in Figure 5.2.

Figure 5.2: An illustration of alternative uniform distribution

The Hart & Gremaud method is useful for constructing perturbations of πA(Xi) but

may not be appropriate for considering large changes from πA(Xi) to πE(Xi) due to the

maximum constraint of distribution ψ(xi). The large changes are likely to happen as

the analyst does not know about the expert’s distribution, so our emphasis here is on

measuring differences between distributions.

5.4.6 Gauchy et al. method

Another method was proposed by Gauchy et al. (2020). This method considered a general

uncertainty quantification for f(X), e.g. 95th percentile of f(X). The method started

with the probability distribution P (X) and we wish to consider perturbation of P (X).
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For example, if P (X) = P1(X1)P2(X2) with X1 ∼ N(m, v) and X2 ∼ Beta(a, b). What

would equivalent perturbation of P1(X1) and P2(X2) be?

Gauchy et al. (2020) proposed to use a Fisher distance for comparing the distance between

the two distributions, the initial distribution and the perturbed distribution. For the

robustness measure for the uncertainty quantification or sensitivity measure of interest,

they suggest finding the maximum and the minimum values overall distribution that is

the same Fisher distance from P (X).

The method of Gauchy et al. considers the small changes in the distribution of Xi by

the perturbation parameter δ. The perturbation will not change the distribution of P (X);

instead, it will change the parameters of the input distribution. In elicitation, the analyst’s

distribution may change to another distribution when experts elicit inputs. Thus, the

Gauchy et al. (2020) method is not suitable to describe the switching distribution between

πA(Xi) to πE(Xi).

§ 5.5 Conclusion

To sum up, the methods presented above have their values in the robustness analysis.

In most papers, the uncertainty in the input distributions was investigated using small

changes in their probability distributions called perturbation. In our case of prioritising

inputs for elicitation, we need a method that considers significant changes in the input

distributions from the analyst’s distribution to the expert’s distribution.



Chapter 6

Sensitivity Analysis for Expert

Judgment

§ 6.1 Introduction

In Chapter 5, we introduced the problem of prioritising elicitation. Now, we develop

a novel model for expert judgment/opinion. The outline of this chapter is as follows.

Section 6.2 provides the current context of our models for expert judgement. Section 6.3

reviews some models for the expert opinion. Section 6.4 proposes a new model for expert

judgement called The Beta Model. Section 6.5 discusses an example of the importance

of expert uncertainty in the Beta model. Section 6.6 provides the computational method

for computing sensitivity measures in the Beta Model, and Section 6.7 explores factors

involved in the computational method through some numerical experiments.

§ 6.2 Models for expert judgement

The previous chapter introduced two types of subjective probabilities: the analyst’s distri-

bution, πA and the expert’s distribution, πE . The analyst’s distribution is a distribution

specified by an analyst for describing the uncertainty of an input in a mathematical model

or a computer model. πA might be non-informative as the analyst has limited knowl-

edge about uncertain quantities in the model. In contrast, the expert’s distribution is

a distribution elicited by experts based on their knowledge and expertise. The expert’s

distribution is more informative as it is elicited based on the expert’s experience and bet-

89
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ter knowledge of uncertain inputs. We consider these two types of distributions as they

have advantages and disadvantages, which has been discussed in Chapter 5. However, the

expert’s distribution is still superior to the analyst’s distribution. If available, the analyst

will use the expert’s distribution instead of his or her own distribution for analysing the

model.

As discussed in the previous chapter, eliciting all input distributions in a model is not

feasible. Therefore, we proposed input prioritisation for elicitation. The input is a priority

for elicitation if changing from πA(Xi) to πE(Xi) has a large effect on P (Y ). Inputs

that are not the elicitation’s priority will use the analyst’s distribution to describe their

uncertainties. Thus, to prioritise the input for elicitation, the analyst needs to know about

πE(Xi). The issue here is that the analyst will not know about πE(Xi); hence, πE(Xi)

is uncertain. The analyst needs to consider what πE(Xi) could be. The analyst needs a

model for πE(Xi) which is called a model for expert opinion.

A few models for expert opinion have been proposed in the literature, and the development

of such models was also specific for certain settings. In the next section, we present some

available models for expert opinion.

§ 6.3 Models on expert opinion

This section reviews two models for expert opinion from the literature: The Lindley,

Tversky, and Brown model (LTB model) and The Gelfand-Mallick-Dey (GMD) model. We

want to investigate whether the models are practical compared with our expert judgement

model.

6.3.1 The LTB model

Lindley et al. (1979) proposed a model to reconcile incoherent probability assessment:

the case when the probabilities are not consistent with the probability laws; and their

approach was developed in French (1980). We call the model of Lindley et al. (1979) as

Lindley, Tversky, and Brown (LTB) model. The model is described as follows.

Suppose there is a sequence of uncertain events A = (A1, A2, . . . , Am). A person has

an underlying coherent probability distribution π(A), but instead of reporting π(A), the

person reports a distribution q(A), which may not be coherent. The model contains three

elements: A, π(A), and q(A). In this case, π is the ‘true’ probability which is not directly
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known, while q is observable or directly stated by the person.

Next, consider an investigator whose tasks are to reconcile the person’s stated values q

and assess π. From the investigator’s point of view, A, π, and q are uncertain and can be

represented as a joint probability distribution p(A, π, q). The joint probability distribution

can be viewed in three stages: First, p(A) and then p(π|A), lastly p(q|π,A). Assuming

that the conditional distribution q given π does not depend on A, the last expression of

probability can be written as p(q|π).

For simplicity, suppose A is a single event so that a single probability specifies π(A). We

now define π and q as the person’s ‘true’ and stated log-odds for the event A.

Lindley et al. (1979) model consist of three elements: p(A), p(π|A) and p(q|π). In this

case, p(A) is the investigator’s probability about the event A, p(π|A) is the investigator’s

opinion of the person’s knowledge of the event, and p(q|π) is the investigator’s opinion of

the person as a probability assessor.

The first probability, p(A), is the standard probability for an event A will occur where

0 < p(A) < 1. For the second probability, p(π|A), is assumed to be normal in log-odds

with mean µ1 and variance τ2. If event A does not occur then the probability p(π|Ā) is

assumed to be normal with log-odds µ2 and variance τ2. The last distribution, p(q|π), is
assumed to be normal N(π, σ2) in log-odds, with mean π and variance σ2. Therefore the

LTB model can be written as below.

i. p(A) = α, where 0 < α < 1,

ii. log
(
π|A

)
∼ N(µ1, τ

2), log
(
π|Ā

)
∼ N(µ2, τ

2),

iii. log
(
q|π
)
∼ N(π, σ2).

The authors go on to consider two cases: one in which the investigator derives p(π|q) and
another in which the investigator derives p(A|q). For example, using the Bayes’ theorem

we obtain

p(π|q) = p(q|π)p(π)∑
π p(q|π)p(π)

=
p(q|π)

(
αp(π|A) + (1− α)p(π|Ā)

)
αp1(q) + (1− α)p2(q)

where pi(q) =
∑

π p(q|π)pi(π). According to standard normal theory, we will obtain

π|q ∼ N((wq + (1− w)µi), wσ2)
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where w = τ2/(σ2+ τ2). We will also obtain pi(q) ∼ N(µi, σ
2+ τ2). Consequently, p(π|q)

is a mixture of normal distributions.

Applying the LTB model

In this section, we want to investigate how to use the LTB model to get a model for

an expert distribution πE(Xi). According to the LTB model, we would need to make a

partition of the sample space of input Xi, A, into m parts as

A = (A1, . . . , Am),

where Ai is the i-th partition of the sample space of Xi.

Next, we might assume for simplicity that πE(Xi) is a piece-wise uniform. The ana-

lyst considers probabilities for each partition in A, P (A1), . . . , P (Am) and then needs to

consider a model for

πE(A1), · · · , πE(Am)|Xi, for i = 1, . . . , p,

where p is the number of input. This is a difficult modelling exercise as the analyst

should think and specify many probabilities for a single input. Therefore, we develop an

alternative model which is more practical.

6.3.2 The GMD model

Gelfand et al. (1995) used a partial probabilistic specification to elicit a distribution for an

uncertain quantity θ. In this approach, an expert could provide probabilities for a small

collection of disjoint complete intervals in the domain of θ or a small set of quantiles for

the distribution of θ. They proposed using a family of mixtures of beta distributions to

model experts’ opinions.

Suppose we are interested in an unknown quantity θ ∈ Θ. The domain Θ is partitioned

onto k sets and determined by points such

α0 < α1 < . . . < αk

where α0 = inf{θ ∈ Θ} and αk = sup{θ ∈ Θ} and define Ij = (aj−1, aj).

The expert can provide either a set of probabilities pT = (p1, . . . , pk) or a set of quantiles

qT = (q1, . . . , qk) for θ. We will focus on the former case. In this case, pj is the expert’s



CHAPTER 6. SENSITIVITY ANALYSIS FOR EXPERT JUDGMENT 93

probability for θ will be in Ij . Therefore, we suppose that p1 = P (α0 < Xi < α1), p2 =

P (α1 < Xi < α2), . . . , pk = P (αk−1 < Xi < αk).

Gelfand et al. (1995) scaled θi into an interval (0, 1). A mixture of beta distributions can

arbitrarily well approximate a distribution on (0, 1):

θi|wi ∼
r∑

l=1

wlBeta(αl, βl) (6.1)

where wl is a random weight for each Beta distribution, αl and βl are Beta distribution

parameters for each mixand. The αl and βl parameters are fixed, and only the weights

which are uncertain with density fw(r).

The advantage of the model is that it can model multiple distributions from experts in

the domain of θ. The disadvantage of the model is, however, the number of mixands r

required to induce p is quite large. Gelfand et al. (1995) found that r = 10 is sufficient to

approximate the density of f(p|θ). Consequently, we need to cope with high-dimensional

mixture density.

This approach may be easier to apply than the LTB model to our setting. However,

specifying the analyst’s prior on the weights may be complex. Therefore, we will develop

a more straightforward method in this chapter.

§ 6.4 The Beta Model

We propose a new model for the expert opinion, which we call the Beta Model. As

mentioned previously, it is implausible that an expert will provide a true value for an

input distribution. Instead, the expert will provide an informative distribution for Xi.

What might the expert tell us?

Experts could be reasonably certain or somewhat uncertain about their beliefs. Eliciting

an expert’s input distribution Xi would result in Xi ∼ P (Xi|θi), where θi is an unknown

parameter of expert’s distribution. The analyst is uncertain about θi because the analyst

does not yet know what the expert believes about Xi. Thus, the analyst could specify a

prior for the parameter θi, denoted by P (θi).

Now we present how the Beta model is developed. Initially, the analyst specifies lower

and upper bounds, L and U , respectively. The analyst considers that experts will provide

means anywhere between the lowest bound, L, and the highest bound, U . Experts might
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also provide means within a lesser range (L + ϵ, U − ϵ), with a small number ϵ > 0. See

Figure 6.1 for the illustration.

Figure 6.1: A possible range of expert’s means for uncertain inputs Xi. Expert might give

means anywhere between L and U . Analyst expects that expert’s means will fall within

the interval of [L+ ϵ, U − ϵ], for instance µ(1) and µ(2). Expert’s means will have a small

probability to be outside of the interval, for example µ(3).

We propose The Beta model to be a distribution model for expert judgment. The Beta

model assumes that an expert will provide a distribution for inputXi | αi, βi ∼ Beta(αi, βi)

so that θi = (αi, βi). The Beta distribution is chosen as an expert’s model as it can reflect

any possible curve shapes experts might provide. The scale and the shape parameters can

control the density function of the distribution in a large variety of forms. Therefore, it can

represent symmetric distributions, skewed distributions (positively skewed and negatively

skewed distributions), exponential distributions, and heavy-tailed distributions. Other

distributions, such as gamma or log-normal distribution have flexible curves as well. How-

ever, these distributions are only for positively-skewed distributions and can not represent

expert opinion when it fits with a negatively-skewed distribution.

Now we introduce the beta model in detail as follows. The mean of the beta distribution

is

µi = E[Xi|αi, βi] =
αi

αi + βi
. (6.2)

Analyst specifies priors for µi as αi and βi are uncertain. Analyst might suppose that µi

is scaled to uniform distribution as follows

µi ∼ U [L+ ϵ, U − ϵ] (6.3)

where ϵ is a small positive value.
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Next, we define another parameter for the Beta model. The variance of Beta distribution,

var(Xi|αi, βi) is related to the sum of αi + βi. Let us suppose that analyst is uncertain

about order of magnitude of αi + βi. We define

φi = αi + βi,

and suppose

log10φi ∼ U [a, b] (6.4)

where a and b are the lower bound and the upper bound respectively.

If we want to assess the value of learning Xi, we need to obtain the predictive distribution

of Xi from the Beta Model. The predictive distribution for Xi is

P (Xi) =

∫
φi,µi

P (Xi|φi, µi)P (φi, µi)dφiµi, (6.5)

where P (Xi|φi, µi) is the prior distribution that the expert would provide and P (φi, µi)

is the analyst’s prior for the expert’s prior distribution.

§ 6.5 Importance of expert’s uncertainty

In the Beta model, we assess the value of eliciting beliefs about Xi by measuring the

importance of µi and logφi. However, does uncertainty about the expert’s uncertainty, in

this case, log φi, matter? Would it be sufficient only to measure the importance of µi?

Example 6.1. To investigate the questions, we can illustrate how the Beta model works

by comparing the effect of the parameter involved in the main effect computation. Let us

consider the following simple function.

y = x1 + x2.

The inputs are uncertain and denoted by X1 and X2, and we are interested in

Y = X1 +X2

Using the Beta Model, we will elicit Xi by the Beta distribution approach as follows.

Xi|α, β ∼ Beta(α, β)

with

µi = E(Xi) =
α

α+ β
∼ U [a, b]
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and φi = αi + βi, and logφi ∼ U [c, d]. We note that the variance of Beta Distribution is

Var(Xi) = σ2i =
αβ

(α+ β)2 + (α+ β + 1)
=

αβ

φ2 + φ+ 1

We use the variance-based approach to show whether there is a value of learning logφi or

not. The expected reduction in the output variance for learning logφi is

V arlogφi
[E(Y |logφi)] = E[(X1 +X2|logφi)]

= V arlogφi
[E(X1 +X2|logφi)]

= V arlogφi
[Eµ1,µ2 [E(X1 +X2|µ1, µ2, logφi)]

= V arlogφi
[Eµ1,µ2(E(X1) + E(X2)]

= V arlogφi
(µ1 + µ2)

= 0

The result indicates that there is no value of learning logφi in this model. Let us consider

another model which is non-linear in X1 as below.

Y = X2
1 +X2

and we calculate the expected reduction in the variance of the output of learning logφi as

V arlogφi
[E(Y |logφi)] = E[(X2

1 +X2|logφi)]]

= V arlogφi
[E(X2

1 +X2|logφi)]]

= V arlogφi
[Eµ1,µ2 [E(X2

1 +X2|µ1, µ2, logφi)]]

= V arlogφi
[Eµ1,µ2 [(E(X2

1 ) + E(X2)]]

= V arlogφi
[Eµ1,µ2 [V ar(X1) + E(X1)

2 + E(X2)]]

= V arlogφi
(σ21 + µ21 + µ2)

= V arlogφi

( αβ

φ2 + φ+ 1

)
̸= 0.

We can conclude that there is a value of learning logφi if the model is non-linear. Thus,

the uncertainty in the logφi can matter if the model is non-linear. In this case, it would

not be sufficient to measure the importance of µi only and it requires to measure the

importance of logφi.

We continue this example and now consider which distribution is better to be elicited,

πE(X1) or πE(X2) for both models? In order to do so, we will focus on uncertain quantities
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(µi, φi), where i = 1, 2. Eliciting input Xi corresponds to learning (µi, φi). We use

main effects to evaluate the importance of (µi, φi). We use a Monte Carlo simulation for

computing the main effects for mµiφi to scrutinise the answer. For this purpose, we use

the number of sample 100,000 and we made assumption for the input distributions. X1 is

normally distributed (2, 2) while X2 has a Uniform distribution (1, 5). The main effects

mµiφi is computed for the model y = x1 + x2 and y = x21 + x2. The results are presented

in Figure 6.2.

(a) Main effects for µ1, φ1 and µ2, φ2 for a linear model

y = x1 + x2.

(b) Main effects for µ1, φ1 and µ2, φ2 for a non-linear

model y = x21 + x2.

Figure 6.2: Main effects for learning whether the distribution for X1 or X2 that is better

to be elicited. Figure (a) displays main effects for the linear model and Figure (b) Main

effects for non-linear model.

According to Figure 6.2b, the distribution of X1 is better to be elicited rather than X2 as

the main effects for µ1, φ1 is bigger than µ2, φ2.

We have considered a simple example to investigate whether uncertainty in learning log
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φi matters in linear and non-linear models using main effects. We have also shown which

inputs should be elicited from both models using the main effect measures.

Nevertheless, as shown in Chapter 3, a small main effect does not imply that input is

unimportant. Let us look back to the conclusion from Scenario 1 in Chapter 3 in Table

3.2. We can say that input is unimportant in the case of independent input if total effects

are zero instead of using main effects.

We now consider another measure used to investigate appropriate inputs to be elicited.

We choose to consider Borgonovo’s δ. The concept of δ has been discussed in Chapter 3,

and now we consider the computation.

In order to assess the value of learning σ2i using δ index, we need to compute the index

for Xi, µi, σi, and µiσi and compare their values. If δ(σ2i ) is relatively big compare with

δ(µi) and δ(µiσ
2
i ), then it is valuable to assess the value of σ2i . We want also to look at the

comparison between δ(σ2i ) with δ(Xi) to know whether assessing Xi directly is valuable

compare with learning σ2i in its prior distribution.

It is very challenging to calculate the δ mathematically for terms µi, σ
2
i , µiσ

2
i , and Xi.

Therefore, we propose to solve it numerically. The algorithm for computing the δ for σ2i
is presented as follows.

§ 6.6 Computational Methods

In this section, we consider Borgonovo’s δ as a measure to determine which inputs are

better elicited. Borgonovo’s δ for input Xi is defined as

δ(Xi) = EXi

[1
2

∫
| fY (y)− fY |X(y|xi) | dy

]
. (6.6)

In our elicitation problem, the elicitation is performed to input that has a large δ(µi, φi).

Therefore, we need to compute δ for the pair of parameters µi and φi. The extension of

δ from an individual parameter to a group of the parameter is based on Definition 2 in

Borgonovo (2007) pg. 775. For two parameters µi and φi, δ is formulated as

δ(µi, φi) = Eµiφi

[1
2

∫
| fY (y)− fY |µiφi

(y) | dy
]
. (6.7)

In practice, it is difficult to compute δ(µiφi) as fy(y) is unknown and fy|µiφi
is also

unknown. Consequently, in the later density, it is difficult to determine how distribution
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of Y changes given any possible µi, φi. The task is now how to integrate over the possible

µi, φi?

Borgonovo (2007) uses five steps to estimate δ(Xi) in Equation (6.6). The first step is

the determination of unconditional density of Y ; second step is sampling a value of xi

from fXi(xi); the third step is the sampling of conditional distribution of Y given Xi or

fY |Xi
(y); the fourth step is the computation of s(Xi), and the last step is the estimation

of δi from the computed s(xi). We propose a Monte Carlo approach and the grid-based

approach to compute δ(·).

Monte Carlo algorithm for computing δ(σ2i )

We notice from (6.6) that the term in the expectation is a function of Xi or E[g(Xi)]. To

compute δ(σ2i ), we replace Xi with σ
2
i and we obtain

δ(σ2i ) = E
[1
2

∫
|fy(y)− fy|σ2

i
(y)dy

]
. (6.8)

Thus we can write it as a function g(σ2i ) and the Equation (6.8) reduces to δ(σ2i ) =

E[g(σ2i )]. Using a numerical simulation, we aim to estimate the expectation of g(σ2i ) using

the approximation below.

E[g(σ2i )] ≈
1

N

N∑
j=1

g(σ2i,j) (6.9)

where σ2i,1, . . . , σ
2
i,N is a sample from p(σ2i ). The algorithm for computing the estimate of

g(σ2i ) is

(i) write a function that compute g(σ2i )

(ii) sample σ2i,1, . . . , σ
2
i,N from p(σ2i )

(iii) compute (i) and it will get g(σ2i,1), . . . , g(σ
2
i,N )

(iv) use (6.9) to estimate δ(σ2i ).

We now provide a detail explanation for Step (i) in the algorithm. To estimate g(σ2i ), we

use the numerical integration using Simpson’s rule as

g(σ2i ) =
1

2

K∑
k=1

wkh(y) (6.10)
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where wk is the Simpson rule’s weight and h(yk) =| fy(yk) − fy|σ2
i
(yk) |. Next, we need

to estimate fy(yk) and fy|σ2
i
(yk). Since the form of model output distribution could be

anything so we cannot use a statistical standard distributions to fit the distribution of the

output. Instead we will estimate the density of fy(y) and fy|σ2
i
using the Kernel Density

Estimate. We then perform sampling for two functions to get yk where k = 1, . . . , R. We

implement the algorithm for two models in Example 5.1 below.

Example 5.1. Let us consider the following models, a linear and a non-linear model, as

an illustrative example to learn σ2i

Y = X1 +X2 and Y = X2
1 +X2

where Xi|µi, σ2i ∼ N(µi, σ
2
i ), µi ∼ N(2, 2), and σi ∼ U(1, 5).

To compute δ(σi), the sampling procedure for the model is carried out for the densities

fy(yk) and fy|σi
(yk). For the first density function, fy(yk), we sample y1, . . . , yR by sam-

pling µ1,r from p(µ1), σ1,r from p(σ1) and X1,r from N(µ1,r, σ
2
1,r). The similar sampling

is also applied for i = 2. We sample µ2,r from p(µ2), σ2,r from p(σ2), and X2,r from

N(µ2,r, σ
2
2,r).

Subsequently, we estimate the second function, fy|σ2
i,j
(yk) using the kernel density estimate

of ỹ1, . . . , ỹR by sampling µ1,r from p(µ1) and X1,r from N(µ1,r, σ
2
i,j). For i = 2, we sample

µ2,r from p(µ2), σ2,r from p(σ2), and X2,r from N(µ2,r, σ
2
2,r).

We can now compute δ(σi) using the algorithm with R = 10, 000 and N = 100 and we

obtain δ(σ1) = δ(σ2) = 0.06 for the linear model and for the non-linear model δ(σ1) = 0.09

and δ(σ2) = 0.03. From these results, we notice that the expected shift of the two densities

fy(y) and fy|σi
(y) is very small for both the linear and the non-linear model. Thus, the

different model forms do not affect the expected shift of the densities. At this stage,

we have evaluated the value of δ(σi), yet to learn about the value of assessing σi we

need to compare δ for other parameters µi and µiσi and also δ for input Xi. There

are computational issues if we use Monte Carlo simulation to compute all terms needed

to learn σi. We require many different variable settings for the parameters, i.e. which

parameters need to be fixed and which needs to be left vary. Another issue is that the

computation time for producing the output for each term is quite a while. If we want

to double the number of iterations from the initial value N = 100, then it will cause the

computation time is also doubled.

We propose to use the grid-based method instead of the Monte Carlo simulation to perform

the computation more efficiently. The detail of the Grid-Method is in Section 6.6. If we
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use the Grid method, we need to include dummy variables in our computation as the

indicator of input with a less important effect. In this case, we added two dummy inputs

d1 and d2 which are normally distributed (0,1) to the model with weights 0.1. A normal

distribution (0,1) is selected because it has a smaller mean and variance than the main

inputs that is considered not to influence δ. Therefore, the linear model after the addition

of dummy inputs becomes y = x1 + x2 + 0.1d1 + 0.1d2 and the nonlinear model after the

addition of the dummy inputs become y = x21 + x2 + 0.1d1 + 0.1d2.

The result of δ for all terms and the dummy variables for the linear model y = x1 + x2 +

0.1d1 + 0.1d2 is shown in Figure 6.3.

Figure 6.3: Delta indices for learning σi in the linear model y = x1 + x2 + 0.1d1 + 0.1d2

Based on the figure, the value of δ for each term is relatively similar for inputs X1 and

X2. The δ(σi) is 0.06, and these results agree with the Monte Carlo simulation method.

The δ for µi is greater than δ(σi) which is around 0.14 for both inputs. If we learn both

parameters simultaneously we will get δ(µiσi) is around 0.15. Thus learning µi will cover

93.33% while assessing δ will contribute 40%. On the other hand, if we assess the value

of learning input Xi we will get δ(Xi) = 0.3 and this index represents learning the inputs

have a higher value and they are important as much greater than δ(di).

If we compare the above results with the δs for the non-linear model which is provided in

Figure 6.4, we notice that the value of learning input X1 indicated by δ(X1) rises almost

two-fold. The non-linearity in X1 affects the increase of δ(µ1σ1), but the δ(µ1) and δ(σ1)

are remain the same. On the other hand, the δ for input X2 shrink to less than 0.2. The

δs for other parameters are shrink as well. In particular, δ(σ2) became very small and

almost reach the δs for the dummy inputs so that learning σ2 seems unnecessary.
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Figure 6.4: Delta indices for learning σi in the non-linear model y = x21+x2+0.1d1+0.1d2

The density plots of Y and Y |σ1 for the linear model are provided in Figure 6.5. The

unconditional density plot for the linear model Y = X1 +X2 in Figure 6.5a looked sym-

metric with the mode of the output is around four. This is sensible as the output Y is the

sum of two normal random variables with means two and variances four, which theoreti-

cally would be a normal distribution with mean four and variance eight. The conditional

distributions of Y |σ1 in Figure 6.5b are computed using the sample points of Y which fall

in the bins. The bins are constructed by splitting the value of output Y into ten equal

parts based on the quantiles of σ1. The conditional densities seem to have similar modes

or means with symmetrical forms, but the later conditional densities tend to have lower

density values among ten densities. The Borgonovo’s δ for σ1 is obtained by comparing

the unconditional density fy(Y ) with each conditional density fy|σ1
(y) and finding the

expected shifts between them.

We can compute δ for another parameter µ1 and input X1 using the bin partition for

determining the conditional densities. We can use the grids for the conditional densities

of µ1σ1 as it involves two parameters. A similar way is used for computing δ for input X2

and their parameters with results have been provided in Figure 6.3.

Following the linear model y = x1 + x2, we also provide graphical representation of the

densities of output in the non-linear model y = x21 + x2. Similar to the previous model,

the unconditional and the conditional densities for the output of the non-linear model are

presented in Figure 6.6. The unconditional distribution for y is right-skewed with a long

tail as the result of the squared input X1 (See Figure 6.6a). The tail of the unconditional

density fy(y) could reach more than 500 on the X-axis. The forms of conditional densities
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(a) Unconditional density of fy(y) for model Y =

X1 +X2

(b) Conditional densities of fy|σ1
(y) for model Y =

X1 +X2 in ten bins size.

Figure 6.5: The comparison of unconditional density fy(y) and conditional densities

fy|σ1
(y) for linear model Y = X1 +X2.

for fy|σ1
(y) are provided in Figure 6.6b. The conditional densities of fy|σ1(y) are also

right-skewed with long tails. Similarly, the conditional distributions are obtained from

samples of the output model Y = X2
1 + X1 which are partitioned onto some parts. We

called these parts bins.

We use these bins not only for computing conditional densities but also for conditional

variances, conditional cumulative probabilities, and so forth with one conditional input.

In this example, bins are constructed to approximate the conditional density of fy|σ1
(y).

The partition of the output samples is based on some quantiles of σ1 as the conditional

input is σ1. The number of bins for the conditional density approximation depends on

the number of samples. The more samples we have for our model, the more bins we can

create to better approximate the conditional density. For this example, we used 100,000
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(a) Unconditional density of fy(y) for model Y =

X2
1 +X2

(b) Conditional densities of fy|σ1
(y) for model

Y = X2
1 +X2 in ten bins size.

Figure 6.6: The comparison of unconditional density fy(y) and conditional densities

fy|σ1
(y) for the non-linear model Y = X2

1 +X2.

samples and partitioned the samples into ten bins. Ten bins are chosen for the sake of

illustration. As we need to create ten bins, the number of quantiles required for the

boundary for the bins is 11. The quantiles are 0%, 10%, 20%, . . . , 100%. Bin 1 is the first

two nearest quantile ranges of σ1, i.e. between 0% and 10%. Bin 2 is the sample space

within quantile 10% and 20%, and so forth. The bins discretise the samples of output Y

into ten parts. Samples that stay in a bin are used to construct the density of Y , and the

density approximates fy|σ1
(Y ).

The Borgonovo’s δ for σ1 is computed by considering the shift or difference between the

unconditional distribution f(y) and the conditional distributions fy|σ1
(y). There are ten

comparisons for unconditional distribution as there are ten conditional distributions, and

δ(σ1) is obtained from the mean of the shifts. From the previous results, we obtain δ(σ1)
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for the linear and non-linear model are 0.06 and 0.09, respectively. We want to model

the relationship between σ1 and Y . The graphical representation of the relationship is

indicated in Figure 6.7.

(a) The red line indicates the relationship between σ1

and Y for model Y = X1 +X2.

(b) The red line indicates the relationship between σ1

and Y for model Y = X2
1 +X2.

Figure 6.7: The relationship between σ1 and Y for linear and non-linear models

According to the figure, the two models have a different relationship between σ1 and Y .

The constant line in Figure 6.7a indicates that there is no effect of σ1 on the average value

of Y . On the other hand, for the non-linear model, there is a trend of a slight rise in Y as

σ1 gets bigger. The trend is indicated by the slight slope of the red line in Figure 6.7b.
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The grid-based estimation method

Let us consider again Example 5.1. We propose to compute δ(µiφi) using a grid-based

approach. The grid is an extension of the bin approach which has been used for approxi-

mate fy|σ1
(y) in the previous section. As there are two inputs as the condition of Y , which

are µi and φi, we will make a two-way partition. The first step is we need to obtain a

sample of model runs. For illustration, we suppose the function for linear and non-linear

model in Example 6.1 is Y = f(X1, X2). The second step is we need to sample µi,j and

φi,j from P (µi, φi). Next, we sample xi,j from P (Xi|µiφi), for i = 1, 2 and j = 1, · · · , N
and evaluate yj = f(x1,j , x2,j) for j = 1, · · · , N . The third step is to display all values

sampled from the previous step in Table 6.1.

Table 6.1: Model runs layout for computing sensitivity indices using the Grid-based

method for models with two inputs.

µ1 τ1 µ2 τ2 X1 X2 Y

µ11 τ11 µ21 τ21 x11 x21 y1

µ12 τ12 µ22 τ22 x12 x22 y2

...
...

...
...

...
...

...

µ1N τ1N µ2N τ2N x1N x2N yN

The next step is to estimate the unconditional density fY (y) using a Kernel density esti-

mate f̂Y (y) given y1, · · · , yN . Now, we need to estimate another density function which is

conditional fY |µi, φi(y). To do so, we make an assumption that if µij and µik are similar

and so are φij and φik, then

fY |µi=µij ,φi=φij
(y) ≃ fY |µi=µik,φi=φik

(y)

We discritise the distribution of µi and φi and then identify Si,p,q. The explanation about

Si,p,q will follow. After that we construct Kernel density estimate for fY |µi∈Si,p,q ,φi∈Si,p,q
(y).

Next, we present the notation to describe the grid cells and indicate which output values

yj in the model run in each grid cell. An illustration of the grid is provided in Figure 6.8.
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Figure 6.8: The Grid contains the output values yj in each cell where they come from the

samples of parameter µi and τi. The grey cell indicates the output values yj in a particular

cell in the intervals Aµi,p and Bτi,q .

If we look at the grid, we notice that the grid is constructed by two parameters of the

Beta model, µi on the horizontal side and τi = logφi on the vertical side. For analysis

convenient purpose, it is useful to construct model runs from values sampled from the

Beta model for all elements such as Xi, Y , µi, and τi. Model runs for two inputs are

presented in Table 6.1.

The grid is constructed from partitions on the sample space of the Beta model parame-

ters. Firstly, we make partition on the sample space of µi into nµi contiguous intervals

Aµi,1 , . . . , Aµi,nµi
. Secondly, we make partition on the sample space of τi into nτi contigu-

ous intervals Bτi,1 , . . . , Bτi,nτi
, so that we will have a grid with dimension of nµi x nτi .

Thirdly, we define a specific grid cell, p x q, so that

Si,p,q ⊂ {1, . . . , N}

with j ∈ Si,p,q if and only if both µi,j ∈ Aµi,p and τi,j ∈ Bτi,q. For instance, an index j of

the output is inside the grid cell Si,1,1 if and only if both µi,j ∈ Aµi,1 and τi,j ∈ Bτi,1 . By

identifying an index that falls in a grid cell, we are able to determine the corresponding

model run yj belongs to the grid cell. Now, we can compute, for example, the model

output mean for the particular grid cell (p, q) by the following expression

ȳi,p,q =
1

|Si,p,q|
∑

j∈Si,p,q

yj

where |Si,p,q| is the number of yj which falls in the cell (p, q). Using the grid-based method,

we can compute the conditional expectation Eµ−i,τ−i(Y |µi, τi) for the purpose of computing
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the sensitivity index using main effect using the variance-based method in Equation (2.27).

We can also compute the conditional density function f(Y |µi, τi) to calculate the density-

based sensitivity index such as Borgonovo’s δ for two variables or parameters. Therefore

we can compute the generalisation of Borgonovo’s δ for two conditioning variables in the

Equation (6.7). If there is only one conditioning variable, we use bins to make partitions

of the model outputs instead of the grids.

We can also use the grid method for computing main effects and compare it with the

Generalised Additive Method (GAM) method to evaluate the accuracy of the sensitivity

indices using the grid-based method. The following section reports numerical experiments

for computing Borgonovo’s δ and main effects using the grid-base method. We compare

the result of main effects computed using the grid and using the GAM method afterwards.

§ 6.7 Numerical experiments

We now conduct some numerical experiments to test the grid. The numerical experiments

aim at investigating the following questions: 1) How many model runs should be used? 2)

How many grid cells are sufficient? 3) What is the number of quadrature points for the

numerical integration? 4) How many model inputs can the method handle, especially in

the relationship between questions number (1) and (2)?

In this numerical experiment, we will consider two models, a model with a small number of

inputs and a model with a large number of inputs. The first model is the flood model with

eight inputs (see equation 2.2), and the second model is the modified Ishigami function

which will be presented in Section 6.7.2. Two sensitivity indices, Borgonovo’s δ and main

effect index, are computed for each model. The resulting indices will be compared with

those computed using the GAM method.

6.7.1 The Flood Model experiment

The first model we would like to consider in the numerical experiment is the flood model in

Equation (2.2). The numerical experiments were conducted using three factors: number of

Grid cells (nG2), number of Runs (nR), and the number of quadrature points/Simpsons’s

points (nS). The levels for nG are 5, 10, 20, 30, and 40. The level of nG = 5 means that

we use 5 × 5 = 25 grid cells to compute the sensitivity indices, nG = 10 means we use

100 grid cells, and so forth. The second experiment factor is nR, which has three levels:

25000, 50000, and 100000, and the third factor is nS which has levels 101, 1001, and
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10001. We use a factorial design to obtain the combination of factor levels for computing

the sensitivity indices.

Borgonovo’s δ computation using The grid-based method

In the first experiment, the grid-based method is used for computing Borgonovo’s δ for

input in the flood model. The computation of the δ is repeated two times for each con-

figuration (combination of factor levels). The computation took around 28 minutes to

complete and experiment outputs are shown in Figure 6.9 - Figure 6.13.

Figure 6.9: Borgonovo’s δ computed using different combination settings of the number

of grid cells (nG2), the number of runs (nR), and number of Simpson’s points (nS). We

can conclude that if the number of runs get larger than the estimate for δ tend to steady.

Figure 6.9 displays boxplots of Borgonovo’s δ indices computed using different combination
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levels of factors. The figure shows that input X4 has the largest δ, input X1 is the second-

largest δ index, followed by X2, X6, and so forth. On the other hand, input X5 and X8

have the smallest δ indices, and their values are relatively similar. These results indicate

that X4 is the most important input while X5 and X8 are the least important inputs. We

notice that δ indices in Figure 6.9 tend to increase when the number of grid cells rises. δ

indices looked stable if computed using a large number of runs, especially for important

inputs. Simpson’s points seem do not affect the δ indices.

Now, the behaviour of δ for some inputs will be observed. We will focus on two inputs,

X4 (which has the largest δ) and X5 (which has the smallest δ). The detail plots for X4

is shown in Figure 6.10. For input X4, the number of runs seems to affect the stability of

the indices. The largest number of runs, 100000, makes δ indices of input X4 more stable,

around 0.20 - 0.22. While the smallest number of runs, 25000, makes the indices of input

X4 range a little bit wider, i.e. between 0.20 - 0.25.

Figure 6.10: δs for input X4 computed using different combination of levels nG, nR, and

nS.

In addition, δs for X4 increases exponentially when the number of runs is 25000. This

increment is along with the addition of the number of the grid. It means that the choice

of the grid using the current number of runs, i.e. 25000, will affect the addition of δ in two
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decimal places. If the number of runs doubles to 50000, it reduces the range of δ in half,

and If the number of runs is multiplied by four, then the range of δ will be more stable.

These results suggest that the number of runs 100,000 is a good choice for computing the

δ. The more runs, the more stable the δ, but the computation time is longer. The number

of Simpson’s points do not affect δs for X4 for all combination of nR and nG2. It means

that the numerical integration for computing δ using different quadrature points produces

relatively similar values.

The boxplot in Figure 6.11 confirms some of these results. According to Figure 6.11a,

the choice of number of grid cells affects the variation of δ. For instance, the grid cells

equal to 52 and 102 produce the smallest variation in δ. While the number of grid cells

402 produces a big variation in δ. This is because the number of grid cells, for example,

52, creates 25 cells which cause the number of sample points to be bigger than 1600 grid

cells. The more sample points in the cells produce δ more accurately. Figure 6.11b shows

that the number of runs affect the variation of δ. The larger number of runs, the smaller

variation in δ. Even though the median of δs for each run do not differ so much, figure

6.11c confirms that the number of quadrature points used in the numerical integration for

computing δ does not seem to have any effect.

Figure 6.11: Boxplots of δ for X4 viewed from separate factors: number of grids (nG),

number of runs (nR), and the number of Simpson’s points (nS).

The inputs having small δ indices are also investigated. We can observe from Figure 6.9

that small δ indices are also affected by the number of runs. When the number of runs

used is 25000, the indices for inputs X8 and X5 are in 0.03 - 0.16. However, if we used

100000 runs, the indices are more stable in the range of 0.03 - 0.08.

We now focus on the inputs that have the smallest δ index, X5. The points plot for the

detail index for X5 is shown in Figure 6.12. The figure shows δ indices for X5 increase as

the number of grids rise in linear forms. When the number of runs is 25000, the range of
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Figure 6.12: Point plots for Borgonovo’s δ of X5 using different number of grid cells (52,

102, 202, 302, 402), number of runs (25000, 50000, 100000) and number of Simpson’s points

(101, 1001, 10001).

the index for X5 is between 0 - 0.16. If the number of runs rises by two times, the range

of the index shrinks to 0 - 0.12. The index range continues to get smaller for the 100000

runs with the interval between 0 - 0.09.

Figure 6.13: Boxplots of δs for input X5 viewed separately based on each experimental

factor: the number of grid cells (nG2), the number of runs (nR), and the number of

Simpson’s points (nS).

We can also investigate the behaviour of δ for each factor separately as displayed in Figure

6.13. We can see clearly from the boxplot presented in Figure 6.13a that the value and

the range of δ indices rise along with the addition of the number of grid cells. On the

other hand, the median of the index declines smoothly along with the rise of runs (see

Figure 6.13b). Figure 6.13 shows that the addition of Simpson’s points does not change



CHAPTER 6. SENSITIVITY ANALYSIS FOR EXPERT JUDGMENT 113

the median of the index or the index range.

The next sensitivity measure to be computed using the grid-based method is the main

effect index and is explored in the following section.

Main effect index computation Using the grid-based method

This experiment compares the main effect index computed with the grid-based method

and the Generalised Additive Model (GAM) method. The main effects index will be

computed using the grid-based method at various settings. The main effects will also be

computed using the GAM method based on a different number of runs.

The grid-based method for computing the main effect index involves two factors: The

number of grid cells (nG2) and the number of runs (nR). We use the same levels for each

factor as in the previous experiment: nG has five levels: 5, 10, 20, 30, and 40 and nR has

three levels: 25000, 50000, and 100000. For efficiency, we used three replications for each

combination of factor levels. The results of the experiments are presented in Figures 6.14

- 6.16.

Figure 6.14 shows boxplots of the main effect index for all configurations of factors. The

main effect index shows similar results as Borgonovo’s δ in determining important inputs.

X4 is the most important input while X8 is the least important. Although X5 is also

the least important as the values of the main effect index is very close to X8. The figure

indicates that a different number of grid-cells does not differ in the resulting main effect

index. Additionally, the number of runs does not affect the main effect index too much.

As before, we want to look over in detail the main effect experiments in some inputs and

focus on the most important input X4, and the least important input X8. The results of

the numerical experiment for input X4 is provided in Figure 6.15. The figure shows that

the main effect indices do not differ too much for almost all configurations, and the index

value is stable at around 0.27.

The boxplots in Figure 6.16a suggest that the computation of the main effect for X4 looks

stable on 0.270 in three decimal places if we use at least 202 grid cells. In addition, the

number of runs does not affect the main effect index too much, although the number of

runs 100000 give the smaller variation of the index (See Figure 6.16b).
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Figure 6.14: Boxplots for all input’s main effect indices in the modified flood model com-

puted using different number of grid cells (52, 102, 202, 302, 402) and different numbers of

runs (25000, 50000, 100000). The figure indicate that different number of grid cells and

number of runs do not affect the main effects for all input significantly.

Main effect index computed using The GAM method

The GAM method can be used as an alternative to computing the main effect index.

GAM is considered in this section to be compared with our computational method, the

grid-based method. This is because GAM has been established for modelling the non-

linear relationship between input and output, as discussed in Chapter 2, and we want to

use the method to compute the main effect based on the fitted values of the non-linear

flood model. GAM method is the generalisation of the regression-based method which is

used for a more flexible form of mathematical model relationships. The fitted values of the

model obtained using GAM will be used to compute the main effect index. Meanwhile,

in our method, the main effect is computed using the difference between unconditional

variance and conditional variance calculated from the grids. Therefore, the GAM method
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Figure 6.15: Point plots of the main effect forX4 computed using two experimental factors:

the number of grid cells (52, 102, 202, 302, 402) and the number of runs (25000, 50000,

and 100000). Three replications are used in this computation.

is expected to be a good benchmark for our method.

If we compute the main effects using GAM method, we obtain Input X4 is the largest

main effect index with values around 0.255. Input X1 is the second largest, with main

effect index values around 0.3. On the other hand, X8, X5, X7, and X3 have very small

main effect indices close to zero.

Figure 6.16: Boxplots of the main effect index for X4 viewed separately according to the

number of grid cells (nG2) and the number of runs (nR).

The following section provides another numerical experiment of the well-known Ishigami

function with the addition of many dummy inputs in the function.
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6.7.2 The Modified Ishigami function experiment

The second numerical experiment is conducted on the modified Ishigami function. This

function is an extension of the original Ishigami function introduced by Ishigami & Homma

(1990) with the addition of dummy variables. There are 47 dummy variables added in the

function starting from x4, . . . , x50 with each input has weight w. This function is used to

test the grid with many inputs and see how the grid differentiates the index between the

main inputs and the dummy inputs.

The dummy inputs x4, . . . , x50 should have small weights to indicate they are different from

the main inputs. The smaller the weights, the smaller the effects of inputs on the model

output. For example, if the weight is 0.1, the portion of each dummy input contributing to

the model output y is only 10%. If we use a smaller weight of 0.01, then the portion of each

dummy input contribution becomes only 1%, and zero weight means the dummy input

has no contribution to the model output. The small weight for input has been identified

for input unimportance using Scenario 2 Definition 3 in Chapter 3 via an example.

Now we have the full expression of the modified Ishigami model as follows.

f(x) = sin(x1) + a sin(x2)
2 + b x43 sin(x1) + w

50∑
i=4

xi (6.11)

where a = 7, b = 0.1, w = 0.1, and xi ∼ U [−π, π], for i = 1, . . . , 50. We chose the weight

of 0.1 for the dummy inputs as it is sufficient to make differentiation of sensitivity indices

with main inputs. A smaller weight for dummy inputs says 0.01, makes the dummy inputs

seem not to do anything to the less realistic output. Using this test example, we aim for

the dummy inputs to have around 90% of the weights and 10% for the main inputs. The

sensitivity indices obtained using this weight can be observed for all 47 dummy inputs to

ensure the tendency of small indices.

The Borgonovo’s δ for the inputs of this function are shown in Figures 6.17. For the sake

of illustration, we only plot δs for the main inputs and two dummy inputs. The figure

indicates the Borgonovo’s δ for the main inputs of the Ishigami function lie separately

above the δs for the dummy inputs. Additionally, the δ for dummy inputs seem to be

similar for each combination. The plots indicate that the main inputs X1 have the biggest

main effect index, so they are the most important inputs. In this case, the meaning of

the most important input is that if X1 is fixed to its true value, it will give the highest

expected reduction in the output variance. X2 has the second-largest main effect index,

while X3 has the lowest main effect index.
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Figure 6.17: Boxplots of δ for main inputs and the first two dummy inputs in the Modified

Ishigami function computed using different levels of factors. Three factors considered in

the computation of δ are the number of grid cells (nG2) 52 up to 402, the number of runs

(nR) 25000, 50000, and 100000; and the number of Simpson’s points (nS) 101, 1001, and

10001. Borgonovo’s δ for the main inputs are separated clearly with the dummy inputs.

Different numbers of Grids affect the δs with linear increment. A larger number of runs

produce a more stable δ estimate. However, the number of Simpson’s points do not affect

δs.

Additionally, according to Figure 6.17, the value of δ rises when the grid size increases.

When the number of runs is elevated to 100,000, the rise of δ along the gird size are not too

sharp. The different settings of Simpson’s points do not affect the δs. In addition, input

X2 has the largest δ with a range is between 0.15 to 0.27 when the number of samples is

25,000. The range of δ for X2 shrinks to 0.15 - 0.22 for 100,000 number of runs. Input X3

has the smallest δ with the range of 0.08 - 0.13 for the maximum number of runs 100,000.

The value of δs for dummy inputs shows the same trend in the rise as the main inputs

and the addition of grid cells. The range of δ for dummy inputs are from 0.03 - 0.18 for

the number of runs 25,000. The maximum value of δ for dummy input is below 0.10 when
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the number of runs is 100,000.

We provide barplots for δ for all inputs in the modified Ishigami function, including the

dummy inputs and presented in Figure 6.18. The barplots indicate δ for inputs produced

using a selected combination level of factors. The combination are nR = 100000, nG = 20,

and nS = 101. We select nR = 100000 because we want the maximum number of sample

points for each cell in the grid. nG = 20 is chosen for the medium number of grid cells in

our experiment. nS is selected to be minimal as it is not affected the δ from the previous

experiment in Section 6.7.1.

Figure 6.18: Barplots of δ for all inputs in the Modified Ishigami function for selected

level of factors. The levels are: nR = 100000, nG = 20, and nS = 101.The δ for X2 is the

highest indicating it is the most important input while X3 is the least important, while

dummy inputs’ delta are around 0.05.

According to barplots in Figure 6.18, input X2 has the biggest δ so it is the most important

input. X1 is the second biggest δ with value around 0.16 while X3 has the lowest δ. The

dummy inputs have homogeneous values of δ around 0.05. We have explored the behaviour

of the δ using different combination settings. We found that if we want to reduce δ for

the dummy inputs, the grid cells should be minimum for a fixed nR.

Subsequently, we want to investigate the pattern of δ for different grid cells to discover

the minimum grid cells used in the grid method for computing Borgonovo’s δ. We choose

the most important input X2 to be investigated. Figure 6.19 shows the points plot of δ

for x2 using three replications. The plots demonstrate that δ increases linearly across the

addition of grid cells. The surge in the δ lessens by the rise of the number of runs. The
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range of δ for nR = 100,000 is 0.14 - 0.22, which will shrink if we use more runs. The

number of Simpson’s points do not affect the pattern of δ.

Figure 6.19: Point plots for δX2 of the modified Ishigami Function computed using the

grid method. The factors considered in the Grid methods are number of grids (5 up to

40), the number of runs (25000, 50000, and 100000), and the number of Simpson’s points

(101, 1001, and 10001)

The boxplot in Figure 6.20a indicates that the addition of the grid cells will increase the δ

and its variation, while the increase of the number of runs will decrease the δ and its range

slightly which is pointed in Figure 6.20b. On the other hand, the number of Simpson’s

points for the numerical integration does not affect δ (See Figure 6.20c). Similar results

also apply for input X1 and X3.

Figure 6.20: Boxplots for δX2 viewed for each factor involed in the grid method. The factors

are the number of Grid (nG), the number of runs (nR), and the number of Simpson’s points

(nS).
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Next, using a similar way of the numerical experiment as presented in Section 6.7.1, we

compute the main effect index using the grid-based method and also compare the results

with the GAM method. For illustration, we chose a combination level for the grid method

and compared the result with the GAM method.

The main effect index for inputs in the modified Ishigami function are presented in Fig-

ure6.21. The main effects indices were computed using 400 grid cells and 25000 runs.

We notice from the figure that X2 is the most important input while X1 is in the second

rank. Input X3 seems to have a main effect index close to zero, similar to the indices

for the dummy inputs. The results for main effect indices computed using the grid-based

method are quite similar with the ones computed using the GAM method in Figure 6.22.

The barplots indicate that X2 is the most important input and X3 is the least important

input. The dummy input indices seem to be more homogenous, with values close to zero.

Figure 6.21: Main effect index for all inputs in the Modified Ishigami function computed

using the grid method for selected number of grids and number of runs. For this plot, we

choose number of grid cells = 202 and number of runs = 25000.
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Figure 6.22: Main effect index for all inputs in the Modified Ishigami function computed

using the GAM method for selected number of runs. For this plot, we choose number of

runs = 25000.

§ 6.8 Conclusion

This chapter introduces a new model for expert judgment called The Beta Model. The

model is more practical to use the ones proposed by Lindley et al. (1979) and Gelfand

et al. (1995). We use sensitivity analysis to prioritise elicitation from the Beta model. The

Grid-Based method is used to support the computation of sensitivity indices for model

inputs and also parameters in the Beta model. We conduct numerical experiments to test

the grid-based method for computing sensitivity indices δ and main effect index.

The results of the numerical experiment using the three methods, Borgonovo, the Main

effect using the grid, and GAM, provide the mutually supportive conclusion. Input X2

is identified to be the most important input in the modified Ishigami function, and X3 is

the least important one. The input X2 has a nice convergence pattern by combining the

number of grid cells and the number of runs. The use of grid cells at least 202 with several

runs 100,000, and a small number of Simpson’s points are recommended for computing

the δ. If we want to compute the main effect index using the grid-based method, 202 grid

cells and 25,000 runs are sufficient.



122

Numerical experiments indicate that the grid-based method is comparable to the GAM

method for computing the main effect index. For computing Borgonovo’s δ, it is important

to have sufficient runs per grid cell, and a large number of cells with smaller runs seems

to give an inflated estimation.



Chapter 7

Conclusion and Future Works

§ 7.1 Conclusion

The conclusions of the thesis are as the following points:

1) The criteria of defining unimportant inputs in the mathematical models are formu-

lated formally in this thesis. The criteria are based on two scenarios related to the

similarity of the loss functions and the similarity of two variances or probabilities.

The criteria for identifying the unimportant inputs are investigated by implementing

measures of importance such as total effect indices, Shapley effects, Chun-Han-Tak

measures, Borgonovo’s δ and the Kolmogorov-Smirnov measures. Most of the mea-

sures can be used to identify unimportant inputs under Scenario 2 in the case of

independent inputs. Shapley effects is an exception as it is unable to detect the

input under Scenario 2. Total effect indices can be used to identify the unimportant

inputs for both Scenario except for correlated input for Scenario 1.

2) Prioritising elicitation does not mean just applying sensitivity analysis measures, e.g.

main effects to rank inputs based on their importance. Using a counter-example,

we have shown that input having a large main effect is not necessarily selected for

elicitation.

3) Robust global sensitivity analysis methods that we have reviewed consider small

changes in input distribution range (perturbation). Thus, robust global sensitivity

analysis concepts are not quite appropriate for prioritising elicitation because the

distribution of inputs might have a big change from the analyst distribution to the

expert distribution.

123
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4) The Beta model is a novel distribution model for modelling expert opinions. The

model has two parameters α and β with two additional parameters: the function

of α and β. Parameter µi is the expectation of the Beta distribution so that it has

the form of α/(α+ β) and has a uniform distribution. Parameter φi is the precision

of the model which is equal to α + β and logφi is also uniformly distributed. If

the model is linear, it is worth learning parameter µi, but it is not worth learning

parameter logφi. However, if the model is non-linear, we need to consider learning

µi and φi.

5) The Grid-Based method is effective for computing sensitivity measures such as Bor-

gonovo’s δ and main effect index. The numerical experiments suggest that the

number of runs 100,000 provides stable indices, and the number of grid cells 20 x

20 is sufficient to compute indices. The number of Simpson’s points for computing

Borgonovo’s δ does not affect the computation of indices, so we can use a small

number of points to reduce the computation time. The Grid-Based method is more

efficient than the Monte Carlo method as it will simultaneously provide the estimates

of sensitivity index for model inputs and parameters µi and φi.

§ 7.2 Future Works

There are two ideas related to sensitivity analysis and expert judgment, which can be

topics for further research. The topics are briefly explained as follows.

1) In this thesis, we have discussed prioritising elicitation for inputs in mathematical

models. Inputs in the model may be correlated. Therefore, the author proposes that

the following research prioritise elicitation for correlated or dependent inputs.

2) Another topic the author still does not continue to do is the sensitivity analysis for

chained models. This topic is motivated by the phenomena in the real world that a

mathematical model might connect to other models. Consider two models, and the

output of the first model is an input for the second model. We can see this as an

example of a chained model.
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Appendix

Let us consider the similarity of two variance terms

V ar
( p∑

i=1

fi(Xi)
)
=

p∑
i=1

V ar
(
f(Xi)

)
(A.1)

as X1, . . . , Xp are independent, and we have

V ar
(
f(Xi)

)
= V arXi(E[Y |Xi]). (A.2)

Now we consider component functions that contain Xi

V ar
(
fi(Xi) + fi,j(Xi, Xj)

)
= V ar

(
fi(Xi)

)
+ V ar

(
fi,j(Xi, Xj)

)
+ 2Cov

(
fi(Xi), fi,j(Xi, Xj)

)
.

(A.3)

Note that all terms in equation (2.19) have expectation zero. For example,

Cov
(
fi(Xi), fi,j(Xi, Xj)

)
= EXiXj

((
E[Y |Xi]− f0

)(
E[Y |Xi, Xj ]− E[Y |Xi]− E[Y |Xj ] + f0

))
= EXi

((
E[Y |Xi]− f0

)(
EXj (E[Y |Xi, Xj ]− E[Y |Xi]− E[Y |Xj ] + f0)

))
= EXi

((
E[Y |Xi]− f0

)(
E[Y |Xi]− E[Y |Xi]− E[Y ] + f0)

))
= 0.

(A.4)

Now we expand

V ar
(
fi,j
(
Xi, Xj

))
= V arXi,Xj

(
E(Y |Xi, Xj)

)
+ V arXi,Xj

(
fi(Xi)

)
+ V arXi,Xj

(
fj(Xj)

)
− 2Cov

(
E(Y |Xi, Xj),E(Y |Xi)

)
− 2Cov

(
E(Y |Xi, Xj),E(Y |Xj)

)
− 2Cov

(
E(Y |Xi),E(Y |Xj)

)
(A.5)
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and check the covariances

Cov
(
E
(
Y |Xi, Xj

)
,E
(
Y |Xi

))
= EXiXj

(
E
(
Y |Xi, Xj

)
E
(
Y |Xi

))
− E(Y )2

= EXi

(
E
(
Y |Xi

)
EXj

(
E[Y |Xi, Xj ]

))
− E(Y )2

= EXi

(
E
(
Y |Xi

)2)− E(Y )2

= V arXi

(
E
(
Y |Xi

)2)
,

(A.6)

while another covariance is zero. Thus

V ar
(
fi,j
(
Xi, Xj

))
= V arXi,Xj

(
E(Y |Xi, Xj)

)
+ V arXi

(
E(Y |Xi)

)
+ V arXj

(
E(Y |Xj)

)
.

(A.7)

According to (A.2) and (A.7) equation (A.3) has the final result as follows

V ar
(
fi(Xi)+fi,j(Xi, Xj)

)
= V arXi,Xj

(
E(Y |Xi, Xj)

)
+2V arXi

(
E(Y |Xi)

)
+V arXj

(
E(Y |Xj)

)
.

(A.8)
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