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Abstract

The new emerging passively-collected data sources of the recent years have been increasingly
providing new avenues for research due to their high spatio-temporal granularity. Datasets
captured from GPS, mobile phone, location-enabled social media, smart-card payments etc.,
falling under the general term of Big Data, have the ability to provide mobility information at
an unprecedented volume, velocity and variety, even if they were not initially collected with
that purpose in mind. Despite the benefits they offer, however, they also pose new challenges
for their analysis and the skills and knowledge required to derive value out of them, which
transcend into different scientific fields. On one hand, that has largely limited their use in
aggregate descriptive analyses and inference of general insights about mobility behaviour.
Those studies offer valuable information and insightful comparisons with traditional Revealed
Preference data, however they lack in their ability to generalise their findings and make them
suitable for policy analysis. A significant reason for that is the often missing contextual
information in terms of the trip makers’ sociodemographic characteristics and any information
regarding the observed mode and trip purpose, all of which are important inputs to any
model of disaggregate mobility behaviour. On the other hand, even in the presence of
additional semantic information, the overall complexity of those datasets has been proven
to be challenging for traditional econometric specifications. That has led to the increasing
popularity of Machine Learning, which generally excels at identifying patterns within complex
datasets. Nonetheless, Machine Learning methods, typically described by non-parametric
algorithms have limited ability to provide insights useful for policy analysis hindering their
adoption for real-world policy making. Furthermore, the limited case studies of behavioural
modelling using emerging datasets do not provide any systematic comparison with traditional
data sources to properly assess the benefits and drawbacks of both data collection methods.
The current thesis aims to address the three aforementioned overarching literature gaps
utilising a specific form of emerging dataset, namely a semi-passive GPS-based trip diary
collected from a sample consisting of recruited participants. The collected dataset was
complemented with a background household survey capturing the individuals’ important
sociodemographic information and minimal input from the trip makers regarding the chosen
mode of the trip and the activity purpose at the destination. Further enhancing that GPS trip
diary with data derived from APIs and other openly available data sources can be sufficient to
make the dataset usable for estimating a behavioural model. In the studies presented in this
thesis, a general methodology is outlined on how to transform the initial GPS traces into useful
inputs for behavioural models, which are able to uncover realistic sensitivities and trade-offs in
accordance with the ones already proposed in the literature. More specifically, behaviourally
accurate Values of Travel Time estimates have been derived from a mode choice model
utilising such a dataset similar to the official values currently used for appraisal in the UK,
which are derived from large-scale Stated Preference studies. In addition, a range of studies
has been proposed aiming to address common research questions in spatial choice models, such
as sampling of alternatives to reduce their computational complexity, accounting for the latent
nature of the consideration choice set and capturing spatial correlation among alternatives,
in all of which geography-derived concepts are also being implemented. Furthermore, the
current thesis aims to focus on the integration of Machine Learning and Choice Modelling,
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rather than their comparison, by proposing a combined framework in which Machine Learning
is used to identify patterns in the dataset, while Choice Modelling is implemented in order
to understand individual mode and location choice behaviour, thus taking advantage of the
best of both approaches, which offers significant improvements over traditional econometric
specifications without compromising the microeconomic interpretation of the outputs. The
overall purpose of the current thesis is to enhance the confidence of the research community
in the use of similar emerging datasets and to promote the integration of data-driven and
econometric specifications. This is expected to provide useful insights about expanding the
discussion moving forward into more advance combined specifications of capturing individual
behaviour.
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Chapter 1. Introduction

Chapter 1

Introduction

1 Theoretical background

In recent decades, the advancements in Information and Communication Technologies (ICT)
together with the significant market penetration and the increasing reliance on devices
with embedded sensors, such as smartphones, has resulted in data being generated at an
exponential rate (Evans, 2011). Recent reports have predicted that the generated data from
sensors will double its size every two years from 2005 to 2020 (Gantz and Reinsel, 2012).

Emerging datasets generated by new ubiquitous sensors, also commonly termed as Big
Data, are generally defined by their volume, variety and velocity (Laney, 2001), which
differentiate them from traditional data sources, such as household trip diaries, field surveys
and road-side interviews (Banik and Bandyopadhyay, 2016). Despite their sheer volume,
new forms of data have the added features of being dynamic in nature (velocity), since they
are generated in real-time and they can arrive in different formats (variety), i.e. structured,
semi-structured and unstructured, with the latter being the most usual case (Gandomi and
Haider, 2015).

For transportation research, new emerging data sources are steadily gaining importance
over traditional sources, such as transport-related surveys. Those data sources offer new
avenues for research and policy making, but also bring together new challenges regarding their
analysis and ways to derive value out of them with significant research being currently under
constant development for that purpose (Grant-Muller et al., 2021). Emerging data sources
have been used in studies of road safety, road infrastructure maintenance, transport planning
and mobility pattern analysis (Antoniou et al., 2019). The advantages they provide in terms
of the lower cost, the increased sample size and spatio-temporal coverage (Calabrese et al.,
2013) compared with the low update rate of census data (conducted every 5 to 10 years) and
respondents’ misreporting in surveys (non-recalled trips, overstated travel times etc.) make
them a viable alternative data collection method (Yang et al., 2015). Furthermore, traditional
data collection methods include small-scale roadside or more detailed household surveys, the
former resulting in possible low response rates and the latter in respondents’ cognitive fatigue
(Ma et al., 2017). In contrast, emerging datasets can capture a more comprehensive view of
individual mobility behaviour resulting in more trips per day and larger panels per individual
compared to traditional trip diaries leading to less cognitive fatigue to the respondents.

Furthermore, conventional fixed sensors, such as loop detectors, despite being widely used
in transport research, they tend to provide a limited spatio-temporal coverage, are susceptible
to adverse weather conditions and are subject to high installation and maintenance costs
(Leduc, 2008). On the other hand, emerging data sources provide a more efficient source of
longitudinal data, important to assess behavioural change and the impact of policy measures
(Kusakabe and Asakura, 2014). The past problems of data scarcity have been redefined in
the sense of how to make value out of the current abundance of data either by adopting new
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methodologies or by adapting existing ones.
Despite those benefits, however, it is also important not to ignore certain pitfalls and

drawbacks. The majority of the data generated from sensors are not purpose-specific, hence
important variables for Travel Demand Modelling are usually missing, such as gender, age
or income level (Calabrese et al., 2013). In that sense, Big Data can be said to be “big”
in numbers, but “thin” in semantic information (Zhao et al., 2018). Furthermore, the
underlying complexity of the data and its multidimensional spatio-temporal characteristics
require significant pre-processing analysis to distinguish the signal from the noise and end up
with meaningful variables/features (Kim and Mahmassani, 2015) or transform unstructured
data (e.g. text or images) into inputs for demand modelling, while the data complexity
also challenges well-established methods and modelling frameworks. That in turn led to
the need for developing further skills and expertise on methods and approaches of other
research domains, a common theme in transport research, with Computer Science being this
time on the focus. Indeed as these new emerging datasets are gaining increasing research
interest among the transport research community, so do Data Science and Machine Learning
techniques and algorithms that are now considered almost necessary for deriving value out of
those data sources. A range of different tools and techniques, such as database management,
cloud computing, data-driven algorithms etc. have become part of the everyday data analysis
pipeline.

Concerns on ethics and privacy protection have also been raised with the increased
resolution of the collected data creating possibilities for the identification of distinct individuals
and their home locations. Actions to mask the home locations have been implemented in very
granular datasets, such as GPS, where noise is being added in the traces at a certain buffer
zone around home locations to conceal their exact location. The possibility of individual
identification, however, still cannot be excluded completely especially in contexts of low
populated geographic zones. Ownership of the data raises additional concerns, since the
analysts and researchers who are using the data are usually not the ones collecting the data
in the first place. Therefore, any consent provided by the individuals when their private
data was collected should also include its potential analysis at a later stage. In response to
those ethical questions about the data, their use and the need for privacy protection of the
individuals under examination the European General Data Protection Regulation (GDPR)
(European Parliament, 2016) was established setting guidelines for future data collection and
its analysis for research.

1.1 Types of emerging data sources

A vast array of different new emerging sources is currently being used in transport research
that can be categorised in the following groups and are further analysed in the subsequent
paragraphs (Willumsen and Picornell, 2016):

• Data collected for other purposes (e.g. fare collection and billing purposes, fitness checks
etc.), which can also be used to derive mobility insights, such as GPS (Marchal et al.,
2004; Marchal et al., 2011; Bierlaire et al., 2013; Hess et al., 2015) offering information on
individual mobility behaviour at the highest level of spatio-temporal resolution, mobile
phone (Iqbal et al., 2014; Tolouei et al., 2017; Bwambale et al., 2017; Bwambale et al.,
2019b; Bwambale et al., 2019a), which can offer a representative depiction of daily urban
mobility due to the high market penetration of smartphones, but inference is usually
required to identify movement between successive cell town interceptions and smart-card
data (Batty, 2013; Batty et al., 2013) captured from passengers’ daily transactions which
can also offer a general view of the demand state of the system.

• Data collected from fixed-located sensors, such as Bluetooth sensors (Barcelo et al.,
2010; Crawford et al., 2018; Kottayil et al., 2020) capturing distinct MAC addresses of
Bluetooth-enabled devices of passing vehicles and road-side cameras (ANPR) (Fox et
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al., 2010; Hadavi et al., 2020) capturing number plates of passing vehicles and further
analysing them with image-processing algorithms, both of which being used in analysing
vehicle trajectories.

• Location Based Social Network (LBSN) data derived from social media platforms and
including individual geolocated text messages or check-ins revealing the individuals’
activity. Due to the misrepresentation of certain population subgroups (older or lower
income individuals) and the tendency for more leisure-related check-ins compared to
other trip purposes, LBSN data are not considered suitable for forecasting travel demand
on their own, but they can be used effectively as a complementary source of information
(Chaniotakis et al., 2016).

1.2 Studies using GPS data

GPS data arguably provide the highest spatio-temporal resolution from the aforementioned
emerging data sources. The level of detail of data derived from mobile phone, bluetooth
and ANPR data heavily rely on the density of their respective infrastructure, i.e. cell towers
(Chen et al., 2014), bluetooth sensors (Mitsakis et al., 2017) and road-side cameras (Fox et
al., 2010). Furthermore, smart-card data e.g. for public transport only capture the tap-ins
and/or tap-outs without any additional information on the rest of the trip (Zannat and
Choudhury, 2019), which could be a significant limiting factor for understanding mobility
behaviour for multi-modal trips, while social media data would rely solely on the frequency
of the location-enabled check-ins, tweets etc. Contrary to those, a GPS tracking device will
capture the traces of the trip maker at a high frequency with each trace having a unique pair
of latitude/longitude coordinates.

Consequently, GPS is probably the only data source out of the aforementioned ones
that is most likely to be captured as part of a mobility-related survey, i.e. purpose-specific.
Nonetheless, Vij and Shankari (2015) have argued that due to the absence of mode and trip
purpose information and the significant errors associated with their inference, fully passively-
collected GPS data will never replace surveys with active input from the participants for
accurate demand estimation. As a result, a GPS-based travel survey is likely to include
additional steps to make the data usable for behavioural modelling with policy making in
mind. Those additional steps could include a background household survey to capture the
most important socio-demographic attributes of the participants, while also minimum input
from the participants is usually required with regard to the chosen mode and trip purpose
at the end of each trip. The drawback in those cases is the smaller sample size and the
limited survey period (limited longitudinal data) compared to data from other sources, such
as mobile phone or smart-card, which can have data for millions of users over multiple years.

That trade-off between higher level of detail-smaller sample size is to be expected since
no form of data could be considered sufficient on its own to answer planning questions with
reasonable accuracy. At present -and likely in near future- the optimum solution hence lies
either in the fusion of different data sources or in the use of semi-passive data sources, where
some additional active input from the participant is necessary to enrich the value of the
data manifold. GPS data currently can be safely considered as the most suitable type of
emerging data sources to be used for behavioural modelling and in fact they have been used
extensively in transport research since mid-1990s. Mobility-related surveys based on GPS
were first performed mostly with GPS-enabled devices installed in vehicles to track their
movements (probe vehicles). That provided a sound representation of the traffic network
and allowed transport planners and traffic engineers to better understand travel demand
and delays occurring within the network. Those studies, were limited, however, since they
were capturing only moving private vehicles and hence ignoring other transport users. That
led to the second generation of GPS-based surveys performed with GPS-loggers, which are
devices that participants carry or wear to log their daily trips. Those studies were able to
capture non car trips too, however they were subject to certain limitations, such as individuals
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forgetting to carry them during their daily trips or charge them sufficiently (Bohte and Maat,
2009). The third generation of GPS trip diaries involved the use of smartphones with trips
being captured either through the phone’s GPS sensor or through applications dedicated
for that task. It is argued in the literature that individuals are less likely to forget their
smartphone when leaving their premises compared to a GPS logger, thus making them a
more effective data collection method leading to more captured daily trips (Calastri et al.,
2020). Nonetheless, both survey methods can be subject to signal issues or privacy protection
issues with individuals switching them off to conceal parts of their daily mobility.

A number of studies have been performed utilising GPS data in a range of different
application contexts. The most significant use of GPS data has arguably been in the context
of route choice, however, those models often require significant pre-processing efforts to match
the GPS traces with the underlying road network and provide meaningful paths, a process
known as map-matching (Quddus et al., 2003; Bierlaire et al., 2013). Such examples are the
studies of Li et al. (2005) and Hess et al. (2015), who analysed the route choice behaviour
during morning commute and for freight trips, respectively. Traces captured from fitness
applications, such as Strava (Jestico et al., 2016) and Endomondo (Schirck-Matthews et al.,
2022), have also been used to track the routes of individuals using them and were compared
with conventional methods to assess their validity. Caution is required, however, when
extrapolating the findings of those studies to the wider population, since they usually refer
only to a specific group of individuals. In the context of trip generation, Wolf et al. (2003)
and Hossan et al. (2018) have reported significant discrepancies between the reported trips
from GPS and traditional surveys, highlighting the significant implications that could arise
with biased estimates cascading to the later stages of travel demand modelling. Specifically,
Wolf et al. (2003) noted the significant differences in vehicle miles travelled and estimated
travel times resulted from traffic assignment as a result of the initial misreporting of trips. In
a similar notion, Gallotti et al. (2015) identified differences in travel time budgets obtained
from GPS trip diaries compared to traditional surveys. Li et al. (2004) using descriptive
statistics analysed variability patterns of departure time and route choice for commuting
trips with results suggesting that significant variation exists for departure time, while trip
chaining with the presence of intermediate stops might affect the variability for route choice,
which otherwise shows significant signs of stability across commuters. GPS data were used
to understand departure time for freight over a 24-hour period in the study of Vegelien
and Dugundji (2018). Schuessler and Axhausen (2009) used raw GPS data without any
additional information for developing pre-processing methodologies for mode detection, while
with regard to understanding mode choice behaviour, Calastri et al. (2018) utilised GPS trip
diaries combined with a household survey to capture latent availability and consideration
effects in a mode choice context. In the same mode choice context, there are also the studies
of Montini et al. (2017) and Huang et al. (2021), who analysed mode choice behaviour
together with route and trip chaining behaviour, respectively. Finally, a limited number of
location choice models is currently present in the literature with prominent examples being
the studies of Huang and Levinson (2015) and Huang and Levinson (2017), who utilised GPS
data to analyse the choice of single and consecutive non-work destinations, respectively.

2 Research gaps

Despite the aforementioned studies and the wealth of new research opportunities provided by
the implementation of GPS data, there are still a lot of areas where established practices and
general inertia hinder the adoption of new approaches. GPS data can be used to address
some of the issues in the behavioural transport modelling domain that could not be resolved
with traditional RP data, which are described in the following.
RG1: Limited use of GPS trip diaries for spatial disaggregate behavioural
modelling.
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According to the previous section, despite GPS data having been used in transport
research for more than two decades, their utilisation is still to a large extent limited to studies
of descriptive statistics of daily urban mobility with only a few examples taking advantage of
their benefits over traditional data sources for behavioural modelling. Particularly limited
has been their adoption in the specification of behavioural models in spatial contexts. The
high spatio-temporal resolution, despite being one of the main advantages of GPS data, could
also be considered one of its main drawbacks hindering their wider use in spatial choice
modelling due to the larger choice set sizes they provide. Using traditional data sources for
the specification of spatial choice models, such as location models of discretionary activities,
usually require some form of aggregation to reduce the choice set size by combining elemental
alternatives into aggregated ones, usually within traffic analysis or geographic zones, (such as
MSOA or LSOA zones in the UK), which forms the alternatives included in the choice sets
used for estimation. The increased spatial resolution of emerging datasets will only exacerbate
that computational complexity by creating the need for finer levels of aggregation, i.e. smaller
aggregation of alternatives, in order to take better advantage of GPS data. To add to that
problem, there is also an inherent difficulty in discerning the arrow of causality between mode
and destination choices and there is still not a general consensus as to which choice dimension
comes first during the individuals’ decision making process. That is also evident in aggregate
four-stage travel demand modelling approaches, where trip distribution (destination choice)
and modal split (mode choice) can change order between stages 2 and 3, while commonly
preceded by trip generation in stage 1 and followed by trip assignment (route choice) in stage
4 (Ortuzar and Willumsen, 2011). That uncertainty has led many researchers arguing in
favour of studying these two choice dimensions together in joint models of mode-destination
choices better capturing the interrelations between them, which of course provide additional
computational complexity with choice set sizes of Jm ∗ Jd, where Jm and Jd are the total
mode and destination alternatives presented in the study area. That also requires additional
information to be obtained for the non-chosen alternatives that is necessary to estimate the
corresponding behavioural model. The high granularity of GPS data allows to calculate
that information at a higher level of accuracy compared to traditional data. The current
thesis focuses to a large extent on such spatial contexts of joint mode-destination models,
which have so far been neglected in the literature of utilising GPS data for transport-related
behavioural modelling. As a result of that, several research questions commonly applied to
simpler mode choice contexts have never been addressed in a spatial context or only to a
limited extent, such as accounting for correlation among alternatives and uncovering latent
choice set formation mechanisms.
RG2: Lack of a systematic comparison between estimates derived from GPS and
other traditional data sources.

Comparison between GPS and traditional data sources has so far been limited on
emphasising the ability of the former to capture a more representative depiction of daily
mobility. Wolf et al. (2003) extended that initial observation to quantify the emerging
differences in the stage of trip assignment. Nonetheless, due to the lack of more studies
investigating the impact of those discrepancies for different aspects of travel demand and
on different choice contexts, it is still uncertain whether differences in trip misreporting
or in the granularity of the utilised datasets, will materialise in significant improvements
for the models estimated and also in what aspects, e.g. in model fit, in better capturing
unobserved heterogeneity etc. It can be argued that one of the reasons hindering their wider
adoption for behavioural modelling is not only that those types of datasets might offer higher
computational complexity, but also because researchers are uncertain of the potential added
benefits that would justify their collection and subsequent analysis. Furthermore, previous
experiences with traditional Revealed Preference (RP) data accumulated over the years and
documented in the literature have led to the adoption of certain practices favouring Stated
Preference (SP) data and responses to hypothetical scenarios over real ones. On that front, a
comparison of traditional approaches over GPS-based specifications could provide empirical
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evidence on the validity of GPS trip diaries that is currently lacking from the literature.
RG3: Current literature focusing on contrasting Machine Learning and Discrete
Choice Modelling rather than combining the two approaches.

Currently, there is much discussion around the use of Machine Learning (ML) supervised
learning algorithms as an alternative approach to traditional econometric behavioural mod-
elling, such as Discrete Choice Modelling (DCM). An increasing number of studies in the
literature comparing the two approaches are highlighting the increased prediction accuracy
of ML over DCM. There is also concern, however, that the results obtained from ML might
not be suitable for policy-oriented transport planning and demand modelling since they are
mostly data-driven and not grounded on microeconomic theory of human behaviour. That
has hindered the wider adoption of ML methods in behavioural transport modelling, missing
additional opportunities to benefit from using those approaches in areas in which they excel.
In response to that, in recent years there has been a slow shift of focus more on the integration
of the two methodological paradigms. Sfeir et al. (2022) and Sfeir et al. (2021) have made
significant contributions towards that direction by combining ML algorithms with DCM
models within an integrated Latent Class Choice Modelling (LCCM) framework for analysing
mode choice behaviour. Nonetheless, both of those studies were based on traditional RP
and SP data and it would be interesting to see how a GPS trip diary would perform in a
similar integrated ML-DCM framework, but based on different ML approaches. Furthermore,
it could be worth testing an ML-DCM integration in different choice contexts, as well, such
as location choice, and also assess its ability to uncover behaviourally intuitive latent profiles
compared to traditional econometric specifications.

3 Objectives

The broad aim of the thesis is to enhance the validity of GPS data for behavioural modelling
and the research community’s trust in utilising them. A 2-week GPS trip diary captured
through a smartphone application is being used as the main dataset utilised to address the
key research gaps listed above. The GPS trip diary is also benchmarked and cross-compared
against two secondary traditional datasets, namely the SP data used in the official VTT
study (Batley et al., 2019) and the London Passenger Mode Choice (Hillel et al., 2018).
Several methodological and applied objectives have been pursued in the thesis, described in
the following.

3.1 Methodological objectives

M1: Provide a more detailed representation of individual mode and location
choices for discretionary activities (addressing RG1 and RG3).

The primary objective of the thesis is to study the problem of mode and location choice
for discretionary activities more in depth taking advantage of the utilised GPS trip diary.
The higher granularity of the observed choices can allow for smaller aggregations of elemental
shopping locations to form the final choice set to be defined. Utilising a clustering algorithm
to group together elemental shopping locations within a certain maximum distance threshold
among them can help to not limit the analysis within the usual geographical boundaries.
Furthermore, the study acknowledges that the choice of a shopping location would also
depend on the following activity and the mode chosen to travel to that. Consequently, in
the current thesis an additional layer of complexity is added by studying in conjunction the
choice of an intermediate shopping location, as well as the two modes travelling to and from
there for the two trip legs. Thus, the analysis is performed at the level of the trip chain from
an initial origin O to the shopping location S and finally to the following destination D. A
core motivation for that analysis is to understand whether the intermediate shopping location
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is more likely to be closer to O or D, what would be the most likely detour from the straight
OSD path to reach the shopping location and what role the direction of travel might have in
the individuals’ decision making, among others.
M2: Examine concepts around choice set formation in a spatial context (address-
ing RG1).

The thesis aims to take advantage of the higher granularity of individual mobility
behaviour and the large panels of trips per individual to better address issues of choice set
formation, which are a central theme for spatial choice modelling. Choice set formation is
an issue relevant to different approaches of spatial choice modelling, namely sampling of
alternatives and modelling frameworks of probabilistic choice set formation. Sampling of
alternatives has been proposed as an empirical tool with significant practical value, which is
often utilised for the purpose of creating smaller sampled choice sets used for estimation. On
the other hand, probabilistic choice set formation frameworks provide a more behaviourally
realistic approach aiming to capture latent constraints during individual decision making. For
both of those cases, the aim is to utilise the geography-derived concepts of Activity Spaces
(Hagerstrand, 1970) in the form of detour ellipses (Justen et al., 2013; Leite Mariante et
al., 2018) and standard deviational ellipses (Brown and Moore, 1970; Horton and Reynolds,
1970; Horton and Reynolds, 1971; Yuill, 1971; Schönfelder and Axhausen, 2003; Schönfelder
and Axhausen, 2004; Schönfelder and Axhausen, 2010; Manley, 2016) as proxy measures
of trip-specific space-time and individual-specific spatial awareness/cognition constraints,
respectively. The use of those types of Activity Spaces, will help to provide additional
structure for the development of more efficient protocols of sampling of alternatives than
the ones currently presented in the literature (Leite Mariante et al., 2018) in the case of
large global choice sets, and assist to uncover instances of latent mechanisms employed by
individuals leading to the formation of their actual choice set under consideration when
making joint choices of mode and shopping locations (Manski, 1977; Swait and Ben-Akiva,
1986; Swait and Ben-Akiva, 1987; Calastri et al., 2018).
M3: Propose an efficient framework for capturing spatial correlation among
locations by treating space as continuous (addressing RG1).

The fourth objective aims to propose an efficient and operational specification for the
purpose of capturing spatial correlation among destinations of discretionary activities. Despite
the widespread use of the Multinomial Logit model (MNL) (McFadden, 1973) in the domain
of behavioural modelling (McFadden, 2000), the assumption of independent and irrelevant
alternatives alternatives (IIA principle) has been identified as its main limitation since its
initial inception. Accounting for unobserved correlation is important for estimating unbiased
parameters and behaviourally realistic demand elasticities. As a result, the Generalised
Extreme Value (GEV) family of models (Ben-Akiva and Lerman, 1985) was formulated to
account for correlated alternatives with the Nested Logit (NL) model (Williams, 1977) being
its prominent example, where the choice set is segmented into a finite number of disjoint
nests including alternatives with common unobserved attributes. The inherently complex
spatial context, however, requires a different type of analysis and the need to treat space as
continuous rather than discrete acknowledging the true continuous nature of correlation across
locations. The relevant approaches currently proposed in the literature are characterised by
high computational complexity and estimation times, causing researchers and practitioners
to follow simpler specifications, which unavoidably leads to biased estimates and demand
elasticities or estimating models on smaller choice sets thus still not properly capturing
correlation across the whole space in the study area. As a result, proposing a modelling
framework able to account for correlation among all location alternatives in a more efficient
way is of great importance to provide researchers with an operational tool to properly capture
spatial correlation and realistic substitution patterns.
M4: Explore potential benefits arising from the integration of Machine Learning
and Choice Modelling (addressing RG3).
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Contrary to the majority of the studies in the literature, the current thesis aims to shift
the focus on the efficient integration of Machine Learning and Choice Modelling, rather
than their comparison. The thesis will aim to illustrate the benefits of integrating concepts
from Machine Learning with an emphasis on taking advantage of their strong points over
DCM specifications, namely identifying patterns within complex data and to enhance their
performance. For that purpose, various clustering algorithms are utilised both as part of
pre-processing analysis and also as an integral modelling component of advanced DCM
specifications. More specifically, ML clustering algorithms are being used to provide finer
groupings of elemental shopping destinations into general shopping neighbourhoods, which
form the alternatives in the choice set. That allows the analysis to be performed in a more
detailed geographical resolution and not be limited in the pre-defined geographical boundaries
or traffic analysis zones. In addition, a combined ML-DCM framework is proposed, where
each component is utilised in the context in which they excel. Specifically, a data-driven
ML algorithm is used to more effectively identify patterns in the data, while DCM is used
to understand individual mobility behaviour. The proposed specification can thus take
advantage of the best of both worlds, while also extending the suitability of Machine Learning
for policy making.

3.2 Applied objectives

A1: Focus on the practical applicability of proposed modelling frameworks by
reducing their computational cost (addressing RG1).

A core applied objective of the thesis is to provide novel modelling frameworks that
besides the additional policy insights they could provide, they should also provide more
efficient specifications to reduce their computational cost and estimation times. The high
estimation times of spatial choice models have arguably been one of the main drawbacks
leading to more simplified frameworks being applied in practice that have the potential
for not accurately capturing individual behaviour. Examples like that can refer to cases of
implementing inefficient random sampling protocols for reducing choice set sizes, avoiding to
treat space as continuous in order to capture spatial correlation across locational alternatives
and ignoring the inherently latent nature of choice set formation in revealed preference data
on spatial choices, among others. Those simplifications could have the potential danger of
leading to biased estimates with adverse effects for policy making. Therefore, proposing
new more efficient specifications with the focus on being able to be used in practice could
have the potential of closing the gap between academia’s state-of-the-art and industry’s
state-of-practice approaches.
A2: Provide a systematic comparison of behavioural models and their respective
estimates utilising GPS trip diaries and traditional data sources (addressing
RG2).

A third objective of this thesis is to shed light in the existence of any potential discrepancies
of estimates derived from GPS trip diaries and SP surveys and traditional trip diaries.
Emphasis is given in the estimation of GPS-derived Values of Travel Time estimates and
the quantification of their statistical difference with official VTT values derived from SP.
Part of this objective is to stress the importance of accounting for real-world choices in VTT
estimation given their significance for the appraisal of future transport projects, while also
highlighting the need to increase researchers’ trust to emerging data sources for use in policy
making as they are becoming increasingly more popular (Daly et al., 2014). Analysis also
focuses on the ability of behavioural models estimated on GPS data to capture unobserved
heterogeneity more effectively or in a range of different dimensions compared to models
estimated on traditional sources. That finding could provide empirical evidence on the added
value of the higher resolution, the larger panels of individual mobility behaviour and the
longer survey durations of GPS-based data collection methods. On the other hand, traditional
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trip diaries, which usually capture smaller panels and for durations of up to one week are
expected to be less effective in capturing heterogeneity among individuals.

4 Thesis outline

The thesis is structured into seven chapters. The current chapter offers an Introduction on
the topic analysed, the identified research gaps and the overarching aims of the thesis, while
in the remaining chapters several approaches proposed to address those gaps are analysed.
In the last chapter, the conclusion of the thesis are summarised.

Chapter 2 presents a paper titled "Utilising activity space concepts to sampling of
alternatives for mode and destination choice modelling of discretionary activities". The
purpose of that study is to take advantage of the high resolution of GPS data to more precisely
create different strata to sample alternatives and reduce the computational complexity of a
joint mode-shopping location choice model. Sampling of alternatives has been proposed as a
method to reduce the choice sets of models. Random sampling of alternatives in particular
has been proven to be a very popular approach due to its simplicity, which also guarantees
estimating parameters with negligible differences from the ones estimated using the full
choice set (McFadden, 1978). Despite its simplicity, however, random sampling can also be
a less efficient protocol compared to others since it is likely to include a high number of
alternatives in the sampled choice sets that are irrelevant to the underlying choice process
of each task, thus not adding any useful information for model estimation. Importance
sampling offers a more informed alternative sampling protocol, in which certain alternatives
are prioritised over others, i.e. are being sampled with a higher probability and hence are
more likely to be included in the final sampled choice sets. Caution is, however, required since
an additional sampling correction term needs to be included in the utility function to account
for the sampling bias arising from importance sampling and to guarantee unbiased estimates
(Guevara and Ben-Akiva, 2013a; Guevara and Ben-Akiva, 2013b). Keeping a well-balanced
variation among higher and lower prioritised alternatives is also important for sampling
efficiency, i.e. achieving outputs close to the full choice set model by using smaller sampled
choice sets. The majority of studies implementing sampling of alternatives has been focused
in residential choice models with protocols prioritising location alternatives in certain areas of
the city relative to others (Farooq and Miller, 2012; Guevara and Ben-Akiva, 2013a; Guevara
and Ben-Akiva, 2013b). A different approach, however, has to be implemented for creating
sampled choice sets for location choice models of discretionary activities, since those choices
might be subject to the individuals’ spatial awareness, as well as their space-time constraints.
Therefore, alternatives adhering to those constraints might provide more useful information
for the underlying choice process compared to the remaining locations. A limited number
of studies have implemented sampling protocols based on space-time constraints, but they
have neglected to account for cognitive constraints. Therefore, there is potential in improving
the efficiency of sampling protocols by including another layer of information during their
implementation and by taking advantage of the high precision of GPS data to define proxy
measures of spatial awareness and space-time to accomplish that. The importance sampling
protocol proposed in this study gives higher priority to alternatives located within the stratum
referring to space-time constraints followed by the stratum capturing constraints of spatial
awareness. Finally, alternatives from the remaining area of the case study should also be
sampled albeit with a smaller probability, so as to each alternative in the global choice
set will have a non-zero probability of being included in the final sampled choice set, thus
acknowledging the uncertainty around the strata creation. The proposed sampling protocol is
compared with other importance and random protocols on an increasing number of choice set
sizes and on a range of different realisations per protocol and choice set size to test sampling
efficiency and stability.

Chapter 3 presents a paper titled "Deriving Values of Travel Time estimates using
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emerging Revealed Preference data". The study utilises a 2-week GPS trip diary captured
through a smartphone application as part of a survey conducted between October 2016-March
2017. The purpose of the study is to derive behaviourally accurate VTT estimates and
compare them with the current official SP-based values currently used for appraisal purposes
in the UK. For comparison purposes and to ensure consistency with the official VTT study
reported in Hess et al. (2017) and Batley et al. (2019), the methodology developed in those
studies was followed as closely as possible. Consequently, the analysis is based on a mixed
Logit mode choice model in which unobserved heterogeneity among individuals is captured
by specifying a range of log-uniformly distributed level-of-service parameters. Scaled utilities
were also specified with additional scale parameters as a function of distance to capture
the heterogeneity and the increased randomness arising in trips of longer distances. The
estimates of the mixed Logit model, estimated on the GPS trip diary (estimation data), were
then applied on the NTS data of 2015-2017 (application data) and were further weighted
by distance based on the mode-specific travel-to-work trip distances from the latest Census
of 2011. Standard errors for the GPS-based VTTs are computed using simulation, which
allowed the calculation of confidence intervals and t-statistics of their difference with the
official VTT values. That process resulted in GPS-based VTT estimates with no statistically
significant differences with the official values at a 95% confidence level. Furthermore, the
estimates are consistent with previous empirical findings in the literature (Wardman et al.,
2016) suggesting the presence of increasing VTT values with distance, higher values for rail
and business trips and also in general lower values for other non-work related trips. That
study is the first who performs a systematic comparison between GPS-SP VTT estimates
and the results suggest that new emerging data collections methods are suitable for providing
behaviourally reasonable VTTs. The fact that the GPS values are statistically equal with
the SP-based values should actually be considered as validation for the SP study and the
rigorous efforts of the researchers involved in that study. It is also worth noting that the
GPS-based VTTs were estimated on smaller samples than the SP values, both for estimation
and application datasets, indicating that smaller samples and less expensive data collection
efforts could be sufficient when using GPS data of higher spatio-temporal resolution. In that
study it is suggested that GPS data should be considered as a realistic alternative or at least
be used to complement SP surveys for VTT estimation. The potentially smaller required
GPS sample could lead to more frequent GPS surveys for the purpose of capturing significant
variations from the official values as we are entering in a period of constant change in the
transport sector significantly influencing individual behaviour.

Chapter 4 presents a paper titled "Accounting for distance-based correlations among
alternatives in the context of spatial choice modelling using high resolution mobility data". The
study proposes a Cross-Nested logit (CNL) model to capture unobserved spatial correlation
among location alternatives based on Tobler’s First Law of Geography postulating that
"Everything is related to everything else, but near things are more related than distant ones"
(Tobler, 1970). More specifically, a CNL nesting structure is specified, such that each
destination is a nest of its own. The allocation probability to every nest is specified as a
negative exponential function of distance, thus each destination is allocated with a non-zero
probability to all nests, but with a higher allocation probability to its own nest. The proposed
specification is the first application of a CNL model for a destination choice model. Previous
attempts were based on variants of the Paired Combinatorial Logit (PCL) model (Chu,
1989; Bhat and Guo, 2004; Sener et al., 2011) and the Error Component model (Weiss and
Habib, 2017), which due to their computational complexity are limited to being implemented
in models of smaller choice sets. PCL, for instance, requires the specification of a nesting
structure with nests for every possible pair of alternatives with the number of nests increasing
as J !

(J−2)!(2)! , where J is the total number of alternatives in the choice set. Furthermore,
the EC specification requires simulation during estimation, which significantly increases
estimation times. The more flexible nesting structure of the proposed CNL specification for
the destination choice model, allows its easy extension to more complex choice contexts, such
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as a joint mode-destination model with an even larger choice set. For that joint model, a
mode-destination alternative is allocated to mode and destination nests, but the allocation to
destination nests further takes into account the distance among them as previously described
for the destination model. In the current study, the proposed methodology is empirically tested
on a destination and a joint mode-destination choice model of shopping activities utilising a
GPS trip diary. For the destination choice model, the proposed specification is compared to
a base MNL model that does not account for the presence of unobserved correlation among
alternatives, a range of Nested Logit (NL) models nesting together destinations of similar
geography and an equivalent PCL model with nests equal to the number of all possible pair
combinations of alternatives. Similarly for the joint mode-destination choice model, the
proposed specification is compared against a base MNL model, a NL model where mode
alternatives of the same destination are nested together (Destination-over-Mode), a NL model
where destinations reached by the same mode are nested together (Mode-over-Destination)
and a CNL model in which each joint mode-destination alternative is equally allocated to
destination- and mode-specific nests, but without accounting for the distance effect on the
correlation among them. A PCL model could not be implemented for the joint model and an
EC model could not be tested in general for the current choice models due to computational
reasons, which are indicative of the limitations of those two approaches. In both contexts,
the proposed CNL specifications manage to outperform the remaining models, while also
being able to uncover significant unobserved correlation based on spatial proximity among
destinations.

Chapter 5 presents a paper titled "Augmenting Choice Models with Machine Learning
techniques to capture the heterogeneity in Travel Behaviour". The current study presents
an integrated framework combining an ML clustering and an MNL choice model for the
purpose of capturing inter-individual heterogeneity for mode and destination choices. More
specifically, the aim is to utilise a clustering algorithm at the upper level to allocate individuals
probabilistically into latent clusters, while a choice model for each cluster is used to analyse
their behaviour at the lower level. The two described components are estimated jointly, thus
making the proposed specification a case of a Latent Class Choice Model (LCCM), where
the clustering algorithm takes the role of class allocation commonly used in the traditional
econometric LCCM specification. In order to achieve a proper integration between ML and
DCM in an LCCM framework, the clustering component (class allocation) needs to to be able
to account for the probabilistic allocation of individuals into clusters (classes). The K-means
clustering algorithm is utilised for that purpose, which is a deterministic clustering method
aiming to minimise the distance of data points allocated to the same cluster, while at the
same maximising the distance from the remaining ones. The transition to a probabilistic
K-Means is achieved by considering the fact that there are still non-zero distances of data
points from their allocated cluster centroids. Thus, the allocation probabilities of every point
is calculated based on its distance to each centroid. The same principles around the transition
from deterministic to probabilistic clustering can be applied to other similar algorithms, as
well. The proposed specification is tested on two datasets, namely a GPS and a traditional
pen-and-paper trip diary, and on a range of mode and destination choice models. It is also
compared with a traditional econometric LCCM specification in which an MNL model takes
the role of class allocation. The proposed integrated ML-DCM framework outperforms the
traditional econometric LCCM in terms of model fit in all cases and more importantly it is
able to provide a more intuitive behavioural profiling of the estimated latent clusters and also
more realistic Values of Travel Time estimates. In addition, it excels particularly in cases
of larger sample sizes, while it is also worth noting that it is easier to capture additional
heterogeneity in the GPS data than the traditional RP data with the estimation of additional
latent classes and the inclusion of more covariates in the class allocation/clustering component.
Overall, the study clearly illustrates the benefits that can be achieved by combining the two
approaches and it also provides opportunities for ML methods to be more widely adopted for
policy making.

Chapter 6 presents a paper titled "Probabilistic choice set formation incorporating
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activity spaces into the context of mode and destination choice modelling". Choice models
typically are estimated by assuming that all alternatives are available to the decision makers.
It has long been argued, however, that individuals might not be in a position to equally
evaluate all the alternatives included in the global choice set, but rather use certain latent
screening rules either due to cognition or due to space-time constraints. An important strand
in the literature focused on analysing that aspect is mainly based on the framework proposed
by Manski (1977), who first proposed decomposing the choice set generation from the choice
itself. It has also been argued that misspecifying the choice set is another form of model
misspecification with the same adverse effects, i.e. biased estimates, welfare and valuation
measures (Williams and Ortuzar, 1982; Li et al., 2015). Empirical applications of probabilistic
choice set generation have been applied almost exclusively in the context of mode choice,
which generally offers a well-defined and limited choice set, while the problem is mostly
ignored or avoided in spatial choice models due to their high computational complexity. That
study aims to address that gap by focusing on the need to account for the inherently latent
nature of the choice set in a spatial choice model by presenting an implementation of a
probabilistic choice set formation approach suitable for a joint mode-destination choice model
of shopping activities. The proposed specification is a Latent Class Choice Model (LCCM),
in which individuals are probabilistically allocated into three classes by acknowledging that
different sources of latent constraints might coexist at the same time affecting the individual’s
decision making process. As a result, each class has a different choice set as captured
by a range of estimated proxy measures of different Activity Space forms, which largely
refer to space-time constraints within a specific trip chain/tour and the individuals’ general
knowledge/awareness of the space around them and the opportunities within it. Contrary
to past studies focusing on capturing spatial awareness and space-time constraints utilising
traditional pen-and-paper trip diaries (Schönfelder and Axhausen, 2003; Schönfelder and
Axhausen, 2004; Axhausen, 2007; Schönfelder and Axhausen, 2010), thus being subject of the
aforementioned limitations (limited survey duration, recalled and often omitted trips), the
2-week semi-passively collected GPS trip diary utilised in the current study provides a richer
and more suitable dataset in order to capture them more accurately. More specifically with
regard to the specified latent classes, class 1 contains alternatives within estimated detour
ellipses, which are used as proxy measures for capturing space-time constraints. Class 2
contains alternatives within estimated standard deviational ellipses, which are used as proxy
measures for capturing spatial awareness. The last class includes all feasible alternatives from
the global choice set, thus it has the purpose of capturing individuals who are more free to
roam around the space within the study area. Different sets of parameters are also specified
across classes for specific variables, thus inter-individual heterogeneity is captured both at
the choice set and at the sensitivity level. The proposed specification is empirically tested
on an MNL and an LCCM specification where heterogeneity is captured only based on the
sensitivities of the different classes, without accounting for different choice sets across classes,
outperforming both in terms of model fit. More importantly, however, significant insights are
derived from such a framework, which could have a significant impact for proposing more
effective policy measures on addressing the specific needs of individuals, while at the same
time acknowledging the constraints they face.

Finally, chapter 7 contains the discussion and the conclusions derived from the research
presented in the previous chapters, while further avenues for future research are being
discussed.
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Abstract

Choice models estimated or applied to datasets with large numbers of alternatives present
significant challenges, leading to rapidly expanding computational cost, as well as potential
behavioural realism issues since many of the alternatives included in the model may not be
considered by the individuals. Sampling of alternatives has been a well-known method proposed
to overcome the computational limitations mostly applied to choice models of residential
location. Nonetheless, sampling protocols for destination choice models of discretionary
activities require a different type of analysis, since the choice may depend on time-space
constraints and familiarity on the alternatives in the choice set. The present paper makes
the case that observing the general areas of travel for a period of days can provide important
information of the individuals’ whereabouts and the areas that they are more likely to visit,
which can be used to better infer their choice sets. New emerging data sources, such as GPS
tracking, can provide such information at a very high spatial resolution, which was not possible
with traditional transport-related surveys. The present study, taking advantage of such a
dataset, proposes a more behaviourally realistic sampling protocol to reduce the choice set
utilising the geography-based concepts of activity spaces. Differential importance sampling
rates are applied depending on the activity space and trip chain of the person making the
resulting sampled choice set a function of person-specific spatial awareness and mode-specific
time-space constraints. The performance of the sampling protocol developed is assessed using
a model estimated on the full choice set and compared with random sampling and several
other importance sampling protocols. The modelling outputs show that the proposed approach,
incorporating both time-space constraints and individual spatial awareness, is able to produce
less biased estimates, achieve higher sampling stability and statistical efficiency, while also
avoiding overfitting.

1Choice Modelling Centre, Institute for Transport Studies, University of Leeds
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1 Introduction

Mathematical models capable of predicting the destinations of travellers are important for
estimating transport demand levels. First introduced by McFadden (1973) and later expanded
by Daly (1982), discrete choice models have emerged as the prominent tool for modelling
disaggregate level destination choices. The large number of potential alternatives, however,
poses two issues, namely behavioural realism and computational complexity.

Considering the full choice sets has the risk of leading to a behavioural misrepresentation
of the individual-level decision making process, since in reality, the decision makers are highly
unlikely to equally evaluate all the alternatives in the global choice set. Some of the areas of
a city, for example, may just not be of interest to a given traveller, while some destinations
may in fact be unknown (Fotheringham, 1988). The key problem is that the analyst is usually
unable to observe or extract the true choice set evaluated by the decision makers and only
assumptions can be made about it (Thill, 1992).

The problem of choice-set specification and its significance is well documented in the
literature (Thill, 1992; Pagliara and Timmermans, 2009). In fact, estimating a model using
an inaccurate choice set can be considered a case of model misspecification leading to biased
estimates (Swait and Ben-Akiva, 1987). Pellegrini et al. (1997) showed that estimated
parameters can depend significantly on the spatial distribution of the alternatives in the
choice set and that it could vary among different market segments. Probabilistic choice set
generation based on the theoretical foundations of Manski’s model (Manski, 1977) has been
proposed as an approach of decoupling the choice problem into a choice set generation and
an alternative choice sub-problem (Thill, 1992; Horni et al., 2011). Specifically, the final
choice is defined as a two-stage process, where the probability that individual n will choose
alternative i depends on the conditional probability of choosing alternative i from a choice
set C and the probability of choosing choice set C from the universal choice set G, as shown
in Equation 2.1.

Pin =
∑
C∈G

Pn(i | C)Pn(C) (2.1)

Manski’s formulation requires an exhaustive enumeration of all possible non empty
choice sets, a process that quickly increases exponentially in complexity with the addition
of more alternatives. Despite its appealing behavioural principles, it is generally considered
not applicable in cases of large choice sets, such as in spatial choice models (Pagliara and
Timmermans, 2009). Several variants based on the principles of Manski’s model have been
proposed over the years aiming to relax the computational complexity (Swait and Ben-Akiva,
1987; Ben-Akiva and Boccara, 1995). Nonetheless, in many cases these modelling formulations
adversely impact the behavioural realism of choice set generation (e.g. independent availability
of alternatives) negating the main purpose of this modelling approach (Thill, 1992). Other
Manski-inspired frameworks focused on introducing penalties in the utility function to
minimise the probability of selecting alternatives exceeding certain upper/lower bounds on
certain trip- and individual-specific constraints (Cascetta and Papola, 2001; Martinez et al.,
2009; Haque et al., 2019). In addition to being critiqued on whether these models are able
to replicate Manski’s principles (Bierlaire et al., 2010), they again rely to some extent on
analyst assumptions (especially in terms of defining constraints), while the increased number
of model parameters and the non-concavity of the log-likelihood function have also hindered
their adoption in spatial choice models (Thill, 1992).

Despite the ongoing efforts to decouple choice set formation from the choice itself (Thill
and Horowitz, 1997a), there have been critics of the importance of the choice set generation
issue suggesting that the notion of model misspecification only has theoretical grounds
(Lerman, 1985; Thill, 1992). It is argued that in an empirical setting, the choice probabilities
of alternatives that are not in the actual choice set of an individual are likely to be negligible
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provided the utility function is correctly specified (Thill and Horowitz, 1997b). On the
other hand, if there are any significant omitted variables in the utility specification, for
instance a latent time constraint, the correlation among the error term and the omitted
variables will lead to non-intuitive results, such as yielding sign violations or high standard
errors for the estimated parameters. In contrast, the behaviourally accurate estimates from
an unconstrained model using the full choice set could still be considered as a sufficient
representation of reality.

The above approaches are concerned with seeking to understand the choice process. Aside
from relying on analyst assumptions, they do not address the second issue of working with
large choice sets, namely the computational burden. In fact, especially for the Manski model,
the computational cost is further increased. Even with much simpler models, and those that
do not seek to incorporate any element of choice set formation, the computational cost of
working with very large choice sets can be prohibitive in estimation, as well as application.

Sampling of alternatives has been proposed as a way to overcome the computational
limitations of estimating choice models with a large number of alternatives, thus reducing the
choice set and in turn the computational cost. McFadden (1978) showed that constraining
a choice set by sampling of alternatives still yields unbiased estimates, if the true model is
an MNL, by adjusting the utility function with the inclusion of an additional term, called
the sampling correction term (SC). The bias in the estimated parameters, defined as the
difference between the sampled estimates and the estimates obtained using the full choice set,
will decrease as the size of the sampled choice set keeps increasing (Guevara and Ben-Akiva,
2013b). The specific choice set size beyond which only marginal improvements are observed
in the accuracy of the sampled estimates is to be determined as a result of the analysis.
As mentioned in Guevara and Ben-Akiva (2013b), the process of identifying the minimum
required choice set size to achieve estimation stability is equivalent to the process of finding
the required number of draws for the same purpose in a simulated Maximum Likelihood
estimation for a mixed Logit modelling framework.

The additional SC term has the purpose of adjusting the utility function to account for
the sampling bias, since the spatial distribution of the sampled alternatives will now depend
on the sampling protocol developed and it may differ substantially among individuals. The
additional term is computed as lnπ(Dn|i, xn), which is the logarithm of the probability of
creating the choice set Dn given that alternative i was chosen for individual n. That can be
also considered as a penalty added to the utility, since the π(Dn|i, xn) will always be between
0 and 1 and its logarithm will always be negative. In other words, the smaller the probability
of sampling that choice set Dn given that alternative i is selected, the bigger the penalty
applied. In that case the choice probabilities are modified as shown in Equation 2.2 and the
SC term for stratified importance sampling without replacement is defined in Equation 2.3
(Ben-Akiva and Lerman, 1985; Guevara and Ben-Akiva, 2013a).

P (i | β, xn, Dn) = eV (xin,β)+lnπ(Dn|i,xn)∑
j∈Dn

eV (xjn,β)+lnπ(Dn|j,xn) (2.2)

π(Dn | i, xn) =
J∗

r(i)n

Jr(i)n
(2.3)

where J∗
r(i)n is the number of alternatives sampled from stratum r of alternative i and

individual n and Jr(i)n is the total number of alternatives in that stratum. The SC is
calculated for each alternative i per choice task as if that alternative was chosen. It is clear
to see that in cases of random sampling with a uniform probability from the global choice
set, where π(Dn | i, xn) = π(Dn | j, xn), the additional SC term remains the same across
alternatives and hence it drops out (Nerella and Bhat, 2004). No correction is thus needed
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with random sampling, but that is not the case with importance sampling. Guevara and
Ben-Akiva (2013a) and Guevara and Ben-Akiva (2013b) extended this theory for stratified
importance sampling in GEV and mixed logit models, respectively.

Given the need for corrections when using importance sampling, random sampling
provides an easier to implement sampling protocol compared to the former. The limitation of
random sampling, however, is that it leads to more deterministic models, since the sampled
alternatives can be topologically not relevant to the chosen alternative. Therefore, the
model will assign higher choice probabilities to the chosen alternative compared to the
rest diminishing the explanatory power of the model. The insufficient number of close
substitute alternatives to the chosen one, for small choice set sizes, leads a random sampling
protocol to require choice sets of generally larger sizes in order to achieve the same level
of estimate accuracy compared to an importance sampling protocol, making the former a
less efficient approach. Various importance sampling techniques have been proposed in the
literature, as opposed to a pure random sampling, aiming to create a reduced choice set that
would best represent the individual’s trip-specific constraints (Li et al., 2005; Scott and He,
2012; Leite Mariante et al., 2018). Defining a realistic sampled choice set that would be in
accordance with the individuals’ time-space constraints in the sample is of great importance
to produce unbiased parameters (Landau et al., 1982), while also being more efficient than
random sampling (smaller sampled choice sets). That can also provide the advantage of
moving to more advanced modelling specifications that were not possible to be estimated
using the full choice set. Examples can be found in empirical studies of mainly residential
location choice (McFadden, 1978; Farooq and Miller, 2012; Guevara and Ben-Akiva, 2013a;
Guevara and Ben-Akiva, 2013b). The implementation of importance sampling in a destination
choice of discretionary activities, however, will require a different type of handling from a
residential location choice, since the chosen alternatives will be subject on some degree to
travel impedance and time-space constraints (Daly et al., 2014). Evidence also shows that
availability-consideration of alternatives depends not only on time-space constraints, but also
on the familiarity/awareness of those destinations (Landau et al., 1982; Thill and Horowitz,
1997a).

The current paper aims to propose a sampling protocol that utilises concepts of Activity
Spaces (AS) from the time-space and behavioural geography literature, namely (1) Potential
Path Areas based on detour factors around a previous origin O and a following destination
D; and (2) Ellipses incorporating a notion of the individuals’ awareness/knowledge of their
surrounding space. The geography-derived notion of Activity Spaces is a tool capable of
capturing time-space constraints and individual spatial awareness, and we use path areas
and ellipses for creating person- and trip-specific spaces for importance sampling of mode-
destination alternatives.

We rely on the notions of Detour Ellipses (DEs), Standard Deviational Ellipses (SDEs)
and Familiarity Buffers (FBs), concepts that are looked at in detail in Section 3. To the best
of our knowledge, SDEs and FBs have never been used before, on their own or in combination
with DEs, for the purpose of delineating a choice set in a destination choice model, despite
their extensive use in exploratory analysis studies of individual travel-activity behaviour. It is
hypothesised that including an additional stratum delineated by SDEs and FBs would result
in more accurate sampled choice set models (less biased estimates). That sampling protocol
will result in constrained/sampled choice sets with most alternatives adhering to time-space
constraints (within DEs) and also being familiar to the individual (within SDEs/FBs).

The remainder of the paper is as follows. In the following section, we give an overview
of the relevant literature on time-space geography before expanding this to the context of
sampling of destinations. In the third section, the modelling framework developed and the
data utilised for the ensued practical application are presented. The results are presented
next followed by a concluding section summarising the findings and setting the direction for
future research.
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2 Methodology

The present study aims to incorporate different forms of AS, namely DEs and SDEs/FBs in
order to group the alternatives into three different spaces/strata for the purpose of stratified
importance sampling. We will first review existing work on activity spaces in a general
context, before extending this to destination sampling.

2.1 Activity spaces - general literature

Activity spaces (AS) originate from the work of time-space geography (Hagerstrand, 1970)
and behavioural geography (Brown and Moore, 1970; Horton and Reynolds, 1970; Yuill,
1971) and they have been studied extensively since then for the purpose of understanding
activity participation (Schönfelder and Axhausen, 2004; Schönfelder, 2006; Schönfelder and
Axhausen, 2010; Kamruzzaman and Hine, 2012), trip chaining behaviour (Newsome et al.,
1998), as well as physical activity (Zenk et al., 2011), instances of social exclusion (Schönfelder
and Axhausen, 2003), intra-urban migration (Brown and Moore, 1970), criminal behaviour
(Bichler et al., 2011) and even the potential spread of a virus (Yang et al., 2008). They are
mainly used as a measure of describing the spatial distribution of visited locations and they
incorporate a notion of individual spatial awareness (Manley, 2016) by providing invaluable
information about the exposure to specific locations and activities that individuals might
perform based on their usual mobility patterns and their time-space constraints. Due to
the vast range of studies and application domains, there are several different forms of AS
proposed in the literature depending on the aspect under examination in each case and the
level of analysis. In a systematic review, Smith et al. (2019) summarised the different AS
forms, which, amongst others include the following:

• Ellipses formed around two fixed points of a specific trip or trip chain, labelled here as
Detour Ellipses (DEs)

• Ellipses formed around the observed trips of an individual during a survey period, most
commonly known as Standard Deviational Ellipses (SDEs)

• Circles/buffer zones around frequently visited locations, labelled here as Familiarity
Buffers (FBs)

We will now look at these three in turn.

2.1.1 Detour Ellipse

DEs is a form of what is known as Potential Path Areas (PPAs). PPAs originate from the
time-space geography literature (Hagerstrand, 1970) and have been used extensively as the
two-dimensional form of time-space prisms (Miller, 1991; Miller, 2005; Demsar and Long,
2016). A PPA, as depicted in Figure 2.1, is formed as an ellipse around two fixed locations,
the foci of the ellipse represented as Pi and Pi+1, where these are usually the home and work
locations, also referred to as pegs (Miller, 1991; Kamruzzaman and Hine, 2012). To complete
the formation of the PPA, the available net time between the fixed activities performed in
the two pegs is considered and an average travel speed is taken into account to identify
the maximum area of potential travel within that time frame, while still having sufficient
time to perform the intermediate discretionary activity (Miller, 1991). In a similar notion,
however, other types of activity locations, except home-work, can be considered as the foci of
the ellipse, as well, since there could be discretionary activities performed only in specific
locations. A more sophisticated approach was proposed by Miller (1991) utilising real network
travel speeds/times based on the time of day (e.g. peak/off-peak) and network constraints.
The purpose of a PPA is to capture the reachable intermediate locations of discretionary
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Figure 2.1: Two-dimensional projection of time-space prisms (Demsar and Long, 2016)

activities between the foci based on the individual’s time-space constraints, such as the chosen
activity plan, activity duration and travel times.

The analysis for DEs/PPAs is performed at the level of trip/trip sequence, hence high
resolution mobility data is required. As a consequence, the application of PPAs was initially
limited due to the datasets available at that time (Miller, 1991; Newsome et al., 1998). That
problem seemed to be resolved with the advances in GIS analysis (Miller, 1991) and more
recently due to the increased data availability offered by emerging data collection methods,
such as GPS, mobile phones etc. (Patterson and Farber, 2015). Some of the data limitations
are however still relevant, described in Landau et al. (1982). Specifically, issues influencing
time-space constraints and therefore the constrained choice set delineation, such as the
preferred time spent in shopping location, departure/arrival time from previous/following
fixed locations and even what type of activities can be considered fixed in space (e.g. social
activities performed only in specific locations), cannot be resolved simply by using revealed
preference data (Landau et al., 1982). Analyst assumptions are still required to overcome
these issues.

The term Detour Ellipse is being used here instead of PPA to denote the method chosen
to define them, which is based on the notion of detour factor (DF). A DF is defined as
the ratio of the sum of distances between O(previous origin)-S(shopping destination) and
S(shopping destination)-D(next destination) and the distance between O-D, as defined in
Equation 2.4 (Justen et al., 2013). In other words, a DF measures the deviation that an
individual is willing to make to reach an intermediate shopping location S between the
O-D (Leite Mariante et al., 2018) and it serves as a measure of spatial dependence among
destinations in a trip/activity chain. It is also clear that DF ≥ 1 should always hold. A DE
explicitly accounts for time-space constraints without the need to make assumptions about
the time allocation, hence it is not susceptible to some of the limitations outlined in Landau
et al. (1982).
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DF = lOS + lSD

lOD

(2.4)

Previous studies have used fixed DFs for certain intermediate destinations to be considered
along the path of observed O-D pairs (Cascetta and Papola, 2009). Newsome et al. (1998)
created DEs based on the furthest visited intermediate location between home-work locations.
Nonetheless, the DF would likely depend on the distance between O and D with longer
OD distances resulting in smaller trip-specific DFs. That means that the individual would
have reduced resources in terms of time and budget to deviate further away from the OD
path. This relation between DF and OD distance has been taken into consideration in Justen
et al. (2013), although their approach is limited by the fact that only average values per
DF percentile are considered. Furthermore, it is likely that more factors could influence
the DF besides the OD distance that have not been accounted for in their work, such
as sociodemographic attributes of the individual, e.g. income, occupation status etc. and
trip-specific characteristics, e.g. time of day.

2.1.2 Standard Deviational Ellipse

SDEs originate from behavioural geography (Brown and Moore, 1970; Horton and Reynolds,
1970; Yuill, 1971) and have been proposed as a measure of capturing the exposure of
individuals to opportunities as a consequence of daily activities (Horton and Reynolds, 1971).
ASs formed by SDEs are considered a subset of a larger latent awareness space (Brown
and Moore, 1970; Patterson and Farber, 2015). In that sense, a SDE provides additional
information on the individual awareness of certain destinations, that the DE/PPA is not able
to provide. It should be noted, however, that the individuals would likely possess spatial
knowledge that far exceeds the SDE formed around the observed destinations.

SDEs have been mainly analysed in social geography for the purpose of understanding
human mobility patterns. Several measures can be extracted from a SDE that describe the
mobility patterns of an individual, such as its shape (minor to major axis ratio), size (area,
number of polygons located within etc.), orientation and eccentricity (Yuill, 1971). Temporal
factors can also be taken into account, such as examining weekday/weekend differences
(Srivastava and Schoenfelder, 2003; Smith et al., 2019) and their evolution over decades
(Axhausen, 2007). Srivastava and Schoenfelder (2003) linked individual sociodemographic
attributes with SDEs and found that workers tend to have more stable AS during weekdays
with activities located between the two anchor points (home-work), while more variation is
observed during weekends, similar to non-workers, as they seek to explore more discretionary
activity options. Survey duration also plays an important role in the SDE creation. In a series
of studies conducted by Schönfelder (2006) in his doctoral thesis on a number of datasets
with different survey durations and from different countries, showed that surveys of longer
durations are required in order to observe a stability in the mobility/activity patterns and
hence to create more representative SDEs.

Contrary to DEs/PPAs, SDEs are formed around all of the visited locations (observed
latitude/longitude coordinates) of an individual during the survey period. More specifically,
a SDE is considered the two-dimensional equivalent of a standard 95% confidence interval.
The procedure of defining a SDE requires the calculation of the covariance matrix of the
latitude/longitude coordinates, the calculation of the rotation matrix and finally finding the
points of the ellipse’s perimeter (details can be found in Yuill, 1971). Weights can also be
used for the latitude/longitude coordinates during the covariance matrix calculation for the
creation of a weighted SDE based on trip frequency, activity duration etc. (Figure 2.2). The
major axis of the ellipse indicates the axis of major dispersion and it is the regression line of
latitude/longitude coordinates, while the orientation of the SDE depends on the correlation
sign between them (Schönfelder, 2003). Destinations that are outside of a SDE are labelled
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Figure 2.2: Weighted standard deviational ellipse around observed/visited destinations (Schönfelder, 2003)

as outliers and are generally considered as places that are not part of the usual movement
areas of an individual .

2.1.3 Familiarity buffers

Buffer zones around frequently visited locations have been proposed as another form of
AS used to capture the spatial awareness or the number and different types of services an
individual is exposed to, similar to SDEs. Due to their ease of implementation, a large number
of studies have implemented them. Among others, Larsen et al. (2009) defined buffers of 1.6
km and 500 m around school and home locations to define school neighbourhoods and the
immediate home neighbourhoods, respectively, and identified factors of the built environment
that might influence mode choice of children for their trips to school. van Heeswijck et al.
(2015) specified buffers of approximately 20 minutes of walking distance (1.6 km) around
visited destinations for the purpose of capturing the built environment within and how it
might affect active travel specifically. Chaix et al. (2017) created buffers of 1 km (10-15
minutes of walking distance) around visited locations to capture the exposure of individuals
to services located within those areas. Finally, Horni et al. (2011), in their conceptual choice
set formation framework, proposed adding a buffer zone, equivalent to 15 minutes of walking
distance, around home and work locations in a PPA ellipse formed between home-based work
trips. Despite the aforementioned fixed buffers, an exposure weighting has also been applied
for FB creation based on the type of activity performed, the visiting frequency or the time
spent at those locations. An example is the study of Loebach and Gilliland (2016), where
weighted buffers based on the time spent on locations around home were defined, labelled as
the habitual activity space.

2.2 Applying AS approaches to destination sampling

Only a handful of studies, at least to the authors’ knowledge, have combined time-space
constraints and sampling of alternatives in order to further reduce computational complexity.
Scott and He (2012) analysed shopping trips using real network travel times to create PPAs
and to identify the reachable shopping destinations with a positive net activity time. Random
sampling of the identified locations was applied to construct the final constrained choice set.
This approach is subject to the limitations described earlier (Landau et al., 1982). Excluding
destinations with a negative net activity time, by considering the observed departure/arrival
times as fixed, fails to take into account the trade-offs the individual is willing to make in
order to reach a certain destination. Even excluding the possibility of measurement errors
and even if the analyst considers the activity scheduling choice dimension to precede the
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choice of location, she cannot safely assume the same for the time allocation between those
activity locations, such as departure-arrival time from/to different locations in a trip chain.

Leite Mariante et al. (2018) formed DEs (DF-based PPAs) for the purpose of sampling
of alternatives for a destination choice model of different discretionary activity types. The
DEs were defined based on the methodology described in Justen et al. (2013). The sampling
protocol proposed involved selecting the chosen destination first and then sampling a number
of alternatives from the space delineated by the DEs. In the case of not having enough
sampled alternatives to reach the required choice set size, additional alternatives were sampled
located outside the DEs. Mixed logit models were estimated utilising the methods proposed
in Guevara and Ben-Akiva (2013a). The limitations of this study lie mainly on the sampling
protocol developed and also on the DE formulation. Firstly, alternatives outside the DEs are
sampled only in cases of an insufficient number of alternatives in the DEs. That means that
many choice tasks will be estimated with choice sets containing alternatives only within DEs.
That in turn can have significant implications on the estimation accuracy of parameters for
spatial variables that generally lie in areas outside most of the DEs. Secondly, a problem could
also arise in the case of small DEs. If we consider an example of a choice task/trip with a long
distance between the previous O and the following D, then the chosen DF for the intermediate
S would be small according to Equation 2.4 resulting in a small DE. Let us assume now that
the created space within the DE contains only 2 alternatives, the chosen and an additional
non-chosen destination, and the required choice set size is 50 alternatives (i.e. the largest
choice set size in this study). That means that 48 additional alternatives will be randomly
sampled from the remaining universal choice set, making that choice task/trip a case of
almost pure random sampling from the universal choice set, which will result in choice sets
with a large number of spatially irrelevant alternatives to the chosen one. Therefore, a more
balanced sampling protocol would be required to address both issues. Finally, the created
DEs depend only on the observed detour factors and on average values per quantile of the
observed straight OD distances (previous O - following D) having an impact on the accuracy
of the DEs both for chosen and non-chosen alternatives. Additionally, socio-demographic and
trip characteristics that might influence the detour factor the individuals would be willing
to choose in order to reach an intermediate shopping destination have not been taken into
account.

The current study addresses the aforementioned limitations by formulating a range of
stratified importance sampling protocols for shopping mode-destination alternatives and to
provide a systematic comparison with random sampling. The main departure from the studies
described so far, is to include SDEs and FBs alongside DEs and the corresponding activity
spaces, to define strata for importance sampling. The space created within SDEs/FBs will
provide an additional pool of alternatives to sample from and avoid the problems identified
in Leite Mariante et al. (2018). In the case of small DEs, alternatives adhering to individual
spatial awareness will be prioritised to be sampled in order to reach the required choice
set size, instead of randomly sampling a large number of spatially irrelevant alternatives
from the remaining global choice set. DEs for chosen/non-chosen alternatives are formed
based on estimated DFs from an econometric model, thus being based on a more accurate
representation of individual behaviour. Furthermore, we purposely refrain from excluding
alternatives outside DEs and SDEs/FBs, in an attempt to accommodate extreme cases,
to account for possible measurement errors during the DE and SDE/FB formation and
finally to ensure that all alternatives will have a positive probability of being included in the
sampled choice set. Therefore, regardless of the choice set size, alternatives outside DEs and
SDE/FBs can still be sampled, albeit with a lower probability. Accounting for the fact that
DEs and SDEs/FBs are just proxy measures of space-time constraints and spatial awareness,
respectively, these will be used simply as soft constraints to create strata per individual from
which to sample alternatives with a higher probability (importance sampling) and not to
exclude alternatives outside of them.

The stratum constrained by the DE, labelled as T , aims to identify the most likely
reachable destinations per mode combination (mode for first/shopping trip-mode for fol-
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lowing trip). The stratum constrained by the SDE/FB (excluding the alternatives already
within T ), labelled as A, has the purpose of acting as a proxy for the individual’s spatial
awareness/knowledge. That leads to the creation of a third stratum C, which is simply the
remaining space outside T and A. The main assumption for the choice-set generation in this
study is that alternatives that are more familiar and those that are in closer proximity to a
specific trip chain between an O and D, are more likely to be considered and will contribute
more in understanding individual behaviour than others. Therefore, the sampled choice
set should include more alternatives from T , followed by alternatives from A and finally
alternatives from C.

A simplified example is presented in Figure 2.3 focusing on the context of the empirical
application used later in the paper, which looks at destination choice for shopping activities.
In the first subfigure, a choice task is presented, in which the individual starts from an origin
(green cross) and during her trip to a destination (red cross), she chooses an intermediate
shopping destination (purple circle) out of a set of available shopping destinations (blue
circles). In total, there are 10 available destinations in the global choice set. The available
transport modes for those two trips are combinations of car, public transport (PT) and
walking. For simplicity, we assume that for that specific choice task, the only available mode
combinations for the first/shopping and the following trip are car-car, PT-PT and walking-
walking. Therefore, the global choice set consists of 30 mode-destination alternatives. In the
second subfigure, the combined SDE-FB area of the individual is defined based on the observed
destinations she visited during the survey period. Finally, in the remaining 3 subfigures, the
estimated mode-specific DEs are defined for car-car, PT-PT and walking-walking, respectively,
based on the modelling specification described in Subsection 3.3.1.

After the creation of the three strata (T, A, C) and the identification of the stratum of
each mode-destination alternative, the following four different sampling protocols (without
replacement) were compared with the model using the full choice set and were assessed in
terms of parameter bias, sampling stability and forecasting performance:

• Random sampling with a uniform probability from the full choice set
• AC referring to sampling with a priority from A and then from C, such as π(A) > π(C)
• TC referring to sampling with a priority from T and then from C, such as π(T ) > π(C)
• TAC referring to sampling with a priority from T, then from A and finally from C, such

as π(T ) > π(A) > π(C)

In the case of stratified importance sampling, a fixed number of alternatives is sampled
per stratum with that number adhering to some notion of importance for a specific stratum
relative to the rest. For that purpose and in order to avoid setting an arbitrary number of
alternatives to be sampled per stratum, the stratum of each chosen alternative was identified
by performing a spatial join between the strata and the observed mode-destination alternatives.
The identified frequencies per stratum were then used as the desired share of alternatives from
each stratum to be included in a choice set of a certain size. In the case of not having enough
alternatives to reach that desired number per stratum, alternatives from the next stratum in
line, as defined per sampling protocol, are sampled. The inclusion of a properly calculated
SC term in the utility function will guarantee the estimation of unbiased parameters for
sufficient choice set sizes, even when not reaching the desired number of alternatives from the
respective strata. It is also assumed that alternatives that are being sampled and included
in the reduced choice set are all considered equally by the individuals, hence no further
consideration thresholds have been applied in the utility function (see for example Martinez
et al. (2009)). The developed framework is summarised below:

1. Estimate a model using the full choice set to use as the base for evaluation comparison
of the sampling protocols developed

2. Create PPAs based on estimated values derived from an econometric model
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(a) Global choice set (b) SDE+FB

(c) Car-Car detour ellipse (d) PT-PT detour ellipse

(e) Walking-Walking detour ellipse

Figure 2.3: Example of sampled choice set specification

3. Create SDEs and FBs per individual using the observed destinations

4. Define the strata per choice task and individual

5. Define the sampling protocols to be compared

6. Perform sampling of alternatives from the respective strata for each sampling protocol
and for different choice set sizes

7. Estimate models on the sampled choice sets using the same specification as in the full
choice set model

8. Assess the performance of the sampled choice set models per sampling protocol and
choice set size based on specific evaluation criteria proposed

3 Empirical application: data and model specification

This section discusses the data and its processing, before looking at model specification and
the settings used for the AS approach to sampling of alternatives.
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Figure 2.4: User interface of smartphone application used for the trip diary (Calastri et al., 2020)

3.1 Data

3.1.1 Original GPS data

The dataset used in the current study was collected as part of the research project “DE-
CISIONS” carried out by the Choice Modelling Centre at the University of Leeds, during
November 2016 and March 2017. The project aimed at observing individual decisions over a
range of choice dimensions with an emphasis on travel, activities performed, both in-home
and out-home, social networks and energy consumption over a period of 2 weeks. A detailed
description of the survey and all of its different submodules (e.g. household survey, trip diary,
energy consumption etc.) is presented in Calastri et al. (2020). For the purpose of the current
study, only the trip diary and the household survey submodules were used. The trip diary
includes all the trips that a participant made during the survey period. The trip diary was
collected using a smartphone application that would record the GPS coordinates of each trip.
The participants had to provide information regarding the chosen mode and the purpose
of the activity performed at the end of each trip (Figure 2.4). In total, out of the 47,161
trips performed by 713 individuals, almost 75% of those were tagged with mode-purpose
information. The majority of trips was within the region of Yorkshire and specifically around
the city of Leeds. The household survey provided important sociodemographic information
on the participants, such as gender, age, income, car ownership etc. which can be important
explanatory variables in a behavioural model.

The analysis presented in the current study is focused on a specific type of discretionary
activity, namely shopping. The study area was defined as the region of Yorkshire. Only
individuals residing in the local authority of Leeds were selected, assuming they will have
a similar knowledge of their surrounding shopping destinations having to adhere to the
same spatial constraints (Thill, 1992). The purpose of the analysis is to understand where
the individuals are more likely to go for shopping with respect to the previous and the
following activity locations. Therefore, from the initial dataset, the shopping trips and their
following trips were chosen for the subsequent analysis. The final dataset used in the analysis
contained 1541 shopping trips and an equal number of following trips performed by 270
unique individuals (5.7 trips per individual, on average). Regarding the sociodemographic
information of the individuals included in the sample, 64.1% were female, 32.2% between
30-39 years old and most of them employed (77%). The vast majority possessed at least one
car in their household, while 20% had either a bus or rail season ticket.
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3.1.2 Processing of data into trip chains

The shopping and their following trips were combined to create trip chains, which formed
the basis of the analysis performed. Most trip chains, 66%, were from an origin O to an
intermediate shopping destination S and then to another destination D, which will be referred
to as O-S-D trip chain. The remaining trip chains, 34%, were from an origin O to a shopping
destination S and then back to the origin O, which will be referred to as O-S-O trip chains.
Shopping trips included three subcategories of shopping, namely grocery (82%), clothes
(12.7%) and other types of shopping (5.3%), mainly for durables. The vast majority of
following trips were trips going home (61.5%), while there was a small percentage (9.3%) of
a consecutive shopping trip to a different shopping destination. From the remaining trips,
10.5% were for work/education, 11% for leisure/social and 7.7% were for other purposes. The
present study is focused on a subset of modes of transports, namely car, public transport (PT)
–as a combination of bus and rail– and walking. Most of the observed/chosen modes for the
two legs of the trip chain were car-car (shopping-following trip) and walking-walking, namely
85.2%, while only 3% were PT-PT. Combinations of the three modes were also observed,
such as car-PT, walking-car etc. and it was decided to include them in the analysis, despite
their low mode share.

3.1.3 Definition of shopping areas

The shopping destinations for the study area were defined by clustering the elemental observed
shopping trip destinations. Hierarchical Agglomerative Clustering (HAC) was implemented
with a 800m distance threshold between the shopping trip destinations. The purpose of
clustering the shopping destinations was to define general shopping areas and take advantage
of the higher GPS data resolution, instead of limiting the analysis to the general geographical
units in the UK (e.g. Middle or Lower Super Output Areas).

After defining the shopping clusters, their respective centroids were defined as the mean
of the latitude/longitude coordinates of the elemental destinations in each cluster. The cluster
centroids were then used to replace the original destination points of each shopping trip
belonging to the cluster. Therefore, the main goal was to choose an appropriate distance
threshold that would result in a small average distance difference between the original
destination points of a cluster and its centroid. Because of that and after trying different
distance thresholds between 500m-1000m, a 800m distance threshold was selected resulting
in an average distance difference of 112m, while the maximum distance difference was 338m,
which equates to between 4-5 minutes of walking (assuming a 5 km/h average walking speed).
Larger distance thresholds resulted in distance differences of more than 5 minutes of walking
distance, while smaller thresholds resulted in large shopping malls being split across two
different clusters. In addition, visual inspection of the created clusters for different distance
thresholds was performed in order to verify that distinct shopping areas were assigned to
different clusters, with an emphasis on the main shopping areas of Leeds city centre. This
procedure resulted in the creation of 176 general shopping clusters around the region of
Yorkshire with most of them located around the city of Leeds. It is clear that shopping
locations exist in other places within the study area, not captured by that process, mostly
in areas outside the local authority of Leeds. Those shopping locations, which are never
chosen by the individuals, are assumed to not having been considered by the individuals in
the sample and hence are excluded from the subsequent analysis (Thill, 1992).

As a final step, a 400m buffer was created around the centroid of each shopping cluster
to define the shopping areas. Therefore, a shopping area is defined as the space equivalent to
5 minutes of walking time around the cluster centroid. That high resolution of shopping area
definition translates into having unique shopping malls, shopping districts etc. as separate
destination alternatives. In the case of overlapping buffers, especially in Leeds city centre,
the polygons within them were assigned to their closest cluster centroid (Figure 2.5). This
ensured that each elemental shopping destination (in the form of polygons/individual stores)
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Figure 2.5: Allocation of retail polygons located within overlapping shopping clusters (OpenStreetMap
contributors, 2021)

would belong to a single defined shopping area.

3.1.4 Data enrichment: level-of-service information and mode availability assumptions

In order to account for the fact that only travel times for chosen/observed alternatives
were included in the dataset, travel times/distances were re-estimated both for chosen and
non-chosen alternatives using the Bing Maps Routes API2. The travel times/distances were
recalculated also for the chosen alternatives for the sake of consistency (as also done in
Calastri et al. (2018). The total number of queries passed on the API were 1,627,296 (1541
trips × 176 shopping destinations × 3 modes × 2).

For car travel cost, separate calculations for fuel and operating costs were performed
using the UK’s Transport Appraisal Guidance (WEBTag) specifications (Department for
Transport, 2014). Parking cost was also calculated for trips with destinations in central
areas/high streets across the region of Yorkshire based on information on hourly or fixed
parking costs provided by the respective Local Authorities. Fuel, operating and parking costs
were then added together to calculate the final car travel cost per trip. For PT, an average
distance-based fare was used for bus and rail and a total PT cost was calculated per trip
based on the information provided from the API regarding which leg was performed with
bus or rail and what was its distance. Furthermore, a discount was applied for trips made by
season ticket holders.

Deterministic mode availability was assigned in specific cases of trips based on the
results obtained by the API. Such cases were PT trips in which the API returned only
walking segments due to the small trip distance from the O or/and to the following D or the
unavailability of PT services. For those trips, PT was assigned as unavailable. For the car
trips, the availability was based on logical checks. For example, if a person chooses Car for
the shopping trip, the grouping size is 1 and the following trip returns back to O (O-S-O trip
chain), then only Car is available for the following trip. That is a clear indication that the
individual is the driver and that she has to return her car back to O in the second trip.

2Details can be found here: https://docs.microsoft.com/en-us/bingmaps/rest-services/routes/
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3.2 Full choice set model

In the current paper, it is assumed that a model estimated using the full choice set is considered
the “true” model. Therefore, as a first step, a model using the full choice set is specified and
estimated to act as the base for the assessment of the sampling protocols. Discrete choice
modelling was used as the main methodological framework for the analysis (Ben-Akiva and
Lerman, 1985). The analysis is performed at the level of the trip chain, which is defined as
two consecutive trips, namely a shopping trip from an origin O to an intermediate shopping
destination S with a mode k and a following trip to another destination D with a mode j.
The behavioural model developed aims to understand the choices of modes k and j and of
destination S for shopping trips in a joint fashion. In that context, the locations of O and D
are considered as fixed for each choice task. Therefore, the full choice set consists of 3 modes
for the first/shopping trip, 3 modes for the following trip and 176 shopping destinations, for a
total of 1584 combined mode-destination alternatives. The choice of activity, i.e. travelling for
shopping, is assumed that precedes the choice of mode-destination and is therefore considered
exogenous. Furthermore, it is assumed that the choice of trip-chain complexity, i.e. perform
a complex O-S-D trip chain by including a shopping trip on the way to work or perform a
simple O-S-O trip chain, comes before the mode-destination choice dimension, a finding also
described in Ye et al. (2007).

The specification proposed by Daly (1982) was utilised with the presence of level-of-
service (LOS) variables, quality locational variables and lastly a number of size variables
specified inside a composite log term (Equation 2.5). Deterministic taste heterogeneity is
captured through the interaction of Alternative Specific Constants (ASCs) and LOS variables
with sociodemographic covariates. Random heterogeneity has not been included (with the
specification of mixed MNL models) due to the high estimation times of the full choice
set model. Interactions with categorical sociodemographic variables were specified as shifts
from the base level of the ASC, while non-linear interactions were specified for continuous
sociodemographic variables, namely personal income interacted with travel cost and shopping
duration interacted with travel time and walking distance.

Vkj,S =
∑
r∈L

βrxr,kj,S +
∑
r∈D

βryrS + ϕ log(AS) (2.5)

where xr,kj,S is the r − th element of a vector L of LOS attributes for mode combination kj
and shopping destination S, yrS is the r − th element of a vector D of quality locational
attributes for destination S and AS is the composite size measure capturing the attraction of
destination S defined as:

AS = a1S +
∑
r>1

exp(γr)arS (2.6)

where a1S is the attraction attribute used as a base with a γ parameter normalised to 1.0,
arS are the additional attraction attributes of destination S relative to the base attribute
and γr are the parameters to be estimated capturing the effect of those attributes on the
attraction of that destination. The γr parameters are constrained to be positive by specifying
them inside an exponential function.

The attraction of neighbouring destinations, at various distances away of the visited
destination, has also been included in the size of the visited destination to capture the effects
of trip chaining behaviour (Kitamura, 1984; Kristoffersson et al., 2018). It is believed that a
destination with more surrounding shopping destinations will be perceived as more attractive
compared to a more isolated destination, all else held equal.
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3.3 Sampling strata formation

In the current subsection, we focus on the steps taken in order to form the different strata
used for the subsequent practical application.

3.3.1 Creation of Detour Ellipses

For the DE creation, the limitation to overcome was having information only for the observed
DFs referring to the chosen mode combination and shopping destination. Different mode
combinations, however, would likely result in different space-time constraints and hence lead
to different DFs. For instance, a mode combination of walking-walking is expected to result
in a smaller DF compared to car-car, all else held equal. Furthermore, sociodemographic and
trip-specific attributes could also influence the deviation an individual is willing or able to
make in order to reach an intermediate shopping destination. Because of those reasons, the
observed DFs and a number of trip-related, locational and sociodemographic explanatory
variables were used to estimate a continuous model for DFs. The purpose of the estimated
linear regression based DF model was to produce predicted values for the DFs for all of the 9
mode combinations per trip, both chosen and non-chosen, thus overcoming the limitation
of having DFs only for the observed mode combinations while ensuring consistency. The
estimated DFs were then used to produce DEs that are based on mode-specific, trip-specific
and individual-specific time-space constraints of the participants in the sample and not simply
on the observed/visited intermediate shopping locations. The DF modelling framework is
described in further detail in Subsection 3.3.2.

3.3.2 Detour Factor modelling framework and outputs

Prior to the DF model specification, the trip chains were grouped into those starting-finishing
at the same location, i.e. O-S-O, like a simple Home-Shop-Home tour, and those starting-
finishing at different locations, i.e. O-S-D, such as a typical Home-Shop-Work trip chain.
Therefore, two different continuous models were estimated for each case using Maximum
Likelihood estimation.

For O-S-D trip chains, it was assumed that the observed DFs follow a lognormal distribu-
tion. In addition, the model specification has to guarantee that the estimated DFs will always
be above 1.0. As a result, the specification in Equation 2.7 was proposed to account for that,
where yi is the observed DF for trip i, xi is a vector of mode-specific, trip-specific (including
the straight OD distance), locational and sociodemographic explanatory variables and bxi

are
the respective parameters to be estimated. The disturbance term for the log-transformed DF
is assumed to follow a normal distribution with N(0, σ), where σ is the standard deviation
that is estimated alongside the rest of the parameters. For the predicted DFs, the term σ2

2 is
added to the rest of the model as the unbiased estimator of the standard deviation.

log(yi − 1) = Σbxi
xi + σ => E(yi) = 1 + e(Σbxi xi+ σ2

2 ) (2.7)

Since the aim of this part of the analysis was to produce as accurate predictions as
possible for the DFs, Bootstrap sampling (Daly et al., 2020) was used in addition to MLE for
a more robust assessment of the standard errors. After trying different numbers of Bootstrap
samples and checking the differences between the mean of the Bootstrap estimates and
the MLE estimates, it was decided to use 500 samples for the OSD model, since at that
number of samples the average of the Bootstrap estimates showed only negligible average
absolute percentage differences from the MLE estimates, namely 0.018. The t-ratios were
then calculated as the ratio of the MLE estimate and the Bootstrap sampling standard
deviation.
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Table 2.1: Modelling outputs of the DF model for O-S-D trip chains

Parameters MLE Estimates Bootstrap t-ratios
sampling st.dev.

Constant -0.8363 0.1734 -4.82
Natural logarithm of O-D straigth distance (km) -1.3253 0.0701 -18.92
Car-Walking -1.8934 0.3206 -5.91
PT-PT 1.0609 0.3722 2.85
Walking-Car -1.4617 0.3946 -3.70
Walking-PT -0.6875 0.2904 -2.37
Walking-Walking -1.6766 0.2425 -6.91
Shopping: Clothes - Other 0.6526 0.1895 3.44
Household size: 3-4 members 0.4733 0.1750 2.70
Part time workers -0.3908 0.1726 -2.26
Occupation: Students 0.5936 0.3216 1.85
Occupation: Other 0.4199 0.2322 1.81
Time of day: Weekend morning 0.7590 0.2158 3.52
Parking areas 400m 0.0182 0.0033 5.59
around shopping cluster
Sigma 2.0252 0.0613 33.03

The estimated parameters and the standard errors, presented in Table 2.1, refer to
the Maximum Likelihood estimates and the standard deviation of the respective Bootstrap
parameters. The best-performing model resulted in a Root Mean Square Error (rmse) of 4.35,
a mean absolute error of 1.09 and a correlation between predicted and observed DFs of 0.69.
Regarding the estimated parameters, the larger the OD distance (log) the smaller the DF,
as expected due to the time limitations to reach those destinations and participate in the
respective activities. All of the mode combinations would result in a smaller DF compared
to the base mode combination of car-car. The only exception is PT-PT that results in a
larger DF than car-car, all else held equal. Worth-noting is also the finding that individuals
going for clothes shopping or for other types of durable shopping are willing to deviate more
from the direct OD route compared to travelling for groceries. That is in accordance with
prior expectation, since clothes shopping is an activity generally performed in more “relaxed”
days of the week and times of day, hence there is more freedom to roam around the urban
environment. Likewise shopping for durables usually requires going to specialised stores
(e.g.IKEA), hence the individuals are willing to choose larger DFs to reach those destinations.
On the other hand, grocery shopping is considered mostly a necessity and the individuals are
usually trying to fit that in their everyday or weekly schedule with smaller deviations from
their routing plan.

For O-S-O trip chains, a different modelling approach had to be formulated, since for
those cases the lOD,i is 0, hence the DF cannot be defined. Consequently, the straight distance
(in km) lOS,i = lSD,i was selected as the dependent variable for those trip chains, which again
it is assumed that follows a lognormal distribution. As a result, the modelling formulation
of Equation 2.8 is proposed, where yi is the observed straight distance lOS,i for trip i and
as previously xi is a vector of mode-specific, trip-specific, locational and sociodemographic
explanatory variables and bxi

is a vector of parameters to be estimated. As in the DF model,
the unbiased estimator for σ was used for the predicted distances.

log(yi) = Σbxi
xi => E(yi) = e(Σbxi xi+ σ2

2 ) (2.8)

A similar Bootstrap sampling approach was performed for O-S-O trip chains, as well,
with 500 samples resulting in a very small mean absolute percentage error of 0.025. The
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3. Empirical application: data and model specification

Table 2.2: Modelling outputs of the travel distance model for O-S-O trip chains

Parameters MLE Estimates Bootstrap t-ratios
sampling st.dev.

Constant 0.3664 0.0951 3.85
Walking-Walking -1.4375 0.0797 -18.76
Shopping: Other 0.5167 0.1667 3.32
Time of day: Night -0.3542 0.1527 -2.41
Following purpose: Social-Leisure -0.7769 0.1999 -4.01
Age: 18-24 -0.2366 0.0617 -3.71
Parking areas (linear) 0.0047 0.0016 2.89
Retail areas (log) 0.0821 0.0244 3.29
Household Income: 40000-50000 GBP/year -0.2008 0.0894 -2.44
Household Income: No reporting 0.4776 0.1500 3.54
Shopping activity duration 0.2078 0.0537 4.30
Sigma 0.6526 0.0327 20.61

best-performing model, presented in Table 2.2, resulted in an rmse of 1.99, a mean absolute
error of 1.13 km and a correlation of 0.68. Only the mode combination of walking-walking
showed significant differences to car-car (base) indicating a lower distance as expected for
trips made by walking in both legs. Other types of shopping, i.e. durables, resulted in a
higher accepted distance, while smaller distances are accepted for trips chains where the
following trip is for social/leisure purposes. Finally, individuals who did not report their
household income were found to accept larger distances.

The mode-specific predicted DFs and straight distances produced from the aforementioned
procedure, were used to construct the DEs (detour ellipses and circles), representing the
boundaries of potentially reachable areas or PPAs for a specific trip and mode combination
with fixed Os and Ds. For O-S-D trip chains, the predicted DFs were used to create DEs
following the procedure described in Justen et al. (2013). For O-S-O trip chains, the predicted
distance was simply used as the radius of a circle with its centre being the location of O.

3.3.3 Creation of Standard Deviational Ellipses

As mentioned before, SDEs were defined for the purpose of capturing spatial familiarity or
awareness of the individual’s surrounding space. The SDEs were constructed using all of
the observed destinations during the 2-week survey period. To achieve the most accurate
representation of the AS of a participant, the untagged trips were used, as well. For this
study, due to the high resolution of GPS data, latitude/longitude coordinates for all trips
were unique even if a specific destination was visited more than once. Therefore, by using all
of the observed destinations, the calculation of SDE was similar to a weighted SDE based on
trip frequency. As a result, the created SDEs are shifted towards destinations that are more
frequently visited.

After the SDE creation per individual, various metrics can be derived describing their
mobility patterns during the survey period with the most important being the ratio between
the minor/major ellipse axis (b/a). A ratio close to 1.0, i.e. b = a, would lead to an ellipse
closely resembling a circle indicating that either an individual tends to roam more randomly
around space or that the survey duration was probably not enough to capture the regularity
of her travel. On the other hand, a small ratio, leading to an ellipse resembling a straight
line, would indicate that this person has a quite tight schedule or limited resources to deviate
from her usual axis of travel. It would be useful to note that on average the b/a ratio
is 0.39 indicating that well-balanced spatial distributions of individual mobility patterns
were captured even in the arguably limited 2-week survey duration. It may be noted that
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the mobility patterns and hence the axes of the SDEs are expected to be functions of the
sociodemographic characteristics of the person. For instance, the b/a ratio of workers is likely
to be smaller than part-time workers or non workers due to their potentially non-flexible
schedules.

3.3.4 Creation of Familiarity Buffers

In addition to the SDE, FBs are also defined around each destination, mainly inspired by
the previous work of Horni et al. (2011), described in Subsection 2.1.3. FBs had to be
defined around each unique destination. For that purpose, the initial GPS destinations had
to be clustered to define unique visited locations per individual. The GPS latitude/longitude
coordinates were clustered using HAC with a 200m distance threshold. The distance threshold
of 200m means that on average the points assigned to a cluster will have a distance difference
of around 100m between them. Only in the extreme case of a cluster with 2 points, those
points would have a distance difference of 200m. Different thresholds were tested between
50m-300m, with 200m resulting in the most accurate results following a visual inspection
of the clusters created in each case. From that process, home-work clusters/locations were
identified based on the purpose of trips assigned to those clusters.

In the current study, a buffer equivalent to 15 minutes of walking distance (1200 m) was
created around the home location of each individual. Following that, buffers around the
remaining visited destination clusters were created with a radius relative to the one of their
home-cluster as per the following Equation 2.9:

rCj,i
=

nTripsCj,i

nTripsCH,i

rCH,i
(2.9)

where rCj,i
is the buffer radius of familiarity cluster j for individual i, nTripsCj,i

and nTripsCH,i

are the trips to familiarity cluster j and to home-cluster H, respectively, and rCH,i
is the

buffer radius of the home-cluster H which in the current study is fixed to 1200m.
It was assumed that the home cluster should have the majority of trips, therefore the

largest buffer radius. As a result, in cases where other non-home clusters attracted more
trips, those familiarity buffers were fixed to have the same radius as the buffer of the home
cluster. The rationale for that, was that the home-cluster should always attract the highest
number of trips and the cases where that was not observed could be attributed to the limited
survey duration of 2 weeks and/or missing observations.

Contrary to Horni et al. (2011), in the current study the created FBs were subsequently
merged with the previously defined SDEs, instead of the DE/PPA. That was decided since the
FBs carry a notion of spatial awareness similar to the SDE and are not a result of trip-specific
time-space constraints as the DE/PPA. The merged SDE/FB resulted in a common space
of places, where the individual is likely to possess a better knowledge/awareness of the
surrounding shopping opportunities compared to the rest of the study area. Furthermore, the
addition of FBs into the previously created SDEs ensures that outlier locations outside of the
SDE would still contribute to the spatial awareness of the individual. Those locations, even
if they are not part of the usual movement patterns of the individual, they are still visited,
hence the individual would likely possess some knowledge of their surrounding space.

3.4 Definition of sampling protocols

After the creation of DEs and SDEs/FBs, the different sampling strata, T, A and C, were
defined. On average, 67% of the chosen shopping destinations are located within T , 28.2%
are located within A and the remaining 4.8% within C. Not all alternatives within DEs are
also within SDEs/FBs and vice versa, since there can be cases of trips performed outside the
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usual movement spaces captured by SDEs/FBs. The aforementioned percentages were used
to define the sampling probabilities for each stratum and they conform to our initial objective
of having π(T ) > π(A) > π(C). That way, regardless of the total number of alternatives
in the choice set, there will be more alternatives sampled from T , compared to the other 2
strata, provided there are enough alternatives within that space to sample from.

For the TAC protocol, on average there are 76 alternatives located within T, 403 within
A and 846 within C per choice task/trip. Using the TAC protocol, if there are not enough
alternatives in T to account for the 67% of the choice set, such as in the case of a long trip
with a small estimated DF and resulting DE, then alternatives from A are sampled to reach
that number, in addition to sampling the pre-specified number of alternatives from stratum
A (i.e. 28.2%). The remaining number of alternatives required to reach the choice set size are
always sampled from C.

The sampling probabilities for the TC protocol are 67% from T and 33% from C, since in
that case C contains all alternatives outside T . On average, there are 76 alternatives located
within T and 1249 within C per choice task/trip. Contrary to TAC, in cases of an insufficient
number of alternatives in T , the remaining alternatives are sampled from C resulting in a
higher probability of including alternatives in the choice set that are not relevant to the
time-space constraints of the trip and to the individual’s awareness, since the TC protocol
lacks that notion of spatial awareness ingrained in TAC.

The sampling probabilities for the AC protocol are 91.5% from A and 8.5% from C. On
average, there are 468 alternatives within A and 859 alternatives within C. That sampling
protocol is used to illustrate the fact that by prioritising only the spatial awareness of the
individual and neglecting the time-space constraints is still not as efficient as TAC that
incorporates both. Finally, Random sampling is used for comparison reasons illustrating
the evident limitations of that approach and the clear advantages of importance sampling
protocols using AS concepts.

For each sampling protocol examined, a set of increasing choice set sizes was tested,
between 10 and 250 alternatives, examining the rates of estimate improvements (decreasing
bias in the estimates and smaller standard errors). Furthermore, for each choice set size
per sampling protocol, five different choice set realisations were sampled and used for
model estimation to assess model stability in terms of sampling standard deviation of
estimated parameters and to eliminate the possibility of a lucky/unlucky draw. The estimated
parameters, the standard errors and the fit statistics of the models estimated with sampled
choice sets are compared with those of the full choice set model. It is expected that the
sampled choice set models will produce unbiased estimates after a sufficient choice set size,
meaning that parameters with only negligible differences from those of the full choice set
model are obtained. The full choice set model, however, is expected to produce more efficient
estimates (lower standard errors), but at the expense of higher estimation times, which in
many application cases can be prohibitive. It may be noted that the true model used as a
base for the evaluation of the sampling protocols refers to an MNL model using the full choice
set. It should be stated, however, that the full choice set model should not be considered as
the most accurate representation of individual shopping behaviour, but only as a sufficient
one, since the true choice set per individual will always remain latent in the context of a
spatial choice model.

4 Results

4.1 Full choice set model outputs

The MNL model using the full choice set in this case produced reasonable estimated parameters,
VTT estimates and demand elasticities in accordance with official specifications as described
in the following paragraphs.
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4.1.1 Variable selection

The variables used in the subsequent modelling analysis can be categorised into level-of-
service (LOS) and locational variables. The former capture the travel impedance to a specific
destination with a specific mode of transport, while the latter aim to capture the attraction
of certain characteristics of the shopping destinations. These are described in the following
paragraphs.

Regarding LOS variables, travel time for car and PT and travel distance for walking were
selected. For PT, travel time was segmented into in-vehicle time (IVT), first access time,
last egress time and the remaining out-of-vehicle time (OVT) containing waiting time and
time between transfers. The parameter for travel time was specified having the travel time
for car for the shopping trip as the base and then having multipliers for the sensitivities of
PT travel time components and for the travel time of the following trip in order to capture
their difference with respect to the base (car time for shopping trip). A similar approach was
implemented for walking distance, as well, by having the travel distance for the shopping trip
as the base and then having a multiplier capturing the sensitivity difference for the following
trip. For travel cost, a generic parameter was specified across modes (car/PT) and trip legs
(shopping/following trip).

Characteristics of the shopping clusters and their respective surrounding areas were
also defined, in buffer zones of 400m (immediate area), 400-1000m (small distances), 1000-
2000m (medium distances) and 2000-5000m (large distances). Those characteristics, including
parking areas and retail/commercial store areas extracted from OpenStreetMaps (OSM) and
population and average residential price statistics during the years 2016-2017, were acquired
from the Office for National Statistics (ONS). Specifically, the average residential prices were
computed around shopping and home clusters (400m buffers - immediate area). Furthermore,
the weighted price averages for home and shopping locations were discretised into quartiles to
analyse whether e.g. people living in richer areas (fourth quartile of average residential prices)
are willing to go shopping in poorer areas (first quartile of average residential prices) or vice
versa. The rationale behind that variable specification is that the immediate environment
around the home location will have an influence on the behaviour of the individual. The
prior expectation was that individuals living in richer areas will have a lower probability of
choosing shopping destinations located in poorer areas (Pellegrini et al., 1997).

Shopping store variability was captured using Shannon’s entropy (Hk) (Equation 2.10)
(Shannon, 1948; Whittaker, 1949) measuring the percentage of the area covered by specific
store type t ∈ T inside a shopping cluster k. Shannon’s entropy has been widely used to
quantify land-use variability mostly in studies related to walkability (Brown et al., 2009;
Mavoa et al., 2018) and urban sprawl (Effat and Elshobaki, 2015). In the current study,
it is used to see whether an increased variability in store types adds to the attraction of a
shopping destination. A key thing to note here, is that n should refer to the total number
of unique store types across all shopping clusters and not only in the cluster in question in
order to ensure a proper comparison among different locations (Hajna et al., 2014). In total,
101 unique shopping store types were included in the shopping clusters based on the OSM
data. The Hk calculated for each cluster k ranges from 0 to 1, with higher values denoting
large store type variability and vice versa, while values around 0.5 indicate a more balanced
distribution of store types within a shopping destination.

Hk = −
∑T

t=1 (pt ln (pt))
ln n

(2.10)

In addition to the above, the location of the most popular retailers in the UK market per
shopping type, grocery-clothes-durables, was identified across the study area and matched
with the shopping clusters. For grocery shopping, the focus was on the “Big Four” retailers,
namely Tesco, Sainsbury, Asda and Morrisons, as referred to in Rhodes (2018) and also
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reported in Kantar world panel (2020) website for the end of 2017, holding 70.7% of the
total market share in the UK. For clothes shopping, the analysis was focused on the top 3
retailers for the year 2018/19 as reported in Retail Economics (2020) website, namely Marks
& Spencer, Next and Primark. Finally, for durable shopping, the focus was on IKEA, as it is a
well-established brand in that sector achieving a market share growth for the sixth consecutive
year at 2017 and accounting for 8.1% market share according to their 2017 annual report
(IKEA, 2017). A binary dummy variable was created for each one of the aforementioned
stores based on whether they are located within a 400m buffer radius around a shopping
cluster centroid.

4.1.2 Estimated parameters

The fit statistics of the full choice set model, together with the estimated parameters, their
standard errors and the t-ratios are depicted in Table 2.3. Overall, the model achieves a high
level of performance with an adjusted rho-square of 0.6162 and an average choice probability
for correct predictions of 0.18 having a choice set of 1584 mode-destination alternatives. The
main limitation that the sampling approach will aim to address is the high estimation time
of more than 5 hours. Regarding the behavioural interpretation of the estimated parameters,
it should be mentioned that, all else held equal, individuals with car ownership in their
households have a positive inherent preference for car compared to PT and walking. Cost
sensitivity, specified using a box-cox transformation, decreases as income increases with a
sensitivity of -0.2435, which is close to the value (-0.3) proposed in Daly and Fox (2012) for
non-work trips (cited in Sanko et al., 2014). Time (linear) and distance (box-cox) sensitivities
of following trips are shown to be higher by 35.7% and 25.2%, respectively, than for the first
shopping trip. Furthermore, time and distance sensitivities tend to decrease with the increase
of shopping duration, as captured by the respective shopping duration elasticities.

Individuals living in areas of high residential prices are less likely to go shopping in areas
with low residential prices, all else held equal, a finding also discussed in Pellegrini et al.
(1997). Retail areas per store type (clothes shopping, groceries and other types of shopping)
act as significant attractions for trips of their respective shopping types. Moreover, the
presence of major retailers per shopping category, also has a positive impact on the utility
function. Finally, shopping store diversity captured using the Shannon’s entropy (Shannon,
1948; Whittaker, 1949) was found to be a significant attractor both in the immediate area
of a shopping destination (400m buffer) and also in medium distances (1000-2000m buffer)
for O-S-D trip chains with two consecutive shopping trips. It is acknowledged that there
is an inherent uncertainty behind the reasons for making a subsequent shopping trip, since
that could be a result of a pre-planned activity scheduling, of product unavailability in the
first shopping destination, or simply a result of a random event (Kitamura, 1984). The final
specification presented here shows that the attraction of neighbouring destinations, captured
through shopping diversity, adds to the attraction of the visited destination only for cases
where the individuals are going to make a subsequent shopping trip. The same was not
true for cases where the following trip is for a different type of activity. That could serve
as an additional indication that the choice of a daily activity plan generally precedes the
mode-destination choice.

4.1.3 Value of Travel Time estimates and demand elasticities

Value of Travel Time (VTT) estimates and demand elasticities from the full choice set
model were also computed to assess the performance of the sampling protocols. In Table
2.4, the VTT estimates of the full choice set model are presented in GBP/hour, namely the
VTT for car, PT in-vehicle time, PT first access and last egress time and the remaining
PT out-of-vehicle time, both for the first/shopping and the following trip. The VTTs were
calculated as the ratio of the partial derivatives of the respective variable (i.e. car time, PT
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Table 2.3: Modelling outputs of the full choice set model

Fit statistics Value
Log-likelihood (0) -11045.05
Log-likelihood (model) -4184.126
Adjusted Rho-square 0.6162
AIC 8478.25
BIC 8771.96
Number of individuals 270
Number of observations 1541
Estimation time (min) 322
Average choice probability of correct prediction 0.18
Parameter Estimates Rob. t-ratios 0

(* t-ratios 1)
Locational constants
Constant rest Yorkshire 0.5494 3.77
Households with car ownership
Constant Car-Other (PT/walking) -2.7299 -10.01
Constant Other (PT/walking)-Car -0.8606 -3.69
Constant PT-PT -1.0775 -2.63
Constant PT-Walking -1.5518 -3.29
Constant Walking-PT -1.2089 -2.51
Constant Walking-Walking 0.8418 2.32
Mode shifts for households with no car ownership
Constant Car-Other (PT/walking) 2.3264 3.64
Constant Other (PT/walking)-Car 0.6329 1.06
Constant PT-PT 4.2697 8.70
Constant PT-Walking 3.3536 5.83
Constant Walking-PT 2.7945 5.94
Constant Walking-Walking 2.6604 6.54
Mode shifts for central area destinations
PT-PT 1.7449 5.50
PT-Walking 1.8249 4.32
Walking-PT 2.6880 5.74
Walking-Walking 1.6469 6.33
Mode shifts for individuals with season ticket ownership
Walking-Walking -0.5606 -1.76
Mode shifts for trips with more than 1 passenger
PT first/shopping trip -1.8619 -5.46
PT following trip -0.8646 -2.43
Walking first/shopping trip -0.8007 -3.53
Walking following trip -0.3679 -1.50
Mode shifts for students
Walking-Walking 1.0751 2.84
Mode shifts for married individuals
Walking-Walking -0.7828 -2.73
Mode shifts for individuals living in 3-member households
Walking-Walking 0.6899 1.86
LOS variables
Travel time for first trip (base) -0.0912 -10.10
Travel time shift for clothes shopping 0.0265 2.78

Continued on next page
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Table 2.3 – continued from previous page
Parameter Estimates Rob. t-ratios 0

(* t-ratios 1)
Travel time for O-S-O trip chains 0.0152 2.49
Travel time for HWH tours -0.0445 -4.77
Travel time multiplier for car 1.0000 –
Travel time multiplier for PT IVT 0.5859 -6.41
Travel time multiplier for PT first access trip 0.8196 -0.82
Travel time multiplier for PT last egress trip 0.6089 -2.37
Travel time multiplier for PT remaining OVT 0.3535 -4.02
Travel time multiplier for following trip 1.3574 3.71
Travel time - Shopping duration elasticity -0.3157 -10.30
Travel walking distance for first trip (base) -1.6259 -13.30
Travel walking distance for O-S-O trip chains 0.2691 2.41
Travel walking distance multiplier for following trip 1.2515 2.78
Box-cox lambda for travel walking distance 0.8051 -3.79
Travel walking distance - Shopping duration elasticity -0.1396 -4.19
Travel cost -0.6518 -8.20
Box-cox lambda for travel cost 0.5362 -9.27
Travel cost - Personal income elasticity -0.2435 -2.53
Locational variables
Living in rich areas-shopping in poor areas -0.8037 -2.9534
Parking areas (400m buffer)) 0.0930 3.5367
Box-cox lambda for parking areas (400m buffer) 0.4218 -7.3756
Presence of major clothes shopping retailers (400m buffer) 1.9623 9.5925
Presence of major grocery retailers (400m buffer) 0.5334 5.4901
Presence of major durables retailers (400m buffer) 2.0478 2.5363
Size variables
Natural logarithm multiplier ϕ 0.7298 -2.71
Population (400m buffer) (base) 1.0000 –
Exponent of retail areas for clothes shopping stores (400m buffer) 0.2185 0.42
Exponent of retail areas for grocery stores (400m buffer) 0.6728 1.81
Exponent of retail areas for durables/other stores (400m buffer) 0.5873 0.80
Exponent of shopping store variability (400m buffer) 1.2847 1.71
Exponent of shopping store variability when following 2.7750 4.02
trip purpose is shopping (1000-2000m buffer)

in-vehicle time etc.) over the partial derivative of travel cost including all of the specified
parameters affecting them (i.e. shifts, elasticities etc.). Additionally, the standard errors
of the VTT estimates, calculated using the delta method (Daly et al., 2012) are presented.
All of the VTT estimates are significant at the 95% confidence level. Besides the fact that
the purpose of the current study was not the estimation of VTT values representative of
the UK population, a comparison of the estimated values can still be performed with the
potential of yielding interesting insights. In general, it can be said that the VTT estimates
are very close to the average value suggested by the Transport Appraisal Guidance in the UK
(WEBTag) for an average vehicle, namely 13.87 GBP/hour (using 2010 prices) (Department
for Transport, 2014). In addition, a closer assessment on the VTT estimates for the first
shopping trip can also be performed by comparing them with the latest UK official VTT
values based on an Stated Preference (SP) survey (Batley et al., 2019). The respective official
VTT values for "Other" purpose trips, including shopping, for car, bus and rail are 5.12, 3.40
and 9.05 £/hour. Those values are lower than the respective GPS-based VTT values, which
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conforms to the general finding in the literature suggesting that SP-based VTTs are generally
lower than values based on Revealed Preference (RP) surveys, such as the GPS trip diary
used in the current study (Wardman et al., 2016).

Table 2.4: Value of Travel Time estimates of full choice set model

VTT measure Estimate Robust
(£/hour) st. errors

Car for first/shopping trip 10.7728 0.0349
PT IVT for first/shopping trip 9.4761 0.0331
PT first access trip for first/shopping trip 13.2542 0.0741
PT last egress trip for first/shopping trip 9.8467 0.0566
PT OVT remaining for first/shopping trip 5.7177 0.0460
Car for following trip 13.7762 0.0440
PT IVT for following trip 8.7583 0.0298
PT first access trip for following trip 12.2501 0.0687
PT last egress trip for following trip 9.1007 0.0525
PT OVT remaining for following trip 5.2846 0.0431

Demand elasticities were also calculated for the full choice set model with respect to a unit
increase of travel cost and travel time, made separately for car and PT. It is assumed that the
change of cost will affect both trips, i.e. shopping and following trip, since it will be an increase
of fuel cost for car or a general increase on PT fare and season tickets. The increase of car travel
time and PT in-vehicle time is assumed to affect the accessibility to the shopping destination,
hence the change is applied only on the shopping trip. Choice forecasting was computed
before and after the respective change using the estimated parameters and the demand
elasticities per mode and mode combination were calculated as log demandafter

demandbase

/(log(1.01)),
which are presented in Table 2.5. The total elasticities for car, PT and walking were computed
by aggregating the elasticities of all the mode combinations affecting each one of those three
modes. A comparison similar to the previous one for the VTTs can also be conducted for
the estimated cost and time elasticities presented here by comparing them with elasticities
from previous meta-analyses reported in Wardman and Shires (2003), Wardman (2012) and
Wardman (2022). The car cost elasticity of -0.135 is between the values presented in Wardman
(2012) for leisure trips and urban-suburban trips of -0.10 and -0.20, respectively. The PT
cost elasticity of -0.567 is between the values of bus cost elasticity for urban trips and rail
cost elasticity for suburban trips, namely -0.5 and -0.6, respectively, reported in Wardman
and Shires (2003). It is also fairly close to the bus cost elasticities for suburban leisure
trips and urban-suburban trips of -0.57 and -0.55, respectively, reported in Wardman (2022).
Larger discrepancies are observed, however, for time elasticities where the estimated values
are half in size from the ones reported in previous studies. Specifically, the estimated car
time elasticity is -0.134, while the respective value reported in Wardman (2012) is -0.30 and
the estimated PT time elasticity is -0.315, while the reported bus and rail time elasticities in
Wardman (2012) are -0.63 and -0.69, respectively. Nonetheless, those lower values can be
partly justified as they refer mostly to shopping trips, while we could assume that individuals
would be more sensitive for one unit of time change for commuting and business trips.

4.2 Sampling protocol evaluation/comparison

The evaluation of the sampling protocols is performed with regard to the fit statistics, the
estimation times and the estimated parameters of the respective sampled choice set models,
i.e. beta estimates, VTT estimates and demand elasticities, as described in the following
paragraphs.
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Table 2.5: Demand elasticities of full choice set model

Demand Increase Increase Increase Increase
elasticities of car cost of car time of PT cost of PT IVT

(both trips) (shopping trip) (both trips) (shopping trip)
Car -0.135 -0.158 0.061 0.037
PT 0.386 0.518 -0.567 -0.316
Walking 0.203 0.239 -0.019 -0.008
Car -Car -0.163 -0.194 0.065 0.039
Car-PT 0.174 -0.427 -0.609 0.203
Car-Walking 0.103 -0.719 0.137 0.158
PT-Car 0.415 0.963 -0.742 -0.928
PT-PT 0.370 0.467 -0.847 -0.538
PT-Walking 0.401 0.602 -0.394 -0.768
Walking-Car 0.179 0.839 0.111 0.034
Walking-PT 0.401 0.530 -0.446 0.100
Walking-Walking 0.166 0.170 0.054 0.022

4.2.1 Fit statistics comparison

At a first stage, the fit statistics, the estimation times of the sampled choice set models and
the average choice probabilities of correct predictions are presented in Table 2.6 are compared
with those of the full choice set model. In that table, it is clearly shown how estimation
times increase linearly as the size of the choice set increases. The models estimated using
the largest choice set size examined of 250 alternatives, i.e. 15.8% of the global choice set of
1584 alternatives, on average need almost 12% of the estimation time of the full choice set
model (38 minutes compared to 322 minutes), which highlights the practical advantages of
the sampling approach.

Out of all the sampling protocols examined, Random sampling leads to generally more
deterministic models compared to the importance sampling protocols, as shown by the
comparison of log-likelihood, adjusted rho-square and the average choice probability of correct
prediction among models of the same choice set size. The main reason behind that is the
fact that with the Random sampling protocol the choice set of size J includes the chosen
alternative and J − 1 alternatives that are randomly sampled from the remaining global
choice set. That leads to inevitably including many alternatives located further away from
the chosen alternative and the space around the O and D of the specific choice task/trip.
As a result, these alternatives will have an increased travel time/distance/cost compared to
the chosen alternative and will not provide meaningful trade-offs for the model to properly
evaluate the trade-offs the individuals would consider during the decision making process.
On the other hand, all of the importance sampling protocols examined provide much more
balanced choice sets leading to less deterministic models with the TAC protocol being the
most balanced approach. That is also evident from the average choice probability of correct
prediction, where for the TAC protocol with 250 alternatives that value, 0.229, is closer
to the one of the full choice set model, namely 0.18. In contrast, for the same choice set
size, TC and AC achieve average choice probabilities of correct prediction of 0.266, 0.299,
respectively, and the more deterministic Random sampling a much higher average choice
probability of 0.464. Those findings serve as a first indication that importance sampling
protocols and especially TAC will converge faster to the full choice set model compared to
Random sampling that will require bigger choice sets.
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Table 2.6: Fit statistics of sampling protocols

Fit statistics Choice set sizes
10 50 100 150 200 250

Log-likelihood (0) -3548.284 -6028.427 -7096.567 -7721.389 -8164.707 -8508.093
Average estimation time (min) 1.75 8.50 16.75 26.00 33.25 38.00
Random sampling
Average Log-likelihood (model) -194.5996 -799.467 -1268.742 -1608.966 -1877.833 -2082.2
Average adjusted Rho-square 0.9296 0.8583 0.8135 0.7845 0.7633 0.7488
Average choice probability 0.932 0.761 0.632 0.564 0.505 0.464
of correct prediction
AC sampling
Average Log-likelihood (model) -435.7331 -1484.0916 -2091.9002 -2528.5710 -2860.0574 -3088.101
Average adjusted Rho-square 0.8617 0.7447 0.6975 0.6654 0.6475 0.6346
Average choice probability 0.851 0.582 0.456 0.378 0.333 0.299
of correct prediction
TC sampling
Average Log-likelihood (model) -806.2441 -2021.0204 -2565.6798 -2906.7886 -3090.3342 -3236.4498
Average adjusted Rho-square 0.7573 0.6557 0.6307 0.6164 0.6148 0.6132
Average choice probability 0.739 0.468 0.369 0.311 0.282 0.266
of correct prediction
TAC sampling
Average Log-likelihood (model) -929.5913 -2299.664 -2903.2052 -3219.2278 -3406.7728 -3555.7114
Average adjusted Rho-square 0.7225 0.6094 0.5831 0.5760 0.5759 0.5756
Average choice probability 0.698 0.402 0.307 0.265 0.245 0.229
of correct prediction

4.2.2 Sampled estimate comparison

In Table 2.7, an assessment of the accuracy, stability and statistical efficiency of the estimated
parameters of the sampled choice set models is depicted, together with the average distance of
the sampled alternatives from the chosen one per sapling protocol. Furthermore, in Table 2.8,
a comparison between the sampling protocols is presented with regard to how much better the
performance on each evaluation measure is for the protocol in focus compared to the remaining
three protocols. As an example, the numbers presented for TAC-TC comparison with regard
to AAPD are calculated as (AAPDT C − AAPDT AC)/AAPDT AC . In the same Table, the
number of parameters where each sampling protocol performs better is also included. The
assessment and the comparison of the sampling protocols is performed based on the following
evaluation measures:

• Average Absolute Bias (AAB), measuring the absolute difference between the true and
sampled estimates and taking the average across the r number of sampling realisations.

• Average Absolute Percentage Difference (AAPD), measuring the absolute percentage
difference between the true and the sampled estimates and taking the average across the
r number of sampling realisations. AAPD offers a normalised equivalent to AAB, which
can be important when there are significant scale differences among the estimates.

• Absolute Coefficient of Variation (ACoV), offering a normalised measure for capturing
the stability or the lack thereof of sampling realisations per choice set size. ACoV is
defined as the absolute value of the ratio of the sampling standard deviation over the
average sampled estimate across the r number of sampling realisations. A small ACoV
would provide the analyst the certainty that a following sampling realisation would still
result in similar estimates.
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• Root Mean Square Error (RMSE), calculated for the standard errors across the r number
of sampling realisations per parameter with the purpose of assessing the statistical
efficiency of the sampling protocols. In general, a small RMSE would indicate a more
accurate estimation per parameter.

• Improvement rates, calculated from linear regressions per parameter and for each of
the four previously-defined evaluation measures across the six choice set sizes examined.
A higher improvement rate (more negative) indicates that the sampling protocol will
benefit more by further increasing the size of the choice set.

With regard to the average straight distance between the sampled and the chosen
alternatives, Random sampling results in sampled alternatives with similar average distances
from the chosen alternatives regardless of the choice set size, since the alternatives are sampled
with a uniform probability from the global choice set. The sampled alternatives in the AC
protocol have a smaller average distance from the chosen alternative compared to the TC
protocol due to the bigger size of the SDEs/FBs offering a sufficient pool of alternatives to
sample from without the need of further sampling from C. The higher average distance of
alternatives in the TC protocol is in accordance with our initial hypotheses that this specific
protocol will result in having an increased number of spatially irrelevant alternatives to the
chosen one. On the other hand, the TAC protocol, with the addition of SDE/FB spaces,
manages to provide choice sets with a smaller average distance between sampled and chosen
alternatives leading to less deterministic models and to average probabilities for the chosen
alternatives that are closer to those of the true model (0.18), as shown in Table 2.6. That
finding supports the idea of the current study, that an additional space is required around
the DEs in order to sample more spatially relevant alternatives for the respective choice task.
The role of the additional stratum A in the TAC protocol is to provide a further structure of
sampling for the remaining alternatives and to minimise the inclusion of spatially irrelevant
alternatives that will not provide a meaningful trade-off comparison for the model.

In general, the three stratified importance sampling protocols, namely AC, TC and
TAC, perform significantly better than Random sampling given the choice set size. The
average rates of improvement for all evaluation measures for the Random sampling are higher
compared to those of the importance sampling protocols meaning that the performance of
Random sampling models would benefit more with increased choice set sizes. That is a further
indication that using Random sampling would require a higher choice set size to achieve the
same level of accuracy compared to an importance sampling approach. On average, TAC
leads to 98.9%-242.6% lower AAPD and more than 51 out of 55 better estimated parameters
than Random sampling. TC leads to slightly less improvements with 85.3%-206.9% lower
AAPD, and 48-52 better estimated parameters. Finally, AC leads to 48.4%-120.1% lower
AAPD and 41-51 better estimated parameters. Sampling stability, as captured by the ACoV,
provides similar conclusions with TAC showing the most significant improvements compared
to Random sampling, followed by TC and AC.

An interesting finding can be discerned by examining the RMSE across sampling protocols.
Importance sampling protocols still achieve lower RMSE than Random sampling, but the
improvements are much smaller, namely below 25% for choice sets of more than 50 alternatives.
That means that parameters estimated with Random sampling will have narrow confidence
intervals, i.e. high significance, but will still be highly biased compared to the true estimates
of the full choice set model. In a practical setting, with the absence of a full choice set model,
that can lead the analyst to make a false assessment of the behavioural model, which in turn
can have severe policy implications both during interpretation and application.

Regarding the three importance sampling protocols, their differences are less stark, but
clear trends can still be observed. Both TAC and TC outperform AC in all evaluation
measures. On average, TAC is by 34%-111.3% and by 75.2%-106.6% better than AC in terms
of AAPD and ACoV, respectively, for choice sets with more than 10 alternatives. In a similar
notion, TC is by 24.9%-57.7% and by 29.6%-91.7% better for the same evaluation measures
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and choice set sizes than AC.TAC models are generally more accurate and stable than their
TC counterparts with an average 7.3%-33.9% lower AAPD and 0.6%-38.5& lower ACoV for
choice sets with more than 10 alternatives. TC achieves its most comparable performance
with TAC and significantly outperforms AC at a choice set size of 100 alternatives. A possible
explanation is that, on average, there are 76 alternatives in stratum T meaning that at a
choice set size of 100, there are enough alternatives in stratum T to sample from in order to
reach the required number of alternatives, i.e. 0.67 ∗ 100 = 67 alternatives from that stratum,
without replenishing them from C. After that choice set size, however, there is the need
to sample further alternatives from C reducing the performance of the estimated sampled
models. That is also evident from the performance of the evaluation measures of TC, where
for a choice set of 100 alternatives, TC models perform only marginally worse than TAC.
After that point, however, TAC models manage to increase their performance gap from TC,
going from an average of 7.3% to a 33.9% lower AAPD, for 250 alternatives, and from 30
to 41 better estimated parameters. The increasing inclusion of worse alternatives in the
choice set has an impact on stability, as well, with TAC models going from a mere 0.6%
better ACoV, for 100 alternatives, to a much higher 38.5%, for 250 alternatives. Furthermore,
that is captured in the average improvement rates of AAPD and ACoV, where TAC shows
higher decreasing rates than TC, meaning that it can still benefit more by increasing the
choice set despite being already more accurate and stable than TC. Based on that finding,
a reverse-engineering approach can be implemented, where the analyst can get a rough
approximation of the optimal choice set size per sampling protocol by examining the average
number of alternatives within the stratum that she wants to prioritise.

Regarding the choice set size, there is not any guideline as to which percentage of the
full choice set is required to estimate stable parameters with insignificant bias. Therefore,
the required choice set size should be viewed as case-specific and be carefully examined by
the analyst. Figure 2.6 provides a graphical representation of Table 2.6 and can be used to
identify the minimum required choice set to achieve estimate accuracy and stability. In the
current study, it seems that even after a choice set of 50 alternatives, there are significant
improvements in estimate accuracy and stability for the importance sampling protocols.
Random sampling, however, needs at least 150 alternatives to show more consistently accurate
estimates. The improvements on the four evaluation measures tend to slow down after 150
alternatives and for each subsequent choice set size for all sampling protocols. In the same
Figure, a clear verdict can be made about the benefits of the proposed importance sampling
protocols using AS concepts compared to random sampling, which performs significantly
worse across all four evaluation measures.

A visual representation of the sampled estimates and how they improve with the increase
of the choice set is depicted in Figures 2.7 and 2.8 focusing on two of the most important
parameters from a policy perspective, namely βbase

time and βbase
cost , respectively. In those Figures,

it can be seen how the sampled estimates across the five realisations tend to concentrate
around the true value (red horizontal line) as the choice set size increases (green dashed
lines represent the 95% confidence interval of the true value). Detailed tables depicting the
average estimates and the evaluation measures per parameter across the five realisations per
sampling protocol and choice set size can be found in the supplementary material provided
in the Appendix.

4.2.3 Evaluation of sampled VTT estimates and demand elasticities

In Table 2.9, a comparison is performed with the VTT estimates of the full choice set model
by calculating the AAB, AAPD, ACoV and RMSE, as defined earlier, while Table 2.10
depicts a comparison between sampling protocols. The three importance sampling protocols,
on average, have a less than 1£/hour difference from the true VTTs for choice sets with
more than 100 alternatives, while VTTs derived from Random sampling are significantly
more biased. TC manages to outperform the remaining protocols and achieves the best
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Table 2.7: Estimate evaluation of sampling protocols

Evaluation measure Choice set sizes Average rate
10 50 100 150 200 250 of improvement

Random sampling
Average distance from 14908 14875.2 14888 14812.2 14819.8 14797.6 –
chosen alternative (m)
Average AAB 0.9691 0.3096 0.3593 0.1987 0.1910 0.1690 -0.1291
Average AAPD 1.0502 0.3658 0.3852 0.2328 0.2071 0.1888 -0.1401
Average ACoV 2.8367 0.3710 0.3384 0.2230 0.1660 0.1436 -0.4001
Average RMSE 1.1263 0.5058 0.3816 0.3460 0.3376 0.3168 -0.1311
AC sampling
Average distance 8424.1 8457.4 9200.6 10014.6 10533.8 11023.2 –
chosen alternative (m)
Average AAB 0.4504 0.2035 0.1610 0.1231 0.1032 0.1000 -0.0598
Average AAPD 0.4984 0.2465 0.1750 0.1417 0.1187 0.1164 -0.0665
Average ACoV 0.5769 0.2001 0.1670 0.1337 0.1095 0.0879 -0.0767
Average RMSE 0.6522 0.3636 0.3428 0.3202 0.3116 0.3050 -0.0547
TC sampling
Average distance from 8495 11138.2 12642.2 13382 13842 14120.8 –
chosen alternative (m)
Average AAB 0.4058 0.1760 0.1183 0.0868 0.0774 0.0653 -0.0580
Average AAPD 0.4980 0.1974 0.1255 0.0996 0.0931 0.0738 -0.0703
Average ACoV 0.3491 0.1385 0.0871 0.0790 0.0845 0.0644 -0.0459
Average RMSE 0.5065 0.3406 0.3161 0.3062 0.2989 0.2919 -0.0345
TAC sampling
Average distance from 5124 7045.2 8164.6 8818.2 9527.8 10083 –
chosen alternative (m)
Average AAB 0.4012 0.1349 0.0955 0.0722 0.0597 0.0476 -0.0576
Average AAPD 0.5020 0.1839 0.1170 0.0874 0.0784 0.0551 -0.0740
Average ACoV 0.4399 0.1137 0.0876 0.0647 0.0625 0.0465 -0.0613
Average RMSE 0.4575 0.3275 0.3126 0.3064 0.3024 0.3021 -0.0245
The best-performing sampling protocol per choice set size and evaluation measure is highlighted
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Table 2.8: Comparison of sampling protocols

Protocols Choice set sizes
compared 10 50 100 150 200 250
TAC-TC
Average AAB 1.2% (31) 30.5% (35) 23.9% (30) 11.9% (35) 29.6% (37) 37.2% (41)
Average AAPD -0.8% (31) 7.3% (35) 7.3% (30) 10.5% (35) 18.8% (37) 33.9% (41)
Average ACoV -20.6% (27) 21.8% (35) 0.6% (33) 22.1% (27) 35.2% (30) 38.5% (33)
Average RMSE 10.7% (42) 4.0% (34) 1.1% (27) 0.07% (26) -1.5% (22) -3.4% (26)
TAC-AC
Average AAB 12.3% (36) 50.8% (45) 68.6% (42) 70.5% (44) 72.9% (45) 110.1% (51)
Average AAPD -0.7% (36) 34.0% (45) 49.6% (42) 62.1% (44) 51.4% (45) 111.3% (51)
Average ACoV 31.1% (27) 76.0% (38) 90.6% (39) 106.6% (36) 75.2% (32) 89.0% (35)
Average RMSE 42.6% (51) 11.0% (48) 9.7% (51) 4.5% (46) 3.0% (48) 1.0% (48)
TAC-Random
Average AAB 141.6% (53) 129.5% (51) 276.2% (54) 175.2% (51) 219.9% (51) 255.0% (55)
Average AAPD 109.2% (53) 98.9% (51) 229.2% (54) 166.4% (51) 164.2% (51) 242.6% (55)
Average ACoV 544.9% (29) 226.3% (32) 286.3% (32) 244.7% (33) 165.6% (33) 208.8% (36)
Average RMSE 146.2% (53) 54.4% (51) 22.1% (49) 12.9% (49) 11.6% (47) 4.9% (44)
TC-AC
Average AAB 11.0% (35) 15.6% (35) 36.1% (44) 41.8% (39) 33.3% (37) 53.1% (43)
Average AAPD 0.1% (35) 24.9% (35) 39.4% (44) 42.3% (39) 27.5% (37) 57.7% (43)
Average ACoV 65.3% (27) 44.5% (35) 91.7% (34) 69.2% (31) 29.6% (32) 36.5% (34)
Average RMSE 28.8% (51) 6.8% (47) 8.4% (48) 4.6% (46) 4.2% (46) 4.5% (45)
TC-Random
Average AAB 138.8% (49) 75.9% (48) 203.7% (52) 128.9% (49) 146.8% (51) 158.8% (52)
Average AAPD 110.9% (49) 85.3% (48) 206.9% (52) 133.7% (49) 122.4% (51) 155.8% (52)
Average ACoV 712.6% (28) 167.9% (30) 288.5% (33) 182.3% (33) 96.4% (32) 123.0% (35)
Average RMSE 122.4% (54) 48.5% (53) 20.7% (49) 13.0% (50) 12.9% (49) 8.5% (45)
AC-Random
Average AAB 115.2% (51) 52.1% (47) 123.2% (46) 61.4% (41) 85.1% (49) 69.0% (45)
Average AAPD 110.7% (51) 48.4% (47) 120.1% (46) 64.3% (41) 74.5% (49) 62.2% (45)
Average ACoV 391.7% (29) 85.4% (23) 102.6% (28) 66.8% (34) 51.6% (32) 63.4% (26)
Average RMSE 72.7% (51) 39.1% (50) 11.3% (46) 8.1% (46) 8.3% (44) 3.9% (39)
The number in parenthesis denotes the number of parameters with lower evaluation measure for the
sampling protocol in focus out of a total of 55 parameters
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(a) AAB (b) AAPD

(c) ACoV (d) RMSE

Figure 2.6: Improvements of evaluation measures across sampling protocols and choice set sizes
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Figure 2.7: Plots for βbase
time estimates for each sampling realisation across sampling protocols

Figure 2.8: Plots for βbase
cost estimates for each sampling realisation across sampling protocols
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performance with 100 alternatives. For that choice set size, it performs significantly better
even than TAC by having more than 30% lower AAB and AAPD, 28.5% lower ACoV and
9 out of 10 better estimated VTTs. The performance of TC, however, deteriorates as the
choice set size increases and inevitably more spatially irrelevant alternatives are included,
reaching the point of an almost equal performance with TAC for 250 alternatives. Time
and cost-related parameters that influence the VTT estimation show an equal performance
between TAC and TC, in contrast to the remaining parameters where TAC excels, and that
is the reason behind the good overall performance of TC for VTTs.

Table 2.9: Evaluation of VTT estimates of sampling protocols

Evaluation measure Choice set sizes Average rate
10 50 100 150 200 250 of improvement

Random sampling
Average AAB (£/hour) 4.5384 2.0949 1.7056 1.2674 1.1843 1.0772 -0.5850
Average AAPD 0.5108 0.2318 0.1979 0.1498 0.1286 0.1222 -0.0657
Average ACoV 0.4905 0.2392 0.2490 0.1756 0.0929 0.1314 -0.0660
Average RMSE 0.1209 0.0702 0.0602 0.0538 0.0546 0.0494 -0.0117
AC sampling
Average AAB (£/hour) 3.4104 1.4050 1.2356 0.9829 0.8192 0.8003 -0.4303
Average AAPD 0.3544 0.1728 0.1391 0.1048 0.0880 0.0878 -0.0463
Average ACoV 0.4004 0.2063 0.1536 0.1164 0.0840 0.0695 -0.0588
Average RMSE 0.0904 0.0561 0.0516 0.0507 0.0489 0.0480 -0.0067
TC sampling
Average AAB (£/hour) 2.2496 1.1970 0.7061 0.5570 0.4921 0.3972 -0.3293
Average AAPD 0.2475 0.1261 0.0781 0.0623 0.0559 0.0435 -0.0356
Average ACoV 0.2224 0.0885 0.0862 0.0658 0.0697 0.0492 -0.0269
Average RMSE 0.0704 0.0520 0.0517 0.0523 0.0492 0.0489 -0.0033
TAC sampling
Average AAB (£/hour) 1.5254 1.0395 1.0281 0.7506 0.5209 0.4458 -0.2066
Average AAPD 0.1754 0.1239 0.1267 0.0826 0.0650 0.0501 -0.0242
Average ACoV 0.2351 0.1381 0.1205 0.0882 0.0754 0.0386 -0.0344
Average RMSE 0.0724 0.0560 0.0497 0.0500 0.0570 0.0486 -0.0039
The best-performing sampling protocol per choice set size and evaluation measure is highlighted

Demand elasticities estimated from sampled models are assessed in Table 2.11 and a
performance comparison between sampling protocols is presented in Table 2.12. Contrary to
the VTT estimates, the estimation of demand elasticities with TAC is much more accurate
than TC, since in that context all of the 55 parameters take part during their calculation and
not just the time and cost-related parameters. As already mentioned, TC achieves its best
performance for a choice set of 100 alternatives, but even in that case, TAC achieves a 16.8%
lower AAB, a 20.3% lower AAPD and 33 out of 48 better estimated elasticities, but also
less stable estimates with 4.5% higher ACoV. As the choice set size increases, however, the
performance gap for TAC shoes gradual improvements reaching a 47.3% lower AAB, a 64.2%
lower AAPD, 39 out of 48 better estimated elasticities and a 18% lower ACoV, for a choice
set of 250 alternatives. AC performs worse than the other two importance sampling protocols,
but still better than Random sampling. TAC shows the largest performance improvements
compared to Random sampling, almost 1.5 times more than TC and 2.5 times more than AC.
The overall better forecasting ability of TAC is indicative of the less deterministic models
derived from that sampling protocol (see Table 2.6). The impact that this might have in a
practical application presents a clear verdict in favour of combining DEs and SDEs/FBs for
importance sampling and not neglecting the latter.
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Table 2.10: VTT comparison of sampling protocols

Protocols Choice set sizes
compared 10 50 100 150 200 250
TAC-TC
Average AAB 47.5% (9) 15.2% (6) -31.3% (1) -25.8% (3) -5.5% (7) -10.9% (5)
Average AAPD 41.1% (9) 1.8% (6) -38.4% (1) -24.6% (3) -14.0% (7) -13.2% (5)
Average ACoV -5.4% (5) -35.9% (4) -28.5% (3) -25.4% (4) -7.6% (3) 27.5% (6)
Average RMSE -2.8% (3) -7.1% (0) 4.0% (8) 4.6% (8) -13.7% (2) 0.6% (7)
TAC-AC
Average AAB 123.6% (10) 35.2% (8) 20.2% (5) 30.9% (7) 57.3% (8) (9) 79.5% (7)
Average AAPD 102.1% (10) 39.5% (8) 9.8% (5) 26.9% (7) 35.4% (8) (9) 75.2% (7)
Average ACoV 70.3% (9) 49.4% (8) 27.5% (7) 32.0% (9) 11.4% (7) (8) 80.1% (10)
Average RMSE 24.9% (10) 0.2% (4) 3.8% (5) 1.4% (5) -14.2% (2) (6) -1.2% (4)
TAC-Random
Average AAB 197.5% (10) 101.5% (10) 65.9% (10) 68.9% (9) 127.4% (9) 141.6% (10)
Average AAPD 191.2% (10) 87.1% (10) 56.2% (10) 81.4% (9) 97.8% (9) 143.9% (10)
Average ACoV 108.6% (10) 73.2% (8) 106.6% (10) 99.1% (8) 23.2% (8) 240.4% (10)
Average RMSE 67.0% (10) 25.4% (9) 21.1% (10) 7.6% (6) -4.2% (6) 1.6% (4)
TC-AC
Average AAB 51.6% (8) 17.4% (6) 75.0% (8) 76.5% (9) 66.5% (9) 101.5% (9)
Average AAPD 43.2% (8) 37.0% (6) 78.1% (8) 68.2% (9) 57.4% (9) 101.8% (9)
Average ACoV 80.0% (8) 133.1% (7) 78.2% (6) 76.9% (8) 20.5% (7) 41.3% (9)
Average RMSE 28.4% (10) 7.9% (8) -0.2% (4) -3.1% (4) -0.6% (4) -1.8% (4)
TC-Random
Average AAB 101.7% (9) 75.0% (9) 141.6% (10) 127.5% (9) 140.7% (9) 171.2% (10)
Average AAPD 106.4% (9) 83.8% (9) 153.4% (10) 140.4% (9) 130.1% (9) 180.9% (10)
Average ACoV 120.5% (10) 170.3% (10) 188.9% (10) 166.9% (10) 33.3% (8) 167.1% (9)
Average RMSE 71.7% (10) 35.0% (10) 16.4% (10) 2.9% (5) 11.0% (7) 1.0% (4)
AC-Random
Average AAB 33.1% (9) 49.1% (8) 38.0% (10) 28.9% (8) 44.6% (6) 34.6% (8)
Average AAPD 44.1% (9) 34.1% (8) 42.3% (10) 42.9% (8) 46.1% (6) 39.2% (8)
Average ACoV 22.5% (9) 15.9% (6) 62.1% (10) 50.9% (8) 10.6% (6) 89.1% (9)
Average RMSE 33.7% (10) 25.1% (10) 16.7% (10) 6.1% (7) 11.7% (9) 2.9% (6)
The number in parenthesis denotes the number of estimated VTTs with lower evaluation measure for
the sampling protocol in focus out of a total of 10 VTT estimates
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Table 2.11: Evaluation of demand elasticities of sampling protocols

Evaluation measure Choice set sizes Average rate
10 50 100 150 200 250 of improvement

Random sampling
Average AAB 0.2455 0.1589 0.1133 0.0885 0.0740 0.0615 -0.0343
Average AAPD 0.7593 0.5032 0.3911 0.2968 0.2647 0.2257 -0.0994
Average ACoV 0.5224 0.1962 0.1414 0.1055 0.1042 0.0936 -0.0702
AC sampling
Average AAB 0.2208 0.1077 0.0703 0.0507 0.0367 0.0316 -0.0337
Average AAPD 0.6794 0.3386 0.2335 0.1607 0.1277 0.1028 -0.1025
Average ACoV 0.3542 0.1113 0.1190 0.0807 0.0589 0.0532 -0.0486
TC sampling
Average AAB 0.1890 0.0888 0.0480 0.0367 0.0275 0.0249 -0.0290
Average AAPD 0.5716 0.2631 0.1530 0.1140 0.0914 0.0852 -0.0853
Average ACoV 0.2219 0.1003 0.0617 0.0606 0.0528 0.0406 -0.0300
TAC sampling
Average AAB 0.1850 0.0716 0.0411 0.0280 0.0189 0.0169 -0.0289
Average AAPD 0.5614 0.2157 0.1272 0.0873 0.0651 0.0519 -0.0868
Average ACoV 0.2449 0.0732 0.0646 0.0398 0.0409 0.0344 -0.0335
The best-performing sampling protocol per choice set size and evaluation measure is highlighted

Table 2.12: Demand elasticity comparison of sampling protocols

Protocols Choice set sizes
compared 10 50 100 150 200 250
TAC-TC
Average AAB 2.2% (33) 24.0% (35) 16.8% (33) 31.1% (38) 45.5% (36) 47.3% (39)
Average AAPD 1.8% (33) 22.0% (35) 20.3% (33) 30.6% (38) 40.4% (36) 64.2% (39)
Average ACoV -9.4% (26) 37.0% (40) -4.5% (18) 52.3% (37) 29.1% (37) 18.0% (30)
TAC-AC
Average AAB 19.4% (42) 50.4% (44) 71.0% (40) 81.1% (43) 94.2% (44) 87.0% (42)
Average AAPD 21.0% (42) 57.0% (44) 83.6% (40) 84.1% (43) 96.2% (44) 98.1% (42)
Average ACoV 44.6% (34) 52.0% (38) 84.2% (42) 102.8% (43) 44.0% (38) 54.7% (37)
TAC-Random
Average AAB 32.7% (42) 121.9% (46) 175.7% (46) 216.1% (47) 291.5% (45) 263.9% (46)
Average AAPD 35.3% (42) 133.3% (46) 207.5% (46) 240.0% (47) 306.6% (45) 334.9% (46)
Average ACoV 113.3% (39) 168.0% (44) 118.9% (45) 165.1% (46) 154.8% (42) 172.1% (42)
TC-AC
Average AAB 16.8% (45) 21.3% (36) 46.5% (41) 38.1% (39) 33.5% (30) 26.9% (33)
Average AAPD 18.9% (45) 28.7% (36) 52.6% (41) 41.0% (39) 39.7% (30) 20.7% (33)
Average ACoV 59.6% (33) 11.0% (24) 92.9% (44) 33.2% (33) 11.6% (23) 31.0% (36)
TC-Random
Average AAB 29.9% (46) 78.9% (45) 136.0% (48) 141.1% (47) 169.1% (44) 147.0% (47)
Average AAPD 32.8% (46) 91.3% (45) 155.6% (48) 160.4% (47) 189.6% (44) 164.9% (47)
Average ACoV 135.4% (43) 95.6% (39) 129.2% (42) 74.1% (45) 97.3% (38) 130.5% (43)
AC-Random
Average AAB 11.2% (43) 47.5% (46) 61.2% (45) 74.6% (45) 101.6% (46) 94.6% (44)
Average AAPD 11.8% (43) 48.6% (46) 67.5% (45) 84.7% (45) 107.3% (46) 119.6% (44)
Average ACoV 47.5% (41) 76.3% (39) 18.8% (31) 30.7% (29) 76.9% (41) 75.9% (36)
The number in parenthesis denotes the number of demand elasticities with lower evaluation measure for
the sampling protocol in focus out of a total of 48 estimates
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5 Conclusions

The paper proposes a novel stratified importance sampling protocol based on concepts from
the activity space literature to overcome the computational challenges associated with the
estimation of a joint mode-destination choice model in a behaviourally realistic manner. The
results indicate that the proposed importance sampling protocol, TAC, combining both DEs
and SDEs/FBs, is capable of achieving a better balance between estimate accuracy, sampling
stability and statistical efficiency compared to the other importance sampling protocols
examined and especially compared to random sampling, also leading to improvements in
VTT estimation and demand forecasting. Furthermore, TAC -derived models avoid overfitting
by more closely matching the average choice probabilities for correct predictions of the true
model. The results hint to the fact that Random sampling will benefit more by an increased
choice set size compared to the importance sampling protocols, since more spatially relevant
alternatives would be required to achieve the same level of accuracy and stability.

A general recommendation regarding the choice set size, relative to the full choice set,
in order to achieve stable and sufficiently accurate estimates cannot be made, since this
is generally case-specific, but also specific to the sampling protocol employed, as showed
in the current study with the performance of TC. As a general rule of thumb, though, it
could be suggested that having only gradual improvements in estimate accuracy and stability
can serve as a sufficient indication of reaching the optimal choice set size. In a practical
setting, however, with the absence of a full choice set model to properly assess sampled model
accuracy, sampling stability can be considered as a more appropriate evaluation measure.

The current study does not claim that the proposed AS-based importance sampling
protocols are the most effective ones, since the main focus was simply to address the limitations
identified in the relevant literature. Several other approaches could have been proposed, such
as sampling with replacement, but the TAC protocol was chosen for comparison purposes as
a more behaviourally accurate extension of the TC protocol. In future research, the problem
of finding the most effective sampling protocol for reducing the choice set size in a destination
choice problem of discretionary activities can be formalised as an optimisation problem
analysing to what extent the three importance sampling protocols might be more suitable
for specific trips/choice tasks or for specific individuals based on their observed behaviour.
Future studies should also acknowledge the intricate complications of destination choice of
discretionary activities (time-space constraints and travel impedance) that differentiates it
from a residential location problem.

Finally, the current study also showcases that emerging data sources, such as GPS, can
be effectively used for the specification-estimation of behavioural models. The benefit of
the “DECISIONS” dataset, used in the current study, is that it presents a combination of
a traditional household survey and GPS tracking over a 2-week period, providing a wealth
of observed behaviour to the researcher. The lack of level of service information for the
non-chosen alternatives can be sufficiently tackled with the use of readily available APIs
even in the absence of a regional transport model. Furthermore, the lack of official land use
data, important for the specification of a destination choice model, can be addressed with
the use of open source OSM data. Although it is important to consider the potential errors
in all of the aforementioned data sources (GPS, API, OSM), the estimated parameters and
their signs, as well as the values derived from them, such as VTT estimates and demand
elasticities, are behaviourally reasonable and within acceptable ranges.
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Table 2.13: Evaluation of Random sampling protocol for choice sets of 10, 50 and 100 alts

Parameter 10 alts 50 alts 100 alts
Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE

Locational constants
Constant rest Yorkshire 1.4167 1.5786 0.3390 0.4809 1.0374 0.8881 0.1121 0.2235 0.8557 0.5574 0.1413 0.1782
Households with car ownership
Constant Car-Other (PT/walking) -3.0689 0.3531 0.4242 0.8387 -2.7741 0.0864 0.1138 0.4494 -2.7962 0.0643 0.0829 0.4043
Constant Other (PT/walking)-Car -0.6713 0.6203 0.9823 0.7024 -0.6444 0.3574 0.4431 0.4132 -0.7890 0.2336 0.2971 0.3322
Constant PT-PT -0.3663 1.0848 3.2898 1.0871 -0.5703 0.4707 0.3812 0.5104 -1.0525 0.2141 0.2530 0.5174
Constant PT-Walking -0.7595 0.8553 1.8626 1.2758 -1.1786 0.2405 0.2984 0.7193 -1.3964 0.2154 0.3083 0.6708
Constant Walking-PT 0.5371 1.5386 2.3525 1.1129 -0.5867 0.5183 0.8407 0.6608 -0.9462 0.2739 0.3842 0.5827
Constant Walking-Walking 1.2292 1.1858 1.0773 1.1798 1.0729 0.2745 0.1941 0.6368 0.9753 0.2216 0.1668 0.5200
Mode shifts for households with no car ownership
Constant Car-Other (PT/walking) 1.3638 0.4329 0.6994 1.0729 1.7655 0.2411 0.3025 0.8354 1.8533 0.2033 0.1265 0.6178
Constant Other (PT/walking)-Car 1.8766 2.0283 0.4480 1.2325 1.3023 1.0578 0.1820 0.8369 1.1631 0.8378 0.1824 0.6625
Constant PT-PT 5.5908 0.3094 0.1589 1.2314 4.7587 0.1145 0.0578 0.6658 4.8897 0.1452 0.0881 0.5946
Constant PT-Walking 4.0594 0.3066 0.2533 1.2682 3.9395 0.2352 0.2023 0.8567 4.1286 0.2311 0.0894 0.7462
Constant Walking-PT 3.5896 0.3591 0.2252 1.4394 2.9944 0.1609 0.1622 0.7460 3.1180 0.1186 0.1328 0.6110
Constant Walking-Walking 3.8626 0.4580 0.3218 1.1196 3.3905 0.3008 0.1505 0.6264 3.2720 0.2299 0.1159 0.5112
Mode shifts for central area destinations
PT-PT 2.1532 0.5586 0.5132 0.8921 2.0115 0.1528 0.0143 0.4904 1.8707 0.1465 0.2128 0.4130
PT-Walking 2.2721 0.7801 0.7267 1.0735 1.7930 0.1765 0.2131 0.8050 1.6911 0.2954 0.3991 0.6395
Walking-PT 2.5118 0.2276 0.2923 1.0976 3.1858 0.2242 0.1616 0.6694 2.7802 0.0832 0.0981 0.5898
Walking-Walking 1.9471 0.6174 0.6415 0.8016 2.0594 0.2505 0.1512 0.4512 1.7975 0.1101 0.0909 0.3337
Mode shifts for individuals with season ticket ownership
Walking-Walking -0.6761 1.7066 1.7172 0.8699 -0.7865 0.4549 0.3104 0.4877 -0.9489 0.8172 0.3653 0.4069
Mode shifts for trips with more than 1 passenger
PT first/shopping trip -2.3461 0.4225 0.4878 0.8542 -2.0975 0.1265 0.0647 0.5205 -2.2493 0.2081 0.1078 0.4659
PT following trip -0.5191 1.2082 2.2718 0.8580 -0.7681 0.1844 0.1886 0.5136 -0.6703 0.2469 0.2753 0.4392
Walking first/shopping trip -1.3286 0.8049 0.5477 0.7986 -1.0196 0.2756 0.2333 0.4070 -1.0792 0.3478 0.1200 0.3312
Walking following trip -0.1618 1.2944 4.7519 0.8572 -0.0985 0.7408 1.8696 0.4592 -0.1908 0.4813 0.8911 0.3730
Mode shifts for students
Walking-Walking 1.6425 1.2062 0.8518 1.0204 1.1274 0.3659 0.4934 0.6246 1.2227 0.2596 0.2518 0.5437
Mode shifts for married individuals
Walking-Walking -1.0603 1.1118 0.8998 0.9249 -0.7735 0.2886 0.3788 0.4749 -0.5672 0.3963 0.7648 0.3911
Mode shifts for individuals living in 3-member households
Walking-Walking 1.1107 1.3608 0.9690 1.0432 1.1281 0.6660 0.3349 0.6658 0.9556 0.4020 0.3232 0.4930
LOS variables
Travel time for first trip (base level) -0.0922 0.0879 0.1064 0.0205 -0.0963 0.1037 0.1245 0.0138 -0.0961 0.0537 0.0249 0.0121
Travel time shift for clothes shopping -0.0610 3.2992 1.0287 0.0345 -0.0055 1.2074 4.1777 0.0166 0.0144 0.4587 0.3322 0.0124
Travel time for O-S-O trip chains 0.0118 1.0243 1.5322 0.0188 0.0231 0.7009 0.5493 0.0095 0.0213 0.4025 0.1588 0.0077
Travel time for HWH tours -0.0528 0.4264 0.4220 0.0204 -0.0420 0.2539 0.3180 0.0124 -0.0462 0.0523 0.0709 0.0114
Travel time multiplier for car 1.0000 – – – 1.0000 – – – 1.0000 – – –
Travel time multiplier for PT IVT 0.5984 0.0995 0.1648 0.1406 0.5840 0.0234 0.0303 0.0915 0.5836 0.0601 0.0740 0.0850
Travel time multiplier for PT first access trip 1.2979 0.6771 0.4044 0.4786 0.8818 0.1610 0.1617 0.3123 0.7801 0.0771 0.1163 0.2774
Travel time multiplier for PT last egress trip 0.8746 0.4365 0.3591 0.4644 0.7761 0.2747 0.1669 0.2653 0.6338 0.1508 0.1674 0.2039
Travel time multiplier for PT remaining OVT 0.4532 0.9455 0.9127 0.4237 0.3437 0.4582 0.6304 0.2814 0.2558 0.3510 0.4893 0.2355
Travel time multiplier for following trip 1.2880 0.1299 0.1672 0.1938 1.2649 0.0710 0.0704 0.1215 1.2969 0.0446 0.0410 0.1145
Travel time - Shopping duration elasticity -0.3769 0.3337 0.3203 0.0908 -0.3368 0.0895 0.0986 0.0522 -0.3277 0.0767 0.1018 0.0429
Travel walking distance (base) -2.1274 0.3084 0.1390 0.3861 -1.9060 0.1723 0.0501 0.2212 -1.8504 0.1381 0.0430 0.1865
Travel walking distance for O-S-O trip chains 0.5248 1.1663 0.5786 0.3195 0.4030 0.5392 0.3635 0.2107 0.3971 0.4756 0.0914 0.1736
Travel walking distance multiplier for following trip 1.0838 0.1340 0.0357 0.1840 1.1269 0.0996 0.0432 0.1183 1.1482 0.0826 0.0509 0.1021
Box-cox lambda for travel walking distance 0.6191 0.2310 0.0838 0.1444 0.6831 0.1515 0.0722 0.0802 0.6776 0.1584 0.0266 0.0658
Travel walking distance - Shopping duration elasticity -0.2442 0.7659 0.3461 0.0834 -0.1761 0.2611 0.1963 0.0483 -0.1820 0.3037 0.1282 0.0462
Travel cost -0.8989 0.3792 0.1525 0.2046 -0.7438 0.1412 0.0869 0.1109 -0.7222 0.1225 0.0963 0.1004
Box-cox lambda for travel cost 0.3580 0.3322 0.3391 0.1982 0.3428 0.3607 0.1601 0.0854 0.3861 0.2800 0.1222 0.0749
Travel cost - Personal income elasticity -0.2669 0.6026 0.7081 0.2332 -0.2476 0.2922 0.4000 0.1055 -0.2830 0.2263 0.2357 0.0957
Locational variables
Living in rich areas-shopping in poor areas -1.4764 1.0070 0.6788 0.6955 -1.1477 0.4281 0.1539 0.3904 -1.1507 0.4319 0.1882 0.3461
Parking areas (400m buffer)) 0.0979 0.3886 0.4832 0.0566 0.1098 0.2254 0.2112 0.0347 0.0985 0.1185 0.1246 0.0294
Box-cox lambda for parking areas (400m buffer) 0.4979 0.3017 0.2632 0.2084 0.4715 0.1277 0.1097 0.1068 0.4864 0.1543 0.1098 0.0904
Presence of major clothes shopping retailers (400m buffer) 3.2163 0.6585 0.3566 1.1175 2.3616 0.2562 0.1888 0.4670 2.1641 0.1028 0.0846 0.3518
Presence of major grocery retailers (400m buffer) 0.3718 0.4327 0.6763 0.2703 0.3888 0.2712 0.2753 0.1450 0.4755 0.1085 0.0808 0.1233
Presence of major durables retailers (400m buffer) 7.3593 2.7997 0.7790 2.0184 2.5897 0.3350 0.2795 0.9806 2.6262 0.3398 0.2316 0.9319
Size variables
Natural logarithm multiplier ϕ 1.1449 0.6398 0.3166 0.3999 0.7984 0.0940 0.0641 0.1589 0.7851 0.0758 0.0426 0.1226
Population (400m buffer) 1.0000 – – – 1.0000 – – – 1.0000 – – –
Exp. of retail areas for clothes stores (400m buffer) -0.3754 2.9033 2.0190 0.8666 0.5708 1.6734 0.5045 0.5915 0.3098 1.2985 1.1233 0.5316
Exp. of retail areas for grocery stores (400m buffer) -0.0092 1.5287 107.8340 1.1287 0.6230 0.1909 0.2738 0.5461 0.6312 0.2278 0.3280 0.4413
Exp. of retail areas for dur./other stores (400m buffer) -4.6136 8.9172 1.8808 1.4512 -0.3459 1.5889 1.4782 0.9376 -2.7486 5.6801 2.2035 1.5418
Exp. of shopping store variability (400m buffer) -1.3641 2.4067 3.5162 22.4997 1.5184 0.1832 0.1066 0.8205 1.6491 0.2963 0.2054 0.6532
Exp. of shopping store variability when following -2.6509 1.9874 2.3104 2.4588 1.3105 0.5277 1.2041 5.7334 -1.3732 1.4948 5.2516 1.6063
trip purpose is shopping (1000-2000m buffer)
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Table 2.14: Evaluation of Random sampling protocol for choice sets of 150, 200 and 250 alts

Parameter 150 alts 200 alts 250 alts
Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE

Locational constants
Constant rest Yorkshire 0.7577 0.3790 0.0988 0.1684 0.7260 0.3214 0.1705 0.1557 0.7647 0.3919 0.0702 0.1553
Households with car ownership
Constant Car-Other (PT/walking) -2.8979 0.0753 0.0665 0.3678 -2.8382 0.0514 0.0471 0.3379 -2.9225 0.0705 0.0492 0.3179
Constant Other (PT/walking)-Car -0.7514 0.1625 0.2066 0.3068 -0.8617 0.0946 0.1258 0.2772 -0.8853 0.0848 0.0907 0.2671
Constant PT-PT -0.9947 0.1780 0.2303 0.4568 -1.0786 0.0369 0.0540 0.4340 -1.0919 0.0527 0.0696 0.4269
Constant PT-Walking -1.5281 0.1057 0.1479 0.6104 -1.6367 0.1239 0.1482 0.5726 -1.8196 0.1756 0.1386 0.5854
Constant Walking-PT -0.8996 0.3044 0.3098 0.5747 -1.1721 0.2566 0.3082 0.5807 -1.3627 0.1454 0.1562 0.5865
Constant Walking-Walking 1.2612 0.4982 0.1588 0.4816 1.1927 0.4168 0.1077 0.4591 1.0403 0.2847 0.1657 0.4323
Mode shifts for households with no car ownership
Constant Car-Other (PT/walking) 2.1800 0.0756 0.1153 0.6718 1.9896 0.1455 0.1363 0.6006 2.1791 0.0633 0.0311 0.5977
Constant Other (PT/walking)-Car 0.8598 0.4231 0.3415 0.7317 0.9739 0.5389 0.2840 0.6732 0.8056 0.4972 0.4706 0.6883
Constant PT-PT 4.7370 0.1094 0.0430 0.5467 4.5458 0.0647 0.0298 0.5354 4.6773 0.0955 0.0254 0.5212
Constant PT-Walking 3.9023 0.1636 0.0693 0.7414 3.9530 0.1802 0.0991 0.6709 3.9240 0.1701 0.0737 0.6644
Constant Walking-PT 2.8793 0.1183 0.1425 0.5757 3.1324 0.1209 0.0298 0.5722 3.0857 0.1042 0.0450 0.5656
Constant Walking-Walking 2.9753 0.1313 0.0947 0.5037 3.0446 0.1444 0.0782 0.4616 3.1301 0.1766 0.0599 0.4681
Mode shifts for central area destinations
PT-PT 1.9325 0.1075 0.0479 0.3686 1.8878 0.0819 0.0612 0.3429 1.8275 0.0807 0.0721 0.3574
PT-Walking 1.6806 0.0790 0.0554 0.6070 1.6828 0.1109 0.1344 0.5541 2.1363 0.1706 0.0811 0.5631
Walking-PT 2.6370 0.0210 0.0208 0.5666 2.6701 0.0917 0.1155 0.5902 2.9235 0.0876 0.0643 0.5938
Walking-Walking 1.7122 0.0943 0.1099 0.3176 1.7493 0.0918 0.1253 0.3222 1.8282 0.1290 0.0937 0.2982
Mode shifts for individuals with season ticket ownership
Walking-Walking -0.7760 0.5816 0.4644 0.3715 -0.8637 0.5468 0.3062 0.3565 -0.7280 0.3084 0.2321 0.3482
Mode shifts for trips with more than 1 passenger
PT first/shopping trip -2.0881 0.1247 0.0890 0.4237 -1.9753 0.0768 0.0614 0.3890 -1.9546 0.0654 0.0701 0.3944
PT following trip -0.7380 0.1946 0.2532 0.4131 -0.7446 0.2222 0.2606 0.4020 -0.7707 0.1672 0.2060 0.3979
Walking first/shopping trip -0.8791 0.1021 0.1207 0.3089 -0.9424 0.2125 0.1953 0.2899 -0.9575 0.1958 0.1313 0.2789
Walking following trip -0.4411 0.2305 0.1792 0.3348 -0.4882 0.3473 0.3214 0.3077 -0.4656 0.2657 0.1586 0.2965
Mode shifts for students
Walking-Walking 0.9004 0.1943 0.2761 0.4937 0.9109 0.2247 0.3481 0.4558 0.8569 0.2029 0.1990 0.4384
Mode shifts for married individuals
Walking-Walking -0.8595 0.1053 0.0836 0.3809 -0.7988 0.1397 0.1676 0.3608 -0.7854 0.2240 0.2632 0.3457
Mode shifts for individuals living in 3-member households
Walking-Walking 0.8440 0.2786 0.3694 0.4458 0.8133 0.3924 0.4126 0.4049 0.8573 0.3384 0.3462 0.4496
LOS variables
Travel time for first trip (base level) -0.0998 0.0936 0.0611 0.0109 -0.0962 0.0756 0.0650 0.0102 -0.0981 0.0751 0.0376 0.0097
Travel time shift for clothes shopping 0.0193 0.2717 0.2482 0.0117 0.0170 0.3598 0.3677 0.0107 0.0201 0.2408 0.1561 0.0106
Travel time for O-S-O trip chains 0.0246 0.6161 0.1133 0.0071 0.0200 0.3127 0.1261 0.0066 0.0201 0.3219 0.1245 0.0065
Travel time for HWH tours -0.0404 0.0924 0.0624 0.0111 -0.0408 0.0836 0.0438 0.0105 -0.0447 0.1093 0.1521 0.0100
Travel time multiplier for car 1.0000 – – – 1.0000 – – – 1.0000 – – –
Travel time multiplier for PT IVT 0.5965 0.0450 0.0629 0.0736 0.5587 0.0562 0.0622 0.0733 0.5753 0.0363 0.0398 0.0656
Travel time multiplier for PT first access trip 0.7998 0.0653 0.0886 0.2667 0.8283 0.0277 0.0373 0.2774 0.7656 0.1122 0.1315 0.2364
Travel time multiplier for PT last egress trip 0.6225 0.1357 0.1869 0.2015 0.6358 0.1834 0.2205 0.1835 0.6475 0.0756 0.0704 0.1817
Travel time multiplier for PT remaining OVT 0.2498 0.2979 0.3694 0.2115 0.4198 0.1874 0.0643 0.2183 0.3556 0.2344 0.2749 0.1770
Travel time multiplier for following trip 1.3066 0.0437 0.0337 0.1079 1.2890 0.0504 0.0278 0.0979 1.2917 0.0484 0.0270 0.0933
Travel time - Shopping duration elasticity -0.3125 0.0150 0.0181 0.0371 -0.3320 0.0630 0.0602 0.0355 -0.3248 0.0450 0.0410 0.0324
Travel walking distance (base) -1.8316 0.1265 0.0210 0.1731 -1.7974 0.1055 0.0760 0.1663 -1.7705 0.0889 0.0309 0.1520
Travel walking distance for O-S-O trip chains 0.4258 0.5823 0.1712 0.1612 0.3635 0.3621 0.2889 0.1490 0.3392 0.2627 0.1316 0.1429
Travel walking distance multiplier for following trip 1.1450 0.0851 0.0481 0.0979 1.1808 0.0591 0.0581 0.0955 1.1838 0.0541 0.0198 0.0969
Box-cox lambda for travel walking distance 0.7131 0.1142 0.0252 0.0622 0.7285 0.1037 0.0896 0.0557 0.7438 0.0762 0.0330 0.0564
Travel walking distance - Shopping duration elasticity -0.1504 0.0822 0.0665 0.0409 -0.1504 0.1438 0.1601 0.0385 -0.1546 0.1630 0.1635 0.0378
Travel cost -0.7198 0.1043 0.0622 0.0846 -0.7033 0.0791 0.0339 0.0845 -0.7056 0.0826 0.0617 0.0810
Box-cox lambda for travel cost 0.3975 0.2587 0.0771 0.0660 0.4100 0.2353 0.0636 0.0640 0.4421 0.1755 0.0666 0.0582
Travel cost - Personal income elasticity -0.2394 0.2391 0.3166 0.0879 -0.2435 0.0609 0.0910 0.0921 -0.2461 0.0492 0.0655 0.0891
Locational variables
Living in rich areas-shopping in poor areas -1.0836 0.3483 0.1258 0.3147 -1.0661 0.3265 0.1472 0.2933 -0.9644 0.2000 0.0758 0.2629
Parking areas (400m buffer)) 0.0915 0.0851 0.1119 0.0273 0.0900 0.0507 0.0581 0.0272 0.0986 0.0767 0.0610 0.0270
Box-cox lambda for parking areas (400m buffer) 0.5130 0.2162 0.0742 0.0881 0.4846 0.1489 0.0452 0.0902 0.4307 0.0562 0.0632 0.0799
Presence of major clothes shopping retailers (400m buffer) 1.9151 0.0486 0.0584 0.2996 2.2829 0.1634 0.0662 0.2862 2.0313 0.0606 0.0636 0.2583
Presence of major grocery retailers (400m buffer) 0.5166 0.0513 0.0757 0.1156 0.4945 0.0767 0.0725 0.1116 0.5082 0.0548 0.0554 0.1044
Presence of major durables retailers (400m buffer) 2.8624 0.3978 0.1209 0.7191 2.6322 0.2854 0.1060 0.7668 2.8184 0.3763 0.1518 0.6788
Size variables
Natural logarithm multiplier ϕ 0.7713 0.0881 0.0818 0.1191 0.7253 0.0656 0.0845 0.1114 0.7490 0.0504 0.0509 0.1088
Population (400m buffer) 1.0000 – – – 1.0000 – – – 1.0000 – – –
Exp. of retail areas for clothes stores (400m buffer) 0.2841 1.3004 1.2744 0.5647 0.4234 0.9589 0.5156 0.5737 0.4279 1.3007 0.6631 0.5441
Exp. of retail areas for grocery stores (400m buffer) 0.6258 0.4163 0.6023 0.4431 0.8671 0.2889 0.1557 0.4634 0.8265 0.2534 0.1436 0.4141
Exp. of retail areas for dur./other stores (400m buffer) -0.0224 1.0382 18.2843 0.8818 0.2944 0.7021 1.2029 0.8856 0.1552 0.7357 0.4078 0.7766
Exp. of shopping store variability (400m buffer) 1.6700 0.3606 0.2231 0.6779 1.7679 0.3761 0.1098 0.6507 1.5989 0.2801 0.1659 0.6492
Exp. of shopping store variability when following 1.8200 0.3441 0.1356 1.2945 1.9151 0.3662 0.5019 1.5324 2.3921 0.1380 0.1102 0.9416
trip purpose is shopping (1000-2000m buffer)
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Table 2.15: Evaluation of AC sampling protocol for choice sets of 10, 50 and 100 alts

Parameter 10 alts 50 alts 100 alts
Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE

Locational constants
Constant rest Yorkshire 1.3580 1.4717 0.2369 0.3662 0.9906 0.8030 0.1524 0.2286 0.7494 0.3640 0.1829 0.2001
Households with car ownership
Constant Car-Other (PT/walking) -2.7630 0.1091 0.1415 0.5948 -2.8108 0.0475 0.0567 0.3709 -2.8736 0.0526 0.0484 0.3314
Constant Other (PT/walking)-Car -0.8126 0.4196 0.5225 0.5337 -0.7615 0.1317 0.1643 0.3043 -0.8626 0.2360 0.3091 0.2770
Constant PT-PT -0.9213 0.3800 0.5193 0.7282 -1.1338 0.1335 0.1614 0.4842 -1.2381 0.1490 0.0772 0.4651
Constant PT-Walking -1.3146 0.3793 0.5855 1.0283 -1.4213 0.1740 0.2223 0.5959 -1.7795 0.1877 0.1661 0.6393
Constant Walking-PT -0.5743 0.5250 0.2354 0.8980 -1.2640 0.0856 0.0934 0.5805 -1.1244 0.1713 0.2363 0.5108
Constant Walking-Walking 1.4737 0.7506 0.3232 0.8270 1.1590 0.3767 0.0690 0.4834 1.1199 0.3303 0.1703 0.4356
Mode shifts for households with no car ownership
Constant Car-Other (PT/walking) 1.2589 0.4589 0.3962 1.0019 1.9530 0.1605 0.0744 0.6410 2.1790 0.1054 0.1471 0.6931
Constant Other (PT/walking)-Car 1.7809 1.8141 0.1583 0.8804 0.9967 0.5749 0.2037 0.6970 0.8680 0.3716 0.1420 0.6915
Constant PT-PT 5.5339 0.2961 0.1414 0.9011 4.6813 0.0964 0.0648 0.5697 4.7026 0.1014 0.0353 0.5493
Constant PT-Walking 3.9305 0.1720 0.1114 0.9700 3.4049 0.0974 0.1348 0.6691 3.8796 0.1569 0.0328 0.7109
Constant Walking-PT 2.9049 0.0643 0.0679 0.8192 3.1943 0.1431 0.0366 0.5765 3.0983 0.1087 0.0582 0.5350
Constant Walking-Walking 3.4497 0.2967 0.0934 0.6641 2.9998 0.1276 0.0532 0.4715 3.0482 0.1458 0.0853 0.4537
Mode shifts for central area destinations
PT-PT 1.8072 0.1919 0.2364 0.6333 1.8418 0.1032 0.1217 0.4188 1.8431 0.0801 0.0926 0.3992
PT-Walking 1.7459 0.3341 0.4748 0.8208 2.0025 0.1367 0.1152 0.5392 1.8852 0.1251 0.1464 0.5531
Walking-PT 2.7491 0.1091 0.1449 0.7612 2.8434 0.0618 0.0695 0.5540 2.7293 0.0530 0.0724 0.4986
Walking-Walking 1.4996 0.1233 0.1382 0.3957 1.4513 0.1187 0.1020 0.3209 1.5539 0.0704 0.0606 0.3156
Mode shifts for individuals with season ticket ownership
Walking-Walking -0.5680 0.2232 0.2749 0.4942 -0.8398 0.4980 0.2730 0.3892 -0.6791 0.2289 0.2464 0.3687
Mode shifts for trips with more than 1 passenger
PT first/shopping trip -2.3933 0.3116 0.2372 0.5749 -2.2622 0.2150 0.0257 0.4225 -2.0000 0.0878 0.1128 0.3975
PT following trip -1.0317 0.3903 0.3720 0.6143 -0.7952 0.1529 0.1796 0.4238 -0.8403 0.2126 0.2695 0.3909
Walking first/shopping trip -0.7289 0.5103 0.6676 0.4939 -0.7906 0.0488 0.0625 0.3053 -0.8959 0.1912 0.1876 0.2741
Walking following trip -0.5509 0.9468 0.8140 0.5395 -0.5608 0.5637 0.3092 0.3365 -0.4150 0.2852 0.2861 0.3009
Mode shifts for students
Walking-Walking 1.5656 0.5310 0.4064 0.6175 1.0471 0.0500 0.0685 0.4449 1.0021 0.0743 0.0807 0.4220
Mode shifts for married individuals
Walking-Walking -0.5557 0.5215 0.8849 0.5689 -0.6452 0.2037 0.2273 0.3640 -0.7598 0.1377 0.1763 0.3349
Mode shifts for individuals living in 3-member households
Walking-Walking 0.8155 0.1819 0.1457 0.6725 0.9943 0.4411 0.1207 0.4446 0.7435 0.2214 0.2640 0.4297
LOS variables
Travel time for first trip (base level) -0.0866 0.0741 0.0911 0.0183 -0.0885 0.0329 0.0304 0.0119 -0.0930 0.0425 0.0612 0.0105
Travel time shift for clothes shopping 0.0020 0.9253 6.8277 0.0218 0.0085 0.7061 1.6917 0.0141 0.0175 0.3420 0.2892 0.0124
Travel time for O-S-O trip chains 0.0147 0.3103 0.4398 0.0117 0.0175 0.2087 0.1737 0.0070 0.0175 0.2494 0.2651 0.0068
Travel time for HWH tours -0.0340 0.2802 0.3418 0.0144 -0.0455 0.0676 0.0823 0.0113 -0.0493 0.1069 0.0314 0.0107
Travel time multiplier for car 1.0000 – – – 1.0000 – – – 1.0000 – – –
Travel time multiplier for PT IVT 0.5449 0.1598 0.2007 0.1187 0.5731 0.0354 0.0450 0.0807 0.5788 0.0251 0.0290 0.0718
Travel time multiplier for PT first access trip 1.2339 0.5056 0.1843 0.4763 0.8582 0.1113 0.1449 0.2883 0.7498 0.0952 0.0917 0.2679
Travel time multiplier for PT last egress trip 0.5858 0.2968 0.3961 0.3196 0.5444 0.1915 0.2231 0.1702 0.5451 0.1047 0.0704 0.1943
Travel time multiplier for PT remaining OVT 0.2416 0.4719 0.6751 0.3974 0.2262 0.4048 0.5520 0.2118 0.3244 0.2460 0.4603 0.2096
Travel time multiplier for following trip 1.4495 0.0679 0.0447 0.2278 1.3872 0.0499 0.0538 0.1379 1.3242 0.0393 0.0409 0.1118
Travel time - Shopping duration elasticity -0.3399 0.1324 0.1654 0.0653 -0.3375 0.0691 0.0532 0.0392 -0.3219 0.0201 0.0277 0.0350
Travel walking distance (base) -1.8748 0.1805 0.1445 0.2416 -1.7064 0.0589 0.0619 0.1652 -1.6516 0.0253 0.0228 0.1528
Travel walking distance for O-S-O trip chains 0.4892 1.0733 0.5400 0.2091 0.3763 0.3982 0.2705 0.1471 0.3188 0.2155 0.1446 0.1345
Travel walking distance multiplier for following trip 1.2206 0.0527 0.0633 0.1515 1.2036 0.0507 0.0575 0.1072 1.2510 0.0179 0.0217 0.1087
Box-cox lambda for travel walking distance 0.6855 0.1835 0.1802 0.0871 0.7604 0.0555 0.0476 0.0614 0.7975 0.0214 0.0314 0.0606
Travel walking distance - Shopping duration elasticity -0.1568 0.1879 0.2303 0.0551 -0.1703 0.2198 0.0681 0.0387 -0.1565 0.1213 0.0557 0.0361
Travel cost -0.8047 0.2661 0.1828 0.1469 -0.7125 0.0932 0.0319 0.0945 -0.7230 0.1092 0.0533 0.0860
Box-cox lambda for travel cost 0.3244 0.3950 0.3799 0.1253 0.4182 0.2200 0.0529 0.0758 0.4651 0.1326 0.0920 0.0639
Travel cost - Personal income elasticity -0.2904 0.3000 0.3098 0.1269 -0.2419 0.1504 0.2141 0.0985 -0.2168 0.1097 0.0672 0.0926
Locational variables
Living in rich areas-shopping in poor areas -0.8565 0.4590 0.5836 0.5960 -1.0699 0.3312 0.0519 0.3819 -0.9716 0.2227 0.1246 0.3231
Parking areas (400m buffer)) 0.0755 0.2917 0.3769 0.0424 0.0877 0.0731 0.0762 0.0298 0.0942 0.0731 0.0954 0.0288
Box-cox lambda for parking areas (400m buffer) 0.6697 0.5877 0.2224 0.1841 0.5103 0.2098 0.0453 0.0974 0.4678 0.1090 0.0848 0.0897
Presence of major clothes shopping retailers (400m buffer) 1.7913 0.1500 0.1994 0.6721 2.3460 0.1955 0.1017 0.3635 2.2923 0.1681 0.0626 0.2874
Presence of major grocery retailers (400m buffer) 0.6901 0.3942 0.2676 0.2025 0.6139 0.1510 0.1362 0.1229 0.5967 0.1187 0.0569 0.1113
Presence of major durables retailers (400m buffer) 3.3681 1.3595 1.1242 1.8473 1.6180 0.5389 0.7255 1.0724 2.1408 0.3428 0.4076 1.5504
Size variables
Natural logarithm multiplier ϕ 1.0431 0.4293 0.1594 0.3272 0.7114 0.0535 0.0745 0.1572 0.7826 0.0979 0.0983 0.1368
Population (400m buffer) 1.0000 – – – 1.0000 – – – 1.0000 – – –
Exp. of retail areas for clothes stores (400m buffer) 0.3701 1.9494 1.2811 0.9859 0.3854 1.6010 1.1433 0.7524 0.2720 1.0427 1.2265 0.6435
Exp. of retail areas for grocery stores (400m buffer) 0.2170 0.9064 3.2420 1.0913 0.8034 0.3940 0.4298 0.6765 0.6636 0.2521 0.3352 0.4922
Exp. of retail areas for dur./other stores (400m buffer) -0.5344 2.0462 2.9334 4.0112 0.7488 0.6850 0.8303 0.8945 0.4043 0.5342 0.7774 0.7733
Exp. of shopping store variability (400m buffer) 2.3098 0.7978 0.2051 0.7663 1.9304 0.5026 0.2025 0.6499 1.5502 0.2077 0.1408 0.6518
Exp. of shopping store variability when following 0.9303 0.6648 1.4059 4.9276 2.3578 0.1504 0.1733 1.4044 2.6676 0.1842 0.2350 0.9237
trip purpose is shopping (1000-2000m buffer)
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Table 2.16: Evaluation of AC sampling protocol for choice sets of 150, 200 and 250 alts

Parameter 150 alts 200 alts 250 alts
Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE

Locational constants
Constant rest Yorkshire 0.7803 0.4202 0.1203 0.1864 0.6641 0.2087 0.0984 0.1751 0.6977 0.2699 0.0744 0.1802
Households with car ownership
Constant Car-Other (PT/walking) -2.8399 0.0403 0.0118 0.3087 -2.8568 0.0465 0.0179 0.3131 -2.7969 0.0290 0.0229 0.2931
Constant Other (PT/walking)-Car -0.8700 0.0399 0.0549 0.2618 -0.7957 0.0858 0.0884 0.2504 -0.8663 0.0610 0.0857 0.2650
Constant PT-PT -1.1307 0.1303 0.1402 0.4484 -1.1034 0.0562 0.0989 0.4385 -1.0367 0.1159 0.1471 0.4254
Constant PT-Walking -1.5744 0.0971 0.1447 0.5384 -1.6048 0.0524 0.0627 0.5381 -1.4630 0.0688 0.0692 0.5004
Constant Walking-PT -1.0361 0.1471 0.1373 0.5167 -1.1859 0.0898 0.1177 0.5338 -1.0723 0.1252 0.1189 0.4892
Constant Walking-Walking 1.1012 0.3082 0.1173 0.4159 1.1492 0.3651 0.0991 0.3955 1.1272 0.3390 0.1007 0.3865
Mode shifts for households with no car ownership
Constant Car-Other (PT/walking) 2.2870 0.0598 0.0765 0.6465 2.3535 0.0338 0.0397 0.6914 2.4160 0.0385 0.0386 0.6677
Constant Other (PT/walking)-Car 0.8151 0.2879 0.1476 0.6502 0.7254 0.1659 0.1384 0.6684 0.8818 0.3934 0.1109 0.6413
Constant PT-PT 4.4775 0.0487 0.0228 0.5315 4.4940 0.0525 0.0160 0.5185 4.3979 0.0336 0.0220 0.5204
Constant PT-Walking 3.6771 0.0965 0.0475 0.6337 3.8020 0.1337 0.0279 0.6099 3.6108 0.0767 0.0360 0.6128
Constant Walking-PT 2.8438 0.0290 0.0342 0.5331 2.9108 0.0485 0.0394 0.5215 2.8151 0.0268 0.0349 0.5006
Constant Walking-Walking 2.8470 0.0701 0.0278 0.4510 2.7004 0.0201 0.0204 0.4323 2.6801 0.0172 0.0202 0.4315
Mode shifts for central area destinations
PT-PT 1.7538 0.0153 0.0210 0.3633 1.7820 0.0522 0.0640 0.3391 1.7435 0.0339 0.0395 0.3391
PT-Walking 1.7227 0.0791 0.0829 0.4562 1.8413 0.0562 0.0648 0.4481 1.8393 0.0612 0.0775 0.4463
Walking-PT 2.6121 0.0419 0.0566 0.5171 2.7768 0.0438 0.0456 0.5261 2.6977 0.0298 0.0436 0.4782
Walking-Walking 1.5325 0.0747 0.0732 0.2889 1.5940 0.0321 0.0185 0.2898 1.6185 0.0298 0.0335 0.2821
Mode shifts for individuals with season ticket ownership
Walking-Walking -0.7041 0.2560 0.1577 0.3643 -0.7074 0.2785 0.1568 0.3477 -0.6929 0.2359 0.0768 0.3415
Mode shifts for trips with more than 1 passenger
PT first/shopping trip -1.9958 0.0757 0.0769 0.3752 -1.9414 0.0706 0.0762 0.3654 -1.9869 0.0701 0.0591 0.3613
PT following trip -0.8189 0.1850 0.2640 0.3792 -0.7385 0.1458 0.1345 0.3803 -0.7322 0.1531 0.0833 0.3686
Walking first/shopping trip -0.8786 0.1794 0.1641 0.2603 -0.8798 0.1642 0.1522 0.2509 -0.8292 0.0536 0.0626 0.2518
Walking following trip -0.3889 0.2422 0.3509 0.2876 -0.3944 0.1867 0.2151 0.2724 -0.4391 0.2074 0.1248 0.2684
Mode shifts for students
Walking-Walking 1.0249 0.1015 0.1349 0.4103 0.9415 0.1243 0.0782 0.3867 1.0107 0.0734 0.0906 0.3873
Mode shifts for married individuals
Walking-Walking -0.8194 0.0816 0.1038 0.3287 -0.8049 0.1486 0.1825 0.3138 -0.8412 0.0887 0.0778 0.3106
Mode shifts for individuals living in 3-member households
Walking-Walking 0.8940 0.2958 0.1851 0.4271 0.8476 0.3418 0.2527 0.3978 0.8001 0.1801 0.1086 0.3947
LOS variables
Travel time for first trip (base level) -0.0913 0.0178 0.0231 0.0100 -0.0916 0.0201 0.0222 0.0098 -0.0906 0.0208 0.0306 0.0097
Travel time shift for clothes shopping 0.0168 0.3665 0.1841 0.0120 0.0208 0.2171 0.1494 0.0105 0.0199 0.2498 0.1785 0.0102
Travel time for O-S-O trip chains 0.0178 0.1770 0.1302 0.0064 0.0178 0.1732 0.1282 0.0062 0.0169 0.1675 0.1587 0.0062
Travel time for HWH tours -0.0435 0.0938 0.1164 0.0097 -0.0436 0.0621 0.0694 0.0094 -0.0449 0.0416 0.0528 0.0095
Travel time multiplier for car 1.0000 – – – 1.0000 – – – 1.0000 – – –
Travel time multiplier for PT IVT 0.5806 0.0278 0.0319 0.0716 0.5914 0.0341 0.0432 0.0683 0.5833 0.0225 0.0379 0.0662
Travel time multiplier for PT first access trip 0.7964 0.1011 0.1280 0.2600 0.7830 0.0778 0.0882 0.2548 0.8601 0.0752 0.0703 0.2543
Travel time multiplier for PT last egress trip 0.6135 0.0729 0.0873 0.1824 0.6067 0.0560 0.0782 0.1725 0.5523 0.0929 0.0881 0.1672
Travel time multiplier for PT remaining OVT 0.3344 0.1403 0.1808 0.1972 0.3412 0.1442 0.1690 0.2048 0.3395 0.0885 0.1046 0.1822
Travel time multiplier for following trip 1.3683 0.0137 0.0199 0.1108 1.3440 0.0117 0.0118 0.1091 1.3558 0.0137 0.0169 0.1115
Travel time - Shopping duration elasticity -0.3207 0.0441 0.0563 0.0341 -0.3270 0.0365 0.0261 0.0324 -0.3165 0.0187 0.0250 0.0324
Travel walking distance (base) -1.6665 0.0304 0.0260 0.1435 -1.6255 0.0165 0.0234 0.1366 -1.6177 0.0138 0.0171 0.1327
Travel walking distance for O-S-O trip chains 0.3218 0.1957 0.0622 0.1294 0.2591 0.0871 0.1166 0.1261 0.2507 0.1271 0.1425 0.1220
Travel walking distance multiplier for following trip 1.2304 0.0198 0.0239 0.0999 1.2390 0.0218 0.0301 0.0965 1.2544 0.0190 0.0252 0.0956
Box-cox lambda for travel walking distance 0.8167 0.0162 0.0173 0.0576 0.8165 0.0194 0.0228 0.0553 0.8133 0.0190 0.0259 0.0540
Travel walking distance - Shopping duration elasticity -0.1473 0.0905 0.1057 0.0335 -0.1597 0.1440 0.0442 0.0338 -0.1478 0.0758 0.0682 0.0337
Travel cost -0.7023 0.0774 0.0521 0.0829 -0.7008 0.0751 0.0118 0.0792 -0.6953 0.0667 0.0321 0.0799
Box-cox lambda for travel cost 0.4908 0.0873 0.0749 0.0607 0.5216 0.0411 0.0423 0.0575 0.4953 0.0763 0.0370 0.0558
Travel cost - Personal income elasticity -0.2290 0.1178 0.1753 0.0910 -0.2242 0.0993 0.1124 0.0908 -0.2241 0.0796 0.0349 0.0887
Locational variables
Living in rich areas-shopping in poor areas -0.9014 0.1216 0.0673 0.3007 -0.9441 0.1747 0.0782 0.3077 -0.8970 0.1283 0.1107 0.3062
Parking areas (400m buffer)) 0.0900 0.0613 0.0789 0.0268 0.0987 0.0610 0.0361 0.0274 0.0962 0.0583 0.0641 0.0274
Box-cox lambda for parking areas (400m buffer) 0.4593 0.0925 0.1070 0.0811 0.4253 0.0299 0.0382 0.0769 0.4462 0.0697 0.0917 0.0802
Presence of major clothes shopping retailers (400m buffer) 2.1805 0.1112 0.0908 0.2549 2.1209 0.0808 0.0398 0.2510 2.1794 0.1106 0.0563 0.2390
Presence of major grocery retailers (400m buffer) 0.5857 0.0981 0.0598 0.1043 0.5686 0.0660 0.0568 0.1032 0.5703 0.0692 0.0388 0.1016
Presence of major durables retailers (400m buffer) 1.9430 0.4170 0.5454 1.1269 1.8601 0.1871 0.2305 0.9440 1.3167 0.4492 0.5295 1.0633
Size variables
Natural logarithm multiplier ϕ 0.7570 0.0449 0.0555 0.1242 0.7507 0.0444 0.0447 0.1189 0.7472 0.0303 0.0414 0.1159
Population (400m buffer) 1.0000 – – – 1.0000 – – – 1.0000 – – –
Exp. of retail areas for clothes stores (400m buffer) 0.1975 0.8504 1.1849 0.6317 0.2150 0.7121 1.0978 0.5911 0.2270 0.7681 0.8917 0.5884
Exp. of retail areas for grocery stores (400m buffer) 0.6719 0.1730 0.2304 0.4544 0.6376 0.1851 0.2284 0.4262 0.6348 0.1320 0.2134 0.4245
Exp. of retail areas for dur./other stores (400m buffer) 0.5681 0.3305 0.4331 0.7495 0.5246 0.3458 0.4548 0.7610 0.6207 0.2764 0.3808 0.6835
Exp. of shopping store variability (400m buffer) 1.5794 0.2294 0.1104 0.6181 1.3800 0.1411 0.1325 0.6920 1.4553 0.1328 0.1337 0.6850
Exp. of shopping store variability when following 2.3054 0.1692 0.1429 0.9671 2.3328 0.1593 0.0889 0.8828 2.5941 0.0973 0.0987 0.8045
trip purpose is shopping (1000-2000m buffer)
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Table 2.17: Evaluation of TC sampling protocol for choice sets of 10, 50 and 100 alts

Parameter 10 alts 50 alts 100 alts
Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE

Locational constants
Constant rest Yorkshire 0.9534 0.7354 0.2063 0.2748 0.7769 0.4140 0.0813 0.1798 0.7560 0.3760 0.0760 0.1634
Households with car ownership
Constant Car-Other (PT/walking) -3.1171 0.1418 0.0722 0.4721 -2.8785 0.0725 0.0747 0.3310 -2.8640 0.0618 0.0530 0.2985
Constant Other (PT/walking)-Car -1.0399 0.2083 0.1500 0.3626 -0.8199 0.0891 0.1066 0.2695 -0.8422 0.0381 0.0493 0.2454
Constant PT-PT -1.7143 0.5979 0.2318 0.6918 -1.1798 0.1221 0.1057 0.4863 -1.1893 0.1158 0.0688 0.4444
Constant PT-Walking -2.6159 0.6857 0.1352 0.7074 -1.8802 0.2116 0.0507 0.5345 -1.7389 0.1206 0.0672 0.4943
Constant Walking-PT -1.1054 0.3284 0.4547 0.6784 -1.1300 0.0951 0.1162 0.5373 -1.2565 0.0804 0.1015 0.5144
Constant Walking-Walking 0.5746 0.3511 0.5857 0.5441 0.7838 0.1045 0.1189 0.3979 0.7024 0.1656 0.1532 0.3878
Mode shifts for households with no car ownership
Constant Car-Other (PT/walking) 2.2010 0.0700 0.0937 0.8097 2.3893 0.0591 0.0735 0.7589 2.3109 0.0389 0.0597 0.7269
Constant Other (PT/walking)-Car 0.9220 0.6870 0.6206 0.8893 0.7340 0.2666 0.2251 0.6899 0.7433 0.2008 0.1606 0.6517
Constant PT-PT 5.2949 0.2401 0.0891 0.7025 4.7821 0.1200 0.0427 0.5548 4.6175 0.0815 0.0091 0.5124
Constant PT-Walking 4.6488 0.3862 0.1030 0.7342 4.0846 0.2180 0.0586 0.6086 3.5963 0.0724 0.0341 0.6153
Constant Walking-PT 2.9984 0.1453 0.1657 0.7412 2.8510 0.0531 0.0867 0.5220 2.8774 0.0387 0.0497 0.4904
Constant Walking-Walking 3.1511 0.2442 0.1651 0.5944 2.7860 0.0780 0.0738 0.4310 2.7063 0.0407 0.0450 0.4155
Mode shifts for central area destinations
PT-PT 1.8752 0.1795 0.2446 0.5412 1.8029 0.0905 0.1101 0.3685 1.7526 0.0541 0.0641 0.3451
PT-Walking 2.5330 0.3881 0.0810 0.6233 2.0626 0.1303 0.1019 0.4728 1.9792 0.0936 0.0804 0.4619
Walking-PT 2.8119 0.0958 0.1062 0.6447 2.9960 0.1146 0.0537 0.5092 3.0025 0.1170 0.0423 0.4932
Walking-Walking 2.6844 0.6300 0.1978 0.5200 2.2885 0.3896 0.0683 0.3219 2.1182 0.2862 0.0322 0.3076
Mode shifts for individuals with season ticket ownership
Walking-Walking -0.2209 0.6059 0.9346 0.4525 -0.1236 0.7795 0.1920 0.3391 -0.4712 0.2043 0.2003 0.3249
Mode shifts for trips with more than 1 passenger
PT first/shopping trip -2.2999 0.2352 0.1039 0.4963 -2.0229 0.0947 0.0587 0.3771 -1.9338 0.0628 0.0616 0.3517
PT following trip -1.1375 0.3372 0.3138 0.5213 -0.8703 0.1376 0.1797 0.3747 -0.9071 0.1279 0.1448 0.3602
Walking first/shopping trip -0.9896 0.2705 0.2209 0.3596 -0.8970 0.1203 0.0527 0.2597 -0.8447 0.1101 0.1291 0.2335
Walking following trip -0.3221 0.3700 0.5067 0.4027 -0.4085 0.1971 0.1969 0.2723 -0.3722 0.0178 0.0206 0.2503
Mode shifts for students
Walking-Walking 2.0155 0.8748 0.2071 0.5357 1.4538 0.3522 0.1753 0.3802 1.3304 0.2375 0.0964 0.3804
Mode shifts for married individuals
Walking-Walking -1.2282 0.5690 0.2073 0.4143 -1.0899 0.3923 0.0610 0.3181 -0.7987 0.0410 0.0631 0.3079
Mode shifts for individuals living in 3-member households
Walking-Walking 0.1531 0.7780 1.5811 0.5023 0.3176 0.5396 0.3562 0.3906 0.4710 0.3174 0.1555 0.3810
LOS variables
Travel time for first trip (base level) -0.0815 0.1545 0.1793 0.0125 -0.0849 0.0692 0.0412 0.0108 -0.0909 0.0293 0.0400 0.0096
Travel time shift for clothes shopping -0.0088 1.3330 2.3067 0.0187 0.0172 0.3504 0.2385 0.0106 0.0232 0.1697 0.2052 0.0093
Travel time for O-S-O trip chains 0.0040 0.8035 2.1592 0.0094 0.0085 0.4425 0.1213 0.0064 0.0130 0.1434 0.1425 0.0060
Travel time for HWH tours -0.0408 0.1535 0.2041 0.0122 -0.0405 0.0993 0.1304 0.0090 -0.0436 0.0346 0.0455 0.0090
Travel time multiplier for car 1.0000 – – – 1.0000 – – – 1.0000 – – –
Travel time multiplier for PT IVT 0.5455 0.1087 0.1725 0.0962 0.5944 0.0402 0.0532 0.0781 0.5914 0.0257 0.0343 0.0707
Travel time multiplier for PT first access trip 0.8595 0.2134 0.3491 0.3743 0.7604 0.0730 0.0784 0.2815 0.7798 0.0593 0.0755 0.2454
Travel time multiplier for PT last egress trip 0.5363 0.1192 0.0890 0.2852 0.6305 0.0634 0.0788 0.2126 0.6022 0.0984 0.1161 0.1946
Travel time multiplier for PT remaining OVT 0.5524 0.5626 0.2538 0.3624 0.3308 0.1439 0.1736 0.2168 0.3701 0.1413 0.1573 0.2009
Travel time multiplier for following trip 1.4065 0.0571 0.0777 0.1566 1.4173 0.0532 0.0484 0.1214 1.3923 0.0368 0.0339 0.1066
Travel time - Shopping duration elasticity -0.3261 0.0616 0.0745 0.0479 -0.3238 0.0259 0.0268 0.0333 -0.3139 0.0141 0.0165 0.0302
Travel walking distance (base) -1.8091 0.1126 0.0662 0.1796 -1.7025 0.0471 0.0419 0.1433 -1.6829 0.0350 0.0124 0.1341
Travel walking distance for O-S-O trip chains 0.2582 0.1136 0.1577 0.2018 0.2414 0.2417 0.2965 0.1323 0.2837 0.0565 0.0432 0.1255
Travel walking distance multiplier for following trip 1.0823 0.1352 0.0534 0.1103 1.1591 0.0738 0.0329 0.0947 1.1744 0.0616 0.0154 0.0915
Box-cox lambda for travel walking distance 0.7333 0.0892 0.0386 0.0651 0.7718 0.0413 0.0203 0.0565 0.8035 0.0195 0.0232 0.0558
Travel walking distance - Shopping duration elasticity -0.1499 0.0740 0.0606 0.0443 -0.1578 0.1473 0.1021 0.0381 -0.1522 0.0902 0.0883 0.0370
Travel cost -0.7021 0.1378 0.1229 0.1114 -0.7010 0.0763 0.0499 0.0879 -0.6664 0.0226 0.0182 0.0816
Box-cox lambda for travel cost 0.6385 0.1908 0.1520 0.0771 0.6204 0.1571 0.0351 0.0594 0.6049 0.1282 0.0279 0.0542
Travel cost - Personal income elasticity -0.1988 0.3074 0.4771 0.1228 -0.2179 0.1174 0.0886 0.0949 -0.2455 0.0641 0.0769 0.0915
Locational variables
Living in rich areas-shopping in poor areas -0.8624 0.2805 0.2964 0.5251 -0.9391 0.2087 0.2062 0.3494 -0.9458 0.1769 0.1320 0.3037
Parking areas (400m buffer)) 0.0959 0.1181 0.1407 0.0396 0.1067 0.1474 0.0434 0.0310 0.0983 0.0593 0.0457 0.0301
Box-cox lambda for parking areas (400m buffer) 0.4144 0.0845 0.1037 0.1282 0.4150 0.0306 0.0508 0.0873 0.4393 0.0490 0.0644 0.0910
Presence of major clothes shopping retailers (400m buffer) 2.7210 0.4009 0.3650 0.6428 2.1301 0.0999 0.0807 0.2998 2.0977 0.0690 0.0339 0.2574
Presence of major grocery retailers (400m buffer) 0.3981 0.2537 0.1653 0.1598 0.5156 0.0710 0.1003 0.1165 0.4838 0.1081 0.0939 0.1041
Presence of major durables retailers (400m buffer) 1.1167 0.4547 0.1443 1.2051 1.9632 0.2028 0.2488 1.3312 1.8444 0.2116 0.2477 1.1750
Size variables
Natural logarithm multiplier ϕ 0.7023 0.0840 0.1101 0.1721 0.7319 0.0400 0.0521 0.1058 0.7069 0.0314 0.0247 0.0982
Population (400m buffer) 1.0000 – – – 1.0000 – – – 1.0000 – – –
Exp. of retail areas for clothes stores (400m buffer) 1.0362 3.7422 0.4033 0.8435 0.4524 1.2408 0.4998 0.5774 0.4018 0.8628 0.2841 0.5651
Exp. of retail areas for grocery stores (400m buffer) 0.9698 0.4414 0.2639 0.7615 0.8163 0.2375 0.1665 0.4131 0.9827 0.4606 0.0523 0.4059
Exp. of retail areas for dur./other stores (400m buffer) -3.0410 6.1781 2.0427 4.5984 0.4134 0.4103 0.6864 0.8066 0.6645 0.1865 0.1864 0.7561
Exp. of shopping store variability (400m buffer) 1.4551 0.2133 0.2093 1.1716 0.7252 0.5514 0.8753 1.5474 0.9511 0.2673 0.3773 1.2430
Exp. of shopping store variability when following 3.3670 0.2535 0.1840 1.1054 2.8766 0.1137 0.1283 0.6925 3.0200 0.0883 0.0563 0.6414
trip purpose is shopping (1000-2000m buffer)
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Table 2.18: Evaluation of TC sampling protocol for choice sets of 150, 200 and 250 alts

Parameter 150 alts 200 alts 250 alts
Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE

Locational constants
Constant rest Yorkshire 0.6933 0.2620 0.0628 0.1573 0.6323 0.1509 0.0887 0.1566 0.6870 0.2504 0.0458 0.1497
Households with car ownership
Constant Car-Other (PT/walking) -2.8518 0.0447 0.0274 0.2944 -2.8163 0.0316 0.0400 0.2849 -2.7157 0.0174 0.0218 0.2834
Constant Other (PT/walking)-Car -0.7938 0.0776 0.0499 0.2466 -0.8739 0.0562 0.0680 0.2420 -0.8270 0.0548 0.0633 0.2399
Constant PT-PT -1.0516 0.0888 0.1154 0.4296 -1.1333 0.0588 0.0767 0.4318 -1.1568 0.0736 0.0434 0.4299
Constant PT-Walking -1.6699 0.0761 0.0342 0.4865 -1.6764 0.0803 0.0284 0.4744 -1.6308 0.0509 0.0340 0.4785
Constant Walking-PT -1.1246 0.0843 0.0767 0.4858 -1.2377 0.0503 0.0651 0.4781 -1.1385 0.0892 0.0824 0.4823
Constant Walking-Walking 0.6986 0.1702 0.0322 0.3779 0.7007 0.1676 0.0522 0.3666 0.7662 0.1098 0.1144 0.3679
Mode shifts for households with no car ownership
Constant Car-Other (PT/walking) 2.2521 0.0319 0.0283 0.6896 2.2940 0.0380 0.0486 0.6844 2.2569 0.0356 0.0372 0.6725
Constant Other (PT/walking)-Car 0.6393 0.0749 0.0987 0.6366 0.5573 0.1208 0.1572 0.6283 0.5509 0.1295 0.0622 0.6246
Constant PT-PT 4.4315 0.0379 0.0264 0.4986 4.3992 0.0303 0.0117 0.4888 4.4607 0.0447 0.0195 0.4923
Constant PT-Walking 3.4854 0.0393 0.0227 0.5961 3.4196 0.0229 0.0164 0.5754 3.4613 0.0321 0.0146 0.5764
Constant Walking-PT 2.6895 0.0376 0.0285 0.4884 2.7851 0.0177 0.0197 0.4694 2.7201 0.0278 0.0340 0.4611
Constant Walking-Walking 2.6663 0.0152 0.0200 0.4101 2.6921 0.0307 0.0389 0.4040 2.6978 0.0206 0.0171 0.3977
Mode shifts for central area destinations
PT-PT 1.6915 0.0492 0.0610 0.3316 1.6597 0.0552 0.0400 0.3366 1.7714 0.0454 0.0573 0.3273
PT-Walking 1.9909 0.0947 0.0561 0.4529 1.8451 0.0499 0.0595 0.4528 1.9059 0.0505 0.0586 0.4492
Walking-PT 2.8235 0.0504 0.0329 0.4833 2.8449 0.0584 0.0225 0.4717 2.8088 0.0516 0.0504 0.4809
Walking-Walking 1.9489 0.1834 0.0565 0.2921 2.0378 0.2374 0.0506 0.2786 1.8508 0.1238 0.0320 0.2797
Mode shifts for individuals with season ticket ownership
Walking-Walking -0.4666 0.1677 0.2064 0.3127 -0.5125 0.1382 0.1553 0.3151 -0.4735 0.1554 0.1220 0.3052
Mode shifts for trips with more than 1 passenger
PT first/shopping trip -1.9022 0.0367 0.0417 0.3489 -1.8623 0.0395 0.0482 0.3439 -1.8639 0.0252 0.0329 0.3465
PT following trip -0.7985 0.1180 0.1272 0.3624 -0.8274 0.1024 0.1426 0.3476 -0.8805 0.0261 0.0287 0.3492
Walking first/shopping trip -0.8395 0.0485 0.0394 0.2324 -0.8302 0.0523 0.0654 0.2312 -0.7919 0.0153 0.0165 0.2265
Walking following trip -0.3163 0.1749 0.1990 0.2487 -0.3331 0.0991 0.1350 0.2492 -0.4051 0.1291 0.1069 0.2449
Mode shifts for students
Walking-Walking 1.1574 0.0898 0.0756 0.3873 1.1219 0.0758 0.0739 0.3907 1.0842 0.0390 0.0606 0.3816
Mode shifts for married individuals
Walking-Walking -0.8320 0.0629 0.0601 0.2969 -0.8403 0.0957 0.0687 0.2953 -0.8218 0.0915 0.1005 0.2911
Mode shifts for individuals living in 3-member households
Walking-Walking 0.5828 0.1553 0.1134 0.3769 0.6402 0.0748 0.0692 0.3784 0.6344 0.0805 0.0656 0.3808
LOS variables
Travel time for first trip (base level) -0.0908 0.0210 0.0268 0.0096 -0.0923 0.0188 0.0253 0.0092 -0.0926 0.0191 0.0251 0.0094
Travel time shift for clothes shopping 0.0245 0.1111 0.1130 0.0090 0.0271 0.0520 0.0846 0.0088 0.0249 0.0600 0.0735 0.0090
Travel time for O-S-O trip chains 0.0128 0.1593 0.1089 0.0059 0.0130 0.1463 0.0904 0.0059 0.0154 0.0714 0.0908 0.0059
Travel time for HWH tours -0.0422 0.0831 0.0807 0.0092 -0.0453 0.0261 0.0305 0.0093 -0.0443 0.0315 0.0387 0.0091
Travel time multiplier for car 1.0000 – – – 1.0000 – – – 1.0000 – – –
Travel time multiplier for PT IVT 0.5966 0.0268 0.0329 0.0713 0.5780 0.0136 0.0140 0.0671 0.5818 0.0138 0.0175 0.0653
Travel time multiplier for PT first access trip 0.8066 0.0330 0.0521 0.2554 0.7985 0.0416 0.0459 0.2381 0.8174 0.0410 0.0540 0.2413
Travel time multiplier for PT last egress trip 0.6458 0.0721 0.0657 0.1913 0.6095 0.0712 0.0937 0.1869 0.5973 0.0543 0.0679 0.1655
Travel time multiplier for PT remaining OVT 0.3429 0.0851 0.0937 0.1766 0.3811 0.1162 0.1613 0.1649 0.3463 0.0643 0.0730 0.1652
Travel time multiplier for following trip 1.4032 0.0337 0.0241 0.1046 1.3615 0.0145 0.0190 0.0959 1.3779 0.0173 0.0177 0.1024
Travel time - Shopping duration elasticity -0.3158 0.0162 0.0241 0.0304 -0.3160 0.0168 0.0198 0.0295 -0.3135 0.0143 0.0200 0.0290
Travel walking distance (base) -1.6614 0.0247 0.0170 0.1326 -1.6590 0.0203 0.0144 0.1278 -1.6338 0.0105 0.0138 0.1248
Travel walking distance for O-S-O trip chains 0.2808 0.1498 0.1630 0.1209 0.2876 0.1057 0.1013 0.1174 0.2797 0.0684 0.0858 0.1149
Travel walking distance multiplier for following trip 1.1929 0.0468 0.0158 0.0915 1.2213 0.0241 0.0076 0.0907 1.2312 0.0179 0.0226 0.0907
Box-cox lambda for travel walking distance 0.7999 0.0182 0.0227 0.0540 0.7844 0.0257 0.0085 0.0505 0.8097 0.0079 0.0095 0.0526
Travel walking distance - Shopping duration elasticity -0.1500 0.0743 0.0500 0.0365 -0.1423 0.0740 0.0860 0.0356 -0.1504 0.0771 0.0488 0.0355
Travel cost -0.6597 0.0174 0.0290 0.0821 -0.6630 0.0200 0.0214 0.0776 -0.6590 0.0111 0.0101 0.0777
Box-cox lambda for travel cost 0.5834 0.0881 0.0359 0.0528 0.5812 0.0840 0.0167 0.0520 0.5709 0.0648 0.0274 0.0509
Travel cost - Personal income elasticity -0.2389 0.0518 0.0682 0.0924 -0.2458 0.0516 0.0656 0.0915 -0.2526 0.0524 0.0559 0.0949
Locational variables
Living in rich areas-shopping in poor areas -0.9315 0.1590 0.0603 0.2980 -0.9197 0.1444 0.1342 0.2862 -0.9201 0.1449 0.0852 0.2900
Parking areas (400m buffer)) 0.0998 0.0750 0.0435 0.0295 0.0962 0.0339 0.0250 0.0287 0.0975 0.0499 0.0474 0.0281
Box-cox lambda for parking areas (400m buffer) 0.4470 0.0597 0.0365 0.0861 0.4460 0.0595 0.0481 0.0868 0.4430 0.0591 0.0513 0.0834
Presence of major clothes shopping retailers (400m buffer) 2.0226 0.0583 0.0775 0.2480 2.0447 0.0420 0.0528 0.2364 2.0153 0.0270 0.0208 0.2285
Presence of major grocery retailers (400m buffer) 0.5026 0.0621 0.0625 0.1039 0.5233 0.0394 0.0551 0.1007 0.5231 0.0323 0.0367 0.1009
Presence of major durables retailers (400m buffer) 2.2204 0.1737 0.1890 1.2272 2.1477 0.0734 0.0847 1.0783 1.8223 0.1125 0.1397 0.8581
Size variables
Natural logarithm multiplier ϕ 0.7244 0.0283 0.0339 0.1002 0.7206 0.0425 0.0565 0.0978 0.7140 0.0455 0.0495 0.0971
Population (400m buffer) 1.0000 – – – 1.0000 – – – 1.0000 – – –
Exp. of retail areas for clothes stores (400m buffer) 0.3643 0.6672 0.3652 0.5239 0.3255 1.0320 0.7678 0.5246 0.2821 0.4467 0.3880 0.5276
Exp. of retail areas for grocery stores (400m buffer) 0.8070 0.2131 0.1509 0.3868 0.8015 0.2139 0.1454 0.3873 0.8132 0.2088 0.1306 0.3820
Exp. of retail areas for dur./other stores (400m buffer) 0.5259 0.2685 0.3698 0.7105 0.5223 0.2303 0.3733 0.7203 0.5798 0.2709 0.3723 0.7355
Exp. of shopping store variability (400m buffer) 0.9835 0.2345 0.2067 1.0232 1.0034 0.2549 0.2876 0.9979 1.1556 0.1141 0.0893 0.8733
Exp. of shopping store variability when following 3.0318 0.0925 0.0335 0.6522 3.0076 0.0988 0.0668 0.6590 2.9711 0.0794 0.0610 0.6887
trip purpose is shopping (1000-2000m buffer)
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Table 2.19: Evaluation of TAC sampling protocol for choice sets of 10, 50 and 100 alts

Parameter 10 alts 50 alts 100 alts
Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE

Locational constants
Constant rest Yorkshire 1.1660 1.1223 0.0825 0.2860 0.7311 0.3308 0.1141 0.2077 0.7121 0.2961 0.1069 0.1768
Households with car ownership
Constant Car-Other (PT/walking) -3.2345 0.1848 0.1013 0.4152 -2.9922 0.0961 0.0421 0.3198 -2.9136 0.0673 0.0259 0.2895
Constant Other (PT/walking)-Car -1.0579 0.2292 0.1921 0.3304 -0.9305 0.1186 0.1205 0.2567 -0.8186 0.0669 0.0708 0.2423
Constant PT-PT -1.7943 0.6652 0.1944 0.6022 -1.2637 0.1787 0.1064 0.4687 -1.2740 0.1824 0.0775 0.4370
Constant PT-Walking -2.4047 0.5497 0.0561 0.6366 -1.7935 0.1558 0.0888 0.5136 -1.6566 0.0849 0.0696 0.5018
Constant Walking-PT -1.6604 0.3735 0.1400 0.6024 -1.3519 0.1183 0.0946 0.5011 -1.2231 0.0596 0.0697 0.4797
Constant Walking-Walking 0.6818 0.2803 0.4283 0.5404 0.6945 0.1772 0.1764 0.4070 0.8118 0.0741 0.1172 0.3833
Mode shifts for households with no car ownership
Constant Car-Other (PT/walking) 2.3091 0.2056 0.2600 0.8305 2.4397 0.0487 0.0453 0.7223 2.3924 0.0604 0.0636 0.6608
Constant Other (PT/walking)-Car 0.4816 0.4263 0.8205 0.7251 0.6134 0.2143 0.2619 0.6273 0.6606 0.1801 0.2123 0.6262
Constant PT-PT 4.8408 0.1338 0.0560 0.6612 4.5934 0.0758 0.0514 0.5306 4.5721 0.0708 0.0291 0.5167
Constant PT-Walking 4.0774 0.2158 0.0897 0.7432 3.7291 0.1120 0.0665 0.6142 3.4815 0.0399 0.0317 0.6035
Constant Walking-PT 2.7831 0.1335 0.1925 0.6585 2.8766 0.0353 0.0423 0.5130 2.7306 0.0385 0.0425 0.4986
Constant Walking-Walking 3.3167 0.2467 0.0981 0.5654 2.7734 0.0473 0.0441 0.4283 2.7075 0.0236 0.0225 0.4171
Mode shifts for central area destinations
PT-PT 1.8844 0.1084 0.1082 0.4881 1.6922 0.0412 0.0361 0.3859 1.7356 0.0378 0.0591 0.3516
PT-Walking 2.5269 0.3847 0.2223 0.6525 1.8289 0.0839 0.1063 0.4648 1.8540 0.0375 0.0516 0.4620
Walking-PT 3.2592 0.2125 0.0640 0.5768 2.8427 0.0576 0.0426 0.4863 2.8259 0.0513 0.0312 0.4762
Walking-Walking 1.8465 0.1457 0.1028 0.4094 1.7924 0.0884 0.0344 0.3153 1.7308 0.0518 0.0356 0.2969
Mode shifts for individuals with season ticket ownership
Walking-Walking -0.3608 0.3565 0.4409 0.4512 -0.3209 0.4275 0.4189 0.3398 -0.3951 0.2951 0.1802 0.3348
Mode shifts for trips with more than 1 passenger
PT first/shopping trip -2.2572 0.2123 0.0982 0.4800 -2.0993 0.1275 0.0858 0.3782 -1.9648 0.0808 0.0791 0.3531
PT following trip -0.8831 0.2436 0.3406 0.4641 -0.7520 0.1769 0.1817 0.3626 -0.7767 0.1072 0.0845 0.3613
Walking first/shopping trip -0.9184 0.2638 0.2794 0.3364 -0.8673 0.1115 0.0828 0.2459 -0.8816 0.1120 0.0754 0.2387
Walking following trip -0.2420 0.5529 1.3431 0.3720 -0.3314 0.2575 0.3721 0.2684 -0.2468 0.3472 0.3600 0.2570
Mode shifts for students
Walking-Walking 1.3938 0.3337 0.2078 0.4871 1.3746 0.2786 0.0862 0.3842 1.1138 0.0360 0.0297 0.3769
Mode shifts for married individuals
Walking-Walking -1.0906 0.3933 0.1494 0.4222 -0.8657 0.1059 0.0667 0.3109 -0.9143 0.1681 0.0847 0.2948
Mode shifts for individuals living in 3-member households
Walking-Walking 0.2072 0.6996 1.3627 0.4903 0.5067 0.2655 0.1626 0.3775 0.6557 0.1083 0.1283 0.3823
LOS variables
Travel time for first trip (base level) -0.0723 0.2075 0.0667 0.0116 -0.0884 0.0392 0.0409 0.0101 -0.0866 0.0509 0.0202 0.0095
Travel time shift for clothes shopping -0.0019 1.0714 5.7320 0.0156 0.0130 0.5112 0.4340 0.0121 0.0200 0.2471 0.1130 0.0107
Travel time for O-S-O trip chains 0.0066 0.5677 0.6542 0.0088 0.0124 0.2217 0.2646 0.0065 0.0111 0.2678 0.0526 0.0063
Travel time for HWH tours -0.0483 0.1071 0.0869 0.0122 -0.0442 0.0297 0.0360 0.0099 -0.0453 0.0347 0.0502 0.0093
Travel time multiplier for car 1.0000 – – – 1.0000 – – – 1.0000 – – –
Travel time multiplier for PT IVT 0.5548 0.0901 0.1383 0.0908 0.5790 0.0223 0.0269 0.0755 0.5904 0.0253 0.0300 0.0681
Travel time multiplier for PT first access trip 0.8013 0.1132 0.1870 0.3501 0.7586 0.0823 0.0943 0.2652 0.7911 0.0347 0.0285 0.2659
Travel time multiplier for PT last egress trip 0.6293 0.2045 0.2567 0.2458 0.5551 0.1369 0.1334 0.2063 0.5742 0.0872 0.0944 0.1814
Travel time multiplier for PT remaining OVT 0.3848 0.4166 0.4593 0.2988 0.3061 0.2628 0.3050 0.2033 0.2595 0.3011 0.3739 0.1887
Travel time multiplier for following trip 1.4072 0.0656 0.0814 0.1629 1.3628 0.0258 0.0337 0.1078 1.3836 0.0202 0.0228 0.1054
Travel time - Shopping duration elasticity -0.3462 0.0968 0.0797 0.0420 -0.3346 0.0602 0.0216 0.0336 -0.3253 0.0305 0.0212 0.0330
Travel walking distance (base) -1.6664 0.0684 0.0774 0.1622 -1.6477 0.0147 0.0109 0.1378 -1.5886 0.0267 0.0245 0.1260
Travel walking distance for O-S-O trip chains 0.2191 0.2131 0.1989 0.1698 0.2325 0.1613 0.1635 0.1275 0.2332 0.1526 0.1588 0.1172
Travel walking distance multiplier for following trip 1.1807 0.0813 0.0882 0.1113 1.1921 0.0475 0.0207 0.0991 1.2532 0.0109 0.0145 0.0990
Box-cox lambda for travel walking distance 0.7399 0.0810 0.0644 0.0607 0.7771 0.0348 0.0195 0.0531 0.8083 0.0092 0.0110 0.0527
Travel walking distance - Shopping duration elasticity -0.1651 0.1824 0.2165 0.0420 -0.1518 0.0885 0.0565 0.0362 -0.1480 0.0804 0.0834 0.0339
Travel cost -0.6295 0.0525 0.0695 0.1041 -0.6566 0.0324 0.0395 0.0894 -0.6769 0.0386 0.0224 0.0822
Box-cox lambda for travel cost 0.5464 0.1448 0.1755 0.0923 0.5949 0.1094 0.0246 0.0581 0.5971 0.1136 0.0253 0.0537
Travel cost - Personal income elasticity -0.1960 0.2851 0.4207 0.1377 -0.2357 0.0983 0.1206 0.1046 -0.2437 0.0680 0.1020 0.0960
Locational variables
Living in rich areas-shopping in poor areas -1.2773 0.7024 0.3139 0.5135 -0.9951 0.2382 0.0398 0.3986 -0.9590 0.1933 0.1270 0.3661
Parking areas (400m buffer)) 0.0756 0.1870 0.0584 0.0334 0.0995 0.0696 0.0280 0.0302 0.1023 0.0992 0.0480 0.0286
Box-cox lambda for parking areas (400m buffer) 0.4932 0.1693 0.0353 0.1258 0.4198 0.0159 0.0200 0.0878 0.4005 0.0521 0.0406 0.0821
Presence of major clothes shopping retailers (400m buffer) 2.1518 0.2299 0.2246 0.5265 2.0857 0.0629 0.0427 0.2896 2.0458 0.0425 0.0391 0.2419
Presence of major grocery retailers (400m buffer) 0.4562 0.1447 0.1111 0.1496 0.5432 0.0483 0.0555 0.1077 0.5687 0.0661 0.0455 0.1037
Presence of major durables retailers (400m buffer) 0.4675 0.7717 1.5566 1.0646 1.5932 0.2220 0.1861 1.3060 1.6379 0.2211 0.2207 1.2912
Size variables
Natural logarithm multiplier ϕ 0.6628 0.1316 0.1456 0.1438 0.6968 0.0485 0.0468 0.1112 0.7138 0.0305 0.0298 0.1044
Population (400m buffer) 1.0000 – – – 1.0000 – – – 1.0000 – – –
Exp. of retail areas for clothes stores (400m buffer) 0.9429 4.2951 0.8612 1.0210 0.7796 2.5675 0.2748 0.6352 0.4749 1.1732 0.3343 0.6018
Exp. of retail areas for grocery stores (400m buffer) 1.5007 1.2306 0.3058 0.7390 0.9297 0.3819 0.1434 0.4758 0.8020 0.1920 0.1246 0.4236
Exp. of retail areas for dur./other stores (400m buffer) -2.0882 5.8491 3.1765 2.1313 0.8669 0.4947 0.3969 0.8813 0.7113 0.4126 0.3943 0.7858
Exp. of shopping store variability (400m buffer) 1.7527 0.7496 0.6904 2.0428 1.3553 0.1288 0.1407 0.8799 1.2372 0.0892 0.1021 0.8707
Exp. of shopping store variability when following 3.8221 0.4258 0.2294 1.3246 3.1041 0.1261 0.1022 0.7409 2.9727 0.1064 0.0983 0.7353
trip purpose is shopping (1000-2000m buffer)
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Table 2.20: Evaluation of TAC sampling protocol for choice sets of 150, 200 and 250 alts

Parameter 150 alts 200 alts 250 alts
Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE Av.est. AAPD ACoV RMSE

Locational constants
Constant rest Yorkshire 0.7301 0.3290 0.1091 0.1708 0.6680 0.2159 0.0996 0.1668 0.6527 0.1880 0.0620 0.1582
Households with car ownership
Constant Car-Other (PT/walking) -2.8391 0.0419 0.0276 0.2919 -2.8645 0.0493 0.0130 0.2841 -2.7983 0.0251 0.0149 0.2813
Constant Other (PT/walking)-Car -0.8208 0.0462 0.0159 0.2381 -0.8709 0.0622 0.0866 0.2402 -0.8622 0.0424 0.0545 0.2387
Constant PT-PT -1.2350 0.1461 0.0511 0.4398 -1.2034 0.1533 0.1326 0.4214 -1.1201 0.0406 0.0395 0.4185
Constant PT-Walking -1.6200 0.0472 0.0385 0.4912 -1.6316 0.0575 0.0492 0.4840 -1.5801 0.0376 0.0481 0.4822
Constant Walking-PT -1.1634 0.0486 0.0426 0.4829 -1.2912 0.0845 0.0615 0.4850 -1.2025 0.0279 0.0452 0.4806
Constant Walking-Walking 0.8634 0.0768 0.0845 0.3737 0.7677 0.0881 0.0815 0.3714 0.8275 0.0287 0.0393 0.3673
Mode shifts for households with no car ownership
Constant Car-Other (PT/walking) 2.4436 0.0504 0.0254 0.6725 2.4353 0.0468 0.0207 0.6471 2.3976 0.0306 0.0109 0.6518
Constant Other (PT/walking)-Car 0.5800 0.1676 0.2098 0.6108 0.6451 0.1034 0.1187 0.6103 0.6383 0.0407 0.0574 0.6171
Constant PT-PT 4.4777 0.0487 0.0138 0.5013 4.3713 0.0285 0.0273 0.4949 4.3784 0.0255 0.0130 0.5065
Constant PT-Walking 3.4181 0.0330 0.0322 0.6026 3.3968 0.0168 0.0218 0.5811 3.4530 0.0296 0.0242 0.5873
Constant Walking-PT 2.7217 0.0291 0.0338 0.4752 2.8306 0.0154 0.0131 0.4667 2.7867 0.0059 0.0073 0.4762
Constant Walking-Walking 2.6366 0.0158 0.0218 0.4066 2.6616 0.0072 0.0108 0.4026 2.6935 0.0198 0.0200 0.4112
Mode shifts for central area destinations
PT-PT 1.8123 0.0466 0.0499 0.3381 1.7869 0.0351 0.0432 0.3370 1.7084 0.0472 0.0584 0.3282
PT-Walking 1.8937 0.0556 0.0537 0.4580 1.8765 0.0341 0.0360 0.4434 1.7769 0.0333 0.0306 0.4394
Walking-PT 2.8277 0.0520 0.0149 0.4769 2.7540 0.0246 0.0072 0.4754 2.7517 0.0269 0.0230 0.4727
Walking-Walking 1.7114 0.0392 0.0197 0.2812 1.6796 0.0199 0.0140 0.2738 1.6577 0.0247 0.0268 0.2705
Mode shifts for individuals with season ticket ownership
Walking-Walking -0.4440 0.2080 0.0696 0.3230 -0.5205 0.0894 0.1108 0.3246 -0.5130 0.0921 0.0728 0.3222
Mode shifts for trips with more than 1 passenger
PT first/shopping trip -1.8738 0.0124 0.0159 0.3567 -1.9288 0.0435 0.0345 0.3465 -1.9111 0.0391 0.0450 0.3493
PT following trip -0.8106 0.1083 0.1375 0.3500 -0.7481 0.1347 0.1005 0.3522 -0.7952 0.0802 0.0803 0.3532
Walking first/shopping trip -0.8712 0.0881 0.0558 0.2333 -0.8545 0.0733 0.0690 0.2345 -0.8460 0.0566 0.0408 0.2322
Walking following trip -0.3314 0.1208 0.1591 0.2538 -0.3144 0.1454 0.0853 0.2539 -0.3134 0.1481 0.0707 0.2515
Mode shifts for students
Walking-Walking 1.1118 0.0347 0.0487 0.3751 1.1027 0.0414 0.0578 0.3693 1.0831 0.0357 0.0507 0.3788
Mode shifts for married individuals
Walking-Walking -0.8603 0.0991 0.0420 0.2933 -0.8149 0.0411 0.0400 0.2917 -0.8355 0.0674 0.0271 0.2912
Mode shifts for individuals living in 3-member households
Walking-Walking 0.6591 0.0447 0.0255 0.3874 0.7295 0.0573 0.0567 0.3846 0.7057 0.0627 0.0676 0.3854
LOS variables
Travel time for first trip (base level) -0.0882 0.0335 0.0243 0.0092 -0.0912 0.0102 0.0135 0.0092 -0.0906 0.0166 0.0198 0.0093
Travel time shift for clothes shopping 0.0248 0.1249 0.1372 0.0097 0.0249 0.0920 0.1824 0.0100 0.0248 0.1224 0.1382 0.0100
Travel time for O-S-O trip chains 0.0133 0.1270 0.0960 0.0061 0.0144 0.0893 0.1242 0.0061 0.0142 0.0763 0.0821 0.0061
Travel time for HWH tours -0.0436 0.0462 0.0621 0.0092 -0.0449 0.0195 0.0331 0.0094 -0.0447 0.0238 0.0264 0.0093
Travel time multiplier for car 1.0000 – – – 1.0000 – – – 1.0000 – – –
Travel time multiplier for PT IVT 0.5952 0.0169 0.0250 0.0653 0.5817 0.0094 0.0085 0.0636 0.5843 0.0077 0.0100 0.0632
Travel time multiplier for PT first access trip 0.7945 0.0811 0.0965 0.2652 0.8096 0.0460 0.0554 0.2422 0.7909 0.0349 0.0141 0.2361
Travel time multiplier for PT last egress trip 0.5885 0.0569 0.0739 0.1747 0.5880 0.0487 0.0604 0.1768 0.5959 0.0320 0.0346 0.1699
Travel time multiplier for PT remaining OVT 0.3358 0.1364 0.1858 0.1939 0.2943 0.1786 0.2271 0.1815 0.3352 0.0780 0.0964 0.1819
Travel time multiplier for following trip 1.3847 0.0211 0.0188 0.1051 1.3744 0.0152 0.0134 0.0987 1.3647 0.0163 0.0186 0.1000
Travel time - Shopping duration elasticity -0.3243 0.0274 0.0184 0.0328 -0.3192 0.0159 0.0148 0.0314 -0.3172 0.0124 0.0212 0.0316
Travel walking distance (base) -1.5921 0.0208 0.0101 0.1227 -1.6070 0.0117 0.0092 0.1229 -1.6117 0.0088 0.0056 0.1227
Travel walking distance for O-S-O trip chains 0.2497 0.0744 0.0593 0.1150 0.2495 0.0731 0.0423 0.1143 0.2435 0.0951 0.0564 0.1143
Travel walking distance multiplier for following trip 1.2529 0.0065 0.0078 0.0952 1.2501 0.0084 0.0105 0.0932 1.2497 0.0083 0.0119 0.0933
Box-cox lambda for travel walking distance 0.8105 0.0118 0.0133 0.0530 0.8067 0.0031 0.0053 0.0525 0.8072 0.0030 0.0037 0.0519
Travel walking distance - Shopping duration elasticity -0.1470 0.0585 0.0485 0.0329 -0.1441 0.0330 0.0265 0.0332 -0.1400 0.0250 0.0312 0.0329
Travel cost -0.6713 0.0298 0.0143 0.0796 -0.6534 0.0166 0.0240 0.0784 -0.6630 0.0171 0.0141 0.0784
Box-cox lambda for travel cost 0.5798 0.0814 0.0349 0.0539 0.5722 0.0671 0.0222 0.0538 0.5697 0.0625 0.0172 0.0518
Travel cost - Personal income elasticity -0.2364 0.0426 0.0412 0.0979 -0.2403 0.0826 0.1153 0.0964 -0.2522 0.0483 0.0468 0.0961
Locational variables
Living in rich areas-shopping in poor areas -0.8054 0.1039 0.1421 0.3179 -0.8504 0.0701 0.0779 0.3181 -0.8184 0.0655 0.0804 0.3023
Parking areas (400m buffer)) 0.0961 0.0372 0.0436 0.0273 0.0948 0.0448 0.0585 0.0277 0.0978 0.0509 0.0112 0.0278
Box-cox lambda for parking areas (400m buffer) 0.4278 0.0374 0.0426 0.0796 0.4331 0.0410 0.0475 0.0836 0.4147 0.0168 0.0125 0.0811
Presence of major clothes shopping retailers (400m buffer) 2.0760 0.0650 0.0575 0.2340 2.0318 0.0354 0.0131 0.2234 2.0139 0.0263 0.0046 0.2165
Presence of major grocery retailers (400m buffer) 0.5491 0.0323 0.0270 0.1008 0.5631 0.0556 0.0286 0.0990 0.5498 0.0416 0.0352 0.0992
Presence of major durables retailers (400m buffer) 2.1292 0.1872 0.2127 1.3590 2.0369 0.1396 0.1979 1.3145 1.6899 0.1977 0.1719 1.4160
Size variables
Natural logarithm multiplier ϕ 0.7276 0.0112 0.0138 0.1056 0.7220 0.0279 0.0340 0.1025 0.7467 0.0240 0.0247 0.1040
Population (400m buffer) 1.0000 – – – 1.0000 – – – 1.0000 – – –
Exp. of retail areas for clothes stores (400m buffer) 0.3792 0.7351 0.2813 0.5620 0.4392 1.0099 0.2900 0.5631 0.2789 0.3235 0.2595 0.5547
Exp. of retail areas for grocery stores (400m buffer) 0.7512 0.1311 0.1220 0.4037 0.7687 0.1605 0.1275 0.4057 0.6600 0.0758 0.0924 0.3813
Exp. of retail areas for dur./other stores (400m buffer) 0.7906 0.3462 0.1223 0.7541 0.6542 0.1139 0.0529 0.7570 0.6826 0.1623 0.0791 0.7250
Exp. of shopping store variability (400m buffer) 1.2536 0.0606 0.0748 0.7984 1.2522 0.0555 0.0837 0.8261 1.2250 0.0589 0.0605 0.7881
Exp. of shopping store variability when following 2.9791 0.0736 0.0534 0.7054 2.9645 0.0683 0.0435 0.6959 2.7594 0.0406 0.0487 0.7086
trip purpose is shopping (1000-2000m buffer)
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estimates using emerging Revealed
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Panagiotis Tsoleridis1, Charisma F. Choudhury1 and Stephane Hess1

Abstract

Transport demand models are widely used to inform policy making and produce forecasts of
future demand. A core output derived from demand models is the Value of Travel Time
(VTT), which provides insights on the trade-offs that travellers are willing to make in terms
of travel time and travel cost. VTT estimates are a critical input to cost-benefit analyses
and feasibility assessments of potential projects, while they can also be used in forecasting
demand models. Therefore, they play a crucial role in transport planning and policy decisions.
While much of the early work on VTT made use of revealed preference (RP) data, their
use decreased due to growing concerns about reporting errors that may result in omitted
observations and measurement errors in the model inputs. As a consequence, VTT measures
have, for the last two decades, primarily been estimated using state-preference (SP) surveys.
While SP methods can assess the individual trade-offs in a controlled manner, they are prone
to behavioural incongruence. More recently, RP data from passively-collected data sources
have raised the promise of accounting for some of the limitations of traditional RP surveys due
to the minimal (or even no) active input from the respondent. The present study utilises such
a dataset that combined a 2-week trip diary captured through smartphone GPS tracking with a
household survey containing individual socio-demographic information. A mixed Logit model
for mode choice was specified and the estimated parameters were then applied on the National
Travel Survey to calculate the VTT estimates. Those estimates were further adjusted based
on trip distances to get more representative national VTT values. This process resulted in
estimates similar to the official UK guidelines used in transport appraisal that were obtained
from SP data, where our results are not affected by concerns about response quality or survey
artefacts. The findings hence strengthen the case for shifting towards passively generated RP
data sources and are important for transport practitioners.

1Choice Modelling Centre, Institute for Transport Studies, University of Leeds
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1 Introduction

Transport projects and schemes can substantially impact our day-to-day lives, as well as
mid-term decisions like whether or not a buy a car or long-term decisions like where to live.
They also have a profound impact on the economic growth of the country, its productivity
and people’s well-being. Cost-benefit analyses (CBA) and feasibility assessment of potential
transport projects are primarily based on the monetary savings from travel time reductions.
It is estimated that savings on travel time are responsible for around 80% of the predicted
benefits of a new transport project in the UK (Mackie et al., 2001; Fosgerau and Jensen,
2003; Daly et al., 2014). The Values of Travel Time (VTT) estimates, which are used to
quantify the trade-offs that decision-makers are willing to make in terms of travel time and
travel cost, are hence critical components of CBA. An accurate estimation of VTTs is thus
important in order to properly evaluate the costs and the benefits of a new transport project
and sufficiently forecast future demand for specific services, e.g. a new public transport route,
leading to better informed decisions during the planning phase.

Estimates of the trade-offs that travellers would be willing to make in terms of travel
time and cost were first produced in the 1960s. For a long period of time, VTT estimates
were derived as relative values to the average wage cost or as a percentage of it (wage cost
method or cost savings approach - CSA) and that method is still in use in several countries
(Daly et al., 2014). Another approach involved Contingent Valuation, where VTTs were
derived from direct questions about how much a participant would be willing to spend for
a particular service or an improvement of a current one. In recent decades, most types of
VTT analysis are based on the work of Daly and Zachary (1975), who first estimated VTT
values from behavioural models (Daly et al., 2014) based on theoretical frameworks of time
allocation (Becker, 1965; DeSerpa, 1971) and the Random Utility framework (Marschak,
1960; McFadden, 1973; Domencich and McFadden, 1975; Williams, 1977; Ben-Akiva and
Lerman, 1985; Train, 2009).

Revealed Preference (RP) data, usually coming from travel diaries, would at face value
provide the natural data source for estimating VTTs, and indeed were used in early studies
(Beesley, 1965; Daly and Zachary, 1975). Nonetheless, while RP data provide the ability
to capture real-world choices, most of the parameters influencing them are outside of the
analyst’s control. Furthermore, traditional RP data sources include recalled/reported data
that are prone to issues like omitted trips (particularly short ones), perception and rounding
errors, etc. - often leading to large measurement errors. During the 1980s, there was also an
increasing desire to capture VTTs for non-work trips –largely ignored up to that point– in
addition to commuting VTTs. RP data, however, were proved to be unsuitable for providing
useful real-world observed choices on non-work trips with the available data collection methods
of that era. The aforementioned limitations of RP data led to the growing popularity, over
the last two to three decades, of Stated Preference (SP) data as the main input to models,
with RP data often being used only in limited scale for verification of the SP results (Mackie
et al., 2003). SP surveys present respondents with a number of hypothetical scenarios, where
they are asked to choose among a set of alternatives. This approach has a long tradition
for example in the United Kingdom (UK) with the first major SP survey conducted in 1984
(MVA et al., 1987) and follow-up studies in 1994 (Accent and Hague Consulting Group 1996)
with the same data then re-analysed by Mackie et al. (2003) before the most recent study
involving primary data collection taking place in 2014-2015 (Batley et al., 2019; Department
for Transport, 2015; Hess et al., 2017).

SP surveys are generally seen to have the advantage of providing the analysts with an
environment where they have control over a large number of parameters that could influence
VTT estimates, such as the attributes of the alternatives. On the other hand, SP surveys are
prone to behavioural incongruence and hypothetical bias and are often criticised for being too
sensitive to the experimental design and the representation of the SP scenarios (Brownstone
and Small, 2005; Daly et al., 2014; Haghani et al., 2021). Concern in a VTT context has also

72



Chapter 3. Deriving Values of Travel Time estimates using emerging Revealed Preference data

been raised in relation to the use of overly simplistic settings in some countries (Hess et al.,
2020).

In a recent study examining the impact of hypothetical bias in SP surveys within several
domains including transport (Haghani et al., 2021), the authors concluded that although it
is more sensible to assume that individuals would likely overstate their Willinness-to-pay
(WTP) in a hypothetical scenario (Li et al., 2020), there are a number of transport studies
showing the opposite (Nielsen, 2004; Brownstone and Small, 2005; Shires and de Jong, 2009;
Krcal et al., 2019). That downward bias of SP has also been proven in two meta-analyses
on VTT values across countries and time of Shires and de Jong (2009) and Wardman et al.
(2016).

Evidence from neuro-imaging studies also suggests that individuals would often react
differently in a stressful situation compared to the lab setting of an SP survey, e.g. be willing
to pay more in order to avoid an unpleasant outcome (Loewenstein, 2005; Kang and Camerer,
2013; Haghani et al., 2021). In addition to that, Kang and Camerer (2013) showed that a
certain part of the brain was more strongly activated when participants had to make a real
choice compared to a hypothetical one. Other psychological effects can also come into play
during an SP survey influencing participants’ responses, such as the desirability to appear
more socially acceptable to the analyst (social desirability bias) (Champ and Welsh, 2006),
the feeling that their choices will lack of any real-world consequences (lack of consequentiality)
(Krcal et al., 2019), or the opposite with respondents deliberately giving misleading answers
to avoid a potentially harmful outcome resulting from that study, e.g. a road pricing scheme
(strategic bias) (Lu et al., 2008; Meginnis et al., 2018).

With that evidence in mind and considering that VTT estimates are to be used for the
purpose of project evaluation during a CBA, it is only sensible to assume that policy makers
would be mostly interested in the trade-offs individuals are willing to make under real-life
conditions, sometimes stressful, while taking into account real distributions of travel time and
cost and not the ones imposed by the analyst (Louviere and Hensher, 2001; Brownstone and
Small, 2005). This thus motivates an increased interest in revealed preference (RP) data for
VTT studies. For example, in a review of transport appraisal studies performed in various
countries, Daly et al. (2014) concluded that despite SP data being the standard approach so
far, researchers and practitioners should reconsider the use of RP data due to the benefits
they can provide, while also taking advantage of the new emerging and more robust data
collection methods. In addition to that, several studies using traditional RP data sources,
such as national travel surveys, have showcased that VTT estimates can still be derived,
which are consistent with the official SP-based values (Varela et al., 2018). Nonetheless, there
is still a lack of similar studies utilising emerging data sources for VTT estimation purposes.

Emerging data sources, primarily from sensors, such as GPS and mobile phone data, have
provided new breakthroughs and challenges to researchers. Travel diaries captured through
GPS tracking are able to produce large panels of RP data per participant at a very high
spatial and temporal resolution. Compared to traditional pen-and-paper diaries, GPS-based
surveys offer the advantage of capturing an increased number of daily trips giving a more
representative depiction of individual mobility behaviour without resulting in user fatigue.
Though there have been limited efforts to infer VTTs from anonymous RP data sources (e.g
Bwambale et al. (2019)), the absence of socio-demographic information of the travellers
and trip characteristics (e.g. trip purpose) have meant that it is not possible to capture the
heterogeneity in the VTTs among different socio-demographic groups of users or due to the
differences in trip purpose (e.g. commute, business, leisure) from such data.

A passively collected GPS trip diary without any additional mode or trip purpose
information could require significant pre-processing efforts (Schuessler and Axhausen, 2009),
which could still might not be sufficient enough to avoid biased estimates (Vij and Shankari,
2015). Contrary to that, a semi-passive GPS travel diary with minimum input from the
participants and linked to a background household survey can help to account for those
limitations. Several studies have used GPS datasets complimented with a background survey,
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but most of them have limited their analysis on descriptive statistics of individual mobility
behaviour based on the observed choices (Arifin and Axhausen, 2012) or estimated models
of mode choice, but without reporting VTT estimates (Montini et al., 2017; Huang et al.,
2021). An exception is the study of Calastri et al. (2018), who estimated mode choice models
based on GPS data for the purpose of uncovering latent mode availability and consideration
constraints of the individuals during their decision-making process. Their study also reported
VTTs based on the estimated parameters, however, this was purely as a means of validating
their proposed approach, with no emphasis on extrapolating the findings to a representative
sample, as required for official VTT values.

The focus of GPS studies so far in the literature has thus not been on the estimation of
behaviourally accurate VTTs, representative of the country’s population, which are derived
from GPS tracking, and more importantly they have not been compared with national official
estimated SP-based VTTs before. That limitation in the current literature and the lack of
empirical evidence could partly explain the reluctance of policy makers to accept the use
of new emerging GPS data for VTT estimation for appraisal purposes, a task that is still
heavily reliant on SP surveys. Aiming to address that limitation, the current study utilises
such an emerging data source, namely a 2-week GPS trip diary including 540 participants
and 12524 trips, collected as part of the European Research Council funded “DECISIONS”
project, for the purpose of estimating a behavioural model of mode choice. The estimated
parameters are then applied to the National Travel Survey (NTS) data and VTT estimates
are derived, which are further adjusted by distance band to ensure proper representativeness
of the UK’s population. The main aim of the study is to compare the final distance-weighted
VTT estimates with the latest official SP-based VTTs currently used in appraisal in the UK.

The remainder of the paper is as follows. In the following section, a review of the
literature concerning previous VTT studies and their findings and the use of GPS data
for transport-related research is performed. In the third section, the datasets used in the
current study are described, while in the fourth section, the modelling framework is outlined.
Following that, the modelling outputs and the derived VTT estimates are analysed in the fifth
and sixth sections, respectively. A discussion regarding the policy implications of the study
is performed in the following section, while in the final one the conclusions and limitations of
the current study are summarised and the scope for future studies is outlined.

2 Literature review

2.1 Studies on Values of Travel Time estimates

Originating from the studies of Becker (1965) and DeSerpa (1971), the idea of optimal time
allocation and the monetisation of non-work activity participation led to the first formulations
of the Value of Time. Besides the importance of VTT estimates for CBA and transport
project appraisal, they also provide important insights on individual transport behaviour that
can lead to better informed policy measures. The willingness-to-pay for a reduction of travel
time is closely related to the overall scheduling and time allocation of the individual during
the day. As a result, individuals will tend to value higher their time in contexts that would
lead to more significant time restrictions (or more potential time savings) in their overall daily
schedules. Such contexts can be longer distance trips, which will leave the individuals with
significantly less time to accomplish other activities. That is largely empirically proven in the
literature, with VTTs increasing by distance (Small, 2012). Another context can be types
of activities for which individuals are required to arrive in time, such as commuting trips,
or times of day which provide the individuals with greater time restrictions, such as trips
during the am peak period. The aforementioned rationale is closely related to the prospect
theory (Tversky and Kahneman, 1991) postulating that individuals will put a higher value to
avoid a negative outcome than achieving a positive one.
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According to empirical evidence from the literature, SP-based VTTs tend to be lower
compared to their RP-based counterparts and that can be attributed to several biases arising
in the hypothetical setting of an SP design (Shires and de Jong, 2009; Wardman et al., 2016).
As an example, we refer to the context of deriving WTP for toll pricing and specifically to
the studies of Vrtic et al. (2010) and Brownstone and Small (2005). Vrtic et al. (2010)
using SP data found that individuals have lower VTTs in the presence of tolls, compared to
untolled roads, as they are willing to take longer routes in order to bypass the tolls. That
finding, however, might be subject to strategic bias (Lu et al., 2008; Meginnis et al., 2018)
from individuals who purposefully overstate their cost sensitivities to dissuade policy makers
from such a measure, which will in turn decrease their WTP. Their behaviour in reality might
in fact be significantly different as stated in Brownstone and Small (2005), who examined
and compared SP and RP WTP for toll pricing among a range of road corridors in the
United States. The authors of that second study found that the estimates obtained from
hypothetical SP surveys systematically underestimated the VTTs compared to RP-based
estimates. A potential cause could be that VTT estimates will depend to a large extent on
the travel time and cost range values of the SP scenarios, which could differ substantially in
a real-life scenario, such as the case of severe congestion during the morning peak, forcing
individuals to place higher valuations of time so as to avoid arriving late at work, although
that could also be the case of a higher Value of Travel Time Reliability (VTTR). In any
case, such a situation in a real-life context might force the individuals to act differently if
they do not leave enough time to take the longer route to avoid the tolls (a case of lack of
consequentiality (Krcal et al., 2019)). That demonstrates that the hypothetical setting of an
SP survey might not be sufficient to capture real-life behaviour, which would adapt according
to the time restrictions arising in the daily activity schedules, resulting in biased estimates.

Another reason for the higher RP-based VTTs, however, could also be attributed to
choice set mispecification for the case of choice tasks including only one alternative actually
under consideration (i.e. captive users), as mentioned in Shires and de Jong (2009). It is
generally acknowledged that lack of any explicit information on availability/consideration of
alternatives is an important limitation of RP datasets that has hindered their wider adoption
for VTT estimation. The analyst observes only the chosen alternatives and has no control
over the alternatives actually considered by the individual during her decision making process
and thus included in her choice set. Li et al. (2015) have stated that this problem is not
exclusive to RP, however, since choices on SP experiments can also be subject to latent choice
set formation mechanisms. The presence of those types of behavioural mechanisms on SP
data has been proved empirically, as well, in the study of Thiene et al. (2017) examining
destination choices for recreational activities.

It is clear then that the derivation of unbiased VTT estimates relies to a large extent
on the SP survey design (Bliemer and Rose, 2009). Several techniques have been developed
to accomplish that, such as the inclusion of an opt-out alternative, which guarantees that
respondents are not forced to choose an alternative. That, however, might also have the
adverse effect of choosing the opt-out more often if the attributes of the SP scenario are not
reasonable or the SP design is not meaningful to the respondents. As a result, significant
effort has been put for making the SP survey more comprehensive and relatable to the
respondents by including images and graphics to better describe the attributes of the choice
setting. Several sources of the aforementioned biases could also be influenced by the type
of SP survey, with higher chances of social desirability bias, for example, occurring from
face-to-face interviews (Champ and Welsh, 2006).

RP data of limited scale have also been used in VTT studies to provide realistic attribute
levels for the SP design to pivot around them. That has been established as the usual
approach in SP survey design for VTT estimation, where respondents are asked to provide
information of a small number of recently completed trips (Li et al., 2020). Those reference
trips are then being used as anchor points to pivot the attributes of travel time and cost
for the SP choice scenario around them using reasonable variations of the observed times
and costs. Nonetheless, in all those studies the limited use of RP data is evident and it is
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reasonable to assume that significant variation in attributes is still left uncaptured and hence
not used in the SP design, such as different attribute levels for different times of day, different
trip purposes and before or after certain activities (e.g. work), among others.

In addition to the above, there is a constant debate about SP survey complexity and
whether to include more attributes per choice task or to have more choice tasks with a
limited number of attributes per alternative. The reason for that is to avoid causing too
much cognitive fatigue to the respondent, whose choices would become more random as she
becomes more fatigued (Bradley and Daly, 1994). The opposite might also be true, however,
with choices becoming more deterministic as respondents learn how to respond to choice
tasks as they go along (Hess et al., 2012). Instances of both fatigue and learning can occur
for the same individual with evidence suggesting the presence of better quality responses at
first (learning) followed by a quality decrease in further choice tasks (fatigue) (Hess et al.,
2012). Furthermore, empirical evidence suggests that respondents, after a while, will tend
to put more emphasis on certain attributes, such as cost, and neglect others, a behavioural
process known as attribute-non-attendance (Hensher and Greene, 2010).

All of the aforementioned sources of hypothetical biases can have adverse impacts to
the overall survey. It is true to say that the need to account for them has provided a
strong motivation for developing state-of-the-art methodological frameworks, most of which
having been implemented in the latest official UK VTT study and in other similar studies
across Europe. Nonetheless, their mere existence poses significant limitations considering the
importance of deriving national VTT estimates to be used in project appraisal, which would
be driving future investments for at least the following decade, given their slow update rate
documented so far. Even if the analyst is able to successfully account for the majority of
those biases in the estimated VTTs, it requires significant effort to do so, which increases the
cost and the time required to design an appropriate survey that would minimise any source
of hypothetical bias, which is still never guaranteed.

Despite those limitations and potential pitfalls, SP surveys are currently the state-of-the-
art approach for VTT estimation, with RP data being used only as auxiliary data to inform
the attributes in the SP survey (Small, 2012; Ehreke et al., 2015). Studies have also proposed
a combination of RP-SP choices during estimation for forecasting purposes acknowledging
the hypothetical natural of SP data and the limitations that could arise in forecasting future
demand (Cherchi and Ortuzar, 2006). Nonetheless, even in those cases, the VTT estimation
primarily relies on SP data to avoid the limitations of RP data to capture non-linearities in
the sensitivities, a notion that is still relevant among the research community due to the data
limitations of the past. The dominance of SP data on VTT estimation can be clearly seen
by examining the latest reported studies on national VTT values. The Danish (Fosgerau,
2006), Swiss (Axhausen et al., 2006), Norwegian (Halse et al., 2022), Swedish (Börjesson and
Eliasson, 2014), Dutch (Kouwenhoven et al., 2014), German (Ehreke et al., 2015) and the
UK (Batley et al., 2019) national VTT studies have based their analysis on SP data using
only a limited number of RP trips as reference points for the SP attributes.

2.2 GPS data for transport research

Various forms of new emerging data sources are increasingly being used for transport-related
research during the past decade (Grant-Muller et al., 2021). Mobile phone data have been one
of the first emerging data sources, which gained popularity among researchers and practitioners
due to their ubiquitous nature and their ability to capture a wide spectrum of daily urban
mobility patterns (Bwambale et al., 2019; Essadeq and Janik, 2021). Similar to mobile phone
data, social media data (e.g. Twitter, Foursquare, Weibo etc.) have also been used for
the purpose of understanding individual mobility behaviour and are capable of providing
interesting insights of aggregate mobility patterns (Yan and Zhou, 2019; Ebrahimpour et al.,
2020).

Contrary to the aforementioned emerging passively collected data sources, GPS data
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offer the advantage of providing large panels of real-world observed behaviour at a high
spatio-temporal resolution. GPS data have been extensively used for transport research
during the past twenty years (Wolf, 2004) for studies of understanding daily travel time
budgets (Gallotti et al., 2015), destination (Huang and Levinson, 2015; Huang and Levinson,
2017), mode and destination (Tsoleridis et al., 2021), mode (Montini et al., 2017; Calastri et
al., 2018), trip chaining and mode (Huang et al., 2021) and route choice behaviour (Li et al.,
2005; Hess et al., 2015).

Traditional pen-and-paper trip diaries are likely to result in misreporting of trips, where
shorter trips might be omitted by the individuals, while also time spend on travelling tends
to be overstated compared to the actual one leading directly to biased (lower) VTT estimates
(Kelly et al., 2013). GPS data, on the other hand, due to their passively collected nature, do
not require individuals to recall their daily trips (Hess et al., 2015) resulting on average in a
larger number of trips per day (Forrest and Pearson, 2005). The type of the GPS device can
also have an impact on the quality of the reporting trips, with studies based on GPS loggers
noting that many individuals tend to forget them (Bohte and Maat, 2009). Contrary to that,
it is much less likely for individuals to forget their smartphone making it a more suitable
GPS device for capturing their trips (Calastri et al., 2020).

Despite those advantages, however, there are instances of missing trips in those datasets,
as well, due to signal issues or due to individuals turning off the GPS tracking from their
devices either for battery or privacy preservation (Calastri et al., 2020). GPS data provide
values at a very high resolution, however that characteristic is also one of their most important
limitations since significant pre-processing efforts are required to make the data useful for
analysis and for deriving insights on mobility behaviour (Stopher et al., 2005; Marchal et al.,
2011).

Coupled with minimum input from the participants, such as mode and trip purpose,
and an additional background household survey, GPS data have the potential of providing
significant advantages over traditional RP data. Despite their extensive use in transport
research over the past years, however, no study so far has tried to utilise such a dataset
for the estimation of nation-wide VTT estimates and for their comparison with the official
SP-based values.

3 Data

3.1 DECISIONS data

Several datasets are utilised in the current study. A behavioural model of mode choice is
estimated using the labelled GPS dataset, which was collected between November 2016-March
2017, as part of the “DECISIONS” research project aiming to understand individual transport
and energy choices. A detailed description of the dataset (referred to as DECISIONS dataset
in the remainder of this paper) is presented in Calastri et al. (2020). That survey consists of
several submodules including a trip diary captured through GPS tracking using a smartphone
application and a household survey capturing important sociodemographic information of
the participants. The GPS trip diary includes the participants’ trips during a 2-week period,
in which additional information on the purpose and the chosen mode had to be provided at
the end of each trip (semi-passively collected) as depicted in Figure 3.1 showing the interface
of the smartphone application.

The GPS diaries initially included 721 unique individuals and 56,693 observed trips
around the UK (5.7 daily trips per individual) with the vast majority of those being around
the region of Yorkshire and the Humber, and predominantly around the city of Leeds. As
a result, only trips within the region of Yorkshire were selected for the subsequent analysis
to avoid larger estimation errors for less represented areas, such as London. The spatial
distribution of trips initially included in the dataset, represented as interzonal flows between
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Figure 3.1: User interface of smartphone application used for the GPS trip diary (Calastri et al., 2020)

MSOA zones across the UK, is depicted in Figure 3.2, while Figure 3.3 shows only the
trips starting and finishing within the region of Yorkshire. The observed modes of transport
included car, bus, rail, taxi, cycling and walking.

A significant effort was undertaken during the cleaning phase with an emphasis on
detecting inconsistencies between consecutive trips, in terms of time (following trip starting
before the end of the previous trip) and space (space gaps between two consecutive trips).
Furthermore, a large number of trips were left untagged, meaning that participants did
not provide mode and purpose information, and these thus had to be removed from the
analysis. No pattern was identified for the erroneous observations or untagged trips that were
removed and those were considered as missing at random for the subsequent analysis. Unique
activity locations were defined by clustering the observed latitude/longitude coordinate pairs.
Hierarchical Agglomerative Clustering (HAC) was used for that purpose, since it does not
require the analyst to predetermine the number of clusters. A distance threshold of 200m was
selected for the observed destinations to be considered in the same cluster, which resulted
in the most plausible clusters for the sample after testing thresholds between 50-500m. As
a result from that process, home and work locations were identified based on the tagged
purposes for those locations, the time of the day that those locations were visited and the
time spent there. Trips were then assigned into tours, starting from and finishing at the
home location, per individual and for each day of the survey.

The aforementioned process allowed us to adopt a tour-based approach in terms of mode
availability per individual and choice task. In that sense, if an individual chooses car for
the first trip of the tour, then only car will be available for the remaining trips of the tour,
since it has to be returned back home. Therefore, in such a choice task only the first trip is
relevant in a mode choice context, which will include all alternatives in the choice set. The
remaining trips of the tour where car would be the only available option in the choice set
were removed from the analysis. Conversely, if any other of the available modes was chosen
for the first trip, i.e. bus, rail, taxi, cycling or walking, then car would be available for the
first trip of the tour and it would become unavailable for the remaining trips of the tour. In
such cases, car would be included as an alternative only in the choice set of the first trip.
Therefore, the utilised approach despite still being trip-based, it utilises some tour-based
feasibility constraints in an attempt to increase the behavioural realism of the model.

A significant problem inherent to RP data and especially to those derived from new
emerging data sources, such as GPS, is the lack of any information on the non-chosen
alternatives. To overcome that obstacle, the “Directions” Google API was implemented
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Figure 3.2: Spatial distribution of interzonal flows between MSOAs across the UK

Figure 3.3: Spatial distribution of interzonal flows between MSOAs across the region of Yorkshire
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providing travel times and distances for a range of modes2. Travel times/distances for both
chosen and unchosen mode alternatives were re-calculated using the API for consistency
reasons and to ensure that all values would come from the same data generation process
(Calastri et al., 2018). The requests passed on to the API were for two weeks in the future
from the date of analysis and for the same day of the week and time of day as in the initial
dataset. Two weeks in the future were chosen, so as to avoid the short-term negative impacts
of a recent traffic disruption and because the API cannot be used for past dates.

The API provided travel times for car/taxi based on traffic information for the specific
time of day when the observed trip was performed. Travel times on the shortest distance
routes are calculated for walking and cycling trips. For bus and rail trips, a timetable
approach is used and a detailed breakdown of the whole route is provided including walking
segments, waiting times and transfers between different services. That level of detail was
essential in order to quantify in-vehicle and out-of-vehicle travel times and to be in line with
the official VTT estimates. The travel times for the observed modes acquired from the API
were compared with the stated travel times for validation purposes. The mean absolute
difference across modes was very small, namely 8 mins, indicating that, on average, Google
API is capable of providing travel times comparable with the actual ones.

Travel cost was also missing for all alternatives. Car costs were calculated using the
official WebTAG specifications regarding fuel3 and operating costs (Department for Transport,
2014). Parking costs were also calculated based on the location of the observed destination
(central areas, local high streets etc.) and the activity duration there. Information on hourly
and fixed parking costs was obtained from the local authorities in the region of Yorkshire.
Fuel, operating and parking costs were added together to form the total car travel cost used
for estimation. Bus and rail costs were calculated based on a distance-based fare of the most
popular bus and rail operators in the region and a discount was applied for season ticket
holders. Finally, taxi cost was calculated using fixed, hourly and distance-based average costs
for different cities around Yorkshire.

The final dataset used for model estimation contained 12,524 trips and 540 unique
individuals, which is significantly smaller than the SP sample used for analysis in the official
study consisting of 7,692 individuals and 15 choice tasks per individual (Hess et al., 2017).
Regarding the observed/chosen modes, 47.6% were car trips, 14.6% bus, 5.2% rail, 3.2%
taxi, 3.3% cycling and 26.1% walking trips. Commuting and business trips were observed
for 19.1% and 9.7% of the sample, respectively. The majority of respondents were female
(59.6%) of an average of 40 years old, 75.4% had at least one car in their household and
finally 20.7% and 13.3% had a bus and rail season ticket, respectively. The average trip
distance across modes per choice task is 2.4 miles (3.9km) with a maximum of 61.1 miles
(98.4km) depicting the urban nature of the trips captured in this survey and the absence of
longer-distance interurban trips.

In addition to the aforementioned tour-based approach for defining mode availability,
a further step was taken to define mode consideration in order to form the final set of
alternatives actually considered during the decision making process. Several approaches
have been proposed to account for consideration of alternatives, which differ in their level of
complexity ranging from fully probabilistic choice set formation approaches (Manski, 1977;
Swait and Ben-Akiva, 1987; Calastri et al., 2018) to captivity models (Gaudry and Dagenais,
1979; Swait and Ben-Akiva, 1986) to the incorporation of penalties in the utility function
for alternatives exceeding certain attribute thresholds (Cascetta and Papola, 2001; Martinez
et al., 2009) and finally to defining consideration of alternatives in a deterministic manner
with exogenous thresholds. In the current study, the latter approach was utilised taking into
account the observed behaviour in the sample and the results obtained from the API. In
that regard, car and taxi trips were excluded for short trips below 5 mins, which was the

2More details can be found here: https://developers.google.com/maps/documentation/directions/overview
3Historical petrol and diesel prices for the survey period (November 2016-March 2017) were obtained from https://www.

racfoundation.org/data/uk-pump-prices-over-time
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minimum observed time for those modes in the sample. Bus and rail were excluded for trips
in which the API returned only walking segments due to short distances or lack of service.
Finally, regarding cycling and walking, which are modes that require physical effort, they
were excluded for long distance trips, namely 20km and 3km respectively, which were the
maximum observed cycling and walking distances in the sample. Having said that, however,
we do acknowledge that there are more behaviourally accurate ways to model alternative
consideration, e.g. using a probabilistic choice set formation approach, which could form
the basis of future research on that topic in order to assess the impact of uncovering such
behavioural mechanisms on the estimated VTTs.

3.2 NTS dataset

The estimates derived from the best-performing model estimated on the DECISIONS were
applied on the NTS dataset. The NTS is the official annual survey in the UK providing
invaluable long-term information on travel behaviour and mobility trends4. Three consecutive
years of the NTS data were used, namely 2015-2016-2017, to ensure a representative sample,
while also providing an overlap with the period of the DECISIONS survey. A non-sensitive
version of the NTS dataset was acquired5, where information on personal income was missing.
Furthermore, household income was not reported for more than 65% of participants for each
year rendering it practically unusable. In addition, since the parameters were estimated on a
dataset containing trips mostly around the region of Yorkshire (DECISIONS), it was decided
to exclude trips in London from the NTS data, due to the individuals there generally having
a different set of available modes, e.g. underground. Contrary to London, the remaining
areas around the UK have similar mode availability with regard to public transport, i.e. bus
and rail. Furthermore, an important assumption made at this point is that individuals in
Yorkshire exhibit a mobility behaviour, which is transferable to the rest of the UK.

The NTS dataset did not provide any information on travel cost for car trips and for
a large number of bus and rail trips. For the former, only information on parking cost
was provided and fuel and operating costs were imputed using the same approach as in
the DECISIONS dataset (Department for Transport, 2014). Fare cost for bus and rail was
missing or reported as zero for 49% and 13.4% of bus and rail trips, respectively, which were
performed by season ticket holders. Since it is not reasonable to assume a zero VTT for
season ticket holders, an average daily cost of a season ticket was applied for bus and rail,
based on the cost calculations performed for the DECISIONS data.

The final NTS dataset used for the analysis, excluding London-based trips, included
453,438 trips performed by 29,127 unique individuals (3.1 daily trips per individual), with
52.6% of those being female and with an average age of 50 years old. The average trip distance
is 7.9 miles (12.7km) with a maximum of 719 miles (1,157.1 km) showing a more accurate
depiction of mobility behaviour including both urban and interurban trips. Regarding the
observed modes, 80.4% were car trips, 5.1% bus, 1.2% rail, 1.2% taxi, 1.9% cycling and 10.1%
walking trips. Finally, commuting and business trips account for 17.4% and 4.0% of NTS
trips, respectively. Detailed descriptive statistics of DECISIONS and NTS trips per mode
and purpose are presented in Table 3.1.

4 Modelling framework

The VTT estimates presented in the current study are derived from a behavioural model
based on the Discrete Choice Modelling (DCM) framework (Ben-Akiva and Lerman, 1985;
Train, 2009). A DCM framework based on Random Utility Maximisation assumes that each
individual n has a preference for a specific alternative i among a set of J alternatives in a

4Details can be found here: https://www.gov.uk/government/collections/national-travel-survey-statistics
5The NTS dataset was acquired from https://beta.ukdataservice.ac.uk
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Table 3.1: Number of DECISIONS and NTS trips per mode and purpose

Mode Commuting Business Other Total
(non-work)

DECISIONS trips
Car 1,015 (8.1%) 693 (5.5%) 4,253 (34.0%) 5,961 (47.6%)
Bus 510 (4.1%) 201 (1.6%) 1,117 (8.9%) 1,828 (14.6%)
Rail 243 (1.9%) 55 (0.4%) 350 (2.8%) 648 (5.2%)
Taxi 23 (0.2%) 30 (0.2%) 352 (2.8%) 405 (3.2%)
Cycling 121 (1.0%) 19 (0.2%) 269 (2.1%) 409 (3.3%)
Walking 477 (3.8%) 214 (1.7%) 2,582 (20.6%) 3,273 (26.1%)
Total 2,389 (19.1%) 1,212 (9.7%) 8,923 (71.2%) 12,524 (100%)
NTS trips
Car 62,750 (13.8%) 16,199 (3.6%) 285,594 (63.0%) 364,543 (80.4%)
Bus 5,054 (1.1%) 406 (0.09%) 17,580 (3.9%) 23,040 (5.1%)
Rail 2,133 (0.5%) 488 (0.1%) 2,916 (0.6%) 5,537 (1.2%)
Taxi 725 (0.2%) 143 (0.03%) 4,786 (1.0%) 5,654 (1.2%)
Cycling 3,475 (0.8%) 254 (0.1%) 4,927 (1.1%) 8,656 (1.9%)
Walking 4,729 (1.0%) 487 (0.1%) 40,792 (9.0%) 46,008 (10.1%)
Total 78,866 (17.4%) 17,977 (4.0%) 356,595 (78.6%) 453,438 (100%)

choice task t represented as a latent utility Uint consisting of a deterministic part Vint and a
disturbance term ϵint. Different distributional assumptions about the disturbance term would
yield a different specification form. The most commonly used specification is the Multinomial
Logit model (MNL) assuming a type-I (Gumbel) Extreme Value distributed disturbance term
(McFadden, 1973). The deterministic part Vint consists of alternative- and individual-specific
attributes, xint and zn, respectively, as shown in Equation 3.1. The choice probabilities of an
MNL model are derived from Equation 3.2.

Uint = Vint + ϵint = f(β, xint, zn) + ϵint (3.1)

Pint(β) = eV int∑J
j=1 eVjnt

(3.2)

where β is a vector of parameters to be estimated.
The basic MNL specification assumes that individuals will have the same sensitivity to

the specified parameters. Deterministic taste variation in response to specific attributes can
be captured as shifts from their base level for specific types of individuals or choice tasks. In
the present study, deterministic heterogeneity was captured by specifying shifts from the base
level of the alternative specific constants (ASCs) for specific sociodemographic attributes.
Furthermore, shifts were also included for the base time and cost parameters of level-of-service
(LOS) variables for business and commuting trips. An elasticity specification was used for
interactions with continuous sociodemographic attributes, such as age and income, with a
separate beta being specified for respondents who did not provide any income information.

Even in the case of accounting for deterministic heterogeneity, however, it is reasonable
to assume that some degree of heterogeneity would still remain uncaptured among and/or
within individuals leading to biased estimates. Mixed Logit models (McFadden and Train,
2000) can be used to account for that, offering a more flexible specification, where parameters
are allowed to vary randomly across individuals. Mixed Logit models are considered as the
most general form of a Logit, since they are able to approximate any other specification

82



Chapter 3. Deriving Values of Travel Time estimates using emerging Revealed Preference data

(McFadden and Train, 2000). The results, however, will largely depend on the distributional
assumptions for each random parameter, a task bestowed on the analyst.

The choice probabilities in a mixed MNL model are now given by an integral over the
distribution of individuals’ sensitivities (which follow a density function ϕ(β|Ω)), where this
integral does not offer a closed form solution. Simulated log-likelihood estimation is an
alternative way of calculating the integral of choice probabilities, based on drawing random
numbers from a pre-specified distribution. From that process, the choice probabilities can be
calculated as the average over the draws (Equation 3.3) and the simulated log-likelihood can
be computed as shown in Equation 3.4.

P̂int(Ω) = 1
R

R∑
r=1

Pint(βr) (3.3)

SSL(Φ) =
N∑

n=1
ln(P̂int(Φ)) (3.4)

where βr is a random draw from a distribution with ϕ(β|Ω).
It is reasonable to assume that the impact of LOS parameters should be strictly negative,

indicating that an additional minute spent travelling or an additional unit of cost spent for a
trip will decrease the utility and therefore the choice probability for a certain mode alternative.
The specified distribution for the random LOS parameters should be able to account for that,
with the negative log-normal distribution being the most applied one for that purpose. In
the current study, the long tails of the log-normal distribution resulted in numerical issues
during estimation, prompting us to take a different approach. As a consequence, the negative
log-uniform distribution was chosen instead, with its shorter tails ensuring no problems during
estimation, similarly to the official UK study, which provided the first large scale application
of that distribution (Hess et al., 2017). Under that distribution, a variable x is log-uniformly
distributed, if y = log(x) is uniformly distributed. The log-uniform distribution is defined by
two additional parameters, a and b denoting its lower bound and spread, respectively. The
mean and the variance of the log-uniform distribution are calculated as following (Hess et al.,
2017):

E(β0) = ea+b − ea

b
(3.5)

V ar(β0) = e2a

[
e2b − 1

2b
− (eb − 1)2

b2

]
(3.6)

In total, nine parameters were specified as random, namely travel time for car, taxi, walking
and cycling, in-vehicle (IVT) and out-of-vehicle (OVT) travel times for bus and rail and
finally travel cost. Due to the multidimensionality of the integral, Modified Latin Hypercube
Sampling (MLHS) draws were chosen over Halton draws to avoid the multicollinearity issues
identified with multidimensional Halton sequences (Hess et al., 2006). For the simulated
log-likelihood estimation, 1,000 MLHS numbers rUs were drawn from a uniform distribution
for each randomly distributed β, which was specified as βLU(a,b) = ea+b∗rU . At that number
of draws, a sufficient level of stability was observed among the estimates and model fit, hence
it was decided not to increase the number of draws any further.

Finally, another issue worth addressing is the presence of heteroscedasticity in the
choices occurring from the variance differences across the choice tasks. In the official SP-
based VTT study, a multiplicative error term was used instead of the additive one in
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Equation 3.1 following the proposed specification in Fosgerau and Bierlaire, (2009), such as
Uint = Vintϵint. That specification can be simplified by taking a logarithmic transformation
as log(Uint) = log(Vint) + log(ϵint) (Fosgerau and Bierlaire, 2009), which requires a strictly
positive Vint. Instead of that specification, we tried to capture heteroscedasticity by assuming
that more uncertainty, hence variance, will exist for choice tasks/trips of longer distances.
Therefore, for those trips, the systematic part of the utility, Vint, will be smaller compared
to trips of shorter distances. In order to capture that, additional scale parameters ϕl are
specified for different distance bands l and multiplied with the utility function with one
scale parameter ϕl0 being fixed to 1.0. If the base ϕl0 refers to trips in the shortest distance
band then the remaining estimated ϕl should be smaller and ideally decreasing as distance
increases.

5 Modelling results

The outputs of the behavioural models estimated on the DECISIONS dataset, base MNL,
scaled MNL and scaled mixed MNL, are presented in Table 3.2. The scaled MNL model
showed significant model fit improvements over the base MNL of 15.5 LL units with 2
additional parameters, namely the scaling parameters ϕ. Those scaling parameters are
significantly lower than 1.0 and are decreasing as the distance band increases. Therefore they
are able to uncover significant heteroscedasticity among the choices based on distance, hence
conforming to our initial hypothesis.

The scaled MNL model was used as the initial point of departure for the mixed MNL
specification with the purpose of capturing unobserved heterogeneity. The mixed MNL model
with 9 additional parameters provided significant improvements in model fit reducing the LL
by 1166.5 units from the scaled MNL model. The adjusted ρ2 of 0.7723 also signifies that the
model is able to explain a significant portion of the variation in the dataset. The Alternative
Specific Constants (ASCs) reveal that, all else held equal, individuals of higher income or
those who are employed have a negative inherent preference for bus, while also bus is less
preferred for trips over the weekend. Interestingly, individuals have an inherent positive
attitude for rail compared to car signifying the perceived quality superiority of rail over bus,
despite both being public transport modes. Individuals have a negative preference for taxi,
although that is not the case for younger individuals below 30 years old. Individuals of lower
education (with no undergraduate degree), which can be considered a proxy of income, have
a significantly higher dispreference for taxi. Furthermore, there is a negative preference for
cycling and an even higher higher dispreference from unemployed individuals, but less so
from male individuals and students. Cycling is also more preferred by both the lowest and
the highest personal income bands. Finally, all else held equal, individuals and specifically
those of younger ages and students have a positive inherent preference for walking.

The importance of capturing non-linear sensitivities with a Box-Cox transformation (Box
and Cox, 1964) of travel time and cost attributes for a more accurate VTT estimation has
been stated before in the literature (Koppelman, 1981; Gaudry et al., 1989). A common
approach is to have either linear or logarithmic specifications of time and cost attributes in
the utility function assuming a linear increase of sensitivities or a decreasing one, respectively,
as the attribute values increase. Such a specification can be limiting as it assumes that one of
those two extreme cases exist in the sample. On the other hand, a Box-Cox transformation
provides a more generalised specification as it allows the analyst to capture non-linearities
across the whole spectrum of possible values. Using a Box-Cox transformation, an attribute x

is specified as xλ−1
λ

with λ being an estimable parameter capturing the degree of non-linearity.
If λ is not statistically different than 1.0, then the sensitivities for that particular attribute
are indeed increasing linearly. If λ is not statistically different than 0, then the sensitivities
take a logarithmic form leading to a steep increase at first for small values followed by a
decreasing rate for high attribute values (decreasing marginal disutilities). In most cases, the
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estimated λ will be between 0 and 1.0, however empirical evidence shows that it can also
take values above 1.0 capturing a slow increase in sensitivities for small values and followed
by a steeper increase for higher values (increasing marginal disutilities) as shown in Gaudry
et al. (1989).

In the current study, a Box-Cox transformation was specified for all LOS attributes in
order to assess the estimated λ parameters and their behavioural meaning. For the final
model, it was decided to keep a Box-Cox transformation for car, bus, taxi, cycling, walking,
OVT bus and OVT rail, which resulted in λ = 0.4581 significantly different than 1.0 and
0 capturing significant decreasing marginal disutilities, but still not at the extreme of a
logarithmic specification. Contrary to the above travel times, a linear specification was used
for rail IVT. A behavioural meaning of those specifications and the respective uncovered
sensitivities could be that individuals are more sensitive for higher in-vehicle travel times
when travelling by rail compared to travelling by car, for example. That can be attributed to
an increased discomfort caused by longer distance rail trips or to an increased time restriction
for the rest of the daily schedule imposed by the longer distance trip, which prompts the
individuals to choose faster and more expensive services. Commuters and business car
travellers have also increased time sensitivities due to the importance of arriving on time
for those activities compared to non-work trips. Increased car time sensitivities were found
for trips during the am peak period (7.00-10.00), while the opposite was true for the pm
period (16.00-19.00), relative to all other time periods of the day. That denotes the increased
time restrictions of morning trips and the need to arrive on time to the various destinations
(mostly work locations), compared to evening trips, most of which are either leisure, shopping
or returning trips to home. The decreased time sensitivity for car in the pm period could also
denote the individuals’ desire to take that extra time to diffuse themselves from the stress of
work in the privacy of their car. That difference in time sensitivities between am-pm periods,
however, was not evident for public transport and taxi trips. More specifically, individuals
showed the same increased sensitivities in both periods for bus and rail trips possibly due
to similar crowding levels in those modes from people going to and returning from work
resulting in similar unpleasant conditions. For taxi trips, individuals had a lower sensitivity
for pm compared to am period, but still higher relative to all other periods of the day.

A Box-Cox λ not statistically different than 0 was found for travel cost, which led us to
keep a logarithmic specification of travel cost for the final models presented here signifying
the presence of cost damping effects in the sample (Daly, 2010). That also signifies that cost
sensitivity decreases at a faster rate than the time sensitivities, which will result in higher
valuations for larger potential time savings, i.e. in longer distance trips (De Borger and
Fosgerau, 2008; Small, 2012). Different combinations of personal and household income were
specified as elasticities for the LOS parameters, with only the elasticity of personal income and
OVT for bus and rail resulting in statistically significant estimates for the MNL models, at
least. The sign of the parameter is positive, meaning that as income increases, the sensitivity
to OVT also increases, which is behaviourally sensible. That OVT-income elasticity, however,
became statistically insignificant in the mixed MNL model. Finally, all of the β parameters
of the log-uniform distributions, i.e. the spread, were found to be statistically significant
capturing significant inter-individual heterogeneity.

Table 3.2: Outputs of base MNL and mixed MNL models

Fit statistics Base MNL Scaled MNL Scaled Mixed MNL
Log-likelihood (0) -14,974.45
Log-likelihood (model) -4,535.41 -4,519.92 -3,353.41
Adjusted ρ2 0.6941 0.6950 0.7723
AIC 9,162.81 9,135.83 6,820.82
BIC 9,504.84 9,492.73 7,244.64
Number of parameters 46 48 57

Continued on next page
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Table 3.2 – continued from previous page
Parameter Estimate (Rob. t-rat. 0) [Rob. t-rat. 1]

Base MNL Scaled MNL Scaled Mixed MNL
Number of individuals 540
Number of observations 12,524
Parameter Estimate (Rob. t-rat. 0) [Rob. t-rat. 1]

Base MNL Scaled MNL Scaled Mixed MNL
Alternative-specific constants
Constant Bus -0.0929 -0.26 0.3195 (0.80) -0.0905 (-0.20)
Constant Bus shift -1.1902 -1.44 -1.4445 (-1.46) -4.4972 (-5.77)
for personal income>50k
Constant Bus shift for weekend -0.7165 (-4.05) -0.8230 (-3.99) -1.1573 (-4.19)
Constant Bus shift 0.7378 (1.08) 0.7066 (0.94) 0.7765 (1.43)
for unemployed individuals
Constant Rail 2.4421 (2.21) 3.1648 (2.58) 2.3179 (2.23)
Constant Taxi -1.8075 (-4.09) -1.3129 (-2.37) -1.8398 (-2.91)
Constant Taxi shift for male -0.6434 (-2.10) -0.7479 (-2.19) -0.5739 (-1.32)
Constant Taxi shift for age 18-24 1.5014 (4.67) 1.8120 (4.66) 2.8605 (6.74)
Constant Taxi shift for age 25-29 0.9324 (2.64) 1.1385 (2.79) 2.0238 (3.86)
Constant Taxi shift -1.3979 (-2.46) -1.5940 (-2.44) -2.4137 (-2.66)
for lower education levels
Constant Taxi shift -0.7975 (-2.18) -0.9311 (-2.26) -1.3510 (-2.35)
for personal income 40k-50k
Constant Cycling -4.0728 (-7.85) -4.1352 (-7.21) -4.3336 (-6.71)
Constant Cycling shift for male 1.1047 (2.69) 1.2663 (2.80) 2.0747 (4.89)
Constant Cycling shift 0.8020 (1.93) 0.9510 (2.08) 2.0946 (4.97)
for personal income 10k-20k
Constant Cycling shift 3.5150 (3.49) 4.0077 (3.61) 5.7908 (4.96)
for personal income 75k-100k
Constant Cycling shift -2.4544 (-1.69) -2.9037 (-1.72) -2.9202 (-2.89)
for not reported income
Constant Cycling shift for weekend -0.6604 (-2.01) -0.7803 (-2.06) -1.5423 (-2.51)
Constant Cycling shift for student 1.1559 (2.23) 1.4223 (2.49) 2.8486 (5.57)
Constant Cycling shift -1.1964 (-2.22) -1.5084 (-2.59) -5.5566 (-10.02)
for unemployed individuals
Constant Walking 3.0294 (5.73) 3.1564 (5.34) 3.4426 (4.95)
Constant Walking shift for age 18-29 0.6964 (2.62) 0.6948 (2.55) 0.8225 (2.82)
Constant Walking shift -0.7563 (-3.47) -0.7843 (-3.43) -1.1039 (-4.09)
for lower education levels
Constant Walking shift for weekend -0.5704 (-2.87) -0.6310 (-2.90) -0.8050 (-3.11)
Constant Walking shift for student 0.7277 (2.37) 0.8039 (2.53) 1.1111 (2.92)
LOS parameters
Travel time Car (Box-Cox) -0.2426 (-3.02) -0.1680 (-2.33) –
Travel time Car shift for commuting -0.1478 (-2.92) -0.1709 (-2.95) -0.2347 (-3.37)∗

Travel time Car shift for business -0.0408 (-0.97) -0.0308 (-0.65) -0.1180 (-1.79)∗

Travel time Car shift for am peak -0.1637 (-3.08) -0.1817 (-3.07) -0.2315 (-3.48)∗

Travel time Car shift for pm peak 0.1282 (2.47) 0.1279 (2.43) 0.1720 (2.41)∗

IVT Bus (Box-Cox) -0.1281 (-3.19) -0.1363 (-3.32) –
IVT Bus shift for am-pm peak -0.0998 (-3.33) -0.1010 (-3.29) -0.0902 (-2.51)∗

IVT Rail (linear) -0.0080 (-0.66) -0.0105 (-0.71) –
IVT Rail shift for am-pm peak -0.0327 (-2.91) -0.0366 (-2.65) -0.0472 (-2.54)∗

Travel time Taxi (Box-Cox) -0.4525 (-3.22) -0.5299 (-3.40) –
Travel time Taxi shift for am peak -0.1709 (-2.71) -0.1918 (-2.85) -0.2877 (-3.70)
Travel time Taxi shift for pm peak -0.1423 (-3.24) -0.1346 (-2.96) -0.1305 (-2.31)
Travel time Cycling (Box-Cox) -0.3343 (-3.15) -0.3478 (-3.22) –
Travel time Walking (Box-Cox) -0.6774 (-3.26) -0.6116 (-3.32) –
Box-Cox lambda for Travel time 0.5424 (5.25) [-4.43] 0.5942 (5.91) [-4.03] 0.5932 (5.57) [-3.82]∗
for Car, Bus, Taxi, Cycling, Walking
OVT Bus (Box-Cox) -1.1484 (-5.59) -1.2007 (-5.57) –
OVT Bus for income non respondents -1.1920 (-5.14) -1.2663 (-5.05) -1.4745 (-6.62)
OVT Rail (Box-Cox) -1.7365 (-3.50) -1.8308 (-3.44) –

Continued on next page
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Table 3.2 – continued from previous page
Parameter Estimate (Rob. t-rat. 0) [Rob. t-rat. 1]

Base MNL Scaled MNL Scaled Mixed MNL
OVT Rail for income non respondents -1.4853 (-3.04) -1.5539 (-2.93) -1.4900 (-4.48)
Box-Cox lambda for OVT Bus, OVT Rail 0.1452 (1.59) [-9.35] 0.1884 (1.97) [-9.59] 0.3131 (4.67) [-10.25]
Income elasticity for OVT Bus, OVT Rail 0.0880 (2.26) 0.0962 (2.36) 0.0572 (1.11)
Travel cost (log) -0.8362 (-10.73)) -0.9428 (-10.43) –
Random LOS parameters
a of Travel time Car (Box-Cox) – – -0.1553 (-0.60)∗

b of Travel time Car (Box-Cox) – – -3.0508 (-5.60)∗

a of IVT Bus (Box-Cox) – – -0.2598 (-0.97)∗

b of IVT Bus (Box-Cox) – – -2.9434 (-5.64)∗

a of IVT Rail (linear) – – -0.9137 (-7.59)∗

b of IVT Rail (linear) – – -7.4859 (-4.01)∗

a of Travel time Taxi (Box-Cox) – – 0.9373 (4.86)
b of Travel time Taxi (Box-Cox) – – -1.7604 (-8.33)
a of Travel time Cycling (Box-Cox) – – 2.2121 (8.32)
b of Travel time Cycling (Box-Cox) – – -3.6775 (-8.09)
a of Travel time Walking (Box-Cox) – – -0.6679 (-1.81)
b of Travel time Walking (Box-Cox) – – 0.8886 (6.97)
a of OVT Bus (Box-Cox) – – 1.3095 (6.15)
b of OVT Bus (Box-Cox) – – -1.8183 (-7.20)
a of OVT Rail (Box-Cox) – – 0.0579 (0.22)
b of OVT Rail (Box-Cox) – – 1.1181 (7.41)
a of Travel cost (log) – – -1.8271 (-4.53)∗

b of Travel cost (log) – – 3.0789 (5.83)∗

Scale parameters
Scale ϕ1 for trip distances <3km – 1.0000 (–) 1.0000 (–)
Scale ϕ2 for trip distances 3km-20km – 0.8313 (16.50) [-3.35] 0.8031 (14.84) [-3.64]
Scale ϕ3 for trip distances >20km – 0.6805 (8.54) [-4.01] 0.6560 (7.09) [-3.72]

6 Values of Travel Time estimates

The estimated parameters of the mixed MNL model (see Table 3.2) were applied to the
NTS dataset, which provides mobility-related information on a sample of the UK population.
Acknowledging the fact that the NTS dataset is still a sample of the UK population, we further
adjusted the resulting VTTs using appropriate distance-based factors in order to calculate
VTT values representative for the population of the UK (with the exclusion of London).
Distance correction was performed using mode-specific information on travel distances for
work trips obtained from the Census of 2011. The process is detailed below and also depicted
in Figure 3.4.

Sample level VTT calculation

VTTs were computed using sample enumeration over the car, bus and rail trips of the
NTS sample. VTTs are calculated as the relative importance of one unit of change in time
relative to one unit of change in cost. In mathematical terms, that is represented as the ratio
of the partial derivatives of travel time over travel cost, as shown in Equation 3.7.

∗Estimated parameters used for the VTT calculations
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Figure 3.4: Comparison approach between SP and GPS-based VTTs

V TT =

∂Vi

∂tti

∂Vi

∂tci

= ∂Vi

∂tti

∂tci

∂Vi

(3.7)

Sample enumeration is required because the attributes of travel time for car and bus
and travel cost for all three modes enter the VTT calculation due to their specification
in the respective utility functions. Taking car travel time as an example, its specification
using a Box-Cox transformation leads to a partial derivative of βcar

tt tt_car(λ−1). Furthermore,
travel cost, specified using a logarithmic transformation, leads to a partial derivative of βtc

1
tc

.
Therefore, the VTTs are computed for each choice task of the sample taking into account
their respective trip attributes of travel time and cost for the chosen mode.

Deriving representative VTT for different distance-bands

In the guidance provided by DfT, the VTT values were both adjusted based on covariates
included in the NTS data and were further weighted based on trip distances of different
synthetic household income bands acknowledging the impact of distance on the VTT (Zhang
and Laird, 2014; Batley et al., 2019). In the current study, due to the absence of any
information relating to the distance weighting per income band, only the first correction
was performed. According to that, distance-based factors were derived based on the relative
importance of the mode-specific distance bands from the Census 2011 (excluding London)
over the NTS distance bands and applied on the sample level VTTs (Equation 3.8). For that
purpose, the NTS car, bus and rail trips were allocated to the same eight distance bands as
the ones in the Census, namely 0-2km, 2-5km, 5-10km, 10-20km, 20-30km, 30-40km, 40-60km
and over 60km, and the trip distributions over those distance bands were calculated for both
datasets. The distance-based correction factor wt for trip t was computed as wt =

percC
dt,i,p,m

percNT S
dt,i,p,m

,

where percC
dt,i,p,m

and percNT S
dt,i,p,m

are the Census and the NTS distributions of distance band i
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Table 3.3: Distance band distributions and distance-based correction factors per mode

Distance band Census NTS (%) correction
2011 (%) factor

Car
0-2 km 13.52 7.65 1.77
2-5 km 21.83 20.57 1.06
5-10 km 22.67 21.48 1.06
10-20 km 21.97 23.31 0.94
20-30 km 9.04 11.19 0.81
30-40 km 3.93 5.03 0.78
40-60 km 3.18 5.89 0.54
Over 60 km 3.87 4.88 0.79
Bus
0-2 km 12.39 3.91 3.17
2-5 km 40.22 30.13 1.34
5-10 km 28.18 37.17 0.76
10-20 km 11.91 23.32 0.51
20-30 km 2.67 4.08 0.65
30-40 km 1.00 0.91 1.11
40-60 km 1.05 0.34 3.08
Over 60 km 2.57 0.15 16.74
Rail
0-2 km 3.55 – –
2-5 km 5.74 2.97 1.93
5-10 km 10.84 9.09 1.19
10-20 km 17.62 22.64 0.78
20-30 km 15.75 18.63 0.85
30-40 km 12.10 17.28 0.70
40-60 km 16.77 10.08 1.66
Over 60 km 17.65 19.31 0.91

for trip t of purpose p and mode m, respectively 6. Due to the lack of any additional explicit
information regarding distances for non-work trips, the same correction factors were applied
in those cases, as well. The distance band distributions of the NTS and the Census 2011 per
mode and purpose, as well as the respective correction factors applied are presented in Table
3.3.

V TTp,m =
∑

t(wtV TTt,p,m)∑
t wt

(3.8)

where V TTt,p,m and V TTp,m are the VTT for choice task t, purpose p and mode m and the
weighted average VTT, respectively.

Due to the complex specification of the utility function and the resulting VTT calculation,
we rely on simulation for the calculation of standard errors for the different VTTs and not
on the most commonly used approach of the Delta method (Daly et al., 2012). Confidence
intervals and standard errors for the estimated VTTs were calculated using multivariate
normal draws based on the estimated parameters and the covariance matrix of the behavioural
model (Train, 2009). Specifically, 3,000 draws for the estimated parameters were drawn and

6Details can be found here: https://www.nomisweb.co.uk/census/2011/dc7701ewla
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simulated VTTs were calculated for each of the 3,000 samples. At that number of draws
the distance-adjusted means of the simulated VTTs per mode and purpose had only small
discrepancies from V TTp,m, so no further draws were deemed necessary for the analysis. The
95% confidence interval was then calculated for the resulting simulated VTT distribution
per mode and purpose using the percentile interval method and the standard errors were
calculated as the standard deviations of the simulated VTT distributions. Finally, the t-stat
of the difference between the estimated VTT means were calculated based on Equation 3.9.

t − statdiff = V TTGP S − V TTSP√
s.e.2GP S + s.e.2SP

(3.9)

VTTs in the official study were segmented into distance bands of 0-20 miles, 20-100
miles and over 100 miles, however, those were later revised by the DfT to 0-50 miles, 50-100
miles, 100-200 miles and over 200 miles (Batley et al., 2019). The behavioural model in the
current study was estimated on a dataset where the maximum trip distance was 61.1 miles.
Despite that, we decided to apply the estimates on NTS trips of longer distances, as well,
to present a more complete comparison across the different distance bands with the official
VTT study. As a result, the same distance bands of <20 miles, 20-100 miles and over 100
miles have been used. In addition to not having long distance trips in the estimation data,
the application data of NTS also includes only a small number of medium and long distance
trips, namely 8.09% of trips are above 20 miles, 2.16% above 50 miles and 0.78% above 100
miles. The same issue of a small number of long distance NTS trips was tackled in the official
SP study by conducting additional intercept sampling favouring trips of longer distance and
specifically business trips (Batley et al., 2019), however that was not possible in our case.
Therefore, we should acknowledge the fact that calculated VTTs for medium (20-100 miles)
and longer distances (above 100 miles) might contain higher estimation errors. Furthermore,
when comparing the derived VTTs of the current study with the official ones, the exclusion
of London is an important factor to be taken under consideration, as well. As a consequence,
in the current study there is no “Other PT” as a mode alternative, which was included in
the official VTTs and mainly referred to London-specific mode alternatives, such as light rail
and the underground. The exclusion of London-based trips from the NTS data, also has an
impact on the total sample size for our GPS-based VTTs, which is much smaller than the
NTS sample size used in the official SP study.

The official VTT estimates based on the latest nationwide UK SP survey (adjusted for
2016 prices) are presented in Table 3.4, both overall and distance segmented values, and are
compared with the respective GPS-based VTT estimates of the current study. In the official
VTT study, bus was not included as an alternative for business trips, hence we decided to
follow the same approach here, as well, for consistency reasons. The overall VTT values,
which are to be used for appraisal, show only negligible differences with the official ones,
despite that only a limited number of longer distance trips was used in the calculation of the
GPS-based VTTs. The distance segmented values are mainly used for reporting purposes
(Daly et al., 2014), however, interesting findings can be extracted by their examination.
Firstly, there are very small differences between the GPS-based and SP-based VTTs for
the shortest distance band below 20 miles, and there is a higher estimation accuracy on
the VTTs of that distance band due to the larger sample size in the NTS data. Another
reason for these small discrepancies could be the that the SP surveys were able to sufficiently
capture individual mobility behaviour in such hypothetical scenarios of small trip distances.
On the contrary, starker differences are observed across the remaining VTTs for medium to
long distance trips, which to a large extent can be attributed to the small number of trips
in those bands. Nonetheless, those significant differences could also be attributed to the
inherently more unpredictable nature of longer trips that is more challenging to be sufficiently
accounted for in the hypothetical setting of an SP survey. As it is evident from Table 3.4,
the GPS-based values might be able to capture a more behaviourally accurate depiction of
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Table 3.4: Official VTT estimates per mode, purpose and distance band based on the latest SP survey (Batley
et al., 2019) and the respective derived GPS-based VTT estimates (£/hour) (2016 prices)

Distance band Commute trips Other trips Business trips
All modes All modes All modes Car Other PT Rail

Official SP values
All distances 11.69 5.34 19.01 17.46 8.69 28.80
<20 miles 8.63 3.78 8.67 8.56 8.69 10.54
20-100 miles 12.67 6.77 16.74 16.53 8.69 30.23
>=100 miles 12.67 9.67 29.85 26.84 8.69 30.23
GPS-based values
All distances 12.90 5.40 17.13 16.60 – 33.43
<20 miles 11.24 4.68 11.16 11.20 – 9.78
20-100 miles 30.52 15.67 36.59 36.21 – 43.78
>=100 miles 75.57 24.29 82.25 70.12 – 187.96

the VTTs, which increase significantly for longer distance trips capturing the individuals’
increased time restrictions during their daily activity schedule, as it is also supported by the
literature. Having said that, however, it is important to note that a more balanced sample
would be required in terms of trip distances in order to draw more robust conclusions about
that.

The standard errors of the estimated mode- and purpose-specific VTT means (across
all distances) and their 95% confidence intervals are presented in Table 3.5 along with the
t-statistic of the difference of the means between the GPS-based and the official SP-based
VTTs. Overall, standard errors of the GPS-based VTTs are higher and that can be attributed
to a higher degree of heterogeneity captured in our study compared to the SP survey or it
could also simply be due to the smaller sample size. For all VTTs presented in Table 3.5,
we cannot reject the null hypothesis of difference from the official valuations, at the 95%
confidence level. Furthermore, the GPS-based VTTs follow the general trends of the SP
values. Values for rail are higher than car and bus, with the latter has the lowest values
overall. Furthermore, business VTTs are higher than commuting and other non-work trips.
Commuting values are in general higher than non-work trips, however, the opposite was
found for SP bus and GPS rail VTTs for non-work trips. Bus VTT for commuting trips
show the largest difference compared to the rest, followed by other non-work rail VTTs, but
those are still not statistically significant differences. Finally, in most cases, the GPS-based
VTTs are higher than the SP-based ones conforming with previous evidence in the literature
(Wardman et al., 2016), however the downward hypothetical bias for SP is less significant in
that case.

The distributions of the simulated VTTs are also presented in the box plots in Figures
3.5-3.7. In those plots, the impact of the smaller sample size for rail trips becomes evident as
it leads to wider distributions highlighting the uncertainty around the estimation of those
VTTs, contrary to the more compact distributions of commuting and non-work VTTs.

7 Discussion

The results of this study clearly demonstrate that the argument of RP data collection
limitations of the past does not hold anymore in the current age of data revolution. Semi-
passively collected emerging data sources have the ability to provide the analysts with large
panels of observed mobility behaviour at a high spatio-temporal resolution and at a relatively
low cost. Those types of datasets, in that case a GPS trip diary coupled with a background
household survey, have the ability of providing robust behavioural models and VTT estimates
statistically equal with official national values derived from traditional SP surveys.
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Table 3.5: Confidence intervals and standard errors of the mean estimates for the overall official VTT estimates
per mode and purpose (Batley et al., 2019; Hess et al., 2017) and the respective derived GPS-based VTT
estimates (£/hour) (2016 prices)

Mode-Purpose VTT (St.error) [95% C.I.] t-stat diff
SP-based values GPS-based values

Car
Commuting 12.20 (2.05) [8.18-16.23] 13.52 (2.68) [9.17-19.78] 0.39
Business 17.46 (2.04) [13.47-21.45] 16.60 (4.60) [9.94-27.40] -0.17
Other 5.12 (1.84) [1.53-8.72] 5.45 (1.28) [3.50-8.32] 0.15
Bus
Commuting 3.29 (0.48) [2.34-4.23] 5.46 (1.14) [3.59-7.97] 1.75
Other 3.40 (0.43) [2.56-4.24] 3.99 (0.88) [2.60-5.94] 0.60
Rail
Commuting 12.95 (0.91) [11.17-14.73] 12.41 (3.28) [7.26-20.00] -0.16
Business 28.80 (2.49) [23.91-33.68] 33.43 (9.11) [19.82-55.09] 0.49
Other 9.05 (0.64) [7.80-10.30] 14.26 (3.94) [7.32-23.39] 1.31

Figure 3.5: Box plots of GPS-based Car VTTs per purpose
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Figure 3.6: Box plots of GPS-based Bus VTTs per purpose

Figure 3.7: Box plots of GPS-based Rail VTTs per purpose
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It may be noted though that the overall sample size of the finally utilised estimation
dataset was smaller compared to the SP survey, as a large share of trips had to be removed
from the original DECISIONS data during the cleaning phase in order to exclude inconsistent,
incomplete and untagged trips. Furthermore, the trips recorded in the DECISIONS dataset
were mostly urban trips, while the official SP survey included longer distance trips, as well.
The aforementioned limitations, however, can be easily overcome in nationally important
studies by designing a more comprehensive data collection process. Those limitations can
be partly justified since the DECISIONS dataset was not collected with the purpose of
estimating nation-wide VTT values in mind. Despite those limitations, the study has two
key findings which are of importance to transport planners and policy makers:

1. The study demonstrates that the overall VTT estimates were similar to the official
SP-based values used for appraisal, even with a smaller sample size. As a result, there
is a smaller hypothetical bias in the official SP study compared to the usual RP/SP
documented in the literature across a range of studies (Wardman et al., 2016).

2. Segmenting the VTTs by distance bands, larger discrepancies start to become evident
among longer distance bands with the SP-based VTTs being smaller in most cases. That
hints to a downward bias for SP surveys potentially originating from the hypothetical
nature of the longer trips, which made them difficult to comprehend. In contrast, the
smaller differences of VTTs for shorter distance bands could mean that the design of
the SP survey was sufficient enough to capture realistic mobility behaviour.

The results hence demonstrate that by harnessing recent technological advances in data
collection, transport planners and policy-makers can make a successful shift to RP data
sources, which have more behavioural validity compared to SP. Furthermore, the findings of
the current study also demonstrate that smaller sample sizes derived from GPS smartphone
data could be sufficient for the estimation of behaviourally accurate VTTs for the whole
population. That finding could lead to a more frequent data collection process for the
purpose of updating the national VTT estimates, compared to the so far slower update rate
of traditional SP-derived VTTs (approximately every 10-20 years for most countries with
some exceptions, e.g. in Sweden and Norway).

GPS-derived VTTs could also be used by policy-makers to complement the official SP-
derived VTTs, since the more frequent GPS studies could help to detect any significant
deviations from the previously SP-based estimated VTTs due to income increase or other
unforeseen circumstances that could occur in the meantime, such as economic recession or the
introduction of new disruptive modes/technologies into the transport market. Technologies
like online shopping and its ever-increasing popularity especially in a post-Covid world,
electric vehicles, shared ride modes (Uber, Lyft etc.) and policy initiatives like Mobility as a
Service are constantly changing the transport sector, which has become more volatile than
ever before. Transport is rapidly changing and the usual update rate of nation-wide official
VTTs might be too slow nowadays to provide insights into the current trade-offs or even
capture the sensitivities on new technologies in hypothetical scenarios and in a behaviourally
realistic manner. As a result, new transport projects might not be properly evaluated if the
appraisal is based on individual trade-offs that no longer represent the current behaviour of
the target population.

8 Conclusions

The current paper presents a study of deriving VTT estimates in a manner comparable
to the official values currently used in appraisal. Though the level of detail included in
the initial GPS trip diaries provided challenges during the data cleaning phase, there were
significant advantages in terms of accuracy. For example, the time-stamped geo-locations
provided the ability to better capture individual mobility behaviour by making it possible to
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get precise travel times for the chosen modes and to extract travel times between specific
latitude/longitude pairs (opposed to between TAZ centroids as done in traditional RP survey
data). It also enabled the estimation of more behaviourally rich models by offering a more
comprehensive representation of tours, where even very short stops and/or trips have been
included.

Despite those advantages, it is worth noting that limitations do exist in the utilised
dataset, as well. Information on trip attributes were obtained several years after the initial
data collection period from an API that does not provide historical network information,
hence the actual traffic conditions for each trip can not be retrieved. Furthermore, additional
information on weather conditions and other intrinsic information that would influence both
the formation of the consideration set and the choice itself are not accounted for in the
present study. Future studies using GPS data for VTT estimation should aim to incorporate
a probabilistic choice set formation framework to account for the inherent latent choice sets
in RP datasets. An immediate extension of the current study is to analyse the impact of
such a framework on the estimated VTTs and assess their discrepancies from the official
SP-based VTTs. Further trip-specific attributes can be incorporated in the analysis to enrich
the estimation dataset regarding historical weather conditions, hilliness/slope and the type of
land uses both around home locations and also along the route to the destination of each
choice task.

The findings in the current study can provide practitioners and policy makers with
additional confidence when it comes to using new emerging data sources for future nationwide
VTT studies. The small differences across the overall VTT estimates, regardless of distance
bands, showcase that RP data captured through new emerging data collection methods –GPS
in this case– can provide behaviourally reasonable VTT estimates that are in line with the
official SP-based values currently used in appraisal. Of course, a reader may ask why RP
data should be used if the results are no different from SP data. The simple answer to this
question is that RP data provides the truth, and the fact that the findings in this case are in
line with the SP results thus arguably also serves as a validation of SP rather than RP and
a result of the rigorous work of the researchers involved in the official study. Furthermore,
our results are achieved using a much smaller sample size during estimation, compared to
the SP study, which can lead to a reduced cost or more frequently performed surveys in
general. Performing a large scale GPS-based RP study at the country level will result in a
significantly more accurate representation of individual mobility behaviour, capturing choices
over a large number of real-life scenarios, independent of the researcher’s assumptions, while
also resulting in less fatigue for the respondents.

This study comes at a time where ubiquitous sensing data sources are steadily gaining
ground in transport research and provides empirical evidence for their further adoption
into the field of practice. Nonetheless, more studies are required offering similar practical
applications, even in small sample sizes, before we can see a departure from the current state
of practice that has been dominant over the last several decades.
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Chapter 4

Accounting for distance-based
correlations among alternatives in the
context of spatial choice modelling
using high resolution mobility data

Panagiotis Tsoleridis1, Stephane Hess1 and Charisma F. Choudhury1

Abstract

Accounting for similarity among alternatives is of paramount importance for having unbiased
estimates and for ensuring behaviourally accurate substitution patterns when making demand
forecasts. Capturing similarity in a spatial context is a challenging task and the literature
has failed to provide a clear answer as to how the presence of similar alternatives would
influence the demand for a specific destination, i.e. acting as complements or competitors.
The basic approach of relying on Nested Logit models that discretise space into a number
of disjoint nests containing alternatives of the same geographical area ignores the influence
of alternatives belonging in other areas/nests. We argue that such an approach will lead
to uncaptured correlations in a spatial context, since as according to Tobler’s First law of
Geography "everything is related to everything else". On the other hand, relying on more
complex error structures quickly leads to computational issues, while also relying on non-
trivial analyst assumptions. In the present paper, we propose an alternative approach, where
a Cross-Nested Logit (CNL) modelling framework with a flexible correlation structure is used,
where space is treated as continuous and the allocation parameters are distance-based. The
proposed structure is applied in the context of stand-alone destination choice models, as well
as joint models of mode and destination choices of shopping trips. A smart-phone panel
survey dataset with high resolution location traces from Leeds, UK, is used to benchmark
the improvements of the proposed model against traditional ones. Results indicate that in
addition to the improvements in model fit, the proposed CNL specification is able to uncover
interesting findings about individual mobility behaviour which can be leveraged to make better
planning decisions.

1Choice Modelling Centre, Institute for Transport Studies, University of Leeds
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1 Introduction

Individuals produce trips in order to participate in activities and fulfil their everyday needs
(Bhat and Koppelman, 2003). The location and accessibility of those activities play an
important role in the trips that are produced. For example, individuals with car availability
in their household could be more likely to choose a major suburban shopping centre with
an abundance of parking spaces to cover their grocery shopping needs. On the other hand,
individuals with no available car might choose a nearby shopping destination or a shopping
destination in the city centre with good public transport accessibility. The activity locations
and the modes available to access them could thus have important environmental, social and
economic implications (Brundtland Commission, 1987). Understanding the relative impacts
of different factors on the mode and destination choices is therefore an important first step
for formulating sustainable planning and policy measures - for instance devising targeted
measures to improve accessibility and reduce car dependency.

Destination choice models are of paramount importance for demand forecasting, as they
provide insights on individual preferences for certain locations depending on the time of day,
activity purpose, and mode availability, amongst others. Much of the work in destination
choice modelling focuses on discretionary activities (shopping, leisure, etc.), since those
activities give the individual the freedom to choose from a range of possible locations on a
day-to-day basis. However, given the large numbers of available alternatives and high level of
heterogeneity associated with choices, modelling the choice of destinations for discretionary
activities presents a number of significant challenges for the transport system. The choice of
transportation mode is also considered to play an important role in the choice of destination
and vice versa. Transportation models used in practice often consider destination choice to
precede mode choice, commonly referred to as steps 2 and 3 in a traditional 4-step demand
model (Ortuzar and Willumsen, 2011). There is empirical evidence, however, suggesting that
the direction of causality between the two choice dimensions is less than clear and it could
depend on trip characteristics, level of service variables and individual socio-demographics
(Chakour and Eluru, 2014; Keya et al., 2021). Since there is not a general consensus as to
which choice dimension comes first, it would be safer to examine the two decision processes
in a joint fashion acknowledging the complex interrelations between them (Ben-Akiva, 1973;
Ozonder and Miller, 2019).

Mathematical travel behaviour models relating to questions of where (destination choice
models) and how (mode choice models) individuals travel have been the primary tool for
quantifying the relative impact of factors affecting individual behaviour and forecasting
future demand for the transport system and related services. Early modelling applications in
spatial contexts focused on the use of spatial interaction models, mainly aggregate Gravity
models (Haynes and Fotheringham, 1985), which draw analogies from Newton’s law of gravity,
assuming that, all else held equal, larger (in terms of population, employment opportunities,
etc.) and closer (in terms of distance, travel time or cost) areas are going to attract more
trips. Since its inception, the Gravity model has been extensively used in aggregate transport
models (Ortuzar and Willumsen, 2011) and studies of Regional/Urban Economics (Duranton
et al., 2015), in general. A non-parametric extension of the gravity model, called the radiation
model, was proposed by Simini et al. (2012).

Daly (1982) formally extended the specification of the Gravity model by re-formulating
it as a Multinomial Logit (MNL) model (McFadden, 1973) and making it applicable for
disaggregate analysis. In that specification, the utility function is split into variables of travel
impedance and variables measuring the attraction of a destination, called size variables. Due
to the vast number of elemental locations, e.g. specific stores in the context of shopping
destinations, some form of aggregation usually needs to take place, such as at the level of
traffic analysis zones. Size variables are used in order to best represent the utility of elemental
alternatives within the aggregated destination alternatives (Kristoffersson et al., 2018). Since
then, most studies focusing on destination choice have relied on structures belonging to the
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family of random utility maximisation (RUM) models, such as MNL, and have relied on
Daly’s specification with the inclusion of size variables.

One of the main principles governing the behaviour explained by an MNL model is the
IIA (independent and irrelevant alternatives) principle. This postulates that no unobserved
correlation exists among alternatives in the choice set, hence a change in the attributes of
one alternative will proportionately affect the demand for the other alternatives in the choice
set. As in many other areas of application, this assumption is unlikely to be valid in the
context of destination choice, or indeed joint mode and destination choice. The key issue
then relates to how to capture the correlation among alternatives.

Capturing unobserved correlation among alternatives requires the use of further extensions
of the MNL model. One approach involves the addition of the same multivariate random
term in the utility function of alternatives that are assumed to share common unobserved
characteristics. That model, known as the Error Components (EC) model, has the limitation
of requiring simulation during estimation, thus significantly increasing the computational
cost, while also often being subject to identification issues (Walker et al., 2007). A different
approach that has the advantage of having a closed form solution and not requiring simulation
is the GEV family of models (McFadden, 1978), which includes a wide range of models,
such as the Nested Logit (NL) and the Cross Nested Logit (CNL) models (Small, 1987;
Vovsha, 1997). The NL model (Williams, 1977; Daly et al., 1978) has arguably been the most
prominent GEV specification utilising a tree structure in which the choice set is partitioned
into a finite set of nests, where each nest consists of similar/substitute alternatives.

Similarity among alternatives is highly dependent on the choice context itself, and this
affects the decision on how to treat it. In a mode choice context, similarity among alternatives
such as car, public transport and walking, can depend on the level of comfort, privacy and
flexibility that each mode alternative can provide to the decision maker. In many cases, the
use of a simple Nested Logit structure (McFadden, 1973; Williams, 1977; Daly et al., 1978)
is then appropriate. A more complex topic of study when it comes to correlation between
alternatives has been that of route choice, where similarity can occur with overlapping links
between two different route alternatives with prominent examples including the C-Logit
(Cascetta et al., 1996) and Path Size (Ben-Akiva and Bierlaire, 1999) models. Similarities in
a destination choice context, however, can be much more complex, since they can depend on
public transport accessibility, availability of parking spots or other specific amenities, the
existence of other competing neighbouring locations, etc. and a range of characteristics that
the analyst might not be in a position to measure explicitly. Furthermore, there is not a clear
consensus in the literature whether similar nearby locations would increase the utility of a
destination, due to agglomeration effects, or decrease its utility due to spatial competition
(Bhat et al., 1998; Schüssler and Axhausen, 2007; Bernandin Jr. et al., 2009).

A simple NL model can still be used of course, where, in the context of shopping store
choice, Suarez et al. (2004) utilised an NL specification grouping location alternatives
into nests of hypermarkets that resulted in a better model fit than a base MNL model
and in significant substitution patterns among alternatives belonging within the same nest.
Nonetheless, the required division of destinations into mutually exclusive nests is arbitrary,
and can be counter-intuitive, with for example heightened correlation between two destinations
at opposite sides of a hypermarket cluster and with no correlation between two adjacent
destinations that are in different clusters. Ideally, an analyst would thus want to capture the
correlation between each pair of destinations, as in a Paired Combinatorial Logit (PCL) model
(Chu, 1989), which is a specification of a CNL model in which the unobserved correlation
among alternatives is captured by specifying nests for each pair of alternatives in the choice
set. An alternative i can belong to every nest by a certain percentage to be estimated, called
the allocation parameter αi,ij, measuring the allocation probability of alternative i into the
nest with alternative j. The αs should be between 0 and 1 and they should add up to 1.0
for every target alternative i. The Spatially Correlated Logit (SCL) model of Bhat and Guo
(2004) adapts the allocation parameters of the PCL specification to account for similarities
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among adjacent traffic analysis zones (zones sharing a common boundary) in a residential
location choice context. A similar SCL-based specification was also proposed in Bekhor and
Prashker (2008) in the context of shopping destination choice. An important limitation of
those approaches is that the spatial correlations among non-adjacent zones are assumed to
be zero. The alternative of working with each possible pair of alternatives of course quickly
becomes difficult in terms of the number of parameters to estimate.

All of the aforementioned specifications share a common characteristic; they present
some form of space discretisation either in the form of hypermarkets or based on adjacency.
Discretising space, however, can quickly lead to a wide range of different potential nesting
structures to be examined, such as nests based on administrative area or geographical location
relative to the city centre etc. More importantly, it fails to treat space as continuous, which
would be more behaviourally plausible, since setting arbitrary borders on a map would
hardly have any real behavioural meaning, especially in the context of discretionary activity
location choice. In fact, Tobler’s first law of geography (Tobler, 1970) postulates that in a
spatial context “everything relates to everything else, but near things are more related than
distant things”. The study of Sener et al. (2011) based their proposed methodology around
that principle by addressing the main limitation of Bhat and Guo (2004) and relaxing the
allocation parameters to account for spatial correlation across all alternatives in the choice set.
Their proposed SCL specification, however, failed to provide any significant improvements
in terms of model fit compared to a base MNL model in their empirical application. In
addition to that, the main limitation of the specification in Sener et al. (2011) is the large
number of nests that had to be specified, which has to be equal to the number of all possible
combinations of two alternatives in the same nest, hence J !

(J−2)!(2)! , where J is the total
number of alternatives in the choice set. In a more recent study, Weiss and Habib (2017),
moving away from GEV models, proposed an EC model to account for spatial unobserved
correlation among alternatives in a park & ride location choice model. They based their
methodology on Tobler’s principle, however, due to the high computational cost, the choice
set was constrained to include only the five closest alternatives from the origin of each trip,
a simplification that is fair to assume in the context of park & ride location choice, but
not behaviourally reasonable in the context of shopping destination choice. Therefore, the
first limitation that the current study will aim to address is to propose a more efficient
nesting structure suitable for uncovering unobserved correlations among destinations without
imposing an analyst-specified grouping of alternatives, while being flexible enough to treat
space as continuous.

Our discussion so far has focused on the treatment of correlation between destinations
alone. However, as discussed earlier, destination choices are often made jointly with mode
choices, and the simultaneous modelling of the two raises additional issues in the treatment
of the correlation between alternatives. In the context of a joint mode and destination choice
modelling, while most of the early applications revolved around the use of MNL models
(Richards and Ben-Akiva, 1974; Adler and Ben-Akiva, M., 1976; Southworth, 1981), in recent
years more advanced modelling specifications have been put forward, mainly NL models. Two
main approaches have been used for the specification of the nesting tree, one with mode at
the upper level and destination at the lower, known as Mode-over-Destination (MoD), and
another structure where destination is at the upper level and mode at the lower level, known
as Destination-over-Mode (DoM ) (Figure 4.1). An MoD nesting structure implies that the
errors in destination choice are smaller than in mode choice, hence the choice of destination
is more deterministic than the choice of mode, while the opposite is true for DoM. Those
NL specifications are simply a way of representing the error distribution across the choice
dimensions and do not imply a sequential decision making process, as was emphasised in
Daly et al. (1978). Each one of the two aforementioned nesting structures has to be tested
for a specific application context (Ozonder and Miller, 2019) and there is empirical evidence
suggesting that it could be influenced by the socio-cultural characteristics of the sample
(Newman and Bernandin Jr., 2010; Kristoffersson et al., 2018), while it could also change
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(a) Destination over Mode NL structure (b) Mode over Destination NL structure

Figure 4.1: NL structures for joint mode and destination choice model

through the years due to network and administration changes (Fox et al., 2014; Fox, 2015).
Independent of whether mode is nested above destination or destination above mode,

additional levels of nesting could be introduced to capture differential levels of correlation
between different groups of destinations, just as in a NL model for destination choice alone.
The limitations of this have already been made clear in our discussion of destination choice
models. A further limitation arises in NL models of multiple choice dimensions, such as
a joint mode and destination model. In such models, the NL nesting structure imposes
constraints on the captured correlation. For example, in a MoD NL specification, full
correlation is only explained along the mode dimension and two alternatives sharing similar
unobserved characteristics based on their location will not be nested together leading to
uncaptured correlation and hence to biased estimates. Similarly, in a DoM NL specification,
only correlation among alternatives sharing the same location can be explained. Hess and
Polak (2006) demonstrated the benefits of a CNL structure for such multi-dimensional choice
processes in a joint model of airport, airline and access mode choice, where a joint alternative
is allowed to belong to all three nests of the different choice dimensions at the same time. The
αj,ms in that study were fixed to 1/3 assuming an equal proportion of each alternative falling
within each nest. A CNL specification allows for a simultaneous capturing of correlation
across all choice dimensions and for all alternatives, where, as in a PCL model, the degree
of membership of an alternative j to a specific nest m in CNL is captured by specifying an
additional allocation parameter αj,m, with 0 ≤ αj,m ≤ 1 and ΣM

m=1αj,m = 1. The advantage
of CNL over PCL is that it provides a much simpler nesting structure without the need of
specifying nests for each pair combination of alternatives. CNL models have, however, not
gained much attention in destination and joint mode and destination choice modelling, with
Schüssler and Axhausen (2009) going as far as arguing that CNL models are not suitable
to be used in spatial choice modelling that usually includes a large number of alternatives,
mainly due to the increased estimation time forcing the analyst to work with only a subset
of the initial dataset. To the best of the authors’ knowledge, the study of Ding et al. (2014)
and more recently the study of Fox et al. (2019) are the only examples presenting a CNL
application for joint mode and destination choices, with a nesting structure inspired by the
study of Hess and Polak (2006), where an alternative is allowed to belong to one destination
and one mode nest at the same time with αdest and αmode, respectively (Figure 4.2). In the
study of Ding et al. (2014), the authors followed an approach similar to the study of Hess
and Polak (2006) keeping the αj,ms fixed to 0.5 to avoid numerical issues during estimation.
Nonetheless, their proposed CNL specification failed to outperform a base MNL and a DoM
NL model in terms of model fit. In the study of Fox et al. (2019), a grid search approach
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Figure 4.2: Existing CNL nesting structure for a joint mode and destination choice model (Ding et al., 2014)

was employed for finding the best combination of αj,ms, but still their CNL model was not
able to outperform a simpler NL model.

The aforementioned CNL specifications are still susceptible to behavioural limitations
that could be a potential cause for their low performance. Specifically, they do not take into
account how the existence of neighbouring destinations might affect the allocation parameter
to a specific destination nest. Therefore, the second limitation that the current study will aim
to address is to propose a CNL structure in which a joint mode and destination alternative,
instead of belonging to a mode nest and a single destination nest, belongs with a non-zero
probability to every destination nest, but still with a higher probability to its own nest.
Spatial proximity, measured as the distance among destinations, can be utilised as a means
of understanding if and how the remaining destination nests might impact the allocation
parameters.

The current study aims to propose a novel, efficient and operational CNL structure for
a destination and a joint mode and destination choice model of shopping trips. That is
achieved by proposing a distance-based parameterisation of the allocation parameters and
by treating space as continuous, which is a novel addition to spatial CNL models. The
proposed specifications are empirically tested on trips captured through smartphone GPS
tracking and performed across the region of Yorkshire, UK. More specifically, the purpose of
the destination model is to analyse the individual behaviour for choosing an intermediate
shopping destination S between a previous origin O and a next destination D, while the joint
model aims to capture both the location of that intermediate shopping destination, as well
as the modes used to travel to that and to the following location.

The remainder of the paper is as follows. In the second section, the methodological
frameworks of the proposed model specifications are thoroughly explained, while in the
following section, the data used in the practical application is described. In the fourth section,
the modelling outputs and their interpretations are highlighted. Finally, in the last section
the conclusions of the study are summarised and recommendations for future research are
suggested.

2 Methodology

We start our model description by looking at the destination choice scenario alone, i.e.
without mode choice. Let us consider a situation where an individual faces a finite set of D
independent and mutually exclusive destinations with specific attributes xd for destination
d in a specific journey. The utility for a destination is a latent construct comprised by a
deterministic utility Vd and a disturbance term ϵd. The deterministic part of the utility is a
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combination of individual- and alternative-specific attributes as shown in Equation 4.1.

Ud = Vd + ϵd = f(β, xd) + ϵd (4.1)

Assumptions regarding the disturbance term can yield different specifications. In a CNL
model, we make use of a Generalised Extreme Value (GEV) distribution for the error term,
allowing us to capture flexible correlation structures between the errors. Specifically, an
alternative can now belong to multiple nests, and the unconditional choice probability for
alternative d is given by a sum over all S nests, each time using the product of the probability
of choosing an alternative within nest s and the conditional probability of choosing alternative
d within nest s as shown in Equation 4.2. The choice probability of nest s and the choice
probability of alternative d conditional on choosing nest s are shown in Equations 4.3 and
4.4 (Train, 2009):

P (d) =
S∑

s=1
P (s) P (d | s) (4.2)

P (s) = (Σj∈As(αsje
Vj )

1
λs )λs

ΣS
k=1(Σj∈Ak

(αkjeVj )
1

λk )λk

(4.3)

P (d | s) = (αsdeVd)
1

λs

Σj∈As(αsjeVj )
1

λs

(4.4)

where As is the set of alternatives in nest s, P (d) is the unconditional choice probability of
alternative d, P (s) is the probability of choosing nest s, P (d | s) is the conditional probability
of choosing destination d in nest s, λs is the structure parameter for nest s, and αsd is the
allocation parameter of alternative d for nest s. We have that 0 < λs ≤ 1 ∀s, 0 ≤ αsd ≤ 1 ∀d, s,
and ∑S

s=1 αsd = 1 ∀d.
In our proposed CNL specification for the destination choice model, we define as many

nests as there are destinations, such that S = D. The key question now relates to the
specification of the allocation parameters. Rather than freely estimating these parameters, or
fixing them to a specific value, we define the allocation parameters to be a function of distance.
Specifically, let the X − Y coordinates for destination d be defined by the projected latitude
and longitude Xd and Yd. We then impose a one-to-one mapping between destinations and
nests, such that nest s uses the coordinates of the sth destination. This then allows us to
calculate a straight-line distance between the geographic location of a specific destination d

and the location of a given nest s as distds =
√

(Xd − Xs)2 + (Yd − Ys)2, where we thus have
that distds = 0 when d = s.

Using this notation, we then specify the allocation parameters as:

αsd = eγdistdistds

ΣS
k=1e

γdistddk
(4.5)

where the additional γdist parameter captures the impact of distance. If γdist = 0, each
alternative falls into each nest with the same proportion, while the expectation is that
γdist < 0, such that an alternative falls more into nests closer to its own location, with the
highest allocation into its home nests.
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Figure 4.3: Proposed CNL nesting structure for destination choice model

The allocation is thus a function of the straight line distance, but where each destination
alternative can belong to every nest with a non-zero probability, captured by the estimated
αsd ∈ A, where A is the matrix of allocation parameters (Figure 4.3). The diagonal elements
in A refer to the allocation parameters of the alternative to its own nest, labelled here as the
home nest. In order to achieve that, the product of dsd ∈ D, where D is the symmetrical
distance matrix of all destinations, and the respective γdist parameter was normalised using a
logit transformation as defined in Equation 4.5.

A simplified example is presented in the following where a distance matrix D of five
destinations is computed, where dsd are measured in km. The distance matrix D is then
multiplied by the γdist parameter. Assuming that γdist = −1, the logit transformation of the
product yields the matrix A of the allocation probabilities αsd. In A, the columns represent
the destination alternatives d, while the rows represent the nests s. The sum of each column
is equal to 1.0 and the diagonal elements have the highest αsd per column. Furthermore, the
most isolated destination, namely alternative 3, which has a mean distance of 4 km from the
remaining destinations, has the highest diagonal element, α3,3, in A. In contrast, alternative
5 has the lowest mean distance from the remaining destinations of 2.1 km and α5,5 is the
lowest diagonal element in A.

Dγdist =


0 2 6 3 0.5
2 0 7 5 2
6 7 0 2 5
3 5 2 0 3

0.5 2 5 3 0

 γdist
logit−−−→

trans.

A=


0.5574 0.1059 0.0022 0.0401 0.3373
0.0754 0.7823 0.0008 0.0054 0.0753
0.0014 0.0007 0.8730 0.1090 0.0037
0.0277 0.0053 0.1181 0.8054 0.0277
0.3381 0.1059 0.0059 0.0401 0.5561


The role of γdist is to dictate what percentage of the alternative will be allocated to

the home nest and what percentage to the neighbouring ones. If γdist < −1, then the logit
transformation will result in larger diagonal elements in A meaning that alternatives will
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Figure 4.4: Proposed CNL nesting structure for the joint choice model

belong more to their own nest compared to the neighbouring ones. On the contrary, if
−1 < γdist < 0 then the alternatives will be more evenly distributed across the neighbouring
nests and their own nest and if γdist = 0, the alternatives would be equally allocated across
all nests. Finally if γdist > 0, the alternatives would be allocated with a higher probability
to the nests that are located at the largest distance, which is not behaviourally sensible. In
order to guarantee their positive sign and avoid the latter case, the γdist parameters were
specified using a negative exponential transform, as γdist = −eγ∗

dist .
Although the above specification on its own might be sufficient enough to capture distance-

based correlation among alternatives in the destination choice model, the joint mode and
destination model would require further adjustments to simultaneously capture correlations
among all choice dimensions. In that context, each alternative represents a joint choice of a
destination d and a mode m. To adapt the previously described formulation in that joint
choice context, the nesting structure is defined as depicted in Figure 4.4 including nests
for the destination as well as the mode choice component. Each joint mode-destination
alternative is allocated into all of the destination nests, as previously described, and into one
mode nest. The new combined allocation parameters still need to add up to 1.0, such that∑S

s=1 αjoint
sd + αjoint

mode = 1 ∀d. This is achieved by scaling down the distance-based allocation
parameters to each destination nest (see Equation 4.5), with

αjoint
sd = αjoint

dest αsd (4.6)
and

αjoint
mode = 1 − αjoint

dest (4.7)

We only require the additional constraint that 0 ≤ αjoint
dest ≤ 1, which can be achieved via a

logistic transform, thus estimating αjoint∗
dest and using the transform

αjoint
dest = eαjoint∗

dest

eαjoint∗
dest + 1

(4.8)

We now turn to the specification of the utility functions themselves. In order to account for
shopping destination attraction and to combine that with mode preferences, the specification
used in Kristoffersson et al. (2018) based on the size variable specification in Daly (1982) was
utilised. According to this, the systematic utility Vmd for mode m and destination d, presented
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in Equation 4.9 (linear-in-the-parameters in that case), has three components: a component
capturing the sensitivities related to the level of service (LOS) variables depending on the
mode and destination, a component capturing the destination’s quality, and a component
capturing the destination’s attraction.

Vmd =
∑
r∈R

brxrmd +
∑
q∈Q

bqyqd + ϕlog(Sd) (4.9)

The first component includes mode- and destination-specific variables that best describe
the trip to destination d with mode m, such as travel time and cost for motorised modes
and distance for active travel, as well as ASCs capturing inherent preferences for specific
modes/destinations and sociodemographic interactions. With this, xrmd is the r-th LOS
variable for mode m and destination d. The second component captures the impact (positive
or negative) that certain characteristics could have on the utility of a specific destination, such
as available parking space for car users, where yqd is the q-th quality variable for destination
d.

The final component in Equation 4.9 is considered independent from the rest of the utility
function and aims to capture the attraction or the “size” of a destination irrespective of
the LOS variables to that place or the decision maker’s socio-demographic characteristics.
The log-size parameter ϕ is usually fixed to 1.0 assuming that utilities and subsequently
the choice probabilities are not affected by the zoning discretisation that usually forms the
destination alternatives. Kristoffersson et al. (2018), however, showed that allowing the ϕ to
be freely estimated can result in estimated values different than 1.0, leading to a behavioural
interpretation on the formation of destination alternatives. Specifically, if ϕ < 1, the model
captures significant correlation among the utilities of the elemental alternatives within each
aggregate destination alternative. Therefore, in that sense the ϕ has a similar role as the
nesting parameter λ (Kristoffersson et al., 2018). Finally, in addition to capturing unobserved
correlations among the alternatives with the proposed CNL structure, observed correlations
can also be captured with the inclusion of attraction attributes of neighbouring destinations
in the size variable of destination d.

The size variable Sd is a composite measure of the size of destination d and br, bq and ϕ
are the respective parameters to be estimated. The composite size measure Sd is defined as:

Sd = a1d +
∑
r>1

exp(γr)ard (4.10)

where a1d is the attraction attribute used as a base with a γ parameter normalised to 1.0,
ard are the additional attraction attributes of destination d relative to the base attribute,
and γr are the parameters to be estimated capturing the effect of those attributes on the
attraction of the target destination. The γr parameters are constrained to be positive by
using an exponential transform.

3 Data

3.1 Background

The data used in the current study was collected as part of the research project “DECISIONS”
carried out by the Choice Modelling Centre at the University of Leeds, between November
2016 and March 2017. The project aimed at observing individual decisions over a range
of in-home and out-of-home activities with an emphasis on travel over a 2-week period. A
detailed description of the survey is presented in Calastri et al. (2020). The trips were
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Figure 4.5: User interface of smartphone application used for the trip diary (Calastri et al., 2020)

captured through GPS tracking using a smartphone application at a high spatial and temporal
resolution. The chosen mode and purpose of the trip were provided by the participants at the
end of each trip (Figure 4.5). Important socio-demographic information was captured from
an additional household survey, giving the advantage of combining high resolution mobility
data with participant characteristics, such as income, car ownership etc.

3.2 Initial data processing

The empirical analysis in the present paper focuses on shopping trips and the study area
was defined as the region of Yorkshire. Only residents of the city of Leeds were selected,
assuming they will have a similar knowledge of their surrounding shopping destinations (Thill,
1992). The purpose of the analysis is to understand where the individuals are more likely
to go for shopping with respect to the previous and the following activity locations. The
locations of the previous origin O and the following destination D were considered fixed and
the modelling analysis focused on the intermediate shopping destination S. Therefore, from
the initial dataset, the shopping trips and their following trips were chosen for the subsequent
analysis. The final dataset used in the analysis contained 1,541 shopping trips and an equal
number of following trips performed by 270 unique individuals.

The shopping and their following trips were combined to create trip chains, which formed
the basis of the analysis performed. Most trip chains, 66%, were from the origin O to the
intermediate shopping destination S and then to the following destination D, which will be
referred to as O-S-D trip chain. The remaining trip chains, 34%, were from the origin O to S
and then back to O, which will be referred to as O-S-O trip chains. Shopping trips included
three subcategories of shopping, namely grocery (82%), clothes (12.7%), and other types of
shopping (5.3%), mainly for durables. The vast majority of following trips were trips going
home (61.5%), while there was a small percentage of 9.3% of a consecutive shopping trip to
a different shopping destination. The alternative modes of transport included car, public
transport (PT) – as a combination of bus and rail – and walking.

The first step in the analysis involved the identification of home and work locations per
individual, which were not reported initially. The nature of the GPS dataset requires a
different way of analysis compared to a traditional dataset, where the destinations are usually
defined at the traffic analysis zone (TAZ) level. In the current GPS dataset, the destinations
of each trip are represented by a unique pair of latitude/longitude coordinates. Consequently,
the identification of unique activity locations included the clustering of all destinations per
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individual using Hierarchical Agglomerative Clustering (HAC) with a 200 metres distance
threshold. HAC was chosen as it does not require knowledge or a priori assumptions about
the number of clusters. The distance threshold was chosen in order to group together in
the same cluster points that have a small average straight distance difference among them
(100 metres approximately). In total, 6,361 unique clusters were created. Following the
clustering analysis, the enumeration of all trip purposes for the tagged trips per cluster
was performed. At this point, potential home and work locations were identified as the
clusters with the majority of “home” and “work” trips, respectively. In the rare cases where
more than one cluster per individual had the same number of home/work trips, home/work
locations were assigned to the clusters where the individual spends most of her time during
night/early morning (22:00-06:00) and during working hours (09:00-17:00), respectively. The
geographical boundary of those clusters was then identified at the Middle Super Output Area
(MSOA), Lower Super Output Area (LSOA), and local authority level using the 2011 Census
boundaries2.

3.3 Definition of general shopping areas

In order to take advantage of the high spatial resolution provided by the GPS data, we
decided not to limit our analysis to the usual UK geographical boundaries, such as Middle
layer Super Output Areas (MSOA) zones. For that reason, the destination alternatives were
defined by clustering the observed elemental shopping destinations. HAC was implemented
with a 800 metres distance threshold between the shopping trip destinations. The centroids
were defined as the mean of the latitude/longitude coordinates of the points in each cluster
and were then used to replace the original destination points of each shopping trip belonging
to the cluster. Therefore, the main goal was to choose an appropriate distance threshold that
would result in a small average distance difference between the original destination points
of a cluster and its centroid. Because of that and after trying different distance thresholds
between 500m-1,000m, a 800m distance threshold was selected resulting in small average
distance differences of around 4-5 minutes of walking (assuming a 5 km/h average walking
speed). A 400m buffer was defined around each cluster centroid, as a final step of creating
the aggregate shopping destinations used in the analysis.

In the case of overlapping buffers, especially in Leeds city centre, the polygons within
them were assigned to their closest cluster centroid (cf. Figure 4.6). This approach was used
to ensure that each elemental shopping destination (in the form of polygons/individual stores)
would belong to a single aggregate alternative (in the form of the shopping areas defined).
This procedure resulted in the creation of 176 general shopping areas around the region of
Yorkshire, capturing 76% of the retail polygons, as defined in OpenSteetMaps (OSM), located
within the Local Authority of Leeds. It is safe to say that shopping locations exist in other
places within the study area, not captured by that process, mainly in areas further away from
the city of Leeds. For the purpose of this study, however, it is assumed that those shopping
locations have not been considered by the individuals in the sample or that the individuals
are not aware of them, hence they have not been included in the subsequent analysis (Thill,
1992).

Shopping clusters were also grouped with regard to their location relative to Leeds city
centre. In total, 9 general areas were defined, namely Leeds city centre, North-East-South-
West Leeds and North-East-South-West Yorkshire as shown in Figure 4.7. The number of
trips per mode combination and general area are presented in Table 4.1. Most clusters are
located around the city of Leeds, while Leeds city centre attracts the vast majority of trips
with a preference for more sustainable modes. The remaining areas around Leeds attract a
similar number of trips, while from the remaining region of Yorkshire, West Yorkshire, which
is the area surrounding the city of Leeds, attracts the highest number of trips. Trips in the
rest of the Yorkshire region (North-East-South) are far less frequent, and mostly performed

2Details can be found at https://census.ukdataservice.ac.uk/use-data/guides/boundary-data.aspx
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Figure 4.6: Allocation of retail polygons located within overlapping shopping clusters

Figure 4.7: General area of shopping destinations in the study area

by car.

3.4 Data enrichment

Additional steps towards data enrichment were necessary to add further information that
was important for the specification of a behavioural model. Initially, the dataset contained
only the self-reported travel times/distances for the chosen modes, however, the values of
the unchosen mode alternatives were also required. For that reason, the Bing maps route
API3 was used in order to obtain the travel times and distances for all the modes (car,
bus/rail, walking) and for the trips starting from each initial origin to each shopping cluster

3Details can be found here: https://docs.microsoft.com/en-us/bingmaps/rest-services/routes/
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Table 4.1: Chosen mode and general locations

General location C-C C-PT C-W PT-C PT-PT PT-W W-C W-PT W-W Total
Leeds city centre 17 (1.1) – 6 (0.4) – 28 (1.8) 24 (1.6) 16 (1.0) 59 (3.8) 173 (11.2) 323 (21.0)

Leeds north 120 (7.8) – 3 (0.3) – 5 (0.3) 4 (0.3) 7 (0.5) 1 (0.07) 123 (8.0) 264 (17.1)
Leeds east 181 (11.7) – 12 (0.8) – 4 (0.3) 3 (0.2) 6 (0.4) – 20 (1.3) 226 (14.7)

Leeds south 159 (10.3) – 2 (0.1) 1 (0.07) 4 (0.3) 1 (0.07) 4 (0.3) 1 (0.07) 24 (1.6) 196 (12.7)
Leeds west 197 (12.8) – – – 4 (0.3) 2 (0.1) 5 (0.3) 4 (0.3) 66 (4.3) 278 (18.0)

Yorkshire north 28 (1.8) – 3 (0.2) – 1 (0.07) – 1 (0.07) 1 (0.07) 8 (0.5) 42 (2.7)
Yorkshire east 5 (0.3) – – – – – – – – 5 (0.3)

Yorkshire south 27 (1.8) – 1 (0.07) – – – 4 (0.3) – 2 (0.1) 34 (2.2)
Yorkshire west 149 (9.7) 1 (0.07) 4 (0.3) 2 (0.1) – 1 (0.07) 2 (0.1) – 17 (1.1) 176 (11.4)

Total 880 (57.1) 1 (0.07) 32 (2.1) 3 (0.2) 46 (3.0) 35 (2.3) 45 (2.9) 66 (4.3) 433 (28.1) 1541 (100)
C: Car, PT: Public Transport, W: Walking

and from each shopping cluster to each following destination. For consistency reasons, the
travel times/distances of the chosen mode alternatives were recalculated as well, an approach
also followed in Calastri et al. (2018). The total number of queries passed to the API was
1,627,296 (1,541 trips × 176 shopping destinations × 3 modes × 2 for the current and the
subsequent trip). After that stage, deterministic mode availability was assigned based on
logical checks of the results obtained from the API, such as cases of PT trips where the API
returned only walking segments, or in specific cases where car was the chosen mode and the
participant had to return it back home. For that latter case, special attention was given to
the stated size of the party that participated in the trip in order to understand whether the
participant of the survey was the actual driver. As such, if the individual was the only person
in a car trip, then she was assigned as the car driver and all the remaining modes would
become unavailable only in the case where the following trip was to return back home. For
other trip purposes for the following trip, it is assumed that the individual is free to consider
all the available modes. On the contrary, if there were more than 1 people participating in
a car trip, then we could not safely assume that the individual was the driver and all the
modes would remain available for the following trip, as well.

Car travel cost was computed using the UK’s official Transport Appraisal Guidance
(WEBTag) specifications for fuel and operating costs (Department for Transport, 2014).
Parking cost was also calculated for trips with destinations in central areas/high streets
across the region of Yorkshire based on information on hourly or fixed parking costs provided
by the respective Local Authorities. For PT, an average distance-based fare was used for
bus and rail and a total PT cost was calculated per trip based on the distance of the leg
performed by bus or rail. A discount was also applied for trips made by season ticket holders.

3.5 Locational variables

Characteristics of the shopping clusters and their respective surrounding areas were also
defined. Parking and retail store areas in a buffer zone of 400m around the shopping cluster
centroids were calculated using data extracted from OSM. The population of those areas
(LSOA level) was extracted from the Office of National Statistics (ONS). Average residential
price statistics for the LSOAs in Yorkshire, during the years 2016-2017, were acquired from
the ONS, and their average was computed around shopping and home locations. Based on
this, a variable was defined to analyse whether the immediate environment around the home
location will have an influence on the behaviour of the individual, e.g. whether people living
in richer areas are willing to go shopping in poorer areas or vice versa.

Shopping store variability among the elemental shopping destinations within an aggregate
destination alternative was captured using Shannon’s entropy (Hd) (Equation 4.11) (Shannon,
1948; Whittaker, 1949), measuring the percentage of the area covered by a specific store
type t ∈ T inside a shopping destination d from a total number of N different store types.
Shannon’s entropy has been widely used to quantify land-use variability mostly in studies
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related to walkability (Brown et al., 2009; Mavoa et al., 2018) and urban sprawl (Effat and
Elshobaki, 2015). In the current study, it is used to examine whether an increased variability
in store types adds to the attraction of a shopping destination, since that would enable
the completion of more shopping activities within the same trip. All of the aforementioned
locational variables were calculated as a weighted average of the respective values of the
geographical zones that are overlapped by the 400m buffer zones from each shopping centroid.

Hd = −
∑T

t=1 (pt ln (pt))
ln N

(4.11)

The locations of the most popular retailers per shopping type in the UK market (Rhodes,
2018; Kantar world panel, 2020; Retail Economics, 2020) were also identified across the study
area and a binary dummy variable was created for each based on whether they are located
within a 400m buffer radius around a shopping centroid.

In order to capture agglomeration effects and the impact of neighbouring shopping
destinations on the attraction of a target shopping destination, the same information on
the aforementioned locational variables was extracted for additional buffers between 400-
1,000m, 1,000-2,000m and 2,000-5,000m from each cluster centroid, similar to the study of
Kristoffersson et al. (2018).

3.6 Direction of travel

The effect of the location of the intermediate shopping destination S, in relation to the
straight distance between O and D, was also captured by calculating the angles between
OS − OD and SD − OD. The a priori assumption is that, all else held equal, shopping
destinations that require a significant deviation from the straight OD path would be less
favoured compared to others. For that purpose, a dummy variable was defined, only for
O-S-D trip chains, capturing the impact on utility of a shopping destination located with an
angular deviation greater than 90o from either O or D.

4 Results

In this section, we present the results for the destination choice model followed by the
mode-destination model, before looking at the calculation of elasticity measures from the
model. We contrast the results against those from MNL and NL models.

4.1 Destination model outputs

Five separate models were estimated for destination choice, namely a base MNL, two NL
models, a PCL model and finally a CNL model based on the proposed nesting structure.
The fit statistics of those specifications as well as the estimated nesting parameters are
presented in Table 4.2. Detailed estimated parameters for the proposed CNL specification
our depicted in Table 4.3. The models were estimated using a choice set of 176 destination
alternatives. The NL-dest-1 specification refers to a nesting structure with 9 nests according
to the area of the destination, defined as Leeds city centre, north-east-south-west Leeds and
north-east-south-west Yorkshire (see Figure 4.7). The NL-dest-2 specification presents a finer
segmentation of the destination alternatives into 24 nests according to the administrative
area or the city the destinations belong to (Figure 4.8). A further segmentation with an even
higher resolution, such as based on the MSOA zones, would have resulted in having a nesting
structure with many degenerate nests, i.e. nests with just a single alternative, hence it was
not attempted. The CNL-dest follows the proposed nesting structure with a single generic

116



Chapter 4. Accounting for distance-based correlations among alternatives in the context of spatial choice
modelling using high resolution mobility data

Figure 4.8: Segmentation of destination alternatives based on their administrative area

distance multiplier for the allocation parameters. Finally, a PCL specification having every
pair of alternatives in a separate nest was also estimated with a nesting structure of 15,400
nests, in total. Distance based allocation parameters were specified in a similar way to the
CNL-dest.

The destination choice model presented is conditional on the choice of mode, therefore
level-of-service attributes relevant to the chosen mode are used in the utility functions. Socio-
demographic variables were included in the model and interacted with the LOS variables
as shifts from their base level. Both NL models result in structural parameters (λ) that
were outside the theoretically acceptable range (i.e. above 1), meaning that the utilised NL
nesting structures were not able to capture any meaningful correlation among the alternatives.
Only the first NL model outperforms the MNL model according a likelihood ratio test,
but the model is of course itself rejected given the findings for λ. That result provides
support to our initial hypothesis that segmenting space into discrete areas/nests, even in
more finer segmentations, is not an efficient approach for capturing unobserved correlation
among destinations. In contrast, the proposed CNL framework was able to accomplish that
with an estimated λ equal to 0.8222 and significantly different than 1.0. The proposed
CNL model also provides significant improvements in terms of model fit compared to the
MNL model with -5.976 LL units for 2 additional parameters. A PCL specification was also
estimated resulting in a worse fit compared to the proposed CNL model (LL=-3,163.735) and
with a longer estimation time by a factor of 10. According to the Ben-Akiva & Swait test
(Ben-Akiva and Swait, 1986), which is suitable for comparing two non-nested models together,
the proposed CNL specification is statistically superior to the PCL model (p-value=0.006).
An EC specification could not be estimated due to computational reasons and the large
number of alternatives in the choice set.

In general, the estimated parameters were behaviourally reasonable with the expected
signs. The ASCs were defined using destination 1 as the base alternative, which represents
the most central shopping mall of Leeds, and constants for the remaining alternatives were
specified based on the 9 general areas of the alternatives, as described in Section 3.3. The
remaining destinations in the city centre are less likely to be chosen compared to destination
1 (base alternative), while destinations in the remaining study area are even less favourable,
especially for modes other than car. All of the specified level-of-service parameters of the
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Table 4.2: Fit statistics and nesting parameters of destination choice models

Fit statistics MNL-dest-base NL-dest-1 NL-dest-2 PCL-dest CNL-dest
Log-likelihood (0) -7,961.332
Log-likelihood (model) -3,166.947 -3,163.624 -3,165.307 -3,163.735 -3,160.971
Adjusted ρ2 0.5972 0.5975 0.5973 0.5973 0.5977
AIC 6,413.89 6,409.25 6,412.61 6411.47 6,405.94
BIC 6,627.5 6,628.2 6,631.56 6635.76 6,630.23
Number of parameters 40 41 41 42 42
Number of individuals 270
Number of observations 1,541
Nesting parameters λ Estimates (Rob. t-ratio w.r.t. 1.0)
λgeneric – 1.1267 (1.92) 1.0848 (1.53) 0.4502 (-2.55) 0.8222 (-3.99)

chosen mode were statistically significant validating our approach of explaining destination
choice conditional on the choice of mode. The LOS variables of travel time, travel distance
and travel cost were specified using a Box-Cox transform as xλ−1

λ
in order to capture possible

non-linear sensitivities. As a result, statistically significant non-linearities were found for PT
time, walking distance and travel cost suggesting that individual sensitivities are decreasing
as those variables are increasing. On the other hand, only linear sensitivities were found
for car time. Decreasing travel time and walking distance sensitivities were found as the
shopping duration increases, while decreasing cost sensitivities were found as personal income
increases. Finally, travel time for motorised modes and walking distance sensitivities were
slightly higher for the following trip relative to the first shopping trip.

Individuals living in richer areas are less willing to go shopping in poorer areas with
very low residential prices with a similar finding also presented in Pellegrini et al. (1997). A
Box-Cox transformation was used to capture the preference for parking areas, specifically for
trips using car for both legs, uncovering positive but decreasing sensitivities. The presence of
major retail attractions per shopping category (clothes, grocery, other) significantly increases
the likelihood of visiting the shopping destination for trips of the respective shopping category.
The estimated multiplier ϕ of the logarithm of the composite size variable is significantly lower
than 1.0 in all of the models presented. According to Kristoffersson et al. (2018), this means
that there is significant unobserved correlation among the elemental alternatives within the
aggregate shopping destinations used in the choice set. This also gives a behavioural meaning
to the clustering approach that was utilised in order to form the aggregate alternatives,
described in 3.3. An increased cumulative retail floor area of grocery, clothes and durable
stores in a destination acts as a more significant attractor for trips of the respective shopping
category than population that was used as the base size variable. Furthermore, an increased
store type variability in neighbouring destinations in medium distances (1000-2000 m) will add
to the attraction of the shopping destination, when the subsequent trip is also for shopping.

With regard to the direction of travel, shopping destinations located in places where
the angular deviation between OS and OD is greater than 90o are less likely to be chosen
compared to others, conforming to our initial assumptions. The same dummy variable
measuring the impact of an angle above 90o between SD and OD was still negative, but not
statistically significant, hence was not included in the specifications reported here. Finally,
regarding the estimated distance multipliers, CNL-dest results in γdist = −1.3552 conforming
with our initial assumption of increased correlation among closer destinations, which decreases
with distance. The PCL-dest specification resulted in an estimated distance multiplier of
γdist = −0.4022 (rob. t-rat=-4.40) meaning there is a more even allocation to the neighbouring
nests.
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Table 4.3: Modelling outputs of the proposed CNL destination choice model

Parameter Estimate
(Rob. t-ratio w.r.t. 0)

Locational constants (base: dest 1)
ASC rest Leeds city centre -1.1110 (-7.16)
ASC rest Leeds city centre shift for PT-PT -0.5367 (-1.54)
ASC rest Leeds city centre shift for PT-walking 0.8957 (1.86)
ASC rest Leeds -0.4782 (-4.32)
ASC rest Leeds shift for PT-PT/ -2.6413 (-7.15)
PT-walking/walking-PT
ASC rest Leeds shift for walking-walking -1.8334 (-6.15)
ASC rest Yorkshire shift for PT-PT/ -3.8267 (-6.24)
PT-walking/walking-walking
LOS variables
Travel time for first trip (base) -0.0924 (-5.24)
Travel time shift for clothes shopping 0.0396 (4.42)
Travel time shift for O-S-O trip chains 0.0201 (2.76)
Travel time shift for HWH tours -0.0237 (-2.41)
Travel time shift for pm peak/night/weekend evening -0.0142 (-2.31)
Travel time shift for morning/weekend night -0.0786 (-3.74)
Travel time shift for grouping size > 1 0.0111 (1.73)
Travel time multiplier for car/PT IVT/ 1.0000 (–)
PT first access/PT last egress
Travel time multiplier for following trip 1.2121 (15.88)
Travel time - Shopping duration elasticity -0.3315 (-8.43)
Box-cox lambda for car travel time 1.1069 (19.91)
Box-cox lambda for PT travel time 0.7696 (10.67)
Travel walking distance for first trip (base) -1.1904 (-6.73)
Travel walking distance shift for O-S-O trip chains 0.2505 (1.96)
Travel walking distance shift for am peak -0.7496 (-2.36)
Travel walking distance shift for pm peak/night/ -0.3111 (-2.45)
morning/weekend morning/weekend evening
Travel walking distance multiplier for following trip 1.2467 (11.33)
Box-cox lambda for travel walking distance 0.8246 (12.28)
Travel walking distance - Shopping duration elasticity -0.2110 (-4.72)
Travel cost -0.3900 (-3.33)
Box-cox lambda for travel cost 0.6636 (8.32)
Travel cost - Personal income elasticity -0.5864 (-3.22)
Direction of travel
Presence of angle>90o between O-S and O-D -0.2279 (-2.01)
Locational variables
Living in rich areas-shopping in poor areas -0.6316 (-2.61)
Parking areas (400m buffer)) 0.1002 (3.96)
Box-cox lambda for parking areas (400m buffer) 0.4547 (6.35)
Major clothes shopping retailers (400m buffer) 1.1264 (5.52)
Major grocery retailers (400m buffer) 0.4506 (5.19)
Major durables retailers (400m buffer) 1.9668 (2.48)
Size variables
Natural logarithm multiplier ϕ 0.4817 (6.45)
Population (400m buffer) (base) 1.0000 (–)
Retail areas for clothes (400m buffer) (log.) 0.8487 (1.49)
Retail areas for groceries (400m buffer) (log.) 1.5094 (2.80)
Retail areas for durables (400m buffer) (log.) 0.8795 (1.04)
Shopping store variability when following 3.4427 (4.84)
trip purpose is shopping (1000-2000m buffer) (log.)
Nesting parameters λ
λgeneric 0.8222 (-3.99 ∗)
Distance multipliers γ
γdist -1.3552 (-3.90†)
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4.2 Joint mode and destination model outputs

For the more complex joint mode and destination model, results from the previously described
destination model and from simpler mode choice models, conditional on destination, were
used as a guideline during the specification search. In that model, the mode and destination
choices are assumed to happen at the same time. In total, the choice set of that model
includes 1,584 joint destination and mode alternatives (176 destinations × 3 modes for the
shopping trip × 3 modes for the following trip). A range of different specifications is presented
in the following, namely a base MNL model, two NL models utilising an MoD and DoM
nesting structure, respectively, a base CNL and finally the proposed CNL specification. In
Table 4.4, the fit statistics of the different specifications are presented, while in Table 4.5 the
estimated parameters of the proposed CNL model are reported.

For the NL-joint-MoD specification, the alternatives were allocated into 9 nests according
to the modal combinations of the shopping and the following trip and a generic λmode was
specified assuming the same level of correlation across all nests. Similarly, for the NL-joint-
DoM specification, 176 nests were specified, one for each shopping destination, with a generic
λdest for each. Regarding the CNL models, the first specification, CNL-joint-base, is based on
the specification of Ding et al. (2014). Alternatives that use a single mode for both legs are
allocated simultaneously into a destination nest and a single mode nest, while alternatives
that use different modes across the two legs (e.g. car-walking) fall into a destination nest
and two mode nests for different-mode alternatives. We attempted to estimate allocation
parameters for this model, but this resulted in numerical issues. An alternative was thus
allocated evenly to all the nests it belongs to, meaning a 50-50 split into a destination and a
mode nests for single mode alternatives, and an even three-way split into a destination and
two mode nests for alternatives using two separate modes.

The second CNL model, CNL-joint-proposed, follows the proposed nesting structure with
alternatives using the same mode for both legs being allocated to a total of 177 nests (176
destination nests+1 mode nest), and alternatives combining different modes being allocated
to 178 nests (176 destination nests+2 mode nests). In both cases, a generic λdest is assumed
for the destination nests, in addition to three mode-specific λs for car, PT and walking. For
the proposed specification, CNL-joint-proposed, the allocation parameters were specified as
follows.

• αjoint
dest,same mode was used to scale down the destination αsd of same mode alternatives, as

αjoint
dest,same modeαsd (defined in Equation 4.6). The allocation parameters of same mode

alternatives were computed as αjoint
dest,same mode = e

α
joint∗
dest,same mode

(e
α

joint∗
dest,same mode +1)

for the destination nest,

while for the mode nest the allocation parameter was 1 − αjoint
dest,same mode.

• αjoint
dest,diff. mode was used to scale down the destination αsd of alternatives with different

mode combinations, as αjoint
dest,diff. modeαsd (defined in Equation 4.6). The allocation

parameters of those alternatives were computed as αjoint
dest,diff. mode = e

α
joint∗
dest,diff. mode

(e
α

joint∗
dest,diff. mode +2)

for

the destination nest, while an equal allocation was assumed for the two mode nests,
which was computed as (1 − αjoint

dest,diff. mode)/2.

∗Robust t-ratio w.r.t. 1.0
†The robust standard error was calculated using the delta method (Daly et al., 2012)
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The nesting parameters in both of the NL models were not statistically different from 1.0,
meaning that those nesting structures were not able to uncover any significant unobserved
correlation among the alternatives, in either mode or destination choice dimensions, and
those models effectively collapse to the base MNL. The CNL-joint-base model presents
significant improvements in model fit compared to the MNL-joint-base, with 9.75 LL units
for 4 additional parameters. It is also able to capture unobserved correlations along the
mode dimension for car and PT (although not statistical significant at the 90% confidence
level), but not for walking. Using that specification, however, it was not possible to capture
any unobserved correlation along the destination dimension, since the estimated λdest is
not statistically different than 1.0. Therefore, using this specification would lead to the
conclusion that correlation exists only along the mode dimension for car and PT (again not
statistical significant at the 90% confidence level), and not along the destination dimension.
That assumption, however, is rejected if we look at the CNL-joint-proposed model. That
specification resulted in significant model fit improvements over the base MNL model with
-25.881 LL units for 9 additional parameters. More importantly, the proposed specification
was able to capture significant unobserved correlation along the destination dimension, in
addition to car and PT mode dimensions, while again no correlation was captured for walking.
Furthermore, the estimated λdest is smaller than λcar and λP T , indicating a higher correlation
in the destination nests than in car and PT nests.

Table 4.4: Fit statistics and nesting parameters of joint mode and destination choice models

Fit statistics MNL-joint-base NL-joint-MoD NL-joint-DoM CNL-joint-base CNL-joint-proposed
Log-likelihood (0) -11,045.05
Log-likelihood (model) -4,093.78 -4,093.339 -4,093.699 -4,084.03 -4,067.899
Adjusted ρ2 0.6238 0.6238 0.6238 0.6244 0.6254
AIC 8,309.56 8,310.68 8,311.4 8,298.06 8,275.8
BIC 8,635.31 8,641.77 8,642.49 8,645.17 8,649.61
Number of parameters 61 62 62 65 70
Number of individuals 270
Number of observations 1,541
Nesting parameters λ Estimates (Rob. t-ratio w.r.t. 1.0)
λgeneric – 0.9491 (-0.86) 1.0267 (0.34) – –
λdest – – – 0.9763 (-0.14) 0.5094 (-6.80)
λC – – – 0.8615 (-2.80) 0.7968 (-2.36)
λP T – – – 0.4846 (-1.60) 0.7708 (1.62)
λW – – – 1.2459 (2.89) 1.2474 (2.26)

The ASCs for the joint model were specified in a similar notion as for the destination choice
model, but this time the alternative dest 1/car-car was used as the base for the remaining
1,583 alternatives, which were grouped according to their general area and their mode
combination. The estimated parameters have the expected signs, with mode combinations
not including car being more preferred for shopping destinations in the city centre of Leeds,
where more sustainable modes are increasingly promoted. The opposite is true, however,
for locations in the rest of Leeds, such as suburban stores, and in the rest of the Yorkshire
region, where car combinations are more favourable. Nonetheless, destinations in local high
streets that are further away from Leeds city centre, are still less likely to be performed by car
possibly due to car restriction measures and limited parking availability. Individuals living in
households with no car ownership are less likely to use car-car combinations, while shopping
trips including more than 1 passenger are more likely to be performed by car, at least for one
of the two legs again due to its convenience. Out of all PT-related travel time components,
the remaining out-of-vehicle time sensitivity was found to be significantly lower than the
base travel time sensitivity (car travel time for first/shopping trips), while the remaining PT
travel time components were found to be equal to the base travel time sensitivity, hence their
multipliers were fixed to 1.0. Finally, the estimated income elasticity to cost is similar to
the empirical evidence suggested by previous studies regarding non-work trips in the UK
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(Sanko et al., 2014; Batley et al., 2019). The behavioural interpretation for the remaining
level-of-service parameters and for most of the estimated size variables is similar to the
destination choice model previously described. This time, however, the cumulative floor area
of grocery stores in neighbouring destinations at medium distances (1,000-2,000 m) also adds
to the attraction of the shopping destination, when the following trip is again for shopping,
albeit at a lower rate than the grocery store area in the immediate neighbourhood of the
shopping destination (400m buffer).

In CNL-joint-proposed, the distance multipliers were parameterised by mode, which
allows for a more detailed analysis of the impact of distance difference among destinations
on the allocation of each alternative to the destination nests. In that model, the distance
multipliers for a car-car alternative were specified as γC−C

dist = −(γC
dist × γC

dist) = −e2γC∗
dist . In

a similar notion, the distance multipliers for a PT-walking alternative were specified as
γP T −W

dist = −(γP T
dist × γW

dist) = −[(−eγP T ∗
dist ) × (−eγW ∗

dist)]. It is assumed that combinations such as
car-PT and PT-car will have the same γ.

The detailed γ estimates for every mode combination are depicted in Table 4.6. Combi-
nations of mechanised modes, i.e. car and PT, lead to lower γ, with the lowest one being for
PT-PT trips. That means that individuals travelling by PT for both trip legs will perceive
the target destination to be more similar with its neighbouring destinations. On the other
hand, mode combinations that include walking on either of the two trip legs have a larger γ
with the largest one being for walking-walking trips. That means that individuals walking for
both trip legs will perceive their target shopping destinations as a more isolated alternative
compared to its neighbouring destinations. In the same Table, the estimated allocation
parameters are also presented. According to them, same-mode alternatives will belong with a
larger allocation probability to their mode nest, while the opposite is true for different mode
alternatives.

Table 4.5: Modelling outputs of the proposed CNL joint mode and destination choice model

Parameter Estimate
(Rob. t-ratio w.r.t. 0)

Households with car ownership (base: car-car/dest 1)
ASC dest 1 shift Car-PT/Car-Walking -1.4908 (-2.42)
ASC dest 1 shift PT-PT 0.9859 (2.55)
ASC dest 1 shift Walking-PT 1.8277 (5.85)
ASC dest 1 shift Walking-Walking 2.8060 (8.41)
ASC rest Leeds city centre -1.6733 (-4.86)
ASC rest Leeds city centre shift for PT-Car/ 0.7783 (1.71)
Walking-Car
ASC rest Leeds city centre shift for PT-PT/ 1.4308 (3.00)
PT-Walking
ASC rest Leeds city centre shift for Walking-PT 2.2688 (4.67)
ASC rest Leeds city centre shift for Walking-Walking 3.1404 (6.76)
ASC rest Leeds -0.4705 (-4.01)
ASC rest Leeds shift for Car-PT/Car-Walking -2.7244 (-8.23)
ASC rest Leeds shift for PT-Car/Walking-Car/ -1.0093 (-3.50)
PT-PT/Walking-PT
ASC rest Leeds shift for PT-Walking -1.6952 (-3.54)
ASC rest Leeds shift for Walking-Walking 0.4094 (1.32)
ASC rest Yorkshire shift for Car-PT/Car-Walking/ -1.8428 (-5.40)
PT-PT/PT-Walking/Walking-PT
ASC rest Yorkshire shift for PT-Car/Walking-Car -1.1141 (-2.90)
Shifts for households with no car ownership
Car-PT/Car-walking/Walking-PT/Walking-Walking 2.1796 (6.83)
PT-PT 3.7996 (8.77)
PT-Walking 2.8590 (5.97)

Continued on next page
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Table 4.5 – continued from previous page
Parameter Estimate

(Rob. t-ratio w.r.t. 0)
Shifts for central areas outside Leeds city centre
PT-Car/Walking-Car 0.9176 (1.72)
Walking-PT/Walking-Walking 2.0684 (4.04)
Shifts for individuals with season ticket ownership
Walking-Walking -0.5831 (-1.87)
Shifts for trips with more than 1 passenger
PT first/shopping trip -1.3942 (-4.71)
PT following trip -0.8418 (-2.62)
Walking first/shopping trip -0.6472 (-3.19)
Walking following trip -0.4592 (-2.06)
Shifts for students
Walking-Walking 0.8619 (2.39)
Shifts for married individuals
Walking-Walking -0.7207 (-2.76)
Shifts for individuals living in 3-member households
Walking-Walking 0.7202 (1.97)
LOS variables
Travel time for first trip (base) -0.0624 (-4.44)
Travel time shift for clothes shopping 0.0281 (3.54)
Travel time shift for O-S-O trip chains 0.0103 (2.14)
Travel time shift for HWH tours -0.0321 (-3.70)
Travel time shift for pm peak/night/weekend evening -0.0076 (-1.70)
Travel time shift for morning/weekend night -0.0294 (-2.26)
Travel time multiplier for car/PT IVT/ 1.0000 (–)
PT first access/PT last egress
Travel time multiplier for remaining PT OVT 0.4655 (2.38)
Travel time multiplier for following trip 1.2522 (14.50)
Travel time - Shopping duration elasticity -0.3358 (-9.15)
Box-cox lambda for car travel time 1.1047 (20.66)
Box-cox lambda for PT travel time 0.8659 (12.94)
Travel walking distance for first trip (base) -1.5943 (-11.75)
Travel walking distance shift for O-S-O trip chains 0.1167 (1.09)
Travel walking distance multiplier for following trip 1.3240 (11.89)
Box-cox lambda for travel walking distance 0.8128 (15.23)
Travel walking distance - Shopping duration elasticity -0.1202 (-3.74)
Travel cost -0.5138 (-6.95)
Box-cox lambda for travel cost 0.5536 (9.74)
Travel cost - Personal income elasticity -0.2872 (-2.86)
Direction of travel
Presence of angle>90o between O-S and O-D -0.2451 (-2.37)
Locational variables
Living in rich areas-shopping in poor areas -0.6460 (-2.76)
Parking areas (400m buffer) 0.0697 (3.40)
Box-cox lambda for parking areas (400m buffer) 0.4576 (5.31)
Major clothes shopping retailers (400m buffer) 1.1858 (6.04)
Major grocery retailers (400m buffer) 0.3661 (3.57)
Major durables retailers (400m buffer) 1.7233 (2.37)
Size variables
Natural logarithm multiplier ϕ 0.5451 (5.41)
Population (400m buffer) (base) 1.0000 (–)
Retail areas for clothes (400m buffer) (log.) 0.4293 (0.85)
Retail areas for groceries (400m buffer) (log.) 1.1443 (2.35)
Retail areas for durables (400m buffer) (log.) 0.3303 (0.49)
Retail areas for groceries when following -0.3967 (-0.48)
trip purpose is shopping (1000-2000m buffer) (log.)
Shopping store variability when following 2.2730 (1.88)
trip purpose is shopping (1000-2000m buffer) (log.)

Continued on next page
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Table 4.5 – continued from previous page
Parameter Estimate

(Rob. t-ratio w.r.t. 0)
Nesting parameters λ
λdest 0.5094 (-6.80∗)
λC 0.7968 (-2.36∗)
λP T 0.7708 (-1.62∗)
λW 1.2474 (2.26∗)
Distance multipliers γ
γC

dist -1.2279 (-6.48†)
γP T

dist -0.8388 (-4.16†)
γW

dist -2.3426 (-7.73†)
Allocation parameters α
Dest. allocation for same mode combos αjoint∗

dest,same mode (log.) -0.3765 (-0.50)
Dest. allocation for diff. mode combos αjoint∗

dest,diff. mode (log.) 1.7945 (2.85)

Table 4.6: Distance multipliers and allocation probabilities per mode combination

Mode Distance multiplier γ Allocation to Allocation to Allocation to
combination destination nest first mode nest second mode nest

Car-Car -1.5077 0.4070 0.593
Car-PT -1.0299 0.7505 0.1248 0.1248

Car-Walking -2.8778 0.7505 0.1248 0.1248
PT-Car -1.0299 0.7505 0.1248 0.1248
PT-PT -0.7036 0.4070 0.593

PT-Walking -1.9658 0.7505 0.1248 0.1248
Walking-Car -2.8778 0.7505 0.1248 0.1248
Walking-PT -1.9658 0.7505 0.1248 0.1248

Walking-Walking -5.4926 0.4070 0.593

4.3 Demand elasticity analysis

In order to illustrate the importance of accounting for correlation among all destinations in
a spatial choice model, either a simple destination or a joint mode and destination choice
model, a demand elasticity analysis is performed in both of those cases and presented below.

4.3.1 Destination elasticities

The demand elasticity analysis for the destination choice model has been performed for MNL-
dest-base, PCL-dest and CNL-dest. The two NL models, namely NL-dest-1 and NL-dest-2
have not been considered, since they collapse to the base MNL. The forecasting scenario
involved the increase of car travel cost for destination 47, a suburban shopping centre at
the outskirts of Leeds, by 1%. The individual level elasticities and cross-elasticities for a
specific participant, who initially chose that shopping destination, are presented in Table
4.7 and are calculated as log demandafter

demandbase

/(log(1.01)). The cross-elasticities for 3 specific

∗Robust t-ratio w.r.t. 1.0
†The robust standard error was calculated using the delta method (Daly et al., 2012)
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Figure 4.9: Demand cross-elasticities of CNL-dest model for each destination alternative based on their
distance from the target alternative for forecasting scenario 1

destinations are examined, where destination 71 is the closest alternative to destination 47
in the choice set at a distance of 0.99km, alternative 34 is located at a distance of 7.88km
and finally alternative 131 is located at a distance of 28.31km from the target alternative,
destination 47. Looking at the elasticities obtained from MNL-dest-base, the impact of the
IIA principle is clearly visible as it results in a proportionate demand increase across the
other three destinations regardless of how far away from the target destination they are
located. The PCL-dest, also, resulted in an almost proportionate demand increase for the
remaining three destinations due to the small estimated distance multiplier. The proposed
specification, CNL-dest, however, presents more realistic results with the distance between
the alternatives now having a more profound impact on the cross-elasticities, as the closer
destination, alternative 71, is showing a higher demand increase as a result of the demand
decrease of its neighbouring alternative. It is also evident from the same Table that both the
MNL-dest-base and PCL-dest models will significantly underestimate the change in demand
of a destination located closer in favour of alternatives that are located at a greater distance.
A depiction of the decrease of the estimated cross-elasticities from CNL-dest with the increase
of distance from the target alternative for the current forecasting scenario is presented in
Figure 4.9, where there is a steep decline until a distance of about 7km from destination 47,
after which they stabilise at around 0.08.

Table 4.7: Individual level demand elasticities for forecasting scenario 1

Model Destination alternatives
Dest 47 Dest 71 Dest 34 Dest 131

Distance (km) 0.00 0.99 7.88 28.31
MNL-dest-base -0.082 0.084 0.084 0.084
PCL-dest -0.083 0.079 0.079 0.079
CNL-dest -0.082 0.112 0.081 0.081
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4.3.2 Joint mode and destination elasticities

For the joint mode and destination choice model, a second forecasting example is presented,
where car travel cost is increased by one unit for destination 47 again. The demand elasticities
and cross-elasticities for the different mode combinations and for different destinations are
examined at the individual level –for the same person as before– for MNL-joint-base, CNL-
joint-base and CNL-joint-proposed and outlined in Table 4.8. Similarly to the elasticity
analysis for the destination choice model, the two NL models, namely NL-joint-MoD and NL-
joint-DoM, are not presented, since they both collapse to MNL-joint-base. That person chooses
car-car initially to travel to destination 47 and to her following activity and PT is not available
to her for the first trip. PT is also not available for both trips (shopping/following trips) for
destination 71. As in the elasticity analysis for the destination choice model, the impact of the
IIA principle is clearly evident in the demand elasticities of the MNL-joint-base model. The
CNL-joint-base model results in a higher demand increase for alternative mode combinations
in the same destination and those cross-elasticities are stable across the alternatives regardless
of their distance from the target destination. Nonetheless, different conclusions can be
drawn by examining CNL-joint-proposed, where higher cross-elasticities for the same mode
combination of car-car for different destinations are estimated. Therefore, CNL-joint-base
overestimates the shift to alternative mode combinations for the same destination, while
CNL-joint-proposed suggests that individuals would be more likely to change their destination
rather than their mode. This is a key finding, and suggests that not accounting for it could
affect policy decisions.

Table 4.8: Individual level demand elasticities for forecasting scenario 2

Destination C-C C-PT C-W PT-C PT-PT PT-W W-C W-PT W-W
(density band)
MNL-joint-base model
47 (second) -0.122 -0.122 -0.122 – – – 0.148 0.148 0.148
71 (second) 0.148 – 0.148 – – – 0.148 – 0.148
34 (first) 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148
131 (third) 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148
CNL-joint-base model
47 (second) -0.131 -0.148 -0.085 – – – 0.165 0.161 0.161
71 (second) 0.168 – 0.159 – – – 0.161 – 0.159
34 (first) 0.167 0.163 0.159 0.164 0.160 0.159 0.159 0.159 0.159
131 (third) 0.166 0.162 0.159 0.163 0.160 0.159 0.159 0.159 0.159
CNL-joint-proposed model
47 (second) -0.133 -0.174 -0.066 – – – 0.175 0.148 0.145
71 (second) 0.199 – 0.145 – – – 0.149 – 0.145
34 (first) 0.160 0.158 0.145 0.155 0.146 0.145 0.145 0.145 0.145
131 (third) 0.153 0.153 0.145 0.151 0.146 0.145 0.145 0.145 0.145

C: Car, PT: Public Transport, W: Walking

5 Conclusions

Destination choice is a topic of key interest to the travel behaviour community, and a key issue
in this context is how to capture the fact that closer destinations may be better substitutes
for each other. The current paper presented a novel correlation structure for a CNL model
for destination choice, or for joint mode-destination choices. Distance among alternative
destinations was used as a proxy of spatial similarity among alternatives. The proposed
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nesting structure, based on Tobler’s first law of Geography, was the only specification, out
of the MNL, NL and base CNL frameworks examined, that was able to capture significant
unobserved correlations among the destination alternatives and provided RUM-consistent
λ estimates. The PCL specification was also able to capture spatial correlations among
destinations, however the proposed CNL model was able to uncover a much higher impact of
distance in addition of being more statistically efficient and resulting in much lower estimation
times. Furthermore, the proposed nesting structure can be easily modified to be suitable for
the context of a joint mode and destination, where correlation is being captured across all
choice dimensions simultaneously.

The results prove that, in general, there is a higher correlation between the error terms
of alternatives located closer together than with more distant ones. For the joint mode and
destination model, the results showed that mode also has an impact on the allocation param-
eters. Walking leads to higher allocation parameters for the nest of the target destination,
while mechanised modes, i.e. car and PT, result in more balanced allocation parameters
between the target and the neighbouring clusters, probably due to the flexibility those modes
can provide to the decision-maker compared to walking. The proposed CNL model is also
computationally more efficient than its PCL counterpart of Sener et al. (2011) and does
not require simulation like the EC model of Weiss and Habib (2017) allowing the analyst to
estimate a model using the full choice set.

Other continuous measures can also be used to quantify the spatial similarities among
the destinations, such as network travel times among the destinations during different time
periods, e.g. am peak, off-peak, pm peak etc. That would allow an additional temporal
dimension to be included in the analysis for the purpose of uncovering spatio-temporal
similarities among destinations. An interesting finding would be whether the individuals
perceive the destinations closer together or further apart based on the time of day due to
network traffic in each time period.

Furthermore, the reported specifications in the current study captured similarities among
destinations based on their spatial proximity providing an empirical proof of Tobler’s first law
of Geography. It does not provide an answer, however, as to the most suitable measure of
spatial similarity, which could be a function of both spatial proximity, but also of demographic
characteristics (social distance), network topology etc. Machine Learning algorithms can
help in this regard to identify more complex spatio-temporal similarities among destinations.
Similarities could also differ based on the context of the choice problem itself with different
attributes influencing perceived similarity in a shopping location than in a residential location
choice model.

In addition to the insights of individual behaviour, the present study offers a specification
that can be used to enhance current national travel demand models (Department for Transport,
2020). Furthermore, agent-based models or individual components of land use-transport
interaction models could be enhanced with such a specification to better capture the effect
of spatial similarity in the decision-making process that would most likely lead to different
distribution of activities through space and hence to different dynamic interactions among
agents or between land use developments and the transport system.
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Chapter 5

Augmenting Choice Models with
Machine Learning techniques to
capture the heterogeneity in Travel
Behaviour

Panagiotis Tsoleridis1, Charisma F. Choudhury1 and Stephane Hess1

Abstract

In the era of big data, machine learning (ML) has emerged as a strong competitor to
econometric modelling. In particular, machine learning models offer flexible classification
methods that are well-suited to capture the heterogeneity among the decision makers and
improve model fit. A key limitation of the purely data driven models, however, is the difficulty
in the calculation of welfare measures, such as value of travel time estimates (VTT) that feed
into the cost-benefit analyses. This motivates the current study which focuses on combining
ML-based segmentation approaches with DCM to get the best of both - a ML-based component
to capture the heterogeneity among the travellers and a utility based choice component that is
suitable for quantifying VTT estimates. In the proposed hybrid framework, the travellers are
probabilistically allocated into clusters based on their degree of similarity from each cluster
and cluster-specific random-utility-based mode choice models are estimated simultaneously.
The proposed hybrid framework is tested on two different datasets and in a range of different
behavioural contexts related to mode and destination choice behaviour. The performance of the
proposed hybrid model (H-LCCM) is compared with that of the traditional latent class choice
models (LCCM), where both the class membership and mode choice components are based on
utility-based frameworks. Results indicate that H-LCCM outperforms the LCCM in most of the
contexts examined, and are particularly suited for contexts with a large number of observations
(which is the case for big data sources). The proposed framework is practically applicable
for policy making as it allows calculation of VTT estimates, therefore not sacrificing the
microeconomic interpretability of the traditional choice models. The results are thus promising,
especially in the current era of big data and are expected to contribute to the emerging literature
looking at cross-synergies between traditional econometric approaches and new data-driven
methods.

1Choice Modelling Centre, Institute for Transport Studies, University of Leeds
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1 Introduction

During the last decade, the abundance of passively generated location data has provided
interesting insights into human mobility behaviour. For instance, GPS traces, mobile phone
call detail records, public transport smart card data, etc. not only provide location data at a
high temporal and spatial resolution, but also have repeated observations of the same individ-
ual. The panel nature of the data provides rich insights about the similarity/dissimilarity of
the travellers, which can be used to better capture the heterogeneity in their travel decisions.

Deriving ’value’ out of these new forms of data, however, typically requires significant
pre-processing and the use of methods from different fields of research (e.g. Computer Science)
(Antoniou et al., 2019). In addition to that, the massive size of the data has started to
highlight the limitations of well-established tools and methods for their analysis and the
scope for improvements (Milne and Watling, 2019). That led to an increase in the popularity
of Machine Learning (ML) techniques due to their efficiency in capturing patterns in the
data, which could prove to be useful in capturing the heterogeneity among the behaviour of
different decision-makers.

Originating from the field of Computer Science, ML algorithms are generally charac-
terised as non-parametric methods (with some exceptions) aiming to minimise the errors
between actual and predicted outcomes without relying on any behavioural assumptions
about the underlying model. ML encompasses a large array of algorithms, which can be
broadly categorised into supervised and unsupervised learning. A wide range of studies has
implemented clustering algorithms (unsupervised learning) to analyse individual behaviour
and uncover mobility patterns (see Anda et al. (2017) for details). Though such studies
provide good insights about the state of the network, they have limited applications in the
context of predictions and/or valuation (e.g. calculation of value of time estimates to feed
into the cost-benefit analyses).

The literature of travel demand modelling has arguably shown a larger interest in the use
of supervised ML algorithms, such as Artificial Neural Networks and Random Forests, and on
their comparison with traditional econometric Discrete Choice Modelling (DCM) frameworks,
such as Multinomial logit (MNL) and Nested Logit models, usually in the context of mode
choice (Hensher and Ton, 2000; Xie et al., 2003; Cantarella and de Luca, 2005; Zhang and
Xie, 2008; Sekhar et al., 2016; Hagenauer and Helbich, 2017). Their findings at large suggest
that ML algorithms have the potential to be used as an alternative method for behavioural
modelling due to their superior predictive performance, although Hensher and Ton (2000)
also highlight the limitations associated with the lack of interpretable results compared to a
DCM framework.

The majority of studies from that initial stream of literature is subject to three key
limitations. Firstly, they relied on “traditional” samples with regard to their data collection
methods (e.g. single RP choice scenarios, short trip diaries, etc.) and it is worth investigating
the performance of similar approaches with passively collected larger samples (more partici-
pants and/or longer panels). Secondly, these studies did not compare the model performances
with more advanced discrete choice models that account for heterogeneity among groups of
decision makers. Thirdly, those earlier studies focused on comparing the goodness of fit and/or
prediction capabilities of ML and DCM as opposed to a more in-depth effort of formulating
models that combine the best of both worlds – the computational advantages on ML that
can more efficiently distinguish the signal among the noise and the behavioural interpretation
of DCM that can produce outputs suitable for valuation and cost-benefit analysis. Wang et
al. (2021) aimed to generalise the empirical results of the studies so far by comparing a vast
range of ML algorithms and choice models and on a range of different datasets concluding
that it would be advantageous to use ML algorithms for predicting travel behaviour, while
also highlighted the need for DCM to improve their computational efficiency to be more
suitable for estimating models on large datasets. These initial studies, have also motivated
researchers to investigate methodologies to combine the ML and DCM paradigms. DCM,
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with their grounding on strong theoretical underpinnings of human behaviour (McFadden,
1973; McFadden, 1978; Ben-Akiva and Lerman, 1985; McFadden, 2000; Train, 2009) are
suitable for policy making, while also providing clear interpretations on the impact of the
utilised independent variables and their statistical significance. Hence, cross-fertilisation
of ML approaches with DCM is very appealing for policy analyses to get the best out of
both worlds. Prominent examples of combining DCM and ML are presented in the studies
of Sifringer et al. (2020) and Wang, Mo and Zhao (2021) in both of which Deep Learning
architectures have been integrated with DCM specifications in the context of mode choice,
risk and time preference.

In a similar notion, there have been attempts to harness the power of unsupervised learning
for uncovering latent segments of the population to aid the estimation of advanced choice
models, namely Latent Class Choice Models (LCCM) (Kamakura and Russell, 1989). In a
recent series of studies, Sfeir et al. (2021) and Sfeir et al. (2022) provided significant research
advancements towards that direction by integrating probabilistic ML algorithms, namely
gaussian mixture models and gaussian processes respectively, into a Latent Class Choice
Model (LCCM) framework effectively replacing the random utility-based class allocation
component with ML algorithms. In both cases, their proposed specifications were tested on
models of mode choice behaviour using traditional Revealed (RP) and Stated Preference
(SP) datasets. Overall, the non-parametric gaussian processes outperformed the gaussian
mixture variants of LCCM and the traditional LCCM in terms of model fit and estimation
stability, while also resulting in estimates with behaviourally consistent signs. Nonetheless,
the models in those studies were estimated only on traditional RP and SP data and it is not
clear if that ML-DCM integration can provide additional benefits when used for modelling
travel behaviour in the context of passively generated big data sources where the increased
number of observations per traveller could offer a more detailed depiction of the underlying
heterogeneity.

The current research aims to contribute to that stream of literature by proposing a novel
approach of integrating a clustering algorithm, namely K-means clustering, in the context
of an LCCM. The main goal of the study is to illustrate that an integration of a clustering
algorithm can provide model fit improvements to a LCCM specification estimated on large data
sets, contrary to a traditional econometric framework. Several studies have used clustering
techniques for market/sample segmentation (Salomon and Ben-Akiva, 1983; Lanzendorf, 2002;
Krizek and Waddell, 2003) reporting that different lifestyle clusters (empirically identified)
could have different choice elasticities. Nonetheless, the clustering algorithms in those studies
were used to deterministically allocate individuals into clusters, while the clustering process
was independent from the choice behaviour itself. The novelty in the framework proposed in
the current paper is to illustrate how a deterministic clustering algorithm can be transformed
effectively into a probabilistic one enabling a simultaneous estimation of parameters of class
membership and choice components. Therefore, the aim of the current study is to combine
a clustering ML algorithm and a DCM specification (MNL model at the lower level) in a
combined LCCM framework, while still being able to produce outputs that can be used for
valuation.

The proposed methodology is tested empirically on 2 RP datasets, a GPS diary and a
traditional household survey, and on 3 different choice contexts providing a range of different
sample sizes and data complexity. The results indicate that the proposed approach could
prove to be advantageous in datasets with larger sample sizes, either in terms of observations
or in terms of the number of individuals. The three case studies utilised for the empirical
application of the proposed approach are the following:

1. a mode choice model estimated using a GPS trip diary

2. a shopping destination choice model estimated using a GPS trip diary

3. a mode choice model estimated using a traditional trip diary
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The remainder of this paper is structured as follows. In Sections 2 and 3, the method-
ological framework and the different datasets used for the study’s practical applications
are described, respectively. Section 4 focuses on the results and the comparison among the
different approaches. The main conclusions and a potential direction for future research are
summarized in the final section.

2 Methodology

2.1 Latent Class Choice Model

DCM and the MNL model specifically has been the main behavioural framework for analysing
individual preferences since the seminal study of McFadden (1973). According to that
framework, an individual n facing a specific choice task t will choose the alternative i that
provides the largest utility Uint among a choice set of J alternatives. The utility Uint is a latent
construct consisting of two parts, a deterministic utility Vint and a disturbance term ϵint. The
deterministic part of the utility is a function of individual- and alternative-specific attributes
xint and parameters β to be estimated, as shown in Equation 5.1. Different distributional
assumptions about the disturbance term will lead to different specifications, with independent
and identically distributed (iid) extreme value error terms leading to an MNL model. The
probability of choosing alternative i can be calculated using Equation 5.2.

Uint = Vint + ϵint = f(β, xint) + ϵint (5.1)

Pint(β) = eVint∑J
j=1 eVjnt

(5.2)

Heterogeneity in an MNL model can be captured by specifying interactions between
socio-demographics characteristics and level-of-service variables/alternative specific constants.
Those interactions are usually specified as shifts of taste parameters from their base level.
Despite those interactions, however, a significant portion of unobserved heterogeneity is
likely to remain uncaptured with an MNL model. LCCMs together with mixed logit models
(McFadden and Train, 2000) have been established as important behavioural modelling
specifications capable of uncovering unobserved individual choice heterogeneity. The former
achieves that by probabilistically segmenting the sample into a finite number of latent
classes based on the individuals’ socio-demographic characteristics and their observed choice
behaviour. It uses two model components that are jointly estimated, a class allocation
model at the upper level and a choice model at the lower model. Mixed logit models, on
the other hand, require the specification of continuous distributions over the individual
taste parameters, thus resulting in non-closed form solutions that usually require the use of
simulated estimation procedures (Train, 2009). Besides its closed form solution, the LCCM
provides the additional benefit of a more straightforward interpretation of the context of each
estimated class, since they are directly linked with socio-demographic characteristics for each
class (given that covariates are included in the class allocation component) that could be
important from a policy perspective.

In a LCCM, it is assumed that the sample can be segmented into a finite number of S
heterogeneous classes. The class allocation component of the LCCM, commonly specified as
an MNL model, is responsible for probabilistically allocating individuals into the latent classes.
Socio-demographic characteristics xn are included in the class allocation model as covariates,
while additional parameters γs are estimated per class together with S − 1 constants, δs. The
probability πs of an individual belonging into class s is thus calculated as per Equation 5.3,
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Figure 5.1: Schematic diagram of the LCCM framework and its constituent components

with 0 < πs < 1 and ∑S
s=1 πs = 1 for each individual n. Homogeneity of preferences is usually

assumed to hold within each class, although there is also the possibility to capture additional
within-class heterogeneity by specifying continuous distributions over covariates (Hess, 2014).

πs = eδs+γsxn∑S
r=1 eδr+γrxn

(5.3)

A choice model at the lower level is being estimated conditional on the class, as depicted in
Figure 5.1. The choice probabilities for the class-specific model are calculated from Equation
5.4. Finally, the unconditional likelihood of observing a sequence of choices for individual n
is calculated as Equation 5.5 in which class probabilities are used to weight the respective
class-specific conditional probabilities for each alternative j. The coefficients of both levels
are jointly determined by maximising the logarithm of the likelihood function.

Psint = eVsint∑J
j=1 eVsjnt

(5.4)

Ln(β, π) =
S∑

s=1
πs

T∏
t=1

Psint (5.5)

2.2 Clustering - Latent Class Choice Model

Focusing now on our proposed modelling framework, the main idea is to incorporate a
clustering algorithm into an LCCM modelling framework to take the role of the class
allocation model. In the current study, we use the K-means clustering algorithm to take
that role, mainly for its simplicity, but the same principles can be applied to more advanced
algorithms, as well. The K-means clustering algorithm (Lloyd, 1982) allocates individuals
deterministically into a finite K number of clusters based on specific D socio-demographic
characteristics, which are found after a specification search similarly to the covariates in a
class allocation model. The clustering process itself is an iterative algorithm that tries to
minimise a measure of distance among the data points (i.e. individuals) and their respective
allocated cluster centroid (within cluster sum of square distance), while at the same time
maximise their distance to the centroids of the remaining cluster centroids (between cluster
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Figure 5.2: Schematic diagram of the H-LCCM framework and its constituent components

sum of square distance) (Ripley, 2009). Different measures of distance can be used for that
purpose, such as the euclidean or the manhattan distance (Bishop, 2006; Singh et al., 2013;
Bora and Gupta, 2014), with the former being implemented in the current paper Equation 5.6.
In order to avoid the calculated distance measure being influenced by the scale discrepancies
among the different variables used for clustering, it is important to scale the variables prior
of the initialisation of the clustering algorithm, either by normalising or by standardising the
variables, with the latter approach being utilised here.

dnk =

√√√√ D∑
d=1

(X∗
nd − X∗

kd)2 (5.6)

The proposed hybrid methodological framework, H-LCCM, developed for this study
involves the implementation of a probabilistic transformation of the traditional deterministic
K-means clustering algorithm for its efficient integration into an LCCM specification. The
probabilistic K-means algorithm is designed to handle the identification of latent segments
of travellers based on specific socio-demographic characteristics, while it gets adjusted with
information provided by the choice model with a feedback loop as depicted in Figure 5.2.

The class allocation model in a traditional LCCM framework is used to probabilistically
allocate individuals into latent classes based on their sociodemographics and their observed
behaviour with regard to a specific choice situation. The two important things to note here
is first that each individual is allocated with a non-zero probability to every class and second
that the class allocation model is getting feedback from the choice model at the lower level.
In order to mimic that specification with a K-means algorithm, the first step is to transform it
from a deterministic algorithm into a probabilistic one. That is achieved by taking advantage
of the fact that each data point n is allocated to its closest centroid k, but there still is
a non-zero distance dnk > 0 with dnk < dnl and k, l ∈ K. Therefore, instead of assuming
that an individual n would be allocated entirely into the closest centroid, we re-define her
allocation by taking into account her distance from all centroids. In our framework the class
allocation probability is defined as:
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πnk = eγk
distdnk∑K

l=1 eγk
dist

dnl
(5.7)

where πnk is the allocation probability of individual n to her closest centroid k, dnl is the
distance of individual n from centroid l and finally γk

dist is a parameter to be estimated
controlling the allocation to the closest centroid k relative to the remaining ones. If γk

dist > 0
it means that the individual is allocated with a higher probability to the closest centroid
k relative to the rest, while the opposite would be true in the case of γk

dist < 0 signifying
the need for readjusting the allocation of individuals into the clusters. Finally, the use of
γk

dist = 0 would result into an equal allocation to every cluster.
Regarding cluster initialisation, the K-means++ algorithm (Arthur and Vassilvitskii,

2007) was implemented. According to that, a data point, i.e. an individual, is randomly
selected and assigned as the centroid of the first cluster k1. The distance dnk1 of all data
points n from that initial centroid k1 are calculated and the second centroid is sampled with
a probability equal to d2

nk1
Σd2

mk1
. That means that data points further away from the initial

centroid will have a higher probability of being selected as the second centroid from that
process. For the third centroid, the distances of all data points from the two selected centroids
are calculated and the next centroid is sampled with a probability based on the square of the
minimum distance from the other two centroids. In a similar way, the remaining centroids
are sampled until the predetermined number of centroids is reached. Following that, the
K-means algorithm can initialise using the previously sampled centroids during the first
iteration. Alternatively, the analyst can define specific centroids manually by trying different
sign combinations for the clustering covariates (i.e. same or different sign per cluster etc.).
Both of the aforementioned initialisation approaches were implemented in the current study.

The developed algorithm behind H-LCCM is presented in the flow chart of Figure 5.3,
which consists of the following steps:

1. Scaling of variables used as covariates in the clustering process. Define minimum
difference threshold for reaching convergence.

2. Define starting values for parameters.2

3. Initialisation of centroids using the K-means++ algorithm.

4. Distance calculation of data points (individuals) from the initial centroids to define
initial cluster allocation.

5. Estimation of choice model for the first iteration using Maximum Likelihood.

6. Update of cluster allocation based on new estimated γk
dist and the previously defined

centroids.

7. Definition of new centroids for following iteration as the mean of the covariates of the
individuals that are being attracted with a higher probability to the same cluster.

8. Compute distance between previous and new centroids and compare that with the
threshold defined in step 1.

9. If the difference is larger than the threshold, then estimate a new choice model for next
iteration and repeat steps 6-8. If the difference is smaller than the threshold, then
convergence is reached.
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Figure 5.3: Flow chart of the H-LCCM algorithm
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After reaching a stable point and terminating the iterative estimation process, additional
linear regressions can be specified in order to capture the impact and the statistical significance
of the covariates used for clustering by using the logarithm of the estimated shares, log πnk,
as the dependent variable. Specifically, K − 1 linear regression models are estimated, where
K is the total number of cluster centroids specified. One centroid is kept fixed by subtracting
its logarithm of shares, log πn0, from the remaining ones, while the covariates used for the
clustering, Xnd, take the role of the independent variables with parameters ξd capturing their
impact (Equation 5.8).

log πnk − log πn0 = ξnk0 +
D∑

d=1
ξdXnd (5.8)

3 Data

The empirical application of the proposed methodology was performed using two datasets,
which are described in the following, together with a brief description of the choice context of
each of the three case studies. Case studies 1 and 2 utilised a GPS trip diary ("DECISIONS"),
while Case study 3 utilised a traditional pen and paper trip diary for London.

3.1 DECISIONS dataset

The first dataset used was collected as part of the research project “DECISIONS” conducted
at the University of Leeds between October 2016-March 2017. The dataset includes several
submodules aiming to capture different aspects of everyday individual behaviour, such as
indoor/outdoor activity behaviour, energy consumption, social networks etc. More information
on the range of the different submodules of the dataset can be found in Calastri et al. (2020).
In the current study, two specific submodules are being utilised, namely a 2-week GPS-based
trip diary captured through a smart-phone application and a household survey capturing
important sociodemographic information of the participants. The survey captured trips
across all of the UK, but with the vast majority of those being around the region of Yorkshire
and more specifically the city of Leeds, which most of the participants were residents of.

Two different subsets of the DECISIONS dataset were used, namely one for the mode
choice (Case study 1) and one for the shopping destination choice model (Case study 2). For
both of them, only the trips within the region of Yorkshire were selected. Data enriching steps
followed the initial data cleaning stages, during which the dataset was augmented with travel
time and travel cost information for all the alternatives. More specifically, travel times and
distances were estimated for both chosen and unchosen alternatives (for consistency reasons)
using a combination of the “Directions” Google API and Bing maps API. Both APIs allow
for a detailed routing plan between an Origin and a Destination for different transport modes
and times of day, while also accounting for traffic for car trips and for service timetable for
public transport (PT) trips. Travel costs for car trips were calculated using WEBTag’s official
specifications for fuel and operating costs, while bus and rail travel costs were calculated
based on average distance-based costs of PT services operating in the region. A discount was
applied for season ticket holders. The final mode choice dataset utilised for model estimation
included 12,524 performed by 540 individuals and a choice set of six alternative modes of
transport, namely car, bus, rail, taxi, cycling and walking. Out of those trips, 47.6% were
performed by car, 14.6% by bus, 5.2% by rail, 3.2% by taxi, 3.3% by cycling and finally
26.1% by walking.

2For the initialisation of γk
dist, an initial value of 1.0 is assigned in the current study assuming a higher allocation probability

of each individual to their initially defined closest centroid, but any value would work since the initial centroids are randomly
assigned without having any behaviourally connection with the decision making process under examination.
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A further subset of the mode choice dataset was selected for the shopping destination
choice model, which included only shopping trips (for groceries, clothes and durables) from an
initial origin O to a shopping location j and the trips to the following destination D. In total,
1541 trip pairs were included in the dataset performed by 270 individuals with 82% of them
being for groceries, 12.7% for clothing and 5.3% for durables. The purpose of including the
subsequent trip, as well, was to study the impact of the following destination D (considered
fixed in that study) on the choice of the intermediate shopping location. The choice set in
the destination model was defined by clustering the observed elemental locations utilising
the Hierarchical Agglomerative Clustering (HAC) algorithm with a 800m distance threshold.
HAC was chosen since it does not require the analyst to make a priori assumptions regarding
the number of clusters. The aforementioned procedure resulted in the creation of a choice
set of 176 shopping destinations, most of them within the administrative boundaries of the
local authority of Leeds. The main shopping mall of Leeds city centre attracted the majority
of shopping trips, namely 11.3%. The remaining 5 shopping locations in the city centre
attracted 9.7% of trips followed by the 103 locations in remaining city of Leeds (62.6%) and
finally the 67 locations in the remaining region of Yorkshire (16.7%). More details regarding
the data cleaning/enriching steps and the approach followed to define the availability of mode
and destination alternatives in both subsets can be found in Chapters 2-4.

3.2 London travel demand survey

The second dataset utilised for Case study 4 in the empirical application is the openly
available London Passenger Mode Choice (LPMC), collected as part of the London travel
demand survey, in which the individuals had to choose a mode of transport among a choice
set of four alternatives, namely walking, cycling, transit and car. The dataset was augmented
at a later stage by Hillel et al. (2018) with travel cost and travel time information for
chosen and unchosen alternatives using the “Directions” Google API, in a similar way as in
the DECISIONS dataset. An additional interesting variable was defined during that data
enriching stage measuring the traffic variability for car trips as captured by the different
routing procedures of the Google API. More details about the specific dataset can be found in
Hillel et al. (2018). For the current application, a subset of only home-based trips performed
by individuals of at least 12 years of age was selected, similarly to the study of Krueger et
al. (2020) and Hancock et al. (2021). The resulting dataset contains a total of 58,584 trip
observations performed by 26,904 individuals.

In terms of the observed mode choices, 42.8% of trips were performed by car, followed
by 37.6% of PT trips, 16.6% walking and finally 3.2% cycling trips. With regard to socio-
demographic, 53.5% are females, the mean age is 42 years old and 69.8% of participants have
at least one car in their household. Besides the richness of individual mobility information,
an important limitation of the London dataset is the absence of any income information,
personal or household.

4 Results

The proposed hybrid specification, H-LCCM, is compared against a base MNL model, MNL-
base, a traditional LCCM model and a two-stage clustering choice model, C-MNL, where
K-means is used at the first stage to allocate individuals into latent clusters based solely on
sociodemographic characteristics, and then a choice model is estimated per cluster at the
second stage. The final log-likelihood of that model is calculated by adding the log-likelihoods
of the K cluster-specific models and the remaining fit statistics are computed relative to that.
In all cases, the same specification was used in terms of covariates in the clustering/class
allocation model and explanatory variables in the utility functions to ensure consistency in
our evaluation comparison. The number of classes and the specified covariates in the final
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specification reported in the following for each case refer to the one which resulted in the
best model fit for the traditional LCCM model.

4.1 Case study 1: Yorkshire mode choice

4.1.1 Model specification

The specification of the Yorkshire mode choice model presented in the following contains
5 alternative specific constants (ASCs) with the ASC for car being kept fixed as the base.
Mode-specific linear travel time sensitivities were specified in addition to a logarithmic generic
specification for travel cost for the purpose of capturing cost damping effects (Daly, 2010).

4.1.2 Model outputs

The fit statistics of the specifications for Case study 1 are presented in Table 5.1. All models
that are capturing individual unobserved heterogeneity are able to outperform the MNL-base
model, even the C-MNL, in which the sample is segmented into clusters solely based on
socio-demographic characteristics. As expected, however, more significant heterogeneity can
be captured by including the choice behaviour in that process as illustrated by the remaining
two models, namely LCCM and H-LCCM. Out of those two specifications, the proposed
H-LCCM is able to outperform in terms of model fit the traditional LCCM by 5.38 LL units
with 19 parameters less. Those improvements in model fit are more evident by looking at the
adjusted rho2, the AIC and BIC statistics.

A closer comparison between the estimated parameters of LCCM and H-LCCM is
depicted in Table 5.2. The specification search resulted in a model with 5 classes and with
gender, age, number of cars, season ticket ownership and household income in the class
allocation. An equivalent specification was estimated for H-LCCM. An increase to 6 classes
resulted in numerical issues in the covariance matrix, hence no attempt was made to estimate
a model with 6 clusters for H-LCCM. Furthermore, only a generic ASC for cycling was used
across classes, since a class-specific parameter led to numerical issues even in the case of two
classes, possibly due to the low number of cycling trips (3.3%). Having said that, however, it
should also be noted that the equally low number of taxi trips (3.2%) did not pose a problem
for specifying class-specific ASCs.

Overall, the H-LCCM results in more balanced cluster membership probabilities compared
to LCCM, with cluster 5 representing the largest segment of the sample (23.0%) followed
by cluster 2 (21.0%). Furthermore, by examining the estimated distance multipliers γ of
H-LCCM, it is evident that individuals of cluster 5 are allocated to their class with a higher
probability relative to others (48.2% to cluster 5 on average), while there is a higher degree of
uncertainty in the allocation of individuals of cluster 4 (26.0% to cluster 4 on average). On the
other hand, LCCM leads to more imbalanced class allocation with the majority of the sample
(43%) being allocated to class 1. All level-of-service parameters have the expected negative
sign in both models. A non cost sensitive class is identified in LCCM, class 5, representing
the smallest segment of the sample (9%). Contrary to that, all clusters of H-LCCM show
significant cost sensitivities, which illustrates the discrepancies of the two approaches in the
heterogeneity they are able to capture. The estimated parameters of the covariates used in
the class allocation of LCCM are presented in the same Table 5.2. The respective parameters
for H-LCCM are obtained from four linear regression models on the log of shares and are
reported in Table 5.3. In both cases, class/cluster 5 was used as the base and the remaining
parameters were estimated relative to that.

A closer look at the average probabilities per sociodemographic group and their respective
average values allows us to get a better understanding of the profile of each class/cluster (Fig-
ure 5.4). Regarding the classes resulting from the LCCM, class 1 is more likely to contain car
dependent (average number of cars=1.1/average season ticket ownership=0.16), middle-aged
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individuals (average age=42.8) of higher household income (average income=£55,731). Class
2 is more likely to contain individuals who are frequent public transport users (average season
ticket ownership=0.6) have a lower than average number of cars in their household (average
number of cars=0.76) and a lower household income (average income=£40,760). Class 3
is more likely to have younger (average age=29.2) female (average value for female=0.63)
individuals with both a low number of season ticket ownership (average season ticket owner-
ship=0.12) and number of cars (average number of cars=0.66). Class 4 has a higher share of
younger (average age=34.5) male (average value for female=0.5) individuals, and finally class
5 has the highest share of female individuals (average value for female=0.72) with the lowest
number of cars (average number of cars=0.4) and a high season ticket ownership (average
season ticket ownership=0.46).

Moving on to the behavioural profiling of the clusters estimated from H-LCCM, cluster 1
can be characterised by mostly higher income individuals (average income=£59,650) with a
high number of cars in their household (average number of cars=1.15). Cluster 2 contains a
high share of female individuals (average value for female=0.60) together with the highest
share of season ticket holders (average season ticket ownership=0.56), a low number of cars
(average number of cars=0.64) and low household income (average income=£43,970). Cluster
3 has a high share of younger individuals (average age=32.1) with a low number of cars
(average number of cars=0.64) and of low income (average income=£44,140). They are also
the most cost sensitive according to their estimated travel cost parameter. Cluster 4 can
be characterised by younger (average age=36.86) female (average value for female=0.60)
with the lowest share of season ticket ownership (average season ticket ownership=0.11).
Finally, cluster 5 contains the highest share of older (average age=44.91) male (average
value for female=0.53) individuals with a higher than average number of cars (average
number of cars=0.97) and with a quite low season ticket ownership (average season ticket
ownership=0.18).

Table 5.1: Fit statistics of the Yorkshire mode choice models

Fit statistics MNL-base C-MNL LCCM H-LCCM
Log-likelihood (0) -14,974.45
Log-likelihood (model) -5,275.415 -4,928.319 -3,956.388 -3,951.008
Adjusted ρ2 0.6469 0.6669 0.7304 0.7321
AIC 10,574.83 9,976.638 8,072.78 8,024.02
BIC 10,664.05 10,422.76 8,667.61 8,477.58
Number of parameters 12 60 80 61
Number of individuals 540
Number of observations 12,524

Table 5.2: Modelling estimates of LCCM and H-LCCM models for the Yorkshire mode choice context

Parameter LCCM H-LCCM
Alternative-specific constants
Constant Car (base) – –
Constant Bus - class 1 -5.2404 (-12.17) -2.8387 (-4.25)
Constant Bus - class 2 -1.3781 (-3.79) -1.3895 (-3.00)
Constant Bus - class 3 -0.3819 (-0.32) 1.1986 (1.28)
Constant Bus - class 4 -3.4909 (-5.23) -5.9098 (-10.92)
Constant Bus - class 5 -2.7507 (-4.49) -3.7478 (-5.21)
Constant Rail - class 1 -2.8864 (-3.31) 0.2058 (0.27)
Constant Rail - class 2 -0.5536 (-0.57) -0.7345 (-0.93)
Constant Rail - class 3 -4.2090 (-1.65) -3.4585 (-2.62)

Continued on next page
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Table 5.2 – continued from previous page
Parameter LCCM H-LCCM
Constant Rail - class 4 -1.3919 (-1.11) -4.3949 (-7.00)
Constant Rail - class 5 -8.8327 (-5.18) -3.7627 (-2.61)
Constant Taxi - class 1 -4.6140 (-6.95) -3.4106 (-6.02)
Constant Taxi - class 2 -7.1176 (-1.71) -1.9408 (-3.39)
Constant Taxi - class 3 1.2652 (0.52) 4.8698 (4.48)
Constant Taxi - class 4 -0.4390 (-0.67) -3.5561 (-5.61)
Constant Taxi - class 5 -4.3879 (-5.22) -4.7877 (-6.78)
Constant Cycling -2.2052 (-4.59) -2.9060 (-5.12)
Constant Walking - class 1 0.2032 (0.35) 3.2223 (3.74)
Constant Walking - class 2 1.4334 (2.43) 0.9795 (1.56)
Constant Walking - class 3 3.4196 (2.49) 4.9729 (5.92)
Constant Walking - class 4 2.4570 (3.43) 0.1633 (0.31)
Constant Walking - class 5 -0.7686 (-1.15) 0.1578 (0.26)
LOS parameters
Car travel time (mins) - class 1 -0.1712 (-10.35) -0.0711 (-2.87)
Car travel time (mins) - class 2 -0.0864 (-1.17) -0.2551 (-6.96)
Car travel time (mins) - class 3 -0.1707 (-4.68) -0.1617 (-2.36)
Car travel time (mins) - class 4 -0.0930 (-3.48) -0.1676 (-5.25)
Car travel time (mins) - class 5 -0.2880 (-6.46) -0.0293 (-0.75)
Bus travel time (mins) - class 1 -0.0791 (-9.04) -0.0677 (-5.87)
Bus travel time (mins) - class 2 -0.0325 (-1.06) -0.1045 (-8.11)
Bus travel time (mins) - class 3 -0.1112 (-3.49) -0.1561 (-6.04)
Bus travel time (mins) - class 4 -0.0645 (-4.35) -0.0572 (-3.60)
Bus travel time (mins) - class 5 -0.0956 (-4.94) -0.0088 (-2.81)
Rail travel time (mins) - class 1 -0.0988 (-9.13) -0.0576 (-4.53)
Rail travel time (mins) - class 2 -0.0729 (-2.49) -0.1578 (-9.21)
Rail travel time (mins) - class 3 -0.0791 (-1.71) -0.0245 (-1.35)
Rail travel time (mins) - class 4 -0.0367 (-2.07) -0.0812 (-2.40)
Rail travel time (mins) - class 5 -0.0604 (-2.08) -0.1515 (-4.50)
Taxi travel time (mins) - class 1 -0.2411 (-5.72) -0.0749 (-1.53)
Taxi travel time (mins) - class 2 -0.0201 (-0.11) -0.2870 (-6.20)
Taxi travel time (mins) - class 3 -0.2804 (-2.14) -0.4870 (-6.74)
Taxi travel time (mins) - class 4 -0.1247 (-2.28) -0.1380 (-3.56)
Taxi travel time (mins) - class 5 -0.1977 (-3.32) -0.1007 (-1.77)
Cycling travel time (mins) - class 1 -1.0019 (-6.60) -0.1832 (-2.90)
Cycling travel time (mins) - class 2 -0.3389 (-3.23) -0.2839 (-3.19)
Cycling travel time (mins) - class 3 -0.1757 (-3.42) -0.0939 (-2.58)
Cycling travel time (mins) - class 4 -0.0644 (-4.87) -0.0701 (-5.03)
Cycling travel time (mins) - class 5 -0.1132 (-3.92) -1.9796 (-12.57)
Walking travel time (mins) - class 1 -0.1980 (-10.76) -0.2324 (-10.09)
Walking travel time (mins) - class 2 -0.1572 (-5.13) -0.2091 (-9.03)
Walking travel time (mins) - class 3 -0.1065 (-2.89) -0.1398 (-5.73)
Walking travel time (mins) - class 4 -0.2249 (-8.86) -0.1935 (-8.28)
Walking travel time (mins) - class 5 -0.1781 (-5.40) -0.1397 (-6.80)
Natural logarithm of travel cost (£) - class 1 -0.3764 (-1.94) -1.0772 (-4.34)
Natural logarithm of travel cost (£) - class 2 -0.4822 (-2.51) -0.4916 (-2.79)
Natural logarithm of travel cost (£) - class 3 -0.9810 (-2.21) -1.7831 (-6.39)
Natural logarithm of travel cost (£) - class 4 -1.7228 (-11.10) -0.6018 (-2.55)
Natural logarithm of travel cost (£) - class 5 -0.1566 (-0.70) -0.9708 (-4.40)
Class allocation parameters
Constant - class 1 1.6204 (1.59) –
Season ticket ownership - class 1 -1.2191 (-2.48) –
Number of cars in household - class 1 2.1653 (4.14) –
Age - class 1 -0.0097 (-0.53) –
Female - class 1 -0.7614 (-1.37) –
Annual household income (£1,000) - class 1 -0.0072 (-0.73) –
Constant - class 2 1.2963 (1.22) –
Season ticket ownership - class 2 0.7863 (1.36) –

Continued on next page
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Table 5.2 – continued from previous page
Parameter LCCM H-LCCM
Number of cars in household - class 2 1.8449 (3.19) –
Age - class 2 -0.0053 (-0.26) –
Female - class 2 -0.9181 (-1.55) –
Annual household income (£1,000) - class 2 -0.0303 (-2.57) –
Constant - class 3 4.2543 (3.92) –
Season ticket ownership - class 3 -1.7149 (-2.22) –
Number of cars in household - class 3 1.8877 (3.01) –
Age - class 3 -0.1059 (-3.83) –
Female - class 3 -0.8211 (-1.16) –
Annual household income (£1,000) - class 3 -0.0147 (-1.27) –
Constant - class 4 3.7937 (3.59) –
Season ticket ownership - class 4 -0.9634 (-1.49) –
Number of cars in household - class 4 2.2705 (4.23) –
Age - class 4 -0.0667 (-3.10) –
Female - class 4 -1.3330 (-2.19) –
Annual household income (£1,000) - class 4 -0.0180 (-1.69) –
Clustering distance parameters
Distance multiplier γ - cluster 1 – 0.7310 (3.23)
Distance multiplier γ - cluster 2 – 0.7254 (3.73)
Distance multiplier γ - cluster 3 – 0.3633 (1.69)
Distance multiplier γ - cluster 4 – 0.2274 (1.56)
Distance multiplier γ - cluster 5 – 1.0895 (5.09)
Class/cluster membership probabilities
Class/cluster 1 0.43 0.19
Class/cluster 2 0.17 0.21
Class/cluster 3 0.10 0.18
Class/cluster 4 0.21 0.19
Class/cluster 5 0.09 0.23

Table 5.3: Estimated parameters of clustering covariates for the Yorkshire mode choice model

Parameters Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Constant -0.0734 (-1.40) 0.9180 (17.04) 1.8914 (39.02) 0.9561 (22.49) –
Season ticket ownership 0.0898 (2.89) 1.5482 (48.67) 0.1960 (6.85) 0.2493 (9.93) –
Number of cars 0.3314 (14.27) -0.1527 (-6.41) -0.2246 (-10.48) -0.0858 (-4.57) –
Age -0.0322 (-29.66) -0.0409 (-36.76) -0.0481 (-48.12) -0.0391 (-44.63) –
Female 0.1831 (6.67) 0.1927 (6.85) -0.3479 (-13.75) 0.6190 (27.90) –
Annual household income 0.0143 (28.24) 0.0030 (5.70) 0.0029 (4.24) 0.0023 (5.62) –

As a further measure of validation, the estimated Values of Travel Time (VTT) are
presented in Table 5.4. The VTT estimates from all models are close to the latest official
values suggested by the Department for Transport (no official VTT estimates for taxi) (Batley
et al., 2019) with the exception of LCCM resulting in significantly higher VTTs. The reason
for the higher VTTs of LCCM is the low and non-statistically significant travel cost parameter
for class 5, which increases the weighted average across all classes. That finding can act as a
further supporting argument for considering the H-LCCM framework for real-world policy
making, since it has the ability to lead to more behaviourally accurate valuation measures, at
least in the current study.
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Table 5.4: Values of Travel Time estimates (£/hr)

VTT estimate MNL-base C-MNL LCCM H-LCCM
Car 12.01 15.87 34.80 14.98
Bus 6.14 7.52 16.93 8.27
Rail 32.09 35.84 68.74 52.8
Taxi 82.11 122.81 198.33 120.54

4.2 Case study 2: Yorkshire shopping destination choice

4.2.1 Model specification

The specification of the models presented in the following is based on the size variable
specification of Daly (1982) and more specifically of Kristoffersson et al. (2018). According
to that, the attraction of a destination j is captured with the addition in the utility function
of a composite term Aj inside a logarithmic function, i.e. log(Aj). The composite term Aj

includes various variables aiming at capturing the attraction of the target destination j and
their respective parameters, as Aj = a1j + ∑

r>1 exp(γr)arj , where one attraction variable, a1j ,
is defined as the base and its parameter is kept fixed to 1.0. The remaining attraction/size
variables arj are estimated relative to the base one with parameters γr, which are usually
specified as exponentials to guarantee their positive sign.

The final specification was able to uncover 2 latent classes/clusters of heterogeneous
decision-makers using annual personal income and the areal measure of Index of Multiple
Deprivation (IMD) calculated for a 400m buffer around home locations. The IMD is a
composite measure developed by the Office for National Statistics (ONS) aimed to capture
deprivation among a range of different domains, such as crime, environment and housing
among others and at a high spatial resolution (Lower Super Output Areas). The IMD is
calculated as a weighted measurement of the constituent deprivation domains with a higher
number signifying a more deprived area. More details can be found at the IMD technical
report in Smith et al. (2015). The IMD indices for the year 2015 were used in the current
study.

4.2.2 Model outputs

The fit statistics for Case study 2 are presented in Table 5.5. Capturing latent heterogeneity
resulted again in model fit improvements compared to the MNL-base, even with the simpler
C-MNL specification. A slightly better LL is achieved for LCCM compared to H-LCCM by
only 0.742 LL units, but with one additional parameter. Therefore, H-LCCM presents a
more efficient approach for capturing heterogeneity in that choice context, as shown by the
fit statistics of adjusted ρ2, AIC and BIC.

The estimated parameters of LCCM and H-LCCM are detailed in Table 5.6. In that case,
the estimates of the two specifications are almost identical with only negligible discrepancies.
LOS variables were allowed to vary across classes capturing significant taste differences. Most
of the remaining parameters, however, such as the size variables, the locational variables,
the direction of travel etc. remained the same across classes either because they did not
show any significant differences or because they led to numerical issues during estimation.
The central shopping mall of Leeds, destination 1, was selected as the base alternative. The
specified ASCs were grouped separately for the remaining destinations of the city centre, the
remaining destinations of Leeds outside of the city centre and the destinations located in the
remaining region of Yorkshire. Additional interactions were also specified for season ticket
holders and individuals with no car in their household for the destinations outside the city
centre and outside Leeds. The purpose of those interactions was to capture the additional
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(a) Season ticket ownership (b) Number of cars

(c) Age (d) Female

(e) Annual household income

Figure 5.4: Class-specific average values of covariates across LCCM and H-LCCM for Yorkshire mode choice
model

disutility of travelling to those places, which are located further away from the city centre
with worse provision of PT infrastructure and without the convenience of a private vehicle.
Significant non-linearities were captured for PT travel time, walking distance and travel cost
sensitivities using a Box-Cox transformation, while only linear sensitivities were uncovered
for car travel time. A similar Box-Cox transformation was also used for parking areas for car
trips capturing significant non-linear sensitivities, as well.

The class allocation of LCCM resulted in a sample segmentation with 56% of the sample
allocated in class 1 and 44% in class 2. Similarly, the clustering procedure of H-LCCM
allocated individuals by 59% to class 1 and 41% to class 2. According to the estimated
distance multipliers γ of H-LCCM, the individuals of cluster 1 are allocated with a higher
probability to their class (66.6% to class 1 on average) compared to individuals of class 2
(58.0% to class 2 on average).

The small number of identified classes allows us to perform an easier behavioural profiling
compared to the five classes of Case study 1. Overall, the insights derived from the covariates
of the class allocation, presented in Table 5.6, and the linear regression on the log of shares
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from clustering, depicted in Table 5.7, are in agreement with the sensitivities between the
two classes/clusters. Individuals allocated into class/cluster 1 have a higher personal income
(average personal income=£28,716 from LCCM and £27,836 from H-LCCM ) and are living
in less deprived areas (average home IMD=20.0 from LCCM and 20.2 from H-LCCM ), while
also showing higher time and distance and lower cost sensitivities. Furthermore, they show
significant cost damping effects compared to class 2 and their cost sensitivity decreases as
their personal income increases, although the latter was not statistically significant. Finally,
those living in richer areas with higher house prices (4th quartile) are less willing to go
shopping in poorer areas (1st quartile). On the contrary, individuals in class/cluster 2 are
more likely to have a lower personal income (average personal income=£21,941 from LCCM
and £22,778 from H-LCCM ) and reside in more deprived areas (average home IMD=26.7
from LCCM and 26.8 from H-LCCM ). They are characterised by higher cost and lower
time and distance sensitivities, i.e. they are willing to travel further with cheaper modes
probably to reach stores offering cheaper/more affordable products. Their sensitivities for
travel time with PT further decreases as travel time increases as captured by the Box-Cox λ.
In addition, individuals of class 2 living in areas of higher house prices show no significant
taste variation for shopping in equally rich or poorer areas. The aforementioned comparison
of the behavioural profiling of the estimated classes/clusters is also depicted in Figure 5.5.

Regarding the remaining generic parameters, the presence of major clothing, grocery and
durable retailers -captured as elemental stores from OpenStreetMaps- increases the utility
of the aggregate destination alternative for the respective shopping type trip (i.e. clothes,
grocery, durables shopping). As expected, the presence of parking areas is a significant factor
for car trips, but that utility is decreasing with the increase of parking spaces, as captured by
the estimated λ parameter of the Box-Cox transformation. The directionality of travel is
also an important factor with intermediate shopping destinations that require a significant
deviation (above 90o) from the straight path between the previous origin and the following
destination are less likely to be chosen compared to others.

An interesting finding is that individuals living in areas with a higher percentage of white
residents (4th quartile) are less willing to go shopping at more racially diverse locations (1st
quartile) relative to less diverse locations. On the contrary, individuals from more diverse
locations show no significant taste variation for shopping at predominantly “white” locations,
while they are more willing to go shopping in locations in the 2nd and 3rd quartile of white
residents percentage. That finding together with the dispreference of individuals from richer
neighbourhoods to shop in poorer areas hints to instances of economic and racial inequality
in the region of Yorkshire, where wealth is not distributed equally across space and in fact it
is distributed disproportionately in favour of the already affluent areas.

The multiplier of the composite log term for the size variables is significantly less than
1.0. According to Kristoffersson et al. (2018) that implies the existence of correlation among
the elemental alternatives inside the aggregated destination alternatives, thus providing a
behavioural meaning behind the alternative aggregation, in that case the implementation of
HAC. The population in a 400m buffer around the shopping destinations was used as the
base size variable. The remaining size variables, namely retail, grocery and durable shopping
areas attract significantly more trips relative to the base size variable. Specifically, for the
case of a consecutive shopping trip, the shopping variability of neighbouring locations at a
distance of 1,000-2,000m (captured using Shannon’s entropy (Shannon, 1948)) also adds to
the attraction of the target destination. This means that destinations closer to others with a
variety of shopping stores are more likely to be chosen relative to more isolated ones, which
also signifies that individuals are likely to have a pre-planned daily activity schedule.
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Table 5.5: Fit statistics of the Yorkshire shopping destination choice models

Fit statistics MNL-base C-MNL LCCM H-LCCM
Log-likelihood (0) -7,961.332
Log-likelihood (model) -3,369.363 -3,341.002 -3,310.953 -3,311.695
Adjusted ρ2 0.5734 0.5736 0.5792 0.5793
AIC 6,792.73 6,790.004 6,699.91 6,699.39
BIC 6,936.91 7,078.374 6,908.17 6,902.32
Number of parameters 27 54 39 38
Number of individuals 270
Number of observations 1,541

Table 5.6: Modelling estimates of LCCM and H-LCCM models for the Yorkshire shopping destination choice
context

Parameter LCCM H-LCCM
Alternative-specific constants
Constant Leeds city centre/destination 1 (base) – –
Constant Leeds city centre/remaining destinations - class 1 -1.8618 (-7.66) -1.8077 (-7.11)
Constant Leeds city centre/remaining destinations - class 2 -0.5778 (-2.12) -0.5634 (-1.87)
Constant Remaining Leeds -1.3988 (-6.65) -1.4033 (-6.64)
Constant Remaining Leeds -0.8056 (-3.29) -0.7994 (-3.27)
shift for season ticket owners/no car ownership
Constant Remaining Yorkshire -0.7394 (-2.73) -0.7467 (-2.76)
Constant Remaining Yorkshire -0.9537 (-2.25) -0.9337 (-2.20)
shift for season ticket owners/no car ownership
LOS parameters
Travel time car,PT (mins) - class 1 -0.1242 (-9.08) -0.1227 (-8.87)
Travel time car,PT (mins) - class 2 -0.0922 (-2.40) -0.0942 (-2.03)
Box-Cox λ car 1.0000 (–) 1.0000 (–)
Box-Cox λ PT time - class 1 0.8098 (11.63) 0.8095 (11.37)
Box-Cox λ PT time - class 2 0.0462 (1.23) 0.0483 (1.06)
Walking distance (km) - class 1 -2.2367 (-9.42) -2.1877 (-8.20)
Walking distance (km) - class 2 -1.4802 (-10.37) -1.4685 (-9.26)
Box-Cox λ walking distance - class 1 0.5958 (3.32) 0.6042 (3.60)
Box-Cox λ walking distance - class 2 0.8302 (6.34) 0.8382 (5.96)
Travel cost (£) - class 1 -0.2354 (-1.91) -0.2607 (-2.05)
Travel cost (£) - class 2 -2.4754 (-4.72) -2.5341 (-3.94)
Box-Cox λ travel cost - class 1 0.3811 (3.33) 0.4170 (4.15)
Box-Cox λ travel cost - class 2 0.8345 (9.73) 0.8330 (9.20)
Personal income-cost elasticity - class 1 -0.1861 (-0.48) -0.3362 (-1.02)
Personal income-cost elasticity - class 2 0.1052 (1.34) 0.1162 (1.39)
Direction of travel
Presence of angle>90o between O-S and O-D -0.4748 (-4.41) -0.4743 (-4.40)
Locational variables
Living in areas with high house prices (quart.4)- -1.2184 (-2.85) -1.2538 (-2.86)
shopping in areas with low house prices (quart.1) - class 1
Living in areas with high house prices (quart.4)- 0.3311 (0.84) 0.4017 (1.02)
-shopping in areas with low house prices (quart.1) - class 2
Living in areas with high % of whites (quart.4)- -0.5956 (-2.31) -0.6012 (-2.33)
shopping in low % whites (quart.1)
Living in areas with low % of whites (quart.1)- 0.5762 (2.62) 0.5758 (2.63)
shopping in medium % whites (quart.2-3)
Living in areas with low % of whites (quart.1) 0.2761 (0.90) 0.2783 (0.91)
shopping in high % whites (quart.4)
Parking areas (400m buffer) 0.1184 (4.29) 0.1177 (4.28)
Box-Cox λ for parking areas (400m buffer) 0.4350 (6.56) 0.4366 (6.58)

Continued on next page
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(a) Annual personal income (b) Home IMD

Figure 5.5: Class-specific average values of covariates across LCCM and H-LCCM for Yorkshire shopping
destination choice model

Table 5.6 – continued from previous page
Parameter LCCM H-LCCM
Major clothes shopping retailers (400m buffer) 1.6041 (6.60) 1.5978 (6.59)
Major grocery retailers (400m buffer) 0.4516 (4.52) 0.4541 (4.54)
Major durables retailers (400m buffer) 2.1775 (2.96) 2.1696 (2.91)
Size variables
Natural logarithm multiplier ϕ 0.5526 (7.04) 0.5545 (7.05)
Population (400m buffer) (base) 1.0000 (–) 1.0000 (–)
Retail areas for clothes (400m buffer) (exp.) 0.8992 (1.47) 0.8863 (1.46)
Retail areas for groceries (400m buffer) (exp.) 1.2434 (2.75) 1.2352 (2.73)
Retail areas for durables (400m buffer) (exp.) 0.8663 (1.08) 0.8605 (1.07)
Shopping store variability when following 3.3918 (4.56) 3.3657 (4.53)
trip purpose is shopping (1000-2000m buffer) (exp.)
Class allocation parameters
Constant - class 1 0.3114 (0.47) –
Annual personal income (£1,000) - class 1 0.0285 (1.75) –
Home IMD - class 1 -0.0332 (-1.99) –
Clustering distance parameters
Distance multiplier γ - cluster 1 – 0.6113 (3.27)
Distance multiplier γ - cluster 2 – 0.3013 (0.88)
Class/cluster membership probabilities
Class/cluster 1 0.56 0.59
Class/cluster 2 0.44 0.41

Table 5.7: Estimated parameters of clustering covariates for the Yorkshire shopping destination choice model

Parameters Cluster 1 Cluster 2
Constant 0.9779 (24.57) –
Annual personal income (£1,000) 0.0068 (9.46) –
Home IMD -0.0350 (-33.74) –
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4.3 Case study 3: London mode choice

4.3.1 Model specification

Regarding the mode choice model for the London dataset, the MNL-base model follows the
specification presented in Krueger et al. (2020) and Hancock et al. (2021). In addition
to ASCs and interactions with socio-demographic (e.g. gender, number of cars, age etc.)
and trip characteristics (e.g. month of the year), the utility function also includes generic
in-vehicle travel time parameters for motorised modes (car, transit) and out-of-vehicle time
for the access-egress segments of transit, cycling and walking. Moreover, there are parameters
capturing the impact of traffic variability for car trips and the number of necessary transfers for
transit trips. The specification of LCCM was able to identify two latent classes of individuals,
while failing to identify a third class. The number of cars owned per household and the age
of the individuals were used as covariates in the class allocation model in the absence of any
measure of personal or household income. The same socio-demographics were also included
in the class-specific mode choice models at the lower level with different parameters specified
for each case, similar to the study of Calastri et al. (2018). The estimated parameters of
each component will inform the analyst whether a specific socio-demographic attribute might
be better at explaining the allocation of the individuals into the classes/clusters or their
observed choices. An equivalent specification was also used for C-MNL and H-LCCM for
evaluation purposes, similar to the previous case studies already discussed.

4.3.2 Model outputs

The fit statistics of the four specifications are depicted in Table 5.8, while the detailed
estimated parameters of LCCM and H-LCCM, along with their robust t-ratios, are reported
in Table 5.9. Overall the proposed specification is able to provide significant model fit
improvements compared to LCCM with 460.15 LL units of improvement, while also having 1
parameter less. The remaining fit statistics of H-LCCM are also improved compared to LCCM.
Besides the improvements in model fit, however, the advantages of our proposed methodology
are more evident in the behavioural interpretation of the estimated classes/clusters (Figure
5.6). According to LCCM, class 1 is characterised by mostly older individuals (average
age=44.6) with a lower than average number of cars in their households (average number
of cars=0.89), while the opposite is true for class 2 including younger individuals (average
age=39.1) with a higher than average number of cars in their possession (average number of
cars=0.98). It is fair to say that the behavioural interpretation of the covariates of LCCM
is not intuitive enough, since age and the number of cars were used as proxy measures of
income. As such, our prior assumption was that older individuals would likely also be in
the possession of more cars, relative to younger individuals, acting as a manifestation of an
increased income accumulation over their lifetime.

Contrary to this, the clusters of H-LCCM represent a more intuitive behavioural profiling.
First of all, based on the estimated distance multipliers γ, there is high certainty for allocating
individuals into cluster 1 with a probability of 81.5% on average to belong to that cluster,
while individuals of cluster 2 have an average probability of 61.4% to be allocated into cluster
2. Cluster 1 is more likely to include younger individuals (average age=38.9) with a lower
than average number of cars (average number of cars=0.88), while older individuals (average
age=44.7) with a higher than average number of cars (average number of cars=0.99) are
more likely to be allocated into cluster 2. Individuals in cluster 1 are also more cost sensitive
and less sensitive for in-vehicle car and transit time compared to individuals in cluster 2.

A range of willingness-to-pay (WTP) estimates, derived from the four specifications, are
also presented in Table 5.11, specifically for in-vehicle travel times for car and transit, for
out-of-vehicle times for transit, for traffic variability for car and for transit transfers. The
values are similar across all models, but an interesting thing to note here is that H-LCCM
results in higher WTP for IVTT relative to the rest and specifically compared to LCCM
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by around 5£/hr. Taking into account the VTTs for the Yorkshire mode choice model (see
Table 5.4) and the inherently increased average income of London residents, which is subset
by the increased cost of living, the higher VTT for IVTT of H-LCCM presented in Table
5.11 could be considered as a more accurate behavioural representation of the trade-offs that
individuals in London are willing to make. From that Table, the ratio among OVT/IVT
can also be calculated across the four specifications, which results in 2.09, 2.03, 2.32 and
1.40, respectively, indicating a lower estimated importance of OVT relative to IVT from the
proposed H-LCCM model compared to the rest.

Table 5.8: Fit statistics of the London mode choice models

Fit statistics MNL-base C-MNL LCCM H-LCCM
Log-likelihood (0) -81,214.67
Log-likelihood (model) -44,309.01 -43,854.73 -37,597.26 -37,137.11
Adjusted ρ2 0.4542 0.4596 0.5366 0.5423
AIC 88,654.03 87,773.46 75,272.52 74,350.23
BIC 88,815.63 88,060.76 75,622.67 74,691.4
Number of parameters 18 32 39 38
Number of individuals 26,904
Number of observations 58,584

Table 5.9: Modelling estimates of LCCM and H-LCCM for the London mode choice context

Parameter LCCM H-LCCM
Alternative-specific constants
Constant Walking (base) – –
Constant Cycling - class 1 -7.6354 (-7.05) -7.7086 (-9.42)
Shift Cycling for females - class 1 -0.8494 (-0.75) -7.1144 (-11.08)
Shift Cycling for winter (November-March) - class 1 1.1809 (0.91) -1.5958 (-1.06)
Shift Cycling for age below 18 or above 64 - class 1 -9.5609 (-12.94) -0.1846 (-0.14)
Constant Cycling - class 2 -3.2261 (-32.62) -1.6507 (-11.51)
Shift Cycling for females - class 2 -1.1075 (-11.09) -1.0203 (-6.50)
Shift Cycling for winter (November-March) - class 2 -0.3090 (-3.47) -0.3227 (-3.80)
Shift Cycling for age below 18 or above 64 - class 2 -0.6358 (-4.16) -1.3231 (-5.18)
Constant Transit - class 1 -1.7203 (-13.24) -2.0758 (-11.47)
Shift Transit for females - class 1 0.3339 (2.50) 0.3186 (4.58)
Shift Transit for age below 18 - class 1 -0.7387 (-0.81) 0.2925 (1.56)
Shift Transit for age above 64 - class 1 0.9919 (5.27) 0.6414 (5.96)
Constant Transit - class 2 -2.2070 (-26.06) -1.9745 (-11.05)
Shift Transit for females - class 2 0.2583 (3.68) 0.3881 (2.35)
Shift Transit for age below 18 - class 2 0.7975 (3.13) 0.1651 (0.49)
Shift Transit for age above 64 - class 2 0.4306 (4.18) -0.0379 (-0.15)
Constant Car - class 1 -4.7424 (-18.60) -6.3640 (-9.91)
Shift Car for females - class 1 0.4735 (3.19) 0.4468 (2.58)
Shift Car for age below 18 - class 1 -1.5875 (-2.57) -1.7334 (-4.46)
Shift Car for age above 64 - class 1 1.5389 (6.49) 0.6141 (2.29)
Shift Car for car ownership - class 1 4.3621 (29.95) 1.6926 (13.46)
Constant Car - class 2 -5.8963 (-27.31) -0.6286 (-2.28)
Shift Car for females - class 2 0.3270 (3.42) 0.0701 (0.51)
Shift Car for age below 18 - class 2 -0.7333 (-3.10) -1.6307 (-6.19)
Shift Car for age above 64 - class 2 -0.1673 (-1.18) 0.1112 (0.58)
Shift Car for car ownership - class 2 2.1917 (23.02) 1.2616 (16.38)
LOS parameters
Travel cost (£) - class 1 -0.2757 (-13.36) -0.5484 (-7.07)
Travel cost (£) - class 2 -0.3607 (-11.30) -0.1891 (-16.67)

Continued on next page
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Table 5.9 – continued from previous page
Parameter LCCM H-LCCM
Out-of-vehicle travel time for walking, -13.3327 (-30.10) -10.1507 (-7.57)
cycling and transit (hrs) - class 1
Out-of-vehicle travel time for walking, -7.1890 (-37.46) -7.5145 (-5.02)
cycling and transit (hrs) - class 2
In-vehicle travel time for transit and car (hrs) - class 1 -6.0404 (-15.92) -3.6914 (-5.90)
In-vehicle travel time for transit and car (hrs) - class 2 -2.6818 (-13.46) -6.6554 (-4.90)
Traffic variability for car - class 1 -3.3284 (-13.21) -7.5255 (-11.31)
Traffic variability for car - class 2 -5.5894 (-20.00) -2.8760 (-13.69)
Number of transfers for transit - class 1 -0.4640 (-5.79) -0.3665 (-2.97)
Number of transfers for transit - class 2 -0.0620 (-1.02) -0.0267 (-0.24)
Class allocation parameters
Constant - class 1 -0.4306 (-4.53) –
Number of cars - class 1 -0.1861 (-3.36) –
Age - class 1 0.0173 (14.71) –
Clustering distance parameters
Distance multiplier γ - class 1 – 1.2584 (21.65)
Distance multiplier γ - class 2 – 0.4785 (9.80)
Class/cluster membership probabilities
Class/cluster 1 0.53 0.52
Class/cluster 2 0.47 0.48

Table 5.10: Estimated parameters of clustering covariates for the London mode choice model

Parameters Cluster 1 Cluster 2
Constant 1.4311 (208.5) –
Number of cars -1.1826 (-347.7) –
Age -0.0039 (-28.0) –

Table 5.11: Willingness-to-pay estimates (£/hr) for the London dataset

WTP estimate MNL-base C-MNL LCCM H-LCCM
IVTT for Car, Transit 17.28 16.93 15.10 20.54
OVTT Transit 36.08 34.38 34.98 28.80
Car traffic variability 19.00 17.54 13.68 14.44
Transit transfers 0.28 0.31 0.97 0.41

5 Conclusions

The current study showcased the integration of a ML clustering algorithm into a state-
of-the-art econometric framework for the purpose of capturing individual heterogeneity in
the sample. The novelty of our approach compared to existing studies in the literature is
the transformation of a deterministic clustering algorithm into a probabilistic one in order
to effectively take the role of a class allocation model. The same methodology developed
can also be applied to different and more advanced deterministic clustering approaches
and using different distance measures, as well. Furthermore, the same framework and its
fundamental principles can be used to accommodate unconventional data, such as text, in the
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(a) Number of cars (b) Age

Figure 5.6: Class-specific average values of covariates across LCCM and H-LCCM for the London mode
choice model

clustering/class allocation part of the model, as long as those types of data can be decoded
in a lower dimensionality representation as numeric vectors.

From all case studies analysed, the proposed methodology is able to achieve at worse
comparable results with the traditional econometric specification in terms of model fit. More
benefits were achieved with larger samples including more individuals and trips (Case studies
1, 3 ) indicating that an ML algorithm might excel at identifying more complex patterns with
more data. In terms of behavioural interpretation, however, it was possible to achieve more
intuitive clustering profilings and WTP estimates compared to the traditional econometric
model in all of the case studies.

The proposed methodology is subject of course to certain limitations, the most important
of which being the centroid initialisation process. The estimation is highly dependent on the
initial centroid that is randomly selected, and under the K-means++ initialisation process,
that initial centroid forms the basis for the selection of the remaining centroids, as well. Prior
assumptions regarding the signs of the scaled clustering variables can help to reach a better
final LL, but it is difficult to have any meaningful a priori sign directionality assumptions in
the presence of a large number of classes/clusters, such as in Case study 1.

The current study aims to build on the increasing literature focusing on the integration
of ML and DCM. As illustrated in the case studies presented, there are additional benefits to
be achieved by incorporating an ML algorithm into a DCM framework. That approach is
able to take the best of both worlds by using ML for identifying patterns in the data more
effectively, while also allowing the choice process to be modelled by a DCM, thus providing
valuation measures, which are important for policy making. More studies are expected to
take these approaches even further as the ML-DCM literature keeps developing.
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Chapter 6

Probabilistic choice set formation
incorporating activity spaces into the
context of mode and destination choice
modelling

Panagiotis Tsoleridis1, Charisma F. Choudhury1 and Stephane Hess1

Abstract

Understanding the constraints that individuals face during their spatial choices is important
from a policy perspective. Such constraints, however, are often overlooked in the choice set
generation process during model development. In order to address that gap, the current study
proposes a probabilistic choice set formation based on Manski’s framework assuming that the
actual choice set of an individual is latent (unobserved). Though latent class models with
heterogeneous choice sets have been used previously in the context of mode and route choice,
their application in the context of spatial choices have been hindered due to the inherently
large choice sets making the problem computationally intractable. To address this issue, we
propose to computationally simplify the problem by utilising the geography-derived notions
of Activity Spaces to delineate a range of potential choice sets per individual helping us to
capture both issues of spatial awareness and time-space constraints. In order to account for
the latent nature of the true choice set, we propose a Latent Class Choice Modelling (LCCM)
framework to allocate the individuals probabilistically into the different resulting choice sets,
with each class having a different choice set and a different set of parameters. Thus the LCCM
is able to capture heterogeneity in the choice sets and in the sensitivities, at the same time.
The proposed LCCM framework is empirically tested on joint mode and shopping destination
choices captured through a GPS smartphone application. It is compared to a base MNL model
estimated on the global choice set, an LCCM capturing heterogeneity only in the sensitivities
and a LCCM with latent consideration choice sets, similarly to the proposed model, but with
generic parameters across classes. Our proposed specification is able to outperform all of
the remaining models, while also providing insights on the factors affecting individuals to be
constrained in their location choices across space hinting to cases of spatial cognition, the
importance of the home and workplace geography and the individual’s socio-economic status.

1Choice Modelling Centre, Institute for Transport Studies, University of Leeds
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Such insights can be important for developing more behaviourally realistic models that can be
used by planners and policy makers to formulate more effective measures that better relate to
the underlying population. Furthermore, the analysis provides insights into the discrepancies
that can emerge by accounting for latent consideration sets in willingness-to-pay measures
and demand elasticities, which could have significant implications in the effectiveness of policy
measures.

1 Introduction

Individuals face constraints during their decision making process. In the context of daily
mobility choices, those constraints can refer to either time-space constraints and/or limited
spatial awareness, among others. Time-space constraints can arise from the need to participate
in specific activities in specific locations and for specific durations, i.e. travel to workplace
and stay there for a duration of 8 hours, which limits the ability of the individuals to equally
evaluate every possible location for shopping and other discretionary activities before, during
or after working hours. On the other hand, spatial awareness or the lack of it could be caused
as a result of the regularity of daily mobility patterns, which reinforces travelling within the
already familiar geographical space.

Despite being often overlooked, it is important from a policy perspective to uncover those
latent constraints from the data for the purpose of proposing more effective policy measures
suitable for addressing the needs and intricacies of the underlying population. Furthermore,
there is value in understanding the influence of various socio-demographic characteristics in
the formation of those constraints or phrase it in a different way, identifying what could be
the most likely characteristics of the individuals facing each specific constraint. An example
of the derived value from such an analysis, could be the identification of instances of social
exclusion (Schönfelder and Axhausen, 2003) or the potential presence of very restrictive
space-time constraints that prevent individuals from exploring a wider range of alternatives
for their daily choices.

Discrete choice modelling (DCM) has been an important tool for policy making since the
seminal work of McFadden (1973) and the development of the Multinomial Logit (MNL) model
for understanding individual mobility behaviour. The MNL model has a strong grounding on
microeconomic theory postulating that individuals will choose the alternative that maximises
their utility for a specific choice task among a set of alternatives, also known as the choice set.
Traditionally, a DCM is estimated under the assumption that individuals will consider and
equally evaluate all alternatives in the choice set. There have been attempts, however, aiming
to relax that assumption acknowledging the fact that not only all alternatives might not be
available to all individuals, such as making a car trip for individuals with no car access in
their household, but they might also not be considered by everyone, as well, such as making
a large distance trip by walking or choosing to go for shopping in a store that is unknown
to the individual. Assigning an unrealistic choice set for model estimation is yet another
case of model misspecification as noted in Williams and Ortuzar (1982), who emphasised
the potential adverse effects arising from that, such as biased estimates and incorrect choice
probabilities. Gaudry and Dagenais (1979) demonstrated that accounting for captive decision
makers (individuals who choose only a specific alternative) will have a significant impact on
the estimated market shares. Li et al. (2015) have also showed the potential biased welfare
measures that could be caused as a result from a choice set misspecification on simulated
data.

Several studies mainly originating from consumer behaviour research have suggested that
decision makers utilise heuristic processes to segment the alternatives into a range of cognitive
subsets, unobserved to the analyst. According to Punj and Srinivasan (1989), the global
choice set, i.e. all alternatives of the case study, such as transport modes for a mode choice
model or activity locations for a destination choice model, can be decomposed to two different
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subsets, an awareness and a consideration set (Howard and Sheth, 1969; Wright and Barbour,
1977; Pagliara and Timmermans, 2009; Capurso et al., 2019). Awareness set is a subset of
the global choice set, which includes the alternatives the individuals are aware of due to
various reasons, such as past experience, familiarity, word of mouth etc. The consideration
set is a subset of the awareness set and it is the final set of feasible alternatives that the
individuals actually evaluate during their decision making process. In a spatial context, the
respective terms of spatial information fields and spatial usage fields have been proposed by
Potter (1979). As such, spatial information fields contain the activity locations the individual
is aware of (awareness set), regardless if she has ever travelled to those places, while spatial
usage fields are a subset of the former containing the locations that have been visited and
are actively considered by the individual for conducting her activities (consideration set)
(Timmermans et al., 1982). Therefore, there have been studies in the literature suggesting
that choice models should be estimated using the consideration set instead of the common
practice of simply using the global choice set.

Several approaches have been proposed over the years for defining alternative availabil-
ity/consideration. A usual approach is the availability to be exogenously defined using
deterministic thresholds based on the analyst’s assumptions and the observations in the data,
e.g. walking is not considered for trips of distances above the maximum observed walking
distance in the data (Calastri et al., 2018; Hasnine et al., 2018; Tsoleridis et al., 2022). A
tour-based approach has also been proposed to account for feasible constraints in terms
of mode availability, such as the need for a driver to return her car back home at the end
of the tour (Tsoleridis et al., 2022). Contrary to that, a behaviourally richer framework
was proposed by Manski (1977) suggesting that the probability of individual n choosing
alternative i from a consideration choice set C can be decomposed into a probability of
choice set C being the actual choice set considered and a probability of choosing alternative i
conditional on belonging in the consideration set C from a set of S possible non-empty choice
sets, as shown in Equation 6.1.

Pin(C) =
S∑

s=1
Pn(i|Cs)P (Cs) (6.1)

Manski’s framework requires a complete enumeration of all possible combinations of
alternatives forming potential S non-empty choice sets. That number of combinations increases
rapidly with the number of alternatives J , as 2J − 1, making this approach computationally
infeasible for choice contexts with a large number of alternatives, such as in a spatial choice
model. In fact, several implementations of Manski’s probabilistic choice set formation have
been performed, but the vast majority of them is limited in a mode choice context (Swait
and Ben-Akiva, 1987; Ben-Akiva and Boccara, 1995; Calastri et al., 2018; Capurso et al.,
2019), which generally offers tractable and well-defined choice sets. To simplify the problem,
deterministic availability of alternatives can be initially defined in terms of their feasibility.
Examples include, defining car as unavailable for individuals with no car in their household
in the context of mode choice or excluding routes involving detours above a certain threshold
from the habitual route in the context of route choice. Probabilistic availability can thus be
incorporated only to previously defined feasible alternatives to account for the uncertainty of
the analyst, such as the maximum distance for walking to be considered as an alternative
(Swait and Ben-Akiva, 1986) or the spatio-temporal constraints associated with the route
choice (Kaplan and Prato, 2012).

One of the first operational implementations of Manski’s framework was the logit captivity
model of Swait and Ben-Akiva (1986), who proposed a probabilistic choice set generation
framework to account for captive decision makers on mode choice for commuting trips. That
specification presents a simplified version of a probabilistic choice set generation model in
which the number of non empty choice sets is restricted to choice sets of only one alternative
(captive individuals) and choice sets including all feasible alternatives (individuals free to
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choose). That study also laid the foundations for the more general Independent Availability
Logit (IAL) model proposed in Swait and Ben-Akiva (1987) assuming that the inclusion of
one alternative in the choice set is independent of the remaining alternatives, a necessary
assumption to make the specification computationally tractable.

Several attempts were made over the years to approximate Manski’s framework, while
also relaxing its computational complexity, such as the Implicit Availability/Perception model
of Cascetta and Papola (2001) and the Constrained Multinomial Logit (CMNL) model
Martinez et al. (2009) incorporating additional terms in the utility function to capture
latent constraints. Specifically, the CMNL model includes penalties in the utility function for
alternatives exceeding certain attribute thresholds. Despite the authors suggesting that their
approach is an approximation of Manski’s model, Bierlaire et al. (2010) highlighted some
limitations of the CMNL as its inability to produce unbiased estimates on simulated data,
contrary to the IAL specification of Swait and Ben-Akiva (1987). Similar conclusions were
derived from the study of Li et al. (2015), as well, regarding the comparison of CMNL and
IAL models. In the same study, the authors also showed that models capable of uncovering
taste heterogeneity, such as MNL models with socio-demographic interactions, mixed Logit or
Latent Class Choice Models, will also produce biased estimates and welfare measures, since
the choice set formation process is confounded in the sensitivity heterogeneity that is being
captured. More specifically, the authors demonstrated -using simulated data- that the IAL
specification is the only one capable of producing unbiased estimates in the presence of a
latent price threshold.

Consideration of alternatives was traditionally understood by asking additional infor-
mation to the decision makers (Ben-Akiva and Boccara, 1995; Kaplan and Prato, 2012). A
prominent example in the literature is the study of Ben-Akiva and Boccara (1995), in which
answers to relevant questions were used as indicators for defining latent variables regarding
the consideration of alternatives. Nonetheless, with passively or even semi-passively collected
Revealed Preference (RP) data, such as a GPS-based trip diary, only the observed choice is
known without having any additional information on the non-chosen alternatives and the
reasons for not choosing them. Hence only assumptions can be made about the extent of the
considered choice set and the non-chosen alternatives belonging to that. A relevant example
can be found in the study of Calastri et al. (2018), where the authors utilised a GPS dataset
to specify a Latent Class Choice Model for mode choice with a range of classes adhering to
specific combinations of mode alternatives

Contrary to the examples presented so far, a spatial choice model and more specifically a
destination choice model of discretionary activities, e.g. shopping, is characterised by large
choice sets, which could be comprised of traffic analysis zones or geographic zones (e.g. Middle
Super Output Areas - MSOAs), general shopping areas, shopping malls or even specific
parcels and stores depending on the level of spatial granularity offered by the utilised dataset
and the level of detail required by the analyst. Sampling of alternatives has been proposed
as a method suitable for reducing the computational complexity for choice models with large
choice sets (Guevara and M. Ben-Akiva, 2013a; Guevara and M. Ben-Akiva, 2013b; Tsoleridis
et al., 2021). Besides the computational advantages, however, sampling of alternatives does
not account for the latent consideration of alternatives during the decision making process.
Therefore, in order to account for the potential presence of latent choice set formation
mechanisms in a spatial context, certain simplifications might be necessary to make the
problem computationally tractable. To the best of our knowledge, only the study of Thill and
Horowitz (1997b) has attempted to develop a probabilistic choice set formation specification
for a spatial choice model first using simulated data and then applied on the real-world
context of shopping destinations for home-based trips (Thill and Horowitz, 1997a). Their
approach relies on the notion that individuals have to make destination choices, while being
subject to latent time constraints, therefore the set of destinations under consideration will
depend on each individual’s time budget. The simplification applied in that study, relative to
the IAL specification of Swait and Ben-Akiva (1987), is that individuals are probabilistically
allocated into a finite number of exogenously defined time thresholds as concentric circles from
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their home locations within which reachable destinations form the respective consideration
sets. Their specification which is effectively an LCCM specification –although not stated
as such– is able to outperform a base unconstrained MNL model. Nonetheless, it is also
worth mentioning that the specification of Thill and Horowitz (1997a) does not account
for differences in sensitivities across classes, thus having the possibility of confounding the
presence of latent choice set formation constraints with individual unobserved heterogeneity.
Furthermore, no additional covariates were used in the allocation of individuals to the specified
time thresholds limiting our ability to link latent constraints with specific sociodemographic
attributes that could lead to better informed policy measures.

In the current study, we follow a similar approach to Thill and Horowitz (1997a), but
we differ our utilised proxy measures of latent constraints by considering the coexistence of
spatial awareness/cognition and space-time constraints. The geography-derived notions of
Activity Spaces (Hagerstrand, 1970) in the form of detour ellipses (Justen et al., 2013; Leite
Mariante et al., 2018; Tsoleridis et al., 2021) and standard deviational ellipses (Brown and
Moore, 1970; Horton and Reynolds, 1970; Horton and Reynolds, 1971; Yuill, 1971; Schönfelder
and Axhausen, 2003; Schönfelder and Axhausen, 2004; Schönfelder and Axhausen, 2010;
Manley, 2016) are utilised to define proxy measures of trip-specific space-time and individual-
specific spatial awareness/cognition constraints, respectively. Our proposed specification, is
compared against a base MNL model estimated using a choice set of feasible alternatives
based on logical checks and deterministic exogenous thresholds and a base LCCM specification
estimated again using the same choice set and capturing heterogeneity on the sensitivities
across classes. Contrary to that base LCCM, our approach is capturing heterogeneity both
in the sensitivities and the consideration choice sets at the same time. More specifically,
our proposed specification includes three classes each with its own choice set. The choice
set of class a includes alternatives within the estimated detour ellipses adhering to trip-
specific space-time constraints. The choice set of class b includes alternatives, within both
the estimated detour ellipses as before, but also within the individual-specific standard
deviational ellipses thus capturing additional spatial cognitive constraints of the individuals.
Finally, class c has the same choice set as the base MNL and the base LCCM models
including all feasible alternatives, thus representing individuals that do not face any of the
two aforementioned latent constraints. In addition, each of the three classes has a range of
class-specific parameters to avoid confounding unobserved heterogeneity among individuals
with the presence of latent choice set formation mechanisms, while also sociodemographic
attributes are used to assist the allocation of individuals to each class, thus addressing some
of the limitations identified in the work of Thill and Horowitz (1997a). An equivalent LCCM
specification with different choice sets, but with generic parameters across classes and only
constants in the class allocation, is also utilised for comparison purposes and to highlight the
discrepancies in the two approaches.

According to the description above, the proposed specification is a similar case to the
logit captivity model of Swait and Ben-Akiva (1986), where individuals are either captive to
their space-time constraints, their spatial awareness or are free to choose form all the range of
available and feasible alternatives being more inclined to explore the space around them. The
proposed approach is empirically tested on a joint mode-destination choice model of shopping
activities utilising a 2-week GPS trip diary. The model’s objective is to jointly capture
individual behaviour regarding the choice of an intermediate shopping location, as well as
the modes of the two trip legs travelling to and from that location. The results suggest that
our proposed LCCM framework is capable of uncovering significant latent constraints, which
also leads to significant model fit improvements compared to the base LCCM specification.
More importantly, however, a specification like that is able to shed light into the types of
individuals that are more likely to face certain latent constraints during their daily decision
making process, thus deriving valuable insights for more effective policy measures able to
account for those constraints.

The remainder of the paper is as follows. In the second chapter, a description of the
different forms of activity spaces is performed. In the third chapter, the methodological
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frameworks of the proposed model specifications are thoroughly explained, while in the
following chapter the data used in the practical application is described. In the fifth chapter,
the modelling outputs and their interpretation are highlighted. Finally, in the last chapter
the conclusions and limitations of the study are summarised and recommendations for future
research are suggested.

2 Forms of Activity Spaces

The notions of Activity Spaces (AS) originate from the fields of time-space (Hagerstrand, 1970)
and behavioural geography (Brown and Moore, 1970; Horton and Reynolds, 1970; Yuill, 1971)
and they have been studied extensively in different heterogeneous research areas since their
inception with an emphasis on understanding when and where activity participation occurs
and identify potential reachable opportunities given the remaining time budget (Schönfelder
and Axhausen, 2004; Schönfelder, 2006; Schönfelder and Axhausen, 2010; Kamruzzaman and
Hine, 2012; Lam et al., 2018). They are mainly used as a measure of describing the spatial
distribution of visited locations and they incorporate a notion of individual spatial awareness
(Manley, 2016) by providing invaluable information about the exposure to specific locations
and activities that individuals might perform based on their usual mobility patterns and
their time-space constraints. Due to the vast range of studies and application domains, there
are several different forms of AS proposed in the literature depending on the aspect under
examination in each case and the level of analysis. In a systematic review, Smith et al. (2019)
summarised the different AS forms, which among others (such as convex hulls, daily path
areas, kernel densities, interpolation etc.), include the following:

• Ellipses formed around two fixed points of a specific trip chain, labelled here as Detour
Ellipses (DEs)

• Ellipses formed around the observed trips of an individual during a survey period, most
commonly known as Standard Deviational Ellipses (SDEs)

In order to produce generalised results, representative of the sample in our dataset, we
refrained from using the observed Activity Spaces of both forms, Detour Ellipses and Standard
Deviational Ellipses, and used estimated Activity Spaces instead as proxy measures of latent
constraints entering our behavioural specifications. To accomplish that, we estimate a range
of continuous regression models using specific structural components of the Activity Space as
dependent variables.

2.1 Detour Ellipse

The first type of ellipse utilised in this study aims to capture the reachable destinations
based on trip and individual characteristics and the location of the following activity. Several
approaches have been proposed in the literature to define what is commonly known as
Potential Path Areas (PPAs) based on Hagerstrand (1970) work on time-space geography.
Those approaches typically take into account the available net time between the fixed activity
locations and an average travel speed (Kamruzzaman and Hine, 2012) or real network
travel times based on the time of day in more advanced cases (Miller, 1991) to identify the
intermediate locations that are potentially reachable within those time budgets (Lam et al.,
2018). A slightly different approach is taken in the current study, where we propose the
use of Detour Ellipses between fixed locations to capture the intermediate reachable areas.
A Detour Ellipse (DE) is a type of an ellipse formed around two fixed locations, the foci
of the ellipse, which are also referred to as ‘pegs’. More specifically, a DE is based on the
Detour Factor (DF) defined as the ratio of the sum of the distances between O(previous
origin)-S(shopping destination) and S(shopping destination)-D(next destination) over the
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distance between O-D, as defined in Equation 6.2 (Justen et al., 2013). In other words, a
DF measures the deviation that an individual is willing to make to reach an intermediate
shopping location S between the O-D (Leite Mariante et al., 2018) and it serves as a measure
of spatial dependence among destinations in a trip/activity chain. It is also clear that DF ≥ 1
should always hold in cases where O and D are different.

DF = lOS + lSD

lOD

(6.2)

Previous studies have used fixed DFs for intermediate locations to be considered along
observed O-D paths (Cascetta and Papola, 2009). Such an example is presented in the study
of Newsome et al. (1998), who defined DEs based on the furthest visited intermediate location
between fixed home and work locations. That approach, however, fails to take into account
the influence of the total OD distance on the resulting DF, as it can be easily understood that
longer OD paths will lead to smaller DFs due to the presence of time constraints for reaching
both the intermediate and the following location D. That means that the longer the OD
path the smaller the time budget available to the individuals to deviate further away from
that path. That relation between DF and OD distance has been taken into consideration in
Justen et al. (2013), although their approach is limited by the fact that only average values
per DF percentile are considered, while trip-specific and sociodemographic attributes that
could have an impact on the formation of DEs have not been taken into account.

In the current study, we make a distinction between trip chains with an intermediate
shopping location S between an initial origin O and a following destination D, referred to as
OSD, and simple tours in which individuals travel for shopping to a location S and then
return back to their origin O, referred to as OSO trip chains in the remainder of the paper.
The detour factors of OSD trip chains are always greater than 1.0 and they are exactly equal
to 1.0 only in the extreme case of choosing a shopping location S directly on top of the OD
path. Therefore, the estimated detour factors from that model will need to adhere to that
restriction. In order to accomplish that, the dependent variable, in that case the observed
detour factors, are transformed accordingly as yi − 1 and are assumed to follow a log-normal
distribution to ensure the estimation of strictly positive values, as shown in Equation 6.3.

log(yi − 1) = Σbxi
xi + σ (6.3)

where xi is a vector of mode-specific, trip-specific (including the straight OD distance),
locational and sociodemographic explanatory variables and bxi

are the respective parameters
to be estimated. The disturbance term for the log-transformed DF is assumed to follow
a normal distribution with N(0, σ), where σ is the standard deviation that is estimated
alongside the rest of the parameters

For OSO trip chains, a different modelling approach was developed by using the straight
distance to the shopping location S as the dependent variable and use it to define the
estimated radius of a circle from the respective O. In that case as well, in order to ensure
only positive estimated values, the dependent variable is assumed to follow a log-normal
distribution. As a result, the modelling formulation of Equation 6.4 is proposed, where
yi is the observed straight OS distance and as previously xi is a vector of mode-specific,
trip-specific, locational and sociodemographic explanatory variables and bxi

is a vector of
parameters to be estimated.

log(yi) = Σbxi
xi (6.4)
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Figure 6.1: Weighted standard deviational ellipse around observed/visited destinations (Schönfelder, 2003)

2.2 Standard Deviational Ellipse

The second type of Activity Space aims to capture the spatial awareness of the participants.
The Standard Deviational Ellipse (SDE) is proposed for that purpose, which originates from
the fields of behavioural and social geography (Brown and Moore, 1970; Horton and Reynolds,
1970; Yuill, 1971). The SDE captures the spatial dispersion of the visited locations (observed
latitude/longitude coordinates) of an individual and has been proposed as a measure of
capturing the exposure to opportunities as a consequence of daily activities (Horton and
Reynolds, 1971). In that sense, a SDE provides additional information on the individual
awareness of certain destinations, that the Detour Ellipse and other forms of Potential Path
Areas are not able to provide. Activity spaces formed by SDEs are considered a subset of
a larger latent awareness space (Brown and Moore, 1970; Patterson and Farber, 2015) or
spatial information field (Potter, 1979) suggesting that individuals would likely possess spatial
knowledge that far exceeds the SDE formed around the observed destinations due to word of
mouth and the usually limited durations of surveys.

An SDE is generally considered the two-dimensional equivalence of a standard 95%
confidence interval. The mathematical process of defining an SDE, as described in Yuill
(1971), involves the calculation of the covariance matrix of the latitude/longitude coordinates
and the calculation of the rotation matrix leading to the final definition of the ellipse’s
perimeter (Tsoleridis et al., 2021). In (Figure 6.1) the main components of an SDE are
depicted, such as the ellipse’s major axis indicating the axis of major dispersion, which
can also be considered as the regression line of latitude/longitude coordinates, the ellipse’s
orientation capturing the slope of the regression and the sign of the correlation sign among
the coordinates and finally the arithmetic mean or else the centroid of the ellipse capturing
the centre of gravity of the individual’s usual movements (Schönfelder, 2003). Destinations
that are outside of an SDE are considered outliers relative to the usual movement areas of an
individual.

Several measures can be extracted from a SDE that describe the mobility patterns of
an individual, such as its shape (minor to major axis ratio), size (area, number of polygons
located within etc.), orientation and eccentricity (Yuill, 1971). An ellipse is a generalised
form of a circle with one axis (major axis) more elongated than the other (minor axis). In
the case of a very small minor axis close to 0, the ellipse resembles a straight line, while in
the case of equal axes the ellipse takes the form of a circle. The ratio of minor/major axis, b

a
,

can provide an initial indication of time constraints or spatial exploration. For instance, an
ellipse with a small b

a
can characterise a person with significant time constraints that does

not have the freedom or the willingness to roam around, and the opposite can be said for an
ellipse resembling with b

a
close to 1.0 resembling a circle.

Temporal factors and individual sociodemographic characteristics can also be taken
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into account, such as examining weekday/weekend differences on the stability of SDEs
among full-time and parti-time workers (Srivastava and Schoenfelder, 2003; Smith et al.,
2019). Time also plays an important role in the evolution of the Activity Spaces providing
opportunities to the individuals for more spatial search and exposure to the surrounding
area, thus increasing their spatial cognition. SDEs might stabilise after a certain period of
time, but significant longitudinal data will be required in order to capture that. Schönfelder
(2006) used longitudinal data from traditional trip diaries to study the impact of time on
the formation of activity spaces (SDEs). He concludes that, in general, datasets of longer
durations (around 6 weeks) than the common ones (1-2 weeks) are necessary for SDEs to
reach stability. That finding, however, could be different for emerging data sources, such as
GPS trip diaries, which generally offer a more comprehensive depiction of individual mobility
behaviour by capturing a higher number of smaller trips during the day.

In order to reconstruct estimated SDEs per individual we need to estimate a range of
models referring to several important structural components of an SDE (see Figure 6.1).
Specifically, we need to estimate the distance disthc and the angle θhc between the home
location h and the ellipse centroid c, the orientation θsde and the total area of the ellipse
Asde, as well as the shape of the ellipse defined as the ratio between the small and large axis
( bsde

asde
). Therefore, five continuous models have been developed, in total, to assist with the

reconstruction of estimated activity spaces. From the estimated distance disthc and angle
θhc, the centroid of the estimated confidence ellipse per individual can be defined. Following
that, we are using the estimated minor/major axis ratio and the estimated area to define
the shape of the ellipse and finally the estimated orientation of the ellipse to complete its
mapping over space.

The models for disthc and Asde are specified as linear regression models with log-normally
distributed dependent variables similarly to the OSO model previously described in Equation
6.4. To estimate the models referring to the angles, i.e. for the angle between home-centroid
θhc and the ellipse orientation θsde, the predicted values had to be restricted between 0o −360o.
In order to achieve that, the dependent variables were scaled between 0-1 by dividing them
with 360. Then the scaled angles were used as the dependent variables in beta regression
models. Beta regression is a type of model suitable for modelling continuous variables with
values between 0 and 1 (Ferrari and Cribari-Neto, 2004). A similar approach was followed for
the specification of the minor/major axis ratio bsde

asde
model, where the dependent variables

should also take values only between 0-1. The mean µ of the dependent variable y can be
calculated as µ = E(y) = Σbxi

xi and the variance as V ar(y) = µ(1−µ)
1+ϕ

, where ϕ is a precision
parameter, which is inversely proportional to variance (Ferrari and Cribari-Neto, 2004).

3 Methodology

The MNL model has been the main workhorse of DCM and has been applied in numerous
studies of behavioural modelling in the fields of transport, environment and health, among
others (McFadden, 1973; Domencich and McFadden, 1975; McFadden, 1978; Ben-Akiva and
Lerman, 1985; McFadden, 2000). According to that specification, an individual n will choose
among a set of alternatives J , the alternative i that provides the highest utility for a specific
choice task t. The utility Uint is a latent construct comprised of a systematic part Vint and a
disturbance term ϵint as Uint = Vint + ϵint, assuming an additive disturbance term. Different
distributional assumptions regarding the disturbance term will yield different specifications,
with the assumption of a Type-I Extreme Value distributed ϵint leading to an MNL model.

In an MNL model, individual heterogeneity can be captured by specifying interaction
terms with socio-demographic attributes as shifts from the base level of specific parameters.
More advanced specifications are necessary, however, to account for unobserved heterogeneity,
such as mixed Logit (McFadden and Train, 2000) and LCCM (Kamakura and Russell, 1989).

166



Chapter 6. Probabilistic choice set formation incorporating activity spaces into the context of mode and
destination choice modelling

In the mixed Logit model, heterogeneity is captured in a continuous manner by assuming that
sensitivities across individuals follow a certain distribution with normal, uniform or log-normal
distributions being the most commonly used ones. The mixed Logit has been widely used for
the purpose of capturing heterogeneity in the sample and it is considered the most flexible
logit specification (McFadden and Train, 2000; McFadden, 2000). Mixed Logit models usually
require the use of simulation to estimate the parameters of the specified distributions and a
large number of draws is usually needed to reach a certain level of estimation stability, which
significantly increases the estimation times. Furthermore, that means that the estimated
parameters largely depend on the analyst’s distributional assumptions, which can have adverse
effects in the case of behaviourally inaccurate ones. On the other hand, LCCMs capture
heterogeneity by assuming that individuals in the sample can be probabilistically allocated
into a discrete and finite number of latent classes based on their sociodemographics and their
choice behaviour.

Three consideration sets are constructed per individual and choice task after the creation
of the mode-specific Detour Ellipses and individual-specific Standard Deviational Ellipses.
Individuals can belong to each consideration set with a positive probability, thus acknowledging
the latent nature of the true choice set. The probability of individual n belonging to a
consideration set C is modelled as a multinomial logit, as shown in Equation 6.5. The
hypothesis behind this specification, is that the individuals in the sample are likely to
be subject to either time-space constraints for the specific trip chain (class a) or to be
constrained due to issues of spatial awareness (class b) or alternatively to be free to consider
alternatives from the global choice set (class c) during their choice of mode and shopping
location. As such, the proposed LCCM specification allocates individuals probabilistically
into three classes, with each class having a different choice set. The choice set of class a
includes mode-destination alternatives (feasible in terms of mode) that are located within
the estimated mode-specific Detour Ellipses, therefore capturing individuals who are captive
to their time-space constraints. The choice set of class b includes alternatives within the
merged area of the estimated Detour and Standard Deviational Ellipses, thus capturing
individuals captive to their spatial awareness. Finally, the choice set of class c includes all
feasible alternatives in the global choice set per trip.

πn(C) = eδc+γcxn∑C
r=1 eδr+γrxn

(6.5)

According to this framework, the probability of choosing an alternative i for individual n
is calculated based on the logit function conditional on alternative i belonging to consideration
set C and it is 0 otherwise, as shown in Equation 6.6. Finally, the unconditional likelihood of
observing a sequence of choices for individual n is calculated by weighting the class-specific
conditional probabilities for alternative i with the class membership probabilities πn(C) across
G potential classes, i.e. non-empty choice sets, which in that case is limited to 3, as shown
in Equation 6.7. The coefficients of both model components are jointly estimated by using
Maximum Likelihood Estimation.

Pni|C =


eVni∑J

j
eVnj

, if i ∈ C

0 , otherwise
(6.6)

Pni =
∑
C∈G

πn(C)Pni|C (6.7)

Further complexity can be added to the proposed specification in order to capture
additional heterogeneity within each class by specifying a 2-stage LCCM similar to the study
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of Song et al. (2019). Nonetheless, that is out of the scope of the current and it is left as an
idea for potential future research.

The utility function of the behavioural model follows the size variable specification
proposed in Daly (1982) and specifically the one implemented in the joint mode and destination
choice model presented in the study of Kristoffersson et al. (2018) combining mode preferences
with shopping destination attraction. According to that, the systematic utility Vmd for mode
m and destination d presented in Equation 6.8 is comprised of several parts referring to mode-
and destination-specific Level-of-Service (LOS) variables, locational variables capturing the
quality of each destination and variables capturing its size, also known as size variables. That
size variable specification was proposed to account for the utility of the elemental destinations
within the aggregated destination alternatives.

Vmd =
∑
r∈R

brxrmd +
∑
q∈Q

bqyqd + ϕlog(Sd) (6.8)

The first component includes mode- and destination-specific variables that best describe
the trip to destination d with mode m, such as travel time and cost for motorised modes
and distance for active travel, as well as ASCs capturing inherent preferences for specific
modes/destinations and sociodemographic interactions. With this, xrmd is the r-th LOS
variable for mode m and destination d. The second component captures the impact (positive
or negative) that certain characteristics could have on the utility of a specific destination, such
as available parking space for car users, where yqd is the q-th quality variable for destination
d. The final component in Equation 6.8 aims to capture the attraction or the “size” of a
destination d, Sd and is specified as a composite logarithmic term as shown in the following
Equation 6.9:

Sd = a1d +
∑
r>1

exp(γr)ard (6.9)

where a1d is the attraction attribute used as a base with a γ parameter normalised to 1.0,
ard are the additional attraction attributes of destination d relative to the base attribute,
and γr are the parameters to be estimated capturing the effect of those attributes on the
attraction of the target destination. The γr parameters are constrained to be positive by
using an exponential transform.

The log-size parameter ϕ is usually kept fixed to 1.0 ensuring that a change in the size of
a destination will affect proportionately its utility. Therefore, the choice probabilities will
not be affected by the zoning discretisation that usually forms the destination alternatives.
Kristoffersson et al. (2018), however, proposed a freely estimated ϕ, which can lead to
estimated values different than 1.0, leading to a behavioural interpretation on the formation
of destination alternatives. Specifically, in the case of ϕ < 1, the authors suggest that the
model captures significant correlation among the utilities of the elemental alternatives within
each aggregate destination alternative.

4 Data

For the practical implementation of the proposed approach, a 2-week GPS-based trip diary
captured by a smartphone application is utilised. The GPS trip diary was collected as part
of the research project “DECISIONS” conducted by the Institute for Transport Studies,
University of Leeds, between October 2016-March 2017. Besides the utilised GPS trip
diary, the “DECISIONS” project aimed to capture a range of different aspects of individual
behaviour, such as in-home and out-of-home activity participation, energy appliance usage
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Figure 6.2: User interface of smartphone application used for the trip diary

and the effect of social networks. The GPS trip diary captured the daily trips over the
survey period with the use of a smartphone application, which was tracking the traces of
the participants. After the end of each trip, the participants had the chance to correct the
information of the logged trip and provide additional information regarding the chosen mode
and the type of the activity at the destination (trip purpose). A depiction of the application’s
interface is presented in Figure 6.2. A background household survey was also conducted in
order to capture several important sociodemographic attributes of the participants, such as
their age, their household composition, the availability of mobility tools (e.g. private vehicles
and PT season ticket ownership) and their personal and household income, among others.
A more detailed description of the data collected during the “DECISIONS” project and its
various sub-modules is provided in Calastri et al. (2020).

The initial GPS trip diary included trips captured throughout the UK, but the vast
majority of them were in the region of Yorkshire and more specifically in and around the
city of Leeds. Therefore, the final dataset used for the subsequent analysis included only
individuals residing within the local authority of Leeds. As previously described, the purpose
of the analysis is to understand where the individuals are more likely to travel in order to
cover their daily shopping needs and how to travel there and to the following activity location,
thus acknowledging the interrelations between mode and destination and among the locations
of consecutive activities. As a result, only the shopping trips and their following trips were
selected for the subsequent analysis resulting in a final dataset of 1,541 shopping-following trip
chains performed by 270 unique individuals. The analysis is conducted at the trip chain level,
66% of which are OSD trip chains and the remaining 34% are OSO trip chains. Shopping
trips are comprised of three subcategories, namely grocery (82%), clothes (12.7%), and other
types of shopping (5.3%), mainly for durables. The vast majority of following trips were trips
going home (61.5%), while there was a small percentage of 9.3% of a consecutive shopping
trip to a different shopping destination. The alternative modes of transport included car,
public transport (PT) – as a combination of bus and rail – and walking.

The high spatial resolution of the GPS traces, despite the benefits, it also provides
additional challenges for their analysis compared to traditional data sources. Therefore,
because each GPS trace is a unique pair of latitude and longitude coordinates, a clustering
approach had to be developed to identify unique activity locations. Hierarchical Agglomerative
Clustering (HAC) was utilised for that purpose as it does not require any a priori assumptions
about the number of the required clusters. HAC, however, required a specific distance
threshold to be defined to assign points within that threshold in the same cluster. A distance
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Figure 6.3: Home locations segmented in quartiles relative to their position from Leeds CBD (black circle)

threshold of 200m was chosen to ensure a small distance difference (approximately 100m) of
points allocated in the same cluster of an activity location per individual. The implementation
of HAC helped us to define unique home and work locations based on the purposes of trips
going to those destinations in order to further define daily tours and sub-tours. In cases, where
trip purposes were not enough to define home and work locations, additional information on
time of day and activity duration was used, such as assigning a work location to a cluster if
an individual spends the majority of working hours (09:00-17:00) there. The home locations
of the individuals were also segmented according to their position relative to Leeds Central
Business District (CBD) into four quartiles, as depicted in Figure 6.3. Out of the 270
individuals, 55 (20.4%) live in quartile 1, 136 (50.4%) in quartile 2, 35 (12.9%) in quartile 3
and 35 (16.3%) in quartile 4.

In order to take advantage of the high spatial resolution provided by the GPS data, the
definition of shopping destination alternatives was not limited to the usual UK geographical
boundaries, but were defined at a more granular level by clustering the observed elemental
shopping destinations. HAC was implemented again with a distance threshold of 800 metres
among the shopping trip destinations. The cluster centroids defined as the mean of the
latitude/longitude coordinates of the points in each cluster were then used to replace the
original destination points of each shopping trip belonging to the cluster. The main goal of
choosing an appropriate distance threshold was to ensure a small average distance difference
between the original destination points of a cluster and its centroid. After trying different
distance thresholds between 500m-1,000m, a 800m distance threshold was selected resulting
in small average distance differences of around 4-5 minutes of walking (assuming a 5 km/h
average walking speed). As a final step, a 400m buffer was defined around each cluster centroid
to create the aggregate shopping areas used as destination alternatives in the analysis. This
process resulted in the definition of 176 general shopping areas around the region of Yorkshire,
capturing 76% of the retail polygons located within the Local Authority of Leeds, as defined
in OpenStreetMaps (OSM).

Further steps were necessary in order to enrich the initial dataset with additional in-
formation important for behavioural modelling. Initially, the dataset contained only the
self-reported travel times/distances for the chosen modes, however, the values of the unchosen
mode alternatives were also required to properly define the attributes for all alternatives. For
that reason, the Bing maps route API2 was utilised to obtain the travel times and distances
for all the modes (car, bus/rail, walking) and for trips starting from each initial origin to each
shopping cluster and from each shopping cluster to each following destination. For consistency
reasons, the travel times/distances of the chosen mode alternatives were recalculated as

2Details can be found here: https://docs.microsoft.com/en-us/bingmaps/rest-services/routes/
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well to ensure that the data used for estimation would come from the same data generating
process. The total number of queries passed to the API was 1,627,296 (1,541 trips × 176
shopping destinations × 3 modes × 2 for the current and the subsequent trip). After that
data collection stage, deterministic mode availability was assigned based on logical feasibility
checks of the results obtained from the API, such as cases of short distance PT trips for
which the API returned only walking segments, or in specific cases where car was the chosen
mode and the participant had to return it back home. For that latter case, special attention
was given to the stated size of the party that participated in the trip in order to understand
whether the participant of the survey was the actual driver. As such, if the individual was
the only person in a car trip, then she was assigned as the car driver and all the remaining
modes would become unavailable only in the case where the following trip was to return back
home. For other trip purposes for the following trip, it is assumed that the individual is
free to consider all the available modes. On the contrary, if there were more than 1 people
participating in a car trip, then we could not safely assume that the individual was the driver
and all the modes would remain available for the following trip, as well.

Information on travel cost was also missing both for chosen and unchosen modes. Car
travel cost was computed using the UK’s official Transport Appraisal Guidance (WEBTag)
specifications for fuel and operating costs (Department for Transport, 2014). Parking cost
was also calculated for trips with destinations in central areas/high streets across the region
of Yorkshire based on information on hourly or fixed parking costs provided by the respective
Local Authorities. Fuel, operating and parking costs were then aggregated to form a total car
travel cost used for estimation. For PT, an average distance-based fare was used for bus and
rail and a total PT cost was calculated per trip based on the distance of the leg performed
by bus or rail. A discount was also applied for trips made by season ticket holders.

Additional locational data were acquired from the Office for National Statistics (ONS)
and OpenStreetMaps (OSM) to be used in the modelling specifications as attraction variables
for specific shopping destinations. Specifically, the total areas of retail, grocery and durable
shopping parcels within each aggregated shopping destination was calculated from OSM
together with the total parking areas and the locations of the most popular retailers per
shopping type in the UK market. The population around shopping locations was also
extracted from the Office of National Statistics (ONS) together with Indices for Multiple
Deprivation for 20153 (Figure 6.4), as well as average house prices and percentages of white
residents for 2016-2017 in order to capture instances of spatial inequalities.

The different types of shopping stores among the elemental shopping destinations within
an aggregate destination alternative was also acquired using the OSM categorisation. The
purpose of that was to capture the impact of shopping store variability using Shannon’s
entropy (Shannon, 1948; Whittaker, 1949), Hd, measuring the percentage of the area covered
by a specific store type t ∈ T inside a shopping destination d from a total number of N
different store types as shown in Equation 6.10. Shannon’s entropy is used to examine whether
an increased variability in store types makes a shopping destination more likely to be chosen,
since that would enable the completion of different shopping activities within the same trip.

Hd = −
∑T

t=1 (pt ln (pt))
ln N

(6.10)

In order to capture agglomeration effects and the impact of neighbouring shopping
destinations on the attraction of a target shopping destination, the same information on
the aforementioned locational variables was extracted for additional buffers between 400-
1,000m, 1,000-2,000m and 2,000-5,000m from each cluster centroid, similar to the study of
Kristoffersson et al. (2018).

Finally, the impact of the location of the intermediate shopping destination S, in relation
to the straight distance between O and D, was captured by calculating the angles between

3Details can be found here: https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015
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Figure 6.4: Index of Multiple Deprivation for 2015

OS-OD and SD-OD. It is assumed that shopping destinations, which require a significant
deviation from the straight OD path would be less likely to be chosen compared to others
that are in the same direction.

5 Results

In the following, the modelling outputs are going to described starting first with the auxiliary
specifications for OSD and OSO trip chains and then the five models for the structural
components of the SDE –namely models for the distance and the angle between home
locations and the SDE centroid, its orientation, its minor/major axis ratio and its area–
before moving on to the main outputs of the proposed LCCM specification.

5.1 Detour Ellipse outputs

The estimates of the Detour Factor and the distance model for the OSD and OSO trip chains,
respectively, described in the following were used to re-create estimated Detour Ellipses for
both cases (OSD and OSO trip chains). The resulting trip- and mode-specific estimated
Detour Ellipses, on average, contain 19.5 shopping locations out of the 176 identified locations
within the study area (11.1%).

The Detour Factor model for the OSD trip chains achieves a correlation of 0.72 between
observed and estimated detour factors. The estimated parameters of the corresponding
model are presented in Table 6.1 along with the robust t-ratios to account for the multiple
observations per individual (Daly and Hess, 2010). According to the model, the individuals are
willing to take a shorter detour to reach a shopping destination, when the destination for the
next activity is further away indicating the time-space constraints the individuals are subject
to. Choosing walking for the first shopping trip or also travelling by mode combinations of
car-PT, car-walking will result in smaller detours than the base mode combination of car-car.
Nonetheless, the opposite is true when travelling by PT in both trip legs with individuals
choosing longer detours. Longer detours are also predicted for clothes and durables shopping,
when the following activity is for education purposes or the shopping trip is part of a tour with
education as its main purpose, for male individuals and for mostly older ages (above 76 years
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old). Furthermore, individuals with a household income between £40,000-£50,000 will also
tend to take longer detours, while the higher the average income around the individuals’ home
locations the longer the detours they are willing to choose, as well. Longer detours were also
estimated for individuals living in households of mostly above 3 members, those employed in
Healthcare, Education, Academia or other types of occupations, when the trip occurs during
morning weekend hours and when the are more available parking areas around the shopping
location. Contrary to that, smaller detours are estimated for individuals living together
with more than four employed individuals possibly due to the increased time requirements
to accommodate everyone’s daily mobility needs, for part-time workers most likely due to
increased housekeeping responsibilities, for shopping trips during night or early morning
periods during weekdays and for individuals of the smallest household income band (below
£10,000).

Moving on to the model for the estimated distances of the OSO trip chains, a correlation
of 0.67 was achieved between observed and predicted distances. The modelling outputs are
presented in Table 6.2, where it can be seen that mode combinations of car-walking and
walking-walking lead to smaller straight distances to reach a shopping destination compared
to the base mode combination of car-car. Shopping for durables will lead to larger distances
mainly due to the more specialised type of stores, which can be located further away from
home locations. Living in households of either 1 or 4 members will lead to smaller distances,
while that is also the case for male individuals, when the shopping trip is part of a tour with
work or education as its main purpose, when the following activity is for social, other purposes
or to return back to work with the latter mostly referring to short shopping trips from work
locations during lunch break. Longer distances can be expected for trips during the interpeak
or during morning hours for retired people and for engineers, community/social workers,
students and those working on management. The model was also able to uncover that younger
and older individuals, specifically those between 25-29 and above 76 years old, and those who
have not disclosed their income tend to choose longer distances. In addition, participating
in shopping activities of longer durations (which is considered as exogenous in that case)
will make individuals to also travel for longer distances. Considering shopping duration as
endogenous within a discrete-continuous framework, however, would be a more accurate
approach, leading to better capturing the trade-offs between shopping duration and distance
travelled, which could be an interesting direction for future research. Finally, decreasing
marginal utilities/disutilities have been uncovered for a range of locational variables specified
in a logarithmic function. Specifically, shopping locations with more retail and parking areas
will cause individuals to travel for longer distances to visit them. Individuals living in areas
with a higher average income tend to choose longer distances. Finally, an increased shopping
store variability (Shannon’s entropy) will lead to smaller distances.

5.2 Standard Deviational Ellipse outputs

In the following, the estimates of the five SDE-related sub-models are detailed. Those
estimates were used to re-create estimated individual-specific SDEs, which on average contain
73.2 (41.6%) of the shopping locations in the study area.

5.2.1 Home-SDE centroid distance outputs

The estimated distances between home and SDE centroids achieved a correlation of 0.48 with
the observed distances. The outputs of the corresponding model are presented in Table 6.3.
According to those, individuals living in areas other than quartile 3 tend to have an SDE
centroid, i.e. the centre of gravity of their usual movements, further away from their home
locations. The distance between home and Leeds CBD also has an impact on the home-SDE
centroid distance with larger distances leading also to larger home-SDE centroid distances
for quartiles 2 and 4. On the contrary, distances between work locations and Leeds CBD
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Table 6.1: Modelling outputs of the DF model for O-S-D trip chains

Parameters Estimates Rob. t-ratios
Constant -4.7480 -3.62
O-D straigth distance (km) (log) -1.3221 -20.57
Car-PT -0.4283 -1.46
Car-Walking -2.1897 -6.60
PT-PT 0.9615 2.31
Walking-Car -1.4913 -4.24
Walking-PT -0.6923 -2.59
Walking-Walking -1.7347 -7.34
Shopping: Clothes - Other 0.5791 3.22
Household size: 3-4 members 0.4599 3.05
Household size: 5 members -0.9965 -1.46
Household size: 6 members 1.1187 2.58
Other employed household members > 4 -1.8039 -8.44
Part time workers -0.4286 -2.54
Occupation: Healthcare 1.0691 3.77
Occupation: Education 0.2591 1.46
Occupation: Academia 0.4369 1.74
Occupation: Students 0.6211 1.42
Occupation: Other 0.5894 2.81
Time of day: Weekday night -0.4682 -1.65
Time of day: Weekday morning -1.1338 -1.43
Time of day: Weekend morning 0.6974 3.21
Following trip purpose: Groceries 0.3666 1.78
Following trip purpose: Education 2.5978 5.21
Age 25-29 0.3771 1.61
Age 60-65 0.4492 1.50
Age ≥ 76 1.2577 2.96
Parking areas 400m around 0.0186 6.21
shopping destination in 1, 000m2 for car trips
Shannon’s entropy 400m around 0.3833 2.24
shopping destination (log)
Total passengers in shopping trip >1 0.2520 1.73
Houshold income <£10,000 -0.6036 -1.53
Houshold income £40,000-£50,000 0.4140 2.06
Male 0.2854 1.86
Population in 400m around home location in 1,000 people 0.4275 1.56
Average annual income in 400m around home location in £1,000 (log) 1.0374 2.82
Trip part of a tour with main purpose: Education 0.6589 1.44
Sigma 1.9616 33.05
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Table 6.2: Modelling outputs of the distance (km) model for OSO trip chains

Parameters Estimates Rob. t-ratios
Constant -1.8424 -3.52
Car-Walking -1.3592 -2.04
Walking-Walking -1.3846 -13.83
Shopping: Other 0.4366 2.97
Household size: 1 member -0.1666 -2.29
Household size: 4 members -0.2578 -2.06
Occupation: Engineering/Community/ 0.2336 3.54
Social/Management/Student/Other
Occupation: Retired 0.4607 2.33
Time of day: Interpeak 0.1588 1.87
Time of day: Weekday night -0.2577 -2.04
Time of day: Weekday morning 1.1395 6.99
Time of day: Weekend morning 0.1459 1.59
Following trip purpose: Other -0.4919 -1.36
Following trip purpose: Social/Leisure -0.6376 -3.27
Following trip purpose: Return to Work -0.1687 -1.45
Age 25-29 0.4385 4.99
Age 30-39 0.1261 1.69
Age 50-59 0.1626 1.71
Age ≥ 76 0.2502 1.94
Shannon’s entropy 400m around -0.1079 -1.51
shopping destination (log)
Retail areas 400m around 0.1196 4.05
shopping destination in 1, 000m2 (log)
Household income £20,000-£30,000 -0.1305 -1.28
Household income £75,000-£100,000 -0.1872 -1.29
Household income- Not disclosed 0.4409 3.37
Parking areas 400m around 0.0456 1.38
shopping destination in 1, 000m2 for car trips (log)
Gender: Male -0.1104 -1.64
Total passengers in shopping trip >1 0.0851 1.36
Duration of shopping activity 0.1953 3.53
Marital status: Widowed -0.6593 -2.95
Trip part of a tour with main purpose: Education/Work -0.7579 -2.40
Average annual income in 400m around 0.5275 3.25
home location in £1,000 (log)
Sigma 0.6150 23.43
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Table 6.3: Modelling outputs for the distance of the Standard Deviational Ellipse centroid from the home
location (disthc)

Parameters Estimates t-ratios
Constant -12.0510 -1.51
Home location in quartile 2, 4 12.0179 1.51
Home location in quartile 1 18.0662 2.15
Home-Leeds CBD distance in km (quartile 4) 0.1871 1.23
Home-Leeds CBD distance in km (quartile 2) 0.0432 2.39
Work-Leeds CBD distance in km (quartile 2, 3) -0.1351 -2.63
Household income £30,000-50,000 0.1382 1.55
Household income £75,000-100,000 0.2617 1.58
Occupation: Sales, Maintenance 0.6715 2.51
Occupation: Social 0.2706 1.71
Occupation: Academics, Research 0.3332 1.84
Home-Work distance in km (quartile 1) 0.2583 2.96
Home-Work distance in km (quartiles 2, 3) 0.3372 5.31
Home-Work distance in km (quartile 4) 0.4320 3.13
Married -0.2224 -2.38
Age 25-29 -0.3202 -2.01
Age >66 0.5669 2.37
Home-York CBD distance in km (quartile 1) -1.6410 -2.28
Home-York CBD distance in km (quartile 3) 3.3845 1.55
Unemployed (quartile 4) 0.7089 1.91
Sigma 0.6753 23.24

will lead to smaller home-SDE centroid distances for quartiles 2 and 3. The CBD of York
also was found to have an impact on the estimated distances. Specifically, larger home-York
CBD distances will lead to larger home-SDE centroid distances for individuals in quartile
3, but to smaller distances or those living in quartile 1. An interesting insight also arises
by investigating the impact of the distance between home and work locations, where larger
distances will lead to larger home-SDE centroid distances, as well, since the individuals
are in generally required to travel further away from their home due to the distant work
location. Regarding the remaining parameters, individuals of household income between
£30,000-50,000 and £75,000-100,000 have higher home-SDE centroid distances, while that
also holds for elderly individuals (above 66 years old), for unemployed people and for those
working in the sales or maintenance industry, social workers and academics. Smaller distances,
however, are expected for married individuals and younger people (between 25-29 years old).

5.2.2 Home-SDE centroid angle outputs

The model regarding the angle between home locations and SDE centroids achieved the
highest level of accuracy of the five SDE-related sub-models with a correlation of 0.78. The
model outputs are presented in Table 6.4. That model, together with the previous one for
home-SDE centroid distance, is important for the identification of the coordinates of the
estimated SDE centroid, since a point can be defined by its distance and its angle from
another known point, in that case the home locations. Nonetheless, it is difficult to extract
any meaningful behavioural interpretation from its estimated parameters. It is important
to note that angles were measured from the home location to the SDE centroid, since the
directionality matters for the size of the calculated angles. The main interpretation that can
be extracted from the estimates is that on average the CBD of Leeds acts a strong attraction
to the centre of gravity of individuals’ usual areas of movement, as captured by the SDE
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Table 6.4: Modelling outputs for the angle between the Standard Deviational Ellipse centroid and the home
location (θhc)

Parameters Estimates t-ratios
Constant -4.1798 -4.11
Home in quartile 1 3.3350 3.40
Home in quartile 2 40.6517 2.61
Home in quartile 4 2.9321 2.99
Home-Leeds CBD distance in km (linear) (quartile 2) -1.3490 -2.76
Home-Leeds CBD distance in km (log) (quartile 2) 1.4916 3.50
Work-Leeds CBD distance in km (log) (quartile 2) -0.2239 -2.41
Population 400m around 4.1139 2.13
home location in 1,000 people (log) (quartile 3)
Personal income <£10,000 0.9963 4.20
Occupation: Engineering 0.7541 3.27
Occupation: Maintenance -1.2733 -1.72
Occupation: Food and serving 1.0490 1.46
Occupation: Business, Education 0.2439 1.68.69
Student 1.1086 3.94
Home-Work distance in km (log) (quartile 2) -0.3182 -2.53
Age 30-39 and 50-59 -0.3822 -2.87
Age 60-65 -0.9361 -2.93
Home-Work angle (quartile 2) 0.7091 2.48
Home-Work angle (quartile 3) 1.3336 2.35
Home-Wakefield CBD distance in km (quartile 2) 2.4829 2.59
Home-Sheffield CBD distance in km (quartile 2) -1.4075 -2.50
Precision ϕ 3.3457 12.28

centroid, regardless of the geographic quartiles they reside. Specifically, individuals living
in quartile 3 have the smallest home-SDE centroid angle with an average angle of 87.5o.
Individuals from quartile 4 and 1 have larger home-SDE centroid angles with average values
of 150.9o and 195.7o, respectively. Finally, quartile 2 has the largest angles with an average
value of 280.8o. All the above are also captured in the model from the estimated parameters
for quartiles 1, 2 and 4 using quartile 3 as the base. It is also interesting to note that angles
in quartile 2 are decreasing as home and work locations are further away from Leeds CBD
and the distance between home-work locations is increasing. In addition, the neighbouring
cities of Wakefield and Sheffield located in the south of Leeds also have an influence on the
position of the SDE centroid relative to the home locations in quartile 2 with those increasing
as the home-Wakefield CBD distance also increases and are decreasing as the home-Sheffield
CBD distance increases. Larger distances between home and work locations also can cause
an increase in angles in quartile 3. Population has an influence on the home-SDE centroid
angles in quartile 3 with a larger population around home locations leading to increased
angles. From the remaining parameters, individuals working in maintenance occupations and
those aged between 30-39 or 50-65 years old have smaller angles, while individuals of lower
income, engineers, students and those working in the food and serving industry have larger
home-SDE centroid angles, all else held equal.

5.2.3 SDE orientation outputs

The modelling specification for the SDE orientation achieved a correlation of 0.43 between
observed and predicted values. The estimated parameters are depicted in Table 6.5. Similarly
to the previously described home-SDE centroid angles, this model also captures the impact
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Table 6.5: Modelling outputs for the orientation of the Standard Deviational Ellipse (θsde)

Parameters Estimates t-ratios
Constant 0.4372 1.07
Home located in quartile 2 1.7330 3.22
Home located in quartile 1 -0.5826 -1.35
Home-Leeds CBD distance in km (log) (quartile 4) 0.4272 3.69
Population 400m around 1.3999 1.92
home in 1,000 people (log) (quartile 1)
Personal income £10,000-30,000 0.2429 1.79
Personal income £40,000-75,000 0.2962 1.32
Personal income £75,000-100,000 -1.0363 -1.66
Unemployed (quartile 3) -1.0155 -1.60
Average IMD 400m around home (log) (quartile 2) -0.3718 -2.20
Precision ϕ 2.5125 13.3

of the Leeds CBD to the orientation of the SDE. The values of the SDE orientation range
from 0o to 180o, since those angles in that case are measured from the SDE centroid to
the top end of the ellipse. Because of that, SDEs for individuals residing in quartiles 1
and 3 have smaller values largely between 0o − 90o and average values of 79.2o and 71.1o,
respectively, while individuals living in quartiles 2 and 4 have SDEs with orientations between
90o − 180o and average values of 109.0o and 111.5o, respectively. That is also captured in the
model, with larger orientation angles being predicted for quartile 2 and smaller for quartile
1 (although statistically significant only at the 80% confidence level) relative to the base
quartile 3. Orientations in quartile 4 are larger than those in quartile 3, but they were
omitted from the final model since they were not statistically significant even at the 50%
confidence level. Regarding the remaining parameters, the larger the population around the
home location and the distance between home-Leeds CBD the larger the angle orientation of
the SDE. Individuals with personal income of £10,000-30,000 and £40,000-75,000 have larger
orientations, while the opposite is true for higher personal incomes between £75,000-100,000,
unemployed people living in quartile 3 and for those living in more deprived areas in quartile
2.

5.2.4 SDE minor/major axis ratio outputs

The estimated model for the minor/major axis ratio ( bsde

asde
) of the SDEs achieved a correlation

of 0.45 between observed and predicted values and its outputs are presented in Table 6.6.
Overall, individuals located at quartile 4 have larger bsde

asde
ratios compared to the rest and

especially compared to those residing in quartile 2. Those living in quartile 2 also tend to
have larger ratios as the variability of shopping store types around their home locations
increases. An interesting finding can be observed for the effect of income on the estimated
ratios, with an almost monotonically decreasing bsde

asde
ratio as the personal income increases.

In addition, as the size of the household increases the bsde

asde
ratio decreases possibly due to

increased family commitments, while smaller ratios are also expected for people with no car
availability, unmarried, working in Education or in arts, media and the sports industry and
being between 18-24 or 40-49 years old.
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Table 6.6: Modelling outputs for the minor/major axis ratio of the Standard Deviational Ellipse ( bsde

asde
)

Parameters Estimates t-ratios
Constant 0.2799 1.45
Home located in quartile 4 0.3888 1.55
Home located in quartile 2 -0.4586 -1.20
Home located in quartile 1 0.1548 0.91
Average Shannon’s entropy 400m around home (quartile 2) 1.3516 1.72
Angle between home location and Leeds CBD (quartile 2) -0.0045 -1.49
Personal income £10,000-20,000 -0.3262 -2.18
Personal income £20,000-30,000 -0.5208 -3.52
Personal income £30,000-40,000 -0.2023 -1.33
Personal income £40,000-50,000 -0.6026 -2.84
Personal income £75,000-100,000 -1.0159 -2.11
Occupation: Food and serving 1.2547 2.20
Occupation: Art, sports and media -1.0400 -1.63
Occupation: Education -0.3602 -2.41
Household size -0.0777 -2.50
No car ownership -0.3759 -3.00
Home-Work distance in km (log) (quartile 4) -0.2513 -2.27
Non married -0.3119 -2.80
Age 18-24 -0.2264 -1.46
Age 40-49 -0.2259 -1.79
Precision ϕ 5.9588 12.43

5.2.5 SDE area outputs

The model regarding the SDE area achieved a correlation of 0.42 between the observed and
estimated areas and its outputs are presented in Table 6.7. In general, individuals residing
in quartile 1 have a larger SDE area. Furthermore, distance between home and Leeds CBD
is a significant factor influencing the area with higher instances also leading to larger areas.
The same also holds for distances between the individuals’ work locations and the Leeds
CBD, as well as distances between home-work locations (for quartiles 2 and 4), which also
positively affects the SDE area with larger distances leading to larger SDE areas, i.e. the
visited locations of the individual are more dispersed in space. Male individuals, students,
and low income individuals have lower SDE areas, while the opposite is true for retired,
divorced and unemployed individuals residing in quartiles 1 and 4. Higher population in
buffers of 400m around home locations will lead to larger areas for homes in quartiles 1 and
4, but smaller for quartile 4. Finally, a more diverse set of land uses around home locations
(as captured by Shannon’s entropy) will lead to lower SDE areas for homes in quartile 2, but
the opposite is true for quartile 4 leading to larger areas.

5.3 Latent Class Choice Model outputs

Moving on to the estimation of the behavioural models, it is worth mentioning that they
were estimated on choice sets comprised of 1584 alternatives (3 modes for first shopping
trip x 176 shopping locations x 3 modes for following trip). The general specification of
the models presented includes a range of Alternative Specific Constants (ASCs) as shifts
from the base alternative, which in this case is assumed to be travelling by car for both
trip legs to destination 1, which refers to the central shopping mall in the city of Leeds
(car-car-dest 1). As expected in a case of a model including J = 1584 alternatives, it is
not possible to estimate J − 1 ASCs for numerical and computational reasons. As a result,
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Table 6.7: Modelling outputs for the area of the Standard Deviational Ellipse (Asde)

Parameters Estimates t-ratios
Constant 1.9131 3.26
Home-Leeds CBD (quartile 1) 2.7535 3.02
Home-Leeds CBD distance (log) (quartile 1) 0.4817 1.83
Home-Leeds CBD distance (log) (quartile 2) 0.4843 2.12
Home-Leeds CBD distance (log) (quartile 3) 1.0470 3.72
Work-Leeds CBD distance (log) 0.1603 2.34
Population 400m around home location in 1,000 people (log) (quartile 1) 2.0909 3.79
Population 400m around home location in 1,000 people (log) (quartile 3) 1.8691 1.49
Population 400m around home location in 1,000 people (log) (quartile 4) -1.2987 -1.42
Average Shannon’s entropy 400m around home (quartile 1) -2.0843 -1.57
Average Shannon’s entropy 400m around home (quartile 4) 4.1394 3.06
Personal income £10,000-20,000 -0.3074 -1.58
Student -0.9935 -3.62
Retired 0.6626 1.83
Number of cars 0.4861 3.82
Home-Work distance (log) (quartile 2) 0.4179 2.91
Home-Work distance (log) (quartile 4) 0.7289 3.98
Divorced 1.0171 3.52
Male -0.4708 -3.01
Unemployed (quartile 1) 0.8565 1.59
Unemployed (quartile 4) 2.2312 3.48
Sigma 1.1722 23.24

we opted to group alternatives based on their general geographical area relative to Leeds
Central Business District (CBD), with that grouping comprising of 9 categories, namely Leeds
CBD, north-east-south-west of Leeds and north-east-south-west of the remaining region of
Yorkshire. The shifts from the base ASC, include interaction effects for specific modes and for
specific areas, separately for individuals with and without car ownership in their household,
for students and for married individuals. The Level-of-Service (LOS) parameters include
travel times for the mechanised modes of car and Public Transport (PT), distance for walking
and travel cost for car and PT. Base parameters for the three LOS attributes specifically
for the first shopping trip were specified using a Box-Cox transformation for the purpose of
capturing the presence of non-linearities in the sensitivities (Box and Cox, 1964). Using that
approach, the LOS attributes x are entering the Utility function as β xλ−1

λ
, with β being the

base parameter for a specific LOS attribute and λ being an additional estimated parameter
capturing the degree of non-linearity. An estimated λ == 1 indicates a linear specification
as the Box-Cox transformation effectively collapses to βx, a λ < 0 indicates the presence of
decreasing marginal disutilities, while in the case of λ = 0 the Box-Cox specification takes a
logarithmic form βlog(x). Finally, the flexibility of a Box-Cox transformation allows for the
case of λ > 1 indicating the presence of increasing marginal disutilities, such as instances of
increasing discomfort or time restrictions for the remaining time budget as travel time and/or
cost increases. Shifts from those base LOS parameters are also specified for the following
trip, for specific types of shopping activities, types of tours, trip chains and times of day.
Furthermore, interactions with continuous measures of shopping duration are specified for
time and walking and of personal income for cost. The remaining specified parameters refer
to a measure capturing the angular deviation from the straight OD path that is required to
reach the intermediate shopping location, a range of locational variables aiming to capture the
preference of car drivers for parking spaces, the preference of individuals living in richer places
to go shopping in poorer areas and vice versa, as well as a similar measure for individuals
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living in less racially diverse to go shopping to more racially diverse neighbourhoods. In that
study, the quartiles of the distribution of house prices around the home location are used to
characterise an area as rich (quartile 4) or poor (quartile 1) and the same is done for racial
diversity using the distribution of the percentage of white residents to characterise an area as
less (quartile 4) or more racially diverse (quartile 1. The additional attraction due to the
presence of major retailers per shopping type is also captured, while finally a range of size
variables referring to the population around the shopping location, the total retail area per
shopping type and the diversity of shopping store types are also included in a composite
logarithmic term as described in Section 3.

The fit statistics and the estimated parameters of the behavioural models are presented in
Table 6.8 together with the Robust t-ratios to assess their statistical significance. Besides the
proposed PCS-LCCM specification, which is able to capture heterogeneity in the choice sets
and in the sensitivities, three additional models are presented, a base MNL model, MNL-base,
using the global choice set of feasible alternatives, a base LCCM specification, LCCM-base,
using the same choice set as MNL-base and capturing unobserved heterogeneity in the
sensitivities and a simplified probabilistic choice set formation LCCM (PCS-LCCM-generic)
using the same choice set structure across classes as the proposed PCS-LCCM, but with
generic parameters across classes and only constants in the class allocation. PCS-LCCM-
generic is similar to the specification proposed in the study of Thill and Horowitz (1997a) but
using different proxy measures for latent constraints. The inclusion of the PCS-LCCM-generic
has the purpose of capturing the impact of confounding unobserved heterogeneity in choice
set formation with heterogeneity in sensitivities. That model still provides significant model
fit improvements from the MNL-base model with 33.54 LL units with just two additional
parameters, namely the two constants in the class allocation model, as depicted in Table
6.8. The remaining two models that are able to capture unobserved individual heterogeneity
in the sensitivities, namely LCCM-base and PCS-LCCM, provide further improvements
over the MNL-base model by 117.9 and 148.1 LL units, respectively, with 52 additional
parameters. The proposed PCS-LCCM is also able to outperform the LCCM-base model
by 30.18 LL units with the same number of parameters, although a direct comparison of
the log-likelihoods of the two models is not a valid approach, since those two are not nested
specifications. Nonetheless, the improvements in model fit become evident by examining
and comparing the Adjusted ρ2, the AIC and BIC statistics (Ben-Akiva and Swait, 1986),
all of which are improved for the PCS-LCCM compared to the LCCM-base. The proposed
PCS-LCCM model is also able to outperform the PCS-LCCM-generic model by a significant
margin, namely by 114.51 LL units with 50 additional parameters. More important, however,
are the differences in the estimated shares of the latent classes, with PCS-LCCM-generic
allocating individuals by 28.2% to class a, 2.9% to class b and 68.9% to class c. Contrary to
that, the PCS-LCCM model estimates a much larger share for class b, specifically 29.3% of
the sample, and also smaller shares for class a and c, namely 24.8% and 45.9%, respectively.
That serves as an indication of the necessity to capture heterogeneity both in the choice sets
and in the sensitivities across the estimated classes, which is an aspect missing in Thill and
Horowitz (1997a).

According to the estimated parameters, destination 1 (base) is more likely to be chosen
when travelling by a PT or walking due to the parking restrictions in Leeds CBD and due to
the increasing promotion of more sustainable modes. The same also holds for the remaining
destinations in the city centre, which are also in general less likely to be chosen compared to
destination 1. Destinations in the remaining study area further away from the city centre are
even less favourable, especially for modes other than car, although shopping locations in local
high streets are again more likely to be visited by walking. Mode combinations other than
those involving car are also more likely to be chosen for individuals with no car availability
in their households. Furthermore, shopping trips including more than 1 passenger are more
likely to be performed by car, at least for one of the two legs, due to its convenience. Finally,
walking for both legs is more likely to be chosen by students, but less likely by married
couples hinting to cases of more constrained time budgets for the latter demographic group
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compared to the former.
Regarding the LOS variables of travel time, travel distance and travel cost statistically

significant non-linearities were found for PT time, walking distance and travel cost, while only
linear sensitivities were found for car time. In general, decreasing travel time and walking
distance sensitivities were found as the shopping duration increases, while decreasing cost
sensitivities were found as personal income increases, but not for all classes for the LCCM
specifications. Finally, travel time for motorised modes and walking distance sensitivities
were slightly higher for the following trip relative to the first shopping trip.

The model is also able to uncover interesting insights that could hint to instances of
spatial and economic inequality in the area of Leeds. According to the model, all else held
equal, individuals living in more affluent areas (highest percentile of house prices) are less
likely to visit shopping destinations located in poorer areas (lowest percentile of house prices).
In contrast, individuals living in poorer areas do not show any preference difference in visiting
richer or equally poor areas to cover their shopping needs. A potential interpretation of the
above, relevant for policy makers, could be that a pound earned in the most affluent areas is
more likely to be spent, hence distributed, in similarly affluent areas, while a pound earned
in the least affluent areas is more likely to be equally distributed across space. Therefore, in
the long run, wealth accumulation would favour more the already wealthy areas in Leeds
compared to the rest leading to increased spatial inequalities. In a similar way, individuals
living in areas with a higher percentage of white residents are less likely to shop in areas at the
lowest percentile of white residents. Nonetheless, the same does not hold for individuals living
in those areas at the lowest percentile as they are more willing to visit shopping destinations
located in areas at the second and third percentile than in areas similar to theirs. As in every
other problem in the urban context, there is of course a circular causality to disentangle
here, as well (Bettencourt, 2021). According to that, all of the above, could be the result of
the agglomeration of higher quality elemental shopping stores or better urban environment
in general in richer or white dominated areas, which leads to a reinforcing feedback loop
favouring specific areas over others. That is exactly the problem that policy makers could
try to alleviate by breaking that loop with the implementation of proper policy measures to
provide relevant investment incentives in less affluent areas, as well.

A Box-Cox transformation of parking areas captured significantly positive, but also
decreasing sensitivities as the area of parking increases. The presence of major retail
attractions per shopping category (clothes, grocery, other) significantly increases the likelihood
of visiting the shopping destination for trips of the respective shopping category. With regard
to the direction of travel, shopping destinations located in places where the angular deviation
between OS and OD is greater than 90o are less likely to be chosen compared to others,
conforming to our initial assumptions.

The estimated multiplier ϕ of the logarithm of the composite size variable is significantly
lower than 1.0 in all of the models presented. According to Kristoffersson et al. (2018), that
hints to instances of significant unobserved correlation among the elemental alternatives
within the aggregate shopping destinations used in the choice set. An increased cumulative
retail floor area of grocery, clothes and durable stores in a destination acts as a more significant
attractor for trips of the respective shopping category than population that was used as
the base size variable. Furthermore, the cumulative floor area of grocery stores and an
increased store type variability in neighbouring destinations in medium distances (1000-2000
m) will add to the attraction of the shopping destination, when the subsequent trip is also
for shopping.

Regarding the estimated sensitivities of PCS-LCCM, class a representing individuals
with significant space-time constraints has the highest travel time for car/PT and walking
distance sensitivity for the first trip to the shopping destination. At the same time, those
individuals are half as sensitive for travelling to the following activity location by a motorised
mode and equally sensitive for walking there. That indicates that individuals in class a
are more likely to choose a shopping destination closer to their initial origin to cover their
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shopping needs before travelling by car/PT to their next activity. Also worth noting is that
the Box-Cox λ for walking distance of class a is above 1.0 indicating increasing marginal
disutilities as distance increases. In contrast, class b, with individuals restricted within their
usual area of movement, shows the smallest travel time and walking distance sensitivities
for the first trip and the largest for the following one, meaning that they are more likely to
choose a shopping destination closer to the destination of the following activity. Contrary
to those, class c has time and walking distance sensitivities more in line with the estimates
of the MNL-base model. All three classes show a decreasing marginal time disutility as
the duration of the shopping activity increases. The same does not hold, however, across
classes for the sensitivity to walking distance, with class a being the exception showing an
increasing marginal disutility. Regarding cost sensitivities, classes a and b have similar base
cost parameters, but class a also shows an increasing marginal cost disutility as captured by
the Box-Cox λ and a decreasing one as income increases, while class b has a linear marginal
cost disutility and an increasing one as income decreases. Finally, individuals in class c have
a much lower and in fact not statistically significant linear base cost sensitivity, but one
that increases proportionately to income. Most of the remaining parameters, i.e. angular
deviation, locational parameters and size variables, were found to be generic across classes
and their estimates are similar with those of the MNL-base and LCCM-base models. The
only exception is the parameter capturing how likely is for individuals living in richer areas
to go shopping to poorer areas, which has been allowed to differ across classes. According to
the estimated PCS-LCCM, individuals in class a who live in richer areas have a dispreference
to travel to poorer areas for covering their shopping needs, but the opposite is true for
individuals in class b. Nonetheless, both of those parameters are not statistically significant.
Residents of richer areas of class c, however, show an even higher and statistically significant
dispreference for shopping in areas with lower house prices.

As already mentioned, according to the class allocation model, 24.8% of the sample
is allocated to class a, therefore it is subject to space-time constraints, 29.3% to class b
being subject to spatial cognition limitations and the remaining 45.9% is allocated to class
c, labelled as the explorers, since they are willing to move in areas not visited before or at
least not captured systematically during the survey period. With regard to the behavioural
profiling of the estimated classes, class a is more likely to include individuals of higher
household income above £65,000 (30.0% - average household income = £54,500), who are
in a possession of at least one car (27.3% - average number of cars = 1.0), but also living
in higher than average deprived areas (30.6% living in areas with IMD>30 - average IMD
= 23.7), live in a household of a size above 4 people (31.3% - average household size = 2.0)
and be of younger age below 30 years old (27.9%) or older age above 60 years old (33.6% -
average age = 39.5). According to the remaining sociodemographic attributes not used in
the class allocation model, individuals in class a are more likely to be employed in social
(28.8%) and legal occupations (42.9%) or be retired (33.9%), cohabiting with their partner
(28.5%) and have at least three more employed adults in their household (28.0%). From that
profile analysis, it can be concluded that those individuals could face space-time constraints
mainly due to their family requirements and the need to accommodate the daily needs of the
household members or due to their age. The highly deprived immediate neighbourhood that
they reside might not provide the necessary incentives either in terms of infrastructure or
general urban environment for them to wander in the space around them and explore new
opportunities and amenities in neighbouring areas. As a result, they are more constrained
to their pre-defined schedules and time budget constraints. Especially, for the case of the
elderly individuals it is important to provide the necessary conditions to avoid cases of social
exclusion.

With regard to class b, it is also more likely to include individuals of higher household
income above £65,000 (39.2% - average household income = £54,000), who live in a household
of a size above 4 people (38.1% - average household size = 2.0), but those also have a very
low percentage of uniquely visited locations (44.6% have below 20% of uniquely visited
locations). According to their remaining sociodemographic attributes, individuals in class b
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are more likely to be employed in the media/sports industry (45.1%) and technical (31.0%)
and sales-related (31.6%) occupations, be in a possession of a season ticket for PT (34.6%) and
live in a household with at least four more employed adults (38.1%). The behavioural profiling
of class b indicates that those individuals are more likely to be bounded to their usual areas
of movement due to the need to accommodate a significant amount of daily household needs,
especially for the case of households with many employed individuals and probably not in a
possession of a sufficient amount of private vehicles to accommodate all those individual needs.
Contrary to class a, however, that increased number of employed individuals in class b might
also provide the necessary incentives and be the reason behind the increased area of movement
of those individuals, who are at least not bounded to their space-time constraints in a similar
way as individuals of class a. The increased family commitments, however, do constrain
their time budgets to not roam outside their familiar space to explore new opportunities and
visit new locations. In order to understand the impact of the increased family commitments
of individuals allocated into classes a and b, the ratio of personal to household income is
calculated. According to that, the personal income of individuals allocated into classes a
and b is more likely to be only a small percentage of the total household income with 29.3%
and 33.3% allocated to class a and b, respectively, having a personal income of less than
20% of the total household income. Those allocation probabilities to classes a and b drop
almost monotonically as their personal income ratio increases. That means that individuals
in those classes are not the top earners in their family, hence are more likely to be involved
with in-home activities to support the needs of the household.

Finally, class c is more likely to include younger individuals below 30 years old (48.3% -
average age = 40.5) of lower household income below £35,000 (55.6% - average household
income = £46,000) with no car ownership (54.5%) being alone in their household (67.0%)
and visiting unique locations more frequently (51.0% have above 60% of uniquely visited
locations). In addition, individuals in class c are more likely to be students (49.7%), working
in maintenance and repairing occupations (61.8%) or be unemployed (55.1%) and be single
with regard to their marital status (49.4%). That behavioural profiling hints to individuals
free of the increased family commitments captured in classes a and b and hence able and
willing to explore the space beyond their usual areas of movement.

Table 6.8: Fit statistics and estimated parameters of the modelling specifications

Fit statistics MNL-base LCCM PCS-LCCM- PCS-LCCM
generic

Log-likelihood (0) -11,045.05
Log-likelihood (model) -4,106.186 -3,988.274 -4,072.650 -3,958.099
Adjusted ρ2 0.6235 0.6295 0.6264 0.6322
AIC 8,316.37 8,184.55 8,253.3 8,124.2
BIC 8,594.06 8,739.93 8,541.67 8,679.58
Number of parameters 52 104 54 104
Number of individuals 270
Number of observations 1,541
Parameters Estimate (Rob. t-rat. 0) (Rob. t-rat. 1.0)

MNL-base LCCM PCS-LCCM- PCS-LCCM
generic

Households with car ownership (base: car-car/dest 1)
ASC dest 1 shift Car-PT/Car-Walking -1.6871 (-2.55) -1.5334 (-2.25) -1.5453 (-2.32) -1.7506 (-2.15)
ASC dest 1 shift PT-PT 1.4219 (3.70) 1.5695 (3.86) 1.4275 (3.71) 1.6282 (4.14)
ASC dest 1 shift Walking-PT/Walking-Walking 2.5854 (9.25) 2.7180 (9.45) 2.6698 (9.40) 3.0955 (7.34)
ASC rest Leeds CBD -2.2826 (-6.47) -2.2197 (-6.08) -2.2339 (-6.46) -2.1619 (-5.84)
ASC rest Leeds CBD PT-Car/Walking-Car/ 1.7345 (4.20) 1.7530 (4.33) 1.6992 (4.27) 1.7232 (3.95)
PT-PT/PT-walking
ASC rest Leeds CBD Walking-PT 2.9668 (6.50) 2.9974 (6.49) 2.9381 (6.66) 3.2687 (5.76)
ASC rest Leeds CBD Walking-Walking 3.8365 (9.02) 3.9309 (8.98) 3.8931 (9.20) 4.0709 (8.05)
ASC rest Leeds (no CBD) -0.6215 (-5.66) -0.6500 (-5.59) -0.6525 (-5.71) -0.5632 (-4.94)
ASC rest Leeds (no CBD) Car-PT/Car-Walking -2.8230 (-8.53) -2.8247 (-8.97) -2.6713 (-8.06) -3.2396 (-7.29)
ASC rest Leeds (no CBD) PT-Car/PT-PT/ -1.2653 (-5.59) -1.4362 (-5.83) -1.2973 (-5.66) -1.6280 (-4.96)
PT-walking/Walking-Car/Walking-PT
ASC rest Leeds (no CBD) Walking-Walking 0.8037 (2.88) 0.8646 (2.99) 0.8828 (3.09) 0.7185 (1.50)

Continued on next page
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Table 6.8 – continued from previous page
Parameters Estimate (Rob. t-rat. 0) (Rob. t-rat. 1.0)

MNL-base LCCM PCS-LCCM- PCS-LCCM
generic

ASC rest Yorkshire (no Leeds) Car-PT/Car-Walking/ -1.7449 (-5.79) -1.8331 (-5.76) -1.6678 (-5.54) -1.9882 (-5.47)
PT-Car/PT-PT/PT-Walking/Walking-Car/Walking-PT
Shifts for households with no car ownership
Car-PT/Car-Walking/Walking-PT/Walking-Walking 2.4892 (7.18) 2.2060 (7.11) 2.5350 (7.53) 2.7200 (7.01)
PT-PT 4.3207 (10.94) 4.1018 (10.27) 4.2962 (11.37) 4.7209 (9.61)
PT-Walking 3.1890 (7.06) 2.4761 (5.97) 3.2227 (7.29) 3.4159 (4.66)
Shifts for central areas outside Leeds city centre
Walking-PT/Walking-Walking 2.0958 (3.41) 2.0963 (3.12) 2.1850 (3.66) 2.2892 (3.74)
Shifts for trips with more than 1 passenger
PT for first/following trip -1.4224 (-5.57) -1.3454 (-5.22) -1.4396 (-5.68) -1.6195 (-5.33)
Walking for first/following trip -0.5303 (-3.94) -0.5217 (-4.25) -0.5185 (-3.96) -0.6501 (-4.46)
Shifts for students
Walking-Walking 1.2361 (3.60) 1.2182 (3.32) 1.2759 (3.79) 1.7160 (3.28)
Shifts for married individuals
Walking-Walking -0.5279 (-2.10) -0.7629 (-3.19) -0.5077 (-2.01) -0.6256 (-2.14)
LOS variables
Travel time car, PT for first trip (mins) -0.0996 (-11.46) – -0.0876 (-10.28) –
Travel time car, PT for first trip (mins) (class a) – -0.0796 (-776.23) – -0.2033 (-4.24)
Travel time car, PT for first trip (mins) (class b) – -0.1217 (-3.98) – -0.0233 (-0.33)
Travel time car, PT for first trip (mins) (class c) – -0.1025 (-10.20) – -0.0989 (-6.60)
Travel time shift for clothes shopping 0.0371 (3.87) – 0.0350 (3.75) –
Travel time shift for clothes shopping (class a) – 0.0321 (19.86) – -0.0752 (-1.07)
Travel time shift for clothes shopping (class b) – 0.0188 (0.37) – 0.0242 (0.36)
Travel time shift for clothes shopping (class c) – 0.0310 (2.28) – 0.0211 (0.96)
Travel time shift for OSO trip chains 0.0154 (2.44) – 0.0139 (2.26) –
Travel time shift for OSO trip chains (class a) – 0.0542 (130.85) – 0.1906 (2.24)
Travel time shift for OSO trip chains (class b) – -0.0066 (-0.30) – -0.0011 (-0.13)
Travel time shift for OSO trip chains (class c) – 0.0109 (1.49) – 0.0069 (0.67)
Travel time shift for HWH tours -0.0477 (-4.55) – -0.0438 -(4.37) –
Travel time shift for HWH tours (class a) – -0.0384 (-0.96) – 0.0155 (0.25)
Travel time shift for HWH tours (class b) – -0.1006 (-1.77) – -0.0080 (-0.28)
Travel time shift for HWH tours (class c) – -0.0339 (-2.74) – -0.0639 (-3.57)
Travel time shift for morning/weekend night -0.0513 (-3.45) – -0.0456 (-2.83) –
Travel time shift for morning/weekend night (class a) – -0.0855 (-1.59) – -0.0961 (-1.22)
Travel time shift for morning/weekend night (class b) – 0.0104 (0.28) – -0.0019 (-0.09)
Travel time shift for morning/weekend night (class c) – -0.0844 (-3.35) – -0.0755 (-1.69)
Travel time multiplier for following trip 1.2386 (2.94) – 1.2813 (3.14) –
Travel time multiplier for following trip (class a) – 1.4275 (1.09) – 0.4945 (-4.51)
Travel time multiplier for following trip (class b) – 2.0494 (2.21) – 7.7936 (0.26)
Travel time multiplier for following trip (class c) – 1.0417 (0.44) – 1.0793 (0.33)
Shopping duration-travel time elasticity -0.3261 (-10.85) – -0.3540 (-10.71) –
Shopping duration-travel time elasticity (class a) – -0.3522 (-3.68) – -0.3005 (-2.48)
Shopping duration-travel time elasticity (class b) – -0.2807 (-3.04) – -0.4121 (-1.72)
Shopping duration-travel time elasticity (class c) – -0.3573 (-9.15) – -0.3384 (-5.98)
Box-Cox λ PT travel time 0.7652 (-9.31) – 0.7748 (-8.60) –
Box-Cox λ PT travel time (class a) – 1.3010 (6.57) – 0.8088 (-1.54)
Box-Cox λ PT travel time (class b) – 0.6012 (-6.86) – 0.7093 (-2.87)
Box-Cox λ PT travel time (class c) – 0.8025 (-6.36) – 0.7856 (-5.86)
Walking distance for first trip (km) -1.5930 (-12.60) – -1.4470 (-11.67) –
Walking distance for first trip (km) (class a) – -7.4632 (-4.02) – -6.5966 (-3.36)
Walking distance for first trip (km) (class b) – -1.9114 (-2.80) – -0.1913 (-0.15)
Walking distance for first trip (km) (class c) – -1.3102 (-8.66) – -1.4650 (-5.42)
Walking distance shift for OSO trip chains 0.1981 (1.80) – 0.2026 (1.88) –
Walking distance shift for OSO trip chains (class a) – -1.2952 (-0.65) – 2.8216 (1.81)
Walking distance shift for OSO trip chains (class b) – 0.1782 (0.18) – -0.1261 (-0.36)
Walking distance shift for OSO trip chains (class c) – 0.1886 (1.22) – 0.2416 (1.18)
Walking distance multiplier for following trip 1.2272 (2.41) – 1.2660 (2.58) –
Walking distance multiplier for following trip (class a) – 0.1448 (-8.04) – 1.2761 (1.27)
Walking distance multiplier for following trip (class b) – 1.0851 (0.41) – 22.2251 (0.13)
Walking distance multiplier for following trip (class c) – 1.4818 (2.63) – 0.7755 (-0.83)
Box-Cox λ walking distance 0.7887 (-4.08) – 0.8219 (-3.21) –
Box-Cox λ walking distance (class a) – 1.7529 (1.44) – 1.8287 (1.76)
Box-Cox λ walking distance (class b) – 0.8440 (-0.89) – 2.0684 (0.29)
Box-Cox λ walking distance (class c) – 0.8353 (-1.98) – 0.9832 (-0.12)
Shopping duration-walking distance elasticity -0.1443 (-4.32) – -0.1593 (-4.45) –
Shopping duration-walking distance elasticity (class a) – 0.1608 (1.13) – 0.1591 (1.89)
Shopping duration-walking distance elasticity (class b) – -0.3807 (-2.13) – -0.1580 (-0.91)
Shopping duration-walking distance elasticity (class c) – -0.1398 (-3.06) – -0.2710 (-4.08)
Travel cost (£) -0.5887 (-8.44) – -0.5165 (-7.46) –
Travel cost (£) (class a) – -2.7637 (-8.71) – -0.9448 (-2.38)
Travel cost (£) (class b) – -0.6751 (-2.40) – -1.1802 (-1.66)
Travel cost (£) (class c) – -0.4275 (-5.33) – -0.1618 (-1.06)

Continued on next page
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5. Results

Table 6.8 – continued from previous page
Parameters Estimate (Rob. t-rat. 0) (Rob. t-rat. 1.0)

MNL-base LCCM PCS-LCCM- PCS-LCCM
generic

Box-Cox λ travel cost 0.5900 (-7.43) – 0.6568 (-6.02) –
Box-Cox λ travel cost (class a) – 0.8878 (-0.68) – 1.2473 (1.83)
Box-Cox λ travel cost (class b) – 1.0110 (0.03) – 1.0049 (0.04)
Box-Cox λ travel cost (class c) – 0.7106 (-3.93) – 0.7888 (-0.81)
Cost-Personal income elasticity -0.2862 (-2.91) – -0.3112 (-2.72) –
Cost-Personal income elasticity (class a) – 0.1863 (1.92) – -0.5483 (-2.54)
Cost-Personal income elasticity (class b) – 0.7297 (1.11) – 0.5531 (1.21)
Cost-Personal income elasticity (class c) – -0.5207 (-3.03) – -1.0933 (-1.54)
Direction of travel
Presence of angle>90o between O-S and O-D -0.2621 (-2.22) -0.2968 (-2.55) -0.1920 (-1.58) -0.2424 (-1.87)
Locational variables
Parking areas (400m buffer) 0.1036 (4.00) 0.1091 (4.34) 0.1057 (4.05) 0.1151 (4.20)
Box-Cox λ for parking areas (400m buffer) 0.4219 (-7.86) 0.4189 (-8.39) 0.4237 (-7.94) 0.4085 (-8.44)
Living in rich areas - shopping in poor areas -0.6817 (-2.51) – -0.7166 (-2.64) –
Living in rich areas - shopping in poor areas (class a) – 0.1737 (0.31) – -0.8626 (-0.85)
Living in rich areas - shopping in poor areas (class b) – 0.1674 (0.33) – 0.5875 (0.70)
Living in rich areas - shopping in poor areas (class c) – -1.0518 (-2.71) – -2.2892 (-2.62)
Living in areas with high % of whites (quart.4) - -0.3732 (-1.72) -0.3971 (-1.90) -0.3664 (-1.68) -0.2679 (-1.10)
shopping in low % whites (quart.1)
Living in areas with low % of whites (quart.1) - 0.2889 (1.07) 0.2830 (0.93) 0.3011 (1.06) 0.4794 (1.61)
shopping in high % whites (quart.4)
Living in areas with low % of whites (quart.1) - 0.5348 (2.72) 0.5826 (3.05) 0.5576 (2.76) 0.6755 (2.99)
shopping in medium % whites (quart.2-3)
Major clothes shopping retailers (400m buffer) 1.3288 (6.03) 1.3515 (6.09) 1.3211 (5.94) 1.3672 (5.87)
Major grocery retailers (400m buffer) 0.4576 (4.51) 0.4657 (4.40) 0.4469 (4.33) 0.4180 (3.84)
Major durables retailers (400m buffer) 2.0015 (2.51) 1.9768 (2.59) 2.2064 (2.64) 1.9689 (2.74)
Size variables
Natural logarithm multiplier ϕ 0.6638 (-3.88) 0.6698 (-3.59) 0.6594 (-3.93) 0.6730 (-3.71)
Population (400m buffer) (base) 1.0000 (–) 1.0000 (–) 1.0000 (–) 1.0000 (–)
Retail areas for clothes (400m buffer) (log.) 0.4515 (0.95) 0.4260 (0.86) 0.4833 (1.00) 0.5543 (1.04)
Retail areas for groceries (400m buffer) (log.) 0.8961 (2.24) 0.8995 (2.15) 0.9113 (2.27) 1.0641 (2.53)
Retail areas for durables (400m buffer) (log.) 0.3905 (0.56) 0.2969 (0.42) 0.3035 (0.44) 0.2744 (0.38)
Shopping store variability when following 2.1171 (1.75) 1.8938 (1.38) 2.0269 (1.58) 1.9265 (1.35)
trip purpose is shopping (1000-2000m buffer) (log.)
Retail areas for groceries when following -0.8628 (-1.08) -0.9231 (-1.18) -0.7967 (-1.02) -0.6079 (-0.80)
trip purpose is shopping (1000-2000m buffer) (log.)
Class allocation model
Constant class a – -2.6019 (-1.94) -0.8920 (-3.97) -1.9282 (-1.93)
Constant class b – -1.9054 (-1.01) -3.1578 (-0.85) -0.7224 (-0.65)
Household income class a – -0.0326 (-1.74) – 0.0165 (1.98)
IMD 400m around home class a – 0.0355 (2.02) – 0.0281 (2.32)
No car ownership class a – -1.6226 (-2.22) – -1.2401 (-2.62)
Population 400m around home class a – 1.0254 (1.73) – -0.1348 (-0.31)
Low unique visits class a – 1.1357 (1.59) – 0.6834 (1.25)
Household size above 4 members class a – 0.4062 (0.25) – 0.9635 (0.70)
Age below 25 years old class a – -0.8398 (-0.82) – 0.6862 (1.20)
Age above 60 years old class a – -0.4860 (-0.61) – 0.6982 (1.24)
Household income class b – 0.0016 (0.16) – 0.0095 (1.28)
IMD 400m around home class b – 0.0102 (0.49) – 0.0088 (0.63)
No car ownership class b – 0.9518 (1.23) – -0.2809 (-0.36)
Population 400m around home class b – -0.1769 (-0.15) – -0.3375 (-0.50)
Low unique visits class b – 1.8876 (2.74) – 1.4264 (1.66)
Household size above 4 members class b – 2.1574 (1.42) – 1.4468 (1.28)
Age below 25 years old class b – -0.3860 (-0.34) – -0.9790 (-0.71)
Age above 60 years old class b – -2.6021 (-0.45) – 0.0576 (0.06)

Besides the improvements in model fit and the interesting behavioural insights derived
from the PCS-LCCM specification, it is also important to note the discrepancies across models
in the trade-offs of the individuals as captured by the Values of Travel Time (VTT) estimates,
depicted in Table 6.9. In general, car VTTs are higher than PT values and VTTs for the
first trip leg (shopping trips) are smaller than the ones for the following trips, which also
include commuting trips, among others. According to the VTTs across the models examined,
the values derived from PCS-LCCM are larger than the VTTs from the remaining models
indicating the impact of capturing latent constraints on the VTT estimation. Furthermore,
demand elasticities for different scenarios referring to a 1% increase in cost and time for

186



Chapter 6. Probabilistic choice set formation incorporating activity spaces into the context of mode and
destination choice modelling

Table 6.9: Comparison of Values of Travel Time estimates across models (£/hr)

Parameters MNL-base LCCM PCS-LCCM-generic PCS-LCCM
Shopping trip
Car 11.38 15.46 11.98 28.13
PT IVT 7.29 9.65 7.51 14.86
Following trip
Car 13.17 18.52 14.46 30.61
PT IVT 11.01 15.18 11.68 21.63

Table 6.10: Comparison of demand elasticities across models

Parameters MNL-base LCCM PCS-LCCM-generic PCS-LCCM
Increase car cost by 1%
Car -0.122 -0.100 -0.105 -0.089
PT 0.340 0.287 0.300 0.300
Walking 0.180 0.150 0.154 0.121
Increase PT cost by 1%
Car 0.059 0.056 0.057 0.061
PT -0.549 -0.516 -0.516 -0.526
Walking -0.016 -0.016 -0.017 -0.021
Increase car time by 1%
Car -0.383 -0.365 -0.348 -0.291
PT 1.187 1.182 1.068 0.938
Walking 0.548 0.517 0.500 0.424
Increase PT IVT by 1%
Car 0.090 0.087 0.087 0.077
PT -0.748 -0.747 -0.698 -0.637
Walking -0.039 -0.030 -0.039 -0.025

car and PT are presented in Table 6.10. From that comparison, it can be concluded that
PCS-LCCM leads to generally more modest demand elasticities/cross-elasticities compared to
the remaining specifications examined. It is important to note the significant overestimation
of demand elasticities resulted from MNL-base in all scenarios examined both for time and
cost and across modes. Similar findings were also derived in the study of Basar and Bhat
(2004) indicating important policy implications from choice set misspecification.

6 Conclusions

In the current study, we focused on proposing a specification able to capture space-time
and spatial awareness constraints in a spatial choice context. The study illustrates that the
proposed approach is able to perform better than a range of other specifications used for
comparison purposes. Furthermore, the study also demonstrates the impact of capturing
latent choice set formation mechanisms in the estimated VTT values and demand elasticities,
which can be important measures of analysis from a policy perspective.

The geography-derived notions of Activity Spaces have been utilised in this study to define
proxy measures for capturing the aforementioned latent space-time and spatial awareness
constraints. Nonetheless, other measures could also be used for that purpose and future
studies should continue on that direction to provide more computationally efficient ways of
defining latent consideration choice sets in a spatial choice modelling context and its inherent
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complexity.
As a limitation of the current, we should acknowledge the limited duration of the survey,

which could have significant impacts on the proper estimation of the Standard Deviational
Ellipses. In fact we could easily assume that we would end up with larger SDEs as a result
of capturing more trips, which seem as less frequent ones with the current utilised dataset.
On the other hand, however, we also can not exclude the possibility that the significant
spatio-temporal regularities of travel would put more weight to specific locations leading to
less variance and noise and more compact SDEs for specific individuals than the current ones.

In any case, the current study proposes an operational implementation of Manski’s
framework and its IAL version suitable and applicable for a spatial choice context with
the necessary simplifications to make the problem computational tractable. The study also
demonstrates that Activity Spaces can be incorporated as proxy measures of capturing latent
space-time and spatial cognition constraints leading to interesting insights that could inform
policy making. The behavioural profiling of the estimated classes of the LCCM can provide
invaluable information to policy makers for the purpose of proposing measures more suitable
to the constraints of the underlying population, while also being able to identify in time
and prevent cases of social exclusion. More research efforts in that direction, however, are
necessary to disentangle the inherent complexity behind the formation of latent constraints
and choice set elicitation mechanisms.
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Chapter 7

Discussion and conclusions

1 Summary

This thesis has made several contributions on the use of semi-passively collected datasets for
behavioural modelling and have made several methodological and applied contributions in
an attempt to prove their usefulness. In the introduction a number of research gaps have
been identified. This chapter starts by linking the relevant contributions made in each of
the previous chapters with the identified research gaps in Chapter 1, before drawing final
concluding remarks by considering all the work together as a whole.
RG1: Limited use of GPS trip diaries for spatial disaggregate behavioural
modelling.

Despite the benefits that GPS data can bring to the study of individual mobility behaviour,
the significant pre-processing requirements to make the data usable for behavioural modelling
has hindered their wider adoption among researchers and practitioners. In the current thesis,
a 2-week GPS trip diary has been utilised as the main dataset for the purpose of increasing
the research community’s trust into using such forms of datasets by documenting the required
steps needed to make the data usable for behavioural modelling and by addressing open
research questions in the process. The GPS trip diary was collected as part of the research
project “DECISIONS” conducted by the University of Leeds between October 2016-March
2017 and can be characterised as a form of a semi-passive GPS data, where minimum input
by the participants is provided at the end of each trip and the data is complemented with
a background survey capturing the respondents’ sociodemographic attributes. In addition,
further steps were performed and documented in the previous chapters for the purpose of
enriching the GPS trip diary with additional information, which mostly referred to the non
chosen alternatives. Readily available Application Programming Interfaces (APIs) were
used for that purpose, namely the Google “Directions” and Bing Maps APIs, for which
algorithmic procedures were developed to extract and store the relevant trip- and mode-
specific information. The APIs were also used for the re-calculation of times and distances
for the chosen alternatives to ensure that information coming from the same data generation
process would enter the specifications of the behavioural models. The stated times and
distances were used instead as a means of validation of the resulting API-based values. Time
of day and day of the week were also important parameters for the queries passed on to
the APIs to ensure that individual constraints for specific time periods and days would be
adequately represented and captured in the models. Travel cost information also had to be
added both for chosen and non chosen alternatives, as well, which was computed separately
for car, taxi and public transport modes, i.e. bus and rail. For car, the specifications of
WEBTag regarding fuel and operating costs were utilised, while parking costs were also added
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based on the destinations visited (e.g. central areas) and the activity durations captured
there. An average cost based on area-specific fixed, hourly and distance-based fares was
computed for taxi by taking into account the Local Authority within which each trip. Finally,
a distance-based fare was computed for bus and rail trips and a discount was applied for
season ticket holders. Additional locational data, important for the specification of a spatial
model, were acquired from the Office of National Statistics and OpenStreetMaps.

The aforementioned procedure of enriching a GPS trip diary both during the data
collection process and after it, resulted in a dataset not only rich in mobility information,
but also rich in semantic information, as well, with the latter being a common limitation in
emerging datasets hindering their wider use for behavioural modelling. The specifications
presented in the thesis were able to prove that such a dataset can lead to behaviourally
intuitive estimates with expected signs (Chapters 2-6), realistic individual trade-offs and
willingness-to-pay measures (Chapters 3 and 5) and demand elasticities (Chapter 4), while the
increased granularity and panel sizes provide the necessary leverage for capturing additional
unobserved heterogeneity (Chapters 3, 5, 6) and tackle issues of choice set formation (Chapters
2, 6). Analysing individuals choices in the spatial context, has been a core focus of the current
thesis due to its inherent complexity. The multitude of open research questions in the field of
spatial choice modelling has provided the ideal environment to explore the potential benefits
of GPS trip diaries and identify their limitations.
RG2: Lack of a systematic comparison between estimates derived from GPS and
other traditional data sources.

Despite the fact that it is understood in the transport research community that new
emerging semi-passively collected data sources can provide significant benefits over traditional
sources, there is still not an attempt to document those comparisons in a systematic way.
Accumulated knowledge from studies over the years has identified several limitations of
traditional Revealed Preference (RP) data from pen-and-paper trip diaries, such as travel
time and cost misreporting and omission of smaller duration trips. Consequently, researchers
and practitioners have put more trust in Stated Preference (SP) data, which have become the
dominant data source for Values of Travel Time (VTT) estimation with RP data being used
in limited scale to provide meaningful attributes for pivoting the SP designs around them.
Significant efforts have also been conducted to account for the presence of hypothetical bias and
its adverse effects with the state-of-the-art approaches being implemented in the latest national
VTT studies in various European countries. Despite the methodological improvements in SP
designs the fact remains that transport appraisal and hence decisions on future investment
largely depend on responses to hypothetical scenarios. That inertia to already established
methods and approaches hinders the adoption or at least the experimentation with new
emerging data sources for VTT estimation and how those estimates would compare with
official SP-based ones. Voices of concern pointing to the need of reconsidering the use of new
emerging RP data have been raised since almost a decade ago (Daly et al., 2014), but still no
additional relevant studies can be found in the literature. The current thesis provides such a
comparison in Chapter 3 by estimating VTT values from a behavioural model following the
methodology of the latest UK study (Batley et al., 2019). Chapter 6 also provides an indirect
comparison between two LCCM models, one estimated on a GPS trip diary and the second
on a traditional trip diary. The comparison is performed on the basis of the ease of capturing
unobserved heterogeneity even in the case of smaller sample sizes. Overall, the aim behind
addressing RG2 is to steer the research community towards the direction of increasingly
considering the new types of RP datasets at least as complementary data to traditional trip
diaries and SP surveys, especially if they can achieve the same level of accuracy with smaller
sample sizes, although more studies are necessary to establish that finding.
RG3: Current literature focusing on contrasting Machine Learning and Discrete
Choice Modelling rather than combining the two approaches.

Machine Learning (ML) approaches have inadvertently entered the field of transport
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research as a response to the need of analysing data of increasing complexity, such as the
case of new emerging datasets. The necessity of comparing and contrasting ML algorithms
with already established econometrics techniques, such as Discrete Choice Modelling (DCM),
could be justified in the initial stages of their introduction to the field, to identify their
merits and limitations. Nonetheless, it is worth mentioning that the focus of the literature
solely in their comparison has the potential negative consequence of missing the benefits
that can potentially arise from their integration. In the current thesis, ML-DCM have been
effectively combined by using ML approaches both during pre-processing (Chapters 2-6)
and as an integral part of a behavioural model (Chapter 5). More specifically, due to the
unique nature of each GPS trace in the initial trip diary, a clustering algorithm had to be
implemented in order to define unique activity locations and general shopping areas, thus
moving into a finer spatial resolution and taking advantage of the granularity of GPS data.
That step forms the basis for the subsequent analysis in the thesis. In addition to that, an ML
approach is also proposed in Chapter 5 as an integral part of a behavioural model, namely a
Latent Class Choice Model (LCCM). In that integrated ML-DCM framework, a deterministic
clustering algorithm effectively takes the part of the class allocation model of a traditional
LCCM specification by transforming it into a probabilistic one, while a choice model at the
lower model is used to capture individual choice behaviour. Both model components are
estimated jointly, thus the clustering algorithm is being adjusted based on feedback from the
choice model, until convergence is reached for both. The proposed approach is able to take
advantage of the best of both worlds by utilising an ML algorithm for pattern recognition
and a DCM for understanding choice behaviour, without compromising the microeconomic
interpretability of the modelling outputs at the same time.

2 Objectives and contributions

Several approaches have been proposed throughout the thesis for the purpose of meeting the
objectives defined in Chapter 1, which are described in the following.
M1: Provide a more detailed representation of individual mode and location
choices for discretionary activities (addressing RG1 and RG3).

Objective M1 has been met in Chapters 2, 4, 5 and 6, in which issues of reducing large
choice sets, accounting for spatial correlation and uncovering unobserved heterogeneity and
latent constraints, all common in spatial choice modelling, have been addressed. Integral
parts of those studies are the finer definitions of shopping location alternatives in the form of
general shopping areas instead of limiting the analysis to common UK geographical areas
(e.g. MSOA zones) and the attempt to capture the impact of the following activity, as
well, to the choice of the intermediate shopping location. The definition of shopping areas
was performed by clustering elemental observed shopping destinations using a Hierarchical
Agglomerative Clustering (HAC) algorithm with a 800m distance threshold -after trying a
range of different thresholds- which led to the creation of distinct shopping clusters within the
same geographical boundaries further enabling the capture of heterogeneity in choices among
individuals. It is worth mentioning that this approach would not have been possible with
traditional trip diaries, which usually provide a more coarse spatial resolution. Furthermore,
by including the influence of the following activity type and its location (considered fixed)
allows to better capture the detour or the deviation the individuals are willing to make from
the straight path between the previous origin O and the following destination D in order to
reach an intermediate shopping location S, which can depend on the chosen modes for the
two legs, trip-specific and individual-specific characteristics. In addition, capturing travel
time and walking distance sensitivities for both trip legs allows the analyst to understand
where the shopping activity will occur within the range between O and D, i.e. closer to the
previous origin or to the following destination. The results largely indicate that individuals
tend to have a higher travel time and walking distance sensitivities for the following trip
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meaning that they are more likely to choose an intermediate shopping destination closer to
the destination of the following activity, all else held equal. Further discrepancies, however,
can emerge when accounting for unobserved heterogeneity in the sample, such as in the model
presented in Chapter 6, where different segments of the sample show opposite sensitivities
regarding the shopping and the following trip. Additional interesting insights emerge when
accounting for the individuals’ surrounding living environment and how that might affect
their decisions to go shopping to specific locations, e.g. individuals living in richer areas being
less likely to go shopping to poorer areas. The more detailed representation of individual
mode and shopping location choices led to a number of interesting policy insights, similar to
the aforementioned ones, which otherwise would most likely remain hidden within aggregated
zonal alternatives.
M2: Examine concepts around choice set formation in a spatial context (address-
ing RG1).

Objective M2 has been met in Chapters 2 and 6. In both chapters, concepts from time-
space and behavioural Geography were implemented to provide proxy measures of space-time
and spatial cognition constraints to aid the process of two different approaches around choice
set generation, namely the formation of sampled choice sets and the formation of latent
consideration sets. In Chapter 2, Detour Ellipses (DEs) and Standard Deviational Ellipse
(SDEs) are created to provide strata for importance sampling, where after selecting the chosen
alternative, alternatives within the smaller DEs are sampled with a higher probability than
those within SDEs. Finally, alternatives from the remaining space are also sampled, albeit
with a lower probability from the other two strata, to complete the pre-defined choice set sizes.
As such, all alternatives have a non-zero probability of being included, thus the DEs and SDEs
act as soft constraints acknowledging the uncertainty in their estimation. Furthermore, the
inclusion of alternatives from all strata in the sampled choice set has the purpose of providing
the necessary balance between relevant and irrelevant alternatives and to help the behavioural
model to capture meaningful trade-offs from the observed choices. The proposed sampling
protocol is compared with random sampling and a range of other importance sampling
protocols incorporating different combinations of the utilised forms of Activity Spaces. The
outputs indicate that stratified importance sampling, besides needing an additional sampling
correction term to be included in the utility function, in all cases they offer a more efficient
alternative approach to random sampling. The proposed protocol incorporating both forms
of Activity Spaces also outperforms the remaining importance sampling protocols, since the
additional stratum defined by the SDE provides an additional pool of alternatives to sample
from, which are more relevant to the individual than the remaining ones from the global
choice set. Activity Spaces of the same form are utilised again in Chapter 6, but this time
for the purpose of providing proxy measures of space-time and spatial cognition constraints
and uncovering latent choice set formation mechanisms. To achieve that, an LCCM is
specified, where each class has a different choice set, while class-specific LOS parameters
were also specified to account for potential confounding between choice set constraints and
individual heterogeneity. According to that specification, classes a and b adhere to different
forms of latent constraints, namely space-time and spatial cognition respectively, while class
c represents indiviudals that are free to roam and explore the space around them. The
proposed model provides signifiant improvements in terms of model compared to an LCCM,
where only heterogneity in sensitivites is captured wihtout accounting for the presence of
latent consideration sets. The behavioural interpretation of the estimated classes indicates
to the presence of significant housekeeping responsibilities for individuals who live in large
households with many members and are not the top earners in their household, which leaves
them limited time to explore more opportunities in the surrounding space. On the contrary,
single individuals and those with generally more time available, such as students, are more
likely to belong to class c and hence be in a position to better explore opportunities in the
urban environment. Insights like that captured from models accounting for the potential
presence of latent constraints in the choice set formation can lead to better informed policy
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measures addressing the needs of individuals in a more efficient way.
M3: Propose an efficient framework for capturing spatial correlation among
locations by treating space as continuous (addressing RG1).

Objective M3 has been met in Chapter 4, where a Cross Nested Logit (CNL) model
was proposed with the ability to account for spatial correlation among locations both for a
destination choice model (conditional on the mode) and a joint mode and destination choice
model. The proposed framework is based on the first Law of Geography postulating that
“everything is related to everything else, but near things are more related than distant ones”
(Tobler, 1970) and it aims to capture correlation among locations based on spatial proximity,
while acknowledging the continuous nature of space instead of discretising it into disjoint
nests, such as the case of the most commonly used Nested Logit (NL) model. More specifically,
the main principle behind the proposed approach is to define a nesting structure, where
the number of nests equal the number of destination alternatives in the choice set and each
destination is allocated to every nest with a non-zero allocation probability parameterised
as a function of its distance from every destination-nest. The allocation probabilities follow
a distance decay function indicating a higher allocation of an destination alternative to
its own nest, with the allocation probabilities decreasing with distance. The methodology
developed is first applied on a destination choice model conditional on mode, where its
benefits over previously proposed approaches in the literature are clearly illustrated. A
demand elasticity analysis at the individual level illustrates the benefits of the proposed
approach to capture more realistic substitution patterns. The core methodology is then
further extended to accommodate joint choice dimensions of mode and destination choices,
where it is illustrated how the proposed model is able to capture correlation across both
choice dimensions and across all destination at the same time. A demand elasticity analysis
in that case also highlights the important implications on the effectiveness of policy measures,
if spatial correlation among locations is left uncaptured.
M4: Explore potential benefits arising from the integration of Machine Learning
and Choice Modelling (addressing RG3).

Objective M4 has been met throughout the studies presented in the thesis and more
explicitly in Chapter 5. More specifically, as previously mentioned an Hierarchical Agglomera-
tive Clustering was used during the initial stages of pre-processing to handle the unique pairs
of latitude-longitude coordinates of the observed visited destinations and to define unique
activity locations per individual. That has allowed the identification of home-work locations
(also based on the time and duration of visit), the creation of daily tours starting and finishing
at the home locations and finally the identification of tour-based feasibility constraints for the
definition of mode availability. HAC was also used to define general shopping areas forming
the location alternatives in the choice sets of the corresponding models developed providing
the additional benefit of analysing individual shopping behaviour in a finer spatial resolution.
Besides that, in Chapter 5, a probabilistic adaptation of the deterministic K-Means clustering
algorithm was developed to effectively take the role of a class allocation model in an LCCM
framework allocating individuals probabilistically into latent classes. The transformation to
a probabilistic K-Means algorithm is achieved by considering the distance of every data point
-in that case the sociodemographic covariates- from the cluster centroids, which are randomly
assigned in the first iteration. As such, the data points instead of being deterministically
allocated to their closest centroid, they are instead allocated with a non-zero probability
to every centroid, but still with a higher probability to their closest one (similar to the
distance decay approach for the allocation probabilities in Chapter 4). After the allocation of
individuals into latent clusters, a cluster-specific choice model is estimated to understand
individual choice behaviour. Therefore, a framework like that can take advantage of the
best of worlds, with ML and DCM components being responsible for tasks where they excel,
respectively. More importantly, however, that integrated framework still provides the neces-
sary microeconomic interpretability in the final model outputs, which can further be used
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for policy-oriented post-processing analysis, such as deriving willingess-to-pay measures and
demand elasticities. The proposed framework was applied in separate models of mode and
destination choices and in two different datasets, namely the GPS trip diary that was used
throughout this thesis and a pen-and-paper trip diary. In all cases examined, the proposed
approach performed at least the same, if not better, from a traditional econometric LCCM
specification in terms of model fit. The most important benefit, however, becomes evident
by examining the behavioural profiling of the estimated latent classes/clusters, which in
almost all cases was more behaviourally intuitive for the ML-DCM integrated framework
than the econometric LCCM hinting to the improved pattern recognition abilities of ML,
even with a simple clustering algorithm, such as K-Means. The same framework can also be
extended to include more advanced deterministic clustering algorithms, which can be turned
into probabilistic ones in a similar manner.
A1: Focus on the practical applicability of proposed modelling frameworks by
reducing their computational cost (addressing RG1).

Objective A1 was met in Chapters 2, 4 and 6. In Chapter 2, an efficient stratified
importance sampling protocol was proposed by incorporating different forms of Activity
Spaces reaching a higher level of sampling accuracy and stability for the same choice set size
compared to random sampling and other forms of importance sampling, as well. The outcomes
of that study could potentially lead practitioners to step away or at least reconsider the use of
random sampling for reducing choice set sizes, as the higher probability of including irrelevant
alternatives will inevitably lead to the need of sampling a larger number of alternatives,
thus unnecessarily increasing the computational cost. The inclusion of an additional layer
encompassing spatial awareness, compared to the existing importance sampling protocols
in the literature (Leite Mariante et al., 2018), helps to add a further structure upon space
to sample alternatives located within that space with a higher probability compared to
the remaining space. In Chapter 4, the CNL specification developed, which is able to
capture spatial correlation across location alternatives by treating space as continuous, is
computationally more efficient than the equivalent Paired Combinatorial Logit (PCL) (Sener
et al., 2011) and Error Component (EC) (Weiss and Habib, 2017) models, currently proposed
in the literature. For a destination choice model, conditional on mode, the CNL model is
able to outperform the PCL specification, while also being computationally significantly
faster (by a factor of more than 10). Furthermore, the proposed CNL model is able to scale
better in joint models of mode and destination choices being able to handle larger choice sets,
while at the same capturing correlation simultaneously among all choice dimensions, contrary
to the more widely-used Nested Logit model, where correlation is captured only along C-1
choice dimensions, where C is the number of choice dimensions in the joint model. Finally,
in Chapter 6 an attempt of incorporating a probabilistic choice set formation framework
for a spatial choice model has been proposed with the necessary simplifications to make
it computationally tractable in the spatial context. The proposed framework is based on
Manski’s two-stage probabilistic choice set formation model (Manski, 1977) and specifically
on its Independent Availability Logit (IAL) version proposed in Swait and Ben-Akiva (1987).
The incorporation of mode- and trip-specific Detour Ellipses and individual-specific Standard
Deviational Ellipses helps to avoid the need to evaluate the inclusion probabilities of each
mode-destination alternatives separately in the choice set. The proposed framework, instead,
assumes that alternatives within those spaces will have the same probability of being included
in the consideration set, which significantly increases the computational efficiency, but at the
same time still capturing significant and behaviourally intuitive latent constraints, which can
be important from a policy perspective. Those three studies also clearly demonstrate the
potential policy implications resulting from utilising simpler modelling frameworks ignoring
cases of including more irrelevant alternatives in sampled choice sets, not accounting for
spatial correlation and not capturing the impact of latent constraints in the consideration
sets.
A2: Provide a systematic comparison of behavioural models and their respective
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estimates utilising GPS trip diaries and traditional data sources (addressing
RG2).

Objective A2 has been achieved in Chapters 3 and 5. Specifically, in Chapter 3 the Values
of Travel Time (VTT) estimates obtained from the utilised GPS trip diary were compared
against the official VTT estimates currently used in transport appraisal in the UK and are
based on the latest nation-wide Stated Preference (SP) survey of 2014. For the purpose
of offering a systematic review, the study follows as closely as possible the methodology
developed in the latest UK VTT study reported in Batley et al. (2019), and Hess et al.
(2017) and the validity of the resulting GPS-based VTT estimates was assessed based on their
statistical difference from the official SP-based values. The negligible insignificant differences
provide the necessary empirical evidence for the transport research community to increase its
trust again on Revealed Preference data, which over the years fell out of favour compared to
SP data due to the inherent limitations of traditional trip diaries. In addition to that, in
Chapter 5 an indirect comparison between GPS and traditional trip diaries is also performed
based on estimated LCCM specifications estimated on each dataset and the ease of capturing
unobserved heterogeneity in the former. More specifically, the increased number of trips per
individual on the GPS trip diary provides a data structure that can lead to the identification
of more latent classes in the sample and with more covariates in the class allocation model,
thus providing more value for policy making. The two aforementioned case studies provide
initial evidence on the validity of GPS trip diaries for policy making, however, it is worth
mentioning that additional similar studies are necessary to derive more concrete conclusions.
Nonetheless, the two studies presented in the thesis provide an initial point of departure for
future studies.

3 Outlook

In the current thesis, several topics relevant to incorporating GPS trip diaries for addressing
research questions in spatial choice modelling and have been analysed. In addition to the
aforementioned objectives and contributions, each chapter and its relevant study proposes
several avenues for future research. In the following, those potential research questions are
summarised with respect to the aforementioned research gaps.

The importance sampling protocol proposed in Chapter 2, despite the increase in efficiency
relative to existing approaches, it does not answer the question of finding the most efficient
combination of relevant and irrelevant alternatives in the sampled choice set, since both are
needed for the model to identify meaningful trade-offs. Future studies could try to formulate
sampling of alternatives as a case of an optimisation problem to better capture the right
choice set size. Finally, it should be mentioned that observed Standard Deviational Ellipses
were used to form one of the strata for sampling. A more generalised approach was followed
in Chapter 6, instead, were the structural parameters of the observed Standard Deviational
Ellipses were used as dependent variables for a range of linear regression models in order to
re-create estimated Standard Deviational Ellipses.

The comparison of GPS-based and SP-based VTT estimates presented in Chapter 3
successfully illustrates the validity of current RP data enhanced by GPS-based data collection
methods to capture behaviourally realistic time and cost trade-offs. The methodology
developed aims to follow as closely as possible the official approach of the SP-based VTT
study (Batley et al., 2019), however, certain discrepancies could not be avoided. The main
limitation of that study is the generally smaller sample size of the GPS trip diary compared
with the official SP survey. That limitation was further enhanced with the exclusion of London-
based trips both in the estimation, as well as in the application datasets. The decision to
exclude London trips was on the basis of having only a limited number of trips from London
in the estimation data, which would lead to higher estimation errors for parameters regarding
London-specific transport modes, such as the underground. In addition, the GPS dataset
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includes mostly urban trips with a small range of trip distances. Nonetheless, the estimates
were applied to larger distances in the application data to provide a more direct comparison
with the distance-segmented VTT values in the official study. All three of the aforementioned
limitations have an impact on the standard errors of the GPS-based VTTs, which are evident
in the study. Parameters regarding the weather and the slope of the network, which could
have an impact on the choice of active modes, such as cycling and walking, were not taken
into account in the model. Finally, the inherent problem of choice set generation and the
latent nature of the consideration choice set in RP dataset was not taken into account and
alternative availability was deterministically defined based on feasibility checks and exogenous
thresholds. Future studies should aim to account for the latent nature of consideration sets,
as well as capture the impact of weather and slope on the estimation of willingness-to-pay
measures and whether their discrepancies from the official VTTs increase or not.

The CNL specification in Chapter 4 presented a novel approach to capture spatial
correlation in a continuous way among location alternatives and it showed that it can scale
better in the case of larger choice sets, while being able to be easily extended to accommodate
joint choice dimensions. Correlation was captured based solely on spatial proximity staying
true to the first Law of Geography. Spatial proximity was defined based on straight distances
among destinations, however other continuous variables could also be used, such as travel
times and network distances, while time of day could also have an impact with different
time periods during the day and different congestion levels having an effect on the perceived
similarities among destinations. Further parameters could also influence individuals to
perceive certain alternatives as more similar than others, besides spatial proximity, which
would required a further investigation. Spatial proximity might be an efficient proxy measure
to capture spatial proximity, but it can be easily understood that it is not the only factor.

The integrated ML-DCM framework presented in Chapter 5 is able to provide model fit
improvements, as well as estimated latent clusters with a more intuitive behavioural profiling
compared to the ones resulting from a traditional LCCM specification. The methodology
developed, however, is subject to certain limitations most important of which is the random
assignment of the initial cluster centroids during the first iteration, which can have a significant
impact on the overall convergence of the model. That limitation can be sufficiently mitigated
in models with two latent clusters, where assumptions about the sign directionality of specific
covariates can help the estimation process. Nonetheless, the same does not hold for models
with a higher number of latent clusters. The value of the proposed method, however, lies
in its flexibility since it could be easily adapted to accommodate more advanced clustering
algorithms, as well.

Finally, the probabilistic choice set formation framework developed in Chapter 6 provides
a computationally more efficient approach suitable for the complexity of a spatial choice
model uncovering space-time and spatial cognition latent constraints. A limitation quickly
identified is the small duration of the survey and the GPS tracking of daily mobility behaviour
(2 weeks), which can have a significant impact on the captured visited locations and hence
on the estimated Standard Deviational Ellipses. The impact of the survey duration is not
clear, however, as a higher duration could lead to more locations being visited in areas
that are currently considered outside of the SDE, but it could also lead to put a higher
weight to already visited locations in cases of higher spatio-temporal regularities reducing the
variation/noise. Furthermore, that study illustrates that the utilised spaces can effectively
act as proxies to help uncover latent constraints affecting the formation of consideration
sets, however they are likely not the only choice set formation mechanisms affecting the
respondents’ decision making process. More similar studies are hence necessary to uncover
latent spatial constraints utilising different proxy measures.

Overall, the work presented in this thesis demonstrates that semi-passively collected
datasets are suitable to be used in behavioural modelling, while also having the potential of
addressing current research issues much more rigorously than traditional data sources. At
the same time, new avenues for future research are opening due to the high granularity of

200



Chapter 7. Discussion and conclusions

GPS data and the large panels of individual mobility behaviour that can be collected from
such trip diaries. More studies are necessary to increase the trust of the research community
and the industry into utilising them on an everyday basis and using them as the base for
new policy initiatives. The future research avenues presented in this section will continue to
take advantage of GPS data and all the benefits they can provide in the field of disaggregate
behavioural modelling. Those can be further enhanced by other forms of emerging datasets,
such as mobile phone, smart-card or location-based social media data, which may lack in
their spatio-temporal resolution compared to GPS data, but they can offer significantly
larger sample sizes of mobility behaviour captured through multiple years. In any case, the
abundance and the variability of new data sources will continue to challenge well-established
methods and modelling frameworks, but through that new opportunities can emerge for the
transport research community to provide answers to new research questions never posed
before, always with the overall purpose of proposing better informed policy initiatives that
more efficiently address the needs and the underlying behaviour of the targeted population.
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