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Abstract

Predictive Functional Control (PFC) is a heuristic Model Predictive Control (MPC) algo-

rithm that offers intuitive, transparent and simple designs, along with the basic predictive

control characteristics, in the cost and complexity roughly similar to that of a standard

PID (Proportional-Integral-Derivative) design. But despite these advantages, its practical

utilisation has largely been confined to a relatively small selection of simple industrial

applications which exhibit benign first-order dynamics. This is mainly due to the use

of over-simplified assumptions within the algorithm that generally work well for simpler

systems but often cause undesirable tuning difficulties in slightly more complicated higher

order applications. Another critical issue that limits its practicality is the lack of con-

sistency and reliability in closed-loop performances while handling severely underdamped

and/or open-loop unstable processes.

Therefore, the primary objective of this research is to overcome these prominent de-

ficiencies and hence extend the scope of PFC to a broader range of SISO applications

by proposing: (i) a performance oriented controller tuning method which uniquely bases

parameter selection on the expected control activity for a well-informed and more mean-

ingful tuning decision, (ii) a new PFC algorithm based on relative measures with far

simpler controller tuning as compared to the standard practices of parameter selection,

and (iii) a systematic design framework integrating the concept of pre-stabilised or closed-

loop predictions within the overall formulation for efficient control of challenging processes.

Furthermore, the thesis also investigates a relatively unexplored application of PFC in the

area of nonlinear predictive control and therefore presents an efficient and cost-effective

PFC design for a class of nonlinear systems as the final contribution.

The efficacy of these proposals has been investigated through numerous simulation
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studies which suggest marked performance improvements over the conventional PFC, and

indeed the PID, in real-world scenarios. It has been observed that: (i) the new tuning

proposal for conventional PFC and the proposed Relative PFC algorithm both provide

approximately upto 30% faster closed-loop settling times as compared to the existing tun-

ing methods which are either too aggressive for practical implementation or somewhat

conservative to have a meaningful impact on the closed-loop behaviour, (ii) the use of the

proposed pre-stabilised, or closed-loop, predictions ensure output stability and recursive

feasibility under constraints where the direct utilisation of challenging open-loop predic-

tions within PFC fail to perform reliably, and (iii) the proposed Nonlinear PFC algorithm,

being inherently better at handling process nonlinearities, provides approximately 2 − 4

times faster closed-loop responses than the linear PFC (and the PID), and is therefore a

natural choice in processes involving wider operating ranges.
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Chapter 1

Introduction

This chapter introduces the readers to the research project, with a concise topic back-

ground presented in Section 1.1, the investigated research problems in Section 1.2, the

primary thesis contributions in Section 1.3, and the thesis organisation in Section 1.4.

1.1 Background

Model Predictive Control (MPC) is an advanced optimal control strategy with pow-

erful and well-defined procedures for complex multivariate processes [2]. However, its

computation-heavy nature has traditionally favoured applications with slower dynamics,

although the availability of advanced computing resources has significantly widened its

scope and utility in the recent years [1, 3]. Nevertheless, there are areas and applications,

for example industrial servo loops, where implementing such expensive strategies would

be logically and financially infeasible and where cost-effective approaches such as PID

naturally make more sense [4]. However, it is evident that PID often falls short when

it comes to processes with significant dead-times and physical constraints [5], though

popular workarounds, such as Smith predictors [6] and anti-windup techniques [7], have

overcome these problems to a certain extent. Nonetheless, these solutions are generally

ad hoc which often degrade other performance attributes; for example, poor robustness

to parametric uncertainties and/or modelling errors is one prominent side-effect of such

post-design alterations.

This highlights the need for more systematic yet simpler and cost-effective model-
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2 1. Introduction

based approaches, and over the years Predictive Functional Control (PFC) has proved

its efficacy as a viable alternative [8–12]. Although PFC in essence is a model-based

predictive controller, it operates with fairly simplified design assumptions akin to the

standard PID algorithm [13]. Yet in comparison, it features many desirable attributes

by default; process dead-times and constraints are managed more systematically with

a certain degree of robustness owing to the use of receding horizon [11]. However, it

differs from more advanced predictive controllers in the parametrisation of the manipulated

variable which, in the case of PFC, is pre-defined as a linear combination of some simple

polynomial basis functions [14]. The design is further simplified by noting that constant

set-point tracking is achievable with constant predicted control moves, which eliminates

the necessity of the complex optimisation routines for control development [15]. Although,

unlike the advanced MPC approaches, PFC’s heuristic nature merely provides sub-optimal

solutions without concrete a priori stability guarantees [16], its simplistic design traits have

attracted numerous industrial applications as reported in the literature [10–12, 17, 18].

1.2 Research Problems

Although PFC offers numerous benefits including computational simplicity, design trans-

parency and intuitive parameter tuning, these attributes are somewhat restricted to rela-

tively benign dynamics. Particularly, previous studies have highlighted tuning difficulties

with more involved overdamped and non-minimum phase processes along with far more

pronounced performance degradation when handling severely underdamped and/or open-

loop unstable systems [10, 11, 19]. Despite recent advancements, such as the development

of Laguerre PFC [20], model decomposition [21], and input shaping [22] strategies, the

literature still lacks cost-effective solutions to overcome these difficulties. Specifically, it is

noted that:

(i) Controller tuning in PFC is inherently heuristic and, apart from simple first-order

dynamics, lacks clear cut procedures for parameter selection. Furthermore, the exist-

ing tuning guidelines, such as [10, 16, 19], often fail to produce the expected results

when dealing with slightly more involved but stable higher order dynamics.

(ii) The oversimplified constant future input assumption in PFC may not be flexible
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enough to efficiently handle dynamics with poor damping and/or open-loop instabil-

ity. Notably, the current literature lacks well-structured design guidelines to utilise

pre-stabilised or closed-loop prediction dynamics with such systems [11].

Another area of research which has remained relatively unexplored is the development

of computationally efficient and inexpensive nonlinear predictive control alternatives util-

ising PFC. More specifically, the existing nonlinear PFC solutions, [23–26], are fairly com-

plicated as opposed to the linear counterparts, with far more ambiguous controller tuning.

Hence, this thesis attempts to fill this and the aforementioned voids in the available liter-

ature by providing a number of novel contributions for improving the conventional PFC

strategy in a straightforward manner and hence enable efficient control of a variety of

Single Input Single Output (SISO) dynamic applications.

1.3 Thesis Contributions

The main contributions of this study are summarised below:

(i) Development of a performance oriented tuning algorithm, primarily for stable and

well-damped higher order dynamics, which uniquely bases parameter selection on the

expected control activity for a well-informed and more meaningful tuning decision.

(ii) Development of a novel PFC algorithm with significantly simpler performance tuning

as compared to the conventional methods of parameter selection.

(iii) Development of a systematic design framework to handle difficult open-loop dynamics

efficiently, integrating the concept of pre-stabilised or closed-loop predictions within

the PFC formulation.

(iv) Development of various classical feedback compensation schemes for straighforward

transformation of underdamped and/or unstable open-loop behaviour into stable,

well-damped and monotonically convergent (if possible) prediction dynamics for

straightforward PFC implementation.

(v) Development of an efficient constraint handling algorithm to accommodate the im-

pact of pre-stabilisation on the functionality of PFC.
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(vi) Development of a novel approach to PFC for a class of nonlinear systems along

with straightforward and computationally efficient constraint management procedure

using a simple saturation policy.

Remark 1.1. It is worth mentioning that a majority of these contributions successfully

retain the inherent simplicity of conventional PFC while improving its design and function-

ality. In the same spirit, its fundamental weaknesses, such as the lack of rigorous a priori

stability guarantees especially under constraints [16], are also retained. Nevertheless, it

is noted that despite being a predictive conroller, PFC falls directly under the category of

low-cost control approaches, such as PID, for which the absence of mathematical rigour is

not a major concern and a posteriori analysis is generally acceptable [11].

1.4 Thesis Layout

This thesis is divided into seven chapters along with several appendices which comprise

the published research articles accompanying this work.

1.4.1 Organisation of Chapters

Chapter 1 introduces the research project with a concise topic background, to-be-investigated

research problems, main contributions and the thesis organisation.

Chapter 2 summarises the findings of the literature review conducted in the field of

predictive functional control.

Chapter 3 reviews the technical aspects of conventional PFC, discusses the associated

tuning weaknesses for stable higher order dynamics and proposes an improved and per-

formance oriented method of parameter selection. Details of proposal are available in the

publication attached in Appendix E.

Chapter 4 presents a novel PFC algorithm that considerably simplifies parameter selec-

tion and overcomes the inherent tuning deficiencies of the conventional PFC. This chapter

is based on two publications which are attached in Appendices G and H.

Chapter 5 discusses the concept of pre-stabilisation and proposes a systematic design
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framework for controlling difficult processes with PFC. This chapter summarises the con-

tents of various publications which are available in Appendices A-G.

Chapter 6 presents a novel approach to PFC for nonlinear systems, as a direct extension

of the approach presented in Chapter 4, which is based on the publication attached in

Appendix I.

Chapter 7 presents the final conclusions along with various recommendations for potential

future studies.

1.4.2 Organisation of Appendices

Appendix A ([27]) M. S. Aftab, J. A. Rossiter, and Z. Zhang, ”Predictive Functional

Control for unstable first-order dynamic systems,” in Lecture Notes in Electrical Engi-

neering. Springer International Publishing, Sep 2020, pp. 12-22.

Appendix B ([28]) M. S. Aftab and J. A. Rossiter, ”Predictive Functional Control with

explicit pre-conditioning for oscillatory dynamic systems,” in 2021 European Control Con-

ference (ECC). IEEE, Jun 2021.

Appendix C ([29]) M. S. Aftab and J. A. Rossiter, ”Pre-stabilised Predictive Functional

Control for open-loop unstable dynamic systems,” IFAC-PapersOnLine, vol. 54, no. 6,

pp. 147-152, 2021.

Appendix D ([30]) J. A. Rossiter and M. S. Aftab, ”A comparison of tuning methods

for Predictive Functional Control,” Processes, vol. 9, no. 7, p. 1140, Jun 2021.

Appendix E ([31]) M. S. Aftab and J. A. Rossiter, ”Predictive functional control for chal-

lenging dynamic processes using a simple pre-stabilization strategy,” Advanced Control

for Applications, Wiley, Mar 2022.

Appendix F ([32]) M. S. Aftab, J. A. Rossiter and G. Panoutsos, ”Predictive Functional

Control for difficult second-order dynamics with a simple pre-compensation strategy,” in

13th UKACC International Conference on Control (CONTROL 2022). IEEE, Apr 2022.

Appendix G ([33]) M. S. Aftab, J. A. Rossiter and G. Panoutsos, ”Predictive Func-
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tional Control for difficult dynamic processes with a simplified tuning mechanism,” in

13th UKACC International Conference on Control (CONTROL 2022). IEEE, Apr 2022.

Appendix H ([34]) J. A. Rossiter, M. S. Aftab and G. Panoutsos, ”Exploiting Laguerre

polynomials and steady-state estimates to facilitate tuning of PFC,” in 2022 European

Control Conference (ECC). IEEE, Jul 2022.

Appendix I ([35]) J. A. Rossiter, M. S. Aftab, G. Panoutsos, and O. G. Villarreal , ”A

novel approach to PFC for nonlinear systems,” European Journal of Control, Elsevier,

June 2022.



Chapter 2

Literature Review

This chapter summarises the findings of the literature review conducted in the field of

Predictive Functional Control (PFC). Section 2.1 first presents a brief introduction to

Model Predictive Control (MPC). The focus then shifts to the basic characteristics of

predictive functional control algorithm in Section 2.2. Next, tuning challenges associated

with PFC for higher order processes are discussed in Section 2.3. Section 2.4 critiques the

existing PFC modifications for controlling difficult dynamic processes. A brief discussion

on nonlinear predictive control is then presented in Section 2.5. Finally, the chapter

concludes in Section 2.6.

2.1 A Brief Introduction to Model Predictive Control

Model Predictive Control is an advanced optimal control strategy with powerful and well-

defined procedures for complex multivariate processes [2]. Its unparalleled ability to man-

age physical constraints and straightforward tuning methods have revolutionised industrial

process control [14], so much so that more than 4500 successful implementations had been

reported by the end of the past century [1]. Since then, MPC has extended its utility

to other markets including, agriculture [36], renewable energy [37], power systems [38],

building and environment [39, 40], and so on.

The basic philosophy behind MPC is straightforward [41]: at the current time step, the

control trajectory is determined via current and predicted process behaviour over a finite

horizon by optimising a performance objective subject to some equality and inequality

7
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constraints. Only the first control move is implemented, and the whole process is repeated

at the next time step. It is this receding horizon approach that distinguishes MPC from

classical optimal control theory [42], and implicitly adds robustness in the design [11].

Nevertheless, a more important feature is the emphasis on predicted future behaviour,

and hence accurate prediction models. Clearly, achievable performance is limited by model

precision, and unreliable system representation most certainly leads to ill-posed decision

making [11].

Owing to wider industrial acceptance, MPC practitioners have traditionally favoured

discrete-time linear Single Input Single Output (SISO) and Multiple Input Multiple Out-

put (MIMO) prediction models. For instance, Dynamic Matrix Control (DMC), a popular

variant of MPC, employs predictions based on finite impulse response (FIR) models of the

dynamic process [43]. Another popular algorithm, Generalised Predictive Control (GPC),

utilises transfer function models in the prediction structure [44]. However, it is noted that

implementations of MPC on MIMO processes, while straightforward in principle, may not

always be easy. The advent of modern control theory has triggered more focus on state-

space approaches in MPC, e.g. [45]; this facilitates straightforward model extensions, if

and when more process variables are accessible. On the flip side, state-estimation is al-

most always necessary with such representations, especially if the system states cannot be

measured directly.

With all its attractive features, MPC has one major drawback, that is the implied

control law is not guaranteed stabilising by default unlike traditional optimal control ap-

proaches [46]. Although there are popular modifications to warrant stability, such as

inclusion of terminal constraints to ensure input and output convergence [47], or pre-

stabilisation of dynamics for convergent predictions [45], instability and infeasibility often

arise with the introduction of constraints. To maintain recursive feasibility, that is a

well-posed optimisation problem at each time step, and hence stability, control theorists

often utilise the concept of set invariance [14]. Of course such a set may not exist for all

types of problems and conditions and thus this is an active area of research. Moreover,

most industrial processes have stable open-loop dynamics, and practitioners usually com-

bine heuristics with prudence and system know-how to maintain overall stable operating

conditions [10].
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Although the development and application of MPC
technology was driven by industry, it should be noted
that the idea of controlling a system by solving a
sequence of open-loop dynamic optimization problems
was not new. Propoi (1963), for example, described a
moving horizon controller. Lee and Markus (1967)
anticipated current MPC practice in their 1967 optimal
control text:

One technique for obtaining a feedback controller
synthesis from knowledge of open-loop controllers is
to measure the current control process state and
then compute very rapidly for the open-loop
control function. The first portion of this func-
tion is then used during a short time interval, after
which a new measurement of the function is
computed for this new measurement. The procedure
is then repeated.

There is, however, a wide gap between theory
and practice. The essential contribution of industry
was to put these ideas into practice on operating
units. Out of this experience came a fresh set of
problems that has kept theoreticians busy ever since.

2.2. IDCOM

The first description of MPC control applications was
presented by Richalet et al. in 1976 Conference (Richalet
et al., 1976) and later summarized in 1978 Automatica

paper (Richalet et al., 1978). They described their
approach as model predictive heuristic control (MPHC).
The solution software was referred to as IDCOM, an
acronym for Identification and Command. The distin-
guishing features of the IDCOM approach are:

* impulse response model for the plant, linear in inputs
or internal variables;

* quadratic performance objective over a finite predic-
tion horizon;

* future plant output behavior specified by a reference
trajectory;

* input and output constraints included in the for-
mulation;

* optimal inputs computed using a heuristic iterative
algorithm, interpreted as the dual of identification.

Richalet et al. chose an input–output representation
of the process in which the process inputs influence the
process outputs directly. Process inputs are divided into

(every second)

FC PC TC LC FC PC TC LC

Plant-Wide Optimization

Unit 1 Local Optimizer Unit 2 Local Optimizer

High/Low Select Logic

PID L/L PID

SUM SUM

Unit 1 - Conventional
Control Structure

Unit 2 - Model Predictive
Control Structure

Global Economic
Optimization

Local Economic
Optimization
(every hour)

(every minute)
Control
Constraint
Dynamic

        (MPC)
Model Predictive Control

Unit 1 DCS- PID Controls Unit 2 DCS-PID Controls Control
Basic Dynamic

(every day)

Fig. 2. Hierarchy of control system functions in a typical processing plant. Conventional structure is shown at the left; MPC structure is shown at the

right.

S.J. Qin, T.A. Badgwell / Control Engineering Practice 11 (2003) 733–764736

Figure 2.1: A typical industrial application of MPC [1].

A typical plant-wide hierarchical control framework [1], generally implemented in large

process industries, is depicted in Figure 2.1. As evident, MPC is positioned at level-1 or dy-

namic constraint control level, whose primary objective is to safely drive the system states

to updated set-points with minimal constraint violations. However, it is pertinent to note

that MPC in such scenarios is only effective as long as level-0 or basic dynamic control is

performing satisfactorily. The industrial control practitioners generally prefer PID for low

level applications, owing to cheap and easy implementation and maintenance. Neverthe-

less, the standard PID algorithm has its own shortcomings when it comes to processes with

significant dead-times and tighter actuation limits, though popular workarounds, such as

Smith predictors [6] and anti-windup techniques [7], have overcome these problems to a

certain extent. Nonetheless, these solutions are generally ad hoc and more often degrade

other performance aspects; poor robustness to uncertainties is one prominent side-effect

of such post-design alterations.

Evidently, there is a need for simpler yet cost-effective MPC approaches, and over the
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years PFC has proven its efficacy as a viable alternative [10, 17].

2.2 PFC – A Heuristic Approach to Predictive Control

In late 1970s, Richalet et al. [8] introduced a heuristic approach to model predictive con-

trol which greatly simplified the coding and algebraic requirements of MPC. Instead of

numerically optimising control moves, the strategy was fixed by pre-defining a reference

trajectory and then predicting future control moves based on an internal model to en-

sure reference tracking. The procedure was repeated at each sample to recalculate control

moves in order to minimise the difference between actual and predicted behaviour due

to modelling uncertainties. The proposal advocated using independent models for pre-

dictions that granted straightforward introduction of constraints on control and process

variables. The design was inherently robust, but the need for accurate enough models and

achievable reference trajectories was emphasised for a stable performance. The efficacy

was demonstrated with three industrial case-studies, including a power plant, a chemical

plant and an oil refinery, where the proposal had been successfully operating for over an

year.

This concept was later formalised as PFC [48–50], and to date numerous successful

implementations have been reported in the open literature [9–11, 17, 51–53].

2.2.1 The Basic Algorithm

Although PFC inherits most design attributes from the mainstream MPC family, it differs

significantly from other predictive controllers in the parametrisation of the future input

[11]. Unlike other predictive controllers, the input trajectory in PFC is pre-defined as a

linear combination of some simple polynomial functions whose order depends upon the

characteristics of the set-point [14, 15, 17]. Thus, for constant set-points, the future

input parametrises to just one degree-of-freedom, eliminating the need for the complex

optimisation routines generally associated with high-end MPC algorithms. This on one

hand simplifies computations, but on the other hand necessitates heuristics for constrained

predictive control problems; simple clipping or saturation has been the commonly deployed

constraint management protocol within PFC [8, 14, 17, 54].
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There are three basic elements of PFC [17]: a prediction model, a reference trajectory

and a disturbance estimator. The prediction model and the reference trajectory work in

conjunction to determine the control action over a finite prediction horizon, more specifi-

cally the coincidence horizon1. The disturbance estimator is necessary to ensure offset-free

tracking when external disturbances and uncertainties cause mismatches between the pre-

dicted and actual behaviour.

Furthermore, the reference trajectory sets a performance objective by defining the

desired exponential path between the process output and the set-point. This exponential

convergence, which is the main design parameter, is dependent on the characteristics

and capabilities of the physical system, and determined by the closed-loop time response

(CLTR) i.e. the time desired to reach and stay within 95% of the steady-state. It is usually

more convenient to represent the target dynamics as a discrete first-order pole placed at

e−Ts/τ , with Ts and τ being the sampling period and target time constant respectively

where τ ≈ CLTR/3 [11].

2.2.2 Constraint Management

One of the key benefits of PFC over similarly placed approaches, such as PID, is its

ability to integrate constraints within the design systematically instead of treating them

as an afterthought [13]. Although the resulting constrained solution is often sub-optimal,

the implicit integral action in PFC simplifies implementing common procedures, such as

input clipping or saturation, without causing integral wind-up which is very common with

traditional PID techniques [10]. While input constraints in PFC are straightforward to

implement, constraint management for internal states or outputs appear to have no clear

solutions or are not systematic [14].

In the earlier reported works (such as [9, 17, 54]), the usual practice was to tune

two PFCs: the first to ensure reference tracking, and the other to provide conservative

control action for constraint adherence. Both controllers worked in parallel and a logic

supervisor directed the appropriate command to the process. This clearly was an idealistic

approach only effective as long as external perturbations did not interfere. Nevertheless,

1Chapter 3 discusses the technical aspects of PFC, refer to Section 3.1 for details.
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this traditional method is obsolete now and replaced by more efficient constraints handling

proposals developed recently [11, 55].

For example, one proposal recommends utilising model predictions to validate state

and/or output constraints using long enough validation horizons [11]. However, it is noted

that constraint verification in this way may induce a computational overhead leading to

slightly elevated cost and complexity. Another recent study extends this concept further by

incorporating the so called closed-loop predictions in the control law providing significant

improvements in the tuning efficacy and the overall constrained control performance [55].

Nevertheless, it does not explicitly discuss the design of closed-loop parametrisation, which

is highly critical for an efficient PFC functionality.

2.2.3 Robustness of PFC

The continuous re-evaluation of control action, on one hand, escalates the computational

burden, but on the other hand, also ensures a certain degree of robustness in the design.

Yet it is important to assess the controller’s ability in managing disturbances, measure-

ment noise and modelling uncertainties for stable closed-loop operation, especially in the

presence of constraints.

The effects of various modelling structures on noise and disturbance sensitivities has

been investigated [56], which demonstrate marked differences in PFC performance with

CARIMA (with and without T-filters) [11] and independent [17] model types. Although

such analysis is highly dependent on open-loop characteristics, the CARIMA structure plus

T-filter generally provides better noise minimisation for stable and well-behaved dynamics,

at the price of relatively slower disturbance rejection.

A similar study on independent models to evaluate Laguerre PFC performance [57]

demonstrates slightly aggressive control moves, and hence increased sensitivity to noise

and disturbances. Nevertheless, it is noted that better noise filtration alongside fast distur-

bance rejection is, in fact, a conflicting requirement [58], but being in different frequency

regions, a satisfactory design is achievable with prudent selection of controller parameters

[59].
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Another study [60] implements a robust filter (initially proposed for Smith predictor,

see [61]) with prediction model to minimise the effect of dead-time variations for well

damped first-order and second-order systems. The proposed configuration achieves stable

constrained performance, as opposed to designs without robustifying filter, for which the

response often destabilises due to parametric uncertainty.

2.2.4 Comparisons with PID

Evidently it would not be very sensible to compare PFC’s performance with that of more

mainstream predictive controllers owing to the significant differences in the underlying

optimisation. Nevertheless, multiple studies suggest its remarkable benefits over similar

approaches like PID [13, 62]. In this context, one comparative analysis [13] highlights the

efficacy of PFC in terms of tuning, constraints handling, coping with dead-times, ease

of coding, and robustness. Moreover, a recent study conducted to compare and contrast

closed-loop performances in automobile cruise control has further strengthened the supe-

riority of PFC over the standard PID algorithms [62]. Nevertheless, competition is not

the only possibility; combining these two approaches could further enhance performance

beyond that which may be achieved by each compensator in isolation [63–65].

A fault tolerant architecture of PFC-PI is presented in [63] to improve overall reliability.

To achieve this, a bumpless switching mechanism transfers the controls from one controller

to the other without causing discontinuities in the manipulated variable. A new PID

tuning method is proposed in [64] in which the proportional, integral and derivative gains

are tuned in an incremental fashion using PFC theory. A case-study on coke-furnace

pressure control shows improved disturbance rejection as compared to other PID tuning

mechanisms. In another application [65], both PFC and PID are combined to cope with

process nonlinearity in an electro-hydraulic servo system, where the merged controller

provides offset-free sinusoidal tracking, something both PFC and PID could not achieve

individually.
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2.3 Tuning Challenges with Higher Order Dynamics

Despite its immense practical appeal, tuning has remained an area of ambiguity within

the PFC community [10, 11, 15]. In fact, with the exception of very benign dynamics [16],

the literature has lacked rigorous a priori stability proofs; empirical suggestions combined

with common sense and intuition have mainly guided the tuning process.

For example, a common practice to tune PFCs for slower dynamic systems, such as

heat exchangers, is to choose a reference trajectory with CLTR four to five times faster

than the open-loop behaviour of the system [66]. It has been learned through experience

that such selection generally provides stable performance [67]. In another study [68], the

significance of target dynamics and coincidence horizon on performance and closed-loop

stability has been analysed experimentally for industrial heat exchange system. It was

shown that too quick exponential convergence (smaller CLTR) or too short coincidence

horizon may cause severe oscillations in the process output.

However, it is evident that the lack of systematic approaches in literature inhibits

rigorous stability analysis on theoretical grounds.

2.3.1 Target Pole and Coincidence Point Selection Criterion

A study conducted to analyse the impact of coincidence horizon on closed-loop perfor-

mance has found strong influence of coincidence point on the efficacy of reference trajec-

tory [19]. As a general rule of thumb, the target pole gradually becomes ineffective as

one shifts the coincidence point further away in the future. It is noted that very large

horizons essentially transform PFC into a mean-level controller [11], an approach whose

sole purpose is offset-free tracking and constraints handling without worrying about the

closed-loop transient performance. An obvious, but implicit, requirement with mean-level

controllers is the satisfactory and stable open-loop system behaviour, which is directly

reflected in the closed-loop performance.

Nevertheless, for stable first-order dynamics, it is indeed possible to preserve 100%

efficacy of the target pole by ensuring one-step ahead coincidence [10, 17, 19]. A similar

statement, however, may not hold for stable higher order systems, especially if the dynam-
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ics involve significant amount of initial lag or a non-minimum phase characteristic [19].

Hence, for higher order systems, it is recommended to select the appropriate coincidence

point first before designing the reference trajectory [10, 11, 19]. One suggestion [9, 10] is

to use the point of inflection, i.e. the point of maximum gradient on the step response

curve, as the coincidence point. However, [19] argues that parameter tuning on this cri-

terion alone may be flawed, especially if the dynamics exhibit significant non-minimum

phase characteristics. As per recommendation though, a more sensible choice is to enforce

coincidence within the time window when the open-loop step response approximately rises

from 40% to 80% with significant gradient.

These suggestions make intuitive sense as long as the predicted response progresses

monotonically towards steady-state after coincidence, but in cases where high frequency

oscillations or divergence are prevalent, reliable and consistent performance tuning seems

unattainable [11, 19]. Another empirical suggestion for under-damped processes is to

choose a prediction horizon that covers at least one cycle of oscillations [66]. However, no

mathematical justification or proof of efficacy is provided.

2.3.2 Incorrect Use of Feedforward Component

Irrespective of the tuning policy, it is noted that the link between target pole and actual

performance gradually weakens as the coincidence horizon is increased. Recent studies

have investigated the underlying issue, and concluded that the prediction mechanism for

higher order dynamics in standard PFC formulation may have severe anomalies [69, 70].

The problem lies in the incorrect use of feedforward information, more specifically ini-

tialisation of target trajectory on the process output whose slower progression, compared

to the first-order reference, embeds delays into the future target values. Nevertheless,

the proposed modification in the control law utilises trajectory information from previous

samples, instead of simply relying on the current measure of tracking error [70]. With this

trivial adjustment, simulation results have demonstrated a relatively stronger link and

faster convergence than the original PFC algorithm.
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2.3.3 Existing Solutions for Reliable and Effective Tuning

A common solution to address tuning difficulties with higher order systems is by decom-

posing the prediction model into multiple first-order subsystems using partial fractions

[15, 21, 71]. It is noted that such decomposition is only possible due to the independent

nature of prediction model generally utilised in PFC [72].

Parallel decomposition is explored in [71], which guarantees a prediction structure

similar to first-order dynamics. Two equally tuned PFCs are implemented on a third-

order process and its reduced first-order version, and simulations demonstrate smoother

and less aggressive control action with model decomposition.

Reference [15] presents a cascade decomposition scheme, which complicates the pre-

diction structure to some extent, but preserves first-order tuning and standard constraints

handling procedures. Interestingly, it has been pointed out that parallel or cascade de-

composition may not suit unstable, complex or non-minimum phase systems, due to the

presence of unfactored dynamics in the process model.

Another parallel decomposition strategy for over-damped systems [21] takes a slightly

different approach. Each first-order model is treated as a standalone process, with PFC

implemented individually. The total manipulated variable is the linear combination of

individual control actions, which guarantees target behaviour, provided all input weighting

coefficients add up to one.

In view of the apparent deficiency of constant control action, another proposal imple-

ments a Laguerre polynomial in the control law to differently parameterise the manipulated

variable [20, 73, 74]. It is noted that the additional tuning parameter, i.e. the Laguerre

pole, demonstrates direct correlation with the output convergence [73]. Hence, the general

recommendation is to select a Laguerre pole that replicates the target performance.

Two PFC algorithms based on Laguerre functions have been proposed [20], with dif-

ferent parametrisation schemes. However, both algorithms demonstrate slightly different

performance attributes even with equal Laguerre poles. Furthermore, a new constraint

handling mechanism developed for Laguerre PFC [74] ensures less conservative responses
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under constraints as compared to the original PFC, without increasing the coding com-

plexity.

Nevertheless, it is noted that these proposals fundamentally assume stable and mono-

tonically convergent behaviour, and therefore are not tailored to systems with challenging

dynamics.

2.4 PFC and Difficult Dynamics

The preceding discussion assumed well-behaved and monotonically convergent process be-

haviour, but what if this is not the case? Difficult dynamics, such as open-loop instability,

have particularly been challenging for control practitioners. The problem with divergent

predictions is that simple and intuitive stability results, which hold for stable dynamics,

are no longer relevant.

For guaranteed stability, researchers in predictive control generally impose some form

of terminal constraints to reach the stable input and output values within the predic-

tion horizon [11, 47, 75, 76]. Nevertheless, early studies [45, 77] have shown that such

restrictive constraints may provide a dead-beat response that may be too aggressive to

maintain feasibility in constrained environment in addition to poorer robustness against

uncertainties.

A cautious approach to control design [45, 77, 78] has been suggested as an alternative,

which bases the decision-making on closed-loop predictions and allows the use of less

restrictive terminal constraints to ensure less active input and output. As an added benefit,

this type of predictive controller provides improved robustness to model mismatches as

opposed to its ancestors. To maintain feasibility under normal constraints, however, it

results in increased degrees-of-freedom, which could be utilised to improve performance or

reduce control horizon for efficient computation [79].

Unlike MPC, predictive functional control formulates constraints heuristically [14].

As such systematic inclusion of terminal constraints for guaranteed stability may not be

achievable. Moreover, the decision making in PFC is generally restricted to just one

degree-of-freedom allowing only constant control moves. Thus instability is almost al-
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ways guaranteed beyond coincidence, even if the predicted behaviour appears satisfactory

within this time-frame [80]. Hence, the obvious solution to control difficult processes, with

PFC, is to seek different parametrisations of the degree-of-freedom either via explicit pre-

stabilisation (for example [10, 81–84]), or implicit modification of the control law (such as

[22, 85]).

2.4.1 Pre-stabilisation of Predictions

The early reported work on model pre-stabilisation [80, 81, 86, 87] is based on one of the

typical model decomposition structures proposed in [9], wherein the unstable prediction

model is decomposed into two stable parts. Such stabilisation of dynamics has been

effective in avoiding prediction divergence due to the constant future input assumption.

In [80], the main decision variables, the control changes, are split into two parts as a

direct consequence of pre-stabilisation. One part is calculated solely from the past inputs

and outputs of the decomposed model, whereas the other part is evaluated with PFC. Such

a structure ensures stabilising control laws but may also cause aggressive input activity.

To manage hard constraints with such active controllers, a novel constraints handling

mechanism is proposed in [87]. The proposal employs two PFCs, one well-tuned and the

other slightly detuned with less aggression and hence reduced risk of output overshoot.

The predicted response is evaluated at each time sample; if no violation occurs, the well-

tuned PFC drives the process, otherwise the detuned controller takes charge. The level

of detuning is flexible and depends upon the amount of violation. This algorithm has

guaranteed feasibility property in the nominal case.

The study [86] has conducted an unconstrained performance analysis to evaluate the

benefits of pre-stabilised model predictions. The results suggest a marked performance

difference, as utilising open-loop unstable predictions tends to be unreliable and gives var-

ied PFC success. On the other hand, pre-stabilised control laws always ensure nominal

closed-loop stability, but often with a dead-beat type response. To overcome this unde-

sirable behaviour, a modified control law, based on pre-stabilisation, is presented in [81].

The paper argues that allowing too few control moves causes extra aggression in manipu-

lated variable, and proposes a modified prediction class by forcing the tail in subsequent
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optimisations. The numerical simulations demonstrate relatively better performance with

a smoother and less aggressive input activity.

The concept of transparent control is introduced in [10], whereby one implements an

internal proportional control to ensure loop stability in case unexpected disturbances act

on the plant. To ensure purely algebraic transference of constraints, however, the pro-

posal discourages employing integral or derivative action within the transparent control

architecture. The study [83] takes this concept a step further by controlling integrating

processes. The results, nevertheless, suggest a relatively conservative control with con-

straints as compared to a different parametrisation based on Laguerre functions. Further

studies [82, 84] reveal that for both types of parametrisations i.e. transparent and La-

guerre, it is indeed possible to achieve equivalent performance, at least in unconstrained

setting, with considerable improvements over the conventional PFC.

The manual for predictive functional control practitioners [10] has numerous make-shift

approaches to overcome difficulties on case-by-case basis. These tweaks may have been

successful in practice, but more importantly lack well-structured guidelines for tuning and

stability in general.

2.4.2 Input Prediction Shaping Strategy

The core concept behind input shaping [22, 85] is to obtain a set of convergent output

predictions by identifying and subsequently cancelling the undesirable features from the

prediction class. To achieve this, the predicted input must implement appropriate modifi-

cation at each time step; however, the choice of input parameterisation has direct impact

on the closed-loop performance.

A minimal-order realisation of input shaping is presented in [22], which unsurprisingly

results in fairly aggressive control actions. Nevertheless, the proposal improves efficacy

of the PFC tuning parameter, the closed-loop target pole, and reduces the adverse ef-

fect of large coincidence horizons associated with difficult dynamics. The simulation re-

sults demonstrate drastic performance improvement in controlling open-loop unstable and

poorly damped systems. Moreover, the algorithm guarantees recursive feasibility in the
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presence of constraints, which cannot be claimed with non-shaped conventional PFC.

The modified shaping solution [85] provides further improvements by allowing more

control moves to drive the predicted output to the steady-state. Three different pole shap-

ing strategies have been presented for integrating, under-damped and unstable systems.

These proposals are simple and intuitive, but their execution requires additional calcula-

tions which may increase the coding or algebraic complexity. Nevertheless, the algorithm

has been tested and validated on numerous real-world case studies and with a real-time

servo speed control experiment. The results have shown significant improvements over the

minimum-move shaping PFC [22] and the conventional PFC algorithms.

Although input prediction shaping has provided a new dimension to PFC in controlling

difficult systems, the impact of such algorithmic modifications on loop sensitivity and ro-

bustness is yet to be explored. An initial investigation, nonetheless, recommends utilising

a CARIMA with T-filter prediction structure which leads to relatively less loop sensi-

tivity against measurement noise, without overly compromising the disturbance rejection

properties of PFC [12].

2.4.3 Model Decomposition for Poorly Damped Processes

Apart from open-loop instability, controlling dynamics with significant under-damping has

also been problematic for practitioners [10, 11, 19]. The main problem lies in the PFC

premise which assumes smooth prediction convergence after coincidence, which is clearly

an unreasonable expectation with oscillatory dynamics. Moreover, constant control does

not possess enough flexibility to damp down the predicted outputs. Consequently these

issues often leave the designer with very restricted parameter choices for a meaningful

performance [19]. Although such systems can be controlled with the shaping strategies

discussed above, a relatively simpler approach, similar to the one for overdamped higher

order dynamics, is to decompose the process model into multiple first-order subsystems

using partial fractions [88, 89].

It is understood that partial fraction decomposition of under-damped models would

result in complex residues. Despite that, the work in [88] reports considerable reduction
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in algebraic requirements, and more importantly guarantees a real implementable control

law. Even then it is noted that the existing general purpose industrial PLCs may not

be suitable for complex computation. In view of this argument, [89] proposes a modified

tuning algorithm that does not rely on complex algebra, instead the real and imaginary

parts are handled separately. This, however, comes at the price of slightly burdened

computational complexity with increased costs. Nevertheless, numerical simulations and

real-time experiment have validated the efficacy of this proposal.

A more recent decomposition strategy suggests separating the minimum and non-

minimum phase dynamics for straightforward pre-compensation of oscillatory poles [90].

While the efficacy of the proposal has been successfully validated with three industrial case

studies, the inner compensation is primarily based on pole cancellation using crude inver-

sion of prediction dynamics which may have poorer robustness to external disturbances

and modelling uncertainties. Furthermore, the proposed constraint handling is based on

back calculation (see [10]), which is inherently inefficient and often leads to relatively

conservative constrained performance [11].

2.5 PFC and Nonlinear Dynamics

A vast majority of real-world processes operate around fixed and well-defined operating

points. For such systems, linear prediction models are sufficiently adequate in order to

implement a successful MPC design [91, 92]. Nevetheless, there exists a class of highly

nonlinear dynamic applications which either cannot be suitably approximated by linear

models, or have very large operating windows that prevent a reasonable linear MPC op-

eration [93]. These limitations necessitate utilising nonlinear model predictive control

(NMPC), which is largely both complex and computationally demanding as evidenced in

the literature [91–94].

2.5.1 Challenges with Nonlinear Predictive Control

The primary challenge in the development of efficient NMPC solutions is posed by the

non-convex nature of the underlying optimisation problem [95]. Specifically, the pres-

ence of multiple local minimas in the cost functions demands for significantly slower and
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intensive computations to obtain real-time optimal solutions. However, this problem is

commonly rectified by linearising the prediction model at each sampling instant, essen-

tially transforming the nonlinear programming into the more manageable conventional

quadratic programming (QP) [96–99]. Yet, the computational overhead related to subse-

quent relinearisations and optimisations is still quite significant.

The second hurdle is the development of suitable nonlinear models that adequately

capture the true process behaviour. Although white-box models derived from first princi-

ples are relatively easier to develop for simpler systems, these become exceedingly difficult

to obtain for processes with moderate to high system complexity [92, 100]. In comparison,

black-box models, such as NARX [101], Volterra [102], fuzzy logic [103] and neural net-

works [104], can be identified from input-output data without in-depth technical knowlegde

of the underlying process dynamics. Nevertheless, their performance is primarily limited

to the training data range and generally degrades outside this design limit.

Another alternative is to utilise block-oriented cascade models [105]. The most com-

monly employed members of this family in NMPC are Wiener and Hammerstein types

in which the linear dynamic part appears in series with the nonlinear steady-state part

[97, 98, 106, 107]. These strategies are particularly useful in the development of hybrid

or grey-box representations, wherein the steady-state nonlinearities could be captured by

the aforementioned black-box techniques, such as neural netwroks [97, 98]. Nevertheless,

the computational complexity pertaining to online nonlinear optimisation still restricts

the generic application of these NMPC proposals to inherently slower dynamic processes.

2.5.2 Available Nonlinear PFC Solutions

Although it is expected that a simplified predictive controller, such as PFC, could signifi-

cantly reduce the cost and complexity associated with the mainstream NMPC techniques,

surprisingly this area of research has remained relatively unexplored, despite immense

practical appeal. In fact only a few nonlinear PFC (NPFC) proposals are available in the

current predictive control literature [23–26].

An artificial neural network based NPFC was developed and applied to a Continuous
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Stirred Tank Reactor (CSTR) [23]. Although simulation results demonstrated a superior

performance as compared to the PID, the underlying neural modelling around a single

operating point was quite restrictive. Another proposal utilised pseudo partial derivative

(PPD) for dynamical linearisation of the nonlinear prediction model [24]. The developed

adaptive PFC algorithm was tested on a linear time-delayed plant and a nonlinear chem-

ical reactor, providing a relatively better closed-loop performance than various PI/PID

controllers especially under the influence of external disturbances and modelling uncer-

tainties.

More recent NPFC approaches are based on iterative learning control (ILC) and general

regression neural network (GRNN) models [25, 26]. An ILPFC algorithm for nonlinear

batch processes is proposed, which combines the benefits of ILC with model predictive

control [25]. Furthermore, the proposal is utilised for trajectory tracking in unmanned

ground vehicles (UGVs) and batch chemical reactions, which provides similar closed-loop

results but with relatively faster processing as compared to the available high-end ILMPC

algorithms.

In [26], a GRNN model-free PFC (GRNN-MFPFC) is proposed and applied to a highly

nonlinear plant and an injection moulding industrial process. Although the simulation

results confirm considerably better closed-loop control in both examples as compared to

a model-free adaptive controller (MFAC) and a model-free adaptive predictive controller

(MFAPC), the controller tuning in GRNN-MFPFC is achieved via hit and miss – a tedious

and time consuming activity which clearly limits the practicality of this approach.

2.6 Chapter Summary

Over the years, PFC has not only cemented its place as a viable alternative to PID for a

majority of SISO industrial control problems, but also has gone through various interesting

phases of improvement. Nevertheless, a review of the open literature has identified some

obvious gaps in the current knowledge base which will be examined thoroughly in this

reseach study.

As discussed in Section 2.3, the most critical discrepancy of conventional PFC lies in
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its ambiguous tuning procedures for higher order dynamics. While numerous solutions

have been reported for improvements, these are either too complicated for a cheaper

implementation or lead to significantly conservative performances under the influence of

process constraints. Chapters 3 and 4 of this thesis will address these tuning difficulties

with relatively simpler modifications in the conventional PFC algorithm.

Another prominent deficiency is the unavailability of systematic procedures to control

challenging dynamics with PFC (Section 2.4). For instance, references [9, 10] propose

numerous modifications in the basic PFC algorithm to deal with difficult scenarios, but

do not provide well-structured reasoning for their application. Instead what we have

is a plethora of tweaks and adjustments, each only relevant to a particular situation.

Chapters 5 of this thesis will present a systematic design framework utilising the concept

of pre-stabilisation to cater for such difficult applications.

Finally as discussed in Section 2.5, it is noted that the nonlinear predictive control

literature in general lacks simpler and inexpensive alternatives to handle critical process

nonlinearities. More specifically, the existing NPFC solutions are fairly complicated, as

opposed to the linear counterparts, with far less clear-cut controller tuning. Hence, Chap-

ter 6 of this thesis will attempt to fill this void by proposing a novel approach to PFC for

a class of nonlinear systems with reasonably straightforward design procedures.



Chapter 3

Conventional PFC

This chapter serves two purposes. Firstly, it introduces the readers to the technical as-

pects of conventional PFC throughout Sections 3.1-3.2, emphasising on standard tuning

practices and their shortcomings. Secondly, to address these deficiencies it proposes a

new and improved parameter selection method in Section 3.3, which partially covers the

contents of ACA paper [31] attached in Appendix E. A detailed efficacy analysis of the

proposal using two numerical examples is included (Section 3.4), before concluding the

chapter in Section 3.5.

3.1 Technical Details of Conventional PFC

This section reviews the technical characteristics of the conventional PFC algorithm.

For stable and well-damped dynamics, PFC works as follows: at every time sample k,

the current control uk is used to enforce a match between the predicted output yk and

a pre-defined reference trajectory rk at a coincidence point ny samples ahead. However,

unlike the mainstream MPC algorithms (such as DMC [43] and GPC [44]), this is done

assuming a constant future input (for step targets), i.e. uk = uk+1 = · · · = uk+ny, whose

recomputation at each subsequent sample implicitly establishes a virtual feedback that

drives the response closer to the set-point. To ensure a meaningful decision-making, how-

ever, an implicit but fundamental requirement is a stable and monotonically convergent

prediction behaviour beyond coincidence, without which the achieved closed-loop perfor-

mance may be unreliable [11, 19].

25
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Figure 3.1: Example of coincidence between output prediction and reference trajectory at ny = 3.

Nevertheless, there are three key elements fundamental to PFC: a reference trajectory,

a prediction model, and a mechanism to obtain unbiased predictions. These are discussed

next.

3.1.1 Reference Trajectory

The reference trajectory provides an ideal or desired path to the set-point, which is chosen

mainly for computational simplicity as a first-order exponential initiated on the current

output measurement, represented by the following relationship [11, 17, 19]:

rk+i = R− (R− yk)ρi, i ≥ 1 (3.1)

where R is the set-point, yk is the current output and ρ is the target pole, the main

tuning parameter, defined as ρ = e−Tsamp/τ with Tsamp and τ being the sampling time and

the target time constant respectively. Therefore, at the point of coincidence ny, which is

the second tuning knob, one enforces the prediction to match the reference, as shown in

Figure 3.1, such that:

yk+ny |k = R− (R− yk)ρny = rk+ny (3.2)

where the notation k+x|k means x-step ahead prediction made at the current sample k.

3.1.2 Prediction Model

Owing to the practical appeal, PFC vendors traditionally prefer transfer function mod-

els to predict the future behaviour [10], although the independent prediction structure
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employed within the framework may allow utilising other model types as well (for exam-

ple, see reference [11] which enlists many alternative representations including state-space,

CARIMA and FIR).

Let us consider a discrete-time model G(z), relating the model output ŷk to the input

uk, given as follows:

G(z) =
b(z)

a(z)
=

b1z
−1 + b2z

−2 + · · ·+ bnz
−n

1 + a1z−1 + a2z−2 + · · ·+ anz−n
(3.3)

where G(z) is strictly proper with order n. The output predictions are recursively obtained

from the model expression a(z)ŷk = b(z)uk and can be written as [11]:

ŷk+1 + a1ŷk + a2ŷk−1 + · · ·+ anŷk−n+1 = b1uk + b2uk−1 + · · ·+ bnuk−n+1

ŷk+2 + a1ŷk+1 + a2ŷk + · · ·+ anŷk−n+2 = b1uk+1 + b2uk + · · ·+ bnuk−n+2

ŷk+3 + a1ŷk+2 + a2ŷk+1 + · · ·+ anŷk−n+3 = b1uk+2 + b2uk+1 + · · ·+ bnuk−n+3

... (3.4)

or in the compact matrix form as:

Ca ŷ−→k+1 + Ha ŷ←−k = Cb û−→k + Hb û←−k−1 (3.5)

where the corresponding matrices and vectors are defined below:

Ca =




1 0 . . . 0

a1 1 . . . 0

a2 a1 . . . 0
...

...
. . .

...




Ha =




a1 a2 . . . an

a2 a3 . . . 0

a3 a4 . . . 0
...

...
. . .

...




(3.6)

Cb =




b1 0 . . . 0

b2 b1 . . . 0

b3 b2 . . . 0
...

...
. . .

...




Hb =




b2 b3 . . . bn

b3 b4 . . . 0

b4 b5 . . . 0
...

...
. . .

...




(3.7)

ŷ−→k+1 =




ŷk+1

ŷk+2

...

ŷk+i




; ŷ←−k =




ŷk

ŷk−1

...

ŷk−n+1




; u−→k =




uk

uk+1

...

uk+i




; u←−k−1 =




uk−1

uk−2

...

uk−n




(3.8)
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Figure 3.2: Disturbance estimation with independent model structure.

Hence, the i-step ahead output prediction can be obtained from:

ŷk+i|k = Hi u−→k + Pi u←−k−1 + Qi ŷ←−k (3.9)

where Hi, Pi and Qi denote the ith row vectors of the corresponding matrices H = C−1
a Cb,

P = C−1
a Hb and Q = −C−1

a Ha respectively.

3.1.3 Mechanism for Unbiased Predictions

PFC employs an independent model structure wherein the model G(z) is simulated in

parallel with the real process, as shown in Figure 3.2, which allows predictions to be

determined solely from the past model states and the past/present inputs. However,

the presence of external disturbances and modelling mismatches is unavoidable, which

typically induces bias causing a non-zero offset in the steady-state. Hence, to ensure

bias-free predictions, a disturbance estimator dk is employed in (3.9) such that one gets:

yk+i|k = Hi u−→k + Pi u←−k−1 + Qi ŷ←−k + dk (3.10)

where dk, the estimate of disturbance/bias at sample k, is computed from:

dk = yk − ŷk (3.11)

3.1.4 Conventional PFC Control Law

Hence, the unbiased output prediction (3.10) is matched with the ideal reference trajec-

tory (3.2) at the coincidence point ny, keeping the current input constant, i.e. uk+i =
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Figure 3.3: The conventional PFC control architecture with delay compensation.

uk, ∀i ≥ 1. Consequently, one can deduce the following control law:

uk =
1

hny

[
R− (R− yk)ρny − (Pny u←−k−1 + Qny ŷ←−k + dk)

]
(3.12)

where hny = HnyLny with Lny = [1 1 . . . 1]T1×ny
.

3.1.5 Coping with Large Delays

In order to handle process deadtimes (represented here by nd samples), PFC utilises a

structure similar to Smith predictor as shown in Figure 3.3. But in essense, this configu-

ration forces the model predictions (3.9) to lag the current output by nd samples which

must be corrected through suitable changes in the control law. Therefore (3.12) is updated

with the delayed output prediction given as E[yk+nd|k] = ŷk + dk [11], implying that:

uk =
1

hny

[
R− (R− E[yk+nd|k])ρ

ny − (Pny u←−k−1 + Qny ŷ←−k + dk)
]

(3.13)

where E[ . ] represents the nd-step ahead estimate/prediction and dk is now computed

using dk = yk − ŷk−nd
. Note that when nd = 0, both (3.12) and (3.13) are no different.

3.1.6 Constraints Handling

Assume that the process being controlled is subject to some inequality constraints, defined

on the input and output as follows:

¯
u ≤ uk ≤ ū, ∆

¯
u ≤ ∆uk ≤ ∆ū,

¯
y ≤ yk ≤ ȳ (3.14)

where ∆ = 1 − z−1 represents the sample-wise rate of change. One of the core benefits

of PFC over similarly placed techniques, such as PID, is its ability to integrate these
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constraints within the design systematically instead of treating them as an afterthought

[13]. Specifically, the constant future input facilitates straightforward implementation of

a simple saturation policy to predict and validate input constraint adherence using just

the following four inequalities at each k:




1

−1

1

−1



uk ≤




ū

−
¯
u

∆ū+ uk−1

−∆ū− uk−1




(3.15)

Output/state constraints, if present, can also be implemented efficiently using model

predictions [11], such as (3.10), over a large validation horizon nc, with nc >> ny, so

that future violations (in nominal conditions) could be prevented. Given
¯
y ≤ yk ≤ ȳ, the

following inequalities must be validated at each sample k with an input uk selected closest

to the one obtained via (3.12), such that:

¯
y ≤ hiuk + Pi u←−k−1 + Qi ŷ←−k + dk ≤ ȳ; i = 1, 2, . . . , nc (3.16)

Remark 3.1. For constraint validation, it is often sufficient to select nc corresponding to

95% settling time of the open-loop step respons of G(z), i.e. the time to reach and stay

within about 95% of the implied steady-state output [11].

Since all constraints must be verified simultaneously, it is often more convenient to

stack (3.15) and (3.16) into a single set of 2(2 + nc) linear inequalities as shown below:




1

−1

1

−1

hi

−hi




uk ≤




ū

−
¯
u

∆ū+ uk−1

−∆ū− uk−1

ȳ −
(
Pi u←−k−1 + Qi ŷ←−k + dk

)

−
¯
y +

(
Pi u←−k−1 + Qi ŷ←−k + dk

)




(3.17)

Remark 3.2. The process of constraint validation based on (3.17) guarantees nominal

recursive feasibility (no change in the steady-state target and/or the disturbance), provided

the open-loop system has stable and monotonically convergent dynamic behaviour [11, 85].
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3.2 Parameter Tuning in PFC

In conventional PFC, there are two main tuning parameters: the target pole ρ and the

coincidence point ny. The primary tuning parameter ρ represents the ideal (first-order

exponential) speed of convergence of the tracking error, i.e. how fast or slow the predicted

response approaches the set-point. It is clear from (3.2) that:

ek+ny |k = ρnyek; ek = R− yk (3.18)

While the significance of ρ is obvious, its efficacy is highly dependent on the judicious

selection of the coincidence point ny. To elaborate this, we analyse the impact of tuning

parameters on the control effort produced by conventional PFC.

3.2.1 Effect of Tuning on Controller Activity

The dynamics of initial input produced by the controller is an important metric to assess

the expected closed-loop performance, as it provides valuable insights about the implied

transient behaviour of the controlled system [10]. Assuming zero initial conditions and no

uncertainty for simplicity, it is straightforward to show using (3.12) that for a change in

R:

u1,ny =
R

hny

(1− ρny) (3.19)

where u1,ny is the initial input for the chosen ρ and ny. It is noted that:

� The initial input is directly proportional to the magnitude of the desired set-point

R which is expected since tracking a large target usually requires a correspondingly

aggressive control action.

� hny , which is computed from the model parameters based on the selected coincidence

horizon, inversely affects u1,ny .

� For smaller values of ny, the initial input is inversely related to the term ρny , which

means a faster target pole (smaller ρ) requires an aggressive initial control and vice

versa. Note that large ny values make ρny insignificant.
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Hence, it is obvious that different pairings of (ρ,ny) will result in different closed-loop

performances. Nevertheless, making the most appropriate selection is the core tuning

dilemma which often arises specifically with higher order dynamics [11, 19].

3.2.2 Is ny = 1 a Good Choice?

Seemingly ny = 1 stands out as the most plausible solution since it preserves complete

efficacy of the target pole. In fact, this has been the default suggestion when dealing with

very benign dynamics [10, 11, 21, 71], such as those dominated by first-order behaviour,

and for which establishing concrete guarantees of tuning efficacy, performance and closed-

loop stability has been extremely straightforward [16, 19]. The only problem is ny = 1

cannot be generalised.

A majority of real-world processes exhibit higher order dynamics which may not be as

simple to work with. For example, heavily damped systems often have slower transient

behaviour for which one-step ahead coincidence may necessitate a significant amount of

control energy well beyond system’s capacity [11, 19]. This becomes even more critical

with non-minimum phase dynamics, whose inverse output response can easily lead to

instability with inappropriate coincidence horizons [11, 19].

Hence, one is often left with no other choice but to enforce coincidence further ahead

in the future, which clearly reduces the efficacy of the target pole, but in return produces a

more practical and easily implementable control input. Obviously, this then raises a very

important question: what is a suitable coincidence horizon and how should it be selected?

Surprisingly, there is no clear-cut answer. The following section summarises the standard

tuning guidelines currently available in the literature.

3.2.3 Standard Tuning Practices

Although the literature lacks a systematic and well-defined parameter tuning procedure,

there have been few empirical suggestions which have traditionally guided parameter se-

lection without overarching justification, with the exception of first-order dynamics for

which strong mathematical results have been furnished [11, 16, 19]. These guidelines are

stated below:
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(i) For higher order dynamics, one suggestion is to use the point of inflection, i.e. the

point of maximum gradient on the open-loop step response curve, as the coincidence

point [10, 17]. However, it is argued that tuning on this criterion alone may be

flawed, especially if the dynamics in question are non-minimum phase [19].

(ii) An alternative approach for higher order dynamics is to enforce coincidence within

the time window when the open-loop step response has risen from 40% to 80% of

the implied steady-state with significant gradient [11, 19].

(iii) Another recommendation is to choose ny such that the condition 2hny > G(1) is

met, where G(1) is the steady-state gain [16]. Although it is sufficient, but not

necessary, to guarantee nominal closed-loop stability for simple dynamics, it often

leads to performances very similar to the second approach discussed above [16].

(iv) In order to ensure the least aggressive initial control, a less common approach is to

enforce coincidence at the so-called Turpin point, i.e. the horizon ny which minimises

the initial input u1,ny [10].

Nevertheless, these guidelines have some clear shortcomings. For example, there is

no explicit consideration of the expected initial input in parameter selection; the obvious

exception is suggestion (iv), but being far too cautious, it is rarely implemented in practice

[16]. Another core issue is the partial efficacy of target dynamics, which often arises with

ny >> 1 [11, 19]. Hence to compensate for longer horizons, faster ρ’s must be used, which

in turn may lead to overactive control with higher likelihood of constraint violations and

closed-loop instability. Evidently these guidelines merely provide a non-systematic way

to reach the best possible selection of (ρ, ny), which more often ends up being a global

search without a clear enough link to the desired performance.

3.3 Performance Oriented Parameter Selection

This section presents a new tuning method with the aim of systematically overcoming

the mentioned discrepancies of the standard tuning guidelines. In particular, the pro-

posal explicitly utilises the initial input information which makes parameter selection

more meaningful and performance oriented.
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With regards to the expected initial input (3.19), two instances of particular interest

are when either one-step ahead coincidence (ny = 1) is enforced or when ny is chosen so

large (theoretically approaching ∞) that ρny → 0. Thus knowing the controller activity

for both cases can provide a better understanding of the expected closed-loop performance

for various choices of ny in between.

Theorem 3.3. For a given set-point R and a target pole ρ, the initial control u1,ny

(i) for ny = 1 is given by:

u1,ny =
R

b1
(1− ρ); ny = 1 (3.20)

where b1 is the lead coefficient of b(z).

(ii) for ny →∞ is given by:

u1,ny = uss; ny →∞ (3.21)

where uss is the implied steady-state input.

Proof. Both (3.20) and (3.21) can be deduced easily from the forgoing discussion as follows:

(i) The one-step ahead prediction (ny = 1) obtained from (3.4) can be rearranged as:

ŷk+1 = b1uk + [b2 b3 . . . ] u←−k−1 + [−a1 − a2 − a3 . . . ] ŷ←−k

from which it is clear that with h1 = b1, (3.19) leads to (3.20).

(ii) When ny →∞, it is known from a previous study [19] that hny approaches the static

gain G(1) of the system, where:

G(1) =
b(1)

a(1)
=

b1 + b2 + · · ·+ bn
1 + a1 + a2 + · · ·+ an

=

∑n
i=1 bi

1 +
∑n

i=1 ai
(3.22)

Hence, (3.19) reduces to:

u1,∞ =
R

G(1)
; ny →∞ (3.23)

By definition, the steady-state input is uss =
R

G(1)
which proves u1,∞ = uss.
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Remark 3.4. In practice, uk = uss, or close to, will be achieved with a very large horizon;

indeed the choice ny = nc (implying the minimum variance control [108]) usually works

well, where nc corresponds to 95% settling time of the open-loop step response. So, choosing

a large horizon in essence means you are choosing mean-level control [11].

Corollary 3.5. For well-damped minimum phase and monotonically convergent prediction

dynamics, a usable initial input lies within the following ny range:

1 ≤ ny ≤ nc (3.24)

provided both b1 6= 0 and G(1) 6= 0.

Proof. This is obvious from (3.20) and (3.23).

Remark 3.6. For non-minimum phase dynamics with otherwise well-damped open-loop

characteristics, a usable initial input lies within the following sub-range of ny:

ndip < ny ≤ nc (3.25)

where ndip corresponds to the delay (in samples) due to response reversal, after which

the predicted output surpasses the initial state and proceeds monotonically in the correct

direction.

Therefore, notwithstanding the lack of mathematical rigour, a sensible choice of param-

eters could be the one that amplifies uss by a reasonable amount, such that the resulting

initial control is not too aggressive, i.e. practically achievable. Algorithm 3.1 presents the

exact details.

Algorithm 3.1. (Selecting ρ and ny) With multiple target poles such that 0 < ρi <

ρi−1 < · · · < ρ1 ≤ zs, where zs is the slowest (dominant) pole of the prediction model G(z),

plot (3.19) over a long enough range of ny, preferably up to one time constant nτ (i.e. the

time required to reach approximately 63% of the implied steady-state response, equivalent

to nc/3). Select a combination of ρ and ny which gives u1,ny ≈ θuss, where θ is the input

aggression factor roughly chosen within 1 < θ ≤ 5.

As opposed to standard tuning practices, the core benefit of Algorithm 3.1 is its ex-

plicit utilisation of transient input activity for controller tuning, which makes parameter
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Figure 3.4: Normalised open-loop step response of (a) G1 and (b) G2 to obtain coincidence points

based on standard tuning guidelines.

selection more meaningful and performance oriented; indeed conversations with the origi-

nator J. Richalet suggested that this is a design method he would recommend. The next

section validates its usefulness with two numerical examples.

3.4 Simulation Examples

Consider open-loop stable processes G1 and G2:

G1 =
0.02z−1 + 0.04z−2

1− 1.4z−1 + 0.45z−2
G2 =

−0.0098z−1 + 0.0099z−2

1− 1.9702z−1 + 0.9704z−2
(3.26)

where G1 is overdamped and G2 exhibits non-minimum phase behaviour. We compare

and contrast efficacy of the proposal against standard guidelines under nominal conditions;

effects of undesirable perturbations, such as external disturbances and measurement noise

as well as modelling uncertainties, will be studied in the following chapters.

3.4.1 Parameter Selection

Figure 3.4 shows the normalised open-loop step responses of both systems, with highlighted

inflection points (red squares) and instants at which the response reaches 40% steady

state value (green circles). These sample points have been selected as possible coincidence

horizons as per conventional tuning guidelines (i) and (ii) respectively (see Section 3.2.3).

� For G1: ny = 34 (inflection point) and ny = 65 (point of 40% steady-state)
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Figure 3.5: Initial input activity vs ny for (a) G1 with zs = 0.9895, ρ1 = 0.9795, ρ2 = 0.9695,

ρ3 = 0.9595, uss = 0.1795, θ = 3 and R = 1 (b) G2 with zs = 0.9898, ρ1 = 0.9873, ρ2 = 0.9848,

ρ3 = 0.9823, uss = 2, θ = 4 and R = 1

� For G2: ny = 111 (inflection point, after inversion delay ndip = 110 samples) and

ny = 175 (point of 40% steady-state)

Algorithm 3.1 is applied next, with Figure 3.5 displaying the initial input activity as

a function of coincidence horizon for both G1 (Figure 3.5a) and G2 (Figure 3.5b) with

various choices of the target pole.

Evidently the choice ny = 1 for overdamped G1 produces an overactive control well

above the chosen aggression factor (θ = 3), necessitating longer horizons in practice. For

G2, on the other hand, coincidence can only be enforced beyond ndip (i.e. ny > 110),

limiting the efficacy of ρ to some extent. The relative closeness between various u1,ny

curves (see Figure 3.5b) despite differing target poles confirms this limitation.

An interesting feature is observed near the system’s time constant (120 and 170 samples

for both G1 and G2 respectively), when the initial inputs are almost identical, irrespective

of ρ, and about twice as much as uss. Although controller tuning around this point may

seem intuitive especially with tighter actuation limits, the resulting performance may be

quite conservative in general, and hence may not always be acceptable.

For relatively smaller horizons, it is observed that different pairings of (ρ, ny) can

produce similar input activity. Predicted inputs with faster target poles, however, tend to
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Figure 3.6: Closed-loop step response of (a) G1 with (ρ1 = 0.9795, ny1 = 28) and (ρ3 =

0.9595, ny3 = 47), (b) G2 with (ρ1 = 0.9873, ny1 = 140) and (ρ3 = 0.9823, ny3 = 144)

intercept the θuss limit at slightly longer coincidence points, apparently suggesting weaker

tuning efficacy.

To investigate if this is indeed the case, we select two distinct pairs with similar initial

inputs: ρ1 = 0.9795,ny1 = 28 and ρ3 = 0.9595,ny3 = 47 for G1, and ρ1 = 0.9873,ny1 = 140

and ρ3 = 0.9823,ny3 = 144 for G2. The next section examines how these choices affect the

closed-loop performance in nominal conditions.

3.4.2 Efficacy of the Proposed Method

Figure 3.6 displays some interesting closed-loop characteristics obtained with Algorithm 3.1.

Despite similar initial inputs, the combination (ρ3,ny3) provides relatively quicker tran-

sition to the set point as compared to the choice (ρ1,ny1), which is ascertained by the

dynamics of uk (bottom figures) where the inputs with faster targets proceed rather grad-
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Table 3.1: Positioning of closed-loop poles obtained with the proposed tuning algorithm

θ (ρ,ny) Open-loop Poles Closed-loop Poles

G1 3
(0.9795,28)

0.9895,0.9331
0.9805,0.8922

(0.9595,47) 0.9715,0.9266

G2 4
(0.9873,140)

0.9898,0.9804
0.9872,0.9368

(0.9823,144) 0.9822,0.9549

ually towards the implied uss.

Moreover, Table 3.1 presents the achieved closed-loop pole positioning, wherein a

stronger association between the selected ρ’s and dominant closed-loop poles can be seen

specifically for smaller ny’s, which nonetheless weakens to some extent with slightly longer

horizons. However, this is not something unexpected and should not be an issue in prac-

tice as long as a sensible ny is selected, i.e. the one that does not undermine the desirable

effect of the chosen faster target pole.

3.4.3 Comparison with Standard Guidelines

Figure 3.7 presents a comparison of nominal closed-loop performance obtained using stan-

dard tuning guidelines (i) and (ii) along with the proposed tuning algorithm, and Table 3.2

tabulates the corresponding closed-loop poles and the resulting input aggression factor θ.

Evidently, enforcing coincidence at the point of inflection provides the fastest closed-

loop response but with significant input activity (θ = 3.9 for G1 and 53.4 for G2), which

may not be achievable in practice. On the other hand, tuning with horizons corresponding

to 40% steady state output appears somewhat cautious; input aggression remains within

the range 2 ≤ θ ≤ 2.5 along with a slightly weaker link between the target and dominant

closed-loop poles.

In comparison, Algorithm 3.1 clearly outperforms both conventional alternatives, ex-

hibiting comparatively stronger tuning efficacy along with a reasonable input aggression

adhering to its pre-defined values used for parameter selection. This is expected to be

beneficial in practical scenarios involving process constraints, where one can simply select
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Figure 3.7: Comparison of nominal closed-loop performance with various tuning methods for: (a)

G1 with ρ3 = 0.9595 and ny = 34 (point of inflection), ny = 65 (point of 40% steady-state output)

and ny = 47 (Algorithm 3.1), and (b) G2 with ρ3 = 0.9823 and ny = 111 (point of inflection),

ny = 175 (point of 40% steady-state output) and ny = 144 (Algorithm 3.1)

a suitable θ according to the underlying actuation capacity for a more realistic parameter

selection.

3.5 Chapter Summary

The key highlights of this chapter are as follows:

� The analytics associated with conventional PFC are reviewed in Section 3.1, which

shows straightforward control development for processes with dead-times and con-

straints.

� Two parameters ρ and ny are identified as the main performance tuning knobs,
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Table 3.2: Comparison of closed-loop poles and input activity with different tuning methods

Method ρ ny
Open-loop

Poles

Closed-loop

Poles
θ

G1

Inflection Point

0.9595

34

0.9895,0.9331

0.9667, 0.9171 3.9

40% Steady State 65 0.9768, 0.9309 2.3

Algorithm 3.1 47 0.9715, 0.9266 3.0

G2

Inflection Point

0.9823

111

0.9898,0.9804

0.9821, 0.4029 53.4

40% Steady State 175 0.9828, 0.9727 2.4

Algorithm 3.1 144 0.9822, 0.9549 4.0

which work exceptionally well for simple processes but may become significantly

ineffective for slightly more involved higher order dynamics. Various conventional

tuning methods for such systems along with their shortcomings are discussed in

Section 3.2.

� An improved parameter selection method based on a global search (implicitly recom-

mended by J. Richalet) is proposed for significantly overdamped and non-minimum

systems in Section 3.3, which explicitly utilises the predicted input aggression for a

more meaningful and performance oriented controller tuning.

� Simulation results, presented in Section 3.4, demonstrate comparatively superior

performance efficacy of the proposal against the commonly employed standard tuning

guidelines presented in Section 3.2.





Chapter 4

Relative PFC

This chapter presents a new PFC algorithm with simplified tuning as the primary contri-

bution. Section 4.1 first introduces the notion of relative tuning before formally presenting

the Relative PFC algorithm in Section 4.2. Section 4.3 discusses whether utilising a simple

Laguerre function for input parametrisation could be as beneficial as it usually is within

the conventional PFC formulation. Two simulation studies are presented in Section 4.4

to analyse and validate the efficacy of the proposal. Finally the chapter concludes in

Section 4.5 which summarises the key findings of the discussion.

4.1 Concept of Relative Tuning in PFC

Before introducing the readers to the concept of relative tuning, it is important to highlight

the core weaknesses and deficiencies of the conventional PFC algorithm that have led to

the development of various modifications (see for example [19–22]) in order to ensure a

more meaningful and effective performance tuning. These challenges are summarised in

the following section.

4.1.1 Weaknesses of Conventional PFC

Firstly, and perhaps ironically, it is noted that the use of constant future input for control

synthesis, which was originally proposed to simplify computations [8, 10, 11], in essence

embeds open-loop characteristics in the closed-loop decision making, and therefore may

not always yield desirable results, or could even backfire in applications that involve poorly

43
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damped and/or unstable prediction dynamics [19]. Although a commonly deployed remedy

to rectify this deficiency is to implement a differently parametrised input function [20, 22],

doing so often increases design complexity negating the core notion of simplicity and cost-

effectiveness associated with PFC. To address this issue, the next chapter will present

some simple and inexpensive modifications by utilising the concept of pre-stabilised or

closed-loop prediction dynamics within the PFC framework.

Secondly, tuning in conventional PFC revolves around two main parameters, namely

the target pole ρ and the coincidence point ny, that directly influence the closed-loop

behaviour but their peculiar relationship often makes an intuitive selection somewhat

difficult especially with slightly complex higher order dynamic systems. The previous

chapter has discussed this issue in detail wherein an improved parameter selection method

was developed to facilitate a more meaningful performance tuning. Nevertheless, this

and other standard approaches have one major limitation in that the ultimate tuning

decision relies on a form of global search conducted in the parameter space, which may

not always be as intuitive or straightforward to implement. Besides, recent studies have

reported significant anomalies in the standard definition of coincidence point which makes

inconsistent use of target/disturbance information and often results in additional lag in

the responses [69, 70]. Due to these reasons, the tuning is not as effective as desired.

This chapter specifically focuses on the second challenge discussed above, and there-

fore presents a relative PFC algorithm with simplified tuning as the core contribution.

More specifically, the idea is to replace the fairly ambiguous two-parameter tuning in con-

ventional PFC with something simpler and far more transparent. The following section

presents the concept in detail.

4.1.2 The Relative Tuning Proposal

Recall from Section 3.2 that the nominal relationship bewteen the initial input activity

u1,ny and the controller parameters (ρ, ny) is given by:

u1,ny =
R

hny

(1− ρny) (4.1)

where, as per Algorithm 3.1, it is recommended to select those values of (ρ, ny) that

provide u1,ny ≈ θuss with uss = R/G(1). Nevertheless, instead of globally searching
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for the appropriate (ρ, ny) pairing, the proposal is to use θ directly as the core tuning

parameter which appears to be far simpler than the conventional tuning methods.

Theorem 4.1. The closed-loop performance can be tuned relative to the open-loop (or

steady-state) benchmark input uss by simply using the input aggression factor θ as the

main tuning parameter rather than finding ρ and ny globally on absolute terms.

Proof. Using the expression u1,ny = θR/G(1) in (4.1) results in:

θ =
u1,ny

uss
=
G(1)

hny

(1− ρny) (4.2)

from which it is obvious whether one uses the left-hand side with θ or the right-hand side

with (ρ, ny), the relationship in (4.2) will tune the closed-loop performance by suitably

adjusting the initial input u1,ny with respect to the mean-level (or steady-state) control

uss. Although both methods attempt to fulfill the same performance specification, using θ

directly as the sole tuning parameter is apparently far more efficient and straightforward

than the conventional tuning methods.

Hence, the proposed relative tuning is expected to be beneficial in the following ways:

(i) The controller tuning would simplify to merely answering just one trivial question,

i.e. how much faster (or slower) one wishes the closed-loop system to respond as

compared to the open-loop or mean-level behaviour?

(ii) No explicit requirement of ρ and ny would by default prevent the incorrect use of

feedforward information in the control law, and thus rectify the performance issue

arising from the inadvertent addition of undesirable lag in the closed-loop response.

The technical details of the proposal are available in the attached UKACC 2022 pub-

lication (see Appendix G), which will now be presented in the following section.

4.2 Relative PFC Algorithm

Just like the conventional PFC (see Section 3.1 for details), the relative PFC (RPFC) al-

gorithm too relies on three key elements for implementation: a suitable prediction model,
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a benchmark response and a mechanism to ensure bias-free predictions. Nevertheless, in-

stead of using an ideal exponential trajectory and the concept of coincidence, an open-loop

(or mean-level) system response is utilised as a benchmark for the closed-loop performance

tuning.

4.2.1 RPFC Control Law

Let us consider the discrete-time transfer function model (3.3) of a well-damped open-loop

process G(z), i.e. a(z)ŷk = b(z)uk, whose recursive use yields the following prediction

expression:

yk+i|k = Hiuk + Pi u←−k−1 + Qi ŷ←−k + dk; dk = yk − ŷk (4.3)

where Hi, Pi and Qi are determined from the model a(z) and b(z). If one selects uk+i =

uss, ∀i ≥ 0 where uss is the expected steady-state input, the control law then obtained

is the so-called mean level PFC [11], which mirrors the open-loop transient performance

in the closed-loop response along with offset free tracking. The implied uss for G(z) (in

nominal conditions) is obtained from the following relationship:

uss =
R

G(1)
∵ yss = y(1) = R (4.4)

where G(1) is the steady-state system gain given in (3.22). In practice, it is straightforward

to achieve the mean-level PFC by simply selecting a large enough horizon, preferably

beyond the settling time of the open-loop step response, although as mentioned previously

in Chapter 3, the choice i ≈ nc is generally sufficient. Hence, with target R and uk+i = uss

∀i ≥ 0, the predicted error converges as follows:

ess(k + i) = R− (hncuss + Pnc u←−k−1 + Qnc ŷ←−k + dk); (4.5)

which compares to the error convergence when an alternative fixed input uk+i = uk ∀i ≥ 0

is used. In this case:

e(k + i) = R− (hncuk + Pnc u←−k−1 + Qnc ŷ←−k + dk) (4.6)

where in (4.5) and (4.6) above, hnc = HncLnc with Lnc = [1 1 . . . 1]T1×nc
. Thus, to ensure

a faster convergence than the benchmark (4.5), one must select a uk correspondingly more

active than uss. Lemma 4.2 below formalises this concept.
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Lemma 4.2. In the nominal state and zero initial conditions, the choice uk = θuss for

the target R provides an error convergence which is γ times (4.5) such that:

γ =
G(1)− hncθ

G(1)− hnc

(4.7)

Proof. With dk, u←−k−1 and ŷ←−k all zero, and uk = θuss the initial errors are related as

follows:

R− hncθuss = γ(R− hncuss)

using (4.4) then implies:

1− hncθ

G(1)
= γ

(
1− hnc

G(1)

)

which simplifies to (4.7) after simple manipulations.

Theorem 4.3. For the chosen input activity θ and the error convergence γ defined in

(4.7) above, the Relative PFC (RPFC) control law is given by:

uk = γuss +
1− γ
hnc

[
R−

(
Pnc u←−k−1 + Qnc ŷ←−k + dk

)]
(4.8)

Proof. Using Lemma 4.2 and equations (4.5)-(4.6), it is clear that:

e(k + i) = γess(k + i), ∀i ≥ 0

implying that:

R− (hncuk + Pnc u←−k−1 + Qnc ŷ←−k + dk) = γ
[
R− (hncuss + Pnc u←−k−1 + Qnc ŷ←−k + dk)

]

which simplifies to the control law (4.8).

Notably, the controller (4.8) is an alternative representation of the standard PFC

control law derived in (3.12), albeit with a single tuning parameter γ, obtained directly

from the chosen aggression factor θ, which replaces the conventional parameters ρ and ny to

ensure considerably simpler and efficient controller tuning as compared to the conventional

PFC algorithm.
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4.2.2 Parameter Tuning in RPFC

The primary benefit of the proposed RPFC algorithm is obvious from the preceding discus-

sion, as it reduces the closed-loop performance tuning to simply answering one statement:

how fast or slow one wants the closed-loop system to respond as compared to the bench-

mark open-loop behaviour? More specifically, the proposal provides three distinct tuning

choices, i.e. 0 < θ < 1, θ = 1 and θ > 1, each with the following interpretation:

� 0 < θ < 1 reduces input activity resulting in a slower closed-loop performance. For

example, θ = 0.5 uses an initial input half as active as the mean-level benchmark to

produce a relatively slower response.

� θ = 1 is equivalent to the mean-level (open-loop) tuning.

� θ > 1 increases input activity with a faster performance. For example, θ = 2

uses an initial input twice as aggressive as the mean-level benchmark to produce a

comparatively faster response.

Nevertheless, it is advised not to select too large θ or the initial input could be too

aggressive to achieve practically. Although a commendable closed-loop performance is

usually attainable with θ up to 5 (given a well-damped and stable open-loop dynamic

behaviour), clearly a more practical approach is to adhere to the possible set-point changes

(recall that the initial input is directly proportional to R) as well as the actuating capacity

of the physical system while making the ultimate tuning selection.

4.2.3 Managing Deadtimes and Constraints

In addition to significant tuning simplifications, another benefit of the proposal is that

it handles process delays and constraints in the conventional manner, as discussed in

Section 3.1, without requiring any further modifications in the control law. Hence to

incorporate a deadtime of nd samples, one simply needs to compute the offset correcting

term in (4.8) such that dk = yk− ŷk−nd
. As for constraint handling, it is sufficient to verify

the 2(2 + nc) linear inequalities given in (3.17) at each sample k in the standard manner.
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4.2.4 Reative PFC in a Nutshell

The following algorithm sums up the foregoing discussion:

Algorithm 4.1. (Relative PFC Design) For a given target R, first compute the implied

steady-state input uss from (4.4). Next select an appropriate aggression factor θ as per the

desired control specification and calculate the error convergence rate γ using (4.7). Then

at each sample k, compute uk from the relative PFC control law derived in (4.8), and

update the plant and the model accordingly.

4.3 Including Laguerre Function in Relative PFC

For completeness, this section analyses whether a differently shaped input utilising a simple

first-order Laguerre polynomial in the control law could further enhance the tuning efficacy

of the relative PFC algorithm. According to some recent studies (see for example [20, 74]),

the suggested modification within conventional PFC typically improves the closed-loop

tuning efficacy by enhancing the overall prediction consistency. Nevertheless as a downside,

the non-constant nature of the input parametrisation also induces slight complications in

constraint validation, which may also increase the overall cost and computational burden

by significant proportions.

Note that the discussion in the following section is based on the proposal presented in

the ECC 2022 paper [34] which is attached in Appendix H of this thesis.

4.3.1 Laguerre RPFC (LRPFC) Control Law

A first-order Laguerre function, in essence, represents an ideal exponential decay which

parametrises the future input such that:

u−→k = Hλη + Lncuss; Hλ = [1 λ . . . λnc−1]Tnc
(4.9)

where λ is the decay factor to be chosen and η is the new degree-of-freedom that will be

computed from the RPFC algorithm. Hence with this input parametrisation, the predicted

error converges as follows:

eL(k + i) = R− (hλη + hncuss + Pnc u←−k−1 + Qnc ŷ←−k + dk) (4.10)
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where hλ = HncHλ. Therefore for a given aggression factor θ, the parameter γL is found

to be (using a similar procedure as shown in Lemma 4.2):

γL = 1− (θ − 1)hλ
G(1)− hnc

(4.11)

which finally leads to the Laguerre RPFC control law:

η =
1− γL
hλ

[
R−

(
hncuss + Pnc u←−k−1 + Qnc ŷ←−k + dk

)]
(4.12)

with uk = η + uss.

Remark 4.4. The detailed procedure to perform constraint management with Laguerre

PFC is well documented in literature (see for example the references [20, 74]), which is

applicable in an exact manner to the Laguerre RPFC algorithm derived here.

4.3.2 Efficacy of Laguerre RPFC

Although including a first-order Laguerre function is proven effective in the conventional

PFC setting [20, 74], surprisingly the following analysis shows that both relative PFC

variants, i.e. RPFC and LRPFC, are equivalent with no obvious benefit of utilising an

exponential decay in the overall closed-loop performance.

Lemma 4.5. For a given R and θ, the indirect tuning parameters γ and γL are related

with each other as per the following expression:

1− γL
1− γ =

hλ
hnc

(4.13)

Proof. From (4.11), it is easy to show that:

1− γL =
(θ − 1)hλ
G(1)− hnc

(4.14)

Similarly, one may deduce the following result from (4.7):

1− γ =
(θ − 1)hnc

G(1)− hnc

(4.15)

Hence, dividing (4.14) by (4.15) leads to the required expression given in (4.13).

Theorem 4.6. The RPFC and LRPFC control laws derived in (4.8) and (4.12) respec-

tively are equivalent.



4.4. Simulation Examples 51

Proof. Using (4.13) in the LRPFC control law (4.12) leads to:

η =
1− γ
hnc

[
R−

(
hncuss + Pnc u←−k−1 + Qnc ŷ←−k + dk

)]
(4.16)

which after simple manipulations can be written as:

η + uss = γuss +
1− γ
hnc

[
R−

(
Pnc u←−k−1 + Qnc ŷ←−k + dk

)]
(4.17)

which is equivalent to the RPFC control law (4.8) as uk = η + uss.

Hence, reparametrising the future input with a first-order Laguerre function in rela-

tive PFC has no obvious impact on the closed-loop performance tuning, which clearly is a

significant result because the current conventional PFC literature in this regard suggests

otherwise [20, 74]. Perhaps this could be attributed to the more efficient usage of feedfor-

ward information in RPFC, which in the case of conventional PFC is not true as reported

in these references [69, 70].

4.4 Simulation Examples

Let us reconsider the numerical examples from Section 3.4:

G1 =
0.02z−1 + 0.04z−2

1− 1.4z−1 + 0.45z−2
G2 =

−0.0098z−1 + 0.0099z−2

1− 1.9702z−1 + 0.9704z−2
(4.18)

where G1 represents an overdamped system and G2 exhibits significant non-minimum

phase behaviour. Note that the following analysis utilises the initial input plots in Fig-

ure 3.5 for tuning purposes.

4.4.1 Analysis of Tuning Efficacy

The tuning efficacy of the proposed RPFC algorithm for the systems G1 and G2 has been

analysed, with the results shown in Figure 4.1. It is clear that the parameter θ is successful

in slowing down (with θ = 0.5) or speeding up (with θ = 1.5, 3.0) the closed-loop response

by correspondingly changing the controller input as compared to the benchmark uss.

Evidently, performance tuning in this way is far more straightforward and meaningful

than finding ρ and ny with the conventional methods (for example see Section 3.2.3),
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Figure 4.1: Tuning efficacy of RPFC with θ = [0.5, 1.5, 3.0] for (a) G1 and (b) G2 under nominal

conditions.

which often requires tedious offline analysis of open-loop characteristics and yet merely

provides multiple parameter choices with no definitive selection criterion matching the

desired performance specification.

4.4.2 Comparisons with Algorithm 3.1

In this section, we compare and analyse the efficacy of RPFC with that of a conventional

PFC tuned using Algorithm 3.1. For a given input aggression θ, two distinct pairs of

(ρ, ny) have been selected (from Section 3.4.1), which are given in Table 4.1.

The simulation results are shown in Figure 4.2, from which it is evident that while

the implementation of Algorithm 3.1 ensures adherence to the predefined input aggression

θ, slower target poles, i.e. ρ1 in both examples, generally tend to decelerate the closed-

loop response and therefore should not be preferred. Instead, the faster pole choice with
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Table 4.1: Selected parameters of RPFC and CPFC for analysis in Section 4.4.2

Example
RPFC CPFC-1 CPFC-2

θ (ρ1,ny1) (ρ2,ny2)

G1 3.0 (0.9795,28) (0.9595,47)

G2 4.0 (0.9873,140) (0.9823,144)

relatively longer coincidence horizon, i.e. the pairing (ρ2, ny2), competes much closely with

the relative PFC, and hence a comparatively better option when tuning a conventional

PFC with Algorithm 3.1.
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Figure 4.2: Comparison of tuning efficacy between Conventional and Relative PFC control laws

under nominal conditions for (a) G1, and (b) G2 with the controller parameters given in Table 4.1.



54 4. Relative PFC

Table 4.2: Selected parameters of RPFC and CPFC for analysis in Section 4.4.3

Example
RPFC-1 RPFC-2 CPFC-1 CPFC-2

θ1 θ2 (ρ1,ny1) (ρ2,ny2)

G1 3.0 2.0 (0.9595,47) (0.9595,78)

G2 4.0 2.5 (0.9823,140) (0.9823,170)

4.4.3 Performance Analysis with Uncertainties

This section analyses the closed-loop performance in the presence of uncertainties, with

the results shown in Figures 4.3 and 4.4 for disturbance rejection and noise filteration (with

modelling mismatches) respectively. Note that the Conventional PFC in both examples

is tuned using the faster ρ choice but at different input aggression levels resulting in two

different coincidence horizons (see Table 4.2).

In both scenarios, no remarkable difference in the closed-loop performance is observed

between both RPFC and CPFC, which further authenticates the findings from Figure 4.2.

Despite these similarities, it is reiterated that controller tuning in RPFC is evidently

far more efficient and straightforward as compared to CPFC, which in these examples

required relatively tedious offline plotting and analysis of various u1,ny curves for parameter

selection in Section 3.4.1.

4.5 Chapter Summary

The key highlights of this chapter are summarised below:

� The concept of relative tuning is introduced in Section 4.1, which is fundamentally

based on the proposed Algorithm 3.1 of parameter selection but in comparison only

uses the input aggression factor θ as the main tuning parameter replacing ρ and ny

from the original formulation.

� The Relative PFC control law (4.8), developed in Section 4.2, is in essence an alter-

native representation of the Conventional PFC (3.12) but with significantly simpler

design traits and far more intuitive controller tuning.
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Figure 4.3: Comparison of disturbance rejection between Conventional and Relative PFC control

laws for (a) G1 with 10% output disturbance, and (b) G2 with 5% input disturbance using controller

parameters listed in Table 4.2.

� It is shown in Section 4.3 that a different form of future input parametrisation

using a first-order Laguerre function does not yield any further improvements in the

proposed relative PFC algorithm. In fact, both control laws, i.e. simple RPFC (4.8)

and Laguerre RPFC (4.12), have been proven equivalent for a given set-point and θ.

� Simulation analysis in Section 4.4 validates the efficacy of the relative PFC algorithm

with two numerical examples. Furthermore, comparisons with conventional PFC,

tuned using Algorithm 3.1, generally demonstrate similar closed-loop performance if

one opts for faster target dynamics along with relatively longer points of coincidence.
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Figure 4.4: Comparison of tuning efficacy between Conventional and Relative PFC control laws

along with measurement noise and plant-model mismatches for (a) G1 with 25% multiplicative

uncertainty, and (b) G2 with an unmodelled pole at z = 0.5 using controller parameters listed in

Table 4.2.



Chapter 5

Pre-stabilised PFC

This chapter introduces the concept of pre-stabilisation and discusses how it improves the

functionality of PFC in relatively challenging applications. Section 5.1 first presents the

rationale behind pre-stabilisation in the context of PFC, followed by the development of

a generic control design framework in Section 5.2. Various pre-compensation strategies

are discussed next in Section 5.3, before presenting the proposal for constraint manage-

ment with pre-stabilisation in Section 5.4. The simulation case studies follow in Section 5.5

which analyses the efficacy of various pre-compensation schemes utilised within the frame-

work of pre-stabilised PFC. Finally, the chapter concludes in Section 5.6.

5.1 Rationale Behind Pre-stabilisation

Industrial processes exhibiting unstable and/or poorly damped dynamics are generally

difficult to control with simple and low-cost approaches, such as PID, and therefore often

require relatively expensive and more sophisticated designs for successfull operation [5].

Unsurprisingly, the simplistic design attributes mean that PFC too struggles and performs

rather poorly in these applications, primarily due to the use of constant future input within

predictions which lacks flexibility to handle such challenging behaviour in an efficient

manner [19, 22, 85]. Moreover, parameter tuning for such systems is far less intuitive,

and in many cases it may not be possible to guarantee the standard feasibility results

either [11, 19]. While the closed-loop system may occasionally work due to the use of

the receding horizon, the performance is indeed unreliable and prone to failure especially

under the influence of external perturbations and/or tight actuation limits.

57
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To tackle these shortcomings, a commonly deployed remedy is to implement a more

flexible input parametrisation, such as [22, 85], which in this study is achieved via pre-

stabilisation of difficult open-loop dynamics [45, 109]. Pre-stabilisation is, in essence, a

two-stage design methodology wherein the undesirable prediction model is first compen-

sated using a well understood classical feedback control approach before implementing

PFC in a cascade structure. Although the use of an additional inner control loop of-

ten complicates the standard constraint validation to some extent [10, 11], in most cases

pre-stabilisation successfully accomplishes far more reliable and consistent performance

tuning (see for example the Processes 2021 paper [30] in Appendix D), which significantly

outweighs the slight intricacy in constraint handling that may arise due to the use of inner

loops within the design.

The following sections will present a concise summary of the proposal; interested read-

ers are referred to the accompanying publications [27–33] attached in Appendices A-G for

an in depth technical analysis and discussion.

5.2 Framework of Pre-stabilised PFC

For challenging dynamics, the concept of pre-stabilised PFC works systematically in two

simple steps: reparametrising the degrees-of-freedom by forming stable and well-damped

closed-loop predictions using a classical feedback compensator, and implementing PFC on

the pre-compensated model to compute the reparametrised decision variable. The frame-

work is independent of the underlying open-loop characteristics, and therefore could be

applied to a variety of processes including those exhibiting instability and/or poor damp-

ing. The technical details, available in the ACA 2022 paper [31] attached in Appendix E,

will be summarised next in the following sections.

5.2.1 Reparametrising the Degree-of-Freedom

Consider a challenging open-loop process modelled as a nth-order strictly proper transfer

function G(z) given as:

G(z) = z−ndG0(z); G0(z) =
ŷk
ûk

=
b(z)

a(z)
(5.1)
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Figure 5.1: Pre-stabilisation loop structure.

where ŷk and ûk are the model output and input respectively, the polynomials a(z) and b(z)

represent plant estimates with a(z) = 1 +a1z
−1 + · · ·+anz

−n, b(z) = b1z
−1 + · · ·+ bnz

−n,

nd is the process delay in samples, and a(z) factors the open-loop unstable and/or complex

conjugate poles.

In order to obtain stable and well-damped output predictions, the delay-free model

G0(z) is compensated using a mth order bi-proper feedback controller C(z), as shown in

Figure 5.1. Note that:

C(z) =
q(z)

p(z)
(5.2)

where p(z) = 1 +p1z
−1 + · · ·+pmz

−m and q(z) = q0 + q1z
−1 + · · ·+ qmz

−m. The resulting

pre-stabilised delay-free prediction model is then given by:

Gs,0(z) =
ŷk
vk

=
q(z)b(z)

p(z)a(z) + q(z)b(z)
=
β(z)

α(z)
(5.3)

where vk is now the decision variable computed via an outer PFC loop as shown in Fig-

ure 5.2. The actual process input uk is related to vk indirectly via the model input ûk

(uk = ûk only in the absence of uncertainties, i.e. when dk = 0) as detailed in [31] (see

Appendix E for complete derivation). Here, we state the final result:

uk = B0vk + fk; fk = −A u←−k−1 + B v←−k−1 + E d←−k (5.4)

where vectors A, B and E are obtained from the parameters a(z), α(z), p(z) and q(z) as

follows:

A(z) = α(z)p(z) = 1 +A1z
−1 +A2z

−2 + . . .

B(z) = q(z)a(z)p(z) = B0 +B1z
−1 +B2z

−2 + . . . (5.5)

E(z) = −α(z)q(z) = E0 + E1z
−1 + E2z

−2 + . . .
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Figure 5.2: Proposed Pre-stabilised PFC control architecture.

Evidently after pre-stabilisation, the degree-of-freedom is reparametrised appropri-

ately, given a suitable inner controller, which can now work easily with the difficult open-

loop dynamics.

Remark 5.1. If C(z) is positioned in the feedback path of the pre-compensation loop rather

than the forward path as shown in Figure 5.1, the numerator of the pre-stabilised model

Gs,0(z) in (5.3) changes to β(z) = p(z)b(z). Hence, the computation of B(z) in (5.5) must

also be updated accordingly with B(z) = p(z)a(z)p(z). In this case, the coefficient B0 will

be equal to 1 as both p(z) and a(z) are monic polynomials.

5.2.2 Establishing PPFC Control Law

The PPFC algorithm works similarly to the ordinary PFC but implemented on the pre-

stabilised model dynamics. Hence instead of using the difficult open-loop dynamic model

G0(z), output predictions are obtained recursively from Gs,0(z) i.e. α(z)ŷ(z) = β(z)v(z)

such that:

yk+ny+nd|k = Hny v−→k + Pny v←−k−1 + Qny ŷ←−k + dk (5.6)

where dk = yk − ŷk−nd and Hny , Pny and Qny depend on the model parameters α(z) and

β(z). Furthermore:

v−→k =




vk

vk+1

...

vk+ny−1




; v←−k−1 =




vk−1

vk−2

...

vk−l




; ŷ←−k =




ŷk

ŷk−1

...

ŷk−l+1




(5.7)
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where l = n+m. The new decision variable vk remains constant throughout the horizon

i.e. vk+i = vk, ∀i > 0, which results in the following Pre-stabilised Conventional PFC

(PCPFC) control law:

vk =
1

hny

[
R− (R− E[yk+nd|k])ρ

ny − (Pny v←−k−1 + Qny ŷ←−k + dk)
]

(5.8)

where as before hny = HnyLny with Lny = [1 1 . . . 1]T1×ny
.

The Pre-stabilised Relative PFC (PRPFC) algorithm can also be deduced in a similar

way (see the accompanying UKACC paper [33] in Appendix G for details):

vk = γvss +
1− γ
hnc

[
R−

(
Pnc v←−k−1 + Qnc ŷ←−k + dk

)]
(5.9)

where hnc = HncLnc with Lnc = [1 1 . . . 1]T1×nc
, vss =

R− dk
Gs,0(1)

and:

γ =
Gs,0(1)− hncθ

Gs,0(1)− hnc

(5.10)

where θ is the chosen input aggression factor, nc corresponds to 95% settling time of the

pre-stabilised dynamic system and:

Gs,0(1) =
β(1)

α(1)
=

β1 + β2 + · · ·+ βl
1 + α1 + α2 + · · ·+ αl

=

∑l
i=1 βi

1 +
∑l

i=1 αi
; l = n+m (5.11)

Once vk is known either from (5.8) or (5.9), the actual process input uk can be com-

puted easily using the expression (5.4).

Remark 5.2. The computational requirement of (5.4) is similar to the open-loop control

law (3.12) or indeed (4.8), but owing to reparametrisation of uk, constraint handling is

now expected to be slightly more onerous. Nevertheless, the underlying coding is still ele-

mentary; for instance, vector multiplication can be programmed in few lines with the basic

loop instruction.

5.2.3 Impact of Pre-stabilisation on Parameter Tuning

Due to reparametrisation of the input function, the nominal initial input u1,ny is now

obtained from the relationship (5.4) as follows:

u1,ny = B0v1,ny =
B0R

hny

(1− ρny) (5.12)
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where hny is computed from the pre-stabilised model Gs,0(z). Consequently, the input

aggression factor θ given by (4.2) becomes:

θ =
u1,ny

uss
=
B0v1,ny

B0vss
=
Gs,0(1)

hny

(1− ρny) (5.13)

which implies that the new tuning methods developed in Chapters 3 and 4, along with the

conventional parameter selection guidelines discussed in Section 3.2, are easily applicable

to the pre-stabilised prediction model in the standard manner. It is worth emphasising that

parameter selection based on the pre-stabilised dynamics yields far more consistent and

reliable control performances, which is verified by various simulation examples presented

in the attached publications [27–33] in Appendices A-G.

In the following section, we will discuss various methods for pre-stabilising the difficult

open-loop dynamics in a straighforward manner.

5.3 Design of Pre-stabilising Compensator

So far we have examined the impact of pre-stabilisation on the core functionality of PFC

by assuming a suitable compensator that stabilises the undesirable open-loop dynamics for

consistent prediction behaviour. In this section, we will discuss various classical feedback

compensation schemes that are simple, well-understood and easily implementable with

basic technical know-how and hence without overly complicating the PFC design.

One obvious solution is to utilise proportional (plus derivative) or lead/lag type con-

troller which could possibly stabilise a majority of first- and second-order dynamics using

any standard time-domain or frequency-domain tuning method [4]. Nevertheless, there

are instances, for example the presence of poorly damped or unstable higher-order poles,

which may necessitate relatively sophisticated approaches such as the ones based on pole

cancellation or pole placement [5]. These strategies, however, often produce higher-order

controllers which, in the context of PFC, may also complicate the computations related

to constraint management. Nevertheless, this is an inevitable consequence when simpler

alternatives are no longer effective.

Note that the pre-stabilisation strategies discussed in this section have been classified

according to the type of dynamics, i.e. first-, second-, or more generic higher-order, for
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which they are designed.

5.3.1 Pre-compensation of Unstable First-Order Dynamics

The following discussion is based on the proposal presented in the CONTROLO 2020

paper [27] which can be found in Appendix A.

Consider an unstable first-order system given by:

G0(z) =
b1z
−1

1− a1z−1
; a1 ≥ 1 (5.14)

This system can be stabilised with a simple proportional gain C(z) = K as per the

proposed configuration shown in Figure 5.1. The resulting pre-stabilised system therefore

has the following transfer function:

Gs,0(z) =
β1z
−1

1− α1z−1
=

Kb1z
−1

1− (a1 −Kb1)z−1
(5.15)

Theorem 5.3. The compensated predictions in (5.15) are stable and monotonically con-

vergent provided K is selected within the following range:

1− a1

b1
< K < −a1

b1
(5.16)

Proof. For convergent predictions, the pre-stabilised pole α1 must be stable, i.e. lie within

the range 0 < α1 < 1, implying that:

0 < a1 −Kb1 < 1

which after simple manipulations leads to (5.16).

Although Theorem 5.3 in principle defines the upper and lower bounds on K for

guaranteed stability, a more systematic choice of the pre-stabilised pole is α1 = 1/a1 (if

a1 > 1) which means the pre-stabilising compensator should be designed with:

K =
a2

1 − 1

a1b1
(5.17)

In case the open-loop system exhibits integrator dynamics, i.e. a1 = 1, then one may

simply select α1 = 0.5 by choosing K = 0.5/b1 [85]. This pre-stabilises G0(z) in a straight-

forward manner.
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Figure 5.3: Root locus design of a difficult second-order dynamic system with (a) complex pole

pair, (b) one unstable pole.

5.3.2 Pre-stabilising Second-Order Dynamics via Root Locus

This proposal is fairly generic and based on the fact that a majority of real-world pro-

cesses can be adequately represented as dominant second-order dynamics for which simple

tailored solutions are well understood.

Assume that a simple proportional controller, i.e. C(z) = K, is utilised in the feedback

path of the inner loop to compensate a difficult second-order system G0(z), resulting in

the following pre-stabilised transfer function:

Gs,0(z) =
β(z)

α(z)
=

G0(z)

1 +KG0(z)
=

b(z)

a(z) +Kb(z)
(5.18)

where a(z) = 1 + a1z
−1 + a2z

−2 and b(z) = b1z
−1 + b2z

−2. A simple approach is to design

the proportional gain K via Root Locus (see the UKACC 2022 paper [32] in Appendix F),

which is a powerful graphical tool for control systems analysis and design [110]. Hence,

one may analyse the effect of K on the pre-stabilised pole polynomial α(z), with the goal

to obtain critically damped poles at the stable break-in/breakaway points, denoted by σ,

on the root loci as shown in Figure 5.3. Consequently, at z = σ, the compensator K must

satisfy the following gain condition [111]:

K(σ) = − 1

G0(σ)
= −a(σ)

b(σ)
(5.19)

where the functionK(σ) demonstrates local minimum/maximum at the break-in/breakaway

points. Thus being stationary, these points can be obtained analytically by taking the first
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derivative of (5.19) with respect to σ:

dK(σ)

dσ
= − d

dσ

[
a(σ)

b(σ)

]
= 0

which yields the following relationship:

σi = −b2
b1
± 1

b1

√
a2b1

2 − a1b1b2 + b2
2, i = 1, 2 (5.20)

Depending on the open-loop model parameters, two values of σ are obtained, but only

the one within the range 0 < σ < 1 can be implemented for pre-stabilisation. Hence,

the pre-stabilised pole polynomial α(z) must be equal to α(z) = z2 − 2σz + σ2 with K

evaluated from (5.19). It is noted that one can easily find K using modern software tools

and thus avoiding explicit use of the algebra above.

Remark 5.4. The open-loop zero dynamics of G0(z) may be significant in some instances,

i.e. the root of b(z) may appear in the vicinity of the system poles hindering the successful

implementation of this approach. In such cases, it is recommended to design a lead or lag

type controller if possible to cancel and replace the problematic zero in order to minimise

its undesirable effect. The details to do so are available in the accompanying publication

[32] which can be found in Appendix F of this thesis.

5.3.3 Pre-compensation of Oscillatory Systems via Pole Cancellation

The section summarises the contents of the accompanying ECC 2021 paper [28] which is

attached in Appendix B.

Assume that G0(z) represents a nth-order poorly damped but otherwise stable system

such that:

G0(z) =
b(z)

a(z)
; a(z) = a−(z)a+(z) (5.21)

where a+(z) represents pu complex conjugate poles and a−(z) factors the remaining n−pu
well damped open-loop poles. As shown in Figure 5.1, the feedback compensation of G0(z)

with C(z) results in the following pre-stabilised transfer function:

Gs,0(z) =
β(z)

α(z)
=

C(z)G0(z)

1 + C(z)G0(z)
(5.22)

which after simple manipulations leads to:

C(z) =
β(z)a(z)

b(z)[α(z)− β(z)]
(5.23)
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Evidently, the open-loop zeros b(z) become compensator poles that could destabilise the

system especially due to non-minimum phase dynamics. To avoid this issue, we set β(z) =

Kb(z) with K 6= 0 and therefore obtain:

C(z) = K
a(z)

α(z)−Kb(z) (5.24)

where K can be evaluated easily, for example, via root locus. Hence, this compensator ac-

tually cancels the open-loop poles a(z) and places the new poles defined by the polynomial

α(z), which means it is necessary to select the pre-stabilised pole polynomial first before

designing C(z). Ideally one would want the compensated model to exhibit non-oscillatory

behaviour, for which a good starting point is to place the new poles of Gs,0(z) at the

projection of the dominant oscillatory poles of G0(z) along the real axis. The resulting

pre-stabilised transfer function has the following form:

Gs,0(z) = K
b(z)

α(z)
; α(z) = a−(z)α+(z) (5.25)

where α+(z) represents the pu pre-stabilised poles such that α+(z) =
∏pu
i=1 [z −<(zp,i)]

for each open-loop complex conjugate pole zp,i present in a+(z).

5.3.4 Pre-stabilisation via Pole Placement

The proposed pole placement scheme is based on the analytical approach of feedback

compensation presented in the NMPC 2021 paper [29] attached in Appendix C.

Assume that a (n−1)th-order bi-proper compensator C(z) is used to modify the open-

loop model G0(z), as shown in Figure 5.1, resulting in the pre-stabilised transfer function

Gs,0(z), with a smooth and monotonically convergent prediction behaviour. Then the

resulting (2n− 1)th-order pole polynomial α(z) is given by the following relationship:

p(z)a(z) + q(z)b(z) = α(z) (5.26)

which is commonly known as the Diophantine Equation. In order to design C(z), one

must define the desired pre-stabilised characteristic polynomial α(z) and then utilise linear

algebra to obtain the coefficients of p(z) and q(z) with:

M = S−1D (5.27)
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where M = [pn−1 . . . 1 qn−1 . . . q0]T , D = [α2n−1 . . . α0]T and S is the Sylvester Matrix

[112] given by:

S =




an 0 . . . 0 bn 0 . . . 0

an−1 an . . . 0 bn−1 bn . . . 0
...

... . . .
...

...
... . . .

...

1 a1 . . . an−1 0 b1 . . . bn−1

0 1 . . . an−2 0 0 . . . bn−2

...
... . . .

...
...

... . . .
...

0 0 . . . a1 0 0 . . . b1

0 0 . . . 1 0 0 . . . 0




(5.28)

Note that α(z) is factorised as:

α(z) = o(z)a−(z)α+(z) (5.29)

where o(z) is the (n− 1)th-order observer generally selected as o(z) = zn−1, a−(z) factors

the stable open-loop poles and α+(z) represents the pu pre-stabilised poles. If a+(z) =
∏pu
i=1(z − zp,i) then:

Proposal for Unstable Poles. With zp,i > 1, design α+(z) =
∏pu
i=1(z − 1/zp,i). In case an

integrator factor (z − 1) is present, then one may simply replace it with (z − 0.5) [85].

Proposal for Complex Poles. With zp,i ∈ C, place the pre-stabilised poles at the real part

of the complex open-loop poles, i.e. α+(z) =
∏pu
i=1 (z −<(zp,i)). This will effectively filter

out the undesirable oscillations but without compromising the convergence speed.

This completes the internal feedback loop design via pole placement.

5.3.5 Summary of Pre-stabilised PFC

We are now in a position to sum up the discussion of unconstrained PPFC with the

following algorithm:

Algorithm 5.1. (Unconstrained Pre-Stabilised PFC) First stabilise the difficult

open-loop dynamics using PID or any suitable feedback compensation scheme discussed

in this section. Next select appropriate tuning parameters (ρ, ny) or θ as per the methods
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presented in Chapters 3 or 4. Then at each sample k, compute the unconstrained value of

vk either using (5.8) or (5.9). Finally compute the unconstrained value of uk with (5.4),

and update the plant and the model.

5.4 Constrained Pre-stabilised PFC

For completeness, this section summarises how constraint handling can be done in a very

efficient manner for Pre-stabilised PFC where there is only a single degree-of-freedom.

The parametrisation of uk after pre-stabilisation clearly makes the simple saturation

policy for constraint handling less straightforward to implement. This is because in addi-

tion to the output/state constraints, one must now also ensure input constraint adherence

at each future sample over a validation window extending well beyond the coincidence

point as any unobserved violation could eventually lead to infeasibility invalidating the

current optimisation. Hence, each row of the following vector inequalities must restrict

the corresponding prediction such that:

Lnc¯
u ≤ u−→k ≤ Lnc ū

Lnc∆¯
u ≤ ∆ u−→k ≤ Lnc∆ū

Lnc
¯
y ≤ y−→k+1 ≤ Lnc ȳ (5.30)

It is usually more convenient to represent these inequalities in terms of vk as it remains

constant along nc, by noting that u−→k = B0Lncvk + f−→k, ∆ u−→k = C−1
1/∆( u−→k − Lncuk−1),

and y−→k+1 = hiLncvk + Pi v←−k−1 + Qi ŷ←−k + Lncdk with i = 1, 2, . . . , nc [11]. This leads to:




B0Lnc

−B0Lnc

B0C
−1
1/∆Lnc

−B0C
−1
1/∆Lnc

hiLnc

−hiLnc




︸ ︷︷ ︸
X

vk ≤




Lnc ū− f−→k

−Lnc¯
u+ f−→k

Lnc∆ū−C−1
1/∆ f−→k + C−1

1/∆Lncuk−1

−Lnc∆¯
u+ C−1

1/∆ f−→k −C−1
1/∆Lncuk−1

Lnc ȳ −Pi v←−k−1 −Qi ŷ←−k − Lncdk

−Lnc
¯
y + Pi v←−k−1 + Qi ŷ←−k + Lncdk




︸ ︷︷ ︸
Y

(5.31)
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where C1/∆ is a lower triangular matrix defined as follows [11]:

C1/∆ =




1 0 0 . . . 0

1 1 0 . . . 0
...

...
...

...
...

1 1 1 . . . 1




(5.32)

Algorithm 5.2. (Constrained Pre-stabilised PFC) After computing the current vk as

per Algorithm 5.1, update the vector f−→k and verify each row of (5.31) enforcing saturation

at vk = Y j/Xj for every violation in the jth row. Finally, compute the constraint adhering

value of uk using (5.4).

Theorem 5.5. Algorithm 5.2 guarantees recursive feasibility in the presence of con-

straints, provided the target set-point and disturbance remain unchanged.

Proof. First it is noted that the long-range predictions after pre-stabilisation will be stable

and convergent with a constant input vk+i = vk, ∀i > 0. Next, if one assumes feasibility

at the start (i.e. with a reasonable set-point and initial conditions [11]), then at every

subsequent sample, the choice vk = vk−1 will always satisfy constraints and hence will

always be feasible.

Conversely it is worth emphasising that feasibility cannot be guaranteed with the

direct implementation of open-loop dynamics, as the recursive use of a previous input

would eventually result in oscillations/divergence and therefore unavoidable constraint

violations.

Remark 5.6. Although recursive feasibility is established in principle for the nominal case,

the use of d←−k in the control law (5.4) indeed provides a measure of the disturbance gradient

that may allow feasible operation even if ∆dk 6= 0. Nevertheless, it is noted that rigorous

generic recursive feasibility properties require computations, for example see [113–115],

which might be considered beyond the price range of PFC. Arguably, the lack of concrete

feasibility results could be mitigated to some extent by following sensible guidelines, such as

using large enough validation horizons, specifying attainable control objectives etc., as is

usually the case with many industrial process control algorithms incorporating constraints

[11].
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5.5 Simulation Results and Discussion

In this section, we investigate the efficacy of various pre-compensation schemes within the

proposed PPFC framework using two industrial case studies. It is worth mentioning that

this analysis implicitly utilises the PRPFC control law (5.9)-(5.11) while noting that a

similar PCPFC controller (5.8) could also be tuned by appropriately selecting ρ and ny

according to the findings of Chapter 4.

5.5.1 Description of Case Studies

Let us first introduce the open-loop processes that will be used to study the efficacy of

the proposal in the later sections:

Position Control of Single Link Robotic Arm. Robotic manipulators have played

a vital role in the global industrial revolution leading to better quality product with cheaper

manufacturing costs. In this study, we will implement the proposed Pre-stabilised PFC

algorithm to control the angular position of a single link robotic arm driven by a brushed

DC motor, as shown in Figure 5.4a. The nonlinear model of the manipulator has three

coupled states, i.e. the angular position φ, the angular velocity φ̇ and the motor current

i, related with each other according to the following dynamic relationship [116]:

J
d2φ

dt2
+B

dφ

dt
+mglsinφ = Kτ i (5.33a)

L
di

dt
+Ri+Ke

dφ

dt
= u (5.33b)

where u is the input voltage (manipulated variable), J is the inertia of the robotic arm,

B represents the actuator damping, m and l denote the mass and length of the arm, g is

acceleration due to gravity, L and R represent the inductance and resistance of the motor

winding, Kτ is the torque constant and Ke represents the voltage constant of the motor.

These parameters have the following numerical values: J = 0.1 kgm2, B = 0.05 Nms/rad,

m = 2 kg, l = 0.75 m, g = 9.8 m/s2, Kτ = 0.768 Nm/A, Ke = 0.768 Nms/rad, R = 2.6

Ohm and L = 25 mH. Moreover, the motor voltage supply is limited between 0 ≤ u ≤ 24

volts with |∆u| ≤ 0.5 volts/s. The model is linearsied, using a sampling period of 10 ms,
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Figure 5.4: Schematic representation of (a) DC Motor driven Single Link Robot, and (b) Jacketed

CSTR process.

around the operating point φss = 0.314 rad (18◦) and uss = 15.4 volts leading to:

G1 =
φ′(z)
u′(z)

=
4.011z2 + 12.596z + 2.384

z3 − 2.320z2 + 1.681z − 0.352
× 10−5 (5.34)

where φ′ and u′ are the output and input deviation variables around their corresponding

steady-state values. A second-order model is also constructed using the model reducer

app available in MATLAB [117]:

G1,r =
φ′(z)
u′(z)

=
−1.192z + 4.133

z2 − 1.962z + 0.972
× 10−2 (5.35)

Note that both linearised models (5.34) and (5.35) exhibit significant oscillations with

open-loop poles at z = 0.362, 0.979± j0.117 for G1 and z = 0.981± j0.101 for G1,r.

Temperature control in Jacketed CSTR. The Continuous Stirred Tank Reactor

(CSTR) is a common industrial unit widely employed in different chemical manufacturing

processes. In this study, we consider a specific type of CSTR equipped with an outer

jacket in which the temperature of a flowing fluid TJ is used to regulate the inside reaction

temperature T , as shown in Figure 5.4b. The overall coupled model has two-state non-

linear dynamics as given below [118]:

dCA
dt

=
F

V

(
CAf

− CA
)
− k0e

− E
RgT CA (5.36a)

dT

dt
=
F

V
(Tf − T ) +

(−∆H

ρCp

)
k0e
− E

RgT CA −
UA

V ρCp
(T − TJ) (5.36b)
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where CA is the concentration of component A, T is the reaction temperature, CAf
is

the feed concentartion, Tf is the feed temperature, TJ is the jacket temperature, F is the

input flow rate, V is the reactor volume, k0 is the frequency factor, E is the activation

energy, Rg is the ideal gas constant, −∆H is the heat of reaction, U is the heat transfer

coefficient, A is the area of heat transfer, ρ is the fluid density and Cp is the fluid heat

capacity.

The following parametric values will be used in simulations [119]: k0 = 16.96 × 1012

h−1, E = 32400 Btu/lb mol, Rg = 1.987 Btu/lb mol◦F, ρCp = 53.25 Btu/ft3◦F, UA =

23200 Btu/h◦F, V = 500 ft3, F = 2000 ft3/h, CAf
= 0.132 lb mol/ft3, and Tf = 60◦F.

Furthermore, the process, subject to TJ ≤ 2640◦F, is linearised using a sampling period

of 0.01 hours (36 seconds) around the operating point Tss = 560.8◦F and TJ,ss = 2637.9◦F

resulting in an unstable second-order dynamic model (assuming a measurement delay of

nd = 25 samples) given by:

G2 =
T ′(z)
T ′J(z)

=
0.00895z − 0.00825

z2 − 1.972z + 0.9719
z−25 (5.37)

where both T ′ and T ′J are deviation variables around the corresponding steady-state values.

A first-order model is also constructed using the model reducer app available in MATLAB

[117]:

G2,r =
T ′(z)
T ′J(z)

=
0.0205

z − 1.004
z−25 (5.38)

Note that both linearised models (5.37) and (5.38) exhibit output instability with open-

loop poles at z = 0.969, 1.004 for G2 and z = 1.004 for G2,r.

5.5.2 Pre-stabilisation and Parameter Tuning

The third-order model G1 and the reduced second-order model G1,r of the robotic arm are

pre-stabilised using the Pole Placement (PP), Pole Cancellation (PC) and Root Locus (RL)

methods with CPP1 =
−66.29z2 + 18.2z + 2.09

z2 + 0.00266z + 0.00014
, CPC1 =

0.3z3 − 0.696z2 + 0.5042z − 0.1055

z3 − 2.32z2 + 1.67z − 0.347
and CRL1,r = −32. The following pre-compensated transfer function models are obtained:

� GPP1 =
−265.90z4 − 761.96z3 + 79.55z2 + 69.71z + 4.98

z5 − 2.32z4 + 1.67z3 − 0.346z2
× 10−5

� GPC1 =
1.20z2 + 3.78z + 0.715

z3 − 2.32z2 + 1.67z − 0.347
× 10−5
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Figure 5.5: Tuning efficacy of Pre-stabilised PFC for G1 with Pole Placement, Pole Cancellation

and Root Locus compensation schemes using (a) θ = 1 (Benchmark), and (b) θ = 5.

� GRL1,r =
−15z + 44.5

z2 − 1.96z + 0.958
× 10−5

The dominant pre-stabilised poles positioned at z = 0.979, 0.979 in each case warrant

a similar closed-loop behaviour in nominal conditions, which is indeed obvious from Fig-

ure 5.5a depicting the benchmark (mean-level) system outputs with θ = 1. Furthermore,

Figure 5.5b clearly indicates the tuning efficacy of the (relative) PPFC algorithm with

θ = 5, as the robotic arm now settles relatively quickly to its target steady-state angular

position as compared to the benchmark responses shown in Figure 5.5a.

In the second example, the original second-order model G2 along with its reduced first-

order model G2,r of the Jacketed CSTR process are pre-stabilised using the Pole Placement

(PP), Root Locus (RL) and First-Order (FO) methods. Note that due to the presence of

open-loop unstable mode, the Pole Cancellation method will not be utilised in this case
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Figure 5.6: Tuning efficacy of Pre-stabilised PFC for G2 with Pole Placement, Root Locus and

First-Order compensation schemes using (a) θ = 1 (Benchmark), and (b) θ = 3.

for pre-compensation.

� CPP2 =
9.834z − 9.525

z − 0.0808
, GPP2 =

0.088z2 − 0.166z + 0.079

z3 − 1.965z2 + 0.965z
, poles at 0, 0.997, 0.969

� CRL2 = 0.556, GRL2 =
0.00895z − 0.00825

z2 − 1.967z + 0.9673
, poles at 0.984, 0.984

� CFO2,r = 0.389, GFO2,r =
0.00798

z − 0.996
, pole at 0.996

Since the Root Locus method provides faster dominant poles than the other two tech-

niques, its pre-stabilised benchmark response is correspondingly faster as shown in Fig-

ure 5.6a. Nevertheless in this case too, the selected tuning parameter θ = 3 works ef-

fectively by producing relatively faster closed-loop outputs (Figure 5.6b). However, it is

evident that pre-comensation via pole placement in this case may not be a good choice

since the sharp initial input peak compared to other methods may cause constraint viola-
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Figure 5.7: Comparison of disturbance rejection between various compensation schemes for (a) G1

with θ = 5 and a constant output disturbance of 0.1 rad, and (b) G2 with θ = 3 and a constant

input disturbance of 1◦F.

tions possibly leading to instability in practice.

5.5.3 Comparison in Practical Scenarios

In this section, we will further analyse the efficacy of these pre-stabilisation methods in

more practical scenarios by including the effects of external disturbances, measurement

noise and modelling uncertainties on the overall closed-loop performance.

For the single link robot, a constant disturbance of 0.1 rad is introduced at the process

output, whereas for the unstable CSTR a constant input disturbance of 1◦F is added.

The results are shown in Figure 5.7 from which it is evident that the Pole Placement

method in both cases demonstrates relatively sluggish disturbance rejection as compared

to the other two methods. Notably, Pole Cancellation provides by far the best disturbance
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Figure 5.8: Comparison of tuning efficacy between various compensation schemes along with mea-

surement noise and plant-model mismatches for (a) G1 with θ = 5 and an unmodelled pole at

z = 0.5, and (b) G2 with θ = 3 and a 10% multiplicative uncertainty.

handling with signifiantly quicker output normalisation. A similar trend is observed in the

noise management (see Figure 5.8) which shows the sensor noise affecting the PPFC-PP

far more adversely than the other methods of pre-stabilisation, especially in the unstable

process example.

It is further evident that the presence of plant-model mismatch tends to degrade

the closed-loop performance with the second-order model of the oscillatory process (Fig-

ure 5.8a), but not so much with the first-order model of the unstable system (Figure 5.8b).

Nevertheless due to the inevitability of modelling errors, it generally seems sensible to avoid

such reduced order models within the proposed framework, if possible.
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Figure 5.9: Closed-loop performance comparison with constraints and external perturbations for (a)

G1 pre-stabilised via Pole Cancellation using θ = 5 subject to |∆u| ≤ 0.5volts and 0 ≤ u ≤ 24volts,

and (b) G2 pre-stabilised via Root Locus scheme with θ = 3 subject to TJ ≤ 2640◦F.

5.5.4 Analysis of Constrained Closed-Loop Performance

Finally, a comparative analysis of the constrained closed-loop performance against the

conventional PFC (CPFC) and PID algorithms is presented. For a fair comparison, the

CPFC uses the same θ as the corresponding pre-stabilised PFC albeit with difficult open-

loop prediction dynamics implemented directly. Furthermore, the PID is synthesised using

the robust PID tuning algorithm available in MATLAB [120]. The actual non-linear

models (5.33) and (5.36) act as the plants for a more realistic evaluation.

Figure 5.9a depicts the scenario for the poorly damped process, where a set point

change of 0.105 radians, i.e. 6◦, from the initial steady-state is introduced. As evident,

both CPFC and PID controllers fail to compensate the open-loop underdamping, though

the performance of CPFC is far worse under constraints. On the other hand, the proposed
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PPFC not only succesfully filters out the unwanted oscillations, but does so by maintaining

feasibility dispite a significant change in both the set point and the disturbance.

For the unstable process, the closed-loop performance is displayed in Figure 5.9b. A

step change of 2.5◦F drives the process away from the nominal operating point causing

large uncertainty, which along side the imposed actuation limit proves too demanding for

both the CPFC and the PID. In this case too, the proposed PPFC algorithm depicts su-

perior performance with highly commendable characteristics despite facing the challenges.

In conclusion, these examples have clearly validated the rationale behind using pre-

stabilised predictions in predictive functional control law for a superior performance as

compared to the direct utilisation of the difficult open-loop dynamics, which clearly fails

to fulfil the desired performance specification in an efficient and reliable manner.

Remark 5.7. Output constraints, if available, may also be implemented easily using sys-

tem predictions (see Section 5.4). Interested readers are referred to the accompanying ACA

publication attached in Appendix E which includes one such simulation example.

5.6 Chapter Summary

The key highlights of this chapter are summarised below:

� A generic design framework is developed in Section 5.2 which utilises the concept of

pre-stabilisation to systematically achieve a reliable and consistent control of severely

underdamped and/or unstable open-loop dynamics by first compensating the diffi-

cult prediction behaviour before implementing PFC in a cascade structure.

� Section 5.3 discusses various pre-compensation schemes that adequately transform

the challenging open-loop dynamics into well-damped and monotonically conver-

gent prediction behaviour, i.e. something more conveniently manageable with the

standard PFC algorithm.

� While pre-stabilisation improves the tuning efficacy of PFC, it does complicate the

application of the standard constraint handling procedure. Nevertheless, Section 5.4

discusses how constraints can be managed more efficiently in these cases where pre-



5.6. Chapter Summary 79

compensation renders the standard saturation policy far less straightforward to im-

plement within the proposed framework.





Chapter 6

Nonlinear PFC

This chapter presents a simple and low-cost nonlinear predictive control approach using

a slightly modified version of the Relative PFC algorithm developed earlier in Chapter 4.

Section 6.1 formulates the problem and sets the control objectives. The proposed Non-

linear PFC (NPFC) algorithm is discussed in Sections 6.2 and 6.3 which is based on the

accompanying EJC 2022 publication [35] attached in Appendix I. Section 6.4 investigates

the efficacy of the proposal with two simulation case studies and the chapter concludes in

Section 6.5 with a consice summary of the key developments.

6.1 Problem Statement

Consider a nonlinear system of the form:

ẋ(t) = f(x(t), u(t)), x(0) = x0 u(0) = u0 (6.1)

subject to the following physical and operational constraints:

¯
u ≤ u(t) ≤ ū, ∆

¯
u ≤ ∆u(t) ≤ ∆ū,

¯
y ≤ y(t) ≤ ȳ (6.2)

with states x(t) ∈ Rn and input u(t) ∈ R. Note that the jth system state, denoted by y(t),

is designated as the process output (controlled variable) whose current value is measurable.

It is further assumed that:

(i) The nonlinear function f(·) is continuous and differentiable with respect to the states

and the input, hence (6.1) can be linearised about a nominal trajectory and repre-

sented by a discrete time varying state-space model (details in Section 6.2.1).

81
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(ii) The open-loop behaviour of (6.1) is broadly acceptable, i.e. for a constant input

u(t) = U , the states are stable and monotonically convergent towards their implied

equilibrium positions.

The primary objective in this study is to design a nonlinear PFC (NPFC) controller

for the system (6.1) subject to (6.2) in order to satisfactorily track a step target R = y(∞)

as per the required performance specification (for example, a desired closed-loop settling

time). Furthermore, the nonlinear controller is expected to exhibit some degree of robust-

ness against external disturbances, measurement noise and/or parametric uncertainties.

6.2 Prediction in Nonlinear PFC

Likewise the Relative PFC algorithm (see Chapter 4), the proposed NPFC too requires

three key elements for implementation: a suitable prediction model, a benchmark (mean

level) response for performance tuning, and a mechanism to ensure offset-free tracking.

Nevertheless, in order to produce accurate predictions, the underlying process model (6.1)

must be linearised online at discrete sampling instants [93, 94]. As PFC, by design, is

intended to be simple, here we take a very simple approach to this process by approximat-

ing the continuous time derivatives in (6.1) using forward Euler differences, accepting that

more accurate but equally more demanding numerical integration approaches are possible

[121].

6.2.1 Numerical Integration via Explicit Euler Method

Assume that the time difference between the current and the next samples, i.e. k → k+1,

is represented by a small quantity δt→ 0, then according to the first principles, one may

approximate the continuous time derivatives in (6.1) as follows [122]:

ˆ̇x(t) ≈ x̂k+1 − x̂k
δt

; k ≥ 0 (6.3)

where x̂k represents the predicted state at sample k. This relationship is known as the

explicit (or forward) Euler difference, the simplest ordinary differential equations (ODE)

solver, which gives the following discretised nonlinear prediction model:

x̂k+1 = x̂k + δtf (x̂k, uk) = F (x̂k, uk) (6.4)
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Thus, the discretised model (6.4) is linearised online about a nominal trajectory (x∗k, u
∗
k)

using first-order Taylor series expansion such that:

x̂k+1 ≈ F (x∗k, u
∗
k) +

∂F

∂x̂k
δx̂k +

∂F

∂uk
δuk (6.5)

where F (x∗k, u
∗
k) = x∗k+1 and the deviation variables are δx̂k = x̂k − x∗k, δuk = uk − u∗k.

Hence, the following linearised prediction model is obtained:

δx̂k+1 = Akδx̂k + Bkδuk (6.6)

with

Ak =
∂F

∂x̂k
= In + δt

∂f

∂x̂k
; Bk =

∂F

∂uk
= δt

∂f

∂uk
(6.7)

where In is the identity matrix of size n.

Remark 6.1. It is implicit from the use of first-order Taylor series and simple difference

equations for the numerical integration that the trajectories do not deviate a long way

from the baseline (x∗k, u
∗
k). If they do, then the approximation errors would grow and could

impact on behaviour. This means the sample period δt should be small enough.

6.2.2 Prediction using Deviation Variables

Once the linearised model (6.6) has been determined for a notional trajectory, one can

easily compute the impact of small deviations in the input, i.e. when δuk 6= 0. Predictions

can be found by recursive use of (6.6) as follows:

δx̂k+1 = Akδx̂k + Bkδuk (6.8)

δx̂k+2 = Ak+1δx̂k+1 + Bk+1δuk+1

δx̂k+3 = Ak+2δx̂k+2 + Bk+2δuk+2

...

Next, making substitutions and assuming that δx̂k = 0:

δx̂k+1 ≈ Bkδuk (6.9)

δx̂k+2 ≈ Ak+1Bkδuk + Bk+1δuk+1

δx̂k+3 ≈ Ak+2[Ak+1Bkδuk + Bk+1δuk+1] + Bk+2δuk+2

...
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Although somewhat clumsy to use in the current form, the following section utilises

these predictions along with an exponential input parametrisation to derive the proposed

NPFC control law.

6.3 Nonlinear PFC Algorithm

In this section, we utilise a simple Laguerre input parametrisation (see for example [20, 74])

in the predictions along with the concept of superposition to develop the NPFC control

law. The detailed proposal is as follows:

6.3.1 Prediction with Exponential Input Parametrisation

As discussed earlier in Section 4.3, a first-order Laguerre function represents an ideal

exponential decay which parametrises the future input such that:

uk+i = uss + λiη; lim
i→∞

uk+i = uss, i ≥ 0 (6.10)

where uss = u(∞) is the implied steady-state input corresponding to y(∞), λ is the decay

factor to be chosen (0 < λ < 1) and η is the new degree-of-freedom that will be computed

from the NPFC algorithm. Hence, it is evident that in (6.5)-(6.9):

u∗k+i = uss, δuk+i = λiη; i ≥ 0 (6.11)

which means that the nominal predictions x∗k can be easily computed online. This also

simplifies the deviations (6.9) as follows:

δx̂k+1 = Bk︸︷︷︸
Λk

η (6.12)

δx̂k+2 = [Ak+1Λk + Bk+1λ]︸ ︷︷ ︸
Λk+1

η

δx̂k+3 = [Ak+2Λk+1 + Bk+2λ
2]︸ ︷︷ ︸

Λk+2

η

...

δx̂k+nx+1 = [Ak+nxΛk+nx−1 + Bk+nxλ
nx ]︸ ︷︷ ︸

Λk+nx

η

It is noted that the main computation here is the simple recursion of:

Λk+nx = Ak+nxΛk+nx−1 + Bk+nxλ
nx (6.13)



6.3. Nonlinear PFC Algorithm 85

where nx is the prediction horizon usually chosen between 1 − 2 time constants of the

open-loop step response.

6.3.2 NPFC Control Law

As yk is the designated output state, the total (nx + 1)-step ahead output prediction is

given by:

yk+nx+1 = y∗k + eTj Λk+nxη + dk (6.14)

where dk is the offset correction term computed from dk = yk − ŷk and ej is a standard

basis vector with a 1 in the jth position corresponding to the state yk. With uk = uss, i.e.

η = 0, the predicted error converges as follows:

ess(k + nx + 1) = R− (y∗k + dk) (6.15)

which compares to the following error convergence when η 6= 0:

e(k + nx + 1) = R−
(
y∗k + eTj Λk+nxη + dk

)
(6.16)

Hence, to achieve the desired speed-up, one must compare both (6.15) and (6.16) such

that:

Se(k + nx + 1) = ess(k + nx + 1) (6.17)

where S is the tuning parameter that speeds-up the closed-loop behaviour relative to

the open-loop benchmark response. Note that this is slightly different from the Relative

PFC algorithm developed earlier (see Section 4.2), where we implemented parameter γ to

achieve speed-up indirectly via the chosen input aggression factor θ.

Theorem 6.2. The NPFC control law for a target set-point R is given by:

uk = uss +
S − 1

S

[
R− (y∗k + dk)

eTj Λk+nx

]
(6.18)

Proof. Using (6.15) and (6.16) in (6.17) implies:

S
[
R−

(
y∗k + eTj Λk+nxη + dk

)]
= R− (y∗k + dk) (6.19)

Hence, the degree-of-freedom η is computed as follows:

η =
S − 1

S

[
R− (y∗k + dk)

eTj Λk+nx

]
(6.20)
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which leads to the control law (6.18), as uk = uss + η is implemented at each k. Note

that the choice S = 1 here is equivalent to the benchmark behaviour providing η = 0 and

uk = uss.

Remark 6.3. Unlike the RPFC control law (4.8), the Nonlinear PFC does not utilise

the initial input aggression θ for controller tuning, rather it directly implements S which

means the Laguerre pole λ retains its efficacy in this formulation. Nevertheless, in order to

ensure practically implementable inputs, S and λ should be selected appropriately; typically

S should not be more than 2 − 3 and λ should be close to the target closed-loop pole and

partially overlaps with the choice of nx.

6.3.3 Constraint Handling

One can incorporate constraint handling in a systematic and computationally simple way

by comparing system predictions against constraints for a sufficiently large horizon nc.

Note that the exact procedure to do so is very simular to the one already presented in

Section 5.4 and therefore discussed very briefly for completeness. With u−→k = Lncuss +

Hλη, ∆ u−→k = C−1
1/∆( u−→k−Lncuk−1) and y−→k+1 = y−→

∗
k+eTj Λ
−−→kη+Lncdk where i = 1, 2, . . . , nc,

the following linear inequalities must be verified:




Hλ

−Hλ

C−1
1/∆Hλ

−C−1
1/∆Hλ

eTj Λ
−−→k

−eTj Λ
−−→k




η ≤




Lnc (ū− uss)
−Lnc (

¯
u+ uss)

Lnc

[
∆ū−C−1

1/∆ (uss − uk−1)
]

−Lnc

[
∆

¯
u−C−1

1/∆ (uss − uk−1)
]

Lnc ȳ − y−→
∗
k − Lncdk

−Lnc
¯
y + y−→

∗
k + Lncdk




(6.21)

where C1/∆ is a lower triangular matrix defined in (5.32), Lnc = [1 1 . . . 1]Tnc
and

Hλ = [1 λ . . . λnc−1]Tnc
. Since the predictions have a single degree-of-freedom η, the

selection of η can be determined using a simple for loop and thus done very efficiently.

One might also note that with (6.10) the maximum input and input rate will occur at the

first or second sample, and thus the number of inequalities to be checked for the input

constraints is very small.
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Remark 6.4. Constraints limit the input amplitudes available and thus will also impact

on the speed-up achievable in some scenarios, especially with large changes in target.

6.3.4 Summary of Nonlinear PFC

We conclude the discussion of Nonlinear PFC with the following algorithm:

Algorithm 6.1. (Constrained Nonlinear PFC) For a given target R, first find the

baseline trajectory (x∗k, u
∗
k) using (6.11) and compute the associated state-space matrices

(6.7). Next find the output prediction (6.14) using the recursion Λk+nx given in (6.13)

followed by the computation of η with (6.20). Finally, calculate the constraint adhering

value of uk using (6.21), and update the plant and the model accordingly.

6.4 Simulation Results and Discussion

This section investigates the efficacy of the proposed NPFC controller using two real-world

case studies. Note that both examples satisfy the assumptions stated in Section 6.1.

6.4.1 Description of Case Studies

The nonlinear processes are introduced first that will be used in the following analysis:

Laser Metal Deposition Process. Laser Metal Deposition (LMD) is an advanced

Additive Manufacturing (AM) technique that guarantees rapid production with cost-

effectiveness. The fundamental idea, as shown in Figure 6.1a, is to perform selective

melting of metallic powder on a substrate via focused laser heating in a layer-by-layer

fashion. Nevertheless, it is complex thermal dominated process with numerous variables,

including laser power Q and scan speed v, affecting the melt pool height h. The underlying

first-order dynamics are represented by the following Hammerstein type nonlinear model

[123]:

ḣ(t) =
1

τh

(
−h(t) +

2

π

√
βnQ[Q(t)−Qc]
ρrCl(Tm − T0)v

)
, Q(t) > Qc (6.22)

where τh is the open-loop time constant, β is a process coefficient, nQ is the laser transfer

efficiency, Qc is the critical laser power, ρ is the melt density, r is the melt pool width-

height ratio, Cl is the molten material specific heat, and Tm/T0 are the melting/ambient
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Figure 6.1: Schematic representation of (a) Laser Metal Deposition Process, and (b) Van De Vusse

Reactor.

temperatures. The following parametric values are used (Ti-6AL-4V material type [123]):

τh = 0.5 s, β = 0.3026, nQ = 0.4, Qc = 111.72 W, ρ = 4430 kg/m3, 1/r = 0.13, Cl = 700

J/kg K, Tm = 1923 K, T0 = 292 K and v = 2 mm/s.

The process is steadily depositing a constant track height of h(0) = 50 µm with

Q(0) = 115.7 W before a set-point change of R = h(∞) = 200 µm is introduced which

requires the following steady-state laser power:

Q(∞) = Qc +
π2ρrCl(Tm − T0)v

4βnQ
h2(∞) = 175.17 W (6.23)

The model is discretised with δt = 1 ms to obtain a time varying state-space model as

follows:

Ak = 1 + δt
∂ḣ

∂h
Bk = δt

∂ḣ

∂Q
(6.24)

where
∂ḣ

∂h
= − 1

τh
and

∂ḣ

∂Q
=

KQ√
Qk −Qc

with:

KQ =
1

πτh

√
βnQ

ρrCl(Tm − T0)v
(6.25)

Thus the recursion (6.13) can be computed easily by substituting the current value of Qk

in the above expressions.

Van De Vusse Reaction. A Van De Vusse Reactor (VDVR) is a complex nonlinear

isothermal CSTR in which multiple series-parallel reactions take place simultaneously, as
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shown in Figure 6.1b, with the only desirable reaction being the production of component

B. The governing process dynamics are characterised by the following nonlinear ODEs

[124]:

dCA
dt

= −k1CA − k3C
2
A + F (CAF − CA) (6.26a)

dCB
dt

= k1CA − k2CB − FCB (6.26b)

where CA and CB are the effluent concentrations of components A and B respectively,

CAF is the inlet feed concentration, F is the diluration rate (the manipulated variable),

and k1, k2 and k3 are process parameters. The following nominal parametric values are

assigned: CAF = 10 mol/L, k1 = 50 1/hr, k2 = 100 1/hr and k3 = 10 L/mol hr [124].

Moreover, the process is operating at the steady states CA(0) = 3 mol/L, CB(0) = 1.117

mol/L and F (0) = 34.288 1/hr before a set point change of R = CB(∞) = 1.25 mol/L

is introduced. In order to implement the proposed NPFC in this situation, one needs to

compute the implied CA(∞) and F (∞) using (6.26) as follows:

CA(∞) =
−K2 ±

√
K2

2 − 4K1K3

2K1
(6.27a)

F (∞) =
k1CA(∞)− k2CB(∞)

CB(∞)
(6.27b)

where K1 = k3CB(∞)+k1, K2 = (k1−k2)CB(∞)−k1CAF and K3 = k2CAFCB(∞). Two

stable values of CA(∞), 4 and 5 mol/L respectively, are obtained but we select CA(∞) = 4

mol/L which results in a lower diluration rate F (∞) = 60 1/hr. The model (6.26) is then

discretised with δt = 3.6s to obtain a linear time varying state-space model as follows:

Ak = I2 + δt



∂ĊA
∂CA

∂ĊA
∂CB

∂ĊB
∂CA

∂ĊB
∂CB


 Bk = δt



∂ĊA
∂F

∂ĊB
∂F


 (6.28)

where elements of the state matrix Ak are:

∂ĊA
∂CA

= −k1 − 2k3CA,k
∂ĊA
∂CB

= 0
∂ĊB
∂CA

= k1
∂ĊB
∂CB

= −k2 − Fk (6.29)

and elements of the input matrix Bk are:

∂ĊA
∂F

= −CA,k
∂ĊB
∂F

= −CB,k (6.30)

Thus the recursion (6.13) can be computed easily by substituting the current CA,k, CB,k

and Fk in the above expressions.
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Figure 6.2: Efficacy of the tuning parameter S with λ = 1 for (a) LMD Process and (b) VDVR.

Note that the NPFC simulations presented in the following sections utilise a prediction

horizon nx equal to one time constant of the open-loop step response for both case studies.

6.4.2 Analysis of Tuning Efficacy

A core selling point of NPFC is the intuitive nature of controller tuning whereby one can

request performance as a relative measure compared against open-loop behaviour, using

the so called speed-up factor S; indeed, the simulation results shown in Figure 6.2 demon-

strate its significance with improved transient performances. Moreover, the Laguerre pole

λ, if chosen carefully, may be useful for fine tuning as shown in Figure 6.3. Nevertheless,

a prudent selection of both S and λ is necessary, otherwise the controller could be too

aggressive to implement practically.
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Figure 6.3: Efficacy of the Laguerre pole λ for (a) LMD Process with S = 1.10 and (b) VDVR

with S = 2.0.

6.4.3 Performance with Constraints

Figure 6.4 presents a comparison of unconstrained and constrained output responses by

imposing the following process limits: Q ≤ 0.5 kW and |∆Q| ≤ 0.1 kW/s for LMD,

and 0 ≤ F ≤ 100 1/hr and 1.02 ≤ CB ≤ 1.22 mol/L for VDVR. The simulation results

demonstrate that while constraint handling with NPFC is straightforward to implement in

practice, it unsurprisingly causes a slight slow down in performance. Consequently, both

the target S and λ are not achievable up to the desired level (see Figures 6.4a and 6.4b).

6.4.4 Comparisons with RPFC and PID in Practical Scenarios

Finally, we present a comparison between NPFC, RPFC and PID (tuned using the built-in

autotuning feature of MATLAB [120]) controllers in the presence of external disturbances,
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Figure 6.4: Comparison of constrained and unconstrained performances for (a) LMD Process with

S = 1.10, λ = 0.99, Q ≤ 0.5 kW and |∆Q| ≤ 0.1 kW/s, and (b) VDVR with S = 2.0, λ = 0.99,

0 ≤ F ≤ 100 1/hr and 1.02 ≤ CB ≤ 1.22 mol/L.

measurement noise and parametric uncertainties. A more mainstream NMPC algorithm

(such as [121]) is excluded from the analysis as, owing to considerably sophisticated de-

signs, it is expected to outperform these low-cost approaches quite comfortably. Neverthe-

less, the accompanying EJC 2022 publication [35] contains one such example; interested

readers are referred to Appendix I for details.

To demonstrate the impact of uncertainties, the true plant parameters are changed

slightly (about 10%) from the nominal values. Moreover, a minute sensor noise is added

in the output measurements along with the introduction of following disturbances: a

sudden increase in the scan speed v from 2mm/s to 6mm/s around 800ms for the LMD

process, and a 5% constant input disturbance around the 8th minute of simulation for the

VDVR.
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Figure 6.5: Comparison of (unconstrained) closed-loop performances with uncertainties for (a)

LMD Process and (b) VDVR.

The results are shown in Figure 6.5, which unsurprisingly demonstrate the superiority

of NPFC in both examples, whereas both linear controllers, i.e. RPFC and PID, suffer due

to uncertainties. Specifically, the PID causes large output overshoots whereas the RPFC

exhibits relatively slower transients along with sluggish disturbance rejection. This clearly

authenticates the efficacy of NPFC which more efficiently approximates the underlying

nonlinearities as opposed to the other two alternatives that only implement a fixed process

model for control synthesis. Hence, the proposal is expected to be far more effective in

applications having wide operating windows, i.e. where large set-point changes may be

needed frequently.

6.5 Chapter Summary

The key highlights of this chapter are summarised below:
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� The Nonlinear PFC implements a first-discretise-then-linearise approach (Section 6.2),

wherein the continuous time ODEs are integrated numerically using simple Euler

differences (6.3) before obtaining a linear time varying state space model about

a nominal trajectory (6.6). This allows manipulating a small input deviation to

speed-up the closed-loop behaviour, likewise the RPFC algorithm presented earlier

in Chapter 4.

� With the exponential input parametrisation (see Section 6.3), the main computation

in NPFC reduces to a simple recursion (6.13), which in terms of modern computing is

not significant. Hence, the resulting controller is nearly similar to the standard PFC

in cost and complexity, but with the ability to incorporate process nonlinearities far

more efficiently, which in turn leads to significanlty superior closed-loop control.



Chapter 7

Conclusions and Future Work

This chapter concludes the thesis by summarising the key findings and contributions in Sec-

tion 7.1, followed by various recommendations for potential future studies in Section 7.2.

7.1 Final Conclusions

Throughtout Chapters 3-6, this thesis has developed a collection of new and improved

PFC strategies with the goal to overcome fundamental tuning weaknesses of the original

algorithm and hence extend its usability to a variety of SISO dynamic processes. The key

outcomes of this research are summarised in the following sections:

7.1.1 Coping with Tuning Difficulties

The initial part of the study has looked at mitigating tuning challenges associated with

well-damped higher-order dynamics via two straightforward proposals.

Firstly, an improved global search algorithm is developed in Chapter 3, which, as

opposed to standard methods, performs controller tuning on the basis of predefined input

aggression. More specifically, the proposal explicitly limits the expected input activity to

a user defined level, thereby restricting the available tuning solutions to only those choices

that fulfil this criterion. This by-default leads to more practical designs; the controller

automatically adheres to the system’s actuation capacity, which in turn minimises the

possibility of inadvertent constraint violations due to large set-point changes. Nevertheless,

the underlying procedure requires some tedious offline computations that must be carried

95
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out in order to reach an appropriate tuning decision.

Secondly, a novel predictive control algorithm, called Relative PFC, is introduced in

Chapter 4 which utilises relative statements, rather than absolute measures, to enable

straightforward tuning choices with respect to a suitable benchmark behaviour. Conse-

quently, performance tuning reduces to simply one trivial statement, that is how much

faster or slower than open-loop do we want the closed-loop system to converge, which sig-

nificantly simplifies the overall design. As compared to the traditional PFC approaches,

the tuning parameter here seems to behave far more consistently so that the user achieves

the desired performance to the required degree. Nevertheless, the proposal implicitly as-

sumes satisfactory open-loop behaviour, which means it cannot be applied directly to more

challenging process dynamics. For such systems, one possibility is to use pre-stabilisation

which is the next contribution of this study.

7.1.2 Systematic Handling of Difficult Prediction Dynamics

The second objective of this research was to overcome the inherent shortcomings of PFC

associated with poorly damped and/or unstable process dynamics, for which Chapter 5

has developed a systematic framework utilising the well-known concept of pre-stabilisation

from the more mainstream MPC literature.

The proposed Pre-stabilised PFC algorithm is, in essence, a two-stage design process,

wherein the designer first employs a well-understood classical feedback control mechanism

(such as PID, lead-lag, or indeed more sophisticated approaches based on pole cancellation

or pole placement) to modify the difficult open-loop behaviour, thereafter deploying a cas-

cade structure for a reliable PFC implementation. This shows improvements on two main

fronts: firstly, the controller tuning after pre-stabilisation becomes far more consistent

and meaningful, and secondly, the availability of stable and convergent predictions allows

nominal recursive feasibility results under constraints, which is generally not the case with

difficult open-loop dynamics. An inevitable consequence of pre-stabilisation, however, is

somewhat complicated constraint handling, but given modern computing capacity this is

not likely to be a problem.
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7.1.3 Efficient Nonlinear Predictive Control

The final contribution of this study is the development of computationally efficient and

cheap nonlinear predictive control in Chapter 6.

The proposed Nonlinear PFC is, in principle, based on the novel relative tuning pro-

posal of Chapter 4, which allows relatively low-cost implementations and thus negates the

need of expensive consultants for controller deployment and maintenance. This is because,

despite being fully nonlinear, the required online computations are relatively minor, akin

to the standard PFC, and hence can easily be coded on low-cost processors. Furthermore,

the incorporation of systematic constraint handling is straightforward and can be managed

with a simple for loop. Another benefit of the proposal is its inherent robustness to para-

metric uncertainties, which ensures far superior performances than PFC and PID in the

presence of undesirable perturbations. Nevertheless, this method is currently restricted

to a class of nonlinear systems that mainly exhibit stable and well-damped open-loop

behaviour; nonlinear control of more complicated systems has been left as a future work.

7.2 Future Directions

Although this study has provided some significant contributions, there are still opportu-

nities for further improvements that necessitate continued research efforts. Few ideas and

suggestions in this regard are listed below:

(i) Tuning ambiguity is one of the core weaknesses of Conventional PFC, and indeed

the available tuning guidelines often fail to address this issue satisfactorily. While

the new tuning algorithm of Chapter 3 seems to be a meaningful alternative, it is

nonetheless a typical global search which may not always be acceptable in practice.

Clearly, a method that provides unique tuning choices would be far more practical

and is something worth investigating.

(ii) This thesis has investigated the pros and cons of pre-stabilisation with regards to

challenging open-loop dynamics. Hence, a possible future work could be to develop

a more generic approach, i.e. the one that includes all dynamic types—stable, un-
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stable, oscillatory and non-minimum phase, in order to mitigate the inherent tuning

challenges of PFC.

(iii) Another idea is to extend the proposed Nonlinear PFC design to include challenging

open-loop dynamics within the framework. Based on the developments in Chapters 5

and 6, it is expected that some form of inner compensation, perhaps using state

estimation/feedback, would be needed to develop an effective nonlinear controller in

such cases.

(iv) Multivariable PID is quite common in literature that uses simple decoupling strate-

gies (such as, [125, 126]) to transform the Multiple Input Multiple Output (MIMO)

problem into mutiple SISO subsytems for straightforward designs. Since PFC is an

excellent alternative of PID, a similar decoupling strategy could also be implemented

in principle to develop an efficient MIMO PFC controller.

(v) Recent years have witnessed the development of numerous modified PFC variants

including Pre-stabilised PFC [31, 84], Laguerre PFC [20], Input Shaping PFC [22, 85],

Pole Placement PFC [21, 89], and other PFC designs such as [15, 90]. Hence, it seems

sensible to conduct a systematic investigation of these alternatives and consequently

develop well-structured guidelines to enable application specific designs in different

scenarios and conditions.
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Abstract. Predictive functional control (PFC) has emerged as a popu-
lar industrial choice owing to its simplicity and cost-effectiveness. Nev-
ertheless, its efficacy diminishes when dealing with challenging dynamics
because of prediction mismatch in such scenarios. This paper presents a
proposal for reducing prediction mismatch and thus improving behaviour
for simple unstable processes; a two-stage design methodology pre-
stabilises predictions via proportional compensation before introducing
the PFC component. It is demonstrated that pre-stabilisation reduces
the dependency of the closed-loop pole on the coincidence point and
also improves robustness to uncertainty. Simulation results verify the
improved performance as compared to conventional PFC.

Keywords: PFC · Coincidence horizon · Pre-stabilisation ·
Proportional compensation

1 Introduction

Predictive functional control (PFC) offers numerous beneficial attributes such as
trivial coding, easy implementation and simple handling without needing sophis-
ticated knowledge, software or specialised personnel. These qualities, along with
systematic handling of constraints and dead-times compared to other conven-
tional methods, say proportional-integral-derivative (PID) control, make PFC a
popular alternative in industry, with numerous successful applications [1].

Conventional PFC [1–3] matches the plant output prediction to a desired
first-order target trajectory at only one future point, the so-called coincidence
point, by keeping the predicted input constant. One may ask if there exists
a reliable criterion for selecting the desired target dynamics and coincidence
point? Researchers have established generic guidelines for systems with relatively
benign dynamics. For example, it is recommended [2] to use a one-step ahead
model prediction for first-order plant as this guarantees target behaviour for
first-order systems [4]. Alternatively, one recommendation for higher-order sys-
tems is to choose the point of inflection (where the gradient is maximum) on the

c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
J. A. Gonçalves et al. (Eds.): CONTROLO 2020, LNEE 695, pp. 12–22, 2021.
https://doi.org/10.1007/978-3-030-58653-9_2
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step response curve as the coincidence point although it is arguable whether this
would work well for systems with challenging dynamics. Moreover, for monoton-
ically convergent higher-order systems, a coincidence point where the open-loop
step response has risen to approximately 40–80% of the steady-state is often
a better choice [4]. Nevertheless, matching underdamped, unstable and non-
minimum phase dynamics with target first-order behaviour does not make sense
and coincidence point selection for such systems is not straight-forward. Chal-
lenging dynamics demand a different parametrisation of the degrees-of-freedom
[5], as the typical constant input assumption within the prediction horizon may
be inappropriate. One recent attempt [6] parametrised the input with first-order
Laguerre polynomial, which improves prediction consistency and convergence
rate as compared to the original PFC for systems with simple dynamics; how-
ever, this approach is not really tailored to systems with difficult dynamics.

The main objective of this paper is to build on the ideas in [5,7] and indeed
conventional wisdom in PFC [2] which is to modify unstable dynamics before
applying the PFC design. Accepted practice in the mainstream MPC commu-
nity uses pre-stabilisation [8,9], so this paper proposes a a two-stage PFC design
methodology by integrating pre-stabilised dynamics with PFC decision mak-
ing. Initially we restrict our study to first-order unstable plants focusing on the
effects of a pre-stabilising structure on closed-loop performance, sensitivity and
constraint handling. Specifically this paper analyses the relationship between the
target pole, pre-stabilising gain and coincidence horizon and establishes guide-
lines for systematic and effective tuning. Generally a trade-off between closed-
loop performance and sensitivity is observed, which signifies the importance of
offline sensitivity analysis for proper selection of tuning parameters; something
not in the conventional PFC literature. With pre-stabilisation, numerical simula-
tions show improved closed-loop performance as compared to conventional PFC.
Extensions for systems with higher-order dynamics constitutes future work.

The remainder of this paper is organised as follows: Sect. 2 succinctly for-
mulates the control problem. Section 3 proposes the two-stage PFC and dis-
cusses sensitivity analysis, tuning procedures and constraint handling. Section 4
presents the numerical illustrations. Finally the paper concludes in Sect. 5.

2 Problem Statement

Consider an unstable first-order plant given by:

Gp(z) =
bpz

−1−w

1 + apz−1
(1)

where ap and bp are the plant parameters, w is the system delay and |ap| ≥ 1
represents the open-loop unstable pole. The system Eq. (1) is subject to input,
input rate and output constraints i.e.

umin ≤ u(k) ≤ umax Δumin ≤ Δu(k) ≤ Δumax ymin ≤ y(k) ≤ ymax (2)
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where Δ = 1−z−1 is the difference operator. The objective is to design a PFC by
first stabilising the prediction dynamics. Furthermore the controller is expected
to show some degree of robustness against measurement noise, disturbances and
multiplicative uncertainty.

3 Two-Stage Predictive Functional Control

This section proposes a two-stage design approach to controlling the unsta-
ble system with PFC. In stage one, the prediction model is stabilised offline
through proportional compensation before employing PFC. It should be noted
that although open-loop PFC may stabilise unstable systems in an unconstrained
environment, pre-stabilisation is necessary for accurate constraint handling.
Denote the system model representing (1) as Gm(z), (am = ap and bm = bp
if Gm = Gp):

Gm(z) =
bmz−1

1 + amz−1
(3)

The dead-time w is excluded from the prediction model and is added separately
in the PFC control law. Next we discuss two alternatives to stabilise system
Eq. (3).

Fig. 1. Pre-stabilisation with proportional compensation

3.1 Stage-1: Model Pre-stabilisation

The delay-free model (3) can be stabilised with proportional compensation either
in the feedback path (Fig. 1(a)) or in the forward path (Fig. 1(b)). The closed-
loop transfer function for both cases has the form:

Tm(z) =
ym(z)

v(z)
=

βz−1

1 + αz−1
(4)

where β = bm and β = Kbm for compensation in feedback and forward paths
respectively and α = am + Kbm. Evidently Tm(z) is stable if 0 ≤ |α| < 1.
Moreover, the input uk for feedback path compensation is parameterised as:

uk = vk −Kym,k (5)
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and for forward path compensation as:

uk = K(vk − ym,k) (6)

The implementation of PFC with Fig. 1(a) for integral systems only was reported
verbally in [7]. The current study generalises this concept for unstable dynamics
and analyses the potential merits and demerits against the structure of Fig. 1(b).
The expectation is to gain useful insights for generalising pre-conditioning with
more advanced compensation for more complex plants.

Fig. 2. PPFC structure—PFC on pre-stabilised model with proportional gain in (a)
feedback path, and (b) forward path

3.2 Stage-2: PFC Design

The pre-stabilised PFC (PPFC) structure employing a PFC loop on the sta-
bilised model is shown in Fig. 2. In PFC, the output prediction, yp,k is required
to follow target first-order dynamics such that:

yp,k+i = R− (R− yp,k)ρ
i (7)

where R is the steady-state set-point value and ρ is the target closed-loop pole.
The PFC control law matches the output prediction yp,k+i and target output
R − (R − yp,k)ρ

i at a single point in future, known as the coincidence point h,
while assuming a constant predicted input, i.e. vk = vk+i|k, ∀i > 0. Hence, after
recursion on model (4), an i-step ahead model prediction is obtained [1,3]:

ym,k+i = (−α)iym,k + [(−α)i−1β + (−α)i−2β + · · · + β]vk (8)

The prediction Eq. (8), requires correction from bias due to uncertainties with
the offset term dk where dk = yp,k − ym,k. Thus PFC is defined from:

yp,k+i = ym,k+i + dk = R− (R− yp,k)ρ
i (9)

Substituting from (8), the solution to (9), or PPFC law, is given as:

vk =
R− (R− yp,k)ρ

h − (−α)hym,k − dk∑h
j=1(−α)h−jβ

(10)
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Theorem 1. For a given ρ and h either pre-stabilisation technique results in
the same control law provided equal proportional gain is used.

Proof. First using Eq. (10) in Eq. (5) with β = bm, gives:

ufback
k =

R− (R− yp,k)ρ
h − (−α)hym,k − dk∑h

j=1(−α)h−jbm
−Kym,k (11)

Now using Eq. (10) in Eq. (6) with β = Kbm:

uforward
k = K

[
R− (R− yp,k)ρ

h − (−α)hym,k − dk

K
∑h

j=1(−α)h−jbm
− ym,k

]
= ufback

k

Thus same control law results irrespective of the pre-stabilisation technique. ��

Remark 1. Theorem 1 shows there is no obvious advantage of either pre-
stabilisation method. Thus for complex systems, pre-conditioning in the feed-
back path is expected to give same performance as in the forward path.

Remark 2. System delays can be easily incorporated into PFC control law [3]
by noting that E(yp,k+w) = yp,k + ym,k − ym,k−w. Therefore Eq. (10) becomes:

vk =
R− [R− E(yp,k+w)]ρh − (−α)hym,k − dk∑h

j=1(−α)h−jβ
(12)

where dk = yp,k − ym,k−w. When w = 0, Eq. (10) and Eq. (12) are no different.

3.3 Sensitivity Analysis

The ability of a feedback loop to reject unwanted perturbations in the form of
noise, disturbance and multiplicative uncertainty can be assessed with frequency
domain sensitivity analysis [10]. Control law (11) can be re-arranged as:

uk = F (z)R−M(z)yp,k −N(z)ym,k (13)

where F (z), M(z) and N(z) are appropriate polynomials. Note further:

{ym,k = Gm(z)uk, (13)} ⇒ D(z)uk = F (z)R−M(z)yp,k (14)

with D(z) = 1+N(z)Gm(z). Eq. (14) is represented in the block diagram of Fig. 3
where disturbance dy,k and measurement noise nk are also shown; the effective
control law is C(z) = M(z)D−1(z). Consequently, PC(z) = 1 + C(z)Gp(z) =
D(z)A(z)+M(z)B(z) is the closed-loop pole polynomial. From Fig. 3, sensitivity
of the plant input to noise is found to be:

Sun(z) = C(z)[1 + C(z)Gp(z)]
−1 = M(z)P−1

C (z)A(z) (15)
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whereas sensitivity of the plant output to disturbance is:

Syd(z) = [1 + C(z)Gp(z)]
−1 = A(z)P−1

C (z)D(z) (16)

Sensitivity Sδ(z) of the closed-loop pole to multiplicative uncertainty uses:

PC(z) = 1 + C(z)[Gp(z) + δGp(z)]

= [1 + C(z)Gp(z)]
(
1 + δC(z)Gp(z)[1 + C(z)Gp(z)]

−1
)

where δ is possibly a frequency dependent scalar. Thus:

Sδ(z) = C(z)Gp(z)[1 + C(z)Gp(z)]
−1 = M(z)P−1

C (z)B(z) (17)

Fig. 3. PPFC block diagram for sensitivity analysis

3.4 Tuning

There are two tuning parameters for a given target pole ρ: the pre-stabilising
gain K and the coincidence point h. K determines the position of the pole |α| in
z-plane which logically should be restricted between ρ and 1. Therefore K can
be tuned within a range where KU and KL are upper and lower limits:

KL = −
(

1 + am
bm

)
< K ≤ −

(
ρ + am
bm

)
= KU (18)

Theorem 2. Closed-loop pole zCL = ρ is guaranteed if either

(i) proportional gain K = KU irrespective of h, or
(ii) coincidence point h = 1 irrespective of K.

Proof. We know from [4] that:

zCL = −α +
ρh − (−α)h

∑h
j=1(−α)h−j
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(i) selecting K = −(ρ + am)/bm implies:

α = am −
(
ρ + am
bm

)
bm = −ρ

Consequently zCL = ρ is guaranteed irrespective of h.

(ii) selecting h = 1 implies:

zCL = −α +
ρ1 − (−α)1

1
= ρ

Hence zCL = ρ is guaranteed irrespective of K. ��

Corollary 1. If K = KU then Sun and Sδ are independent of h.

Proof. A(z) = 1 + apz
−1 and B(z) = bpz

−1 do not involve h, plus Theorem 2
proves PC(z) does not depend on h either. This leaves only M(z) to check. First
note that for K = −(ρ + am)/bm,

h∑

j=1

(−α)h−jbm =
bm[1 − (−α)h]

1 + α
=

bm(1 − ρh)

1 − ρ
⇒ M(z) =

1 − ρh

bm(1−ρh)
1−ρ

=
1 − ρ

bm

which makes M(z) free from h. Thus both Sun and Sδ are independent of h. ��

Algorithm 1. Select K mid way in its range i.e. K = (KU +KL)/2. This implies
ρ ≤ zCL < (1 + ρ)/2 for 1 ≤ h < ∞ and also keeps h relevant for tuning offline
sensitivity functions.

3.5 Constraint Handling

Another important aspect is the proper handling of constraints. Since pre-
stabilisation changes the PFC control variable to vk, this implies a transfer of
constraints from uk to vk is necessary, for example via a process of back calcu-
lation [2]. For pre-stabilisation with proportional gain in the feedback path:

umin + Kym,k ≤vk ≤ umax + Kym,k

Δumin + KΔym,k ≤ Δvk ≤ Δumax + KΔym,k (19)

and if proportional gain is placed in the forward path:

umin

K
+ ym,k ≤vk ≤ umax

K
+ ym,k

Δumin

K
+ Δym,k ≤ Δvk ≤ Δumax

K
+ Δym,k (20)

Output constraints on the other hand are incorporated through predictions (8).
At each time sample k, output constraints have to be satisfied throughout and
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beyond the coincidence horizon, that is until the predictions have settled [9].
From Eqs. (8)–(9), the predictions for constraint horizon nc are:

yp,k+j = Pjym,k + Hjvk + Lj ; j = 1, 2, . . . , nc, nc 	 h (21)

Therefore the output constraints ymin ≤ yp,k ≤ ymax are transferred to:

ymin ≤ Pjym,k + Hjvk + Lj ≤ ymax; j = 1, 2, . . . , nc (22)

One can utilise a simple loop to test each constraint in turn and select the vk
closest to the nominal value from (10) which satisfies all the constraints [6].

Theorem 3. Given that vk−1 is feasible by assumption and one is able to select
vk = vk−1, constraints can always be satisfied in the nominal case as long as nc

is large enough. Proof equivalent to that in [6].

4 Simulation Results and Discussion

This section examines the performance of the proposed PPFC controller and
compares it with conventional PFC. The unstable plant and constraints are:

G1 =
0.2361z−6

1 − 1.118z−1
; −0.4 ≤ u(k) ≤ 0.3, −0.1 ≤ Δu(k) ≤ 0.1; 0 ≤ y(k) ≤ 0.9

A disturbance dy,k = 0.5 is introduced at the 35th sample and white sensor noise
nkε[−0.1, 0.1] after the 55th sample; the multiplicative uncertainty is δ = 0.5.
The target dynamics are governed by ρ = 0.75 and R = 1 resulting in 0.4998 <
K ≤ 1.5587. We choose the middle value of gain according to Algorithm 1, thus
K = 1.03 guarantees 0.75 ≤ zCL < 0.875. Note that the output upper limit
is intentionally kept below set point to analyse the efficacy of PPFC constraint
handling.

4.1 Sensitivity Analysis

A sensitivity analysis is used to select the coincidence horizon h. Figure 4 shows a
comparison of sensitivity functions between PPFC and conventional PFC for dif-
ferent h. An worsening trend in sensitivities can be observed for PFC with higher
h whereas for PPFC this trend is reversed apart from disturbance rejection that
deteriorates slightly. This is expected because with PFC a larger h means the
control law is being based on an increasingly large/divergent open-loop predic-
tion and thus is unreliable. The core point is that PPFC clearly outperforms
PFC in terms of sensitivity and one can choose h to get some trade off between
the different sensitivity functions.
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Fig. 4. Comparison of sensitivity plots for G1 as function of h between PPFC with
K = 1.03 and conventional PFC (vertical scales for bottom two figures are not equal)

4.2 Closed-Loop Behaviour

The unconstrained time-domain performance shown in Fig. 5 agrees with the
results of sensitivity analysis, although nominal performance is affected some-
what by the parameter uncertainty. Again PPFC clearly outperforms PFC and
has much more consistent behaviour as h changes. It is particularly notable that
PFC begins to fail for large h which is the opposite observation one gets with
stable open-loop processes.

When constraints are introduced the advantages of PPFC are even more
pronounced as seen in Fig. 6. Notably PPFC performs well notwithstanding the
unstable pole and retains feasibility, whereas PFC fails and has an unstable
closed-loop.
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Fig. 5. Comparison of unconstrained input and output for G1 as function of h between
PPFC with K = 1.03 and conventional PFC
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Fig. 6. Comparison of constrained input and output for G1 between PPFC with K =
1.03, h = 15 and conventional PFC with h = 1

5 Conclusions

This paper proposes a two-stage design approach to controlling unstable first-
order plants with PFC. It has been shown that pre-stabilisation with a simple
proportional gain improves performance, both with and without constraints. The
paper establishes systematic guidelines for selection of both the proportional gain
and other tuning parameters and proposes some offline analysis to consider their
impact on overall performance. The theoretical aspects of this study have been
validated through numerical simulations which demonstrate superior closed-loop
control with the proposed scheme.

In future the authors plan to extend this study to more challenging unstable
and/or higher-order dynamics. We expect a similar approach to pre-condition
oscillatory and non-minimum phase behaviour with PD loops could be exploited
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which otherwise are difficult to control with conventional PFC alone. It is noted
that complex pre-conditioning loops within the PFC framework might involve
a slightly more demanding constraint handling procedure, but given modern
computing capacity this is not likely to be a problem.
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Predictive Functional Control with Explicit Pre-conditioning for
Oscillatory Dynamic Systems
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Abstract— Predictive functional control (PFC) is a popular
industrial process control strategy, but its rather simplistic
design renders it less effective in more demanding situations;
for example, under-damping, open-loop instability or signifi-
cant non-minimum phase characteristics have been difficult to
control. Devising efficient strategies for such systems remains a
topic of interest within the PFC community. This paper shows
how a systematic pre-conditioning approach can improve PFC
performance for under-damped systems. The proposed pre-
conditioning stage is essentially an additional feedback loop
whose sole purpose is to provide reliable predictions for PFC
decision making. To prevent complicated performance tuning
and constraints management procedures, compensator design
is kept fairly simple and intuitive. Numerical studies verify the
efficacy of the proposal.

Index Terms—PFC, coincidence point, under-damping, feed-
back compensation, pre-conditioning

I. INTRODUCTION

The industrial popularity of predictive functional control
(PFC) stems from the simplistic design and development,
cost-effective commissioning and maintenance thereafter,
and also from the fact that being model-based strategy,
it provides better closed-loop control than the obvious al-
ternative of PID, especially in handling large dead-times
and constraints [1]. This argument is strongly supported by
numerous successful industrial PFC applications [2].

The basic PFC algorithm [2]–[4] matches output predic-
tions with a desired first-order response at only one future
point, known as the coincidence point, and with a fixed
control action. Intuitively this approach is effective as long as
the model behaviour is smooth and monotonically convergent
after immediate transients. A prime example is stable first-
order plants for which PFC technique is proven to drive the
controlled variable to any desirable target trajectory provided
“coincidence” occurs exactly one-step ahead [3]. Similar
closed-loop performance could be expected with monotonic
higher-order dynamics (i.e. dynamics with over-damping),
although a coincidence point of one may not suffice due to
lag in the predictions [5]. PFC design guidelines for such
simple systems are well understood in literature.

What happens when model predictions are oscillatory or,
in the worst scenario, completely divergent? Simply put,
PFC loses efficacy in such difficult situations [3], [5]. This
apparently relates to the fact that constant input within pre-
diction horizon lacks enough flexibility to tackle oscillatory
or divergent dynamics and also provide a smooth closed-loop

1,2Both authors are associated with the Department of Automatic Con-
trol and Systems Engineering, University of Sheffield, Mappin Street,
S1 3JD, UK. Email Addresses: 1msaftab1@sheffield.ac.uk,
2j.a.rossiter@sheffield.ac.uk

system output [6]. Nevertheless researchers have suggested
various modifications in the original PFC to handle difficult
dynamics.

One proposal [7] recommends altering the input by sep-
arating and subsequently cancelling the un-wanted dynam-
ics to obtain convergent predictions. This method provides
many-fold performance improvements while retaining the ba-
sic PFC characteristics but lacks practicality as the proposed
minimum-moves shaping produces aggressive input activity.
Another input shaping proposal [6] ensures relatively less
aggressive control moves by allowing predictions to converge
over many more samples. This method, tested on numerous
simulation models and hardware application, outperforms the
predecessor but relies on some rather less intuitive offline
computations. Yet another proposal utilises the partial frac-
tion decomposition of higher-order models [8] into several
first-order systems to avail a simple tuning procedure. For
oscillatory dynamics [9], however, such a decomposition
explicitly embeds complex number algebra into computations
limiting its practicality. Suggested modifications (within the
same paper) guarantee real number computation but at the
price of increased coding requirements.

Designs integrating explicit pre-compensation are fairly
common in the mainstream model predictive control litera-
ture, whereby one stabilises the unsettled model predictions
with some form of feedback compensation [10], [11]. The
concept of pre-compensation in PFC, however, is generally
restricted to the use of simple proportional gains [12]–[14]
to avoid the resultant complex constraints management [4].
Although proportional compensation is usually sufficient for
simple systems, challenging dynamics require more involved
pre-conditioning strategies. This paper has therefore two
major contributions: firstly it proposes an intuitive pre-
conditioning technique that relates the compensator parame-
ters to open-loop system dynamics, and secondly guarantees
simpler tuning and constraints handling, on par with the
standard PFC at best.

The remainder of this paper is organised as follows:
Section II defines the problem and sets control objectives.
The main methodology is presented in Sections III & IV
where the pre-compensator and PFC designs are discussed
in detail. Numerical studies follow next in Section V which
discuss nominal performance and draw comparisons against
standard PFC. Finally the paper concludes in Section VI.
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II. PROBLEM STATEMENT

Consider an nth order stable SISO system

G(z) =
b(z)

a(z)
; a(z) = a−(z)a+(z) (1)

where G(z) is strictly proper, a+(z) contains the dominant
oscillatory modes z+a = pr ± jpi, and a−(z) represents the
remaining poles. The system (1) may also be subject to input
(uk), input-rate (∆uk) and/or output (yk) constraints,

umin ≤uk ≤ umax

∆umin ≤ ∆uk ≤ ∆umax

ymin ≤yk ≤ ymax (2)

where ∆ = 1− z−1 is the difference operator. The aim is to
design a predictive functional controller that operates on pre-
conditioned (by using a simple inner feedback loop) model
predictions. The pre-compensator is expected to filter out
effectively the oscillatory dynamics from (1), while adhering
to specified constraints at the same time.

III. MODEL PRE-CONDITIONING

It is obvious that the constant future input assumption
within the PFC framework would fail to damp the oscillatory
predictions resulting in relatively poor performance. How-
ever one can modify predictions to be smoother with pre-
conditioning, and this will enable better-posed PFC decision
making. The idea of Pre-conditioned PFC (PPFC) is shown
in Fig. 1 where the prediction dynamics (1) are compensated
through C(z) via an internal feedback control loop. Next we
present the design of C(z) with a pole-placement technique.

A. Simple Pole-Placement Compensator

Assume that feedback compensation of G(z) with C(z),
as shown in Fig. 1, results in the transfer function T (z) which
provides smooth and monotonically convergent prediction
behaviour. Then one may write

T (z) =
C(z)G(z)

1 + C(z)G(z)
=
β(z)

α(z)
(3)

After simple manipulations, this leads to

C(z) =
β(z)a(z)

b(z)[α(z)− β(z)]

G(z)+-
vk uk ykC(z)



yk

T(z)

PFC
r

Fig. 1. PPFC structure comprising inner feedback pre-compensation and
outer PFC loop.

The open-loop zeros b(z) become compensator poles that
could cause stability issues especially with unstable zeros.
To avoid this, we set β(z) = Kb(z), K 6= 0 and get

C(z) = K
a(z)

α(z)−Kb(z)
(4)

From (4), it is obvious that the compensator actually cancels
the open-loop poles a(z) and places new poles given by
α(z). Would such a design based on pole-cancellation be
acceptable? Let us try to understand the rationale behind
pole-placement in the context of PFC.

B. Rationale behind Pole-Cancellation

At this point, readers are reminded of the main design
objective, that is to obtain smooth and well-settled model
predictions because conventional PFC lacks flexibility to
handle oscillatory dynamics efficiently. Traditional PID and
lag-lead compensation have been proven ineffective in com-
pletely eliminating oscillations especially with higher-order
dynamics [15]. The obvious alternative in this case is pole-
placement (4).

While it is best to avoid cancelling open-loop unstable
poles, researchers report that the decision to either shift or
cancel a real stable pole is merely based on design trade-
off between either having the shifted pole appear as zero of
the sensitivity function to output disturbance, or having the
cancelled mode appear as pole of the sensitivity function to
input disturbance [16]. A similar argument holds for complex
conjugate pole pair, albeit cancellation in this case implies
oscillatory input disturbance rejection.

Another concern is related to inexact pole-zero cancel-
lation which is almost always inevitable due to modelling
errors. For unstable poles this may lead to output divergence,
but for stable open-loop poles the impact depends upon
magnitude of the residues from partial fraction expansion
and consequently on the design specification for satisfactory
performance. Nevertheless, one should not forget that the
pole-placement compensator (4) is assisted by an outer
PFC loop, which is tuned for performance, robustness and
disturbance rejection.

Although a clear understanding would require formal
sensitivity analysis, here we demonstrate the performance
of a pole-placement technique in combination with PFC,
shown in Fig. 2, against a pole-shifting compensator in
the presence of output disturbance (constant 0.25 amplitude
starting at 25th sample) and input disturbance (constant
−0.25 amplitude starting at 60th sample) for G1 (see Sec-
tion V-A) with deliberately introduced modelling errors.
Evidently pole-placement provides better output disturbance
rejection whereas input disturbance rejection is equivalent
for both controllers. Moreover, while it may not always be
possible to design a pole-shifting controller, the proposed
pole-placement compensator always exists for any order
dynamic model (1).

From now onwards, we shall focus on the attributes of
pole-placement compensator and the design simplicity it
brings within the PFC framework.
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Fig. 2. PFC comparison with pole-cancellation and pole-shifting com-
pensation for G1 in the presence of input and output disturbances with
modelling mismatches

C. Selecting Compensated Dynamics

In order to design a pole-placement compensator, appro-
priate selection of α(z) is extremely important. Ideally one
would want the compensated model T (z) to exhibit non-
oscillatory behaviour. A good starting point then is to place
the “new” poles of T (z) at the projection of dominant oscilla-
tory poles of G(z) along the real axis. This would effectively
filter out the unwanted oscillations without compromising
convergence speed [6]. Mathematically

T (z) = K
b(z)

α(z)
; α(z) = a−(z)α+(z) (5)

with α+(z) = (1− prz−1)2.
It is necessary for internal stability that all poles of C(z)

remain inside the unit circle. This can be guaranteed by
keeping K within the stable range. However it is quite
tedious to obtain an analytical expression for K for higher
than second-order systems and therefore we recommend
using a graphical tool such as root locus (see, for example
[17]) on the denominator of (4) to find the stability margin
of C(z).

D. Second-Order Models

Before moving on to the next design stage, it is pertinent
to discuss pre-conditioning of under-damped second-order
systems exclusively. Assume a(z) = 1+a1z

−1 +a2z
−2 and

b(z) = b1z
−1+b2z

−2 and also that the oscillatory modes are
za = pr ± jpi. Then according to the preceding discussion
α(z) = 1 − 2prz

−1 + p2rz
−2 is the pole polynomial of the

compensated model. Theorem 1 below provides analytical
expressions for the stable K range.

Theorem 1: A pre-conditioning compensator designed for
second-order model using (4)-(5) is guaranteed stable if:

K <



min

[
(1− pr)2

b1(1− zz)
,− (1 + pr)2

b1(1 + zz)

]
; −∞ < zz ≤ −1

(1− pr)2

b1(1− zz)
; −1 < zz < pr

1− p2r
|b1zz|

; zz > pr

where zz = −b2/b1 is the system zero.
Proof: The controller poles are:

zC =
(2pr +Kb1)±

√
(2pr +Kb1)2 − 4(p2r −Kb2)

2

For convenience, we substitute x1 = 0.5(2pr + Kb1) and
x2 = 0.5

√
(2pr +Kb1)2 − 4(p2r −Kb2). Then zC1 = x1 −

x2 and zC2 = x1 + x2.
(i) if zz ≤ −1 then by increasing K, zC1

moves towards zz
whereas zC2

goes towards +∞. For stability we must ensure
zC1

> −1 and zC2
< 1. These two conditions transform into:

zC1
> −1 =⇒ K < − (1 + pr)2

b1(1 + zz)

zC2 < 1 =⇒ K <
(1− pr)2

b1(1− zz)

Depending on the actual position of pr, one of the controller
poles is relatively nearer to the stability boundary. Therefore:

K < min

[
(1− pr)2

b1(1− zz)
,− (1 + pr)2

b1(1 + zz)

]
;−∞ < zz ≤ −1

(6)
(ii) for −1 < zz < pr, zC1 can never leave the unit circle.
Therefore it is sufficient to check only:

K <
(1− pr)2

b1(1− zz)
; −1 < zz < pr (7)

(iii) zz > pr results in complex conjugate controller poles.
In this case, guaranteed stability |zC | < 1 implies:

K <
1− p2r
|b1zz|

; zz > pr (8)

which completes the proof.
Remark 1: For some systems one or more zeros might be

located at pr. To prevent inadvertent pole-zero cancellation in
such cases, we suggest replacing pr in the preceding analysis
with pr + ε, where ε→ 0 and |pr + ε| < 1.

IV. NOMINAL PFC DESIGN

The design stage implements the pre-conditioned model
predictions within a PFC framework, as shown in Fig. 1.

A. The PPFC Control Law

Similar to conventional PFC, the Pre-conditioned PFC
(PPFC) drives the output prediction yk+i|k exponentially
closer to the set point r with each time step. This convergence
mainly depends upon the target pole ρ defined by ρ =
exp(−3T/CLTR) where T and CLTR are sampling time
and desired closed-loop settling time respectively. Mathemat-
ically, the PFC law is derived from the target:

yk+i|k = r − (r − yk)ρi; i > 0 (9)

On the other hand, eqn. (5) i.e. α(z)y(z) = Kb(z)v(z)
provides i-step ahead prediction information as follows:

yk+i|k = KHi v−→k +KPi v←−k−1 +Qi y←−k; i > 0 (10)
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where Hi, Pi and Qi depend upon model parameters. For
an N th order model:

v−→k =


vk
vk+1

...
vk+i−1

 ; v←−k−1 =


vk−1
vk−2

...
vk−N+1

 ; y
←−k =


yk
yk−1

...
yk−N+1


By keeping a constant future input i.e. vk+i = vk, ∀i > 0, the
i-step ahead model prediction (10) is matched to the target
(9) at one future point called the coincidence point ny i.e.
at i = ny . This results in the PPFC law

vk =
r − (r − yk)ρny − (KPny

v←−k−1 +Qny
y
←−k)

Kh
(11)

where h =
∑ny

j=1H
j
ny

and Hj
ny

is the jth element of Hny
.

Naturally the main interest is in finding actual input uk that
drives the plant. It is evident from Fig. 1

u(z) = C(z)[v(z)− y(z)] (12)

Lemma 1: Formulation (12) is equivalent to:

u(z) = K
a+(z)

α+(z)
v(z)

Proof: Substituting C(z) = Ka(z)/[α(z)−Kb(z)] and
y(z) = [b(z)/a(z)]u(z) in (12), we get:

u(z) = K
a(z)

α(z)
v(z)

further α(z) = a−(z)α+(z) and a(z) = a−(z)a+(z) imply:

u(z) = K
a+(z)

α+(z)
v(z) (13)

which is a simple equivalent of (12).
Extracting either uk or vk from the other simply requires

vector/matrix multiplication as shown below. Hence the
associated coding requirement is elementary.

uk = Kâ+ v←−k − α̂+ u←−k−1

vk =
α̂+

K
u←−k − â+ v←−k−1 (14)

where vectors â+ and α̂+ contain coefficients of polynomials
a+(z) and α+(z) respectively.

Remark 2: Subtleties related to prediction-bias removal
and offset-free tracking have been omitted from (11) as
these do not affect the main analysis and results. Numerical
examples nonetheless include relevant algebra. Readers are
referred to [3] for details.

B. Tuning Procedure

Though PFC tuning has traditionally been heuristic, re-
searchers have managed to establish some generic guidelines
for simpler systems [7], [18]. Pre-compensation effectively
changes the oscillatory open-loop step response of G(z) to
smoother and more settled behaviour, and therefore standard
PFC tuning procedures can be fully utilised. In this study,
the PPFC control law (11) depends upon three significant
parameters: the coincidence horizon ny , the target pole ρ

and the compensator gain K. While a judicious selection of
ny and ρ is of paramount importance, surprisingly K does
not affect the closed-loop performance.

Theorem 2: The plant input uk is independent of compen-
sator gain K.

Proof: In z-domain, eqn. (11) can be written as:

v(z) =
(1− ρny )r(z) + [ρny −Q(z)]y(z)

K[h+ P (z)]

where P (z) =
∑N−1

j=1 P j
ny
z−j and Q(z) =

∑N−1
j=0 Qj

ny
z−j .

It follows from Lemma 1:

u(z) =��K
a+(z)

α+(z)
· (1− ρny )r(z) + [ρny −Q(z)]y(z)

��K[h+ P (z)]

or equivalently in the time-domain:

uk =

∑2
j=0 a

+
j (1− ρny )r − (P̃ny

u←−k−1 + Q̃ny
y
←−k)

h
(15)

for suitable P̃ny
and Q̃ny

. Hence the plant input is indepen-
dent of K. Nevertheless, appropriate selection of K is still
necessary to maintain internal stability.

The recommended tuning procedure [5] suggests choosing
ny within the range kL ≤ ny ≤ kU , where kL and
kU represent the time samples when the normalised unit-
step response of T (z) reaches approximately 0.4 and 0.8
respectively with significant gradient. As for the target pole,
one may compare several first-order responses with differing
ρ against the normalised step-response to find an intercept
within the above-mentioned ny range. See, for instance,
Figs. 3 and 5.

C. Constraint Management

Knowledge of uk from (14) can facilitate constraint han-
dling in fairly straightforward manner. Instead of adopting
computation-intensive algorithms, such as back-calculation
[4], one may opt for input and output predictions for con-
straint assessment. The only caveat, however, is the need to
recalculate corrected vk, using (14), if input violations are
detected. Furthermore, output constraints must be validated
before inputs, since yk is based on the pre-conditioned
model predictions and hence depend upon vk. One may use
prediction equation (10) by selecting such value of vk closest
to the one obtained with (11) that satisfies all constraints for
sufficiently large validation horizon nc i.e.

ymin ≤ KHjvk +KPj v←−k−1 +Qj y←−k ≤ ymax (16)

where j = 1, 2, . . . , nc and nc � ny .
Remark 3: Constraint handling with the pre-conditioned

model predictions (16) is guaranteed recursively feasible as
long as nc is sufficiently large [19]. This, however, may not
be true with open-loop oscillatory predictions.

V. NUMERICAL EXAMPLES

This section demonstrates the efficacy of PPFC algorithm
with two numerical examples. To better understand its ad-
vantages, a comparison of closed-loop performance is drawn
against the standard PFC for two challenging processes: G1
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Fig. 3. Target responses with ρ = [0.6(red), 0.75(yellow), 0.9(purple)]
overlaying the normalised step response of T1

is a second-order oscillatory system whereas G2 is slightly
non-minimum phase third-order under-damped system.

A. Example-1 (Second-Order Model)

Consider a second-order under-damped system (17) with
|∆uk| ≤ 0.45, −0.25 ≤ uk ≤ 1.75 and 0 ≤ yk ≤ 1.05. For
fair comparison, both PPFC and PFC control laws will be
tuned identically.

G1 =
0.1z−1 + 0.4z−2

1− z−1 + 0.8z−2
(17)

The oscillatory modes of G1 are za = 0.5±j0.742, whereas
zz = −4 is the system zero. For stability the compensator
gain should be K < 0.5 as obtained from (6). Consequently

0 5 10 15 20 25 30
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1

1.5

0 5 10 15 20 25 30
0
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1

1.5

Fig. 4. Nominal constrained performance with G1, ny = 4 and ρ =
[0.6(blue), 0.75(green), 0.9(red)]
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Fig. 5. Targets with ρ = [0.9(red), 0.92(yellow), 0.95(purple)] over-
laying the normalised step response of T2

the pre-conditioned prediction model with K = 0.25 is:

T1 =
0.025z−1 + 0.1z−2

1− z−1 + 0.25z−2
(18)

Next we find ny and ρ. Fig. 3 shows the pre-conditioned step
response overlaid with various first-order target responses
and suggests 3 ≤ ny ≤ 5 as a suitable coincidence horizon
window. Evidently target dynamics with ρ = 0.6 or ρ =
0.9 do not match predictions within the desirable ny range
and hence would need over-actuation or under-actuation to
enforce an intercept. However, a sensible choice would be
ρ = 0.75 which gets an exact match at ny = 4.

Efficacy of the PPFC algorithm is obvious with the con-
strained nominal closed-loop performance shown in Fig. 4.
Specifically we observe that the PPFC plant output (upper
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Fig. 6. Nominal unconstrained performance with G2, ny = 12 and ρ =
[0.9(blue), 0.92(green), 0.95(red)]
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figure) is smooth and oscillation-free, and strongly linked to
the corresponding ρ. Additionally no constraint violation is
visible, although control input for faster target dynamics is
relatively aggressive which reinforces the expectation. The
conventional PFC (lower figure) appears incapable within
transient period. There seems no obvious link between the
output and target dynamics (ρ), and inputs are generally too
aggressive. As a result, input-rate and output saturation are
seen within first 10 samples.

B. Example-2 (Higher-Order Model)

Consider the model G2 with no constraints

G2 =
−0.1z−1 + 0.4z−2 + 0.2z−3

1− 2.1z−2 + 1.69z−2 − 0.445z−3
(19)

with a+(z) = 1 − 1.6z−1 + 0.89z−2 and a−(z) = 1 −
0.5z−1. The oscillatory modes are located at za+ = 0.8 ±
j0.5. Therefore, we define α+(z) = 1− 1.6z−1 + 0.64z−2,
α−(z) = a−(z) and get the compensated model:

T2 = K
−0.1z−1 + 0.4z−2 + 0.2z−3

1− 2.1z−2 + 1.44z−2 − 0.32z−3
(20)

The root locus plot (not shown) suggests K < 0.04 for
compensator stability. We choose K = 0.02 as its numerical
value does not affect the closed-loop performance. Fig. 5
shows the normalised step response of T2, which clearly
recommends a coincidence point within 9 ≤ ny ≤ 16.
An intercept between step response and target exists with
ρ = 0.92 at ny = 12. To enforce an intercept with faster
targets, one would need to over-actuate the input which in
practice may result in constraint violations.

Nevertheless we examine the closed-loop behaviour with
ρ = [0.9, 0.92, 0.95] and ny = 12 in Fig. 6, which presents a
rather contrasting display of performance between the PPFC
and simple PFC algorithms. Key observations are: Simple
PFC with constant future input fails to damp the oscillatory
modes of G2. With the proposed scheme, while vk remains
constant within the coincidence horizon, the plant input uk
is aptly parametrised to overcome the under-damping. This
difference is obvious from the varied control dynamics for
both controllers. With PPFC, the target pole ρ seems more
effective. This is clearly evident in the amount of time the
outputs take to settle for both the algorithms. To sum up,
while the conventional PFC algorithm may not be suitable for
oscillatory dynamics, it is possible to improve its capabilities
via pre-conditioning in straightforward fashion.

VI. CONCLUSION

This paper has proposed a pre-conditioned PFC de-
sign methodology for under-damped dynamic systems. The
proposed pre-conditioning stage, based on pole-placement,
transforms the unsettled open-loop model dynamics into
smoother prediction behaviour, known to work well with
the standard PFC algorithm. The overall design process is
fairly straightforward; one that does not complicate standard
constraint handling and controller tuning, and also retains
the key attributes of original PFC i.e. simplicity and intu-
itiveness. We have demonstrated that the PPFC algorithm

in essence parametrises control action to efficiently handle
oscillations, a quality not present in the conventional PFC.
Moreover the main tuning parameter, the target pole, shows
improved efficacy in relation to the closed-loop performance
as seen in the numerical simulations.

Nevertheless, as discussed in Section III-B, the improved
set-point tracking with pole-placement pre-conditioning
comes at the price of rather oscillatory input disturbance
rejection, but a relatively better response to output distur-
bance compared to an equivalent pole-shifting compensator
balances out this shortcoming. A formal analysis of sensitiv-
ity functions is required to fully understand the pros and cons
of pole-placement and this constitutes our future research
work.
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1. INTRODUCTION

Model Predictive Control (MPC) is an advanced optimal
control strategy with powerful and well-defined procedures
for complex multivariate processes (Mayne, 2014). Nev-
ertheless, its computation-heavy nature has traditionally
favoured applications with slow dynamics, although the
increasing availability of cheap computing resources has
significantly widened its scope and utility in recent years
(Fernandez-Camacho and Bordons-Alba, 1995; Qin and
Badgwell, 2003). But there are areas and applications,
for example industrial servo loops, where such an im-
plementation would be logically and financially infeasible
and where a cost-effective approach like PID still makes
more sense. However, there are scenarios when PID falls
short, for instance processes with significant dead-time or
tight physical constraints; such cases require additional
complexity such as Smith predictors (Skogestad, 2018) and
anti-windup algorithms (Visioli, 2006) for improvement.
Nonetheless, these solutions are generally ad hoc and, more
often than not, degrade other performance attributes; poor
robustness to uncertainties is one prominent side-effect of
such post-design alterations.

Clearly, there is a need for a systematic yet simpler and
cost-effective algorithm, and over the years Predictive
Functional Control (PFC) has proved its efficacy as a
viable alternative (Richalet et al., 1978). PFC belongs
to the family of model-based predictive controllers, and
exhibits similar characteristics. As a result, process dead-
times and physical constraints are easily integrated in
the design, with some degree of robustness owing to the
use of a receding horizon (Rossiter, 2018). The main dif-
ference, however, arises from the parametrisation of the

manipulated variable, which in the case of PFC, is pre-
defined as the linear combination of simple polynomial
basis functions (Maciejowski, 2002). The optimisation pro-
cess is further simplified by noting that constant set-point
tracking is achievable with constant control moves within
the prediction horizon (Khadir and Ringwood, 2008). Al-
though, unlike mainstream MPC, PFC’s heuristic nature
merely provides a sub-optimal solution, its simplistic de-
sign traits have attracted a wide spectrum of applications
(Richalet and O’Donovan, 2011; Richalet and O’Donovan,
2009; Richalet, 1993).

Arguably the unique selling point of PFC is its simplic-
ity. Nevertheless, it lacks flexibility to tackle challenging
dynamics. For example, open-loop instability, where unre-
liable predictions cause ill-posed decision-making (Rossiter
and Haber, 2015), has been difficult to control with PFC.
Previous studies in this area (Rossiter, 2016; Abdullah and
Rossiter, 2018a) have proposed algorithmic level modifica-
tion by shaping the control input, that although they can
improve the closed-loop performance, do so with increased
computational complexity, thus negating the core notion
of simplicity. Pre-stabilisation of dynamics (Rossiter et al.,
1998; Mayne et al., 2000) is fairly common in the MPC
literature as a means to modify dynamic behaviour of
a difficult system to ensure reliable control performance.
Surprisingly however, this concept is still relatively unex-
plored in PFC and largely restricted to first-order (Aftab
et al., 2021) and integrator dynamics (Zhang et al., 2018;
Abdullah and Rossiter, 2018b). Researchers, in this con-
text, argue that complex pre-stabilisation may also com-
plicate constraint handling (Rossiter, 2018; Richalet and
O’Donovan, 2009) which, despite being sub-optimal, is
fairly intuitive and powerful in the PFC formulation.
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1. INTRODUCTION

Model Predictive Control (MPC) is an advanced optimal
control strategy with powerful and well-defined procedures
for complex multivariate processes (Mayne, 2014). Nev-
ertheless, its computation-heavy nature has traditionally
favoured applications with slow dynamics, although the
increasing availability of cheap computing resources has
significantly widened its scope and utility in recent years
(Fernandez-Camacho and Bordons-Alba, 1995; Qin and
Badgwell, 2003). But there are areas and applications,
for example industrial servo loops, where such an im-
plementation would be logically and financially infeasible
and where a cost-effective approach like PID still makes
more sense. However, there are scenarios when PID falls
short, for instance processes with significant dead-time or
tight physical constraints; such cases require additional
complexity such as Smith predictors (Skogestad, 2018) and
anti-windup algorithms (Visioli, 2006) for improvement.
Nonetheless, these solutions are generally ad hoc and, more
often than not, degrade other performance attributes; poor
robustness to uncertainties is one prominent side-effect of
such post-design alterations.

Clearly, there is a need for a systematic yet simpler and
cost-effective algorithm, and over the years Predictive
Functional Control (PFC) has proved its efficacy as a
viable alternative (Richalet et al., 1978). PFC belongs
to the family of model-based predictive controllers, and
exhibits similar characteristics. As a result, process dead-
times and physical constraints are easily integrated in
the design, with some degree of robustness owing to the
use of a receding horizon (Rossiter, 2018). The main dif-
ference, however, arises from the parametrisation of the

manipulated variable, which in the case of PFC, is pre-
defined as the linear combination of simple polynomial
basis functions (Maciejowski, 2002). The optimisation pro-
cess is further simplified by noting that constant set-point
tracking is achievable with constant control moves within
the prediction horizon (Khadir and Ringwood, 2008). Al-
though, unlike mainstream MPC, PFC’s heuristic nature
merely provides a sub-optimal solution, its simplistic de-
sign traits have attracted a wide spectrum of applications
(Richalet and O’Donovan, 2011; Richalet and O’Donovan,
2009; Richalet, 1993).

Arguably the unique selling point of PFC is its simplic-
ity. Nevertheless, it lacks flexibility to tackle challenging
dynamics. For example, open-loop instability, where unre-
liable predictions cause ill-posed decision-making (Rossiter
and Haber, 2015), has been difficult to control with PFC.
Previous studies in this area (Rossiter, 2016; Abdullah and
Rossiter, 2018a) have proposed algorithmic level modifica-
tion by shaping the control input, that although they can
improve the closed-loop performance, do so with increased
computational complexity, thus negating the core notion
of simplicity. Pre-stabilisation of dynamics (Rossiter et al.,
1998; Mayne et al., 2000) is fairly common in the MPC
literature as a means to modify dynamic behaviour of
a difficult system to ensure reliable control performance.
Surprisingly however, this concept is still relatively unex-
plored in PFC and largely restricted to first-order (Aftab
et al., 2021) and integrator dynamics (Zhang et al., 2018;
Abdullah and Rossiter, 2018b). Researchers, in this con-
text, argue that complex pre-stabilisation may also com-
plicate constraint handling (Rossiter, 2018; Richalet and
O’Donovan, 2009) which, despite being sub-optimal, is
fairly intuitive and powerful in the PFC formulation.
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In this paper, we extend the idea of pre-stabilisation,
presented in (Aftab et al., 2021), to higher-order un-
stable dynamics using the analytical method of internal
feedback loop design (Ogata, 1995). It has been found
that although the additional control layer burdens the
constraint management to some extent, it provides better
control of tuning parameters and an impressive overall
closed-loop performance, verified by an industrial case
study. The remainder of this paper is organised as follows:
Section 2 defines the problem and sets control objectives.
The main methodology is presented in Section 3 where
the Pre-stabilised PFC design is discussed in detail. Next,
implications of pre-stabilisation are presented in Section 4.
A simulation case study follows next in Section 5 which
presents performance comparisons with standard PFC and
PI. Finally, the paper concludes in Section 6.

2. PROBLEM STATEMENT

Consider an nth-order coprime delay-free system model

G0(z) =
b(z)

a(z)
=

b1z
−1 + b2z

−2 + · · · + bnz
−n

1 + a1z−1 + a2z−2 + · · · + anz−n
(1)

Moreover, a(z) = a−(z)a+(z) where the factor a+(z) con-
tains the pu open-loop unstable poles. The complete model
including time-delay of m samples is G(z) = z−mG0(z).
Moreover, the dynamic plant is subject to actuation limits
i.e.

umin ≤uk ≤ umax

∆umin ≤ ∆uk ≤ ∆umax (2)

where ∆ = 1 − z−1. The aim is to design a predictive
functional controller that operates on pre-stabilised model
predictions via internal feedback compensation. The Pre-
stabilised PFC (PPFC) is, therefore, expected to perform
in the presence of disturbances and modelling uncertainty
while adhering to constraints (2).

3. PRE-STABILISED PFC

The fundamental idea behind PPFC, as shown in Fig. 1,
is to first stabilise the unstable open-loop dynamics, using
a simple and well understood classical approach, and then
implement PFC in the standard way, as an outer loop,
for improving performance and constraint management.
The following two sub-sections explain the proposed design
procedure.

3.1 Design of Pre-stabilising Loop

The proposal is based on the analytical approach of feed-
back compensator design presented in (Ogata, 1995). As-

sume that a (n − 1)th-order bi-proper feedback compen-
sator C(z) = q(z)/p(z) is used to modify the open-loop
model G0(z), as shown in Fig. 1, resulting in the pre-
stabilised transfer function Gs,0(z), with a smooth and
monotonically convergent prediction behaviour. Then one
may write:

Gs,0(z) =
β(z)

α(z)
=

q(z)b(z)

p(z)a(z) + q(z)b(z)
(3)

where α(z) is the (2n − 1)th-order pre-stabilised pole
polynomial, and the underlying relationship,

p(z)a(z) + q(z)b(z) = α(z) (4)

is called the Diophantine Equation. In order to design the
C(z), one must define the desired pre-stabilised charac-
teristic polynomial α(z) and then utilise linear algebra to
obtain the coefficients of p(z) and q(z) with,

M = S−1D (5)

where M = [pn−1 . . . p0 qn−1 . . . q0]
T , D = [α2n−1 . . . α0]

T

and S is the Sylvester Matrix (Goodwin, 2001) given by:

S =




an 0 . . . 0 bn 0 . . . 0
an−1 an . . . 0 bn−1 bn . . . 0

...
... . . .

...
...

... . . .
...

1 a1 . . . an−1 0 b1 . . . bn−1

0 1 . . . an−2 0 0 . . . bn−2

...
... . . .

...
...

... . . .
...

0 0 . . . a1 0 0 . . . b1
0 0 . . . 1 0 0 . . . 0




(6)

Note that α(z) is factorised as:

α(z) = o(z)a−(z)α+(z) (7)

where o(z) is the (n− 1)th-order observer and α+(z) rep-
resents the pu pre-stabilised poles. We propose if a+(z) =∏pu

i=1(z−zp,i) with zp,i > 1, then α+(z) =
∏pu

i=1(z−1/zp,i).
In case an integrator factor (z−1) is present, then one may
simply replace it with (z − 0.5) (Abdullah and Rossiter,
2018a). Moreover, the minimum order observer is generally
selected as o(z) = zn−1 (Ogata, 1995). This completes the
internal feedback loop design.

Remark 1. For n = 1, the compensator reduces to sim-
ple proportional gain, i.e. C(z) = K. The Pre-stabilised
PFC design for first-order unstable systems using propor-
tional compensation has been investigated more exten-
sively (Aftab et al., 2021) so will not be pursued here.

3.2 Pre-stabilised PFC Control Law

The PPFC algorithm works similarly to the original PFC
but implemented on the pre-stabilised model dynamics. At
each time step, the predicted output yk is matched to the
pre-defined target behaviour at only one coincidence point
ny steps ahead with constant control moves. The process
is repeated at the next sample and owing to the receding
horizon, an implied feedback is established that moves the
plant output closer to the target. The desired behaviour
is generally represented as a first-order pole ρ. The ideal
ny-step ahead prediction based on a first-order response is
given as:

yk+ny+m|k = r − (r − E[yk+m|k])ρ
ny (8)

where r is the set-point and E[yk+m|k] is the expected
m-sample delayed plant output (Rossiter, 2018). Further-
more, E[yk+m|k] = ŷk + dk with dk = yk − ŷk−m, where
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ny steps ahead with constant control moves. The process
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plant output closer to the target. The desired behaviour
is generally represented as a first-order pole ρ. The ideal
ny-step ahead prediction based on a first-order response is
given as:

yk+ny+m|k = r − (r − E[yk+m|k])ρ
ny (8)

where r is the set-point and E[yk+m|k] is the expected
m-sample delayed plant output (Rossiter, 2018). Further-
more, E[yk+m|k] = ŷk + dk with dk = yk − ŷk−m, where

dk accounts for prediction bias due to modelling errors
and/or disturbances and ŷk is the model output. On the
other hand, one may obtain the output predictions from
Gs,0(z) i.e. α(z)ŷ(z) = β(z)v(z):

ŷk+ny|k = Hv−→k + Pv←−k−1 + Q ŷ←−k (9)

where H, P and Q depend on the model parameters. For
a generic N th order model:

v−→k =




vk
vk+1

...
vk+ny−1


 ; v←−k−1 =




vk−1

vk−2

...
vk−N+1


 ; ŷ←−k =




ŷk
ŷk−1

...
ŷk−N+1




The delay-free prediction model Gs,0(z) essentially pro-
vides m-step ahead estimate of the plant output, which
implies:

yk+ny+m|k = ŷk+ny|k + dk (10)

The decision variable remains constant throughout the
horizon i.e. vk+i = vk, ∀i > 0, which results in the
following PPFC control law:

vk =
r − (r − E[yk+m|k])ρny − (Pv←−k−1 + Q ŷ←−k + dk)

h
(11)

where h =
∑ny

j=1 Hj and Hj is the jth element of H. Next,
we will discuss the impact of pre-stabilisation on some key
aspects of the proposed PFC approach.

4. IMPLICATIONS OF PRE-STABILISATION

Clearly pre-stabilisation has transformed the decision vari-
able from uk to vk, which has significant implications for
parameter tuning and constraint handling. Since uk drives
the physical process and the fact that internal compensa-
tion is not hard-wired, a direct relationship between both
variables must be established for control implementation.
Details follow next.

4.1 Relationship between uk and vk

If the compensator C(z) were hard-wired, we would have
got uk = C(z)[vk − yk+m], where yk+m shows the delayed
response due to uk at the current sample. Obviously yk+m

is unknown being a future value, but can be replaced with
its expected value E[yk+m|k] = ŷk + dk. Thus,

uk = C(z)[vk − (ŷk + dk)] (12)

Furthermore, a similar expression can be written for the
pre-stabilised model:

ûk = C(z)[vk − ŷk] (13)

Thus after subtracting (13) from (12), the relationship
between uk and ûk is established:

uk = ûk − C(z)dk (14)

Finding ûk is an additional step and adds slightly to the
coding complexity. Nevertheless, it is directly related to vk
as shown in the following theorem.

Theorem 1. The control variable ûk can be obtained from
decision variable vk using the following expression:

ûk =
q(z)

o(z)
.
a+(z)

α+(z)
vk (15)

Proof. Since ŷk = G0(z)ûk = Gs,0(z)vk, eliminating ŷk
results in:

b(z)

a−(z)a+(z)
ûk =

q(z)

o(z)
.

b(z)

a−(z)α+(z)
vk

which simplifies to (15). �

Thus one may replace ûk from (15) in (14) to directly
evaluate uk from vk and vice versa,

A(z)uk = B(z)vk + E(z)dk (16)

with the polynomials A(z), B(z) and E(z) defined as:

A(z) = o(z)α+(z)p(z) = 1 + A1z
−1 + · · · + Alz

−l

B(z) = q(z)a+(z)p(z) = B0 + B1z
−1 + · · · + Blz

−l

E(z) = −o(z)α+(z)q(z) = E0 + E1z
−1 + · · · + Elz

−l

(17)

where l = pu + 2n− 2. Finally,

uk = B0vk + fk (18)

where fk = −Au←−k−1+Bv←−k−1+Ed←−k and the vectors A,

B and E contain appropriate coefficients of the respective
polynomials.

4.2 Controller Tuning

The standard procedure of PFC parameter tuning is based
on the conjecture presented in (Rossiter and Haber, 2015),
which is mainly applicable to stable dynamics with mono-
tonic steady-state convergence. The recommendation is to
select the coincidence horizon ny preferably within the
time window corresponding to 40%-80% rise in the step re-
sponse with significant gradient. As for finding ρ, one may
overlay several first-order responses on the step response
to identify which target behaviour coincides within the
mentioned ny range. Evidently this method will not work
well with an unstable process, for which a constant input
would inevitably lead to divergent output predictions. Pa-
rameter selection for such systems is far less consistent and
mostly ineffective with no concrete guidelines (Rossiter
and Haber, 2015; Rossiter, 2018). Clearly pre-stabilisation
makes intuitive sense here, since controller tuning with
the stable Gs,0(z) in this case will be far more meaningful
than the originally unstable process. See, for instance,
Fig. 3 that displays PFC parameter selection for a modified
system based on the aforementioned procedure.

4.3 Constraint Handling

The standard constraint handling mechanism generally
implements simple saturation of the decision variable,
which is fairly straightforward with a constant control for-
mulation. Nevertheless, the additional feedback loop in the
Pre-stabilised PFC re-parametrises the degree-of-freedom
such that uk no longer remains constant. One possible
solution in this case is to transfer the original constraints to
the new variable vk at every sample using a process of back
calculation (Richalet and O’Donovan, 2009). Clearly back
calculation is computationally intensive; this may work
easily with simple feedback designs, for example see (Aftab
et al., 2021; Zhang et al., 2020), but with more involved
controllers, such as the one in this study, it complicates the
validation process. A more efficient approach, however, is
to implement constraints on (18) directly, with vk updated
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only if violation occurs. Each row of the following vector
inequalities corresponds to the (k + i)th predicted input
(Rossiter, 2018):

Lumin ≤u−→k ≤ Lumax

L∆umin ≤ ∆u−→k ≤ L∆umax (19)

where i = 0, 1, . . . , nc and L = [1 1 . . . ]T . The validation
window nc (i.e. the length of above inequalities) must
extend well beyond the point of coincidence to observe
and validate long range adherence. This is crucial because
any unobserved input violation could eventually lead to
infeasibility, thus invalidating the current input computa-
tion. Ideally, nc should cover the settling period of Gs,0(z),
i.e. the time to reach and stay within 95% of the implied
steady-state, which roughly corresponds to three to five
times ny.

Remark 2. Constraint handling with Pre-stabilised PFC
is recursively feasible as long as nc is sufficiently large
(Abdullah and Rossiter, 2018a). This, however, may not
be true with open-loop unstable dynamics, for which,
in truth, rigorous generic recursive feasibility properties
require computations which might be considered beyond
the price range of PFC.

5. INDUSTRIAL CASE STUDY

This section demonstrates the efficacy of the proposed
PPFC algorithm with a case study involving temperature
control of a Jacketed CSTR. The Continuous Stirred Tank
Reactor (CSTR) is a common industrial unit that is widely
employed in different chemical manufacturing processes.
The reaction dynamics converting component A into com-
ponent B in an ideal CSTR has a non-linear first-order
behaviour. Nevertheless, many chemical reactions also re-
quire a specific temperature to be maintained within the
tank for a flawless yield. Therefore, the tank is generally
equipped with an outer jacket in which the temperature
of a flowing fluid TJ is used as the manipulated variable
to regulate the inside reaction temperature T , as shown
in Fig. 2. The overall coupled model has two-state non-
linear dynamics with potential for exotic behaviour owing
to multiple steady-states (Bequette, 2002). In this study,
the linearised model around one operating point depicts
unstable second-order dynamics given by (Rao and Chi-
dambaram, 2008):
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Fig. 3. Target responses with ρ = [0.6, 0.715, 0.8] overlay-
ing the normalised step response of Gs,0(z)

G(z) =
T (z)

TJ(z)
=

2.102z + 0.4011

z2 − 1.465z + 0.058
.z−1 (20)

subject to |TJ | ≤ 0.21◦F and |∆TJ | ≤ 0.075◦F . Note that
both T and TJ are deviation variables around the steady-
state values Tss = 101.1◦F and TJ,ss = 60◦F .

5.1 Pre-stabilisation and Offline Tuning

Next we pre-stabilise the Jacket CSTR model. Here, pu=1
with one unstable pole a+(z) = z − 1.424, one stable pole
a−(z) = z−0.041 and a delay of m = 1 minute in measure-
ment. Since n = 2, the pre-stabilised pole polynomial must
be third-order with α(z) = z(z− 0.041)(z− 1/1.424). The
first-order bi-proper compensator C(z) is then constructed

using (4)-(7) resulting in C(z) =
0.303z − 0.0123

z + 0.0852
. The

following pre-stabilised delay-free model is obtained:

Gs,0(z) =
T (z)

v(z)
=

0.637z2 + 0.096z − 0.005

z3 − 0.743z2 + 0.0288z
(21)

The next step is the controller tuning i.e. finding appropri-
ate ny and ρ. Fig. 3 shows the pre-stabilised step response
curve overlaying various first-order target responses and
suggests 2 ≤ ny ≤ 5 as the suitable coincidence horizon
window. Interestingly, the target behaviour with ρ = 0.715
almost exactly overlaps the step response, whereas those
with ρ = 0.6 or ρ = 0.8 do not match predictions
within the desirable ny range and hence would need over-
actuation or under-actuation to enforce an intercept. In
this study, we have selected ρ = 0.715 and ny = 3.

In order to assess the performance of PPFC, two more
controllers are implemented: the original PFC tuned with
the same parameters given above, and a PI controller
designed with KP = 0.02 and KI = 0.004. Note that
the PI controller operates on the pre-stabilised plant after
hardwiring the internal feedback loop with C(z). However,
doing so also introduces time-delay in the feedback design,
hence a relatively poor PI performance is anticipated.

5.2 Nominal Unconstrained Performance

The unconstrained closed-loop performance in the absence
of disturbance and modelling uncertainty is analysed first,
with the results shown in Fig. 4. The temperature step
response (top figure) achieved with PPFC and standard
PFC is smooth and monotonically convergent. Neverthe-
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only if violation occurs. Each row of the following vector
inequalities corresponds to the (k + i)th predicted input
(Rossiter, 2018):

Lumin ≤u−→k ≤ Lumax

L∆umin ≤ ∆u−→k ≤ L∆umax (19)

where i = 0, 1, . . . , nc and L = [1 1 . . . ]T . The validation
window nc (i.e. the length of above inequalities) must
extend well beyond the point of coincidence to observe
and validate long range adherence. This is crucial because
any unobserved input violation could eventually lead to
infeasibility, thus invalidating the current input computa-
tion. Ideally, nc should cover the settling period of Gs,0(z),
i.e. the time to reach and stay within 95% of the implied
steady-state, which roughly corresponds to three to five
times ny.

Remark 2. Constraint handling with Pre-stabilised PFC
is recursively feasible as long as nc is sufficiently large
(Abdullah and Rossiter, 2018a). This, however, may not
be true with open-loop unstable dynamics, for which,
in truth, rigorous generic recursive feasibility properties
require computations which might be considered beyond
the price range of PFC.

5. INDUSTRIAL CASE STUDY

This section demonstrates the efficacy of the proposed
PPFC algorithm with a case study involving temperature
control of a Jacketed CSTR. The Continuous Stirred Tank
Reactor (CSTR) is a common industrial unit that is widely
employed in different chemical manufacturing processes.
The reaction dynamics converting component A into com-
ponent B in an ideal CSTR has a non-linear first-order
behaviour. Nevertheless, many chemical reactions also re-
quire a specific temperature to be maintained within the
tank for a flawless yield. Therefore, the tank is generally
equipped with an outer jacket in which the temperature
of a flowing fluid TJ is used as the manipulated variable
to regulate the inside reaction temperature T , as shown
in Fig. 2. The overall coupled model has two-state non-
linear dynamics with potential for exotic behaviour owing
to multiple steady-states (Bequette, 2002). In this study,
the linearised model around one operating point depicts
unstable second-order dynamics given by (Rao and Chi-
dambaram, 2008):
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ing the normalised step response of Gs,0(z)

G(z) =
T (z)

TJ(z)
=

2.102z + 0.4011

z2 − 1.465z + 0.058
.z−1 (20)

subject to |TJ | ≤ 0.21◦F and |∆TJ | ≤ 0.075◦F . Note that
both T and TJ are deviation variables around the steady-
state values Tss = 101.1◦F and TJ,ss = 60◦F .

5.1 Pre-stabilisation and Offline Tuning

Next we pre-stabilise the Jacket CSTR model. Here, pu=1
with one unstable pole a+(z) = z − 1.424, one stable pole
a−(z) = z−0.041 and a delay of m = 1 minute in measure-
ment. Since n = 2, the pre-stabilised pole polynomial must
be third-order with α(z) = z(z− 0.041)(z− 1/1.424). The
first-order bi-proper compensator C(z) is then constructed

using (4)-(7) resulting in C(z) =
0.303z − 0.0123

z + 0.0852
. The

following pre-stabilised delay-free model is obtained:

Gs,0(z) =
T (z)

v(z)
=

0.637z2 + 0.096z − 0.005

z3 − 0.743z2 + 0.0288z
(21)

The next step is the controller tuning i.e. finding appropri-
ate ny and ρ. Fig. 3 shows the pre-stabilised step response
curve overlaying various first-order target responses and
suggests 2 ≤ ny ≤ 5 as the suitable coincidence horizon
window. Interestingly, the target behaviour with ρ = 0.715
almost exactly overlaps the step response, whereas those
with ρ = 0.6 or ρ = 0.8 do not match predictions
within the desirable ny range and hence would need over-
actuation or under-actuation to enforce an intercept. In
this study, we have selected ρ = 0.715 and ny = 3.

In order to assess the performance of PPFC, two more
controllers are implemented: the original PFC tuned with
the same parameters given above, and a PI controller
designed with KP = 0.02 and KI = 0.004. Note that
the PI controller operates on the pre-stabilised plant after
hardwiring the internal feedback loop with C(z). However,
doing so also introduces time-delay in the feedback design,
hence a relatively poor PI performance is anticipated.

5.2 Nominal Unconstrained Performance

The unconstrained closed-loop performance in the absence
of disturbance and modelling uncertainty is analysed first,
with the results shown in Fig. 4. The temperature step
response (top figure) achieved with PPFC and standard
PFC is smooth and monotonically convergent. Neverthe-
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Fig. 4. Unconstrained performance without external per-
turbations (nominal case)

less, the tuning parameter ρ appears to have stronger link-
age with the output after pre-stabilisation; that is, tuning
will be easier and more intuitive in practice with PPFC.
On the other hand, the response with the PI controller is
rather oscillatory in the beginning, possibly due to the
effect of time-delay in the error computation. Overall,
the PI controller seems to have the slowest performance
amongst the three choices. On the other hand, the jacket
temperature control (bottom figure) corresponds to the
associated step performance and demonstrates similar be-
haviour. Evidently, the fastest PPFC response is due to an
aggressive control action, peaking at approximately 0.1◦F ,
as opposed to the other two with slightly lower peak values.
While there is no remarkable difference in the nominal
performance, it hardly portrays the true picture and the
effect of external perturbations must also be considered for
a more complete evaluation.

5.3 Constrained Performance in a Practical Situation

In this section, the effects of external perturbations on
closed-loop performance are studied. Consider the sce-
nario when a sudden process variation increases the jacket
feed temperature by approximately 10% of the planned
value. This is simulated as a constant disturbance signal
introduced at the plant input around the 55th minute of
operation. The simulation results are depicted in Fig. 5.
Clearly, both the standard PFC and the PI controllers
respond poorly, immediately driving the system into in-
stability. Moreover, the controllers appear highly sensitive
as suggested by the aggressive input activity soon after the
introduction of disturbance. This inevitably leads to actua-
tor saturation, with possible equipment failure in practice.
The Pre-stabilised PFC, on the other hand, displays com-
mendable tracking with far superior disturbance rejection
characteristic, providing fast and smooth normalisation of
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Fig. 5. Constrained performance in the presence of con-
stant disturbance in jacket temperature

operation. Interestingly, apart from the slight deviation
around the 60th minute, the PPFC control performance
appears very similar to the nominal behaviour displayed
in Fig. 4.

Next an unmodelled pole at z = 0.1 is added to analyse the
controllers’ robustness against modelling mismatch with
the results depicted in Fig. 6. While the transient perfor-
mance of the PPFC is slightly affected (a slow target pole
will be better in this case), the benefits of pre-stabilisation
are even more pronounced as the constrained performance
remains recursively feasible and stable throughout. In
comparison, the PI controller clearly fails to accommo-
date the modelling uncertainty with immediate output
divergence along with input and rate constraint violations.
Interestingly, the standard PFC also destabilises, although
this becomes apparent only around the 100 minute mark,
owing to the use of unreliable and numerically infeasible
divergent open-loop predictions in the decision making. In
practice, this leads to spoiled product and financial loss to
the manufacturer.

To conclude, the Pre-stabilised PFC appears to be the
most reliable choice for the temperature control of Jack-
eted CSTR process in the presence of disturbances and
modelling uncertainty.

6. CONCLUSION

This paper has presented the concept of pre-stabilised pre-
dictive functional control for unstable open-loop dynamic
systems. An analytical approach to designing the pre-
stabilising compensator is proposed, which is fairly simple
and intuitive, and works well in combination with PFC.
Specifically, it preserves the simplistic PFC parameter
tuning and adds reliability, but at the cost of slightly
more onerous constraint management. Nevertheless, the
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Fig. 6. Constrained performance in the presence of plant-
model mismatch

overall advantage of pre-stabilisation in terms of closed-
loop performance compared to a standard PFC and PI
control has been observed in simulation studies, which also
guarantees reliable operation in the presence of external
perturbations.

While this study has highlighted the key benefits of pre-
stabilisation using one application, in future, the authors
plan to extend the scope of validation across a range of
case-studies and real-time experiments. The future work
will also focus on a more rigorous analysis of loop sensitiv-
ity to gain better understanding. Furthermore, a possible
extension to accommodate a variety of challenging sce-
narios, including non-minimum phase and poorly damped
dynamics, is also under development.
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Abstract: Predictive functional control (PFC) is a fast and effective controller that is widely used
in preference to PID for single-input single-output processes. Nevertheless, the core advantages of
simplicity and low cost come alongside weaknesses in tuning efficacy. This paper summarises and
consolidates the work of the past decade, which has focused on proposing more effective tuning
approaches while retaining the core attributes of simplicity and low cost. The paper finishes with
conclusions on the more effective approaches and links to context.

Keywords: predictive control; challenging dynamics; tuning; stability properties

1. Introduction

Predictive functional control (PFC) is often used in preference to a PID approach on
mainly single-input single-output (SISO) applications [1–4]. The reason industrial users
might prefer PFC to PID is threefold: (i) being model-based, in theory at least, it can
exploit the model information better and thus handle challenging dynamics; (ii) being
based on prediction, constraint handling can be embedded in a systematic fashion and (iii)
the coding complexity is similar to PID, which is elementary [5,6]; thus, maintenance and
implementation are straightforward. A further important point that follows from the above
three is that PFC is cheap (similar costs to PID) and is far cheaper than more conventional
model predictive control (MPC) schemes, such as DMC and GPC [7].

Despite its widespread adoption in parts of the industry, a traditional PFC algorithm
still has a number of weaknesses, with the most important one being that the tuning
parameters are effective for only a limited range of dynamical systems and thus critically:

• Links between the tuning parameters and behaviour are not as intuitive as they need
to be for many cases [8].

• For systems with challenging dynamics, a traditional PFC algorithm may fail to
achieve satisfactory behaviour.

MPC theoreticians may also worry about the lack of a priori stability guarantees [9,10],
but given that PFC is a competitor with PID, this issue is not important in practice, and it is
common to use a posteriori stability checks.

The originators of PFC [6] proposed a number of ad hoc modifications to the ba-
sic algorithm to improve properties and tuning for systems with non-simple dynamics
(e.g., open-loop integrators, instability, under-damping, non-minimum phase character-
istics). The most popular proposal was to deploy a type of cascade structure, where an
inner loop uses proportional only control to improve the dynamics for an outer loop to
control with PFC [6,11,12]. This restriction makes it difficult to have a systematic selection
of gain, and moreover, the consequent tuning proposals embed dynamics and assumptions
that are somewhat contradictory of the original PFC concepts and, for many cases, the
back-calculation used for constraint handling is equally ad hoc (suboptimal). In summary,
it is difficult to see a systematic design behind these modifications, and the tuning still
lacked intuition.
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Consequently, in recent years, many authors have proposed a number of more sys-
tematic modifications to improve tuning for specific cases, e.g., [9,10,13–17]. Nevertheless,
there is overlap in the application and benefits of these approaches alongside an undesir-
able multiplicity of options. Thus it is timely to write an overview paper that extracts the
most useful aspects of these papers and provides some unified and narrower systematic
guidance to the user.

Section 2 introduces conventional PFC for completeness before Section 3 summarises
concisely the alternative approaches from recent years. The main contribution of this paper
is in Section 4, which summarises the strengths and weaknesses of the various proposals
before tabulating a recommended generic approach and offering some numerical examples
for completeness.

2. Overview of Traditional PFC

This section presents, in brief, the main concepts, notation, and formulation of
PFC [5,6,8,18]. As the focus is on the SISO case, transfer function-based models are used;
thus, for example, assuming discrete time, the model will take the form:

a(z)yk = b(z)uk +
ζk

∆(z)
; ∆(z) = 1− z−1 (1)

where b(z) = b1z−1 + . . ., a(z) = 1 + a1z−1 + . . ., yk, uk are the outputs and inputs, respec-
tively, at sample k, and ζk is an unknown zero mean random variable used to capture
uncertainty (parametric and system disturbances).

Remark 1. As this paper is focused on tuning and concepts, we will avoid explicit inclusion of
disturbance handling in the algebra hereafter to simplify the presentation. The most common way
of doing this in PFC (and also common in mainstream MPC) is simulating an independent model
in parallel and using the difference between the independent model and the process outputs as a
disturbance estimate dk to correct for any steady-state bias in the predictions. Here, as seen in
Figure 1, dk = yp − ym, with yp being the process output measurement and ym the independent
model output.

Gm(z)

uk

ym,k

Gp(z)
+-

dk

yp,k

Figure 1. Independent model structure and disturbance estimate.

2.1. Prediction

Finding ouput predictions for model (1) is standard in the literature [7,19], so here
we assume the reader is comfortable with the following result based on input increments
∆uk+i = uk+i − uk+i−1:

y
→k+1|k = H∆uk→ + P∆uk← + Qyk← (2)

∆uk→ =




∆uk
∆uk+1
...
∆uk+n−1


; ∆uk← =




∆uk−1
∆uk−2

...
∆uk−m


; yk← =




yk
yk−1
...
yk−m


; y
→k+1|k =




yk+1
yk+2

...
yk+n
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The parameters H, P, Q depend on the model parameters and are easy to determine.
It is convenient to define a shorthand to extract individual rows of (2), so:

y
→k+n|k = Hn∆uk→ + Pn∆uk← + Qnyk← (3)

where en is the nth standard basic vector and Hn = eT
n H, Pn = eT

n P, Qn = eT
n Q.

2.2. Conventional PFC Control Law

PFC design is intuitive in that one uses a first-order dynamic as a model for an ideal
closed-loop response [18]; the associated time constant or pole being the most important
design parameter. In practice, one aims to achieve this behaviour by ensuring an explicit
matching between the predictions and ’ideal behaviour’ at a single point, denoted the
coincidence point. Hence, a PFC control law is defined by the equality:

yk+n|k = (1− λn)r + λnyk (4)

where r is the set point, yk+ny |k is the n-step ahead system prediction, and λ is the desired

closed-loop pole (in effect λ = e
−3T
Ts , where T is the sampling period and Ts is the desired

settling time so practitioners could equivalently choose Ts directly).
A core tenant of PFC is computational simplicity [6,18], so within the predictions we

assume only a single degree of freedom (d.o.f.). Hence, selecting ∆uk+i = 0, i > 0 and
combining this with prediction (3) and control law (4) gives:

Hne1︸ ︷︷ ︸
hn

∆uk + Pn∆uk← + Qnyk← = (1− λn)r + λnyk (5)

Thus, after rearrangement, the control law (4) is implemented by solving:

∆uk =
1
hn

[
(1− λn)r + λnyk −Qnyk← − Pn∆uk←

]
(6)

2.3. Efficacy of Conventional PFC

Control law (6) works well when the open loop system has behaviour that is close to a
monotonic step response, such as 1st order systems; for these cases, the tuning parameter
λ is then reasonably effective. However, for systems with more complex dynamics or
significant lag in the initial response, the tuning parameter is much less effective [8,14,15].
The developments summarised in this paper are focused towards the latter cases.

2.4. Constraint Handling

Constraint handling is not a main discussion point in this paper, so it is included
briefly here for completeness. The back calculation [20] favoured in traditional PFC papers
is somewhat simplistic and suboptimal, so where constraint handling is required, the
authors would recommend users to adopt approaches similar to those in mainstream
MPC [14,19,21,22] whereby inequalities are developed to explicitly check every prediction
point against the corresponding constraint.

∆u ≤ ∆uk ≤ ∆u; u ≤ uk ≤ u; y ≤ yk ≤ y, ∀k (7)

For a suitably long horizon, constraints (7) can be captured by the inequalities:

C∆uk ≤ fk (8)
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C =




1
−1
1
−1
He1
−He1




; fk =




u− uk−1
−u + uk−1

∆u
−∆u

Ly− P∆uk← −Qyk←
−Ly + P∆uk← + Qyk←




; L =




1
1
...
1




where fk depends on past data in ∆uk← , yk← and on the limits.
The input/output predictions will satisfy constraints if inequalities (8) are satisfied,

and thus the PFC algorithm should consider these explicitly. Given there is a single d.o.f., a
simple for loop within the code can find the choice of ∆uk closest to (6) to ensure this very
efficiently and, where appropriate, to ensure recursive feasibility properties (assuming
convergent predictions).

Remark 2. Small modifications to the algebra above are needed for the algorithms in the following
sections, but given this is straightforward and does not require new concepts, the details are omitted.

3. Summary of Recent Proposed Enhancements

This section outlines a number of proposals that have appeared in the literature to
improve the tuning of efficacy of PFC. The fundamental problem [8,15] is that for many
systems there is a poor correspondence between the chosen λ and the resulting closed-loop
pole, thus undermining a core selling point of PFC, that is, ease of tuning. Notably, for a
system with open-loop unstable poles, significant underdamping, or integrating dynamics,
PFC is quite challenging to tune effectively [8], and moreover, the resulting divergent or
oscillating predictions may give rise to infeasibility and/or robustness issues.

3.1. Fundamental Weaknesses and Core Conceptual Proposal

A fundamental conceptual weakness of a simplistic PFC approach is that one is basing
decisions on an open-loop prediction, which may have undesirable, possibly divergent,
dynamics. In addition to creating significant issues with reliable constraint handling,
using open-loop predictions can easily lead to ill-posed problems with consequent loss
of performance [19]. This is well recognised even in mainstream MPC [23], although to
some extent, the issue can be partially side-stepped by having multiple d.o.f. so that the
optimised predictions have better dynamics during transients.

Hence, and perhaps ironically, while MPC methods use optimisation of predictions to
find a nicely shaped prediction, the optimisation itself is likely to fail unless the parameter-
isation of the predictions within the optimisation already have appropriate shaping and,
surprisingly, the default shapings in many standard MPC laws are poorly chosen for some
scenarios. To be more specific, this is a big issue and far more evident where there are low
numbers of d.o.f., such as with PFC.

Hence, the underlying philosophy in the proposed modifications to PFC rely on a
different parameterisation of the d.o.f. to that shown in (3), that is, the d.o.f. in the predicted
future input sequence ∆ u→k

are not just the first increment ∆uk. The parameterisation chosen
must have two key attributes:

1. It can be reduced to a single d.o.f. so that computation and coding is trivial, in line
with a conventional PFC approach.

2. The associated predictions should be better aligned to the desired behaviour of (4)
than open-loop predictions.

Hence, the main philosophy deployed in recent work is to pre-stabilise/pre-shape the
output predictions so that the effect of unwanted open-loop poles on the predictions are
alleviated [24–26].
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3.2. Input Shaping PFC

This section summarises the concept of algebraic or explicit input shaping of the
open-loop predictions. It relies on explicit pole cancellation within the predictions [22]
and some neat algebra, which requires simultaneous equations of a similar complexity to
computation of the predictions.

Assume that the system model has some undesirable modes denoted by a+(z), so:

∆y(z) =
b(z)

a(z)
∆u(z); a(z) = a−(z)a+(z) (9)

The challenge is to determine ∆ u→k
such that the implied u(z) (including past be-

haviour), cancels the modes a+(z) from the future predictions. It can be shown [22] that
such a parameterisation takes the form:

∆ u→k
= P1p; p = A1 y

←k
+ A2∆ u←k

(10)

for suitable P1, A1, A2. One can add future d.o.f. to the predictions with an additional term
as follows:

∆ u→k
= P1p + Ca+ φ (11)

where the parameter φ denotes the degrees of freedom (d.o.f.) and Ca+ is a Toeplitz matrix
of the parameters in a+(z). The corresponding output predictions, from which all the
modes linked to a+(z) are now absent, can be deduced using similar algebra to be:

y
→k+1

= P2p + Hsφ (12)

for suitable matrices P2, Hs.

Remark 3. For PFC, one would choose φ to be a simple scalar, that is, with one d.o.f. More complex
MPC algorithms may choose this to be a vector or indeed other forms such as φ(z)/α(z) where
α(z) contains some desirable closed-loop dynamics.

To finish up, it is important to give some reflections on input shaping Algorithm 1 and
whether this is an approach worth further investigation.

• On the positive side, the shaping is effective at removing undesirable modes from the
predictions, which can be considered essential for reliable constraint handling and
recursive feasibility for systems with unstable and/or oscillatory modes.

• On the downside, this approach does not help with the weak links between the tuning
parameter λ and the closed-loop behaviour.

• The explicit cancellation used in the predictions can lead to sensitive results [24–26]
and potentially aggressive input trajectories. Indeed, this conceptual approach, while
interesting, has not been pursued in the mainstream MPC literature. One can mitigate
against the aggressive input sightly by incorporating the pole parameter α(z), but, as
yet, no systematic guidance exists for this process and, as discussed later, one could
argue better alternatives exist.

• The algebra required to produce the parameterisations in (11), (12) are not simple in
general to code, albeit the code would be very quick to execute and could be written
in about 50 lines of code (e.g., in C, Python). This mitigates against the core selling
points of simplicity.

Algorithm 1 The PFC input shaping law is derived by:
1. Substitute predictions (12) into (4) to solve for φ.
2. Use (11) to determine the current system input ∆uk.
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3.3. Pole Placement PFC

The pole placement technique [10] exploits properties of PFC associated with 1st order
systems. It can be shown that for a first order system, the parameter λ is a precise tuning
parameter, that is, the nominal closed-loop will have a pole at λ as requested. As before,
this section avoids giving the detailed derivations as those are available in the original
sources, and here, we focus on core concepts.

Using partial fraction expansions, one can represent a higher order process as a sum
of first order processes, for example:

b(z)

a(z)
=

B1

z− A1
+

B2

z− A2
+ · · · (13)

The next trick is to find separate suitable PFC inputs for each of these parallel systems,
which would drive the pole, for each system, to λ. A summation of these inputs applied to
the actual system should also result in a system closed-loop pole being a λ, from simple
superposition arguments. The formal algebra and derivations in the original sources shows
that this principle works very well, and one can indeed achieve a closed-loop pole of λ
exactly with elementary computations such as (6).

Nevertheless, despite the apparent efficacy for tuning, there are of course some downsides.

• The handling of complex poles requires either complex number algebra or more
involved real algebra [27], which could mitigate against easy coding and acceptance.

• Constraint handling was not tackled explicitly and again, could be somewhat more
involved than discussed in Section 2.4.

• For higher order systems, there was an implicit need to select all the closed-loop poles,
thus rendering this almost equivalent to a standard pole-placement approach. In
general, it is not obvious how to select the less dominant poles, which means the
approach loses some of its attraction.

3.4. Laguerre PFC

A core weakness of the conventional PFC approach that has been well recognised in
the mainstream MPC literature [23,25,28,29] is the restriction, in the predictions, to a finite
number of input changes in the immediate horizon. Indeed PFC assumes a constant future
input, which is the very extreme case. Such a restriction is reasonable for systems with sim-
ple under-damped dynamics and where open-loop speeds of response are satisfactory, but
this restriction is a significant problem where the open-loop has more complex dynamics
and/or there is a desire for the closed-loop to have faster poles.

Recognising that the input prediction parameterisations for open-loop MPC formula-
tions should have some dynamics was proposed in [30], where Laguerre polynomials were
considered. Parameterising input sequences around Laguerre polynomials makes good
engineering sense as they are built around a target pole, which the user can easily choose
and thus, while investigated more widely since the approach was also recently considered
for PFC [14].

The core proposal is to replace the parameterisation of future inputs as follows:

∆ u→(z) = ∑
i

Li(z)ηi or u→(z) = uss + ∑
i

Li(z)ηi (14)

where Li(z) are the Laguerre polynomials; for PFC, only the first polynomial is used:

L1(z) = 1 + pz−1 + p2z−2 + · · · (15)

The pole to be selected is clearly seen here as p and would logically match the choice
of λ in the PFC target.

Some reflections on this proposal are as follows.
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• In general terms, there is a closer (compared to conventional PFC) correspondence
between the closed-loop poles and the target pole of λ when the input is parameterised
as in (14). Thus, on balance, one might prefer this algorithm.

• It was noted that it was better to use the parameterisation u→(z) = uss + L1(z)η as
otherwise, the transients speed of response was severely impeded by the shape of the
first Laguerre polynomial.

• Despite being effective for some systems and an improvement on the conventional
PFC approach, there was still poorer consistency between the closed-loop poles and
the target pole λ than was satisfactory. Moreover, this approach did not help, or
indeed does not have sufficiently tailored shaping, with difficult dynamics such as
open-loop unstable poles and oscillatory modes.

3.5. Closed-Loop or Pre-Stabilised PFC

The most recent suggestion for modifying PFC builds on some ideas with the case by
case modifications for the original algorithm [6] but implements this in a more systematic
and effective manner. The basic idea is to recognise that where a system has poor open-
loop dynamics, a simple feedback loop, often based solely on simple proportional control,
can improve those dynamics [11,16,17]. As the efficacy of PFC is strongly linked to the
nominal dynamics having a shape somewhat close to a well-damped system, this initial pre-
stabilisation can be hugely effective in enabling PFC. The ultimate design is now a cascade
structure, but given the inner loop is a simple classical design, this additional complexity is
a very minor addition and can be viewed as essential for handling challenging dynamics.

A minor consequence of using a cascade structure is that the d.o.f. to be utilised in
solving (4) is now the input to the inner loop rather than the input signal (see Figure 2). In
the early works, this variable has been parameterised as a single constant, but equally, we
could make use of parameterisations such as in Section 3.4. Ironically, the use of a cascade
loop has an insignificant impact on the constraint handling aspects as, albeit the parameters
in the replacement for (8) are slightly different, the number of rows and treatment is similar.

G(z)+-
vk uk ykC(z)

yk

Internal Feedback Loop

PFC
r

Figure 2. Cascade structure with PFC.

In summary, early reflections on using a simple cascade structure are:

• Final tuning outperforms conventional PFC for a range of dynamics and notably
deals effectively with challenging dynamics such as under-damped processes and
open-loop instability.

• Enables simple guarantees of recursive feasibility, that is, effective constraint handling;
something other methods largely struggle with.

• The main downside is that, for systems with very challenging open-loop dynamics, it
may not be straightforward to determine a simple classical control law such as PID
for the inner loop. Of course, one could argue that such cases are irrelevant if we are
considering PFC as a competitor to simple classical control. Moreover, conventional
PFC had no answers to this either, and more expensive alternatives may be required.

3.6. Dealing with Lag in the Closed-Loop Responses

Notwithstanding the desire for the closed-loop pole to match the target pole, it was
noted recently that there was a fundamental weakness in the definition of control law (4),
which almost inevitably introduces some lag into the closed-loop responses [15]. This
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paper will not discuss that issue in detail as, in effect, it relates primarily to the feedforward
component of the control law and thus could be considered as a separate issue from
controller tuning. Feedforward information needs to be integrated carefully or it could
cause unexpected distortions in the behaviour.

In simple terms, some form of memory of the target and disturbance estimate informa-
tion needs to be integrated into (4) and the implied feedforward to ensure consistency of
planning from one sample to the next. Where the system response differs from a 1st order
response in fast transients, as almost all real systems will, the nominal PFC law of (4) does
not recognise this inconsistency adequately and thus may not behave as well as it could.

4. Comparison of Alternative PFC Approaches

This section presents several numerical examples with varying dynamics of the al-
ternative approaches. These are used as evidence for some stronger conclusions given at
the end of the section. Two aspects are considered to be at the core for a PFC algorithm to
be successful:

1. The tuning needs to be intuitive, that is, not requiring expert involvement. Here, we
take that to mean that the user can choose the desired pole λ (in effect a closed-loop
settling time) and the algorithm will deliver something close to that.

2. The coding requirements should be simple enough for interrogation and management
by local staff, thus again cutting the reliance on expensive consultants. The code must
not rely on expensive optimisers and use only the simplest coding constructs.

3. It is accepted that effective constraint handling is non-trivial even for PID approaches,
and thus, the code for this part will inevitably be more than a few lines. However, it
is similar for all the approaches, as mentioned in Section 2.4 and, thus, not presented.

Due to bullet point 1 above, we will consider three approaches: (i) conventional
PFC (Section 2—denoted CPFC; (ii) Laguerre PFC (Section 3.4—denoted LPFC) and (iii)
closed-loop PFC (Section 3.5—denoted CLPFC).

4.1. Case Studies

In line with earlier work [22,31], it is appropriate to use some industrially motivated
case studies to benchmark the different approaches and numerical comparisons. These
are selected to cover a range of challenging dynamics such as integrators, instability and
oscillatory modes. These are summarised next.

Boiler Level Control: A typical model for this process [32] is usually a first-order system
with an integrator, output water level and the input water flow rate; a representative model
is:

G1 =
0.1z−1 + 0.4z−2

(1− 0.8z−1)(1− z−1)
(16)

Depth Control of Unmanned Free-Swimming Submersible (UFSS): The depth of an
unmanned submarine can be controlled by deflecting its elevator surface, whereby the
vehicle will rotate about its pitch axis; the associated vertical forces due to the water flow
enable the vehicle to sink or rise. Typical dynamics include one stable pole and two complex
poles with stable zeros [33]. Thus, a representative model is given by G2 below.

G2 =
0.85z−1 − 1.5z−2 + 0.85z−2

(1− 0.6z−1)(1− 1.6z−1 + 0.8z−2)
(17)

with output pitch angle (rad) and input elevator deflection (m).

Temperature Control of Fluidised Bed Reactor: A fluidised bed reactor may involve
exothermic reactions and thus open-loop instability. The reactor bed temperature (◦C)
is controlled with a coolant flow rate (m3 s−1); thus, one obvious risk is that changes in
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flow rate can easily trigger rapid divergence in the temperature. A representative model
to capture the core dynamics for control design includes at least one stable pole and one
unstable pole [34]; a typical example is given below as G3.

G3 =
0.2z−1 − 0.26z−2

(1− 0.9z−1)(1− 1.5z−1)
(18)

4.2. Formation of Pre-Compensated Prediction Model for CLPFC

For the integrator system G1, a proportional controller C(z) = 0.0461 implemented as

shown in Figure 2 results in the pre-compensated dynamics T1 =
0.004615z−1 + 0.01846z−2

1− 1.795z−1 + 0.8185z−2

with stable poles at 0.8975± j0.1140.
For G2, a PI controller has to be tuned as P and PD controllers are incapable of

stabilising the oscillatory open-loop behaviour. Therefore, C(z) = 0.0038 +
0.0423
z− 1

is im-

plemented, providing T2 =
0.0032z3 + 0.027z−1 − 0.055z−2 + 0.033z−3

1− 3.20z−1 + 3.98z−2 − 2.30z−3 + 0.51z−4 with stable poles

at 0.822± j0.088 and 0.78± j0.3840.
For the unstable system G3, the PID controller fails to stabilise; therefore, the inner

loop has been tuned using a pole-placement method discussed in [35]. With C(z) =
22.914z−1 − 20.622z−2

1− 4.55z−1 + 1.66z−2 , a pre-stabilised prediction model with stable poles at 0.9, 0.667 and

0.4 is obtained: T3 =
4.58z−1 − 10.082z−2 + 5.36z−3

1− 1.967z−1 + 1.227z−2 − 0.24z−3 .

In the following analysis, T1, T2 and T3 designed above will be used with CLPFC,
whereas both CPFC and LPFC will utilise the open-loop dynamics G1, G2 and G3 for
decision-making.

4.3. Tuning Efficacy and Closed-Loop Performance Comparison

Closed-loop performance of the three PFC approaches is evaluated with regards to
the tuning efficacy for both short and long coincidence horizons. For each case study, the
selected controller parameters λ and n are tabulated in Table 1. The simulation results are
shown in Figures 3–5, and the key observations are:

• CLPFC clearly demonstrates a much stronger link between the actual and the desired
closed-loop performance, even with longer coincidence horizons. This is important
since long horizons may be necessary for better loop shaping against external pertur-
bations, as pointed out in [17]. Furthermore, the control effort with CLPFC is smooth
and the least aggressive as opposed to both CPFC and LPFC, which is crucial for
constraint adherence in practice.

• The input parametrisation with CPFC and LPFC for small horizon apparently works
with the relatively less difficult system G1; nonetheless, both alternatives fail to handle
the more challenging dynamics of G2 (oscillations) and G3 (non-minimum phase, in-
stability). In contrast, the re-parametrisation due to the inner loop in CLPFC warrants
a faster and smoother output convergence even in difficult applications.

• The dominant closed-loop poles given in Table 1 mirror the closed-loop performance
presented graphically. Apart from G1, the actual poles are far away from the desired
λ for CPFC, even the LPFC tuning is less effective for G2 and G3. However, the
closed-loop poles remain stable and much closer to the target pole with CLPFC.

In short, the CLPFC algorithm overcomes the tuning and performance weaknesses of
the CPFC for difficult dynamic problems. Although LPFC has also shown better perfor-
mance as compared to the conventional algorithm for difficult but stable systems, it appears
less effective in controlling non-minimum phase and/or unstable open-loop dynamics.
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Figure 3. Comparison of closed-loop performance between CPFC, LPFC and CLPFC for G1.
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Figure 4. Comparison of closed-loop performance between CPFC, LPFC and CLPFC for G2.
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Figure 5. Comparison of closed-loop performance between CPFC, LPFC and CLPFC for G3.

Table 1. Dominant closed-loop poles.

CPFC LPFC CLPFC

G1 λ = 0.92 n = 5 0.92 0.92 0.92, 0.53
n = 15 0.94, 0.75 0.92, 0.72 0.88± j0.05

G2 λ = 0.90 n = 4 0.88, 0.85± j0.51 0.9, 0.86± j0.52 0.9, 0.85± j0.47
n = 12 0.78, 0.73± j0.4 0.9, 0.77± j0.4 0.88, 0.68, 0.78± j0.39

G3 λ = 0.75 n = 7 1.16, 0.84 1.05, 0.75 0.9, 0.74
n = 18 1.005, 0.9 0.9, 0.75 0.9, 0.68, 0.39

5. Conclusions

This paper has presented a consolidated review of the recently proposed modified
PFC algorithms, specifically focusing on the tuning issues pertaining to challenging dy-
namic applications. Numerous proposals have surfaced in the past two decades to improve
control functionality, at least theoretically, although sometimes at the price of increased
complexity resulting in diminished practical appeal. Nevertheless, this paper focuses on
two recent approaches, namely Laguerre PFC and closed-loop (or pre-stabilised) PFC, that
are well-explored in the mainstream MPC literature with proven efficacy in theory and
practice. These modifications mainly work by introducing a different parametrisation of
the degree-of-freedom, which is necessary to induce more flexibility to handle difficult
dynamics in the control law; such flexibility does not exist in the conventional PFC algo-
rithm, which consequently is difficult to tune effectively for many cases. The industrial
case studies presented herein have demonstrated a superior performance and parameter
tuning efficacy from the closed-loop PFC, which overcomes the inherent deficiency of
the conventional algorithm against difficult dynamic problems to a greater extent while
retaining the associated simplicity and intuitiveness. Although the Laguerre PFC alone
may not perform as effectively in such applications, as a future consideration, nonetheless,
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it is expected to yield further performance improvement when utilised in conjunction with
the closed-loop PFC formulation.

Author Contributions: This paper is a collaborative work between both authors. J.A.R. provided
initial proposals and accurate communication of the concepts. M.S.A. developed the code and
analysed the concepts in the case studies. Both authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The second author would like to acknowledge the University of Sheffield for
his PhD scholarship, which is funding his studies.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khadir, M.; Ringwood, J. Stability issues for first order predictive functional controllers: Extension to handle higher order internal

models. In Proceedings of the International Conference on Computer Systems and Information Technology, Algiers, Algeria,
19–21 July 2005; pp. 174–179.

2. Richalet, J. Industrial applications of model based predictive control. Automatica 1993, 29, 1251–1274. [CrossRef]
3. Fallasohi, H.; Ligeret, C.; Lin-Shi, X. Predictive Functional Control of an expansion valve for minimizing the superheat of an

evaporator. Int. J. Refrig. 2010, 33, 409–418. [CrossRef]
4. Haber, R.; Rossiter, J.A.; Zabet, K. An alternative for PID control: Predictive functional Control—A tutorial. In Proceedings of the

2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 6935–6940.
5. Haber, R.; Bars, R.; Schmitz, U. Predictive Control in Process Engineering: From the Basics to the Applications; Wiley-VCH: Weinheim,

Germany, 2011.
6. Richalet, J.; O’Donovan, D. Predictive Functional Control: Principles and Industrial Applications; Springer: Berlin, Germany, 2009.
7. Clarke, D.W.; Mohtadi, C. Properties of generalized predictive control. Automatica 1989, 25, 859–875. [CrossRef]
8. Rossiter, J.A.; Haber, R. The effect of coincidence horizon on predictive functional control. Processes 2015, 3, 25–45. [CrossRef]
9. Rossiter, J.A. A priori stability results for PFC. Int. J. Control 2016, 90, 305–313. [CrossRef]
10. Rossiter, J.A.; Haber, R.; Zabet, K. Pole-placement Predictive Functional Control for over-damped systems with real poles. ISA

Trans. 2016, 61, 229–239. [CrossRef] [PubMed]
11. Zhang, Z.; Rossiter, J.A.; Xie, L.; Su H. Predictive Functional Control for Integral Systems; PSE: Bellevue, WD, USA, 2018.
12. Richalet, J.; Rault, A.; Testud, J.; Papon, J. Model predictive heuristic control: Applications to industrial processes. Automatica

1987, 14, 413–428. [CrossRef]
13. Khadir, M.; Ringwood, J. Extension of first order predictive functional controllers to handle higher order internal models. Int. J.

Appl. Math. Comput. Sci. 2008, 18, 229–239. [CrossRef]
14. Abdullah, M.; Rossiter, J.A. Using Laguerre functions to improve the tuning and performance of predictive functional control. Int.

J. Control 2021, 94, 202–214. [CrossRef]
15. Rossiter, J.A.; Abdullah, M. Improving the use of feedforward in Predictive Functional Control to improve the impact of tuning.

Int. J. Control 2020. [CrossRef]
16. Zhang, Z.; Rossiter, J.A.; Xie, L.; Su, H. Predictive Functional Control for Integrator Systems. J. Frankl. Inst. 2020, 357, 4171–4186.

[CrossRef]
17. Aftab, M.S.; Rossiter, J.A.; Zhang, Z. Predictive functional control for unstable first-order dynamic systems. In CONTROLO 2020;

Goncalves, J.A., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 1–11.
18. Richalet, J.; O’Donovan, D. Elementary predictive functional control: A tutorial. In Proceedings of the 2011 International

Symposium on Advanced Control of Industrial Processes (ADCONIP), Hangzhou, China, 23–26 May 2011; pp. 306–313.
19. Rossiter, J.A. A First Course in Predictive Control, 2nd ed.; CRC Press: London, UK, 2018.
20. Fiani, P.; Richalet, J. Handling input and state constraints in predictive functional control. In Proceedings of the 30th IEEE

Conference on Decision and Control, Brighton, UK, 11–13 December 1991; pp. 985–990.
21. Gilbert, E.; Tan, K. Linear systems with state and control constraints: The theory and application of maximal admissible sets.

IEEE Trans. Autom. Control 1991, 36, 1008–1020. [CrossRef]
22. Abdullah, M.; Rossiter, J.A. Input Shaping Predictive Functional Control for Different Types of Challenging Dynamics Processes.

Processes 2018, 6, 118. [CrossRef]
23. Rossiter, J.A.; Kouvaritakis, B. Numerical robustness and efficiency of generalised predictive control algorithms with guaranted

stability. IEE Proc. D 1994, 141, 154–162.



Processes 2021, 9, 1140 13 of 13

24. Rossiter, J.A. Input shaping for pfc: How and why? J. Control Decis. 2015, 3, 105–118. [CrossRef]
25. Mosca, E.; Zhang, J. Stable redesign of predictive control. Automatica 1992, 28, 1229–1233. [CrossRef]
26. Rossiter, J.A. Predictive functional control: More than one way to pre stabilise. In Proceedings of the 15th Triennial World

Congress, Barcelona, Spain, 21–26 July 2002; pp. 289–294.
27. Zabet, K.; Rossiter, J.A.; Haber, R.; Abdullah, M. Pole-placement predictive functional control for under-damped systems with

real numbers algebra. ISA Trans. 2017, 71, 403–414. [CrossRef] [PubMed]
28. Rawlings, J.; Muske, K. The stability of constrained receding horizon control. IEEE Trans. Autom. Control 1993, 38, 1512–1516.

[CrossRef]
29. Scokaert, P.O.; Rawlings, J.B. Constrained linear quadratic regulation. IEEE Trans. Autom. Control 1998, 43, 1163–1169. [CrossRef]
30. Wang, L. Model Predictive Control System Design and Implementation Using MATLAB; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2009.
31. Aftab, M.S.; Rossiter, J.A. Pre-stabilised predictive functional control for open-loop unstable dynamic systems. In Proceedings of

the 7th IFAC Conference on Nonlinear Model Predictive Control, Virtual, 11–14 July 2021.
32. Zhuo, W.; Shichao, W.; Yanyan J. Simulation of control of water level in boiler drum. In Proceedings of the World Automation

Congress 2012, Puerto Vallarta, Mexico, 24–28 June 2012.
33. Nise, N.S. Control System Engineering; John Wiley & Sons, Inc.: New York, NY, USA, 2011.
34. Kendi, T.A.; Doyle, F.J. III Nonlinear control of a fluidized bed reactor using approximate feedback linearization. Ind. Eng. Chem.

Res. 1996, 35, 746–757. [CrossRef]
35. Ogata, K. Discrete-Time Control Systems; Prentice Hall: Englewood Cliffs, NJ, USA, 1995.





Appendix E

Predictive Functional Control for Challeng-

ing Dynamic Processes using a Simple Pre-

stabilization Strategy

Muhammad Saleheen Aftab, and John Anthony Rossiter

This paper has been published in Advanced Control for Applications: Engineer-

ing and Industrial Systems, Wiley, 2022

Author Contributions. This paper is a collaborative work between both authors. M. S. Aftab

proposed the idea, analysed the concept in case studies, and prepared the initial draft of the pa-

per. J .A. Rossiter provided accurate communication of the earlier PFC and MPC control laws,

supervised M. S. Aftab and reviewed the whole project.

159





Received: 6 September 2021 Revised: 4 January 2022 Accepted: 11 March 2022

DOI: 10.1002/adc2.102

O R I G I N A L A R T I C L E

Predictive functional control for challenging dynamic
processes using a simple prestabilization strategy

Muhammad Saleheen Aftab John Anthony Rossiter

Department of Automatic Control and
Systems Engineering, University of
Sheffield, Sheffield, UK

Correspondence
Muhammad Saleheen Aftab, Department
of Automatic Control and Systems
Engineering, University of Sheffield,
Mappin Street, Sheffield S1 3JD, UK.
Email: msaftab1@sheffield.ac.uk

Funding information
University of Sheffield

Abstract
Predictive functional control (PFC) is a straightforward and cheap model-based
technique for systematic control of well-damped open-loop processes. Neverthe-
less, its oversimplified design characteristics are often the cause of diminished
efficacy in more challenging applications; processes involving lightly damped
and/or unstable dynamics have been particularly difficult to control with PFC.
This paper presents a more sustainable solution for such applications by inte-
grating the concept of prestabilization within the predictive functional control
formulation. This is essentially a two-stage synthesis wherein the undesirable
open-loop dynamics are first compensated, using a well-understood classical
approach such as proportional integral derivative (PID), before implementing
predictive control in a cascade structure. The proposal, although comes with
significant implications for tuning and constraint handling, is, nonetheless,
straightforward and provides improved closed-loop control in the presence of
external perturbations compared to the standard PFC and the PID algorithms,
as demonstrated with two industrial case studies.

K E Y W O R D S

coincidence horizon, constraint handling, modeling uncertainty, prestabilization, predictive
functional control

1 INTRODUCTION

In process industries, a sustainable feedback control loop needs to be one that is easy to maintain and retune using
local staff rather than consultants. Hence, it is advantageous when components of the design are based on simple
classical approaches such as proportional integral derivative (PID) which are well understood. This paper considers
how predictive functional control (PFC), a low-cost approach to model predictive control (MPC), can exploit sim-
ple classical designs within the overall approach and use simple intuitive tuning of the predictive control aspects
thereafter.

PFC, since its introduction in the 1970s,1 has emerged as a strong competitor to the widely popular PID algorithm,
especially for single-input-single-output industrial process control loops. The advantages of PFC significantly outweigh
those of PID in that it systematically handles process dead-times and constraints with an equivalent cost and complexity
threshold, but for which PID requires additional complexity such as Smith predictors2 and anti-windup algorithms.3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Advanced Control for Applications: Engineering and Industrial Systems published by John Wiley & Sons Ltd.
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Moreover, controller tuning in PFC is intuitive, relating to the physical characteristic of system time constant, which,
in principle, makes the tuning process relatively meaningful.4 Consequently numerous successful PFC implementations
have been reported in the literature.5,6

Being a model-based approach, PFC has inherited fundamental attributes from the mainstream MPC family,7
yet it differs significantly from other predictive controllers in the parameterization of the input trajectory and the
associated optimization. In PFC, the manipulated variable is predefined as a linear combination of polynomial basis func-
tions, whose order depends upon the shape and characteristic of the target.5,8 For a constant set-point, the predicted
input parameterises to just one degree-of-freedom, eliminating the need for the complex optimisation routines gener-
ally associated with high-end MPC (e.g. DMC,9 GPC10). This on one hand simplifies computation, but on the other
hand necessitates heuristics for constrained predictive control problems.11 Unlike advanced approaches, simple clip-
ping, saturation, or simplified back calculation have been the commonly deployed constraint management protocols
in PFC.

The basic PFC algorithm operates by matching output predictions with a desired first-order response at only one future
point, known as the coincidence point, and with a fixed control action.5-7 Intuitively this approach is effective as long
as the model behavior is smooth and monotonically convergent after immediate transients.12 A prime example is stable
first-order plants for which PFC is proven to drive the controlled variable to any desirable target trajectory provided coinci-
dence occurs exactly one-step ahead.7 Similar closed-loop performance could be expected with well-damped higher-order
dynamics although a coincidence point of one may not suffice due to the initial lag in the response. Nevertheless,
parameter tuning for such simple systems is well understood in literature.12

However, what happens when the dynamic behavior is oscillatory, nonminimum phase or, in the worst scenario,
completely divergent? Simply put, PFC loses efficacy in these difficult situations. The reason is inconsistency within the
implied long-range predictions that deviate from the assumed ideal behaviour after coincidence. Researchers argue that
a constant future input may not be sufficient as this lacks enough degrees-of-freedom to tackle difficult dynamics.4,6,13,14

Although the conventional PFC may still work in some cases due to the application of receding horizon,7,12 the
decision-making is unreliable and prone to failure, especially with tight constraints and/or uncertainties. To overcome
difficulties associated with challenging dynamics, a manual for PFC practitioners6 suggests a variety of possible mod-
ifications on a case-to-case basis. Nevertheless, these solutions lack an over-arching systematic design procedure, and
unsurprisingly have a very limited applicability.

For challenging applications, various modified PFC algorithms implementing different parameterisations of the deci-
sion variable have also been investigated. One proposal13 recommends altering the input by separating and subsequently
cancelling the unwanted dynamics to obtain convergent predictions. This method provides many-fold performance
improvements while retaining the basic PFC characteristics but lacks practicality as the proposed minimum moves shap-
ing may produce aggressive input activity and could be quite sensitive to parameterisation errors. Another input shaping
proposal4 ensures relatively less aggressive control moves by allowing predictions to converge over many more samples.
This method, tested on numerous simulation models and hardware application, outperforms the predecessor but relies
on rather less-intuitive offline computations. Yet another proposal15 suggests decomposing the higher-order model into
multiple first-order subsystems to benefit from simple tuning procedure. But such decomposition for oscillatory dynam-
ics embeds complex number algebra into the computations which may not work easily with general purpose industrial
programmable logic controllers (PLCs).14

A more recently proposed alternative, building on common practice in the more mainstream MPC literature,16,17 is
to prestabilize the undesirable open-loop predictions using an internal feedback compensation loop. While this concept
within PFC has largely been limited to first-order unstable18 or integrator dynamics19,20 and very simple prestabilization
compensators, one recent study21 has extended its scope to higher-order unstable dynamics using some more involved
inner compensation schemes, resulting in promising performance attributes but at the cost of increased constraint
handling complexity. Another recent study22 has suggested an improved and more meaningful parameter tuning after
prestabilization;22 a benefit that significantly outweighs the slight intricacy in constraint handling that may arise due to
the use of complicated internal loops. Nevertheless, the need for a more thorough investigation in this context is evident;
an objective which the current paper aims to accomplish. Therefore, the primary contribution, building on the recent
proposal,21 is the development of a systematic but simple PFC design framework for underdamped and unstable dynamic
processes, integrating an intuitive tuning algorithm along with straightforward guidelines to perform efficient constraint
management.

The remainder of this paper is organised as follows: Section 2 defines the problem and sets control objectives.
The conventional PFC is briefly reviewed in Section 3, followed by a detailed discussion on the prestabilized PFC
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framework in Section 4. Two feedback compensation proposals are discussed next in Section 5 before discussing
the proposal for constraint management with prestabilization in Section 6. The simulation case studies follow in
Section 7 which presents performance comparisons with standard PFC and PID controllers. Finally, the paper concludes
in Section 8.

2 PROBLEM STATEMENT

Consider a dynamic process characterised by an nth-order strictly proper transfer function model G(z) such that:

G(z) = z−nd G0(z); G0(z) =
b(z)
a(z)

, (1)

where a(z) and b(z) are coprime with a(z) = 1 + a1z−1 + a2z−2 + · · · + anz−n, b(z) = b1z−1 + b2z−2 + · · · + bnz−n, respec-
tively, and nd is the process deadtime. It is assumed that the delay-free model G0(z) exhibits oscillatory or divergent
dynamic behaviour demonstrated by complex or unstable open-loop poles. The process may also be subject to the
following limits:

u ≤ uk ≤ ū, Δu ≤ Δuk ≤ Δū, y ≤ yk ≤ y, (2)

where Δ = 1 − z−1. The problem addressed in this paper deals with the design of PFC of the process modeled as G(z),
by stabilising and/or conditioning the difficult open-loop dynamics using a simple classical feedback compensation
approach. The controller is expected to exhibit some degree of robustness against modelling uncertainty and/or external
perturbations.

3 REVIEW OF PFC

This section briefly reviews the basic characteristics of a conventional predictive functional controller along with its fun-
damental weaknesses in handling difficult open-loop dynamics, followed by a detailed analysis of the prestabilized PFC
(PPFC) algorithm proposed for such applications in the subsequent sections.

3.1 Conventional PFC algorithm

For a well-damped open-loop process, the conventional PFC works as follows: at every time sample k, the current control
input uk is used to enforce a match between the predicted plant output yk and a predefined reference trajectory rk at a
coincidence point ny samples ahead in the future. The prediction is based on an assumption of a constant future control
signal uk = uk+1 = · · · = uk+ny, but the decision is re-evaluated and updated at every sampling instant, thus forming a
feedback mechanism. The reference trajectory represents an ideal first-order response, initiated on the current output
given by (for a system with deadtime of nd samples):

rk+nd+i = R − (R − E[yk+nd|k])𝜌
i, i = 1, 2, … (3)

where R is the set-point, E[yk+nd|k] is the current estimate/prediction of the delayed output and 𝜌 is the target pole (0 <
𝜌 < 1), defined as 𝜌 = e−Ts∕𝜏 with Ts and 𝜏 being the sampling time and the target time constant, respectively. Therefore,
at the point of coincidence ny, by definition, one obtains:

yk+ny|k = R − (R − E[yk+nd|k])𝜌
ny = rk+nd+ny , (4)

where the notation k + x|k means the x-step ahead prediction made at the current sample k. The standard practice, as
shown in Figure 1, is to simulate a delay-free independent model G0(z) in parallel with the plant using the same input uk
(a formulation similar to Smith predictor) which in essence provides nd samples out of synchronization output prediction



4 of 20 AFTAB and ROSSITER

F I G U R E 1 The standard predictive functional control control architecture with independent internal model

at the current k. Furthermore, the independent structure tends to induce prediction bias due to uncertainties, causing an
offset in the steady-state. For bias-free predictions, a correction term dk must be included in algebra such that:

{dk = yk − ŷk−nd
} ⇒ {E[yk+nd|k] = ŷk + dk}, (5)

where ŷk is the independent model output. The output prediction at the coincidence point ny is recursively obtained using
the structure a(z)ŷk = b(z)uk such that7

ŷk+ny|k = Hu
⃖⃗ k + Pu

⃖⃖ k−1 + Qŷ
⃖⃖k
, (6)

where H, P, and Q are derived from model parameters, with the associated input and output vectors defined accordingly:

u
⃖⃗ k =

⎡
⎢⎢⎢⎢⎢⎣

uk

uk+1

⋮

uk+ny

⎤
⎥⎥⎥⎥⎥⎦

; u
⃖⃖ k−1 =

⎡
⎢⎢⎢⎢⎢⎣

uk−1

uk−2

⋮

uk−n+1

⎤
⎥⎥⎥⎥⎥⎦

; ŷ
⃖⃖k

=

⎡
⎢⎢⎢⎢⎢⎣

ŷk

ŷk−1

⋮

ŷk−n+1

⎤
⎥⎥⎥⎥⎥⎦

. (7)

As uk+i = uk, ∀i > 0, combining (4)–(6) results in the following PFC control law:

uk =
R − (R − E[yk+nd|k])𝜌

ny − (Pu
⃖⃖ k−1 + Qŷ

⃖⃖k
+ dk)

hny

, (8)

where hny =
∑ny

j=1H(j) and H(j) is the jth element of H.
One of the core advantages of PFC over some of the similarly placed techniques, such as the PID, is its ability to

integrate constraints within the design instead of treating them as an afterthought.23 Owing to the assumption of constant
future input, it is possible to implement a simple saturation policy to predict and validate the input constraint adherence
using just the following four inequalities at each k:

⎡
⎢⎢⎢⎢⎢⎣

1
− 1
1
− 1

⎤
⎥⎥⎥⎥⎥⎦

uk ≤
⎡
⎢⎢⎢⎢⎢⎣

ū
− u

Δū + uk−1

−Δū − uk−1

⎤
⎥⎥⎥⎥⎥⎦

. (9)

Output/state constraints, if present, can also be implemented efficiently using model predictions,7 such as (6), over
a large validation horizon nc, with nc >> ny, so that future violations (in nominal conditions) could be prevented. Given
y ≤ yk ≤ y, the following inequalities must be validated at each sample k with an input uk selected closest to the one
obtained via (8), such that:

y ≤ hiuk + Piu
⃖⃖ k−1 + Qiŷ

⃖⃖k
+ dk ≤ y, (10)

where i = 1, 2, … ,nc.
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Remark 1. The process of constraint validation based on (9) and (10) guarantees nominal recursive feasibility (no change
in the steady-state target and/or the disturbance), provided the open-loop system has stable and monotonically convergent
dynamic behaviour.7

3.2 Selecting parameters 𝝆 and ny

The primary tuning parameter 𝜌 represents the ideal (first-order exponential) speed of convergence of the tracking error,
that is, how fast or slow the predicted response approaches the set-point. Assuming nd = 0 for simplicity, it is clear from
(4) that the predicted ny-step ahead tracking error ek+ny|k is equal to 𝜌ny times the current error ek, where ek = R − yk.
While the significance of 𝜌 is obvious, its efficacy is highly dependent on the judicious selection of ny. In general, as ny
gets larger, the closed-loop performance tends to the open-loop behavior, albeit with zer steady-state offset, irrespective
of the chosen target pole.12 Clearly 𝜌 has the maximum influence when ny = 1, but in practice enforcing one-step ahead
coincidence may not always be a good choice,7 especially if the predicted response exhibits significant initial lag, as is the
case with overdamped or nonminimum phase dynamics.

Notably one-step ahead coincidence is mostly effective, providing 100% target tracking in nominal conditions, for
processes with dominant first-order behavior.6,7 However, implementations with heavily damped dynamics generally
necessitate coincidence further away in future; a requirement that reduces the efficacy of 𝜌 to some extent. Nevertheless,
to achieve a performance closer to the desired one, coincidence should be enforced as early as possible. In this context,
one suggestion is to use the point of inflection, that is, the point of maximum gradient on the open-loop step response
curve, as the coincidence point.5 However, it is argued that tuning on this criterion alone may be flawed, especially if
the dynamics in question are nonminimum phase.12 Instead, a more sensible ny lies within the time window when the
step response rises from 40% to 80% of its steady-state value with significant gradient, and the first-order reference that
coincides within this time window is a suitable target trajectory.7

3.3 Performance limitations with challenging applications

It has traditionally been difficult to synthesize an effective control law for unstable and/or poorly damped dynamic pro-
cesses using a low cost approach, such as PID.24 The simplistic design attributes mean that conventional PFC too struggles
and performs rather poorly in these applications as reported in many recent studies.4,7,12,13 Researchers mainly link
this inefficacy to the constant future input assumption4,7,12 which, although works well when the open-loop predictions
are stable and monotonically convergent to the implied steady state, is clearly inappropriate in view of the challenging
dynamic characteristics. This results in a large inconsistency between the predicted and the actual behavior, embedding
unreliability in the decision-making. It is further noted that:

• With difficult dynamics, the selection of tuning parameters 𝜌 and ny is far less clear cut, since the available guidelines
mainly rely on the analysis of open-loop step response which clearly becomes meaningless in the presence of large
oscillations/divergence.

• Recursive feasibility under constraints cannot be guaranteed even nominally, as the continued use of previous input
inevitably leads to constraint violation due to oscillations/divergence.

Although the design may still work in some cases due to the receding horizon,12 it is indeed unreliable and prone to
failure especially with uncertainties or tight actuation limits. To tackle this deficiency arising due to the use of constant
future input within predictions, an obvious solution is to implement a more flexible parametrization of the input function
(see for instance References 4,13). In the current proposal, reparametrization of the degree-of-freedom is achieved via
prestabilization of the difficult open-loop dynamics, which is a well-established concept adapted from the mainstream
MPC literature.16,17 The following sections present the proposal in detail.

4 PRESTABILIZED PFC FRAMEWORK

This section presents the concept of pre-stabilisation in the context of PFC and proposes a systematic design framework,
based on the initial proposal,21 to cater for a variety of difficult open-loop dynamics.
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F I G U R E 2 Precompensation of internal prediction model G0(z)

4.1 Establishing the PPFC control law

The fundamental idea behind PPFC is to first stabilize the undesirable open-loop dynamics, using a simple and well
understood classical approach, and then implement PFC in the standard way, as an outer loop, for improving perfor-
mance, and managing constraints and deadtimes. The precompensation loop is generally implemented on the internal
model (e.g., see References 18-20) thereby utilizing the internal input as the main decision variable for plant control. This
approach, however, is not recommended, especially with open-loop unstable dynamics, because closed-loop stability can-
not be ensured as even the smallest amount of numerical precision error would trigger a divergent response from the
unstable plant. A particular novelty of this work is separately closing the loop on the plant and the model so implicitly
they do not share the same input signal.

In the current proposal, the delay-free prediction model G0(z) is prestabilized using a classical controller C(z) in the
feedback configuration shown in Figure 2, where C(z) = q(z)∕p(z) with p(z) = 1 + p1z−1 + · · · + pmz−m and q(z) = q0 +
q1z−1 + · · · + qmz−m. It means that a compensated prediction model Gs,0(z), with stable and monotonically convergent
dynamics, given by:

Gs,0(z) =
C(z)G0(z)

1 + C(z)G0(z)
= 𝛽(z)

𝛼(z)
, (11)

is now implemented for decision-making, where 𝛽(z) = 𝛽1z−1 + 𝛽2z−2 + · · · + 𝛽lz−l, 𝛼(z) = 𝛼0 + 𝛼1z−1 + 𝛼2z−2 + · · · +
𝛼lz−l, and l = m + n. The PPFC control law is derived in the conventional way, albeit using the closed-loop prediction
model 𝛼(z)ŷk = 𝛽(z)vk, as follows:

yk+ny|k = Hv
⃖⃗ k + Pv

⃖⃖k−1 + Qŷ
⃖⃖k

+ dk, (12)

where P, Q, and H depend upon the parameters of the prestabilized model (11). The control law takes the form:

vk =
R − (R − E[yk+nd|k])𝜌

ny − (Pv
⃖⃖k−1 + Qŷ

⃖⃖k
+ dk)

hny

. (13)

This, however, also transforms the decision variable from uk to vk, with direct implications for parameter tuning and
constraint handling.

4.2 Evaluating the main decision variable uk

Although the PPFC computes vk at each sample, evaluating uk is necessary for plant actuation. However, the implied
relationship between uk and vk is not straightforward owing to the separate closure of plant and model loops. The inner
model input ûk, nonetheless, is directly linked to vk, independent of the fine details pertaining to the internal feedback
loop design.
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F I G U R E 3 Proposed prestabilized predictive functional control control architecture

Lemma 1. The control variables ûk and vk after pre-stabilisation are related as follows:

ûk = q(z).a(z)
𝛼(z)

vk. (14)

Proof. This is obvious from the expressions ŷk = G0(z)ûk = Gs,0(z)vk. Eliminating ŷ(k) results in:

b(z)
a(z)

ûk = 𝛽(z)
𝛼(z)

vk =
q(z)b(z)
𝛼(z)

vk,

which simplifies to (14). ▪

Remark 2. The reader is reminded that the inner loop with G0 is a simulation or internal model and thus the algebra is
exact and with no uncertainty.

The next step is to compute uk, which in principle could be obtained directly from the loop structure if prestabi-
lization were hardwired. Given that C(z) is designed using the delay-free model G0(z), utilising it in conjunction with
the time-delayed plant may not yield desirable performance. A unique contribution of the proposal is summarized by
Theorem 1, which establishes a key relationship between already known quantities to obtain uk indirectly without
hardwiring the prestabilising compensator.

Theorem 1. Prestabilizing the plant separately with C(z), in addition to the model G0(z), is equivalent to computing the
control input uk using the following expression:

uk = ûk − C(z)dk. (15)

Proof. Assuming C(z) stabilises both the plant and the model separately, one gets uk = C(z)[vk − (ŷk + dk)] and ûk =
C(z)[vk − ŷk] for both pre-stabilisation loops, respectively. Eliminating vk then provides:

uk + C(z)ŷk + C(z)dk = ûk + C(z)ŷk,

which simplifies to (15). Since both ûk and dk are known, uk can be computed in effect without hardwiring the
compensator in practice. The resulting control architecture is depicted by the block diagram in Figure 3. ▪

Remark 3. In nominal conditions, that is, without modeling mismatch and external disturbances, uk = ûk.

Corollary 1. The obvious corollary of Lemma 1 and Theorem 1 is that the decision variableûk is redundant after
pre-stabilisation and can be omitted from computation, which means the model is excited with vk whereas the plant
with uk.

Hence, replacing ûk in (15) from (14) results in a direct relationship between the decision variables of interest:

uk = q(z).a(z)
𝛼(z)

vk − C(z)dk, (16)
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which can be rewritten as:

A(z)uk = B(z)vk + E(z)dk, (17)

with the polynomials A(z), B(z), and E(z) defined as follows:

A(z) = 𝛼(z)p(z) = 1 + A1z−1 + A2z−2 + · · ·
B(z) = q(z)a(z)p(z) = B0 + B1z−1 + B2z−2 + · · ·
E(z) = −𝛼(z)q(z) = E0 + E1z−1 + E2z−2 + · · · . (18)

At each time sample, the plant input uk can be computed directly from vk and vice versa using:

uk = B0vk + fk; fk = −Au
⃖⃖ k−1 + Bv

⃖⃖k−1 + Ed
⃖⃖ k, (19)

where vectors A, B, and E contain appropriate coefficients of the respective polynomials. The main advantage of the
proposal is visible clearly since uk is now reparamerized as a linear combination of a constant term vk (obtained from
the outer PFC loop) and a time-varying term fk (obtained from the inner loop configuration), which can now handle
nonsimple dynamics with ease and efficiency.

Remark 4. The computational requirement of (19) is similar to the open-loop control law (8), but owing to reparametriza-
tion of uk, constraint handling is now expected to be slightly more onerous. Nevertheless, the underlying coding is still
elementary; for instance, vector multiplication can be programmed in few lines with the basic loop instruction.

4.3 Analysing the initial input activity

The dynamics of the initial input produced by the controller is an important metric to assess the expected closed-loop
performance, as it provides valuable insights about the implied transient behavior of the controlled system. Assuming
zero initial conditions and no uncertainty for simplicity, it is straightforward to show using (13) and (19) that for a change
in R:

u1,ny =
B0R
hny

(1 − 𝜌ny), (20)

where u1,ny is the initial input for the chosen ny. It is noted that:

• The initial input is directly proportional to the magnitude of the desired set-point. This is expected since tracking a
large target change usually requires a correspondingly aggressive control action.

• hny , which is computed from the model parameters based on the selected coincidence horizon, inversely affects u1,ny .
• For smaller values of ny, the initial input is inversely related to the term 𝜌ny , which means a faster target pole (smaller

𝜌) requires an aggressive initial control and vice versa. Note that large ny values make 𝜌ny insignificant.

Two instances of particular interest are when either one-step ahead coincidence (ny = 1) is enforced or when ny is
chosen so large (theoretically approaching ∞) that 𝜌ny → 0; knowing the initial input activity for both cases can provide
a better understanding of the expected closed-loop performance for various possible choices of 𝜌 and ny.

Theorem 2. For a given set-point R and a target pole 𝜌, the initial control for ny = 1 and ny → ∞ is given by:

u1,ny =
⎧
⎪⎨⎪⎩

B0R
𝛽1

(1 − 𝜌); ny = 1
B0R

Gs,0(1)
; ny → ∞,

where 𝛽1 is the lead coefficient of 𝛽(z), and Gs,0(1) is the steady-state gain of the pre-stabilised system.
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Algorithm 1. Selecting 𝜌 and ny

With multiple target poles such that 0<𝜌i<𝜌i−1< · · ·<𝜌1 ≤ zs, where zs is the slowest (dominant) pole of the pre-stabilised
prediction model, plot (20) over a long enough range of ny, preferably up to one time constant (i.e. the time required to
reach approximately 63% of the implied steady-state response). Select a combination of 𝜌 and ny which gives u1,ny ≈ 𝜃u1,∞,
where 𝜃 is the amplification factor roughly chosen within 2 ≤ 𝜃 ≤ 5.

Proof. The one-step ahead prediction (ny = 1) obtained from the prestabilized model 𝛼(z)ŷk = 𝛽(z)vk can be
written as:

ŷk+1 + 𝛼1ŷk + 𝛼2ŷk−1 + 𝛼3ŷk−2 + · · · = 𝛽1vk + 𝛽2vk−1 + 𝛽3vk−2 + …

which can be rearranged in the vector form:

ŷk+1 = 𝛽1vk + [𝛽2 𝛽3 …]v
⃖⃖k−1 + [−𝛼1 − 𝛼2 − 𝛼3 …]ŷ

⃖⃖k
,

from which it is clear that h1 = 𝛽1. Hence, using (20):

u1,1 = B0R
𝛽1

(1 − 𝜌); ny = 1. (21)

When ny → ∞, it is known from a previous study12 that hny approaches the static gain of the system. Therefore, (20)
reduces to:

u1,∞ = B0R
Gs,0(1)

; ny → ∞. (22)
▪

Note that (22) represents a special approach implementing the so called mean-level tuning in which one implicitly
accepts the open-loop (in this case the prestabilized) transient behavior in the closed-loop performance.7 In practice, this
can be achieved by selecting the degree-of-freedom vk = vss =

R
Gs,0(1)

, where vss denotes the expected stead-state input.

Notwithstanding the lack of mathematical rigour, a sensible choice of parameters could then be the one that simply
amplifies u1,∞ by a reasonable amount, such that the resulting initial control is not too aggressive, that is, practically
achievable.

Remark 5. Although prestabilization allows one to implement conventional tuning methods discussed in Section 3.2,
see for instance References 21,22, a key contribution here is the development of Algorithm 1, which utilizes tran-
sient input activity for a more meaningful and performance oriented selection of 𝜌 and ny (as shown in Figure 5).
However, direct implementation of (20) with the complicated open-loop dynamics should be avoided as parame-
ter tuning based on unreliable, that is, numerically infeasible, computations of hny could possibly lead to ill-posed
decision-making.7

4.4 Summary

To sum up, the concept of PPFC works systematically in three simple steps: forming stable and well-damped
closed-loop predictions using a classical feedback compensator, implementing PFC using the prestabilized model,
and analyzing the predicted initial input for a meaningful parameter selection. The proposal is independent of
the underlying open-loop characteristics, and therefore could be applied to a variety of processes including those
exhibiting instability and/or poor damping. The next section will discuss two simple methods to design the
inner controller for such applications, followed by a brief analysis of the impact of prestabilization on constraint
management.
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5 DESIGN OF PRESTABILIZING COMPENSATOR

So far we have examined the impact of prestabilization on the core functionality of PFC by assuming a suitable compen-
sator that stabilizes the undesirable open-loop dynamics for consistent prediction behaviour. In this section, two common
methods of classical feedback control are proposed for this purpose, namely: proportional (plus derivative), and pole
placement designs. It is noted that both alternatives are well-understood and easily implementable with basic technical
know-how. Hence, the proposal assures a cheap and sustainable loop design combined with the fundamental benefits of
predictive control.

5.1 Compensation via P/PD controller

The proportional plus integral plus derivative (PID) compensation is arguably the most popular industrial process con-
troller owing to cheap and straightforward implementation and maintenance thereafter. Hence, it makes intuitive sense
to utilize the benefits of such a universal technique to further enhance the capabilities of PFC, which was originally devel-
oped to compete with PID in cost and performance. The idea here is to tune the proportional (plus derivative) part only,
using any standard time-domain or frequency-domain PID tuning method, to prestabilize the difficult dynamics before
implementing PFC. It is noted that for a majority of first and second order processes, a simple P- or PD-type controller
can satisfactorily prestabilize the undesirable dynamics. Nevertheless, there are instances like poorly damped or difficult
higher-order poles which may require a slightly more sophisticated approach such as the one based on pole placement.

5.2 Compensation via pole placement

The main idea behind pole placement is to design the controller by specifying the desired prestabilized pole configuration.
It is noted that pole placement generally results in higher-order controllers, which in the context of PPFC may slightly
increase the burden of constraint management, but this is an inevitable consequence when simpler alternatives are no
longer effective.

The current pole placement proposal is based on the analytical approach of feedback compensation presented in
reference.21 Assume that a (n − 1)th-order bi-proper compensator C(z) is used to modify the open-loop model G0(z), as
shown in Figure 3, resulting in the prestabilized transfer function Gs,0(z), with a smooth and monotonically convergent
prediction behavior. Then one may write:

Gs,0(z) =
𝛽(z)
𝛼(z)

=
q(z)b(z)

p(z)a(z) + q(z)b(z)
, (23)

where 𝛼(z) is the (2n − 1)th-order prestabilized pole polynomial, and the underlying relationship,

p(z)a(z) + q(z)b(z) = 𝛼(z), (24)

is called the Diophantine Equation. In order to design the C(z), one must define the desired pre-stabilised characteristic
polynomial 𝛼(z) and then utilize linear algebra to obtain the coefficients of p(z) and q(z) with,

M = S−1D, (25)

where M = [pn−1 · · · p0 qn−1 · · · q0]T , D = [𝛼2n−1 · · · 𝛼0]T and S is the Sylvester Matrix25 given by:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an 0 … 0 bn 0 … 0
an−1 an … 0 bn−1 bn … 0
⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮

1 a1 … an−1 0 b1 … bn−1

0 1 … an−2 0 0 … bn−2

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮

0 0 … a1 0 0 … b1

0 0 … 1 0 0 … 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)
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Algorithm 2. Unconstrained PPFC

I. First stabilize the open-loop dynamics using, for example, the P(D) or Pole Placement methods discussed above.
II. Select appropriate tuning parameters 𝜌 and ny using the the proposed Algorithm 1, or indeed the standard tuning

guidelines, discussed in Section 3.2.
III. At each sample k, compute the unconstrained values of vk using (13).
IV. Finally, compute the unconstrained value of uk with (19), and update the plant and the model.

Note that 𝛼(z) is factorized as:

𝛼(z) = o(z)a−(z)𝛼+(z), (27)

where o(z) is the (n − 1)th-order observer generally selected as o(z) = zn−1, a−(z) factors the stable open-loop poles and
𝛼+(z) represents the pu prestabilized poles. If a+(z) =

∏pu
i=1(z − zp,i) then: Proposal for unstable poles. With zp,i > 1, design

𝛼+(z) =
∏pu

i=1(z − 1∕zp,i). In case an integrator factor (z − 1) is present, then one may simply replace it with (z − 0.5).4
Proposal for complex poles. With zp,i ∈ C, place the prestabilized poles at the real part of the complex open-loop poles,
that is, 𝛼+(z) =

∏pu
i=1(z −ℜ(zp,i)). This will effectively filter out the undesirable oscillations but without compromising

the convergence speed.
This completes the internal feedback loop design via pole placement.

5.3 Summary

This section has proposed two very simple and straightforward approaches of prestabilization. While the standard P/PD
controllers are generally sufficient, one may also utilize pole placement for more involved open-loop dynamics, for which
the proposed design steps are fairly elementary.

We are now in a position to sum up the discussion of unconstrained PPFC with the following algorithm (Algorithm 2):

6 CONSTRAINT HANDLING WITH PRESTABILIZED DYNAMICS

For completeness, this section summarizes how constraint handling can be done in a very efficient manner for PFC where
there is only a single degree-of-freedom.

The addition of an internal feedback loop reparameterizes the input function which implies that uk is no longer
constant within the prediction horizon. This directly affects the way input and rate constraints are handled, as one
now has to observe constraint adherence at each future sample over a validation window extending well beyond
the coincidence point. This is crucial because any unobserved input violation could eventually lead to infeasibil-
ity, invalidating the current optimization. Interestingly though, transforming the degree-of-freedom does not change
the procedure to verify output/state constraints. Specifically, the standard methods, such as the one discussed in
Section 3.1, remain valid, the only change being the use of prestabilized model predictions in the corresponding
inequality (10). Taking all this into account, each row of the following vector inequalities restricts the ith prediction
such that:

Lu ≤ u
⃖⃗ k ≤ Lū

LΔu ≤ Δu
⃖⃗ k ≤ LΔū

Ly ≤ y
⃖⃗ k+1

≤ Ly, (28)

where i = 0, 1, … ,nc and L = [1 1 …]T . Ideally, the validation horizon nc should cover the settling period of Gs,0(z); for
example, the time to reach and stay within about 95% of the implied steady-state is often sufficient. It is more convenient to
represent the constraint inequalities in terms of vk as this value remains constant along nc, by noting that u

⃖⃗ k = B0Lvk + f
⃗k,
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Algorithm 3. Constrained PPFC

At each sample k, execute Step III of Algorithm 2 and update f
⃖⃗

k. Verify each row of (29), enforcing saturation at vk = Y j∕Xj

for every violation in the jth row. Finally, compute the constraint adhering value of uk using (19).

Δu
⃖⃗ k = C−1

1∕Δ(u⃖⃗ k − Luk−1), and y
⃖⃗ k+1

= hiLvk + Pv
⃖⃖k−1 + Qŷ

⃖⃖k
+ Ldk:7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0L
− B0L

B0C−1
1∕ΔL

− B0C−1
1∕ΔL

hiL
− hiL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
X

vk ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lū − f
⃗k

− Lu + f
⃗k

LΔū − C−1
1∕Δf

⃗k + C−1
1∕ΔLuk−1

− LΔu + C−1
1∕Δf

⃗k − C−1
1∕ΔLuk−1

Ly − Pv
⃖⃖k−1 − Qŷ

⃖⃖k
− Ldk

− Ly + Pv
⃖⃖k−1 + Qŷ

⃖⃖k
+ Ldk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Y

, (29)

where C1∕Δ is a lower triangular matrix defined as follows (Algorithm 3)7

C1∕Δ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 … 0
1 1 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮

1 1 1 … 1

⎤
⎥⎥⎥⎥⎥⎦

. (30)

Theorem 3. Algorithm 3 guarantees recursive feasibility in the presence of constraints, provided the target set-point and
disturbance remain unchanged.

Proof. First it is noted that the long-range predictions after pre-stabilisation will be stable and convergent with a con-
stant input vk+i = vk, ∀i > 0. Next, if one assumes feasibility at the start (i.e., with a reasonable set-point and initial
conditions7), then at every subsequent sample, the choice vk = vk−1 will always satisfy constraints and hence will always be
feasible. ▪

Conversely it is worth emphasising that feasibility cannot be guaranteed with the direct implementation of open-loop
dynamics, as the recursive use of a previous input would eventually result in oscillations/divergence and therefore
unavoidable constraint violations.

Remark 6. Although recursive feasibility is established in principle for the nominal case, the underlying assumption, that
is, a constant target and/or disturbance, is indeed somewhat conservative. For example, only small target/disturbance
changes may be permissible in practice, since a large change is highly likely to cause infeasibility. A common approach
adopted in the mainstream MPC literature to furnish rigorous recursive feasibility properties in more realistic scenar-
ios is to employ some relatively costly computations involving, for instance, reference governing,26 min-max synthesis,27

or tubes,28 which if utilized in conjunction with a technique as inexpensive as PFC would not only undermine its
simplicity but also escalate its price range considerably. Arguably, the lack of concrete feasibility results could be mit-
igated to some extent by following sensible guidelines, such as using large enough validation horizons, specifying
attainable control objectives etc., as is usually the case with many industrial process control algorithms incorporating
constraints.7
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7 SIMULATION CASE STUDIES

In this section, we investigate the efficacy of the proposed PPFC algorithm alongside the conventional PFC and
the PI(D) controllers in practical scenarios with two real world case studies. The first system G1 is underdamped,
whereas the second model G2 is an open-loop unstable process. Detailed discussion is presented in the following
sections.

7.1 Description of case studies

7.1.1 Thermoacoustic oscillations in a combustion process

A typical continuous combustion process in gas turbines or high-speed propulsion engines involves burning a fuel–air
mixture for thrust production. Under the right conditions, the process also generates audible pressure waves, which are
potentially hazardous for structures and personnel.29 The underlying thermoacoustic phenomenon is complex and non-
linear; nevertheless, a simplified laboratory apparatus, known as the Rijke Tube, which demonstrates similar dynamic
characteristics, is generally used for the design and analysis of feedback controllers in a straightforward manner.30

Figure 4A shows a Rijke tube combustion apparatus consisting of a glass cavity with burner, pressure sensor, and
diaphragm actuator. In this setup, the actuator movement produces additional waves that interact with the thermoa-
coustics to damp down the audible oscillations. The linearized second-order model, ignoring the sensor and actuator
dynamics, is given by:

G1 = y(z)
u(z)

= 10.66z + 10.54
z2 − 1.543z + 0.9671

, (31)

where y is the measured pressure (Pa) and u is the diaphragm velocity (m/s), subject to physical limits: |Δu| ≤ 0.015 m/s
and |y| ≤ 4.5 Pa. In the open-loop configuration, the primary pressure wave oscillates at 142 Hz with an exponentially
decaying humming sound, at the steady-state operating point yss = 50 Pa and uss = 1 m/s.

7.1.2 Temperature control in Jacketed continuous stirred tank reactor

The Continuous Stirred Tank Reactor (CSTR) is a common industrial unit widely employed in different chemical
manufacturing processes. The reaction dynamics converting component A into component B in an ideal CSTR has
a nonlinear first-order behavior. Nevertheless, many chemical reactions require a specific temperature to be main-
tained within the tank for flawless yield. Therefore, the tank is generally equipped with an outer jacket in which

(A) (B)

F I G U R E 4 (A) Rijke tube apparatus, (B) Jacketed CSTR process
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the temperature of a flowing fluid TJ is used to regulate the inside reaction temperature T, as shown in Figure 4B.
The overall coupled model has two-state nonlinear dynamics with potential for exotic behavior owing to multiple
steady-states.31 In this study, the linearized model around the operating point depicts unstable second-order dynamics
given by32

G2 = T(z)
TJ(z)

= 0.00895z − 0.008249
z2 − 1.972z + 0.9719

z−25, (32)

subject to |TJ| ≤ 2.1◦F. Note that both T and TJ are deviation variables around the steady-state values Tss = 560.8◦F and
TJ,ss = 2637.9◦F.

7.2 Preconditioning of open-loop dynamics

We will first prestabilize the prediction models G1 and G2 using the two proposed methods, namely Proportional (plus
Derivative) and Pole Placement, respectively. A P(D) compensator can be tuned easily with the standard tuning meth-
ods. Here, the robust PID tuning algorithm available in the MATLAB environment (see Reference 33 for details) will be
utilized.

For G1, a simple proportional gain, with or without the derivative action, fails to sufficiently damp the output oscil-
lations. Consequently a pole placement compensator will be designed by placing the desired poles at the real part of the
open-loop complex poles (z = 0.7715). The resulting compensator

CPP
1 = −0.00937z − 0.00972

z + 0.106
, (33)

therefore provides the following prestabilized transfer function model

GPP
s1

= −0.106z2 − 0.2084z − 0.1025
z(z2 − 1.543z + 0.5951)

, (34)

with the now stable poles residing at 0, 0.7715, 0.7715. Note that the additional pole at z = 0 here represents the
minimum-order observer dynamics (refer to Section 5.2 for the detailed design steps). For G2, a P compensator can
comfortably stabilize the open-loop dynamics, with CP

2 = 0.502 providing

GP
s2
= 0.004482z2 − 0.004137

z2 − 1.968z + 0.9678
, (35)

having poles at 0.9784, 0.9892. This completes the offline prestabilization step in a straightforward manner.

7.3 Analysis of tuning efficacy

This section demonstrates the power of the proposed approach in this paper. Because the inner loop has better conditioned
behaviour, now an intuitive PFC tuning procedure is straightforward, which is not the case with the original dynamics.
Using Algorithm 1, Figure 5 analyzes the initial input as a function of ny for both G1 (Figure 5A) and G2 (Figure 5B) for
various possible choices of the target pole. It is evident that:

• Depending on the prediction dynamics, ny = 1 may or may not be a suitable choice. For example, it may work with G2
but for G1 it would produce an overactive control, even with the slowest target pole.

• The target pole 𝜌 loses efficacy beyond the system’s time constant (approximately after 8 and 130 samples for both G1
and G2, respectively), with the initial input nearly approaching u1,∞.

• It is possible to obtain similar initial control with different pairings of (𝜌,ny). Faster target poles, however, tend to
intercept the 𝜃u1,∞ horizontal line at longer coincidence points, suggesting a weaker link between the target and the
actual response.



AFTAB and ROSSITER 15 of 20

In order to assess the tuning efficacy, we select two distinct parameter pairs from Figure 5 which provide similar
initial inputs. For G1: 𝜌1 = 0.7215, ny1 = 4 and 𝜌2 = 0.6715, ny2 = 5, and for G2: 𝜌1 = 0.9767, ny1 = 27 and 𝜌2 = 0.9517,
ny2 = 47. The results are shown in Figure 6. Evidently tuning with faster pole but longer coincidence generally provides
comparatively quicker transition to the set point than using a slower target pole with smaller ny, despite a similar initial
control effort. Table 1 tabulates the resulting RMS error values with the selected parameter choices. Expectedly the true
performance with large coincidence points converges quickly to the set point (smaller rms[R − yk]), but weakly linked to
the associated reference trajectory (bigger rms[rk − yk]). This, in practice, should not be an issue as long as a sensible ny
is selected, that is, the one that does not undermine the desirable effect of the faster target pole.

7.4 Effect of uncertainties on the expected closed-loop performance

We analyze the tuning efficacy in the presence of external disturbances, measurement noise and modeling mismatches.
For the underdamped process G1, a −5% constant disturbance is introduced at the process output around 65 ms, whereas

(a) (b)

F I G U R E 5 Initial input activity for (A) G1 with zs = 0.7715, 𝜌1 = 0.7215, 𝜌2 = 0.6715, 𝜌3 = 0.6215, u1,∞ = 0.00124, 𝜃 = 3 and R = 1 (B)
G2 with zs = 0.9892, 𝜌1 = 0.9767, 𝜌2 = 0.9517, 𝜌3 = 0.9017, u1,∞ = 0.3398, 𝜃 = 4 and R = 1

(A) (B)

F I G U R E 6 Analysis of tuning efficacy with the chosen (𝜌,ny) pairs for (A) G1 with (0.7215,4) and (0.6715,5), (B) G2 with (0.9767,27)
and (0.9517,47)
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T A B L E 1 RMS of (rk − yk) and (R − yk) for G1 and G2 with the selected tuning parameters

rms[rk − yk] rms[R − yk]

G1 𝜌1 = 0.7215 ny1
= 4 0.0527 0.2194

𝜌2 = 0.6715 ny2
= 5 0.0958 0.2103

G2 𝜌1 = 0.9767 ny1
= 27 0.0374 0.2792

𝜌2 = 0.9517 ny2
= 47 0.0857 0.2695

(A) (B)

F I G U R E 7 Comparison of disturbance rejection with both tuning choices for (A) G1 with −5% output disturbance, and (B) G2 with
10% input disturbance

for G2 a 10% constant input disturbance is introduced around the mid of the fifth hour. The results, shown in Figure 7A,B
respectively, suggest a comparatively quicker disturbance rejection with the faster target pole in both examples. Sim-
ilarly, as shown in Figure 8A,B, the closed-loop performances with the selection (𝜌2,ny2) appears to be slightly more
affected by the modeling errors (unmodeled pole at z = 0.25 for G1, and approximately 10% multiplicative uncer-
tainty for G2). Interestingly, both performances appear indistinguishable (Figure 8) with respect to the measurement
noise.

7.5 Comparison of constrained closed-loop performance against CPFC and PID

Finally, a comparative analysis of the constrained closed-loop performance against the conventional PFC (CPFC) and PID
algorithms is presented. The PPFC controller, in both examples, is tuned with the faster pole selection (𝜌2,ny2 ). For a fair
comparison, the CPFC controller also uses these parameters, albeit with the difficult open-loop prediction dynamics given
in (31) and (32), respectively. Furthermore, the PI(D) controller is synthesized using the robust PID tuning algorithm
available in MATLAB.33 The actual nonlinear models of G1 and G2 act as the plant for a more realistic evaluation, with
the results shown in Figure 9. Here, PPFC-P and PPFC-PP refer to proportional and pole placement precompensation,
respectively.

Figure 9A depicts the scenario for the poorly damped process, where a set point change of 5 Pa from the initial
steady-state is introduced. As evident, the PI controller fails completely, destabilising under constraints. The CPFC,
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(A) (B)

F I G U R E 8 Comparison of noise sensitivity (Guassian white measurement noise with 𝜇 = 0.05) and modeling mismatches with both
tuning choices for (A) G1 with unmodeled pole at z = 0.25, and (B) G2 with 10% multiplicative uncertainty

(A) (B)

F I G U R E 9 Comparison of the constrained closed-loop performance in the presence of external disturbances and measurement noise
for (A) the process G1 subject to |Δu| ≤ 0.015 m/s and |y| ≤ 4.5 Pa, and (B) the process G2 subject to |TJ | ≤ 2.1◦F
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although does not destabilise, clearly fails to damp down the audible oscillations. On the other hand, the proposed
PPFC-PP not only successfully filters out the acoustic signal, but does so by maintaining feasibility despite a large change
in both the set point and the disturbance. Notably the output never reaches the new target due to the restriction imposed
on the process variable.

For the unstable process, the closed-loop performance is displayed in Figure 9B. A step change of 2.5◦F drives
the process away from the nominal operating point causing large uncertainty, which along side the imposed actu-
ation limit proves too demanding for both the CPFC and the PID. The resulting instability with the standard PFC
becomes apparent only after some time owing to the use of numerically infeasible open-loop predictions in the
decision-making. The PI controller too fails to accommodate the effect of constraints and uncertainty. In compari-
son, the proposed algorithm depicts superior performance with highly commendable characteristics despite facing the
challenges.

In conclusion, these examples have clearly validated the rationale behind using pre-stabilised predictions in a PFC
law for a reliable closed-loop performance.

8 CONCLUSIONS

A systematic design framework for PFC using prestabilization is presented to overcome the fundamental weaknesses
of the standard PFC algorithm with oscillatory and unstable dynamic systems. The proposal employs well-understood
classical feedback control mechanisms to modify the difficult open-loop behaviour, thereafter deploying a cascade
structure for a reliable PFC implementation, with improvements observed on two main fronts. Firstly, the con-
troller tuning after prestabilization becomes far more consistent and meaningful, with a stronger influence on the
closed-loop performance. Secondly, the availability of stable and convergent predictions allows nominal recursive
feasibility results under constrained operation, which is generally not the case with difficult open-loop dynam-
ics. An inevitable consequence of prestabilization, however, is a slightly more involved constraint validation pro-
cess, as reparameterizing the main decision variable renders the simple saturation policy less straightforward to
implement.

As for stabilising the open-loop dynamics, two simple and intuitive proposals are discussed. In most cases, the simple
proportional plus derivative compensation proves sufficient. This is fairly generic and based on the fact that the majority
of real-world processes can be adequately represented as dominant second-order dynamics, for which simple tailored
solutions are well understood. Where P(D) alone is insufficient (for instance poorly damped dynamics), pole placement
schemes can be quite effective at preconditioning. Two real-world case studies have been used to analyze and validate
the closed-loop performance of the PPFC in a variety of practical scenarios. In general, the proposed PPFC operates
more efficiently with external disturbances, sensor noise and uncertainties as opposed to the standard PFC and the PID
controllers.

Future work will focus more formally on frequency domain robustness studies to gain clearer understanding of
the pros and cons of different internal feedback designs. Moreover, extending the scope of validation across a range of
industrial case studies and real-time experiments is also under consideration.
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Predictive Functional Control for Difficult Second-Order Dynamics with
a Simple Pre-compensation Strategy

Muhammad Saleheen Aftab1, John Anthony Rossiter2 and George Panoutsos3

Abstract— Predictive functional control (PFC) is a fairly
straightforward model-based technique for controlling stable
and monotonically convergent dynamics in a systematic fashion.
However, owing to simplified design assumptions, the control
performance generally degrades with oscillatory or unstable
processes. This paper focuses on pre-stabilising such diffi-
cult dynamics, represented as second-order prediction models,
before implementing the PFC. In this proposal, the pre-
compensator is designed with a root locus method that shifts the
undesirable open-loop poles to the stable break-in/breakaway
position by varying compensator gain. It has been highlighted
that such dynamics transformation enables PFC application
in the standard manner by preserving design simplicity and
intuitiveness in terms of parameter tuning and constraint
handling. Two simulation examples are included to study the
pros and cons of the proposal against the conventional PFC
algorithm.

Index Terms—predictive functional control, root locus, pre-
compensation, constraint handling

I. INTRODUCTION

Predictive functional control (PFC), since its introduction
in the late 1970’s [1], has emerged as the strongest com-
petitor to the widely popular proportional-integral-derivative
(PID) algorithm, especially for industrial process control.
The advantages of PFC significantly outweigh those of
PID in that it systematically handles process dead-times
and constraints, which PID cannot without incorporating
additional resources such as Smith predictor and anti wind-up
techniques [2]. Moreover controller tuning in PFC distinc-
tively relates to a physical characteristic i.e. system rise time
which makes the tuning process comparatively meaningful.
Consequently numerous successful PFC applications have
been reported in the literature [3], [4].

PFC inherits most design attributes from the mainstream
model predictive control (MPC) family [5]. Nevertheless
it differs from other predictive control algorithms in the
parametrisation of the future input which, in the case of PFC,
is assumed as a linear combination of some simple basis
functions [3], [6]. A polynomial basis function is usually
employed whose order depends upon the characteristics of
the set-point trajectory. Thus for a constant set-point, the
future input parametrises to just one degree-of-freedom,
eliminating the need for the complex optimisation routines
generally associated with high-end MPC algorithms. This
on one hand simplifies computations, but on the other hand
necessitates heuristics to find a sub-optimal solution for the

1,2,3All authors are associated with the Department of Automatic Con-
trol and Systems Engineering, University of Sheffield, Mappin Street,
S1 3JD, UK. Email Addresses: {1msaftab1, 2j.a.rossiter,
3g.panoutsos}@sheffield.ac.uk

constrained predictive control problems. Unlike mainstream
MPC, simple clipping or saturation has been the commonly
deployed input constraint management protocol within PFC.

With stable first-order processes, using a constant future
input to match the predicted output with the reference
trajectory at a single coincidence point is sufficient to achieve
any desirable target behaviour, provided the coincidence
occurs one time-step ahead in future [4], [5]. Similar re-
sults are obtained with well damped higher-order systems
although one-step ahead coincidence may not always be
appropriate, especially if the prediction dynamics exhibit
significant initial lag [7]. The closed-loop performance,
however, deteriorates when oscillatory or divergent process
dynamics are introduced [5], [7], [8]. This inefficacy relates
to the insufficiency of the constant future input assumption
alongside a single coincidence point that lacks flexibility
to handle such difficult behaviour [9]. Nevertheless, various
design modifications have been proposed to handle difficult
dynamics with PFC.

One proposal [8] implements input shaping which pa-
rameterises the future input so as to cancel the undesirable
modes from the model predictions. This modification im-
proves performance, but often results in aggressive control
moves, limiting its practicality. A modified input shaping
algorithm [9] ensures smooth and less aggressive control
action but requires tedious offline computations that negate
the core notion of simplicity associated with PFC. Another
proposal [10] suggests decomposing the higher-order model
into multiple first-order subsystems to benefit from simple
tuning procedures. But such decomposition for oscillatory
dynamics embeds complex number algebra into the com-
putations which may not work easily with general purpose
industrial PLCs [11].

Another alternative is to explicitly pre-stabilise the pre-
diction model with some form of feedback compensation in
order to obtain smooth and convergent prediction behaviour
[12], [13]. This method is fairly common in mainstream
MPC but its application in PFC is generally restricted to pre-
stabilising first-order systems with simple proportional gain
[14]–[16]. Researchers have pointed out that complex inter-
nal feedback compensators may complicate the constraint
management process [4], [5].

In this paper, we present a pre-stabilisation technique
for challenging dynamic behaviour, represented as open-
loop underdamped or unstable second-order models. The
proposal implements concepts from root locus theory [17],
[18], to shift undesirable open-loop poles to stable break-
in/breakaway positions on the root loci, by varying compen-



sator gain. Mathematical expressions have been developed
that enable pre-compensator design without requiring to plot
and analyse root locus paths. Furthermore, it has been shown
that the proposal keeps overall design simple and intuitive to
benefit from the standard PFC tuning and constraint handling
procedures.

The remainder of this paper is organised as follows:
Section II formulates the problem and sets control objectives.
The main methodology is presented in Sections III & IV
where the pre-compensator and PFC designs are discussed in
detail. Numerical studies follow next in Section V which dis-
cuss closed-loop performance and draw comparisons against
the standard PFC. Finally the paper concludes in Section VI.

II. PROBLEM STATEMENT

Consider a difficult real world process characterised by a
strictly proper second-order transfer function model

G(z) =
b(z)

a(z)
(1)

where a(z) = 1+a1z
−1+a2z

−2 and b(z) = b1z
−1+b2z

−2.
It is assumed that the open-loop model shows oscillatory
or divergent dynamic behaviour i.e. the open-loop pole
polynomial a(z) either comprises a complex conjugate pole
pair, see for example Fig. 1(a), or has at least one unstable
mode, as shown in Figs. 1(b)-(c).

The problem addressed in this paper deals with designing
PFC for the process modelled as G(z). However, as stated
earlier, conventional PFC may be less effective with such
challenging dynamics. Therefore, the aim is first to stabilise
model predictions with a simple internal feedback loop.
Furthermore, the controller is expected to exhibit some
degree of robustness against parametric uncertainty and/or
unmodelled dynamics.

III. PRE-COMPENSATOR DESIGN

The primary objective of pre-compensation is to trans-
form the undesirable open-loop dynamics into stable and,
if possible, monotonically convergent prediction behaviour
for straightforward implementation within a PFC framework.
The proposed pre-compensation process, illustrated in Fig. 2,
employs a simple feedback controller C(z) to stabilise G(z).
The controller has the form C(z) = KCin(z), where K is
the proportional gain with K ∈ (−∞,+∞) and Cin(z) = 1
by default but may be designed as a lead or lag compensator
if necessary. The internal feedback results in the following
pre-compensated model:

T (z) =
G(z)

1 +KCin(z)G(z)
(2)

Next we present the design of the pre-compensator based
on a root locus technique.

A. Preliminary Design via Root Locus

Root locus is a powerful graphical tool for control systems
analysis and design [17]. It is generally used for the as-
sessment of a system’s closed-loop performance and relative

stability as a function of various parameters, such as system
gain and time constant. Here we wish to analyse the effect
of varying K on the pre-compensated pole polynomial.
Ultimately the goal is to identify such values of K that result
in critically damped poles. Note that critical damping in root
loci may only occur at the stable break-in/breakaway points.

A point on root locus curve where two poles exit the
real axis and diverge to become a complex conjugate pair
is known as the breakaway point. Conversely a point on the
real axis at which a complex pole pair converges is called
the break-in point. Intuitively one may obtain monotonically
convergent predictions just by designing K at the break-
in/breakaway point, provided it occurs within the stable range
0 < z < 1. However, the open-loop zero dynamics can
be significant in some cases and hence it may not always
be possible to achieve a break-in/breakaway at acceptable
locations. Let us examine the possible cases in detail.

Underdamped Poles. Consider the case of open-loop un-
derdamped poles as shown in Fig. 1(a). Evidently there are
three distinct regions for the system’s zero location. It has
been found that the poles would break-in within 0 < z < 1
as long as the zero is either located in R1 or R3. However,
a zero in R2 i.e. in the vicinity of the open-loop poles may
cause a break-in at z < 0. To solve this problem, we propose
using a lag type Cin(z) as follows:

Cin(z) =
z + zn
z + z0

(3)

where z0 = −b2/b1 is the open-loop zero whereas zn is the
new zero deliberately placed in R1 (within the unit circle)
away from the open-loop poles i.e. zn < z0. Note that this
method may not work if the open-loop poles appear in the
left half section of the unit circle.

One Unstable Pole. In this case, breakaway can only take
place within 0 < z < 1 if z0 lies in either R1 away from
the stable pole p1 or in R4 away from the unstable pole p2,
see Fig. 1(b). However, a zero in the vicinity of either poles
(while remaining in R1 or R4) might result in a breakaway
outside the desirable range. Moreover, if z0 lies in either
R2 or R3 the model cannot be stabilised with simple gain
K. A similar procedure as described above with (3) may be
employed but only if the open-loop zero is stable i.e. located
in R2.

Two Unstable Poles. With two unstable poles, as shown
in Fig. 1(c), the only possibility to get a break-in within
the desirable range 0 < z < 1 is to have the open-loop
zero z0 located within R2 near the stability boundary. If z0
is in R3 then it may or may not be possible to stabilise
the model. In all other scenarios, this method would fail to
stabilise prediction dynamics. However, if z0 is located in the
stable portion of R1, then it is possible to employ a lead-type
Cin(z) similar to (3) but with zn > z0 in order to replace the
open-loop zero with the new one placed in R2 near z = 1.

B. Design Procedure

It should be obvious from the preceding discussion that the
efficacy of the preliminary design is strongly linked to the
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Fig. 1. Pole-zero map of G(z) with (a) complex pole pair, (b) one unstable pole, and (c) two unstable poles; Ri’s represent the possible zero positions.

actual pole-zero mapping of G(z). Nevertheless, the concept
can be generalised mathematically for any second-order pole-
zero configuration as illustrated in Fig. 1. With Cin(z) = 1,
the compensated pole polynomial 1 +KG(z) = 0 implies:

K = − 1

G(z)
= −a(z)

b(z)
(4)

The break-in/breakaway points are stationary in nature, thus
in order to find them K is differentiated with respect to z
and equated to ‘0’ [17]:

dK

dz

∣∣∣∣
z=σ

= − d

dz

[
a(z)

b(z)

]

z=σ

= 0

where σ represents the point(s) at which break-in/breakaway
occurs. This implies:

b(σ)a′(σ)− b′(σ)a(σ) = 0

=⇒ (b1σ + b2)(2σ + a1)− (b1)(σ2 + a1σ + a2) = 0

=⇒ b1σ
2 + 2b2σ + (a1b2 − a2b1) = 0. (5)

Lemma 1: For a given pole polynomial a(z), σ is a non-
linear function of the open-loop zero z0.

Proof: Equation (5) is in the standard quadratic form
and can be solved analytically:

σ1,2 = −b2
b1
± 1

b1

√
a2b1

2 − a1b1b2 + b2
2

=

(
−b2
b1

)
±
√
a2 + a1

(
−b2
b1

)
+

(
−b2
b1

)2

=⇒ σ1,2 = z0 ±
√
a2 + a1z0 + z02. (6)

G(z)+-
vk uk yk

yk

Pre-Compensation Loop

PFCr

C(z)

Fig. 2. Pre-conditioned PFC (PPFC) with internal feedback loop.

Hence for a given a(z), σ is a non-linear function of z0.
Remark 1: When there is no finite zero i.e. b1 = 0, (5)

reduces to σ = −0.5a1. Thus there can only be either a
break-in or breakaway point (depending on the poles) but
not both.
If any of the σi’s from (6) lies within 0 < z < 1, then one
may find the corresponding gain value K using:

K = −a(σi)

b(σi)
; i = 1 or 2. (7)

This completes the pre-compensator design. But what hap-
pens when none of the σi’s is present within the right half of
the unit circle? In this case, one may first check if employing
a lead or lag type compensator such as (3) would suffice.
Theorem 1 establishes conditions on the usability of Cin(z)
in such cases.

Theorem 1: The prediction model G(z) can be stabilised
with a lead or lag type compensator Cin(z), such as (3), if
in addition to |z0| < 1,

|σ2
d − a2| < |2σd + a1|

where σd is the desired break-in/breakaway point such that
0 < σd < 1.

Proof: Evidently the purpose of lead/lag compensation
here is to replace the open-loop zero z0 with the new zero
zn at a desirable location within the unit circle. Thus for
guaranteed internal stability, Cin(z) can only be designed
if the old zero z0 and the new zero zn both lie inside the
unit circle i.e. |z| < 1. Subsequently one may re-write (6) as
follows:

σd =zn ±
√
a2 + a1zn + z2n

=⇒ (σd − zn)
2

=
(
±
√
a2 + a1zn + z2n

)2

which after a few simple manipulations becomes,

zn =
σ2
d − a2

2σd + a1
. (8)

Since |zn| < 1, this means

|σ2
d − a2| < |2σd + a1| (9)

for 0 < σd < 1.



Equation (8) can validate whether designing Cin(z) as lead
or lag type compensator would be worthwhile. One may
plot zn as a function of σd to find a suitable zero that
enforces break-in/breakaway within 0 < z < 1 (see Fig. 5
for example). If such zn exists, then K can be evaluated from
(4) by replacing b(z) with the new compensated polynomial
β(z) = b1z

−1 + b1znz
−2. This will give the following pre-

compensated model.

T (z) =
β(z)

α(z)
=

b1z
−1 + b1znz

−2

1− 2σdz−1 + σ2
dz
−2 (10)

Remark 2: It should be emphasised that pre-compensation
only stabilises the prediction model, whereas attributes such
as transient performance, offset-free tracking, dead-time and
constraints are managed by the outer PFC loop, as shown in
Fig. 2.

IV. DESIGN OF PRE-COMPENSATED PFC
The Pre-compensated PFC (PPFC) algorithm, similar to

the original PFC [5], attempts to match the predicted re-
sponse with an ideal (first-order) behaviour at the single
coincidence point ny with constant control moves. This
process is repeated at each time step and owing to receding
horizon, a virtual feedback is established that moves the plant
output closer to the target. This convergence depends upon
the desired behaviour and can be implemented as a first-order
pole ρ. Assume that the ideal ny-step ahead prediction based
on first-order response is given as:

yk+ny|k = r − (r − yk)ρny (11)

where r is the constant set-point and yk is the measured plant
output. The ny steps ahead output predictions are derived
from the pre-stabilised model T (z) such that:

ŷk+ny|k = H v−→k + P v←−k−1 +Q ŷ←−k (12)

where H , P and Q depend on the model parameters. For a
generic N th order model:

v−→k =




vk
vk+1

...
vk+ny−1


 ; v←−k−1 =




vk−1
vk−2

...
vk−N+1


 ; ŷ←−k =




ŷk
ŷk−1

...
ŷk−N+1




With constant control values throughout the coincidence
horizon i.e. vk+i = vk, ∀i > 0, we obtain the PPFC control
law from (11)-(12) as follows:

vk =
r − (r − yk)ρny − (P v←−k−1 +Q ŷ←−k)

h
(13)

where h =
∑ny

j=1Hj and Hj is the jth element of H .
Remark 3: For clarity of presentation, the PPFC control

law derived above does not include algebra relevant to
offset-free tracking and dead-times. The numerical exam-
ples, nonetheless, include these details. See [5] for further
information.

Since vk is the input to T (z), we must also determine uk
for plant actuation and constraint management. Theorem 2
establishes the relationship between vk and uk.

Theorem 2: The PPFC control input vk and the plant input
uk are related as follows:

uk = âvk←−+ α̂ u←−k−1
where vectors â and α̂ contain the suitable coefficients of
a(z) and α(z) respectively.

Proof: With reference to Fig. 2, uk = vk−C(z)yk and
since yk = G(z)uk and C(z) = KCin(z), we get:

uk = vk −KCin(z)G(z)uk

which implies,

[1 +KCin(z)G(z)]uk = vk

But 1 + KCin(z)G(z) = α(z)/a(z). Therefore α(z)uk =
a(z)vk implies:

uk = a(z)vk + 2σdz
−1uk − σ2

dz
−2uk

Or equivalently in the time-domain:

uk = âvk←−+ α̂ u←−k−1 (14)

where â = [1 a1 a2] and α̂ = [2σd − σ2
d].

Remark 4: Constraint handling is one of the key features
of conventional PFC, and the techniques to do so are well
established in literature [4], [5]. While it is obvious that
constraint management after pre-compensation is slightly
more expensive, the associated algebra and coding are still
fairly benign, see for instance [19], [20], where the impact
of pre-stabilisation on constraint validation is discussed in
detail. In this paper, we will employ these results directly in
the simulation examples.

Remark 5: Pre-stabilisation helps selecting the coinci-
dence point ny for difficult dynamics in a straightforward
manner, based on the conjecture presented in [7]. As per
the recommendation, ny lies within the time range when
the pre-stabilised step response rises from 40% to 80% with
significant gradient. As for finding ρ, one may overlay several
first-order responses on the step response to identify which
target behaviour coincides within the mentioned ny range.
See, for instance, Fig. 3.

V. NUMERICAL EXAMPLES

This section investigates the efficacy of the proposal with
two numerical examples. Example 1 illustrates the case of
an oscillatory higher-order process which is modelled as a
second-order underdamped system for the Pre-compensated
PFC implementation. Example 2, on the other hand, demon-
strates the PPFC design for a second-order unstable system
when a simple proportional gain alone is ineffective due to
dominant open-loop zero dynamics. Details follow next.

A. Example 1

Consider an underdamped process,

G1 =
0.065z−1 + 0.26z−2

1− 1.35z−2 + 1.158z−2 − 0.28z−3
· z−5 (15)

with an open-loop zero z0 = −4, a real pole at z = 0.35,
a complex conjugate pole pair p1,2 = 0.5 ± j0.742 and a
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dead-time of m = 5 samples. To apply the proposed pre-
compensation, only the dominant second-order dynamics are
considered after neglecting the non-dominant pole at z =
0.35 from the prediction model. Nevertheless, it is included
in the plant simulation to analyse robustness.

The break-in/breakaway point calculated from (6) suggests
σd = 0.561 with the corresponding K = −1.214. In this
example, lag or lead type compensation is not needed i.e.
Cin(z) = 1 and thus C(z) = −1.214. This gives the
following delay-free second-order pre-compensated model:

T1 =
0.1z−1 + 0.4z−2

1− 1.121z−1 + 0.314z−2
(16)

Next we determine the appropriate ny and ρ by plotting
the normalised step response of T1 overlaying several desired

first-order responses with differing ρ’s, as shown in Fig. 3.
The plot suggests 3 ≤ ny ≤ 6 as a suitable coincidence
horizon window. Note that target dynamics with ρ = 0.68
or ρ = 0.86 do not match predicted behaviour within the
desirable ny range and hence would need over-actuation or
under-actuation to enforce an intercept. However, a sensible
choice would be ρ = 0.79 which gets an exact match at
ny = 4.

Efficacy of the PPFC algorithm is obvious with the closed-
loop performance shown in Fig. 4. Even in the presence
of the unmodelled pole (z = 0.35), the PPFC plant output
(upper figure) is smooth and oscillation-free, and strongly
linked to the corresponding ρ, although control input for
faster target dynamics is relatively aggressive as expected.
The conventional PFC (lower figure) appears ineffective
in damping oscillations even with fairly aggressive control
moves in the transient region. In practice, this may lead to
actuator saturation resulting in unacceptable control perfor-
mance.

B. Example 2

Consider an open-loop unstable system,

G2 =
1.5z−1 − 1.2z−2

1− 1.5z−1 + 0.44z−2
; |uk| ≤ 0.205 (17)

with z0 = 0.8 located between the open-loop poles at
p1 = 0.4 and p2 = 1.1. Clearly no break-in/breakaway is
possible with simple proportional compensation and there-
fore Cin(z) must be designed to stabilise the model. Fig. 5
plots the new zero zn as a function of σd for G2. It is
evident that a break-in/breakaway within the right half of
unit circle can be enforced with a lag-type Cin(z). Notice
that faster pre-compensated dynamics (σd ≤ 0.4) may be
obtained with zn ≈ 0.3. However, such dynamics may not
be appropriate owing to aggressive control action, potentially
causing constraint violation. Therefore, we select zn = 0 for
σd = 0.6633. The corresponding gain value is then found
as K = 0.1155. Thus C(z) = 0.1155z/(z − 0.8) and the
pre-compensated model is:

T2 =
1.5z−1 − 1.2z−2

1− 1.327z−1 + 0.44z−2
. (18)
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Fig. 5. Plot of zn (|zn| < 1) vs σd (0 < σd < 1) for G2; zn = 0 with
σd = 0.6633 selected for pre-compensation.
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Next ny = 5 and ρ = 0.85 are obtained with a similar
procedure as described in Example 1. The closed-loop per-
formance is compared and contrasted for both PPFC and
conventional PFC algorithms in Fig. 6, with deliberately
added parametric uncertainty (assuming no uncertainty in the
unstable pole [21]). Due to unreliable open-loop divergent
predictions, the closed-loop output with PFC destabilises
around the 80th sample. Coincidently, the corresponding
control input also saturates at umin = −0.205 due to
constraint violation around that time. On the other hand, the
proposed PPFC algorithm keeps the system output smooth
and stable while maintaining robustness against uncertainty
and without violating input constraints.

VI. CONCLUSION

A root locus based pre-stabilisation strategy for predictive
functional control of difficult dynamic processes is pre-
sented. The proposal is fairly generic and based on the fact
that a majority of real-world processes can be adequately
represented as dominant second-order dynamics for which
simple tailored solutions are well understood. The main idea
is to form smooth and well-damped predictions with an
internal feedback compensator designed to enforce break-
in/breakaway at the desired closed-loop poles. We have
shown that a simple proportional gain is generally sufficient,
however, a lead or lag type compensator may also be needed
with some challenging pole-zero configurations. Moreover
the proposed PPFC design preserves the inherent simplicity

and intuitiveness of the original PFC, including the standard
parameter tuning and constraint management procedures.

The proposal has shown promising results for both oscil-
latory and unstable processes in the presence of uncertainty.
Nevertheless, future work will focus on more formal analysis
of the closed-loop characteristics against disturbances, sensor
noise and modelling errors, along with an analysis of efficacy
in real world industrial applications.
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Abstract—Predictive functional control (PFC) is a cheap and
simplified model predictive controller, which competes with
PID in price and performance. While the tuning process in
PFC for simple dynamics is well established and straightfor-
ward, it becomes far more ambiguous and often less effective
for processes exhibiting challenging behaviour, such as poor
damping, instability and/or non-minimum phase characteristics.
In this paper, we present a relative PFC algorithm that,
when implemented with pre-stabilised prediction dynamics if
needed, simplifies performance tuning to merely adjusting one
parameter. Furthermore, it provides far superior closed-loop
control in practical scenarios, where the conventional PFC and
PID fail to perform, as demonstrated with three simulation case
studies.

Index Terms—predictive functional control, pre-stabilisation,
tuning

I. INTRODUCTION

Predictive functional control (PFC) is a simplified and
cost-effective model based predictive controller that com-
petes with PID in cost and performance [1]. Being model
based, it inherits most attributes from the mainstream MPC;
properties such as dead-times and constraints handling are
straightforward to implement unlike PID which requires
additional complexity such as a Smith predictor [2] and anti-
windup techniques [3]. Moreover, controller tuning in PFC
distinctively relates to a physical characteristic (i.e. system
rise time) which makes the tuning process comparatively
meaningful. Consequently numerous successful PFC appli-
cations have been reported in the literature [4], [5].

For a well damped open-loop process, the conventional
PFC operates by enforcing a match, the so-called coinci-
dence, between the predicted and the desired response at a
future sample by assuming constant control moves, where
the desired response represents an ideal exponential trajectory
initiated on the current output. By doing so, PFC comfortably
achieves any desirable performance for stable first-order
systems provided the coincidence occurs exactly one sample
ahead [5], [6]. Similarly, parameter tuning guidelines for
overdamped higher order systems are well established [7],
although 100% target tracking is usually not achieved due to
the initial lag in the system dynamics.

However, controller tuning becomes significantly less
straightforward when difficult open-loop dynamics are
present; for example processes with poor damping, instability
and/or non-minimum phase characteristics have been partic-
ularly challenging to control [7], [8]. Clearly it is counter-
intuitive to match an ideal exponential trajectory with such
exotic behaviour at merely one future sample and expect a
well-behaved response, although the overall closed-loop may
still work due to the receding horizon. Nevertheless, such a
design is highly unreliable and prone to failure, especially
with uncertainties and/or tight actuation limits.

The primary reason for poor performance in challenging
applications is the use of a constant input within the predic-
tions which clearly lacks enough flexibility to handle such
dynamics. An obvious solution in such cases is to use a more
flexible parametrisation of the input function (see for instance
[9]–[11]); nevertheless, these modifications deal with one
aspect at a time, for instance, using Laguerre function for
tuning improvement [9] and input shaping/pre-stabilisation
to handle difficult dynamics [10], [11]. Furthermore, a recent
study has pointed out the anomaly in prediction mechanism
for higher order dynamics wherein the initialisation of target
trajectory on the current process output embeds unnecessary
delay into the future target values causing poorer tuning
efficacy [12].

In this study, we tackle this discrepancy in two stages.
Firstly, the concept of pre-stabilisation is utilised, if nec-
essary, to transform difficult open-loop dynamics into a
well-damped closed-loop prediction behaviour [10], [13],
[14]. Secondly, a relative PFC algorithm is presented which
simplifies controller tuning to simply selecting one parameter
that speeds up or slows down the closed-loop performance
as compared to a suitable benchmark response. Simulation
case studies highlight the superior efficacy and performance
of the proposal.

The rest of the paper is organised as follows: Section II
briefly reviews the technicalities associated with conventional
PFC, before moving on to the concept of pre-stabilised pre-
diction dynamics in Section III. Next, the proposed relative
PFC algorithm is presented in Section IV, followed by the



tuning and closed-loop performance evaluation with com-
puter simulations discussed in Section V. Finally, the paper
concludes in Section VI highlighting the main contributions
of the study.

II. REVIEW OF PREDICTIVE FUNCTIONAL CONTROL

This section briefly reviews the basic characteristics of a
conventional PFC algorithm. Consider a nth order transfer
function model a(z)ŷk = b(z)uk of a well-damped open-loop
process, which is used recursively to obtain i−step ahead
predictions as follows [6]:

yk+i|k = Hu−→k + Pu←−k−1 + Q ŷ←−k + dk i = 1, 2, . . . (1)

where the vectors H, P and Q are derived from the model
parameters a(z) and b(z), with the associated input and
output vectors defined accordingly:

u−→k =




uk
uk+1

...
uk+i


 ; u←−k−1 =




uk−1
uk−2

...
uk−n+1


 ; ŷ←−k =




ŷk
ŷk−1

...
ŷk−n+1




(2)
The term dk = yk − ŷk is added to remove prediction bias
(yk being the true process output and ŷk the model output)
and ensure offset free tracking. An ideal first order reference,
initiated on the current yk, is also defined:

rk+i = R− (R− yk)ρi i = 1, 2, . . . (3)

where R is the set-point and ρ is the target pole (the primary
tuning parameter), defined as ρ = e−Ts/τ with Ts and
τ being the sampling time and the target time constant
respectively.

At each sample k, the current control uk is used to enforce
a match between the predicted yk and rk at a coincidence
point ny samples ahead. The prediction is based on an
assumption of a constant future control signal uk = uk+1 =
· · · = uk+ny , but the decision is re-evaluated and updated at
every sampling instant, thus forming a feedback mechanism.
The conventional PFC control law is obtained using (1)-(3):

uk =
1

h
[R− (R− yk)ρny − (Pu←−k−1 + Q ŷ←−k + dk)] (4)

where h =
∑ny

j=1H(j) and H(j) is the jth element of H and
it is re-iterated that the conventional PFC tuning parameters
are ρ, ny .

Remark 1. With the input prediction being constant, it is
straightforward to implement simple saturation for a system-
atic handling of input constraints. Thus before applying to
the plant, uk is verified such that [6]:

|uk| > U ⇒ |uk| = U, |∆uk| > DU ⇒ |∆uk| = DU (5)

where ∆uk = uk − uk−1 represents the sample wise rate of
actuation. State and output constraints can also be handled
relatively simply (iff feasible).

G(z)+-

vk uk yk

C(z)

^ ^

Fig. 1. Pre-stabilisation loop structure.

III. PRE-STABILISED PREDICTION DYNAMICS

While the standard PFC works sufficiently well with
simple dynamic problems, it performs poorly in challenging
applications [7] and indeed appropriate selection of (ρ, ny)
may no longer be systematic or effective. The problem with
difficult open-loop predictions obtained from unstable or
poorly damped dynamics is the potential loss of numerical ro-
bustness due to large inconsistency between sample to sample
computation of prediction matrices. The resulting predictions
are, therefore, highly unreliable and could eventually lead
to ill-posed decision making and loss of feasibility even
if the unconstrained performance appears satisfactory [6].
The accepted practice in the mainstream MPC literature in
such cases is to form closed-loop predictions using some
form of classical feedback compensation [15], [16]. Based
on a similar approach, a pre-stabilised PFC algorithm has
been developed which demonstrates manifold performance
improvement in comparison to the conventional PFC [10],
[13], [14]. This concept is summarised below and will be
utilised by the proposed Relative PFC algorithm presented
in the following section.

A. Concept of Pre-stabilisation

Consider a difficult open-loop process modelled as a nth

order strictly proper transfer function G(z) given as:

G(z) =
ŷk
ûk

=
b(z)

a(z)
(6)

where a(z) = 1 + a1z
−1 + · · · + anz

−n, b(z) = b1z
−1 +

· · · + bnz
−n and a(z) has factors including unstable and/or

complex poles. G(z) is compensated using a mth order bi-
proper feedback controller C(z), as shown in Fig. 1. Note
that:

C(z) =
q(z)

p(z)
(7)

where p(z) = 1 + p1z
−1 + · · ·+ pmz

−m and , q(z) = q0 +
q1z
−1 + · · ·+qmz

−m. The resulting pre-stabilised prediction
model is then:

Gs(z) =
ŷk
vk

=
p(z)b(z)

p(z)a(z) + q(z)b(z)
=
β(z)

α(z)
(8)

where vk is now the decision variable computed via an
outer PFC loop. The actual process input uk is related to
vk indirectly via the model input ûk (uk = ûk only in the



absence of uncertainties) as detailed in [10]. Here, we will
use the final result:

uk = B0vk + fk; fk = −Au←−k−1 +Bv←−k−1 +Ed←−k (9)

where vectors A, B and E are obtained from the parameters
a(z), α(z), p(z) and q(z). Evidently, after pre-stabilisation,
the degree-of-freedom is reparametrised appropriately, given
a suitable inner controller, which can now work easily with
the difficult dynamics.

Remark 2. The parametrisation of uk in (9) clearly makes
the simple saturation policy for constraint handling less
straightforward to implement; nevertheless, the methods for
constraint validation in such cases are well documented (see
for instance [10], [13], [17]). Since the current work does
not bring any particular novelty in this regard, the available
constraint handling algorithm [10] will be utilised in the
simulation studies presented in the later section.

B. Design of pre-stabilising compensator

The reader is reminded of the core purpose of pre-
stabilisation, that is to transform the challenging open-loop
dynamics into something more manageable for PFC. This
includes filtering out unwanted oscillations from poorly
damped systems and stabilising the open-loop unstable sys-
tems. Therefore, any standard feedback compensator that
does the job without overly complicating the design is
suitable. Nevertheless, it is recommended to start with the
simple options such as P(D) or lead compensation [18]
which are sufficient for a majority of first and second order
difficult dynamics, and only implement more sophisticated
alternatives such as pole placement [10] or pole cancellation
[13] if the simpler choices are ineffective.

IV. RELATIVE PFC ALGORITHM

Previous studies have highlighted the tuning deficiency
of PFC for processes with difficult open-loop dynamics
where it generally fails to meet the target performance [7],
[19]. Clearly parameter selection in such cases is far less
intuitive, and there is an obvious need for a more transparent
mechanism that simplifies the tuning procedure. This section
presents a relative PFC algorithm with simplified tuning as
the core contribution, wherein the closed-loop performance is
tuned relative to a suitable benchmark, rather than searching
for ρ and ny on absolute terms.

First it is noted that pre-stabilisation, if necessary, trans-
forms the open-loop prediction model into α(z)ŷk = β(z)vk
providing output predictions as follows:

yk+ny|k = Hv−→k + Pv←−k−1 + Q ŷ←−k + dk (10)

where H, P and Q are now determined from α(z) and β(z).
If one selects vk+i = vss, ∀i ≥ 0 where vss is the expected
steady-state input, the control law then obtained is the so-
called mean level (or open-loop) PFC [6], which mirrors
the open-loop transient performance along with offset free
tracking. For the pre-stabilised system Gs(z):

vss =
R− dk
Gs(1)

∵ yss = y(1) = R (11)

where Gs(1) is the steady-state system gain. In practice, it
is straightforward to achieve the mean-level PFC by simply
selecting a large enough horizon, preferably beyond the
settling time of the pre-stabilised step response. With target
R and vk+i = vss ∀i ≥ 0, the tracking error converges as
follows:

ess(k + i) = R− (hvss + Pv←−k−1 + Q ŷ←−k + dk) (12)

which compares to the error convergence when an alternative
fixed input vk+i = vk ∀i ≥ 0 is used. In this case:

e(k + i) = R− (hvk + Pv←−k−1 + Q ŷ←−k + dk) (13)

Thus to obtain a faster convergence than the benchmark (12),
one has to select a vk correspondingly more active than vss.
Lemma 1 below formalises this concept.

Lemma 1. In the nominal state and zero initial conditions,
the choice vk = θvss for the target R provides an error
convergence which is γ times (12) such that:

γ =
Gs(1)− hθ
Gs(1)− h (14)

Proof. With dk, v←−k−1 and ŷ←−k all zero, and vk = θvss the
initial errors are related as follows:

R− hθvss = γ(R− hvss)

using (11) then implies:

1− hθ

Gs(1)
= γ

(
1− h

Gs(1)

)

which simplifies to (14) after simple manipulations.

Lemma 2. For the chosen input activity θ and the error
convergence γ defined above, the Relative PFC (RPFC)
control law is given by:

vk = γvss +
1− γ
h

[
R−

(
Pv←−k−1 + Q ŷ←−k + dk

)]
(15)

Proof. Using Lemma 1 and equations (12)-(13), it is clear
that:

e(k + i) = γess(k + i), ∀i ≥ 0

or,

R− (hvk + Pv←−k−1 + Q ŷ←−k + dk) =

γ
[
R− (hvss + Pv←−k−1 + Q ŷ←−k + dk)

]

which simplifies to the control law (15).

Theorem 1. The closed-loop performance can be tuned with
the parameter θ via plant control uk given by (9).

Proof. Assuming zero initial conditions and no uncertainty,
it is clear from (9) that after pre-stabilisation the initial plant
control is uk = B0vk. If vk = θvss then uk = θ(B0vss) =
θuss. Hence, the initial uk will be θ times the one obtained
via mean-level PFC, and therefore will tune the closed-loop
performance accordingly.



Algorithm 1 Selecting parameter θ.
• 0 < θ < 1 reduces input activity resulting in a slower

closed-loop performance. For example, θ = 0.5 uses an
initial input half as active as the mean-level benchmark
to produce a relatively slower response.

• θ = 1 is equivalent to the mean-level (open-loop) tuning.
• θ > 1 increases input activity with a faster performance.

For example, θ = 2 uses an initial input twice as
aggressive as the mean-level benchmark to produce a
comparatively faster response.

Algorithm 1 discusses parameter selection for the desired
closed-loop performance.

Remark 3. It is advised not to select too large θ or the
initial input could be too aggressive to achieve practically.
Generally a commendable performance is attainable with θ
up to 2-3, given a satisfactory open-loop dynamic behaviour.

To sum up, the main benefit of the proposal is obvious:
it reduces performance tuning to simply one statement, that
is how fast or slow one wants the closed-loop system to
respond. Of course, a well-behaved (implicitly stable) predic-
tion model is necessary for implementation, which is achiev-
able via pre-stabilisation of difficult dynamics if required.
This is unlike the standard procedure generally implemented
in PFC, which requires tedious offline analysis of open-loop
step response overlaying multiple target trajectories to find
the appropriate (ρ, ny) pair [7]. A similar argument holds
with PID for which selecting parameters Kp, Ki and Kd

is arguably less intuitive than the proposed tuning algorithm
discussed above.

V. SIMULATION STUDIES

In this section, the tuning efficacy and closed-loop perfor-
mance of the proposal will be evaluated with three difficult
open-loop systems. The process G1 exhibits slightly under-
damped but significantly non-minimum phase characteristics
[20], G2 is the representative second-order model of ther-
moacoustic oscillations in mechanical engines [21], and G3

represents a second-order unstable model of a continuous
stirred tank reactor [10]. These models are given as follows:

G1 =
−6.69z3 + 7.86z2 + 2.39z + 0.002

z4 − 1.23z3 + 0.54z2 − 0.006z
,

G2 =
0.19z + 0.18

z2 − 1.23z + 0.96
, and G3 =

2.102z + 0.401

z2 − 1.465z + 0.058

To highlight the benefits of the proposed RPFC algorithm,
the closed-loop performance will be evaluated in real world
scenarios against conventional PFC (CPFC), PID and pre-
stabilised conventional PFC (PCPFC) for G2 and G3 which
require pre-stabilisation as discussed in Section III.

A. Pre-stabilisation of difficult open-loop dynamics

Clearly the open-loop predictions obtained with G1 will
be convergent albiet with an initial lag due to non-minimum
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Fig. 2. Tuning efficacy of RPFC for open-loop G1 in nominal conditions.
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Fig. 3. Tuning efficacy of RPFC for pre-stabilised G2 in nominal conditions.

phase characteristic, therefore can be used without pre-
compensation. On the other hand, both G2 (poorly damped)
and G3 (unstable) exhibit challenging behaviour that must be
pre-stabilised for a well-posed decision making with PFC.

A simple proportional compensator C2 = −1.88 suffi-
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Fig. 4. Tuning efficacy of RPFC for pre-stabilised G3 in nominal conditions.

ciently filters out the unwanted oscillations in the open-
loop step response of G2, providing the pre-stabilised

prediction model Gs,2 =
0.19z + 0.18

z2 − 1.58z + 0.61
with over-

damped poles at z = 0.88, 0.70. For G3, a P(D) com-
pensator fails to satisfactorily stabilise the dynamics, there-

fore a pole placement controller C3 =
0.303z − 0.012

z + 0.085
was designed ([10]) resulting in the pre-compensated model

Gs,3 =
2.102z2 + 0.580z + 0.034

z3 − 0.743z2 + 0.028z
and stable poles at z =

0, 0.04, 0.7.

B. Analysis of tuning efficacy with RPFC

The tuning efficacy of the proposed RPFC algorithm for
the open-loop G1 and the pre-stabilised G2 and G3 has
been analysed in Figs. 2-4 respectively. It is clear that the
parameter θ is succesful in slowing down (with θ = 0.5)
or speeding up (with θ = 1.5, 2) the closed-loop response
by correspondingly changing the initial input as compared
to the mean-level benchmark (θ = 1). Clearly performance
tuning with θ in the proposal is far more straightforward and
meaningful than finding ρ and ny in the conventional PFC, or
indeed Kp, Ki and Kd in the standard PID algorithms even
when presented with difficult open-loop dynamic behaviour.

C. Comparison of closed-loop performance with constraints
and uncertainties

We compare and analyse the closed-loop performances for
G1, G2 and G3 as shown in Figs. 5-7. Notably, the proposed
RPFC in each case outperforms the conventional PFC, pre-
stabilised or not, and the PID controllers in the presence of
constraints and uncertainties. The key observations are:
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Fig. 5. Comparison of closed-loop performance for G1 subject to |∆uk| ≤
0.125 and 10% output disturbance introduced at 25th second between RPFC
(θ = 2), CPFC (ρ = 0.75, ny = 5) and PI (Kp = 0.0012, Ki = 0.0023).

• With θ = 2, the initial RPFC control input is slightly
less than 2uss due to the effect of constraints (except
for G3). Yet, the achieved closed-loop performance is
faster than every alternative, with smooth and quicker
disturbance rejection in each case, and especially for G3

in the presence of unmodelled dynamics.
• The CPFC for G1 although appears satisfactory albeit

with significantly slower transient performance, it fails
completely for both G2 and G3 with uncertainties.
While the pre-stabilised CPFC considerably improves
performance, it is still slower than RPFC with relatively
sluggish disturbance rejection.

• The PI(D) controller, tuned using MATLAB’s robust
PID tuner [22], exhibits the poorest closed-loop perfor-
mance, clearly signifying the importance of using (pre-
stabilsed) prediction dynamics in the decision making.

To sum up, these examples have clearly highlighted the
benefits of RPFC in difficult applications where both the
conventional PFC and PID fail to perform.

VI. CONCLUSIONS

This paper has addressed the tuning deficiency of PFC,
especially associated with difficult open-loop dynamics, by
proposing a relative predictive functional control algorithm
that simplifies performance tuning to trivial selection of
one parameter that speeds up or slows down the transient
response as compared to an open-loop benchmark. This im-
plementation implicitly assumes availability of a smooth and
well-damped prediction behaviour, which in turn necessitates
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Fig. 6. Comparison of closed-loop performance for G2 subject to |uk| ≤
2.5 and 10% input disturbance introduced at 40th second between PRPFC
(θ = 2), PCPFC/CPFC (ρ = 0.86, ny = 4) and PI (Kp = 0.028, Ki =
0.055).

pre-conditioning of difficult open-loop systems, for instance,
using classical feedback compensation. The techniques to
do so are, nonetheless, straightforward and trivial enough
to be implemented easily without expert intervention. The
numerical examples have clearly demonstrated the superiority
of the proposal in real world scenarios where the standard
PID and PFC algorithms have displayed a rather below par
control performance. Although these results are promising,
as a future work, the authors plan to extend the scope of
validation to realtime experiments in a range of difficult
industrial processes.
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Exploiting Laguerre polynomials and steady-state estimates to facilitate
tuning of PFC

John Anthony Rossiter1, Muhammad Saleheen Aftab1 and George Panoutsos1

Abstract— Predictive Functional Control (PFC), a simplified
and low-cost MPC algorithm, has gained considerable attention
for industrial process control in the last two decades. Although
with PFC, controller tuning is relatively simple and more
meaningful than a PID controller, its efficacy is poorer for
larger prediction horizons–a necessity for stable over-damped
and non-minimum phase dynamics. This paper proposes a
conceptually novel tuning mechanism based on a single choice
which is: how much faster or slower than open-loop would you
like the closed-loop to converge? Simulations demonstrate that
this is a cheap and simple way of effective tuning by suitably
over or under actuating the open-loop control action.

I. INTRODUCTION

The popularity of model predictive control (MPC) is taken
for granted these days but most of the focus in the literature
is on the more expensive products which require reliable
quadratic programming (QP) optimisers for high dimensional
optimisations, or indeed even more challenging non-linear
optimisations [1], [2]. There is relative little attention given
to the other end of the market, that is relatively low cost more
akin to PID. There are still many applications where a cheap
single-input-single-output (SISO) control law is required, but
PID is not as effective as one would like.

A secondary issue which also has gained relatively little
interest in the literature is the one of MPC tuning. While
it is accepted that the input and output horizons do affect
the ultimate tuning, these are not usually considered tuning
knobs in themselves as the default position is to take the
horizons to be as large as the computing available allows [3],
[4]. Consequently the main tuning parameters are the weights
in the performance index, but the relationship between the
weights and properties such as bandwidth and settling time
is not analytical, which means tuning could be considered
as much an art form as systematic, or perhaps something
amenable to an offline tuning optimisation such as with
genetic algorithms [4].

There is one notable exception to the above observations
and that is predictive functional control (PFC) [5]. This algo-
rithm is built on some sensible concepts that would appeal
to practitioners and thus has found widespread acceptance
in industry [6]. Nevertheless, recent literature [7]–[9] has
emphasised the theoretical weaknesses in the basic algorithm
and thus has sought to produce modifications which retain
the appeal of the underlying concepts, but give more rigour
and confidence in the final control law. A simple summary
of some of the core conclusions of this work is:

1 Department of Automatic Control and Systems Engineering, University
of Sheffield, Sheffield, S1 3JD, UK (e-mail: j.a.rossiter@sheffield.ac.uk,
msaftab1@sheffield.ac.uk, g.panoutsos@sheffield.ac.uk)

1) The use of a constant future input in the predictions in
conjunction with a single coincidence point can lead
to significant inconsistencies affecting both reliable
constraint handling and behaviour [7], [12].

2) The definition of the coincidence point makes inconsis-
tent use of target/disturbance information [18] which
often results in additional lag in the responses and thus
the tuning is not as intuitive as desired.

3) For systems with undesirable open-loop dynamics,
some form of pre-conditionning of the predictions is
essential to ensure the PFC implementation is reliable
[13]–[15].

This paper is focussed more on the first two points above;
the proposals made could be combined with the 3rd point
fairly easily but we want a simple focus as befits a short
conference paper.

Specifically, this paper explores the role of the input pa-
rameterisation within PFC. Recent work, building on insights
from the mainstream MPC community [16], has encouraged
the use of input prediction parameterisations which converge
to the steady-state asymptotically rather than instantly [17].
It has been shown that these improve constraint handling
significantly, and also tuning [11]. Nevertheless, one core
facet has not yet been explored in the literature and that is
the role of pseudo-open-loop control, that is one whereby we
seek to achieve open-loop dynamics but within a closed-loop
including integral action. The advantage of such an approach
is that the input is automatically fairly passive which in many
scenarios is an advantage.

A second a more significant contribution of this paper
is to propose a different flavour of tuning direction to the
conventional algorithm, that is, rather than using the desired
settling time as the main tuning parameter, instead using
something we will call SPEED-UP. In simple terms this
means, how much faster than open-loop do we want the
closed-loop system to converge. SPEED-UP is a nice tuning
factor because it also has a clear relationship with input
activity. For example, a SPEED-UP of 2 suggests that the
input will over-actuate by roughly double during transients.

Section II will given a brief introduction to classical
PFC and some alternative input parameterisations, including
the open-loop dynamics option. Section III will introduce
the proposed new PFC approach based on SPEED-UP and
then section IV will give some simulation comparisons and
illustrations.



II. BACKGROUND ON PFC

This section gives an overview of PFC and some simple
alternative input parameterisations. This is used as the foun-
dation for the proposal of the following section.

A. System definition

For convenience hereafter, and without loss of generality,
take the following nominal transfer function model:

a(z)yk = b(z)uk + dk (1)

so output yk, input uk and dk a disturbance estimate to cater
for uncertainty. We assume that true process is similar, for
example:

ap(z)yp,k = bp(z)uk; dk = yp,k − yk (2)

Note it is assumed that the input to the process and model
are the same. The model used could equally be in state
space form and this assumption makes little difference to
the control law derivations.

B. System prediction

Prediction is well known [4] so details are omitted here
suffice to say one can determine an n-step ahead output
predictions as follows, for suitable H,P,Q.

y
→k+1

= Hu→k +Qy←k + P u←k + Ldk (3)

where

uk→ =




uk
uk+1

...
uk+n−1


 ;uk← =




uk−1
uk−2

...
uk−m


 ;

yk← =




yk
yk−1
...
yk−m


 ; y

→k+1
=




yk+1

yk+2

...
yk+n




and L is a vector of ones.

C. Conventional PFC control law

PFC is based on the premise of matching the output
prediction to a first order response with a given time constant.
Hence, define a target trajectory rk as:

rk+i = (1− λi)R+ λiyp,k, i = 1, 2, · · · (4)

where R is the set-point and λ is the desired closed-loop
pole. Note, we ignore details linked to non-zero dead-time
examples for simplicity of notation; these are available in
many of the references (for example, see [14]).

The PFC law is defined by forcing the prediction of (3)
to match the desired trajectory (4) at a specified point n-
steps ahead, assuming that the future input is constant, that
is, uk = uk+i,∀i > 0. Hence the PFC law is defined from:

eTn [HLuk+Qy←k+P u←k+Ldk] = (1−λn)R+λnyp,k (5)

where en is the nth standard basis vector. It is straightforward
to determine uk from (5).

D. Laguerre PFC

It was noted recently [12], [17] that the restriction of the
future input to a constant did not match the expected shape
of the closed-loop input and thus embedded an inconsistency
between predictions and closed-loop, which in turn meant
that the tuning was inevitably inconsistent. A simple im-
provement was to parameterise the future input using a first
order Laguerre function, in essence an exponential decay so
that:

u→k =




1
ρ
...
ρn−1




︸ ︷︷ ︸
Hρ

η +




uss
uss
...
uss


 ; (6)

where ρ is a decay factor to be chosen, η is a degree of
freedom (d.o.f.) and uss is the expected steady-state so that:

{uk+i = uss, ∀i ≥ 0} ⇒ lim
i→∞

E[yk+i] = R (7)

For model (1) we can determine that, in steady-state:

a(1)yss = b(1)uss + dk ⇒ E[uss] =
a(1)R− dk

b(1)
(8)

It is straightforward to combine the updated input predic-
tion of (6) with predictions (3) and trajectory (4) to define
the modified PFC control law as:

eTn [H(Hρη+Luss)+Qy←k+P u←k+Ldk] = (1−λn)R+λnyp,k
(9)

Hence we solve (9) for η and substitute into (6) to determine
uk.

E. Open-loop dynamics PFC (OL)

A final simple alternative is where one is happy with the
open-loop dynamics and the feedback is simply to ensure
offset free tracking. Such a control law can be achieved with
the simple rule:

uk = E[uss] (10)

where E[uss] is indicated in (8).
Remark 1: It so happens that one can achieve an open-

loop dynamics PFC using control law (9) with ρ = 0. This
observation will prove useful in the following.

Remark 2: It should be emphasised that the open-loop
method avoids use of (4) altogether. This is actually a critical
part of the proposal in this paper as this means we avoid
the inconsistencies highlighted in [10], [18] whereby the
target information is used differently in consequent samples,
leading to unexpected lag in the closed-loop behaviour.

F. Constraints

It is possible to incorporate constraint handling into PFC
in a systematic and computationally simple way, and while
retaining feasibility, as demonstrated in several recent papers
[11], [12].

u ≤ uk ≤ u
∆u ≤ ∆uk ≤ ∆u
y ≤ yk ≤ y

(11)



and ∆uk = uk − uk−1.
However, as these details are not central to the contribution

of this paper they are excluded for clarity and brevity.

III. PROPOSED PFC CONTROL LAW BASED ON
SPEED-UP

The key factor here is transparency of tuning. It is assumed
that the operator can view the open-loop speed of response
and indeed achieve this with the PFC law given in (10), or
indeed equivalently (9) with ρ = 0. Hence it is transparent
and easy for them to define a closed-loop response as being
say, twice as fast, and obviously therefore having input
activity twice as big.

A. Increasing speed of target trajectory compared to open-
loop benchmark

In order to achieve some faster response, then we need
the error convergence of the predicted behaviour of (3) to be
appropriately faster for consistency. Hence, one core concept
is to choose an appropriate coincidence point that will cause
the suitably faster behaviour/convergence.

Begin with a benchmark behaviour that would be achieved
with the open-loop method of (10), so that the predictions
take the form:

yk+n|k = eTn [HLuss +Qy←k + P u←k + Ldk] (12)

The associated n-step ahead prediction error is given as:

ek+n = R− eTn [HLuss +Qy←k + P u←k + Ldk] (13)

Next, chose a coincidence point which has faster conver-
gence, so implicitly the associated error is smaller by a factor
of β, where β is a factor to be determined.

Lemma 1: For β > 1, a relative PFC control law can be
defined as follows. Choose η such that:

R− eTn [HLuss +Qy←k + P u←k + Ldk] =

β[R− eTn [HLuss +HHρη +Qy←k + P u←k + Ldk] (14)

η =
(β − 1)

eTnHHρβ
[R− eTn [HLuss +Qy←k +P u←k +Ldk] (15)

Then uk = uss + η.
Proof: It is clear from equation (15) that the coincidence

point for the predictions with the Laguerre addition, has an
associated error which is β times smaller than the error using
predictions based on the open-loop approach.

The core point here is that control law (15) gives us
a mechanism for achieving faster behaviour using a PFC
equivalent statement; this control law is analogous to (5)
with the critical exception that now there is no need for the
tuning parameter λ. This difference is fundamental to the
contribution of the paper as tuning is now based on relative
statements rather than absolute ones.

B. Determining a precise PFC law with faster responses

First we establish a common sense observation for faster
closed-loop responses, that is, a faster response requires a
more aggressive input action.

Lemma 2: In simple terms, for zero initial conditions and
a change in the target, a necessary condition for the response
to be θ times faster is if the initial input uk for a step change
in the target to be θ times bigger. This lemma is given without
proof as self evident.

Next, we look at the impact of requiring a smaller asymp-
totic error (as in (15)) on the initial input magnitude. The
argument is that, from linearity, comparing the input activity
with zero initial conditions and zero disturbance is a likely
indicator of the resulting closed-loop poles and this simplifies
the next stage of the analysis.

The initial input, for a change in target R and coincident
point (13) and zero initial conditions, using the open-loop
tuning is given in (10). (In this case the input is a constant
throughout the predictions.)

Lemma 3: The initial input, for a change in target R and
control law (15) is given as follows:

uk = uss + η =
R

g(1)
+

(β − 1)

eTnHHρβ
[R− eTn [HLuss] (16)

This also follows directly from (15).
For convenience hereafter define the following:

hρ = eTnHHρ; h = eTnHL; E[uss] =
R

g(1)
(17)

Hence (16) can be simplified to:

uk =
R

g(1)
+

(β − 1)

hρβ
[R− h R

g(1)
)] (18)

Theorem 1: The initial input from (18) is θ times faster
than (10) if β is chosen as follows:

β =
h− g(1)

(θ − 1)hρ − g(1) + h
(19)

.
Proof: Placing the two inputs (10), (18) side by side and

removing the common factor R, we have:

θ

g(1)
=

[
1

g(1)
+

(β − 1)

hρβ
[1− h 1

g(1)
]

]
(20)

Create a common denominator and match the numerators,
hence:

hρβθ = hρβ + (β − 1)[g(1)− h] (21)

Finally, solving for β gives the result in (19).
Remark 3: The derivation of the value for β was done

with the nominal case and zero initial conditions for simplic-
ity. However, as the final control law is in (15), the implied
poles will be retained for the closed-loop and moreover, there
will be robustness to uncertainty and offset free tracking.
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Fig. 1. Open-loop step response for system (22).

C. Summary of proposed algorithm

This section summarises the core conceptual steps and
algebra needed to implement the algorithm. it is noticed
that the computations are equivalent to a conventional PFC
approach and thus neither more nor less complicated to code
and implement. The core difference is the approach to tuning
where here one adopts relative statements (faster or slower)
rather than specifying desired poles/time constants precisely.

1) Verify that the open-loop behaviour is broadly accept-
able so can be used as a valid benchmark.

2) Determine the desired speed-up factor θ, that is how
much faster than open-loop behaviour do you want the
closed-loop to be?

3) Solve for the parameter β using equation (19).
4) Determine the PFC law using equation (15).

Remark 4: Constraint handling can be handled in a con-
ventional PFC manner using a simple for loop as discussed
in the references. It is reiterated that recursive feasibility is
automatic in the nominal case, although of course guarantees
in the presence of uncertainty require computational com-
plexity, expense and approaches which exceed the remit of
PFC.

IV. NUMERICAL COMPARISONS

This section will demonstrate the efficacy of the proposed
PFC approach as an alternative way to tune closed-loop
behaviour. It needs to be re-emphasised that the method
is based on the assumption that the open-loop dynamics
are essentially satisfactory so this method alone may not
be appropriate for systems with significant under-damping
or open-loop instability. Relevant details can be found in
reference [19] which successfully extends this proposal to
such difficult systems.
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Fig. 2. Closed-loop responses for system (22) with various θ.

A. Example 1

Take the 2nd order, slightly over-damped system, with a
non-minimum phase zero:

y(z) =
−0.04z−1 + 0.1z−2

1− 1.4z−1 + 0.45z−2
(22)

It should be remarked that the presence of the non-minimum
phase zero makes a conventional PFC difficult to tune
effectively and very difficult to achieve faster than open-loop
behaviour!

The coincidence horizon is taken to be 15 in lieu of the
slow pole at 0.9. The open-loop response is given in figure
1. The closed-loop responses for different choices of θ are
shown in figure 2. It is clear that the required speed up
has been achieved accurately and thus the proposed tuning
parameter of θ is intuitive and easy to use.

Remark 5: The tuning parameter θ can also be used to
achieve performance slower than open-loop, for example
where there is a particular desire for the input to be slowly
varying. This is illustrated in figure 3.

B. Example 2

Take a 3rd order, system, again with a non-minimum phase
zero:

y(z) =
0.1z−1 − 0.4z−2

1− 1.85z−1 + 1.035z−2 − 0.171z−3
(23)

It should be remarked that the presence of the non-minimum
phase zero makes a conventional PFC difficult to tune
effectively and very difficult to achieve faster than open-loop
behaviour!
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Fig. 3. Closed-loop responses for system (22) with θ chosen to slow
behaviour down.
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The coincidence horizon is taken to be 30 in lieu of the
very slow pole at 0.95. The open-loop response is given in
figure 4. The closed-loop responses for different choices of
θ are shown in figure 5. Once again it is evident that the
required speed up has been achieved accurately and thus the
proposed tuning parameter of θ is intuitive and easy to use.

C. Disturbance rejection

For completeness, this section illustrates that the benefits
are retained by the loop and thus apply, for example during
disturbance rejection. Figure 6 shows the disturbance rejec-
tion with system (23); it is clear that the SPEED-UP has
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Fig. 5. Closed-loop responses for system (23) with various θ.

been retained.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a totally different conceptually
approach to PFC algorithms, that is where tuning is based
on relative rather than absolute statements. The advantage
of using relative statements is that it is possible to enable
an intuitive tuning parameter, here denoted as SPEED-UP:
how much faster, or slower, than open-loop do you want to
be? It is also noticeable that the proposed approach moves
away form the traditional control law definition around (4)
and thus avoids issues linked to inconsistent use of the target
information [18].

As compared to traditional PFC approaches and indeed
the many modifications proposed in the recent literature, the
tuning parameter here seems to behave far more consistently
so that the user achieves the desired behaviour; this is evident
from figures 2-5 where the initial input over or under actuates
to the required degree. It should be emphasised however,
that this approach (alone) is not effective with under-damped
systems, and may require pre-stabilisation (see [14], [19]) for
reliable performance.

A core conceptual point within this paper is that it builds
on work [17] which used a Laguerre formulation for the
input parameterisation. This is essential as it means that
the predicted input moves smoothly from its initial over-
actuation to the required steady-state thus giving consistency
between predictions and closed-loop behaviour, something
that conventional PFC cannot give.



100 110 120 130 140 150

Samples

0.9

0.95

1

O
u
tp

u
ts

=1.2

=1.5

=2

OL ( =1)

R

r

100 110 120 130 140 150

Samples

-0.055

-0.05

-0.045

In
p
u
ts

Fig. 6. Closed-loop disturbance rejection for system (23) with various θ.
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Abstract

This paper proposes a computationally efficient predictive control law for non-linear
systems, that is one that can easily be coded and implemented on low cost hardware.
Moreover, it has a secondary core benefit that the core tuning parameter reduces
to a single choice which is: how much faster than open-loop would you like the
closed-loop to converge? Conceptually the approach builds on the PFC approach
but proposes a very different type of coincidence condition which removes the lag
associated to the conventional approach. Simulations demonstrate that for some
non-linear systems this is a cheap and simple way of ensuring effective feedback,
with constraint handling. 1

Key words: Predictive functional control, computational efficiency, transparent
tuning, nonlinear systems.

1 Introduction

Model predictive control (MPC) [1] is very popular in both the industrial [2,3]
and academic communities [4–6]. This is because it makes good intuitive
sense combined with delivering reliable results for MIMO (multi-input-multi-
output) systems and managed constraint handling. Moreover, although rarely

1 This is a slightly extended and corrected version of the paper which appeared at
the European Control Conference, 2022.
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discussed carefully [7], it also has the potential to handle future target infor-
mation systematically.

Nevertheless, despite the popularity and effectiveness, MPC is still not widely
deployed on low level loops where PID continues to dominate. This is as ex-
pected. PID tuning [8, 9] is simple enough to be handled without recourse to
expensive consultants and moreover, for many practical feedback loops, deliv-
ers performance that is adequate. Of course, in addition and critically, PID
is much cheaper to purchase, code and implement than MPC in general and
thus there needs to be a significant potential benefit before a more expensive
alternative would be considered.

This paper focuses on one notable exception to the above observations. There
are some SISO (single-input-single-ouput) loops where a simple PID imple-
mentation does not deliver adequate performance, perhaps due to challenging
dynamics or perhaps due to the need for constraint handling. In such a case, a
cheap MPC approach would be competitive in both price and complexity and
indeed this is what has been noticed by PFC (predictive functional control)
vendors [10, 11] over many years. More specifically:

(1) Being model based, PFC is able, in principle, to exploit model information
more systematically than PID and thus improve closed-loop behaviour.

(2) Being prediction based, again in principle, PFC can handle constraints
systematically.

Nevertheless, the reader will note the use of words in principle to clarify the
above statements. A large number of recent works have investigated the tuning
[12–15] and constraint handling [6, 17] of PFC and made a number of useful
observations and contributions:

• The original PFC algorithm is effective with processes having over-damped
behaviour, but tuning is much more difficult with other dynamics.

• Recent work has suggested a number of modified PFC algorithms which
are more reliable, consistent and enable better links between the tuning
parameters and behaviour.

• The constraint handling in the original PFC algorithm was more akin to
approaches used in PID and thus suboptimal at best. Using predictions
more systematically is straightforward and enables far better results while
still requiring no optimisation.

One of the weaknesses in conventional PFC is the use, in predictions, of a fixed
future input whereas it is well known (e.g. [15]) that more nuanced parame-
terisations of the future input sequence are helpful. A very recent work [18]
demonstrated how a very simple PFC algorithm could combine steady-state
estimates with a simple exponential parameterisation to give intuitive and
effective tuning. This work, for now considered only the linear case whereas,
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the original creators of PFC saw one huge advantage of the simplicity of the
algorithm being in its potential usage with non-linear systems. The reader
may note that nonlinear MPC (NLMPC) in the literature is largely both
complex and computationally demanding [19]. Hence, the core contribution of
this paper is to demonstrate how this recent new PFC approach [18] can be
adapted to the nonlinear case and implemented with almost negligible comput-
ing and complexity, certainly when compared to more conventional NLMPC
algorithms [19].

The paper is organised as follows. Section 2 gives core background on both
PFC and the recent proposed algorithm. Section 3 shows how this algorithm
can be modified for the nonlinear case. Section 4 presents a case study on a
mixing tank with an endothermic reaction and the paper finishes with some
numerical results and conclusions.

2 Background on PFC

2.1 System definition

The non-linear system will be taken to be of the form:

ẋ = f(x, u) (1)

with state x and input u (dimensions nx, nu respectively) and f(.) is differ-
entiable. This paper assumes this model can be approximated, at individual
sample times, by a discrete linear time varying state-space model:

xk+1 = Akxk +Bkuk (2)

More discussion of the linearisation and the use of deviation variables is in
section 3.

In practice model (1) is an approximation, so we need to allow for some un-
certainty. Here we use standard practice in the literature and define the true
process state to be xp and thus the error term xe, at each sample, is given as:

xe,k = xp,k − xk (3)

As is standard practice in the MPC literature, the error term is used to ensure
unbiased prediction and offset free tracking and caters for both parameter
uncertainty and disturbances. It assumes that the relevant true state xp,k at
the current sample can be measured.
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2.2 System prediction

Prediction is well known [6] so details are omitted here. It is sufficient that the
reader recognises that with LTV model (2), or indeed similar models, one can
easily deduce n-step ahead output predictions as follows, for suitable H,P, L
(dimensions implicit from the context).

x→k+1|k = Hu→k
+ Pxk + Ldk (4)

where dk = xe,k and

uk→ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk

uk+1

...

uk+n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; x→k+1|k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk+1|k

xk+2|k
...

xk+n|k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and L is a vector of ones. In the non-linear case, H,P will be time varying
and need to be updated every sample, as seen in section 3.

2.3 Conventional PFC control law

This is presented for completeness only and thus very briefly. Conventional
PFC is based on the premise of matching the output prediction to a first
order response with a given time constant. Hence, assuming the steady-state
target is a constant R, define define a target trajectory during transients rk+i|k
as:

rk+i|k = (1− λi)R + λixp,k, i = 1, 2, · · · (5)

The PFC control law is determined by ensuring that xk+n|k = rk+n|k and thus,
in effect, substitution of (4) into (5) and solving for the degree of freedom
which typically is the future value of the input (assumed constant).

However, as mentioned in the introduction [12, 14, 18], this algorithm often
fails to give reliable behaviour in that the main tuning parameter λ is often
ineffective and indeed, for some open-loop dynamics it is difficult to gain
satisfactory beahviour. Thus, some simple alternatives have been proposed
and hereafter we introduce one of these.
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2.4 Open-loop dynamics PFC (OL)

The simplest predictive algorithm is one which makes no attempt to change the
dynamics and focuses solely on ensuring offset free tracking. Such an algorithm
is summarised as:

uk = E[uss] (6)

where E[uss] is the expected steady-state input.

This algorithm gives a useful benchmark for more computationally demanding
algorithms, and is especially useful when the open-loop dynamics are benign
because it gives a very simple and effective control law. Hence, one would
embellish this control law if and only if one wanted faster settling times or a
slower change of the input.

Remark 1 This control law is very simple to code and implement as no de-
tailed prediction is needed, rather just a mechanism to estimate uss. Thus it
provides a route to computationally efficient control of non-linear systems

2.5 Speeding up OL PFC with exponential input parameterisations

In order to speed up the response it is necessary to over actuate during tran-
sients. A simple over-actuation strategy [17, 18] is to parameterise the future
inputs as follows:

uk = uss + λkη; {0 < λ < 1} ⇒ lim
k→∞

uk = uss (7)

This has a single degree of freedom (d.o.f.), that is η and thus is amenable to
simple optimisation. The parameter λ should be chosen sympathetically with
the open-loop dynamics and desired closed-loop dynamics, that is, to converge
in a roughly equivalent period; typically chosen the same as in (5).

The selection of η is critical, and hence it was proposed [16] to ensure the
associated predictions converge a factor S faster than those associated to the
use of (6) alone. The conceptual steps are summarised next.

Algorithm 1 PFC algorithm to speed up predicted convergence by a factor of
S.

(1) Determine the n-step ahead error Eo between the prediction and target
using control law (6).

(2) Determine the n-step ahead error Eη(η) between the prediction and target
using control law (7). This depends on η.
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(3) Choose η such that SEη(η) = Eo where S is a design speed-up factor to
be selected.

The algorithm is presented conceptually because, in the non-linear case there
will not be fixed algebraic computations for the terms Eo or indeed Eη(η) and
these will need to computed online each sample. However, it is critical to note
that the d.o.f. η is a single variable and thus easy to determine efficiently; this
will be evident in the numerical examples shown later.

A further important observation is that the tuning is now based on a simple
intuitive statement: how much faster than open-loop dynamics would you like
to be?

Remark 2 In the linear case, because explicit and fixed algebraic relationships
are possible, it is possible to make the tuning even more precise as discussed
in [16]. Here we are extending and applying the concept to the non-linear case
where relationships are time varying, and thus those additional steps are not
considered for now. Of specific interest one should note that the actual closed-
loop speed-up achieved will be different to the ratio of the prediction errors
SEη(η) = Eo so some offline analysis will be needed.

2.6 Constraint handling

One can incorporate constraint handling into Algorithm 1 in a systematic
and computationally simple way by comparing system predictions against
constraints for a sufficiently large horizon; this is standard in the literature
[6, 18, 20].

u ≤ uk ≤ u

Δu ≤ Δuk ≤ Δu

x ≤ yk ≤ x

(8)

Critically it is noted that as the predictions have a single d.o.f. η, the selection
of η can be determined using a simple for loop and thus done very efficiently.
One might also note that with (7) the maximum input and input rate will
occur at the first or second sample, and thus the number of inequalities to be
checked for the input constraints is very small.

Remark 3 Constraints limit the input amplitudes available and thus will also
impact on the speed-up achievable in some scenarios, especially with large
changes in target.

6



2.7 Summary of proposed algorithm

This section has summarised the core conceptual steps and algebra needed to
implement the proposed algorithm 1. The user needs to define the following
design parameters.

(1) What is the prediction horizon n? Good practice [12] suggests something
like 2 time constants.

(2) What is the speed up factor S? Clearly this depends entirely on what the
user wants but we would not expect much bigger than 2-3 or significant
over actuation is inevitable and this is rarely implementable in practice.

(3) The parameter λ used in (7) is needed. Typically this should be close to
the target closed-loop pole and partially overlaps with the choice of n.

Having defined the core parameters, the remaining steps are linked to compu-
tation of the expected errors which is discussed in the following sections.

The reader should be reminded however that a core requirement for the efficacy
of the proposed approach is that the open-loop behaviour is broadly acceptable
(that is almost meets the performance requirements) so can be used as a valid
benchmark.

3 Background on linearisation and prediction with non-linear mod-
els

In NLMPC it is necessary to form predictions for a non-linear model. As PFC,
by design, is intended to be simple, here we take a very simple approach to
this process, accepting that more accurate but also more demanding numerical
integration approaches are possible.

3.1 Linearisation about a trajectory

Hence, we use superposition to find predictions by separating the nominal
trajectory (xk, uk) from the deviations part. It is implicit hereafter that the
nominal or baseline trajectory is that associated to input prediction (6).

(1) Simple difference equations are used to simulate the non-linear model and
thus to form a baseline prediction based on some assumed future input.
Let these values be: xk, uk for states xk and inputs uk and k the sample
number.
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(2) The model is linearised about all points xk, uk on the baseline prediction
to form state-space models of the form:

δẋk = Akδxk +Bkδuk (9)

where δxk = x̂k − xk, δuk = ûk − uk are deviations relative to the base-
line prediction and Ak, Bk are the linearised model parameters at the
kth sample of the baseline prediction. The full predicted state and input
values are x̂k = xk + δxk, ûk = uk + δuk.

Remark 4 In order to derive the matrices Ak, Bk, we need to undertake par-
tial differentiation of a model which is based on the first derivative, for exam-
ple, assume that:

˙̂x = f(x̂, û) ≈ f(x, u) +
∂f

∂x
δx+

∂f

∂u
δu (10)

˙̂x = f(x̂, û); ˙̂x = ẋ+ ˙δx = f(x, u) + ˙δx (11)

δẋ =
∂f

∂x
δxk +

∂f

∂u
δuk = Akδxk +Bkδuk (12)

3.2 Prediction using deviation variables

Once one has determined the models (9) for a notional trajectory, one can
easily determine the impact of small deviations in the input, that is δuk �= 0.
Predictions can be found by recursive use of (9) as follows:

δẋk ≈
δxk+1

δt
= Akδxk +Bkδuk (13)

Summarising one deduces (for suitable period δt):

δxk+1≈ [Akδxk +Bkδuk]δt (14)

δxk+2≈ [Ak+1δxk+1 +Bk+1δuk+1]δt

δxk+3≈ [Ak+2δxk+2 +Bk+2δuk+2]δt
...

Next, making substitutions and assuming that δxk = 0:

δxk+1≈ [Bkδuk]δt (15)

δxk+2≈ [Ak+1Bkδukδt+Bk+1δuk+1]δt

δxk+3≈ [Ak+2[Ak+1Bkδukδt+Bk+1δuk+1]δt

+Bk+2δuk+2]δt
...
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3.3 Prediction with input parameterised using an exponential

The predictions of (15) are somewhat clumsy to use, but in the context of the
PFC algorithm to be used here, the predicted input (7) has been parameterised
as follows:

δuk+i = λiη (16)

for a given λ and η the d.o.f. to be selected online. Substitute (16) into (15)
then:

δxk+1 =Bkδt︸ ︷︷ ︸
αk

η (17)

δxk+2 = [Ak+1αk +Bk+1λ]δt︸ ︷︷ ︸
αk+1

η

δxk+3 = [Ak+2αk+1 + Bk+2λ
2]δt︸ ︷︷ ︸

αk+2

η

...

δxk+n+1 = [Ak+nαk+n−1 +Bk+nλ
n]δt︸ ︷︷ ︸

αk+n

η

It is noted that the main computation here is the simple recursion of:

αk+n = [Ak+nαk+n−1 +Bk+nλ
n]δt (18)

Algorithm 2 Predictions for the non-linear model ẋ = f(x, u) with input
parameterisation (16) are computed as follows:

(1) Estimate the required steady-state input uss and simulate the model ẋ =
f(x, u) forward (using numerical integration) over the required horizon
using uk = uss, ∀k > 0.

(2) For the nominal trajectory (xk, uk) determined in step 1, form the matri-
ces Ak, Bk at every sample using:

Ak =
∂f

∂x
; Bk =

∂f

∂u

(3) Use recursion (17) to determine αk+n for the required horizon n. The
n-step ahead predictions for the state are now given as:

x̂k+n = xk+n + αk+nη (19)

Remark 5 It is implicit from the use of first order Taylor series and simple
difference equations for the numerical integration that the trajectories do not
deviate a long way from the baseline. If they do, then the approximation errors
would grow and could impact on behaviour. This means the sample period δt
should be small enough.
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We can define the final algorithm more precisely.

Algorithm 3 The PFC algorithm 1 can be combined with Algorithm 2 as
follows.

(1) Find the baseline trajectory (xk, uk) using (6) and also the associated state
space matrices (12) and prediction (19).

(2) Determine the n-step ahead error Eo = R− xk+n.
(3) Determine the n-step ahead error Eη(η) = R− x̂k+n.
(4) Choose η such that SEη(η) = Eo:

S[R− xk+n − αk+nη] = R− xk+n (20)

(5) The control value to be implemented at the current sample is: uk = uss +
λ0η.

4 Description of case study

This section describes a simple mixing tank with an endothermic reaction.
Chemical A is produced by a reaction in the tank, but this reaction is en-
dothermic thus cooling down the tank contents. The rate of reaction is also
temperature dependent (the main non-linear characteristic), so to maximise
the reaction rate, the temperature needs to be maintained and thus heat must
be supplied. Consequently, the tank can be described by two equations, one
for the concentration and a second for the temperature. The objective is to
control the concentration (output CA) by manipulation of supplied heating
(input W ).

4.1 Core model equations

The concentration model depends on the flow rates into and out of the tank
(assumed equal) and the reaction rate:

V
dCA

dt
= γCAV e0.05(T−Ti) + F (CA0 − CA) (21)

where V is tank volume, F is the flow rate, T is the temperature in the
tank (assume well mixed), Ti is the temperature of the in flow, CA0 is the
concentration of the inflow and CA is the concentration in the tank. The
variable γ is linked to the reaction rate.
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The basic heat equation is:

V ρCp
dT

dt
= FρCp(Ti − T )− β[γCAV e0.05(T−Ti)] +W (22)

where ρ is fluid density, Cp is fluid heat capacity, W the heat supply and β a
variable linked to the rate of reaction and thus how much heat is absorbed by
the reaction.

For convenience, the model equations (21),(22) can be re-arranged as follows.

dCA

dt
= γCAe

0.05(T−Ti) +
F

V
(CA0 − CA) (23)

dT

dt
=

F

V
(Ti − T )− β[

γ

ρCp

CAe
0.05(T−Ti)] +

W

V ρCp

(24)

For the purposes of this paper the following values were used: ρ = 103kgm−3, Cp =
4000J/kgdeg, V = 5m3, F = 0.01m3s−1, β = 107deg, γ = 0.005s−1, Ti =
20deg. It is also noted that the inlet concentration and inlet temperature are
not considered to be degrees of freedom in this paper.

4.2 Steady-state estimates

For the proposed algorithm, we need to determine an estimate of the steady-
state, assuming that the provided heating is constant, that is W = Wss.
Moreover, assume that the required steady-state concentration is known as
CA,ss. There will be an implied steady-state temperature Tss.

A steady-state exists if the derivatives in (23),(24) are zero:

0 = γCA,sse
0.05(Tss−Ti) +

F

V
(CA0 − CA,ss) (25)

0 =
F

V
(Tss − Ti)− β[

γ

ρCp

CA,sse
0.05(Tss−Ti)] +

Wss

V ρCp

(26)

Using (25) to solve for the steady-state temperature gives:

e0.05(Tss−Ti) = −F

V

(CA0 − CA,ss)

γCA,ss

(27)

(Tss − Ti) = 20 log

(
F

V

(CA,ss − CA0)

γCA,ss

)
(28)
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Now we can use (26) and (28) to find the required power input to maintain
this temperature.

β[γV CA,sse
0.05(Tss−Ti)]− FρCp(Tss − Ti) = Wss (29)

4.3 Linearisation of case study

It is clear that both model equations (23), (24) take the form:

ẋ = f(x, u); x =

⎡
⎢⎣
CA

T

⎤
⎥⎦ ; u = W (30)

Hence we can linearise as in section 3. The partial derivatives can be computed
as follows:

∂

∂CA

(ĊA) = γe0.05(T−Ti) − F

V
(31)

∂

∂T
(ĊA) = 0.05γCAe

0.05(T−Ti) (32)

∂

∂CA

(Ṫ ) = −β[ γ

ρCp

e0.05(T−Ti)] (33)

∂

∂T
(Ṫ ) = −F

V
− 0.05β[

γ

ρCp

CAe
0.05(T−Ti)] (34)

The corresponding linearised state-space model is given as:

Ak =

⎡
⎢⎣

∂
∂CA

(ĊA)
∂
∂T

(ĊA)

∂
∂CA

(Ṫ ) ∂
∂T

(Ṫ )

⎤
⎥⎦ ; Bk =

⎡
⎢⎣

0

1
V ρCp

⎤
⎥⎦ (35)

In summary, the parameters needed for (17) depend upon the current values
of CA, T as evident from (31)-(34) and thus can easily and quickly be updated
with the values in (xk, uk) as required. Consequently the prediction equations
outlined in Algorithm 2 and used in (20) of Algorithm 3 can be determined.

5 Simulation results

This section demonstrates the efficacy of the proposed Algorithm 3 on the
case study given in section 4. A core selling point is the intuitive nature of the
tuning whereby one can request performance as a relative measure compared
against open-loop behaviour, the so called speed up factor. A second selling
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point is the computational simplicity; the main computing requirement is the
recursion in (17) which, in terms of modern computing, is not significant.

This section will present results for the nominal case and also with significant
parameter uncertainty to demonstrate that, as expected with most MPC ap-
proaches, the algorithm is robust to some uncertainty. We also include some
comparisons with a conventional NMPC approach to highlight some of the
differences.

5.1 Open-loop behaviour

In order to form a benchmark, this section begins by demonstrating the per-
formance achieveable with control law (6) which ensures offset free tracking
with open-loop dynamics. The corresponding behaviour is shown in Figure 1
where it is clear that:

• The settling time is around 2000 sec.
• There is no offset in CA.
• The closed-loop input signal W is constant.

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0

5

10

15

20

25

CA (model)
T (model)

W/105

target CA

Fig. 1. Closed-loop responses for the nominal case using control law (6).

To demonstrate the impact of uncertainty, the true plant parameters are
changed slightly from those in subsection 4.1 to: V = 4.9m3, F = 0.012m3s−1, β =
1.1 × 107deg, , Ti = 21deg. The corresponding simulation is given in Figure
2. Unsurprisingly the behaviour is slightly different, but again there is no off-
set in the steady-state but now the feedback takes a while to determine the
correct steady-state value for W which slows down the overall settling time.
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target CA

Fig. 2. Closed-loop responses for the robust case using control law (6).

5.2 Speeding up behaviour

Next we deploy Algorithm 3 and use a target speed up of a factor of β = 2
with n = 15, λ = 0.9 and sampling period of 5s. The corresponding behaviour
for the nominal case is shown in Figure 3 alongside the results for β = 1 where
it is clear that:

• The Settling time is closer to 1000 sec and thus nearly twice as fast as in
Figure 1.

• There is no offset.
• The closed-loop input signal is very aggressive (off the scale) and indeed the
transient temperature has risen by nearly 20 degrees to facilitate the faster
rise in the reaction rate.

Fig. 3. Closed-loop responses for the nominal case using control law (20) alongside
the open-loop behaviour.

Similar observations arise in the uncertain case as seen in Figure 4. The speed
up is achieved as requested, alongside offset free tracking, but at the expense
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of aggressive heating during transients.
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Fig. 4. Closed-loop responses for the uncertain case using control law (6).

5.3 Constraint handling

For completeness, Figure 5 gives a simulation for the uncertain case and with
some input constraint handling to demonstrate that this is straightforward
to implement. Here we implement a reasonable upper limit on the heating
available to be not significantly bigger than the steady-state requirements.
Unsurprisingly this results in a slight slow down in performance, that is, the
target speed up of a factor of 2 is not achievable in this case.
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T (plant)
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Fig. 5. Closed-loop responses for the uncertain case using control law (6) and with
input saturation.
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5.4 Off-the shelf NMPC

For completeness we illustrate the differences with a much more expensive
and complicated off-the-shelf NMPC approach in Figure 6. In this case the
user is able to change the performance index weights to achieve different per-
formances, so we show how simple changes to the input weighting lead to
different closed-loop behaviours. Nevertheless, what is most interesting here is
that: i) the overall speed of response and smoothness of the output behaviour
is similar to PFC and ii) NMPC is much less aggressive in its use of the heat-
ing and indeed more flexible in general to tune and trade-off the input and
output behaviour.

Fig. 6. Closed-loop responses for the uncertain case using NMPC and three alterna-
tive choices of weights (solid, dashed and dotted refer to different weighting choices).

6 Conclusions and future work

This paper has modified a recently proposed PFC Algorithm for the non-linear
case and demonstrated that it can be applied affectively. The algorithm de-
ploys an intuitive tuning factor, denoted speed-up, which is easy for workers
to relate to and thus negates the need for experts to manage the implementa-
tion. The user can easily explore the impact of different speed-up choices on
other aspects of behaviour such as input activity and decide upon the desired
trade-off.

Other core benefits are that, despite being a full non-linear control law, the
required on-line computations are relatively minor and thus can easily be
coded in low cost processors. Also, in line with other predictive control laws,
the incorporation of systematic constraint handling is straightforward and can
be managed with a simple for loop. Moreover, the algorithm demonstrates the
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expected robustness to some parameter uncertainty similarly to other MPC
approaches.

Future work will look at whether this concept can be usefully applied to sce-
narios where the model and measurement information is less precise, or fuzzy,
such as where feedback is based on images rather than specific numerical val-
ues. It is also important to present a more complete and balanced comparison
with tuning using alternative and conventional PFC approaches and this con-
stitutes work in progress.
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