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Abstract

The rapid growth in the adoption of lithium-ion batteries since their introduc-

tion in the 1990’s is expected to continue in the coming years. Electric vehicles in

particular will account for a large market share, being considered clean transporta-

tion technology compared to the internal combustion engine. Lithium-ion batteries

change their internal state during cycles of charge and discharge. Estimation of the

state of charge is commonly performed by battery management systems that rely

on charge counting and cell voltage measurements. Determining the physical state

of the battery components is challenging.

Recently, the response of an ultrasonic pulse through a battery has been suc-

cessfully correlated with both change in state of charge and state of health, the ap-

proach is now well established. This study assesses the qualities contained within

an ultrasound signal response by investigating the behaviour of ultrasonic waves

as they pass through the components in a layered battery structure, as those com-

ponents change with battery charge. This is possible based on acoustic sensitiv-

ity to material property changes such as electrode density during charge cycling.

Captured reflections from pulsed signals will accumulate in the signal response,

with observed differences providing the potential for real-time, non-invasive, non-

destructive measurements of internal changes in the battery cell.

A model has been developed to understand the nature of the ultrasound re-

sponse and the features that provide a particular characteristic. Modelling was

based on the one-dimensional wave equation, scripted in MATLAB. Layered prop-

erties simulating a battery cell are required to run the model, the outputs of which

include simulated wave responses, wave development plots and animations.

Experiments were conducted to establish methodologies in detecting a rela-

tionship between battery state of charge and ultrasound response. Data analysis

and visualisation methods were developed during this study to determine the op-

timal methods of gaining battery charge measurements. The accuracy of charge

monitoring is affected by temperature, either from the cell or ambient conditions.

Evaluation of temperature effect is possible using analysis contained in this work,

with a method of calibrating signal for temperature suggested.

It was concluded from experimental testing combined with modelling that

small changes in battery parameters could cause significant changes to an expected

signal response. The variety in cell construction and manufacturing discrepancies

presents a serious problem for the application of ultrasound monitoring in prac-

tice. A smart peak selection method was developed to ensure that regardless of the

nature of the ultrasound response, state of charge measurements are optimised by
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ensuring the regions of signal with best battery charge correlation are identified.

This can greatly help with the automation of the process in a sensor-based battery

management system.

Finally, ultrasonic monitoring was explored as a method of early warning of the

onset of thermal runaway during thermal abuse testing. The signal responses show

deviations from expected signals at temperatures consistent with expected cell re-

actions to temperature increases, such as the onset of self-heating and electrode

delamination. Instrumentation calibration and limitation tests were conducted to

provide confidence that changes in ultrasound responses are battery and not sen-

sor related.

iii



Contents

Abstract ii

Contents iv

List of Figures vii

List of Tables xvi

Supplementary Materials xvii

Abbreviations/Nomenclature xviii

Acknowledgments xx

1 Introduction 1
1.1 The Continuing Rise of Lithium-Ion Batteries . . . . . . . . . . . . . . . . 1
1.2 About the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Ultrasound and Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Frequency and Wavelength . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Reflections and Partial Reflections . . . . . . . . . . . . . . . . . . 10
2.1.3 Pulsing Methods and Wave Paths . . . . . . . . . . . . . . . . . . 11
2.1.4 Ultrasonic Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Principles of the Charge Cycling Process . . . . . . . . . . . . . . 13
2.2.2 Application of Ultrasonic Inspection to Charge Cycling . . . . . . 15

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Literature Review 20
3.1 Battery Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 State of Charge Estimation . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Battery Abuse and State of Health Estimation . . . . . . . . . . . 24
3.1.3 Ultrasonic Inspection in Battery Management Systems . . . . . . 25

iv



3.2 Acoustic Battery Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Equipment and Set Up Methods . . . . . . . . . . . . . . . . . . . 25
3.2.2 Battery Types and Test Parameters . . . . . . . . . . . . . . . . . . 28
3.2.3 Standard Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Non-Standard Testing . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.5 Compilation of Published Work . . . . . . . . . . . . . . . . . . . 38

3.3 Review Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 42

4 1D Wave Model 44
4.1 Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Sample Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Model Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Modelling Temperature Effects on Signal . . . . . . . . . . . . . . . . . . 58
4.7 Ultra High Frequency Ultrasound (UHFUS) Modelling . . . . . . . . . . 60
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Apparatus and Data Analysis 66
5.1 Set Up and Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Standard Charge Cycling Tests 76
6.1 Measurement from Signal Amplitude or Time of Flight . . . . . . . . . . 76
6.2 Difficulties Obtaining Signal Envelope . . . . . . . . . . . . . . . . . . . . 76
6.3 Temperature Effect on Ultrasound Signal . . . . . . . . . . . . . . . . . . 78
6.4 Half Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5 Smart Peak Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5.1 Cross Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . 84
6.5.2 Smart Peak Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5.3 Combating Potential Sensor Placement Issues . . . . . . . . . . . 91
6.5.4 Discussion – Practical Implementation . . . . . . . . . . . . . . . . 92

6.6 Experimental Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.1 Gel/Glue Couplant . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6.2 Pulse/Echo, Pitch/Catch Through Pulse Comparison . . . . . . . 94

v



6.7 Large Capacity Cell Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.8 Peak Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Non-Standard Thermal Abuse Tests 107
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Phase 1: Initial Exploration Test . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Phase 2: Bonded Sensor Tests . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3.1 Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Phase 3: Commercial Probe Tests . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.1 Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Conclusions 134
8.1 1D Wave Multi-Layer Modelling . . . . . . . . . . . . . . . . . . . . . . . 134
8.2 Apparatus and Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 Standard Testing: Charge Cycling . . . . . . . . . . . . . . . . . . . . . . . 136
8.4 Non-Standard Testing: Thermal Abuse . . . . . . . . . . . . . . . . . . . . 137
8.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.5.1 1D Wave Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.5.2 Ultra High Frequency Ultrasound (UHFUS) . . . . . . . . . . . . 139
8.5.3 Experimental results with cell tear down . . . . . . . . . . . . . . 139
8.5.4 Reverse signal engineering to predict battery cell layer structure . 140

9 References 142

vi



List of Figures

1.1 Lithium-ion battery market share [5]. . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Predicted increase in demand for lithium-ion batteries over the next 10 years [7]. 2
1.3 Problems experienced during daily usage of lithium-ion batteries [11–14]. . . . . 3
1.4 2Ah pouch cell with approximately 0.5g of staples. . . . . . . . . . . . . . . . 4
2.1 a) relationship between frequency and wavelength in pulses using cycles of

sine waves and b) a chirp signal that contains a range of frequencies. . . . . . . 8
2.2 10MHz waves in the space domain. . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Example of a two layered body, when a wave encounters an interface (a change

in material property) some part of the wave is transmitted and some is reflected. 10
2.4 a) relationship between frequency and wavelength in pulses using cycles of

sine waves and b) a chirp signal that contains a range of frequencies. . . . . . . 11
2.5 Wave paths through an object. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Ultrasound sensors a) ultrasonic transducer and b) piezoceramic elements. . . 12
2.7 Lithium atom gives up an electron to become a lithium-ion. . . . . . . . . . . . 14
2.8 Travel of lithium-ions and electrons during charge cycling in a lithium-ion battery. 14
2.9 Electrode volume dimensions and number of layers in cell (n). . . . . . . . . . 16
2.10 Schematic showing four typical types of Li metal batteries manufacturing pro-

cesses. a) single sheet stacking; b) Z-stacking; c) cylindrical winding and d)

prismatic winding [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.11 Constant current, constant voltage (CCCV) charging. [22]. . . . . . . . . . . . . 18
3.1 Narrow region for safe and reliable operation of a typical lithium-ion battery [2]. 20
3.2 Classification of the methods for the SoC estimation [24]. . . . . . . . . . . . . . 21
3.3 Overview of impedance and SoH estimation methods [24]. . . . . . . . . . . . . 22
3.4 Three types of battery abuse, leading to thermal runaway [28]. . . . . . . . . . . 24
3.5 Increase in the rate of ultrasonic monitoring of batteries publications. . . . . . 26
3.6 Example of a pulse/echo, single sensor test configuration (Wu et al.) [47]. . . . . 26
3.7 Example of a pitch/catch, two sensor through pulse test configuration (Hodson

et al.) [38]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Sensor types a) Commercial probes in custom 3D printer holder [35], b) Bonded

piezoelectric disk transducers [36]. . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Charge cycling effects on ultrasound acoustic response in battery model simu-

lation (Hsieh et al.) [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



3.10 a) change of ToF and signal amplitude and the relationship with battery SoC

and b) correlations of SoC with fast and slow waves (Gold et al.) [51]. . . . . . . 31
3.11 Signal processing methods a) example of a rectified acoustic signal, with the

investigated peak highlighted (Robinson et al.) [41] and b) input pulse and rec-

tified signal response with Schmitt-trigger output (Popp et al.) [30]. . . . . . . . 32
3.12 State of health monitoring a) increased ToF and reduction in amplitude Sood

et al. [50] and b) increase in ToF Wu et al. [47]. . . . . . . . . . . . . . . . . . . . 33
3.13 Typical ultrasound response and spatially resolved ultrasound measurements

across battery surface; a) Ultrasound response at a specific point on the surface

and b) variation in ToF across battery surface [48]. . . . . . . . . . . . . . . . . 34
3.14 a) Transmission signals of intact and defective models with the stomata defect

in the fifth electrolyte layer of the lithium-ion battery Li and Zhou [55], b) Ul-

trasonic ToF waveforms from pristine and defective cells (Robinson et al.) [32],

c) Representative reflectogram using a 100MHz transducer at the center of a

CR2032 coin cell (Bauermann et al.) [33]. . . . . . . . . . . . . . . . . . . . . . 35
3.15 a) Cells cycling at six temperature permutation profiles; 5◦C, 20◦C and 60◦C

(Chang et al.) [35] and b) ultrasound response intensity plot (Pham et al.) [42]. . . 36
3.16 a) Ultrasonic transmission waves at the positions marked by arrows and ultra-

sonic transmission image of a dry single layer cell (Deng et al.) [34] b) Schematic

of the proposed electrolyte wetting process (Knehr et al.) [37]. . . . . . . . . . . 37
4.1 Wave equation applied in excel, using conditional formatting green cells show

high amplitude and red cells show low amplitude. The thick black vertical line

of the sheet shows a material boundary. . . . . . . . . . . . . . . . . . . . . . 46
4.2 Finite difference scheme showing points in time/space used to calculate point

ui,j+1. Boundary conditions of left side include the initial pulse (blue). Posi-

tion used to capture pulse/echo signal shown in magenta, pitch/catch through

wave shown in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 a) A-scan waveform generated by pulsing through the layers a simulated bat-

tery cell (red wave is discharged, green is charged state). b) Fourier transform

for the simulation showing the main wave activity focused around the 2MHz

region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

viii



4.4 Simple four layered body wave model with differing density distribution. No-

tice due to the relatively even distribution of the theoretically discharged (bot-

tom) half of the model, where the wave passes through layers with almost all

the wave transmitted and very little reflection. These reflection/transmission

events occur as every wave (including new waves) reaches each interface, in

either direction. This causes the signal to quickly develop in complexity mean-

ing direct measurements are difficult to take or unreliable. . . . . . . . . . . . 49
4.5 Predicted ultrasonic amplitude intensity map as a battery is charged and dis-

charged. Each waveform (A-scan) is stacked (two sample signals shown, dis-

charged state in red and charged state in green) to form a surface plot, where

the high (yellow) intensity regions represent the larger amplitude signal peaks.

The absolute values are shown in this plot for clearer viewing. In b) The battery

SoC is plotted over a colour coded background to identify the part of the charge

cycle (green = charge, red = discharge, grey = rest). The black dashed vertical

lines show the position of the two sample waveforms. . . . . . . . . . . . . . 50
4.6 Model based on values taken from Table 5, separator wave speed for a) is

1128m/s and is altered to 685m/s in figure b) all other material properties and

all dimensions remain the same for both models. This change creates a very

different signal response as shown in the wave form. . . . . . . . . . . . . . . 52
4.7 Model consistency check based on values taken from Table 6, a) contains the

model generated graphical illustration of the three layered bearing pad (top),

the pulse/echo single sensor waveform response (center) and the signal re-

sponse in the frequency domain (bottom). b) shows the waveforms for each of

the two models with the expected timings marked up based on the layer thick-

nesses and speed of sounds. c) is the waveform development plot providing

insights into signal responses with routes traceable to the characteristics at the

sensing edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Waveform development, showing only wave peaks. For a) and b) Left-hand

side is wave development for the charged state, centre panel shows the wave

development for the discharged state and the right-hand side shows the abso-

lute difference between the two charge extremes. . . . . . . . . . . . . . . . . 55

ix



4.9 Charged/Discharged difference in ultrasound response plots. a) 5MHz shows

small changes in wave development occurring close to initial pulses with

lack of meaningful cell penetration. b) 0.5MHz wave passes through body al-

most unaffected by the changing properties in narrow layers. c) 2 MHz passes

through the cell with the incident waves gathering and accumulating changes,

travelling back to the recording sensor side. d) Ultrasound ToF/battery charge

correlation show 2MHz has strong relationship with battery SoC. . . . . . . . 57
4.10 Changing wave speed profiles with respect to charge and/or temperature. . . . 58
4.11 Modelled ultrasound wave response with respect to charge and/or temperature. 59
4.12 Examples of resonant standing waves through a 2mm body of wave speed

3000m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.13 a) standing wave created by pulsing 2MHz waves through a 2mm body with

wave speed property of 3000m/s. b) 5.5MHz and c) 6.5MHz fail to create reso-

nant standing waves. d) high amplitude for the resonant frequency on the FFT. 61
4.14 Identified wave resonances when pulsing ultra-high frequency ultrasonic

waves through a multilayered body. . . . . . . . . . . . . . . . . . . . . . . . 63
4.15 Signal response of a through pulse in the frequency domain with notable fre-

quencies marked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 Test set up schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Battery charge cycling apparatus. . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Cadex C7200 during bench-top testing. . . . . . . . . . . . . . . . . . . . . . 68
5.4 High frequency amplifier, 16 channel, ultrasound monitoring test kit. . . . . . 69
5.5 Analysis flow chart for analysis script created in MATLAB. . . . . . . . . . . . 71
5.6 a) Measured ultrasonic amplitude intensity map as a battery is charged and

discharged, each waveform (A-scan) is stacked (two sample signals shown, dis-

charged state in red and charged state in green). The absolute values are shown

in this plot for clearer viewing. The black solid lines show the area bounded by

the user with a zoom of this in b) the peak is tracked throughout the test, each

point is colour coded to identify the part of the charge cycle (green = charge,

red = discharge, grey = rest), in c) The battery capacity is plotted over a colour

coded background following the same colour coding. The black dashed vertical

lines show the position of the two sample waveforms . . . . . . . . . . . . . . 72

x



5.7 a) A single peak directly taken from the ultrasound response is selected and

tracked throughout the test [step B in the flow chart Fig. 5.5] b) the peak of an

envelope can also be tracked in the same manner c) the graphical display of

the peak evolution throughout the test [step C in the flow chart] d) graphical

display for the envelope tracking e) separated correlation plots for charge/dis-

charge/rest for the single peak for both signal amplitude (measured in arbi-

trary units) and time of flight [point D in flowchart] f) correlation plots for the

envelope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.8 a) Using a selected peak directly from a waveform to monitor battery state of

charge and b) using the peak of a waveform envelope [point A on flow chart]. . 74
5.9 a) smoothed charging data b) smoothed discharging data. . . . . . . . . . . . 75
6.1 Composite plots with linear fit details, a) time of flight from a single peak mea-

surement and b) signal amplitude from the same single peak measurement.

c) the location of the peak displayed in a) and b) with measurement correla-

tions from across the signal for comparison, averaged using next peak data for

clearer viewing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 a) Experimental test signal response. Not suitable for taking an envelope, two

peaks tracked for battery state of charge accuracy. Linear fit for peak #1 shown

in b) and linear fit for peak #2 shown in c). . . . . . . . . . . . . . . . . . . . . 78
6.3 a) Battery surface temperature variation recorded during testing. The coloured

bars behind the plot denote the stage of charge cycling (charge/rest/dis-

charge/rest). The red line shows the daily cycle in which a maximum and mini-

mum ambient temperature affects the base line. b) Ultrasound/battery SoC and

ultrasound/battery surface temperature correlations shown across the length

of an ultrasound response [step H on flow chart]. . . . . . . . . . . . . . . . . 79
6.4 Battery SoC/temperature – ultrasound correlation plots a) 5◦C gain during

charge cycling and b) 25◦C gain during cycling. The model increases the global

wave speed 1.0 m/s for each ◦C increase (calculated using ambient tempera-

ture shift in time of flight on a resting cell). . . . . . . . . . . . . . . . . . . . . 80
6.5 a) Waveform response from experimental test, b) Waveform response from

model, in each [top] pulse/echo [bottom] through pulse. Shaded regions

shown repeating time periods containing reflections. c) waveform develop-

ment plot from model showing clear reflected signals from approximately half

of the cell body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xi



6.6 a) model of stacked layer construction, b) model of jelly roll construction. In

each; [top] scale graphic showing layered construction, [center] waveform de-

velopment, orange dashed line represents sensing edge, [bottom] waveform

response from sensing edge (pulse/echo). . . . . . . . . . . . . . . . . . . . . 82
6.7 a) Result of increased pulse power, reflection now visible at approximately 8-

10µs, b) result of including wave barrier, reflection now visible approximately

5-7µs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.8 a) Continuous wavelet transform (CWT) for the signal when the battery is

charged, and b) discharged, c) cross wavelet transform (XWT) showing fre-

quency bands where both signals have strong similarities in amplitude shown

in the higher (yellow) intensity regions, arrows mark the phase shift between

the signals [arrow right: in phase, left: anti-phase, down: charged leading dis-

charged by 90◦] [62] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.9 Signal importance factor calculation [point E on the flow chart]. Solid lines rep-

resent reference taken at charge extremes (blue markers in plot e), dashed lines

from reference taken at arbitrary partial charge points (grey markers in plot e). 87
6.10 Smart peak selection method of locating best region for taking battery measure-

ments [step F on flow chart]. Signal peak amplitude-ToF/battery SoC correla-

tion across the waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.11 Smart peak selection waveform mark up. The ultrasound response waveform is

displayed with thick black lines to denote regions of signal that are favoured by

the smart peak selection method. The size of the point at each peak represent

the strength of correlation with battery state of charge (large points are best)

and the deepness of the red in those points shows the variance between charge

and discharge parts of the cycle (deep red is best). [step G on the flow chart]. . 90
6.12 a) Signal that is difficult to provide a consistent peak of an envelope, smart peak

selection shows that peaks drawn in thick black lines have the strongest bat-

tery charge correlations and are most consistent across charge/discharge parts

of the cycle. b) This signal has little scope for enveloping, no obvious peak as

a candidate for taking measurements, first smart peak region inaccurate, sec-

ond more shallow region successfully locates peaks with best battery charge

correlations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.13 Attaching and safely removing a commercial probe to a pouch cell using su-

perglue and superglue de-bonder. . . . . . . . . . . . . . . . . . . . . . . . . 93
6.14 Sample signals using different bonding/attachment methods. . . . . . . . . . 94

xii



6.15 Pitch/catch, through pulse sensor configuration. . . . . . . . . . . . . . . . . 95
6.16 Results from charge cycling tests using a) pitch/catch, through pulse and b)

pulse/echo sensor configuration. The left axis R2 refers to the correlations be-

tween battery SoC and temperature with the shift in ToF for each peak in the

signal response. The markers are overlaid on a greyed out sample signal re-

sponse to identify each of the tracked peaks. . . . . . . . . . . . . . . . . . . . 95
6.17 Smart peak selection method applied to pulse/echo comparison result. . . . . 96
6.18 Comparison of various capacity cells used during testing. . . . . . . . . . . . . 97
6.19 High power, multi-sensor, large capacity cell test schematic. . . . . . . . . . . 98
6.20 Instrumentation of large capacity cell. . . . . . . . . . . . . . . . . . . . . . . 98
6.21 Results from large capacity cell tests; a) 0.5C charge rate producing 6◦C gain

during charge cycling and b) 1.5C charge rate producing a 24◦C gain during

charge cycling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.22 Calibrated 1.5C-rate test results; a) calibration data selection region, b) cali-

brated ToF/SoC correlations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.23 Peak tracking throughout charge cycling tests. The lines represent the selected

peak ToF shift (µs) and change in amplitude (AU) of the ultrasound signal as

the cell is charged/discharged (5 charge cycles in this instance). The green dots

mark points where the battery reached 100% SoC, the red dots mark 0% SoC. . 101
6.24 Peaks 4, 5 and 6 from a signal response are rotated so test time in hours is flat-

tened to the page showing each peak change loop throughout charge cycling

appear overlaid. A sketch of the characteristics of charge/discharge stages of

cycling are shown for easy peak comparison. The loop shape correlations are

displayed in the boxes, colour coded as shades through red: positive, green: no

correlation, blue: negative. This is covered in more detail in later figures. . . . . 102
6.25 Multiple peak tracking, peak characterisation during charge cycling in a single

sensor, pulse/echo test set up; a) individual tracked peak activity, colour coded

according to charge status (green = charging[CC], red = discharging, blue =

charging[CV], grey = rest). b) peak activity correlation intensity plot showing

peaks sharing common shapes. Sample waves shown across the top and left

hand side with each peak number coded. . . . . . . . . . . . . . . . . . . . . 103

xiii



6.26 Multiple peak tracking, peak characterisation during charge cycling in a two

sensor, pitch/catch, through pulse test set up; a) individual tracked peak activ-

ity, colour coded according to charge status (green = charging[CC], red = dis-

charging, blue = charging[CV], grey = rest). b) peak activity correlation inten-

sity plot showing peaks sharing common shapes. Sample waves shown across

the top and left hand side with each peak number coded. . . . . . . . . . . . . 104
7.1 Overview of reactions with respect to temperature, Feng et al. (2014) [67]. . . . . 107
7.2 Thermal hazard technology ARC EV+ [65]. . . . . . . . . . . . . . . . . . . . . 108
7.3 Thermal abuse test, sensor instrumentation. Pre and post test, ARC/cell images. 110
7.4 Thermal abuse test, ultrasound signal response. . . . . . . . . . . . . . . . . . 111
7.5 Results from initial thermal abuse test. a) peak tracking synchronised with cell

temperature, b) ToF/temperature and peak amplitude/temperature compari-

son plots and c) ToF/temperature and peak amplitude/temperature correla-

tion plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6 Ultrasound instrumentation of metal block, a) circular wraparound element

bonded with epoxy, b) covered in epoxy for additional protection. . . . . . . . 115
7.7 Metal block suspended in the ARC. . . . . . . . . . . . . . . . . . . . . . . . 115
7.8 Ultrasound instrumentation of three test battery cells, a) elements positioned

in same location, b) bonded to cell using epoxy resin and c) additional layer of

epoxy for sensor protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.9 Pouch cell test sample suspended in the ARC. . . . . . . . . . . . . . . . . . . 117
7.10 Peak tracking of ultrasound response through metal block. . . . . . . . . . . . 118
7.11 Results from metal block/ultrasound instrumentation test. a) ToF/temperature

and peak amplitude/temperature comparison plots and b) ToF/temperature

and peak amplitude/temperature correlation plots. . . . . . . . . . . . . . . . 118
7.12 Peak tracking of ultrasound response through battery 1. . . . . . . . . . . . . 119
7.13 Ultrasound/battery temperature comparison plots a) ultrasound ToF and cell

surface temperature b) ultrasound ToF and temperature change (T-rate). . . . . 120
7.14 Ultrasound/battery temperature comparison plots a) ultrasound signal peak

amplitude and cell surface temperature b) signal power and cell surface tem-

perature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.15 Ultrasound/temperature correlation plots; (top) temperature/ToF, (center)

temperature/amplitude and (bottom) temperature/signal power. . . . . . . . 122

xiv



7.16 Composite correlation plots showing ToF/temperature relationship for batter-

ies 1-3 (shaded red). Metal block reference shown in blue, complete with fitted

curve and 95% confidence intervals. Annotations of expected battery events

during heating marked and labelled accordingly. . . . . . . . . . . . . . . . . 123
7.17 Composite correlation plots showing tracked peak signal amplitude/tempera-

ture relationship for batteries 1-3 (shaded red). Metal block reference shown in

blue, complete with fitted curve and 95% confidence intervals. Annotations of

expected battery events during heating marked and labelled accordingly. . . . 124
7.18 Composite correlation plots showing signal power/temperature relationship

for batteries 1-3 (shaded red). Metal block reference shown in blue, complete

with fitted curve and 95% confidence intervals. Annotations of expected battery

events during heating marked and labelled accordingly. . . . . . . . . . . . . 125
7.19 Evaluation of selected peak/signal quality, using SoC/temperature bias method. 126
7.20 Commercial probe instrumentation. . . . . . . . . . . . . . . . . . . . . . . . 128
7.21 a) Ultrasound/temperature variations during test and b) same data plotted as

ultrasound/temperature correlation plots for battery thermal ramping test. . . 129
7.22 a) Ultrasound/temperature variations during test and b) same data plotted as

ultrasound/temperature correlation plots for metal block thermal ramping test. 130
7.23 a) Ultrasound/temperature comparison plots and b) Ultrasound/temperature

correlation plots for apparatus limitations test. . . . . . . . . . . . . . . . . . 131

xv



List of Tables

1 Change in electrode density estimations due to lithium transportation, with

respect to state of charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Sample battery capacity/C-rates. . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Overview of SoC estimation methods [26,27]. . . . . . . . . . . . . . . . . . . . 23
4 Summary of acoustic battery inspection literature review . . . . . . . . . . . . 41
5 Elastic modulus and density values of electrodes and separator for ultrasonic

wave response simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6 Three layered bearing pad values for model time of flight consistency purposes. 53
7 Model cell layer properties, wavelengths for 2MHz, 10MHz and 70MHz pulse

frequencies. Range of minimum frequencies suitable to achieve 1 wave or 1/2

wave inside of layers. Waves smaller than layer shown in green. Suggested

frequencies shown in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8 Signal amplitude values for various cells, amplification and sensor configuration 70
9 Summary of events during thermal abuse tests and expected temperatures/rates.108

xvi



Supplementary Materials

Figure S.1 Standard separator Top panel - 2MHz pulses travelling through layers of a simu-

lated cell. Red wave represents wave through discharged cell, green through charged

cell. Middle panel - pulse/echo, A scan generated in real time. Bottom panel - pitch/-

catch, through pulse A-scan generated in real time.

Figure S.2 Low speed separator Same plots as in Figure S.1, arbitrary separator speed reduc-

tion causes collapse of clear signal response.

Figure S.3 5MHz pulse Top panel - 5MHz pulses travelling through layers of a simulated cell.

Red wave represents wave through discharged cell, green through charged cell. Middle

panel - pulse/echo, A scan generated in real time. Bottom panel - Moderate signal dif-

ferences occur early between charge/discharged signals, likely to contain poor charge

measurement correlations.

Figure S.4 0.5MHz pulse Same plots as S.3 with 0.5MHz pulse. Bottom panel shows little sig-

nal difference between charged/discharged signals, likely to contain no charge measure-

ment correlations.

Figure S.5 2MHz pulse Same plots as S.3 with 2MHz pulse. Bottom panel shows significant

differences between charged/discharged signals around 6-8µs, likely to contain strong

charge measurement correlations.

Figure S.6 1.5 standing wave in layer 2.25MHz pulses transmitted through a 2mm body hav-

ing a wavespeed of 3000m/s creating a resonant 3/2 standing wave.

Figure S.7 XWT charge cycling Left panel - the cross wavelet transform (XWT) changing dur-

ing cycling, changing phase arrows are visible across the 2MHz frequency band. Middle

panel - contains the signal important factor, when normalised it is shown to provide a

stable region from which to take charge measurements. Right hand panel - the charged

A-scans move during charge cycling, using the discharged as a static reference. A state

of charge bar is added to the left panel that applies to all three plots.

xvii



Abbreviations

λ Wavelength (distance)

Ah Amp hour

ARC Accelerated rate calorimetry

AU Arbitrary units

BMS Battery management systems

C C-rate

CCCV Constant current, constant voltage

COI Cone of influence

CWT Continuous wavelet transform

FFT Fast Fourier transform

Hz Hertz

Li lithium

Li+ Lithium-ion

mA milliampere

SAM scanning Acoustic Microscopy

SEI Solid electrolyte interphase

SoC State of charge

SoH State of health

STFT Short-time Fourier transform

xviii



ToF Time of flight

TR Thermal runaway

UHFUS Ultra high frequency ultrasound

V Voltage

XWT Cross wavelet transform

xix



Acknowledgments

I would like to give deepest thanks and gratitude to my main supervisor Rob Dwyer-Joyce.

Thank you for showing faith in me right from the very start, for providing me with the oppor-

tunity to do a PhD and also for the support, guidance and encouragement throughout. I would

also like to give thanks to my additional supervisors Denis Cumming and Yajue Wu who have

given me much advice and guidance that was invaluable during the course of this project.

A sincere thank you to Ricardo for their show of faith in supporting me and and funding

this PhD, in particular many thanks go to Jonathan Wheals for his enthusiasm and support

for which I am very grateful. Also thanks go to Michael Wheeldon and Ben Reid who I have

worked with during the course of this project.

Many thanks to all those people who have helped me, Jake Entwistle for his help in setting up

my initial tests and training me on the relevant equipment. Peter Bugryniec for his patience,

help and advice working on the thermal abuse tests. Thanks also to Gary Nicholas for his

support in the lab and assistance whenever I have needed it and to Xiangwei Li for being

someone I could speak with whenever I have needed advice or help. Thanks to Andy Hunter,

for the kindness and patience to help, in the early days in sorting my data acquisition software

and later on building a complete ultrasound test kit. Everyone I have crossed paths with during

this work has been friendly, helpful and knowledgeable, it has been an amazing experience.

I would like to thank my family for their continued support over the years of this exciting

academic journey, my wife Lindsey for the daily support and encouragement she provides, to

my daughter Connie and my son Wilfrid who have showed so much enthusiasm and interest

in my work. Finally, thanks to my Mum and Dad who believed in me all my life. I hope I have

made you all proud.

xx



1 Introduction

In this chapter, lithium-ion batteries are introduced and the increase in adoption and
continuing expected rapid growth is evidenced. Challenges around effective and safe
usage of lithium-ion cells are presented, with battery management systems (BMS) be-
ing utilised to monitor cell performance developed to control these issues. The scope
of this thesis is introduced, focusing on the ultrasonic monitoring of battery cells.

1.1 The Continuing Rise of Lithium-Ion Batteries

Since their introduction in the 1990’s, lithium-ion batteries have become increasingly
popular in mobile power applications, from handheld devices such as smart phones
and tablets to electric vehicles. The success of the lithium-ion battery is due to its high
energy density and operating voltage, the best energy-to-weight ratio, no memory ef-
fect and undergo only small amounts of discharge when not in use when compared to
alternative battery technologies [1–3]. There are limitations with this technology; stress
induced material damage, capacity fade and the potential for thermal runaway. Even
with optimal usage a battery can support only a finite number of charge/discharge
cycles, improper use can lead to deterioration in battery performance and a shortening
of lifespan [4].

Figure 1.1: Lithium-ion battery market share [5].

Currently, consumer electronics account for approximately a quarter of the global mar-
ket share of lithium-ion batteries whilst energy storage and industrial applications ac-
count for over 50%. As of 2019, it is estimated that transportation already accounted
for almost a quarter of global lithium-ion batteries (Figure 1.1) [5]. The significant mar-
ket share is despite electric vehicles currently being a niche market. The 1.18 million
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electric vehicles on the road in the U.S. account for a small percentage in 2019, just 1.8%
of cars sold were electric vehicles [6].

There has been a growing rise in demand for electric vehicles in recent times and this
trend is expected to continue over the next 10 years. Figure 1.2 shows that by 2030 it is
predicted there will be an annual demand of over 1500GWh for electric vehicles, a ten
fold increase on current levels of demand [7].

Figure 1.2: Predicted increase in demand for lithium-ion batteries over the next 10 years [7].

Electric vehicles are widely accepted as clean transportation technology compared
with the internal combustion engine, reducing reliance on fossil fuels. This exploita-
tion of sustainable energy will play a significant role in slowing down the rate of global
warming [8].

Electric vehicles are energy efficient, converting over 77% of the electrical energy from
the grid to power at the wheels. This is compared to conventional gasoline vehicles
which convert about 12%–30% of the energy stored in gasoline to power at the wheels.
Whilst the power plant producing the electricity to power electric vehicle may emit
pollutants, electricity from clean and renewable sources such as nuclear, wind and so-
lar powered plants cause no air pollutants. Adoption of electric vehicles would reduce
greenhouse gases emissions using renewable energy sources. Additionally, electric ve-
hicles emit no tailpipe pollutants, making them an environmentally friendly solution
to transportation demands [9].

2



As the demand for lithium-ion batteries grow, so does the requirement to facilitate
safe and efficient battery operation. Battery management systems are used to control
battery usage, the development of which is a popular topic of research. There are sig-
nificant challenges monitoring a battery cell, being a closed electrochemical system and
challenging to estimate. Developing accurate and reliable technologies in battery man-
agement systems remains a demanding task. This is noted in current research litera-
ture [8,10] and will also be recognisable to most users of electronics powered by lithium-
ion batteries first hand, through daily usage.

Figure 1.3: Problems experienced during daily usage of lithium-ion batteries [11–14].

Figure 1.3 shows a sample of readily obtainable comments of frustration and inconve-
nience experience by consumers using lithium-ion batteries. This is usually not born of
frustration with the battery itself, but with inaccurate reporting, of available charge for
example. Whilst this frustration and inconvenience is unappealing when using smaller
devices such as laptops or smart phones, accurate battery reporting is absolutely criti-
cal in electric vehicles and aerospace [15] applications for example.

A recently explored method of battery monitoring is the application of ultrasonic in-
spection. The development and current status of this technique is discussed in some
detail in Section 3.2. To introduce one of the main ideas behind the use of ultrasound
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in this battery monitoring application. A commercial 2Ah cell is is shown in Figure
1.4 next to a pile of 15 staples. The staples represent the approximate equivalent mass
of material that moves between layers in the cell during charge/discharge cycling. It
is this movement of material, lithium-ions in this case, that causes shifts in the cross
sectional distribution of material density that ultrasonic wave responses detect.

Figure 1.4: 2Ah pouch cell with approximately 0.5g of staples.

Capturing changes in wave response provide the potential for real-time, non-invasive,
non-destructive measurements of internal changes in the battery cell. The scope of this
thesis is focused on the development of ultrasonic inspection of lithium-ion battery
cells.

1.2 About the Thesis

The work contained in this thesis is sponsored by Ricardo Innovations UK. The key
aims were to establish the ultrasonic method with respect to battery monitoring, de-
signing a test system where the ultrasonic responses alter with respect to internal
changes in a lithium-ion battery cell, either during normal operation or fault condi-
tions. Once the method is established, robust data processing methods are developed
to assess the quality and accuracy of the signal responses. Modelling is developed to
simulate waves passing through a multi-layered body such as a battery cell.
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1.2.1 Objectives

The aim of this project was to develop a methodology for recording and interpreting
ultrasonic measurements of a lithium-ion cell during various states. This was to gain
an understanding into the potential for this battery monitoring technique to make fur-
ther developments that may be utilised in future battery management systems. The
objective for this project can be summarised into four main categories as follows:

1. Establish methodology. Acquire or locate test equipment to control battery as-
pects (charge cycling, battery abuse methods for example) and ultrasound sig-
nal generation/data capture hardware. Suitable sensor equipment, commercial
probes and sensors cut from piezoceramic plates/discs. Correct application/de-
velopment of relevant software solutions to all equipment.

2. Standard testing (state of charge). Design charge cycling test program and mon-
itor using ultrasound responses for measurable changes. Optimise signal mea-
surement methodology to account for signal variability. Assess the effect dur-
ing charge cycling by establishing a measuring method to compare tempera-
ture/charge effect on the signal.

3. Non-standard testing (thermal abuse). Adapt and apply developed ultrasonic
inspection methodology to lithium-ion cells undergoing thermal abuse to moni-
tor battery degradation. Assessment of hardware, specifically sensor limitations
and measurement reliability at extreme temperatures.

4. Multi-layered (battery cell) body ultrasound modelling. Developed new 1D
layered modelling system to monitor wave transmission/reflection effects in real
time. Use model to better understand wave response in pulse/echo, pitch/catch
through pulse configurations. Understand the behavior of waves in such appli-
cations.

1.2.2 Thesis Layout

The layout of the thesis is as follows. Background to the main concepts, ultrasound and
batteries, are covered in chapter 2. The ultrasound discussion pays particular attention
to concepts and phrases occurring throughout this work. Sensor options are briefly
introduced along with bonding methods. Finally, basic battery operation is described

5



covering the transportation of material during charge cycling, the process that enables
ultrasonic monitoring.

Chapter 3 presents a literature review in two parts. Firstly, current measuring meth-
ods utilised in battery management systems and the challenges in ensuring safe and
efficient usage of lithium-ion batteries. Secondly, a comprehensive review of ultrasonic
monitoring of batteries, covering the history, scope and opportunities to develop this
growing area of research.

The development of a 1D wave model is covered in chapter 4, detailing the construc-
tion of the model and various outputs. Insights gained from the modelling are pre-
sented in this chapter. Equipment used during experimental testing, test methodolo-
gies and data processing techniques are presented in chapter 5. Ultrasound and battery
charge cycling hardware and software is described, with an introduction to the MAT-
LAB script designed to process results included.

Experimental results from standard condition, charge cycling tests are presented in
chapter 6. Data synchronisation and visualisation methods are discussed, with corre-
lations for various ultrasound and battery parameters compared. Cell surface temper-
ature is recorded to asses the impact of temperature fluctuations, both from internal,
cell driven changes during charge cycling and external ambient effects. A smart peak
selection method is suggested for optimised charge readings regardless of signal qual-
ity.

In chapter 7, non-standard, thermal abuse tests are conducted. Equipment, instrumen-
tation, experimental methodologies and data analysis techniques adapted for these
specialised tests are described. Challenges around ultrasonic monitoring of an object
undergoing thermal changes are addressed, as acoustic signal responses are sensitive
to changes in temperature. References are obtained from metal blocks during heating
to provide hardware performance data. This includes temperature limitations of the
method and signal behaviour benchmarks from which deviations are assumed to be
battery cell related.

Finally, chapter 8 draws overall conclusions on this work and suggestions for further
work are outlined.
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2 Background

This chapter describes the two most important aspects of this work. Firstly, ultrasound
waves and how they travel through a medium, with specific focus on moving through
layer boundaries. Key concepts such as frequency and how this relates to wavelength
are discussed. Wavelengths being a critical aspect of this work, the concept of full
and partial reflections through various layer thicknesses are defined. Instrumentation
arrangement options are presented with decisions available regarding desired wave
paths for signal transmission, with the benefits of each method explained. Sensor op-
tions used during this work are outlined including bonding/attachment methods. Sec-
ondly, there is an introduction of how batteries work, with special attention given to the
processes that take place during charge cycling. Battery construction types are intro-
duced along with details of charge cycling methods, key information to understanding
results and discussions in later chapters.

2.1 Ultrasound and Waves

Ultrasound defines sound waves that are above the normal range of human hearing,
generally referred to as frequencies greater than 20kHz [16]. Ultrasound waves are non-
invasive and there is no requirement to introduce instrumentation into any body under
exploration and importantly, ultrasound is non-destructive, so that the propagating
sound waves creating only minor and non-permanent changes to the body at particle
level. Typically, waves are pulsed using either/or a combination of, longitudinal waves
(where the material vibration occurs parallel to the direction of travel) and shear waves
(where the vibration occurs perpendicular to the direction of wave travel) [17].

2.1.1 Frequency and Wavelength

The frequency of a wave is the number of oscillations per second, measured in Hertz
(Hz). Wavelength is the distance between two points that are in the same state of mo-
tion, for example, the peaks of adjacent waves, measured in metres (m). The plots in
Figure 2.1a illustrate this relationship. The blue plot represents 3 cycles (identified at
the peaks) of 2MHz sine wave. The wavelength in the time domain (T), also known as
period, is measured to be 0.5µs. The frequency relates the wavelength using equation
2.1 such that the frequency of a wave is the reciprocal of its period and vice versa. The
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orange plot shows 6 cycles (identified at the peaks) of 4MHz sine waves, this time with
a period of 0.25µs.

The 2MHz waves have larger peaks, twice the size of the 4MHz waves. This is signal
amplitude and normally measured in Volts. In practice the higher voltage applied to
a signal, the higher the signal strength (amplitude). Higher voltage signals are used
when standard pulsing methods are unable to penetrate a body with enough power
to reach the signal capturing sensor. High voltage signals will also help improve sig-
nal to noise ratio, improving accuracy. Note the y-axis is measuring the amplitude in
arbitrary units (AU). This measure of amplitude is applied throughout this work, as
measurements are taken from change in signal rather than the values themselves.

(a) (b)

Figure 2.1: a) relationship between frequency and wavelength in pulses using cycles of sine
waves and b) a chirp signal that contains a range of frequencies.

f =
1
T

(2.1)

Another pulsing method is that of a chirp, the signal here has a range of frequencies
determined by a start and finish parameter. A sample chirp signal is shown in Figure
2.1b, in this case a chirp is set to range from 1MHz to 5MHz, note the variable period
of each wave. Using the measurements of the peaks, the signal here contains 1/0.52µs
≈ 1.9MHz, 1/0.29µs ≈ 3.4MHz and 1/0.22µs ≈ 4.5MHz. These are discrete values
taken from the peaks, the waves themselves contain all frequencies from 1-5MHz. This
a useful option if the ideal pulse frequency is unknown, a possible application of this
method is discussed in Section 4.5.
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These waves exist in the time domain and would be specified when setting pulsing
parameters and in signal response monitoring. Waves also exist in the space domain,
once the pulses are specified and transmitted from the sensor. The waves will travel
through the body under inspection, changing their characteristics according to the ma-
terial they pass through. Figure 2.2 shows two 10MHz sine waves passing through
2mm of water into 2mm of steel. The incident waves through the water, after 0.6µs in
blue and reflected waves after 1.7µs in orange, both have wavelength (λ) distance of
0.15µm having a wave speed of 1500m/s. These values are related using equation 2.2.
The 10MHz waves travelling through the steel on the right hand side of the body have
a wavelength (λ) of 0.32µm as the wave speed through this material is 3200m/s. No-
tice the amplitude of the wave also changes according to the material, this relates the
sound pressure of the waves through the material. This pressure will fluctuate across
the body according to the material properties [16]. This will remain consistent in the
time domain and would not affect ultrasound measurements.

f =
c
λ

(2.2)

Figure 2.2: 10MHz waves in the space domain.

9



2.1.2 Reflections and Partial Reflections

Reflections occur when a wave encounters a material interface (Figure 2.3). The differ-
ence in material properties can be due to material density or elasticity which will affect
the sound speed for these materials. Where there is a difference, the wave can partially
or completely reflect, it is these reflections that provide insights into an otherwise inac-
cessible body. For this study longitudinal waves are used as they provide the strongest
reflection response from liquid and solid material interfaces.

Figure 2.3: Example of a two layered body, when a wave encounters an interface (a change in
material property) some part of the wave is transmitted and some is reflected.

Partial reflections occur as a travelling wave passes through layers with widths shorter
than the wavelength. Similar to the waves passing through water and steel in Figure
2.2 and the simple wave encountering an interface in Figure 2.3, the waves in Figure
2.4a travel along the body intact. This is true of both the sine wave passing through the
solid body in the bottom half shown in magenta, and the sine wave travelling through
the single interface on the top half, shown in blue.

The difference between the wave passing through the interface is a change of phase
and amplitude and the creation of a full reflection, forming a complete ’reflected’ sine
wave. The wave through the solid layer is unaltered. The thick white line shows the
differences between the waves passing through a single layer and two layered body.
This shows the change in phase and amplitude with the two transmissions being iden-
tical otherwise.

Waves have a more complex relationship with material interfaces where the waves
span multiple layers such as that seen in the top half of Figure 2.4b. Partial reflections
are defined in this work as ’altering’ of waves as they pass through layers, an example
of the wave deformation is shown in the zoomed box, notice the subtle distortion of the
travelling wave as it passes through a layer boundary. There will be a reflection back
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(a) (b)

Figure 2.4: a) relationship between frequency and wavelength in pulses using cycles of sine
waves and b) a chirp signal that contains a range of frequencies.

at this interface, however, as with the transmission wave the reflection is accumulated
with multiple partial reflections. This creates large accumulated reflections that are
difficult to interpret. The transmission wave will also alter shape through the layers,
the magenta and blue waves are no longer identical apart from phase and amplitude.

2.1.3 Pulsing Methods and Wave Paths

There are various methods of transmitting and receiving waves through an object, Fig-
ure 2.5 illustrates commonly used configurations. Pulse/echo shown on the left is the
simplest set up, requiring a single sensor. This halves instrumentation time and costs
and also has a requirement of just one side been accessible. A draw back with this
method is the excitation pulse can interfere with response signal depending on layer
thickness/arrangements. Introducing a second sensor can help eliminate this problem
by having separate sensors to send and receive the signal as shown in the pitch/catch
arrangement in the centre of Figure 2.5. A pitch/catch configuration is also possible
with sensors on opposing sides, giving a through pulse, as the right of Figure 2.5
shows. In this instance, the wave travels half the distance, so that attenuation effects
are lower. It can be desirable to allow longer wave paths in some instances however,
accumulating the effects of many (partial) reflections along the way. It is required that
opposing sides of the object under inspection are accessible using this method.
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Figure 2.5: Wave paths through an object.

2.1.4 Ultrasonic Sensors

Two main types of hardware were utilised during this work to both generate the ultra-
sound pulse and record the returning signals. The most commonly used set up is that of
commercially obtained ultrasonic transducers or ’probes’, a schematic of a transducer
is shown in Figure 2.6a. This shows the active element close to the sensing edge of
the probe, note the large backing material behind the sensor, helping damp the signal
reducing ring-down. A reduction in ring-down is highly desirable as this helps keep re-
flected signals clear of effects from the elements for clearer object measurements. These
probes are secure in housing with connectors available for ease of wiring attachments
to signal acquisition oscilloscopes.

(a) (b)

Figure 2.6: Ultrasound sensors a) ultrasonic transducer and b) piezoceramic elements.

Alternatively to commercial probes, piezoelectric elements are used to both pulse and
obtain signals, shown in Figure 2.6b. Pre-cut discs are available, where the size is de-
termined according to the parts ordered. Note these are described as customised discs
due to the notched portion of the surface where there is a region separated from the
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main surface to ground the wiring of the sensor. This wraparound design feature is
required when bonding sensors to a non-metallic surface to which the sensor can not
be earthed, a convenient solution when attaching sensors to the polyamide/polyethy-
lene outer layers generally used on pouch cells. [18] Piezoceramic plates are available
that can be cut to size depending on the instrumentation requirements. These plates
are also available with wraparound options, making them good options for battery
sensors.

These sensors are small and can be just a few millimeters length and width. The thick-
ness of the piezo elements is inversely proportional to the frequency of the sensor, for
example a 0.5MHz element would be approximately 4mm thick, whilst a 10MHz sen-
sor would be just 0.2mm thick. The small size of these elements is an advantage of this
sensor method, along with the low cost and small diameter wiring requirements.

Couplant is required to form an effective interface between whichever sensing method
is used. The main function of the couplant is to flood the micro-air space that would
otherwise exist between two surfaces, even if pressure is applied to the sensor. This
allows the incident waves to travel from sensor into object, through the object and back
into the sensor. With piezoceramic elements, the couplant is also generally used as a
bonding method, securing the element to the surface, a good solution for permanent
sensor attachments. Whilst ultrasound gel can be used with commercial probes, ideal
for quick tests where the sensor can be moved to various positions on cells. In this case,
the probes would be held in place with clamps or other specially designed holding
devices. Glued attachments can be used with transducers, this is not considered ideal
however as the probes are difficult to remove without damaging the sensor or cell.

2.2 Batteries

2.2.1 Principles of the Charge Cycling Process

To understand the reasons behind successful application of ultrasonic monitoring of
lithium-ion batteries, understanding the process of charge/discharge at an atomic level
and working this through to some approximations of the changes occurring in a cell
during cycling will be useful.

In lithium-ion battery cells, lithium exists in the cathode layer. There are various
lithium-ion cathode chemistries available such as lithium cobalt oxide (LiCoO2) - LCO,
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Figure 2.7: Lithium atom gives up an electron to become a lithium-ion.

lithium nickel manganese cobalt oxide (LiNiMnCo02) - NMC and lithium iron phos-
phate (LiFeP02) - LFP. All these types contain lithium in the cathode material. As shown
in Figure 2.7 lithium (Li) atoms have 3 electrons, with one being in the outer shell,
lithium will readily release this outermost electron providing a flow of charge. Once
the electron is released, having a net charge, the lithium atom becomes a lithium-ion
(Li+).

Figure 2.8: Travel of lithium-ions and electrons during charge cycling in a lithium-ion battery.

When discharged the lithium is stored in the cathode layer of the cell (Figure 2.8 -
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top), during charging, current is applied and electrons will leave the cathode through
the external circuit arriving in the anode layer. The lithium-ions will travel from the
cathode, through the permeable separator membrane (Figure 2.8 - right), arriving in the
graphite where the ions will connect again with electrons storing lithium in the anode.
Once all lithium is stored in the anode, the cell is fully charged (Figure 2.8 - bottom).
The battery can then be connected to a device that will cause electrons to flow in the
opposite direction back into the cathode powering the device, the lithium-ions will also
return back through the separator to the cathode to connect with electrons (Figure 2.8 -
left). Once all lithium is back in the cathode, there can be no flow of electrons through
the device and the battery is once again fully discharged.

2.2.2 Application of Ultrasonic Inspection to Charge Cycling

Using material density values given in literature [19], material weight contribution in
similar cell design [18] and known dimensional values of commercial cells used dur-
ing experimental tests. Estimations can be made of the changes in density distribution
throughout the cell during charge cycling.

The atomic mass of a lithium atom is 6.941u which converts to approximately
1.16x10−26kg. The number of electrons flowing past a point at a rate of 1 amp is
6.28x1018, also known as 1 coulomb. A 2Ah cell such as those tested on during this
work would see 7200 coulombs flow through a device (4.52x1022 electrons). As each of
these electrons will connect with a lithium-ion in the electrodes, 5.24x10−4kg (0.52g) of
lithium is transferred from cathode to anode and back during a full charge cycle.

Further calculations can be done to verify this against some assumed parameters.
Hsieh et al. state that the LiCoO2 cathode has a material density of 5150kg/m3 (dis-
charged) to 4800kg/m3 (charged) [19], whilst the graphite anode is 2260kg/m3 (dis-
charged) to 2500kg/m3 (charged). The 2Ah commercial cells used during testing have
dimensions of 62 x 42 x 7mm and a weight of 40g. Figure 2.9 has sketches of the elec-
trodes with approximate dimensions for this commercial cell, an unknown parameter
being the number of layers contained within. Herrmann state that in a lithium-ion cell,
32.9% of the total cell mass is in the positive cathode and 22.3% is in the negative an-
ode [18]. Using these weightings a default material weight can be calculated for each
electrode, the transfer of 0.52g of lithium providing a charge and discharge weight for
each. These values are shown in Table 1 in columns 1-5.
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Figure 2.9: Electrode volume dimensions and number of layers in cell (n).

With the weight and density of each electrode available, the volume of each can be
obtained, the cathode is calculated to have a volume of 2.68x10−6m3. Following from
the volume of the cathode, the number of layers (n) can now be calculated to show
approximately 20 layers. All these steps were reversed for the anode layers, starting
with the volume, having thickness of 0.096mm rather than the 0.06mm of the cathode.

Table 1: Change in electrode density estimations due to lithium transportation, with respect to
state of charge.

Material
weight
(%)

Material
mass
(g)

Lithium
transfer
(g)

Weight
(g)

Density
(kg/m3)

Hsieh et al. [19]

Density
(kg/m3)
Theory

Volume/
layer
(m3)

Layers
(n)

0%
SoC

100%
SoC

0%
Soc

100%
SoC

0%
SoC

100%
SoC

Total 100 40
Cathode 32.9 13.16 0.52 13.42 12.90 5150 4800 4993 4800 2.68x10−6 20
Anode 22.3 8.92 0.52 8.66 9.18 2260 2500 2050 2173 4.22x10−6 20

Completing Table 1 in this way shows the density range for the cathode of 4800kg/m3

(the reference value for calculations) when charged to 4993kg/m3 discharged. The den-
sity range for the anode is 2173kg/m3 when charged and 2050kg/m3 when discharged.
The values are close to those quoted by Hsieh et al. [19] shown in Table 1. It was not ex-
pected the values would directly match as these calculations take values from multiple
sources to make these comparisons. It is considered close enough to support the idea
that the not insubstantial amount of 0.52g of lithium is moved across the battery cell
during charge cycling and this is what makes ultrasonic readings of this change possi-
ble.

There are various layer construction methods inside battery cells. Figure 2.10 shows
four different types, three of which are typically used in pouch cells, single stacking
sheets (a), z-stacking (b) and prismatic winding or jelly roll (d). The prismatic winding
or so called ’jelly roll’ construction is favoured by Asian manufacturers, while Euro-
pean manufacturers favour the single sheet stacking. The cylindrical winding (c) is
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Figure 2.10: Schematic showing four typical types of Li metal batteries manufacturing pro-
cesses. a) single sheet stacking; b) Z-stacking; c) cylindrical winding and d) prismatic wind-
ing [20].

utilised in cylindrical cells such as the popular 18650 lithium-ion battery.

This study has noted that the type of construction used has a direct effect on the ultra-
sound signal response such that the response can give clues as to which construction
method has been utilised. It is possible that a certain construction type is preferable for
ultrasonic inspection, this is discussed in Section 6.4.

The rate at which a battery is charged/discharged is described using C-rates. C-rates
are all normalised to time, such that 1C is 1 hour, regardless of the battery capacity.
Charging a 2Ah cell at 1C would take 1 hour, applying a current of 2A. When dis-
charging a 2Ah cell at 1C, the battery will produced 2A for 1 hour. Faster charging/dis-
charging requires higher C-rates. To charge a 2Ah cell in 30 minutes would require an
applied current of 4A, a C-rate of 2C. Conversely, slow charge/discharge uses small C-
rates. A 2Ah battery discharging at a C-rate of 0.1C would provide 10 hours of 200mA.
A selection of sample values are shown in Table 2.

Battery capacity can be >5% lower at higher C-rates, with energy lost through heat-
ing [21]. This is problematic for ultrasound monitoring, as temperature has an effect on
material wave speed. Observations and discussions around this important point take
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Table 2: Sample battery capacity/C-rates.

Cell capacity C-rate Time Current

210mAh
5C 12 minutes 1.05A
1C 1 hour 210mA
0.5C 2 hours 105mA

2Ah
5C 12 minutes 10A
1C 1 hour 2A
0.5C 2 hours 1A

12Ah
5C 12 minutes 60A
1C 1 hour 12A
0.5C 2 hours 6A

place in Sections 6.3 and 6.7.

Charge cycling is primarily performed in this work using a constant current, constant
voltage (CCCV) procedure. In which a constant current is applied to a cell during
charging until the cell reaches its maximum voltage. To continue charging to cell to
its full capacity, reducing amounts of current are applied whilst holding the cell volt-
age constant. Once the applied current drops below a specified threshold the cell is
considered fully charged. A schematic of the process is shown is Figure 2.11.

Figure 2.11: Constant current, constant voltage (CCCV) charging. [22].

2.3 Conclusions

• Higher frequency pulses provide shorter wavelengths. Pulsing higher voltage
signals increases signal amplitude and can help improve signal to noise ratio.
This work uses arbitrary units (AU) to record changes in signal amplitude re-
sponses.
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• A boundary occurs in an object where there is a difference in material properties
between two adjacent layers. When a wave encounters a boundary, some portion
of the wave is transmitted and the remaining energy is reflected back. The rela-
tionship between pulse frequency/wavelengths and layer thickness is a factor,
with partial reflections occurring where waves span multiple layers.

• It is calculated here that over 0.5g of lithium is transported through the layers of a
2Ah lithium-ion cell during charge cycling. This movement of material between
layers alters the density profile of a cell such that acoustic waves passing through
layers provide measurable responses with respect to state of charge.
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3 Literature Review

This chapter contains a literature review that is presented in two parts, firstly, an
overview of current battery estimation methods of which the use of ultrasound is a
small sub-category. Secondly, a review of research where ultrasound measurements
are used to provide battery cell insights.

3.1 Battery Estimation Methods

To assist in the care of battery usage, battery management systems have been devel-
oped to monitor battery status. Estimating the available capacity of a battery, referred
to as state of charge (SoC) and the general condition of a battery, referred to as state of
health (SoH) are important features of a BMS.

Figure 3.1: Narrow region for safe and reliable operation of a typical lithium-ion battery [2].
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A key feature of usage of lithium-ion batteries is the narrow region of both reliable
and safe operation. Figure 3.1 shows limits and possible effects of operation outside of
this narrow region. Note that over-charging can lead to dendrite formation resulting
in short circuits and safety issues and also gas build up, the definition of overcharge is
when electricity is forced to flow through a battery cell beyond its designed capacity.
Dendritic lithium formation is a common factor leading to short circuits in lithium-ion
batteries as the dendrite growth on the anode can puncture through the separator cre-
ating a connection with the cathode. Over-discharging a battery can lead to cathode
damage or short circuits as can operating at lower temperatures than those recom-
mended. Using at higher than recommended temperatures can lead to various issues
resulting in irreversible battery damage and potential thermal runaway [2,3,23].

3.1.1 State of Charge Estimation

State of charge (SoC) is generally accepted to mean the ratio of the remaining charge
and the total charge at the same specified standard condition, where 100% is full and
0% is empty. Accurately estimating SoC is vital to ensure ongoing safe and reliable
battery usage. The main problem being that a battery cell is a closed chemical stor-
age source and the chemical energy cannot be access directly. Therefore, gaining any
knowledge about the internal state of a battery is difficult.

Figure 3.2: Classification of the methods for the SoC estimation [24].
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There are various methods attempting to increase estimation accuracy whilst work-
ing within the limitations of accessible information from a battery cell. In a review of
lithium-ion battery monitoring in electric vehicles Waag et al. (2014) state three main
parameters to be monitored. Firstly, state of charge being the capacity of the battery at
a given time. Figure 3.2 provides a summary of various SoC estimation methods. Sec-
ondly, impedance parameters are also estimated that provide the available power and
finally state of health (SoH) estimations being the remaining useful life of the battery
cell. Figure 3.3 provides a summary of available power and SoH estimation methods.

(a) Classification of the methods for the
estimation of the battery impedance.

(b) Two concepts for the prediction of the bat-
tery remaining useful life; 1) concept based
on the observation of battery conditions and a
lifetime model, 2) concept based on SoH pre-
diction model

Figure 3.3: Overview of impedance and SoH estimation methods [24].

In a review paper focusing on SoC estimations, Zheng et al. (2018) explore in some
detail commonly used methods such as; open circuit voltage, ampere-hour count-
ing estimation, impedance and internal resistance based estimation, equivalent cir-
cuit model, machine learning based estimation and modern control theory estimation.
Novel methods are briefly covered noting measured values in addition to terminal
voltage and temperature, namely magnetic field intensity, mechanical stress and ul-
trasound velocity as potential methods of obtaining SoC estimations. There follows
a discussion about various algorithms to reduce estimation errors in the more com-
monly used methods, observing a trade off between SoC estimation error and estima-
tion method complexity, where the on board chip of a battery can prove a limiting
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factor [25].

In a review by Chang (2013), SoC estimation methods are grouped into four categories;
direct measurements that uses physical battery properties such as voltage and battery
impedance, book-keeping estimation that uses the discharging current over time to
calculate SoC, adaptive systems that are self-designing and can adjust for different
discharging conditions and hybrid methods that combine and optimise various esti-
mation methods available. Table 3 contains a summary of the four broad types of SoC
estimation with some examples of each. The ultrasonic method would be included in
the direct measurements category, with scope to develop measurements in a hybrid
method.

Table 3: Overview of SoC estimation methods [26,27].

Categories Mathematical method
Open circuit voltage method
Terminal voltage method
Impedance method

Experimental Techniques
(Direct Measurements)

EIS (Electrochemical Impedance Spectroscopy)
Coulomb counting method
Probabilistic method
Support vector algorithm
Parity relation
Sample entropy
Big data

Experimental Techniques
(Book-keeping estimation)

Data Maps
Neural network
Observer
Fuzzy logic
Least square
Kalman filter

Adaptive systems

EKF (Enhanced Kalman filter)
Coulomb counting and EMF combination
Coulomb counting and Kalman filter combinationHybrid methods
Per-unit systems and EKF combination

In review there are many different SoC estimation methods from measured values such
as ampere hour counting and open circuit voltage to modelling approaches such as
machine learning algorithms and electrochemical models. Each method has benefits
and disadvantages, the measured values are simple to obtain for example, but contain
greater estimation errors than modelling methods which contain lower estimation er-
rors but are complex, requiring processing time/power [25]. This makes it difficult to
evaluate the overall performance of a method as in existing applications, there is a
range of charge/discharge conditions and also battery type and size [26]. Section 6 fo-
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cuses on the use of ultrasound measurements during charge cycling to further develop
the method.

3.1.2 Battery Abuse and State of Health Estimation

Safety issues can arise during battery operation under abuse conditions of which there
are three categories (Figure 3.4); mechanical abuse (crush, penetration, drop, vibration),
electrochemical abuse (over-charge, over-discharge, gas build-ups) and thermal abuse
(external heating, flame attack) [3,28]. Anti-abuse protection of lithium-ion batteries is
inefficient according to Jiang and Zhang (2015), specifically in instances such as op-
erating outside of recommended temperature ranges for extended periods or running
the batteries with too high or low state of charge. This abuse can lead to battery failure,
fire or explosion [29]. Ultrasonic monitoring of health degradation due to thermal abuse
forms the basis of experimental testing in Section 7.

Figure 3.4: Three types of battery abuse, leading to thermal runaway [28].

The inefficiencies of anti-abuse methods where simple BMS have been applied to bat-
tery monitoring in electric vehicles has led to repeated safety incidents [29]. More atten-
tion has therefore been paid to BMS more recently, modern BMS now use algorithms
to inform of battery states from external characteristics (such as voltage, current, tem-
perature). A robust BMS can aid efficient battery utilisation to support battery usage
and improve battery life, it can also offer over-charge and over-discharge prevention
measures which will improve battery life and also make battery usage safer.
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3.1.3 Ultrasonic Inspection in Battery Management Systems

In their 2015 book, Jiang and Zhang state that most BMS designers are electrical engi-
neers and regard batteries as ’black boxes’ and only utilise external characteristics to
assess battery status. They found that these simple measuring techniques were insuffi-
cient, for example, battery packs still have shorter lifespans compared to single cells. In
the case of the practical application of lead-acid batteries, it was shown that a battery
pack in series had a significantly shorter lifespan than that of a single cell, it was found
that the management pattern was based on the battery terminal voltage and neglected
to account for the differences between cells [29].

In 2018, Zheng et al., stated that ultrasonic velocity measurements have poor feasi-
bility for SoC estimation due to the requirement for additional sensors and accuracy
doubts [25]. In a 2021 battery estimation review paper, Wang et al. give over a section to
the ultrasonic monitoring method along with electrochemical impedance spectroscopy.
The measured strong correlations between ultrasound signal with both SoC and SoH
is acknowledged, such that these techniques are capable of providing insights into the
internal structure of a battery using an external signal excitation. It is noted that results
are susceptible to experimental conditions leading to poor repeatability [8].

3.2 Acoustic Battery Inspection

Since Hsieh et al. published a paper showing evidence of strong correlations between
ultrasound signal and battery SoC and SoH in 2015, there has been a growing num-
ber of research papers exploring this method of battery inspection (Figure 3.5). In this
section a review these papers is conducted, assessing the methodologies, findings and
possibilities of the method. For quick reference a comprehensive summary of these
papers is presented, in approximate chronological order, in Table 4 in section 3.2.5.

3.2.1 Equipment and Set Up Methods

Hardware choices are vital when pulsing ultrasonic waves through a body with the
intention of gaining insights into the nature of the object. As seen in Section 2.1, the
frequency of a wave is related to wavelength and material properties causing varia-
tions in wave speeds. As such, some care should be taken selecting sensors.
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Figure 3.5: Increase in the rate of ultrasonic monitoring of batteries publications.

In the literature there are studies that have opted for ’lower’ frequency pulsing from as
low as 30kHz [30] up to 300kHz [31]. Some studies have decided on ’higher’ frequency
sensing, as high as 10MHz [32] and 15-100MHz [33]. The vast majority of studies how-
ever utilise sensors/pulse frequencies between 2MHz and 2.5MHz [34–38] with specif-
ically 2.25MHz a common option [19,39–46]. There is little discussion around the choice
of frequency across all papers, as such a discussion using modelling to simulate var-
ious frequencies pulsing through battery layers in included in Section 4.5. Here it is
concluded that approximately 2MHz is confirmed as a optimum pulse frequency, bal-
ancing trade offs between cell penetration and layer accuracy.

Figure 3.6: Example of a pulse/echo, single sensor test configuration (Wu et al.) [47].

The wave path presents important decision making choices in setting up experimental
testing. As shown in Figure 2.5, pulse/echo requires a single sensor, both emitting
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and receiving ultrasonic waves. A pitch/catch set up requires at least two sensors of
which one will transmit the signal with a different sensor set to receive the waves. In
battery monitoring literature, there is a small number of studies using a pulse/echo
configuration [19,41,42,47,48]. An illustration of a pulse/echo test is shown in Figure 3.6.

More specialised wave paths such as guided waves [36,49] and waves transmitted across
the cell surface [30] have been used. However, the most popular pulsing method was the
use of a through pulse, utilising two sensors on opposing faces of the cell, one to trans-
mit the signal with the receiving sensor receiving the wave [19,31,34,35,37–40,43–45,50–53].
This provides a logical guarantee, that the received wave has successfully passed
through each layer at least once. This is not necessarily true of a pulse/echo config-
uration, where the received signal is open to interpretation. A schematic illustration
of a pitch/catch, through pulse test set up is shown in Figure 3.7. Most experimen-
tal testing in this work was performed using a single sensor pulse/echo arrangement.
However, some testing was conducted using a dual sensor, through pulse set up the
comparative results of which are discussed in Section 6.6.2.

Figure 3.7: Example of a pitch/catch, two sensor through pulse test configuration (Hodson
et al.) [38].

A final important consideration regarding instrumentation is that of the hardware it-
self. Commercial probes remains the most common sensor type used in ultrasonic bat-
tery monitoring literature with most studies opting for this sensor solution. Deviations
from this include studies using ceramic/brass piezo elements [36,51,52], these tended to
be in the lower frequency ranges of 120-500kHz. Another option is to use piezoelec-
tric disc transducers or sensors cut from piezoelectric plates [30,47,49,54], sensors of this
nature are small, cheap and easily bonded to the surface of a battery. Examples of com-
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mercial probes and bonded piezoelectric elements are shown in Figure 3.8. Work in this
thesis generally utilised commercial probes for the standard charge testing in Section 6,
obtaining high quality results leading to strong ultrasound response/SoC correlations.
Bonded sensors proved challenging to obtain comparable signal quality in this work,
particularly during the thermal abuse experiments in Section 7. It is considered that
the superior signal quality of commercial probes is the reason behind the popularity in
battery/ultrasound research currently.

(a) (b)

Figure 3.8: Sensor types a) Commercial probes in custom 3D printer holder [35], b) Bonded
piezoelectric disk transducers [36].

Most studies use glue, gel or resins as couplant. There are examples of more specialised
test arrangements, such as air coupled transducers [53,55], focusing transducers [34] and
oil filled containers for optimal acoustic transmittance [46]. In this work, gel and glue
are used for commercial probe attachment, comparisons of which are made in Section
6.6.1 . Epoxy resin is used when bonding piezoelectric sensors to a cell.

3.2.2 Battery Types and Test Parameters

Three main considerations were commonly stipulated in the literature; the battery type
and capacity to be subjected to ultrasonic inspection, the charging cycle design and the
temperature conditions of the experiments.

Pouch cells were used in the majority of studies using ultrasound, the capacities of
which tended to be small, ranging from 0.21Ah [35,37,41–43,45] to 3.3Ah-3.6Ah [36,49,54]. A
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small number of studies focused on larger capacity cells ranging from 6Ah to 36Ah
capacity [30,53,55]. The experiments contained in this work are primarily focused on
commercially obtained pouch cells having a capacity of 2Ah, although there is some
methodology testing on large capacity, 52Ah cells in Section 6.7. The specific chemistry
of test cells is not considered in this study. This decision is based on the assumption that
the ultrasound detection method is applicable to all chemistry types, all sharing the
fundamental principle of material transfer during charge cycling and physical features
such as gassing and swelling during abuse conditions. Apart from standard pouch
cells, further studies have used ultrasound to measure vanadium redox flow batter-
ies [31], prismatic cells [48] and bespoke pouch cells with defects deliberately built in [32],
to assess the capability of detection using ultrasound.

For charge cycling tests, most experimental designs for cell utilised CCCV charge pro-
cedures. This was either done in small number for SoC testing [31,51] or large number
for SoH tests [34,47,50]. The C-rate used across the literature was generally within ex-
pected manufactures guidelines, ranging from 0.1C [30,49] to 1C [30,41], with 0.5C com-
monly used [31,37,40,50].

The temperature conditions of testing throughout the research is generally unspeci-
fied unless cell temperature is a specific part of experiments. For example, where a
cell is transitioned between set temperatures to monitor ultrasound reactions [35], ther-
mal abuse tests [36] and temperature monitored tests [30]. There are studies that state
constant temperature values and ranges; 25◦C [53], 30◦C [49,54] and 25◦C-30◦C [41]. Other
papers state the tests were run at room temperature [19,50,51], remaining literature make
no reference to temperature. As it is known that temperature, along with density/elas-
ticity effects the speed of sound of a material. Standard testing in this thesis records the
surface temperature of the cell. This is assessed to determine the effect on ultrasound
response and to what degree it occurs.

3.2.3 Standard Testing

This section covers studies using ultrasound to monitor cells during standard testing
conditions such as charge cycling or battery ageing tests. There are several studies
using ultrasound wave responses to monitor battery state of charge. The first of which
was published in 2015 by Hsieh et al., showing that the state of charge of a battery cell
could be monitored using ultrasound time of flight measurements. They state that the
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density distribution within a battery cell must change according to state of charge, this
would be correct regardless of chemistry and that the field had lacked a non-invasive,
field deployable method for battery cell live monitoring.

Changes in density and elastic modulus of the electrodes occur as functions of the state
of charge of the battery, where the rate of these changes can also provide information
of battery state of health. A model to simulate battery charge cycling and the acoustic
effects was created using Clawpack, the changes in SoC were managed using Dual-
foil to estimate density changes in each electrode. In the model the modulus was held
constant and only density changes were considered, however it is acknowledged to be
likely that the modulus will have an effect on the signal in reality. The modelling con-
tained in this thesis in Section 4 takes the same approach with wave speed of materials
being a function only of density. The development of modelling would aim to support
the inclusion of elasticity in future work.

Figure 3.9: Charge cycling effects on ultrasound acoustic response in battery model simulation
(Hsieh et al.) [19].

Figure 3.9 shows a measurable shift in time of flight and signal intensity (amplitude) in
the simulation, both of which are functions of battery state of charge. During charging
it was observed that ToF peaks shifted towards lower values whilst the intensity (am-
plitude) of the signal increased, the opposite being true during discharge. It was also
noticed when comparing transmission peaks 1, 3 and 10 in the top panel of Figure 3.9
that the ToF shift is more pronounced in later signal regions and signal amplitude has
reduced intensity [19]. This will become a recognisable feature in experimental testing
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in Section 6 with later waves featuring a trade off between richer measurements caused
by greater number of transmission/reflection events and decreasing amplitude due to
signal attenuation.

The method of visual data synchronisation presented in Figure 3.9 is the template for
data analysis performed in the work contained in this thesis. Particularly the time/time
intensity plot that shows the evolution of a signal response over the course of a test.
Hsieh et al. makes references to correlations in their paper which are noted from visual
inspections, they do not extract any data to show precise coefficients measuring the
relationship.

Correlations with SoC and ultrasound measurements are calculated by Gold et al. in
their 2017 paper. They found that pulsed ultrasound signals are sensitive to changes
in porosity of the graphite anode during charge/discharge and therefore to SoC. The
200kHz pulse produced two wave packets that are received when the cell is fully
charged, shown in Figure 3.10a. It was found that the first wave remained unaltered
during charge cycling whereas the second wave packet shows a dependence on SoC.
Additionally, the second wave packet shows a delayed ToF that also correlates with
SoC as shown in Figure 3.10b [51]. Chang et al. obtained similar results using ’Biot’s
fluid-saturated porous media model’ and air-coupled sensors, although they found
that both the fast and slow waves had an almost linear relationship with SoC [53]. Tak-
ing measurements from an envelope of the modulus of the signal, similar to the pro-
cessing method used by Gold et al. was including in the analysis options developed
during this study. The comparative results of which are discussed in Section 5.2.

(a) (b)

Figure 3.10: a) change of ToF and signal amplitude and the relationship with battery SoC and
b) correlations of SoC with fast and slow waves (Gold et al.) [51].
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In other ultrasound/SoC studies, it was found that ultrasound velocity exhibits varia-
tions in accordance with changes in composition of vanadium-ion in the positive elec-
trolyte solution of vanadium redox flow batteries. The accuracy of this method was
robust having just ±2% errors compared with predicted values [31]. Shifts in ToF and
signal amplitude in relation to battery SoC and SoH were observed by Davies et al..
Developing battery reporting using the ultrasound data, a machine learning model
was created to predict the SoH with approximately 1% error margin [40]. Ladpli et al.
claim to measure SoC and SoH with greater accuracy using guided waves across the
surface of the cell [49]. Spatial characterisation of cells during fast-charging was accom-
plished by Chang and Steingart. In this recent publication, amplitude attenuation of
ultrasound signal is processed to visualise the varying extent of graphite lithiation at
different locations on the pouch cell [46].

Acoustic ToF is measured against cell charge cycling by Robinson et al., analysis of the
signals suggested that stresses are generated in electrodes during charge cycling with
the Young’s modulus of material being a function of the SoC and applied current [41].
During analysis, single peaks were isolated and studied as shown in Figure 3.11a. Popp
et al. also used ultrasonic ToF measurements to detect changes in SoC, in their signal
processing work, amplitude based Schmitt-triggers isolated potential regions of inter-
est, shown in Figure 3.11b.

(a) (b)

Figure 3.11: Signal processing methods a) example of a rectified acoustic signal, with the inves-
tigated peak highlighted (Robinson et al.) [41] and b) input pulse and rectified signal response
with Schmitt-trigger output (Popp et al.) [30].

A common theme throughout the literature is a lack of discussion of from which part of
the signal measurements should be taken. It often appears that the largest is assumed
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to be optimal due to the obvious properties of best signal to noise ratio. It developed
into a key part of the work in this thesis to understand the nature of wave responses
with the aim of identifying if all parts of a wave response contain equal battery insights
and if not, which peaks perform best and how can they be identified.

Along with a study by Ladpli et al., which used ultrasonic guided waves and a match-
ing pursuit technique to estimate SoC and SoH of lithium-ion cells, some of the papers
mentioned above also used their ultrasound experiments to monitor cell health along
with charge cycling [19,40,49]. In the 4th panel of Figure 3.9, labelled ’Trans. Wave 1 Ampl.
(AU)’, a peak in the amplitude of the first wave evident in the 3rd cycle (*1) has dis-
appeared by the 15th cycle (*2) which is believed to have been an indicator of the cell
accepting less charge [19].

In an early study in 2013 by Sood et al., ultrasound pulses are used to non-destructively
evaluate the internal condition of a lithium-ion cell. This was thought to be possible
due to gassing evolution through continued cycling, causing the wave response to be-
come slower (larger ToF) and more shallow, shown in Figure 3.12a [50]. A study by Wu
et al. exclusively focused on the use of ultrasound to monitor the health of lithium-
ion batteries. They found that the ToF was highly related to the underlying material
degradation, shown in Figure 3.12b. Using data fusion methods to fuse ultrasound sig-
nal and temperature, they were able to successfully monitor the health of lithium-ion
cells [47]. Measuring effective stiffness of active storage materials using accurate cell
thickness measurements and recorded wave arrival times is possible using ultrasound
pulses, improving SoC and SoH estimations [45].

(a) (b)

Figure 3.12: State of health monitoring a) increased ToF and reduction in amplitude Sood
et al. [50] and b) increase in ToF Wu et al. [47].
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3.2.4 Non-Standard Testing

A review of ultrasound monitoring during non-standard testing is conducted in this
section. This will cover more specialist studies such as cell abuse [36,52] and feature/de-
fect detection [32,43]. Utilisation of ultrasonic inspection being the common theme
throughout.

A study by Bhadra et al. finds that changes in the ToF measurements taken in AA bat-
teries during discharge, correlate with changes occurring in the anode layer. This im-
portant step means the author is able to take the correlations and start to make claims
about the underlying physical changes [39]. Robinson et al. used spatially resolved ul-
trasound measurements to analyse the condition of lithium-ion electrodes. They state
that acoustic peaks in the reflected signal are indicative of interfaces between different
materials and note that in the received signal each peak is a doublet (two peaks close
together), shown in Figure 3.13a. It is not clear how the study confirms that each wave
response is locating an interface, the method for discounting the multiple reflections
as the initial wave travels deeper into the body is not explained. They do state how-
ever, that the reduction of the first peak of the doublet and increase of the second peak
suggests they can be ascribed to the cathode and anode respectively. They note that
the presence of even a small amount of gas would impede the signal significantly and
would therefore be an identifiable problem from the ultrasound response. The vari-
ations in ToF across the battery cell are shown in Figure 3.13b. There is a region of
significant interest at the top where the red area is, this is around the anode current
collecting tab suggesting that the tab inhibits the expansion of electrode layers causing
a contraction of layers [48].

(a) (b)

Figure 3.13: Typical ultrasound response and spatially resolved ultrasound measurements
across battery surface; a) Ultrasound response at a specific point on the surface and b) vari-
ation in ToF across battery surface [48].
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Gassing build up, referred to as stomata defects have been detected using ultrasonic
inspection methods in lithium-ion batteries. The method can successfully detect the
stomata defect and also determine the location of the defect with respect to the sensor,
based on the change in signal amplitude [55] (Figure 3.14a). Gassing occurring in cells is
also detected through loss of signal, along with solid-electrolyte-interphase (SEI) for-
mation during cycling (Figure 3.14b). The location and scale of the defects deliberately
introduced to the layers of a cell, such as the dissolving of active cathode material us-
ing solvent, was possible using ultrasound measurements [32]. Shifts in ToF has been
shown to correlate with increase in silicone in the silicone/graphite mixture in the an-
ode in NMC/SiGr composite pouch cells and lithium plating in conventional lithium-
ion batteries [43,44]. The use of higher frequency pulses 15MHz and 100MHz were used
in a paper published by Bauermann et al., to successfully detect various defects (Figure
3.14c) [33]. The defects visualised using scanning acoustic microscopy (SAM) included
electrolyte leakage, faulty electrodes and gas accumulation in coin cells. The potential
use of high frequency pulses similar to those used by Bauermann et al. are discussed
in Section 4.7, where it is suggested that obtaining resonances from the various active
layers may provide electrode insights during charge cycling.

(a) (b) (c)

Figure 3.14: a) Transmission signals of intact and defective models with the stomata defect in
the fifth electrolyte layer of the lithium-ion battery Li and Zhou [55], b) Ultrasonic ToF wave-
forms from pristine and defective cells (Robinson et al.) [32], c) Representative reflectogram us-
ing a 100MHz transducer at the center of a CR2032 coin cell (Bauermann et al.) [33].

Electrical abuse tests, specifically the over-charge/discharging of a prismatic cell were
conducted by Oca et al.. Ultrasonic characterisations of the cells during testing con-
firmed irreversible damage to the cells under abuse conditions. Importantly, these
changes could not be seen using the three parameters commonly used in BMS; cell
voltage, current and temperature ratings [52].

The effects of significant shifts in temperature were explored by Chang et al.. In their
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study, they demonstrate the adverse effects transitioning from low to high tempera-
tures can have on commercial lithium-ion batteries (Figure 3.15a). Ultrasonic monitor-
ing of cells during tests shows an exponential, Arrhenius relationship between acoustic
attenuation and the magnitude of temperature shifts. It is concluded that the ability to
monitor temperature shift effects this way could aid systems designed to reduce risk of
cell failure [35]. Electrode delamination due to gas formation during thermal runaway
has been detected using ultrasound attenuation monitoring and shifts in signal peaks
(Figure 3.15b) [42].

(a) (b)

Figure 3.15: a) Cells cycling at six temperature permutation profiles; 5◦C, 20◦C and 60◦C
(Chang et al.) [35] and b) ultrasound response intensity plot (Pham et al.) [42].

Ultrasound measurements of lithium-ion batteries during high temperature, thermal
abuse conditions conducted by Zappen et al. show that it is possible to observe degra-
dation effects in real-time. Features are identified in the signal intensity and signal cen-
ter of gravity (a method of tracking wave speeds through a body), with the center of
gravity parameter in particular appearing highly sensitive to degradation and gassing
processes such as SEI dissolution and evaporation of solvents. Having non-invasive,
real-time access to this information is thought valuable for use in the application of
battery management systems [36].

In other specialised experiments, ultrasonic monitoring has been used to provide in-
sights into lithium-ion concentration, accumulation and depletion at the electrode/-
electrolyte interface [38]. Ultrasonic imaging has been found to be sensitive to wetting
and unwetting in lithium-ion pouch cells, an example ’unwetted’ image is shown in
Figure 3.16a. Unwetting occurs where the electrode active layers swell to the extent
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(a)

(b)

Figure 3.16: a) Ultrasonic transmission waves at the positions marked by arrows and ultra-
sonic transmission image of a dry single layer cell (Deng et al.) [34] b) Schematic of the proposed
electrolyte wetting process (Knehr et al.) [37].

electrolyte no longer fills the expanded pore space (Figure 3.16b), a characteristic ob-
served in aged cells [34,37]. There is a break-in period before a cell stabilises caused by
swelling in the graphite anode. The increase in pressure causes wetting in the cath-
ode. These physical changes in the anode affecting the electrochemical performance of
the cathode is known as crosstalk. Ultrasonic ToF measurements measure this break-in
period [37].
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3.2.5 Compilation of Published Work

Authors, title/aim of work Conclusions/analysis Test parameters Sensor type

2013

Sood et al. (2013) [50]

Health monitoring of
lithium-ion batteries

Signal amplitude, delayed
pulse due to degradation of
interfaces after cycling

Pulse frequency: 5MHz
Wave path: Pitch/catch - through
Cell type: Li-ion
Charge type/rate: CCCV / 0.5C
Temperature: Room temperature

Transducer

2015

Hsieh et al. (2015) [19]

Battery charge and health
correlation with
electrochemical-acoustic
time of flight

Strong correlation between
SoC and density
distribution. Time of flight
shifts and amplitude
changes

Pulse frequency: 2.25MHz
Wave path: Pulse/echo, pitch/catch
- through
Cell type: Prismatic & 18650 cell
Charge type/rate: CC-rest/ 0.4C
Temperature: Room temperature

Transducer

2016

Chou et al. (2016) [31]

State of charge monitoring
of vanadium redox flow
battery using ultrasound
velocity sensing

Ultrasound velocity in
electrolyte solution is
dependent on both
temperature and
concentration

Pulse frequency: 300kHz
Wave path: Pitch/catch - through
Cell type: Vanadium redox flow
Charge type/rate: CCCV / 0.5C
Temperature: Measured value

Ultrasonic velocity
sensor

Bhadra et al. (2016) [39]

Anode characterization in
AA Alkaline batteries using
electrochemical acoustic
time of flight

Many correlations between
ToF and scanning electron
microscope (SEM) and
energy-dispersive X-ray
diffraction (EDXRD)

Pulse frequency: 2.25MHz
Wave path: Pitch/catch - through
Cell type: Zn/MnO2 alkaline LR6
(AA) 2.85Ah
Charge type/rate: 0.14, 0.1, 0.07 &
0.05C

Transducer

2017

Gold et al. (2017) [51]

Li-ion batteries SoC using
ultrasonic transmission

Checked at different
C-rates. 2 waves, 1 fast, 1
slow, slow wave correlates
with SoC

Pulse frequency: 200kHz
Wave path: Pitch/catch - through
Cell type: 1.2Ah pouch cell
Charge type/rate: CC / 2C and 4C
Temperature: Room temperature

Ceramic / brass
Piezo elements

Davies et al. (2017) [40]

SoC & SoH estimation
using electrochemical
acoustic ToF analysis

Cross correlation
measurements, time of
flight and total signal
amplitude values for
SoC/SoH

Pulse frequency: 2.25MHz
Wave path: Pitch/catch - through
Cell type: LCO & LFP pouch cells
Charge type/rate: CCCV / 0.5C

Olympus transduc-
ers

Ladpli et al. (2017) [49]

Li-ion battery cycling
behavior using US ToF

Changes in waves provide
indication if physical
processes. ToF and
amplitude vary as a
function of battery aging.
SoC/SoH predicted on
demand, without prior
history

Pulse frequency: 100-200kHz
Wave path: Pitch/catch- guided
waves, four paths
Cell type: 3.65Ah Li-ion pouch cell
Charge type/rate: CC-rest / 0.1C
Temperature: Constant 30◦C

Piezoelectric disc
transducers PZT-5A
smart layer format

2018
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Authors, title/aim of work Conclusions/analysis Test parameters Sensor type
Ladpli et al. (2018) [54]

SoC & SoH estimation with
US using matching pursuit
technique

Framework for applying
novel signal processing

Pulse frequency: 100-200kHz
Wave path: Pitch/catch- guided
waves, four paths
Cell type: 3.65Ah Li-ion pouch cell
Charge type/rate: CC-rest / 0.1C
Temperature: Constant 30◦C

Piezoelectric disc
transducers PZT-5A
smart layer format

Knehr et al. (2018) [37]

Understanding Full-Cell
Evolution and
Non-chemical Electrode
Crosstalk of Li-Ion
Batteries

Swelling of the anode,
caused by side reactions
increases pressure. This
increase forces electrolyte to
wet previously inactive
parts, lowering the cell
impedance

Pulse frequency: 2.5MHz
Wave path: Through pulse
Cell type: 0.21Ah Li-ion pouch cell
Charge type/rate: CCCV / 0.5C

Transducers

2019

Robinson et al. (2019) [48]

Spatially resolved
ultrasound Li-ion
diagnostics

Change in density of
electrodes visualised.
Current collecting tab
inhibits movement of
electrode layers

Pulse frequency: 5MHz
Wave path: Pulse/echo - various
positions
Cell type: 2.8Ah prismatic cell
Charge type/rate: CCCV-rest /
0.35C

MR110-RM
transducers

Robinson et al. (2019) [41]

Li-ion battery cycling
behavior using US ToF

Variations in ToF indicate
presence of stresses. ToF
consistent at the
temperature extremes
during cycling

Pulse frequency: 2.25MHz
Wave path: Pulse/echo
Cell type: 0.21Ah LCO cell
Charge type/rate: CCCV / 1, 2 &
4C
Temperature: Measured using
thermal imaging 25-30◦C

MR110-RM
transducers

Wu et al. (2019) [47]

Ultrasonic health
monitoring of Lithium-Ion
batteries

Strong dependence between
ultrasound ToF and battery
degradation. Potential for
overcharge battery failure
early indication, ultrasound
indicates earlier than
swelling or temperature

Pulse frequency: 1MHz
Wave path: Pulse/echo
Cell type: 1.8Ah & 0.7Ah LCO
pouch cells
Charge type/rate: CCCV 0.5C to
4.2V cycling, CCCV 0.5C to 5V until
swelling abusive
Temperature: Chamber 45◦C to
accelerate aging

Piezoelectric
transducer (PZT-
5A) mounted
with epoxy, in-
stead glycerin

Popp et al. (2019) [30]

State estimation of
Lithium-ion batteries by
simplified ToF measurement

Real application testing.
Various temperatures and
C-rates. Temp has
significant effect on ToF so
temp required for BMS.
Changing C-Rate make SoC
less reliable but can use
algorithm to improve

Pulse frequency: 30kHz
Wave path: Pitch/catch – across
surface
Cell type: 12Ah pouch cell
Charge type/rate: CCCV / 0.1, 0.5
& 1C
Temperature: 50% cycling 5-45◦C

Commercial piezo-
electric trans-
ducer discs, K-type
thermocouple
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Authors, title/aim of work Conclusions/analysis Test parameters Sensor type
Oca et al. (2019) [52]

Electrical abuse tests
assessment based on US
characterisation

US confirms irreversible
physical modifications
under abuse conditions

Pulse frequency: 120-500kHz
Wave path: Through pulse
Cell type: 0.5Ah pouch cell
Charge type/rate: 10C to 7.6V (2x
maximum)

Small ceramic
piezoelectric
transducers

Chang et al. (2019) [53]

Real-time measurement of
li-ion batteries based on
air-coupled US

Feasible to estimate battery
power using air coupled US
detection

Pulse frequency: 400kHz air
coupled
Wave path: Through pulse
Cell type: 36Ah
Temperature: 25◦C constant

Air coupled
transducer

Li and Zhou (2019) [55]

Numerical solution,
fluid-solid coupling based
air-coupled US detection of
stomata defect

Stomata defect at different
positions of li-ion battery
correctly characterised in
simulation and experiments

Pulse frequency: 400kHz
Wave path: Through pulse air
coupled
Cell type: 6Ah
Charge type/rate: Defect detection

2020

Chang et al. (2020) [35]

Adverse effects of
temperature shifts on Li-ion
batteries, acoustic study

Acoustic signal effective
parameter for determining
when gassing occurs

Pulse frequency: 2.2MHz
Wave path: Pitch/catch through
Cell type: 0.21Ah LCO pouch cell
Charge type/rate: CCCV / 0.1C
Temperature: Transitioning between
5, 20 & 60◦C

Transducer

Zappen et al. (2020) [36]

High temp abuse,
impedance, spectroscopy
and ultrasonic
measurement

Impedance and US show
distinct changes in temp
ranges, SEI dissolution,
evaporation of solvents

Pulse frequency: 2.2MHz
Wave path: Guided waves
Cell type: 3.3Ah pouch cell
Temperature: High temperature

Bonded sensor

Pham et al. (2020) [42]

Acoustic ToF spectroscopy
and X-ray imaging

Direct measurement and
analysis of onset of gassing
using US

Pulse frequency: 2.25MHz
Wave path: Pulse/echo
Cell type: 0.21Ah pouch cell
Charge type/rate: CCCV

Commercial probe

Bommier et al. (2020) [43]

Acoustic detection of
lithium metal plating

US can detect lithium
plating, degree determined
by difference in ToF

Pulse frequency: 2.25MHz
Wave path: Through pulse
Cell type: 0.21Ah pouch cell
Charge type/rate: CCCV, various
C-rates
Temperature: Controlled, various

Commercial probe

Robinson et al. (2020) [32]

Identifying defects in li-ion
cells using US

Deliberately built defects,
defects in commercial
sources detected using US,
validated using X-rays

Pulse frequency: 10MHz - 1D linear
phased array 1-5MHz
Wave path: Various methods
Cell type: Bespoke cells - 0.4Ah
commercial cells
Charge type/rate: Defect detection

Commercial probe
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Authors, title/aim of work Conclusions/analysis Test parameters Sensor type
Bauermann et al. (2020) [33]

Scanning acoustic
microscopy (SAM) imaging
tool to localise defects

SAM promising tool to
visualize defects. More
appropriate for flat thin
cells with thin casing like
pouch cells

Pulse frequency: 15MHz, 100MHz
Cell type: Commercial coin and
pouch cells

Bommier et al. (2020) [44]

Acoustic Monitoring of SEI
Formation and Long-Term
Cycling in NMC/SiGr
Composite Pouch Cells

Acoustic technique that can
offer insights on SEI
formation and capacity
degradation of Si/graphite
composites

Pulse frequency: 2.25MHz
Cell type: 0.51Ah NMC/SiGr
Composite pouch cell
Wave path: Through pulse
Charge type/rate: C/50, C/7, C/5
& C/2.5

Transducer

Chang et al. (2020) [45]

Measuring effective
stiffness on li-ion batteries
via acoustic signal
processing

Acoustic waveforms can be
used to estimate stiffness of
active storage material

Pulse frequency: 2.25MHz
Wave path: Through pulse
Cell type: 0.21Ah pouch cell

Commercial probe

Deng et al. (2020) [34]

Ultrasonic Scanning to
Observe Wetting and
”Unwetting” in Li-Ion
Pouch Cells

The ultrasonic imaging
technique is a very sensitive
method to probe failure
mechanisms in Li-ion
pouch cells

Pulse frequency: 2MHz
Wave path: Through pulse
Cell type: 0.24Ah pouch cell
Charge type/rate: CCCV / 1C 3000
cycles

Focusing
transducer

2021

Hodson et al. (2021) [38]

A Initial Exploration of
Coupled Transient
Mechanical and
Electrochemical Behaviors
in Lithium Ion Batteries

Gained insights into
lithium-ion concentration
accumulation and depletion
at the electrode/electrolyte
interface

Pulse frequency: 2.5MHz
Wave path: Through pulse
Cell type: Pouch cell
Charge type/rate: C/2

Commercial probes

Chang and Steingart
(2021) [46]

Operando 2D Acoustic
Characterization of
Lithium-Ion Battery
Spatial Dynamics

Enabled spatially resolved
operando scanning to detect
local variations in phase
behavior for the entire cell
area during charging

Pulse frequency: 2.25MHz
Wave path: Oil filled through pulse
Cell type: 0.4Ah pouch cell
Charge type/rate: CCCV various
C-rates

Commercial probes

Table 4: Summary of acoustic battery inspection literature review
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3.3 Review Summary and Conclusions

Ultrasonic monitoring is a well-established method of obtaining feature rich data from
a battery. Each battery, regardless of chemistry or design, undergoes redistribution of
density as a function of charge along with bulk moduli changes in anode and cathode
layers [19,30]. Many studies now exist that use ultrasound to exploit this, as well as the
monitoring of battery ageing [40], gassing [44] and swelling [50]. A further advantage of
this method is the simple application of a sensor at a low cost making it suitable for
implementation into a BMS [30,56].

Much of current ultrasound/battery studies have focused on improving accuracy by
using pulse techniques and instrumentation experiments [30,51,56,57]. Other studies have
used ultrasound data combined with traditional SoC and state of health (SoH) estima-
tion methods to reduce errors, as well as implementation in predictive models and
machine learning algorithms [40,57].

A common approach in most studies is the selection of a single peak in the time domain
waveform, be that of an individual wave [40,41,47,56] or from a signal envelope [51,57].
From the time of flight (ToF) and signal amplitude, measurements are recorded and
compared with battery information such as SoC and SoH. In previous work there is
little discussion of the characteristics of the wave response and what causes it to return
to the capturing sensor in the manner it does. Much of the focus in Section 6 is on this
analysis on signal responses and how different parts correlate differently with driving
factors such as battery charge and cell temperature during standard test conditions.

Studies using non-standard testing conditions such as fault detection, electrical abuse
and thermal abuse [32,36,52,55] attempt to utilise the non-invasive nature of ultrasound
monitoring to provide real-time insights into potential cell issues with some success.
The work contained in Section 7 implements the analysis methods developed in Sec-
tion 5.2 to conduct non-standard, thermal abuse tests.

• There is a lack of discussion in literature regarding from which part of the sig-
nal measurements should be taken. Further to this, signal processing methods
are rarely stated, with little evidence of methodologies in obtaining quantitative
results from ultrasound A-scans.

• There is a lack of signal response analysis in the frequency domain. Measure-
ments are almost exclusively taken from the time domain throughout the litera-

42



ture.

• No discussion about the nature of waves and reflections and what may may be
causing the signal responses to take the form that they do. Often entire sections
of signal are referred to as a reflection, which may be an oversimplification. On
occasion a peak in a signal may be attributed to a specific layer in a cell, this may
be an assumption that does not fully hold.

• Most studies use commercial probes. Some use bonded sensors. No evaluation of
signal quality of either method takes place.

• Little discussion about the effect of temperature on the signal. Holding ambient
temperature constant does not prevent potential for battery driven temperature
changes. No evaluation of the extent charge/temperature affects the signal or if
the two can be isolated for precise and accurate measurements of each.

• No hardware evaluation, changes in ultrasound could come from sensor/cou-
plant.
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4 1D Wave Model

To aid understanding of the complex nature of waves travelling through multi-layered
bodies such as a lithium-ion battery, a 1D model is developed. This chapter describes
the model that was created to simulate a wave or series of waves pulsed through multi-
ple layers. Model outputs are specifically designed to provide insights into the features
in wave responses gained during experimental testing and throughout existing litera-
ture.

4.1 Model Construction

A model was created to predict the transmission and reflection of a sound wave
through a pouch cell represented as a 1D layered body. The passage of a 1D wave
through a body is governed by the partial differential equation (PDE) wave equation:

utt = c2uxx (4.1)

Where u is the wave position at point x and at time t, c is the wave speed through the
material at position x.

Note that the second derivative of a function can be estimated using the central differ-
ence:

f ′′(x) ≈ f (x + ∆x)− 2 f (x) + f (x − ∆x)
∆x2 (4.2)

Using this technique to give estimations for the second derivatives in the wave equa-
tion:

u(x, t + ∆t)− 2u(x, t) + u(x, t + ∆t)
∆t2 = c2 u(x + ∆x, t)− 2u(x, t) + u(x + ∆x, t)

∆x2 (4.3)

Building this into a MATLAB model to numerically approximate the travelling wave
using the following finite difference scheme where i is each point of the wave in space
and j is each point of the wave in time
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ui,j−1 − 2ui,j + ui,j+1

∆t2 = c2 ui−1,j − 2ui,j + ui+1,j

∆x2 (4.4)

With starting conditions initialising sine waves, the model has information to make
forward estimations in time based on the wave development by rearranging 4.4 to
make the next point in time (u(i, j + 1)) the subject of the calculation as follows

ui,j+1 =
∆t2c2

∆x2 (ui−1,j − 2ui,j + ui+1,j) + 2ui,j − ui,j−1 (4.5)

In which each of the points below enables the forward estimation

• Previous position (ui−1,j)

• Current time and position (2ui,j)

• Next position (ui+1,j)

• Previous time (ui,j−1)

Equation 4.5 is built into a Matlab script with c being a field of values created to simu-
late the changes in material properties across the cell. To obtain instantaneous visuali-
sations of the effects of changes the c values using the same numerical solution to the
wave equation, an excel sheet was created as shown in Figure 4.1.

Changing the c value (speed) for the cells in the third row from positions 7 to 11 causes
a material interface to appear, this in turn shows reflections occurring at this bound-
ary with the remaining energy transmitted through. Changes in the c field changes the
wave response accordingly in the sheet and is visualised using the conditional format-
ting.

Differences in the wave speed c field will result in the transmission/reflection effect
shown in Figure 2.3. The reflection coefficient is the proportion of a wave amplitude
reflected at a boundary and is given by:

R =
Z2 − Z1

Z2 + Z1
(4.6)

Where Zn is the acoustic impedance of the material Zn = (ρncn), ρ being the material
density and c being the sound velocity for the material. The reflection coefficient R
varies between 0 and 1 and the transmission coefficient is R-1.
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Figure 4.1: Wave equation applied in excel, using conditional formatting green cells show high
amplitude and red cells show low amplitude. The thick black vertical line of the sheet shows a
material boundary.

The boundaries are fixed and rather than c being a single constant wave speed value,
it is built as an array with variable values to simulate differences in wave speed across
the length of the body, modelling the properties of various material layers. As the wave
encounters a different c value, some energy from the passing wave is transmitted and
the rest is reflected, like that of the reflection coefficient R. The wave speed c is obtained
using:

c =

√
E
ρ

(4.7)

Where E is the elastic modulus. A summary of the finite difference scheme is shown
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in Figure 4.2. By recording values adjacent to the model boundaries, simulated wave-
forms, such as those gained using contact transducers, are captured. The side with the
initial pulse being a pulse/echo simulation and the opposing side simulating a pitch/-
catch through pulse.

Figure 4.2: Finite difference scheme showing points in time/space used to calculate point
ui,j+1. Boundary conditions of left side include the initial pulse (blue). Position used to cap-
ture pulse/echo signal shown in magenta, pitch/catch through wave shown in yellow.

4.2 Input Parameters

To model the ultrasonic wave passing through a simulated battery a matrix was created
to represent the cell body in time and space. The length of time was specified (typically
20µs in steps of dt = 2.7ns giving 7500 data points) and the cell body width (typically
5mm in steps of dx = 20µm giving 250 data points). A base wave speed was set at v
= 3000m/s to ensure the Courant–Friedrichs–Lewy (CFL) condition is met for model
stability, where CFL ≤ 0.5 from equation:

CFL = v
dt
dx

(4.8)

The initial pulse was initialised in the time domain starting at t = 0, being n number
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of consecutive sine waves (typically n = 3). The wavelength was determined by setting
a single sine wave to 1µs representing 1MHz, stacking and scaling these according
to the user requested cycle numbers and pulse frequency. The finite difference model
calculated the wave position at each point across the cell body after which the time step
was increased and the next iteration of the wave was calculated. The c array represents
the wave speed across the battery, this varies simulating the various material properties
of layers within the cell. Each block of identical wave speeds across the array represent
the dimensions of each layer. As the wave encounters these changes in c the wave
equation underpinning the model transmits and reflects proportions of the passing
wave according the nature of the change in wave speed.

(a) (b)

Figure 4.3: a) A-scan waveform generated by pulsing through the layers a simulated battery
cell (red wave is discharged, green is charged state). b) Fourier transform for the simulation
showing the main wave activity focused around the 2MHz region

The wave speeds for the various components were generally taken from the density
and elasticity values provided by Hsieh et al. [19], calculated using equation 4.7 the
layer dimensions were based on those provided by Ladpli et al. [57]. Two separate ma-
trices were generated where certain layers in the body alter in the time domain T to
represent either stepped/partial or complete charge and discharge of the battery. This
charge simulation used the range of density values for LiCo02 (cathode) and graphite
(anode) and alters them linearly in multiple steps or a single step. The anode layer(s)
decrease wave speed during charge whilst the cathode layer(s) increase wave speed.
These localised layer density changes alter the nature of the wave reflections and pro-
vide differing wave responses, a simulated signal response, known as an A-scan, and
Fourier transform are shown in Figure 4.3.
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4.3 Sample Outputs

Figure 4.4 shows some sample output from the model at four time steps. The top half of
each plot shows a different density distribution to the bottom half (although the over-
all density value remains unaltered) which can be thought of as charged/discharged
states of a battery.

(a) (b) (c) (d)

Figure 4.4: Simple four layered body wave model with differing density distribution. No-
tice due to the relatively even distribution of the theoretically discharged (bottom) half of the
model, where the wave passes through layers with almost all the wave transmitted and very lit-
tle reflection. These reflection/transmission events occur as every wave (including new waves)
reaches each interface, in either direction. This causes the signal to quickly develop in complex-
ity meaning direct measurements are difficult to take or unreliable.

For illustrative purposes, this simple case simulates four layers in a 5mm body thick-
ness with an ultrasound sensor pulsing a single wave at a frequency of 3MHz. The
timing of each capture is shown in the top right corner.

a) The model starts at 0.0µs and the two waves are overlaid with only the green, dis-
charged state, wave visible.

b) By 0.6µs, the red wave (charged state) is only partially transmitted and some part of
the wave is reflected back towards the source, in addition the red wave slows down
somewhat and lags behind the green wave. This occurs as the red wave encoun-
ters a significant change in material property as this transmission/reflection effect
occurs in such instances.

c) By 1.3µs the red wave has passed through a second material property change and
produced a third wave of note, reflected back towards the source, the second wave
has reflected from the boundary and is now following behind the initial pulse.
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d) At 1.5µs both waves marked 2 & 3 pass through each other and form a constructed
wave larger than each of the individual waves travelling through the body as they
are of the same phase, by this time the incident wave has passed through a third
layer interface and a new wave, wave 4 is reflected back towards the source. Notice
the initial phase of waves 2 and 4 contrasted with wave 3, this is a result of change
of material property values, 2 and 4 moved to a higher density material whilst wave
3 created as reflection traveling into a lower density material.

Figure 4.5: Predicted ultrasonic amplitude intensity map as a battery is charged and dis-
charged. Each waveform (A-scan) is stacked (two sample signals shown, discharged state in
red and charged state in green) to form a surface plot, where the high (yellow) intensity re-
gions represent the larger amplitude signal peaks. The absolute values are shown in this plot
for clearer viewing. In b) The battery SoC is plotted over a colour coded background to identify
the part of the charge cycle (green = charge, red = discharge, grey = rest). The black dashed
vertical lines show the position of the two sample waveforms.

A typical pouch cell geometry configuration based on values in Table 5, with density
and therefore wave speed values changing according to a battery charging profile, pro-
duces a series of simulated ultrasound wave responses that can be stacked to form the
amplitude intensity plot shown in Figure 4.5.
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Table 5: Elastic modulus and density values of electrodes and separator for ultrasonic wave
response simulation

Component Charge
(%)

Elastic Modulus
(GPa)

Density
(kg/m3)

Wave Speed
(m/s)

Thickness
(µm) Citation

Anode (Graphite) 0 30 2078 3800 96
20

30

2213 3700

9640 2348 3600
60 2484 3500
80 2619 3400

Anode 100 30 2754 3300 96
Separator 0.7 550 1128 25
Cathode (LiCoO2) 0 184 5663 5700 60

20

184

5488 5800

6040 5312 5900
60 5137 6000
80 4961 6100

Cathode 100 184 4786 6200 60

Electrode material wave speeds increase/decrease as a function of the battery charging
as lithium passes back and forth between anode and cathode during cycling. For the
model, a constant current charge/discharge is considered, as such the density values
move to their end values in a linear, incremental fashion. For more accurate modelling,
changes in the elastic modulus should be included in calculations, however as with
the model utilised by Hsieh et al. [19], the modulus is held constant and is considered
sufficient for these estimation purposes.

The changes in density distribution cause ultrasonic wave response changes, stacking
A-scans to form a signal intensity surface plot and synchronising with battery shows
a clear relationship between charge layers [cathode-separator-anode-separator] can be
specified. The thicknesses of all layers and number of active layers can also be spec-
ified and the frequency and number of the initial pulses (2MHz and 2 cycles in this
example).

Figure 4.6a illustrates the same model as that in Figure 4.5 with the grey scale rep-
resenting the density/wave speed and relative thickness of each layer (top) and two
A-scan responses (charged in green, discharged in red) overlaid (bottom). A box is
drawn to show the region of the signal containing the ‘first reflections’. Figure 4.6b
is the same model except for an arbitrary change in the separator material density
(550kg/m3 to 1450kg/m3) which, once again holding the elastic modulus constant for
this estimation, results in a change in separator wave speed of 1128m/s to 685m/s, all
other parameters remain unaltered. Inspection of the bottom panel shows the change
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(a) (b)

Figure 4.6: Model based on values taken from Table 5, separator wave speed for a) is 1128m/s
and is altered to 685m/s in figure b) all other material properties and all dimensions remain
the same for both models. This change creates a very different signal response as shown in the
wave form.

of separator property has a significant effect on the wave response. Two things are
immediately clear resulting from this change, firstly, the change between charged and
discharged states is greatly diminished in the right-hand model and secondly, the clear
wave response has collapsed, there is no obvious region containing the first reflections
and does not lend itself to taking an envelope from which to take readings. Model ani-
mations of Figures 4.6a & b are included in the supplementary material (Figures S.1 &
S.2 respectively), showing the propagation of the incident waves through the multiple
layers of the cells with A-scan generation displayed in ’real-time’.

4.4 Model Consistency

In order to check the consistency of the model, a simple layered body is created using
values designed to provide clear reflections from which measurements can be taken to
match with expected values. In this example a three layered bearing pad is simulated
using the wave speed appropriate for the materials used. The top plot in Figure 4.7a
shows the arrangement of the three layers with a 35mm steel layer, 5mm interlayer
and 2mm PTFE layer. The graphic is in two halves with the default layer on top and
the slow interlayer on the bottom. The steel and PTFE are the same for both models all
according to Table 6.

The ultrasound pulse/echo responses are displayed in the center panel in Figure 4.7a.
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Table 6: Three layered bearing pad values for model time of flight consistency purposes.

Material Speed of sound
(m/s)

Thickness
(mm)

Travel time within
material, single path

(us)

Time of flight, pulse/echo
(us)

Default Slow
Steel 5900 35 5.93 11.86 11.86
Interlayer 4700 5 1.06 13.98
Interlayer (slow) 4000 5 1.25 14.36
PTFE 1350 2 1.48 16.94 17.32

This shows a discrepancy between the model using the default interlayer material
(green) and the slow material (red), the red reflections lagging behind the green. The
bottom panel of Figure 4.7a shows a the Fourier transform to confirm that the signal is
showing a response centered around 5MHz, which was the chosen pulse frequency.

The successful check for consistency is shown in Figure 4.7b where the calculated time
of flight values from Table 6 are marked in the default and slow model. The reflections
back from the steel/interlayer, interlayer/PTFE and PTFE/opposing face are all timed
exactly where they should be according the calculations. The slower interface material
shows the signal responses lagging, apart from the first reflection as this would not
have encountered any material differences.

The waveform development plot shown in Figure 4.7c provides insights into the nature
of the reflections. The yellow line shows the path taken by the waves that show up as
a small collection of peaks in Figure 4.7b, each are highlighted in a circle. This wave
development plot can help provide context to parts of signal that otherwise would be
subject to assumptions, it is convenient to think of parts of the signal as reflections from
definite parts of the layered body, however this insight shows that even with a simple
three layered structure, the signal contains difficult to interpret characteristics.

This model consistency check was been conducted using this simplified example as
this model does not incorporate some important features that would likely be factors
in a complex system such as a battery cell. For example, the material elasticity, acous-
tic impedance and near-field effects [58]. Additionally, it would be difficult to exactly
recreate the specific layer parameters of the cell that would enable direct comparisons.
This validation does confirm that the model produces the correct number of reflec-
tions with each having appropriate timings, giving confidence the model is producing
sensible results, if not totally correct.

This brief study does not provide any experimental validation for the model, it dis-

53



(a)

(b) (c)

Figure 4.7: Model consistency check based on values taken from Table 6, a) contains the model
generated graphical illustration of the three layered bearing pad (top), the pulse/echo single
sensor waveform response (center) and the signal response in the frequency domain (bottom).
b) shows the waveforms for each of the two models with the expected timings marked up based
on the layer thicknesses and speed of sounds. c) is the waveform development plot providing
insights into signal responses with routes traceable to the characteristics at the sensing edge.

plays the timing of waves and the reflections from boundaries agree with the calcu-
lated values precisely. Questions remain about the phase and amplitude of reflected
and transmitted waves, it is assumed that the timings and subsequent constructive
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and deconstructive interference of multiple waves can be trusted. In future develop-
ment it would be worth while obtaining wave responses for a simple system such as
this bearing pad experimentally for direct comparisons with the modelling to asses the
accuracy of all features in the signal such as amplitude and signal attenuation.

4.5 Parametric Study

The panel of plots in Figure 4.8 show the historical wave development of the battery
modelled in Figure 4.6a as it passes through the cell layers. This clearly shows a set
of first reflections (highlighted in the white box) back to the sensor side of the battery
cell (width = 0mm) which occurs between approximately 5µs and 8µs. This region
corresponds with the collection of peaks in the bottom panel of Figure 4.6a.

(a)

(b)

Figure 4.8: Waveform development, showing only wave peaks. For a) and b) Left-hand side
is wave development for the charged state, centre panel shows the wave development for the
discharged state and the right-hand side shows the absolute difference between the two charge
extremes.

Observation of the difference panel (Figure 4.8a top right) confirms that these differ-
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ences are driven by the incident waves (together with localised reflections and accumu-
lated transmissions highlighted in the red box) reaching the opposing side of the body
and returning the sensing edge of the cell. It can be assumed that waves of this nature
collect and return information gathered through each layer of the cell twice (there and
back) and would naturally be the most accurate to read.

Using the model in this way demonstrates the complex interactions of transmissions
and reflections that sum to form a particular waveform response. The change in sepa-
rator properties cause the convenient first reflection group to break down (as shown in
Figure 4.8b). Essentially the lower separator speed of sound causes a greater acoustic
mismatch between separator and electrode and hence greater reflection at each inter-
face (as shown in equation 4.6). The most intense regions in the differences plot are
close to the first active layer encountered after the casing.

This results in the signal struggling to penetrate the body causing a loss in battery
measuring capability. In certain geometries, the signal can be dominated by reflections
from large changes in material properties close to the sensor (casing materials/thick-
ness) that will necessarily dominate the signal response. Locating a current collector
can also have an effect as explored by Maier et al. [56], without knowing the precise
construction of the cell it is difficult to ensure the signal response is optimised in terms
of ultrasound correlation with SoC.

It would therefore be beneficial to have a method to identify the best waveform loca-
tion to correlate with battery state of charge. To this end, experimental tests have been
carried out with detailed analysis of the signal during different charge stages to explore
methods of combating weak or unintuitive signal responses.

During experiments, a pulse frequency of 1–2 MHz was used, similar to the 2.25MHz
used by Hsieh et al. [19], this gave the clearest response and best battery charge corre-
lations during testing. Using lower frequencies provided diminished changes in wave
response, whereas higher frequencies produced more unpredictable signals with lower
battery charge correlations. The effects of frequency choice can be visualised and the
problems explained using model data.

Three frequency choices were 0.5MHz, 2MHz and 5MHz, all other parameters are held
constant. The plots in Figure 4.9 show the absolute differences between the wave de-
velopments for both fully charged and discharged states. The higher amplitude, yellow
regions are where there are highest discrepancies whilst dark blue shows low/no dis-
crepancy. The development of the 5MHz wave collects some differences (Figure 4.9a),
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(a) 5MHz pulse (b) 0.5MHz pulse

(c) 2MHz pulse (d)

Figure 4.9: Charged/Discharged difference in ultrasound response plots. a) 5MHz shows
small changes in wave development occurring close to initial pulses with lack of meaning-
ful cell penetration. b) 0.5MHz wave passes through body almost unaffected by the changing
properties in narrow layers. c) 2 MHz passes through the cell with the incident waves gath-
ering and accumulating changes, travelling back to the recording sensor side. d) Ultrasound
ToF/battery charge correlation show 2MHz has strong relationship with battery SoC.

these are accumulated close to the initial pulse side of the cell, the differences fail to
accumulate due to lack of cell penetration of the wave. As a result, the signal is dom-
inated by layers close to the pulse/echo edge and are susceptible to temperature bias
as this would include a high proportion of cell casing reflections. The 0.5MHz waves
(Figure 4.9b) only detect minor changes as the wavelengths are considerably larger
than the narrow layers they pass through, note a lack of wave development with yel-
low, high intensity changes. The 2MHz wave (Figure 4.9c) shows significant differences
collect along the wave paths as they return to the sensing edge with a clear region of
first reflections. This illustrates that 2MHz offers a good balance between cell penetra-
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tion (lower frequency) and detail from layer reflections (higher frequency), providing
solid theory behind the sensor/pulse selection process. Figure 4.9d shows the effect on
the SoC correlations of the three frequency choices, the 2MHz performs well whilst the
0.5MHz and 5MHz register very weak/no useful battery charge correlation and are
unsuitable in this instance. Animations are included in the supplementary materials
(Figure S.3: 5MHz, Figure S.4: 0.5MHz and Figure S.5: 2MHz) showing wave propa-
gation, A-scan generation for charged and discharged states and a plot showing the
difference in signal between the two.

4.6 Modelling Temperature Effects on Signal

The speed of sound is temperature dependent. In the model, temperature effects are
simulated by altering the wave speeds at a global rather than local level. The whole
wave speed array c is raised and lowered uniformly according to a specified temper-
ature profile, based on the assumption that temperature change would affect the cell
body as a whole and uniformly. This provides an opportunity to observe change in ul-
trasound responses combining cell level changes (temperature) with localised battery
layer changes (elasticity/density).

Figure 4.10: Changing wave speed profiles with respect to charge and/or temperature.

Figure 4.10 shows layer wave speed represented as greyscale bars, including; casing,
anode (A), separator (S) and cathode (C). During charging (top bar) the electrodes
change shade, in opposing directions. Where temperature is the only change (middle
bar) all layers change shade, uniformly in the same direction. When both charge and
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temperature are factors, the shading of each is overlaid. For the anode this accentuates
the change whilst in the cathode the change is somewhat negated.

A cropped section of four modelled A-scans is shown in Figure 4.11. A wave response
for a discharged cell undergoing no change in temperature is plot in red, acting as
a benchmark. The response from the same cell when fully charged, with no change
in temperature (the top bar in Figure 4.10) is shown in green, this could represent
a cell charging using a low C-rate. The blue signal is the same cell fully discharged
but the whole cell has increased in temperature (middle bar in Figure 4.10) +10◦C in
this instance, this could be simulating a resting cell subjected to ambient temperature
changes. Finally, the magenta response is the signal where the cell is both fully charged
and the +10◦C increase in temperature are modelled (bottom bar in Figure 4.10). This
could represent a cell charge cycling at a moderate C-rate whilst also subjected to the
ambient temperatures.

Figure 4.11: Modelled ultrasound wave response with respect to charge and/or temperature.

This modelling shown that as the temperature of a cell changes, due to ambient tem-
perature fluctuation or internal cell reactions, the wave response is affected. A method
of measuring this temperature effect is discussed in section 6.3. A possible calibra-
tion technique is suggested in section 6.7, aiming to reduce the impact of temperature
changes on the ultrasound wave response.
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4.7 Ultra High Frequency Ultrasound (UHFUS) Modelling

The frequencies of waves used in the ultrasonic monitoring of battery cells in cur-
rent research has ranged from 30kHz [30] (just above the threshold of the definition
of ultrasound) up to 15-100MHz [33]. The recent development of ultra high frequency
ultrasound (UHFUS) enables transducers up to 70MHz [59]. The waves at such high fre-
quency would have drastically shorter wavelengths, and as such would be capable of
passing through layers in their entirety returning complete reflections back to the sen-
sor. This modelling study shows how this increase in sensitivity to battery structure,
has the potential to provide different insights to those currently obtained. This method
would provide battery layer information from signal changes in the frequency domain,
opposed to measurements commonly taken from the time domain.

When waves travel through a body and encounter waves travelling in the opposite di-
rection, constructive and deconstructive interference with the signal will occur. When
pulsing reflected waves in a layer with a multiple of one quarter wavelength of the
signal, a standing wave arises. The travelling waves appear to stand still with nodes
fixed at zero and antinodes at the signal peaks. The model will only resonate with half
wavelengths as the boundary conditions are set to zero. Examples of resonant stand-
ing waves are shown in Figure 4.12. The plots simulate a) 0.75MHz, b) 1.5MHz and
c) 2.25MHz waves through a single layered body of width 2mm and wave speed of
3000m/s. A modelling animation of the 3/2 wave is included in the supplementary
materials, Figure S.6.

(a) 1/2 wave (b) 1 wave (c) 3/2 waves

Figure 4.12: Examples of resonant standing waves through a 2mm body of wave speed
3000m/s.

Finding the resonant frequency of a layer is desirable as the amplitude is increased
resulting from the constructive interference of the transmitted/reflected signal. The
benefits of the increase in amplitude is obviously improved signal to noise ratio, a
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resonant frequency can provide layer information by boosting the signal should this
resonance be found. Figure 4.13 shows comparisons with (a) pulsing at a resonant fre-
quency compared with (b) just below and (c) just above the resonant frequency. Notice
the standing waves created when 4 waves are pulsed at 6MHz through a 2mm body
with a wave speed of 3000m/s. Using equation 2.2, this gives a wavelength of 0.5mm,
a quarter of the bodies width. This would be identified in the FFT plot in Figure 4.13d
where the 6MHz shows much higher amplitude than the 5.5MHz and 6.5MHz signals.

(a) 6MHz pulse (b) 5.5MHz pulse

(c) 6.5MHz pulse (d) FFT comparison

Figure 4.13: a) standing wave created by pulsing 2MHz waves through a 2mm body with
wave speed property of 3000m/s. b) 5.5MHz and c) 6.5MHz fail to create resonant standing
waves. d) high amplitude for the resonant frequency on the FFT.

To find the resonance of a layer using modelling, the layer thickness must by less than
at least half a wavelength of the pulsed signal. Table 7 shows layer parameters similar
to those in Table 5 along with the full and half wavelengths for 2MHz, 10MHz and
UHFUS 70MHz pulses. The green wavelengths mark the waves that could successfully
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Table 7: Model cell layer properties, wavelengths for 2MHz, 10MHz and 70MHz pulse fre-
quencies. Range of minimum frequencies suitable to achieve 1 wave or 1/2 wave inside of
layers. Waves smaller than layer shown in green. Suggested frequencies shown in blue.

Component Thickness
(µm)

Wave speed
(m/s)

2MHz
1 wave
(µm)

2MHz
1/2 Wave

(µm)

10MHz
1 Wave

(µm)

10MHz
1/2 wave

(µm)

70MHz
1 wave
(µm)

70MHz
1/2 wave

(µm)

Range
MHz
(min)

Anode (d) 96 3800 1900 950 380 190 54 27 20-40
Anode (c) 96 3000 1500 750 300 150 43 24 16-32
Cathode (d) 60 5700 2850 1425 570 285 81 41 48-95
Cathode (c) 60 6500 3250 1625 650 325 93 47 54-108
Separator 25 1128 564 282 113 57 16 8 23-45

pass through each layer providing a full reflection at the interface with adjacent layers.

Running the 40MHz-70MHz ultra high frequency sweep through the cell gives the re-
sults shown in Figure 4.14, the surface plot is the absolute values of the waves passing
through the layers (a single sine wave would show as a double peak). A resonance
appears to exist in the cathode layers, characterised by the consistent single half wave
that occurs throughout the response duration, similar to the ordered waves in Figure
4.13a. This is more clearly visible in the zoomed window on the right. This single peak,
half wave, is present in both charge and discharged states. A resonance is identified in
the anode layers throughout the cell where a 2-wave set of peaks appears, again this is
marked clearly in the bottom panel of the zoom window.

Interestingly, the resonance, although somewhat weakened when discharged is still
evident. However there are now three peaks visible which would be a 3/2 standing
wave similar to that shown in Figure 4.12c. The time domain wave responses gained
from pulsing at such high frequencies does not yield much if any useful information. In
fact looking along the sensing edges (left most: pulse/echo or right most: pitch/catch)
of the main body in Figure 4.14 would resemble noise with such a chaotic response.
The signal in the frequency domain however, will show frequencies that produce res-
onances.

Comparing the signal FFT with the modelling parameters in Table 7 using the reso-
nances identified in the wave development plot, some notable frequency activity can
be seen. When discharged the cathode layers have a wave speed of 5700m/s and a
thickness of 60µm, a 1/2 wave resonance is noted in the cathode layers in Figure 4.14,
which would give a wavelength of λ = 120µm. Using equation 2.2, the frequency
of this wavelength would be 47.5MHz. This is approximately marked (a) on the dis-
charged FFT in Figure 4.15.
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Figure 4.14: Identified wave resonances when pulsing ultra-high frequency ultrasonic waves
through a multilayered body.

When charged the cathode layers still produce a 1/2 wave resonance, however with the
altered material density and therefore wave speed (6500m/s), this shows as the 54MHz
resonant frequency, marked (b) on the charged FFT. The anode (thickness 96µm), when
discharged produces a 3/2 standing wave (albeit inconsistent), with a wave speed
of 3800m/s. This would show up at approximately 59MHz and is marked (c) in the
discharged FFT whilst the 2 wave resonance in the charged anode with wave speed
3000m/s features at 62MHz in the charged signal, marked (d).

Figure 4.15: Signal response of a through pulse in the frequency domain with notable frequen-
cies marked.

These insights were gained very late in to the work and as such have no experimental
data to see if these assumptions and results would hold and be achieved when testing
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on a cell. The theory and modelling covered suggest this would form an interesting
avenue to explore in future.

When conducting this work, some key observations arising to guide the experiments
would be as follows. A FFT is best taken from a through pulse, for reasons covered in
section 4.5, high frequency signals will struggle to penetrate a cell, in pulse/echo such
high frequencies as this have signal dominated by early layers, a through pulse is de-
sirable as the response is guaranteed to have passed through all layers. This demands
a pair of sensors rather than one and will undoubtedly require signal amplification to
force the waves through. The FFT itself does not necessarily alter linearly, so taking
measurements is difficult, there will be a transition if the resonance changes the wave
multiple, such as the 3/2 to 2 wave transition seen in the anode. Tracking this transition
would be challenging.

It is accepted that whilst this method appears to work with modelling, only experi-
mental testing will confirm if the resonance method will work, it is assumed that there
would be some success as the material changes during charge cycling are still well de-
fined and consistent across the cell. From the modelling, with the battery parameters
stated, Figure 4.15 shows there is activity in the 40-65MHz frequency range. Using a
chirped pulse to include these frequencies would be recommended. The minimum fre-
quencies to achieve resonance in a cell containing the modelled parameters are shown
in blue in Table 7. In theory, resonance could be achieved using a 32-54MHz frequency
range.

The advantages of this ultra high frequency battery inspection would be that this
method would go beyond providing a measurement of change within the cell of a
single parameter such a charge or health. Using this method could potentially advise
upon specific parameters from within the cell providing measurable changes, such as
wave speed and thickness of components. Deviations from standard/expected param-
eters would show clearly in the FFT of the signal, being a sensitive monitoring method.

4.8 Conclusions

• From this modelling, the sensor and pulse frequency choice is established. Visual
representations of the effects of pulse frequency selection are displayed in Figure
4.9, the discussion contained in Section 4.5 states that lower frequency options
can struggle with cell penetration whilst lower frequency is prone to loss of layer

64



detail. Providing a theoretical explanation why ≈ 2MHz is an optimal frequency
for a battery cell based on modelling created for this work.

• The modelling contained in this section, based on the 1D wave equation. Success-
fully simulates reflections where the wave encounters material boundaries.

• Small dimensional, density or layer ordering changes can cause the signal to vary
from battery to battery, this can impair the intensity of wave changes as a function
of state of charge and could render envelopes difficult to obtain should that be
the method of measurement.

• Purpose designed outputs provide good insights into the development of a trans-
mitted signal as it travels through battery layers. The wave development plots
and animations show wave travel in space and time.

• Whilst the model gives indications of the wave responses expected when pulsing
through a cell. Further development would be required to expect more precise
results for direct comparisons with experimentally obtained signals. This would
involve the more complex wave speed calculations, designed to include material
elasticity for example, a variable held constant throughout this work.

• Modelling ultra high frequency (up to 70MHz) pulses through a battery cell
provides some preliminary evidence that obtaining resonant standing waves,
trapped in layers could feedback on layer specific changes. The modelling in this
section guiding decisions on potential future work.

• Simulation of temperature effect on signal response built into model, by altering
the wave speeds of all layers uniformly.
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5 Apparatus and Data Analysis

In this chapter the apparatus used during experimental testing is described. This cov-
ers hardware and software used to both generate and acquire the ultrasound signal
pulses in addition to the sensors, bonding methods and selected pulsing parameters.
Battery charging equipment and charge cycling software is detailed. Battery cell sur-
face temperature recording equipment is described. Details of a test kit developed for
large capacity cell testing are included in this chapter. An overview of test data syn-
chronisation and processing is provided in this section. The development, process and
sample outputs of a bespoke MATLAB script are covered, providing details of various
data comparison methods and visualisations.

5.1 Set Up and Equipment

The pouch cells used during testing were all commercially sourced lithium polymer
rechargeable cells having a nominal voltage (V) of 3.7V, a discharge/charge cut-off of
3.0V/4.2V and a capacity of 2Ah. The maximum discharge/charge current for the cells
was 2000mA (1C)/1000mA (0.5C). Later in the work, testing is performed on 52Ah
large capacity cells.

Commercial longitudinal contact transducers were used to both transmit and receive
an ultrasound pulse in a pulse/echo arrangement as this is the simplest and most cost-
effective method of capturing ultrasound data. The sensor was clamped in place and
a high temperature ultrasound gel was used as couplant. The clamps were hand tight-
ened enough to hold the sensor in place, minimum pressure was applied such that the
sensor could be moved slightly while held in place. This was to ensure no possibility
of causing an accidental wave interface and in general care of the battery itself.

The sensor was connected to a PICOSCOPE 5000 Series oscilloscope which was used
to generate the pulse and record the reflected waves. The pulse consisted of 2–3 sine
waves at a frequency of generally 2MHz according to the discussion in Section 4.5.
The response signal captured ranged from 0–2µs to 12–30µs with a time resolution of
2–8ns. Signal captures were taken from every 60s to 300s depending on test length and
each capture was recorded as the average of 20 captures taken at 20Hz.

Bespoke LabView software was used to control the PICOSCOPE in both signal gener-
ation and capturing the signal response. The software was also connected to a NI-9211
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thermocouple input module to record the surface temperature of the cell during charge
cycling. A schematic of test configuration is shown in Figure 5.1, cell images are shown
in the top left corner. As the C-rates for the charge cycles were low and within the
manufacturers stated maximums, no swelling occurred during testing and the cells
remained in perfect physical condition throughout.

Figure 5.1: Test set up schematic.

The battery was connected to a MACCOR 4000 Series Test System (shown in Figure
5.2a) which controlled the charge cycling stages. Test were cycled according to a custom
built programme generally consisting of a combination of fixed current, fixed voltage
and timed rest periods. In the fixed current stages, the rate of charge/discharge was
generally 0.5C. The MACCOR records the battery voltage during charging and charges
up to 4.2V and discharges down to 3.0V, additionally, the Ah/s data is accumulated
during cycling to provide a battery capacity profile, providing an alternative state of
charge rating for the cell.

A Cadex C7200 advanced battery analyser (shown in Figure 5.2b) was acquired during
the course of this work and was used for some of the later testing. This provided a
convenient means of bench-top battery charge cycling testing. Whilst the control over
battery procedures is not as detailed as with the MACCOR, robust CCCV tests were
successfully conducted using the Cadex. A 07-110-0115 SmartCable adapter for the
Cadex was used. This adapter had crocodile clips that were attached to wires inserted
into the battery connection block as shown in Figure 5.3. The Cadex C7200 was con-
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(a) MACCOR 4000 Series (b) Cadex C7200

Figure 5.2: Battery charge cycling apparatus.

Figure 5.3: Cadex C7200 during bench-top testing.

trolled using BatteryShop software installed on a laptop dedicated to hardware control
and data acquisition.
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To facilitate the generation of high amplitude pulses through large capacity cells, with
the option to place multiple sensor pairs across the cell surface. An ultrasound test
kit was designed and built to specifically meet these requirements. Contained in the
test kit, shown in Figure 5.4 is the standard PICOSCOPE 5000 oscilloscope, a high fre-
quency amplifier and a 16 channel multiplexer (MUX).

Figure 5.4: High frequency amplifier, 16 channel, ultrasound monitoring test kit.

The results gained in the majority of testing in this work were obtained using the test
set up in Figure 5.1, with no amplification and a single sensor in pulse/echo config-
uration. Table 8 shows a pulse/echo signal response, without amplification, records
maximum peaks measuring approximately 0.004V. Using this as a benchmark, pulsing
through a standard 2Ah cell is over twice the signal power at 0.01V. Using the am-
plified test kit in the same configuration (through pulse) provides a signal response
with peak amplitudes of approximately 0.14V, 14x amplification. Using this method
through large capacity 52Ah cells measured a signal with peaks measuring 0.04V, a
10x improvement in signal strength on the benchmark.

The signal response amplitude when the the MUX is active remains intact, albeit with
cross-talk effects at the beginning of the wave response. As such the test kit is regarded
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Table 8: Signal amplitude values for various cells, amplification and sensor configuration

Cell Sensor configuration Amplified Voltage (V)

2Ah
Pulse/echo, single sensor No 0.004

Pitch/catch, through pulse
0.01

Yes 0.14
52Ah 0.04

as powerful, versatile ultrasound monitoring equipment designed and developed dur-
ing this work. The large cell capacity results are covered in Section 6.7.

5.2 Analysis Methods

Three data sets were retrieved (ultrasound response, charge data, surface temperature)
during an experiment. The ultrasound data contains various information types, such as
signal amplitude and time of flight changes which will vary based on which part of the
signal a measurement is taken. Also signal power and frequency domain information is
obtainable from the waveform. Additionally, the battery charge data provides voltage,
current and estimated battery capacity information. The analysis method developed
was designed to incorporate all methods of data analysis such that the same data sets
can be arranged in a variety of ways to assess the strongest correlations. There is also
capability of tracking and measuring multiple signal peaks across the signal response
to compare the results of each peak individually. The flow chart in Figure 5.5 shows
these various methods of analysis available, the outputs of which will be discussed in
detail.

The plots in Figure 5.6 show the initial formatting and data synchronisation process,
the ultrasound and battery charge information is presented here with the peak tracking
evident in Figure 5.6b. Note the tracking is colour coded to match the nature of the
charge cycle which reveals a clear, significant and repeating pattern throughout the
cycle stages. This peak tracking is a viable option for the automation of battery readings
and therefore suitable for use in a battery management system.

Some studies take measurements directly from the waveform and select a peak from
which to take readings [41,47,56], most commonly, the largest peak found in the response.
Popp et al. use a Schmitt-trigger method that captures a signal peak over a threshold
and turns these into digital rectangular signals from which to measure [30] and signal
power has been used as a means of capturing and quantifying ultrasound signal re-
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Figure 5.5: Analysis flow chart for analysis script created in MATLAB.

sponse [19]. Others have taken a readings from the peak of a signal envelope [51,57]. This
can often, but not always, correlate with battery state of charge, however obtaining an
envelope that remains consistently strong across charge cycling is difficult to guaran-
tee whereas selecting a peak directly from the signal is always possible. The problem
with opting to measure from a single peak is being able to correctly identify the peak
that carry battery charge insights. The following section compare the results of various
measuring options to help identify a robust signal analysis strategy.
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Figure 5.6: a) Measured ultrasonic amplitude intensity map as a battery is charged and dis-
charged, each waveform (A-scan) is stacked (two sample signals shown, discharged state in
red and charged state in green). The absolute values are shown in this plot for clearer viewing.
The black solid lines show the area bounded by the user with a zoom of this in b) the peak is
tracked throughout the test, each point is colour coded to identify the part of the charge cycle
(green = charge, red = discharge, grey = rest), in c) The battery capacity is plotted over a colour
coded background following the same colour coding. The black dashed vertical lines show the
position of the two sample waveforms

Comparisons between measuring directly from a single peak and a signal envelope
(taken using the envelope.m function in MATLAB) are shown in Figure 5.7, plots (c)
and (e) relate to the single peak selected in plot (a), and plots (d) and (f) relate to the
envelope peak from the same signal in plot (b).

Peak tracking using either an individual peak or the envelope peak provides the ability
to take amplitude and time of flight measurements as the battery is charge cycled. The
peak tracking is colour coded (red: charge, green: discharge, grey: rest) to highlight
the battery charge status in Figure 5.7c and d. The change in time of flight and ampli-
tude is recorded from this peak tracking throughout the duration of the charge cycling
test, taken at the maximum point of the peak. Figure 5.7e and f, show correlation plots
for the amplitude (top row) and time of flight (bottom row) measurements taken dur-
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ing charge cycling, the plots are also colour coded to show the different charge states
according to the same scheme, with shaded points identifying data by its particular
cycle.

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: a) A single peak directly taken from the ultrasound response is selected and tracked
throughout the test [step B in the flow chart Fig. 5.5] b) the peak of an envelope can also be
tracked in the same manner c) the graphical display of the peak evolution throughout the test
[step C in the flow chart] d) graphical display for the envelope tracking e) separated correlation
plots for charge/discharge/rest for the single peak for both signal amplitude (measured in
arbitrary units) and time of flight [point D in flowchart] f) correlation plots for the envelope.

The accuracy of each method typically depends on the signal and it is not obviously
predictable which method will yield the best correlation. An envelope can help with
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signal to noise ratio and can perform some data smoothing effects. It can however
combine the effects of the inaccurate parts of signal reducing the overall correlation
with battery charge. In the composite plots in Figure 5.8, showing the same single peak
and envelope analysis as in Figure 5.7, the signal envelope performs well and provides
a slightly stronger R2 value (∼0.95) with battery state of charge than the single peak
(∼0.88).

In addition to the envelope not always providing the strongest charge correlations
however, importantly, reliance of taking measurements from envelopes is problematic.
As shown in the modelling, in some cases an envelope may be difficult to capture.

(a) (b)

Figure 5.8: a) Using a selected peak directly from a waveform to monitor battery state of charge
and b) using the peak of a waveform envelope [point A on flow chart].

A note on the accuracy of the data. As this study is concerned with the quality of dif-
ferent peaks within the signal rather the quality of signal itself, raw captured data is
shown throughout. There are several means of improving data accuracy however, de-
noising can be performed in data processing, the data in Figure 5.9 has been denoised
using a sym4 wavelet twice, firstly the selected peak is smoothed to aid peak tracking
accuracy, following from this the peak tracking itself is denoised, along both the ToF
and amplitude axes. The results are overlaid, this simple measure both improves the
precision of the relationship between US and SoC and gives some further context to
results, an isolated cycle becomes clear, likely due to a temperature change.

Data acquisition improvements can also be made, such as increasing the capture rate
from 20Hz or increasing the pulse voltage to improve signal to noise ratio. There are
several alternative methods of arranging sensors as discussed previously and whilst
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many of these studies aim to improve signal accuracy with respect to battery informa-
tion, this study is focused on the qualities within the signal itself.

(a) (b)

Figure 5.9: a) smoothed charging data b) smoothed discharging data.

5.3 Conclusions

• The experimental apparatus required for ultrasound monitoring of commercially
obtained, 2Ah lithium-ion pouch cells during charge cycling tests is detailed.
Sensor type, frequency and configuration, bonding methods, ultrasound gen-
eration/acquisition, battery cycling and temperature monitoring hardware are
introduced.

• Modifications to the standard setup, required to facilitate ultrasonic monitoring
across the surface of large capacity, 52Ah cells are detailed. This setup incorpo-
rates signal amplification and a 16 channel multiplexer. Sensor placement options
are considered to ensure strong signals and battery measurements remain possi-
ble.

• Data synchronisation and analysis script created in MATLAB is introduced. A
key feature being peak tracking, designed to measure ultrasound reactions with
respect to changes in state of charge in a battery cell. Developed a range of analy-
sis tools within the MATLAB script including; visualisation methods, correlation
testing, signal enveloping, multiple peak tracking and data smoothing.
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6 Standard Charge Cycling Tests

This chapter explores the results of experimental, standard charge cycling tests con-
ducted on lithium-ion batteries. Common ultrasound measuring techniques are inves-
tigated, comparing the reliability of each method and how each is affected by tem-
perature fluctuations. Difficulties in obtaining a desired or expected signal response
presented by the diverse nature of cell geometries is explored, with a suggested ’smart
peak selection’ technique developed to combat this.

Modelling developed in this thesis is utilised to provide greater context to received sig-
nals. Instrumentation decisions are evaluated using a combination of modelling and
experimental results, for example pulse/echo and pitch/catch through pulse configu-
rations and the effect of bonding methods. Tests are conducted on large capacity cells
where elevated C-rates are assessed. A suggestion is made for calibrating ultrasound
time of flight measurements to reduced temperature effects at high C-rates.

6.1 Measurement from Signal Amplitude or Time of Flight

As previously mentioned in section 3.3, published studies used signal amplitude and
time of flight shift to monitor ultrasound changes for battery measuring purposes. In
Figure 6.1a, a clear linear relationship between battery SoC and ultrasound time of
flight is visible. The same relationship is much less clear for peak amplitude (Figure
6.1b), especially for the charge part of the cycle which has a R2 value of only 0.01,
being non-linear and complicated to measure.

Figure 6.1c shows the correlations for SoC and temperature against change in ToF and
signal amplitude in each peak across the whole signal, with the selected peak measured
in Figures 6.1a and b highlighted in grey. The highest correlation in this test is the
SoC/ToF at the selected peak. Signal peak amplitude can occasionally provide good
SoC measurements but being sensitive to temperature changes makes it an erratic and
unreliable indicator of battery charge, this is discussed in Section 6.5.

6.2 Difficulties Obtaining Signal Envelope

As mentioned in section 4.3, in some instances, it is difficult to produce suitable en-
velopes from which to take readings (example shown in Figure 6.2a). From the model
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(a) (b) (c)

Figure 6.1: Composite plots with linear fit details, a) time of flight from a single peak measure-
ment and b) signal amplitude from the same single peak measurement. c) the location of the
peak displayed in a) and b) with measurement correlations from across the signal for compari-
son, averaged using next peak data for clearer viewing.

in Figure 4.6b it was shown that, apart from being an instrumentation issue, flattened
signal could result from the specific nature of the layered properties in the battery, this
could typically be caused by some significant interface boundary along the wave path
rendering the incident wave unable to return back to the sensor with clarity (e.g. cas-
ing, gas build-up, current collector, large layer acoustic mismatch). It is important to
note that this is not a signal to noise issue and increasing the pulse voltage will merely
increase the whole signal, including reflections.

The linear fit plots in Figure 6.2b and c show the problems when deciding from which
part of the signal measurements should be taken. Peak #1 is taken where there is a large
defined peak available having good signal to noise ratio and at around 6µs should con-
tain some of the first reflections when comparing with the model and other experimen-
tal results. Peak #2 is from much later in the waveform that has suffered significant at-
tenuation with a poorly defined peak. However, peak #1 shows little relationship with
the battery SoC, whereas peak #2 has a good correlation. Whilst the R2 values are not
as strong as in other tests, it remains a valuable exercise to identify a suitable method
that would maximise the battery information should a signal such as this be obtained.

Note this test contained a constant voltage section in the charge cycling, this is de-
noted in the peak tracking using a blue line. The blue line shows that the ultrasound
peak continues to develop along a similar trajectory to the green (charge) line, until the
grey (rest) period is reached. The linear fit for this data confirms the relationship is an
extension of the charge data albeit at a different rate which would be expected as the
current gradually decreases approaching capacity.
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(a)

(b) (c)

Figure 6.2: a) Experimental test signal response. Not suitable for taking an envelope, two peaks
tracked for battery state of charge accuracy. Linear fit for peak #1 shown in b) and linear fit for
peak #2 shown in c).

6.3 Temperature Effect on Ultrasound Signal

The speed of sound of materials varies with temperature and since battery temperature
fluctuates during charge cycling it needs to be considered. In Figure 6.3a, battery tem-
perature is recorded using a thermocouple data logger as detailed in section 5.1. The
temperature data is synchronised with the charge cycling data and the clear repeated
effect of charge on cell temperature is evident. The laboratory ambient temperature is
also seen to have an effect altering the underline baseline temperature, tracked using
the red sine wave with the high being the warmest part of the day and the low being
the coolest.

Figure 6.3b shows the correlation between change in ultrasound ToF for each indi-
vidual peak in the signal response and battery SoC/battery surface temperature. This
clearly shows a greater relationship between US and SoC when compared to US and
temperature. There is a very strong relationship at 6–9µs with SoC whilst the tempera-
ture shows no relationship until a switch in correlation occurs late in the signal.
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Changes in global wave speeds are built into the model to simulate cell temperature
changes as described in section 4.6, two examples are shown in Figure 6.4. In model
a) the temperature gain is set to 5◦C during cycling, this occurs both as a combination
of ambient cycling temperature and in accordance with the charge cycle. This shows
similar results to the experimental data, the correlation is strongest with battery charge.
In model b) the temperature gain is increased to 25◦C and this results in a reduction
in battery charge/US correlation and an increase in temperature/US correlation. This
suggests that significant temperature increases, either ambient or internally driven,
will limit the charge measurement capability of the ultrasound signal.

(a) (b)

Figure 6.3: a) Battery surface temperature variation recorded during testing. The coloured bars
behind the plot denote the stage of charge cycling (charge/rest/discharge/rest). The red line
shows the daily cycle in which a maximum and minimum ambient temperature affects the
base line. b) Ultrasound/battery SoC and ultrasound/battery surface temperature correlations
shown across the length of an ultrasound response [step H on flow chart].

A strong signal with good cell penetration contains good battery density change and
therefore battery charge data. Locating this region when taking measurements is vital,
parts where the incident wave is traveling through the cell and is away from the sen-
sor edge (for example 0–4µs and 10–12µs in the waveform development plot in Figure
4.8a) show the signal to have weak correlation with battery charge. This is shown in
both the experimental data in Figure 6.3b and in the model data in Figure 6.4a. In both
cases, where charge correlations diminish, temperature correlations increase. Here, sig-
nal peaks contain accumulations of shallow wave penetrations largely influenced by
the casing materials where changes in wave speed can only be attributed to tempera-
ture changes.
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(a) (b)

Figure 6.4: Battery SoC/temperature – ultrasound correlation plots a) 5◦C gain during charge
cycling and b) 25◦C gain during cycling. The model increases the global wave speed 1.0 m/s
for each ◦C increase (calculated using ambient temperature shift in time of flight on a resting
cell).

6.4 Half Reflections

As discussed in Section 2.2 there are different battery construction types, each of which
is not obvious from an external visual inspection of the cell or often by checking the
manufacturers specifications. Figure 6.5a shows an experimental waveform response
when pulsing through a pouch cell with a thickness of approximately 6mm. In a single
sensor, pulse/echo arrangement (top), the collection of peaks in the blue shaded area
could be assumed to be the first reflection from the opposing face, with the follow-
ing collection of peaks in the grey shaded area being a second reflection. The through
pulse signal in Figure 6.5a (bottom) shows the the first collection of peaks to reach
the opposing side takes approximately 5-6µs and arrive at the opposing sensor face
during the blue shaded region. Using this information and displaying the two capture
methods side by side shows that the peaks in the blue shaded region in the pulse/echo
signal can not be a full reflection from the opposing face. Rather, it appears that this
first collection of peaks is a half reflection, being a feature of cells utilising the ’jelly-roll’
construction.

This center spacing layers and mirroring around the center is replicated using the
model as shown in Figure 6.5b, where the same wave characteristics are clearly visible.
In this model there are no extra materials at the centre of the cell, the layers that occur
in the first half of the cell are mirrored and repeated in the second half, there exists one
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(a) Experimental responses (b) Model responses

(c) Waveform development

Figure 6.5: a) Waveform response from experimental test, b) Waveform response from model,
in each [top] pulse/echo [bottom] through pulse. Shaded regions shown repeating time peri-
ods containing reflections. c) waveform development plot from model showing clear reflected
signals from approximately half of the cell body

additional separator layer that simulated the space for the layers to wrap around. As
this result is from the model, the waveform development plot shown in Figure 6.5c can
be inspected. From here it is clear that the first packet of waves received in pulse/echo
configuration are a significant collection of waves that return to the sensing edge from
the half way point of the cell.

During testing, experimental analysis has been performed on the first reflections, as
these have generally been providing the best correlations with battery SoC. This could
call into question whether this really is the best place from which to take readings, in
the knowledge that the measured signal has not travelled through half of the body
under inspection. Any information about layers further than the mid point is compro-
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mised and whilst this gives good SoC readings, a holistic view of the cell is hampered.
In this model, the central winding space is enough to create the barrier to send a group
of signals back to the sensor with strength from which to take readings. Experimen-
tally, this could be any barrier with enough material property discrepancy to cause the
large reflection, such as the current collector tabs that are generally attached to the end
of the electrode layers and feed outward from the centre space of the winding.

(a) Stacked (b) Jelly roll

Figure 6.6: a) model of stacked layer construction, b) model of jelly roll construction. In each;
[top] scale graphic showing layered construction, [center] waveform development, orange
dashed line represents sensing edge, [bottom] waveform response from sensing edge (pulse/e-
cho).

When pulsing through larger cells, or if the power available to generate the ultrasonic
pulse is limited, a stacked layered battery construction can present challenges retriev-
ing a measurable signal. The example in Figure 6.6a shows that when the signal has
no significant interface to gather reflections from, the waves continue to the opposing
edge somewhat intact. There is reliance then on the waves having the strength to com-
plete the return journey with enough power to enable a reading. In this case the signal
has attenuated almost entirely and no reading would be possible.

Note the subtle difference in the construction in Figure 6.6b, the jelly roll construction
causes the layer structure to mirror and repeat around the centre with a single addi-
tional separator included for space. This simple measure is enough for the signal to
reflect the signal back toward the sensing edge with enough power from which to take
readings. It is believed that the majority of measurements in this work have been taken
from half reflections such as this. This does present the problem of measurements being
potentially blind to any activity occurring in the far side of the cell, such as gassing.
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More precise information like the development of uneven layer thicknesses or uneven
density distributions would be potentially lost from the far side of the cell. However,
currently in ultrasonic inspection of batteries, the analysis and wave interpretations,
especially with simple, single sensor methods are not sophisticated enough to retrieve
this information if it were available in the signal.

This presents two possible solutions to finding that the stacked construction of the cell
under inspection causes the signal to attenuate before returning to the sensor. The first
solution is to simply increase the power of the pulses sent through the cell to force the
reflection all the way there and back to the sensor. The results of increasing the power
with signal amplification is shown in Figure 6.7a, the wave successfully travels the
opposing edge and returns intact and with strength from which measurements can be
taken. This however, a simple solution in theory, in practice could result in expensive
or dedicated equipment to ensure signal strength is sufficient to overcome this issue
only present in certain battery constructions.

(a) Increased power (b) Artificial barrier

Figure 6.7: a) Result of increased pulse power, reflection now visible at approximately 8-10µs,
b) result of including wave barrier, reflection now visible approximately 5-7µs.

An alternative to this could be the insertion, at manufacturing stage, of a wave barrier
to force a reflection to the sensing edge early. In the model in Figure 6.7b the barrier is
inserted arbitrarily at a depth of approximately 60% into the cell away from the sensor.
The barrier has a thickness of 50µm and a speed of sound property of 400m/s, it is
shown in the top battery layout plot in pale blue. Notice the collection of peaks present
between 5-7µs earlier than reflections in Figure 6.7a of 8-10µs, but strong enough from
which measurements could be taken. This is with no more power through the pulse
than that in Figure 6.6a. This shows, that at the design and manufacturing stage, the
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insertion of some sort of acoustic wave barrier could help in the simple, low cost ultra-
sonic monitoring of battery cells.

The modelling contained in this discussion provided the motivation to build an am-
plifier into the test kit for the large capacity cell tests in Section 6.7. In initial sensor
tests the standard pulsing configuration would not produce any signal response. Us-
ing the modelling to calculate the expected timing of the half reflection confirmed the
half space was not present in the cell and as such a more powerful signal would be
required to reach the far side of the larger width cell and back to the sensor again. It
was confirmed in subsequent discussions that the assumption was correct and that the
large capacity cells were of layered construction rather than jelly roll.

6.5 Smart Peak Selection

The following section uses frequency domain methods to monitor where in the sig-
nal peaks are changing with respect to two charge reference points. This allows for
feed back as to which peaks are preferred when taking battery state of charge mea-
surements. This technique guides away from peaks that correlate poorly with charge
cycling and is suitable for automating the measuring process should cell properties
change, either through cell discrepancy or with degradation over time.

6.5.1 Cross Wavelet Transform

In the current literature, analysis has almost exclusively focused on ultrasound signals
in the time domain, with little regarding the effects of battery changes on the signal in
the frequency domain. Gold et al., compare wavelengths of the second compressional
wave to the charge of the battery which showed wavelength and amplitude were a
function of charge [51]. Apart from this all studies focus on the signal power (the area
under the curve of the signal), peak amplitude, or peak time of flight change.

Various methods are tried here to identify if information from the frequency domain
can aid in determining parts of the waveform that have strongest correlations with
change in battery SoC.

• A fast Fourier transform (FFT) will provide signal information in the frequency
domain at the expense of losing all time-based information.
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• The short-time Fourier transform (STFT) technique is a time-frequency analy-
sis and can help identify not only changes in frequency but also where in the
time domain these changes occur. This method has been previously used in at-
tempts to detect acoustic echoes embedded in a signal response through layered
bodies [60]. The STFT method suffers from a necessary comprise between good
time/frequency resolution.

• A method that somewhat eliminates this time/frequency accuracy trade-off is a
continuous wavelet transform (CWT) which has also been used to detect echoes
in multilayered structures [61].

Experimental data time/frequency plots transformed using a CWT are shown in Fig-
ure 6.8a (charged) and Figure 6.8b (discharged). These plots show the amplitude across
the frequency spectrum (y-axis) and along the waveform duration (x-axis), with yel-
low being high amplitude and blue being low amplitude. Activity is observed across
a broad range of frequencies, with concentration around a 2MHz frequency band by
around 6µs before attenuating by approximately 10µs, this region would be expected
to be the location of the first reflections. The greyed regions denote the cone of influ-
ence (COI), a feature of wavelet transforms that causes lower frequency bands to have
increased edge effects and must be disregarded.

The battery ultrasound measurements rely on change in signal (ToF/amplitude) rather
than an absolute measurement value (i.e. variation in ultrasonic response are observed
as a battery feature, such as charge changes). As such, a useful tool to use to monitor
these changes in the time/frequency domain is the cross wavelet transform (XWT).
This method was developed by Grinsted et al., originally to monitor the Arctic oscil-
lation being a key aspect of climate variance in the Northern Hemisphere [62], but can
be applied to any two sets of time series data. A XWT plot is shown in Figure 6.8c, re-
gions in the time/frequency domain that share high common signal power properties
are denoted as high intensity (yellow), the arrows show the phase changes with right
arrows showing in-phase, left arrows anti-phase, down arrows charge lead discharged
by 90◦ The black border surrounding certain parts of the plots denoted regions with
5% significance against noise, a feature which is not used in this analysis. The COI is
again rendered on the plot showing regions at lower frequencies where insights are to
be disregarded

From the XWT shown in Figure 6.8c, a parameter for determining the most accurate
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(a) (b)

(c)

Figure 6.8: a) Continuous wavelet transform (CWT) for the signal when the battery is charged,
and b) discharged, c) cross wavelet transform (XWT) showing frequency bands where both
signals have strong similarities in amplitude shown in the higher (yellow) intensity regions,
arrows mark the phase shift between the signals [arrow right: in phase, left: anti-phase, down:
charged leading discharged by 90◦] [62]

part of the signal from which to take battery charge readings can be obtained. It can be
safely assumed that the pulsing frequency is a known value and as such that frequency
can be isolated (shown by the dotted white line at 2MHz in Figure 6.8c). Taking the in-
tensity value along this line gives the XWT amplitude plot shown in Figure 6.9a. This
is normalised between 0 and 1 and has a large peak at the beginning of the signal at
around 3µs. This peak corresponds to the incident pulse and would be of no practical
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(a)

(b)

(c)

(d) (e)

Figure 6.9: Signal importance factor calculation [point E on the flow chart]. Solid lines repre-
sent reference taken at charge extremes (blue markers in plot e), dashed lines from reference
taken at arbitrary partial charge points (grey markers in plot e).

use. There is however a second peak between 6 and 7µs. The phase shift value in Fig-
ure 6.9b captures the phase change which is also normalised between 0 and 1. Here it
can be seen that there is little or no shift in phase until around 6µs and then there are
fluctuations across the selected frequency after this, growing in intensity and errati-
cism. In Figure 6.9c, there is an arbitrary, exponential function, providing weighting
towards later parts of the signal. The weighting is constructed based on the assump-
tion that later peaks in the signal have travelled further, will include more reflections
and therefore hold greater battery insights. This additional parameter also serves the
purpose of eliminating or deemphasizing the very early parts of the signal (potentially
shallow signal depth penetration, dominated by early layer echoes and often prone to
transducer ringdown effects). Finally, in Figure 6.9d, the three values are multiplied to
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provide a signal importance variable. The variable can guide and potentially automate,
based on comparing two signal captures, where to measure peaks to optimise the accu-
racy of battery charge information. It is important to note that this method works from
any two, non-identical, wave captures taken whilst charge cycling. In Figures 6.9a-d
the dashed lines represent the arbitrary partial charge points marked in grey in Figure
6.9e. Although the intensity of the signal importance factor is lower, the identification
of the most important section of the signal remains clear and accurate.

Figure S.7 is included in the supplementary material where three animations are
present. The left panel shown the XWT changing during cycling, changing phase ar-
rows are visible across the 2MHz frequency band. The middle panel contains the signal
important factor, when normalised it is shown to provide a stable region from which
to take charge measurements. The right hand panel shows the charged A-scans move
during charge cycling, using the discharged as a static reference. A state of charge bar
is added to the left panel that applies to all three plots.

6.5.2 Smart Peak Selection

Using the XWT to define the signal importance factor enables identification of wave-
form regions that maximise two conditions; (i) good signal amplitude when at both
extremes (or any two non-identical parts) of the charge cycle and (ii) have significant
phase shift activity.

In Figure 6.10 the smart peak selection region is shown as peaks on the black line (sig-
nal importance factor); this shows a clear maximum between 6 and 8µs. By plotting the
time of flight/battery charge correlations (blue line) and the signal amplitude/battery
charge correlations (pink line) two points become quite clear. Firstly, the smart peak
selection region identifies the waveform region that best correlates with battery charge
data and the variation for both charged and discharged states is low (narrow band on
the shaded region). Secondly, it confirms that time of flight, rather than amplitude, is a
more stable measure to gain battery SoC insights.

Figure 6.11 shows an ultrasound response waveform marked up with all the strate-
gies to suggest from which region to extract measurements. The signal itself is drawn
with the regions suggested as containing best battery correlations in a thick black line,
the signal is faint and thin elsewhere. Each peak selected for analysis has a marker,
the size of which represent the strength of correlation with battery state of charge. The
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Figure 6.10: Smart peak selection method of locating best region for taking battery measure-
ments [step F on flow chart]. Signal peak amplitude-ToF/battery SoC correlation across the
waveform.

deepness of red is used to indicate the discrepancies in correlations between charge
and discharge parts of the cycle. This smart peak selection should show large, deep
red markers on the peaks of the signal shown drawn with thick black lines. A useful
feature of this method of peak selection is that as the XWT amplitude variable detects
regions where both signals share high common power, disappearing peaks of inter-
est are automatically filtered out. This helps to guard automatically against unstable
recordings.

The point on the peak at around 7µs is large and deep red. This can be seen in Figure
6.10, where the ToF/battery SoC R2 values during both charging and discharging are
0.86 and 0.92 respectively. The point at the peak at around 11µs is small and almost
white, this can be seen in Figure 6.10 where the ToF/battery SoC R2 values whilst
charging and discharging are 0.03 and 0.31 respectively and would be unsuitable for
battery monitoring purposes.

Many signals produce a noticeable collection of peaks that represent the first reflection
waves that have travelled there and back through the battery. This is an intuitive place
to take measurements from and are appropriate to capture signal envelopes, however
some signal responses do not provide this. The signals in Figure 6.12 are taken from
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Figure 6.11: Smart peak selection waveform mark up. The ultrasound response waveform is
displayed with thick black lines to denote regions of signal that are favoured by the smart peak
selection method. The size of the point at each peak represent the strength of correlation with
battery state of charge (large points are best) and the deepness of the red in those points shows
the variance between charge and discharge parts of the cycle (deep red is best). [step G on the
flow chart].

batteries of the same specification and manufacture as previous using identical test
equipment and methodology. The signal in Figure 6.12a is difficult to envelope and
gain a defined peak from which to take measurements. However, here are a collec-
tion of peaks that would appear suitable for taking charge measurements. The signal
drawn in thick black between 13 and 15µs contains two or three peaks that have strong
correlation and low charge/discharge variance.

The signal in Figure 6.12b is lower quality and no obvious peaks are evident with a
good signal to noise ratio as good candidates for taking charge measurements. The
smart peak method in this case highlights very early (3 to 5µs) signal and these peaks
provide poor battery information (the sound wave has not travelled through the cell
layers and there appears to some transducer ring down). The second, shorter group of
smart selected peaks from 11 to 12µs reveal the region that contains peaks containing
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best battery charge correlations. Recall from the modelling data, that early signal is
usually dominated by casing and suffers from lack of cell penetration and should be
avoided, the second shallow peak would be preferable.

(a) (b)

Figure 6.12: a) Signal that is difficult to provide a consistent peak of an envelope, smart peak
selection shows that peaks drawn in thick black lines have the strongest battery charge corre-
lations and are most consistent across charge/discharge parts of the cycle. b) This signal has
little scope for enveloping, no obvious peak as a candidate for taking measurements, first smart
peak region inaccurate, second more shallow region successfully locates peaks with best bat-
tery charge correlations.

6.5.3 Combating Potential Sensor Placement Issues

As noted in Section 3.2.4, the spatial resolution of sensor placement can have a signif-
icant and damaging effect on the quality of ultrasound signal obtained when pulsing
through a cell [48]. It is suggested that the current collecting tab inhibits the expansion
of electrode layers where present, and should the sensor be placed over this region it
will lead to reductions in peak shift. In addition this, gassing within lithium-ion cells
can occur in unpredictable areas causing a reduction in signal quality in the sensing
region.

With the cell being a closed body, it is difficult to decide on best sensor placement from
visual inspection of a cell. In this work, the sensor was placed as centrally as possible,
as seen in the previous section, this generally produced mixed results of varying qual-
ity. It is suggested that this smart peak selection method can be utilised to optimise
the signal quality where features such as the current collecting tab are encountered or
where gassing occurs during battery use or ageing. Whilst this makes no guarantee on
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signal quality itself, the smart peak selection will help to ensure that the best signal
response with respect to battery SoC is measured, going someway to combating the
unknowable and potentially negative effects of sensor placement.

6.5.4 Discussion – Practical Implementation

Ultrasound measurements would likely be used in conjunction with traditional bat-
tery measuring methods, such as voltage readings, to enhance the accuracy of charge
estimations. The smart peak selection method can help optimise and protect ultrasonic
battery measurements, particularly where the signal response is weak or contains un-
expected features. Causes of these problems could include variations in battery geome-
tries and sensor instrumentation.

This method of battery monitoring is a practical means of gaining true insights into the
internal changes occurring during battery charge cycling. Although this work utilised
commercial contact probes to gain ultrasound readings, much smaller instrumentation
methods are possible. For example, discs or cut piezoelectric plates, low profile and
size order of a few mm’s requiring very thin wiring. To ensure responses with good
cell penetration additional factors such as adhesion and damping must be considered,
this would still allow for a very small and cheap instrumentation set up. Results can
be obtained using a single sensor, keeping materials to the minimum required for this
method and only one face needs to be accessible. Pulsing/receiving circuits are also
small and inexpensive, of the order of £10 s, and with the application of pulse sequenc-
ing tables, could control the pulse, signal capture and data processing of all connected
battery cells. All the experimental data analysis performed in this study, including peak
tracking and smart peak selection requires minimal processing time and power and
is suitable for live monitoring purposes. Any improvements in the accuracy of ultra-
sound data acquisition would improve the accuracy of methods covered in this study.

6.6 Experimental Refinements

This section covers results from testing that are worth noting for future test and analy-
sis reference.
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6.6.1 Gel/Glue Couplant

Throughout most of the charge cycling tests in this work, high temperature gel cou-
plant was used in conjunction with hand tightened clamps to maintain pressure and
hold sensors in place. Superglue can also be used as ultrasound couplant, the advan-
tage being that of a permanent bond for longer term testing.

A reference test was conducted to compare ultrasonic couplant performance of super-
glue compared with the high quality signals obtained using gel. Superglue was applied
to a 2MHz commercial probe and attached to a standard 2Ah cell as shown in Figure
6.13a. The sensor was applied using firm hand pressure and was held in place for 30
seconds. The concern with this method of attachment is safe removal of the probe for
reuse in repeat testing. A superglue de-bonder (Figure 6.13b) was used to remove the
sensor from cell surface. With care the sensor could be removed from the cell in perfect
condition. The cell after sensor removal is shown in Figure 6.13c.

(a) (b) (c)

Figure 6.13: Attaching and safely removing a commercial probe to a pouch cell using super-
glue and superglue de-bonder.

The signal acquired using superglue as couplant is shown in Figure 6.14. The super-
glue attachment/couplant method is a almost identical to the signal obtained using
gel couplant. With the option to safely remove a sensor attached with superglue with-
out damage to the sensor or the battery cell, this semi-permanent attachment/couplant
method is to be considered a good long-term attachment method under standard op-
erating conditions. A discussion about the suitability of this bonding method in high
temperature conditions is contained in Section 7.4.3.
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Figure 6.14: Sample signals using different bonding/attachment methods.

6.6.2 Pulse/Echo, Pitch/Catch Through Pulse Comparison

As shown in Figure 2.5 in Section 2.1, there are different sensor configurations measur-
ing the responses of waves taking different paths. In the experiments in this work, sin-
gle sensor pulse/echo arrangements are almost exclusively employed. For complete-
ness of testing, charge cycling tests were conducting using pulse/echo and pitch/-
catch, through pulse arrangements to compare. The charge cycling for each test was
completed using the Cadex C7200 (shown in Section 5.1), using CCCV charging at 0.5C
with a 0.05C cut off. The sensors for the through pulse were positioned on opposing
faces of a standard 2Ah commercial cell as shown in Figure 6.15.

The results for the pitch/catch, through pulse test are shown in Figure 6.16a. The first
point of note is the absence of excitation pulse at the beginning of the signal, a benefit of
this method. There are also signal-to-noise advantages using this method as the wave
path is half the distance and attenuates less, that is not evident here, being shown in
arbitrary units. The most important result here is the stability of peaks recording high
ToF/battery SoC correlations across the whole signal. This is contrasted with the more
erratic nature of the pulse/echo correlations shown in Figure 6.16b. It is also worth
noting the ToF appears to contain less temperature bias across the signal in the through
pulse result, although it still exists.

Whilst the charge/ToF correlations are stable across the whole signal when using a
through pulse sensor configuration, if the correct peaks are successfully identified in
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Figure 6.15: Pitch/catch, through pulse sensor configuration.

(a) (b)

Figure 6.16: Results from charge cycling tests using a) pitch/catch, through pulse and b)
pulse/echo sensor configuration. The left axis R2 refers to the correlations between battery
SoC and temperature with the shift in ToF for each peak in the signal response. The markers
are overlaid on a greyed out sample signal response to identify each of the tracked peaks.

the pulse/echo signal, the results are of equal quality. In fact, the highest correlation in
the pulse/echo test is the 5th peak with an R2 of 0.88, just over the highest performing
peak from the through pulse with an R2 of 0.86.

The smart peak selection method developed in Section 6.5 is applied to the single sen-
sor, pulse/echo signal, the results of which are shown in Figure 6.17. Recall that regions
where the signal is drawn with thickened black lines are the peaks recommended by
the smart peak method. The signal is drawn with a black thick line around 6µs, being
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Figure 6.17: Smart peak selection method applied to pulse/echo comparison result.

thin and pale elsewhere. The smart peak successfully identifies the peak(s) with best
ToF correlation with battery SoC during charging, noted with the large red dots on
peaks in the identified signal region.

6.7 Large Capacity Cell Tests

Ricardo had obtained large, 52Ah high capacity cells to test on using better cycling
facilities at the University of Brighton. A suitable test set up was requested to take ul-
trasonic measurements of the cells during charge cycling tests, the cell is shown along-
side the standard cells used during testing in this thesis in Figure 6.18. As shown in
this image, the large 52Ah cells were significantly bigger and specifically, thicker than
the standard 2Ah commercial cells used in the majority of tests (11.4mm compared to
5.9mm). Testing on a cell of this size was considered important as a verification of the
ultrasonic method of layer inspection at larger scale.

Working with a cell of this size presented new challenges. The increase in thickness
was a problem for the standard test set up. First attempts were unable to retrieve any
signal response from the large cell using a single sensor in pulse/echo configuration.
Difficulties in retrieving a response signal were increased as it became apparent using
signal amplification there was no centre space/current collector around the middle of
the cell to provide a half-reflection, covered in Section 6.4.

Considering these challenges, signal amplification combined with a move to a pitch/-
catch, through pulse (covered in Section 6.6.2) set up using commercial probes was
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Figure 6.18: Comparison of various capacity cells used during testing.

used. This strategy would ensure retrieval of high quality ultrasound measurements
of the large capacity cells, comparable with those obtained from testing on standard
commercial cells during this work. To facilitate multiple sensors across the surface to
test positional variability, a multiplexer was included in the test equipment set up,
providing up to 16 channels. 10 probes were supplied with the test kit allowing for the
placement of 5 sensor pairs on the cell. The test kit set up schematic supplied to Ricardo
is shown in Figure 6.19. Note the sensor attachment/bonding method recommended
in the bottom right corner is superglue, a discussion of this attachment method is cov-
ered in Section 6.6.1.

With the ultrasound testing kit delivered to the University of Brighton. In conjunc-
tion with Ricardo, the large capacity cells were instrumented according to the set up
schematic. The chosen sensor pairing positions are shown in Figure 6.20, a sensor is
placed on the opposing face directly inline with each sensor shown to capture through
pulse signals.

The cells were subjected to standard charge cycles, at two different rates, 0.5C and
1.5C. Cell surface temperature was also recorded during tests. Results from a sample
0.5C test are shown in Figure 6.21a. Here it can be seen that changes in ultrasound
ToF had very strong correlations with battery SoC during charging with R2 ≈ 0.94.
ToF had a weak relationship with cell temperature with R2 ≈ 0.38. These results are
inline with those obtained during tests on the standard 2Ah commercial cells shown
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Figure 6.19: High power, multi-sensor, large capacity cell test schematic.

Figure 6.20: Instrumentation of large capacity cell.

in Figure 6.3b. Additionally, there is no requirement for a peak selection method when
using pitch/catch through pulse sensing. The red and blue shaded boxes show the
narrow deviation (95% CI) in results with the line drawn to show the mean across
all selected peaks, this sensor configuration benefit is discussed in Section 6.6.2. There
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is no obvious discrepancy between any of the sensor positions despite the significant
differences in positions across the large cell surface area.

(a) (b)

Figure 6.21: Results from large capacity cell tests; a) 0.5C charge rate producing 6◦C gain
during charge cycling and b) 1.5C charge rate producing a 24◦C gain during charge cycling.

As shown in Figure 6.4, modelling showed where the temperature fluctuation of a cell
is large enough, the ultrasound ToF will shift bias away from SoC correlation towards
temperature correlation. In the modelled example, a 5◦C gain during cycling produced
heavy ToF bias towards SoC where the 25◦C gain shifted bias towards temperature
correlation. This effect is shown in the 1.5C charge rate tests that produced a 24◦C shift
in temperatures across a charge cycle, compared to just 6◦C during the 0.5C charge
cycle. Figure 6.21b shows a battery SoC/ToF relationship drop in the 1.5C test to R2 ≈
0.78 whilst the temperature/ToF relationship increased dramatically to R2 ≈ 0.89. This
issue presents significant challenges to the use of ultrasound where elevated charge
rates are used.

Based on the assumption that changes in ToF whilst the cell is at rest can only be tem-
perature related (usually the cell returning to room temperature), attempts to com-
bat the effects of temperature on ultrasound signal are made. Whilst this assumption
may not fully hold, chemical activity may continue once current is no longer applied,
change in material stiffness for example. It was considered worth calibrating the peak
ToF measurements using ’resting’ cell data based on temperature changes.

The calibrated time of flight is calculated as follows:

ToFc = (α[β − Tm]) + ToFm (6.1)
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Where β is a temperature benchmark the ToF is normalised to, usually the test start
temperature. Tm is the temperature measurement over the test and ToFm is the mea-
sured time of flight of a selected peak during the test. The calibration coefficient α is
calculated using:

α =
∆ToFr

∆Tr
(6.2)

Where ToFr and Tr are the time of flight and temperature measurements over the cali-
bration region shown in Figure 6.22a, providing a µs/◦C value to adjust the signal.

(a) (b)

Figure 6.22: Calibrated 1.5C-rate test results; a) calibration data selection region, b) calibrated
ToF/SoC correlations.

The results of the calibration are shown in Figure 6.22b. Calibration improved the sig-
nal the ToF/battery SoC correlation, increasing the mean from R2 ≈ 0.78 to R2 ≈ 0.85.
It should be noted that the confidence drops with a broad 95% band shown in the red
shaded region, it remains true however that there is some improvement after calibra-
tion. Conversely, the temperature relationship is severely damaged after calibration.
The uncalibrated R2 ≈ 0.89 drops below 0.7 after calibration is applied. The confi-
dence region becomes very large once calibrated with a very high spread of results
across sensors and peaks.

ToF sees an improvement in the relationship with battery SoC during cycling, despite
some loss of confidence in accuracy, whilst the stability of the ToF/temperature rela-
tionship is broken. This calibration effect is performed using only a very small region
of rest data available from these tests. It is believed that complex reflections in pulse/e-
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cho obtained data renders this calibration method ineffective. To explore this further,
pitch/catch through pulse ultrasound data should be obtained where the signal takes
a more direct path and the temperature effects are evenly spread. Charge cycling pro-
grams should be designed to allow for the harvesting of larger quantities of battery
rest/thermal change data to acquire more accurate calibration coefficients. This would
also help test the linearity of the µs/◦C assumption and whether other factors would
require incorporation into calibration method, such as stiffening and relaxing of active
materials post charge/discharge.

6.8 Peak Variations

Noting the significant discrepancy in the quality of battery estimations across peaks
in a signal response, particularly when using a single sensor pulse/echo arrangement,
this section takes a closer look at those differences. There are two main reasons for
looking at the variations in peak activity; firstly, to see if there may be any method of
explaining the differences and secondly, whether any peaks share features and what
additional insights may be gained in noting these common characteristics.

Figure 6.23: Peak tracking throughout charge cycling tests. The lines represent the selected
peak ToF shift (µs) and change in amplitude (AU) of the ultrasound signal as the cell is
charged/discharged (5 charge cycles in this instance). The green dots mark points where the
battery reached 100% SoC, the red dots mark 0% SoC.

Removing the signal surface plot from the peak tracking plots shown in Figures 5.7c
& d provides an illustration of the repeating looped characteristics of a selected peak
during charge cycling, as shown in Figure 6.23. Rotating isolated peak tracking plots so
that test time is flattened, overlays each charge cycle, giving an opportunity to compare
the features of changes in individual signal peaks across the signal. This is shown in
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Figure 6.24, to aid the comparisons, sketches are drawn to summarise the repeating
patterns provided by the selected peaks.

Figure 6.24: Peaks 4, 5 and 6 from a signal response are rotated so test time in hours is flattened
to the page showing each peak change loop throughout charge cycling appear overlaid. A
sketch of the characteristics of charge/discharge stages of cycling are shown for easy peak
comparison. The loop shape correlations are displayed in the boxes, colour coded as shades
through red: positive, green: no correlation, blue: negative. This is covered in more detail in
later figures.

To assess the features across the whole signal response, individual peak characteris-
tics from the signal shown in Figure 6.16b are displayed in Figure 6.25a. Each plot is
colour coded according to the charge state (green = charging[CC], red = discharging,
blue = charging[CV], grey = rest). Green markers are placed at the points where the
cell was fully charged to 100% and red markers placed where the cell was completely
discharged to 0% in the same manner as established above.
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The variety of characteristic peak activity is confirmed here with various shapes drawn
out with peak tracking. Some peaks form loops (peaks 3 and 7 for example), others
have more direct ’to and fro’ shapes (peaks 4 and 8) while others have more chaotic na-
tures (peaks 12 and 16). In most cases the green and red markers are consistent within
the loops, showing the ultrasound is successfully tracking the cycling nature of the cell
during charge. The more erratic markers are found in later peaks in the signal.

(a) (b)

Figure 6.25: Multiple peak tracking, peak characterisation during charge cycling in a single
sensor, pulse/echo test set up; a) individual tracked peak activity, colour coded according to
charge status (green = charging[CC], red = discharging, blue = charging[CV], grey = rest). b)
peak activity correlation intensity plot showing peaks sharing common shapes. Sample waves
shown across the top and left hand side with each peak number coded.

To directly compare the characteristic loops of each peak across the signal, an automa-
tion of the sketches in Figure 6.24 is conducted using the same methodology developed
to study fretting loops by Wade et al. [63]. Using this method the vectors between data
points are measured and combined to provide an array variable for each peak, each
of these variables can be tested against each other to form a correlation matrix. The
intensity of these relationship between these peak characteristic variables are shown in
Figure 6.25b, the bar on the right display the color scale where red is perfect positive
correlation (+1), blue is perfect negative correlation (-1) and green is no correlation (0).
A sample of the wave form is synchronised and plot across the top and left hand axis,
each tracked peak is identified with a number to aid comparisons.

The red box for peaks 4 and 6 indicated a strong correlation between the activity of
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these two peaks during charge cycling. This is confirmed checking the characteristics
of each in Figure 6.25a where both peaks have a clear to and fro pattern, with a slight
hysteresis on the charge stage of the cycle. Peak 11 is also identified as similar to peaks
4 and 6, where the resemblance is apparent although not as strong. The periodicity of
peaks 6 and 11 from the start, identified as close in nature to peak 4 is worth noting. It
could be that the resemblance of peak activity here is significant, possibly due to half
reflections giving attenuated versions of the same peak. There is also a band shaded in
orange (approximately 0.4 correlation) apparent at peak 2, around peaks 7 and 8 and
again around peak 13. The periodicity may also giving clues as to half reflections and
with some calculations, average wave speed through the cell.

Tracking of multiple peaks is performed on the pitch/catch, through pulse test shown
in Figure 6.16a. In this test it was noted that through pulse signals are more stable at
attaining high correlations with battery charge during cycling, having good correlation
across all peaks. This peak consistency is clearly visible when viewing the peak char-
acteristics across the signal in Figure 6.26a, with little discrepancy in the nature of peak
activity.

(a) (b)

Figure 6.26: Multiple peak tracking, peak characterisation during charge cycling in a two sen-
sor, pitch/catch, through pulse test set up; a) individual tracked peak activity, colour coded
according to charge status (green = charging[CC], red = discharging, blue = charging[CV], grey
= rest). b) peak activity correlation intensity plot showing peaks sharing common shapes. Sam-
ple waves shown across the top and left hand side with each peak number coded.

This consistent peak tracking is confirmed in the correlation intensity plot shown in
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Figure 6.26b. It appears that there are repeating bands of high intensity regions, mark-
ing out the periodicity of peaks sharing common peak tracking characteristics. Bands
of increased intensity form at peaks 1-2, 4-5, 8-10 and 13-14. This could suggest half
or full reflections at these peaks, where the waves are attenuated repeats of the same
wave paths.

This method of peak analysis was not explored in great detail, being an initial explo-
ration to see whether a) peaks could be characterised according the their ’shape’ dur-
ing charge cycling, and b) whether these shapes could be compared and contrasted to
provide insight locked deep withing the wave responses.

This addition to the analysis script was considered moderately successful, with some
potential for further exploration. As discussed, parameterising the ’looped’ activity of
the peaks can allow for comparisons, repeating patterns maybe capable of providing
insights into the layered structure of the cell. Further to this, a template could be set,
such as the desirable ’to and fro’ nature found in peak 9 in Figure 6.16a. A search
could be performed in the background to take readings from peaks matching the tem-
plate, giving confidence other factors causing hysteresis (such as temperature effects
resulting in ultrasound discrepancies) are eliminated. Deviations from observed peaks
characteristics may be a sensitive method of assessing a change in battery structure,
through abuse or ageing.

6.9 Conclusions

• Time of flight measurements show better correlations with battery state of charge
when compared to the signal amplitude.

• Instrumentation variations such as sensor and bonding methods, in addition to
variations in the layered construction of a cell, can results in unpredictable signal
responses when pulsing through a lithium-ion battery. This can be problematic
for some measuring/analysis techniques, such as signal enveloping which may
be difficult or impossible to obtain.

• Smart peak selection provides a method of locating the peak with strongest cor-
relation with battery charge. This method is not required when using two sensors
in through-pulse configuration but is a useful tool for pulse/echo sensor set ups.
The method is shown to work on various signal responses, successfully identify-
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ing a region of peaks carrying good battery state of charge information.

• Temperature effects can interfere with the ability to monitor state of charge using
ultrasound responses. Temperature effects can occur from internal fluctuations
during elevated C-rate charging or externally from ambient temperature changes.
Temperature can dominate the signal at high enough temperatures, causing a
temperature bias. At lower temperatures, the signal has a charge bias and main-
tains accurate charge cycling monitoring.

• Method suggested to calibrate signal responses to dampen temperature effects.
Trial of the method shows a slight improvement in ultrasound/state of charge
correlations, whilst damaging the relationship between temperature and charge.
This methodology is attempted using a small amount of rest data, further tests
are recommended with larger resting data periods.

• When using a single sensor, peaks do not alter in a uniform manner across the
signal. There is an apparent unpredictability regarding how each peak alters dur-
ing cycling. This is not the case for through pulse signals, where each peak has
approximately the same behaviours across the signal. By characterising the shape
of peaks during charge cycling, similarities in peak behaviours shows periodicity
providing some dimensional insights of the cell.

• Experiments on the large capacity cells agreed with temperature effect modelling
in Section 6.3 closely. Both show that charge cycling with small temperature fluc-
tuations (≈ 5 to 6◦C gain), produced by a low C-rate charge the signal retain a
strong SoC bias. The higher C-rate tests on the large cell cause a 24 to 25◦C gain in
temperature, this shows an equal temperature/SoC bias in the ultrasound signal
in both the large capacity cell test and the modelling.
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7 Non-Standard Thermal Abuse Tests

In this chapter, the thermal abuse testing is conducted on the same commercial lithium-
ion cells used in SoC tests in section 5.1. Ultrasonic measurements of the cells during
thermal abuse tests are analysed to assess whether this method of inspection can pro-
vide additional battery cell insights and potential for early warnings of the onset of
thermal runaway.

The work in this chapter was undertaken collaboratively with, at the time, PhD student
Peter Bugryniec. In his previous work Peter had assessed thermal runaway in lithium-
ion cells and studied advanced abuse modelling of these thermal reactions [64–66]. Peter
was responsible for the oven during tests, placing samples inside, connecting the ther-
mocouples, operating the oven and safe sample removal and oven cleaning post tests.
All other tasks and procedures in this chapter are within the scope of this thesis.

7.1 Introduction

Figure 7.1: Overview of reactions with respect to temperature, Feng et al. (2014) [67].

Thermal runaway (TR) is a significant safety concern for lithium-ion batteries. To in-
vestigate thermal runaway, accelerated rate calorimetry (ARC) and oven exposure is
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Table 9: Summary of events during thermal abuse tests and expected temperatures/rates.

Feature Expected value Reference
Swelling/delamination 40-60◦C [68]

SEI reaction 45◦C [67]

Electrolyte evaporation 60-100◦C [69]

Anode-electrolyte 80◦C [67]

Separator melt (PE/PP) 132◦C/163 ◦C [67]

Onset of self-heating 0.02-0.1◦C min−1 [65]

Thermal runaway 1.0◦C min−1 [65]

used [65]. Effects of heating occur in battery cells at certain temperatures, from gassing
to thermal runaway. An overview of reactions is shown in Figure 7.1. Table 9 is created
summarising key events with expected temperatures for the cell type being tested. The
tests were designed to check whether an ultrasound signal response could detect any
of these events during cell heating.

Figure 7.2: Thermal hazard technology ARC EV+ [65].

The ultrasonic monitoring equipment used in these tests is the same set up as that used
during charge cycling tests in section 5.1, Figure 5.1. However in these tests, as there
was expectation of the cell being destroyed should thermal runaway occur, commer-
cial probes were considered unsuitable and the cheaper, disposable option of bonded
sensors was initially preferred.
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The ARC (Figure 7.2), based in the G28 battery lab in the Kroto Research Institute,
University of Sheffield, was used to heat the cell for the test. Two main options were
considered for the thermal test parameter, firstly, thermal ramping, in which the cell
is heated at constant or in regular stepped fashion. Alternatively heat-wait-seek tests
were considered, a test set up designed to monitor the precise onset of self-heating
within the cell.

7.2 Phase 1: Initial Exploration Test

The first phase of testing was to conduct thermal ramping of a commercial pouch cell
whilst taking ultrasonic measurements. Initially as a means of assessing whether the
ultrasound signal response would detect battery changes in general during heating.

7.2.1 Set Up

Commercial probes were rejected in these thermal tests, the ARC would subject the
sample cell (the same 2Ah capacity cells used throughout standard charge cycling tests
in Chapter 6) and all connected sensors and wiring to high temperatures (over 100◦C).
This could damage the probe and if thermal runaway were to occur, the probe would
be destroyed. Instead, pre-cut circular 3MHz piezo-ceramic elements were obtained,
being the closest available to the 2MHz probes used with success in charge cycling
tests. These sensors were longitudinal and wraparound, suitable for these tests. The
sensor was bonded to the battery surface using Robnor epoxy resin, a coaxial cable was
soldered onto the element with the ground wire attached to the wraparound section,
shown in Figure 7.3a. A further layer of epoxy was applied to the sensor for added
protection, shown in Figure 7.3b.

A type N thermocouple was attached to the surface of the cell, the battery was sus-
pended from the frame that would sit in the ARC to keep the object centrally placed,
shown in Figure 7.3c (prior to testing) and Figure 7.3d (after thermal abuse tests). The
battery was not specially prepared in anyway and was tested on at approximately half
capacity SoC. The cell was not clamped or restricted so any swelling would be allowed
to occur.

A thermal ramping test was decided for the ARC to heat the battery cell. The ARC test
was designed to heat up to 120◦C in steps of 10◦C. This test was designed to see firstly,
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(a) 3MHz sensor attached to cell (b) US instrumented pouch cell

(c) Cell in ARC prior to testing (d) Cell in ARC post thermal abuse test

Figure 7.3: Thermal abuse test, sensor instrumentation. Pre and post test, ARC/cell images.

how the ultrasound response from the battery would track the change in temperature
and secondly, any deviations from a suspected linear relationship between the two.
These deviations would be assumed to be internal changes that could be assigned to
expected events within the cell at certain temperatures.

7.2.2 Results and Discussion

The test data was processed using adapted methods developed in section 5.2. A signal
peak was selected for tracking throughout the test, the change in signal amplitude
and time of flight could then directly be compared with the thermal data to assess the
relationship between the two. The peak selected in this instance was at approximately
4µs and is shown in Figure 7.4a. The peak was isolated, tracked and displayed in Figure
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7.4b.

(a) Selected peak (b) Peak tracking

Figure 7.4: Thermal abuse test, ultrasound signal response.

The peak tracking effectively tracked the peak as the test progressed, this was despite
significant shifts towards higher peak timings as the cell was heated (Figure 7.4a -
top). The relationship between the ultrasonic signal response and the cell temperature
was linear with both the tracked signal peak and the temperature closely matched in
their progression, this is shown as the steady red line through the region marked (1) in
Figure 7.5a, b & c. The closely matched relationship is clearly evident in the top panel
in Figure 7.5b, where the temperature and peak change are almost identical in both
timing and scale. This is most obvious in the top correlation plot panel in Figure 7.5c
where the relationship is linear up to around 45-47◦C.

In Figure 7.5a, there is a temporary ’blurring’ of the signal approaching 600 minutes,
marked as (2). This could possibly have been due to swelling or gassing, in either case
the feature corrected itself as the signal strength returned after around 2 hours. This
dip in amplitude is most clearly visible in the bottom panel of Figure 7.5b, marked (2),
note the significant drop and return to a stable amplitude for the next few hours. There
is a smaller, less noticeable event such as this ’blurring’ at around 400 minutes, again
the signal corrects itself.

The regions marked (3) are a drastic increase in ToF over the relatively short period
where the cell was heated from 55◦C to 95◦C. The increase in ToF is somewhat greater
than expected and features a sudden jump at around 76◦C, marked as (6) in Figures
7.5b & c. The purely linear relationship does not hold through this temperature, after
this, the ToF appears to remain constant until sharp increases occur.
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(a)

(b) (c)

Figure 7.5: Results from initial thermal abuse test. a) peak tracking synchronised with cell
temperature, b) ToF/temperature and peak amplitude/temperature comparison plots and c)
ToF/temperature and peak amplitude/temperature correlation plots.

There is an abrupt change in signal at approaching 1000 minutes when the cell is ap-
proximately 103◦C, marked (4) and the dashed lines in Figure 7.5a. This sudden ul-
trasound feature does not correspond to any thermal characteristic as the temperature
is steadily rising for an extended duration when this change occurs. This could be
a results of sudden cell changes such as bulging, or a structure change of the poly-
mer separator. It is also possible this was an instrumentation issue, where the sensor
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’popped’ away from the cell surface slightly due to swelling, causing the altered signal.
This ’snap’ in signal peak ToF is marked (7), a clear deviation from the linear ToF/tem-
perature relationship, similar in nature to the sudden jump marked (6).

Despite the change in signal, ultrasound continued to track the temperature increases
in the battery. Approaching 1100 minutes the cell heats a further 10◦C up to approxi-
mately 115◦C, marked as (5). From the succession of thermal ramping up to midway
through the test from 55◦C to 95◦C, the small increases in temperature do not affect
the ToF, only the ramping stages. The ultrasound stopped recording approaching 24
hours into the test and the cell did not go into thermal runaway during this time, likely
due to the cell not being charged to full capacity before heating. The cell was heated to
the maximum temperature of the ARC on two occasions to force thermal runaway, the
damaged cell after the first is shown in Figure 7.3d.

7.2.3 Conclusion

There was little attempt to compare any of the ultrasound features with the values out-
lined in Table 9 in this initial exploration test. This was due to the lack of repeatability
of the test, being a single data set, it would be impossible to know whether a fea-
ture, such as the ’blurring’ seen midway through the test, occurs regularly or on just
this occasion. The inability to decipher what features in the ultrasound response were
driven by the changes in the battery sample as it heats, and what is caused by the in-
strumentation hardware (sensor, bonding, connection, wiring) during heating needed
addressing before assumptions could be made. Additionally, the cell did not go into
thermal runaway during the test so no prior warnings of this event could be detected.

The test was considered successful however, this initial data analysis revealed that ul-
trasound would continue to measure changes in temperature during thermal ramping
of the cell. There were many features that deviated from a linear relationship between
the time of flight of a selected peak and the cell temperature or the constant amplitude
measurement of the selected peak.

7.3 Phase 2: Bonded Sensor Tests

In this phase of testing, attempts were made to address the issues presented in the
initial battery cell thermal ramp test. The first stage of these tests would be to perform

113



a thermal ramp test on a metal block whilst capturing ultrasound data. Being a single
layered object undergoing no changes other than temperature increase, this test would
give insight to the effects of the high temperature upon the ultrasound hardware. This
in turn would give confidence to the battery tests where cell changes are assumed.

This phase of testing included three repeats of the same parameters. This would pro-
vide the repeatability and consistency of results from which fair assumptions and con-
clusions could be drawn. To increase the chances of setting the cell into thermal run-
away, each cell is subject to the heat test whilst fully charged. It was expected testing on
the cells in this state would trigger more reactions as the cell temperature increased. In
leaving the cell fully charged, each cell was subjected to three discharge/charge cycles
from brand new. This process served the purpose of ensuring each cell was in a simi-
lar state of health and charge. The ultrasound response was captured throughout each
of these cycling tests in the same manner as charge tests in section 6, this would give
insight into sensor performance in how accurately the internal changes due to battery
charge were measured.

7.3.1 Set Up

The instrumentation calibration tests were performed on a metal block, having a thick-
ness of 9.8mm and a material wave speed of 3984m/s. The sensor attached to the block
was a 3MHz longitudinal wraparound sensor, identical to that used in the initial test
in section 7.2.1. The sensors were bonded in the same manner using a layer of epoxy
resin, the coaxial cable was soldered to the sensor/ground section as shown in Figure
7.6a. A further layer of protective epoxy was applied to the sensor, shown in Figure
7.6b.

The instrumented block was suspended in the ARC in the same manner as the battery
cell test as shown in Figure 7.7, the surface temperature of the sample was recorded
using a thermocouple. The ultrasound captures were taken using the same equipment
and methodology as that used in the charge cycling tests and the initial battery test
(Figure 5.1), however, no clamp was used for the sensor as the bonding held the ele-
ment in place. 3MHz waves were pulsed through the sample, in a pulse/echo, single
sensor arrangement. The ARC was set on a thermal ramp test, starting at 50◦C, heating
the sample in 5◦C steps with a wait period of approximately 90 minutes.

Three identical 2Ah cells were used for testing (the same cells as used in Phase 1 in
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(a) (b)

Figure 7.6: Ultrasound instrumentation of metal block, a) circular wraparound element
bonded with epoxy, b) covered in epoxy for additional protection.

Figure 7.7: Metal block suspended in the ARC.

section 7.2), to ensure test repeatability, all three sensor elements were chosen from the
same batch. 10MHz longitudinal wraparound elements were available, with a 3MHz
signal in pulse/echo configuration, to be sent through the cells.

The circular piezo-ceramic elements were located at the same position on each cell as
shown in Figure 7.8a and each sensor was bonded to the cell using epoxy resin, shown
in Figure 7.8b. Coaxial cables were soldered once the elements had been clamped and
cured overnight in the same manner as the metal block instrumentation. A further
layer of epoxy was applied to the sensors for protection (Figure 7.8c).

Prior to the thermal ramping stage of the test, each cell was charge cycled three times
and was left at 100% capacity charge. This process ensured all cells were in an identical
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(a) (b)

(c)

Figure 7.8: Ultrasound instrumentation of three test battery cells, a) elements positioned in
same location, b) bonded to cell using epoxy resin and c) additional layer of epoxy for sensor
protection.

state and were also more likely to go in to thermal runaway. Additionally, ultrasound
measurements were taken during cycling to assess the quality of the signal responses
retrieved using this instrumentation method as opposed the commercial probes used
throughout Chapter 6. The cells were cycled 24 hours prior to the thermal ramping
stage of the test using the MACCOR 4000 Series Test System used throughout charge
cycling tests in section 6. The cells were CCCV cycled at 0.5C with a cut off of 0.01C.
The cell surface temperature was recorded throughout the charge cycling stage.

For the thermal ramping stage of the test a heat-wait-seek method is utilised to de-
termine the onset of cell reactions. A starting temperature of 50◦C was set to ’heat’ in
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steps of 5◦C. Each heat step is followed by a 60 minute ’wait’ where the sensitivity of
the ARC ’seeks’ for a temperature rate of > 0.02◦C min−1 at which point the onset of
self-heating is defined here, whilst a heating rate of > 1.0◦C min−1 was taken as the
cell being in thermal runaway [65].

During the heat stage of the tests, the cell is suspended in the ARC as shown in Figure
7.9. The thermocouple is also attached and protected to the cell surface during these
tests using a layer of epoxy resin. For these battery thermal ramping tests, the cell
surface temperature and ARC oven temperature were both recorded.

Figure 7.9: Pouch cell test sample suspended in the ARC.

7.3.2 Results and Discussion

Metal Block Reference Test

The results for the metal block test were processed using the same methods as those
developed in the charge cycling experiments. Peak tracking was utilised to isolate a
single peak and compare the changes in both ToF and signal amplitude with the tem-
perature of the block during heating.

Although peak tracking tracks the single peak across the whole test, visual inspection
of Figure 7.10 - top panel shows that the ultrasound signal is lost some 3000 minutes
into the test. The dashed line is drawn to show this complete change in signal occurs
when the metal block is at around 160◦C. After this point, the signal changes to a much
higher frequency than the 3MHz pulse used for the test, to a 10MHz signal (the natural
frequency of the sensor).

The peak tracking of a single peak in the signal allows for the direct comparison plots
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Figure 7.10: Peak tracking of ultrasound response through metal block.

(a) (b)

Figure 7.11: Results from metal block/ultrasound instrumentation test. a) ToF/temperature
and peak amplitude/temperature comparison plots and b) ToF/temperature and peak ampli-
tude/temperature correlation plots.

in Figure 7.11a and the correlation plots in Figure 7.11b. In the comparison plots, the
dashed lines are transferred from the point where the nature of the signal drastically
alters. The signal after this can therefore be disregarded and is greyed out. Up to this
point there is a linear ToF/temperature relationship, although this is lost somewhat
after 2200 minutes/135◦C, this deviation from linearity is shaded in blue. The signal
amplitude comparison plot shows a stable inverse relationship with temperature up to
the loss of true signal event at 3000 minutes/160◦C.
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The correlation plots show the relationship clearly with the green line in Figure 7.11b
- top panel showing strong linear ToF/temperature tracking from the test start, 20◦C,
to around 135◦C. The amplitude/temperature green line in the bottom plot shows a
linear relationship from 60◦C (soon after the initial ramp to 50◦C) up to approximately
160◦C when the signal is no longer effectively measuring the block. This result provides
confidence that the ultrasound sensor hardware is suitable up to 135◦C. Linear changes
are to be expected in the signal up to this temperature and any deviation from linearity
would be a function of changes within a battery cell as it heats.

Battery Tests

For the battery tests, the battery charge cycling data was joined with the thermal abuse
data to provide a single test to analyse. Figure 7.12 shows the two data sets joined form-
ing a single test. The bottom panel displays the temperature data during charge cycling
(up to 1500 minutes approximately) and during the thermal ramping afterwards, the
y-axis is presented in log scale here to retain visual detail at the lower temperatures.
There is a sudden loss of signal after approximately 3000 minutes as the cell did go in to
thermal runaway in these tests, as expected. The cell, ultrasound sensors and attached
wiring was destroyed at this point.

Figure 7.12: Peak tracking of ultrasound response through battery 1.

The peak selected for tracking for analysis was determined the clarity of the peak and
by the strength of correlation between peak ToF changes and battery SoC. From the
work in section 5.2, it is clear that not all peaks report battery changes efficiently, as
such it was important that the thermal abuse analysis selected the optimum peak to
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show ultrasonic changes as a function of internal battery changes, rather than tem-
perature. Issues around signal quality and interpretations of internal cell changes are
discussed in greater detail later in this section.

Figure 7.13a shows the tracked peak ToF synchronised with the cell surface tempera-
ture. The dashed line represents a threshold of 130◦C, above which ultrasound mea-
surements are no longer reliable, according to the findings in the metal block test
(135◦C less 5◦C to allow for material discrepancy). A blue marker is placed at the time
where the cell temperature reaches this threshold, a red marker is placed on the tracked
ToF to show measurements are discarded after this point. The grey shaded area shows
time after thermal runaway whilst the blue shaded area shows the time between loss
of instrumentation reliability and thermal runaway. The blue region being narrow pro-
viding some confidence that the ultrasound gains meaningful data almost up to the
point the cell is destroyed. These annotations are also included in Figures 7.14a & b.

(a) (b)

Figure 7.13: Ultrasound/battery temperature comparison plots a) ultrasound ToF and cell
surface temperature b) ultrasound ToF and temperature change (T-rate).

The rate of temperature change in ◦C/min compared with signal peak ToF is shown
in Figure 7.13b, dashed lines are drawn to show the points at which the onset of self-
heating and thermal runaway occurs. The pale blue marker is placed at the point where
temperature increases over the self heating threshold whilst the cell is at rest with no
charge or external thermal activity taking place. Note a change in the ultrasound ToF
at this point, this could be attributed to peak ’snapping’, where peak tracking snaps to
an adjacent peak in error, this is possible when inspecting the top panel of Figure 7.12,
However it appears more likely even if snapping is the cause, a loss in signal fidelity
facilitates the change at this point.
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Comparisons between the amplitude of the tracked peak and battery temperature are
shown in Figure 7.14a. As with charge cycling, signal amplitude is an erratic measure
of lithium-ion batteries. Signal power, a measuring method utilised by Hsieh et al., cal-
culated by summing the signal amplitude across the entire signal response [19] (referred
to in their work as signal amplitude, but distinct from the signal ’peak’ amplitude used
in this work) is shown in Figure 7.14b. Signal power is calculated in the same manner
here, by summing the ’area under the curve’ across the whole signal response. This
additional method of measuring ultrasound is considered as it gives a holistic view
of the signal, enabling fair comparisons between cells with peak selection no longer a
factor. As seen in the Figure 7.14b this value is erratic and difficult to interpret.

(a) (b)

Figure 7.14: Ultrasound/battery temperature comparison plots a) ultrasound signal peak am-
plitude and cell surface temperature b) signal power and cell surface temperature.

Following from the analysis methods developed in section 5.2. Correlation plots are
produced in Figure 7.15 of battery temperature and the various ultrasound parame-
ters; ToF (top), peak amplitude (middle) and signal power (bottom). These plots are all
cropped to only show data up to the established 130◦C threshold.

Recall from the metal block test that the relationship between ToF and temperature
was almost perfectly linear (Figure 7.11b - top). In the ToF/temperature plot on top of
Figure 7.15, there are clearly seen to be slight but distinct deviations from a linear trend,
which must be attributed to battery changes. The changes in signal amplitude (Figure
7.15 - center panel) are less defined and more erratic. This agrees with the findings
during charge cycle testing, that signal amplitude is an unreliable indicator of battery
charge when compared to the change in ToF. A correlation plot for signal power is
shown in the bottom panel of Figure 7.15, this value is fairly constant across the test
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with some variations occurring through the test that may be providing insights into
battery evolution.

Figure 7.15: Ultrasound/temperature correlation plots; (top) temperature/ToF, (center) tem-
perature/amplitude and (bottom) temperature/signal power.

The correlation plots in Figure 7.15 are all from battery 1. Presented this way, clusters
of ultrasound measurements are created at points where the cell spends most time
at this temperature. This is most evident in the clusters that form at the lower end
of the temperature range, from which charge cycling/ultrasound data is obtained. To
improve visual analysis of the results, 0.5◦C bins are created. In each bin, ultrasound
measurements are collected and averaged giving a single ultrasound value for each
half degree C.

Performing this averaging step also serves as a smoothing function, which improves
the results when all three battery tests are overlaid, as shown in Figures 7.16 to 7.18.
Figure 7.16 contains the change in ToF of a selected peak, tracked over the course of the
test (charge cycling and thermal abuse). The results for each cell are shaded red (see
legend) whilst the metal block data is plotted as blue dots. The metal block reference
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then has a third degree polynomial fit applied, which is plot as the solid blue line, the
95% confidence intervals are bounded by the blue shaded region. The plot is cropped
at 130◦C as data over this threshold has been shown to be unreliable.

Figure 7.16: Composite correlation plots showing ToF/temperature relationship for batteries
1-3 (shaded red). Metal block reference shown in blue, complete with fitted curve and 95% con-
fidence intervals. Annotations of expected battery events during heating marked and labelled
accordingly.

Battery 1 follows a similar linear trend to the metal block throughout the test. There are
some expected discrepancies at the lower temperature due to charge cycling, the ToF
then increases at a similar rate to the metal block. A noticeable jump occurs at 72◦C,
marked (1), this is at the point where the onset of self heating was identified (see the
pale blue marker in Figure 7.13b). There are distinctive jumps in the ToF tracking for
battery 2, marked (3) and battery 3, marked (4), these also correspond to the points
where the onset of self heating was identified, 101◦C and 105◦C respectively, these
identified points are annotated on the plot.

A feature occurs in batteries 1 and 2 where the ToF temporarily increases and returns
between 90◦C to 100◦C, marked (2). It is unclear what drives this temporary change,
the features occurs in the electrolyte evaporation region (shaded light gray), the tem-
porary nature and replication in two cells would merit further exploration. The point
marked (5) again shows features in cells 1 and 2 occurring at approximately 115◦C,
these are difficult to explain currently. These are a clear deviation from the linear rela-
tionship of the metal reference block and so should be assumed to be battery related.
It should be noted here that the test on battery 3 is regarded as inferior quality to that
on batteries 1 and 2, this will be discussed in detail shortly.
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Figure 7.17: Composite correlation plots showing tracked peak signal amplitude/temperature
relationship for batteries 1-3 (shaded red). Metal block reference shown in blue, complete with
fitted curve and 95% confidence intervals. Annotations of expected battery events during heat-
ing marked and labelled accordingly.

The signal amplitude is explored in Figure 7.17. The plot is annotated with all the same
information as the ToF plot, points of interest derived from Table 9. The first point to
note is tracked peak amplitude for the metal block reference has an exponential rela-
tionship with temperature resembling a second order polynomial. The trend remains
well defined however with the 95% confidence interval shaded blue close to the fitted
curve.

Marker (1) shows a feature shared by cells 1 and 2 where the signal amplitude peaks.
These features are noted as they occur at 45◦C, around the points where SEI reactions
can occur. Similarly, marker (2) shows a temporary rise in amplitude for cells 1 and 2
at approximately 64◦C, just after the temperature range where the electrode can start
to separate from the current collector, known as delamination. As with the ToF cor-
relations, there are signal feature changes at the critical points where the onset of self
heating is defined. There is a peak at each of the points almost exactly where the signal
amplitude crosses the specified point, cell 1 marked (3), cell 2 marked (5) and cell 3
marked (6). There is a slight peak detected at marker (4), this occurs in all 3 cells at
around 80◦C at which point the anode starts to react with electrolyte releasing heat.

The signal power measurement for all 3 cells is shown in Figure 7.18. The same annota-
tions of points of interest are applied, the signal power for the metal block reference test
is plot using the blue points for data, fitted curve in blue with 95% confidence intervals
bounded in the blue shaded area. The relationship between signal power and temper-
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Figure 7.18: Composite correlation plots showing signal power/temperature relationship for
batteries 1-3 (shaded red). Metal block reference shown in blue, complete with fitted curve and
95% confidence intervals. Annotations of expected battery events during heating marked and
labelled accordingly.

ature for the metal block resembles a third order polynomial, again the deviation from
this is low and the confidence intervals are narrow.

There is a distinct feature early in the tests where the signal power drops at approxi-
mately 35◦C, marked (1). This is explained by the signal tracking battery charge along-
side temperature fluctuation in low temperature regions (recall that each point here is
a mean of several measurements), once out of this low temperature band the signal
power remains fairly consistent in each battery until higher temperatures. The features
here appear more difficult to interpret, there are two significant peaks in the battery 1
test, marked (2) and (3), it is unclear what drives these, although (3) occurs just after
the onset of self heating. Marker (4) shows a period just prior to large changes in sig-
nal power (particularly for cell 2), this could be matching the rapid rise after a stable
reading in the hardware as the signal power rises significantly in the metal block test
after 100◦C.

The metal block reference test was used to verify the hardware stability as the ARC,
test sample and ultrasound instrumentation heated up. As previously stated, signal re-
sponse quality could be checked using the cycling data section of the tests. The quality
of the signal response is judged on how well the signal tracks internal battery changes
with respect to SoC rather than temperature changes. It was acknowledged that if ultra-
sonic measurements closely track temperature, this is providing limited insights into
the internal state of the battery cell.
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A method of checking signal quality is to compare the correlations of battery SoC and
cell surface temperature with change in ultrasound ToF and amplitude for a selected
peak as described in section 6.3. The single peak selected for each of the three test was
based on two main conditions; a strong peak which could be tracked without error
through cycling and the best ToF/SoC correlation in conjunction with signal strength.
These decisions were possible by analysing the charge cycling data using the exact
methodologies outlined in Figure 5.7 in section 5.2.

Figure 7.19: Evaluation of selected peak/signal quality, using SoC/temperature bias method.

From the charge cycling tests performed throughout section 6, it is claimed that a good
quality signal will show a strong relationship between change in SoC and change in
ToF. Therefore good quality signal would expect to see a strong battery SoC/ToF rela-
tionship and a weak temperature/ToF relationship. Figure 7.19 shows that the sensor
on battery 1 performed well, battery 2 was satisfactory, whilst the sensor on battery 3
was poor.

This work refers to this signal quality, defined as the strength of ultrasound relation-
ship with battery SoC and cell surface temperature as bias. A charge bias will tend
towards stronger battery correlations (battery 1 tests) and a temperature bias will tend
towards stronger temperature correlations (battery 3 test). Whilst peak amplitude can
provide strong battery charge correlations, it has shown in this work to be erratic and
unpredictable to use without offering any advantages over ToF. As such this work con-
siders ToF for the measure of signal quality. The best charge bias was from the instru-
mentation of battery 1, with an R2 of 0.79 for SoC compared to 0.47 for temperature.
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Battery 2 had a level bias with R2 of 0.64/0.56 for SoC/temperature. Battery 3 was bias
towards temperature with R2 of 0.19/0.77 for SoC/temperature. For reference, a com-
parable charge cycling (0.5C rate) test using commercial probes had a bias of 0.88/0.36,
R2 for SoC/temperature.

7.3.3 Conclusions

The metal block reference test was effective in defining the limitations of the bonded
sensors when ramping to high temperatures. The ultrasound measurements remained
stable up to 135◦C after which the amplitude and therefore time of flight readings be-
come erratic, unpredictable and unusable. Considering this, a 130◦C limit was imposed
on the battery cell data analysis.

The thermal abuse of the batteries cause all three tested cells to go into thermal run-
away destroying the cell and attached ultrasound sensor instrumentation in the pro-
cess. This was an expected and desired outcome of the tests. The sensors themselves
varied in the quality of battery insights, checked by assessing the bias of each sensor
towards tracking SoC or temperature during charge cycling. The test on battery 1 was
considered successful, the sensor on battery 2 was considered satisfactory whilst the
data from battery 3 was shown to be of poor quality and should not be regarded as
insightful.

There were well defined features in the ultrasonic measurements during thermal ramp-
ing, occurring at critical moments such as the onset of self heating. In tests 1 and 2 there
may have been a sign that the evaporation of electrolyte had been detected, the tempo-
rary change in signal around 95◦C was well defined in each test. This would warrant
further investigation with improved sensors. Other features developed in the ampli-
tude and signal power that would benefit from further repeats with improved signal
quality.

Signal quality was identified as the limiting factor in this second phase of tests. Follow-
ing this, the decision was made to conduct a third phase of testing using commercial
probes.

127



7.4 Phase 3: Commercial Probe Tests

In this third phase of testing, there was a move away from bonded sensors considering
the concerns over temperature bias in the signal response. It is thought that the sensors
did not emit waves with enough power to travel all the way through the cell and return
to the sensing edge with a reflection or half reflection from which to take accurate
measurements. As such the lack of cell penetration causes the signal to be dominated
by reflections in the early layers, including the casing and sensor/bonding material,
causing a temperature domination of the signal response. In this phase a return to
commercial probes was explored.

7.4.1 Set Up

In an attempt to improve on the results from the bonded sensor tests in phase 2 of
testing. Several commercial probes were obtained, similar to those that had provided
strong battery insights throughout charge cycling tests. A battery charge cycling/ther-
mal ramping test was performed using a commercial probe. The probe was attached to
the cell using superglue in accordance with the superglue comparison in Section 6.6.1.
This permanent fixing was preferred for the first test as this would ensure the location
of the sensor remained stable, should swelling occur during heating. The probe was
clamped to restrict extreme swelling, shown in Figure 7.20a.

(a) High temperature gel couplant/clamp (b) Metal reference block

Figure 7.20: Commercial probe instrumentation.

Once again, a metal block reference test was conducted (Figure 7.20b) to assess the
feasibility of the instrumentation. High temperature gel (rated up to 398◦C) was used

128



as couplant with the sensor held in place with a hand tightened clamp in the same
manner as tests in section 6.

A second metal block reference test using high temperature gel was performed. Test
parameters were designed to identify a definitive temperature range, above which the
bonding/couplant method becomes unreliable. The ARC was set to heat the metal
block to 30◦C, 50◦C, 70◦C and 90◦C, allowing the sample to cool (to room temperature)
between each step for approximately 24 hours. This would provide knowledge about
the limitations of this test set up, where a signal is permanently altered either due to
bonding/couplant issues or heat damage to the sensor.

7.4.2 Results and Discussion

(a) (b)

Figure 7.21: a) Ultrasound/temperature variations during test and b) same data plotted as
ultrasound/temperature correlation plots for battery thermal ramping test.

The results for the battery cell thermal ramping test using superglue are shown in Fig-
ure 7.21. There are two issues considered with this data, firstly, the tracked peak ToF
relationship with temperature appears to be linear right up to and beyond 110◦C. This
was an unexpected deviation from the results in section 7.3.2 where the ToF showed
distinct deviations from this linear relationship (recall Figure 7.16). As such this com-
mercial probe test provided no ToF insights into battery changes during thermal ramp-
ing. It is important to note at this stage, that processing data from the charge cycling
test, conducted prior to the thermal ramping test produced poor results. The R2 value
for ToF/SoC was just 0.6 whilst the ToF/temperature had a R2 of 0.61. This even split
and lack of bias towards battery SoC was anomalous for commercial probe testing.
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Secondly, there is unusual signal amplitude activity on the thermal ramping test on
the battery. There is a change in the relationship between amplitude and temperature
at around 60◦C and again at approximately 90◦C before decreasing sharply. It was
thought likely this is a change in the properties of the superglue couplant as it heats.
Although it still works, the signal is inconsistent and becomes an unwanted variable
in the test system.

The results for the metal block reference test using high temperature gel couplant are
shown in Figure 7.22. Whilst a positive relationship exists between temperature and
tracked peak ToF, the relationship is not linear, like that shown in the metal block ref-
erence test in Figure 7.11b - top panel. Additionally, the signal amplitude drastically
reduces at approximately 100◦C, a significant downgrade on the stable signal achieved
using bonded sensors.

(a) (b)

Figure 7.22: a) Ultrasound/temperature variations during test and b) same data plotted as
ultrasound/temperature correlation plots for metal block thermal ramping test.

The results of the second and final metal block reference test are shown in Figure 7.23.
Whilst the test is successful in terms of identifying apparatus limitations, the result is
disappointing, showing that heating up to 70◦C causes permanent change in signal
in both ToF and amplitude. Marker (1) shows the signal at 30◦C, the ToF and ampli-
tude return their starting places during cooling, this is also true up to 50◦C, marked
(2). Whilst there appears to be a repeated pattern at marker (3) with the same path in
ToF and amplitude taken, there is deviation upon cooling in both, ToF and amplitude
return to new resting points at room temperature. This effect is repeated again to fur-
ther alter both ToF and amplitude after heating to 90◦C at marker (4) and cooling back
down, marker (5). With this information, no thermal ramping test can reliably be per-
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formed using this set up that plans to go above 50◦C. It should be noted that the ARC
was opened and the sensor was reapplied using fresh high temperature gel just prior
to the 90◦C ramp at marker (6). Reapplication of the sensor/gel did not alter the signal,
so changes are safely assumed to be sensor based.

(a) (b)

Figure 7.23: a) Ultrasound/temperature comparison plots and b) Ultrasound/temperature
correlation plots for apparatus limitations test.

7.4.3 Conclusions

The commercial sensor tests were disappointing. Using superglue or high temperature
gel as couplant produced poor results, inferior to those obtained using bonded piezo-
ceramic elements used throughout section 7.3. The metal block reference test showed
that piezo-ceramic elements bonded to the surface using epoxy resin could provide
reliable and stable results up to 130◦C. The limitations test of the metal reference block
using commercial probes shows this test apparatus can only provide stable and reliable
results up to 50◦C. Whilst there appears to be some effect during heating on the gel
couplant, the sensor itself is a significant problem, upon heating, the sensor is damaged
and whilst reflections are obtained, signal power is diminished and therefore reliability
is lost.

7.5 Conclusions

• Instrumented lithium-ion cells with bonded sensors as opposed to commercial
probes due to the likelihood of sensor damage/destruction at high temperatures
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(100◦C+). Successfully obtained a signal response using this alternative method.

• Results show a strong linear relationship between ultrasound response and cell
temperature increases. In initial tests, some temporary or sudden non-linear fea-
tures occurred in the peak tracking. These were difficult to attribute to either
internal cell reactions or instrumentation effects due to heating.

• Metal block reference tests were conducted to help determine the effects in-
creasing temperate have on ultrasound responses due to instrumentation, sen-
sors/bonding/wiring. This was successful in showing a clear linear relationship
between a tracked ultrasound peak change in time of flight and temperature up
to 135◦C. The relationship between tracked peak amplitude and signal power
with temperature resembled second and third order polynomials respectively.

• Repeatability was introduced into experimental designs with three identical tests
conducted on three identical cells using the same methodologies throughout.
There was a variation in signal quality however that negatively affected the abil-
ity to precisely locate non-typical features in the ultrasound measurements.

• Each test was designed to include a cycling section before thermal abuse tests,
primarily to ensure all cells were cycled from new in the same manner and to
leave at 100% state of charge. The signal quality was assessed using this cycling
data, assessing the temperature bias method developed in section 6.3.

• To improve on the variable quality of the bonded sensor tests, commercial probes
used in charge cycling tests throughout Chapter 6 were planned for thermal
abuse testing. On the metal block reference test, the sensors performed very
poorly. A second metal block reference test was designed to estimate the temper-
ature limit above which a probe is no longer suitable for ultrasonic monitoring.
This shows that this arrangement is only reliable up to 50◦C, far below the 135◦C
limit for the bonded sensors.

• Using the bonded sensor tests, with sensors on batteries 1 and 2 being considered
reliable, it is concluded that ultrasonic monitoring of a battery differs from the
metal block reference when measuring time of flight of a tracked peak at key
and consistent points. These differences can be attributed with some confidence
to known and expected cell reactions, in these tests the onset of self-heating is
thought to be identified. There is a tracked peak time of flight deviation from the
linear metal block reference at 115◦C that would require further investigation.
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• Signal amplitude of a tracked peak during battery cell heating deviates from the
exponential relationship in the metal block test at key points. There are peaks
identified at 45◦C, the range where SEI reactions can occur. There is also a tem-
porary rise in signal amplitude at 64◦C, approximately where electrode delami-
nation occurs. As with time of flight, features exist in the signal amplitude at the
points where the onset of self heating occurs.

• There are changes in signal power during battery cell tests, deviating from the
metal block reference that are not consistent in batteries 1 and 2. It is concluded
that signal power is a less reliable monitoring method and more difficult to inter-
pret.
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8 Conclusions

Lithium-ion batteries are increasing in popularity, from consumer electronics powered
using this technology to electric vehicles. The electric vehicle market in particular is
expected to drive a large increase in demand for this method of power delivery over the
coming 10 years. This is largely due to electric vehicles being widely accepted as a clean
transportation solution compared to the internal combustion engine. The limitations
around safe and effective use of lithium-ion batteries forms a large and ongoing area
of research. The development of battery management systems search for more accurate
and insightful monitoring methods of the batteries.

Ultrasonic monitoring is a growing battery monitoring technique, being a non-
invasive, non-destruction means of gaining real-time measurements of the internal
changes of a battery cell. Ultrasound responses are sensitive to internal changes in
lithium-ion batteries during normal operation, for example changes in electrode den-
sities during charge cycling. There are also ultrasound responses to internal reactions
of a cell during non-standard operation, such as thermal abuse conditions. This the-
sis focused on ultrasound inspection through experimental testing under both normal
and abuse conditions. Developing the method with signal processing techniques and
modelling waves through a multi-layered body.

8.1 1D Wave Multi-Layer Modelling

A 1D wave model was created based on the wave equation partial differential equa-
tion. The model was created using MATLAB and various outputs are designed to show
the behaviour of transmitted waves travelling and reflecting through multiple layers.
From this modelling it is revealed how small dimensional, density or ordering changes
from battery to battery can cause the signal to vary significantly in each case. This can
impair the intensity of wave changes as a function of state of charge and can also cause
render preferred measuring methods unreliable or impractical.

The model simulates waves when they encounter material boundaries, successfully
modelling reflections and partial reflections where the waves span several layers. Mod-
elling outputs are designed to show developments of transmitted and reflected waves
travelling through the multiple layers, plotting frames to animate travelling waves and
A-scan generation. These visualisations aid in the selection of pulse frequency. 2MHz
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pulse frequencies are primarily used in this work and in much of the literature, using
wave development plots and animations, motivation for this selection is provided.

The effects of temperature on signal responses can be simulated. Modelling this effect
finds that at high temperature fluctuations, either from ambient temperature changes
or cell temperature changes, signal response correlations tend towards a temperature
bias. The can cause a loss in signal accuracy with respect to changes in state of charge.

8.2 Apparatus and Analysis Methods

Test apparatus and methodologies suitable for the ultrasonic monitoring of lithium-ion
batteries were identified and acquired. A single commercial probe sensor, in pulse/e-
cho set up was used as standard during charge cycling tests. Variations on this configu-
rations were explored, usually driven by experimental conditions. Dual sensors using
a through pulse and signal amplification was selected to monitor a large capacity cell.
Bonded sensors were chosen as opposed to commercial probes for thermal abuse test-
ing. The signal response quality using bonded sensors is currently considered inferior
to that of commercial probes in this work.

Further apparatus was utilised in experiments during the course of this work. A ther-
mocouple was added to test set up to monitor the surface temperature of a cell during
charge cycling, a key test development in determining the effect of temperature fluctu-
ations on signal responses. A multiplexer was incorporated into a test kit built towards
the end of this project, enabling 14 channels, combined with signal amplification. The
purchase of a Cadex portable battery analyser was made, enabling portable/bench top
charge cycling.

The synchronisation and analysis of data from the various sources is performed using
a MATLAB script developed to allow for some user interaction and some degree of
automation/repetition. Peak tracking forms a fundamental aspect of the analysis, with
a user asked to select a peak, the script automatically tracks the selection over the test.
Peak tracking can be isolated and collated according to charging status to help provide
visual context to ultrasound responses with respect to charge. A range of analysis op-
tions are available to the user, signal processing, correlation testing/method, multiple
peak tracking and comparisons are amongst the many tools developed to understand
the relationship between ultrasound responses and changes in a lithium-ion battery.
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8.3 Standard Testing: Charge Cycling

From analysis of experimental data, time of flight measurements show better correla-
tions with battery state of charge when compared to the signal amplitude. Addition-
ally, this correlation is stronger comparing ultrasound with battery SoC rather than
voltage. Variations in instrumentation in addition to variations in the layered construc-
tion of a cell, can lead to unpredictable signal responses. This can be problematic for
some measuring/analysis techniques, such as signal enveloping which may be diffi-
cult or impossible to obtain.

In order to deal with signal response variations. A method using the cross wavelet
transform to gain amplitude and phase shift activity along the transducer/pulsing fre-
quency band across the signal, can provide a ’smart peak’ selection region that has
the capability to automate the peak that will provide the most accurate battery charge
measurements. This method relies on two reference signals from non-identical parts of
the charge cycle to be effective.

Signal peak amplitude and change in time of flight do not alter with state of charge
in the same manner, it is shown that time of flight has stable correlations with battery
charging whereas although some peaks have good amplitude/charge correlations, this
is much more erratic across the signal. In addition, even with time of flight, when using
a single sensor in pulse/echo, peaks do not alter in a uniform manner across the signal.
There is an apparent unpredictability regarding how each peak alters during cycling.
This is not the case for through pulse signals, where each peak has approximately the
same behaviours across the signal.

Change in temperature is a factor that affects wave speed through any medium, along
with changes in density and elasticity. To assess the effect of temperature, a thermocou-
ple was attached to the battery during cycling, it was found that both battery activity
and the ambient temperature of the laboratory caused changes in battery surface tem-
perature by ±7◦C and this has little effect on the stability of the time of flight readings.
From experiments on large capacity cells using higher C-rates combined with mod-
elling however, it was shown that should the temperature effects be large enough this
could prevent the capability of taking reliable and accurate ultrasound/SoC readings.
A method is suggested to calibrate signal responses to dampen temperature effects us-
ing battery rest/temperature change data. A slight improvement in charge correlations
is gained, whilst temperature correlations are damaged somewhat.

136



8.4 Non-Standard Testing: Thermal Abuse

In thermal abuse testing, samples are heated to over 100◦C with an intention of causing
thermal runaway, destroying the cell and connected instrumentation. Considering this,
bonded sensors were used as opposed to commercial probes. Using metal block refer-
ence tests, it was determined that bonded sensors were suitable for ultrasonic moni-
toring up to 135◦C while commercial probes were suitable only up to 50◦C.

It was concluded that where measuring time of flight of a tracked peak differs from
the metal block reference during ultrasonic monitoring of a battery, the difference can
confidently be attributed to known features. In these tests, the onset of self-heating was
thought to have been identified. Onset of self heating was also detected as a deviation
from the reference using the peak amplitude measurement. Changes in peak amplitude
not present in the reference test occur at temperatures consistent with SEI reactions and
electrode delamination. Signal power was analysed, there are discrepancies with the
reference test that are difficult to interpret without further testing and more consistent
signal quality.

8.5 Future Work

Introduction

During the course of this work, many different avenues for future work have presented
themselves. The work in this thesis provides insights that can help guide future work
and in some instances, gives rise to the possibility of exploiting the chaotic and un-
predictable nature of waves through a multi-layered body such as a lithium-ion pouch
cell. The following presents a summary of planned or suggested future work and de-
tails of some work in progress developing methods to utilise the ultrasonic monitoring
of lithium-ion batteries.

8.5.1 1D Wave Model

The model is used as a guideline throughout this work, providing approximations of
travelling waves interacting with layer interfaces. Simulated A-scans at the sensing
edges are obtained from modelling in this work, as whilst the results are assumed to
be in reasonable, little attempt is made to evaluate the results against experimentally
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obtained signals. This was not pursued based on the assumption that the model in
its current state would be unable to fully simulate the true responses when pulsing
through a lithium-ion cell.

With this in mind, given the useful insights gained from visualising waves traveling
through the cell layers, proving context to the characteristic contained within A-scans.
Wave modelling should be developed further with the aim of more closely simulating
real wave responses, this would take one of three forms:

1. Further develop and refine the 1D wave model contained within this work.

• Signal capture could be improved by modelling the ultrasound sensors and
couplant method, currently, the waves ’close’ to the edge are considered
close enough for the purposes of this work. This likely to reduce A-scan
simulation accuracy.

• Modelling the chemistry of the charging process would be an important de-
velopment. Currently the density of the layers in redistributed evenly across
precisely defined boundaries and will almost certainly be an oversimplifi-
cation of the actual processes involved during charge cycling. Improving
would likely help to identify signal response features that could only be ex-
plained as a result of the complex reactions in the cell.

• Careful attention should be given to the reflections at layer boundaries.
Some work, not included in this thesis, was done comparing the time of
flight measurements of the model compared to theoretical times. It was
shown that whilst the timing of wave reflection matched exactly with the
theoretical expectations, the amplitude and phase was not checked. This
would be an important investigation to continue to validate the reflections,
including comparing modelled reflections with expected reflection coeffi-
cients.

• Currently, attenuation is modelling by arbitrarily reducing signal amplitude
over time. The model would benefit from improved attenuation modelling,
driven by the causes of this such as signal scattering and lost energy through
absorption and beam spread.

• Obtain wave responses from a simple layered body such as a bearing shell
for direct comparison with modelled equivalent to assess model accuracy
more completely.
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2. Consideration of existing modelling solutions. During the course of this work,
the decision was made to develop the modelling in this thesis to help under-
stand the nature of the wave responses when travelling through the cell. This
was mainly driven by the ability to build the exact tools desired for this project,
namely frame by frame captures of waves passing through material boundaries.
This was later developed further to include animations to see ’real-time’ A-scan
generation. Attempts to use other existing modelling tools utilised in other stud-
ies from the literature were cancelled to concentrate of other tasks during this
work. It would be very helpful however to return to these ideas to assess now
whether they could improve upon modelling in this work. This would include
Clawpack, Dualfoil or the commercial modelling software Comsol.

8.5.2 Ultra High Frequency Ultrasound (UHFUS)

The modelling in section 4.7 shows that should resonance be found in the layers con-
tained within a lithium-ion battery, it may be possible to retrieve information on the
layers by analysing the signal in the frequency domain. In order to verify this experi-
mentally, at least two ultrasound probes would be required being at least in the order
of 40MHz. Two being required as modelling shows that the method would only be
effective in a pitch/catch through pulse configuration.

The script built to analyse experimental data covered in section 5.2 already contains the
functionality of analysing signals in the frequency domain in addition to the standard
technique of analysing in the time domain. Peak tracking is applied to frequency peaks
throughout testing rather than signal peaks. This feature is not covered in this thesis.
But some development of this frequency domain analysis would be essential should
ultra high frequency signals be obtained. The modelling shows that complex jumps in
dominant frequency may occur being difficult to analyse using existing methods. The
possibly of obtain layer information such as material density remains an interesting
possibility.

8.5.3 Experimental results with cell tear down

In experiments, it was noted that the signal could differ drastically when comparing
cells from identical suppliers and manufacturers. The discrepancies are difficult to ex-
plain. In one instance a cell failed to accept charge and the ultrasound signal was lost

139



on this cell, in future it would be desirable to inspect the internal state of this cell
physically to determine the causes of the cell health issue and why this affected the
ultrasound signal. It would be useful to compare differing signals from two cells with
a tear down to assess the difference in layer structure and how this related to the sig-
nal responses. The would also be interesting to compare to layer modelling for model
validation purposes, something lacking in this work.

8.5.4 Reverse signal engineering to predict battery cell layer structure

A large part of this study was dedicated to wave modelling and experimental data
analysis of wave responses to pulses through multi-layered structures such as a
lithium-ion battery cell. The idea of partial reflections has been suggested as the cause
of A-scans taking the form they do at the sensing edge. This lack of full reflections con-
tained in the response is noted to cause interpretations of the signal to become difficult.
It is suggested here that an algorithm to harness the chaotic nature of waves through
a structure containing many layered components can be developed. Based on a basic
principle of pulses waves returning to the sensor containing information on all layers
encountered. Development and testing of a method of comparing evolving test signals
to a reference signals in order to converge on a solution is planned. This would use the
modelling in section 4 to generationally refine the layered structure until a close match
is found. This would be tested using a modelled reference signal (model to model) to
assess the algorithm performance first and model to experimentally obtained reference
for a practical algorithm performance review.

CT scan of cells

In addition to the cell tear down discussed previously, an alternative method of gain-
ing information on the internal structure of a lithium-ion battery would be to obtain
CT-scans of the cells. The scans would be performed on a Zeiss Xradia 620 Versa X-
ray Microscope (XRM) at the Sheffield Tomography Centre (STC) at the University
of Sheffield. After initial consultations obtaining CT scans would necessarily require
small capacity cells (<400mAh) as the cell needs to fit in the CT-scanner and turn
around during scanning. The aims of acquiring the CT scans would included the fol-
lowing:

• Determine basic cell geometry, the greyscale images would be expected to show
the differences in material density between the component layers. The greyscale
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values on the scan could be compared to normalised density values to draw di-
rect comparisons. Additionally the scan would reveal layer thicknesses and pre-
cise number of layers windings. Finally, the scans would confirm the cell con-
struction, such as jelly roll or layered construction.

• Experiments could be carried out where alongside real time ultrasonic measure-
ments during charge cycling similar to those conducted throughout section 6,
the cell is positioned in the CT scanner to monitor the cell layers during charge
cycling. This would present significant problems however, as each scan can take
several hours to complete so the charge process would have to be carefully timed.
The cell turns during scanning so instrumentation would be challenging. The cell
would have to be positioned in the CT scanner so the Cadex portable charging
station covered in section 5.1 could be used for battery charge cycling.

• The cycling experiments above would be complicated and time consuming to
conduct. A compromise of this to simply the process would be to step charge
the cell outside of the CT scanner, suggesting 0%, 25%, 50%, 75% and 100%.
Ultrasound reference signals could be capture outside of the scanner using the
Cadex. Comparing signal captures with the greyscale intensity values from the 5
CT scans may show a relationship highlighting the ultrasound being sensitive to
density distribution during charge cycling.

Importantly, these CT scans, particularly the cell geometry scans could be utilised in
the reverse signal engineering work discussed previously to compare algorithm layer
predictions from an experimentally obtained A-scan with the CT-scanned layers from
the reference battery.
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