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Abstract 
 

Spectral imaging techniques provide a valuable means of improving our understanding of the world 

around us. Environmental monitoring approaches that utilise these techniques are, therefore, 

essential to our understanding of the effects of climate change. Hyperspectral imaging applications are 

of particular benefit to a broad range of environmental monitoring scenarios, providing rich datasets 

that combine both spectral and spatial information, enabling intricate features and variations to be 

visualised. However, to date, most commercially available hyperspectral instrumentation remains 

bulky and expensive, significantly limiting their user-base and accessibility. These factors substantially 

limit the use of these instruments resulting in much of our information coming from a few well-

resourced research teams across a limited number of more easily accessed field locations. These 

limitations, have a compounded effect on the quality and robustness of hyperspectral data outputs, 

particularly within more extreme settings, as the comparatively small sample of more accessible 

locations is not necessarily representative of the much larger whole. 

This thesis presents on the development and testing of three novel low-cost hyperspectral imaging 

instruments designed specifically for environmental monitoring applications, providing valuable, low-

cost alternatives to currently available commercial systems. Specifically, the three instruments 

presented within this thesis are: a low-cost laboratory-based hyperspectral imager, a semi-portable 

instrument capable of accurate data capture within a laboratory setting; the Hyperspectral 

Smartphone, an ultra-low-cost smartphone-based fully portable hyperspectral imager; and a low-cost 

high-resolution hyperspectral imager capable of resolving mm-scale spatial targets. All instruments 

were rigorously tested to analyse and evaluate their performances. Each instrument was shown to 

perform well across a range of environmental monitoring applications demonstrating that expensive 

commercial instrumentation is not required to achieve accurate and robust hyperspectral imaging. 

These low-cost instruments could promote the widespread dissemination of accessible hyperspectral 

imaging equipment, facilitating the democratisation of hyperspectral measurement modalities across 

environmental monitoring applications and beyond.  
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Chapter 1 

Introduction 
 

This chapter provides a brief overview of optical spectroscopy, advances in sensor development 

including single point spectrometers, multispectral, and hyperspectral set-ups, and highlights current 

developments in low-cost, compact sensor systems. Following this, I outline the aims and objectives 

of my thesis.  

1.1. An Introduction to Optical Spectroscopy 
Optical spectroscopy is an invaluable tool that has become a critical analysis method for a broad range 

of measurement and monitoring applications. It provides valuable insights into the processes and 

products that drive our world as well as providing critical early warnings of large-scale environmental 

changes. It is a measurement modality that has, and continues to, receive significant attention across 

multiple disciplines, from point-of-care analyses, to industrial and environmental monitoring. Whilst 

many disciplines employ the techniques discussed in this chapter, environmental monitoring 

applications in particular benefit significantly from the implementation of spectral sensing techniques. 

Optical spectroscopy has seen widespread use across environmental monitoring applications, 

enriching our knowledge and understanding of many environmental settings and conditions, however, 

as will be discussed in this thesis, at present many gaps remain. As our knowledge has evolved, so to 

have our measurement and monitoring methods from basic spectral sensing, to complex contiguous 

hyperspectral images. This chapter will introduce the origins of our modern-day methods, providing 

an insight into the complex and exciting potential of spectral sensing technologies both now and in the 

future. 

1.1.1. A Brief History of Spectral Sensing 
Spectroscopy is defined as the study of the interaction between matter and electromagnetic radiation 

as a function of wavelength [1]–[3]. The history of spectroscopy and spectral sensing dates back to the 

17th Century when hypotheses on the nature and composition of light first began to come to 

prominence. Isaac Newton first described his, “new theory of light and colours” [4], in which he 

theorised that light in its natural state was made up of individual-coloured spectra rather than white 

light as theories of the time suggested. This theory was the result of measurements undertaken with 

a prism, wherein he directed a beam of sunlight through a collimating lens, and glass prism and 

observed the output of the individual spectral colours. The device Newton designed for his spectral 

experiments can now be recognised as a rudimentary spectroscope [5], [6]. 

Newton is recognised as the first to demonstrate that light is made up of a series of coloured spectra 

and as such, scientists have been studying the spectrum of light since this discovery. In 1802 William 

Hyde Wollaston observed dark lines present across the solar spectrum, theorising that these dark 

regions represented the natural boundaries present between the different colour regions. In 1814 

these dark lines were rediscovered by Joseph Van Fraunhofer who went on to systematically document 

the precise wavelengths at which these lines were present. Today these features within the solar 

spectrum are known as Fraunhofer lines. In completing these observations and analysis both Wollaston 

and Fraunhofer had provided the foundations for spectroscopic analysis [5], [6].  

Fraunhofer provided further improvements to the field of spectroscopy by replacing the prism in 

spectral instruments of the time with a diffraction grating, changing the method of wavelength 
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dispersion. Due to the precision afforded by this new technique, where the wavelengths were 

separated by a series of equally spaced slits, resulting in the wavelength dependent angular dispersion 

of the incident light, it significantly improved the spectral resolution of the instrument and, in turn, 

allowed for wavelengths to be quantified. As these wavelengths were now quantifiable, observations 

could be compared between different laboratories and different instruments, providing a significant 

advance within the field. With these improvements Fraunhofer had established the first practical 

spectrometer [1], [5]. 

Further advances took place within the 1860s when German physicists Robert Bunsen and Gustav 

Kirchhoff developed a spectroscope to systematically study the spectrum. During their studies they 

discovered that Fraunhofer lines corresponded to emission spectral lines observed in laboratory light 

sources, going on to produce a detailed examination of the spectral response of chemical compounds. 

By observing a variety of samples with their instrument they were able to determine characteristic 

features present within the spectrum of each sample. They went on to identify two new elements, 

rubidium and caesium, and in doing so, they definitively established the link between chemical 

elements and their unique spectral patterns, providing the foundations for modern spectral analysis 

techniques [1], [5]. 

1.1.1.1. Modern Spectrometers 
From these beginnings spectroscopy has gone on to become a valuable tool with a wide range of 

specific applications. Modern optical spectrometers continue to utilise techniques similar to those 

found in early designs, with dispersion provided either through refraction (through a prism) or 

diffraction (with a diffraction grating), although improving technologies and manufacturing techniques 

have resulted in the latter becoming the more common of the two options more recently.  

In a spectrometer the diffraction grating is situated between lenses or mirrors that control the 

geometry of light rays both incident upon and exiting the grating. Light is collimated before the 

diffraction grating then refocused onto a detector after diffraction. The entrance slit controls both the 

light throughput of the spectrometer but also, perhaps more importantly, affects the spectral 

resolution of the system. Generally, the smaller the slit, the greater the spectral resolution achievable 

with the instrument. However, this results in a trade-off between spectrometer sensitivity and spectral 

resolution, with the lower sensitivity associated with instruments with high spectral resolution 

resulting in significant target illumination requirements. 

There are several different optical configurations found within modern spectrometer designs, these 

include; the Fastie-Ebert, Littrow, and Czerny-Turner configurations. In a Fastie-Ebert configuration 

one large mirror is used. A section of this mirror first collimates the incident light onto the diffraction 

grating, whilst a different section of the mirror focuses the light exiting the diffraction grating onto the 

sensor array. This configuration has been used extensively, however, it is limited by its ability to 

maintain image quality off-axis due to system aberrations [7]. Conversely, both the Littrow and the 

Czerny-Turner configurations utilise two separate mirrors. The Littrow configuration utilises one mirror 

for collimating and focusing, and a separate flat mirror to direct the rays onto the sensor, whereas the 

Czerny-Turner configuration utilises two separate mirrors for collimating and focusing the rays. In a 

Littrow configuration the geometry of the components is arranged such that light is diffracted back 

towards the incident direction, however, in a Czerny-Turner configuration the geometry of the system 

is flexible, enabling the inclusion of a wide variety of optical components. The differences between 

each of these configurations is highlighted in Figure 1.1.  The crossed Czerny-Turner configuration has 

increased in popularity in recent years as the folded optical layout is well suited to the creation of 

compact, miniature systems. Despite these variations in configuration each spectrometer measures 
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variations in spectral characteristics over a given range, for example across visible wavelengths (400 -

700 nm), ultraviolet wavelengths (100 - 400 nm), or the infrared (700 nm – 1 μm). Indeed, spectral 

sensing is versatile with a wide range of feasible applications across different regions of the 

electromagnetic spectrum. 

Spectrometers have enabled a wealth of data collection, allowing for precise spectral responses to be 

obtained from a variety of target features. This has provided significant benefits to an array of 

applications from point-of-care analysis [8], [9], to environmental monitoring [10], [11]. Furthermore, 

as technologies have continued to advance miniaturised technologies, including those incorporated 

with smartphone technologies have emerged [8], creating an opportunity for compact, portable 

spectral sensing applications. However, despite these significant advances spectrometers remain 

limited by their spatial resolution, where they typically only provide spectral data for a single point 

location on the target object. Whilst this technique has been demonstrated to provide valuable 

datasets, it lacks the spatial resolution required for larger or more complex targets, making it difficult 

to gain a complete understanding of the target or the precise location of specific spectral features 

across the object of interest. Spectral imaging, therefore, provides a viable alternative. 

 

Figure 1.1 Schematic diagram of example spectrometer configurations. A - Fastie-Ebert, B - Czerny-Turner, C – 
Littrow. Note, black lines indicate white light. Blue, green, and red lines represent example wavelength rays after 
the light has been split into its component spectra after diffraction. Incident light enters the system at the 
entrance slit in each configuration. Not to scale. 

1.1.1.2. Spectral Imaging 
Spectral imaging combines the fields of spectroscopy and imaging, permitting the capture of datasets 

that contain both spatial and spectral information [3], [12]. Whilst imaging provides an intensity for 

every pixel within an image, and a spectrometer provides a single spectrum, a spectral image provides 

a spectrum for each pixel within the scene [3]. Furthermore, spectral imaging is not limited to the 

visible spectrum, therefore, enabling the capture of multiple wavebands across different regions of 

the electromagnetic spectrum. Its origins can be traced back to the 19th Century where astronomer 

Pierre Janssen used a double-slit monochromator to view the solar corona, adjusting the relative 
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position of the slit with respect to prism dispersion to view the scene at different wavelengths [12]. 

Later, Charles Fabry and Alfred Perot developed their interferometric filter allowing astronomers to 

view a full scene over a narrow spectral band and tune the filter wavelength, giving them the 

opportunity to build three-dimensional datasets of the target scene [12], [13]. The Fabry-Perot 

interferometer represented an important advance within the field of spectral imaging, providing an 

opportunity to obtain information the was previously very difficult to acquire [12].  

There are several different methods for data capture using spectral imagers. Data can either be 

captured through a spatial scan, where the spectral information is captured line-by-line (push broom) 

or pixel-by-pixel (whiskbroom), or as a snapshot where the whole scene is captured simultaneously 

either one wavelength at a time (framing) or as a single exposure (windowing/snapshot). Furthermore, 

there are two main types of spectral imaging; Multispectral imaging, where the sensor captures 

datasets from a few, spaced spectral bands, and Hyperspectral imaging where wavelengths are 

captured contiguously. Whilst multispectral imaging can provide spectral data from several 

preselected wavebands (usually in the order of ten nanometres), hyperspectral imaging provides a 

more complete dataset, collecting a continuous spectral response across the spectral range of the 

sensor. Whilst spectral imaging with multispectral sensors has been achieved since the late 1960s [14], 

recent advances in the spectral and spatial resolution of sensors has opened-the-door to more detailed 

scene analysis with hyperspectral imaging [15], [16]. As a result, over the past three decades, 

hyperspectral imaging has emerged as an effective tool for a variety of applications ranging from 

remote sensing of the Earth’s surface [15], [17], [18], to art conservation and archaeology [19]–[21]. 

Whilst hyperspectral data capture can be achieved without the inclusion of image data, choosing to 

include this feature can be of considerable benefit to a broad range of applications. Focusing on 

hyperspectral imaging, helps to provide additional context to the spectral datasets, making it easier to 

determine key areas of spectral change. This is of significant importance across more challenging 

environments with intricate or more complex targets because it allows the operator to pin-point the 

exact location of spectral variations across the target scene. This increases the accessibility of these 

datasets, making them more user-friendly and, in turn, enables more detailed target analysis. 

1.2. Hyperspectral Imaging 
Hyperspectral images are characterized by both their spatial and spectral resolution [22], [23], e.g., 

with two spatial dimensions (Sx and Sy) and one spectral dimension (Sλ). The spatial resolution 

measures the geometric relationship between the image pixels, while the spectral resolution 

determines the variations in illumination within the image pixels as a function of wavelength [18]. 

These data are represented in the form of a three-dimensional hyperspectral data cube [15], [18], 

where each “slice” of this data cube along Sλ, represents a specific band from the electromagnetic 

spectrum [18].  

Initially developed for remote sensing applications [19], [24], hyperspectral imaging sensors typically 

acquire images across hundreds of narrow spectral bands within the visible, Near Infrared (NIR), and 

Mid Infrared (MIR) segments of the electromagnetic spectrum [18], [11]. This enables the construction 

of an almost continuous reflectance spectrum for each pixel in a scene which, in turn, allows for the 

in-depth spectral examination of scene features that would be rather less perceptible with the coarser 

bandwidths of multispectral scanners [14], [16], [17], [25]. This recent development in sensor 

technologies has led to the uptake of hyperspectral imaging methods across a wide variety of 

disciplines, opening new possibilities for measuring and monitoring multiple aspects of our 

environment. 
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In recent years, there has been a considerable uptake of field deployable hyperspectral imaging within 

the discipline of environmental monitoring [26], [27]. This is an exciting, and potentially revolutionary, 

development that could result in substantial future alterations to existing monitoring methods and 

sensing modalities, involving capture of higher quality data [28]. However, despite this uptake, there 

remains a considerable lack of low-cost, field deployable technologies across more extreme 

environments, resulting in a significant gap in the existing literature. The considerable lack of 

affordable hyperspectral imaging instrumentation suitable for field deployment in these environments 

presents a significant problem for the continued advancement of environmental monitoring, leading 

to a lack of data to inform our understanding of underlying processes in these environments. This 

research, therefore, aims to provide a significant improvement to current sensing technologies in these 

environments by introducing accessible low-cost, miniaturised alternatives to the currently existing 

monitoring methods.  

1.3. Objectives 
The overarching goal of this thesis was to develop a variety of low-cost, portable hyperspectral imaging 

sensors capable of providing valuable datasets from and undertaking field-based analyses in a variety 

of more extreme environmental settings. As highlighted above, these environments in particular are 

lacking in accessible hyperspectral imaging technologies, resulting in existing sensors being available 

only in more easily accessed locations and/or to select, well-resourced, research teams. This results in 

the majority of our knowledge of these, often volatile, environments coming from a small percentage 

of these locations, significantly limiting our knowledge of these dynamic and highly important 

environments. By providing a variety of accessible and robust hyperspectral sensors it will significantly 

enhance the opportunities for hyperspectral data collection in these locations, leading to a better 

understanding of these locations and improving the accessibility of this research field.  

1.3.1. Objective 1 
The first objective of this thesis was to design and construct a low-cost, miniaturised hyperspectral 

imager from commercially available components and demonstrate its capabilities in a variety of 

environmental monitoring applications. This device had to be capable of scientific grade data capture, 

therefore, making it a valuable addition to the field. 

1.3.2.  Objective 2 
Building on the findings from Objective 1, the second objective of this thesis was to develop a low-cost, 

portable hyperspectral imager.  For this objective the aim was to determine what could be achieved 

for the lowest possible cost to provide a springboard for future innovation. 

1.3.3.  Objective 3 
The third objective of this thesis was to develop the low-cost portable hyperspectral imager design 

into a robust, scientific grade device, capable of in-field data collection. This device was developed to 

be an accessible sensor that could cope with the demands associated with undertaking fieldwork in a 

range of environmental conditions. 

1.3.4. Objective 4 
Building on the findings from Objective three, the fourth objective of this thesis was to develop a semi-

portable, high-resolution hyperspectral sensor that was capable of mm-scale hyperspectral data 

capture at a fraction of the cost of commercially available systems. This instrument was intended to 

complement and build on the instruments of Objectives one and three by providing a very high-

resolution set-up capable of on-site analyses. 
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1.3.5.  Objective 5 
The fifth objective of this thesis was to demonstrate the performance of these portable hyperspectral 

set-ups within appropriate environmental applications. The devices were tested within a variety of 

environmental applications and their performance analysed. This work was intended to demonstrate 

the proficiency of these low-cost portable set-ups as well as to enhance the current datasets available 

for these locations and applications. 

1.4. Thesis Structure 
Below is an overview of the layout of this thesis highlighting the discussion and achievement of the 

objectives outlined above. Furthermore, the work discussed in this thesis has resulted in a number of 

publications, therefore, where these pieces fit into the present body of work is also outlined below. 

Chapter 2 comprises an overview of pertinent theory related to spectral instrumentation and 

hyperspectral imaging before going on to provide a review of existing literature related to the use of 

hyperspectral imaging techniques within environmental monitoring applications. Specifically, this 

chapter discusses spectrometers and optical materials, and the principles of hyperspectral imaging, 

before highlighting current applications of both UAV and ground-based sensors across a variety of 

environmental monitoring disciplines. This review has been published in Stuart et al., [29] which 

highlighted the current state-of-the-art in the field. 

Chapter 3 addresses objective 1. It presents the design and testing of a semi-portable low-cost 

hyperspectral imaging system that is capable of laboratory-based hyperspectral data collection. This 

chapter is associated with the work published in Stuart et al., [30] which detailed the development of 

this instrument and its application to laboratory-based environmental monitoring scenarios. 

Chapter 4 addresses objectives 2 and 3. It presents the development of a smartphone-based portable 

hyperspectral imaging instrument. Building on the narrative of Chapter 3, this chapter first discusses 

the development of a very low-cost portable design capable of demonstrating the potential within this 

field of research. Subsequently, this chapter demonstrates the design and testing of a valuable low-

cost field portable hyperspectral imager which is published within Stuart et al., [31]. Further 

improvements to the image correction and spectral calibration processes, published in Davies et al., 

[32] are also discussed. 

Chapter 5 addresses objective 4. It presents the development of a low-cost, semi-portable 

hyperspectral imager capable of high-resolution image capture, allowing for mm-scale targets to be 

easily resolved. This instrument further bridges the gap to the realisation of the democratisation of 

hyperspectral imaging techniques, combining the benefits and skills gained from the development of 

the instrumentation discussed in Chapters 3 and 4, to enable the best quality image capture possible 

with a low-cost, semi-portable instrument. Its efficacy is demonstrated in its application to the field of 

mineralogy where it is used to determine mm-scale spectral differences across a range of complex 

samples. This work has been published within Stuart et al., [33]. 

Chapter 6 addresses objective 5. It presents the application of the Hyperspectral Smartphone (Chapter 

4) and the Low-Cost High-Resolution instrument (Chapter 5) to a real-world systematic study where 

they are utilised within the field of peatland health monitoring, and is associated with the work to be 

published in Stuart et al., [34]. The instruments are utilised to monitor variations in spectral response 

related to the onset of drought stress within Sphagnum moss samples. Both instruments are shown to 

perform well, detecting variations in spectral response up to three weeks before the onset of distinct 

visual changes, demonstrating that expensive, commercial instrumentation is not necessarily required 

for accurate and robust hyperspectral data capture. 
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Chapter 7 summarises the work presented in this thesis and presents future avenues and alternative 

applications of the instrumentation developed and discussed within the previous chapters. Specifically, 

it presents a discussion that brings together the instrumentation presented within this body of work, 

before detailing future work and potential extended applications for the low-cost instrumentation 

highlighted in this thesis.   
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Chapter 2 

Hyperspectral Imaging in Environmental 
Monitoring, Theory and Current 
Applications 
 

This chapter provides a more detailed examination of spectral instrument design and hyperspectral 

imaging. It aims to provide a background of the theory upon which much of the subsequent chapters 

are based, before going on to provide a review of the existing literature, which is associated with the 

work presented in Stuart et al., [1]. It reviews the various categories of hyperspectral imaging systems 

available to date with a focus on current progress within the design of low-cost systems, particularly 

within the field of environmental monitoring. Specifically, this chapter focuses on spectral imaging 

components and optical materials, an introduction to radiometry, principles of hyperspectral imaging, 

and current applications within environmental monitoring. Later chapters will present the 

development and application of new low-cost, small-scale alternatives, broadening the applicability of 

low-cost hyperspectral imaging far beyond its current extent, allowing novel data collection to be 

achieved in a variety of more challenging environmental settings.  

2.1. Introduction 
As highlighted in Chapter 1, spectral sensing technologies are an integral component of environmental 

monitoring research, providing comprehensive datasets that cannot otherwise be observed. It is clear 

that hyperspectral sensing is becoming increasingly beneficial due to the detailed spectral and spatial 

datasets these instruments can provide, opening new avenues for more in-depth research across 

multiple environmental settings and application areas. However, the vast majority of currently 

available hyperspectral sensing systems, that are capable of direct field deployment, remain largely 

inaccessible due to the substantial costs associated with their initial purchase and their often bulky 

design limiting their overall usability. These limitations are beginning to be overcome through 

advances in low-cost miniaturised technologies, allowing research teams to develop their own bespoke 

systems, providing user friendly designs, at a fraction of the cost of the currently available commercial 

systems. However, despite this potential a substantial range of more challenging environmental 

settings continue to be widely neglected. The provision of accessible, user friendly hyperspectral 

sensors for these more extreme environments is of significant Importance, not only due to the 

increased potential for comprehensive data collection but also the far reaching benefits of accessible 

technologies which can benefit more than just the immediate academic community which will be 

discussed in detail in later chapters. Each of these instruments is subject to underlying theory and 

concepts that influence the performance and the specific abilities of each component and the set-up 

as a whole, therefore, this chapter will first discuss the relevant theory relating to spectral instrument 

design and hyperspectral imaging, before focusing on the existing literature pertaining to current 

accessibility of low-cost hyperspectral sensors across a range of environmental monitoring fields with 

the aim of highlighting the significant gaps present in the existing literature at this time.  
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2.2. Spectrometers and Hyperspectral Imaging 
Hyperspectral imaging enables the capture of three-dimensional datasets using two-dimensional 

hardware. Due to the complexities involved in building such datasets, hyperspectral imagers contain a 

variety of components to enable the capture of both spatial and spectral information. The method of 

spatial data collection is dependent on the hyperspectral imaging technique used. Spatial information 

can be captured either sequentially e.g. pixel-by-pixel or line-by-line, enabling a two-dimensional 

spatial dataset to be built out of the captured data; or as a single frame using a two-dimensional sensor 

array to provide the x and y dimensions. Spectral information can also be captured using a variety of 

methods, e.g. using tuneable filters, or spectrometer components, with the latter being typically more 

commonplace, particularly in more compact designs. A spectrometer, on its own, provides a detailed 

contiguous spectral dataset for a single point location of a target scene. When combined with the 

additional optics and spatial scanning components required for hyperspectral imaging, a spectrometer 

forms an integral component of a hyperspectral imaging system, providing the spectral dimension to 

the spatial image. Therefore, in order to fully understand the concept of hyperspectral imaging we 

must first discuss spectrometers and their associated components in more detail. The following 

sections will discuss the theory and fundamental knowledge associated with spectrometers and 

spectral imaging, before returning to hyperspectral imaging in Section 2.4. where the principles of 

hyperspectral imaging and the various image capture techniques available are discussed in more detail. 

2.2.1 Spectral Imaging: Components and Optical Materials 
Spectrometers come in a range of different configurations, as highlighted in Chapter 1, however, the 

individual components and optical materials present within each set-up are reasonably standardised 

and, as such, are subject to conventional basic criteria. For example, the chosen optical material must 

be capable of a smooth polish, and be mechanically and chemically stable [2]. A homogeneous 

refractive index is also required to ensure light rays can pass evenly through the material [2]. 

Furthermore, the material should not possess artefacts that may result in the distortion of the optical 

throughput and must be capable of transmitting or reflecting wavelengths consistently across the 

region of its intended use. Meeting these criteria will enable the development of a robust spectral 

imaging set-up, however, the exact abilities of any particular instrument are highly reliant on the 

specific configuration of the components and the conditions of its intended use. As such, each 

component within a spectral imaging system plays a key role in defining the capabilities of the 

instrument. 

2.2.1.1. The Entrance Slit, Collimating and Focusing Components 
Working in order of interaction, light rays entering a spectrometer will first interact with the entrance 

slit. The quantity of light a spectrometer can capture is generally dependent on the f number of the 

spectrometer aperture, and the spatial distribution of the optical power at the output plane of any 

focusing optics positioned prior to the entrance slit. In a well-designed system, the focal point formed 

by any focusing optics will be circularly symmetrical and should be equal to the f number of the 

spectrometer aperture. This allows the optimum quantity of light to enter the spectrometer without 

the influence of unwanted stray reflections. Furthermore, unless the width of the focal point is smaller 

than or equal to the width of the spectrometer slit, a portion of the optical power incident on this 

surface will be blocked from entering the spectrometer. Inaccuracies within the focusing and 

alignment of these components can, therefore, lead to increased measurement period requirements 

because, if only limited optical power is available to the spectrometer sensor, longer exposure times 

are required to ensure the accurate detection of the spectral response.  The entrance slit, therefore, 

controls the light throughput of the spectrometer but is also a critical component that effects the 

spectral resolution of the instrument. A spectrometer with a narrower entrance slit will be capable of 
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a higher spectral resolution, however, this creates a trade-off between spectral resolution and light 

throughput. This is of particular relevance when the spectrometer is being utilised within a spectral 

range where the quantum efficiency of the sensor is low, for example, a silicon photodiode utilised 

within ultraviolet wavelengths. Furthermore, the capture of datasets from targets with a highly diffuse 

reflection pattern can also be restricted in higher resolution systems as the reduced levels of directly 

reflected light limit the light available to the sensor. This results in more diffuse targets having 

significant illumination requirements in order to achieve valuable data outputs. 

Once incident light has passed through the entrance slit, a series of lenses or mirrors then refract the 

light rays within the instrument. The selection of lens or mirror components depends on the particulars 

of the chosen system; lenses allow for more linear formats, whereas mirrors are typically utilised in 

crossed or folded formats (Figure 2.1.), allowing for more compact designs. These components control 

the geometry of the rays by either collimating or focusing them at specific points within the 

instrument. Collimators are used to align the incident rays entering through the slit, prior to their 

interaction with the diffraction grating, whereas focusing components are generally used to focus the 

rays exiting the diffraction grating on to the sensor. Some spectrometer configurations utilise further 

components to alter the light ray geometries to the specifics of their configuration, such as the flat 

mirror component used within the Littrow design, or combine components, such as the single 

collimating and focusing mirror utilised in Fastie-Ebert configurations. Each design has its benefits, 

however, the specific component selection and configuration depends on the details of the 

instruments intended use. 

2.2.1.2. Diffraction and the Diffraction Grating 
The diffraction grating is a crucial component within a spectral imaging instrument because it is 

responsible for the wavelength dependent angular dispersion of the incident light rays. Whilst some 

instruments use prisms to refract the incident light rays, diffraction gratings are typically more 

common place in modern spectral instrument designs due to their greater dispersion potential. 

Diffraction is a process that involves the interaction of light waves with edges and features e.g. an 

aperture or the lines of a diffraction grating, that are close in scale to the wavelength. It can be 

described using Huygen’s principle of light wave propagation. According to Huygen’s principle each 

point on a wave front can be a source of wavelets. These wavelets reinforce or interfere with each 

other to form the new wave front, which is a line tangent of the wavelets [2]. In a diffraction grating 

the series of precisely ruled lines on a clear or reflecting base act as an obstacle. Light can both pass 

directly through the grating and also be diffracted into its component colours. When light passes 

through a diffraction grating the diffraction effect causes the wave front to curve backwards causing 

the rays to split. The exact dispersion of the light is reliant on the spacing between the lines of the 

grating. At certain angles the diffracted wavelets reinforce and maxima are produced [2]; 

     sin =
𝑛λ

𝑑
± sin 𝐼     (2.1) 

Where λ is the wavelength, d is the spacing of the grating lines, I is the angle of incidence and n is an 

integer (order of the maxima). The positive sign is used for a transmission grating, and the negative 

sign for a reflective grating. Decreasing the spacing between the lines of the diffraction grating 

increases the spacing between these maxima by increasing the angle of diffraction. The diffraction 

grating equation, giving the angle of diffraction for the nth order beam is stated as, 

    𝑑 sin  =  𝑛λ      (2.2) 

Sin is proportional to the wavelength. The decision to use a transmission or reflective diffraction 

grating is highly dependent on the intended configuration of the instrument, however, both 
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approaches are used extensively across a broad range of instruments and applications. Transmission 

gratings are typically designed by etching a series of narrow, parallel grooves onto a transparent 

substrate. Reflective gratings are coated with a highly reflective covering within the required 

wavelength range e.g. a silver or gold coating can be used for infrared regions, parallel grooves are 

then etched across the surface, similar to transmission gratings [3]. The diffraction grating is an 

important component of a spectral instrument because it determines the angular dispersion of the 

wavelengths across the sensor and is, therefore, integral to the spectral resolution of the sensor. 

2.2.1.3. The Sensor Array 
Whilst each component in an optical system plays a key role in determining the overall performance 

of the instrument, the sensor array has been shown to typically have the largest impact on 

performance [4], [5]. The sensor array is the final stage in a spectral imaging system. Light exiting the 

diffraction grating is focused onto the sensor by a focusing mirror or lens. The light incident on the 

surface of the sensor is then converted into an array of electrical signals, that provide the spectral 

information for a specific location, or pixel, within the target scene. A lens is required to provide a one-

to-one mapping between a spatial location of an object and its corresponding spatial coordinate on 

the image sensor array. These output signals can then be combined to provide a spectral image of the 

chosen target containing both spectral and spatial information.  

A variety of different sensor materials are used in spectral optics depending on the wavelength range 

of the instrument. Silicon-based sensors, such as Charged Coupled Devices (CCDs) and Complimentary 

Figure 2.1 Example spectral formats, A demonstrates a basic linear format utilising lenses and a transmission 
diffraction grating. B demonstrates a crossed format utilising mirrors and a reflective diffraction grating. 
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Metal-Oxide Semiconductors (CMOS) are typically utilised for applications focusing on the visible 

spectrum, however, the physical properties of silicon mean that these sensors are also capable of 

detecting wavelengths in ultraviolet and the near infrared regions [6]. However, these sensors are not 

typically used for applications focusing predominantly on infrared wavelengths due to silicon’s band 

gap. In these regions sensors such as Indium Gallium Arsenide (InGaAs) sensors are more commonly 

used as their sensitivity is better suited to these longer wavelength applications. 

For visible and ultraviolet applications, CCD sensors have traditionally been the dominant sensor 

design, however, improvements in technologies and manufacturing techniques have allowed CMOS 

sensors to overtake CCDs as the sensor of choice for a broad range of applications [4], [6], [7], and they 

are now commonly used in commercial colour imagers such as, smartphones and digital cameras [7]. 

Originally, CMOS sensors were affected by higher noise levels, limiting their ability to produce high 

quality outputs. This made them less appealing than the more expensive CCD sensors which had been 

quickly optimised for imaging applications [6]. Since their initial development, technological 

improvements combined with an increasing demand for high sensitivity imaging, has led to significant 

improvements in CMOS sensor design allowing them to become comparable, and often superior, to 

CCD sensor options. 

InGaAs sensors are typically used for applications that require high sensitivity over the range of 900 – 

1700 nm. Across this region silicon-based sensors cannot be used as the material lacks sensitivity 

within this region of the spectrum. This is due to silicon’s band gap which limits its use to the near 

infrared and shorter wavelengths. A band gap is an energy region within which no electronic states can 

exist. It represents the minimum energy required to excite an electron to move from its bound state, 

within the valence band, to its free state, within the conduction band. Shorter wavelengths, such as 

those within the visible region of the spectrum contain higher energy photons than the longer 

wavelengths of the infrared. Focusing on silicon, this means that visible wavelengths contain enough 

energy to excite its electrons to move to the conduction band, allowing the electrons to participate in 

conduction and, therefore, these wavelengths can be absorbed. However, the longer wavelengths of 

the mid infrared do not contain enough energy to excite the electrons, meaning they remain within 

their bound state in the valence band. In this case conduction does not take place and, therefore, the 

silicon allows the infrared light to pass through it without interaction. 

Whilst silicon’s band gap means that it lacks the sensitivity for applications over ca. 1100 nm, InGaAs 

sensors have a lower/smaller band gap, making them the ideal choice for infrared applications. The 

majority of InGaAs sensors are utilised within the shortwave infrared, with some sensors being capable 

of reaching ca. 2500 nm with changes in their material composition. Although these sensors have a 

greater sensitivity within infrared wavelengths, their lower band gap also results in a higher dark 

current, increasing the noise and, therefore, limiting the quality of data the sensor is capable of 

producing. These limitations can be minimised with the introduction of cooling methods that help to 

increase the signal to noise by reducing the dark current, however, this adds to the general complexity 

and size of the instrument which can be crucial factors for a number of applications. 

2.2.1.4. Colour Filter Arrays and Their Inclusion in Spectral Sensing Instrumentation 
Colour filter arrays are commonplace in many off-the-shelf optical technologies and are widely 

implemented in a number of lower cost, consumer market components, such as smartphones. As 

smartphones and other consumer market technologies provide a valuable, user friendly starting point 

for the creation of affordable spectral imaging instrumentation, these filters, and their influence on 

spectral outputs, must be considered as these low-cost, consumer market based hyperspectral and 
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multispectral sensors increase in popularity. The potential available within the field of smartphone-

based hyperspectral imaging is discussed further in Section 2.6.  

To achieve colour image outputs from CMOS and CCD sensors, colour filter arrays are applied to the 

sensor pixels. The specifics of the colour filter array vary depending on the proposed application of the 

instrument, however, a common choice is the Red-Green-Green-Blue Bayer filter array (Figure 2.2.). 

For this pattern, each pixel produces a signal that corresponds to one of the colours within the filter. 

To produce a full colour image a demosaicing algorithm is implemented, wherein the pixel values 

relating to the colour channel outputs (Red, Green, and Blue) are used to simulate a full colour image. 

Whilst this is beneficial for the traditional use of these sensors as standard colour cameras, it can prove 

problematic in the creation of spectral sensing and imaging devices that utilise these consumer 

components.  

The inclusion of a Bayer filter, of course, has an impact on the spectral output of any imaged target 

and, therefore, must be accounted for in post-processing, or removed [8], in order to obtain true, 

quantitative datasets from spectral sensors containing this feature. Cross-talk between the colour 

pixels can also occur which can further compromise the credibility of the colour outputs [4]. 

Furthermore, the application of this filter limits the wavelength sensitivity of the sensor by attenuating 

incident UV and NIR radiation, whilst this is suitable for applications based centrally within visible 

wavelengths it can be a limiting factor for targets with key spectral features present near these 

boundaries. To remove these limitations many sensors do not include a colour filter array, instead 

using the monochrome sensor. This is beneficial in that it allows for the full range of wavelength 

sensitivity to be utilised and removes the potential for colour distortions in the output images, making 

it easier to obtain a spectral response that is true to the imaged target. Furthermore, the resolution of 

these sensors is typically higher because there are no limitations imposed by the presence of a colour 

filter array. However, it should be noted that these sensors can also be affected by cross-talk which 

can lead to limitations in image accuracy [6]. 

 

Figure 2.2 Example Bayer colour filter array layout on top of a sensor array. Grey squares show the underlying 
sensor array. 
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2.3. An Introduction to Radiometry 
Radiometry is the science of measuring and quantifying optical radiation at any wavelength across the 

electromagnetic spectrum [2], [9], and, as such, it is critical to the detection of accurate quantifiable 

hyperspectral datasets. Although radiometry can be applied over the entirety of the electromagnetic 

spectrum, in practice the term is usually limited to measurements within the optical region, focusing 

on infrared, visible, and ultraviolet light. Radiometry, therefore, represents an important part of the 

design process for most optical instrumentation [10]. The basic unit of power used in radiometric 

measurements is the watt. In spectral sensing applications radiometry often focuses on radiative 

transfer which is used to describe the way that targets, or ‘bodies’, radiate power and energy to and 

from each other, this radiation is often described in terms of power per unit area. Additionally, 

blackbody furnaces provide an excellent means by which to calibrate colour and relate these 

calibrations to the watt using radiation thermometer transfer standards, therefore, they are commonly 

utilised in radiometric calibrations. 

Emissivity is a term that is often used when discussing radiometry, it is a radiative relative material 

property that describes how effectively a target object or material can emit thermal radiation as a 

consequence of its temperature. A target’s emissivity value is between 0 and 1 and provides the ratio 

of radiation an object emits compared to that of a perfect emitter (or perfect body) at the same 

temperature. A perfect body, known as a blackbody, is one that totally absorbs all radiation incident 

upon it [10], [11]. A blackbody has an emissivity of 1 [2], [10], [11]. Perfect blackbodies, are 

hypothetical, however, heated blackbodies, such as the blackbody furnaces mentioned above, provide 

a close approximation and are subject to known laws. These sources are, therefore, utilised extensively 

as standard sources for the calibration and testing of radiometric instrumentation [2].  

2.3.1. Planck’s Law 
Planck’s law, derived by Max Planck in 1900, describes the spectral energy distribution of radiation 

emitted by a blackbody at a given temperature. It describes the spectral radiant emittance of a perfect 

blackbody as a function of its temperature and the wavelength of emitted radiation [2]. However, this 

assumes a perfect blackbody, as these perfect bodies do not exist the emissivity value of a target is 

used to apply Planck’s law to the real-world;  

𝐵(λ,T) =
2ℎ𝑐2

λ5

1

𝑒
ℎ𝑐

λkT−1

     (2.3) 

Where B(λ,T) is spectral radiance with respect to wavelength and temperature, h is the Planck constant, 

c is the speed of light in m/s, λ is the wavelength in m, k is the Boltzmann constant, and T  is the 

blackbody temperature in Kelvin. 

2.3.2. Radiant Power, Radiance, and Irradiance 
Radiometric calibrations are essential to accurate quantitative optical data collection. By calibrating 

instruments against known standards it provides an opportunity to gain a better understanding of the 

true capabilities of the instrument and enables the accurate comparison of samples from different 

sources. For example, for datasets acquired from satellite and airborne sensors, radiometric 

calibrations allow for direct comparisons to be made between scenes imaged on different days and/or 

by different sensors. Without completing this calibration an accurate direct comparison would not be 

possible due to variations in a range of factors during data capture; from changes in atmospheric and 

illumination conditions, to differences within the dark currents of each sensor. By calibrating these 

instruments against a known reference it enables a wealth of data collection and comparison. 
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Radiometric calibrations focus on the optical radiation emitted from or reflected by a target, and that 

received by the imaging sensor. Radiant power (фe), also known as radiant flux, refers to the radiant 

energy reflected, emitted, transmitted, or received by an object per unit time passing through a given 

surface and can be defined as follows;  

ф𝑒 =
𝜕𝑄𝑒

𝜕𝑡
       (2.4) 

Where ∂ is the partial derivative; Qe is the radiant energy reflected, emitted, transmitted or received; 

and t is time. 

Radiance refers to the radiant power emitted, reflected, transmitted, or received by a given surface 

per unit solid angle, per unit area. Figure 2.3. provides an example of radiance where the radiance can 

be defined as the amount of radiant power emitted from location ‘A’ within the angular space defined 

by the cone with its vertex centred at ‘A’, representing the solid angle. The radiance (R) of an emitting 

area can be calculated using; 

𝑅 =
ф𝑒

(𝐴×𝛀)
      (2.5) 

Where фe is the radiant power emitted from the given area (A), and Ω is the solid angle. Radiance is 

typically used as a means to understand and describe sources e.g. the light emitted by a bulb or 

reflected by a target object. To gain a better understanding of detectors irradiance is generally used. 

Irradiance refers to the radiant power received by a surface per unit area and is measured in watts per 

square metre. Irradiance (Ee) is defined as; 

𝐸𝑒 =
𝜕ф𝑒

𝜕𝐴
      (2.6) 

Where ∂ is the partial derivative, фe is the radiant power received, and A is the area. The total power 

detected by an optical detector is the integral of the irradiance from all directions over the area of the 

sensor. In Figure 2.3. if it is assumed that the total optical power passing through location ‘B’ is evenly 

distributed, the irradiance can be determined by dividing the radiant power on this surface by the area 

of ‘B’.  

Etendue is a property of light within an optical system that is used to characterise how stretched or 

‘spread out’ the light is in area and angle, allowing the optical throughput of the instrument to be 

calculated, and, therefore, represents an important calculation within instrumental designs. For the 

instruments discussed later within this thesis the important calculation is the relationship between the 

field stop (the optical aperture that limits the FOV of the instrument), and the aperture stop (the 

aperture that limits the amount of light that can pass through an optical system). This calculation is 

shown in the following equation; 

(𝐴2×𝐵2)

𝐿2         (2.7) 

Where A is the aperture stop, B is the field stop, and L is the distance between the aperture and field 

stops. Calculating the optical throughput of a sensor is important as it improves our understanding of 

the instrument’s capabilities and provides information on the effectiveness of the optical 

configuration. By better understanding these factors it provides a quantitative means of comparing 

different instruments. 
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By completing a radiometric calibration for an instrument, it allows the radiant power represented by 

each pixel in an image scene to be calculated. This provides valuable information regarding the 

capabilities of a given instrument, allowing for targets obtained from varying sources to be compared 

effectively. Furthermore, when focusing on reflection-based imaging techniques, if the radiant power 

of both the target object and the emitting illumination source are both defined, the optical throughput, 

related to etendue, can be calculated allowing for the properties of the light rays within the optical 

system to be characterised.  

A radiometric calibration of the optical power per unit area detected by an instrument can be 

performed by measuring the radiant power reflected by a standard reference target, such as a 

spectrally flat panel. This calibration is completed using a radiometer to determine the voltage 

received by the sensor. For spectral instruments, measurements of the illuminated reference target 

should be completed with and without the presence of a relevant band pass filter. The band pass filter 

location should be based at a wavelength that corresponds to a region of high signal within the spectral 

range of the instrument to avoid complications related to the noise associated with areas of low signal. 

Measuring the voltage with the filter in place allows for the calculation to be determined for a specific 

point within the spectrum, providing a more precise measurement, whereas the unfiltered 

measurement allows the data to be extrapolated to estimate a value over the wavelength range of the 

instrument. Once these voltages have been measured, Ohm’s Law is used to determine the 

photocurrent; 

𝐼 =
𝑉

𝑅
       (2.8) 

Where I is the current in amps, V is the voltage in volts and R is the resistance of the conductor in units 

of Ohms. 

To calculate the power; the photocurrent, responsivity of the photodetector and transmission factor 

must be known. The power is then calculated by dividing the photocurrent by the responsivity, before 

subtracting the transmission factor. The power per unit area is then defined by dividing the power by 

the extent of the measurement field on the mesurand, and then multiplying this value by the 

difference between the filtered and unfiltered measurements. If the size of the pixels present within 

the spectral imaging instrument are known, the power per unit area can be used to determine the 

power represented by each pixel.  

Figure 2.3 Schematic diagram demonstrating a basic radiance and irradiance example. Location A represents an 
area where radiant power is being emitted. Location B represents a surface where radiant power is received. 
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2.3.3. Light Interactions 
The light characterised by an optical system is dependent on the spectral range of the instrument, but 

also on how the light interacts with the target. The interactions of light with matter are complex and 

depend on the optical properties of the medium [12]. There are four main ways that light can interact 

with a target; reflection, transmission, absorption, and emission. For most targets a combination of 

these interactions is observed rather than one specific response. In spectroscopy and spectral sensing, 

we focus on the reflection and absorption of light across a target surface in order to obtain information 

about its spectral response.  

Reflection is caused by the change in direction of the wave vector of a light wave by a surface [13]. It 

is a function of the distribution of the incident radiance, the reflective properties of the target surface, 

and the incident and viewing directions [12]. Three types of reflection are possible (Figure 2.4): 

specular reflection occurs when the incident light interacts with a flat surface resulting in a single angle 

of reflection producing a ‘mirror-like’ reflection; Retro-reflection, where a portion of the reflected light 

is directed back at its source, with minimal scattering. This type of reflection is created using specific 

retro-reflective sheeting which typically contains tiny glass beads that refract the incident light before 

it is reflected by a mirrored surface behind the beads; and diffuse reflection which occurs when the 

incident light contacts a rough surface, causing the incident ray to be scattered, producing multiple 

angles of reflection.  Diffuse reflection can also result in Lambertian reflection which occurs when the 

incident light hits a perfectly diffusing surface. A Lambertian surface is similar to a Lambertian emitter; 

a Lambertian emitter is a source of radiation that has the same radiance when viewed from any angle 

[12]. Similarly, when light interacts with a Lambertian surface, multiple reflection angles are created 

but the luminance/radiance remains constant regardless of the angle of view. This is expressed in 

Lambert’s cosine law which states that the intensity observed from an ideal diffusely reflecting surface 

is directly proportional to the cosine of the angle θ between the direction of the incident light and the 

surface normal [2]; 

𝐼𝜃 =  𝐼0 cos( 𝜃)       (2.9) 

Where Iθ is the illuminance at an angle θ from the normal and I0 is the illuminance in the direction of 

the normal. It should be noted that, similarly to perfect blackbodies, Lambertian surfaces are 

theoretical, however, targets such as Spectralon panels provide suitable approximations, producing 

highly diffuse reflection that can be utilised as a calibration target. With spectral sensing techniques 

we can quantify the volume of light reflected at each wavelength within the instrument’s range to 

determine the chemical make-up of the target surface. 
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Light is absorbed by the target surface if the energy of the light is equal to or near the energy states of 

the surface material involved [13]. In spectroscopy absorbance is the measure of the quantity of light 

absorbed by the sample. Identifying key absorption features in a target scene’s spectral response 

enables, for example, the detection and quantification of certain pigments present across a target, 

providing essential information on the status of the chosen target. This allows for potential issues to 

be identified prior to their identification by more traditional means, as such, reflectance and 

absorbance spectroscopy are used extensively across a wide range of application areas, from 

monitoring health and quality in fresh produce, to cancer detection in point-of-care analyses. 

2.3.4. Optical Aberration 
Aberrations are a property of optical systems that cause variations in the focus of light over a region 

of space. This results in distortions and blurring within output images, with the nature of the distortion 

depending on the type of aberration. For monochromatic light there are five types of aberration, these 

are; spherical aberration, coma, astigmatism, curvature of field, and distortion [3]. Additionally, there 

is chromatic aberration, which occurs when wavelengths are focused at different distances within an 

optical system [3]. In this section each of these aberration types will be discussed in turn to better 

understand their influence and how best to resolve these issues within optical systems. 

2.3.4.1. Spherical Aberration 
Spherical aberrations occur as a consequence of light interactions with the spherical surfaces present 

within an optical system, such as lenses or mirrors. They are not affected by the angle of imaging and 

can, therefore, affect both paraxial and off-axis targets [3]. These aberrations cause incident light rays 

to intersect the optical axis at varying distances from the lens. These intersections can cause positive 

aberrations, where rays intersect the optical axis at a location closer to the lens; and negative 

aberrations, where rays intersect at a location further from the lens. These aberrations result in 

spherical regions of defocusing, or blur, within the output image.  

To address these affects a combination of concave and convex lenses can be used. These lenses will 

produce spherical aberrations of opposite signs and should, therefore, cancel each other out when 

combined. Furthermore, if the optical system cannot accommodate for the inclusion of multiple lens 

Figure 2.4 Reflection patterns. Note the differences in the number and angle of the reflection paths. 
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components a plano-convex lens, with the convex face facing the incident rays, can help to reduce 

these aberrations in simpler configurations [3]. 

2.3.4.2. Coma 
Coma is an off-axis aberration that is non-symmetrical around the optical axis and increases rapidly 

with aperture [2], [3]. This type of aberration causes off-axis targets to appear distorted due to the 

formation of comatic circles making the target object appear to have a tail, similar to that of a comet. 

Similar to spherical aberrations, coma may occur in both positive and negative quantities with negative 

coma occurring when rays incident upon the lens further away from the paraxial region focus closer to 

the axis than rays incident closer to the paraxial region, and positive coma when the opposite occurs. 

This results from a change in magnification with off-axis height. This can be better understood within 

the concept of principal planes. The principal planes of a lens (the hypothetical planes through which 

all refraction can be considered to happen) can only truly be considered planes within the paraxial 

region of the lens, therefore, rays incident upon the lens at greater distances from the paraxial region 

interact with a more curved surface, affecting the focal length of these particular rays. The focusing of 

a specific ray is, therefore, dependent on the extent of its off-axis incident angle.  

Coma can be removed from an optical system by satisfying the Abbe Sine Condition [3]; 

𝑛ℎ sin 𝜃 + 𝑛′ℎ′ sin 𝜃′ = 0     (2.10) 

Where h and h’ represent object and image size respectively, and angles θ and θ’ are the angles of the 

rays in the optical media n and n’ respectively. Coma results from a change in magnification with height 

as discussed above, therefore, to remove the coma aberrations within an optical system the 

magnification must be consistent everywhere. Using the Abbe Sine Condition this would mean that 

coma would be prevented when; 

sin 𝜃

sin 𝜃′
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡     (2.11) 

2.3.4.3. Astigmatism and Curvature of Field 
When rays propagating in two perpendicular planes have different focus points, the form of aberration 

is known as astigmatism [2]. Astigmatism increases with the off-axis distance of the target and with 

the aperture size of the refracting surface. These aberrations result in blur occurring in output images 

at different distances due to the varying focal points of the rays. For example, if a cross is used as the 

target object, the vertical and horizontal lines would be in focus at two different distances [3]. Altering 

lens shape and spacing can help to minimise these aberrations by bringing the focal points back to a 

single standard location. 

Curvature of field is similar to astigmatism except that it is symmetrical around the optical axis [2], [3]. 

Curvature of field causes targets to become impossible to bring into complete focus despite being 

located within the optical axis of the instrument. This results in circular regions of the target appearing 

in focus whilst other regions of the same target appear blurred. To correct for this, it can be beneficial 

to include an aperture stop to reduce and remove edge light rays, limiting the quantity of non-paraxial 

rays, however, this can also significantly limit the light collecting abilities of the system creating longer 

exposure and imaging requirements. 

2.3.4.4. Distortion 
Unlike the forms of aberration discussed above, which result in blurring within the output image, 

distortion simply causes scene information to be misplaced geometrically, resulting in a crisp image 

where the intended target is distorted in size and/or shape [3]. Figure 2.5., shows examples of image 

distortion for a grid of squares. Magnification that increases with distance will result in pincushion 
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distortion where the squares appear to bow inwards, whereas, magnification that decreases with 

distance will result in barrel distortion, causing the squares to appear to expand in a size. In both 

scenarios, as shown in Figure 2.5., the image quality remains sharp but the object shape is distorted. 

These aberrations can be corrected with alterations to the lens system e.g. the inclusion of an aperture 

stop positioned at the lens. It can also be corrected algorithmically, however, this results in significant 

additional processing time requirements. 

2.3.4.5. Chromatic Aberration 
Chromatic aberration differs from the monochromatic aberrations discussed above as it takes into 

account variations in a material’s refractive index with wavelength [2], [3], and is simply a failure of a 

lens system to focus all wavelengths at the same focal point. There are two types of chromatic 

aberration; longitudinal, and lateral [3]. Longitudinal aberrations occur when images formed by 

different wavelengths are not coincident, creating aberrations throughout the output image. This 

results in blurring and the creation of rainbow-like edges in areas of contrast within a target scene. 

Lateral aberrations occur when different wavelengths are focused at different positions because the 

magnification of the lens also varies with wavelength. Lateral aberrations, therefore, do not occur 

within the centre of an image, instead increasing in intensity towards the edges of the image. 

Chromatic aberrations are typically corrected for in an optical system with the inclusion of an 

achromatic doublet, consisting of a convex and concave lens of different glass types, and dispersion, 

cemented together. This results in a compound lens that reduces the amount of chromatic aberration 

over a certain wavelength range, providing more accuracy to the optical system. 

2.3.5. Ray Tracing 
Ray tracing is a method of simulating the physical behaviour of light within an optical system and is an 

important step within the development of an instrument. Rays of light that contribute to the 

production of an image within an optical system usually do not exist perfectly along the optical axis 

and, therefore, their interaction with optical components cannot be accurately determined from 

assumptions related to paraxial rays. To ensure an optical system is capable of producing accurate 

images with minimal aberrations the interaction of light rays with the components of the optical 

system must be analysed with the aim of reducing the volume of rays that deviate substantially from 

the ideal path [3]. Ray tracing, therefore, entails the tracing of the geometry of individual rays through 

an optical system using the laws of reflection and refraction. Whilst these techniques used to be 

completed by hand requiring complex and highly accurate sketches of the optical system, many of 

Figure 2.5 The different types of distortion possible within optical systems. Note the clarity of the image despite 
the geometric distortions. 



24 
 

these calculations are now completed using specially designed computer software, such as Zemax. By 

completing ray trace models on an optical system it enables the user to determine the influence of 

aberrations on the current optical configuration. The computer software can easily calculate 

geometries for both meridional rays (those that pass through the optical axis), and non-paraxial rays 

(that do not pass through the optical axis). Non-paraxial rays are typically more complex to calculate 

due to the need for three-dimensional geometry within their calculations, however, the determination 

of a range of aberrations is reliant on the analysis of these non-paraxial rays. Ray tracing is, therefore, 

of substantial importance, particularly for more complex optical system design, as it enables the 

optimisation of component configurations prior to their assembly. 

2.4. Principles of Hyperspectral Imaging 
Hyperspectral imaging techniques utilise light interactions to inform and build three-dimensional 

datasets of a target object or scene, allowing the specific spectral response of each scene element to 

be quantified. It is a valuable analytical technique that has been implemented across a wide range of 

application areas and environments. Building on the abilities of point spectrometers and multispectral 

imagers, hyperspectral imaging enables the collection of contiguous spectral datasets for each pixel 

within a spatial image scene, providing a wealth of data that can be used to inform further investigation 

or analysis. Chapter 1 highlighted the significant uptake of hyperspectral imaging techniques across 

environmental monitoring applications. The following sections will discuss the principles of 

hyperspectral imaging focusing on the different types of hyperspectral sensors, data processing 

requirements and considerations, and technological developments before highlighting existing 

applications across environmental monitoring fields. 

2.4.1. Types of Hyperspectral Sensor 
There are a number of different approaches to hyperspectral imaging and, as such, a variety of sensor 

types are available (Figure 2.6.) [14]. Typically, sensors are characterised by the arrangement and/or 

the number of spectral bands involved in the instrumental architecture [14], [15], as well as the applied 

image capture method. Push broom sensors have been traditionally used for large airborne imaging 

applications and have recently been successfully miniaturised for use within UAV (unmanned aerial 

vehicle) systems [14], [16], [17]. This push broom measurement approach is favoured due to its high 

spatial and spectral resolution [18], however, this image acquisition method, whereby a line of spectral 

information per exposure is recorded [14], [19], can cause difficulties in post-processing [14]. Similarly, 

whiskbroom sensors, which image a single pixel or spatial location at a time [20], [21], using a rotating 

mirror to sweep a scan line perpendicular to the direction of the sensor platform’s movement [20] - 

[22], are affected by the same issues [20]. Furthermore, whiskbroom sensors provide inherently slower 

frame rates than push broom units, resulting in lengthier data acquisition periods where all other 

things are equal [20], [23]. Another disadvantage is that the rotation of the optics can result in spatial 

distortions in the image outputs [24]. However, recent work reported by Uto et al. [22], has 

demonstrated the pioneering of low-cost whiskbroom image formation suitable for UAV deployment. 
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Alternatively, framing instruments (Figure 2.6.) can capture scenes through two-dimensional images 

with additional optics that focus on either an individual wavelength or wavelength bands using 

tuneable filters, such as framing band pass filters translated across the spectrum [24]. The design of 

such sensors is significantly simpler than those of push broom and whiskbroom sensors [20], [25], 

however, the use of spectral filtering substantially reduces the intensity of light captured at the sensor, 

limiting signal to noise [24]. Windowing/snapshot instruments also employ a two-dimensional Field of 

View (FOV) that moves across a scene in a continuous fashion [26]. However, instruments that utilise 

this image capture approach acquire a distinct exposure each time the FOV moves forward, with no 

integration between exposures [26]. 

The literature highlights that although there can be significant variation caused by slit width, lens focal 

length, and integration time [14], push broom sensors, at present, offer a better combination of spatial 

and spectral resolution. Push broom sensors are typically more stable than whiskbroom sensors due 

to the line-by-line image acquisition process, therefore, confining potential data misalignments to 

between lines rather than between individual pixels [18]. Furthermore, they often have a significantly 

greater spectral resolution, for example Jaud et al. [25], reports a spectral resolution of 1.85 nm for 

their push broom device. Framing and windowing/snapshot devices are often limited due to the 

filtering of spectral bands, resulting in spectral resolutions of > 5 nm being more common for these 

devices [14], [26]. High spatial resolution is also easier to achieve with current push broom devices as 

miniaturisation allows for them to be deployed on more manoeuvrable, light-weight devices, for 

example, a number of studies highlight successful image acquisitions with spatial resolutions of less 

than 10 cm [25], with Lucieer et al. [16], and Malenovský et al. [17], achieving a spatial resolution of 4 

cm with UAV-based deployments. Framing and windowing/snapshot devices are currently limited due 

to their typically larger size, making push broom sensors significantly more compatible to light-weight, 

miniaturised sensing applications at present. 

Figure 2.6. Image capturing techniques for each sensor type. Note the different methods of image formation; 
from the pixel-based capture of Push Broom and Whiskbroom scanners, to the two-dimensional comprehensive 
image capture of Framing and Windowing instruments. This highlights the potential issues related to image 
distortion resulting from the rotation of the optics in the pixel-based instruments, as mentioned above. 
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Although several of these sensor designs (Figure 2.7.) have been successfully miniaturised, making 

them suitable for light-weight aerial remote sensing, they do not currently contain any internal 

georeferencing data and, therefore, require the addition of external (e.g., GPS receiver) devices to 

record this information if it is required [14], [27]. Whilst this does not particularly effect traditional 

remote sensing and ground-based imaging methods, it can become problematic when designing 

effective UAV integrated payloads [14], [20]. Each of these sensor designs has its advantages, 

depending on the parameters of the proposed application, however, the push broom design has been 

the most popular, particularly within the field of light-weight UAV image acquisition [18]. Whilst these 

sensor implementations can involve distortions within the acquired data, they currently outperform 

full-frame image capturing approaches as the latter systems currently require a compromise between 

spatial coverage, spatial resolution and spectral resolution [14], [25]. However, as interest and demand 

within this area continues to grow [18], [28], significant advances in compact sensor designs, including 

the incorporation of linear variable filters, can be anticipated in the future. 

2.4.2. Hyperspectral Data Processing Requirements and Considerations 
The calibration of hyperspectral instrumentation is important for the collection of accurate, high 

quality datasets. A raw dataset provides spectral information for the chosen spatial scene, however, 

in this format, these datasets are subject to a variety of distortions and biases that must be corrected 

for in order to obtain the true output data for the chosen scene. These distortions and biases are 

accounted for at varying stages e.g. during instrument calibration or output image post-processing.  

Figure 2.7. Example schematic designs for each sensor type. (a) Push Broom, (b) Whiskbroom, (c) Framing, (d) 
Windowing/Snapshot. Not to scale. 
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2.4.2.1. Instrument Calibration 
The importance of radiometric calibration has been discussed in Section 2.3., however, in order to 

produce accurate spectral datasets a hyperspectral instrument must also be spectrally calibrated prior 

to the capture of a target scene. This is achieved by uniformly illuminating the entrance slit of the 

spectrometer with a source that contains a distinct array of narrow band spectral lines across a range 

of wavelengths within the spectral capabilities of the instrument (Figure 2.8). In a perfect system, these 

spectral lines align linearly with the spatial coordinates of the sensor array, however, in reality, these 

lines are often subject to curvature caused by spatial-spectral distortions [29]. An example of these 

distortions is shown in Figure 2.9.  A variety of illumination sources are commonly used for spectral 

calibration measurements. These include; monochromators, lasers, and gas lamps that emit at a 

number of specific spectral lines e.g. Mercury vapour is known to produce defined peaks at 436 nm 

and 546 nm. Another means of calibration is to precisely measure the characteristics of each 

component of the instrument individually, using this information to inform and build a model, 

however, this approach is generally avoided due to its complexity and impracticality [29].  

 

 

Figure 2.8 Example calibration frame of a gas lamp demonstrating distinct spectral lines combined with subtler 
spectral responses across the visible spectrum. 
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2.4.2.2. Post-Processing Image Correction 
Dark and light corrections are completed, typically after data capture, to remove sensor and 

illumination biases from the resulting datasets. These corrections are an important component of the 

data collection process as they allow for the true spectrum of the target object to be obtained, making 

accurate quantitative measurements possible. To correct for sensor bias caused by the dark current 

characteristics of the sensor array, a measurement should be obtained during the data collection 

period where all light is blocked from entering the set-up. This provides a ‘dark image’ that can be used 

to remove the sensor’s input from the target’s response (Equation 2.13). Additionally, to remove the 

illumination bias from the spectral response of a non-emitting target a light (or white) reference is 

completed. This is typically completed using a spectrally flat white calibration tile, that is illuminated 

in the same manner as the intended target. The spectral response acquired from this measurement 

can be used to remove the illumination bias from the scene (Equation 2.13). This measurement should 

also be completed at the time of data collection. This is especially important when working under 

natural lighting conditions due to the potential variations in illumination caused by variations in cloud 

cover and meteorological conditions more generally. The equation below provides an example of the 

removal of sensor and illumination biases from a given target, 

𝑆𝑡𝑎𝑟𝑔𝑒𝑡−𝑆𝑑𝑎𝑟𝑘

𝑆𝑙𝑖𝑔ℎ𝑡−𝑆𝑑𝑎𝑟𝑘
=

𝑅𝑡𝑎𝑟𝑔𝑒𝑡

𝑅𝑙𝑖𝑔ℎ𝑡
= 𝑅𝑡𝑎𝑟𝑔𝑒𝑡    (2.12) 

Where S represents the signal measured during data capture and R represents the reflected response. 

The subscripts target, dark, and light refer to the target object, dark reference, and light reference 

respectively. 

2.4.3. Technological Developments and Associated Complexities 
Currently, hyperspectral imaging is generally performed by satellite or aircraft platforms [19], [25], 

[30], with recent advances in airborne and spaceborne technologies providing end users with rich 

spectral, spatial, and temporal information [31], [32]. As such, hyperspectral imaging has been well 

established in the remote sensing community, with large-scale uptake across many different domains 

[14], [33]. Furthermore, the recent development of CubeSat miniature satellites, such as HyperCube 

[34], shows significant potential for future development of light-weight, low-cost spaceborne image 

acquisition [35]–[37]. However, whilst these sensors enable the analysis of extensive areas of the 

Earth’s surface, providing large-scale datasets with long time series [25], they are often constrained by 

factors outside the users’ control, such as cloud coverage and spatial resolution [18], [25], [31]. 

Furthermore, manned aerial surveys operated on an on-demand basis can be rather expensive and 

Figure 2.9. Distorted spectral lines. Note, the curve of the spectral peaks. This can create complications within 
the calibration process due to the shifting linear location of the spectral peaks. 
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somewhat reliant on favourable meteorological conditions [38]. As a result, these drawbacks 

significantly limit the suitability of these measurement types for many smaller scale, local applications. 

Jaud et al. [25], highlights this sizable gap between the small-scale, fine resolution outputs of field 

surveys and the comparatively coarse resolution provided by satellite and aerial sensors. However, the 

development of UAV platforms over the last decade has enabled the development of an intermediary 

protocol, in the form of UAV integrated hyperspectral sensing [19], [28], [38], [39]. These UAV-based 

platforms provide greater flexibility than traditional sensing methods, permitting the user to vary 

parameters such as survey size and flight altitude [25], [40], in a manner tailored to the proposed 

application. Additionally, due to their typically small size and low weight they can be easily, and readily, 

stored and deployed [39], [41]. A number of UAV integrated hyperspectral sensors have been tested 

in recent years within a variety of different fields; Habib et al. [19], present a low-cost UAV integrated 

hyperspectral scanner applied to the field of precision agriculture. Their multirotor system proved 

successful, providing detailed imagery of the survey area, however, difficulties arose during the 

georectification process, with the accurate generation of georeferenced products proving difficult to 

establish [19]. Similarly, Jaud et al. [25], experienced complications during the line-by-line 

georectification and referencing required of their push broom, multi-rotor UAV sensor acquisitions, 

with the push broom image formation process leading to a major source of complexity during the 

geometrical correction step [25]. 

2.4.3.1. Georectification Difficulties  
Due to the light-weight nature of multi-rotor UAV systems they generate substantial high frequency 

vibrations and can perform faster trajectory changes than larger platforms, therefore, these systems 

require fast, accurate proprioceptive sensors to enable accurate logging of altitude and position [25], 

[42]. Mozgeris et al. [43], directly compared the results obtained from a UAV-based hyperspectral 

imaging camera and a similar sensor based within a manned, fixed wing, ultra-light aircraft in the 

context of precision agriculture monitoring at a site in Lithuania. They determined that the manned 

aircraft sensor outperformed the UAV-based device in terms of the quality of output data as a function 

of cost. A key factor in this was the higher relative accuracy of georeferencing in the case of the manned 

deployment, which the higher spatial resolution coverage of the UAV sensor was not sufficient to 

counteract [43]. Conversely, Freitas et al. [18], present a direct georectification method applied on 

their fixed wing UAV-based sensor, which substantially improved the accuracy of target 

georeferencing. Whilst they still experienced difficulties due to the nature of push broom image 

acquisition, the results obtained suggest that reliable acquisition of accurately georeferenced data 

using a UAV-based sensor is now possible. As such a variety of different georectification solutions, 

demonstrating varying levels of success, have been presented in the literature.  

A significant challenge facing the collection of high quality, georeferenced hyperspectral datasets, 

particularly from UAV-based deployments, is a lack of fast processing workflows that are capable of 

retrieving geometrically accurate datasets [44]. Many existing solutions require the collection of 

multiple Ground Control Point (GCP) locations [45], [46], and/or the manual identification of scene 

features [42]. These approaches are limited in that they are typically computer- and time-intensive and 

can often have outputs with limited accuracies. Angel et al., [44], have designed a fully automated 

approach capable of producing accurate georectified hyperspectral datasets for UAV-based push 

broom scanners. Initial results show promise, however, further work is required to ensure their 

approach can be applied across different terrains and under a range of atmospheric conditions. 

A number of studies have circumvented these georectification issues simply by implementing ground-

based data acquisition protocols [47], however, the obtained images can still be affected by other 
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factors, such as, variable meteorological conditions [28]. Indeed, this issue can affect both ground-

based and aerial hyperspectral imaging [23], [47]. Variations in illumination, in particular, during the 

study period can have a significant effect on the captured data, introducing apparent changes in 

captured spectra unrelated to changes in the scene surface covering [19], [23], [28], [47]. However, 

the effect of these variations can be minimised by recording trends in illumination in parallel with the 

image capture [28], which can be used to calibrate the hyperspectral image data acquired during these 

periods [18], [23], [27]. 

The demand for smaller and lighter hyperspectral imaging sensors continues to grow, with the 

application of UAV integrated sensors being one of the most rapidly developing areas of remote 

sensing technology [28], [40]. The desire to reduce the physical size of these sensor systems whilst 

maintaining the data quality available from larger units is an aspiration in both aerial and ground-based 

sensing configurations [40], [47]. With the advent of widely available 3D printing services [48], [49], 

and the continued development of sensors for both scientific and commercial purposes [38], the 

opportunities to pioneer units specifically tailored to desired application areas have never been 

greater. Whilst at present, push broom and whiskbroom sensors are subject to limitations in temporal 

resolution, associated with the georectification process, there are considerable ongoing improvements 

in accurate direct and indirect georectification methods [18], [25]. In general, the continued 

development of more compact, light-weight devices creates the opportunity for imaging surveys with 

high spatial and spectral resolutions, delivering added flexibility in the acquisition parameters [25], 

[38], [47]. 

2.5. Applications within Environmental Monitoring  
As highlighted in the sections above there is considerable potential for, and progress towards, 

compact, field portable hyperspectral imaging sensors for a variety of environmental monitoring 

applications. With the additional benefits of integrating low-cost, high quality consumer market 

components, there is now a significant opportunity to make hyperspectral imaging more common 

within environmental monitoring. There has, therefore, been a wide variety of devices developed for 

sensing applications across these conditions. Due to the significant variations between these settings 

the devices required can differ substantially in terms of size, weight, and robustness, to name a few 

factors. This section will discuss developments across these contrasting environments, concentrating 

on some key examples, to illustrate the current state-of-the art in the field. Within this section the 

term “low-cost” is used to refer to hyperspectral devices assembled, often ‘in house’, from mass 

produced components allowing for the overall build costs to be significantly lower than that of 

commercial, scientific grade instruments. 

2.5.1. UAV-Based Applications  

2.5.1.1. Agricultural and Natural Vegetation Monitoring  
As discussed above, the development of light-weight, and low-cost, UAV compatible sensors is a 

rapidly expanding area of research resulting in significant developments across a wide range of 

environmental monitoring applications. Whilst there are potential issues relating to the 

georectification process [19], [25], [50], the benefits related to improvements in spatial resolution and 

reduced fieldwork costs are substantial. The monitoring of vegetation across both natural and 

agricultural environments is a particular area of environmental monitoring that has benefitted from 

the advances in miniaturisation and cost reduction of hyperspectral technologies [51], [52], allowing 

for precise, in-depth monitoring and data collection to be accomplished even in the most inaccessible 

locations. The light-weight sensors that have been developed to date show significant potential in their 

application for close-range environmental monitoring [51], with the introduction of devices for 
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monitoring vegetation health receiving particular attention [52]–[55]. The continued monitoring of 

these environments with hyperspectral technologies is of considerable importance. Due to the spectral 

resolution of these devices it is possible to observe areas of vegetation stress, such as water stress or 

potential pest outbreaks, before they become visible to the naked eye. This is done through the 

examination of pigments, such as Chlorophyll, that will vary in quantity depending on the health of the 

vegetation, subsequently effecting its spectral response. In the initial stages of vegetation stress these 

changes can be subtle and, therefore, best recognised with hyperspectral imaging. This, in turn, allows 

for any potential issues to be resolved or minimised before significant damage can be done. 

Traditional monitoring methods for both agricultural and natural vegetation typically require time 

consuming direct measurements or the use of spaceborne sensors [56], [57], with limitations in spatial 

resolution in respect of the latter [58], [59]. The introduction of UAV-based hyperspectral sensors 

creates the opportunity to acquire accurate, close-range data that do not require the complex 

processing typical of satellite and high-altitude airborne systems. Indeed, these UAV deployments aim 

to deliver data in an intermediary format, which provides both the satellite-based benefits of spatial 

coverage as well as the spatial resolution afforded from ground-based deployments [60]–[62]. In 

particular, Garzonio et al. [60] present a multi-rotor UAV equipped with a cost-effective hyperspectral 

sensor capable of detecting wavelengths within the visible and NIR (350–1000 nm) for a variety of 

vegetation monitoring applications. Due to the multi-rotor design, the device presented was capable 

of both transect and fixed target measurements, allowing it to be utilised for a variety of scenarios. 

Furthermore, it provided a systematic and rapid method of high quality data collection, suitable for 

relatively inaccessible locations, such as dense vegetation forests and forest canopies, allowing large, 

high-resolution datasets to be collected with relative ease [60]. However, despite overcoming issues 

related to in-flight mechanical vibration of the sensor, the spectral resolution and signal to noise ratio 

of the device were not optimal to capture all of the desired measurements, with particular problems 

related to the capture of sun-induced fluorescence data [60]. 

Similarly, Nӓsi et al. [51] deployed such technology for monitoring insect damage across urban forests. 

Their low-cost sensor enabled analysis at an individual tree level, providing a new level of specificity in 

forest health management practices [51], [54]. Whilst such detailed spatial resolution has been 

achieved by a few studies in the past, such as Minařík and Langhammer [63], and Dash et al. [64], they 

pertain, solely, to multispectral approaches. This hyperspectral unit [51] performed well, however, 

difficulties were encountered related to temporal illumination changes during the data acquisition 

[51]. As highlighted above, this is a potential issue that is generic to hyperspectral imaging from most 

airborne, and ground-based, devices [18], [28], and is, therefore, not a result of the low-cost of this 

device, but simply a factor that requires attention during extended data acquisitions. A method that 

provides the simultaneous monitoring of illumination change and data acquisition, and/or reference 

panel measurements would help to minimise these issues in future work [28], [65]. Despite these 

minor setbacks, the development of these new, easy to use technologies could have significant 

benefits for monitoring of both urban and rural forest health, with these low-cost units enabling far 

wider sensor proliferation than possible hitherto, with the more expensive previously applied 

instrumentation. This in turn could lead to significant benefits in terms of avoidance of future pest 

outbreaks and the potential resulting forest losses [51], [66]. 

A number of other studies have utilised similar UAV-based techniques for the monitoring of 

agricultural vegetation [67], [68], and soil quality [69], [70], producing accurate, high spatial resolution 

results, further emphasising the wide ranging usability of these designs. However, there remain 

limitations related to the weight and power supply of these devices, with heavier payloads having a 

negative effect on the potential duration of aerial surveys [60]. Whilst this is limiting the practical 
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utilisation of these devices at present, as technologies continue to be miniaturised and UAVs 

themselves advance, survey flight times will become proportionately longer in the future [40]. 

2.5.1.2. Extreme Environment Monitoring  
A particular benefit of the continued development of these devices is that they allow non-destructive 

data acquisition, which is of considerable importance for highly sensitive and/or protected 

environments, which are often a key focus of environmental monitoring research and operations. 

Moreover, they also enable the acquisition of high spatial resolution data from locations where 

ground-based field surveys would prove impractical or hazardous. Key examples here include glacial 

and ice sheet regions, which have been host to considerable UAV-based monitoring, for example 

Crocker et al. [71], Hugenholtz et al. [72], Rippin et al. [73], and Ryan et al. [74]. However, work in this 

domain to date has been largely restricted to multispectral and/or photogrammetry-based data 

acquisitions, with hyperspectral monitoring being mostly confined to spaceborne observations [75]. 

The addition of field portable hyperspectral sensing to glacial settings will provide a significant 

improvement to current datasets, such as the identification of supraglacial debris composition in 

otherwise difficult to access locations [76]. Application of UAV-based hyperspectral image capture in 

the cryosphere is likely to be a highly promising future area of research. 

Furthermore, low-cost, field portable hyperspectral technologies would also be of substantial benefit 

to a range of more temperate environments as application areas within these regions are also often 

subject to limited accessibility and/or represent fragile ecosystems and habitats, making them complex 

data collection targets. The monitoring of peatland habitats is of significant importance due to their 

prominence in climate warming mitigation strategies [77]–[79]. At present much of the monitoring 

within these settings is conducted through invasive ground surveys that require the collection of a 

range of samples or through the collection of aerial datasets with comparatively poor spatial 

resolution. Due to the importance and vulnerability of many peatland habitats, improvements to 

current data collection techniques are vital. 

Additionally, less easily accessed locations such as cave systems contain considerable potential for in-

situ hyperspectral monitoring applications, however, due to the challenges of accessibility and the 

subsequent limitation on the weight and size of instrumentation, few of these environments have been 

analysed to their full potential [80]–[82]. The development of light weight, portable hyperspectral 

imagers for these settings, therefore, provides a gateway to a wealth of knowledge hitherto 

undiscovered. 

2.5.1.3. Pollution and Particulate Monitoring  
Inland water quality and pollution monitoring with hyperspectral sensors, has only recently involved a 

move away from purely spaceborne imaging methods [83], [84]. This change has been largely driven 

by the limitations of satellite-based remote sensing as the spatial resolution provided by most such 

sensors is somewhat limited, without substantial pixel mixing [83]–[85]. Hyperspectral sensors used to 

monitor these environments provide high-resolution optical data that allows for the simultaneous 

detection and monitoring of air and water quality. This provides an extensive and accurate means of 

pinpointing potential pollution outbreaks and/or monitoring the quality of freshwater sources across 

relatively large areas. Although the majority of recently developed sensors within these fields remain 

aircraft based [83], [86]–[89], with the advantage of coverage of larger survey areas than typically 

possible with UAVs, a number of pioneering optical sensors for pollution and particulate monitoring 

are beginning to emerge. These new devices are providing significant improvements to current 

monitoring techniques with the introduction of UAV-based [90], [91], and lower cost portable [92], 

approaches. The promising success rates of these new devices are providing significant improvements 
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to our understanding of particulate pollutants [93], whilst also highlighting the substantial scope for 

further development and integration of UAV-based hyperspectral sensor systems to this field. 

2.5.2. Hand-Held and Ground-Based Device Applications  
Whilst the majority of hyperspectral sensing measurements have been achieved from airborne 

platforms, there have also been significant developments in hand-held and ground-based 

hyperspectral sensing in recent years [58], [59]. These devices are typically relatively light-weight and 

field portable, (Figure 2.10.) making them of significant benefit to a variety of small-scale fieldwork-

based studies. However, as this hardware is not subjected to the stringent payload requirements of 

UAV compatible devices, there are relaxed tolerances with regards to weight, bulk, and power supply. 

A variety of miniaturised hand-held sensors have been developed for several applications, with a 

degree of device commercialisation implicit in this activity [94], [95]. In particular, Shan et al. [96] have 

developed a field portable hyperspectral imager capable of detecting micro-plastic contamination in 

soils for particle sizes between 0.5–5 mm. Whilst previous research has already successfully detected 

micro-plastic contamination using hyperspectral imaging [97], that study focused on micro-plastic 

detection within sea water filtrates, which required the manual separation of micro-plastics from the 

substrate prior to image acquisition due to difficulties related to plastic identification through water 

[96]. In contrast, the device developed by Shan et al. [96] enables in-situ measurements with minimal 

disruption to the study area. Given the increasing importance of this area, this technology is likely to 

be of ever-increasing utility here in the future. 

Furthermore, Chennu et al. [98] discuss the development of a diver-operated underwater device for 

the monitoring of shallow marine ecosystems, such as coral reefs. This device is the first of its kind and 

represents a significant, cost-effective improvement in hyperspectral data acquisition for these 

environments, avoiding the effects of complex optical paths through the atmosphere and the water 

column [98], associated with observations taken above the water surface. Whilst the spatial resolution 

of this sensor was lower than that of comparable digital camera imagers, it could sufficiently identify 

the spectral reflectance features of corals at the organism level. The user friendly nature of this device 

allowed it to be operated with no prerequisite skills, however, its present design is too large for 

integration with unmanned platforms, highlighting a significant avenue for future research. 
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The examples above highlight the versatility of these devices, with miniaturised hyperspectral sensors 

replacing conventional non-imaging spectroscopy in a number of application areas [51], [58]. 

Furthermore, this proliferation appears set to continue as the speed of image capture, and the 

processing power of these units, increase year on year, just as the unit costs are reduced on an annual 

basis [58]. However, the development of more robust low-cost, field portable sensors for deployment 

in more extreme settings remains somewhat limited. The development of future low-cost 

hyperspectral sensors for these environments would build on the implementation of low-cost spectral 

technologies in hostile environments [8], [49], [99], [100], which have been based in configurations 

suitable for short-term deployments. Indeed, Wilkes et al. [99] estimate that more sustained 

deployments would require significant improvements to the outer casings of the device for 

ruggedisation and weatherproofing and robust product testing. This is a difficult hurdle to overcome 

due to the highly dynamic and often volatile nature of these environments, making year-round field-

based monitoring challenging, even with state-of-the-art designs [75], [101]. Future work could, 

therefore, involve improvement of robust low-cost hyperspectral imagers to allow them to successfully 

compete with their scientific grade equivalents for prolonged data collection in these more extreme 

environments. In this respect, UAV-based units have the advantage that deployments are by nature 

discrete and time limited, rather than continuous, as discussed above. 

2.6. Discussion  
The development of these devices, and their application to a panoply of environmental monitoring 

areas, represent a series of significant technical and scientific advances. These units provide accurate, 

Figure 2.10 Compact UV hyperspectral imager measuring Sulphur Dioxide release from Cotopaxi volcano, 
Ecuador. Image provided by Andrew McGonigle (unpublished).  
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high-resolution datasets, which help to bridge the gap between sparse and discontinuous field 

observations and continuous but coarse resolution spaceborne technologies [51], [60], [75], as well as 

enabling real-time analysis and decision making in environmental monitoring contexts [59], making 

them a beneficial addition to existing field monitoring techniques. Furthermore, miniaturised, low-cost 

systems can be operated on a local scale by small organisations and/or companies, considerably 

reducing the time required to organise specific remote sensing campaigns [51], relative to manned 

airborne surveys, reducing the need for expensive and time consuming direct measurement methods 

and enabling affordable and rapid environmental monitoring [51]. This is particularly advantageous in 

less well-resourced countries, where there are acute needs in terms of crop monitoring, for example. 

However, there remain a number of limitations on these devices at present [50]. For UAV-based 

applications, these limitations are largely related to the currently rather large weight, bulk, and power 

supply requirements of the deployed sensors, highlighting the need for future miniaturisation in such 

devices [60]. Although this hurdle is beginning to be overcome [53], often with the application of off-

the-shelf consumer electronics components [58], [62], there still typically remains a trade-off between 

sensor size and data quality in these next generation units [50], [95], [96]. Similar limitations also affect 

ground-based and hand-held devices, although in these contexts the restrictions are not as profound. 

The foremost challenge faced by the majority of these devices is their successful deployment for long-

term data collection. However, with potential future developments in ruggedisation of the hardware, 

which will allow such units to become competitive with commercial scientific grade devices for long-

term field deployments, the application of ground-based hyperspectral imaging appears set to 

proliferate rapidly in the coming years (Figure 2.11.). 

With the technological move towards more compact, miniaturised devices for optical sensing [102], 

[103], the implementation of low-cost consumer electronics in environmental monitoring is on the rise 

[102], [103]. The application of smartphone-based spectroscopy has been of particular interest for a 

variety of disciplines [40], [49], [104], and is a technological step towards the realisation of 

smartphone-based hyperspectral imaging. Compared to basic mobile devices, smartphones are 

equipped with a number of features that expedite sensing applications [102], enabling performance 

of advanced scientific measurements [105], [106]. This is particularly driven by the low-cost of these 

units, relative to commercial scientific grade cameras [103], [107]–[109], resulting in these units being 

developed into a variety of lab-in-a-phone technologies [49], [99], [109], [110]. Initial developments in 

this field have seen the creation of devices that work within the set-up of an existing smartphone, with 

considerable potential for future device development. However, current work has faced issues in 

connection with the unit operating systems, wherein raw data files (required for quantitative sensing 

applications) can be difficult to access and/or are effected by auto-scaling, e.g., Smith et al. [111], and 

the presence of Bayer filters within the majority of smartphone camera sensor designs, limiting most 

smartphone sensing to the visible portion of the electromagnetic spectrum within the three defined 

spectral bands corresponding to the cameras RGB pixels [100]. However, as smartphone-based 

spectrometers improve in performance, producing results similar to those of commercial scientific 

devices [49], the “compromise” in using these cheaper units, is becoming less of a relative downside. 

An in-depth review of these initial developments in smartphone spectroscopy can be found in 

McGonigle et al. [100]. 
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As smartphone spectroscopy continues to develop, there is now the beginning of applying these units 

for hyperspectral imaging. In particular, Wilcox et al. [40], present an ultra-compact hyperspectral 

imaging system, for use within a UAV set-up, that has been developed to incorporate smartphone 

technologies. Similarly, Rissaren et al. [112], and Nӓsilӓ et al. [113], report initial developments in 

smartphone compatible hyperspectral imaging. Critically, this demonstrates that the ever-increasing 

processor performance from state-of-the-art smartphone handsets is sufficient to manage the 

significantly larger data volumes associated with hyperspectral imaging in contrast to mere spectral 

data capture [14], [40]. Just as smartphone spectroscopy has now been proven in a number of 

application areas [104], [109], [111], allowing for increased data collection at costs up to an order of 

magnitude lower than from conventional devices [99], it is likely that hyperspectral imaging with 

smartphones will be increasingly applied in the coming years. 

In considering field portable hyperspectral imaging instrumentation for the majority of environmental 

monitoring settings, three design considerations are particularly pertinent: 

 • Compact light-weight design—Allowing for easy portability to a variety of field sites of varying 

accessibility. This criterion has particular benefits in relation to set-up times, enabling for rapid 

deployment of technical devices as well as significantly reducing the personnel requirements of field 

visits. As discussed above, this design feature is also of significant importance for sensors designed for 

UAV integration. 

 • Low-cost—Whilst this is not an essential requirement for successful environmental monitoring using 

field-based hyperspectral imaging, the production of low-cost sensors will increase the accessibility of 

this measurement modality, beyond the relatively limited field deployments achieved hitherto with 

the rather expensive previously available instrumentation. This is particularly the case for smartphone-

based platforms, given the ubiquity of these units, and their suitability for implementation as nodes 

within internet of things type architectures.  

• Flexibility—In order to achieve the best results, deployed devices need to be easily configurable by 

researchers, allowing for adaptations to be made relating to the proposed device application. This 

Figure 2.11 Example dataset captured using a low-cost hyperspectral device; 128 × 128 hyperspectral image 
displaying spectral reflectance from 340–850 nm of a green apple and tungsten filament lamp. Image tiles display 
reflectance peaks across the Red (a), Green (b), and Blue (c) portions of the electromagnetic spectrum. Note the 
corresponding peaks in reflectance captured in the spectral response graph. 
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criterion is most easily met by devices assembled ‘in house’ as it allows researchers to develop and 

assemble components in the best arrangement for the proposed application, resulting in a device 

specifically designed for its task. This is typically more favourable than generic, commercial devices, 

which can be rather difficult to align to specific applications. Furthermore, a device developed ‘in 

house’ can also provide significant reductions in set-up times as the researchers will generally be 

familiar with the device design. 

Indeed, given the above it is evident that more and more research groups are opting to develop their 

own devices instead of relying on commercially available more expensive equipment, pointing to the 

proliferation and democratisation of hyperspectral imaging across the environmental sciences. 

Although, at present, many of these technologies are restricted by the current limitations of 

miniaturisation, and the associated trade-offs that miniaturisation can bring in terms of the sensor 

performance, initial results from smartphone-based hyperspectral imaging suggest that significant 

improvements in cost-effective, high spatial resolution data acquisition can be expected in the near 

future. This increase in performance, coupled to further reductions in instrumental cost, are likely to 

lead to increased utility and proliferation of these units in the coming decades, therefore. 

However, an important additional consideration are the potential costs of required components 

external to the sensor design. This is of particular importance for sensors designed with the low-cost 

criterion in mind as the savings made during sensor assembly can quickly be lost through other device 

requirements. For example, when considering UAV integrated hyperspectral sensors, it is imperative 

that low-cost designs also adhere to the compact light-weight criterion in order to prevent the 

incursion of extensive costs related to the acquisition of UAVs with higher payload weight limits. As 

failure to consider this factor can lead to significant additional build costs, it is, therefore, of 

considerable importance to understand the payload specifications and limitations of the proposed 

UAV system in tandem with implementing the sensor design and development process. A number of 

articles discuss the variations, and subsequent categorisation, of different UAV systems, highlighting 

the, often substantial, differences in terms of payload weight, fuel requirements, and survey length 

[61], [114]–[116]. In general, multi-rotor UAVs are more suited to operation within more 

confined/inaccessible field sites due to their ability to take off/land vertically, whereas fixed wing UAVs 

are typically suited to longer endurance applications and provide more stable data collection [113], 

however, the final decision as to which design of UAV is selected is established by the specific 

parameters of the proposed application and, therefore, varies substantially between projects. 

Nevertheless, these characteristics are of considerable importance to the successful deployment of a 

UAV integrated sensor and can significantly impact the overall cost to deliver the measurement. 

Furthermore, costs and payload weights can be minimised further with the thorough selection of 

required ancillary sensors, such as RGB cameras and GPS units, e.g., both Nӓsi et al. [54], and 

Honkavaara et al. [67], reduced the overall costs of their set-ups with the inclusion of additional small 

consumer cameras instead of more expensive top-of-the-range models. 

It is clear that in order to design a successful low-cost compact hyperspectral imaging instrument a 

complex list of design variables must be considered and potentially juggled to enable best delivery 

against the monitoring objectives. Within this there are two key exciting new frontiers, which these 

low-cost units now expedite: firstly, their potential for deployment and monitoring in less well-

resourced countries and research areas, allowing for valuable research data to be acquired without 

the associated costs. Secondly there is the potential for future, long-term deployments in more 

extreme environments, for example with applicability in pioneering cost-effective early 

warning/monitoring systems for more volatile settings. Although the effectiveness of these units is 

limited by currently available technologies, the increasing interest and development in this sector looks 
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set to produce vast improvements to low-cost and miniaturised hyperspectral data collection, and thus 

provides the opportunity to improve datasets across a wealth of environmental monitoring domains. 

2.7. Chapter Summary 
This chapter has provided an overview of pertinent theory and an in-depth review of current 

miniaturised and low-cost field deployable hyperspectral technologies and their subsequent 

integration into the environmental monitoring field. Whilst the miniaturisation and deployment of 

these devices is ongoing, it is evident that this is a burgeoning area of research with the potential to 

revolutionise environmental monitoring in a wide variety of fields. At present, these devices largely 

complement existing monitoring techniques, however, as technologies continue to improve, it is likely 

that they will be increasingly applied in stand-alone monitoring capacities. As the literature highlights, 

there is a clear need to further expand the applications for these devices, in particular allowing them 

to be successfully utilised even in more extreme and challenging environments, as well as further 

capitalising on the reduced cost of consumer available technology in this domain. With the latest low-

cost devices now producing scientific grade results, it appears as though hyperspectral imaging with 

smartphones in particular is now set to become a promising new frontier in empirical environmental 

science, significantly broadening the reach of hyperspectral image capture. This chapter has 

highlighted the potential for what could become a steep rising curve of community uptake, broadening 

applicability far beyond those application domains covered to date. The coming chapters will discuss 

the design and testing of a variety of new low-cost, miniaturised hyperspectral imagers that are 

capable of robust, scientific grade data capture and, as such, help to reduce the current gap within the 

literature, providing a means of enriching our existing knowledge of a wide range of environmental 

settings. Please note, the terms “portable” and semi-portable” are used throughout this work to 

describe the various instruments discussed within this thesis. The term “semi-portable” is used to 

describe currently laboratory-based instrumentation with the aim of highlighting their increased 

manoeuvrability over traditional laboratory-based hyperspectral imagers which are typically large, 

static and immovable once established. In comparison, the semi-portable instrumentation discussed 

within this thesis are designed to be smaller and capable of adaptation/manoeuvrability to increase 

their potential applications. Additionally, these instruments have the potential to be converted to fully 

portable instruments in future. The term “portable” is used to describe instrumentation that can be 

used in a broad range of laboratory and field-based locations and can be easily operated and 

transported by a single individual. 
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Chapter 3 

Development of a Low-Cost, Miniaturised 
Hyperspectral Imager and its Application 
to Laboratory-Based Environmental 
Monitoring Scenarios 
 

This chapter is associated with the work presented in Stuart et al., [1]. It presents the development of 

a low-cost laboratory-based hyperspectral imager constructed using commercially available 

components. This chapter demonstrates that it is possible to develop a low-cost hyperspectral imager 

using low-cost, accessible components, that is capable of scientific grade analyses, highlighting the 

potential for further developments within this field. Imager calibration and metrology are presented 

alongside a demonstration of the imager’s abilities in a variety of laboratory-based environmental 

applications. 

3.1. Introduction  
The continued development of hyperspectral imaging technologies represents a significant area of 

study with the potential to revolutionise data acquisition methods across a vast range of research 

domains. Whilst, traditionally, hyperspectral imaging sensors are based within spaceborne and aircraft 

set-ups [2], [3], the recent surge in miniaturised, low-cost components, discussed within Chapter 2, 

provides an opportunity to expand the scope of hyperspectral technologies to a variety of field-based 

and portable applications [4]–[8]. These developments not only begin to improve on the often 

substantial costs associated with traditional hyperspectral data collection methods, but they also 

significantly improve the accessibility of hyperspectral sensing technologies [4], [5], [9]. These new 

imager designs provide accurate, high spatial resolution datasets that are not constrained by factors, 

such as variable meteorological conditions, limited temporal resolution, and expensive set-up costs, 

which readily affect traditional monitoring methods [7], [10], [11]. Furthermore, as these technologies 

continue to improve and develop, a substantial increase in the availability of hyperspectral datasets 

across a wide variety of environments can be expected. 

Hyperspectral imaging has also been proven to be a powerful tool for laboratory-based applications, 

yet the majority of imagers currently used in these settings remain bulky and expensive, subsequently 

limiting their user-base and accessibility [9]. Furthermore, their large size results in many of these 

instruments being comparatively rigid devices because their design prevents them from being capable 

of adjustment to better fit a particular measurement application, again significantly limiting their 

usability and data collection potential. However, as the recent development of low-cost components 

and electronics has enhanced field-based applications, it can also inspire advancement within a 

laboratory setting. This chapter details the design and construction of a laboratory-based 

hyperspectral imager that was developed using low-cost, commercially available components. This 

instrument represents a significant reduction in hyperspectral system development costs, whilst 

maintaining the ability to capture accurate and robust datasets across a range of application areas. 

Existing hyperspectral cameras on sale today can cost greater than £30,000 (e.g., the Specim FX17e), 
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with some commercial systems costing as much as £150,000 (e.g., the Specim FX50). In comparison, 

the low-cost hyperspectral imager costs less than £6,000 to develop with the main costs associated 

with the development systems. The instrument weighs approximately 3.1 kg, including a 3 kg optical 

breadboard and has dimensions (Length x Width x Height) of 35 cm x 20 cm x 13 cm. The instrument 

design discussed within this chapter, therefore, aims to demonstrate the successful application of this 

low-cost, semi-portable instrument, whilst highlighting the abundant potential present within the field 

of low-cost miniaturised hyperspectral imaging. Specifically, this chapter discusses the initial 

development and performance testing of this instrument within a laboratory setting, providing a 

metrology-based calibration for the instrument before applying it to a variety of environmental 

applications to demonstrate its potential as a valuable laboratory measurement tool with the potential 

to provide significant improvements to the accessibility of robust hyperspectral imaging. 

3.2. Development of the Laboratory-Based Hyperspectral Imager 

3.2.1. Component Selection and Instrument Design 
The development of a laboratory-based hyperspectral imaging system capable of scientific grade data 

collection whilst maintaining a low, accessible, price point provides a unique opportunity to 

demonstrate that high quality datasets can be achieved utilising components acquired from consumer 

markets. To design such an instrument, the individual components that comprise the hyperspectral 

imaging instrument were specifically selected to best fit the intended application requirements. As 

such, the main objectives to be met with this design were: it had to remain low-cost, making it an 

accessible device that could be more easily utilised than currently available commercial set-ups, it must 

be sufficiently compact to allow it to be portable within a laboratory setting giving it a greater range 

of application potential, and it must be capable of detecting a wavelength range suitable for a selection 

of environmental monitoring-based applications. To allow the instrument to be capable of low-cost, 

light-weight spectral sensing a miniature spectrometer was sought as a critical component of the 

overall design. These compact components drive the development of low-cost spectral sensing 

instrumentation with wavelengths ranging from ultraviolet through to infrared, making them ideal for 

compact, low-cost spectral instrument design. Furthermore, these miniature spectrometers are 

available within commercial markets, providing a range of sensors and wavelength regions to choose 

from. This wealth of choice enables the development of a versatile instrument that can be converted 

to a variety of different wavelength regions to better suit a range of applications. For the purposes of 

this particular design and application, the imager is capable of detecting wavelengths predominantly 

within the visible region of the electromagnetic spectrum, however, the abundance of miniature and 

micro spectrometer components within commercial markets mean that the instrument could be 

converted to cover different wavelength ranges with relative ease. 

The developed instrument, shown in Figure 3.1., consists of the following components; the C12880MA 

Hamamatsu miniature spectrometer, New Scale Technologies DK-M3-RS-U-2M-20-L rotary mirrors, 

and a Thorlabs Plano-convex lens (LA1401-A). The miniature spectrometer has a wavelength range and 

spectral resolution of 340 – 850 nm and 15 nm respectively. It should be noted that the plano-convex 

lens used within this set-up has an anti-reflective coating for the wavelength range of 350 nm to 700 

nm. This coating benefits the set-up by minimising surface reflections and, therefore, improving 

transmission within this range. Whilst this range is narrower than that of the spectrometer and, 

therefore, limits the spectral range of the instrument this did not limit the intended application of this 

device within the contexts of this chapter because the wavelengths of interest were present within the 

visible spectrum and, therefore, were not significantly affected by this limitation. These components 

provide a suitable wavelength range, and spectral resolution ensuring the instrument is capable of 

producing robust output datasets whilst maintaining a low price point. Beam steering is provided by 
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the New Scale Technologies rotary mirror system and focusing provided by the Plano-convex lens. This 

represents a very basic optical system, consisting of a single lens, however, similar to the selection of 

the miniature spectrometer above, the inclusion of more complex optics would add significant costs 

to the instrument design. In its current format, the laboratory-based hyperspectral imager can produce 

robust and accurate hyperspectral outputs, demonstrating that expensive components are not 

necessarily required for quality hyperspectral imaging. Component justification and price break-down 

can be found in Table 3.1. 

Each of the components included within this design are commercially available and represent typical 

components present within consumer markets. Furthermore, the miniature spectrometer and the 

rotary mirror system are user friendly and can be easily programmed to suit a variety of applications.  

This allows the instrument to be readily accessible and increases its ease of replication by a broad 

range of research groups and organisations, including those that are less well-resourced. To assemble 

the instrument the separate components were aligned with a suitable image distance, creating a 

compact design. The required object distance was then calculated using the lens equation; 

1

𝑓
=

1

𝑢
+

1

𝑣
     (3.1.) 

Where f represents the focal length, u the image distance, and v the object distance. Given an image 

distance of 68.11 mm and a lens focal length of 60 mm the object distance for this set-up was 

calculated to be ca. 50 cm. Figure 3.2. shows a schematic diagram of the instrumental set-up. 

Ray trace modelling was performed in Zemax software to estimate the theoretical instantaneous field 

of view (IFOV) of the single pixel upon the target. This was calculated to be approximately 2.50 mm × 

4.90 mm for a 95% energy enclosure, and includes the diffraction limit of the spectrometer. The model 

is shown within Appendix 8.1. This also accounts for the use of a singlet lens where chromatic and 

spherical aberrations are uncontrolled within this wide aperture, low f/number system. The maximum 

Figure 3.1 Components of the hyperspectral set-up. 



49 
 

angle of the mirror system is ±20◦ providing a total field of view (TFOV) of 36.4 cm for an image; 

however, the ability of the optics to form a focused image limits the TFOV below this maximum value. 

No additional coupling optics were used before the spectrometer.  

A bi-directional raster scanning pattern was implemented to capture each pixel in a scene, with beam 

steering provided by the rotary mirror system. The mirror system comprises a short mirror of 

dimensions 3 mm × 5 mm × 0.4 mm, and a long mirror of dimensions 11 mm × 5 mm × 0.4 mm. Image 

resolution is user defined and, therefore, configurable to the requirements of the proposed 

application. Exposure time per pixel can also be configured by the operator to best fit the illumination 

of the target. Whilst increases to the exposure time per pixel and the resolution of a scene will help to 

provide clearer imagery, there remains an engineering compromise with the overall scan time 

required. 

Table 3.1. Cost break-down and individual component justification for the Laboratory-Based Hyperspectral 

Imager. 

Component Cost Justification 

Hamamatsu C12880MA 
Miniature Spectrometer 

£4,000 A miniature spectrometer was specifically sought for this 
application because they provide compact, low-cost, and 

reliable data capture. Additionally, Hamamatsu provides a 
range of these devices covering different spectral regions, 

increasing the ease of component replacements for 
different applications. A spectrometer with a wavelength 

range predominantly within the visible spectrum was 
selected for this research to best fit the applications of this 

early project.  

New Scale Technologies 
DK-M3-RS-U-2M-20-L 

Rotary Mirrors 

£1,945 These mirrors were selected because they provided a user 
friendly means of precise point-to-point beam steering. 

Their miniature size is also beneficial to the overall 
instrument design. Their ease of operation was highly 
beneficial in the contexts of this early stage research. 

Thorlabs Plano-Convex 
Lens LA1401-A 

£35 This lens was selected to provide simple target focusing at 
minimal cost. A plano-convex lens was selected to reduce 

potential aberrations without the inclusion of a more 
complex (and costly) lens system. The lens’ anti-reflective 

coating increases transmission across its spectral range (350 
nm – 700 nm). This was deemed beneficial for this 

particular set-up because it was intended for use across 
visible wavelengths. 

Total Cost  £5,980 
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3.2.2. Instrument Control 
To obtain hyperspectral datasets from these components the rotary mirrors and the miniature 

spectrometer had to first be programmed separately, then combined to allow them to work in tandem 

to produce a hyperspectral image. This programming was completed within LabVIEW software. Whilst 

the software incorporated within the rotary mirrors development kit contained a header file suitable 

for use within LabVIEW, the miniature spectrometer required the creation of a header file to allow the 

appropriate libraries and functions to be accessed by the LabVIEW compiler. 

Due to the range of tasks required of the miniature spectrometer during its operation several 

subroutines, known as sub VIs in LabVIEW, were created to condense the extensive programme into a 

number of smaller, easier to use blocks. The rotary mirrors required a much less complex programme 

to move the mirrors through a predetermined set of coordinates to produce a bi-directional raster 

scan of the chosen scene, therefore, a single sub VI was required for the mirror programme. Table 3.2. 

details these sub VIs and explains the function of each. These sub VIs were then combined to provide 

a working piece of software that enabled the collection, assembly, and analysis of the hyperspectral 

data cube and individual spectral response graphs. The final LabVIEW programme converts the 

collected one-dimensional data array into the three-dimensional data cube format. Operator inputs 

through a computer terminal can determine the acquisition parameters, such as the required 

dimensions of the scene and the exposure time required for each pixel. The spectral response can be 

visualised in real-time as the scene is captured, detailing the response from individual pixels. After the 

scene capture is complete, the operator can use the data cube to scroll through the data to observe 

the response captured across different wavelengths. The spectral response from a specific area or pixel 

can also be visualised in a separate graph to allow for more detailed analysis. This software can be 

found within Appendix 8.2.   

Figure 3.2 Schematic diagram of the low-cost hyperspectral imager: (a) and (b) comprise the rotary mirror system 
and the miniature spectrometer respectively, illustrating the main components of each device. Inset (a1) displays 
the rotational axis for each mirror. Note, beam steering of the field of view (FOV) is provided by the mirrors. The 
image distance is ca. 65.6 mm. This is distributed as follows: ca. 30 mm lens to mirrors, ca. 3.6 mm between 
mirrors, and ca. 32 mm mirrors to spectrometer. Not to scale. 



51 
 

Table 3.2 Individual Sub VIs that make up the laboratory-based hyperspectral imager software. 

Sub VI Task 

Mirror-coords This Sub VI controlled the rotary mirror system 
and programmatically defined the mirror 

coordinates according to the operator-defined 
acquisition parameters to produce a bi-

directional raster scan of the target scene. 

Initialise This Sub VI was part of the miniature 
spectrometer software. It initiated the 

connection with the spectrometer and the 
library. It also enables the operator to select 

the capture mode and the exposure time (us) 
required. 

Capture This Sub VI was responsible for the capture of 
data from the spectrometer. Short wait periods 

(ms) were included here to ensure that the 
physical optics remained synchronised with the 
image capture process. In this Sub VI the data 
captured was displayed in an array and on a 

waveform graph providing the operator with a 
real-time view of the data acquisition. Data 

storage was also controlled here by connecting 
to a file outside of the Sub VI. 

Uninitialise This Sub VI terminates the connection to the 
spectrometer and the library when prompted, 
allowing the device to be disconnected from 
the computer terminal after the data capture 

period is complete. 

 

3.2.3. Bias Correction 
To remove the spectral influence of illumination and sensor sources, as discussed in Chapter 2, the 

following analysis was implemented within the LabVIEW programme: 

𝑅𝑎𝑡𝑖𝑜 =  
𝑆𝑡𝑎𝑟𝑔𝑒𝑡−𝑆𝑑𝑎𝑟𝑘

𝑆𝑤ℎ𝑖𝑡𝑒−𝑆𝑑𝑎𝑟𝑘
=

𝑅𝑡𝑎𝑟𝑔𝑒𝑡

𝑅𝑤ℎ𝑖𝑡𝑒
≈ 𝑅𝑡𝑎𝑟𝑔𝑒𝑡    (3.2.) 

Note, this equation is identical to Equation 2.12 of Chapter 2. To provide a value for Rwhite, a reference 

‘orb’ was three-dimensionally printed and coated with Edmund Optics white reflectance coating (Stock 

#83–890). This coating was applied using an airbrush to ensure uniform coverage across the object and 

is specified to provide >97% reflectivity from 350–850 nm. The ‘orb’, a ca. 60-mm-diameter sphere, 

was used in place of a target object to obtain the white reflectance value. These bias corrections were 

completed using further LabVIEW programming to produce accurate spectral outputs for the chosen 

targets. This code can be found in Appendix 8.3. Additionally, the digital equivalent of a long-pass filter 

was then applied to the spectral data within LabVIEW as a smoothing factor to minimise the influence 

of excess noise. A long-pass filter provides a valuable means of reducing noise within a dataset by 

allowing for the removal of values above or below a certain cut off, subsequently smoothing the 

dataset. In this work, this filter was specifically used as a means of reducing the influence of the blue 

peak of the LED illumination source within the dataset. This is shown in Equation 3.3.  

𝑓𝑠𝑚𝑜𝑜𝑡ℎ(𝜆𝑖) = 𝑓𝑠𝑚𝑜𝑜𝑡ℎ(𝜆𝑖−1) +
𝑓(𝜆𝑖)−𝑓(𝜆𝑖−1)

𝐴
    (3.3.) 
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Where fsmooth(λi) is the smoothed value of discrete wavelength λi, f(λi) is the raw wavelength, A is the 

smoothing factor and fsmooth(λi-1) is the wavelength value immediately preceding f(λi). This correction 

was applied to all datasets discussed in this chapter. The imager is capable of capturing a variety of 

scenes, making it practical for a versatile range of applications, and it allows for real-time monitoring 

and decision making, which is of significant benefit to a variety of measurement and monitoring 

applications. 

To assess the optical power reflected from the surface of the target objects and, ultimately, the power 

represented by each pixel of the image, a radiometric measurement of the power reflected from the 

surface of the white reference “orb” was measured. This was measured using the silicon photodiode-

based radiometer as described in Zhu et al., [12]. For this measurement, the RG850 long-pass filter was 

removed to allow light corresponding to the wavelength range of the imager to be measured. It was 

replaced in the sight path with a narrow bandpass filter from Thorlabs (Stock #FB550–10), centred on 

550 nm with a full width half maximum of 10 nm. The photocurrent was measured with the radiometer 

sighted upon the orb with and without the narrow bandpass filter in place. From these data and the 

spectral properties of the radiometer and filter, the reflected optical power collected by the 

radiometer was calculated to be 13.8 nW. Given that the FOV of the radiometer represented a circular 

area of approximately 14 mm in diameter upon the target, and assuming diffuse reflections, the 

reflected power per unit area was calculated to be approximately 89.6 μW/m2. Therefore, given that 

each pixel of the hyperspectral imager represents an area of 12.25 × 10−6 m2, the total power collected 

per pixel of the imager is approximately 1.10 nW for the white reference “orb”. This calibration enables 

samples from different sources to be accurately compared, significantly increasing the imager’s 

usability. Furthermore, as these measurements are traceable to the watt, it provides a degree of 

precision that would not otherwise be available. Traceability was by means of a certified, calibrated 

radiation thermometer (AMETEK Land Cyclops C100) that was used in tandem with an approximate 

blackbody furnace (AMETEK Land R1500P) to calibrate the aforementioned radiometer that, in turn, 

was used to calibrate our hyperspectral imaging system. The origin of the traceability was the United 

Kingdom National Measurement Institute (NPL, Teddington, UK). 

3.2.3.1. Development of a Low-Cost Integrating Sphere Analogue 
During the initial testing phase of the hyperspectral imager, discussed in Section 3.3. below, it became 

clear that directional scatter across a target object can often result in the manifestation of bright spots 

and shadowing across an acquired image. To prevent this, during later measurements, the object to 

be imaged was placed within a low-cost integrating sphere analogue (Figure 3.3.). Integrating spheres 

have been used extensively across a range of hyperspectral imaging applications [13]–[15]. The 

inclusion of such a device can improve the illumination of the target object by ensuring the even 

distribution of incident light rays across the objects surface, minimising the influence of illumination 

variation caused by bright spots and/or shadows across the target caused by factors such as, 

directional illumination, or variations across the target’s surface. Much like the optical components 

discussed within Chapter 2, integrating spheres must also be selected for the wavelength range of the 

chosen application because they too will have a specific wavelength range, where a Lambertian-like 

reflectance distribution can be achieved. A number of ports, or objectives, are present within the 

sphere allowing for illumination sources and/or sensors to be positioned. It is important to arrange a 

set-up in such a way that prevents the direct illumination of the sensor from an illumination source. 

This can be done in a number of ways, from specifically configuring the position of the objectives to 

ensure a direct line-of-sight is not possible, to the inclusion of baffles within the sphere to block the 

illumination sources from the sensor. 



53 
 

The low-cost integrating sphere analogue used within this research comprises two plastic 

hemispheres, ca. 30 cm in diameter, coated with the same Edmund Optics white reflectance coating 

as applied to the ‘orb’. A detector port is present for the hyperspectral imager, and two lighting ports 

allow for object illumination provided by two 20 W light emitting diode (LED) lamps angled to prevent 

the direct illumination of the sensor. The inclusion of the integrating sphere analogue provides uniform 

illumination across the object surface, minimising the shadow and directional scattering resulting from 

a three-dimensional surface. The object is diffusely illuminated by the sphere, which ensures that any 

variations observed are a result of variations within the object and not resultant from favourable 

lighting e.g., bright spots and/or shadows. The hyperspectral imager is covered during image 

acquisition to prevent the interference of ambient stray light during image capture. In its current 

format (Figure 3.4.), the low-cost hyperspectral imager is suitable for laboratory-based, bench-top 

image acquisition. It is capable of a variety of image capture applications, making it a valuable 

laboratory measurement tool. 

To better define the characteristics of the integrating sphere analogue to understand its potential 

impacts on the spectral reflectance of target objects, the spectral response of the inner surface of the 

sphere was measured with a Thorlabs CCD spectrometer (CCS200). During this measurement the 

sphere was uniformly illuminated with natural light. Illumination bias was then subtracted from the 

spectral response in order to visualise the true response of the integrating sphere analogue. Figure 3.5. 

shows the resulting spectral response graph for the visible spectrum. This figure highlights the 

relatively even spectral response provided by the sphere demonstrating it to be a valuable diffuse 

reflector. With a maximum variation in reflectance intensity across this spectral range of ca. 5% and a 

lack of distinct spectral features and/or significant variations it provides a diffuse spectral response 

that can be easily removed from the true spectral response of a target object. From this information it 

can, therefore, be inferred that the integrating sphere analogue has minimal influence/impact on the 

spectral response of target objects placed within the sphere.  

Figure 3.3 Low-cost integrating sphere analogue set-up for image capture. Schematic not to scale. 
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Figure 3.4 The current set-up of the hyperspectral imager: (A) displays the true set-up during image capture, with 
the hyperspectral imager covered by a dark box, while (B) displays the alignment between the sphere and the 
hyperspectral imager with the dark box removed. 

Figure 3.5 Spectral response of the integrating sphere analogue demonstrating a linear spectral response across 
the visible spectrum. 



55 
 

3.3. Initial Testing 

3.3.1. Spatial Measurements 
The initial testing of this instrument focused on determining its basic spatial and spectral data capture 

abilities. Preliminary measurements focused on emitting and back-illuminated targets, where the 

illumination source was present within the imaging path. These measurements were completed to 

gain a better understanding of the spatial abilities of the instrument and to determine how well a range 

of non-complex targets could be resolved in the output data. A number of well defined targets were 

used, including an illuminated button LED, and a diffusely back-illuminated cylindrical target with a 

tapered tip. Their resulting spatial datasets were analysed for any potential distortions or variations, 

providing an opportunity to fine-tune the instrument and a starting point for better understanding the 

capabilities of the set-up. The circular aperture of the button LED was well defined within the dataset 

as shown in Figure 3.6. however, there was obvious interference around the edges of the aperture. 

Similarly, the cylindrical target can be clearly identified, but the edges of the object are less well 

defined (Figure 3.6.). This interference and lack of distinction around the edges of target features 

results from the limited resolution of the instrumentation but is also a factor of the slit method of 

image capture causing a degree of blur across boundaries within imaged outputs. 

  

Figure 3.6 Example spatial target tests. A, shows the schematic layout and an output image of the button LED 
target. B, shows the schematic layout and an example image of the cylindrical tapered target. These demonstrate 
the spatial abilities of the low-cost laboratory-based hyperspectral imager. Schematic diagrams not to scale. 
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Further measurements of spatial resolution were conducted using a large modulation transfer function 

(MTF) plate consisting of a range of equally spaced alternating solid and clear bars. By completing these 

measurements, it provides a quantifiable visual representation of the spatial abilities of this instrument 

as well as providing information as to how the system is affected by aberrations. Determining the 

frequency of bars the instrument was capable of resolving allowed the spatial frequency limits of the 

set-up to be determined, providing a better understanding of the overall spatial abilities of the 

instrument, and providing a quantifiable means of comparing this system to the spatial abilities of 

other instruments. Although the spatial resolution of the set-up was known to be unable to resolve 

the line spacing on a commercial resolution testing target (e.g. Thorlabs R3L3S1N), which was to be 

expected given the basic optical system employed, it was capable of resolving a number of larger line 

spacing targets as shown in Figure 3.7. It is clear in this figure that when the band frequency is 

increased, the instrument is less able to resolve the banding resulting in increased blurring. However, 

this demonstrates that the set-up is proficient at achieving a suitable resolution given its components 

and price point. 

  

Figure 3.7 Imager spatial resolution abilities demonstrated using a large MTF plate. 
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3.3.2. Spectral Measurements 
Preliminary spectral measurements focused on a range of targets that portrayed variable spectral 

responses that could be initially verified through visual analysis to ensure that the spectral outputs 

produced by this instrument were reliable. To demonstrate the imager’s ability to accurately replicate 

its intended target, a simple colour target was displayed on a phone screen, providing a simple emitting 

target. Figure 3.8. displays this target, consisting of solid red, green, blue, and white blocks, alongside 

the instrument’s replication of the spectral and spatial data. This figure clearly shows that the 

instrument is capable of accurately replicating the spectral outputs of this target. Each colour block is 

accurately depicted within the spectral data, alongside the white block which is clearly visible at each 

of the selected wavelengths, as expected. Additionally, a reconstructed colour image, utilising the 

output spectral data for reference further demonstrates the accuracy of this replication, emphasising 

the quality of data capture possible with this instrument.  

Furthermore, an apple was utilised as a more complex reflecting target to determine how well an 

object, and its features, could be resolved by the instrument when the illuminating source was not 

within the imaging path, resulting in lower light levels. The use of an apple as a target also 

demonstrated the instrument’s abilities at detecting the different pigments present across the apple’s 

surface. Variations in these pigments can be used to better understand the health of the fruit and is 

an area of industry where hyperspectral imaging techniques are highly beneficial. Furthermore, apples 

are well characterised spectrally within the existing literature [16]–[18], and, therefore, provide good, 

non-trivial pseudo standards. For this initial test, wavelengths within red, green, and blue regions were 

directly compared. Given the green/red colour of the target, these wavelengths were expected to 

produce a brighter response than present within blue regions. More detailed analyses of fruit targets 

and the application of the laboratory-based hyperspectral imager to this field is covered in greater 

detail in Section 3.4.1. Figure 3.9. shows that the instrument is capable of detecting the target object 

and can spatially resolve features on the surface as well as demonstrating clear spectral variations 

across the visible spectrum, highlighting its potential as a robust scientific grade hyperspectral imager. 
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3.4. Environmental Applications  
After the completion of initial tests, in order to demonstrate the imager’s capabilities within more 

‘real-world’ scenarios, it was tested within a variety of laboratory-based applications. The applications 

discussed below were selected as they represent areas of research where hyperspectral datasets were 

shown to be beneficial; however, the current literature suggests that they are lacking in low-cost, 

accessible hyperspectral imagers at this time. By demonstrating the imager’s capabilities in these 

domains, the aim is to introduce robust low-cost hyperspectral systems for ongoing development in 

these settings. For these applications the target object was placed within the low-cost integrating 

Figure 3.9 Hyperspectral datasets obtained of an apple target. Note the variations in spectral response across 
red, green, and blue channels as well as the feature definition which demonstrates the imager's ability to define 
differences across the top of the apple. This figure also demonstrates the influence of directional illumination 
sources, with the presence of bright spots and shading across the target, that was observed prior to the 
implementation of the integrating sphere. Scale shows pixel intensity. 

Figure 3.8 Hyperspectral images of a smartphone screen captured by the laboratory-based hyperspectral imager. 
A, shows the image as displayed on the phone screen, B, C, and D show the spectral responses from the red, 
green, and blue portions of the spectrum respectively. E shows a reconstruction of the colour image using the 
hyperspectral data, note, the similarities between the output and the original image. Scale shows pixel intensity. 
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sphere analogue introduced in Section 3.2.3.1. to reduce the effects of bright spots and shading across 

the chosen targets. 

3.4.1. Fruit Quality Identification  
Hyperspectral imaging was shown to be an effective, non-destructive means of quality assessment for 

a variety of food categories [19]–[22], providing an accurate early detection method for product 

deterioration [23], which may not be so easily recognised with traditional analysis methods [24]–[26]. 

Whilst qualitative assessments in this field are typically completed using features present within the 

near infrared portion of the electromagnetic spectrum [24], [27], [28], research shows that absorption 

features present within the visible spectrum can also be used as a low-cost alternative means of quality 

control [16], [24], [29], [30]. Similar experiments were completed by, for example Hossain et al. [29] 

and Das et al. [17] to test a variety of smartphone spectrometers [31]; however, to the best of my 

knowledge, this represents the first test of a low-cost hyperspectral imager in this capacity. 

Two key areas within this field were focused on: changes in spectral reflectance as the fruit ages, and 

the development and identification of fruit bruising. The fruits were imaged over the course of five 

days in order to detect any pigment variations or bruise development in the affected fruits. During 

image acquisition, each fruit was placed within the integrating sphere and illuminated as described in 

Section 3.2.3.1. A 128 × 128 pixel scan with an exposure time of 15 ms per pixel was then acquired. 

These parameters were selected because they represented a suitable balance between image quality 

and acquisition speed, allowing for the collection of images with appropriate spatial resolution to 

define target object features with minimal time restraints. When image capture was not taking place, 

the fruits were stored under ambient light within the laboratory. From the observed data, the pixels 

that make up the target object were then averaged to produce one comparable response from each 

fruit measured, allowing for comparisons to be drawn between different fruits and/or different days 

over the measurement period. Figure 3.10. displays the reflectance spectrum of a healthy apple over 

the course of the five-day measurement period. 

Whilst the fruit ages, an increase in reflectance is expected to occur as a result of the breakdown and 

transformation of fruit pigments during the ripening process [18], [32]. This gradual increase in 

reflectance over time is clearly displayed in the spectra collected using our low‐cost hyperspectral 

imager, correlating well with the results of previous research. Furthermore, the absorption features of 

the fruit pigments are also clearly visible within this data, notably, the stagnation at ca. 550 nm which 

can be attributed to anthocyanin absorption, a shoulder at ca. 650 nm related to chlorophyll b 

absorption, and the distinct loss in reflectance at ca. 675 nm highlighting the presence of chlorophyll 

a [16], [29]. Whilst the peaks and troughs present within the blue spectrum in this figure may be 

associated with variations in carotenoids within the fruit [16], the features are not distinct enough in 

this dataset to pinpoint. It is, therefore, believed that these fluctuations are anomalies resulting from 

noise located in this section of the dataset related to the limited signal of LED light sources across this 

spectral region.  
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The incorporation of hyperspectral analysis to fruit quality control was shown to provide significant 

improvements in the accurate identification of poor‐quality, damaged produce [22], [33], [34]. These 

improvements are further illustrated in the data collected by this research. It is established that, 

particularly during the early stages, bruise identification can be extremely difficult due to the near 

invisibility of initial symptoms [26], [35]. Figure 3.11. highlights the varying degrees of bruise detection 

across the different wavelengths. Bruising is much more obvious at wavelengths across the red–green 

spectrum due to the increased reflectivity of the healthy tissues at these wavelengths, which 

emphasises the decreased reflectance of the damaged tissue. Conversely, bruising remains almost 

invisible in the blue portion of the spectrum due to the generally lower reflectance of fruit tissues at 

these wavelengths, making the apple appear more homogeneous. Furthermore, the detection of 

bruising on fruits with darker pigmentations can remain unobvious for extended time periods using 

standard colour image techniques, increasing the likelihood of deterioration of additional produce 

within a batch. However, with the use of hyperspectral datasets, which can pinpoint individual 

wavelength responses, these bruises can be identified much more efficiently [22], [36]. With the 

introduction of low‐cost hyperspectral measurement methods, this level of high‐quality produce 

analysis can become more readily available, providing a substantial advantage to the industry through 

the introduction of affordable hyperspectral sensors.  

Figure 3.10 Spectral reflectance of a healthy apple measured over a five-day period, highlighting the changes in 

pigments that occur during the ripening process. Note the absorption features present at ca. 550 nm, ca. 650 

nm, and ca. 675 nm. Error bars show the standard deviation. 
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Figure 3.12. shows the spectral response data gathered from two fruits. One represents a healthy 

sample with no defects, the other has impact bruising across its surface. The difference between the 

spectral responses of these two fruits is clear within the figure, with the bruised fruit showing a general 

reduction in reflectance across all wavelengths with significant losses present across the ranges of 525 

nm – 575 nm and 600nm – 650 nm. The data was further tested to determine whether a statistical 

difference in spectral response was present. An Anderson-Darling normality test showed a non-normal 

distribution, therefore, a Mann-Whitney U test was completed, producing a p value of 4.88 x 10-13. 

Given that p < 0.05 the difference between these spectral response curves can be inferred to be 

statistically significant. 

  

Figure 3.11 Bruise development over the measurement period: comparison between colour and hyperspectral 
datasets captured with a 128 × 128 pixel scene at 15 ms exposure per pixel. Note the varying levels of detection 
at different wavelengths. Note, these data are subject to potential temperature instability of the integrating 
sphere. Scale shows pixel intensity. 
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3.4.2. Volcanic Rock Mineralogy  
The characterisation of the surface spectral reflectance of volcanic rocks is an important area of 

research that is seeing a recent increase in popularity [37]. Traditionally, characterisation of these 

materials is completed through satellite-based remote sensing; however, this is limited by the 

comparatively low spatial resolution of hyperspectral satellite data, which results in significant spectral 

mixing [4], [37]. Laboratory-based measurements, therefore, represent a suitable alternative. Previous 

studies, e.g., Abrams et al. [38], Li et al. [39], Aufaristama et al. [40], and Amici et al. [41], completed 

spectral analyses on a variety of volcanic rocks providing substantial information about their variable 

spectral responses. The low-cost hyperspectral imager’s abilities in this discipline were, therefore, 

tested with an outlook to producing a version that can be used in a field setting in future. 

A variety of volcanic rocks of differing crystal size were imaged using the hyperspectral imager. A 128 

× 128 pixel scan was taken of each rock with an additional 256 × 256 pixel scan which provided a more 

detailed view of different rock features. These images were acquired with an exposure time of 25 ms. 

This longer exposure was required due to the more limited reflectance of these objects. Within the 

rocks sampled, several contained varying crystals, such as flow banding, to determine whether the 

low-cost imager would be capable of differentiating these variable features. Figure 3.13. displays an 

example image recorded of an ash tuff with obsidian flow banding. The hyperspectral data 

demonstrate that this imager is capable of distinguishing between the different rock features present 

within the sample. Image clarity could be improved with the upgrade of the current lens system as 

discussed above. An improved optical system, such as a custom design featuring multiple lenses, would 

be capable of mitigating aberrations, achieving greater image clarity. However, the inclusion of such a 

system would result in a significant increase in incurred costs and, therefore, does not fit with the aims 

Figure 3.12 Difference in spectral response between bruised and healthy fruit tissues. Note the distinct losses 
present between 525nm - 575nm and 600nm – 650 nm. 
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of this low-cost design. In its current format, it is clear that the imager is capable of identifying different 

rock features within a sample, highlighting its potential for growth and development in this field.  

 

Whilst volcanic rocks, such as basalt, obsidian, and andesite, typically display low reflectance values 

within the visible spectrum, with minor variations resulting from oxidization and/or vegetation growth 

[38], [39], [41], minerals, such as sulphur display much more distinctive reflectance curves [42], [43]. 

Figure 3.14. shows the reflectance curve obtained from a sulphur rock imaged using the low-cost 

hyperspectral imager. This figure clearly displays the expected increase in reflectance from ca. 500 nm 

that is observed with the sulphur mineral, where variations in this curve are believed to relate to the 

obvious variations across the surface of the rock sample used. Furthermore, Figure 3.15. displays some 

of the hyperspectral data collected during image acquisition of the sulphur rock. This figure 

demonstrates the brightest responses present in the yellow and green regions of the spectrum, 

correlating well with the observed spectral reflectance curve. 

 

 

Figure 3.13 Example image captured using the low-cost hyperspectral imager displaying the presence of flow 

banding. Hyperspectral image taken from 613 nm of a 256 × 256 pixel scan.  
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The ability to differentiate between the spectral reflectance and identify crystal variations in volcanic 

rocks is of significant benefit to the research community, helping to improve our knowledge of these 

changeable environments, as well as providing planetary analogues for ongoing solar system 

exploration missions [41], [44]–[46]. The results derived from this imager highlight its proficiency 

within this field. Future work will look to better develop a low-cost hyperspectral set-up in order to 

allow it to be accurately implemented in a variety of field environments as a low-cost portable imager. 

3.4.3. Tooth Shade Determination 
The field of dentistry is another area of research where the application of low-cost hyperspectral 

imaging technologies could prove to be extremely beneficial. Tooth aesthetics play an important role 

in the appearance of the mouth, and factors such as tooth form, shape, and colour, together with the 

shape of the dental arches, contribute to this [47]. Accurate tooth colour matching is, therefore, an 

important consideration when achieving good-quality dentistry. Matching the colour of synthetic 

tooth replacements to existing teeth can be a challenge, especially for single-unit replacements. Belser 

et al. [48], proposed a White Aesthetic Score index (WES) to address this issue in single-tooth implants. 

This index also takes into account other important factors, such as tooth form, volume, outline, surface 

texture, and translucency. The WES index, whilst originally devised for use in implantology, lends itself 

nicely to all aesthetically driven restorations, and it encapsulates well the different factors that need 

Figure 3.14 Observed spectral reflectance for the sulphur sample (right); note the significant increase in 
reflectance observed from ca. 500 nm in the spectral data (left). Error bars show the standard deviation. 

Figure 3.15 Variations in reflectance across the hyperspectral data for the sulphur target. Images taken from a 
128 × 128 pixel scan. Scale shows pixel intensity. 
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to be considered regarding aesthetic dental restorations. There are different commercially available 

systems to help the dentist with regard to colour matching; these include visual shade guide systems 

such as the samples used below (Figure 3.16.), comprising multiple handled tabs of differing hue, value, 

and chroma, as well as automatic shade determination devices such as colourimeters, digital imaging 

devices, and spectrophotometers. 

Visual determination was shown to be very subjective, and is affected by factors such as the quality of 

background illumination, degree of hydration of the tooth surface, and eye fatigue. [49], [50]. 

Automatic shade determination technology, therefore, advanced considerably in the last 20–30 years 

and, while not wholly accurate, it was shown to have good reproducibility and reliability [51]–[53]. 

Spectrophotometry was shown to be the most precise and accurate method of visual determination; 

whilst inconsistent, it is not necessarily less precise than colourimetric methods [52], [54]. 

Hyperspectral imaging has the potential to provide a means of more reliable shade determination. It 

was, therefore, decided to test the low-cost imager’s capabilities in this field. 

Three dental tabs of different shades (BL2, B2, and D4) were imaged using the hyperspectral imager 

set-up described above. These images were captured at 256 × 256 pixels due to the small size of the 

target objects, with an exposure time of 15 ms per pixel. Figure 3.16. displays the spectral reflectance 

responses gathered for each shade. In this figure, the varying shades of the tabs are clearly 

demonstrated; BL2, the tab with the lightest shading, can be seen to produce the highest level of 

reflectance across all wavelengths measured, with B2 providing a slightly brighter reflectance than D4, 

as would be expected given the relative shading of these tabs. Furthermore, the spectral response of 

both B2 and D4 also displays a slight increase in reflectance at ca. 590 nm, whereas BL2 displays a slight 

drop in reflectance in this region. This more pronounced response from B2 and D4 at this location 

correlates well with their more yellow colouring compared to BL2. Finally, the spectral responses 

present in the blue portion of the spectrum could be a result of fluorescing in this region due to its 

proximity to the ultraviolet spectrum. These results demonstrate the hyperspectral imager’s 

proficiency in tooth shade determination, as it can capably identify the different shades presented to 

it. This suggests that the imager has significant ongoing potential in this field of study. 

Figure 3.16 Spectral response across the visible spectrum for three dental shade tabs of varying shades. 
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3.5. Chapter Summary  
This chapter has presented a laboratory-based hyperspectral imager developed from low-cost, 

commercially available components. This demonstrates that high quality hyperspectral imagers can be 

successfully constructed from low-cost, accessible components, emphasising the potential available 

within this field. Imager calibration was provided, enabling the accurate comparison of different 

samples with traceability to the watt, and the imager’s proficiency within several environmental 

applications was demonstrated, highlighting it to be a valuable, low-cost laboratory measurement tool 

capable of both quantitative and qualitative hyperspectral measurements. Its current format allows it 

to complete bench-top measurements; later chapters will use this instrumental design as a foundation 

for further innovation, with an outlook to the incorporation of low-cost hyperspectral imaging 

instrumentation in future field deployments. This imager represents an initial development in 

accessible hyperspectral technologies, providing a basis for future improvements and a steppingstone 

towards the development of more portable systems. The continued development of these low-cost 

devices is of significant importance to a variety of laboratory- and field-based applications. Their ability 

to provide accurate hyperspectral measurements at a fraction of the cost of current systems allows for 

increased opportunities to gain a better understanding of the processes and products that influence a 

variety of environmental settings. 
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Chapter 4 

Hyperspectral Smartphone: Development 
of a Smartphone-Based Portable 
Hyperspectral Imager  
 

This chapter is associated with the work presented in Stuart et al., [1] and Davies et al., [2]. It builds on 

the narrative of the previous chapter as we progress from a laboratory-based instrument to a more 

field-ready design. This chapter discusses the development of the Hyperspectral Smartphone from a 

very low-cost teaching and demonstration aid, to a valuable low-cost, field portable hyperspectral 

imager capable of hand-held hyperspectral data collection. Device metrology is presented alongside 

several environmental application scenarios as well as a direct comparison of the Hyperspectral 

Smartphone and the Laboratory-based Hyperspectral Imager from Chapter 3. 

4.1. Introduction 
Portability and ease of deployment in a range of environmental settings are factors that greatly 

influence the data collection potential of an instrument. If an instrument is bulky and, therefore, 

difficult to manoeuvre its suitability is limited significantly to only the most accessible of locations. This 

has a cumulative effect, often resulting in a lack of high quality datasets from more remote locations, 

limiting our knowledge of these environmental settings and, therefore, limiting our understanding of 

these important locations. This has become more apparent in recent years as the climate crisis 

continues to progress, systematically highlighting the limitations of our current understanding as 

increasing numbers of environmental settings are affected by and begin to adapt to the changing 

climate. This is a particular issue for a variety of more extreme environmental settings, due to the 

substantial impact that these changes will have on these already dynamic settings, with subsequent 

changes having potentially far reaching implications far beyond the immediate academic community. 

It is, therefore, key that we work to better understand these settings not just for the benefit of 

academic research but for local communities and the general public. The development of more 

portable, low-cost instruments is, therefore, of paramount importance. 

The rapid progression of smartphone technologies in recent years has led to a significant uptake in 

smartphone-based components in the design of optical sensing technologies. The inclusion of these 

consumer market components provides a significant advantage to device developers due to the 

substantial reduction in costs provided by the off-the-shelf nature of these components [3], [4]. 

Furthermore, the increased processing power and the high-resolution camera systems often 

associated with these low-cost devices provides substantial opportunities to develop state-of-the-art 

optical sensing technologies at a fraction of the cost of currently available systems without 

compromising on the data quality captured. To date, smartphone technologies have been utilised in a 

variety of devices such as smartphone spectrometers [5]–[7] and multispectral sensors [8]–[10]. These 

devices have been implemented in a wide variety of settings, from point-of-care analysis to 

environmental monitoring applications. As such, smartphones represent one of the most promising 

platforms for the development of cost-effective portable measurement technologies.  
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More recently, there has been a drive toward developing smartphone-based hyperspectral imaging to 

provide a level of data resolution not possible with single pixel and multispectral designs. A number of 

studies have produced low-cost hyperspectral imagers either comprised of smartphone components 

or capable of communication with a smartphone for data viewing processes, e.g., [11]–[14]. 

Furthermore, studies such as those of He and Wang [15] and Park et al. [16] have developed 

smartphone-based hyperspectral imagers through the virtual transformation of the RGB data acquired 

by the built-in camera sensor. Whilst the examples above demonstrate that accessibility is beginning 

to improve, affordable, field deployable hyperspectral sensors remain in short supply across a wide 

range of application areas [17], with the increasing focus on our changing climate highlighting the 

growing need for low-cost, field deployable hyperspectral sensors across environmental monitoring 

applications. By developing a range of low-cost, portable hyperspectral sensors, we increase the 

potential for valuable data collection across a wider range of key environmental areas. This, in turn, 

allows us to improve our understanding of the processes that effect these highly important, dynamic 

environments. 

To date, very low-cost spectrometers have been designed for incorporation with smartphone devices. 

These devices have largely been designed as teaching aids, providing easily accessible, educational set-

ups, for example, Public Lab [18], presents a simple papercraft spectrometer, where a cardboard 

housing and a simple diffraction grating utilising a digital video disc (DVD) fragment are used to capture 

a spectral dataset from a smartphone camera. Whilst this simple design does allow for spectral 

datasets to be observed, its basic components limit its potential uses, for example, the use of a DVD 

fragment as a diffraction grating substitute can introduce potential data quality issues, resulting from 

scattered light interference as well as transmittance shifts leading to the intensity variations of imaged 

objects at each wavelength of interest [19]–[21]. Despite these limitations, this basic design highlights 

the potential available for low-cost, accessible, smartphone-based data collection. This chapter, aims 

to demonstrate the opportunities available for low-cost smartphone-based sensing units through the 

construction of a low-cost unit capable of accurate, field-based data collection. Building on the work 

of Chapter 3, using the knowledge obtained from the development of the low-cost laboratory-based 

hyperspectral imager to progress from a laboratory system to a universally accessible, fully portable 

design. This chapter creates a narrative that develops from a very low-cost demonstrative 

hyperspectral imager that utilises the Public Lab spectrometer design, to a robust field deployable 

instrument capable of accurate hand-held hyperspectral image capture. It goes on to introduce a low-

cost, field deployable system where a standard smartphone can be utilised as a hyperspectral imager 

through the addition of a 3-D printed attachment. This device is capable of data capture across the 

visible spectrum (400 –700 nm) and represents a valuable, easily implemented design, which, to the 

best of my knowledge, is the first fully incorporated smartphone-based hyperspectral imaging system 

of its kind. Instrumental improvements and further testing are discussed resulting in a fully portable, 

hand-held low-cost hyperspectral imaging instrument that is capable of robust and accurate data 

capture in a range of environmental conditions. 

4.2. Initial Design – A Very Low-Cost Test Instrument 
To first test the hypothesis and determine the feasibility of this method of smartphone-based 

hyperspectral data capture a basic cardboard prototype based on the Public Lab spectrometer design 

was developed. Whilst the Public Lab instrument is designed to capture a single point spectral dataset, 

the cardboard prototype designed here was adapted for hyperspectral data capture. This set-up, 

shown in Figure 4.1., consists of a cardboard housing and a DVD fragment that acts as a rudimentary 

diffraction grating. The cardboard housing is attached in front of the rear facing smartphone camera 

ensuring alignment between the camera optics, the diffraction grating, and the entrance slit. The 
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entrance slit, in this design, acts as a spatial filter, restricting the FOV of the smartphone camera optics, 

whilst the DVD diffraction grating is situated immediately in front of the smartphone camera lens and 

provides the angular dispersion of the incident light rays. It should be noted that the wavelength 

dispersion provided by this very low-cost set-up is not reliable and it is subsequently affected by 

sizeable spatial-spectral distortions. It is, therefore, incapable of robust hyperspectral measurements, 

however, despite these limitations this set-up is sufficient to demonstrate the concept of this data 

capture methodology. The simplicity of this design allows it to be constructed and utilised by any 

individual with access to a smartphone, providing a valuable teaching and demonstration aid. 

The greatest limitation associated with this basic design is the DVD fragment diffraction grating. The 

use of the grooved polycarbonate substrate of a DVD as a transmission diffraction grating, compared 

to a commercial diffraction grating has the following drawbacks. Firstly, the finish of the DVD surfaces, 

both the grooved surface and the flat surface will not typically be as smooth as that of a commercial 

diffraction grating. This can result in imperfections which, in turn, can lead to randomly scattered light. 

Furthermore, the average grating period of a commercial DVD is approximately 710 ± 19 nm, which 

equates to a groove spacing tolerance of ± 2.68% [19]. This non-periodic error may generate focused 

stray light on the sensor. Both randomly scattered light and focused stray light reduce the spectrum 

contrast, therefore, reducing the performance of the set-up. Finally, the spectral transmittance of 

polycarbonate shifts approximately 8% from 400 nm to 700 nm [20]. This transmittance shift is much 

higher than the spectral transmittance variation of glass B270 which has a shift of less than 1% from 

400 nm to 700 nm [21]. This unwanted transmittance shift will lead to intensity variations of imaged 

objects at each wavelength of interest which requires further calibration for quantitative 

measurements. Nevertheless, despite these limitations this very low-cost design is a valuable step 

towards reliable smartphone-based hyperspectral imaging, highlighting the potential within this 

application area and providing a foundation for further innovation.  

To enable the acquisition of hyperspectral datasets the smartphone was repositioned manually to 

obtain spatial resolution across the horizontal axis. Image capture was completed using the video 

function of the smartphone camera. Once recording, the device was tracked left to right across a scene. 

To ensure a semi-consistent rate of movement, the device was tracked at 1 mm/second intervals 

across the target. These measurements were completed by eye using a ruler positioned at the bottom 

of the scene, and a stopwatch. Although this is subject to human error, this method provided a suitable 

means of scene translation based on the abilities of this initial design. Furthermore, to minimise the 

influence of image distortion resulting from operator shake, the device was mounted to a tripod with 

Figure 4.1 The initial prototype design. A shows the attachment connected to a smartphone and mounted to a 
tripod. B shows the paper craft attachment and an example DVD fragment diffraction grating which is attached 
to the housing on the reverse of the exposed panel. 
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a basic translation stage allowing for more stable movement in the horizontal plane. Once capture was 

complete individual frames were extracted from the video file. Further data processing such as bias 

corrections and the extraction of spectral datasets were also implemented, however, these are 

discussed in greater detail in Section 4.3.1. in the context of the scientific grade Hyperspectral 

Smartphone where their discussion is of greater relevance. 

4.2.1. Proof of Concept Testing 
Whilst previous research has demonstrated that smartphones are capable of detecting and accurately 

producing spectral datasets from spectrometer designs [5]–[7], further information was required to 

determine whether this could be progressed towards the production of a spectral image. To test its 

capabilities, it was decided to recreate the environmental applications utilised within Chapter 3. These 

particular experiments were replicated because they can be simply implemented and produce rapid 

results, allowing the potential of this methodology to be quickly determined.  Hyperspectral datasets 

were acquired with the very low-cost set-up of an obsidian flow banded ash tuff rock and a red-green 

Braeburn apple, to determine how well distinct spatial and spectral variations could be resolved by 

this method of hyperspectral data capture. Figure 4.2. shows the results obtained from these 

measurements. Whilst these datasets are clearly severely affected by noise, demonstrating the 

instruments incompatibility with robust data capture applications, the individual targets can both be 

identified within the output images. Furthermore, it is clear that spectral variations are also observable 

in these targets as highlighted in the red, green, and blue channels of the apple dataset. These results 

clearly demonstrate the potential available in this area of research. If rudimentary, but recognisable, 

hyperspectral datasets can be obtained from a basic set-up costing ca. £10 to develop, the potential 

data capture capable of a more robust instrumental design is substantial.  

Figure 4.2 Spatial and spectral datasets acquired using the prototype design. A shows an obsidian flow banded 
ash tuff, B shows a red-green Braeburn apple. Note that despite the noise present within the images the target 
objects remain recognisable and spectral variations correlate with expectations. 
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4.3. The Hyperspectral Smartphone 
Building on the success of hypothesis testing, the very low-cost prototype was converted into a more 

robust, scientific grade design. The Hyperspectral Smartphone (Figure 4.3) is comprised of an easily 

attachable 3-D printed spectral housing containing an Edmund Optics transmission diffraction grating 

(#49-580). The instrument weighs approximately 210 g (including the approximate weight of the 

attached smartphone) and has dimensions (length x width x height) of 16 cm x 10 cm x 12 cm. It is 

intended to be versatile, and as such the attachment grip and spectral housing position are adjustable, 

increasing usability across a variety of smartphone widths and camera configurations. The 3-D printed 

housing provides a robust structure, increasing the overall reliability of this design. Furthermore, a 

standard slit is present within the printed design, which can be narrowed to best fit the intended target 

scene. The diffraction grating is positioned directly in front of the smartphone camera sensor. To 

minimise potential light leaks at this location, cushioning foam was attached to provide a secure fit 

between the smartphone and spectrometer components. This new design can be easily and reliably 

attached to a wide range of smartphone devices allowing for accurate, repeatable data collection in a 

range of environmental settings. Furthermore, the optics provide substantial improvements to the 

quality of data capture possible without introducing significant costs. The Hyperspectral Smartphone 

costs ca. £100, making it a highly accessible, ultra-low-cost hyperspectral instrument when compared 

to currently available portable hyperspectral imagers in commercial markets. Table 4.1. shows the cost 

breakdown of the individual components and their justification. 

Table 4.1 Cost breakdown and justification for the Hyperspectral Smartphone. 

Component Cost Justification 

Samsung Galaxy A12 
Smartphone 

£200* It was decided to use an easily accessible “budget 
friendly” smartphone to demonstrate that more 

expensive state-of-the-art smartphone devices are not 
required to successfully capture hyperspectral datasets.  

Edmund Optics Diffraction 
Grating #49-580 

£95.94 A robust and reliable diffraction grating with a 
wavelength range matching the abilities of a built-in 

smartphone camera. Gratings are available from a range 
of different providers, however, this particular grating 
was chosen because its physical dimensions, combined 

with the wavelength range were the best fit for the 
application. 

Total Cost £95.94 

*Note, the cost of the Smartphone is not included within the Total Cost for the instrument because 
the attachment is designed to be versatile, working with a range of smartphones of higher and 
lower price points. The cost of the particular smartphone used within this research is, however, 
provided here for transparency. 
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4.3.1. Image Capture and Data Processing 
The Hyperspectral Smartphone is a push broom style sensor that can be used as either a hand-held or 

tripod-based instrument; however, it should be noted that, due to operator shake, datasets captured 

as a hand-held device can be subject to greater distortion, this is discussed in greater detail in Section 

4.7. where a MATLAB algorithm is proposed as a means of minimising these distortions to allow for 

accurate hand-held analysis. At this stage in development, to minimise these effects, the device was 

mounted on an automated translation stage, where a stepper motor is used to track across the target 

scene. The slit width of the system is 0.5 mm and the slit-lens distance is 90 mm. The inclusion of the 

translation stage allows for stable, repeatable scene passes, resulting in clearer datasets. Data 

collection was completed using the video function of the smartphone camera. For all data collection, 

the video frame rate was set at 30 fps. Once recording, the device was tracked, left to right, across a 

scene at 1 mm/sec intervals across the target. When recording scenes within a laboratory setting, the 

target object is placed within a dark box to minimise the interference of ambient stray light and is 

illuminated using a 20 Watt LED lamp with a diffuser to minimise bright spots within the scene. Figure 

4.4. shows the Hyperspectral Smartphone ready for data collection within a laboratory environment. 

As mentioned above, the instrument is versatile and can, therefore, be used with a wide range of 

Figure 4.3 Schematic diagram of the Hyperspectral Smartphone mounted to the translation stage. A and B show 
the front and rear views respectively, C shows the Hyperspectral Smartphone attachment prior to connection 
with a smartphone, highlighting the location of the spectral optics. D shows a cross section of the smartphone 
spectrometer system and shows how the marginal and chief rays travel through the system. 
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smartphones, however, for the purposes of this research, the smartphone used is a Samsung Galaxy 

A12. The presence of an auto-focus feature within the smartphone camera software is of significant 

benefit to this instrument, minimising the specialist knowledge required to operate the Hyperspectral 

Smartphone, and as such, providing a versatile, accessible, user friendly system. A full list of camera 

specifications for the Galaxy A12 can be found within Table 4.2. The instantaneous field of view (IFOV) 

[22] for each pixel within the spectrometer image was measured to be approximately 5 mm × 5 mm 

for a 95% energy enclosure at a working distance of 300 mm. Whilst the total field of view (TFOV) is 

determined by several factors. At short working distances (on the order of the travel distance) the 

vertical field of view (VFOV) is determined by the slit height and the distance between the slit and the 

grating, and the horizontal field of view (HFOV) is determined by the travel distance of the phone. At 

greater working distances, the acceptance angle of the slit (which is determined by the slit width, 

height, and distance to the grating) makes a greater contribution to both the HFOV and the VFOV. No 

additional coupling optics were incorporated before the spectrometer slit. 

Table 4.2 Camera specifications for the Samsung Galaxy A12 smartphone. 

 Samsung Galaxy A12 

Resolution 48 MP (1920 x 1080 for video) 

F Number 2.0 

Focal Length (mm) 26 

Fps 30 

 

Once capture was complete, individual frames were extracted from the video file. Dark and white 

reference frames were also captured at this stage. To obtain a white reference a piece of matt white 

card was positioned in place of the target object and illuminated in the same manner. To correct the 

image frames for illumination and sensor biases whilst preserving the colour data of the output, the 

following analysis was implemented in MATLAB for each colour region in each frame (Appendix 8.4.). 

𝑡𝑎𝑟𝑔𝑒𝑡𝜆 =
(𝑡𝑎𝑟𝑔𝑒𝑡𝑟𝑎𝑤  𝜆−𝑑𝑎𝑟𝑘𝜆)

(𝑤ℎ𝑖𝑡𝑒𝜆−𝑑𝑎𝑟𝑘𝜆)
⋅

(𝑤ℎ𝑖𝑡𝑒𝜆1−𝑑𝑎𝑟𝑘𝜆1)

(𝑡𝑎𝑟𝑔𝑒𝑡𝑟𝑎𝑤 𝜆1
−𝑑𝑎𝑟𝑘𝜆1

)
    (4.1) 

Where target represents the object to be imaged, and dark and white represent the dark and white 

references respectively. The subscript raw λ represents an uncorrected spectrum. 
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In order to calibrate the instrument and to enable samples from different sources to be accurately 

compared a radiometric assessment of the optical power represented by each pixel within the image 

was performed by measuring the power reflected by the white reference target. This was performed 

using a photodiode-based radiometer, as described by Zhu et al. [23], but with its RG850 long-pass 

filter replaced by a narrow bandpass filter, centred on 550 nm with a full width half maximum of 10 

nm (Thorlabs Stock #FB550-10, Ely, UK). By comparing the photocurrent measured by the radiometer 

with and without the filter in place, the reflected optical power collected by the radiometer could be 

calculated. Given that the FOV of the radiometer represented an area upon the target of approximately 

14 mm in diameter at its 1 m operating distance, the reflected power per unit area, without the filter 

in place, was calculated from this to be approximately 46.55 μW/m2. Therefore, the optical power 

reflected from the white reference target was estimated to be 7.17 nW. For a comparison, the 

radiometer was sighted at the LED lamp directly, resulting in an optical power measurement of 108.62 

nW. These values show that the optical throughput (related to etendue [24]), is approximately 6.6%. 

Given that each pixel within the image of the spectrometer represents an area of 5 mm × 5 mm, the 

power collected in total per pixel of the spectrometer is approximately 1.16 nW for the white reference 

target. In the development of optical instrumentation, a typical ‘rule of thumb’ is that a good signal to 

noise ratio can be achieved using a silicon-based detector measuring 1 nW in 1 μm in 1 ms.  

In order to calibrate the instrument spectrally, and to extract a spectral response curve from each 

corrected image frame the calibration process within the Spectral Workbench software was utilised. 

This software is also publicly available and accessible from Public Lab [25], further demonstrating the 

accessible nature of this instrument. To complete the calibration accurately, a separate calibration 

image needed to be captured, by the instrument, of a fluorescent lamp. Compact fluorescent lamps 

contain Mercury vapour which, when energised, emits a consistent, characteristic spectrum. Accurate 

wavelength ranges can then be applied to the image frames by aligning the peaks present at 436 nm 

and 546 nm, within the software with their respective peaks in the calibration image. The resulting 

spectral curves were then averaged to provide one comparable spectrum for each target, allowing for 

direct comparisons to be made between different days and/or different targets. In its current format, 

the presence of a Bayer colour filter within the smartphone optics will reduce the sensitivity of the 

Figure 4.4 The Hyperspectral Smartphone mounted on the translation stage ready to image an obsidian flow 
banded ash tuff rock within a laboratory setting. 
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measurements captured with this instrument, however, the following sections demonstrate that this 

instrument is capable of producing accurate, high quality qualitative datasets. Spatial datasets were 

created in Origin Pro (2020b) by extracting the pixel values from a specific wavelength/column within 

each image frame from the chosen scene. These columns were then combined to create a spatial 

dataset of the target object that displayed the spectral response captured from a specific wavelength. 

Sections 4.7. and 4.8. discuss improvements to these data processing methods including the 

introduction of an in-scene calibration reference that can be utilised to obtain quantitative datasets, 

broadening the applications of this instrument, however, at present I wish to highlight what is possible 

with this more straightforward approach and, in doing so, demonstrate the substantial potential 

available in this area of research.  

To better understand the spectral capabilities of the Hyperspectral Smartphone the spectral response 

of a range of block colour targets were measured and compared against a laboratory measured 

spectrum that was captured using a Thorlabs CCD spectrometer (CCS200). Figure 4.5. shows the 

spectral response acquired for these targets. Whilst the responses obtained with the Hyperspectral 

Smartphone are noisier than the laboratory measured responses, the expected trends for each colour 

remain visible within the dataset, highlighting the potential available for this instrument. However, it 

is also clear that the presence of a Bayer filter within the smartphone optics has some influence on the 

output datasets. This is particularly evident in the prominent spectral feature present in all datasets at 

ca. 575 nm. From this information it can be inferred that the Bayer filter may have some influence on 

the spectral response in these regions, therefore, potentially impacting the spectral response acquired 

for different targets. The spectral response of this instrument is improved within Section 4.8.2. where 

an in-scene reference is developed to mitigate these external influences and improve the spectral 

outputs of the instrument, however, the data shown in Figure 4.5. is representative of earlier 

applications of this instrument.     

Figure 4.5 Spectral response obtained from colour targets. A shows the colour targets used (red, orange, yellow, 
green, and blue). B shows the laboratory measured spectrum for these targets, C shows the spectrum acquired 
using the Hyperspectral Smartphone. The colours of the spectral response curves correspond to their respective 
colour. Note the similarities present between graphs B and C. 
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4.4. Early Applications 
The laboratory-based environmental applications discussed in Sections 4.4.1. and 4.4.2. below also 

replicate the experimental work conducted in Chapter 3. It was decided to continue to replicate these 

experiments with the Hyperspectral Smartphone as their simple implementation and rapid results 

allow for the capabilities of the instrument to be demonstrated with ease when the resulting datasets 

are compared to the existing literature. Furthermore, by continuing this narrative it enables the 

demonstration of the sizeable improvements of the Hyperspectral Smartphone over the very low-cost 

set-up. Additionally, accurate, low-cost hyperspectral alternatives remain somewhat absent in these 

contexts at present; therefore, this work aims to provide a foundation for the development of low-

cost hyperspectral data collection in these application areas. 

4.4.1. Fruit Quality Control and Assessment 
Hyperspectral images of a healthy apple fruit were captured every 24 hours over the course of five 

days in order to observe any potential changes in spectral response associated with the breakdown of 

pigments during the fruit ripening process [3], [26], [27]. Figure 4.6. shows the observed spectral 

response curve of the fruit over the five-day measurement period. A clear increase in reflectance over 

time can be observed which is to be expected during the ripening process [28], [29], emphasising the 

Hyperspectral Smartphone’s capabilities in detecting accurate spectral data. Furthermore, absorption 

features associated with the pigmentation of the fruit are evident within the dataset; most notably a 

‘shoulder’ starting at ca. 550 nm associated with anthocyanin absorption and a slight ‘shoulder’ at ca. 

650 nm highlighting the absorption of chlorophyll b [26], [30]. The literature also highlights an 

absorption feature for chlorophyll a, which is represented by a distinct loss in reflectance around ca. 

675 nm followed by a rapid increase in reflectance towards the infrared [26], [28]–[30]. Whilst a loss 

in reflectance is observed in this dataset in this region, the subsequent increase is not present. This is 

believed to be due to the spectral range of the Hyperspectral Smartphone as this absorption feature 

is present close to the upper boundary of the instrument’s spectral range. It is, therefore, inferred that 

the reduced sensitivity associated with the edges of the spectral range of the diffraction grating may 

be resulting in some data loss in this region. Despite these losses, and the potential influence of the 

Bayer filter within these measurements, this dataset compares favourably with the existing literature, 

demonstrating a similar spectral response to that shown in [26] showing that the Hyperspectral 

Smartphone is capable of capturing accurate spectral datasets that are comparable with the existing 

literature in this field. 
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The abilities of the Hyperspectral Smartphone are further illustrated in Figure 4.7. which demonstrates 

clear spatial data collection which clearly highlights the variations in pigmentation across the apple’s 

surface, and correlates well with the observed spectral response curve. The clarity of the datasets 

obtained, using the automated translation stage, highlights the significant potential of this device, and 

indeed smartphone-based hyperspectral devices as a whole. This is particularly relevant given the 

ultra-low-cost of the instrumentation. The data quality possible with an instrument costing ca. £100, 

helps to establish that expensive commercial systems, costing upwards of £30,000, are not required 

for high quality hyperspectral imaging and, as such, the widespread democratisation of these imaging 

techniques is achievable. 

4.4.2. Volcanic Rock Mineralogy 
Volcanic rock images were also captured with the Hyperspectral Smartphone. These images were 

acquired as a means of demonstrating the device’s ability to identify variations and feature changes 

across a target object’s surface. Figure 4.8. shows the hyperspectral data captured of an obsidian flow 

banded ash tuff. As Figure 4.8. shows, this target has clear variations present across its surface. These 

variations are clearly replicated in the hyperspectral data, adding further support to the capabilities of 

Figure 4.6 Observed spectral response curves of a healthy apple over the five-day measurement period. Note the 
general increase in reflectance over the measurement period and the absorption features present at ca. 550 nm 
and 650 nm. Error bars show the standard deviation. 

Figure 4.7 Spatial datasets of an apple across different wavelengths. Note the variations in pigments across the 
spectrum. Displayed wavelengths extracted from the overall data cube. Scale shows pixel intensity. 
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this low-cost design. The banding across the rock is easily recognisable within the hyperspectral image, 

allowing for the straightforward identification of the individual flow bands. 

To further demonstrate the spectral capabilities of this instrument a Sulphur rock was imaged. Sulphur 

was chosen due to its distinctive spectral response where a distinct increase in reflectance is evident 

from ca. 500 nm [31]. Figure 4.9. shows the spectral response for Sulphur collected by the 

Hyperspectral Smartphone. This figure clearly shows the expected increase in reflectance from ca. 500 

nm emphasising the capabilities of this instrument. The additional variations across the spectrum are 

likely to be the result of variations present across the surface of the Sulphur target used due to the 

presence of colour variations across the rock’s surface, as highlighted in Figure 4.10. and the potential 

influence of the Bayer filter within the smartphone optics. However, the key reflectance feature at ca. 

500 nm remains prominent within the captured dataset. 

Figure 4.8 Spatial dataset obtained of an obsidian flow banded ash tuff, clearly highlighting the individual flow 
bands. Hyperspectral dataset taken from ca. 600 nm. Scale shows pixel intensity. 

Figure 4.9 Observed spectral curve for a sulphur target. Note the clear increase in reflectance from ca. 500 nm.   
. 
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4.5. Direct Comparison to the Laboratory-Based Hyperspectral Imager 
To further define the quality of the data capture and examine the capabilities of the Hyperspectral 

Smartphone in more detail at this stage in its development, this instrument was directly compared to 

the low-cost laboratory-based hyperspectral imager described in Chapter 3. This enables a more 

extensive understanding of the Hyperspectral Smartphone. By presenting its abilities alongside a pre-

existing low-cost instrument it allows it to be determined whether the image capture capabilities, 

combined with enhanced portability of the Hyperspectral Smartphone provide a more beneficial 

hyperspectral instrument, enabling high quality data capture in a wider range of application areas. 

Table 4.3. provides a direct comparison between the Hyperspectral Smartphone and laboratory-based 

hyperspectral imager. As Table 4.3. highlights, both instruments represent valuable, low-cost 

hyperspectral sensors that can be deployed with relative ease, without the need for extensive 

additional set-up time. Both devices are capable of a range of image capture scenarios and allow the 

operator to vary the image dimensions to fit the target scene, either through manually editing the 

dimensions prior to scene capture (Laboratory-Based Hyperspectral Imager), or through the extension 

of scene capture sweeps (Hyperspectral Smartphone). Whilst the Hyperspectral Smartphone is 

constrained to the settings available within the built-in smartphone software, it represents a 

significantly cheaper and, therefore, more accessible hyperspectral imaging sensor, when compared 

to the laboratory-based imager. Furthermore, the presence of an autofocus feature within the 

smartphone software allows the Hyperspectral Smartphone to be especially user friendly. However, 

its spectral range is limited to the visible spectrum, whereas the laboratory-based imager is capable of 

a broader spectral range and could be converted to cover different regions of the spectrum, such as 

the infrared, with relative ease [3]. The prominent differences present between both instruments are 

largely a result of the cost of the components involved and their intended research area. The 

laboratory-based hyperspectral imager represents a more specialised instrument in this comparison, 

because it is typically suited to bench-top laboratory analysis, whereas the Hyperspectral Smartphone 

represents a more accessible design that can be implemented in a range of settings outside the 

laboratory. As such these differences are clearly represented in the set-up costs associated with each 

device. 

  

Figure 4.10 Spatial datasets for the sulphur target highlighting the variations in reflectance across the different 
wavelengths. Scale shows pixel intensity. 
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Table 4.3 Direct comparison between the Hyperspectral Smartphone and the laboratory-based hyperspectral 
imager. 

 Hyperspectral Smartphone Laboratory-Based 
Hyperspectral Imager 

Imaging Mode Push Broom Whiskbroom 

Data Capture Method System translated by operator Stationary, mirrors provide 
movement across scene. 

Approximate Cost of 
Instrument1 

~£100 <£6,000 

Image Capture Dimensions Variable—can be modified by 
the operator. 

Variable—can be modified by 
the operator. 

Spectral Range (nm) 400 – 700 340 – 850 

Spectral Resolution (FWHM 
nm) 

14 12 

Operator Input Options Limited. Exposure settings can 
only be modified within the 

constraints of the built-in 
smartphone software 

Variable. Exposure settings and 
image parameters can be 
modified by the operator. 

Potential Portability Highly portable. Can be 
deployed anywhere with 

sufficient lighting. Capable of 
both indoor and outdoor data 

capture. 

Limited portability within a 
laboratory setting. 

Additional Equipment 
Required for Successful Data 

Capture 

Additional illumination 
required for indoor data 

collection, e.g., an LED lamp. 

Additional LED illumination 
required. Target object placed 

in a low-cost integrating 
sphere during data capture. 

1 These values represent the cost associated with the spectral set-ups and do not include potential 
additions such as LED lamps. However, these additions are often commonplace within laboratory 
environments or can be easily purchased for minimal additional cost. 

 

Figure 4.11 provides a side-by-side comparison of apple targets captured by both instruments. As this 

figure demonstrates, both the Hyperspectral Smartphone and the laboratory-based hyperspectral 

imager are capable of detecting pigment variations across this type of target. When comparing the two 

spatial datasets, the Hyperspectral Smartphone appears capable of greater image resolution, however, 

it should be noted that the optical system present within the laboratory-based instrument represents 

a basic set-up, as discussed in Chapter 3, and is, therefore, capable of improved image clarity, subject 

to the inclusion of aberration correcting optics. The Hyperspectral Smartphone benefits from the built-

in optical system present within the chosen smartphone, as most smartphones are now capable of 

high quality image capture and, therefore, aberration correction, it fits that the Hyperspectral 

Smartphone would be superior in the context of this comparison. 
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4.6. A Field Portable Low-Cost Hyperspectral Imager 
The above sections have demonstrated the Hyperspectral Smartphone to be a valuable low-cost 

instrument, capable of high quality, accurate hyperspectral data collection within a laboratory setting. 

This section will further test its capabilities as a robust, field portable instrument. To do this the 

Hyperspectral Smartphone, with the translation stage, was mounted to a tripod to allow for stable 

data capture, and the translation stage converted to battery power. Figure 4.12. shows the 

Hyperspectral Smartphone in the field, ready for data collection. 

 

Figure 4.11 Side-by-side comparison of apple targets captured across different wavelengths by both the 
Hyperspectral Smartphone (top dataset) and the laboratory-based hyperspectral imager (bottom dataset). Note 
that the apple target is placed within a low-cost integrating sphere during data capture with the laboratory-
based instrument. Scale shows pixel intensity. 

Figure 4.12 The Hyperspectral Smartphone ready for data capture within a field setting. 
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In the field, a variety of targets were imaged in order to determine the Hyperspectral Smartphone’s 

abilities in a field setting at a range of different working distances. For this data collection, 

measurements were completed within Weston Park, Sheffield. This site was chosen due to the wide 

range of potential targets available without the need for extended travel, allowing for initial field tests 

to be completed under COVID-19 travel restrictions. Datasets were captured at both short ca. 1 m and 

longer ca. 20 m working distances. Figure 4.13. shows the results obtained over a short working 

distance for a distinct target, in this case a sign within the park. It is clear from this figure that the 

Hyperspectral Smartphone is capable of clearly defining target object features in this instance, 

replicating the writing clearly within the spatial data. 

 

More intricate targets were also imaged at this working distance, Figure 4.14. shows the spatial and 

spectral data collected from a section of a flower bed. Whilst some of the details of the target are lost 

within the spatial datasets, the spectral response variations remain clear, following the expected 

response from this particular target. These datasets show the Hyperspectral Smartphone to be a 

valuable short-range field instrument. The spectral response curves compare favourably with the 

hyperspectral image frames, showing increases in reflectance in predominantly green, yellow and 

orange regions of the spectrum. Furthermore, the reconstructed RGB image highlights that it is 

possible to recreate an RGB image that is clearly recognisable as the original target from the 

hyperspectral image frames, demonstrating the spectral abilities of the instrument at this stage in its 

development. 

  

Figure 4.13 Spatial dataset captured of a sign within Weston Park over a short working distance. 
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Finally, the Hyperspectral Smartphone was used to capture landscape-style datasets over a longer 

working distance. Figure 4.15. shows a spatial dataset captured over this range. Whilst this dataset is 

poor in comparison to the other data provided within this section, it is evident that there remains 

potential for the acquisition of these landscape-style datasets with this style of device. Furthermore, 

the reconstructed RGB image frame, created using red green and blue equivalent images within the 

hyperspectral data cube, demonstrates the relative accuracy of the spectral datasets over this longer 

working distance, suggesting potential remains for accurate spectral data acquisition over this longer 

working distance in future. From these datasets it is clear that, in its current format, the Hyperspectral 

Smartphone is more suited to shorter range data capture, however, the preliminary data captured 

over longer distances shows promise, suggesting that with some minor modifications to the existing 

instrument landscape scenes may prove possible to accurately capture with this style of low-cost 

hyperspectral system. 

Figure 4.14 Spatial datasets across different wavelengths for a section of flower bed acquired over a short 
working distance. The reconstructed RGB image is created using red-green-blue equivalent images taken from 
the hyperspectral data cube. Black and white squares in this frame highlight the approximate location of the 
pixels utilised for the flower and leaf spectral response curves respectively. Grey scale shows pixel intensity. 
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4.7. Improvements for Hand-Held Applications 
Despite the successes in laboratory and field deployments discussed above, the Hyperspectral 

Smartphone still suffers from limitations associated with the chosen image capture method. Namely, 

image distortions caused by variations from the single translatory direction, and non-linear scanning 

speeds, resulting in further distortions related to the spatial compression or expansion of the chosen 

scene. This was solved above with the inclusion of a translation stage, allowing for stable, steady 

movement across the image scene, however, this detracts from the overall portability of the 

instrumentation by providing additional components that are required to achieve usable results. This 

section will, therefore, detail the development of an algorithm coded in MATLAB that, when combined 

with an in-scene reference card, enables the collection of spatially accurate hand-held datasets with 

this low-cost hyperspectral instrument. 

4.7.1. Image Acquisition with the Hand-Held Hyperspectral Smartphone 
Image acquisition with the hand-held set-up is comparable to the description in Section 4.3.1., 

however, it has been streamlined to provide a fully automated data processing workflow, further 

reducing the time restraints associated with data processing and analysis. The target object is placed 

within the “target object location” section of the in-scene reference card shown in Figure 4.16, and the 

smartphone translated across the scene (left to right) by the operator. Vertical correction is provided 

by the straight line at the bottom of the reference card that runs parallel to the scan direction. This is 

used to determine the amount of distortion within a captured scene as the line will deviate in the 

output images proportionally to the amount the scan deviated from the ideal path. A correction 

algorithm, written in MATLAB is then used to carry out the correction. 

 

 

Figure 4.15 Spatial dataset captured of a statue over a longer working distance (ca. 20 m). Whilst this dataset is 
of poorer quality than others captured with this instrument, the target object can be identified highlighting the 
potential for the capture of landscape-style scenes in the future. The reconstructed RGB image is created using 
red-green-blue equivalent images taken from the hyperspectral data cube. 
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A mask is created by thresholding the bottom section of the captured image according to the minimum 

brightness value of each column. This allows for the amount of vertical deviation (y-deviation) to be 

measured as distance in pixels corresponding to how much the vertical correction line had deviated 

from straight, for each x-value of the line mask. Each column of pixels is then shifted down by the 

calculated corresponding y-deviation value. Figure 4.17. provides a visual example of this correction 

procedure. 

Horizontal corrections, to account for acceleration and/or deceleration during the scene scan, are 

completed using the horizontal correction scale bar located at the top of the in-scene reference card. 

This scale bar is comprised of alternating black and white squares. As the operator translates the 

instrument across the target the size of these squares within the output image appear compressed or 

stretched depending on the scan speed. To correct this, the top section of the output images is 

thresholded to produce a mask which allows the widths of the squares to be measured for each square 

present within the scene. The threshold value is half the height of the top hat function produced by 

taking a line profile of the horizontal correction scale bar and is expressed in Equation 4.2; 

Threshold = maskmin +
maskmax−maskmin

2
     (4.2) 

Where maskmin and maskmax are the minimum and maximum values of the selected region respectively. 

The width of the images corresponding to the position and width of each square were then resized to 

the height of the square, correcting the horizontal distortions. This is shown visually within Figure 4.18.  

Figure 4.16 The in-scene reference card. A details the components of the card, B shows an example card used 
for hyperspectral measurements. The object or area to be imaged is placed within/aligned with the Target 
Object Location window. The Horizontal and Vertical Correction Bars are used to spatially correct the dataset, 
whereas the Spectral Calibration Reference Target is used to spectrally calibrate the dataset. 
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Figure 4.17 The stages of the vertical spatial correction. A shows the raw output from the data cube, B shows the 
masked area of the vertical correction reference line, the area highlighted in blue is enlarged in C. In C the arrows 
demonstrate the motion of the pixel columns to complete the correction. D shows the vertically corrected image 
with the top of the image uncropped to emphasise the effect of the column shifts. 

Figure 4.18 Stages of the horizontal spatial correction. A shows the output image from the vertical correction in 
Figure 4.17, B shows the masked area of the Horizontal Correction Scale Bar, with a line profile of the masked 
area shown within the bottom of this image to emphasise the lack of uniformity. The area highlighted in blue is 
shown in C where the arrows indicate the scaling required of each vertical slice to complete the horizontal 
correction. D shows the horizontally corrected output with a corrected line profile to demonstrate the greater 
uniformity of the corrected image.  
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4.7.2. Spatial Correction Results 
The introduction of this spatial correction algorithm allows the Hyperspectral Smartphone to be 

utilised as a fully hand-held portable hyperspectral instrument. The removal and mitigation of 

distortions resulting from operator shake and non-linear scanning speeds provides the user with 

valuable output datasets that can be easily visualised to pinpoint areas of spectral variation. Figure 

4.19. demonstrates the effectiveness of these corrections. When the original and corrected images are 

compared it demonstrates how effective these corrections can be even when supplied with a heavily 

distorted dataset. This is of significant benefit to a variety of imaging applications, however, it can be 

particularly useful when implemented in more extreme environmental settings, where the challenging 

nature of these environments can work to exacerbate the distortions observed. The corrected image 

is much clearer to the observer and provides significantly better context for the spectral information. 

By correcting these datasets to provide accurate spatial outputs it further improves the usability of this 

instrument. The outputs obtained from this instrument can easily be viewed, and understood without 

the need for extensive training. Furthermore, by correcting the spatial distortion, it means that spectral 

variations across the target object or scene can easily be pinpointed for further, more detailed analysis. 

4.8. In-Scene Spectral Calibration 
In order to further develop the Hyperspectral Smartphone into a robust and accurate hyperspectral 

imaging instrument that can be utilised reliably for quantitative data analysis across a variety of 

applications and under a range of different conditions, potential problems relating to calibration drift 

needed to be resolved. Section 4.3.1. discussed the calibration process for the Hyperspectral 

Smartphone. This method, where a spectral source with known peaks is utilised to identify features in 

the instrument’s output, is a common calibration technique for spectral sensing instruments[32], [33]. 

However, despite its widespread use, this method of calibration does have its drawbacks, for example, 

with the push broom imaging method, as utilised by the Hyperspectral Smartphone, any change in 

alignment between the slit, diffraction grating and the imaging optics of the instrument causes the 

spectral calibration to drift. This is because the spectrum of the scene is no longer being projected onto 

the same region of the sensor array. Whilst this is avoided in many instruments through fixed 

component locations, this is not possible with the Hyperspectral Smartphone due to the adjustable 

connection between the spectral and imaging optics. Furthermore, these changes in alignment could 

cause particular issues when the instrument is deployed for long periods of field-based data collection 

where conditions are not always favourable and instrumentation is often transported between 

multiple measurement sites. In-situ calibration helps to mitigate the chances of drift, however, this is 

Figure 4.19 An example spatial correction. A shows an RGB reconstruction of the non-spatially corrected data. B 
shows the same image but after spatial correction has taken place. 
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not always feasible due to the extra equipment required and the subsequent impacts of extended 

measurement periods and post-processing. 

To overcome these problems with the Hyperspectral Smartphone a pre-calibrated reference was 

included in the in-scene reference card shown in Figure 4.16.  This reference is imaged simultaneously 

with the target, providing a known spectral response which could be used to determine and remove 

illumination biases, as well as allowing spectral locations to be determined within the chosen scene. 

Thus, providing a more streamlined method of instrument calibration and image correction, providing 

significant time benefits during measurement periods. Additionally, this approach remains accurate 

under a range of lighting conditions, providing the illumination source broadly covers the visible 

spectrum. 

4.8.1. Bias Correction Improvements 
In order to spectrally calibrate the dataset, the images first needed to be corrected for sensor and 

illumination biases, as discussed in Section 4.3.1. These corrections and calibrations were coded in 

MATLAB and combined with the calibration calculations, providing an improvement on the existing 

correction process. The dark noise was subtracted from each colour channel to correct for sensor bias. 

This then allowed other influences, such as illumination bias from the light source, and the spectral 

transmission of the Bayer filter within the smartphone optics to be focused on. To enable accurate 

quantitative datasets to be obtained these biases needed to be accounted for. To achieve this, a ratio 

of the measured signal at each point in the image to the signal at a point in the scene, a white point 

on the in-scene reference card, was taken; 

Scalibrated(λ, x, y) =
Simage(λ,x,y)

Spaper(λ,x,y)
× Rpaper(λ)    (4.3) 

Where Scalibrated is the calibrated spectral dataset, Simage is the measured signal, Spaper is the measured 

signal of the paper reference card, and Rpaper is the true spectral response of the paper of the reference 

card. Note that in this equation the ratio is multiplied by Rpaper because its inverse was introduced when 

the ratio was taken. In the MATLAB code this is completed after the spectral calibration (Section 4.8.2.), 

however, it has been included here as it represents the final stage of the bias correction process. In 

this process all other terms cancel as they are present and equal in both measured signals, leaving only 

the spectral response of the target object at a given point (x,y) within the image. 

4.8.2. Spectral Calibration 
The spectral calibration reference shown within the in-scene reference card in Figure 4.16. is used to 

calibrate the images after spatial and bias corrections have been completed. The spectral response of 

the reference was measured using a Thorlabs CCD spectrometer (CCS200). Illumination was provided 

by a broad spectrum white LED. The spectral response of the red, green, and blue sections of the 

reference were then measured. The illumination bias was removed from these measurements by 

measuring the emission spectrum of the LED then completing a light source correction; 

λcorr =
λRGB

λLED
       (4.4) 

Where λcorr is the true spectral response of the spectral calibration reference, λRGB is the measured 

response of the spectral calibration reference, and λLED is the emission spectrum of the illumination 

source. λcorr is then normalised to unity for each colour channel of the spectral calibration reference. 

After the data cube has been assembled, the normalised intensity of the spectral calibration reference 

can be compared to the calibrated spectra of the reference. The cross-over points between blue and 

green, and green and red were recorded in the calibrated response as 495 nm and 596 nm respectively. 
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These features can also be identified in the uncalibrated spectra (Figure 4.20.) and provide known 

points to interpolate between and extrapolate from to provide quantitative wavelength values for 

each image in a data cube. The light source correction could not be fully applied until the spectral 

calibration was complete, as highlighted in Section 4.8.1., as the paper’s reflectance spectrum could 

not be multiplied by the data until there was a 1:1 wavelength correspondence. The ratio of Simage and 

Spaper was still taken and the spectral response of the paper introduced to both the laboratory 

measured reflectance spectrum and the spectral calibration reference. Both the laboratory and 

smartphone-measured spectral response of the spectral calibration reference had the influence of the 

inverse reflectance spectrum of the paper. Figure 4.20. shows a comparison between the Simage and 

Spaper ratio signal and the laboratory measured spectral response of the calibration reference. The 

widths of Δλ’ and Δλ were used to calculate the wavelength increment between each image in a data 

cube in nanometres by taking the ratio of Δλ to Δλ’. This increment was then applied to each image 

from the known point at 495 nm, providing an assigned wavelength value to each image in a data cube, 

and, therefore, spectrally calibrating the dataset. 

 

Figure 4.20 Spectral response of the calibrated reference target. A shows the wavelength plot from the 
uncalibrated data cube for three x-y points corresponding to the red, green, and blue parts of the reference 
target. B shows the calibrated reflectance spectrum for each colour of the reference target measured using the 
Thorlabs CCD spectrometer. The similarity between these plots enabled the selection of known wavelength 
calibration points. These points are highlighted by the vertical dashed lines in each plot. 
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4.8.3. Spectral Calibration Testing 
To test the abilities of this in-situ calibration and to demonstrate its independence from the chosen 

illumination source a sample of lapis lazuli (a deep blue coloured semi-precious stone) was imaged 

with the Hyperspectral Smartphone under three different lighting conditions, and compared to a 

laboratory measurement undertaken with the Thorlabs CCD spectrometer, to determine how much 

the spectral response of the illumination source influenced the calibrated output of the sample. Lapis 

lazuli was chosen as its distinct blue colouring provides a clear spectral response that can be easily 

identified, making variations in this response easier to distinguish. Figure 4.21. shows the results of 

these measurements.  

 

Figure 4.21 Spectral calibration testing using lapis lazuli. A is natural sunlight, B incandescent light, and C LED 
light. The graph on the left displays the spectral response of the particular light source, and the graph on the 
right shows the measured spectral response of the lapis lazuli in comparison to the laboratory measured 
spectrum (overlaid in blue) for each example. D shows the lapis lazuli sample. 
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It is clear in this figure that the Hyperspectral Smartphone is capable of light source independent 

spectral calibrations. All three measured spectra demonstrate a peak in the blue at 485 nm which then 

tails off towards the red before indicating an increase towards the near infrared. The measurement 

undertaken with natural illumination shows the closest resemblance to the laboratory measured 

spectrum, however, this is to be expected due to the nature of the light source. Natural lighting 

provides more intense illumination across all wavelengths, without the influence of distinct 

illumination peaks. This makes it considerably easier to remove from a dataset than a narrower 

wavelength source as its influence is more evenly spread across the spectrum. Both the incandescent 

and LED illumination measurements also provide a close resemblance to the laboratory measured 

spectrum, however, the LED example in particular shows the presence of noise which is indicative of 

low signal. This is to be expected as, looking at the illumination spectrum for the LED there are clear 

regions with lower levels of illumination across the spectrum which are more prevalent here than 

within the natural and incandescent examples. Furthermore, the LED spectrum also contains a 

localised peak at 450 nm, however, this presents minimally in the lapis lazuli spectrum with only a 

slight increase which remains within the range of variation caused by noise within the dataset, 

indicating the resilience of this calibration method. This demonstrates that the Hyperspectral 

Smartphone is capable of working effectively in a range of different illumination settings, allowing for 

accurate spectral calibration to be achieved in both indoor and outdoor settings. Furthermore, this 

evidences the instruments utility as a whole, showing it to be a fully portable, hand-held low-cost 

hyperspectral instrument capable of accurate and robust hyperspectral analysis. 

4.9. Environmental Monitoring Applications 
The improvements discussed above mean that the Hyperspectral Smartphone is now capable of both 

qualitative and quantitative hyperspectral measurements, increasing its potential application options 

to a considerable range of subject areas. As such, the instrumentation is now being incorporated into 

a range of real-world environmental monitoring measurement applications. One such application is 

the non-invasive monitoring of the health of peatlands using plant species spectral response as a proxy 

for below ground conditions. Peatland habitats are of significant importance due to their carbon 

storage and sequestration potential, making them key factors in a number of climate warming 

mitigation plans [34]–[36], therefore, the continued monitoring and preservation of these habitats is 

of considerable importance. Hyperspectral imaging techniques can be utilised for this purpose, 

providing a non-invasive means of estimating below ground conditions through the spectral responses 

of above ground vegetation communities [37]–[39]. This particular application is discussed in greater 

detail in Chapter 6, however, it remains a relevant addition at this stage due to the incorporation of 

the Hyperspectral Smartphone in the data collection process. 

The hand-held Hyperspectral Smartphone was utilised in this measurement application providing 

valuable datasets for a range of plant samples under varying degrees of water stress. Figure 4.22. 

shows a plant sample ready for data capture utilising the in-scene reference card. With the 

Hyperspectral Smartphone the spectral response for a range of plant samples could be easily 

ascertained and accurate differentiations could be made between samples affected by drought stress 

and those kept at saturation through variations in their spectral response. An example of this is shown 

in Figure 4.23. Further details of this testing are discussed in Chapter 6, however, the datasets obtained 

with the Hyperspectral Smartphone show it to be a robust and promising hyperspectral measurement 

tool. 
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Figure 4.22 A sample of Sphagnum moss ready for image capture using the hand-held Hyperspectral Smartphone 
and the in-scene reference card. Illumination is provided by two 20 W LED lamps. 

Figure 4.23 Example dataset obtained of three Sphagnum groups under varying degrees of water stress. Control 
and Rainfall represent healthy plant conditions; Drought represents unfavourable conditions. The Hyperspectral 
Smartphone can clearly differentiate between these different groups, highlighting significant areas of absorption 
and reflectance. 
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4.10. Chapter Summary 
This chapter has documented the development of the Hyperspectral Smartphone from initial 

prototype testing to a fully portable, hand-held low-cost hyperspectral imaging instrument that is 

capable of deployment in a wide range of application areas and environmental conditions. This is the 

first smartphone-based hyperspectral imaging instrument of its kind and, as such, it represents a 

significant addition to the field of hyperspectral imaging analysis and a step towards the 

democratisation of hyperspectral imaging techniques. Its abilities have been tested in a wide range of 

imaging scenarios and set-up configurations, demonstrating it to be a versatile instrument capable of 

robust and accurate hyperspectral data collection. Device metrology and a thorough comparison 

against the laboratory-based hyperspectral imager and the existing literature have been provided. The 

results obtained with the Hyperspectral Smartphone demonstrate the significant potential within the 

field of smartphone-based hyperspectral imaging, providing a solid foundation for future development 

and improvements in this area of research. The Hyperspectral Smartphone has demonstrated that high 

performance hyperspectral imaging instrumentation capable of accurate and robust spatial and 

spectral data capture, can be developed without the need for expensive components. The following 

chapter will use the skills and knowledge gained here to further improve on the data quality outputs 

possible with low-cost hyperspectral imaging technologies with the aim of providing further accurate 

low-cost alternatives to currently available systems capable of competing with currently available 

commercial instrumentation. 
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Chapter 5 

Development of a Low-Cost High-
Resolution Hyperspectral Imaging 
Instrument and Its Application Within 
Environmental Monitoring Scenarios 
 

This chapter is associated with the work presented in Stuart et al., [1]. It introduces a semi-portable 

low-cost hyperspectral imaging instrument that is capable of high spatial and spectral resolution 

hyperspectral image capture allowing for the detection of mm-scale targets. This builds on the 

instrumentation from chapters 3 and 4, combining the skills learnt from their design to produce an 

instrument that is both semi-portable and capable of high quality intricate data capture. Instrument 

design and testing are discussed before the abilities of the instrumentation are demonstrated through 

its application to a mineralogy-based environmental monitoring study, showcasing it as a valuable 

asset to the field of low-cost high-resolution hyperspectral imaging. 

5.1. Introduction 
High spatial and spectral resolution hyperspectral imaging is becoming increasingly important for a 

wide range of industries. It has reached a reasonable level of maturity in agriculture. It promises to be 

a beneficial measurement modality that can provide datasets capable of resolving intricate details and 

variations across a broad range of targets. Continued uptake of the technology will require a reduction 

in cost of hardware along with an increased knowledge of the meaning behind the spectra for any 

particular application. Despite the benefits, high spatial resolution hyperspectral imaging can be 

difficult to achieve due to the associated trade-offs between spatial resolution, spectral resolution, 

and signal to noise ratio [2], [3]. These factors represent key performance parameters within 

instrumentation design, having a significant impact on the overall abilities of the final configuration 

[4]–[6]. The instrumentation design process, therefore, often becomes a balancing act, finding the best 

possible combination of these three factors that allows the highest quality data to be captured from 

the chosen application. Whilst these trade-offs affect hyperspectral imaging applications as a whole, 

many low-cost designs are typically more adversely affected as a result of their use of lower cost 

components. This results in many low-cost hyperspectral instruments foregoing high spatial resolution 

in order to achieve effective spectral outputs, and, in turn, limits high spatial resolution hyperspectral 

imaging to more costly commercial instrumentation [7], [8]. These limitations have further 

repercussions; by placing these high-resolution datasets ‘out-of-reach’ for many less well-resourced 

research teams and organisations, it hinders the continued democratisation of hyperspectral imaging 

techniques and, in so doing, limits a wide range of data collection applications. Low-cost high-

resolution hyperspectral imaging, therefore, represents a critical area for continued development. By 

developing instrumentation that is capable of accurate spectral identification of small-scale spatial 

targets it enables a broad range of more detailed spectral measurements that can provide key 

knowledge and understanding in a variety of application areas. Low-cost hyperspectral imaging will 
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not only open up the technology to a wider range of applications, it will also enable an increase in 

knowledge of the correlations/causations between spectra and the parameters that can be used to 

improve e.g. manufacturing processes by hugely expanding the user base. 

In environmental monitoring applications high spatial resolution hyperspectral imaging can enable the 

capture of intricate features that would often be overlooked by traditional monitoring methods. This 

approach is, therefore, employed across a wide variety of applications, from spatially complex 

environments such as swamps [9], or dense forest canopies [2], to the accurate identification of 

volcanic gases [4], [10]. Many existing applications focus on natural and agricultural vegetation 

monitoring [11]–[15], however, there has also been a recent increase in interest in high-resolution 

analyses for mining operations [16]–[18], geological exploration [19]–[21], mineralogy [22]–[26] and 

petrology [24], [27]–[30]. Hyperspectral imaging provides a rapid, non-destructive, and information 

rich means of data collection [16], [24], [31], enabling both an increase in our understanding of the 

structure and composition of key environmental settings whilst also providing valuable planetary 

analogues for continued solar system exploration [31]–[36]. The application of high spatial resolution 

hyperspectral imagers within these scenarios is, therefore, of considerable benefit. 

To date, whilst high spatial resolution instrumentation has become more common place within these 

applications, there remains a considerable gap in the existing literature surrounding the application of 

low-cost instrumentation within these domains. Whilst many existing low-cost alternatives are capable 

of accurate and detailed data capture, making them valuable additions to the research field, very 

intricate targets, ca. < 1 mm, are often not easily resolved by these approaches. This chapter, therefore, 

introduces a Low-Cost High-Resolution hyperspectral imager as an accessible alternative to existing 

measurement and monitoring approaches. The term “high-resolution” is used to refer to data capture 

quality required to be associated with high definition (HD) video, however, given the final processed 

output datasets are not a video format, HD is not used more broadly within the text. Furthermore, 

“high-resolution” can also be attributed to the spectral resolution of this instrument. With a spectral 

resolution of 0.29 nm, this instrument compares favourably with a broad range of existing 

instrumentation [7]. Additionally, the term “low-cost” is used to refer to instrumentation that is 

significantly cheaper than the typical cost of commercially available systems. Commercial 

hyperspectral imaging instrumentation often cost more than £30,000, with some systems costing up 

to £150,000 [8]. In comparison, this instrument costs ca. £11,000 to develop, with the majority of these 

costs associated with the chosen camera sensor. This single-instrument cost would fall significantly if 

the design were to be supplied commercially due to the inverse relationship between sales volume 

and price. The instrument is semi-portable and capable of mm-scale spatial data acquisitions. It weighs 

approximately 9 kg including a 6 kg optical breadboard and has dimensions (Length x Width x Height) 

of 60 cm x 30 cm x 18 cm. This chapter presents a thorough analysis of, and introduction to, the Low-

Cost High-Resolution hyperspectral imager providing insights that demonstrate its significant 

potential. Instrument design and metrology are presented before its application within a mineralogy 

based study with the aim of demonstrating the instrument’s efficacy and potential within 

environmental monitoring contexts. In so doing, highlighting the significant potential offered by this 

Low-Cost High-Resolution instrument, demonstrating it to be a valuable addition to the research field 

and an additional step towards the wide-spread democratisation of hyperspectral imaging techniques.    
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5.2. Instrumental Design 
The Low-Cost High-Resolution hyperspectral imager (Figure 5.1), is a semi-portable instrument, 

capable of capturing spectral information from mm-scale spatial targets, focus can be adjusted to best 

fit the intended target. This is demonstrated within Figure 5.2 which shows an example of the data 

quality capture possible with this set-up using two different focal lengths. The instrument is composed 

of commercially available components, as listed in Table 5.1. A key benefit of the Low-Cost High-

Resolution instrument is its inherent modularity. This enables key components and their configuration 

to be altered to best fit the intended application without compromising the overall abilities of the 

imager. The components listed in Table 5.1. were selected to best fit the intended applications 

discussed within this chapter, however, many of them can be altered or exchanged, enabling a wider 

range of applications with the additional benefit of potential cost reduction if required. For example, 

the width of the slit can be adjusted without disturbing the existing set-up, enabling the capture of a 

greater range of target scenes under variable illumination conditions. Furthermore, for targets with 

key spectral features outside of the existing range of this instrument, the diffraction grating can be 

replaced with an alternative with relative ease. Finally, the Hamamatsu C13440 camera makes up a 

considerable portion of the development costs for this particular design. It could be replaced with a 

lower cost alternative, for example, a Thorlabs Quantalux CS2100M-USB. Of course, replacing the 

camera with a considerably lower cost alternative, will influence the data capture quality. However, 

the operator can look to determine the acceptable limitations and trade-offs between data quality and 

cost reduction within the specifics of their intended application. The ease of these alterations highlight 

the versatility of this approach to instrument design, demonstrating the significant potential for 

versatile, low-cost, high-resolution hyperspectral instrument development for a range of applications 

and research fields, including potential adaptations for the capture of longer wavelengths within the 

infrared, however, these alterations would likely result in a significant increase in development costs. 

  

Figure 5.1. Schematic diagram of the Low-Cost High-Resolution hyperspectral imager showing how axial and 

marginal rays pass through the optical system. Not to scale. 
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Table 5.1. Components and cost breakdown for the Low-Cost High-Resolution instrument 

Component Part Used Cost 

Objective Lens Canon EF-S 18 – 55 mm £179.99 

Slit Thorlabs VA100C (set at 300 μm). £221.28 

Collimating Lens Thorlabs MVL75M1 

75 mm telephoto c mount 

£379.34 

Transmission Diffraction Grating Edmund Optics #49-580 £95.94 

Focusing Lens Thorlabs MVL50M23 

50 mm telephoto c mount 

£163.05 

Camera Sensor Hamamatsu C13440 £10,000 

Total Cost £11,039.60 

 

In its current form (Figure 5.3.), the instrument is capable of detecting spectral information across the 

visible spectrum (450 – 650 nm), however, given its inherent modularity this wavelength range can be 

altered with relative ease allowing spectral coverage across the visible and near infrared (400 – 1000 

nm). The wavelength range of the instrument is limited by the focusing lens which produced mild 

vignetting. The sensor was, therefore, partially cropped, sacrificing some of the spectral range. This 

could be avoided by replacing the focusing lens or selecting a diffraction grating with a lower groove 

density. However, it should be noted that whilst replacing the diffraction grating would enable a 

greater spectral range to be captured it would result in a trade-off, reducing the spectral resolution. 

The instrument is semi-portable and can be operated using a laptop, removing its reliance on a static 

computer terminal. This enables it to be utilised in a wider range of data collection scenarios, increasing 

its range of potential applications. 

To obtain a hyperspectral image with this instrument, the objective lens is translated across the scene 

using a compact translation stage travelling at a rate of 0.2 mm/sec providing stable and reliable scene 

capture that is unaffected by factors such as operator shake. Using this method, a full hyperspectral 

scene could be captured in 1 minute. The scanning range is determined by the fore optics, and, as such, 

can be altered/replaced to better fit a range of larger and smaller targets e.g. using scanning mirrors 

or microscope coupling respectively. Illumination under laboratory conditions is provided by a 20 W 

Figure 5.2. Example frames of an ammonite fossil taken from a hyperspectral data cube demonstrating the spatial 

resolution possible with this instrument. The first panel shows a standard colour image of the target for 

reference. The additional panels show hyperspectral frames captured at focal lengths of 18 mm and 55 mm 

respectively. Scale shows pixel intensity. 
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LED lamp. The instrument is controlled using HC Image Live (4.3.1.30) software. The software can be 

used to tailor the camera settings to the specifics of the chosen application; factors such as exposure 

time, and image dimensions can be altered by the operator. Similarly, the focal length, and working 

distance can be altered to best fit the chosen scene. The settings utilised for the data capture discussed 

within this chapter are shown in Table 5.2. After data capture was completed the hyperspectral data 

cube was built within MATLAB (Appendix 8.5.) to create a visual representation of the acquired 

dataset. Spectral datasets were also corrected for sensor and illumination biases within this software 

allowing the true spectral response curves of each target scene to be extracted for further examination 

and analysis (Appendix 8.6.). To do this, white and dark references were obtained during the image 

capture phase. Note the white reference utilised was a piece of matt white card illuminated in the 

same manner as the target scene. Figure 5.4. shows the workflow required to capture a hyperspectral 

image, highlighting the sequence of steps as they were implemented. 

Table 5.2 Data capture settings used for the high-resolution hyperspectral imager. 

High-Resolution Instrument Setting 

Exposure Time (ms) 60 

Wavelength Range (nm) 450 – 650 (Adjustable within the boundaries of 
400 – 1000) 

Spectral Resolution (nm) 0.29 

Spatial Resolution (pixels) 1000 x 1000 

Focal Lengths (mm) 18 and 55 

 

Spectral calibration was completed using a Mercury Argon lamp that produced a series of intense 

narrow peaks at known wavelengths. This research utilised the peaks present at 546.074 nm and 

576.960 nm, as shown in Figure 5.5. These two known points were used to calculate the wavelength 

range and the increment present between each value. The full width at half maximum (FWHM) was 

calculated using the 546.074 nm peak and was found to be two pixels. 

The Instantaneous Field of View (IFOV) for each pixel within the spectrometer image was measured to 

be approximately 2 mm x 2 mm (18 mm focal length) and 300 μm x 300 μm (55 mm focal length) for a 

Figure 5.3. The Low-Cost High-Resolution hyperspectral imager within a laboratory setting. 
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95% energy enclosure at a working distance of 300 mm. The Total Field of View (TFOV) is determined 

by the slit height relative to the image circle of the objective lens and the travel distance of the 

translation stage. To calibrate the instrument allowing samples from different sources to be accurately 

compared, a radiometric assessment of the optical power represented by each pixel within the image 

was performed by measuring the power reflected by the white reference target. This was performed 

using a photodiode-based radiometer, described by Zhu et al. [37]. The RG850 long-pass filter was 

replaced by a Thorlabs narrow bandpass filter (#FB550-10), centred on 550 nm with a FWHM of 10 nm. 

The reflected optical power collected by the radiometer was calculated by comparing the photocurrent 

measured by the radiometer with and without the filter in the optical path. Given that the FOV of the 

radiometer represented an area upon the target of approximately 14 mm in diameter at its 1 m 

operating distance, the reflected power per unit area, without the filter in place, was calculated from 

this to be approximately 250.26 μW/m2. The optical power reflected from the illumination reference 

target was, therefore, estimated to be 38.51 nW.  

  

Figure 5.4. Work flow used to capture a hyperspectral image with the Low-Cost High-Resolution instrument 

detailing image acquisition and post processing stages. 

Figure 5.5. Spectrum captured from a Mercury Argon lamp using the Low-Cost High-Resolution instrument 

highlighting the peaks present at 546.074 nm and 576.960 nm that were used to spectrally calibrate the 

instrument. 
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5.3. Optical Characterisation 
To provide a quantifiable measure of the optical abilities of the instrument, the Contrast Transfer 

Function (CTF) was calculated for both focal lengths used within this chapter. The modulation depth 

was measured with a Thorlabs R2L2S1N resolution target. Images were captured of the target and the 

modulation depth for a number of line pair widths was calculated (Figure 5.6). The modulation depth 

was different for horizontally and vertically orientated CTF targets. This is due to the scanning nature 

of the system. The optical resolution was measured from the horizontal CTF targets (as shown in Figure 

5.6) because the vertical CTF targets were influenced by small variations in scan speed, minor 

perturbations in the translation stage, and the finite slit width. A knife-edge measurement provides a 

simple method of determining the point-spread-function of an optical system [38]. The point-spread-

function quantifies the extent to which an optical system can resolve a point source of light. A knife-

edge was, therefore, used to assess the influence of these sources of error on the resolution. The width 

in pixels between 5% and 95% of the measured signal normal to the knife-edge was measured vertically 

(parallel to the slit) and horizontally (normal to the slit). Figure 5.7. shows the horizontal and vertical 

knife-edge measurements for both focal lengths. In this figure it is clear that the vertical knife-edge 

measurements are better than the horizontal measurements, as expected. However, given the 

discrepancy of one pixel for the 18 mm focal length, and two pixels for the 55 mm focal length, this 

difference does not appear to be great enough to significantly influence the quality of output datasets 

acquired with this instrument. 

 

  

Figure 5.6. CTF analysis for both focal lengths. A and B show an image frame of the resolution target captured 

at an 18 mm focal length and a 55 mm focal length respectively, C shows the resulting CTF values for horizontal 

line pairs. 
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5.4. Initial Testing 
To visually demonstrate the spatial and spectral abilities of this instrument a range of targets featuring 

intricate structures were imaged. These targets were chosen as they each contained intricate small-

scale features that are often difficult to resolve using low-cost hyperspectral sensors. By demonstrating 

the instrument’s abilities with these initial targets it helps to highlight the variety of targets that can 

be resolved with this instrument, emphasising the significant potential available in the continued 

democratisation of high-resolution hyperspectral sensing.  Figure 5.8. shows a spatial dataset captured 

using the high-resolution instrument of a section of a printed circuit board (PCB). This image was 

captured in a laboratory setting at a working distance of 30 cm using diffuse illumination from a 20 W 

LED lamp. This figure demonstrates the clarity of images that this instrument is capable of resolving. 

The writing and features present across the PCB are easily discernible within the image, highlighting 

the high spatial resolution possible with this instrument. 

In order to further test the spectral abilities of the high-resolution instrument a red/green Gala apple, 

with impact bruising that was not yet visible with the naked eye was imaged using this set-up. To 

minimise illumination variations across this target, it was placed within the low-cost integrating sphere 

analogue discussed in Chapter 3. However, it should be noted that the integrating sphere analogue is 

Figure 5.8 Spatial dataset captured of a PCB, highlighting the quality of spatial data collection possible with the 
high-resolution instrument. 

Figure 5.7. Knife-edge measurements for each focal length. A shows the results for the 18 mm focal length 

demonstrating a one-pixel discrepancy between orientations. B shows results for the 55 mm focal length 

demonstrating a two-pixel discrepancy between orientations. 
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not an integral component for reliable data capture with this instrument, as will be demonstrated 

within the example applications of this chapter. In this instance, the integrating sphere analogue was 

used in lieu of a diffuser to reduce the impact of illumination bright spots across the chosen target. 

This decision was made based on my experience from previous experiments, discussed within earlier 

chapters, that had shown these features to be prevalent across fruit targets without the inclusion of a 

sufficiently diffuse illumination source. Figure 5.9. shows the instrument set-up for data collection with 

the apple target within the low-cost integrating sphere. Given the significantly improved resolution 

available with this instrument it should be able to detect both the bruised area and the boundaries of 

different pigments within the healthy tissues. Figure 5.10. shows the spectral response observed 

across the visible spectrum for the apple target. It is clear in this figure that the instrument is capable 

of accurately detecting the bruise location, with the greatest visibility showing within the red region of 

the spectrum. This correlates well with expectations and the existing literature, because due to the 

predominantly red colouring of the apple, this region of the spectrum has the greatest contrast 

between the healthy and damaged tissues of the fruit. Conversely, the bruising is not visible within 

blue regions of the spectrum because the apple pigmentation is not particularly reflective in this 

region, resulting in minimal contrast between the healthy and damaged tissues. Additionally, this 

figure also demonstrates the spatial resolution of this instrument. The data cube accurately replicates 

the target object including smaller features, such as the stalk, which are often not clearly resolved by 

lower cost instrumentation. The pigment variations across the fruit are also easily discernible in these 

datasets further emphasising the clarity of data capture capable with this set-up. 

  

Figure 5.9 The high-resolution hyperspectral imager ready to image an apple target placed within the low-cost 
integrating sphere analogue. 

Figure 5.10 Spatial and spectral datasets acquired of an apple target with bruising that remains invisible to the 
naked eye. Note the variations in clarity across different wavelengths. Scale shows pixel intensity. 
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5.5 Example Application 
To demonstrate both the spectral and spatial abilities of the Low-Cost High-Resolution hyperspectral 

imager within an environmental monitoring-based application, I chose to focus within the field of 

mineralogy. Section 5.1. highlighted the importance of resolving highly detailed spectral and spatial 

datasets within this discipline, therefore, the following measurements aim to highlight the efficacy of 

the instrumentation within this important area of research. Furthermore, the existing literature 

highlights the general absence of low-cost hyperspectral imaging applications within this domain, 

therefore, this aims to provide a foundation for further developments in low-cost hyperspectral 

imaging techniques within this field.   

A variety of rock samples exhibiting intricate crystal structures and surface variations were imaged to 

demonstrate the clarity of datasets the instrumentation was capable of capturing. Figure 5.11. shows 

a gneiss sample with characteristic banding. Looking at the hyperspectral frames of this sample, the 

quality of the spatial data resolution is clearly demonstrated. The sample can be clearly identified 

within the hyperspectral data, and exact locations can be determined for further, more detailed 

analysis if required. This is of significant benefit within the field of mineralogy, enabling the precise 

spectral response of specific sample locations to be observed and monitored effectively.  

Similarly, when presented with a more complex target, the instrument was shown to perform well. 

Figure 5.12. demonstrates this using a basalt sample with plagioclase feldspars. The figure highlights 

this sample has a greater surface complexity with irregular surface variations, and bubble structures 

present alongside the feldspar features. This provides a much greater challenge for effective 

hyperspectral image collection, however, this figure demonstrates that the Low-Cost High-Resolution 

instrument is capable of accurately detecting these irregular features, clearly identifying individual 

mm-scale targets. 

Figure 5.11. Hyperspectral image frames of a gneiss sample demonstrating the spatial resolution of this 

instrument. Characteristic banding and surface features are clearly visible within the hyperspectral data and can 

be easily related to their specific location on the original target. The image on the left is a standard colour image 

of the sample and the hyperspectral images are on the right hand side of the figure. The hyperspectral images 

are just one slice through the data cube that contains 689 discrete wavelength values. Scale shows pixel intensity 

for hyperspectral frames. 
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It should be noted that the hyperspectral image frames shown within the figures of this chapter only 

represent single slices of a data cube spanning 689 discrete wavelength values. This means that for 

each imaged scene the instrument builds a 689 Mega Pixel (MP) image (1000 x 1000 x 689). Each image 

frame, therefore, represents a small piece of the total data available. This is demonstrated in Figure 

5.13. which shows the spectral graphs that demonstrate the wealth of underlying data. Subtle changes 

in spectral response can be accurately attributed to specific locations by effectively visualizing these 

small-scale features within the hyperspectral images. Figure 5.13 shows a sample of glacial debris with 

clear variations across its surface. These variations can be clearly identified within the graphed spectral 

responses. Furthermore, the spectral response recorded across this target correlates well with 

expectation; areas of the rock surface display a generally brighter response across the visible spectrum, 

whilst areas with orange pigmentation display more limited reflectance across shorter wavelengths.  

  

Figure 5.12. Two hyperspectral image frames of a basalt sample compared to standard colour images. Note the 

clarity of the surface features within the hyperspectral frames allowing clear differentiation between feldspar 

and surface features. The hyperspectral images are just one slice through the data cube that contains 689 

discrete wavelength values. Scale shows pixel intensity for hyperspectral frames. 

Figure 5.13. Spectral data for a piece of supraglacial debris with orange pigmentation. A shows a standard colour 

image of the rock sample highlighting the approximate locations that correspond to the spectral curves shown in 

B.  
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This is further demonstrated in Figure 5.14., which shows the spectral and spatial information captured 

for a sample of lapis lazuli. The hyperspectral data clearly shows a distinct peak in reflectance across 

blue wavelengths followed by a steady decline in reflectance towards red wavelengths, with areas of 

lighter, near-white, surface pigment becoming more obvious, across these generally darker 

wavelengths. This response is to be expected given the distinct visual colouring of the sample, and 

correlates well with the spectral response graph (Figure 5.15.), which, in turn, matches with the known 

spectral response of this target [39].  

 

The data discussed above clearly demonstrates the high spatial and spectral resolution achievable with 

the Low-Cost High-Resolution hyperspectral imager. The accurate identification of specific areas of 

spectral change is of significant benefit to a broad range of environmental monitoring applications and 

beyond. By clearly highlighting areas of specific spectral change it can enable targeted analysis and 

further investigation. This, in turn, enables the thorough analysis of intended targets with minimal, 

disruption and/or invasive analysis. Within the field of mineralogy these benefits can be particularly 

pertinent, increasing the accuracy of target studies whilst also minimizing the need for invasive 

investigation. Furthermore, these benefits remain in high demand across a broad range of applications, 

particularly within a low-cost, more accessible alternative. There is, therefore, significant potential to 

expand the use of low-cost high-resolution hyperspectral instrumentation across a variety of fields and 

disciplines. The datasets discussed within this chapter have shown the Low-Cost High-Resolution 

instrument to be capable of highly detailed data capture and analysis, demonstrating it to be a valuable 

addition to the research field.  

Figure 5.14. Spectral and spatial information obtained for a sample of lapis lazuli. Note the expected increase in 

reflectance across blue wavelengths followed by a steady reduction in reflectance towards longer wavelengths. 

The hyperspectral images represent single slices through the data cube that contains 689 discrete wavelength 

values. The reconstructed RGB image is created using red-green-blue equivalent images taken from the 

hyperspectral data cube. Scale shows pixel intensity for grey scale image frames. 
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The ability to capture high-resolution hyperspectral datasets using low-cost components outside of a 

laboratory setting is highly sought-after, enabling non-invasive in situ analyses, and removing the need 

for sample collection and preparation. This would be of significant benefit to a broad range of 

applications, particularly where vulnerable and/or fragile environmental settings are the focus of the 

intended study. The Low-Cost High-Resolution hyperspectral imager provides an opportunity to 

continue to improve the availability, and accessibility of hyperspectral imaging techniques, adding to 

a range of low-cost alternative devices suitable for a wide variety of situations and application areas. 

By demonstrating the abilities of the Low-Cost High-Resolution hyperspectral imager we have provided 

a further step towards this realisation, demonstrating the significant potential within the continued 

development of low-cost hyperspectral imaging alternatives.   

5.6. Chapter Summary 
This chapter has introduced a low-cost, high-resolution hyperspectral instrument that is capable of 

resolving mm-scale targets, providing a level of detail not typically available in low-cost hyperspectral 

imaging technologies. The instrument is semi-portable and has been demonstrated within a range of 

settings. It has been shown to be capable of high-resolution hyperspectral imaging using a portable 

laptop computer to enable data collection at different measurement locations, removing its reliance 

on a static computer terminal. The instrument can produce a 689 MP image of a chosen scene, with a 

50% modulation of 3 lp/mm and 7.1 lp/mm for focal lengths of 18 mm and 55 mm respectively. The 

efficacy of this imager was demonstrated within the field of mineralogy, clearly emphasising its 

spectral and spatial abilities, as well as demonstrating its proficiency within, and value to, the field of 

low-cost hyperspectral imaging in environmental monitoring. The instrument was shown to be capable 

of resolving a range of mm-scale targets across a variety of samples with different surface features and 

complexities. The accurate identification of these features within the hyperspectral data provides 

substantial benefits, significantly increasing the quality and accuracy of the acquired hyperspectral 

datasets without the expected costs. Its efficacy across a broad range of hyperspectral imaging 

Figure 5.15. Spectral data obtained from a sample of lapis lazuli. Deviations from the laboratory measured 

spectrum are associated with regions of low signal within the illumination spectrum. Note the correlation 

between the spectral response curve and the spectral-spatial data shown in Figure 5.14. 
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applications has been validated, emphasising its potential as a valuable addition to the field of low-

cost hyperspectral imaging.  
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Chapter 6 

Using Peatland Plant Spectral Response as 
a Proxy for Peat Health, Analysis Using 
Low-Cost Hyperspectral Imaging 
Techniques 
 

This chapter is associated with the work presented in Stuart et al., [1]. It demonstrates the successful 

application of the Hyperspectral Smartphone and the Low-Cost High-Resolution instrument within a 

real-world systematic study where they are utilised to monitor the influence of drought stress on 

Sphagnum moss samples. Both instruments are shown to perform well, detecting key absorption and 

reflectance features and variations in spectral response associated with changing water content 

conditions up to three weeks before the onset of distinct visual changes. This represents a novel 

application of low-cost instrumentation, demonstrating that expensive commercial instrumentation 

are not necessarily required for accurate and robust environmental monitoring. 

6.1. Introduction 
To expand on the promising results demonstrated within their individual chapters the Hyperspectral 

Smartphone and the Low-Cost High-Resolution instrument were applied within a real world systematic 

study. This study focuses on a non-invasive method of determining the health of peatland below 

ground conditions, utilising these low-cost devices to monitor variations in spectral response in 

peatland vegetation communities, providing rapid, high quality hyperspectral datasets without the 

typically associated costs. This is an important area of research that will benefit significantly from the 

introduction of more low-cost, non-invasive monitoring techniques, therefore, this study aimed to 

provide a foundation for further developments and innovation within this field. 

The continued monitoring and preservation of peatland environments is of significant importance to 

people, wildlife, and the planet [2]–[4]. Peatlands represent important terrestrial carbon stores [5]–

[8], and provide habitats for a variety of rare plant and animal species [5], [7], [9], as well as being 

natural providers of water regulation and valuable records of our past [2], [3]. They play a key role in 

the global carbon cycle, storing ca. 30% of soil organic carbon, despite only representing ca. 3% of 

global land surface coverage [8]–[11], highlighting their importance for carbon storage and 

sequestration in a warming world. However, despite these key benefits, many peatland environments 

are subject to severe levels of erosion and degradation [10], [12], [13], resulting in a substantial 

reduction in the quality of the ecosystem services they are capable of providing. This, in turn, can result 

in these vast carbon stores reverting to carbon sources, releasing carbon back to the atmosphere, and 

can ultimately lead to the loss of peatland areas [8], [12], [14]–[16]. Monitoring the overall health of 

these environments, and the natural processes taking place within them, is, therefore, of significant 

importance, allowing us to gain a better understanding of these environments and the factors 

influencing the progression of degradation and erosion in these locations.  
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Spectral information acquired from above ground vegetation communities has been shown to be an 

effective means of estimating a variety of factors relating to the health of underlying peat deposits, 

providing valuable insights, from moisture content [11], [15], [17]–[19], to below ground carbon stock 

[14], [20], and nitrogen content estimations [21]. These approaches have been shown to provide a 

non-invasive alternative to conventional fieldwork techniques [15], allowing for larger study locations 

to be analysed over considerably shorter time scales [19]. Sphagnum moss is a key peatland genus that 

has been used extensively in this manner due to its specific characteristics that can affect its spectral 

response and, as such, can be used to estimate below ground peat conditions without the need for 

coring or other invasive peat sampling methods [17], [22]–[25]. Generally, the presence of Sphagnum 

mosses across a peatland area are an indication of good below ground conditions [17], [26]. These 

mosses thrive in the waterlogged environments of healthy peatland areas but, have been shown to 

decrease photosynthesis activity and perform more poorly in areas where the below ground water 

content is reduced [27]–[32]. These changes to photosynthesis activity result in changes in the spectral 

response of these mosses, with bleaching occurring as they start to dry out [30], [33], [34]. By 

monitoring these variations, it allows for estimates relating to below ground water table conditions 

and general peat health to be inferred, in turn, providing a means of long-term, non-destructive 

monitoring. In this chapter, the high-resolution hyperspectral imager, and the Hyperspectral 

Smartphone are applied to the field of peatland monitoring with the aim of highlighting the potential 

data collection opportunities available in this area of research utilising low-cost hyperspectral imaging 

techniques. Sphagnum samples under varying degrees of water stress are analysed under laboratory 

conditions with the aim of developing a spectral library that can be used to inform non-destructive, in-

situ analyses of peatland environments, providing an early warning monitoring system for the onset of 

poorer conditions in these indispensable natural environments. 

6.2. Sample Preparation and Simulated Environmental Conditions 
To prevent undue disturbance to peatland areas the Sphagnum plants utilised in this study were 

obtained as samples, cultivated off-site within a micropropogation facility, rather than removing 

cuttings directly from the moorland. The moorlands at the focus of this research project, located within 

the Peak District National Park, have been subject to high levels of erosion and degradation, generally 

characterised by large expanses of bare peat and networks of erosion gullies [35]. These features have 

been exacerbated by a variety of factors including drainage, controlled burning, livestock grazing, and 

pollution from nearby urban areas, resulting in these moorlands being amongst the most degraded 

within the United Kingdom [36], [37]. However, more recently, restoration projects have been 

undertaken in this area with the aim of halting the losses associated with peatland erosion and 

returning the blanket peat to its natural, non-eroded state [36]–[39]. Many of these restoration 

projects involve the reintroduction of cultivated Sphagnum plants to areas of bare peat. These 

cultivated plants and those obtained for this research project have been obtained from the same 

source and are representative of the Sphagnum plants found across the moorland. A total of 30 

Sphagnum samples of ca. 6 cm diameter were used. The Sphagnum species distribution within the 

samples is shown in Table 6.1.  
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Table 6.1. Sphagnum species distribution per sample. 

Sphagnum Species Approximate Percentage of Sample 

Magellanicum 33 

Palustre 33 

Subnitens 33 

 

The Sphagnum samples were split into three separate groups; a control group that was kept at 

saturation for the duration of the measurement period, a drought group that received no water inputs, 

and a rainfall group that received simulated rainfall events based on rainfall datasets obtained from a 

monitoring station situated on Kinder Scout, a moorland plateau within the Peak District National Park. 

Table 6.2. shows the individual groups and their inputs for the duration of the measurement period. 

Table 6.2. Water inputs for each sample group. 

Group Observing Water Inputs 

Control Maintained saturation Steady-state maintenance 
determined by weight 

Rainfall Average rainfall experienced 
by in-situ plants 

7 mm simulated rainfall every 
3 - 4 days 

Drought Simulated drought None 

 

Each sample was housed within an individual container (Figure 6.1.). For the duration of the 

experiment the samples were kept within a controlled environment chamber (Argus Conviron 

controlled reach-in chamber) to imitate conditions experienced across the Kinder Scout plateau. The 

environmental data used here was obtained from the Kinder Scout Community Science Monitoring 

Station maintained by the Moors for the Future Partnership. Within these datasets records captured 

from April to September across a 4-year monitoring period, (2016 – 2019) for temperature and relative 

humidity; (2014 – 2017) for rainfall datasets were utilised. The months of April to September were 

selected to provide environmental conditions representative of the months where Sphagnum plants 

are most active, removing datasets from winter months where plant growth and productivity is 

significantly reduced. Within the controlled environment chamber the samples were kept within a 24-

hour day cycle with 12 hours of daylight and 12 hours of darkness. During hours of daylight the 

chamber cycled through a gradual increase in light intensity towards midday, reaching a maximum of 

400 umol m-2 s-1, before steadily decreasing towards dusk. Temperature conditions followed a 24-hour 

cycle based on the average hourly temperature experienced at the environmental monitoring site 

(Table 6.3), representing a gradual increase in temperature towards midday, followed by a steady 

decrease towards dusk. The average relative humidity for the Kinder Scout location was 90.8%. This 

was replicated within the controlled environment chamber. Rainfall datasets were used to establish 

the typical rainfall volume and frequency experienced by in-situ Sphagnum plants. The average 

monthly rainfall was 104 mm occurring over 15 rain days. This equates to approximately 7 mm rainfall 

every 3 – 4 days. This approximation was used to simulate rainfall events for Sphagnum plants within 

the rainfall group for the duration of the study period. Figure 6.1. shows the samples within the 

controlled environment chamber. 
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Table 6.3. Temperature dataset used within the controlled environment chamber. 

Time Temperature (°C) 

00:00 8.3 

01:00 8.1 

02:00 7.9 

03:00 7.8 

04:00 7.7 

05:00 7.8 

06:00 8.4 

07:00 9.4 

08:00 10.6 

09:00 11.8 

10:00 12.9 

11:00 13.7 

12:00 14.3 

13:00 14.6 

14:00 14.6 

15:00 14.4 

16:00 13.7 

17:00 12.9 

18:00 11.8 

19:00 10.7 

20:00 9.7 

21:00 9.1 

22:00 8.8 

23:00 8.5 

 

6.3. Data Collection 
For the duration of the study, measurements were taken every three days using both the Hyperspectral 

Smartphone from Chapter 4, and the low-cost high-resolution hyperspectral imager from Chapter 5. 

Figure 6.1 Sphagnum samples within the controlled environment chamber. Each group was kept within a 
separate tray with samples rotated regularly during the measurement period. 
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Smartphone datasets were captured at a nadir angle, where the samples were placed directly below 

the observing instrument. The high-resolution instrument utilised a flat mirror to achieve an 

approximate nadir angle without tilting the instrument. Samples were also weighed, and 

photographed with a standard RGB camera before being returned to the controlled environment 

chamber. Care was taken to ensure that each sample spent a minimal amount of time outside of the 

chamber, with samples being returned to the chamber promptly after their measurements had been 

completed. Additionally, to reduce any potential influences of edge effects, sample positions within 

the chamber were rotated randomly after each measurement phase. 

6.3.1. Hyperspectral Smartphone 
Hyperspectral datasets were captured with the Hyperspectral Smartphone utilising the hand-held 

method discussed in Chapter 4. Each Sphagnum sample was placed within the in-scene reference card 

and illuminated using two 20 W LED lamps situated at either side of the test card to minimise the 

influence of shading/bright spots across the spectral dataset. The working distance utilised for these 

measurements was a short working distance of ca. 1 m. Calibration was completed using the RGB panel 

of the reference card, allowing for datasets to be easily and accurately compared without the need for 

additional data collection. These datasets were processed in MATLAB then averaged to provide a single 

dataset that was representative of each group (Control, Rainfall, and Drought) for each measurement 

day, enabling datasets to be compared to accurately monitor any changes in spectral response 

between these groups across the measurement period. 

6.3.2. High-Resolution Instrument 
To capture hyperspectral datasets with the high-resolution instrument, each sample was positioned, 

in turn, below the external flat mirror to enable the easy collection of nadir datasets with this 

instrument, resulting in a working distance of ca. 30 cm. A wavelength range of 565 nm – 740 nm was 

used for these measurements. This particular range was selected because it enabled the capture of 

datasets across the visible-infrared boundary whilst also providing additional data across the green-

red region of the visible spectrum, including the region where the Hyperspectral Smartphone has been 

shown to have reduced sensitivity. By focusing within these wavelengths it enabled the capture of a 

broad spectrum of data using two low-cost portable systems, which, in turn, provides a greater spectral 

range for analysis. Figure 6.2. shows the set-up used for this period of data collection. Illumination was 

provided by a 30 watt Halogen lamp situated above the sample to minimise shading across the scene. 

This thermal illumination system was used because its spectral response better fitted the wavelength 

range of this instrument, reducing the potential for noise associated with low signal across longer 

wavelengths, compared to LED illumination. The compact translation stage was utilised to traverse the 

scene. Once captured, these datasets were processed within the MATLAB code discussed in Chapter 

5, to remove sensor and illumination biases, and spectrally calibrate the dataset. The spectral datasets 

obtained for each sample within a group were then averaged to provide a single comparable, 

representative response for each group for each measurement day.  
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After all datasets had been collected the resulting spectral response graphs from both the 

Hyperspectral Smartphone and the low-cost high-resolution hyperspectral imager were combined to 

produce a single, continuous spectrum for each measurement day. This code can be found in Appendix 

8.7. 

6.4. Sphagnum Sample Change Over Time 

6.4.1. Spatial Target Identification 
Figure 6.3. shows a spatial and spectral dataset acquired of a Sphagnum sample using the high-

resolution instrument. It is clear from this dataset the quality of spatial resolution achievable with this 

set-up from the detail observed across the Sphagnum sample. The individual capitula of the Sphagnum 

plant are clearly recognisable within the images allowing for the spectral response of specific regions 

of the sample to be determined with significant accuracy. Typically, low-cost hyperspectral imaging 

instruments are unable to accurately resolve these more intricate features within a more complex 

target, such as the Sphagnum sample. This is demonstrated in Figure 6.4. where the spatial datasets 

of the high-resolution instrument and the Hyperspectral Smartphone are directly compared. Whilst 

these instruments have significantly different price points, making them infeasible for a true direct 

comparison they illustrate the significant difference in spatial clarity of the collected data between two 

low-cost hyperspectral imaging instruments. This highlights the different applications each instrument 

is most suited for. For example, the ultra-low-cost Hyperspectral Smartphone provides a rapid and 

easy detection method enabling datasets to be acquired over numerous locations without the need 

for extensive operator training. Conversely, the low-cost high-resolution hyperspectral imager does 

require a basic level of expertise and generally represents a more complex instrument. The high-

Figure 6.2 High-resolution hyperspectral imager set-up for Sphagnum sample analysis. 
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resolution instrument is, therefore, better suited to targeted data collection activities allowing more 

intricate datasets to be acquired for areas that need further investigation.  

6.4.2. Change Over Time Observations  
Hyperspectral imaging datasets were acquired for each Sphagnum plant within each group to 

determine how the individual samples reacted to their associated water conditions. The results 

obtained by each instrument were then averaged to provide a single representative response for each 

set of conditions for each measurement day to enable comparisons to be drawn between different 

groups and/or different days. Figure 6.5. shows the averaged spectral change over time observed for 

each measurement group. In this figure the datasets captured by both instruments have been 

combined to produce an extended dataset that covers the range of 400 nm to 740 nm, providing a 

comprehensive dataset in which to analyse any spectral changes occurring within the sample groups. 

The spectral change over time for each group is clearly visible within this data. All groups can be seen 

to undergo a period of initial change, however, within the Control and Rainfall groups these changes 

quickly reduce. Conversely, the Drought group can be seen to continuously increase in reflectance, 

resulting in a brighter, and flatter spectral response. This is indicative of the bleaching process 

observed in Sphagnum species undergoing drought and water stress conditions. In the data the 

brightness of the Drought group’s response can be seen to increase gradually for the duration of the 

measurement period, however, there are also more subtle changes occurring within this time frame. 

Figure 6.3 Spatial and spectral datasets acquired of a healthy Sphagnum sample using the high-resolution 
hyperspectral imager. Note the distinct reduction in reflectance in the deep red related to chlorophyll 
absorption. Scale shows pixel intensity. 

Figure 6.4 Spatial dataset comparison between the Hyperspectral Smartphone and the high-resolution 
hyperspectral imager. Hyperspectral Smartphone dataset (left) taken from 530 nm, Low-Cost High-Resolution 
dataset taken from 565 nm. Scale shows pixel intensity. 
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Focusing on the Control and Rainfall groups, a number of reflectance peaks and absorption features 

can be identified across their spectral response indicating the presence of a number of pigments within 

their tissues. The distinct peak present at ca. 550 nm is a key reflectance feature of Sphagnum species 

[28], [40], [41], indicative of healthy conditions. Furthermore, absorption features can also be 

identified within these spectral curves with a shoulder at ca. 630 nm indicating chlorophyll b 

absorption and a distinct loss of reflectance at ca. 680 nm highlighting the presence of chlorophyll a 

[28], [40]. These features remain evident within the Control and Rainfall groups for the duration of the 

measurements, indicating continued healthy conditions in these groups. However, whilst these 

features are initially clear within the Drought group, they quickly become less easily discernible as the 

plants reduce in water content. Looking at Figure 6.5.  subtle differences in the Drought group’s 

spectral response can be observed as early as week two of measurements, with definite differences 

observed from week three onwards, highlighting rapid changes in spectral response. When these 

changes are compared with the visual response of the groups, shown in Figure 6.6. the benefits of 

hyperspectral imaging techniques become clear.  

 

Figure 6.5 Sphagnum spectral change over time observed within each group. Datasets from the Hyperspectral 
Smartphone and the high-resolution hyperspectral imager are combined to provide reliable spectral information 
for the full range of measurements. Note the shift in spectral response of the Drought group over the 
measurement period. 
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Whilst clear differences in the spectral response are observable from week three, visual changes in the 

Drought group only begin to show definitive differences from the Control and Rainfall groups at week 

five, after which point the Drought plants undergo a sudden increase in bleaching. This emphasises the 

early warning provided by hyperspectral imaging techniques, providing valuable time for the 

implementation of mitigation strategies. Furthermore, given the sudden increase in bleaching visually 

observed in the Drought plants it can be inferred that at the point where the Sphagnum plants show 

these definitive visual signs of water stress the damage may already have taken place. Relying on visual 

indicators alone, therefore, increases the chances of the plants being lost. This is a serious issue for 

peatland environments as areas of exposed peat are significantly more likely to be adversely affected 

by erosion and degradation processes. However, with the early indications observed within the 

spectral response graphs, there is a much greater opportunity to reduce the impact of poorer below 

ground conditions, providing a greater opportunity to revive the affected plants and maintain 

vegetation coverage. 

The differences between the spectral responses of these groups is further illustrated in Figure 6.7. 

which shows the averaged spectral change observed at 680 nm for each group. This particular 

wavelength was selected due to its presence within the region of chlorophyll absorption, providing a 

more detailed look at spectral change within this region. In this figure it is clear that all groups 

underwent a period of initial change. The Control and Rainfall groups can be seen to undergo a period 

of increasing reflectance in this region before levelling off. From this information it can be inferred that 

these initial changes were a result of the samples acclimatising to their new environment. The 

conditions within the controlled environment chamber were colder than those experienced previously 

by the Sphagnum samples. The samples, as mentioned above, were obtained from a micropropogation 

green house with inherently warmer temperature conditions than those experienced by in-situ plants 

on moorland plateaus. Whilst the samples were given a period of two weeks to acclimatise within the 

controlled environment prior to the onset of measurements, it is clear that further changes were 

observed within the first few weeks of measurements. Sphagnum plants situated in colder conditions 

typically appear more red in colour. This was observed visually within the Sphagnum samples as shown 

in Figure 6.8. These initial changes within each Sphagnum group would, therefore, be expected, with 

Figure 6.6 Visual change over time for each group. Note the later onset of visual change in the Drought group 
compared to spectral changes in Figure 6.5. 
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initial increases at 680 nm associated with the increase in red pigmentation across the Sphagnum 

samples 

Figure 6.7 Spectral change observed at 680 nm for each group. Note the continued increase observed in the 
Drought group for the duration of the study. 

Figure 6.8 Visual change to redder pigments observed in all groups as a result of a change to colder conditions 
shown alongside spatial data obtained from the red region of the hyperspectral dataset, demonstrating the clear 
change observed in the spectral data. Example taken from a Control group sample. 
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Conversely, the Drought group can be seen to show a steady increase in reflectance at this wavelength 

for the duration of the study period. This highlights the reduction in chlorophyll pigmentation within 

these samples and further highlights the response of these samples to steadily increasing drought 

conditions. This correlates well with the recorded weights of the samples within each group which 

demonstrates relatively steady weights for Control and Rainfall groups and a consistent and sustained 

decline in weight for the Drought group (Figure 6.9.), highlighting the consistent reduction in water 

content.  

The spectral variations between groups are further emphasised in Figure 6.10. which demonstrates 

the ratio between two wavelengths for each group. The chosen wavelengths were 630 nm and 550 

nm. These particular wavelengths were selected because, within healthy plants, the ratio of 630:550 

should produce a relatively low value. This is because 550 nm represents a distinct peak in reflectance, 

whereas 630 nm produces a comparatively low response. Increases in the spectral response of the 

Drought group should, therefore result in an increasingly higher value as the spectral response at 630 

nm increases over time. This trend is clear within the figure demonstrating the increase in reflectance 

within the Drought group compared to the lower values of Control and Rainfall plants. Whilst the 

dataset is noisy in places, this is indicative of the influence of plant shape variations on the spectral 

response. During the measurement period the Sphagnum samples will have continued to grow, 

causing the spatial shape of the plants to change in a way that will result in minor variations in spectral 

response. Despite these variations, the distinct trend in reflectance remains clear within the dataset. 

 

 

Figure 6.9 Weight variations across the measurement period highlighting the steady decline in weight within the 
Drought group suggesting a continuous reduction in water content. Error bars show range. 
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6.4.3. Individual Variations, Key Examples 
Whilst Section 6.4.2. focused on the responses observed across the groups as a whole, this section will 

focus on a key example obtained from each of the three groups to provide a greater insight into how 

individual plants responded to their associated environmental conditions. These specific samples have 

been selected because they each demonstrated interesting spectral changes across the measurement 

period, providing valuable datasets for further analysis. The ratio of spectral change over time between 

630 nm and 550 nm for samples C9, R5, and D3 are shown in Figure 6.11. This figure is similar to Figure 

6.10., however, instead of the averaged group data, Figure 6.11. provides the individual responses 

observed from selected examples. This figure, therefore, demonstrates that the main trends of the 

groups more generally can be replicated by individual plants, adding further support to the findings of 

this research. The control group samples, including C9 (shown in Figure 6.12) were kept saturated for 

the duration of the measurement period. Due to high levels of water content within this group, the 

spectral response of this sample would be expected to remain reasonably unchanged for the 

measurement duration, with the key reflectance and absorption features remaining easily identifiable 

within the data. This is clearly shown within Figure 6.11., with the greatest observable change occurring 

within the initial weeks of data collection. These changes can be inferred to be a result of the continued 

acclimatisation of these plants during the measurement period as discussed in Section 6.4.2. above. 

The maintained health of this sample for the duration of the measurement period suggests that its 

environmental conditions were favourable. This is to be expected as Sphagnum species are known to 

be capable of existing within semi-aquatic conditions which can be found in a number of locations 

across blanket bogs. 

  

Figure 6.10 Change in ratio values for two key wavelengths (630 nm: 550 nm) for each group further highlighting 
the distinct changes within the Drought group. Trend line based on the Drought dataset. 
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Similarly, sample R5 of the Rainfall group, shown in Figure 6.13., appears to have undergone similar 

changes to C9. The Rainfall group received simulated rainfall events similar to those experienced by in-

situ moorland plants for the duration of the study. This resulted in these plants receiving water inputs 

but not maintaining saturation. It is clear within Figure 6.11.  that this sample is also representative of 

a healthy plant, with reflectance and absorption features remaining evident for the duration of the 

measurement period, as highlighted through the low ratio between 630 nm and 550 nm. Whilst there 

are variations in the onset of an increase of red pigmentation between these Control and Rainfall 

samples, which is also evident within the ratio data of Figure 6.11. both responses remain indicative of 

healthy conditions demonstrating the importance of water content within Sphagnum plant 

communities. Furthermore, the results obtained for the rainfall group allow us to infer that the 

environmental conditions experienced by in-situ plants within the Peak District are typically conducive 

Figure 6.11 Change in ratio values for two key wavelengths (630 nm : 550 nm) for individual samples obtained 
from each of the three groups. Demonstrating that despite the additional noise within this dataset, the Drought 
sample still shows a substantial increase in reflectance compared to Control and Rainfall samples, demonstrating 
that key findings can be replicated between individual plants. Trend line based on the Drought dataset. 

Figure 6.12 Visual change observed for sample C9 for each week of measurements highlighting the minimal 
changes occurring through the measurement period. 
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to healthy Sphagnum growth. This provides a valuable insight into moorland conditions, suggesting 

that the continued reintroduction of Sphagnum plants to eroded peatlands within this area will be 

largely successful. 

 

When the above samples are compared to sample D3 of the Drought group, clear differences can be 

observed. The Drought group received no water inputs for the measurement period, therefore, these 

samples experienced a steady reduction in water content causing them to undergo changes associated 

with the onset of prolonged water stress conditions. Figure 6.11. clearly shows this steady increase in 

spectral response for the duration of the measurement period, highlighting the regular reduction in 

the presence of key reflectance and absorption features as the sample undergoes bleaching associated 

with critical water losses. Furthermore, when this is compared to the visual changes in sample D3 

(Figure 6.14), it also highlights the earlier onset of spectral indicators of drought stress over the 

presence of visual indicators, adding further emphasis on the importance, and significant benefits, of 

hyperspectral measurement and monitoring techniques. By observing these changes in spectral 

response, it enables the instigation of proactive mitigation approaches, providing a better opportunity 

to prevent the onset of further unfavourable conditions, and, therefore, increasing the chances of 

stabilising the underlying peat. 

Figure 6.14 Visual change observed for sample D3 for each week of measurements further highlighting the 
benefits of spectral datasets over visual analysis due to the delayed visual response to unfavourable conditions. 

Figure 6.13 Visual changes observed from sample R5 for each week of measurements highlighting initial changes 
in pigmentation followed by stabilisation, indicating a healthy sample. 
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6.5. Discussion 
The above sections have highlighted how low-cost hyperspectral imaging instrumentation can be 

successfully implemented as non-invasive measurement and monitoring tools to the field of peatland 

health monitoring. It is clear that low-cost hyperspectral imaging alternatives represent a valuable 

addition to this field, enabling rapid and effective monitoring and decision making without the need 

to disrupt the underlying peat. The high-resolution hyperspectral imager provides mm-scale resolution 

enabling accurate and in-depth analysis of individual plants. This is particularly beneficial because, due 

to the quality of the output datasets it is possible to accurately pinpoint areas of concern that may 

require the implementation of mitigation measures. Whilst the current instrumental set-up is semi-

portable, there remains considerable scope to make this instrument fully portable. This would require 

a more robust housing for the instrumental architecture and the conversion of the components to 

battery power. Both of these tasks can be completed with relative ease highlighting the considerable 

future potential available with this instrumentation. 

Equally, the Hyperspectral Smartphone represents an ultra-low-cost user friendly method of obtaining 

rapid and accurate hyperspectral images both under laboratory and field conditions. Whilst the 

datasets resolved with this instrument are lower in quality than those of the high-resolution 

hyperspectral imager, it provides an accessible and low-cost method of undertaking initial non-invasive 

data collection, that can be undertaken by individuals without the need for extensive training. This 

enables hyperspectral images to be captured across a site of interest by individuals that are not 

necessarily familiar with the complexities of hyperspectral imaging analysis, such as peatland 

restoration volunteers. By providing volunteers with these low-cost devices it enables hyperspectral 

datasets to be acquired across a vast range of locations that can then be processed centrally by persons 

with more extensive knowledge and/or training, thus providing an accurate, non-invasive method of 

determining the health of peatland areas on a large-scale without incurring significant costs or 

requiring large-scale research trips. The widespread implementation of these ultra-low-cost methods 

can also be used as a means of highlighting areas that require further in-depth analysis e.g. utilising 

the high-resolution instrument. This enables measurement and monitoring methods to be applied 

specifically where they are required, significantly reducing the costs of these activities by reducing the 

need for vast high detailed surveys, therefore, enabling more timely and cost-effective analyses. 

These low-cost hyperspectral imaging technologies have been successfully deployed within a real-

world systematic study, demonstrating their proficiency and considerable potential for further 

deployment within a variety of environmental monitoring application areas. Whilst the Hyperspectral 

Smartphone and the high-resolution hyperspectral imager represent significantly different price points 

and, subsequently, data quality capabilities, when used within a combined approach they benefit each 

other significantly, enabling wide-scale coverage which can be followed up with more intricate analysis 

if required for a fraction of the cost of traditional monitoring methods. Equally, both instruments have 

also been demonstrated to be valuable stand-alone additions to hyperspectral imaging applications, 

providing an indispensable step towards the democratisation of hyperspectral imaging measurement 

modalities.  

6.6. Chapter Summary 
This chapter has successfully demonstrated the application of the Hyperspectral Smartphone and the 

Low-Cost High-Resolution imager to a real-world systematic study. Combined, these two instruments 

have been shown to be capable of accurately and effectively identifying changes in spectral response 

related to drought stress, highlighting subtle changes in spectral response that occur within the 
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datasets prior to the onset of confirmed visual changes. This emphasises the substantial benefits 

offered by these instruments, demonstrating that expensive commercial instrumentation is not 

required for robust and reliable hyperspectral imaging. They provide an early warning to the onset of 

potential unfavourable conditions without the need for invasive analysis in these fragile, yet essential 

environmental settings. This demonstrates their potential within the field of peatland health 

monitoring but also highlights their substantial potential as early warning monitoring systems within a 

broad range of environmental settings.  
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Chapter7 

Discussion and Concluding Remarks 
 

This chapter brings together the work discussed within this thesis, and highlights areas of work and 

applications that can be completed in the future either using the discussed instrumentation directly or 

as a foundation for further innovation. 

7.1. Discussion 
This thesis has presented the development and application of three low-cost hyperspectral imaging 

instruments primarily designed for environmental monitoring applications. These are: a low-cost 

laboratory-based hyperspectral instrument, a fully portable ultra-low-cost, smartphone-based 

instrument (Hyperspectral Smartphone), and a low-cost high-resolution hyperspectral instrument. 

Tests of each instrument within a range of environmental monitoring applications have shown them 

to perform well despite being, in some cases, over an order of magnitude cheaper than currently 

available commercial instrumentation. The value of their addition to the field of low-cost hyperspectral 

sensing has been demonstrated showing them to provide a significant step towards the 

democratisation of hyperspectral imaging techniques. 

Chapter 3 first demonstrated the ‘proof of concept’ through the development of a low-cost, 

laboratory-based hyperspectral imager that was semi-portable within a laboratory environment.  This 

instrument was designed using low-cost commercially available components, demonstrating that 

accurate, high quality hyperspectral datasets can be obtained from low-cost instrumentation. 

Instrumental metrology was shown through a radiometric calibration of the optical power, allowing 

the instrument’s abilities to be quantifiably compared to different instrumentation. Initial testing was 

shown, which highlighted the significant influence of directional illumination on the quality of target 

outputs. These influences were minimised through the design and subsequent integration of a low-

cost integrating sphere analogue. After these modifications were made to the imaging configuration, 

the efficacy of the instrument was highlighted through its application to a variety of environmental 

monitoring scenarios emphasising its compatibility with a broad range of applications.  

Chapter 4 used the knowledge gained from the construction of the laboratory-based instrument in 

Chapter 3 to develop the Hyperspectral Smartphone, an ultra-low-cost smartphone-based 

hyperspectral instrument. This chapter started with initial measurements taken using a cardboard 

prototype to determine whether a smartphone was capable of constructing a spectral image. After 

successful testing, a more robust 3-D printed version was designed to enable accurate and reliable 

data capture. This instrument was demonstrated to be a portable hyperspectral sensor capable of 

accurate and repeatable data capture through its application to a range of environmental monitoring 

applications. This initial design relied on the inclusion of a basic translation stage to ensure steady and 

stable movement across the intended image scene. Further improvements were then highlighted, 

where an algorithm, coded in MATLAB, was demonstrated as an effective means of completing in-situ 

spectral calibrations, and enabling accurate, hand-held data collection. These improvements made the 

Hyperspectral Smartphone a fully portable system, removing the need to include the translation stage, 

and further optimising its associated accessibility. In its hand-held format the Hyperspectral 
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Smartphone is almost universally accessible, providing a significant step in the democratisation of 

hyperspectral imaging techniques.  

Chapter 5 demonstrated the development of a low-cost high-resolution hyperspectral instrument, 

capable of identifying targets on the mm-scale. This instrument combined the skills learnt within 

Chapters 3 and 4 to produce an instrument that is semi-portable and capable of high quality, intricate 

data capture. Initial tests within a range of laboratory-based environmental applications demonstrated 

the proficiency of this instrument, before it was applied within a mineralogy-based study. The 

instrument was shown to be capable of resolving a range of mm-scale targets across a variety of 

samples with different surface complexities, emphasising its value to the research field. 

Chapter 6 demonstrated the application of these devices within a real-world scenario. The high-

resolution instrument from Chapter 5 and the Hyperspectral Smartphone from Chapter 4 were applied 

to a systematic study investigating the influence of drought conditions on the spectral response of 

Sphagnum moss, as a means of providing a non-invasive method of estimating peatland health. Both 

instruments were shown to work proficiently within this scenario for their respective price points 

enabling the collection of high quality datasets that are comparable to the existing literature. The 

hyperspectral analysis demonstrated that the Sphagnum spectral response provided an early warning 

for the onset of unfavourable conditions, providing valuable extra time for the implementation of 

mitigation measures that could benefit the peatland significantly. This, in turn, demonstrated the 

potential of these instruments for further applications within a broad range of real-world 

measurement and monitoring scenarios. 

Overall, this body of work has presented three novel, low-cost instruments that have demonstrated 

utility within environmental monitoring applications and could potentially be more broadly applied, 

for example, within industrial applications. Each of these instruments, compared in Table 7.1., is 

optimised to fill a separate research niche. The Laboratory-Based Hyperspectral Imager of Chapter 3 

provides a basic laboratory-based imager, demonstrating that hyperspectral imaging does not require 

expensive commercial instrumentation. The Hyperspectral Smartphone from Chapter 4 is the most 

accessible and practical of the developed instruments. Its user friendly hand-held design makes it the 

easiest to transport to, and deploy within more challenging environmental settings, providing 

researchers with a robust, inexpensive means of in-field hyperspectral data collection. Finally, the Low-

Cost High-Resolution instrument from Chapter 5 represents the most accurate of the instrumentation 

discussed within this thesis. With a demonstrated spectral resolution of 0.29 nm, this instrument 

compares favourably with a broad range of commercial instrumentation, without incurring the 

associated costs. Whilst this instrument is the most expensive of the devices discussed within this 

thesis, it remains significantly cheaper than typical instruments available within commercial markets. 
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Table 7.1. Direct comparison between the three instruments discussed within this thesis. 

 Laboratory-Based 
Instrument 

Hyperspectral 
Smartphone 

Low-Cost High 
Resolution 
Instrument 

Cost £5,980 £95.94 £11,039.60 

Approximate Weight 
(g) 

100 210*1 3,000 

Weight Inc. Optical 
Breadboard (g) 

3,100 9,000 

Dimensions (L x W x 
H) (cm) 

35 x 20 x 13 16 x 10 x 12 60 x 30 x 18 

Portability Semi-Portable Portable Semi-Portable 

Imaging Mode Whiskbroom (static*2) Push Broom Push Broom (static*2) 

Spectral Range (nm) 340 – 850 400 – 700 400 – 1000 

Spectral Resolution 
(nm) 

12 14 0.29 

*1Weight and dimensions include incorporated smartphone (Samsung Galaxy A12) and, therefore, 
are subject to minor variations depending on the particular smartphone used. 

*2Static refers to the use of components such as mirrors or translation stages to provide the 
spatial data capture. These instruments can, therefore, produce the spatial dataset without the 
operator having to physically move or translate the instrument. 

  

The low-cost nature of these instruments helps to promote the continued democratisation of 

hyperspectral imaging measurement modalities and could promote the widespread proliferation of 

low-cost, accessible measurement and monitoring instrumentation across the globe. This is 

particularly pertinent within environmental monitoring applications since the current lack of low-cost, 

portable hyperspectral instrumentation is resulting in significant limitations to the datasets that can 

be captured, resulting in much of our knowledge of a broad range of application areas being limited to 

a few more easily accessible locations that have been measured by a comparatively small number of 

better resourced research teams and organisations. In general, these more easily accessed sites are 

not representative of the, much larger, whole, resulting in substantial limitations to our knowledge, 

and therefore understanding of a broad range of important environmental settings. From glaciers and 

volcanos in Iceland, to blanket bogs within the Peak District of the UK, increasing the availability and 

accessibility of measurement and monitoring instrumentation for these locations is of paramount 

importance, enabling a significant increase in the availability of datasets for these regions and, 

subsequently increasing our understanding of how these environments will be affected by the impacts 

of climate change. 

7.2. Future Work 
Whilst the instruments developed and discussed within this thesis have been shown to perform well 

within a range of environmental applications, as with any emerging technology, there is still room for 

further improvements within these designs. The following sections, therefore, discuss possible next 

steps for these instruments, in an attempt to identify where future work could be focused. 

7.2.1. Laboratory-Based Hyperspectral Imager 
To reduce aberrations present within the datasets produced by the laboratory-based hyperspectral 

imager, the optical system may be improved. This was briefly discussed within Chapter 3 which 



140 
 
 

highlighted the additional costs associated with these improvements. Given the intention to maintain 

the low-cost aspect of this instrumentation the benefits of these improvements need to be contrasted 

with the expected increase in costs (within the region of a few hundred pounds), to determine their 

overall feasibility and benefit. If implemented, these improvements would likely involve the inclusion 

or development of a multiple lens system specifically designed to reduce the presence of spherical 

aberrations within more simple optics. This system would use a combination of concave and convex 

lenses to effectively cancel the aberrations resulting from each component. These alterations would 

provide significant improvements to the data quality capture abilities of this instrumentation, 

however, with the primary advantage of the laboratory-based hyperspectral imager being its low price 

point whether the expected increase in performance outweighed the additional costs would need to 

be carefully considered. 

7.2.2. Hyperspectral Smartphone 
Chapter 4 demonstrated the unique abilities of the Hyperspectral Smartphone, providing an ultra-low-

cost means of rapid and accurate hyperspectral data capture. It is, therefore, an instrument with 

significant potential for further application across the environmental sciences and beyond. However, 

there remain areas where improvements to the hyperspectral datasets could be made. The current 

image capture method is a push broom design requiring the operator to translate the instrument 

across a target scene. Whilst this approach is sufficient, as has been demonstrated within this body of 

work, there is significant potential for the development of a snapshot style Hyperspectral Smartphone. 

Snapshot hyperspectral imaging enables the collection of a complete hyperspectral dataset within a 

single exposure. Currently available commercial set-ups present a prohibitive cost for many would-be 

users, therefore, a low-cost smartphone-based alterative provides significant potential for substantial 

democratisation within this area. To develop the current Hyperspectral Smartphone design into a 

snapshot hyperspectral imager would be a considerable, but highly beneficial undertaking. It would 

enable the collection of a complete hyperspectral dataset within a single photograph, instead of 

extracting the data from a series of video frames. This, in turn, would provide the operator with 

increased flexibility within the image capture parameters because, typically, smartphone camera 

settings offer more adjustability within single image capture applications over video applications. 

Initial steps in this process would focus on the instrumental hardware, converting the current single 

slit design into a multi-slit system. This approach to snapshot hyperspectral imaging has been used 

extensively in the past with the implementation of pinhole arrays to distribute the spectral response 

of each pixel [1], [2]. In this system the spatial resolution of the instrument would be directly 

proportional to the number of slits and, therefore, in initial iterations would likely be considerably 

reduced. However, the intention is that each of these slits would provide the spectral data for a single 

pixel within a scene, allowing the full extent of the smartphone sensor to be used, rather than limiting 

it as is the case with the current system. This avenue of research requires significant investigation to 

determine the true feasibility of the idea and, if feasible, the optimised configuration of the required 

hardware. Software developments would also be required to convert the new data format into the 

hyperspectral data cube. Although these initial ideas are limited, they highlight a tangible route to the 

realisation of smartphone-based snapshot hyperspectral imaging.   

7.2.3. Low-Cost High-Resolution Instrument 
A significant limitation of the low-cost high-resolution hyperspectral instrument is its limited 

portability. Whilst in its current format it is capable of deployment within a range of different locations, 

it is not, as yet, ready for full field deployment. This limits the instruments current applicability, 
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however, further developments to enable field-based data capture with this high-resolution 

instrument would provide significant benefits to a number of applications, including the peatland 

health monitoring application discussed within Chapter 6. To complete these improvements, the 

instrumentation would need to be housed within a robust, weatherproof casing capable of maintaining 

the precise optical configurations required. Care would need to be taken to appropriately incorporate 

the translation stage within this set-up. An initial portable set-up could, therefore, be completed 

relatively simply with the inclusion of a robust casing and the conversion of electronic components to 

battery power. This would enable high-resolution hyperspectral datasets to be acquired with this 

instrument across an array of field locations. Whilst it would remain bulky by comparison to the 

Hyperspectral Smartphone, it represents a different style of data capture, for example, the 

Hyperspectral Smartphone is designed for rapid, accurate hyperspectral data collection enabling a 

wide area to be imaged with relative ease, the high-resolution instrument, however, provides much 

more detailed analysis and, therefore, is best deployed only within areas where initial data collection 

suggests more detailed analysis is required. By further developing this system to enable field-based 

data collection it will provide substantial benefits to a number of environmental monitoring 

applications, providing a low-cost means of capturing intricate hyperspectral datasets without 

disrupting the subject environment. 

7.3. Extended Applications 
The instruments developed and presented in this thesis have the potential for numerous applications 

additional to the ones discussed in previous chapters. Here, a few such examples are briefly presented. 

7.3.1. In-situ Imaging of Speleothems with The Hyperspectral Smartphone 
Speleothems are a key feature in palaeoclimatic reconstructions, providing valuable proxy records and 

environmental archives in their growth rate, internal structure and chemical composition [3], [4], 

providing a precise and reliable record of environmental change. The seasonal resolution afforded by 

this technique allows for the production of records spanning hundreds of years [4], [5]. Speleothem 

formation is led by water transport through a cave system, either through the influx of flood waters, 

or drip action through the cave canopy, resulting in mineral deposition [6]. Variations in environmental 

conditions during their formation can affect their mineral composition, producing concentric layers 

and banding which, in turn, can be used to inform palaeoclimatic studies [7].  Traditionally, these 

features have been analysed optically using visual observations obtained by flatbed scanners or 

standard RGB cameras [3]. Whilst these methods provide valuable datasets highlighting visual changes 

in speleothem composition, they lack the spectral resolution to resolve a complete spectral dataset, 

resulting in the potential loss of important spectral features, that are not visible to the naked eye, 

within the data. Furthermore, due to the typical restrictions experienced in these environments, 

regarding accessibility and illumination [8], many of these optical sensing methods require the 

destructive collection of samples for detailed, laboratory-based analyses.  

Hyperspectral imaging has seen a considerable uptake in field deployable applications across a wide 

range of environmental settings, providing new avenues for more detailed data collection and analysis. 

Furthermore, the introduction of miniaturised, low-cost components has enabled the collection of 

hyperspectral datasets in a variety of less accessible locations, where hyperspectral data collection 

with existing commercial set-ups remains infeasible due to physical limitations such as the weight and 

size of the instrumentation. This is a factor that has had a particular impact on cave surveys and 

analyses as the complexity of these environments limits the use of a wide range of instruments [8]. 

Indeed, the complex spatial patterns present in cave environments have influenced numerous 
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analytical applications [7]–[9]. Hyperspectral imaging analysis utilising these innovative miniaturised 

instruments, therefore, represents a viable, non-destructive alternative to traditional analysis 

approaches in these restrictive and more extreme environmental settings. To date, whilst 

hyperspectral imaging techniques have been used in speleothem analysis in previous studies, e.g. [3], 

[7], they have often required the collection of samples, resulting in the destruction of these cave 

features which can cause significant alterations to the structural environment.  

The Hyperspectral Smartphone, therefore, provides a promising, low-cost non-invasive means of data 

collection within these more challenging environments.  The implementation of this ultra-low-cost 

alternative will allow for the collection of in-situ speleothem datasets within the confines of more 

difficult to access cave locations. This information can then be used as a means of mapping cave 

features without requiring the collection of samples and/or as a method of pinpointing locations for 

further, more detailed investigation. The Hyperspectral Smartphone has already been demonstrated 

as a proficient field instrument. To test its capabilities within this new environmental setting, it will be 

deployed within a cave system within the Peak District, UK. In this environment the Hyperspectral 

Smartphone will be used to capture datasets of a number of speleothem structures using a range of 

illumination techniques. The resulting datasets will be analysed and compared to the existing literature 

to determine the abilities of the Hyperspectral Smartphone under these circumstances and to analyse 

the best method of illumination for future measurements.  

After these initial investigations, if successful, the Hyperspectral Smartphone will then be redeployed 

within more difficult to access systems within the Peak District to provide new datasets for these more 

challenging locations. The user friendly nature of the Hyperspectral Smartphone provides key benefits 

to this application, allowing datasets to be obtained by individuals without the need for extensive 

training or knowledge of hyperspectral imaging techniques. This enables the collection of datasets with 

the Hyperspectral Smartphone to be undertaken by experienced cavers, reducing the training 

requirements for any proposed research. By demonstrating this instrument within these more extreme 

settings it provides a unique opportunity for the collection of datasets under environmental conditions 

that were infeasible hitherto. This, in turn, enables the development of new knowledge across these 

locations, providing significant benefits to the research field. 

7.3.2. Monitoring Vegetation Stress Response  
Chapter 6 demonstrated the successful application of the Hyperspectral Smartphone and the high-

resolution hyperspectral imager to the monitoring of Sphagnum spectral response as a proxy to help 

determine below ground conditions. The field of vegetation health monitoring, therefore, provides a 

significant range of application opportunities, with the implementation of these low-cost instruments 

providing significant potential benefits. The monitoring of vegetation health with hyperspectral 

imaging techniques provides beneficial early warning of the onset of unfavourable conditions such as, 

water stress and disease development. The effects of these conditions can be devastating within both 

natural and agricultural settings, therefore, there is significant need to provide low-cost hyperspectral 

monitoring approaches within these settings.  

The low-cost instrumentation presented within this thesis could easily be applied to a greater range of 

vegetation monitoring scenarios providing a rapid and reliable means of hyperspectral data collection. 

For example, monitoring water stress within rice crops, or identifying disease spots on tomato vines. 

Each of these crops is of significant importance within agriculture and food production and, therefore, 

benefit from hyperspectral imaging applications that can monitor conditions to help maximise yield 

and product quality. The low-cost instrumentation developed within this thesis could provide a rapid 
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means of in-situ monitoring without the need for the collection of samples. To implement these 

technologies within these applications initial measurements would be completed within controlled 

environment facilities before transitioning to the measurement of in-situ plants. By determining a 

robust and accurate spectral library, documenting indications of varying stress responses within the 

spectral response of these vegetation types, it would enable rapid measurement and monitoring 

approaches and, in turn, help to prevent significant losses due to disease or drought in key vegetation 

species. 

7.3.3. Differentiation of Supraglacial Debris Types using a Low-Cost Field Deployable 

Hyperspectral Imager 
The monitoring of melt-inducing impurities present across glacial and ice sheet locations is of 

paramount importance to ongoing efforts to minimise the effects of climate change in these areas. 

Whilst the impact of debris layers on ice melt rates are already well documented, it remains important 

to be able to differentiate between the types of impurities present. Impurities that affect these regions 

typically fit within three distinct groups: mineral dust, black carbon, and algal blooms. The accurate 

differentiation of these impurities is important, particularly because quantities of black carbon are 

predominantly driven by anthropogenic activities. Quantifying their presence, therefore, provides 

valuable information for pollution and emissions research. 

Previous research has identified that these impurities can be accurately differentiated by their spectral 

responses, however, this remains difficult with currently available technologies within these 

applications, which are typically limited to multispectral and/or satellite-based instrumentation [10]–

[12]. These limitations have a significant effect of the data quality currently available for these 

applications, limiting the spectral and spatial information of the output datasets [13], [14]. The 

introduction of lightweight, low-cost hyperspectral instruments to these environments would, 

therefore, be of significant benefit. 

To introduce the low-cost instrumentation presented in this thesis to this field, initial measurements 

of known impurities would be conducted within a laboratory setting. This will enable the development 

of a robust spectral library for each impurity type, providing an accurate means of identification for 

field derived datasets. In-situ monitoring would then be implemented within a glacial setting, such as 

the Greenland Ice Sheet. The Russell and Leverett glaciers situated near Kangerlussuaq, Greenland 

provide an ideal location for testing in-situ measurements. Significant deposits of a range of ice 

impurities are present within this area, enabling widespread instrument testing. Furthermore, this 

location is an ice marginal site and, therefore, allows for easy site access without the need for the 

significant support of more central studies. If successful, these instruments will enable rapid in-situ ice 

impurity identification and analysis using low-cost, accessible hardware, significantly progressing data 

collection techniques within this field. 

7.4. Concluding Remarks 
This thesis has presented the development of a variety of low-cost hyperspectral imaging instruments 

and their application to a broad range of environmental monitoring scenarios. These instruments have 

been demonstrated to be valuable additions to the field of low-cost hyperspectral imaging, and have 

significant potential beyond the applications highlighted within this thesis. Specifically, this thesis has 

outlined the design and testing of: a laboratory-based hyperspectral imager, capable of low-cost 

hyperspectral data capture within a laboratory setting; the Hyperspectral Smartphone, an ultra-low-

cost fully portable smartphone-based hyperspectral imager; and a low-cost, high-resolution 

hyperspectral imager, capable of capturing mm-scale spatial targets within hyperspectral datasets. 
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Each of these instruments is designed to fit a different style of monitoring application, enabling the 

collection of accurate and robust hyperspectral datasets within a broad range of environmental 

settings and applications.  

Each instrument has been shown to perform well within a range of measurement applications, 

providing results that are comparable with the existing literature despite, in some cases being over an 

order of magnitude cheaper than currently available commercial systems. Additionally, in the case of 

the Hyperspectral Smartphone and the high-resolution hyperspectral imager, their application within 

a real-world systematic study has further highlighted the considerable potential for new knowledge 

and greater understanding with their continued application to key environmental monitoring studies. 

For each of these designs future work on both hardware and software could improve the instruments 

and their utility to researchers across a range of fields. However, at present these instruments have 

proven utility across the field of environmental monitoring, and provide a key step towards the 

continued democratisation of hyperspectral imaging measurement modalities. 
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Appendices 
 

The following pages contain further information and code relevant to the instrumentation discussed 

within this thesis. 

8.1. Ray trace model developed for the laboratory-based 

hyperspectral imager 
 

Below are the simulation results for the ray trace modelling of the laboratory-based hyperspectral 

imager. The model assumes a focal length of 60 mm for the singlet lens, a working distance of 500 

mm, and a detector size of 0.5 mm x 0.05 mm. Rays are traced from spectrometer entrance pupil to 

target object (left to right in image). 
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0.5 mm Detector 

Extended Source Geometric Encircled Energy 

Surface: Image 

Wavelength: Polychromatic 

Object field: 0.0000 mm 

Reference: Centroid 

Reference coordinate units are Millimetres 

Distance units are µm. 

Field: 0.0000 mm 

Reference Coordinates:   4.662E-001  -4.463E-001 

Radial distance          Fraction 

          0.000          0.000000 

        100.000          0.000567 

        200.000          0.004474 

        300.000          0.013957 

        400.000          0.033419 

        500.000          0.063269 

        600.000          0.096572 
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        700.000          0.142417 

        800.000          0.183882 

        900.000          0.238602 

       1000.000          0.294350 

       1100.000          0.359860 

       1200.000          0.426106 

       1300.000          0.490647 

       1400.000          0.553561 

       1500.000          0.606766 

       1600.000          0.660456 

       1700.000          0.711682 

       1800.000          0.752034 

       1900.000          0.796411 

       2000.000          0.834510 

       2100.000          0.870957 

       2200.000          0.900394 

       2300.000          0.924049 

       2400.000          0.943709 

       2500.000          0.957751 

       2600.000          0.967807 

       2700.000          0.974890 

       2800.000          0.982647 

       2900.000          0.988093 

       3000.000          0.991107 

       3100.000          0.993984 

       3200.000          0.995461 

       3300.000          0.997338 

       3400.000          0.998104 

       3500.000          0.998687 

       3600.000          0.999057 

       3700.000          0.999417 

       3800.000          0.999417 

       3900.000          0.999656 

       4000.000          0.999796 

       4100.000          0.999796 

       4200.000          1.000000 

       4300.000          1.000000 

       4400.000          1.000000 

       4500.000          1.000000 

       4600.000          1.000000 

       4700.000          1.000000 

       4800.000          1.000000 

       4900.000          1.000000 

       5000.000          1.000000 
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0.05 mm Detector 

Extended Source Geometric Encircled Energy 

Surface: Image 

Wavelength: Polychromatic 

Object field: 0.0000 mm 

Reference: Centroid 

Reference coordinate units are Millimetres 

Distance units are µm. 

Field: 0.0000 mm 

Reference Coordinates:   4.651E-002  -2.701E-002 

Radial distance          Fraction 

          0.000          0.000000 

         50.000          0.003912 

        100.000          0.026795 

        150.000          0.079941 

        200.000          0.138224 

        250.000          0.202532 

        300.000          0.264934 

        350.000          0.326727 
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        400.000          0.385077 

        450.000          0.430576 

        500.000          0.472236 

        550.000          0.519789 

        600.000          0.565360 

        650.000          0.613543 

        700.000          0.668837 

        750.000          0.717094 

        800.000          0.765305 

        850.000          0.808478 

        900.000          0.847124 

        950.000          0.879873 

       1000.000          0.901038 

       1050.000          0.921253 

       1100.000          0.932263 

       1150.000          0.940332 

       1200.000          0.946215 

       1250.000          0.951029 

       1300.000          0.957279 

       1350.000          0.961942 

       1400.000          0.964923 

       1450.000          0.968835 

       1500.000          0.972193 

       1550.000          0.977543 

       1600.000          0.982147 

       1650.000          0.985794 

       1700.000          0.989937 

       1750.000          0.992696 

       1800.000          0.996232 

       1850.000          0.998652 

       1900.000          0.999498 

       1950.000          0.999878 

       2000.000          1.000000 

       2050.000          1.000000 

       2100.000          1.000000 

       2150.000          1.000000 

       2200.000          1.000000 

       2250.000          1.000000 

       2300.000          1.000000 

       2350.000          1.000000 

       2400.000          1.000000 

       2450.000          1.000000 

       2500.000          1.000000 

       2550.000          1.000000 

       2600.000          1.000000 

       2650.000          1.000000 

       2700.000          1.000000 
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       2750.000          1.000000 

       2800.000          1.000000 

       2850.000          1.000000 

       2900.000          1.000000 

       2950.000          1.000000 

       3000.000          1.000000  
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8.2. Laboratory-based hyperspectral imager instrument control and data cube construction LabVIEW code 
The following sections provide the LabVIEW front panel and block diagram layouts used to control the laboratory-based hyperspectral imager and to 

construct the resulting data cubes. 

Front Panel Tab One 
  

User defined parameters to change the exposure time 

per pixel and the dimensions of the chosen scene 

This graph provides a real-time view of the 

spectral response per pixel as the scene is 

being captured 
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Front Panel Tab Two 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

After scene capture the data cube 

can be viewed here, using the 

sliding scale to scroll through the 

wavelengths 

The spectral response of individual 

pixels can be viewed in this graph by 

inputting the pixel coordinates below 
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Block Diagram Part One 
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Block Diagram Part Two 
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8.3. Laboratory-Based Hyperspectral Imager Dataset Bias Correction Code  
The following sections provide the LabVIEW front panel and block diagram layouts used to bias correct the datasets obtained using the laboratory-based 

hyperspectral imager. 

Front Panel Tab One 
 

   

Select image paths for the hyperspectral, 

white reference, and dark reference datasets 

This graph shows the corrected hyperspectral 

data files with no smoothing 

Lists the hyperspectral 

files that are included 

within the graphed data 
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Front Panel Tab Two 
 

  

 

 

  

Displays the corrected hyperspectral datasets 

with the smoothing factor applied 

Allows the operator to add a smoothing 

factor to the corrected dataset 



158 
 
 

Front Panel Tab Three  

Displays the corrected hyperspectral datasets 

with the smoothing factor applied and any 

NAN values removed 
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Front Panel Tab Four 
 

 

   

Displays the dark corrected 

hyperspectral datasets 

Displays the raw hyperspectral 

datasets 
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Front Panel Tab Five  
 

  

  

Displays the dark spectra datasets 
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Block Diagram Part One 
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Block Diagram Part Two 
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8.4. Hyperspectral Smartphone Initial Bias Correction 
Below is the MATLAB script used for bias correction in early iterations of the Hyperspectral 

Smartphone. 

%% Setup the script using these variables 
imgDir = 'C:\Users\maryb\OneDrive\Desktop\for-correction'; 
imgPrefix = 'scene00129'; 
imgRange = 1; 
imgRangePadding = 0; 
imgExtension = '.png'; 

  
whiteImgPath = 'C:\Users\maryb\OneDrive\Desktop\for-correction\white.png'; 
darkImgPath = 'C:\Users\maryb\OneDrive\Desktop\for-correction\dark.png'; 

  
%% Script start  

 
whiteImg = imread(whiteImgPath); 
darkImg = imread(darkImgPath); 
darkImgDbl = double(darkImg) / 255; 

  
paddingStr = ['%0' num2str(imgRangePadding) 'd'];  

  
correctionImg = whiteImg - darkImg; 
correctionImgDbl = double(correctionImg) / 255; 

  
correctionImgZero = ones(size(denom)) .* (correctionImg == 0); 
useImg = ~logical(correctionImgZero); 

  
outDir = [imgDir 'Output ' date ' ' datestr(now,'HH.MM.SS') '\']; 
mkdir(outDir); 

  
for i = imgRange 
    rawImg = imread([imgDir imgPrefix num2str(i, paddingStr) 

imgExtension]); 

     
    normalisedR = ((double(rawImg) / 255) - darkImgDbl) ./ 

correctionImgDbl; 

     
    normalisedR(isnan(normalisedR)) = 0; 

     
    normalisedRNonZero = normalisedR .* useImg; 

     
    imwrite(normalisedRNonZero, [outDir 'out_' num2str(i, paddingStr) 

'.tiff']);     
end 
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8.5. Data Cube Construction Code for the High-Resolution 

Hyperspectral Imager 
Below is the MATLAB script used to construct the data cube for the high-resolution hyperspectral 

imager. 

clear all 

  
dark = imread('AVG_darks.tif'); 
cal = dlmread('cal_1.txt'); 
cal = cal(525:1324); 
cal = cal/max(cal); 
flat = double(imread('flat.tif')); 
flat = flat/max(max(flat)); 

  
cd 2022-01-03-data 
cd C9 

  
frame_count = 1000;  
frame_width = 1000; 

  
data_cube = zeros(200, frame_width, frame_count); 

  
x = 1; 

  
for frame_index = 1:frame_count 
    frame = imread(['Image3_', num2str(frame_index), '.tif']); 
    frame = frame - dark; 
    frame = uint16(frame); 
%     ['data cube construction ' num2str(100*(frame_index/frame_count)) '% 

complete'] 
    for index = 1:200 
        data_cube(index,:,frame_index) = frame(:,index*4); 
    end 
end 

  
cd ../ 
cd ../ 

  
cd data 

  
scale = (65000*min(min(flat)))/(max(max(max(data_cube)))); 

  
index = 1; 

  
length(cal(:,1)) 

  
while index < length(data_cube(:,1,1)) 
    image = squeeze(data_cube(index,:,:)); 
    image = image./flat; 
    image = scale*(double(image)/cal(index)); 
    image = uint16(image); 
    imwrite(image, [num2str(index) '.tif']); 
    index = index + 1; 
end 
 cd ../  
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8.6. High-Resolution Instrument Spectral Data Correction and 

Extraction Code 
Below is the MATLAB script used to extract the spectral datasets from the captured data. 

base_dir = 'D:\moss_imaging\'; 
sub_dir = '2022-01-17-data\'; 
type = 'C'; 

  
cal = dlmread('cal.txt'); 
cal = cal/max(cal); 

  
wavelength = zeros(800,1); 

  
for index = 1:800 
    wavelength(index,1) = index*0.22; 
end 

  
wavelength = wavelength + 611.6-(0.22*212); 

  
spectra = zeros(800,11); 
spectra(:,1) = wavelength(:,1); 

  
for folder = 1:10 

   
    spectrum = zeros(200,800); 

     
    for index = 1:200 
        image = imread([base_dir, sub_dir, type, num2str(folder),'\', 

'Image3_', num2str(1+300),'.tif']); 
        spectrum(index,:) = mean(image(index+400:index+600,:)); 
    end 

     
    spectrum = mean(spectrum)'; 
    spectrum = spectrum./cal; 
%     self 
%             spectrum = spectrum/max(spectrum(:,1)); 

        
    spectra(:,folder+1) = spectrum(:,1); 

         
end 

  
% batch 
       spectra(:,2:end) = spectra(:,2:end)/max(max(spectra(:,2:end))); 
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8.7. Spectral Data Combination Code 
Below is the MATLAB script used to combine the spectral outputs of the Hyperspectral Smartphone 

and the High-Resolution Hyperspectral Imager. 

wavelengths_phone_round = round(phone(:,1),0); 
wavelengths_hires_round = round(hires(:,1),0); 
a = 600; 
pos_phone = find(wavelengths_phone_round==a); 
pos_hires = find(wavelengths_hires_round==a); 

  
if isempty(pos_phone)==1 
    pos_phone = find(wavelengths_phone_round==a+1); 
end 

  
ratio_C = phone(pos_phone(1),2)/hires(pos_hires(1),2); 
ratio_R = phone(pos_phone(1),3)/hires(pos_hires(1),3); 
ratio_D = phone(pos_phone(1),4)/hires(pos_hires(1),4); 

  
phone_scaled_C = (1/ratio_C)*(phone(:,2)); 
phone_scaled_R = (1/ratio_R)*(phone(:,3)); 
phone_scaled_D = (1/ratio_D)*(phone(:,4)); 

  
data = 

zeros(pos_phone+length(wavelengths_hires_round(pos_hires(1):end,1)),4); 

  
data(1:pos_phone,1) = phone(1:pos_phone,1); 
data(1:pos_phone,2) = phone_scaled_C(1:pos_phone,1); 
data(1:pos_phone,3) = phone_scaled_R(1:pos_phone,1); 
data(1:pos_phone,4) = phone_scaled_D(1:pos_phone,1); 

  
data(pos_phone+1:end,:) = hires(pos_hires:end,:); 

  
data(:,2) = data(:,2)/max(data(:,2)); 
data(:,3) = data(:,3)/max(data(:,3)); 
data(:,4) = data(:,4)/max(data(:,4)); 

  
plot(data(:,1),data(:,2)) 
hold 
plot(data(:,1),data(:,3)) 
plot(data(:,1),data(:,4)) 
hold 

 

 

 

 

 

 

 

 

 


