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Abstract

This thesis investigates the behaviour of charged scalar fields on curved background space-

times. In Part I of this thesis, a brief review of quantum field theory in Schwarzschild

spacetime is given.

In Part II, the Reissner-Nordström solution is introduced, before a massless, minimally-

coupled charged scalar field is introduced and its dynamics on this spacetime are studied.

The field is then quantised via canonical quantisation and various quantum states are

defined in analogue with quantum states in Schwarzschild spacetime. This part concludes

with analytical and numerical investigations of the expectation values of observables in

various states.

In Part III, a charged scalar field of arbitrary mass and scalar coupling to the cur-

vature is considered in a general background spacetime. The Hadamard renormalisation

procedure is then developed for each of the three cases of two dimensions, an even num-

ber of dimensions and an odd number of dimensions. The renormalisation counterterms

required for the evaluation of the RSET are derived explicitly. This Part concludes with a

discussion of the renormalisation ambiguities associated with Hadamard renormalisation.
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Chapter 1

Introduction

In §1.1, we introduce the general philosophy of quantum field theory in curved spacetime.

We take the opportunity to establish our conventions for various geometric quantities in

§1.2 and we also introduce the quantum observables that will be of interest throughout

this thesis in §1.3. We then discuss key results obtained from considering the behaviour

of quantum fields on various black hole spacetimes in §1.4; this sets the context for our

investigation of quantum field theory in Reissner-Nordström spacetime in Part II. We then

explain the importance of renormalisation as well as introducing Wald’s axioms in §1.5.

We conclude with a rapid overview of the Hadamard renormalisation scheme for neutral

scalar fields in §1.6; we extend this procedure to charged scalar fields in Part III.

1.1 Quantum field theory in curved spacetime

This thesis studies the behaviour of quantum charged scalar fields on curved background

spacetimes, which is an application of the rich subject known as quantum field theory in

curved spacetime (QFTCS). The general philosophy of QFTCS is to consider the behaviour

of a quantum field on a classical, fixed background spacetime. Furthermore, this thesis

considers background spacetimes possessing a charge, which requires the presence of a

background gauge field that is similarly left fixed and classical.

QFTCS has been responsible for some of the most profound advances in quantum grav-

ity, such as the realisation by Hawking that black holes formed by gravitational collapse

emit thermal radiation [3, 4], the discovery of Unruh that an accelerating observer expe-

riences a thermal bath [5] and the insight of Parker that an expanding Universe leads to

the creation of particles [6–8]. Furthermore, any successful theory of gravity must reduce

to QFTCS in an appropriate limit meaning that a putative theory must reproduce the

predictions of QFTCS. A selection of reviews on the subject can be found in [9–13].

In general, one can consider a variety of specific background spacetimes and gauge fields

or we could leave these arbitrary. In this thesis, we will do both; in parts I and II, we

consider the Schwarzschild and Reissner-Nordström black hole solutions as our background

spacetimes and in part III, where we develop the Hadamard renormalisation procedure

for a charged scalar field, we consider an arbitrary curved background spacetime with a

general background gauge field. In order to study QFTCS further, we need to introduce

2



Introduction 3

a number of geometrical objects.

1.2 Geometrical preliminaries

Curved spacetimes are characterised by the existence of a (0, 2) symmetric tensor gµν

called the metric, which describes the geometry of the spacetime. Unlike the Minkowski

metric ηµν , it is not constant and its entries can, in general, depend on any coordinates

we introduce on the spacetime which it describes. The determinant of the metric tensor is

denoted by g. In differential geometry, vectors exist in tangent spaces at each spacetime

point. We can relate vectors in nearby points using a connection; the unique, metric-

compatible connection Γ on a Riemannian manifold is related to the metric gµν by [14]

Γλµν =
1

2
gλρ (∂µ gνρ + ∂ν gµρ − ∂ρ gµν) . (1.1)

We refer to the Γλµν in (1.1) as the Christoffel symbols. The partial derivative ∂µ is not

coordinate-independent. Instead, we define the covariant derivative of a (k, l) tensor as

∇ρ Tµ1...µkν1...νl = ∂ρ T
µ1...µk

ν1...νl
+ Γµ1ρλ T

λ...µk
ν1...νl

+ . . .+ Γµkρλ T
µ1...λ

ν1...νl

− Γλρν1 T
µ1...µk

λ...νl
− . . .− Γλρνl T

µ1...µk
ν1...λ

. (1.2)

We can use the Γλµν to define a geodesic, which is a parameterised curve xµ (λ) that satisfies

d2xµ

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
= 0, (1.3)

known as the geodesic equation and which describes the path of a freely-falling particle.

The curvature of the spacetime is described by the Riemann tensor, which is given by

Rµνρλ = ∂ρ Γµνλ − ∂λ Γµνρ + Γµργ Γγνλ − Γµλγ Γγνρ. (1.4)

The Riemann tensorRµνρλ with lowered indices has several useful properties, which include

Rµνρλ = −Rνµρλ = −Rµνλρ, (1.5a)

Rµνρλ = Rρλµν , (1.5b)

Rµ[νρλ] = 0, (1.5c)

∇[γRµν]ρλ = 0. (1.5d)

In (1.5), indices contained within square brackets [.] are anti-symmetrised and indices

contained within round brackets (.) are symmetrised. Equation (1.5d) is referred to as the

Bianchi identity. Defining the Ricci tensor as the contraction of the Riemann tensor

Rµν = Rρµρν , (1.6)

and the Ricci scalar, or scalar curvature, as the contraction of the Ricci tensor
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R = gµνRµν , (1.7)

we derive, by contracting (1.5d) on two pairs of indices, the contracted Bianchi identity

∇µRµν =
1

2
∇νR. (1.8)

The Einstein tensor Gµν is defined by

Gµν = Rµν −
1

2
gµνR, (1.9)

which leads to another expression of the contracted Bianchi identity (1.8) as ∇µGµν = 0.

The commutator of covariant derivatives [∇µ,∇ν ] acting on a general (k, l) tensor is

[∇ρ,∇λ]Tµ1...µkν1...νl = Rµ1γρλ T
γ...µk

ν1...νl
+ . . .+Rµkγρλ T

µ1...γ
ν1...νl

−Rγν1ρλ T
µ1...µk

γ...νl
− . . .−Rγνkρλ T

µ1...µk
ν1...γ . (1.10)

1.3 Quantum observables

Having introduced these geometrical quantities, an object of central importance in QFTCS

is the expectation value of the stress-energy tensor (SET) 〈T̂µν〉, which gives information

about the particle content, or flux of energy, associated to a quantum field. Since 〈T̂µν〉
acts as a source term in Einstein’s semiclassical field equations, which are given by

Gµν = 〈T̂µν〉 , (1.11)

then evaluating the SET gives information about the quantum backreaction of the field

on the spacetime geometry, which we can see from the appearance of the Einstein tensor

Gµν (1.9) on the l.h.s of (1.11). In the case of a charged scalar field, the expectation value

of the current 〈Ĵµ〉 acts as a source for the semiclassical Maxwell equations

∇µFµν = 4π〈Ĵν〉 , (1.12)

which govern the quantum backreaction of the scalar field on the electromagnetic field.

The final observable that we will consider is the renormalised expectation value of the

square of the scalar field which, in this thesis, we will call the ‘expectation value of the

scalar condensate’ 〈ŜC〉. In order to evaluate the observables 〈ŜC〉, 〈Ĵµ〉 and 〈T̂µν〉, we

first need to specify an appropriate vacuum state for the field.

A major conceptual difference between QFT in Minkowski spacetime and QFTCS is

the lack of a preferred vacuum state in the latter since curved spacetimes do not possess

isometries in general. In parts I and II, when working in specific background spacetimes,

we consider the expectation value of observables in specific quantum states. In part III,

when the geometry of the background spacetime is left arbitrary, we develop the Hadamard

renormalisation procedure for a charged scalar field for a general quantum state.
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1.4 Quantum field theory in black hole spacetimes

In this thesis, we will be particularly interested in black holes which, despite all their

elegance and rich structure, can be characterised by three parameters namely their mass

M , electromagnetic charge Q and angular momentum J . While the most general solution

is represented by the Kerr-Newman metric which has all three parameters non-vanishing,

simplified solutions which set some parameters to zero are often easier to study.

1.4.1 The Schwarzschild solution

A solution with the latter two parameters set to zero is referred to as the Schwarzschild

solution and represents the simplest possible black hole. The behaviour of quantum fields

on this spacetime has been studied extensively and three different quantum states have

been defined [15]. These are the Boulware state which is as empty as possible to a static

observer far from the black hole [16], the Unruh state which is the natural state to use

when modelling a black hole formed from gravitational collapse [5] and the Hartle-Hawking

state which represents a black hole in an unstable equilibrium of thermal radiation at the

Hawking temperature [17,18]. Calculations of renormalised expectation values of the scalar

condensate 〈ŜC〉 and the SET 〈T̂µν〉 in each of these quantum states have been performed

widely; further details can be found in [19–34] and references therein.

1.4.2 The Reissner-Nordström solution

The Reissner-Nordström metric is the black hole solution that has only the angular mo-

mentum parameter set to zero and which represents a charged, non-rotating black hole.

Such black holes are thought unlikely to be physically relevant since a charged black hole

can preferentially attract particles of the opposite charge. Also, when quantum effects are

taken into account, the black hole will preferentially emit Hawking radiation consisting

of particles of the opposite charge [39]. Both of these processes will tend to reduce the

charge of the black hole and ultimately neutralise it. Furthermore, most objects in the

Universe are spinning and thus have nonzero angular momentum.

Nevertheless, Reissner-Nordström spacetime is mathematically interesting from the

viewpoint of exploring how the presence of a black hole charge changes the behaviour of

quantum fields from that of Schwarzschild spacetime. In Part II of this thesis, we construct

a number of different analogues of the states defined in Schwarzschild spacetime in order

to study the behaviour of quantum fields in Reissner-Nordström spacetime.

We will be particularly interested in the phenomenon of superradiance, which is a

radiation enhancement effect involving dissipative systems [35]. In Reissner-Nordström

spacetime, charge superradiance arises due to the interaction of the charges of the black

hole and of the field [36–38]; this causes low-frequency modes of the classical field to

undergo superradiant scattering by which incoming waves are reflected, from the black

hole, back to infinity with a greater amplitude than they were incident with, thereby

extracting charge from the Reissner-Nordström black hole. There is also a quantum ana-

logue, whereby Reissner-Nordström black holes spontaneously emit a flux of particles in

the classically superradiant modes [1, 39] and which we study in detail in Part II.
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The interaction of the charge of the black hole and the field charge also affects the

Hawking radiation emitted by the black hole, thereby influencing the process of black hole

evaporation [40–43]. The Unruh state has recently been constructed for a charged scalar

field in Reissner-Nordström-de Sitter spacetime [44, 45]. Apart from the aforementioned

work, there has been relatively little study of either the phenomenon of quantum superra-

diance or the definition of quantum states for a charged scalar field in Reissner-Nordström

spacetime. Thus it is instructive to briefly review studies of quantum field theory in an-

other black hole spacetime that also exhibits superradiance, namely the Kerr spacetime,

and into which considerably more investigation has been conducted.

1.4.3 The Kerr solution

The Kerr metric is the black hole solution which has only the electromagnetic charge

parameter set to zero. This is the most physically relevant solution since it is thought to

be the category that is representative of astrophysical black holes. Superradiance arises

in Kerr spacetimes due to the co-rotation of a field with the black hole. Interestingly, the

only classical fields that exhibit superradiant scattering in Kerr spacetime are bosonic [46].

However, both bosonic and fermionic quantum fields cause Kerr black holes to emit Unruh-

Starobinskii radiation, which is the quantum analogue of classical superradiance [47,48].

The existence of quantum superradiance in the Kerr case diminishes our ability to

define certain analogue quantum states with the same interpretations as their correspond-

ing states in Schwarzschild spacetime. As we might expect from the absence of classical

superradiance for fermionic fields, this is more apparent in the case of bosonic fields than

fermionic ones [49–53]. For example, it is no longer possible to define a Boulware state

(see §2.3.1) associated to a scalar field that is simultaneously empty at both past and

future null infinity I ± [50, 52], and though it is possible to do so for a fermionic field,

such a state is not everywhere regular, i.e. the expectation values of quantum observables

in this state are divergent somewhere in the spacetime. Attempts to construct a Boulware

state fail due to a superradiant flux of particles outgoing at I +, which further precludes

defining a state with the time-reversal invariance of the Schwarzschild Boulware state [54].

Though it is possible to construct an analogue of the Schwarzschild Unruh state in

Kerr spacetime with similar physical interpretations [55], this is not the case for the

Schwarzschild Hartle-Hawking state which is a Hadamard state (these are defined in §1.6).

One cannot define a state that is regular across both the past and future event horizons

unlike the Schwarzschild Hartle-Hawking state by the Kay-Wald theorem [56, 57], which

proves rigorously the nonexistence of stationary Hadamard states in Kerr spacetime. In-

deed, attempts to do so either result in states which are divergent in some part of the

spacetime exterior to the black hole [49–53] or that are not in a thermal equilibrium [15].

Instead Candelas, Chrzanowski and Howard were led to define the CCH state in [15],

where the acronym “CCH” is derived from the authors’ names. While the CCH state is

indeed a thermal state, it is not regular across both the past and future event horizon [15].

As earlier stated, superradiance in Kerr spacetime arises due to the co-rotation of the

field with the Kerr black hole. Thus, it is not entirely clear as to whether the difficulties in

defining quantum states are primarily due to rotation or to superradiance. In Minkowski
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spacetime, in the absence of spacetime curvature, the construction of rotating states is

considerably involved [58, 59] and rigidly-rotating states do not exist in the unbounded

spacetime for bosonic fields [60]; on the other hand, for fermionic fields, such states can

be constructed [61, 62] but they are not everywhere regular. The references above have

studied the effects of rotation in flat spacetimes in the absence of superradiance.

1.4.4 Motivations for studying QFT in Reissner-Nordström spacetime

Thus, it is hoped that the work in Part II on quantum field theory in Reissner-Nordström

spacetime, which studies black hole superradiance in the absence of rotation, can help to

disentangle the physical effects of rotation and superradiance in the Kerr case. A further

advantage of our study here is that the Kerr solution lacks spherical symmetry due to

the black hole rotating about a given axis. Instead it is said to be axisymmetric, which

is a significantly weaker symmetry constraint and also makes performing renormalisation

more difficult [55]. In contrast, the irrotational nature of the Reissner-Nordström solution

means that it retains spherical symmetry which considerably simplifies calculations in this

spacetime and allows for potentially easier renormalisation.

We will not attempt direct calculations of renormalised expectation values of observ-

ables in Part II, instead relying on the geometric, state-independent divergent terms can-

celling when considering the difference between expectation values of observables in two

separate quantum states. We also consider components of observables which do not re-

quire renormalisation. However, the work in Part III of this thesis provides the general

framework by which the Hadamard renormalisation procedure can be performed for a

charged scalar field. We therefore introduce briefly the main concepts of renormalisation

of observables associated to a neutral scalar field, particularly the Hadamard procedure.

1.5 Renormalisation and Wald’s axioms

The expectation values 〈ŜC〉, 〈Ĵµ〉 and 〈T̂µν〉 all contain products of field operators eval-

uated at the same spacetime point and are therefore formally divergent. For example, in

the case of a neutral scalar field, the expectation value of the scalar condensate 〈ŜC〉

〈ŜC〉 = 〈Φ̂2〉 , (1.13)

is infinite without subtracting off the divergent parts. This requires the introduction of a

renormalisation scheme whereby we subtract off divergent terms in the expectation values

of observables to leave a physically reasonable quantity that, in the case of 〈T̂µν〉ren and

〈Ĵµ〉ren, can be used as source terms in Einstein’s semiclassical field equations (1.11) and

the semiclassical Maxwell equations (1.12) respectively.

There exist several such renormalisation schemes, each with its own advantages and

disadvantages. The question then arises as to which renormalisation method is the most

suitable for our study. The point-splitting approach developed in [63,64] has proven to be

an extremely powerful and general method. One of the advantages of this approach is that

it was developed in conjunction with Wald’s axioms, which are a set of four statements:
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1. Conservation of the renormalised stress-energy tensor (RSET), i.e. ∇µ〈T̂µν〉ren = 0.

2. Natural causality requirements are satisfied.

3. Value of the matrix element 〈A| T̂µν |B〉 for orthogonal states |A〉 , |B〉 is preserved.

4. 〈T̂µν〉ren should reduce to that of a normal-ordered SET in Minkowski spacetime.

All renormalisation methods for the RSET that satisfy Wald’s axioms result in a renor-

malised expectation value 〈T̂µν〉ren which is unique up to the addition of a local conserved

tensor; this ambiguity in the RSET corresponds to the freedom to add any local conserved

to the r.h.s of Einstein’s semiclassical field equations (1.11).

The general philosophy of the point-splitting approach is to consider the product of

field operators evaluated at closely separated spacetime points [65–67]. In the case of the

expectation value of the scalar condensate (1.13), we would instead consider the expression

〈ŜC〉 = 〈Φ̂(x) Φ̂
(
x′
)
〉 , (1.14)

where x is in a normal neighbourhood of x′ such that there exists a unique geodesic

connecting the two spacetime points. Through a suitable regularisation procedure, the

divergences that arise in the coincidence limit x′ → x can be identified and then subtracted

off before we bring the two spacetime points together; such an approach is agnostic of the

specific quantum state under consideration since the divergent terms are purely geometric

and therefore state-independent [2, 68].

1.6 Hadamard renormalisation

In this section, we will give a rapid overview of the Hadamard renormalisation procedure

for a neutral scalar field, which has already been developed in detail for a scalar field of

arbitrary mass and coupling to the scalar curvature on a general background spacetime in

any number of spacetime dimensions in [68].

It is useful to note that it has been rigorously demonstrated that the Hadamard renor-

malisation procedure described below results in an RSET that satisfies Wald’s axioms and

which is unique to the addition of a local conserved tensor [69–77]. Hadamard renormali-

sation has also been developed for the electromagnetic field [78], the Stuc̈kelberg massive

electromagnetic field [79], one-loop quantum gravity [80], p-forms [81] and fermions [82–85];

in part III, we will extend Hadamard renormalisation to charged scalar fields.

Hadamard renormalisation uses the point-splitting approach; in this scheme we write

the expectation value of the quantum observables in terms of the Feynman Green’s function

GF(x, x′) associated to the field, which is itself divergent in the coincidence limit x′ → x.

We consider the Feynman Green’s function, as opposed to the Wightman function, since in

Part III we will generalise, to charged scalar fields, the treatment of Decanini and Folacci

in [68] where the former is considered.

Consider a massive, neutral scalar field Φ satisfying the Klein-Gordon equation

(
�−m2 − ξR

)
Φ = 0, (1.15)
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where the d’Alembertian � = ∇µ∇µ and ξ is a coupling constant that describes the

coupling of the field to the scalar curvature R. In parts I and II of this thesis, we will

consider a minimally-coupled scalar field for which ξ = 0. In contrast, the field is said to

be conformally coupled if the coupling constant ξ takes the value ξ = ξc, where

ξc =
d− 2

4 (d− 1)
. (1.16)

In part III, when developing Hadamard renormalisation for charged scalar fields, we will

consider the coupling constant ξ to be arbitrary. In [86], it is shown to be a physically

reasonable assumption that a quantised field is in a Hadamard state. Then, the Feynman

Green’s function GF(x, x′) associated to a Hadamard state can be written as

− iG
(d)
F

(
x, x′

)
= 〈T [Φ̂(x) Φ̂†

(
x′
)
]〉, (1.17)

where T denotes normal-ordering andG
(d)
F (x, x′) satisfies the inhomogeneous field equation

(
�−m2 − ξR

)
G

(d)
F

(
x, x′

)
= − [−g(x)]−

1
2 δ(d)

(
x− x′

)
, (1.18)

where δ(d)(x− x′) denotes the Dirac delta function in d spacetime dimensions. We see

that G
(d)
F (x, x′) (1.17) acts as a scalar in both of its arguments x and x′; it is thus known

as a biscalar. Divergences in the various expectation values can then be identified from

the divergences that arise in the Feynman Green’s function as we take the limit x′ → x.

We therefore need to write the Feynman Green’s function in a form where we can

identify the divergent terms; we call this expansion the Hadamard parametrix. Given that

the point-splitting approach involves taking one of the field operators to a nearby spacetime

point x′ distinct from x, it is intuitive that the Hadamard parametrix should depend on

the geodetic distance between x and x′, which can be written in terms of Synge’s world

function σ(x, x′). Assuming that the spacetime point x′ is in a normal neighbourhood of

x, then there is a unique geodesic connecting x′ to x. We can parametrise this geodesic in

terms of an affine parameter λ, where λ0 ≤ λ ≤ λ1, and the tensor zµ(λ) with the values

zµ(λ0) := x′ and zµ(λ1) := x. Defining the tangent vector tµ to zµ(λ) as tµ to dzµ/dλ, we

have the following definition for Synge’s world function σ(x, x′):

σ
(
x, x′

)
=

1

2
(λ1 − λ0)

∫ λ1

λ0

gµν(z) tµtνdλ, (1.19)

where the integral in (1.19) is evaluated on the unique geodesic between x and x′. Synge’s

world function σ(x, x′) is equal to half the geodetic distance between x and x′ such that

2σ
(
x, x′

)
= gµν σ

;µσ ;ν . (1.20)

In four spacetime dimensions, the Hadamard parametrix is given by

− iG
(4)
F

(
x, x′

)
=

1

4π

{
U (4)(x, x′)

[σ(x, x′) + iε]
+ V (4)

(
x, x′

)
ln

[
σ(x, x′)
`2ren

+ iε

]
+W (4)

(
x, x′

)
}
,

(1.21)
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where U (4)(x, x′), V (4)(x, x′) and W (4)(x, x′) are symmetric biscalars regular in the limit

x′ → x, and which can be expanded in powers of the world function σ(x, x′) as

U (4)
(
x, x′

)
= U

(4)
0

(
x, x′

)
, (1.22a)

V (4)
(
x, x′

)
=
∞∑

n=0

V (4)
n

(
x, x′

)
σn
(
x, x′

)
, (1.22b)

W (4)
(
x, x′

)
=

∞∑

n=0

W (4)
n

(
x, x′

)
σn
(
x, x′

)
. (1.22c)

The renormalisation length scale `ren is required to make the argument of the logarithm

in (1.21) dimensionless. The expansion of the Feynman Green’s function in terms of the

Hadamard parametrix in (1.21) allows us to define a Hadamard state in four dimensions

as a state possessing a smooth W (4)(x, x′) biscalar. More generally, a Hadamard state in

any number of spacetime dimensions is one possessing a smooth W (d)(x, x′) biscalar.

We can write G
(4)
F (x, x′) (1.21) as the sum of a regular part G

(4)
R (x, x′) and a part

G
(4)
S (x, x′) which is divergent in the coincidence limit according to

G
(4)
F

(
x, x′

)
= G

(4)
S

(
x, x′

)
+G

(4)
R

(
x, x′

)
, (1.23)

where the quantity G
(4)
S (x, x′) in (1.23) is defined by

− iG
(4)
S

(
x, x′

)
=

1

4π

{
U (4)(x, x′)

[σ(x, x′) + iε]
+ V (4)

(
x, x′

)
ln

[
σ(x, x′)
`2ren

+ iε

]}
, (1.24)

and the quantity G
(4)
R (x, x′) in (1.23) is defined by

− iG
(4)
R

(
x, x′

)
= −i

[
G

(4)
F

(
x, x′

)
−G (4)

S

(
x, x′

)]
=

1

4π
W (4)

(
x, x′

)
. (1.25)

We can then write the renormalised expectation values of observables in terms of the

regularised Green’s function G
(4)
R (x, x′) (1.25). For example, in the case of the scalar

condensate example given earlier in (1.14), we have simply

〈ŜC〉ren = lim
x′→x

<
{
−iG

(d)
R

(
x, x′

)}
. (1.26)

In practice, we will need to evaluate explicitly the U (4)(x, x′) and V (4)(x, x′) biscalars up

to a sufficient order for computation of the expectation value of the observables under

consideration. In order to do this, we require the van Vleck-Morette determinant ∆(x, x′)

∆
(
x, x′

)
= − [−g(x)]−

1
2 det

[
σ;µν′

(
x, x′

)] [
−g
(
x′
)]− 1

2 , (1.27)

where the subscript ;µ′ refers to the covariant derivative evaluated at the spacetime point

x′. The van Vleck-Morette determinant ∆(x, x′) (1.27) gives the rate at which geodesics

converge or diverge away from each other [87]. It is related to Synge’s world function by

�σ = d− 2∆−
1
2 ∆

1
2
;µσ

;µ, (1.28)
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in d dimensions, and with the boundary condition

lim
x′→x

∆
(
x, x′

)
= 1. (1.29)

If we were to consider an particular quantum state, in a particular background spacetime

with particular values of the scalar field mass m and coupling to the scalar curvature ξ, we

could generate explicit expressions for the renormalised expectation values of observables.

However, in part III we will instead develop the general framework for Hadamard

renormalisation of a charged scalar field in a general background spacetime of arbitrary

dimension leaving the charge, mass and coupling to the scalar curvature of the field unde-

termined. We will derive explicitly the geometric renormalisation counterterms contained

within the the biscalars U (d)(x, x′) and V (d)(x, x′) up to the required order for computation

of the RSET in two, three and four spacetime dimensions. We will also derive expressions

for the renormalised expectations values 〈ŜC〉ren, 〈Ĵµ〉ren and 〈T̂µν〉ren in terms of the bis-

calar W (d)(x, x′). We will conclude with a discussion of the renormalisation ambiguities

in each of the expectation values we derive.



Chapter 2

Quantum scalar field theory in

Schwarzschild spacetime

In this chapter, we review quantum field theory in Schwarzschild spacetime. Our aim in

this chapter is to provide context to our work in Part II and therefore we do not reproduce

some of the more involved derivations; analogous but novel calculations pertaining to the

Reissner-Nordström case can be found in Part II. In §2.1, we introduce the Schwarzschild

solution. We introduce a scalar field on this spacetime in §2.2 and, lastly, we define the

three main states associated to a scalar field in Schwarzschild spacetime in §2.3.

2.1 The Schwarzschild solution

The simplest possible black hole solution is Schwarzschild spacetime; it is convenient to use

the Schwarzschild coordinate system (t, r, θ, ϕ) in order to study it. The first coordinate, t,

is timelike and the rest are spacelike. The spacelike coordinates are the familiar spherical

polar coordinates. Then, Schwarzschild spacetime is described by the line element

ds2 = −fs(r) dt2 + fs(r)
−1 dr2 + r2dθ2 + r2sin2θ dϕ2, (2.1)

where the Schwarzschild metric function fs(r) is given by

fs(r) = 1− 2M

r
. (2.2)

We have added a subscript “s” to the Schwarzschild metric function fs(r), and more gener-

ally to any quantities defined in Schwarzschild spacetime that have analogues in Reissner-

Nordström spacetime, in order to distinguish it from the metric function of Reissner-

Nordström spacetime that we introduce in Chapter 3.

The Schwarzschild solution describes the exterior of a spherically symmetric ball of

matter that is classically surrounded by an empty vacuum. However, when we consider a

quantum field on this spacetime, the background gravitational fields give rise to radiation

which can reach infinity and so the ball of matter is no longer surrounded by a vacuum.

Let us assume that the ball of matter is a star whose mass exceeds the Chandrasekhar

limit; in this case we can reasonably assume that the star will eventually collapse under

12



Quantum scalar field theory in Schwarzschild spacetime 13

the force of gravity to form a black hole. We will consider this black hole system a long

time after the collapse; in this case it is referred to as an eternal black hole. Then we

can interpret the quantity M in (2.2) as the black hole mass. The Schwarzschild metric

function fs(r) (2.2) has a root rH given by

rH = 2M. (2.3)

This is the familiar location of the event horizon of the Schwarzschild black hole. The

value of the metric function (2.3) on the Schwarzschild black hole horizon vanishes as

fs(rH) = 1− 2M

2M
= 0, (2.4)

and thus, from (2.1), the Schwarzschild metric (2.2) diverges on the horizon. This gives us

a clue that the Schwarzschild coordinates do not give the full picture. In order to proceed,

we define a new radial coordinate. Consider radial null geodesics; from (2.1), we have

dt2 =

(
1− 2M

r

)−2

dr2. (2.5)

If we define a new coordinate r∗, which we refer to as the tortoise coordinate, such that

dr2
∗ =

(
1− 2M

r

)−2

dr2, (2.6)

then radial null geodesics take the simple form dt2 = dr∗2, and (2.1) becomes

ds2 = −fs(r) dt2 + fs(r) dr2
∗ + r2 dθ2 + r2sin2θ dϕ2. (2.7)

Demanding that r∗ be real and monotonically increasing with r, we can solve (2.6) to give

r∗ = r + 2M ln

(
r − 2M

2M

)
. (2.8)

The tortoise coordinate r∗ has a number of useful properties. Firstly, the range 2M < r <

∞ is mapped onto the range −∞ < r∗ <∞; we will see that this will be especially useful

when examining the asymptotic behaviour of quantities near the Schwarzschild black hole

horizon since r∗ → −∞ as r → rH. We can differentiate (2.8) to obtain the useful relation

dr∗
dr

= fs(r)
−1. (2.9)

Since the Schwarzschild metric function fs(r) is analytic, we can invert (2.9) to obtain

dr

dr∗
= fs(r) . (2.10)

From (2.10), we see why r∗ is referred to as the tortoise coordinate; since dr
dr∗
→ 0 as

r → 2M+, then r changes more and more slowly with r∗ as we near the black hole event

horizon. The second useful property of the tortoise coordinate is that we can use it to

define new coordinates which will reveal more of the spacetime. We define a pair of new

coordinates, which we refer to as lightcone coordinates, by the expressions
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Figure 2.1. Penrose diagram for the maximally-extended Schwarzschild solution showing the space-

time regions I, II, III and IV. Lines of constant Schwarzschild-like radial coordinate r and Kruskal

coordinate U, V corresponding to physically significant surfaces are shown. Surfaces of interest in

region I include the past (future) event horizon H− (H+) and past (future) null infinity I − (I +);

their corresponding surfaces in region IV are labelled with a subscript IV. Event horizons in region

I correspond to a constant rH = 2M and a spacetime singularity is located at r = 0. Past (future)

timelike infinity is denoted by i+ (i−) and spacelike infinity is denoted by i0.

u = t− r∗, and v = t+ r∗, (2.11)

such that lines of constant u correspond to outgoing null geodesics and lines of constant v

correspond to ingoing null geodesics. Then the Schwarzschild line element (2.7) becomes

ds2 = −fs(r) du dv + r2dθ2 + r2sin2θ dϕ2. (2.12)

A component of the inverse metric associated with the Schwarzschild metric (2.12) in

terms of lightcone coordinates is still divergent on the event horizon. From (2.11), we

define a new pair of coordinates, which we will refer to as Kruskal coordinates, given by

U = − exp
(
− u

4M

)
, and V = exp

( v

4M

)
. (2.13)

In terms of Kruskal coordinates, the Schwarzschild line element (2.12) becomes

ds2 = −32M3

r
exp
(
− r

2M

)
dUdV + r2dθ2 + r2sin2θ dϕ2. (2.14)

From the expression for the Schwarzschild metric in terms of Kruskal coordinates (2.14),

which is defined for nonzero values of the radial coordinate r, we see that the divergence

in the line element in terms of Schwarzschild coordinates (2.1) is a coordinate singularity.

However, the point r = 0 represents a physical singularity in the spacetime curvature.

Having introduced Kruskal coordinates in (2.13), we can now access all regions of the

maximally-extended Schwarzschild solution in Figure 2.1. We now proceed to introducing

a scalar field Φ on a background Schwarzschild spacetime.
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2.2 Scalar fields on a background Schwarzschild spacetime

In this section, we will restrict our attention to a massless neutral scalar field Φ which

is minimally-coupled to the spacetime curvature. In general, the scalar field may possess

a mass m as well as arbitrary coupling ξ to the scalar curvature. However, in Part II

of this thesis, we will consider a massless, minimally-coupled charged scalar field on a

background Reissner-Nordström spacetime; our purpose in Part I of this thesis is to study

a similar set-up in Schwarzschild spacetime, which is a simpler black hole solution without

the added complications of the charge possessed by a Reissner-Nordström black hole.

One might ask why we consider a neutral scalar field in Part I as opposed to a charged

scalar field, which we consider later on. As we will see in Part II, most of the interest-

ing physical phenomena that occur in charged scalar field theory in Reissner-Nordström

spacetime are as a result of the interaction of the scalar field charge and the charge of

the black hole. Since a Schwarzschild black hole does not possess a charge, it is simpler

to introduce the general formalism of quantum field theory in curved spacetime in this

chapter without the additional baggage of a scalar field charge.

A massless, minimally-coupled scalar field Φ is governed by the scalar field equation

�Φ =
1√−g ∂µ

(√−g ∂µΦ
)

= 0. (2.15)

Our treatment of deriving solutions to the scalar field equation (2.15) is deliberately concise

since we solve the scalar field equation associated to a charged scalar field in a background

Reissner-Nordström spacetime in considerable detail in §3.2. We can expand (2.15) in

terms of the Schwarzschild coordinates introduced in §2.1 to obtain

− 1

f(r)

∂2Φ

∂t2
+

1

r2

∂

∂r

[
f(r)r2∂Φ

∂r

]
+

1

r2sin θ

∂

∂θ

[
sin θ

∂Φ

∂θ

]
+

1

r2sin2θ

∂2Φ

∂ϕ2
= 0, (2.16)

where we have used both the inverse and the determinant g of the metric (2.1). The scalar

field equation (2.18) admits a separable solution of the form

φω`m =
e−iωt

r
NωXω`(r)Y`m(θ, ϕ) . (2.17)

The harmonic time-dependence e−iωt of the solution in (2.17) is a consequence of the fact

that the Schwarzschild solution is stationary, as can be seen from the time-independence of

the metric (2.1); a stationary spacetime is one which admits a time-translation Killing vec-

tor. Furthermore, a stationary spacetime can be considered static if the time-translation

Killing vector is hypersurface-orthogonal. In terms of the spacetimes considered in this

thesis, both Schwarzschild and Reissner-Nordström spacetimes are static, whereas Kerr

spacetime is an example of a spacetime that is stationary but not static. The normalisa-

tion constant Nω allows us to generate an orthonormal basis from the solutions to (2.17),

which we require to quantise the field Φ, while Xω`(r) and Y`m(θ, ϕ) represent the radial

and angular functions respectively. Given the spherical symmetry of Schwarzschild space-

time, which is apparent from the angular parts of the metric (2.1) being proportional to

the metric on the 2-sphere gΩ = dθ2 + sin2θ dϕ2, we anticipate that the angular functions
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Y`m(θ, ϕ) will be the spherical harmonics. Substituting (2.17) into (2.16) and separating

the radial and angular parts, we obtain

r2ω

f(r)
+

r

Xω`(r)

d

dr

[
f(r)r2 d

dr

(
Xω`(r)

r

)]

= − 1

Y`m(θ, ϕ)

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2θ

∂2

∂ϕ2

]
Y`m(θ, ϕ) = λ, (2.18)

where the constant λ is a separation constant. The angular part of (2.18) is precisely the

equation that is solved by the spherical harmonics; from their properties, the separation

constant is written in terms of the total angular momentum quantum number ` as

λ = `(`+ 1) , ` in Z≥0 and ` ≥ |m| . (2.19)

The spherical harmonics are explored in greater detail in §3.2.3 and further identities are

derived in Appendix A. The explicit form of the separation constant (2.19) allows us to

write the radial part of (2.18) in the form of the well-known Regge-Wheeler equation

[
d2

dr2∗
− Veff(r)

]
Xω`(r) = 0, (2.20)

where the scalar field effective potential Veff(r), which is the one-dimensional effective

potential felt by a field mode φω`m in a background Schwarzschild spacetime, is given by

Veff(r) =
f(r)

r2

[
`(`+ 1) + f

′
(r)r

]
− ω2. (2.21)

Near the horizon and far from the black hole, the scalar field effective potential Veff (2.21)

takes the particularly simple asymptotic form

Veff(r) ∼ −ω2, r∗ → −∞, r∗ →∞. (2.22)

Then, near the horizon and far from the back hole, the radial equation (2.20) becomes

[
d2

dr2∗
+ ω2

]
Xω`(r) = 0, (2.23)

which has asymptotic solutions of the form

Xω`(r) ∼ e±iωr∗ , r∗ → −∞, r∗ →∞. (2.24)

The asymptotic forms of the radial function Xω`(r) allow us to generate various mode

solutions φω`m to the scalar field equation (2.15). The mode solutions can be motivated

by physical considerations of how the field should behave in the background spacetime,

which is how we derive the modes in §3.3. For the sake of brevity, we will simply state the

asymptotic forms of the radial functions associated to each mode here and we refer the

reader to §3.3 for their detailed physical interpretation. The first mode solution we consider

are the in-modes φin
ω`m, whose associated radial function X in

ω`(r) has the asymptotic forms
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X in
ω`(r) ∼




Bin
ω` e−iωr∗ r∗ → −∞,

e−iωr∗ +Ain
ω` eiωr∗ r∗ →∞.

(2.25)

Another solution is the up-modes φup
ω`m with Xup

ω` (r) taking the asymptotic forms

Xup
ω` (r) ∼





eiωr∗ +Aup
ω` e−iωr∗ r∗ → −∞,

Bup
ω` eiωr∗ r∗ →∞.

(2.26)

The in- and up-modes form an orthogonal basis of scalar field modes; we will refer to this

basis as the ‘past’ basis. Another orthogonal basis of out-modes φout
ω`m and down-modes

φdown
ω`m , which we will refer to as the ‘future’ basis, can be constructed from the complex

conjugates of the radial functions X in
ω`(r) and Xup

ω` (r) respectively. Then, the asymptotic

forms of the out-mode radial function Xout
ω` (r) are given by

Xout
ω` (r) ∼




Bin∗
ω` eiωr∗ r∗ → −∞,

eiωr∗ +Ain∗
ω` e−iωr∗ r∗ →∞,

(2.27)

and the asymptotic forms of the down-mode radial function Xdown
ω` (r) are given by

Xdown
ω` (r) ∼





e−iωr∗ +Aup∗
ω` eiωr∗ r∗ → −∞,

Bup∗
ω` e−iωr∗ r∗ →∞.

(2.28)

Since Xout
ω` (r) = X in∗

ω` (r), the in- and out-mode radial functions are linearly independent

solutions of the radial equation (2.20); similar comments apply for the up- and down-mode

radial functions since Xdown
ω` (r) = Xup∗

ω` (r). The Wronskian W (X1, X2), which is given by

W (X1, X2) = X1
dX2

dr∗
−X2

dX1

dr∗
, (2.29)

of any two linearly independent solutions X1, X2 of (2.20) is independent of r∗. Then we

can evaluate the Wronskian (2.29) for X in
ω`(r) and Xout

ω` (r) near the horizon to obtain

W
(
X in
ω`, X

out
ω`

)
= Bin

ω` e−iωr∗
(
iωBin∗

ω` eiωr∗
)
−Bin∗

ω` eiωr∗
(
−iωBin

ω` e−iωr∗
)

= 2 iω
∣∣Bin

ω`

∣∣2,
(2.30)

while evaluating the Wronskian (2.29) for X in
ω`(r) and Xout

ω` (r) near infinity, we obtain

W
(
X in
ω`, X

out
ω`

)
=
(
e−iωr∗ +Ain

ω` eiωr∗
)(

iω eiωr∗ − iωAin∗
ω` e−iωr∗

)

−
(
eiωr∗ +Ain∗

ω` e−iωr∗
)(
−iωe−iωr∗ + iωAin

ω` eiωr∗
)

= 2 iω
[
1−

∣∣Ain
ω`

∣∣2
]
. (2.31)

Equating (2.30) and (2.31) for the Wronskian W
(
X in
ω`, X

out
ω`

)
leads to the relation

∣∣Bin
ω`

∣∣2 = 1−
∣∣Ain

ω`

∣∣2. (2.32)

A similar set of calculations for the Wronskian W
(
Xup
ω` , X

down
ω`

)
leads to the relation
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∣∣Bup
ω`

∣∣2 = 1−
∣∣Aup

ω`

∣∣2. (2.33)

Interpreting (2.32) and (2.33) as the standard scattering relations allows us to ascribe a

natural interpretation to the complex constants Aω` and Bω` in (2.25 – 2.28) as reflection

and transmission coefficients respectively. From (2.32) and (2.33), we have |Aω`| ≤ 1

meaning that there is no superradiant scattering in Schwarzschild spacetime.

In order to quantise the field Φ, we need to normalise each of the mode solutions

defined above by evaluating their normalisation constants Nω. This is done by taking

the Klein-Gordon inner product of any two similar mode solutions over a suitably chosen

Cauchy surface Σ and demanding that the modes be orthonormal. The Klein-Gordon

inner product for any two mode solutions φ1, φ2 of the scalar field equation (2.15) is [10]

〈φ1, φ2〉 = −i

∫

Σ
[φ∗1 (∇µ φ2)− (∇µ φ∗1)φ2 ]

√−g dΣµ. (2.34)

In §3.4, we evaluate both the norms and the normalisation constants of each of the in-, up-,

out- and down-modes in Reissner-Nordström spacetime in considerable detail. Since the

calculation of the corresponding quantities in Schwarzschild spacetime is similarly involved

but somewhat less illuminating, given its comparative simplicity, we refer the reader to

§3.4 for a detailed reading. Instead, using the notation k = in,up, out,down to label the

specific mode solution, we write down the normalisation constants of each mode as

Nk
ω =

1√
4π|ω|

, (2.35)

i.e. Nk
ω takes the same value for all modes. The normalisation constants (2.35) ensure

〈φk
ω`m, φ

k
ω′`′m′〉 = δ

(
ω − ω′

)
δ``′ δmm′ . (2.36)

From (2.36), the norm of the complex conjugate of a general mode φk∗
ω`m is given by

〈φk∗
ω`m, φ

k∗
ω′`′m′〉 = −δ

(
ω − ω′

)
δ``′ δmm′ . (2.37)

Then the general form of a scalar field mode φk
ω`m is given by

φk
ω`m =

1√
4π|ω|

1

r
e−iωtXk

ω`(r)Y`m(θ, ϕ) , (2.38)

where the asymptotic forms of the radial functionsXk
ω`(r) associated to each of the different

mode solutions are those given in (2.25 – 2.28). Using relations derived by evaluating the

Wronskian (2.29) for various combinations of Xk
ω`(r) as well as the normalisation constants

(2.35), we can write the out-modes and the down-modes in terms of in- and up-modes as

φout
ω`m = Ain∗

ω` φ
in
ω`m +Bin∗

ω` φ
out
ω`m, (2.39a)

φdown
ω`m = Aup∗

ω` φ
up
ω`m +Bup∗

ω` φ
in
ω`m. (2.39b)
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2.3 Quantum field theory in Schwarzschild spacetime

In order to canonically quantise the field, we need to decompose the scalar field modes

introduced in §2.2 into sets of positive- and negative-frequency modes; upon quantisa-

tion positive-frequency modes will be multiplied by annihilation operators and negative-

frequency modes will be multiplied by creation operators.

In Minkowski spacetime, there is a natural global vacuum. In QFTCS, however, there

does not generally exist a unique way to decompose the field into positive- and negative-

frequency modes; this, in turn, is intimately tied to the fact that there does not exist a

unique vacuum state in curved spacetimes. In particular, we can consider the scalar field

modes to be positive- and negative-frequency with respect to a variety of choices of time

coordinate in order to define states with a certain physical interpretation.

There are three main states that have been defined in Schwarzschild spacetime, namely

the Schwarzschild Boulware state |Bs〉 [16], the Schwarzschild Unruh state |Us〉 [5] and the

Schwarzschild Hartle-Hawking state |Hs〉 [17]. We will now discuss each of these states in

turn, taking care to explain the physical choice of time coordinate with respect to which

we define positive- and negative-frequency modes in each case.

2.3.1 Schwarzschild Boulware state

The Schwarzschild Boulware state |Bs〉 [16] has the physical interpretation of being as

empty as possible to an observer far from the black hole, i.e. both past and future null

infinity I ±. In terms of the scalar field modes defined in §2.1, this corresponds to an

absence of particles in both the in- and out-modes.

Schwarzschild spacetime is asymptotically flat and thus becomes indistinguishable from

Minkowski spacetime as r → ∞. Then, far from the black hole, the proper time experi-

enced by a static observer is the Schwarzschild coordinate t and we can define positive-

and negative-frequency modes in the way familiar from quantum field theory in Minkowski

spacetime. A general scalar field mode φk
ω`m given by

φk
ω`m =

1√
4π|ω|

1

r
e−iωtXk

ω`(r)Y`m(θ, ϕ) , ω > 0, (2.40)

is considered to be positive-frequency with respect to t and its complex conjugate φk∗
ω`m

φk∗
ω`m =

1√
4π|ω|

1

r
e iωtXk∗

ω`(r)Y
∗
`m(θ, ϕ) , ω > 0, (2.41)

is considered to be negative-frequency with respect to t. Then, it is natural to expand the

field Φ(x) in terms of in- and out-modes to obtain

Φ(x) =

∞∑

`=0

∑̀

m=−`

∫ ∞

0
dω
{
ãin
ω`mφ

in
ω`m + ãin†

ω`mφ
in∗
ω`m + ãout

ω`mφ
out
ω`m + ãout†

ω`mφ
out∗
ω`m

}
, (2.42)

where the mode expansion coefficients ãin
ω`m and ãout

ω`m multiply positive-frequency modes

and the mode expansion coefficients ã†inω`m and ã†out
ω`m multiply negative-frequency modes.
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However, the in- and out-modes are not orthogonal to each other, and therefore do not

form an orthonormal basis of scalar field modes which we require to quantise the field.

From §2.2, the in- and up-modes do form an orthonormal basis; we would then like to

re-express the out-modes in (2.42) in terms of in- and up-modes. Using (2.39a), we have

Φ(x) =

∞∑

`=0

∑̀

m=−`

∫ ∞

0
dω
{
ain
ω`mφ

in
ω`m + ain†

ω`mφ
in∗
ω`m + aup

ω`mφ
up
ω`m + aup†

ω`mφ
up∗
ω`m

}
, (2.43)

where the mode coefficients in (2.43) are related to those in (2.42) by the expressions

ain
ω`m = ãin

ω`m +Ain∗
ω` ã

out
ω`m, ω > 0,

aup
ω`m = Bin∗

ω` ã
out
ω`m, ω > 0. (2.44)

We quantise the field by promoting the mode expansion coefficients in (2.43) to operators

such that the field operator Φ̂(x) is given by

Φ̂(x) =
∞∑

`=0

∑̀

m=−`

∫ ∞

0
dω
{
âin
ω`mφ

in
ω`m + âin†

ω`mφ
in∗
ω`m + âup

ω`mφ
up
ω`m + âup†

ω`mφ
up∗
ω`m

}
, (2.45)

where the operators in (2.45) obey the following commutation relations

[
âin
ω`m, â

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ ,

[
âup
ω`m, â

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , (2.46)

with any commutators not explicitly given in (2.46) vanishing. The Schwarzschild Boul-

ware state |Bs〉 is then defined as the state annihilated by the â
in/up
ω`m operators such that

âin
ω`m |Bs〉 = 0,

âup
ω`m |Bs〉 = 0. (2.47)

Using (2.47), we can act with the field operator Φ̂ (2.45) on |Bs〉 to generate an expression

for the scalar condensate 〈Φ̂2〉|Bs〉 in the Schwarzschild Boulware state. We have

Φ̂ |Bs〉 =

∞∑

`=0

∑̀

m=−`

∫ ∞

0
dω
{
φin∗
ω`mâ

in†
ω`m |Bs〉+ φup∗

ω`mâ
up†
ω`m |Bs〉

}
, (2.48)

〈Bs| Φ̂ =

∞∑

`=0

∑̀

m=−`

∫ ∞

0
dω
{
φin
ω`m 〈Bs| âin

ω`m + φup
ω`m 〈Bs| âup

ω`m

}
. (2.49)

Putting (2.48) and (2.49) together, we obtain
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〈Bs| Φ̂2 |Bs〉

=
∞∑

`=0

∑̀

m=−`

∞∑

`′=0

`′∑

m′=−`′

∫ ∞

0
dω dω′

{
φin
ω`m φ

in∗
ω′`′m′ 〈Bs| âin

ω`m â
in†
ω′`′m′ |Bs〉

+ φup
ω`m φ

up∗
ω′`′m′ 〈Bs| âup

ω`m â
up†
ω′`′m′ |Bs〉

}
. (2.50)

Using the commutation relations (2.46), (2.50) becomes

〈Bs|Φ̂2 |Bs〉 (2.51)

=
∞∑

`=0

∑̀

m=−`

∞∑

`′=0

`′∑

m′=−`′

∫ ∞

0
dω dω′

{
φin
ω`m φ

in∗
ω′`′m′ + φup

ω`m φ
up∗
ω′`′m′

}
δ
(
ω − ω′

)
δ``′ δmm′ .

(2.52)

Then the scalar condensate 〈Φ̂2〉|Bs〉 in the Schwarzschild Boulware state is given as

〈Bs| Φ̂2 |Bs〉 =

∞∑

`=0

∑̀

m=−`

∫ ∞

0
dω
{∣∣φin

ω`m

∣∣2 +
∣∣φup
ω`m

∣∣2
}
. (2.53)

The Schwarzschild Boulware state |Bs〉 is as empty as possible to a static observer near

past and future null infinity I ±. It respects the underlying symmetries of the background

Schwarzschild spacetime and it has the property of being time-reversal invariant [16, 88].

However, this state is divergent on the event horizon. It can be interpreted physically as

the vacuum state in the exterior of a star which does not possess a horizon.

2.3.2 Schwarzschild Unruh state

The Schwarzschild Unruh state |Us〉 [5] has the physical interpretation of being as empty as

possible at past null infinity I − as well as exhibiting outgoing Hawking radiation at future

null infinity I +. In terms of the scalar field modes defined in §2.2, this corresponds to an

absence of particles in the in-modes and a thermalised flux of particles in the up-modes.

We have already defined in-modes that are positive- and negative-frequency w.r.t the

Schwarzschild coordinate t, which is the proper time experienced by a static observer near

past null infinity I −, in (2.40) and (2.41) respectively.

The outgoing Hawking radiation at future null infinity I + in |Us〉 is emanating from

the past horizon H−; the Kruskal coordinate U is the affine parameter along the null

generators of this surface. Near H−, the natural choice of time coordinate is the Kruskal

retarded time U . In defining positive-frequency up-modes w.r.t U we make use of the

Lemma in Appendix H of [89] which states that, for positive real p and arbitrary real q,

∫ ∞

−∞
dX e−ipX

{
e−iq ln(X) Θ(X) + e−πq e−iq ln(−X) Θ(−X)

}
= 0. (2.54)

The quantity in the curly brackets of (2.54) is positive-frequency w.r.t X by the definition

in (4.2). We begin by expressing the asymptotic form (2.26) of the up-modes near the

past horizon H− in Kruskal coordinates. Using (2.11) and (2.13), we have that near H−
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φup
ω`m =

1√
4π|ω|

1

r
eiω̂ ln(−U) Y`m(θ, ϕ) , (2.55)

where we have defined ω̂ = 4Mω. The Kruskal coordinates are defined in all four regions

of the Penrose diagram in Figure 2.1. The up-modes φup
ω`m are defined in regions I and III,

where U < 0. We can trivially extend their definition to regions II and IV by using the

Heaviside function (4.5) to demand that they vanish when U > 0. Then, (2.55) becomes

φup
ω`m =

1√
4π|ω|

1

r
eiω̂ ln(−U) Y`m(θ, ϕ) Θ(−U) . (2.56)

The first term of (2.54) can be constructed from the asymptotic form of the up-modes

(2.56) if we take X = U and q = −ω̂. The second term of (2.54) can be constructed by

taking the time-reverse complex conjugate to define a set of modes ψdown
ω`m near H+

IV as

ψdown
ω`m =

1√
4π|ω|

1

r
e−iω̂ ln(U) Y ∗`m(θ, ϕ) Θ(U) , (2.57)

where taking the time-reverse corresponds to making the transformations U → −U , V →
−V , which means that the modes ψdown

ω`m (2.57) are defined in regions II and IV, vanishing

in regions I and III. Since these modes are incident upon the future horizon H+
IV, they

can be understood as the region IV analogue of the down-modes defined in §2.1; we refer

to them henceforth as the region IV down-modes and we will continue to use the notation

ψω`m to denote sets of modes that are defined in region IV, vanishing in region I.

We write the mathematical expression in (2.54), multiplied by an appropriate factor,

as a linear combination of the asymptotic form of the up-modes near H− (2.56) and the

complex conjugate of the asymptotic form of the region IV down-modes near H+
IV (2.57):

0 =
1√

4π|ω|
1

r
Y`m(θ, ϕ)

∫ ∞

−∞
dU e−ipU

{
eiω̂ ln(U) Θ(U) + eπω̂ eiω̂ ln(−U) Θ(−U)

}

=

∫ ∞

−∞
dU e−ipU

{
ψdown∗
ω`m + eπω̂φup

ω`m

}
. (2.58)

By the lemma above, the quantity
{
ψdown∗
ω`m + eπω̂φup

ω`m

}
is positive-frequency w.r.t U for

all ω̂; multiplying by a normalisation factor Nup+
ω e−

πω̂
2 , we define a set of modes χup+

ω`m

χup+
ω`m = Nup+

ω

(
e−

πω̂
2 ψdown∗

ω`m + e
πω̂
2 φup

ω`m

)
(2.59)

that is positive-frequency w.r.t U for all ω̂. We define negative-frequency up-modes using

the complex conjugate of the Lemma (2.54); for positive real p and arbitrary real q,

∫ ∞

−∞
dX eipX

{
eiq ln(X) Θ(X) + e−πq eiq ln(−X) Θ(−X)

}
= 0. (2.60)

The quantity in the curly brackets of (2.54) is negative-frequency with respect to the vari-

able X by the definition in (4.4). If we take X = U and q = ω̂ then the mathematical

expression in (2.60), multiplied by an appropriate factor, can be written as a linear combi-

nation of the asymptotic form of the up-modes near H− (2.56) and the complex conjugate

of the asymptotic form of the region IV down-modes near H+
IV (2.57); we obtain
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0 =
1√

4π|ω|
Y`m(θ, ϕ)

∫ ∞

−∞
dU eipU

{
eiω̂ ln(U) Θ(U) + e−πω̂ eiω̂ ln(−U) Θ(−U)

}

=

∫ ∞

−∞
dU eipU

{
ψdown∗
ω`m + e−πω̂φup

ω`m

}
. (2.61)

By the lemma above, the quantity
{
ψdown∗
ω`m + e−πω̂φup

ω`m

}
is negative-frequency w.r.t U for

all ω̂; multiplying by a normalisation factor Nup−
ω e

πω̂
2 , we define a set of modes χup−

ω`m

χup−
ω`m = Nup−

ω

(
e
πω̂
2 ψdown∗

ω`m + e−
πω̂
2 φup

ω`m

)
(2.62)

that is negative-frequency w.r.t U for all ω̂. The norm of the region IV down-modes can

be evaluated through a method similar to that used to evaluate the corresponding region

IV down-modes in Reissner-Nordström spacetime in §4.4.1. Again, due to the calculation

being considerably involved, we do not reproduce it here but instead refer the reader to

§4.4.1 for a detailed reading of an analogous case. We give the norm of a set of general

region IV modes ψk
ω`m and its complex conjugate ψk∗

ω`m as

〈ψk
ω`m, ψ

k
ω′`′m′〉 = δ

(
ω − ω′

)
δ``′ δmm′ ⇒ 〈ψk∗

ω`m, ψ
k∗
ω′`′m′〉 = −δ

(
ω − ω′

)
δ``′ δmm′ .

(2.63)

Then, we derive the form of the normalisation constants Nup±
ω in (2.59) and (2.62) to be

Nup±
ω =

1

(2| sinh(πω̂)|) 1
2

. (2.64)

Since the in- and up-modes form an orthonormal basis of modes, we expand the field Φ as

Φ(x) =

∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω
(
ain
ω`mφ

in
ω`m + ain†

ω`mφ
in∗
ω`m

)

+

∫ ∞

−∞
dω
(
aup
ω`m χ

up+
ω`m + aup†

ω`m χ
up−
ω`m

)}
, (2.65)

where the mode expansion coefficients ain
ω`m and aup

ω`m multiply positive-frequency modes

and the mode expansion coefficients ain†
ω`m and aup†

ω`m multiply negative-frequency modes.

We quantise the field by promoting the mode expansion coefficients in (2.65) to operators

such that the field operator Φ̂(x) is given by

Φ(x) =

∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω
(
âin
ω`mφ

in
ω`m + âin†

ω`mφ
in∗
ω`m

)

+

∫ ∞

−∞
dω
(
âup
ω`m χ

up+
ω`m + âup†

ω`m χ
up−
ω`m

)}
, (2.66)

where the operators in (2.66) obey the following commutation relations
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[
âin
ω`m, â

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ ,

[
âup
ω`m, â

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , (2.67)

with any commutators not explicitly given in (2.67) vanishing. The Schwarzschild Unruh

state |Us〉 is then defined as the state annihilated by the â
in/up
ω`m operators such that

âin
ω`m |Us〉 = 0,

âup
ω`m |Us〉 = 0. (2.68)

Using (2.68), we can act with the field operator Φ̂ (2.66) on |Us〉 to generate an expression

for the scalar condensate 〈Φ̂2〉|Us〉 in the Schwarzschild Unruh state. We have

Φ̂ |Us〉 =
∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω φin∗

ω`mâ
in†
ω`m |Us〉+

∫ ∞

−∞
dω χup−

ω`mâ
up†
ω`m |Us〉

}
, (2.69)

〈Us| Φ̂ =

∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω φin

ω`m 〈Us| âin
ω`m +

∫ ∞

−∞
dω
(
χup−
ω`m

)∗
〈Us| âup

ω`m

}
. (2.70)

Putting (2.69) and (2.70) together, we obtain

〈Us| Φ̂2 |Us〉 =

∞∑

`=0

∑̀

m=−`

∞∑

`′=0

`′∑

m′=−`′

{∫ ∞

0
dω dω′ φin

ω`m φ
in∗
ω′`′m′ 〈Us| âin

ω`m â
in†
ω′`′m′ |Us〉

+

∫ ∞

−∞
dω dω′

(
χup−
ω`m

)∗
χup−
ω′`′m′ 〈Us| âup

ω`m â
up†
ω′`′m′ |Us〉

}
. (2.71)

Using the commutation relations (2.67), (2.71) becomes

〈Us| Φ̂2 |Us〉 =
∞∑

`=0

∑̀

m=−`

∞∑

`′=0

`′∑

m′=−`′

{∫ ∞

0
dω dω′ φin

ω`m φ
in∗
ω′`′m′

+

∫ ∞

−∞
dω dω′

(
χup−
ω`m

)∗
χup−
ω′`′m′

}
δ
(
ω − ω′

)
δ``′ δmm′

=

∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω
∣∣φin
ω`m

∣∣2 +

∫ ∞

−∞
dω
∣∣∣χup−
ω`m

∣∣∣
2
}
. (2.72)

Restricting attention to region I, as well as using (2.62) and (2.64), (2.72) reduces to

〈Us| Φ̂2 |Us〉 =
∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω
∣∣φin
ω`m

∣∣2 +

∫ ∞

−∞
dω

e−πω̂

(2| sinh(πω̂)|)
∣∣φup
ω`m

∣∣2
}
, (2.73)

where we have used the fact that the ψdown
ω`m (2.57) vanish in region I. We can simplify the

integral over the square of the absolute value of the up-modes in (2.73) as
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∫ ∞

−∞
dω

e−πω̂

(2| sinh(πω̂)|)
∣∣φup
ω`m

∣∣2

=

∫ ∞

0
dω

e−πω̂

(2 sinh(πω̂))

∣∣φup
ω`m

∣∣2 +

∫ 0

−∞
dω

e−πω̂

(−2 sinh(πω̂))

∣∣φup
ω`m

∣∣2

=

∫ ∞

0
dω

e−πω̂

(2 sinh(πω̂))

∣∣φup
ω`m

∣∣2 +

∫ 0

∞
d (−ω)

eπω̂

(−2 sinh(−πω̂))

∣∣φup
−ω`m

∣∣2

=

∫ ∞

0
dω

e−πω̂

(2 sinh(πω̂))

∣∣φup
ω`m

∣∣2 +

∫ ∞

0
dω

eπω̂

(2 sinh(πω̂))

∣∣φup
ω`m

∣∣2

=

∫ ∞

0
dω

e−πω̂ + eπω̂

(2 sinh(πω̂))

∣∣φup
ω`m

∣∣2 =

∫ ∞

0
dω coth(πω̂)

∣∣φup
ω`m

∣∣2 , (2.74)

where we have performed the substitution ω → −ω in going from the first equality to the

second and we have used the fact that
∣∣φup
−ω`m

∣∣2 =
∣∣φup
ω`m

∣∣2 in going from the second equality

to the third, which follows from the general form of a mode (2.38) and the asymptotic

form of the up-mode radial function Xup
ω` (r) (2.26). Then the scalar condensate 〈Φ̂2〉|Us〉

in the Schwarzschild Unruh state |Us〉 is given as

〈Us| Φ̂2 |Us〉 =
∞∑

`=0

∑̀

m=−`

∫ ∞

0
dω
{∣∣φin

ω`m

∣∣2 + coth(4Mπω)
∣∣φup
ω`m

∣∣2
}
. (2.75)

The Schwarzschild Unruh state |Us〉 is empty to a static observer near past null infinity

I − but contains an outgoing flux of Hawking radiation at future null infinity I +. While

regular on the future horizonH+, it diverges on the past horizonH−; it is not time-reversal

invariant [5, 88]. This state represents a black hole formed by gravitational collapse.

2.3.3 Schwarzschild Hartle-Hawking state

The Schwarzschild Hartle-Hawking state |Hs〉 [17] has the physical interpretation of ex-

hibiting both incoming Hawking radiation from past null infinity I − as well as outgoing

Hawking radiation at future null infinity I +. In terms of the scalar field modes defined

in §2.2, this corresponds to a thermal flux of particles in both the up- and down-modes.

The outgoing Hawking radiation at future null infinity I + in |Hs〉 is emanating from

the past horizon H−; the Kruskal coordinate U is the affine parameter along the null

generators of this surface. We have already defined thermalised up-modes that are positive-

and negative-frequency w.r.t U in (2.59) and (2.62) respectively.

The incoming Hawking radiation from past null infinity I − in |Hs〉 is incident upon

the future horizon H+; the Kruskal coordinate V is the affine parameter along the null

generators of this surface. Then, near H+, the natural choice of time coordinate is the

Kruskal advanced time V . We define positive- and negative-frequency down-modes w.r.t

V using the Lemma (2.54) and its complex conjugate (2.60) respectively.

The asymptotic form (2.28) of the down-modes near the future horizon H+ is given by

φdown
ω`m =

1√
4π|ω|

1

r
e−iω̂ ln(V ) Y`m(θ, ϕ) Θ(V ) . (2.76)
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The first term of (2.54) can be constructed from the asymptotic form of the down-modes

(2.76) if we take X = V and q = ω̂; the second term can be constructed by taking the

time-reverse complex conjugate to define the region IV up-modes ψup
ω`m near H−IV as

ψup
ω`m =

1√
4π|ω|

1

r
eiω̂ ln(−V ) Y ∗`m(θ, ϕ) Θ(−V ) . (2.77)

Then, multiplying the Lemma by an appropriate factor, we can write (2.54) as a linear

combination of the asymptotic form of the down-modes near H+ (2.76) and the complex

conjugate of the asymptotic form of the region IV up-modes near H−IV (2.77); we obtain

0 =
1√

4π|ω|
1

r
Y`m(θ, ϕ)

∫ ∞

−∞
dV e−ipV

{
e−iω̂ ln(V ) Θ(V ) + e−πω̂ e−iω̂ ln(−V ) Θ(−V )

}

=

∫ ∞

−∞
dV e−ipV

{
φdown
ω`m + e−πω̂ψup∗

ω`m

}
. (2.78)

By the lemma (2.54), the quantity
{
φdown
ω`m + e−πω̂ψup∗

ω`m

}
is positive-frequency w.r.t V for

all ω̂; multiplying by a normalisation factor Ndown+
ω e

πω̂
2 , we define a set of modes χdown+

ω`m

χdown+
ω`m = Ndown+

ω

(
e
πω̂
2 φdown

ω`m + e−
πω̂
2 ψup∗

ω`m

)
(2.79)

that is positive-frequency w.r.t V for all ω̂. We define negative-frequency down-modes

using the complex conjugate (2.60) of the Lemma; if we take X = V and q = −ω̂, a

multiplication of (2.60) by an appropriate factor can be written as a linear combination

of the asymptotic form of the down-modes near H+ (2.76) and the complex conjugate of

the asymptotic form of the region IV up-modes near H−IV (2.77); we obtain

0 =
1√

4π|ω|
Y`m(θ, ϕ)

∫ ∞

−∞
dV eipV

{
e−iω̂ ln(V ) Θ(V ) + eπω̂ e−iω̂ ln(−V ) Θ(−V )

}

=

∫ ∞

−∞
dV eipV

{
φdown
ω`m + eπω̂ψup∗

ω`m

}
. (2.80)

By the lemma (2.60), the quantity
{
φdown
ω`m + eπω̂ψup∗

ω`m

}
is negative-frequency w.r.t V for

all ω̂; multiplying by a normalisation factor Ndown−
ω e−

πω̂
2 , we define a set of modes χdown−

ω`m

χdown−
ω`m = Ndown−

ω

(
e−

πω̂
2 φdown

ω`m + e
πω̂
2 ψup∗

ω`m

)
(2.81)

that is negative-frequency w.r.t V for all ω̂. Then, using (2.59), (2.62), (2.79) and (2.79),

we expand the field Φ in a basis of up- and down-modes as

Φ(x) =

∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω
{
ãup
ω`m χ

up+
ω`m + ãup†

ω`m χ
up−
ω`m + ãdown

ω`m χdown+
ω`m + ãdown†

ω`m χdown−
ω`m

}
.

(2.82)

However, the up- and down-modes do not form an orthonormal basis, which we require to

quantise the field; the in- and up-modes do however. We would instead like define a set of

thermalised in-modes. Near H+, the asymptotic form (2.25) of the in-modes is given by
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φin
ω`m =

Bin
ω`√

4π|ω|
1

r
e−iω̂ ln(V ) Y`m(θ, ϕ) Θ(V ) . (2.83)

Comparing the near H+ asymptotic expressions of the in-modes (2.83) with that of the

down-modes (2.76), we see that we can define a set of modes χin+
ω`m

χin+
ω`m = Nin+

ω

(
e
πω̂
2 φin

ω`m + e−
πω̂
2 ψout∗

ω`m

)
(2.84)

that is positive-frequency w.r.t V for all ω̂ and a set of modes χin−
ω`m

χin−
ω`m = Nin−

ω

(
e−

πω̂
2 φin

ω`m + e
πω̂
2 ψout∗

ω`m

)
(2.85)

that is negative-frequency w.r.t V for all ω̂, where the only difference in the derivation

of (2.84) and (2.85) relative to (2.79) and (2.81) respectively is that the lemma and its

complex conjugate have been multiplied by an extra factor of the transmission coefficient

Bin
ω`. Then, the normalisation constants Nin± are given by

Nin±
ω =

1

(2| sinh(πω̂)|) 1
2

. (2.86)

In order to rewrite the χdown±
ω`m in terms of χin±

ω`m, χ
up±
ω`m, we need to relate both their region

I and IV parts. From the expression for φdown
ω`m in terms of φup

ω`m, φ
in
ω`m (3.71b), we have

ψup
ω`m = Aup∗

ω` ψ
down
ω`m +Bup∗

ω` ψ
out
ω`m. (2.87)

Then, using (2.39b) and (2.87), we have

χdown
ω`m = Aup∗

ω` χ
up
ω`m +Bup∗

ω` χ
in
ω`m. (2.88)

Using (2.59), (2.62), (2.84) and (2.85), we can expand the field Φ in an orthonormal basis

of in- and up-modes as

Φ(x) =

∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω
{
aup
ω`m χ

up+
ω`m + aup†

ω`m χ
up−
ω`m + ain

ω`m χ
in+
ω`m + ain†

ω`m χ
in−
ω`m

}
, (2.89)

where the mode coefficients in (2.89) are related to those in (2.82) by the expressions

aup
ω`m = ãup

ω`m +Aup∗
ω` ãdown

ω`m ,

ain
ω`m = Bup∗

ω` ã
down
ω`m . (2.90)

We quantise the field by promoting the mode expansion coefficients in (2.89) to operators

such that the field operator Φ̂(x) is given by

Φ̂(x) =
∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω
{
âup
ω`m χ

up+
ω`m + âup†

ω`m χ
up−
ω`m + âin

ω`m χ
in+
ω`m + âin†

ω`m χ
in−
ω`m

}
, (2.91)
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where the operators in (2.91) obey the following commutation relations

[
âin
ω`m, â

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ ,

[
âup
ω`m, â

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , (2.92)

with any commutators not explicitly given in (2.92) vanishing. The Schwarzschild Hartle-

Hawking state is then defined as the state annihilated by the â
in/up
ω`m operators such that

âin
ω`m |Hs〉 = 0,

âup
ω`m |Hs〉 = 0. (2.93)

Using (2.93), we can act with the field operator Φ̂ (2.91) on |Hs〉 to generate an expression

for the scalar condensate 〈Φ̂2〉|Hs〉 in the Schwarzschild Hartle-Hawking state. We have

Φ̂ |Hs〉 =
∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω
{
χin−
ω`mâ

up†
ω`m |Hs〉+ χup−

ω`mâ
up†
ω`m |Hs〉

}
, (2.94)

〈Hs| Φ̂ =
∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω
{(
χin−
ω`m

)∗〈Hs| âin
ω`m +

(
χup−
ω`m

)∗
〈Hs| âup

ω`m

}
. (2.95)

Putting (2.94) and (2.95) together, we obtain

〈Hs| Φ̂2 |Hs〉 =
∞∑

`=0

∑̀

m=−`

∞∑

`′=0

`′∑

m′=−`′

∫ ∞

−∞
dω dω′

{(
χin−
ω`m

)∗
χin−
ω′`′m′ 〈Hs| âin

ω`m â
in†
ω′`′m′ |Hs〉

+
(
χup−
ω`m

)∗
χup−
ω′`′m′ 〈Hs| âup

ω`m â
up†
ω′`′m′ |Hs〉

}
. (2.96)

Using the commutation relations (2.92), (2.96) becomes

〈Hs| Φ̂2 |Hs〉 =

∞∑

`=0

∑̀

m=−`

∞∑

`′=0

`′∑

m′=−`′

∫ ∞

−∞
dω dω′

{(
χin−
ω`m

)∗
χin−
ω′`′m′

+
(
χup−
ω`m

)∗
χup−
ω′`′m′

}
δ
(
ω − ω′

)
δ``′ δmm′

=
∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω

{∣∣χin−
ω`m

∣∣2 +
∣∣∣χup−
ω`m

∣∣∣
2
}
. (2.97)

Restricting attention to region I, (2.96) reduces to

〈Hs| Φ̂2 |Hs〉 =

∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω

{
e−πω̂

(2| sinh(πω̂)|)
∣∣φin
ω`m

∣∣2 +
e−πω̂

(2| sinh(πω̂)|)
∣∣φup
ω`m

∣∣2
}
,

(2.98)

where we have used the fact that the ψ
out/down
ω`m vanish in region I. Through a similar

calculation to that in (2.74), we derive the expression for the scalar condensate 〈Φ̂2〉|Hs〉
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〈Hs| Φ̂2 |Hs〉 =

∞∑

`=0

∑̀

m=−`

∫ ∞

0
dω coth(4Mπω)

{∣∣φin
ω`m

∣∣2 +
∣∣φup
ω`m

∣∣2
}
. (2.99)

The Schwarzschild Hartle-Hawking state |Hs〉 can be interpreted as a black hole in an un-

stable equilibrium of thermal radiation at the Hawking temperature [88]. It has attractive

regularity properties in that it is regular on both the past and future horizons H± as well

as being time-reversal invariant [17,18].



Part II

Quantum charged scalar fields in

Reissner-Nordström spacetime
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Chapter 3

Classical charged scalar fields in

Reissner-Nordström spacetime

In §3.1, we introduce the Reissner-Nordström solution and discuss its geometry. We include

a Penrose diagram. We introduce a scalar field on this spacetime in §3.2 and solve the

associated scalar field equation. In §3.3, we motivate different mode solutions to the

scalar field equation before demonstrating the phenomenon of classical superradiance. We

conclude by calculating the inner products of the various mode solutions in §3.4 in order

to evaluate their norms and associated normalisation constants.

3.1 The Reissner-Nordström solution

In this section, we introduce the Reissner-Nordström solution to Einstein-Maxwell theory

and discuss three possible scenarios, before restricting our attention to the sub-extremal

case that will be our focus for the rest of Part II of this thesis. We then introduce new co-

ordinate systems that progressively reveal more regions of Reissner-Nordström spacetime,

and which is summarised in the form of a Penrose diagram.

3.1.1 Einstein-Maxwell theory

The Einstein-Maxwell action, which describes the coupling of gravity to the electromag-

netic field and also to a charged scalar field in four spacetime dimensions, is given by

S =
1

16π

∫
d4x (R− FµνFµν −DµΦDµΦ)

√−g, (3.1)

where the electromagnetic field strength tensor Fµν , written in terms of the electromagnetic

gauge potential Aµ, is defined by

Fµν = ∇µAν −∇νAµ, (3.2)

and the gauge covariant derivative operator Dµ, which depends upon the charge q pos-

sessed by the scalar field, is given by

Dµ = ∇µ − iqAµ. (3.3)
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Variation of the action (3.1) with respect to the metric leads to the following equation of

motion relating the curvature of the spacetime to the stress-energy tensors of the electro-

magnetic field and of the scalar field:

Gµν := Rµν −
1

2
gµνR = T F

µν + T Φ
µν , (3.4)

where the Einstein tensor Gµν is defined by the first equality in (3.4) and where T F
µν is

T F
µν = FµρF

ρ
ν −

1

4
gµνFρτF

ρτ . (3.5)

The homogeneous Maxwell’s equation, which follows immediately from the definition of

Fµν in (3.2), is given by

∇[µFνλ] = 0. (3.6)

The inhomogeneous Maxwell’s equation can be derived by varying the action (3.1) with

respect to the gauge field Aµ to give

∇µFµν = Jν . (3.7)

Varying the action (3.1) with respect to the field Φ leads to the scalar field equation

DµD
µΦ = 0. (3.8)

We will discuss the scalar field equation, as well as how to solve it, in detail in §3.2.2.

We introduce a new coordinate system (t, r, θ, ϕ), which is analogous to the Schwarzschild

coordinate system introduced in §2.1; we will refer to this coordinate system as the

Schwarzschild-like coordinates. The geometry of Reissner-Nordström spacetime is de-

scribed, in terms of Schwarzschild-like coordinates, by the line element

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2dθ2 + r2sin2θ dϕ2, (3.9)

where the (Reissner-Nordström) metric function f(r) in (3.9) is given by

f(r) = 1− 2M

r
+
Q2

r2
. (3.10)

We will drop the identifier “Reissner-Nordström” and refer to (3.10) as the metric function

for the remainder of Part II of this thesis. The metric function (3.10) differs to that

of Schwarzschild spacetime by the addition of a term proportional to Q, which we can

interpret as the charge of the black hole. Its presence arises due to the electromagnetic

gauge field potential Aµ, which is given explicitly by

Aµ =
(
−Q
r 0 0 0

)
. (3.11)

The expression for Aµ in (3.11) corresponds to a choice of gauge; in this case, we have

chosen a constant of integration such that the value of the gauge field potential Aµ vanishes

far from the black hole as r →∞. It is shown in [44,45] that Aµ can be chosen to vanish at

any fixed value of the radial coordinate r by means of a gauge transformation. In Part III
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of this thesis, which deals with Hadamard renormalisation of charged scalar fields, we will

leave the value of the gauge potential Aµ arbitrary; however, where an explicit expression

of the gauge field is specified, it will always be given by (3.11). One can easily see that

the electromagnetic potential Aµ (3.11) satisfies the Lorenz gauge condition

∇µAµ = ∇tAt = 0, (3.12)

since the expression in (3.11) is time-independent.

The metric function (3.10) has two roots r+ and r−, which are given by

r± = M ±
√
M2 −Q2. (3.13)

From (3.13), there are three possible scenarios. The first, for which M2 > Q2, is called

the sub-extremal case. In this case, r+ is the location of the black hole event horizon and

r− is an inner Cauchy horizon; the latter does not exist in Schwarzschild spacetime. The

second, for which M2 = Q2, is the extremal case. In this case, the two horizons coincide.

The third, for which M2 < Q2, is called the super-extremal case and gives rise to a naked

singularity. In this thesis, we will only consider the sub-extremal case, i.e. M2 > Q2.

Therefore, the location of the black hole event horizon r+ is given herein by

r+ = M +
√
M2 −Q2, (3.14)

and we note that the metric function (3.10) vanishes on the event horizon such that

f(r+) = 0, (3.15)

rendering the metric (3.9) of Reissner-Nordström spacetime singular on the black hole

event horizon. As was the case in Schwarzschild spacetime, this is a coordinate singularity;

in §3.1.2, we will introduce the analogues of the lightcone and Kruskal coordinate systems

in Reissner-Nordström spacetime, which are not plagued by this singularity.

Before we do so, however, it is useful to consider some of the general properties of the

Reissner-Nordström solution. The spacetime described by the Reissner-Nordström metric

(3.9) is both static and spherically symmetric; the fact that it is static is evident from the

metric (3.9) being independent of the time coordinate t and the fact that it is spherically

symmetric is evident from the angular parts of the metric (3.9) being proportional to

the metric on the 2-sphere gΩ = dθ2 + sin2θ dϕ2. It turns out that the line element

(3.9) together with the expression for the metric function (3.10) and the form of the

gauge field potential (3.11) is the unique static, spherically symmetric solution to the

Einstein-Maxwell equations, by a statement analogous to Birkhoff’s theorem; the proof of

this statement is outside the scope of this thesis. The fact that the Reissner-Nordström

solution is static and spherically symmetric will continue to be important throughout

Part II of this thesis and, in particular, will inform our choice of ansatz for the scalar field

equation when we introduce a scalar field on this spacetime in §3.2.

Finally, for reference, we give the inverse metric gµν and the determinant of the metric

g. From (3.9), the inverse metric is given, in terms of Schwarzschild-like coordinates, as
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Figure 3.1. Penrose diagram for the maximally-extended sub-extremal Reissner-Nordström solution

showing the spacetime regions I, II, III and IV. Lines of constant Schwarzschild-like radial coor-

dinate r and Kruskal coordinate U, V corresponding to physically significant surfaces are shown.

Surfaces of interest in region I include the past (future) event horizon H− (H+) and past (future)

null infinity I − (I +); their corresponding surfaces in region IV are labelled with a subscript IV.

Event horizons in both regions correspond to a constant r = r+. The inner Cauchy horizon lies at

r = r− and a spacetime singularity is located at r = 0. Past (future) timelike infinity is denoted

by i+ (i−) and spacelike infinity is denoted by i0.

gµν = diag
(
−f(r)−1 , f(r) , r−2, r−2 cosec2θ

)
, (3.16)

and the metric determinant g is given by

g = −r4 sin2θ. (3.17)

3.1.2 Geometry of Reissner-Nordström spacetime

The Schwarzschild-like coordinates used to describe the Reissner-Nordström solution (3.9)

are only defined in region I of the Penrose diagram in Figure 3.1. We can reveal more

regions of the spacetime by introducing lightcone coordinates. As was the case in §2.1, we

first introduce the tortoise coordinate r∗ which is defined only in region I, and which, in

Reissner-Nordström spacetime, is related to the Schwarzschild-like radial coordinate r by
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dr∗ = f(r)−1 dr. (3.18)

In region I, the range r+ < r < ∞ of the Schwarzschild-like coordinate r is mapped on

to the range −∞ < r∗ < ∞ of the tortoise coordinate. This makes r∗ particularly useful

in describing the asymptotic behaviour of quantities near to the horizon and far from the

black hole. Indeed, we will write down a basis of mode solutions to the scalar field equation

in terms of r∗ when we introduce a scalar field on Reissner-Nordström spacetime in §3.2.

Rewriting the line element (3.9) in terms of the tortoise coordinate r∗, we have

ds2 = −f(r) dt2 + f(r) dr2
∗ + r2dθ2 + r2sin2θ dϕ2. (3.19)

Then, we can define the lightcone coordinates (u, v) according to

u = t− r∗, and v = t+ r∗. (3.20)

The equations in (3.20) can be inverted to give expressions for t and r∗ as

t =
1

2
(u+ v) , r∗ =

1

2
(v − u) . (3.21)

We further note, from (3.20), that

du = dt− dr∗, and dv = dt+ dr∗. (3.22)

Using (3.22), we rewrite the line element (3.19) in terms of the lightcone coordinates as

ds2 = −f(r) du dv + r2dθ2 + r2sin2θ dϕ2. (3.23)

We can now define Kruskal coordinates in Reissner-Nordström spacetime, in relation to

the lightcone coordinates, by the following expressions

U = −1

κ
e−κu, and V =

1

κ
eκv, (3.24)

where the surface gravity at the event horizon, κ, is given explicitly as

κ =
1

2
f ′(r+) =

1

r2
+

(r+ −M) . (3.25)

The equations in (3.24) can also be inverted to give expressions for the lightcone coordi-

nates (u, v) in terms of the Kruskal coordinates (U, V ) according to

u = −1

κ
ln (−κU) , v =

1

κ
ln (κV ) . (3.26)

We further note, from (3.24), that

dU = e−κu du, and dV = eκv dv. (3.27)

From (3.27), and using (3.20), we have

dU dV = eκ(v−u)dudv = e2κr∗dudv, (3.28)
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Using (3.28), we can rewrite the line element in (3.23) as

ds2 = −f(r) e−2κr∗ dU dV + r2dθ2 + r2sin2θ dϕ2

= −2 ζ(r) dU dV + r2dθ2 + r2sin2θ dϕ2, (3.29)

where we have defined

ζ(r) =
f(r) e−2κr∗

2
, (3.30)

and the factor of 1
2 in the definition of ζ(r) is such that we can simplify the expression of

the metric in terms of Kruskal coordinates. In Kruskal coordinates, the inverse metric is

gµν =




0 − 1

ζ(r)
0 0

− 1

ζ(r)
0 0 0

0 0 r−2 0

0 0 0 r−2cosec2θ



, (3.31)

and the metric determinant g is given, in terms of Kruskal coordinates, by

g = −ζ(r)2 r4 sin2θ. (3.32)

Having defined Kruskal coordinates in (3.24), we can now access all regions of the

maximally-extended Reissner-Nordström solution in Figure 3.1. In Part II, our primary

concern is region I which is the only physically reasonable region in our opinion. One

might ask why we took the time to introduce Kruskal coordinates at all then.

Of course, from the point of view of completeness in studying the Reissner-Nordström

solution and its geometry, it is important to introduce Kruskal coordinates since these

are the only coordinates which are defined throughout the spacetime. However, it will

turn out that the Kruskal coordinate system will play a much larger role in Part II of this

thesis. In introducing a scalar field in Reissner-Nordström spacetime, the various scalar

field mode solutions that we will define will all take particularly simple asymptotic forms

either near the horizon or far from the black hole. This, in turn, enables the comparatively

simple evaluation of various quantities, be it the calculation of the norm of similar mode

solutions, the definition of quantum states near the horizon or the expectation values of

quantum observables in asymptotic regions, in terms of Kruskal coordinates. With this in

mind, before concluding this section, it is useful to define the dimensionless quantities

Ũ = κU, Ṽ = κV, (3.33)

where κ is given by (3.25); the expressions for the lightcone coordinates (3.26) become

u = −1

κ
ln
(
−Ũ
)
, v =

1

κ
ln
(
Ṽ
)
. (3.34)

We now have all of the necessary knowledge of Reissner-Nordström (RN) spacetime which,

in the language of QFTCS, will be the background spacetime we are working on throughout
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Part II of this thesis. We proceed to considering a classical charged scalar field in Reissner-

Nordström spacetime with an electromagnetic gauge potential Aµ given by (3.11).

3.2 Solving the scalar field equation in RN spacetime

In this section, we study the behaviour of a classical massless, charged scalar field in RN

spacetime. We introduce the scalar field equation, which admits a separable solution. We

generate ODEs describing the behaviour of the radial function and the angular function

separately. We introduce two orthogonal bases of scalar field modes, which allow us to

demonstrate classical charge superradiance for a charged scalar field in RN spacetime.

The section concludes with a calculation of the normalisation constants of these modes.

3.2.1 Introduction

In §3.1, we introduced the RN solution to the Einstein-Maxwell equations (3.1). In this

section, we consider the propagation of a classical charged scalar field Φ in Reissner-

Nordström spacetime with an electromagnetic gauge potential Aµ given by (3.11).

In general, the charged scalar field Φ can also possess a mass m and coupling to the

scalar curvature R, where the strength of the coupling is described by the dimensionless

constant ξ. In Part II, we will restrict ourselves to considering a massless, minimally

coupled scalar field such that we have

m = 0, and ξ = 0. (3.35)

We should add a caveat to say that (3.35) is only valid in Part II. In Part III, we will

consider a charged scalar field of arbitrary mass m and coupling to the scalar curvature ξ.

3.2.2 Scalar field equation

The behaviour of a massless, minimally-coupled charged scalar field Φ is governed by

DµD
µ Φ = 0. (3.36)

We refer to (3.36) as the scalar field equation. Expanding out the gauge covariant deriva-

tives in (3.36) and using the fact that the spacetime covariant derivative ∇µ reduces to a

partial derivative ∂µ when acting on a scalar quantity, the scalar field equation becomes

�Φ− iq (∇µAµ) Φ− 2 iqAµ∂µΦ− q2AµA
µΦ = 0. (3.37)

Rewriting the �Φ term in (3.37) in terms of the metric determinant g, we obtain

1√−g ∂µ
(√−g ∂µΦ

)
− 2 iqAµ∂µΦ− q2AµA

µΦ = 0, (3.38)

where the term involving (∇µAµ) in (3.38) vanishes because the gauge field Aµ satisfies

the Lorenz gauge condition (3.12). In Schwarzschild-like coordinates, (3.38) becomes
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∂t∂
tΦ +

1

r2
∂r
(
r2∂rΦ

)
+

1

sin θ
∂θ

(
sin θ ∂θΦ

)
+ ∂ϕ∂

ϕΦ− 2 iqAt∂tΦ− q2AtA
tΦ = 0, (3.39)

where we have used the metric determinant g (3.17). Then, (3.39) becomes

− 1

f(r)

∂2Φ

∂t2
+

1

r2

∂

∂r

[
f(r)r2∂Φ

∂r

]
+

1

r2sin θ

∂

∂θ

[
sin θ

∂Φ

∂θ

]
+

1

r2sin2θ

∂2Φ

∂ϕ2

− 2 iqQ

f(r)r

∂Φ

∂t
+

q2Q2

f(r)r2
Φ = 0. (3.40)

The derivative operators in (3.40) only consist of partial derivatives acting with respect

to one of the Schwarzschild-like coordinates t, r, θ or ϕ. Then, we see that (3.40) admits

a separable solution in terms of scalar field modes, which we can represent by an ansatz

consisting of functions of the Schwarzschild-like coordinates. We use the symmetries of

the background Reissner-Nordström spacetime to inform us of the general form the ansatz

should take. As described when introducing the Reissner-Nordström solution in §3.1,

Reissner-Nordström spacetime is both static and spherically symmetric.

The staticity of the spacetime means that we would expect our ansatz to have a

harmonic time-dependence; it is natural to expect that this time-dependence will be pro-

portional to the frequency of the mode, which we will denote by ω, such that we can

postulate a harmonic time dependence of the form e−iωt.

We would expect the angular part of the ansatz to respect the spherical symmetry of

RN spacetime. The functions which do this are the spherical harmonics Y`m(θ, ϕ), where

the quantum numbers ` and m correspond to the total angular momentum quantum

number and the azimuthal quantum number respectively. While we expect the angular

function to be given by the spherical harmonics, we will consider Y`m(θ, ϕ) to be an

arbitrary set of functions for now; we will derive the exact form of Y`m(θ, ϕ) from the

separated angular part of the solution to the scalar field equation (3.40).

There is no special symmetry of RN spacetime that might inform us of the possible

form of the radial part of the ansatz and so we leave the radial function Xω`(r) arbitrary.

If we were to consider a purely classical scalar field theory, then it would suffice to

postulate an ansatz which is formed of the product of the functions e−iωt, Y`m(θ, ϕ) and

Xω`(r). However, we will eventually want to quantise the scalar field and we will be

required to expand the field Φ in an orthonormal basis of mode solutions in order to do so.

Thus, we will need to include in our ansatz a normalisation constant Nω, which depends

on the particular mode solution under consideration. Then, we can express our ansatz for

the mode solutions of the scalar field equation (3.40) as

φω`m =
e−iωt

r
NωXω`(r)Y`m(θ, ϕ) , (3.41)

where we have included a factor of r−1 in (3.41) in anticipation of generating an equation

for the radial function Xω`(r) analogous to the Regge-Wheeler equation (2.20). We can

substitute the mode solution ansatz (3.41) into the scalar field equation in (3.40) in order

to obtain a set of separable differential equations; given the harmonic time-dependence
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of the ansatz (3.41), we expect two such differential equations, one containing the radial

function Xω`(r) and another containing the angular function Y`m(θ, ϕ). We obtain

1

f(r)
ω2 +

1

rXω`(r)

d

dr

[
f(r)r2 d

dr

(
Xω`(r)

r

)]

+
1

r2sin θ

1

Y`m(θ, ϕ)

∂

∂θ

(
sin θ

∂

∂θ

)
Y`m(θ, ϕ) +

1

r2sin2θ

1

Y`m(θ, ϕ)

∂2

∂ϕ2
Y`m(θ, ϕ)

− 1

f(r)

2ωqQ

r
+

1

f(r)

q2Q2

r2
= 0. (3.42)

Rearranging and multiplying through by a factor of r2 in order to separate the radial parts

and angular parts of (3.42), we obtain

r2

f(r)

(
ω − qQ

r

)2

+
r

Xω`(r)

d

dr

[
f(r)r2 d

dr

(
Xω`(r)

r

)]

= − 1

Y`m(θ, ϕ)

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2θ

∂2

∂ϕ2

]
Y`m(θ, ϕ) = λ, (3.43)

where λ is a separation constant. From (3.43), we can write down the PDE containing

the angular function Y`m(θ, ϕ), which we refer to as the angular equation, as

1

Y`m(θ, ϕ)

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2θ

∂2

∂ϕ2

]
Y`m(θ, ϕ) = −λ, (3.44)

and we can write down the ODE containing the radial function Xω`(r), which we refer to

as the radial equation, as

r2

f(r)

(
ω − qQ

r

)2

+
r

Xω`(r)

d

dr

[
f(r)r2 d

dr

(
Xω`(r)

r

)]
= λ. (3.45)

We will examine each of the differential equations (3.44) and (3.45) in turn, beginning

with the angular equation (3.44) since this will inform us as to the form of the constant λ.

3.2.3 Angular equation

Given the spherical symmetry of the background Reissner-Nordström spacetime, we rea-

soned that we would expect the angular functions in our mode solution ansatz (3.41) to be

the spherical harmonics. Since the angular equation (3.44) is precisely the equation that

is solved by the spherical harmonics, this is indeed the case; then, the separation constant

is written in terms of the total angular momentum quantum number ` as

λ = `(`+ 1) , ` in Z≥0 and ` ≥ |m| . (3.46)

The spherical harmonics are given by the expression

Y`m(θ, ϕ) = N`m P
m
` (cos θ) eimϕ, (3.47)
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where Pm` (cos θ) is a real Legendre function and the form of the normalisation constant

N`m is determined by the normalisation convention we choose for the spherical harmonics

Y`m(θ, ϕ). We will choose a normalisation convention such that

∫
Y`m(θ, ϕ)Y`′m′(θ, ϕ) sin θ dθ dϕ = δ``′ δmm′ . (3.48)

Then, the normalisation constant Nω` associated to Y`m(θ, ϕ) is given by [90, Eq.14.30.1]

Nω` =

√
(2`+ 1)

4π

(`−m)!

(`+m)!
. (3.49)

Thus, the spherical harmonics Y`m(θ, ϕ) are given explicitly by the expression

Y`m(θ, ϕ) =

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm` (cos θ) eimϕ. (3.50)

The spherical harmonics Y`m(θ, ϕ) (3.50) solve the angular part (3.44) of the scalar field

equation (3.36), while respecting the spherical symmetry of the background RN spacetime.

We derive further identities concerning the spherical harmonics in Appendix A, which will

be useful when calculating the expectation values of quantum observables in Chapter 4.

Having derived the explicit form of the separation constant λ (3.46), we now proceed

to solving the radial equation (3.45); this is the subject of the next section.

3.2.4 Radial equation and scalar field effective potential

Using the expression (3.46) for the separation constant λ in terms of the total angular

momentum quantum number `, the radial equation (3.45) becomes

r2

f(r)

(
ω − qQ

r

)2

+
r

Xω`(r)

d

dr

[
f(r)r2 d

dr

(
Xω`(r)

r

)]
= ` (`+ 1) . (3.51)

We can use the definition of the tortoise coordinate r∗ (3.18) to simplify the second term

on the l.h.s of (3.51) as

d

dr

[
f(r)r2 d

dr

(
Xω`(r)

r

)]
=

d

dr

[
f(r)

{
r

d

dr
Xω`(r)−Xω`(r)

}]

=
d

dr

[
r

dr

dr∗

d

dr
Xω`(r)− f(r)Xω`(r)

]

=
d

dr

[
r

d

dr∗
Xω`(r)− f(r)Xω`(r)

]

= r
d

dr

d

dr∗
Xω`(r) +

d

dr∗
Xω`(r)− f(r)

d

dr
Xω`(r)− f

′
(r)Xω`(r)

=
r

f(r)

d2

dr2∗
Xω`(r)− f

′
(r)Xω`(r) . (3.52)

Substituting (3.52) into (3.51), the radial equation becomes

r

Xω`(r)

[
r

f(r)

d2

dr2∗
Xω`(r)− f

′
(r)Xω`(r)

]
− ` (`+ 1) +

r2

f(r)

(
ω − qQ

r

)2

= 0. (3.53)
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Equation (3.53) simplifies to

d2

dr2∗
Xω`(r)−

f(r)

r2

[
`(`+ 1) + f

′
(r)r − r2

f(r)

(
ω − qQ

r

)2
]
Xω`(r) = 0. (3.54)

We can write (3.54) as

[
d2

dr2∗
− Veff(r)

]
Xω`(r) = 0, (3.55)

where the scalar field effective potential Veff(r), which is the one-dimensional effective

potential felt by a charged scalar field mode φω`m in a background RN spacetime, is

Veff(r) =
f(r)

r2

[
`(`+ 1) + f

′
(r)r

]
−
(
ω − qQ

r

)2

. (3.56)

From (3.56), we see that the scalar field effective potential Veff(r) takes particularly simple

asymptotic forms; near the horizon, where r → r+ and f(r) → 0 (3.15), we may neglect

the first term in (3.56) while far away from the black hole, where r → ∞, we need only

consider leading order contributions in r. Then, we can summarise the asymptotic forms

of the effective potential Veff(r) near the horizon and far away from the black hole as

Veff(r) ∼




−ω̃2 = −

(
ω − qQ

r+

)2
, r∗ → −∞,

−ω2, r∗ →∞,
(3.57)

respectively, where we have defined the quantity

ω̃ = ω − qQ

r+
. (3.58)

From the asymptotic forms of the scalar field effective potential Veff(r) (3.57), the radial

equation in (3.55) must thus have asymptotic solutions of the form

Xω`(r) ∼





e±iω̃r∗ , r∗ → −∞,
e±iωr∗ , r∗ →∞.

(3.59)

That the near-infinity expression for the scalar field effective potential Veff(r) depends

neither on the charge of the black hole nor on the scalar field charge is to be expected

since (3.11) corresponds to a choice of gauge such that the electromagnetic field potential

Aµ vanishes far from the black hole. If we perform a gauge transformation of the form

Aµ → Aµ + ∂µΥ, Φ→ eiqΥΦ, Υ =
Qt

r0
, (3.60)

for some fixed value r0 of the radial coordinate, then Aµ becomes (A0, 0, 0) with

A0 = −Q
r

+
Q

r0
. (3.61)

In this sense, fixing the gauge in (3.11) corresponds to choosing r0 = ∞. However, we

could have equivalently chosen r0 = r+ such that the gauge potential Aµ instead vanishes
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at the black hole event horizon, rendering the near-horizon expression for the scalar field

effective potential Veff(r) independent of both the charge of the black hole and the scalar

field charge. Our choice of gauge is motivated by the desire to ascribe a natural physical

interpretation to the frequency ω of a scalar field mode (3.41). In order to see this, consider

how the frequency ω transforms under the gauge transformation given in (3.60); we have

ω = ω − qQ

r0
. (3.62)

Thus the frequency ω of a scalar field mode is not a gauge-invariant quantity and, moreover,

a constant shift in the frequency corresponds to a gauge transformation of the form (3.60).

Choosing r0 =∞, or equivalently making the same choice of gauge as in (3.11), enables us

to interpret ω as the frequency of a mode as measured by a static observer near infinity.

From (3.59), the scalar field effective potential Veff and, consequently, the radial func-

tion Xω`(r) each have different forms near the horizon and far away from the black hole.

Far away from the black hole, Veff(r) and Xω`(r) are independent of both the charge

of the black hole Q and the scalar field charge q. This is intuitive since we chose a gauge

(3.11) that made the electromagnetic potential Aµ vanish far from the black hole. Then

the quantity ω has a natural physical interpretation; it is the frequency of a mode as

measured by a static observer far from the black hole.

However, the charge of the black hole Q and the scalar field charge q are present in

Veff(r) and Xω`(r) near the horizon. This difference in effective potential near to and far

from the black hole will be a key theme running throughout Part II of this thesis; it will give

rise to the phenomenon of classical superradiance as well as having important consequences

when defining quantum states and studying the expectation values of observables.

A further observation is that, unlike the case in Schwarzschild spacetime, the radial

function Xω` (r) is not invariant under the transformation ω → −ω due to the form the

effective potential Veff(r) takes near the horizon in (3.57). This means that while X∗ω` (r)

satisfies the same radial equation (3.55), the function X∗ω` (r) is not the same as X−ω` (r).

This will become important when defining vacuum states for the field.

3.3 Scalar field mode solutions

In this section, we use physical considerations of the behaviour of the scalar field in the

background RN spacetime to introduce the in-, up-, out- and down-modes. We conclude

by deriving relations between the reflection and transmission coefficients associated to

each mode, which we use to demonstrate the phenomenon of classical superradiance.

3.3.1 Introduction

In §3.2.4, we derived the general form of the asymptotic solutions (3.59) of the radial

function Xω`(r) near the horizon as r∗ → −∞ and far from the black hole as r∗ → ∞.

Then, an intuitive way to develop an orthonormal basis of mode solutions is to impose

suitable boundary conditions on the radial function Xω`(r) in these asymptotic regions.

The radial function Xω`(r) and the harmonic time dependence of the scalar field modes,
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given by e−iωt, together describe wave propagation in the background Reissner-Nordström

spacetime. Thus we can motivate each mode solution by physical considerations of how

the mode φω`m should behave in the asymptotic regions of the background spacetime.

Furthermore, since there are two surfaces in the asymptotic region r∗ → ∞, namely

past null infinity I − and future null infinity I +, we can generate two separate mode so-

lutions by physical considerations near each surface separately. Similarly, we can generate

another two mode solutions in the asymptotic region r∗ → −∞ from physical considera-

tions near the past horizon H− and the future horizon H+ separately.

From the expression for the asymptotic forms of the radial function Xω`(r) (3.59), the

exponent, which contains iω̃r∗ as r∗ → −∞ and iωr∗ as r∗ →∞, is given up to a sign in

either case. This sign corresponds to the radial direction in which the wave is travelling;

a positive sign in front of the aforementioned factors corresponds to waves emerging from

the event horizon and travelling in the direction of increasing r∗ towards infinity, while a

negative sign corresponds to waves originating at infinity and travelling in the direction

of decreasing r∗ towards the event horizon.

Our final remark, before we begin explicitly deriving mode solutions, is that the ex-

ponential in the asymptotic forms of the radial function Xω`(r) (3.59) is defined up to a

multiplicative constant; taking the multiplicative constant to be unity describes a wave

of unit flux. Thus it will be helpful to describe waves of unit flux near a certain surface.

It stands to reason that incident waves will be either reflected at or transmitted through

the potential barrier described by the scalar field effective potential Veff(r) (3.56); there-

fore, we will also specify the asymptotic form of the reflected and transmitted parts of

the incident waves multiplied by the complex coefficients Aω` and Bω` respectively. We

need not interpret the coefficients Aω` and Bω` as reflection and transmission coefficients

for the purpose of deriving a basis of mode solutions; in §3.3.4, we will indeed interpret

Aω` and Bω` as reflection and transmission coefficients, and doing so will lead us to the

phenomenon of classical superradiance.

Now, we are ready to begin placing physical considerations on the behaviour of the

field mode φω`m in the background Reissner-Nordström spacetime.

3.3.2 The mode solutions

In- and up-modes

The first such physical consideration is that there should be no outgoing radiation from

the event horizon of the black hole, which means that no waves should emerge from the

past horizon H−, while it allows the propagation of waves towards the future horizon H+.

Consider a mode of unit flux coming up from past null infinity I − with part of the mode

being transmitted down the future horizon H+ and the other part being reflected towards

future null infinity I +. Such a mode satisfies the requirement of an absence of outgoing

radiation from the horizon. We refer to these field modes as the in-modes φin
ω`m, where

φin
ω`m = Nin

ω e−iωt X
in
ω`(r)

r
Y`m(θ, ϕ) , (3.63)

and the asymptotic forms of the associated radial function X in
ω`(r) can be summarised as
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X in
ω`(r) ∼




Bin
ω` e−iω̃r∗ r∗ → −∞,

e−iωr∗ +Ain
ω` eiωr∗ r∗ →∞.

(3.64)

The expressions (3.64) make explicit the requirements that the in-modes are incoming

from past null infinity I − with unit flux and vanish near the past horizon H−.

The second such physical consideration is that there should be no incoming radiation

from infinity, which means that no waves should emerge from past null infinity I −, while

it allows the propagation of waves towards future null infinity I +. Consider a mode of

unit flux emerging from the past horizon H− with part of the mode being transmitted

towards future null infinity I + and the other part being reflected towards the future

horizon H+. Such a mode satisfies the requirement of an absence of incoming radiation

from infinity. We will refer to these field modes as the up-modes φup
ω`m, which are given by

φup
ω`m = Nup

ω e−iωt X
up
ω` (r)

r
Y`m(θ, ϕ) , (3.65)

and the asymptotic forms of the associated radial function Xup
ω` (r) can be summarised as

Xup
ω` (r) ∼





eiω̃r∗ +Aup
ω` e−iω̃r∗ r∗ → −∞,

Bup
ω` eiωr∗ r∗ →∞.

(3.66)

The expressions (3.66) make explicit the requirements that the up-modes are outgoing

from the past horizon H− with unit flux and vanish near past null infinity I −.

The in-modes (3.63) are defined near I − where the up-modes vanish and the up-modes

(3.65) are defined near H− where the in-modes vanish; together, they therefore form an

orthogonal basis of mode solutions in which we can expand the scalar field Φ. They do

not yet, however, constitute an orthonormal basis which we require to quantise the field;

in order for them to do so, we will need to evaluate the explicit forms of the normalisation

constants Nin
ω and Nup

ω which we do in §3.4. When normalised, we will refer to a basis

of in- and up-modes as the ‘past’ basis since we derived these mode solutions by placing

physical considerations upon the past horizon H− and past null infinity I − respectively.

Out- and down-modes

Since the radial functions X in
ω`(r) and Xup

ω` (r) each constitute separate solutions to the

radial equation (3.55), then we may immediately find two further solutions by taking their

complex conjugates; doing so will lead us to the out-modes φout
ω`m and the down-modes

φdown
ω`m respectively. The asymptotic forms of their associated radial functions Xout

ω` (r) and

Xdown
ω` (r) will then be given as the complex conjugates of X in

ω`(r) (3.64) and Xup
ω` (r) (3.66)

respectively. However, we can also derive these solutions by placing physical considerations

on the behaviour of a mode φω`m in the background Reissner-Nordström spacetime as we

did when deriving the in- and up-modes.

Then, another such physical consideration is that there should be no ingoing radiation

incident upon the event horizon of the black hole, which means that no waves should be

incident upon the future horizon H+, while it allows the propagation of waves outgoing
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from the past horizon H−. Consider a mode of unit flux outgoing at future null infinity

I +; the parts of the mode that have been transmitted from the past horizon H− and

reflected from past null infinity I −, must interfere in such a way as to cancel exactly any

radiation that might otherwise be scattered back down the horizon. Such a mode satisfies

the requirement of an absence of incoming radiation incident upon the event horizon. We

will refer to these field modes as the out-modes φout
ω`m, which are given by

φout
ω`m = Nout

ω e−iωt X
out
ω` (r)

r
Y`m(θ, ϕ) , (3.67)

and the asymptotic forms of the associated radial function Xout
ω` (r) can be summarised as

Xout
ω` (r) ∼




Bin∗
ω` eiω̃r∗ r∗ → −∞,

eiωr∗ +Ain∗
ω` e−iωr∗ r∗ →∞.

(3.68)

The expressions in (3.68) make explicit the requirements that the out-modes are outgoing

at future null infinity I + with unit flux and vanish near the future horizon H+. One can

easily verify that the asymptotic forms of Xout
ω` (r) (3.68) are the complex conjugate of the

corresponding asymptotic forms of X in
ω`(r) (3.64).

The final physical consideration is that there should be no outgoing radiation at infinity,

which means that no waves should escape to future null infinity I +, while it allows the

propagation of waves incoming from past null infinity I −. Consider a mode of unit flux

incident upon the future horizon H+; the parts of the mode that have been transmitted

from past null infinity I − and reflected from the past horizon H−, must interfere in

such a way as to cancel exactly any radiation that might otherwise be scattered back to

infinity [89]. Such a mode satisfies the requirement of an absence of radiation escaping to

infinity. We will refer to these field modes as the down-modes φdown
ω`m , where

φdown
ω`m = Ndown

ω e−iωt X
down
ω` (r)

r
Y`m(θ, ϕ) , (3.69)

and the asymptotic forms of the associated radial function Xdown
ω` (r) are summarised as

Xdown
ω` (r) ∼





e−iω̃r∗ +Aup∗
ω` eiω̃r∗ r∗ → −∞,

Bup∗
ω` e−iωr∗ r∗ →∞.

(3.70)

The expressions in (3.70) make explicit the requirements that the down-modes are incom-

ing at the future horizon H+ with unit flux and vanish near future null infinity I +. One

can easily verify that the asymptotic forms of Xdown
ω` (r) (3.70) are the complex conjugate

of the corresponding asymptotic forms of Xup
ω` (r) (3.66).

The out-modes (3.67) are defined near I + where the down-modes vanish and the

down-modes (3.69) are defined near H+ where the out-modes vanish; together they form

an orthogonal basis of mode solutions in which we can expand the scalar field Φ. Similar to

the case of the in- and up-modes, they do not yet constitute an orthonormal basis since we

are required to evaluate the explicit forms of the normalisation constants Nout
ω and Ndown

ω ,

which we do in §3.4. When normalised, we will refer to a basis of out- and down-modes as
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the ‘future’ basis since we derived these mode solutions by placing physical considerations

upon the future horizon H+ and future null infinity I + respectively.

We can write the radial functions of the out- (3.68) and down-modes (3.70) as linear

combinations of the in- (3.64) and up-mode radial functions (3.66) according to

Xout
ω` = Ain∗

ω` X
in
ω` +Bin∗

ω` X
up
ω` , (3.71a)

Xdown
ω` = Aup∗

ω` X
up
ω` +Bup∗

ω` X
in
ω`, (3.71b)

respectively. We can interpret (3.71a) and (3.71b) as expressing that up-modes transmitted

from the past horizon H− and the in-modes reflected from past null infinity I − interfere

in such a way as to generate the out-modes, which are outgoing at future null infinity I +

with unit flux and vanish near the future horizon H+, and the down-modes, which are

incoming at the future horizon H+ with unit flux and vanish near future null infinity I +.

We can now derive the normalisation constants associated to each of the in-, up-, out-

and down-modes in order to be able to expand the field Φ in an orthonormal basis before

quantisation. Before we do so, however, it is instructive use the Wronskian function to

derive expressions relating the complex coefficients Aω` and Bω` associated to each mode,

which will enable us to demonstrate the phenomenon of classical superradiance.

3.3.3 Relations between reflection and transmission coefficients

Given any two linearly independent solutions X1, X2 of a second order, linear ODE with

independent variable r∗ of the form of the radial equation (3.55), the WronskianW (X1, X2)

W (X1, X2) = X1
dX2

dr∗
−X2

dX1

dr∗
, (3.72)

is independent of r∗. This enables us to derive a series of expressions relating the complex

coefficients Aω` and Bω` of different field modes by evaluating the Wronskian (3.72) for

the asymptotic forms of their corresponding radial functions Xω`(r) near to the horizon

and far from the black hole.

Since the in- and up-modes constitute an orthogonal basis of solutions to the radial

equation (3.55), it is implied that they are linearly independent. Evaluating (3.72) for the

radial functions X in
ω`(r) (3.64) and Xup

ω` (r) (3.66) near the horizon, we obtain

W
(
X in
ω`, X

up
ω`

)
= Bin

ω` e−iω̃r∗
(

iω̃ eiω̃r∗ − iω̃Aup
ω` e−iω̃r∗

)

−
(

eiω̃r∗ +Aup
ω` e−iω̃r∗

)(
−iω̃Bin

ω` e−iω̃r∗
)

= 2 iω̃Bin
ω`, (3.73)

while evaluating (3.72) for the radial functions X in
ω`(r) and Xup

ω` (r) near infinity, we obtain

W
(
X in
ω`, X

up
ω`

)
=
(
e−iωr∗ +Ain

ω` eiωr∗
)(

iωBup
ω` eiωr∗

)

−Bup
ω`e

iωr∗
(
−iωe−iωr∗ + iωAin

ω` eiωr∗
)

= 2 iωBup
ω` . (3.74)
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Since the Wronskian (3.72) is independent of r∗, equating the expressions for the Wron-

skian W
(
X in
ω`, X

up
ω`

)
near the horizon (3.73) and near infinity (3.74) leads to the relation

ω̃Bin
ω` = ωBup

ω` . (3.75)

We may derive another relation by considering the Wronskian of the in- (3.64) and

out-mode radial functions (3.68); that these are linearly independent follows from the fact

that Xout
ω` (r) = X in∗

ω` (r). Then, evaluating W
(
X in
ω`, X

out
ω`

)
near the horizon, we obtain

W
(
X in
ω`, X

out
ω`

)
= Bin

ω` e−iω̃r∗
(

iω̃ Bin∗
ω` eiω̃r∗

)
−Bin∗

ω` eiω̃r∗
(
−iω̃Bin

ω` e−iω̃r∗
)

= 2 iω̃
∣∣Bin

ω`

∣∣2,
(3.76)

while evaluating W
(
X in
ω`, X

out
ω`

)
near infinity, we obtain

W
(
X in
ω`, X

out
ω`

)
=
(
e−iωr∗ +Ain

ω` eiωr∗
)(

iω eiωr∗ − iωAin∗
ω` e−iωr∗

)

−
(
eiωr∗ +Ain∗

ω` e−iωr∗
)(
−iωe−iωr∗ + iωAin

ω` eiωr∗
)

= 2 iω
[
1−

∣∣Ain
ω`

∣∣2
]
. (3.77)

Again, using the fact that the Wronskian (3.72) is independent of r∗, equating the expres-

sions for W
(
X in
ω`, X

out
ω`

)
near the horizon (3.76) and near infinity (3.77) leads to

ω̃
∣∣Bin

ω`

∣∣2 = ω
[
1−

∣∣Ain
ω`

∣∣2
]
. (3.78)

A similar calculation for the Wronskian W
(
X in
ω`, X

out
ω`

)
leads to the relation

ω
∣∣Bup

ω`

∣∣2 = ω̃
[
1−

∣∣Aup
ω`

∣∣2
]
. (3.79)

The final relation we derive is obtained from the Wronskian of the in- and down-

mode radial functions. That these are linearly independent follows from Xdown
ω` (r) (3.70)

being the complex conjugate of, and therefore linearly independent from, Xup
ω` (r); since

X in
ω`(r) (3.64) and Xup

ω` (r) are linearly independent of each other, it follows that X in
ω`(r)

and Xdown
ω` (r) are also linearly independent. Then, near the horizon, we obtain

W
(
X in
ω`, X

down
ω`

)
= Bin

ω` e−iω̃r∗
(
−iω̃ e−iω̃r∗ + iω̃Aup∗

ω` eiω̃r∗
)

−
(

e−iω̃r∗ +Aup∗
ω` eiω̃r∗

)(
−iω̃Bin

ω` e−iω̃r∗
)

= 2 iω̃Aup∗
ω` B

in
ω`, (3.80)

while evaluating (3.72) for the radial functions X in
ω`(r) and Xdown

ω` (r) near infinity, we have

W
(
X in
ω`, X

down
ω`

)
=
(
e−iωr∗ +Ain

ω` eiωr∗
)(
−iωBup∗

ω` e−iωr∗
)

−Bup∗
ω` e−iωr∗

(
−iωe−iωr∗ + iωAin

ω` eiωr∗
)

= −2 iωAin
ω`B

up∗
ω` . (3.81)

Again, using the fact that the Wronskian (3.72) is independent of r∗, equating the expres-

sions for W
(
X in
ω`, X

down
ω`

)
near the horizon (3.80) and near infinity (3.81) leads to
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ω̃Aup∗
ω` B

in
ω` = −ωAin

ω`B
up∗
ω` . (3.82)

We note that we could equivalently have obtained the complex conjugate of the expression

in (3.82) had we considered the Wronskian W
(
Xup
ω` , X

out
ω`

)
instead of W

(
X in
ω`, X

down
ω`

)
.

3.3.4 Classical superradiance

Consider the expressions in (3.78) and (3.79), which relate the complex coefficients Aω`

and Bω`; if we now interpret the Aω` as reflection coefficients and the Bω` as transmission

coefficients then, for ωω̃ < 0, we have

∣∣Ain
ω`

∣∣2 > 1, sgn(ωω̃) = −1, (3.83a)
∣∣Aup

ω`

∣∣2 > 1, sgn(ωω̃) = −1. (3.83b)

This is the classical phenomenon of charge superradiance [36]. An in-mode incoming from

past null infinity I − with ωω̃ < 0 will be reflected back to future null infinity I + with

an amplitude greater than it was incident with and, similarly, an up-mode outgoing from

the past horizon H− with ωω̃ < 0 will be reflected back down the future horizon H+ with

an amplitude greater than it was incident with. From the expression relating ω and ω̃ in

(3.58), we see that there are two cases where ωω̃ < 0 depending on the product of the

scalar field charge q and the charge of the black hole Q. We can summarise these cases as

Case 1: If qQ > 0 then modes with 0 < ω <
qQ

r+
or 0 > ω̃ > −qQ

r+
have ωω̃ < 0,

Case 2: If qQ < 0 then modes with 0 > ω >
qQ

r+
or 0 < ω̃ < −qQ

r+
have ωω̃ < 0. (3.84)

From (3.84), we see that only low-frequency modes, i.e. those with |ω| <
∣∣∣ qQr+
∣∣∣, are super-

radiantly scattered.

This is illustrated in Figure 3.2 in which we have plotted the in-mode reflection
∣∣Ain

ω`

∣∣2

and transmission coefficients ω−1ω̃
∣∣Bin

ω`

∣∣2 as a function of the frequency ω for particular

choices of the total angular momentum number ` = 0, the black hole charge Q = M/2 and

scalar field charge q = M/2. Superradiance, which occurs when the reflection coefficient∣∣Ain
ω`

∣∣2 is greater than unity, only takes place for small, positive values of ω; this is what

we would expect since this situation corresponds to Case 1 in (3.84). Furthermore, in

this range ω̃ < 0 and the transmission coefficient ω−1ω̃
∣∣Bin

ω`

∣∣2 is negative in accordance

with the expression relating Ain
ω` and Bin

ω` in (3.78).

We find similar qualitative behaviour for other values of q and Q. Superradiant scat-

tering of a charged scalar field arises in background Reissner-Nordström spacetimes as

a result of the interaction between the charge of the black hole Q and the scalar field

charge q. A similar effect, namely rotational superradiance, occurs in a background Kerr

spacetime for a co-rotating field as a result of the interaction of the two angular momenta.

Interestingly, the plot in Figure 3.2 suggests that the amplification of low-frequency modes

is much greater than the corresponding case in Kerr spacetimes [35] (cf. Figure 16 in [91]).
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Figure 3.2. A plot of the in-mode reflection
∣∣Ain

ω`

∣∣2 and transmission coefficients ω−1ω̃
∣∣Bin

ω`

∣∣2 as a

function of the frequency ω for ` = 0 as well as black hole charge Q = M/2 and scalar field charge

q = M/2. Superradiance occurs when the reflection coefficient is greater than unity. This plot,

and all further plots in this thesis, were created by Dr. Rafael Bernar.

3.4 Normalisation constants and scalar field mode norms

3.4.1 Introduction

In §3.2.2, we wrote the expression for a generic mode solution (3.41) of the scalar field

equation (3.36), which contains a normalisation constant Nω that is yet to be determined.

The exact form of Nω depends on which of the modes introduced in §3.3 that we are con-

sidering. In this section, we derive the explicit expressions for the normalisation constants

Nin
ω , Nup

ω , Nout
ω and Ndown

ω associated to the in-, up-, out- and down-modes respectively.

We will do so by evaluating the Klein-Gordon inner product between any two similar

mode solutions over a suitably chosen Cauchy surface Σ and demanding that the modes be

orthonormal. In §2.1, we introduced the Klein-Gordon inner product of two real scalar field

modes in a general curved spacetime; it differed from an inner product in the traditional

sense since it is not positive-definite. In the case of the Klein-Gordon inner product of

charged scalar field modes, the spacetime covariant derivatives will be generalised to gauge

covariant derivatives; we do not expect this inner product to be positive-definite either.

Thus, evaluating the inner product between any two similar mode solutions will de-

termine the conditions under which each of the in-, up-, out- and down-modes are of

positive-norm or negative-norm. This, in turn, will have important consequences when we

come to canonically quantising the field in §4.1, where the value of the norm of a particu-

lar mode solution affects the commutation relation between the creation and annihilation

operators associated to that mode.
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3.4.2 Klein-Gordon inner product

The Klein-Gordon inner product for any two mode solutions φ1 and φ2 of the scalar field

equation (3.36) is given by

〈φ1, φ2〉 = −i

∫

Σ
[φ∗1 (Dµφ2)− (Dµφ

∗
1)φ2 ]

√−g dΣµ, (3.85)

where dΣµ is the surface element and the integral is performed over the 3D hypersurface Σ.

Strictly speaking, our chosen Cauchy surface Σ must be spacelike by definition as well as

spanning the entirety of the spacetime. However, it will suffice to consider a Cauchy surface

that is arbitrarily close to a null surface, or the union of several such surfaces. Outside of

these requirements, we are free to use any choice of Cauchy surface, particularly one that

is conducive to simplifying the expressions obtained in (3.85); the resulting expression for

the inner product of two scalar field modes will be independent of the choice of Σ since the

integrand in (3.85) is a divergence-free vector which allows us to apply Gauss’ theorem,

the proof of which is outside the scope of this thesis.

The question then arises as to what is a suitable choice of Cauchy surface over which

to evaluate the inner product of any two modes. The asymptotic forms of the in-modes

(3.64) and up-modes (3.66) are both particularly simple near the past event horizon H−
as well as past null infinity I −. The union of the null surfaces H− and I − also spans the

entirety of region I. We can extend the Cauchy surface throughout the Reissner-Nordström

spacetime by including within it the union of the null surfaces H+
IV and I +

IV that span

the entirety of region IV, in which the scalar field modes introduced in §3.3 vanish. Thus,

a convenient choice of Cauchy surface on which to evaluate the in- and up-modes is the

‘past’ Cauchy surface Σpast, which is given by

Σpast = H− ∪I − ∪H+
IV ∪I +

IV. (3.86)

In contrast, the asymptotic forms of both the out-modes (3.68) and down-modes (3.70)

are particularly simple near the future event horizon H+ as well as future null infinity

I +. The union of the null surfaces H+ and I + also spans the entirety of region I. We

can extend the Cauchy surface throughout the entire Reissner-Nordström spacetime by

including within it the union of the null surfaces H−IV and I −IV that span the entirety of

region IV. Thus, a convenient choice of Cauchy surface on which to evaluate the out- and

down-modes is the Cauchy surface Σfuture, which is given by

Σfuture = H+ ∪I + ∪H−IV ∪I −IV. (3.87)

The past event horizon H− and future null infinity I + are both surfaces of constant

Kruskal coordinate V . Similarly, the future event horizon H+ and past null infinity I −

are both surfaces of constant Kruskal coordinate U . Therefore, it will be convenient to

evaluate the inner product (3.85) of each of the scalar field modes in terms of the Kruskal

coordinates defined in (3.24); we will also require the lightcone coordinates (3.26) in order

to re-express the asymptotic forms of each of the modes in terms of Kruskal coordinates.

The calculation differs slightly between the in- and out-modes, for which the derivation

is simpler, and the up- and down-modes, for which the derivation is more subtle. This is
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due to the difference in the asymptotic forms of the scalar field effective potential (3.57)

at the horizon and infinity; the exponents in the asymptotic forms of the radial functions

Xup
ω` and Xdown

ω` contain a factor of ω̃ that cannot be combined as easily with the factor

of ω in the scalar field mode harmonic time dependence e−iωt, as opposed to the case of

the exponents in the asymptotic forms of X in
ω` and Xout

ω` which also contain a factor of ω.

Therefore, we will begin by deriving an expression for the normalisation constant Nin
ω

of the in-modes, before moving on to that of the normalisation constant Nup
ω of the up-

modes. It turns out that the derivation of expressions for the normalisation constants

Nout
ω of the out-modes and Ndown

ω of the down-modes are very similar to that of Nin
ω and

Nup
ω respectively. Therefore, we will treat the cases of Nout

ω , in comparison with Nin
ω , and

Ndown
ω , in comparison with Nup

ω , last.

In all cases, we shall derive the conditions upon which the particular mode under con-

sideration is of positive-norm or negative-norm. As previously stated, this is of paramount

importance when we come to canonically quantising the scalar field in §4.1. In all cases,

we will use the following standard result from Fourier analysis:

∫ ∞

x=−∞
ei(ω−ω′)x dx = 2π δ

(
ω − ω′

)
. (3.88)

3.4.3 Evaluating the inner product of the mode solutions

In-modes

In order to derive an expression for the normalisation constant Nin
ω , as well as to determine

the conditions under which the in-modes are of positive-norm or negative-norm, we can

use the expression for the Klein-Gordon inner product (3.85) to evaluate the inner product

of two in-modes (3.63) over the ‘past’ Cauchy surface Σpast (3.86); we have

〈φin
ω`m, φ

in
ω′`′m′〉

= i

∫

Σpast

[(
∂µφ

in∗
ω`m

)
φin
ω′`′m′ − φin∗

ω`m ∂µφ
in
ω′`′m′ + 2 iqAµ φ

in∗
ω`mφ

in
ω′`′m′

]√−g dΣµ
past

= i

∫

I−

[(
∂µφ

in∗
ω`m

)
φin
ω′`′m′ − φin∗

ω`m ∂µφ
in
ω′`′m′ + 2 iqAµ φ

in∗
ω`mφ

in
ω′`′m′

]√−g dΣµ
I− , (3.89)

where we have used the fact that the flux of the in-modes through the H− vanishes (see

Appendix D), so the integral over the ‘past’ Cauchy surface Σpast reduces to one over the

past null infinity I −. Since I − is a surface of constant Kruskal coordinate U , the normal

vector nµ to the surface which points in the direction of increasing U is given by

nµ = dU = (1, 0, 0, 0) . (3.90)

Therefore, acting with the inverse metric in (3.31) on (3.90), we have

nµ =
(
0,−ζ−1(r) , 0, 0

)
, (3.91)

where the function ζ(r) is defined in (3.30). Then, the volume element dΣµ
I− in (3.89) is
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dΣµ
I− = −δµV r2sin θ dV dθ dϕ. (3.92)

The factor of δµV in (3.92) means that the partial derivatives in (3.89) will only act on the

in-mode φin
ω`m and its complex conjugate with respect to the Kruskal coordinate V . Thus,

it will useful to rewrite the asymptotic form of in-modes near I − (3.64) in terms of the

lightcone coordinates (3.20), which are readily differentiated w.r.t V from the expressions

given in (3.24). Near I −, and using the fact that the flux of the second term in (3.64)

through I − vanishes through a calculation similar to that in Appendix D, we have

φin
ω`m =

1

r
e−iωt Nin

ω Y`m(θ, ϕ) eiωr∗

=
1

r
e−iωv Nin

ω Y`m(θ, ϕ) . (3.93)

So the expression for the derivative of an in-mode near I − is given by

∂V φ
in
ω`m = − 1

r2
e−iωv Nin

ω Y`m(θ, ϕ)
∂r

∂V
− iω

r
e−iωv Nin

ω Y`m(θ, ϕ)
dv

dV
. (3.94)

Since we are working near past null infinity I −, where r →∞, we can ignore sub-leading

order contributions in the radial coordinate r in (3.94). Then, (3.94) reduces to

∂V φ
in
ω`m = − iω

r
e−iωv Nin

ω Y`m(θ, ϕ)
dv

dV
. (3.95)

In the expression for the inner product (3.89), we also require the V component of the

gauge field Aµ. Using (3.11), and the usual procedure for changing coordinates, we have

AV =
∂xµ

∂V
Aµ =

∂t

∂V
At =

dv

dV

∂t

∂v
At = −Q

2r

dv

dV
. (3.96)

We also note that, since the partial derivative ∂µ is real, we have ∂µφ
in∗
ω`m =

(
∂µφ

in
ω`m

)∗
.

Then, substituting equations (3.92), (3.95) and (3.96) into (3.89), we obtain

〈φin
ω`m, φ

in
ω′`′m′〉 = i

∫ ∞

V=0

∫ π

θ=0

∫ 2π

ϕ=0

[
iω

r
eiωv Nin∗

ω Y ∗`m(θ, ϕ)
dv

dV
× 1

r
e−iω′v Nin

ω′ Y`′m′(θ, ϕ)

−1

r
eiωv Nin∗

ω Y ∗`m(θ, ϕ)× (−iω′)
r

e−iω′v Nin
ω′ Y`′m′(θ, ϕ)

dv

dV

− iqQ

r
eiωv Nin∗

ω Y ∗`m(θ, ϕ)
dv

dV
× 1

r
e−iω′v Nin

ω′ Y`′m′(θ, ϕ)

]

× r2sin θ dV dθ dϕ. (3.97)

Simplifying and rearranging (3.97), we have

〈φin
ω`m, φ

in
ω′`′m′〉 = Nin∗

ω Nin
ω′

∫ ∞

V=0

∫ π

θ=0

∫ 2π

ϕ=0
Y ∗`m(θ, ϕ)Y`′m′(θ, ϕ) sin θ dθ dϕ

×
(
ω + ω′ − qQ

r

)
ei(ω−ω′)v dv

dV
dV. (3.98)

The integrals with respect to θ and ϕ are performed using (3.48), so (3.98) reduces to
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〈φin
ω`m, φ

in
ω′`′m′〉 = δ``′ δmm′ N

in∗
ω Nin

ω′

∫ ∞

V=0

(
ω + ω′ − qQ

r

)
ei(ω−ω′)v dv

dV
dV. (3.99)

Since r →∞ near J −, we can ignore the sub-leading order qQ
r term in (3.99); then

〈φin
ω`m, φ

in
ω′`′m′〉 =

(
ω + ω′

)
δ``′ δmm′ N

in∗
ω Nin

ω′

∫ ∞

v=−∞
ei(ω−ω′)v dv, (3.100)

where we have changed the limits of the integral in (3.100) to reflect that we are now

integrating with respect to v instead of V . The integral with respect to the lightcone

coordinate v can be performed using the identity (3.88) and (3.100) becomes

〈φin
ω`m, φ

in
ω′`′m′〉 = 2π

(
ω + ω′

)
δ
(
ω − ω′

)
δ``′ δmm′ N

in∗
ω Nin

ω′

= 4πω δ
(
ω − ω′

)
δ``′ δmm′

∣∣Nin
ω

∣∣2. (3.101)

Then, we obtain for the inner product of two in-modes with the same angular momentum

` and azimuthal m quantum numbers, the expression

〈φin
ω`m, φ

in
ω′`m〉 = 4πω δ

(
ω − ω′

) ∣∣Nin
ω

∣∣2. (3.102)

Requiring the orthonormality of the inner product in (3.102) gives us the expression for

the normalisation constant Nin
ω , which is given by

Nin
ω =

1√
4π|ω|

. (3.103)

Then we can write the expression for the inner product of two generic in-modes as

〈φin
ω`m, φ

in
ω′`′m′〉 = sgn (ω) δ

(
ω − ω′

)
δ``′ δmm′ . (3.104)

The norm of two in-modes (3.104) is dependent upon the sign of ω, as is the case for the

Schwarzschild in-modes. We summarise the value of the inner product of two in-modes as

〈φin
ω`m, φ

in
ω′`′m′〉 =




δ(ω − ω′) δ``′ δmm′ , for ω > 0,

−δ(ω − ω′) δ``′ δmm′ , for ω < 0,
(3.105)

meaning that in-modes are of positive-norm when ω > 0 and of negative-norm when ω < 0.

In concluding, we can use the expression for Nin
ω (3.103) to write the in-modes as

φin
ω`m =

1√
4π|ω|

e−iωt X
in
ω`(r)

r
Y`m(θ, ϕ) , (3.106)

where the asymptotic forms of the radial function X in
ω`(r) are given in (3.64).
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Up-modes

In order to derive an expression for the normalisation constant Nup
ω , as well as to determine

the conditions under which the up-modes are of positive-norm or negative-norm, we can

use the expression for the Klein-Gordon inner product (3.85) to evaluate the inner product

of two up-modes (3.65) over the ‘past’ Cauchy surface Σpast (3.86); we have

〈φup
ω`m, φ

up
ω′`′m′〉

= i

∫

Σpast

[(
∂µφ

up∗
ω`m

)
φup
ω′`′m′ − φ

up∗
ω`m ∂µφ

up
ω′`′m′ + 2 iqAµ φ

up∗
ω`mφ

up
ω′`′m′

]√−g dΣµ
past

= i

∫

H−

[(
∂µφ

up∗
ω`m

)
φup
ω′`′m′ − φ

up∗
ω`m ∂µφ

up
ω′`′m′ + 2 iqAµ φ

up∗
ω`mφ

up
ω′`′m′

]√−g dΣµ
H− , (3.107)

where we have used the fact that the flux of the up-modes through past null infinity I −

vanishes, so the integral over the ‘past’ Cauchy surface Σpast reduces to one over the past

horizon H−. Since H− is a surface of constant Kruskal coordinate V , the normal vector

nµ to the surface which points in the direction of increasing V is given by

nµ = dV = (0, 1, 0, 0) . (3.108)

Therefore, acting with the inverse metric (3.31) on (3.108), we have

nµ =
(
−ζ−1(r) , 0, 0, 0

)
, (3.109)

where the function ζ(r) is defined in (3.30). Then, the volume element dΣµ
H− in (3.107) is

dΣµ
H− = −δµU r2sin θ dUdθ dϕ. (3.110)

The factor of δµU in (3.110) means that the partial derivatives in (3.107) will only act on

the up-mode φup
ω`m and its complex conjugate with respect to the Kruskal coordinate U .

Thus, it will useful to rewrite the asymptotic form of up-modes near H− (3.66) in terms

of the lightcone coordinates (3.20), which are readily differentiated with respect to U from

the expressions given in (3.24). Near H−, and using the fact that the flux of the second

term in (3.66) vanishes through a calculation similar to that in Appendix D, we have

φup
ω`m =

1

r
exp[−iωt ] Nup

ω Y`m(θ, ϕ) exp[ iω̃r∗]

=
1

r
exp

[
−iω

(u+ v)

2

]
Nup
ω Y`m(θ, ϕ) exp

[
iω̃

(v − u)

2

]
. (3.111)

So the expression for the derivative of an up-mode near the past horizon H− is given by

∂Uφ
up
ω`m = − 1

r2
exp

[
−iω

(u+ v)

2

]
Nup
ω Y`m(θ, ϕ) exp

[
iω̃

(v − u)

2

]
∂r

∂U

− i (ω + ω̃)

2r
exp

[
−iω

(u+ v)

2

]
Nup
ω Y`m(θ, ϕ) exp

[
iω̃

(v − u)

2

]
du

dU
. (3.112)
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From the chain rule, and using (3.18) and (3.20), we have

∂r

∂U
=
∂r

∂u

du

dU
=

dr

dr∗

∂r∗
∂u

du

dU
= −f(r)

2

du

dU
. (3.113)

Then, substituting (3.113) into (3.112), we have

∂Uφ
up
ω`m =

[
f(r)

2r2
− i (ω + ω̃)

2r

]
exp

[
−iω

(u+ v)

2

]
Nup
ω Y`m(θ, ϕ) exp

[
iω̃

(v − u)

2

]
du

dU
.

(3.114)

Near the horizon, the metric function f(r) vanishes from (3.15). Then, we can neglect the

term proportional to f(r) in (3.114) giving for the derivative of the up-modes near H−

∂Uφ
up
ω`m = − i (ω + ω̃)

2r
exp

[
−iω

(u+ v)

2

]
Nup
ω Y`m(θ, ϕ) exp

[
iω̃

(v − u)

2

]
du

dU
. (3.115)

In the expression for the inner product (3.107), we also require the U component of the

gauge field Aµ. Using (3.11), and the usual procedure for changing coordinates, we have

AU =
∂xµ

∂U
Aµ =

∂t

∂U
At =

∂t

∂u

du

dU
At = −Q

2r

du

dU
. (3.116)

We note that, since the partial derivative ∂µ is real, we have ∂µφ
up∗
ω`m =

(
∂µφ

up
ω`m

)∗
. Then,

substituting equations (3.110), (3.115) and (3.116) into (3.107) and simplifying, we have

〈φup
ω`m, φ

up
ω′`′m′〉

= −i

∫ 0

U=−∞

∫ π

θ=0

∫ 2π

ϕ=0

i

r2

[
(ω + ω̃)

2
+

(ω′ + ω̃′)
2

− qQ

r

]
exp

[
i
(
ω − ω′

) (u+ v)

2

]

×Nup∗
ω Nup

ω′ Y
∗
`m(θ, ϕ)Y`′m′(θ, ϕ) exp

[
−i
(
ω̃ − ω̃′

) (v − u)

2

]
du

dU
r2sin θ dUdθ dϕ.

(3.117)

Simplifying and rearranging (3.117), we have

〈φup
ω`m, φ

up
ω′`′m′〉

= Nup∗
ω Nup

ω′

∫ 0

U=−∞

∫ π

θ=0

∫ 2π

ϕ=0
Y ∗`m(θ, ϕ)Y`′m′(θ, ϕ) sin θ dθ dϕ

×
[

(ω + ω̃ + ω′ + ω̃′)
2

− qQ

r

]
exp

[
i
(
ω − ω′

) (u+ v)

2

]
exp

[
−i
(
ω̃ − ω̃′

) (v − u)

2

]
du

dU
dU.

(3.118)

The integrals with respect to θ and ϕ are performed using (3.48), so (3.118) reduces to

〈φup
ω`m, φ

up
ω′`′m′〉 = δ``′ δmm′ N

up∗
ω Nup

ω′

∫ 0

U=−∞

1

2

(
ω + ω̃ + ω′ + ω̃′ − 2qQ

r

)

× exp

[
i
(
ω − ω′

) (u+ v)

2

]
exp

[
−i
(
ω̃ − ω̃′

) (v − u)

2

]
du

dU
dU. (3.119)
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Since r → r+ near the past horizon H−, we can write the term qQ
r in (3.119) as qQ

r+
. Then,

having also simplified the exponential terms, (3.119) becomes

〈φup
ω`m, φ

up
ω′`′m′〉 = δ``′ δmm′ N

up∗
ω Nup

ω′

∫ 0

U=−∞

1

2

(
ω + ω̃ + ω′ + ω̃′ − 2qQ

r+

)

× exp
[
i
(
ω − ω′ + ω̃ − ω̃′

) u
2

]
exp
[
i
(
ω − ω′ − ω̃ + ω̃′

) v
2

] du

dU
dU. (3.120)

In order to simplify (3.120) further, we need to simplify the quantities in the brackets. We

can use the relationship between ω and ω̃ (3.58) in order to do this. Beginning with the

bracket in (3.120) that is not being exponentiated, we can simplify this as

1

2

(
ω + ω̃ + ω′ + ω̃′ − 2qQ

r+

)
=

1

2

(
ω + ω − qQ

r+
+ ω′ + ω′ − qQ

r+
− 2qQ

r+

)

= ω + ω′ − 2qQ

r+
. (3.121)

The exponentiated bracket in (3.120) that is being multiplied by u can be simplified as

ω − ω′ + ω̃ − ω̃′ = ω − ω′ + ω − qQ

r+
− ω′ + qQ

r+
= 2

(
ω − ω′

)
. (3.122)

The exponentiated bracket in (3.120) that is being multiplied by v can be simplified as

ω − ω′ − ω̃ + ω̃′ = ω − ω′ − ω +
qQ

r+
+ ω′ − qQ

r+
= 0. (3.123)

Then, using (3.121), (3.122) and (3.123), equation (3.120) reduces considerably to

〈φup
ω`m, φ

up
ω′`′m′〉 = δ``′ δmm′ N

up∗
ω Nup

ω′

∫ ∞

u=−∞

(
ω + ω′ − 2qQ

r+

)
exp
[
i
(
ω − ω′

)
u
]

du,

(3.124)

where we have changed the limits of the integral in (3.124) to reflect that we are now

integrating with respect to u instead of U . The integral with respect to the lightcone

coordinate u can be performed using the identity in (3.88) and (3.124) becomes

〈φup
ω`m, φ

up
ω′`′m′〉 = 2π

(
ω + ω′ − 2qQ

r+

)
δ
(
ω − ω′

)
δ``′ δmm′ N

up∗
ω Nup

ω′ . (3.125)

From (3.58), both ω̃ and ω̃′ in (3.125) are offset from ω and ω′ by the same constant

amount of qQ
r+

respectively. We can use this to simplify (3.125) as

〈φup
ω`m, φ

up
ω′`′m′〉 = 2π

(
ω̃ + ω̃′

)
δ
(
ω − ω′

)
δ``′ δmm′ N

up∗
ω Nup

ω′

= 4πω̃ δ
(
ω − ω′

)
δ``′ δmm′ |Nup

ω |2. (3.126)

Then, we obtain for the inner product of two up-modes with the same angular momentum

` and azimuthal m quantum numbers, the expression

〈φup
ω`m, φ

up
ω′`m〉 = 4πω̃ δ

(
ω − ω′

)
|Nup

ω |2. (3.127)
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Requiring the orthonormality of the inner product in (3.127) gives us the expression for

the normalisation constant Nup
ω , which is given by

Nup
ω =

1√
4π|ω̃|

. (3.128)

Then we can write the expression for the inner product of two generic up-modes as

〈φup
ω`m, φ

up
ω′`′m′〉 = sgn (ω̃) δ

(
ω − ω′

)
δ``′ δmm′ , (3.129)

where we see that the norm of two up-modes is dependent upon the sign of ω̃, in contrast

to the case of the Schwarzschild up-modes. This is a crucial point that will lead to many

subtleties when we come to canonically quantising the scalar field Φ and defining quantum

states in Chapter 4. We can summarise the value of the norm of two up-modes as

〈φup
ω`m, φ

up
ω′`′m′〉 =




δ(ω − ω′) δ``′ δmm′ , for ω̃ > 0,

−δ(ω − ω′) δ``′ δmm′ , for ω̃ < 0,
(3.130)

meaning that up-modes are of positive-norm when ω̃ > 0 and of negative-norm when

ω̃ < 0. In concluding, we can use the expression for Nup
ω (3.128) to write the up-modes as

φup
ω`m =

1√
4π|ω̃|

e−iωt X
up
ω` (r)

r
Y`m(θ, ϕ) , (3.131)

where the asymptotic forms of the radial function Xup
ω` (r) are given in (3.66).

Out-modes

We will now evaluate the inner product of two out-modes. In doing so, we need not go

through all of the details of the calculation since many of these will be analogous to the

case of the calculation of the norm of two in-modes in §3.4.3. It will suffice to give the

general outline and consider the differences between each calculation in order to derive an

expression for the normalisation constant Nout
ω and determine the conditions under which

the out-modes have positive-norm and negative-norm.

Using the expression for the Klein-Gordon inner product in (3.85), the inner product

of two out-modes over the ‘future’ Cauchy surface Σfuture (3.87) is given by

〈φout
ω`m, φ

out
ω′`′m′〉

= i

∫

I +

[(
∂µφ

out∗
ω`m

)
φout
ω′`′m′ − φout∗

ω`m ∂µφ
out
ω′`′m′ + 2 iqAµ φ

out∗
ω`mφ

out
ω′`′m′

]√−g dΣµ
I + , (3.132)

where we have used the fact that the flux of the out-modes through the future event

horizon H+ vanishes, so the integral over the ‘future’ Cauchy surface Σfuture reduces to

one over future null infinity I +. Since I + is a surface of constant Kruskal coordinate V ,

the normal vector nµ to the surface which points in the direction of decreasing V is

nµ = −dV = (0,−1, 0, 0) ⇒ nµ =
(
ζ−1(r) , 0, 0, 0

)
, (3.133)
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where we have used the inverse metric (3.31). Then, the volume element dΣµ
I + becomes

dΣµ
I + = δµU r

2sin θ dUdθ dϕ. (3.134)

The factor of δµU in (3.134) means that the partial derivatives in (3.132) will only act on

the out-mode φout
ω`m and its complex conjugate with respect to the Kruskal coordinate U .

Thus, it will useful to rewrite the asymptotic form of out-modes near I + (3.68) in terms

of the lightcone coordinates (3.20), which are readily differentiated with respect to U from

the expressions given in (3.24). Near I +, as well as using (3.20) and (3.68), we have

φout
ω`m =

1

r
e−iωt Nout

ω Y`m(θ, ϕ) e−iωr∗

=
1

r
e−iωu Nout

ω Y`m(θ, ϕ) . (3.135)

Comparing the expressions for the out-modes (3.135) and the volume element dΣµ
I +

(3.134) with that of the in-modes (3.93) and the volume element dΣµ
I− (3.92), we see

that the inner product of two out-modes (3.132) is very similar to the inner product of

two in-modes (3.89); u and v are effectively dummy variables in (3.132) and (3.89) respec-

tively, while φout
ω`m has the same dependence on U , which it is being differentiated with

respect to, as φin
ω`m does on V . Furthermore, from (3.96) and (3.116), AU

dU
du = AV

dV
dv and

we are similarly able to ignore sub-leading order contributions in r since r →∞ near I +.

However, there are two differences in the inner product of two out-modes as compared

to that of two in-modes. Firstly, the volume element dΣµ
I + (3.134) contains a minus

sign relative to dΣµ
I− (3.92), which induces a minus sign in 〈φout

ω`m, φ
out
ω′`′m′〉 relative to

〈φin
ω`m, φ

in
ω′`′m′〉. Secondly, where the in-modes are propagating away the surface of inte-

gration, I −, the out-modes are instead propagating towards the surface of integration

I +; the corollary is that we integrate the out-modes from u = ∞ to −∞ instead of

v = −∞ to ∞ as in the case of the in-modes (3.100), which induces a second minus sign

in 〈φout
ω`m, φ

out
ω′`′m′〉 relative to 〈φin

ω`m, φ
in
ω′`′m′〉. These two minus signs cancel such that the

two inner products are equal. Then the normalisation constant Nout
ω is given by

Nout
ω =

1√
4π|ω|

, (3.136)

and the expression for the inner product of two generic out-modes is given by

〈φout
ω`m, φ

out
ω′`′m′〉 = sgn (ω) δ

(
ω − ω′

)
δ``′ δmm′ . (3.137)

The norm of two out-modes (3.137) is dependent upon the sign of ω, as is the case for the

Schwarzschild in-modes. We summarise the value of the norm of two out-modes as

〈φout
ω`m, φ

out
ω′`′m′〉 =




δ(ω − ω′) δ``′ δmm′ , for ω > 0,

−δ(ω − ω′) δ``′ δmm′ , for ω < 0.
(3.138)

meaning that out-modes are of positive-norm when ω > 0 and negative-norm when ω < 0.

In concluding, we can use the expression for Nout
ω (3.136) to write the out-modes as
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φout
ω`m =

1√
4π|ω|

e−iωt X
out
ω` (r)

r
Y`m(θ, ϕ) , (3.139)

where the asymptotic forms of the radial function Xout
ω` (r) are given in (3.68).

Down-modes

We will now evaluate the inner product of two down-modes. As was the case for the

out-modes in relation to the in-modes, the calculation of the norm of two down-modes

is very similar to that of two up-modes in §3.4.3. Therefore, it will suffice to give the

general outline and consider the differences between each calculation in order to derive

an expression for the normalisation constant Ndown
ω and determine the conditions under

which the down-modes have positive-norm and negative-norm.

Using the expression for the Klein-Gordon inner product in (3.85), the inner product

of two down-modes over the ‘future’ Cauchy surface Σfuture (3.87) is given by

〈φdown
ω`m , φdown

ω′`′m′〉

= i

∫

H+

[(
∂µφ

down∗
ω`m

)
φdown
ω′`′m′ − φdown∗

ω`m ∂µφ
down
ω′`′m′ + 2 iqAµ φ

down∗
ω`m φdown

ω′`′m′

]√−g dΣµ
H+ .

(3.140)

where we have used the fact that the flux of the down-modes through future null infinity

I + vanishes, so the integral over the ‘future’ Cauchy surface Σfuture reduces to one over

the future event horizon H+. Since H+ is a surface of constant Kruskal coordinate U , the

normal vector nµ to the surface which points in the direction of decreasing U is given by

nµ = −dU = (−1, 0, 0, 0) ⇒ nµ =
(
0, ζ−1(r) , 0, 0

)
, (3.141)

where we have used the inverse metric (3.141). Then, the volume element dΣµ
H+ becomes

dΣµ
H+ = δµV r

2sin θ dV dθ dϕ. (3.142)

The factor of δµV in (3.142) means that the partial derivatives in (3.140) will only act

on φdown
ω`m and its complex conjugate with respect to the Kruskal coordinate V . Thus, it

will useful to rewrite the asymptotic form of down-modes near H+ (3.70) in terms of the

lightcone coordinates (3.20), which are readily differentiated with respect to V from the

expressions given in (3.24). Near H+, as well as using (3.20) and (3.70), we have

φdown
ω`m =

1

r
exp[−iωt ] Ndown

ω Y`m(θ, ϕ) exp[−iω̃r∗]

=
1

r
exp

[
−iω

(u+ v)

2

]
Ndown
ω Y`m(θ, ϕ) exp

[
iω̃

(u− v)

2

]
. (3.143)

Comparing the expressions for the down-modes (3.143) and the volume element dΣµ
H+

(3.134) with that of the up-modes (3.111) and the volume element dΣµ
H− (3.110), we see

that the inner product of two down-modes (3.140) is very similar to the inner product
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of two up-modes (3.107); both u and v are effectively dummy variables in (3.140) and

(3.107), while φdown
ω`m has the same dependence on V , which it is being differentiated with

respect to, as φup
ω`m does on U . Furthermore, from (3.96) and (3.116), AU

dU
du = AV

dV
dv and

we are similarly able to ignore contributions proportional to f(r) since the metric function

vanishes near the horizon from (3.15).

However, there are two differences in the inner product of two down-modes as com-

pared to that of two up-modes. Firstly, the volume element dΣµ
H+ (3.142) contains a minus

sign relative to dΣµ
H− (3.110), which induces a minus sign in 〈φdown

ω`m , φdown
ω′`′m′〉 relative to

〈φup
ω`m, φ

up
ω′`′m′〉. Secondly, where the up-modes are propagating away the surface of inte-

gration, H−, the down-modes are instead propagating towards the surface of integration

H+; the corollary is that we integrate the down-modes from v = ∞ to −∞ instead of

u = −∞ to ∞ as in the case of the up-modes (3.120), which induces a second minus sign

in 〈φdown
ω`m , φdown

ω′`′m′〉 relative to 〈φup
ω`m, φ

up
ω′`′m′〉. These two minus signs cancel such that the

two inner products are equal. Then the normalisation constant Ndown
ω is given by

Ndown
ω =

1√
4π|ω̃|

. (3.144)

and the expression for the inner product of two generic down-modes is given by

〈φdown
ω`m , φdown

ω′`′m′〉 = sgn (ω̃) δ
(
ω − ω′

)
δ``′ δmm′ . (3.145)

The norm of two down-modes (3.145) is dependent upon the sign of ω̃, in contrast to

the case of the Schwarzschild down-modes. This is a crucial point that will lead to many

subtleties when we come to canonically quantising the scalar field Φ and when defining

quantum states in Chapter 4. We summarise the value of the norm of two down-modes as

〈φdown
ω`m , φdown

ω′`′m′〉 =




δ(ω − ω′) δ``′ δmm′ , for ω̃ > 0,

−δ(ω − ω′) δ``′ δmm′ , for ω̃ < 0,
(3.146)

meaning that down-modes are of positive-norm when ω̃ > 0 and of negative-norm when

ω̃ < 0. We can use the expression for Ndown
ω in (3.144) to write the down-modes as

φdown
ω`m =

1√
4π|ω̃|

e−iωt X
down
ω` (r)

r
Y`m(θ, ϕ) , (3.147)

where the asymptotic forms of the radial function Xdown
ω` (r) are given in (3.70).

3.4.4 Relations between scalar field modes revisited

Having derived the normalisation constants associated to each of the scalar field modes, we

can use (3.71) to write the out-modes and the down-modes in terms of in- and up-modes:

φout
ω`m = Ain∗

ω` φ
in
ω`m +

∣∣∣∣
ω̃

ω

∣∣∣∣
1
2

Bin∗
ω` φ

up
ω`m, (3.148a)

φdown
ω`m = Aup∗

ω` φ
up
ω`m +

∣∣∣ω
ω̃

∣∣∣
1
2
Bup∗
ω` φ

in
ω`m, (3.148b)



Chapter 4

Canonical quantisation and

definition of quantum states

In §4.1, we discuss the canonical quantisation procedure as well as the definition of positive-

and negative-frequency modes. We discuss the problems that arise when using canonical

quantisation to define states in RN spacetime in §4.2 and we outline two possible resolu-

tions to these problems that we will employ throughout the rest of the chapter. In §4.3, we

define analogues of the Schwarzschild Boulware state |Bs〉. In §4.4, we define analogues of

the Schwarzschild Unruh state |Us〉 and in §4.5, we define analogues of the Schwarzschild

Hartle-Hawking state |Hs〉.

4.1 Canonical quantisation

4.1.1 Introduction

In Chapter 3, we described the properties of a classical massless, minimally-coupled

charged scalar field propagating on a classical background Reissner-Nordström spacetime.

In this section, we would like to quantise the field to define a variety of quantum states while

leaving the background RN spacetime classical, in line with the philosophy of QFTCS.

We choose to do so using the method of canonical quantisation.

The process of canonically quantising the scalar field relies upon being able to expand

the field Φ into distinct sets of modes that are positive-frequency or negative-frequency

with respect to a suitable time coordinate. This is because we will promote the coefficients

multiplying these sets of modes, which we refer to as the mode expansion coefficients,

to quantum operators with the understanding that those operators multiplying positive-

frequency modes are annihilation operators and those operators multiplying negative-

frequency modes are creation operators. The correct interpretation of the creation and

annihilation operators, in turn, relies upon the positive-frequency modes being entirely

of positive-norm and the negative-frequency modes being entirely of negative norm since

only then will the canonical commutation relations associated to the operators be correct;

we will make this point clearer by means of an example in §4.1.4.

Since the decomposition of a charged scalar field into positive-frequency modes, which

61
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are entirely of positive-norm, and negative-frequency modes, which are entirely of negative-

norm, proceeds without issue in both Minkowski and Schwarzschild spacetimes, this re-

quirement is not often emphasised in texts concerning those subjects. However, as we

will see in this chapter, decomposing a charged scalar field in the aforementioned way in

Reissner-Nordström spacetime is non-trivial due to the presence of superradiant up- and

down-modes; again, this point will be made clearer by means of an example in §4.1.5.

We have already evaluated the norms of the in-, up-, out- and down-modes in §3.4;

note that we did not make any statements about whether these modes were of positive-

or negative-frequency. It is worth taking the time, now, to discuss how we define positive-

and negative-frequency modes in the absence of considerations about their norms.

4.1.2 Defining positive- and negative-frequency modes

In §4.2, when we come to defining quantum states for a charged scalar field Φ in Reissner-

Nordström spacetime, we will want to consider modes that are positive- and negative-

frequency with respect to a variety of choices of time coordinate in order to define states

with a certain physical interpretation. Thus, it is useful to consider how we can define

positive- and negative-frequency modes with respect to a particular variable in general.

Consider the Fourier transform of an arbitrary function f(X) w.r.t a variable X

∫ ∞

−∞
dX e−ipXf(X) = F (p) , (4.1)

where F (p) is the Fourier-transformed function. Then if

∫ ∞

−∞
dX e−ipXf(X) = 0, p > 0, (4.2)

holds, the function f(X) is defined to be positive-frequency w.r.t the variable X. The

statement in (4.2) can be understood as saying that f(X) is positive-frequency w.r.t X if,

when Fourier decomposed w.r.t X, it only contains positive-frequency elements; then the

function f(X) is analytic in the lower-half of the complex plane. Similarly, if

∫ ∞

−∞
dX eipXf(X) = 0, p > 0, (4.3)

holds, the function f(X) is defined to be negative-frequency w.r.t the variable X. The

condition for f(X) to be negative-frequency in (4.3) can be equivalently expressed as

∫ ∞

−∞
dX e−ipXf(X) = 0, p < 0. (4.4)

The statement in (4.4) can be understood as saying that the function f(X) is said to

be negative-frequency with respect to the variable X if, when Fourier decomposed w.r.t

X, it only contains negative-frequency elements; then the function f(X) is analytic in the

upper-half of the complex plane. Given the form of the harmonic time-dependence e−iωt of

the modes (3.41), the definitions in (4.2) and (4.4) suffice to define positive-frequency and

negative-frequency modes with respect to the Schwarzschild-like coordinate t respectively.
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However, when defining quantum states in which modes are thermalised, such as the

analogues of the Schwarzschild Unruh (2.75) and Hartle-Hawking states (2.99), we will

want to define positive- and negative-frequency quantities w.r.t the Kruskal coordinates U

and V . Each of the scalar field modes we defined in §3.3 are non-zero in certain spacetime

regions only; specifically the in- and down-modes are non-zero in regions I and II of the

Penrose diagram in Figure 3.1, while the up- and out-modes are non-zero in regions I

and III. However, the Kruskal coordinates (3.24) are well-defined throughout Reissner-

Nordström spacetime. Thus, when defining positive- and negative-frequency modes w.r.t

Kruskal coordinates we will need to enforce their vanishing in the regions in which they

are defined to be zero; we do this by using the Heaviside function Θ(x)

Θ(x) =





1, x ≥ 0,

0, x < 0.
(4.5)

Thus, when defining positive-frequency thermalised modes, we will make use of the Lemma

in Appendix H of [89] which states that for positive real p and arbitrary real q

∫ ∞

−∞
dX e−ipX

{
e−iq ln(X) Θ(X) + e−πq e−iq ln(−X) Θ(−X)

}
= 0. (4.6)

By (4.2), the quantity inside the curly brackets in (4.6) is positive-frequency w.r.t X.

When defining negative-frequency thermalised modes, we will make use of the complex

conjugate of the Lemma (4.6), which states that for positive real p and arbitrary real q

∫ ∞

−∞
dX eipX

{
eiq ln(X) Θ(X) + e−πq eiq ln(−X) Θ(−X)

}
= 0. (4.7)

By (4.3), the quantity inside the curly brackets in (4.7) is negative-frequency w.r.t X.

4.1.3 General outline of canonical quantisation

In this section, we will make our discussion of the canonical quantisation procedure con-

crete by means of an example; we consider a charged scalar field Φ on an arbitrary back-

ground spacetime. Consider the Klein-Gordon inner product (3.85); while this represents a

natural choice of inner product for a free scalar field, it is not technically an inner product

since it is not positive-definite. Let us assume that we are able to expand the classical field

Φ in an orthonormal basis of mode solutions φj to the scalar field equation (3.36) where

the label j indexes the solutions; note that we have not said anything about whether we

can decompose the classical field Φ into distinct sets of positive- and frequency-modes yet.

What we mean by expanding the field in an orthonormal basis of field modes φj is that

the Klein-Gordon inner product (3.85) of any two normalised field modes φj , which solve

the scalar field equation (3.36), is given by

〈φj , φj′〉 = ηj δjj′ (4.8)

where δjj′ is either the Kronecker delta function or the Dirac delta function depending

on whether the spectrum of mode solutions is discrete or continuous respectively, and the

factor of ηj in (4.8) is defined by
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ηj =





1 if φj has positive norm,

−1 if φj has negative norm.
(4.9)

The lack of positive-definiteness of the Klein-Gordon inner product is reflected in the

factor of ηj (4.9) on the r.h.s of (4.8), which states that the inner product of two identical

positive-norm modes is positive and the inner product of two identical negative-norm

modes is negative. We have already seen this when calculating the norms of the in-,

up-, out- and down-modes in §3.4; the inner product of the in- and out-modes depends

on sgn(ω) from (3.104) and (3.137) respectively, while the inner product of the up- and

down-modes depends on sgn(ω̃) from (3.130) and (3.145) respectively.

Now, we would like to decompose our orthonormal basis of field modes φj , which satisfy

(4.8), into distinct sets of positive-frequency modes φ+
j and negative-frequency modes φ−j .

We assume that all field modes φj have a harmonic time-dependence on a suitable timelike

coordinate T such that

φj ∝ exp [−i$T ] , (4.10)

where $ is the frequency associated to the mode φj . From our discussion in §4.1.2, φj is

considered to be a positive-frequency mode φ+
j if $ > 0 and a negative-frequency mode φ−j

if $ < 0. We can then decompose our orthonormal basis of field modes φj into positive-

and negative-frequency modes as

Φ =
∑

j

{
ajφ

+
j + b†jφ

−
j

}
, (4.11)

where the mode expansion coefficients aj multiply positive-frequency modes φ+
j and the

mode expansion coefficients bj multiply negative-frequency modes φ−j . We will continue to

use the labels + and − throughout this chapter to denote positive- and negative-frequency

modes respectively and we will continue to use the notation a and b to denote mode

expansion coefficients multiplying positive- and negative-frequency modes respectively.

Canonical quantisation of the scalar field Φ proceeds by promoting the mode expansion

coefficients aj , bj in (4.11) to operators such that the quantum field operator Φ̂ is given by

Φ̂ =
∑

j

{
âjφ

+
j + b̂†jφ

−
j

}
, (4.12)

where, in (4.12), the operators âj multiply positive-frequency modes φ+
j and the opera-

tors b̂j multiply negative-frequency modes φ−j . We can obtain the conjugate momentum

operator Π̂ associated to the field Φ̂ in (4.12) from the operation

Π̂ =
∂

∂T
Φ̂. (4.13)

Then, the field operator Φ̂ (4.12) and its associated conjugate momentum operator Π̂

(4.13) satisfy the canonical commutation relations
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[
Φ̂(T,x) , Π̂

(
T,x′

)]
= i δ3

(
x,x′

)
, (4.14a)

[
Φ̂(T,x) , Φ̂

(
T,x′

)]
=
[
Π̂(T,x) , Π̂

(
T,x′

)]
= 0. (4.14b)

Equations (4.14a, 4.14b), taken together, are often referred to as equal-time commutation

relations since we have given these relations for a particular choice of the value of the time

coordinate T . Using the inner product (4.8) of the field modes φj and the expansion of the

field operator Φ̂ in terms of positive- and negative-frequency modes (4.12), we can derive

the commutation relations for the âj and b̂j operators in (4.12) as

[
âj , â

†
j′

]
= ηjδjj′ ,

[
b̂j , b̂

†
j′

]
= −ηjδjj′ , (4.15)

with any commutators not explicitly given in (4.15) vanishing. In particular, we note

that the commutation relation between the operators b̂j associated to negative-frequency

modes φ−j includes a minus sign that is absent in the commutation relation between the

operators âj associated to positive-frequency modes φ+
j .

Thus far, our discussion has been valid for a charged scalar field Φ on an arbitrary

background spacetime. However, we now restrict our attention to charged scalar fields in

two particular background spacetimes, namely Schwarzschild spacetime, which we treated

in Chapter 2, and Reissner-Nordström spacetime, which is the subject of this chapter.

4.1.4 Canonical quantisation in Schwarzschild spacetime

In Chapter 2, when treating charged scalar fields in Schwarzschild spacetime, we saw that

it is possible to choose a timelike coordinate such that positive-frequency modes φ+
j are

entirely of positive-norm and negative-frequency modes φ−j are entirely of negative-norm.

For example, when defining the Schwarzschild Boulware state, we chose to decompose

the Schwarzschild in- and up-modes into distinct sets of positive- and negative-frequency

modes w.r.t the Schwarzschild coordinate t. Since the harmonic time-dependence of all

of the scalar field modes in Schwarzschild spacetime is given by e−iωt (2.17), then these

modes are positive-frequency for ω > 0 and negative-frequency for ω < 0 by (4.2) and

(4.4) respectively. Furthermore, we saw that all Schwarzschild modes are of positive-

norm for ω > 0 and negative-norm for ω < 0, separately to whether they are considered

positive-frequency or negative-frequency. From (4.9), ηj takes the value 1 in the case

of positive-norm modes and −1 in the case of negative-norm modes. Then, the nonzero

commutation relations (4.15) for the âj and b̂j operators associated to a charged scalar

field Φ in a background Schwarzschild spacetime reduce to standard commutation relations

[
âj , â

†
j′

]
= δjj′ ,

[
b̂j , b̂

†
j′

]
= δjj′ , (4.16)

allowing the âj , b̂j and â†j , b̂
†
j to retain their usual interpretation as annihilation and

creation operators respectively.



66 Canonical quantisation and definition of quantum states

The key point here is that in a background Schwarzschild spacetime, it is possible to

decompose the scalar field Φ such that positive-frequency modes φ+
j are entirely of positive-

norm and negative-frequency modes φ−j are entirely of negative-norm. This, in turn, allows

the commutation relations for the creation and annihilation operators in (4.15), derived

for a charged scalar field Φ in an arbitrary background spacetime, to reduce to standard

commutation relations such as those in (4.16) in a background Schwarzschild spacetime.

The commutation relations in (4.16) are required for the operators âj , b̂j and â†j , b̂
†
j to be

interpreted correctly as annihilation and creation operators respectively.

4.1.5 Canonical quantisation in Reissner-Nordström spacetime

In Reissner-Nordström spacetime, however, the inability to define positive- and negative-

frequency modes that are entirely of positive- and negative-norm respectively for all scalar

field modes raises the prospect of operators that are labelled incorrectly. In §3.4, we saw

that while the in- (3.104) and out-modes (3.137) are of positive- and negative-norm for

ω > 0 and ω < 0 respectively, the up- (3.129) and down-modes (3.145) are of positive- and

negative-norm for ω̃ > 0 and ω̃ < 0 respectively. All of the in-, up-, out- and down-modes

share the same harmonic time-dependence on the Schwarzschild-like coordinate t given

by e−iωt (3.41); thus, all of these mode solutions are positive-frequency for ω > 0 and

negative-frequency for ω < 0 by (4.2) and (4.4) respectively.

Then, it follows that while for the in- and out-modes we are able to define positive-

frequency modes that are entirely of positive-norm and negative-frequency modes that are

entirely of negative-norm, we are not able to do this for the up- and down-modes because

the norm of the up- and down-modes depends on sgn(ω̃) while the question as to whether

the up- and down-modes are positive- or negative-frequency depends on sgn(ω).

From the expression for ω̃ (3.58) in terms of ω, we see there are two cases where the

quantities sgn(ω) and sgn(ω̃) differ depending on the product of the scalar field charge q

and the charge of the black hole Q. We can summarise these cases as

Case 1: If qQ > 0 then modes with 0 < ω <
qQ

r+
have sgn(ω) = 1 and sgn(ω̃) = −1,

Case 2: If qQ < 0 then modes with 0 > ω >
qQ

r+
have sgn(ω) = −1 and sgn(ω̃) = 1.

(4.17)

If Case 1 holds, then the up- and down-modes will contain some terms that are positive-

frequency since sgn(ω) = 1, but are of negative-norm since sgn(ω̃) = −1. Conversely, if

Case 2 holds, then the up- and down-modes will contain some terms that are negative-

frequency since sgn(ω) = −1, but are of positive-norm since sgn(ω̃) = 1. We note that

(4.17) also holds for the in- and out-modes; however, as previously stated, there is no

difficulty in decomposing these modes into positive-frequency modes that are entirely

of positive-norm and negative-frequency modes that are entirely of negative-norm, since

they are defined to be positive- and negative-frequency and of positive- and negative-norm

with respect to the same variable ω. Furthermore, we note that the up- and down-modes
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specified in (4.17) are exactly those of the up- and down-modes in (3.84) that give rise to

the phenomenon of classical superradiance.

We can use the fact that ηj takes the value 1 in the case of positive-norm modes

and −1 in the case of negative-norm modes from (4.9) in order to see what the operator

commutation relations (4.15) reduce to in the two cases stated in (4.17). Restricting

our attention to the case of the superradiant up- and down-modes, if Case 1 holds ηj

takes the value −1 since the positive-frequency superradiant up- and down-modes are of

negative-norm; then the nonzero commutation relations (4.15) for the âj and b̂j operators

associated to these particular modes become

[
âj , â

†
j′

]
= −δjj′ =

[
â†j , âj′

]
,

[
b̂j , b̂

†
j′

]
= δjj′ , (4.18)

leading to the mislabelling of the âj and â†j operators associated to superradiant up- and

down-modes of positive frequency. In (4.18), for the operators âj associated to positive-

frequency modes, what we usually refer to as creation operators are in fact annihilation

operators and what we usually refer to as annihilation operators are in fact creation opera-

tors. On the other hand, if Case 2 holds ηj takes the value 1 since the negative-frequency

superradiant up- and down-modes are of positive-norm; then the nonzero commutation

relations (4.15) for the âj and b̂j operators associated to these particular modes become

[
âj , â

†
j′

]
= δjj′ ,

[
b̂j , b̂

†
j′

]
= −δjj′ =

[
b̂†j , b̂j′

]
, (4.19)

leading to the mislabelling of the b̂j and b̂†j operators associated to superradiant up- and

down-modes of negative-frequency. In (4.19), for the negative-frequency mode operators

b̂j , what we usually refer to as creation operators are in fact annihilation operators while

what we usually refer to as annihilation operators are in fact creation operators.

Thus, we can see that superradiant up- and down-modes of positive- or negative-

frequency that are of negative- or positive-norm respectively lead to the misinterpretation

of the creation and annihilation operators associated to those particular modes. Note

that if the creation and annihilation operators associated to all up- and down-modes were

similarly mislabelled, we could simply interchange their interpretations and we would be

able quantise the field consistently. However, operators multiplying sets of either positive-

or negative-frequency modes that contain modes of different norm renders the ability to

achieve a consistent interpretation of the creation and annihilation operators multiplying

those modes challenging.

4.2 Consequences for defining quantum states in Reissner-

Nordström spacetime

4.2.1 Possible resolutions

The question, then, is how do we proceed to define quantum states for a charged scalar

field in Reissner-Nordström spacetime. We will explore two possible resolutions.
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The first is to abandon defining both up- and down-modes as positive- and negative-

frequency with respect to their frequency ω and, instead, to do so with respect to the

quantity ω̃ (3.58). Then, since both the question as to whether the up- and down-modes

will be positive- or negative-frequency as well as the question as to whether they are

of positive- or negative-norm depends on sgn(ω̃), we will not have sets of positive- or

negative-frequency modes of varying norm in this case, which lead to operators with the

wrong commutation relations such as those in (4.18) and (4.19). However, our ability to

define quantum states becomes much more restrictive.

In particular, we can only define states in the ‘past’ and ‘future’ of the black hole in

this case, i.e. with respect to the ‘past’ (3.86) or ‘future’ Cauchy surfaces (3.87). Thus,

states that we define in this way in Reissner-Nordström spacetime, which are analogous

to a particular state in Schwarzschild spacetime, will only share the properties of the

corresponding Schwarzschild state on surfaces within either the ‘past’ or ‘future’ Cauchy

surfaces. For example, we may define a ‘past’ Boulware state or ‘future’ Boulware state in

Reissner-Nordström spacetime, and these states will only appear to be as empty as possible

to a static observer at past null infinity I − or future null infinity I + respectively; this is

in contrast to the Schwarzschild Boulware state which is as empty as possible to a static

observer at both past and future null infinity I ±. We will refer to states defined in this

way as ‘past’ and ‘future’ states, and their definition will be made clearer in §4.2.3.

The second possible resolution is to continue to define all scalar field modes as positive-

frequency for ω > 0 and as negative-frequency for ω < 0, but to include a factor in the

commutation relations of the operators associated to the up- and down-modes that ensures

the operators associated to these modes satisfy standard commutation relations such as

those in (4.16). We will introduce this factor explicitly in §4.2.4.

In order to make concrete our discussion about the two possible resolutions to the

problem of defining quantum states in Reissner-Nordström spacetime described in this

section, we will now consider the example of defining an analogue of the Schwarzschild

Boulware state in Reissner-Nordström spacetime; this is the subject of the next section.

4.2.2 Example: defining an analogue of Schwarzschild Boulware

Consider the process by which we defined the Schwarzschild Boulware state |Bs〉 in §2.3.1;

we expanded the field in terms of in- and out-modes since the absence of particles in these

modes corresponds to the interpretation of the Schwarzschild Boulware state |Bs〉 as being

as empty as possible to a static observer at infinity. Due to the fact that the in- and out-

modes did not form an orthogonal basis, we re-expressed the out-modes in terms of in- and

up-modes, which do indeed form an orthogonal basis. Nevertheless, since the in-, up- and

out-modes were all considered to be of positive- and negative-norm with respect to their

frequency ω, then positive-norm out-modes were re-expressed in terms of positive-norm

in- and up-modes and negative-norm out-modes were re-expressed in terms of negative-

norm in- and up-modes. Thus, all of the positive-frequency in- and up-modes in our final

expression for the Schwarzschild Boulware state were of positive-norm and, similarly, all of

the negative-frequency in- and up-modes were of negative-norm. Therefore, we obtained

standard commutation relations, such as those in (4.16), for the operators associated to
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all modes and, correspondingly, we were able to interpret the creation and annihilation

operators associated to the Schwarzschild Boulware state |Bs〉 in a consistent manner.

If we were to think about an analogous process in Reissner-Nordström spacetime where

we expand the field Φ in terms of in- (3.106) and out-modes (3.139), before re-expressing

the out-modes in terms of in-modes and up-modes (3.131), we would quickly find sets of

positive- and negative-frequency modes of varying norm. Specifically, the positive- and

negative-norm out-modes will be re-expressed in terms of positive- and negative-norm in-

modes respectively, since the norm of both of these mode solutions depends on sgn(ω).

Furthermore, non-superradiant positive- and negative-norm out-modes will be re-expressed

in terms of non-superradiant up-modes of positive- and negative-norm respectively since,

though the norm of the former depend on sgn(ω) while the norm of the latter depend on

sgn(ω̃), all non-superradiant modes have sgn(ωω̃) = 1. However, the superradiant positive-

and negative-norm out modes will be re-expressed in terms of negative- and positive-norm

superradiant up-modes respectively, due to the fact that the values of sgn(ω) and sgn(ω̃)

differ for these modes from (4.17). Thus, the set of positive-frequency up-modes in our final

expression for this state will contain positive-norm non-superradiant modes and negative-

norm superradiant modes. Similarly, the set of negative-frequency up-modes will contain

negative-norm non-superradiant modes and positive-norm superradiant modes. From our

discussion in §4.1.5, this will lead to commutation relations for the operators associated

to the up-modes of the form (4.18) and (4.19), and the consequent inability to interpret

creation and annihilation operators associated to the up-modes in a consistent manner.

4.2.3 ‘Past’ and ‘future’ states

One resolution would be to instead expand the field Φ in terms of in- and up-modes

directly, integrating the in-modes with respect to their frequency ω and the up-modes

with respect to the quantity ω̃. The absence of particles in the in-modes corresponds to a

state that is as empty as possible to an observer at past null infinity I − only; we cannot

tell if the state will appear as empty as possible to an observer at future null infinity I +

as we have not expanded the field Φ in terms of out-modes. However, the operators acting

on the state will have well-defined interpretations since positive-frequency modes will be

entirely of positive-norm and negative-frequency modes will be entirely of negative-norm.

Expanding the field in precisely this manner will lead us to the ‘past’ Boulware state |B−〉,
which we discuss in §4.3.1. We note that we could similarly expand the field Φ in terms

of out- and down-modes instead, since these scalar field modes also form an orthonormal

basis. Expanding the field in this manner will lead us to the ‘future’ Boulware state |B+〉,
which appears as empty as possible to an observer at future null infinity I − but is not

necessarily empty to an observer at past null infinity I +; we discuss this state in §4.3.2.

The choice of Cauchy surface w.r.t which we define ‘past’ and ‘future’ quantum states

underlines why they are referred to as such. The in- and up-modes, which we expand

the field in terms of in order to define ‘past’ states, take particularly simple forms near

the past horizon H− and past null infinity I −. Thus, it makes sense to define ‘past’

quantum states with respect to the ‘past’ Cauchy surface Σpast (3.86). Similarly, the out-

and down-modes, which we expand the field in terms of in order to define ‘future’ states,
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take particularly simple forms near the future horizon H+ and future null infinity I +.

Thus, it makes sense to define ‘future’ quantum states with respect to the ‘future’ Cauchy

surface Σfuture (3.87). ‘Future’ states are considered in [50,51].

Further examples of ‘past’ and future’ states include the analogues of the Schwarzschild

Unruh |Us〉 and Hartle-Hawking states |Hs〉; we will define the ‘past’ Unruh state |U−〉 in

§4.4.1, the ‘future’ Unruh state |U+〉 in §4.4.2, the ‘past’ CCH state |CCH−〉 in §4.5.1 and

the ‘future’ CCH state |CCH+〉 in §4.5.2.

4.2.4 ‘-like’ states

Returning to the example, in §4.2.2, of defining an analogue of the Schwarzschild Boulware

state |Bs〉 in Reissner Nordström spacetime, we can consider a different resolution to the

issue of mislabelled operators associated to the up-modes in this putative state. We

can continue to define the up-modes as being positive-frequency for ω > 0 and negative-

frequency for ω < 0, and instead multiply the commutation relations of their corresponding

operators by an appropriate factor so as to ensure that these operators obey standard

commutation relations in the case of both superradiant and non-superradiant up-modes.

We can use our discussion in §4.1.5 to inform us of the specific form this factor should

take. In (4.17) we saw that non-standard commutation relations between the operators

associated to superradiant up- and down-modes arise due to the fact that these modes have

sgn(ω̃) 6= sgn(ω); the result is an unwanted factor of−1 in either the commutation relations

between the operators associated to positive-frequency modes if Case 1 holds (4.18) or

the commutation relations between the operators associated to negative-frequency modes

if Case 2 holds (4.19). The factor of −1, in turn, leads to the mislabelling of creation

and annihilation operators in these two cases. Conversely, the operators associated to

modes which have sgn(ω̃) = sgn(ω), i.e. in- and out-modes as well as non-superradiant

up- and down-modes, satisfy standard commutation relations. This leads us to multiply

the commutation relations of operators associated to the up- and down-modes by a factor

ηωω̃ that we will refer to as the eta-function, and which is defined by

ηωω̃ =





1 if sgn(ωω̃) = 1,

−1 if sgn(ωω̃) = −1.
(4.20)

From (4.20), the eta-function ηωω̃ takes the value 1 for modes that have sgn(ω̃) = sgn(ω),

so as to retain standard commutation relations in this case, and −1 for modes that have

sgn(ω̃) 6= sgn(ω), so as to cancel the unwanted factor of −1 in this case.

Furthermore, we will refer to states defined using the eta-function ηωω̃ (4.20) as the

‘-like’ states, since these states are those that are defined in Reissner-Nordström spacetime

which remain as close in spirit as possible to their corresponding states in Schwarzschild

spacetime. For example, the ‘Boulware-like’ state |B〉 that we will define in §4.3.3 is

a state in Reissner-Nordström spacetime that is defined with the intention of being as

empty as possible to a static observer at both past and future null infinity I ±, similar

to the Schwarzschild Boulware state |Bs〉 in §2.3.1. Whether the ‘Boulware-like’ state |B〉
really does have this physical interpretation will be investigated in §5.5. Further examples



Canonical quantisation and definition of quantum states 71

of ‘-like’ states include the analogues of the Schwarzschild Hartle-Hawking state |Hs〉; we

will define the ‘Hartle-Hawking-like’ state |H〉 in §4.5.3 and the Frolov-Thorne state |FT〉
in §4.5.4. Finally, we note that ‘-like’ states were first developed in [49] to deal with

an analogous situation that arises in the case of quantising a neutral scalar field in a

background Kerr spacetime, where it was referred to as the “η-formalism”.

4.2.5 Summary

In this section we have examined in detail the two resolutions to the problem, discussed in

§4.1.5, that arises when defining quantum states in Reissner-Nordström spacetime due to

the inability to define positive-frequency up- and down-modes that are entirely of positive-

norm and negative-frequency up- and down-modes that are entirely of negative-norm.

These are the ‘past’ and ‘future’ states, which are described in §4.2.3, and the ‘-like’

states, which are described in §4.2.4.

We are now ready to define quantum states for a charged scalar field in Reissner-

Nordström spacetime. We organise the remainder of this chapter as follows; we first

define analogues of the Schwarzschild Boulware state |Bs〉 in §4.3, before moving on to

define analogues of the Schwarzschild Unruh state |Us〉 in §4.4 and, finally, we conclude

this chapter by defining analogues of the Schwarzschild Hartle-Hawking state |Hs〉 in §4.5.

4.3 Boulware states

In §2.3.1, we introduced the Schwarzschild Boulware state |Bs〉, which has the physical

interpretation of being as empty as possible to a static observer at both past and future

null infinity I ± in Schwarzschild spacetime. We would like to define analogous states for

a charged scalar field Φ in Reissner-Nordström spacetime.

In §3.3.4, we derived conditions for low-frequency modes of the classical scalar field Φ to

undergo superradiant scattering in RN spacetime. This indicates that it may be impossible

to define a Boulware state that is as empty as possible as seen by an observer at both

past and future null infinity I ±. While an observer at I − may perceive the absence of

radiation, this may not necessarily be true of an observer at I + if the quantised field were

to undergo superradiant scattering. Conversely, while a state may appear to be as empty

as possible to an observer at I +, this may not necessarily be the case at I −.

As such, it will be prudent to define separate ‘past’ and ‘future’ Boulware states,

namely the ‘past’ Boulware state |B−〉 in §4.3.1 that will have the physical interpretation

of being as empty as possible at past null infinity I −, and the ‘future’ Boulware state |B+〉
in 4.3.2 that will have the physical interpretation of being as empty as possible at future

null infinity I +. We will also define a ‘-like’ state, namely the ‘Boulware-like’ state |B〉
in §4.3.3, which is an attempt to remain as close in spirit as possible to the Schwarzschild

Boulware state |Bs〉. We will now define each of these states in turn.
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4.3.1 ‘Past’ Boulware state

We would like to construct a state that is as empty as possible to a static observer at past

null infinity I −; this requirement corresponds to an absence of particles in the in-modes

(3.106) of the field Φ. We require an orthonormal basis of scalar field modes in order

to quantise the field; the in-modes together with the up-modes (3.131) constitute such a

basis. Since the asymptotic forms of both the in-modes (3.64) and the up-modes (3.66)

take particularly simple forms near the past horizon H− and past null infinity I −, it

is convenient to define the ‘past’ Boulware state |B−〉 with respect to the ‘past’ Cauchy

surface Σpast defined in (3.86). From our discussion in §4.1, we will first need to decompose

the in- and up-modes into positive- and negative-frequency sets in order to canonically

quantise the field. We note that this state was first constructed in [1] where it was referred

to as the “in” vacuum.

Positive- and negative frequency in-modes

From the asymptotic forms of the in-mode radial function X in
ω`(r) (3.64), the flux of the

in-modes through the past horizon H− vanishes. Near past null infinity I −, the proper

time experienced by a static observer is given by the Schwarzschild-like time coordinate t.

The time-dependence of the in-modes (3.106) with respect to the coordinate t is given by

φin
ω`m ∝ exp[−iωt] . (4.21)

Then, from (4.2), we define positive-frequency in-modes for ω > 0 as

φin+
ω`m =

1√
4π|ω|

e−iωt X
in
ω`(r)

r
Y`m(θ, ϕ) , ω > 0, (4.22)

where we note, from the expression for the norm of the in-modes (3.104), that the positive-

frequency in-modes in (4.22) are entirely of positive-norm since they have sgn(ω) = 1.

Similarly, from (4.3), we define negative-frequency in-modes for ω < 0 as

φin−
ω`m =

1√
4π|ω|

e−iωt X
in
ω`(r)

r
Y`m(θ, ϕ) , ω < 0, (4.23)

where we note, from the expression for the norm of the in-modes (3.104), that the negative-

frequency in-modes in (4.23) are entirely of negative-norm since they have sgn(ω) = −1.

Since the positive- and negative-frequency in-modes are entirely of positive- and negative-

norm respectively then, from our discussion in §4.1, the operators associated to these

modes will obey standard commutation relations such as those given in (4.16).

While we have defined positive- and negative-frequency in-modes in order to construct

the ‘past’ Boulware state |B−〉, we will also use the definitions in (4.22) and (4.23) when

defining the ‘Boulware-like’ state |B〉 in §4.3.3 and the ‘past’ Unruh state |U−〉 in §4.4.1.

Positive- and negative frequency up-modes

From the asymptotic forms of the up-mode radial function Xup
ω` (r) (3.66), the flux of

the up-modes through past null infinity I − vanishes. Near the past horizon H−, the
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proper time experienced by a static observer is still the Schwarzschild-like time coordinate

t, although we note that a static observer near the event horizon of the black hole is

necessarily accelerating. The time-dependence of the up-modes (3.131) w.r.t t is

φup
ω`m ∝ exp[−iωt] , (4.24)

which suggests that we should similarly define up-modes to be positive- and negative-

frequency for ω > 0 and ω < 0 respectively; however, from (3.129) the norms of the

up-modes are proportional to sgn(ω̃), not sgn(ω). Thus, defining positive- and negative-

frequency up-modes for ω > 0 and ω < 0 respectively lead, from our discussion in §4.1,

to non-standard commutation relations for the creation and annihilation operators asso-

ciated to superradiant up-modes, such as those in (4.18) and (4.19), and their consequent

misinterpretation. Instead, we define positive-frequency up-modes for ω̃ > 0 as

φup+
ω`m =

1√
4π|ω̃|

e−iωt X
up
ω` (r)

r
Y`m(θ, ϕ) , ω̃ > 0, (4.25)

where we note, from the expression for the norm of the up-modes (3.129), that the positive-

frequency up-modes in (4.25) are entirely of positive-norm since they have sgn(ω̃) = 1.

Similarly, we define negative-frequency up-modes for ω̃ < 0 as

φup−
ω`m =

1√
4π|ω̃|

e−iωt X
up
ω` (r)

r
Y`m(θ, ϕ) , ω̃ < 0, (4.26)

where we note, from the expression for the norm of the up-modes (3.129), that the negative-

frequency up-modes in (4.26) are entirely of negative-norm since they have sgn(ω̃) =

−1. Since these positive- and negative-frequency up-modes are entirely of positive- and

negative-norm respectively then, from our discussion in §4.1, the operators associated to

these modes will obey standard commutation relations such as those given in (4.16).

Construction of the ‘past’ Boulware state

Together, the positive- (4.22) and negative-frequency in-modes (4.23) as well as positive-

(4.25) and negative-frequency up-modes (4.26) constitute an orthonormal basis in which

we can quantise the field Φ; doing precisely this will lead us to the ‘past’ Boulware state.

However, it is useful to pause for a moment to contrast our construction of the

‘past’ Boulware state |B−〉 in Reissner-Nordström spacetime with the definition of the

Schwarzschild Boulware state |Bs〉 in §2.3.1. When defining |Bs〉, we initially expanded

the field in terms of the corresponding in- and out-modes in Schwarzschild spacetime; the

absence of radiation in these modes corresponds to the definition of the Schwarzschild

Boulware state |Bs〉 of being as empty as possible to an observer at both past and future

null infinity I ±. Since the in- and out-modes together do not constitute an orthonor-

mal basis, we then re-expressed the classical field in terms of the Schwarzschild in- and

up-modes; these do form an orthonormal basis of modes in which to quantise the field.

We would like to draw a distinction between the spirit of that discussion and our

present one. In defining the ‘past’ Boulware state |B−〉 in Reissner-Nordström spacetime,

we are seeking only a state which is as empty as possible to observers at past null infinity
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I − specifically, as opposed to both past and future null infinity I ±. Thus, it does not

make sense to include the out-modes in our expansion of the classical field at all, and

instead we will expand the field Φ in terms of in- and up-modes directly.

Then, the scalar field can be expanded in an orthonormal basis of in-and up-modes as

Φ(x) =

∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω ain

ω`mφ
in+
ω`m +

∫ 0

−∞
dω bin†ω`mφ

in−
ω`m

+

∫ ∞

0
dω̃ aup

ω`mφ
up+
ω`m +

∫ 0

−∞
dω̃ bup†

ω`mφ
up−
ω`m

}
. (4.27)

We quantise the field by promoting the mode expansion coefficients in (4.27) to operators

such that the field operator Φ̂(x) is given by

Φ̂(x) =
∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω âin

ω`mφ
in+
ω`m +

∫ 0

−∞
dω b̂in†ω`mφ

in−
ω`m

+

∫ ∞

0
dω̃ âup

ω`mφ
up+
ω`m +

∫ 0

−∞
dω̃ b̂up†

ω`mφ
up−
ω`m

}
, (4.28)

where the operators associated to the in-modes, âin
ω`m and b̂inω`m, are defined for ω > 0

and ω < 0 respectively, and the operators associated to the up-modes, âup
ω`m and b̂up

ω`m,

are defined for ω̃ > 0 and ω̃ < 0 respectively. In (4.28), all of the positive-frequency

modes φ
in/up+
ω`m are of positive-norm and all of the negative-frequency modes φ

in/up−
ω`m are of

negative-norm; then, the operators â
in/up
ω`m and b̂

in/up
ω`m obey standard commutation relations:

[
âin
ω`m, â

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω > 0,

[
b̂inω`m, b̂

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω < 0,

[
âup
ω`m, â

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω̃ > 0,

[
b̂up
ω`m, b̂

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω̃ < 0, (4.29)

with any commutators not explicitly given in (4.29) vanishing. The ‘past’ Boulware state

|B−〉 is then defined as the state annihilated by the â
in/up
ω`m and b̂

in/up
ω`m annihilation operators:

âin
ω`m |B−〉 = 0, ω > 0,

b̂inω`m |B−〉 = 0, ω < 0,

âup
ω`m |B−〉 = 0, ω̃ > 0,

b̂up
ω`m |B−〉 = 0, ω̃ < 0. (4.30)

The ‘past’ Boulware state |B−〉 contains no particles or antiparticles incoming from past

null infinity I − nor emanating from the past horizon H−. It is therefore the state which

is as empty as possible as seen by a static observer at past null infinity I −. However,

this state is not empty to an observer at future null infinity I + where it contains an

outgoing flux of particles in the superradiant modes [1]. We consider expectation values

of observables in this state in §5.3.1.



Canonical quantisation and definition of quantum states 75

4.3.2 ‘Future’ Boulware state

We would like to construct a state that is as empty as possible to a static observer at future

null infinity I +; this requirement corresponds to an absence of particles in the out-modes

(3.139) of the field Φ. We require an orthonormal basis of scalar field modes in order to

quantise the field; the out-modes together with the down-modes (3.147) constitute such

a basis. Since the asymptotic forms of both the out-modes (3.68) and the down-modes

(3.70) take particularly simple forms near the future horizon H+ and future null infinity

I +, it is convenient to define the ‘future’ Boulware state |B+〉 with respect to the ‘future’

Cauchy surface Σfuture defined in (3.87). From our discussion in §4.1, we will first need to

decompose the out- and down-modes into positive- and negative-frequency sets in order

to canonically quantise the field Φ. We note that this state was first constructed in [1]

where it was referred to as the “out” vacuum.

Positive- and negative-frequency out-modes

From the asymptotic forms of the out-mode radial function Xout
ω` (r) (3.68), the flux of

the out-modes through the future horizon H+ vanishes. Near future null infinity I +,

the proper time experienced by a static observer is given by the Schwarzschild-like time

coordinate t. The time-dependence of the out-modes (3.139) w.r.t t is given by

φout
ω`m ∝ exp[−iωt] . (4.31)

Then, from (4.2), we define positive-frequency out-modes for ω > 0 as

φout+
ω`m =

1√
4π|ω|

e−iωt X
out
ω` (r)

r
Y`m(θ, ϕ) , ω > 0, (4.32)

where we note, from the expression for the norm of the out-modes (3.137), that the

positive-frequency out-modes (4.32) are entirely of positive-norm since they have sgn(ω) =

1. Similarly, from (4.3), we define negative-frequency out-modes for ω < 0 as

φout−
ω`m =

1√
4π|ω|

e−iωt X
out
ω` (r)

r
Y`m(θ, ϕ) , ω < 0, (4.33)

where we note, from the expression for the norm of the out-modes (3.137), that the

negative-frequency out-modes in (4.33) are entirely of negative-norm since they have

sgn(ω) = −1. Since the positive- and negative-frequency out-modes are entirely of positive-

and negative-norm respectively then, from our discussion in §4.1, the operators associated

to these modes will obey standard commutation relations such as those given in (4.16).

While we have defined positive- and negative-frequency out-modes in order to construct

the ‘future’ Boulware state |B+〉, we will also use the definitions in (4.32) and (4.33) when

defining the ‘future’ Unruh state |U+〉 in §4.4.2.

Positive- and negative-frequency down-modes

From the asymptotic forms of the down-mode radial function Xdown
ω` (r) (3.70), the flux

of the down-modes through future null infinity I + vanishes. Near the future horizon
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H+, the proper time experienced by a static observer is still the Schwarzschild-like time

coordinate t, although we note that a static observer near the black hole event horizon is

necessarily accelerating. The time-dependence of the down-modes (3.147) w.r.t t is

φdown
ω`m ∝ exp[−iωt] , (4.34)

which suggests that we should similarly define down-modes to be positive- and negative-

frequency for ω > 0 and ω < 0 respectively; however, from (3.145) the norms of the

down-modes are proportional to sgn(ω̃), not sgn(ω). Thus, defining positive- and negative-

frequency down-modes in this way would lead, from our discussion in §4.1, to non-standard

commutation relations for the creation and annihilation operators associated to superra-

diant down-modes, such as those in (4.18) and (4.19), and their consequent misinterpre-

tation. Instead, we define positive-frequency down-modes for ω̃ > 0 as

φdown+
ω`m =

1√
4π|ω̃|

e−iωt X
down
ω` (r)

r
Y`m(θ, ϕ) , ω̃ > 0, (4.35)

where we note, from the expression for the norm of the down-modes (3.145), that the

positive-frequency down-modes in (4.35) are entirely of positive-norm since they have

sgn(ω̃) = 1. Similarly, we define negative-frequency down-modes for ω̃ < 0 as

φdown−
ω`m =

1√
4π|ω̃|

e−iωt X
down
ω` (r)

r
Y`m(θ, ϕ) , ω̃ < 0, (4.36)

where, from the expression for the norm of the down-modes (3.145), the negative-frequency

down-modes in (4.36) are entirely of negative-norm since they have sgn(ω̃) = −1. Since

these positive- and negative-frequency down-modes are entirely of positive- and negative-

norm respectively then, from our discussion in §4.1, the operators associated to these

modes will obey standard commutation relations such as those given in (4.16).

Construction of the ‘future’ Boulware state

Taken together the positive- (4.32) and negative-frequency out-modes (4.33) and the

positive- (4.35) and negative-frequency down-modes (4.36) constitute an orthonormal basis

in which we can quantise the field Φ. Then, the scalar field can be expanded as

Φ(x) =
∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω aout

ω`mφ
out+
ω`m +

∫ 0

−∞
dω bout†

ω`mφ
out−
ω`m

+

∫ ∞

0
dω̃ adown

ω`m φdown+
ω`m +

∫ 0

−∞
dω̃ bdown†

ω`m φdown−
ω`m

}
. (4.37)

We quantise the field by promoting the mode expansion coefficients in (4.37) to operators

such that the field operator Φ̂(x) is given by
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Φ̂(x) =
∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω âout

ω`mφ
out+
ω`m +

∫ 0

−∞
dω b̂out†

ω`mφ
out−
ω`m

+

∫ ∞

0
dω̃ âdown

ω`m φdown+
ω`m +

∫ 0

−∞
dω̃ b̂down†

ω`m φdown−
ω`m

}
, (4.38)

where the operators associated to the out-modes, âout
ω`m and b̂out

ω`m, are defined for ω > 0

and ω < 0 respectively, and the operators associated to the down-modes, âdown
ω`m and b̂down

ω`m ,

are defined for ω̃ > 0 and ω̃ < 0 respectively. In (4.38), all of the positive-frequency modes

φ
out/down+
ω`m are of positive-norm and all of the negative-frequency modes φ

out/down−
ω`m are of

negative-norm; then, the â
out/down
ω`m and b̂

out/down
ω`m obey standard commutation relations:

[
âout
ω`m, â

out†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω > 0,

[
b̂out
ω`m, b̂

out†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω < 0,

[
âdown
ω`m , âdown†

ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω̃ > 0,

[
b̂down
ω`m , b̂down†

ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω̃ < 0, (4.39)

with any commutators not explicitly given in (4.39) vanishing. The ‘future’ Boulware state

is then defined as the state annihilated by the â
out/down
ω`m , b̂

out/down
ω`m annihilation operators:

âout
ω`m |B+〉 = 0, ω > 0,

b̂out
ω`m |B+〉 = 0, ω < 0,

âdown
ω`m |B+〉 = 0, ω̃ > 0,

b̂down
ω`m |B+〉 = 0, ω̃ < 0. (4.40)

The ‘future’ Boulware state |B+〉 contains no particles or antiparticles outgoing at future

null infinity I + or going down the future horizon H+. It is therefore the state which is

as empty as possible as seen by a static observer at future null infinity I + [1].

4.3.3 ‘Boulware-like’ state

It is natural to ask as to whether it is possible to define a vacuum state in RN spacetime

that is as empty as possible to a static observer at both past and future null infinity I ±.

In §4.3.1, we defined the ‘past’ Boulware state |B−〉, which is as empty as possible

to a static observer at past null infinity I − but contains an outgoing flux of particles in

the superradiant modes at future null infinity I +. Analogous comments apply for the

‘future’ Boulware state |B+〉, which we defined in §4.3.2. This is unlike the case of the

Schwarzschild Boulware state |Bs〉 in §2.3.1, where we are able to define a state that is as

empty as possible as seen by an observer at both past and future null infinity I ±.

The questions remains, then, as to whether it is possible to define an analogue of

|Bs〉 in Reissner-Nordström spacetime that is similarly as empty as possible at I ±; this
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requirement corresponds to an absence of particles in both the in-modes (3.106) and the

out-modes (3.139) of the field Φ. Using the definitions of positive- (4.22) and negative-

frequency in-modes (4.23) as well as those of positive- (4.32) and negative-frequency out-

modes (4.33), we can expand the field Φ as

Φ(x) =
∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω
(
ãin
ω`mφ

in+
ω`m + ãout

ω`mφ
out+
ω`m

)

+

∫ 0

−∞
dω
(
b̃in†ω`mφ

in−
ω`m + b̃out†

ω`mφ
out−
ω`m

)}
. (4.41)

In (4.41), the positive-frequency modes φ
in/out+
ω`m are entirely of positive-norm since they

have sgn(ω) = 1 and the negative-frequency modes φ
in/out−
ω`m are entirely of negative-norm

since they have sgn(ω) = −1.

However, the in-modes and the out-modes, together, do not form an orthonormal

basis of scalar field modes, which we require to quantise the field Φ. The in-modes are

orthogonal to the up-modes; we would then like to re-express the out-modes in (4.41) in

terms of in- and up-modes in order to expand the field Φ in an orthonormal basis before

quantisation. We note that, since the out-modes are defined to be positive-frequency for

ω > 0 (4.32) and negative-frequency for ω < 0 (4.33) then the in- and up-modes, which

we use to re-express the out-modes, should also be defined as being positive-frequency for

ω > 0 and negative-frequency for ω < 0.

We can use the expression in (3.71a) for the out-mode radial function Xout
ω` in terms

of the radial functions X in
ω`(r) and Xup

ω` (r) of the in-modes and the up-modes respectively;

then, multiplying (3.71a) by an appropriate factor, we have

1√
4π|ω|

e−iωt X
out
ω`

r
Y`m(θ, ϕ)

=
1√

4π|ω|
e−iωt 1

r

(
Ain∗
ω` X

in
ω` +Bin∗

ω` X
up
ω`

)
Y`m(θ, ϕ)

= Ain∗
ω`

1√
4π|ω|

e−iωt X
in
ω`

r
Y`m(θ, ϕ) +Bin∗

ω`

∣∣∣∣
ω̃

ω

∣∣∣∣
1
2 1√

4π|ω̃|
e−iωt X

up
ω`

r
Y`m(θ, ϕ) .

(4.42)

Using the expression for the in-, up- and out-modes in (3.106), (3.131) and (3.139) respec-

tively, (4.42) becomes

φout
ω`m = Ain∗

ω` φ
in
ω`m +

∣∣∣∣
ω̃

ω

∣∣∣∣
1
2

Bin∗
ω` φ

up
ω`m, (4.43)

and so the set of positive-frequency out-modes φout+
ω`m in (4.41) is given, in terms of positive-

frequency in-modes (4.22) and up-modes, by

φout+
ω`m = Ain∗

ω` φ
in+
ω`m +

∣∣∣∣
ω̃

ω

∣∣∣∣
1
2

Bin∗
ω` φ

up
ω`m, (4.44)
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while the set of negative-frequency out-modes φout−
ω`m in (4.41) is given, in terms of negative-

frequency in-modes (4.23) and up-modes, by

φout−
ω`m = Ain∗

ω` φ
in−
ω`m +

∣∣∣∣
ω̃

ω

∣∣∣∣
1
2

Bin∗
ω` φ

up
ω`m. (4.45)

Note, we have dropped the notation φup±
ω`m to denote positive- and negative-frequency up-

modes in (4.44) and (4.45); while it is simple to rewrite the out-modes in terms of in-modes,

there is a subtlety in re-writing the out-modes in terms of up-modes. Positive-frequency

in- (4.22) and out-modes (4.32) are defined for ω > 0 and negative-frequency in- (4.23)

and out-modes (4.33) are defined for ω < 0. In contrast, positive- and negative-frequency

up-modes are defined, in (4.25) and (4.26), for ω̃ > 0 and ω̃ < 0 respectively.

In defining the ‘Boulware-like’ state |B〉, we are changing the interpretation of positive-

and negative-frequency up-modes from the definitions in (4.25) and (4.26) respectively.

Specifically, when defining the ‘past’ Boulware state |B−〉 in §4.3.1, we defined up-modes to

be positive-frequency for ω̃ > 0 (4.25) and negative-frequency for ω̃ < 0 (4.26). In defining

the ‘Boulware-like’ state |B〉, we would like to define all field modes to be positive-frequency

for ω > 0 and negative-frequency for ω < 0, meaning that to denote positive-frequency

up-modes as φup+
ω`m and negative-frequency up-modes as φup−

ω`m in our expansion of the field

Φ would be inconsistent with (4.25) and (4.26) respectively.

However, the labels φup±
ω`m remain useful; to see why this is the case, consider the

following. If qQ > 0, the up-modes in the set of positive-frequency out-modes φout+
ω`m in

(4.44) with 0 < ω < qQ
r+

, or equivalently − qQ
r+

< ω̃ < 0, will be of negative-norm from

(3.129). Similarly, if qQ < 0, the up-modes in the set of negative-frequency out-modes

φout−
ω`m in (4.45) with 0 > ω > qQ

r+
, or equivalently − qQ

r+
> ω̃ > 0, will be of positive-norm

from (3.129). Therefore, we can denote up-modes of positive-norm using the notation

φup+
ω`m and up-modes of negative-norm using the notation φup−

ω`m. We wish to remind the

reader that denoting positive-norm up-modes as φup+
ω`m and negative-norm up-modes as

φup−
ω`m is a change of notation from §4.3.1.

Now, we can return to the task of re-expressing the out-modes in (4.41) in terms

of in- and up-modes. In line with our discussion in the preceding paragraph, we will

separate the range of the integral of the positive-frequency up-modes, which is given by

0 < ω < ∞, and the range of the integral of the negative-frequency up-modes, which is

given by 0 > ω > −∞, into two separate ranges in both cases such that we can correctly

denote up-modes that are of positive-norm as φup+
ω`m and up-modes that are of negative-

norm as φup−
ω`m. Then, using (4.44) and (4.45), the scalar field Φ can be expanded in an

orthonormal basis of in- and up-modes as
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Φ(x) =
∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω ain

ω`mφ
in+
ω`m +

∫ 0

−∞
dω bin†ω`mφ

in−
ω`m

+

∫ ∞

max
{
qQ
r+
,0
}dω aup

ω`mφ
up+
ω`m +

∫ max
{
qQ
r+
,0
}

0
dω aup

ω`mφ
up−
ω`m

+

∫ 0

min
{
qQ
r+
,0
}dω bup†

ω`mφ
up+
ω`m +

∫ min
{
qQ
r+
,0
}

−∞
dω bup†

ω`mφ
up−
ω`m



 , (4.46)

where the expansion coefficients in (4.46) are related to those in (4.41) by the expressions

ain
ω`m = ãin

ω`m +Ain∗
ω` ã

out
ω`m, ω > 0,

bin†ω`m = b̃in†ω`m +Ain∗
ω` b̃

out†
ω`m, ω < 0,

aup
ω`m =

∣∣∣∣
ω̃

ω

∣∣∣∣
1
2

Bin∗
ω` ã

out
ω`m, ω > 0,

bup†
ω`m =

∣∣∣∣
ω̃

ω

∣∣∣∣
1
2

Bin∗
ω` b̃

out†
ω`m, ω < 0. (4.47)

We quantise the field by promoting the mode expansion coefficients in (4.46) to operators

such that the field operator Φ̂(x) is given by

Φ̂(x) =

∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω âin

ω`mφ
in+
ω`m +

∫ 0

−∞
dω b̂in†ω`mφ

in−
ω`m

+

∫ ∞

max
{
qQ
r+
,0
}dω âup

ω`mφ
up+
ω`m +

∫ max
{
qQ
r+
,0
}

0
dω âup

ω`mφ
up−
ω`m

+

∫ 0

min
{
qQ
r+
,0
}dω b̂up†

ω`mφ
up+
ω`m +

∫ min
{
qQ
r+
,0
}

−∞
dω b̂up†

ω`mφ
up−
ω`m



 , (4.48)

where the operators â
in/up
ω`m and b̂

in/up
ω`m are defined for ω > 0, and the operators â

in/up†
ω`m and

b̂
in/up†
ω`m are defined for ω < 0.

In (4.48), the positive-frequency in-modes φin+
ω`m are entirely of positive-norm and the

negative-frequency modes φin−
ω`m are entirely of negative-norm. Therefore, the operators

âin
ω`m and b̂inω`m follow standard commutation relations.

Furthermore, the positive-norm up-modes φup+
ω`m in the first term of the second line on

the r.h.s of (4.48) are entirely of positive-frequency since they have sgn(ω) = 1, meaning

that we would indeed like to interpret the âup
ω`m as annihilation operators. From our

discussion in §4.1, since these modes have sgn(ωω̃) = 1, i.e. they are both positive-

frequency and of positive-norm, we require that the operators associated to these modes

follow standard commutation relations when sgn(ωω̃) = 1.

However, the situation is complicated by the fact that the same operators âup
ω`m are

also acting on the negative-norm up-modes φup−
ω`m in the second term of the second line on
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the r.h.s of (4.48). If qQ < 0, the modes in this term also have sgn(ω) = −1 from (3.58);

however, in this case the integral in this term vanishes because 0 > qQ
r+

such that the

limits of the integral coincide. If qQ > 0, on the other hand, the modes in this term have

sgn(ω) = 1, or equivalently ω > 0, and are therefore positive-frequency modes. Therefore,

we would still like to interpret the âup
ω`m as annihilation operators, despite them multiplying

up-modes of negative-norm.

In summary, we would like to interpret the âup
ω`m as annihilation operators in both the

cases where they are acting on positive-norm up-modes with sgn(ωω̃) = 1 and where they

are acting on negative-norm up-modes with sgn(ωω̃) = −1. Analogous comments apply

in terms of wanting to interpret the b̂up†
ω`m as creation operators in both the cases where

they are acting on negative-norm up-modes with sgn(ωω̃) = 1 and where they are acting

on positive-norm up-modes with sgn(ωω̃) = −1.

Then, recalling our discussion in §4.2.4, we can multiply the commutation relations

of the operators âup
ω`m and b̂up

ω`m by the eta-function ηωω̃ (4.20). Therefore, the operators

â
in/up
ω`m and b̂

in/up
ω`m obey the following non-standard commutation relations

[
âin
ω`m, â

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω > 0,

[
b̂inω`m, b̂

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω < 0,

[
âup
ω`m, â

up†
ω′`′m′

]
= ηωω̃ δ

(
ω − ω′

)
δ``′ δmm′ , ω > 0,

[
b̂up
ω`m, b̂

up†
ω′`′m′

]
= ηωω̃ δ

(
ω − ω′

)
δ``′ δmm′ , ω < 0, (4.49)

with any commutators not explicitly given in (4.49) vanishing. The ‘Boulware-like’ state

|B〉 is then defined as the state annihilated by the â
in/up
ω`m and b̂

in/up
ω`m annihilation operators:

âin
ω`m |B〉 = 0, ω > 0,

b̂inω`m |B〉 = 0, ω > 0,

âup
ω`m |B〉 = 0, ω < 0,

b̂up
ω`m |B〉 = 0 ω < 0. (4.50)

The ‘Boulware-like’ state |B〉 contains no particles or antiparticles in the in-modes, as well

as the non-superradiant up-modes, which is similar to the case of the ‘past Boulware’ state

|B−〉 that we defined in §4.3.1. However, the ‘Boulware-like’ state |B〉 differs from |B−〉 in

that it may contain particles and antiparticles in the superradiant ‘up’ modes. We explore

this further in §5.5 when we study the expectation values of observables in this state.

4.4 Unruh states

In §2.3.2, we introduced the Schwarzschild Unruh state |Us〉; this state exhibits an ab-

sence of incoming radiation from past null infinity I − but predicts a thermalised flux of

radiation, i.e. Hawking radiation, outgoing at future null infinity I +. We would like to

define analogous states for a charged scalar field Φ in Reissner-Nordström spacetime.
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In §4.2.3, we introduced the concept of ‘past’ and ‘future’ states; it turns out that the

Schwarzschild Unruh state |Us〉 that we defined in §2.3.2 is effectively a ‘past’ state. To

see that this is the case, note that we defined |Us〉 with respect to the corresponding ‘past’

Cauchy surface in Schwarzschild spacetime. Then |Us〉 was defined using the Schwarzschild

in- and up-modes, with the lack of incoming radiation at I − corresponding to an absence

of particles in the in-modes and the outgoing Hawking radiation at I + corresponding to

a thermalised flux of particles in the up-modes.

Then, the first analogue of the Schwarzschild Unruh state |Us〉 that we will define

in Reissner-Nordström spacetime is the ‘past’ Unruh state |U−〉 in §4.4.1; this state is

as empty as possible to a static observer at past null infinity I − but predicts outgoing

Hawking radiation at future null infinity I +. We note that the ‘past’ Unruh state |U−〉
was first studied by Gibbons [39]. We need not define a ‘-like’ state since the ‘past’

Unruh state will be defined with a similar physical interpretation to the Schwarzschild

Unruh state. We will also define the ‘future’ Unruh state |U+〉 in §4.4.2; this state is the

time-reverse of the ‘past’ Unruh state |U−〉.

4.4.1 ‘Past’ Unruh state

We would like to construct a state that exhibits an absence of incoming radiation from past

null infinity I − but which predicts outgoing Hawking radiation at future null infinity I +;

in terms of the scalar field modes defined in §3.3, this corresponds to as absence of particles

in the in-modes (3.106) and a thermalised flux of particles in the up-modes (3.131).

Together, the in- and up-modes constitute an orthonormal basis which we require to

quantise the field. From our discussion in §4.1, we first need to decompose the in- and

up-modes into positive- and negative-frequency sets to canonically quantise the field.

The lack of incoming radiation in the ‘past’ Unruh state |U−〉 corresponds to an absence

of particles in the in-modes of the field Φ as seen by a static observer at past null infinity

I −. Far from the black hole, the proper time experienced by a static observer is given by

the Schwarzschild-like coordinate t. We have already defined in-modes that are positive-

and negative-frequency w.r.t t when defining the ‘past’ Boulware state |B−〉 in §4.3.1.

Then, the definitions of positive- and negative-frequency in-modes that we require are

those given in (4.22) and (4.23) respectively.

It should be noted that it is unsurprising that, in defining the ‘past’ Unruh state |U−〉,
we are able to use the same definitions of positive- and negative-frequency in-modes as

when we defined the ‘past’ Boulware state |B−〉; both of these states share the property

of being as empty as possible to a static observer at past null infinity I −. We now need

to define positive- and negative-frequency thermalised up-modes.

Positive- and negative-frequency thermalised up-modes

The construction of positive- and negative-frequency thermalised up-modes in this section

differs in some aspects from the corresponding derivation for a neutral scalar field, such

as that used in §2.3.2 or in [5, 89]. Therefore, this section will be necessarily detailed.

The ‘past’ Unruh state |U−〉 has the additional interpretation of predicting Hawking
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radiation outgoing at future null infinity I +; this property corresponds to a thermalised

flux of particles in the up-modes emanating from the past horizon H−. The Kruskal

coordinate U (3.24) is the affine parameter along the null generators of the past horizon

H−. Then, near H−, the natural choice of time-coordinate w.r.t which we can define

positive- and negative-frequency up-modes is the Kruskal retarded time U .

From our discussion in §4.1.2 on defining positive- and negative-frequency modes w.r.t

Kruskal coordinates, we will make use of the lemma (4.6) and its complex conjugate (4.7).

Up-modes in region I: We begin by expressing the asymptotic form of the up-modes

(3.66) near H− in terms of Kruskal coordinates; using (3.21) and (3.26), we have

φup
ω`m =

1√
4π|ω̃|

1

r
e−iωt eiω̃r∗Y`m(θ, ϕ)

=
1√

4π|ω̃|
1

r
exp

[
iω̃

(v − u)

2

]
exp

[
−iω

(u+ v)

2

]
Y`m(θ, ϕ)

=
1√

4π|ω̃|
1

r
exp

[
− i (ω + ω̃)

2
u

]
exp

[
− i (ω − ω̃)

2
v

]
Y`m(θ, ϕ)

=
1√

4π|ω̃|
1

r
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]
Y`m(θ, ϕ) , (4.51)

where we have used the dimensionless quantities Ũ and Ṽ (3.33) to simplify the expres-

sion in (4.51). An important point to note is that the Kruskal coordinate U is defined

throughout the entire Reissner-Nordström spacetime, i.e. on all four regions of the Penrose

diagram in Figure 3.1. The up-modes are defined in regions I and III, where Ũ < 0. We

can trivially extend their definition to regions II and IV by using the Heaviside function

(4.5) to demand that they vanish when Ũ > 0. Then, (4.51) becomes

φup
ω`m =

1√
4π|ω̃|

1

r
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]
Y`m(θ, ϕ) Θ

(
−Ũ
)
.

(4.52)

Comparing the expression for the asymptotic form of the up-modes near the past horizon

H− in (4.52) with the lemma (4.6), we see that the second term in the lemma can be

constructed from the expression in (4.52) if we take

Xup+ = Ũ and qup+ = −(ω + ω̃)

2κ
, (4.53)

where the label up+ denotes that these values are chosen to define positive-frequency

up-modes with respect to the Kruskal coordinate U . Then the lemma (4.6) becomes

∫ ∞

−∞
dŨ e−ipŨ

{
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

Θ
(
Ũ
)

+ exp

[
π

(ω + ω̃)

2κ

]
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

Θ
(
−Ũ
)}

= 0. (4.54)

We now need to define a set of modes to construct the first term of the lemma in (4.54).
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Region IV down-modes: We see that the first term of the lemma (4.54) can be con-

structed from a set of modes in regions II and IV, vanishing in regions I and III, with the

same dependence on qup+ (4.53) as the asymptotic form of the up-modes in (4.52) but

containing factors of −Ũ as opposed to Ũ ; this could be achieved by simply making the

transformation Ũ → −Ũ . However, the interpretation of such a set of modes is unclear.

It is attractive instead to define a set of modes by making both of the transformations

Ũ → −Ũ and Ṽ → −Ṽ [89], which results in a set of modes that are nonzero in regions II

and IV and vanishing elsewhere, as well as being orthogonal to the up-modes in (4.52) since

the two sets of modes are defined in different regions of spacetime. Then, the asymptotic

form of a set of modes ψdown
ω`m near the region IV future horizon H+

IV is given by

ψdown
ω`m =

1√
4π|ω̃|

1

r
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω − ω̃)

2κ
ln
(
−Ṽ
)]
Y`m(θ, ϕ) Θ

(
Ũ
)
.

(4.55)

In addition to having the desired dependence on the parameters qup+ and Ũ (4.53), the

modes in (4.55) have an intuitive interpretation in that they represent the region IV

analogue of the down-modes (3.147) that are defined in region I. In order to see this is

the case, recall that the up-modes in region I (3.131) are defined as emerging from the

past horizon H− with unit flux and are travelling towards future infinity I +, with modes

being scattered down the future horizon H+; they are nonzero in regions I and III only.

Performing the transformations Ũ → −Ũ and Ṽ → −Ṽ then shifts the modes such that

they are now nonzero in regions II and IV and vanish elsewhere, as we can see from the

factor of Θ(Ũ) in (4.55). Specifically, the modes ψdown
ω`m are now emerging from the future

horizon H+
IV with unit flux, and are travelling to past null infinity I −IV with some modes

being scattered down the past horizon H−IV; the modes vanish near future null infinity I +
IV.

These conditions are similar to those used the define the down-modes (3.147) in region I,

although the down-modes φdown
ω`m are defined to be incident upon H+ with unit flux where

the modes ψdown
ω`m are defined to be emanating from H+

IV with unit flux.

We have given the modes ψdown
ω`m in (4.55) the label “down” but the φdown

ω`m and ψdown
ω`m

remain distinct and defined in different regions of the spacetime diagram. We will hence-

forth refer to the modes ψdown
ω`m in (4.55) as the region IV down-modes; the notation ψdown

ω`m

serves to distinguish these modes from the (region I) down-modes φdown
ω`m in (3.147).

It is instructive to examine the norms of these modes before proceeding. In order to

compare the calculation of the norms of the region IV down-modes with those of the scalar

field modes in §3.4, it will be helpful to rewrite the expression for the asymptotic form of

the region IV down-modes near H+
IV in (4.55) in terms of another set of Schwarzschild-like

coordinates that are defined in region IV. This, in turn, will require us to first define

another set of lightcone coordinates, which are similarly defined in region IV.

Coordinates in region IV: In defining the region IV down-modes, we made the trans-

formations Ũ → −Ũ and Ṽ → −Ṽ . This means that the Kruskal coordinate U , which

ranged over −∞ < U < 0 in region I, now ranges over 0 < U <∞ in region IV. Similarly,

the Kruskal coordinate V , which ranged over 0 < V < ∞ in region I, now ranges over
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−∞ < V < 0 in region IV. Thus, in region IV, the coordinate U ranges over the same

interval that the coordinate V does in region I. Similarly, in region IV, the coordinate V

ranges over the same interval that the coordinate U does in region I.

Then, we can define a set of region IV lightcone coordinates (ū, v̄), where v̄ shares the

same relationship to the Kruskal coordinate V as the (region I) lightcone coordinate u

does to U . Similarly, ū should share the same relationship to the Kruskal coordinate U

as the (region I) lightcone coordinate v does to V . Then, using the expressions for the

(region I) lightcone coordinates in terms of the Kruskal coordinates (3.26), the region IV

lightcone coordinates are related to Kruskal coordinates by

ū =
1

κ
ln
(
Ũ
)

and v̄ = −1

κ
ln
(
−Ṽ
)
. (4.56)

Furthermore, we can define a new set of Schwarzschild-like coordinates
(
t̄, r̄, θ̄, ϕ̄

)
in region

IV. We need only consider t̄ and r̄∗ for our purposes and we recall that the natural

logarithm is a monotonically increasing function. In order to derive relations between the

region IV lightcone coordinates (4.56) and the region IV Schwarzschild-like coordinates,

it is useful to consider, in region I, how the lightcone coordinates (3.20) and the (region

I) Schwarzschild-like coordinates vary with respect to one another, where the relationship

between the two is well-established. From the Penrose diagram in Figure 3.1, we see that

As U → −∞, then u→ −∞. We also have t→ −∞ and r∗ →∞, (4.57a)

As V →∞, then v →∞. We also have t→∞ and r∗ →∞, (4.57b)

As U → 0, then u→∞. We also have t→∞ and r∗ → −∞, (4.57c)

As V → 0, then v → −∞. We also have t→ −∞ and r∗ → −∞. (4.57d)

Equations (4.57a – 4.57d) summarise the relationships between the Kruskal, lightcone and

Schwarzschild-like coordinate systems in region I. We can now turn our attention to region

IV in order to derive the corresponding relationships between the Kruskal coordinates, the

region IV lightcones coordinates (4.56) and the region IV Schwarzschild-like coordinates.

We remind the reader that the value of the region IV Schwarzschild-like coordinate t̄

increases from the past horizon H−IV to future null infinity I +
IV and also increases from

past null infinity I −IV to the future horizon H+
IV. Similarly, the value of the region IV

Schwarzschild-like coordinate r̄∗ increases from the past horizon H−IV to future null infinity

I +
IV; however, it decreases from past null infinity I −IV to the future horizon H+

IV.

Then, examining region IV of the Penrose diagram in Figure 3.1, we see that the

Kruskal coordinate U , which increases from U = 0 at the past horizon H−IV to U = ∞
at future null infinity I +

IV, is positively correlated to both t̄ and r̄∗; since ū is positively

correlated to U , we can conclude that ū is also positively correlated with t̄ and r̄∗. Similarly,

we see that the Kruskal coordinate V , which increases from V = −∞ at past null infinity

I −IV to V = 0 at the future horizon H+
IV, is positively correlated with t̄ but negatively

correlated with r̄∗; since v̄ is positively correlated to V , we can conclude that v̄ is also

positively correlated with t̄ and negatively correlated with r̄∗. More concisely, we have
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As U →∞, then ū→∞. We also have t̄→ −∞ and r̄∗ →∞, (4.58a)

As V → −∞, then v̄ → −∞. We also have t̄→∞ and r̄∗ →∞, (4.58b)

As U → 0, then ū→ −∞. We also have t̄→∞ and r̄∗ → −∞, (4.58c)

As V → 0, then v̄ →∞. We also have t̄→ −∞ and r̄∗ → −∞. (4.58d)

Therefore, from (4.58a – 4.58d), we deduce that the region IV lightcone coordinates are

related to the region IV Schwarzschild-like coordinates by the expressions

ū = −t̄+ r̄∗ and v̄ = −t̄− r̄∗, (4.59)

which are different to the expressions (3.20) relating the lightcone coordinates and the

Schwarzschild-like coordinates in region I. Restricting our attention to region IV such

that we can ignore the factor of Θ
(
Ũ
)

in (4.55), we can express the asymptotic form of

the modes ψdown
ω`m near H+

IV in terms of the region IV Schwarzschild-like coordinates as

ψdown
ω`m =

1√
4π|ω̃|

1

r̄
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω − ω̃)

2κ
ln
(
−Ṽ
)]
Y`m

(
θ̄, ϕ̄

)

=
1√

4π|ω̃|
1

r̄
exp

[
i (ω + ω̃)

2
ū

]
exp

[
i (ω − ω̃)

2
v̄

]
Y`m

(
θ̄, ϕ̄

)

=
1√

4π|ω̃|
1

r̄
e−iωt̄ eiω̃r̄∗Y`m

(
θ̄, ϕ̄

)
. (4.60)

Using (4.60), we are now ready to calculate the norms of the region IV down-modes.

Norms of the region IV down-modes: The expression for the region IV down-modes

in (4.60) depends on all four of the region IV Schwarzschild-like coordinates
(
t̄, r̄, θ̄, ϕ̄

)
.

Recalling the calculations in §3.4 of the norms of modes in region I however, when we

evaluate the norm of the region IV down-modes each of the coordinates
(
t̄, r̄, θ̄, ϕ̄

)
will

appear as a dummy variable in the integrals within the Klein-Gordon inner product (3.85).

Then, in the understanding that all of the following coordinates are dummy variables,

if we make the identifications t̄ = t, r̄ = r, θ̄ = θ and ϕ̄ = ϕ the asymptotic form of the

region IV down-modes near H+
IV (4.60) is identical to the asymptotic form of the up-modes

near H− in region I (3.66); we can use this, as well as the expression for the norm of two

up-modes in (3.129), in order to determine the norms of the region IV down-modes.

We will need to choose a Cauchy surface over which to evaluate the Klein-Gordon inner-

product (3.85) of two region IV down-modes. The modes in (4.55), take a particularly

simple asymptotic form near the future horizon H+
IV and vanish near future null infinity

I +
IV as well as in region I. Then, a convenient choice of Cauchy surface is the ‘past’ Cauchy

surface Σpast defined in (3.86). Then, the inner product of two region IV down-modes is
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〈ψdown
ω`m , ψdown

ω′`′m′〉

= i

∫

H+
IV

[(
∂µψ

down∗
ω`m

)
ψdown
ω′`′m′ − ψdown∗

ω`m ∂µψ
down
ω′`′m′ + 2 iqAµψ

down∗
ω`m ψdown

ω′`′m′

]√−g dΣµ

H+
IV

,

(4.61)

where the integral over the ‘past’ Cauchy surface Σpast in (4.61) reduces to one over the

future horizon H+
IV since the region IV down-modes vanish near future null infinity I +

IV.

Contained within the integral over the future horizon in (4.61) is an integral w.r.t the

Kruskal coordinate U whose limits are given by the range of values U takes in region IV,

i.e. 0 < U <∞; using the relationship between the Kruskal coordinates and the region IV

lightcone coordinates (4.56), this integral can be re-expressed w.r.t the region IV lightcone

coordinate ū with the limits −∞ < ū <∞. In the calculation of the norm of the up-modes

in §3.4.3, the limits of the integral w.r.t the (region I) lightcone coordinate u is given by

−∞ < u <∞ (3.124). Again, since the coordinates ū and u are dummy variables in each

of the aforementioned integrals respectively, then we see that integrating over the future

horizon H+
IV in region IV, as opposed to integrating over the past horizon H− in region I,

does not induce a minus sign in 〈ψdown
ω`m , ψdown

ω′`′m′〉 relative to 〈φup
ω`m, φ

up
ω′`′m′〉.

However, the normal to the region IV future horizon H+
IV is given by nµ = −dV . This

is in contrast to the normal to the (region I) past horizon H−, which is given by nµ = dV

(3.108). Therefore, integrating w.r.t the volume element Σµ

H+
IV

as opposed to the volume

element Σµ
H− induces a minus sign in 〈ψdown

ω`m , ψdown
ω′`′m′〉 relative to 〈φup

ω`m, φ
up
ω′`′m′〉.

Thus, the expression for the norm of the region IV down-modes in (4.61) becomes

〈ψdown
ω`m , ψdown

ω′`′m′〉 = −〈φup
ω`m, φ

up
ω′`′m′〉

= −sgn(ω̃) δ
(
ω − ω′

)
δ``′ δmm′ , (4.62)

where we have used the expression for the norm of the up-modes (3.129). Then, we can

write the expression for the inner product of two generic region IV down-modes as

〈ψdown
ω`m , ψdown

ω′`′m′〉 =




−δ(ω − ω′) δ``′ δmm′ , for ω̃ > 0,

δ(ω − ω′) δ``′ δmm′ , for ω̃ < 0,
(4.63)

meaning that region IV down-modes are of negative-norm when ω̃ > 0 and of positive-norm

when ω̃ < 0. This is different to the case of the up-modes (3.130) that have positive-norm

when ω̃ > 0 and negative-norm when ω̃ < 0. This difference is crucial in the construction

of positive- and negative-frequency thermalised up-modes and we will see below that it

gives rise to the thermal factor of the modes.

Having evaluated the norm of the region IV down-modes, we now return to defining

positive- and negative-frequency thermalised up-modes. The lemma in (4.54) involves

integrating over a particular surface. We can use the properties of the asymptotic forms

of the up-modes in (4.52) and of the region IV down-modes in (4.55) to physically reason

what an appropriate surface of integration would be.
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Choice of surface over which to integrate: We need to specify a surface over which

to integrate the linear combination of up-modes and region IV down-modes given by the

lemma in (4.54). Near the past horizon H−, the up-modes take the particularly simple

asymptotic form given in (4.52) and these modes vanish in region IV. Near the future

horizonH+
IV, the region IV down-modes take the particularly simple asymptotic form given

in (4.55) and these modes vanish in region I. Both the past horizon H− and the region

IV future horizon H+
IV are surfaces of constant V = 0.

Then it is convenient to choose our surface of integration to be a hypersurface of

constant V = ε > 0, where ε is a small, positive constant such that this surface lies

inside region I, close to H−, and inside region II, close to H+
IV. Our chosen surface of

integration will inform our choice of branch cut when simplifying the exp[ ln(−Ṽ )] term

in the asymptotic form of the region IV down-modes in (4.55).

Choosing a branch of the logarithm for positive-frequency modes: Both the

asymptotic form of the up-modes near H− (4.52) and the asymptotic form of the region

IV down-modes near H+
IV (4.55) have the same dependence on qup+ (4.53), as well as the

correct dependence on Ũ according to the lemma in (4.54); however, the former contain a

factor of exp[ ln(Ṽ )], whereas the latter contain a factor of exp[ ln(−Ṽ )]. We are attempting

to define positive-frequency modes w.r.t U ; these are analytic in the lower-half of the plane

and so we need to use a branch of the logarithm that is also analytic in the lower-half

plane. We can therefore choose to make a branch cut along the positive imaginary axis

ln(−1) = −iπ. (4.64)

Then, integrating over a hypersurface of constant V = ε > 0, we have

exp

[
− i (ω − ω̃)

2κ
ln
(
−Ṽ
)]

= exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

exp

[
− i (ω − ω̃)

2κ
ln(−1)

]

= exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

exp

[
− i (ω − ω̃)

2κ
(−iπ)

]

= exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

exp

[
−π (ω − ω̃)

2κ

]
. (4.65)

Using (4.65), the asymptotic form of the region IV down-modes near H+
IV (4.55) becomes

ψdown
ω`m =

1√
4π|ω̃|

1

r
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

× exp

[
−π (ω − ω̃)

2κ

]
Y`m(θ, ϕ) Θ

(
Ũ
)
. (4.66)

We are now ready to construct a set of positive-frequency thermalised up-modes.

Defining positive-frequency thermalised up-modes: In order to define positive-

frequency modes with respect to the Kruskal coordinate U , we will have to multiply the

expression for the lemma in (4.54) by an appropriate factor such that we can write the
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lemma as a linear combination of the asymptotic forms of the up-modes in (4.52) and the

region IV down-modes in (4.66); explicitly, we obtain

0 =
1√

4π|ω̃|
1

r
exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

exp

[
−π (ω − ω̃)

2κ

]
Y`m(θ, ϕ)

×
∫ ∞

−∞
dŨ e−ipŨ

{
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

Θ
(
Ũ
)

+ exp

[
π (ω + ω̃)

2κ

]
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

Θ
(
−Ũ
)}

. (4.67)

The first term in (4.67) is exactly that of the asymptotic form of the region IV down-

modes near H+
IV (4.66), while the second term in (4.67) is that of the asymptotic form of

the up-modes near H− (4.52) multiplied by a factor of

exp

[
−π (ω − ω̃)

2κ

]
exp

[
π (ω + ω̃)

2κ

]
= exp

[
πω̃

κ

]
. (4.68)

Then we can write the linear combination of modes in (4.67) as

0 =

∫ ∞

−∞
dŨ e−ipŨ

{
ψdown
ω`m + e

πω̃
κ φup

ω`m

}
, p > 0. (4.69)

By the statement (4.2), the quantity in the curly brackets in (4.69) is positive-frequency

w.r.t Ũ (and therefore U) for all values of ω̃. For reasons that will become apparent when

we come to normalise, we can multiply this quantity by a factor of Nup+
ω e−

πω̃
2κ where the

normalisation constant Nup+
ω is yet to be determined, to define a set of modes χup+

ω`m

χup+
ω`m = Nup+

ω

(
e
πω̃
2κ φup

ω`m + e−
πω̃
2κ ψdown

ω`m

)
(4.70)

which is positive-frequency with respect to the Kruskal coordinate U for all values of ω̃.

Here the label + once again denotes that these are positive-frequency modes. The label

“up”, however, may be a little more mysterious. Eventually we will restrict our attention

to region I of the spacetime diagram where (4.70) reduces to

χup+
ω`m = e

πω̃
2κ Nup+

ω φup
ω`m, (4.71)

and the label “up” becomes more intuitive.

The modes (4.71) constitute a set of thermalised up-modes that are positive-frequency

with respect to the Kruskal coordinate U . We will eventually normalise these modes such

that they can be used to expand the field Φ in an orthonormal basis of scalar field modes

before quantisation. Before we do so, however, we will define a set of thermalised up-modes

that are negative-frequency with respect to the Kruskal coordinate U .

Defining negative-frequency thermalised up-modes: We would also like to define

an analogous set of modes that are negative-frequency with respect to the Kruskal coor-

dinate U . We can do this by considering the complex conjugate of the lemma in (4.7).

Comparing the asymptotic expressions for the up-modes near H− (4.52) and the region
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IV down-modes near H+
IV (4.55) with the lemma in (4.7), we see that the terms in the

lemma can be constructed from the expressions in (4.52) and (4.55) if we take

Xup− = Ũ , (4.72)

similar to the case when defining positive-frequency modes. However, in contrast to the

case when defining positive-frequency modes, we need to take

qup− =
(ω + ω̃)

2κ
, (4.73)

where the label up− denotes that these are the values we choose in order to define negative-

frequency up-modes w.r.t the Kruskal coordinate U . Then the lemma (4.7) becomes

∫ ∞

−∞
dŨ eipŨ

{
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

Θ
(
Ũ
)

+ exp

[
−π (ω + ω̃)

2κ

]
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

Θ
(
−Ũ
)}

= 0. (4.74)

We will again need to take a linear combination of the asymptotic forms of the up-modes

near H− (4.52) and of the region IV down-modes near H+
IV (4.55). The former contain a

factor of exp[ ln(Ṽ )] while the latter contain a factor of exp[ ln(−Ṽ )]. We are attempting to

define negative-frequency modes w.r.t Ũ ; these are analytic in the upper-half of the plane

and so we need to use a branch of the logarithm that is also analytic in the upper-half of

the plane. We therefore choose to make a branch cut along the negative imaginary axis

ln (−1) = iπ. (4.75)

Then, integrating over a hypersurface of constant V = ε > 0, we have

exp

[
− i (ω − ω̃)

2κ
ln
(
−Ṽ
)]

= exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

exp

[
− i (ω − ω̃)

2κ
ln(−1)

]

= exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

exp

[
− i (ω − ω̃)

2κ
(iπ)

]

= exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

exp

[
π (ω − ω̃)

2κ

]
. (4.76)

Using (4.76), the asymptotic form of the region IV down-modes near H+
IV (4.55) becomes

ψdown
ω`m =

1√
4π|ω̃|

1

r
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

× exp

[
π (ω − ω̃)

2κ

]
Y`m(θ, ϕ) Θ

(
Ũ
)
. (4.77)

In order to define negative-frequency modes with respect to the Kruskal coordinate U ,

we will have to multiply the expression for the lemma in (4.74) by an appropriate factor

such that we can write the lemma as a linear combination of the asymptotic forms of the

up-modes near H− (4.52) and the region IV down-modes near H+
IV (4.77); we have
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0 =
1√

4π|ω̃|
1

r
exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

exp

[
π (ω − ω̃)

2κ

]
Y`m(θ, ϕ)

×
∫ ∞

−∞
dŨ eipŨ

{
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

Θ
(
Ũ
)

+ exp

[
−π (ω + ω̃)

2κ

]
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

Θ
(
−Ũ
)}

. (4.78)

The first term in (4.78) is exactly that of the asymptotic form of the region IV down-

modes near H+
IV (4.77), while the second term in (4.78) is that of the asymptotic form of

the up-modes near H− (4.52) multiplied by a factor of

exp

[
π (ω − ω̃)

2κ

]
exp

[
−π (ω + ω̃)

2κ

]
= exp

[
−πω̃
κ

]
. (4.79)

Then we can write the linear combination of modes in (4.78) as

0 =

∫ ∞

−∞
dŨ eipŨ

{
ψdown
ω`m + e−

πω̃
κ φup

ω`m

}
, p > 0. (4.80)

By the statement (4.3), the quantity in the curly brackets in (4.80) is negative-frequency

w.r.t Ũ (and therefore U) for all values of ω̃. For reasons that will become apparent when

we come to normalise, we can multiply this quantity by a factor of Nup−
ω e

πω̃
2κ , where the

normalisation constant Nup−
ω is yet to be determined, to define a set of modes χup−

ω`m

χup−
ω`m = Nup−

ω

(
e−

πω̃
2κ φup

ω`m + e
πω̃
2κ ψdown

ω`m

)
(4.81)

which is negative-frequency with respect to the Kruskal coordinate U for all values of ω̃.

Here the label − once again denotes that these are negative-frequency modes. Restricting

out attention to region I of the spacetime diagram, (4.81) reduces to

χup−
ω`m = e−

πω̃
2κNup−

ω φup
ω`m. (4.82)

The modes in (4.82) constitute a set of thermalised up-modes that are negative-frequency

w.r.t the Kruskal coordinate U . We have now defined positive- (4.70) and negative-

frequency thermalised up-modes (4.81) w.r.t U for all ω̃. For these modes to form an

orthonormal basis in which we can expand the field, we are required to normalise them.

Normalisation of the thermalised up-modes: We can normalise the positive- (4.70)

and negative-frequency thermalised up modes (4.81) by using the Klein-Gordon inner prod-

uct (3.85) to evaluate their norm; since both these sets of modes are linear combinations

of the asymptotic forms of the up-modes near H− and of the region IV down-modes near

H+
IV, we can use the expressions for the norm of the up-modes (3.129) and the norm of

the region IV down-modes (4.63) to evaluate the inner product of the χup±
ω`m modes.

We also need to use the fact that the up-modes (3.131) and the region IV down-modes

(4.55) are orthogonal since the up-modes are defined in region I while vanishing in region

IV, and the region IV down-modes are defined in region I while vanishing in region IV.

Therefore, the inner product 〈φup
ω`m, ψ

down
ω′`′m′〉 vanishes.



92 Canonical quantisation and definition of quantum states

Then, requiring orthonormality of the χup±
ω`m modes, we have

〈χup±
ω`m, χ

up±
ω′`′m′〉

= Nup∗±
ω Nup±

ω′ 〈(e±
πω̃
2κ φup

ω`m + e∓
πω̃
2κ ψdown

ω`m ), (e±
πω̃
2κ φup

ω′`′m′ + e∓
πω̃
2κ ψdown

ω′`′m′)〉

= Nup∗±
ω Nup±

ω′

(
e±

πω̃
κ 〈φup

ω`m, φ
up
ω′`′m′〉+ 2 〈φup

ω`m, ψ
down
ω′`′m′〉+ e∓

πω̃
κ 〈ψdown

ω`m , ψdown
ω′`′m′〉

)

=
∣∣Nup±

ω

∣∣2
(

e±
πω̃
κ − e∓

πω̃
κ

)
sgn(ω̃) δ

(
ω − ω′

)
δ``′ δmm′ , (4.83)

where we have used the expressions for the norms in (3.129) and (4.63) to go from the

second equality to the third; (4.83) reduces to

〈χup±
ω`m, χ

up±
ω′`′m′〉 = 2

∣∣Nup±
ω

∣∣2 sinh

(
±πω̃
κ

)
sgn(ω̃) δ

(
ω − ω′

)
δ``′ δmm′ . (4.84)

Then, from (4.84), we have for the inner product of two generic χup+
ω`m modes

〈χup+
ω`m, χ

up+
ω′`′m′〉 =





2
∣∣Nup+

ω

∣∣2 sinh

(
πω̃

κ

)
δ
(
ω − ω′

)
δ``′ δmm′ > 0, ω̃ > 0,

−2
∣∣Nup+

ω

∣∣2 sinh

(
−πω̃
κ

)
δ
(
ω − ω′

)
δ``′ δmm′ > 0, ω̃ < 0,

(4.85)

demonstrating that positive-frequency modes χup+
ω`m have positive norm for all ω̃ 6= 0.

Similarly, from (4.84), we have for the inner product of two generic χup−
ω`m modes

〈χup−
ω`m, χ

up−
ω′`′m′〉 =





2
∣∣Nup−

ω

∣∣2 sinh

(
πω̃

κ

)
δ
(
ω − ω′

)
δ``′ δmm′ < 0, ω̃ > 0,

−2
∣∣Nup−

ω

∣∣2 sinh

(
−πω̃
κ

)
δ
(
ω − ω′

)
δ``′ δmm′ < 0, ω̃ < 0,

(4.86)

demonstrating that negative-frequency modes χup−
ω`m have negative norm for all ω̃ 6= 0.

Then, we can express the inner product of two generic χup±
ω`m modes as

〈χup±
ω`m, χ

up±
ω′`′m′〉 = 2

∣∣Nup±
ω

∣∣2 sinh

(
πω̃

κ

)
δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃, (4.87)

where we have used sinh (−x) = − sinh (x). Thus, for the inner products of two χup±
ω`m

modes with the same angular momentum ` and azimuthal m quantum numbers, we obtain

〈χup±
ω`m, χ

up±
ω′`′m′〉 = 2

∣∣Nup±
ω

∣∣2 sinh

(
πω̃

κ

)
δ
(
ω − ω′

)
, all ω̃. (4.88)

Requiring the orthonormality of the inner products in (4.88) gives us the expression for

the normalisation constants Nup±
ω , which are given by

Nup±
ω =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
. (4.89)

Therefore, a set of normalised modes having positive-frequency w.r.t U is given by
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χup+
ω`m =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

(
e
πω̃
2κ φup

ω`m + e−
πω̃
2κ ψdown

ω`m

)
, all ω̃, (4.90)

and a set of normalised modes having negative-frequency w.r.t U is given by

χup−
ω`m =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

(
e−

πω̃
2κ φup

ω`m + e
πω̃
2κ ψdown

ω`m

)
, all ω̃. (4.91)

Our final step is to restrict our attention to region I; in this case the ψdown
ω`m , which are

defined in regions II and IV, vanish such that (4.90) and (4.91) become

χup+
ω`m =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
e
πω̃
2κ φup

ω`m, all ω̃, (4.92a)

χup−
ω`m =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
e−

πω̃
2κ φup

ω`m, all ω̃. (4.92b)

Despite restricting our attention to region I, our earlier statements regarding (4.92a) and

(4.92b) still hold; the modes in (4.92a) and (4.92b) constitute thermalised up-modes that

are positive- and negative-frequency w.r.t the Kruskal coordinate U respectively.

Construction of the ‘past’ Unruh state

Recall that in defining the ‘past’ Unruh state |U−〉, we would like a state that is as empty

as possible to a static observer at past null infinity I − but which contains an outgoing

flux of Hawking radiation at future null infinity I +; this corresponds to an absence of

particles in the in-modes (3.106) as well as a thermalised flux of particles in the up-modes.

Then, we expand the scalar field Φ in terms of an orthonormal basis of in-modes and

thermally populated up-modes, each divided into positive- and negative-frequency sets.

We recall that the in-modes are defined to be positive- (4.22) and negative-frequency (4.23)

with respect to the Schwarzschild-like coordinate t, which is the natural time coordinate

to use near I −. Using (4.22), (4.23), (4.92a) and (4.92b), we have

Φ(x) =

∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω ain

ω`mφ
in+
ω`m +

∫ 0

−∞
dω bin†ω`mφ

in−
ω`m

+

∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
φup
ω`m

[
e
πω̃
2κ aup

ω`m + e−
πω̃
2κ bup†

ω`m

]}
. (4.93)

We quantise the field by promoting the expansion coefficients to operators such that the

field operator Φ̂(x) is given by
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Φ̂(x) =
∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω âin

ω`mφ
in+
ω`m +

∫ 0

−∞
dω b̂in†ω`mφ

in−
ω`m

+

∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
φup
ω`m

[
e
πω̃
2κ âup

ω`m + e−
πω̃
2κ b̂up†

ω`m

]}
, (4.94)

where the operators associated to the in-modes, âin
ω`m and b̂inω`m, are defined for ω > 0

and ω < 0 respectively, and the operators associated to the up-modes, âup
ω`m and b̂up

ω`m,

are each defined for all ω̃. In (4.94), all of the positive-frequency modes φ
in/up+
ω`m are of

positive-norm and all of the negative-frequency modes φ
in/up−
ω`m are of negative-norm; then,

the operators â
in/up
ω`m and b̂

in/up
ω`m obey the following, standard commutation relations

[
âin
ω`m, â

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω > 0,

[
b̂inω`m, b̂

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω < 0,

[
âup
ω`m, â

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃,

[
b̂up
ω`m, b̂

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃, (4.95)

with any commutators not explicitly given in (4.95) vanishing. The ‘past’ Unruh state

|U−〉 is then defined as the state annihilated by the â
in/up
ω`m and b̂

in/up
ω`m operators such that

âin
ω`m |U−〉 = 0, ω > 0,

b̂inω`m |U−〉 = 0, ω < 0,

âup
ω`m |U−〉 = 0, all ω̃,

b̂up
ω`m |U−〉 = 0, all ω̃. (4.96)

The ‘past’ Unruh state |U−〉 contains no particles or antiparticles incoming at past null

infinity I −. However, it does contain a thermal flux of particles and antiparticles outgoing

to future null infinity I +, which corresponds to Hawking radiation at all frequencies in

agreement with [39]. We consider expectation values of observables in this state in §5.3.2.

4.4.2 ‘Future’ Unruh state

The ‘future’ Unruh state |U+〉 can be understood as the time-reverse of the ‘past’ Unruh

state |U−〉 that we defined in §4.4.1. Where the ‘past’ Unruh state |U−〉 was constructed

using an orthonormal basis of in- and thermalised up-modes near surfaces contained within

the ‘past’ Cauchy surface Σpast (3.86) , the ‘future’ Unruh state |U+〉 is constructed using

an orthonormal basis of out- and thermalised down-modes near surfaces contained within

the ‘future’ Cauchy surface Σfuture (3.87).

The lack of outgoing radiation in the ‘future’ Unruh state |U+〉 corresponds to an

absence of particles in the out-modes as seen by a static observer at future null infinity I +,
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where the proper time experienced by a static observer is given by the Schwarzschild-like

coordinate t. We have already defined out-modes that are positive- and negative-frequency

w.r.t t when defining the ‘future’ Boulware state |B+〉 in §4.3.2. Then, the definitions that

we require are those given in (4.32) and (4.33) respectively.

We now need to define positive- and negative-frequency thermalised down-modes.

Since their construction is analogous to the procedure used in §4.4.1 to construct positive-

and negative-frequency thermalised up-modes, our treatment of which was necessarily de-

tailed, our discussion of the construction of positive- and negative-frequency thermalised

down-modes will be restricted to parts of the derivation that we deem essential.

Positive- and negative-frequency thermalised down-modes

The ‘future’ Unruh state |U+〉 has the additional interpretation of predicting Hawking

radiation incoming from past null infinity I −; this property corresponds to a thermalised

flux of particles in the down-modes incident upon the future horizon H+. The Kruskal

coordinate V (3.24) is the affine parameter along the null generators of the future horizon

H+. Then, near H+, the natural choice of time-coordinate w.r.t which we can define

positive- and negative-frequency down-modes is the Kruskal advanced time V .

We can begin by expressing the asymptotic form of the down-modes (3.70) near the

future horizon H+ in terms of Kruskal coordinates; using (3.21), (3.26) and (3.33) we have

φdown
ω`m =

1√
4π|ω̃|

1

r
exp

[
i (ω − ω̃)

2κ
ln
(
−Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]
Y`m(θ, ϕ) . (4.97)

The down-modes are defined in regions I and II of the Penrose diagram in Figure 3.1,

where Ṽ > 0. We can trivially extend their definition to regions III and IV by using the

Heaviside function (4.5) to demand that they vanish when Ṽ < 0. Then, (4.97) becomes

φdown
ω`m =

1√
4π|ω̃|

1

r
exp

[
i (ω − ω̃)

2κ
ln
(
−Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]
Y`m(θ, ϕ) Θ

(
Ṽ
)
.

(4.98)

Comparing the expression for the asymptotic form of the down-modes near the future

horizon H+ in (4.98) with the lemma (4.6), we see that the first term in the lemma can

be constructed from the expression in (4.98) if we take

Xdown+ = Ṽ and qdown+ =
(ω + ω̃)

2κ
. (4.99)

Then the lemma (4.6) becomes

∫ ∞

−∞
dṼ e−ipṼ

{
exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

Θ
(
Ṽ
)

+ exp

[
−π (ω + ω̃)

2κ

]
exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]

Θ
(
−Ṽ
)}

= 0. (4.100)

We see that the second term of the lemma (4.100) can be constructed from a set of modes

in regions III and IV, vanishing in regions I and II, with the same dependence on qdown+
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(4.99) as the asymptotic form of the down-modes in (4.98) but containing factors of −Ṽ
as opposed to Ṽ . As was the case when defining the region IV down-modes in §4.4.1, we

will make both of the transformations Ũ → −Ũ as well as Ṽ → −Ṽ , which results in a

set of modes that are nonzero in regions III and IV and vanishing elsewhere, as well as

being orthogonal to the down-modes in (4.98) since the two sets of modes are defined in

different regions of spacetime. Then, the asymptotic form of a set of modes ψup
ω`m near the

region IV past horizon H−IV is given by

ψup
ω`m =

1√
4π|ω̃|

1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]
Y`m(θ, ϕ) Θ

(
−Ṽ
)
.

(4.101)

The modes in (4.101) have an intuitive interpretation in that they represent the region IV

analogue of the up-modes (3.131) that are defined in region I. Through a similar process

to that used to evaluate the norm of the region IV down-modes in §4.4.1, we find that the

expression for the inner product of two generic region IV up-modes is given by

〈ψup
ω`m, ψ

up
ω′`′m′〉 =




−δ(ω − ω′) δ``′ δmm′ , for ω̃ > 0,

δ(ω − ω′) δ``′ δmm′ , for ω̃ < 0,
(4.102)

meaning that region IV up-modes are of negative-norm when ω̃ > 0 and of positive-norm

when ω̃ < 0. This is different to the case of the down-modes (3.146) that have positive-

norm when ω̃ > 0 and negative-norm when ω̃ < 0.

Near the future horizon H+, the down-modes take the particularly simple asymptotic

form given in (4.98) and these modes vanish in region IV. Near the past horizon H−IV,

the region IV up-modes take the particularly simple asymptotic form given in (4.101)

and these modes vanish in region I. Both the future horizon H+ and the region IV past

horizon H−IV are surfaces of constant U = 0. Then it is convenient to choose our surface of

integration of the modes in the lemma (4.100) to be a hypersurface of constant U = ε > 0,

where ε is a small, positive constant such that this surface lies inside region II, close to

H+, and inside region IV, close to H−IV.

The asymptotic form of the region IV up-modes near H− (4.101) contain a factor of

exp[ ln(Ũ)], whereas the asymptotic form of the down-modes near H+ (4.98) contain a

factor of exp[ ln(−Ũ)]. We are attempting to define a set of positive-frequency modes with

respect to the Kruskal coordinate V ; these are analytic in the lower-half of the plane and

so we need to use a branch of the logarithm that is also analytic in the lower-half plane.

We can therefore choose to make a branch cut along the positive imaginary axis such that

ln(−1) = −iπ. (4.103)

Then, using the fact that we are integrating over a hypersurface of constant U = ε > 0

exp

[
i (ω − ω̃)

2κ
ln
(
−Ũ
)]

= exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
π (ω − ω̃)

2κ

]
. (4.104)

Using (4.104), the asymptotic form of the down-modes near H+ (4.98) becomes



Canonical quantisation and definition of quantum states 97

φdown
ω`m =

1√
4π|ω̃|

1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

× exp

[
π (ω − ω̃)

2κ

]
Y`m(θ, ϕ) Θ

(
Ṽ
)
. (4.105)

Multiplying the expression for the lemma in (4.100) by an appropriate factor, we obtain

0 =
1√

4π|ω̃|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
π (ω − ω̃)

2κ

]
Y`m(θ, ϕ)

×
∫ ∞

−∞
dṼ e−ipṼ

{
exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

Θ
(
Ṽ
)

+ exp

[
−π (ω + ω̃)

2κ

]
exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]

Θ
(
−Ṽ
)}

. (4.106)

The first term in (4.106) is exactly that of the asymptotic form of the down-modes near

H+ (4.105), while the second term in (4.106) is that of the asymptotic form of the region

IV up-modes near H−IV (4.101) multiplied by a factor of

exp

[
π (ω − ω̃)

2κ

]
exp

[
−π (ω + ω̃)

2κ

]
= exp

[
−πω̃
κ

]
. (4.107)

Then we can write the linear combination of modes in (4.106) as

0 =

∫ ∞

−∞
dṼ e−ipṼ

{
φdown
ω`m + e−

πω̃
κ ψup

ω`m

}
, p > 0. (4.108)

By the statement (4.2), the quantity in the curly brackets in (4.108) is positive-frequency

w.r.t V for all values of ω̃. Multiplying this quantity by a factor of Ndown+
ω e

πω̃
2κ , where the

normalisation constant Ndown+
ω is yet to be determined, we define a set of modes χdown+

ω`m

χdown+
ω`m = Ndown+

ω

(
e
πω̃
2κ φdown

ω`m + e−
πω̃
2κ ψup

ω`m

)
(4.109)

which is positive-frequency with respect to the Kruskal coordinate V for all values of ω̃.

We would also like to define a set of modes that are negative-frequency w.r.t the

Kruskal coordinate V . We can do this by considering the complex conjugate of the lemma

in (4.7). Comparing the asymptotic expressions for the down-modes near H+ (4.98) and

the region IV up-modes near H−IV (4.101) with the lemma in (4.7), we see that the terms

in the lemma can be constructed from the expressions in (4.98) and (4.101) if we take

Xdown− = Ṽ and qdown− = −(ω + ω̃)

2κ
. (4.110)

Then the lemma (4.7) becomes

∫ ∞

−∞
dṼ eipṼ

{
exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

Θ
(
Ṽ
)

+ exp

[
π (ω + ω̃)

2κ

]
exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]

Θ
(
−Ṽ
)}

= 0. (4.111)
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We will again need to take a linear combination of the asymptotic forms of the down-modes

near H+ (4.98) and of the region IV up-modes near H−IV (4.101). The former contain a

factor of exp[ ln(−Ũ)] while the latter contain a factor of exp[ ln(Ũ)]. We are attempting to

define negative-frequency modes w.r.t Ṽ ; these are analytic in the upper-half of the plane

and so we need to use a branch of the logarithm that is also analytic in the upper-half of

the plane. We therefore choose to make a branch cut along the negative imaginary axis

ln (−1) = iπ. (4.112)

Then, using the fact that we are integrating over a hypersurface of constant U = ε > 0

exp

[
i (ω − ω̃)

2κ
ln
(
−Ũ
)]

= exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
−π (ω − ω̃)

2κ

]
. (4.113)

Using (4.113), the asymptotic form of the down-modes near H+ (4.98) becomes

φdown
ω`m =

1√
4π|ω̃|

1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

× exp

[
−π (ω − ω̃)

2κ

]
Y`m(θ, ϕ) Θ

(
Ṽ
)
. (4.114)

Multiplying the expression for the lemma in (4.111) by an appropriate factor, we obtain

0 =
1√

4π|ω̃|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
−π (ω − ω̃)

2κ

]
Y`m(θ, ϕ)

×
∫ ∞

−∞
dṼ eipṼ

{
exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

Θ
(
Ṽ
)

+ exp

[
−π (ω + ω̃)

2κ

]
exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]

Θ
(
−Ṽ
)}

. (4.115)

The first term in (4.115) is exactly that of the asymptotic form of the down-modes near

H+ (4.114), while the second term in (4.115) is that of the asymptotic form of the region

IV up-modes near H−IV (4.101) multiplied by a factor of

exp

[
−π (ω − ω̃)

2κ

]
exp

[
π (ω + ω̃)

2κ

]
= exp

[
πω̃

κ

]
. (4.116)

Then we can write the linear combination of modes in (4.115) as

0 =

∫ ∞

−∞
dṼ eipṼ

{
φdown
ω`m + e

πω̃
κ ψup

ω`m

}
, p > 0. (4.117)

By the statement (4.3), the quantity in the curly brackets in (4.117) is negative-frequency

w.r.t V for all values of ω̃. Multiplying this quantity by a factor of Ndown−
ω e−

πω̃
2κ , where the

normalisation constant Ndown−
ω is yet to be determined, we define a set of modes χdown−

ω`m

χdown−
ω`m = Ndown−

ω

(
e−

πω̃
2κ φdown

ω`m + e
πω̃
2κ ψup

ω`m

)
(4.118)

which is negative-frequency with respect to the Kruskal coordinate V for all values of ω̃.
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We normalise the positive- (4.109) and negative-frequency thermalised down-modes

(4.118) through a similar process to that used to normalise the thermalised up-modes in

§4.4.1; using the fact that both sets of modes in (4.109) and (4.118) are a linear combination

of the asymptotic forms of the down-modes φdown
ω`m and of the region IV up-modes ψup

ω`m,

we can use the norms of the φdown
ω`m and ψup

ω`m in (3.145) and (4.102) respectively to derive

the normalisation constants Ndown±
ω

Ndown±
ω =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
. (4.119)

Then, restricting our attention to region I where the ψup
ω`m vanish, a set of normalised

down-modes positive-frequency with respect to the Kruskal coordinate V is given by

χdown+
ω`m =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
e
πω̃
2κ φdown

ω`m , all ω̃, (4.120)

and a set of normalised down-modes having negative-frequency w.r.t V is given by

χdown−
ω`m =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
e−

πω̃
2κ φdown

ω`m , all ω̃. (4.121)

Construction of the ‘future’ Unruh state

Recall that in defining the ‘future’ Unruh |U+〉 state, we would like a state that is as

empty as possible to a static observer at future null infinity I + but which contains an

incoming flux of thermal radiation at past null infinity I −; this corresponds to an absence

of particles in the out-modes (3.139) and a thermalised flux of particles in the down-modes.

Then, we may expand the scalar field Φ in terms of an orthonormal basis of out-modes

and thermally populated down-modes, each divided into positive- and negative-frequency

sets. We recall that the out-modes are defined to be positive- (4.32) and negative-frequency

(4.33) with respect to the Schwarzschild-like coordinate t, which is the natural time coor-

dinate to use near I +. Using (4.32), (4.33), (4.120) and (4.121), we have

Φ(x) =
∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω aout

ω`mφ
out+
ω`m +

∫ 0

−∞
dω bout†

ω`mφ
out−
ω`m

+

∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
φdown
ω`m

[
e
πω̃
2κ adown

ω`m + e−
πω̃
2κ bdown†

ω`m

]}
. (4.122)

We quantise the field by promoting the expansion coefficients to operators such that the

field operator Φ̂(x) is given by
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Φ̂(x) =
∞∑

`=0

∑̀

m=−`

{∫ ∞

0
dω âout

ω`mφ
out+
ω`m +

∫ 0

−∞
dω b̂out†

ω`mφ
out−
ω`m

+

∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
φdown
ω`m

[
e
πω̃
2κ âdown

ω`m + e−
πω̃
2κ b̂down†

ω`m

]}
, (4.123)

where the operators associated to the out-modes, âout
ω`m and b̂out

ω`m, are defined for ω > 0 and

ω < 0 respectively, and the operators associated to the down-modes, âdown
ω`m and b̂down

ω`m , are

defined for all ω̃. In (4.123), all of the positive-frequency modes φ
out/down+
ω`m are of positive-

norm and all of the negative-frequency modes φ
out/down−
ω`m are of negative-norm; then, the

operators â
out/down
ω`m and b̂

out/down
ω`m obey the following, standard commutation relations

[
âout
ω`m, â

out†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω > 0,

[
b̂out
ω`m, b̂

out†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , ω < 0,

[
âdown
ω`m , âdown†

ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃,

[
b̂down
ω`m , b̂down†

ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃, (4.124)

with any commutators not explicitly given in (4.124) vanishing. The ‘future’ Unruh state

|U+〉 is defined as the state annihilated by the â
out/down
ω`m and b̂

out/down
ω`m operators such that

âout
ω`m |U+〉 = 0, ω > 0,

b̂out
ω`m |U+〉 = 0, ω < 0,

âdown
ω`m |U+〉 = 0, all ω̃,

b̂down
ω`m |U+〉 = 0, all ω̃. (4.125)

The ‘future’ Unruh state |U+〉 contains no particles or antiparticles outgoing at future

null infinity I +. However, it does contain a thermal flux of particles and antiparticles

incoming from past null infinity I −. We explore this state further when we study the

expectation values of quantum observables in the ‘future’ Unruh state |U+〉 in §5.4.1.

4.5 Hartle-Hawking states

In §2.3.3, we introduced the Schwarzschild Hartle-Hawking state |Hs〉; this state exhibits

an unstable equilibrium of incoming thermal radiation from past null infinity I − and

outgoing thermal radiation at future null infinity I +. We would like to define analogous

states for a charged scalar field in Reissner-Nordström spacetime.

In §3.3.4, we derived conditions for low-frequency modes of the classical scalar field

to undergo superradiant scattering in Reissner-Nordström spacetime. This indicates that

it may be impossible to define a Hartle-Hawking state which exhibits an equilibrium of

incoming and outgoing thermal radiation.
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As such, it will be prudent to define two separate ‘past’ and ‘future’ CCH states [15],

namely the ‘past’ CCH state |CCH−〉 in §4.5.1 that will have a thermal distribution of

particles in the in- and up-modes, and the ‘future’ CCH state |CCH+〉 in 4.5.2 that will

have a thermal distribution of particles in the out- and down-modes; however, it remains

to be seen whether either of these states represents a thermal equilibrium.

We will also define two ‘-like’ states, namely the ‘Hartle-Hawking-like’ state |H〉 in

§4.5.3, which is an attempt to remain as close in spirit as possible to the Schwarzschild

Hartle-Hawking state |Hs〉, as well as the Frolov-Thorne state |FT〉 in §4.5.4, which will

be defined in an analogous manner to the way in which the “Hartle-Hawking”-like state

for a neutral scalar field in Kerr spacetime was defined in [49].

4.5.1 ‘Past’ CCH state

We would like to construct a state that exhibits thermal radiation both incoming at past

null infinity I − as well as outgoing at future null infinity I +; in terms of the scalar field

modes defined in §3.3, these requirements correspond to a thermalised flux of particles in

both the in-modes (3.106) and the up-modes (3.131) of the field.

Together, the in- and up-modes constitute an orthonormal basis which we require in

order to quantise the field. From our discussion in §4.1, we first need to decompose the in-

and up-modes into positive- and negative-frequency setsto canonically quantise the field.

The thermal radiation outgoing to future null infinity I + in the ‘past’ CCH state

|CCH−〉 corresponds to a thermalised flux of particles in the up-modes emanating from

the past horizon H−. The Kruskal coordinate U (3.24) is the affine parameter along

the null generators of the past horizon H−. Then, near H−, the natural choice of time-

coordinate w.r.t which we can define positive- and negative-frequency up-modes is the

Kruskal retarded time U . We have already defined thermalised up-modes that are positive-

and negative-frequency w.r.t U when defining the ‘past’ Unruh state |U−〉 in §4.4.1. Then,

the definitions that we require are those given in (4.92a) and (4.92b) respectively.

It should be noted that it is unsurprising that, in defining the ‘past’ CCH state |CCH−〉,
we are able to use the same definitions of positive- and negative-frequency thermalised up-

modes as when we defined the ‘past’ Unruh state |U−〉; both of these states exhibit an

outgoing flux of thermal radiation at future null infinity I +. We now need to define a set

of positive- and negative-frequency thermalised in-modes.

Positive- and negative-frequency thermalised in-modes

The ‘past’ CCH state |CCH−〉 has the additional interpretation of predicting thermal

radiation incoming at past null infinity I −; this property corresponds to a thermalised

flux of particles in the in-modes that is incident upon the future horizon H+. The Kruskal

coordinate V (3.24) is the affine parameter along the null generators of the future horizon

H+. Then, near H+, the natural choice of time-coordinate w.r.t which we can define

positive- and negative-frequency in-modes is the Kruskal advanced time V .

We can begin by expressing the asymptotic form of the in-modes (3.64) near the future

horizon H+ in terms of Kruskal coordinates; using (3.21), (3.26) and (3.33) we have
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φin
ω`m =

Bin
ω`√

4π|ω|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
−Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]
Y`m(θ, ϕ) . (4.126)

The in-modes are defined in regions I and II of the Penrose diagram in Figure 3.1, where

Ṽ > 0. We can trivially extend their definition to regions III and IV by using the Heaviside

function (4.5) to demand that they vanish when Ṽ < 0. Then, (4.126) becomes

φin
ω`m =

Bin
ω`√

4π|ω|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
−Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]
Y`m(θ, ϕ) Θ

(
Ṽ
)
.

(4.127)

Comparing the expression for the asymptotic form of the in-modes near the future horizon

H+ in (4.127) with the lemma (4.6), we see that the first term in the lemma can be

constructed from the expression in (4.127) if we take

Xin+ = Ṽ and qin+ =
(ω + ω̃)

2κ
. (4.128)

Then the lemma (4.6) becomes

∫ ∞

−∞
dṼ e−ipṼ

{
exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

Θ
(
Ṽ
)

+ exp

[
−π (ω + ω̃)

2κ

]
exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]

Θ
(
−Ṽ
)}

= 0. (4.129)

We see that the second term of the lemma (4.129) can be constructed from a set of modes

in regions III and IV, vanishing in regions I and II, with the same dependence on qin+

(4.128) as the asymptotic form of the in-modes in (4.127) but containing factors of −Ṽ
as opposed to Ṽ . As was the case when defining the region IV down-modes in §4.4.1, we

will make both of the transformations Ũ → −Ũ as well as Ṽ → −Ṽ , which results in a set

of modes that are nonzero in regions III and IV and vanishing elsewhere, as well as being

orthogonal to the in-modes in (4.127) since the two sets of modes are defined in different

regions of spacetime. Then, the asymptotic form of a set of modes ψout
ω`m near the region

IV past horizon H−IV is given by

ψout
ω`m =

Bin
ω`√

4π|ω|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]
Y`m(θ, ϕ) Θ

(
−Ṽ
)
.

(4.130)

The modes in (4.130) have an intuitive interpretation in that they represent the region IV

analogue of the out-modes (3.139) that are defined in region I. Through a similar process

to that used to evaluate the norm of the region IV down-modes in §4.4.1, we find that the

expression for the inner product of two generic region IV out-modes is given by

〈ψout
ω`m, ψ

out
ω′`′m′〉 =




−δ(ω − ω′) δ``′ δmm′ , for ω > 0,

δ(ω − ω′) δ``′ δmm′ , for ω < 0,
(4.131)
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meaning that region IV out-modes are of negative-norm when ω > 0 and of positive-norm

when ω < 0. This is different to the case of the in-modes (3.105) that have positive-norm

when ω > 0 and negative-norm when ω < 0.

Near the future horizon H+, the in-modes take the particularly simple asymptotic

form given in (4.127) and these modes vanish in region IV. Near the past horizon H−IV,

the region IV out-modes take the particularly simple asymptotic form given in (4.130)

and these modes vanish in region I. Both the future horizon H+ and the region IV past

horizon H−IV are surfaces of constant U = 0. Then it is convenient to choose our surface of

integration of the modes in the lemma (4.129) to be a hypersurface of constant U = −ε < 0,

where ε is a small, positive constant such that this surface lies inside region I, close to H+,

and inside region III, close to H−IV.

The asymptotic form of the in-modes near H+ (4.127) contain a factor of exp[ ln(−Ũ)],

whereas the asymptotic form of the region IV out-modes near H−IV (4.130) contain a factor

of exp[ ln(Ũ)]. We are attempting to define a set of positive-frequency modes with respect

to the Kruskal coordinate V ; these are analytic in the lower-half of the plane and so we

need to use a branch of the logarithm that is also analytic in the lower-half plane. We can

therefore choose to make a branch cut along the positive imaginary axis such that

ln(−1) = −iπ. (4.132)

Then, using the fact that we are integrating over a hypersurface of constant U = −ε < 0

exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

= exp

[
i (ω − ω̃)

2κ
ln
(
−Ũ
)]

exp

[
π (ω − ω̃)

2κ

]
. (4.133)

Using (4.133), the asymptotic form of the in-modes near H+ (4.127) becomes

φin
ω`m =

Bin
ω`√

4π|ω|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

× exp

[
−π (ω − ω̃)

2κ

]
Y`m(θ, ϕ) Θ

(
Ṽ
)
. (4.134)

Multiplying the expression for the lemma in (4.129) by an appropriate factor, we obtain

0 =
Bin
ω`√

4π|ω|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
−π (ω − ω̃)

2κ

]
Y`m(θ, ϕ)

×
∫ ∞

−∞
dṼ e−ipṼ

{
exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

Θ
(
Ṽ
)

+ exp

[
−π (ω + ω̃)

2κ

]
exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]

Θ
(
−Ṽ
)}

. (4.135)

The first term in (4.135) is exactly that of the asymptotic form of the in-modes near H+

(4.134), while the second term in (4.135) is that of the asymptotic form of the region IV

out-modes near H−IV (4.130) multiplied by a factor of
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exp

[
−π (ω − ω̃)

2κ

]
exp

[
−π (ω + ω̃)

2κ

]
= exp

[
−πω
κ

]
. (4.136)

Then we can write the linear combination of modes in (4.135) as

0 =

∫ ∞

−∞
dṼ e−ipṼ

{
φin
ω`m + e−

πω
κ ψout

ω`m

}
, p > 0. (4.137)

By the statement (4.2), the quantity in the curly brackets in (4.137) is positive-frequency

w.r.t V for all values of ω. Multiplying this quantity by a factor of Nin+
ω e

πω
2κ , where the

normalisation constant Nin+
ω is yet to be determined, we define a set of modes χin+

ω`m

χin+
ω`m = Nin+

ω

(
e
πω
2κ φin

ω`m + e−
πω
2κ ψout

ω`m

)
(4.138)

which is positive-frequency with respect to the Kruskal coordinate V for all values of ω.

We would also like to define a set of modes that are negative-frequency w.r.t the

Kruskal coordinate V . We can do this by considering the complex conjugate of the lemma

in (4.7). Comparing the asymptotic expressions for the in-modes near H+ (4.127) and the

region IV out-modes near H−IV (4.130) with the lemma in (4.7), we see that the terms in

the lemma can be constructed from the expressions in (4.127) and (4.130) if we take

Xin− = Ṽ and qin− = −(ω + ω̃)

2κ
. (4.139)

Then the lemma (4.7) becomes

∫ ∞

−∞
dṼ eipṼ

{
exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

Θ
(
Ṽ
)

+ exp

[
π (ω + ω̃)

2κ

]
exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]

Θ
(
−Ṽ
)}

= 0. (4.140)

We will again need to take a linear combination of the asymptotic forms of the in-modes

near H+ (4.127) and of the region IV out-modes near H−IV (4.130). The former contain a

factor of exp[ ln(−Ũ)] while the latter contain a factor of exp[ ln(Ũ)]. We are attempting to

define negative-frequency modes w.r.t Ṽ ; these are analytic in the upper-half of the plane

and so we need to use a branch of the logarithm that is also analytic in the upper-half of

the plane. We therefore choose to make a branch cut along the negative imaginary axis

ln (−1) = iπ. (4.141)

Then, using the fact that we are integrating over a hypersurface of constant U = −ε < 0

exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

= exp

[
i (ω − ω̃)

2κ
ln
(
−Ũ
)]

exp

[
−π (ω − ω̃)

2κ

]
. (4.142)

Using (4.142), the asymptotic form of the in-modes near H+ (4.127) becomes
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φin
ω`m =

Bin
ω`√

4π|ω̃|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

× exp

[
π (ω − ω̃)

2κ

]
Y`m(θ, ϕ) Θ

(
Ṽ
)
. (4.143)

Multiplying the expression for the lemma in (4.140) by an appropriate factor, we obtain

0 =
Bin
ω`√

4π|ω̃|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
π (ω − ω̃)

2κ

]
Y`m(θ, ϕ)

×
∫ ∞

−∞
dṼ eipṼ

{
exp

[
i (ω + ω̃)

2κ
ln
(
Ṽ
)]

Θ
(
Ṽ
)

+ exp

[
π (ω + ω̃)

2κ

]
exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]

Θ
(
−Ṽ
)}

. (4.144)

The first term in (4.144) is exactly that of the asymptotic form of the in-modes near H+

(4.143), while the second term in (4.144) is that of the asymptotic form of the region IV

out-modes near H−IV (4.130) multiplied by a factor of

exp

[
π (ω − ω̃)

2κ

]
exp

[
π (ω + ω̃)

2κ

]
= exp

[πω
κ

]
. (4.145)

Then we can write the linear combination of modes in (4.144) as

0 =

∫ ∞

−∞
dṼ eipṼ

{
φin
ω`m + e

πω
κ ψout

ω`m

}
, p > 0. (4.146)

By the statement (4.3), the quantity in the curly brackets in (4.146) is negative-frequency

w.r.t V for all values of ω. Multiplying this quantity by a factor of Nin−
ω e−

πω
2κ , where the

normalisation constant Nin−
ω is yet to be determined, we define a set of modes χin−

ω`m

χin−
ω`m = Nin−

ω

(
e−

πω
2κ φin

ω`m + e
πω
2κ ψout

ω`m

)
(4.147)

which is negative-frequency with respect to the Kruskal coordinate V for all values of ω.

We normalise the positive- (4.138) and negative-frequency thermal in-modes (4.147)

through a similar process to that used to normalise the thermal up-modes in §4.4.1; using

the fact that both sets of modes in (4.138) and (4.147) are a linear combination of the

asymptotic forms of the in-modes φin
ω`m and of the region IV out-modes ψout

ω`m, we can

use the norms of the φin
ω`m and ψout

ω`m in (3.105) and (4.131) respectively to derive the

normalisation constants Nin±
ω

Nin±
ω =

1√
2
∣∣sinh

(
πω
κ

)∣∣
. (4.148)

Then, restricting our attention to region I where the ψout
ω`m vanish, a set of normalised

in-modes having positive-frequency with respect to the Kruskal coordinate V is given by

χin+
ω`m =

1√
2
∣∣sinh

(
πω
κ

)∣∣
e
πω
2κ φin

ω`m, all ω, (4.149)
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and a set of normalised in-modes having negative-frequency w.r.t V is given by

χin−
ω`m =

1√
2
∣∣sinh

(
πω
κ

)∣∣
e−

πω
2κ φin

ω`m, all ω. (4.150)

Construction of the ‘past’ CCH state

Recall that in defining the ‘past’ CCH state |CCH−〉, we would like a state that exhibits

thermal radiation both incoming from past null infinity I − and outgoing to future null

infinity I +; this corresponds to a thermalised flux of particles in both the in-modes (3.106)

and the up-modes (3.131) of the field Φ.

Then, we may expand the scalar field Φ in terms of an orthonormal basis of thermally

populated in- and up-modes, each divided into positive- and negative-frequency sets. We

recall that the up-modes are defined to be positive- (4.92a) and negative-frequency (4.92b)

with respect to the Kruskal coordinate U , which is the natural time coordinate to use near

H−. Using (4.92a), (4.92b), (4.149) and (4.150), we have

Φ(x) =

∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω

1√
2
∣∣sinh

(
πω
κ

)∣∣
φin
ω`m

[
e
πω
2κ ain

ω`m + e−
πω
2κ bin†ω`m

]

+

∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
φup
ω`m

[
e
πω̃
2κ aup

ω`m + e−
πω̃
2κ bup†

ω`m

]}
. (4.151)

We quantise the field by promoting the expansion coefficients to operators such that the

field operator Φ̂(x) is given by

Φ̂(x) =

∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω

1√
2
∣∣sinh

(
πω
κ

)∣∣
φin
ω`m

[
e
πω
2κ âin

ω`m + e−
πω
2κ b̂in†ω`m

]

+

∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
φup
ω`m

[
e
πω̃
2κ âup

ω`m + e−
πω̃
2κ b̂up†

ω`m

]}
. (4.152)

where the operators associated to the in-modes, âin
ω`m and b̂inω`m, are each defined for all

ω, and the operators associated to the up-modes, âup
ω`m and b̂up

ω`m, are each defined for all

ω̃. In (4.152), all of the positive-frequency modes φ
in/up+
ω`m are of positive-norm and all of

the negative-frequency modes φ
in/up−
ω`m are of negative-norm; then, the operators â

in/up
ω`m and

b̂
in/up
ω`m obey the following, standard commutation relations

[
âin
ω`m, â

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω,

[
b̂inω`m, b̂

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω,

[
âup
ω`m, â

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃,

[
b̂up
ω`m, b̂

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃, (4.153)
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with any commutators not explicitly given in (4.153) vanishing. The ‘past’ CCH state is

then defined as the state annihilated by the â
in/up
ω`m and b̂

in/up
ω`m operators such that

âin
ω`m |CCH−〉 = 0, all ω,

b̂inω`m |CCH−〉 = 0, all ω,

âup
ω`m |CCH−〉 = 0, all ω̃,

b̂up
ω`m |CCH−〉 = 0, all ω̃. (4.154)

The ‘past’ CCH state |CCH−〉 exhibits incoming thermal radiation from past null infinity

I − and outgoing thermal radiation to future null infinity I +, which corresponds to a

thermalised flux of particles in the in-modes and in the up-modes respectively. However,

it is clear that there is no thermal equilibrium in this state, since the in- and up-modes

each contain different thermal factors. We explore this state further when we study the

expectation values of quantum observables in the ‘past’ CCH state |CCH−〉 in §5.3.4.

4.5.2 ‘Future’ CCH state

The ‘future’ CCH state |CCH+〉 can be understood as the time-reverse of the ‘past’ CCH

state |CCH−〉 that we defined in §4.5.1. Where the ‘past’ CCH state |CCH−〉 was con-

structed using an orthonormal basis of thermalised in- and up-modes near surfaces con-

tained with the ‘past’ Cauchy surface Σpast (3.86), the ‘future’ CCH state |CCH+〉 is

constructed using an orthonormal basis of thermalised out- and down-modes near surfaces

contained with the ‘future’ Cauchy surface Σfuture (3.87).

The thermal radiation incoming from past null infinity I + in the ‘future’ CCH state

|CCH+〉 corresponds to a thermalised flux of particles in the down-modes incident upon

the future horizon H+. The Kruskal coordinate V (3.24) is the affine parameter along

the null generators of the future horizon H+. Then, near H+, the natural choice of time-

coordinate w.r.t which we can define positive- and negative-frequency up-modes is the

Kruskal advanced time V . We have already defined thermalised down-modes that are

positive- and negative-frequency w.r.t V when defining the ‘future’ Unruh state |U+〉 in

§4.4.2; the definitions that we require are those given in (4.120) and (4.121) respectively.

Positive- and negative-frequency thermalised out-modes

The ‘future’ CCH state |CCH+〉 has the additional interpretation of predicting thermal

radiation outgoing at future null infinity I +; this property corresponds to a thermalised

flux of particles in the out-modes emanating from the past horizon H−. The Kruskal

coordinate U (3.24) is the affine parameter along the null generators of the past horizon

H−. Then, near H−, the natural choice of time-coordinate w.r.t which we can define

positive- and negative-frequency in-modes is the Kruskal retarded time U .

We can begin by expressing the asymptotic form of the out-modes (3.68) near the past

horizon H− in terms of Kruskal coordinates; using (3.21), (3.26) and (3.33) we have
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φout
ω`m =

Bin∗
ω`√

4π|ω|
1

r
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]
Y`m(θ, ϕ) . (4.155)

The out-modes are defined in regions I and III of the Penrose diagram in Figure 3.1, where

Ũ < 0. We can trivially extend their definition to regions II and IV by using the Heaviside

function (4.5) to demand that they vanish when Ũ > 0. Then, (4.155) becomes

φout
ω`m =

Bin∗
ω`√

4π|ω|
1

r
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]
Y`m(θ, ϕ) Θ

(
−Ũ
)
.

(4.156)

Comparing the expression for the asymptotic form of the out-modes near the past horizon

H− in (4.156) with the lemma (4.6), we see that the second term in the lemma can be

constructed from the expression in (4.156) if we take

Xout+ = Ũ and qout+ = −(ω + ω̃)

2κ
. (4.157)

Then the lemma (4.6) becomes

∫ ∞

−∞
dŨ e−ipŨ

{
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

Θ
(
Ũ
)

+ exp

[
π (ω + ω̃)

2κ

]
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

Θ
(
−Ũ
)}

= 0. (4.158)

We see that the first term of the lemma (4.158) can be constructed from a set of modes

in regions II and IV, vanishing in regions I and III, with the same dependence on qout+ as

the asymptotic form of the out-modes in (4.156) but containing factors of Ũ as opposed

to −Ũ . As was the case when defining the region IV down-modes in §4.4.1, we will make

both of the transformations Ũ → −Ũ as well as Ṽ → −Ṽ , which results in a set of modes

that are nonzero in regions II and IV and vanishing elsewhere, as well as being orthogonal

to the out-modes in (4.156) since the two sets of modes are defined in different regions of

spacetime. Then, the asymptotic form of a set of modes ψin
ω`m near the region IV future

horizon H+
IV is given by

ψin
ω`m =

Bin∗
ω`√

4π|ω|
1

r
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω − ω̃)

2κ
ln
(
−Ṽ
)]
Y`m(θ, ϕ) Θ

(
Ũ
)
.

(4.159)

The modes in (4.159) have an intuitive interpretation in that they represent the region IV

analogue of the in-modes (3.106) that are defined in region I. Through a similar process

to that used to evaluate the norm of the region IV down-modes in §4.4.1, we find that the

expression for the inner product of two generic region IV in-modes is given by

〈ψin
ω`m, ψ

in
ω′`′m′〉 =




−δ(ω − ω′) δ``′ δmm′ , for ω > 0,

δ(ω − ω′) δ``′ δmm′ , for ω < 0,
(4.160)
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meaning that region IV in-modes are of negative-norm when ω > 0 and of positive-norm

when ω < 0. This is different to the case of the out-modes (3.138) that have positive-norm

when ω > 0 and negative-norm when ω < 0.

Near the past horizon H−, the out-modes take the particularly simple asymptotic form

given in (4.156) and these modes vanish in region IV. Near the future horizon H+
IV, the

region IV in-modes take the particularly simple asymptotic form given in (4.159) and these

modes vanish in region I. Both the past horizon H− and the region IV future horizon H+
IV

are surfaces of constant V = 0. Then it is convenient to choose our surface of integration

of the modes in the lemma (4.158) to be a hypersurface of constant V = −ε < 0, where ε

is a small, positive constant such that this surface lies inside region III, close to H−, and

inside region IV, close to H+
IV.

The asymptotic form of the out-modes near H− (4.156) contain a factor of exp[ ln(Ṽ )],

whereas the asymptotic form of the region IV in-modes nearH+
IV (4.159) contain a factor of

exp[ ln(−Ṽ )]. We are attempting to define a set of positive-frequency modes with respect

to the Kruskal coordinate U ; these are analytic in the lower-half of the plane and so we

need to use a branch of the logarithm that is also analytic in the lower-half plane. We can

therefore choose to make a branch cut along the positive imaginary axis such that

ln(−1) = −iπ. (4.161)

Then, using the fact that we are integrating over a hypersurface of constant V = −ε < 0

exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

= exp

[
− i (ω − ω̃)

2κ
ln
(
−Ṽ
)]

exp

[
−π (ω − ω̃)

2κ

]
. (4.162)

Using (4.162), the asymptotic form of the out-modes near H+
IV (4.127) becomes

ψin
ω`m =

Bin∗
ω`√

4π|ω|
1

r
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

× exp

[
π (ω − ω̃)

2κ

]
Y`m(θ, ϕ) Θ

(
Ũ
)
. (4.163)

Multiplying the expression for the lemma in (4.158) by an appropriate factor, we obtain

0 =
Bin∗
ω`√

4π|ω|
1

r
exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

exp

[
π (ω − ω̃)

2κ

]
Y`m(θ, ϕ)

×
∫ ∞

−∞
dŨ e−ipŨ

{
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

Θ
(
Ũ
)

+ exp

[
π (ω + ω̃)

2κ

]
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

Θ
(
−Ũ
)}

. (4.164)

The first term in (4.164) is exactly that of the asymptotic form of the region IV in-modes

near H+
IV (4.163), while the second term in (4.164) is that of the asymptotic form of the

out-modes near H− (4.130) multiplied by a factor of
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exp

[
π (ω − ω̃)

2κ

]
exp

[
π (ω + ω̃)

2κ

]
= exp

[πω
κ

]
. (4.165)

Then we can write the linear combination of modes in (4.164) as

0 =

∫ ∞

−∞
dŨ e−ipŨ

{
ψin
ω`m + e

πω
κ φout

ω`m

}
, p > 0. (4.166)

By the statement (4.2), the quantity in the curly brackets in (4.166) is positive-frequency

w.r.t U for all values of ω. Multiplying this quantity by a factor of Nout+
ω e−

πω
2κ , where the

normalisation constant Nout+
ω is yet to be determined, we define a set of modes χout+

ω`m

χout+
ω`m = Nout+

ω

(
e
πω
2κ φout

ω`m + e−
πω
2κ ψin

ω`m

)
(4.167)

which is positive-frequency with respect to the Kruskal coordinate U for all values of ω.

We would also like to define a set of modes that are negative-frequency w.r.t the

Kruskal coordinate U . We can do this by considering the complex conjugate of the lemma

in (4.7). Comparing the asymptotic expressions for the out-modes near H− (4.156) and

the region IV in-modes near H+
IV (4.159) with the lemma in (4.7), we see that the terms

in the lemma can be constructed from the expressions in (4.156) and (4.159) if we take

Xin− = Ũ and qout− =
(ω + ω̃)

2κ
. (4.168)

Then the lemma (4.7) becomes

∫ ∞

−∞
dŨ eipŨ

{
exp

[
i (ω + ω̃)

2κ
ln
(
Ũ
)]

Θ
(
Ũ
)

+ exp

[
−π (ω + ω̃)

2κ

]
exp

[
i (ω + ω̃)

2κ
ln
(
−Ũ
)]

Θ
(
−Ũ
)}

= 0. (4.169)

We will again need to take a linear combination of the asymptotic forms of the out-modes

near H− (4.156) and of the region IV in-modes near H+
IV (4.159). The former contain a

factor of exp[ ln(Ṽ )] while the latter contain a factor of exp[ ln(−Ṽ )]. We are attempting

to define a set of negative-frequency modes w.r.t Ũ ; these are analytic in the upper-half of

the plane so we need to use a branch of the logarithm that is also analytic in the upper-half

of the plane. We can therefore make a branch cut along the negative imaginary axis

ln (−1) = iπ. (4.170)

Then, using the fact that we are integrating over a hypersurface of constant V = −ε < 0

exp

[
− i (ω − ω̃)

2κ
ln
(
Ṽ
)]

= exp

[
− i (ω − ω̃)

2κ
ln
(
−Ṽ
)]

exp

[
π (ω − ω̃)

2κ

]
. (4.171)

Using (4.171), the asymptotic form of the region IV in-modes near H+
IV (4.159) becomes
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ψin
ω`m =

Bin∗
ω`√
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Y`m(θ, ϕ) Θ
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Ũ
)
. (4.172)

Multiplying the expression for the lemma in (4.169) by an appropriate factor, we obtain

0 =
Bin∗
ω`√
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×
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exp
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ln
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−Ũ
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(
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)}

. (4.173)

The first term in (4.173) is exactly that of the asymptotic form of the region IV in-modes

near H+
IV (4.172), while the second term in (4.173) is that of the asymptotic form of the

out-modes near H− (4.156) multiplied by a factor of

exp

[
−π (ω − ω̃)

2κ

]
exp

[
−π (ω + ω̃)

2κ

]
= exp

[
−πω
κ

]
. (4.174)

Then we can write the linear combination of modes in (4.173) as

0 =

∫ ∞

−∞
dŨ eipŨ

{
ψin
ω`m + e−

πω
κ φout

ω`m

}
, p > 0. (4.175)

By the statement (4.3), the quantity in the curly brackets in (4.175) is negative-frequency

w.r.t U for all values of ω. Multiplying this quantity by a factor of Nout−
ω e

πω
2κ , where the

normalisation constant Nout−
ω is yet to be determined, we define a set of modes χout−

ω`m

χout−
ω`m = Nout−

ω

(
e−

πω
2κ φout

ω`m + e
πω
2κ ψin

ω`m

)
(4.176)

which is negative-frequency with respect to the Kruskal coordinate U for all values of ω.

We can normalise the positive- (4.167) and negative-frequency thermalised out-modes

(4.176) through a similar process to that used to normalise the thermalised up-modes in

§4.4.1; using the fact that both sets of modes in (4.167) and (4.176) are a linear combination

of the asymptotic forms of the out-modes φout
ω`m and of the region IV in-modes ψin

ω`m, we

can use the norms of the φout
ω`m and ψin

ω`m in (3.138) and (4.160) respectively to derive the

normalisation constants Nout±
ω

Nout±
ω =

1√
2
∣∣sinh

(
πω
κ

)∣∣
. (4.177)

Then, restricting our attention to region I where the ψin
ω`m vanish, a set of normalised

out-modes having positive-frequency with respect to the Kruskal coordinate U is given by

χout+
ω`m =

1√
2
∣∣sinh

(
πω
κ

)∣∣
e
πω
2κ φout

ω`m, all ω, (4.178)
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and a set of normalised out-modes having negative-frequency w.r.t U is given by

χout−
ω`m =

1√
2
∣∣sinh

(
πω
κ

)∣∣
e−

πω
2κ φout

ω`m, all ω. (4.179)

Construction of the ‘future’ CCH state

Recall that in defining the ‘future’ CCH state |CCH+〉, we would like a state that ex-

hibits thermal radiation at both past and future null infinity I ±; this corresponds to a

thermalised flux of particles in both the out-modes (3.139) and the down-modes (3.147).

Then, we may expand the scalar field Φ in terms of an orthonormal basis of thermally

populated out- and down-modes, each divided into positive- and negative-frequency sets.

We recall that the down-modes are defined to be positive- (4.120) and negative-frequency

(4.121) with respect to the Kruskal coordinate V , which is the natural time coordinate to

use near H+. Using (4.120), (4.121), (4.178) and (4.179), we have

Φ(x) =
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. (4.180)

We quantise the field by promoting the expansion coefficients to operators such that the

field operator Φ̂(x) is given by

Φ̂(x) =
∞∑
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2κ âdown

ω`m + e−
πω̃
2κ b̂down†

ω`m

]}
, (4.181)

where the operators associated to the out-modes, âout
ω`m and b̂out

ω`m, are each defined for all

ω, and the operators associated to the down-modes, âdown
ω`m and b̂down

ω`m , are each defined for

all ω̃. In (4.181), all of the positive-frequency modes φ
out/down+
ω`m are of positive-norm and

all of the negative-frequency modes φ
out/down−
ω`m are of negative-norm; then, the operators

â
out/down
ω`m and b̂

out/down
ω`m obey the following, standard commutation relations

[
âout
ω`m, â

out†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω,

[
b̂out
ω`m, b̂

out†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω,

[
âdown
ω`m , âdown†

ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃,

[
b̂down
ω`m , b̂down†

ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃, (4.182)
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with any commutators not explicitly given in (4.182) vanishing. The ‘future’ CCH state

is then defined as the state annihilated by the â
out/down
ω`m and b̂

out/down
ω`m operators such that

âout
ω`m |CCH+〉 = 0, all ω,

b̂out
ω`m |CCH+〉 = 0, all ω,

âdown
ω`m |CCH+〉 = 0, all ω̃,

b̂down
ω`m |CCH+〉 = 0, all ω̃. (4.183)

We explore this state further when we study the expectation values of quantum observables

in the ‘future’ CCH state |CCH+〉 in §5.4.2.

4.5.3 ‘Hartle-Hawking-like’ state

We would like to define a thermal state in RN spacetime that is as close in spirit as

possible to the Schwarzschild Hartle-Hawking state |Hs〉, defined in §2.3.3, and which

exhibits both incoming Hawking radiation from past null infinity I − as well as outgoing

Hawking radiation at future null infinity I +. In terms of the scalar field modes defined in

§3.3, this corresponds to a thermalised flux of particles in both the up- and down-modes.

The outgoing Hawking radiation at future null infinity I + in |H〉 is emanating from

the past horizon H−; the Kruskal coordinate U is the affine parameter along the null

generators of this surface. We have already defined thermalised up-modes that are positive-

and negative-frequency w.r.t U in (4.92a) and (4.92b) respectively.

The incoming Hawking radiation from past null infinity I − in |H〉 is incident upon

the future horizon H+; the Kruskal coordinate V is the affine parameter along the null

generators of this surface. We have already defined thermalised down-modes that are

positive- and negative-frequency w.r.t V in (4.120) and (4.121) respectively.

Then, we may use (4.92a), (4.92b), (4.120) and (4.121) to expand the field Φ as

Φ(x) =

∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω̃
{
ãup
ω`m χ

up+
ω`m + b̃up†

ω`m χ
up−
ω`m + ãdown

ω`m χdown+
ω`m + b̃up†

ω`m χ
down−
ω`m

}
.

(4.184)

In region I, equation (4.184) reduces to

Φ(x) =

∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ
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e
πω̃
2κ ãup
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πω̃
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ω`m

]
φup
ω`m

+
[
e
πω̃
2κ ãdown

ω`m + e−
πω̃
2κ b̃down†

ω`m

]
φdown
ω`m

}
, (4.185)

However, the up- and down-modes do not form an orthonormal basis of modes, which we

require to quantise the field. The in-modes are orthogonal to the up-modes; we would then

like to re-express the down-modes in (4.184) in terms of in- and up-modes. We note that

since the thermal factor of the down-modes depends on ω̃, the in- and up-modes which we

use to re-express the down-modes should also have thermal factors depending on ω̃.
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While we have already defined thermalised in-modes that are positive- and negative-

frequency w.r.t V in (4.149) and (4.150) respectively, these modes possess a thermal factor

depending on ω. Thus, we need to define a new set of thermalised in-modes that are

positive- and negative-frequency w.r.t V but whose thermal factor instead depends on ω̃.

Initially, their definition follows through in a similar way to the in-modes χin
ω`m used to

define the ‘past’ CCH state in §4.5.1. In particular, the asymptotic form of the in-modes

near H+ is that given in (4.127), and we similarly make the transformations U → −U ,

V → −V to define a set of region IV out-modes, whose asymptotic form near H−IV is

that given in (4.130). Making the same choices Xin+ = Ṽ and qin+ = (ω+ω̃)
2κ to define

positive-frequency modes as in (4.128), the lemma (4.6) takes the form given in (4.129).

However, when defining the ‘past’ CCH state |CCH−〉, we chose our surface of inte-

gration to be a hypersurface of constant U = −ε < 0, where ε is a small, positive constant

such that this surface lies inside region I, close to H+, and inside region III, close to H−IV.

Now, we will instead choose our surface of integration of the modes in the lemma (4.129)

to be a hypersurface of constant U = ε > 0, where ε is a small, positive constant such that

this surface lies inside region II, close to H+, and inside region IV, close to H−IV.

The asymptotic form of the in-modes near H+ (4.127) contain a factor of exp[ ln(−Ũ)],

whereas the asymptotic form of the region IV out-modes near H−IV (4.130) contain a factor

of exp[ ln(Ũ)]. Initially attempting to define a set of positive-frequency modes w.r.t V ,

which are analytic in the lower-half of the plane and therefore require us to use a branch

of the logarithm that is also analytic in the lower-half plane, we choose to make the same

branch cut along the positive imaginary axis such that ln(−1) = −iπ, as in (4.132). Then,

using the fact that we are integrating over a hypersurface of constant U = ε > 0

exp

[
i (ω − ω̃)

2κ
ln
(
−Ũ
)]

= exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
π (ω − ω̃)

2κ

]
. (4.186)

Using (4.186), the asymptotic form of the in-modes near H+ (4.127) becomes

φin
ω`m =

Bin
ω`√

4π|ω|
1

r
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Ṽ
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]
Y`m(θ, ϕ) Θ

(
Ṽ
)
. (4.187)

Multiplying the expression for the lemma in (4.129) by an appropriate factor, we obtain

0 =
Bin
ω`√

4π|ω|
1

r
exp
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exp
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×
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dṼ e−ipṼ
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+ exp
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]
exp
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ln
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−Ṽ
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(
−Ṽ
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. (4.188)

The first term in (4.188) is exactly that of the asymptotic form of the in-modes near H+

(4.187), while the second term in (4.188) is that of the asymptotic form of the region IV

out-modes near H−IV (4.130) multiplied by a factor of
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exp

[
π (ω − ω̃)

2κ

]
exp

[
−π (ω + ω̃)

2κ

]
= exp

[
−πω̃
κ

]
. (4.189)

Then we can write the linear combination of modes in (4.188) as

0 =

∫ ∞

−∞
dṼ e−ipṼ

{
φin
ω`m + e−

πω̃
κ ψout

ω`m

}
, p > 0. (4.190)

By the statement (4.2), the quantity in the curly brackets in (4.190) is positive-frequency

w.r.t V for all values of ω̃. Multiplying this quantity by a factor of Ñin+
ω e

πω
2κ , where the

normalisation constant Ñin+
ω is yet to be determined, we define a set of modes χ̃in+

ω`m

χ̃in+
ω`m = Ñin+

ω

(
e
πω̃
2κ φin

ω`m + e−
πω̃
2κ ψout

ω`m

)
(4.191)

which is positive-frequency w.r.t V for all values of ω̃ and where the notation χ̃in+
ω`m serves

to distinguish these modes from the positive-frequency modes χin+
ω`m (4.138) in §4.5.1.

In order to define negative-frequency modes, we make the same choices Xin− = Ṽ and

qin− = − (ω+ω̃)
2κ as in (4.139) and thus the complex conjugate (4.7) of the lemma takes

the form given in (4.140). Since we are attempting to define a set of negative-frequency

modes w.r.t V , which are analytic in the upper-half of the plane and therefore require us

to use a branch of the logarithm that is also analytic in the upper-half plane, we choose to

make the same branch cut along the negative imaginary axis such that ln(−1) = iπ, as in

(4.141). Using the fact that we are integrating over a hypersurface of constant U = ε > 0

exp

[
i (ω − ω̃)

2κ
ln
(
−Ũ
)]

= exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
−π (ω − ω̃)

2κ

]
. (4.192)

Using (4.192), the asymptotic form of the in-modes near H+ (4.127) becomes

φin
ω`m =

Bin
ω`√

4π|ω̃|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
− i (ω + ω̃)

2κ
ln
(
Ṽ
)]

× exp

[
−π (ω − ω̃)

2κ

]
Y`m(θ, ϕ) Θ

(
Ṽ
)
. (4.193)

Multiplying the expression for the lemma in (4.140) by an appropriate factor, we obtain

0 =
Bin
ω`√

4π|ω̃|
1

r
exp

[
i (ω − ω̃)

2κ
ln
(
Ũ
)]

exp

[
−π (ω − ω̃)

2κ

]
Y`m(θ, ϕ)

×
∫ ∞

−∞
dṼ eipṼ

{
exp

[
i (ω + ω̃)

2κ
ln
(
Ṽ
)]

Θ
(
Ṽ
)

+ exp

[
π (ω + ω̃)

2κ

]
exp

[
− i (ω + ω̃)

2κ
ln
(
−Ṽ
)]

Θ
(
−Ṽ
)}

. (4.194)

The first term in (4.194) is exactly that of the asymptotic form of the in-modes near H+

(4.193), while the second term in (4.194) is that of the asymptotic form of the region IV

out-modes near H−IV (4.130) multiplied by a factor of
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exp

[
−π (ω − ω̃)

2κ

]
exp

[
π (ω + ω̃)

2κ

]
= exp

[
πω̃

κ

]
. (4.195)

Then we can write the linear combination of modes in (4.194) as

0 =

∫ ∞

−∞
dṼ eipṼ

{
φin
ω`m + e

πω̃
κ ψout

ω`m

}
, p > 0. (4.196)

By the statement (4.3), the quantity in the curly brackets in (4.196) is negative-frequency

w.r.t V for all values of ω̃. Multiplying this quantity by a factor of Ñin−
ω e−

πω̃
2κ , where the

normalisation constant Ñin−
ω is yet to be determined, we define a set of modes χ̃in−

ω`m

χ̃in−
ω`m = Ñin−

ω

(
e−

πω̃
2κ φin

ω`m + e
πω̃
2κ ψout

ω`m

)
(4.197)

which is negative-frequency w.r.t V for all values of ω̃ and where the notation χ̃in−
ω`m serves

to distinguish these modes from the negative-frequency modes χin−
ω`m (4.147) in §4.5.1.

The derivation of the normalisation constants Ñin±
ω is somewhat subtle in that, while

Ñin±
ω will contain a factor of ω̃, the norm of the modes φin

ω`m and ψout
ω`m depend on ω from

(3.104) and (4.131) respectively. We go through this calculation in detail now.

We need to use the fact that the in-modes and the region IV out-modes are orthogonal

since the in-modes are defined in region I while vanishing in region IV, and the region

IV out-modes are defined in region I while vanishing in region IV. Therefore, the inner

product 〈φin
ω`m, ψ

out
ω′`′m′〉 vanishes. Requiring orthonormality of the χ̃in±

ω`m modes, we have

〈χ̃in±
ω`m, χ̃

in±
ω′`′m′〉

= Ñin∗±
ω Ñin±

ω′ 〈(e±
πω̃
2κ φin

ω`m + e∓
πω̃
2κ ψout

ω`m), (e±
πω̃
2κ φin

ω′`′m′ + e∓
πω̃
2κ ψout

ω′`′m′)〉

= Ñin∗±
ω Ñin±

ω′

(
e±

πω̃
κ 〈φin

ω`m, φ
in
ω′`′m′〉+ 2 〈φin

ω`m, ψ
out
ω′`′m′〉+ e∓

πω̃
κ 〈ψout

ω`m, ψ
out
ω′`′m′〉

)

=
∣∣∣Ñin±

ω

∣∣∣
2 (

e±
πω̃
κ − e∓

πω̃
κ

)
sgn(ω) δ

(
ω − ω′

)
δ``′ δmm′ , (4.198)

where we have used the expressions for the norms in (3.104) and (4.131) to go from the

second equality to the third; equation (4.198) reduces to

〈χ̃in±
ω`m, χ̃

in±
ω′`′m′〉 = 2

∣∣∣Ñin±
ω

∣∣∣
2

sinh

(
±πω̃
κ

)
sgn(ω) δ

(
ω − ω′

)
δ``′ δmm′ . (4.199)

Then, from (4.199), we have for the inner product of two generic χ̃in+
ω`m modes

〈χ̃in+
ω`m, χ̃

in+
ω′`′m′〉 =





2
∣∣∣Ñin+

ω

∣∣∣
2

sinh

(
πω̃

κ

)
δ
(
ω − ω′

)
δ``′ δmm′ > 0, ω > 0,

−2
∣∣∣Ñin+

ω

∣∣∣
2

sinh

(
πω̃

κ

)
δ
(
ω − ω′

)
δ``′ δmm′ > 0, ω < 0,

(4.200)

demonstrating that positive-frequency modes χ̃in+
ω`m have positive norm if sgn(ωω̃) = 1 and

negative norm if sgn(ωω̃) = −1. Similarly, from (4.199), we have for 〈χ̃in−
ω`m, χ̃

in−
ω′`′m′〉
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〈χ̃in−
ω`m, χ̃

in−
ω′`′m′〉 =





2
∣∣∣Ñin−

ω

∣∣∣
2

sinh

(
πω̃

κ

)
δ
(
ω − ω′

)
δ``′ δmm′ < 0, ω > 0,

−2
∣∣∣Ñin−

ω

∣∣∣
2

sinh

(
πω̃

κ

)
δ
(
ω − ω′

)
δ``′ δmm′ < 0, ω < 0,

(4.201)

demonstrating that negative-frequency modes χ̃in−
ω`m have negative norm if sgn(ωω̃) = 1

and positive norm if sgn(ωω̃) = −1. The normalisation constants Ñin±
ω are given by

Ñin±
ω =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣
. (4.202)

Therefore, a set of normalised modes having positive-frequency w.r.t V is given by

χ̃in+
ω`m =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

(
e
πω̃
2κ φin

ω`m + e−
πω̃
2κ ψout

ω`m

)
, all ω̃, (4.203)

and a set of normalised modes having negative-frequency w.r.t V is given by

χ̃in−
ω`m =

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

(
e−

πω̃
2κ φin

ω`m + e
πω̃
2κ ψout

ω`m

)
, all ω̃. (4.204)

Having defined thermalised in-modes χ̃in±
ω`m whose thermal factor depends on ω, we can

return to rewriting the thermalised down-modes χdown±
ω`m in terms of the χ̃in±

ω`m and the

thermalised up-modes χup±
ω`m. In order to do so, we need to relate both their region I and

IV parts. From the expression for φdown
ω`m in terms of φup

ω`m and φin
ω`m (3.148b), we have

ψup
ω`m = Aup∗

ω` ψ
down
ω`m +

∣∣∣ω
ω̃

∣∣∣
1
2
Bup∗
ω` ψ

out
ω`m. (4.205)

Thus, we have

χdown±
ω`m = Aup∗

ω`m χ
up±
ω`m +

∣∣∣ω
ω̃

∣∣∣
1
2
Bup∗
ω`m χ̃

in±
ω`m. (4.206)

Using (4.92a), (4.92b), (4.203) and (4.204), we can expand the field Φ in an orthonormal

basis of thermalised in- and up-modes as

Φ(x) =
∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω̃
(
aup
ω`m χ

up+
ω`m + bup†

ω`m χ
up−
ω`m

)

+

∫ ∞

−∞
dω
(
ain
ω`m χ̃

in+
ω`m + bin†ω`m χ̃

in−
ω`m

)}
, (4.207)

where the mode coefficients in (4.207) are related to those in (4.184) by the expressions
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aup
ω`m = ãup

ω`m +Aup∗
ω` ã

down
ω`m ,

bup†
ω`m = b̃up†

ω`m +Aup∗
ω` b̃

down†
ω`m ,

ain
ω`m =

∣∣∣ω
ω̃

∣∣∣
1
2
Bup∗
ω` ã

down
ω`m ,

bin†ω`m =
∣∣∣ω
ω̃

∣∣∣
1
2
Bup∗
ω` b̃

down†
ω`m . (4.208)

Restricting out attention to region I, (4.207) reduces to

Φ(x) =

∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

{[
e
πω̃
2κ aup

ω`m + e−
πω̃
2κ bup†

ω`m

]
φup
ω`m

+
[
e
πω̃
2κ ain

ω`m + e−
πω̃
2κ bin†ω`m

]
φin
ω`m

}
, (4.209)

from which we can see that all modes will have thermal factors that depend on ω̃. We

quantise the field by promoting the mode expansion coefficients in (4.209) to operators

such that the field operator Φ̂(x) is given by

Φ̂(x) =
∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

{[
e
πω̃
2κ âup

ω`m + e−
πω̃
2κ b̂up†

ω`m

]
φup
ω`m

+
[
e
πω̃
2κ âin

ω`m + e−
πω̃
2κ b̂in†ω`m

]
φin
ω`m

}
. (4.210)

In (4.207), the positive-frequency modes χup+
ω`m are entirely of positive-norm and the

negative-frequency modes χup−
ω`m are entirely of negative-norm. Therefore, the operators

âup
ω`m and b̂up

ω`m follow standard commutation relations.

However, the positive-frequency modes χ̃in+
ω`m are only of positive-norm when sgn(ωω̃) =

1 and are of negative-norm when sgn(ωω̃) = −1. Similarly, the negative-frequency

modes χ̃in−
ω`m are only of negative-norm when sgn(ωω̃) = 1 and are of positive-norm when

sgn(ωω̃) = −1. Then, recalling our discussion in §4.2.4, we can multiply the commutation

relations of the operators âin
ω`m and b̂inω`m by the eta-function ηωω̃ (4.20). Therefore, the

operators â
in/up
ω`m and b̂

in/up
ω`m obey the following non-standard commutation relations:

[
âup
ω`m, â

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃,

[
b̂up
ω`m, b̂

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃,

[
âin
ω`m, â

in†
ω′`′m′

]
= ηωω̃ δ

(
ω − ω′

)
δ``′ δmm′ , all ω̃,

[
b̂inω`m, b̂

in†
ω′`′m′

]
= ηωω̃ δ

(
ω − ω′

)
δ``′ δmm′ , all ω̃, (4.211)

with any commutators not explicitly given in (4.211) vanishing. The ‘Hartle-Hawking-like’

state |H〉 is then defined as the state annihilated by the â
in/up
ω`m and b̂

in/up
ω`m operators:
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âup
ω`m |H〉 = 0, all ω̃,

b̂up
ω`m |H〉 = 0 all ω̃,

âin
ω`m |H〉 = 0, all ω̃,

b̂inω`m |H〉 = 0, all ω̃. (4.212)

As well as the ‘Hartle-Hawking-like’ state |H〉, the ‘past’ Unruh state |U−〉 and the ‘past’

CCH state |CCH−〉 are also defined using an orthonormal basis of in- and up-modes.

While the particle distribution in the up-modes φup
ω`m in |H〉 will be similar to that of |U−〉

and |CCH−〉, the particle distribution in the in-modes φin
ω`m in |H〉 will be different to both

|U−〉 and |CCH−〉.

4.5.4 Frolov-Thorne state

In [49], Frolov and Thorne defined a “Hartle-Hawking”-like state for a neutral scalar field

in Kerr spacetime. In order to do so , they expanded the field in an orthonormal basis of

up- and in-modes with thermal factors depending on ω̃, similar to the expansion (4.207)

we used to define the ‘Hartle-Hawking-like’ state |H〉 in RN spacetime in §4.5.3. However,

Frolov and Thorne labelled the expansion coefficients multiplying each mode according

to the norm of that mode. This is in contrast to the expansion (4.207), where the mode

expansion coefficients were labelled according to the frequency of the mode they were

multiplying; in (4.207), for example, positive-frequency modes χ
in/up+
ω`m are multiplied by

the mode expansion coefficients a
in/up
ω`m and negative-frequency modes χ

in/up−
ω`m are multiplied

by the mode expansion coefficients b
in/up†
ω`m .

We will expand the field in an analogous way to that used to define the “Hartle-

Hawking”-like state in [49]; we will refer to the quantum state defined in this way as the

Frolov-Thorne state |FT〉. Using (4.92a), (4.92b), (4.203) and (4.204), we can expand the

field Φ in an orthonormal basis of thermalised up- and in-modes as

Φ(x) =
∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω̃
(
aup
ω`m χ

up+
ω`m + bup†

ω`m χ
up−
ω`m

)

+

∫ ∞

max
{
qQ
r+
,0
} dω

(
ain
ω`m χ̃

in+
ω`m + bin†ω`m χ̃

in−
ω`m

)

+

∫ min
{
qQ
r+
,0
}

−∞
dω
(
ain
ω`m χ̃

in+
ω`m + bin†ω`m χ̃

in−
ω`m

)

+

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

(
ain
ω`m χ̃

in−
ω`m + bin†ω`m χ̃

in+
ω`m

)


 . (4.213)

In (4.213), positive-frequency modes χup+
ω`m are entirely of positive-norm and negative-

frequency modes χup−
ω`m are entirely of negative-norm. Thus the first term on the r.h.s

of (4.213) is identical to the first term on the r.h.s of the expansion (4.207) of the field

leading to the ‘Hartle-Hawking-like’ state |H〉. However, the second term on the r.h.s of
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(4.207), which involves the modes χ̃in±
ω`m, is split into three terms in (4.213) so that we may

correctly label the expansion coefficients multiplying each mode according to the mode

norm.

Specifically, positive-frequency modes χ̃in+
ω`m with sgn(ωω̃) = 1 are of positive-norm and

negative-frequency modes χ̃in−
ω`m with sgn(ωω̃) = 1 are of negative-norm. In the second and

third terms on the r.h.s of (4.213) therefore, positive-frequency modes χin+
ω`m are multiplied

by ain
ω`m and negative-frequency modes χin−

ω`m are multiplied by bin†ω`m.

However, positive-frequency modes χ̃in+
ω`m with sgn(ωω̃) = −1 are of negative-norm and

negative-frequency modes χ̃in−
ω`m with sgn(ωω̃) = −1 are of positive-norm. Therefore, in

the fourth term on the r.h.s of (4.213), positive-frequency modes χin+
ω`m are multiplied by

the expansion coefficients bin†ω`m and negative-frequency modes χin−
ω`m are multiplied by the

expansion coefficients ain
ω`m. Recall from (4.17) that, if qQ > 0, modes with 0 < ω < qQ

r+

have sgn(ωω̃) = −1 and, if qQ < 0, modes with 0 > ω > qQ
r+

have sgn(ωω̃) = −1. Thus,

the integral in the fourth term on the r.h.s of (4.213) reduces to the superradiant range

0 < ω < qQ
r+

if qQ > 0 and to the superradiant range 0 > ω > qQ
r+

if qQ < 0.

Restricting our attention to region I, (4.213) reduces to

Φ(x) =
∞∑

`=0

∑̀

m=−`





∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

[
e
πω̃
2κ aup

ω`m + e−
πω̃
2κ bup†

ω`m

]
φup
ω`m

+

∫ ∞

max
{
qQ
r+
,0
} dω

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

[
e
πω̃
2κ ain

ω`m + e−
πω̃
2κ bin†ω`m

]
φin
ω`m

+

∫ min
{
qQ
r+
,0
}

−∞
dω

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

[
e
πω̃
2κ ain

ω`m + e−
πω̃
2κ bin†ω`m

]
φin
ω`m

+

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

[
e−

πω̃
2κ ain

ω`m + e
πω̃
2κ bin†ω`m

]
φin
ω`m




. (4.214)

We quantise the field by promoting the mode expansion coefficients in (4.214) to op-

erators such that the field operator Φ̂(x) is given by
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Φ̂(x) =

∞∑

`=0

∑̀

m=−`





∫ ∞

−∞
dω̃

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

[
e
πω̃
2κ âup

ω`m + e−
πω̃
2κ b̂up†

ω`m

]
φup
ω`m

+

∫ ∞

max
{
qQ
r+
,0
} dω

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

[
e
πω̃
2κ âin

ω`m + e−
πω̃
2κ b̂in†ω`m

]
φin
ω`m

+

∫ min
{
qQ
r+
,0
}

−∞
dω

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

[
e
πω̃
2κ âin

ω`m + e−
πω̃
2κ b̂in†ω`m

]
φin
ω`m

+

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

1√
2
∣∣∣sinh

(
πω̃
κ

)∣∣∣

[
e−

πω̃
2κ âin

ω`m + e
πω̃
2κ b̂in†ω`m

]
φin
ω`m




. (4.215)

In (4.215), all modes with positive-norm are multiplied by annihilation operators â
in/up
ω`m

and all modes with negative-norm are multiplied by creation operators b̂
in/up†
ω`m . Therefore,

the operators â
in/up
ω`m and b̂

in/up
ω`m obey the following standard commutation relations:

[
âin
ω`m, â

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω,

[
b̂inω`m, b̂

in†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω,

[
âup
ω`m, â

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃,

[
b̂up
ω`m, b̂

up†
ω′`′m′

]
= δ
(
ω − ω′

)
δ``′ δmm′ , all ω̃, (4.216)

with any commutators not explicitly given in (4.216) vanishing. The ‘Frolov-Thorne’ state

|FT〉 is then defined as the state annihilated by the â
in/up
ω`m and b̂

in/up
ω`m operators such that

âin
ω`m |FT〉 = 0, all ω,

b̂inω`m |FT〉 = 0, all ω,

âup
ω`m |FT〉 = 0, all ω̃,

b̂up
ω`m |FT〉 = 0 all ω̃. (4.217)

From the expansion (4.215), we anticipate that this state will contain a thermal flux of

particles in both the in- and up-modes, with the thermal factor of each depending on ω̃.

However, the superradiant in-modes will require careful treatment.



Chapter 5

Expectation values of quantum

observables

In §5.1, we introduce each of the three main quantum observables considered in this

thesis. We derive the asymptotic mode contributions to each of these observables in

§5.2. In §5.3, we explore the expectation values of observables in the ‘past’ states. We

evaluate the differences in expectation values between the ‘future’ states in §5.4. In §5.5,

we investigate the ‘Boulware-like’ state. In §5.6, we investigate the Frolov-Thorne state.

In §5.7, we investigate the ‘Hartle-Hawking-like’ state.

5.1 Quantum observables

There are three main observables of interest in a quantum charged scalar field theory,

namely the scalar field condensate ŜC, the charged scalar field current Ĵµ and the stress-

energy tensor T̂µν . In this section, we will introduce each of these observables in turn.

We will also use the classical expression for each of the observables, in terms of the field

Φ, to give the explicit forms of the mode contributions to the scalar condensate SC and

each component of the current Jµ and the stress-energy tensor Tµν . We use the notation

O to denote the classical quantity corresponding to the quantum observable Ô, and the

scalar field mode contribution to the quantity O is denoted by oω`m.

5.1.1 Scalar condensate

The simplest nontrivial observable associated to a quantum charged scalar field Φ̂ is the

scalar condensate ŜC, which is sometimes referred to as the vacuum polarisation; as the

name implies, it is a scalar quantity. Classically, the scalar condensate SC corresponds to

the square of the magnitude of the scalar field Φ; therefore, we have

SC = |Φ|2. (5.1)

Since the scalar condensate is a scalar quantity, it should not be able to distinguish between

the ‘past’ states we defined in Chapter 4 and their corresponding ‘future’ states. In

order to see this, consider that the out-mode radial function Xout
ω` (3.68) is the complex
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conjugate of the in-mode radial function X in
ω` (3.64). Then, from the general form of a

scalar field mode (3.41), we have |φout
ω`m|

2
= |φin

ω`m|
2
. A similar line of reasoning shows

that |φdown
ω`m |

2
= |φup

ω`m|
2
. The ‘past’ states were defined in terms of the in-modes (3.106)

and the up-modes (3.131), while the ‘future’ states were defined in terms of the out-modes

(3.139) and the down-modes (3.147). Therefore corresponding ‘past’ and ‘future’ states

are indistinguishable to the scalar condensate.

In calculating the classical mode contribution scω`m to the scalar condensate SC, one

would ordinarily need to consider the product of fields with different quantum numbers,

i.e. different values of ω, ` and m. However, as we can see from the calculation of

the expectation values of the quantum scalar condensate 〈Φ̂2〉 in §2.3.1, only the square

magnitudes of the individual modes contribute to the quantum expectation values since

the creation and annihilation operators associated to modes of different quantum numbers

commute. Thus, the classical mode contribution scω`m to the scalar condensate SC can

be given for general values of the quantum numbers ω, ` and m as

scω`m = |φω`m|2 = φ∗ω`m φω`m

= eiωt N∗ω
X∗ω`(r)
r

Y ∗`m(θ, ϕ)× e−iωt Nω
Xω`(r)

r
Y`m(θ, ϕ)

=
1

r2
|Nω|2 |Xω`(r)|2 |Y`m(θ, ϕ)|2. (5.2)

Performing the sum over the azimuthal number m, we obtain

scω` =
∑̀

m=−`
scω`m =

2`+ 1

4πr2
|Nω|2 |Xω`(r)|2. (5.3)

where we have used the addition formula (A.4) for the spherical harmonics.

The scalar condensate of a quantum field

The scalar condensate ŜC associated to a quantum charged scalar field Φ̂ is given by

ŜC =
1

2

[
Φ̂Φ̂† + Φ̂†Φ̂

]
. (5.4)

The expectation value 〈ŜC〉 of the scalar condensate will be a function of the radial co-

ordinate r only, irrespective of the quantum state under consideration. While this is

straightforward to see from the form of the mode contribution scω`m (5.3), it is illustrative

to think about why this might be the case from physical considerations.

All of the quantum states defined in Chapter 4 are stationary, which means that

all observables associated to these states are time-independent. Furthermore, Reissner-

Nordström spacetime is both static and spherically symmetric, which corresponds to the

field modes defined on this background spacetime having a harmonic time dependence e−iωt

and their dependence on the angular coordinates being given by the spherical harmonics

Y`m(θ, ϕ) respectively, such as in the general form for a scalar field mode (3.41).
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Since the scalar condensate ŜC (5.4) depends only on the product of the field operator

Φ̂ and its Hermitian conjugate Φ̂†, then it is easy to see that the quantum scalar con-

densate ŜC is time-independent. Furthermore, from the addition formula of the spherical

harmonics Y`m(θ, ϕ) (A.4), we see that the scalar condensate is also independent of the

angular coordinates θ and ϕ. Thus, the expectation values 〈ŜC〉 of the scalar condensate

will be functions of the radial coordinate r only.

5.1.2 Current

The next simplest observable associated to a quantum charged scalar field Φ̂ is the current

Ĵµ. For a classical field Φ with scalar field charge q, the current Jµ is given by

Jµ = − q

4π
= [Φ∗DµΦ] , (5.5)

The classical current is conserved

∇µJµ = 0. (5.6)

The mode contributions to each component of the current Jµ are derived in §B.1 of

appendix B; the nonzero contributions are given by

jtω` = − q (2`+ 1)

16π2r2f(r)

(
ω − qQ

r

)
|Nω|2 |Xω`(r) |2, (5.7a)

jrω` = −qf(r)(2`+ 1)

16π2
|Nω|2=

[
X∗ω`(r)
r

d

dr

(
Xω`(r)

r

)]
. (5.7b)

The current of a quantum field

The current operator Ĵµ associated to a quantum charged scalar field Φ̂ is given by

Ĵµ =
iq

16π

[
Φ̂†DµΦ̂ + (DµΦ̂)Φ̂† − Φ̂(DµΦ̂)† − (DµΦ̂)†Φ̂

]
. (5.8)

The expectation values of the current operator Ĵµ are also conserved

∇µ〈Ĵµ〉 = 0. (5.9)

All of the quantum states defined in Chapter 4 are stationary and all observables associated

to these states are therefore time-independent. Then, the derivative w.r.t t vanishes in the

equation governing the conservation of the current operator 〈Ĵµ〉 and (5.9) reduces to

0 = ∇µ〈Ĵµ〉 = ∇r〈Ĵr〉
= ∂r〈Ĵr〉+ Γµrµ〈Ĵr〉
= ∂r〈Ĵr〉+ Γtrt〈Ĵr〉+ Γrrr〈Ĵr〉+ Γθrθ〈Ĵr〉+ Γϕrϕ〈Ĵr〉 . (5.10)

Then, using the expressions for the Christoffel symbols in §3.1.2, (5.10) reduces to

0 = ∂r〈Ĵr〉+
2

r
〈Ĵr〉 . (5.11)
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We can integrate (5.11) to give, for any quantum state, the expression

〈Ĵr〉 = −K
r2
, (5.12)

where the constant K is a state-dependent quantity that can be interpreted as the flux

of charge emitted by the black hole in the particular quantum state under consideration.

While the absolute value |K| gives the magnitude of the flux of charge, the direction of its

flow depends on the product of the charge of the black hole Q and K as follows:

KQ





> 0 ⇒ the black hole is losing charge,

= 0 ⇒ there is no net flux of charge,

< 0 ⇒ the black hole is gaining charge.

(5.13)

From the scalar field mode contributions to the classical current Jµ, we see that the

only nonzero components of the expectation value 〈Ĵµ〉 of the current operator are 〈Ĵ t〉 and

〈Ĵr〉. We prove in Appendix C that the 〈Ĵr〉 component does not require renormalisation.

Therefore, we may consider the expectation value 〈Ĵr〉 of the radial component of the

current in a particular state without needing to consider the differences in expectation

values between two separate states; this allows us to investigate the flux of charge K
associated with a particular quantum state. It is shown, however, in [45] that while the

〈Ĵ t〉 component does indeed require renormalisation, the renormalisation counterterms

associated to this component are finite in the case of a RN-de Sitter background spacetime.

We would expect such a result to extend to the case of a Reissner-Nordström spacetime.

5.1.3 Stress-energy tensor

The last observable we consider is the stress-energy tensor Tµν associated to a massless,

minimally coupled, charged scalar field on a Ricci-flat background spacetime, given by

Tµν = <
[
(DµΦ)∗DνΦ− 1

2
gµν g

ρλ (DρΦ)∗(DλΦ)

]
. (5.14)

The mode contributions to each component of the stress-energy tensor Tµν are derived in
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§B.2 of appendix B; the nonzero contributions are given by

ttt,ω` =
2`+ 1

8π
|Nω|2

{[
1

r2

(
ω − qQ

r

)2

+
f(r) `(`+ 1)

r4

]
|Xω`(r)|2

+ f(r)2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2
}
, (5.15a)

ttr,ω` = −2`+ 1

4π

(
ω − qQ

r

)
|Nω|2=

[
X∗ω`(r)
r

d

dr

(
Xω`(r)

r

)]
, (5.15b)

trr,ω` =
2`+ 1

8π
|Nω|2

{[
1

f(r)2 r2

(
ω − qQ

r

)2

− `(`+ 1)

f(r) r4

]
|Xω`(r)|2 +

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2
}
,

(5.15c)

tθθ,ω` =
2`+ 1

8π
|Nω|2

{
1

f(r)

(
ω − qQ

r

)2

|Xω`(r)|2 − f(r)r2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2
}
, (5.15d)

tϕϕ,ω` = tθθ,ω` sin2θ. (5.15e)

The stress-energy tensor associated to a quantum field

From (5.14), the corresponding quantum stress-energy tensor operator T̂µν is given by

T̂µν =
1

4

{
(DµΦ̂)†DνΦ̂ +DνΦ̂ (DµΦ̂)† +DµΦ̂ (DνΦ̂)† + (DνΦ̂)†DµΦ̂

− 1

2
gµν g

ρλ
[
(DρΦ̂)†DλΦ̂ +DλΦ̂ (DρΦ̂)† +DρΦ̂ (DλΦ̂)† + (DλΦ̂)†DρΦ̂

]}
. (5.16)

The expression for T̂µν is derived in §8.3.3. The expectation values 〈T̂µν〉 of the stress-

energy tensor operator (5.16) associated to the quantum charged scalar field Φ̂ are not

conserved due to the coupling between the charged scalar field and the classical, back-

ground electromagnetic field Aµ. The expectation values 〈T̂µν〉 should instead satisfy

∇µ〈T̂µν〉 = 4πFµν〈Ĵµ〉 . (5.17)

As we would expect, the total stress-energy tensor associated to both the scalar field Φ̂

and the background electromagnetic field Aµ is conserved; this is discussed in detail §8.3.3.

For static states on a spherically symmetric black hole, 〈T̂µν 〉 takes the form

〈T̂µν 〉 =




A(r) −P(r) f−1(r) 0 0

P(r) f(r) T(r)−A(r)− 2Q(r) 0 0

0 0 Q(r) 0

0 0 0 Q(r)



, (5.18)

where A(r), P(r) and Q(r) are functions of the radial coordinate r only, which are yet to

be determined, and the trace T(r) of the stress-energy tensor is given by

T(r) = 〈T̂µν 〉 δνµ = 〈T̂µµ 〉 . (5.19)
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In the specific case of a minimally coupled, charged scalar field on a background spacetime

with vanishing Ricci scalar curvature, i.e. R = 0, the trace T(r) has the form

T(r) =
1

2880π2
RµνρλRµνρλ −

1

2880π2
RµνRµν −

q2

192π2
FµνFµν −

1

2
� 〈ŜC〉 , (5.20)

where we have derived (5.20) using equations (6.9), (7.274) and (8.130) from Part III of

this thesis. The first two terms on the r.h.s of (5.20) depend only on the geometry of

the classical background spacetime, while the third depends only on the field strength of

the classical background electromagnetic field; these terms are therefore state-independent

and will vanish when considering the differences of expectation values of observables in

separate quantum states. The final term, however, depends on the quantum state under

consideration; this term arises due to the minimal coupling of the scalar field to the

background spacetime geometry and vanishes for a conformally coupled field.

Restricting ourselves to the case of a background Reissner-Nordström spacetime, the

expression for the trace T(r) in (5.20) takes the explicit form

T(r) =
13Q2 − 24MQ2r + 12M2r2

720π2r8
− q2Q2

96π2r4
− 1

2
� 〈ŜC〉 , (5.21)

where we have used the expression for the electromagnetic field strength tensor Fµν (3.2)

and the geometry of Reissner-Nordström spacetime (3.9).

We can write the mode contribution tµµ,ω` to the trace T(r) of the SET as

tµµ,ω` = ttt,ω` + trr,ω` + tθθ,ω` + tϕϕ,ω`

= gtt ttt,ω` + grr trr,ω` + gθθ tθθ,ω` + gϕϕ tϕϕ,ω`

= −f(r)−1 ttt,ω` + f(r) trr,ω` + 2r−2 tθθ,ω`, (5.22)

where we have used the expression (5.15e) for tϕϕ,ω` in terms of tθθ,ω` in the last line of

(5.22). We can use the expressions for the mode contributions ttt,ω` (5.15a), trr,ω` (5.15c)

and tθθ,ω` (5.15d) to derive explicitly the mode contribution tµµ,ω` to the trace T(r) as

tµµ,ω` =
2`+ 1

4π
|Nω|2

{[
1

f(r)r2

(
ω − qQ

r

)2

− `(`+ 1)

r4

]
|Xω`(r)|2

− f(r)

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2
}

= −2`+ 1

4π
|Nω|2�

(
|Xω`(r)|2

r2

)
, (5.23)

where we have used the radial equation (3.45) to simplify (5.23). Using the expression

for the mode contribution scω` to the scalar condensate (5.3), we can write the mode

contribution tµµ,ω` to the trace T(r) of the stress-energy tensor as

tµµ,ω` = −1

2
� scω`. (5.24)
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Returning to the expression (5.20) for the trace T(r), the first three terms on the r.h.s arise

as a result of the renormalisation process of the SET. Since we are considering differences,

the only part of the trace T(r) that should receive a mode contribution is the −1
2 � 〈ŜC〉

term in (5.20), which our result for the mode contribution tµµ,ω` in (5.24) reflects.

We can use the form of the expectation value of the RSET (5.18) to integrate the

t-component of the equations (5.17) governing its conservation to give

〈T̂ rt 〉 = − L
r2

+
4πQK
r3

, (5.25)

where the constant L is a state-independent quantity that can be interpreted as the flux

of energy emitted by the black hole in the particular quantum state under consideration.

The direction of the flux of energy depends on the value of L as follows:

L





> 0 ⇒ the black hole is losing energy,

= 0 ⇒ there is no net flux of energy,

< 0 ⇒ the black hole is gaining energy.

(5.26)

We prove in Appendix C that the 〈T̂ rt 〉 component does not require renormalisation. There-

fore, we may consider expectation values of the component 〈T̂ rt 〉 in a particular state with-

out needing to consider the differences in expectation values between two separate states;

this allows us to investigate the flux of energy L in a particular quantum state.

5.1.4 Current and stress-energy tensor in Kruskal coordinates

The behaviour of the expectation value of the current 〈Ĵµ〉 and of the stress-energy tensor

〈T̂µν 〉 will aid us in investigating the regularity of the quantum states we defined in Chapter

4. Since the Schwarzschild-like coordinates are singular on the event horizon, we instead

examine the regularity of states on the horizon in terms of Kruskal coordinates (3.24). We

thus give the nonzero components of both observables in terms of Kruskal coordinates.

Recall that the Jθ and Jϕ components of the current vanish from (B.3) and (B.4)

respectively. Then the only nonzero components of the current Jµ in terms of Kruskal

coordinates are JU and JV . Using the relations between the various sets of coordinates

we have defined in (3.10), (3.20) and (3.26), we have

JU =
∂U

∂u
Ju = −κU

[
∂u

∂t
J t +

∂u

∂r∗

∂r∗
∂r

Jr
]
, (5.27a)

JV =
∂V

∂v
Jv = κV

[
∂v

∂t
J t +

∂v

∂r∗

∂r∗
∂r

Jr
]
. (5.27b)

The nonzero components of the current are given in terms of Kruskal coordinates as

JU = κU
[
−J t + f(r)−1 Jr

]
, (5.28a)

JV = κV
[
J t + f(r)−1 Jr

]
. (5.28b)
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The only nonzero components of the stress-energy tensor Tµν in terms of Schwarzschild-

like coordinates are the Ttt, Ttr, Trr, Tθθ and the Tϕϕ components. The Tθθ and the

Tϕϕ components are invariant under the change to Kruskal coordinates. Then, the only

components of the stress-energy tensor that we need to evaluate in terms of Kruskal

coordinates are TUU , TUV and TV V . Using the relations between the various sets of

coordinates we have defined in (3.10), (3.20) and (3.26), we have

TUU =
∂u

∂U

∂u

∂U
Tuu =

1

κ2U2

[
∂t

∂u

∂t

∂u
Ttt + 2

∂t

∂u

∂r∗
∂u

Ttr∗ +
∂r∗
∂u

∂r∗
∂u

Tr∗r∗

]

=
1

κ2U2

[
1

4
Ttt −

1

2
f(r)Ttr +

1

4
f(r)2 Trr

]
, (5.29a)

TUV =
∂u

∂U

∂v

∂V
Tuv = − 1

κ2UV

[
∂t

∂u

∂t

∂v
Ttt +

∂t

∂u

∂r∗
∂v

Ttr∗ +
∂r∗
∂u

∂t

∂v
Tr∗t +

∂r∗
∂u

∂r∗
∂v

Tr∗r∗

]

= − 1

κ2UV

[
1

4
Ttt +

1

4
f(r)Ttr −

1

4
f(r)Trt −

1

4
f(r)2 Trr

]

= − 1

κ2UV

[
1

4
Ttt −

1

4
f(r)2 Trr

]
, (5.29b)

TV V =
∂v

∂V

∂v

∂V
Tvv =

1

κ2V 2

[
∂t

∂v

∂t

∂v
Ttt + 2

∂t

∂v

∂r∗
∂v

Ttr∗ +
∂r∗
∂v

∂r∗
∂v

Tr∗r∗

]

=
1

κ2V 2

[
1

4
Ttt +

1

2
f(r)Ttr +

1

4
f(r)2 Trr

]
, (5.29c)

since Ttr = Trt. The relevant components of the SET are given in Kruskal coordinates as

TUU =
1

4
κ−2 U−2

[
Ttt − 2f(r)Ttr + f(r)2 Trr

]
, (5.30a)

TUV = −1

4
κ−2 U−1V −1

[
Ttt − f(r)2 Trr

]
, (5.30b)

TV V =
1

4
κ−2 V −2

[
Ttt + 2f(r)Ttr + f(r)2 Trr

]
. (5.30c)

5.1.5 A note on renormalisation

The quantum observables introduced in this section, namely the scalar condensate ŜC, the

current operator Ĵµ and the stress-energy tensor operator T̂µν , all involve products of the

field operator Φ̂ evaluated at the same spacetime point; therefore these observables are all

formally divergent. The divergent terms only depend on the geometry of the background

spacetime and the form of the background gauge field potential Aµ; in particular the

divergent terms are state-independent and therefore identical regardless of the particular

quantum state under consideration.

In Part III of this thesis, we develop the general framework for the Hadamard renormal-

isation procedure of the expectation values of observables associated to a charged scalar

field. The actual implementation of this procedure in a specific background spacetime for

a specific value of the background gauge potential Aµ is a subject that is still very much

in its infancy [44,45].

In this thesis, apart from the flux components 〈Ĵr〉 and 〈T̂ rt 〉 of the current and stress-

energy tensor respectively which do not require renormalisation, we will restrict ourselves
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to considering the differences in expectation values between two separate quantum states.

In this case the divergent terms in each of the expectation values cancel and we are left

with a finite expression, thus alleviating the need to renormalise.

5.2 Asymptotic mode contributions to observables

5.2.1 Introduction

In §5.1, we derived expressions for the mode contributions to the scalar condensate as well

as the components of the current and the stress-energy tensor. In general, these expressions

contain factors of the radial coordinate r as well as the metric function f(r). We would

like to find the expectation values of quantum observables in the various quantum states

that we defined in Chapter 4; evaluating these expectation values for arbitrary values of

the radial coordinate r requires numerical computation.

In asymptotic regimes however, the mode contributions derived in §5.1 simplify con-

siderably and we are able to derive comparatively simple expressions for the expectation

values of observables. There are two asymptotic regimes, namely far from the black hole

where r →∞, f(r)→ 1, and near the black hole horizon where r → r+, f(r)→ 0.

Later in this chapter, we will consider the differences in expectation values of ob-

servables in two separate quantum states. As previously stated, the expressions for the

observables ŜC (5.4), Ĵµ (5.8) and T̂µν (5.16) involve products of field operators evaluated

at the same spacetime point, and are therefore formally divergent. Such divergences are

state-independent and cancel when considering differences in expectation values. Thus,

any divergences remaining in the expressions we derive are likely to be indicative of patho-

logical behaviour of (at least) one of the quantum states diverging in (at least) one of the

asymptotic regimes. On the other hand, the absence of such divergences is a necessary,

but not sufficient requirement for the quantum states under consideration to be regular.

In addition, our study of the expectation values of observables in asymptotic regimes

will provide a useful consistency check on our numerical computations for general r.

5.2.2 The asymptotic regime far from the black hole

We would like to calculate the asymptotic mode contributions to observables far from

the black hole. We will only consider leading order contributions and, since r → ∞ far

from the black hole, we need only consider the lowest-order contributions in the radial

coordinate r. Furthermore, from the definition of the metric function f(r) (3.10), we see

that f(r)→ 1 far from the black hole.

Preliminaries

Several expressions for the mode contributions to the components of the current and the

SET contain like terms; it will be useful to evaluate these terms now in order to simplify

the process of evaluating the mode contributions later on. We can begin by calculating

=
[
X∗ω`(r)
r

d

dr

(
Xω`(r)

r

)]
,
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for the asymptotic form of the up- and down-modes far from the black hole. Beginning

with the asymptotic form of the up-modes (3.66) at infinity, we have

=
[
Xup∗
ω` (r)

r

d

dr

(
Xup
ω` (r)

r

)]
= =

[
Xup∗
ω` (r)

r

d

dr

(
Bup
ω` eiωr∗

r

)]

= =
[
Xup∗
ω` (r)

r

(
r dr∗

dr
d

dr∗

(
Bup
ω` eiωr∗

)
−Bup

ω` eiωr∗

r2

)]

= =
[
Xup∗
ω` (r)

r

(
f(r)−1 r

(
iωBup

ω` eiωr∗
)
−Bup

ω` eiωr∗

r2

)]

= =
[
Bup∗
ω` e−iωr∗

r

Bup
ω` eiωr∗

r2

(
iωr

f(r)
− 1

)]

= =
[∣∣Bup

ω`

∣∣2

r3

(
iωr

f(r)
− 1

)]

∼ ω
∣∣Bup

ω`

∣∣2

r2
. (5.31)

Since the down-mode radial function Xdown
ω` (3.70) is the complex conjugate of the up-mode

radial function Xup
ω` (3.66) then, from (5.31), we have immediately

=
[
Xdown∗
ω` (r)

r

d

dr

(
Xdown
ω` (r)

r

)]
∼ −ω

∣∣Bup
ω`

∣∣2

r2
. (5.32)

We will also need to calculate the term

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

,

for the asymptotic form of the up- and down-modes far from the black hole. Beginning

with the asymptotic form of the up-modes (3.66) at infinity, we have

∣∣∣∣
d

dr

(
Xup
ω` (r)

r

)∣∣∣∣
2

=

∣∣∣∣
d

dr

(
Bup
ω` eiωr∗

r

)∣∣∣∣
2

=

∣∣∣∣∣
r dr∗

dr
d

dr∗

(
Bup
ω` eiωr∗

)
−Bup

ω` eiωr∗

r2

∣∣∣∣∣

2

=

∣∣∣∣∣
f(r)r iω

(
Bup
ω` eiωr∗

)
−Bup

ω` e
iωr∗

r2

∣∣∣∣∣

2

=

∣∣∣∣
Bup
ω` eiωr∗

r2

(
iωr

f(r)
− 1

)∣∣∣∣
2

∼
∣∣∣∣
iωBup

ω` eiωr∗

r

∣∣∣∣
2

. (5.33)

We therefore obtain

∣∣∣∣
d

dr

(
Xup
ω` (r)

r

)∣∣∣∣
2

∼ ω2
∣∣Bup

ω`

∣∣2

r2
. (5.34)
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Since the down-mode radial function Xdown
ω` (3.70) is the complex conjugate of the up-mode

radial function Xup
ω` (3.66) and the l.h.s of (5.34) is an absolute value, we have immediately

∣∣∣∣
d

dr

(
Xdown
ω` (r)

r

)∣∣∣∣
2

∼ ω2
∣∣Bup

ω`

∣∣2

r2
. (5.35)

Near-infinity up-mode contributions to observables

We would like to evaluate the up-mode contributions to the scalar condensate SC, the

current Jµ and the SET Tµν far from the black hole. Throughout this section, we will use

the expression (3.128) for the normalisation constants Nup
ω of the up-modes.

We denote the up-mode contributions to the scalar condensate SC (5.1) as scup
ω`. Then,

using the asymptotic form of the up-modes (3.66) at infinity, we have

scup
ω` ∼

2`+ 1

4πr2

ω

4π|ω̃|
∣∣Bup

ω`

∣∣2

=
1

16π2r2

1

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2. (5.36)

We denote the up-mode contributions to the current Jµ (5.5) as jµ,up
ω` . The only nonzero

mode contributions to the components of the current are jtω` (5.7a) and jrω` (5.7b). Using

the asymptotic form of the up-modes (3.66) at infinity, we have for jt,up
ω`

jt,up
ω` ∼ −

q (2`+ 1)

16π2r2

ω

4π|ω̃|
∣∣Bup

ω`

∣∣2

= − q

64π3r2

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2. (5.37)

Using (5.31), we have for jr,up
ω`

jr,up
ω` ∼ −

q (2`+ 1)

16π2

1

4π|ω̃|
ω
∣∣Bup

ω`

∣∣2

r2

= − q

64π3r2

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2. (5.38)

Then, we can write the up-mode contribution jµ,up
ω` to the current Jµ as

jµ,up
ω` ∼ − q

64π3r2

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2
(

1 1 0 0
)ᵀ
. (5.39)

We denote the up-mode contributions to the SET Tµν (5.14) as tup
µν,ω`. The only nonzero

mode contributions to the components of the stress-energy tensor are ttt,ω` (5.15a), ttr,ω`

(5.15b), trr,ω` (5.15c), tθθ,ω` (5.15d) and tϕϕ,ω` (5.15e). Using the asymptotic form of the

up-modes (3.66) at infinity and (5.34), we have for tup
tt,ω`

tup
tt,ω` ∼

2`+ 1

8π

1

4π|ω̃|

[
1

r2
ω2
∣∣Bup

ω`

∣∣2 +
1

r2
ω2
∣∣Bup

ω`

∣∣2
]

=
1

16π2r2

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2. (5.40)
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Using (5.31), we have for tup
tr,ω`

tup
tr,ω` ∼ −

2`+ 1

4π

ω

4π|ω̃|
ω
∣∣Bup

ω`

∣∣2

r2

= − 1

16π2r2

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2. (5.41)

Using the asymptotic form of the up-modes (3.66) at infinity and (5.34), we have for tup
rr,ω`

tup
rr,ω` ∼

2`+ 1

8π

1

4π|ω̃|

[
1

r2
ω2
∣∣Bup

ω`

∣∣2 +
1

r2
ω2
∣∣Bup

ω`

∣∣2
]

=
1

16π2r2

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2. (5.42)

Using the asymptotic form of the up-modes (3.66) at infinity and (5.34), we have for tup
θθ,ω`

tup
θθ,ω` ∼

2`+ 1

8π

1

4π|ω̃|

[
1

r2
ω2
∣∣Bup

ω`

∣∣2 +O
(
r−4
)
− 1

r2
ω2
∣∣Bup

ω`

∣∣2
]

= O
(
r−4
)
, (5.43)

where we have used that O
(
r−4
)

is subleading order in r compared to the leading order

O
(
r−2
)

terms in the other nonzero up-mode contributions to the SET. We have for tup
ϕϕ,ω`

tup
ϕϕ,ω` ∼ t

up
θθ,ω` sin2θ

= O
(
r−4
)
, (5.44)

which is similarly subleading order in r. Then, we can write the up-mode contribution

tup
µν,ω` to the stress-energy tensor Tµν as

tup
µν,ω` ∼

1

16π2r2

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2




1 −1 0 0

−1 1 0 0

0 0 O
(
r−2
)

0

0 0 0 O
(
r−2
)



. (5.45)

In §5.2.4, we will consider the expectation values 〈T̂µν 〉. Then, acting with the inverse

metric (3.16) on (5.45), the up-mode contribution tµ,up
ν,ω` to the SET Tµν is given by

tµ,up
ν,ω` ∼

1

16π2r2

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2




−1 1 0 0

−1 1 0 0

0 0 O
(
r−2
)

0

0 0 0 O
(
r−2
)



. (5.46)
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Near-infinity down-mode contributions to observables

We would like to evaluate the down-mode contributions to the scalar condensate SC, the

current Jµ and the SET Tµν far from the black hole. Throughout this section, we will use

the expression (3.144) for the normalisation constants Ndown
ω of the down-modes.

Furthermore, since the down-mode radial function Xdown
ω` (3.70) is the complex con-

jugate of the up-mode radial function Xup
ω` (3.66), where down-mode contributions only

involve absolute values we may simply give the corresponding up-mode contribution that

has already been calculated in §5.2.2.

We denote the down-mode contributions to the scalar condensate SC (5.1) as scdown
ω` .

Since the mode-contribution scdown
ω` only consists of absolute values, it is given immediately

from the expression for scup
ω` (5.36) as

scdown
ω` ∼ 1

16π2r2

1

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2. (5.47)

This makes sense since we reasoned, in §5.1.1, that the scalar condensate should not be

able to distinguish between ‘past’ and ‘future’ quantum states.

We denote the down-mode contributions to the current Jµ (5.5) as jµ,down
ω` . The only

nonzero mode contributions to the components of the current are jtω` (5.7a) and jrω` (5.7b).

Since the mode-contribution jt,down
ω` only consists of absolute values, it is given immediately

from the expression for jt,up
ω` (5.37) as

jt,down
ω` ∼ − q

64π3r2

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2. (5.48)

Using (5.32), we have for jr,down
ω`

jr,down
ω` ∼ −q (2`+ 1)

16π2

1

4π|ω̃|

(
−ω
∣∣Bup

ω`

∣∣2

r2

)

=
q

64π3r2

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2, (5.49)

which has the opposite sign to the expression for jr,up
ω` (5.38). Then, we can write the

down-mode contribution jµ,down
ω` to the current Jµ as

jµ,down
ω` ∼ q

64π3r2

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2
(
−1 1 0 0

)ᵀ
. (5.50)

We denote the down-mode contributions to the stress-energy tensor Tµν (5.14) as tdown
µν,ω`.

The only nonzero mode contributions to the components of the SET are tdown
tt,ω` (5.15a),

tdown
tr,ω` (5.15b), tdown

rr,ω` (5.15c), tdown
θθ,ω` (5.15d) and tdown

ϕϕ,ω` (5.15e).

Since the mode-contributions tdown
tt,ω` , tdown

rr,ω` , t
down
θθ,ω` and tdown

ϕϕ,ω` to the diagonal elements of

the stress-energy tensor only consist of absolute values, they are given immediately from

the corresponding expressions for the up-mode contributions in §5.2.2; then, we have
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tdown
tt,ω` ∼

1

16π2r2

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2,

tdown
rr,ω` ∼

1

16π2r2

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2,

tdown
θθ,ω` ∼ O

(
r−4
)
,

tdown
ϕϕ,ω` ∼ O

(
r−4
)
. (5.51)

Using (5.32), we have for tdown
tr,ω`

tdown
tr,ω` ∼ −

2`+ 1

4π

ω

4π|ω̃|

(
−ω
∣∣Bup

ω`

∣∣2

r2

)

=
1

16π2r2

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2, (5.52)

which has the opposite sign to the expression for tup
tr,ω` (5.41). Then, we can write the

down-mode contribution tdown
µν,ω` to the stress-energy tensor Tµν as

tdown
µν,ω` ∼

1

16π2r2

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2




1 1 0 0

1 1 0 0

0 0 O
(
r−2
)

0

0 0 0 O
(
r−2
)



. (5.53)

In §5.2.4, we will consider the expectation values 〈T̂µν 〉. Then, acting with the inverse

metric (3.16) on (5.53), the down-mode contribution tµ,down
ν,ω` to the SET Tµν is given by

tµ,down
ν,ω` ∼ 1

16π2r2

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2




−1 −1 0 0

1 1 0 0

0 0 O
(
r−2
)

0

0 0 0 O
(
r−2
)



. (5.54)

5.2.3 The asymptotic regime near the event horizon

We would like to calculate the asymptotic mode contributions to observables near the event

horizon of the black hole. We will only consider leading order contributions which, since

the metric function f(r) diverges on the horizon, correspond to terms with the highest

power of f(r) in their denominator.

Preliminaries

Several expressions for the mode contributions to the components of the current and the

SET contain like terms; it will be useful to evaluate these terms now in order to simplify

the process of evaluating the mode contributions later on. We can begin by calculating

=
[
X∗ω`(r)
r

d

dr

(
Xω`(r)

r

)]
,
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for the asymptotic form of the in- and out-modes near the event horizon of the black hole.

Beginning with the asymptotic form of the in-modes (3.64) near the horizon, we have

=
[
X in∗
ω` (r)

r

d

dr

(
X in
ω`(r)

r

)]
= =

[
X in∗
ω` (r)

r

d

dr

(
Bin
ω` e−iω̃r∗

r

)]

= =
[
X in∗
ω` (r)

r

(
r dr∗

dr
d

dr∗

(
Bin
ω` e−iω̃r∗

)
−Bin

ω` e−iω̃r∗

r2

)]

= =
[
X in∗
ω` (r)

r

(
f(r)−1 r

(
−iω̃Bin

ω` e−iω̃r∗
)
−Bin

ω` e−iω̃r∗

r2

)]

= =
[
Bin∗
ω` eiω̃r∗

r

Bin
ω` e−iω̃r∗

r2

(
− iω̃r

f(r)
− 1

)]

= −=
[∣∣Bin

ω`

∣∣2

r3

(
iω̃r

f(r)
+ 1

)]

∼ − ω̃
∣∣Bin

ω`

∣∣2

f(r) r2
. (5.55)

Since the out-mode radial function Xout
ω` (3.68) is the complex conjugate of the in-mode

radial function X in
ω` (3.64) then, from (5.55), we have immediately

=
[
Xout∗
ω` (r)

r

d

dr

(
Xout
ω` (r)

r

)]
∼ ω̃

∣∣Bin
ω`

∣∣2

f(r) r2
. (5.56)

We will also need to calculate the term

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

,

for the asymptotic form of the in- and out-modes near the event horizon of the black hole.

Beginning with the asymptotic form of the in-modes (3.64) near the horizon, we have

∣∣∣∣
d

dr

(
X in
ω`(r)

r

)∣∣∣∣
2

=

∣∣∣∣∣
d

dr

(
Bin
ω` e−iω̃r∗

r

)∣∣∣∣∣

2

=

∣∣∣∣∣
r dr∗

dr
d

dr∗

(
Bin
ω` e−iω̃r∗

)
−Bin

ω` e−iω̃r∗

r2

∣∣∣∣∣

2

=

∣∣∣∣∣
−f(r)−1 r iω̃

(
Bin
ω` e−iω̃r∗

)
−Bin

ω` e−iω̃r∗

r2

∣∣∣∣∣

2

=

∣∣∣∣∣−
Bin
ω` e−iω̃r∗

r2

(
iω̃r

f(r)
+ 1

)∣∣∣∣∣

2

∼
∣∣∣∣∣−

iω̃Bin
ω` e−iω̃r∗

f(r) r

∣∣∣∣∣

2

. (5.57)

We therefore obtain
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∣∣∣∣
d

dr

(
X in
ω`(r)

r

)∣∣∣∣
2

∼ ω̃2
∣∣Bin

ω`

∣∣2

f(r)2 r2
. (5.58)

Since the down-mode radial function Xdown
ω` (3.70) is the complex conjugate of the up-mode

radial function Xup
ω` (3.66) and the l.h.s of (5.58) is an absolute value, we have immediately

∣∣∣∣
d

dr

(
Xout
ω` (r)

r

)∣∣∣∣
2

∼ ω̃2
∣∣Bin

ω`

∣∣2

f(r)2 r2
. (5.59)

Near-horizon in-mode contributions to observables

We would like to evaluate the in-mode contributions to the scalar condensate SC, the

current Jµ and the stress-energy tensor Tµν near the horizon. Throughout this section,

we will use the expression (3.103) for the normalisation constants Nin
ω of the in-modes.

We denote the in-mode contributions to the scalar condensate SC (5.1) as scin
ω`. Then,

using the asymptotic form of the in-modes (3.64) near the horizon, we have for scin
ω`

scin
ω` ∼

2`+ 1

4πr2

1

4π|ω|
∣∣Bin

ω`

∣∣2

=
1

16π2r2

1

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2. (5.60)

We denote the in-mode contributions to the current Jµ (5.5) as jµ,inω` . The only nonzero

mode contributions to the components of the current are jtω` (5.7a) and jrω` (5.7b). Using

the asymptotic form of the in-modes (3.64) near the horizon, we have for jt,inω`

jt,inω` ∼ −
q (2`+ 1)

16π2f(r)r2

(
ω − qQ

r+

)
1

4π|ω|
∣∣Bin

ω`

∣∣2

= − q

64π3r2

ω̃

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2 1

f(r)
. (5.61)

Using (5.55), we have for jr,inω`

jr,inω` ∼ −
qf(r)(2`+ 1)

16π2

1

4π|ω|

(
− ω̃
∣∣Bin

ω`

∣∣2

f(r)r2

)

=
q

64π3r2

ω̃

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2. (5.62)

Then, we can write the in-mode contribution jµ,inω` to the current Jµ as

jµ,inω` ∼
q

64π3r2

ω̃

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2
(
−f(r)−1 1 0 0

)ᵀ
. (5.63)

We denote the in-mode contributions to the SET Tµν as tinµν,ω`. The only nonzero mode

contributions to the components of the stress-energy tensor are ttt,ω` (5.15a), ttr,ω` (5.15b),

trr,ω` (5.15c), tθθ,ω` (5.15d) and tϕϕ,ω` (5.15e). Using the asymptotic form of the in-modes

(3.64) near the horizon and (5.58), we have for tintt,ω`
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tintt,ω` ∼
2`+ 1

8π

1

4π|ω|

[
1

r2

(
ω − qQ

r+

)2 ∣∣Bin
ω`

∣∣2 + f(r)2 ω̃
2
∣∣Bin

ω`

∣∣2

f(r)2r2

]

=
1

16π2r2

ω̃2

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2. (5.64)

Using (5.55), we have for tintr,ω`

tintr,ω` ∼ −
2`+ 1

4π

(
ω − qQ

r+

)
1

4π|ω|

(
− ω̃
∣∣Bin

ω`

∣∣2

f(r)r2

)

=
1

16π2r2

ω̃2

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2 1

f(r)
. (5.65)

Using the asymptotic form of the in-modes (3.64) and (5.58), we have for tinrr,ω`

tinrr,ω` ∼
2`+ 1

8π

1

4π|ω|

[
1

f(r)2r2

(
ω − qQ

r+

)2 ∣∣Bin
ω`

∣∣2 +O
(
f(r)−1

)
+
ω̃2
∣∣Bin

ω`

∣∣2

f(r)2r2

]

=
1

16π2r2

ω̃2

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2 1

f(r)2 . (5.66)

Using the asymptotic form of the in-modes (3.64) and (5.58), we have for tinθθ,ω`

tinθθ,ω` ∼
2`+ 1

8π

1

4π|ω|

[
1

f(r)

(
ω − qQ

r+

)2 ∣∣Bin
ω`

∣∣2 − f(r)r2 ω̃
2
∣∣Bin

ω`

∣∣2

f(r)2r2
+O(1)

]

= O(1) , (5.67)

where we have used the fact that O(1) is subleading order in f(r). We have, for the

up-mode contribution tinϕϕ,ω` to the component Tϕϕ, the expression

tinϕϕ,ω` ∼ tinθθ,ω` sin2θ

= O(1) , (5.68)

which is similarly subleading order in f(r). Then, we can write the in-mode contribution

tinµν,ω` to the stress-energy tensor Tµν as

tinµν,ω` ∼
1

16π2r2

ω̃2

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2




1 f(r)−1 0 0

f(r)−1 f(r)−2 0 0

0 0 O(1) 0

0 0 0 O(1)



. (5.69)

In §5.2.4, we will consider the expectation values 〈T̂µν 〉. Then, acting with the inverse

metric (3.16) on (5.69), the in-mode contribution tµ,inν,ω` to the SET Tµν is given by



Expectation values of quantum observables 139

tµ,inν,ω` ∼
1

16π2r2

ω̃2

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2




−f(r)−1 −f(r)−2 0 0

1 f(r)−1 0 0

0 0 O(1) 0

0 0 0 O(1)



. (5.70)

Near-horizon out-mode contributions to observables

We would like to evaluate the out-mode contributions to the scalar condensate SC, the

current Jµ and the stress-energy tensor Tµν near the horizon. Throughout this section,

we will use the expression (3.136) for the normalisation constants Nout
ω of the out-modes.

Furthermore, since the out-mode radial function Xout
ω` (r) (3.139) is the complex con-

jugate of the in-mode radial function X in
ω`(r) (3.106), where out-mode contributions only

involve absolute values we may simply give the corresponding in-mode contribution that

has already been calculated in §5.2.3.

We denote the out-mode contributions to the scalar condensate SC (5.1) as scout
ω` . Since

the mode-contribution scout
ω` only consists of absolute values, it is given immediately from

the expression for scin
ω` (5.60) as

scout
ω` ∼

1

16π2r2

1

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2. (5.71)

This makes sense since we reasoned, in 5.1.1, that the scalar condensate should not be

able to distinguish between ‘past’ and ‘future’ quantum states.

We denote the out-mode contributions to the current Jµ (5.5) as jµ,out
ω` . The only

nonzero mode contributions to the components of the current are jtω` (5.7a) and jrω` (5.7b).

Since the mode-contribution jt,out
ω` only consists of absolute values, it is given immediately

from the expression for jt,inω` (5.61) as

jt,inω` ∼ −
q

64π3r2

ω̃

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2 1

f(r)
. (5.72)

Using (5.56), we have for jr,out
ω`

jr,out
ω` ∼ −qf(r)(2`+ 1)

16π2

1

4π|ω|
ω̃
∣∣Bin

ω`

∣∣2

f(r)r2

= − q

64π3r2

ω̃

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2. (5.73)

which has the opposite sign to the expression for jr,inω` (5.62). Then, we can write the

out-mode contribution jµ,out
ω` to the current Jµ as

jµ,out
ω` ∼ − q

64π3r2

ω̃

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2
(
f(r)−1 1 0 0

)ᵀ
. (5.74)

We denote the out-mode contributions to the stress-energy tensor Tµν (5.14) as tout
µν,ω`.

The only nonzero mode contributions to the components of the SET are ttt,ω` (5.15a),

ttr,ω` (5.15b), trr,ω` (5.15c), tθθ,ω` (5.15d) and tϕϕ,ω` (5.15e).
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Since the mode-contributions ttt,ω`, trr,ω`, tθθ,ω` and tϕϕ,ω` to the diagonal elements of

the stress-energy tensor only consist of absolute values, they are given immediately from

the corresponding expressions for the in-mode contributions in §5.2.3; then, we have

tout
tt,ω` ∼

1

16π2r2

ω̃2

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2,

tout
rr,ω` ∼

1

16π2r2

ω̃2

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2 1

f(r)2 ,

tout
θθ,ω` ∼ O(1) ,

tout
ϕϕ,ω` ∼ O(1) .

Using (5.55), we have for tout
tr,ω`

tout
tr,ω` ∼ −

2`+ 1

4π

(
ω − qQ

r+

)
1

4π|ω|
ω̃
∣∣Bin

ω`

∣∣2

f(r)r2

= − 1

16π2r2

ω̃2

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2 1

f(r)
, (5.75)

which has the opposite sign to the expression for tintr,ω` (5.65). Then, we can write the

out-mode contribution tout
µν,ω` to the stress-energy tensor Tµν as

tout
µν,ω` ∼

1

16π2r2

ω̃2

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2




1 −f(r)−1 0 0

−f(r)−1 f(r)−2 0 0

0 0 O(1) 0

0 0 0 O(1)



. (5.76)

In §5.2.4, we will consider the expectation values 〈T̂µν 〉. Then, acting with the inverse

metric (3.16) on (5.76), the out-mode contribution tµ,out
ν,ω` to the SET Tµν is given by

tµ,out
ν,ω` ∼

1

16π2r2

ω̃2

|ω| (2`+ 1)
∣∣Bin

ω`

∣∣2




−f(r)−1 f(r)−2 0 0

−1 f(r)−1 0 0

0 0 O(1) 0

0 0 0 O(1)



. (5.77)

5.2.4 Expressions for expectation values of observables

In Chapter 4, we defined several putative quantum states for a charged scalar field in

Reissner-Nordström spacetime. We will now consider the differences in the expectation

values of the observables ŜC (5.4), Ĵµ (5.8) and T̂µν (5.16) between separate quantum

states as well the expectation values of the flux components 〈Ĵr〉 and 〈T̂ rt 〉 of the current

and the SET respectively. Thus, it will be useful to write down the explicit form of the

expectation value of a general quantum observable Ô in each of the states.
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We can write down the expectation values of observables in the Boulware states, which

are defined in §4.3, using the expression for the expectation value of the scalar conden-

sate in the Schwarzschild Boulware state |Bs〉 (2.53). Then, the expectation value of an

observable Ô in the ‘past’ Boulware state |B−〉 (4.28) is

〈B−| Ô |B−〉 =
1

2

∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω oin

ω`m +

∫ ∞

−∞
dω̃ oup

ω`m

}
. (5.78)

The expectation value of an observable Ô in the ‘future’ Boulware state |B+〉 (4.38) is

〈B+| Ô |B+〉 =
1

2

∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω oout

ω`m +

∫ ∞

−∞
dω̃ odown

ω`m

}
. (5.79)

The expectation value of an observable Ô in the ‘Boulware-like’ state |B〉 (4.48) is

〈B| Ô |B〉 =
1

2

∞∑

`=0

∑̀

m=−`





∫ ∞

−∞
dω
[
oin
ω`m + oup

ω`m

]
− 2

∫ max
{

0, qQ
r+

}
min

{
0, qQ
r+

} dω oup
ω`m



 . (5.80)

We can write down the expectation values of observables in the Unruh states, which

are defined in §4.4, using the expression for the expectation value of the scalar condensate

in the Schwarzschild Unruh state |Us〉 (2.75). Then, the expectation value of an observable

Ô in the ‘past’ Unruh state |U−〉 (4.94) is

〈U−| Ô |U−〉 =
1

2

∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω oin

ω`m +

∫ ∞

−∞
dω̃ oup

ω`m coth

∣∣∣∣
πω̃

κ

∣∣∣∣
}
. (5.81)

The expectation value of an observable Ô in the ‘future’ Unruh state |U+〉 (4.123) is

〈U+| Ô |U+〉 =
1

2

∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω oout

ω`m +

∫ ∞

−∞
dω̃ odown

ω`m coth

∣∣∣∣
πω̃

κ

∣∣∣∣
}
. (5.82)

We can write down the expectation values of observables in the Hartle-Hawking states,

which are defined in §4.5, using the expression for the expectation value of the scalar

condensate in the Schwarzschild Hartle-Hawking state |Hs〉 (2.99). Then, the expectation

value of an observable Ô in the ‘past’ CCH state |CCH−〉 (4.152) is

〈CCH−| Ô |CCH−〉 =
1

2

∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω oin

ω`m coth
∣∣∣πω
κ

∣∣∣+

∫ ∞

−∞
dω̃ oup

ω`m coth

∣∣∣∣
πω̃

κ

∣∣∣∣
}
.

(5.83)

The expectation value of an observable Ô in the ‘future’ CCH state |CCH+〉 (4.181) is

〈CCH+| Ô |CCH+〉 =
1

2

∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω oout

ω`m coth
∣∣∣πω
κ

∣∣∣+

∫ ∞

−∞
dω̃ odown

ω`m coth

∣∣∣∣
πω̃

κ

∣∣∣∣
}
.

(5.84)
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The expectation value of an observable Ô in the ‘Hartle-Hawking-like’ state |H〉 (4.212) is

〈H| Ô |H〉 =
1

2

∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω̃
[
oin
ω`m + oup

ω`m

]
coth

∣∣∣∣
πω̃

κ

∣∣∣∣

− 2

∫ max
{

0, qQ
r+

}
min

{
0, qQ
r+

} dω oin
ω`m coth

∣∣∣∣
πω̃

κ

∣∣∣∣



 . (5.85)

The expectation value of an observable Ô in the ‘Frolov-Thorne’ state |FT〉 (4.217) is

〈FT| Ô |FT〉 =
1

2

∞∑

`=0

∑̀

m=−`

{∫ ∞

−∞
dω̃
[
oin
ω`m + oup

ω`m

]
coth

∣∣∣∣
πω̃

κ

∣∣∣∣
}
. (5.86)

Having defined the explicit expressions for the expectation values of observables in each

quantum state, we will now explicitly construct the differences in expectation values be-

tween different quantum states by substituting into (5.78–5.86) the leading order classical

mode contributions derived in §5.2. The expressions we generate will both inform and

augment the numerical computations by demonstrating either the regularity or divergence

of quantum states in asymptotic regimes.

Throughout the rest of this chapter, we will use the trigonometric identity:

cothx− 1 =
1

e 2x − 1
. (5.87)

We will also make use of the following identity:

− 1 =
1

exp(x)− 1
+

1

exp(−x)− 1
. (5.88)

5.3 The ‘past’ states

5.3.1 Fluxes of charge and energy in the ‘past’ Boulware state

In §4.3.1, we defined the ‘past’ Boulware state |B−〉 to be a state that is as empty as

possible to a static observer as past null infinity I −, which corresponds to an absence

of particles in the in-modes (3.106) of the field Φ. However, due to the phenomenon of

classical superradiance that we studied in §3.3.4, we do not anticipate that this state will

appear to be as empty as possible to a static observer at future null infinity I +.

Since the up-modes (3.131) are field modes emanating from the past horizon H− and

travelling towards future null infinity I +, then we may calculate the fluxes of charge K|B−〉
and energy L|B−〉 in terms of up-modes in order to investigate the properties of the ‘past’

Boulware state |B−〉 from the point of view of a static observer at future null infinity I +.

From Appendix C, the expectation values 〈Ĵr〉 and 〈T̂ rt 〉 do not require renormalisation;

we can thus evaluate their expectation value in the ‘past’ Boulware state |B−〉 directly.

Using the asymptotic near-infinity in- and up-mode contributions (5.38) to the current

component Jr and (5.78), the expectation value 〈Ĵr〉|B−〉 at I + becomes
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〈B−| Ĵr |B−〉 ∼ q

128π3r2

∞∑

`=0

{∫ ∞

−∞
dω

ω̃

|ω|
∣∣Bin

ω`

∣∣2 −
∫ ∞

−∞
dω̃

ω

|ω̃|
∣∣Bup

ω`

∣∣2
}

(2`+ 1)

=
q

128π3r2

∞∑

`=0

{∫ ∞

−∞
dω

ω̃

|ω|
ω2

ω̃2
−
∫ ∞

−∞
dω̃

ω

|ω̃|

}
(2`+ 1)

∣∣Bup
ω`

∣∣2

=
q

128π3r2

∞∑

`=0

∫ ∞

−∞
dω

{ |ω|
ω̃
− ω

|ω̃|

}
(2`+ 1)

∣∣Bup
ω`

∣∣2

=
q

128π3r2

∞∑

`=0

∫ ∞

−∞
dω

ω

|ω̃|

{ |ω|
ω

|ω̃|
ω̃
− 1

}
(2`+ 1)

∣∣Bup
ω`

∣∣2

= − q

128π3r2

∞∑

`=0

∫ ∞

−∞
dω

ω

|ω̃| {1− sgn(ω) sgn(ω̃)} (2`+ 1)
∣∣Bup

ω`

∣∣2 , (5.89)

where we have used the relationship between the in-mode transmission coefficient Bin
ω` and

the up-mode transmission coefficient Bup
ω` in (3.75) to go from the first equality in (5.89)

to the second. Furthermore, we have used the fact that the limits of the integral in (5.89)

are from −∞ to ∞; since ω̃ is offset from ω by a constant amount of − qQ
r+

(3.58), we may

simply replace the integration measure dω̃ by the measure dω.

Equation (5.89) is nonzero only for sgn(ωω̃) = −1, which corresponds to the case when

0 < ω < qQ
r+

if qQ > 0, or to the case 0 > ω > qQ
r+

if qQ < 0, i.e. the superradiant modes.

Then, the expression in (5.89) reduces to

〈B−| Ĵr |B−〉 ∼ − q

64π3r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2 . (5.90)

Using (5.12) and (5.90), we derive the flux of charge K|B−〉 at I + as

K|B−〉 =
q

64π3

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2 . (5.91)

From (5.91), the flux of charge K|B−〉 always has the same sign as the charge of the black

hole Q. In order to see this, consider first the case that qQ > 0 in which case the integral in

(5.91) is over the interval 0 < ω < qQ
r+

such that ω is positive; if Q > 0 then we must have

that q is positive such that K|B−〉 must also be positive, and if Q < 0 then we must have

that q is negative such that K|B−〉 must also be negative. The reasoning follows through

in an analogous way if qQ < 0. Therefore the product K|B−〉Q must always be positive

and, thus, the emission of particles in the superradiant modes in (5.90) corresponds to the

Reissner-Nordström black hole discharging.

Using a similar process to that in (5.89), the expectation value 〈T̂ rt 〉|B−〉 at I + is

〈B−| T̂ rt |B−〉 ∼ −
1

16π2r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2 . (5.92)



144 Expectation values of quantum observables

Using (5.25) and (5.92), we can derive the flux of energy L|B−〉 at I + as

L|B−〉 =
1

16π2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2 . (5.93)

The expression for the flux of energy L|B−〉 is always positive; thus the emission of particles

in the superradiant modes in (5.92) corresponds to the RN black hole losing energy.

In conclusion, the nonzero flux of charge K|B−〉 (5.91) and nonzero flux of energy

L|B−〉 (5.93) in the superradiant modes can be interpreted as the quantum analogue of the

phenomenon of classical superradiance that we studied in §3.3.4. This suggests that we

are correct in our intuition that the ‘past’ Boulware state |B−〉, while being as empty as

possible to a static observer at past null infinity I −, is not empty to a static observer at

future null infinity I +.

5.3.2 The ‘past’ Unruh state

In §4.4.1, we defined the ‘past’ Unruh state |U−〉 to be a state that is as empty as possible

to a static observer at past null infinity I − while containing an outgoing flux of thermal

radiation at future null infinity I +. Since the ‘past’ Boulware state |B−〉 is defined to be

as empty as possible to a static observer at past null infinity I −, then the difference in the

expectation values of observables between the two states should correspond to an outgoing

flux of thermal radiation at future null infinity I +; this is represented by a thermalised

flux of particles in the up-modes (3.131) of the field Φ.

We can use the expectation value of a general observable Ô with classical mode con-

tribution oω`m to construct an explicit expression for the difference 〈Ô〉|U−〉−|B−〉 in expec-

tation values in the ‘past’ Boulware state (5.78) and the ‘past’ Unruh state (5.81):

〈U−| Ô |U−〉 − 〈B−| Ô |B−〉 =

∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω̃

1

exp
∣∣∣2πω̃κ

∣∣∣− 1
oup
ω`m, (5.94)

where we have used the identity in (5.87). In §5.2.2, we evaluated the asymptotic up-mode

contributions to the classical quantities corresponding to the quantum observables ŜC, Ĵµ
and T̂µν as r → ∞. Using the near-infinity up-mode contribution (5.36) to the scalar

condensate SC, (5.94) becomes

〈U−| ŜC |U−〉 − 〈B−| ŜC |B−〉 ∼ 1

16π2r2

∞∑

`=0

∫ ∞

−∞
dω̃

2`+ 1

|ω̃|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)
∣∣Bup

ω`

∣∣2 . (5.95)

Using the near-infinity up-mode contribution (5.39) to the current Jµ, (5.94) becomes

〈U−| Ĵµ |U−〉 − 〈B−| Ĵµ |B−〉

∼ − q

64π3r2

∞∑

`=0

∫ ∞

−∞
dω̃

ω (2`+ 1)

|ω̃|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)
∣∣Bup

ω`

∣∣2
(

1 1 0 0
)ᵀ
. (5.96)
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Using the near-infinity up-mode contribution (5.46) to the SET Tµν , (5.94) becomes

〈U−| T̂µν |U−〉 − 〈B−| T̂µν |B−〉

∼ 1

16π2r2

∞∑

`=0

∫ ∞

−∞
dω̃

ω2 (2`+ 1)

|ω̃|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)
∣∣Bup

ω`

∣∣2




−1 1 0 0

−1 1 0 0

0 0 O
(
r−2
)

0

0 0 0 O
(
r−2
)



. (5.97)

The differences (5.95 – 5.97) are regular when ω̃ = 0 from the Wronskian relation in (3.75);

the
∣∣Bup

ω`

∣∣2 is of O
(
ω̃ 2
)
, which cancels the factor of O

(
ω̃−2

)
in the denominators as ω̃ → 0.

Furthermore, these differences diverge near the horizon as r → r+. The Schwarzschild

Boulware state |Bs〉 is divergent everywhere on the horizon while the Schwarzschild Unruh

state |Us〉 is divergent on the past horizon H− but regular on the future horizon H+.

Therefore, we expect that the divergence in the differences (5.95 – 5.97) arise due to

the singular nature of the ‘past’ Boulware state |B−〉 on the horizon, although only a

computation of the renormalised expectation values 〈ŜC〉|B−〉, 〈Ĵµ〉|B−〉 and 〈T̂µν 〉|B−〉, as

opposed to calculating differences, would be able to confirm this.

Discussion of Figure 5.1: The plot of the difference 〈ŜC〉|U−〉−|B−〉 in the scalar con-

densate shows very little variation between different values of the scalar field charge q.

Furthermore, this difference is positive for all of the positive values of q considered, indi-

cating that the expectation value 〈ŜC〉|U−〉 is greater than 〈ŜC〉|B−〉, at least for qQ > 0.

The plot of the difference 〈Ĵ t〉|U−〉−|B−〉 in the time component of the current shows

that the magnitude of the difference vanishes in the uncharged limit q → 0 and increases

with increasing scalar field charge q. This behaviour is similar to that found in [45] for a

massless, conformally coupled scalar field on a background RN-de Sitter spacetime.

The constant horizontal lines in the plot of r2〈Ĵr〉|U−〉−|B−〉 illustrate that the difference

in the radial component of the current is proportional to r−2. Since r2〈Ĵr〉|U−〉−|B−〉
is negative then, from (5.12), we have that the difference between the flux of charges

K|U−〉−|B−〉 must be positive and so the flux of charge in the ‘past’ Unruh state K|U−〉 is

greater than the flux of charge in the ‘past’ Boulware state K|B−〉 for a given value of the

scalar field charge q. Recall, from §4.4.1, that |U−〉 is defined to exhibit outgoing Hawking

radiation at I +. From our discussion in §5.3.1, |B−〉 exhibits an outgoing flux of charge

K|B−〉 in the superradiant modes. Thus, it must be the case that the loss of charge due to

Hawking radiation in |U−〉 is greater than the loss of charge due to quantum superradiance

in |B−〉 for a fixed value of q.

Furthermore, since the difference 〈Ĵr〉|U−〉−|B−〉 increases with increasing scalar field

charge q, then we reason that K|U−〉 must increase more rapidly with increasing q than

K|B−〉 does, which also increases with increasing q from [1]. Then, it must also be the case

that the loss of charge due to Hawking radiation in the ‘past’ Unruh state |U−〉 increases

more rapidly with increasing q than the loss of charge due to quantum superradiance in

the ‘past’ Boulware state |B−〉.
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Figure 5.1. Difference in expectation values of the scalar condensate ŜC, components of the current

Ĵ and components of the stress-energy tensor T̂µν between the ‘past’ Unruh state |U−〉 and the

‘past’ Boulware state |B−〉 in Reissner-Nordström spacetime for black hole charge Q = 0.8M and

positive values of the scalar field charge q. All expectation values are multiplied by powers of f(r)

so that the resulting quantities are regular at r = r+.
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The plots of the differences of the diagonal components of the stress-energy tensor

〈T̂ tt 〉|U−〉−|B−〉, 〈T̂ rr 〉|U−〉−|B−〉 and 〈T̂ θθ 〉|U−〉−|B−〉 each show little variation between different

values of the scalar field charge q.

The magnitude of the difference in the flux component 〈T̂ rt 〉|U−〉−|B−〉, however, in-

creases rapidly for increasing scalar field charge q. Furthermore, 〈T̂ rt 〉|U−〉−|B−〉 is negative

for all values of q which, from (5.25), indicates that the difference in the flux of energy

L|U−〉−|B−〉 is greater than the difference in the flux of charge K|U−〉−|B−〉.
The differences in the scalar condensate, the time component of the current and the

diagonal components of the stress-energy tensor, i.e. those differences that do not pertain

to fluxes, all diverge near the horizon; as described earlier, we suspect that this divergence

is due to the singular nature of |B−〉 on the horizon as opposed to |U−〉.
Lastly recall, from §5.3.1, that the ‘past’ Boulware state |B−〉 only contains a flux of

particles in the superradiant modes at I + and is otherwise defined to be as empty as

possible to a static observer far from the black hole. All of the differences in expectation

values plotted here decay as r−2 far from the black hole. Then, we reason that renormalised

expectation values of observables 〈Ô〉|U−〉 in the ‘past’ Unruh state directly will also vanish

far from the black hole.

5.3.3 Fluxes of charge and energy in the ‘past’ Unruh state

We would like to evaluate the flux of charge K|U−〉 and the flux of energy L|U−〉 in the ‘past’

Unruh state |U−〉 directly. We can do this by first calculating 〈Ĵr〉|U−〉 and 〈T̂ rt 〉|U−〉, from

adding the expressions for 〈Ĵr〉|B−〉 (5.90) and 〈T̂ rt 〉|B−〉 (5.92) to the relevant components

of the differences 〈Ĵµ〉|U−〉−|B−〉 (5.96) and 〈T̂µν 〉|U−〉−|B−〉 (5.97) respectively. For example,

in the case of 〈Ĵr〉|U−〉, we can summarise the above as

〈Ĵr〉|U−〉 = 〈U−| Ĵr |U−〉 =
{
〈U−| Ĵr |U−〉 − 〈B−| Ĵr |U−〉

}
+ 〈B−| Ĵr |U−〉 . (5.98)

The integral in the expression (5.90) for the difference 〈Ĵµ〉|U−〉−|B−〉 has the measure dω̃.

Since the limits of the integral are −∞ < ω < ∞ and ω is offset from ω̃ by the constant

amount of qQ
r+

, then we can replace the integration measure dω̃ in (5.90) by the measure

dω in order to rewrite the expression for the difference 〈Ĵr〉|U−〉−|B−〉 as

〈U−|Ĵr |U−〉 − 〈B−| Ĵr |U−〉

∼ − q

64π3r2

∞∑

`=0

∫ ∞

−∞
dω

ω

|ω̃|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
) (2`+ 1)

∣∣Bup
ω`

∣∣2

= − q

64π3r2

∞∑

`=0





∫ ∞

0
dω

ω (2`+ 1)

|ω̃|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
) +

∫ 0

−∞
dω

ω (2`+ 1)

|ω̃|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)




∣∣Bup

ω`

∣∣2

= I1 + I2 , (5.99)

where the integral I1 is given by
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I1 = − q

64π3r2

∞∑

`=0

∫ ∞

0
dω

ω (2`+ 1)

|ω̃|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)
∣∣Bup

ω`

∣∣2 , (5.100)

and the integral I2 is given by

I2 = − q

64π3r2

∞∑

`=0

∫ 0

−∞
dω

ω (2`+ 1)

|ω̃|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)
∣∣Bup

ω`

∣∣2 . (5.101)

From our discussion in §3.3.4, one of the two integrals I1, I2 will contain superradiant

modes. Whether the superradiant modes exist in either I1 or I2 depends on the sign of
qQ
r+

; if qQ > 0, the superradiant modes have 0 < ω < qQ
r+

such that they exist in I1 and if

qQ < 0, the superradiant modes have 0 > ω > qQ
r+

such that they exist in I2.

As discussed in §5.3.1, the integral in the expression (5.90) for 〈Ĵr〉|B−〉 is taken only

over superradiant modes. Then we can combine the two expressions in (5.90) and (5.99)

by considering in which of the two integrals I1, I2 the superradiant modes exist.

Consider firstly the case when qQ > 0; the superradiant modes occur as ω ranges

through the interval 0 < ω < qQ
r+

, and are thus present in I1. In this case, the expectation

value 〈Ĵr〉|B−〉 (5.90) reduces to

〈Ĵr〉|B−〉 = 〈B−| Ĵr |B−〉 = − q

64π3r2

∞∑

`=0

∫ qQ
r+

0
dω

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2 . (5.102)

In the following calculation, it will be convenient to define

K = − q

64π3r2

∞∑

`=0

(2`+ 1) . (5.103)

Then, splitting the integral I1 into two separate intervals of 0 < ω < qQ
r+

and qQ
r+

< ω <∞,

we can add the expression for 〈Ĵr〉|B−〉 (5.102) to the integral I1 (5.100) to give

I1 + 〈B−| Ĵr |B−〉

= K





∫ qQ
r+

0
dω


 ω

|ω̃|
[
exp
(
−2πω̃

κ

)
− 1
] +

ω

|ω̃|


+

∫ ∞
qQ
r+

dω
ω

|ω̃|
[
exp
(

2πω̃
κ

)
− 1
]




∣∣Bup

ω`

∣∣2

= K
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 1[

exp
(
−2πω̃

κ
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+
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[
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κ

)
− 1
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∣∣2 , (5.104)
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where we have used the identity in (5.88) to go from the second equality in (5.104) to the

third. Furthermore, we have used the fact that ω̃ is negative in the range 0 < ω < qQ
r+

and that ω̃ is positive in the range qQ
r+

< ω <∞ in order to go from the third equality in

(5.104) to the fourth. Using the fact that ω̃ is negative in the range 0 > ω > −∞ when

qQ > 0, we can rewrite the integral I2 (5.101) as

I2 = K

∫ 0

−∞
dω

ω

|ω̃|
[
exp
(
−2πω̃

κ

)
− 1
]
∣∣Bup

ω`

∣∣2

= −K
∫ 0

−∞
dω

ω

ω̃
[
exp
[
−2π

κ

(
ω − qQ

r+

)]
− 1
]
∣∣Bup

ω`

∣∣2

= −K
∫ 0

−∞
dω

ω(
ω − qQ

r+

)[
exp
[

2π
κ

(
−ω + qQ

r+

)]
− 1
]
∣∣Bup

ω`

∣∣2 . (5.105)

We can simplify (5.105) by making the substitution u = −ω to give

I2 = −K
∫ 0

∞
d (−u)

−u(
−u− qQ

r+

)[
exp
[

2π
κ

(
u+ qQ

r+

)]
− 1
]
∣∣Bup
−u`
∣∣2

= K

∫ 0

∞
du

u(
u+ qQ

r+

)[
exp
[

2π
κ

(
u+ qQ

r+

)]
− 1
]
∣∣Bup
−u`
∣∣2

= −K
∫ ∞

0
du

u(
u+ qQ

r+

)[
exp
[

2π
κ

(
u+ qQ

r+

)]
− 1
]
∣∣Bup
−u`
∣∣2

= −K
∫ ∞

0
dω

ω

ω
[
exp
(

2πω
κ

)
− 1
]
∣∣Bup
−ω`
∣∣2 , (5.106)

where, in going from the penultimate line of (5.106) to the last one, we have used the fact

that u is effectively a dummy variable enabling us to relabel u as ω in the last line and,

furthermore, we have made the definition

ω = ω +
qQ

r+
. (5.107)

Then, in the case that qQ > 0 such that the superradiant modes are contained in the

integral I1 (5.100), we obtain

{
I1 + 〈B−| Ĵr |B−〉

}
+ I2

= − q

64π3r2

∞∑

`=0

∫ ∞

0
dω (2`+ 1)ω





∣∣Bup
ω`

∣∣2

ω̃
[
exp
(

2πω̃
κ

)
− 1
] −

∣∣Bup
−ω`
∣∣2

ω
[
exp
[

2πω
κ

]
− 1
]



 . (5.108)

A similar set of calculations show that in the case qQ < 0, when the superradiant modes

are instead contained in the integral I2 (5.101), we obtain
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I1 +
{
I2 + 〈B−| Ĵr |B−〉

}

= − q

64π3r2

∞∑

`=0

∫ ∞

0
dω (2`+ 1)ω





∣∣Bup
ω`

∣∣2

ω̃
[
exp
(

2πω̃
κ

)
− 1
] −

∣∣Bup
−ω`
∣∣2

ω
[
exp
[

2πω
κ

]
− 1
]



 . (5.109)

Then, the expectation value 〈Ĵr〉|U−〉 is given by

〈U−| Ĵr |U−〉

∼ − q

64π3r2

∞∑

`=0

∫ ∞

0
dω (2`+ 1)ω





∣∣Bup
ω`

∣∣2
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[
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(

2πω̃
κ

)
− 1
] −

∣∣Bup
−ω`
∣∣2

ω
[
exp
[

2πω
κ

]
− 1
]



 . (5.110)

Using (5.12) and (5.110), we derive the flux of charge K|U−〉 in the ‘past’ Unruh state as

K|U−〉 =
q

64π3

∞∑

`=0

∫ ∞

0
dω (2`+ 1)ω





∣∣Bup
ω`

∣∣2

ω̃
[
exp
(

2πω̃
κ

)
− 1
] −

∣∣Bup
−ω`
∣∣2

ω
[
exp
[

2πω
κ

]
− 1
]



 . (5.111)

A similar set of calculations shows that the expectation value 〈T̂ rt 〉|U−〉 is given by

〈U−| T̂ rt |U−〉

∼ − 1

16π2r2

∞∑

`=0

∫ ∞

0
dω (2`+ 1)ω2





∣∣Bup
ω`

∣∣2
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[
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−ω`
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ω
[
exp
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2πω
κ

]
− 1
]



 . (5.112)

Using (5.25) and (5.112), we derive the flux of energy L|U−〉 in the ‘past’ Unruh state as

L|U−〉 =
1

16π2

∞∑

`=0

∫ ∞

0
dω (2`+ 1)ω2





∣∣Bup
ω`

∣∣2

ω̃
[
exp
(

2πω̃
κ

)
− 1
] +

∣∣Bup
−ω`
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ω
[
exp
[

2πω
κ

]
− 1
]



 .

(5.113)

The expressions for the flux of charge K|U−〉 (5.111) and the flux of energy L|U−〉 (5.113)

each contain integrals over the entire spectrum of positive-frequency modes, i.e. ω > 0.

This begs the question as to what has happened to the negative-frequency modes; the

second term in both the expressions (5.111) and (5.113) contain a factor of
∣∣Bup
−ω`
∣∣2, which

we can interpret as the square of the magnitude of the transmission coefficient Bup
−ω`

associated to negative-frequency modes. Then, as seen by a static observer near infinity,

the first term in both (5.111) and (5.113) is the flux from the emission of positive-frequency

modes with an effective chemical potential of qQ
r+

, while the second term is the flux from

the emission of negative-frequency modes with an effective chemical potential of − qQ
r+

.

The contribution to the flux of charge K|U−〉 (5.111) from the emission of positive-

frequency modes has the same sign as the scalar field charge q, while the contribution

from the emission of negative-frequency modes has the opposite sign to q.
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On the other hand, the emission of positive- and negative-frequency modes both give

a positive contribution to the flux of energy L|U−〉 (5.113), as we would expect. Then,

we deduce that the Reissner-Nordström black hole loses energy due to the emission of

Hawking radiation in the ‘past’ Unruh state |U−〉.
Finally, using (5.105) and (5.106), we see that in the limit κ → 0 the Hawking tem-

perature TH = κ
2π vanishes and both K|U−〉 (5.111) and L|U−〉 (5.113) reduce to K|B−〉

(5.91) and L|B−〉 (5.93), i.e. their corresponding fluxes in the ‘past’ Boulware state |B−〉,
respectively. This suggests that the ‘past’ Unruh state |U−〉 reduces to the ‘past’ Boulware

state |B−〉 in the limit TH → 0.

5.3.4 The ‘past’ CCH state

In §4.5.1, we defined the ‘past’ CCH state |CCH−〉 to be a state that exhibits thermal

radiation, both incoming at past null infinity I − and outgoing at future null infinity I +.

Since the ‘past’ Unruh state |U−〉 is defined to be as empty as possible to a static observer

at past null infinity I − while exhibiting thermal radiation outgoing at future null-infinity,

then the difference in the expectation values of observables between the two states should

correspond to an incoming flux of thermal radiation incident upon the future horizon H+;

this is represented by a thermalised flux of particles in the in-modes (3.106) of the field.

We can use the expectation value of a general observable Ô with classical mode con-

tribution oω`m to construct an expression for the difference 〈Ô〉|CCH−〉−|U−〉 in expectation

values in the ‘past’ Unruh state (5.81) and the ‘past’ CCH state (5.83); we have

〈CCH−| Ô |CCH−〉 − 〈U−| Ô |U−〉 =
∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω

1

exp
∣∣2πω
κ

∣∣− 1
oin
ω`m, (5.114)

where we have used the identity in (5.87). In §5.2.3, we evaluated the asymptotic in-mode

contributions to the classical quantities corresponding to the quantum observables ŜC,
Ĵµ and T̂µν as r → r+. Using the near-horizon in-mode contribution (5.60) to the scalar

condensate SC, (5.114) becomes

〈CCH−| ŜC |CCH−〉 − 〈U−| ŜC |U−〉 ∼ 1

16π2r2

∞∑

`=0

∫ ∞

−∞
dω

2`+ 1

|ω|
(
exp
∣∣2πω
κ

∣∣− 1
)
∣∣Bin

ω`

∣∣2 .

(5.115)

Using the near-horizon in-mode contribution (5.63) to the current Jµ, (5.114) becomes

〈CCH−| Ĵµ |CCH−〉 − 〈U−| Ĵµ |U−〉

∼ q

64π3r2

∞∑

`=0

∫ ∞

−∞
dω

ω̃ (2`+ 1)

|ω|
(
exp
∣∣2πω
κ

∣∣− 1
)
∣∣Bin

ω`

∣∣2
(
−f(r)−1 1 0 0

)ᵀ
. (5.116)

Using the near-horizon in-mode contribution (5.70) to the SET Tµν , (5.114) becomes
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〈CCH−| T̂µν |CCH−〉 − 〈U−| T̂µν |U−〉

∼ 1

16π2r2

∞∑

`=0

∫ ∞

−∞
dω

ω̃2 (2`+ 1)

|ω|
(
exp
∣∣2πω
κ

∣∣− 1
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∣∣Bin

ω`
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−f(r)−1 −f(r)−2 0 0

1 f(r)−1 0 0

0 0 O(1) 0

0 0 0 O(1)



.

(5.117)

The differences (5.115 – 5.117) are regular when ω = 0 from the Wronskian relation (3.75);

the
∣∣Bin

ω`

∣∣2 is of O
(
ω 2
)
, which cancels the factor of O

(
ω−2

)
in the denominators as ω → 0.

We can check whether the difference 〈Ĵµ〉|CCH−〉−|U−〉 (5.116) of the current is regular

on the horizon by changing to Kruskal coordinates; defining the quantity C as

C =
q

64π3r2

∞∑

`=0

∫ ∞

−∞
dω

ω̃ (2`+ 1)

|ω|
(
exp
∣∣2πω
κ

∣∣− 1
)
∣∣Bin

ω`

∣∣2 , (5.118)

and using (5.28), near the horizon we have

〈ĴU 〉|CCH−〉−|U−〉 ∼ κU
[
f(r)−1C + f(r)−1C

]
= 2κCUf(r)−1 , (5.119a)

〈ĴV 〉|CCH−〉−|U−〉 ∼ κV
[
−f(r)−1C + f(r)−1C

]
= O(1) . (5.119b)

The difference 〈ĴU 〉|CCH−〉−|U−〉 (5.119a) contains a factor of f(r)−1, which diverges as

r → r+; the future horizon is a surface of constant U = 0, and so the factor of U cancels

the divergence of the f(r)−1 such that the difference is regular on H+ while, on the past

horizon H−, the difference diverges. In contrast, the leading order divergences cancel in

the difference 〈ĴV 〉|CCH−〉−|U−〉 (5.119b) such that it is regular everywhere. Therefore, the

differences 〈Ĵµ〉|CCH−〉−|U−〉 in the expectation values of the current operator (5.116) are

regular on H+ but diverge on H−.

We can check whether the difference 〈T̂µν 〉|CCH−〉−|U−〉 of the SET is regular on the

horizon by changing to Kruskal coordinates; we define the quantity S as

S =
1

16π2r2

∞∑

`=0

∫ ∞

−∞
dω

ω̃2 (2`+ 1)

|ω|
(
exp
∣∣2πω
κ

∣∣− 1
)
∣∣Bin

ω`

∣∣2 . (5.120)

From (5.69), Ttt ∼ L , Ttr ∼ f(r)−1 L and Trr ∼ f(r)−2 L. Using (5.30), near the horizon:

〈T̂UU 〉|CCH−〉−|U−〉 ∼
1

4
κ−2U−2

[
S − 2f(r)f(r)−1 S + f(r)2f(r)−2 S

]
, (5.121a)

〈T̂UV 〉|CCH−〉−|U−〉 ∼ −
1

4
κ−2U−1V −1

[
S − f(r)2f(r)−2 S

]
, (5.121b)

〈T̂V V 〉|CCH−〉−|U−〉 ∼
1

4
κ−2V −2

[
S + 2f(r)f(r)−1 S + f(r)2f(r)−2 S

]
= κ−2V −2S.

(5.121c)
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The leading order divergences cancel in the differences 〈T̂UU 〉|CCH−〉−|U−〉 (5.121a) and

〈T̂UV 〉|CCH−〉−|U−〉 (5.121b). The difference (5.121c), which contains a factor of V −2, di-

verges on the past horizon since H− is a surface of constant V = 0. Therefore, the

differences 〈T̂µν〉|CCH−〉−|U−〉 in the expectation values of the SET (5.117) diverge on H−.

Thus the differences between the ‘past’ CCH state and the ‘past’ Unruh state in the

expectation values of both the current 〈Ĵµ〉|CCH−〉−|U−〉 and the SET 〈T̂µν〉|CCH−〉−|U−〉
diverge on the past horizon H−, but may be regular on H+ if the ‘past’ Unruh state is

regular as anticipated. We will return to this question in our discussion of Figure 5.2.

Discussion of Figure 5.2: All of the plots in Figure 5.2, exhibit a much greater vari-

ation between different values of the scalar field charge q compared to the corresponding

plots in Figure 5.1 for the differences between the ‘past’ Unruh state |U−〉 and the ‘past’

Boulware state |B−〉. Recall, from our discussion of Figure 5.1, that we deduced that the

expectation values of observables in |U−〉 must vanish far from the black hole because |B−〉
is defined to be as empty as possible to a static observer at infinity. Figure 5.2 illustrates

that the differences between |CCH−〉 and |U−〉 do not vanish far from the black hole,

leading us to infer that the ‘past’ CCH state is not empty at infinity, as we would expect

of a thermal state.
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ŜC

〉

r/r+

q/M = 0

q/M = 0.16

q/M = 0.32

q/M = 0.48

q/M = 0.64

q/M = 0.8

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10

1
06
r3 +

f
(r
)〈
Ĵ
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Figure 5.2. Difference in expectation values of the scalar condensate ŜC, components of the current

Ĵ and components of the stress-energy tensor T̂µν between the ‘past’ CCH state |CCH−〉 and the

‘past’ Unruh state |U−〉 in Reissner-Nordström spacetime for black hole charge Q = 0.8M and

positive values of the scalar field charge q. All expectation values are multiplied by powers of f(r)

so that the resulting quantities are regular at r = r+.
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Figure 5.3. Difference in expectation values for the Kruskal components of the current Ĵ and

stress-energy tensor T̂µν between the ‘past’ CCH state |CCH−〉 and the ‘past’ Unruh state |U−〉 in

Reissner-Nordström spacetime for black hole charge Q = 0.8M and positive values of the scalar field

charge q. All expectation values are multiplied by powers of f(r) so that the resulting quantities

are regular at r = r+.

The constant horizontal lines in the plot of r2〈Ĵr〉|CCH−〉−|U−〉 illustrate that the differ-

ence in the radial component of the current is proportional to r−2. Since r2〈Ĵr〉|CCH−〉−|U−〉
is negative then, from (5.12), we have that the difference between the flux of charges

K|CCH−〉 − K|U−〉 must be positive and so the flux of charge K|CCH−〉 in the ‘past’ CCH

state is greater than the flux of charge K|U−〉 in the ‘past’ Unruh state for a given value

of the scalar field charge q.

Furthermore, comparing Figures 5.1 and 5.2, we see that the magnitude of the differ-

ence 〈Ĵr〉|CCH−〉−|U−〉 is several times larger than 〈Ĵr〉|U−〉−|B−〉. Recall that the differences

in expectation values between |CCH−〉 and |U−〉 should correspond to an incoming flux

of thermal radiation in the in-modes with a thermal factor proportional to ω, while the
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differences in expectation values between |U−〉 and |B−〉 should correspond to an outgoing

flux of thermal radiation in the up-modes with a thermal factor proportional to ω̃. Then,

we can infer that the outgoing flux of charge in the in-modes in |CCH−〉 is considerably

greater than the outgoing flux of charge in the up-modes in |U−〉 due to the differing

thermal factors.

Discussion of Figure 5.3: From the Penrose diagram of Reissner-Nordström spacetime

in Figure 3.1, the past horizon H− is a surface of constant V = 0 and the future horizon

H+ is a surface of constant U = 0.

The difference V −1〈ĴV 〉|CCH−〉−|U−〉 is regular everywhere as r → r+. The difference

U−1〈ĴU 〉|CCH−〉−|U−〉 diverges like f(r)−1 as r → r+, which is in agreement with the

expression in (5.119a), leading us to conclude that the difference 〈Ĵµ〉|CCH−〉−|U−〉 is regular

on H+ but diverges on H−.

The leading order terms in the difference U2〈T̂UU 〉|CCH−〉−|U−〉 as well as the difference

UV 〈T̂UV 〉|CCH−〉−|U−〉 cancel as r → r+. The difference V 2〈T̂V V 〉|CCH−〉−|U−〉 is finite as

r → r+ but does not vanish, which is in agreement with the expression in (5.121c). This

leads us to conclude that the difference 〈T̂µν 〉|CCH−〉−|U−〉 is similarly regular on H+ and

divergent on H−.

In §5.3.2, we explained that we expect the ‘past’ Unruh state |U−〉 to be regular on H+

but singular on H−. If we are correct then, from the expressions in (5.119) and (5.121)

as well as the plots in Figure 5.2, we expect that the ‘past’ CCH state |CCH−〉 will be

similarly singular on the past horizon H− and may also be regular on the future horizon

H+.

5.3.5 Fluxes of charge and energy in the ‘past’ CCH state

We would like to evaluate the flux of charge K|CCH−〉 and the flux of energy L|CCH−〉 with

respect to the ‘past’ CCH state |CCH−〉 directly. We can do this by first simplifying the

relevant components of the expressions for 〈Ĵµ〉|CCH−〉−|U−〉 (5.116) and 〈T̂µν 〉|CCH−〉−|U−〉
(5.117) before adding to them, respectively, the expressions for 〈Ĵr〉|U−〉 (5.110) and

〈T̂ rt 〉|U−〉 (5.112). Beginning with the radial component of the difference 〈Ĵµ〉|CCH−〉−|U−〉
(5.116), we can simplify this as
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where ω is given in (5.107). Using the Wronskian relation (3.75), (5.122) becomes

〈CCH−|Ĵr |CCH−〉 − 〈U−| Ĵr |U−〉
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Using (5.12) and (5.123), we can derive the flux of charge K|CCH−〉 as

K|CCH−〉 = K|U−〉 −
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(5.124)

A similar set of calculations shows that the difference 〈T̂ rt 〉|CCH−〉−|U−〉 is given by

〈CCH−|T̂ rt |CCH−〉 − 〈U−| T̂ rt |U−〉

∼ 1
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Using (5.25) and (5.125), we can derive the flux of energy L|CCH−〉 in the ‘past’ CCH state

|CCH−〉 as

L|CCH−〉 = L|U−〉 −
1

16π2

∞∑

`=0

∫ ∞

0
dω (2`+ 1)

ω2

[
exp
(

2πω
κ

)
− 1
]
[

1

ω̃

∣∣Bup
ω`

∣∣2 +
1

ω

∣∣Bup
−ω`
∣∣2
]
.

(5.126)

We immediately notice, from the argument of the exponential in the denominator of

(5.126), that the difference in both fluxes between |CCH−〉 and |U−〉 corresponds to a
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thermalised flux of particles but without a chemical potential. When defining the ‘past’

CCH state in §4.5.1, we anticipated that the ‘past’ CCH state |CCH−〉 would not be an

equilibrium state since the in-modes and up-modes in (4.152) had different thermal factors.

From the expressions for K|U−〉 (5.111) and L|U−〉 (5.113), we see that the fluxes of charge

K|CCH−〉 (5.124) and energy L|CCH−〉 (5.126) in the ‘past’ CCH state are indeed nonzero.

Therefore, as expected, the ‘past’ CCH state is not an equilibrium state. However, it does

have attractive regularity properties on the future horizon H+.

Considering first the flux of energy L|CCH−〉 (5.126) in the ‘past’ CCH state, it is

apparent that nonsuperradiant modes, which have sgn(ωω̃) = 1, act to reduce the flux of

energy as compared to the flux of energy L|U−〉 in the ‘past’ Unruh state. In contrast,

superradiant modes, which have sgn(ωω̃) = −1, act to enhance L|CCH−〉 as compared to

L|U−〉. Recall that in §5.3.4, we described that since the ‘past’ CCH state exhibits thermal

radiation at both I − and I +, whereas the ‘past’ Unruh state only exhibits thermal

radiation at I + while being as empty as possible to a static observer at I −, then the

difference in observables between these two states should correspond to an incoming flux of

thermal radiation from I −. Then we may tentatively interpret the reduction in L|CCH−〉
relative to L|U−〉 in nonsuperradiant modes as incoming thermal radiation from I − that is

incident uponH+ and the enhancement in L|CCH−〉 relative to L|U−〉 in superradiant modes

as corresponding to the same incoming thermal radiation from I − that has been reflected

back towards I + with a greater amplitude through a process of quantum superradiance.

The interpretation of the expression (5.124) for the flux of charge K|CCH−〉 in the ‘past’

CCH state is more subtle as a result of the relative sign difference between the contributions

from positive- and negative-frequency modes. Of the superradiant modes, those of positive-

frequency give a contribution to K|CCH−〉 of the opposite sign to q, while those of negative-

frequency give a contribution of the same sign as q. Of the nonsuperradiant modes,

however, those of positive-frequency give a contribution to K|CCH−〉 of the same sign as q,

while those of negative-frequency give a contribution of the opposite sign to q.

Returning to the plot of the difference 〈Ĵr〉|CCH−〉−|U−〉 in Figure 5.2 we see that

〈Ĵr〉|CCH−〉−|U−〉 is negative and therefore that the difference between the fluxes K|CCH−〉−
K|U−〉 must be positive for positive values of the scalar field charge q. Then, we deduce

that there must be considerably more contribution to the flux of charge K|CCH−〉 in the

‘past’ CCH state from positive-frequency superradiant modes and negative-frequency non-

superradiant modes, as opposed to negative-frequency superradiant modes and positive-

frequency nonsuperradiant modes.

5.4 Differences in expectation values between ‘future’ states

5.4.1 The ‘future’ Unruh state

We can use the expectation value of a general observable Ô with classical mode contribu-

tion oω`m to construct an explicit expression for the difference 〈Ô〉|U+〉−|B+〉 in expectation

values in the ‘future’ Boulware state (5.79) and the ‘future’ Unruh state (5.82); we have
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where we have used the identity in (5.87). In §5.2.2, we evaluated the asymptotic down-

mode contributions to the classical quantities corresponding to the quantum observables

ŜC, Ĵµ and T̂µν as r → ∞. Using the near-infinity down-mode contribution (5.47) to the

scalar condensate SC, (5.127) becomes
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Using the near-infinity down-mode contribution (5.50) to the current Jµ, (5.127) becomes

〈U+| Ĵµ |U+〉 − 〈B+| Ĵµ |B+〉

∼ q
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Using the near-infinity down-mode contribution (5.54) to the SET Tµν , (5.127) becomes

〈U+| T̂µν |U+〉 − 〈B+| T̂µν |B+〉

∼ 1
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The differences (5.128 – 5.130) are regular when ω̃ = 0 from the Wronskian relation (3.75);

the
∣∣Bup

ω`

∣∣2 is of O
(
ω̃ 2
)
, which cancels the factor of O

(
ω̃−2

)
in the denominators as ω̃ → 0.

5.4.2 The ‘future’ CCH state

We can use the expectation value of a general observable Ô with classical mode con-

tribution oω`m to construct an explicit expression for the difference 〈Ô〉|CCH+〉−|U+〉 in

expectation values in the ‘future’ Unruh state (5.82) and the ‘future’ CCH state (5.84);

we have

〈CCH+| Ô |CCH+〉 − 〈U+| Ô |U+〉 =
∞∑
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∑̀
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where we have used the identity in (5.87). In §5.2.3, we evaluated the asymptotic out-

mode contributions to the classical quantities corresponding to the quantum observables
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ŜC, Ĵµ and T̂µν as r → r+. Using the near-horizon out-mode contribution (5.71) to the

scalar condensate SC, (5.131) becomes

〈CCH+| ŜC |CCH+〉 − 〈U+| ŜC |U+〉 ∼ 1
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Using the near-horizon out-mode contribution (5.74) to the current Jµ, (5.131) becomes

〈CCH+| Ĵµ |CCH+〉 − 〈U+| Ĵµ |U+〉

∼ − q
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Using the near-horizon out-mode contribution (5.77) to the SET Tµν , (5.131) becomes

〈CCH+| T̂µν |CCH+〉 − 〈U+| T̂µν |U+〉

∼ 1
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The differences (5.132 – 5.134) are regular when ω = 0 from the Wronskian relation (3.75);

the
∣∣Bin

ω`

∣∣2 is of O
(
ω 2
)
, which cancels the factor of O

(
ω−2

)
in the denominators as ω̃ → 0.

5.4.3 Discussion of differences between ‘future’ states

In §5.1.1, we argued that the expectation value of the scalar condensate ŜC should not

distinguish between ‘past’ and ‘future’ states. Comparing (5.95) with (5.128) and (5.115)

with (5.132), we can see that this is indeed the case. Furthermore, we see that the

differences in the current Ĵµ (5.129, 5.133) as well as the SET T̂µν (5.130, 5.134) could have

been obtained, by making the coordinate transformation t→ −t, from their corresponding

expressions in the ‘past’ states in (5.96, 5.116) and (5.97, 5.117) respectively. In this light,

we can consider the ‘future’ states as the time-reversal of their corresponding ‘future’

states. Since we have examined the properties of the ‘past’ states in considerable detail in

§5.2.4, we will not consider the ‘future’ states any further.

5.5 The ‘Boulware-like’ state

In §4.3.3, we defined the ‘Boulware-like’ state |B〉 which is an attempt to keep as close in

spirit as possible to the Schwarzschild Boulware state |Bs〉 in defining a state that is as

empty as possible to a static observer at both past and future null infinity I ±. Thus, the

fluxes of charge K|B〉 and energy L|B〉 in the ‘Boulware-like’ state are of particular interest.
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5.5.1 Differences in expectation values between Boulware states

Having studied the ‘past’ and ‘future’ Boulware states in considerable detail in §5.3.1

and §5.4.1 respectively, we can use the expectation value of a general observable Ô with

classical mode contribution oω`m to construct an expression for the difference 〈Ô〉|B〉−|B±〉
in expectation values in the ‘Boulware-like’ state (5.80) relative to both the ‘past’ (5.78)

and the ‘future’ Boulware state (5.79); we have
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and
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where, in (5.136), we have used the fact that we could alternatively have defined the

‘Boulware-like’ state in an orthonormal basis of out- and down-modes. In §5.2.2, we

evaluated the asymptotic up- and down-mode contributions to the classical quantities

corresponding to the quantum observables ŜC, Ĵµ and T̂µν as r → ∞. Using the near-

infinity up-mode contribution (5.36) to the scalar condensate ŜC, (5.135) becomes
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where we have used the fact that the scalar condensate ŜC does not distinguish between

‘past’ and ‘future’ states to equate 〈ŜC〉|B〉−|B−〉 with 〈ŜC〉|B〉−|B+〉. Using the near-infinity

up-mode contribution (5.39) to the current Jµ, (5.135) becomes

〈B| Ĵµ |B〉 − 〈B−| Ĵµ |B−〉

∼ q

64π3r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2
(

1 1 0 0
)ᵀ
. (5.138)

The difference in the flux of charge across past null infinity I − between |B〉 and |B−〉 is

proportional to the difference in the Kruskal component 〈ĴU 〉|B〉−|B−〉. Using the expression

(5.28) for the current in terms of Kruskal coordinates, as r →∞ we have

〈B| ĴU |B〉 − 〈B−| ĴU |B−〉

∼ κqU

64π3r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2 (−1 + 1) = 0. (5.139)

Using the near-infinity up-mode contribution (5.46) to the SET Tµν , (5.135) becomes
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〈B| T̂µν |B〉 − 〈B−| T̂µν |B−〉

∼ 1

16π2r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2




1 −1 0 0

1 −1 0 0

0 0 O
(
r−2
)

0

0 0 0 O
(
r−2
)



. (5.140)

The difference in the flux of energy across past null infinity I −, which is a surface of

constant U = −∞, between |B〉 and |B−〉 is proportional to the difference 〈T̂UU 〉|B〉−|B−〉.
Using the expression (5.30) for the stress-energy tensor in terms of Kruskal coordinates,

as r →∞ we have 〈T̂UU 〉|B〉−|B−〉 ∼ O
(
r−2U−2

)
which vanishes at leading order.

Using the down-mode contribution (5.50) to the current Jµ as r →∞, (5.127) becomes

〈B| Ĵµ |B〉 − 〈B+| Ĵµ |B+〉

∼ q

64π3r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2
(

1 −1 0 0
)ᵀ
. (5.141)

The difference in the flux of charge across future null infinity I + between |B〉 and |B+〉 is

proportional to the difference in the Kruskal component 〈ĴV 〉|B〉−|B+〉. Using the expression

(5.28) for the current in terms of Kruskal coordinates, as r →∞ we have

〈B| ĴV |B〉 − 〈B+| ĴV |B+〉

∼ κqV

64π3r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2 (1− 1) = 0. (5.142)

Using the near-infinity down-mode contribution (5.54) to the SET Tµν , (5.136) becomes

〈B| T̂µν |B〉 − 〈B+| T̂µν |B+〉

∼ 1

16π2r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω2

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2




1 1 0 0

−1 −1 0 0

0 0 O
(
r−2
)

0

0 0 0 O
(
r−2
)



.

(5.143)

The difference in the flux of energy across future null infinity I +, which is a surface of

constant V = ∞, between |B〉 and |B+〉 is proportional to the difference 〈T̂V V 〉|B〉−|B−〉.
Using the expression (5.30) for the stress-energy tensor in terms of Kruskal coordinates,

as r →∞ we have 〈T̂V V 〉|B〉−|B+〉 = O
(
r−2V −2

)
which vanishes at leading order.

The differences (5.137 – 5.143) are regular when ω̃ = 0 from the relation (3.75); the∣∣Bup
ω`

∣∣2 is of O
(
ω̃ 2
)
, which cancels the factor of O

(
ω̃−1

)
in the denominators as ω̃ → 0.
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5.5.2 Fluxes of charge and energy in the ‘Boulware-like’ state

We would like to evaluate the flux of charge K|B〉 and the flux of energy L|B〉 in the

‘Boulware-like’ state |B〉 directly. Using the expression for the expectation value of the

radial component of the current in the ‘past’ Boulware state 〈Ĵr〉|B−〉 (5.91) and the radial

component of the difference 〈Ĵµ〉|B〉−|B−〉 (5.138), we have

〈Ĵr〉|B〉 =
(
〈B| Ĵr |B〉 − 〈B−| Ĵr |B−〉

)
+ 〈B−| Ĵr |B−〉

∼ q

64π3r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω

|ω̃| (2`+ 1)
∣∣Bup

ω`

∣∣2 (1− 1) = 0. (5.144)

A similar calculation shows that the expectation value 〈T̂ rt 〉|B〉 also vanishes. Therefore,

we find that both the flux of charge K|B〉 and the flux of energy L|B〉 in the ‘Boulware-like’

state vanish, i.e.

K|B〉 = 0, L|B〉 = 0. (5.145)

5.5.3 Interpretation of the ‘Boulware-like’ state

The fact that the fluxes of charge K|B〉 and energy L|B〉 in the ‘Boulware-like’ state |B〉
vanish means that this state is an equilibrium state and it is invariant under time-reversal.

Recall that the ‘past’ Boulware state (4.28) is defined to be as empty as possible to

a static observer at past null infinity I − and that the ‘future’ Boulware state (4.38) is

defined to be as empty as possible to a static observer at past null infinity I +. Since

the differences 〈ĴU 〉|B〉−|B−〉 and 〈T̂UU 〉|B〉−|B−〉 vanish, then we can conclude that the

‘Boulware-like’ state has no incoming flux of particles at past null infinity I −. Further-

more, since the differences 〈ĴV 〉|B〉−|B−〉 and 〈T̂V V 〉|B〉−|B−〉 vanish, then we can conclude

that the ‘Boulware-like’ state has no outgoing flux of particles at future null infinity I +.

Thus, it appears that, in defining the ‘Boulware-like’ state |B〉, we have succeeded

in defining an analogue of the Schwarzschild Boulware state for a charged scalar field in

Reissner-Nordström spacetime, which is as empty as possible to a static observer at both

past and future null infinity I ±.

5.5.4 Discussion of Figures 5.4 and 5.5

All of the plots of the differences of observables between |B〉 and |B−〉 in Figure 5.4 vanish

in the uncharged limit q → 0. Recall, from §5.3.1, that the ‘past’ Boulware state is defined

to be as empty as possible to a static observer at I − but exhibits an outgoing flux of

radiation in the superradiant modes at I +. In the uncharged limit q → 0, there is no

superradiant scattering of field modes and so |B〉 and |B−〉 coincide in this limit.

The difference in the scalar condensate vanishes far from the black hole but diverges

near the horizon. Unlike the difference 〈ŜC〉|U−〉−|B−〉 (see Figure 5.1), the difference

〈ŜC〉|B〉−|B−〉 is negative leading us to conclude that 〈ŜC〉|B〉 is smaller than both 〈ŜC〉|B−〉
and 〈ŜC〉|U−〉.
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〈Ĵ

r
〉

r/r+

q/M = 0.32

q/M = 0.48

q/M = 0.64

q/M = 0.8

−1

0

1

1 2 3 4 5 6 7 8 9 10

10
6
r2 +

r2
〈T̂

r t
〉

r/r+

q/M = 0.32

q/M = 0.48

q/M = 0.64

q/M = 0.8

−1

0

1 2 3 4 5 6 7 8 9 10

10
5
r4 +

f
(r
)2
〈T̂
tt
〉

r/r+

q/M = 0.32

q/M = 0.48

q/M = 0.64

q/M = 0.8

−5

−4

−3

−2

−1

0

1 2 3 4 5 6 7 8 9 10

10
5
r4 +

f
(r
)3
〈T̂
r
r
〉

r/r+

q/M = 0.32

q/M = 0.48

q/M = 0.64

q/M = 0.8

−1

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

10
5
r4 +

f
(r
)2
〈T̂

θ θ
〉

r/r+

q/M = 0.32

q/M = 0.48

q/M = 0.64

q/M = 0.8

Figure 5.4. Difference in expectation values of the scalar condensate ŜC, components of the current

Ĵ and components of the stress-energy tensor T̂µν between the ‘Boulware-like’ state |B〉 and the

‘past’ Boulware state |B−〉 in Reissner-Nordström spacetime for black hole charge Q = 0.8M and

positive values of the scalar field charge q. All expectation values are multiplied by powers of f(r)

so that the resulting quantities are regular at r = r+.
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The differences in 〈Ĵr〉|B〉−|B−〉 and 〈T̂ rt 〉|B〉−|B−〉 are exactly minus that of 〈Ĵr〉|B−〉
and 〈T̂ rt 〉|B−〉 in [1]. This is what we would expect; since the fluxes of charge K|B〉 and

energy L|B〉 in the ‘Boulware-like’ state vanish, there is no contribution to the differences

〈Ĵr〉|B〉−|B−〉 and 〈T̂ rt 〉|B〉−|B−〉 from the ‘Boulware-like’ state and they reduce to −〈Ĵr〉|B−〉
and −〈T̂ rt 〉|B−〉 respectively.

The difference 〈Ĵ t〉|B〉−|B−〉 in the time component of the current as well as the differ-

ences in the diagonal components of the stress-energy tensor all decay rapidly as the radial

coordinate r increases and vanish far from the black hole. Furthermore, the difference in

the charge density 〈Ĵ t〉|B〉−|B−〉 and the energy density 〈T̂ tt 〉|B〉−|B−〉 are negative near the

horizon, but become positive further away from the black hole.

All of the differences, in terms of Kruskal coordinates, in Figure 5.5 diverge at the

horizon. Since the Schwarzschild Boulware state |Bs〉 is singular at the horizon, we expect

that both the ‘Boulware-like’ state |B〉 and the ‘past’ Boulware state |B−〉 will diverge at

the horizon. Then, we can expect that either |B−〉 diverges more rapidly than |B〉 as r →
∞, or that both of these states diverge at the same rate but with different coefficients. We

suspect that the latter is more likely, but only a computation of renormalised expectation

values with respect to either state directly would be able to prove this.

The difference U−1〈ĴU 〉|B〉−|B−〉 decays rapidly far from the black hole, as we would

expect since past null infinity I − is a surface of constant U = ∞. The difference

V −1〈ĴV 〉|B〉−|B−〉 also decays as r →∞, although not as rapidly.

In our interpretation of the ‘Boulware-like’ state, we reasoned that |B〉 is time-reversal

invariant. Then U−1〈ĴU 〉|B〉 should equal −V −1〈ĴV 〉|B〉. From the plots, however, we have

that U−1〈ĴU 〉|B〉−|B−〉 6= −V −1〈ĴV 〉|B〉−|B−〉 constituting further evidence that the ‘past’

Boulware state |B−〉 is not time-reversal invariant.

5.5.5 Conclusions

The fact that the fluxes of charge K|B〉 and energy L|B〉 vanish (5.145), as well as the plots

in Figures 5.4 and 5.5 lead us to the conclusion that our proposed ‘Boulware-like’ state

is an equilibrium state which is regular everywhere outside the horizon and has vanishing

fluxes of charge and energy.

However, when defining the ‘Boulware-like’ state in §4.3.3, we used non-standard com-

mutation relations (4.49) that were multiplied by the eta-function ηωω̃ (4.9). Therefore,

|B〉 is not a conventional vacuum state. In [50], it is shown that for a neutral scalar field on

a background Kerr spacetime, there is no state which is as empty as possible at both past

and future null infinity I ±. In this light, our results for vanishing flux in the ‘Boulware-

like’ state (5.145) are very interesting. However, further investigation is required in order

to determine whether this state can be constructed rigorously or whether it suffers from

any unforeseen pathologies.

5.6 The Frolov-Thorne state

In §4.5.4, we defined the Frolov-Thorne state |FT〉 to be a state that exhibits thermal

radiation at both past and future null infinity I ± with the thermal factors proportional
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Figure 5.5. Difference in expectation values for the Kruskal components of the current Ĵ and

stress-energy tensor T̂µν between the ‘Boulware-like’ state |B〉 and the ‘past’ Boulware state |B−〉
in Reissner-Nordström spacetime for black hole charge Q = 0.8M and positive values of the

scalar field charge q. All expectation values are multiplied by powers of f(r) so that the resulting

quantities are regular at r = r+.
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to ω̃; this corresponds to a thermalised flux of particles in both the in-modes (3.106) and

up-modes (3.131) of the field Φ, with the frequency ω̃ in all thermal factors.

5.6.1 Differences between Frolov-Thorne and ‘past’ Unruh

Recall that the ‘past’ Unruh state |U−〉 is defined, in §4.4.1, to be as empty as possible

to a static observer at past null infinity H− while exhibiting an outgoing thermal flux

of radiation at I +. Since the Frolov-Thorne state |FT〉 is defined to exhibit thermal

radiation at both past and future null infinity I ±, then the difference in the expectation

values of observables between the two states should correspond to an incoming flux of

thermal radiation at past null infinity I −; this is represented by a thermalised flux of

particles in the in-modes (3.106) of the field Φ̂.

We can use the expectation value of a general observable Ô with classical mode con-

tribution oω`m to construct an explicit expression for the difference 〈Ô〉|FT〉−|U−〉 in ex-

pectation values in the ‘Frolov-Thorne’ state (5.86) and the ‘past’ Unruh state (5.81); we

have

〈FT| Ô |FT〉 − 〈U−| Ô |U−〉 =
∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω

1

exp
∣∣∣2πω̃κ

∣∣∣− 1
oin
ω`m, (5.146)

where we have used the identity in (5.87). In §5.2.3, we evaluated the asymptotic in-mode

contributions to the classical quantities corresponding to the quantum observables ŜC, Ĵµ
and T̂µν as r → r+. Using the near-horizon in-mode contribution (5.63) to the current Jµ,

(5.114) becomes

〈FT| Ĵµ |FT〉 − 〈U−| Ĵµ |U−〉

∼ q

64π3r2

∞∑

`=0

∫ ∞

−∞
dω

ω̃ (2`+ 1)

|ω|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)
∣∣Bin

ω`

∣∣2
(
−f(r)−1 1 0 0

)ᵀ
. (5.147)

We can check whether the difference 〈Ĵµ〉|FT〉−|U−〉 of the current operator is regular on

the horizon by changing to Kruskal coordinates; defining the quantity D as

D =
q

64π3r2

∞∑

`=0

∫ ∞

−∞
dω

ω̃ (2`+ 1)

|ω|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)
∣∣Bin

ω`

∣∣2 , (5.148)

and using (5.28), near the horizon we have

〈ĴU 〉|FT〉−|U−〉 ∼ κU
[
f(r)−1D + f(r)−1D

]
= 2κDUf(r)−1 , (5.149a)

〈ĴV 〉|FT〉−|U−〉 ∼ κV
[
−f(r)−1D + f(r)−1D

]
= O(1) . (5.149b)

The difference 〈ĴU 〉|FT〉−|U−〉 (5.149a) contains a factor of f(r)−1, which diverges as r →
r+; the future horizon is a surface of constant U = 0, and so the factor of U cancels
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the divergence of the f(r)−1 such that the difference is regular on H+ while, on the past

horizon H−, the difference diverges. In contrast, the leading order divergences cancel

in the difference 〈ĴV 〉|FT〉−|U−〉 (5.149b) such that it is regular everywhere. Therefore,

the differences 〈Ĵµ〉|FT〉−|U−〉 in the expectation values of the current operator (5.147) are

regular on H+ but diverge on H−.

Using the near-horizon in-mode contribution (5.70) to the SET Tµν , (5.146) becomes

〈FT| T̂µν |FT〉 − 〈U−| T̂µν |U−〉

∼ 1

16π2r2

∞∑

`=0

∫ ∞

−∞
dω

ω̃2 (2`+ 1)

|ω|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)
∣∣Bin

ω`

∣∣2




−f(r)−1 −f(r)−2 0 0

1 f(r)−1 0 0

0 0 O(1) 0

0 0 0 O(1)



.

(5.150)

We can check whether the difference 〈T̂µν 〉|FT〉−|U−〉 of the SET is regular on the horizon

by changing to Kruskal coordinates; we define the quantity L as

L =
1

16π2r2

∞∑

`=0

∫ ∞

−∞
dω

ω̃2 (2`+ 1)

|ω|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)
∣∣Bin

ω`

∣∣2 . (5.151)

From (5.69), Ttt ∼ L , Ttr ∼ f(r)−1 L and Trr ∼ f(r)−2 L. Using (5.30), near the horizon:

〈T̂UU 〉|FT〉−|U−〉 ∼
1

4
κ−2U−2

[
L− 2f(r)f(r)−1 L+ f(r)2f(r)−2 L

]
= O(1) , (5.152a)

〈T̂UV 〉|FT〉−|U−〉 ∼ −
1

4
κ−2U−1V −1

[
L− f(r)2f(r)−2 L

]
= O(1) , (5.152b)

〈T̂V V 〉|FT〉−|U−〉 ∼
1

4
κ−2V −2

[
L+ 2f(r)f(r)−1 L+ f(r)2f(r)−2 L

]
= κ−2V −2L. (5.152c)

The leading order divergences cancel in the differences 〈T̂UU 〉|FT〉−|U−〉 (5.152a) and

〈T̂UV 〉|FT〉−|U−〉 (5.152b). The difference (5.152c), which contains a factor of V −2, diverges

on the past horizon since H− is a surface of constant V = 0, while it may be regular on

the future horizon H+. Therefore, the differences 〈T̂µν〉|FT〉−|U−〉 in the expectation values

of the stress-energy tensor operator (5.150) diverge on H− but may be regular on H+.

Thus the differences, between the Frolov-Thorne state |FT〉 and the ‘past’ Unruh state

|U−〉, in the expectation values of both the current 〈Ĵµ〉|FT〉−|U−〉 and the stress-energy

tensor 〈T̂µν〉|FT〉−|U−〉 diverge on the past horizon H− but may be regular on the future

horizon H+. Given that we anticipate that the ‘past’ Unruh state |U−〉 is regular on H+,

then this suggests that the Frolov-Thorne state may also be regular on H+. We will return

to this question in our discussion of Figure 5.7.

All of the expressions from (5.147 – 5.152) are regular when ω = 0 and ω̃ = 0. From the

Wronskian relation in (3.75), the
∣∣Bin

ω`

∣∣2 is of O
(
ω 2
)
, which cancels the factor of O

(
ω−1

)

in the denominators as ω → 0 and the positive powers of ω̃ cancel the factor of O
(
ω̃−1

)

in the denominator as ω̃ → 0.
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5.6.2 Fluxes of charge and energy in the Frolov-Thorne state

Since the up-modes (3.131) are field modes emanating from the past horizon H−, then we

may calculate the fluxes of charge K|FT〉 and energy L|FT〉 in terms of up-modes in order

to investigate the properties of the Frolov-Thorne state |FT〉 near the horizon.

Since the expectation values 〈Ĵr〉 and 〈T̂ rt 〉 do not require renormalisation, we can

evaluate their expectation value in the Frolov-Thorne state |FT〉 directly. Using the in-

and up-mode contributions (5.38) to the current component Jr, (5.86) becomes

〈FT| Ĵr |FT〉

∼ q

128π3r2

∞∑

`=0

{∫ ∞

−∞
dω

ω̃

|ω|
∣∣Bin

ω`

∣∣2 −
∫ ∞

−∞
dω̃

ω

|ω̃|
∣∣Bup

ω`

∣∣2
}

(2`+ 1) coth

∣∣∣∣
πω̃

κ

∣∣∣∣ . (5.153)

The expression in (5.153) is exactly that of the first line on the r.h.s in the expression

(5.89) for the expectation value of the flux component Jr in the ‘past’ Boulware state

multiplied by a factor of coth
∣∣∣πω̃κ
∣∣∣. Then, we may give the expression for the expectation

value of the flux component Jrin the Frolov-Thorne state as

〈FT| Ĵr |FT〉 ∼ − q

64π3r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω

|ω̃| (2`+ 1) coth

∣∣∣∣
πω̃

κ

∣∣∣∣
∣∣Bup

ω`

∣∣2 . (5.154)

Using (5.12) and (5.154), we can derive the flux of charge K|FT〉 as

K|FT〉 =
q

64π3

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω

|ω̃| (2`+ 1) coth

∣∣∣∣
πω̃

κ

∣∣∣∣
∣∣Bup

ω`

∣∣2 . (5.155)

Through a similar reasoning to that given immediately after equation (5.91), the flux of

charge K|FT〉 (5.155) in the Frolov-Thorne state always has the same sign as the charge

of the black hole Q; thus, the thermal radiation emitted in the Frolov-Thorne state corre-

sponds to the Reissner-Nordström black hole discharging.

Using a similar process to that in (5.89), we can give the expectation value 〈T tr〉|FT〉:

〈FT| T̂ rt |FT〉 ∼ 1

16π2r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω2

|ω̃| (2`+ 1) coth

∣∣∣∣
πω̃

κ

∣∣∣∣
∣∣Bup

ω`

∣∣2 . (5.156)

Using (5.25) and (5.156), we can derive the flux of energy L|B−〉 as

L|FT〉 =
1

16π2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω2

|ω̃| (2`+ 1) coth

∣∣∣∣
πω̃

κ

∣∣∣∣
∣∣Bup

ω`

∣∣2 . (5.157)

The expression for the flux of energy L|FT〉 in the Frolov-Thorne state is always positive;

therefore the thermal radiation emitted in the Frolov-Thorne state corresponds to the

Reissner-Nordström black hole losing energy.
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In [49, 50], it is argued that, in Kerr spacetime, the Frolov-Thorne state is an equilib-

rium state. However, the expressions for the fluxes of charge (5.155) and energy (5.157)

in the Frolov-Thorne state are both nonzero for q 6= 0. Therefore, the Frolov-Thorne

state |FT〉 is not an equilibrium state in Reissner-Nordström spacetime and neither is it

time-reversal invariant.

5.6.3 Discussion of Figures 5.6 and 5.7

Since the Frolov-Thorne state is a state defined with the Schwarzschild Hartle-Hawking

state |Hs〉 in mind, we will make comparisons with the differences 〈Ô〉|CCH−〉−|U−〉 in ex-

pectation values of observables Ô between the ‘past’ CCH state and the ‘past’ Unruh

state, which we studied in §5.3.4, throughout this discussion.

The difference 〈Ĵr〉|FT〉−|U−〉 is positive, so the flux of charge K|U−〉 in the ‘past’ Unruh

state must be greater than the flux of charge K|FT〉 in the Frolov-Thorne state. This is

similar to what we saw when calculating the difference 〈Ĵr〉|U−〉−|B−〉, but in that case the

flux of charge K|U−〉 due to Hawking radiation was shown to be greater than the flux of

charge K|B−〉 due to a non-thermal flux of particles that were superradiantly scattered.

From (5.155), the flux of charge K|FT〉 is due to a thermalised flux of particles in only the

superradiant modes, which have exactly the same thermal factor as that of the Hawking

radiation in the flux of charge in |U−〉. Then it is intuitive, despite the two fluxes of

charge containing thermal radiation with the same thermal factor, that K|U−〉 is greater

than K|CCH−〉 since the former contains thermal radiation from all field modes while the

latter only contains thermal radiation in the superradiant modes.

From the above, we would also expect that the flux of energy L|U−〉 in the ‘past’ Unruh

state is greater than the flux of energy L|CCH−〉 in the Frolov-Thorne state, which is indeed

the case since 〈T̂ rt 〉|FT〉−|U−〉 is positive.

The difference 〈Ĵ t〉|FT〉−|U−〉 as well as the differences in the diagonal elements of the

SET all appear to tend to constant values far from the black hole; while this is clearly

observable in the plots for small values of the scalar field charge q, we would need to

consider very large values of the radial coordinate in order to verify this observation

for large q. Of these differences, all but the difference in the energy density have the

opposite sign as compared with their corresponding differences between |CCH−〉 and |U−〉.
In contrast, the difference 〈T̂ tt 〉|FT〉−|U−〉 in the energy densities has the same sign as

〈T̂ tt 〉|CCH−〉−|U−〉.

Noting the above, we can say that while the Frolov-Thorne state |FT〉 and the ‘past’

CCH state |CCH−〉 share some properties, such as being non-empty far from the black

hole, ultimately their physical behaviour and interpretation are very different. Recall

that both states were defined to exhibit outgoing thermal radiation at I + with the same

thermal factor, which was proportional to ω̃. However, while each state also exhibits

thermal radiation incoming at I −, the thermal factor of the in-modes in the |FT〉 state

is proportional to ω̃ while the thermal factor of the in-modes in the |CCH−〉 state is

proportional to ω. From our analysis in this section, this clearly has a significant effect on

the expectation values of observables in either state.



Expectation values of quantum observables 171

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10

−
10

5
r3 +

f
(r
)〈
Ĵ
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Figure 5.6. Difference in expectation values of nonzero components of the current Ĵ and various

components of the stress-energy tensor T̂µν between the Frolov-Thorne state |FT〉 and the ‘past’

Unruh state |U−〉 in Reissner-Nordström spacetime for black hole charge Q = 0.8M and positive

values of the scalar field charge q. All expectation values are multiplied by powers of f(r) so that

the resulting quantities are regular at r = r+.
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Figure 5.7. Difference in expectation values for the Kruskal components of the current Ĵ and

stress-energy tensor T̂µν between the Frolov-Thorne state |FT〉 and the ‘past’ Unruh state |U−〉 in

Reissner-Nordström spacetime for black hole charge Q = 0.8M and positive values of the scalar field

charge q. All expectation values are multiplied by powers of f(r) so that the resulting quantities

are regular at r = r+.
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5.6.4 Conclusions

Before we conclude our analysis of the Frolov-Thorne state |FT〉, we may evaluate the dif-

ference 〈ŜC〉|FT〉−|U−〉 in the expectation values of the scalar condensate ŜC between |FT〉
and |U−〉. Using the near-horizon in-mode contribution (5.60) to the scalar condensate

SC, (5.114) becomes

〈FT| ŜC |FT〉 − 〈U−| ŜC |U−〉 ∼ 1

16π2r2

∞∑

`=0

∫ ∞

−∞
dω

2`+ 1

|ω|
(

exp
∣∣∣2πω̃κ

∣∣∣− 1
)
∣∣Bin

ω`

∣∣2 . (5.158)

The expression for the difference 〈ŜC〉|FT〉−|U−〉 is regular as ω → 0 since, from the Wron-

skian relation in (3.75), the
∣∣Bin

ω`

∣∣2 is of O
(
ω 2
)

as ω → 0. However, the integrand in

(5.158) diverges when ω̃ = 0. Since we expect the ‘past’ Unruh state to be regular on the

‘future’ horizon H+ at least, then it appears that the Frolon-Thorne state is ill-defined

on the horizon. We can investigate whether the Frolov-Thorne state is ill-defined in other

regions of the spacetime by using the in-mode contribution to the scalar condensate SC
for a general value of the radial coordinate r; then, (5.114) becomes

〈FT| ŜC |FT〉 − 〈U−| ŜC |U−〉 =
∞∑

`=0

∑̀

m=−`

∫ ∞

−∞
dω

1

exp
∣∣∣2πω̃κ

∣∣∣− 1

∣∣φin
ω`m

∣∣2 . (5.159)

The integrand in the expression for the difference 〈ŜC〉|FT〉−|U−〉 outside the horizon (5.159)

has a pole when ω̃ = 0 unless the magnitudes of the in-mode contributions
∣∣φin
ω`m

∣∣ vanish

at this frequency. However, numerical evaluations of (5.159) demonstrate that there is

at least one in-mode (3.106) with non-vanishing magnitude when ω̃ = 0, rendering the

difference 〈ŜC〉|FT〉−|U−〉 divergent everywhere on the spacetime. This leads us to conclude

that the Frolov-Thorne |FT〉 state is ill-defined despite the differences 〈Ĵµ〉|FT〉−|U−〉 (5.147,

5.149) and 〈T̂µν 〉|FT〉−|U−〉 (5.150, 5.152) being well-behaved outside the horizon.

Calculations of the expectation value of the scalar condensate in the analogous Frolov-

Thorne state in Kerr spacetime, where it was originally defined, are similarly divergent

almost everywhere in the spacetime with the exception of the axis of symmetry [50]; here

the contribution from modes undergoing rotational superradiance vanish and |FT〉 reduces

to the ‘past’ CCH state here. In RN spacetime, however, the event horizon receives a

contribution from superradiant modes everywhere in the exterior of the black hole and so

the Frolov-Thorne state defined in §4.5.4 is ill-defined throughout the spacetime.

5.7 The ‘Hartle-Hawking-like’ state

In §4.5.3, we defined the ‘Hartle-Hawking-like’ state |H〉 to be a state that exhibits thermal

radiation at both past and future null infinity I ± with the thermal factors proportional

to ω̃; this corresponds to a thermalised flux of particles in both the in-modes (3.106) and

up-modes (3.131) of the field Φ, with the frequency ω̃ in all thermal factors.
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5.7.1 Differences between ‘Hartle-Hawking-like’ and Frolov-Thorne

In the previous section, §5.6, we investigated the Frolov-Thorne state and concluded that it

is everywhere ill-defined on the spacetime. Despite this, in order to investigate the ‘Hartle-

Hawking-like’ state |H〉, it is convenient to consider the differences in the expectation values

of observables between |H〉 and |FT〉.
We can use the expectation value of a general observable Ô with classical mode contri-

bution oω`m to construct an explicit expression for the difference 〈Ô〉|H〉−|FT〉 in expectation

values in the ‘Hartle-Hawking-like’ state (5.85) and the ‘Frolov-Thorne’ state (5.86) as

〈H| Ô |H〉 − 〈FT| Ô |FT〉 = −
∞∑

`=0

∑̀

m=−`

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω oin

ω`m coth
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πω̃

κ

∣∣∣∣ . (5.160)

Since the expectation value 〈ŜC〉|FT〉 in the |FT〉 state is divergent, we will only consider

differences involving 〈Ĵµ〉|FT〉 and 〈T̂µν 〉|FT〉, which are well defined from §5.6. In §5.2.3, we

evaluated the asymptotic in-mode contributions to the classical quantities corresponding

to the quantum observables Ĵµ and T̂µν as r → r+. Using the near-horizon in-mode

contribution (5.63) to the current Jµ, (5.160) becomes

〈H| Ĵµ |H〉 − 〈FT| Ĵµ |FT〉

∼ − q

64π3r2

∞∑

`=0

∫ max
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qQ
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,0
}

min
{
qQ
r+
,0
} dω
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∣∣Bin
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∣∣2
(
−f(r)−1 1 0 0

)ᵀ
.

(5.161)

We can check whether the difference 〈Ĵµ〉|H〉−|FT〉 of the current operator is regular on the

horizon by changing to Kruskal coordinates; defining the quantity K ′ as

K ′ = − q

64π3r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
qQ
r+
,0
} dω

ω̃

|ω| coth

∣∣∣∣
πω̃

κ

∣∣∣∣ (2`+ 1)
∣∣Bin

ω`

∣∣2 , (5.162)

and using (5.28), we have

〈ĴU 〉|H〉−|FT〉 ∼ κU
[
f(r)−1K ′ + f(r)−1K ′

]
= 2κK ′Uf(r)−1 , (5.163a)

〈ĴV 〉|H〉−|FT〉 ∼ κV
[
−f(r)−1K ′ + f(r)−1K ′

]
= O(1) . (5.163b)

The difference 〈ĴU 〉|H〉−|FT〉 (5.163a) contains a factor of f(r)−1, which diverges as r → r+;

the future horizon is a surface of constant U = 0, and so the factor of U cancels the

divergence of the f(r)−1 such that the difference is regular on H+ while, on the past

horizon H−, the difference diverges. In contrast, the leading order divergences cancel

in the difference 〈ĴV 〉|FT〉−|U−〉 (5.163b) such that it is regular everywhere. Therefore,

the differences 〈Ĵµ〉|H〉−|FT〉 in the expectation values of the current operator (5.161) are

regular on H+ but diverge on H−.
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Using the near-horizon in-mode contribution (5.70) to the SET Tµν , (5.160) becomes

〈H| T̂µν |H〉 − 〈FT| T̂µν |FT〉 ∼ − 1

16π2r2

∞∑
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∫ max
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}
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∣∣Bin
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. (5.164)

The differences (5.161) and (5.164) are regular when ω = 0 from the relation (3.75); the∣∣Bin
ω`

∣∣2 is of O
(
ω 2
)
, which cancels the factor of O

(
ω−1

)
in the denominators as ω → 0.

We can check whether the difference 〈T̂µν 〉|H〉−|FT〉 of the SET is regular on the horizon

by changing to Kruskal coordinates; defining the quantity L′ as

L′ = − 1

16π2r2

∞∑

`=0

∫ max
{
qQ
r+
,0
}

min
{
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From (5.69), Ttt ∼ L′ , Ttr ∼ f(r)−1 L′ and Trr ∼ f(r)−2 L′. Using (5.30), we have

〈T̂UU 〉|H〉−|FT〉 ∼
1

4
κ−2U−2

[
L′ − 2f(r)f(r)−1 L′ + f(r)2f(r)−2 L′

]
= O(1) , (5.166a)

〈T̂UV 〉|H〉−|FT〉 ∼ −
1

4
κ−2U−1V −1

[
L′ − f(r)2f(r)−2 L′

]
= O(1) , (5.166b)

〈T̂V V 〉|H〉−|FT〉 ∼
1

4
κ−2V −2

[
L′ + 2f(r)f(r)−1 L′ + f(r)2f(r)−2 L′

]
= κ−2V −2L′.

(5.166c)

The leading order divergences cancel in the differences 〈T̂UU 〉|H〉−|FT〉 (5.166a) and

〈T̂UV 〉|H〉−|FT〉 (5.166b). The difference (5.166c), which contains a factor of V −2, diverges

on the past horizon since H− is a surface of constant V = 0, while it may be regular on

the future horizon H+. Therefore, the differences 〈T̂µν〉|H〉−|FT〉 in the expectation values

of the SET (5.164) diverge on H− but may be regular on H+.

Thus the differences in the expectation values of both the current 〈Ĵµ〉|H〉−|FT〉 and

the SET 〈T̂µν〉|H〉−|FT〉 diverge on the past horizon H− but may be regular on the future

horizon H+. This suggests that the ‘Hartle-Hawking-like’ state may be regular on H+.

5.7.2 Fluxes of charge and energy in the ‘Hartle-Hawking-like’ state

We would like to evaluate the flux of charge K|H〉 and the flux of energy L|H〉 in the

‘Hartle-Hawking-like’ state |H〉 directly. Using the expression for the expectation value of

the radial component of the current in the Frolov-Thorne state 〈Ĵr〉|FT〉 (5.155) and the

radial component of the difference 〈Ĵµ〉|H〉−|FT〉 (5.161), we have
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〈Ĵr〉|H〉 =
(
〈H| Ĵr |H〉 − 〈FT| Ĵr |FT〉

)
+ 〈FT| Ĵr |FT〉

∼ − q

64π3r2
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∫ max
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min
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A similar calculation shows that the expectation value 〈T̂ rt 〉|H〉 also vanishes. Therefore,

we find that both the flux of charge K|H〉 and the flux of energy L|H〉 vanish, i.e.

K|H〉 = 0, L|H〉 = 0. (5.168)

We therefore conclude, from (5.168), that the ‘Hartle-Hawking-like’ state |H〉 is a time-

reversal invariant, equilibrium state. Since, we have shown that |H〉 is likely to be regular

on the future horizon H+, then it being time-reversal invariant implies that indeed be

regular everywhere on the horizon. However, only a study of the renormalised expectation

values of observables with respect to |H〉 directly could test this conjecture.

5.7.3 Discussion of Figures 5.8 and 5.9

The difference 〈Ĵr〉|H〉−|FT〉 is positive, so the difference in the flux of charge K|H〉−K|FT〉 is

negative. However, from (5.168), K|H〉 vanishes and so K|H〉−K|FT〉 reduces to −K|FT〉 < 0,

meaning that the flux of charge K|FT〉 is positive for a positive value of the black hole charge

Q and positive values of the scalar field charge q. In fact, as we described in §5.6, K|FT〉
always has the same sign as Q and so, from (5.13), the thermalised flux of charge in the

superradiant modes in the Frolov-Thorne state |FT〉 acts to discharge the RN black hole.

Similarly, L|FT〉 is always positive and so the thermalised flux of energy in the superradiant

modes in the Frolov-Thorne state |FT〉 causes the RN black hole to lose energy.

The difference 〈Ĵ t〉|H〉−|FT〉 in the time component of the current as well as the differ-

ences in the diagonal elements of the stress-energy tensor approach constant values near

infinity. The difference in the charge density 〈Ĵ t〉|H〉−|FT〉 is negative and the difference in

the energy density 〈T̂ tt 〉|H〉−|FT〉 is positive away from the horizon and considerably larger

than the corresponding difference 〈Ĵ t〉|FT〉−|U−〉 between |FT〉 and |U−〉.
In §5.6, we explained that we expect the Frolov-Thorne |FT〉 to be regular on H+

but singular on H−. If we are correct then, from the expressions in (5.163) and (5.166)

as well as the plots in Figure 5.9, we expect that the ‘Hartle-Hawking-like’ state |H〉 will

be similarly regular on the future horizon H+ with its behaviour on the past horizon H−
unclear. However, given the time-reversal invariance of |H〉, we conclude that |H〉 is regular

everywhere on the horizon, i.e. both the past and future horizons H±.

In conclusion, while we have been able to define an equilibrium state that is also time-

reversal invariant in the form of the ‘Hartle-Hawking-like’ state |H〉, we cannot claim |H〉
to be an analogue of the Schwarzschild Hartle-Hawking state |Hs〉. The Kay-Wald theorem

proves the nonexistence of a stationary Hadamard state in Kerr spacetime for a neutral

scalar field [56, 57]. It is natural to anticipate that a generalised form of this theorem

would apply to a charged scalar field. One of the assumptions in the Kay-Wald theorem

is the positivity condition, which is discussed in detail in App. B of [49]. When defining
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Figure 5.8. Difference in expectation values of nonzero components of the current Ĵ and various

components of the stress-energy tensor T̂µν between the ‘Hartle-Hawking-like’ state |H〉 and the

Frolov-Thorne state |FT〉 in Reissner-Nordström spacetime for black hole charge Q = 0.8M and

positive values of the scalar field charge q. All expectation values are multiplied by powers of f(r)

so that the resulting quantities are regular at r = r+.
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Figure 5.9. Difference in expectation values for the Kruskal components of the current Ĵ and

stress-energy tensor T̂µν between the ‘Hartle-Hawking-like’ state |H〉 and the Frolov-Thorne state

|FT〉 in Reissner-Nordström spacetime for black hole charge Q = 0.8M and positive values of the

scalar field charge q. All expectation values are multiplied by powers of f(r) so that the resulting

quantities are regular at r = r+.
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the |H〉 in §4.5.3, we included the eta-function ηωω̃ in the commutation relations of the

operators associated to the in-modes. We anticipate that the nonstandard commutation

relations will cause the state not to satisfy the usual positivity condition, thus not being

in violation of a generalised form of the Kay-Wald theorem which we think would preclude

the existence of a thermal equilibrium state for a charged scalar field.



Part III

Hadamard renormalisation of a

charged scalar field
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Chapter 6

The Hadamard parametrices

In §6.1, we outline the form of the Hadamard parametrices in all three cases, namely two

spacetime dimensions, even numbers of dimensions and odd numbers of dimensions. In

§6.2, we compare the properties of real symmetric biscalars, which arise in the Hadamard

parametrices associated to neutral scalar fields, to complex sesquisymmetric biscalars,

which arise in the Hadamard parametrices associated to complex scalar fields. We give an

assortment of identities that will be useful in Part III in 6.3.

6.1 Introduction

Consider a massive, charged field Φ in a general background spacetime and with arbitrary

coupling ξ to the scalar curvature. We henceforth assume that the field is in a Hadamard

state; it is shown in [86] that this is a reasonable assumption for physical states. The

equation satisfied by the scalar field is given by

(
DµD

µ −m2 − ξR
)

Φ = 0. (6.1)

The form of the electromagnetic potential Aµ is also arbitrary. In line with the general

philosophy of QFTCS, we consider the field Φ to have been quantised but the background

spacetime and electromagnetic field Aµ remain classical. While the form of the scalar field

equation (6.1) is changed by the inclusion of a scalar field charge q, this does not affect

the principal part of the inhomogeneous scalar field equation in (1.18). Thus the Feynman

Green’s function G
(d)
F (x, x′) satisfies

(
DµD

µ −m2 − ξR
)
G

(d)
F

(
x, x′

)
= − [−g(x)]−

1
2 δ(d)

(
x− x′

)
, (6.2)

and the Hadamard parametrices in any number of spacetime dimensions are identical to

that in [68]. However, in the charged case, the biscalar functions U (d)(x, x′), V (d)(x, x′) and

W (d)(x, x′) are sesquisymmetric in the interchange of x and x′, as opposed to symmetric

in the neutral case. Then we give the Hadamard parametrices in each case as follows.

In d = 2, the Hadamard expansion of the Feynman propagator G
(2)
F (x, x′) is given by

G
(2)
F

(
x, x′

)
=

iα2

2

{
V (2)

(
x, x′

)
ln

[
σ(x, x′)
`2ren

+ iε

]
+W (2)

(
x, x′

)}
, (6.3)
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where V (2)(x, x′) ,W (2)(x, x′) are sesquisymmetric biscalars regular as x′ → x, given by

V (2)
(
x, x′

)
=
∞∑

n=0

V (2)
n

(
x, x′

)
σn
(
x, x′

)
, (6.4a)

W (2)
(
x, x′

)
=

∞∑

n=0

W (2)
n

(
x, x′

)
σn
(
x, x′

)
. (6.4b)

In even dimensions with d = 2p and p 6= 1, the Hadamard expansion of the Feynman

propagator G
(2p)
F (x, x′) is given by

G
(2p)
F

(
x, x′

)
=

iαd
2

{
U (2p)(x, x′)

[σ(x, x′) + iε]p−1 + V (2p)
(
x, x′

)
ln

[
σ(x, x′)
`2ren

+ iε

]
+W (2p)

(
x, x′

)
}
,

(6.5)

where U (2p)(x, x′), V (2p)(x, x′) and W (2p)(x, x′) are sesquisymmetric biscalars, regular in

the limit x′ → x and which can be expanded as

U (2p)
(
x, x′

)
=

(p−2)∑

n=0

U (2p)
n

(
x, x′

)
σn
(
x, x′

)
, (6.6a)

V (2p)
(
x, x′

)
=
∞∑

n=0

V (2p)
n

(
x, x′

)
σn
(
x, x′

)
, (6.6b)

W (2p)
(
x, x′

)
=

∞∑

n=0

W (2p)
n

(
x, x′

)
σn
(
x, x′

)
. (6.6c)

In odd dimensions with d = 2p + 1 and p ≥ 1, the Hadamard expansion of the Feynman

propagator G
(2p+1)
F (x, x′) is given by

G
(2p+1)
F

(
x, x′

)
=

iαd
2

{
U (2p+1)(x, x′)

[σ(x, x′) + iε]p−
1
2

+W (2p+1)
(
x, x′

)
}
, (6.7)

where U (2p+1)(x, x′) and W (2p+1)(x, x′) are symmetric biscalars, regular in the limit x′ → x

and which can be expanded as

U (2p+1)
(
x, x′

)
=
∞∑

n=0

U (2p+1)
n

(
x, x′

)
σn
(
x, x′

)
, (6.8a)

W (2p+1)
(
x, x′

)
=
∞∑

n=0

W (2p+1)
n

(
x, x′

)
σn
(
x, x′

)
. (6.8b)

We will adopt the convention of referring to the U (d)(x, x′), V (d)(x, x′) and W (d)(x, x′) in

the Hadamard expansion of G
(d)
F as the biscalar functions. Similarly, we will refer to the

coefficients of their expansions, namely the U
(d)
n (x, x′), V (d)

n (x, x′) and W
(d)
n (x, x′), as the

Hadamard coefficients. In equations (6.3), (6.5) and (6.7), the coefficient αd is given by

αd =





1
2π for d = 2,

Γ
[

d−2

2(2π)d/2

]
for d 6= 2,

(6.9)



The Hadamard parametrices 183

while the factor iε with ε→ 0+ is introduced to give G
(d)
F (x, x′) a singularity structure that

is consistent with the definition of the Feynman propagator as a time-ordered product.

The biscalar functions U (d)(x, x′) and V (d)(x, x′) appearing in equations (6.3), (6.5)

and (6.7) are geometric quantities and therefore uniquely determined. They contain the

singular behaviour of Feynman Green’s function G
(d)
F (x, x′) entirely, which means we need

to find U (d)(x, x′) and V (d)(x, x′) explicitly. Decanini and Folacci have given the general

procedure for a neutral scalar field in [68].

We would like to extend this for a scalar field with an arbitrary charge q. We employ

a covariant Taylor expansion method. Substituting the Hadamard expansion of G
(d)
F into

(6.2) gives an expression in terms of σ(x, x′). Equating powers of σ(x, x′) will lead us

to the equations that U (d)(x, x′) and V (d)(x, x′) must satisfy. Bearing in mind practical

applications, it will be useful to expand the U
(d)
n (x, x′) and V

(d)
n (x, x′) as follows

U (d)
n

(
x, x′

)
=
∞∑

j=0

U
(d)
njα1...αj

(x)σ ;α1
(
x, x′

)
. . . σ ;αj

(
x, x′

)
, (6.10a)

V (d)
n

(
x, x′

)
=

∞∑

j=0

V
(d)
njα1...αj

(x)σ ;α1
(
x, x′

)
. . . σ ;αj

(
x, x′

)
. (6.10b)

6.2 Properties of sesquisymmetric biscalars

Before we proceed to derive explicit expressions for the biscalar functions, we can examine

some of the properties that we expect the Feynman Green’s function G
(d)
F (x, x′) and the

biscalar functions U (d)(x, x′), V (d)(x, x′) and W (d)(x, x′), contained within (6.3), (6.5) and

(6.7), to satisfy. In the case of a neutral scalar field, both G
(d)
F (x, x′) as well as U (d)(x, x′),

V (d)(x, x′) and W (d)(x, x′) are real, symmetric biscalars; that is to say, they are symmetric

in the interchange of the spacetime points x and x′. Given an arbitrary real, symmetric

biscalar function S(x, x′), we can write this condition compactly as

S
(
x, x′

)
= S

(
x′, x

)
. (6.11)

The condition (6.11) has interesting corollaries; suppose the biscalar S(x, x′) admits a

covariant Taylor series expansion of the form

S
(
x, x′

)
= s0(x) + s1µ(x)σ ;µ + s2(µν)(x)σ ;µσ ;ν + s3(µνρ)(x)σ ;µσ ;νσ ;ρ + . . . , (6.12)

where it is sufficient, for our purposes, to consider the lowest order terms in the covariant

Taylor expansion. Then the symmetry condition (6.11) of the biscalar S(x, x′) constrains

the expansion coefficients in (6.12) such that we can express odd coefficients in terms of

even ones. The expressions relating the lowest order coefficients are given explicitly by [68]

s1µ = −1

2
s0 ;µ, (6.13a)

s3(µνρ) = −1

2
s2(µν ;ρ) +

1

24
s0 ;(µνρ). (6.13b)
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Equations (6.11) - (6.13) no longer hold in the case of a charged scalar field, where

the aforementioned real, symmetric biscalar functions become complex, sequisymmetric

biscalars. Given an arbitrary complex, sequisymmetric biscalar fucntion K(x, x′), we have

K
(
x, x′

)
= K∗

(
x′, x

)
. (6.14)

Now, suppose the biscalar K(x, x′) admits a covariant Taylor expansion of the form

K
(
x, x′

)
= k0(x) + k1µ(x)σ ;µ + k2(µν)(x)σ ;µσ ;ν + k3(µνρ)(x)σ ;µσ ;νσ ;ρ + . . . , (6.15)

where, again, it is sufficient for our purposes to consider the lowest order terms in the

covariant Taylor expansion. We deduce an interesting property about the lowest order

expansion coefficient k0(x) in (6.15) by working in the coincidence limit x′ → x. Since σ ;µ

vanishes as x′ → x, we need only keep track of the lowest order term in (6.15). Taking the

complex conjugate of (6.15) and interchanging the spacetime points x and x′, we obtain

K∗
(
x′, x

)
= k∗0

(
x′
)

+ . . . , (6.16)

Now taking the coincidence limit, (6.15) and (6.16) reduce to

K(x, x) = k0(x) , (6.17a)

K∗
(
x′, x′

)
= K∗(x, x) = k∗0(x) , (6.17b)

respectively. By (6.14), equations (6.17a) and (6.17b) are equal, meaning

k0(x) = k∗0(x) . (6.18)

Hence, the lowest order expansion coefficient k0(x) of a general complex, sesquisymmetric

biscalar K(x, x′) is always real.

In general, the rest of the expansion coefficients in (6.15) are complex. However, since

K(x, x′) should reduce to a real, symmetric biscalar when considering only its real part,

then the real parts of the expansion coefficients in (6.15) satisfy analogous relations to

(6.13). These are given explicitly by

<[k1µ] = −1

2
k0 ;µ, (6.19)

<
[
k3(µνρ)

]
= −1

2
<
[
k2(µν ;ρ)

]
+

1

24
k0 ;(µνρ), (6.20)

where we have used the statement that k0(x) is real (6.18) in simplifying (6.19) and

(6.20). Furthermore, we find an additional relation between the imaginary parts of the

lowest order coefficients given by

=
[
k2(µν)

]
=

1

4i

[
k0 ;µν + 2 k∗1(µ ;ν)

]
. (6.21)

We can use (6.19) to simplify (6.21) by
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=
[
k2(µν)

]
=

1

4i

[
∇µ k0 ;ν + 2 k∗1(µ ;ν)

]

=
1

4i

{
−2∇(µ<

[
k1ν)

]
+ 2∇(µ<

[
k1ν)

]
− 2 i∇(µ=

[
k1ν)

]}

=
1

4i

{
−2 i∇(µ=

[
k1ν)

]}
. (6.22)

Thus, for the imaginary parts of the lowest order expansion coefficients in (6.15), we obtain

=
[
k2(µν)

]
= −1

2
=
[
k1(µ ;ν)

]
. (6.23)

6.3 Useful identities

In this section, we give a number of identities that will be useful throughout Part III.

When substituting the various Hadamard parametrices (6.3–6.8), the following identity

will be useful; given an arbitrary biscalar K(x, x′) and suppressing arguments, we have

∇µ∇µK − iq (∇µAµ)K − 2 iqAµ[∇µK]− q2AµAµK −
(
m2 + ξR

)
K

= ∇µ∇µK − iq (∇µAµ)K − iqAµ[∇µK]− iq∇µ[AµK] + iq (∇µAµ)K

− q2AµAµK −
(
m2 + ξR

)
K

= ∇µ∇µK − iqAµ[∇µK]− iq∇µ[AµK]− q2AµAµK −
(
m2 + ξR

)
K

=
(
DµD

µ −m2 − ξR
)
K. (6.24)

In order to derive explicit expressions for the expansion coefficients (6.10) of the

Hadamard coefficients U
(d)
n (x, x′), V (d)

n (x, x′), we will require the covariant expansion of

the second derivative σ;µν of Synge’s world function (1.20) which is given by [92]

σ;µν = gµν −
1

3
Rµ(θ|ν|φ)σ

;θσ ;φ +
1

12
Rµ(θ|ν|φ ;ψ)σ

;θσ ;φσ ;ψ

−
(

1

60
Rµ(θ|ν|φ ;ψγ) +

1

45
Rµ(θ|ρ|φR

ρ
ψ|ν|γ)

)
σ ;θσ ;φσ ;ψσ ;γ + . . . (6.25)

We also require the covariant expansion of the quantity ∆−
1
2 ∆

1
2 ;µσ

;µ, where we remind

the reader that ∆(x, x′) is the van Vleck-Morette determinant (1.28); this is given by [92]

∆−
1
2 ∆

1
2 ;µσ

;µ =
1

6
Rµνσ

;µσ ;ν − 1

24
R(µν;ρ)σ

;µσ ;νσ ;ρ

+

[
1

120
R(µν;ρτ) +

1

90
Rλ(µ|β|νR

β
ρ|λ|τ)

]
σ ;µσ ;νσ ;ρσ ;τ + . . . (6.26)

We can relate the gauge covariant derivatives to the EM field strength tensor by
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DµAν −DνAµ = (∇µ − iqAµ)Aν − (∇ν − iqAν)Aµ

= ∇µAν − iqAµAν −∇νAµ + iqAνAµ

= ∇µAν −∇νAµ
= Fµν . (6.27)

The commutator of two gauge covariant derivatives acting on the gauge field is given by

iq [Dµ , Dν ]Aρ = iq [∇µ ,∇ν ]Aρ + q2 [∇µ , Aν ]Aρ + q2 [Aµ ,∇ν ]Aρ − iq3 [Aµ , Aν ]Aρ

= −iqRλρµνAλ + q2∇µAνAρ − q2Aν∇µAρ + q2Aµ∇νAρ − q2∇νAµAρ
= −iqRλρµνAλ + q2(∇µAν)Aρ − q2(∇νAµ)Aρ

= −iqRλρµνAλ + q2AρFµν . (6.28)

Raising the index from the expression in (6.28), we also have

iq [Dµ , Dν ]Aρ = iqRρλµνA
λ + q2AρFµν . (6.29)

Finally, the following quantity will be very useful:

iq [Dµ , Dν ]DρAτ = iq [∇µ − iqAµ ,∇ν − iqAν ]DρAτ

= iq [∇µ ,∇ν ]DρAτ + q2 [Aµ ,∇ν ]DρAτ + q2 [∇µ , Aν ]DρAτ

− iq3 [Aµ , Aν ]DρAτ

= −iq
(
RλρµνDλAτ +RλτµνDρAλ

)
+ q2Aµ∇νDρAτ − q2∇νAµDρAτ

+ q2∇µAνDρAτ − q2Aν∇µDρAτ

= −iq
(
RλρµνDλAτ +RλτµνDρAλ

)
− q2(∇νAµ)DρAτ + q2(∇µAν)DρAτ

= −iq
(
RλρµνDλAτ +RλτµνDρAλ

)
+ q2FµνDρAτ . (6.30)

Using (6.30), we have

iq [Dµ , Dν ]DρA
τ = iq

(
−RλρµνDλA

τ +RτλµνDρA
λ
)

+ q2FµνDρA
τ . (6.31)

Using (6.30), we also have

iq [Dµ , Dν ]DρAτ = iq
(
RρλµνD

λAτ −RλτµνDρAλ

)
+ q2FµνD

ρAτ . (6.32)

When simplifying products of Riemann tensor, we will make extensive use of the

identity

RµνρτRρνµλ =
1

2
RµνρτRµνρλ . (6.33)
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We can prove this by noting

RµνρτRµνρλ = −RµνρτRνρµλ −RµνρτRρµνλ
= RµνρτRρνµλ +RνµρτRρµνλ

= RµνρτRρνµλ +RµνρτRρνµλ

= 2RµνρτRρνµλ. (6.34)



Chapter 7

Renormalisation counterterms

In §7.1, we develop the Hadamard renormalisation procedure in two dimensions and derive

the explicit renormalisation counterterms needed to evaluate the RSET. In 7.2, we de-

velop the Hadamard renormalisation procedure in even dimensions and derive the explicit

renormalisation counterterms in d = 4. In 7.3, we develop the Hadamard renormalisa-

tion procedure in odd dimensions and derive the explicit renormalisation counterterms in

d = 3.

7.1 Two dimensions

In this section, we develop the general formalism for the Hadamard renormalisation pro-

cedure of charged scalar fields in a general background spacetime of two dimensions. We

derive equations satisfied by the V (2)(x, x′) and W (2)(x, x′) biscalars in the Hadamard

parametrix (6.3) and we derive explicit expressions for the renormalisation counterterms

contained in the V (2)(x, x′) biscalar up to the order required to evaluate the RSET.

We would like to evaluate the inhomogeneous scalar field equation (6.2) for the d = 2

Hadamard parametrix (6.3). From (6.9), we have α2 = 1
2π . Then (6.2) becomes

(
DµD

µ −m2 − ξR
)
G

(2)
F

(
x, x′

)

=
i

4π

(
DµD

µ −m2 − ξR
)[
V (2)

(
x, x′

)
lnσ

(
x, x′

)
+W (2)

(
x, x′

)]

= − 1√
−g(x)

δ (2)
(
x− x′

)
. (7.1)

It will be convenient instead to evaluate the equation

− 4πi
(
DµD

µ −m2 − ξR
)
G

(2)
F

(
x, x′

)

=
(
DµD

µ −m2 − ξR
)[
V (2)

(
x, x′

)
lnσ

(
x, x′

)
+W (2)

(
x, x′

)]

=
4πi√
−g(x)

δ(2)
(
x− x′

)
. (7.2)

Then, suppressing arguments of the biscalar functions, we begin by calculating the quantity

188
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−4πiDµG
(2)
F = (∇µ − iqAµ)

[
V (2) lnσ +W (2)

]

=
[
∇µV (2)

]
lnσ + σ−1 V (2)(∇µσ) +∇µW (2) − iqAµV

(2) lnσ − iqAµW
(2).

(7.3)

Acting on (7.3) with another gauge derivative, we obtain

−4πiDµD
µG

(2)
F =

[
∇µ∇µV (2)

]
lnσ + 2σ−1

[
∇µV (2)

]
(∇µσ)− σ−2 V (2)(∇µσ)(∇µσ)

+ σ−1 V (2)(∇µ∇µσ) +∇µ∇µW (2) − iq (∇µAµ)V (2) lnσ

− 2 iqAµ

[
∇µV (2)

]
lnσ − 2 iq σ−1AµV

(2)(∇µσ)− iq (∇µAµ)W (2)

− 2 iqAµ

[
∇µW (2)

]
− q2AµAµV

(2) lnσ − q2AµAµW
(2). (7.4)

We can simplify (7.4) using the identities involving Synge’s world function (1.20) and the

van Vleck-Morette determinant (1.28); we obtain

−4πiDµD
µG

(2)
F =

[
∇µ∇µV (2)

]
lnσ + 2σ−1

[
∇µV (2)

]
(∇µσ)− 2σ−1 V (2)∆−

1
2 ∆

1
2

;µ (∇µσ)

+∇µ∇µW (2) − iq (∇µAµ)V (2) lnσ − 2 iqAµ

[
∇µV (2)

]
lnσ

− 2 iq σ−1AµV
(2)(∇µσ)− iq (∇µAµ)W (2) − 2 iqAµ

[
∇µW (2)

]

− q2AµAµV
(2) lnσ − q2AµAµW

(2). (7.5)

This allows us to evaluate the l.h.s of the inhomogeneous Klein-Gordon equation (6.2) for

d = 2 as follows

−4πi (DµD
µ −m2 − ξR)G

(2)
F

=
[
∇µ∇µV (2)

]
lnσ + 2σ−1

[
∇µV (2)

]
(∇µσ)− 2σ−1 V (2)∆−

1
2 ∆

1
2

;µ (∇µσ) +∇µ∇µW (2)

− iq (∇µAµ)V (2) lnσ − 2 iqAµ

[
∇µV (2)

]
lnσ − 2 iq σ−1AµV

(2)(∇µσ)− iq (∇µAµ)W (2)

− 2 iqAµ

[
∇µW (2)

]
− q2AµAµV

(2) lnσ − q2AµAµW
(2) −

(
m2 + ξR

)
V (2) lnσ

−
(
m2 + ξR

)
W (2). (7.6)

We can simplify (7.6) by use of the gauge covariant derivative, which then reduces to

− 4πi
(
DµD

µ −m2 + ξR
)
G

(2)
F

=
[(
DµD

µ −m2 − ξR
)
V (2)

]
lnσ +

(
DµD

µ −m2 − ξR
)
W (2)

+ 2σ−1

[(
Dµ −∆−

1
2 ∆

1
2

;µ

)
V (2)

]
σ ;µ. (7.7)

From the r.h.s of the inhomogeneous scalar field equation (6.2), we know that (7.7) must

be equal to zero when the two points x and x′ are separated. Since Synge’s world function
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is nonzero when x′ 6= x, we deduce that (7.7) must vanish identically at each power of

σ(x, x′). This allows us to generate two equations by considering terms proportional to

lnσ and, separately, the remaining terms, i.e. those not proportional to lnσ. In particular,

the terms that are proportional to lnσ must vanish independently since no other terms

can contain this factor; this allows us to write

(
DµD

µ −m2 − ξR
)
V (2)

(
x, x′

)
= 0, (7.8)

which means that the biscalar V (2)(x, x′) solves the homogeneous scalar field equation.

Equation (7.8) generalises (35) in [68] and it enables us to derive the recurrence relations

for the Hadamard coefficients V
(2)
n (x, x′). Since the biscalar V (2)(x, x′) admits a power

series expansion in σ(x, x′) (6.4a), we can derive the recurrence relation for the V
(2)
n (x, x′)

by expanding the terms in (7.8). Suppressing arguments, we first need to evaluate

DµV
(2) =

∞∑

n=0

{[
∇µV (2)

n

]
σn + nV (2)

n σn−1 (∇µσ)− iqAµV
(2)
n σn

}
, (7.9)

and then

DµD
µV (2) =

∞∑

n=0

{[
∇µ∇µV (2)

n

]
σn +

[
∇µV (2)

n

]
nσn−1(∇µσ) + n

[
∇µV (2)

n

]
σn−1 (∇µσ)

+ n (n− 1)V (2)
n σn−2 (∇µσ)(∇µσ) + nV (2)

n σn−1 (∇µ∇µσ)

− iq (∇µAµ)V (2)
n σn − iqAµ

[
∇µV (2)

n

]
σn − iqAµ nV

(2)
n σn−1 (∇µσ)

− iqAµ

[
∇µV (2)

n

]
σn − iqAµ nV

(2)
n σn−1 (∇µσ)− q2AµAµV

(2)
n σn

}
. (7.10)

Then, using (1.20), (1.28), (6.24) and the gauge covariant derivative, (7.10) becomes

DµD
µV (2) =

∞∑

n=0

{[
DµDµV

(2)
n

]
σn + 2n

[
DµV

(2)
n

]
σn−1(∇µσ) + 2n2 V (2)

n σn−1

− 2nV (2)
n ∆−

1
2

(
∇µ∆

1
2

)
σn−1 (∇µσ)

}
. (7.11)

Substituting (7.11) into (7.8), we obtain

0 =

∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
V (2)
n

]
σn + 2n

[
DµV

(2)
n

]
σn−1(∇µσ) + 2n2 V (2)

n σn−1

− 2nV (2)
n ∆−

1
2

(
∇µ∆

1
2

)
σn−1 (∇µσ)

}
. (7.12)

Performing the relabelling n→ n+ 1 in terms proportional to σn−1 in (7.12), we obtain

0 =

∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
V (2)
n

]
σn + 2(n+ 1)

[
DµV

(2)
n+1

]
σn(∇µσ)

+ 2(n+ 1)2 V
(2)
n+1 σ

n − 2(n+ 1)V
(2)
n+1∆−

1
2

(
∇µ∆

1
2

)
σn (∇µσ)

}
. (7.13)
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Since (7.13) must hold for each power of σ, this enables us to obtain the recurrence relation

for the Hadamard coefficients V
(2)
n (x, x′) of the biscalar function V (2)(x, x′). We have

2(n+ 1)2 V
(2)
n+1 + 2(n+ 1)σ ;µDµV

(2)
n+1 − 2(n+ 1)V

(2)
n+1 ∆−

1
2 ∆

1
2
;µ σ

;µ

+
(
DµD

µ −m2 − ξR
)
V (2)
n = 0 for n in N. (7.14)

This generalises equation (33a) in [68]. Returning to (7.7), the remaining terms, i.e. those

not proportional to lnσ, give

σ
(
DµD

µ −m2 − ξR
)
W (2) = − 2σ ;µDµV

(2) + 2V (2)∆−
1
2 ∆

1
2

;µ σ
;µ, (7.15)

which generalises (36) in [68]. It will be convenient to rewrite (7.15) as

(
DµD

µ −m2 − ξR
)
W (2) = −2σ−1σ ;µDµV

(2) + 2σ−1V (2)∆−
1
2 ∆

1
2

;µ σ
;µ, (7.16)

which we refer to as the wave equation in d = 2, and from which we will derive identities

concerning the expansion coefficients of the biscalar W (2)(x, x′) in Chapter 8. We derive

the recurrence relation for the Hadamard coefficients W
(2)
n (x, x′) by inserting the power

series expansion for V (2)(x, x′) and W (2)(x, x′) into (7.16). Since the power series expan-

sions for the biscalars V (2)(x, x′) (6.4a) and the W (2)(x, x′) (6.4b) are structurally similar

expressions, we can use (7.11) to evaluate the DµD
µW (2), remembering to interchange the

V
(2)
n for the W

(2)
n . Then the first term on the l.h.s of (7.16) is given by

(
DµD

µ −m2 − ξR
)
W (2)

=

∞∑

n=0

{[(
DµDµ −m2 − ξR

)
W (2)
n

]
σn + 2n

[
DµW

(2)
n

]
σn−1(∇µσ)

+ 2n2W (2)
n σn−1 − 2nW (2)

n ∆−
1
2

(
∇µ∆

1
2

)
σn−1 (∇µσ)

}
. (7.17)

The first term on the r.h.s of (7.16) is given by

2σ−1σ ;µDµV
(2) =

∞∑

n=0

{
2σ−1σ ;µ∇µ

[
V (2)
n σn

]
− 2 iq σ−1σ ;µAµV

(2)
n σn

}

=
∞∑

n=0

{
2
[
∇µV (2)

n

]
σn−1σ ;µ + 2nV (2)

n σn−2σ ;µσ ;µ − 2 iqAµV
(2)
n σn−1σ ;µ

}

=

∞∑

n=0

{
2
[
DµV

(2)
n

]
σn−1σ ;µ + 4nV (2)

n σn−1
}
. (7.18)

The second term on the r.h.s of (7.16) is given by

− 2σ−1V (2)σn∆−
1
2 ∆

1
2

;µ σ
;µ = −2

∞∑

n=0

V (2)
n σn−1∆−

1
2 ∆

1
2

;µ σ
;µ. (7.19)

Inserting (7.17), (7.18) and (7.19) into (7.16), we obtain
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0 =
∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
W (2)
n

]
σn + 2n

[
DµW

(2)
n

]
σn−1(∇µσ) + 2n2W (2)

n σn−1

− 2nW (2)
n ∆−

1
2

(
∇µ∆

1
2

)
σn−1 (∇µσ) + 2

[
DµV

(2)
n

]
σn−1σ ;µ + 4nV (2)

n σn−1

− 2V (2)
n σn−1∆−

1
2 ∆

1
2

;µ σ
;µ

}
. (7.20)

Performing the relabelling n→ n+ 1 in terms proportional to σn−1 in (7.20), we obtain

0 =

∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
W (2)
n

]
σn + 2(n+ 1)

[
DµW

(2)
n+1

]
σn(∇µσ)

+ 2(n+ 1)2W
(2)
n+1 σ

n − 2(n+ 1)W
(2)
n+1 ∆−

1
2

(
∇µ∆

1
2

)
σn(∇µσ) + 2

[
DµV

(2)
n+1

]
σnσ ;µ

+ 4(n+ 1)V
(2)
n+1σ

n − 2V
(2)
n+1σ

n∆−
1
2 ∆

1
2

;µ σ
;µ

}
+ 2σ−1

(
σ ;µDµ −∆−

1
2 ∆

1
2

;µσ
;µ

)
V

(2)
0 .

(7.21)

Since (7.21) must hold for each power of σ, the terms proportional to σn enable us to

obtain the recurrence relation for the Hadamard coefficients W
(2)
n (x, x′); we have

0 = 2(n+ 1)2W
(2)
n+1 + 2(n+ 1)σ ;µDµW

(2)
n+1 − 2(n+ 1)W

(2)
n+1 ∆−

1
2 ∆

1
2
;µ σ

;µ

+ 4(n+ 1)V
(2)
n+1 + 2σ ;µDµV

(2)
n+1 − 2V

(2)
n+1 ∆−

1
2 ∆

1
2

;µ σ
;µ

+
[(
DµD

µ −m2 − ξR
)
W (2)
n

]
for n in N. (7.22)

This generalises equation (34) in [68]. The lowest order terms in σ(x, x′) in (7.21), i.e. those

proportional to σ−1, give the boundary condition for the V
(2)

0 (x, x′) Hadamard coefficient:

0 = σ ;µDµV
(2)

0 − V (2)
0 ∆−

1
2 ∆

1
2

;µσ
;µ. (7.23)

In the uncharged case, (7.23) reduces to

0 = σ ;µ V
(2)

0 ;µ − σ ;µ V
(2)

0 ∆−
1
2 ∆

1
2

;µ, (7.24)

and we can see that (7.24) is solved by taking either V
(2)

0 = ∆
1
2 or V

(2)
0 = −∆

1
2 . Our

guiding principle will be that the leading-order singularity in the Hadamard parametrix

(6.3) matches that of Minkowski spacetime [68]; in the coincidence limit x′ → x, we have

V
(2)

0 (x, x) = −1. (7.25)

Therefore, in the uncharged case, (7.24) is solved by

V
(2)

0

(
x, x′

)
= −∆

1
2 . (7.26)

In the charged case (7.23) cannot be solved exactly and we expand V
(2)

0 (x, x′) as a power

series in σ up to the order required for the evaluation of the RSET. Rewriting (7.23) as
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[
DµV

(2)
0

]
σ ;µ − V (2)

0 ∆−
1
2 ∆

1
2
;µ σ

;µ = 0, (7.27)

we expand V
(2)

0 (x, x′) as a covariant Taylor expansion according to (6.10b); in d = 2, we

are required to evaluate V
(2)

0 to O(σ) in order to evaluate the RSET. Then, we have

V
(2)

0 = V
(2)

00 + V
(2)

01µ σ
;µ + V

(2)
02(µν) σ

;µσ ;ν +O
(
σ

3
2

)
(7.28)

We can evaluate DµV
(2)

0 by first taking the covariant derivative of (7.28) to obtain

V
(2)

0 ;µ = V
(2)

00 ;µ + V
(2)

01ν ;µσ
;ν + V

(2)
01νσ

;ν
µ + 2V

(2)
02(νρ)σ

;ν
µσ

;ρ +O(σ)

= V
(2)

00 ;µ + V
(2)

01ν ;µσ
;ν + V

(2)
01ν g

νλ {gλµ}+ 2V
(2)

02(νρ) g
νλ {gλµ}σ ;ρ +O(σ)

= V
(2)

00 ;µ + V
(2)

01µ + V
(2)

01ν ;µσ
;ν + 2V

(2)
02(µν)σ

;ν +O(σ) (7.29)

where we have used the expansion for σ;µν (6.25) in going from the first equality in (7.29)

to the second. Then, we have

DµV
(2)

0 = DµV
(2)

00 + V
(2)

01µ +
[
DµV

(2)
01ν + 2V

(2)
02(µν)

]
σ ;ν + . . . . (7.30)

Then, the first term in the equation for V
(2)

0 (x, x′) (7.27) is given by

[
DµV

(2)
0

]
σ ;µ =

[
DµV

(2)
00 + V

(2)
01µ

]
σ ;µ +

[
DµV

(2)
01ν + 2V

(2)
02(µν)

]
σ ;µσ ;ν + . . . . (7.31)

The second term in the equation for V
(2)

0 (x, x′) (7.27) is given by

− V (2)
0 ∆−

1
2 ∆

1
2
;µ σ

;µ = −1

6
V

(2)
00 Rµνσ

;µσ ;ν + . . . (7.32)

We can find the explicit form of the expansion coefficients of the Hadamard coefficient

V
(2)

0 (x, x′) by equating (7.27) at each order of σ. We have, by definition, at O(1)

V
(2)

00 = −1. (7.33)

The terms at O
(
σ1/2

)
in the equation for V

(2)
0 (x, x′) (7.27) give

0 = DµV
(2)

00 + V
(2)

01µ = iqAµ + V
(2)

01µ, (7.34)

where we have used (7.33). So we obtain for the V
(2)

01µ expansion coefficient

V
(2)

01µ = −iqAµ. (7.35)

The terms at O(σ) in the equation for V
(2)

0 (x, x′) (7.27) give

0 = D(µV
(2)

01ν) + 2V
(2)

02(µν) +
1

6
V

(2)
00 Rµν

= −iq D(µAν) + 2V
(2)

02(µν) +
1

6
Rµν , (7.36)
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where we have used (7.33) and (7.35), and we have symmetrised the D(µV
(2)

01ν) term in the

first line of (7.36) since it can be written in terms of the expansion coefficient V
(2)

02(µν) and

the Ricci tensor Rµν , both of which are symmetric tensors by definition. Then, we have

V
(2)

02µν = − 1

12
Rµν +

1

2
iq D(µAν), (7.37)

In d = 2, we can write Rµν in terms of the Ricci scalar as Rµν = 1
2 gµνR; then we have

V
(2)

02µν = − 1

24
gµνR+

1

2
iq D(µAν). (7.38)

As earlier stated, in d = 2 we require terms up to O(σ) to evaluate the RSET. In the

expansion of the V (2)(x, x′) biscalar (6.4a), the V
(2)

1 (x, x′) Hadamard coefficient is multi-

plied by σ; therefore, we are also required to evaluate the zeroth order term of the Taylor

expansion of V
(2)

1 (x, x′), i.e. V
(2)

10 . We can obtain the equation satisfied by V
(2)

1 (x, x′) by

using (7.14) with n = 0; doing so, we have

2V
(2)

1 + 2σ ;µDµV
(2)

1 − 2V
(2)

1 ∆−
1
2 ∆

1
2
;µ σ

;µ +
(
DµDµ −m2 − ξR

)
V

(2)
0 = 0. (7.39)

We can expand V
(2)

1 (x, x′) as a covariant Taylor expansion as follows

V
(2)

1 = V
(2)

10 + . . . (7.40)

Therefore, the first term in the equation for V
(2)

1 (x, x′) (7.39) is given by

2V
(2)

1 = 2V
(2)

10 + . . . (7.41)

Neither the second term nor the third term in (7.39) contribute at O(1). We will evaluate

the final term in (7.39) in steps, beginning with the gauge covariant derivative of (7.28).

Since we only require the final expression up to O(σ), we require DµV
(2)

0 to O
(
σ1/2

)
. This

is given by (7.30). We then need to act on (7.30) with another gauge covariant derivative:

DµD
µV

(2)
0 = gµνDνDµV

(2)
00 + gµνDνV

(2)
01µ + gµν

[
DµV

(2)
01ρ + 2V

(2)
02(µρ)

]
σ ;ρ

ν + . . .

= DµD
µV

(2)
00 + 2DµV

(2)
01µ + 2 gµνV

(2)
02(µν) + . . . (7.42)

Then, the fourth term in the equation for V
(2)

1 (x, x′) (7.39) is given by

(
DµD

µ −m2 − ξR
)
V

(2)
0 =

(
DµD

µ −m2 − ξR
)
V

(2)
00 + 2DµV

(2)
01µ + 2 gµνV

(2)
02(µν) + . . .

(7.43)

Using (7.41) and (7.43), we can write the equation for V
(2)

1 (x, x′) (7.39) as

0 = 2V
(2)

10 −
(
DµD

µ −m2 − ξR
)
V

(2)
00 − 2DµV

(2)
01µ + 2 gµνV

(2)
02(µν). (7.44)

We simplify (7.44) by using the relations between V
(2)

00 , V
(2)

01µ and V
(2)

02(µν) in (7.34, 7.36):
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2V
(2)

10 = DµD
µV

(2)
00 −

(
m2 + ξR

)
V

(2)
00 − 2DµD

µV
(2)

00 − gµνDµV
(2)

01ν +
1

12
gµνgµνR

= DµD
µV

(2)
00 −

(
m2 + ξR

)
V

(2)
00 − 2DµD

µV
(2)

00 + gµνDµDνV
(2)

00 +
1

12
δµµR

= −
(
m2 + ξR

)
V

(2)
00 +

1

6
R, (7.45)

where we have used the fact that δµµ = 2 in d = 2. Then, (7.45) simplifies to

V
(2)

10 = −1

2

(
m2 + ξR

)
V

(2)
00 +

1

12
R. (7.46)

Using the explicit expression for V
(2)

00 (7.33) , we obtain for the V
(2)

10 expansion coefficient

V
(2)

10 =
1

2

[
m2 +

(
ξ − 1

6

)
R

]
. (7.47)

This is the same as in the uncharged case and so there are no gauge corrections to the

zeroth order coefficient of the covariant Taylor expansion of V
(2)

1 . This expression will be

important when considering the trace anomaly of the RSET in d = 2 in §8.131.

7.2 Hadamard form for even dimensions

In this section, we develop the general formalism for the Hadamard renormalisation pro-

cedure of charged scalar fields in a general background spacetime with an even number

of dimensions (apart from the special case of d = 2, which is treated in §7.1). We will

then focus on the specific case of d = 4 in order to derive explicit expressions for the

renormalisation counterterms up to the order required to evaluate the RSET.

7.2.1 Hadamard renormalisation procedure in even dimensions

We would like to evaluate the inhomogeneous Klein-Gordon equation (6.2) for the even-

dimensional Hadamard parametrix (6.5). We remind the reader that we write the number

of spacetime dimensions as d = 2p with p 6= 1. Then (6.2) becomes

(
DµD

µ −m2 − ξR
)
G

(2p)
F

=
iα2p

2

(
DµD

µ −m2 − ξR
)
{

U (2p)(x, x′)

[σ(x, x′) + iε]p−1 + V (2p)
(
x, x′

)
ln
[
σ
(
x, x′

)
+ iε

]

+ W (2p)
(
x, x′

)}

= − 1√
−g (x)

δ(2p)
(
x− x′

)
. (7.48)

It will be convenient instead to evaluate the equation
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− 2 i

α2p

(
DµD

µ −m2 − ξR
)
G

(2p)
F

=
(
DµD

µ −m2 − ξR
)
{

U (2p)(x, x′)

[σ(x, x′) + iε]p−1 + V (2p)
(
x, x′

)
ln
[
σ
(
x, x′

)
+ iε

]

+ W (2p)
(
x, x′

)}

= − 2 i

α2p

1√
−g (x)

δ(2p)
(
x− x′

)
. (7.49)

Then, suppressing arguments of the biscalar functions, we begin by calculating the quantity

− 2 i

α2p
DµG

(2p)
F = (∇µ − iqAµ)

[
σ−p+1 U (2p) + V (2p) lnσ +W (2p)

]

= σ−p+1∇µU (2p) − (p− 1)σ−p U (2p)(∇µσ) +
[
∇µV (2p)

]
lnσ

+ σ−1 V (2p)(∇µσ) +∇µW (2p) − σ−p+1 iqAµU
(2p) − iqAµV

(2p) lnσ

− iqAµW
(2p). (7.50)

Acting on (7.50) with another gauge derivative, we obtain

− 2 i

α2p
DµD

µG
(2p)
F = σ−p+1∇µ∇µU (2p) − 2 (p− 1)σ−p

[
∇µU (2p)

]
(∇µσ)

+ p (p− 1)σ−p−1 U (2p)(∇µσ)(∇µσ)− (p− 1)σ−p U (2p)(∇µ∇µσ)

+
[
∇µ∇µV (2p)

]
lnσ + 2σ−1

[
∇µV (2p)

]
(∇µσ)− σ−2 V (2p)(∇µσ)(∇µσ)

+ σ−1 V (2p)(∇µ∇µσ) +∇µ∇µW (2p) − σ−p+1 iq (∇µAµ)U (2p)

− 2σ−p+1 iqAµ

[
∇µU (2p)

]
+ 2 (p− 1)σ−p iqAµU

(2p)(∇µσ)

− iq (∇µAµ)V (2p) lnσ − 2 iqAµ

[
∇µV (2p)

]
lnσ − 2 iq σ−1AµV

(2p)(∇µσ)

− iq (∇µAµ)W (2p) − 2 iqAµ

[
∇µW (2p)

]
− σ−p+1 q2AµA

µU (2p)

− q2AµA
µV (2p) lnσ − q2AµA

µW (2p). (7.51)

We can simplify (7.51) using the identities involving Synge’s world function (1.20) and the

van Vleck-Morette determinant (1.28); we obtain
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− 2 i

α2p
DµD

µG
(2p)
F = σ−p+1∇µ∇µU (2p) − 2 (p− 1)σ−p

[
∇µU (2p)

]
(∇µσ)

+ 2 (p− 1)σ−p U (2p)∆−
1
2

(
∇µ∆

1
2

)
(∇µσ) +

[
∇µ∇µV (2p)

]
lnσ

+ 2σ−1
[
∇µV (2p)

]
(∇µσ) + 2 (p− 1)σ−1 V (2p)

− 2σ−1 V (2p)∆−
1
2

(
∇µ∆

1
2

)
(∇µσ) +∇µ∇µW (2p)

− σ−p+1 iq (∇µAµ)U (2p) − 2σ−p+1 iqAµ

[
∇µU (2p)

]

+ 2 (p− 1)σ−p iqAµU
(2p)(∇µσ)− iq (∇µAµ)V (2p) lnσ

− 2 iqAµ

[
∇µV (2p)

]
lnσ − 2 iq σ−1AµV

(2p)(∇µσ)− iq (∇µAµ)W (2p)

− 2 iqAµ

[
∇µW (2p)

]
− σ−p+1 q2AµAµU

(2p) − q2AµAµV
(2p) lnσ

− q2AµAµW
(2p). (7.52)

This allows us to evaluate the l.h.s of the inhomogeneous Klein-Gordon equation (6.2) for

d = 2p as follows

− 2 i

α2p
(DµDµ −m2 − ξR)G

(2p)
F

= σ−p+1∇µ∇µU (2p) − 2 (p− 1)σ−p
[
∇µU (2p)

]
(∇µσ)

+ 2 (p− 1)σ−p U (2p)∆−
1
2

(
∇µ∆

1
2

)
(∇µσ) +

[
∇µ∇µV (2p)

]
lnσ

+ 2σ−1
[
∇µV (2p)

]
(∇µσ) + 2 (p− 1)σ−1 V (2p)

− 2σ−1 V (2p)∆−
1
2

(
∇µ∆

1
2

)
(∇µσ) +∇µ∇µW (2p)

− σ−p+1 iq (∇µAµ)U (2p) − 2σ−p+1 iqAµ

[
∇µU (2p)

]

+ 2 (p− 1)σ−p iqAµU
(2p)(∇µσ)− iq (∇µAµ)V (2p) lnσ

− 2 iqAµ

[
∇µV (2p)

]
lnσ − 2 iq σ−1AµV

(2p)(∇µσ)− iq (∇µAµ)W (2p)

− 2 iqAµ

[
∇µW (2p)

]
− σ−p+1 q2AµAµU

(2p) − q2AµAµV
(2p) lnσ

− q2AµAµW
(2p) − σ−p+1

(
m2 + ξR

)
U (2p) −

(
m2 + ξR

)
V (2p) lnσ

−
(
m2 + ξR

)
W (2p). (7.53)

We can simplify (7.53) by use of the gauge covariant derivative, which then reduces to

− 2 i

α2p

(
DµDµ −m2 − ξR

)
G

(2p)
F

= σ−p+1
(
DµD

µ −m2 − ξR
)
U (2p) +

(
DµD

µ −m2 − ξR
)
V (2p) lnσ

+
(
DµD

µ −m2 − ξR
)
W (2p)

− 2 (p− 1)σ−p
[(
Dµ −∆−

1
2 ∆

1
2
;µ

)
U (2p)

]
σ ;µ

+ 2σ−1

[(
σ ;µDµ + (p− 1)−∆−

1
2 ∆

1
2
;µ σ

;µ

)
V (2p)

]
. (7.54)
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From the r.h.s of the inhomogeneous scalar field equation (6.2), we know that (7.54) must

be equal to zero when the two points x and x′ are separated. Since Synge’s world function

is nonzero when x′ 6= x, we deduce that (7.54) must vanish identically at each power of

σ(x, x′). This allows us to generate two equations by considering terms proportional to lnσ

and. separately, the remaining terms, i.e. those not proportional to lnσ. In particular,

the terms that are proportional to lnσ must vanish independently since no other terms

can contain this factor. This allows us to write

(
DµD

µ −m2 − ξR
)
V (2p)

(
x, x′

)
= 0, (7.55)

which means that the biscalar V (2p)(x, x′) solves the homogeneous scalar field equation.

Equation (7.55) generalises (40) in [68] and it enables us to derive the recurrence relations

for the Hadamard coefficients V
(2p)
n (x, x′). Since the biscalar V (2p)(x, x′) admits a power

series expansion in σ(x, x′) (6.5), we can derive the recurrence relation for the V
(2p)
n (x, x′)

by expanding the terms in (7.55). Suppressing arguments, we first need to evaluate

DµV
(2p) =

∞∑

n=0

{[
∇µV (2p)

n

]
σn + nV (2p)

n σn−1(∇µσ)− iqAµV
(2p)
n σn

}
, (7.56)

and then

DµD
µV (2p) =

∞∑

n=0

{[
∇µ∇µV (2p)

n

]
σn +

[
∇µV (2p)

n

]
nσn−1(∇µσ) + n

[
∇µV (2p)

n

]
σn−1(∇µσ)

+ n (n− 1)V (2p)
n σn−2(∇µσ)(∇µσ) + nV (2p)

n σn−1(∇µ∇µσ)

− iq (∇µAµ)V (2p)
n σn − iqAµ

[
∇µV (2p)

n

]
σn − iqAµ nV

(2p)
n σn−1 (∇µσ)

− iqAµ
[
∇µV (2p)

n

]
σn − iqAµ nV

(2p)
n σn−1(∇µσ)− q2AµAµV

(2p)
n σn

}
. (7.57)

Then using (1.20), (1.28), (6.24) and the gauge covariant derivative, (7.57) becomes

DµD
µV (2p) =

∞∑

n=0

{[
DµDµV

(2p)
n

]
σn + 2n

[
DµV

(2p)
n

]
σn−1(∇µσ)

+ 2n (n+ p− 1)V (2p)
n σn−1 − 2nV (2p)

n ∆−
1
2

(
∇µ∆

1
2

)
σn−1(∇µσ)

}
. (7.58)

Substituting (7.58) into (7.55), we obtain

0 =

∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
V (2p)
n

]
σn + 2n

[
DµV

(2p)
n

]
σn−1(∇µσ)

+ 2n (n+ p− 1)V (2p)
n σn−1 − 2nV (2p)

n ∆−
1
2

(
∇µ∆

1
2

)
σn−1(∇µσ)

}
. (7.59)

Performing the relabelling n→ n+ 1 in term proportional to σn−1 in (7.59), we obtain
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0 =
∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
V (2p)
n

]
σn + 2(n+ 1)

[
DµV

(2p)
n+1

]
σn(∇µσ)

+ 2 (n+ 1)(n+ p)V
(2p)
n+1 σ

n − 2(n+ 1)V
(2p)
n+1 ∆−

1
2

(
∇µ∆

1
2

)
σn (∇µσ)

}
. (7.60)

Since (7.60) must hold for each power of σ, this enables us to obtain the recurrence relation

for the Hadamard coefficients V
(2p)
n (x, x′) of the biscalar function V (2p)(x, x′). We have

2 (n+ 1)(n+ p)V
(2p)
n+1 + 2(n+ 1)σ ;µDµV

(2p)
n+1 − 2(n+ 1)V

(2p)
n+1 ∆−

1
2 ∆

1
2
;µ σ

;µ

+
(
DµD

µ −m2 − ξR
)
V (2p)
n = 0 for n in N. (7.61)

This generalises equation (38a) in [68]. Returning once again to (7.54), we can consider

terms proportional to σ−1 to obtain the boundary condition for the V
(2p)

0 (x, x′) Hadamard

coefficient. Inserting the power series expansion for U (2p)(x, x′) (6.6a), V (2p)(x, x′) (6.6b)

and W (2p)(x, x′) (6.6c), we obtain

0 = σ−1

[(
DµD

µ −m2 − ξR
)
U

(2p)
p−2 + 2

(
σ ;µDµ + (p− 1)−∆−

1
2 ∆

1
2
;µ σ

;µ

)
V

(2p)
0

]
, (7.62)

where we have used that

σ−p+1σ p−2 = σ−1. (7.63)

Since (7.62) should hold for arbitrary σ(x, x′), we may write

(2p− 2)V
(2p)

0 + 2σ ;µDµV
(2p)

0 − 2V
(2p)

0 ∆−
1
2 ∆

1
2
;µ σ

;µ +
(
DµD

µ −m2 − ξR
)
U

(2p)
p−2 = 0.

(7.64)

This generalises equation (38b) in D+F. We can consider the terms in (7.54) that are

proportional to σ−p+1 in order to derive the recurrence relations for the U
(2p)
n (x, x′). Re-

membering that p > 1, we see that the terms in (7.54) involving the biscalars V (2p)(x, x′)

and W (2p)(x, x′) will not contribute at order O
(
σ−p+1

)
as long as p > 2. This would be

unsatisfactory as it means that the recurrence relations we will derive for the Hadamard

coefficients U
(2p)
n (x, x′) below would not be valid when p = 2. However, looking at the

form of the U (2p)(x, x′) biscalar (6.6a), we can see that the power series expansion for

U (2p)(x, x′) truncates at zeroth order, i.e. U (4)(x, x′) = U
(4)
0 , rendering the notion of re-

currence relations meaningless in the case when p = 2. Thus, the recurrence relations

we will derive below for the U
(2p)
n (x, x′) are valid for general p and we need only consider

the terms in (7.54) involving the U (2p)(x, x′) biscalar in order to derive them. Then, at

O
(
σ−p+n+1

)
, we have

σ−p+1
(
DµD

µ −m2 − ξR
)
U (2p) − 2 (p− 1)σ−p

[(
Dµ −∆−

1
2 ∆

1
2
;µ

)
U (2p)

]
σ ;µ = 0. (7.65)
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Since the biscalar U (2p)(x, x′) in (6.5) admits a power series expansion in σ(x, x′), we can

derive the recursion relation for the Hadamard coefficients U
(2p)
n (x, x′) by expanding the

terms in (7.65). We first need to evaluate DµD
µU (2p); since the power series expansions

for the biscalars U (2p)(x, x′) and V (2p)(x, x′) are similar, we may simply write down the

quantity as

DµD
µU (2p) =

p−2∑

n=0

{[
DµDµU

(2p)
n

]
σn + 2n

[
DµU

(2p)
n

]
σn−1(∇µσ)

+ 2n (n+ p− 1)U (2p)
n σn−1 − 2nU (2p)

n ∆−
1
2

(
∇µ∆

1
2

)
σn−1(∇µσ)

}
. (7.66)

where we note that the upper limit of the summation in (7.65) is derived from the form of

the power series expansion (6.6a) of the biscalar U (2p)(x, x′). Thus the first term in (7.65)

is given by

σ−p+1(DµD
µ −m2 − ξR)U (2p)

=

p−2∑

n=0

{[(
DµD

µ −m2 − ξR
)
U (2p)
n

]
σ−p+n+1 + 2n

[
DµU

(2p)
n

]
σ−p+n(∇µσ)

+ 2n (n+ p− 1)U (2p)
n σ−p+n − 2nU (2p)

n ∆−
1
2

(
∇µ∆

1
2

)
σ−p+n(∇µσ)

}
(7.67)

In order to evaluate the second term in (7.65), we will need to evaluate DµU
(2p); we can

write this down by comparison with (7.56), giving us

Dµ U
(2p) =

p−2∑

n=0

{[
∇µU (2p)

n

]
σn + nU (2p)

n σn−1(∇µσ)− iqAµU
(2p)
n σn

}

=

p−2∑

n=0

{[
Dµ U

(2p)
n

]
σn + nU (2p)

n σn−1(∇µσ)
}
. (7.68)

Then, the second term in (7.65) is given by

− 2 (p− 1)σ−p
[(
Dµ −∆−

1
2 ∆

1
2
;µ

)
U (2p)

]
σ ;µ

= −2 (p− 1)σ−p σ ;µ

(
p−2∑

n=0

{[
Dµ U

(2p)
n

]
σn + nU (2p)σn−1σ ;µ − U (2p)σn∆−

1
2 ∆

1
2
;µ

})

= −2 (p− 1)

(
p−2∑

n=0

{[
σ ;µDµ U

(2p)
n

]
σ−p+n + 2nU (2p)σ−p+n − U (2p)σ−p+n∆−

1
2 ∆

1
2
;µ σ

;µ

})
.

(7.69)

Substituting (7.67) and (7.69) into (7.65), we obtain

0 =

p−2∑

n=0

{[(
DµD

µ −m2 − ξR
)
U (2p)
n

]
σ−p+n+1 + 2 (n− p+ 1)

[
σ ;µDµ U

(2p)
n

]
σ−p+n

+ 2n (n− p+ 1)U (2p)
n σ−p+n − 2 (n− p+ 1)U (2p)

n σ−p+n∆−
1
2 ∆

1
2
;µ σ

;µ

}
. (7.70)
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We may perform the relabelling n→ n+ 1 in the terms that are proportional to σ−p+n in

(7.70); then we obtain

0 =

p−2∑

n=0

{[(
DµD

µ −m2 − ξR
)
U (2p)
n

]
σ−p+n+1 + 2 (n− p+ 2)

[
σ ;µDµ U

(2p)
n+1

]
σ−p+n+1

+ 2 (n+ 1)(n− p+ 2)U
(2p)
n+1σ

−p+n+1 − 2 (n− p+ 2)U
(2p)
n+1σ

−p+n+1∆−
1
2 ∆

1
2
;µ σ

;µ

}
.

(7.71)

Since (7.71) must hold for each power of σ, this enables us to obtain the recurrence relation

for the Hadamard coefficients U
(2p)
n (x, x′) of the biscalar function U (2p)(x, x′). We have

0 = (n+ 1)(2n+ 4− 2p)U
(2p)
n+1 + (2n+ 4− 2p)σ ;µDµ U

(2p)
n+1

− (2n+ 4− 2p)U
(2p)
n+1 ∆−

1
2 ∆

1
2
;µ σ

;µ

+
(
DµD

µ −m2 − ξR
)
U (2p)
n for n = 0, 1, . . . , p− 3. (7.72)

This generalises equation (37a) in D+F. We can consider the terms in (7.54) that are

proportional to positive powers of σ(x, x′) in order to derive the recurrence relations for

the W
(2p)
n (x, x′). Since the power series expansion of the biscalar U (2p)(x, x′) truncates

at O
(
σp−2

)
, we see that the terms in (7.54) involving the biscalar U (2p)(x, x′) will not

contribute at positive powers of σ(x, x′). Furthermore, the term containing a factor of lnσ

will also not contribute. This allows us to write

(
DµD

µ −m2 − ξR
)
W (2p) +2σ−1

[(
σ ;µDµ + (p− 1)−∆−

1
2 ∆

1
2
;µ σ

;µ

)
V (2p)

]
= 0. (7.73)

Since the biscalar W (2p)(x, x′) in (6.6c) admits a power series expansion in σ(x, x′), we can

derive the recursion relation for the Hadamard coefficients W (2p)(x, x′) by expanding the

terms in (7.73). We first need to evaluate DµD
µW (2p); since the power series expansions

for the biscalars W (2p)(x, x′) and W (2p)(x, x′) are similar, we may simply write down the

quantity as

DµD
µW (2p) =

∞∑

n=0

{[
DµDµW

(2p)
n

]
σn + 2n

[
DµW

(2p)
n

]
σn−1(∇µσ)

+ 2n (n+ p− 1)W (2p)
n σn−1 − 2nW (2p)

n ∆−
1
2

(
∇µ∆

1
2

)
σn−1(∇µσ)

}
. (7.74)

Thus the first term in (7.65) is given by

(
DµD

µ −m2−ξR )W (2p)

=

∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
W (2p)
n

]
σn + 2n

[
DµW

(2p)
n

]
σn−1(∇µσ)

+ 2n (n+ p− 1)W (2p)
n σn−1 − 2nW (2p)

n ∆−
1
2

(
∇µ∆

1
2

)
σn−1(∇µσ)

}
(7.75)
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In order to evaluate the second term in (7.73), we will need to evaluate DµV
(2p); this is

given by (7.56). Then, the second term in (7.73) is given by

2σ−1

[(
σ ;µDµ + (p− 1)−∆−

1
2 ∆

1
2
;µ σ

;µ

)
V (2p)

]

= 2
∞∑

n=0

{[
σ ;µDµV

(2p)
n

]
σn−1 + (2n+ p− 1)V (2p)

n σn−1 − V (2p)
n σn−1∆−

1
2 ∆

1
2
;µ σ

;µ

}

(7.76)

Substituting (7.75) and (7.76) into (7.73), we obtain

0 =
∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
W (2p)
n

]
σn + 2n

[
σ ;µDµW

(2p)
n

]
σn−1

+ 2n (n+ p− 1)W (2p)
n σn−1 − 2nW (2p)

n σn−1∆−
1
2 ∆

1
2
;µ σ

;µ + 2
[
σ ;µDµV

(2p)
n

]
σn−1

+ 2 (2n+ p− 1)V (2p)
n σn−1 − 2V (2p)

n σn−1∆−
1
2 ∆

1
2
;µ σ

;µ

}
. (7.77)

We may perform the relabelling n→ n+ 1 in the terms that are proportional to σn−1 in

(7.77); then we obtain

0 =
∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
W (2p)
n

]
σn + 2 (n+ 1)

[
σ ;µDµW

(2p)
n+1

]
σn

+ 2 (n+ 1)(n+ p)W
(2p)
n+1σ

n − 2 (n+ 1)W
(2p)
n+1σ

n∆−
1
2 ∆

1
2
;µ σ

;µ + 2
[
σ ;µDµV

(2p)
n+1

]
σn

+ 2 (2n+ p+ 1)V
(2p)
n+1 σ

n − 2V
(2p)
n+1 σ

n∆−
1
2 ∆

1
2
;µ σ

;µ

}
. (7.78)

Since (7.73) must hold for each power of σ, this enables us to obtain the recurrence relation

for the Hadamard coefficients W
(2p)
n (x, x′) of the biscalar function W (2p)(x, x′). We have

0 = (n+ 1)(2n+ 2p)W
(2p)
n+1 + 2 (n+ 1)σ ;µDµW

(2p)
n+1

− 2 (n+ 1)W
(2p)
n+1∆−

1
2 ∆

1
2
;µ σ

;µ + (4n+ 2 + 2p)V
(2p)
n+1

+ 2σ ;µDµV
(2p)
n+1 − 2V

(2p)
n+1 ∆−

1
2 ∆

1
2
;µ σ

;µ

+
(
DµD

µ −m2 − ξR
)
W (2p)
n for ninN. (7.79)

This generalises equation (39) in D+F. Returning to (7.54), we can consider terms pro-

portional to σk where k = −1, 0, 1, 2, . . ., in order to derive a relationship between the

V (2p)(x, x′) and W (2p)(x, x′) biscalars (check). We obtain

0 =
(
DµD

µ −m2 − ξR
)
U

(2p)
p−2 + σ

(
DµD

µ −m2 − ξR
)
W (2p)

+ 2

[(
σ ;µDµ + (p− 1)−∆−

1
2 ∆

1
2
;µ σ

;µ

)
V (2p)

]
. (7.80)
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It will be convenient to rewrite (7.80) as

(
DµD

µ −m2 − ξR
)
W (2p) = −σ−1

(
DµD

µ −m2 − ξR
)
U

(2p)
p−2

− 2σ−1

[(
σ ;µDµ + (p− 1)−∆−

1
2 ∆

1
2
;µ σ

;µ

)
V (2p)

]
. (7.81)

Returning to (7.54), we can consider the lowest order terms in σ(x, x′), i.e. those propor-

tional to σ−p, to obtain the boundary condition for the U
(2p)
0 (x, x′) Hadamard coefficient.

Inserting the power series expansion for U (2p)(x, x′) (6.6a) into (7.54), we obtain

0 =

(
σ ;µDµ −∆−

1
2 ∆

1
2

;µσ
;µ

)
U

(2p)
0 , (7.82)

where we have again used the fact that the r.h.s of (7.54) must be equal to zero at each

power of σ(x, x′). In the uncharged case, (7.82) reduces to

0 = σ ;µ U
(2p)
0 ;µ − σ ;µ U

(2p)
0 ∆−

1
2 ∆

1
2

;µ, (7.83)

and we can see that equation (7.83) is solved by taking either U
(2p)
0 = ∆

1
2 or U

(2p)
0 =

−∆
1
2 . Our guiding principle will be that the leading-order singularity in the Hadamard

parametrix (6.5) matches that of Minkowski spacetime; in the coincidence limit we have

U
(2p)
0 (x, x) = 1. (7.84)

Therefore, in the uncharged case, (7.83) is solved by

U
(2p)
0

(
x, x′

)
= ∆

1
2 . (7.85)

In the charged case, (7.82) cannot be solved exactly and we need to expand U
(2p)
0 (x, x′)

as a power series in σ(x, x′) up to the required order for the evaluation of the RSET.

7.2.2 Explicit renormalisation counterterms in four dimensions

In order to derive explicit renormalisation counterterms, we focus on the specific case of

d = 4. In the d = 4 Hadamard parametrix (6.5), there are terms contained within both

the U (4)(x, x′) and the V (4)(x, x′) biscalars that we need to derive explicitly in order to be

able to evaluate the RSET. We will begin with the terms contained within the U (4)(x, x′)

biscalar, since these are much simpler to derive.

Evaluating terms within U (4)(x, x′) biscalar

From the expression (6.6a) for the series expansion of the U (4)(x, x′) biscalar, we see that

in d = 4 we have U (4)(x, x′) = U
(4)
0 (x, x′). This means that we only need to calculate the

explicit expressions for the U
(4)
0 (x, x′) Hadamard coefficient up to the order required for

evaluating the RSET, i.e. up toO
(
σ2
)
, in order to have all of the necessary renormalisation

counterterms contained within the U (4)(x, x′) biscalar.

Then, rewriting (7.82) in anticipation of calculating U
(4)
0 (x, x′) up to O

(
σ2
)
, we have
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σ ;µDµU
(4)
0 − U (4)

0 ∆−
1
2 ∆

1
2
;µ σ

;µ = 0. (7.86)

We can expand U
(4)
0 (x, x′) as a covariant Taylor expansion according to (6.10a):

U
(4)
0 = U

(4)
00 + U

(4)
01µ σ

;µ + U
(4)
02(µν)σ

;µσ ;ν + U
(4)
03(µνρ)σ

;µσ ;νσ ;ρ

+ U
(4)
04(µνρλ)σ

;µσ ;νσ ;ρσ ;λ +O
(
σ5/2

)
. (7.87)

We note that the form of equation (7.86), which is satisfied by U
(4)
0 (x, x′), is identical

to that of (7.27), which is satisfied by V
(2)

0 (x, x′). However, the zeroth order expansion

coefficient of V
(2)

0 (x, x′) was given as V
(2)

00 = −1 (7.25), so that the leading-order singularity

in the d = 2 Hadamard parametrix (6.3) matches that of d = 2 Minkowski spacetime. In

the d = 4 Hadamard parametrix (6.5) on the other hand, the mathcing of the leading-order

singularity with d = 4 Minkowski spacetime enforces the zeroth order expansion coefficient

of U
(4)
0 (x, x′) to be U

(4)
00 = 1. Then, we may write down the first three expansion coefficients

of U
(4)
0 (x, x′) by multiplying the corresponding expansion coefficients of V

(2)
0 (x, x′), given

in (7.33), (7.35) and (7.38), by a factor of minus one; we obtain

U
(4)
00 = 1, (7.88)

U
(4)
01µ = iqAµ, (7.89)

U
(4)
02(µν) =

1

12
Rµν −

1

2
iqD(µAν). (7.90)

We now need to evaluate the U
(4)
03(µνρ) and U

(4)
04(µνρλ) expansion coefficients of U

(4)
0 (x, x′)

since we did not require an expression for V
(2)

0 (x, x′) beyond O(σ).

The first term in the equation (7.86) for U (4)(x, x′) is σ ;µDµU
(4)
0 ; since σ ;µ is O

(
σ1/2

)

(1.20), we need only consider DµU
(4)
0 up to O

(
σ3/2

)
. We begin by evaluating ∇µU (4)

0 as

U
(4)
0 ;α = U

(4)
00 ;α + U

(4)
01µ ;ασ

;µ + U
(4)
01µσ

;µ
α + U

(4)
02(µν) ;ασ

;µσ ;ν + 2U
(4)
02(µν)σ

;µ
ασ

;ν

+ U
(4)
03(µνρ) ;ασ

;µσ ;νσ ;ρ + 3U
(4)
03(µνρ)σ

;µ
ασ

;νσ ;ρ + 4U
(4)
04(µνρτ)σ

;µ
ασ

;νσ ;ρσ ;τ +O
(
σ2
)
.

(7.91)

Using the expansion for σ;µν (6.25), (7.91) becomes

U
(4)
0 ;α = U

(4)
00 ;α + U

(4)
01µ ;α σ

;µ + U
(4)
01µ g

µλ

{
gλα −

1

3
Rλ(θ|α|φ) σ

;θσ ;φ +
1

12
Rλ(θ|α|φ ;ψ) σ

;θσ ;φσ ;ψ

−
(

1

60
Rλ(θ|α|φ ;ψγ) +

1

45
Rλ(θ|ρ|φR

ρ
ψ|α|γ)

)
σ ;θσ ;φσ ;ψσ ;γ

}
+ U

(4)
02(µν) ;α σ

;µσ ;ν

+ 2U
(4)
02(µν) g

µλ

{
gλα −

1

3
Rλ(θ|α|φ) σ

;θσ ;φ +
1

12
Rλ(θ|α|φ ;ψ) σ

;θσ ;φσ ;ψ

}
σ ;ν

+ U
(4)
03(µνρ) ;α σ

;µσ ;νσ ;ρ + 3U
(4)
03(µνρ) g

µλ

{
gλα

}
σ ;νσ ;ρ

+ 4U
(4)
04(µνρτ) g

µλ

{
gλα

}
σ ;νσ ;ρσ ;τ +O

(
σ2
)
, (7.92)
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which simplifies to

U
(4)
0 ;α =

[
U

(4)
00 ;α + U

(4)
01α

]
+
[
U

(4)
01µ ;α + 2U

(4)
02(αµ)

]
σ ;µ

+

[
U

(4)
02(µν) ;α + 3U

(4)
03(αµν) −

1

3
U

(4)
01λR

λ
(µ|α|ν)

]
σ ;µσ ;ν

+

[
1

12
U

(4)
01λR

λ
(µ|α|ν;ρ) −

1

3
U

(4)
02λ(ρR

λ
µ|α|ν) −

1

3
U

(4)
02(ρ|λ|R

λ
µ|α|ν) + U

(4)
03(µνρ) ;α

+ 4U
(4)
04(αµνρ)

]
σ ;µσ ;νσ ;ρ +O

(
σ2
)
. (7.93)

Thus, for the gauge covariant derivative of U
(4)
0 (x, x′), we obtain

DαU
(4)
0 =

[
U

(4)
00 ;α − iqAαU

(4)
00 + U

(4)
01α

]
+
[
U

(4)
01µ ;α − iqAαU

(4)
01µ + 2U

(4)
02(αµ)

]
σ ;µ

+

[
U

(4)
02(µν) ;α − iqAαU

(4)
02(µν) + 3U

(4)
03(αµν) −

1

3
U

(4)
01λR

λ
(µ|α|ν)

]
σ ;µσ ;ν

+

[
1

12
U

(4)
01λR

λ
(µ|α|ν;ρ) −

1

3
U

(4)
02λ(ρR

λ
µ|α|ν) −

1

3
U

(4)
02(ρ|λ|R

λ
µ|α|ν) + U

(4)
03(µνρ) ;α

− iqAαU
(4)
03(µνρ) + 4U

(4)
04(αµνρ)

]
σ ;µσ ;νσ ;ρ +O

(
σ2
)
. (7.94)

We can write (7.94) compactly using the gauge derivative as

DαU
(4)
0 =

[
DαU

(4)
00 + U

(4)
01α

]
+
[
DαU

(4)
01µ + 2U

(4)
02(αµ)

]
σ ;µ

+

[
DαU

(4)
02(µν) + 3U

(4)
03(αµν) −

1

3
U

(4)
01λR

λ
(µ|α|ν)

]
σ ;µσ ;ν

+

[
1

12
U

(4)
01λR

λ
(µ|α|ν;ρ) −

1

3
U

(4)
02λ(ρR

λ
µ|α|ν) −

1

3
U

(4)
02(ρ|λ|R

λ
µ|α|ν) +DαU

(4)
03(µνρ)

+ 4U
(4)
04(αµνρ)

]
σ ;µσ ;νσ ;ρ +O

(
σ2
)
. (7.95)

From (7.86), we need to contract (7.95) with a factor of σ ;α; doing so, we obtain

σ ;αDαU
(4)
0 =

[
DαU

(4)
00 + U

(4)
01α

]
σ ;α +

[
D(αU

(4)
01µ) + 2U

(4)
02(αµ)

]
σ ;ασ ;µ

+

[
D(αU

(4)
02µν) + 3U

(4)
03(αµν) −

1

3
U

(4)
01λR

λ
(µαν)

]
σ ;ασ ;µσ ;ν

+

[
1

12
U

(4)
01λR

λ
(µαν;ρ) −

1

3
U

(4)
02λ(ρR

λ
µαν) −

1

3
U

(4)
02(ρ|λ|R

λ
µαν) +D(αU

(4)
03µνρ)

+ 4U
(4)
04(αµνρ)

]
σ ;ασ ;µσ ;νσ ;ρ +O

(
σ5/2

)
. (7.96)

Given the antisymmetry of the lowered third and fourth indices of the Riemann tensor

(1.5a), all terms containing the Riemann tensor vanish; then, the first term in (7.86) is

σ ;αDα U
(4)
0 =

[
DαU

(4)
00 + U

(4)
01α

]
σ ;α +

[
D(αU

(4)
01µ) + 2U

(4)
02(αµ)

]
σ ;ασ ;µ

+
[
D(αU

(4)
02µν) + 3U

(4)
03(αµν)

]
σ ;ασ ;µσ ;ν

+
[
D(αU

(4)
03µνρ) + 4U

(4)
04(αµνρ)

]
σ ;ασ ;µσ ;νσ ;ρ +O

(
σ5/2

)
. (7.97)
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Using (6.26), the second term in the equation for U (4)(x, x′) (7.86) is given by

−
(

∆−
1
2 ∆

1
2
;µ σ

;µ)U
(4)
0

= −1

6
U

(4)
00 Rµν σ

;µσ ;ν +
1

24
U

(4)
00 R(µν;ρ) σ

;µσ ;νσ ;ρ+

−
[

1

120
R(µν;ρτ) +

1

90
Rλ(µ|β|νR

β
ρ|λ|τ)

]
U

(4)
00 σ

;µσ ;νσ ;ρσ ;τ − 1

6
U

(4)
01(µRνρ) σ

;µσ ;νσ ;ρ

+
1

24
U

(4)
01(µRνρ;τ) σ

;µσ ;νσ ;ρσ ;τ − 1

6
U

(4)
02(µνRρτ) σ

;µσ ;νσ ;ρσ ;τ +O
(
σ5/2

)
, (7.98)

which simplifies to

−
(

∆−
1
2 ∆

1
2
;µ σ

;µ)U
(4)
0

= −1

6
U

(4)
00 Rµνσ

;µσ ;ν +

[
1

24
U

(4)
00 R(µν;ρ) −

1

6
U

(4)
01(µRνρ)

]
σ ;µσ ;νσ ;ρ

−
[

1

120
U

(4)
00 R(µν;ρτ) +

1

90
U

(4)
00 R

λ
(µ|β|νR

β
ρ|λ|τ) −

1

24
U

(4)
01(µRνρ;τ) +

1

6
U

(4)
02(µνRρτ)

]

× σ ;µσ ;νσ ;ρσ ;τ +O
(
σ5/2

)
. (7.99)

The terms at O
(
σ3/2

)
in the equation for U

(4)
0 (x, x′) (7.86) give

D(µU
(4)
02νρ) + 3U

(4)
03(µνρ) −

1

6
U

(4)
01(µRνρ) +

1

24
U

(4)
00 R(µν;ρ) = 0. (7.100)

Using (7.88), (7.89) and (7.90), then (7.100) becomes

0 =
1

12
D(µRνρ) −

1

2
iqD(µDνAρ) + 3U

(4)
03(µνρ) −

1

6
iqA(µRνρ) +

1

24
R(µν;ρ)

=
1

12
D(µRνρ) −

1

2
iqD(µDνAρ) + 3U

(4)
03(µνρ) −

1

8
iqA(µRνρ) +

1

24
D(µRνρ)

=
1

8
D(µRνρ) −

1

2
iqD(µDνAρ) + 3U

(4)
03(µνρ) −

1

8
iqA(µRνρ). (7.101)

Then, we obtain for the U
(4)
03(µνρ) expansion coefficient

U
(4)
03(µνρ) = − 1

24
D(µRνρ) +

1

24
iqA(µRνρ) +

1

6
iqD(µDνAρ). (7.102)

The terms at O
(
σ2
)

in the equation for U
(4)
0 (x, x′) (7.86) give

D(µU
(4)
03νρτ) + 4U

(4)
04(µνρτ) −

1

120
U

(4)
00 R(µν;ρτ) −

1

90
U

(4)
00 R

λ
(µ|β|νR

β
ρ|λ|τ)

+
1

24
U

(4)
01(µRνρ;τ) −

1

6
U

(4)
02(µνRρτ) = 0. (7.103)

Using (7.88), (7.89), (7.90) and (7.102), then (7.103) becomes

0 = − 1

24
D(µDνRρτ) +

1

24
iqD(µAνRρτ) +

1

6
iqD(µDνDρAτ) + 4U

(4)
04(µνρτ) −

1

120
R(µν;ρτ)

− 1

90
Rλ(µ|β|νR

β
ρ|λ|τ) +

1

24
iqA(µRνρ;τ) −

1

72
R(µνRρτ) +

1

12
iq
[
D(µAν

]
Rρτ). (7.104)
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We can expand out the terms containing gauge covariant derivatives acting on the Ricci

tensor in (7.104) in order to simplify the expression; doing so, we obtain

0 = − 1

24
∇(µ∇νRρτ) +

1

24
iq∇(µAνRρτ) +

1

24
iqA(µ∇νRρτ) +

1

24
q2A(µAνRρτ)

+
1

24
iq∇(µAνRρτ) +

1

24
q2A(µAνRρτ) +

1

6
iqD(µDνDρAτ) + 4U

(4)
04(µνρτ)

− 1

120
∇(µ∇νRρτ) −

1

90
Rλ(µ|β|νR

β
ρ|λ|τ) +

1

24
iqA(µ∇νRρτ) −

1

72
R(µνRρτ)

+
1

12
iq
[
∇(µAν

]
Rρτ) +

1

12
q2A(µAνRρτ)

= − 1

20
∇(µ∇νRρτ) +

1

12
iq∇(µAνRρτ) +

1

12
iqA(µ∇νRρτ) +

1

6
q2A(µAνRρτ)

+
1

6
iqD(µDνDρAτ) + 4U

(4)
04(µνρτ) −

1

90
Rλ(µ|β|νR

β
ρ|λ|τ) −

1

72
R(µνRρτ)

+
1

12
iq∇(µAνRρτ) −

1

12
iqA(µ∇νRρτ)

= − 1

20
∇(µ∇νRρτ) +

1

6
iq∇(µAνRρτ) +

1

6
q2A(µAνRρτ) +

1

6
iqD(µDνDρAτ) + 4U

(4)
04(µνρτ)

− 1

90
Rλ(µ|β|νR

β
ρ|λ|τ) −

1

72
R(µνRρτ)

= − 1

20
∇(µ∇νRρτ) +

1

6
iqD(µAνRρτ) +

1

6
iqD(µDνDρAτ) + 4U

(4)
04(µνρτ)

− 1

90
Rλ(µ|β|νR

β
ρ|λ|τ) −

1

72
R(µνRρτ). (7.105)

Then, we obtain for the U
(4)
04(µνρτ) expansion coefficient

U
(4)
04(µνρτ) =

1

80
∇(µ∇νRρτ) +

1

288
R(µνRρτ) +

1

360
Rλ(µ|β|νR

β
ρ|λ|τ) −

1

24
iqD(µDνDρAτ)

− 1

24
iqD(µAνRρτ). (7.106)

From the expression (6.6a) for the series expansion of the U (4)(x, x′) biscalar, we see that

in d = 4 we have U (4)(x, x′) = U
(4)
0 (x, x′). This means that by calculating all of the explicit

expressions for the U
(4)
0 (x, x′) Hadamard coefficient up to the order required for evaluating

the RSET, i.e. up to O
(
σ2
)
, we have calculated all of the necessary renormalisation

counterterms contained within the U (4)(x, x′) biscalar that we require to calculate of the

RSET. However, there are still terms in the d = 4 Hadamard parametrix (6.5) contained

within the V (4)(x, x′) biscalar that we need to evaluate explicitly in order to evaluate the

RSET; this is the subject of the next section.

Evaluating terms within V (4)(x, x′) biscalar

From the form of the d = 4 Hadamard parametrix (6.5), we see that we need to evaluate

renormalisation counterterms contained within the V (4)(x, x′) biscalar up to O(σ). This

means, from the expression (6.6b) for the series expansion of the V (4)(x, x′) biscalar, that

we need to evaluate the V
(4)

0 (x, x′) Hadamard coefficient up to O(σ) and the V
(4)

1 (x, x′)

Hadamard coefficient to zeroth order in order to evaluate the RSET.
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We can begin with the V
(4)

0 (x, x′) Hadamard coefficient; the boundary condition for

general V
(2p)

0 (x, x′) is given by (7.64) and we therefore have in d = 4:

2V
(4)

0 + 2σ ;µDµV
(4)

0 − 2V
(4)

0 ∆−
1
2 ∆

1
2
;µ σ

;µ +
(
DµD

µ −m2 − ξR
)
U

(4)
0 = 0. (7.107)

We can expand V
(4)

0 (x, x′) as a covariant Taylor expansion according to (6.10b):

V
(4)

0 = V
(4)

00 + V
(4)

01µ σ
;µ + V

(4)
02(µν) σ

;µσ ;ν +O
(
σ3/2

)
. (7.108)

Then the first term in the equation (7.107) for V
(4)

0 (x, x′) is given by

2V
(4)

0 = 2V
(4)

00 + 2V
(4)

01µ σ
;µ + 2V

(4)
02(µν) σ

;µσ ;ν +O
(
σ3/2

)
. (7.109)

The second term in the equation for V
(4)

0 (x, x′) (7.107) is 2σ ;µDµV
(4)

0 ; since σ ;µ is O
(
σ1/2

)

(1.20), we need only consider DµV
(4)

0 up to O
(
σ1/2

)
. We begin by evaluating ∇µV (4)

0 as

V
(4)

0 ;µ = V
(4)

00 ;µ + V
(4)

01ν σ
;ν
µ + V

(4)
01ν ;µ σ

;ν + 2V
(4)

02(νρ) σ
;ν
µσ

;ρ +O(σ)

= V
(4)

00 ;µ + V
(4)

01µ + V
(4)

01ν ;µ σ
;ν + 2V

(4)
02(µν) σ

;ν +O(σ) , (7.110)

where we have used the expansion for σ;µν (6.25). Then, we obtain for DµV
(4)

0

DµV
(4)

0 = DµV
(4)

00 + V
(4)

01µ +
[
DµV

(4)
01ν + 2V

(4)
02(µν)

]
σ ;ν +O(σ) . (7.111)

So the second term in the equation (7.107) for V (4)(x, x′) is given by

2σ ;µDµV
(4)

0 = 2
[
DµV

(4)
00 + V

(4)
01µ

]
σ ;µ+2

[
D(µV

(4)
01ν) + 2V

(4)
02(µν)

]
σ ;µσ ;ν+O

(
σ3/2

)
. (7.112)

Using (6.26), the third term in the equation (7.107) for V (4)(x, x′) is given by

− 2V
(4)

0 ∆−
1
2 ∆

1
2
;µ σ

;µ = −1

3
V

(4)
00 Rµν σ

;µσ ;ν +O
(
σ3/2

)
. (7.113)

We will evaluate the final term in (7.107) in steps, beginning with the calculation of

DµU
(4)
0 (x, x′), which is given in (7.95). We can then act on (7.95) with another gauge

covariant derivative to obtain an expression DµD
µU

(4)
0 (x, x′).

In (7.42), we calculated the quantity DµD
µV

(2)
0 to O(1) in terms of the expansion

coefficients of V
(2)

0 (x, x′); from (6.10a) and (6.10b), the expansion of U (4)(x, x′) in terms

of its expansion coefficients is identical to that of V (2)(x, x′); then we may write down(
DµD

µ −m2 − ξR
)
U

(4)
0 to O(1) from (7.42) as

(
DµD

µ −m2 − ξR
)
U

(4)
0 =

(
DµD

µ −m2 − ξR
)
U

(4)
00 +2DµU

(4)
01µ+2 gµνU

(4)
02(µν) +O

(
σ1/2

)
.

(7.114)

We now have all four terms in the equation for V
(4)

0 (x, x′) up to O(1); considering only

terms at O(1) in (7.109), (7.112), (7.113) and (7.114), the V
(4)

00 expansion coefficient is
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0 = 2V
(4)

00 +
(
DµD

µ −m2 − ξR
)
U

(4)
00 + 2DµU

(4)
01µ + 2 gµνU

(4)
02(µν). (7.115)

Using the expressions for U
(4)
00 (7.88), U

(4)
01µ (7.89) and U

(4)
02(µν) (7.90), (7.115) becomes

0 = 2V
(4)

00 − iq∇µAµ − q2AµA
µ −

(
m2 + ξR

)
+ 2 iq∇µAµ + 2 q2AµA

µ +
1

6
R− iq∇µAµ

− q2AµA
µ

= 2V
(4)

00 −
(
m2 + ξR

)
+

1

6
R. (7.116)

Examining (7.116), we see that all contributions containing the scalar field charge q cancel

exactly. This is in line with our zeroth order results in d = 2 and for the U
(4)
0 (x, x′) biscalar

in d = 4 thus far. Then, we obtain for the V
(4)

00 expansion coefficient

V
(4)

00 =
1

2

[
m2 +

(
ξ − 1

6

)
R

]
. (7.117)

This is the same as in the uncharged case [68] and so there are no gauge corrections to

the lowest order expansion coefficient of the Hadamard coefficient V
(4)

0 (x, x′).

Due to the computational complexity involved in evaluating DµD
µU

(4)
0 , we now take a

slightly different approach in deriving the explicit expressions for the V
(4)

1µ and V
(4)

02(µν)

expansion coefficients. The complexity lies within the �U (4)
0 term contained within

DµD
µU

(4)
0 . Since DµD

µU
(4)
0 reduces to �U (4)

0 when we set q = 0, i.e. in the uncharged

case, it makes sense to first re-derive the results due to [68], before generalising to the

charged case. Our first task, then, is to calculate �U (4)
0 ; in order to do so, we would like

to consider ∇αU (4)
0 (7.93) up to O

(
σ3/2

)
, so we can get an expression for �U (4)

0 up to

second order. Since we have already calculated the zeroth order contribution to V
(4)

0 (x, x′)

in V
(4)

00 (7.117), we will ignore these terms in the following calculation and simply label

them as O(1). Then, acting with another covariant derivative on (7.93), we obtain

�U (4)
0 = O(1) + gαβ

[
∇αU (4)

01µ + 2U
(4)
02(αµ)

]
σ ;µ

β +
[
�U (4)

01µ + 2∇αU (4)
02(αµ)

]
σ ;µ

+ 2 gαβ
[
∇αU (4)

02(µν) + 3U
(4)
03(αµν) −

1

3
U

(4)
01λR

λ
(µ|α|ν)

]
σ ;µ

β σ
;ν

+

[
�U (4)

02(µν) + 3∇αU (4)
03(αµν) −

1

3

[
∇αU (4)

01λ

]
Rλ(µ|α|ν) −

1

3
U

(4)
01λ∇αRλ(µ|α|ν)

]
σ ;µσ ;ν

+ 3 gαβ
[

1

12
U

(4)
01λ∇(µR

λ
ν|α|ρ) −

1

3
U

(4)
02λ(µR

λ
ν|α|ρ) −

1

3
U

(4)
02(µ|λ|R

λ
ν|α|ρ) +∇αU (4)

03(µνρ)

+ 4U
(4)
04(αµνρ)

]
σ ;µ

β σ
;νσ ;ρ +O

(
σ3/2

)
. (7.118)

Using the expansion for σ;µν (6.25), (7.118) becomes
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�U (4)
0 = O(1) + gαβ

[
∇αU (4)

01µ + 2U
(4)
02(αµ)

]{
−1

3
Rµ(θ|β|φ)σ

;θσ ;φ

}

+
[
�U (4)

01µ + 2∇αU (4)
02(αµ)

]
σ ;µ

+ gαβ
[
2∇αU (4)

02(µν) + 6U
(4)
03(αµν) −

2

3
U

(4)
01λR

λ
(µ|α|ν)

]{
δµβ

}
σ ;ν

+

[
�U (4)

02(µν) + 3∇αU (4)
03(αµν) −

1

3

[
∇αU (4)

01λ

]
Rλ(µ|α|ν) −

1

3
U

(4)
01λ∇αRλ(µ|α|ν)

]
σ ;µσ ;ν

+ gαβ
[

1

4
U

(4)
01λ∇(µR

λ
ν|α|ρ) − U

(4)
02λ(µR

λ
ν|α|ρ) − U

(4)
02(µ|λ|R

λ
ν|α|ρ) + 3∇αU (4)

03(µνρ)

+ 12U
(4)
04(αµνρ)

]{
δµβ

}
σ ;νσ ;ρ +O

(
σ3/2

)
. (7.119)

Since we will be performing contractions over the µ and α indices in some of the terms

in (7.119), it will be helpful to expand terms involving symmetrisations over µ and other

indices into their constituent parts that do not involve symmetrisations over the µ index:

�U (4)
0 = O(1)− 1

3
gαβ

[
∇αU (4)

01µ + U
(4)
02αµ + U

(4)
02µα

]
Rµ(θ|β|φ)σ

;θσ ;φ

+
[
�U (4)

01µ + 2∇αU (4)
02(αµ)

]
σ ;µ

+ gαµ
[
2∇αU (4)

02(µν) + 6U
(4)
03(αµν) −

1

3
U

(4)
01λR

λ
µαν −

1

3
U

(4)
01λR

λ
ναµ

]
σ ;ν

+

[
�U (4)

02(µν) + 3∇αU (4)
03(αµν) −

1

3

[
∇αU (4)

01λ

]
Rλ(µ|α|ν) −

1

3
U

(4)
01λ∇αRλ(µ|α|ν)

]
σ ;µσ ;ν

+ gαµ
[

1

12
U

(4)
01λ∇µRλ(ν|α|ρ) +

1

12
U

(4)
01λ∇(νR

λ
|µα|ρ) +

1

12
U

(4)
01λ∇(νR

λ
ρ)αµ

− 1

3
U

(4)
02λµR

λ
(ν|α|ρ) −

1

3
U

(4)
02λ(νR

λ
|µα|ρ) −

1

3
U

(4)
02λ(νR

λ
ρ)αµ −

1

3
U

(4)
02µλR

λ
(ν|α|ρ)

− 1

3
U

(4)
02(ν|λR

λ
µα|ρ) −

1

3
U

(4)
02(ν|λ|R

λ
ρ)αµ + 3∇αU (4)

03(µνρ) + 12U
(4)
04(αµνρ)

]
σ ;νσ ;ρ

+O
(
σ3/2

)
. (7.120)

Now we may perform the contractions in (7.120); bearing in mind the symmetries of the

Riemann tensor, some terms will vanish and some will become factors of the Ricci tensor:
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�U (4)
0 = O(1)

−
[

1

3

(
∇αU (4)

01λ

)
Rλ(µ|α|ν) +

1

3
gαβ U

(4)
02αλR

λ
(µ|β|ν) +

1

3
gαβ U

(4)
02λαR

λ
(µ|β|ν)

]
σ ;µσ ;ν

+
[
�U (4)

01µ + 2∇αU (4)
02(αµ)

]
σ ;µ +

[
2∇αU (4)

02(αµ) + 6 gαβ U
(4)
03(αβµ) +

1

3
U

(4)
01λR

λ
µ

]
σ ;µ

+

[
�U (4)

02(µν) + 3∇αU (4)
03(αµν) −

1

3

[
∇αU (4)

01λ

]
Rλ(µ|α|ν) −

1

3
U

(4)
01λ∇αRλ(µ|α|ν)

]
σ ;µσ ;ν

+

[
1

12
U

(4)
01λ∇αRλ(µ|α|ν) −

1

12
U

(4)
01λ∇(µR

λ
ν) −

1

3
gαβ U

(4)
02λαR

λ
(µ|β|ν) +

1

3
U

(4)
02λ(µR

λ
ν)

− 1

3
gαβ U

(4)
02αλR

λ
(µ|β|ν) +

1

3
U

(4)
02(µ|λR

λ
ν) + 3∇αU (4)

03(αµν) + 12 gαβ U
(4)
04(αβµν)

]
σ ;µσ ;ν

+O
(
σ3/2

)
. (7.121)

We can simplify like terms in (7.121) to obtain a final expression for �U (4)
0 , given by

�U (4)
0 = O(1) +

[
�U (4)

01µ +
1

3
U

(4)
01λR

λ
µ + 4∇αU (4)

02(αµ) + 6 gαβ U
(4)
03(αβµ)

]
σ ;µ

+

[
− 1

12
U

(4)
01λ∇(µR

λ
ν) −

1

4
U

(4)
01λ∇αRλ(µ|α|ν) −

2

3

(
∇αU (4)

01λ

)
Rλ(µ|α|ν) +�U (4)

02(µν)

+
1

3
U

(4)
02λ(µR

λ
ν) +

1

3
U

(4)
02(µ|λR

λ
ν) −

2

3
U

(4)
02λαR

λ α
(µ ν) −

2

3
U

(4)
02αλR

λ α
(µ ν)

+ 6∇αU (4)
03(αµν) + 12 gαβ U

(4)
04(αβµν)

]
σ ;µσ ;ν +O

(
σ3/2

)
. (7.122)

Having evaluated �U (4)
0 , we now calculate the other parts of the fourth term in equation

(7.107) for V
(4)

0 (x, x′). Using the expression for ∇αU (4)
0 (7.93) up to O(σ), we have

−2 iqAα∇αU (4)
0 = O(1)− 2 iqAα

[
∇αU (4)

01µ + 2U
(4)
02(αµ)

]
σ ;µ

− 2 iqAα
[
∇αU (4)

02(µν) + 3U
(4)
03(αµν) −

1

3
U

(4)
01λR

λ
(µ|α|ν)

]
σ ;µσ ;ν +O

(
σ3/2

)
.

(7.123)

Using the expression for U
(4)
0 (7.87) up to O(σ), we have

−q2AαA
α U

(4)
0 = O(1)− q2AαA

α U
(4)
01µ σ

;µ − q2AαA
α U

(4)
02(µν) σ

;µσ ;ν +O
(
σ3/2

)
,

(7.124)

−iq (∇αAα)U
(4)
0 = O(1)− iq (∇αAα)U

(4)
01µ σ

;µ − iq (∇αAα)U
(4)
02(µν) σ

;µσ ;ν +O
(
σ3/2

)
,

(7.125)

−
(
m2 + ξR

)
U

(4)
0 = O(1)−

(
m2 + ξR

)
U

(4)
01µ σ

;µ −
(
m2 + ξR

)
U

(4)
02(µν) σ

;µσ ;ν +O
(
σ3/2

)
.

(7.126)

Then the final term in (7.107) is given by
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(
DµD

µ −m2 − ξR
)
U

(4)
0

= O(1) +

[(
DµD

µ −m2 − ξR
)
U

(4)
01µ +

1

3
U

(4)
01λR

λ
µ + 4DαU

(4)
02(αµ) + 6 gαβ U

(4)
03(αβµ)

]
σ ;µ

+

[
− 1

12
U

(4)
01λ∇(µR

λ
ν) −

1

4
U

(4)
01λ∇αRλ(µ|α|ν) −

2

3

(
DαU

(4)
01λ

)
Rλ(µ|α|ν)

+
(
DµD

µ −m2 − ξR
)
U

(4)
02(µν) +

1

3
U

(4)
02λ(µR

λ
ν) +

1

3
U

(4)
02(µ|λR

λ
ν) −

2

3
U

(4)
02λαR

λ α
(µ ν)

− 2

3
U

(4)
02αλR

λ α
(µ ν) + 6DαU

(4)
03(αµν) + 12 gαβ U

(4)
04(αβµν)

]
σ ;µσ ;ν +O

(
σ3/2

)
. (7.127)

One interesting observation to note in comparing (7.122) and (7.127) which, aside from the

missing factor of −
(
m2 + ξR

)
U

(4)
0 in the former equation, is effectively the generalisation

from the uncharged to the charged case, is that only the covariant derivatives acting on

expansion coefficients of the U
(4)
0 Hadamard coefficient are generalised to gauge derivatives;

the covariant derivatives that are acting on the Ricci and Riemann tensors in (7.122)

remain as ordinary spacetime covariant derivatives in (7.127).

Now we will evaluate the V
(4)

01µ and V
(4)

02(µν) expansion coefficients of the V
(4)

0 (x, x′)

Hadamard coefficient. Considering only those terms at O
(
σ1/2

)
in (7.109), (7.112), (7.113)

and (7.127), we can obtain the explicit expression for V
(4)

01µ; we have

0 = 2V
(4)

01µ + 2DµV
(4)

00 + 2V
(4)

01µ +
(
DµD

µ −m2 − ξR
)
U

(4)
01µ +

1

3
U

(4)
01λR

λ
µ + 4DαU

(4)
02(αµ)

+ 6 gαβ U
(4)
03(αβµ). (7.128)

Since our method will be to first recover the results due to [68], we will rewrite the

gauge covariant derivatives in (7.128) in terms of ordinary spacetime derivatives and terms

proportional to the gauge field Aµ. Then, (7.128) becomes

0 = 4V
(4)

01µ + 2V
(4)

00 ;µ − 2 iqAµV
(4)

00 +
(
�−m2 − ξR

)
U

(4)
01µ − 2 iqAαU

(4)
01µ ;α − iq (∇αAα)U

(4)
01µ

− q2AαA
αU

(4)
01µ +

1

3
U

(4)
01λR

λ
µ + 4∇αU (4)

02(αµ) − 4 iqAαU
(4)
02(αµ) + 6 gαβ U

(4)
03(αβµ). (7.129)

However, (7.129) also contains nontrivial contractions involving symmetrised indices; we

will therefore expand these terms appropriately. Then, (7.129) becomes

0 = 4V
(4)

01µ + 2V
(4)

00 ;µ − 2 iqAµV
(4)

00 +
(
�−m2 − ξR

)
U

(4)
01µ − 2 iqAαU

(4)
01µ ;α − iq (∇αAα)U

(4)
01µ

− q2AαA
αU

(4)
01µ +

1

3
U

(4)
01λR

λ
µ + 2∇αU (4)

02αµ + 2∇αU (4)
02µα − 4 iqAαU

(4)
02(αµ) + 2 gαβ U

(4)
03(αβ)µ

+ 2 gαβ U
(4)
03(α|µ|β) + 2 gαβ U

(4)
03µ(αβ). (7.130)

It will be instructive to evaluate each term in (7.130) individually. The first term on the

r.h.s is trivial. Using (7.117), the second and third terms on the r.h.s are given by
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2V
(4)

00 ;µ = ∇µ
[
m2 +

(
ξ − 1

6

)
R

]

= ξR ;µ −
1

6
R ;µ, (7.131)

−2 iqAµV
(4)

00 = −iqAµ

[
m2 +

(
ξ − 1

6

)
R

]

= −iqAµ
(
m2 + ξR

)
+

1

6
iqAµR. (7.132)

Using (7.89), the terms proportional to U
(4)
01µ are given by

(
�−m2 − ξR

)
U

(4)
01µ = iq

(
�−m2 − ξR

)
Aµ, (7.133)

−2 iqAαU
(4)
01µ ;α = 2 q2Aα(∇αAµ) , (7.134)

−iq (∇αAα)U
(4)
01µ = q2Aµ∇αAα, (7.135)

−q2AαA
αU

(4)
01µ = −iq3AαA

αAµ, (7.136)

1

3
U

(4)
01λR

λ
µ =

1

3
iqAαRαµ. (7.137)

Using (7.90), the terms proportional to U
(4)
02(µν) are given by

2∇αU (4)
02αµ =

1

6
R ;α
αµ − q2∇α(AαAµ)− iq∇α∇µAα

=
1

6
R ;α
αµ − q2(∇αAα)Aµ − q2Aα(∇αAµ)− iq∇α∇µAα, (7.138)

2∇αU (4)
02µα =

1

6
R ;α
µα − q2∇α(AµA

α)− iq∇α∇αAµ

=
1

6
R ;α
αµ − q2(∇αAµ)Aα − q2Aµ(∇αAα)− iq∇α∇αAµ, (7.139)

−4 iqAαU
(4)
02(αµ) = −4 iqAα

[
1

12
Rαµ −

1

2
q2AαAµ −

1

4
iq (∇αAµ +∇µAα)

]

= −1

3
iqAαRαµ + 2 iq3AαAµA

α − q2Aα(∇αAµ)− q2Aα(∇µAα) . (7.140)

Using (7.102), the terms proportional to U
(4)
03(µνρ) are given by
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2 gαβ U
(4)
03(αβ)µ = − 1

12
R α
α ;µ +

1

6
iqAαRαµ + q2(∇αAα)Aµ −

1

3
iq3AαA

αAµ

+
1

3
iq∇µ∇αAα

= − 1

12
R ;µ +

1

6
iqAαRαµ + q2(∇αAα)Aµ −

1

3
iq3AαA

αAµ +
1

3
iq∇µ∇αAα,

(7.141)

2 gαβ U
(4)
03(α|µ|β) = − 1

12
R ;α
αµ +

1

6
iqAαRαµ + q2(∇µAα)Aα − 1

3
iq3AαAµA

α

+
1

3
iq∇α∇µAα, (7.142)

2 gαβ U
(4)
03µ(αβ) = − 1

12
R ;α
µα +

1

6
iqAµR

α
α + q2(∇αAµ)Aα − 1

3
iq3AµAαA

α

+
1

3
iq∇α∇αAµ

= − 1

12
R ;α
µα +

1

6
iqAµR+ q2(∇αAµ)Aα − 1

3
iq3AµAαA

α +
1

3
iq∇α∇αAµ.

(7.143)

Neutral scalar field: When the gauge field vanishes, we expect to recover the results

for a neutral scalar field in [68]. In this sense, setting Aµ = 0 is a useful sanity check.

We can introduce the notation Û (4)(x, x′) and V̂ (4)(x, x′) to denote the biscalar functions

that we obtain from the Hadamard parametrix in four dimensions (6.5) when setting the

scalar field charge to zero. Then, the biscalars Û (4)(x, x′) and V̂ (4)(x, x′) admit a power

series expansion analogous to those in (6.6a) and (6.6b), given explicitly by

Û (4)
(
x, x′

)
= Û

(4)
0

(
x, x′

)
, (7.144)

V̂ (4)
(
x, x′

)
=

∞∑

n=0

V̂ (4)
n

(
x, x′

)
σn
(
x, x′

)
, (7.145)

respectively, where the expansion coefficients Û
(4)
n (x, x′) and V̂

(4)
n (x, x′) can be expanded

as power series analogous to (6.10a) and (6.10b), explicitly given by

Û (4)
n

(
x, x′

)
=

∞∑

j=0

Û
(4)
njα1...αj

(x)σ ;α1
(
x, x′

)
. . . σ ;αj

(
x, x′

)
, (7.146)

V̂ (4)
n

(
x, x′

)
=
∞∑

j=0

V̂
(4)
njα1...αj

(x)σ ;α1
(
x, x′

)
. . . σ ;αj

(
x, x′

)
. (7.147)

Similarly, we can introduce the notation Ũ (4)(x, x′) and Ṽ (4)(x, x′) to denote the correction

to the biscalar function Û (4)(x, x′) and V̂ (4)(x, x′) respectively as a result of the presence of

the gauge field. Then the biscalars Ũ (4)(x, x′) and Ṽ (4)(x, x′) admit power series expansions

analogous to those in (6.6a) and (6.6b), given explicitly by

Ṽ (4)
(
x, x′

)
=
∞∑

n=0

Ṽ (4)
n

(
x, x′

)
σn
(
x, x′

)
, (7.148)
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where the expansion coefficients Ũ
(4)
n (x, x′) and Ṽ

(4)
n (x, x′) can be expanded as power series

analogous to (6.10a) and (6.10b), given explicitly by

Ũ (4)
n

(
x, x′

)
=
∞∑

j=0

Ũ
(4)
njα1...αj

(x)σ ;α1
(
x, x′

)
. . . σ ;αj

(
x, x′

)
, (7.149)

Ṽ (4)
n

(
x, x′

)
=
∞∑

j=0

Ṽ
(4)
njα1...αj

(x)σ ;α1
(
x, x′

)
. . . σ ;αj

(
x, x′

)
. (7.150)

In this language, the biscalar functions U (4)(x, x′) and V (4)(x, x′) given in the Hadamard

parametrix (6.5) in four spacetime dimensions are given by

U (4)
(
x, x′

)
= Û (4)

(
x, x′

)
+ Ũ (4)

(
x, x′

)
, (7.151)

V (4)
(
x, x′

)
= V̂ (4)

(
x, x′

)
+ Ṽ (4)

(
x, x′

)
, (7.152)

i.e. they are the sum of the biscalar functions Û (4)(x, x′) and V̂ (4)(x, x′) when the gauge

field vanishes and the corrections due to the gauge field Ũ (4)(x, x′) and Ṽ (4)(x, x′) respec-

tively. Equations (7.151) hold because all equations concerning the biscalars U (4)(x, x′)

and V (4)(x, x′) are linear. Then, using (6.6a), (7.144) and (7.148), we have

U
(4)
0

(
x, x′

)
= Û

(4)
0

(
x, x′

)
+ Ũ

(4)
0

(
x, x′

)
. (7.153)

Similarly, using (6.6b), (7.144) and (7.148), we have

∞∑

n=0

V (4)
n

(
x, x′

)
σn
(
x, x′

)
=
∞∑

n=0

V̂ (4)
n

(
x, x′

)
σn
(
x, x′

)
+
∞∑

n=0

Ṽ (4)
n

(
x, x′

)
σn
(
x, x′

)

=

∞∑

n=0

[
V̂ (4)
n

(
x, x′

)
+ Ṽ (4)

n

(
x, x′

)]
σn
(
x, x′

)
(7.154)

Since (7.154) should hold for each power of σ(x, x′), then we may write

V (4)
n

(
x, x′

)
= V̂ (4)

n

(
x, x′

)
+ Ṽ (4)

n

(
x, x′

)
. (7.155)

A similar line of reasoning shows that

U
(4)
njα1...αj

(x) = Û
(4)
njα1...αj

(x) + Ũ
(4)
njα1...αj

(x) ,

V
(4)
njα1...αj

(x) = V̂
(4)
njα1...αj

(x) + Ṽ
(4)
njα1...αj

(x) . (7.156)

Armed with this formalism, we now proceed to calculate the V̂
(4)

01µ expansion coefficient of

the Hadamard coefficient V̂ (4)(x, x′). Setting Aµ = 0, (7.129) immediately reduces to

0 = 4 V̂
(4)

01µ + 2V
(4)

00 ;µ +
(
�−m2 − ξR

)
Û

(4)
01µ +

1

3
Û

(4)
01λR

λ
µ + 2∇αÛ (4)

02αµ + 2∇αÛ (4)
02µα

+ 2 gαβ Û
(4)
03(αβ)µ + 2 gαβ Û

(4)
03(α|µ|β) + 2 gαβ Û

(4)
03µ(αβ), (7.157)
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Substituting in the explicit expressions for each term in (7.157) using equations (7.131) -

(7.143), we have

0 = 4 V̂
(4)

01µ + ξR ;µ −
1

6
R ;µ +

1

6
R ;α
αµ +

1

6
R ;α
αµ − 1

12
R ;µ −

1

12
R ;α
αµ − 1

12
R ;µ
αµ

= 4 V̂
(4)

01µ + ξR ;µ −
1

4
R ;µ +

1

6
R ;α
αµ

= 4 V̂
(4)

01µ +

(
ξR ;µ −

1

6
R ;µ +

1

6
R ;ν
µν −

1

12
R ;µ

)
, (7.158)

where we have split the factor of −1
4R ;µ in going from the penultimate line of (7.158) to

the last line in anticipation of using the Bianchi identity (1.8). Then, (7.158) reduces to

0 = 4 V̂
(4)

01µ +

(
ξR ;µ −

1

6
R ;µ +

1

12
R ;µ −

1

12
R ;µ

)

= 4 V̂
(4)

01µ +

(
ξR ;µ −

1

6
R ;µ

)
. (7.159)

So finally we obtain

V̂
(4)

01µ = −1

4

(
ξ − 1

6

)
R ;µ, (7.160)

which agrees with the results for a neutral scalar field in [68].

Charged scalar field: We want to calculate the Ṽ
(4)

01µ expansion coefficient of the

Hadamard coefficient Ṽ (4)(x, x′). Ignoring terms that do not involve Aµ, (7.130) becomes

0 = 4 Ṽ
(4)

01µ − 2 iqAµV
(4)

00 +
(
DµD

µ −m2 − ξR
)
Ũ

(4)
01µ +

1

3
Ũ

(4)
01λR

λ
µ + 2DαŨ

(4)
02αµ

+ 2DαŨ
(4)
02µα + 2 gαβ Ũ

(4)
03(αβ)µ + 2 gαβ Ũ

(4)
03(α|µ|β) + 2 gαβ Ũ

(4)
03µ(αβ). (7.161)

Using (7.117), the second term in (7.161) is given by

−2 iqAµV
(4)

00 = −iqAµ

[
m2 +

(
ξ − 1

6

)
R

]

= −iqAµ
(
m2 + ξR

)
+

1

6
iqAµR, (7.162)

Using (7.89), the terms proportional to U
(4)
01µ in (7.161) are given by

(
DαD

α −m2 − ξR
)
Ũ

(4)
01µ = iq DαD

αAµ − iqAµ
(
m2 + ξR

)
, (7.163)

1

3
Ũ

(4)
01λR

λ
µ =

1

3
iqAαRαµ. (7.164)

Using (7.90), the terms proportional to U
(4)
02(µν) in (7.161) are given by
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2DαŨ
(4)
02αµ = −1

6
iqAαRαµ − iq DαDαAµ, (7.165)

2DαŨ
(4)
02µα = −1

6
iqAαRαµ − iq DαDµAα. (7.166)

Using (7.102), the terms proportional to U
(4)
03(µνρ) in (7.161) are given by

2 gαβ Ũ
(4)
03(αβ)µ =

1

3
iq gαβD(αDβ)Aµ +

1

6
iq gαβA(αRβ)µ

=
1

3
iq DαD

αAµ +
1

6
iqAαRαµ, (7.167)

2 gαβ Ũ
(4)
03(α|µ|β) =

1

3
iq gαβD(αD|µ|Aβ) +

1

6
iq gαβA(αR|µ|β)

=
1

3
iq DαDµAα +

1

6
iqAαRαµ, (7.168)

2 gαβ Ũ
(4)
03µ(αβ) =

1

3
iq gαβDµD(αAβ) +

1

6
iq gαβAµRαβ

=
1

3
iq DµDαA

α +
1

6
iqAµR. (7.169)

Substituting in the explicit expressions for each term in (7.161) using equations (7.162) -

(7.169), we have

0 = 4 Ṽ
(4)

01µ − iqAµ
(
m2 + ξR

)
+

1

6
iqAµR+ iq DαD

αAµ − iqAµ
(
m2 + ξR

)
+

1

3
iqAαRαµ

− 1

6
iqAαRαµ − iq DαDαAµ −

1

6
iqAαRαµ − iq DαDµAα +

1

3
iq DαD

αAµ +
1

6
iqAαRαµ

+
1

3
iq DαDµAα +

1

6
iqAαRαµ +

1

3
iq DµDαA

α +
1

6
iqAµR . (7.170)

Simplifying like terms in (7.170), we obtain

0 = 4 Ṽ
(4)

01µ − 2 iqAµ
(
m2 + ξR

)
+

1

3
iqAµR+

1

3
iqAαRαµ +

1

3
iq DαDαAµ −

2

3
iq DαDµAα

+
1

3
iq DµDαA

α. (7.171)

In order to simplify (7.171) further, we can rewrite (7.171) as

0 = 4 Ṽ
(4)

01µ − 2 iqAµ
(
m2 + ξR

)
+

1

3
iqAµR+

1

3
iqAαRαµ +

1

3
iq DαDαAµ −

1

3
iq DαDµAα

+
1

3
iq DµDαA

α − 1

3
iq DαDµA

α

= 4 Ṽ
(4)

01µ − 2 iqAµ
(
m2 + ξR

)
+

1

3
iqAµR+

1

3
iqAαRαµ +

1

3
iq Dα(DαAµ −DµAα)

+
1

3
iq [Dµ , Dα]Aα. (7.172)

Using the expression for the commutator of two gauge covariant derivatives (6.28), equa-

tion (7.172) becomes
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0 = 4 Ṽ
(4)

01µ − 2 iqAµ
(
m2 + ξR

)
+

1

3
iqAµR+

1

3
iqAαRαµ +

1

3
iq DαFαµ −

1

3
iqAαRαµ

+
1

3
q2AαFµα

= 4 Ṽ
(4)

01µ − 2 iqAµ
(
m2 + ξR

)
+

1

3
iqAµR+

1

3
iq∇αFαµ +

1

3
q2AαFαµ +

1

3
q2AαFµα

= 4 Ṽ
(4)

01µ − 2 iqAµ
(
m2 + ξR

)
+

1

3
iqAµR+

1

3
iq∇αFαµ, (7.173)

where, in the last equality, we have used the fact that the electromagnetic field strength

tensor Fµν is antisymmetric. So finally, the first order correction Ṽ
(4)

01µ is given by

Ṽ
(4)

01µ =
1

2
iq

[
m2 +

(
ξ − 1

6

)
R

]
Aµ −

1

12
iq∇αFαµ. (7.174)

From (7.156) the V
(4)

01µ expansion coefficient is given by

V
(4)

01µ = V̂
(4)

01µ + Ṽ
(4)

01µ. (7.175)

Then, using the expressions for V̂
(4)

01µ (7.160) and Ṽ
(4)

01µ (7.174), we have

V
(4)

01µ = −1

4

(
ξ − 1

6

)
R ;µ +

1

2
iq

[
m2 +

(
ξ − 1

6

)
R

]
Aµ −

1

12
iq∇αFαµ. (7.176)

Now we will evaluate the V
(4)

02(µν) expansion coefficient of the V
(4)

0 (x, x′) Hadamard

coefficient. Considering only those terms at O(σ) in (7.109), (7.112), (7.113) and (7.127),

we can obtain the explicit expression for V
(4)

02(µν); we have

0 = 2V
(4)

02(µν) + 2D(µV
(4)

01ν) + 4V
(4)

02(µν) −
1

3
V

(4)
00 Rµν −

1

12
U

(4)
01λ∇(µR

λ
ν) −

1

4
U

(4)
01λ∇αRλ(µ|α|ν)

− 2

3

(
DαU

(4)
01λ

)
Rλ(µ|α|ν) +

(
DµD

µ −m2 − ξR
)
U

(4)
02(µν) +

1

3
U

(4)
02λ(µR

λ
ν) +

1

3
U

(4)
02(µ|λR

λ
ν)

− 2

3
U

(4)
02λαR

λ α
(µ ν) −

2

3
U

(4)
02αλR

λ α
(µ ν) + 6DαU

(4)
03(αµν) + 12 gαβ U

(4)
04(αβµν). (7.177)

Again, since our method will be to first recover the results for a neutral scalar field in [68],

we will rewrite the gauge covariant derivatives in (7.177) in terms of ordinary spacetime

derivatives and terms proportional to the gauge field Aµ. However, (7.177) also contains

nontrivial contractions involving symmetrised indices; therefore, we will expand these

terms appropriately. Then, (7.177) becomes

0 = 6V
(4)

02(µν) + 2V
(4)

01(µ ;ν) − 2 iqA(µV
(4)

01ν) −
1

3
V

(4)
00 Rµν −

1

12
U

(4)
01λ∇(µR

λ
ν)

− 1

4
U

(4)
01λ∇αRλ(µ|α|ν) −

2

3

(
∇αU (4)

01λ

)
Rλ(µ|α|ν) +

2

3
iqAαU

(4)
01λR

λ
(µ|α|ν)

+
(
�−m2 − ξR

)
U

(4)
02(µν) − 2 iqAαU

(4)
02(µν) ;α − iq (∇αAα)U

(4)
02(µν) − q

2AαA
αU

(4)
02(µν)

+
1

3
U

(4)
02λ(µR

λ
ν) +

1

3
U

(4)
02(µ|λR

λ
ν) −

2

3
U

(4)
02λαR

λ α
(µ ν) −

2

3
U

(4)
02αλR

λ α
(µ ν) + 2∇αU (4)

03α(µν)

+ 2∇αU (4)
03(µ|α|ν) + 2∇αU (4)

03(µν)α − 6 iqAαU
(4)
03(αµν) + 2 gαβ U

(4)
04αβ(µν) + 2 gαβ U

(4)
04α(µ|β|ν)

+ 2 gαβ U
(4)
04α(µν)β + 2 gαβ U

(4)
04(µ|αβ|ν) + 2 gαβ U

(4)
04(µ|α|ν)β + 2 gαβ U

(4)
04(µν)αβ. (7.178)
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Neutral scalar field: From (7.156), the V
(4)

02(µν) expansion coefficient is given by

V
(4)

02(µν) = V̂
(4)

02(µν) + Ṽ
(4)

02(µν). (7.179)

We begin by calculating V̂
(4)

02(µν), which is the expression we would obtain for V
(4)

02(µν) in the

absence of the gauge field. It will be useful to write down the explicit expressions for Û
(4)
00 ,

Û
(4)
01µ, Û

(4)
02(µν), Û

(4)
03(µνρ) and Û

(4)
04(µνρτ). From (7.88), (7.102) and (7.106), they are given by

Û
(4)
00 = 1,

Û
(4)
01µ = 0,

Û
(4)
02(µν) =

1

12
Rµν ,

Û
(4)
03(µνρ) = − 1

24
R(µν;ρ),

Û
(4)
04(µνρτ) =

1

80
R(µν;ρτ) +

1

288
R(µνRρτ) +

1

360
Rλ(µ|β|νR

β
ρ|λ|τ). (7.180)

It will also be useful to write down the explicit expressions for V̂
(4)

00 and V̂
(4)

01µ. We also

note that V̂
(4)

00 = V
(4)

00 given in (7.117) and that V̂
(4)

01µ is given in (7.160). Then, setting

Aµ = 0 and using (7.180), equation (7.178) reduces to

0 = 6 V̂
(4)

02(µν) + 2 V̂
(4)

01(µ ;ν) −
1

3
V

(4)
00 Rµν +

(
�−m2 − ξR

)
Û

(4)
02(µν) +

1

3
Û

(4)
02λ(µR

λ
ν)

+
1

3
Û

(4)
02(µ|λR

λ
ν) −

2

3
Û

(4)
02λαR

λ α
(µ ν) −

2

3
Û

(4)
02αλR

λ α
(µ ν) + 2∇αÛ (4)

03α(µν) + 2∇αÛ (4)
03(µ|α|ν)

+ 2∇αÛ (4)
03(µν)α + 2 gαβ Û

(4)
04αβ(µν) + 2 gαβ Û

(4)
04α(µ|β|ν) + 2 gαβ Û

(4)
04α(µν)β + 2 gαβ Û

(4)
04(µ|αβ|ν)

+ 2 gαβ Û
(4)
04(µ|α|ν)β + 2 gαβ Û

(4)
04(µν)αβ, (7.181)

where we have used the fact that (7.107) should vanish at each power of σ. It will be

instructive to evaluate each term in (7.181) individually before substituting into the equa-

tion. The first term in (7.181) is trivial. Using (7.160), the second term in (7.181) is:

2V
(4)

01(µ ;ν) = −1

4

(
ξ − 1

6

)
∇(µR ;ν)

= −1

4

(
ξ − 1

6

)
R ;µν . (7.182)

Using (7.117), the third term in (7.181) is given by

− 1

3
V

(4)
00 Rµν = −1

6

[
m2 +

(
ξ − 1

6

)
R

]
Rµν . (7.183)

Using (7.180), the terms proportional to Û
(4)
02(µν) in (7.181) are given by
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(
�−m2 − ξR

)
Û

(4)
02(µν) =

1

12

(
�−m2 − ξR

)
Rµν , (7.184)

1

3
Û

(4)
02λ(µR

λ
ν) +

1

3
Û

(4)
02(µ|λ|R

λ
ν) =

1

6
Û

(4)
02λµR

λ
ν +

1

6
Û

(4)
02λνR

λ
µ +

1

6
Û

(4)
02µλR

λ
ν +

1

6
Û

(4)
02νλR

λ
µ

=
1

72
RλµR

λ
ν +

1

72
RλνR

λ
µ +

1

72
RµλR

λ
ν +

1

72
RνλR

λ
µ

=
1

18
RλµR

λ
ν , (7.185)

as well as

−2

3
Û

(4)
02λαR

λ α
(µ ν) −

2

3
Û

(4)
02αλR

λ α
(µ ν)

= −1

3
Û

(4)
02λα

(
Rλ α

µ ν +Rλ α
ν µ

)
− 1

3
Û

(4)
02αλ

(
Rλ α

µ ν +Rλ α
ν µ

)

= − 1

36
RλαRλµαν −

1

36
RλαRαµλν −

1

36
RλαRλµαν −

1

36
RαλRαµλν

= −1

9
RλαRλµαν . (7.186)

Using (7.180), the terms proportional to Û
(4)
03(µνρ) in (7.181) are given by

2∇αÛ (4)
03α(µν) = − 1

12
R λ
λ(µ ;ν) = − 1

24
R λ
λµ ;ν −

1

24
R λ
λν ;µ , (7.187)

2∇αÛ (4)
03(µ|α|ν) = − 1

12
R λ

(µ|λ| ;ν) = − 1

24
R λ
µλ ;ν −

1

24
R λ
νλ ;µ , (7.188)

2∇αÛ (4)
03(µν)α = − 1

12
R λ
µν ;λ = − 1

12
�Rµν . (7.189)

Using (7.180), the terms proportional to Û
(4)
04(µνρτ) in (7.181) are given by

2 gαβ Û
(4)
04αβ(µν) =

1

80

(
Rλλ ;µν +Rλλ ;νµ

)
+

1

288

(
RλλRµν +RλλRνµ

)

+
1

360

(
RαλβλR

β
µαν +RαλβλR

β
ναµ

)

=
1

40
R ;µν +

1

144
RRµν +

1

360

(
RαβR

β
µαν +RαβR

β
ναµ

)

=
1

40
R ;µν +

1

144
RRµν +

1

180
RαβRαµβν , (7.190)

2 gαβ Û
(4)
04α(µ|β|ν) =

1

80

(
Rλµ ;λν +Rλν ;λµ

)
+

1

288

(
RλµRλν +RλνRλµ

)

+
1

360

(
RαλβµR

β
λαν +RαλβνR

β
λαµ

)

=
1

80

(
Rλµ ;λν +Rλν ;λµ

)
+

1

144
RλµRλν

+
1

360

(
RαλβµRβλαν +RβλαµRαλβν

)

=
1

80

(
Rλµ ;λν +Rλν ;λµ

)
+

1

144
RλµRλν +

1

360
RαλβµRαλβν , (7.191)
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2 gαβ Û
(4)
04α(µν)β =

1

80

(
Rλµ ;νλ +Rλν ;µλ

)
+

1

288

(
RλµRνλ +RλνRµλ

)

+
1

360

(
RαλβµR

β
ναλ +RαλβνR

β
µαλ

)

=
1

80

(
Rλµ ;νλ +Rλν ;µλ

)
+

1

144
RλµRλν

+
1

360

(
RαλβµR

β
ναλ +RαλβνR

β
µαλ

)

=
1

80

(
Rλµ ;νλ +Rλν ;µλ

)
+

1

144
RλµRλν +

1

180
RαλβµRαλβν , (7.192)

2 gαβ Û
(4)
04(µ|αβ|ν) =

1

80

(
R λ
µ ;λν +R λ

ν ;λµ

)
+

1

288
(R λ

µ Rλν +R λ
ν Rλµ)

+
1

360

(
Rα λ

µβ Rβλαν +Rα λ
νβ Rβλαµ

)

=
1

80

(
R λ
µ ;λν +R λ

ν ;λµ

)
+

1

144
RλµRλν

+
1

360

(
RαλβµRαλβν +RαλβµRαλβν

)

=
1

80

(
R λ
µ ;λν +R λ

ν ;λµ

)
+

1

144
RλµRλν +

1

180
RαλβµRαλβν , (7.193)

2 gαβ Û
(4)
04(µ|α|ν)β =

1

80

(
R λ
µ ;νλ +R λ

ν ;µλ

)
+

1

288

(
R λ
µ Rνλ +R λ

ν Rµλ

)

+
1

360

(
Rα λ

µβ Rβναλ +Rα λ
νβ Rβµαλ

)

=
1

80

(
R λ
µ ;νλ +R λ

ν ;µλ

)
+

1

144
RλµRλν

+
1

360

(
1

2
RαλβµRαλβν +

1

2
RαλβµRαλβν

)

=
1

80

(
R λ
µ ;νλ +R λ

ν ;µλ

)
+

1

144
RλµRλν +

1

360
RαλβµRαλβν , (7.194)

2 gαβ Û
(4)
04(µν)αβ =

1

80

(
R λ
µν ;λ +R λ

νµ ;λ

)
+

1

288

(
RµνR

λ
λ +RνµR

λ
λ

)

+
1

360

(
RαµβνR

βλ
αλ +RανβµR

βλ
αλ

)

=
1

40
R λ
µν ;λ +

1

144
RRµν +

1

360

(
RαµβνR

β
α +RανβµR

β
α

)

=
1

40
R λ
µν ;λ +

1

144
RRµν +

1

180
RαβRαµβν , (7.195)

where we have used the symmetries of the Riemann tensor (1.5) to simplify (7.190 –7.195).

Substituting in the explicit expressions for each term in (7.181) using equations (7.182) -

(7.195) and simplifying like terms, we have
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0 = 6 V̂
(4)

02(µν) +
13

120
R ;µν −

1

2
ξR ;µν −

1

4
m2Rµν −

1

4
ξRRµν +

1

24
RRµν +

1

40
�Rµν

− 1

10
RαβRαµβν +

1

12
RαµRαν −

7

120
Rλµ ;νλ −

7

120
Rλν ;µλ +

1

40
Rλµ ;λν +

1

40
Rλν ;λµ

+
1

60
RαλβµRαλβν . (7.196)

We can simplify (7.196) by combining terms containing the Ricci tensor acted on by two

covariant derivatives. Using the expression (1.10) for the commutator of two covariant

derivative operators, we have for the aforementioned terms in (7.196) the expressions

Rλµ ;νλ = ∇λ∇νRλµ = RαµRαν −RαβRαµβν +∇ν∇λRλµ
= RαµRαν −RαβRαµβν +Rλµ ;λν , (7.197)

Rλν ;µλ = ∇λ∇µRλν = RανRαµ −RαβRανβµ +∇µ∇λRλν
= RαµRαν −RαβRαµβν +Rλν ;λµ. (7.198)

Using (7.197) and (7.198), equation (7.196) becomes

0 = 6 V̂
(4)

02(µν) +
13

120
R ;µν −

1

2
ξR ;µν −

1

4
m2Rµν −

1

4
ξRRµν +

1

24
RRµν +

1

40
�Rµν

− 1

30
Rλµ ;λν −

1

30
Rλν ;λµ −

1

30
RαµRαν +

1

60
RαβRαµβν +

1

60
RαλβµRαλβν . (7.199)

We can simplify (7.199) by using the covariant derivative of the Bianchi identity (1.8):

Rλν ;λµ =
1

2
R ;µν . (7.200)

Using the fact that covariant derivatives acting on a scalar commute, we also have

Rλµ ;λν =
1

2
R ;µν . (7.201)

Using (7.200) and (7.201), equation (7.199) simplifies to

0 = 6 V̂
(4)

02(µν) +
13

120
R ;µν −

1

2
ξR ;µν −

1

4
m2Rµν −

1

4
ξRRµν +

1

24
RRµν +

1

40
�Rµν

− 1

60
R ;µν −

1

60
R ;µν −

1

30
RαµRαν +

1

60
RαβRαµβν +

1

60
RαλβµRαλβν

= 6 V̂
(4)

02(µν) +
3

40
R ;µν −

1

2
ξR ;µν −

1

4
m2Rµν −

1

4
ξRRµν +

1

24
RRµν +

1

40
�Rµν

− 1

30
RαµRαν +

1

60
RαβRαµβν +

1

60
RαλβµRαλβν . (7.202)

So finally, we obtain for the V̂
(4)

02(µν) expansion coefficient

V̂
(4)

02(µν) =
1

24
m2Rµν +

1

12

(
ξ − 3

20

)
R ;µν −

1

240
�Rµν +

1

24

(
ξ − 1

6

)
RRµν +

1

180
RαµRαν

− 1

360
RαβRαµβν −

1

360
RαλβµRαλβν , (7.203)

which agrees with the results for a neutral scalar field in [68].
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Charged scalar field: Having already calculated the correct expression when the gauge

field vanishes, we can ignore terms that do not involve Aµ and instead calculate the

correction Ṽ
(4)

02(µν) due to the gauge field. It will be useful to write down the expressions

for Ũ
(4)
00 (7.88), Ũ

(4)
01µ (7.89), Ũ

(4)
02(µν) (7.90), Ũ

(4)
03(µνρ) (7.102) and Ũ

(4)
04(µνρτ) (7.106) as

Ũ
(4)
00 = 0,

Ũ
(4)
01µ = iqAµ,

Ũ
(4)
02(µν) = −1

2
iqD(µAν),

Ũ
(4)
03(µνρ) =

1

6
iqD(µDνAρ) +

1

12
iqA(µRνρ),

Ũ
(4)
04(µνρτ) = − 1

24
iqD(µDνDρAτ) −

1

24
iqD(µ

[
AνRρτ)

]
. (7.204)

It will also be useful to write down the expressions for Ṽ
(4)

00 (7.117) and Ṽ
(4)

01µ (7.174) as

Ṽ
(4)

00 = 0,

Ṽ
(4)

01µ =
1

2
iq

[
m2 +

(
ξ − 1

6

)
R

]
Aµ −

1

12
iq∇αFαµ. (7.205)

Then, equation (7.178) becomes

0 = 6 Ṽ
(4)

02(µν) + 2D(µṼ
(4)

01ν) − 2 iqA(µV̂
(4)

01ν) −
1

12
Ũ

(4)
01λ∇(µR

λ
ν) −

1

4
Ũ

(4)
01λ∇αRλ(µ|α|ν)

− 2

3

[
DαŨ

(4)
01λ

]
Rλ(µ|α|ν) +

(
DαD

α −m2 − ξR
)
Ũ

(4)
02(µν) − 2 iqAα∇αÛ (4)

02(µν)

− iq (∇αAα) Û
(4)
02(µν) − q

2AαA
αÛ

(4)
02(µν) +

1

3
Ũ

(4)
02λ(µR

λ
ν) +

1

3
Ũ

(4)
02(µ|λ|R

λ
ν) −

2

3
Ũ

(4)
02λαR

λ α
(µ ν)

− 2

3
Ũ

(4)
02αλR

λ α
(µ ν) + 2DαŨ

(4)
03α(µν) + 2DαŨ

(4)
03(µ|α|ν) + 2DαŨ

(4)
03(µν)α − 6 iqAαÛ

(4)
03(αµν)

+ 2 gαβ Ũ
(4)
04αβ(µν) + 2 gαβ Ũ

(4)
04α(µ|β|ν) + 2 gαβ Ũ

(4)
04α(µν)β + 2 gαβ Ũ

(4)
04(µ|αβ|ν)

+ 2 gαβ Ũ
(4)
04(µ|α|ν)β + 2 gαβ Ũ

(4)
04(µν)αβ. (7.206)

where we have used the fact that (7.107) should vanish at each power of σ. It is instructive

to evaluate each term in (7.206) individually. The first term on the r.h.s is trivial. Using

(7.174), the second term in (7.206) is given by

2D(µṼ
(4)

01ν) = iq

[
m2 +

(
ξ − 1

6

)
R

]
A(µ ;ν) + iq

(
ξ − 1

6

)
R ;(µAν)

+ q2

[
m2 +

(
ξ − 1

6

)
R

]
AµAν −

1

6
iqD(µ∇αF|α|ν)

= iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) + iq

(
ξ − 1

6

)
R ;(µAν) −

1

6
iqD(µ∇αF|α|ν)

(7.207)

Using (7.160), the third term in (7.206) is given by
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−2 iqA(µV̂
(4)

01ν) =
1

2
iq

(
ξ − 1

6

)
R ;(µAν). (7.208)

Using (7.89), the terms proportional to Ũ
(4)
01µ in (7.206) are given by

− 1

12
Ũ

(4)
01λ∇(µR

λ
ν) = − 1

12
iqAλ∇(µR

λ
ν), (7.209)

−1

4
Ũ

(4)
01λ∇αRλ(µ|α|ν) = −1

4
iqAλ∇αRλ(µ|α|ν), (7.210)

−2

3

[
DαŨ

(4)
01λ

]
Rλ(µ|α|ν) = −2

3
iqRλ(µ|α|ν) D

αAλ. (7.211)

Using (7.204), the term proportional to Ũ
(4)
02(µν) in (7.206) is given by

(
DαD

α −m2 − ξR
)
Ũ

(4)
02(µν) = −1

2
iqDαD

αD(µAν) +
1

2
iq
(
m2 + ξR

)
D(µAν). (7.212)

Using (7.180), the terms proportional to Û
(4)
02(µν) in (7.206) are given by

−2 iqAα∇αÛ (4)
02(µν) = −1

6
iqAα∇αRµν , (7.213)

−iq (∇αAα) Û
(4)
02(µν) = − 1

12
iq (∇αAα)Rµν , (7.214)

−q2AαA
αÛ

(4)
02(µν) = − 1

12
q2AαA

αRµν . (7.215)

For the following terms, we must be careful to use the unsymmetrised version of Ũ
(4)
02(µν),

i.e. Ũ
(4)
02µν , since we have already expanded out the symmetrisation in these terms. Then,

using (7.204), the terms proportional to Ũ
(4)
02µν in (7.206) are given by

1

3
Ũ

(4)
02λ(µR

λ
ν) = −1

6
iqRλ(µD|λ|Aν), (7.216)

1

3
Ũ

(4)
02(µ|λ|R

λ
ν) = −1

6
iqRλ(µDν)Aλ, (7.217)

−2

3
Ũ

(4)
02λαR

λ α
(µ ν) −

2

3
Ũ

(4)
02αλR

λ α
(µ ν) =

1

3
iqRλ(µ|α|ν)D

λAα +
1

3
iqRλ(µ|α|ν)D

αAλ

=
1

3
iqRλ(µ|α|ν)D

λAα +
1

3
iqRα(µ|λ|ν)D

λAα

=
1

3
iqRλ(µ|α|ν)D

λAα +
1

3
iqRλ(ν|α|µ)D

λAα

=
2

3
iqRλ(µ|α|ν)D

λAα, (7.218)

where, in going from the first and second, the second and third, and the third and fourth

equalities in (7.218), we have performed a simple relabelling of the summed over indices,

used the symmetries of the Riemann tensor (1.5) and used the fact that we can arbitrarily

swap symmetrised indices, respectively. Using (7.204), the terms proportional to Ũ
(4)
03(µνρ)

in (7.206) are given by



Renormalisation counterterms 225

2DαŨ
(4)
03α(µν) =

1

3
iqDαDαD(µAν) +

1

6
iqDα[AαRµν ] , (7.219)

2DαŨ
(4)
03(µ|α|ν) =

1

3
iqDαD(µD|α|Aν) +

1

6
iqDα

[
A(µR|α|ν)

]

=
1

3
iqDαD(µD|α|Aν) +

1

6
iqDα

[
A(µRν)α

]
, (7.220)

2DαŨ
(4)
03(µν)α =

1

3
iqDαD(µDν)Aα +

1

6
iqDα

[
A(µRν)α

]
. (7.221)

Using (7.180), the term proportional to Û
(4)
03(µνρ) in (7.206) is given by

−6 iqAαÛ
(4)
03(αµν) =

1

4
iqAα∇(αRµν)

=
1

12
iqAα∇αRµν +

1

12
iqAα∇(µR|α|ν) +

1

12
iqAα∇(µRν)α

=
1

12
iqAα∇αRµν +

1

6
iqAα∇(µRν)α. (7.222)

Using (7.204), the terms proportional to Ũ
(4)
04(µνρτ) in (7.206) are given by

2 gαβ Ũ
(4)
04αβ(µν) = − 1

12
iqDαDαD(µAν) −

1

12
iqDα[AαRµν ] , (7.223)

2 gαβ Ũ
(4)
04α(µ|β|ν) = − 1

12
iqDαD(µD|α|Aν) −

1

12
iqDα

[
A(µR|α|ν)

]

= − 1

12
iqDαD(µD|α|Aν) −

1

12
iqDα

[
A(µRν)α

]
, (7.224)

2 gαβ Ũ
(4)
04α(µν)β = − 1

12
iqDαD(µDν)Aα −

1

12
iqDα

[
A(µRν)α

]
, (7.225)

2 gαβ Ũ
(4)
04(µ|αβ|ν) = − 1

12
iqD(µD

αD|α|Aν) −
1

12
iqD(µ

[
AαR|α|ν)

]

= − 1

12
iqD(µD

αD|α|Aν) −
1

12
iqD(µ

[
AαRν)α

]
, (7.226)

2 gαβ Ũ
(4)
04(µ|α|ν)β = − 1

12
iqD(µD|α|Dν)A

α − 1

12
iqD(µ

[
AαRν)α

]
, (7.227)

2 gαβ Ũ
(4)
04(µν)αβ = − 1

12
iqD(µDν)DαA

α − 1

12
iqD(µ

[
Aν)R

α
α

]

= − 1

12
iqD(µDν)DαA

α − 1

12
iqD(µ

[
Aν)R

]
, (7.228)

Substituting in the explicit expressions for each term in (7.206) using equations (7.207) -

(7.228), we obtain



226 Renormalisation counterterms

0 = 6 Ṽ
(4)

02(µν) + iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) + iq

(
ξ − 1

6

)
R ;(µAν) −

1

6
iqD(µ∇αF|α|ν)

+
1

2
iq

(
ξ − 1

6

)
R ;(µAν) −

1

12
iqAλ∇(µR

λ
ν) −

1

4
iqAλ∇αRλ(µ|α|ν) −

2

3
iqRλ(µ|α|ν) D

αAλ

− 1

2
iqDαD

αD(µAν) +
1

2
iq
(
m2 + ξR

)
D(µAν) −

1

6
iqAα∇αRµν −

1

12
iq (∇αAα)Rµν

− 1

12
q2AαA

αRµν −
1

6
iqRλ(µD|λ|Aν) −

1

6
iqRλ(µDν)Aλ +

2

3
iqRλ(µ|α|ν)D

λAα

+
1

3
iqDαDαD(µAν) +

1

6
iqDα[AαRµν ] +

1

3
iqDαD(µD|α|Aν) +

1

6
iqDα

[
A(µRν)α

]

+
1

3
iqDαD(µDν)Aα +

1

6
iqDα

[
A(µRν)α

]
+

1

12
iqAα∇αRµν +

1

6
iqAα∇(µRν)α

− 1

12
iqDαDαD(µAν) −

1

12
iqDα[AαRµν ]− 1

12
iqDαD(µD|α|Aν) −

1

12
iqDα

[
A(µRν)α

]

− 1

12
iqDαD(µDν)Aα −

1

12
iqDα

[
A(µRν)α

]
− 1

12
iqD(µD

αD|α|Aν) −
1

12
iqD(µ

[
AαRν)α

]

− 1

12
iqD(µD|α|Dν)A

α − 1

12
iqD(µ

[
AαRν)α

]
− 1

12
iqD(µDν)DαA

α − 1

12
iqD(µ

[
Aν)R

]
.

(7.229)

Simplifying like terms in (7.229) and rearranging to group terms that are likely to combine,

we have

0 = 6 Ṽ
(4)

02(µν) + iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

1

2
iq
(
m2 + ξR

)
D(µAν)

+
3

2
iq

(
ξ − 1

6

)
R ;(µAν) −

1

6
iqD(µ∇αF|α|ν) −

1

4
iqAλ∇αRλ(µ|α|ν) +

2

3
iqRλ(µ|α|ν)F

λα

− 1

12
iqAα∇αRµν −

1

12
iq (∇αAα)Rµν −

1

12
q2AαA

αRµν +
1

12
iqDα[AαRµν ]

− 1

6
iqRα(µD

αAν) +
1

6
iqDα

[
A(µRν)α

]
− 1

6
iqRα(µDν)A

α − 1

6
iqD(µ

[
AαRν)α

]

+
1

12
iqAα∇(µRν)α −

1

12
iqD(µ

[
Aν)R

]
− 1

4
iqDαDαD(µAν) +

1

4
iqDαD(µD|α|Aν)

− 1

12
iqD(µD

αD|α|Aν) +
1

4
iqDαD(µDν)A

α − 1

12
iqD(µD|α|Dν)A

α − 1

12
iqD(µDν)DαA

α,

(7.230)

where we have used

2

3
iqRλ(µ|α|ν)D

λAα − 2

3
iqRλ(µ|α|ν) D

αAλ =
2

3
iqRλ(µ|α|ν)

(
DλAα −DαAλ

)

=
2

3
iqRλ(µ|α|ν)F

λα, (7.231)

to simplify (7.230). We also note that

− 1

12
iqAα∇αRµν −

1

12
iq (∇αAα)Rµν −

1

12
q2AαA

αRµν

= − 1

12
iq∇α(AαRµν)− 1

12
q2AαA

αRµν

= − 1

12
iq Dα[AαRµν ] , (7.232)



Renormalisation counterterms 227

which means that the third line of (7.230) cancels, leaving

0 = 6 Ṽ
(4)

02(µν) + iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

1

2
iq
(
m2 + ξR

)
D(µAν)

+
3

2
iq

(
ξ − 1

6

)
R ;(µAν) −

1

6
iqD(µ∇αF|α|ν) −

1

4
iqAλ∇αRλ(µ|α|ν) +

2

3
iqRλ(µ|α|ν)F

λα

− 1

6
iqRα(µD

αAν) +
1

6
iqDα

[
A(µRν)α

]
− 1

6
iqRα(µDν)A

α − 1

6
iqD(µ

[
AαRν)α

]

+
1

12
iqAα∇(µRν)α −

1

12
iqD(µ

[
Aν)R

]
− 1

4
iqDαDαD(µAν) +

1

4
iqDαD(µD|α|Aν)

− 1

12
iqD(µD

αD|α|Aν) +
1

4
iqDαD(µDν)A

α − 1

12
iqD(µD|α|Dν)A

α − 1

12
iqD(µDν)DαA

α.

(7.233)

Equation (7.233) is obviously still very complicated. Rather than make further ad-hoc

simplifications, we will attempt to be as systematic as possible in simplifying it. First let

us address the terms that contain three gauge covariant derivatives acting on the gauge

field. Our general strategy will be to commute the gauge covariant derivatives in the

relevant terms such that we can simplify as much as possible. There are two types of these

terms; the first are those where the gauge field itself has the index α and the second are

those where it has an index of µ or ν. In the former type, one term has the outermost gauge

covariant derivative with an index of α, one has the middle and one has the innermost.

Thus, in the first type, it is simplest to commute gauge derivatives such that each term of

this type has the middle gauge derivative with the index α. Using (6.29), we have

− 1

12
iqD(µDν)DαA

α = − 1

12
iqD(µD|α|Dν)A

α +
1

12
iqD(µRν)αA

α − 1

12
q2D(µA

αFν)α.

(7.234)

Using (6.31), we have

1

4
iqDαD(µDν)A

α =
1

4
iqD(µD|α|Dν)A

α +
1

4
iqRα(µDν)A

α − 1

4
iqRλ(µ|α|ν)DλA

α

+
1

4
q2Fα(µDν)A

α. (7.235)

Therefore, the terms proportional to three gauge derivatives acting on a gauge field with

the index α in (7.233) are given by

1

4
iqDαD(µDν)A

α − 1

12
iqD(µD|α|Dν)A

α − 1

12
iqD(µDν)DαA

α

=
1

4
iqD(µD|α|Dν)A

α +
1

4
iqRα(µDν)A

α − 1

4
iqRλ(µ|α|ν)DλA

α

+
1

4
q2Fα(µDν)A

α − 1

12
iqD(µD|α|Dν)A

α − 1

12
iqD(µD|α|Dν)A

α

+
1

12
iqD(µRν)αA

α − 1

12
q2D(µA

αFν)α

=
1

12
iqD(µD|α|Dν)A

α +
1

4
iqRα(µDν)A

α − 1

4
iqRλ(µ|α|ν)DλA

α

+
1

4
q2Fα(µDν)A

α +
1

12
iqD(µRν)αA

α − 1

12
q2D(µA

αFν)α. (7.236)
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In the second type, one term has the innermost gauge covariant derivative with an index

of µ or ν, one has the middle and one has the outermost. Thus, in the latter type, it is

simplest to commute gauge derivatives such that each term of this type has the middle

gauge derivative with the index µ or ν. Using (6.28), we have

− 1

4
iqDαDαD(µAν) = −1

4
iqDαD(µD|α|Aν) +

1

4
iqDαRλ(µ|α|ν)Aλ +

1

4
q2DαA(µFν)α.

(7.237)

Using (6.32), we have

− 1

12
iqD(µD|α|D

αAν) = − 1

12
iqDαD(µD

αAν) +
1

12
iqRα(µD

αAν) −
1

12
iqRλ(µ|α|ν)D

αAλ

+
1

12
q2Fα(µD

αAν). (7.238)

Therefore, the terms proportional to three gauge derivatives acting on a gauge field with

the index µ or ν are given by

−1

4
iqDαDαD(µAν) +

1

4
iqDαD(µD|α|Aν) −

1

12
iqD(µD|α|D

αAν)

= −1

4
iqDαD(µD|α|Aν) +

1

4
iqDαRλ(µ|α|ν)Aλ +

1

4
q2DαA(µFν)α

+
1

4
iqDαD(µD|α|Aν) −

1

12
iqDαD(µD

αAν) +
1

12
iqRα(µD

αAν)

− 1

12
iqRλ(µ|α|ν)D

αAλ +
1

12
q2Fα(µD

αAν)

= − 1

12
iqDαD(µD|α|Aν) +

1

4
iqDαRλ(µ|α|ν)Aλ +

1

4
q2DαA(µFν)α

+
1

12
iqRα(µD

αAν) −
1

12
iqRλ(µ|α|ν)D

αAλ +
1

12
q2Fα(µD

αAν).

(7.239)

The sum of (7.236) and (7.239) gives us

1

4
iqDαD(µDν)A

α − 1

12
iqD(µD|α|Dν)A

α − 1

12
iqD(µDν)DαA

α − 1

4
iqDαDαD(µAν)

+
1

4
iqDαD(µD|α|Aν) −

1

12
iqD(µD|α|D

αAν)

=
1

12
iqD(µD|α|Dν)A

α +
1

4
iqRα(µDν)A

α − 1

4
iqRλ(µ|α|ν)DλA

α +
1

4
q2Fα(µDν)A

α

+
1

12
iqD(µRν)αA

α − 1

12
q2D(µA

αFν)α −
1

12
iqDαD(µD|α|Aν) +

1

4
iqDαRλ(µ|α|ν)Aλ

+
1

4
q2DαA(µFν)α +

1

12
iqRα(µD

αAν) −
1

12
iqRλ(µ|α|ν)D

αAλ +
1

12
q2Fα(µD

αAν). (7.240)

We can use the definition of the electromagnetic field strength (3.2) to combine the two

terms proportional to three gauge derivatives acting on the gauge field. In order to do so,

we need to commute the gauge derivatives in one of these terms. Using (6.32), we have
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− 1

12
iqDαD(µD

αAν) = − 1

12
iqD(µD|α|D

αAν) −
1

12
iqRα(µD

αAν) +
1

12
iqRλ(µ|α|ν)D

αAλ

− 1

12
q2Fα(µD

αAν). (7.241)

Then, inserting (7.241) into (7.240) and simplifying, we have

1

4
iqDαD(µDν)A

α − 1

12
iqD(µD|α|Dν)A

α − 1

12
iqD(µDν)DαA

α − 1

4
iqDαDαD(µAν)

+
1

4
iqDαD(µD|α|Aν) −

1

12
iqD(µD|α|D

αAν)

=
1

12
iqD(µD

αFν)α +
1

4
iqRα(µDν)A

α − 1

4
iqRλ(µ|α|ν)DλA

α +
1

4
q2Fα(µDν)A

α

+
1

12
iqD(µRν)αA

α − 1

12
q2D(µA

αFν)α +
1

4
iqDαRλ(µ|α|ν)Aλ +

1

4
q2DαA(µFν)α. (7.242)

Substituting (7.242) back into (7.233), we have

0 = 6 Ṽ
(4)

02(µν) + iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

1

2
iq
(
m2 + ξR

)
D(µAν)

+
3

2
iq

(
ξ − 1

6

)
R ;(µAν) −

1

6
iqD(µ∇αF|α|ν) −

1

4
iqAλ∇αRλ(µ|α|ν) +

2

3
iqRλ(µ|α|ν)F

λα

− 1

6
iqRα(µD

αAν) +
1

6
iqDα

[
A(µRν)α

]
− 1

6
iqRα(µDν)A

α − 1

6
iqD(µ

[
AαRν)α

]

+
1

12
iqAα∇(µRν)α −

1

12
iqD(µ

[
Aν)R

]
+

1

12
iqD(µD

αFν)α +
1

4
iqRα(µDν)A

α

− 1

4
iqRλ(µ|α|ν)DλA

α +
1

4
q2Fα(µDν)A

α +
1

12
iqD(µRν)αA

α − 1

12
q2D(µA

αFν)α

+
1

4
iqDαRλ(µ|α|ν)Aλ +

1

4
q2DαA(µFν)α. (7.243)

Simplifying like terms in (7.243), we have

0 = 6 Ṽ
(4)

02(µν) + iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

1

2
iq
(
m2 + ξR

)
D(µAν)

+
3

2
iq

(
ξ − 1

6

)
R ;(µAν) −

1

6
iqD(µ∇αF|α|ν) −

1

4
iqAλ∇αRλ(µ|α|ν) +

2

3
iqRλ(µ|α|ν)F

λα

− 1

6
iqRα(µD

αAν) +
1

6
iqDα

[
A(µRν)α

]
+

1

12
iqRα(µDν)A

α − 1

12
iqD(µ

[
AαRν)α

]

+
1

12
iqAα∇(µRν)α −

1

12
iqD(µ

[
Aν)R

]
+

1

12
iqD(µD

αFν)α −
1

4
iqRλ(µ|α|ν)DλA

α

+
1

4
q2Fα(µDν)A

α − 1

12
q2D(µA

αFν)α +
1

4
iqDαRλ(µ|α|ν)Aλ +

1

4
q2DαA(µFν)α. (7.244)

Examining (7.244), we see that it contains several terms with derivative operators acting

on multiple quantities which can be simplified by using the product rule; then, we have
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0 = 6 Ṽ
(4)

02(µν) + iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

1

2
iq
(
m2 + ξR

)
D(µAν)

+
3

2
iq

(
ξ − 1

6

)
A(µ∇ν)R−

1

6
iqD(µ∇αF|α|ν) −

1

4
iqAλ∇αRλ(µ|α|ν) +

2

3
iqRλ(µ|α|ν)F

λα

− 1

6
iqDα

[
A(µRν)α

]
+

1

6
iqA(µ∇αRν)α +

1

6
iqDα

[
A(µRν)α

]
+

1

12
iqD(µ

[
AαRν)α

]

− 1

12
iqAα∇(µRν)α −

1

12
iqD(µ

[
AαRν)α

]
+

1

12
iqAα∇(µRν)α −

1

12
iqRD(µAν)

− 1

12
iqA(µ∇ν)R+

1

12
iqD(µD

αFν)α −
1

4
iqRλ(µ|α|ν)DλA

α +
1

4
q2D(µA

αF|α|ν)

− 1

4
q2Aα∇(µF|α|ν) −

1

12
q2D(µA

αFν)α +
1

4
iqRλ(µ|α|ν)D

αAλ +
1

4
iqAλ∇αRλ(µ|α|ν)

+
1

4
q2DαA(µFν)α. (7.245)

Simplifying like terms, we have

0 = 6 Ṽ
(4)

02(µν) +
3

2
iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

3

2
iq

(
ξ − 1

6

)
A(µ∇ν)R−

1

6
iqD(µ∇αF|α|ν)

+
1

12
iqD(µD

αFν)α −
1

3
q2D(µA

αFν)α +
1

4
q2Aα∇(µFν)α +

1

4
q2DαA(µFν)α, (7.246)

where we have used that

Rλ(µ|α|ν)F
λα = Rα(ν|λ|µ)F

λα

= Rα(µ|λ|ν)F
λα

= −Rα(µ|λ|ν)F
αλ

= −Rλ(µ|α|ν)F
λα = 0, (7.247)

and that

1

6
iqA(µ∇αRν)α −

1

12
iqA(µ∇ν)R =

1

6
iqA(µ

[
∇αRν)α −

1

2
∇ν)R

]

=
1

6
iqA(µ∇α

[
Rν)α −

1

2
gν)αR

]

=
1

6
iqA(µ∇αGν)α

= 0, (7.248)

which follows from the Bianchi identity (1.8). We can further simplify by expanding the

gauge covariant derivatives in (7.246) into spacetime covariant derivatives and the part

which does not contain any derivative operators; then, we obtain
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0 = 6 Ṽ
(4)

02(µν) +
3

2
iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

3

2
iq

(
ξ − 1

6

)
A(µ∇ν)R+

1

6
iq∇(µ∇αFν)α

+
1

6
q2A(µ∇αFν)α +

1

12
iq∇(µ∇αFν)α +

1

12
q2∇(µA

αFν)α +
1

12
q2A(µ∇αFν)α

− 1

12
iq3A(µA

αFν)α −
1

3
q2∇(µA

αFν)α +
1

3
iq3A(µA

αFν)α +
1

4
q2Aα∇(µFν)α

+
1

4
q2∇αA(µFν)α −

1

4
iq3AαA(µFν)α. (7.249)

Simplifying like terms and using the product rule in (7.249) gives us

0 = 6 Ṽ
(4)

02(µν) +
3

2
iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

3

2
iq

(
ξ − 1

6

)
A(µ∇ν)R+

1

4
iq∇(µ∇αFν)α

+
1

6
q2A(µ∇αFν)α +

1

12
q2Aα∇(µFν)α +

1

12
q2F(µ|α|∇ν)A

α +
1

12
q2A(µ∇αFν)α

− 1

3
q2Aα∇(µFν)α −

1

3
q2F(µ|α|∇ν)A

α +
1

4
q2Aα∇(µFν)α +

1

4
q2A(µ∇αFν)α

+
1

4
q2F(µ|α|∇αAν). (7.250)

Simplifying like terms, we have

0 = 6 Ṽ
(4)

02(µν) +
3

2
iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

3

2
iq

(
ξ − 1

6

)
A(µ∇ν)R+

1

4
iq∇(µ∇αFν)α

+
1

2
q2A(µ∇αFν)α −

1

4
q2F(µ|α|∇ν)A

α +
1

4
q2F(µ|α|∇αAν)

= 6 Ṽ
(4)

02(µν) +
3

2
iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) +

3

2
iq

(
ξ − 1

6

)
A(µ∇ν)R+

1

4
iq∇(µ∇αFν)α

+
1

2
q2A(µ∇αFν)α +

1

4
q2FαµFνα. (7.251)

So finally, the second order correction Ṽ
(4)

0 (x, x′) is given by

Ṽ
(4)

02(µν) = −1

4
iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν) −

1

4
iq

(
ξ − 1

6

)
A(µ∇ν)R−

1

24
iq∇(µ∇αFν)α

− 1

12
q2A(µ∇αFν)α −

1

24
q2FαµFνα. (7.252)

From (7.156), the V
(4)

02(µν) expansion coefficient is given by

V
(4)

02(µν) = V̂
(4)

02(µν) + Ṽ
(4)

02(µν). (7.253)

Then, using (7.203) and (7.252), we have

V
(4)

02(µν) =
1

24
m2Rµν +

1

12

(
ξ − 3

20

)
R ;µν −

1

240
�Rµν +

1

24

(
ξ − 1

6

)
RRµν +

1

180
RαµRαν

− 1

360
RαβRαµβν −

1

360
RαλβµRαλβν −

1

4
iq

[
m2 +

(
ξ − 1

6

)
R

]
D(µAν)

− 1

4
iq

(
ξ − 1

6

)
A(µ∇ν)R−

1

24
iq∇(µ∇αFν)α −

1

12
q2A(µ∇αFν)α −

1

24
q2FαµFνα.

(7.254)
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Lastly, we are required to evaluate the Hadamard coefficient V
(4)

1 (x, x′) to O(1), i.e. we

are required to evaluate the expansion coefficient V
(4)

10 , where we have used the expansion

V
(4)

1

(
x, x′

)
= V

(4)
10 + . . . (7.255)

The equation governing V
(4)

1 (x, x′) is given by

4V
(4)

1 +
(
DµD

µ −m2 − ξR
)
V

(4)
0 = 0. (7.256)

Expanding the Hadamard coefficient V
(4)

0 (x, x′) as

V
(4)

0 = V
(4)

00 + V
(4)

01µσ
;µ + V

(4)
02(µν)σ

;µσ ;ν + . . . (7.257)

Then, acting with the covariant derivative, we have

∇µV (4)
0 = V

(4)
00;µ + V

(4)
01ν;µσ

;ν + V
(4)

01νσ
;ν
µ + 2V

(4)
02(νρ)σ

;ν
µσ

;ρ + . . . (7.258)

which gives

DµV
(4)

0 = V
(4)

00;µ + V
(4)

01ν;µσ
;ν + V

(4)
01µ + 2V

(4)
02(µν)σ

;ν − iqAµV
(4)

00 − iqAµV
(4)

01νσ
;ν + . . .

= DµV
(4)

00 + V
(4)

01µ + σ ;νDµV
(4)

01ν + 2V
(4)

02(µν)σ
;ν + . . . (7.259)

Acting with another covariant derivative, we obtain

∇µDµV
(4)

0 = gµλ∇λDµV
(4)

00 + gµλ∇λV (4)
01µ + σ;ν

λg
µλDµV

(4)
01ν + 2V

(4)
02(µν)g

µλσ;ν
λ + . . .

(7.260)

Then, we have

DµD
µV

(4)
0 = ∇µDµV

(4)
00 +∇µV (4)

01µ + δνλg
µλDµV

(4)
01ν + 2V

(4)
02(µν)g

µλδνλ − iqAλg
µλDµV

(4)
00

− iqAλg
µλV

(4)
01µ + . . .

= DµD
µV

(4)
00 + 2DµV

(4)
01µ + 2V

(4)
02(µν)g

µν + . . . (7.261)

Neutral scalar field: In the uncharged case, (7.261) reduces to

4V̂
(4)

10 +
(
�−m2 − ξR

)
V

(4)
00 + 2∇µV̂ (4)

01µ + 2gµν V̂
(4)

02(µν) = 0. (7.262)

We have

(
�−m2 − ξR

)
V

(4)
00 =

1

2

(
ξ − 1

6

)
�R− 1

2
m2

[
m2 +

(
ξ − 1

6

)
R

]

− 1

2
ξR

[
m2 +

(
ξ − 1

6

)
R

]
, (7.263)
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2∇µV̂ (4)
01µ = −1

2

(
ξ − 1

6

)
�R+ iq

(
ξ − 1

6

)
Aµ∇µ�R+ iq

[
m2 +

(
ξ − 1

6

)
R

]
∇µAµ

− 1

6
iq∇µ∇αFαµ, (7.264)

2gµν V̂
(4)

02(µν) =
1

12

[
m2 +

(
ξ − 1

6

)
R

]
R+

1

6

(
ξ − 3

20

)
�R− 1

2
m2

[
m2 +

(
ξ − 1

6

)
R

]

− 1

2
ξR

[
m2 +

(
ξ − 1

6

)
R

]
+

1

120
�R+

1

90
RµnuRµν −

1

180
RµνRµν

− 1

180
RµνρτRµνρτ −

1

2
iq

[
m2 +

(
ξ − 1

6

)
R

]
∇µAµ −

1

2
iq

(
ξ − 1

6

)
Aµ∇µR

+
1

12
q2FµνFµν −

1

6
q2Aµ∇αFµα −

1

12
iq∇µ∇αFαµ. (7.265)

Then, we obtain for the V̂
(4)

10 expansion coefficient the expression

V̂
(4)

10 =
1

8

[
m2 +

(
ξ − 1

6

)
R

]2

− 1

24

(
ξ − 1

5

)
�R− 1

720
RµνRµν+

1

720
RµνρτRµνρτ , (7.266)

which agrees with the results for a neutral scalar field in [68].

Charged scalar field: Having already calculated the correct expression when the gauge

field vanishes, we can ignore terms that do not involve Aµ and instead calculate the

correction V
(4)

10 due to the gauge field. Then, we have

0 = 4V
(4)

10 − 2 iqAµ∇µV (4)
00 − iq (∇µAµ)V

(4)
00 − q2AµA

µV
(4)

00 + 2DµṼ
(4)

01µ − 2 iqAµV̂
(4)

01µ

+ 2 gµν Ṽ
(4)

02(µν). (7.267)

We have

− 2 iqAµ∇µV (4)
00 − iq (∇µAµ)V

(4)
00 − q2AµA

µV
(4)

00

= −iq

(
ξ − 1

6

)
AµR;µ −

1

2
iq

[
m2 +

(
ξ − 1

6

)
R

]
DµA

µ − 1

2
q2

[
m2 +

(
ξ − 1

6

)
R

]
AµA

µ,

(7.268)

2DµṼ
(4)

01µ = −1

2

(
ξ − 1

6

)
iq

[
m2 +

(
ξ − 1

6

)
R

]
DµA

µ + iq

(
ξ − 1

6

)
Aµ∇µR

− 1

6
iq∇µ∇αFαµ −

1

6
q2Aµ∇αFαµ, (7.269)

− 2 iqAµV̂
(4)

01µ =
1

2
iq

(
ξ − 1

6

)
AµR;µ + q2

[
m2 +

(
ξ − 1

6

)
R

]
AµA

µ, (7.270)
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2 gµν Ṽ
(4)

02(µν) = −1

2

[
m2 +

(
ξ − 1

6

)
R

]
DµA

µ − 1

2
iq

(
ξ − 1

6

)
Aµ∇µR+

1

12
q2FµνFµν

− 1

6
q2Aµ∇νFµν −

1

12
iq∇µ∇νFµν . (7.271)

Then, we obtain for the Ṽ
(4)

10 expansion coefficient the expression

Ṽ
(4)

10 = − 1

48
q2FµνFµν . (7.272)

From (7.156), the V
(4)

10 expansion coefficient is given by

V
(4)

10 = V̂
(4)

10 + Ṽ
(4)

10 . (7.273)

Then, using (7.266) and (7.272), we have

V
(4)

10 =
1

8

[
m2 +

(
ξ − 1

6

)
R

]2

− 1

24

(
ξ − 1

5

)
�R− 1

720
RµνRµν +

1

720
RµνρτRµνρτ

− 1

48
q2FµνFµν . (7.274)

7.3 Hadamard form for odd dimensions

In this section, we develop the general formalism for the Hadamard renormalisation pro-

cedure of charged scalar fields in a general background spacetime with an odd number of

dimensions. We will then focus on the specific case of d = 3 to derive explicit expressions

for the renormalisation counterterms up to the order required to evaluate the RSET.

7.3.1 Hadamard renormalisation procedure in odd dimensions

We would like to evaluate the inhomogeneous Klein-Gordon equation (6.2) for the odd-

dimensional Hadamard parametrix (6.7). We begin by noting, from (6.9), that α3 = 1
4π
√

2
.

We remind the reader that we write the number of spacetime dimensions as d = 2p + 1

with p ≥ 1. Then (6.2) becomes

(
DµD

µ −m2 − ξR
)
G

(2p+1)
F

=
iα2p+1

2

(
DµD

µ −m2 − ξR
)
{

U (2p+1)(x, x′)

[σ(x, x′) + iε]p−
1
2

+W (2p+1)
(
x, x′

)
}

= − 1√
−g (x)

δ(2p+1)
(
x− x′

)
. (7.275)

It will be convenient instead to evaluate the equation
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− 2 i

α2p+1

(
DµD

µ −m2 − ξR
)
G

(2p+1)
F

=
(
DµD

µ −m2 − ξR
)
{

U (2p+1)(x, x′)

[σ(x, x′) + iε]p−
1
2

+W (2p+1)
(
x, x′

)
}

= − 2 i

α2p+1

1√
−g (x)

δ(2p+1)
(
x− x′

)
. (7.276)

Then, suppressing arguments of the biscalar functions, we begin by calculating the quantity

− 2 i

α2p+1
DµG

(2p+1)
F = (∇µ − iqAµ)

[
σ−p+

1
2 U (2p+1) +W (2p+1)

]

= σ−p+
1
2 ∇µU (2p+1) −

(
p− 1

2

)
σ−p−

1
2 U (2p+1)∇µσ +∇µW (2p+1)

− σ−p+ 1
2 iqAµU

(2p+1) − iqAµW
(2p+1). (7.277)

Acting on (7.277) with another gauge derivative, we obtain

− 2 i

α2p+1
DµD

µG
(2p+1)
F = σ−p+

1
2 ∇µ∇µU (2p+1) − (2p− 1)σ−p−

1
2

[
∇µU (2p+1)

]
(∇µσ)

+

(
p− 1

2

)(
p+

1

2

)
σ−p−

3
2 U (2p+1)(∇µσ)(∇µσ)

−
(
p− 1

2

)
σ−p−

1
2 U (2p+1)(∇µ∇µσ) +∇µ∇µW (2p+1)

− σ−p+ 1
2 iq (∇µAµ)U (2p+1) − 2σ−p+

1
2 iqAµ

[
∇µU (2p+1)

]

+ (2p− 1)σ−p−
1
2 iqAµU

(2p+1)(∇µσ)− iq (∇µAµ)W (2p+1)

− 2 iqAµ

[
∇µW (2p+1)

]
− σ−p+ 1

2 q2AµAµU
(2p+1) − q2AµAµW

(2p+1).

(7.278)

We can simplify (7.278) using the identities involving Synge’s world function (1.20) and

the van Vleck-Morette determinant (1.28); we obtain

− 2 i

α2p+1
DµD

µG
(2p+1)
F = σ−p+

1
2 ∇µ∇µU (2p+1) − (2p− 1)σ−p−

1
2

[
∇µU (2p+1)

]
(∇µσ)

+ (2p− 1)σ−p−
1
2 U (2p+1)∆−

1
2

(
∇µ∆

1
2

)
(∇µσ) +∇µ∇µW (2p+1)

− σ−p+ 1
2 iq (∇µAµ)U (2p+1) − 2σ−p+

1
2 iqAµ

[
∇µU (2p+1)

]

+ (2p− 1)σ−p−
1
2 iqAµU

(2p+1)(∇µσ)− iq (∇µAµ)W (2p+1)

− 2 iqAµ

[
∇µW (2p+1)

]
− σ−p+ 1

2 q2AµAµU
(2p+1) − q2AµAµW

(2p+1).

(7.279)

This allows us to evaluate the l.h.s of the inhomogeneous Klein-Gordon equation (6.2) for

d = 2p+ 1 as follows
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− 2 i

α2p+1
(DµDµ −m2 − ξR)G

(2p+1)
F

= σ−p+
1
2 ∇µ∇µU (2p+1) − (2p− 1)σ−p−

1
2

[
∇µU (2p+1)

]
(∇µσ)

+ (2p− 1)σ−p−
1
2 U (2p+1)∆−

1
2

(
∇µ∆

1
2

)
(∇µσ) +∇µ∇µW (2p+1)

− σ−p+ 1
2 iq (∇µAµ)U (2p+1) − 2σ−p+

1
2 iqAµ

[
∇µU (2p+1)

]

+ (2p− 1)σ−p−
1
2 iqAµU

(2p+1)(∇µσ)− iq (∇µAµ)W (2p+1)

− 2 iqAµ

[
∇µW (2p+1)

]
− σ−p+ 1

2 q2AµAµU
(2p+1) − q2AµAµW

(2p+1)

− σ−p+ 1
2
(
m2 + ξR

)
U (2p+1) −

(
m2 + ξR

)
W (2p+1). (7.280)

We can simplify (7.280) by use of the gauge covariant derivative, which then reduces to

− 2 i

α2p+1

(
DµDµ −m2 − ξR

)
G

(2p+1)
F

= σ−p+
1
2
(
DµD

µ −m2 − ξR
)
U (2p+1) +

(
DµD

µ −m2 − ξR
)
W (2p+1)

− (2p− 1)σ−p−
1
2

[(
Dµ −∆−

1
2 ∆

1
2
;µ

)
U (2p+1)

]
σ ;µ. (7.281)

From the r.h.s of the inhomogeneous scalar field equation (6.2), we know that (7.281) must

be equal to zero when the two points x and x′ are separated. Since Synge’s world function

is nonzero when x′ 6= x, we deduce that (7.281) must vanish identically at each power

of σ(x, x′). This allows us to generate two equations by considering terms proportional

to integer powers of σ and, separately, terms proportional to fractional powers of σ. In

particular, the terms that are proportional to integer powers of σ must vanish indepen-

dently since no other terms can contain this factor due to the form of the expansion for the

biscalar U (2p+1)(x, x′) in (6.8a), which itself only contains terms proportional to integer

powers of σ. This allows us to write

(
DµD

µ −m2 − ξR
)
W (2p+1)

(
x, x′

)
= 0, (7.282)

which means that the biscalar W (2p+1)(x, x′) solves the homogeneous scalar field equation.

Equation (7.282) generalises (44) in [68] and it enables us derive the recurrence relations

for the Hadamard coefficients W
(2p+1)
n (x, x′). Since the biscalar W (2p+1)(x, x′) in (6.8b)

admits a power series expansion in σ(x, x′), we can derive the recurrence relation for the

W
(2p+1)
n (x, x′) by expanding the terms in (7.282). Suppressing arguments, we first evaluate

DµW
(2p+1) =

∞∑

n=0

{[
∇µW (2p+1)

n

]
σn + nW (2p+1)

n σn−1 (∇µσ)− iqAµW
(2p+1)
n σn

}
, (7.283)

and then
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DµD
µW (2p+1) =

∞∑

n=0

{[
∇µ∇µW (2p+1)

n

]
σn + 2n

[
∇µW (2p+1)

n

]
σn−1(∇µσ)

+ n(n− 1)W (2p+1)
n σn−2 (∇µσ)(∇µσ) + nW (2p+1)

n σn−1 (∇µ∇µσ)

− iq (∇µAµ)W (2p+1)
n σn − 2 iqAµ

[
∇µW (2p+1)

n

]
σn

− 2 iqAµ nW
(2p+1)
n σn−1 (∇µσ)− q2AµAµW

(2p+1)
n σn

}
. (7.284)

Then, using (1.20), (1.28), (6.24) and the gauge covariant derivative, (7.284) becomes

DµD
µW (2p+1) =

∞∑

n=0

{[
DµDµW

(2p+1)
n

]
σn + 2n

[
DµW

(2p+1)
n

]
σn−1(∇µσ)

+ n [2(n− 1) + (2p+ 1)]W (2p+1)
n σn−1

− 2nW (2p+1)
n ∆−

1
2

(
∇µ∆

1
2

)
σn−1 (∇µσ)

}
. (7.285)

Substituting (7.285) into (7.282), we obtain

0 =
∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
W (2p+1)
n

]
σn + 2n

[
DµW

(2p+1)
n

]
σn−1(∇µσ)

+ n [2(n− 1) + (2p+ 1)]W (2p+1)
n σn−1

− 2nW (2p+1)
n ∆−

1
2

(
∇µ∆

1
2

)
σn−1 (∇µσ)

}
. (7.286)

Performing the relabelling n→ n+ 1 in terms proportional to σn−1 in (7.286), we obtain

0 =
∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
W (2p+1)
n

]
σn + 2(n+ 1)

[
DµW

(2p+1)
n+1

]
σn(∇µσ)

+ (n+ 1)(2n+ 2p+ 1)W
(2p+1)
n+1 σn

− 2(n+ 1)W
(2p+1)
n+1 ∆−

1
2

(
∇µ∆

1
2

)
σn (∇µσ)

}
. (7.287)

Since (7.287) must hold for each power of σ, this enables us to obtain the recurrence

relation for the Hadamard coefficients W
(2p+1)
n (x, x′). We have

(n+ 1)(2n+ 2p+ 1)W
(2p+1)
n+1 + 2(n+ 1)σ ;µDµW

(2p+1)
n+1

− 2(n+ 1)W
(2p+1)
n+1 ∆−

1
2 ∆

1
2
;µ σ

;µ +
(
DµD

µ −m2 − ξR
)
W (2p+1)
n = 0

for n in N. (7.288)

This generalises equation (43) in [68]. Returning to (7.281), the terms that are proportional

to fractional powers of σ, give

σ
(
DµD

µ −m2 − ξR
)
U (2p+1) = (2p− 1)

[(
Dµ −∆−

1
2 ∆

1
2

;µ

)
U (2p+1)

]
σ ;µ. (7.289)
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It will be convenient to rewrite (7.289) as

(
DµD

µ −m2 − ξR
)
U (2p+1) − (2p− 1)σ−1σ ;µDµU

(2p+1)

+ (2p− 1)σ−1U (2p+1)∆−
1
2 ∆

1
2

;µ σ
;µ = 0. (7.290)

We derive the recurrence relation for the Hadamard coefficients U
(2p+1)
n (x, x′) by inserting

the power series expansion for U (2p+1)(x, x′) into (7.290). Since the power series expansions

for the biscalars U (2p+1)(x, x′) (6.8a) and the W (2p+1)(x, x′) (6.8b) are structurally similar

expressions, we can use (7.285) to evaluate the DµD
µU (2p+1), remembering to interchange

the W
(2p+1)
n for the U

(2p+1)
n . Then, the first term on the l.h.s of (7.290) is given by

(
DµD

µ −m2 − ξR
)
U (2p+1) =

∞∑

n=0

{[(
DµDµ −m2 − ξR

)
U (2p+1)
n

]
σn

+ 2n
[
DµU

(2p+1)
n

]
σn−1(∇µσ) + n [2(n− 1) + (2p+ 1)]U (2p+1)

n σn−1

− 2nU (2p+1)
n ∆−

1
2

(
∇µ∆

1
2

)
σn−1(∇µσ)

}
. (7.291)

The second term on the l.h.s of (7.290) is given by

− (2p− 1)σ−1σ ;µDµU
(2p+1)

= − (2p− 1)σ−1σ ;µ∇µ
[
U (2p+1)
n σn

]
+ (2p− 1) iq σ−1σ ;µAµU

(2p+1)
n σn

= − (2p− 1)
[
∇µU (2p+1)

n

]
σn−1σ ;µ − (2p− 1)nU (2p+1)

n σn−2σ ;µσ ;µ

+ (2p− 1) iqAµ U
(2p+1)
n σn−1σ ;µ

= − (2p− 1)
[
DµU

(2p+1)
n

]
σn−1σ ;µ − 2 (2p− 1)nU (2p+1)

n σn−1. (7.292)

The third term on the l.h.s of (7.290) is given by

(2p− 1)σ−1U (2p+1)
n σn∆−

1
2 ∆

1
2

;µ σ
;µ = (2p− 1)U (2p+1)

n σn−1∆−
1
2 ∆

1
2

;µ σ
;µ. (7.293)

Inserting (7.291), (7.292) and (7.293) into (7.290), we obtain

0 =
∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
U (2p+1)
n

]
σn + (2n− 2p+ 1)

[
DµU

(2p+1)
n

]
σn−1(∇µσ)

+ n (2n− 2p+ 1)U (2p+1)
n σn−1 − (2n− 2p+ 1)U (2p+1)

n ∆−
1
2

(
∇µ∆

1
2

)
σn−1(∇µσ)

}
.

(7.294)

Performing the relabelling n→ n+ 1 in terms proportional to σn−1 in (7.20), we obtain
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0 =

∞∑

n=0

{[(
DµD

µ −m2 − ξR
)
U (2p+1)
n

]
σn + [2n+ 4− (2p+ 1)]

[
σ ;µDµU

(2p+1)
n+1

]
σn

+ (n+ 1) [2n+ 4− (2p+ 1)]U
(2p+1)
n+1 σn − [2n+ 4− (2p+ 1)]U

(2p+1)
n+1 σn∆−

1
2 ∆

1
2
;µ σ

;µ

}

− (2p− 1)σ−1

{
σ ;µDµU

(2p+1)
0 − U (2p+1)

0 ∆−
1
2 ∆

1
2
;µ σ

;µ

}
. (7.295)

Since (7.295) must hold for each power of σ, the terms proportional to σn enable us to

obtain the recurrence relation for the Hadamard coefficients U
(2p+1)
n (x, x′); we have

0 = (n+ 1) [2n+ 4− (2p+ 1)]U
(2p+1)
n+1 + [2n+ 4− (2p+ 1)]

[
DµU

(2p+1)
n+1

]
σ ;µ

− [2n+ 4− (2p+ 1)]U
(2p+1)
n+1 ∆−

1
2 ∆

1
2
;µ σ

;µ

+
[(
DµD

µ −m2 − ξR
)
U (2p+1)
n

]
for n in N. (7.296)

This generalises equation (42a) in [68]. The lowest order terms in σ in (7.295), i.e. those

proportional to σ−1, give the boundary condition for the U
(2p+1)
0 Hadamard coefficient:

0 =

(
σ ;µDµ −∆−

1
2 ∆

1
2

;µσ
;µ

)
U

(2p+1)
0 . (7.297)

In the uncharged case, (7.297) reduces to

0 = σ ;µ U
(2p+1)
0 ;µ − σ ;µ U

(2p+1)
0 ∆−

1
2 ∆

1
2

;µ, (7.298)

and we can see that equation (7.298) is solved by taking either U
(2p+1)
0 = ∆

1
2 or U

(2p+1)
0 =

−∆
1
2 . Our guiding principle will be that the leading-order singularity in the Hadamard

parametrix (6.7) matches that of Minkowski spacetime [68]; in the limit x′ → x, we have

U
(2p+1)
0 (x, x) = 1. (7.299)

Therefore, in the uncharged case, (7.298) is solved by

U
(2p+1)
0

(
x, x′

)
= ∆

1
2 . (7.300)

In the charged case, (7.297) cannot be solved exactly and we can expand U
(2p+1)
0 as a

power series in σ(x, x′) up to the order required for the evaluation of the RSET.

7.3.2 Explicit renormalisation counterterms in three dimensions

In order to derive explicit renormalisation counterterms, we focus on the specific case of

d = 3, which is the simplest non-trivial number of odd spacetime dimensions that we can

consider. We are required to evaluate U
(3)
0 (x, x′) up to O

(
σ3/2

)
in order to evaluate the

RSET. Rewriting (7.297) as

[
Dµ U

(3)
0

]
σ ;µ − U (3)

0 ∆−
1
2 ∆

1
2
;µ σ

;µ = 0, (7.301)
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we note that (7.301), which is satisfied by the U
(3)
0 (x, x′) Hadamard coefficient, is struc-

turally identical to (7.86), which is satisfied by the U
(4)
0 (x, x′) Hadamard coefficient. Then,

we may write down the required terms of the U
(3)
0 (x, x′) Hadamard coefficient by simple

comparison with (7.88), (7.89), (7.90) and (7.102). Then, we have

U
(3)
00 = 1, (7.302)

U
(3)
01µ = iqAµ, (7.303)

U
(3)
02(µν) =

1

12
Rµν −

1

2
iqD(µAν) (7.304)

U
(3)
03(µνρ) = − 1

24
R(µν;ρ) +

iq

6
D(µDνAρ) +

iq

12
A(µRνρ). (7.305)

As earlier stated, in d = 3 we require terms up to O
(
σ3/2

)
in order to evaluate the RSET.

In the expansion of the U (3)(x, x′) biscalar (6.8a), the U
(3)
1 (x, x′) Hadamard coefficient

is multiplied by σ; therefore, we are also required to evaluate the Taylor expansion of

U
(3)
1 (x, x′) up to O

(
σ1/2

)
. We can obtain the equation satisfied by U

(3)
1 (x, x′) by using

(7.296) with n = 0 and p = 1; doing so, we have

U
(3)
1 + σ ;µDµ U

(3)
1 − U (3)

1 ∆−
1
2 ∆

1
2
;µ σ

;µ +
(
DµDµ −m2 − ξR

)
U

(3)
0 = 0. (7.306)

At this point one may notice that the equation (7.306) satisfied by the U
(3)
1 (x, x′) Hadamard

coefficient in d = 3 has a very similar form to the equation (7.107) satisfied by the

V
(4)

0 (x, x′) Hadamard coefficient in d = 4. The difference lies in the fact that in (7.306),

all terms share the same multiplicative constant, whereas in (7.107), the first three terms

on the r.h.s are multiplied by a factor of 2, while the last term is multiplied by 1. Thus,

adjusting for the minor difference in factor, we can write down the explicit expressions for

U
(3)
10 and U

(3)
11µ from V

(4)
00 (7.117) and (7.176) respectively; we have

U
(3)
10 = m2 +

(
ξ − 1

6

)
R, (7.307)

U
(3)
11µ =

1

2

(
ξ − 1

6

)
R ;µ. (7.308)



Chapter 8

Renormalised expectation values

In §8.1, we give a detailed introduction to the Hadamard renormalisation procedure. We

derive several identities concerning the biscalars in §8.2 that will aid us in deriving expres-

sions for the renormalised expectation values of observables in §8.3. In §8.4, we consider

ambiguities in the renormalised expectation values of observables in and we examine the

trace anomaly in §8.5.

8.1 Introduction

In the previous section, we derived the explicit expressions for the biscalar functions

U (d)(x, x′) and V (d)(x, x′) that appear in the Hadamard parametrices (6.3), (6.5) and

(6.7) associated to a charged scalar field, for a general spacetime geometry and gauge

field, up to the required order in σ(x, x′) for the renormalisation of the stress-energy ten-

sor. These expressions depend only on the background spacetime geometry and the fixed,

classical, background gauge field.

The biscalar U (d)(x, x′) is therefore uniquely determined in even dimensions with d 6=
2 by the boundary condition on U

(2p)
0 (x, x′) (7.82) and the recurrence relations for the

U
(2p)
n (x, x′) (7.72), and in odd dimensions by the boundary condition on U

(2p+1)
0 (x, x′)

(7.297) and the recurrence relations for the U
(2p+1)
n (x, x′) (7.296). Similarly, the biscalar

V (d)(x, x′) is uniquely determined in d = 2 by the boundary condition on V
(2)

0 (x, x′)

(7.25) and the recurrence relations for the V
(2)
n (x, x′) (7.14), and in even dimensions with

d 6= 2 by the boundary condition on V
(2p)

0 (x, x′) (7.64) and the recurrence relations for the

V
(2p)
n (x, x′) (7.61). While the biscalar functions U (d)(x, x′) and V (d)(x, x′) are both regular

in the coincidence limit x′ → x, they each multiply terms in the Hadamard parametrix

that are divergent as x′ → x.

The biscalar W (d)(x, x′), by contrast, neither depends purely on the spacetime geom-

etry and the background gauge field, nor can it be uniquely determined. Indeed, this

can be noted from the fact that one cannot derive a boundary condition for the lowest

order Hadamard coefficient W
(d)
0 (x, x′) of the W (d)(x, x′) biscalar, as opposed to the case

for the U
(d)
0 (x, x′) Hadamard coefficient of the U (d)(x, x′) biscalar or for the case of the

V
(d)

0 (x, x′) Hadamard coefficient of the V (d)(x, x′) biscalar. As a consequence, this arbi-

trariness extends to all higher order Hadamard coefficients W
(d)
n (x, x′) of the W (d)(x, x′)

241
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biscalar. The indeterminacy in the W
(d)
0 (x, x′) Hadamard coefficient can be used to encode

the details of the quantum state under consideration. Once W
(d)
0 (x, x′) has been specified,

however, the rest of the Hadmard coefficients of the W (d)(x, x′) biscalar can be uniquely

determined using the recurrence relations (7.22) in d = 2, the recurrence relations (7.79)

in even dimensions with d 6= 2 and the recurrence relations (7.288) in odd dimensions.

The W (d)(x, x′) biscalar is regular in the coincidence limit x′ → x.

We can summarise the above by writing the Feynman Green’s function G
(d)
F (x, x′) as

the sum of a uniquely-determined, state-independent part G
(d)
S (x, x′), which is singular in

the coincidence limit, and a state-dependent part G
(d)
R (x, x′), which is regular as x′ → x.

Then, we have

G
(d)
F

(
x, x′

)
= G

(d)
S

(
x, x′

)
+G

(d)
R

(
x, x′

)
, (8.1)

where the quantity G
(d)
S (x, x′) in (8.1) is defined by

−iG
(d)
S

(
x, x′

)
=





α(2) V (2)
(
x, x′

)
ln

[
σ(x, x′)
`2ren

+ iε

]
d = 2,

α(2p)

{
U (2p)(x, x′)

[σ(x, x′) + iε]p−1 + V (2p)
(
x, x′

)
ln

[
σ(x, x′)
`2ren

+ iε

]}
d = 2p,

α(2p+1) U (2p+1)(x, x′)

[σ(x, x′) + iε]p−
1
2

d = 2p+ 1,

(8.2)

and the quantity G
(d)
R (x, x′) in (8.1), which we will refer to as the regularised Green’s

function, is defined by

− iG
(d)
R

(
x, x′

)
= −i

[
G

(d)
F

(
x, x′

)
−G (d)

S

(
x, x′

)]
= α(d)W (d)

(
x, x′

)
. (8.3)

In this language, the first step of the Hadamard renormalisation procedure is to sub-

tract, from the Feynman’s Green function G
(d)
F (x, x′), its singular part G

(d)
S (x, x′) order

by order in σ(x, x′) to give a Green’s function G
(d)
R (x, x′) that is regular in the coincidence

limit x′ → x. The next step is to perform the relevant operation on the regularised Green’s

function G
(d)
R (x, x′), where the form of the operation performed on G

(d)
R (x, x′) depends

on whether we are calculating the scalar field condensate, the renormalised current or the

RSET, before taking the coincidence limit x′ → x.

Our aim is to provide the general framework for the extension of the Hadamard renor-

malisation procedure to charged scalar fields and, therefore, our discussion will be suf-

ficiently general so as not to specify a quantum state under consideration. We will also

consider an arbitrarily curved background spacetime as well as a general background gauge

field. Thus, the biscalar W (d)(x, x′) will be left undetermined in the following sections.

If one were to use the framework developed below for a practical application, specifying

the quantum state under consideration as well as the spacetime geometry and background

gauge field, then explicit expressions for the biscalar W (d)(x, x′), the vacuum polarisation
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and the renormalised expectation values of the current and stress-energy tensor could be

computed.

It is useful, when using the Hadamard renormalisation procedure for practical appli-

cations, to replace the biscalar W (d)(x, x′) in (8.3) by its covariant Taylor expansion in

the geodetic distance σ ;µ(x, x′) between x and x′, which is given by

W (d)
(
x, x′

)
= w

(d)
0 (x) +w

(d)
1µ (x)σ ;µ+w

(d)
2(µν)(x)σ ;µσ ;ν +w

(d)
3(µνρ)(x)σ ;µσ ;νσ ;ρ+ . . . , (8.4)

where we have not written down the expansion coefficients past w
(d)
3(µνρ)(x) in (8.4) since

we will only require terms up to and including this expansion coefficient in our following

analysis.

Having constructed a regularised Green’s function G
(d)
R (x, x′) in (8.3), we can now

derive expressions for the scalar condensate 〈Φ̂Φ̂†〉ren, the renormalised expectation value

of the current 〈Ĵµ〉ren, and the RSET 〈T̂µν〉ren, in terms of the expansion coefficients of

W (d)(x, x′) defined in (8.4). In order to simplify the resulting expressions, it will be useful

to derive some identities concerning the expansion coefficients of the biscalar W (d)(x, x′).

This will be the topic of the next section, before returning to derive expressions for the

quantities listed above in following sections.

8.2 Identities concerning the biscalar W (d)(x, x′)

In the previous subsection, we described the general Hadamard renormalisation procedure,

which includes operating on the regularised Green’s function G
(d)
R (x, x′) in (8.3) before tak-

ing the coincidence limit x′ → x. Any terms produced by operating on G
(d)
R (x, x′) and,

from (8.3), thereby W (d)(x, x′) that are O
(
σ1/2

)
or higher, vanish as x′ → x. Therefore,

we need only keep track of the lowest order coefficients of the covariant Taylor expansion

of W (d)(x, x′) in (8.4), with the exact number depending on the form of the operation

performed on G
(d)
R (x, x′). It will turn out that the most complicated operation we will

perform on G
(d)
R (x, x′) is to apply a second-order differential operator to it when we calcu-

late the RSET. Thus, we need only keep track of terms upto and including the w
(d)
02(µν)(x)

coefficient in (8.4) for the purpose of evaluating the RSET.

However, when we consider the conservation of the stress-energy tensor, we will obtain

a factor of ∇µw(d)
02(µν) from taking the divergence of the RSET, i.e. ∇µ〈T̂µν〉ren. Therefore,

we will derive identities, concerning the expansion coefficients of the biscalar W (d)(x, x′),

relating both w
(d)
02(µν) and ∇µw(d)

02(µν) to lower order coefficients in (8.4) respectively.

This can be achieved by substituting the covariant Taylor expansion of W (d)(x, x′)

(8.4) into the scalar field equations satisfied by the W (d)(x, x′) biscalar in d = 2 (7.16),

in even dimensions with d 6= 2 (7.81) and in odd dimensions (7.282) and considering the

resulting terms up to O
(
σ1/2

)
. Due to the presence of two derivative operators in the

scalar field equation for W (d)(x, x′) in all dimensions, we anticipate that we should be

able to derive identities relating w
(d)
02(µν) and ∇µw(d)

02(µν) to lower order coefficients using

the resulting terms at O(1) and O
(
σ1/2

)
respectively.
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We will treat the case with even dimensions (including d = 2) first. This case is more

complex than that in odd dimensions since the wave equation satisfied by W (2p+1)(x, x′)

in odd dimensions is homogeneous, unlike that satisfied by W (2)(x, x′) in d = 2, which

contains contributions from V (2)(x, x′), or that satisfied by W (2p)(x, x′) in even dimensions

with d 6= 2, which contains contributions from V (2p)(x, x′) as well as U
(2p)
p−2 (x, x′).

Since we will be substituting the covariant Taylor expansion of the biscalar W (d)(x, x′)

into the wave equation for W (2)(x, x′) in d = 2 (7.16) and into the wave equation for

W (2p)(x, x′) in even dimensions with d 6= 2 (7.81), before equating terms at each power

of σ(x, x′), we can also substitute the power series expansions of the V (2)(x, x′) and the

V (2p)(x, x′) biscalars into (7.16) and (7.81) respectively. In either case, we consider terms

upto O
(
σ1/2

)
to derive identities relating both w

(d)
02(µν) and ∇µw(d)

02(µν) to lower order coef-

ficients respectively.

Beginning with the wave equation in d = 2 (7.16) and substituting in the power series

expansion for V (2)(x, x′) (6.4a), the first term on the r.h.s is given by

−2σ−1σ ;µDµV
(2) = −2σ−1σ ;µDµV

(2)
0 − 2σ−1σ ;µDµ

[
V

(2)
1 σ

]
+O(σ)

= −2σ−1σ ;µDµV
(2)

0 − 2σ ;µDµV
(2)

1 − 2σ−1V
(2)

1 σ ;µσ ;µ +O(σ)

= −2σ−1σ ;µDµV
(2)

0 − 2σ ;µDµV
(2)

1 − 4V
(2)

1 +O(σ) , (8.5)

where we have used the definition of Synge’s world function (1.20) to go from the penul-

timate line to the last one. The second term on the r.h.s of (7.16) is given by

2σ−1V (2)∆−
1
2 ∆

1
2
;µ σ

;µ = 2σ−1V
(2)

0 ∆−
1
2 ∆

1
2
;µ σ

;µ + 2V
(2)

1 ∆−
1
2 ∆

1
2
;µ σ

;µ +O(σ)

= 2σ−1V
(2)

0 ∆−
1
2 ∆

1
2
;µ σ

;µ +O(σ)

= 2σ−1σ ;µDµV
(2)

0 +O(σ) , (8.6)

where we have used the expansion in (6.26) and the boundary condition for V
(2)

0 (x, x′)

(7.23) to go from the penultimate line to the last one. Then, using (8.5) and (8.6), the

scalar field equation for W (2)(x, x′) in d = 2 (7.16) becomes

(
DµD

µ −m2 − ξR
)
W (2) = −2σ−1σ ;µDµV

(2)
0 − 2σ ;µDµV

(2)
1 − 4V

(2)
1 + 2σ ;µDµV

(2)
0

+O(σ) , (8.7)

which simplifies to give

(
DµD

µ −m2 − ξR
)
W (2) = −2σ ;µDµV

(2)
1 − 4V

(2)
1 +O(σ) . (8.8)

Treating the wave equation in even dimensions with d 6= 2 (7.81) next, we can first use

(7.64) to eliminate U
(2p)
p−2 from (7.81); doing so, we obtain
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(
DµD

µ −m2 − ξR
)
W (2p)

= 2σ−1 (p− 1)V
(2p)

0 + 2σ−1σ ;µDµV
(2p)

0 − 2σ−1V
(2p)

0 ∆−
1
2 ∆

1
2
;µ σ

;µ

− 2σ−1 (p− 1)V (2p) − 2σ−1σ ;µDµV
(2p) + 2σ−1V (2p)∆−

1
2 ∆

1
2
;µ σ

;µ

= −2σ−1 (p− 1)
[
V (2p) − V (2p)

0

]
− 2σ−1σ ;µDµ

[
V (2p) − V (2p)

0

]

+ 2σ−1
[
V (2p) − V (2p)

0

]
∆−

1
2 ∆

1
2
;µ σ

;µ. (8.9)

From the expansion of the biscalar V (2p)(x, x′) (6.6b), we have that

V (2p)
(
x, x′

)
− V (2p)

0 =
∞∑

n=1

V (2p)
n

(
x, x′

)
σn
(
x, x′

)
. (8.10)

Then, using (8.10), equation (8.9) becomes

(
DµD

µ −m2 − ξR
)
W (2p) = −2 (p− 1)V

(2p)
1 − 2σ−1σ ;µDµ

[
V

(2p)
1 σ

]
+O(σ)

= −2 (p− 1)V
(2p)

1 − 2σ ;µDµV
(2p)

1 − 2σ−1V
(2p)

1 σ ;µσ;µ +O(σ)

= −2 (p− 1)V
(2p)

1 − 2σ ;µDµV
(2p)

1 − 4V
(2p)

1 +O(σ) , (8.11)

where we have used (1.20) to go from the second equality to the third, and which simplifies

to

(
DµD

µ −m2 − ξR
)
W (2p) = −2 (p+ 1)V

(2p)
1 − 2σ ;µDµV

(2p)
1 +O(σ) . (8.12)

We can see that (8.7) is equivalent to (8.12) for the special case p = 1; therefore we can

treat (8.12) as being valid in arbitrary even dimensions including d = 2. Since (8.12)

holds for arbitrary even dimensions including d = 2, we will derive the same identities

relating the expansion coefficients of the biscalar W (2)(x, x′) for the case of d = 2 as

those relating the expansion coefficients of the biscalar W (2p)(x, x′) for even dimensions

with d 6= 2. Correspondingly, we will derive the same expressions for the scalar field

condensate, the renormalised expectation values of the current and stress-energy tensor,

as well as expressions for their divergence, and renormalisation ambiguities of each of the

aforementioned quantities, in d = 2 as in even dimensions with d 6= 2. Therefore, we will

drop the distinction between d = 2 and even dimensions with d 6= 2 for the rest of this

chapter and the superscript 2p will hold for all pinN from now on.

Interestingly, (8.12) contains the Hadamard coefficient V
(2p)

1 (x, x′) but not the

Hadamard coefficient V
(2p)

0 (x, x′). It will be useful to substitute the covariant Taylor

expansions for W (2p)(x, x′) and V
(2p)

1 (x, x′) into (8.12) in order to derive relations between

the expansion coefficients of the W (2p)(x, x′) biscalar and the expansion coefficients of

the V
(2p)

1 (x, x′) biscalar. We can begin by inserting the covariant Taylor expansion of

V
(2p)

1 (x, x′) (6.10b) into (8.12). Doing so, we obtain
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(
DµD

µ −m2 − ξR
)
W (2p) = −2 (p+ 1)V

(2p)
10 − 2 (p+ 1)V

(2p)
11µ σ

;µ − 2σ ;µDµV
(2p)

10

− 2σ ;µDµ

[
V

(2p)
11ν σ

;ν
]

+O(σ)

= −2 (p+ 1)V
(2p)

10 − 2 (p+ 1)V
(2p)

11µ σ
;µ − 2σ ;µDµV

(2p)
10

− 2σ ;µ V
(2p)

11ν σ
;ν
µ +O(σ)

= −2 (p+ 1)V
(2p)

10 − 2 (p+ 1)V
(2p)

11µ σ
;µ − 2σ ;µDµV

(2p)
10

− 2σ ;µ V
(2p)

11ν δνµ +O(σ) , (8.13)

where we have used the expression for σ;µν (6.25). So finally, we obtain

(
DµD

µ −m2 − ξR
)
W (2p) = −2 (p+ 1)V

(2p)
10 −

[
2DµV

(2p)
10 + 2 (p+ 2)V

(2p)
11µ

]
σ ;µ +O(σ) .

(8.14)

Now we can insert the covariant Taylor expansion of W (2p)(x, x′) (8.4) into (8.14). Since

we require (8.14) up to O
(
σ1/2

)
, we begin by evaluating DµW

(2p) up to O(σ):

DαW
(2p) = w

(2p)
0 ;α + w

(2p)
1µ ;α σ

;µ + w
(2p)
1µ σ;µ

α + w
(2p)
2(µν) ;α σ

;µσ ;ν + 2w
(2p)
2(µν) σ

;µ
α σ

;ν

+ 3w
(2p)
3(µνρ) σ

;µ
α σ

;νσ ;ρ − iqAαw
(2p)
0 − iqAαw

(2p)
1µ σ ;µ − iqAαw

(2p)
2(µν) σ

;µσ ;ν

+O
(
σ3/2

)
. (8.15)

Acting on (8.15) with another gauge covariant derivative, we have

DαDαW
(2p) = �w(2p)

0 +�w(2p)
1µ σ ;µ + 2w

(2p)
1µ ;α g

αβσ;µ
β + w

(2p)
1µ � (σ ;µ)

+ 4w
(2p)
2(µν) ;α g

αβσ;µ
β σ

;ν + 2w
(2p)
2(µν)� (σ ;µ)σ ;ν + 2w

(2p)
2(µν) σ

;µ
α g

αβσ;ν
β

+ 6w
(2p)
3(µνρ) σ

;µ
α g

αβσ;ν
β σ

;ρ − iq (∇αAα)w
(2p)
0 − iqAαw

(2p)
0 ;α

− iq (∇αAα)w
(2p)
1µ σ ;µ − iqAαw

(2p)
1µ ;α σ

;µ − iqAαw
(2p)
1µ σ;µ

α

− 2 iqAαw
(2p)
2(µν) σ

;µ
α σ

;ν − iqAαw
(2p)
0 ;α − iqAαw

(2p)
1µ ;α σ

;µ − iqAαw
(2p)
1µ σ;µ

α

− 2 iqAαw
(2p)
2(µν) σ

;µ
ασ

;ν − q2AαAαw
(2p)
0 − q2AαAαw

(2p)
1µ σ ;µ +O(σ) . (8.16)

Using (6.25), equation (8.16) simplifies to

DαDαW
(2p) = �w(2p)

0 +�w(2p)
1µ σ ;µ + 2w

(2p)
1µ ;α g

αβδµβ

+ w
(2p)
1µ ∇α

(
δµα −

1

3
Rµ(θ|α|φ)σ

;θσ ;φ

)
+ 4w

(2p)
2(µν) ;α g

αβδµβ σ
;ν

+ 2w
(2p)
2(µν)∇

α(δµα)σ ;ν + 2w
(2p)
2(µν) δ

µ
α g

αβ δνβ + 6w
(2p)
3(µνρ) δ

µ
α g

αβ δνβ σ
;ρ

− iq (∇αAα)w
(2p)
0 − 2 iqAαw

(2p)
0 ;α − iq (∇αAα)w

(2p)
1µ σ ;µ − 2 iqAαw

(2p)
1µ ;α σ

;µ

− 2 iqAαw
(2p)
1µ δµα − 4 iqAαw

(2p)
2(µν) δ

µ
α σ

;ν − q2AαAαw
(2p)
0 − q2AαAαw

(2p)
1µ σ ;µ

+O(σ) . (8.17)
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Then, (8.17) becomes

DαDαW
(2p) =

[
�− iq (∇αAα)− 2 iqAα∇α − q2AαAα

]
w

(2p)
0

+ σ ;µ
[
�− iq (∇αAα)− 2 iqAα∇α − q2AαAα

]
w

(2p)
1µ + 2 [∇α − iqAα]w

(2p)
1α

− 2

3
w

(2p)
1µ Rµ(θ|α|φ) σ

;θ
α σ

;φ + 4σ ;ν [∇α − iqAα]w
(2p)
2(αν) + 2 gµνw

(2p)
2µν

+ 6 gµνw
(2p)
3(µνρ) σ

;ρ +O (σ) . (8.18)

Equation (8.18) further simplifies to

DαD
αW (2p) = DαD

αw
(2p)
0 + σ ;µDαD

αw
(2p)
1µ + 2Dαw

(2p)
1α −

2

3
w

(2p)
1µ Rµ(θ|α|φ) δ

θ
α σ

;φ

+ 4σ ;νDαw
(2p)
2(αν) + 2 gµνw

(2p)
2µν + 6 gµνw

(2p)
3(µνρ) σ

;ρ +O (σ) . (8.19)

So finally, we obtain

(
DαD

α −m2 − ξR
)
W (2p) =

(
DαD

α −m2 − ξR
)
w

(2p)
0 + 2Dαw

(2p)
1α + 2 gµνw

(2p)
2µν

+

[(
DαD

α −m2 − ξR
)
w

(2p)
1µ +

1

3
w

(2p)
1α R α

µ + 4Dαw
(2p)
2(αµ)

+ 6 gαβw
(2p)
3(αβµ)

]
σ ;µ +O (σ) . (8.20)

Substituting (8.20) into (8.12) and rearranging, we obtain

0 =
(
DαD

α −m2 − ξR
)
w

(2p)
0 + 2Dαw

(2p)
1α + 2 gµνw

(2p)
2µν + 2 (p+ 1)V

(2p)
10

+

[(
DαD

α −m2 − ξR
)
w

(2p)
1µ +

1

3
w

(2p)
1α R α

µ + 4Dαw
(2p)
2(αµ) + 6 gαβw

(2p)
3(αβµ) + 2DµV

(2p)
10

+ 2 (p+ 2)V
(2p)

11µ

]
σ ;µ +O (σ) . (8.21)

Since (8.21) should hold at each power of σ, the terms at O(1) in (8.21) give us

0 =
(
DαD

α −m2 − ξR
)
w

(2p)
0 + 2Dαw

(2p)
1α + 2 gµνw

(2p)
2µν + 2 (p+ 1)V

(2p)
10 . (8.22)

Since the expansion coefficients in (8.22) are complex quantities, we can obtain two fur-

ther relations by considering the real and imaginary parts of the equation respectively.

Considering the real part of (8.22) first, we obtain

0 =
[
�− q2AαA

α −
(
m2 + ξR

)]
w

(2p)
0 + 2∇α<

[
w

(2p)
1α

]
+ 2 qAα=

[
w

(2p)
1α

]
+ 2 gµν<

[
w

(2p)
2µν

]

+ 2 (p+ 1)V
(2p)

10 , (8.23)

where we have used the fact that =
[
w

(2p)
0

]
= 0 by definition (6.18) and =

[
V

(2p)
10

]
= 0 from

(7.47) and (7.274). (Note, we could also use the fact that the lowest order coefficient of



248 Renormalised expectation values

the covariant expansion of a sequisymmetric biscalar is real by definition to deduce that

=
[
V

(2p)
10

]
= 0, as we did in the case of w

(2p)
0 ). Using (6.19), equation (8.23) reduces to

0 =
[
�− q2AαA

α −
(
m2 + ξR

)]
w

(2p)
0 − 2∇α∇αw(2p)

0 + 2 qAα=
[
w

(2p)
1α

]
+ 2 gµν<

[
w

(2p)
2µν

]

+ 2 (p+ 1)V
(2p)

10 , (8.24)

giving us the identity

2 gµν<
[
w

(2p)
2µν

]
= −2qAα=

[
w

(2p)
1α

]
+
(
q2AαA

α +m2 + ξR
)
w

(2p)
0 − 2 (p+ 1)V

(2p)
10 . (8.25)

Equation (8.25) generalises equation (56a) in [68] and its derivative will be useful in simpli-

fying the expression obtained from taking the divergence of the RSET in even dimensions.

We obtain, for the derivative of (8.25), the expression

∇ν gλτ<
[
w

(2p)
2λτ

]
= −q (∇νAα)=

[
w

(2p)
1α

]
− qAα∇ν=

[
w

(2p)
1α

]
+

(
q2Aα∇νAα +

1

2
ξR ;ν

)
w

(2p)
0

+
1

2

(
q2AαA

α +m2 + ξR
)
∇ν w(2p)

0 − (p+ 1)∇νV (2p)
10 . (8.26)

Returning to (8.22) and this time considering the imaginary part, we have

0 = −2 qAα∇αw(2p)
0 − q (∇αAα)w

(2p)
0 + 2∇α=

[
w

(2p)
1α

]
− 2 qAα<

[
w

(2p)
1α

]
+ 2gµν=

[
w

(2p)
2µν

]
.

(8.27)

Using (6.19) and (6.20), equation (8.27) becomes

0 = −2 qAα∇αw(2p)
0 − q (∇αAα)w

(2p)
0 + 2∇α=

[
w

(2p)
1α

]
+ qAα∇αw(2p)

0 − gµν=
[
∇(µw

(2p)
1ν)

]
,

(8.28)

giving us the identity

∇α=
[
w

(2p)
1α

]
= qAα∇αw(2p)

0 + q (∇αAα)w
(2p)
0 . (8.29)

There is no analogue of (8.29) in the case of a neutral scalar field; this equation will be use-

ful in simplifying the expressions obtained from taking the divergence of the renormalised

expectation values of both the current and the stress-energy tensor in even dimensions.

Returning to (8.21), which must hold at each power of σ, the terms at O
(
σ1/2

)
give

0 =
(
DαD

α −m2 − ξR
)
w

(2p)
1µ +

1

3
w

(2p)
1α R α

µ + 4Dαw
(2p)
2(αµ) + 6 gαβw

(2p)
3(αβµ) + 2DµV

(2p)
10

+ 2 (p+ 2)V
(2p)

11µ . (8.30)

We would like to derive an identity relating the term ∇µw(2p)
2(µν) in (8.30) to the lower-order

coefficients of the biscalar W (2p)(x, x′), as this will help simplify the expression obtained

from examining the conservation of the RSET; this term will not arise elsewhere in our
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analysis as only the expression for the RSET involves a second-order differential operator.

The operator for the RSET also involves taking the real part of the expression obtained

from operating on G
(2p)
R (x, x′), and thereby W (2p)(x, x′) (8.3). Therefore, we need only

consider the real part of (8.30) to derive an identity relating ∇µ<
[
w

(2p)
2(µν)

]
to the real parts

of the lower-order coefficients of W (2p)(x, x′). Then, taking the real part of (8.30), we have

0 =
[
�− q2AαA

α −
(
m2 + ξR

)]
<
[
w

(2p)
1µ

]
+ [2 qAα∇α + q (∇αAα)]=

[
w

(2p)
1µ

]

+
1

3
<
[
w

(2p)
1α

]
R α
µ + 4∇α<

[
w

(2p)
2(µα)

]
+ 4 qAα=

[
w

(2p)
2(µα)

]
+ 6 gαβ <

[
w

(2p)
3(αβµ)

]
+ 2∇µV (2p)

10

+ 2 (p+ 2)<
[
V

(2p)
11µ

]
, (8.31)

where, again, we have used the fact that V
(2p)

10 is real. Using (6.19), (6.20) and (6.23),

(8.31) becomes

0 = −1

2

[
�− q2AαA

α −
(
m2 + ξR

)]
w

(2p)
0 ;µ + [2 qAα∇α + q (∇αAα)]=

[
w

(2p)
1µ

]

− 1

6
w

(2p)
0 ;αR

α
µ + 4∇α<

[
w

(2p)
2(µα)

]
− 2 qAα=

[
w

(2p)
1(µ ;α)

]
− 3 gαβ <

[
w

(2p)
2(αβ ;µ)

]
+

1

4
gαβ w

(2p)
0 ;(αβµ)

+ 2∇µV (2p)
10 − (p+ 2)∇µV (2p)

10 . (8.32)

In order to simplify further, we expand the symmetric quantities in (8.32) to obtain

0 = −1

2
∇α∇α∇µw(2p)

0 +
1

2

[
q2AαA

α +
(
m2 + ξR

)]
w

(2p)
0 ;µ + 2 qAα∇α=

[
w

(2p)
1µ

]

+ q (∇αAα)=
[
w

(2p)
1µ

]
− 1

6
w

(2p)
0 ;αR

α
µ + 2∇α<

[
w

(2p)
2µα

]
+ 2∇α<

[
w

(2p)
2αµ

]
− qAα∇α=

[
w

(2p)
1µ

]

− qAα∇µ=
[
w

(2p)
1α

]
−∇µ gαβ <

[
w

(2p)
2αβ

]
−∇α<

[
w

(2p)
2αµ

]
−∇α<

[
w

(2p)
2µα

]
+

1

12
∇µ
(
�w(2p)

0

)

+
1

12
∇α∇µ∇αw(2p)

0 +
1

12
∇α∇α∇µw(2p)

0 − p∇µV (2p)
10 . (8.33)

Simplifying like terms in (8.33) and using the fact that the commutator of covariant

derivatives acting on a scalar vanishes, we have

0 = −1

3
∇α∇µ∇αw(2p)

0 +
1

2

[
q2AαA

α +
(
m2 + ξR

)]
w

(2p)
0 ;µ + qAα∇α=

[
w

(2p)
1µ

]

+ q (∇αAα)=
[
w

(2p)
1µ

]
− 1

6
w

(2p)
0 ;αR

α
µ +∇α<

[
w

(2p)
2µα

]
+∇α<

[
w

(2p)
2αµ

]
− qAα∇µ=

[
w

(2p)
1α

]

−∇µ gαβ <
[
w

(2p)
2αβ

]
+

1

12
∇µ
(
�w(2p)

0

)
− p∇µV (2p)

10 . (8.34)

Commuting the outermost covariant derivatives acting on w
(2p)
0 in the first term on the

r.h.s of (8.34), we obtain

0 = −1

3
∇µ
(
�w(2p)

0

)
− 1

3
w

(2p)
0 ;αR

α
µ +

1

2

[
q2AαA

α +
(
m2 + ξR

)]
w

(2p)
0 ;µ + qAα∇α=

[
w

(2p)
1µ

]

+ q (∇αAα)=
[
w

(2p)
1µ

]
− 1

6
w

(2p)
0 ;αR

α
µ + 2∇α<

[
w

(2p)
2(αµ)

]
− q∇µAα=

[
w

(2p)
1α

]

+ q (∇µAα)=
[
w

(2p)
1α

]
−∇µ gαβ <

[
w

(2p)
2αβ

]
+

1

12
∇µ
(
�w(2p)

0

)
− p∇µV (2p)

10 , (8.35)
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giving us the identity

2∇α<
[
w

(2p)
2(αµ)

]
=

1

4
∇µ
(
�w(2p)

0

)
+∇µ gαβ <

[
w

(2p)
2αβ

]
+

1

2
Rα

µ∇αw(2p)
0 − qAα∇α=

[
w

(2p)
1µ

]

+ q∇µAα=
[
w

(2p)
1α

]
− 2 q

(
∇(µA

α
)
=
[
w

(2p)
1α)

]

− 1

2

[
q2AαA

α +
(
m2 + ξR

)]
∇µw(2p)

0 + p∇µV (2p)
10 . (8.36)

This generalises equation (56b) in [68]. We can combine the identities in (8.36) and

(8.25) to establish another relation. Using (8.26) to replace the covariant derivative of the

gαβ<
[
w

(2p)
2αβ

]
in (8.36), we obtain

2∇α<
[
w

(2p)
2(αµ)

]
=

1

4
∇µ
(
�w(2p)

0

)
− q∇µAα=

[
w

(2p)
1α

]
+

1

2

[
q2AαA

α +
(
m2 + ξR

)]
∇µw(2p)

0

+

[
q2Aα∇µAα +

1

2
ξR ;µ

]
w

(2p)
0 − (p+ 1)V

(2p)
10 +

1

2
Rα

µ∇αw(2p)
0

− qAα∇α=
[
w

(2p)
1µ

]
+ q∇µAα=

[
w

(2p)
1α

]
− 2 q

(
∇(µA

α
)
=
[
w

(2p)
1α)

]

− 1

2

[
q2AαA

α +
(
m2 + ξR

)]
∇µw(2p)

0 + p∇µV (2p)
10 , (8.37)

giving us the identity

2∇α<
[
w

(2p)
2(αµ)

]
=

1

4
∇µ
(
�w(2p)

0

)
+

1

2
Rα

µ∇αw(2p)
0 − qAα∇α=

[
w

(2p)
1µ

]

− 2 q
(
∇(µA

α
)
=
[
w

(2p)
1α)

]
+

[
q2Aα∇µAα +

1

2
ξR ;µ

]
w

(2p)
0 −∇µV (2p)

10 . (8.38)

Equation (8.38) generalises (57) in [68] and will be useful in simplifying the expression

obtained from taking the divergence of the RSET in even dimensions.

The identity in (8.25), its derivative in (8.26), and the identities in (8.36) and (8.38)

are valid for even dimensions, including d = 2. It turns out that the identity in (8.29)

is valid for all dimensions. We need not repeat the same process to derive the analogues

of the aforementioned identities in odd dimensions; since the scalar field equation for

W (2p+1)(x, x′) in odd dimensions (7.282) is homogeneous then, when using the covariant

expansion of W (2p+1)(x, x′) (8.4) to expand (7.282), we obtain

0 =
(
DαD

α −m2 − ξR
)
w

(2p+1)
0 + 2Dαw

(2p+1)
1α + 2 gµνw

(2p+1)
2µν , (8.39)

for the terms in (7.282) at O(1), and

0 =
(
DαD

α −m2 − ξR
)
w

(2p+1)
1µ +

1

3
w

(2p+1)
1α R α

µ + 4Dαw
(2p+1)
2(αµ) + 6 gαβw

(2p+1)
3(αβµ), (8.40)

for the terms in (7.282) at O
(
σ1/2

)
, where (8.39) and (8.40), which do not receive con-

tributions from any another biscalar function due to the homogeneity of the scalar field

equation for W (2p+1)(x, x′) (7.282), correspond to the odd-dimensional analogues of (8.21)
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and (8.30) respectively. Then, it is easy to adapt (8.25), (8.26), (8.29), (8.36) and (8.38)

to odd dimensions; we have

2 gµν<
[
w

(2p+1)
2µν

]
= −2qAα=

[
w

(2p+1)
1α

]
+
(
q2AαA

α +m2 + ξR
)
w

(2p+1)
0 , (8.41)

which generalises equation (58a) in [68]. The derivative of (8.41) is given by

∇ν gλτ<
[
w

(2p+1)
2λτ

]
= −q (∇νAα)=

[
w

(2p+1)
1α

]
− qAα∇ν=

[
w

(2p+1)
1α

]

+

(
q2Aα∇νAα +

1

2
ξR ;ν

)
w

(2p+1)
0 +

1

2

(
q2AαA

α +m2 + ξR
)
∇ν w(2p+1)

0 .

(8.42)

Equation (8.42) will be useful in simplifying the expression obtained from taking the

divergence of the RSET in odd dimensions. We also have

∇α=
[
w

(2p+1)
1α

]
= qAα∇αw(2p+1)

0 + q (∇αAα)w
(2p+1)
0 . (8.43)

There is no analogue of (8.43) in the case of a neutral scalar field; this equation will be use-

ful in simplifying the expressions obtained from taking the divergence of the renormalised

expectation values of both the current and the stress-energy tensor in odd dimensions. In

addition, we have

2∇α<
[
w

(2p+1)
2(αµ)

]
=

1

4
∇µ
(
�w(2p+1)

0

)
+∇µ gαβ <

[
w

(2p+1)
2αβ

]
+

1

2
Rα

µ∇αw(2p+1)
0

− qAα∇α=
[
w

(2p+1)
1µ

]
+ q∇µAα=

[
w

(2p+1)
1α

]
− 2 q

(
∇(µA

α
)
=
[
w

(2p+1)
1α)

]

− 1

2

[
q2AαA

α +
(
m2 + ξR

)]
∇µw(2p+1)

0 , (8.44)

which generalises equation (58b) in [68], as well as

2∇α<
[
w

(2p+1)
2(αµ)

]
=

1

4
∇µ
(
�w(2p+1)

0

)
+

1

2
Rα

µ∇αw(2p+1)
0 − qAα∇α=

[
w

(2p+1)
1µ

]

− 2 q
(
∇(µA

α
)
=
[
w

(2p+1)
1α)

]
+

[
q2Aα∇µAα +

1

2
ξR ;µ

]
w

(2p+1)
0 . (8.45)

Equation (8.45) generalises (59) in [68] and will be useful in simplifying the expression

obtained from taking the divergence of the RSET in odd dimensions.

We now have the machinery required to generate expressions for the scalar field con-

densate, the renormalised current and the RSET, as well the divergence of the latter two

quantities. The identities derived in this section will also aid us in considering the renor-

malisation ambiguities in these quantities, as well as the trace anomaly of the RSET.

We will now proceed to deriving these expressions in the next section, before considering

renormalisation ambiguities in later sections.
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8.3 Renormalised expectation values of observables

In this section, we will derive expressions for the scalar field condensate, the renormalised

current and the RSET in terms of the expansion coefficients w
(d)
0 , w

(d)
1µ and w

(d)
2(µν) (8.4) of

the biscalar W (d)(x, x′) (8.3). As we have mentioned previously, if we were to consider a

particular quantum state then we could derive explicit expressions for the aforementioned

quantities in terms of the spacetime geometry and the background gauge field. However,

our discussion is more general and our aim is to provide the general framework for the

extension of the Hadamard renormalisation scheme to charged scalar fields.

The general philosophy of the Hadamard renormalisation procedure is to identify the

divergent parts of the Hadamard parametrix contained in the U (d)(x, x′) and V (d)(x, x′)

biscalars and subtract these parts from the Feynman Green’s function G
(d)
F (x, x′) in order

to give a regularised Green’s function G
(d)
R (x, x′) (8.3). Having done so, we perform

the relevant operation on G
(d)
R (x, x′), the form of which will depend on whether we are

calculating the scalar condensate, the renormalised current or the RSET, before taking

the coincidence limit x′ → x. Since the covariant Taylor expansion (8.4) of the biscalar

W (d)(x, x′) is in terms of the derivative of Synge’s world function σ ;µ and σ ;µ → 0 as

x′ → x, then we will effectively be working to O(1) in σ(x, x′) in the remainder of the

chapter.

We will begin by considering the simplest quantity, the scalar field condensate, before

considering the renormalised expectation value of the current and finally the RSET.

8.3.1 Scalar field condensate

The scalar field condensate ŜC (5.1), which has no classical analogue, has a particularly

simple form in terms of the regularised Green’s function G
(d)
R (x, x′) that is given by

〈ŜC〉ren = lim
x′→x

<
{
−iG

(d)
R

(
x, x′

)}
. (8.46)

Then, using (8.1) and (8.4), equation (8.46) reduces to

〈Φ̂Φ̂†〉ren = α(d) lim
x′→x

<
{
W (d)

(
x, x′

)}

= α(d) lim
x′→x

<
{
w

(d)
0 +O

(
σ1/2

)}

= α(d)w
(d)
0 , (8.47)

where we have used the fact that w
(d)
0 is real (6.18). From (8.47), we see that the scalar

condensate depends only on the lowest order expansion coefficient of W (d)(x, x′).

8.3.2 Renormalised expectation value of the current

The next quantity we will consider is the renormalised expectation value of the current.

In classical field theory, the current Jµ associated to a charged, complex scalar field Φ is

given by
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Jµ =
iq

8π
[Φ∗DµΦ− Φ(DµΦ)∗] . (8.48)

We can simplify (8.48) by expanding the field Φ in terms of its real and imaginary parts;

then, we obtain

Jµ =
iq

8π

{(
<[Φ]− i=[Φ]

)
Dµ
(
<[Φ] + i=[Φ]

)
−
(
<[Φ] + i=[Φ]

)[
Dµ
(
<[Φ] + i=[Φ]

)]∗}

=
iq

8π

{(
<[Φ]− i=[Φ]

)(
Dµ<[Φ] + iDµ=[Φ]

)
−
(
<[Φ] + i=[Φ]

)(
Dµ<[Φ]− iDµ=[Φ]

)}

=
iq

8π

{(
<[Φ]Dµ<[Φ]− i (Dµ<[Φ])=[Φ] + i<[Φ]Dµ=[Φ] + =[Φ]Dµ=[Φ]

)

−
(
<[Φ]Dµ<[Φ] + i (Dµ<[Φ])=[Φ]− i<[Φ]Dµ=[Φ] + =[Φ]Dµ=[Φ]

)}

=
iq

8π

{
− 2 i (Dµ<[Φ])=[Φ] + 2 i<[Φ]Dµ=[Φ]

}

= − q

4π
= [Φ∗DµΦ] , (8.49)

where we have used the fact that

= [Φ∗DµΦ] = − (Dµ<[Φ])=[Φ] + <[Φ]Dµ=[Φ] , (8.50)

to go from the penultimate line in (8.49) to the last. Therefore, the renormalised expec-

tation value of the current is given by

〈Ĵµ〉ren = − q

4π
lim
x′→x

=
{
Dµ
[
−iG

(d)
R

(
x, x′

)]}
. (8.51)

Then, using (8.1) and (8.4), equation (8.51) becomes

〈Ĵµ〉ren = −α
(d)q

4π
lim
x′→x

=
{
DµW

(d)
(
x, x′

)}

= −α
(d)q

4π
lim
x′→x

=
{
Dµ

[
w

(d)
0 + w

(d)
1ν σ

;ν +O
(
σ1/2

)]}

= −α
(d)q

4π
lim
x′→x

=
{
w

(d)
0 ;µ − iqAµw

(d)
0 + w

(d)
1ν σ

;ν
µ +O

(
σ1/2

)}

= −α
(d)q

4π
=
{
−iqAµw

(d)
0 + w

(d)
1ν δ

ν
µ

}

=
α(d)q

4π

{
qAµw

(d)
0 −=

[
w

(d)
1µ

]}
. (8.52)

where we have used the fact that w
(d)
0 is real (6.18). We require that the renormalised

expectation value of the current be conserved, that is ∇µ〈Ĵµ〉ren = 0 . This follows from

∇µ〈Ĵµ〉ren =
α(d)q

4π

{
q (∇µAµ)w

(d)
0 + qAµ∇µw(d)

0 −∇µ=
[
w

(d)
1µ

]}

= 0. (8.53)

where we have gone from the first equality to the second by using (8.29) in the even-

dimensional case and (8.43) in the odd-dimensional case.
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8.3.3 Renormalised stress-energy tensor

The final quantity we will consider is the renormalised expectation value of the stress-

energy tensor. In classical field theory, the SET Tµν associated to a charged, complex

scalar field Φ that is non-minimally coupled to the spacetime curvature is given by [2]

Tµν =
1

2
(1− 2ξ) [ (DµΦ)∗DνΦ +DµΦ (DνΦ)∗]

+
1

2

(
2 ξ − 1

2

)
gµν g

ρσ [ (DρΦ)∗DσΦ +DρΦ (DσΦ)∗]− ξ [Φ∗DµDνΦ + Φ (DµDνΦ)∗]

+ ξ gµν [Φ∗DρD
ρ Φ + Φ (DρD

ρ Φ)∗] + ξ

(
Rµν −

1

2
gµνR

)
Φ∗Φ− 1

2
m2gµν Φ∗Φ.

(8.54)

We can simplify (8.54) by expanding the field Φ in terms of its real and imaginary parts;

examining the first term on the r.h.s in (8.54) first, we have

(DµΦ)∗DνΦ +DµΦ (DνΦ)∗

=
[
Dµ

(
<[Φ] + i=[Φ]

)]∗
Dν

(
<[Φ] + i=[Φ]

)
+Dµ

(
<[Φ] + i=[Φ]

)[
Dν

(
<[Φ] + i=[Φ]

)∗]

=
(
Dµ<[Φ]− iDµ=[Φ]

)(
Dν<[Φ] + iDν=[Φ]

)

+
(
Dµ<[Φ] + iDµ=[Φ]

)(
Dν<[Φ]− iDν=[Φ]

)

=
(
Dµ<[Φ]Dν<[Φ] + iDµ<[Φ]Dν=[Φ]− iDµ=[Φ]Dν<[Φ] +Dµ=[Φ]Dν=[Φ]

)

+
(
Dµ<[Φ]Dν<[Φ]− iDµ<[Φ]Dν=[Φ] + iDµ=[Φ]Dν<[Φ] +Dµ=[Φ]Dν=[Φ]

)

= 2Dµ<[Φ]Dν<[Φ] + 2Dµ=[Φ]Dν=[Φ]

= 2< [(DµΦ)∗DνΦ] , (8.55)

where we have used the fact that

< [(DµΦ)∗DνΦ] = Dµ<[Φ]Dν<[Φ] +Dµ=[Φ]Dν=[Φ] (8.56)

to go from the penultimate line in (8.55) to the last. The relation (8.55) can also be used

to simplify the second term on the r.h.s in (8.54). Examining the third term on the r.h.s

in (8.54), we have

Φ∗DµDνΦ + Φ(DµDνΦ)∗

=
(
<[Φ]− i=[Φ]

)
DµDν

(
<[Φ] + i=[Φ]

)
+
(
<[Φ] + i=[Φ]

)[
DµDν

(
<[Φ] + i=[Φ]

)]∗

=
(
<[Φ]− i=[Φ]

)(
DµDν<[Φ] + iDµDν=[Φ]

)

+
(
<[Φ] + i=[Φ]

)(
DµDν<[Φ]− iDµDν=[Φ]

)

=
(
<[Φ]DµDν<[Φ] + i<[Φ]DµDν=[Φ]− i=[Φ]DµDν<[Φ] + =[Φ]DµDν=[Φ]

)

+
(
<[Φ]DµDν<[Φ]− i<[Φ]DµDν=[Φ] + i=[Φ]DµDν<[Φ] + =[Φ]DµDν=[Φ]

)

= 2<[Φ]DµDν<[Φ] + 2=[Φ]DµDν=[Φ]
)

= 2<[Φ∗DµDνΦ] , (8.57)
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where we have used the fact that

<[Φ∗DµDνΦ] = <[Φ]DµDν<[Φ] + =[Φ]DµDν=[Φ] , (8.58)

to go from the penultimate line in (8.57) to the last. The relation (8.57) can also be used

to simplify the fourth term on the r.h.s in (8.54). The fifth and sixth terms on the r.h.s

in (8.54) are easily simplified by using that

<[Φ∗Φ] = Φ∗Φ. (8.59)

Then, using (8.55), (8.57) and (8.59), the classical SET (8.54) becomes

Tµν = <
{

(1− 2ξ) (DµΦ)∗DνΦ +

(
2 ξ − 1

2

)
gµν g

ρσ(DρΦ)∗DσΦ− 2 ξΦ∗DµDνΦ

+ 2 ξ gµνΦ∗DρD
ρ Φ + ξ

(
Rµν −

1

2
gµνR

)
Φ∗Φ− 1

2
m2gµν Φ∗Φ

}
. (8.60)

Then, we can write the expectation value 〈T̂µν〉 of the quantum SET operator as the limit

〈T̂µν〉 = lim
x′→x

<
{
Tµν
(
x, x′

) [
−iG

(d)
R

(
x, x′

)]}
, (8.61)

where the operator Tµν(x, x′) is given by the expression [2]

Tµν = (1− 2 ξ) g ν′
ν DµD

∗
ν′ +

(
2 ξ − 1

2

)
gµν g

ρσ′DρD
∗
σ′ − 2 ξ DµDν + 2 ξ gµν DρD

ρ

+ ξ

(
Rµν −

1

2
gµνR

)
− 1

2
m2gµν , (8.62)

and g µ′
µ is the bivector of parallel transport. From Wald’s axioms, which are given in

§1.5, the renormalised expectation value of the stress-energy tensor is unique only up to

the addition of a local conserved tensor. Then, we can write the RSET as

〈T̂µν〉ren = α(d) lim
x′→x

<
[
Tµν
(
x, x′

)
W (d)

(
x, x′

)]
+ Θ̃(d)

µν , (8.63)

where Θ̃
(d)
µν is a local tensor whose exact form will be constrained by the conservation of

the RSET. We would thus like to evaluate the quantity

lim
x′→x

<
[
Tµν
(
x, x′

)
W (d)

(
x, x′

)]
, (8.64)

We will need to use the result [68]

g ν′
ν σρν′ = g ν′

ν σµν′g
µρ = (−gµν + . . .) gµρ = −δρν , (8.65)

and that, in the coincidence limit x′ → x, we have [68]

lim
x′→x

σ;ρ
ν′µ = lim

x′→x
σ;ρ

νµ = 0. (8.66)
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Since we will be taking the coincidence limit in (8.63), we need only consider (8.64) up to

first order in sigma. Then the first term in (8.64) is given by

(1− 2 ξ) g ν′
ν DµD

∗
ν′

[
w

(d)
0 + w

(d)
1ρ σ

;ρ + w
(d)
2(ρλ) σ

;ρσ ;λ +O
(
σ

3
2

)]

= (1− 2 ξ) g ν′
ν Dµ

[
w

(d)
1ρ σ

;ρ
ν′ + 2w

(d)
2(ρλ) σ

;ρ
ν′ σ

;λ + iqAν′ w
(d)
0 + iqAν′ w

(d)
1ρ σ

;ρ +O(σ)
]

= (1− 2 ξ) g ν′
ν

[
w

(d)
1ρ ;µ σ

;ρ
ν′ + w

(d)
1ρ σ

;ρ
ν′µ + 2w

(d)
2(ρλ) σ

;ρ
ν′ σ

;λ
µ + iqAν′ ;µw

(d)
0 + iqAν′ w

(d)
0 ;µ

+ iqAν′ w
(d)
1ρ σ

;ρ
µ − iqAµw

(d)
1ρ σ

;ρ
ν′ + q2AµAν′ w

(d)
0 +O

(
σ

1
2

)]

= (1− 2 ξ)
[
−w(d)

1ρ ;µ δ
ρ
ν − 2w

(d)
2(ρλ) δ

ρ
ν δ

λ
µ + iqAν ;µw

(d)
0 + iqAν w

(d)
0 ;µ + iqAν w

(d)
1ρ δ

ρ
µ

+ iqAµw
(d)
1ρ δ

ρ
ν + q2AµAν w

(d)
0 +O

(
σ

1
2

)]

= (1− 2 ξ)
[
−w(d)

1ν ;µ − 2w
(d)
2(µν) + iqAν ;µw

(d)
0 + iqAν w

(d)
0 ;µ + iqAν w

(d)
1µ + iqAµw

(d)
1ν

+ q2AµAν w
(d)
0 +O

(
σ

1
2

)]
. (8.67)

Taking the real part of (8.67), we have

(1− 2 ξ)<
{
g ν′
ν DµDν′

[
w

(d)
0 + w

(d)
1ρ σ

;ρ + w
(d)
2(ρλ) σ

;ρσ ;λ +O
(
σ

3
2

)]}

= (1− 2 ξ)
{
−∇µ<

[
w

(d)
1ν

]
− 2<

[
w

(d)
2(µν)

]
− 2 qA(µ=

[
w

(d)
1ν)

]
+ q2AµAν w

(d)
0 +O

(
σ

1
2

)}

= (1− 2 ξ)

{
1

2
w

(d)
0 ;µν − 2<

[
w

(d)
2(µν)

]
− 2 qA(µ=

[
w

(d)
1ν)

]
+ q2AµAν w

(d)
0 +O

(
σ

1
2

)}
. (8.68)

The second term in (8.64) is given by

(
2 ξ − 1

2

)
gµν g

ρσ′DρD
∗
σ′

[
w

(d)
0 + w

(d)
1λ σ

;λ + w
(d)
2(λτ) σ

;λσ ;τ +O
(
σ

3
2

)]

=

(
2 ξ − 1

2

)
gµν g

ρσ′Dρ

[
w

(d)
1λ σ

;λ
σ′ + 2w

(d)
2(λτ) σ

;λ
σ′ σ

;τ + iqAσ′ w
(d)
0 + iqAσ′ w

(d)
1λ σ

;λ

+ O(σ)]

=

(
2 ξ − 1

2

)
gµν g

ρφg σ′
φ

[
w

(d)
1λ ;ρ σ

;λ
σ′ + w

(d)
1λ σ

;λ
σ′ρ + 2w

(d)
2(λτ) σ

;λ
σ′ σ

;τ
ρ + iqAσ′ ;ρw

(d)
0

+ iqAσ′ w
(d)
0 ;ρ + iqAσ′ w

(d)
1λ σ

;λ
ρ − iqAρw

(d)
1λ σ

;λ
σ′ + q2AρAσ′ w

(d)
0 +O

(
σ

1
2

)]

=

(
2 ξ − 1

2

)
gµν g

ρφ
[
−w(d)

1λ ;ρ δ
λ
φ − 2w

(d)
2(λτ) δ

λ
φ δ

τ
ρ + iqAφ ;ρw

(d)
0 + iqAφw

(d)
0 ;ρ + iqAφw

(d)
1λ δ

λ
ρ

+ iqAρw
(d)
1λ δ

λ
φ + q2AρAφw

(d)
0 +O

(
σ

1
2

)]

=

(
2 ξ − 1

2

)
gµν g

ρφ
[
−w(d)

1φ ;ρ − 2w
(d)
2(φρ) + iqAφ ;ρw

(d)
0 + iqAφw

(d)
0 ;ρ + iqAφw

(d)
1ρ + iqAρw

(d)
1φ

+ q2AρAφw
(d)
0 +O

(
σ

1
2

)]

=

(
2 ξ − 1

2

)
gµν

[
−∇λw(d)

1λ − 2 gλτw
(d)
2λτ + iq

(
∇λAλ

)
w

(d)
0 + iqAλw

(d)
0 ;λ + 2 iqAλw

(d)
1λ

+ q2AλAλw
(d)
0 +O

(
σ

1
2

)]
. (8.69)
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Taking the real part of (8.69), we have

(
2 ξ − 1

2

)
<
{
gµν g

ρσ′DρD
∗
σ′

[
w

(d)
0 + w

(d)
1λ σ

;λ + w
(d)
2(λτ) σ

;λσ ;τ +O
(
σ

3
2

)]}

=

(
2 ξ − 1

2

)
gµν

{
−∇λ<

[
w

(d)
1λ

]
− 2 gλτ<

[
w

(d)
2λτ

]
− 2 qAλ=

[
w

(d)
1λ

]
+ q2AλAλw

(d)
0

+ O
(
σ

1
2

)}

=

(
2 ξ − 1

2

)
gµν

{
1

2
�w(d)

0 − 2 gλτ<
[
w

(d)
2λτ

]
− 2 qAλ=

[
w

(d)
1λ

]
+ q2AλAλw

(d)
0 +O

(
σ

1
2

)}
.

(8.70)

The third term in (8.64) is given by

− 2 ξ DµDν

[
w

(d)
0 + w

(d)
1λ σ

;λ + w
(d)
2(λτ) σ

;λσ ;τ +O
(
σ

3
2

)]

= −2 ξ Dµ

[
w

(d)
0 ;ν + w

(d)
1λ ;ν σ

;λ + w
(d)
1λ σ

;λ
ν + 2w

(d)
2(λτ) σ

;λ
ν σ

;τ − iqAν w
(d)
0 − iqAν w

(d)
1λ σ

;λ

+ O(σ)]

= −2 ξ
[
w

(d)
0 ;µν + w

(d)
1λ ;ν σ

;λ
µ + w

(d)
1λ ;µ σ

;λ
ν + w

(d)
1λ σ

;λ
νµ + 2w

(d)
2(λτ) σ

;λ
ν σ

;τ
µ − iq (∇µAν)w

(d)
0

− iqAν w
(d)
0 ;µ − iqAν w

(d)
1λ σ

;λ
µ − iqAµw

(d)
0 ;ν − iqAµw

(d)
1λ σ

;λ
ν − q2AµAν w

(d)
0 +O(σ)

]

= −2 ξ
[
w

(d)
0 ;µν + w

(d)
1λ ;ν δ

λ
µ + w

(d)
1λ ;µ δ

λ
ν + 2w

(d)
2(λτ) δ

λ
ν δ

τ
µ − iq (∇µAν)w

(d)
0 − 2 iqA(µ∇ν)w

(d)
0

− iqAν w
(d)
1λ δ

λ
µ − iqAµw

(d)
1λ δ

λ
ν − q2AµAν w

(d)
0 +O(σ)

]

= −2 ξ
[
w

(d)
0 ;µν + 2w

(d)
1(µ ;ν) + 2w

(d)
2(µν) − iq (∇µAν)w

(d)
0 − 2 iqA(µ∇ν)w

(d)
0 − 2 iqA(µw

(d)
1ν)

− q2AµAν w
(d)
0 +O(σ)

]
. (8.71)

Taking the real part of (8.71), we have

− 2 ξ<
{
DµDν

[
w

(d)
0 + w

(d)
1λ σ

;λ + w
(d)
2(λτ) σ

;λσ ;τ +O
(
σ

3
2

)]}

= −2 ξ
{
w

(d)
0 ;µν + 2∇(µ<

[
w

(d)
1ν)

]
+ 2<

[
w

(d)
2(µν)

]
+ 2 qA(µ=

[
w

(d)
1ν)

]
− q2AµAν w

(d)
0 +O(σ)

}

= −2 ξ
{

2<
[
w

(d)
2(µν)

]
+ 2 qA(µ=

[
w

(d)
1ν)

]
− q2AµAν w

(d)
0 +O(σ)

}
. (8.72)

The fourth term in (8.64) is given by
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2 ξ gµν DρD
ρ
[
w

(d)
0 + w

(d)
1λ σ

;λ + w
(d)
2(λα) σ

;λσ ;α +O
(
σ

3
2

)]

= 2 ξ gµν g
ρτDρDτ

[
w

(d)
0 + w

(d)
1λ σ

;λ + w
(d)
2(λα) σ

;λσ ;α +O
(
σ

3
2

)]

= 2 ξ gµν g
ρτDρ

[
w

(d)
0 ;τ + w

(d)
1λ ;τ σ

;λ + w
(d)
1λ σ

;λ
τ + 2w

(d)
2(λα) σ

;λ
τ σ

;α − iqAτ w
(d)
0

− iqAτ w
(d)
1λ σ

;λ +O(σ)
]

= 2 ξ gµν g
ρτ
[
w

(d)
0 ;τρ + w

(d)
1λ ;τ σ

;λ
ρ + w

(d)
1λ ;ρ σ

;λ
τ + w

(d)
1λ σ

;λ
τρ + 2w

(d)
2(λα) σ

;λ
τ σ

;α
ρ − iqAτ ;ρw

(d)
0

− iqAτ w
(d)
0 ;ρ − iqAτ w

(d)
1λ σ

;λ
ρ − iqAρw

(d)
0 ;τ − iqAρw

(d)
1λ σ

;λ
τ − q2AρAτ w

(d)
0 +O

(
σ

1
2

)]

= 2 ξ gµν

[
�w(d)

0 + 2∇λw(d)
1λ + 2 gλτw

(d)
2λτ − iq

(
∇λAλ

)
w

(d)
0 − 2 iqAλ∇λw(d)

0 − 2 iqAλw
(d)
1λ

− q2AλAλw
(d)
0 +O

(
σ

1
2

)]
. (8.73)

Taking the real part of (8.73), we have

2 ξ<
{
gµν DρD

ρ
[
w

(d)
0 + w

(d)
1λ σ

;λ + w
(d)
2(λα) σ

;λσ ;α +O
(
σ

3
2

)]}

= 2 ξ gµν

{
�w(d)

0 + 2∇λ<
[
w

(d)
1λ

]
+ 2 gλτ<

[
w

(d)
2λτ

]
+ 2 qAλ=

[
w

(d)
1λ

]
− q2AλAλw

(d)
0

+ O
(
σ

1
2

)}

= 2 ξ gµν

{
2 gλτ<

[
w

(d)
2λτ

]
+ 2 qAλ=

[
w

(d)
1λ

]
− q2AλAλw

(d)
0 +O

(
σ

1
2

)}
. (8.74)

The fifth term in (8.64) is given by

ξ

(
Rµν −

1

2
gµνR

)[
w

(d)
0 +O

(
σ

1
2

)]
= ξ

(
Rµν −

1

2
gµνR

)
w

(d)
0 +O

(
σ

1
2

)
. (8.75)

The sixth term in (8.64) is given by

− 1

2
gµνm

2
[
w

(d)
0 +O

(
σ

1
2

)]
= −1

2
gµνm

2w
(d)
0 +O

(
σ

1
2

)
. (8.76)

Equations (8.75) and (8.76) are obviously real. Inserting equations (8.68), (8.70), (8.72),

(8.74), (8.75) and (8.76) into (8.64), we have

〈T̂µν〉ren = α(d)

{
(1− 2 ξ)

(
1

2
w

(d)
0 ;µν − 2<

[
w

(d)
2(µν)

]
− 2 qA(µ=

[
w

(d)
1ν)

]
+ q2AµAν w

(d)
0

)

+

(
2 ξ − 1

2

)
gµν

(
1

2
�w(d)

0 − 2 gλτ<
[
w

(d)
2λτ

]
− 2 qAλ=

[
w

(d)
1λ

]
+ q2AλAλw

(d)
0

)

− 2 ξ
(

2<
[
w

(d)
2(µν)

]
+ 2 qA(µ=

[
w

(d)
1ν)

]
− q2AµAν w

(d)
0

)
+ 2 ξ gµν

(
2 gλτ<

[
w

(d)
2λτ

]

+ 2 qAλ=
[
w

(d)
1λ

]
− q2AλAλw

(d)
0

)
+ ξ

(
Rµν −

1

2
gµνR

)
w

(d)
0 −

1

2
gµνm

2w
(d)
0

}

+ Θ̃(d)
µν , (8.77)

which simplifies to
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〈T̂µν〉ren = α(d)

{
1

2
w

(d)
0 ;µν + q2AµAν w

(d)
0 − 2 qA(µ=

[
w

(d)
1ν)

]
− 2<

[
w

(d)
2(µν)

]
− 1

4
gµν �w

(d)
0

− 1

2
q2AλA

λgµν w
(d)
0 −

1

2
gµνm

2w
(d)
0 + qAλgµν =

[
w

(d)
1λ

]
+ gµν g

λτ<
[
w

(d)
2λτ

]

+ ξ

(
−w(d)

0 ;µν +Rµν w
(d)
0 + gµν �w

(d)
0 −

1

2
gµν w

(d)
0 R

)}

+ Θ̃(d)
µν . (8.78)

Then, finally we obtain for the RSET

〈T̂µν〉ren = α(d)

{
−2<

[
w

(d)
2(µν)

]
− 2 qA(µ=

[
w

(d)
1ν)

]
−
(
ξ − 1

2

)
w

(d)
0 ;µν

+
(
ξRµν + q2AµAν

)
w

(d)
0 + gµν

(
gλτ<

[
w

(d)
2λτ

]
+ qAλ=

[
w

(d)
1λ

]

+

(
ξ − 1

4

)
�w(d)

0 −
1

2

(
m2 + ξR+ q2AρA

ρ
)
w

(d)
0

)}
+ Θ̃(d)

µν . (8.79)

The expression for the RSET in (8.79) is manifestly symmetric in µ and ν, as we would

expect, and reduces to (71) in [68] when we take the uncharged limit q → 0.

From Wald’s axioms in §1.5, we expect that the RSET is conserved, i.e. ∇µ〈T̂µν〉ren =

0. Taking the divergence of (8.79), we have

∇µ〈T̂µν〉ren = α(d)
{
−2∇µ<

[
w

(d)
2(µν)

]
− 2 q

(
∇µA(µ

)
=
[
w

(d)
1ν)

]
− 2 qA(µ∇µ=

[
w

(d)
1ν)

]

−
(
ξ − 1

2

)
∇µ∇ν∇µw(d)

0 +
[
ξ∇µRµν + 2 q2A(µ∇µAν)

]
w

(d)
0

+
(
ξRµν + q2AµAν

)
∇µw(d)

0 +∇ν gλτ<
[
w

(d)
2λτ

]
+ q

(
∇νAλ

)
=
[
w

(d)
1λ

]

+ qAλ∇ν =
[
w

(d)
1λ

]
+

(
ξ − 1

4

)
∇ν
(
�w(d)

0

)
−
(
q2Aρ∇νAρ +

1

2
ξR ;ν

)
w

(d)
0

− 1

2

(
m2 + ξR+ q2AρA

ρ
)
∇ν w(d)

0

}
+∇µΘ̃(d)

µν . (8.80)

Thus far, our expressions for the RSET in terms of the expansion coefficients of the biscalar

W (d)(x, x′), as well as its divergence, have been valid in any number of dimensions (greater

than one). In order to simplify (8.80), we will need to use the identities developed in §8.2,

which differ depending on whether we are considering an even number of dimensions or

an odd number. Given the presence of contributions, in the aforementioned identities,

from the expansion coefficients of the V (2p)(x, x′) biscalar in even dimensions, which do

not appear in odd dimensions, we will consider an even number of dimensions in the

following calculation with the generalisation to odd number of dimensions consisting of

simply ignoring contributions from V (2p)(x, x′).

In order to eliminate the ∇ν gλτ<
[
w

(2p)
2λτ

]
term from (8.80), we can use the identity in

(8.26); then (8.80) simplifies considerably and we obtain
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∇µ〈T̂µν〉ren = α(2p)
{
−2∇µ<

[
w

(2p)
2(µν)

]
− 2 q

(
∇µA(µ

)
=
[
w

(2p)
1ν)

]
− 2 qA(µ∇µ=

[
w

(2p)
1ν)

]

−
(
ξ − 1

2

)
∇µ∇ν∇µw(2p)

0 +
[
ξ∇µRµν + 2 q2A(µ∇µAν)

]
w

(2p)
0

+
(
ξRµν + q2AµAν

)
∇µw(2p)

0 +

(
ξ − 1

4

)
∇ν
(
�w(2p)

0

)
− (p+ 1)∇νV (2p)

10

}

+∇µΘ̃(2p)
µν . (8.81)

In order to eliminate the −2∇µ<
[
w

(2p)
2(µν)

]
term from (8.81), we can use the expression in

(8.38); then (8.81) becomes

∇µ〈T̂µν〉ren = α(2p)

{
−1

2
Rµ

ν∇µw(2p)
0 − q (∇µAν)=

[
w

(2p)
1µ

]
+ q (∇νAµ)=

[
w

(2p)
1µ

]

− qAν∇µ=
[
w

(2p)
1µ

]
−
[
q2Aµ∇νAµ +

1

2
ξR ;ν

]
w

(2p)
0 −

(
ξ − 1

2

)
∇µ∇ν∇µw(2p)

0

+
[
ξ∇µRµν + 2 q2A(µ∇µAν)

]
w

(2p)
0 +

(
ξRµν + q2AµAν

)
∇µw(2p)

0

+

(
ξ − 1

2

)
∇ν
(
�w(2p)

0

)
− p∇νV (2p)

10

}
+∇µΘ̃(2p)

µν . (8.82)

Commuting the spacetime derivatives (1.10) and using the definition of the EM field

strength tensor (3.2), we have

∇µ〈T̂µν〉ren = α(2p)

{
−1

2
Rµ

ν∇µw(2p)
0 − qFµν =

[
w

(2p)
1µ

]
− qAν∇µ=

[
w

(2p)
1µ

]

−
[
q2Aµ∇νAµ +

1

2
ξR ;ν

]
w

(2p)
0 −

(
ξ − 1

2

)
∇ν
(
�w(2p)

0

)

−
(
ξ − 1

2

)
Rµ

ν∇µw(2p)
0 +

[
ξ∇µRµν + 2 q2A(µ∇µAν)

]
w

(2p)
0

+
(
ξRµν + q2AµAν

)
∇µw(2p)

0 +

(
ξ − 1

2

)
∇ν
(
�w(2p)

0

)
− p∇νV (2p)

10

}

+∇µΘ̃(2p)
µν . (8.83)

Several terms in (8.83) cancel, with (8.83) simplifying considerably to give

∇µ〈T̂µν〉ren = α(2p)
{
−qFµν =

[
w

(2p)
1µ

]
− qAν∇µ=

[
w

(2p)
1µ

]
− q2Aµ(∇νAµ)w

(2p)
0

+ ξ

(
∇µRµν −

1

2
R ;ν

)
w

(2p)
0 + 2 q2A(µ

(
∇µAν)

)
w

(2p)
0 + q2AµAν∇µw(2p)

0

− p∇νV (2p)
10

}
+∇µΘ̃(2p)

µν . (8.84)

Using the Bianchi identity (1.8) and expanding out the symmetrised quantity, we have

∇µ〈T̂µν〉ren = α(2p)
{
−qFµν =

[
w

(2p)
1µ

]
− qAν∇µ=

[
w

(2p)
1µ

]
− q2Aµ(∇νAµ)w

(2p)
0

+ q2Aµ(∇µAν)w
(2p)
0 + q2Aν(∇µAµ)w

(2p)
0 + q2AµAν∇µw(2p)

0 − p∇νV (2p)
10

}

+∇µΘ̃(2p)
µν . (8.85)
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In order to eliminate the −qAν∇µ=
[
w

(2p)
1µ

]
term from (8.85), we can use the expression in

(8.29); then (8.85) becomes

∇µ〈T̂µν〉ren = α(2p)
{
q2AµFµν w

(2p)
0 − qFµν =

[
w

(2p)
1µ

]
− p∇νV (2p)

10

}
+∇µΘ̃(2p)

µν , (8.86)

where we have, again, used the definition of Fµν (3.2). Noticing that the first two terms

in (8.86) are multiples of the terms in the expression for the renormalised current (8.52),

we can use (8.52) to write the divergence of the RSET as

∇µ〈T̂µν〉ren = −α(2p)p∇νV (2p)
10 + 4πFµν〈Ĵµ〉ren +∇µΘ̃(2p)

µν . (8.87)

which holds for even dimensions including d = 2. In odd dimensions, the corresponding

expression is given by

∇µ〈T̂µν〉ren = 4πFµν〈Ĵµ〉ren +∇µΘ̃(2p+1)
µν . (8.88)

Following the logic presented in [68] we can define another tensor Θ
(d)
µν which is locally

conserved, in contrast to the quantity Θ̃
(d)
µν introduced in (8.63), and which is defined as

Θ(d)
µν =




−α(2p)p V

(2p)
10 gµν + Θ̃

(2p)
µν d = 2p,

Θ̃
(2p+1)
µν d = 2p+ 1,

(8.89)

so that the divergence of the RSET is given, in all dimensions, by

∇µ〈T̂µν〉ren = 4πFµν〈Ĵµ〉ren , (8.90)

meaning that the RSET, associated to the quantised scalar field, is not conserved in

any number of spacetime dimensions. There is an intuitive explanation for the result in

(8.90). In the physical system we are considering, there are two matter fields present; the

first is the quantised scalar field whose associated stress-energy tensor we are attempting

to renormalise by extending the Hadamard renormalisation procedure. The second field

present in the physical system under consideration is the classical, background gauge

field that gives rise to the charge possessed by the quantum field. This field also has an

associated classical, stress-energy tensor T F
µν given by

T F
µν = FµρF

ρ
ν −

1

4
gµνFρτF

ρτ . (8.91)

We then expect that the total stress-energy tensor, associated to both the quantised scalar

field and to the background gauge field, is conserved, i.e. that

∇µ
[
〈T̂µν〉ren + T F

µν

]
= ∇µ〈T̂µν〉ren +∇µT F

µν = 0, (8.92)

where we have used the fact that the covariant derivative ∇µ is a linear operator in (8.92).

Then, taking the divergence of (8.91), we have
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∇µT F
µν = ∇µ

(
FµρF

ρ
ν −

1

4
gµνFρτF

ρτ

)

= Fµρ∇µF ρ
ν + (∇µFµρ)F ρ

ν −
1

2
gµνF

ρτ ∇µFρτ

= Fµρ∇µFνρ + (∇µFµρ)F ρ
ν −

1

2
F ρτ ∇νFρτ

= F ρτ ∇ρFντ + Fνρ∇µFµρ −
1

2
F ρτ ∇νFρτ

= Fνρ∇µFµρ + F ρτ
(
∇ρFντ −

1

2
∇νFρτ

)

= Fνρ∇µFµρ +
1

2
F ρτ (∇ρFντ +∇ρFντ −∇νFρτ ) . (8.93)

In order to simplify (8.93) further, we will need to use Maxwell’s equations ∇[ρFτν] = 0

to cyclically permute the indices on the second term in the bracket on the r.h.s of the last

line in (8.93). Then, we have

∇µT F
µν = Fνρ∇µFµρ +

1

2
F ρτ (−∇ρFτν +∇τFρν −∇νFρτ )

= Fνρ∇µFµρ +
1

2
F ρτ (−∇ρFτν −∇τFνρ −∇νFρτ )

= Fνρ∇µFµρ −
1

2
F ρτ ∇[ρFτν]

= Fνρ∇µFµρ, (8.94)

where we have used ∇[ρFτν] = 0 to go from the penultimate equality to the last one. Then,

using the semiclassical Maxwell equation (1.12), we have

∇µT F
µν = 4πFνρ〈Ĵρ〉ren . (8.95)

Using (8.95), equation (8.92) becomes

∇µ
[
〈T̂µν〉ren + T F

µν

]
= 4πFµν〈Ĵµ〉ren + 4πFνµ〈Ĵµ〉ren = 0, (8.96)

from the antisymmetry of Fµν , meaning that the total stress-energy tensor associated to

the entirety of the physical system under consideration is conserved, as required. The

final act of this section, before proceeding to consider renormalisation ambiguities in the

scalar field condensate as well as the renormalised expectation values of the current and

stress-energy tensor, will be to use the definition of the locally conserved tensor Θ
(d)
µν in

(8.89) as well as the identities (8.25), in even dimensions, and (8.41), in odd dimensions,

to simplify the expression for the RSET in (8.79). In even dimensions, using (8.89) and

(8.25), equation (8.79) reduces to

〈T̂µν〉ren = α(2p)

{
−2<

[
w

(2p)
2(µν)

]
− 2 qA(µ=

[
w

(2p)
1ν)

]
−
(
ξ − 1

2

)
w

(2p)
0 ;µν

+
(
ξRµν + q2AµAν

)
w

(2p)
0 + gµν

[(
ξ − 1

4

)
�w(2p)

0 − (p+ 1)V
(2p)

10

]}

+ α(2p)p V
(2p)

10 gµν + Θ(2p)
µν , (8.97)
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so that the expression for the RSET in even dimensions is given by

〈T̂µν〉ren = α(2p)

{
−2<

[
w

(2p)
2(µν)

]
− 2 qA(µ=

[
w

(2p)
1ν)

]
−
(
ξ − 1

2

)
w

(2p)
0 ;µν

+
(
ξRµν + q2AµAν

)
w

(2p)
0 + gµν

[(
ξ − 1

4

)
�w(2p)

0 − V (2p)
10

]}
+ Θ(2p)

µν . (8.98)

Using (8.89) and (8.25) to simplify (8.79), the expression for the RSET in odd dimensions

is given immediately by

〈T̂µν〉ren = α(2p+1)

{
−2<

[
w

(2p+1)
2(µν)

]
− 2 qA(µ=

[
w

(2p+1)
1ν)

]
−
(
ξ − 1

2

)
w

(2p+1)
0 ;µν

+
(
ξRµν + q2AµAν

)
w

(2p+1)
0 + gµν

(
ξ − 1

4

)
�w(2p+1)

0

}
+ Θ(2p+1)

µν . (8.99)

This concludes our study of the scalar field condensate, the renormalised current and

the RSET. We will now proceed to consider renormalisation ambiguities in each of the

aforementioned quantities.

8.4 Renormalisation ambiguities

In the previous section, we derived expressions for the scalar field condensate, the renor-

malised current and the RSET in terms of the expansion coefficients of the biscalar

W (d)(x, x′); the expansion coefficients of the biscalar V (2p)(x, x′) also appeared in the

expression for the RSET (8.98) in even dimensions. The expressions for the RSET in both

even (8.98) and odd dimensions (8.99) contain a renormalisation ambiguity in the form

of the locally conserved tensor Θ
(d)
µν ; this renormalisation ambiguity is to be expected and

corresponds to the freedom to add any locally conserved tensor to the r.h.s of Einstein’s

semiclassical equations (1.11). Discussion about the possible forms of Θ
(d)
µν is beyond the

scope of this thesis; see [68] and the references therein for a more detailed treatment.

It turns out that the form of the locally conserved tensor Θ
(d)
µν is the only renormalisa-

tion ambiguity in odd dimensions. In even dimensions however, there exists an ambiguity

in the Hadamard parametrices (6.3) and (6.5) corresponding to the renormalisation length

scale `ren in the denominator of the logarithm of the V (2)(x, x′) and V (2p)(x, x′) biscalars

respectively. The corollary is that the arbitrariness of `ren leads to the freedom to make

the replacement

W (2p)
(
x, x′

)
→W (2p)

(
x, x′

)
+ V (2p)

(
x, x′

)
ln `2ren. (8.100)

We can expand the biscalar V (2p)(x, x′) in terms of the expansion coefficients of its

Hadamard coefficients in order to derive expressions for the renormalisation ambiguities in

the expansion coefficients of the covariant Taylor expansion of W (2p)(x, x′). Considering

terms up to O(σ), we have on the r.h.s of (8.100)



264 Renormalised expectation values

V (2p)
(
x, x′

)
= V

(2p)
0 + V

(2p)
1 σ +O

(
σ3/2

)

= V
(2p)

00 + V
(2p)

01µ σ ;µ + V
(2p)

02(µν) σ
;µσ ;ν + V

(2p)
10 σ +O

(
σ3/2

)

= V
(2p)

00 + V
(2p)

01µ σ ;µ + V
(2p)

02(µν) σ
;µσ ;ν +

1

2
V

(2p)
10 σ ;µσ ;µ +O

(
σ3/2

)

= V
(2p)

00 + V
(2p)

01µ σ ;µ +

{
V

(2p)
02(µν) +

1

2
gµνV

(2p)
10

}
σ ;µσ ;ν +O

(
σ3/2

)
. (8.101)

Then, using (8.101) and equating terms order by order in σ(x, x′) on both sides of (8.100),

we have

w
(2p)
0 → w

(2p)
0 + V

(2p)
00 ln `2ren, (8.102a)

w
(2p)
1µ → w

(2p)
1µ + V

(2p)
01µ ln `2ren, (8.102b)

w
(2p)
2(µν) → w

(2p)
2(µν) +

[
V

(2p)
02(µν) +

1

2
gµνV

(2p)
10

]
ln `2ren, (8.102c)

We can first examine the renormalisation ambiguity in the simplest quantity of interest,

namely the scalar condensate. Using (8.102), the renormalisation ambiguity in the scalar

condensate in even dimensions is given by

〈Φ̂Φ̂†〉ren → α(2p)w
(2p)
0 + V

(2p)
00 ln `2ren. (8.103)

Using (8.103), the renormalisation ambiguity in the scalar condensate in d = 2 is given by

〈Φ̂Φ̂†〉ren → α(2)w
(2)
0 − ln `2ren, (8.104)

such that the renormalisation ambiguity in d = 2 is a constant. Using (8.103), the renor-

malisation ambiguity in the scalar condensate in d = 4 is given by

〈Φ̂Φ̂†〉ren → α(4)w
(4)
0 +

1

2

[
m2 +

(
ξ − 1

6

)
R

]
ln `2ren, (8.105)

such that the renormalisation ambiguity in d = 4 depends upon both the mass of the

scalar field and its coupling constant. From (8.105), we can see that the renormalisation

ambiguity in the scalar condensate in d = 4 vanishes for a massless, conformally coupled

scalar field.

Next consider the renormalised current. Using (8.102), the renormalisation ambiguity

in the renormalised expectation value of the current in even dimensions is given by

〈Ĵµ〉ren →
α(2p)q

4π

{
qAµ

[
w

(2p)
0 + V

(2p)
00 ln `2ren

]
−=

[
w

(2p)
1µ + V

(2p)
01µ ln `2ren

]}
, (8.106)

which simplifies to

〈Ĵµ〉ren →
α(2p)q

4π

{
qAµw

(2p)
0 −=

[
w

(2p)
1µ

]
+
(
qAµV

(2p)
00 −=

[
V

(2p)
01µ

])
ln `2ren

}
. (8.107)
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Using (8.103), the renormalisation ambiguity in the current in d = 2 is given by

〈Ĵµ〉ren →
α(2p)q

4π

{
qAµw

(2p)
0 −=

[
w

(2p)
1µ

]
+ (−qAµ + qAµ) ln `2ren

}

=
α(2p)q

4π

{
qAµw

(2p)
0 −=

[
w

(2p)
1µ

]}
. (8.108)

Therefore, there is no renormalisation ambiguity in the renormalised expectation value of

the current in d = 2. Using (8.103), the renormalisation ambiguity in the renormalised

current in d = 4 is given by

〈Ĵµ〉ren →
α(2p)q

4π

{
qAµw

(2p)
0 −=

[
w

(2p)
1µ

]
+

(
1

2
q

[
m2 +

(
ξ − 1

6

)
R

]
Aµ

− 1

2
q

[
m2 +

(
ξ − 1

6

)
R

]
Aµ +

1

12
q∇αFαµ

)
ln `2ren

}
, (8.109)

which simplifies to

〈Ĵµ〉ren →
α(2p)q

4π

{
qAµw

(2p)
0 −=

[
w

(2p)
1µ

]
+

1

12
q (∇αFαµ) ln `2ren

}
, (8.110)

such that the renormalisation ambiguity in the renormalised current is proportional to the

divergence of the electromagnetic field strength tensor Fµnu.

Lastly, we will consider the renormalisation ambiguity in the RSET. Given the com-

plexity of the expressions involving the RSET, it will be helpful to write the renormalisa-

tion ambiguity in the RSET in the form

〈T̂µν〉ren → 〈T̂µν〉ren + Ψ(2p)
µν ln `2ren. (8.111)

where Ψ
(2p)
µν is a local tensor. Using the expression for the RSET (8.98) and (8.102), we

have, in terms of the expansion coefficients of the biscalar V (2p)(x, x′), the expression

Ψ(2p)
µν = α(2p)

{
−2<

[
V

(2p)
02(µν) +

1

2
gµνV

(2p)
10

]
− 2 qA(µ=

[
V

(2p)
01ν)

]
−
(
ξ − 1

2

)
V

(2p)
00 ;µν

+
(
ξRµν + q2AµAν

)
V

(2p)
00 +

(
ξ − 1

4

)
gµν �V

(2p)
00

}
, (8.112)

which simplifies to give for the tensor Ψ
(2p)
µν the expression in even dimensions

Ψ(2p)
µν = α(2p)

{
−2<

[
V

(2p)
02(µν)

]
− 2 qA(µ=

[
V

(2p)
01ν)

]
−
(
ξ − 1

2

)
V

(2p)
00 ;µν

+
(
ξRµν + q2AµAν

)
V

(2p)
00 +

(
ξ − 1

4

)
gµν �V

(2p)
00 − gµνV (2p)

10

}
. (8.113)

Using (8.113), the renormalisation ambiguity in the RSET in d = 2 is given by
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Ψ(2p)
µν = α(2)

{
−2<

[
− 1

24
gµνR+

1

2
iqD(µAν)

]
+ 2 q2AµAν −

(
ξRµν + q2AµAν

)

+
1

2

[
m2 +

(
ξ − 1

6

)
R

]
gµν

}

= α(2)

{
1

12
gµνR− q2AµAν + q2AµAν − ξRµν +

1

2
m2gµν +

1

2
ξ gµνR−

1

12
gµνR

}

=
α(2)

2
m2gµν , (8.114)

Therefore the renormalisation ambiguity in the RSET in d = 2 depends only on the mass

of the field and vanishes for a massless scalar field. Using (8.113), the renormalisation

ambiguity in the RSET in d = 4 is given by

Ψ(2p)
µν = α(2p)

{
− 1

12

[
m2 +

(
ξ − 1

6

)
R

]
Rµν −

1

6

(
ξ − 3

20

)
R ;µν +

1

120
�Rµν

− 1

90
RαµRαν +

1

180
RαβRαµβν +

1

180
RαλβµRαλβν +

1

2
q2

[
m2 +

(
ξ − 1

6

)
R

]
AµAν

+
1

6
q2A(µ∇αFν)α +

1

12
q2FαµFνα − q2

[
m2 +

(
ξ − 1

6

)
R

]
AµAν +

1

6
q2A(µ∇αF|α|ν)

− 1

2

(
ξ − 1

2

)(
ξ − 1

6

)
R ;µν +

1

2

(
ξRµν + q2AµAν

)[
m2 +

(
ξ − 1

6

)
R

]

+
1

2

(
ξ − 1

4

)(
ξ − 1

6

)
gµν �R−

1

8
gµν

[
m2 +

(
ξ − 1

6

)
R

]2

+
1

24
gµν

(
ξ − 1

5

)
�R

+
1

720
gµνR

αβRαβ −
1

720
gµνR

αβλτRαβλτ +
1

48
q2FαβFαβ gµν

}
, (8.115)

which simplifies to

Ψ(2p)
µν = α(2p)

{
1

2

(
ξ − 1

6

)[
m2 +

(
ξ − 1

6

)
R

]
Rµν −

1

2

(
ξ 2 − 1

3
ξ +

1

30

)
R ;µν

+
1

120
�Rµν −

1

90
RαµRαν +

1

180
RαβRαµβν +

1

180
RαλβµRαλβν +

1

12
q2FαµFνα

+ gµν

[
1

720
RαβRαβ −

1

720
RαβλτRαβλτ +

1

2

(
ξ 2 − 1

3
ξ +

1

40

)
�R

− 1

8

[
m2 +

(
ξ − 1

6

)
R

]2

+
1

48
q2FαβFαβ

]}
. (8.116)

Thus, the renormalisation ambiguity in the RSET in d = 4 does not vanish for a mass-

less field or for a conformally coupled field. Furthermore, the renormalisation ambiguity

contains a term proportional to the square of the electromagnetic field strength tensor.

8.5 Trace anomaly

Now, let us make the definition
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Θ(d)
µν =





Ψ
(2p)
µν ln `2ren d = 2p,

0 d = 2p+ 1,
(8.117)

so that we are only considering the renormalisation ambiguity arising from the choice of

`ren. We would now like to consider the trace of the RSET. In order to do so, it will

be helpful to establish a relationship between the expansion coefficients of the biscalar

V (2p)(x, x′). From (8.101), we have to O(1)

DαV
(2p) = V

(2p)
00 ;α + V

(2p)
01µ ;α σ

;µ + V
(2p)

01µ σ
;µ
α + 2V

(2p)
02(µν) σ

;µ
α σ

;ν + gµν V
(2p)

10 σ;µ
α σ

;ν

− iqAαV
(2p)

00 − iqAαV
(2p)

01µ σ
;µ +O(σ) . (8.118)

Acting on (8.118) with another gauge covariant derivative, we have

DαDαV
(2p) = �V (2p)

00 + 2V
(2p)

01µ ;α g
αβσ;µ

β + V
(2p)

01µ � (σ ;µ) + 2V
(2p)

02(µν) σ
;µ
α g

αβσ;ν
β

+ gµν V
(2p)

10 σ;µ
α g

αβσ;ν
β − iq (∇αAα)V

(2p)
00 − iqAαV

(2p)
00 ;α − iqAαV

(2p)
01µ σ

;µ
α

− iqAαV
(2p)

00 ;α − iqAαV
(2p)

01µ σ
;µ
α − q2AαAαV

(2p)
00 +O

(
σ1/2

)
. (8.119)

Using (6.25), equation (8.119) simplifies to

DαDαV
(2p) = �V (2p)

00 + 2V
(2p)

01µ ;α g
αβδµβ + 2V

(2p)
02(µν) δ

µ
α g

αβδνβ + gµν V
(2p)

10 δµα g
αβδνβ

− iq (∇αAα)V
(2p)

00 − iqAαV
(2p)

00 ;α − iqAαV
(2p)

01µ δ
µ
α − iqAαV

(2p)
00 ;α − iqAαV

(2p)
01µ δ

µ
α

− q2AαAαV
(2p)

00 +O
(
σ1/2

)
. (8.120)

Then, (8.120) becomes

DαDαV
(2p) =

[
�− iq (∇αAα)− 2 iqAα∇α − q2AαAα

]
V

(2p)
00 + 2 [∇α − iqAα]V

(2p)
11α

+ 2 gµνV
(2p)

02(µν) + gµν g
µνV

(2p)
10 +O

(
σ1/2

)
. (8.121)

Since (8.121) should hold at each power of σ, the terms at O(1) in (8.121) give us

0 =
(
DαD

α −m2 − ξR
)
V

(2p)
00 + 2DαV

(2p)
01α + 2 gµνV

(2p)
02µν + 2p V

(2p)
10 . (8.122)

Taking the real part, we have

0 = �V (2p)
00 −

(
q2AαA

α +m2 + ξR
)
V

(2p)
00 + 2∇αV (2p)

01α + 2 qAα=
[
V

(2p)
01α

]
+ 2 gµν<

[
V

(2p)
02µν

]

+ 2p V
(2p)

10 , (8.123)

which simplifies to give the identity
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2 gµν<
[
V

(2p)
02µν

]
=
(
q2AαA

α +m2 + ξR
)
V

(2p)
00 − 2 qAα=

[
V

(2p)
01α

]
− 2p V

(2p)
10 . (8.124)

Then, taking the trace of (8.113), we have

gµνΨ(2p)
µν = α(2p)

{
−2 gµν<

[
V

(2p)
02(µν)

]
− 2 qAα=

[
V

(2p)
01α

]
−
(
ξ − 1

2

)
�V (2p)

00

+
(
ξR+ q2AαAα

)
V

(2p)
00 + 2p

(
ξ − 1

4

)
�V (2p)

00 − 2p V
(2p)

10

}

= α(2p)

{
(2p− 1) ξ�V (2p)

00 − 1

2
(p− 1)�V (2p)

00 −m2 V
(2p)

00

}

= α(2p)

{
(2p− 1)

[
ξ − (p− 1)

(2p− 1)

]
�V (2p)

00 −m2 V
(2p)

00

}
, (8.125)

which simplifies to give

gµνΨ(2p)
µν = −α(2p)

{
m2 V

(2p)
00 − (2p− 1) (ξ − ξc)�V

(2p)
00

}
. (8.126)

As we can see, the trace of Ψ
(2p)
µν vanishes for a massless, conformally coupled field. Now

considering the trace of the RSET itself, we have, using (8.87)

〈T̂µµ 〉ren
= α(2p)

{
−2 gµν<

[
w

(2p)
2(µν)

]
− 2 qAα=

[
w

(2p)
1α

]
−
(
ξ − 1

2

)
�w(2p)

0

+
(
ξR+ q2AαAα

)
w

(2p)
0 + 2p

(
ξ − 1

4

)
�w(2p)

0 − 2p V
(2p)

10

}
+ gµνΘ(2p)

µν

= α(2p)

{
(2p− 1) ξ�w(2p)

0 − 1

2
(p− 1)�w(2p)

0 −m2w
(2p)
0 + 2V

(2p)
10

}
+ gµνΘ(2p)

µν ,

(8.127)

which simplifies to give

〈T̂µµ 〉ren
= −α(2p)

{
m2w

(2p)
0 − (2p− 1) (ξ − ξc)�w

(2p)
0 − 2V

(2p)
10

}
+ gµνΘ(2p)

µν , (8.128)

in even dimensions, and

〈T̂µµ 〉ren
= −α(2p+1)

{
m2w

(2p+1)
0 − 2p (ξ − ξc)�w

(2p)
0

}
, (8.129)

in odd dimensions. Restricting our attention to massless, conformally coupled fields, we

have

〈T̂µµ 〉ren
= 2α(2p)V

(2p)
10 . (8.130)

Using (8.130), the trace of the RSET in d = 2 is given by

〈T̂µµ 〉ren
=

1

24π
R, (8.131)
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that is to say that there is a constant, non-vanishing trace anomaly associated with a

massless, conformally-coupled field in d = 2. Using (8.130), the trace of the RSET in

d = 4 is given by

〈T̂µµ 〉ren
=

1

24

(
1

6
− 1

5

)
�R+

1

720
RαβRαβ −

1

720
RαβλτRαβλτ +

1

48
q2FαβFαβ

=
1

720
�R+

1

720
RαβRαβ −

1

720
RαβλτRαβλτ +

1

48
q2FαβFαβ. (8.132)

In this case, the trace anomaly associated with a massless, conformally-coupled field in

d = 4 depends on both the background spacetime geometry as well as the square of the

electromagnetic field strength tensor Fµν .



Chapter 9

Conclusions and outlook

In Part II, we considered the behaviour of a massless, minimally-coupled charged scalar in

Reissner-Nordström spacetime. We were particularly interested in this study due to the

possibility of disentangling the effects of rotation and superradiance in Kerr spacetime,

given that an RN black hole is an irrotational spacetime that gives rise to superradiant

scattering. In Chapter 4, we defined a plethora of quantum states for the field, in analogue

with the states in Schwarzschild spacetime that are already well-established.

In particular the ‘past’ states were defined here in a similar way to their corresponding

states in Schwarzschild spacetime [50]. The ‘past’ Boulware state is as empty as possible to

an observer at infinity apart from a flux of particles in the superradiant modes. The ‘past’

Unruh state contained an outgoing flux of thermalised particles with a nonzero chemical

potential. The ‘past’ CCH state has in- and up-modes with different thermal factors. We

also defined their time-reversals, which are the corresponding ‘future’ states namely the

‘future’ Boulware state, the ‘future’ Unruh state and the ‘future’ CCH state.

Furthermore, we also attempted to define states as close as possible in spirit to their

corresponding states in Schwarzschild spacetime, namely the ‘Boulware-like’ state, the

‘Hartle-Hawking-like’ state and the ‘Frolov-Thorne’ state; we referred to these states as

the ‘-like’ states. All of these states relied on nonstandard commutation relations and thus

the ‘Boulware-like’ state cannot be considered a vacuum states in the conventional sense.

Nevertheless, it was as empty as possible to a static observer at infinity and was time-

reversal invariant. The ‘Frolov-Thorne’ state is a thermal state, but it does not represent

a thermal equilibrium and it was ill-defined everywhere in the spacetime. While we have

managed to define an equilibrium state in the ‘Hartle-Hawking-like’ state, it is likely to

evade a generalised version of the Kay-Wald theorem, as was explained in more detail

above.

All of our investigations in this thesis have relied on considering the differences be-

tween two quantum states when the state-independent divergent terms in the Hadamard

parametrix cancel, leaving finite quantities. Then the most obvious extension of our work

would be to develop a concrete realisation of the extension of Hadamard renormalisation

that we constructed in Part III. Such a realisation may result in generalising the extended

coordinates method for neutral scalar fields developed in [93, 94]. Furthermore, in [68],

explicit renormalisation counterterms were provided for Hadamard renormalisation of a
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neutral scalar field in two to six dimensions, whereas only two to four dimensions were

considered in [95] with a partial extension to five dimensions in [95]. Another such exten-

sion of the work in Part III would be to develop Hadamard renormalisation in a systematic

way, such as that given in [68], but for a fermionic field.

This would be an interesting extension since it has been shown in [50] that super-

radiance does not restrict the ability to define states for a fermionic field in spacetimes

exhibiting superradiance, as much as it does for bosonic fields. Another interesting exten-

sion of the work in Part II then, is to study quantum charged fermionic fields in Reissner-

Nordström spacetime. Finally, it would be interesting to rigorously extend the Kay-Wald

theorem to a charged scalar field in order to see if our putative ‘Hartle-Hawking-like’ state

would indeed evade this theorem.
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Appendix A

Identities concerning the spherical

harmonics

The standard addition theorem for spherical harmonics is given by [90]

P`(cos γ) =
4π

2`+ 1

∑̀

m=−`
Y`m(θ, ϕ)Y ∗`m(θ, ϕ) , (A.1)

where the function cos γ in (A.1) is given by

cos γ = cos θ cos θ′ + sin θ sin θ′ cos
(
ϕ− ϕ′

)
. (A.2)

The Legendre polynomials P` have the boundary condition

P`(1) = 1. (A.3)

Then, taking the coincidence limit θ′ → θ, ϕ′ → ϕ in (A.1) as well as using the boundary

condition (A.3), we obtain the well-known addition formula

∑̀

m=−`
|Y`m(θ, ϕ)|2 =

2`+ 1

4π
. (A.4)

Returning to the addition theorem of the spherical harmonics (A.1), we can differen-

tiate both sides of the equation with respect to θ to obtain

4π

2`+ 1

∑̀

m=−`

∂Y`m(θ, ϕ)

∂θ
Y ∗`m

(
θ′, ϕ′

)
=
∂ (cos γ)

∂θ
P ′`(cos γ) , (A.5)

where the derivative of the function cos γ with respect to θ in (A.5) is given by

∂(cos γ)

∂θ
= − sin θ cos θ′ + cos θ sin θ′ cos

(
ϕ− ϕ′

)
. (A.6)

Then, taking the coincidence limit θ′ → θ, ϕ′ → ϕ in (A.5), we obtain the identity

∑̀

m=−`

∂Y`m(θ, ϕ)

∂θ
Y ∗`m(θ, ϕ) = 0. (A.7)
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Returning to the expression in (A.5), we now differentiate (A.5) with respect to θ′ to

obtain

4π

2`+ 1

∑̀

m=−`

∂Y`m(θ, ϕ)

∂θ

∂Y ∗`m(θ′, ϕ′)
∂θ′

=
∂2(cos γ)

∂θ′∂θ
P ′`(cos γ) +

∂(cos γ)

∂θ

∂(cos γ)

∂θ′
P ′′` (θ, ϕ) , (A.8)

where the derivatives of the function cos γ in (A.8) are given by

∂(cos γ)

∂θ′
= − sin θ′ cos θ + cos θ′ sin θ cos

(
ϕ− ϕ′

)
, (A.9a)

∂2 (cos γ)

∂θ′∂θ
= sin θ sin θ′ + cos θ cos θ′ cos

(
ϕ− ϕ′

)
. (A.9b)

The derivative of the Legendre polynomials P ′` has the boundary condition

P ′`(1) =
`(`+ 1)

2
. (A.10)

Then, taking the coincidence limit θ′ → θ, ϕ′ → ϕ in (A.8) as well as using the boundary

condition (A.10), we obtain the identity

∑̀

m=−`

∣∣∣∣
∂Y`m(θ, ϕ)

∂θ

∣∣∣∣
2

=
2`+ 1

4π
P ′`(1) =

1

8π
`(`+ 1) (2`+ 1) . (A.11)

Returning to the addition theorem of the spherical harmonics (A.1), we can differen-

tiate (A.1) first with respect to ϕ and then with respect to ϕ′ to obtain

4π

2`+ 1

∑̀

m=−`

∂Y`m(θ, ϕ)

∂ϕ

∂Y ∗`m(θ′, ϕ′)
∂ϕ′

=
∂2(cos γ)

∂ϕ′∂ϕ
P ′`(cos γ) +

∂(cos γ)

∂ϕ

∂(cos γ)

∂ϕ′
P ′′` (cos γ) , (A.12)

where the derivatives of the function cos γ in (A.11) are given by

∂(cos γ)

∂ϕ
= − sin θ sin θ′ sin

(
ϕ− ϕ′

)
= −∂(cos γ)

∂ϕ′
, (A.13a)

∂2(cos γ)

∂ϕ′∂ϕ
= sin θ sin θ′ cos

(
ϕ− ϕ′

)
. (A.13b)

Then, taking the coincidence limit θ′ → θ, ϕ′ → ϕ in (A.11) as well as using the explicit

expression for the spherical harmonics Y`m(θ, ϕ) (3.50) and the boundary condition (A.10),

we obtain the identity

∑̀

m=−`

∣∣∣∣
∂Y`m(θ, ϕ)

∂ϕ

∣∣∣∣
2

=
∑̀

m=−`
m2 |Y`m(θ, ϕ)|2 =

1

8π
`(`+ 1) (2`+ 1) sin2θ. (A.14)



Appendix B

Mode contributions to the current

and stress-energy tensor

In this section we will calculate the classical mode contributions to the components of

quantum observables, several of which contain products of the square magnitude of field

operators. In general, these classical mode contributions will contain products of modes

with different quantum numbers. However, for reasons similar to those outlined when

evaluating the classical mode contribution scω`m to the scalar condensate SC in §5.1.1, we

need only calculate the square magnitudes of the individual modes in this case.

B.1 Mode contributions to components of the current

In this section, we derive the explicit expressions for the classical mode contributions jµω`m
to each component of the current Jµ using the general form of a scalar field mode (3.41)

as well as the expression for the current (5.5). The mode contribution jtω`m is given by

jtω`m = − q

4π
gtt= [φ∗ω`m (∇t − iqAt)φω`m ]

=
q

4π

1

f(r)
=
[
φ∗ω`m (∂t − iqAt)×

e−iωt

r
NωXω`(r)Y`m(θ, ϕ)

]

=
q

4πf(r)
=
[
φ∗ω`m

(
−iω +

iqQ

r

)
φω`m

]

= − q

4πr2f(r)

(
ω − qQ

r

)
|Nω|2 |Xω`(r) |2 |Y`m(θ, ϕ)|2. (B.1)

The mode contribution jrω`m is given by
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jrω`m = − q

4π
grr = [φ∗ω`m (∇r − iqAr)φω`m ]

= − q

4π
f(r)=

[
φ∗ω`m ∂r

(
e−iωt

r
NωXω`(r)Y`m(θ, ϕ)

)]

= −qf(r)

4π
=
[

eiωt

r
N∗ωX

∗
ω`(r)Y

∗
`m(θ, ϕ)× e−iωt Nω

[
d

dr

(
Xω`(r)

r

)]
Y`m(θ, ϕ)

]

= −qf(r)

4π
|Nω|2=

[
X∗ω`(r)
r

d

dr

(
Xω`(r)

r

)]
|Y`m(θ, ϕ)|2. (B.2)

The mode contribution jθω`m is given by

jθω`m = − q

4π
gθθ = [φ∗ω`m (∇θ − iqAθ)φω`m ]

= − q

4π
r−2=

[
φ∗ω`m ∂θ

(
e−iωt

r
NωXω`(r)Y`m(θ, ϕ)

)]

= − q

4π
r−2=

[
eiωt

r
N∗ωX

∗
ω`(r)Y

∗
`m(θ, ϕ)× e−iωt

r
NωXω`(r) ∂θ Y`m(θ, ϕ)

]

= − q

4πr4
|Nω|2 |Xω`(r) |2=

[
Y ∗`m(θ, ϕ)

∂

∂θ
Y`m(θ, ϕ)

]
= 0, (B.3)

where we have used the identity (A.7) for the spherical harmonics to show that the ex-

pression in the last line of (B.3) vanishes when the summation over m is taken. The mode

contribution jϕω`m is given by

jϕω`m = − q

4π
gϕϕ= [φ∗ω`m (∇ϕ − iqAϕ)φω`m ]

= − q

4π
r−2 cosec2θ= [φ∗ω`m∂ϕ φω`m]

= − mq

4πr2 sin2θ
|φω`m|2. (B.4)

While the mode contribution jϕω`m (B.4) does not vanish, the expectation values with

respect to all quantum states involve sums over the azimuthal number m = −`, . . . , `.
However, the expression in (B.4) contains a factor of |φω`m|2. From the properties of the

spherical harmonics (3.50), we have |φω`m|2 =
∣∣φω`(−m)

∣∣2. Therefore, the expression in

(B.4) is an odd function of m, which vanishes when the summation with respect to m is

performed over −` ≥ m ≤ `.
Then, using the addition formula (A.4) for the spherical harmonics Y`m(θ, ϕ), we can

perform the sum over the azimuthal number m in the nonzero components of the current

Jµ. The mode contribution jtω` to the component J t is given by

jtω` =
∑̀

m=−`
jtω`m = − q (2`+ 1)

16π2r2f(r)

(
ω − qQ

r

)
|Nω|2 |Xω`(r) |2. (B.5)

The mode contribution jrω` to the component Jr is given by

jrω` =
∑̀

m=−`
jrω`m = −qf(r)(2`+ 1)

16π2
|Nω|2=

[
X∗ω`(r)
r

d

dr

(
Xω`(r)

r

)]
. (B.6)
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B.2 Mode contributions to components of the SET

In this section, we derive the explicit expressions for the classical mode contributions

tµν,ω`m to each component of the stress-energy tensor Tµν using the general form of a

scalar field mode (3.41) as well as the expression for the SET (5.14).

In order to do so, it will be convenient to first calculate the quantity gρσ(DρΦ)∗DσΦ

that will appear in many of the mode contributions to the stress-energy tensor components,

and which is given by

gρσ(DρΦ)∗DσΦ

= gtt(DtΦ)∗DtΦ + grr(DrΦ)∗DrΦ + gθθ(DθΦ)∗DθΦ + gϕϕ(DϕΦ)∗DϕΦ

= − 1

f(r)
[ (∂t − iqAt)φω`m ]∗ × (∂t − iqAt)φω`m + f(r) (∂rφω`m)∗∂rφω`m

+
1

r2
(∂θφω`m)∗∂θφω`m +

1

r2 sin2 θ
(∂ϕφω`m)∗∂ϕφω`m

= − 1

f(r)

[(
−iω +

iqQ

r

)
φω`m

]∗
×
(
−iω +

iqQ

r

)
φω`m

+ f(r) |Nω|2
[

d

dr

(
Xω`(r)

r

)]∗ [ d

dr

(
Xω`(r)

r

)]
|Y`m(θ, ϕ)|2

+
1

r2

1

r2
|Nω|2 |Xω`(r)|2

[
∂

∂θ
Y`m(θ, ϕ)

]∗ [ ∂
∂θ

Y`m(θ, ϕ)

]
+

1

r2 sin2θ
(imφω`m)∗ imφω`m

= − 1

f(r)

(
ω − qQ

r

)2

|φω`m|2 + f(r) |Nω|2
∣∣∣∣

d

dr

(
Xω`(r)

r

)∣∣∣∣
2

|Y`m(θ, ϕ)|2

+
1

r4
|Nω|2 |Xω`(r)|2

∣∣∣∣
∂

∂θ
Y`m(θ, ϕ)

∣∣∣∣
2

+
m2

r2 sin2θ
|φω`m|2

=

[
− 1

f(r)

(
ω − qQ

r

)2

+
m2

r2 sin2θ

]
|φω`m|2 + f(r) |Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

|Y`m(θ, ϕ)|2

+
1

r4
|Nω|2 |Xω`(r)|2

∣∣∣∣
∂

∂θ
Y`m(θ, ϕ)

∣∣∣∣
2

. (B.7)

Then, using (B.7), the mode contribution ttt,ω`m is given by

ttt,ω`m = <
{

(DtΦ)∗DtΦ−
1

2
gtt g

ρσ(DρΦ)∗DσΦ

}

= <
{

[ (∂t − iqAt)φω`m ]∗ × (∂t − iqAt)φω`m −
1

2
gtt g

ρσ(DρΦ)∗DσΦ

}

= <
{[(

−iω +
iqQ

r

)
φω`m

]∗
×
(
−iω +

iqQ

r

)
φω`m +

1

2
f(r) gρσ(DρΦ)∗DσΦ

}

= <
{(

ω − qQ

r

)2

|φω`m|2 +
1

2
f(r) gρσ(DρΦ)∗DσΦ

}

=
1

2

[(
ω − qQ

r

)2

+
m2f(r)

r2 sin2θ

]
|φω`m|2 +

f(r)2

2
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

|Y`m(θ, ϕ)|2

+
f(r)

2r4
|Nω|2 |Xω`(r)|2

∣∣∣∣
∂

∂θ
Y`m(θ, ϕ)

∣∣∣∣
2

. (B.8)
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The mode contribution ttr,ω`m is given by

ttr,ω`m = <
{

(DtΦ)∗DrΦ−
1

2
gtr g

ρσ(DρΦ)∗DσΦ

}

= <
{

[ (∂t − iqAt)φω`m ]∗∂rφω`m

}

= <
{[(

−iω +
iqQ

r

)
φω`m

]∗
× e−iωt Nω

[
d

dr

(
Xω`(r)

r

)]
Y`m(θ, ϕ)

}

= <
{

i

(
ω − qQ

r

)
|Nω|2

[
X∗ω`(r)
r

d

dr

(
Xω`(r)

r

)]
|Y`m(θ, ϕ)|2

}

=

(
ω − qQ

r

)
|Nω|2|Y`m(θ, ϕ)|2<

{
i

[
X∗ω`(r)
r

d

dr

(
Xω`(r)

r

)]}

= −
(
ω − qQ

r

)
|Nω|2 |Y`m(θ, ϕ)|2=

[
X∗ω`(r)
r

d

dr

(
Xω`(r)

r

)]
. (B.9)

The mode contribution ttθ,ω`m is given by

ttθ,ω`m = <
{

(DtΦ)∗DθΦ−
1

2
gtθ g

ρσ(DρΦ)∗DσΦ

}

= <
{

[ (∂t − iqAt)φω`m ]∗∂θφω`m

}

= <
{[(

−iω +
iqQ

r

)
φω`m

]∗
× e−iωt

r
NωXω`(r)

∂

∂θ
Y`m(θ, ϕ)

}

= <
{

i

r2

(
ω − qQ

r

)
|Nω|2 |Xω`(r)|2

[
Y ∗`m(θ, ϕ)

∂

∂θ
Y`m(θ, ϕ)

]}

=
1

r2

(
ω − qQ

r

)
|Nω|2 |Xω`(r)|2<

{
i

[
Y ∗`m(θ, ϕ)

∂

∂θ
Y`m(θ, ϕ)

]}

= − 1

r2

(
ω − qQ

r

)
|Nω|2 |Xω`(r)|2=

[
Y ∗`m(θ, ϕ)

∂

∂θ
Y`m(θ, ϕ)

]

= 0, (B.10)

where we have used the identity (A.7) for the spherical harmonics to show that the expres-

sion in the last line of (B.10) vanishes when the summation over m is taken. The mode

contribution ttϕ,ω`m is given by

ttϕ,ω`m = <
{

(DtΦ)∗DϕΦ− 1

2
gtϕ g

ρσ(DρΦ)∗DσΦ

}

= <
{

[ (∂t − iqAt)φω`m ]∗∂ϕφω`m

}

= <
{[(

−iω +
iqQ

r

)
φω`m

]∗
(im)φω`m

}

= −m
(
ω − qQ

r

)
|φω`m|2. (B.11)

Using (B.7), the mode contribution trr,ω`m is given by
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trr,ω`m

= <
{

(DrΦ)∗DrΦ−
1

2
grr g

ρσ(DρΦ)∗DσΦ

}

= <
{

(∂rφω`m)∗∂rφω`m −
1

2
grr g

ρσ(DρΦ)∗DσΦ

}

= <
{(

e−iωt Nω

[
d

dr

(
Xω`(r)

r

)]
Y`m(θ, ϕ)

)∗
× e−iωt Nω

[
d

dr

(
Xω`(r)

r

)]
Y`m(θ, ϕ)

− 1

2

1

f(r)
gρσ(DρΦ)∗DσΦ

}

= <
{
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

|Y`m(θ, ϕ)|2 +
1

2

1

f(r)

[
1

f(r)

(
ω − qQ

r

)2

− m2

r2 sin2θ

]
|φω`m|2

− 1

2
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

|Y`m(θ, ϕ)|2 − 1

2r4f(r)
|Nω|2 |Xω`(r)|2

∣∣∣∣
∂

∂θ
Y`m(θ, ϕ)

∣∣∣∣
2
}

=
1

2
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

|Y`m(θ, ϕ)|2 +
1

2f(r)2

[(
ω − qQ

r

)2

− m2f(r)

r2 sin2θ

]
|φω`m|2

− 1

2r4f(r)
|Nω|2 |Xω`(r)|2

∣∣∣∣
∂

∂θ
Y`m(θ, ϕ)

∣∣∣∣
2

. (B.12)

The mode contribution trθ,ω`m is given by

trθ,ω`m = <
{

(DrΦ)∗DθΦ−
1

2
grθ g

ρσ(DρΦ)∗DσΦ

}

= <
{

(∂rφω`m)∗∂θφω`m

}

= <
{(

e−iωt Nω

[
d

dr

(
Xω`(r)

r

)]
Y`m(θ, ϕ)

)∗
× e−iωt

r
NωXω`(r)

∂

∂θ
Y`m(θ, ϕ)

}

= |Nω|2<
{
Xω`(r)

r

d

dr

(
X∗ω`(r)
r

)
× Y ∗`m(θ, ϕ)

∂

∂θ
Y`m(θ, ϕ)

}
. (B.13)

The mode contribution trϕ,ω`m is given by

trϕ,ω`m = <
{

(DrΦ)∗DϕΦ− 1

2
grϕ g

ρσ(DρΦ)∗DσΦ

}

= <
{

(∂rφω`m)∗∂ϕφω`m

}

= <
{[

e−iωt Nω
d

dr

(
Xω`(r)

r

)
Y`m(θ, ϕ)

]∗
× (im)

e−iωt

r
NωXω`(r) Y`m(θ, ϕ)

}

= <
{

im |Nω|2
[
Xω`(r)

r

d

dr

(
X∗ω`(r)
r

)]
|Y`m(θ, ϕ)|2

}

=
m

r
|Nω|2<

{
iXω`(r)

d

dr

(
X∗ω`(r)
r

)}
|Y`m(θ, ϕ)|2

= −m
r
|Nω|2=

[
Xω`(r)

d

dr

(
X∗ω`(r)
r

)]
|Y`m(θ, ϕ)|2. (B.14)
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Using (B.7), the mode contribution tθθ,ω`m is given by

tθθ,ω`m

= <
{

(DθΦ)∗DθΦ−
1

2
gθθ g

ρσ(DρΦ)∗DσΦ

}

= <
{

(∂θφω`m)∗∂θφω`m −
1

2
gθθ g

ρσ(DρΦ)∗DσΦ

}

= <
{(

e−iωt

r
NωXω`(r)

∂

∂θ
Y`m(θ, ϕ)

)∗
× e−iωt

r
NωXω`(r)

∂

∂θ
Y`m(θ, ϕ)

− 1

2
r2gρσ(DρΦ)∗DσΦ

}

= <
{

1

r2
|Nω|2 |Xω`(r)|2

∣∣∣∣
∂

∂θ
Y`m(θ, ϕ)

∣∣∣∣
2

+
1

2

[
r2

f(r)

(
ω − qQ

r

)2

− m2

sin2θ

]
|φω`m|2

− f(r)r2

2
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

|Y`m(θ, ϕ)|2 − 1

2r2
|Nω|2 |Xω`(r)|2

∣∣∣∣
∂

∂θ
Y`m(θ, ϕ)

∣∣∣∣
2
}

=
1

2r2
|Nω|2 |Xω`(r)|2

∣∣∣∣
∂

∂θ
Y`m(θ, ϕ)

∣∣∣∣
2

+
1

2

[
r2

f(r)

(
ω − qQ

r

)2

− m2

sin2θ

]
|φω`m|2

− f(r)r2

2
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

|Y`m(θ, ϕ)|2. (B.15)

The mode contribution tθϕ,ω`m is given by

tθϕ,ω`m = <
{

(DθΦ)∗DϕΦ− 1

2
gθϕ g

ρσ(DρΦ)∗DσΦ

}
(B.16)

= <
{

(∂θφω`m)∗∂ϕφω`m

}

= <
{(

e−iωt

r
NωXω`(r)

∂

∂θ
Y`m(θ, ϕ)

)∗
× (im)

e−iωt

r
NωXω`(r)

∂

∂θ
Y`m(θ, ϕ)

}

= <
{

im

r2
|Nω|2 |Xω`(r)|2 Y`m(θ, ϕ)

∂

∂θ
Y ∗`m(θ, ϕ)

}

=
m

r2
|Nω|2 |Xω`(r)|2<

{
iY`m(θ, ϕ)

∂

∂θ
Y ∗`m(θ, ϕ)

}

= −m
r2
|Nω|2 |Xω`(r)|2=

[
Y`m(θ, ϕ)

∂

∂θ
Y ∗`m(θ, ϕ)

]

= 0, (B.17)

where we have used the identity (A.7) for the spherical harmonics to show that the ex-

pression in the last line of (B.16) vanishes when the summation over m is taken. Using

(B.7), the mode contribution tϕϕ,ω`m is given by
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tϕϕ,ω`m

= R

{
(DϕΦ)∗DϕΦ− 1

2
gϕϕ g

ρσ(DρΦ)∗DσΦ

}

= <
{

(∂ϕφω`m)∗∂ϕφω`m −
1

2
gϕϕ g

ρσ(DρΦ)∗DσΦ

}

= <
{

(imφω`m)∗ (imφω`m)− 1

2
r2 sin2θ gρσ(DρΦ)∗DσΦ

}

= <
{
m2 |φω`m|2 −

r2 sin2θ

2

[
− 1

f(r)

(
ω − qQ

r

)2

+
m2

r2 sin2θ

]
|φω`m|2

− f(r)r2 sin2θ

2
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

|Y`m(θ, ϕ)|2

− sin2θ

2r2
|Nω|2 |Xω`(r)|2

∣∣∣∣
∂

∂θ
Y`m(θ, ϕ)

∣∣∣∣
2}

=
1

2

[
m2 +

r2 sin2θ

f(r)

(
ω − qQ

r

)2
]
|φω`m|2

− f(r)r2 sin2θ

2
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

|Y`m(θ, ϕ)|2 − sin2θ

2r2
|Nω|2 |Xω`(r)|2

∣∣∣∣
∂

∂θ
Y`m(θ, ϕ)

∣∣∣∣
2

.

(B.18)

While the mode contributions ttϕ,ω`m (B.11) and trϕ,ω`m (B.14) do not vanish, the

expectation values with respect to all quantum states involve sums over the azimuthal

number m = −`, . . . , `. The expressions in (B.11) and (B.14) are odd functions of m,

which vanish when the summation with respect to m is performed over −` ≥ m ≤ `.

Furthermore, the mode contribution trθ,ω`m (B.13) also vanishes when the summation

with respect to m is performed from the spherical harmonic identity in (A.7).

Then, using the identities involving the spherical harmonics Y`m(θ, ϕ) in §A, we can

perform the sum over the azimuthal number m in the nonzero components of the stress-

energy tensor Tµν .

Performing the sum over m in the expression for the mode contribution ttt,ω`m, we

obtain

ttt,ω` =
1

2r2
|Nω|2

[
(2`+ 1)

4π

(
ω − qQ

r

)2

+
f(r) `(`+ 1)(2`+ 1) sin2θ

8πr2 sin2θ

]
|Xω`(r)|2

+
f(r)2(2`+ 1)

8π
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

+
f(r) `(`+ 1)(2`+ 1)

16πr4
|Nω|2 |Xω`(r)|2

=
2`+ 1

8π
|Nω|2

[
1

r2

(
ω − qQ

r

)2

+
f(r) `(`+ 1)

2r4
+
f(r) `(`+ 1)

2r4

]
|Xω`(r)|2

+
2`+ 1

8π
|Nω|2 f(r)

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

, (B.19)

where we have used the spherical harmonic identities (A.4), (A.11) and (A.14). Then, the

mode contribution ttt,ω` to the component Ttt is given by
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ttt,ω` =
2`+ 1

8π
|Nω|2

{[
1

r2

(
ω − qQ

r

)2

+
f(r) `(`+ 1)

r4

]
|Xω`(r)|2

+ f(r)2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2
}
. (B.20)

Using the spherical harmonic identity in (A.4), the mode contribution ttr,ω` to the com-

ponent Ttr is given by

ttr,ω` = −2`+ 1

4π

(
ω − qQ

r

)
|Nω|2=

[
X∗ω`(r)
r

d

dr

(
Xω`(r)

r

)]
. (B.21)

Performing the sum over m in the expression for the mode contribution trr,ω`m, we obtain

trr,ω` =
2`+ 1

8π
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

+
1

2f(r)2r2
|Nω|2

[
2`+ 1

4π

(
ω − qQ

r

)2

− f(r) `(`+ 1) (2`+ 1) sin2θ

8πr2 sin2θ

]
|Xω`(r)|2

− `(`+ 1)(2`+ 1)

16πf(r)r4
|Nω|2 |Xω`(r)|2

=
2`+ 1

8π
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

+
2`+ 1

8π
|Nω|2

[
1

f(r)2r2

(
ω − qQ

r

)2

− `(`+ 1)

2f(r) r4
− `(`+ 1)

2f(r) r4

]
|Xω`(r)|2, (B.22)

where we have used the spherical harmonic identities (A.4), (A.11) and (A.14). Then, the

mode contribution trr,ω`m to the component Trr is given by

trr,ω` =
2`+ 1

8π
|Nω|2

{[
1

f(r)2 r2

(
ω − qQ

r

)2

− `(`+ 1)

f(r) r4

]
|Xω`(r)|2 +

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2
}
.

(B.23)

Performing the sum over m in the expression for the mode contribution tθθ,ω`m, we obtain

tθθ,ω` =
`(`+ 1)(2`+ 1)

16πr2
|Nω|2 |Xω`(r)|2

+
1

2r2
|Nω|2

[
(2`+ 1) r2

4πf(r)

(
ω − qQ

r

)2

− `(`+ 1) (2`+ 1) sin2θ

8π sin2θ

]
|Xω`(r)|2

− f(r)(2`+ 1)r2

8π
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

=
2`+ 1

8π
|Nω|2

[
`(`+ 1)

2r2
+

1

f(r)

(
ω − qQ

r

)2

− `(`+ 1)

2r2

]
|Xω`(r)|2

− 2`+ 1

8π
|Nω|2 f(r)r2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

, (B.24)
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where we have used the spherical harmonic identities (A.4), (A.11) and (A.14). Then, the

mode contribution tθθ,ω`m to the component Tθθ is given by

tθθ,ω` =
2`+ 1

8π
|Nω|2

{
1

f(r)

(
ω − qQ

r

)2

|Xω`(r)|2 − f(r)r2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2
}
. (B.25)

Performing the sum over m in the expression for the mode contribution tϕϕ,ω`m, we obtain

tϕϕ,ω` =
1

2r2
|Nω|2

[
`(`+ 1)(2`+ 1) sin2θ

8π
+

(2`+ 1) r2 sin2θ

4πf(r)

(
ω − qQ

r

)2
]
|Xω`(r)|2

− (2`+ 1) f(r)r2 sin2θ

8π
|Nω|2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

− `(`+ 1)(2`+ 1) sin2θ

16πr2
|Nω|2 |Xω`(r)|2

=
(2`+ 1) sin2θ

8π
|Nω|2

[
`(`+ 1)

2r2
− `(`+ 1)

2r2
+

1

f(r)

(
ω − qQ

r

)2
]
|Xω`(r)|2

− (2`+ 1) sin2θ

8π
|Nω|2 f(r)r2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2

(B.26)

where we have used the spherical harmonic identities (A.4), (A.11) and (A.14). Then, the

mode contribution tϕϕ,ω`m to the component Tϕϕ is given by

tϕϕ,ω` =
(2`+ 1) sin2θ

8π
|Nω|2

{
1

f(r)

(
ω − qQ

r

)2

|Xω`(r)|2 + f(r)r2

∣∣∣∣
d

dr

(
Xω`(r)

r

)∣∣∣∣
2
}

= tθθ,ω` sin2θ. (B.27)



Appendix C

Non-renormalisation of flux

components

We would like to show that the expectation values of the flux components of the current

〈Ĵr〉 and the SET 〈T̂tr〉 do not require renormalisation. In order to do so, we follow the

procedure used in [49] to prove the corresponding results for a neutral scalar field in Kerr

spacetime. We work in d = 4.

Let GF(x, x′) be the Feynman Green’s function associated to a charged scalar field in

an arbitrary quantum state. The renormalised expressions for the current and SET in this

state are given in (8.51) and (8.61) respectively, where Tµν takes the form given in (8.62).

Restricting our attention to the specific case of a massless, minimally-coupled charged

scalar fieldin a background Reissner-Nordström metric, the expansion coefficients of the

285
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biscalars U (4)(x, x′) and V (4)(x, x′) take the form

U
(4)
00 = 1, (C.1a)

U
(4)
01µ = iqAµ, (C.1b)

U
(4)
02(µν) =

1

12
Rµν −

iq

2
∇(µAν) −

q2

2
AµAν , (C.1c)

U
(4)
03(µνλ) = − 1

24
R(µν;λ) +

iq

6
∇(µ∇νAλ) +

q2

2
A(µ∇νAλ) −

iq3

6
AµAνAλ +

iq

12
R(µνAλ),

(C.1d)

U
(4)
04µνλτ =

1

80
R(µν;λτ) +

1

288
R(µνRλτ) +

1

360
Rρ(µ|ψ|νR

ψ
λ|ρ|τ) −

iq

24
∇(µ∇ν∇λAτ)

− q2

6
A(µ∇ν∇λAτ) −

q2

8

[
∇(µAν

] [
∇λAτ)

]
+

iq3

4
A(µAν∇λAτ) +

q4

24
AµAνAλAτ

− iq

24
A(µ∇νRλτ) −

iq

24
R(µν∇λAτ) −

q2

24
R(µνAλAτ), (C.1e)

V
(4)

00 = 0, (C.1f)

V
(4)

01µ = − iq

12
∇αFαµ, (C.1g)

V
(4)

02(µν) = − 1

240
�Rµν +

1

180
RαµRαν −

1

360
RαβRαµβν −

1

360
RαβγµRαβγν −

q2

24
FαµFνα

− q2

12
A(µ∇αFν)α −

iq

24
∇(µ∇αFν)α, (C.1h)

V
(4)

10 =
1

720
RαβγδRαβγδ −

1

720
RαβRαβ −

q2

48
FαβFαβ. (C.1i)

To show that 〈Ĵr〉 and 〈T̂tr〉 do not require renormalization, we seek to prove that

F1 ≡ =
{
Dr
[
−iGS

(
x, x′

)]}
= 0, (C.2a)

F2 ≡ <
{
Ttr
[
−iGS

(
x, x′

)]}
= 0. (C.2b)

Since the Reissner-Nordström metric (3.9) is static and spherically symmetric, without

loss of generality we may consider two space-time points x and x′ as follows:

x = (0, r, θ, 0), x′ = (0, r′, θ′, 0). (C.3)

Then the unique geodesic connecting the points x and x′ lies in the surface Σ = {t =

0, ϕ = 0}. Using the letter X to denote the indices t, ϕ, and A to denote r, θ, we have [49]

σ;µ = δµAσ
;A, (C.4a)

gν
ν′ = δν

′
A′δ
A
ν gA

A′ + δν
′
X ′δ
X
ν gX

X ′ . (C.4b)

We can write the gauge potential (3.11) as

Aµ = δXµ AX , (C.4c)

where AX depends only on A coordinates. Therefore the quantities (C.2) take the form

F1 = =
{
∇r
[
−iGS

(
x, x′

)]}
, (C.5a)

F2 = <
{
−i
[
gr
A′Dt∇A′

]
GS

(
x, x′

)}
. (C.5b)
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The biscalar σ(x, x′) and its derivatives are real, as are the gauge field potential Aµ and

field strength Fµν , as well as all curvature tensors and their derivatives. From (C.4), we

have Aµσ
;µ = 0, which immediately simplifies the form of GS(x, x′).

The symmetries of the metric mean that Christoffel symbols Γµνλ having an odd number

of X indices vanish, while those with an even number of X indices are nonzero. Therefore

the nonzero components of all covariant derivatives of the gauge potential Aµ contain at

least one X index and hence all terms in (C.2) containing covariant derivatives of Aµ do not

contribute to U (4)(x, x′) or V (4)(x, x′) when contracted with σ;µ. As a result, U (4)(x, x′)

is real and depends only on curvature tensors; the gauge potential does not contribute.

The gauge field strength has the form

Fµν =
[
δAµ δ

X
ν − δXµ δAν

]
FAX , (C.6)

where FAX depends only on the A coordinates. Hence we have

∇αFαµ = δXµ ∇AFAX . (C.7)

Therefore V (4)(x, x′) is also real. We deduce that −iGS(x, x′) is real and hence F1 (C.5a)

is trivally zero, while F2 (C.5b) simplifies to

F2 = gr
A′∇t∇A′

[
−iGS

(
x, x′

)]
. (C.8)

The derivatives in the above expression commute since they are evaluated at different

space-time points and GS(x, x′) is a biscalar. Furthermore, GS(x, x′) depends only on the

space-time geometry and the background electromagnetic field. Therefore GS(x, x′) does

not depend on t and thus ∇t(−iGS) must be zero. We then have F2 = 0, as required.

In conclusion, the components 〈Ĵr〉 and 〈T̂tr〉 do not require renormalization.



Appendix D

Vanishing of mode fluxes

Throughout this thesis we have referred to a set of modes vanishing near a certain hyper-

surface. For example, in §3.4.3, we have referred to the in-modes vanishing near H−. In

fact, what we mean specifically by this statement is that the flux of the in-modes through

the past horizon H− vanishes. We can demonstrate this by the following calculation. Us-

ing the expression for the volume element dΣµ
H− in (3.110), we have for the flux of the

in-modes through the past horizon

dΣµDµφ
in
ω`m|H−

= dΣµ
H−∇µφ

in
ω`m − iq dΣµ

H−Aµ φ
in
ω`m

= dΣµ
H−∂µφ

in
ω`m − iq dΣµ

H−Aµ φ
in
ω`m

= −δµUr2sin θ dUdθ dϕ∂µ

{
1√
4πω

e−iωt

r
Bin
ω` e−iω̃r∗Y`m(θ, ϕ)

}

+ iq δµUr
2sin θ dUdθ dϕAµ φ

in
ω`m

= −r2sin θ dUdθ dϕ
du

dU

∂

∂u

{
1√
4πω

1

r
exp

[
−iω

(u+ v)

2

]
Bin
ω` exp

[
−iω̃

(v − u)

2

]
Y`m(θ, ϕ)

}

+ iq r2sin θ dUdθ dϕAUφ
in
ω`m

= −r2sin θ dUdθ dϕ
du

dU

i(ω̃ − ω)

2
φin
ω`m

=
iqQ

2r+
r2sin θ dUdθ dϕ

du

dU
φin
ω`m −

iqQ

2r+
r2sin θ dUdθ dϕ

du

dU
φin
ω`m

= 0, (D.1)

which vanishes identically. Wherever in this thesis we have referred to a set of modes

vanishing near a certain hypersurface, it is meant that the flux of the modes under con-

sideration through the hypersurface vanishes through a similar calculation to (D.1).
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