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Abstract

Rising global ocean temperatures are changing marine ecosystems globally. Over the past decade,

temperatures in the Barents Sea have been at a historic high due to the increasing temperature of

Atlantic water and a decrease in sea ice volume. Studies investigating the effects of temperature

variability on the Barents Sea ecosystem have highlighted the complexity and difficulty of predicting

how future change may affect the species and communities here. Environmental variability has

ramifications for every aspect of the ecosystem, but one particularly complex relationship is between

the environment and trophic dynamics. As environmental changes may affect species within a

community in different ways and to different extents, predicting how the whole system may be

affected can be challenging. This thesis seeks to quantify some aspects of the relationship between

environmental variability and trophic dynamics in the Barents Sea by applying a novel statistical

modelling approach to a spatio-temporal diet database for Barents Sea cod, a top predator. We

examine spatio-temporal patterns in diet, distribution and demographics for cod and several key prey

species. We utilise a species distribution model, Maxent, and a nonlinear system identification

model, NARMAX, to synthesise existing data and identify the factors driving spatio-temporal

change in these aspects of the ecosystem. We found a trend of distribution spreading into the

northern Barents Sea following increasing water temperatures. We found further evidence for the

borealization of the arctic environment in the Barents Sea, with Boreogadus saida, a landmark arctic

species, increasing in significance as a prey item with consumption rising as Mallotus villosus and

Pandalus borealis consumption falls. We found that higher order biotic effects were more

informative in our models than direct measurements of climate, and some of the measures we

attempted to predict could not be adequately explained by either the biotic or abiotic data that were

used.
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Chapter 1 - Introduction

1.1. Research Context, Aims and Null Hypotheses

Global ocean warming is causing unprecedented changes in the physical conditions of marine

ecosystems worldwide (Cheung et al., 2013; Johnson and Lyman, 2020). These changes are

profoundly felt in the arctic and subarctic seas, where sea ice is on a trend towards thinning and

retreating earlier in the year (Francis and Hunter, 2006; Holland et al., 2006) and an increase in

warm water transported into the region from the Atlantic ocean is driving water temperatures higher

and fundamentally changing the basis of arctic and subarctic marine ecosystems (Årthun et al., 2012;

Barton et al., 2018; Boitsov et al., 2012; Dalpadado et al., 2012). The consequences of this warming

are extensive and multilayered, as there are macroscale changes in the distribution, growth and

feeding behaviour of fish assemblages (Dalpadado et al., 2014; Eriksen et al., 2017; Gjøsæter and

Loeng, 1987; Johannesen et al., 2012a, 2012b). These behavioural changes have non-trivial

ramifications for ecosystem management and fisheries planning due to the interactions between

species in the same food web (Bogstad et al., 2000; Casini et al., 2009; Eriksen et al., 2021a).

Understanding the consequences of environmental change on the food web of subarctic ecosystems

becomes an important goal for marine policymakers, and the expectation of continued environmental

variability and change has resulted in uncertainty about how ecosystems will respond. (ICES, 2017;

Olsen et al., 2007).

The Barents Sea is a subarctic sea with a highly productive ecosystem and several commercially

important fish species. Foremost amongst them is Gadus morhua, Atlantic cod. The Barents Sea cod

stock is the largest globally, following extensive stock collapses in the East Atlantic in the late 20th

century. Barents Sea cod is a top predator in the ecosystem (Bogstad et al., 2000; Holt et al., 2019)

with a diverse diet across its varied life history, predating on a wide range of benthos and fish,

including cannibalism between larger and smaller individuals of its species. Trophic dynamics are

built on a foundation determined by the characteristics of the physical environment: temperature,

light, salinity, oxygen content etc. (Kortsch et al., 2015). These factors determine the health of

marine populations, how large individuals grow, the rate of mortality, abundance, distribution and

more. First-order environmental effects have far-reaching consequences for the trophic interactions

between species in the region. These changes, and the resulting feedback effects on the

demographics of involved species populations, are difficult to predict. Long term environmental
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change in the Barents Sea is already ongoing, and the consequences of further change must be

understood to prevent catastrophic mismanagement of ecological resources.

Extensive surveys of the Barents Sea ecosystem and, in particular, the state of the Barents Sea cod

stock provide a vast source of quantitative and qualitative data about the region’s trophic dynamics,

which have yet to be fully explored. Statistical analysis of existing data can give us insight into the

historical state of the cod population, including measures of the health and size of the stock, its

trophic interactions with other species and internal demographic measures such as size structure.

These are difficult properties to estimate and predict from mechanistic or theoretical frameworks

alone. Using statistical modelling techniques, we can gain new insights into factors that drive

patterns that we observe in historical data and attempt to quantify the relationship between crucial

ecosystem parameters. The IMR-PINRO cod stomach database (Dolgov et al., 2007; Holt et al.,

2019; Mehl and Yaragina, 1992) provides a rich and underexplored source of data on the diet and

demographics of Barents Sea cod.

This thesis seeks to quantify the effects of environmental variability on Barents Sea cod’s diet,

demographics, and distribution using a novel combined statistical modelling approach. Three

research aims constitute a holistic investigation into the relationship of diet, distribution, and

demography.

Aim 1 - To identify the spatio-temporal and ontogenetic dimensions of variability in the diet of

Barents Sea cod.

● Objective 1.1. Analyse the spatio-temporal patterns in Barents Sea cod diet from the

IMR-PINRO stomach database

● Objective 1.2. Analyse the spatio-temporal population demographic patterns in Barents Sea

cod from the IMR-PINRO stomach database

● Objective 1.3. Analyse the ontogenetic dimension of Barents Sea cod diet from the

IMR-PINRO stomach database and identify diet-based size groups

Aim 2 - To model the distribution of Barents Sea cod and key prey species over time during the

recent past to reveal changes in distribution driven by environmental change.
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● Objective 2.1. Test the validity of applying the Maxent species distribution model to Barents

Sea cod and evaluate the utility of possible methodological improvements

● Objective 2.2. Model the distribution of Barents Sea cod and key prey species at the highest

possible temporal resolution using an optimised Maxent modelling approach

● Objective 2.3. Measure the spatio-temporal variability in the spatial overlap between species

groups

Aim 3 - To model key ecological measures of the Barents Sea cod stock and quantify the system of

factors that drive variability, incorporating new information about temporal variability in

predator-prey spatial overlap.

● Objective 3.1. Model critical measures of population demographics using a NARMAX

system identification approach

● Objective 3.2. Model key measures of cod diet using a NARMAX system identification

approach

● Objective 3.3. Model key measures of cod size structure using a NARMAX system

identification approach

1.2. Thesis Structure

Chapter 2 explores a database of cod stomach contents collected since 1984 in the Barents Sea. We

use data analysis techniques to investigate the spatio-temporal patterns in cod diet and population

demographics (Objectives 1.1, 1.2.). We consider the ontogenetic dimension of diet and use

hierarchical clustering to stratify the cod population into three size groups based on the novelty of

their diet composition (Objective 1.3.). The results of our analysis are used to direct the modelling

process in Chapters 3, 4 and 5.

Chapter 3 presents a methodological assessment of the species distribution model Maxent as applied

to Barents Sea cod (Objective 2.1.). We investigate the potential of the model to predict distribution
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successfully and explore a range of methodological improvements to improve our confidence in

model validity. We investigate the impact of changing the time scale of the input data and establish

the highest suitable temporal resolution for mapping species distributions.

In Chapter 4, we apply the methodology optimised in Chapter 3 to produce Maxent models at a

seasonal scale for each of the size classes of Gadus morhua determined from Chapter 2, Mallotus

villosus, Melanogrammus aeglefinus, Pandalus borealis and Boreogadus saida in each year from

1991-2017 (Objective 2.2.). We examine the long-term distribution changes for each group and

discuss the factors responsible for distribution and what is driving change. We then examine the

spatial overlap between various predator-prey pairings (Objective 2.3.).

In Chapter 5, we investigate time-series measures of key ecological variables. We apply a

NARMAX system identification model to fit polynomial models to a range of measures from

population dynamics (Objective 3.1), size structure (Objective 3.2.) and diet (Objective 3.3.). We

incorporate a wide range of plausible inputs, including new variables derived from our Maxent

modelling in Chapter 4 to represent the spatial overlap between species. We discuss what the

resulting model structures tell us about the system under study and the relationship between spatial

overlap and key ecological measures.

In Chapters 6 and 7, we present a discussion of the results of our investigation, synthesising our data

analysis and modelling into a cohesive whole. We evaluate our success in achieving the aims and

objectives set out in Section 1.4, and we present our overall conclusions. Finally, we discuss the

limitations of our study and what could be done to improve it, and we suggest some avenues for

further work.

1.3. Cod: DIet and food web dyNAmics (CoDINA)

This PhD candidacy was carried out as part of a collaboration between the University of Sheffield

(UK), CEFAS (UK), the Institute of Marine Research (IMR, Norway) and PINRO (Russia). The

CoDINA project aimed to improve our understanding of pelagic sub-arctic marine ecosystems

through an ensemble data analysis and modelling approach on existing diet and hydrographic data.

The modelling methodologies used in this thesis, Maxent and NARMAX, were the University of

Sheffield’s contribution to the ensemble. Though the aims of this thesis are in line with the
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objectives of the CoDINA project, they constitute an independent, holistic investigation of the diet

and demographics of Barents Sea cod.

1.4. Scientific Background

1.4.1 The Barents Sea

1.4.1.1. Physical characteristics of the Barents Sea

The Barents Sea is a subarctic shelf sea located off the northern coast of Norway and Russia. It is

outlined by a 500m depth contour to the west and north, separating it from the Norwegian sea and

the Arctic. In the east, the archipelago of Novaya Zemlya marks its eastern boundary adjacent to the

Kara Sea. The Barents Sea covers approximately 1.6 million kilometres squared and is relatively

shallow, with an average depth of 230 metres distributed over a rough topography of small basins

separated by shallow ridges. There are several deep troughs running from the central Barents Sea to

the northern and western shelf breaks, which allow for the influx of relatively warm Atlantic water

to pass through and into the Arctic basin. The influence of the Atlantic water is significant for many

aspects of the physical and ecological properties of the Barents Sea (Dalpadado et al., 2012; Loeng,

1991), and as a result, it is sensitive to large scale atmospheric effects, e.g. the North Atlantic

Oscillation (Ottersen et al., 2001). Figure 1.1 shows the Barents Sea’s location, topography, and

major currents.
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Figure 1.1.  Map of the Barents Sea showing bottom topography and currents adapted from (Johannesen et al.,

2012b)
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1.4.1.2. Barents Sea Climate and Ecosystem

The climate of the Barents Sea is dominated by the interaction between relatively warm (> 3C)

Atlantic water flowing in from the southwest and colder (< 0C) Arctic water in the north. The two

water bodies maintain separation, with a barrier of Mixed water between them. The extent of these

water masses is visible in Figure 1.2. These water mass boundaries create distinct environmental

subregions with profound implications for the Barents Sea ecosystem.

Figure 1.2. Long-term mean water temperature in the Barents Sea as of August-October 2008. The delineation

between Atlantic (>3C), Mixed (0-3C) and the Arctic (< 0C) water is visible. (Aanes et al., 2009)

The oceanographic environment is primarily determined by the properties of the Atlantic water

flowing into the Barents Sea (Jakobsen and Ozhigin, 2011), which varies due to larger Atlantic

circulation patterns and environmental variability (Skagseth et al., 2008). Temperatures are also

affected to a lesser extent by surface-air exchange (Sandø et al., 2010) and solar radiation. The

Barents Sea has been warming in recent decades due to increased heat flux from the Atlantic water

since the 1970s (Årthun and Schrum, 2010; Eriksen et al., 2017; Kohnemann et al., 2017), which has

reduced sea-ice cover during the winter (Smedsrud et al., 2013), increased net primary production

(Arrigo et al., 2008; Sakshaug, 2004) and provided better feeding conditions for species such as

capelin and cod (Dalpadado et al., 2014, 2012). The environment changes significantly by season,

with most sea ice melting entirely during the summer (Smedsrud et al., 2013). The mixing of

Atlantic and Arctic water creates a productive environment supporting a robust marine ecosystem.
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The assemblages of the Barents Sea are broadly grouped into boreal, semi-boreal and arctic species,

depending on their distribution due to environmental preference. (Aanes et al., 2009).

A detailed description of the Barents Sea ecosystem can be found in many existing resources, e.g.

Jakobsen and Ozhigin (2011), but a brief overview of the major components are provided here. High

levels of primary production provide the foundation for the rich Barents Sea ecosystem (Sakshaug,

2004). Phytoplankton blooms occur seasonally in the southern Barents Sea and following sea ice

retreat in the summer (Hodal and Kristiansen, 2008; Signorini and McClain, 2009). The abundant

and diverse phytoplankton are consumed by herbivorous macrozooplankton, such as Euphausiids

(Krill), which are themselves key prey species for larger fish species such as Mallotus villosus

(Capelin) and Boreogadus saida (Polar cod) as well as a range of juveniles from the wide range of

piscine species in the ecosystem. (Dalpadado et al., 2020)

Zoogeographical groupings of fish species in the Barents Sea were organised by Andriyashev and

Chernova (1995), into seven groups: Arctic; Mainly arctic; Arctic-boreal; Mainly boreal; Boreal;

South boreal and Widely distributed. These groups are broad definitions of the environments

exploited by fish in the Barents Sea. Generally, the water mass, water depth and sediment type are

the essential factors for defining the habitat of any given species. Ten fish species accounted for over

90% of the total number of specimens caught during the 2007 Barents Sea ecosystem survey

(Stiansen et al., 2009), though around 100 or more fish species are generally identified during

routine ecosystem surveys in a given year. Some of these species inhabit the Barents Sea exclusively.

Others spawn elsewhere before migrating to the Barents Sea to feed, while others temporarily

migrate through or into the Barents Sea. In this thesis, we are interested in the role of a commercially

important species, Gadus morhua, in the Barents Sea ecosystem, particularly how it relates to the

Barents Sea food web. The following section provides an overview of the species, specifically the

Barents Sea stock.
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1.4.2. The significance of Atlantic cod, Gadus morhua

1.4.2.1. An overview of Gadus morhua

Figure 1.3.  A photograph of an adult Gadus morhua. Credit: FAO website (“FAO Fisheries & Aquaculture -

Cultured Aquatic Species Information Programme - Gadus morhua (Linnaeus, 1758),” n.d.)

This section details the key characteristics of Gadus morhua physiology and ecology. A

comprehensive resource detailing the bio-ecology of Atlantic cod can be found in Rose (2018).

Gadus morhua (Atlantic cod) are a widespread, piscivorous, demersal fish species, pictured in

Figure 1.3. They have a maximum lifespan of around twelve years and develop from eggs to fry,

then juveniles, reaching maturity from between two to eight years of age depending on their

location. Gadus morhua moves through life stages with distinct ecological roles as they mature. As

eggs and larvae, they are distributed throughout the spawning region by ocean currents and consume

mainly zooplankton, such as Calanus finmarchicus (Endo et al., 2022), while being preyed upon by

larger species. Conditions during the larval stage have profound impacts for a particular year class of

the population, as the availability of food (or lack thereof) during the fixed spawning period

determines the speed of growth and survival rates, often studied as the ‘match/mismatch’ hypothesis

(Endo et al., 2022). As juveniles, they are pelagic, spending most of their time in the water column

predating on a range of non-piscine species. The age of maturity varies between stocks, but maturity

refers to the age at which the individual has reached sexual maturity and is capable of reproduction.

At this stage, Gadus morhua is demersal and highly mobile within its environment and is a voracious

predator.



27

Mature Gadus morhua can grow up to lengths of 150cm and weigh up to 90kg (Wilmot, n.d.), and a

mature female cod can lay millions of eggs each year. Despite vast numbers of fertilised eggs being

released yearly, only a fraction survive long enough to develop into juveniles. This reproductive

strategy is very effective, resulting in large historic stocks with enormous biomass. Unfortunately,

the reputation for the species as abundant, combined with other desirable qualities, led to

mismanagement of cod fisheries across the Atlantic (Milich, 1999; Walters and Maguire, 1996).

As the name suggests, Atlantic cod are distributed across seas in the North Atlantic, as shown in

Figure 1.4.

Figure 1.4. The distribution of Gadus morhua and spawning sites across the North Atlantic. Source:

(Drinkwater, 2005).
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Gadus morhua is a valuable commercially fished species due to its taste, abundance and historical

consumption (Kurlansky, 1997). In the 20th century, overexploitation of cod fisheries led to stock

collapses in the West Atlantic. (Milich, 1999; Walters and Maguire, 1996). The overexploitation was

due to a combination of more efficient fishing techniques, complex socio-economic factors, and a

belief that cod was so abundant that it could sustain higher yields. Unfortunately, once the signs of

overexploitation were apparent, it was too late to prevent further collapse. In the Labrador sea and

off the coast of Newfoundland, the cod stock lost up to 95% of its biomass in the 1990s (Milich,

1999).

Today, Atlantic cod is still a vital fished resource, with hundreds of thousands of tonnes extracted

from east Atlantic fisheries each year, e.g. (ICES, 2017). While the west Atlantic fisheries have

struggled to recover from the collapse, the east Atlantic fisheries now contain the largest stocks of

Atlantic cod globally, with the largest stock by far being Barents Sea cod.

1.4.2.2. Barents Sea cod

Barents Sea cod is also known as Arctic-Norwegian cod or Northeast arctic cod. However, all names

refer to Gadus morhua occupying the Barents Sea, from the Norwegian coast near Lofoten to the

coast of Svalbard and the arctic, and from west to east at the border of the Norwegian Sea to the

archipelago of Novaya Zemlya. Cod spawn along the Norwegian coast, migrating during the

winter-spring season to do so (Opdal et al., 2008; Ottersen et al., 2014).

The Barents Sea cod stock is currently the largest in the world, the stock is stable, and the fishery has

been declared sustainable since 2010 (ICES, 2017). Cod abundance in the region has been at its

highest levels since the early 20th century. Although the factors that have led to such a strong

recovery are not entirely understood, it is generally considered to have been encouraged by a

warming climate that has bolstered primary production, causing an increase in food availability

across the ecosystem as well as increasing growth rates (Kjesbu et al., 2014; Ottersen et al., 2010)

and extending the suitable range of the species further to the north (Ingvaldsen et al., 2017).

Barents Sea cod are a top predator (Bogstad et al., 2000; Link et al., 2009). Juvenile cod feed

primarily on crustaceans and other benthic species, while mature cod feed primarily on a range of

pelagic species, including capelin, shrimp and through cannibalism of smaller cod. Due to their

position in the food web, cod is an influential species, and variations in their abundance and

distribution can directly impact the welfare of key prey species. This unique position makes cod a

valuable indicator species for the overall state of the Barents Sea ecosystem. Food web dynamics are

https://paperpile.com/c/csYLRm/87vvU+st14C
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complicated; they are influenced by an array of factors, including climate variation in the short and

long term; population dynamics within individual species and between multiple species; variability

in fishing mortality affecting each fished species uniquely (Jennings and Kaiser, 1998) and changing

spatial overlap between predator and prey species (Fall, 2019). Figure 1.5 shows a simplified

Barents Sea food web, focused on the trophic position of cod relative to some key species.

Figure 1.5 - A simplified Barents Sea food web (Link et al. 2009)

1.4.3 Trophic dynamics

Trophic or food web dynamics is the primary energy transfer process between different trophic

levels within an ecosystem (Lindeman, 1942). The trophic level of a species is relative to the other

species in its food web and is distinguished by the direction of predation between species groups.

The primary producers at the lowest trophic level create energy through photosynthesis. In the

Barents Sea, this is the phytoplankton. At the highest trophic level are the apex predators, with no

other species who predate upon them systematically within their local food web. Gadus morhua is

one such apex predator within the marine food web, though minke whales, harp seals and seabirds

are occasional cod consumers.

https://paperpile.com/c/csYLRm/qx7Gk
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All the species within the ecosystem are intrinsically linked to one another through the food web.

The abundance of a species is strongly linked to the mortality rate due to predation of species of

higher trophic levels and the availability of sufficient food in lower trophic levels. Therefore, there

are many factors driving trophic dynamics and the broader ecosystem. Environmental variability has

a direct impact on growth rate (Boeuf and Payan, 2001; Brander, 1995), fecundity (Hansen et al.,

2001; Kjesbu et al., 1998), mortality (Ciannelli et al., 2007) and more on an individual species level.

This has the secondary effect of changing the distribution of species within an ecosystem, e.g.

(Albouy et al., 2014; Franklin and Miller, 2010), altering the potential for interactions between

co-occurring species. Further effects of climate variability on trophic dynamics include altered

foraging conditions such as less or more available light or suspended particulates (Puvanendran and

Brown, 2002, 1998).

Understanding these complicated dynamics is difficult but essential for ecosystem management

(Wassmann et al., 2006). It is important to understand where a fished species stands in the food web

before catch targets are set,  if a targeted fish species is a major prey item for another species, or is

the major predator of a species of a lower trophic level, those species will inadvertently be impacted

by a reduction of the targeted species population, and this may lead to damaging trophic cascades

(Casini et al., 2009, 2008; Frank et al., 2005). There have been many studies concerning Barents Sea

food web dynamics, e.g. (Bogstad et al., 2000; Hjermann et al., 2007; Hop and Gjøsæter, 2013; Link

et al., 2009; Wassmann et al., 2006) and how climate variability affects the ecosystem (Dalpadado et

al., 2014, 2012; Kortsch et al., 2015). Further, the role of cod has been investigated (Ingvaldsen et

al., 2017; Renaud et al., 2012). Despite this, there is still significant uncertainty in how the Barents

Sea ecosystem will respond to future climate change, and there is still great interest in furthering our

understanding of dynamics from a fisheries and management perspective.

There are two broad approaches to modelling trophic dynamics, mechanistically or empirically,

though there is a wide overlap between the two. Mechanistic models of trophic dynamics simulate

aspects of the system, investigate how changes to the simulated system affect it, and validate those

results with observations (Boit et al., 2012; Cohen et al., 1990; Williams and Martinez, 2000).

Mechanistic models represent trophic dynamics as an interconnected web of interactions between

species and examine aspects such as connectedness (Paine, 1980) and robustness to perturbation

(Dunne et al., 2004). Mechanistic models are helpful and provide an interpretable insight into the

effects of changes in the food web, but they face challenges when the theoretical model of the
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system may not match up with observations (Link, 2002). Conversely, empirical or statistical models

explore trophic dynamics by analysing quantitative or qualitative data from the ecosystem that

captures predator-prey interactions. One such source of data in marine environments is the stomach

contents of predatory species (Hall et al., 1995). Stomach content data provide direct evidence of

trophic interaction between two species within a short period before sampling and provides a wealth

of information about the feeding habits of the sampled species, not only which species are

interacting, but also in aggregate allows relationships in body size to be measured (Cohen et al.,

1993; Emmerson and Raffaelli, 2004; Yodzis and Innes, 1992).

Principally, predator-prey interactions in marine ecosystems are driven by a few factors: opportunity

of interaction, suitability of relative body-size between predator and prey, the relative fitness of both

and the satiety of the predator (Ballard, 2011; Embling et al., 2012). These factors are driven by the

physical environment, population dependent effects and human interference. However, each external

pressure varies depending on the specific species, location, etc., resulting in a highly complex system

that does not operate in the same way across ecosystems. The opportunity for predation can be

considered at different scales, from fine-scale individual ambush-escape studies to large scale studies

of environmental overlap at a regional or global scale. It is this latter spatial scale that we will

examine in this thesis.

At a regional scale, both species must share physical space for predator-prey interactions between a

particular species pair. The broadest requirement for this to happen is that a particular location must

have environmental conditions suitable for both species, i.e., they have an overlapping

environmental niche (Colwell and Futuyma, 1971; Eriksen et al., 2021b). In the marine environment,

factors such as the temperature, salinity, oxygenation, and depth drive species distribution within an

ecosystem (Andrews et al., 2020; Franklin and Miller, 2010). Further, there are two categories of

ecological niches - the fundamental and realised niche (Colwell and Rangel, 2009). The fundamental

niche of a species describes all locations within an ecosystem where environmental conditions are

suitable for the species to live (Kearney and Porter, 2004). The realised niche is where the species

actually live and is a subset of locations within the fundamental niche (Colwell and Rangel, 2009).

Factors that limit the realised niche are dispersal, the ability for a species to reach a location from

their existing habitat, and biotic variables, such as the availability of sufficient food resources or the

avoidance of predators (Franklin and Miller, 2010; Soberon and Nakamura, 2009).
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1.5 Study Novelty

There are four novel contributions to the field emerging from this thesis. Firstly, we mapped the

distribution of Gadus morhua and several important species in the Barents Sea with an SDM for the

first time, showing how distribution has changed since 1991 as a result of warming water. Secondly,

we successfully applied the NARMAX system identification model to a new domain, demonstrating

the power of the method for future studies. Thirdly, we combined Maxent and NARMAX for the

first time and demonstrated that the information provided by Maxent output improved NARMAX

model performance on this system. Finally, we produced new evidence for the borealization of the

Barents Sea ecosystem and our results suggest that arctic species such as Boreogadus saida are

going to play an increasingly important role in the trophic dynamics of Barents Sea cod.
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Chapter 2. Analysis of cod diet and demographics from

the IMR-PINRO stomach database

This chapter explores the primary data source supporting this thesis, the IMR-PINRO cod stomach

database. This database contains an enormous amount of information about the Barents Sea cod

stock and its diet, collected since 1984 and across almost the total span of the region. There are

countless ways to interrogate this data and uncover the complex patterns within. Here we provide

one such analysis, examining both diet patterns and those measurements taken from the cod

population, which are most relevant to our interest in trophic dynamics.

This chapter is organised into three sections. Section 2.1 is a short description of the IMR-PINRO

database metadata and the sampling structure in space and time. Section 2.2 outlines the patterns

found in the ontogenetic structure of the cod population, which are most relevant to our diet

investigation. The size and age structures of the population are explored in both space and time. We

raise questions about the causal factors of variability within size structure and the interrelation of

size structure and diet. In Section 2.3, we explore the patterns in cod diet within the database. We

examine diet overall and how it varies in space, time and on the size of individual cod. We identify

complex spatial, temporal and ontogenetic patterns in the diet of Barents Sea cod and consider how

we can use our combined modelling approach to explain some of this variation, providing insights

essential for the modelling work in Chapter 3 and beyond.

2.1. Metadata and sampling distribution

The Norwegian-Russian cod stomach database is a spatiotemporally detailed record of cod stomach

samples collected in the Barents Sea between 1984 and the present by a joint team of researchers

from the Institute of Marine Research (IMR) in Norway and the Knipovich Polar Research Institute

of Marine Fisheries and Oceanography (PINRO) in Russia. The context and background of this

study have been discussed in several existing publications, e.g. (Dolgov et al., 2007; Jakobsen and

Ozhigin, 2011; Mehl and Yaragina, 1992), among others.
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The data used in this thesis is curated by researchers at IMR and contains records collected from

1984 until 2017. The data is stored as a comma-separated values file (.csv) with 576,340 rows

(observations) and 41 columns (measures). A table describing each variable recorded in the database

can be found in Appendix A.1.

Stomach samples are collected by bottom and pelagic trawls at fixed stations and times across the

Barents Sea; sampling methodology is described by (Mehl and Yaragina, 1992). The number of

stations in each field season were not consistent, and the position of these stations has changed over

time. In general, this has been due to the expansion of stations, but there have been several years

with missing stations, particularly from the Russian cruises. The number and location of sampling

stations followed the distribution of cod found during a particular season; the surveys extended to

additional stations if cod were found at previous stations until no cod were found at the most recent

station. The ability of cruises to sample every planned station was sometimes limited by weather and

sea-ice. See Appendix A.2 for maps of sample stations for each dataset year.

Figure 2.1 shows the number of unique cod stomachs sampled each year. The range of sampling

counts is between its lowest of 1,342 in 1985 and 17,686 in 2004. The mean number of samples is

10,622. This consistently large sample gives us a good source of annual data with no gaps since the

surveys began.
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Figure 2.1. Counts of unique cod individuals sampled each year of the IMR-PINRO stomach survey.

Figure 2.2 shows the temporal sampling pattern at a monthly scale, where the intensity of colour

represents the number of samples collected in each month of the study period. This shows the

seasonal pattern of sampling and how the sample collection structure has changed over time. The

number of samples has increased in recent years, and more of those have been collected during the

winter than previously. Across the study period, there are only 34 out of 408 months for which we

have no data.
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Figure 2.2. Counts of total samples for each month in the study period. Darker shades of blue

indicate a higher number of samples. Counts have been binned into five categories for the sake of

visual contrast.

The spatiotemporal comprehensiveness of this dataset provides an unprecedented window into the

diet of Barents Sea cod, and by extension, the trophic dynamics of the Barents Sea ecosystem. By

examining the measurements taken of individual cod and the contents of their stomachs in the

context of the place and time researchers collected them, we can identify patterns at a very high

resolution. In the next section, we investigate the population demographics of Barents Sea cod

through the lenses of body length, body weight and age structure. We summarise the population

structure, then delve deeper into the structural change in space and time.
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2.2. Characteristics of the Barents Sea cod population

2.2.1. Population size structure

For each cod sampled, researchers recorded the body length (cm) and weight (kg), a total of 363,942

samples. Figure 2.3 shows the distribution of body length for the sampled cod. We can see that the

data are normally distributed with a right skew caused by some long outliers. Most of the cod

sampled are between 10 and 100cm. The mean body length is 54.32cm. Note that the methodology

for sampling requires researchers on sampling vessels to attempt to sample up to 10 individuals per

10cm size group, per station (Mehl and Yaragina, 1992). This method is likely to affect the size

distribution by more accurately measuring the prevalence of individuals from the least populous size

classes (very small or large) compared to the proportion of the population accounted for by

individuals in the most prevalent size classes, as a greater number of those individuals would not be

recorded. This means we should be careful when interpreting the summary statistics for the

distribution of sizes, but relative changes in the observance of outliers are likely to be real.

Figure 2.3. BS cod body length distribution.
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We can look at body weight distribution in the same way. Figure 2.4 shows this distribution, which

has a very long tail into larger weights. The median value of weight is 1.46kg, highlighted by the

dotted vertical line. The mean is 2.05kg, influenced by the few very heavy outliers that have been

sampled. The same caveats based on sampling methodology described for Figure 2.3 also apply

here.

Figure 2.4 Distribution of BS cod body weight.

SIze structure is an important quality to measure in the population to understand diet. Cod generally

consumes prey that falls within a particular ratio of relative body length, which varies between

immature and mature individuals (Holt et al., 2019). This means that there is an ontogenetic

dimension to diet, which will manifest on a broad scale in the size structure of the population. The

data tells us that the size structure of the population varies in time and space, patterns which we will

now examine in detail.
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2.2.1.1. Temporal patterns in size structure

We split the sampled population into 10cm length groups and calculated the fraction of the

population accounted for by each group within each annual period from 1984-2017. Figure 2.5

presents this data, with each stacked bar representing a normalised fraction of the population which

falls within each 10cm length group from each year. The groups are presented in order of increasing

length from bottom to top, from the 0-10cm juveniles to the huge 100cm+ group. We can see the

apparent interannual variability in size distribution if we follow any particular group through the

years. This figure also indicates that individuals within the population are growing. The proportion

of the population longer than 70cm has increased since the study began. There are some potential

confounding factors which may affect the observed size structure of the population related to the

sampling methodology. First, most of the individuals sampled were captured with bottom trawls

which have been shown to find different outcomes than acoustic surveys for population assessment

due to the difficulties of catchability for particularly small cod, who can slip through nets, and

particularly large cod who are capable of avoiding trawls. Catchability increases with increasing

population density in the survey area (Engas and Godø, 1986; Godø et al., 1999).
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Figure 2.5. Relative abundance of each 10cm length class of cod. Each stack represents the relative

proportion of each length group in the population for each year in the study period.

2.2.1.2. Spatial patterns in size structure

Figure 2.6 presents a hex map of the Barents Sea, highlighting how cod sampled from different areas

in the region vary in length. The value used to shade each hex is calculated by first taking the mean

length of every sample collected within its spatial bounds, then subtracting the mean body length of

the sampled population (54.32cm). This highlights regions where the average length of cod sampled

deviates from the overall mean. Hexes shaded in red represent areas where the sampled cod are

smaller than average, while cod from areas shaded in blue are larger than average. There appears to

be a significant spatial variation in the length of samples, with cod from sites in the northeast tending

to be larger than average while those around the north coast of Svalbard and in the central-eastern

Barents Sea being smaller. Note that this visualisation does not account for the sampling density, also

shown in Figure 2.6, and some of these hexes, especially those furthest north, are calculated from

tiny sample sizes. Hexes in the most consistently sampled south and the central Barents Sea region

are less divergent than hexes in other regions, likely reflecting some sampling bias.
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Figure 2.6. Left: hex map of BS cod body length difference from the sample mean. Samples from red

shaded hexes are smaller than the sample mean, while blue shaded hexes are larger than the sample

mean. Right: Map of the number of cod sampled within each hex. There are 24,028 trawls across all

stations in the study period.

We now have some understanding of the size structure of the Barents Sea cod stock. Nothing in this

analysis is surprising, but it provides a starting point for a deeper analysis. When we look at how size

structure changes over time, we see interannual variability and the emergence of some longer-term

growth in the abundance of larger individuals. External factors drive these patterns: the conditions of

the physical environment, responses to population density dynamics and the impact of human

interference in the form of fishing, to name a few. Quantifying these relationships is difficult, but we

can do so using statistical modelling with this large amount of data. We explore this further in

Chapter 5.

The spatial size structure is interesting too: it suggests that a long-term spatial heterogeneity exists in

the distribution of Barents Sea cod of varying sizes. This species is long-lived, with different

environmental tolerances and preferences being observed at various stages of maturity. Some of

these factors are well understood from a physiological perspective. One of the most important
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environmental factors which affect Barents Sea cod is the temperature of the water. Larger animals

are generally distributed in colder regions than smaller animals, a generalisation known as

Bergmann’s Rule (Blackburn et al., 1999). However, Barents Sea cod are broadly distributed in the

region, and the extent to which temperature limits the species within the core of their range is not

quantified. The species is also highly mobile and migratory, so it is not evident that we should see

such well defined spatial patterns in data collected over 30 years. We might suggest that underlying

factors affect the long-term distribution of individuals within the population, stratified by size. Are

some subregions of the Barents Sea more suitable for smaller or larger individuals? We will

investigate this question further in Chapter 3 and Chapter 4.

2.2.2. Population age structure

Age is estimated by counting the number of rings in an individual's otolith, a calcium carbonate

structure that grows in the ear canal (Jakobsen and Ozhigin, 2011; Mehl and Yaragina, 1992; Vitale

et al., 2019). Age is strongly related to individual size, maturity (Kotenev et al., 2009) and spawning

behaviour (Hutchings and Myers, 2011; Marshall et al., 2011) and, by extension, a range of other

metrics including mortality and feeding habits.

Figure 2.7 shows that the age of the population follows an approximately normal distribution with a

right skew. The mean age is five years, and the oldest individual recorded is 20 years old. The upper

tail is so long because the natural lifespan of Atlantic cod is much longer than ten years. Still, fishing

mortality is very high in the Barents Sea cod stock, a heavily exploited fishery. Fishing

disproportionately targets larger, and therefore generally older individuals. This means that the

population is younger than if the stock were untouched by anthropogenic factors.
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Figure 2.7. Distribution of BS cod age

2.2.2.1. Temporal patterns in age structure

To examine how the age structure has changed, we apply a similar method of cutting the population

into ten groups stratified by age. We again examine the proportion of the population accounted for

by each age group. This analysis can be seen in Figure 2.8. Consider that the distribution may be

skewed as a result of sampling methodology, where up to 10 individuals per 10cm size group were

sampled and their otoliths taken.
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Figure 2.8. The relative proportion of BS cod age deciles across the study period as a fraction of

total samples.

We see that the pattern in age structure over time is closely related to the pattern found in body

length over time. There has been an increase in the fraction of the population within the older age

groups in recent years, particularly in the 2010s. In particular, notice how the proportion of 8 years

or older individuals is much larger after 2012. Those older than ten years appear to be steadily

increasing in number. Though these are still a small fraction of the population, this growth pattern

has ramifications for the short and long term. Seeing the increase in the proportion of older

individuals is interesting. Unlike growth, which can be accelerated or slowed depending on

environmental conditions, age can only be progressed by avoiding mortality. The increase in

particularly old individuals within the sample population may be due to the expansion of the study

area into more northern regions of the Barents Sea, where the average age and size of individuals

sampled tends to be older and larger than the rest of the sampled population. It could also be possible

that this pattern is accurate and that mortality rates for larger individuals have been lower in the

2010s than in previous decades.

2.2.2.2. Spatial patterns in age structure

When we examine the spatial distribution of ages in Figure 2.9, we see that the average age of

individuals sampled across the study region seems to vary. Two areas stand out: the northeast and the

southwest. In the northeast Barents Sea, it appears that there is a pattern of individuals who are much
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older than the population average, over about 7.5 years, within a larger region where individuals are

generally older than 5. Compared to the south, the central and north-west area surrounding Svalbard,

these regions have a distinct definition. However, when we look at the bottom map in Figure 2.9, we

see the disparity when each part of the Barents Sea has been sampled. This north-eastern area has

only been sampled in the latter half of the study period, generally after 2000, with some of the most

extreme north-east data being collected only after 2010.  It is unclear how much this age distribution

pattern in the northeast is due to natural spatial diversity, recency bias, or low sample sizes. It could

also be a result of lower fishing pressure due to sea ice, allowing individuals residing in the area to

live longer, or be an effect of seasonal migration amongst the largest fish.

Figure 2.9. Top: Map of mean age within each hex. Sampled individuals tend to be older in the

northern region of the Barents Sea and the southwest. Bottom: The map of when researchers first

sampled each area shows the survey area’s expansion into the northeast Barents Sea.
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Putting this aside for the moment, we have a more concrete understanding of the other interesting

contrast: the southwest. This region has been sampled since the study began, has a large sample size

(Figure 2.15) and appears to identify a contiguous area where the average age of sampled cod is five

characterised years or higher, compared to the bulk of the other high and consistently sampled

regions where the average age tends to fall below five years. One potential explanation for this

pattern is that the southwest Barents Sea, close to the Norwegian coast, is a spawning site for cod.

The actual spawning site is further south than the survey area covers, but we could be seeing the

effect of repeat migration by mature, fecund cod through this area.

2.2.3. Summary

In this section, we have explored the Spatio-temporal patterns in the size and age structure of the

Barents Sea cod stock. We have found that these population characteristics are dynamic; both age

and size structure vary at annual scales. In both, we are seeing an increase in the fraction of the

population accounted for by larger, older individuals. We have found some spatial heterogeneity in

the distribution of individuals by size and age. Still, the degree of confidence we can have in these

patterns at the northern extremes of the survey area is limited due to small sample sizes and a

possible recency bias.

In Chapter 3 and Chapter 4, we will incorporate information about the size structure of the

population when building Maxent distribution models and investigating the spatial overlap between

cod and its prey. Chapter 5 will re-examine some cod population characteristics and quantify the

relationships between the population, its prey consumption, and external factors. We will now

explore the diet data, following a similar method of checking the overall patterns, the

Spatio-temporal dimension, and the ontogenetic aspects.
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2.3. Analysis of diet in Barents Sea cod

Cod is a top predator in the Barents Sea and has a diverse diet. Although a few species account for a

significant fraction of consumption, over five hundred unique prey species have been identified in

the IMR-PINRO database. Here, we use the prey categories defined by (Holt et al. 2019) to group

less abundant species and share similar physiological characteristics or taxonomic groups.

Seventeen prey categories encapsulate the many species which are recorded in the database. The

total number of prey items recorded for each category is shown in Figure 2.10.‘Other food’ is the

most frequent category recorded, contrasted with ‘Other fish’, the ‘Other food’ category includes a

wide range of non-piscine organisms, mostly small in size. ‘Shrimp’, ‘Other fish’, ‘Capelin’ and

‘Euphausiids’ make up large numbers of the total count, with all other categories appearing to be

much less frequent. We can look at this another way by examining the contribution of each category

by the weight of prey consumed.

Figure 2.11 shows the same categories, with each bar measuring the fraction of total diet weight that

each category contributes. Here we see that capelin provides almost 30% of the total diet by weight,

significantly more than the next prey group, ‘Other food’. From this perspective, the importance of

shrimp is much lower, while both cod (cannibalism) and haddock each appear to be much more

critical. BS cod are opportunistic predators; though they seem to rely on a few prey groups for the

bulk of their diet, the importance of the smaller groups becomes more apparent when we examine

the spatio-temporal context that these records are found in.

For the rest of this analysis, we will be focusing on the fraction of diet contributed by each prey

category. This way of interpreting the data is more valuable than strict frequency because it accounts

for the size difference between species in each group. A certain amount of energy is transferred from

prey to predator, and one large prey item may contain the same energy as multiple smaller prey.
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Figure 2.10. Total counts for each prey category

Figure 2.11. Fraction of total diet by weight for each prey category.
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2.3.1 Temporal patterns in diet

We will now consider how diet has changed over time. Figure 2.12 shows the annual prey

contribution to diet as a fraction of total weight consumed in that year. Each chart represents a

different prey category. This way of viewing the data shows us which groups generally contribute a

significant fraction of total consumed weight and the considerable variability within groups across

the study period. Capelin is the most important prey item, and we see that sudden, intermittent

collapses characterise the consumption pattern. We know that these events are driven by a collapse

in the capelin stock, and when there are not enough capelin available, other prey groups must fill the

void (Gjøsæter et al., 2009; Holt et al., 2019; Hop and Gjøsæter, 2013). When capelin consumption

fell dramatically in 1986, we saw a sharp rise in the consumption of hyperiids and a slight increase

in cod (cannibalism). Then in the early 1990s, there was a second crash in capelin consumption, but

now we see a correspondingly large spike in cannibalism. The dietary response of BS cod to a

capelin collapse is complex. There is no clear replacement species or apparent order of preference

appearing, which can be discerned from examining consumption patterns alone. We also note that

cannibalism increases slightly over time, matching observations of growth in the population

structure, and larger individuals are more likely to engage in cannibalistic feeding behaviour. There

are other long term dietary changes such as the decreased importance of redfish after the year 2000

and the emergence of snow crab (Chionoecetes opilio) in the diet at around the same time. Snow

crab is an invasive species that researchers first observed in the Barents Sea in 1996 (Huse and

Bakketeig, 2018). We see that it appears to be growing in importance as a prey item, possibly due to

the settlement and growth of snow crab as a source population (Agnalt et al., 2011; Alvsvåg et al.,

2009).
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Figure 2.12. Fraction of total diet by weight for each year, each sub chart represents a different prey

category.

There is also a significant variation on a seasonal scale. This perspective is presented in Figure 2.13,

which shows the diet by weight contributed by each prey category for each month, totalled across

the study period. Again, each chart represents a different category, and the background is coloured to

demarcate the meteorological seasons that each month falls into. We see the dominance of capelin

again, but now we can also see that there is a strong seasonal element: capelin dominates diet in the

late winter and early spring but is less prevalent in the summer and autumn. This is likely due to the

seasonal migration of cod and the seasonality of spatial overlap between cod and capelin (Fall et al.,

2018; Holt et al., 2019; Ottersen, 1998). This seasonality extends to practically all groups that

significantly contribute to the diet. During the summer, it seems that cod (cannibalism), euphausiids

and shrimp have relative increases in importance and then in autumn, we see a period of high polar

cod consumption.
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Figure 2.13. Fraction of total diet by weight for each month, each sub chart presents a different prey

category. The background is shaded to represent each meteorological season. Spring - Green,

summer - Pink, Autumn - Yellow, winter - Blue.

Another interesting perspective on diet is to examine ‘prey switching events’, or sudden changes in

the primary prey category. We can see from Figure 2.12 that there are clear patterns of rising and

falling within categories across multiple years. Figure 2.14 shows the proportion of diet by weight

contributed by the top category for each year in the dataset. Each unique category that was ever a top

contributor is presented in a different colour. We see that only six categories have ever been the top

contributor to diet by weight in any given year. Out of 33 total years, capelin was the top prey

category in 25. Cod (cannibalism) was the top prey category in 4 years, then hyperiids for two years,

then shrimp, other food and other fish for one year each. We see that prey switching events in

practice mark periods where capelin consumption has significantly fallen for any reason.
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Figure 2.14. Fraction of weight contributed by the category with the most significant contribution in

each year or ‘top’ prey category. Each category is identified with a unique colour. The dotted line is

a fitted LOESS function which suggests that the fraction of diet accounted for by the top prey

category varies over time.

Another interesting pattern in the annual top prey category measurement is that it reveals that the

fraction of diet accounted for by the top prey category is variable and seems to oscillate over scales

of several years. When the fractional dietary weight supplied by the top category is lower, the stock

must be feeding on other species to make up the deficit, but not on any one group so exclusively that

it becomes the top contributor by weight. In effect, the oscillations of dietary weight provided by the

top prey category reveal something about diet diversity within that period.
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2.3.2. Spatial patterns in diet

Spatial variation in diet is due to the relative potential for interactions between cod and any

particular species. On a broad scale, this means that there must be some overlap in the distribution of

predator and prey. On a finer scale, it includes added complexities such as the relative body sizes of

the individuals present or the ability for cod to successfully hunt a particular species, which could be

modified by the physical environment, e.g. light availability, water quality or the specifics of

bathymetry.

To examine patterns in spatial distribution, we aggregated the individual prey data into a 2˚x1˚ grid

in space. This resolution was chosen as a trade-off between precision and availability of sufficient

data in more sparsely sampled areas of the Barents Sea. We then identify the top prey category by

weight within each cell. Figure 2.15 shows a map of the Barents Sea with this grid overlaid; then

another grid shows the number of prey samples collected within each cell. Due to the large spread of

sample counts across cells, the counts have been binned into a rough order of magnitude,

highlighting the extreme values.
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Figure 2.15. Top prey category by dietary weight and number of samples in a 2˚x1˚ grid across the

study domain.

Overall, we can see that diet is heterogeneous in space. Of the 17 prey categories, 13 are the most

significant contributor to diet in at least one cell. Capelin dominates spatially, particularly in the

central and southwest Barents Sea. Surprisingly, the second most widely significant category is polar

cod, the top contributor to diet in a large swathe of the northeast Barents Sea, even though it is not a

significant source of overall dietary weight (Fig 2.11). This interesting perspective would be missed
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if we only considered diet as a regional aggregate. While summarising the overall dynamics is

insufficient for capturing the full complexity, we can see that there is a robust spatial pattern in diet

which has consequences for how we approach predicting changes in the trophic system under future

environmental variability and that we must consider the full range of species that are potential prey

for cod to be important, not just those that contribute the most dietary weight.

We can also consider the diet diversity in space by counting the number of unique prey species

identified from individuals within each grid cell. Figure 2.16 shows this data.  There is a strong

correlation between the number of unique species identified and the sampling intensity, examining

three ways of measuring intensity yields pearson's correlations of ~0.83 with the number of

individual cod sampled, ~0.85 with the number of times a cell has been trawled and ~0.88 with the

number of individual prey items sampled. Figure 2.17 presents the relationship between the number

of cod sampled in a given cell and the number of unique prey species identified. There is a rapid

increase in the number of unique prey items identified as small sample sizes increase, with the

growth levelling off with increasing sample size, with more variability.

Figure 2.16. The number of unique species identified in diet within each grid cell.
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Figure 2.17. cod sampled per cell vs Unique prey identified per cell. Points are from data, and the

line of best fit was produced using LOESS smoothing.

This suggests that there may be a minimum sample size needed to assess spatial diversity properly.

The spatial extent of the survey has been expanded since it began, resulting in a disparity of records

between the northernmost subareas and the rest of the Barents Sea. Further, this analysis does not

take into account the temporal dimension of the samples, as such diversity within cells is counted as

a cumulative tally since the study began and does not indicate that that diversity exists within a given

year, or at the current time, as the distribution of prey is not static. Controlling for time and space is

difficult, as the sample size is already so small in some regions that segregating the data further is

not feasible.

We conclude that there is spatial variation in diet and that it is complex and challenging to capture

directly even with considerable sample size and long study period. The data we have reveals long

term spatial variation in the top prey category by weight, suggesting that some prey groups are more

critical than others in particular locations, even when those categories do not rate highly as important

in the overall diet from all samples. As a specific example, polar cod appears to be a top prey item in

the north and the eastern Barents Sea but is not a leading contributor to overall diet weight. What

causes this spatial variability is not entirely clear. Still, the answer is likely to be found in the
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physical environmental conditions that determine species niche overlap and, therefore, the

opportunity for contact and relative population densities, which results in variable predation rates

between prey groups. This thesis will investigate the relationship between distribution overlap and

predation rate within cod-prey pairings using Maxent in Chapter 4.

Now that we have considered the temporal and spatial dimensions of diet, we summarise the

ontogenetic or size-based trends in the data. Cod is a long-lived species that can grow to over 150cm

in length, and juveniles may be anywhere from 0-30cm. With growth comes a change in behaviour,

environmental tolerance and feeding preferences. This means that treating diet as an amalgamation

of all cod sizes may miss essential dynamics, so we also consider ontogenetic diet trends’ spatial and

temporal cross-section.

2.3.3. Ontogenetic patterns in diet

2.3.3.1. Body length and size group classification

There is a strong link between cod body length and the body length of prey items, as shown in

Figure 2.18. The maximum prey length increases as cod length increases, though there seems to be

no particular minimum prey length in cod shorter than around 80cm. Further analysis by (Holt et al.

2019) shows that small cod choose prey up to 33% of their body length, while larger cod choose

prey with a body length up to 50% of their own.
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Figure 2.18. The relationship between cod length and prey length. The maximum prey length

increases with cod length.

Studying the ontogenetic dimension of diet requires categorising the population into discrete groups

for analysis based on size or age. There are many ways that size classes are distinguished. This study

used a hierarchical clustering algorithm (Johnson, 1967; Suzuki and Shimodaira, 2006) to identify

unique diet profiles across 10cm size classes. We discovered three clusters with unique diet profiles:

<20cm, 20-100cm and >100cm. Figure 2.19 presents these clusters as a dendrogram, with each stem

representing a size group and a bounding box identifying each cluster. The red numbers indicate the

level of confidence in each cluster after bootstrapping. Each of these identified clusters is significant

at P < 0.05. The disjoint in the point cloud at around 97cm is an artefact of the data.
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Figure 2.19 Dendrogram of length clusters identified by diet.

2.3.3.2. Ontogenetic prey categories and diversity

Now we examine the specific differences in diet that we can detect between these clusters. Figure

2.20 and Figure 2.21 present a series of plots showing the fraction of diet by weight that each prey

category contributes to each clustered size group’s overall diet. Blue whiting, codfishes, redfish and

small arctic fish remain small contributors to diet across groups with slight variation. In the small

group, consumption is higher among euphausiids, other food, shrimp and hyperiids than the other

size groups. Medium group cod have a diet which favours capelin and polar cod, while large group

consumption of cod (cannibalism), haddock, long rough dab, herring and snow crab is higher than

the other groups. This evident variation in diet between size groups reveals the ontogenetic

dimension of diet. This is an important consideration for this thesis, as the response to exogenous

factors such as environmental variability, prey population abundance and structure and others, is

likely to be different across cod sizes, resulting in a non-uniform effect on the overall diet of the

population.
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Figure 2.20. Diet fraction by weight for each prey category within each size group.
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Figure 2.21 Diet fraction by weight for each prey category within each size group. This plot shows

the same information as Figure 2.20 but allows an intuitive view of how diet makeup varies between

groups.

Prey diversity varies between size groups. We calculated the Shannon diversity index for each size

group annually from 1991-2017, plotted in Figure 2.22. The Shannon diversity index is a standard

tool for measuring the diversity of a population (Shannon, 1948) , it is calculated as:

𝐻' =  −
𝑖 = 1

𝑆

∑ 𝑝
𝑖
 𝑙𝑛 𝑝

𝑖

Where H is the Shannon diversity index, S is the number of species in the sample and is the𝑝
𝑖

proportion of the sample made up of species i. In this case, each sample was a count of the species

consumed by a particular cod size group within a given year.
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Figure 2.22. Shannon Diversity Index for each cod size group [<20cm (S), 20-100cm (M) and

>100cm (L)] in each year

Pearson’s correlation coefficients were calculated for each size group. The small group has a

correlation coefficient of ~0.4, with a p-value of 0.04. The medium group has a correlation

coefficient of ~0.66 and a p-value of 0.0002. The large group had a correlation coefficient of ~0.3,

with a p-value of 0.11. Based on these results, there is a statistically significant positive correlation

for diet diversity in small and medium cod size groups, but not within the large cod group.
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2.3.3.3. Ontogenetic patterns in diet over time

A few prey categories dominate consumption by weight within groups. Figure 2.23 shows the top

prey category by dietary weight fraction within each size group and year. The top prey category for

the small group is usually euphausiids, occasionally shrimp or other food. In the medium group,

capelin is consistently the top prey group. Only two periods had any category contributing more to

diet for over a year in a row: 1987-1988 with Hyperiids and 1997-1999 when cod (cannibalism) was

the dominant group. The large group has the most diverse top prey group list, with eight categories

dominating for at least one year. Cod (cannibalism) is the most frequent top prey group, followed by

haddock. The black dotted lines show a fitted linear model (Fraction ~ Year) for each size group.

These trends tell us about the diversity of diet over time. As the fraction of diet accounted for by the

top category decreases, there must be an increase in consumption among groups whose individual

contribution is still lower than the top group. We see that the small group has maintained a similar

level across the period, with a very slight increasing trend. The medium group shows a weak trend of

decreasing weight fraction contributed by the top prey category. However, there is significant

volatility in individual years before 2010; the last seven years are much steadier. In the large cod

group, we see the most significant downward trend. The top prey groups are contributing much less

towards total diet now than they were over the first few decades of the study. This indicates an

increase in dietary diversity among the largest individuals in the population.
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Figure 2.23. Top prey categories by the fraction of total prey weight consumed by each cod size

group in each year of the study. A LOESS function highlights trends in the dominance of the top prey

category in the diet.
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2.3.3.4. Ontogenetic diet in space

We can examine the spatial aspect of ontogenetic diet through the top prey category by weight in

small sections of the study area, the same method we used for the complete population data. Here,

we calculated the fraction of diet contributed by each category of prey item for each size class of cod

in a 2˚x1˚ grid. Figure 2.24 shows the top prey category within each cell in the study area where

there are samples. This way, all 17 prey categories are the most consumed in at least one cell when

we view the data. At a glance, the heterogeneity of diet becomes apparent. Three categories

dominate the spatial pattern in the small group: Euphausiids, Other food, and capelin. There appears

to be an East-West divide in diet, with Euphausiids in the east, Other food in the west and capelin in

the centre. The physical environment in the east and the west Barents Sea is quite different. Water in

the southwest is warmer Atlantic water, and the water in the northeast is colder Arctic water, which

is a likely factor in determining the available prey species. Cod is a generalist, and even small cod

are found in the northern Barents Sea, so spatial differences in diet are likely due to the underlying

distribution of prey species and relative availability for cod to feed.

We see a similar spatial divide in diet within the Medium Group. Though now capelin is highly

dominant, there is a region in the northeast where herring is generally the top category by weight.

Considering the range of prey categories contributing more to diet than capelin in specific areas is

essential as spatial changes in trophic dynamics are likely to be heterogeneous when compelled by

changes in the physical environment such as warming or anthropogenic activity such as fishing or

construction. The large group shows the highest spatial diversity in diet, with no one category

dominating. Capelin and Snow Crabs are the top categories in two small contiguous regions in the

north-centre and southeast, but otherwise, there are no apparent patterns. The sample size in this

group is the smallest of the three, and many of the cells outside of the southern Barents Sea have

fewer than ten samples, so we must acknowledge that there is a higher chance that this pattern is an

artefact of a small sample size. Figure 2.24 also shows the distribution of cod sampled within each

size group. There are significantly more individuals in the 20-100cm (Medium) group, but a good

sample size for the Small and Large groups was distributed widely throughout the study region.
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Figure 2.24. Top prey category in each cell of a 2˚ x 1˚ grid across the study area, separated by size

group. A top prey category contributed the largest fraction of weight to diet within that cell and size

group. The right column shows the number of individual prey items identified within the cod of each

size group sampled within each cell. Cells with fewer than five samples were omitted.
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2.3.4. Summary

In this section, we have investigated the ontogenetic patterns in cod diet. Our hierarchical clustering

into three groups is only one plausible way to split the population into length groups. The strength of

our method is that it separates the population into groups with distinct prey selection profiles based

on the structure of the data and not externally motivated by prior knowledge. This should provide a

parsimonious structure to our analysis and provide a solid foundation for using size stratified

subpopulations in this thesis.

We have found that the diet of Barents Sea cod is ontogenetically heterogeneous and within size

groups varies in space and time. We have shown that prey diversity varies between groups, with the

small and large groups having less diverse diets than the medium group. Still, prey diversity is not

static, as the large group displays a trend of decreasing dietary weight contribution from the top prey

category, indicating an increase in diversity over time.

Another dimension of prey selection, which we do not examine in this thesis, is prey quality and

optimal foraging theory. Each prospective prey item offers a different energy density, so consuming

a high energy prey such as capelin may be highly rewarding but difficult, and may result in high

energy expenditure (Pyke et al., 1977; Townsend and Winfield, 1985). An individual cod may

instead choose to consume several lower quality prey items which are easier to catch. There are

many factors which affect the foraging behaviour of cod, for example, the relative density of

available prey items (Jónsdóttir, 2017) or conditions of the environment such as light availability

(Johannesen et al., 2012; Puvanendran and Brown, 2002).
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2.4. Conclusions

This chapter presents the IMR-PINRO database and explores the distribution of samples in space

and time. The survey has good coverage of the study domain and is consistent throughout the study

period. Though the geographical coverage of the survey has spread further into the north over time,

it is important to note that due to the high latitude, the visualisations in this chapter do not accurately

represent the area covered by the survey, with any cells or hexes shown to represent areas in the far

north Barents Sea, in reality, representing much smaller areas than those in the south. The reason for

the extent of the survey is also holistic, not arbitrary, following the expectation of cod presence at

high latitude stations. We then analysed patterns in cod size structure and cod age structure. We

found that both size and age structure vary in time and space and that there is a pattern of growth

over time and that individuals appear to be larger and older in the north of the Barents Sea. We

identify the potential limitations of interpreting the data in these regions but suggest that the broad

patterns found are in line with independent studies, which also show an increase in the number of

large cod and the spread of the population further into the northernmost Barents Sea.

We then explored the diet of Barents Sea cod over the study period, identifying top prey groups and

examining the Spatio-temporal variability in diet. We found variability in the most important prey

group in diet over seasonal and annual scales and in the meaningful diversity in diet. Our analysis

shows that although capelin dominates diet, it is not always the top prey item at certain times or

locations within the Barents Sea. Polar cod, in particular, may only contribute a small fraction of

total dietary weight but is a top prey item in most of the more recently sampled north-east Barents

Sea. We have established the connection between the size structure of the population and diet by

examining the relationship between cod-prey body length and clustering of diet in size stratified cod

subgroups. We found that small (<20cm) and large cod (>100cm) have diets that are distinct from

the rest of the population. These differences are marked by lower diversity and different top prey

categories. Small cod mainly feed on benthic prey groups, while large cod feed primarily via

cannibalism or large piscine groups like haddock.

We use this information to direct our modelling in the rest of this thesis. This data does not tell us

why these patterns exist, but there are ways that we can use it to try and answer these questions. In

Chapters 3 and 4, we build and apply a species distribution model (Maxent) to predict the

distribution of Barents Sea cod, the small and large cluster groups and several important prey
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species. We try to see how the overlap between these predator-prey pair groups has changed over

time and quantify the connection between geographic niche overlap to consumption.

Chapter 5 models the temporal trends in diet and population characteristics using a system

identification approach (NARMAX). We attempt to quantify the external factors that drive

population demographics, size structure and diet changes over time and how those metrics might

depend upon each other.
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Chapter 3 - Testing the effect of data structure and

hyperparameter settings on the performance of Maxent

for modelling the distribution of cod

3.1. Introduction

There are a variety of methods for predicting the distribution of species in geographic space. Species

distribution modelling (SDM), alternatively called environmental niche modelling (ENM) or climate

envelope modelling, is a popular approach. These names all describe a class of correlative models

that fit the distribution of a species to a mathematical description of its environment (Franklin and

Miller, 2010). This study utilises Maxent (Philips et al., 2006), a popular model, to investigate the

distribution of Northeast Arctic cod (Gadus morhua) and key prey species within the Barents Sea.

Maxent is named for its approach, maximum entropy, which essentially is a way to approximate an

unknown probability distribution (Jaynes, 1957). The maximum entropy principle states that the best

way to approximate an unknown probability distribution is to ensure that while any known

constraints on the distribution are satisfied, the approximate distribution should have maximum

entropy. This is effectively saying that our best approximation of the distribution shouldn’t make any

choices or assumptions about it beyond what we are sure about from the constraints, in this context,

our constraints are the environmental profiles of locations containing samples of the target species

versus the environmental profile of the study background. Philips et al. 2006 explains the

mathematics in the following way. If we allow our domain to be a set of pixels X, where each pixel is

a point (x) and each point has a non-negative probability, the sum of probabilities across all points

summing to 1, we can denote the entropy of our approximate distribution H(π) as:

𝐻(π) =  −  
𝑥∈𝑋
∑ π(𝑥)𝑙𝑛 π(𝑥)

Maxent uses a machine learning approach to identify the distribution of π, given any constraints,

which maximises H(π). The implementation of this machine learning approach can be found in e.g.

Philips et al. (2006) and Elith et al. (2011).
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Maxent is a presence-only model; it only requires positive observations and no information about

species absence. This is useful for marine studies where absences are challenging to identify and

validate. Maxent has been shown to produce more accurate predictions across a wide range of

applications than other methods, is computationally inexpensive and requires a small minimum

number of occurrence records to build models with good performance (Elith et al., 2011; Robinson

et al., 2017; Wisz et al., 2008). Maxent allows a user to make predictive maps of distributions and

quantifies each environmental feature’s contribution to the model, which tells us which regions are

suitable for the species and why they are suitable. This, in turn, provides new ecological insight into

the species under study.

This chapter describes the design of a Maxent model that is optimised explicitly for Gadus morhua

and that takes advantage of a novel source of occurrence data. First, a Northeast Arctic (NEA) cod

model is built, which follows a standard methodology that uses all the available occurrence data and

physical environmental layers. This model is designed within a quality control framework to produce

the most accurate, robust and ecologically valid results possible.

We demonstrate the impact of building distribution models using a finer temporal resolution. The

primary benefit of using time-sensitive data is that the environmental layers used and aggregate

estimates of actual conditions should be closer to the natural conditions that existed at record

collection. Environmental layers created from average climate values across long periods do not

capture the dynamic nature of those variables. This is a critical issue in the Barents Sea, where sea

temperatures have risen significantly over the past few decades (Chapter 1). We attempt to identify

the highest possible temporal resolution, which is limited by the availability of data and ecological

considerations. This investigation is essential and provides the rationale for further experiments in

this study investigating the potential for change in NEA cod distribution across the study period.

We demonstrate improved modelling performance when separating NEA cod into three classes:

Small cod <20cm, Mature cod 20-100cm and Large cod >100cm. These size groups are identified

with hierarchical clustering analysis of diet as having unique diet profiles and are in broad agreement

with pre-existing methods of stratifying the cod population by size. The ecological rationale for this

process is that cod are long-lived species with a marked behavioural difference throughout their life

history. Larger cod are more robust to environmental extremes than smaller cod and occupy a

different position in the food web. Smaller cod feed primarily on small benthic species, whilst
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mature cod feed primarily on capelin and other fish. The largest cod category is primarily

cannibalistic, likely due to a lack of sufficiently large non-cod prey. We expected that modelling

these size groups separately would better interpret the underlying ecology and improve predictive

power.

We explore the inclusion of biotic factors as predictors in a Maxent model for NEA cod. Following

the method Gerghel et al. (2018) described, we produce a prey availability layer that describes the

relative diversity of prey items within each grid cell. Information about the physical environment

alone may be insufficient for building a suitable SDM for cod in the Barents Sea, and we hope that

the inclusion of biotic interaction data will yield new insight and improve model performance. We

produce Maxent models for many key prey species following the good practices discussed in this

chapter and utilise a prediction threshold to translate raw Maxent output into binary grids, one for

each prey species. The sum of these grids constitutes the measurement of prey availability.

Occurrence data for these models is collected from existing biodiversity databases such as Fishbase

and GBIF, and proxy occurrences are extracted from the IMR-PINRO cod diet database. We discuss

the impact of prey availability on the prediction and interpretation of Maxent models for NEA cod.

Finally, we compare these potential improvements and judge which may be useful and compatible

with one another. The inclusion of prey availability limits temporal resolution due to the lack of

available time-sensitive data. cod size classes may be used in all cases. Temporal resolution can be

variable dependent upon the needs of any particular experiment, between a theoretical maximum and

minimum range dependent upon data availability and ecological rationale. The summary of these

findings is used to inform model building in the next chapter, where Maxent is applied to both

Northeast Arctic cod and critical prey species to investigate how the distribution of these species has

changed over time, and the relationship between niche overlap and predation is explored.

3.2. Methodology

3.2.1. Species records

Maxent takes two input variables. The first is a list of spatially explicit species occurrence records.

These are usually latitude-longitude pairs within a specified coordinate reference system. Each

record should represent a precise and independent observation of the target taxon, and the set of

records should ideally represent the full range of the species within the target domain in both
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geographic and environmental space.  The highest quality of occurrence records comes from

well-designed surveys targeting the species’ full local range and consistent sampling effort.

These records are used to train and test the Maxent Model. The environment at these locations is

assumed to be suitable for the species, and Maxent assigns a value to each grid cell, calculated by

how similar the environmental conditions are to those found at known presence locations. If the

occurrence records are spatially or environmentally biased, imprecise or based on misidentified taxa,

the resulting Maxent model will be less useful.

To reduce spatial bias and correlation, we apply a thinning method to reduce the number of

occurrences to 100 representative points. This number was chosen as a compromise between

identifying the full range of environmental conditions that are suitable for cod while avoiding spatial

autocorrelation. Maxent has been shown to perform well with sample sizes as small as ten records,

but this is more appropriate for rare species with a low environmental tolerance (Hernandez et al.,

2006; McPherson et al., 2004; Stockwell and Peterson, 2002; Wisz et al., 2008).  Thinning points

was achieved by first taking an initial occurrence record, randomly selected from the ~21,000 unique

occurrences and adding it to a new set of “thinned” records. Next, the point which is maximally

distant from the initial point is selected and added to the set. Programmatically, new points are

selected in this way until the target number of records have been met (Aiello‐Lammens et al., 2015)

Distance is defined as the cartesian distance between two points. This could be in either geographic

space, where distance is defined in metres, or in N-dimensional environmental space, where distance

measures environmental dissimilarity. The choice of whether thinning should be done in geographic

or environmental space depends on the particular study. Here we build models using both

geographically and environmentally thinned occurrence records to compare the effectiveness of both

methods.

3.2.2. Background point selection

Maxent is a presence-only model, which means it does not explicitly utilise records of species

absence. Instead, Maxent attempts to identify the novelty of the environmental profile of occurrence

sites when compared to the environmental profile of the entire study area. To do this, typically, a

large number (10,000) of random points are selected from the region to represent the overall
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environmental conditions, which are called background points and sometimes referred to as

pseudo-absences (Elith et al., 2011; Merow et al., 2013; Philips et al., 2006).

This study used the standard approach of 10,000 randomly sampled points from the study

environment, with one added restriction. The range of background selection was limited to any area

in the study region which is within a reasonable range of dispersion from the sampled region. In

practice, this meant that occurrence records were selected from the full range of the Barents Sea, but

not from the Kara Sea, as the archipelago of Novaya Zemlya acts as a dispersal barrier between the

two seas.

There is an ongoing debate surrounding background point selection methods (Jarnevich et al., 2017;

Lobo and Tognelli, 2011; Phillips et al., 2009; Senay et al., 2013). The general agreement is that

there is no perfect solution and the best approach depends on the particular details of any given

study. There is some good news that Maxent is the least sensitive to background point selection

methods compared to other species distribution models. In comparison to our chosen approach,  we

extensively tested a novel background point selection method proposed by Senay et al. (2013) but

ultimately rejected it because it produced models that were less accurate and less interpretable than

those built with our chosen protocol.

3.2.3. Environmental Layers

Predictor variable layers are produced from spatially explicit data about the study environment.

Variables are selected from those qualities which are considered to be ecologically significant to the

target species. Because each layer is a static uniform grid, sometimes several layers may be used to

represent one variable. For example, when including relevant temperature measures, it may be

necessary to include an average annual temperature and average seasonal temperatures to capture the

most relevant aspect of temperature that constrains distribution.

In this study, an initial 18 environmental layers were produced. These layers are time-averaged

rasters that capture the dynamics of critical physical environmental variables: sea surface

temperature, sea bottom temperature, sea surface salinity, fractional ice coverage and sea ice

thickness. Two static layers are also included, representing the bathymetry of the Barents Sea and the
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distance of each grid cell to the nearest shoreline. Layers for temperature, salinity and sea ice

measures  are produced from the CMEMS ARC MFC ocean reanalysis (Traon et al., 2017; Xie et al.,

2017). Bathymetry and distance layers are produced from the IBCAO arctic bathymetry atlas

(Jakobsson et al., 2012). Table 3.1 shows a list of the environmental rasters which are included in the

initial model building process. Rasters are projected as latitude-longitude grids with a resolution of

0.1 degrees. Raster resolution is limited by the lowest resolution of all used data.
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Table 3.1. A description of each environmental layer that is included in the initial model building

process.

Var

no.

Var name Description Unit Source

1 temp_max Mean surface temperature, the warmest month °C CMEMS ARC MFC

2 temp_min Mean surface temperature, the coldest month °C CMEMS ARC MFC

3 temp_mean Mean surface temperature, annual °C CMEMS ARC MFC

4 btemp_max Mean bottom temperature, the warmest month °C CMEMS ARC MFC

5 btemp_min Mean bottom temperature, the coldest month °C CMEMS ARC MFC

6 btemp_mean Mean bottom temperature, annual °C CMEMS ARC MFC

7 sal_max Max salinity per cell, annual PSU CMEMS ARC MFC

8 sal_min Min salinity per cell, annual PSU CMEMS ARC MFC

9 sal_mean Mean salinity per cell, annual PSU CMEMS ARC MFC

10 hice_max Max sea ice thickness, annual cm CMEMS ARC MFC

11 hice_min Min sea ice thickness, annual cm CMEMS ARC MFC

12 hice_mean Mean sea ice thickness, annual cm CMEMS ARC MFC

13 fice_max Max sea ice fraction (cell coverage), annual / CMEMS ARC MFC

14 fice_min Min sea ice fraction (cell coverage), annual / CMEMS ARC MFC

15 fice_mean Mean sea ice fraction (cell coverage), annual / CMEMS ARC MFC

16 bathymetry Mean seafloor depth per cell m IBCAO

17 distance Distance from land m IBCAO
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Co-linear layers do not affect Maxent model performance. However, they profoundly affect the

ecological interpretation of the model, mainly when using a model to project onto a different

geographic or temporal domain where the correlations between variables are not the same. This

study removes co-linear variables, leaving only the most significant variables from within each

correlated group as determined by jackknife testing within Maxent. This method yields more

straightforward and more transferable models to other periods or spatial extents (Dormann et al.,

2013; Feng et al., 2019).

Alternatively, for the seasonal models explored in Section 3.3.4. Layers were created for specific

summer/winter months from the same reanalysis layers. This was done to improve model

interpretability.
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Table 3.2. A description of each environmental layer that is included in the model building process

for summer and winter models.

Var no. summer Layers winter Layers Unit Source

1 BTemp.Aug BTemp.Dec °C CMEMS ARC MFC

2 BTemp.Jul BTemp.Feb °C CMEMS ARC MFC

3 BTemp.Jun BTemp.Jan °C CMEMS ARC MFC

4 FIce.Aug FIce.Dec / CMEMS ARC MFC

5 FIce.Jul FIce.Feb / CMEMS ARC MFC

6 FIce.Jun FIce.Jan / CMEMS ARC MFC

7 HIce.Aug HIce.Dec cm CMEMS ARC MFC

8 HIce.Jul HIce.Feb cm CMEMS ARC MFC

9 HIce.Jun HIce.Jan cm CMEMS ARC MFC

10 Sal.Aug Sal.Dec PSU CMEMS ARC MFC

11 Sal.Jul Sal.Feb PSU CMEMS ARC MFC

12 Sal.Jun Sal.Jan PSU CMEMS ARC MFC

13 SST.Aug SST.Dec °C CMEMS ARC MFC

14 SST.Jul SST.Feb °C CMEMS ARC MFC

15 SST.Jun SST.Jan °C CMEMS ARC MFC

16 Bathymetry m IBCAO

17 Distance m IBCAO
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3.2.4. Model parameter setting with ENMEval

Maxent handles the model building process automatically once provided with the occurrence records

and environmental data, but a wide range of parameters can be set that profoundly alter the structure

of the model produced. The authors of Maxent have selected default parameters which they suggest

are suitable for most applications, though others have shown that there are many cases where this is

not true (Merow et al., 2013).

The ENMEval R package (Muscarella et al., 2014a) provides a suite of tools to determine the

optimal parameter settings. ENMEval builds several Maxent models with different parameter

settings, specifically different values for the regularisation parameter, where higher numbers

represent a model which penalises complexity more severely and for the categories of allowable

feature types. A wide range of evaluation metrics are calculated and summarised for the user,

allowing for the best parameter set to be chosen for the study’s goals.

Maxent builds model features as one of five types: Linear, Quadratic, Hinge, Product and Threshold

(Philips et al., 2006; Phillips and Dudík, 2008), which is shortened in this discussion as LQHPT.

These categories determine the form that model functions can take when relating multiple predictor

layers. The more feature types that are used, the more complex the Maxent model may become. This

can be useful when trying to maximise raw model accuracy but may produce models which overfit

the training data or are difficult to interpret ecologically.

In this study, ENMEval was used to produce each combination of the following parameter settings:

One of six allowable feature type groups (L, LQ, H, LQH, LQHP and LQHPT) and a regularization

multiplier value between 0.5 and 4 in intervals of 0.5 (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0), a total of

48 unique parameter sets. This range for the regularization multiplier is the default in ENMEval, and

is suitable for use in this study as it covers a wide range of values above and below the default

Maxent settings. For each parameter set, a series of performance measures are recorded which can be

used to support the choice of optimal parameters to use in Maxent, depending on the study goal.
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3.2.5. Model Evaluation

Records are split into training and test data using the “checkerboard2” method in ENMEval, with 4

folds. This method is likely to reduce spatial correlation between training and test data by

aggregating the data at two spatial scales in a checkerboard fashion. Figure 3.1 shows an example of

occurrence data being partitioned using the checkerboard2 method from Muscarella (2014). A grid is

overlaid on each cell in the environmental raster, and cells are assigned to one of four groups

depending on their position relative to the grid.

Figure 3.1. An example of checkerboard2 partitioning. The space is split into checkerboards at two

spatial scales, resulting in four groups. Colored circles represent grouped presence records.

(Muscarella et al., 2014a)

For each fold, 75 points are used for training and 25 points are assigned for testing. The method

used for partitioning data has an effect on model structure and performance, and using a spatially

explicit method of partitioning is a better choice than randomly assigning points to groups in order to

avoid bias in the final model.

Once data is partitioned into training and test sets and Maxent has fitted a model to the data, there

are many ways to measure its effectiveness. One very popular measure of model performance is to

calculate the area under the curve (AUC) of the receiver operating characteristic (ROC). This is a

value between 0 and 1 which provides a shorthand description of how often the model successfully
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identifies both true positives (sensitivity) and true negatives (specificity). The strength of AUC is

that it is easily understandable and provides a way for two models to be compared.

However, one issue which has been raised about AUC is that many methodological choices in the

model building process result in an inflated AUC value. For example, choosing a background which

is much larger than the span of the area which has been sampled for the target species often results in

a model with a high AUC, but which is ecologically questionable (Acevedo et al., 2012; Jarnevich et

al., 2017). Additionally, if model complexity is not properly treated, AUC can be high simply due to

an overfitted model which has little use in explaining the results ecologically and falls apart when

applied to new data. The issues with AUC are not only methodological but ecological. The

maximum theoretical value of AUC is 1, but in practice it is 1 - a/2, where a is the prevalence of the

target species with a maximum value of 1 meaning the species is present in every location (Lobo et

al., 2008; Raes and Steege, 2007). Therefore, for species with high prevalence, AUC values may be

lower than might be expected for a successful model.

In order to avoid over complex models and an inflated AUC value, complexity must be addressed

during the model building process. One of the evaluation measures calculated by ENMEval is

Akaike’s Information Criterion (AiC), which effectively measures the loss of information between

model application on training data vs test data. This is a method of measuring over-parameterisation

and by selecting the model which minimises AiC, we can choose the simplest of the “true” models

(Bozdogan, 1987; Muscarella et al., 2014b). From the full set of models produced by ENMEval

using different parameter sets, we select the one which minimises AiC. This selected model is the

one which performs most consistently across training and test data, and it is not necessarily the

model with the highest test AUC.
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3.2.6. Prey availability layer

It has been suggested that including biotic factors may improve SDM’s for marine species.

Interspecies interactions such as predation or competition may be useful predictors of habitat

suitability over regional spatial scales (e.g. Atauchi et al., 2018; Gherghel et al., 2018; Trainor et al.,

2014; Wisz et al., 2013). cod is a top predator in its environment, so including information about the

availability of prey items is likely to be relevant to any model of distribution.

To include this information, some measure of prey availability must be produced as an

environmental layer to include in the model. In this study, we adapt the method outlined by Gherghel

et al. (2018) to produce a map of relative prey diversity from predicted distributions of prey species.

Occurrence records for these species were extracted from the IMR-PINRO stomach database.

Records of each species as identified from cod stomachs were filtered to only include undigested

prey; this selection method minimises the error introduced by using stomach records as a proxy for

occurrence while also targeting species which are highly prevalent as prey targets. From these

filtered records, 15 species were deemed suitable for inclusion because they were identified to the

genus taxonomic level and at least 30 unique occurrences were recorded.

Maxent models were produced for all 15 species using the same methodology as outlined previously

in this section. Geographic projections of habitat suitability were transformed into binary grids of

predicted presence or absence by applying a threshold which maximises Specificity + Sensitivity,

called the MaxSSS (Liu et al., 2015). The predictive maps and binary grids of each prey model can

be found in Appendix B. The sum of these binary grids was calculated and used to produce the prey

availability layer which is shown in Figure 3.6 in section 3.3.2.
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3.2.7. Size stratified models

Atlantic cod is a species which can live for over 13 years and undergoes significant changes in

biology and environmental requirements throughout its life history. Juvenile cod are pelagic, while

mature cod are demersal, meaning that they prefer different water depths and have different

behaviours. One meaningful difference between the life stages of cod is the dietary profile of the

species. cod choose prey based on their relative sizes, so juvenile and mature cod have unique diet

profiles and interact with the ecosystem in different ways. In this study, we identified three distinct

size-groups of Barents Sea cod using hierarchical clustering of diet.

Using the IMR-PINRO stomach content database, the diet contribution by weight was calculated for

each of 19 prey groups defined by (Holt et al., 2019) as they were found in different size groups of

cod. We stratified the population into 10cm length groups and found their normalised prey

consumption percentage for each of these groups. Using these values, we applied a hierarchical

clustering algorithm to attempt to identify distinct dietary patterns within groups. This analysis

revealed three distinct diet clusters: small cod <20cm in length, mature cod between 20 and 100cm

in length and large cod > 100cm in length. Figure 2.19 shows these clusters.

We seek to discover if modelling these groups separately will improve our ability to predict the

distribution of cod. The ecological rationale is that, if these different size classes prefer different

environments, they may have better defined environmental niches than Barents Sea cod does as a

whole. In particular we expect that juvenile cod, which are smaller and less tolerant of extreme

temperatures, will have a distribution which is more confidently identified from the available

environmental data.

Of interest is whether the models are successful in terms of discrimination, but also as to whether

they are significantly different from one other. This is measured using a niche-overlap metric.
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3.2.8. Temporal sensitivity

The environmental layers used to build species distribution models are static grids, but they

represent a dynamic quantity which changes over time. As an aggregation, there is always a chance

that the layers used fail to capture important time sensitive information about the study environment.

This is particularly problematic when attempting to model the distribution of highly mobile marine

species as they may be more able to respond to short term environmental conditions which

significantly affect them and are not captured at the resolution of the environmental layers, that is as

an averaged value over time. There is a question then of temporal resolution: how much time should

be represented by the environmental layers? There are several competing problems with answering

this question. In the study by (Fernandez et al., 2017), they found that the selection of temporal

scales has a significant effect on model predictions. They suggest that scales as short as daily or

weekly yield more accurate results in some cases.

Due to data limitations, the shortest period we are able to study is seasonal, as finer scale models

result in occurrence sample sizes below the minimum for Maxent, or no data at all in many cases.

We investigate the effects of changing temporal scales on model accuracy and prediction

characteristics by building many models for each of five time period windows: Annual; Five-year;

10-year; Annual-summer and Annual-winter from 1991 and 2017. We compare the summarised

results of these models to our base model, which uses data from across the full range. We are

interested in any noticeable gains to model performance which may reveal an ideal temporal scale,

but also to test if models built using a wide range of temporal resolutions still produce valid

predictions. If so, this will allow us to use Maxent to investigate species distributions at a variety of

time scales in the next chapter.
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3.3. Results

3.3.1. Maxent model for Atlantic cod

A Maxent model tells us several things about the distribution of our target species. First, we can use

the model to generate predictive maps in geographic space which tell us where the environment is

suitable for the species. Secondly, by examining the model structure: the parameter settings and

individual variable responses, we gain some insight as to why the environment is suitable, or why it

is not.

3.3.1.1. Model Evaluation

The model performs well on test data, with an average test AUC value of 0.81. This means that

approximately 81% of presences and background points are correctly classified in the test data. This

is comfortably above the field standard threshold of 0.7 as an indicator of good model performance,

and suggests that we have identified a strong pattern.

3.3.1.2. Model Structure

The optimal model structure found using ENMEval was achieved when using three feature classes:

Linear, Quadratic and Hinge. Product and Threshold features were not allowed. The regularization

multiplier for the optimal model was, at β = 3, higher than the default Maxent settings. Of the 17

candidate environmental predictors, 5 were kept in the final model. These variables: bathymetry;

btemp_mean; distance; salinity_min and temperature_min, were the uncorrelated layers which were

found to be the most important in jackknife testing.

Maxent measures the impact of each variable on the model in two ways. First, the “percent

contribution” measure indicates how much each variable contributed to the final model. This value is

heuristically defined, and does not necessarily imply that a variable with a higher contribution is

actually more important as the values here depend on which route Maxent takes to build an optimal

model. The percent contribution values for this model are shown in Figure 3.2. This shows us that

the variable with the highest percent contribution is distance with 57.75%, however this does not

mean that distance is the most important predictor. While it is useful to know how Maxent has

actually built the model which generates our predictions, it is the second measure which is most

interesting when interpreting the model
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Figure 3.2. Variable Contribution Percentages for Maxent model. Species: Gadus morhua, Model

Structure: LQH 3. Data period: 1991-2017.

The second measure of variable importance is “permutation importance”. To calculate this value,

each variable has its values randomly changed and the resulting drop in training AUC is measured.

This shows how sensitive the model is to changes in each predictor, and higher values in this

measure do indicate more important variables. Figure 3.3 shows the normalised permutation

importance percentages for this Maxent model.
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Figure 3.3. Permutation Importance Percentages for Maxent model. Species: Gadus morhua, Model

Structure: LQH 3. Data period: 1991-2017. These results suggest that mean annual bottom

temperature is the most important predictor.

We can see that the most important variables appear to be btemp_mean (Mean annual bottom

temperature) and distance (Distance from shore), while salinity_min (Minimum surface salinity)

appears to be the least important. It is interesting to note that each predictor used in the final model

appears to be useful.

These results tell us which variables are important to Maxent, but the ecological interpretation of

these results must be carefully considered. It is likely, based on expert knowledge of cod ecology,

that the variable btemp_mean is indeed an important primary predictor of habitat suitability.  On the

other hand, distance from shore is not a dynamic property of the environment and is likely a proxy
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for some other unmeasured variables. It is still very useful information, but may indicate a need for

further investigation of other environmental properties which could be correlated to distance from

shore.

Maxent provides further sensitivity analysis of each variable in the form of response curves. These

plots show us the predicted value of a cell, in terms of the probability of the presence of NEA cod,

across a range of values for that variable, when all other variables are kept at their median value.

This allows us to identify how each variable limits the species niche within the model. The response

curves for each variable in this model are shown in Figure 3.4. Each subchart has the predicted

Maxent output value on the y axis and the values for each covariate layer in the x axis (e.g.

kilometres (km) for distance.

Figure 3.4. Maxent response curves for each variable in the final model. Each curve shows the

relationship between the variable value and the predicted value of suitability in a cell.
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We can see that each variable has a distinct relationship to the predicted value of a cell. We can

immediately see that both btemp_mean and distance are strongly positively correlated to predicted

value, with both variables reaching a predicted value of 1.0 (maximum) with large values. One

obvious concern that arises from these curves is that the values are not clamped at the extremes, so if

this model were used to predict cod distribution in a region with values outside of these

environmental limits, the results may be quite inaccurate. However, for temperature_min and

bathymetry there are clear “sweet spots”, with predicted values falling on either side.

Overall, these curves seem sensible within the bounds of the study region. Maxent tells us that the

most suitable environment for Gadus morhua has high average bottom temperature, is far from the

shore, has a minimum annual surface temperature of about 0-5 degrees celsius, has a depth of a few

hundred metres and about average salinity for the region.

By applying the Maxent model back onto the study area, we can map the predicted environmental

suitability for Gadus morhua.

3.3.1.3. Projection

Figure 3.5 shows the cloglog output map for this Maxent model with the environmental layers that

were used to build the model (1991-2017). Each cell of this map represents a normalised measure of

environmental suitability between 0 and 1, where higher values represent cells which Maxent

estimates to be more suitable for the target species. These maps allow us to visually inspect our

predictions.
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Figure 3.5. Predicted suitability of each cell as an environment for Atlantic cod. Higher values

represent a more suitable environment based upon the Maxent model formulation.

The shape of the distribution is relatively smooth, and covers most of the central and south-eastern

Barents Sea, with a narrow band of suitability along the western edge from the Sea’s centre, up to the

west of Svalbard. Generally, coastal regions do not appear to have high suitability, and the northern

Barents Sea and Kara Sea have very low suitability under this model structure. This result matches

our existing knowledge of Barents Sea cod distribution: the species prefers the warmer waters in the

south while there are fewer individuals in the north, though there is an ongoing spread of the species

in that region due to increasing temperatures (Ingvaldsen et al., 2017; Nakken and Raknes, 1987).

This model uses data from across a long period of time while environmental conditions in the

Barents Sea are highly variable. This projection thus represents the distribution of BS cod under long
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term environmental averages, resulting in a smoothing where the intricacies of their distribution may

not be captured. However, it also means that this projection represents a consistency across the

period. The cells which have a high predicted suitability here are likely to have been stable for a long

time, and this map represents a core suitable environment within the Barents Sea where average

conditions are ideal for cod. Likewise, areas of low suitability likely represent areas where suitability

is always poor, or is poor on average. We investigate the impact of the data time period in section

3.3.4.

3.3.2. Maxent model for Atlantic cod with a prey availability layer

3.3.2.1. Prey availability layer

We built a prey availability layer by modelling the distribution of 13 key prey species using proxy

records from the IMR-PINRO cod diet database. The model predictions for each species were

transformed into binary grids of suitable-unsuitable environment cells. These grids were added

together on a cell by cell basis to produce a new raster which represents the total number of prey

species for which the environment is suitable in each cell. Each cell in the grid has a value between 0

and 13. The individual model predictions and binary grids are included in chapter appendix A. We

produced the prey layer based upon the availability of sufficient records for Maxent to create

reasonable models, rather than using raw measures of abundance from the data as there were

insufficient samples.

The new layer, prey_layer is shown in Figure 3.6. We can see that the region of highest prey

diversity is in the south-western and central Barents Sea and along the border with the Norwegian

Sea to the west of Svalbard. There are similarities between this aggregate distribution of prey items

and our base model for Atlantic cod. This follows our understanding that conditions in the southern

Barents Sea are generally preferable for most species due to higher temperatures in the Atlantic

water body.
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Figure 3.6. The prey_layer was created from modelling the distribution of 13 key prey species with

Maxent. Each cell is a count of how many species were predicted to be above a threshold of

environmental suitability there.

3.3.2.2. Model Evaluation

Compared to the base model, including a prey availability layer has reduced model accuracy

significantly. Now, the AUC on test data is only 0.74, lower than the 0.81 achieved by the base

model. The result here is still above the threshold for a good model (0.7), but it is not clear that the

addition of this prey availability layer has resulted in a better model. Though there is no

improvement in model accuracy, there is a notable change in model structure and predicted

distribution.

3.3.2.3. Model Structure

The optimal model structure found using ENMEval was achieved when using two feature classes:

Linear and Quadratic. Product, Threshold and Hinge features were not allowed. The regularization

multiplier for the optimal model was at β = 2, higher than the default Maxent settings but lower than

in the base model, meaning that this model is likely to be comparatively less generalised. Of the 18
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candidate environmental predictors, 6 were kept in the final model. These variables: bathymetry;

btemp_max; distance; salinity_max and hice_mean and prey_availability were the uncorrelated

layers which were found to be the most important in jackknife testing. Only bathymetry and distance

are shared between this model and the base model.

In both models, bottom temperature and salinity were included in the final model, while surface

temperature has now been dropped and sea ice thickness has been retained. Instead of btemp_mean

from the base model, Maxent has found btemp_max to be more significant in jackknife testing.

Likewise, salinity_max has been found to be more significant than salinity_min in this new model

structure.

To better understand the underlying structure of this new model, we can examine the variable

percent contribution and permutation importances. Figure 3.7 shows the percent contribution of each

variable in the model with prey_availability included.
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Figure 3.7. The percent contribution of each variable in the Maxent model. Each value is between 0

and 100.

This new layer provides a large percentage of model structure, followed by the static environmental

variables of distance and bathymetry, with only a small amount provided by the dynamic variables.

This is obviously very different to our base model structure, but we must examine permutation

importance to get a true measure of the significance of each variable. Figure 3.8 shows these

permutation importance values, and it is clear that this model structure is very different from the base

model.
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Figure 3.8. The permutation importance of each variable in the model. Each value is between 0 and

100.

Salinity is once again an apparently unimportant variable, an understandable result due to the

relative uniformity of salinity values across the background region. A perhaps surprising result is

that btemp_max has a permutation importance of only 0.32%, when compared to the importance of

btemp_mean in the base model (30.58%). While we might consider that to be an inherent difference

in the importance of mean vs maximum bottom temperature, due to the way this model was built,

Maxent had already identified btemp_max as having a higher permutation importance than

btemp_mean at an intermediate model building stage. This shows the innate variability in model

construction which can be difficult to predict, and suggests that we should interpret these results with

caution, particularly when considering the generalisability of the model. Figure 3.9 shows the

response curves for each variable. As in Figure 3.4, each subchart shows the predicted Maxent
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output on the y axes (no units) and the relevant covariate layer on the x axis.

Figure 3.9. Response curves for each variable in model

Salinity_max has a unimodal response, which we have already seen in the variable importance

measures above, it isn’t contributing any useful information. The patterns in the other variables are

different than in the base model, partly because different measures have been selected but also due to

the different model hyperparameters which have been identified by ENMEval. There are two

variables which are unique to this model: hice_mean and prey_availability. Sensibly, hice_mean

shows a maximum value at about 0, or no ice, and decreases rapidly with ice thickness. The curve

misleadingly suggests values below 0, but a negative thickness measure would never be found. This

is unlikely to cause any issues with using this model on another set of test data, unless there were
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errors in the new environmental layers provided. Finally, the response curve for prey_availability

shows an increasing suitability with increasing prey availability. This seems like a sensible

relationship. It is possible that the presence of a wide range of edible species for cod is an additional

positive environmental factor. However, it is also possible that the observed relationship here is due

to a strong correlation between the environmental niche of cod, and the environmental niche in

aggregate of other species in the environment. Figure 3.10 shows the environmental suitability

prediction for this Maxent model with the same environmental layers used for model building.

Figure 3.10. Maxent model with prey availability map projection

Here, we see a very large region of the Barents Sea has been identified as having a suitable

environment for BS cod. Only the areas in the north of the sea have been predicted with low

suitability. Compared to the base model (Figure 3.5), including the prey layer appears to have
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expanded the number of suitable cells, particularly in the south west but also further to the north.

There is also more texture to the suitable areas than in Figure 3.5, and less of a smooth transition

from high to low suitability, likely due to the limited range of prey availability values which cause a

stepped response in the prediction.

Ecologically, that including a measure of prey availability has expanded the suitable habitat for cod

under this model makes some sense. We understand that the environment in the Barents Sea is

broadly very good for cod, and that they are highly prevalent and widespread. This map seems to

indicate that when we consider the availability of food, cod may be inclined to utilise less ideal

physical environments, expanding their range beyond what our base model suggests. We must note

that the formal performance of this model, as measured by the AUC, is slightly worse than our

model without a prey layer, but we can’t say to what extent this is based on a failure of the model to

capture patterns or simply due to the reality that the species has a high prevalence and there is not a

high environmental contrast between areas where the species inhabits and where it does not within

the study domain.

Both models have an AUC high enough for consideration and both suggest a broadly similar pattern

to cod distribution throughout the Barents Sea. The choice of whether or not to include a prey layer

in future models must be informed by the specific question that the model is being employed to

answer, and whether there are sufficient data available. Figure 3.11 highlights the differences

between the model projection with the prey layer included compared with the base model projection.

Positive values mean that the model built with a prey layer predicted a higher value than the base

model while negative values mean that it predicted a lower value than the base model.
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Figure 3.11. Differences between base and prey model projections
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3.3.3. Size Stratified Maxent Models for Atlantic cod

Here we present six size stratified models for Gadus morhua. For each size group: Small (<20cm),

Medium (20-100cm) and Large (>100cm) we present two models, one without prey availability and

one with prey availability.

Table 3.3. AUC for each size group model with and without an included prey layer

Group AUC

Gadus morhua (S) 0.830

Gadus morhua (S) /w Prey Layer 0.834

Gadus morhua (M) 0.804

Gadus morhua (M) /w Prey Layer 0.813

Gadus morhua (L) 0.847

Gadus morhua (L) /w Prey Layer 0.840

Model test AUC scores are listed in Table 3.3. We found no significant difference in model

predictive performance between groups with prey layer information and those without. Model

performance was also similar for size groups. All models performed well (AUC > 0.8).
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3.3.3.1. Model Structure

Figure 3.12. Permutation importance of each variable across size structure groups with and without

a prey availability layer

The permutation importance of each variable included in the size class models both with and without

a prey availability layer is shown in Figure 3.12. We see that when we include the prey layer, it is the

most informative layer in each model, with a P.I of 55.5%, 49.4% and 62.9% for small, medium and

large cod respectively.

For the models not including a prey layer, we observe a different hierarchy of variable importance

between size groups. For Gadus morhua (S), we see that temperature_min has the highest P.I,

followed by bathymetry. For Gadus morhua (M) the most informative layers are close in P.I:

hice_mean, distance and bathymetry. Finally, the model for Gadus morhua (L) was most informed

by btemp_mean and bathymetry.
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3.3.3.2. Projected distribution

Figure 3.13. Maxent models for each size group with and without a prey layer map projections

Figure 3.13 above shows the projections generated by each Maxent model in this group. The top row

shows each size class without the prey layer, while the bottom row shows each group with the prey

layer included. We can see that there are notable differences in the predicted suitability of the

environment between size groups, as well as between the base and prey layer models.

Broadly, there appears to be some core agreement between models that the central and southern

regions of the Barents Sea are generally suitable environments. There are some interesting and

significant differences in the exact extents and shapes of these predicted suitability maps, and we can

see that the Large group models are quite different from the other two groups, as well as the base
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model predictions. When there is no prey layer used, the Large cod model suggests that there is a

high suitability along the Norwegian coastline, a feature which we do not see in the other size

groups. Then, in the Large model with a prey layer, we lose the area of suitability along the coast but

there is a significant spread into the northern parts of the Barents Sea, where the water is colder. This

map seems to conform to our understanding of the situation in the Barents Sea, where larger

individuals are better able to withstand the more challenging conditions in the northern areas while

smaller individuals are more frequently found in the warmer southern waters.

At this stage it is perhaps most important to acknowledge simply that a difference in projected

suitability between groups does exist. The results from this modelling process are ecologically

sensible - Atlantic cod is a highly mobile species which is widely distributed in the Barents Sea, has

a life history which includes a movement from a pelagic to demersal species and the environmental

conditions to which they are best suited do change as they grow.

Here we have shown that there is value in further investigation of these size groups as distinct

populations and by doing so we may capture more ecologically realistic patterns in species

distribution and provide a new window through which to examine changes in the Barents Sea

ecosystem.
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3.3.4. Time stratified Maxent Models for Atlantic cod

We investigated how Maxent models for Atlantic cod were affected by the time sensitivity of the

input data. We built 67 maxent models using input data from different subsets of the full

environmental data period (1991-2017). These were each continuous 1 (26 models), 5 (23 models)

and 10 (18 models) year periods. Figure 3.14 compares the model performance results between

groups. This way of viewing the outcomes allows us to examine the relationship between data period

length and model performance.

Figure 3.14. Boxplots of Test AUC values for each time period length group
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We see a difference in the distribution of test AUC values between the time period groups, with the

winter models in particular having a significantly higher average test AUC than the other groups.

One way ANOVA testing results in a P-Value of 0.0007 (P < 0.05),  indicating a significant

difference between one or more group means. Additional testing with Tukey’s range test shows that

the winter group AUC mean is significantly different from the annual, five-year and ten-year period

groups AUC mean at the P < 0.05 level (P = 0.004, P = 0.003, P = 0.004 respectively). There is no

statistically significant difference between the summer groups mean AUC and any other group, and

there is no difference between the annual, five-year and ten year group mean AUC.

In absolute terms, none of the models in any group achieved a test AUC value below 0.7, suggesting

that a model of sufficient accuracy can be built at any of the period lengths that we investigated. This

is particularly interesting for the annual and seasonal model groups, where the effects of

environmental volatility are more likely to be captured and we might expect to see outliers which

cause a significant drop in model performance. Only one statistical outlier is present in the data, the

model for 2015-summer, which had a test AUC of 0.711.

When we examine the model structure we see a very clear difference in the patterns that Maxent is

identifying in the environmental data. Tables summarising the permutation importance of each

variable within each group can be found in Appendix C.
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3.3.4.1. Annual, Five-Year and Ten-Year Model Structure

Figure 3.15. Mean P.I. % with 95% confidence intervals for Annual, Five-year and Ten-year model

variables. The number of models containing each variable is labelled at y = 0 for each variable.
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With all groups combined in Figure 3.15, we see a distribution of which variables are included in the

final models and how important each of these variables are. The static variables bathymetry and

distance are used in every model, because they are not co-linear with any other variable. The average

P.I. of bathymetry is 30% and 15% for distance, with standard deviations of 9% and 10%

respectively. These are high levels of variability, and we see that there are significant differences in

importance between time groups. Across all three periods bathymetry maintains an average of

between 27-31% average P.I., while distance increases its average P.I. from 8% in the 1 year group

to 18% in 5 years and 20% in 10 years. This suggests that distance from shore is much more

important when the data is aggregated over a longer time period, while seafloor depth maintains its

importance even at a 1 year period. The reasons for this disparity are unclear. Both variables are

likely representing the effect of other, unmeasured variables as there is no direct requirement

between the physiological needs of Barents Sea cod and how deep the water is, or how far from

shore they may be. Whatever dynamics are captured by these variables, it seems that bathymetry is a

useful indicator of presence under all time scenarios while distance is less useful over short periods.

It seems plausible that, over long periods of aggregated environmental data, the most suitable

conditions in the environment relate to distance from shore in some meaningful but indirect way.

From the set of co-linear variables which represent temperature we see some variation in selection.

Across models Maxent selects btemp_max for inclusion in 51 models, with an average P.I. of 21.1%

and a standard deviation of 13.8%. The second most selected variable, btemp_mean is chosen in only

16 models with an average P.I. of 24.3% and a standard deviation of 11.9%. Maxent never selected

btemp_min for inclusion. Of the variables representing surface temperature, only 14 models included

any one of them. Overall, maximum bottom temperature seems to be the most important quality of

its variable type. Average P.I. for btemp_max is highest in the 1 year group and lowest in the 5 year

group.

The next most widely used variable is salinity_min in 44 out of 67 models, with an average P.I. of

22.2%. In 15 models, salinity_mean was selected instead with an average P.I. of 18.0%. There is no

obvious pattern across time period groups. Of the ice cover and thickness variables, only one was

found to have a high average P.I., fice_mean (33 models) with 16.6% however the standard

deviation was 17%, and this extreme variability is present in all time groups.

The variability measured for each layer tells us that although it is useful to recognise broad patterns

in model structure associated with time period groups, each model is quite unique and sometimes an
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unexpected variable is found to be essential. It is difficult to identify a strong pattern which

differentiates the structures of models built using different data periods, but the increasing

importance of distance as period length increases suggests that it is representing another

environmental quality which is being lost as the layers are produced from longer-term averages, and

in the annual period group whatever information distance offers is being better represented by the

dynamic environmental variables.
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3.3.4.2. Seasonal Model Structure

Figure 3.16. Seasonal model variable P.I. distributions. Top - summer, Bottom - winter.
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For the seasonal models shown in Figure 3.16, bathymetry and distance were again used in every

model. Bathymetry has a mean P.I. of 27.2% and 17.8% in summer and winter respectively, with a

standard deviation of 10.2% and 9.5%. Distance has a mean P.I. of 20.1% and 8.1% with a standard

deviation of 7.4% and 8.7% in summer and winter. Both static variables have a higher P.I during

summer than winter.  SST variables had high variability in P.I. across summer and winter, with the

summer layers reporting: SST.Jun (15.5 ± 13.6%), SST.Jul (20.1 ± 13.9%) and SST.Aug (22.3 ±

16.7%)  compared to the equivalent winter layers: SST.Dec (46.1 ± 25.8%), SST.Jan (23.2 ± 23.1%)

and SST.Feb (47.2 ± 21.9%).

In the summer models, the most frequent variable is BTemp.Aug in 16 models. All 27 models

contain at least one bottom temperature variable, with only 1 model using BTemp.Jul. The mean P.I.

for bottom temperature variables are between 11.7% ± 0% (Jul), 20.0 ± 12.4% (Jun) and 20.4 ±

14.7%  (Aug) .

In the winter models, the most frequent variable is FIce.Jan in 15 models, with a mean and standard

deviation P.I. of 24.2 ± 19%. As in summer, all models contain at least one bottom temperature

variable. Across all variables, permutation importance is lower on average for the winter models

than the summer models. Sea surface temperature variables have the highest P.I. overall, specifically

SST.Dec and SST.Feb, but as discussed both layers also have very high variability.
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3.3.4.3. Model Projections

Figure 3.17. Mean and standard deviation suitability scores per cell for each temporal group.

The mean and standard deviation cell values for each temporal group are shown in Figure 3.17.

From this figure, we can see that changing the temporal window has a profound effect on the
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predicted cell suitabilities. The annual, five and ten-year groups produce a similar overall

distribution. The winter group produces an overall distribution which is confined to the southern

Barents Sea, though the core area of suitability is similar to those for the annual, five and ten-year

models. The summer model group is the most divergent from the others, with a core area split into

two groups, one in the southern Barents Sea and the other to the south of the Svalbard archipelago.

When we examine the standard deviation of cell values, we see decreasing variability as the period

length increases. The seasonal models are the most variable, with the winter group showing a

frontier of high variability in the centre-north Barents Sea and the summer group showing high

variability across the study region.

3.4. Discussion

We have successfully modelled the distribution of Gadus morhua in the Barents Sea. Though SDM’s

have been applied to other migratory marine species (Bigg, 2014; Bigg et al., 2008), the temporal

and ontogenetic dimension of this study is novel. We applied best practices from the literature to

improve model performance and validity to varying degrees of success. The importance of choosing

temporally sensitive data has been raised (Fernandez et al., 2017; Mannocci et al., 2017), and we

found that our model performance was not significantly affected by changing temporal period,

except for seasonal winter models which reported a statistically significant increase in model AUC.

In the study by Fernandez et al., their temporal window was much shorter than even our seasonal

scale, over hours. With the data available to us, we could not achieve these short timescales for

comparison.

When we included a covariate layer representing prey availability following the example of

(Gherghel et al., 2018), we found no increase in model performance. The layer was a composite of

Maxent prediction maps for key prey species; it is possible that other methods of including prey

availability might have been useful. We did not have enough data to include covariate layers

representing the absolute abundance of specific species or even groups, due to the discontinuous

nature of the sampling stations. Future work could consider alternative methods of generating prey

availability covariate layers, such as applying, for example a spatial zero-inflated Poisson model

(Lyashevska et al., 2016) to create continuous abundance maps, but such a study is beyond the scope

of this thesis. Our final models were built using only physical environmental layers, though existing

studies have shown that biotic interactions are important to capture in SDM’s (Araújo and Luoto,
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2007; Wisz et al., 2013). Future work could explore a much broader range of potential biotic

covariates to help improve model performance.

Our modelling of distinct cod size groups as individual species in Maxent is a novel application of

the tool as we have applied it. Though previous studies have used environmental niche models to

examine differences in ontogenetic distribution (e.g. Druon et al., 2016; Galaiduk et al., 2017), none

have done so in this manner for Gadus morhua in the Barents Sea. We found both significant

differences in model performance and structure for each size class, particularly when comparing

large cod (>100cm) to the other two groups. This matches existing studies on the life histories,

distribution and behaviour of the species (e.g. Ingvaldsen et al., 2017; Nakken and Raknes, 1987;

Ottersen et al., 2014). We propose that this method could be usefully applied to any species with

distinct life stages with different environmental tolerances and preferences in order to more

accurately capture variation in distribution.
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3.5. Conclusions

In this chapter, we have presented a robust framework for producing Maxent models which are

capable of predicting the distribution of Gadus morhua in the Barents Sea while addressing issues of

overfitting and model complexity. We have shown that the addition of a relevant biotic interaction

layer does not result in higher overall model accuracy but that it does change the model structure and

projected distribution. We have identified a significant difference in the suitable habitat for large cod

when compared to the rest of the population and provided rationale for the further treatment of these

size-stratified cod groups as having distinct distributions in the Barents Sea. Finally, we have

thoroughly investigated the sensitivity of our models to the temporal range of the input data and

shown that valid models appear to be produced at a range of time scales.

These investigations provide a basis for the application of Maxent as a tool in examining the

spatio-temporal patterns in the Barents Sea food web. In the following chapter, we use Maxent to

examine how the distributions of Atlantic cod and several important prey species have changed over

time, and we attempt to identify any relationships between the spatial-temporal synchronicity of

these species with their relationship as predator and prey. With Maxent, we can examine these

relationships at a range of timescales and identify broad and fine scale evolutions of the Barents Sea

ecosystem, the trophic dynamics beneath, and attempt to predict how future climate changes will

drive this evolution.
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Chapter 4 - The changing distribution of cod and

critical prey species in the Barents Sea

4.1. Introduction

In Chapter 3, we presented a thorough methodological investigation of using Maxent to model the

distribution of Barents Sea cod. We demonstrated that valid models can be built for different size

classes of cod, producing significantly different distribution predictions. We investigated the effects

of changing the input data period on model performance and changing various parameters. This

chapter applies the Maxent modelling framework to analyse Spatio-temporal patterns in the

distribution of Barents Sea cod and several key prey species.

We selected four prey species to include in this analysis: Mallotus villosus (capelin), Boreogadus

saida (polar cod), Pandalus borealis (shrimp) and Melanogrammus aeglefinus (haddock). These

species were selected due to their importance as prey species as determined in Chapter 2. Not all

important prey species are included here due to a lack of sufficient occurrence records from the

IMR-PINRO database for the temporal resolution of this investigation.

Previous studies have identified long term interseasonal variation in the overlap between Gadus

morhua and Mallotus villosus (Fall et al., 2018), Boreogadus saida (Renaud et al., 2012),

Melanogrammus aeglefinus (Dalpadado et al., 2009) and others. These changes in spatial overlap are

generally related to changes in temperature, population density, relative population abundance and

the availability of suitable prey. Species distribution models such as Maxent have been successfully

used to model the distribution of marine species (Robinson et al., 2017), where domain specific

issues such as the temporal sensitivity of occurrence records for migratory species have been

addressed (Fernandez et al., 2017).

There are two aims to this chapter. The first aim is to measure how the distribution of each species

group has changed over the study period. We will measure these changes in distribution by

examining the predictive maps produced by Maxent for each modelling period and comparing all the

models within a species group. We seek to uncover the Spatio-temporal patterns in distribution by
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examining which areas of the Barents Sea may be considered ‘core’ habitat and which sites are

varyingly suitable. We expect to see variability in the specific shape of suitable habitat for each

species and possibly a range expansion across the study period due to increasing water temperatures.

The second aim is to examine the temporal pattern of spatial overlap between the target species

groups. We will measure the overlap of distribution between various groups over time to establish

the growth or diminishment of areas in the Barents Sea where environmental conditions create

suitable habitats for predator-prey interactions to occur. We expect to see a complex relationship

between time and overlap for various predator-prey combinations as each species responds to

environmental variability differently. We might expect an overall increase in the overlap between

cod and prey species over time due to the spread of suitable conditions for cod, but this might not

hold if conditions which benefit cod are detrimental to a particular prey species.

4.2. Methodology

4.2.1. Seasonal Maxent model design

4.2.1.1. Environmental Layers

For each of the seven species groups targeted, two models were trained for each year between

1991-2017 using environmental layers representing the summer or winter months respectively (see

also Section 3.3.4). Each layer is constructed using data which is specific to the year being modelled,

so each year/season has a unique set of environmental layers. The schematic for environmental

layers used in each season is presented in Table 4.1. The species groups modelled are : Gadus

morhua < 20cm [Gadus morhua (S)], Gadus morhua 20 - 100cm [Gadus morhua (M)], Gadus

morhua > 100cm [Gadus morhua (L)], Mallotus villosus, Boreogadus saida, Melanogrammus

aeglefinus and Pandalus borealis.
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Table 4.1. Environmental layer schematic for seasonal Maxent models (Continued on next page)

Summer Winter

Layer 1 Surface Temperature (June)
SST.Jun

Surface Temperature (December)

SST.Dec

Layer 2 Surface Temperature (July)
SST.Jul

Surface Temperature (January)

SST.Jan

Layer 3 Surface Temperature (August)
SST.Aug

Surface Temperature (February)

SST.Feb

Layer 4 Bottom Temperature (June)
BTemp.Jun

Bottom Temperature (December)

BTemp.Dec

Layer 5 Bottom Temperature (July)
BTemp.Jul

Bottom Temperature (January)

BTemp.Jan

Layer 6 Bottom Temperature (August)
BTemp.Aug

Bottom Temperature (February)

BTemp.Feb

Layer 7 Salinity (June)
Sal.Jun

Salinity (December)

Sal.Dec

Layer 8 Salinity (July)
Sal.Jul

Salinity (January)

Sal.Jan

Layer 9 Salinity (August)
Sal.Aug

Salinity (February)

Sal.Feb

Layer 10 Sea Ice Cover (June)
FIce.Jun

Sea Ice Cover (December)

FIce.Dec

Layer 11 Sea Ice Cover (July)
FIce.Jul

Sea Ice Cover (January)

FIce.Jan

Layer 12 Sea Ice Cover (August)
FIce.Aug

Sea Ice Cover (February)
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Fice.Feb

Layer 13 Sea Ice Thickness (June)
HIce.Jun

Sea Ice Thickness (December)

HIce.Dec

Layer 14 Sea Ice Thickness (July)
HIce.Jul

Sea Ice Thickness (January)

HIce.Jan

Layer 15 Sea Ice Thickness (August)
HIce.Aug

Sea Ice Thickness (February)

HIce.Feb

Layer 16 Average water column depth within cell
bathymetry

Layer 17 Distance to shore
distance

Specific environmental layer sets were created by subsetting the CMEMS ARC MFC reanalysis

product (Traon et al., 2017) to the relevant year/months for each model.

4.2.1.2. Occurrence records and background points

Occurrence records for small, medium and large cod groups are extracted from the IMR-PINRO cod

diet database. The occurrences are filtered by year, season and length. The occurrences for prey

species are also extracted from the IMR-PINRO cod diet database. These records are filtered by year

and season and by the degree of digestion. Only records within the least digested classification are

included to limit displacement effects after consumption on positional accuracy. We assessed each

period for the number of available occurrences. In general, where the number of available

occurrences is between 15 and 100, those occurrences are used directly to build the model. If more

than 100 occurrences are available, the thinning procedure outlined in section 3.2.1 is applied to

reduce the number of occurrences to 100. If fewer than fifteen occurrences are available, then no

model is built directly. Instead, an average model for that species is applied to that period's

environmental layers, and the existing occurrences are used as an additional test set for validation. If

there are no occurrences available at all, an average model is used without further validation. The

methodology used for producing these Average models is presented in Section 4.2.2.

For each model, 10,000 background points were selected from non-presence locales within the main

body of the Barents Sea following the standard methodology described in Section 3.2.2.

https://www.zotero.org/google-docs/?broken=uHjRW3
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4.2.1.3. Parameter setting and validation

Optimal parameter sets for each model were identified using the method outlined in Section 3.2.4

using the ENMEval R package (Muscarella et al., 2014). Model validation followed the same

procedure outlined in Section 3.2.5, using checkerboard style splits on training-test points.

4.2.1.4. Producing binary suitability maps by thresholding Maxent predictions

We apply a thresholding rule to Maxent prediction maps to produce binary grids of environmental

suitability prediction. This assigns each cell within the modelled domain a value of either 1 (suitable)

or 0 (unsuitable) based on a fixed threshold over the Maxent cloglog output map; this threshold is

specific to each particular model and is determined by Maxent. We select a threshold value which

maximises the sum of specificity and sensitivity of the resulting map, which is a standard threshold

used in existing studies (Liu et al., 2015). These binary maps are used to measure the overlap area

between two species during a particular temporal period.

https://www.zotero.org/google-docs/?broken=vKucUi
https://www.zotero.org/google-docs/?broken=iVCA7m
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4.2.2. Average Maxent model design for missing data

In some cases, insufficient occurrence record samples were available to produce a model using

annual-seasonal specific data. In those cases, to avoid missing data, we used a Maxent model trained

on a larger, non-temporally specific dataset for each species to project onto the annual-seasonal

environmental layers of the period of insufficient data. Figure 4.1 highlights which periods have

predicted maps generated from the projection of an average model.

Figure 4.1. Overview of where ‘Average Model Projections’ were used in lieu of temporally specific

models. The number of occurrence records available within each period is labeled.

There were 22 summer/species periods and 25 winter/species periods where an average model

projection was used to produce maps of distribution due to insufficient occurrence records. Of these,



121

all summer/species periods had at least one occurrence record while 12 of the 25 winter/species

periods had no occurrence records available at all.

Fourteen average models, seven summer and seven winter for each species group, were created

using the methodology outlined in Chapter 3 and in Section 4.2.1. Occurrence records were selected

from the entirety of the study period (1991-2017) in summer and winter, where there were more than

100 occurrences, these were thinned to 100 using the method outlined in Section 3.2.1.

Environmental layers were produced following the schematic in Table 4.1, but rather than each layer

representing one month, they were calculated as the mean of each month across the study period.

Model parameters and evaluation were carried out in the same manner as described in Section

4.2.1.3.

4.2.3. Calculation of distribution and overlap area

Distribution and overlap area are calculated from the thresholded Maxent cloglog output maps.

Distribution is calculated as the sum of the area of all suitable cells in each map, calculated using the

raster::area() function in R. Overlap between a pair of species groups is calculated using the same

method, but co-occurrence of suitable cells within a period are calculated as an interim step and then

area is calculated as the sum of the area covered by co-occurring suitable cells.

Cells at higher latitudes are smaller than those at lower latitudes and this is taken into account, even

though the maps presented in this chapter are shown in a non-projected latitude-longitude grid. The

raster::area() function calculates each cell as a rectangle, so at very high latitudes it becomes less

accurate, though not enough to significantly affect our results.
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4.3. Results

In this section we present the results from the Maxent modelling of Gadus morhua and critical prey

groups in the Barents Sea in the summer and winter seasons from 1991-2017. In subsection 4.3.1, we

summarise model performance across groups and seasons. In subsection 4.3.2, we present a

summary of the spatial predictions generated by Maxent for each group, focussing on

temporal/seasonal variability in distribution. In subsection 4.3.3, we examine the spatial overlap

between Gadus morhua and the modelled prey groups and the seasonal and interannual change in

overlap area. Finally, in subsection 4.3.4, we examine the overall pattern in model structure by group

and environmental layer to reveal the most important factors driving these distributions.
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4.3.1. Model Performance

Figure 4.2.  Distribution of test AUC’s for summer and winter models for all species. Boxes show

median, upper quartile and lower quartile of data. Whiskers show the maximum and minimum of the

data, while outliers are shown as ‘X’s and are not included in the median/quartile calculations but

are shown independently.

Figure 4.2 shows the distribution of test AUC values among all models for each species group,

separated by season. Overall performance for all groups in summer and winter was good, with

almost all models achieving a test AUC of over 0.7, and the lowest in-group average AUC being
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above 0.8. There is a disparity between summer and winter model performance, with winter models

generally performing better than the equivalent summer model. Also, summer models show a

significantly higher variability in performance within groups, and several summer models achieved

test AUC values lower than 0.7, with two summer models (Boreogadus saida and Gadus morhua

(L)) resulting in a test AUC below 0.5.
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4.3.1. Temporal Variability of Predicted Distributions

4.3.1.1. Gadus morhua (S)

Figure 4.3. Mean cloglog, Standard Deviation cloglog and Earliest Suitable Year maps for Gadus

morhua (S) in summer and winter.

We observe significant differences in the mean distribution of Gadus morhua (S) in summer and

winter, shown in Figure 4.3.A) and 4.3.D). The core distribution area during the winter is better

defined than during the summer, centered in the south-central region of the Barents Sea with a stark

divide in predicted suitability between the core area and the northern regions. The distribution of

Gadus morhua (S) during the summer is broader, with a smaller core area with lower overall mean

suitability, but with some higher predicted suitability across the whole region. We can also see in

Figures 4.3.B) and 4.3.E) that the cloglog values are generally more variable in the summer models

than the winter, though there is an area of relatively high variability during winter to the east of the

southern tip of the Svalbard archipelago.
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The temporal variability in overall distribution is captured in Figures 4.3.C) and 4.3.F), which shows

the earliest model which found each cell to be suitable. From these figures, we can see a clear pattern

of northward and eastward expansion of distribution in the latter years of the study. This expansion is

present in the summer and winter models, and is larger during the summer but still significant during

the winter.

Figure 4.4. Distribution area (km²) for Gadus morhua (S) in summer and winter.

When we examine the total distribution area of Gadus morhua (S) in the summer and winter, shown

in Figure 4.4, we see a trend of increasing area in both seasons. There is no significant difference

between the distribution area in summer or winter overall, but there is strong interannual variability

in both. The moving average (loess) function shows a dip in area during the late 1990’s followed by

a pattern of growth from around 1998 to the 2010s. A sharp decrease in predicted distribution area
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during the summer of 2016 and 2017 may show the beginning of a reverse in this trend, but it may

also be in line with earlier variability.

4.3.1.2. Gadus morhua (M)

Figure 4.5. Mean cloglog, Standard Deviation cloglog and Earliest Suitable Year maps for Gadus

morhua (M) in summer and winter.

We observe significant differences between the mean summer and winter distributions of Gadus

morhua (M). The differences observed in Figures 4.5.A) and 4.5.D) are broadly the same as those in

Figures 4.3.A) and 4.3.D), as the model predictions for Gadus morhua (M) and Gadus morhua (S)

appear to be similar.

However, when we examine the earliest suitable year maps in Figures 4.5.C) and 4.5.F) we see a

slightly different pattern of distribution expansion in the latter years of the study.  Overall, there is an
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expansion of distribution to the north and east in both summer and winter, and it is greater during the

summer. However, when compared to Gadus morhua (S), the expansion is more pronounced in

Gadus morhua (M). During the summer, the expansion includes almost the entirety of the northern

Barents Sea, and during the winter the expansion is comparatively broader than we observed for

Gadus morhua (S), particularly along the north-east and eastern fronts.

Figure 4.6. Distribution area (km²) for Gadus morhua (M) in summer and winter.

The total distribution area in summer and winter for Gadus morhua (M) shown in Figure 4.6 follows

a similar pattern to that which we observed in Figure 4.4 for Gadus morhua (S). There is no

statistically significant difference in the summer and winter distribution area overall, but both

seasons show a trend of increasing distribution area over time. Note that in absolute terms, the
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distribution area of Gadus morhua (M) tends to be greater than Gadus morhua (S), by about

3000-4000 km² on average across seasons.

4.3.1.3. Gadus morhua (L)

Figure 4.7. Mean cloglog, Standard Deviation cloglog and Earliest Suitable Year maps for Gadus

morhua (L) in summer and winter.

There is a significant difference between the mean cloglog maps for summer and winter in Gadus

morhua (L) as shown in Figures 4.7.A) and 4.7.D). Like in the previous cod groups, the winter

distribution is aggregated in a smaller area than the summer distribution, but here the core area

during winter is smaller than observed in the other groups, and located in the southern Barents Sea.

When compared to the other groups, Gadus morhua (L) appears to have higher variability over time

within its core area in its winter distribution, as shown in Figure 4.7.E).

The maps of earliest suitable year in Figures 4.7.C) and 4.7.F) diverge from the pattern we observed

for Gadus morhua (S) and Gadus morhua (M). Like those groups, we do see an expansion north in

the latter years of the study during summer, but there is no significant expansion during the winter.
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Figure 4.8. Distribution area (km²) for Gadus morhua (L) in summer and winter.

The total distribution area of Gadus morhua (L) in summer and winter is shown in Figure 4.8. There

is a statistically significant difference between the summer and winter distribution area for this group

(P = 0.026, significant at the P < 0.05 threshold), with summer distribution area being generally

greater than winter distribution area. The trends in the distribution area differ from what we observed

in the other Gadus morhua groups. Rather than a combined growth, we instead see a significant rise

in summer distribution area in the latter years but only a small growth in winter distribution area.

Both seasons have a shared minimum distribution area in the early 2000’s.
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4.3.1.4. Mallotus villosus

Figure 4.9. Mean cloglog, Standard Deviation cloglog and Earliest Suitable Year maps for Mallotus

villosus in summer and winter.

The mean cloglog output maps for Mallotus villosus in Figures 4.9.A) and 4.9.D) show significant

differences between seasons. The summer mean distribution shows a core area of segments from the

south-east Barents Sea to the centre-west near Svalbard and along the west coast of the archipelago.

Conversely, the winter mean distribution shows a core area in the south-central region of the Barents

Sea as a more or less continuous grouping. In both seasons, we can see similarities to the patterns

observed for the Gadus morhua group models.  The patterns of cloglog standard deviation shown in

Figures 4.9.B) and 4.9.E) show a broad space of higher variability during the summer than winter.

The earliest suitable year maps in Figures 4.9.C) and 4.9.F) show an expansion of distribution into

the north and east in both summer and winter. This expansion follows a similar pattern to what we

observed in Gadus morhua (S, M). In particular, the expansion north during the winter in the latter

years of the study period is extensive.
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Figure 4.10. Distribution area (km²) for Mallotus villosus in summer and winter.

The total distribution area for Mallotus villosus in the summer and winter is shown in Figure 4.10.

There is no statistically significant difference between summer and winter distribution area. We see

significant interannual variability in both seasons, and quite different overall trends. During the

summer, the distribution area is high at the beginning of the study period, then follows a pattern

where there is a single peak followed by several years of relatively low distribution area. The trend

during winter is quite different, beginning at a relatively low distribution area in the 1990’s, it then

rises precipitously from the mid 2000’s to a new regime of relatively high distribution area.
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4.3.1.5. Melanogrammus aeglefinus

Figure 4.11. Mean cloglog, Standard Deviation cloglog and Earliest Suitable Year maps for

Melanogrammus aeglefinus in summer and winter.

The mean cloglog maps for Melanogrammus aeglefinus in Figures 4.11.A) and 4.11.D) show a broad

similarity between summer and winter core distribution areas, compared to earlier results for other

species groups. Both seasons have a core area in the south-central Barents Sea, during the summer

this area is slightly broader and less constrained. We can see from Figures 4.11.B) and 4.11.E) that

the standard deviation maps for Melanogrammus aeglefinus show more variability during the

summer than winter.

The earliest suitable year maps for Melanogrammus aeglefinus shown in Figure 4.11.C) and 4.11.F)

follow a familiar pattern, with some expansion further north and eastward during both seasons.

However, we can also see that the northern Barents Sea was found to be suitable for

Melanogrammus aeglefinus during the summer in very early models. Expansion during the winter is
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predominantly along the west coast of Novaya Zemlya and around the west coast of the Svalbard

archipelago, with little or no expansion into the central north Barents Sea.

Figure 4.12. Distribution area (km²) for Melanogrammus aeglefinus in summer and winter.

The total distribution area of Melanogrammus aeglefinus in the summer and winter is shown in

Figure 4.12. There is no statistically significant difference between the distribution area in summer

and winter. The overall trends in summer and winter distribution areas follow different patterns. At

the beginning of the study period, summer distribution area was relatively high, it then fell beginning

in the late 1990’s and stayed low until the late 2000’s where we observe a trend of increasing

distribution area into the end of the study. Conversely, the winter distribution area remains fairly

stable across the study period, though there is significant interannual variability it is generally

moving around the mean.
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4.3.1.6. Pandalus borealis

Figure 4.13. Mean cloglog, Standard Deviation cloglog and Earliest Suitable Year maps for

Pandalus borealis in summer and winter.

The mean cloglog output maps for Pandalus borealis in Figures 4.13.A) and 4.13.D) show an

agreement in the broad shape of the core distribution area across seasons, but differ within the core

area. The winter distribution is better defined and follows a contiguous area in the south and

south-west Barents Sea, while the summer core area is roughly the same shape but with overall

lower cloglog values and disconnection between subareas and an extension along the west coast of

the Svalbard archipelago. When we examine the maps of standard deviation in cloglog output shown

in Figures 4.13.B) and 4.13.E), we see the recurring pattern of greater variability during the summer

and variability centred along the northern edge of the core distribution area during the winter.

The earliest suitable year maps shown in Figure 4.13.C) and 4.13.F) follow a pattern that we have

observed in many of the modelled groups, with a northward and eastward expansion in the latter

years of the study period. This expansion is extensive in both summer and winter.
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Figure 4.14. Distribution area (km²) for Pandalus borealis in summer and winter.

The total distribution area of Pandalus borealis in summer and winter is shown in Figure 4.14. There

is no statistically significant difference between the distribution area in the summer and winter. Both

seasons follow a similar overall trend, beginning at a period of relatively low distribution area and

increasing from the early 2000s to a new regime of relatively high distribution area by the end of the

2000s, both beginning to decrease again in the late 2010’s. There is significant interannual variation

in both seasons, but particularly during summer. In particular, the summer distribution area in 2013

is exceptionally high compared to the rest of the period at over one million km².
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4.3.1.7. Boreogadus saida

Figure 4.15. Mean cloglog, Standard Deviation cloglog and Earliest Suitable Year maps for

Boreogadus saida in summer and winter.

The mean cloglog maps for Boreogadus saida in summer and winter in Figures 4.15.A) and 4.15.D)

show a significant difference in the core distribution area of the species across seasons. Both seasons

show a core distribution area in the central Barents Sea, but the summer distribution is much less

constrained than the winter. Boreogadus saida is an arctic species, and its distribution is further into

the north-central Barents Sea than the other groups modelled. We also see that its winter distribution

is broader than we have observed in the other groups. The standard deviation in cloglog maps shown

in Figures 4.15.B) and 4.15.E) show significant variability in the central Barents Sea in both summer

and winter.

The earliest suitable year maps in Figures 4.15.C) and 4.15.F) show the same pattern we observed in

the majority of modelled groups, an expansion into the northern Barents Sea in both seasons in the

latter years of the study period. The expansion in both seasons is extensive, reaching latitudes over
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80°N during the summer. We also see an expansion into the south-east and south-west during the

winter in the later years of the study.

Figure 4.16. Distribution area (km²) for Boreogadus saida in summer and winter.

The total distribution area for Boreogadus saida in summer and winter is shown in Figure 4.16.

There is no statistically significant difference in distribution area between seasons. Both seasons

follow similar overall trends, beginning with a period of relatively low distribution area until the mid

2000’s before rising to a new regime of high distribution area in the mid 2000s to mid 2010s, then

falling before the end of the study period. There is high interannual variability, particularly in the

summer, with a peak in 2014 of over 1.3 million km², followed by a sheer drop to an area below

three hundred thousand km² the following year.



139

4.3.2. Spatial overlap between predator-prey groups

In this section we present several time series of overlap areas between predator-prey species pairs.

There are four sub-sections, Subsections 4.3.2.1, 4.3.2.2 and 4.3.3.3. present the overlap area for

each season/year between Gadus morhua S, Gadus morhua M and Gadus morhua L and each of the

four prey groups. Subsection 4.3.2.4 presents the time series of overlap area between the three cod

groups.

4.3.2.1 Gadus morhua (S) and prey species

Figure 4.17. Area of Overlap (km²) between Gadus morhua (S) and prey groups in summer and

winter
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A time series of spatial overlap between Gadus morhua (S) and each of Mallotus villosus,

Melanogrammus aeglefinus, Boreogadus saida and Pandalus borealis are presented in Figure 4.17,

with summer and winter results displayed individually.

Overlap area between Gadus morhua (S) and Boreogadus saida is highly inter-annually variable, and

there is no statistically significant difference between summer and winter overlap area. There is a

periodic fall and rise in summer overlap area over a timescale of several years, a pattern which may

also be present during the winter but to a lesser extent. Overlap with Mallotus villosus shows a

significant divergence between summer and winter in the latter years of the study, with summer

overlap area trending down while winter overlap increases compared to earlier years. Overlap with

Melanogrammus aeglefinus follows a pattern of high interannual variability but shows no significant

trends of long term change across the study period. Finally, overlap with Pandalus borealis shows

some divergence between summer and winter in the latter years of the study period, with summer

interannual variability increasing significantly after the year 2000.  Overall, the absolute size of the

overlap area between Gadus morhua (S) and each of the prey groups is similar.



141

4.3.2.2 Gadus morhua 20 - 100 cm

Figure 4.18. Area of Overlap (km²) between Gadus morhua (M) and prey groups in summer and

winter.

A time series of spatial overlap between Gadus morhua (M) and each of Mallotus villosus,

Melanogrammus aeglefinus, Boreogadus saida and Pandalus borealis are presented in Figure 4.18,

with summer and winter results displayed individually. Overlap area between Gadus morhua (M)

and each of the prey species follows the same major patterns as we observe for Gadus morhua (S) in

Figure 4.17. Our results in Section 4.3.1.1 and 4.3.1.2 show that there are broad similarities between

the distribution of these two groups on an annual scale, so this is an expected outcome. However, the

patterns in overlap are not exactly the same. While overlap between Gadus morhua (M) and both

Boreogadus saida and Melanogrammus aeglefinus follows similar trends as observed for Gadus

morhua (S) and those groups, the absolute overlap area in this case is slightly higher, in the region of



142

about 10,000 km² on average. Conversely, the overlap with Malltotus Villosus differs from what we

observed in Figure 4.17 in the latter years of the study, in this case we do not find a significant

difference between summer and winter overlap areas as there is a much smaller trend of decrease in

summer overlap area. Finally, overlap between Gadus morhua (M) and Pandalus borealis follows a

consistent trend of increase over the study period, with lower summer interannual variability than we

observed in Figure 4.17.

4.3.2.3 Gadus morhua > 100 cm

Figure 4.19. Area of Overlap (km²) between Gadus morhua (L) and prey groups in summer and

winter.
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A time series of spatial overlap between Gadus morhua (L) and each of Mallotus villosus,

Melanogrammus aeglefinus, Boreogadus saida and Pandalus borealis are presented in Figure 4.19,

with summer and winter results displayed individually.

Overlap between Gadus morhua (L) and each of the prey groups follows a pattern broadly similar to

what we have observed in Figures 4.17 and 4.18 for the smaller cod groups. In particular, the overlap

between Gadus morhua (L) and Melanogrammus aeglefinus shows no significant change over the

study period in either season. Overlap with the other three groups follow a similar period pattern to

one another. Each show a minimum in overlap area in the early-mid 2000’s before increasing again

to levels at or above those measured during the early years of the study period. There is no

significant difference in overall overlap area between seasons in any pairing, however we observe a

significant divergence between summer and winter overlap area between Gadus morhua (L) and

Boreogadus saida in the later years of the study period due to a several year long spike in summer

overlap area between 2011 and 2013.
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4.3.2.4. Gadus morhua size group overlap

Figure 4.20. Area of Overlap (km²) between Gadus morhua (S), Gadus morhua (M) and Gadus

morhua (L) in summer and winter.

A time series of overlap areas between Gadus morhua (L, M), Gadus morhua (L, S) and Gadus

morhua (M, S) is shown in Figure 4.20. From this figure we can see that the absolute area of overlap

between Gadus morhua (M, S) is higher than either share with Gadus morhua (L). This is to be

expected based on our previous observations about the similarity between the two. However, we also

observe a significant trend of a) increase in overlap area between Gadus morhua (M,S) over time and

b) Increased interannual variability in the summer in the latter years of the study. This increase in

interannual variability in overlap area during the summer is also present between Gadus morhua (L)

and the other size groups. Also as a predictable consequence of our previous observations, the
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overlap between Gadus morhua (L) and the other two size groups follow very similar trends, with no

significant difference between seasons until the latter years of the study where there is a sudden

increase in summer overlap area.

4.3.3. Model Structures

4.3.3.1. Seasonal Models

In this section we present a summary of the model structures for each species group in summer and

winter individually. We examine a matrix of a summary of permutation importance for each

environmental layer within each species group. We report the mean permutation importance (P.I.) as

well as the standard deviation and the number of models each variable was included in within each

species group and season. Permutation importance measures the sensitivity of  model performance

when each variable is randomly permuted while all others remain the same, this tells us which

variables are providing the most useful information within all included terms.

Figure 4.21. Mean, standard deviation in P.I. and number of models included in for each variable

separated by species group, summer.
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The summary matrix of variable P.I. across species groups during the summer is presented in Figure

4.21. Each tile represents a summary of the P.I. of each variable within all summer models of that

species group. The mean P.I. and standard deviation are labelled within each tile, and the fill colour

of each tile shows how many times that variable was used within all models in the species group.

Blank tiles represent variables which were never included in any model for the species group of the

corresponding row. Some variables have a mean and standard deviation in P.I. of zero, but were still

included in at least one model.

The most eye-catching feature of this visualization is the fill colour, or the number of times each

variable appeared in a model group. Of these most frequent variables, bathymetry and distance are

consistently the most frequently included terms across all species groups. This is due to the fact that

they are not highly correlated with any other term, and so always survive the collinearity filtering

step. When we examine the actual P.I. values of these layers, we see that bathymetry appears to be an

informative layer, with mean P.I’s of around 20-30% for all species groups. By comparison, distance

is a much less informative layer, with mean P.I’s of around 5-10% across all groups. To better

understand the model structures in practice, it is useful to consider collinear variable groups

together: BTemp, FIce/HIce, Sal and SST each contain several layers which are almost always

filtered due to high collinearity to one from each group per model.

Viewed this way, we can see that the mean P.I for variable groups is somewhat consistent across

species. At the lowest end, HIce and FIce variables have mean P.I’s which tend to be below 10%,

especially for specific species/layer combinations with a higher n. In particular, HIce (sea ice

thickness) is exceptionally rare as an inclusion, suggesting that it is rarely a more informative layer

than FIce (sea ice extent). Next, Sal, SST and BTemp variables compete for the most informative

layer categories. The order of highest mean P.I group varies across species, and there are differences

between months within categories. In all variable groups, data for the month of July has a lower

frequency of inclusion than either August or June.

For almost every variable/species group combination with sufficient n for a reasonable measure,

there is a high standard deviation in P.I. value. In many cases, the variance of a P.I measure is greater

than the absolute value.
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Figure 4.22. Mean, standard deviation in P.I. and number of models included in for each variable

separated by species group, winter.

The equivalent P.I  matrix for winter models is shown in Figure 4.22. The relative frequencies of

variable groups is similar to what we observed in the structure of summer models, with bathymetry

and distance being included in the majority of models. However, the mean P.I of these layers is

lower than in the summer models, at about 15-20% for bathymetry and around 5% for distance. The

dynamic variable groups show a different structure to what we observed in summer models: rather

than being interchangeable depending on species, we see a strong bias towards SST providing the

most information across all species. The next most informative group was FIce (sea ice thickness),

specifically FIce.Jan, which was significantly more frequent than the other two months of FIce data.

Next were the BTemp variables, with the frequency of each month being similar. Finally, the Sal

variables were the least informative group, and were less informative than the equivalent layers in

the summer models.
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4.3.3.2. Average Models

In this subsection we present the model structures for each of the ‘Average’ species group models

used for filling missing data. Each species group has only one model, so labelled P.I. values are exact

rather than averages.

Figure 4.23. Mean P.I. for each variable in the Average models separated by species group, summer.



149

Figure 4.24. Mean P.I. for each variable in the Average models separated by species group, winter.

The Average models have significantly different model structures to the seasonal models across

species in summer and winter. Looking at the summer average model structures in Figure 4.23, we

see that bathymetry has a high P.I in all models, between 20-45%, which is a higher upper range than

we found in the seasonal models. Almost all of the summer models used BTemp.Aug, except for

Gadus morhua (S) which used BTemp.Jul. No models used BTemp.Jun. BTemp variables had high

P.I values for each cod group and Mallotus villosus, but were significantly lower in Pandalus

borealis, Boreogadus saida and Melanogrammus aeglefinus. Conversely, we see a reverse of this

pattern when we examine the SST variables, where those three species all had significantly higher

P.I. associated with SST than the cod groups or Mallotus villosus. The distance layer was used in all

models, with a P.I around the same as the observed mean across summer seasonal models. No

models used any HIce or FIce variable. Salinity variables had very low P.I’s, except Sal.Aug in the

Pandalus borealis model (17%).

For the winter average models in Figure 4.24, we observe that bathymetry has a higher variability in

P.I than found in the set of winter seasonal models. Gadus morhua (S) has a bathymetry P.I of only
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2%, while Gadus morhua (M) has a bathymetry P.I. of 40%. BTemp variables have a high P.I for all

species models except Gadus morhua (M) (0.1%) and Pandalus borealis (8%). Of the SST layers,

only SST.Feb was included at all, in models for Gadus morhua (S) (18%) and Gadus morhua (M)

(42%). No HIce variables were included in any model. The only FIce variable included was

FIce.Feb, which had the highest P.I. three out of the six models which included it. Only Gadus

morhua (S) and Gadus morhua (M) did not include FIce.Feb. Salinity layers were included in all

models, but had a P.I. of 0 in three of them. The P.I of the distance layer was generally higher in the

winter average models than the equivalent seasonal models.

4.4. Discussion

We found that there appears to be a systematic expansion of suitable environments for each modelled

species group across seasons over the study period. In the last decade, Maxent modelling of species

distributions shows that areas in the north and north-central Barents Sea have become suitable for

every modelled species for the first time since 1991. This result agrees with previous studies e.g.

(Kortsch et al., 2015; Renaud et al., 2012)   In general, although the position of suitable habitat

within the Barents Sea is more variable during the summer than winter, the total area of suitable

habitat is similar between seasons. We found high interannual variability in total distribution area for

every species, with variability being higher during the summer than in the winter. In line with

common trends of increasing distribution area for the modelled species, we found a similar pattern of

increase in the overlap area of many predator-prey pairings.

Our results suggest that our observed changes in distribution for the seven species groups modelled

are a result of increasing temperatures and the reduction of sea ice extent in the northern Barents Sea

during the winter. High variability in the permutation importance of each variable within species

model groups suggests several possible phenomena. The first could be that changes in surface

temperature, bottom temperature and sea ice extent as a result of warming in the Barents Sea are not

uniformly imposing or relaxing new environmental bounds in relation to the thermal niche of a

species (Righton et al., 2010), so in a given period, distribution may be restrained by surface or deep

water conditions, particularly for demersal species. An alternative cause of this variability could be

that our models do not capture all of the dynamics which may restrain distribution, this is likely to be

a part of the truth as our models contain only broad environmental layers and do not explicitly

include biotic interactions which may be highly correlated with changes in bottom or surface

temperature and affect distribution to some extent (Gherghel et al., 2018; Wisz et al., 2013b). Our

https://www.zotero.org/google-docs/?broken=QLsdYc
https://www.zotero.org/google-docs/?broken=Hx1W7o
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results support observations from the existing studies. The range expansion of Gadus morhua into

the northern Barents Sea has been previously observed (Ingvaldsen et al., 2017; Renaud et al., 2012).

Our results also support studies suggesting that the spatial overlap between Gadus morhua and

Mallotus villosus has increased in recent years (Fall, 2019; Fall et al., 2018).

This experiment is limited by the availability of high-quality survey data on the species modelled.

More accurate information about the prevalence of these species and further empirical surveys of

species ranges are needed to contextualise some of our results and improve the underlying data used

to generate these model results. If we were to extend this work, it would be helpful to conduct

surveys targeting important prey species in the region and cod and establish prevalence estimates. It

may also be helpful to experiment with different ways to threshold distribution maps produced by

Maxent to see if it impacts the relative breadth of distribution and overlap between seasons and

species groups.

We have generated new data on the changing distribution of these critical species in the Barents Sea

and examined how their overlapping distributions vary over time. The response to a changing

climate is complex but sometimes subtle and difficult to explain without further investigation.

However, these results are helpful to us as we consider their implication to the broader field of

trophic and population dynamics of Barents Sea cod. In the following chapter, we will use the

product of these Maxent models to supply additional information to NARMAX and examine how

overlap and consumption relate to one another and other key population and demographic metrics

for these species.

https://www.zotero.org/google-docs/?broken=x9W6HG
https://www.zotero.org/google-docs/?broken=T0GLkm
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Chapter 5 - Modelling the variability of diet,

population demographics and size structure over time

5.1. Introduction

Marine ecosystems are incredibly complex, to the extent that it is difficult for us to confidently

measure many of the essential components that determine the function of a given system. It is even

more difficult then for us to infer knowledge about aspects of the system that we cannot measure at

all or make predictions about how an ecosystem will respond to perturbation, such as a changing

environment . Nonetheless, our ability to conserve ecosystems and safely exploit marine resources is

dependent on our ability to understand how our actions, and other exogenous factors, may affect the

system. Failure to do so can have catastrophic consequences for the ecosystem and the human

communities which rely on it.

This chapter attempts to quantify the relationship between various components of the Barents Sea

marine ecosystem, specifically those related to Barents Sea cod’s health and its position in the food

web. To do so, we utilise a black-box system identification model called NARMAX (Billings, 2013;

Chen and Billings, 1989) to build interpretable models which fit a range of target variables and

provide potential insight into the ecological processes underpinning our observations.

Using the results we generated in Chapters 3 and 4, we incorporate temporal measures of

predator-prey overlap between cod and several key prey species, combined with a range of relevant

time series drawn from ecological and physical measurements of the Barents Sea marine

environment. We target a range of variables for modelling, including trophic interactions between

cod and critical prey species and the biomass, recruitment and size structure of the BS cod

population.

We expect to quantify the factors responsible for driving these critical parameters and for

establishing the relationship, if any, between spatial overlap between cod and its prey and temporal

trophic dynamics in the Barents Sea.
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5.1.1. System Identification

A prevalent modelling problem is Simulation: we know the inputs to our system, and we have a

model of how the system works. By passing our inputs through our model, we can generate a

predictive output. The most straightforward formulation of the simulation problem is demonstrated

in Figure 5.1.

Figure 5.1. Structure of the simulation problem

This is a useful framework for simple systems or systems observed in a controlled environment, e.g.

the maximum velocity of a ball bearing travelling down slopes of various heights. For systems where

the simulation problem is relevant, we have a good idea of the mathematical structure of the system,

and we have observations of all the relevant parameters.

This approach fails when we consider systems that are too complicated for us to create prior models

for, including most real-world situations. However, we are not entirely incapable of building models

for these complex systems, but the problem is different. In this case, when we have observations of

the inputs of a system and the system’s outputs, and the only thing missing is how our observed

inputs and outputs relate, we face a system identification problem. The essential structure of a

system identification problem is presented in Figure 5.2.
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Figure 5.2. Structure of the System Identification Problem

This is one way of approaching the core questions of this research: how do our observations about

the trophic dynamics of Barents Sea cod relate to each other? We are attempting to identify the

mathematical system which connects our observations, and in so doing, gain new insights into the

actual interplay of the relevant ecosystem components.

The field of system identification is vast and constantly evolving, and there are countless methods of

system identification that could be applied to our study domain. In this study, we utilise an approach

called NARMAX (Non-linear AutoRegressive Moving Average model with eXogenous inputs)

(Chen and Billings, 1989) to build an interpretable model of the system and identify key factors

driving change in the population, demographic and trophic dynamics of Barents Sea cod.
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5.1.2. NARMAX

There is a lot to say about the NARMAX model, and extended explanations of the foundations,

applications and special cases of NARMAX can be found in other texts (e.g. Billings, 2013; Chen

and Billings, 1989). To understand the methodology used in this thesis, however, here is an overview

of the mathematical foundations of NARMAX and the rationale for applying this model to our

research problem.

NARMAX is a comprehensive system identification model which can be applied to model almost

any linear or non-linear system in the time or frequency domain. We use NARMAX to model the

systems which control our targeted output variables in the time domain. Once we have selected the

observational data relevant to our study, NARMAX automatically determines the optimal structure

of the model (linear or nonlinear) and identifies which inputs are most significant, systematically

eliminating co-linear terms and minimising noise in the prediction by process of feature selection

and error reduction. The result is a polynomial function that describes the identified system and

analyses model performance on test data.

The mathematical definition of the NARMAX model is:

𝑦(𝑡) = 𝐹[𝑦(𝑡 − 1), 𝑦(𝑡 − 2),  .....  ,  𝑦(𝑡 − 𝑛
𝑦
),

𝑢(𝑡 − 𝑑),  𝑢(𝑡 − 𝑑 − 1),  .....  ,  𝑦(𝑡 −  𝑛
𝑢
),

𝑒(𝑡 − 1),  𝑒(𝑡 − 2),  .....  ,  𝑒(𝑡 −  𝑛
𝑒
)] +  𝑒(𝑡)

Where y(t) is the system output at time t, and is a function, F, of the following components: u(t) is

the system input at time t, and e is the system error. The other terms are d, which is a time delay lag

on input terms which is usually >= 1 (disallowing input terms from the current timestep) and also 𝑛
𝑦

, and , which are the maximum time lags for the output, input and error terms respectively. 𝑛
𝑢

 𝑛
𝑒

There are many ways to determine the structure of the function; the algorithm used by our

implementation of NARMAX is called ‘Orthogonal Least Squares Estimator and Error Reduction

Ratio’. The OLS-ERR algorithm is a way to estimate the structure of a model by identifying the
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significant terms which contribute the most information to a model and can provide the final

parameter values for the final model. Using OLS-ERR, a sizeable initial parameter space with, for

example, many input variables with a high maximum time lag, can be reduced to a much smaller set

of orthogonal parameters in the final model, meaning that all of the terms remaining provide unique

information and do not correlate with one another. This helps to avoid overfitting and also to

improve interpretability.

This is done in several stages. First, a dictionary of all possible model terms is generated from the

input data and the set of hyperparameters. A schematic example of a simple NARMAX dictionary is

shown in Figure 5.3.

Figure 5.3. Schematic representation of NARMAX dictionary of terms for a model with a maximum

lag of 1, minimum input data delay of 1 and an autoregressive term and two input variables. The

maximum degree of the model is 2, allowing for nonlinear second order model terms.

Next, each possible model term is used to create a single parameter model, and the Error Reduction

Ratio, i.e. the amount of error reduced by the addition of that parameter, is calculated. The parameter

which reduces the error by the greatest amount is retained in the model, and the process begins

again, with a new term added to the existing one. If the addition of the new term reduces the overall

error in the model, the term is retained, and this process continues. The number of terms retained in

the model can be limited in the hyperparameters, but often the best model has fewer terms than the

specified maximum. This is because terms that reduce the error in the model by tiny amounts are not
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retained to reduce the risk of overfitting to noise. There is an internal threshold value within

NARMAX which rejects terms which have an ERR which is too small (Section 5.2.2.)

The result is a linear-in-the-parameters model formulation where each parameter and coefficient has

been identified as the optimal combination to provide the best model fit while minimising the risk of

overfitting.

5.2. Methodology

We apply the NARMAX model (Chen and Billings, 1989) to a range of study variables, broadly

collected into three groups: prey consumption, cod population dynamics and cod population size

structure. In total, we modelled 12 variables; the results of each are presented in section 5.3.

Each model consists of three initialisation components: the target variable, input datasets, and a set

of hyperparameters determining the search space NARMAX can consider for finding the optimal

model. Every variable used, both target variables and input data, represent a time series with one

data point per year from 1991-2017. The data is stored as a comma-separated variable (.csv) file,

with each column representing a variable and each row representing an observation at each time

step.

The input data is normalised in MATLAB prior to the modelling process, using the normalise()

function, which transforms each variable to have a mean value of 0 and a standard deviation of 1.

This eliminates differences in absolute value and unit measurements between input variables while

retaining the relationships between them.

The implementation of NARMAX used in this research is maintained by researchers at the

University of Sheffield’s Department of Automatic Control and Systems Engineering (ACSE). The

model is implemented in MATLAB as a function, and the source code is stored in a .p file, an

obfuscated code object. Researchers in Sheffield ACSE hold decryption keys for the source code.

Access to the source code was not required for this research as no changes to the internal function of

the NARMAX model were required, and the implementation is an up to date, efficient one used
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actively in many peer reviewed studies e.g. (Gu et al., 2021; Marshall et al., 2016; Wei and Bigg,

2017; Wei et al., 2020).

5.2.1. Hyperparameters

Input data and hyperparameters are provided as arguments to the NARMAX function.

Several hyperparameters constrain the model building process and affect overall model performance.

In order to identify the optimal set of hyperparameters, we used a brute force search method to try all

combinations of hyperparameters within a specific range, which we determined using

domain-specific knowledge. The set of hyperparameters that minimised our chosen performance

measure (MAPE) were used to train the final model.

The set of hyperparameters and the range of values explored in each are presented in Table 5.1.

Table 5.1. List of NARMAX hyperparameters tested ranges and a description of each.

Hyperparameter Range Description

nu 1 - 4

Years

The maximum time lag allowed for input variables

ny 0 - 2

Years

The maximum time lag allowed for autoregressive terms (0

means no autoregressive terms)

degree 1 - 3 The highest allowed order for any model term (1st, 2nd or 3rd

order polynomials)

delay_u 1 Year Minimum lag imposed on input data. Set to 1 to restrict model

from using input data from current timestep

length_value 3 - 16 The total number of terms allowed in the final model

Limits of hyperparameter values were identified as a combination of knowledge about the study

domain to keep model execution time and memory requirements within reasonable bounds. We do
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not believe that any of the limitations imposed to restrict the size of the search space were

detrimental to the performance or validity of the resulting model, and we investigated a range of

limits, discussed below.

It should be noted that the values selected for each hyperparameter refer to a maximum allowed

value within NARMAX, not a specific requirement for the model structure. For example, when the

maximum lag in input terms nu is set to four years (t-04), the resulting model may not necessarily

contain any terms which utilise data from (t-04). We test each value as a maximum because as the

total hyperparameter space is explored, there is a potential that unique model structures may be

revealed, and the burden of processing time is still small enough to make this approach viable.

The maximum lag in input terms nu was tested at each value between one year and four years. We

did not consider models with no lag in input terms as the validity of such a prediction model would

be questionable. This is why we fix the value of the minimum time lag for input data delay_u as one

year. The maximum limit of four years was chosen because, in calibration tests, it was exceedingly

rare for NARMAX to use terms up to this value and due to our relatively short time series (27 years),

requiring more than four points to be withheld from the beginning of the training data may have

unintended consequences on model validity.

The maximum time lag allowed for autoregressive terms ny was tested at each value between 0 (no

autoregressive terms allowed in the model) to two years. Autoregressive terms explicitly include the

target variable y from previous years, which can significantly reduce absolute error if the target

variable is not temporally independent, which is usually the case in natural systems. The maximum

time lag tested was chosen as two years because, during model calibration, time lags of this value or

greater were rare, and the impact of increasing time lag further resulted in an exponential increase in

search time.

The maximum value for model degree was tested at each value between 1 and 3, including linear

first order and nonlinear second and third-order model terms. Increasing maximum degree

exponentially increases the size of the model term dictionary and, therefore, the model runtime.

Model structures that include fourth-order or higher terms were not allowed due to the infeasibility

of exploring such models using the available computing resources. Also, models using parameters of

a degree higher than 3 are likely to be challenging to interpret and include terms that could be

expressed as lower order. It is unlikely that only very high order model structures can describe truly
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essential insights into the system.

Finally, the maximum number of terms allowed in the final model, length_value, was tested at each

maximum between 3 and 16 model terms. This range was determined during model calibration tests

as regardless of the other settings, models with more than ten terms were rare, but occasionally

models with as many as 15 terms were produced. Models with fewer than three terms are highly

likely to underfit if the hyperparameters imposed that structure, so we saw no reason to limit the

number of terms to 1 or 2. Overall, NARMAX tended to produce models with fewer terms than the

allowed maximum.

A visual representation of the hyperparameter optimisation process is shown in Figure 5.4.

Figure 5.4. Schematic representation of the nested structure is used to identify the optimal

combination of hyperparameters in the final NARMAX model. The NARMAX model is nested within

a brute force search of the hyperparameter space. This process is repeated for every target variable,

so hyperparameter structure varies between experiments.
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5.2.2. Performance measures

We calculate a range of performance measures to compare models during the building process.

Within NARMAX, the principal performance measure is Error Reduction Ratio (ERR), which

determines how much error is reduced by each subsequent feature added into the model. In the outer

loop for finding hyperparameters, we use Mean Absolute Percentage Error (MAPE) calculated on

the test data to choose the best model from all candidates.

MAPE has the advantage of being easily interpretable and less sensitive to the small sample size of

our test sets. It is a percentage value representing the average error per point as a percentage of the

absolute observed value. We also report the Pearson's correlation coefficient (COR), Variance

Accounted For (VAF), Normalised Root Mean Square Error (NRMSE) and Mean Absolute Error

(MAE) for each model. We select the set of hyperparameters that generate a model with the lowest

MAPE on the test points out of all candidate models.

This prioritises performance on test data over training performance in the outer loop. However, the

internal NARMAX model building process already builds models that minimise over/underfitting

and balance performance on training vs out of sample. Overall, we believe this method of model

selection is suitable for our study goals.

5.2.3. Model Validation

Each model has a period of 27 years of data, represented by 27 temporally dependent points. This is

a short time series, and limits our options for model validation. We split the data into training and

test as 24:3, where the first 24 points chronologically were used as training and final 3 points used as

test. In practice, the actual size of the training set varied based on the maximum lag of terms in the

final model to be 24 - k where k is the highest value of nu present in the final model terms. This is

because k points were required to be withheld for initialising each model.

We considered other methods for model validation, including an extensive review of a roll-out

nested cross validation approach where the data was subset into a training set of increasing length

from 5-24 and used to predict only the next future test point per cycle. This method is used to cross

validate time series models where the order of points must be preserved and so normal cross



162

validation techniques are invalidated. However, we abandoned this method of validation because the

models generated were too sensitive to the very small sample sizes. Our full time series of 27 points

is at the lower limit of suitability for the NARMAX modelling approach, which is often applied to

series with thousands or more points. When compared to a straightforward train/test split approach,

the models generated using nested cross validation performed significantly worse on both training

and test data with huge swings in performance as the number of samples increased. Ultimately, we

believe that our method of validation is appropriate for this study and is the best method available to

us given the data.

5.3 Results

In this section we present the results of our NARMAX models. This section is split into three

subsections, grouping results by variable category. For each target variable we show a figure

highlighting the model fit compared to the observed values, with training and test points indicated by

colour. We also present two tables: one containing a suite of model performance metrics and the

other detailing the structure of the final NARMAX model as a list of parameters, coefficients for

each and the ERR accounted for by each.  The variables within parameters are named using a short

descriptive code within the results tables, and a full description of each variable by name is listed in

Appendix E.

5.3.1 Prey Consumption by Weight

We fitted NARMAX models to the fraction of annual cod diet by weight accounted for by five prey

groups: Mallotus villosus (capelin), Melanogrammus aeglefinus (haddock), Pandalus borealis

(shrimp), Boreogadus saida (polar cod) and Gadus morhua (cannibalism). Overall, model

performance on these metrics was uneven. Melanogrammus aeglefinus and Boreogadus saida in

particular were difficult for NARMAX to find well fitting models, and the overall error is much

higher than for the other species.
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5.3.1.1. Mallotus villosus

Figure 5.5 NARMAX fit versus fraction of cod diet accounted for by Mallotus VIllosus. Blue:

Observed data, Green: NARMAX fit to training data, Thick Red: NARMAX fit to test data. Thin Red:

Difference between Observed and fitted lines.

The optimal model is of degree 2, with no autoregressive terms and a maximum input lag of 4.

Model performance on both training and test data is good, with a MAPE of 3.9% and 9.1%

respectively. Further model performance measures are presented in Table 5.2. Visual inspection of

model fit in Figure 5.5 demonstrates a very good agreement between observations and model fits

during the training period. We see that the model prediction on test data is worse than during

training. However, despite the divergence of the model on these points, we still see only small

absolute differences between observation and prediction. The model captures even large swings in

value, for example between 1998 and 1999.

There are six parameters in the final model, including one constant value of 0.45. The parameters are

listed in Table 5.3 in decreasing order of ERR. Five of the six model terms are 2nd order, with no

linear terms. The most important term for reducing error is TOTSPBIO(t-01) *BS_PFRAC(t-02), a
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term which combines prior spawning biomass with the fraction of Boreogadus saida in diet, this

term has an ERR of 75.5%. The next most significant nonlinear term, contributing about 3.9% to

ERR, is RECRUITS(t-04) *GML_MA_S_OV(t-01) which combines recruitment from four years prior

with the spatial overlap between large cod and Melanogrammus aeglefinus from the previous year.

The remaining nonlinear terms are all combinations of various consumption and spatial overlap

terms between cod and different prey groups. Variables chosen represent a range of measures of

spatial and trophic domains as well as some key population measures, with some identified terms

having long lag times.

Table 5.2 NARMAX model performance measures for MV_PFRAC

COR VAF NRMSE MAE MAPE

Training 0.99197 0.98401 0.12748 0.015979 3.9054

Test -0.80642 0 0.52865 0.052741 9.1355

Table 5.3. NARMAX model structure for MV_PFRAC (Variable Explanations in Appendix E)

Parameter Coefficient ERR

TOTSPBIO(t-01)

*BS_PFRAC(t-02)

-0.089853 75.498

CONST 0.44941 18.1982

RECRUITS(t-04)

*GML_MA_S_OV(t-01)

-0.13203 3.87936

MA_PFRAC(t-03)

*GMS_BS_S_OV(t-01)

0.065935 1.32977

GM_PFRAC(t-02)

*GML_GMS_S_OV(t-02)

0.045403 0.59874

MA_PFRAC(t-04)

*GMM_BS_S_OV(t-04)

0.026152 0.337396
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5.3.1.2.Melanogrammus aeglefinus

Figure 5.6 NARMAX fit versus fraction of cod diet accounted for by Melanogrammus aeglefinus.

Blue: Observed data, Green: NARMAX fit to training data, Thick-Red: NARMAX fit to test data,

Thin-Red: Difference between Observed and NARMAX fit.

The optimal model for MA_PFRAC is of degree 1, a linear model, with no autoregressive terms, a

maximum lag of 1 year and six parameters. Model fit is shown in Figure 5.6. Model performance is

uneven. The model performed well on test data, with a MAPE of 9.4%, but underperformed on

training data with a MAPE of 40.3%. Performance measures for this model are listed in Table 5.4.

Visual inspection of the model fit shows a general success in fitting the underlying shape of the data,

supported by the VAF of 0.79 and 0.82 for training and test points respectively. However, the model

generally underperformed at identifying the magnitude of change between points, leading to a higher

absolute error. In particular, the peak in the observed consumption of Melanogrammus aeglefinus in

2012 was not predicted at all. At some points, the absolute error was greater than the actual observed

value. This poor performance may be a result of the small sample size and localised distribution of

the species. While this model is not a failure, it is not as successful as the model for MV_PFRAC

previously shown.
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The model structure is linear with five variable parameters and one constant, listed in Table 5.5. The

constant of 0.14 has the highest ERR at 68.9, with the most significant variable parameter,

UNIQUEPREY, having an ERR of only 20.52. The remaining variable parameters have ERR in the

range 2.29-0.74. The variables selected for inclusion in the final model are drawn from an interesting

combination: UNIQUEPREY is a measure of prey diversity, FBAR is a measure of cod mortality

and the remaining variables describe the overlap between cod size groups and prey species,

specifically Boreogadus saida. The linear structure, few model terms and short time lag combined

with the uneven overall model performance may suggest that the data required for a better model fit

is not available in this case. The standout result is that UNIQUEPREY(t-01) provides the most

information to the MA_PFRAC model, and there is a positive correlation between the two.

Table 5.4 NARMAX model performance measures for MA_PFRAC

COR VAF NRMSE MAE MAPE

Training 0.8895 0.79121 0.513699 0.0281578 40.3731

Test 0.97465 0.820682 0.190938 0.0118535 9.36863

Table 5.5 NARMAX model structure for MA_PFRAC (Variable Explanations in Appendix E)

Parameter Coefficient ERR

UNIQUEPREY(t-01) 0.05033 20.5225

constant 0.13625 68.8748

GMM_GMS_S_OV(t-01) 0.029045 2.2896

FBAR(t-01) -0.035054 0.980002

GMS_BS_S_OV(t-01) 0.015421 0.809816

GML_BS_S_OV(t-01) 0.024385 0.738994
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5.3.1.3. Pandalus borealis

Figure 5.7 NARMAX fit versus fraction of cod diet accounted for by Pandalus borealis. Blue:

Observed data, Green: NARMAX fit to training data, Thick-Red: NARMAX fit to test data, Thin-Red:

Difference between Observed and NARMAX fit.

The optimal model for PB_PFRAC is of degree 2, with no autoregressive terms and a maximum lag

of 3 years. The model has 11 parameters. Model fit is shown in Figure 5.7. Model performance is

excellent, with a MAPE of 0.66% and 6.0% for training and test sets respectively. Performance

measures for this model are listed in Table 5.6. Visual inspection of the model fit shows exceptional

agreement between the modelled and observed values in the training set and very close agreement

within the test set. The model characterises variability in the data exceptionally well, with a training

VAF of  ~1 and a test VAF of 0.71. This marks the best performance for any of the prey consumption

variables presented in this subsection.

The model structure is complicated, with eleven 2nd order parameters. These parameters are listed in

Table 5.7. The most significant parameter, RECRUITS(t-03)*BS_PFRAC(t-01) is a combination of

prior cod recruitment and consumption of Boreogadus saida, with an ERR of 73.43. The remaining

10 parameters have ERR between 12.30-0.01. The variables included in the final model are drawn
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from a range of variable groups. RECRUITS, TOTALBIO and LANDINGS are cod population

measures. BS_PFRAC, GM_PFRAC, MV_PFRAC and UNIQUEPREY are diet measures whilst

LARGEFRAC and MEDFRAC are population structure measures. Finally, this model uses many

overlap measures between cod and prey groups.This model is using a wide range of the available

input data, and although it may be difficult to interpret specific model terms, it’s clear that the model

has identified some key relationships as evidenced by its performance on test data.

Table 5.6 NARMAX model performance measures for PB_PFRAC

COR VAF NRMSE MAE MAPE

Training 0.99992 0.99985 0.012455 0.0004719 0.66428

Test 0.87105 0.71026 0.27632 0.0041593 5.9529



169

Table 5.7 NARMAX model structure for PB_PFRAC (Variable Explanations in Appendix E)

Parameter Coefficient ERR

RECRUITS(t-03) *BS_PFRAC(t-01) -0.052294 73.4361

GM_PFRAC(t-03) *GML_MA_S_OV(t-02) -0.028984 12.2968

GML_MV_S_OV(t-01)

*GML_MA_S_OV(t-01)

0.073161 6.43946

MV_PFRAC(t-02) *GMM_BS_S_OV(t-01) -0.024775 4.01137

TOTSPBIO(t-03) *GMS_BS_S_OV(t-01) -0.019567 2.39996

GMS_BS_S_OV(t-01)

*GML_GMM_S_OV(t-01)

0.0080309 0.614998

UNIQUEPREY(t-03)

*GMS_BS_S_OV(t-03)

0.0089127 0.379653

LARGEFRAC(t-03)

*GML_MA_S_OV(t-02)

-0.0064002 0.263266

MEDFRAC(t-02)

*GMM_GMS_S_OV(t-02)

-0.0052939 0.0989652

TOTALBIO(t-01) *BS_PFRAC(t-02) 0.0035345 0.0417395

LANDINGS(t-01) *GMS_BS_S_OV(t-02) -0.0019616 0.0142333
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5.3.1.4. Boreogadus saida

Figure 5.8. NARMAX fit versus fraction of cod diet accounted for by Boreogadus saida. Blue:

Observed data, Green: NARMAX fit to training data, Thick-Red: NARMAX fit to test data, Thin-Red:

Difference between Observed and NARMAX fit.

The optimal model for BS_PFRAC is of degree 1, a linear model, with a maximum lag of 1 year and

no autoregressive terms. The model has six parameters. Model fit is shown in Figure 5.8. Model

performance is quite poor, with a MAPE of 32.0% and 42.7% on training and test data respectively.

Performance measures for this model are listed in Table 5.8. Visual inspection of model fit reveals a

clear dissonance between modelled points and observed points in both the training and test sets. The

model does a poor job of quantifying the variability of the observed data, and also of quantifying its

magnitude. Overall, this is the worst performing model within the prey consumption variable group

and the entire study. As with Melanogrammus aeglefinus, this poor performance may be a result of

the small sample size and localised distribution of the species.

The model structure is linear with five variable parameters and a constant term. These parameters are

listed in Table 5.9. The most significant term is the constant value of 0.1, with an ERR of 68.94. The

most significant variable parameter is GML_BS_S_OV(t-01), the summer overlap between large cod
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and Boreogadus saida, which has an ERR of 18.9. The remaining variable parameters have ERR

between 1.88-0.64. The variables chosen in the final model are drawn from species overlap, diet, and

population structure groups. The structure of this model is similar to the model for MA_PFRAC,

which also underperformed compared to the models for other prey groups. This suggests that in this

case too, some key data was missing which would allow NARMAX to fit a more complex model

with an adequate degree of validity. In this case, a simple linear model was the best candidate.

Table 5.8 NARMAX model performance measures for BS_PFRAC

COR VAF NRMSE MAE MAPE

Training 0.739822 0.547337 0.909411 0.0267958 31.9684

Test -0.278374 0 0.654181 0.0286515 42.6648

Table 5.9 NARMAX model structure for BS_PFRAC (Variable Explanations in Appendix E)

Parameter Coefficient ERR

GML_BS_S_OV(t-01) 0.034078 18.9463

constant 0.096074 68.9359

LARGEFRAC(t-01) -0.027673 1.87498

GMS_BS_S_OV(t-01) -0.0065138 0.850353

PB_PFRAC(t-01) -0.018762 0.968066

MEDFRAC(t-01) -0.016733 0.642482
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5.3.1.5. Gadus morhua

Figure 5.9. NARMAX fit versus fraction of cod diet accounted for by Gadus morhua. Blue: Observed

data, Green: NARMAX fit to training data, Thick-Red: NARMAX fit to test data, Thin-Red:

Difference between Observed and NARMAX fit.

The optimal model for GM_PFRAC is of degree 1, a linear model, with a maximum lag of 2 years,

an autoregressive term with 1 year of maximum delay and 11 parameters in the final model. Model

fit is shown in Figure 5.9. Model performance was quite good overall, with a MAPE of 16.9% and

16.1% for training and test sets respectively. Performance measures for this model are listed in Table

5.10. Visual inspection of the model fit shows good agreement between modelled points and

observed points generally in both training and test sets. The large peak from 1994 to 1996 is

generally well captured, with the following period, which appears to be a step change in pattern, also

reasonably well captured by the model. The model values lack the smoothness of the observed data

during the period around 2005 to 2012, but remains quite close in absolute value.

The model structure is of 1st degree, a linear model, with 11 variable parameters of which one is

autoregressive. These parameters are listed in Table 5.11. The most significant parameter is the

autoregressive GM_PFRAC(t-01), the proportion of diet accounted for by Gadus morhua during the
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previous year , the only autoregressive term appearing in any of the diet variable models. This

parameter is associated with an ERR of 82.9. The remaining parameters have an ERR between 5.12 -

0.67. The variables selected for the final model are drawn from a range of groups: Three parameters

are diet variables, three are cod population variables and five are overlap measures. The most

interesting result is that this is the only diet variable for which an autoregressive term has been

included in the NARMAX model equation, and that term has the highest ERR. This indicates that

previous measures of cannibalism may be useful for predicting future cannibalism.

Table 5.10 NARMAX model performance measures for GM_PFRAC

COR VAF NRMSE MAE MAPE

Training 0.962066 0.920954 0.276305 0.0268577 16.8912

Test 0.827092 0.535351 0.403372 0.0252508 16.0862

Table 5.11 NARMAX model structure for GM_PFRAC (Variable Explanations in Appendix E)

Parameter Coefficient ERR

GM_PFRAC(t-01) 0.9625 82.9072

MA_PFRAC(t-02) 0.003992 5.12037

GMM_BS_S_OV(t-02) 0.023533 1.43868

FBAR(t-01) 0.3005 1.3287

BS_PFRAC(t-02) -0.30702 1.97449

GMM_GMS_S_OV(t-02) 0.1037 1.17094

GMS_BS_S_OV(t-01) 0.033685 1.09949

GML_GMM_S_OV(t-02) 0.041754 0.635027

GML_GMS_S_OV(t-02) 0.041868 0.704681

TOTALBIO(t-01) -0.025318 0.733428

RECRUITS(t-02) -0.044661 0.669739
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5.3.2 Barents Sea cod population measures

5.3.2.1. Gadus morhua Biomass

Figure 5.10 NARMAX fit versus total mature biomass of Gadus morhua. Blue: Observed data,

Green: NARMAX fit to training data, Thick-Red: NARMAX fit to test data, Thin-Red: Difference

between Observed and NARMAX fit.

The optimal model for TOTALBIO is of degree 1, a linear model, with one autoregressive term and

a maximum input lag of 1 year. There are 11 parameters in the final model. Model fit is shown in

Figure 5.10. Model performance is excellent, with a MAPE of 3.43% and 1.26% on training and test

data respectively. Performance measures for this model are listed in Table 5.12. Visual inspection of

the model fit shows excellent agreement between modelled points and observed points in both the

training and test sets. The model accurately characterizes the full range of the data, including the

large peak from 2007 to 2014.
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The model structure is of 1st degree, with 11 variable parameters. These variable parameters are

listed in Table 5.13. The most significant term is the autoregressive TOTALBIO(t-01), with an ERR

of 98.54. The remaining parameters have ERR between 0.79-0.01. The autoregressive term clearly

contains the most information in the model, but the remaining terms with very small ERR still add

new information essential for capturing the shape and directionality of the observed data. Of the

variables selected for inclusion in the final model, 2 are population measures, 5 are measures of diet,

3 are spatial overlap measures and 1 is a size structure measure.

Table 5.12 NARMAX model performance measures for TOTALBIO

COR VAF NRMSE MAE MAPE

Training 0.99723745 0.994474428 0.0747648259 63827.0486 3.43858005

Test 0.985143356 0.968896977 0.0776888698 39300.7503 1.26446087

Table 5.13 NARMAX model structure for TOTALBIO (Variable Explanations in Appendix E)

Parameter Coefficient ERR

TOTALBIO(t-01) 1.020414324 98.5385

FBAR(t-01) -236281.9946 0.786081

UNIQUEPREY(t-01) 11671.37649 0.294209

GML_PB_S_OV(t-01) 7229.952078 0.093094

LARGEFRAC(t-01) 151289.2097 0.039588

GM_PFRAC(t-01) -233671.2692 0.0499637

GML_BS_S_OV(t-01) 122701.4847 0.017885

GMM_GMS_S_OV(t-01) 136298.8917 0.0276603

MV_PFRAC(t-01) -99106.35288 0.0352997

PB_PFRAC(t-01) -95871.67835 0.0164249

BS_PFRAC(t-01) -79897.22299 0.00560015
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5.3.2.2. Gadus morhua Spawning Biomass

Figure 5.11 NARMAX fit versus total spawning biomass of Gadus morhua. Blue: Observed data,

Green: NARMAX fit to training data, Thick-Red: NARMAX fit to test data, Thin-Red: Difference

between Observed and NARMAX fit.

The optimal model for TOTSPBIO is of degree 1, with no autoregressive term and a maximum lag

of 2 years. There are 5 terms in the final model. Model fit is shown in Figure 5.11. Model

performance is good, but inferior when compared to the TOTALBIO model, a closely related

variable. MAPE is 11.8% and 7.80% on training and test data respectively. Performance measures

for this model are listed in Table 5.14. Visual inspection shows good agreement between modelled

and observed points, though the modelled fit oscillates around the observational data between 1994

and 2007, failing to smoothly fit. Performance on test points was very good for 2 of the 3 years, and

good overall.
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The model structure is linear with 4 variable terms and 1 constant. The model parameters are listed

in Table 5.15. The most significant variable parameter is LANDINGS(t-01) with an ERR of 22%.

The constant 1,079,721 is the most significant parameter overall, with an ERR of 75.6. The

remaining parameters have ERR between 1.29 - 0.32. Of variables chosen for inclusion in the final

model, 2 are population measures, 1 is a diet measure and 1 is a spatial overlap measure.

Table 5.14 NARMAX model performance measure for TOTSBIO

COR VAF NRMSE MAE MAPE

Training 0.9931615652 0.9863698946 0.1175519134 70870.61903 11.83621153

Test 0.472289164 0.1887829448 0.5285578246 135832.4136 7.80756614

Table 5.15 NARMAX model structure for TOTSBIO (Variable Explanations in Appendix E)

Parameter Coefficient ERR

LANDINGS(t-01) 404760.1114 22.0033

constant 1079721.3064 75.5744

SMALLFRAC(t-01) 362457.9703 1.29381

GML_MA_S_OV(t-01) 91934.264855 0.296629

TOTALBIO(t-02) -79562.062082 0.318082
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5.3.2.3. Gadus morhua Recruitment

Figure 5.12 NARMAX fit versus recruitment of Gadus morhua. Blue: Observed data, Green:

NARMAX fit to training data, Thick-Red: NARMAX fit to test data, Thin-Red: Difference between

Observed and NARMAX fit.

The optimal model for RECRUITS is of degree 2, with a maximum lag of 1 year, no autoregressive

terms and only three parameters in the final model. Model fit is shown in Figure 5.12. Model

performance is reasonably good, but inferior to both TOTALBIO and TOTSBIO, with a MAPE of

26.02% and 13.06% on training and test data respectively. Performance measures for this model are

listed in Table 5.16. Visual inspection of model fit demonstrates that the modelled points

successfully capture the broad pattern of the observations, but struggle to capture the magnitude of

interannual change. For example, the sudden peak in recruitment in 2007 is captured quite well,

while significant drops in 2004 and 2010 are missed. The model accurately predicts the first two test

points, but underestimates the final point in 2017.

The model structure is of degree 2, with two variable parameters and one constant. The model

parameters are listed in Table 5.17. The most significant model term is

UNIQUEPREY(t-01)*UNIQUEPREY(t-01), with an ERR of 66.1. The next most important term is



179

the constant value of 432,134 with an ERR of 21.28 and the final term, GML_GMM_S_OV(t-01)

*GMM_GMS_S_OV(t-01), has an ERR of 7.11. It’s difficult to interpret this model as the variable

choices are not immediately intuitive and the inclusion of only two variable terms in the final model

is interesting. There are no population measures included, such as TOTALBIO, which we might

have expected to be significant. Instead, this model is effectively a combination of prey diversity and

overlap between the three cod size groups, which could be a proxy for size or spatial structure of the

population.

Table 5.16 NARMAX model performance measures for RECRUITS

COR VAF NRMSE MAE MAPE

Training 0.7759858383 0.6021540212 0.8128374243 131653.3964 26.01635427

Test 0.9961852287 0.8076517997 0.2353225692 74331.86338 13.0604887

Table 5.17 NARMAX model structure for RECRUITS (Variable Explanations in Appendix E)

Parameter Coefficient ERR

UNIQUEPREY(t-01) *UNIQUEPREY(t-01) 175511.1643 66.0781

constant 432134.4085 21.2767

GML_GMM_S_OV(t-01) *GMM_GMS_S_OV(t-01) 187785.838 7.10566
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5.3.3 Barents Sea cod Size Structure

5.3.3.1. Fraction of Gadus morhua Population <20cm in length [Gadus morhua (S)]

Figure 5.13 NARMAX fit versus fraction of sampled Gadus morhua population in IMR-PINRO

database <20cm in length. Blue: Observed data, Green: NARMAX fit to training data, Thick-Red:

NARMAX fit to test data, Thin-Red: Difference between Observed and NARMAX fit.

The optimal model for SMALLFRAC is of degree 1, with a maximum lag of one year, one

autoregressive term and three parameters. Model fit is shown in Figure 5.13. Model performance is

uneven, with a MAPE of 20.27% and 6.16% on training and test sets respectively. The full list of

performance measures is shown in Table 5.18. Visual inspection of the fit shows the model

successfully characterizes the general trend in the observations but struggles to capture the

interannual detail. This is similar to the model for RECRUITS, which is perhaps to be expected as

SMALLFRAC and RECRUITS are undoubtedly measurements of closely related aspects of the

population.
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The model structure has only two variable linear parameters and one constant. These parameters are

listed in Table 5.19. The most significant parameter is the autoregressive SMALLFRAC(t-01) with

an ERR of 89.2. The remaining terms are the constant value 0.09 with an ERR of 4.38 and

LARGEFRAC(t-01) with an ERR of 3.26. The only variables chosen for inclusion in this model are

size structure measurements. The structure is also similar to the model for RECRUITS, which

suggests some internal consistency between the two models considering the functional proximity of

the variables measured.

Table 5.18 NARMAX model performance measures for SMALLFRAC

COR VAF NRMSE MAE MAPE

Training 0.332845 -0.0767985 1.39713 0.0149739 20.2626

Test -0.0249575 0 0.443173 0.00651887 6.15595

Table 5.19 NARMAX model structure for SMALLFRAC (Variable Explanations in Appendix E)

Parameter Coefficient ERR

SMALLFRAC(t-01) -0.15041 89.2016

constant 0.087305 4.37694

LARGEFRAC(t-01) 0.019936 3.25873
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5.3.3.2. Fraction of Gadus morhua population between 20cm and 100cm in length [Gadus

morhua (M)]

Figure 5.14 NARMAX fit versus fraction of sampled Gadus morhua population in IMR-PINRO

database >20cm, <100cm in length. Blue: Observed data, Green: NARMAX fit to training data,

Thick-Red: NARMAX fit to test data, Thin-Red: Difference between Observed and NARMAX fit.

The optimal model for MEDFRAC is of degree 2, with a maximum lag of three years, no

autoregressive terms and has five parameters. Model fit is shown in Figure 5.14. Model performance

is excellent, with MAPE of 0.67% and 0.74% in training and test sets respectively. Performance

measures for this model are listed in Table 5.20. Visual inspection of model fit shows excellent

agreement between modelled and observed data in both training and test sets. The data does not vary

significantly from its mean, though there is a slight decreasing trend over time. The model appears to

accurately characterize the direction of interannual change in the training data, reflected in the high

COR and VAF measures.

The model structure is of degree 2, with 4 parameters constructed from six variables, and one

constant value. These parameters are listed in Table 5.21. The most significant term is

GML_MA_S_OV(t-03) * GML_MA_S_OV(t-03) with an ERR of 78.02. The remaining terms have
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ERR between 21.87 - 0.01. Of the variables included in the final model, four are spatial overlap

measures, one is a population measure and one is a size structure measurement.

Table 5.20 NARMAX model performance measures for MEDFRAC

COR VAF NRMSE MAE MAPE

Training 0.97321 0.94714 0.23624 0.0059939 0.6668

Test 0.9268 0.50884 0.33102 0.0062221 0.73598

Table 5.21 NARMAX model structure for MEDFRAC (Variable Explanations in Appendix E)

Parameter Coefficient ERR

GML_MA_S_OV(t-03) *GML_MA_S_OV(t-03) 0.012159 78.0164

constant 0.87512 21.8686

TOTSPBIO(t-02) -0.036819 0.0839765

LARGEFRAC(t-01) *GMM_MA_S_OV(t-03) -0.017196 0.0187922

GMM_BS_S_OV(t-03) *GMS_BS_S_OV(t-01) 0.0069507 0.00612873
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5.3.3.3 Fraction of Gadus morhua population > 100cm in length [Gadus morhua (L)]

Figure 5.15 NARMAX fit versus fraction of sampled Gadus morhua population in IMR-PINRO

database >100cm in length. Blue: Observed data, Green: NARMAX fit to training data, Thick-Red:

NARMAX fit to test data, Thin-Red: Difference between Observed and NARMAX fit.

The optimal model for LARGEFRAC is of degree 1, with a maximum lag of one year, no

autoregressive terms has six parameters. Model fit is shown in Figure 5.15. Model performance is

reasonably good, performing better than the model for SMALLFRAC but not as well as for

MEDFRAC. The MAPE on training and test data are 19.00% and 3.83% respectively. Performance

measures for this model are listed in Table 5.22. Visual inspection of the model shows that the model

successfully captures the broad trends in the observed data but fails to characterize the interannual

detail at points. For example, the period of sudden significant increase in LARGEFRAC beginning

in 2006 is generally identified by NARMAX, but in the periods 1995 - 1999 and 2002 - 2005, the

model struggles to fit.

The model structure is of degree 1, with 5 variable parameters and 1 constant value. These

parameters are listed in Table 5.23. The most significant variable parameter is PB_PFRAC(t-01),

which is the fraction of diet accounted for by Pandalus borealis during the previous year, with an
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ERR of 18.82. The most significant parameter overall is the constant value of 0.024, with an ERR of

61.10. The remaining terms have ERR between 16.79 - 0.38. Of the variables selected for inclusion,

one is a diet measure, two are population measures and two are spatial overlap measures.

Table 5.22 NARMAX model performance measures for LARGEFRAC

COR VAF NRMSE MAE MAPE

Training 0.98119 0.962735 0.196743 0.00218821 18.9944

Test 0.874136 0.312716 0.503383 0.00187775 3.82669

Table 5.23 NARMAX model structure for LARGEFRAC (Variable Explanations in Appendix E)

Parameter Coefficient ERR

PB_PFRAC(t-01) -0.0018887 18.8262

constant 0.02359 61.0991

TOTSBIO(t-01) 0.0037631 16.7581

GMM_MA_S_OV(t-01) -0.011354 1.21815

FBAR(t-01) -0.0030846 0.388816

GMM_GMS_S_OV(t-01) -0.0023207 0.375069
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5.4 Discussion

In this chapter we have demonstrated the success of applying a NARMAX modelling approach to

many critical phenomena relevant to the trophic role of Barents Sea cod. To interpret these results,

we begin by considering the absence of expected variables in the model structures, and the

unintuitive interpretation of those variables which were included. The model selection process

identifies orthogonal features, so highly correlated parameters will not be present in the final model.

This could mean that certain variables encode similar information, and when NARMAX chooses a

parameter to include which reduces error by the highest amount, it may choose a correlate of a more

interpretable variable. For example, if surface temperature was highly correlated with an overlap

measure, NARMAX may retain the less easily interpretable overlap measure instead because it

contains marginally more information about the target variable within the parameter in which it is

used. This is a correct procedure for generating the best model, and it may reveal an interesting

dimension of the system, but it can make it difficult to interpret specific model structures.

Next, we consider why some models were successful while others were not. When a simple model

which performs quite poorly is the optimal choice after the model selection and hyperparameter

search has been carried out, this indicates that there are missing variables which are integral to the

system being modelled, and no data that is available to NARMAX is capable of explaining the

variability any further. Identifying those missing variables can be difficult, especially when variables

which we would expect to be informative and are included end up not being used at all, for example

our measure of Mallotus villosus biomass was not used in the optimal model for Mallotus villosus

consumption by cod, even though we might expect that these two measures should be related (Fall,

2019) .

Consumption of Boreogadus saida appears as an important explanatory variable in several models,

it’s unclear exactly why consumption of this species recurs so frequently but there are several

possible explanations. Boreogadus saida occupies a similar trophic niche to Mallotus villosus but

occupies a different spatial range. As our results in Chapter 4 suggest an expansion in the

distribution of Gadus morhua into the northeast Barents Sea, this increases the exposure between

cod and polar cod. It is possible that the consumption of Boreogadus saida is correlated with several

important ecosystem properties which drive many of the characteristics we have modelled, acting as
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a sort of proxy. The relationship between Gadus morhua and Boreogadus saida is further explored in

Chapter 6.

In several of the models, constant terms were found to be highly significant, particularly in the diet

measures. We should be sceptical about the interpretation of these terms, as they are unlikely to

describe true ecological features of the system and instead encode an approximation of some other

dynamics at play. They likely indicate missing variables, or some autoregressive relationship that has

not been captured within the hyperparameter bounds used in this study. Models which rely on a

constant term are more likely to be overfitting to the data, and should the underlying dynamics

which they obscure change significantly, these models would fail to capture the result. That is to say,

these models are representing phenomena that are not currently varying significantly, and without

observations of variation, NARMAX cannot identify any drivers of variation.

There are no clear differences between model structures across target groups (prey consumption vs

population parameters vs size structure). While we know that prey consumption is driven by

opportunity and optimal foraging theory (Townsend and Winfield, 1985), dependent on relative

densities and overlap. NARMAX identifies significant correlations between consumption of species

which occupy the same position (e.g. Boreogadus saida and Mallotus villosus) as high energy, high

effort prey (Hop and Gjøsæter, 2013). Likewise, size structure is highly related to temperature

(Brander, 1995) and the availability of suitable prey to support larger individuals (Floeter and

Temming, 2003). As NARMAX did not directly use any temperature measures, but instead used

measures of overlap between, for example, large cod and Mallotus villosus, it suggests that some

elements of biotic drivers are better represented than the effects of temperature, but interpretation is

difficult. Finally, biomass and recruitment are functions of the environment as well as population

density dependent effects, the abundance of trophically important prey species and match-mismatch

of cod larvae with suitable conditions for survival (Durant et al., 2007; Endo et al., 2022).

NARMAX used autocorrelation to explain variation in total biomass, which is useful if not

particularly interesting, but the most informative feature for recruitment was related to the number of

unique prey in diet during the previous year, which could be a proxy for the probability of suitable

prey being available at the appropriate time to support survival during the important period before

recruitment. It is difficult to directly relate what we already know about the factors driving these

measures and the NARMAX model structures, but they do provide a powerful tool for prediction

and a starting point for refinement and ecological inquiry.
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This study has several limitations. The first is that the period under study is very short, 27 data points

is at the lower end of feasibility for the application of NARMAX which is often applied to

engineering problems with thousands of points. This has limited our options for model validation. As

mentioned previously, hierarchical partitioning methods for cross-validation of time series data were

too sensitive to changes in training set size to pursue. Further, like all regression models, model

performance on out of sample data is dependent on the training data being representative of the full

variability of the system. For this reason, we should be careful when extrapolating insights from this

model into other time periods, before or afterwards. Extending the length of our training period

would help to increase the robustness of the model to a wider period of time.

Another possible limitation is that the NARMAX modelling was carried out using a desktop

workstation, which due to memory and processing speed limits, required strict limits to be placed on

the hyperparameter space explored. Although these limits were determined based on prior

knowledge of the system, it is possible that some improvements could be made by considering long

lag times or higher model degrees, but these are uncommon in other published NARMAX studies.

To improve this work, extending the data period further into the past and creating a longer time

series should yield beneficial results, however, finding sufficient relevant historical data for all

variables of interest is a major challenge. In our case, the study period was determined by the

availability of ocean reanalysis data for physical environmental variables used in the construction of

Maxent distribution models, and that data debt was carried through to this study. As investigating the

spatio-temporal dynamics of cod diet and spatial overlap with key prey species was a core objective

of this study, we had to accept this limitation.
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Chapter 6 - Discussion

We stated three aims in the Introduction of this thesis:

● Aim 1 - To identify the spatio-temporal and ontogenetic dimensions of variability in the diet

of Barents Sea cod.

● Aim 2 - To model the distribution of Barents Sea cod and key prey species over time to

reveal changes in distribution driven by environmental change.

● Aim 3 - To model key ecological measures of the Barents Sea cod stock and quantify the

system of factors that drive variability, incorporating new information about temporal

variability in predator-prey spatial overlap.

Through a combination of data analysis and statistical modelling, we have pursued these aims and

uncovered new knowledge about the Barents Sea ecosystem and the role of Gadus morhua within it.

In this chapter, we present our main findings pertaining to each aim and discuss our interpretation of

those results, how they relate to the extant literature, and the value of our findings. We separate the

discussion into three subsections corresponding to our research aims.
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6.1. Spatio-temporal and ontogenetic patterns in the diet of Barents

Sea cod

Chapter 2 analysed the spatio-temporal and ontogenetic structure of cod diet through the

IMR-PINRO database. We analysed the size and age structure of Gadus morhua in space and time.

We found spatio-temporal heterogeneity in the ontogenetic structure of the population generally in

agreement with the existing literature. Spatially, we found that individuals sampled in the deep water

in the north-eastern Barents Sea tend to be larger than those in the centre and south, consistent with

existing studies (Ingvaldsen et al., 2017). Temporally, we also see that the average size of individuals

appears to have increased over the study period, with a more significant fraction of cod sampled

falling into the upper length deciles in the final years of the data than at any time previously. The

latter period of the study is characterised by higher temperatures (Boitsov et al., 2012) reaching a

peak in 2015-2016 (ICES, 2021) which has been positively associated with cod growth rate

(Brander, 1995). Recent studies have found that length at age in closely related species Boreogadus

saida is negatively correlated with sea-ice coverage (Dupont et al., 2020), which is also lower in the

latter years of the study. We observed similar patterns in the population’s age distribution, within

expectations, as the two measures are closely related.

Next, we explored the spatio-temporal patterns in the diet of Barents Sea cod. We found that diet

was highly variable across space and time and was ontogenetically stratified within the population,

in agreement with previous studies (Eriksen et al., 2021; Holt et al., 2019; Townhill et al., 2021).

While Mallotus villosus dominates overall diet, we found that a range of prey groups became more

important when examining specific subregions of the Barents Sea. For example, the importance of

Boreogadus saida as a prey item in the north/northeast region (Hop and Gjøsæter, 2013), and when

considering specific periods in time, particularly when we examined the diet of different size

groups of the cod population (Holt et al., 2019). While previous studies have examined continuous

ontogenetic dietary patterns or examined existing groups, our novel hierarchical clustering

approach identified three groups with distinct diet profiles: 0-20cm, characterised by consumption

of zooplankton and benthos consistent with previous studies of juvenile cod diet (Dalpadado and

Bogstad, 2004); 20-100cm, representing the bulk of the mature cod stock with a diverse diet profile

and 100cm plus, a group largely defined by the significant proportion of diet accounted for by

cannibalism. Cannibalism in Gadus morhua has been previously correlated strongly with predator

length and the abundance of juvenile cod (Bogstad et al., 1994; Yaragina et al., 2009). We found
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that prey diversity differs between these groups, with the small and large groups having less diverse

diets than the general population, likely due to the availability of appropriately sized prey being

more restricted for the smallest or largest individuals, and the larger range of sizes in the 20-100cm

group encompassing a wider range of preferable prey lengths. We also found evidence that diet

diversity may be increasing over time in the small and medium cod groups, which is a new finding,

but is in agreement with previous studies which have proposed increased trophic linkages between

species in the Barents Sea as a result of warming (Fossheim et al., 2015).

Our analysis shares some features with the analysis by Holt et al. in 2019. We used the prey

categories identified by Holt in our analysis of diet in Chapter 2, though while Holt’s analysis was

structured around the relationship between cod length and diet and interannual patterns, our analysis

also explored the spatial dimensions of diet. Holt observed that diet diversity increases as cod size

increases (up to about 90cm), which our results agree with. However, our finding that there is a

significant trend of increasing diversity among cod between 0-100cm goes one step further than

Holt’s analysis. While we agree with Holt’s assessment that the increased overlap between

Boreogadus saida and Gadus morhua in the north and east of the Barents Sea does not result in an

apparent increase in dietary importance for the species overall, or spatial analysis does show that

polar cod is indeed an important prey item where overlap is occurring. The quantitative importance

of Boreogadus saida consumption is one of the key outcomes of this study.

Other existing studies of the IMR-PINRO dataset have explored more focused aspects of diet, such

as the rise in consumption of snow crab (Chionoecetes opilio) (Holt et al., 2021), which is emerging

as a new major prey item for Barents Sea cod. Others have explored longer periods of diet data by

incorporating quantitative and qualitative measures of Barents Sea cod diet from other data sources

(Townhill et al., 2021, 2015). Extending the data period back to the 1930s shows a consistent pattern

of high interannual diet variability and significant long term evolution, for example, the fall of

herring as a top prey item since the mid-century and the rising importance of capelin, crustaceans

and other fish species.
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6.2. Temporal variability in the distribution and overlap of Barents

Sea cod and critical prey species

Chapter 3 presented a methodological analysis of using Maxent to produce time-sensitive

distribution models for cod and critical prey species. Our findings match patterns identified in the

existing literature. Seasonal models have been shown to better predict the distribution of highly

mobile marine species in environments with significant variability in temperature across seasons

(Mannocci et al., 2017). Further, a seasonal scale is ideal for investigating the macroscale patterns in

diet and overlap between species in the Barents Sea, particularly between cod and capelin (Eriksen et

al., 2021a; Fall et al., 2018). Our identification of different model structures for subgroups Gadus

morhua follows expectations, as the tolerance of more extreme environments should increase with

size (Nakken and Raknes, 1987; Ottersen, 1998; Righton et al., 2010), so factors constraining

distribution should be different for individuals at different life-history stages.

In Chapter 4, we applied Maxent to map the seasonal distribution of cod and key prey species across

the period 1991-2017 and examined the spatial overlap between groups and the changing

distribution over time. We found significant interannual variability in the modelled species’ total

distribution cover and the overlap between predator-prey pairs. This is consistent with the existing

body of literature, where cod distribution follows suitable temperatures, which vary at seasonal

scales (Fall et al., 2018; Nakken and Raknes, 1987) Generally, distribution extent and species

overlap were not significantly different between summer and winter models. Though we expected a

difference due to temperature, Fall et al. 2018 identified an expansion in the distribution of cod

during the winter as a result of increased abundance following spawning. This highlights a potential

weakness in our analysis because we have not included any measures of density or abundance,

perhaps an interesting avenue for future work. Distribution is related to density by ideal free

distribution theory (Kennedy and Gray, 1993) and a study of north sea Gadus morhua (Blanchard et

al., 2005) found that during periods of low abundance, cod distribution more closely matched ideal

temperature ranges. The only species to have a statistically significant variation in seasonal

distribution cover was Gadus morhua (L). We found that many modelled groups showed either

multi-year periodicity in distribution area, or followed a trend of increasing distribution area across

the study period. No modelled groups in either season suggested a significant trend of decreasing

distribution area. Also, we found a consistent pattern of suitable habitat movement into the northeast

Barents Sea. In the latter years of the study, every modelled group displayed at least some expansion
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into the northeast compared to earlier model predictions.  This finding supports the body of literature

which suggests that borealization of the Barents Sea is taking place (Aune et al., 2018; Fossheim et

al., 2015) as increasing water temperatures loosen restrictions on suitable habitats for many boreal

species, increasing overlap and trophic linkages between species. As a counterpoint however, we did

not find any evidence that the distribution of Boreogadus saida, an arctic species, was decreasing

despite previous studies suggesting that increasing temperatures would lead to poorer quality

habitats for the species and limit distribution (Eriksen et al., 2015). It is possible that the negative

impact of higher temperatures is not currently sufficient to significantly reduce the suitable habitat

area for Boreogadus saida.

Our results provide further evidence that increasing water temperatures are responsible for an

expansion of the suitable environment available for boreal and arctic-boreal species in the Barents

Sea into the north and east Barents Sea (Eriksen et al., 2017; Frainer et al., 2017; Renaud et al.,

2012), and the borealization of arctic communities (Fossheim et al., 2015; Kortsch et al., 2015). The

pivotal role of temperature in the Barents Sea as a primary determining factor in species distribution

has long been identified (Dalpadado et al., 2009; Nakken and Raknes, 1987; Ottersen, 1998). Our

results suggest that temperature is the most important factor constraining the distribution of Barents

Sea cod, but the relationship between northern extent and surface or bottom temperature is not linear.

In particular, we found that Gadus morhua (L) demonstrated almost none of the northern expansion

in the latter years of the study that the smaller cod size classes did. We suggest that biotic factors not

accounted for in our model are more important than the physical environment under the current

regime for determining the environmental suitability for the largest cod individuals. As the group

with the highest tolerance for lower temperature, we may have expected them to be more widely

distributed than smaller cod, but they have the smallest distribution area of all cod size groups. The

reason for this is likely to be related to the availability of sufficient food resources (Friman et al.,

2008; Hunsicker et al., 2013; Trainor et al., 2014). As our analysis in Chapter 2 shows that the

number of large individuals is increasing, understanding the factors specifically driving their

distribution will become more important in the future.
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6.3. Drivers of variability in the diet, demographics and size structure

of Barents Sea cod from 1991-2017

Chapter 5 used NARMAX to quantify the relationships between key ecological measures, including

population demographics, size structure, diet, and spatial overlap over time. We were able to

successfully model consumption by fraction of total weight in diet for all four prey species as well as

cannibalism. Two of our consumption models, for Mallotus villosus and Pandalus borealis

performed significantly better than our models for consumption of Melanogrammus aeglefinus,

Boreogadus saida and cannibalism. The factors driving consumption varied across species.

Consumption of Mallotus villosus, was negatively correlated with a feature consisting of spawning

biomass and the consumption of Boreogadus saida, with an ERR of over 75%. This matches our

current understanding of the role of Boreogadus saida in diet; it fulfils a similar trophic niche as a

prey item (Hop and Gjøsæter, 2013). As Gadus morhua extends further into the north, we may see

continued increase in overlap with Boreogadus saida, and therefore more consumption, and less

consumption of Mallotus villosus (Renaud et al., 2012). We found that variability in consumption of

Boreogadus saida was best explained by a positive correlation to overlap with Gadus morhua (L)

with an ERR of almost 20%, and a negative correlation to the proportion of the cod population >

100cm (~2%) and overlap with Gadus morhua (S) (~1%). These results suggest that increased

overlap between large cod subpopulations and Boreogadus saida may result in a prioritisation of

polar cod as a prey item over Mallotus villosus. We see another signal that Boreogadus saida may be

preferred as prey over existing dietary sources. Our model for consumption of Pandalus borealis

also suggests a negative correlation with a combination of Gadus morhua recruitment and the

consumption of Boreogadus saida (73% ERR). Consumption of Melanogrammus aeglefinus is

positively correlated with total prey diversity (20% ERR), which may reflect that species role as a

predator with a diverse diet (Tam et al., 2016), occupying areas with more diverse prey assemblages.

A study of the interactions between Gadus morhua and Melanogrammus aeglefinus as a result of

climate fluctuations found that predation between the two was greater during warmer years (Durant

et al., 2020) and was related to the abundance of Melanogrammus aeglefinus. Additionally, higher

temperatures in the arctic are associated with borealization of communities (Fossheim et al., 2015),

which is likely to increase prey diversity due to an influx of invasive species and new spatial overlap

boundaries (Kortsch et al., 2015). The increase in prey diversity could therefore be an indicator of

higher temperatures, more food availability for Melanogrammus aeglefinus and therefore higher

abundances and higher levels of trophic interaction. Finally, our model of cannibalism suggests
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significant positive autocorrelation with previous levels of cannibalism (83% ERR). The next most

informative term is a positive correlation with the consumption of Melanogrammus aeglefinus (5%

ERR). Previous studies have investigated the causes of cod cannibalism and found that it increases

with size, and is driven by the biomass of large cod, capelin and the abundance of small cod

(Yaragina et al., 2018). Our model shows a slightly negative correlation with total biomass (< 1%

ERR) and a slight positive correlation between cannibalism and the overlap between small and large

cod (< 1% ERR). None of our models of diet use a measure of temperature or other physical

environmental parameters. We suggest that the information encoded in these variables is already

encoded in measures of consumption, overlap and biomass.

We found a positive correlation between total spawning biomass and the number of landings from

the previous year (22% ERR). As fisheries management prohibits trawls in spawning grounds in an

effort to limit catch of juvenile individuals, if there are more landings than usual in a given year, it

seems reasonable that this is a response to a high abundance or density of spawning age cod. This is

consistent with the fact that the Barents Sea cod stock is growing, if the population was decreasing,

we might expect to see a negative correlation with landings instead. Modelling recruitment was less

successful, but we were able to achieve VAF scores of 60% on training data and 80% on our three

test points. The most informative feature indicates a positive correlation with the number of unique

prey available squared (66% ERR) - a quadratic relationship. As discussed previously in this section,

the number of unique prey is related to increasing temperatures and the borealization of the

ecosystem, and actually encompasses a wide range of first order climate effects. The only other

dynamic feature in the model is a positive correlation with the overlap between Gadus morhua

(L)/Gadus morhua (M) and Gadus morhua (M)/Gadus morhua (S) (7% ERR). This suggests that

recruitment is higher when the area suitable for the entire cod population is larger, which in turn

suggests some density dependent effects. Indeed, previous studies have established that recruitment

variability is highly sensitive to density effects in northeast arctic cod (DingsØr et al., 2007; Fogarty

et al., 2001), with a primary mechanism being cannibalism, which operates as a regulatory factor

dampening recruitment variability (Fogarty et al., 1991).

The final group of variables modelled were size structural: the fraction of the population accounted

for by individuals < 20cm [Gadus morhua (S)], between 20 and 100cm [Gadus morhua (M)], and >

100cm [Gadus morhua (L)]. NARMAX performed best at predicting the proportion of Gadus

morhua (M) in the population. The most informative feature in that model was a positive correlation

with the overlap between Gadus morhua (L) and Melanogrammus aeglefinus (78% ERR), squared,
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with a three year lag. Terms like this are particularly difficult to interpret. As discussed prior, an

increase in overlap between large cod and haddock is likely related to rising temperatures, and the

biotic effects of rising temperatures. This is a relationship which would be difficult to find from

theory, but statistical methods may reveal. In cases like this, such complex terms may indicate

complex dynamics which are heavily obscured or unintuitive, and more work needs to be done to

make sense of them. The model performance is undeniable, however, with less than 1% MAPE

across training and test points, we are successfully predicting the variability in this measure.

Consider also how our good model performance here relates to our good performance for predicting

total biomass - over 90% of the cod population falls within Gadus morhua (M) - we should expect

the two measures to be closely related. Performance for models predicting the proportion of Gadus

morhua (L) and Gadus morhua (S) was similar. The most informative dynamic feature for the large

group was a negative correlation with the fraction of Pandalus borealis in diet (19% ERR), followed

by a positive correlation with  total spawning biomass (17% ERR). Previous studies of interaction

between Gadus morhua and Pandalus borealis in the Barents Sea have suggested an inverse

correlation between the abundances of the two species (Berenboim et al., 2000), which is driven by

increased predation of Pandalus borealis when cod abundance is high. For Gadus morhua (S), our

most informative feature was a negative autoregressive correlation with the previous year's fraction

(89% ERR). Like recruitment, this model is difficult to interpret and the lower relative performance

is likely due to missing relevant factors, such as mortality-at-age estimates. This model achieves

reasonable MAPE (20.2% in training data and 6.1% in test data) but very poor VAF, at effectively 0.

If the absolute proportion of the population falling below 20cm were to suddenly and dramatically

change, this model would fail to capture it.

Ultimately, although our models were successful in explaining some of the variance of the target

measures, they are difficult to interpret ecologically in many cases. As discussed elsewhere in this

thesis, many of these results suggest that the model has identified factors which are correlated with

the target measures, but not necessarily directly causative. So what is the use of this approach? We

suggest that NARMAX is a powerful tool for identifying relationships between time series data, but

it can only identify true relationships between two measures if the appropriate data is available.

Some suggestions of data which we would have liked to include are made in Chapter 7. Powerful

black box models are not  a suitable replacement for expert domain knowledge, but may a) provide a

quantitative structure useful for making predictions in the short term and b) suggest new directions

of inquiry from the identification of obfuscated relationships between ecosystem variables.
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Chapter 7 - Conclusions
We have found that rising temperatures in the Barents Sea affect the distribution, demographics and

diet of Barents Sea cod. We have identified a northward shift in a suitable environment for Gadus

morhua and all of the prey species modelled with Maxent in both summer and winter due to

increasing temperatures, sea ice loss, and possibly trophic density effects. This shifting of spatial

distribution is changing the spatial overlap between species habitats, supporting existing evidence of

the borealization of the arctic waters in the Barents Sea. We also found that environmental variability

affects Gadus morhua nonuniformly, with different size groups responding differently in space and

time.

We successfully modelled many key ecological measures, including population, diet and size

structure measurements of Gadus morhua. We found strong evidence that the inclusion of variables

representing the spatial overlap between cod and its prey provided novel information to our system

identification model, improving model fit and predictive power. We found evidence that rising

temperatures may increase the significance of Boreogadus saida as a prey item, while reducing the

significance of Mallotus villosus and Pandalus borealis due to the increase in access to polar cod.

We also found that borealization as a result of rising temperatures may increase prey diversity for

cod and may lead to an increase in the consumption of Melanogrammus aeglefinus, possibly due to

the positive effects of temperature on the abundance of both species.

Ultimately, we proved the potential of Maxent and NARMAX as tools to uncover quantitative

relationships between critical parameters relating to Gadus morhua, its role in the Barents Sea food

web and ecosystem. The results of our study add to the body of knowledge on how climate

variability affects this ecosystem and demonstrate in many ways how complex and heterogeneous

this response is, highlighting the difficulties of making predictions about the ecosystem state and,

therefore, management decisions.

7.1. Limitations of this study

The IMR-PINRO database has several limitations that may affect our results. First, the sampling

effort is not evenly distributed across the study period. The number of stations surveyed has been

expanded since the beginning of the surveys, with most or all of the new stations being in the

north/northeast Barents Sea. This introduces some spatial bias in our occurrence records for Maxent
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modelling. However, the expansion of the surveys is motivated by a) the ability for vessels to access

ice-free waters and b) following the limit of the distribution of Gadus morhua. As a result, the

expanded sampling follows a real shift in the conditions of the Barents Sea cod stock and our

attempts to minimise spatial bias with occurrence thinning in environmental space etc. should

provide some countermeasure (Fourcade et al., 2014; Warren et al., 2014). Another limitation is that

the surveys are conducted primarily with bottom trawls, meaning that individuals who tend to

inhabit areas higher in the water column are less likely to be sampled (Engas and Godø, 1986). As

cod is a demersal species, this is the best way to sample for them consistently, and some samples are

collected by pelagic trawl (Mehl and Yaragina, 1992).

Another limitation is the lack of sufficient occurrence records for prey species. This study created

prey occurrence records as proxies from their occurrence in the stomach of cod from the

IMR-PINRO database. There are three possible systematic biases present using this method, one of

which we have attempted to address and the other two which are difficult to reduce. The first source

of systemic bias is that the species marked as an occurrence from a cod stomach may have been

carried far from the site at which it was consumed. We attempted to limit the effects of this bias by

filtering possible occurrences to only records with the minimum degree of digestion, which is

defined as being effectively an easily identifiable organism that has yet to begin effective digestion.

This limits the amount of time that the prey item may have travelled away from the consumption site

to several hours or so. Even if the cod sampled had continuously travelled away from the

environment in which that prey item was consumed during that time, the spatial error generated as a

result should be minimal. Previous studies of cod diet attempting to relate stomach contents with

foraging theory have found that the availability of prey may be a more important factor than prey

preference (Floeter and Temming, 2003; Pinnegar et al., 2003), potentially suggesting that the

species identified in stomachs may be more prevalent within their local environment than other prey

items which are more difficult to catch. Though we do not consider prey abundance, it may provide

some more evidence that the occurrence of a specific prey item in diet represents that it was

consumed within a suitable environment for large numbers of its species. The second source of bias

is that it selects individuals within a species that co-occupy space with Gadus morhua by default and

does not sample any individuals from a hypothetical population area that is entirely inaccessible for

Barents Sea cod. This is an extension of a fundamental problem with conducting surveys for species

distributions. The amount of bias introduced by this problem is directly related to the real overlap of

species niches within the region, so it is likely to be more of an issue with Boreogadus saida than

Mallotus villosus records, for example. Finally, this data collection method is biased in favour of
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individuals caught by the bottom trawl survey, with the same issues as we described in the previous

paragraph. If specific sizes of cod are favoured in the survey as a natural result of their position in

the water column, we may expect a similar bias in the length and type of prey found. This is likely to

result in absences of particular species within an area that inhabit it but can avoid predation by the

subgroup of cod sampled. As Maxent is a presence-only model, we may have avoided some of the

methodological risks that this bias might have introduced as, as long as there are sufficient

occurrence records to build a model, the principle of maximum entropy should not overzealously

mark false absence sites as unsuitable.

Our layers from ocean reanalysis may introduce some systematic error. As spatially explicit data is

required for Maxent and some of the environmental rasters generated are based on the extrapolation

of measured data, there could be some failure to capture the high-resolution dynamics which may

have existed. However, studies have shown that ocean reanalysis data is sufficient and suitable for

use in species distribution modelling (Becker et al., 2016; Tyberghein et al., 2012; Xie et al., 2017).

Another limitation is the data debt incurred by connecting the outcomes of our Maxent modelling

with NARMAX, which limited our scope of study to the years 1991 - 2017. The origin of this

limited data is in the environmental layers used to create Maxent models at a short temporal

resolution. As spatiotemporally explicit layers are required to cover any modelling period, this limits

our approach to times when such data is available. In our case, the longest period for which

unbroken environmental data lined up with our available diet data was 1991 - 2017, with layers

extracted from a hindcasted ocean reanalysis product. This limitation meant that we could not take

full advantage of the IMR-PINRO stomach database, which would have added seven more years to

our NARMAX models, allowing us to model from 1984,  and likely improved performance.
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7.2. Further work

The methodology used in this study could be used to predict the future state of the Barents Sea cod

population. Maxent operates independently of time and could be used to predict the distribution of

cod and other species under future climate scenarios (Hijmans and Graham, 2006) and in the past

e.g. (Bigg, 2014; Bigg et al., 2008). Hindcasting seasonal Maxent models to the early 20th century

with extended records from the data used by (Townhill et al., 2021) would allow us to compare

distribution today with recent periods of similarly high temperatures in the region, and provide a

natural parallel with the extended period of diet data. One risk to projecting Maxent models to

periods in the far past or future is that if conditions are present in the new scenarios which are

beyond the limits of the period upon which the Maxent model was trained, the risk of error increases

significantly (Fitzpatrick and Hargrove, 2009), and may be compounded by the inherent uncertainty

of future climate predictions (Beaumont et al., 2008). Since NARMAX requires a sequential time

series with no missing data, predicting changes in ecosystem measures in the far future or past is

infeasible. However, using NARMAX to predict the next several years of a target measure is

possible if the appropriate input data is available, or can be independently estimated. This could be

particularly effective for measures such as biomass, which we have demonstrated can be remarkably

well modelled by NARMAX and is highly dependent on the autoregressive term, which should

make prediction at least 1 year ahead a feasible task.

It would also be interesting to extend this methodology to a wider range of prey species, as we

discovered that changes in diet could be predicted by information about the consumption of other

prey items, which each encode layers of environmental and population dynamic data. Two major

candidates for this expansion would be Clupea Harengus (Atlantic herring) and Chionoecetes opilio

(Snow crab), the former once being a primary prey item (Townhill et al., 2021) and the latter being

an invasive species which has settled in the Barents Sea and has become a major prey item in recent

years (Holt et al., 2021). Finally, this methodology could be effectively applied to study the

consequences of our observed conclusions. An obvious question is: what will happen to the

Boreogadus saida population if increasing temperatures lead to higher predation by Gadus morhua?

Boreogadus saida is a clear species of concern as temperatures rise and borealization advances

(Renaud et al., 2012.
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Appendices

Appendix A - IMR-PINRO metadata and sampling locations

A.1. Table of variables recorded in the IMR-PINRO database

Variable Name Information Units

Ser_No_Fish Serial number for each fish

Country Country code denoting either:

58: Norway

90: Soviet Union/Russia

Ship_kode Ship identification code

Station_no Station number on each vessel starts at No. 1 at the

beginning of the year, the routes are numbered

continuously.

Quadrant 0: Latitude: North, Longitude: east

1: Latitude: North, Longitude: west

Lat1 Latitude dd

Lat2 Latitude mm

Long1 Longitude dd

Long2 Longitude mm

Year

Month

Date

Time_of_day UTC

Depth Depth at which the fish were caught M

Gear
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Fish_Length_cm cm

Fish_Weight_kg kg

Age_y Years

Deg_stomach_fullness Degree of stomach fullness

No_FishLengthGroup_Haul Number of fish of this group in the haul

Towing_time Time duration of each tow hhmm

No_Regur_Stom Number of regurgitated stomachs

No_Empty_Stom Number of empty stomachs

Sex

Maturity Blank: not observed

1: Not mature

1

2: Mature

3: Spawning 4: After

spawning / ‘resting’ 5:

Uncertain

Prey_weight g

Deg_digestion Degree of digestion codes:

Blank: Not observed

1: digestion not started, the stomach content seems

fresh

2: Digestion commenced

3: Digestion progressed; the species can no longer

be identified. But one can separate systematic

groups  4: Digestion far advanced, one can still find

eyes and bigger pieces of prey in the stomach

content
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5: Digestion almost completed, the stomach content

is porous.

No_Prey Number of prey identified in stomach

Prey_length_cm Length of prey, converted using the prey weight. cm

Prey_Category Which prey category each prey record belongs to

(Holt et al. 2019).

A.2. IMR-PINRO Sampling Locations per Year.
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Appendix B - Prey species maxent prediction maps used in the

creation of the prey availability layer



215



216



217



218



219



220



221



222

Appendix C - Model permutation importance tables for temporal

sensitivity testing

C.1. Annual, Five and Ten-year model variable permutation importance

Permutation Importance: Annual, Five-year and Ten-year models

Layer Mean S.D. N %

btemp_max 21.1 13.8 51 76.1

btemp_mean 24.3 11.9 16 23.9

btemp_min NA NA 0 0.0

fice_max 5.4 8.1 17 25.4

fice_mean 16.6 17.0 33 49.3

fice_min 0.9 2.7 26 38.8

hice_max 5.6 5.3 5 7.5

hice_mean 0.0 NA 1 1.5

hice_min 0.7 2.5 15 22.4

salinity_max 13.1 15.0 8 11.9

salinity_mean 18.0 12.8 15 22.4

salinity_min 22.2 11.8 44 65.7

temperature_max 9.4 4.7 4 6.0

temperature_mean 10.3 9.3 8 11.9
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temperature_min 15.8 16.9 2 3.0

bathymetry 29.9 8.8 67 100.0

distance 15.4 9.4 67 100.0
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C.2. Annual models variable permutation importance

Permutation Importance: 1 Year Period

Layer Mean S.D. N %

btemp_max 25.9 16.7 20.0 76.9

btemp_mean 25.5 11.8 6.0 23.1

btemp_min NA NA 0.0 0.0

fice_max 7.0 10.2 10.0 38.5

fice_mean 15.0 10.0 9.0 34.6

fice_min 0.6 1.5 20.0 76.9

hice_max 1.7 NA 1.0 3.8

hice_mean NA NA 0.0 0.0

hice_min 0.0 0.0 5.0 19.2

salinity_max 9.3 10.2 4.0 15.4

salinity_mean 19.8 11.8 4.0 15.4

salinity_min 25.6 12.7 18.0 69.2

temperature_max 11.1 4.0 3.0 11.5

temperature_mean 6.9 7.5 6.0 23.1

temperature_min NA NA 0.0 0.0

bathymetry 31.0 8.8 27.0 100.0

distance 9.7 6.9 27.0 100.0
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C.3. Five-year period model variable permutation importance

Permutation Importance: 5 Year Period

Layer Mean S.D. N %

btemp_max 17.4 11.9 16.0 69.6

btemp_mean 26.4 14.0 7.0 30.4

btemp_min NA NA 0.0 0.0

fice_max 4.7 3.2 4.0 17.4

fice_mean 18.5 22.0 14.0 60.9

fice_min 0.0 0.0 2.0 8.7

hice_max 8.7 4.3 3.0 13.0

hice_mean NA NA 0.0 0.0

hice_min 1.1 3.3 9.0 39.1

salinity_max 22.4 19.7 3.0 13.0

salinity_mean 12.4 12.6 7.0 30.4

salinity_min 17.4 8.1 13.0 56.5

temperature_max NA NA 0.0 0.0

temperature_mean 24.9 NA 1.0 4.3

temperature_min 3.8 NA 1.0 4.3

bathymetry 30.5 9.8 23.0 100.0

distance 18.0 10.4 23.0 100.0
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C.4. Ten-year period model variable permutation importance

Permutation Importance: 10 Year Period

Layer Mean S.D. N %

btemp_max 18.6 10.0 15.0 83.3

btemp_mean 17.0 4.5 3.0 16.7

btemp_min NA NA 0.0 0.0

fice_max 1.2 2.0 3.0 16.7

fice_mean 15.5 15.1 10.0 55.6

fice_min 3.2 6.4 4.0 22.2

hice_max 0.0 NA 1.0 5.6

hice_mean 0.0 NA 1.0 5.6

hice_min 0.0 NA 1.0 5.6

salinity_max 0.0 NA 1.0 5.6

salinity_mean 25.9 11.9 4.0 22.2

salinity_min 22.4 12.6 13.0 72.2

temperature_max 4.2 NA 1.0 5.6

temperature_mean 16.0 NA 1.0 5.6

temperature_min 27.8 NA 1.0 5.6

bathymetry 27.5 7.5 18.0 100.0

distance 20.1 7.4 18.0 100.0
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C.5. Summer model variable permutation importance

Permutation Importance: Summer Period

Layer Mean S.D. N %

BTemp.Aug 20.4 14.7 16 59.3

BTemp.Jul 11.7 0.0 1 3.7

BTemp.Jun 20.0 12.4 10 37.0

FIce.Aug 1.7 5.4 10 37.0

FIce.Jul 6.5 6.8 5 18.5

FIce.Jun 7.2 7.9 12 44.4

HIce.Aug 0.1 0.2 3 11.1

HIce.Jul 3.8 2.2 4 14.8

HIce.Jun 8.1 3.1 3 11.1
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Sal.Aug 18.9 13.2 11 40.7

Sal.Jul 17.6 16.9 5 18.5

Sal.Jun 20.8 12.2 11 40.7

SST.Aug 22.3 16.7 13 48.1

SST.Jul 20.1 13.9 7 25.9

SST.Jun 15.5 13.6 5 18.5

bathymetry 27.2 10.2 27 100.0

distance 8.1 8.7 27 100.0
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C.6. Winter model variable permutation importance

Permutation Importance: Winter Period

Layer Mean S.D. N %

BTemp.Dec 22.5 17.0 10.0 37.0

BTemp.Feb 22.7 16.5 11.0 40.7

BTemp.Jan 19.9 13.7 7.0 25.9

FIce.Dec 21.4 22.1 3.0 11.1

FIce.Feb 31.1 28.2 3.0 11.1

FIce.Jan 24.2 19.0 15.0 55.6

HIce.Dec 0.0 0.0 2.0 7.4

HIce.Feb 0.0 0.0 3.0 11.1

HIce.Jan 0.0 0.0 4.0 14.8

Sal.Dec 3.7 5.3 2.0 7.4

Sal.Feb 13.7 15.1 12.0 44.4

Sal.Jan 4.9 5.3 13.0 48.1

SST.Dec 46.1 25.8 4.0 14.8

SST.Feb 47.2 21.9 9.0 33.3

SST.Jan 23.2 23.1 6.0 22.2
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bathymetry 17.8 9.5 27.0 100.0

distance 3.8 2.9 27.0 100.0



233

Appendix D - Seasonal prediction maps and binary maps for each

species group modelled in Chapter 4.

Gadus morhua (S) - Summer
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Gadus morhua (S) - Winter
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Gadus morhua (M) - Summer
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Gadus morhua (M) - Winter
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Gadus morhua (L) - Summer
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Gadus morhua (L) - Winter
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Mallotus villosus - Summer
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Mallotus villosus - Winter
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Melanogrammus aeglefinus - Summer
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Melanogrammus aeglefinus - Winter
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Boreogadus saida - Summer
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Boreogadus saida - Winter
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Pandalus borealis - Summer
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Pandalus borealis - Summer
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Appendix E - NARMAX input data table

Number Variable Description Unit

1 Year

2 RECRUITS Recruitment Thousands

3 TOTALBIO Total biomass Tonnes

4 TOTSPBIO Total spawning biomass Tonnes

5 LANDINGS Total landings Tonnes

6 YIELD/SSB Yield per spawning biomass

7 FBAR 5-10 Exploitation rate

8 BS_PFRAC Boreogadus saida prey fraction

9 GM_PFRAC Gadus morhua prey fraction

10 MV_PFRAC Mallotus villosus prey fraction

11 MA_PFRAC Melanogrammus aeglefinus prey
fraction

12 PB_PFRAC Pandalus borealis prey fraction

13 UNIQUEPREY Number of unique prey in diet

14 LARGEFRAC Fraction of population < 100cm

15 MEDFRAC Fraction of population 20-100cm

16 SMALLFRAC Fraction of population < 20cm

17 BOREOGADUS_SAIDA_SUMMER_AREA Area covered during summer km2

18 GADUS_MORHUA_L_SUMMER_AREA Area covered during summer km2

19 GADUS_MORHUA_M_SUMMER_AREA Area covered during summer km2

20 GADUS_MORHUA_S_SUMMER_AREA Area covered during summer km2

21 MALLOTUS_VILLOSUS_SUMMER_AREA Area covered during summer km2
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22 MELANOGRAMMUS
AEGLEFINUS_SUMMER_AREA

Area covered during summer km2

23 PANDALUS BOREALIS_SUMMER_AREA Area covered during summer km2

24 BOREOGADUS_SAIDA_WINTER_AREA Area covered during winter km2

25 GADUS_MORHUA_L_WINTER_AREA Area covered during winter km2

26 GADUS_MORHUA_M_WINTER_AREA Area covered during winter km2

27 GADUS_MORHUA_S_WINTER_AREA Area covered during winter km2

28 MALLOTUS_VILLOSUS_WINTER_AREA Area covered during winter km2

29 MELANOGRAMMUS
AEGLEFINUS_WINTER_AREA

Area covered during winter km2

30 PANDALUS BOREALIS_WINTER_AREA Area covered during winter km2

31 GML_BS_S_OV Overlap area during summer km2

32 GMM_BS_S_OV Overlap area during summer km2

33 GMS_BS_S_OV Overlap area during summer km2

34 GML_GMM_S_OV Overlap area during summer km2

35 GML_GMS_S_OV Overlap area during summer km2

36 GML_MV_S_OV Overlap area during summer km2

37 GML_MA_S_OV Overlap area during summer km2

38 GML_PB_S_OV Overlap area during summer km2

39 GMM_GMS_S_OV Overlap area during summer km2

40 GMM_MV_S_OV Overlap area during summer km2

41 GMM_MA_S_OV Overlap area during summer km2

42 GMM_PB_S_OV Overlap area during summer km2

43 GMS_MV_S_OV Overlap area during summer km2

44 GMS_MA_S_OV Overlap area during summer km2

45 GMS_PB_S_OV Overlap area during summer km2
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46 GML_BS_W_OV Overlap area during winter km2

47 GMM_BS_W_OV Overlap area during winter km2

48 GMS_BS_W_OV Overlap area during winter km2

49 GML_GMM_W_OV Overlap area during winter km2

50 GML_GMS_W_OV Overlap area during winter km2

51 GML_MV_W_OV Overlap area during winter km2

52 GML_MA_W_OV Overlap area during winter km2

53 GML_PB_W_OV Overlap area during winter km2

54 GMM_GMS_W_OV Overlap area during winter km2

55 GMM_MV_W_OV Overlap area during winter km2

56 GMM_MA_W_OV Overlap area during winter km2

57 GMM_PB_W_OV Overlap area during winter km2

58 GMS_MV_W_OV Overlap area during winter km2

59 GMS_MA_W_OV Overlap area during winter km2

60 GMS_PB_W_OV Overlap area during winter km2

61 TKOLA_SURF Kola section surface temperature °C

62 TKOLA_BOT Kola section bottom temperature °C

63 NAO_INDEX North Atlantic Oscillation index

64 CAPELIN_IMM_BIOMASS_T Immature capelin biomass Tonnes

65 CAPELIN_M_BIOMASS_T Mature capelin biomass Tonnes

66 CAPELIN_RECRUITMENT Capelin recruitment Thousands

67 POLARCOD_BIOMASS_000T Polar cod biomass Kilotonnes

68 ICEVOLUME_WINTER Winter sea ice volume km3

69 ICEVOLUME_SUMMER Summer sea ice volume km3
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