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Abstract

Technological innovation in the field of video action recognition drives the development of
video-based real-world applications. This PhD thesis provides a new set of machine learning
algorithms for processing videos efficiently, leading to outstanding results in human action
recognition in videos. First of all, two video representation extraction methods, Temporal
Squeezed Pooling (TSP) and Pixel-Wise Temporal Projection (PWTP), are proposed in
order to enhance the discriminative video feature learning abilities of Deep Neural Networks
(DNNs). TSP enables spatio-temporal modeling by temporally aggregating the information
from long video frame sequences. PWTP is an improved version TSP, which filters out
static appearance while performing information aggregation. Secondly, we discuss how
to address the long-term dependency modeling problem of video DNNs. To this end, we
develop two spatio-temporal attention mechanisms, Region-based Non-local (RNL) and
Convolution Pyramid Attention (CPA). We devise an attention chain by connecting the RNL
or CPA module to the Squeeze-Excitation (SE) operation. We demonstrate how the attention
mechanisms can be embedded into deep networks to alleviate the optimization difficulty.
Finally, we are focused on tackling the problem of heavy computational cost in video models.
To this end, we introduce the concept of busy-quiet video disentangling for exceedingly fast
video modeling. We propose the Motion Band-Pass Module (MBPM) embedded into the
Busy-Quiet Net (BQN) architecture to reduce videos’ information redundancy in the spatial
and temporal dimensions. The BQN architecture is extremely lightweight while still perform-
ing better than other heavier models. Extensive experiments for all the proposed methods
are provided on multiple video benchmarks, including UCF101, HMDB51, Kinetics400 and
Something-Something V1.
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Chapter 1

Introduction

A video is a recording of moving images, with or without audio, usually saved as a digital
file, DVD et al. AI video recognition is an area of computer vision and pattern recognition
that trains digital electronic machines to interpret and identify the motion patterns in videos
by using machine learning algorithms. In the principles of computer vision, machine learning
for video action recognition deals with video data processing and video analysis, to achieve
an understanding of digital video information. The main theme of this PhD thesis is to
design machine learning algorithms to address practical problems encountered in video
action recognition tasks.

1.1 Motivation

Video action recognition is a fundamental problem in video understanding, having many
real-world applications, including autonomous driving technology, security, defense, safety,
controlling drones, robots, human-computer interaction and video gaming. Over the last
decade, video action recognition has attracted increasing research interests in computer
vision and has been through fast development with the rise of deep learning [77] and the
availability of large-scale labeled video datasets [114, 73, 70, 48]. The downstream tasks
such as video retrieval and action localization also benefit from advances in video action
recognition technology.

A video is essentially a sequence of RGB images showing the evolution of objects and scenes
along the temporal dimension. Hence, the video recognition problem can be considered to be
an extension of image recognition from space to space-time. However, video recognition
cannot be naively treated as an image recognition problem, because the most important factor
for video understanding is the motion clues invisibly existing in the temporal dimension. The
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early work [69] attempted to distinguish different actions in videos by only processing one
frame for each video. The unsatisfactory performance of this method seems to be taken for
granted now, as this single-frame method fails to capture motion clues between video frames.
Therefore, how to extract motion clues from videos in an efficient and effective way becomes
the core of video recognition, waiting for us to address in this thesis.

Video processing inherits most of the challenges from image processing, including the
influence of illumination variation, occlusion between various moving objects, resolution
scale, noise and changes caused by environmental factors (rain, snow, smoke) or compression
artifacts, perspective projection effect and so on. Meanwhile, video recognition methods need
to deal with the intrinsic problems of video data, such as various movement speeds, viewpoint
changes across frames and camera movement. With the emergence of deep learning [77],
the main research direction in video action recognition has been shifted from constructing
hand-crated representations to building efficient spatio-temporal networks. The family of
deep neural networks (DNNs) is a class of machine learning algorithms inspired by the
biological neural networks that constitute brains. Due to their high non-linearity, DNNs are
capable of learning high-level semantic features, demonstrating leading-edge advantages over
traditional hand-crafted features in many machine learning applications. Benefiting from
the employment of DNNs in video recognition, many of the previous challenges have been
mitigated. Nevertheless, we also encounter new challenges such as long-term dependency
modeling in videos and the high computational complexity introduced by DNNs. What is
more, video volumes are enormous. Even a short video clip usually contains hundreds of
frames. As a result, the computational complexity of a video DNN architecture is far higher
than that of images.

In this PhD thesis, we propose practical machine learning algorithms built upon deep learn-
ing to challenge the problems encountered in video action recognition. A Convolutional
Neural Network (CNN, or ConvNet) is a class of DNNs, which is built by stacking multiple
convolutional layers. CNNs have become standard solutions in many computer vision prob-
lems. Nevertheless, a standard designed for classifying images is not capable of perceiving
temporal changes in videos without employing some special mechanisms or embedding
specialized modules. In order to have CNNs learn motion features, Chapter 3 proposes
a temporal pooling mechanism, which can map entire video sequences in sets of few 2D
images, significantly compressing video representation, while preserving movement informa-
tion. As a result, a CNN after being configured with our pooling mechanism is capable of
learning high-level spatio-temporal features. Intra-class similarities and inter-class variations
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represent a challenging problem for pattern recognition tasks. For example, the same person
can perform different activities. Or different persons can perform the same activities. Bearing
this in mind, Chapter 3 proposes a machine learning algorithm to generate discriminative
motion representations for similar videos. Consequently, our model enables accurate action
recognition.

Long-term temporal modeling is of importance for action recognition in videos. However, in
standard CNNs, long-term modeling is very inefficient, given that convolution is a local oper-
ation, whose small kernels would only use the information available within a neighborhood.
In contrast, attention [149] and self-attention [131] mechanisms show great advantages for
long-term modeling. In Chapter 4, we discuss the usage of attention mechanisms in video
recognition. Meanwhile, we propose two novel attention mechanisms to endue CNNs with
excellent long-term modeling abilities.

Natural video data contain substantial redundancy in both spatial and temporal dimensions.
For example, a static background repeatedly appears in adjacent frames in a video; the
positions from a smooth region share the same visual information. Efficient spatio-temporal
modeling should take into account the existence of redundant information for optimal
results. In Chapter 5, we hypothesize that motion-related information is concentrated in a
certain range of spatio-temporal frequencies, while the rest of the frequency bands contain
substantial redundancy. After identifying the range of spatio-temporal frequencies considered
important for movement representation, and simplifying the video data accordingly, we build
a lightweight processing module for efficient video recognition.

1.2 Contributions

(i) The video processing algorithm proposed in the first part of Chapter 3, called Temporal
Squeeze Pooling (TSP), is capable of summarizing a long video frame sequence
into a few RGB images, which enable existing video models to analyze more video
information with fewer computational resources.

(ii) The method proposed in the second part of Chapter 3, called Pixel-Wise Temporal
Projection (PWTP), can separate dynamic features from static features in raw video
data, resulting higher performance in action recognition tasks.

(iii) The attention mechanisms proposed in Chapter 4, called Region-based Non-local
(RNL) operation and Convolution Pyramid Attention (CPA), endue networks with
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excellent global context modeling abilities for high discriminate feature learning in
videos.

(iv) The Busy-Quiet video disentangling algorithm in Chapter 5 achieves efficient informa-
tion processing by adopting an intelligent computational resources allocation strategy,
which demonstrates superior performance on standard video benchmarks.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2: We provide a comprehensive literature review for video action recognition
methods, going from traditional hand-crafted features to DNN-based methods.

• Chapter 3: We discuss the approaches to spatio-temporal feature representation learning
and present two machine learning algorithms for motion feature extraction.

• Chapter 4: We discuss the usage of attention mechanisms in computer vision and
present novel attention chains for effectively modeling long-term dependencies.

• Chapter 5: We present a novel methodology for reducing redundant information in the
spatial and temporal dimensions and propose a lightweight architecture for fast video
recognition.

• Chapter 6: We summarize the works in this thesis and discuss potential future work in
video understanding.



Chapter 2

Literature Review

In this chapter, we provide a comprehensive literature review of video action recognition
algorithms. Firstly, we introduce the video action recognition datasets which are used for
experiments and summarize their statistics. Then, we list the main challenges we encountered.
Following this, an in-depth review of video action recognition methods will be provided:
going from traditional hand-crafted representation methods to deep learning-based methods.
Discussions of these methods including their strengths and weaknesses are also provided.

2.1 Datasets and Challenges

2.1.1 Datasets

We introduce four video action recognition datasets: HMDB51 [73], UCF101 [114], Kinet-
ics [70], Something-Something [48]. The statistics for these four datasets are summarized in
Table 2.1.

HMDB51 [73] was made public accessible in 2011, comprising 51 human action categories
and containing 6,766 videos. The videos were mainly collected from movies, and a small
proportion from public datasets such as the Prelinger archive, YouTube and Google videos.
The action categories can be divided into five types: 1) General facial actions; 2) Facial
actions with object manipulation; 3) General body movements; 4) Body movements with
object interaction; 5) Body movements for human interaction. The dataset is officially split
into three parts. The average Top-1 accuracy over the three official splits is commonly
reported in many works.
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UCF101 [114] was built in 2012, comprising 101 action categories and containing 13,320
videos clips (27 hours) from YouTube. Similar to the HMDB51, the action categories of
UCF101 can be grouped into five types: 1) Human-Object Interaction; 2) Body-Motion
Only; 3) Human-Human Interaction; 4) Playing Musical Instruments; 5) Sports. It gives
a large diversity in terms of actions with the presence of variations in camera motion, dy-
namic background, illumination conditions, viewpoint, object scale and so on. In order to
keep the reported results consistent, three distinct training and testing splits were generated
from the dataset. Many works report the classification accuracy averaged over the three splits.

Dataset # Classes Clips per Class Avg. Duration Total
HMDB51 51 min 102 5s 6,766
UCF101 101 min 101 6s 13,320

Kinetics400 400 min 400 10s 306,245
Something-Something V1 174 avg 620 4.03s 108,499

Table 2.1 Statistics for the video action recognition datasets. “Total” indicates the total
number of clips.

Kinetics400 [70] is a large-scale video dataset, introduced in 2017. It contains 240k training
videos and 19k validation videos, which are grouped into 400 action classes. Each class
has 400-1150 clips. Each clip lasts around 10 seconds, trimmed from a unique YouTube
video. The list of action classes covers Person Actions (singular), Person-Person Actions
and Person-Object Actions. Most of the actions require more emphasis on the object to
distinguish, e.g. playing different types of instruments. Some actions require temporal rea-
soning to distinguish, e.g. different type of swimming. Kinetics dataset can be regraded as
the successor to HMDB51 and UCF101 which have emerged as the standard benchmarks for
this area.

Something-Something V1 [48] was made publicly accessible in 2017. It contains 108,499
clips across 174 human activity classes. The duration of each clip ranges from 2 to 6 sections.
The dataset is split into training, validation and testing sets in the ratio of 8:1:1. In Something-
Something V1, strong temporal reasoning ability is required to distinguish different action
classes, while the object feature is less important. An identical object can appear in multiple
videos with different labels, so the videos cannot be distinguished based on just their spatial
features.
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2.1.2 Challenges

Human activities are of complexity and diversity, which results in the recognition tasks being
very challenging. Thanks to the employment of deep neural networks, many challenges
inherited from image classification are not as severe as before. Deep network-based methods
can significantly reduce the influence caused by viewpoint variation, illumination changes,
resolution scale, noise and compression artifacts when using data augmentation skills. The
usage of deep learning improved the accuracy of video recognition tasks to an unprecedented
level, but it also introduced new challenges. In the following, we list the major challenges of
video action recognition tasks in the deep learning era:

• Inter-class variations and intra-class similarities. An action can be performed by
different people in various scenes. Or an action can be performed at different speeds
and recorded with unknown frame rates. What is more, different actions can have
similar motion patterns (e.g. Brushing teeth vs. Shaving Beard). Besides, an individual
can perform many different actions in different video clips.

• Short- and long-term temporal modeling. Human actions are complicated. Such
a complicated human action is made up of multiple atom action. For example, ac-
tion “Pick up Something” contains atom actions “stretching arms” and “grabbing
things ” which happen in a temporal order. This requires action recognition models to
understand not just short-term motion patterns but also long-term temporal relations.

• Heavy computational cost. Deep neural networks acquire knowledge from a large
amount of training data. Moreover, video data is collected across both space and time.
The computational complexity of video data processing can be a few times that of
image data processing.

In this this thesis, each experimental chapter is focused on tackling one of the aforementioned
challenges in video action recognition.

2.2 Hand-Crafted Feature Representation Methods for Ac-
tion Recognition

In this section, we review the hand-crafted feature methods that are closely related to our
work.
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2.2.1 Appearance-based Temporal Matching

In one of the earliest works in video action recognition [10], Bobick and Davis proposed a
classic motion representation and recognition theory that decomposes motion-based recogni-
tion into two steps: first describing where the motion happens; second explaining how the
motion happens. Meanwhile, they presented an appearance-based method, which constructs
a temporal template consisting of a Motion Engine Image (MEI) and a Motion History Image
(MHI). A video action can be discriminated by matching the temporal template of the video
with the video templates from the training set. Examples of MEI and MHI are shown in
Fig. 2.1(b) and 2.1(c), respectively. The MEI is a binary image depicting where motion

(a) (b) (c)

Fig. 2.1 Comparison of RGB frame (a), MEI (b) and MHI (c). Image taken from [11].

occurs in a video sequence. The MHI is a gray-scale image, encoding the temporal order of
a video sequence into the 2D space, where older silhouettes have lower intensity while the
newest silhouette is overlaid at maximal brightness. Constructing a temporal template by
taking the MEI and MHI as two components can represent where and how motion in a video
is. The MEI and MHI can be used to recognize simple actions in controlled environments
with no camera movement. In order to adapt their method to complex motion analysis, the
authors proposed a sequel to the MHI, called the timed Motion History Image (tMHI) [12],
which directly encodes the actual time in a floating-point format. Subsequently, they utilize
Hu Moment shape descriptors [60] of the silhouette to recognize pose. One shortcoming in
the MHI method and its variants is the motion self-occlusion problem, caused by overwrit-
ing the temporal information to the same spatial locations, which hinders the modeling of
complex motion patterns. In order to circumvent the self-occlusion problem, Ahad et al. [1]
proposed the directional MHI (DMHI) method, which constructs a temporal template with
four directional components by utilizing the information from the four optical flow chan-
nels [30] of the video separately. The aforementioned appearance-based temporal matching
methods illustrate that motion information in the temporal dimension can be encoded into 2D
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images. This idea has become the theoretical basis for many later spatio-temporal modeling
algorithms in the deep learning era. For example, built upon the MHI method, the deep
learning-based methods, rank pooling [42] and dynamic images [9, 8], are proposed to model
movement by aggregating temporal information into a two-dimensional space. Our work
described in Chapter 3 of this thesis is also inspired by these works. We will further discuss
the ranking pooling and dynamic images methods in Section 2.3.

2.2.2 Space-Time Local Features and Statistical Methods

The aforementioned appearance-based methods belong to the holistic representation family,
which retains the spatio-temporal relationships of the voxels. In contrast, spatio-temporal
local features are extracted from local 3D patches (key points in the video), omitting the
global space-time relationships. Compared with the holistic representations, space-time
local features are stable under transition, rotation, scale, viewpoints, background cluttering,
illumination changes and other factors produced by uncontrolled environments.

Feature 

Representation

video clip

Classification 

(SVM or K-NN)

Feature Encoding
E.g., Bag-of-Visual-Words

f1 f2 f3 .   .   . fn

E.g., 3D SIFT

Improved Dense Trajectories

Fig. 2.2 Paradigm of video action recognition using hand-crafted local feature representa-
tions.

The general framework of video action recognition using hand-crafted features is shown in
Fig. 2.2, in which each video is divided into multiple spatio-temporal patches. local feature
algorithms deal with how to represent these local patches as numerical vectors. In order to
turn detected local features to fixed-length vectors, local feature-based models usually employ
one or multiple local histogram descriptors, operating on each local cuboid. Subsequently, the
statistical method Bag-of-Visual-Words converts the feature descriptors to “codewords” by
construing a “codebook”. Finally, a video is represented by the histogram of the codewords,
which is inputted to a classifier.
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The common space-time descriptors include Histogram of 3D gradient (HoG3D) [71] and
Histogram of Optical Flow (HOF) [30]. In HoG3D, the 3D gradient is computed at each
pixel by differentiating the image function I(x,y, t), and then the 3D gradient is represented
by its magnitude and its two orientations. In addition to HoG3D and HOF, there are other
descriptors such as Extended SURF [148], Local Trinary Patterns[152], 3D-SIFT [108] or
using PCA to generate the descriptor. The Bag-of-Visual-Words method can be replaced by
other statistical methods, such as the Vector of Locally Aggregated Descriptors (VLAD) [66],
Fisher Vector [105], Kernel Codebook Coding (KCB) [130] and Locality-constrained Linear
Coding (LLC) [137]. In the following, we describe the representative methods in the litera-
ture of hand-crafted local features.

Space-Time Interest Points (STIP)

Inspired by the sparse spatial interest point operators [44, 51, 107], Laptev [75] devised
the Space-Time Interest Points (STIP) method, detecting the “interest points” with high
information contents in the spatio-temporal domain. Similar to the behavior recognition
paradigm shown in Fig. 2.2, the action recognition systems that use sparse spatio-temporal
features are developed in [26, 76]. STIP is based on the detection of spatio-temporal corners

Fig. 2.3 Some examples of Laptev’s Spatio-temporal Interest Points. Image from [75].

derived from 2D Harris corner detector [51]. Spatio-temporal corners are located in the
regions that exhibit a high variation of image intensity in all three directions(x,y, t) as shown
in Fig. 2.3. They are identified from local maxima of a cornerness function computed for all
pixels across spatial and temporal scales. After identifying the spatio-temporal interest points,
they are represented statistically: a video cuboid would be divided into a set of local cuboid
fragments, and each local cuboid will be turned to be a vector with fixed length described by



2.2 Hand-Crafted Feature Representation Methods for Action Recognition 11

feature descriptors. The advantage of STIPs is that they are robust to uncontrolled settings,
collected in the wild. The disadvantage of STIPs is also obvious: they are detected sparsely
and may not capture the whole information from the video. However, Dollar’s approach [26]
models denser video information by considering all regions in the video. Other interest point
detectors include Clouds of Interest Point detector [13] and Hessian-based Spatio-Temporal
Interest Point (Hes-STIP) detector [148].

Dense Trajectories (DT)

The spatial dimensions and the temporal dimension in videos have very different character-
istics. Intuitively, they should be handled in a different manner. However, the Space-Time
Interest Point detectors handle them in the same manner. Encouraged by the success of
dense sampling in image classification [35, 96], Wang et al. proposed the Dense Trajectories
(DT) [133] method, which handles the space domain and time domain in a different way by
tracking densely sampled points using optical flow fields. The basic description of dense
trajectories is illustrated in Fig. 2.4. Firstly, the initial frame is densely sampled with different
spatial scales to get feature points. Secondly, the position of each feature point is tracked to
the next frame. The trajectories with sudden large displacement are removed because most
likely they are the errors caused by inaccurate optical flow. To make their algorithm robust to
camera motion, they utilized Motion Boundary Histogram (MBH) [21] as a descriptor for
encoding dense trajectory information. Moreover, the combination of HoG, HOF and MBH
provides better performance than that of any of these descriptors. In order to further improve
the performance of Dense Trajectories, Wang and Schmid [134] proposed the improved
Dense Trajectories (iDT). The most noticeable improvement in iDT is that the trajectories
from the background are eliminated by estimating camera motion. Besides, iDT uses Fisher
Vector [105] instead of Bag-of-Visual-Words to encode local features. Before 2015, iDT was
the dominant solution in a wide range of video understanding applications because of its
high robustness, even though some deep learning-based video models were proposed during
that time [4, 67, 124].

Some mid-level and high-level representations for video recognition are proposed to over-
come the shortcomings of local features, such as Action Bank [104], Dynamic-Poselets
[140], Motionlets [139], Motion Atoms and Phrases [138] and Actons [163]. However, these
approaches are inferior to Deep Learning features.
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Fig. 2.4 Illustration of the dense trajectory description. Image from [133].

2.3 Deep Learning Era

With the emergence of deep learning [77], the main research direction in video understanding
has been shifted from hand-crafted features to deep learning features. Among various deep
learning techniques, Convolutional Neural Network (CNN) is the most established deep
learning method, which achieves expert-level performance in some computer vision tasks
such as handwriting recognition. Fig. 2.5 summarizes the deep learning models for action
recognition in a chronological order. From this section to Sec. 2.8, we comprehensively
revisit the literature of the deep learning-based action recognition methods from 2014 to the
present.

DeepVideo
Karpathy et al. [68]

Two-Stream Nets
Simonyan et al.[111]

TDD
Wang et al. [140]

Beyond-Short-Snippet
Ng et al. [155]

TSN
Wang et al.[142]

TRN
Zhou et al. [161]

TSM
Lin et al.[83]

C3D
Tran et al. [125]

I3D
Carreira et al. [16]

Non-local
Wang et al. [144]

P3D
Qiu et al. [100]

R(2+1)D
Tran et al. [127]

CSN
Tran et al. [126]

X3D
Feichtenhofer [36] 

SlowFast
Feichtenhofer et al.[37] 

TDN
Wang et al. [141]

TEA
Li et al.[80]

Dynamic Image
Bilen et al. [9]

2014 2015 2016 2017 2018 2019 2020 2021

S3D
Xie et al.[150]

ViViT
Arnab et al. [3]

Fig. 2.5 A chronological overview of deep learning-based methods for action recognition in
videos.

2.3.1 Convolutional Neural Network (CNN)

In this section, we briefly introduce some important concepts in CNNs. A CNN is a category
of artificial neural network, which is commonly used in image classification [72] and other
image analysis applications. As shown in Fig. 2.6, a regular CNN consists of an input layer,
stacked hidden convolutional layers and fully-connected layers. CNNs have astonishingly
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strong feature learning abilities, enabled by their high-nonlinearity and shared-weight nature.
A deep CNN is very data-hungry due to its millions of learnable parameters to estimate,

Input image
36x36

10 nodes

final layer

Low level features high level featuresmid level features

6 feature maps
28x28

hidden layer 1

20 feature maps
5x5

15 feature maps
10x10

hidden layer 3

10 feature maps
14x14

hidden layer 2 hidden layer 4

Fig. 2.6 A toy architecture of CNN. As the data in processed further from the input of the
CNN, the number of processing filters is increasing, and the size of the output feature maps
is getting smaller.

which makes the training of CNN computationally expensive. The parameters of CNNs are
commonly optimized with the gradient decent algorithm and backpropagation. However,
training a very deep CNN is tricky. Due to the chain rule in backpropagation, shallower
layers may receive vanishingly small gradient values, resulting in CNNs’ weights updating
very slow or even being stalled, which is called “the vanishing gradient problem” [56]. The
vanishing gradient problem is a challenge limiting the depth of CNN architectures.

Aside from the vanishing gradient problem, over-parameterization, over-fitting, internal
covariate shift [64], and so on are severe challenges in the CNN architecture engineering.
To address these issues, several types of CNN architectures were proposed. In Google’s
Inception architecture [120], the authors unprecedentedly introduced the bottleneck design
inception block, concatenating filters of different kernel sizes in one layer to learn multiscale
features. The broader width in the Inception layer realistically increases the operative depth
of CNN. He et al. [54] proposed the seminal ResNet architecture, which is considered a
pivotal milestone in deep learning, increasing the maximum depth of CNNs to 152 layers.
The main concept in ResNet is referred to as "skip connection", which competently mitigates
the training difficulty caused by the vanishing gradient problem. The design patterns of
Inception [120] and ResNet [54] have significant impact for latter published works [65, 121,
119, 55, 150, 62, 160]. Furthermore, they are broadly used as backbone networks of diverse
models in different tasks, including applications in the natural language processing area.



14 Literature Review

2.3.2 Single-Frame CNNs and Temporal Fusion

Encouraged by the success of CNN in image classification [72], the pioneering work Deep-
Video reported by Karpathy et al. [69] attempted to adapt CNNs to video action recognition
tasks. By imitating the CNN-based feature learning pattern in image classification, they pro-
posed the single-frame CNN model, in which a single frame from each video is regarded as an
individual input sample to the 2D CNN. A single frame contains sufficient static information
to describe the scene and object’s appearance. However, a single frame carries no temporal
information, and it is not sufficient for discriminating the action that happened in the video.
Notably, in some large-scale video datasets, the difference of static information between some
action classes is subtle, which could hinder the CNN from learning discriminative features to
recognize different actions. Distinguishing videos having similar static information relies on
modeling motion information in the temporal dimension, which requires that the models are
capable of processing multiple frames at a time and learning temporal dependencies between
video frames. In order to extend the connectivity of CNNs in the time domain, Karpathy et
al. [69] further investigate different temporal fusion strategies, including late fusion, early
fusion and slow fusion. Even though their model has been integrated with a CNN, which
is considered to have a stronger feature learning ability than hand-crafted features in image
applications, their performance on UCF101 is still inferior to the hand-crafted iDT features
(65.4 vs. 87.9%). Nonetheless, the ideas in DeepVideo contributes to later studies.

2.4 Using Optical flow and Two-Stream CNNs

2.4.1 Optical Flow

Directly learning motion features from raw video frames via vanilla 2D CNNs is tricky, as
2D CNNs are originally developed for spatial feature learning. To compensate for this, we
can input hand-crafted motion feature representations to a 2D CNN, enabling high-level
motion feature learning in the deeper layers of the CNN. Optical flow is a widely used
motion representation characteristic, estimating the instantaneous image velocities in the
horizontal and vertical directions. In video recognition, the traditional TV-L1 algorithm [157]
is commonly adopted for dense optical flow estimation. Some example visualizations of
dense optical flow are presented in Fig. 2.7. We can observe that optical flow filters out the
appearance information such as static background while clearly indicating the motion patterns
of moving objects. In hand-crafted spatio-temporal feature methods, feature descriptors such
as HOF [30] and MBH [21] utilize the dense optical flow estimation to generate the targeted
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Fig. 2.7 Examples of key frames from videos and their corresponding optical flow extracted
by the TV-L1 algorithm [157]. We use the same color rendering scheme as in [6] for
visualizing the optical flow.

features.

2.4.2 Two-Stream Networks

Drawing upon the two-pathways hypothesis [47] of the human visual system with one
stream representing objects and the other stream representing motion, Simonyan et al. [112]
proposed the two-stream architecture. As shown in Fig. 2.8, the two-stream architecture
consists of a spatial stream CNN and a temporal stream CNN, which are of the same design
except for their input layers. The spacial stream processes individual frames while the
temporal stream takes a stack of optical flow images as input. Precisely, the optical flow
images in the temporal stream are calculated by the TV-L1 algorithm [157], the values of
which are re-scaled to [0,255], and then are stored in an image compressed by JPEG. At the
end of the two-stream architecture, the prediction scores of the spatial and temporal streams
are averaged to produce the final prediction. In comparison with a single spatial CNN, the
two-stream fusion improves the accuracy on UCF101 from 73.0% to 88.0%, which is even
higher than that of iDT (87.9%). Their work narrowed the gap between the state-of-the-art
hand-crafted features and deep learning-based methods. In addition, the two-stream CNNs
reveal the importance of motion features for action recognition, even though learning motion
features from raw RGB frames is still challenging for 2D CNNs. The idea of two-steam
CNNs has become a major research direction in video understanding. Many later published
works followed the two-stream idea to develop their models.
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Fig. 2.8 Framework of the two stream architecture. Image from [112].

To further increase the performance of two-stream CNNs, we can adopt a deeper backbone
network, such ResNet [54] or 3D CNN [67]. On the other hand, the quality of optical flow
estimation, which is used as input to the temporal stream, has an influence on performance to
some extent. Improving the optical flow estimation with a better algorithm can be a way to
increase the accuracy for action recognition in videos. One issue that limits the efficiency of
two-stream CNNs [112] is that the optical flow images are not produced on the fly, which
makes the deployment of two-stream CNNs difficult in real-world applications requiring
low latency. In Sec. 2.6.3, we will further discuss the methods for efficient optical flow
estimation in video recognition. A deep CNN require a large amount of training data to avoid
over-fitting. Labeling video data is a very laborious operation. Since each stream in the two
stream architectures is a 2D CNN, its parameters can be initialized with the model trained
on some large image dataset such as ImageNet [22]. Although the distribution of optical
flow is different from that of RGB images, the weight of each channel in the first layer of the
temporal stream can be initialized by the average of the weights across the RGB channels,
according to the study from [143].

2.4.3 Strategies for Two-Stream Fusion

In the two-stream networks [112] and the models that are composed of two or more
streams [143, 16, 9, 33, 164, 84, 158], each stream is trained independently. With the
aim of utilizing the features from these independent streams when performing prediction,
the Softmax outputs of different streams will be fused by a certain operator. The type of
fusion strategy that merges Softmax outputs at the end of all streams is called late fusion.
In [40], late fusion using max, convolution and concatenation operators are further explored.
Feichtenhofer et al. [40] point out that training each stream individually and the late fusion
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may not fully exploit the correlations between motion and appearance information in the
early stage. To rectify this, they proposed a unified convolutional two-stream network where
the two streams are trained in a joint manner, and the spatial and temporal cues are fused at
several different abstraction levels. They concluded that the best place for the spatio-temporal
fusion is right after the last convolutional layer. Inspired by ResNet [54], Feichtenhofer et
al. [38, 39] further proposed two sequels to the convolutional two-stream network by intro-
ducing residual connections between the two-streams and a multiplicative gating function to
their models for a better appearance and motion information fusion. Meanwhile, Wang et
al. [147] proposed a spatio-temporal pyramid network supported by long-term temporal
modeling and a visual attention mechanism, hierarchically fusing the spatial and temporal
information.

2.4.4 Sparse Frame Sampling and Temporal Relational Reasoning

Considering that a video is usually composed of hundreds of frames, it is not computationally
feasible to process all video frames at once with limited computational resources. Hence, the
approach to sample video frames becomes vital to performance in terms of both efficiency
and effectiveness. In [69], the single-frame CNN each time processes only one RGB frame
sampled from a video randomly, resulting in poor action discrimination abilities due to the
lack of temporal information. Although the two-stream CNNs [112] have enabled the short
motion feature modeling by using stacked optional flow images as the additional input modal-
ity, the long-range temporal structure is still not captured appropriately. In order to capture
the global temporal evolution in videos with no need to input all video frames, Wang et
al. [143] proposed Temporal Segment Networks (TSNs). Specifically, TSN adopts a sparse
sampling strategy in the temporal dimension, evenly dividing an entire video into multiple
segments. Subsequently, TSN randomly picks one frame for each segment and then processes
the selected frames with the CNNs. In the end, all frame-level predictions from all CNNs
are fused to generate the video-level predictions. Furthermore, TSN adopts a multi-stream
design, building additional streams by taking stacked optical flow and RGB difference as the
inputs. The framework of TSN is straightforward but efficient for long-temporal structure
modeling, credited to the sparse frame sampling strategy which provides a global view of
sparse temporal information in videos.

Encouraged by the simplicity and efficiency of sparse frame sampling in TSN [143], many
segment-based CNN methods [82, 46, 74, 25] are proposed. However, TSN has not taken the
temporal order of video frames into consideration, which means input frames with correct
temporal order and that in shuffled order have an identical output in TSN. The temporal
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relations in videos has less influence on performance on “scene-dominant datasets” such as
Kinetics [70] but is vital to “motion-dominant datasets” such as Something-Something [48].
In order to give CNNs a capacity to discover temporal relations in videos, Zhou et al. [162]
proposed the Temporal Relation Network (TRN), which can learn and reason about temporal
dependencies between video frame at multiple time scales. Inspired by the RGB difference
input proposed in TSN [143], TDN [142] devises an efficient temporal module by leveraging
a temporal difference operator to fully capture temporal information over the entire video.
Recent temporal segment-based methods include TSM [84] and TEA [81], more details of
which will be discussed in Sec. 2.7.3.

2.5 2D CNN + Recurrent Neural Network (RNN)

2D CNNs are satisfactory spatial information handlers with excellent semantic-level feature
learning ability but not gifted to extract the dynamics within frames. Nevertheless, Recurrent
neural networks (RNNs) are well-suited to process time series data with no fixed length,
which can compensate for the shortcomings of 2D CNNs. An idea for video action recogni-
tion is to take advantage of 2D CNNs and RNNs to build a unified recognition framework,
capturing the appearance and motion features as a whole.

LSTM is a class of RNNs, which is particularly developed to deal with the vanishing gradient
problem [56] which can be frequently encountered when training traditional RNNs. An
LSTM unit generally consists of an input gate, a memory cell, a forget gate and an output
gate. Beyond-Short-Snippets [156] is one of the first deep learning models that adapt LSTMs
to video understanding problems. The CNN-LSTM model is capable of learning the global
temporal evolution of videos. As shown in Fig. 2.9, the CNN-LSTM model first uses a 2D
CNN (red rectangle) to individually process each consecutive frame. Subsequently, the CNN
outputs are processed forward through time via stacked LSTMs (purple cuboid). After the
top LSTM layer, a Softmax layer (orange rectangle) outputs the scores at each timestamp.
Finally, a late fusion function is adopted to aggregate the frame-level Softmax scores into
a video-level prediction. Another notable point of the CNN-LSTM model is that the input
videos are not restricted to fixed lengths, given that RNNs can model variable-length time
series data. Concurrently, Donahue et al. [27] proposed Long-Term Recurrent Convolutional
Networks (LRCNs) with a very similar idea as in [156]. Drawing upon the CNN-LSTM
model [156], later works proposed diverse variants including two-stream LSTM [45], TS-
LSTM [91], bi-directional LSTM [129], VideoLSTM [83] and Lattice-LSTM [116]. To
model long-term dependencies for action recognition, a biologically-inspired deep network
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Fig. 2.9 The CNN -LSTM [156] architecture for action recognition in videos. Image
from [156].

is proposed in [111], in which all GRUs are cyclically connected mimicking the biological
neural system that commonly contains both feedforward and feedback connections. In
[16], Carreira et al. provide a thorough evaluation for the two-stream CNNs and CNN-
LSTM methods, both of which adopts Inception-V1 [120] as the backbone networks for
a fair comparison. They empirically demonstrate that the single stream CNN-LSTM has
significantly lower accuracy than the two-stream CNNs. Nevertheless, the CNN-LSTM
model can still take optical flow as an additional input modality and perform two-stream
fusion with its spatial part as done in [156]. The two-stream CNN-LSTM model has better
performance over any of the CNN-LSTM and two-stream CNNs models, according to the
empirical results in [156, 91, 27].

2.6 Motion Representation Learning

2.6.1 Trajectories Meet Deep Learning

2D CNNs can learn high-level semantic features in the spatial domain, but are poor at
capturing the temporal information in videos, unless we consider additional features such as
the optical flow. Nevertheless, the temporal relations may still not be properly modeled, as
we have discussed in Sec. 2.4.4. Traditional hand-crafted features such as improved Dense
Trajectories (iDT) [134] present stable performance when modeling temporal evolution in



20 Literature Review

videos. In order to capture long-term motion in video frame sequences, Wang et al. [141]
proposed a new type of video representation, called trajectory-pooled deep-convolutional
descriptor (TDD), which shares the merits of both deep learning and iDT. Briefly, they
employ the two-stream CNNs [112] to generate high-level convolutional feature maps and
then conduct the strategies of trajectory-constrained sampling and pooling to aggregate
the convolutional feature maps over a sequence of frames into efficient descriptors. To
suppress the over-activation of the neurons in the deep learning architecture, they apply
spatio-temporal normalization and channel normalization to the convolutional feature maps.
As to the feature encoding, the TDDs of the entire video are encoded by Fisher vector [105]
to form a global super vector. In the end, the global super vector is taken as the input to
a linear SVM to carry out the classification. The TDD method was the state-of-the-art in
2015, demonstrating higher performance than iDT [134] and the two-stream CNNs [112] on
UCF101 [114] and HMDB51 [73]. One shortcoming in the TDD method is that the whole
model is not an end-to-end framework, in which the CNNs are considered to be a fixed
feature extractor pretrained on a large-scale image dataset. Lately, Zhao et al. [161] proposed
trajectory convolution which is capable of integrating features along the temporal dimension.
By incorporating spatial 2D convolution, trajectory convolution can capture features in both
spatial and temporal dimensions, which can be used to replace the 3D convolution operations
in 3D CNNs [67].

2.6.2 Pooling Functions for Motion Pattern Modeling

Inspired by the traditional holistic video representation Motion History Image (MHI) [10]
and rank pooling [42, 43], Bilen et al. [9] devised a novel holistic video representation,
termed dynamic images. Rank pooing [42] is originally designed to learn the video-wide
temporal evolution and return a ranking function for each video. As the ranking function
is capable of arranging the video frames in chronological order, its parameters can be used
to construct a video descriptor. Bilen et al. [9] adapt rank pooling to deep learning and
operate on multiple consecutive raw RGB frames, resulting in a dynamic image. A dynamic
image is an RGB image with 3 color channels that summarize the appearance and motion
information from consecutive video frames. Dynamic images can be used as inputs to a
2D CNN. Consequently, the whole framework is capable of modeling the spatio-temporal
information in videos. Following this, Wang et al. [136] proposed SVM Pooling (SVMP)
which uses the decision boundaries of 2 class SVMs as a new video representation. Similar
to dynamic images [9], the video representation generated by the SVMP is also an RGB
image. A visualization example that compares dynamic images and SVMP is shown in
Fig. 2.10. It can be observed that SVMP captures more motion details about the action that
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Fig. 2.10 Visualization of the results of SVM pooling and approximate rank pooling when
applied to a sequence of video frames. (i) a sample frame, (ii) average pooling all frames,
(iii) dynamic image by approximate rank pooling and (iv) SVM pooling. Image from [136].

the dynamic image. Both rank pooling and SVM Pooling are essentially dimensionality
reduction techniques, projecting video data from the spatio-temporal domain to a reduced
spatial domain. Meanwhile, the usages of ranking pooling and SVM pooling bring us to the
conclusion that video data across space and time contain significant redundancy which does
not improve the performance but increases the computational complexity of models. One
reason is that the background information does not usually change from frame to frame.

2.6.3 End-to-End Flow Estimation and Flow-like Methods

One major reason that limits the efficiency of two-stream CNNs [112] is that the optical
flow images in the temporal stream are not produced on the fly. The dense optical flow
has to be pre-computed and stored locally. Additionally, the computation of dense optical
flow is relatively time-consuming. Many researchers have been thinking of how to address
these problems. In order to estimate optical flow inside a unified framework for video action
recognition, the published works [24, 95] attempted to integrate an optical flow estimation
network into the recognition model, training in an end-to-end manner. Although the inference
process of these methods no longer involves pre-computed optical flow, these methods still
require ground-truth optical flow to train the flow estimation networks inside their models.
The work in [95] also designs a stacked model, in which a 2D CNN is at the top of the
pretrained optical flow estimation network FlowNet [63]. Benefiting from the pretrained
parameters in FlowNet, the stacked model does not require pre-computed optical flow
anymore. Nevertheless, the extra computation required by FlowNet is not trivial, resulting
in twice more computational cost for inference. The stacked structure is also adopted in
hidden two-stream networks [164]. Diversely, hidden two-stream networks replace the heavy
optical flow estimation network with their MotionNet, which is relatively lightweight and
trained in an unsupervised manner. As a result, hidden two-stream networks require no
additional pre-computed optical flow in training and inference. Mocking the motion pattern in
optical flow, Fan et al. [33] proposed TVNet, which approximates the traditional optical flow
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estimation algorithm TV-L1 [157] in a differentiable way. TVNet can be regarded as a fully-
differentiable layer embedded into a video network to form an end-to-end framework, thus
avoiding the pre-computation and the requirement for local optical flow storage. Following
this direction, the published works [118, 78, 100, 158] proposed their own flow-like motion
features, which are end-to-end trainable. MARS [20] proposed to combine appearance and
motion information into a single stream. They design a knowledge distillation method to
transfer knowledge from the optical flow stream to a network with only RGB input. Similar
work was also done in [115], leveraging a teacher-student model.

2.7 3D Convolution-based Methods

2.7.1 3D Convolutional Neural Networks (3D CNNs)

A video can be conceptually regarded as a 3D tensor with two spatial dimensions and a
temporal dimension. The straightforward way to process 3D tensors is to use 3D convolution
filters, given that 3D convolution can simultaneously process temporal and spatial informa-
tion. Motivated by this, the pioneering work by Ji et al. [67] employs 3D convolution to build
an action recognition model, termed 3D Convolutional Neural Network (3D CNN). The 3D
CNN is composed of a hardwired layer, three 3D convolutional layers and a fully-connected
layer. In particular, the hardwired layer contains a set of predefined filters, generating the
gray, gradient-x, gradient-y optflow-x and optflow-y, which can accelerate the training in
the early stage and provide better performance when compared with random initialization.
On the basis of the 3D CNN model, Tran et al. [126] proposed a deeper network with 3D
convolutions, named C3D. The C3D architecture can be regarded as a 3D extension of
the VGG16 [113]. Although 3D CNNs provided a promising direction for spatio-temporal
modeling, their performance was not competitive with that of the state-of-the-art. Because of
the additional kernel dimension, 3D CNNs contain many more parameters than two-stream
CNNs and CNN-LSTM models, resulting in extended training periods. Additionally, 3D
CNNs are prone to over-fit on small-scale datasets such as UCF101 [114] and HMDB51 [73],
having lower performance than two-stream CNNs.

Before 2017, the two-stream CNNs method was the dominant solution in action recognition.
In 2017, Carreira et al. [16] proposed the Inflated 3D ConvNet (I3D) based on Inception-
V1 [120] and 3D operations. The authors made a comprehensive comparison over a set of
video action recognition models, including CNN-LSTM, two-stream 2D CNNs, 3D CNNs
and two-stream 3D CNNs. The I3D model achieved close performance to the two-stream
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2D CNNs, and their two-stream 3D CNNs outperformed all the other models on several
standard video benchmarks. Compared with 2D CNNs, 3D CNNs are more data-hungry
but they also have higher feature learning capacity. In order to fully exploit the feature
learning ability of 3D CNN, the authors of I3D experimented on the large-scale dataset
Kinetics400 [70] whose training period can last a few weeks. It is no doubt that this made
the research cycle time longer and required more GPU machines, making the computational
requirements only affordable for big companies and organizations. Nevertheless, Hara [50]
claims that a large volume of annotated data is indispensable for fully optimizing the massive
parameter numbers of 3D CNNs. Meanwhile, they proposed 3D ResNets by simply replacing
the 2D kernels in ResNet [54] with 3D operations. They demonstrated the performance
of 3D ResNets on the Kinetics dataset can be effectively improved by stacking more 3D
convolutional layers, until reaching the depth of 152 layers.

2.7.2 3D Factorization

Since the great improvement made by I3D [16] in action recognition, many researchers focus
on investigating new 3D CNN-based architectures. The aforementioned 3D CNNs [126, 16]
are too computationally expensive. In order to simplify the 3D CNNs, Qiu et al. [101]
devised Pseudo-3D (P3D) Networks, where a k× k× k 3D convolution is factorized into
a 1× k× k spatial convolution and a k× 1× 1 temporal convolution, which significantly
reduces the computational complexity. Similarly, Tran et al. [128] proposed another 3D
factorization method, termed R(2+1)D. The main difference between P3D and R(2+1)D is
that an R(2+1)D network is a homogeneous architecture built with a single type of (2+1)-
decomposition while a P3D network includes three different types of residual blocks. Before
the proposals of P3D and R(2+1)D, Sun et al. [117] in 2015 already had the idea about
spatio-temporal factorization for action recognition. However, due to the insufficient training
data in the annotated video datasets that they experimented on, the capacity of their model
called FST CN was not fully explored. Xie et al. [151] apply (2+1)D-factorization to I3D [16]
and seek a trade-off between speed and accuracy by only replacing some 2D convolutions
in Inception Networks [120] with 3D convolutions. Their top-heavy model, which has 2D
operations at the bottom and 3D operations at the top, generates higher accuracy than their
bottom-heavy model where the location of 3D and 2D operations are inverted. This suggests
that modeling temporal patterns in high-level features with rich semantics is critical for
improving performance in video understanding.
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2.7.3 Towards Efficient and Effective Spatio-Temporal Modeling

The innovative 3D factorization methods described above were proposed for efficient video
understanding. In order to further increase the efficiency of 3D Networks, some pub-
lished works with creative ideas different from 3D factorization were recently proposed.
In image classification, efficient 2D networks such as Xception [19], MobileNet [58] and
ShuffleNet [160] achieve excellent trade-off between accuracy and speed by utilizing 2D
depthwise separable convolution. Encouraged by this, Tran et al. [127] introduced the concept
of 3D channel-separated convolution to video action recognition. The 3D channel-separated
convolution is an instantiation of group convolution, which provides a good practice to
separate the channel and spatio-temporal interactions. Their 3D Channel-Separated Con-
volutional Network (CSN) [127] achieved higher accuracy than conventional 3D CNNs
while still being 2-3 times faster. Inspired by the fact that the motion being processed can
evolve at a slow or fast speed, Feichtenhofer et al. [37] proposed an efficient network, termed
SlowFast, which is composed of a slow pathway and a fast pathway. The Slow pathway
operates at a specific low frame rate in order to capture spatial semantics while the Fast
pathway operates at a specific high frame rate to capture motion at a fine temporal resolution.
The two pathways are linked with multiple lateral connections for fusing the learned features
between the two pathway. In order to reduce the computational cost, the Fast pathway is
implemented with a network of low channel capacity and a lower spatial resolution. The
SlowFast architecture is considered to be closely related to the two-stream CNNs [112],
but their processing approach towards spatial semantic and temporal motion modeling is
clearly distinct from each other. What is more, SlowFast does not rely on optical flow to
model temporal information. Similarly, bLVNet [34] and Octave Convolution [18] were
proposed to factorize the feature maps outputted by spatio-temporal convolutions in order
to reduce the computational cost. For efficiently modeling spatio-temporal information
Lin et al. [84] proposed a generic module, called temporal shift module (TSM), which is
conceptually a zero FLOP operation, introducing no additional parameters. The TSM enables
motion pattern modeling by shifting a portion of channels along the temporal dimension,
such that it facilitates information exchange among neighboring video frames. The best
merit of TSM is its plug-and-play property which can be easily embedded into off-the-shelf
2D CNN architectures for temporal modeling. In the Temporal Excitation and Aggregation
(TEA) module [81], which is for modeling long-term temporal dependencies, the temporal
convolution is implemented in a similar way to TSM.

Neural architecture search (NAS) is used to design networks that are on par or outperform
hand-designed architectures in image classification [166, 123, 122]. Particularly, Efficient-
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Net [122] leverages NAS to design an auto network and scales it up to obtain a family of
instantiations to meet different required complexities. Based on this, Feichtenhofer [36]
proposed a model scaling method for discovering efficient video network architectures. The
resulting architecture called X3D (Expand 3D) is obtained by progressively expending a tiny
2D network along multiple network axes, in space, time, width and depth, until the targeted
complexity is reached. X3D achieves similar accuracy as previous work while requiring 4-5
times fewer FLOPs.

2.8 Transformers-based Methods

2.8.1 Vision Transformers (ViTs)
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Fig. 2.11 The framework of Vision Transformer (ViT). Image from [28].

A transformer [131] is a sequence-to-sequence (Seq2Seq) architecture that adopts the self-
attention mechanism, being the de-facto standard for natural language processing (NLP).
The dominance of Transformers in NLP is just like that of CNNs in computer vision.
However, we are witnessing a shift in backbone architectures for computer vision from
CNNs to Transformers. This trend starts with the emergence of the Vision Transformer
(ViT) [28], which globally models spatial dependencies on 16×16 spatial patches with the
Transformer in NLP [131]. As shown in Fig. 2.11, ViT is built by stacking multiple-head
attention modules and MLPs. One of the key concepts in Transformers is self-attention
whose advantage is to allow the network to recalibrate the significance of each token. In
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other words, the self-attention mechanism provides networks a global view of the entire
input as its output establishes the relationships between different tokens. ViT outperforms
previous CNN-based architectures [54, 119, 120] in image classification. Following this,
many scholars have joined this vision modeling revolution, proposing diverse ViT-based
models [125, 154, 49, 144, 86] showing superior performance to CNNs. The tremendous
success of ViT in image classification has triggered the investigation of Transformer-based
architectures for video action recognition [3, 7, 159, 32, 94]. Taking the video Transformer
ViViT [3] as an illustrative example, the authors radically expand the ViT [28] from space to
spacetime: They extract spatio-temporal tokens from the input video, which are then encoded
by a series of transformer layers. The weight parameters of ViViT are initialized by the ViT
model pretrained on a large-scale image dataset to enable faster convergence in its training.

2.8.2 ViTs vs. CNNs

According to the empirical evidence in [28], CNNs still provide higher performance than
ViTs when the pre-training datasets are not large enough. As the dataset size increases, the
accuracy of ViTs gradually catches up and surpasses CNNs. This phenomenon suggests
that Transformers are more data-hungry than CNNs. Due to a great number of stacked
self-attention mechanisms in Transformers, the computational complexity of ViT is massive,
leading to very long training times. The unsatisfactory performance of CNNs may be due to
the old-fashioned design and outdated training regimes. In the latest work [88], the authors
reexamine the design spaces and test the limits of what a pure CNN can achieve. Their
ConvNeXt, which is pure convolutional architecture, demonstrates higher performance than
previous Transformer-based architectures in image classification. As vision transformers were
proposed very recently, the research methods presented in this thesis and their implementation
do not consider these ViT-based backbone architectures.

2.9 Conclusion

In this chapter, we have provided the statistics of the datasets on which we experiment
from Chapter 3 to Chapter 5. Then we have listed the main challenges for video action
recognition. This PhD thesis will take practical measures to deal with these challenges in
the following experimental chapters. In this chapter, we have presented the development of
action recognition in videos, going from using traditional hand-crafted feature representation
methods to deep learning-based approaches. Regarding deep learning-based approaches, we
have roughly divided them into six classes, including single-frame networks, two-stream
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networks, 2D CNN + RNN, motion representation learning, 3D convolution-based methods,
transformer-based methods. Most methodologies from different classes overlap each other,
having many elements in common. For all these methods, we have introduced their key
concepts and critically analyzed their advantages and disadvantages, including discussions of
how their ideas have inspired the later works. Although the experiments of this thesis have
not involved Vision Transformers, we have also discussed the literature of transformer-based
methods.



Chapter 3

Spatio-temporal Feature Representation
Learning

3.1 Introduction

Extracting feature representations characteristic to the movement in the scene is essential for
video tasks but still challenging. From the literature review in Chapter 2, the performance
of traditional hand-crafted feature representations is unsatisfactory, to some extent, in com-
parison with the deep features. Nevertheless, combining hand-crafted feature representation
methods with the deep learning technique [112] shows us a promising way for efficient
spatio-temporal feature learning. Fig. 3.1 illustrates the general process for action recognition

Video
Representation 

Extraction 

Neural 

Network
Classification

Differentiable?

Fig. 3.1 The general process for action recognition.

in published works [112, 143, 8, 33]. In the first step, the model utilizes a spatio-temporal
representation extraction method for capturing the visual representations of videos. After
that, the extracted video representations are taken as input by a neural network for learning
abstract feature maps that encode the motion information. The preliminary representation
extraction in the first step aims to increase the efficiency of spatio-temporal feature learning
of the neural network in the later step. In some published works [8, 100], their representation
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extraction process is embedded in some layers of different depths in the neural network, but
the purpose is the same.

As shown in Fig. 3.1, if the representation extraction module is differentiable, then the action
recognition process is an end-to-end training pipeline, which means the model generates
motion representations on the fly, bringing great flexibility for the classification framework.
Furthermore, if the representation extraction method contains trainable parameters, the pa-
rameters of this representation learning method would be optimized with the criteria of action
recognition, as such, the generated video feature representations would be generalized to
many different video scenes, which as a consequence benefit the performance of action
recognition and downstream tasks.

Following the general process of action recognition in Fig. 3.1, this chapter focuses on
designing efficient and effective video representation extraction methods. This chapter can
be divided into two main parts:

1) In the first part, starting from Section 3.2, we describe a novel video representation,
termed Squeezed Image, which summarizes the dynamics and appearance information
of a long video sequence. Meanwhile, we introduce a new temporal pooling approach,
called the Temporal Squeeze pooling (TSP), which can be embedded into off-the-shelf
CNNs, allowing the training of the whole model in an end-to-end manner.

2) In the second part, starting from Section 3.5, we introduce the concept of Dynamic
Appearance. By upgrading the temporal squeeze pooling to a pixel-wise operation,
named Pixel-Wise Temporal Projection (PWTP), we successfully separate the dynamic
appearance of a video from its static appearance. In action recognition tasks, the
neural networks that take dynamic appearances as input could avoid the distraction
caused by irrelevant static information during the training and thus, produce superior
performance.

In the end, we draw a conclusion that summarizes the contribution of this chapter.

3.2 Squeezed Image: End-to-End Representation Learn-
ing

Inspired by the classic appearance-based method [10] which characterizes motion by con-
structing 2D silhouettes for videos, we attempt to encode the dynamics of a long video



30 Spatio-temporal Feature Representation Learning

sequence into a few 2D images. Our encoding scheme enables invisible motion clues in the
temporal dimension to visually present in 2D images, such that 2D CNNs can directly learn
high-level motion features from these extracted video representations without requiring addi-
tional 3D operations. The work closely related to ours is [8], in which the authors introduce
the concept of dynamic image. A dynamic image is an RGB image that summarizes the
appearance as well as the dynamic information of videos. A dynamic image is constructed as
the parameters of a rank or approximate rank pooling machine learned to sort the temporal
order of video frames. The dynamic image accelerates the classification process of neural
networks by reducing the analysis of a video to the analysis of a single image. However,
we reveal that the information storage capacity of a single image is very limited and, as
such, a dynamic image is not capable of representing the dynamics of a very long video
sequence. To fix this problem of dynamic images, Bilen et al. [8] divide the long video
sequence into several sub-sequences of shorter lengths. However, this approach is still not
able to effectively improve their models’ performance.
Here, we introduce a new video representation, named Squeezed Image. Meanwhile, we
propose a novel pooling method, named Temporal Squeeze Pooling (TSP), to generate the
squeezed images. The proposed TSP aggregates the temporal video information into a
reduced spatial dimension by means of an optimization approach that preserves the video
information characteristics. In this study, TSP is optimized for the action recognition task.
TSP can compensate for the shortcomings of the rank pooling machines [42, 43, 9, 8],
by controlling the pooling size. We demonstrate that the proposed TSP mechanism can
summarize the visual representation of up to 64 video frames with highly-complex temporal
changes while the rank pooling machine is limited to processing only 10 frames without
performance degradation. When processing 20 video frames, the ranking pooling machine
resulted in a significant performance drop, according to the experiment in [8]. By embedding
the TSP module as a layer into the off-the-shelf CNNs, we design a new action recognition
model named the Temporal Squeeze Network (TeSNet). The proposed TesNet architecture
significantly reduces the overhead in processing video data while improving the accuracy in
action recognition.

3.2.1 Temporal Squeeze Pooling (TSP)

In this section, we first describe Temporal Squeeze Pooling (TSP), which can aggregate the
long-term temporal information of a sequence of video frames into a small set of squeezed
images. Then, we show how we embed the TSP block as a layer into a CNN, forming an
end-to-end training pipeline.
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Fig. 3.2 Diagram of squeeze and excitation operations in the temporal squeeze pooling. For
each video frame, the squeeze operation Fsq(·) aggregates the information of all positions
and represents it with a single value. Then the excitation operation Fex(·,W) consumes the
vector of k values to generate A, which would be used to construct the squeezed images later.

The proposed approach relies on the observation that consecutive video frames usually contain
repeating information, especially either the background for a still camera, or the foreground,
when the camera follows a target. A temporal squeeze pooling module aims to compress
the dynamic information of a video clip with K frames into D frames (D << K), such that
essential information is preserved. Consequently, repeating information is filtered out while
preserving the essential, usually specific movement patterns. Let X = [x1,x2, . . . ,xK] denote
K video frames where xi ∈ RH×W×C, i = 1, . . . ,K and H, W , C represent the height, width
and the number of channels (color), respectively. The TSP aims to find out the optimal
hyperplane determined by the column space of matrix A ∈ RK×D, and then map every pixel
of X from the vector space of RK onto a much smaller information defining space RD. The
aim is to preserve the relevant dynamic information across the temporal direction into the
compressed space.

In the following, the squeeze and excitation operations proposed in [59] are adopted for the
TSP. The frame sequence X is initially processed by the squeeze operation, producing a
frame descriptor. The squeeze operation is implemented by using global average pooling
along the spatial dimensions H, W and C. Then, the squeeze operation is followed by the
excitation operation, which is made up of two fully connected (FC) layers. The output of the
excitation operation is reshaped into A ∈ RK×D, which defines a hyperplane in RK . In the
squeeze operation, the k-th element of frame-wise descriptor z ∈ RK is calculated by:

zk = Fsq(xk) =
1

HWC

H

∑
i=1

W

∑
j=1

C

∑
l=1

xk(i, j, l). (3.1)
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In the excitation operation, the input-specific hyperplane is calculated by:

Fex(z,W) = δ2(W2δ1(W1z)), (3.2)

where δ1 and δ2 refer to the activation functions and W1 ∈ RK×K , W2 ∈ RKD×K refer to the
weights of the FC layers. Then, the output of Eq. (3.2) is reshaped into a matrix A′ ∈ RK×D.
The input-specific A for the projection is given by

A = Φ(A′), (3.3)

where Φ is a function that guarantees the columns of A are linearly independent. We flatten
X along its H, W and C dimensions into a vector X = [x̄1, x̄2, ..., x̄HWC] where x̄i ∈ RK , and
then project it onto the column space of A, resulting in a vector X̂. The i-th element of
projection x̂ is calculated by:

yi = (A⊺A)−1A⊺x̄i,

x̂i = Ayi, i = 1, . . . ,HWC
(3.4)

where yi ∈ RD represent the mapping coefficients. Because yi is determined by xi, so yi can
be the representative of xi. We reshape the vector Y = [y1,y2, . . . ,yHWC] into a new image
sequence Y′ of D frames of size H ×W ×C. The squeezed sequence of D frames can be
used as a simplified, yet an information comprehensive representation, that summarizes the
dynamics taking place in the given set of K video frames.

3.2.2 Optimization

In this study, the TSP is optimized with respect to the action recognition task. In order to
ensure that the projection X̂ retains as much meaningful spatio-temporal information as
possible from the original video sequence X, X̂ should be close to the original video data X.
This relies on finding the optimal A fitting X, aiming to minimize the residuals of projections.
Let us denote the mean absolute error (MAE) on projections by lpro j, calculated as:

lpro j =
1

HWC

HWC

∑
i

∥x̄i − x̂i∥ , (3.5)

where ∥·∥ represents the standard L2 norm in the K-dimensional Euclidean space RK .
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3.2.3 Network Architecture

Temporal Squeeze Network

The Temporal Squeeze Pooling can process not just video frames but also the output feature
maps of convolutional layers of a CNN. When it is plugged into off-the-shelf CNNs, it forms
a new architecture, named Temporal Squeeze Network (TeSNet). We present two different
instantiations of TesNet in Fig. 3.3, where structure (a) contain a single TSP layer while
structure (b) has multiple TSP layers embedded. Structure (a) can be employed when the
input video clip is not too long (e.g. K < 16). When the input clip is longer than 16 frames,
structure (b) would be preferable, considering that the combination of multiple TSP layers
has a stronger information summarization ability than a single TSP layer. Considering that
the temporal squeeze pooling module has provided strong motion modeling ability, we prefer
employing 2D convolutions rather than 3D convolutions in the network section. Therefore,
we can consider using a deeper network than those using 3D convolutions. For example,
I3D [16], taken as an example of 3D-CNNs, uses Inception Net [120] as its backbone.
Inception-ResNet-V2 is much deeper than Inception Net and has shown remarkable results
in many applications. Hence, we choose the Inception-ResNet-V2 [119] as the backbone
CNN embedding the TSP layer.

In order to form an end-to-end training, we add the loss term lpro j from Eq. (3.5) to the
classification loss used in the original network, resulting in the following loss function:

l f inal = lclassi f +β

M

∑
i=1

li
pro j +λ lL2, (3.6)

where lclassi f is the cross-entropy loss of the classification [119], lL2 is the L2 normalization
term of all the trainable weights in the architecture, λ is the weight decay, β is the weight for
the TSP loss component lpro j, where the projection residuals are summed up for all M TSP
layers.

TSP layers can be embedded in different locations of the backbone CNN. We design our
model by following the principle of decreasing the number of mapped frames D when
embedding into a deeper network layer position. In this case, the model represents a
pyramidal video processing scheme. The first TSP layer should be configured with a
relatively larger D generating more frames, and therefore the loss of temporal information
caused by successive pyramidal projections would be reduced.
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(a) Embedding a single TSP layer (b) Several embeddings of TSP layers
at various levels of a CNN

Fig. 3.3 Frameworks of two types of Temporal Squeeze Network (TeSNet). The first type of
TeSNet (a) has a TSP layer embedded after the input layer for low level feature representation
extraction. The second type of TeSNet (b) is configured with multiple TSP layers embedded
at different depths in the backbone network.

Two-Stream Model

Inspired by the two-stream architecture [112], we use the optical flow of videos as the second
input modality to construct our two-stream model, the framework of which is presented in
Fig. 3.4. The spatial TeSNet takes the RGB frames of videos as input, while the temporal
TeSNet takes the estimated optical flow of video frames as input. The final prediction of a
video is obtained by averaging the output scores of the two streams. In Section 3.3.3, we
show that applying a TSP module to the optical flow of videos generates a special movement
pattern different from the squeezed images. Moreover, the fusion of two video representation
modalities could generate higher accuracy than any single stream.

3.3 Experiments for Temporal Squeeze Pooling

3.3.1 Implementation Details

We conduct experiments on two human activity classification benchmarks, UCF101 [114]
and HMDB51 [73]. Each video in the dataset is converted into frames at its original frame
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Fig. 3.4 Diagram of the two-stream model, including a spatial TeSNet and a temporal TeSNet.

rate. We compute the optical flow using the TVL1 optical flow algorithm [157] and store
them as JPEG images after scaling their values to the interval [0, 255]. In our model, we use
the RGB images and flow images as input resources for different streams. The spatial size
for both RGB images and flow images are 256 × 340.

Our model is pre-trained on ImageNet [22]. To evaluate our model, we reimplement the
Temporal Segment Network (TSN) [143] with our backbone network. We set the dropout
as 0.5 to prevent overfitting and adopt the same data augmentation techniques as in [143]
for network training. The size of the input frames is set to 299× 299, which is randomly
cropped from the resized images, and K consecutive frames are randomly selected from each
video sequence. We use Stochastic Gradient Descent for optimizing the network parameters
in which the batch size is set to 32, momentum of 0.9, weight decay λ = 4e−5, β = 10. The
initial learning rate is set to 0.001 for the image stream and at 0.005 for the Optical Flow
stream. We train the model for 30 epochs, with a ten times reduction for the learning rate
when the validation accuracy saturates.

During testing, we uniformly sample 20 clips from each video clip and perform spatially fully
convolutional inference for all clips, and the video-level score is obtained by averaging all
the clip prediction scores of a video. For the proposed TeSNet, we set Φ(·) = I in Eq. (3.3),
resulting in A′ = A, while the column independent A is properly initialized. Unless specified
otherwise, we consider Sigmoid function for δ1(·) and LeakyReLU for δ2(·) in Equation (3.2);
the temporal squeeze pooling is configured with K = 10, D = 3, which means the information
of a 10-frame video would be summarized into 3 squeezed images; the TSP is placed before
the first convolutional layer of the backbone CNN.
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3.3.2 Ablation Studies for TSP

Instantiations with various combination of activation functions

(a) Sigmoid+Tanh (b) Sigmoid+Sigmoid

(c) ReLU+ReLU (d) Sigmoid+LeakyReLU

Fig. 3.5 Visualizing the output of the TSP layer when considering different activation
functions for δ1+δ2 in Eq. (3.2).

In the temporal squeeze pooling, different implementations for activation functions δ2 and
δ1 from the excitation operation (Eq. (3.2)) have different impacts on the output content
of TSP. In order to find out the proper implementations for δ2 and δ1, we consider various
choices and combinations, commonly used in deep learning, such as: Sigmoid+Tanh where
the first corresponds to δ1 and the second to δ2, respectively. We train the TSP instances
independently with the optimization criteria of Mean Absolute Error (MAE) of the projection
on UCF101 (split 1). Numerical and qualitative results for these combinations of activation
functions are provided in Table 3.1 and in Fig. 3.5, respectively. From Fig. 3.5a and 3.5d,
we can observe that when using Sigmoid+Tanh and Sigmoid+LeakyReLU as the activation
functions, the squeezed images achieve a better separation of the moving regions from the
background, and they both have smaller MAE, according to the results from Table 3.1.
However, when using either Sigmoid+Sigmoid or ReLU+ReLU for δ1+δ2, the TSP instance
would yield larger MAE, while the moving region and the background are not that well
separated, as it can be observed in Fig. 3.5b and 3.5c. In the following experiments we
consider δ1 as Sigmoid and δ2 as LeakyReLU for instantiating TSP.

Embedding the TSP layer into Networks

In the following, we explore where and how to embed TSP layers into the CNN. The results
are shown in Table 3.2, where the second column indicates the location for inserting a TSP
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Activation function (δ1+δ2) MAE (lpro j)

Sigmoid+Tanh 7.14e-2
Tanh+Sigmoid 8.33e-2
Sigmoid+Sigmoid 7.33e-2
ReLU+ReLU 9.86e-2
LeakyReLU+Sigmoid 7.12e-2
Sigmoid+LeakyReLU 7.01e-2

Table 3.1 Comparison for the effect of different combinations of types of activation functions
for the squeeze function Fex from Eq. (3.2), in terms of MAE of projections. A smaller MAE
gives a better result.

layer with the corresponding D indicated in the third column. A single TSP layer, M = 1 is
embedded in settings No. 1 and 2, while M = 2 for settings No. 3, 4 and 5. The model from
setting No. 1, which embeds a TSP layer directly after the inputs of the network, achieves
the best result in all settings. However, the model with setting No. 5, which embeds two
TSP layers into the backbone network, requires fewer computations in FLOPs1 and has
almost the same performance as the No. 1 setting. When a lower level of computational
complexity is required, then the No. 5 setting is preferable to be used. Inserting the TSP
layers into the middle section of the backbone network leads to worse performance. One
possible explanation is that the network was initially pretrained on ImageNet; the inserted
TSP layers did not fit well with the settings of these pretrained kernels and resulted in poor
performance. In order to avoid this problem, the model with TSP layers embedded has to be
pretrained on a large video dataset.

Different clip lengths

We explore how the length of the input video clip affects the performance of our model.
we consider a rather small batch size of 8 and a maximum clip length of 64 because of
the GPU memory limitation. For the clip length of 64, we adopt the setting No. 5 from
Table 3.2 but consider D1 = 16 and D2 = 4. When considering clip lengths of 10 or 16, we
use the first setting from Table 3.2. The results are shown in Table 3.3. Due to the small
batch size we adopt, we see little performance degradation for the model with a clip length
of 10. Nevertheless, it can be observed that when increasing the length of the video clip,
the performance improves as well. The model with the clip length of 64 achieves 87.8%

1In Inception-ResNet-V2, Block B is located in its latter part. The FLOPs of Setting No. 5 is around 70% of
setting No. 1.
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No. Location of
TSP layer

Number of squeezed
frames(Di)

Accuracy (%)

1 Input D1 = 3 85.4

2 Input D1 = 1 83.1

3
Conv2d_1a_3x3
Conv2d_4a_3x3

D1 = 3
D2 = 1

81.7

4
Conv2d_1a_3x3
Block A

D1 = 3
D2 = 1

84.9

5
Conv2d_1a_3x3
Block B

D1 = 3
D2 = 1

85.3

Table 3.2 Evaluating the accuracy when embedding the TSP layer at different depths of the
CNN.

Top-1 accuracy on the split 1 of UCF101, which is 2.5% higher than the model with the clip
length of 10. The increase in accuracy evidences that our TSP is capable of capturing useful
dynamics of very long video sequences.

Clip length Accuracy (%)

10 85.3
16 86.2
64 87.8

Table 3.3 Comparing the effect of various clip length of videos on RGB stream on the split 1
of UCF101 dataset.

Effectiveness of TeSNet

In order to evaluate the effectiveness of the proposed TeSNet architecture, we compare it with
the baseline (i.e. Inception-ResNet-v2) and TSN [143]. All these models adopt Inception-
ResNet-v2 as their backbone networks. The results provided by different architectures and
streams are shown in Table 3.4. After employing the proposed TeSNet architecture with
the fusion of the RGB and optical flow (OF) modalities, we successfully boosted the Top-1
accuracy from 92.5% to 95.2% on the split 1 of UCF101. TeSNet also outperforms TSN
(Inception-ResNet-v2) by 2.3%, which strongly demonstrates the effectiveness of TeSNet.
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Architecture length RGB OF RGB+OF

Baseline 1 83.5 85.4 92.5
TSN 3 85.0 85.1 92.9
TeSNet 64 87.8 88.2 95.2

Table 3.4 Performance of different architectures with two-stream on the split 1 of UCF101
dataset. The baseline is Inception-ResNet-v2, which is also the backbone network of the
TSN and TesNet models.

Method UCF101 HMDB51

iDT+Fisher vector [99] 84.8 57.2
iDT+HSV [98] 87.9 61.1
C3D+iDT+SVM [126] 90.4 -
Two-Stream (fusion by SVM) [112] 88.0 59.4
Two-Stream Fusion+iDT [40] 93.5 69.2
TSN (BN-Inception) [143] 94.2 69.4
Two-Stream I3D [16] 93.4 66.4
TDD+iDT [141] 91.5 65.9
Dynamic Image Network [8] 95.5 72.5

Temporal Squeeze Network 95.2 71.5

Table 3.5 Temporal Squeeze Network compared with other methods on UCF101 and
HMDB51, in terms of top-1 accuracy, averaged over three splits.

3.3.3 Visualization Analysis

We explore how the temporal squeeze pooling represents the spatio-temporal information
within the video clips by visualizing its outputs. In Fig 3.6, we show the output of the
TSP with K = 10, D = 2 resulting in 2 squeezed images. The clip, shown on the first row
in Fig 3.6a display a clear salient movement, and we can observe that its corresponding
squeezed images capture the dynamics of videos, as shown on the first row in Fig 3.6b. The
other clip, shown on the second row, does not contain any obvious movement. When there is
no movement present in a video clip, the TSP captures the characteristic static information
about the scene, as shown in the last two images from the second row of Fig 3.6b.

Fig 3.7 depicts the outputs of the TSP with K = 10, D = 2. The output of the TSP with RGB
frames is shown in Fig. 3.7b, and the output of the TSP that takes optical flow images as
input is shown in Fig. 3.7d. We observe that the output of the TSP tends to preserve the
static information and the motion information separately. This indicates that by considering
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(a) Selection of 10 consecutive frames from video sequence. (b) Squeezed Images

Fig. 3.6 Visualizing the squeezed images in (b) and their corresponding input video clips in
(a), where the clip shown on the top row contains obvious movements while the bottom one
contains no clear movement. The TSP is configured with K = 10, D = 2.

a single image we may not be able to represent the underlying spatio-temporal information
from the video. Moreover, when considering D = 3, the classification accuracy is higher
than for D = 1, according to the results from Table 3.2. This result further demonstrates
that summarizing the dynamics of a long video clip into a single image would lose essential
spatio-temporal information. A dynamic image [8] attempts to summarize the entire infor-
mation from a video clip into a single image, which can explain why they fail to properly
represent long video clips.

From the Fig. 3.8, we observe that the squeezed images represent the movement information,
depending on the type of movement and moving objects, in different ways. When having
moving objects on a stationary background (camera not moving), the background is canceled
in the squeezed images, while the moving objects appear as specific blurred regions in the
squeezed image, as seen in Fig. 3.8 (a) and (b). When the camera is moving, following a
specific fast-moving object, then that object will highlight in the squeezed image, while
the moving background will appear as blurred information. In the case when a complex
movement of both the multiple moving objects in the scene and the camera following them,
then the squeezed image results into a more uncertain representation, as it can be seen from
Fig. 3.8 (g) and (h).

3.3.4 Comparisons

For fair comparisons, we only consider those models that are pre-trained on ImageNet [22].
The results are provided in Table 3.5. The proposed TeSNet achieves 95.2% top-1 accuracy on
UCF101 and 71.5% on HMDB51, which outperforms TSN (BN-Inception) by 1% and 2.1%
on UCF101 and HMDB51, respectively. As the dynamic image network fuses the prediction
scores of four streams using a better backbone network architecture, while our TeSNet only
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(a) Single Image (b) Squeezed Image (c) Optical Flow (d) Squeezed Optical Flow

Fig. 3.7 Given input video frames, flow images and the corresponding outputs for the TSP
layers (K = 10, D = 2).

(a)                            (b)                            (c) (d)                           (e)

(f)                            (g)                            (h) (i)                           (j)

Fig. 3.8 Examples of squeezed images generated by the temporal squeeze pooling mechanism.
In (a)-(f), the moving objects are well captured, as their backgrounds are stationary. In (g)-(i),
both object and camera movements are involved, resulting in uncertain representations. In (j),
the guitar player does not perform obvious movements, and its squeezed image only presents
the textures of the scene.
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uses two streams, and therefore the results are not directly comparable. Nevertheless, the
advantage of our proposed method is that we can control the number of frames for the
output of the TSP layer to preserve the video information better, while the dynamic image
method [8] can only summarize a part of the spatio-temporal information into a single image.
The proposed TeSNet method can represent the information through TSP from as many
as 64 frames, unlike in [8], where the dynamic image method would show performance
degradation when processing more than 20 frames.

3.4 Limitations of Temporal Squeeze Pooling

A problem with temporal squeeze pooling is that it would change the temporal order in the
movement representation. As a consequence, the model most likely would learn an incorrect
temporal relation between video frames. With the development of computer vision, many
researchers in the community have started realizing the importance of temporal relations
in video sequences for video understanding. Shuffling the order of video frames would
not significantly influence the performance of current models on the video datasets that do
not require strict temporal order to discriminate different action classes. UCF101 is one
of these datasets, so the proposed TSP performs well on this dataset. However, Zhou et
al. [162] reveal that shuffling the temporal order will cause critical harm to the performance
of current models on those video datasets which are defined by the interpretation of the strict
temporal order between video frames. So TSP would not work on the “motion-dominant
datasets”. This fatal shortcoming exists not just in our TSP but also in the rank pooling
machines [42, 43, 9, 8], which are used to generate the dynamic images. To address this
problem, we can adopt the uniform sampling strategy [143] that uniformly divides a video
sequence into multiple segments, and perform the temporal squeeze pooling for each segment,
which allows modeling sparse temporal relations of the sampled video frames.

From the visualization analysis in Section 3.3.3, we have demonstrated that the TSP is capa-
ble of capturing video dynamics useful for video understanding when videos contain salient
movements. However, we find that the TSP is not sensitive to the small local displacement
happening between consecutive video frames but is instead sensitive to the illumination
change. This is caused by the squeeze operation Fsq(·) from Eq. (3.1) implemented as a
global pooling, which outputs very close values for the video frames in which movements
only happen in some small regions. As a result, the TSP treats the video frames having small
local motions equally and fails to represent the characteristic features of these small motions.
To address this problem, we need to re-design the temporal squeeze pooling, and the squeeze
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operation Fsq(·) should be re-defined as a local feature aggregation operation instead of the
original global pooling.

3.5 Dynamic Appearance: Video Representation Learning
with Joint training

Video data is collected across both space and time, is high-dimensional and contains
substantial redundancy. These are challenging to any model aiming to differentiate be-
tween relevant and irrelevant spatio-temporal features. While leading-edge CNN architec-
tures [16, 101, 145, 102, 37, 36, 151] have been tailored for learning spatio-temporal features
from raw video data, a quintessential spatio-temporal representation remains elusive. In this
section, we introduce the concept of Dynamic Appearance, which is a novel video represen-
tation summarizing the appearance information relating to movement in a video sequence
while filtering out the static information considered unrelated to motion. The filtered static
information that does not change from frame to frame is temporarily referred to as the Static
Appearance. To better understand the concept, we depict the dynamic appearance and static
appearance of a video in Fig. 3.9. Our motivation for this study stems from the observation
that many videos labeled with different action categories are shot in the same environment.
Taking the videos shown in Fig. 3.9 as an illustrative example, the two videos have different
action labels (‘Cricket Shot’ vs. ‘Cricket Bowling’) but they are actually two short video
clips shot in the same environment. In this case, the static appearances and scene information
of these videos are very similar, describing the same object and background, which hinders
CNNs that take RGB frames as input from learning relevant spatio-temporal features. One
solution would be to replace the RGB frame input with a pure motion representation such
as optical flow. However, the optical flow would lose appearance information, which could
result in misclassifying videos in different scenes. Therefore, the classic two-stream CNN
architecture [112] is proposed in order to learn representations of motion and appearance
from optical flow and raw RGB frames separately. However, the computational complexity
of two-stream-based architecture [112, 38, 40, 143, 16] is double that of the single-stream
version.

One question asked in video analysis is: if we can filter out static appearances from video
frames and only preserve the dynamic appearances related to the motion, can we circumvent
the interference caused by static appearances? To this end, we propose the Pixel-Wise
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RGB Frames Static Appearance

Cricket Shot

Average Frame Dynamic Appearance

Cricket Bowling

Fig. 3.9 Different actions recorded within the same environment have very similar static
appearances, which could cause confusion in classifiers. Using the Dynamic Appearance as
an input resource would avoid such confusions, as it only contains the visual information
related to the movement. For instance, the person in the bounding box does not move and is
not included in the dynamic appearances but rather in the static appearances.

Temporal Projection (PWTP), which is based on the optimization of the projection from a
high dimensional space into a lower space, following training on a given video dataset. By
utilizing PWTP, the temporal information of a video is projected to a subspace of its original
temporal dimension. The resulting projection encodes the static appearance of video while
the projection residual encodes the dynamic appearance. As shown in Fig. 3.9, the dynamic
appearance manifests motion by encoding only the meaningful visual information related to
motion. Hence, CNNs that take dynamic appearances as input could avoid the distraction
caused by static appearances and focus on learning high-level spatio-temporal features during
training.

PWTP can be regarded as an improved version of Temporal Squeeze Pooling (TSP) described
in Section 3.2. The TSP module makes it possible to process very long video clips with a
limited computation budget by summarizing the visual information in a long video frame
sequence into just a few squeezed images, which preserves the dynamic as well as static
information of the video. As discussed in Section 3.4, the squeezed images generated by
the TSP module are useful for video recognition provided that there is no severe camera
shake or movement. Otherwise, the squeezed images would be blurred, which results in poor
discrimination between the moving objects and backgrounds in the scene. This phenomenon
will be more severe when processing longer frame sequences. This shortcoming also exist
in discriminative rank pooling [41] and dynamic images [8]. The main reason for the poor
discrimination is that these pooling methods are intrinsically frame-wise operations that
generate an output image by weighted summing up the input frames. However, PWTP
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can fundamentally address this problem, as it instead operates at the pixel level, providing
different weights for different spatio-temporal positions when pooling along the temporal
dimension. Moreover, due to the upgrade from frame level to pixel level, a PWTP module
can be utilized to separate the dynamic appearance of a video from its static appearance. In
our preliminary work, we experiment that TSP cannot perform the disentangling of dynamic
and static appearances. Compared with Squeezed Image [61] and Dynamic Image [8] which
summarize both motion and appearance information into one or few images, our dynamic
appearance filters out the appearance information unrelated to motion. We demonstrate that
dynamic appearance shows higher performance than Squeezed Image and Dynamic Image.

The dynamic appearance learning with PWTP can firstly be regarded as an unsupervised
learning method, whose optimization objective is to minimize the projection residual. Alter-
natively, we can combine the PWTP module with a CNN into a unified learning framework,
termed Dynamic Appearance Net (DAN). The dynamic appearance learning works as an
auxiliary task to the primary recognition task, and both tasks are optimized with joint training
algorithms. It is difficult for a CNN to learn action-relevant features with just the action
recognition criteria (i.e. cross-entropy loss) due to the presence of irrelevant static appear-
ance features. However, it would be easier for the dynamic appearance learning task. By
jointly training the two tasks, the model can better generalize on the action recognition task,
as demonstrated in our experiments. We perform extensive experiments on four standard
video benchmarks: Kinetics400 [16], Something-Something V1 [48], UCF101 [114] and
HMDB51 [73], where we show that PWTP greatly improves the performance in terms of ac-
curacy. The experimental results successfully demonstrate that using the dynamic appearance
extracted by PWTP can enable better feature learning in CNNs.

3.5.1 Overview

Motion Representation

Optical flow as a short-term motion representation has been widely used in action recognition.
FlowNet series [63, 29] improve the quality of optical flow estimation by using deep learning.
Some published works [95, 164] attempt to integrate optical flow estimation and the action
recognition model into an end-to-end training framework. However, optical flow represents
motion with instantaneous image velocities, which loses the appearance information, and
therefore could cause inaccurate classification of videos in different scenes. Derived from
the optical flow, OFF [118], Flow-of-Flow [100] and other flow-based methods are proposed
for fast motion feature learning. The seminal work [8] utilizes the rank pooling [42] or
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approximate rank pooling [8] machine to summarize both the static and dynamic visual
information of a video into a few RGB images, called dynamic images. It is worth noting that
vanilla PCA cannot achieve the same result as rank pooling [42] because PCA is a generic
orthogonalization method for dimension reduction by selecting a set of orthogonal vectors, the
output of which would not be adapted to the 2D or 3D layout. SVM pooling [136] generates
a video representation similar to dynamic images by exploiting the boundary information
of SVM. Nevertheless, dynamic images result in poor discrimination between the moving
objects and background, which harms performance when recorded videos are affected by
camera shaking. Different from the existing methods, the proposed PWTP achieves the
disentanglement of video’s static and dynamic appearance. The dynamic appearance can be
a preferable input resource to CNNs, encoding the temporal motion information as well as
the visual information related to the movement.

Joint Training

Joint Training, one of the guises of multi-task learning, can be regarded as a form of inductive
transfer, helping a model generalize better by introducing an inductive bias. Ng et al. [95]
proposed ActionFlowNet for jointly estimating optical flow and recognizing actions. Simi-
larly, TVNet [33] jointly trained videos’ representation learning and the action recognition
tasks. In our case, the representation learning for the static and dynamic appearance disentan-
glement of video is an auxiliary task to action recognition, which is the primary goal. This
would allow the model to eavesdrop, i.e. learn the motion-relevant representation through
the dynamic appearance learning task. Existing methods balance the recognition loss and
the objective functions of their representation learning with some fixed scale parameters. In
our study, in order to stabilize the feature learning process, we analyze various joint training
scenarios, such as the multiple-gradient descent algorithm [23].

3.5.2 Pixel-Wise Temporal Projection (PWTP)

In order to achieve video static and dynamic appearance disentanglement, we propose the
Pixel-Wise Temporal Projection (PWTP) operator. Given a T frame video clip x of spatial
resolution H ×W , we flatten it along the spatial dimensions, so x = {xi}HW

i=1 , xi ∈ RT×C, and
C is the number of channels. The goal of PWTP is to summarize the video information from
T frames into D frames and D << T . Firstly, for every position i in the spatial dimensions,
PWTP learns a particular matrix Ai ∈ RT×D, the column space of which defines a subspace
(i.e. hyperplane) in RT . The columns of matrix Ai are linearly independent. Then the PWTP
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projects xi onto the corresponding column space of Ai, resulting x̂i, given by

yi = (A⊺
i Ai)

−1A⊺
i xi,

x̂i = Aiyi, i = 1, . . . ,HW,
(3.7)

where y = (y1 . . .yHW )T , yi ∈ RD×C are the mapping coefficients. The projection result x̂
preserves the static appearance information shared in T video frames and this is enabled by
y.

The production of input-specific A = (A1 . . .AHW ) is realized in two steps: 1) producing a
temporal relation descriptor for every spatial position i; 2) a Multilayer Perceptron (MLP)
takes as input the temporal relation descriptors and outputs the tensor A. In the first step for
the temporal relation description, we pass the input x to a spatial convolution F with the
kernel size of k× k and stride of s for local spatial information aggregation:

x̃ = Fk×k
s (x;θ), (3.8)

where θ , of size k× k×C×C′, denotes the kernel weights. The spatial convolution F maps
the tensor x to x̃ of size HW

s2 ×T ×C′, which significantly reduces the computational cost for
PWTP when setting the stride s > 1. This is a non-trivial trick that allows the pixel-wise
projection to be implemented within a feasible computation budget. Subsequently, we have
x̃ = {x̃i}HW/s2

i=1 and x̃i = {x̃t
i}

T
t=1, where x̃t

i ∈ RC. Then, the temporal relation descriptor ui

for every spatial position i is obtained as

ui =
{1/C′ x̃t1⊺

i x̃t2
i

∣∣ t1 ̸= t2,1 ⩽ t1, t2 ⩽ T
}
. (3.9)

Consequently, ui is represented as a vector ui ∈ R
T×(T−1)

2 with ascending indices of t1, t2,
and u = [u1, . . . ,u HW

s2
]. As each element in ui describes the similarity between a pair of

frames, such that ui can represent the relationship between any two frames in the video
clip. By taking u as the input to an encoder, the projection machine would have a better
understanding of the temporal relationships in the video, and so provide a better temporal
projection mechanism.

The convolution Fk×k
s (·;θ) from Eq. (3.8) is important for implementing temporal projection

at pixel-level, as it encodes the local spatial information of each position i into the local
descriptor ui, which leads to the projection result x̂ representing smooth textures. Without
Eq. (3.8), the projection in each spatial position would be performed completely indepen-



48 Spatio-temporal Feature Representation Learning

dently, which would fail to consider that the values of neighboring pixels are continuous,
resulting in unsmooth spatial textures.

In the second step of the generation of A, we utilize an MLP to process the temporal relation
descriptors u and generate A:

A = Upsample(MLP(u)),

Reshape : A ∈ RHW×T D → A ∈ RHW×T×D,
(3.10)

where the 2D bilinear upsampling is employed in the spatial dimensions if convolution F’s
stride s > 1. Tensor reshaping is then performed at the end. The linear independence of
the columns of Ai can be implemented by properly initializing the MLP (e.g. by avoiding
to initialize all weights to zero). The MLP in the PWTP module is made up of multiple
fully-connected layers with a bottleneck design where the number of features is first reduced
by a factor and then recovered to its original size. The residual connection [54] is applied after
every bottleneck. Each fully-connected layer, except for the last one, is followed by a GELU
non-linearity. More details about the MLP configurations are provided in Section 3.6.3.

Projection Residual as Dynamic Appearance

(1) Hockey stop (Kinetics) (2) Squeezing something (SS)

(3) Uneven Bars (UCF) (4) Pour (HMDB)

Fig. 3.10 Examples of video frame sequences visualized as their frame averaging (left) and
corresponding dynamic appearances (right). The videos are randomly picked from Kinetics,
Something-Something (SS), UCF101 and HMDB51 datasets.

The projection residual in spatial position i is given by

pi = xi − x̂i. (3.11)
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Note that when the dimension D of the subspace (i.e. rank(Ai)) is much smaller than the
original temporal dimension T in a video, the projection x̂i is forced to encode the video’s
static information, because static information repeatedly appear in consecutive frames, con-
struing the main components of xi. Subtracting the common static features by the original
xi will generate the dynamic appearance. The projection residual p preserves the pure dy-
namic appearance information of the video and filters out the static appearance. Considering
that many spatial positions in the projection residual do not carry visual information after
optimization, pi ≈ 0, we average p along the temporal direction to reduce the tensor size:

p̄i =
1
T

T

∑
t=1

pt
i. (3.12)

Some examples of dynamic appearances for video clips of various activities from Kinetics,
Something-Something, UCF101 and HMDB51 datasets are shown in Fig. 3.10.

3.5.3 Dynamic Appearance Net (DAN)

The proposed DAN framework is presented in Fig. 3.11. We sample and then divide the video
along the temporal dimension into S segments, with each segment containing T consecutive
video frames. The proposed PWTP module is applied to every segment of videos. As a
result, the S×T RGB frames are projected into S frames of dynamic appearance. By taking
the dynamic appearance p̄ as input, a CNN can avoid the distraction caused by the static
appearance (x̂) when discriminating the actions in some similar scenes, and therefore can
focus on learning high-level motion-relevant features. We simply call the network that
takes dynamic appearances as input Dynamic Appearance Net (DAN). In order to evaluate
the generalization ability of our methods with different CNN architectures, we consider
using TSM R50 [84] and X3D-XS and X3D-M [36] as the backbone networks of our DAN
framework. We demonstrate that our DAN improves the performance of these CNNs steadily.

3.5.4 Joint Training

The optimization objective of PWTP is defined to minimize the Euclidean Norm of Projection
Residual (ENoPR):

L1 =
1

HWC

HWC

∑
j=1

∥ p̃ j ∥2, (3.13)

where p̃ ∈ RHWC×T denotes the flattened version of p along the space and channels. L1 can
be defined as a loss function L1(Θ1) w.r.t. PWTP’s weight parameters Θ1. For the case of N
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PWTP

x
Dynamic Appearance ( p )

average

Static Appearance ( x )^

CNN…

…

−

Fig. 3.11 Diagram of the Dynamic Appearance Net (DAN). The Static and Dynamic appear-
ances are separated by the PWTP module. Subsequently, the backbone CNN feeds on the
dynamic appearances for learning high-level spatio-temporal features.

data points, the ENoPR is expressed by:

L̂1(Θ1) =
1
N

N

∑
n=1

L1
n(Θ

1). (3.14)

The loss function of action recognition is denoted by L̂2(Θ2) in independent training,
L̂2(Θ1,Θ2) in joint training, where PWTP’s parameters Θ1 are shared between the two
tasks. The joint training of L̂1(Θ1) and L̂2(Θ1,Θ2) forms the multi-objective optimization :

min
Θ1,Θ2

[
αL̂1(Θ1)+(1−α)L̂2(Θ1,Θ2)

]
, 0 ⩽ α ⩽ 1, (3.15)

where the weight α , used to scale the contribution of the two loss functions, can be fixed, as
in [33], or can be adaptive.

Multiple-Gradient Descent Algorithm (MGDA)

For the adaptive scale α , we adopt the Multiple-Gradient Descent Algorithm (MGDA) [23,
110], in which the goal of multi-objective optimization is to achieve Pareto-optimality. A



3.5 Dynamic Appearance: Video Representation Learning with Joint training 51

solution is said to be of Pareto-stationary if and only if there is 0 ⩽ α ⩽ 1 such that:

• α∇Θ1L̂1(Θ1)+(1−α)∇Θ1L̂2(Θ1,Θ2) = 0,

• ∇Θ2L̂2(Θ1,Θ2) = 0.
(3.16)

Pareto-stationarity is a necessary condition for Pareto-optimality. From [23, 110], the decent
directions to Pareto-stationarity would be provided by solving the following optimization
problem:

min
α

∥ α∇Θ1L̂1(Θ1)+(1−α)∇Θ1L̂2(Θ1,Θ2) ∥2
2,

0 ⩽ α ⩽ 1,
(3.17)

which is a one-dimensional quadratic function of α with an analytical solution:

α
′ =

(
∇Θ1L̂2(Θ1,Θ2)−∇Θ1L̂1(Θ1)

)⊺
∇Θ1L̂2(Θ1,Θ2)

∥ ∇Θ1L̂1(Θ1)−∇Θ1L̂2(Θ1,Θ2) ∥2
2

,

α̂ = max(min(α ′,1),0).

(3.18)

Suppose we optimize the objective with mini-batch gradient descent, then the gradient is
updated with Algorithm 1:

Algorithm 1: Optimization of the Joint Training

Input: Training tasks: L̂1(Θ1), L̂2(Θ1,Θ2); Learning rate: η ;

1 Initialize Θ1,Θ2 randomly;
2 while not converged do
3 Compute gradient: ∇Θ1L̂1(Θ1) and ∇Θ1L̂2(Θ1,Θ2);
4 Update α by solving Eq. (3.18);

5 Θ1 = Θ1 −η

(
α∇Θ1L̂1(Θ1)+(1−α)∇Θ1L̂2(Θ1,Θ2)

)
;

6 Θ2 = Θ2 −η∇Θ2L̂2(Θ1,Θ2);
7 end

Scale Scheduler for Joint training

When using joint training to resolve the multi-objective optimization problem defined
in Eq. (3.15), we consider employing a scale scheduler to estimate a dynamic scale α ,
weighting the contribution of the two components L̂1(Θ1) and L̂2(Θ1,Θ2). The scale sched-
uler is a hybrid function that initially sets α to a large value and gradually decreases it to a
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minimum value, simulating cosine annealing [89]:

α =


1
2

(
1+ cos(π log[

(γM)

π

cos−1(2λ−1)
]m)

)
, m < γM

1
2λ

(
1+ cos(πlog[

(1−γ)M
]m)

)
, m ≥ γM

(3.19)

where m denotes the current iteration, M represents the total number of training iterations,
while γ ≥ 1 and λ ≤ 1 are two additional parameters used to control the graph of the hybrid
function. Some example graphs of the hybrid function are displayed in Fig. 3.12. The scale
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Fig. 3.12 Example graphs of the scale schedule function with different γ and λ .

scheduler is established under the realistic assumption that in the early training period, the
feature representation learning task L̂1(Θ1) has higher priority than the recognition task
L̂2(Θ1,Θ2). In the later training period, the primary action recognition task should be the
main focus, and the optimization objective of the feature representation learning task should
be assigned a very low weight.

3.6 Experiments for Pixel-Wise Temporal Projection

We conduct experiments on five action recognition datasets, including Kinetics400 [16],
Mini-Kinetics (Mini-K) [151], UCF101 [114], HMDB51 [73] and Something-Something-
V1 [48]. Mini-K is sub-set of Kinetics400 with 200 categories. Some ablation studies
are experimented on Mini-K for fast exploration. In Kinetics400, Mini-K, UCF101 and
HMDB51, temporal relation is less important than the RGB scene information.
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In the following, we first describe the implementation details. Then we provide the main
results on multiple standard video benchmarks, and make comprehensive comparisons with
the state-of-the-art methods. To demonstrate the scientificity and rationality of our methods,
we conduct ablation studies to analyze each component of the method individually.

3.6.1 Implementation Details

Unless specified otherwise, our models adopt the following settings: the PWTP module
embedded in DAN is configured with T = 8, D= 1. The convolution Fk×k

s (·;θ) is configured
with the kernel size of 9×9, stride s = 8 and C′ = 24 output channels. For the models on
Something-Something V1, UCF101 and HMDB51, we use the uniform sampling strategy in
TSN [143], where a video is evenly divided into S segments. For each segment, we select T
consecutive video frames to form a clip of S×T frames. For the models on Kinetics400 [16],
we perform dense sampling and select S×T consecutive frames. The dynamic appearance
extraction is performed on every T consecutive frames.

We train our models using synchronized SGD with momentum 0.9 and a cosine learning rate
schedule. Following the experimental settings in [84, 143], the learning rate and weight decay
parameters for the classification layers are 5 times larger than those for the convolutional
layers. In order to alleviate over-fitting, we apply L2 regularization to the convolutional
and classification layers, and a dropout layer with the ratio of 0.5 is added before the clas-
sification layer of the DAN model. During training, we apply random horizontal flip as
data augmentation to the training data except for Something-Something. We jointly train
the dynamic appearance learning and action recognition tasks with the Multiple-Gradient
Descent Algorithm described in Section 3.5.4, unless specified otherwise. When using
X3D-XS [36] as the backbone, we randomly crop 160× 160 pixels from a video with a
shorter side randomly sampled within [182, 228] pixels, as in [36]. Otherwise, we randomly
crop 224×224 pixels from a video with the shorter side randomly sampled within [256, 320]
pixels.

For efficient inference, we sample a single clip per video with center cropping used in
the ablation studies. The spatial size of a center crop is of 160×160 for the models with
X3D-XS backbone, while for the others is 224× 224. When pursuing high accuracy, we
sample multiple clips&crops from the video and average the Softmax scores of multiple
spacetime “views” (spatial crops×temporal clips) for prediction. Following the practice in
[37], we approximate the fully-convolutional testing by taking 3 crops of 256×256 pixels
(160×160 for X3D-XS) to cover the spatial dimensions.
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Hyperparameters for the DAN model based on ResNet

The backbone networks are pretrained on ImageNet [22]. On Kinetics400, we train our
models on 64 GPUs (NVIDIA Tesla V100). The initial learning rate, batch size, total epochs,
weight decay and dropout ratio are set to 0.08, 512 (8 samples per GPU), 100, 2e-4 and
0.5, respectively. On Something-Something V1, we train our models in 32 GPUs, and
the hyperparameters mentioned above are set to 0.12, 256 (8 samples per GPU), 50, 8e-4
and 0.8, respectively. We use linear warm-up [89] for the first 7 epochs to overcome early
optimization difficulty. When fine-tuning the Kinetics models on UCF101 and HMDB51, we
train our models on 16 GPUs and freeze the entire batch normalization [65] layers except for
the first one to avoid overfitting, following the recipe in [143]. The initial learning rate, batch
size, total epochs, weight decay and dropout ratio are set to 0.001, 64 (4 samples per GPU),
10, 1e-4 and 0.8, respectively.

Table 3.6 Results on Something-Something V1. “N/A” indicates the numbers are not
available. “Frames” indicates the frames of a given input modality. “views” indicates spatial
crops × temporal clips. † denotes our reimplementation.

Method Modality Pre-train Backbone Frames FLOPs #Param. Top-1 Top-5
×views (%) (%)

TRN [162] RGB+Flow
ImageNet

BNInc. (8+40)×1 N/A 36.6M 42.0 -
TEA [81]

RGB
R50 16×30 70G×30 24.4M 52.3 81.9

ir-CSN [127] None 3D R152 32×10 74G×10 29.7M 49.3 -
NL I3D [145] Kinetics 3D R50 32×2 168G×2 N/A 44.4 76.0

TSM [84] RGB

ImageNet

R50 8×6 42.9G×6 23.8M 48.7 77.9
TSM [84] Flow R50 40 ×6 N/A 48.6M 39.5 70.5
TSM [84] RGB+Flow R50 (8+40)×3 N/A 48.6M 50.6 80.1
DAN TSMS=8,T=4 DA TSM R50 8×6 43.1G×6 23.8M 50.1 78.6

X3D-XS† [36] RGB

Kinetics

- 4×6 0.6G×6 3.33M 40.6 70.5
DAN-XSS=4,T=8 DA X3D-XS 4×6 0.8G×6 3.34M 43.1 73.4
X3D-M† [36] RGB - 16×6 6.3G×6 3.33M 52.0 81.0
DAN-MS=16,T=3 DA X3D-M 16×6 7.0G×6 3.34M 53.7 82.1

Hyperparameters for the DAN model based on X3D

On Kinetics400, we train our models on 32 GPUs. The initial learning rate, batch size, total
epochs, weight decay and dropout ratio are set to 0.4, 256 (8 samples per GPU), 256, 5e-5
and 0.5, respectively. On Something-Something V1, the backbone networks are pretrained
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on Kinetics. We train our models on 32 GPUs, and these hyperparameters are set to 0.12,
256 (8 samples per GPU), 50, 4e-4 and 0.8, respectively.

3.6.2 Main Results

Results on Something-Something

Table 3.6 summarizes a comprehensive comparison, including the inference protocols, corre-
sponding computational costs (FLOPs) and the prediction accuracy. The data sampling details
(i.e. S, T ) of our models are provided in the subscripts beside the model names. Our method
surpasses the listed methods by good margins. Our DAN TSM taking dynamic appearance as
input has 1.4% and 10.6% higher top-1 accuracy than TSM R50 taking RGB frame as input
and TSM R50 taking optical flow as input, respectively. Moreover, our DAN TSM achieves
similar accuracy (50.1% vs. 50.6%) to the ensemble model of TSM that fuses the prediction
of the RGB frame and optical flow modalities. Benefiting from the lightweight and low

Table 3.7 Results on Kinetics400. We report the inference cost of multiple “views” (spatial
crops × temporal clips).

Method Backbone Frames
× views FLOPs Top-1

(%)
Top-5
(%)

bLVNet-TAM [34] bLR50 16×9 561G 72.0 90.6
STM [68] R50 16×30 2010G 73.7 91.6
SlowFast4×16 [37] 3D R50 32×30 1083G 75.6 92.1
ip-CSN [127] 3D R101 32×30 2490G 76.8 92.5
SmallBigNet [80] R101 32×12 6552G 77.4 93.3
I3DRGB [16] Inc. V1 64×N/A N/A 71.1 89.3
NL I3D [145] 3D R101 128×30 10770G 77.7 93.3

TSM [84] R50 16×30 2577G 74.7 -
DAN TSMS=16,T=8 TSM R50 16×30 2602G 75.9 92.2

X3D-M [36] - 16×30 191G 76.0 92.3
DAN-MS=16,T=8 X3D-M 16×30 216G 77.3 92.8

parameter redundancy advantages of X3D architecture [36], our DAN-XS with X3D-XS
backbone produces a similar accuracy as NL I3D [162], but requires 210 times fewer FLOPs
per spacetime ‘view’. Meanwhile, DAN-XS also produces higher top-1 accuracy (+2.5%)
than X3D-XS. By adopting X3D-M as the backbone, our DAN-M achieves 53.7% top-1
accuracy, which is 1.7% higher than X3D-M and 1.4% higher than TEA [81]. Notably, our
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Table 3.8 Results on HMDB51 and UCF101. We report the mean class accuracy (%) over
the three official splits.

Method Backbone HMDB51 UCF101

StNet [53] R50 - 93.5
TSM [84] R50 73.5 95.9
STM [68] R50 72.2 96.2
TEA [81] R50 73.3 96.9
DI Four-Stream [8] ResNeXt101 72.5 95.5
TVNet [33] BNInception 71.0 94.5
TSNRGB+Flow [143] BNInception 68.5 94.0
OFFRGB+Flow [118] BNInception 74.2 96.0

DAN TSM TSM R50 75.3 96.5

DAN architecture can improve the performance of existing spatio-temporal CNNs such as
TSM and X3D by simply employing them as its backbone networks, which indicates that our
method can improve generalization abilities in CNNs.

Results on Kinetics400, UCF101 and HMDB51

Table 3.7 shows the results on Kinetics400, where we list the models with the spatial input
size of 2562. DAN-M achieves 77.3% top-1 accuracy, which is better than X3D-M by
1.3% and better than I3D [16] by a margin of +6.2%. By either adopting X3D-M or TSM
R50 as the backbone, our DAN method can consistently improve the performance, which
firmly demonstrates its effectiveness. Although the scene information on Kinetics is widely
considered to be important when distinguishing some actions, the improvement caused by
filtering out the static appearance suggests that static features that do not change from frame
to frame may impede the enhanced feature learning abilities in standard networks. The results
on UCF101 [114] and HMDB51 [73] are shown in Table 3.8, where we report the mean
class accuracy over the three official splits. The recognition accuracy is already saturated on
these relatively small-scale datasets. In order to avoid over-fitting, we pre-train our model
on Kinetics. We consider the inference protocol (3 crops×2 clips) for accuracy. DAN TSM
outperforms most other methods without employing tricks such as multi-stream fusion.
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3.6.3 Ablation Studies for PWTP

In this section, we conduct ablation studies on different components of the proposed PWTP to
prove the scientificity and rationality of our model design. To investigate more configurations,
we employ the smaller X3D-XS [36] as the backbone network processing S = 4 segments,
unless specified otherwise.

Smaller Projection Error, Higher Classification Accuracy?
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Fig. 3.13 Example scatterplots of variables L̂1 and L̂2 on dataset (a) UCF101 and (b) Mini-
Kinetics.

The criterion of the dynamic appearance learning task L̂1(Θ1) and the action recognition
criterion L̂2(Θ1,Θ2) are supposed to be positive within a certain range, but this is not always
true. To find out the correlation of L̂1 and L̂2 we optimize the model with only L̂2 and record
the changes for L̂1 and L̂2 in different training periods. From the plots in Fig. 3.13(a) and
(b) on UCF101 and Mini-Kinetics, respectively, we observe that L̂1 and L̂2 show positive
correlation within the chosen range. The positive correlation indicates that it is feasible to
set the projection task L̂1(Θ1) of PWTP as an auxiliary task helping the model to generalize
better on the action recognition task L̂2(Θ1,Θ2). Outside of the specific range, we may
obtain a negative correlation, given the evidence from Table 3.9, where separate training
causes L̂1 to over-focus on the auxiliary task, resulting in a performance drop on the primary
recognition task. When optimizing the PWTP module independently, a too small L̂1 could
result in PWTP summarizing both static and dynamic appearance information into the same
subspace. Meanwhile, the projection residual p would carry very little information, failing to
represent abundant dynamic appearances. To tackle this issue, we set D << T , as stated in
Section 3.5.2.
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Joint training

The dynamic appearance learning task and action recognition task could either be optimized
separately or through joint training. In Table 3.9 we investigate the effect of separate training
and different joint training approaches on performance. The scale scheduler works better than
the fixed scale method. Although the scale scheduler introduces two additional parameters λ

and γ , its performance is not that sensitive to changes in these parameters. In summary, joint
training approaches have higher accuracy than the separate training strategy. We note that
the joint training with MGDA [23] produces higher accuracy than the fixed scale strategy,
which demonstrates the effectiveness of MGDA.

Table 3.9 Results for different joint training approaches on Something-Something V1. The
baseline is the network with RGB frame input.

Joint Training Approach ENoPR (L̂1) Accuracy (%)

Baseline - 38.3

Separate training 0.17 39.4

Constant Scale (α = 0) 0.43 39.2
Constant Scale (α = 0.5) 0.34 40.1
Constant Scale (α = 0.9) 0.22 39.3

Scale Scheduler (γ = 0.1,λ = 0.1) 0.57 40.7
Scale Scheduler (γ = 0.2,λ = 0.3) 0.56 40.7
Scale Scheduler (γ = 0.2,λ = 0.3) 0.56 40.7
Scale Scheduler (γ = 0.5,λ = 0.3) 0.55 40.4

MGDA 0.27 41.0

Instantiations and Settings of PWTP

Table 3.10 Evaluating PWTP when changing D and T . The computational cost (FLOPs) of
X3D-XS with a PWTP module embedded is reported.

T D
Mini-K SS V1

FLOPs
ENoPR Accuracy ENoPR Accuracy

4 1 0.26 56.2 0.16 39.3 0.71G
4 2 0.24 55.3 0.08 39.5 0.71G
8 1 0.41 56.9 0.27 41.0 0.82G
8 3 0.33 57.0 0.13 41.3 0.83G

16 1 0.72 58.6 0.39 42.1 1.12G
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We consider various configurations of PWTP on SS V1 and Mini-Kinetics, vary T and D from
Eq. (3.10) and evaluate the recognition accuracy. Table 3.10 shows that the configurations
with T = 8 have higher accuracy than T = 4 but lower accuracy than T = 16, which suggests
that longer frame sequences can help PWTP to capture a diversity of dynamic appearances
regarding movement and generate better results. When fixing T = 8, the setting of D = 3
is better than that of D = 1, which suggests that a relatively larger D endues PWTP with
stronger information summarization capacity and helps generate lower ENoPR and higher
accuracy. Nevertheless, D should not be larger than half of T , as we have seen a performance
drop when setting D > 1

2T in our preliminary experiments.

The spatial convolution Fk×k
s (·;θ) from Eq. (3.8) is used for local information aggregation.

We ablate various settings of Fk×k
s (·;θ), including changing the stride s, kernel size k× k,

output channel number C′ and the results are provided in Table 3.11. A larger kernel of
Fk×k

s (·;θ) can receive information from a larger local region, and therefore PWTP can
encode additional spatial information into the temporal descriptor u, which helps the model
to produce higher accuracy. In addition, Table 3.11 shows that a large stride s for the
convolution Fk×k

s (·;θ) can significantly reduce the computational cost while maintaining
performance.

Table 3.11 Evaluating various settings of convolution Fk×k
s in the PWTP module. The

computational cost (FLOPs) of X3D-XS with a PWTP module embedded is reported.

Stride Kernel size #Channels Mini-K SS V1
FLOPs

s k× k C′ ENoPR Accuracy ENoPR Accuracy

1 7×7 12 0.26 55.1 0.14 40.9 2.60G
1 7×7 24 0.22 58.6 0.13 41.1 4.06G
4 7×7 24 0.32 58.1 0.18 41.3 0.95G
8 9×9 24 0.41 56.9 0.27 41.0 0.82G
8 11×11 24 0.37 57.1 0.20 41.2 0.86G

Efficiency and Effectiveness of the Dynamic Appearance

We draw an apple-to-apple comparison between the proposed dynamic appearance and other
motion representations [8, 33, 63, 157]. The comparison results are shown in Table 3.12. For
all the video representation methods, we guarantee they consume the same number of raw
video frames (48). In order to fairly evaluate different video representation methods [8, 33,
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Table 3.12 DA vs. other motion representation methods. † denotes our reimplementation.
The additional parameters and computation (FLOPs) required by the representation methods
are reported.

Representation Method
Efficiency Metrics

SS V1 UCF101
FLOPs #Param.

RGB - - 46.5 87.1
RGB Difference [143] - - 46.6 87.0
TV-L1 Flow [157] - - 37.4 88.5
RGB+Flow - - 49.8 93.9

Dynamic Image† [8] - - 43.3 86.2
FlowNetC† [63] 444G 39.2M 26.3 87.3
FlowNetS† [63] 356G 38.7M 23.4 86.8
TVNet† [33] 3.30G 0.20K 45.2 88.6
Squeezed Image - - 42.7 88.5

DA 0.23G 7.13K 48.7 89.7

63, 157, 61], we reimplement these methods in the same experimental settings with the code
provided by the original authors. In our reimplementation, Dynamic Image and Squeezed
Image methods generate one frame of representation for every 6 video frames, which is the
same as our method. As for TVNet and TV-L1 Flow, we stack 5 frames of the estimated flow
along the channel dimension to form an input frame with 10 channels, in total processing 6
RGB frames in a segment. All the models are pretrained on ImageNet and then trained with
the same hyperparameters. The motion representations produced by these methods are used
as inputs to the network TSM R50 [84]. The prediction scores are obtained by the average
consensus of eight temporal segments [143]. The network that takes the proposed dynamic
appearance as input outperforms all other motion representation methods by big margins
within reasonable computational costs. In SS V1, our method achieves similar accuracy to
the fusion of “RGB+Flow”.

Design of Multilayer Perceptron (MLP)

The MLP in the PWTP module is used to generate the input-specific A in Eq. (3.10). In
Fig. 3.14, we present the scheme of the MLP, where the feature numbers of the fully-
connected (FC) layers are specified on their right side. The first FC expands the number of
features with a factor of r. The MLP contains B bottleneck blocks. Each bottleneck block
comprises a normalization layer and two FC layers, where the number of features is first
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FC

B×
FC

Cin → Cin×r

FC

Norm

FC

Norm

Cin×r → TD

Cin×r → Cin×r×β

Cin×r×β → Cin×r

Fig. 3.14 The scheme of MLP in the PWTP module.

Config
Bottleneck Number of Expansion

ENoPR (L̂1) FLOPs Params
ratio (β ) blocks (B) ratio (r)

#1 1/4 1 4 0.26 45.3M 16.9k
#2 1/4 1 1 0.27 38.0M 7.4k
#3 1/4 2 1 0.28 38.3M 7.9k
#4 1/4 2 4 0.26 50.2M 23.3k
#5 1 1 4 0.28 59.8M 35.5k
#6 1/4 0 4 0.30 40.0M 10.0k
#7 1/4 1 2 0.27 39.7M 9.7k

Table 3.13 Various configurations of the MLP (Lower ENoPR (L̂1) means higher capacity
for representation). We report the computational cost (FLOPs) of the PWTP module.

reduced by a factor of β and then recovered to its original size. For the normalization, we
use Batch Normalization, which behaves more stably than Layer Normalization in our study.
In Eq. (3.10), the number of input channels for the MLP is Cin =

T×(T−1)
2 , while the number

of output channels is T D. Here, we treat PWTP as an individual optimization problem and
evaluate its representation capacity by ENoPR L̂1(Θ1) on Mini-Kinetics. The specifications
of the MLP’s various configurations are listed in Table 3.13, in which the PWTP modules are
trained for 10 epochs with AdamW optimizer [90]. We can see that aside from Config #6,
which does not use bottleneck blocks, the rest of the configurations have similar ENoPR (L̂1).
To balance the capacity/speed trade-off, we use Config #7 as the default MLP configuration
in our experiments.
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3.6.4 Visualization Analysis

In Figure 3.10, we provide four example videos of single segments and their corresponding
dynamic appearances. The dynamic appearances are stable in the cases of jittering and
other camera movements. For example, the video in Fig. 3.10(4), describing the pouring
action, contains significant camera movement, but its dynamic appearance suppresses the
background movement and stationary information and retains the appearance information
characteristic to motion.

Dynamic Appearance of longer frame sequences

T=8

T=4

T=16

Fig. 3.15 Example videos of different lengths T , visualized as their frame averaging and
corresponding dynamic appearances.

We attempt to extract the dynamic appearances from video frame sequences of different
lengths T . Some visualization examples are presented in Fig. 3.15. We can observe that
the dynamic appearances generated by longer frame sequences contain additional visual
information of the movement. According to the results shown in Table 3.10, we observe that
by using longer frame sequences to generate dynamic appearances, we get higher accuracy.
This observation shows that the movement’s additional appearance information captured by
PWTP contributes to the performance gain.

Visual Comparison with other Representations

In Fig. 3.16 we compare dynamic appearances with TV-L1 Flow [157] and TVNet [33].
TV-L1 Flow and TVNet represent motion with instantaneous image velocities, so we cannot
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RGB TV-L1 TVNet DA

Archery

ApplyEyeMakeup

Punch

u v u v

Fig. 3.16 Visual examples of different video representations. Best viewed in color and
zoomed in.

DI

DA

(1)                                 (2)                                (3)

Fig. 3.17 Visualization of Dynamic Appearance (DA) and Dynamic Image (DI). To directly
compare DI with our DA visually, we reuse the examples from [8]. The dynamic appearances
are generated by consuming T = 16 consecutive RGB frames.
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observe the appearance information related to moving objects. However, the dynamic appear-
ances preserved the essential parts of moving objects’ visual information, which is vital for
discriminating different actions. In Fig. 3.17, we compare visually the Dynamic Appearance
and Dynamic Image [8]. A dynamic image is essentially a weighted average of multiple
video frames, representing the dynamic information of a video by using the approximate rank
pooling [8]. Similarly, Squeezed Image archives the same purpose by using the temporal
squeeze pooling, described in Section 3.2. However, as we can observe from Fig. 3.17(2), the
dynamic image results in poor discrimination between the moving objects and background
when we have camera shaking or movement. On the contrary, the dynamic appearance is
robust to camera movement, clearly representing the visual information related to motion.

More Visualization Examples

We provide more visualization examples in Figures 3.18 and 3.19, where we provide the
averaging of sets of frames from video clips and underneath their corresponding dynamic
appearances. From these results, containing a wide range of videos, with 2 examples from
each of UCF, Something Something V1 (SS V1), Kinetics and HMDB datasets, we can
observe that the dynamic appearance extracted PWTP retains the essence of movement for a
wide range of actions.
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Rafting (UCF)

Pretending to close something without actually closing it (SS)

Juggling Balls (UCF)

Moving something up (SS)

Fig. 3.18 Example videos of 4 segments visualized as their frame averaging and corresponding
dynamic appearances.
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Tango dancing (Kinetics)

Brush hair (HMDB)

Riding a bike (Kinetics)

Dive (HMDB)

Fig. 3.19 Example videos of 4 segments visualized as their frame averaging and corresponding
dynamic appearances.
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3.7 Conclusion

In this chapter, we have explored innovative video representation schemes while aiming to
improve the models on video understanding.

In the first part of this chapter, we have described a novel video representation, called
Squeezed Image, which captures the dynamics of long video sequences useful for video
understanding. Meanwhile, we have proposed the Temporal Squeeze Pooling (TSP), which
is used to generate the squeezed images. By embedding the TSP module into off-the-shelf
CNNs, we proposed the Temporal Squeeze Network (TeSNet) architecture, which learns
spatio-temporal features characteristic to discriminating classes of video sequences. We have
investigated various locations in the structure of the CNN network for embedding the TSP
layers. TeSNet is also used on the optical flow data stream, the prediction score of which
is then fused with the RGB image stream to produce higher accuracy. Experiments have
been performed on both UCF101 and HMDB51 datasets, and the results indicate that the
new video representations are compact and meaningful for improving the action recognition
performance. Furthermore, we have analyzed the limitations of the proposed temporal
squeeze pooling method. The first disadvantage of TSP is that its output would change
the temporal order. Meanwhile, the squeezed images cannot appropriately present motion
clues when fast camera movements are involved in videos. Nevertheless, the TSP algo-
rithm is still a preferable solution for fast video recognition applications, as it accelerates the
video classification process by reducing the analysis of a video to the analysis of a few images.

In order to expand the application scope of the temporal squeeze pooling method to “motion-
dominant datasets”, we have upgraded the temporal squeeze pooling method in an innovative
way and have proposed the Pixel-Wise Temporal Projection (PWTP). PWTP is a lightweight
and backbone-agnostic module, which can achieve the disentanglement of video static and
dynamic appearance. The extracted dynamic appearance (DA) characterizes movement
by summarizing the visual appearance information that changes from frame to frame. We
integrate the PWTP module with a CNN into an efficient and effective spatio-temporal archi-
tecture, set in an end-to-end trainable framework. The multiple gradient descent algorithm
is used for the joint training of PWTP and the deep network. With extensive experimental
results on multiple challenging video benchmarks, we have demonstrated that the proposed
dynamic appearances are a qualified input resource to deep networks, showing great advan-
tages over RGB frames and the optical flow inputs, in terms of efficiency and effectiveness.
With the ablation studies, we have demonstrated that DA produces higher accuracy than the
squeezed images, dynamic images [9] and other popular video representations. The proposed
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video representation methodology can contribute to designing optimal spatio-temporal video
modeling systems.



Chapter 4

Attention Mechanisms for Long-Range
Dependency Modeling in Space and Time

4.1 Introduction

In the analysis of spatial or time series data, long-range dependence can be regarded as
a long memory that remembers the information in a long distance or period. Long-range
dependency modeling is a common problem in natural language processing (NLP). For
instance, to predict the future word in an uncompleted sentence, a network must have a better
knowledge about the words prior to it. Long-range dependency modeling methods include
recurrent neural networks, Long-Short-Term Memory (LSTM) and attention mechanisms. In
video recognition, long-range dependency can also be referred to as global context, as the
range covers the full video length and the full spatial sizes. Traditionally, a CNN-based video
model captures long-range dependencies by deeply stacking convolutional operations with
small window sizes. For example, the convolutional layer with the kernel size of 3×3 has
become the standard layers in many current CNN architectures [72, 54, 62]. However, the
convolution is a local operation, and the deep stack of local operations limits the efficiency of
message delivery to distant positions within a CNN architecture, and makes the optimization
difficult [54, 57]. Long-range dependency modeling is more challenging in 3D CNNs than
2D CNNs due to the complexity of input video data across both space and time.

Enabling better global context modeling in video architectures is one of the main contribu-
tions of this chapter. An effective way to improve the long-range dependency modeling ability
of CNN-based models is to introduce attention mechanisms into the video architectures.
Attention mechanisms have been initially used for machine translation [5]. Recent published



70 Attention Mechanisms for Long-Range Dependency Modeling in Space and Time

works [59, 132, 145, 149] embed task-specific attention mechanisms into CNNs to boost the
model performance in visual tasks. In computer vision, attention mechanisms can be decom-
posed into two components: channel attention - focusing on ’what’ is meaningful, and spatial
(or spatio-temporal) attention - focusing on ’where’ is informative [149]. One representative
channel attention mechanism is the Squeeze-and-Excitation (SE) module [59], which utilizes
global average-pooled features to exploit the inter-channel relationships. Recently, Wang et
al. [145] introduced the self-attention concept [131] from machine translation to large-scale
visual classification tasks. The non-local (NL) operation was adapted as a spatio-temporal
attention mechanism and employed in video recognition [145]. However, Cao et al. [15]
observe that NL can only capture the global context of channels, aka channel attention, after
a series of complex operations. Moreover, they demonstrate that the intrinsic natures of the
NL operation and SE module [59] are the same while the implementation of the SE module
is rather computationally economical.

In this chapter, we propose two new visual attention mechanisms, namely Convolution
Pyramid Attention (CPA) module and Region-based Non-local (RNL) operation, both of
which are backbone-agnostic. They are plug-and-play modules that could be embedded into
off-the-shelf CNN architectures in order to model long-range dependencies in space-time.
The proposed Convolution Pyramid Attention (CPA) adopts the idea from [149] and extends
the method from the spatial domain to the spatio-temporal domain. Woo et al. [149] only
employ a single convolution operation for modeling the spatial attention. In the proposed
CPA module, we leverage a pyramid of 3D convolutions with different kernel sizes to capture
multi-scale attention in the spatio-temporal dimensions, showing high robustness at various
scales. The Region-based Non-local (RNL) operation is an improved version of the Non-
local operation [145], which works as a self-attention mechanism [5] that recalibrates the
feature at a location according to the information from all other locations in space and time.
The proposed RNL operation endues CNNs with a global view of spatio-temporal features,
which alleviates the optimization difficulty caused by the deep stack of local operations.
Yue et al. [155] also aimed to improve the NL operation, proposing a compact generalized
version of the NL operation by integrating channel attention and spatio-temporal attention
into a compact module. However, their work does not improve the effectiveness of the NL
operation. Instead of simplifying the NL, we focus on improving the effectiveness of NL
for better capturing the spatio-temporal attention. Through a large number of experiments
and quantitative analysis in action recognition tasks, we demonstrate the high efficiency and
effectiveness of the proposed CPA and RNL.
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The rest of the chapter is organized as follows:

• In Section 4.2, we first revisit the definition of the non-local (NL) operation [145] for
long-range dependency modeling. After that, we propose the region-based non-local
operation, showing high efficiency and effectiveness in global context modeling.

• In Section 4.3, we describe the proposed Convolution Pyramid Attention (CPA) module
that learns vision attention by leveraging the aggregation of filters of various sizes.

• In Section 4.4, we detail the design of a vision attention chain that consist of a spatio-
temporal attention module and a channel attention module.

• In Section 4.5 we describe the network architecture configured with our attention
modules.

• In Section 4.6, we perform experiments in action recognition tasks on two video
benchmarks. We also provide ablation studies for the RNL and CPA modules. A large
number of experimental results and visualization analyses are provided to evaluate our
methods.

• In Section 4.7, we discuss the shortcomings and limitations of our work.

• In Section 4.8, we draw a short conclusion for this chapter.

4.2 Non-local Methods as Self-Attention

In this section, we introduce region-based non-local (RNL) operations as a family of self-
attention mechanisms, which can directly capture long-range dependencies without using a
deep stack of local operations. Given an intermediate feature map of a hidden convolutional
layer, our method recalibrates the feature at a position by aggregating the information from
the neighboring regions of all positions. By combining a channel attention module with the
proposed RNL, we design a vision attention chain, which captures the feature attention in the
spatio-temporal and channel dimensions.

Wang et al. proposed the non-local (NL) operation [145] that works as a self-attention mech-
anism [131] to capture long-range dependencies directly by exploiting the inner-interactions
between different positions regardless of their location difference, which we revisit in Sec-
tion 4.2.1. However, in the NL operation, the calculation of the relation between two positions
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reference position

reference position

reference position

reference position

(a) RNL attention maps (b) NL attention maps

Fig. 4.1 Examples of visualizing the attention maps of RNL and NL operations in res4
stage of ResNet on a video clip from Kinetics400. Given a reference position, an ideal
non-local operation should only highlight the regions related to that reference position. In the
same video clip, the NL operation has almost the same attention maps at different reference
positions while the proposed RNL operation presents query-specific attention maps, which
demonstrate that the proposed RNL operation is better at capturing positional relationships
than the NL operation.

only relies on the information from these two positions while not fully utilizing the informa-
tion around them. As a result, its calculation of positional relationships is not robust to noise
or unrelated features, especially in a high resolution, which has been emphasized in [14].
Here, we investigate the non-local operation [145] and propose a region-based non-local
(RNL) operation based on the non-local mean concept [14], which enhances the calculation
of positional relationships by fully utilizing the information from neighboring regions. The
proposed RNL operation endows CNNs with a global view of input features without requiring
a deep stack of local operations. In Fig. 4.1, we illustrate an example to demonstrate that the
proposed RNL operation is better at capturing positional relationships than the NL operation.

There are two advantages of the proposed RNL compared with the original NL: first of all,
RNL is more robust to noise or unrelated features; secondly, the RNL is more computationally
efficient. Meanwhile, we present various instantiations of the RNL operation to meet different
application requirements. By embedding RNL modules into the off-the-shelf CNNs, we
obtain a new video architecture named the region-based non-local network. In order to
evaluate the effectiveness of our method, we conduct action recognition experiments on two
large-scale video benchmarks, Kinetics400 [16] and Something-Something V1 [48]. Our
models outperform the baseline and other popular attention mechanisms.
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Fig. 4.2 Diagram showing the implementation of the NL operation [145], indicating the
shaping and the reshaping operations of a tensor together with the connections. ⊗ denotes
matrix multiplication while ⊕ denotes element-wise addition. The blue boxes denote 1×1×1
convolutions.

4.2.1 Revisiting the Non-local (NL) Operation

Intuitively, the non-local (NL) operation [145], illustrated in Fig. 4.2 (b), strengthens the
feature in a certain position by aggregating the information from all the positions in space
or space-time. The estimated value for a position, is computed as a weighted sum of the
feature values of all the positions. Formally, we denote x,y ∈ RT HW×C as the input and
output of an NL operation, flattened along the space-time directions, where T , H, W and C
are temporal length (depth), height, width and the number of channels, respectively. Then,
the NL operation can be described as:

yi =
1

C(x)∑
∀ j

wi, jWgx j,

wi, j = f (xi,x j),

(4.1)

where xi,x j ∈ RC are the i-th and j-th element of x, i is the index of a reference position,
and j itemizes all possible positions. Wg is a learnable weight matrix that computes a
representation of x j, and C(x) is the normalization factor. Meanwhile, wi, j is a weight,
representing the relationship between positions i and j, which is calculated by the pairwise
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similarity function f (·, ·). Regarding the forms of f (·, ·) and C(x), Wang et al. [145] propose
four instantiations of NL, which are described as follows:

(i) Gaussian. f (xi,x j) = exTi x j , C(x) = Σ∀ j f (xi,x j);

(ii) Embedded Gaussian. f (xi,x j) = eθ(xi)
⊺φ(x j), C(x) = Σ∀ j f (xi,x j);

(iii) Dot Product. f (xi,x j) = θ(xi)
Tφ(x j), C(x) = T HW ;

(iv) Concatenation. f (xi,x j) = ReLU(wT
f [θ(xi),φ(x j)]), C(x) = T HW .

In the above instantiations of NL, θ , φ and w f represent linear transformations, which are
implemented as 1×1 convolutions in space or 1×1×1 convolutions in space-time. The
results from [145] indicate that the performances of the four installations of the non-local
operation perform no obvious differences in terms of classification accuracy. In contrast
to the original implementation, we would like to emphasize the importance of choosing
the right form of function f (·). In our proposed region-based non-local (RNL) operation,
described in 4.2.3, we introduce a novel form of function f (·), showing higher performance
than the previous four instantiations of NL provided above.

4.2.2 Attention Maps of the Non-local (NL) Operation

Within the NL operation [145], each output element yi is a weighted average of the input
features over all positions x j, and therefore each yi has a corresponding attention weight map
calculated by f (·, ·), highlighting the areas related to position i. In Fig. 4.1 (b), we randomly
pick one video from Kinetics400 and visualize the attention maps of NL at two different
reference positions, one of which is located in the background area while the other is located
in the region of the moving object. From Fig. 4.1 (b), we can observe that the attention
maps of NL, with respect to different reference locations, fail to capture the relationships
between the information from different locations. We redesign the non-local operation
as a spatio-temporal attention mechanism, namely the region-based non-local operation
(RNL). Fig. 4.1 (a) shows that our RNL operation highlights only the regions related to the
reference position, which indicates that the proposed RNL operation can effectively model
the positional relationships in the spatio-temporal domain.

4.2.3 Region-based non-local (RNL) Operation

The initial idea for the RNL operation is that the relation between two positions in a video
representation should not rely on just their own features but also on the features from their
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Fig. 4.3 Diagram showing the implementation of the proposed RNL operations, indicating
the shaping and the reshaping operations of a tensor together with the connections. ⊗
denotes matrix multiplication while ⊕ denotes element-wise addition. The blue boxes denote
1×1×1 convolutions, and the red box Fθ denotes a 3×3×3 channel-wise convolution or
an average/max pooling layer.

neighborhoods. Therefore, for each position i of input sample x, we define a cuboid region Ni

of fixed size centered at position i. The calculation of the relationship wi, j between positions
i and j is redefined as:

wi, j = f (θ(Ni),θ(N j)), (4.2)

where, θ(·) denotes an information aggregation function that separately summarizes the
features in a region for each channel. Function θ(·) is defined by

θ(Ni) = ∑
k∈Ni

uk ⊙xk, (4.3)

where ⊙ denotes element-wise multiplication and uk denotes a vector shared by all cuboid
regions Ni. As there is no channel interaction in θ(·), it can be implemented as channel-wise
convolutions [106], or as average/max pooling. Channel-wise convolution is also referred
to as “depth-wise". We use the term “channel-wise" to avoid confusions with the network
depth. By replacing the expression of wi, j from Eq. (4.1) with the expression from Eq. (4.2),
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the RNL operation can be written as:

yi =
1

C(x)∑
∀ j

f (θ(Ni),θ(N j))x j. (4.4)

From Eq. 4.4, we can see that by employing the RNL operation, the new feature characteristic
for each position is a weighted sum of the old features from all positions, where the weights
are calculated by the similarity function f (·, ·) according to the similarity between the target
region, and all other regions. The proposed RNL operation enhances the calculation of
positional relations by fully utilizing the information from the neighboring regions, which
increases the robustness to noise or unrelated features. Hence, the RNL operation can learn
more meaningful representations in comparison with the original NL operation [145].

For the form of function f (·, ·), besides adopting the Gaussian version and the Dot product
version as in [145], we also propose a new form, called the Cosine version. Specifically, the
Gaussian form of f (·, ·) is given by

f (θ(Ni),θ(N j)) = eθ(Ni)
⊺θ(N j). (4.5)

The Dot product form of f (·, ·) measures the relation between two regions by using the
dot-product similarity:

f (θ(Ni),θ(N j)) = θ(Ni)
⊺
θ(N j). (4.6)

However, the dot-product similarity takes into account both the vector angle and the magni-
tude, as θ(Ni)

⊺θ(N j) = ∥θ(Ni)∥∥θ(N j)∥cosψi, j, where ψi, j is the angle between vectors
θ(Ni) and θ(N j). It is preferable to replace dot-product similarity with the cosine similarity,
ignoring the vector magnitude and resulting in a value within the range [−1,1]. The Cosine
form of f (·, ·) is expressed as:

f (θ(Ni),θ(N j)) = ReLU(
θ(Ni)

⊺θ(N j)
∥θ(Ni)∥∥θ(N j)∥)

= ReLU(cosψi, j).
(4.7)

When f (θ(Ni),θ(N j))< 0, it indicates that the features in positions i and j are not related.
As the new feature in a certain position should only be determined by those related features,
we use the ReLU function to restrict the output of f (·, ·) to be non-negative. The normal-
ization factor is set as C(x) = ∑∀ j f (θ(Ni),θ(N j)) for the Gaussian version from Eq. (4.5),
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input
channel

output
channel

(a) conventional convolution (b) channel-wise convolution

Fig. 4.4 Illustrations of the conventional convolution (a) and the channel-wise convolution
(b). The total number of connections of the channel-wise convolution [106] is reduced to 1

C
of that of the conventional convolution.

and set as C(x) = T HW for the Dot-product and Cosine versions from Eq. (4.6) and 4.7,
respectively.

4.2.4 Region-based non-local Block

In order to embed the RNL operation into the off-the-shelf CNNs without influencing the
results provided by the pre-trained kernels, we embed the RNL operation into a residual style
block [54], named the RNL block. The Gaussian RNL block, defined by Eq. (4.5), is written
as a matrix form as:

z = yWz +x, (4.8)

y = So f tmax(Fθ (xWg)(Fθ (xWg))
⊺)xWg, (4.9)

where z is the output representing the feature after recalibration, Wz ∈RC
2 ×C and Wg ∈RC×C

2

are learnable weight matrices, which are implemented as 1×1×1 convolutions, and ’+x’
denotes a residual term. Fθ denotes the operation that corresponds to the matrix form of
function θ(·) from Eq. (4.3). We present the architectures of the Gaussian RNL block and
the Gaussian embedding version of the original NL block in Fig. 4.3 and Fig. 4.2, respec-
tively. We can observe that the original NL block uses four 1×1×1 convolutions, while
the proposed RNL block shown uses only two 1×1×1 convolutions and one channel-wise
convolution, which reduces the computational complexity significantly.

In the following, we explain two implementations for the region information aggregation
function Fθ in RNL.

1) Channel-wise Convolutions. It is worthwhile to note that, in principle, the candidates
for implementing Fθ should not fuse together information across channels. Otherwise, the
new feature embedding might fail to represent the information from each original channel,
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which is why we do not adopt conventional convolutions. In contrast, channel-wise convolu-
tion [106], exemplified in Fig. 4.4, is a perfect candidate for the implementation of Fθ , as
there is no cross-interaction between the channels. An additional benefit that the channel-wise
convolution brings is that it reduces the required parameters and computation by a factor
of C, compared with the conventional convolution. The kernel size of the channel-wise
convolution has a significant impact on performance, as it corresponds to how large a region
Ni is considered for information aggregation. We will explore the effectiveness of various
kernel sizes, in Section 4.6.1.

2) Average/Max Pooling. The other implementation options for Fθ are the average
pooling and max pooling, which have been widely adopted for information aggregation.
Although it shows a relatively weaker capability than the implementation of channel-wise
convolution, average/max pooling adds no extra parameters to the models.

4.3 Convolution Pyramid Attention (CPA)

AvgPool .

Input  X 

Attention 

conv 1x1 

conv 3x3 

+

+
conv kxk 

H
C

W

Fig. 4.5 Diagram showing the Convolution Pyramid Attention (CPA) Module. The temporal
dimension is omitted in the diagram for simplification. F denotes a pyramid of convolutions
from Eq. (4.11). σ denotes the Softmax operation.

⊙
denotes element-wise multiplication.

Spatio-temporal attention tells ‘where’ and ‘when’ to focus. By introducing attention
mechanisms into CNNs, the representations of important features would be enhanced while
the tedious ones would be suppressed. As stated in Section 4.2, a shallow convolutional layer
with a small kernel working as a local operation would only receive very limited information
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within the small window and so would be an obstacle to modeling global context. To address
this issue, one intuitive solution is to use the convolution with an unusually large kernel to
receive the information from a wider view at the same level of depth for a CNN. However,
larger kernels with hundreds of feature channels in a CNN are not an implementation option
considering the optimization of the computational resources. We design a vision attention
mechanism, which leverages a single-channel convolution with an unusually large kernel to
recalibrate the feature values learned previously by the small kernels. We term the attention
mechanism Convolution Pyramid Attention (CPA) module. The diagram of CPA is shown in
Fig. 4.5. Formally, by considering an input feature map x, the output of CPA module is given
by

CPA(x) = σ(F(AvgPool(x)))⊙x, (4.10)

where the average pooling operates along the channel axis, σ(·) denotes the Softmax op-
eration along the space and time,

⊙
denotes element-wise multiplication. By considering

convolutions with different kernel sizes we can learn features at different scales. We define
the function F(·) as a pyramid of convolutions, which is composed of multiple convolutions
of different kernel sizes:

F(x) = f 1×1×1(x)+ f 3×3×3(x)+ . . .+ f kt×ks×ks(x), (4.11)

where f kt×ks×ks refers to a convolution with the kernel of size kt × ks × ks.

The Inception module [120] also employs filters of multiple sizes. Nevertheless, the proposed
CPA is different from the Inception module in both conceptional and functional aspects. The
Inception module [120] aims to approximate an optimal local sparse structure in a CNN
by concatenating the outputs of multiple convolutions with different kernel sizes forming
the input to the next stage. However, the purpose of the convolution pyramid is to learn
spatio-temporal attention: the aggregated vector is used to recalibrate the feature values
learned by the previous convolutional layers. Meanwhile, the proposed CPA module is not
a simple 3D extension of the Convolutional Block Attention Module (CBAM) because we
introduce the concept of multi-scale feature learning to the design of CPA. The proposed
CPA module is shown through experiments to be more efficient and have better performance
than the CBAM. The results reaffirm the significance of the convolution pyramid design in
CPA.
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T HW

1×C
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T HW

channel attention
spatio-temporal attention

T HW ×1

Fig. 4.6 The diagram of the vision attention chain. The channel attention mechanism
is implemented as the squeeze-excitation block [59] while the spatio-temporal attention
mechanism is implemented as the RNL or CPA block.

4.4 The Vision Attention Chain

When the proposed RNL and CPA modules can learn the long-range dependencies for each
position in the spatio-temporal dimensions, the squeeze-excitation (SE) block [59] would
learn the long-range dependencies along the channel dimension. In order to capture both
spatio-temporal attention and channel-wise attention in a single module, we connect the
RNL or CPA blocks together with the SE block [59] to form a vision attention chain, whose
diagram is shown in Fig. 4.6. Firstly, we modify the SE block and adapt it [59] to the
spatio-temporal domain, where the squeeze operation Fsq is expressed as:

s′ = Fsq(x) =
1

T HW

T HW

∑
i=1

xi, (4.12)

while the excitation operation Fex is expressed as:

s = Fex(s′) = W2ReLU(BN(W1s′)), (4.13)

where W1 ∈ RC
2 ×C and W2 ∈ RC×C

2 are trainable weights, which can be implemented with
fully-connected (FC) layers. In the excitation operation Fex, we add a batch normalization
(BN) layer [65] right after the FC layer W1 to reduce the internal covariate shift. The output
of the SE block is given by:

v = x⊕ s, (4.14)

where ⊕ refers to the element-wise addition broadcasting in unmatched dimensions (replicate
x to match the dimension of s). After that, we place the RNL or CPA block after the SE
block to form a vision attention chain. The vision attention chain endues standard CNNs
with channel attention and spatio-temporal attention, capturing “what”, “ where” and “when”
is informative and meaningful.
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4.5 The Network Architecture

Table 4.1 The architecture of the ResNet50 empowered by the RNL and CPA modules. The
kernel size and the output size are shown in the second and third columns, respectively. The
RNL or CPA blocks are inserted after the res3 and res4 blocks, while the temporal shift
modules [84] is embedded into the first convolutional layer in each residual block.

Layer Operation Output size
conv1 1×7×7, 64, stride 1,2,2 8×112×112
pool1 1×3×3, 64, stride 1,2,2 8×56×56

res2

 1×1×1,64
1×3×3,64

1×1×1,256

 ×3 8×56×56

res3

1×1×1,128
1×3×3,128
1×1×1,512


RNL / CPA

×4 8×28×28

res4

 1×1×1,256
1×3×3,256

1×1×1,1024


RNL / CPA

×6 8×14×14

res5

 1×1×1,512
1×3×3,512

1×1×1,2048

 ×3 8×7×7

The RNL and CPA blocks are designed to be compatible to be used with most existing
CNNs. It can be easily plugged into off-the-shelf CNNs at any processing stage, resulting in
more powerful network architectures with stronger global context modeling abilities. For the
implementation, we use ResNet50 [54] with the temporal shift modules (TSM) [84] as the
backbone network to build our models (RNL TSM and CPA TSM). The resulting network
structures are outlined in Table 4.1. The TSM is a lightweight module enabling 2D CNNs to
achieve temporal modeling by shifting part of the channels along the temporal dimension,
which facilitates the information exchange among neighboring frames. In this architecture,
we keep the temporal size constant, which means that all the layers in the network only
reduce the spatial size of the input features. The backbone network (TSM ResNet50) is used
as the baseline for our experiments.

4.6 Experiments

In the following we provide the experimental results for the proposed attention-based model
for action recognition in videos. We perform action recognition experiments on two standard
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video benchmarks, Kinetics400 [16] and Something-Something V1 [48]. We report Top-
1, Top-5 accuracy on the validation sets and the computational cost (in GFLOPs) of a
single, spatially center-cropped clip to comprehensively evaluate the effectiveness and
efficiency. The experimental results of our method outperform other attention mechanisms.
The implementation code for this chapter is available at: https://github.com/guoxih/region-
based-non-local-network.

Training and Inference

Our models are pretrained on ImageNet [22]. For the training, we follow the training regime
from [145] and use a spatial size of 224 × 224. The temporal size is set as 8 frames unless
otherwise specified. In order to prevent overfitting, we add a dropout layer after the global
pooling layer. We optimize our models using the Stochastic Gradient Descent, and train the
models for 50 epochs with a cosine decay learning rate schedule. The batch size is set at 64
across multiple GPUs. For Kinetics, the initial learning rate, weight decay and dropout rate
are set to 0.01, 1e-4 and 0.5 respectively; for Something-Something, these hyper-parameters
are set to 0.02, 8e-4, and 0.8 respectively. The training process of RNL network is shown in
Fig. 4.7, where the curves show the Softmax cross-entropy loss at the clip-level prediction.
For the inference, we follow the common setting in [145, 84]. Unless stated otherwise,
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Fig. 4.7 Training the network with 5 NL blocks and with 5 RNL blocks, respectively, on
Kinetics400. Our RNL network shows improved optimization characteristics throughout the
training process. We calculate the Softmax cross-entropy loss on both training set (train) and
validation set (val).

https://github.com/guoxih/region-based-non-local-network
https://github.com/guoxih/region-based-non-local-network
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we uniformly sample 10/2 clips for Kinetics400/Something-Something V1, and perform
spatially fully convolutional inference (three crops of size 256 × 256 to cover the spatial
dimensions) for all clips, while the video-level prediction is obtained by averaging all the
clip prediction scores of a video.

4.6.1 Ablation Studies for RNL

We aim to find out the most efficient and effective form of RNL. By default, the function f (·, ·)
adopt the Gaussian form in Eq. (4.5), and Fθ is implemented by a channel-wise convolution
with a kernel size of 3×7×7, unless otherwise specified. Following the results from [145],
we add RNL blocks to the res3 and res4 stages in the architecture shown in Table 4.1. Our
exploration is organized in three parts. First, we search for the effective kernel size of Fθ

in RNL blocks. Next, we evaluate the performance of various instantiations of RNL and
find out the most efficient and effective one. Finally, we combine the selected version of
RNL with an SE block to form a vision attention chain. The results are provided on the
Kinetics400 dataset.

Kernel Size of RNL

We explore the influences of various kernel sizes of RNL on the performance. Large kernels
are supposed to be robust to noise, while small kernels would consider the details and fine
structures from video sequences but may be too focused. The results are shown in Table 4.2.
We observe that the kernel of 3×7×7 provides the best result (73.66%) among the listed
settings. Concurrently, we evaluate the influence of the kernel size of Fθ on the model

Table 4.2 Ablation for the RNL operations with various kernel sizes of Fθ , which is imple-
mented as a channel-wise convolution operation. We insert one Gaussian RNL block into the
res3 stage of ResNet50.

Kernel size Top-1 (%) Kernel size Top-1 (%)

1×1×1 73.28 3×3×3 73.53
3×1×1 73.41 3×5×5 73.27
7×1×1 73.12 3×7×7 73.66
1×3×3 73.32 3×9×9 73.51
1×7×7 73.43 7×7×7 73.11
1×9×9 73.32 7×9×9 73.30

performance by visualizing the attention maps of the RNL operation, shown in Fig. 4.8. The
RNL operation considers the highlighted areas to have strong relations with the reference
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1×1 3×3 5×5 7×7 9×9

Fig. 4.8 Attention maps of the RNL block when considering different kernel sizes in the res3
stage when providing the reference point, shown as a red point. When the reference point is
located at the moving object, the RNL operation with proper kernel size should just highlight
the related moving regions.

position, indicated by a red point. Fig. 4.8 shows that a kernel of a small size spatially, such
as 1× 1, tends to incorrectly interpret the relations between some background areas and
the foreground areas. In contrast, a kernel with a larger spatial size can learn more precise
relations between such positions. For example, the kernel of size 7×7 precisely highlights
the moving object in in Fig. 4.8 when the reference position is located at the moving object.

Instantiations of RNL

Table 4.3 Instantiations of RNL with different implementations of Fθ . We insert one Gaussian
RNL block into the res3 stage of ResNet50.

Method (Fθ ) Top-1 (%) GFLOPs Params

channel-wise conv 73.66 1.65 2.67M
average pooling 73.22 1.65 0.26M
max pooling 73.47 1.65 0.26M

There are various solutions for f (·, ·) from Eq. (4.4) and for Fθ from Eq. (4.9), as discussed
in Section 4.2.3 and Section 4.2.4, respectively. In the following, we conduct ablation
studies on the instantiations by fixing a specific choice for either f (·, ·) or Fθ while changing
the other. The operation Fθ can be implemented as a channel-wise convolution or as the
average/max pooling, the stride of which is set as 1, and the padding of which is half of
the kernel size. From the results shown in Table 4.3, we can see that the channel-wise
convolution implementation achieves a higher accuracy with +0.44% and +0.19% than the
average and max pooling, respectively. However, the implementation of average/max pooling
is more efficient and adds fewer parameters (-2.4M) to the model compared to the channel-
wise convolution. We instantiate three versions of the RNL operation, such as Gaussian,
Dot-product and Cosine, provided in Eq. (4.5), (4.6) and (4.7) respectively. The results are



4.6 Experiments 85

shown in Table 4.4. By adding a single RNL block into the backbone network, the Cosine

Table 4.4 Instantiations of the RNL with different form of f (·, ·).

# RNL Method( f (·, ·)) Top-1 (%)

Dot-product 73.22
1 Gaussian 73.66

Cosine 73.46

dot-product 74.16
5 Gaussian 74.68

Cosine 74.40

RNL operation produces higher accuracy than the Dot-product RNL operation due to the
additional term of normalization from Eq. (4.7). The Gaussian RNL achieves the highest
accuracy among the RNL variants. Moreover, the performance of all installations of RNL can
be further boosted by stacking more RNL blocks. The model with 5 Gaussian RNL blocks
(3 in the res4 stage and 2 in the res3 stage) gains an additional 1.02% accuracy increase in
comparison with when adding a single RNL block.

Visualization

reference position

reference position

reference position

reference position

Fig. 4.9 Example attention maps of RNL in the res3 stage, with different reference positions
on frames from Kinetics (1st row) and Something-Something (2nd row). Given a video clip,
the RNL operation only highlights those regions related to the reference position.
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In Fig. 4.9, we visualize some example attention maps of RNL in the res3 stage, which shows
that the RNL operation can correctly learn the relationships between different positions
in videos. In the example shown at the bottom, where a hand touches a battery placed
upright on a surface, we can observe that the touched region of the battery is highlighted
when the reference position is also located on the region of the battery from the image.
Similarly, when the reference position is located in the fingers, then the region of the human
hand is highlighted in the image. In addition, Fig. 4.10 visualizes more example attention
maps of RNL in the res4 stage. We observe that the RNL operation cannot only precisely
learn the feature relationships between spatio-temporal positions in the res3 stage but also
when inserted in the res4 stage. This observation suggests that the RNL operations that are
embedded at different depths of the backbone network perform the same function resulting
in an excellent global context modeling ability.

4.6.2 Ablation Studies for CPA

In the CPA module, the convolution pyramid described in Sec. 4.3, which is implemented
with F(·) from Eq.(4.11), is vital for the enhanced ability to model the global context in
space-time. The convolution pyramid, consisting of multiple convolution filters with dif-
ferent kernel sizes, enables the CPA module to effectively model long-range dependencies
in a multi-scale manner. Here, we ablate the convolution pyramid in the CPA module, by
considering kernels of different size and combinations of various filters. The results are
provided in Table 4.5. For the models in Table 4.5, we add 5 CPA blocks (3 blocks to
res4 stage and 2 blocks to res3 stage) to the backbone network same as in the ablation
experiments for RNL in Sec. 4.6.1. A larger kernel F yields a higher performance gain,
according to the results from the top side of Table 4.5. Consequently, larger kernels can
enable better global context modeling. Moreover, we build a hybrid filter F by aggregating
multiple single-channel convolutions of different kernel sizes, the results of which are shown
in the bottom part of Table 4.5. We note that all the listed convolution pyramid designs
except F = f 3×3×3 + f 3×7×7 work better than the instantiation of any single kernel, which
emphasizes the importance of using the convolution pyramid design in CPA.

Although the CPA instantiation with F = 1× 1× 1 does not improve performance, the
integration of a kernel of size 1×1×1 with other larger kernels results in a strong multi-
scale attention learning behavior. For example, the CPA instantiation with F = f 1×1×1 +

f 3×3×3 + f 3×7×7 generates higher accuracy than F = f 3×3×3 + f 3×7×7.
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Fig. 4.10 Example attention maps of the RNL in the res4 stage, with different reference
positions (red points) on frames from Kinetics.

Visualization

For the attention map visualization, we consider applying the Gradient-weighted Class
Activation Mapping (Grad-CAM) [109] to the networks. Grad-CAM utilizes the gradients of
a particular convolutional layer with respect to a given target to produce coarse localization
maps, highlighting important regions. The visualization can be used to identify failing models.
We compare the visualization results of the CPA-integrated network (CPA+ResNet50) with
that of the baseline (TSM ResNet50) to further evaluate our method. Some visualization
examples are shown on Fig. 4.11. We can observe that the CPA-integrated network can
indicate better the regions where the activities take place than the network without CPA.
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Table 4.5 Ablation for the convolution pyramid (F ) on Kinetics400. We embed 2 CPA blocks
into res3 stage and 3 CPA blocks into res4 stage of ResNet50.

Accuracy (%)

w/o CPA - 72.80

w/ CPA F = f 1×1×1 72.53
w/ CPA F = f 3×3×3 73.52
w/ CPA F = f 3×7×7 73.87
w/ CPA F = f 3×9×9 73.92

w/ CPA F = f 3×3×3 + f 3×7×7 73.86
w/ CPA F = f 1×1×1 + f 3×3×3 + f 3×7×7 74.01
w/ CPA F = f 1×1×1 + f 3×3×3 + f 3×7×7 + f 3×9×9 74.27

Moreover, the prediction scores of the target action classes increase accordingly after being
configured with CPA modules.

4.6.3 Evaluation

In order to evaluate the efficiency and effectiveness of our methods in comparison with
other attention mechanisms, we reimplement the original NL network [145], GCNet [15] (a
simplified NL network), SE network [59] and CBAM network [149]. Table 4.6 presents the

Table 4.6 Comparisons between various visual attention mechanisms on Kinetics400 and
Something-Something V1.

Dataset Model Top-1 (%) FLOPs (G) # Param (M)

baseline 72.80 32.89 24.33
+ 5 SE 73.70 32.89 24.79

Kinetics- + 5 CBAM 73.99 32.90 24.80
400 + 5 GC 73.76 32.90 24.79

+ 5 NL 74.41 49.38 31.69
+ 5 CPA 74.27 - -
+ 5 [SE+CPA] 74.33 - -
+ 5 RNL 74.68 41.15 35.48
+ 5 [SE+RNL] 74.97 41.16 35.95

Something- baseline 46.63 32.89 24.33
Something + 5 NL 48.25 49.38 31.69
V1 + 5 RNL 49.24 41.15 35.48

+ 5 [SE+RNL] 49.47 41.16 35.95

results on the Kinetics and Something-Something datasets. We can see that the proposed
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ResNet50

(P=17.5)

CPA + ResNet50

(P=27.5)

ResNet50

(P=19.9)
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(P=24.4)

ResNet50

(P=17.4)

CPA + ResNet50

(P=21.0)

Biking through snow

Bouncing on trampoline

Breaking dancing

Fig. 4.11 Grad-CAM visualization examples of CPA-integrated network (CPA+ResNet50)
and ResNet50 with TSM [84]. The heatmaps highlight the salient regions. The Grad-CAM
masks are calculated on the last convolutional layers. The ground-truth label is shown on the
bottom of each pair of Grad-CAM masks. The prediction score of the target class is shown
within the brackets.

RNL block achieves higher performance than other attention mechanisms. The network with
5 RNL blocks outperforms the network with 5 NL blocks with +0.27% on Kinetics and +1%
on Something-Something, while the required computational complexity of the RNL network
is 8.23GFLOPs less than that of the NL network. Furthermore, by adding 5 blocks of the
vision attention chain (SE + RNL), as described in Section 4.4, to the backbone network, the
performance is further improved (74.97% on Kinetics and 49.47% on Something-Something).
In the visualization examples of the RNL and NL blocks, shown in Fig. 4.1, we observe
that the attention maps of the RNL block would only highlight those regions related to the
reference positions. However, the attention maps of the original NL block always highlight
the same regions for different reference positions. This observation demonstrates that the
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RNL block can better capture the spatio-temporal attention than the NL block. According to
the results on Kinetics400, the model that has CPA or CBAM module embedded achieves
lower performance than the self-attention mechanisms NL [145] and RNL. This suggests
that self-attention mechanisms are a type of more efficient approach for modeling long-range
dependencies. Nevertheless, the CPA-integrated network still achieves higher performance
than SE [59] and CBAM [149].

4.6.4 Comparisons

Considering that the proposed RNL operation performs better than the CPA module, we
choose RNL as our representative and compare it with the state-of-the-art methods on
Kinetics400 and Something-Something V1. In order to achieve the best performance on
Kinetics400, we increase the number of training epochs from 50 to 100. The performance
comparisons are summarized in Tables 4.7 and 4.8, where RNL TSM refers to the model
with 5 vision attention chain blocks. Note that using the same approach, the models with

Table 4.7 Comparisons with SOTA on Kinetics400.

Model Backbone Training Frames Top-1 (%) Top-5 (%)

I3D RGB [16]

Inception

64 72.1 90.3
I3D Flow [16] 64 65.3 86.2
I3D RGB+Flow [16] 64 75.7 92.0
S3D-G RGB [151] 64 74.7 93.4
S3D-G Flow [151] 64 68.0 87.6
S3D-G RGB+Flow [151] 64 77.2 93.0

TSM [84]

ResNet50

8 74.1 91.2
TSM [84] 16 74.7 -
NL I3D [145] 32 74.9 91.6
Slow [37] 8 74.9 91.5
SlowFast [37] 4+32 75.6 92.1
RNL TSM (ours) 8 75.6 92.3
RNL TSM (ours) 16 77.2 93.1
RNL TSMEn (ours) 8+16 77.4 93.2
NL I3D [145] 128 76.5 92.6

NL I3D [145]
ResNet101

128 77.7 93.3
SlowFast [37] 16+64 78.9 93.5
LGD-3D RGB [102] 128 79.4 94.4

deeper backbone networks or longer clips as training inputs would consistently result in better
performance in comparison with shallower backbone networks. On Kinetics, we employ
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the shallower network ResNet50 as the backbone, and the length of our input video clips
is a few times shorter than for the other methods, yet the results of our method are highly
competitive with that of the other listed approaches which employ stronger backbones. On

Table 4.8 Comparisons with SOTA on Something-Something V1.

Model Backbone Frame×Clip×Crop Top-1 Top-5

I3D [146]

ResNet50

192=32×2×3 41.6 72.2
NL I3D [146] 192=32×2×3 44.4 76.0
NL I3D + GCN [146] 192=32×2×3 46.1 76.8
TSM [84] 8=8×1×1 45.6 74.2
TSM [84] 16=16×1×1 47.2 77.1
TSMEn [84] 24=(8+16)×1×1 49.7 78.5
RNL TSM (ours) 8=8×1×1 47.3 -
RNL TSM (ours) 16=16×1×1 49.4 -
RNL TSMEn (ours) 24=(8+16)×1×1 51.3 80.6

SmallBig [80]

ResNet50

48=8×2×3 48.3 78.1
SmallBig [80] 96=16×2×3 50.0 79.8
SmallBigEn [80] 144=(8+16)×2×3 51.4 80.7
RNL TSM (ours) 48=8×2×3 49.5 78.4
RNL TSM (ours) 96=16×2×3 51.0 80.3
RNL TSMEn (ours) 144=(8+16)×2×3 52.7 81.5

RNL TSM (ours) ResNet101 48=8×2×3 50.8 79.8
RNL TSMEn (ours) R101 + R50 144=(8+16)×2×3 54.1 82.2

Something-Something V1, when using ResNet50 as the backbone, the ensemble version
of our model, the RNL TSMEn, using {8, 16} frames as inputs, achieves a higher accuracy
than other approaches, w.r.t., single-clip & center-crop (Top-1: 51.3%) and multi-clip &
multi-crop (Top-1: 52.7%). When adopting ResNet-101 as the backbone, we gain extra
performance boost (Top-1: 50.8% vs. 49.5%). Moreover, the ensemble version of RNL
TSMEn (R101+R50) shown in the last row in Table 4.8 achieves the best accuracy (Top-1:
54.1%). All these results further demonstrate the effectiveness and efficiency of the proposed
method.

4.7 Discussion

The experimental results show that by embedding either RNL or CPA modules into off-
the-shelf CNNs, we achieve very strong global context modeling abilities, but RNL has
shown higher performance than CPA in terms of classification accuracy. We have not yet
deeply investigated what reason caused the accuracy gap, but from the evidence shown in our
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experiments, the self-attention mechanism family might be a better way to model long-range
dependencies. Nevertheless, self-attention mechanisms are computationally intensive, even
though our RNL uses channel-wise convolution to reduce the computation. Due to the high
computational demand of the self-attention mechanisms, their employment is limited to a
network’s deeper layers with smaller feature sizes. However, embedding the self-attention
blocks into shallower network layers should perform better in principle, as suggested in [145].
On the contrary, the proposed CPA module which captures long-range dependencies with
larger kernels is extremely lightweight, given the reason that each convolution filter in the
CPA module has only one channel. The CPA module could be employed to shallower layers
to get better results.

4.8 Conclusion

In this chapter, we have presented the region-based non-local (RNL) operation and the
Convolution Pyramid Attention (CPA) module. The RNL operation is a novel self-attention
mechanism that can effectively capture long-range dependencies by exploiting pair-wise
region relationships. The proposed CPA module is a lightweight attention mechanism that
leverages multiple convolutions of different kernel sizes, and each convolution has only a
single channel, showing high efficiency when modeling global context. By connecting the
RNL or CPA module with the Squeeze-and-Excitation (SE) module [59], we design the
elegant vision chain, where the SE module learns channel attention while the RNL or CPA
module learns spatio-temporal attention. We demonstrate that the RNL and CPA blocks are
backbone-agnostic, which can be easily embedded into the off-the-shelf CNNs architectures.

We have performed ablation studies to investigate the effectiveness of the proposed RNL
and CPA in various settings. To verify the efficiency and effectiveness of the proposed
methodologies, we have conducted experiments on two video benchmarks, Kinetics400
and Something-Something V1. Our RNL outperforms the baseline and other recently pro-
posed attention methods. Compared with RNL, CPA has lower accuracy. Nevertheless,
the proposed CPA can improve the network performance with negligible additional compu-
tation, which is preferable in the deployments of real-world applications that require low
latency. In addition, the attention maps of neural networks can be used to identify failed
models. We have provided the attention map visualization for measuring the success of
the proposed RNL and CPA methods. The attention maps of RNL show more accurate
positional relationships than that of NL [145]. The attention maps of the network that has
CPA modules embedded provide better salient region localization than the network without
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CPA modules. All these results prove the effectiveness of the proposed attention mechanisms.

One limitation of our work in this chapter is that due to the limited compute nodes we can
access, we have not investigated networks’ lower layers for embedding attention blocks. In-
serting attention blocks in lower layers could possibly generate higher accuracy by allocating
more computations. In addition, the potentiality of the proposed RNL has not been fully
explored, due to the fact that our work is built upon existing network architectures. The
proposed attention mechanisms can also be used to design a completely new attention-based
network.



Chapter 5

Busy-Quiet Video Disentangling for
Efficient Video Understanding

5.1 Introduction

Over the last two chapters, we have studied methods for video representation learning
as well as spatio-temporal attention mechanisms for global context modeling in the spatio-
temporal domain. In this chapter, we start exploring video network learning from a distinctive
direction: efficiently processing with low data redundancy thus resulting in high effectiveness.

Recent methods [36, 84, 101, 127, 128, 151] increase the efficiency of 3D CNNs by re-
ducing the redundancy in the model parameters. However, these methods have ignored
another important factor that causes the heavy computation in video processing: natural
video data contains substantial redundancy in space and time. A video network can improve
its efficiency by avoiding processing this redundant information repeatedly. Meanwhile, the
effectiveness of 3D CNN [16] can be further improved by simply replacing raw time-series
of RGB frame inputs with motion representations, such as TV-L1 flow [157]. We intend to
design a unified architecture that extracts motion representations of videos and separate the
redundant information simultaneously, and thus, to improve the network from both efficiency
and effectiveness aspects. A rich representation of the information in video data can be
realized by means of frequency analysis. Fine motion details from the boundaries of moving
regions are characterized by high frequencies in the spatio-temporal domain. Meanwhile,
lower frequencies are encoded with coarse information containing substantial redundancy,
which causes low efficiency for those video models that take as input raw RGB frames. The
study from this chapter proposes to disentangle video data into Busy and Quiet components,
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in order to enable a computationally efficient and effective action recognition.

Video data processing can benefit from decomposing the video data into different streams of
information and by allocating the appropriate computational resources to each of the streams.
The Busy component of video information, describing fast-changing motion happening at
the boundary of moving regions, is crucial for defining different actions in videos. The
Quiet component, which is the counterpart of Busy, describes smooth background textures
whose neighboring locations share similar information, being redundant in the video data
processing. In our method, we firstly disentangle a video into Busy and Quiet compo-
nents: Busy information of videos is conveyed within a specific spatio-temporal frequency
bandwidth, which can be separated from the Quiet information by utilizing an end-to-end
trainable Motion Band-Pass Module (MBPM). Subsequently, we separately process the
Busy and Quiet components of videos, by allocating high-complexity processing for the
Busy information while low-complexity processing is used for the Quiet information. The
Busy-Quiet disentangling is optimized to the relevant movement following training with
the videos from the dataset. As presented in Fig. 5.1, the Busy information characterizes
the boundaries of the regions where fast movement happens. By applying the MBPM to
a video of 3 segments, the number of representative frames is reduced from 9 to 3 whilst
retaining and compressing the essential motion representation. Our experiments demonstrate
that by simply replacing the RGB frame input with the motion representation extracted by
MBPM, the performance of existing video models can be significantly boosted. Secondly,
we design a two-pathway multi-scale architecture, called the Busy-Quiet Net (BQN), whose
processing pipeline is shown in Fig. 5.2. The Busy pathway is responsible for processing the
information distilled by the MBPM, representing fast changing information in the video. The
other pathway, called Quiet, is devised to process the small changing information encoded
with global smoothing spatio-temporal structures. In order to fuse the information from
different pathways, we design Band-Pass Lateral Connection (BPLC) modules, which are set
up between the layers of Busy and Quiet pathways. During the experiments, we demonstrate
that BPLC modules represent the key factor to the overall model optimization success.

Compared with the frame summarization approaches [8, 136, 61], MBPM retains the strict
temporal order of the frame sequences, which is considered essential for long-term temporal
relation modeling. Compared with optical flow-based motion representation methods [157,
33, 63, 143, 158], the motion representation captured by MBPM has a smaller temporal
size and can be employed on the fly. Meanwhile, efficient video models such as Octave
Convolution [18], bL-Net [17] and SlowFast networks [37] only reduce the input redundancy
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along either the spatial or temporal dimensions. Instead, the proposed BQN reduces the
redundancy in the joint spatio-temporal space.

Our contributions from this chapter can be summarized as follows:

• A novel Motion Band-Pass Module (MBPM) is proposed for Busy motion information
distillation. The new motion cue extracted by the MBPM significantly reduces temporal
redundancy.

• We design a two-pathway Busy-Quiet Net (BQN) that separately processes the Busy
and Quiet information in videos. After separating the Busy information using MBPM,
we then can safely downsample the Quiet information to further decrease redundancy.

• Extensive experiments demonstrate the superiority of the proposed BQN over a
wide range of models on four standard video benchmark datasets: Kinetics400 [16],
Something-Something V1 [48], UCF101 [114] and HMDB51 [73]. The code is avail-
able at: https://github.com/guoxih/busy-quiet-net.

The rest of the chapter is organized as in the following: In Section 5.2, we give a brief
overview of video feature learning. The proposed Motion Band-Pass Module (MBPM) and
its training is described in Section 5.3. The Busy-Quiet Net (BQN) is presented in Section 5.4.
The experimental results are provided in Section 5.5 and the conclusions of this chapter are
drawn in Section 5.6.

5.2 Overview of Video Feature Learning

5.2.1 Enforcing Low Parameter Redundancy

Inception [120] and ResNet [54] are the concrete milestones in manual network design,
which significantly alleviate the training difficulty of very deep networks by introducing
multi-scale Inception blocks and establishing skip connections between layers in different
depths. Their pretrained models on ImageNet have been widely employed for different
downstream tasks. However, the ResNet and Inception families [54, 55, 150, 120, 121, 119]
are heavily parameterized [103, 31]. For example, an instantiation of ResNet could contain
tens or hundreds of millions of parameters. A video model using ResNet or Inception as the
backbone would introduce non-negligible overhead, which could be an order of magnitude or
more bigger than the image model based on ResNet. Given the progress in GPU performance,
many methods [16, 50, 124, 126] tend to exploit the computationally intensive 3D convolution
which allows simultaneous spatio-temporal data processing. The high capacity of ResNet
enabled by over-parameterization is the key to high accuracy in large-scale human-curated

https://github.com/guoxih/busy-quiet-net
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image datasets such as ImageNet. However, most human-curated video datasets are of
small or medium-scale (e.g. the number of labeled samples of ImageNet are five times more
than Kinetics400 [16] ). Oquab et al. [97] pointed out that these high capacity networks
tend to overfit on such small datasets when training from scratch. Recently published
works [127, 36] remark that their lightweight networks have the accuracy on a par with those
over-parameterized networks such as ResNet and Inception while having fewer parameters
and lower computational requirements. It raised a concern that such an over-parameterized
network may not be necessary for spatio-temporal modeling in videos, considering that
the temporal features are of importance but their dimensionality usually is much smaller
than the spatial features, and has less capacity requirement. Meanwhile, some studies focus
on improving the efficiency of 3D CNN, such as Pseudo-3D Residual Net (P3D) [101],
R(2+1)D [128], Separable 3D CNN (S3D) [151], Temporal Shift Module (TSM) [84],
Channel-Separated Convolutional Network (CSN) [127] and Expand 3D (X3D) [36]. Our
methods work on reducing redundancy in input space, which is complementary to the above
approaches, but we intend to investigate the model that has low redundancy in both parameter
(channel) space and input space. In our study, we show that Busy-Quiet Net (BQN) presents
the characteristics of low parameter and low information redundancy by adopting efficient
networks with fewer channels as its backbone.

5.2.2 Motion Representation

Two-stream model [112] and its variants [143, 40] achieve appearance and motion disentan-
glement by taking RGB frames and the optical flow as inputs of two CNNs, which achieves
higher results than any of its single stream versions. Meanwhile, it implies that the separate
processing of different types of features might make the network optimization more efficient.
FlowNet series [63, 29] improve the optical flow estimation by using deep learning. However,
optical flow estimation is inefficient with respect to memory storage and computation. To
estimate the optical flow on the fly, some studies [95, 164] attempt to integrate optical flow
estimation and action recognition into an end-to-end training framework. More recently, Op-
tical Flow guided Feature (OFF) [118], TVNet [33], Flow-of-Flow [100] and other methods
employing fast motion feature learning have been proposed. Some motion representations
such as Squeezed Image and Dynamic Image summarize both the static and dynamic visual
information of videos by utilizing Temporal Squeeze Pooling [61] and Approximate Rank
Pooling [8], respectively. These methods work well provided that there is no severe camera
shaking. Otherwise, the resulted squeezed images are blurred, resulting in poor discrimina-
tion between the moving objects and background. Compared to these approaches, our MBPM
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produces higher accuracy while requiring less computation. Moreover, the proposed MBPM
is rather like a basic component, which can be embedded with various video architectures.

5.2.3 Enforcing Low Information Redundancy

Enabled by deep learning, Big-Little Net (bL-Net) [17] adopts a downsampling strategy
operating at the block level aiming to reduce the spatial redundancy of its feature maps.
Subsequently, two branches are employed to separately process the feature maps with
different resolutions. Chen et al. [18], replaced normal convolution operations with an Octave
Convolution operation decomposing the video information into low-frequency and high-
frequency components, while capturing more global information. For action recognition,
the Big-Little-Video-Net bLVNet [34] extends the idea of bL-Net [17] to the temporal
dimension. SlowFast networks [37] introduce two pathways, and decompose the input into
the Slow and Fast components along the temporal dimension for efficient temporal modeling.
However, the generalization of SlowFast to existing CNN architectures is poor, as it requires
specifically customized CNNs as its backbones. Different from the existing methods, which
only reduce feature redundancy either in the spatial dimensions or in the temporal dimension,
the proposed BQN reduces the feature redundancy in the joint spatio-temporal space. We
introduce a predefined trainable filter module, MBPM, to disentangle the video into Busy
and Quiet components. In opposition to SlowFast, BQN architecture provides excellent
generalization when considering any of existing CNNs as its backbone.

5.3 Motion Band-Pass Module (MBPM)

𝑳𝒐𝑮σ
1×9×9 𝑯s×1×1

3×1×1

Temporal 

Averaging3 Consecutive Frames

Busy Component

MBPM

Quiet Component

Fig. 5.1 The Motion Band-Pass Module (MBPM) disentangles a short frame sequence into
Busy and Quiet components. For every three consecutive RGB frames, the MBPM generates
a single-frame output, substantially reducing the redundancy.
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The defining information required for action recognition consists of the moving objects and
regions that make up the scene as well as their interactions. Particularly, the regions from the
boundaries of the moving regions outlining both their shape and movement characteristics
are essential for video representation. Actually, the movement of a moving object or region is
characterized by its boundaries and how these are changing over time. On the other hand, the
interior of rigidly moving objects, as well as their background, contains information which is
rather constant in time. In this study we develop a mechanism for separating the information
from regions critical in defining the movement in video, which are called Busy, from the
regions which do not change much and are redundant in successions of frames, called Quiet.
On one hand such a separation would enable a better characterization of the movement
leading to better classification. On the other hand we will be able to allocate appropriate
computational resources for the efficient computation of both the Busy and Quiet components.

In the following we introduce the Motion Band-Pass Module (MBPM), as a trainable 3D
band-pass filter, which can distill the video information conveyed within a specific spatio-
temporal frequency bandwidth, into Busy and Quiet information. A video clip can be defined
as a function with three arguments, III(t)(x,y), where x, y indicate the spatial dimensions, while
t = 1, . . . ,T is the temporal dimension and T represents the number of frames. The value
of III(t)(x,y) corresponds to the RGB pixel values at position (x,y) in t-th frame in the video.
When considering the multi-channel video case, we repeat the same procedure for each
feature channel, which for the first processing layer corresponds to the color components1.
For the frequency band processing, we consider a filter based on the time differentials of
the Laplacian of Gaussian applied in the spatial frame data. The output ΓΓΓ of the frequency
band-selection filter is given by:

ΓΓΓ(x,y, t) =
∂ 2

∂ t2

[
III(t)(x,y)∗LoGσ (x,y)

]
,

≈ ∑
t−1≤i≤t+1

h(i) · [III(i)(x,y)∗LoGσ (x,y)],

h(i) =

2
3 if i = t,

−1
3 otherwise,

(5.1)

1Specific notation is omitted for the sake of simplification.
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for t = 1, . . . ,T and ‘∗’ represents the convolution operation. Meanwhile, LoGσ (x,y) is a
two-dimensional Laplacian of Gaussian with the scale parameter σ :

LoGσ (x,y) = ▽2Gσ (x,y) =−e−
x2+y2

2σ2

πσ4

[
1− x2 + y2

2σ2

]
. (5.2)

In Eq. (5.1), the second derivative with respect to t is numerically approximated by finite dif-
ferences, literally implemented by the function h(i). The scale parameter σ of LoGσ (x,y) de-
termines what information in which frequency bandwidth would be disentangled from video
streams and consequently plays a crucial role in defining the Busy information. LoGσ (x,y)
with a larger σ captures smoother textures of videos, and is therefore more robust to noise.
On the other hand, a smaller σ would reliably capture some high frequency information
characterizing fast moving objects.

From equations (5.1) and (5.2) we can observe that the 3D filtering function is fully-
differentiable. In order to make the 3D band-pass filtering compatible with CNNs, we
approximate it with two sequential channel-wise convolutional layers [106], as shown in
Fig. 5.1. We name the discrete approximation implementation as the Motion Band-Pass
Module (MBPM) which can be expressed in a computational form as :

ΓΓΓ ≈ MBPM(III) = H3×1×1
s×1×1 (LoG1×k×k

σ (III)), (5.3)

where LoG1×k×k
σ is referred to as a spatial channel-wise convolutional layer [106] with a

k×k kernel, each channel of which is initialized with a Laplacian of Gaussian distribution of
scale σ . The sum of kernel values is normalized to 1. Meanwhile, H3×1×1

s×1×1 is referred to as
a temporal channel-wise convolutional layer with a temporal stride s. In each channel, the
kernel value of H3×1×1

s×1×1 is initialized with [−1
3 ,

2
3 ,−

1
3 ], which is a high-pass filter. In order

to adjust to the specifics of the motion characteristics from the video frame sequences, the
kernel parameters of MBPM are fine-tuned by training on the video datasets. We embed
the MBPM in the CNN training process to form an end-to-end training pipeline, which is
optimized with the classification loss. This training will result in an optimized MBPM, for
disentangling the Busy information, defined by the characteristics of real videos.



5.4 Busy-Quiet Net (BQN) 101

backbone

Busy Pathway

N × quiet components

N × busy components ( Γ )

2D-DownSamp

MBPM

Quiet PathwayVideo ( I )

S1

S2

SN

. . .

3 consecutive frames

3 consecutive frames

3 consecutive frames

. . .
. . .

backbone

. . . lc

C
la

ss
if

ie
r

lclc

B
u

sy
 Q

u
ie

t 
F

u
si

o
n

T
e
m

p
o

r
a

l 
A

v
e
r
a

g
in

g

Punch

lc

Avg

Fig. 5.2 The Busy-Quiet Net (BQN) is made up of two parallel pathways: Busy and Quiet. ‘lc’
indicates Band-Pass Lateral Connection. The MBPM firstly disentangles the input video into
Busy and Quiet components. Subsequently, the backbone network from the Busy pathway
processes the Busy information, while the network from the Quiet pathway processes the
Quiet information. The outputs of the two pathways are eventually fused, and the final
prediction is obtained by averaging the prediction scores across multiple segments.

5.4 Busy-Quiet Net (BQN)

The BQN architecture, illustrated in Fig. 5.2, contains two different processing pathways: one
for processing the Busy information and another for the Quiet information. Splitting the pro-
cessing into the two different processing pathways is justified by the fact that computational
resources should be allocated differently, according to the characteristics of the information
to be processed. The separation of the pathways is enabled the MBPM, whose construction
was explained in the previous section. Meanwhile, the Busy and Quiet pathways are bridged
by multiple Band-Pass Lateral Connections (“lc” in Fig. 5.2). These lateral connections
enable information fusion between the two processing pathways at various processing stages.

5.4.1 The Busy pathway

The Busy pathway is designed to learn essential fine-grained movement features, such as
those characterizing the transitions of distinct regions of movement. It takes as input the
information filtered by the MBPM, corresponding to a specific spatio-temporal frequency
band, selected following the training of MBPM, as described in Section 5.3. The stride
of H3×1×1

s×1×1 from Eq. (5.3) is set in the experiments to s = 3, which means that for every
three consecutive RGB frames, MBPM generates an one-frame output. The MBPM output
preserves the temporal order within the video while significantly reducing the redundant
temporal information. For extracting more distinct moving object textures as well as of
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transitional movement variation patterns, we would consider larger spatial input sizes for the
Busy pathway.

5.4.2 The Quiet pathway

The Quiet pathway focuses on processing Quiet information, representing the characteris-
tics of large regions of movement, such as the movement happening in the plain-textured
background regions or from the inner regions of large moving objects. Such information
is usually repeating itself from frame to frame and contains a lot of redundant information.
These regions would require reduced computational processing for video characterization.
The input to the Quiet pathway is considered to be the complementary of the MBPM output:

2D-DownSamp(Avg3×1×1
3×1×1(III)−ΓΓΓ), (5.4)

where Avg3×1×1
3×1×1 is temporal average pooling with a stride of 3 in the experiments, and ΓΓΓ

defines the Busy information, according to Eq. (5.3). We also perform bilinear downsampling
in the spatial domain, along x and y coordinates (i.e. 2D-DownSamp), to reduce the redundant
spatial information shared by neighboring locations in the Quiet information. In Section 5.5.3,
we explore the Quiet information significance on the overall performance of BQN.

5.4.3 Band-Pass Lateral Connection (BPLC)

In ResNet [54] and DenseNet [62], skip connections (or shortcut connections) alleviate the
vanishing gradient problem by enabling feature fusion from lower layers to higher layers.
Inspired by this, we include a novel Band-Pass Lateral Connection (BPLC) module in the
BQN architecture. The BPLC module has an MBPM embedded for information selection.
The BPLCs established between the two pathways, Busy and Quiet, provide a mechanism for
information exchange, enabling an optimal fusion of the two video information components
Busy and Quiet corresponding to different frequency bands. Different from the lateral
connections in other approaches [37, 38, 40, 85], the BPLC, enabled by MBPM, performs
feature fusion and feature selection simultaneously, which shows higher performance than
other lateral connection designs, according to the experimental results. We denote the two
inputs of BPLC from the i-th residual blocks in the Busy and Quiet pathways, as xi

f and xi
c,

respectively. For simplifying the notation, we assume that xi
f and xi

c are of the same size.
When their sizes are different, we adopt bilinear interpolation to match them in size. The
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outputs yi
f and yi

c for the Busy and Quiet, respectively, are given by

yi
f =

BN(MBPM(xi
c))+xi

f if mod(i,2) = 0,

xi
f otherwise,

yi
c =

xi
c if mod(i,2) = 0,

BN(φ(xi
f ))+xi

c otherwise,

i = 1,2, . . . ,B

(5.5)

where B denotes the number of residual blocks in the backbone network (regarded as the
network with residual block designs in the experiments). φ(·) is a linear transformation that
can be implemented as a 1×1×1 convolution, or alternatively, when the channel number
is very large, as a bottleneck Multi-layer Perceptron (MLP) for reducing computation. BN
indicates Batch Normalization [65], with the weights initialized to zero. For the MBPM in
BPLC, the convolutional stride of H3×1×1

s×1×1 from Eq. (5.3) is set to s = 1, maintaining the
same temporal size.

The fusion direction of BPLC reverses alternatively back and forth, as indicated in Fig. 5.2,
providing better communication for the two pathways than the unidirectional lateral connec-
tions in [37, 85] whose information fusion direction is fixed, always fusing the information
from one pathway to the other. By default, we place a BPLC between the two pathways
right after each pair of residual blocks. The MBPM embedded in BPLC acts as a soft feature
selection gate, where only busy information from the Quiet pathway is allowed to flow to the
Busy pathway during the information fusion process. This design gives the best performance
according to our experiments. The exploration of various designs of lateral connections is
analyzed in Section 5.5.3.

5.5 Experiments

In this section, we first introduce the datasets and implementation details. Then we conduct
ablation studies to investigate the efficiency and effectiveness of our proposed methods and
find the appropriate parameters for the proposed methods. Finally, we compare with the
state-of-the-art.



104 Busy-Quiet Video Disentangling for Efficient Video Understanding

5.5.1 Implementation details

We use ResNet50 (R50) with TSM [84], X3D-M [36] and MobileNetV2 [106] as the back-
bones of our models. When not specified otherwise, R50 was used as the backbone. Aside
from X3D-M [36], the backbone networks are pretrained on ImageNet [22].

We evaluate our approach on challenging human activities datasets such as Something-
Something V1 [48], Kinetics400 [16], UCF101 [114] and HMDB51 [73]. Most of the
videos in Kinetics400 (K400), UCF101 and HMDB51 can be accurately classified by only
considering their background scene information, while the temporal relation between frames
is not really that important. Meanwhile, in Something-Something (SS) V1, many action
categories are more vaguely defined and characterized by symmetrical movements (e.g.
“Pulling something from left to right” and “Pulling something from right to left”). Discrimi-
nating these symmetric actions requires models with strong temporal modeling ability. Since
Something-Something is widely used for evaluating temporal modeling effectiveness, we
consider this dataset as central to investigate the proposed Busy-Quiet Net (BQN).

For training, we utilize the dense sampling strategy [145] for Kinetics400. As for other
datasets, we utilize the uniform sampling strategy as shown in Fig. 5.2, where a video is
equally divided into N segments, and 3 consecutive frames in each segment are randomly
sampled to constitute a video clip of length T = 3N. Unless specified otherwise, a default
video clip is composed of N = 8 segments with a spatial frame size of 2242. We train our
models on 16 or 64 GPUs (NVIDIA Tesla V100), using Stochastic Gradient Descent (SGD)
with momentum 0.9 and cosine learning rate schedule. In order to prevent overfitting, we add
a dropout layer before the classification layer of each pathway in the BQN model. Following
the experimental settings in [84, 143], the learning rate and weight decay parameters for
the classification layers are 5 times those of the convolutional layers. Meanwhile, we only
apply L2 regularization to the weights in the convolutional and classification layers to avoid
overfitting.

During testing, we sample a single clip per video with center cropping for efficient infer-
ence [84], which is used in our ablation studies. When pursuing high accuracy, we consider
sampling multiple clips&crops from the video and then averaging the prediction scores of
multiple spacetime “views” (spatial crops × temporal clips) as it was used in [37].



5.5 Experiments 105

Hyperparameters for models based on ResNet

For the models on Kinetics400 [16], the initial learning rate, batch size, total epochs, weight
decay and dropout ratio are set to 0.08, 512 (8 samples per GPU), 100, 2e-4 and 0.5,
respectively. For Something-Something V1 [48], these hyperparameters are set to 0.12, 256,
50, 8e-4 and 0.8, respectively. We use linear warm-up [89] for the first 7 epochs to overcome
early optimization difficulty. When fine-tuning the Kinetics models on UCF101 [114] and
HMDB51 [73], we freeze all of the batch normalization [65] layers except for the first one
to avoid overfitting, following the recipe in [143]. The initial learning rate, batch size, total
epochs, weight decay and dropout ratio are set to 0.001, 64 (4 samples per GPU), 10, 1e-4
and 0.8, respectively.

Hyperparameters for models based on X3D-M

For the models on Kinetics400 [16], the initial learning rate, batch size, total epochs, weight
decay and dropout ratio are set to 0.4, 256 (16 samples per GPU), 256, 5e-5 and 0.5, re-
spectively. For Something-Something V1 (SS V1), the models trained from scratch use the
followings hyperparameters: learning rate 0.2, batch size 256, total epochs 100, weight decay
5e-5 and dropout ratio 0.5. When fine-tuning the Kinetics models, the initial learning rate,
batch size, total epochs, weight decay and dropout ratio are set to 0.12, 256 (16 samples per
GPU), 60, 4e-4 and 0.8, respectively.

5.5.2 Ablation Studies for MBPM

In this section, we conduct ablation studies on multiple datasets to evaluate the best settings
for the MBPM and BQN. We show top-1 and top-5 prediction accuracy (%), as well as
computational complexity measured in GFLOPs for a single crop & single clip.

Instantiations and Settings.

The scale σ from Eq. (5.2) and the kernel size of the spatial channel-wise convolution
LoG1×k×k

σ have a significant impact on the performance of MBPM. We vary the scale σ and
the kernel size, while evaluating the prediction accuracy, to search for the optimal settings.
Meanwhile, in order to highlight the importance of the MBPM training, we compare the
performance when using the trained MBPM with that of an untrained MBPM, whose kernel
weights are not optimized with the classification loss. The results on SS V1 are shown in
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Fig. 5.3 Results on Something-Something V1 (SS V1) and UCF101 when varying the scale
σ and kernel size k× k of the spatial channel-wise convolution in MBPM. The results are
averages of multiple experiment runs.

Fig. 5.3(a). We summarize two facts: 1) the optimal value of σ for the MBPM changes as
its kernel size changes, and the MBPM with σ = 1.1 and a spatial kernel size 9×9 gives
the best performance within the searching range. 2) optimizing the parameters of MBPM
with the classification loss generally produces higher prediction accuracy. In our preliminary
work, we have verified that different datasets share the same optimal settings of MBPM. We
search for the optimal settings of the scale σ and kernel size k× k of MBPM on UCF101
dataset. The results are presented in Fig. 5.3(b). We observe that the experimental results
vary greatly under different settings. Nevertheless, the optimal scale is σ = 1.1 when setting
the kernel size as 9×9, which is the same as that for the Something-Something V1 dataset.
Furthermore, we try a larger kernel of 11×11, but then the results show a performance drop.
We speculate that this is caused by insufficient training. In the following experiments, we set
MBPM in the Busy pathway as trainable with the scale σ = 1.1 and the kernel size of 9×9,
unless specified otherwise.

Efficiency and Effectiveness of the MBPM

We draw an apple-to-apple comparison between the proposed MBPM and other motion
representation methods [157, 8, 33, 63, 143, 158]. The motion representations produced by
these methods are used as inputs to the backbone network and the comparison results are
shown in Table 5.1. We follow the experimental settings from [158] for a fair comparison.
The backbone network used for all the methods is ResNet50 [54]. We use the computer code
provided by the original authors for these methods to generate the network inputs. For any of
these motion representations, we divide the representation of a video into 8 segments and
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Table 5.1 MBPM vs. other motion representation methods, when training on UCF101, SS V1
and K400 datasets and considering ResNet50 [54] as backbone. The additional parameters
to the backbone network and the computational complexity (in FLOPs) required by each
method are reported. † denotes our reimplementation.

Representation
Method

Efficiency Metrics UCF101 SS V1 K400
FLOPs #Param.

RGB - - 87.1 46.5 71.2
RGB Difference [143] - - 87.0 46.6 71.4
TV-L1 Flow [157] - - 88.5 37.4 55.7

Dynamic Image† [8] - - 86.2 43.4 68.3
FlowNetC† [63] 444G 39.2M 87.3 26.3 -
FlowNetS† [63] 356G 38.7M 86.8 23.4 -
TVNet† [33] 3.3G 0.2K 88.6 45.2 58.5
Persistent Appearance [158] 2.8G 1.1K 89.5 45.1 57.3

MBPM 0.3G 0.2K 90.3 48.0 72.3

randomly select one frame from each segment. Following the practices used in the Temporal
Segment Network (TSN) [143] and the Persistent Appearance Network (PAN) [158], the
output activation of 8 segments is averaged for the final prediction score. In our reimple-
mentation, Dynamic Image [8] generates one dynamic image for every 6 consecutive RGB
frames, which consumes the same number of RGB frames as Persistent Appearance [158].
Our MBPM generates one representative frame for every 3 consecutive RGB frames. As for
TVNet [33] and TV-L1 Flow [157], a one-frame input to the backbone network is formed
by stacking 5 frames of the estimated flow along the channel dimension, which requires 6
RGB frames. All models are pretrained on ImageNet. For Something-Something V1 and
Kinetics400, we use the hyperparameters specified in Section 5.5.1 to train all models. For
UCF101, we set the initial learning rate, batch size, total epochs, weight decay and dropout
ratio to 0.01, 64 (4 samples per GPU), 80, 1e-4 and 0.5, respectively. According to the results
from Table 5.1 the proposed MBPM outperforms all other motion representation methods
by big margins, while its computational cost is negligible, which strongly demonstrates
the high efficiency and effectiveness of the MBPM. Moreover, we consider different input
modalities, and the two-stream fusion of “RGB+MBPM” has higher accuracy than the fusion
of “RGB+Flow,” according to the results shown in Table 5.2.
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In order to visually observe the differences between the outputs of our MBPM and other
motion representation methods, in Fig. 5.4, we show some example video frames and their
corresponding motion representations generated by different methods. The optical flow
estimates the instantaneous velocity and direction of movement in every position, where the
color represents the direction of movement while the brightness represents the absolute value
of instantaneous velocity in a position. In contrast, TVNet [33], Persistent Appearance [158]
and MBPM are more absorbed in the visual information presented in boundary regions where
motion happens. In Fig. 5.4, the textures captured by TVNet, Persistent Appearance and
the MBPM do not present obvious differences. However, our MBPM is more simple and
requires less computation.

RGB TV-L1 TVNet MBPMPA

Archery

ApplyEyeMakeup

Punch

Fig. 5.4 Comparison between visualizations of different motion representations, TV-L1
Flow, TVNet, Persistent Appearance (PA) and the proposed MBPM on the UCF101 dataset
after training. TV-L1 Flow [157] evaluates the movement in every spatial position, while
TVNet [33], PA [158] and our MBPM, capture the outline of the moving objects.

Generalization to different CNNs used as backbones

ResNet [54] significantly alleviates the training difficulty of very deep networks by estab-
lishing skip connections between layers at different depths. In the previous section, we
have seen that the proposed MBPM can efficiently and effectively increase the prediction
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Table 5.2 Using different CNNs as backbones on SS V1. ResNet50 and MobileNetV2 have
TSM [84] embedded.

CNN backbone Modality Pretrain #Segments (N) Accuracy

ResNet50 [54]

RGB

ImageNet 8

46.5
RGB+Flow 49.8

MBPM 48.0
RGB+MBPM 50.3

MobileNetV2 [106]
RGB

ImageNet 8
38.7

MBPM 39.8

X3D-M [36]
RGB

None 16
45.5

MBPM 46.9

accuracy of ResNet on multiple video datasets. However, the main problem in ResNet is its
over-parameterization: an instantiation of ResNet could contain tens or hundreds of millions
of parameters, resulting in the cycle of the training and inference being too long. In order
to shorten the model training and inference cycle, we attempt to employ our method to
the efficient network architectures, MobileNetV2 [106] and X3D [36]. We further show
that the proposed MBPM is a generic plug-and-play unit that is compatible with a wide
range of network architectures. By simply placing an MBPM after the input layers of these
off-the-shelf neural networks, their performance on action recognition tasks has non-trivial
improvement. In Table 5.2 we present the results of ResNet50 [54], MobileNetV2 [106] and
X3D-M [36] before and after being configured with the MBPM. MobileNetV2 [106] is a
computation-efficient CNN, which is specifically tailored for mobile devices, allowing fast
deployment in resource-constrained environments. After being configured with our MBPM,
MobileNetV2 shows a higher motion feature learning ability, increasing its accuracy by 1.1%
on Something-Something V1. Additionally, we adapt our method to X3D-M, an instantiation
of the efficient video network design, namely X3D, which is a 3D expansion of the core
concept of channel-wise separable convolution in MobileNet [58], using the progressive
network expansion approach [36]. Notably, the MBPM improves X3D-M by 1.4%, even
though the original X3D-M network has been specially designed for spatio-temporal feature
learning. The steady performance improvements of these existing networks when embedding
the MBPM have sufficiently evidenced the high generalization ability of MBPM. In Table 5.9
and Table 5.10 we also present the results of the BQN architectures that employ different
types of backbone network. More details about the analysis of the generalization ability of
BQN over different types of backbone network is given in Section 5.5.4.
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5.5.3 Ablation Studies for Busy-Quiet Net (BQN)

BQN vs. Quiet+Busy.

In order to evaluate the architecture effectiveness, we compare the proposed BQN with the
simple fusion (Quiet+Busy), which mimics the two-stream model [112], by averaging the
predictions of the two pathways trained separately. The results from Table 5.3 indicate that
the simple fusion of two individual pathways (Quiet+Busy) generates higher top-1 accuracy
(50.3%) than the individual pathways, which indicates that the features learned by the Quiet
and Busy pathways are complementary. BQN has 51.6% top-1 accuracy, which is 1.3%
better than the fusion, Quiet+Busy. The high-performance gain strongly demonstrates the
advantages of the proposed BQN architecture.

Table 5.3 Complementarity of Quiet and Busy. “Quiet” and “Busy” refer to that the Quiet
and Busy pathways are trained separately.

Model Top-1 (%) Top-5 (%) GFLOPs

Quiet 46.5 75.3 32.8
Busy 48.0 76.8 32.8
Quiet+Busy 50.3 79.0 65.7
BQN 51.6 80.5 65.9

Fusion strategies

In the following we evaluate the effectiveness of different approaches for fusing the predic-
tions of the Busy and Quiet pathways in the BQN architecture. The results of using different
fusion methods are shown in Table 5.4. We observe that the average fusion gives the best
result among the listed approaches, which is in line with the experimental results of the two-
stream model in [40]. The approach of concatenation fusion is second only to the averaging.
Moreover, we observe that placing the average fusion layer after the fully-connected (fc)
layer is better than placing it before.

Effectiveness of the BPLC

We can set a maximum of up to 16 BPLCs in the BQN architecture when using TSM
R50 [84] as the backbone. ResNet50 [54] contains four stages, named res2, res3, res4, res5,
respectively. These stages are composed of 3, 4, 6, 3 residual blocks, respectively. For the
BPLCs in the stages res2, res3 and res4, we set the spatial kernel size of MBPM as 7×7,
and the scale σ = 0.9. As for stage res5, whose feature size is relatively small, the kernel
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Table 5.4 Fusion Strategies. The fully-connected (fc) layers of the two pathways share their
parameters

Fusion Method Position Top-1 (%) Top-5 (%)

Averaging before fc 50.9 79.8
Averaging after fc 51.6 80.5
Max after fc 50.1 78.7
Concatenation before fc 51.3 80.2

size is therefore set to 3×3. Table 5.5, illustrates that adding BPLCs to all processing stages
leads to improved performance. From Table 5.6, we can observe that the model performance
improves gradually as the number of BPLCs increases. The substantial performance gains
demonstrate the importance of using BPLCs for BQN.

Table 5.5 Adding BPLCs to various processing stages of ResNet50 backbone. In each stage,
we set one BPLC after its first residual block.

Stages No. of BPLC Top-1 (%) Top-5 (%)

res2 1 49.8 79.1
res2,res3 2 50.1 78.7
res2,res3,res4 3 50.2 79.0
res2,res3,res4,res5 4 50.2 79.2

Table 5.6 The effect of the number of BPLCs.

No. of BPLCs Top-1 (%) Top-5 (%) GFLOPs

0 49.6 78.9 65.7
4 50.2 79.2 65.8
8 50.7 79.7 65.8
16 51.6 80.5 65.9

Lateral Connection (LC) Designs

In order to illustrate the rationality of the proposed BPLC design, we compare it with other
LC designs. The diagrams of different LC designs are illustrated in Fig. 5.5, where LC-I and
LC-II are unidirectional, and LC-III is bidirectional. Table 5.7 shows that the bidirectional
design LC-III has higher accuracy than the unidirectional designs LC-I and LC-II. Among
the listed designs, the proposed BPLC, which reverses the information fusion direction back
and forth alternatively, provides the highest accuracy. We also compare the BPLC with LC-V
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Fig. 5.5 Diagrams of various lateral connection (LC) designs. Bilinear interpolation is used
for resizing the feature maps when xi

c and xi
f do not have the same spatial size. i refers to the

index of the residual block. Wφ and W1 denote the weights of the linear transformation.

that does not contain an MBPM. As a result, LC-V shows lower accuracy than the BPLC,
which demonstrates the importance of embedding MBPM in the BPLC.

Table 5.7 Various LC designs. 16 LCs are set in the BQN.

Design Top-1(%) Top-5 (%)

LC-I 50.9 79.8
LC-II 50.9 79.7
LC-III 51.5 80.2
BPLC (LC-IV) 51.6 80.5
LC-V 51.3 79.9

Spatial-temporal input size

In BQN, the Busy pathway takes as input the MBPM output, which has the same spatial
size as the raw video clip, while the temporal size is one-third of the length of the raw video
clip. Meanwhile, the Quiet pathway takes as input the complementary component of the
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MBPM output, expressed through Eq. (5.4). Table 5.8 shows that with the same temporal
size of 8 for the inputs, the spatial size combination of 1602 and 2562 for the Quiet and Busy,
respectively, has slightly better top-1 accuracy (+0.1%) than the combination of 2242 and
2242 but saves 5.2 GFLOPs in computational cost. We also attempt to reduce the temporal
input size of the Quiet pathway. However, this would result in a performance drop. One
possible explanation is that due to the temporal average pooling in the Quiet pathway, the
input’s temporal size is already reduced to one-third of the raw video clip. An even smaller
temporal size could fail to preserve the correct temporal order of the video, and therefore
harms the temporal relation modeling.

Table 5.8 Effect of the spatio-temporal input size. The input size is formatted as (width2 ×
time).

Input size
for Quiet

Input size
for Busy Top-1 (%) Top-5 (%) GFLOPs

2242 ×8 2242 ×8 51.6 80.5 65.9
1922 ×8 2242 ×8 51.5 79.9 58.0
1602 ×8 2242 ×8 51.3 80.1 50.5
1282 ×8 2242 ×8 50.7 79.2 44.4
2242 ×8 2562 ×8 51.8 80.5 77.1
1922 ×8 2562 ×8 51.7 80.2 68.3
1602 ×8 2562 ×8 51.7 80.5 60.7
1282 ×8 2562 ×8 51.3 79.4 54.6
1602 ×6 2562 ×8 49.6 78.3 55.5
2242 ×4 2242 ×8 48.7 77.1 49.4

5.5.4 Comparison with the State-of-the-Art

We compare BQN with current state-of-the-art methods on the four datasets. In BQN, the
Quiet and Busy pathways’ spatial input size is set to 1602 and 2562, respectively.

Results on Something-Something V1

Table 5.9 summarizes the comprehensive comparison, including the inference protocols,
corresponding computational costs (FLOPs) and the prediction accuracy. Our method
surpasses all other methods by good margins. For example, the multi-clip accuracy of
BQN24 f

2 with TSM R50 is 7.2% higher than NL I3D GCN32 f [146] while requiring 5×
fewer FLOPs. Among the models based on ResNet50, BQN48 f has the highest top-1 accuracy

2The subscript 24f indicates that video clips of 24 frames are used for experiments.
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Table 5.9 Results on Something-Something V1. “N/A” indicates the numbers are not
available. † denotes our reimplementation. Bold and underline show the highest and second
highest results, respectively.

Method pre-train Backbone Frames×Crops×Clips FLOPs #Param. Top-1 Top-5
(%) (%)

NL I3D GCN [146]

ImageNet

3D R50 32×3×2 303G×3×2 62.2M 46.1 76.8
ECOEnLite RGB+Flow [165] Inc+3D R18 (92+552)×1×1 N/A 300M 49.5 -
TSN [143] R50 8×1×1 33G×1×1 - 19.7 46.6
TRNRGB+Flow [162] BNInception (8+48)×1×1 N/A 36.6M 42.0 -
TSMEn [84] R50 (16+8)×1×1 98G×1×1 48.6M 49.7 78.5
TSMRGB+Flow [84] R50 (16+96)×1×1 N/A 48.6M 52.6 81.9
TEA [81] R50 16×3×10 70G×3×10 24.4M 52.3 81.9
TDN [142] R101 16×1×1 132G×1×1 - 55.3 83.3
SmallBig [80] - 16×3×2 105G×3×2 - 50.0 79.8
bLVNet-TAM [34] bLR50 8×1×2 12G×1×2 25M 46.4 76.6
GTAEn [52] TSM R50 (16+8)×3×2 - - 56.5 83.1
PANFull [158] TSM R50 40×1×2 67.7G×1×2 - 50.5 79.2
PANEn [158] TSM R50 (40+40)×1×2 134G×1×2 - 53.4 81.1
PANEn [158] TSM R101 (40+40)×1×2 251G×1×2 - 55.3 82.8
ir-CSN [127]

None
3D R101 32×1×10 73.8G×1×10 22.1M 48.4 -

ir-CSN [127] 3D R152 32×1×10 96.7G×1×10 - 49.3 -

TSM R50 [84]

ImageNet

R50 16×1×1 65G×1×1 24.3M 47.2 77.1
BQN TSM R50 24×1×1 60G×1×1 47.4M 51.7 80.5
BQN TSM R50 24×3×2 60G×3×2 47.4M 53.3 82.0
BQN TSM R50 48×3×2 121G×3×2 47.4M 54.3 82.0
BQN TSM R101 48×3×2 231G×3×2 85.4M 54.9 81.7

X3D-M† [36] None - 16×3×2 6.4G×3×2 3.3M 46.7 75.5
BQN None X3D-M 48×3×2 9.7G×3×2 6.6M 50.6 79.2
BQN K400 X3D-M 48×3×2 9.7G×3×2 6.6M 53.7 81.8

BQNEn
ImageNet TSM R101

(48+48)×3×2 241G×3×2 92M 57.1 84.2
+ K400 +X3D-M
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(54.3%), which surpasses the second-best, TEA16 f [81], by a margin of +2%. Furthermore,
our signal-clip BQN24 f has higher accuracy (51.7%) than most other multi-clip models,
requiring only 60 GFLOPs. By adopting a deeper backbone (TSM R101), BQN48 f has 54.9%
top-1 accuracy, higher than any other model.

Table 5.10 Comparison results on Kinetics400. We report the inference cost of multiple
“views” (spatial crops × temporal clips). † denotes our reimplementation.

Method Backbone Frames
× views FLOPs Top-1

(%)
Top-5
(%)

bLVNet-TAM [34] bLR50 16×9 561G 72.0 90.6
TSM [84]

R50

16×30 2580G 74.7 -
TEINet [87] 16×30 2580G 76.2 92.5
TEA [81] 16×30 2100G 76.1 92.5
STM [68] 16×30 2010G 73.7 91.6
X3D-M† [36] - 16×30 186G 75.1 92.2
VoV3D-M [79] - 16×30 172G 74.7 92.1

SlowFast4×16 [37] 3D R50 32×30 1083G 75.6 92.1
CorrNet [135] 3D R50 32×10 1150G 77.2 -
R(2+1)D [128] R34 32×10 1520G 72.0 91.4
ip-CSN [127] 3D R101 32×30 2490G 76.7 92.3
SlowFast+GTA [52] 3D R101 - 4110G 79.8 94.1
SmallBigNet [80] R101 32×12 6552G 77.4 93.3

TSN [143] BNInception 25×10 530G 69.1 88.7
PANFull TSM R50 40×2 176G 74.4 91.6
I3DRGB [16] Inception V1 64×N/A N/A 71.1 89.3
Oct-I3D [18] - N/A×N/A N/A 74.6 -
NL I3D [145] 3D R101 128×30 10770G 77.7 93.3

BQN TSM R50 48×10 1210G 76.8 92.4
BQN TSM R50 72×10 1820G 77.3 93.2
BQN X3D-M 48×30 291G 77.1 92.5

Although the BQN architecture has produced decently high classification accuracy on
the dataset, the additional computational cost introduced by BQN is not negligible when the
employed backbones have high parameter redundancy. For example, the computational cost
of BQN48 f with TSM R50 for a single clip is 121 GFLOPs, which is almost 2 times more
than that of TSM R50. If BQN adopts a deeper ResNet as the backbone, its computational
complexity would be further increased, which could lead to high-latency in its real-world
applications. When using X3D-M as the backbone, BQN achieves the ultimate efficiency,
possessing very low redundancy in both feature channel and spatio-temporal dimensions.
BQN with X3D-M processes 4× more video frames than vanilla X3D-M, with only 50%
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Table 5.11 Results on HMDB51 and UCF101. We report the mean class accuracy over the
three official splits.

Method Backbone HMDB51 UCF101

StNet [53] R50 - 93.5
TSM [84] R50 73.5 95.9
STM [68] R50 72.2 96.2
TEA [81] R50 73.3 96.9
DI Four-Stream [8] ResNeXt101 72.5 95.5
TVNet [33] BNInception 71.0 94.5
TSNRGB+Flow [143] BNInception 68.5 94.0
I3DRGB+Flow [16] 3D Inception 80.7 98.0
PANFull [158] TSM R50 77.0 96.5

BQN TSM R50 77.6 97.6

additional FLOPs. Compared with TSM R5016 f , BQN with X3D-M trained from scratch pro-
duces 3.4% higher top-1 accuracy with the computational complexity of 14% of TSM R5016 f .
The ensemble version BQNEn achieves the state-of-the-art top-1/5 accuracy (57.1%/84.2%).

Results on Kinetics400, UCF101 and HMDB51

Table 5.10 shows the comparison results on Kinetics400. For a fair comparison, we only list
the models with the spatial input size of 2562. BQN72 f with TSM R50 achieves 77.3%/93.2%
top-1/5 accuracy, which is better than the 3D CNN-based architecture, I3D [16], by a big
margin of +6.2%/3.9%. When BQN uses TSM R50 or X3D-M as its backbone, it consistently
shows higher accuracy than SlowFast4×16. Particularly, BQN with X3D-M has 1.5% higher
top-1 accuracy than SlowFast4×16, while requiring 3.7× fewer FLOPs. Meanwhile, BQN72 f

with TSM R50 is 2.7% better than Oct-I3D [18] for top-1 accuracy. The results on two
smaller datasets, UCF101 and HMDB51, are shown in Table 5.11, where we report the mean
class accuracy over the three official splits. We pretrain our model on Kinetics400 to avoid
overfitting. The accuracy of our method is calculated using the inference protocol (3 crops×2
clips). BQN with TSM R50 outperforms most other methods except for I3DRGB+Flow, which
uses an additional optical flow input modality.

5.5.5 Visualization Analysis

In Figures 5.6-(1) and (2), we visualize two complex human activities from Kinetics 400,
representing “Spinning poi” and “Chopping wood”, respectively, where the top row of images
are uniformly selected from the original video while underneath we show the correspond-
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(1) Spinning poi

(2) Chopping wood

Fig. 5.6 Example videos and their corresponding MBPM outputs from Kinetics 400.

(1) Pretending to take something out of something

(2) Pretending to turn something upside down

Fig. 5.7 Example Videos and their corresponding MBPM outputs from Something-Something
V1.
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(1) Biking

(2) Playing violin

Fig. 5.8 Example Videos and their corresponding MBPM outputs from UCF101.

(1) Swing baseball

(2) Kick

Fig. 5.9 Example Videos and their corresponding MBPM outputs from HMDB51.
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channel 1 channel 2 channel 3

(a) Untrained LoG (b) Trained LoG

Fig. 5.10 Visualization of the spatial channel-wise convolution LoG1×k×k
σ of MBPM in the

Busy pathway before and after training on Kinetics400. The 9×9 channel-wise convolution
is initialized with a Laplacian of Gaussian with the scale parameter σ = 1.1. Best viewed in
color and zoomed in.

(a) Busy pathway (b) Quiet pathway (c) TSM ResNet50

Fig. 5.11 Visualization of the first channels of the 64 conv1 filters of BQN after training
on Kinetics400. All 64 filters have a size of 7× 7. From left to right, in (a), (b) and (c),
we respectively present the trained conv1 filters in the Busy pathway, Quiet pathway and
TSM ResNet50. We observe that the kernels of the 64 filters in the Busy pathway display
stripe-like shapes, consistent with band-pass filters, while those for the filters in the Quiet
pathway are more like larger blobs. The conv1 in TSM ResNet50 (baseline) contains both
types of filters from the Busy and Quiet pathways. Best viewed in color and zoomed in.
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ing busy stream selected by an MBPM. In Figures 5.7-(1) and (2) we show examples of
Busy streams for complex activities characteristic to Something-Something V1 dataset. In
Figures 5.8-(1) and (2) we present the visualization results of the MBPM output selection
for “Biking” and “Playing violin” video frame sequences from UCF101. In Figures 5.9-(1)
and (2) we present the visualization results of the MBPM output selection for “Swing base-
ball” and “Kick” video frame sequences from HMDB51. For a better representation of the
movement output we use the optical flow visualization approach from [6] to visualize the
busy stream selected by MBPM. We can observe from these examples that the extracted
representations are stable when jittering and other minor camera movements are present in
the videos. MBPM not only that suppresses the stationary information and the background
movement, but it also highlights the boundaries of moving objects and regions, which are of
vital importance for action discrimination. For example, in the “spinning poi” video, showing
the movement of a illuminating object from Fig. 5.6-(1), MBPM highlights well the poi’s
movement rather than the movement of the background or the performer.

In Fig. 5.10, we visualize the kernel of the spatial convolution LoG1×k×k
σ of MBPM in the

Busy pathway. Interestingly, before and after training, kernels always present a similar shape
to a Mexican hat function. In Fig. 5.11, we visualize the first channel of the 64 filters in the
first layers of the BQN and the baseline (TSM ResNet50). We can observe that the Busy and
Quiet pathways’ filters have quite distinct shapes for their kernels, suggesting that the Busy
and Quiet pathways learned different types of features after training.

5.6 Conclusion

In this chapter, we have presented the idea of busy-quiet video disentangling for efficient
video data processing in action recognition tasks. For this aim, we propose the Motion
Band-Pass Module (MBPM) which, following training, defines different spatio-temporal
frequency bands for the Busy and Quiet information in the video data. The Busy information
separated by the MBPM provides important motion cues for action recognition, such as those
characterizing the regions of movement transitions or the boundaries of moving objects in
videos. Enabled by MBPM, we design an efficient and effective two-stream spatio-temporal
processing architecture called Busy-Quiet Net (BQN), to separately process Busy and Quiet
video data information. Meanwhile, we have presented the novel Band-Pass Lateral Con-
nection (BPLC) module that enables simultaneously performing feature selection as well
as feature fusion between the Busy and Quiet pathways in BQN. The proposed two-stream
video processing network, besides disentangling the video information for better recognition,
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allows for a better allocation of the computational resources, where more processing power
is used for the Busy stream and less for the Quiet. We have demonstrated that by adopting
efficient networks of low parameter redundancy, BQN has culminated in very low redundancy
in both parameter and input space, allowing ultra-efficiency. We have conducted extensive
ablation experiments to evaluate the design rationality of the proposed MBPM, Band-Pass
Lateral Connection and BQN.

Our work has a few limitations. First of all, the low parameter redundancy in the BQN
architecture relies on the lightweight of the two backbone networks whose designs need
additional research effort. In addition, the two pathways in BQN must use two structurally
identical networks. In principle, the Busy pathway is more significant than the Quiet pathway,
so its backbone should be heavier than the Quiet pathway. Regardless of that, the current
BQN architecture has shown higher efficiency and effectiveness than recent state-of-the-art
models in multiple video benchmarks. The proposed Busy and Quiet video disentanglement
can also be used for video analysis in various applications.



Chapter 6

Conclusion

This chapter summarizes the main contributions of this thesis. Discussions about the limita-
tions, as well as potential directions for future work are also provided.

6.1 Contributions

The research work reported in this thesis develops several novel machine learning algorithms
for efficient and effective spatio-temporal modeling for video action recognition.

In Chapter 3, we developed two novel methods for high discriminative video representation
extraction. In the first half of Chapter 3, we proposed a compact video representation, termed
Squeezed Image. Each squeezed image has three RGB channels outputted by the proposed
Temporal Squeeze Pooling (TSP) module, which summarizes the dynamics of long video
frame sequences. A standard CNN is capable of learning high-level spatio-temporal features
by simply taking the squeezed images as the input. By embedding multiple TSP modules
into a standard 2D CNN, we construct the Temporal Squeeze Network (TeSNet) architecture,
in which the TSP modules gradually reduce the temporal size of feature maps saving compu-
tational cost. One fatal drawback of TSP is that it would shuffle the temporal order. This
would significantly harm the performance of those datasets that rely on temporal relations to
discriminate different actions.

In the second half of Chapter 3, we upgrade TSP to become a pixel-level operation, termed
Pixel-Wise Temporal Projection (PWTP). PWTP is capable of separating motion-relevant
information from static appearance in videos. The extracted representations present high-
discriminative characteristics even for actions from similar scenes.
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Chapter 4 develops two attention mechanisms for modeling long-term dependencies: the
region-based non-local (RNL) operation and Convolution Pyramid Attention (CPA). The
proposed RNL module is a self-attention mechanism capable of capturing globally spatio-
temporal context by utilizing the pair-wise relationships between local neighboring regions.
In comparison with the previous self-attention mechanism [145], our RNL demonstrated
stronger robustness against noise while resulting in higher accuracy with a lower computa-
tional cost.

The proposed CPA module also presents an excellent performance for global context mod-
eling by leveraging unusually large convolution kernels. Moreover, the CPA module has a
better multi-scale feature learning ability than regular convolution blocks. In order to capture
both spatio-temporal attention and channel-wise attention in a unified module, we link the SE
block [59] with the RNL or CPA module to construct an attention chain. The attention chain
is a backbone-agnostic module, that can be simply embedded into off-the-shelf networks and
boost performance.

In Chapter 5, we present the concept of busy-quiet video disentangling for efficient spatio-
temporal modeling in video recognition. We propose the Motion Band-Pass Module (MBPM),
which is fully differentiable, to disentangle the video information into two components,
termed Busy and Quiet. The Busy component encodes fine-grained motion features, essential
for distinguishing different actions in videos, whilst the Quiet component encodes coarse-
grained information with substantial redundancy. Then we propose the Busy-Quiet Net
(BQN) architecture which has the MBPM embedded. BQN achieves efficient information
processing by adopting an intelligent computational resources allocation strategy. Regarding
the Busy information, the spatial resolution is enlarged in the input layer in order to capture
more motion details. With reference to the Quiet component, the information is performed
by downsampling to reduce redundancy. BQN presents extremely lightweight characteristics
and demonstrates higher performance than other heavier architectures.

6.2 Future Work

The PWTP module described in Chapter 3 has it own optimization criteria. In order to train
the PWTP module and its corresponding backbone CNN in an end-to-end manner, we have
introduced two joint training algorithms. Recently, more advantageous jointing algorithms
such as the one from [153] have been proposed. As future work, we could adapt these
algorithms to optimize our model. The recent Vision transformer [28] (ViT) architecture
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have demonstrated higher performance than CNNs in some visual applications. Although the
potential of ViT has yet to be fully explored, we can attempt to combine our representation
learning methods with ViT to evaluate the generalization ability of our methods further. We
have done some experiments that use ViT as the backbone architecture to build our models,
and we have seen performance improvement, but a thorough evaluation is still necessary to
conduct.

In Chapter 4, we proposed the self-attention mechanism RNL for global context modeling.
As future work, we can upgrade RNL to be a multi-head self-attention mechanism [131].
Furthermore, considering that the self-attention mechanism is the base unit of many Trans-
former architectures, we can attempt to design an efficient transformer by using a multi-head
version of RNL.

For efficient video data processing, in the BQN architecture described in Chapter 5, the
largest spatial size in the Busy pathway is set to 2562. However, the published works [36, 37]
suggest that using a larger spatial input size could further increase accuracy. Meanwhile, the
spatial size of the Quiet pathway can be made smaller. Relevant experiments are needed to
conduct in the future.

The topic of multimodal deep representation learning for video recognition [93] has attracted
increasing research attention recently. The research work of this thesis has not taken the audio
modality into consideration. By considering the additional audio input, the performance of
video recognition could be further improved. What is more, research work that combines
self-supervised learning and multimodal representation learning [92, 2] could be a promising
direction in the future.
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