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Abstract

Ever since the dawn of computer vision[1, 2], 3D environment reconstruction and ob-

ject 6D pose estimation have been a core problem. This thesis attempts to develop a

novel 3D intelligent robotic vision system integrating environment reconstruction and

object detection techniques to solve practical problems. Chapter 2 reviews current

state-of-the art of 3D vision techniques from environment reconstruction and 6D pose

estimation.In Chapter 3 a novel environment reconstruction system is proposed by

using coloured point clouds. The evaluation experiment indicates that the proposed

algorithm 2 is effective for small-scale and large-scale and textureless scenes. Chap-

ter 4 presents Image-6D (that is section 4.2), a learning-based object pose estimation

algorithm from a single RGB image. Contour-alignment is introduced as an efficient

algorithm for pose refinement in an RGB image. This new method is evaluated on

two widely used benchmark image data bases, LINEMOD and Occlusion-LINEMOD.

Experiments show that the proposed method surpasses other state-of-the-art RGB-

based prediction approaches. Chapter 5 describes Point-6D (defined in section 5.2),

a novel 6D pose estimation method using coloured point clouds as input. The per-

formance of this new method is demonstrated on LineMOD [3] and YCB-Video [4]

dataset. Chapter 6 summarizes contributions and discusses potential future research

directions. In addition, we presents an intelligent 3D robotic vision system deployed in

a simulated/laboratory nuclear waste disposal scenario in Appendices B. To verify the

results, a simulated nuclear waste handling experiment has been successfully completed

via the proposed robotic system.
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Chapter 1

Introduction

1.1 Background

The advanced robot is frequently depicted in science fiction films, which raises human’s

expectations of future robots. We want robots to perceive the surrounding world as we

do. However, real-world machines cannot achieve such kinds of intelligence. Our human

visual system can infer properties about 3D objects and understand the composition

of surrounding environment quickly and effortlessly. In contrast, robot vision sensors

capture an image of the environment, but an input device does not have perceptual

capabilities or cognitive abilities; it does not know about the world. Therefore, to

endow machines with these capabilities is, by far, a challenging task.

One of the most important goals of computer vision systems is to estimate 6D pose

(the 3D translation and rotation) of object from complex environments. Accurate 6D

pose estimation technologies can drive various emerging technological areas related to

robotic manipulation, autopilot, augmented reality, etc. To perceive an accurate 6D

pose in a cluttered scene, an amount of research has been dedicated to establishing an

efficient 3D object perception system. Ideas range from feature-based methods [3, 8]

which leverage object geometric information and learning-based approaches [13, 14, 15]

which employ a deep neural network. No matter which paradigms are used, they all rely
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on high-quality object models. In other words, superior object models are a prerequisite

for accurate 6D pose estimation. Therefore, this PhD thesis explores a novel 3D vision

system from reconstruction and perception aspects.

In the early ages of 3D computer vision, it mainly dealt with polyhedral objects

[16, 17]. To recognize fine-grained geometric shapes, some of the methods [18, 19]

estimate 6D poses of objects from a 3D point cloud directly. They leveraged point

feature description to compute a set of correspondences between the object model

and scene point cloud, and also robustly estimate the 6D pose by a random sample

consensus (RANSAC) algorithm. Apart from point cloud-based methods, image-based

approaches also made significant progress. Hinterstoisser et al. [3] proposed a template

matching method, Linemod, which exploits colour gradients and surface normals to

describe object contour and interior information. It is further improved in [8] by

generating a templates dataset automatically from CAD 3D models. However, those

works cannot handle textureless objects in a cluttered environment, due to the lack of

rich textures, to detect distinguishable features for matching.

More recently, the emergence of deep convolutional networks techniques, especially

CNN-based category detectors [20, 21, 22], have shown excellent outcomes for object

detection and object segmentation. Inspired by the remarkable progress on 2D object

detection, an increasing number of works employed deep learning for 6D pose estima-

tion. For RGB-derived 6D pose estimation, most approaches follow a similar paradigm:

first, they adopt a neural network to detect the eight 3D bounding box corner-points

associated with the target objects. They perform a Perspective-n-Point (PnP) algo-

rithm calculating the orientation and translation. However, this paradigm suffers from

severe shortcomings in terms of low detection accuracy for texture-less objects and

expensive post-processing steps [23].

Compared with 2D images, the point cloud is closer to the original 3D geometric

shape and carries a reliable depth distance to localize objects accurately. Qi et al.

propose an end-to-end network, PointNet [24], which directly feed point clouds as in-

puts and performs classification and segmentation for the input point cloud. In [25],
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an improved version of PointNet was proposed, enabling the network to learn local

structures at different scales. While these methods are still at the category level, Li

proposed PointRCNN [26], which can achieve 3D object detection from a raw point

cloud at the level of instances. However, a typical scene model contains more than a

100k points; training such networks requires high computational and memory require-

ments. What’s more, current point cloud-based learning techniques leverage publicly

available datasets to train and test. Although a dataset can speed up the research

process, how to generate a generic system that can apply to real-world objects is still

challenging.

Overall, the 6D pose estimation is still in its infancy, despite the few frameworks

showing some exciting results when evaluated through a dataset. The current 6D pose

estimation methods rely heavily on high-quality object and scene models, whether

based on RGB image, RGB-D data or 3D point cloud. Because of this, the detec-

tion accuracy of those frameworks will decrease significantly when tested in real-world

objects. These issues serve as the primary motivation of this thesis - to produce a com-

plete, effective and precise 3D vision system to address core tasks for 3D perception.

1.2 Challenges of 6D Pose Estimation

Although significant progress had been achieved, but several challenges remain to be

solved in the field of 6D pose estimation.

First challenge is environmental complexity and clutter. Occlusion and illumination

have a significant impact on the accuracy of 6D pose estimation. Occlusion can cause

feature missing and thus reduce estimation accuracy. In addition, the intensity of

pixels from same part of object are different under various illumination conditions.

This factors may result in the system giving faulty or incorrect results.

Second is data generation. Supervised-learning rely on enormous training data,

while annotating 6D pose of object in a 3D space is difficult, especially for orien-

tation [4]. Recently, self-supervised 6D pose estimation is attractive, where robots
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autonomously annotate real world data with accurate 6D object poses [27, 28]. How-

ever, self-supervised methods are highly dependent on accuracy of the initial pose and

they still need pre-training. What’s more, synthetic dataset generators [29, 30] are also

widely used for 6D dataset generation.

The third challenge is estimation of non-rigid objects. In real world, a broader class

of objects are non-rigid objects such as humans, pants or socks without fixed form [31].

However, 6D pose estimation for non-rigid objects require the more global information

extracted from larger receptive fields and are inescapably more sensitive to occlusions.

1.3 Aims and Objectives

This thesis aims to develop a novel 3D intelligent robot vision system that can accom-

plish object modelling, learning, detection and grasping efficiently. Towards this goal,

we propose the following research objectives:

• Objective 1: Implementing a point cloud-based reconstruction system for the

textureless and small-scale scene.

• Objective 2: Recovering the accurate 6D pose from different type of input signals.

• Objective 3: Integrating the 6D pose information with ROS system to make the

robot to interpret the perceived environment.

1.4 Contribution

This thesis makes the following contributions in the area of the 3D object detection

community:

• In Chapter 3, we first propose a real-time, high-quality, 3D scanning pipeline

for texture-less scenes. Compared with current state methods, the approach

proposed in this chapter can balance speed and quality. The chapter then presents
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a learning-based algorithm for 6D pose estimation in point cloud data, which

exploits neural networks to extract 3D feature description.

• In chapter 4, we propose a novel 6D pose estimation method Image-6D that

detects objects, segments instances, and predicts 6D pose simultaneously from

a single RGB image without any PnP process. Besides, we introduce Contour-

Alignment, an efficient algorithm for pose refinement in an RGB image.

• In chapter 5, we develop Point-6D, a 6D pose estimation neural network using

colored point cloud as the input. This network implements 6D pose estimation at

a per-point level that improves the performance in an occlusion scene. Point-6D

achieves more accurate detection than previous efforts, which fuses 3D geometric

data with 2D photometric information.

• In Appendices B, we develop an advanced human-robot interaction system, which

leverages 3D vision systems presented in previous chapters as the backbone. This

case study shows how those novel methods support robot manipulation in remote

handling operations in a hazardous environment.

1.5 Outline of the Thesis

The remaining part of the paper proceeds as follows:

• Chapter 2 describes the current state of 3D object reconstruction and recognition

as well as its inadequacies.

• Chapter 3 shows a novel reconstruction pipeline for the small-scale textureless

scene.

• Chapter 4 presents a novel 6D pose estimation method Image-6D that can detect

objects, segment instances and predict 6D pose of object simultaneously from a

single RGB image.
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• Chapter 5 introduces a point cloud-based 6D pose estimation technique Point-6D

that fully utilizes object geometric and coloured features to regress 6D pose at a

per-point level.

• Chapter 6 summarizes the entire thesis and promising future directions in 3D

object detection.

In addition, it is worth mentioning that the work in Chapter 3 is published in:

Jin, Y.; A., Soto, D.A.P. ; Rossiter, J. and Veres, S. (2021). Advanced En-

vironment Modelling forRemote Teleoperation to Improve Operator Experi-

ence. In Proceedings of the International Conference on Artificial Intelligence

(icARTi ’21), ISBN 978-1-4503-8575-6/21/12, DOI: 10.1145/3487923.3487939

and the work in Chapter 4 is awarded best paper of ROBOVIS2021 and publised

in:

Jin, Y.; Rossiter, J. and Veres, S. (2021). Accurate 6D Object Pose Esti-

mation and Refinement in Cluttered Scenes. In Proceedings of the 2nd Inter-

national Conference on Robotics, Computer Vision and Intelligent Systems,

ISBN 978-989-758-537-1, pages 31-39. DOI: 10.5220/0010654500003061
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Chapter 2

Literature Review

This chapter investigates the previous and current technologies related to 3D object

reconstruction and detection. Before reviewing the literature, we first give an intro-

duction to the basic concepts of 3D vision. After that, we review existing methods on

3D environment reconstruction from offline and online perspectives. After reviewing

the study of 3D reconstruction, the following section discusses the current 3D detection

technologies and their intended applications. This review will give the reader a solid

base for this thesis developments and contributions as while as a good grounding in

the field of application for such 3D vision systems.

2.1 Basic Concepts of 3D Vision

Opposite to 2D vision technology, 3D sensor have ability provide depth information,

which is a critical information for many computer vision tasks and image processing

applications such as autonomous driving, robotic grasping and augment reality [32].

In the section that follows, we present two essential concepts of 3D vision, which are

3D object representation and 3D data acquisition.
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2.1.1 3D Representation

Point Cloud

The point cloud is a set of three-dimension points that can represent the shape of the

object or geometric information of the environment. As an ordinarily adopted format,

the point cloud is closer to the original geometric shape containing rich feature and

scale information without any discretization. However, it is hard to process the raw

point cloud directly due to the irregular, high-dimensions and noise of the point cloud

data.

Mesh

The mesh consists of plenty of polygons that typically are triangular or quadrangles.

The mesh can be converted from a point cloud, and it has more photo realism compared

with the point cloud. This type of data is normally used for visualization.

Volumetric Grid

As we mentioned before, the point cloud is irregular and dense, which causes time

complexity. A point cloud is typically converted to a volumetric grid by voxelization

when passing into the neural network. The volumetric grid is a sample and regular

representation. Typically, a volumetric grid divides a 3D space into a set of cells. The

voxelization process checks whether or not voxels include the object points and assign

a value of 0 or 1.

Depth Map

A depth map is a 2D image that contains the distances from the focal plane to points in

the scene. The depth only includes position related data and miss colour information.

Therefore, it is generally used with colour images together, commonly referred to as

RGB-D data.
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(a) Color Image (b) Depth Map (c) Mesh (d) Volumetric (e) Point Cloud

Figure 2.1: Several different 3D representations.

2.1.2 3D Acquisition

The 3D acquisition methods can be divided into two core classes, active and passive

sensors. Specifically, monocular and stereo cameras are passive sensors, while active

measurement encompasses structured light and Time of Flight (TOF). Principles of

those approaches are described in detail in the following section, and their benefits and

drawbacks are compared.

Monocular 3D vision

The monocular camera can only capture 2D colour image information and cannot

obtain 3D data directly. Recovering the 3D scene model is usually combined with

a Structure from Motion (SfM) technique, which captures several monocular images

from various viewpoints to compute the corresponding camera pose. This monocular

3D vision is regarded as a subcategory of multi-view 3D object reconstruction. In

addition, single-view 3D reconstruction from a single monocular image also made ex-

cellent progress [33]. It primarily utilizes deep learning networks and prior knowledge

of shapes. However, this approach can only recover individual objects at the moment

and cannot obtain 3D understanding of the entire scene.

Stereo 3D Vision

In this thesis, the term ‘stereo vision’ refers to binocular stereo vision, which utilizes the

parallax of two cameras to compute depth information. Specifically, a stereo camera
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can acquire two images and calculate the location deviation between the corresponding

points of two images to obtain the 3D geometric data of the current scene view. The

stereo camera is low-cost and can be used both indoors and outdoors. What’s more,

it can generate a dense per-pixel depth map that provides fast and accurate 3D data.

However, this device also has some obvious disadvantages. It is sensitive to illumination

because light changes cause pixel loss. On the other hand, this acquisition method is

purely visual and algorithmically demanding. Currently, a widely-used stereo camera

is the ZED camera, which can acquire an immense depth range from 0.3 to 25m and

can provide a maximum of 2K video resolutions.

Structured Light

The structured-light system explores an active projection device to measure the depth

distance. As an infrared ray projected onto the object with a particular encoding, it

deforms, allowing vision systems to measure the depth and surface details of the objects

by calculating the deformities of the captured reflected light pattern. Depending on

the coding pattern, structured light can be divided into two main categories: strip

indexing and grid indexing. The advantage of the structured-light sensor is that it

can work on dark light, and the algorithm is proven. But the acquisition accuracy

will decrease a lot for the outdoor environment and large-scale scene. Some notable

structured light 3D sensors, such as the Kinect-1, Inter RealSense, etc., are extensively

used in 3D vision research.

Time of Flight

As the name suggests, the Time of Flight (ToF) measures light flight time to obtain the

distance between sensor and object. Specifically, the sensor emits a continuous laser

pulse for the object and then receives the reflected light, and the distance is calculated

by the time of flight multiplied by the speed of light. Because direct measurement of

flight time is complex, the ToF sensor usually adopts modulated light and measures
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the reflected light’s phase.

According to the modulation type, TOF methods can be divided into two general

categories: Pulsed Modulation and Continuous Wave Modulation. Pulse modulation

requires very high precision clocks for measurement, so most ToF cameras adopt the

latter. Although expensive, ToF-based LiDAR has a dominant position in autonomous

driving due to high precision measurement. What’s more, Kinect v2, SoftKinetic and

other ToF devices are widely used in numerous 3D detection tasks.

(a) Monocular 3D Vision (b) Stereo Camera

(c) Structured Light (d) Time of Flight

Figure 2.2: Several different 3D acquisition methods
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2.1.3 6D Pose Representation

This section introduces a group of preliminaries that regards this thesis. The 6D is the

abbreviation for 6 degrees of freedom, which is composed of the 3D translation and

the 3D rotation in each of the 3D axis. In the rest of thesis, the symbol t denotes the

3D translation and R represents the 3D rotation. Normally, there are three different

types of 3D rotation: (1). euler-angle, (2). rotation matrix and (3). quaternion, and

they are interchangeable.

Euler-angle describes the magnitude of the rotation about the axis in a three-

dimensional Euclidean space and denotes as (α, β, γ). The range of a axis-angle is

from 0 ◦ to 360 ◦. The 3D rotation matrix is a 3 × 3 transformation matrix, which

performs the rotation of vectors in Euclidean space. The relationship between axis-

angle and rotation matrix is:

R =


cosα −sinα 0

sinα cosα 0

0 0 1




cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ




1 0 0

0 cosγ −sinγ

0 sinγ cosγ



=


cosαcosβ cosαsinβsinγ − sinαcosγ cosαsinβcosγ + sinαsinγ

sinαcosβ sinαsinβsinγ + cosαcosγ sinαsinβcosγ − cosαsinγ

−sinβ cosβsinγ cosβcos



(2.1)

Apart from axis-angle and rotation matrix, quaternion is also a typical rotation

representation in 3D space. A quaternion is a 4 × 1 unit vector q = [x, y, z, w] where

x,y and z are vector part and w is the scalar part. The conversion between quaternion

and rotation matrix is:

R =


1− 2y2 − 2z2 2xy + 2wz 2xz − 2wy

2xy − 2wz 1− 2x2 − 2z2 2yz + 2wx

2xz + 2wy 2yz − 2wx 1− 2x2 − 2y2

 (2.2)

The 3×3 rotation matrix R and 3×1 translation matrix t composes transformation

matrix {R|t}, denotes as T . In the point cloud registration, the transformation matrix
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T describes the position of the source point cloud origin and the orientation of its axes,

relative to the frame of target.

2.1.4 Datasets

A dataset is a collection of data that contains a lot of separate pieces of information.

Using a standard dataset is beneficial for training, testing and evaluating an algorithm

in the research. In this thesis, we employ two main classes of datasets: one is visual-

SLAM dataset like RGB-D Scenes v.2 [7] and the SUN3D [12] Dataset, and another

is 6D pose estimation dataset, such as LineMOD [8], LineMOD-OCCLUDED [8] and

YCB-Video [4] dataset.

The visual-SLAM dataset contains scene data: the RGB image, depth image and

point cloud, and ground truth information that is the pose matrix of the scene. 6D

pose estimation dataset includes scene data and objects instance mask, and its ground

truth information is the pose matrix of each object. We will detail those datasets when

they are used in later chapters.

2.2 3D Environment Reconstruction

Nowadays, 3D reconstruction technology has become a key instrument in various fields,

exemplified by 3D printing, robotics, architecture, and augmented reality fields [34].

There are three fundamental methodologies used in modelling unknown environments:

SfM, visual simultaneous localization and mapping (Visual-SLAM), and deep learning-

based reconstruction. In this section, the typical SfM/Visual-SLAM pipelines and

learning-based methods are reviewed, with a strong emphasis on recent work on real-

time online reconstruction approaches.
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2.2.1 Structure from Motion

Structure from Motion (SfM) is a prevailing technique to reconstruct 3D objects through

processing multi-view 2D images [35]. A classical SfM method can be outlined in five

steps: feature extraction, building image correspondences, camera pose estimation,

calculating the position of 3D points, and non-linear optimisation shown in Figure 2.3

[36].

Figure 2.3: A general pipeline for SfM.

Firstly, the SfM system extracts features [37, 38, 39, 40] from images, of which

scale-invariant feature transform algorithm (SIFT) [37] and speeded up robust features

algorithm (SURF) [38] are two of the most well-known feature extraction algorithms.

Secondly, SfM measures the similarity between those feature descriptors by calculating

the Euclidean distance between each feature point and generates a set of potential

matches. Following that, RANSAC [41] is used to remove outlier matches, and estimate

camera poses matrices [42] between pairs of images. Then, the initial 3D structure can

be recovered by triangulation [43] that calculate the error between measurement and

projected 3D point. The final step is bundle adjustment (BA) [44] that refines the

camera poses, 3D points, also intrinsic camera parameters together.

14



Depending on the image addition sequence in the SfM process, existing SfM algo-

rithms can be classified as incremental [45, 35, 46], hierarchical [47, 48], and global

approaches [49, 50, 36]. Incremental SfM greedily adds one image at a time and solves

bundle adjustment repeatedly. The incremental approach is robust for outliers and

works well with large collections of images, providing remarkably accurate reconstruc-

tions in many circumstances. However, an incremental approach requires a good initial

matching pair that contains a sufficient number of matching points and sensitivities

to the sequence of addition, which can cause an accumulated error. Obviously, global

methods, which calculate all images simultaneously, don’t need to consider the initial

image and addition sequence. Moreover, the global method takes one bundle adjust-

ment process and is highly efficient for reconstruction. Hierarchical methods [47, 48]

integrate advantages of global and incremental to tackle the problems of efficiency and

accuracy.

Overall, SfM is a typical offline method that can reconstruct a stationary scene

precisely. However, the most significant limitation of SfM is that this algorithm relies

substantially on scene features and requires a long calculation time.

2.2.2 Visual-SLAM

Simultaneous Localization and Mapping (SLAM) is a method to get the camera motion

and the 3D structure of the scene in an unknown environment in real-time. The input

of SLAM is usually a visual signal, so it is also referred to as visual-SLAM. Compared

with the SfM technique, the visual-SLAM algorithm can achieve real-time environment

reconstruction and sensor pose estimation. Because of this, visual-SLAM is widely

used in the field of augmented reality (AR), unmanned autonomous vehicles (UAV)

and telepresence.

Generally, the visual-SLAM is comprised of five modules: (1) Initialization; (2)

tracking; (3) mapping; (4) relocalization; and (5) global map optimization. In the

initialization, the system will determine a globe coordinate system and generate an
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initial map in this coordinate system. Then, tracking is to calculate the camera pose

of the current frame through computing the correspondences between the image and

recontoured map. This step involves solving the PnP [42] problem that is also used in

SfM. In the mapping process, the reconstructed map is updated by a tracked camera

pose. The following two modules, relocalization and global map optimization, are used

to refine the reconstructed model. Specifically, relocalization is to recover the camera

pose again when tracking is lost. As for the global maps, the optimization module is

used to minimize the accumulative estimation error of camera movement. The reference

information can be obtained firstly by matching the initial map with the current image.

Then, a loop constraint is employed as a restriction to minimize the error.

As mentioned above, the five core components of visual-SLAM are adopted by most

algorithms, although each method employs a different strategy for each module. In this

section, the review of the visual-SLAM algorithm is categorized according to the type

of input data.

Monocular Image-Based Visual-SLAM

The early research of visual-SLAM utilises a monocular camera as an input device.

Davison et al. [51] proposed the first monocular visual-SLAM system MonoSLAM,

which exploits an extended Kalman filter to predict camera motion and update the

state. However, the size of a state vector becomes large with the scene extending,

making monoSLAM less appropriate to reconstruct a large-scale environment due to

the increased computational demands. To overcome the challenge of large-scale recon-

struction and speed up the reconstruction process, PTAM was developed by Klein and

Murray [52]. PTAM exploits multi-thread executing tracking and parallel mapping.

Note that the 3D points are estimated by triangulation and then optimised by BA in

PTAM, which uses the same method as the previous SfM pipeline. Inspired by Mur-

Artal et al. [5], researchers proposed a real-time and accurate monocular visual-SLAM

system ORB-SLAM. In this work, the author used the ORB feature [39] detector to
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replace the previous SIFT [37] and SURF [38] feature detector to accelerate feature

extraction. What’s more, ORB-SLAM improves many of the shortcomings of PTAM,

such as lack of camera relocalisation and loop closing. This limits the usefulness of

resulting map reconstructions, which cannot be used in interactive robotics tasks or

advanced augmented reality applications. As Figure 2.4 (a) shown, The ORB-SLAM

pipeline composes tracking, mapping, relocalization, and loop closing components that

improves robustness and stability of system.

Although those works achieved remarkable progress on environment reconstruc-

tion, they can only output the sparse map, which cannot be applied in interactive

robotics works or advanced AR applications. Recently, with the rapid growth of GPU

computing, there are several kinds of research focusing on real-time dense monocular

reconstruction, such as DeepFusion [53] and DeepFactors [54], typically generate dense

scene maps by estimating the depth values from a single RGB image. Unfortunately,

recovering the depth information from the monocular image is not precise due to the

presence of occlusions, noise and repeated texture. Overall, RGB-D camera-based

visual-SLAM may be a better choice for dense environments modelling.

RGB-D Image-Based Visual-SLAM

In Section 2.1.2, we introduced a variety of RGB-D cameras, which have been widely

applied in visual computing. For example, the seminal KinectFusion system [55] had

a significant effect in the field of 3D reconstruction. In this study, a novel GPU-based

pipeline is implemented to calculate camera motion from scene motion. KinectFusion

utilized Truncated Signed Distance Functions (TSDFs) [56] representing 3D scenes,

and a significant advantage of TSDFs is that depth images at any viewing can be effi-

ciently obtained compared with Mesh methods. For estimating the pose of the camera,

KinectFusion used Iterative Closest Point (ICP) [57] algorithm. However, there are

certain drawbacks associated with using the ICP algorithm, which is burdensome com-

putation when the model involves a tremendous amount of cloud points. Subsequently,
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(a) Overall of ORB-SLAM framework [5]

(b) Overall of ORB-SLAM2 framework [6]

Figure 2.4: A comparison between RGB-based [5] and RGBD-based [6] visual-SLAM
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Whelan et al. [58] developed the Kintinous algorithm based on KinectFusion, which

benefits in increasing computing power through integrating fast odometer from visions

(FOVIS) into the GPU pipeline.

However, both KinectFusion and Kintinous are unable to handle loop closures,

and as a result, may drift indefinitely. RGB-D SLAM [59] overcomes this problem

by integrating multiple motion estimation and additionally estimating the motion to

frames other than the direct computation. Moreove, RGB-D SLAM may be the first

to take advantage of the colour image and depth maps. Compared with KinectFusion

which only rely on depth information, RGB-D SLAM exploits colour images to extract

feature and depth information for validation. The recent lightweight visual-SLAM

system ORB-SLAM2 [6] utilized bundle globe adjustment (BA) replacing the previous

ICP algorithm to achieve higher accuracy of motion estimation as illustrated in Figure

2.4 (b). Dual to ORB-SLAM2 suffering from many tracking failures, Dai et al. [60]

proposed a real-time and high-quality reconstruction framework BundleFusion. In this

work, he designed a hierarchical local-to-global pose optimization approach. On the

first hierarchy level, every n consecutive frames compose a chunk, and the first frame

is defined as the keyframe. Then, it performed a local pose optimization for a chunk.

Finally, the keyframes of all chunks are globally optimized. Choi et al. [11] noticed that

pairwise registration is prone to errors in global registration. So they proposed a robust

global optimization based on line processes to improve the reconstruction quality of

indoor scenes.

Point Cloud-Based Visual-SLAM

As an alternative to image intensity, the point-based strategy is employed by several

reconstruction methods. For the point-based visual-SLAM systems, the core problem

is multiview point cloud registration. Point cloud registration is the process of aligning

two or more 3-D point clouds of the same scene into a standard coordinate system.

The first registration group is the local registration, such as the multiview ICP-like
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scheme and 3D point correspondences. ICP-based methods mainly utilized the ICP

processing by solving the least-squares problem to obtain a camera pose [61, 62, 10].

With regard to the point matching approaches, they were concluded into four phases:

(1) 3D keypoint feature detection; (2) correspondences matching; (3) outlier rejection

and (4) transformation calculation. Figure 2.5 illustrates a general pipeline for point

cloud registration.

Figure 2.5: A general pipeline for point matching approaches.

The common 3D keypoint detection methods included SIFT-3D [63], ISSKeyPoint-

3D [64] and Harris-3D [65] etc. What is more, a variety of feature descriptors have

been proposed to describe geometrical patterns based on the information around the

key points, such as Signature of Histograms of OrienTations (SHOT) [66], Fast Point

Feature Histograms (FPFH) [67], Camera Roll Histogram (CRH) [68] descriptors and

so on. In correspondences matching, k-d tree [69] and octree [70] are normally employed

to search the point correspondences. The searching result included several mismatching

correspondences which could lead to false pose estimation. To reject outliers, [18]

proposed a 3D hough voting algorithm and Buch et al. [19] developed a pre-rejective

RANSAC method as verification. However, the RANSAC-based registration [18, 19]

requires a long time for calculation and evaluation. Consequently, Zhou et al. [71]
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proposed a faster registration algorithm that quickly optimizes a robust objective of a

few correspondences.

A majority of local registration approaches endure the growing complexity of cor-

respondence computation. To get rid of it, some recent approaches [11] make use of

the global registration pipeline, which does not need initialization and iterative sam-

pling. Note that the global registration methods are faster than the local refinement

algorithm because they do not require recomputing correspondences. However, this

strategy comes at the expense of accuracy.

Deep Learning-Based Reconstruction

In the last decade, learning-based 3D reconstruction using CNN has attracted increas-

ing research interests and proved an exciting achievement. Recent neural networks

based methods recover a complete 3D scene model by learnt features from multiple

inputs. Eigen et al. [72] and Laina et al. [73] successively predict depth maps from a

single colour image by using a convolutional neural network. Note that the traditional

methods, such as the previously mentioned SfM and visual-SLAM, fail in single view

reconstruction. Subsequently, 3D-R2N2 [74] achieved both single- and multi-view re-

construction in a single network. The 3D-R2N2 is established based on the standard

Long Short Term Memory (LSTM) network [75] that can keep the previous iteration

and incrementally improve the output result.

Inspired by the success of 3D-R2N2, Learnt Stereo Machines (LSM) [78] and 3D2SeqViews,

Han et al. [79] continued using LSTM architecture and improved reconstruction accu-

racy by exploiting more geometric cues. The major problem with 3D-R2N2 and LSM

is that the order of the input image influences the reconstruction quality due to the

LSTM unit is a permutation variant. Also, LSTM is time-consuming because the in-

put data are feed sequentially without parallelization. To address the above problem,

3DensiNet [80] employs a maximum pooling layer to gather cues from multiple images,

and Pix2Vox [76] built multiple encoder-decoder architectures that can run in parallel.
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(a) The architecture of Pix2Vox [76], which can recover objects mesh exploiting image from

single or multiple view. The object image is from LineMOD dataset[8].

(b) Overall of Deng et al. [77]’s framework, which utilize PPF-FoldNet and PC-FoldNet

to as feature extraction to predict local descriptors, then sent the matched features to a

RelativeNet to estimate relative pose.

Figure 2.6: Two typical learning-based neural network architectures for reconstruction.

Top is voxel-based approach and bottom is point cloud-based method. The point cloud

image is from RGB-D Scenes Dataset [7] 22



For the above methods, the 3D shape of the reconstruction result is represented by a

3D voxel grid shown in Figure 2.6 (a), so we call them voxel-based methods. Although

voxel-based approaches gain from recovering 3D shapes, they rely heavily on computa-

tional power and are mainly specific for single object reconstruction rather than scene

reconstruction. Another direction of learning-based reconstruction is processing point

cloud data directly.

Recently, numerous works are starting to leverage deep neural networks to learn

local features from a point cloud since Zeng et al. [81] proposed their pioneering

work, called 3DMatch, which is a 3D convolutional neural network. Closely related

to 3DMatch, Yew and Lee [82], Choy et al. [83] and Deng et al. [77] respectively de-

veloped an effective neural network to extra the 3D local descriptors. In addition, Ao

et al. [84], Khoury et al. [85] and Deng et al. [86] tried to compute rotation invariant

descriptors which are more robust for the scenario with strong rotational changes. The

Figure 2.6 (b) shows the architecture of Deng et al. [77]’ network, which use PPF-

FoldNet [86] and PC-FoldNet to extra local descriptors from input point cloud and

then feed the matched features to a RelativeNet to estimate relative pose of source and

target point cloud.

Apart from using a neural network to extract features, Choy et al. [87] propose a

6-dimensional convolutional network that can predict a set of inliers correspondences

between the source feature Fx = {fx1 , ..., fxNx
} and target feature Fy = {fy1 , ..., fyNx

}.

In addition, Pais et al. [88] proposed 3DRegNet used to distinguish inliers and outliers

from point correspondences.

However, the performance of learning-based methods drops a lot when they deal

with unseen scenes. As a result, the one goal of this thesis is to develop a fast and

accurate point cloud reconstruction method. We eschew the deep learning networks

and instead fully exploit the geometric and photometric information of the point cloud

itself to achieve this goal.
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2.3 6D Objects Pose Estimation

6D pose estimation is a task of predicting the 6D pose of an object in the camera

coordinate system, which encompasses its location and orientation. The significance of

6D pose estimation is to obtain the precise pose of the object, which is mainly applied

in the field of robot grasping, augmented reality, and autonomous vehicles [15]. A 6D

pose estimation task can be divided into 2D image-based and 3D point cloud-based

methods according to the input data used. Specific to the implementation method, it

can be further divided into a correspondence-based, a template-based and a voting-

based strategy [89]. An overall comparion of 6D pose estimation methods has listed in

Table 2.1.

2.3.1 Image-based 6D Objects Pose Estimation

Correspondence-based 6D Objects Pose Estimation

Correspondence-based methods usually start by establishing 2D-3D correspondence

and then leverage a RANSAC-based PnP algorithm or its variant to calculate object

poses as Figure 2.7 shown. The traditional correspondence-based approaches mainly

utilize SIFT [37] and SURF [38] algorithms for feature extraction, which is similar

to the SfM we mentioned before. Sadran et al. [90] propose a sparse SIFT-based 6D

object estimation system that reduces the runtime of object pose prediction through

removing outliers keypoints. What’s more, Grundmann et al. [91] apply this 2D-

3D strategy into a robotic manipulation task in a cluttered environment. However,

the traditional correspondence-based methods fully rely on the texture information of

objects. So, they are unreliable for textureless objects.

The emergence of deep learning techniques, especially CNN-based category detec-

tors, have shown excellent outcomes for object detection [92, 20] and object segmenta-

tion [93]. In recent years, there has been an increasing number of 6D pose estimation

works which involve the use of CNN [94, 14, 95]. Figure 2.7 (b) indicates a popu-
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(a) Transitional correspondence-based method

(b) Learning-based correspondence-based method

Figure 2.7: Typical correspondence-based 6D pose estimation method.The object im-

age is from LineMOD dataset[8]

lar computational paradigm of learning-based approaches in detecting 3D bounding

box vertices for objects using CNN and then computing 6D pose by solving the PnP

problem. We can notice that the difference between traditional and learning-based

methods is feature extraction. Learning-based methods, e.g. BB8 [94], Yolo6D [14],

leveraged neural networks to detect eight 2D projection corners. With a similar idea,

DOPE [96] detects nine belief maps, that is, one for centroids and eight for corners,

and eight vector fields containing the direction from 8 corners to the corresponding

centroid. This method can improve detection accuracy compared with a direct output

of eight corners.

Hu et al. [97] observed that the performance of previous works is fast and robust

but terrible for heavily-occluded and poorly-textured objects. To overcome this chal-
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lenge, Hu et al. [97] proposed a segmentation-driven 6D pose estimation algorithm, in

which each visible component of the object provides clues for 2D projection corners

detection. As we mentioned before, correspondence-based methods are a two-stage

pipeline, so they are not end-to-end trainable. Wang et al. [98] developed a GDR-Net,

which includes a learnable Patch-PnP framework to improve the performance of direct

6D pose regression. However, correspondence-based methods are suffered from either

occlusion or low visibility.

Template-based methods

Figure 2.8 (a) demonstrates a general pipeline for traditional template-based methods.

These approaches rely on comparing the similarity between template library and in-

put image to obtain the object 6D pose. Probably the most famous early method is

Linemod [3], which calculates a cluttered object’s 6D pose exploiting both colour gra-

dients and surface normals. It is then improved by automatically generating templates

covering a full view hemisphere in [8]. Hodaň et al. [99] applied a cascade-style eval-

uation of window position in a template-based method, reducing the computational

complexity of sliding window significantly. In short, the template-based method is

more robust than correspondence-based approaches for textureless objects, but it leads

to low pose detection accuracy in environments full of occluded objects.

The development of deep learning networks brings new ideas to template-based

6D object estimation tasks. There are numerical works which regress a 6D pose of

the target object directly from the input image via supervised learning as Figure 2.8

(b) displayed, which SSD-6D [13], PoseCNN [4], Deep-6DPose [96] et al. are widely

used in various robotic tasks. The SSD-6D [13] algorithm employed an SSD network

to detect classification, 2D bounding box and 3D rotation of target object, and then,

network outputs together with pre-computed information to estimate the object’s 3D

pose. Inspired by SSD-6D [13], PoseCNN [4] and Deep-6DPose [96] additionally detects

the mask of instance to improve the accuracy. For pose estimation, Deep-6DPose [96]
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Table 2.1: A comparison of state-of-arts 6D pose estimation methods

Data Source Methods Is DL based

RGB

Correspondence-based

Sadran et al. [90] ×

Grundmann et al. [91] ×

BB8[94]
√

YOLO6D[14]
√

DOPE[96]
√

GDR-Net[98]
√

Template-based

Linemod[3, 8] ×

SSD-6D[13]
√

PoseCNN[4]
√

Deep-6DPose[96]
√

Voting-based

Brachmann et al. [100] ×

Dong et al. [101] ×

PVNet[23]
√

Point Cloud

Correspondence-based

3DMatch[81]
√

PPFnet[86]
√

3DFeat-Net[82]
√

Rpm-net[102]
√

Template-based

Frustum PointNets[103]
√

PointFusion[104]
√

DenseFusion[15]
√

CloudPose[105]
√

Voting-based

Tombari and Di Stefano [18] ×

Woodford et al. [106] ×

Yoloff [107]
√

PVN3D[9]
√

VoteNet[108]
√

ImVoteNet[109]
√
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(a) Traditional template-based method

(b) Deep learning-based method

Figure 2.8: Template-based object 6D pose estimation methods.The object image is

from LineMOD dataset[8]

use Lie algebra to represent rotation. However, an issue for Deep-6DPose is that it

struggles for small or symmetrical objects due to exploiting the ROIs from RPN. To

overcome it, PoseCNN [4] proposed a novel neural network architecture composed of

a feature extraction backbone, embedding step and regression. The 3D translation

of a target object is computed according to its centre and distance from the camera.

In comparison, the 3D rotation of a target object is obtained through regressing to

a quaternion representation. Inspired by PoseCNN, Capellen et al. [110] proposed a

parallel network architecture based on PoseCNN, which can detect the rotation for

multiple objects at the same time separating from the translation regression.

28



In recent years, apart from learning using handcraft data, self-supervised 6D object

pose estimation is also a popular research field. Training a robust network needs a

massive amount of label data, which is hard to scale to all kinds of objects. Deng

et al. [27] pioneered a novel self-supervised 6D object pose estimation framework for

robotic manipulation. However, it only runs an existing 6D pose estimation to obtain

a reliable 6D annotation, and final results still rely on full-supervised learning. To

improve it, Wang et al. [28] directly employ self-supervision for 6D pose estimation

through enforcing visual and geometric alignment. Note that this method requires

pre-training with synthetic RGB data.

One major drawback of this approach is that it requires a precise target object

model as a template or source of synthetic training data. Additionally, post-processing

such as ICP is usually necessary to refine the pose result.

Voting-based methods

Voting-based methods are designed to solve object detection under severe occlusions

and cluttered scenes. As Figure 2.9 illustrated, voting-based methods have a voting

verification that key points accumulated enough voting can be used in the next step.

Brachmann et al. [100] developed a Vitruvian Manifold algorithm that each pixel in

the image votes for a continuous frame in a canonical pose. However, it only achieves

pose detection for a single object. For instance, level detection, Zhang and Cao [111]

integrate [112, 113] proposing a four-stage 6D pose estimation framework that calcu-

lates a rough 6D pose hypothesis using a hash voting-based system. Similar to this,

Dong et al. [101] develop a global pruning algorithm to improve voting and learning

efficiency. Nevertheless, the above methods slightly enhance the detection quality in

an occlusions environment.

An efficient and widely used method is proposed by Peng et al. [23], Pixel-wise

Voting Network (PVNet), which detect vectors between pixel and keypoints rather

than directly regressing keypoints. Those vectors then vote for keypoints and execute
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Figure 2.9: Overview architecture of vote-based 6D pose estimation. The object image

is from LineMOD dataset [8].

RANSAC. Essentially, it is a variant of the keypoint-based method. Still, the detection

performance on occlusions and in cluttered environments improved a lot because it can

infer the relative direction to obscured parts according to appearing parts.

2.3.2 Point Cloud-based 6D Objects Pose Estimation

A 3D point cloud contains abundant geometric, shape and scale information, which can

provide an opportunity for a richer feature in the cluttered environment for the neural

network. With the speedy development of 6D pose estimation, the 3D point cloud-

based deep learning is increasingly attracting researchers’ attention. In this section,

we review the development of point cloud-based 6D objects.

Correspondence-based methods

The main paradigm of point cloud-based 6D pose estimation is similar with image-

based as Figure 2.10 indicated, and the difference lies in the feature descriptor. The

common 3D keypoint detection methods include SIFT-3D [63], ISSKeyPoint-3D [64]
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and Harris-3D [65] etc,. What is more, a variety of feature descriptors have been

proposed to describe geometrical patterns based on the information around the key

points, such as Signature of Histograms of OrienTations (SHOT) [66], Fast Point Fea-

ture Histograms (FPFH) [67], Camera Roll Histogram (CRH) [68] descriptors and so

on.

Figure 2.10: Block diagram of 3D correspondence-based 6D pose estimation meth-

ods.The object image is from LineMOD dataset [8].

The transitional 3D feature descriptor works well for 3D point clouds with com-

plete surfaces but is unstable for low-resolution and noisy scenes. Inspired by the

recent success of 2D-based 6D estimation, Zeng et al. [81] proposed a 3D convolutional

neural network (3DMatch) to learn the object feature descriptor. The 3DMatch sys-

tem feeds in the local volumetric region around a random keypoint and output a 3D

feature descriptor for that point. The author verifies that this method can successfully

be applied in object pose estimation, 3D reconstruction, and surface correspondence.

However, 3DMatch relies on dense local grids ignoring raw 3D data, its sparsity and

unstructured-ness. Deng et al. [86] try to overcome the above challenges by developing

Point Pair Feature network (PPFnet), which learns local feature descriptors on pure

geometry and fuses features with points and normals to improve tolerance to rotations.

In addition, Khoury et al. [85] and Elbaz et al. [114] presented Compact Geometric Fea-

tures (CGF) and LORAX, respectively, which are low-dimensional feature descriptors

to describe local geometry around a keypoint in an unstructured point cloud.

These methods, despite their outstanding quality, can’t learn to detect keypoints.

Therefore, Yew and Lee [82] investigated 3DFeat-Net that learns both 3D keypoints

and feature descriptors for an unstructured point cloud using PointNet [24], whilst
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3DSmoothNet [115] and DeepVCP [116] exploits 3D CNNs. Inspired by those works,

robust point matching network (Rpm-net) [102] design a hierarchical network operating

directly on a point cloud, which makes 3D keypoint and feature descriptors more robust

to point clouds compared with 3DFeat-Net [82].

Template-based methods

The transitional 3D template-based methods are similar to the 2D approach, compared

between the target and template library and choice best matching as Figure 2.11 (a)

demonstrated. For the learning-based methods, the pioneering work is PointNet [24, 25]

directly processes raw unstructured point clouds without transforming them to other

types. PointNets only achieved classification and segmentation for a single object. Qi

et al. [103] extended PointNet to propose Frustum PointNets, which leverages both

mature 2D object detection algorithm and advanced 3D deep learning to implement

3D object detection in the context of autonomous driving.

Inspired by the success of Frustum PointNets [103] and PointFusion [104], DenseFu-

sion [15] was proposed to predict the 6D pose of a set of known objects. It fully embeds

and fuses color information of RGB image and geometric information of point clouds

at a per-pixel level to yield a pose compute for each pixel, and then generates the final

6D pose. Figure 2.11 (b) presents the overall DenseFusion architecture. Similar to

DenseFusion [15] using PointNets [103] to extra 3D features, Gao et al. [105] proposed

a 6D pose estimation network, CloudPose, which only relies on point cloud geometric

information. Moveover, CloudPose [105] regresses translation and rotation separately

compared with DenseFusion [15]. Subsequently, Gao et al. [117] utilize an augmented

autoencoder to encodes 6D object pose evidence for pose estimation.

Voting-based methods

Voting-based methods commonly can be seen as an extension of correspondence-based

approaches. At early stages, Tombari and Di Stefano [18] proposed an efficiency 6D
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(a) Transitional 3D template-based method.

(b) Deep learning-based method [15].

Figure 2.11: Overview architecture of 3D template-based methods. The object image

is from LineMOD dataset [8].
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object pose detection algorithm by hough voting in a cluttered and occluded scene.

Each feature point is linked to the model’s centroid, allowing each scene feature to

vote in a 3D Hough space to gather evidence for possible centroid positions in the

current scene. And then Woodford et al. [106] improved 3D hough voting by the

intrinsic and minimum-entropy Hough transform.

More recently, with the growth of 3D deep learning techniques, voting-based meth-

ods have been introduced into this task yielded encouraging results. Hua et al. [118]

proposed a 6D pose estimation framework by employing a 3D point-to-keypoint voting

strategy that uses a dense fusion feature to vote for the keypoints. What’s more, Yoloff

[107] utilize a regression CNN detecting a set of vectors representing the 3D keypoints

of object. Those votes are then summed in a non-parametric method to get a reliable

estimate of the keypoints. Although these methods are robust to the cluttered and

occluded environment, the output space is enormous.

Figure 2.12: Overall all architecture of a 3D voting-based method, PVN3D He et al.

[9]. The object image is from LineMOD dataset [8].

To tackle this challenge, He et al. [9] proposed PVN3D, that is, an extension of

PV-Net [23] in the 3D domain shown in the Figure 2.12. PVN3D is composed by a
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3D keypoint detection module, a semantic segmentation module and a center voting

module. Keypoint detection module detects 3D keypoints by using a deep 3D Hough

voting network, which learns to predict the point-wise 3D offset then vote for the 3D

target keypoints. A least-squares fitting calculates the final 6D pose of the object.

Additional, by combining vote features, Qi et al. [108] presented VoteNet, which can

vote for the virtual centroid of objects from point clouds directly. However, for a par-

tially obscured object, the virtual centre point prediction is inaccurate. By extending

VoteNet [108], Qi et al. [109] proposed ImVoteNet, which use a hybrid 2D-3D voting

scheme to covert the 2D votes to “pseudo” 3D votes. To ensure full use of both 2D

and 3D features, ImVoteNet is a multi-towered architecture for training with gradient

blending.

2.3.3 6D Pose Estimation for Particular Objects

Above sections review most generic approach for 6D pose estimation. However, there

are two kinds of objects worth of advanced discussion, which are transparent objects

(such as glass) and non-rigid objects (such as human, pants and socks).

6D Pose Estimation for Transparent Objects

The biggest challenge for transparent objects pose estimation is that depth sensor

fails when objects without opaque, lambertian surfaces Liu et al. [119]. To overcome

it, Liu et al. [119] proposed KeyPose, which is the first approach of correspondence-

based pose estimation for transparent objects from stereo RGB images. KeyPose first

crop a fixed-size rectangle from the left image, and a corresponding rectangle at same

position from the right image. Then KeyPose utilize a CNN network to output disparity

implicitly. Finally, KeyPose convert UVD value to 3D key points by reprojecting pixel

errors. Similarly, [120] propose GhostPose, which utilize 3D keypoints and multi-

view geometry to recover transparent object without object CAD model. In addition,

many high quality dataset for transparent objects 6D pose estimation are created to
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improve the performance of detection, such as StereOBJ-1M[121], PhoCaL[122] and

Keypose[119] etc. Overall, 6D pose estimation for transparent objects heavily rely on

RGB image to predict 3D keypoint. Consequently, prediction results are extremely

sensitive the quality of RGB image .

6D Pose Estimation for Non-rigid Objects

Apart from transparent objects, 6D pose estimation for non-rigid objects is another

challenge. 6D pose estimation for non-rigid objects require the more global information

extracted from larger receptive fields and are inescapably more sensitive to occlusions.

Up to now, far too little attention has been paid to non-rigid objects pose estimation.

Ge and Fan [123] proposed a pose estimation framework for human body using RGB-

D data. This is a hybrid registration approach that use segment-aware articulated

iterative closest point (SAICP) adapted from articulated iterative closest point (AICP).

For the non-rigid objects without fixed shape, it is a research area that had not

been widely addressed [124]. However, the robotic manipulation for non-rigid objects

has received important contributions in recent years. Wang et al. [125] present 3d-

physnet, which can learn object body deformations of non-rigid objects. In addition,

Nadon and Payeur [126] developed a manipulation system that can select an optimal

grasp for controlling the shape of a non-rigid object. In summarise, the research on 3D

non-rigid objects pose estimation is still in its infancy.

2.4 Summary

This chapter began by presenting relative preliminaries to 3D vision system. We intro-

duce the commonly used 3D object representation types as well as 3D data acquisition

methods. This knowledge provides guidance for the sensor and data selection. Af-

terwards, the important concept of object 6D pose, is introduced. In particular, we

explain three different rotation representations and their mathematical conversion.
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After that, the literature review concentrates on the relevant 3D environment re-

construction and objects’ 6D pose estimation aspects. We discuss this from both a 2D

and 3D perspective. After a technical review of the state-of-art, we identified a number

of issues:

• With the current 3D environment reconstruction approaches, no matter whether

2D-based [46, 5] or 3D-based [55, 6, 59, 11], the performance of dense reconstruc-

tion for the small-scales texture-less objects does not meet expectations.

• For the RGB-based objects 6D pose estimation technology [14, 127, 97, 128], has

low detection accuracy in cluttered and occluded scenes [9].

• The RGB-D-based 6D pose estimation methods [22, 4, 104, 103] improve the

detection accuracy a lot, but they exploit the RGB information and depth channel

separately, which causes features to be missing.

• The methods mentioned before are only evaluated using a standard dataset and

often lack application in practical scenarios.

To bridge the above practical gaps, in the following chapters we propose a 3D scene

reconstruction method using coloured points as an input, a learning-based 6D pose

estimation system using a single RGB image as an input, and a point cloud-based 6D

pose estimation approach. Finally, we develop a 3D intelligent system by integrating

those novel techniques and applying this system in a nuclear waste disposal experiment.
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Chapter 3

3D Scene Reconstruction from

Point Cloud

3.1 Introduction

Modelling of the surrounding scene is fundamental for most robotic tasks, like res-

cue, guidance, and pick-and-place. An accurate model of the robot work space has

been considered to be a prerequisite for an autonomous robot [129]. In section 2.2, we

have reviewed different methods for 3D scene reconstruction. Image-based approaches

severely rely on scene texture, while learning-based methods perform poorly in previ-

ously unseen objects. This motivated our use of point cloud data as an input for scene

modelling as a point cloud provides both geometric and photo-metric information.

Point-cloud based environment reconstruction usually relies 3D point cloud regis-

tration as the most important part of its pipeline. To improve the accuracy and speed

of point cloud registration, researchers have undertaken a large number of attempts

[130, 131, 10, 132] to improve registration performance. In particular, ICP [57] and its

variants [133, 134, 10] have become dominant approaches for point cloud registration.

The traditional ICP algorithm are however affected by initial position and search meth-

ods. For highly overlapping and rich geometry of point cloud sets, the ICP approach
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perform quite well. However, this strategy suffers from limitations in scenes with little

3D structure because it severely relies on shapes and initial positions. Fortunately,

some of recent works exploit colour information [134, 10] and powerful non-linear opti-

mization [132, 135] to implement faster convergence speed and high alignment accuracy.

Despite this, current environment reconstruction technologies cannot meet industrial

performance requirements, especially for the small-scale texture-less scenes. Industrial

objects are generally texture-less and irregular in shape. Most of the widely used re-

construction approaches are either noisy [11, 10] or completely miss [136] the fused

output.

To bridge such contradictory technical challenges, we propose a novel point cloud-

based reconstruction pipeline. This reconstruction system contains two parts: a). a

point cloud registration system that computer the relation between two point cloud;

b). a point cloud fusion strategy than can merge registered point cloud set into a whole

environment model.

For the point cloud registration system, our method considers the colour infor-

mation and geometric information and defines a joint optimization objective in three-

dimensions. Moreover, we utilize a Levenberg-Marquardt method to replace the Gussion-

Newton approach to optimize a nonlinear least-squares objective in ICP processing,

which can improve accurate of registration.

As for point cloud fusion system, we develop a hierarchical coarse-to-fine strategy

to overcome local minima and position drifting problems. Specifically, the input point

cloud streams are divided into short fragments. On the first hierarchy level, we execute

coarse-to-fine processing within sequences of a fragment. On the second hierarchy level,

the new fragment is globally aligned against the previous fragment.

In summary, the main contributions are as follows:

• Inspired by colored-ICP [10], an our algorithm is proposed that joins the applica-

tion of photo-metric and geometric terms thereby achieving accurate alignment.

In addition, we consider employ Levenberg-Marquardt method to process the
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minimize objective function. Therefore, our point cloud registration method as

known as LM-ICP.

• Development of a hierarchical coarse-to-fine point cloud fusion strategy that can

generate a high-quality model of the environment.

The proposed system is validated on a prevailing data set [7, 12] and real-world

scenarios. The experiments show that the system is robust, rapid and precise in com-

parison to some some widely used systems [10].

In the rest of this chapter, details of the method in Section 3.2, then the evaluation

results are described in Section 3.3, and conclusions are drawn in Section 3.4.

3.2 Point Cloud Fusion System

For ease of presentation, we denote the ith point cloud by Pi, and the corresponding

camera pose by Ri so that Ti(Pi) = RiPi + ti is the relative transformation of the

point cloud from the camera frame to the world frame. Here ti is the camera location

in the world frame and Ri is the rotation that brings the camera frame aligned with

the world frame.

Given a point cloud set S = {P1, P2, ..., Pn}, the aim is to obtain a best set of

camera transforms {T1, T2, ..., Tn} so that all point clouds align well. First set the first

point cloud as the world coordinate system, so the reconstruction model M is:

M = P1 ∪
n⋃

i=2
Ti(Pi) (3.1)

For the computation of transformation Ti, the recursive ICP algorithm mainly

involves two steps:

1. Find the correspondence set κ = {(p, q)} between the already merged point cloud

Pi−1 and the new point cloud Pi for a given a transformation T = [R, t] estimated
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by inertial sensors placed on the camera. This requires the minimisation of

C(κ) =
∑

κ=(p,q)
∥p−Rq − t∥2

2. Minimize an error cost function F (T ) to update the new transformation Ti to a

more precise one. The most common error cost function for point-to-point ICP

is:

F (T ) =
∑
(R,t)

∑
κ=(p,q)

∥p−Rq − t∥2 (3.2)

In the rest the short notation T q = Rq + t will be used where T = [R, t].

3.2.1 Coloured Point Cloud Registration

Figure 3.1: The geometric and photometric error between two point clouds

In [10], the authors pioneered a joint optimization objective that converts both

photometric and geometric terms as a continuous function:

F (T ) = σFG(T ) + (1− σ)FC(T ) (3.3)

where FG and FC are the nonlinear least-squares function for geometric and photomet-

ric items, respectively and σ ∈ [0, 1] is the weight of those two items.
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As Figure 3.1 illustrates, rG is the error distance between tangent of p and q, so FG

is actually a point-to-plane ICP algorithm:

FG(T ) =
∑

(p,q)∈κ

((p− T q) · np)2 (3.4)

where np is the normal of point p, κ = (p, q) is the correspondence set from target point

cloud P and source point cloud Q, and q
′ is the projection of point q onto the tangent

of p. The point-to-plane ICP only rely on geometric distance to align the two point

cloud, so it’s not reliable in some situation. As Figure 3.1 shown, different colours

represent different point. The geometric error rG of (q2, p2) and (q3, p3) is small but

(q2, p2) and (q3, p3) are wrong correspondence points. Therefore, we use the photometer

error rc as a supplement to distinguish those points.

The photometric term FC represents a continuous and differentiable colour function:

FC(T ) =
∑

(p,q)∈κ

(Cp(q′)− C(q))2 (3.5)

where C(p) is the colour intensity of each point p and Cp() represent a continuous

colour defined on the tangent plane of point p function:

C(p) = 0.299 ∗R(p) + 0.587 ∗G(p) + 0.114 ∗B(p) (3.6)

where R(), G(), B() are point intensity for red, green and blue respectively. Compared

with an original method utilizing average intensity value, grayscale can avoid many

ambiguities. For example, the average intensity of red (255,0,0) and green (0,255,0)

are the same, while grayscale can distinguish them easily. The function Cp(q′) approx-

imately equals, to its first-order approximation:

Cp(q′) ≈ C(p) + dpq′ (3.7)

We use grayscale conversion eqn. (3.6) representing the intensity value of each point

to calculate the colour gradient.

q′ = q − np(q − p)T np (3.8)
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dp is the gradient of Cp and can be calculated by utilizing least-squares fitting to

{−
p ∈ Np}, and −

p is point p’s nearest neighborhood.

L(dp) =
∑

−
p∈Np

(Cp(−
p

′
− p)− C(−

p))2

≈
∑

−
p∈Np

(C(p) + dT
p (−

p
′
− p)− C(−

p))2
(3.9)

Despite achieving a good registration result, this algorithm still has many drawbacks

affecting the quality of the alignment. Therefore, we consider the following improve-

ments for this algorithm to improve the accuracy and robustness of the registration.

In addition, for objective optimization, we propose a Levenberg-Marquardt Iterative

Closest Point (LM-ICP). Specifically, LM-ICP begins with an initial transformation T 0
i

and executes the optimization iteratively. In each iteration, we calculate the residual

r and Jacobian Jr at T k−1
i as estimated in the last iteration, and solve the Leven-

berg–Marquardt function A.10 to obtain increment ξ = (tx, ty, tz, α, β, γ). The reason

we use LM function to replace the Gauss-Newton function is that the LM algorithm

has more tolerance of inaccuracy for initial approximation [137]. We expect that the

LM method can prove a robust optimization processing for texture scene alignment.

(JT
r Jr + µI)ξ = −JT

r r (3.10)

where damping parameter µ is adjusted at each iteration, which influences both the

magnitude and direction of the step, I is a 6× 6 identity matrix and r is the residual

of objective function eqn. (3.3):

r =
√

(1− σ)FC(Ti) +
√

σFG(Ti) (3.11)

To compute the Jacobian, we need the partial derivatives of the residuals, which denotes
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as ∇r. It is:

Jr = ∇r

=
√

(1− σ)∇rC(Ti) +
√

σ∇rG(Ti)

=
√

(1− σ)dpJq +
√

σnT
p

(3.12)

where Jq is the Jacobian matrix computed from eqn. (A.4). According to the knowl-

edge introduced in section A.2, parameter µ is controlled by gain ratio φ:

φ = F (T )− F (T + τ (ξ))
|L(0)− L(ξ)| (3.13)

Note that F (T ) − F (T + τ (ξ)) represents the root-mean-square deviation (rmsd)

between the previous target and transformed target. The denominator is obtained

from eqn. (A.13), so:

L(0)− L(ξ) = −ξT JT
r r − 1

2ξT JT
r Jrξ (3.14)

that is, the ratio of the actual and estimated decrease in residuals.

Putting it all together, the gain ratio φ from eqn. (A.14) can be written as:

φ = RSME(T , ξ)
| − ξT JT

r r − 1
2ξT JT

r Jrξ|
(3.15)

A small gain ratio φ means that we should increase the φ value and improve the

penalty on large steps. While a big φ value suggests that the actual and estimated

values are a good approximation for the computed ξ, and the φ value should be reduced.

Solving eqn. (3.10), we can obtain increment parameter ξ, which contains rotation and

translation components. Then, we utilize following equation converting the 6-vector ξ

to a 4× 4 translation matrix Ti:

T k
i ≈



1 −γ β tx

γ 1 −α ty

−β α 1 tz

0 0 0 1


T k−1

i (3.16)
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Algorithm 1 Levenberg-Marquardt based point cloud alignment
Input: Target point cloud Pi−1; Source point cloud Pi; Initial transformation T 0

i ;

Output: Transformation Ti aligns Pi to Pi−1

1: for p ∈ Pi−1 do

2: Compute dp through miniming eqn. (3.9)

3: Initializing µ and ν, µ = ν = 2

4: Compute the correspondence set κ = {(p, q)}, p ∈ Pi−1 and q ∈ Pi

5: while less than maximum iteration do

6: r ← 0,Jr ← 0

7: for (p, q) ∈ ϕ do

8: Compute residual r and Jacobian Jr at Ti.

9: Compute µ according to eqn. (3.4)

10: Solve Levenberg-Marquardt function to obtain ξ

11: Update Ti unitizing eqn. (3.16)

12: if converged do

13: return Ti

In the next iteration, we recompute Ti and repeat until convergence. This point cloud

registration strategy is summarized in Algorithm 1. Our code is available at https:

//github.com/50618861/reconstruction_algorithm_code.

3.2.2 Hierarchical Coarse-to-fine Pipeline

With scale the incremental method suffers from the accumulation of pose drift [138].

To avoid geometric drift, we exploit a hierarchical fusion strategy. The input point

cloud streams are divided into short fragments as Figure 3.2 shown. On the first

hierarchy level, we execute coarse-to-fine processing within sequences of a fragment.

On the second hierarchy level, the new fragment is globally aligned against the previous

fragment.

Firstly, we make an initial fragment by aligning five consecutive frames in the input
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Figure 3.2: Illustration of Hierarchical Coarse-to-fine Pipeline

point cloud stream. Subsequently, every five consecutive point clouds will be made into

a fragment. Since adjacent point clouds have extensive overlap, and the pose variation

within a fragment is minuscule, we set each first frame to the identity matrix. Once

a fragment is finished, it will be aligned with the previous fragment already registered

to the global map, and then the transformed fragment will be merged into the global

map. To guarantee that the point cloud pose after convergence is accurate, we apply

the our LM-ICP method shown in Figure 3.3 to each alignment, including local and

global point cloud registration.

Figure 3.3 illustrates the coarse-to-fine registration, which can ensure a precise

fusion result. The original raw point cloud data from 3D sensors are noisy and cluttered

owing to the camera’s field of view, measurement errors and light reflections; this

complicates the point cloud processing. Consequently, before the feature extraction,

we need to remove the redundant and outlier points.

First, the raw point cloud is filtered by a pass-through filter that can delete the

points outside the workspace. Secondly, the filtered points will pass to a radius outlier
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(a) Block diagram of point cloud fusion system

(b) Illustration of coarse-to-fine processing

Figure 3.3: Point cloud fusion system

removal filter that can clear outlier points according to the number of neighbours. The

point will be seen as an outlier if the number of neighbours within a given radius is

less than the threshold.

The ICP based method is sensitive to an initial position of point cloud. To avoid

getting stuck in local minima, we utilize a coarse global alignment as initialization. In

the first place, the denoised point cloud will be downsampled by an approximate voxel
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filter, which can speed up the alignment process while retaining features detail. Next,

we will perform a RANSAC registration [11] to obtain a rough translation between

source and target point cloud.

(a) The influence region dia-

gram for a k-neighborhood set

(blue) centered at pq (red).

(b) The influence region diagram for

FPFH. The query point pq (red) is

only connected between itself and its

neighbors (illustrated using red lines).

Black lines indicate extra connection

and thicker lines means counted twice

Figure 3.4: Point Fearure Histogram (PFH) and Fast Point Fearure Histogram (FPFH)

descriptor

In each iteration of the RANSAC registration, it randomly selects some points from

the source Pi−1. The corresponding points of selected points in the target Pi are found

by matching a 3-dimensional FPFH feature [67] between source and target point cloud.

Note that Fast Point Feature Histogram (FPFH) [67] simplifies the Point Feature

Histogram (PFH) descriptor [139], which significantly minimises the time it takes to

compute. Figure 3.4(a) demonstrate the PFH descriptor of point pq. The point pq

and its k neighbors with distance less than the radius r are fully interconnected. The

dimensional of a PFH feature vector is 125 (53), and it has a complexity of O(k2).

As for the FPFH descriptor, it considers only the connection between the point pq

and its k neighbours, eliminating any extra connection between neighbours. Next, we

repeat this process for all point p ∈ Pi, and the FPFH of point pq will merge with its
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neighbours’, weighted based on the distance, to compose the eventual descriptor. The

final FPFH descriptor only uses 11 binning subdivisions that output a 33-byte (3×11)

array of float values and simplifies the computational complexity to O(k).

After identifying the correspondence between source and target point cloud, we

perform the RANSAC iterations provided by [11] for correspondence points to obtain

a coarse alignment result that is employed as initialisation of the ICP processing.

Following a rough global registration, we use the point cloud registration algorithm

Algorithm 1 to refine the alignment further. In the hierarchical strategy mentioned

previously, this coarse-to-fine pipeline is performed for each alignment. Algorithm 2

summarize the implementation of the point cloud fusion.

Algorithm 2 Point cloud fusion system
Input: Point cloud sequence P ;

Output: Environment model M ;

1: Set the number of point cloud k in a fragment (default k = 10)

2: Initialize fragment count n = 1

3: while new point cloud input do

4: for point cloud P ∈ Pi,i=n∗(1,2,3,...,k) do

5: Pre-process for P to remove noise

6: Extract feature descriptor for P

7: Use RANSAC registration to obtain a rough translation

8: Employ Algorithm 1 to refine the translation

9: Generate the point cloud fragment.

10: n = n + 1.

11: if n == 1 do

12: Set first point cloud fragment as globe map M

13: else

14: Registered point cloud fragment to globe map M

15: Output the environments point cloud model M
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3.3 Experiments

3.3.1 Datasets

The proposed point cloud fusion algorithm Algorithm 2 is evaluated on two widely

used datasets: the RGB-D Scenes Dataset v.2 and the SUN3D Dataset.

• RGB-D Scenes Dataset [7]. The RGB-D Scenes Dataset v2 comprise 14 scenes

including furniture (chair, coffee table, sofa, table) as well as a subset of the ob-

jects in the RGB-D Object Dataset (bowls, caps, cereal boxes, coffee mugs, and

soda cans). We randomly select six scenarioes for evaluation experiment, they are

rgbd-scenes-v2-scene_01, rgbd-scenes-v2-scene_02, rgbd-scenes-v2-scene_04, rgbd-

scenes-v2-scene_07, rgbd-scenes-v2-scene_10 and rgbd-scenes-v2-scene_13.

• SUN3D Dataset [12]. SUN3D dataset is a place-centric dataset. It contains 415

sequences collected for 254 different areas in 41 distinct buildings. Evaluations

were performed on two scenes from the the SUN3D dataset: sun3d-harvard_c6-

hv_c6_1 and sun3d-harvard_c11-hv_c11_2.

3.3.2 Metrics

To evaluate the performance of point cloud registration and reconstruction, we employ

a widely used metric. This metric is absolute pose error (APE), which measures the

error in the absolute motion between calculated pose and ground truth. We define the

APE matrix at frame i as:

Errori = Q−1
i P −1

i (3.17)

where Qi denotes ground truth pose and Pi means estimate pose. The APE is generally

separated into two parts: translation and rotation. We use the root mean square

error(RMSE) indicating APE error:
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APEi
trans =

√√√√ 1
n

n∑
i=1
∥ (trans(Errori) ∥2) (3.18)

As for rotation representation we use following equation:

APEi
rot =

√√√√ 1
n

n∑
i=1

∠ ∥ (rot(Errori) ∥2) (3.19)

Apart from RMSE, we also use standard deviation (STD) as indices.

3.3.3 Evaluation On RGB-D Scenes Dataset v2

(a) The registration result from coloured-

ICP[10]

(b) The registration result using Algorithm 2

Figure 3.5: Comparison of proposed approach with coloured-ICP [10] in RGB-D Scenes

dataset [7]. Red boxes indicate the misaligned part and green boxes show the correctly

aligned part

First two point clouds are selected from rgbd-scenes-v2-scene_01 dataset to con-

duct evaluation for point cloud registration. From Figure 3.5 (a), we can notice that the

environment model registered by [10] suffers from misalignment and drifting. In con-

trast, proposed method accurately aligns the small-scale textureless model and keeps
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geometric information as much as possible. Such high-quality results are beneficial for

remote teleportation, point cloud-based deep learning, etc.

Following the above, quantitative evaluation is conducted to make comparisons with

different registration algorithms [140, 141, 10, 11] using metrics we described before.

Table 3.1 to 3.6 present the quantitative result tested on six different scenes from

RGB-D Scenes Dataset V2. From those tables, we can notice that proposed algorithm

Algorithm 2 method outperforms all the considered competitors in translation terms.

But the rotation generated by competitors slightly surpass us in scene_02, scene_04,

scene_10, scene_13. We argue the LM optimisation may cause this. The translation

has an enormous impact on the objective function 3.3. To minimise the objective

function, the optimisation sacrifices some rotational accuracy ensuring translational

accuracy. It is particularly worth noting that all the competitors suffer from the drifting

problem that causes significant errors in scene_07. In contrast, proposed method keep

a good performance on it.

Additionally, the average running time is reported for one registration for the dif-

ferent techniques in Table 3.1. The running time is measured on a PC with an Intel

Core i5-7300HQ CPU and Geforce GTX 1050 GPU. The point-to-plane ICP has the

fastest processing speed because the source points only need to align with the tangent

plane of targets. The coloured ICP adds the photometric terms on the basis of point-

to-plane ICP, so its speed is slower than point-to-plane ICP. Proposed method adopts

a complex LM optimisation (shown in Algorithm 1) and fusion strategies (shown in

Algorithm 2); therefore, the speed of proposed method slightly lag in point-to-plane

and coloured ICP. But it is still better than point-to-point ICP.

To highlight the performance of point cloud registration, comparison is also made

with a widely-used multiway registration method [11]. The competitor’s method [11]

is an Open3D build-in global registration method exploiting pose graph optimization.

A pose graph is composed of node and edge. A pose is attached to each node, and

the neighbouring nodes are registered with ICP algorithm. Each node edges have to

connect both adjacent and non-neighbouring nodes, which increases the complexity
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Table 3.1: Quantitative evaluation on rgbd-scenes-v2-scene_01 dataset

Trans RMSE(m) Trans STD(m) Rot RMSE(◦) Rot STD(◦) Average Time(s)

Point-to-point ICP 0.3013 0.1786 13.7268 8.6452 0.6809

Point-to-plane ICP 0.1469 0.0672 1.3465 0.1786 0.6809

Coloured ICP 0.11979 0.06162 2.2195 0.72081 0.6959

Algorithm 2 0.07550 0.03729 4.9032 2.8109 0.6984

Table 3.2: Quantitative evaluation on rgbd-scenes-v2-scene_02 dataset

Trans RMSE(m) Trans STD(m) Rot RMSE(◦) Rot STD(◦) Average Time(s)

Point-to-point ICP 0.21446 0.08898 17.9308 5.0871 0.7309

Point-to-plane ICP 0.12686 0.04131 3.37871 2.40242 0.7236

Coloured ICP 0.07570 0.0332 2.0001 0.70899 0.77442

Algorithm 2 0.02303 0.0171 0.797641 0.581682 0.7814

Table 3.3: Quantitative evaluation on rgbd-scenes-v2-scene_04 dataset

Trans RMSE(m) Trans STD(m) Rot RMSE(◦) Rot STD(◦) Average Time(s)

Point-to-point ICP 0.3542 0.1656 18.9488 7.4194 0.7777

Point-to-plane ICP 0.1525 0.06423 5.98226 4.0013 0.84267

Coloured ICP 0.10712 0.050034 3.60742 1.24233 0.80054

Algorithm 2 0.074848 0.05008 4.8949 3.4885 0.8245

Table 3.4: Quantitative evaluation on rgbd-scenes-v2-scene_07 dataset

Trans RMSE(m) Trans STD(m) Rot RMSE(◦) Rot STD(◦) Average Time(s)

Point-to-point ICP 0.415462 0.16143 40.9519 22.3307 0.68704

Point-to-plane ICP 0.17255 0.0787 15.7292 10.6421 0.67622

Coloured ICP 0.222245 0.08087 17.5292 10.7206 0.69451

Algorithm 2 0.0537 0.04173 2.15844 1.79306 0.8014
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Table 3.5: Quantitative evaluation on rgbd-scenes-v2-scene_10 dataset

Trans RMSE(m) Trans STD(m) Rot RMSE(◦) Rot STD(◦) Average Time(s)

Point-to-point ICP 0.1853 0.08189 11.3591 4.5891 0.97254

Point-to-plane ICP 0.083937 0.03939 2.3737 0.8985 0.89207

Coloured ICP 0.069128 0.032017 3.14501 1.3648 0.91484

Algorithm 2 0.06360 0.0259 2.6881 1.7036 0.9286

Table 3.6: Quantitative evaluation on rgbd-scenes-v2-scene_13 dataset

Trans RMSE(m) Trans STD(m) Rot RMSE(◦) Rot STD(◦) Average Time(s)

Point-to-point ICP 0.1019 0.05808 8.5058 4.9552 0.4509

Point-to-plane ICP 0.03101 0.01249 0.6435 0.3317 0.4468

Coloured ICP 0.0316 0.0143 0.9136 0.3829 0.4277

Algorithm 2 0.0227 0.0159 1.1101 0.7255 0.5014

of optimization. Figure 3.6 shows that Algorithm 2 is more close to the ground truth

trajectory compared with a global registration method [11]. In figure 3.6, the black line

is the ground truth trajectory, the blue line is trajectory obtained by our Algorithm

2 and red line represent competitor’s result. It is clear that our method has smaller

errors in five scenes. For scene rgbd-scenes-v2-scene_07, both methods have a good

performance. As for the reconstruction speed, an 80 frame point cloud dataset gener-

ates 80 nodes and 3240 edges that consume 70 minutes to compute in the validation

experiment. Although Choi et al. [11] proposes a novel pose graph optimization ap-

proach as post-processing for ICP algorithms, the reconstruction quality of proposed

method is slightly superior without any post-processing refinement. Obviously, this

global registration method is not ideal for large-scale point cloud data processing.

In addition, the qualitative reconstruction result is illustrated in Figure 3.7. For

visualization, scalable TSDFs Volume integration from open3d is employed to create

the mesh. Note that a TSDFs is a three-dimensional voxel array representing objects

inside a volume of space, with each voxel labelled with the distance to the nearest
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Figure 3.6: Trajectory comparison between ground truth, Choi [11] and proposed sys-

tem

surface. In Figure 3.7, from top to bottom, they are reconstructed model of rgbd-

scenes-v2-scene_01, rgbd-scenes-v2-scene_02, rgbd-scenes-v2-scene_04, rgbd-scenes-

v2-scene_07, rgbd-scenes-v2-scene_10 and rgbd-scenes-v2-scene_13. For the scene_07

and scene_13, there is no big difference, and both proposed method and Choi et al.

[11] approach are close to the ground truth. This also coincides with the quantitative

data shown in Table 3.7 and previous tables. In the rest of scenes, [11]’s results have

some obvious flaws, such as the black hat is partially missing in the scene_10. Despite

the reconstruction model is not perfect, they recover the basic structure of the scene.

Overall, the proposed point cloud fusion Algorithm 2 is better performing in both

qualitative and quantitative evaluation. Although proposed method is slightly slower
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Figure 3.7: Reconstruction of scenes from the RGB-D Scenes Dataset. Yellow

dot in top-left corner indicates ground truth, purple dot represents pose graph method

[11], and blue dot is proposed approach

Table 3.7: Quantitative evaluation result using multiway registration method [11]

Trans RMSE(m) Trans STD(m) Rot RMSE(◦) Rot STD(◦)

scene_01 0.1408 0.0675 5.5360 3.0500

scene_02 0.1533 0.05751 6.0068 2.98532

scene_04 0.1971 0.08551 5.83367 2.794435

scene_07 0.071655 0.045679 3.0690 1.9492

scene_10 0.114607 0.0494 3.3562 1.5754

scene_13 0.0266 0.0070 0.6670 0.3394

than other registration methods due to a complex optimization procedure, the discrep-

ancy is negligible.

3.3.4 Evaluation On SUN3D Dataset

To further explore large-scale point cloud data performance, we conduct similar evalua-

tion experiments on the SUN3D dataset. The quantitative evaluation is shown in Table

3.8 and 3.9, and the results are consistent with the previous; Algorithm 2 outperforms

all the considered competitors in both translation and rotation terms, in spite of being

slightly slower. The total running time increases because point cloud scenes from the
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(a) The registration result from coloured-

ICP[10]

(b) The registration result using Algorithm 2

Figure 3.8: Comparison of Algorithm 2 with coloured-ICP [10] in SUN3D dataset [12].

Red boxes indicate the misaligned part and green boxes show the correct aligned part

SUN3D dataset contain more points than the RGB-D Scenes dataset. Note that the

error for both translation and rotation has a huge increase duo to the complexity and

difficulty of large-scale datasets. It is worth to consider that how to improve it in the

future research.

Table 3.8: Quantitative evaluation on the sun3d-harvard_c6-hv_c6_1 dataset

Trans RMSE(m) Trans STD(m) Rot RMSE(◦) Rot STD(◦) Average Time(s)

Point-to-point ICP 4.9943 1.0957 160.8450 5.3849 2.8679

Point-to-plane ICP 4.6494 2.3519 148.6320 10.0629 2.8127

Coloured ICP 5.9207 2.7083 112.52 23.7757 2.7631

Algorithm 2 3.8964 1.2877 130.80 4.3496 3.2583

For the qualitative evaluation, Figure 3.8 demonstrates registration results utiliz-

ing coloured-ICP [10] and Algorithm 2. It is obvious that proposed method solves

unaligned problems and presents a high-quality result in both the table part and the

cluttered top-right area. While for the reconstruction of the whole scene, both two

methods have flaws. The pose graph method [11] is completely incorrect as shown in

Figure 3.9 that the trajectory of the pose graph method is totally completely devi-
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Table 3.9: Quantitative evaluation on the sun3d-harvard_c11-hv_c11_2 dataset

Trans RMSE(m) Trans STD(m) Rot RMSE(◦) Rot STD(◦) Average Time(s)

Point-to-point ICP 2.7590 0.7140 169.3673 7.8662 2.3461

Point-to-plane ICP 4.4297 1.3323 153.5889 3.8824 2.1310

coloured ICP 2.3814 1.2323 108.5645 3.8824 2.1832

Algorithm 2 1.2784 1.1056 71.4323 6.2985 3.2583

ated from the ground truth. In addition, Figure 3.10 also show the reconstruction of

pose graph method [11] are failed. In contrast, result generated by Algorithm 2 can

recover the basic layout and furniture despite missing a corner, as illustrated in the

bottom-right of Figure 3.10.

Figure 3.9: Trajectory comparison between ground truth, Choi [11] and Al-

gorithm 2. Left: result on sun3d-harvardc6-hv_c6_1 scene. Right: result on sun3d-

harvardc11-hv_c11_2 scene.

Overall, the reconstruction using a pure point cloud is more challenging on a large-

scale dataset. Algorithm 2 is designed for a small-scale texture-less scene, and its

performance on the large-scale dataset is adequate.

3.3.5 Qualitative Results on Real-world Scene

Quantitative evaluation in a real-world environment is complex due to miss ground-

truth data. We only conduct a qualitative evaluation procedure. The scene used to

validate consists of a great many irregular metal objects, as shown in Figure 3.11. Those
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Figure 3.10: Reconstruction of scenes from the SUN3D Dataset. First column:

ground truth. Second column: pose graph method [11]. Third column: proposed

approach

metals are texture-less and small-scale with sizes ranging from 4 to 10 centimetres in

length.

The input colored point cloud is captured by a stereo camera, ZED mini, with a

maximum depth distance of 15 meters. The principle of the stereo camera has been

introduced in section 2.1.2. In this experiment, the camera will move with a UR5

robot end-effector when scanning the environment. The results are shown in Figure

3.11. Proposed system successfully aligns the scene from the multi-view and generates

a high-quality point cloud model. In this fused model, the shape and position of each
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Figure 3.11: Qualitative evaluation on real-world scene. First row: scene image,

single view point cloud. Second row: reconstructed point cloud using pose measured

by ZED camera and its partial magnify. Third row: reconstructed point cloud using

coloured-ICP [10] and its partial magnify. Bottom row: reconstructed point cloud

using out system and its partial magnify. Red boxes indicate misaligned part and

green boxes show correct alignment
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object are sufficiently clear, which is a good foundation for subsequent applications.

3.4 Summary

In this chapter an improved point cloud registration method has been presented in Al-

gorithm 1 and a reconstruction system has been illustrated in Figure 3.3. The approach

fully integrates photometric and geometric information to make registration more ro-

bust and accurate as in [8]. An LM-ICP algorithm has been developed that employs

the Levenberg-Marquardt method to replace the Gauss-Newton algorithm for objective

optimization. To overcome the local minima and position drifting problems, a novel

hierarchical coarse-to-fine strategy has been followed. Finally, we conducted evaluation

experiments on both standard datasets and real-world scenes. The quantitative and

qualitative evaluation of RGB-D Scenes and SUN3D datasets indicated that the im-

proved method outperformed some widely-used ICP algorithm and a state-of-art pose

graph approach. In addition, the qualitative evaluation of real-world environments

shows that the improved system is effective for cluttered industrial scenarios.
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Chapter 4

Image-6D: Estimating 6D Object

Pose from RGB Image

4.1 Introduction

Accurate 6D pose estimation of objects is important in many real-world applications

of computer vision, including augmented reality, robot manipulation and advanced

autopilot operations on aerial and ground vehicles. Currently the majority of accurate

6D pose estimation methods rely on RGB-D information [100, 142, 143, 4, 15]. However,

the depth sensor exposes several practical limitations such as high power consumption,

limited working range, and sensitivity to the environmental effects. Such impediments

mean that accurate 6D detection is not normally deployed on monocular cameras and

mobile devices. The goal of this chapter is to present a precise 6D detection method

that works from a single RGB image and relies on the use of deep neural networks.

Traditionally, the 6D pose estimation issue is addressed by pairing feature points

between 2D images and to obtain the corresponding 3D object models [144] from the

resulting cloud point. However, such approaches have failed to address texture-less

targets. By contrast, the template-matching method [145, 8] is more robust than

feature-matching, but it leads to low pose detection accuracy in environments full of
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occluded objects. Although dense feature learning approaches [146, 92] present good

performance in occlusions, they fail to resolve the case of symmetric objects.

The emergence of deep learning techniques, especially CNN-based category detec-

tors, have shown excellent outcomes for object detection [92, 20] and object segmen-

tation [93]. Recently, there is an increasing number of works [13, 14, 97, 147], which

employ deep learning for 6D pose estimation. Most of these approaches follow a similar

paradigm: first they use a neural network to detect the eight 3D bounding box vertices

associated with the target objects, then they perform a Perspective-n-Point (PnP) [42]

algorithm calculating the orientation and translation. However, this paradigm suffers

from a severe shortcoming in terms of low detection accuracy. The reason is that the

key points are often not on the surface of the object, so there is some inaccuracy in

the detection. As the PnP algorithm continues to accumulate these errors, an Iterative

Closest Point (ICP) processing is executed in several steps to refine the pose.

The goal of this chapter is to resolve the above limitations by training a deep neural

network that can accurately predict 6D pose from an RGB image in a single step. In

this chapter, we propose a two-stage convolution neural network, Image-6D, inspired

by Mask RCNN [93]. The next section will present the proposal in detail.

We evaluate the Image-6D (defined in section 4.2) on the LINEMOD dataset [8]

(a single object 6D pose estimation dataset) and on the Occluded-LINEMOD dataset

[100] (a multiple objects dataset). Additionally, we compare the result with some recent

work. Furthermore, to completely evaluate the Image-6D , we perform some tests on

objects in the real world.

In summary, the main contributions of this chapter are:

• We propose a novel 6D pose estimation method which can detect objects, segment

instances and predict 6D pose simultaneously without any PnP process.

• We introduce Contour-Alignment, an efficient algorithm for pose refinement in

an RGB image.
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4.2 Definition of Image-6D

Image-6D (shown in Figure 4.1) is a RGB image-based 6D pose estimation method

which consists of two main elements:

Figure 4.1: Image-6D: a novel learning-based object 6D pose estimation method from

single RGB image.

1. Pose Estimation. Image-6D takes a single RGB image as an input and can

output the object class, 2D bounding box, the object mask and object rotation

simultaneously. Following these, the lateral position of the object is calculated

by a reverse projection algorithm. Compared with previous works, Image-6D can

estimate the object pose directly without a PnP iterative process.

2. Point Refinement. Image-6D adopts a contour alignment (CA) refinement algo-

rithm (Algorithm 3) that align the object 2D projection and the object mask

contour to replace the ICP processing. Due to the use of CA, Image-6D only

needs RGB information to run.

4.3 Methodology

In this section we will introduce a novel 6D pose estimation algorithm and refine-

ment approach. We first describe the network architecture, then we present the pose

estimated method. After that, we detail the CA refinement algorithm before finally

introducing the set up for training and inference.
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4.3.1 Network Architecture

We propose an architecture inspired by Mask-RCNN which goes beyond Mask-RCNN

in capability. This network contains two stages: i) it starts with the ResNet101 [148]

backbone that extracts features over the entire image and then ii) the Region of Interest

(ROI) is extracted by a Region Proposal Network (RPN) that feeds its results to the

head branches. The network of Image-6D has five parallel head branches as follows:

1. class regression branch

2. box regression branch

3. segmentation head branch

4. orientation head branch

5. corner head branch

Figure 4.2: The neural network architecture of Image-6D. The shape of fully connected

layers are two 4096× 1× 1 layer and the size of convolutional layer is 7× 7× 512.

The architecture of the neural network is shown in Figure 4.2; it takes a single RGB

colour image as input and processes inputs data with ResNet101 networks. ResNet101
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is a residual learning framework that is 101 layers deep. This backbone overcomes

the vanishing gradient effect by utilizing a residual function. Due to its impressive

outcomes, we decide to select ResNet101 as the network backbone. In addition, for

the network head we firmly follow architectures proposed in Mask-RCNN to which we

add a fully connected orientation prediction branch. We uses quaternions to represent

orientation, so there is a normalization layer in front of a rotation layer. We also use the

fully-convolutional layer to predict a pixel-wise instance segmentation by up-sampling

the feature map to 28 × 28. Therefore, the combined network with the Mask-RCNN

can achieve classification, segmentation, and estimation of 6D pose of object instances

simultaneously.

4.3.2 Camera Geometric

Figure 4.3: Camera projection model

Before presenting the 6D pose estimation algorithm, we first give an introduction

to the basic geometry of image formation. As shown in Figure 4.3, the projection is

transferring 3D point pw = [x, y, z]T in camera coordinates to 2D point p = [u, v]T in

pixel coordinates. Firstly, transforming 3D points pw in the world coordinate system

into the camera coordinate pc by the camera extrinsic parameter C that composed of
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a 3× 3 rotation matrix R and a 3× 1 translation matrix t:

pc = Rpw + t (4.1)

And then we can represent the projection of the point PC at camera coordinate on

(u, v)T , this processing is also referred to as perspective projection.

x = f
xC

zc
y = f

yC

zc

(4.2)

Using homogeneous coordinates to write eqn. (4.1) and eqn. (4.2) as:


x′

y′

z′

 =


f 0 0 0

0 f 0 0

0 0 1 0





xC

yC

zC

1


x = x′

z′ y = y′

z′ (4.3)

Subsequently, we use intrinsic parameters to transform the projected image on image

coordinate to the pixel coordinate, this conversion as known as affine transformation.

u = x + Cx v = y + Cy (4.4)

Taking into account all of these effects, we can obtain a camera intrinsic matrix K:

K =


fx 0 Cx

0 fy Cy

0 0 1

 (4.5)

where fx and fy are the focal distance along x axis and y axis, and Cx and Cy are the

principal points in the centre of the image.

Overall, the camera formation describes the projection of 3D world points into 2D

pixel coordinates, in such a way that the entire process can appear concisely as:

p = K[R|t]pw (4.6)
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4.3.3 Perspective-n-Point

The Perspective-n-Point (PnP) problem is proposed by Fischler and Bolles [41] to

obtain the pose of a calibrated camera according to a group of n 3D points in world

coordinate and their 2D projection points in the image coordinate. PnP techniques

have numerous applications in computer vision [149] and photogrammetry [46]. As

we reviewed in Chapter 2, correspondence-based 6D pose estimation [94, 14, 23, 96]

commonly use a PnP algorithm or its variant to compute the 6D pose of an object.

In this section, we introduce a basic PnP algorithm even though we haven’t adopted

PnP in Image-6D. It is still an important concept in the field of 3D vision. Besides,

it is convenient to explain the reasons for not adopting PnP by introducing it. More

importantly, a CA refinement algorithm involves a similar iteration solution.

In the last section, we present how to project a 3D point in world coordinates into

image coordinates by utilization of a camera matrix. While the PnP problem is given

3D points, 2D projection points and camera intrinsic matrix to calculate camera pose,

also known as extrinsic camera parameters, [R|t]. To solve the PnP problem, we need

to knowthe location of at least 3 points. Specifically for 6D pose estimation, it usually

needs 8 points representing 8 corner points of 3D objects. The following part presents

a widely used PnP solver, EPnP [42]. The main step of EPnP is:

1. Select n = 4 control points in world coordinates and convert them to image

coordinates, obtaining the 3D control point pw
i , their corresponding projection

2D points pc
i . The detail of control point selection can be found in [42].

2. Calculate the centroid of pw
i , cw, and matrix A.

cw = 1
n

n∑
i=1

pw
i (4.7)
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A =


pw

1
T − cwT

...

pw
n

T − cwT

 (4.8)

3. Calculate the centroid of pc
i , cc, and matrix B.

cc = 1
n

n∑
i=1

pc
i (4.9)

B =


pc

1
T − ccT

...

pc
n

T − ccT

 (4.10)

4. Calculate the matrix H.

H = BT A (4.11)

5. Perform the SVD decomposition [150] of matrix H.

H = U
∑

V T (4.12)

6. Estimate rotation matrix R.

R = UV T (4.13)

7. Compute translation vector t.

t = cc −Rcw (4.14)

8. Mnimize the reprojection error err via Gauss-Newton algorithm to refine the R

and t until meet termination criteria or reach maximum iteration number.

err = ∥pc −K(Rpw + t)∥ (4.15)
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The parameters A, B, H, U and V are intermediate variables derived from the

calculation process, so we don’t notate for them. In actual usage, we don’t need such

complicated steps. The PnP solver can be used directly from some open-source libraries

such as OpenCV. However, Chen et al. [151] notices that such PnP-based methods will

fail when the target object is truncated. Do et al. [152] argue that, this strategy that

predicts corner vertices and then leverages PnP to estimate 6D pose, is time-consuming

for inference, especially when the predicted vertices and initial model points are far

away. In the next section, we will present the novel pose estimation method without

PnP processing.

4.3.4 Pose Estimation

In last section we introduce a forward camera projection. While in this section, we will

use a backward projection to recover 3D information from the 2D pixels.

The object pose usually includes a rotation matrix and a translation vector. The

rotation matrix is estimated using quaternion regression from the neural network. As

for the translation vector, instead of predicting it from neural networks directly, we

have designed a fast and simple algorithm to calculate it. The reason why we deprecate

regression of translation is that the neural network can’t handle camera intrinsic matrix

changes. It is impossible to train a network for each type of camera. So the Image-6D

predicts object rotation and translations separately.

As shown in Figure 4.4, the translation vector t = [tx, ty, tz] defines the coordinates

of the object center in the camera coordinate system and the cat model is under the cur-

rent orientation. The crucial step to estimate the 3D translation is calculating tz. The

camera projection is a 3D-to-2D perspective projection, and we utilize a reverse pro-

jection principle to recover the depth tz in this system. In section 4.3.1, we introduced

the neural network architecture that can output an initial orientation with quaternion

representation. Additionally, object 3D model is known. As a result, a transformed

model can be obtained through multiply rotation matrix and object model. Eqn.2.2
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Figure 4.4: Illustrating the relationship between the object coordinate system and the

camera coordinate system. The 3D translation is calculated by a projection principle.

represents the conversion between quaternion and rotation matrix.

As illustrated in Figure 4.4, a 2D diagonal (the blue line obtained from neural

network) and a 3D diagonal (the yellow line calculated by 3D model and quaternion)

can be used to derive the tz:

tz = 3Ddiagonal

2Ddiagonal
∗ f (4.16)

where f denote the focal lengths of the camera. We assume that the focal lengths in

horizontal fx and vertical fy directions are equivalent. The same procedure can be

easily adapted to obtain tx and ty:

[ tx

ty

]
=


u− cx

fx

∗ tz

v − cy

fy

∗ tz

 (4.17)

where [u, v] is the object center that predicts from the neural network, [cx, cy] expresses

the principal point, which would be theoretically in the centre of the image.
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4.3.5 Pose Refinement

Though the estimated object poses are already precise, they can still be improved

by a further refinement. For the RBG-D data, the detection is usually followed by

ICP processing. In this paper, we propose an edge-based refinement algorithm by

aligning the object instance contours and 2D projection contours. We call it a contours

alignment (CA) algorithm. This method can be adapted to any CNN-based 6D pose

estimation framework to improve accuracy. Note that this refinement processing is

to eliminate the error in translation. For the rotation error, we don’t consider the

CA refinement procedure optimal because the rotation predicted by the network is

accurate enough and it will increase refinement time if we consider both translation

and rotation.

Algorithm 3 Position Refinement
Input: Initialise object pose P0; Object mask M0 predicted by neural network; 3D-2D

projection function f ; Object model;

Output: Refine object pose Pn

1: Calculate contour C0 for object mask M0.

2: Set C0 as reference points.

3: Compute 2D projection proj with current pose P0, proj = f(P0)

4: Extract contour C1 from proj.

5: Apply a closest point pairs algorithm between C0 and C1 to obtain C3.

6: Compute residual error: fr = C3 − C1.

7: Calculate Jacobian matrix J of f , so df = Jdx.

8: Solve ∆t using pseudo inverse δt = (JT J)−1JT fr, and update pose P0.

9: Repeat steps 3-8 until reach threshold; return P0.

In Algorithm 3, we extract contours by using the "find_contours" function from the

skimage module [153], that is an image processing module in python. The "find_contours"

function uses the “matching squares” and linearly interpolated approach to obtaining

the iso-valued contours of the input 2D array for a specific value. The closest points
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pairing process employs a kd-tree search from the "sklearn.neighbors" module [154].

The closest point pairs guarantee that two contour arrays have the same shape so that

we can perform arrays subtraction.

In order to achieve an appropriate balance between accuracy and efficiency, we

only optimize the translation because the error in translation is more dominant than

rotation. The Jacobian matrix J is:

J = [ ∂f

∂tx

,
∂f

∂ty

,
∂f

∂ty

] (4.18)

we approximate the derivatives to obtain:

J ≈



f(t + [ϵ, 0, 0])− f(T )
ϵ

f(t + [0, ϵ, 0])− f(T )
ϵ

f(t + [0, 0, ϵ])− f(T )
ϵ



t

(4.19)

where t denotes the translation vector and ϵ is a tiny number. In this paper we choose

ϵ = 0.0000001 to guarantee the size of projection points is constant. Therefore, in

Algorithm 3, the two contour arrays C1 and C3 can subtract because they have same

size. For the solution of increment ∆t, we use the Gauss-Newton method introduced

in section A.1. This alignment for contour is not complicated so we choose the Gauss-

Newton method rather than Levenberg-Marquardt method. This is because Gauss-

Newton is easy to code and runs faster.

In Figure 4.5 one can observe that the projection contour extracted by refinement

of pose (red line) coincides with the ground truth contour (green line). This shows that

CA refinement Algorithm 3 can improve pose accuracy significantly. Furthermore, we

can also see both the translation error and the pixel error being reduced by nearly

60% in the first refinement iteration and moreover this tends to converge after the

second refinement iteration. Therefore, Algorithm 3 can refine object pose quickly and

effectively.

Essentially, CA refinement Algorithm 3 and the PnP algorithm mentioned in section

4.3.3 all belong to the 2D-3D correspondences problem. But the difference is that: 1)
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(a) 2D Projection contour without refinement. (b) 2D Projection contour after refinement.

(c) Translation error under different iteration

times.

(d) Pixel error under different iteration times.

Figure 4.5: Improvement of CA refinement algorithm 3 for 6D pose estimation. In (a)

and (b), green lines show the ground truth contour, yellow lines present the predicted

mask contour and red lines indicate 2D projection using the current pose.
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Algorithm 3 has obtained a rough 6D pose as the initial pose while the initial pose of

PnP is random; 2) PnP requires control points as references, and CA refinement relies

on closet points and 3) The optimization strategy is different.

4.3.6 Training and inference

We have implemented the proposed network Image-6D in Python3 using the Tensor-

Flow library [155]. The input to the neural network was an RGB image with size

640× 480. The training data consisted of three parts: first is the RGB image; second

is a binary mask image and the third part is a label. Unlike other approaches using

eight corner annotations or 6D pose annotations, we adopt a new annotation method

based on a quaternion and two corner points as shown in the Figure 4.6, because such

an annotation can fit the proposed pose estimation algorithm (shown in Figure 4.4)

better.

Figure 4.6: Comparing with different annotation method

In training, we define a multi-task loss to jointly train the classification, bounding

box regression, instance segmentation, quaternion regression and corner point regres-

sion. Formally, the total loss function is defined as follows:

L = α1Lcls + α2Lbox + α3Lmask + α4Lquat + α5Lcor (4.20)

where α1, α2, α3, α4, α5 are loss weights, which indicate the importance of each loss

component. In experiments, we set α1 = α2 = α5 = 1, α3 = 10 and α4 = 2. Lcls is
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softmax loss, Lbox and Lcor are smooth L1 loss, Lmask is binary cross-entropy loss, and

Lquat is a derivation of L2 Loss, defined as follows:

Lquat =

n∑
i=1

(βri − βr̄)2

n
(4.21)

where ri denotes the predicted quaternion and r̄ is the ground true quaternion. The

four parameters of the quaternion are all between 0 and 1, so we apply a magnification

factor β (β = 10 in experiments).

We train the neural network on a Tesla V100 GPU for 90 epochs. The first 20

epochs train network heads with a 0.002 learning rate. Then, using the same learning

rate, we fine tune the layers from ResNet stage 4 in the next 10 epochs. After that, we

train all layers for 30 epochs. In the following 10 epochs, the learning rate is decreased

by 10 until we train all the layers. Lastly, we change the learning rate to 0.00002 to

fine tune all the layers in the final 10 epochs.

At the inference phase, we select object instances which have their detection scores

higher than 0.9. Proposed pose estimation method presented in section 4.3.4 and

refinement Algorithm 3 are then applied to the detected objects to obtain accurate 6D

pose matrices.

4.4 Experiments

We conduct experiments on two standard data sets including a single object pose data

set LINEMOD, and a multiple objects pose data set Occlusion-LINEMOD to evaluate

the Image-6D (introduced in section 4.2) for 6D pose estimation. We compare Image-

6D against some widely used state-of-the-art 6D pose estimation approaches. We also

prove that Image-6D can apply to real-world custom objects.
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(a) ape (b) benchvise (c) bowl (d) camera (e) can

(f) cap (g) cat (h) drill (i) duck (j) eggbox

(k) glue (l) holepuncher (m) iron (n) lamp (o) phone

Figure 4.7: Objects list in LineMOD dataset.

4.4.1 Metrics

Image-6D is evaluated under the average distance (ADD) metric [8]. The average

distance calculates the mean of pairwise distances between 2D projections of the 3D

models, calculated utilizing the estimated pose and ground truth pose:

ADD = 1
m

∑
x∈M

min
M
∥(Rx + T )− (R̄x + T̄ )∥ (4.22)

where R, T , R̄, and T̄ are ground true rotation, ground true translation, estimated

rotation and estimated translation, respectively. M denotes the vertex set of the 3D

model, and m means the number of 3D points. Evaluation is based on the widely

used metric ADD-0.1d and REP-5px, where the estimated pose is considered to be

correct if the average distance is below 10% of the object’s diameter or smaller than a
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5 pixels threshold.

4.4.2 Evaluation On LINEMOD Dataset

We first test Image-6D (that is section 4.2) on the LINEMOD dataset, which contains

15 objects with poor texture shown in Figure 4.7 in a cluttered environment. In

common with other papers in the literature, we evaluate methods on 13 of these objects.

We adopt similar settings with [14] to randomly select 30% of the images as training

data and the rest of images as test data. However, only RGB images are used in the

training and testing phase.

Table 4.1: Comparison of Image-6D with state-of-the-art work on LINEMOD data set in

terms of ADD-0.1 metric. We present percentages of correctly estimated pose and highlight

the best result among those by bold numbers.

Method

Object
Zhao Yolo-6D SSD-6D Image-6D

Ape 35.1 21.62 0 42.29

Benchvise 23.9 81.8 0.18 77.64

Cam 33.2 36.57 0.41 66.78

Can 21.0 68.80 1.35 74.09

Cat 30.6 41.82 0.51 57.89

Driller 28.6 63.51 2.58 70.45

Duck 27.9 27.23 0 37.81

Eggbox 38.9 69.58 8.9 64.5

Glue 31.2 80.02 0 44.51

Holepuncher 13.4 42.63 0.30 62.40

Iron 37.8 74.97 8.86 78.01

Lamp 34.5 71.11 8.20 84.5

Phone 19.9 47.74 0.18 65.27

Average 28.9 55.95 2.42 63.59
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We compare Image-6D with the state-of-the-art approaches Yolo-6D [14], Zhan

[156] and SSD-6D [13], which run under a similar setting. In Table 4.1, the results

for the competing methods are presented. On average, Image-6D outperforms all the

considered competitors by a margin of at least 7% or more. We also find that Image-

6D is more effective for small-size objects. For example, with the camera model whose

diameter is 17.24 cm, the estimated pose accuracy increases by nearly 30%. Even when

compared with some RBG-D based methods such as SSD-6d, for which the average

accuracy reaches 76.3%, Image-6D is still competitive.

Figure 4.8: Qualitative results on LINEMOD. First row : the original images.

Second row: the predicted object class, 2D bounding box and segmentation. Third

row: 6D pose represented by 3D bounding boxes which green is the ground truth and

the red is estimated.

Table 4.2 lists overall inference time of Image-6D. This model runs at 8.115 frames

per second (fps) on an Nvidia Tesla V100 GPU without refinement, which equals 123

ms per image. With refinement, our approach can run at 1.82 fps, which is 549 ms per

image. It is worth noting that the object model’s size impacts refinement time. For

the small size objects (e.g. ape and duck), the inference time is over 2 fps. However,

for some large objects, such as driller, the inference time only have 0.81 fps.
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Table 4.2: Overall computational runtime of our approach (FPS)

Method

Object
Ape Can Cat Driller Duck Eggbox Glue Holepuncher Average

w/o Refinement 8.16 7.48 7.97 8.19 7.78 8.63 8.19 8.52 8.115

w/ Refinement 2.27 1.14 1.94 0.81 2.17 2.62 1.79 1.83 1.82

4.4.3 Evaluation On Occlusion-LINEMOD

The Occlusion-LINEMOD is a multi-objective estimation benchmark which contains

8 objects and 1214 images (see Figure 4.7). As its name shows, a few objects in the

images are heavily occluded, which makes estimation extremely difficult.

To create training data, we follow the same data selection setting as in the previous

evaluation. Due to every image containing several instances, the network needs more

training epochs to reach convergence, so we modify the training strategy: the training

epoch increases from 90 to 160. The reason we select 160 epochs is that the network can

reach convergence without consuming a lot of time. The first 20 epochs train network

heads with 0.004 learning rate. Then, using the same learning rate, we fine tune layers

from ResNet stage 4 and up during the next 10 epochs. After that, we train all layers for

70 epochs. This initial learning rate value can make training convergence quick. In the

next 20 epochs, the learning rate is decreased by 10 in all layers. Finally, the learning

rate is set to 0.00004 in order to fine tune all layers in the final 20 epochs. Through twice

learning rate tuning, we can minimize loss. This setting achieves excellent performance

in experiments. In addition, the segmentation loss weight α3 changes to 40 in order to

overcome excessive occlusion in the image.

As can be seen from the Table 4.3, Image-6D outperforms other methods, such

as PoseCNN [4], Heatmaps [127], Seg-drive [97], iPose [128], Yolo-6D [14], in both the

ADD-0.1d metric and REP-5px metric. In Figure 4.9, we can notice that the estimated

pose is still accurate with partial occlusion. But if the visibility of the object is too

low, the estimation will fail.

81



Figure 4.9: Qualitative results on Occluded LINEMOD. First row : the original

images. Second row: the predicted object class, 2D bounding box and instance seg-

mentation(different color means different class). Third row: 6D pose represented by

2D projection contour which green is the ground truth and the other color is estimated.

Fourth row: Area screenshot, the first three columns is success cases and the last three

columns is fail cases.
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Table 4.3: Comparison of Image-6D with state-of-the-art works on Occluded LINEMOD

dataset in terms of ADD-0.1 metric and REP-5px metric. We present percentages of correctly

estimated pose and highlight the best result among those by bold numbers.’-’ denote the

results not in the original paper.

Object

Method ADD-0.1 REP-5px

PoseCNN Heatmaps Seg-drive Image-6D iPose Yolo-6D Image-6D

Ape 9.6 16.5 12.1 18.87 24.2 7.0 54.69

Can 45.2 42.5 39.9 50.52 30.2 11.2 44.82

Cat 0.9 2.8 8.2 15.38 12.3 3.6 53.73

Driller 41.4 47.1 45.2 34.0 - 1.4 17.49

Duck 19.6 11.0 17.2 27.00 12.1 5.1 51.91

Eggbox 22.0 24.7 22 20.62 - - 41.37

Glue 38.5 39.5 38.5 26.43 25.9 6.5 43.72

Holepuncher 22.1 21.9 36.0 32.0 20.6 8.3 31.78

Average 24.9 25.8 27.0 28.1 20.8 6.2 42.43

4.4.4 Qualitative Results on Real-world Image

The object models in the standard data set are precise, and the annotations are ac-

curate. However, in the real world, it is hard to obtain a perfect object model and

annotate poses on authentic images. Obtaining ground truth data is time-consuming,

error-prone, and costly [157]. Besides, current methods for annotating real world data

[8, 4] are not scale so they can’t generate the massive data for network training. There-

fore, we consider synthetic images to train so that this method can apply Image-6D on

a broader range of objects.

A synthetic image data is generated by rendering object models with a random

background. Theoretically, we can obtain infinite image data with arbitrary poses.

Besides, to bridge the visual reality gap, complex backgrounds, noise and obstacles are

considered to augment data.

In experiments, the object model shown in the Figure 4.10 (b) is obtained by a

structure from motion (SFM) [46] method, which can reconstruct an object model
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(a) (b) (c) (d) (e) (f)

Figure 4.10: The application in real world object: (a) Real object. (b) Object model.

(c) Synthesis mask. (d) Synthesis RGB image. (e) Detected mask. (f) Estimated pose.

using the object images illustrated in Figure 4.10 (a) captured from multi-view. Then,

utilizing the NVIDIA Deep learning Dataset Synthesizer (NDDS) tool [29] generates

synthetic training data. Figure 4.10 (c) shows the synthetic mask of the object, and

Figure 4.10 (d) is the RGB image generated by the NDDS tool.

Afterwards, the training data is organized as section 4.3.6 presented: 1) synthetic

RGB image; 2) synthetic binary mask image and 3) label. All of those three parts can

be acquired from the NDDS tool output results. Finally, we feed the organized training

data into the proposed neural network as Figure 4.2 shown. Figure 4.10 (e) and (f)

are the visualization of the output in the real test image, of which (e) is the mask

output and (f) is the 3D bounding box output. We can note that the performance is

not getting worse due to the use of synthetic data. Therefore, the pipeline of 6D object

pose estimation can be more generic using synthetic data.

4.5 Summary

In this chapter, we have introduced a new method Image-6D to detect an object class,

segment instance and estimate object 6D pose simultaneously from a single RGB image.

This method can predict object orientation and calculate translation without a PnP

process. What’s more, we propose a novel pose refinement algorithm Contour-Align

shown in Algorithm 3 aligning the mask contour and the 2D projection contour for
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the single RGB image. This refinement technique can be applied to most of the post-

processing of RBG based 6D estimation. Furthermore, the evaluation shows the accu-

racy of the Image-6D surpasses current state-of-the-art methods [13, 14, 127, 128, 97]

in LineMOD and Occlusion-LineMOD dataset under the ADD-0.1d metric. Therefore,

this work is encouraging because it indicates that it is feasible to accurately predict the

6D pose object pose in a cluttered environment using RGB data only. An interesting

future work is to improve the estimation accuracy when the CAD model is unavailable.
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Chapter 5

Point-6D: Estimating 6D Object

Pose from Point Cloud

5.1 Introduction

In the last chapter, we have introduced a 6D pose estimation method using a single

RGB image. The development of low-cost RGB-D sensors has enabled 6D object pose

estimation systems which are more reliable and robust than RGB-only methods in a

poorly-lit scene. Typical RGB-D based 6D pose estimation employs CNN to extract

learning features from the RGB channel and depth channel, respectively, and then

fuses two features feeding to the next stage [158, 159, 103]. However, the state-of-the-

art techniques struggle in how to better utilise the complimentary nature of color and

depth information.

In the field of autonomous driving, Frustrum PointNet [103] and PointFusion [104]

achieve the high quality 3D detection for pedestrians, cyclists, and cars via full advan-

tage of point cloud and image information in a heterogeneous network. Inspired by

those works, Wang et al. [15] proposed DenseFusion, which fuse and embed RGB pixel

and point cloud at a per-pixel level. Besides, through an additional trainable iterative

refinement procedure, DenseFusion significantly improves the performance of a RGB-D
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based 6D pose estimation method in Linemod [3] and YCB-Video [4] dataset. On the

basis of per-pixel prediction, He et al. [9] presented PVN3D, a dense correspondence

method utilizing 3D hough voting.

In an existing system, some authors [15, 4, 103] only consider to fuse point cloud

and color image information. In fact, point clouds also have significant properties and

normals, which can represent the relationships between a point and it’s neighbors. In

this work, we propose Point-6D, a novel deep neural network that estimates the 6D

pose of a known object using a colored point cloud as the input. The next section will

introduce the proposal in detail.

We further conduct evaluation on two widely-used 6D pose estimation datasets,

Linemod [3] and YCB-Video [4]. Evaluation results indicate that Point-6D outperforms

some state-of-the-art systems in detection accuracy.

In summary, the main contributions are listed as follow:

• We propose a novel deep neural network Point-6D algorithm, which can merge

point, color and normal features from three channels to regress the 6D pose of

known objects.

• We develop a jointed loss function to make the network more effective and easy

to train.

• We demonstrate the performance of Point-6D and state-of-art 6D pose estimation

system on the Linemod [3] and YCB-Video [4] datasets.

The following part of this chapter moves on to describe in greater detail the network

architecture and evaluate an experiment. section 5.2 defines the Point-6D method,

section 5.3 presents the proposed system, section 5.4 introduces the experiments in

detail and section 5.5 summarizes the outputs of the work.
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5.2 Definition of Point-6D

Point-6D is a point cloud-based 6D pose estimation system which consists of three

components shown in Figure 5.1:

Figure 5.1: Point-6D: a novel learning-based object 6D pose estimation method from

colored point cloud

1. Data Preparation. Point-6D extracts the points location, colors and normal in

per-point level from input 3D point cloud.

2. Pose Regression. Point-6D employs multi-layer perceptron (MLP) to extra fea-

tures from points, colors and normals respectively, and then merge them as a

global features as per-point level. Afterwards, we develop a pose net to regress

translation offset, orientation represented by quaternion and confidence for each

point. The initial 6D pose is selected by the highest confidence scoring. The

benefit of prediction at point level is that it allows detection to perform well even

in a heavily obscured environment.

3. Point Refinement. Point-6D uses a point-to-point ICP (that is Algorithm 4) to

refine the initial pose.

5.3 Methodology

In the last chapter, we introduced a novel 6D pose estimation method using a RGB

image only. It mainly applied in the scenarios that depth information is not available

or the computational power is low e.g. wearable devices, smartphones, etc. But the
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accuracy of RGB image-based 6D pose estimation cannot apply in tasks requiring

precise positioning, such as robotic manipulation. The goal of the work in this chapter is

to fully utilize the geometric and photometric information of the point cloud predicting

6D pose of a set of known objects in a cluttered and obstructed environment. As

previously defined, a 6D pose consists of a 3 × 3 rotation matrix R and a 3 × 1

translation t.

Figure 5.2: Overview of Point-6D neural network architecture. The object segmenta-

tion masks is generated from a RGB image. The feature extraction net extracts global

features from a colored point cloud. The PoseNet is employed to regress translation,

orientation and confidence at per-point level. A geometry-based least-square fitting

algorithm is exploited to refine the 6D pose.

5.3.1 Architecture Overview

Figure 5.2 illustrates an overview of Point-6D. The system is composed by four main

stages. The first step is to extract target objects mask from an RGB image, which

can reduce the computational complexity of the neural network. We have introduced
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a widely-used semantic segmentation system, Mask-RCNN [93]. In a Densefusion

pipeline [15], it performs image segmentation utilizing a segmentation network from

PoseCNN [4]. The aim of this work is to develop an accurate 6D pose estimation al-

gorithm. So, in order to conduct an efficient validation, we decided to use the same

segmentation network as in the previous work [15, 4].

The second stage consists of three parallel MLP layers and one max-pooling layer,

which extract and fuse feature maps with different shapes from the input point cloud.

This network is inspired by PointNet, which is a generic neural network for classifica-

tion and segmentation from an unstructured point cloud. This network is the backbone

of Point-6D, and Figure 5.2 details the network structure in the blue areas. Given a

colored point cloud segment containing n points, we extract the position, color and nor-

mal information of each point separately. The position comes from the 3D coordinates

of each point. The color is normalized before being fed into the network, so the value of

color is in the range (0,1). For the calculation of the normal, we adopt a hybrid scheme

which has 2cm of search radius, and only considers up to 100 neighbors to compute the

principal axis using a covariance analysis. After the above data preparation, the input

is processed separately through a set of MLP layers with shared weights (3-64-128).

Then we concatenate three 128 × n features as a new 384 × n feature map feeding

into the next MLP layer. After max-pooling, a feature map with 1024-dimension is

obtained. The final feature map 1600 × n is composed by a 1024 × n global features,

three 128× n feature vectors and three 64× n feature vectors.

The third component is PoseNet, which is used to regress 6D pose from global

features. It predicts rotation, translation and confidence independently on top of the

global features. The output of the rotation branch is to predict orientation in quater-

nion representation. So, we add a normalization layer before output rotation. The

object 6D pose output is selected by the highest confidence scoring.

The fourth stage is refinement, an iterative closet point (ICP) procedure is ap-

plied to minimise the least-squares error between the object model transformed by the

network output and segmented object point cloud from the environment.

90



5.3.2 Learning Algorithm

The aim of the learning algorithm is to train a deep neural network which can estimate

an accurate object 6D pose. As illustrated in Figure 5.3 (a), the 3D translation rep-

resents the coordinate of the object center in the camera frame. The simplest way is

to regress the translation value T = (Tx, Ty, Tz) directly. However, this way is not the

best choice since each point in an object have to regress the same values. Obviously, it

is not suitable for the per-point prediction strategy. Therefore, the proposed network

Point-6D estimates the point-wise 3D offset shown in Figure 5.3 (b).

(a) (b)

Figure 5.3: (a): Illustration of translation t and rotation R between camera coordinate

and object coordinate. (b): The offset from point to the 3D center of object

There are three main ways one can represent rotation: 1) A rotation matrix; 2)

axis-angle and 3) quaternion. The rotation matrix is a 3 × 3 matrix containing nine

parameters totally, which consumes more time and memory, while axis-angle suffers

from gimbal lock that will lose one degree of freedom. Therefore, we decide to utilize

a normalized quaternion to represent rotation.

Apart from translation and rotation, the network also predicts a confidence score

for each point. According to the confidence score, the system can determine which

prediction is most likely to be the best hypothesis in the given situation. Owning to

this per-point learning strategy, Point-6D is able to choose the best prediction from

the visible zone of objects, which can reduce the impact of occlusion and noise.
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5.3.3 Loss Function

After implementing the neural network structure, we develop a joint loss function

to make the network easy to optimize. The first loss function is pose loss, which is

inspired by [15, 4]. It can calculate the euclidean distance between points on an object

model transformed by ground truth pose and their corresponding points transformed

by prediction pose in the same model. It is defined as the following function:

Lpose = 1
N

∑
x∈M

∥(R(−
q)x +

−
t)− (R(q)x + t)∥ (5.1)

where M indicate the points set selected from an object model, N denotes the number

of selected points, parameters q and t represent the predicted rotation and translation

respectively, while −
q and

−
t mean the ground truth rotation and translation and R(q)

is the rotation metrics converting from the quaternion q = (x, y, z, w):

R(q) =


1− 2(y2 + z2) 2xy + 2wz 2xz − 2wy

2xy − 2wz 1− 2(x2 + z2) 2yz + 2wx

2xz + 2wy 2yz − 2wx 1− 2(x2 + y2)

 (5.2)

However, the above loss function is specific for an asymmetric object. There will be

multiple correct rotations for a symmetric object in one state. To avoid miscalculation,

we instead measure the euclidean distance between points transformed by prediction

pose and its closest point on the object model transformed by ground truth pose.

Lsymmetric
pose = 1

N

∑
xp∈M

min
xg∈M
∥(R(−

q)xg +
−
t)− (R(q)xp + t)∥ (5.3)

So far, we have defined the loss function for the object 6D pose. As described

before, apart from pose, we desire to predict the confidence score for each point. So

we use a binary cross entropy loss function to measure the error between the predicted

confidence cx and the ground truth −
cx. Note that the ground truth of confidence for

all points equates to one.

Lconf =
∑

x∈M

cxlog
−
cx + (1− cx)log(1− −

cx) (5.4)
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We use the following total loss function to learning the translation, rotation and

confidence jointly.

L = α1Lpose + α2Lconf (5.5)

where α1 and α2 are the weights for each loss component. By assigning a property

weights value, the joint loss function can improve the performance of the network.

Experiments show that this joint loss function is straightforward for the network and

easy to optimize.

5.3.4 Training and Implementation

The basic network architecture has been introduced in section 5.3.1. At the beginning

of training, the learning rate is set to 0.001. After every ten epochs, the learning rate

decays by 5% until finished at 700 epochs. As for network optimization, we choose the

Adam [160] algorithm which is the most popular optimization algorithm in the field

of deep learning in recent years. The Adam algorithm is suitable for optimizing the

network because it is computationally efficient and has low memory requirements.

For the selection of the number of input points, we randomly choose 1000 points

from the segmented object points and set α1 = 1 and α2 = 0.3 in the eqn. (5.5).

5.3.5 Iterative Close Point Refinement

ICP is an algorithm to align two point cloud set. We have introduced several ICP

algorithms such as point-to-point, point-to-plane, colored ICP etc. in chapter 3. ICP

and it’s variants have been widely used in 6D pose refinement procedures [4, 13, 105].

The aim of ICP refinement is to minimize the point distance between segmented object

points and transformed object model points. Therefore, we employ the point-to-point

ICP as post-processing.

Given the two point sets, the segmented object points P = {p1, p2, ..., pi} and the

transformed object model points Q = {q1, q2, ..., qj}, the ICP refinement is to minimize
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the following objective function:

F (T ) =
∑

(p,q)∈κ

∥p− (Rq + t)∥2 (5.6)

where κ is the correspondence set between points set P and Q. Specifically, we calcu-

late the distance from each point in P to each point in Q, and return the correspond-

ing points in Q with the smallest distance that is less than the threshold. Obviously,

this retrieval distance calculation is time-consuming especially for dense point clouds.

Therefore, we adopt a voxel downsampling filter as a pre-processing step to spare point

cloud. Afterwards, compute the center of mass for two point cloud, and then a Singular

Value Decomposition (SVD) [150] is used to update a new rotation matrix R, while

the new translation t is obtained by computing the difference between the centroid of

P and the centroid of Q transformed by the new R. This procedure is similar with the

PnP solution steps (from eqn. (4.7) to eqn. (4.14)) introduced in section 4.3.3.

Algorithm 4 Point-to-point ICP algorithm
Input: Target point cloud P ; Source point cloud Q; Initial transformation T 0;

Output: Transformation T minimal the objective function 5.6

1: while not converged do

2: Downsample for P and Q.

3: Find correspondence set κ = {(p, q)} for P and Q.

4: Calculate the distance between center of mass.

5: Compute R and t via SVD.

6: Update transformation T.

The above step is one refinement step. To get the process on needs to repeat the

refinement until the change in the mean-square error is below the preset threshold.

One can dot-multiply the network output pose and refinement pose to obtain the final

result.
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5.4 Experiments

This chapter has proposed the Point-6D system (defined in section 5.2) for achiev-

ing high accurate object 6D pose estimation. This section evaluates the efficacy and

gives evidence that Point-6D outperforms the state-of-art methods. Similar to the last

section, we evaluate Point-6D in two datasets; one is a single object dataset, and an-

other is a multiple objects dataset. For single object evaluation, we continue to employ

LineMOD [3]. While in multiple object experiments, we use the YCB-Video dataset

[4] instead of an Occluded-LineMOD dataset because the YCB-Video contains more

objects and is adopted by most RGB-D based 6D pose evaluations. In experiments, we

compare Point-6D (shown in section 5.2) with the state-of-the-art 6D pose estimation

algorithm.

5.4.1 Datasets

YCB-Video Dataset. The YCB-Video dataset is a widely-used dataset for 6D object

pose estimation. It was proposed by Xiang et al. [4] to evaluate the performance of

PoseCNN. The YCB-Video dataset contains accurate 6D poses of 21 objects with

various shapes and textures. Those data are generated from 92 RGB-D videos with

a total of 133827 frames captured by an Asus Xtion Pro Live RGB-D camera in fast-

cropping mode, and they also provide varying lighting conditions and occlusion, making

detection changeable. Figure 5.4 shows a set of the dataset using a real image. What

is more, there is also a lot of synthetic data available for YCB objects. We follow the

same training setting of previous works [15, 4] to split the dataset into 80 videos for

training and select 2949 key frames from the remaining 12 videos for evaluation.

LineMOD Dataset. The LineMOD dataset contains 13 textureless objects that we

have introduced in the last chapter. We also generate the colored point cloud for them

as illustrated in Figure 5.5. We follow the same training and testing set as previous

work [161, 162, 15], that is, 15% data for training and the remaining 85% for testing.
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(a) RGB imae (b) Depth (c) Mask (d) Visible Mask (e) Point Cloud

Figure 5.4: A standard YCB-Vedio dataset. Note that only one object mask is posted,

and the remaining four object masks are not shown here. The point cloud is not

included in the original dataset; we generate it additionally

(a) RGB imae (b) Depth (c) Mask (d) Visible Mask (e) Point Cloud

Figure 5.5: A standard LineMOD dataset.

5.4.2 Metrics

To conduct experiments with uniform metrics, we follow prior work to adopt the average

distance (ADD) metric and average distance for symmetric objects (ADD-S) metric.

The average distance calculates the mean of pairwise distances between object vertices

calculated utilizing the estimated pose and ground truth pose:

ADD = 1
m

∑
x∈M

min
M
∥(Rx + t)− (R̄x + t̄)∥ (5.7)

where R, t, R̄, and t̄ are ground true rotation, ground true translation, estimated

rotation and estimated translation, respectively. M denotes the vertex set of the 3D

model, and m means the number of 3D points. For symmetric objects, we use ADD-S

metrics: to measure mean distance utilize closest point distance:

ADD − S = 1
m

∑
x1∈M

min
x2∈M
∥(Rx1 + T )− (R̄x2 + T̄ )∥ (5.8)
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where x2 is closest point of x1 in the object model transformed by ground truth pose.

Note that the per-point loss function is based on a similar principle. Besides, we exploit

the area under the ADD(S) curve (AUC) in the YCB-Video evaluation, which continues

the setting from [4, 15]. In the YCB-Video evaluation experiment, the maximum

threshold of AUC metrics is set to 0.1m, and ADD(S) metrics is less than 2cm which

is a common tolerable error for robot gripping. While in the LimeMOD evaluation

experiment, the maximum threshold is 10% of the object model diameter.

5.4.3 Evaluation on the LineMOD Dataset

The LineMOD dataset contains 15 objects and we select 13 of them for the exper-

iment. Among them, object "ape", "benchvise", "camera", "cat", "driller", "duck",

"holepuncher", "iron", "lamp" and "phone" are non-symmetric, while object "eggbox"

and "glue" are symmetric. Table 5.1 shows the evaluation results for the LineMOD

dataset. We compare Point-6D with the state-of-art 6D pose estimation algorithm on

an ADD(S) metric.

Table 5.1 presents an overall comparison between Point-6D and previous RGB-

D methods. Under an ADD(S) metric, the pose estimation accuracy of Point-6D

outperforms ICP post-processing approaches [163, 13, 4] by over 15%. What’s more,

we also outperform DeepIM [161] by 6.3% and Densefusion [15] by 0.9%. It is worth

noting that the training stage of Densefusion is slow, which spends a full day to train 45

epochs for refinement. It took over ten days to complete the training of the LineMOD

dataset, while, on equivalent computing, Point-6D only needed 36 hours. We visualize

some sample estimation by Densefusion [15] and Point-6D in Figure 5.6.

The five sample image are randomly selected from the LineMOD test dataset. From

Figure 5.6 we can observe that the DenseFusion method has significant errors in the

prediction of the drill, holepuncher, and phone. While for Point-6D, although there is

a rotational error in the z-axis in drill object pose estimation, the pose error of drill

object is still less than ADD metric threshold. What’s more, it is also worth noticing
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Figure 5.6: Qualitative results on the LineMOD Dataset. The object point cloud

model is transformed with corresponds 6D pose and then projected to the 2D image

via camera projection function. The first row is object projection with ground truth

pose, the second row is the Dense Fusion result and the last row is Point-6D.
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Table 5.1: Comparison of Point-6D with state-of-the-art work on LINEMOD data set in

terms of ADD(s)-0.1 metric. We present percentages of correctly estimated pose and highlight

the best result among those by bold numbers. Objects with bold name are symmetric
.

Object

Method
Implicit + ICP SSD-6D + ICP PoseCNN + ICP Deep IM Denfusion Point-6D

Ape 20.6 65.0 76.2 77.0 92.0 92.1

Benchvise 64.3 80.0 - 97.5 93.0 93.5

Cam 63.2 78.0 - 93.5 94.0 93.8

Can 76.1 86.0 87.4 96.5 93.0 93.6

Cat 72.0 70.0 52.2 82.1 97.0 95.9

Driller 41.6 73.0 90.3 95.0 87.0 92.1

Duck 32.4 66.0 77.7 77.7 92.0 92.5

Eggbox 98.6 100.0 72.2 97.1 100.0 100.0

Glue 96.4 100.0 76.7 99.4 100.0 100.0

Holepuncher 49.9 49.0 91.4 52.8 92.0 93.5

Iron 63.1 78.0 - 98.3 97.0 96.1

Lamp 91.7 73.0 - 97.5 95.0 96.4

Phone 71.0 79.0 - 87.8 93.0 94.5

Average 64.7 79.0 78.0 88.6 94.0 94.9

that Point-6D outperforms DenseFusion by 5.1% in drill object pose estimation. As

for objects holepuncher and phone, Point-6D shows highly accurate prediction.

5.4.4 Evaluation on YCB-Video Dataset

We randomly select five samples from the test data, just as we did with the qualitative

test setting in the LineMOD dataset. Figure 5.7 visualises the 6D pose result , and

each color represents its corresponding object. DenseFusion has an obvious error in

the first image. Objects projection of 051_largez_clamp and 52_extra_large_clamp

are not aligned with the object in the picture in both translation and orientation. On

the contrary, Point-6D predicts the accurate 6D pose for those two objects.

Table 5.2 presents the quantitative results for the YCB-Video dataset. As shown in

Table 5.2, the average accuracy of the proposed 6D pose estimated method Point-6D

99



Table 5.2: Comparison of Point-6D with state-of-the-art methods on YCB-Video datasets in

terms of ADD(s)-2cm and AUC metric. We present percentages of correctly estimated pose

and highlight the best result among those by bold numbers. Objects with a bold typeface

in the name are symmetric.

PointFusion PoseCNN DenseFusion Point-6D
AUC <2cm AUC <2cm AUC <2cm AUC <2cm

002_master_chef_can 90.9 99.8 95.8 100 96.4 100 96.1 100
003_cracker_box 80.5 62.6 92.7 91.6 95.5 99.5 96.4 100
004_sugar_box 90.4 95.4 98.2 100 97.5 100 96.8 100
005_tomato_soup_can 91.9 96.9 94.5 96.9 94.6 96.9 95.6 96.3
006_mustard_bottle 88.5 84.0 98.6 100 97.2 100 97.8 100
007_tuna_fish_can 93.8 99.8 97.1 100 96.6 100 96.6 100
008_pudding_box 87.5 96.7 97.9 100 96.5 100 97.7 100
009_gelatin_box 95.0 100.0 98.8 100 95.4 100 96.8 100
010_potted_meat_can 86.4 88.5 92.7 93.6 91.3 93.1 93.6 94.2
011_banana 84.7 70.5 97.1 99.7 96.6 100 96.7 100
019_pitcher_base 85.5 79.8 97.8 100 96.4 100 97.1 100
021_bleach_cleanser 81.0 60.5 96.9 99.4 95.8 100 97.0 100
024_bowl 75.7 24.1 81.0 54.9 88.2 98.8 90.5 98.2
025_mug 94.2 99.8 95.0 99.8 97.1 100 96.6 100
035_power_drill 71.5 22.8 98.2 99.6 96.0 98.7 97.2 98.6
036_wood_block 68.1 18.2 87.6 80.2 89.7 94.6 92.5 95.8
037_scissors 76.7 35.9 91.7 95.6 95.2 100 96.2 100
040_large_marker 87.9 80.4 97.2 99.7 97.5 100 95.8 100
051_large_clamp 65.9 50.0 75.2 74.9 72.9 79.2 90.2 92.7
052_extra_large_clamp 60.4 20.1 64.4 48.8 69.8 76.3 89.7 90.3
061_foam_brick 91.8 100 97.2 100 92.5 100 95.2 100
Average 83.9 74.1 93.0 93.2 93.1 96.8 95.5 98.3

100



Figure 5.7: Qualitative results on the YCB-Video Dataset. The object point

cloud model is transformed with corresponding 6D pose and then projected to the

2D image via camera projection function. The first row is the object projection with

ground truth pose, the second row is the Dense Fusion result and the last row is Point-

6D.

outperforms all the competitors on both AUC and ADD metrics. On the AUC metric,

we surpass PointFusion [104] by 11.6%, exceeds PoseCNN [4] by 2.5% and outperforms

DenseFusion [15] by 2.4%. The previous methods [104, 4, 15] did not work very well

for "051_large_clamp" and "052_extra_large_clamp" object. Out method improves

the performance on those two object by a large margin. The first qualitative results

in Figure 5.7 gives an intuitive impression of the improvement. We also demonstrate

the evaluation on an ADD metric and Point-6D also achieves the best performance on

average estimation accuracy.
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5.4.5 Ablation Study

In this section, we investigate the influence of different voxel downsampling values in

the refinement phase for 6D pose estimation. Figure 5.8 illustrates the object point

cloud with different voxel values.

original point cloud voxel=0.002 voxel=0.004 voxel=0.006 voxel=0.008 voxel=0.01

Figure 5.8: Duck point cloud model with different voxel size

From Figure 5.8, it can be clearly seen that the object point cloud model is getting

sparse as the voxel value increases. Theoretically, the running time is negatively cor-

related with the number of source points; as the number of points is fewer, the speed

of execution is faster. However, the experimental results are not so.

We select six objects with different sizes to conduct this experiment and the results

are illustrated in Figure 5.9. For objects ape, benchvise and phone, the overall trends

are downward. But for the remaining three objects, the running time is not directly

related to the number of points. It is possible, therefore, that the iteration number

and criteria impact on the refinement running time. Even though there are fewer

input points, it takes a long time if the refinement iteration cannot converge quickly.

Besides, another finding is that the average time decreases as the diameter of the object

decreases.

For the estimation accuracy indicated by the red line in Figure 5.8, voxel = 0.06 is a

very desirable value for the post-processing. For the evaluation experiments conducted

before, we set the voxel value to 0.06.
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(a) Experiment on Ape (b) Experiment on Benchvise

(c) Experiment on Cat (d) Experiment on Drill

(e) Experiment on Iron (f) Experiment on Phone

Figure 5.9: Accuracy and running time of 6D pose estimation with different down-

sampling voxel value. The running time means the time consumed by one frame.
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5.5 Summary

In this chapter, we proposed an object 6D pose estimation network Point-6D (that is

section 5.2) shown in Figure 5.1 using a point cloud as input. The proposed deep neural

network, Point-6D, can merge points, colors, and normal features from three channels

to regress the 6D pose of known objects per-point level. Besides, we demonstrated the

performance of Point-6D and state-of-art 6D pose estimation systems on LineMOD

[3] and YCB-Video [4] datasets. For the evaluation on the LineMOD dataset, Point-

6D outperforms state-of-art method PoseCNN by 16.9 %, DeepIM [161] by 6.3% and

DenseFusion by 0.9% on average accuracy. For the evaluation on the YCB-Video

dataset, we surpass PointFusion [104] by 11.6%, exceed PoseCNN [4] by 2.5% and

outperform DenseFusion [15] by 2.4%. At the end of the chapter, we investigated the

impact of different voxel downsampling values in the refinement phase for 6D pose

estimation and found out the best choices for the voxel values.
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Chapter 6

Conclusions

The main motivation of the project has been to use artificial intelligence to replace hu-

mans in dangerous and repetitive tasks. This thesis introduces three novel algorithmic

contributions and a case study to show the power of the proposed 3D computer vision

system. In the sections that follow, a summary of the key contributions is presented

in Section 7.1 and potential future research directions are discussed in Section 7.2.

6.1 Summary of Contribution

Chapter 3 proposes an environment reconstruction algorithm by using a colored point

cloud. Compared with current widely-used approaches, the method is distinct for the

following reasons: (1) the point cloud fusion algorithm 2 takes advantage of photometric

and geometric information to improve point cloud registration accuracy; (2) we employ

Levenberg-Marquardt to replace a Newton-Gaussian function in the iteration step and

(3) we develop a hierarchical coarse-to-fine strategy that can reduce the pose drifting

issue. Furthermore, we evaluate the proposal in RGB-D Scenes and the SUN3D dataset.

The former one is a small scale dataset and the latter one is a large scale indoor dataset.

Apart from these, we conduct an evaluation on a real-world scene. These experiments

prove the effectiveness of the proposed point cloud fusion Algorithm 2.
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Chapter 4 and Chapter 5 focus on objects’ 6D pose estimation. An RGB-based ob-

ject 6D pose estimation algorithm is proposed by exploiting CNNs. This novel 6D pose

estimation method can detect objects, segment instances and predict 6D pose simul-

taneously from a single RGB image without any PnP process. Besides, we introduce

Contour-Alignment, an efficient algorithm for pose refinement in an RGB image. The

CA refinement Algorithm 3 only needs two iterations to reduce the translation error

by 70%. At the end of Chapter 4, effectiveness is evaluated on a LineMOD dataset

for single object pose estimation and LineMOD-Occluded for a multiple objects pose

estimation dataset. In addition, we also demonstrated how to use synthetic data to

train custom objects.

Chapter 4 mainly considers the scenarios where depth information is not available.

Chapter 5 proposes an object 6D pose estimation algorithm using a point cloud as

input. The novel deep neural network, Point-6D, can merge points, colours, and normal

features from three channels to regress the 6D pose of known objects per-point level.

Besides, the performance of Point-6D is demonstrated in comparison with state-of-art

6D pose estimation system on LineMOD [3] and YCB-Video [4] datasets. For the

evaluation in the LineMOD dataset, Point-6D outperforms the state-of-art method

PoseCNN by 16.9 %, DeepIM [161] by 6.3% and DenseFusion by 0.9% on average

accuracy. At the end of the chapter, we investigate the impact of different voxel down-

sampling values in the refinement phase for 6D pose estimation and present the best

choices for voxel values.

6.2 Future Research Directions

Although a lot of work has been completed in this thesis, we are just scratching the tip

of the iceberg in the field of 3D robotic vision. In future studies, there are a number

of numerically fascinating directions that are worth investigation.

Self-supervised learning: The learning-based 6D pose estimation methods in this

thesis are supervised learning, which rely on ground truth data to learn. In most
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scenarios, it is difficult to acquire accurate 3D ground truth data. Furthermore, the

annotation of 6D pose is complicated and laborious. In this thesis, a synthetic dataset is

introduced, which alleviates the above limitations slightly. But the migration between

synthetic data and real data makes it a challenge. The trained models having a good

performance in synthetic data does not necessarily mean that they will have the same

good performance on real data. Some recent works Deng et al. [27], Wang et al.

[28] have considered utilizing self-supervision in 6D pose estimation to create robot

annotated data autonomously. However, these require a precise target object model as

a template or source of the synthetic training data. Therefore, an exciting direction

for research is to let the robot label object 6D pose according to 2D clues.

High level robotic autonomy: The robotic system in this thesis is a semi au-

tonomous system, whereby the robot can complete tasks according to the operator’s

commands. Assuming that the robot has a working environment model and objects

and their location in the environment; it is an interesting research direction to make the

robot decide what action it should perform rather than relying on direction from the

operator. A possible approach for future autonomy may be provided by the sEnglish

based robot reasoning scripting system as presented at www.transparentrobots.org

and in [164] using natural language programming (NLP) [165].

Deep reinforcement learning for robotic manipulation: Recently, reinforcement

learning [166] combined with convolutional neural network has applied successfully in

learning policies in the field of robotic manipulation. Due to the use of reinforce-

ment learning, robot is able to directly learn dexterous manipulation from raw im-

ages. In the field of robotics, reinforcement learning normally represents continuous

high-dimensional action and state space [167]. Levine et al. [168] proposed a novel

reinforcement learning with a CNN grasp predictor to learn objective, and a servoing

mechanism to utilize this predictor to optimize grasp performance. The demonstration

shows that the robot can constantly adjust its grasp pose with the use of continuous

feedback, and successfully grasp in the clutter on a wide range of objects. However,

to generate enough data, Levine et al. [168] used up to 9 of robot collecting over
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900,000 grasp attempts, which is quite time-consuming. To improve sample efficiency,

Wulfmeier et al. [169] developed a reinforcement learning system with an alignment

rewards that encourage both agents in simulated and real robots to have similar dis-

tributions over visited states. So an exciting research for future work would to how

to quickly implement data collection across many deployed robots engaged in both

real world and simulation environment. In addition, imitation learning [170] with a

mentor provides demonstrations, meta learning [171] that can train a model on a va-

riety of learning tasks, and inverse reinforcement learning [172] that benefits designing

reasonable reward functions are all worth investing deeply in the future.
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Appendix A

Methods for Non-Linear Least

Squares Problems

In the field of 3D vision, whether in creating 3D-3D correspondence that is involved

in Chapters 3 and 5 or 3D-2D correspondence that is used in Chapter 4 each of these

require the solution of non-linear least squares problems. This section presents two

classical methods for solving non-linear least squares optimisation: the Gauss-Newton

method and the Levenberg-Marquardt method.

A.1 The Gauss-Newton Method

For a non-linear least squares problem:

x = argminxF (x) (A.1)

F (x) = 1
2∥f(x)2∥ (A.2)

The Gauss-Newton method uses the Taylor expansion to obtain a linear approximation:

f(x + ∆x) ≃ l(∆x) ≡ f(x) + J(x)∆x (A.3)
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where J is the Jacobian matrix that includes the first partial derivatives of the function:

J = [ ∂f

∂x1
· · · ∂f

∂xn

] (A.4)

Inserting eqn. (A.2) into eqn. (A.3) we derive that:

F (x + ∆x) ≃ L(∆x) ≡ 1
2l(∆x)T l(∆x)

= 1
2f(x)T f(x) + ∆xT J(x)T f(x) + 1

2∆xT J(x)T J(x)∆x

= F (x) + ∆xT J(x)T f(x) + 1
2∆xT J(x)T J(x)∆x

(A.5)

Take the derivative of the above formula and set the derivative to 0, we obtain:

J(x)T J(x)∆x = −J(x)T f(x) (A.6)

Then transmitting eqn. (A.6) can solve the increment value ∆x:

∆x = −(J(x)T J(x))−1J(x)T f(x) (A.7)

Updating of x by

x := x + ∆x (A.8)

as above can be carried on until a terminating criterion is met, such as no significant

reduction in the value of F (x).

A.2 The Levenberg-Marquardt Method

Levenberg and later Marquardt proposed the Levenberg-Marquardt(LM) algorithm on

the basis of Gauss-Newton method to solve non-linear least squares problems. The LM

algorithm adds a trust region into the Gauss-Newton method to constrain the range of

∆x. Within the trust region, we consider the approximation to be valid; outside the
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trust region the approximation can be unreliable. In the LM algorithm, eqn. (A.6) is

modified to :

(J(x)T J(x) + µI)∆x = −J(x)T f(x) (A.9)

where I is the identity matrix and µ denotes damping scalar such that µ ≥ 0. For the

choice of the µ the principles is followed that the initial value of µ should depends on

the size of the elements in A = J(x0)T J(x0), hence:

µ0 = maxi{aii} (A.10)

where aii represent the diagonal elements of A and the rest of µ is obtained by a widely

used strategy [173] recursively:

if φ > 0

µ := µ ∗max{13 , 1− (2φ− 1)3};

else

µ := µ ∗ ν; ν := ν ∗ 2

(A.11)

where the initial value of factor ν is 2 and φ is the gain ratio that is obtained with the

value of µ from the previous step by:

φ = F (x)− F (x + ∆x)
|L(0)− L(∆x)| (A.12)

Here the denominator is derived from eqn. (A.5) and eqn. (A.9):

L(0)− L(∆x) = F (x)− (F (x) + ∆xT J(x)T f(x) + 1
2∆xT J(x)T J(x)∆x)

= −∆xT J(x)T f(x)− 1
2∆xT J(x)T J(x)∆x)

= −1
2∆xT [2J(x)T f(x) + (J(x)T J(x) + µI − µI)∆x]

= −1
2∆xT [2J(x)T f(x) + (−J(x)T f(x)− µI∆x]

= −1
2∆xT (J(x)T f(x)− µ∆x)

(A.13)

Inserting µ into the eqn. (A.9) gets value ∆x:

∆x = −(J(x)T J(x) + µI)−1J(x)T f(x) (A.14)
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For a fixed x the µ and ∆x are to be updated until the convergence criterion is reached.

Generally, the convergence criterion includes maximum iteration, relative fitness and

relative RMSE.

The x itself is updated by

x := x + ∆x (A.15)

until we meet the terminating criterion is met in terms of the reduction of F (x).

A.3 Discussion

From eqn. (A.9) we can notice that Gauss-Newton requires that the matrix J(x)T J(x)

is positive definite and invertible. However, in the computation, if a matrix J(x) is

a positive semi-definite matrix that means the matrix J(x)T J(x) may be a singular

matrix. Consequently, this can result in increment ∆x being unstable and lead to

non-convergence of the iteration.

While in the LM algorithm, a trust region is added to the increment ∆x. The

damping parameter µ is the trust region radius, and its effects are:

1. When the damping parameter µ is small, J(x)T J(x) dominates, indicating that

the quadratic model can get convergence. In this situation, the LM algorithm is

closer to the Gauss-Newton method.

2. When the damping parameter µ is large, µI dominates, indicating that the

J(x)T J(x) maybe a singular Matrix. In this situation, we actually use the gra-

dient descent method to solve the non-linear least squares problem, which can

avoid non-convergence of the iteration.
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Appendix B

Case Study: An Advanced

Teleoperation System with

Intelligent Vision System

In the previous chapters a point cloud environment reconstruction system, an image-

based 6D pose estimation method, and a point cloud-based 6D pose estimation method

Point-6D were introduced. In this chapter those techniques are applied to a teleopera-

tion system to help operators improve their work efficiency and reduce their workload.

The 3D environment reconstruction Algorithm 2 can provide a high-quality 3D point

cloud model for unknown scenes that can improve their scene understanding. The

object detection system can improve the autonomous level of the teleoperation system

that reduces the workload of operators.

B.1 Introduction

Recently, there has been an increasing number of teleoperated robotic systems deployed

in unstructured and hazardous environments, such as the nuclear industry, search and

rescue, manufacturing and the international space station, etc. [174]. However, current
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teleoperations are mostly based on multi-screen displays [175, 176], which means opera-

tors need to view the multiple video-stream cameras placed in the remote environment

and also monitor the robot’s state in physical space at any point in time. As a result,

operators have to shift their concentration between monitoring the remote camera’s

video feed and monitoring the robot states constantly, which may lead to fatigue and

stress for operators. Apart from this, the operator’s 3D perception of the remote envi-

ronment during teleoperation depends on a 2D projection of a 3D environment. This

process can be time-consuming, inefficient and less productive.

An advanced 3D visualisation system of the remote environment requires explicit 3D

reconstruction scenes. However, the current environment reconstruction technologies

cannot meet the demand, especially for the small-scale texture-less scenes. Offline

methods often need hours to process, while online approaches have a severe weakness

which is their reliance on object surface texture to compute the corresponding relations

between different frames.

Furthermore, an excellent tele-operation system should help operators improve their

work efficiency. The majority of state-of-art systems still excessively depend on human

intelligence. With the development of 6D pose estimation technology, an increasing

number of research projects achieved semantic grasping in a cluttered environment.

Despite this fact, creating vision algorithms for 6D pose estimation in tele-operation

system is still a challenge. Template-based algorithms (e.g., LineMOD [8], PWP3D

[177]) depend on the intact and high-quality 3D object model to extract texture features

of the object and compare it with scenes. In current industrial applications, all objects

manipulated by robots are made of similar material and cannot easily be differentiated

by features such as texture or colour. Deep learning based-methods (e.g., DOPE [178])

can overcome this slightly, but those systems inevitably require long training times and

enormous computing resources.

To bridge such contradictory technical challenges, we developed a novel graphical

user interface (GUI) for teleoperation based on previous proposed works. A robot can

first scan the surrounding environment and generate a high-quality 3D realistic model
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in this system. Second, the object lists are visualised based on the detection history

and operator’s guidance from the visual recognition system. Finally, operators can

select the target object which needs to be grasped by robots. Through a proposed

graphical user interface, the operator can interact with the environment easily. Most

importantly, the developed system can run on both unknown objects and scenes first

"seen".

The main contributions of this chapter are as follows:

• Developed a novel 3D robotic vision system for teleoperation to reduce workload

and improve efficiency.

• Conducted a quantitative experiment in a simulated nuclear waste disposal sce-

nario.

Note that most teleoperation in the past required visualisation using 2D interfaces

[179, 180, 181], 3D point clouds [182] or object surface meshes [183].

The remainder of this chapter is organised as follows: section 2 gives an overview

of the related literature; section 3 details the pipeline of the 3D environment recon-

struction system. Section 4 introduces the human-supervised semi-autonomous system.

Section 5 presents the experiments and results. Finally, conclusions are drawn in Sec-

tion 6.

B.2 Intelligent 3D Robotic Vision System

Figure B.1 conceptually depicts the architecture of the intelligent teleoperation system.

In this section, we detail this teleoperation system from both hardware and software

aspects.

B.2.1 Hardware Configuration

UR5 Robot Arm. The Universal Robot UR5 robot is a lightweight robotic arm with

6 Degrees of Freedom (DoF), which can engage in varying tasks with reasonable flexi-
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(a) Robot configuration

(b) Block diagram of the teleoperation system

Figure B.1: System Architecture
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bility. It consists of six separate joints with the ranges of +/- 360◦ and the maximum

working radius up to 850mm. The robot is hanging on a work cell that extends the

range of movements and facilitates an environment scan.

ROBOTIQ 2F-85 Gripper. ROBOTIQ 2F-85 Gripper has two articulated fingers

with two joints each (two phalanxes per finger) which are shown in Figure B.1. The

stroke of the gripper is 85mm while its form-fit grip payload achieves 5 kg. The

ROBOTIQ 2F-85 Gripper can automatically adapt to the shape of the target object

grasped.

Zed Mini Camera. For the data acquisition, we adopt a zed-mini stereo camera

fixed on the robot end-effector. Zed-mini is a cost-effective dual lens 3D sensor (stereo

camera) supporting up 2.2k video stream. It can sense depth from 0.1 meters to 12

meters with high accuracy and low energy. Therefore, the Zed-mini camera is widely

used in virtual reality, SLAM, 3D object detection and other 3D vision applications.

Host Computer. All the data is processed by an Alienware R11 desktop. The

graphics processing unit (GPU) of the computer is RTX 3080 which has 10 GB memory

and operates at a frequency of 1440 MHz. The central processing unit (CPU) uses a

Inter Core i9-10900 featuring 10 cores with 20 threads. The maximum frequency of

this processor is up to 5.3 GHz. Due to this high specification computer, the system

is able to process plenty of data and render the point cloud as a 3D model at a speed

that is suitable for some industrial applications.

The above components are the hardware configuration. It is also worth mentioning

that the size of the robotic work cell is 180 cm × 130 cm × 120 cm, which is suitable

for the robot’s movements to handle objects on the workbench.

B.2.2 Software Configuration

The robotic software system is built around the ROS (Robot Operation System) that

can streamline system integration and data exchange. ROS is an open-source frame-

work providing various tools, libraries, and conventions for robotic systems. The ad-
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vantage of using ROS is the hardware abstraction and low-level control of the robot

without the user knowing all the details of the robot. Furthermore, the ROS-based

development enables the system to be deployed in industrial sites easily.

UR5 Robot Package. We exploit ROS-Industrial Universal Robot meta-package to

provide a stable and sustainable interface between UR5 robot and ROS. This package

includes essential nodes for communication with the UR robot controller, the unified

robotic description format (URDF) models and the related MoveIt ROS packages for

various models of UR robots.

ROBOTIQ 2F-85 Gripper Package. The drive of the ROBOTIQ 2F gripper is

from the ROS-Industrial Robotiq meta-package. This package provides URDF models

and a robotiq_2f_action_server node that can control the position, speed and force

of the gripper.

Zed-mini Drive. The zed-mini drive is from ZED SDK on stereolabs.com. To work

with ROS together, we use the zed_ros_wrapper package. This package can switch

the camera to left or right, rectify/unrectify images, create depth map, create coloured

dense 3D point cloud. It can also output odometer trajectory, containing position and

orientation estimates of the camera based on measurements by the IMU.

MoveIt Package. The MoveIt Motion Planning Framework is an open source robotics

manipulation platform integrated with many useful packages including motion plan-

ning, manipulation, inverse kinematics, control, 3D perception, collision checking, etc.

With the help of MoveIt, the robot can generate a high-degree of freedom trajectories

automatically for given gripper and object pose. After a plan is tested in virtual real-

ity, the computed joint trajectories can be transmitted to hardware controllers to be

executed.

B.2.3 Graphical User Interface

To improve operator experience and efficiency, a concise GUI has been developed as

shown in Figure B.2. The operator needs to use mouse clicks to send high-level com-
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mands to the robot. The next section details the function and implementation of each

component of this interface.

Figure B.2: The graphical user interface

Scan. When the scan button is clicked, the robot camera starts moving along a preset

scan path of camera poses as the arm moves it around. For a circular trajectory of the

preset path, the operator needs to select eight sample poses with 45◦ increments, as

shown in 8 images in Figure B.3. During the scanning process the camera’s software

generates coloured point clouds at each pose. The captured coloured point clouds are

merged using the fusion algorithm (Algorithm 2) as proposed in Chapter 3. More

specifically, the point cloud is transformed from camera coordinates to customised

world coordinates, that is, linked to the centre of the workbench. Utilizing the point

cloud fusion system outlined in Figure 3.3, the eight point clouds that are captured from

multi-view are merged to one scene model. The scene model is published via a ROS

topic as sensor_msgs/PointCloud2 message. The GUI and RVIZ (a ROS visualisation

program) can display the point cloud model together with thee RVIZ Moveit virtual

reality environment as based on Gazebo (a VR simulator associated with ROS) as
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shown in Figure B.4.

Figure B.3: Eight sampling points for robot arm

Localization of objects. The localization algorithm provides the required object’s

position, which is needed for grasping. In this case study, two situations are considered

: (1) known objects (2) unknown objects. For known objects, we can detect objects via

a neural network as presented in Chapter 5. In this work, we assume that the diameter

of the objects to be grasped is less than the maximum stroke of the gripper. The

adopted gripper can pick up objects without calculating grasp orientation. Therefore,

we convert the problem to an instance segmentation task that extracts object position

information only.

Select. The challenge of supervised learning is to label ground truth data. After

manually labeling the point cloud data, we can train a network to predict object points

in the scene and compute the centroid of the object. This component is designed for

tasks under unknown scenes. The neural networks will fail when it comes to a new

environment. Therefore, the object position needs to be obtained with the help of

human intelligence. In the GUI, operators can select objects via the left window that

displays the whole point cloud model. This procedure can be done easily through

mouse clicking. After entering an object name, we can obtain an object’s grasping

location. Figure B.5 illustrates the processing of selecting object.

Publish in ROS. All the detected objects are published using a ROS topic with mes-

sage type of geometry_msgs/PoseStamped. Toward this end, we can achieve grasping

of objects by subscribing a corresponding pose topic, which can streamline the data

exchange.

Pick Up. When users click the “Pick Up” button, there is a new window pop-up

that lists all the detected objects as shown in Figure B.6 (a). The user can send the

command to the robot controller via "Select" to indicate which object needs to be
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Figure B.4: Environment modeling

picked up.

Place. When users click the “Place” button, there is a new window pop-up as well

(illustrated in Figure B.6 (b)). Apart from the list of objects, an option is provide for

users to select where they want to place an object.

122



(a) Selecting target object (b) Entering object name (c) Localizing object

Figure B.5: Operator select target object.

(a) Selecting target object (b) Entering object name

Figure B.6: Pick-up and place objects list

B.3 Experiment

The proposed system has been applied to a laboratory nuclear waste handling scenario

shown in Figure B.7 to verify the effectiveness of the system1. More specifically, the

task of this experiment is to pick up the cube object and place in the yellow box, as

well as pick up the yellow spring and place in the white box.

In the experiments we have conducted, we compared two different teleoperation

modes, one is using the UR5e robot controller panel that is manipulated manually.
1The laboratory of the setup was provided under the EPSRC RAIN (Robotic AI in Nuclear) project

lead by Professor Sandor M Veres at Sheffield University.
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Figure B.7: Simulated nuclear waste hand

The other mode is to utilize an intelligent vision system to finish the task.

For the manual mode, we use the UR5 robot controller panel shown in Figure B.8

to operate the robot to complete the task requested. Arrows in the red and yellow

boxes are used to control the pose of the end-effector, and the area with the green box

can control the movement for each joint. Note that the robot and gripper systems are

driven independent software systems, so we have to drive robot movement in the UR5e

controller panel, while controlling the gripper via the computer. This cumbersome

operation will imperceptibly increase the workload. In the experiment we conducted,

the time to complete the task was 5 minutes and 13 seconds. Apart from this, during

the experiment, the pick up for the yellow spring was unsuccessful at the first attempt.

Furthermore, the protection procedure was triggered several times due to exceeding the

joint limitation. Overall, the fully manual control is not friendly for general users. This

mode requires the operator to be very familiar with the spatial movement of the robot
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and also to have good spatial perception ability. Therefore, this operational mode

is more suitable for trained operators as it is prone to inducing significant operator

fatigue.

Figure B.8: UR5 robot controller panel

In contrast, the proposed system is more efficient and easy to use. The total time

used by the proposed system is 3 minutes and 4 seconds to complete the task, which

saves 2 minutes and 9 seconds compared with manual manipulation. In addition, a

mouse-and-keyboard robot manipulation system is convenient to most potential oper-

ators. Most importantly, the automatic grasping process can free up the operator’s

hands unlike uninterruptible manual teleoperation. The video of the above two exper-

iments is demonstrated at https://youtu.be/PRu4n-Gs64E
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B.4 Summary

In this chapter we presented a novel robotic vision system that can aid human operators

to finish some essential tasks in remote teleoperation. The GUI integrates the various

software drivers, environment scanning component, object detection system and robotic

manipulation system together to reduce an operator’s workload.

The experimental results show that the proposed teleoperation system is efficient

and convenient when compared with manual manipulation via a controller panel. The

environment scanning system can provide a sufficiently precise 3D workbench model

that allows the operator to perceive the spatial position of the bench from the mon-

itor. Moreover, the proposed system allows the operator to select an object quickly

and precisely by automated handling, which improves the efficiency of the operator

significantly.
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Appendix C

Synthetic Data Generation

This section elaborates the processing of 6D pose synthetic data generation. The core

tool is NVIDIA Deep learning Dataset Synthesizer (NDDS) that developed in Unreal

Engine 4 environment.

The above figure shows the basic GUI of NDDS. The red box area is the object

browser that stores the target object model and texture. Using mouse drag the target

model into the middle window. Then in the top right World Outliner panel, select the

target object name and click Add Component button to pop out a menu shown in the

right image. In the pop-out menu, there are four component needed to add for 6D

pose data generation, which are NVCapturable Actor Tag, NVCapturable Actor Tag,

Random Movement, Random Rotation and Random Scale. The NVCapturable Actor
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Tag component is used to distinct target object with the background and obstacles.

If the scene contains multi instances, we need add NVCapturable Actor Tag for each

targets. The Random Movement can control the position of target objects in the image.

We can select the movement range in x, y, and z axis. In our setting, the y range is from

− image_wight
2 to image_wight

2 , and the z range is from − image_height
2 to image_height

2 . This

setting can keep objects within the camera’s field of view. For x value, we disabled the

movement in the x axis because each objects have different dimensions. Alternatively,

we adopt Random Scale to determine the distance between objects’ depth. The range of

this parameter is from 0.1 to 10. Random Rotation is used to change objects’ rotation,

and it provides 360 degree rotation at x, y, and z axis.

For the output, NDDS supports RGB image, depth image and segmentation image

shown in the figure below. In thesis, we set the size of out put image is 640×480.What’s

more, NDDS also provides different components for creating highly randomized images,

which includes textures, obstacle, lighting, visibility, etc. as top figure listed.

(a) RGB image (b) Depth (c) Instance Segmentation

Apart from image data, NDDS also generates a JASON file that contains camera

matrix, camera position, object pose, bounding box, key point etc. data that may be

used in training. Overall, using NDDS to generate synthetic data can greatly simplify

the process of 6D data annotation which allows researchers to easily create randomized

and photorealistic scenes for training deep neural networks.
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