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Executive summary 

This PhD thesis investigates experimentally, theoretically, and numerically the use of 

the Theory of Critical Distance, TCD, to model plain concrete weakened by stress 

concentration features. The first three chapters provide background on concrete, 

Linear Elastic Fracture Mechanics, LEFM, and the TCD, respectively. The latter is a 

sound theory that extends the use of the LEFM concepts to assess engineering 

components weakened by not only cracks but also by any stress concentration feature. 

The TCD works by post-processing the linear-elastic stress fields damaging the stress 

concentrator being considered using two material key parameters: an inherent 

material strength and a length scale parameter, L.  

The length scale parameter, L, is a material property that varies from the microscopic 

to the macroscopic scale depending on the internal structure of the assessed material, 

its fracture processes, and its toughening mechanisms against cracks. As far as un-

reinforced concrete is concerned, several investigations showed that this length scale 

parameter is estimated to be in the order of a few millimetres. This makes L is related 

to the underlying concrete structure at a mesoscopic level. To this end, following the 

first three chapters, chapter 4 provides a systematic experimental and theoretical 

investigation to establish a clear physical link between the TCD critical distance L and 

the meso-structural features of concrete when subjected to static and dynamic loading. 

Accordingly, several concrete beams, which were made from bespoke concrete mixes 

to show failure surfaces of controlled mesoscopic morphologies, were tested to provide 

a rigorous answer to this fundamental research problem. This study found that the 

TCD critical distance L is neither linked to the average aggregate size nor the cement 

thickness that bonds neighbouring aggregates. Instead, it was found that the TCD 

critical distance L is remarkably constant for all different concrete mixes and 

approaches the average distance from the notch tip to the first nearby aggregate 

particles that work as barriers to the crack propagation process.  

Chapter 5 presents a novel extension of the TCD to generalize its use to unreinforced 

notched concrete when subjected to static/dynamic Mixed-Mode I/II loading. This 

new extension of the TCD was validated using an extensive experimental program 

conducted at the Structural Laboratory of the University of Sheffield. It was found that 
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the new reformulation of the TCD made predictions that were within the ±30% error 

scatter band. This error level was considered accurate because it was within the 

intrinsic scattering level of the data points used to calibrate the approach. Thus, it is 

impossible to achieve higher accuracy than the inherent data scattering. Also, the 

proposed rule to determine the location and orientation of the TCD focus path was 

seen accurately matched the initiations and initial propagations of the cracks that were 

observed on the surfaces of the broken specimens 

Chapter 6 is concerned with formulating and validating a methodology based on the 

TCD to assess the static strength of 3D-printed concrete specimens containing stress 

concentration features associated with the potential problems in concrete 3D printing 

processes. The TCD-based methodology was checked against experimental results 

generated from testing specimens under static three-point bending and contained 

crack-like notches, surface roughness, and manufacturing defects. The experimental 

results of this study showed that the TCD accurately modelled the effect of those stress 

concentrators by conducting simple numerical linear-elastic FE models. Those results 

also showed that the TCD could be used as a quality control tool to monitor the 

strength and other mechanical properties of the concrete component being additively 

manufactured.  

Finally, chapter 7 documents the main findings of this PhD research and provides 

suggestions for future work. 
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Chapter – 1 

1 Introduction 

 Concrete as a structural material 

Concrete is the most widely used material in construction and civil infrastructures 

around the world. This is due to its local availability, low-cost production, 

sustainability, fire resistance, and strength (Li, 2011). Concrete is widely used in many 

structures, such as dams, bridges, pavements, and buildings. By weight, concrete is 

used more than steel by a factor of 10 in tonnage and more than a factor of 30 in 

volume (Li, 2011). 

Furthermore, concrete consumption is approximately 25 gigatonnes per year (WBCSD 

and IEA, 2009), which is equivalent to more than 3.8 tonnes per person annually 

(Gursel et al., 2014). This massive production of concrete harms the environment of 

our planet because the production process of Portland cement is responsible for 

approximately 5 – 7% of carbon dioxide emissions (Dong et al., 2015). 

In addition to that, the traditional way of manufacturing concrete involves using 

frameworks that are typically made of timber or plywood. According to Jipa et al. 

(2018), these materials cost almost half the total concrete construction cost. In 

addition, these forms are wasteful materials that should be disposed of after one or 

several uses. Consequently, they contribute to the growing construction waste 

(Nematollahi et al., 2017), where construction waste comprises about 80% of the total 

waste worldwide (Llatas, 2011).  

The above environmental impacts could be minimized by using modular concrete over 

in-situ construction (Lawson et al., 2014; Board, 2017). Modular concrete is a modern 

way of concrete construction where a member (i.e., beams, columns, wall panels, etc.) 

or a 3D-sized unit (i.e., accommodations, offices, and bathrooms) is manufactured off-

site under a factory-controlled environment (Lawson et al., 2014). Then, they are 

transported and assembled at the construction site. Factory-based concrete reduces 

the construction time by 50%  (Lawson et al., 2014) and construction waste by about 

65% (Jaillon and Poon, 2008) compared to in situ concrete.  
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Furthermore, modular concrete is used to produce non-standard concrete 

components and unique architectural designs of complex geometries using custom 

forms (Lloret et al., 2015). Therefore, the direction of off-site concrete manufacturing 

is a promising future for the advancement of architectural designs (Generalova et al., 

2016).  

Additively manufactured concrete (3D printed concrete) is an automotive 

manufacturing process of concrete layer by layer using a nozzle to build up the 

concrete structure. It is a potential solution to address the problems associated with 

traditional concrete manufacturing. One of the significant advantages of 3D printed 

concrete is that there is no need for expensive (incredibly wasteful) formwork because 

3D printed concrete could hold its shape (i.e., while wet). Therefore, both concrete 

costs and the construction materials being wasted will be significantly reduced. In 

addition to that, 3D printed concrete will enable designers to create innovative and 

complex concrete structures (Buswell et al., 2018). 

The use of concrete to make sleepers of the railway track systems is more popular than 

steel and wood for the reasons mentioned at the beginning of this section (You et al., 

2017). Concrete sleepers are rectangular beams that are placed perpendicularly under 

the steel rails and fixed using fastening bolts. These sleepers are one of the most 

important components in the railway system because their main function is to transfer 

the loads to the underlying ballast base and subgrade and to provide adequate 

resistance to lateral and longitudinal movements of the rail systems (Raj et al., 2018). 

However, one of the main drawbacks of using concrete sleepers during service life is 

failures due to longitudinal cracks initiating in the vicinity of the fastening bolts 

(Rezaie et al., 2012). 

 Concrete components 

Concrete is a composite material made of blending cement paste (cement powder and 

water) with coarse aggregates (natural rounded river aggregates or crushed rock 

aggregates) and sand. This fresh concrete should be poured into a formwork of the 

desired shape and dimensions. And over time, the cement hydration process occurs, 

which bonds all ingredients together to develop hardened concrete (a stone-like 

material). This hardened concrete is a three-phase material consisting of aggregates, 



3 

 

cement paste, and a transition zone. The transition zone is the contact area (interfacial 

area) between the cement paste and the aggregate (Neville and Brooks, 1987; Li, 2011; 

Carpinteri and Ingraffea, 2012). 

The main factors that influence the concrete properties and the mechanical properties 

of hardened concrete will be reviewed in Sections 1.3 and 1.4, respectively.   

 Factors affecting concrete properties 

 Water-to-cement ratio (w/c) 

The amount of water added to a concrete mix is quantified by calculating the water-to-

cement ratio, w/c. It is the most crucial parameter that affects concrete properties, 

such as permeability, durability, and strength (Neville and Brooks, 1987; Li, 2011). 

Concrete strength decreases with increasing w/c (Waliker and Bloem, 1960), so low 

ratios are used to produce high-strength and durable concrete (Li, 2011). In Figure 1.1, 

it is clear that the strength of the concrete increases rapidly with low w/c ratios. 

However, simultaneously, with low w/c ratios, concrete handling (workability) 

becomes difficult, which may be resolved by adding plasticiser or superplasticiser.  

 

Figure 1.1 Influence of the w/c ratio on the compressive strength; data obtained from 
concrete mixtures prepared between 1985 and 1999 (Kosmatka et al., 2003). 

Studies on the influence of the w/c ratios have started since the early of the last century 

(Feret, 1897; Abrams, 1918). Duff Abrams had established a relationship between the 
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w/c ratio and the concrete strength using what is called Abram’s water-cement ratio 

rule, as (Duff Abrams, 1927; Mehta and Monteiro, 2014): 

𝑓𝑐 =
𝐴

𝐵1.5(𝑤 𝑐)⁄
 (1.1) 

 where fc is the compressive strength, A is an empirical parameter (usually equal to 97 

MPa), B is a parameter that depends on the cement properties and is generally equal 

to 4 (Li, 2011).  

 Aggregate content 

Aggregate particles are used as inert fillers and occupy approximately  70% to 80% of 

the concrete volume (Shafigh et al., 2014). The strength of the aggregate particles is 

not of concern because it is several times greater than the concrete matrix and its 

interfacial zone, except for high porous and lightweight aggregates (Mehta and 

Monteiro, 2014). However, the physical characteristics of aggregates such as shape, 

maximum size, surface texture, and aggregate size distribution are well-known factors 

that influence the concrete properties (Mehta and Monteiro, 2014).   

The maximum aggregate size tends to affect the concrete workability and strength. 

Under the same w/c ratio, increasing the maximum aggregate size requires less 

cement paste to coat the aggregate particles. Consequently, higher cement paste is 

available as a lubricant to improve the workability of concrete with large aggregate 

particles (Li, 2011). On the other hand, increasing the aggregate sizes would relatively 

reduce the strength of concrete. Using large aggregate particles would increase the 

interfacial zone between the aggregate and cement paste. Therefore, a more porous 

medium filled with microcracks weakens the concrete (Mehta and Monteiro, 2014). 

Concrete strength is also influenced by the w/c ratio with the same maximum size 

aggregate, as shown in Figure 1.2. From the data presented in Figure 1.2, it is apparent 

that the w/c ratio significantly influences the strength of the concrete. However, it is 

essential to highlight that for high-strength concrete (w/c = 0.40), the maximum 

aggregate size substantially affects the concrete compressive strength. On the other 

hand, the effect fades almost completely in low-strength concrete (w/c = 0.70). Such 
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behaviour is predictable as the porosity in the transition zone starts to have a major 

effect with the low w/c ratios along with increasing the size of the aggregate particles.  

 

Figure 1.2 The effect of increasing the maximum aggregate size and the w/c on the 28-day 
compressive strength of concrete (Mehta and Monteiro, 2014). 

The aggregate size distribution is an essential factor to produce economic and 

workable concrete. When using well-graded aggregates, the small particles fill the 

voids between the large ones (Neville and Brooks, 1987; Li, 2011; Mehta and Monteiro, 

2014). Thus, the required amount of cement is reduced because it is the most 

expensive component. Additionally, the use of well-graded aggregate contributes to 

better compressive strength and lowers the permeability coefficients of concrete 

(Mehta and Monteiro, 2014). Moreover, well-graded aggregates influence the fresh 

characteristics of concrete, such as consistency of the mix, workability, bleeding, and 

aggregate segregation (Mehta and Monteiro, 2014).  

The aggregate surface texture somehow influences the strength of concrete in the early 

ages, especially the tensile strength (Mehta and Monteiro, 2014). The rougher the 

aggregate, the higher the concrete strength. This is because rough aggregate particles 

bond better with the cement paste than smooth ones. However, as concrete ages, the 

influence of surface texture will eventually decrease as the chemical interaction 

between the cement paste and the aggregate surface has already occurred (Mehta and 

Monteiro, 2014).  
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 Curing 

Concrete curing means providing a proper environment (i.e., humidity and 

temperature) to concrete. The curing process should start immediately after pouring 

fresh concrete into the moulds to assess the proper cement hydration process and 

eventually achieve the designed strength (Mehta and Monteiro, 2014). Freshly mixed 

concrete may have more water than is needed for the hydration process. However, 

water lost due to evaporation from capillaries causes a delay or prevention of the 

hydration process, resulting in improper micro defects in concrete (plastic shrinkage) 

and insufficient strength (Li, 2011). Therefore, capillaries should be filled with water 

for the proper cement hydration process (Neville and Brooks, 1987; Li, 2011). 

 Figure 1.3 shows the influence of curing age on the gained compressive strength. 

According to the figure, the water lost from the capillaries results in no further increase 

in the concrete strength after a certain curing period. Also, the figure shows that the 

strength of moist-cured concrete is almost three times the strength of air-cured 

concrete at 180 days of curing age. Typically, standards and structural integrity tests 

measure the strength of concrete after 28 days of proper temperature-humidity curing. 

Measuring the compression strength at this age is an accepted index of concrete 

strength worldwide because the cement hydration process is very slow and even slower 

after 28 days of curing (Figure 1.3).  

 

Figure 1.3 Concrete compressive strength versus different curing periods (Mehta and 
Monteiro, 2014). 
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As far as preparing concrete test specimens in laboratories is concerned, there are 

standardised procedures for proper curing (British Standards Institution, 2019a; 

ASTM, 2020a). According to the British Standards Institution (2019a), prepared 

specimens should be kept in the moulds for at least 16 hours and no more than three 

days. Additionally, the moulds should be sealed in plastic sheets to prevent water 

evaporation and stored at a temperature of 20℃ ± 5℃ (or 27℃ ± 3℃ in a hot 

environment). After de-moulding the specimens, the curing process should be 

continued according to one of the following methods: 

 Submerging the specimens in water that has a temperature of 20℃ ± 3℃. 

 Store the specimens in a controlled room at a temperature of 20℃ ± 3℃ (or 

27℃ ± 3℃ in a hot environment). The relative humidity of the room should be 

no less than 95%.  

 Mechanical properties of hardened concrete 

 Compressive strength 

The compressive strength is the most extensively studied parameter in the literature, 

and even some countries use the compressive strength as a grade for the mix design. 

Several factors affect the concrete compressive strength, such as the proportions of the 

concrete ingredients, type of cement, compaction, curing conditions, and chemical 

admixtures. However, the most influencing factors are the w/c ratio and porosity 

(Mehta and Monteiro, 2014).  

Cubic or cylindrical samples are tested under uniaxial compression loading until 

failure to measure the concrete compressive strength. The British Standards 

Institution (2019b) is the latest version of the standardised test procedure for finding 

the compressive strength of cubic specimens, and ASTM (2020b) is the American 

standard for finding the compressive strength of cylindrical specimens. 

According to the British Standards Institution (2019b), 100 mm (or 150 mm) cubic 

samples should be loaded without shocking the specimens. Thus, the standard 

recommends applying a pre-loading of no more than 30% of the anticipated failure 

load. Then, a constant loading rate of 0.6 ± 0.2 MPa/s is recommended to be applied 
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until the test specimen fails. This loading rate is recommended because the strength 

and even stiffness increase with increasing the applied loading rate. The failure 

strength should be recorded and expressed to the nearest 0.1 MPa.  It should be 

emphasized that an accepted failure criterion for cube specimens is indicated by cracks 

that appear equally on all cube faces with approximately no cracks near the loading 

plates (Figure 1.4). 

 

Figure 1.4 Schematics of accepted failures of cube specimens (British Standards Institution, 
2019b). 

Figure 1.5 shows normalized stress-strain curves that were obtained from testing 

cylinder specimens at different strain rates. According to this figure, the maximum 

strength is slightly higher with a higher strain rate, but the softening branch is 

significantly sensitive to the applied strain rate.  

 

Figure 1.5  Experimental examples of the compressive stress-strain curves under various 
strain rates [data from (Rüsch, 1960); figure from (Carpinteri and Ingraffea, 2012)]. 

 Direct/indirect tensile strength  

Testing concrete under uniaxial tension is not a popular test because, unlike steel, it is 

difficult to apply for many reasons (Li, 2011). For instance,  it is not easy to centre the 

loading axis with the specimen centroid. Also, the brittleness and heterogeneity cause 
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non-uniform stress distributions and sudden changes in the specimen cross-sections. 

Therefore, it is difficult to control the overall process of the test, and the loading device 

introduces secondary stress that cannot be ignored (Li, 2011). Figure 1.6 shows 

experimental results of the uniaxial tensile stress-strain relationship. The strain 

calculation differs when measured from the entire change in the test specimen length 

compared to calculating it from a change in a small zone (Hillerborg, 1978). In Figure 

1.6, the strain was calculated from the change in the length of the entire specimen.  

 

Figure 1.6 Experimental results of uniaxial tension stress-strain curve [data from (Terrien, 
1980); figure from (Carpinteri and Ingraffea, 2012)]. 

According to Figure 1.6, there are three stages in the stress-strain diagram: two stages 

to reach the peak stress and a third stage after the peak stress (Carpinteri and 

Ingraffea, 2012). In the first stage (I’), the material can be considered to follow a linear-

elastic behaviour; and in the second stage (II’), a small deviation from the linear line 

until the maximum strength is reached. This is caused by the development of the 

micro-cracks (debonding between the aggregates and cement paste). In the third stage 

(III’), a sharp fall in the curve occurred due to the progressive damage of the previously 

developed cracks. 

Since it is difficult to conduct a uniaxial tensile test for the aforementioned reasons, 

indirect tension tests such as split tensile tests (the Brazilian test) and bending tests 

have been developed instead. In the bending tests, the determination of the flexural 

strength (modulus of rupture)  is either by performing a four-point bending test (4PB) 

or a three-point bending test (3PB). When conducting a bending test, there are 

standards to follow (ASTM, 2016; British Standards Institution, 2019d): 
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 ASTM C293/C293M-16: Standard test method for flexural strength of concrete 

(using a beam with centre-point loading). 

 BS EN 12390-5:2019: Testing hardened concrete. Part 5: Flexural strength of 

test specimens. 

The British Standards Institution (2019d) recommends testing square cross-section 

beams of nominal width and thickness equal to a reference size d and a length greater 

than or equal to 3.5d, as shown in Figure 1.7. Furthermore, the standard states that the 

specimen size should comply with the British Standards Institution (2021), which 

essentially states that the reference size d should be at least equal to three and a half 

times the maximum aggregate size. Furthermore, the dimensions and shape of the test 

specimens should comply with the standards tolerances; if not, they could be adjusted 

as follows, or otherwise, they should be rejected: 

 Grinding the uneven surfaces if not levelled. 

 Cutting/grinding the deviation angels. 

The British Standards Institution (2019d) states that the test should be carried out at 

a temperature of 20℃ ± 5℃ and within 10 hours after removing the test specimen from 

the curing state (or at 25℃ ± 5℃ and shall be tested within 4 hours in hot climates). 

In addition, the standard states that the test specimen and the rollers of the testing 

machine should be wiped clean from excess moisture and loose grit and dirt. After 

that, the specimen should be placed and centred correctly by ensuring that all 

supporting rollers are at the right angle (90 degrees) with the axial axis of the test 

specimen, as presented in Figure 1.7. Note that the loading roller and one of the 

supporting rollers should be free to rotate and be inclined in the plane perpendicular 

to the axial axis of the test specimen.  

Before applying the loading, the machine rollers should be in tight contact with the 

test specimen to avoid shocking the sample. The standard recommends using a pre-

load of no more than 20% of the anticipated failure load. After having the test 

specimen in tight contact with the three rollers, the standard recommends applying a 

constant stress rate between 0.04 MPa/s and 0.06 MPa/s until failure. Also, the 

standard provides a formula to calculate the loading rate based on the specimen 

dimension and the span between the lower supports. Finally, the flexural strength can 
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be calculated according to Eq. (1.2), which is an equation derived based on the beam 

theory: 

𝜎𝑓 = 1.5
𝑃𝐿

𝑏𝑑2
 (1.2) 

 

Figure 1.7 Recommended three-point bending test set up. 

 Modulus of elasticity 

The elastic modulus is a measurement of the material resistance to non-permanent 

deformations. It can be calculated from the initial slope of the stress-strain 

relationship or from the origin to any point on the stress-strain curve (secant 

modulus).  According to ASTM (2014), the secant modulus can be calculated at a point 

having 40% of the peak load. This method of determining the modulus of elasticity is 

by testing a specimen under uniaxial compression/tension loading with mounting 

extensometers (or displacement gauges) to measure the dilation of the sample. This 

method of measuring the elastic modulus is called the destructive method. The 

modulus of elasticity develops with age and, as expected, increases with decreasing the 

w/c ratio (Byfors, 1980). 

It is worth mentioning here that there is a non-destructive method to measure the 

elastic modulus using ultrasound (Boumiz et al., 1996; Nagy, 1997; Jin and Li, 2001). 

Measuring the modulus of elasticity using this non-destructive method is motivated 

by obtaining the elastic modulus without causing any damage to the concrete. Thus, it 

is preferred to overcome the difficulties of getting the elastic modulus using the 

traditional method at an early age of concrete (Nagy, 1997). 
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The relationships between the elastic modulus of concrete and compressive strength 

have been well established. According to the British Standards Institution (1985), the 

modulus of elasticity can be estimated from the compressive strength of cubic 

specimens according to the following relationship. 

𝐸𝑐 = 9.1𝑓𝑐
0.33 (1.3) 

 where fc is the compressive strength and must be expressed in the SI unit (MPa), and 

Ec is obtained in GPa. Another relationship between compressive strength and elastic 

modulus was derived for cylindrical specimens (ACI Committee, 2008): 

𝐸𝑐 = 4.70𝑓𝑐
0.5 (1.4) 

 where, again, fc is the compressive strength in MPa and Ec is obtained in GPa. 

 Poisson’s ratio 

For any material loaded axially, Poisson's ratio is defined as the ratio of the lateral 

strain to the axial strain in the elastic range. The value of the Poisson’s ratio of concrete 

varies between 0.15 and 0.2 (Mehta and Monteiro, 2014). Unlike concrete strength 

and modulus of elasticity, Poisson’s ratio does not appear to be influenced by concrete 

age (Günzler, 1970; Oluokun et al., 1991). Also, it is stated that Poisson’s ratio does not 

have an established relationship with the curing age, w/c ratio, and the aggregate 

(Mehta and Monteiro, 2014). However, it generally decreases with high strength 

concrete (Mehta and Monteiro, 2014). 

 Transition zone in concrete 

Hardened concrete is a three-phase material: Aggregate, cement paste, and transition 

zone. The latter may also be called the interfacial transition zone, ITZ, between 

aggregate and concrete matrix. The transition zone is a thin shell of hardened cement 

paste (varies between 10 and 50 𝛍m) that surrounds the large aggregate particles (Li, 

2011). It has a different structure than the bulk cement paste or mortar due to the w/c 

gradient phenomenon in the vicinity of large aggregate particles (Ollivier et al., 1995; 

Li, 2011). This results in fewer cement particles and, hence, a porous transition zone. 
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Table 1.1 presents the permeability coefficients of the aggregate, cement paste, and 

concrete. The permeability coefficient is a quantitative measurement of the water rate 

(or a molecule rate) across a material (or membrane). From the table, concrete made 

of the same aggregate and cement paste has the highest permeability coefficient. The 

high permeability coefficient of concrete can be explained by the formation of the 

porous transition zone explained above. Thus, the fluency of water in the concrete is 

easier compared to aggregate and hardened cement paste. 

Table 1.1 Permeability coefficient of some materials (Li, 2011). 

Material Permeability coefficient (cm/s) 

Hardened cement paste 6 × 10−12 

Aggregate 1 − 10 × 10−12 

concrete 100 − 300 × 10−12 

Furthermore, as shown in Figure 1.8,  under the same loading rate, the compressive 

strength of concrete is lower than that of cement paste and aggregate (Li, 2011). This 

reduction in the compressive strength is because of the existing natural porous 

transition zone. Also, the transition zone explains well why the concrete is rigid in 

compression and relatively weak in tension. 

 

Figure 1.8 Stress-strain curves of aggregate, concrete, and cement paste (Li, 2011).  
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 Statement of the problem and research aims 

As stated in the first section of this chapter, concrete modules and additive 

manufacturing of concrete will facilitate innovative and unprecedented concrete 

structural designs. This will allow the incorporation of complex geometrical 

features/forms into the concrete components. Also, the first section discussed that 

concrete sleepers in railway track systems commonly fail due to longitudinal cracks 

near the holes of the fastening bolts.  

From a structural point of view, concrete components that include complex 

forms/holes will bring localized stress concentrations that cannot be ignored because 

they have a detrimental effect on the overall strength of the concrete component being 

designed. Therefore, the main goal of this research is to systematically investigate a 

proper method to assess unreinforced concrete material with the presence of stress 

raisers, especially with the fact that evaluating the influence of the existence of stress 

gradients in concrete strength has received just a little attention (Pelekis and Susmel, 

2017). 

In more detail, the so-called Theory of Critical Distances, TCD, will be reformulated in 

a novel way to design the concrete static and dynamic strength with the presence of 

stress concentration features and subjected to Mixed-Mode I/II loading. Investigating 

the effectiveness of the TCD new extension will be checked against experimental 

results generated from testing concrete beams, which are weakened by different notch 

sharpness that are tested under various loading rates and loading mode mixity.  

The strength of the 3D-printed concrete could also be weakened due to other stress 

raisers resulting from the nature of the 3D-printing process. These stress raisers could 

be in the form of flaws/voids due to potential interruptions in the concrete printing 

process, rough surfaces due to the nature of concrete filaments placements, and 

manufacturing defects due to poor bonds between adjacent filaments. 

Accordingly, the research aims to develop a TCD-based methodology to 

experimentally detect and model the static strength of additively manufactured 

concrete weakened intentionally by flaws and defects. 
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The TCD method works by post-processing the linear-elastic stress fields damaging 

the assessed stress raisers using an inherent material strength and a length scale 

parameter. This length scale parameter is assumed to be a material property that 

depends on the dominant source of heterogeneity. In the TCD framework, L is either 

calculated or estimated by following specific experimental procedures. However, 

investigating the physical meaning of L is still an unsolved problem that needs further 

investigation. 

Concrete has various sources of heterogeneities and is an excellent substance for 

having experimental evidence of possible links between L and the underlying meso-

structural features. To this end, this PhD research aims to present a systematic study 

exploring experimentally and theoretically a physical intercorrelation between the 

TCD critical distance and the underlying meso-structural features of concrete. 

 Research objectives 

The fulfilment of this PhD research aims was achieved by executing the following key 

objectives: 

a) Conduct a comprehensive literature review: the general literature research 

was conducted to collect the following information: 

 The properties of fresh and hardened concrete.  

 Linear Elastic Fracture Mechanics (LEFM). In particular, the 

approaches used to characterize cracked engineering components. And, 

provide pertinent knowledge of concrete fracture toughness and fracture 

mechanisms.  

 The Theory of Critical Distances (TCD). In particular, introducing the 

TCD and presenting the procedure of using this method. Also, 

addressing some uses of the TCD in relation to the aims of this PhD 

research.  

 

b) Propose a novel reformulation of the Theory of Critical Distance, TCD, 

suitable for assessing the static and dynamic strength of notched unreinforced 

concrete under various degrees of Mixed-Mode I/II loading. The proposed 
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approach will be checked against experimental results that will be generated 

from testing concrete specimens containing notches of different sharpness. 

 

c) Manufacture specimens from bespoke concrete mixes to investigate the 

physical meaning of the TCD critical distance, L. This complex task involved 

sieving well-graded round river aggregates. After that, conduct trial concrete 

mixes to find the proper concrete mix proportions.  

d) Finite Element modelling: According to the literature review, specific analytical 

solutions are available to solve singular stress fields in the vicinity of cracks for 

specific loading configurations. However, analytical solutions for other stress 

concentrators (non-zero notch tip radius) are not available. Alternatively, the 

linear-elastic stress fields could be obtained numerically or by post-processing 

simple linear-elastic, homogeneous, and isotropic Finite Element (FE) models. 

Thanks to its features, the stress fields can be obtained in the vicinity of stress 

raisers of any kind.  

 

e) 2D Digital Image Correlation Technique (DIC): This technique was 

incorporated to measure the displacements around regions of interest as a part 

of post-processing some experimental results. The task includes reviewing the 

2D-DIC principles and the concepts of the cross-correlations, the requirements 

of using 2D-DIC, the necessary preparations of test specimens to properly post-

processing the DIC digital images, and the set-up of both the test specimen and 

the camera.  

 

f) Documentation of the main findings: The main research results and 

conclusions were documented in this thesis. 

 Thesis outline 

This research work is divided into seven chapters with supplemental appendices at the 

end. A brief overview of each chapter is as follows: 

 Chapter 1 introduces concrete and describes the main factors that affect 

concrete properties. Subsequently, the properties of hardened concrete are 
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discussed, including the compressive and flexural strength and the available 

standardized laboratory tests for carrying them out. Finally, the chapter 

presents the aims and objectives of the current research, the outline of this 

thesis, and its structure.  

 Chapter 2 introduces the basic methodology of LEFM. In particular, briefly 

describe the energy and the stress intensity approaches to evaluate cracked 

engineering components. After that, the chapter addresses the use of the stress 

intensity factor to find the entire stress fields in the vicinity of cracked beams 

subjected to bending. Subsequently, this chapter discusses the fracture 

toughness and the fracture process zone of concrete. Finally, the chapter 

concludes with the limitations of the LEFM and how to overcome them by 

adopting the so-called Theory of Critical Distance, TCD. 

 Chapter 3 introduces the fundamental concepts of the TCD to familiarize the 

reader with how this method combines the LEFM and continuum mechanics to 

assess engineering components independently of the geometrical features of 

the stress concentrator that damage the assessed material. This chapter will 

begin by briefly reviewing the development of the TCD and the essential 

parameters for applying the TCD. After that, the TCD is presented in its 

simplest form, which predicts the strength of brittle materials when subjected 

to Mode I static loading. Subsequently, the chapter focuses on the TCD 

extension to Mode I static/dynamic strength of notched plain concrete and the 

problem of modelling the transition from the long to the short cracks. Finally, 

the values of the TCD critical distance, L, based on the classification of the 

assessed material are briefly discussed. 

 Chapter 4   presents the systematic study to find a physical link between the 

TCD critical distance, L, and the underlying structural features of concrete at 

the mesoscopic level when the TCD is used to model the static/dynamic 

strength of the unreinforced concrete. This fundamental research problem 

involved validations by experimental results obtained from bespoke concrete 

mix proportions that were prepared to have specific and controlled meso-

structural features.  

 Chapter 5 documents the novel reformulation of the TCD to make it suitable 

for estimating the static and dynamic strength of concrete containing various 
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notch types and subjected to Mixed-Mode I/II loading. The chapter starts with 

an introduction, motivations, and problem statement. Then, a suitable 

reformulation of the TCD was proposed based on the review of previous studies 

on concrete failure behaviour under various test arrangements. The chapter 

then discusses the experimental program, including the concrete mix design, 

the geometries of the test specimens, the different test setups, the modelling of 

the notched specimens, and the test results. Finally, the chapter demonstrates 

the validation of the new extension of the TCD using the large experimental 

results, followed by conclusions and recommendations for future work. 

 Chapter 6 presents modelling the static strength of 3D-printed concrete 

specimens weakened by stress gradients due to flaws and defects. This chapter 

used a TCD-based methodology suitable for assessing those stress raisers. This 

derived methodology was validated against results generated by testing 3D-

printed concrete specimens.  

 Chapter 7 documents the current research conclusions and recommendations 

for future work.  
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Chapter – 2 

2 Fundamental Concepts of Linear Elastic Fracture 

Mechanics, LEFM 

 Stress concentration factor 

Before reviewing the LEFM approaches, it is essential to introduce the stress 

concentration factor, Kt. It is a dimensionless parameter used to quantify the severity 

of the stress in the vicinity of irregular geometries. For instance, stress concentrations 

are always near threads, flaws, welded joints, connections, etc. Therefore, accounting 

for these stress concentrators in the design process is crucial because they control the 

overall strength of the assessed material. 

At the beginning of the last century, Inglis (1913) made the first attempt to quantify 

the stress concentration. Nowadays, Kt could be determined analytically, numerically 

(i.e. Finite Element models) and experimentally (Pilkey et al., 2020; Gere, 2004). The 

measurement of Kt depends on many factors, such as geometrical characteristics and 

loading arrangements, notch/crack shape, boundary conditions, etc. The reader is 

referred to (Pilkey et al., 2020) for more details on calculating Kt values for the most 

popular geometries and test specimens, which are calculated either experimentally or 

using computer simulations.  

 To illustrate the definition of Kt, consider a plate that is linear-elastic, homogeneous,  

and isotropic, as shown in Figure 2.1. This figure shows the plate with a centred hole, 

the assigned dimensions, and a reference nominal tensile stress, σ. In addition, the 

figure shows the stress distribution on the stress path AB where the stress increases 

until it reaches its maximum value, σmax, in the two hot spots of the holes (point A in 

the figure). The stress concertation factor can be calculated with respect to the applied 

gross stress (gross cross-sectional area), Ktg , or with respect to the net stress (net 

cross-sectional area), Ktn, as follows (Pilkey et al., 2020): 
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𝐾𝑡𝑔 =
𝜎𝑚𝑎𝑥

𝜎
=

𝐻ℎ𝜎𝑚𝑎𝑥

𝑃
 (2.1) 

𝐾𝑡𝑛 =
𝜎𝑚𝑎𝑥

𝜎𝑛𝑒𝑡
=

𝜎𝑚𝑎𝑥(𝐻 − 𝑑)ℎ 

𝑃
= 𝐾𝑡𝑔

𝐻 − 𝑑

𝐻
 (2.2) 

The adopted symbols in the above equations are defined in Figure 2.1. 

 

Figure 2.1 A plate loaded in tension with a central hole (Pilkey et al., 2020). 

In the case of an infinite plate with a centred hole, Kt is equal to 3. This value is found 

in most textbooks on fracture mechanics and the mechanics of materials (Gere, 2004; 

Anderson, 2005; Pilkey et al., 2020). Additionally, the local linear-elastic stress value 

decreases gradually by increasing the distance from the hole tip until it reaches the 

applied nominal gross stress value. 

The stress concentration factor is a popular parameter used in engineering 

components that contain geometrical irregularities. Its value changes with the loading 

configuration and the geometries of the engineering component being assessed and 

does not depend on the material properties (Pilkey et al., 2020).  

 The energy criterion approach 

The energy criterion approach states that when a crack is formed, the required energy 

for its extension (i.e., fracture) should be sufficient to overcome the material 

resistance. Griffith (1921) was the first to propose the fracture energy approach for 

ideal brittle materials (i.e. glass). However, Griffith’s approach significantly 

underestimates the strength of metallic members. Therefore, Griffith’s work was 
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largely ignored until the middle of the last century when Irwin (1948) modified 

Griffith’s approach to include the energy dissipation due to crack tip plasticity in steel 

materials. But it was not until 1956 that Irwin developed the energy release rate 

concept (Irwin, 1956). According to the Irwin modification, a crack propagates when 

the energy release rate (the change in potential energy), G, overcomes the critical 

energy release rate, Gc, putting that in mathematical form (Anderson, 2005): 

𝐺 ≥ 𝐺𝑐 (2.3) 

For an infinite plate having a central crack of a length equal to 2a, as in  Figure 2.2, the 

critical energy can be calculated as follows (Anderson, 2005) : 

𝐺𝑐 =
𝜋 𝜎𝑓

2 𝑎𝑐

𝐸
 (2.4) 

 where  σf is the failure stress on the gross area, ac is half of the critical crack length, 

and E is the elastic modulus. 

 

Figure 2.2 Central crack in an infinite plate subjected to tension. 

 The stress intensity criterion approach 

After developing the energy release rate concept, Irwin (1957) further developed 

Griffith's work by using Westergaard's (1939) semi-inverse method to analyse the 

stress in the vicinity of a crack. Irwin came up with a single constant to characterise 

the stresses and displacements near the crack tip, which is related to the energy release 

rate. Later this constant is known as the stress intensity factor, K. Once this constant 
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is known, the entire linear-elastic stresses and displacements in the vicinity of the 

crack tip can be calculated, as will be shown in Section 2.5.  

Consider the plate sketched in Figure 2.2, as the applied nominal stress increases, the 

stress intensity level, which is quantified by K, at the crack tip increases until the crack 

reaches its critical size without failure. The so-called critical stress intensity factor, Kc, 

is used to predict the maximum/critical stress level at the crack tip which is an 

alternative measurement of fracture toughness (Section 2.6). To this end, the plate will 

fail if the stress intensity factor reaches or exceeds its critical value  (Anderson, 2005). 

Expressing this condition in a mathematical form: 

𝐾 ≥ 𝐾𝑐 (2.5) 

When a cracked component is loaded in any direction relative to the crack, the stress 

distribution in the vicinity of the crack can be partitioned into its three basic 

components, as schematically plotted in Figure 2.3. The three fundamental force 

components are as follows (Irwin, 1957; Anderson, 2005): 

 Mode I: this is often called opening mode, which occurs perpendicular to the 

crack and causes the most damage. Therefore, it receives most research studies 

in failure analysis and structural design. 

 Mode II: occurs when a crack experiences shearing because of in-plane shear 

stresses.  

 Mode III: corresponds to out-of-plane shear stresses (i.e., torsional loading) 

causing crack tearing.  

 

Figure 2.3 Schematic illustration of the three loading modes (Anderson, 2005). 
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Consider again the plate sketched in Figure 2.2 that is subjected to Mode I loading. 

The stress intensity factor can be calculated as (Irwin, 1957; Anderson, 2005): 

𝐾𝐼 = 𝐹 𝜎 √𝜋𝑎 (2.6) 

 where KI is the stress intensity factor and takes the subscript “𝐼” to describe the 

loading mode. The stress intensity factor has a unit of stress × length0.5 (𝑖. 𝑒. , 𝑀𝑃𝑎 ×

𝑚0.5), F is a geometrical shape factor, σ is the applied remote (gross) tensile stress, and 

a is the half-length of the internal cracks or the full length of cracks on the edges. In 

the case of a crack in an infinite plate (Figure 2.2), F is equal to 1. However, F is greater 

than 1 for a specific geometrical feature. For instance, it is equal to 1.12 in the case of 

an edge crack in a plate loaded in tension (i.e. slicing the plate in Figure 2.2 into two 

halves), which is reported in many textbooks (Anderson, 2005; Fischer-Cripps, 2007; 

Taylor, 2007). The stress intensity factor is not only dependent on the geometrical 

configuration. It also depends on the loading arrangements, the location of the crack, 

and the ratio of the crack length to the width of the tested component (Tada et al., 

2000; Anderson, 2005). The calculations of K become more complex in proportion to 

these factors. Published handbooks have been devoted to calculating the stress 

intensity and shape factors (Rooke and Cartwright, 1976; Wang et al., 1978; Murakami 

and Keer, 1993; Tada et al., 2000). 

By comparing Eqs.(2.4) and (2.6), the relationship between the energy release rate and 

the stress intensity factor can be expressed as: 

𝐾𝐼
2 = 𝐸𝐺 (2.7) 

 Having defined the stress intensity factor, the subsequent discussion of this section 

will focus on the available solutions to K under bending stress. Consider a beam that 

is subjected to a three-point bending with an edge crack, as in Figure 2.4. Also, from 

the figure, the shear force, Q, and the bending moment, M, diagrams show that the 

central crack is subjected to Mode I stress. The calculation of KI is given by (Tada et 

al., 2000): 
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𝐾𝐼 =
𝑃

𝐵 √𝑊
 𝑓 (

𝑎

𝑊
) (2.8) 

 where P is the applied load, B is the specimen thickness, W is the specimen width, S 

is the span between the lower supports, and f(a/w) is a geometrical correction factor. 

For S/W = 4,  f(a/w) is given by (Tada et al., 2000): 

𝑓 (
𝑎

𝑊
) =

3
𝑆
𝑊

√
𝑎
𝑊

2(1 +
2𝑎
𝑊) (1 −

𝑎
𝑊)

3/2
{1.99

−
𝑎

𝑊
(1 −

𝑎

𝑊
) [2.15 − 3.93 (

𝑎

𝑊
) + 2.7 (

𝑎

𝑊
)
2

]} 

(2.9) 

 

Figure 2.4 Beam contains a mid-edge crack under three-point bending with the shear, Q, 
and bending moment, M, diagrams. 
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The crack is under pure Mode I because the shear force is zero at the location of the 

crack. Strictly speaking, Eqs. (2.8) and (2.9) are only valid for the beam configuration 

shown in Figure 2.4. Different loading arrangements or testing methods will invalidate 

the use of the above geometrical correction factor. 

When the crack is in an eccentric location from the point load, the crack tip experiences 

a Mixed-Mode I/II loading, as shown in Figure 2.5. Mode I stress is imposed from the 

bending moment, and Mode II stress comes from the shear force. Eqs. (2.10) and (2.11) 

provide the estimations of of KI and KII, respectively (Wang et al., 1978).  

𝐾𝐼 =
𝑀

𝐵 𝑊3/2
 𝑓𝑏 (

𝑎

𝑊
) (2.10) 

 𝐾𝐼𝐼 =
𝑄

𝐵 𝑊1/2
 𝑓𝑠 (

𝑎

𝑊
) (2.11) 

where M is the bending moment at the crack section, S1 is the distance from the mid-

section to the crack section, B is the specimen thickness, W is the specimen width, a is 

the crack length, Q is the shear force at S1. And, fb(a/w) and fs(a/w) are the 

dimensionless factors due to bending and shear force, respectively. For S/W = 4 and 

in the case of 2S1/S = 3/6, some of these factors are reported in Table 2.1 as a function 

of the ligament size, a/w (Wang et al., 1978). 

 

Figure 2.5 Three-point bending on a beam containing an asymmetric crack. 
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Table 2.1 Geometrical factors used in Eqs. (2.10) and (2.11) (Wang et al., 1978). 

(a/w) fb(a/w) fs(a/w) (a/w) fb(a/w) fs(a/w) 

0.05 2.54 0.0636 0.4 8.35 1.317 

0.1 3.51 0.180 0.45 9.6 1.557 

0.15 4.26 0.327 0.5 11.12 1.838 

0.2 4.97 0.496 0.55 13.09 2.125 

0.25 5.67 0.667 0.6 15.66 2.441 

0.3 6.45 0.857 0.65 19.17 2.794 

0.35 7.32 1.08 0.7 24.15 3.077 

 Estimating the stress intensity factor using computer 

simulation 

The calculation of K becomes more complex with more stress raisers and loading 

configurations. Sometimes an analytical solution is not available, so the Finite 

Element (FE) models become an alternative to calculate K numerically. Using FE 

models, calculating K along a crack bisector (Figure 2.6) is given by the following 

relationship (Fischer-Cripps, 2007): 

𝐾𝐼,𝐹𝐸𝑀 = 𝜎𝑦,𝐹𝐸𝑀√2𝜋𝑟 (2.12) 

Where σy, FEM is the numerically determined linear-elastic stress fields perpendicular 

to the crack bisector and r is the distance from the crack tip.  

The accuracy of estimating KI is affected by the model geometry, loading directions 

and locations, and most importantly, the mesh size and the element type (Fischer-

Cripps, 2007). The finer the mesh, the more accurate KI results. Therefore, the mesh 

size should be refined near the crack tip until convergence is reached. Convergence 

means more refinement of the mesh does not affect the estimated KI. Figure 2.6 shows 

a schematic drawing of finding KI along a crack bisector. It cannot be determined at 

the crack tip (r = 0) because of the stress singularity, and not too far from the crack 

due to the influence of the remotely applied load (Fischer-Cripps, 2007). It could be 
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found at any distance in the vicinity of the crack tip. However, this way of assessing KI 

is not easy because many factors affect the local stress field, such as the specimen 

geometry, mesh density, and the type of used elements (Fischer-Cripps, 2007). 

 

Figure 2.6 Estimating  KI using FE model along a crack bisector (Fischer-Cripps, 2007). 

One way of estimating KI is by determining its value at different nodes (Fischer-Cripps, 

2007). After that, by fitting a smooth curve of KI values across the crack bisector, the 

best estimate of KI can be extrapolated at the crack tip (r=0), as shown in Figure 2.6. 

 Singular stress fields  

Having demonstrated a review about estimating the stress intensity factor, it is 

essential to present the available analytical solutions for the stress fields in the vicinity 

of a crack under the assumption that the material is linear-elastic, homogeneous, and 

isotropic. These stresses are infinity (singular) at the crack tip because of the zero-

crack tip radius (Anderson, 2005). Indeed, this is incorrect because the stresses near 

the crack tip are limited to the material strength. 

Suppose that the stress intensity factor can be estimated. In that case, the entire linear-

elastic stress fields near the crack tip can be theoretically calculated in polar 

coordinates (θ, r), as shown in Figure 2.7. 
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Figure 2.7 The coordinate system ahead of the crack tip with the z-axis normal to the page 
(Anderson, 2005). 

 According to Irwin (1957), assuming that the material is linear-elastic, homogeneous, 

and isotropic, the stress fields in the vicinity of the crack tip can be calculated 

according to the following equations, with the frame of reference shown in Figure 2.7. 

Calculations of the stress fields due to Mode I: 

𝜎𝑥 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) [1 − sin (

𝜃

2
) sin (

3𝜃

2
)] (2.13) 

 𝜎𝑦 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) [1 + sin (

𝜃

2
) sin (

3𝜃

2
)] (2.14) 

𝜏𝑥𝑦 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) sin (

𝜃

2
) cos (

3𝜃

2
) (2.15) 

 Calculations of the stress fields due to Mode II: 

𝜎𝑥 = −
𝐾𝐼𝐼

√2𝜋𝑟
sin (

𝜃

2
) [2 + cos (

𝜃

2
) cos (

3𝜃

2
)]  (2.16) 

𝜎𝑦 =
𝐾𝐼𝐼

√2𝜋𝑟
sin (

𝜃

2
) cos (

𝜃

2
) cos (

3𝜃

2
) (2.17) 
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𝜏𝑥𝑦 =
𝐾𝐼𝐼

√2𝜋𝑟
cos (

𝜃

2
) [1 − sin (

𝜃

2
) sin (

3𝜃

2
)]  (2.18) 

Calculations of non-zero stresses due to Mode III: 

𝜏𝑥𝑧 = −
𝐾𝐼𝐼𝐼

√2𝜋𝑟
sin (

𝜃

2
) (2.19) 

𝜏𝑦𝑧 =
𝐾𝐼𝐼𝐼

√2𝜋𝑟
cos (

𝜃

2
) (2.20) 

 Eqs.(2.13) to (2.20) are only valid in the vicinity of the crack tip. Away from the crack 

tip, Irwin equations approach zero rather than the applied remote stress (Anderson, 

2005; Fischer-Cripps, 2007). In this framework, Susmel (2009) suggests limiting the 

value of r to a/10 or lower, and Taylor (2007) suggests considering a value of r much 

smaller than the crack length (i.e., r << a).  

After determining stresses from each mode and in the case of a Mixed-Mode problem. 

According to the principle of superposition, the stress components are additive as in 

the following relationship (Anderson, 2005): 

𝜎𝑖𝑗
(𝑡𝑜𝑡𝑎𝑙) = 𝜎𝑖𝑗

(𝐼) + 𝜎𝑖𝑗
(𝐼𝐼) + 𝜎𝑖𝑗

(𝐼𝐼𝐼) (2.21) 

 Fracture toughness  

Fracture toughness is a measurement of a material’s ability to resist crack propagation. 

In other words, the fracture toughness indicates the required stress to drive an existing 

crack. The stress intensity factor (i.e., KI) describes the stress intensity/level at the 

crack tip. The relationship between the fracture toughness and the stress intensity 

factor is similar to the relationship between a material strength (i.e., yield strength) 

and the applied stress. Consider again Figure 2.2, the stress intensity at the crack tip 

increases with increasing the gross tensile stress until it reaches its critical value, which 

may be associated with a stable extension of the existing crack (Anderson, 2005; Ashby 
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and Jones, 2012). The critical value of the stress intensity factor is the highest level of 

stress intensity that the material withstands with no failure, after which an unstable 

crack propagates (Anderson, 2005). The so-called critical stress intensity factor 

quantifies the highest stress level, KIc, which is an alternative measurement (equal) to 

the material fracture toughness (Anderson, 2005). The calculation of the critical stress 

intensity factor can be performed by modifying Eq. (2.6) as follows (Anderson, 2005): 

𝐾𝐼𝑐 = 𝐹 𝜎𝑓 √𝜋𝑎𝑐 (2.22) 

where F is a dimensionless correction factor, σf is the gross failure stress, and ac is the 

effective crack length (initial crack length plus its stable extension (i.e., the process 

zone)).  

The fracture toughness varies from one material to another depending on many factors 

such as material composition, temperature, and fracture behaviour (Ashby and Jones, 

2012). Further, it is essential to highlight that the specimen size strongly influences KIc 

(Anderson, 2005). It was proven that thin materials have higher fracture toughness 

than thicker ones. Thin specimens have higher KIc values because their plastic zone is 

much larger than the ones formed under the plane-strain state (Anderson, 2005). As 

shown in Figure 2.8, the fracture toughness decreases with increasing the specimen’s 

thickness until the specimen is thick enough to reach a relatively constant value called 

plane-strain fracture toughness, which does not depend on the thickness and, 

therefore, a material property. 

The three-point bending (3PB) and the compact tension (CT) tests are the most 

commonly used tests to find fracture toughness. When performing those tests, to 

ensure that the KIc value is under plane-strain condition, the following minimum 

thickness, B, should be satisfied (William F. Brown, 1966; ASTM, 2020c): 

𝐵 ≥ 2.5 (
𝐾𝐼𝑐

𝜎𝑦
)

2

 (2.23) 

 where 𝜎𝑦 is the yield strength of a metallic alloy. 
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Figure 2.8 Influence of the specimen thickness on the fracture toughness of 7075-T6 
Aluminium [data from Barsom and Rolfe (1987); figure from Anderson (2005)]. 

 Concrete fracture toughness 

Kaplan (1961) made the first attempt to measure the fracture toughness of concrete in 

the middle of the last century. Then, many publications followed his work to study the 

influence of the mixing ratios on fracture toughness (Shah, 1992; Tada et al., 2000). 

Like any material, Kaplan (1961) found that the critical stress intensity factor depends 

on the specimen size. In this context, Tian et al. (1986) computed KIc from CT 

specimens of different sizes, W, and fixed thickness of 300 mm (see Figure 2.9). The 

researcher concluded that KIc reached a plateau at enormous dimensions (see Figure 

2.9). 

 

Figure 2.9 The influence of the specimen size on KIc for concrete; figure from (Karihaloo, 
1995), results from (Tian et al., 1986). 

0

10

20

30

40

50

60

70

80

0 10 20 30 40

K
Ic

(M
P

a 
m

0
.5

)

Specimen Thickness (mm)

KIC



33 

 

Apart from the size effect, the concrete fracture toughness could be determined based 

on the two-parameter model as recommended by RILEM (Shah, 1990). It is 

recommended to test, under three-point bending, concrete specimens containing a 

saw-cut/pre-cast U-notch with a root radius less than 2.5 mm and having a length 

equal to 1/3 of the specimen width, as shown in Figure 2.10a (Shah, 1990). The test 

specimen should be subjected to loading and unloading cycles at a very slow loading 

rate. The loading rate should be optimized to reach the maximum load in 5 minutes. 

When the applied load exceeds the maximum load and reaches about 95% of the post-

peak load, the specimen should be unloaded to zero. After that, the specimen should 

be loaded again. Then, the same process is repeated until the final breakage of the 

sample. This process of the loading-unloading procedure is described using the load 

versus the crack mouth opening displacement (CMOD) plot. A typical load versus 

CMOD is presented in Figure 2.10b. 

From the loading-CMOD curve, the initial compliance, Ci, is obtained from the initial 

loading curve (i.e., see Figure 2.10b). Then it is used to calculate the elastic modulus 

as follows:  

𝐸 = 6𝑆𝑎0
𝑉1(𝛼)

𝐶𝑖𝑑
2𝑏
     (E is determined in [N m-2], and Ci is measured in [m N-1] ) (2.24) 

in which: 

𝑉1(𝛼) = 0.76 − 2.28𝛼 + 3.87𝛼2 − 2.04𝛼4 +
0.66

(1 − 𝛼)2
 (2.25) 

and: 

𝛼 =
𝑎 + 𝐻𝑂

𝑑 + 𝐻𝑂
 (2.26) 

 The adopted symbols in the above equation are presented in Figure 2.10a.  
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(a) (b) 

Figure 2.10 Plots of typical testing set-up (a) and the loading/unloading cycles versus 
CMOD (b) to determine the fracture toughness of unreinforced notched concrete (Shah, 

1990). 

Next, from the unloading cycle, the unloading compliance, Cu, is calculated in [m N-1] 

(see Figure 2.10b). After that, the effective crack length, ac, which is the notch depth 

plus the length of the stable propagated crack at the peak load, is found using an 

iterative process until the following equation is satisfied: 

𝐸 =
6𝑆𝑎𝑐𝑉1(𝛼)

𝐶𝑢𝑑2𝑏
   (ac is determined in [m] and Cu is calculated in [m N-1] ) (2.27) 

α in the above equation is estimated as: 

𝛼 =
𝑎0 + 𝐻𝑂

𝑑 + 𝐻𝑂
 (2.28) 

where S, a0, HO, d, and b are defined in Figure 2.10a.   

Finally, the critical stress intensity factor can be calculated using the following 

equation: 

𝐾𝐼𝑐
𝑠 = 3(𝑃𝑚𝑎𝑥 + 0.5𝑊) [

𝑆(𝜋𝑎𝑐)
0.5𝐹(𝛼)

2𝑑2𝑏
]   [N m-3/2] (2.29) 

where Pmax is the maximum load, W = W0 S/L which is measured in [N], W0 is the self-

weight of the test specimen in [N], F(α) is calculated as follows: 
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𝐹(𝛼) =
1.99−𝛼(1−𝛼)(2.15−3.93𝛼+2.7𝛼2)

√𝜋0.5(1+2𝛼)(1−𝛼)3/2
    (2.30) 

where α = ac/d   

 Concrete fracture process zone 

In LEFM, the maximum linear-elastic stress at the crack tip is theoretically infinite, 

which is a phenomenon called stress singularity. This does not occur in real-life 

applications because the stresses near the crack tip are finite and limited to the 

material strength (Anderson, 2005). The failure process starts by creating what is 

called the fracture process zone, FPZ. The fracture process zone refers to the area near 

the crack tip where the material does not behave linearly. Thus, the applicability of the 

LEFM is directly linked to the size of this process zone (Anderson, 2005). In particular, 

the LEFM is valid for materials that develop a small region of process zone and are 

surrounded by a large elastic one.  

Concrete and many other materials, such as rocks, ceramics, and bones, are classified 

as quasi-brittle materials (Neville and Brooks, 1987). In the case of pre-existing 

defects/flaws, the non-linear zone in those materials has a different mechanism than 

for quasi-ductile materials. In quasi-ductile materials (i.e., metals), there is a small 

plastic (yielding) zone in front of the crack tip (the so-called plastic process zone), 

whereas, in quasi-brittle materials, the FPZ is nearly the entire non-linear region that 

links the cracked region with the un-cracked one (Figure 2.11). Because of the nature 

of concrete, under tension loading, there is no plastic transition between the cracked 

and un-cracked regions and the non-linear (damage) region occupies almost the entire 

FPZ. Outside the FPZ, the concrete behaviour is nearly elastic (Bažant, 1985b, 2002; 

Cedolin and Cusatis, 2008). In this context, the formed FPZ is the part of the material 

that controls the overall strength of the structure being investigated.  
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Figure 2.11 Comparison between the sizes of FPZ in ductile-brittle materials and quasi-
brittle materials (Bazant,1985). 

Over the past years, the international scientific community has made a tremendous 

effort to observe and understand the physical processes that cause the initiation and 

propagation of the micro-cracks filling the FPZ in concrete using commonly direct 

observation experimental techniques. For example, using an electron microscope 

(Mindess and Diamond, 1980, 1982; Hu and Wittmann, 1990; Nemati, 1997), x-ray 

(Slate and Olsefski, 1963; Robinson, 1965), acoustic emission (Maji and Shah, 1988; 

Maji et al., 1990; Saliba et al., 2015, 2016), and ultrasonic measurements (Sakata and 

Ohtsu, 1995).  

Furthermore, the international scientific community has also made a tremendous 

effort to quantify the length of the FPZ, LFPZ. In this context, several studies found that 

LFPZ is somehow related to aggregate size, dagg (Mihashi et al., 1991; Ceriolo and Di 

Tommaso, 1998; Otsuka and Date, 2000). For instance, Bažant (1985) stated that the 

size of the FPZ is a multiple of dagg and ranges between dagg to 12dagg.  

From another perspective, the available literature showed several attempts to quantify 

the FPZ size using theoretical approaches. For instance, using the Fictitious crack 

model (Hillerborg et al., 1976) and the Crack Band Model (Bažant and Oh, 1983). 

Using the Fictitious Crack Model, Hillerborg et al. (1976)  proposed a characteristic 

length scale parameter, Lch, which is a parameter that links the stress intensity factor 

with the tensile strength of concrete, i.e.: 
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𝐿𝑐ℎ = (
𝐾𝑐

𝜎𝑓
)

2

 (2.31) 

 Lch is a material property that is used to estimate concrete brittleness (Murthy et al., 

2009). Furthermore, the length of the FPZ is related to Lch (Shah et al., 1995; Bažant, 

2002; Taylor, 2007) and in between 0.3Lch to 0.5Lch (Shah et al., 1995). Also, based on 

long and complex reasoning, Karihaloo (1995) stated that LFPZ is related to Lch as 

follows: 

𝐿𝐹𝑃𝑍 =
1

𝜋
𝐿𝑐ℎ =

1

𝜋
(
𝐾𝑐

𝜎𝑓
)

2

 (2.32) 

 Conclusion 

In the previous sections, the main concepts of the LEFM have been briefly reviewed. 

It is a great method that works with components that include pre-existing cracks. In 

particular, the LEFM works by characterising the stress intensity factor in the vicinity 

of the crack of a sufficient length in materials that generate small process zones 

compared to the dimensions of the elastic region. Characterising the stress intensity 

becomes more sophisticated with the complexity of the testing arrangement and the 

crack geometrical features, such as, for instance, the crack opening angle (Williams, 

1952; Lazzarin and Tovo, 1996).  

Furthermore, strictly speaking, the LEFM is valid for modelling cracks and crack-like 

notches. However, engineering components are also weakened by different types of 

stress raisers such as blunt notches, complex defects, short cracks, joints, threads, etc. 

The above limitations can be overcome by employing the so-called Theory of Critical 

Distance, TCD. Due to its features, this method assesses the strength of 

cracked/notched engineering components by post-processing the generated linear-

elastic stress fields ahead of the relevant stress concentrators independently of their 

geometrical characteristics. 
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Chapter – 3 

3 Theory of Critical Distances, TCD: fundamentals 

and review of its extension to predict Mode I 

static/dynamic strength of notched concrete 

 History 

In the mid of the last century, Heinz Neuber in Germany and Ralph Earl Peterson in 

the United States made the first attempt to develop the so-called today Theory of 

Critical Distances, TCD (Neuber, 1936; Peterson, 1938). They were interested in 

predicting the fatigue strength of metallic members containing notches (Taylor, 2007). 

The local stress distribution near a notch’s apex was first studied by Neuber (1936, 

1958). He suggested that the fatigue limit could be predicted by averaging the stress 

ahead of the notch’s bisector over a distance equal to material crystals and finite 

structural particles (Taylor, 2007). Neuber’s method is known today as the Line 

Method (LM) (Taylor, 2007). 

A few years later, Peterson was aware of Neuber’s work, but he chose a much simpler 

solution. He proposed that the fatigue strength of a notched metallic member could be 

taken equal to a single value at a distance from the notch apex. His idea today is known 

as the Point Method (PM) (Taylor, 2007).  

Around fifty years ago, Whitney et al. (1974) explored the laminate composites 

containing crack-like notches and circular holes of different diameters. Apparently, 

the researchers were unaware of the early work by Neuber and Peterson (Taylor, 

2007). They derived what they called the point stress and the average stress methods, 

which are identical to the PM and LM, respectively (Taylor, 2007). The significant 

advancement in the PM and LM was when they provided theoretical relationships 

between their methods and the LEFM because, in their time, the LEFM was well 

established for brittle materials. Therefore, they derived empirical relationships 

between the critical distance and the critical stress intensity factor, which will be 

described later in Section 3.2. 
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A few years later,  Tanaka (1983) provided a theoretical relationship between the 

fatigue limit and the stress intensity factor threshold. However, he did not compare 

his contribution against experimental results. This led to a lack of interest in his work 

until the late 1990s when other researchers, unaware of Tanaka’s work, experimentally 

showed that the fatigue limit could be successfully modelled using the same approach 

that Tanaka derived (Lazzarin et al., 1997; Taylor, 1999; Taylor and Wang, 2000). 

Between 1990 and early in this century, Taylor (1999) and Taylor and Wang (2000) 

introduced more sophisticated methods than the PM and LM to predict the fatigue 

limit strength of notched components. The new approaches are the Area Method (AM) 

and the Volume Method (VM). 

Since the beginning of this century, the TCD has been proven to be a powerful 

engineering tool to make accurate estimations independently of the loading history 

and complexity of the geometrical irregularities. For instance, it was shown that the 

TCD is highly accurate in estimating multiaxial fatigue strength of notched 

components (Taylor, 2007; Susmel, 2009b). Additionally, the TCD has been shown to 

be a promising method capable of accurately predicting the static strength of both 

brittle and ductile materials that contain stress raisers and are subjected to uniaxial 

and multiaxial loading (Susmel and Taylor, 2008a, 2010c). In addition to that, the 

TCD is seen to accommodate the non-linear behaviour of the assessed material by 

modelling the material as linear-elastic, homogeneous, and isotropic, which reduces 

the time and costs of the design process (Susmel and Taylor, 2010b). 

To conclude, nowadays, the PM, LM, AM, and the VM are four theories that are named 

the Theory of Critical Distances. The main features of the TCD are as follows: 

1) The TCD works by assuming that the material is linear-elastic, homogenous, and 

isotropic.  

2) Post-processing the linear-elastic stress field acting at the notch tip being designed 

with no need for prior geometrical classifications. 

3) The TCD does not need to perform sophisticated experiments and experimental 

outputs. Instead, it could be calibrated using test outputs obtained from performing 

conventional experiments.  
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4) The accuracy of the TCD modelling is within the range of the expected experimental 

and numerical errors.  

 Essential parameters to apply the TCD  

The TCD requires two material parameters that must be appropriately determined to 

post-process the generated linear-elastic stress fields near the assessed stress 

concentrator. The two material parameters are the inherent material strength, σ0, and 

the material critical distance, L. To correctly calculate L, σ0 has to be chosen first 

(Susmel and Taylor, 2008a). In brittle materials, such as ceramics, and quasi-brittle 

materials, such as fibre composites and plain concrete, σ0 is taken equal to the ultimate 

tensile stress, σUTS (Taylor, 2004; Taylor et al., 2004; Susmel and Taylor, 2008b). 

However, when limited plasticity occurs in the incipient failure condition, which is 

commonly seen in ductile materials, the inherent material strength is larger than the 

un-notched material strength (Susmel and Taylor, 2010b, 2010c; Ameri et al., 2015). 

Accordingly, the only way to determine the inherent strength of the material is to 

experimentally test two specimens that contain different concentrator sharpnesses. 

And, by plotting the linear-elastic stress curves, the coordinates of the intersection 

between the two curves allow estimating not only the inherent material strength but 

also L. More elaboration will be presented in Section 3.3. 

The second material property that is needed to be appropriately defined is the critical 

distance, L. As stated in Section 3.1, Whitney and Nuismer (1974) were the first to 

derive a theoretical relationship to connect the PM and LM methods with the LEFM. 

The researchers proposed what they called the Point Stress Criterion and Average 

Stress Criterion, which correspond to the PM and LM, respectively (Taylor, 2007).  

As far as deriving a mathematical estimation of L is concerned, recall from Eq. (2.22) 

that the relationship between the critical stress intensity factor, Kc, and the remote 

failure tensile stress, σf, is as follows: 

𝜎𝑓 =
𝐾𝑐

√𝜋𝑎
  (3.1) 
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The crack opening stress could be analytically calculated as (i.e. valid for r << a) 

(Westergaard H.M., 1939; Taylor, 2007): 

𝜎(𝑟) = 𝜎√
𝑎

2𝑟
 (3.2) 

Combining Eqs. (3.1) and (3.2), the critical distance for Mode I static problem, in the 

incipient of failure condition, can be expressed as (Whitney and Nuismer, 1974; 

Taylor, 2004; Taylor et al., 2004):  

𝐿 =
1

𝜋
(
𝐾𝐼𝑐

σ0
)
2

 (3.3) 

This important relationship directly links the two essential parameters of the TCD (σ0 

and L) with KIc, which is the plain-strain fracture toughness. 

It is worth mentioning here that, in fatigue problems, a similar relationship for the 

critical distance was derived by replacing KIc with the range of threshold value of the 

stress intensity factor, ΔKth, and the inherent strength with the fatigue endurance 

limit, Δσ0. In this context, the critical distance for the fatigue limit will be (Tanaka, 

1983; Atzori et al., 1992; Lazzarin et al., 1997; Taylor, 1999): 

𝐿 =
1

𝜋
(
𝛥𝐾𝑡ℎ

Δσ0
)
1/2

 (3.4) 

 Fundamentals of the TCD 

The necessary information and parameters for the TCD were introduced in the 

previous sections. Focusing on using the TCD, it will be discussed in its basic form, 

which is assessing notched brittle components subjected to uniaxial Mode I loading.  

According to the TCD, a material component that is designed and contains a stress 

raiser will not fail as long as the effective stress, σeff,  is less than the inherent material 

strength, σ0. Once σeff is equal to σ0, the notched component will fail. Expressing this 
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assumption in a mathematical form as (Taylor, 2007; Susmel and Taylor, 2008a, 

2008b): 

𝜎𝑒𝑓𝑓 = 𝜎0 (failure occurs) (3.5) 

 In the above relationship, the effective stress is calculated from post-processing the 

linear-elastic stress fields acting in the vicinity of the considered stress raiser. The 

effective stress can be determined according to the PM, LM, AM, and VM (Taylor, 

2007). The difference between these theories is the way of calculating σeff.  In 

particular, the shape and size of the integration domains are different, but they are 

always proportional to the critical distance, L. 

The most straightforward strategy for calculating the effective stress is according to 

the PM, which is by taking σeff equal to a single stress value at a distance equal to L/2 

from the notch/crack tip. Instead, the LM way of calculating the effective stress is by 

averaging the stress field over a distance equal to 2L from the notch/crack tip. More 

sophisticated strategies to calculate the effective stress are by averaging the stress over 

a semi-circle (AM) or over a hemisphere (VM). 

Focusing attention on the PM and the LM, the adopted coordinate system is defined 

in Figure 3.1a. And the explicit mathematical expressions to calculate the effective 

stress according to the PM and the LM are as follows: 

𝜎𝑒𝑓𝑓 = 𝜎𝑦 (𝜃 = 0, 𝑟 =
𝐿

2
)                     Point Method (Figure 3.1b) (3.6) 

 𝜎𝑒𝑓𝑓 =
1

2𝐿
∫ 𝜎𝑦
2𝐿

0
(𝜃 = 0, 𝑟)𝑑𝑟              Line Method (Figure 3.1c) (3.7) 

 where σy is the generated linear-elastic stress field perpendicular to the notch bisector 

(the focus path in classic Mode I loading).  
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(a) (b) (c) 

Figure 3.1 The TCD adopted coordinate system (a), calculation of the effective stress 
according to the PM (b) and LM (c). 

According to definition (3.3), the TCD critical distance L depends on the fracture 

toughness, a well-known material constant used in the LEFM, see Sections 2.6 and 2.7. 

Determining the fracture toughness is not an easy task, and there are available 

standards that should be followed (see Section 2.7 and ASTM (2015, 2020c). Also, 

performing these experiments requires a certain level of experience and time-

consuming and sophisticated procedures (Susmel and Taylor, 2010a). 

In order to overcome these issues in determining the fracture toughness, Susmel and 

Taylor (2010a) have proposed an alternative procedure to find the TCD critical 

distance using the PM procedure. The researchers checked their methodology against 

large experimental results extrapolated from the literature. They found that their 

strategy to find the TCD critical distance, and ultimately, fracture toughness is 

accurate.  

According to Susmel and Taylor (2010a), there are two alternative procedures to find 

the critical distance and fracture toughness. First, when dealing with brittle and quasi-

brittle materials, σ0 is always set equal to σUTS—assuming that σUTS is known before or 

found by testing an un-notched sample. Then, by testing a specimen containing a 

notch of known geometrical features, the linear-elastic stress field across the notch 

bisector is plotted. After that, according to the PM, drawing a horizontal line 
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corresponding to σUTS until it intersects with the stress curve gives directly in return 

the value of L/2 (Figure 3.2a). It is preferable to perform this procedure in a crack-like 

notch because the stress gradient will be high, which allows picking the point of the 

intersection precisely (Susmel and Taylor, 2010a). 

Second, when the inherent material strength is higher than the material ultimate 

tensile strength. This is generally seen in materials that exhibit a large amount of 

plasticity before failure. Then, the only way of determining the material critical 

distance is by plotting the linear elastic stress distribution across a blunt and relatively 

very sharp notch. After that, the unique intersection point between the two curves 

returns both the inherent material strength and the material critical distance, as 

schematically shown in Figure 3.2b. 

 (a)  (b) 

Figure 3.2 Schematic plot to calibrate the critical distance L for brittle and quasi-brittle 
materials (a) and ductile materials (b). 

 Assessment of notched plain concrete strength under 

Mode I dynamic loading 

 Review of Hopkinson bar test  

Most available design methods model the mechanical properties of cementitious 

materials considering quasi-static/static cases. However, in real-life applications, 

concrete can be subjected to various kinds of loads such as transient, time variable,  
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and dynamic loading. Dynamic loading can be seen in the event of explosions and 

impacts, crashes, or landslides. Since the beginning of the last century, the 

international scientific community has investigated the mechanical properties of 

engineering materials under dynamic loadings with the strain rate as an independent 

variable (Bischoff and Perry, 1991; Fu et al., 1991b, 1991a; Williams, 1994). Figure 3.3 

presents approximate strain rate ranges associated with the classification of the 

dynamic event. 

 

Figure 3.3  Approximate strain rate range with the associated type of dynamic loading (Ngo 
et al., 2013). 

Hopkinson (1914) was the first to develop a device suitable for investigating dynamic 

loadings. He invented the Hopkinson pressure bar to measure stress wave propagation 

from high explosives or impact from bullets. However, recording the stress pulse 

propagation through the bar was not developed yet until 30 years later by Davies 

(1948). He established the theoretical aspects of stress wave propagation by measuring 

the wave electronically. In the mid of the last century, Kolsky (1949) came up with the 

so-called Split Hopkinson Pressure Bar, SHPB, or Kolsky Bar test. In the SHPB test, a 

short specimen is placed between two cylindrical steel bars (Figure 3.4). The sample 

partially transfers and reflects the waves when the dynamic pulse is triggered on one 

cylindrical bar. Post-processing this mechanism made it possible to calculate the 

dynamic stress/strain rate. 

 

Figure 3.4 Schematic drawing of the Split Hopkinson Pressure Bar test setup (dimensions 
in mm) (Ngo et al., 2013). 
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 This pioneering work was followed by several attempts by the international scientific 

community to investigate and model the mechanical response and cracking behaviour 

of concrete subjected to dynamic loadings. In this framework, experimental 

investigations showed that concrete strength increases with increasing the applied 

strain rate (Bischoff and Perry, 1991; Malvar and Crawford, 1998; and the references 

therein).  

Surprisingly, since the development of Linear Elastic Fracture Mechanics, a few 

studies have investigated the relationship between fracture toughness and the loading 

rate. It was shown experimentally that the concrete fracture toughness either remains 

constant or increases with increasing the applied strain rate (John and Shah, 1990; 

Lambert and Allen Ross, 2000). 

More discussion about concrete's dynamic strength and fracture toughness will be 

presented in Sections 3.4.2 and 3.4.3, respectively. 

 Concrete under static and dynamic loading 

Observing the cracking process in concrete is not an easy task and difficult to predict 

because it is influenced by several factors such as the aggregate type, curing conditions, 

type of cement, and the water-to-cement ratio (Anderson, 2005; Giaccio and Zerbino, 

1998). Despite that, several researchers studied the fracture mechanisms of concrete 

under quasi-static loading using different techniques. Robinson (1968) and Slate and 

Olsefski (1963) used x-ray observations to detect the micro-cracks developments. Dhir 

and Sangha (1974) used fluid ink to penetrate through concrete specimens, and by 

slicing it longitudinally, the researchers visually observed the ink penetration through 

the micro-cracks. Further, Mamillan (1980) used ultrasonic waves to trace micro-

crack locations in concrete. All of these techniques concluded that concrete specimens 

failed due to the formation of micro-cracks in the transition zone (Section 1.4.5) 

between the coarse aggregate and the hardened cement, as presented in Figure 3.5 

(Carpinteri and Ingraffea, 2012). 
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Figure 3.5 Schematic drawing of the micro-cracks formation (de-bonding) in the transition 
zone (Carpinteri and Ingraffea, 2012). 

When loading concrete, the cracks begin by forming micro-cracks in the transition 

zone because it is a high porosity layer (in case of a pre-existing crack/defect, see 

Section 2.8). As the load increases, micro-cracks at the transition zone start to debond. 

As the applied load increases, the debonded cracks spread through the cement matrix 

and interlink between the developed cracks, leading to concrete failure. At the same 

time, coarse aggregates work as crack arrestors. This failure process is sketched in 

Figure 3.6  for the sake of clarification. 

 

Figure 3.6 Schematic drawing of the progressive damage with loading concrete until failure 
(Carpinteri and Ingraffea, 2012). 

According to the literature, the influence of the dynamic loading on concrete is 

compared to the concrete behaviour under quasi-static loading. In particular, most 

studies relied on calculating the so-called Dynamic Increase Factor, DIF, to quantify 

the influence of the dynamic loading. The DIF is calculated as the ratio of dynamic to 
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static strength (or any other material property being investigated), putting that in 

mathematical expression (Mihashi and Izumi, 1977; Brühwiler and Wittmann, 1990; 

Chen et al., 2013): 

𝐷𝐼𝐹 =
𝑋𝑑

𝑋𝑠
 (3.8) 

 where Xd is a material property investigated under dynamic loading, and Xs is the 

corresponding material property investigated under quasi-static loading.  

As per Figure 3.7, most studies adopt SHPB to achieve a high strain rate on un-

confined and un-notched concrete specimens to quantify the DIF of concrete under 

dynamic compressive loading. On the other hand, the DIF of concrete under dynamic 

tensile loading is usually obtained by combining SHPB and split Brazilian tests. Using 

these techniques to test concrete introduces additional failure mechanisms. In more 

detail, when the applied strain rate exceeds 200 s-1, the concrete compressive strength 

increases because of the confining pressure resulting from the radial inertia (Zhou and 

Hao, 2008; Ngo et al., 2013). On the other hand, the inertia effect does not seem to 

influence tensile dynamic loading because the tensile triaxial stress state does not 

allow the inertia to strengthen the material (Ragueneau and Gatuingt, 2003). Another 

possible cause of the increase of concrete strength, when loaded dynamically, is that 

the free water in concrete pores becomes viscus, so Stefans’ effect is identified as one 

of the possible reasons for the DIF increase of tensile/compressive strength of concrete 

(Rossi and Toutlemonde, 1996; Zheng and Li, 2004; Xiao et al., 2010). 

 

Figure 3.7 50 mm× 50 mm concrete specimen sandwiched between input and output SHPB 
(Ngo et al., 2013). 
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According to state of the art, it was proved that the DIF of the compressive and tensile 

strength increases as the applied loading strain rate increases. In more detail, the DIF 

values associated with the compressive strength are seen to be larger than two, as in 

Figure 3.8 (Bischoff and Perry, 1991). And, the DIF of tensile strength is seen to have 

values much larger than six, as presented in Figure 3.9 (Malvar and Crawford, 1998).  

Focusing on the dynamic tensile strength of concrete, Figure 3.9 shows that the tensile 

strength increases with increasing the loading rate in log-log schematisation. Also, 

from the figure, it could be observed that there is a sudden increase in the data regime 

as the strain rate exceeds 1 s-1. This indicates that the data regime could be sub-divided 

into two fracture mechanisms (Pelekis and Susmel, 2017). In particular, with dynamic 

loading rates less than or equal to 1 s-1, it is seen that the failure mechanisms are 

governed by the same failure mechanism when testing under quasi-static loading. 

However, as the strain rate exceeds 1 s-1, concrete fracture behaviour becomes much 

more complex, resulting in a substantial increase in the tensile DIF (Pelekis and 

Susmel, 2017).  

 

Figure 3.8 DIF of compression strength versus applied strain rate (Bischoff and Perry, 
1991). 
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Figure 3.9 DIF of concrete under tension versus the strain rate (after Malvar and Crawford, 
1998), (from Pelekis and Susmel, 2017). 

Chen et al. (2014) and Adhikary et al. (2016) explored and summarised the most well-

known models in the literature for both dynamic tensile strength and dynamic 

compressive strength. In more detail, since the mid of the last century, several 

researchers have proposed different models to predict the dynamic strength of 

concrete as a function of the strain rate and in the form of logarithmic polynomials. 

Those models were derived based on experimental results with little flexibility to make 

slight adjustments because concrete mechanical properties change with changing the 

mixing proportions (Chen et al., 2014). This excludes the CEB model because several 

parameters can be manipulated to calibrate the CEB model, which rigorously broadens 

the applicability of the model (Comité Euro-International du Béton, 1993). 

 Pelekis and Susmel (2017) emphasized that the available models for dynamic tensile 

strength have something in common, even though some models appear complex. All 

of them could be written in the form of simple power-law as (Yin et al., 2015; Pelekis 

and Susmel, 2017): 

𝜎𝑓(𝜀̇) = 𝑎𝑓 × 𝜀̇𝑏𝑓 (3.9) 

where σf  is the dynamic strength as a function of the strain rate, 𝜀̇. The power law 

constants af and bf could be calibrated experimentally or derived theoretically.  
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 Dynamic fracture toughness 

Despite the large body of work investigating the dynamic strength of concrete, only a 

few studies were conducted on the dynamic fracture toughness of concrete, KId. 

Mindess et al. (1987) conducted an experiment on notched concrete beams. The 

researchers increased the loading rate by releasing a hammer from different heights 

and found that the fracture toughness increased with increasing the hammer release 

height (higher loading rate). However, the researchers did not provide explicit 

relationships between the strain rate and the dynamic fracture toughness.  

Furthermore, John and Shah (1990) investigated the dynamic fracture toughness on 

notched concrete specimens subjected to strain rates varying from 10-6 s-1 to 0.5 s-1. 

They concluded that the dynamic fracture toughness increased slightly by increasing 

the strain rate up to 0.5 s-1. 

A few years later, Lambert and Allen Ross (2000) explored experimentally the Mode I 

dynamic fracture toughness for quasi-brittle material using concrete. They used SHPB 

to strike internal-notched concrete cylinders sandwiched between the steel bars in a 

diametric position, as in Figure 3.10. This test setup combines the SHPB with the 

tensile splitting test, known as the Brazilian test. The geometrical features of the 

specimens were in accordance with the dimensions recommended by ASTM (2017). 

The researchers were able to strike the samples with stress waves that produced a 

strain rate up to 10 s-1. The researchers concluded that concrete fracture toughness 

increases significantly with increasing the strain rate. 

 

Figure 3.10 Schematic drawing of internal-notched concrete placed between the bars of 
SHPB to be tested under splitting tension (Lambert and Allen Ross, 2000). 

Pelekis and Susmel (2017) combined the findings of John and Shah (1990) and 

Lambert and Allen Ross (2000) in one plot, as shown in Figure 3.11. From the figure, 

it is clear that the fracture toughness increases with increasing the strain rate. 
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Furthermore, it is clear that the relationship of the fracture toughness versus the strain 

rate is linear in the log-log plot with an evident change in the exponent as the strain 

rate exceeds 1 s-1, which is the same relationship between the tensile strength and the 

strain rate. Thus, KId follows simple power laws and can be modelled as (Yin et al., 

2015; Pelekis and Susmel, 2017): 

𝐾𝐼𝑑(𝜀̇) = 𝑎𝐾 × 𝜀̇𝑏𝐾 (3.10) 

where aK and bK are material constants that can be derived either experimentally or 

theoretically. 

 

Figure 3.11 Dynamic fracture toughness versus the applied strain rate [data from (John and 
Shah, 1990; Lambert and Allen Ross, 2000); figure from (Pelekis and Susmel, 2017)]. 

 The TCD extension to notched plain concrete under Mode I 

static/dynamic loading 

As briefly illustrated in Sections 3.4.2 and 3.4.3, concrete strength and fracture 

toughness increase with increasing the strain rate. Also, it was shown that the dynamic 

strength and fracture toughness could be modelled using simple power laws (Pelekis 

and Susmel, 2017). If the loading rate is denoted as �̇�, which general notation 

representing either the stress intensity factor rate, the loading rate, the displacement 

rate, or the strain rate, then Eqs. (3.9) and (3.10) can be re-written as follows (Yin et 

al., 2015; Pelekis and Susmel, 2017): 
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σ0(Ż) = σf(Ż) = af(Ż)
bf

 (3.11) 

 KId(Ż) = aK(Ż)
bK

 (3.12) 

 where af, bf, ak, and bk are material constants that can be calibrated experimentally or 

determined theoretically. According to definition (3.3), the critical distance depends 

on fracture toughness and ultimate tensile strength. Because both change as a function 

of the loading rate, the TCD critical distance has been proposed to be defined as follows 

(Yin et al., 2015; Pelekis and Susmel, 2017):  

L(Ż) =
1

π
[
KId(Ż)

σ𝑓(Ż)
]

2

= aL(Ż)
bL

 (3.13) 

where the constants aL and bL can be determined experimentally or theoretically. 

Before reviewing the TCD extension to Mode I dynamic cases, it is worth pointing out 

that the above power-law models should be calibrated under quasi-static loading so 

that those models return the conventional static quantities. Therefore, in general, it is 

expected that the power-law models have upper and lower asymptotic limits. More 

elaboration on this aspect will be presented in Section 5.2. 

By presenting expressions for the tensile strength and the TCD critical distance under 

dynamic loading, the subsequent discussion focuses on the TCD reformulation to 

assess Mode I dynamic loading. 

Initially, condition (3.5) has to be adjusted to cover dynamic cases by assuming that 

failure occurs when the dynamic effective stress is equal to the dynamic inherent 

material strength as (Pelekis and Susmel, 2017):  

σeff(Ż) = σ0(Ż)  failure (3.14) 
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 where 𝜎0(�̇�) is defined in Eq.(3.11) and 𝜎𝑒𝑓𝑓(�̇�) is the dynamic effective stress that 

could be calculated to the PM, LM, AM, and VM. By focusing on the PM and the LM, 

the calculation of the dynamic effective stress is as follows (Pelekis and Susmel, 2017): 

σeff(Ż) = σy (𝜃 = 0, 𝑟 =
𝐿(Ż)

2
) Point Method (3.15) 

σeff(Ż) =
1

2L(Ż)
∫ σy(𝜃 = 0, 𝑟)

2L(Ż)

0

𝑑𝑟 Line method (3.16) 

 The adopted coordinate system in the vicinity of the stress raiser is shown in Figure 

3.12a. Also, the calculations of 𝜎𝑒𝑓𝑓(�̇�) according to Eqs. (3.15) and (3.16) are shown 

schematically in Figures 3.12b and 3.12c, respectively. 

 (a) (b) 

(c) 

Figure 3.12 The adopted coordinate system (a), schematic illustration of the calculation of 
the dynamic effective stress according to the PM (b) and LM (c).   

The estimation of 𝐿(�̇�), could be by using  Eq. (3.13) or by following an alternative 

procedure to determine 𝐿(�̇�) when the dynamic fracture toughness is not known 
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(Pelekis and Susmel, 2017). In more detail, under a specific  loading rate (a specific 

value of �̇�), experimental results are obtained from testing un-notched and notched 

specimens of known geometrical features (preferably containing a notch as sharp as 

possible (Sumel, 2009; Susmel and Taylor, 2010a)). The results from the un-notched 

specimens give the values of 𝜎𝑓(�̇�). And, from the notched specimens, the linear-

elastic stress fields at the notch tip and across the notch bisector in the incipient of 

failure condition should be plotted. By following the PM procedure, 𝜎𝑓(�̇�) is used as 

an input value to the generated stress field. The horizontal distance at which 𝜎𝑓(�̇�) 

intersects the curve return the value of 𝐿(Ż)/2, as shown in Figure 3.13. This procedure 

should be repeated at least under two different loading rates (different values of �̇�) in 

order to calibrate the constants of Eq.(3.13). 

 

Figure 3.13 Alternative procedure to find 𝐿(Ż) by adopting the PM procedure.  

 Modelling the strength of components containing short 

cracks  

 Recall Figure 2.2, which shows an infinite plate that contains a central crack. 

Assuming that the plate is linear-elastic, homogeneous, and isotropic, then the stress 

intensity factor can be calculated by recalling Eq. (2.6) from Chapter 2: 

 𝐾𝐼 = 𝐹 𝜎 √𝜋𝑎 (3.17) 
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Now, suppose that the length of the crack gradually decreases to zero. In that case, the 

strength of the cracked plate gradually increases until it reaches the tensile plain 

(uncracked) strength of the material (i.e., σUTS). This gradual transition from the long 

to short crack can be fully modelled using the TCD by adopting the Kitagawa-

Takahashi diagram as will be shown later in this section.  

In order to detect the short-crack regime, consider the Imaginary Crack Model, ICM. 

According to this model, an imaginary crack of a length equal to a0 is introduced at a 

notch /crack root (Taylor, 2007). It is an imaginary crack of no physical meaning or 

existence, but it was introduced so that the laws of the LEFM apply (Taylor, 2007). 

Now, by including a0 to the original crack/notch, KI may be calculated as (Taylor, 

2007): 

𝐾𝐼 = 𝐹 𝜎 √𝜋(𝑎 + 𝑎0) (3.18) 

If the crack is very long (i.e., a >> a0), then a0 can be neglected, and the cracked plate 

will be modelled by Eq.(3.17) by setting KI = KIc. On the other hand, if the material is 

free from cracks, the failure occurs at σf = σUTS, in which a = 0. To this end, by 

substituting these values into Eq. (3.18) and solving for a0, we get (Taylor, 2007): 

𝑎0 =
1

𝜋
(
𝐾𝐼𝑐

𝐹𝜎0
)
2

 (3.19) 

Eq. (3.19) is the TCD critical distance L in the case of the cracked-infinite plate (F2 = 

1). To this end, theoretically, the assessed cracked material obeys the LEFM laws as 

long as the equivalent crack length, aeq, is greater than or equal to the TCD critical 

distance L (Bowman and Susmel, 2014) as: 

 𝑎𝑒𝑞 = 𝐹2𝑎 ≥  𝑎0 =
1

𝜋
(
𝐾𝑐

𝜎0
)
2

 (3.20) 
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However, much experimental evidence showed that the LEFM accurately predicts the 

nominal strength of a cracked component when the assessed cracks are longer than 

10a0 ( Susmel, 2009; Bowman and Susmel, 2014; Ahmed and Susmel, 2019). 

To accurately model the strength of an infinite plate with gradual crack length change 

from long crack to short crack up to a crack-free plate, the PM and LM were 

reformulated by initially considering the solution provided by Westergaard H.M. 

(1939). It is the solution for the linear-elastic stress fields in infinite cracked plates that 

are stretched in tension, with symbols being used according to the frame of reference 

in Figure 2.7,  as follows (Taylor, 1999): 

𝜎𝑦(𝜃 = 0, 𝑟) =
𝜎

[1 − (
𝑎

𝑎 + 𝑟
)
2

]
1/2

 
(3.21) 

 According to the PM argument in Eq. (3.6), failure will occur if the estimated stress in 

the vicinity of the stress raiser at a distance r = L/2 is equal to σ0. Then, the transition 

zone from the long- to short-crack can be modelled by combining the PM solution with 

Eq. (3.21), as follows (Taylor, 1999): 

𝜎𝑓 = 𝜎𝑈𝑇𝑆 [1 − (
𝑎

𝑎 +
𝐿
2

)

2

]

1/2

 (3.22) 

Similarly, according to the LM in Eq.(3.7), failure will occur if the average stress over 

a distance from r = 0 to r = 2L is equal to σ0. Then, failure of the transition zone from 

long- to short-cracks can be predicted by combining the LM solution with Eq. (3.21) 

as follows (Taylor, 1999): 

𝜎𝑓 = 𝜎𝑈𝑇𝑆 (
𝐿

𝑎 + 𝐿
)
1/2

 (3.23) 
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According to the normalized Kitagawa-Takashi diagram in Figure 3.14a, both the PM 

and the LM can model the static strength of plain materials on the left-hand side of the 

plot and the strength of the cracked plate on the right-hand side. Also, modelling the 

infinite cracked plate using the PM and LM perfectly coincides with the LEFM 

estimates (Figure 3.14a). Strictly speaking, Figure 3.14a is valid in the case of an 

infinite plate containing a central crack because the solution was derived based on 

Westergaard's equation. Accordingly, the shape factor derived according to the LEFM 

must be used to extend this schematization to any case. In particular, in the Kitagawa-

Takahashi diagram, the nominal gross strength must be plotted against the equivalent 

crack length, aeq, as in Figure 3.14b (Tanaka, 1987; Usami, 1987; Atzori et al., 2003). 

(a) 

 (b) 

Figure 3.14 Normalized Kitagawa-Takashi diagram to model the short- to the long-crack 
regime for an infinite plate containing a central crack (a) and for a crack in a finite 

component (b) (Ahmed and Susmel, 2019).  
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 Values of the critical distance, L 

The critical distance L is a material property, and its value depends on the underlying 

structural features, the fracture process, and the toughening mechanism (Taylor, 

2007). Depending on the assessed material, L could be measured in microns or as large 

as several millimetres (Taylor, 2007).  

Taylor (2007) stated that small values of L are commonly seen in brittle fractures such 

as engineering ceramics (Kimoto et al., 1985) and AISI 4340 steel (Ritchie et al., 1976; 

Ritchie and Horn, 1978) in which failures occur at the microscopic level. Furthermore, 

when encountering L that is in equal or in the order of the material grains/crystals, it 

indicates that those grains act as a toughening mechanism where they work as a barrier 

that arrests the crack growth process (Taylor, 2007).  

In construction materials such as, for example, composite materials, concrete, and 

mortar, the values of L are seen to be in the order of a few millimetres and centimetres 

(Taylor, 2007). This is because the critical distance is associated with the size of the 

damage zone in the incipient of the failure condition (Taylor, 2007). Depending on the 

toughening mechanism of the material, the material's exhaustion (energy dissipation) 

is reflected in the size of the damage zone.  

 Conclusion  

This chapter provided a brief review of the Theory of Critical Distances, TCD. This 

review included a brief discussion about the TCD history, the needed parameter to 

apply the TCD, and how the TCD works in its basic form. After that, the chapter focuses 

on the TCD reformulation to assess the dynamic strength of Mode I unreinforced plain 

concrete as well as the problem of modelling the short cracks regime. 

The TCD is a group of methods used to model engineering components in which 

failures occur due to cracking from stress raisers. The TCD uses the linear-elastic stress 

fields information in the vicinity of the assessed stress raiser to calculate the effective 

stress. In the TCD framework, two key parameters must be correctly defined to 

calculate the effective stress: the inherent material strength and the length scale 

parameter. The inherent strength is equal to the ultimate tensile strength for brittle 
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materials and a higher value for ductile materials. The TCD critical distance is a 

material property that depends on the underlying structure of the material, fracture 

process, and toughening mechanisms against fracture extension. 

The main features of the TCD are that it could be calibrated from the classic 

experimental output and returns high accurate predictions. The TCD accuracy is 

determined by calculating the standard error between the effective stress and the 

inherent material strength (Taylor, 2007). The prediction error scattering is expected 

to arise from data point scattering and numerical stress analysis. Accordingly, 

obtaining an error level that is less than or equal to the scattering level of the data used 

to calibrate the approach is undoubtedly accurate (Taylor, 2007). 
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Chapter – 4 

4 Theory of Critical Distances: length scale parameter 

and meso-structural features of notched unreinforced 

concrete 

The study presented in this chapter was published in Engineering Fracture Mechanics: 

Alanazi, N. and Susmel, L. (2022) ‘Theory of Critical Distances and static/dynamic 

fracture behaviour of un-reinforced concrete: length scale parameters vs. 

material meso-structural features.’ Engineering Fracture Mechanics, 261, 

108220. 

Abstract: 

The Theory of Critical Distances, TCD, is a group of methods used to design 

engineering materials containing notches/cracks by implementing a specific length 

scale parameter. This length scale parameter is different for different materials and is 

assumed to be a material property. Depending on the underlying structural 

characteristics and fracture mechanisms, the TCD critical distance is measured at the 

micro-, meso-, or macroscopic levels (see Section 3.6). Independently of the 

geometrical characteristics of the stress raiser being investigated, a previous study has 

proven that the TCD is a promising method for evaluating the static and dynamic 

strength of notched concrete when it is subjected to Mode I loading. In this context, 

the TCD used a length scale parameter that is on the order of a few millimetres. 

However, the international community has not yet acknowledged an accepted answer 

to the intrinsic meaning of the TCD critical distance. In order to investigate this 

fundamental problem, experimental results were generated from testing concrete 

specimens under quasi-static and dynamic loading. The experimental work involved 

manufacturing two sets of concrete samples: the first set is specimens that are free of 

stress raisers, and the second set comprises crack-like saw-cut notched specimens. The 

latter specimens were manufactured according to the RILEM recommendations used 

to determine concrete fracture parameters. All specimens were produced from 
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bespoke concrete mixes that have specific and controlled meso-structural features to 

serve the purposes of this research. The main conclusion of this systematic 

theoretical/experimental investigation is that the TCD critical distance is seen to 

approach the average distance measured from the crack-like notch tip line to the first 

aggregate particles, which work as barriers to slow/affect the propagation of the crack 

growth process. 

 Introduction  

As presented in Section 1.2, concrete is a heterogeneous material that consists of three 

key elements at the mesoscopic level: cement paste, aggregates, and the interfacial 

transition zone between the two. Concrete is classified as quasi-brittle material whose 

failure occurs without exhibiting non-linearity (see Section 3.4.2). In this context, the 

level of non-linearity is so small to a point where the concrete behaviour is modelled 

by treating the material as simple linear-elastic following the elastic constitutive laws 

(see, Figure 1.6 in Section 1.4.2). 

As far as pre-existing cracks and flaws in concrete are concerned, it is worth recalling 

from Section 2.8 that concrete with cracks/defects fails by initially forming a sizable 

fracture process zone, FPZ, ahead of the traction-free crack/flaw. The region 

surrounding this FPZ almost deforms elastically. From a theoretical perspective, 

recalling Eq. (2.32), the length of the FPZ, LFPZ, could be estimated as follows: 

𝐿𝐹𝑃𝑍 =
1

𝜋
𝐿𝑐ℎ =

1

𝜋
(
𝐾𝐼𝑐

𝜎𝑓
)

2

 (4.1) 

As discussed in Chapter 3, the TCD is a group of methods that use the information of 

the linear-elastic stress fields ahead of the assessed stress raiser using a specific length 

scale parameter (Taylor, 2007). This length scale parameter is considered a material 

property that is different for different materials. Furthermore, this length parameter 

is related to the underlying material structure at the micro-, meso-, or macro-scopic 

level and the inherent characteristics of the cracking behaviour being observed 

(Taylor, 2007; Sumel, 2009). As far as concrete is concerned (i.e., brittle and quasi-
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brittle materials), the TCD length scale parameter can be estimated by recalling 

definition (3.3) in Section 3.2: 

𝐿 =
1

𝜋
(
𝐾𝐼𝑐

𝜎𝑓
)

2

 (4.2) 

Again, σf is the tensile strength, and KIc is the plain strain fracture toughness. As for 

the concrete materials, the length scale parameter is estimated to be in the order of a 

few millimetres (Taylor, 2007; O. Jadallah et al., 2016; Pelekis and Susmel, 2017). 

Further, according to Eqs. (4.1) and (4.2), the critical distance L is directly related to 

the size of the FPZ. 

By taking full advantage of the Gradient Elasticity (GE), a similar approach to the TCD 

is taken to assess notched concrete. The GE is an advanced and complex method that 

enriches the constitutive material laws by introducing a length scale parameter 𝓁 

(Askes and Aifantis, 2011). Similarly, 𝓁 is a material property and related to the 

underlying characteristics of the material being assessed at the micro-, meso-, macro-

scopic level (Susmel et al., 2013). In fact, Susmel et al. (2013) proved that the GE length 

scale parameter could be directly estimated using the TCD critical distance as follows: 

𝓁 ≈
𝐿

2√2
=

1

2√2
×
1

𝜋
(
𝐾𝐶

𝜎𝑓
)

2

 (4.3) 

According to the above discussion, it is suggested that the GE length scale parameter 

is also linked to the size of the FPZ (see Eqs. (4.1), (4.2), and (4.3)). 

Given the challenging review that is briefly discussed above, the ultimate goal of the 

summarized work in this chapter is to find a possible physical relationship between 

the TCD critical length, the length of the fracture process zone, and the underlying 

concrete’s mesostructures in situations involving static and dynamic loading. 

Accordingly, a series of static and dynamic bending tests were conducted on un-

notched concrete specimens and crack-like saw-cut notched concrete specimens 

(Shah, 1990) that were made from different concrete mix designs.  
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 Experimental details and Finite Element modelling 

Un-notched and notched concrete specimens were fabricated from different concrete 

mix designs. The specimens testing was performed at the structural Engineering 

Laboratory of the University of Sheffield, UK.  

As shown in Figure 4.1, the test specimens were 75 mm × 75 mm gross-cross sectional 

area and 285 mm long. The net-cross sectional area in both un-notched and notched 

specimens was reduced to 50 mm to eliminate any possible size effect on the generated 

results. All experimental tests were carried out using the classic three-point bending 

test (3PB), with a span equal to 225 mm between the two lower supports. The notches 

were machined using a circular tip blade of 2.6 mm thickness to produce U-notches 

with a root radius, rn, equal to 1.3 mm. 

(a) 

(b) 

Figure 4.1 Dimensions of the un-notched (a) and notched (b) specimens tested under 3PB 
(dimensions in mm). 

In this study, a total of four mix proportions were used, as in Table 4.1. All mixes were 

prepared using Portland cement of a strength class equal to 32.5 MPa, grade M sand. 

The water-to-cement ratio (w/c) was constant and equal to 0.44 for all mix 

proportions. Furthermore, a superplasticizer, Sika® ViscoFlow® 2000, was used to 

prevent aggregate segregation and improve the workability of fresh concrete. All mixes 

were prepared using single size coarse aggregates, dagg. This is done to produce 

concrete specimens with specific and controlled structural features at the mesoscopic 
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level. This study used two single size coarse aggregates (Figure 4.2). In particular, 

concrete mixes with Low-Coarse (LC) aggregates and Dense-Coarse (DC) aggregates 

were mixed with 10.5 mm single size aggregates. On the other hand, concrete mixes 

with relatively Low-Finer (LF) aggregates and Dense-Finer (DF) aggregates were 

mixed with 5.5 mm single size aggregates. The process of extracting the 10.50 mm and 

5.50 mm single size aggregates started by sieving well-distributed natural-round river 

aggregates having a nominal size of 10 mm. Then, the 10.50 mm aggregates were 

collected from aggregates trapped between 12.50 mm and 9.50 mm sieves. Similarly, 

the 5.50 mm aggregates were taken out from the aggregate passed a sieve opening 

equal to 6.30 mm and retained on a sieve with an opening equal to 4.75 mm. 

Table 4.1 Concrete proportions and the single size aggregates used in this study. 

 Materials by weight (kg/m3)    

Mix 
ID 

Cement Aggregate Sand Water Superplasticizer  
 Aggregate 

size(a), dagg, 
(mm) 

LC 450.0 687.0 964.0 198.0 2.0  10.5 

DC 450.0 964.0 687.0 198.0 1.3  10.5 

LF 450.0 687.0 964.0 198.0 2.0  5.5 

DF 450.0 1075.0 576.0 198.0 1.3  5.5 
(a) Single size aggregates. 

Furthermore, for a specific single size aggregate being investigated, the average inter-

aggregate distance, ds, was varied by changing the amount of the added single size 

aggregate particles (i.e., their content in the mix proportions). The value of ds was 

calculated as the average thickness of the cement matrix measured between adjacent 

aggregate particles in two randomly selected specimens from each concrete mix design 

being considered. In more detail, the calculation of ds was quantified by placing lateral 

cuts perpendicular to the axial axes of the selected specimens. After that, high-

resolution digital photos of the cross cuts were taken to be post-processed using 

standard image processing software (Schneider et al., 2012). Examples of the obtained 

cross-cuts are shown in Figure 4.3. The software can detect the aggregates particles, 

label them, and find their centroids. After that, the thickness of the concrete matrix 

across the line that connects the centroid of neighbouring aggregates was measured. 

Following this procedure on the four cross-cut sections obtained from the two 

randomly selected specimens revealed that ds is equal to 4.8 mm in LC, 2.8 mm in DC, 
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3.3 mm in LF, and 1.9 mm in DF concrete mixes (see Table 4.4). Certainly, measuring 

ds from two specimens gives a representative indication of its value in every concrete 

mix design being investigated. And indeed, to obtain a more accurate value of ds, it 

should be averaged from more individual measurements. However, because of the 

large variability in the features of concrete mesostructures due to the nature of the 

concrete fabrication, calculating ds according to the above-described simple procedure 

was considered sufficient and accurate to proceed with post-processing the 

experimental results.  

(a) 
dagg ≈10.50 mm 

(b) 
dagg ≈5.50 mm 

Figure 4.2 The single size aggregates used in this study. 

Having presented details about the concrete mix designs, the specimens were prepared 

by pouring fresh concrete into steel moulds. The samples were then kept at room 

temperature and sealed using plastic sheets for 24 hours. After that, the specimens 

were de-moulded and sent directly to a controlled environment room for curing until 

the day of testing. This curing process was performed according to the standard 

practice described in Section 1.3.3.  

All static and dynamic bending tests were conducted using a hydraulic actuator with 

an attached high acquisition loading cell, as shown in Figure 4.4. The loading cell was 

used to ensure that the peak forces were accurately measured, especially at dynamic 

loading rates. The movement of the actuator, the displacement rate, and the overall 

testing procedure were controlled digitally using a computer unit. A pre-load of 0.2 kN 

was applied to ensure that the test specimens were in full contact with the loading 

rollers before the test execution. The ramp load rate was controlled by changing the 

travel speed of the actuator.  
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 (a)  (b) 

 (c)  (d) 

Figure 4.3 Example photos of the lateral cuts to measure the average cement thickness 
between adjacent aggregates, ds, in concrete mixes LC (a), DC (b), LF (c), DF (d).  

 

Figure 4.4 Example of a notched concrete beam ready to be tested under 3PB fracture test. 

A high-speed camera was also auto-triggered to start recording simultaneously with 

the moment of applying the ramp load. This was done to synchronize the recorded 

video (or images) with the gathered data point from the loading cell and the hydraulic 

actuator. The displacements, Δc, vs time curves were obtained by post-processing the 
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recorded DIC clips. See Appendix A for more details on the camera setup, specimen 

preparations, and the DIC technique. The displacement rates were calculated from the 

slope of the vertical displacement versus time curves. In more detail, the 

displacements were measured at the tip of the notch in the case of assessing notched 

specimens. In contrast, the displacements were measured at the bottom of the mid-

span when encountering un-notched specimens.  

In this study, the results generated from testing un-notched and notched specimens 

were obtained by varying the displacement rate between 0.007 mm/s and 3.91 mm/s. 

Figure 4.5 presents examples of the cross-head force and corresponding displacement 

versus time of specimens tested under static (Figure 4.5a) and dynamic (Figure 4.5b) 

loading. Also, Figxx present an example of stress-displacement curve under dynamic 

loading. Appendix B presents the curves of the force and displacement versus time, 

the cracking behaviour, and the crack face for every test specimen. Note that the 

specimen codes are based on the tables summarizing all the experimental results, 

which will be presented subsequently.  

(a) (b) 

  

 (c) 

Figure 4.5 Example to show the increase of cross-head force, P, and displacement, Δc, over 
time under static (a) and dynamic (b) bending and load-displacement curve of specimen 

tested under dynamic bending (c). 

All the obtained experimental results are summarized in Tables 4.2 and 4.3. 

Additionally, the same results are plotted in Figure 4.6 as a function of displacement 
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rate to visualize the trends of the tabulated data. In more detail, Figures 4.6a to 4.6d 

present the results of the un-notched specimens in terms of 𝜎𝑓(Ż), which is the 

static/dynamic failure strength that is calculated according to the beam theory, see Eq. 

(1.2). Similarly, the results of the notched specimens in Figures 4.6e to 4.6h are shown 

in terms of the net-nominal stress, 𝜎𝑓𝑛(Ż) at the notch tip section. Finally, Figure 4.7 

shows examples of the fracture surfaces in eight specimens made from different 

concrete mix designs and tested under quasi-static and dynamic loads. 

Table 4.2 Experimental results generated by testing un-notched specimens. 

Mix 
ID 

Loading 
Method 

Specimen 
Code  

Width 
(mm) 

Thickness 
(mm) 

Time to 
failure 

(s) 

Displacement 
rate(a) 

(mm/s) 

Failure 
Force 
(kN) 

LC 

Static 

LC1-1 50.03 75.23 4.500 0.0177 3.088 

LC1-2 50.13 74.86 4.620 0.0162 3.003 

LC1-3 50.47 75.95 7.570 0.0123 2.895 

Dynamic 

LC2-1 50.45 75.08 0.039 2.4676 3.185 

LC2-2 50.01 75.32 0.038 1.7332 3.580 

LC2-3 50.47 74.75 0.040 2.5566 3.607 

DC 

Static 

DC1-1 50.12 77.03 4.930 0.0155 2.391 

DC1-2 50.27 75.80 5.170 0.0146 2.888 

DC1-3 50.28 75.55 3.150 0.0239 2.859 

Dynamic 

DC2-1 50.06 77.28 0.025 3.5397 3.284 

DC2-2 50.36 77.88 0.050 1.6236 3.487 

DC2-3 50.11 77.52 0.044 2.1319 3.315 

LF 

Static 

LF1-1 50.10 77.97 5.550 0.0166 3.245 

LF1-2 50.30 77.04 6.750 0.0164 3.139 

LF1-3 50.14 77.92 4.660 0.0210 2.774 

Dynamic 

LF2-1 50.13 75.64 0.045 2.3162 3.896 

LF2-2 50.26 74.54 0.045 1.9454 3.795 

LF2-3 50.24 74.48 0.041 2.8716 3.674 

DF 

Static 
DF1-1 50.14 75.51 3.410 0.0119 2.146 

DF1-2 50.24 75.46 6.230 0.0097 2.209 

Dynamic 

DF2-1 50.16 75.66 0.043 2.4052 3.686 

DF2-2 50.37 75.12 0.055 0.7504 3.283 

DF2-3 49.92 76.32 0.032 2.4632 3.268 

(a) Calculated from measuring vertical displacement on the bottom mid-section  
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Table 4.3 Experimental results generated by testing notched specimens. 

Mix 
ID 

Loading 
Method 

Specimen 
Code  

Notch 
depth 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Time to 
failure 

(s) 

Displacement 
rate(a) 

(mm/s) 

Failure 
Force 
(kN) 

LC 

Static 

LC1-S1 24.82 75.36 75.86 10.130 0.0076 2.437 

LC1-S2 25.05 75.35 76.20 4.300 0.0139 2.847 

LC1-S3 25.19 75.76 75.75 4.480 0.0116 2.932 

Dynamic 

LC2-S1 24.87 75.36 74.99 0.034 1.9948 3.150 

LC2-S2 25.01 75.33 74.98 0.045 1.0265 3.577 

LC2-S3 24.90 75.08 75.69 0.049 1.4633 3.361 

DC 

Static 

DC1-S1 24.67 74.95 76.00 5.860 0.0146 2.982 

DC1-S2 25.19 75.69 76.24 4.480 0.0129 2.645 

DC1-S3 24.92 75.16 75.55 5.260 0.0091 2.708 

Dynamic 

DC2-S1 25.22 75.24 77.06 0.049 2.0377 2.808 

DC2-S2 25.07 75.37 76.86 0.041 1.5152 2.825 

DC2-S3 24.99 75.30 76.94 0.039 2.4276 2.881 

LF 

Static 

LF1-S1 24.72 75.18 76.46 6.160 0.0174 2.478 

LF1-S2 25.19 75.35 77.35 5.010 0.0152 3.009 

LF1-S3 24.91 75.20 77.25 4.940 0.0153 2.964 

Dynamic 

LF2-S1 34.17 74.98 74.74 0.031 1.1914 2.852 

LF2-S2 24.82 75.25 76.56 0.044 3.9115 3.014 

LF2-S3 25.31 75.39 75.96 0.036 2.0348 3.519 

DF 

Static 

DF1-S1 24.79 75.17 74.85 3.620 0.0120 2.603 

DF1-S2 24.94 75.30 75.13 3.060 0.0216 2.432 

DF1-S3 25.01 75.28 75.48 7.770 0.0180 2.569 

Dynamic 

DF2-S1 34.10   75.39 0.036 2.4419 3.139 

DF2-S2 24.89 75.53 75.85 0.039 2.4907 3.560 

DF2-S3 24.77 75.27 74.91 0.0679 0.9100 3.467 

 (a) Calculated from measuring vertical displacement at the notch tip. 
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 (a)  (b) 

 (c)  (d) 

(e) 
 (f) 

(g)  (h) 

Figure 4.6 Experimental results of un-notched (a-d) and notched (e-h) specimens prepared 
from different mix designs and tested under static/dynamic 3PB.  
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Mix ID Static Loading Dynamic Loading 

LC 

 

 
LC1-S3 

 

 
LC2-S1 

DC 

 

 
DC1-S3 

 

 
DC2-S2 

LF 

 

 
LF1-S3 

 

 
LF2-S2 

DF 

 

 
DF1-S1 

 

 
DF2-S2 

Figure 4.7 Example of fracture surfaces of notched specimens prepared from different mix 
designs and resulting from tests under static (left) and dynamic (right) 3PB. 
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The static properties of every mix design were obtained from averaging the flexural 

strength of the unnotched specimens that were failed under quasi-static loading. 

Accordingly, the flexural strength was determined to be 5.3 MPa, 4.8 MPa, 5.3 MPa, 

and 3.9 MPa for LC, DC, LF, and DF mixes, respectively. It can be noticed that 𝜎𝑓(Ż) 

decreases with increasing the aggregate content. This is expected because failures 

occur due to initial micro-cracks formation in the interfacial zone between the cement 

paste and aggregates (see Sections 1.3.2, 1.4.5, and 3.4.2 for more details). Therefore, 

the existence of this porous medium is proportional to the amount of added 

aggregates, so it is seen that a higher aggregate content decreases the overall strength 

of concrete specimens and vice versa.  

Having presented the experimental procedure and results, it is essential to highlight 

that the fracture behaviour and the mechanical properties of concrete are significantly 

influenced by the manufacturing variables such as cement content, aggregate 

characteristics (see Section 1.3.2), w/c ratio (see Section 1.3.1), curing (see Section 

1.3.3), and size effect (see Section 2.7). Accordingly, those variables should be 

considered when extending the theoretical/experimental aspects of the current 

research to other concrete materials prepared using different mix designs and 

different manufacturing processes.  

With regard to the notched specimens, the analytical solutions for linear-elastic stress 

distributions near stress raisers are available for certain cracked components under 

simple loading configurations. Extending the use of those solutions to notched 

specimens is not valid. Therefore, the stress fields near the notches (Figure 4.1b) were 

generated by modelling the notched specimen as linear-elastic, homogenous, and 

isotropic material (Pelekis and Susmel, 2017). The relevant linear-elastic stress fields 

were generated via Finite Element (FE) modelling using commercial software 

ANSYS®. Details of the FE modelling procedure are explained in Sections C.1 and C.2 

of Appendix C. Under a load of unity (1 kN), the generated linear-elastic stress curve 

is shown in Figure 4.8. Thus, it would be easier to plot the stress-distance curves 

corresponding to the failure force simply by scaling the stress-distance curves without 

further FE models. Finally, this numerical analysis resulted in a stress concentration 

factor, Kt, b, under bending, equal to 4.83.  
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Figure 4.8 Stress-distance curve of the assessed notched specimen under 1 kN. 

 Possible physical meanings of the TCD critical distance L  

The TCD is a design approach that utilizes the concepts of Linear Elastic Fracture 

Mechanics, LEFM, and continuum mechanics to introduce a specific length scale 

parameter, L, see Section 3.2. As discussed in Section 3.6, L is a material property that 

varies from a few micrometres to a few millimetres depending on the assessed 

material. In particular, L depends on the micro-, meso-, or macroscopic structural 

characteristics of the assessed material, its behaviour against fracture processes, and 

its intrinsic toughening mechanisms (Taylor, 2007; Sumel, 2009). 

As presented in Chapter 3, the TCD is a group of methods used to estimate the effective 

stress by post-processing the linear elastic stress fields in the vicinity of the modelled 

stress concentrator. The difference between the TCD formulizations is how the linear-

elastic stress fields are used to calculate the effective stress by simply changing the size 

and shape of the integration domain over the focus path. In this framework, all the 

integration domains are always proportional to L or 𝐿(�̇�), see Sections 3.3 and 3.4.4.  

Since the beginning of this century, the TCD has been used in real practical 

engineering problems because it is easy to use, accurate, and applied by simply post-

processing the linear-elastic stress fields, which are generated either analytically or by 

solving the relevant FE models. In the TCD framework, the length scale parameter is 

either estimated theoretically; see, for instance, definitions (3.3) and (3.13) for static 

and dynamic problems, respectively. Alternatively, the critical distance can be 
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estimated by following the relevant procedures that are summarized in Figure 3.2, 

Figure 3.13, and Susmel and Taylor (2007). 

Although the TCD has succeeded in modelling real engineering problems, the 

literature has shown that the international scientific community has not agreed on a 

clear explanation of the physical meaning of the TCD critical length. Accordingly, an 

explicit link between the underlying micro-, meso-, or macroscopic structural features 

and the associated critical distance is a fundamental challenge that is still under 

investigation, with this problem being investigated from theoretical and experimental 

perspectives. 

Focussing on applying the TCD on unreinforced concrete, previous investigations have 

shown that L is in the order of a few millimetres (Taylor, 2007; Jadallah et al., 2016; 

Pelekis and Susmel, 2017). This indicates that the TCD critical length is somehow 

related to the underlying structural features of concrete at the mesoscopic level. 

Jadallah et al. (2016) experimentally studied the validity and accuracy of the TCD in 

modelling the fatigue limit of notched concrete beams. For this purpose, the 

researchers generated a large number of experimental results by testing concrete 

specimens having U-notches and tested under four-point bending (4PB). The 

researchers investigated two batches of concrete with the same mix proportions but 

different w/c ratios. Eventually, the researchers concluded that the TCD succeeded in 

estimating the fatigue limit of notched unreinforced concrete. Regarding the data post-

processing, it is essential to highlight that the researchers used a length scale 

parameter that was invariably equal to 5.8 mm for both batches. This constant value 

of L indicates that the critical distance is related to the internal mesostructure 

characteristics (i.e., the aggregate sizes and the average spacing among adjacent 

aggregates).  On the other hand, the change in the water-to-cement ratio affected the 

mechanical properties of concrete (i.e., strength) but not the TCD critical distance. 

Therefore, it is reasonable to say that the critical distance of concrete under fatigue 

loading is related to the underlying characteristics of concrete, not the strength.   

Furthermore, Pelekis and Susmel (2017) experimentally investigated the use of the 

TCD in modelling the static/dynamic strength of notched unreinforced concrete 

subjected to Mode I four-point bending (4PB). They found that the TCD made accurate 
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estimations using L equal to 4.80 mm, independently of the loading rate being applied. 

In this framework, it is essential to highlight that the researchers emphasized that this 

constant L value was almost equal to the average inter-aggregate distance, which was 

about 5 mm.  

From the brief discussion of the above investigations, it could be concluded that the 

critical distance of unreinforced concrete is somehow directly related to the underlying 

inherent source of heterogeneity at a mesoscopic level (see Section 3.6) (Taylor, 2007; 

Taylor, 2017). The aggregate content represents about 60% to 70% of the concrete by 

volume (Shafigh et al., 2014), and according to the above reasoning, it could be 

suggested that the TCD L is linked to either the size of the aggregates, dagg, or to the 

average inter-aggregate distance, ds (the average distance between neighbouring 

aggregate particles).  

According to the previous section, the concrete specimens were manufactured with 

single size aggregates, i.e., either dagg = 10.5 mm or dagg = 5.5 mm. In addition, the 

concrete mixes were prepared in such a way that ds ranged from 1.9 mm to 4.75 mm 

(see Table 4.4). 

In order to investigate a physical link between the TCD critical distance and the 

underlying meso-structural characteristics of the used concrete mixes, the critical 

distance L was estimated for every concrete mix design by following the procedure 

summarized in Section 3.4.4. In this context. The relationship between the loading 

rate and the strength of the un-notched specimens (the power-law constants in Eq. 

(3.11)) were calibrated using the standard least-squares method, which is shown as 

trend lines in Figures 4.6a to 4.6d. Accordingly, the following relationships were 

derived for each concrete mix design with �̇� being represented by the displacement 

rate, ∆̇𝑐 (the displacement rate was calculated in mm/s): 

Mix LC  σf(Δ̇𝑐) = 6.00 ∙ ∆̇𝑐
0.030  [MPa]  (4.4) 

Mix DC  σf(Δ̇𝑐) = 5.61 ∙ ∆̇𝑐
0.041 [MPa] (4.5) 
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 Mix LF  σf(Δ̇𝑐) = 6.47 ∙ ∆̇𝑐
0.051  [MPa]  (4.6) 

 Mix DF  σf(Δ̇𝑐) = 5.77 ∙ ∆̇𝑐
0.087 [MPa] (4.7) 

After that, the derived power expressions and the linear-elastic stress fields in the 

vicinity of the sharp-notched specimens were used to estimate the TCD critical 

distance for every concrete mix by simply following the procedure summarized in 

Figure 3.13. The values of the critical distance, L, under quasi-static loading (Δ̇𝑐 ≈

0.02 𝑚𝑚/𝑠) and the critical length, LD, under dynamic loading (Δ̇𝑐 ≈ 2.2 𝑚𝑚/𝑠) were 

determined for every mix design. These two values of the displacement rates were 

computed by averaging all the applied displacement rates (and then measured using 

the DIC) from tests executed under quasi-static and dynamic loading, respectively.  

Table 4.4 summarizes L and LD values and compares them with the single size 

aggregate, dagg, and the average spacing between them, ds. 

In contrast to what was expected and justified at the beginning of this section, Table 

4.4 explicitly presents experimental evidence that L and LD are linked to neither dagg 

nor ds for the concrete mixes considered in this study. Instead, Table 4.4 shows that 

the loading rates affect the critical distances' values marginally. To this end, according 

to this experimental evidence, it was possible to argue that the critical distance may be 

linked to the size of other meso-structural features. 

Table 4.4 Comparing the theoretically estimated L and LD values with lengths of 
mesoscopic features of the investigated concrete mixes. 

Mix ID 
L 

(mm) 
LD 

(mm) 
dagg 

(mm) 
ds 

(mm) 
dm 

(mm) 
dc 

(mm) 

LC 4.7 5.3 10.5 4.8 2.1 5.3 

DC 5.8 4.4 10.5 2.8 2.5 4.7 

LF 5.0 4.0 5.5 3.3 3.3 4.7 

DF 6.3 5.3 5.5 1.9 3.1 4.3 

Average 5.5 4.8 - - 2.8 4.8 

Standard 
Deviation 

0.63 0.57 - - 0.48 0.36 
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Based on the previous results, the subsequent discussion focuses on the regions that 

experience the high stresses (i.e., the areas in the vicinity of the assessed notches) 

where the high tensile stress in those regions is also responsible for the formation of 

the FPZ.  

Initially, in sharply notched beams subjected to bending, it is important to highlight 

the phenomenon of the stress triaxiality variation across the notch tip. On the lateral 

surfaces, the stress state is biaxial (plane stress). However, this three-dimensional 

stress constraint increases as moving away from the free lateral surfaces to the mid-

section of the beam (Meneghetti et al., 2007). The development of the triaxial stress 

state depends on how large the thickness of the beam is. In more detail, if that 

thickness is large enough, then the stress triaxiality at the mid-section is fully 

developed due to plane strain condition. To this end, due to this well-known 

phenomenon, the crack process would be expected to initiate in the regions that are 

very close to the midsection of the beam in which the three-dimensional stress 

triaxiality (and associated damage) would be the highest.  

Having reviewed this well-known stress distribution phenomena across the notch tip 

line, it is essential to recall that, in general, engineering materials have evenly spaced 

barriers. These barriers significantly contribute to modelling the materials’ overall 

strength and reaction to the crack growth process because those barriers work as crack 

growth arrestors. In this context, a crack will break through these toughening barriers 

only if the driving force is greater than the resistance of these barriers (Taylor, 2017). 

To this end, Taylor (2017) argued that the TCD critical length is equal to or 

proportional to the average spacing between neighbouring barriers. 

Focussing solely on concrete specimens that are free of stress raisers, the presence of 

coarse aggregate particles has a significant influence on the fracture and toughening 

mechanisms. This is because they are rigid inclusions that are several times stronger 

than the cement paste matrix, except for highly porous and weak aggregates. Thus, 

cracks always initiate in the interfacial zone between aggregates and cement past in 

un-notched concrete that experiences static/low-dynamic loading (Gatuingt et al., 

2013) (see Sections 1.3.2, 1.4.5, and 3.4.2 for more elaboration). 
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According to the justifications presented above, an argument may arise that, as far as 

unreinforced concrete containing notches and subjected to static/dynamic loading is 

concerned, the failure process starts with cracks initiation at the tip of the notch, 

specifically in regions that experience the highest triaxial loading. Then, the cracks 

begin to grow to a point where they are arrested (or slowed down) by the presence of 

adjacent aggregates (meso-structural barriers) sitting on the crack way (see Section 

3.4.2). To this end, it is possible to conclude that the TCD length scale parameter is 

equal to the distance from the notch tip to the first aggregate arrestor, dm, at the mid-

section. For clarification purposes, Figure 4.9 presents an example of measuring dm in 

the region that experiences the highest stress triaxiality. The average values of dm 

obtained by performing this procedure on all notched specimens are summarized in 

Table 4.4.  

 

Figure 4.9 Example of crack surface to illustrate the measurement of dm of specimen LF1-
S1. 

From a philosophical point of view, the simple approach of measuring dm is promising 

and reasonable. However, as shown in Table 4.4, comparing the values of dm with L 

and LD presents experimental evidence that there is no relationship between dm and 

the TCD critical distance. To this end, the authors’ opinion is that the inconsistency 

between the TCD critical distance and dm can be attributed to two facts. First, direct 

visual observation of other fracture surfaces shows that, in some cases, a stone sits at 

the notch tip and in the mid-thickness (dm = 0 mm), which makes interpreting the 

Aggregate particle
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Mid-thickness 

center-line

Notch tip
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crack initiation and propagation even more complex. In particular, measuring dm in 

those specimens affected the generated average values of dm, which could be seen in 

the relatively large value of the obtained standard deviation (see Table 4.4). 

And second, the fact that concrete is a highly non-uniform material at a mesoscopic 

level due to the conventional way of manufacturing concrete. Because of those facts, 

cracks are expected to initiate at the notch tip line, either away from the central 

thickness (i.e., in the region that experiences the highest loading triaxiality) or 

instantly in multiple locations at the crack tip line. Accordingly, those two 

justifications may explain why there are no consistent results between the TCD critical 

distance and dm in Table 4.4. 

Taking into account the initial justifications summarized in the above paragraph, the 

following discussion is about deriving a material length scale parameter, dc, which is 

equal to the distances between the notch tip line and the first stone barriers across the 

specimen’s thickness. It is important to point out that this was done by excluding the 

stones set at the notch tip line. To better explain the way of determining dc, consider 

Figure 4.10a, which is a schematic sketch of a crack surface in the vicinity of a notch. 

This figure shows the notch tip line with randomly distributed aggregates across the 

thickness of the specimen. In the sketch, the shaded regions between the notch tip line 

and the aggregate barriers are the regions of interest. These regions are the parts of 

the material that were used to calculate dc. As shown in Figure 4.10a, for each specimen 

being evaluated, the area, Ai, and the width, Wi, of each region were measured on one 

of the two fracture surfaces by adopting an image processing software (Schneider et 

al., 2012). This procedure was applied to all notched specimens. Figure 4.10b shows 

an example of identifying and measuring a couple of regions of interest on the fracture 

surface. The associated average length was calculated once Ai and Wi were measured 

using the simple relationship di= Ai/Wi. Finally, for each concrete mix design in this 

study (LC, DC, LF, or DF), the relevant dc was calculated using the following 

relationship:  

𝑑𝑐 =
1

𝑛
∑𝑑𝑖

𝑛

𝑖=1

 (4.8) 
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 where n is the total number of regions of interest in all notched specimens being tested 

under quasi-static and dynamic loading. 

Following the above procedure to calculate the material parameter dc returned the 

following values (the values are also summarized in Table 4.4): 5.3 mm, 4.7 mm, 4.7 

mm, and 4.3 mm for the LC, DC, LF, and DF mixes, respectively. To this end, the 

resulting dc values show small variations among the concrete mixes. Also, comparing 

the TCD critical distance calculated under quasi-static loading, L, and the TCD critical 

distance calculated under dynamic loading, LD, with dc shows experimental evidence 

that they are very close to each other. It is important to highlight that the slight 

variation in the values of the dc measurements is attributed to the followed strategy of 

measuring the values of dc themselves. In more detail, measuring those values 

included disregarding the portions of the material that have aggregate particles sitting 

directly at the notch tip which affects the dc values obtained from Eq. (4.8). 

Furthermore, it is important to point out that more work is needed to verify the validity 

of extending this finding of this study to other concrete mix designs. 

 As far as unreinforced concrete is concerned, this experimental evidence strongly 

supports that the TCD critical distance is physically equal to the average distance 

between the notch tip line and the first aggregate particles (acting as inherent 

mesostructure barrier) that divert/slow down the cracks propagation process. 

Having suggested this physical length parameter, the TCD critical length was assumed 

to be constant and equal to dc, which was calculated by averaging the values obtained 

from all notched specimens, as follows: 

L(Δ̇𝑐) = 4.8 𝑚𝑚 (4.9) 

 Instead of mathematically estimating the TCD critical length, 𝐿(�̇�𝑐) was used as an 

input parameter in the TCD procedure summarized in Section 3.4.4. In more detail, 

the input parameter of the critical distance is assumed to be identified and calculated 

from the material meso-structural features and not assumed according to the 

procedure presented in Figure 3.13. Lastly, the accuracy of the TCD estimations using 

𝐿(�̇�𝑐) was checked using the following standard error relationship: 
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Error =
σeff(Ż) − σf( Ż)

σf( Ż)
× 100 (4.10) 

 (a) 

 (b) 
 

Figure 4.10 Schematic illustration to locate and specify the regions of interest, Ai, and its 
width, Wi, (a) and example of finding some of those regions on the fracture surface of 

specimen DC1-S2.   

The resulting overall accuracy of the TCD in the form of the PM and LM is presented 

in Figure 4.11. In this figure, the accuracy of the TCD estimates to the static and 

dynamic strength of notched plain concrete using 𝐿(�̇�𝑐) being equal to 4.8 mm was 

seen mainly to fall between ±20%  scattering. Certainly, this level of accuracy is 

accurate because differentiating between 0% and 20% is impossible due to the errors 

associated with experimental data scattering and numerical simulations (Taylor, 

2007). 
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Figure 4.11 The accuracy of the TCD predictions applied in the form of the PM and LM 
using the proposed intrinsic value of the TCD critical distance. 

 Conclusion 

This study focuses on the TCD applications to notched unreinforced concrete under 

static/dynamic loading. In particular, the study explored the inherent link between the 

TCD critical distance and the concrete meso-structural characteristics by 

systematically conducting the problem from theoretical and experimental angles. 

Accordingly, an experimental investigation was carried out on concrete samples made 

from special concrete mixes to obtain materials with controlled and specified 

mesoscopic features. The main conclusions of this investigation can be drawn as 

follows: 

 There is a direct interrelationship between the TCD critical distance and the 

concrete morphological features at a mesoscopic level.  

 The experimental results showed that the TCD critical distance is neither 

related to the average aggregate size nor the average distance between adjacent 

aggregates.  

 The TCD critical distance seems to approach the average distance from the 

notch tip line to the first adjacent aggregate particles, which act as a barrier 

that arrests /diverts the crack growth process. 
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 The mechanical properties and behaviour of concrete are size-dependent (i.e., 

see Figure 2.9), so more work is needed to investigate how the size influences 

the physical link between the TCD critical distance and the mesostructure 

characteristics of concrete. 

 More work is needed to investigate the effect of the concrete manufacturing 

procedures and the mix design on the conclusions derived from this study.  
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Chapter – 5 

5 Theory of Critical Distance: a novel reformulation to 

estimate static/dynamic strength of notched plain 

concrete under Mixed-Mode I/II loading 

The study presented in this chapter was published in Engineering Fracture Mechanics: 

Alanazi, N. and Susmel, L. (2020) ‘Estimating static/dynamic strength of notched 

unreinforced concrete under mixed-mode I/II loading.’ Engineering Fracture 

Mechanics, 240, 107329. 

Abstract: 

The Theory of Critical Distance (TCD) is a method used to design engineering material 

weakened by any stress concentrator feature. The TCD makes its predictions using the 

linear-elastic stress gradients that are generated in the vicinity of the assessed stress 

concentrator at failure conditions. This investigation presents an advanced form of the 

TCD to extend its use to assess the static/dynamic strength of notched unreinforced 

concrete subjected to Mixed-Mode I/II loading. The new extension of the TCD was 

validated against results that were generated by conducting a large experimental 

matrix. This experimental matrix included testing under different loading rates 

(varying from 0.002 mm/s to  35 mm/s), and different degrees of loading Mode mixity 

concrete specimens weakened by different notch sharpness. It was found that this 

advanced reformulation of the TCD made predictions that were within ±30% error 

scattering, which is found to be as wide as the scattering level of the data used for 

calibration. Accordingly, this level of accuracy suggests that the new reformulation of 

the TCD is undoubtedly accurate and can be used to design notched unreinforced 

concrete subjected to static/dynamic Mixed-Mode I/II loading by simply modelling 

concrete as linear-elastic, homogeneous, and isotropic material. 
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 Introduction  

Concrete is a heterogeneous material made up of sand and aggregates that are bonded 

via hydrated cement paste. Although a certain level of non-linearity characterizes its 

failure process, it is predominantly treated as a brittle material (Neville and Brooks, 

1987).  

Over the past years, the fracture toughness of concrete has been experimentally 

studied and determined for concrete materials under pure Mode I loading (Karihaloo, 

1995). Also, at the same time, systematic investigations have been carried out to 

explore the fracture toughness under Mode II and Mixed-Mode I/II (Swartz et al., 

1988; Swartz and Taha, 1990). In this framework, different testing methods have been 

proposed, optimised, and validated experimentally. In the solutions to find the Mode 

II fracture toughness, loading a specimen in an anti-symmetric way with 

single/double-edge notches gained the most popularity in the industry. To this end, 

these kinds of testing arrangements were commonly used to fail concrete specimens 

under pure Mode II loading (Bažant and Pfeiffer, 1986). However, unfortunately, 

failures of concrete under anti-symmetric four-point bending occur not only due to 

Mode II stress but also by Mode I stress components, even though the test setup is 

theoretically made to investigate Mode II concrete fracture behaviour (John and Shah, 

1990; Reinhardt and Xu, 1998; Carpiuc, 2015).  

According to Section 3.4.2, the dynamic loading effect received a tremendous effort to 

model unreinforced concrete under dynamic loading. However, the presence of stress 

raisers (here called notches) is detrimental to concrete's overall static/dynamic 

strength. The lack of a systematic investigation on the presence of finite-radius stress 

concentrators in concrete is a matter of concern (Pelekis and Susmel, 2017), especially 

in light of the fact that modular concrete and additively manufactured concrete will 

undoubtedly be an evolutionary way of constructing concrete soon (Sections 1.1 and 

1.5). In this context, those modern technologies will ease innovative ways of distinctive 

concrete structures. From a design perspective, concrete structures with complex 

geometries result in localized stress phenomena that lead to various stress gradients. 

Indeed, these stress gradients will have a detrimental effect on the overall strength. 
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Therefore, it is urgent to have suitable design methods that effectively assess concrete 

strength that include complex irregularities. 

In the light of the above review, the present chapter aims to advance our knowledge in 

understanding and modelling the static and dynamic strength of the notched 

unreinforced concrete. This is accomplished by reformulating the Theory of Critical 

Distances (TCD) ( Taylor, 2007)  in a novel way to make it suitable to design the 

strength of unreinforced concrete containing different stress concentration features 

and subjected to static and dynamic Mixed-Mode I/II loadings. The reliability and 

accuracy of the TCD reformulation will be verified experimentally by testing notched 

concrete beams under different displacement rates and different degrees of loading 

Mode Mixity. 

 Reformulating the TCD to assess the strength of notched 

concrete subjected to Mixed Mode I/II loading 

As stated in Chapter 3, the two key parameters that are needed to apply the TCD are 

the inherent material strength and the critical distance. Also, it was shown that the 

TCD is a powerful design tool that works with stress raisers of all kinds. In this section, 

by taking full advantage of previous works (Susmel and Taylor, 2008b, 2010c; Yin et 

al., 2015; Pelekis and Susmel, 2017; Li et al., 2018), the TCD will be extended to make 

it suitable to design notched unreinforced concrete that experiences static and 

dynamic Mixed-Mode I/II loading during its surface time.  

 As far as concrete is concerned, since concrete failures under quasi-static loading are 

classified as predominantly brittle (Neville and Brooks, 1987), it could be assumed that 

the inherent strength of concrete and cementitious materials is also equal to σUTS. This 

assumption can be generalised to cases involving dynamic l0ading (see Section 3.4.4) 

(Pelekis and Susmel, 2017). In other words, the assumption can be made that the 

inherent concrete strength can be taken equal to the dynamic strength of concrete, σf. 

Another essential aspect to discuss here is a suitable definition of σ0. In general, the 

flexural strength of engineering materials is seen to be higher than the tensile strength 

obtained from direct tension, especially concrete. For conventional materials, the TCD 

was experimentally calibrated using the ultimate material strength, and somehow the 
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TCD was capable of accounting for the increase in the strength from bending (Taylor, 

2007;  Susmel and Taylor, 2008). Unfortunately, there is no definitive answer to this 

aspect when it comes to concrete due to the lack of related experimental evidence. This 

aspect certainly needs a detailed investigation in the future. Having carefully 

considered this aspect, in this study, the static and dynamic flexural strength was taken 

invariably equal to the inherent concrete strength. This is because bending is one of 

the most real-life scenarios that concrete experiences and also due to the reasons 

stated in Section 1.4.2.  

Focusing attention on modelling the dynamic strength and dynamic fracture 

toughness of concrete, as explained in section 3.4.4, if we use �̇� as a general dynamic 

loading variable such as the loading rate, the displacement rate, the stress rate, the 

strain rate, or the stress intensity rate, then the strength and fracture toughness of 

specimens that failed under the effect of dynamic loading can be modelled by recalling 

Eqs.  (3.11) and (3.12) as follows (Yin et al., 2015; Pelekis and Susmel, 2017): 

σ0(Ż) = σf(Ż) = afŻ
bf  (5.1) 

KId(Ż) = a𝑘Ż
bk (5.2) 

 Where af, bf, ak, and bk are the power-law constants that could be determined 

experimentally or derived theoretically. It is essential to highlight that modelling both 

the strength and the fracture toughness using Eqs. (5.1) and (5.2) should incorporate 

the material properties under quasi-static loading. In other words, the calibrations of 

the power-law constants should be under dynamic loading and quasi-static loading to 

obtain the values of σUTS and KIc.  

Generally, it is expected that the models in Eq. (5.1) and (5.2) have upper and lower 

asymptotic limits (or plateaus). Clearly, those limits could be established in the models 

by introducing complex mathematical functions. However, it is believed that this 

would lead to complex models without significant improvements in terms of accuracy. 

In addition, incorporating complex functions requires more experiments to calibrate 

the constants accurately. Furthermore, defining the values for �̇�  that delimit the 
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asymptotic limits are not easy to find. For example, to obtain the quasi-static strength 

of concrete under bending, the British Standards Institution (2019c) recommends 

applying a constant stress rate between 0.04 MPa/s and 0.06 MPa/s (Section 1.4.2). 

Also, the standard provides a simple expression to calculate the recommended loading 

rate based on the size of the test specimen. By considering those aspects very carefully, 

to account for the asymptotic plateaus, it is much simpler to limit Eqs. (5.1) and (5.2) 

as follows:  

σ0(Ż) ≡ σf(Ż𝑙𝑜𝑤𝑒𝑟) and KId(Ż) ≡ KId(Ż𝑙𝑜𝑤𝑟) for Ż < Ż𝑙𝑜𝑤𝑒𝑟 
(5.3) 

σ0(Ż) ≡ σf(Ż𝑢𝑝𝑝𝑒𝑟) and KId(Ż) ≡ KId(Ż𝑢𝑝𝑝𝑒𝑟) for Ż > Ż𝑢𝑝𝑝𝑒𝑟 
(5.4) 

where Ż𝑙𝑜𝑤𝑒𝑟 defines the lower asymptotic plateau and Ż𝑢𝑝𝑝𝑒𝑟 defines the upper 

asymptotic plateau.  

By providing suitable expressions to model the strength and fracture toughness of 

unreinforced concrete under quasi-static and dynamic loading, recall from Section 

3.4.4 that the critical distance was also proposed to be estimated according to the 

following expression (Yin et al., 2015; Pelekis and Susmel, 2017): 

L(Ż) =
1

π
[
KId(Ż)

σ0(Ż)
]

2

= aLŻ
bL (5.5) 

where aL and bL are constants that could be derived as soon as Eqs. (5.1) and (5.2) are 

known. 

It is essential to mention here that, from a structural integrity point of view, the size of 

the process zone that controls the overall strength of the assessed material is directly 

linked to the critical distance, L (Susmel and Taylor, 2008a, 2008b). To this end, 

because the mechanical and cracking behaviour changes with changing the rate of the 

applied loading (Malvar and Crawford, 1998), the size of the process zone (or the 
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critical distance) must change as a function of �̇� to incorporate those changes and 

accurately model the strength. In other words, Eq. (5.5) should provide a link between 

the critical distance values under quasi-static loading and dynamic loading.   

Having demonstrated the extensions of the material strength, Eq.(5.1), and the critical 

distance, Eq.(5.5), to cases involving dynamic loading, the following discussion is 

about the justifications in establishing a simple rule to determine the orientation of 

the focus path under Mixed-Mode I/II loading, which is needed to apply the TCD in 

the form of the PM and LM. Accordingly, under static/dynamic loading, the hypothesis 

is that concrete fails due to opening cracks whose initiation and initial propagation 

occur across directions damaged by the maximum opening normal stress (Susmel and 

Taylor, 2008b). This hypothesis was formed because Mode I stresses control 

initiations and initial propagations of cracks in unreinforced concrete (Anderson, 

2005; Karihaloo, 1995). In this context, the focus path of the TCD can be taken as a 

straight line emanating from the location of the crack initiation site (the hot spot) on 

the notch surface and is oriented in a perpendicular direction to the maximum opening 

normal stress. The maximum opening stress is tangent to the surface of the hot spot 

itself, so it coincides with the maximum principal stress. To this end, in this damaging 

model, it is assumed that the focus path coincides with the orientation of the crack 

initiation plane.  

To have better clarification on how the orientation of the focus path is determined. 

Consider Figure 5.1a, in which unreinforced notched concrete is subjected to a bending 

moment, M, and a shear force, T. This external loading system imposes local Mixed-

Mode I/II stresses in the vicinity of the notch. Thus, the superficial hot spot location 

that experiences the maximum opening stress is no longer at the notch tip (Gómez et 

al., 2009). The only way to find the location of the maximum principal stress ( the hot 

spot) is by solving Finite Element (FE) models or using a proper numerical solution 

(Lazzarin and Tovo, 1996; Berto et al., 2004; Liu et al., 2015). Once the location of the 

hot spot is determined, the focus path of the TCD is just a straight line emanating from 

the hot spot perpendicularly to the maximum opening normal stress, as shown in 

Figure 5.1a. In addition, the figure shows θc, which is the angle between the notch 

bisector and the theoretical crack initiation plane (the focus path). Now, applying the 

same hypothesis of the damaging model on a notched concrete subjected to a pure 
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bending moment results in pure Mode I stresses around the notch (Figure 5.1b). The 

model returns an orientation of the focus path across the notch bisector because the 

notch tip is the location that experiences the maximum opening normal stress. This 

confirms that the proposed simple rule could be adopted to model situations involving 

pure Mode I loading since it coincides with the recommended procedures by classic 

TCD, see Sections 3.3 and 3.4.4. 

  (a) 

 

   (b) 

Figure 5.1 Schematic illustration of the proposed rule to find the orientation of the focus 
path under Mixed-Mode I/II loading (a) and under pure Mode I loading (b). 

Clearly, the proposed damaging model works with stress gradients that result from 

stress concentrators having a non-zero root radius. On the other hand, the model does 

not work with stress concentrators with zero tip radius, such as cracks and notches 

that are assumed to have zero tip radius. Therefore, when this problem is encountered, 

it could be solved according to the LM argument. The focus path is taken as a straight 

line from the notch/crack tip and oriented to be perpendicular to the maximum 

averaged value of the stress over the line itself. Accordingly, the suggested model can 

work now with concrete containing sharp stress concentrators.      
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Having defined the simple proposed rule to find the orientation of the focus path, the 

following discussion defines more rigorously the way that the variable �̇�  is used in 

Eqs. (5.3) and (5.5). Particularly, the variable �̇� is proposed to be calculated in terms 

of the displacement rate, Δ̇𝑐, and in terms of the maximum opening normal strain rate, 

𝜀�̇�, acting at the hot spot. The displacement rate will be used to check the accuracy of 

the TCD estimations when a nominal global quantity is taken as a reference variable 

for �̇�. On the other hand, 𝜀�̇� at the hot spot is used to check the accuracy of the PM and 

LM estimations when a local quantity is used to represent �̇�. The reason for choosing 

𝜀�̇� is that it is a popular quantity used to model engineering materials under dynamic 

loading, see Section 3.4.2.   

To better clarify the calculations of both the displacement rate and the strain rate, the 

displacement rate, Δ̇c, will be calculated from the measured displacement at the hot 

spot and in parallel to the orientation of the focus path (see Figure 5.1). And the strain 

rate, 𝜀�̇�, will be equal to the rate of the maximum-opening normal strain being tangent 

to the hot-spot surface.  

Using the above definitions, the TCD now can be appropriately reformulated to make 

it suitable for assessing notched unreinforced concrete subjected to Mix-Mode I/II 

loading. In this framework, initially, the classic TCD failure condition in Eq. (3.5) has 

to be adjusted to include cases involving static/dynamic Mixed-Mode I/II loading by 

assuming that failure will not occur if the dynamic effective stress, 𝜎𝑒𝑓𝑓(�̇�), is less than 

the dynamic inherent strength, 𝜎0(�̇�). As soon as the dynamic effective stress is equal 

to the dynamic inherent strength, failure occurs, as follows: 

σeff(Ż) = σ0(Ż)  failure (5.6) 

 where 𝜎0(�̇�) is defined according to Eq. (5.1) and 𝜎𝑒𝑓𝑓(�̇�) can be calculated according 

to the PM and LM by re-writing definitions (3.6) and (3.7) as follows:  
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σeff(Ż) = σn (𝑟 =
L(Ż)

2
) (5.7) 

σeff(Ż) =
1

2L(Ż)
∫ σn

2L(Ż)

0

(r)dr (5.8) 

 where σn is the normal linear-elastic stress distribution perpendicular to the focus 

path (Figure 5.1), r is the rectilinear distance on the focus path and 𝐿(�̇�) is the critical 

distance that is defined in Eq. (5.5).  

It should be noted here that when calibrating the TCD, the so-called volume effect 

influences the concrete material properties. It is well-known that the strength of 

concrete is affected by the absolute volume of the assessed member. However, as to 

the TCD use, it is recommended to stick to the recommended dimensions of the 

available standard codes. By doing so, using the TCD becomes safe to assess the static 

and dynamic strength. This is true independently of the absolute dimensions of the 

designed component.  

The new suggested extension of the TCD to assess notched unreinforced concrete 

subjected to Mixed-Mode I/II loading was presented. Subsequently, the remaining 

sections of this chapter are to verify the reliability and accuracy of the new extension 

against proper experimental investigations. 

To conclude, it is worth mentioning that the present reformulation of the TCD is 

suitable for assessing concrete by modelling the geometrical features at a macroscopic 

level. But, thanks to the unique features of the TCD, it could be reformulated to model 

the presence of manufacturing flaws at the mesoscopic and microscopic levels. This is 

being done independently of the size, shape, and location of the flaws. In this context, 

investigating this aspect is very important due to the detrimental effect of 

manufacturing flaws on overall strength and fracture behaviour. 
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 Experimental program 

The following sub-sections present detailed discussions of the large experimental work 

conducted on un-notched and notched concrete beams. This program was carried out 

to experimentally validate the advanced reformulation of the TCD to predict the static 

and dynamic strength of notched unreinforced concrete subjected to Mixed-Mode I/II 

loading. The verification of the new extension of the TCD was checked against not only 

different loading rates but also different levels of loading mode mixity. All 

experimental work, from mixing concrete to testing the samples, was held at the 

Structural Laboratory of the University of Sheffield.  

 Concrete mix design, slump test, and casting  

All specimens were fabricated by following the recommendation (Teychenné et al., 

1975; ASTM, 2007). In more detail, Portland cement of a strength class equal to 32.5 

MPa was mixed with 10 mm nominal river aggregates and grade-M sand. The water to 

cement ratio (w/c) was constant and equal to 0.44 for all specimens. 

The used concrete mixer was 70 litres capacity pan mixer (see Figure 5.2a). 

Overloading the mixer generally produces a nonuniform mixture (Neville and Brooks, 

1987). Therefore, this limited the production to 12 concrete prisms plus a few cubic 

samples per batch. The total number of batches was eight to produce a total of ninety-

six prisms. 

The first step toward producing a concrete batch starts with weighing the aggregates, 

sand, water, and cement according to Table 5.1. The water was weighted and added 

just before mixing the concrete to avoid water evaporating. 

Table 5.1 Proportions of the concrete mixture. 

Materials by weight (kg/m3) 

Cement Aggregates Sand Water 

450 825 825 198 

A slump test was conducted to check the consistency of the mixture by following the 

British Standards Institution (2019d).  In more detail, a steel cone was placed on a 
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steel plate. Then, the fresh concrete was fed into the cone in three equal layers. Each 

layer was tamped 25 times to ensure it was compacted well. After that, carefully, the 

cone was lifted, which allowed the fresh concrete to settle “slumps”. A measurement 

of the settlement was taken from the top with the cone’s mouth as a reference point. 

The settlement was around 120 mm, which was taken to the nearest 10 mm as per the 

standard. Figure 5.2 shows the brief steps of the performed slump test.  

 (a)  (b) 

 (c)  (d) 

Figure 5.2 Fresh concrete ready for casting (a); performing the slump test by filling three 
equal layers (b); compacting each layer (c); and taking the slump reading (d). 

The final step was to pour the fresh concrete into the moulds. Before pouring concrete, 

the steel moulds were cleaned with a vacuum and coated with a release agent to 

prevent the concrete beams from bonding to the mould, so the samples won’t be 

damaged when de-moulded and to ease the cleaning process of the moulds. After 

casting the fresh concrete, the curing process starts, which should be according to the 

standard procedure described in Section 1.3.3. In more detail, the moulds were 

covered with plastic sheets to prevent water from evaporating. After that, twenty-four 

hours later, the samples were ready for de-moulding (Figure 5.3). Finally, the samples 

were sent directly to a controlled environment room until the day of testing. 
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Figure 5.3 Samples ready for demolding after 24 hrs. 

 Compressive and flexural strength 

As mentioned earlier, there were a total of eight batches to produce all un-notched and 

notched specimens (nighty-six specimens). Three cubes from each batch were tested 

according to the British Standards Institution (2019b). The test procedure starts with 

wiping both the specimens and the machine’s plate to remove grits and loose 

materials. Then, the cubic sample is placed in the centre of the lower plate. The 

standard recommends a loading rate between 0.2 MPa/s and 1.0 MPa/s. The author 

chose a loading rate of 0.6 MPa/s, which is the average of the recommended range. 

The load was applied without causing a chock to the samples and increased 

monotonically. A failure sign was indicated by a 30% drop in the recorded compressive 

strength. Table 5.2 summarises the results of the obtained compressive strengths. 

Table 5.2 compressive strength obtained on the day of conducting the experiments.  

 Batch No. 

 1 2 3 4 5 6 7 8 

fc  (MPa) 

66.1 65.5 63.8 63.9 65.2 66.8 66.1 65.3 

65.4 66.4 65.8 65.7 65.4 64.7 65.3 67.2 

64.9 67.3 64.4 65.5 64.1 65.6 64.8 64.6 

Average fc (MPa) 65.5 66.4 64.7 65.0 64.9 65.7 65.4 65.7 

According to Table 5.2, the compressive strength is almost the same among the 

concrete batches. This eliminates the possibility of significant variability in the 
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mechanical properties due to fabrication errors. Thus, the average compressive 

strength of all cubes was taken equal to about 65 MPa. From that, the elastic modulus, 

Ec, could be estimated by recalling Eq. (1.3), as follows: 

𝐸𝑐 = 9.1𝑓𝑐
0.33 = 9.10(65)0.33 ≈ 36 𝐺𝑃𝑎 (5.9) 

The flexural strength was equal to 5.8 MPa, which was the average result of three un-

notched specimens, tested according to the British Standards Institution (2019c). 

 Samples and notches fabrication  

Each concrete beam was 100 mm × 100 mm square cross-section and 500 mm long. 

Both un-notched (Figure 5.4a) and notched samples (Figure 5.5) had a net-nominal 

width equal to 50 mm. The net-nominal width of the un-notched specimens was 

reduced using temporary wooden formworks, as in Figure 5.4b. These formworks were 

glued to the sides of the steel moulds for at least a day before casting concrete. This 

time was enough for the glue to cure and prevented the movements of the temporary 

formwork while pouring/shaking the moulds. 

(a) 
 

   (b) 
 

Figure 5.4 Geometry of un-notched specimens (a) and their formwork (dimensions in mm).  
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Figure 5.5 and Table 5.3 show that this study investigated three different notch 

sharpness to explore their detrimental effect experimentally. The root radius of the 

investigated notches, rn, and the calculated concentration factors under pure bending, 

Kt,b are summarised in Table 5.3. 

(a) 

(b) 

Figure 5.5 Geometries of symmetric (a) and asymmetric (b) notched specimens (dimension 
in mm). 

The blunt and intermediate notches were made by glueing plastic pipes to the bottom 

of the moulds having an outer diameter equal to 48 mm (Figure 5.6a) and 25 mm 

(Figure 5.6b), respectively. The pipes were glued to the bottom of the moulds for 

twenty-four hours before pouring the concrete. This time was enough for the glue to 

cure and prevent movements of the pipes during concrete casting. After curing, the 

samples were machined using a saw to form the blunt and intermediate notches, as 

shown in Figures 5.6c and 5.6d. The sharp notches take the thickness of the saw blade, 

so no plastic inserts were needed. Instead, those crack-like slits were machined using 

a 2.6 mm thick saw of a rounded tip. 

Table 5.3 Root radii and stress concentration factors of the fabricated notches. 

Notch  rn (mm) Kt,b 

Blunt 24 1.44 

Intermediate  12.5 1.76 

Sharp  1.3 4.51 
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 (a) (b) 

(c) (d) 

Figure 5.6 Manufacture process of the blunt (a) and intermediate (b) notches by glueing 
plastic pipes, cutting process (c) to form their final shapes (d).  

 Details of the test procedures 

  As far as the un-notched specimens are concerned, the test results were obtained 

using the classic 3PB setup (Figure 5.7), ensuring that failures are always due to crack 

initiation and propagation at the centre of the samples and away from the re-entrant 

corners. 

 

Figure 5.7  Test setup of the un-notched specimens (dimensions in mm). 

In this study, three different levels of loading Mode mixity were investigated, along 

with applying different loading rates. The level of loading Mode mixity was quantified 

by calculating the ratio of Mode II stress intensity factor, K2, over Mode I stress 
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intensity factor, K1, ( i.e., ρ = K2/K1). This was done by simply replacing the notches 

shown in Figure 5.5 with ideal zero tip cracks having a length equal to 50 mm.  

In this study, three different sets of testing arrangements were considered. First, the 

standard three-point bending test (3PB) was adopted to generate results from failing 

the specimens under pure Mode I (ρ = 0), as shown in Figure 5.8a. Second, the same 

3PB setup was used on asymmetric samples to gather results from Mixed-Mode I/II 

failures (ρ = 0.18), as shown in Figure 5.8b. Finally, four-point bending (4PB) setup 

was used on symmetric samples to generate results under Mixed-Mode I/II failures (ρ 

= 0.3), as presented in Figure 5.8c. More details on how the three values of ρ were 

calculated are given in Appendix D. 

(a) 

(b) 

(c) 

Figure 5.8 Experimental arrangements to test notched specimens under Mode I loading 
with ρ=0 (a), Mixed-Mode I/II three-point bending (3PB) with ρ=0.18 (b), and four-point 

bending (4PB) with ρ=0.3 (c) (dimensions in mm). 
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All of the specimens were tested using a hydraulic actuator. A pre-load of 

approximately 0.2 kN was always applied to ensure that all supporting rollers were in 

tight contact with the test specimen. Figure 5.9 shows pictures of the complete setup 

of samples ready for the ramp load to be applied. All of the bending tests were 

performed under displacement controlled loading by commanding the movement of 

the rod piston to travel vertically at a displacement rate ranging from 0.002 mm/s to 

35 mm/s. A high-precision loading cell was attached to the end of the loading piston 

to precisely capture the maximum force (failure force) under dynamic loads.  

A high-speed camera, Phantom Miro-310, was also synchronised with the loading cell 

to double-check whether the crack initiation time corresponds to the recorded peak 

failure force from the loading cell. Also, the camera was used to measure the 

displacements around the notches by taking full advantage of the so-called Digital 

Image Correlation Technique (DIC). A brief review of the DIC, specimens preparation, 

and the camera setup is presented in Appendix A. 

The gathered force vs time from the loading cell showed that the peak force always 

corresponds to visible crack initiation on the notches’ surfaces. This specific task was 

performed on all of the acquired data before post-processing the results. To this end, 

it is possible to confirm that neither potential delays from the attached loading cell nor 

the inertia of the loading piston influenced the post-processing of obtained 

experimental results. 

 (a)  (b) 

Figure 5.9 Example photos to show the test setup for notched specimen under Mode I 3PB 
(a) and Mixed-Mode I/II loading 4PB (b). 
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 Numerical stress fields 

According to Section 2.5, analytical solutions for linear-elastic stress fields can be 

obtained around cracks under simple loading arrangements. Nowadays, thanks to the 

power of computers, Finite Element (FE) simulations can be used to obtain the linear-

elastic stress fields near any stress raiser, independently of its geometrical features and 

the loading configuration. Accordingly, in this study, the linear-elastic stress fields 

near the notches were generated by solving the relevant FE models. Details of the FE 

modelling and validation exercise are presented in Appendix C.  

According to Section 5.2, the focus path of notched specimens sketched in Figure 5.5a 

and subjected to Mode I loading coincides with the notch bisector. Therefore, after 

verifying the accuracy of FE models in appendix C, the stress fields-distance curves 

were generated under unity, as presented in Figure 5.10.  

 

Figure 5.10 Stress-distance curves along the focus path of notched specimens subjected to 
Mode I loading (ρ = 0). 

According to the proposed simple rule to determine the orientation of the focus path 

under Mixed-Mode loading (Figure 5.1a), the focus path was defined as a straight line 

that emanates perpendicularity from the hot spot that experiences the maximum 

opening normal stress, which coincides with the maximum principal stress.  

To find the orientation of the focus path, FE models should be solved for the 

experimental set-ups that are sketched in Figures 5.8b and 5.8c. The specimens were 

modelled according to the way presented in Appendix C. Then, by querying the 

resulting maximum principal stresses, the location of the maximum principal stress 
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on the notches’ surfaces can be identified. This is the first point that the focus path 

should pass through. To find the orientation of the focus path, a straight line should 

connect the location of the hot spot with a second point. The second point could be 

found according to one of the following ways: 

1. The focus path should pass through the notch centre because the maximum 

principal stress is always tangent to the hot spot point at the notch surface. 

Thus, the orientation of the focus path is determined by connecting the centre 

of the notch root with the crack initiation hot spot. 

2. Generate the stress fields on a semi-circular stress path that has the same notch 

centre and a radius larger than the notch radius. Then, it is possible to locate 

the coordinates of the maximum principal stress. After that, connecting this 

new point with the located maximum principal stress on the notch surface, the 

orientation of the focus path could be identified. Note that extending the line 

should pass through the centre of the notch as well. 

By following the first suggestion to locate the orientation of the focus path,  

independently of the rate of the applied loading, the subsequent steps were followed 

to generate the maximum opening normal stress fields across the focus path of 

specimens tested under Mixed-Mode loading: 

1. Assign a local coordinate system oriented at the same angle of the focus path 

and located at the hot spot on the notch’s surface. 

2. Command ANSYS® to post-process the outputs with respect to the assigned 

new local coordinate system. 

3. Generate the maximum-opening normal stress field across the focus path. 

By applying a unity load (i.e. 1 kN), Figure 5.11 shows the assumed orientations of the 

focus path of notched specimens tested under 3PB Mixed-Mode I/II loading with ρ = 

0.18 (Figure 5.8b). In more detail, according to Figure 5.11a, the orientation of the 

focus path is at an angle, θc, of 24° for specimens containing the blunt notches, for 

specimens having the intermediate notches, θc is equal to 27°, see Figure 5.11b. For 

sharply notched specimens, θc is equal to 28° (Figure 5.11c). Finally, Figure 5.11d 

presents the generated maximum opening normal stress fields operating 

perpendicular to the suggested focus path under a unity load (1 kN).  



104 

 

 (a)  (b) 

 (c) 

  

 (d) 

Figure 5.11 FE modelling to find the orientation of the focus path, θc, under Mixed-Mode 
I/II loading (ρ = 0.18) of specimens containing blunt (a), intermediate (b), and sharp (c) 

notches; the generated linear-elastic stress fields along the focus path under crosshead load 
of 1 kN (d). 

The same procedure was applied to specimens tested under 4PB with ρ=0.3 (Figure 

5.8c). The orientations of the focus paths are shown in Figures 5.12a to 5.12c for 

specimens containing blunt, intermediate, and sharp notches, respectively. According 

to the figures, θc is equal to -28° for blunt notched specimens, -29° for intermediate 

notched specimens, and -33° for sharply notched specimens. Finally, the generated 

maximum opening linear-elastic stress fields perpendicular to the focus path is shown 

in Figure 5.12d. 

To conclude, it is important to highlight that the assigned positive and negative signs 

of the angles of the focus path orientations are to differentiate between the loading 

Mode mixity. Furthermore, the generated linear-elastic stress fields under a load equal 

to unity are used to find the linear-elastic stress fields in the incipient failure condition. 

This is done by scaling the stress-distance curves, with no need to further conduct FE 

modelling for each experimental result. 
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 (a)   (b) 

(c) 

 

 (d) 

Figure 5.12 FE modelling to find the orientation of the focus path, θc, under Mixed-Mode 
I/II loading (ρ = 0.30) of specimens containing blunt (a), intermediate (b), and sharp (c) 

notches; the generated linear-elastic stress fields along the focus path under crosshead load 
of 1 kN (d). 

 Experimental results and cracking behaviour 

In the previous section, all the possible orientations of the focus paths for any 

notch/loading configuration being investigated were determined by solving the 

relevant FE models. According to the proposed simple rule, the local displacement 

rates, �̇�𝑐, should be calculated from the local displacements curves, c,  in directions 

parallel with the focus path orientations (see Figure 5.1). Figures 5.13a and 5.13b show 

examples of the crosshead force and the DIC-measured local displacement of 

specimens tested under pure Mode I loading (ρ=0) and Mixed-Mode I/II loading 

(ρ=0.3), respectively. Similar curves for the rest of all test specimens and the 

associated cracking behaviour are presented in Appendix E. 
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 (a)  

Δ̇𝑐 = 20.42 𝑚𝑚/𝑠 

 (b)  

Δ̇𝑐 = 7.40 𝑚𝑚/𝑠 

Figure 5.13 Examples of the crosshead force, P, and local displacement, Δc, under Mode I 
loading with ρ=0 (a) and Mixed-Mode I//II loading with ρ=0.3 (b). 

The test results of both un-notched and notched specimens are summarised in Tables 

5.4 to 5.7. Note that, the code of every specimen starts with one of the following letters: 

S, M, or F which are just to indicate a relatively Slow, Medium, or Fast loading rate, 

respectively. Also, the same results are presented in semi-logarithmic plots in Figure 

5.14 as a function of �̇�𝑐. The experimental results of the un-notched specimens are 

expressed in terms of the dynamic strength, σf (Figure 5.14a). The dynamic strength 

was calculated at the incipient failure condition according to the beam theory (see 

Section 1.4.2). Further, the data points characterising the trend of the dynamic 

strength show an intrinsic level of scattering equal to ±30% error (Montgomery et al., 

2021). However, the best-fit power-law in Figure 5.14a, which describes the data 

points trend, shows that the dynamic strength increases with increasing the applied 

loading rate, which is in good agreement with Malvar and Crawford (1998). The plots 

in Figures 5.14b to 5.14j show the experimental results of notched specimens that 

failed under Mode I and Mixed-Mode I/II loading. The results were expressed in terms 

of the maximum opening peak stress, which is the maximum tangential stress at the 

assumed crack initiation in the incipient of failure condition; see Figure 5.1. The 

calculation of σp was carried out using FE modelling of the notched specimens 

according to the procedures in Section 5.4 in the incipient failure condition. Also, 

Figures 5.14b to 5.14j show that the strength of the concrete, with the presence of stress 

raisers, increases with increasing the applied loading rate. Also, the data points again 

fall within ±30% scatter band. The same experimental results as a function of 𝜀�̇� are 

presented in appendix E (Figure E.11). 
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Table 5.4 Summary of the experimental results obtained from testing un-notched 
specimens under static/dynamic Mode I loading. 

Specimen 
Code 

Testing 
Set-up 

Loading 
Mode 

Width 
[mm] 

Thickness 
[mm] 

Time to 
failure 

[s]  

Failure 
force 
[kN] 

Displacement 
rate(a) [mm/s]  

S-P1-I (3PB) 

3PB I 

50.1 101.2 24.33 3.39 0.0051 

S-P2-I (3PB) 50.0 101.0 23.47 3.49 0.0036 

S-P3-I (3PB) 50.9 101.0 23.15 3.06 0.0045 

M-P1-I (3PB) 50.6 101.3 0.0243 6.94 5.7666 

M-P2-I (3PB) 50.5 101.0 0.0309 6.01 5.8159 

M-P3-I (3PB) 50.5 101.0 0.0276 5.04 8.6186 

F-P1-I (3PB) 49.5 101.3 0.0218 5.56 23.869 

F-P2-I (3PB) 49.8 101.2 0.0166 5.94 20.147 

F-P3-I (3PB) 49.7 101.4 0.0184 5.74 20.727 

(a)Vertical displacement rate measured at the middle-bottom using DIC 
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Table 5.5 Summary of the experimental results obtained from testing specimens containing 
blunt notches (rn= 24 mm) under static/dynamic loading. 

Specimen 
Code 

Testing 
Set-up 

Loading 
Mode 

Notch 
depth 
[mm] 

Gross 
width 
[mm] 

Thickness 
[mm] 

Time 
to 

failure 
[s]  

Failure 
force 
[kN] 

Displacement 
rate(a) [mm/s]  

S-B1-I (3PB) 

3PB I 

49.6 100.6 100.6 12.7100 3.06 0.0064 

S-B2-I (3PB) 50.2 102.3 101.2 15.9500 2.91 0.0116 

S-B3-I (3PB) 50.5 100.3 100.6 16.0800 3.24 0.0095 

M-B1-I (3PB) 51.8 102.3 101.3 0.0316 4.02 9.4825 

M-B2-I (3PB) 50.6 100.3 101.4 0.0186 4.48 7.9204 

F-B1-I (3PB) 51.1 100.6 101.1 0.0093 4.71 19.7 

F-B2-I (3PB) 50.4 101.2 100.9 0.0102 5.37 22.196 

F-B3-I (3PB) 51.2 100.2 101.2 0.0116 5.27 20.324 

S-B1-I/II (3PB) 

3PB I/II 

50.9 101.3 100.9 31.0700 7.20 0.0065 

S-B2-I/II (3PB) 50.3 101.5 100.8 25.0700 7.01 0.0134 

S-B3-I/II (3PB) 51.8 100.7 100.4 25.6600 6.64 0.0087 

M-B1-I/II (3PB) 50.9 100.7 101.7 0.0257 7.39 5.687 

M-B2-I/II (3PB) 50.2 101.3 101.1 0.0286 7.69 4.0413 

M-B3-I/II (3PB) 50.9 101.1 100.9 0.0270 8.39 5.5763 

F-B1-I/II (3PB) 51.0 100.8 100.6 0.0184 9.00 17.481 

F-B2-I/II (3PB) 50.6 101.2 100.8 0.0173 10.38 17.943 

F-B3-I/II (3PB) 51.0 101.2 101.2 0.0177 9.49 18.98 

S-B1-I/II (4PB) 

4PB I/II 

47.3 100.5 101.5 28.7500 10.10 0.0078 

S-B2-I/II (4PB) 50.1 101.3 100.5 36.0100 12.55 0.0074 

S-B4-I/II (4PB) 50.6 100.0 100.6 32.8100 11.05 0.0085 

M-B1-I/II (4PB) 51.4 101.5 101.2 0.0422 12.99 8.9264 

M-B2-I/II (4PB) 50.6 101.3 101.6 0.0487 14.29 6.707 

M-B4-I/II (4PB) 50.5 100.7 100.7 0.0465 14.62 7.1323 

F-B1-I/II (4PB) 51.2 101.6 101.0 0.0289 19.51 17.078 

F-B2-I/II (4PB) 49.8 100.7 100.8 0.0264 20.07 15.934 

F-B4-I/II (4PB) 49.9 100.5 100.7 0.0324 20.63 17.759 

(a)Vertical displacement rate measured at the notch tip using DIC 
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Table 5.6 Summary of the experimental results obtained from testing specimens containing 
intermediate notches (rn= 12.5 mm) under static/dynamic loading. 

Specimen 
Code 

Testing 
Set-up 

Loading 
Mode 

Notch 
depth 
[mm] 

Gross 
width 
[mm] 

Thickness 
[mm] 

Time 
to 

failure 
[s]  

Failure 
force 
[kN] 

Displacement 
rate(a) [mm/s]  

S-I1-I (3PB) 

3PB I 

49.2 100.4 100.5 13.3500 2.78 0.006 

S-I2-I (3PB) 50.7 101.2 100.7 13.3500 2.96 0.0058 

S-I3-I (3PB) 51.1 100.9 100.6 13.3400 3.13 0.0109 

M-I1-I (3PB) 50.5 100.5 100.9 0.0222 3.69 11.25 

M-I2-I (3PB) 50.3 101.2 101.6 0.0164 4.56 9.1224 

M-I3-I (3PB) 49.5 101.6 101.2 0.0181 4.30 5.7606 

F-I1-I (3PB) 51.1 101.7 100.9 0.0104 4.53 17.791 

F-I2-I (3PB) 49.9 100.6 101.1 0.0084 4.88 19.623 

F-I3-I (3PB) 51.9 102.0 101.1 0.0099 4.81 19.676 

S-I1-I (3PB) 

3PB I/II 

52.7 102.0 101.2 21.0300 6.94 0.0096 

S-I2-I (3PB) 50.1 100.9 101.0 23.0800 5.60 0.0121 

S-I3-I (3PB) 51.1 100.1 100.8 24.2200 7.08 0.0076 

M-I1-I (3PB) 50.4 100.7 101.0 0.0286 8.62 4.7446 

M-I2-I (3PB) 50.8 101.6 101.1 0.0229 7.69 5.8804 

M-I3-I (3PB) 50.9 100.8 100.8 0.0326 6.94 8.0843 

F-I1-I (3PB) 51.2 101.5 100.7 0.0154 10.36 19.692 

F-I2-I (3PB) 51.2 101.1 100.3 0.0124 7.73 22.747 

F-I3-I (3PB) 51.2 101.5 100.4 0.0152 9.68 19.854 

S-I1-I (4PB) 

4PB I/II 

51.5 101.4 101.2 38.8000 14.06 0.0111 

S-I2-I (4PB) 51.6 102.5 100.5 39.1500 13.08 0.01 

S-I4-I (4PB) 52.6 101.2 101.5 39.2500 15.98 0.0084 

M-I1-I (4PB) 51.2 101.4 101.4 0.0524 17.89 8.254 

M-I2-I (4PB) 50.3 101.2 71.1 0.0523 15.10 6.3663 

M-I4-I (4PB) 51.0 101.1 101.2 0.0501 17.95 5.8772 

F-I1-I (4PB) 50.8 100.5 100.5 0.0291 19.41 17.376 

F-I2-I (4PB) 50.7 100.8 100.9 0.0371 21.79 13.052 

F-I4-I (4PB) 50.8 101.1 100.9 0.0286 21.90 18.707 

(a)Vertical displacement rate measured at the notch tip using DIC 
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Table 5.7 Summary of the experimental results obtained from testing specimens containing 
sharp notches (rn=1.3 mm) under static/dynamic loading. 

Specimen 
Code 

Testing 
Set-up 

Loading 
Mode 

Notch 
depth 
[mm] 

Gross 
width 
[mm] 

Thickness 
[mm] 

Time 
to 

failure 
[s]  

Failure 
force 
[kN] 

Displacement 
rate(a) [mm/s]  

S-S1-I (3PB) 

3PB I 

51.0 100.3 100.9 19.4200 3.25 0.0029 

S-S2-I (3PB) 51.8 101.3 101.3 17.0300 3.36 0.0018 

S-S3-I (3PB) 52.3 102.3 100.6 17.4400 2.76 0.0057 

M-S1-I (3PB) 51.4 101.1 102.0 0.0282 5.21 9.0375 

M-S2-I (3PB) 51.2 100.8 101.3 0.0297 4.36 9.9544 

M-S3-I (3PB) 51.7 101.2 101.1 0.0280 4.82 10.506 

F-S1-I (3PB) 51.1 100.9 100.9 0.0121 4.77 17.592 

F-S2-I (3PB) 51.4 100.4 100.6 0.0120 4.39 24.926 

F-S3-I (3PB) 51.2 100.3 100.7 0.0116 5.62 23.446 

S-S1-I/II (3PB) 

3PB I/II 

52.0 101.3 100.6 25.8200 7.24 0.0035 

S-S2-I/II (3PB) 51.8 101.6 100.4 20.0100 5.79 0.0073 

S-S3-I/II (3PB) 49.0 101.0 101.2 24.8700 5.32 0.0033 

M-S1-I/II (3PB) 51.8 100.8 101.5 0.0282 9.28 3.9562 

M-S2-I/II (3PB) 51.6 101.7 101.3 0.0290 9.37 2.524 

M-S3-I/II (3PB) 51.5 100.3 100.9 0.0287 9.26 3.7578 

F-S1-I/II (3PB) 51.8 100.6 101.0 0.0135 9.21 14.431 

F-S2-I/II (3PB) 51.6 101.7 101.4 0.0113 8.92 25.465 

F-S3-I/II (3PB) 51.3 101.9 100.9 0.0145 9.25 16.975 

S-S1-I/II (4PB) 

4PB I/II 

50.6 100.2 101.5 28.4134 9.98 0.0084 

S-S2-I/II (4PB) 50.6 100.7 100.9 32.9130 11.86 0.081 

S-S4-I/II (4PB) 50.9 100.9 101.2 32.3030 10.72 0.0092 

M-S1-I/II (4PB) 51.7 101.4 101.1 0.0576 21.84 5.8798 

M-S2-I/II (4PB) 51.4 101.2 101.5 0.0595 18.00 8.4348 

M-S4-I/II (4PB) 50.9 101.6 100.7 0.0527 17.69 6.9353 

F-S1-I/II (4PB) 51.4 100.8 100.7 0.0330 18.24 12.58 

F-S2-I/II (4PB) 51.4 101.7 100.8 0.0350 16.95 13.296 

F-S4-I/II (4PB) 51.8 101.3 101.1 0.0324 15.81 11.819 

(a)Vertical displacement rate measured at the notch tip using DIC 
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 (a)  (b) 

(c) (d) 

(e)  (f) 

(g) (h) 

 (i)  (j) 

Figure 5.14 Summary of all experimental results as a function of the displacement rate of 
un-notched (a) and notched specimens with ρ = 0 (b-d), ρ = 0.18 (e-g), and ρ = 0.3 (i-j). 
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Figure 5.15 shows some pictures of the cracking behaviour of notched specimens that 

failed under pure Mode I loading (Figure 5.15a), under 3PB Mixed-Mode I/II loading 

with ρ = 0.18 (Figure 5.15b), and under 4PB Mixed-Mode I/II loading with ρ = 0.3 

(Figure 5.15c). The pictures on the right side of the figure show the cracked faces. 

Direct visual inspection of the cracked faces revealed that the cracks initiated in 

regions that experience high opening stresses in the transition zone between the 

cement paste and aggregate, then followed by stable crack propagation in the cement 

paste. After that, those initial-stable cracks were followed by unstable crack 

propagations that resulted in complete breakage of the specimens. During the unstable 

cracking process, it was observed that there were some fractured aggregates away from 

the regions near the notches. This fracture mechanism is held true independently of 

the applied loading rate. 

Briefly, it is worth mentioning here the effect of the three-dimensional stress triaxiality 

on regions near the notches. In particular, in specimens having crack-like notches (i.e., 

specimens of rn equal to 1.3mm), it was observed that the crack always initiates at the 

mid-section of the specimens due to the high-stress triaxiality (plane strain 

conditions) (Li et al., 2000; Kotousov and Wang, 2002; Meneghetti et al., 2007). On 

the other hand, in specimens containing notches of large root radii (i.e., specimens of 

rn equal to 12.5 mm and 24 mm), the cracks initiate in regions away from the mid-

section because the three-dimensional stress constraint level decreases with 

increasing the notch root radius. In those situations, the locations of the crack 

initiations are more influenced by the concrete morphological features. 

 Furthermore, Figure 5.15 compares the theoretical crack initiation plane (the 

orientation of the focus path as proposed in Section 5.2 and found in Section 5.4 using 

FE simulations) with the observed-actual cracks initiation paths. The pictures on the 

left-hand side confirm that the cracks always initiate at the locations that experience 

the highest tangential opening stress (see Figure 5.1). Accordingly, the pictures 

demonstrate that the initial-stable crack propagation coincides with the orientation of 

the maximum opening-normal stress, making the orientation of the TCD focus path 

capable of modelling the actual crack initial orientation plane. 
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(a) 

  

(b) 

  

(c) 

 
 

Figure 5.15 Example pictures of the resulted cracking behaviour of notched specimens, 
tested under pure Mode I 3PB (a), Mixed-Mode I/II 3PB with ρ = 0.18 (b), and Mixed-mode 

I/II 4PB with ρ = 0.30 loading (c) 

Theoretical 
crack initiation 
plane
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The accuracy and reliability of the simple proposed rule in modelling the actual crack 

initiation planes are confirmed fully by inspecting all the specimens and presenting 

the results in Figure 5.16. In more detail, the theoretical crack initiation plane, θc, as 

defined in Section 5.2 and determined in Section 5.4, is compared with the actual crack 

orientations, θa, that were measured on the surfaces of the broken specimens. From 

Figure 5.16, it is confirmed that the theoretical orientation of the TCD focus path 

accurately models the essence of the crack initiation process, independently of the 

applied loading rate and the degree of loading mode mixity. 

(a) (b) 
 

(c) 

Figure 5.16 Comparing the assumed orientation of the focus path, θc, with the actual 
orientation of the crack initiation plane, θa, of specimens containing blunt (a), intermediate 

(b), and sharp (c) notches. 

To conclude, Figure 5.16 shows that both angles do not appear to increase with ρ 

monotonically. According to Section 5.3.4, ρ was defined as the ratio between the 

Mode II stress intensity factor and the Mode I stress intensity factor. The calculation 

of ρ was performed by simply replacing the notches with an ideal zero tip crack with a 

depth equal to 50 mm. The reason for having positive and negative orientations is that 

the angles were measured on different lateral faces and to differentiate between the 

3PB and 4BP test setups (see Section 5.4). This explains why specimens tested under 
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3PB Mixed-Mode I/II (ρ=0.18) have positive orientations (counterclockwise 

orientation) and specimens tested under Mixed-Mode I/II 4PB (ρ=0.30) have 

negative orientations (clockwise orientation). However, comparing the absolute value 

of the angles, there is a tendency that as ρ increases, the orientation of the crack 

initiation planes increases too, with this being held true independently from the 

geometrical features of the investigated notches. 

 Experimental validation of the proposed reformulation of 

the PM and LM 

As stated in Section 5.2, in order to accurately estimate the notched concrete 

static/dynamic strength, the PM in Eq. (5.7), and LM in Eq. (5.8), were defined as a 

function of �̇� in two different forms. In particular, the variable �̇� was taken equal to a 

global quantity such as the local displacement rate, �̇�𝑐, or a local quantitiy such as 

maximum opening normal strain rate, 𝜀�̇�. By post-processing the results of the un-

notched specimens (i.e., Figure 5.14a) using the standard-least square method, it was 

straightforward to calibrate the power laws constants in Eq. (5.1), as follows:  

σf(Δ̇𝑐) = 8.67 ∙ ∆̇𝑐
0.071 (5.10) 

σf(ε̇𝑝) = 14.58 ∙ 𝜀�̇�
0.078 (5.11) 

The next step is to calibrate the power-law constants of 𝐿(�̇�) in Eq.(5.5). According to 

the depicted procedure in Figure 3.13 by post-processing the results of plain and the 

sharpest notched specimens under Mode I (for instance, see Figure 5.14d). By 

following this strategy, the power-law constants of L were derived as a function of Δ̇𝑐 

and ε̇𝑝 as follow:  

L(Δ̇𝑐) = 4.7 ∙ ∆̇𝑐
−0.03 (5.12) 

L(ε̇𝑝) = 3.3 ∙ 𝜀�̇�
−0.03 (5.13) 
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It is essential to highlight that the lower asymptotic values in Eqs. (5.3) & (5.4) can be 

set as Δ̇𝑐,𝑙𝑜𝑤𝑒𝑟=0.0035 mm/s or ε̇𝑝,𝑙𝑜𝑤𝑒𝑟 = 7.4 ∙ 10−6 𝑠−1 under quasi-static loading, 

which essentially returns the conventional values of the material properties under 

standard experiments. On the other hand, the upper asymptotic limit cannot be 

specified because of the fact that exploring very high dynamic loading regimes is 

impossible with the test setup being used.  

Also, another important aspect to mention here is the critical distance values in Eqs. 

(5.12)  and (5.13) approach 5.5 mm under quasi-static loading and decrease down to 

about 4.2 mm when the highest dynamic loading is applied. Accordingly, for the used 

concrete to generate the experimental results in Tables 5.4 to 5.7 and in the previously 

linked investigations (Jadallah et al., 2016; Pelekis and Susmel, 2017), it is suggested 

that the critical distance is in the order of the average inter-aggregate spacings. 

However, linking the concrete critical distance to the underlying concrete meso-

structural features was experimentally investigated in Chapter 4. 

The inherent concrete strength in Eqs. (5.10) and (5.11) were used together with the 

critical distance presented in Eqs. (5.12) and (5.13) to post-process all the experimental 

results according to the PM and LM. The first step to calculate the effective stress is by 

solving the FE models to generate the linear-elastic stress fields in the incipient failure 

conditions. This is simply done by scaling the linear-elastic stress fields, as described 

early in Section 5.4.  

Having calculated the effective stress, whether as a function of the displacement rate 

or the maximum opening normal strain rate, the reliability and accuracy of the PM 

and LM were assessed by calculating the following standard error:  

Error =
σeff(Ż) − σ0( Ż)

σ0( Ż)
× 100 (5.14) 

 This standard error relationship allowed us to determine whether the proposed 

reformulation of the TCD makes conservative or non-conservative estimations with 

positive and negative errors, respectively. The diagrams in Figure 5.17 summarise the 

overall accuracy of the PM and LM. In more detail, the graphs in Figures 5.17a and 
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5.17c present the accuracy of the predictions under quasi-static loading. And, Figures 

5.17b and 5.17d summarize the accuracy of the predictions under dynamic loadings. 

The graphs show that the proposed reformulation of the TCD can accurately predict 

the notched concrete specimens being subjected to static/dynamic Mode I and Mixed-

Mode I/II loading. Also, as expected, the TCD achieves a higher level of accuracy when 

the dynamic variable was taken equal to 𝜀�̇�, Which represents a local quantity in the 

vicinity of the potential estimated crack initiation location. 

(a) (b) 

(c) (d) 

Figure 5.17 Accuracy of the PM and LM in estimating notched concrete static/dynamic 

strength static when using a dynamic variable equal to Δ̇𝑐 (a, b) and equal to to ε̇𝑝 (c, d).  

To conclude, in general, according to Figure 5.17, the accuracy level of the predictions 

is definitely adequate. This is because the TCD estimations are within an error scatter 

band of ±30%, which is as wide as the level of data scattering used to calibrate the 

proposed model (i.e., Figures 5.14a and 5.14d). This accuracy level is adequate because 

it is impossible to achieve a higher level of accuracy than the intrinsic scattering of the 

data point used to calibrate the predictive method itself. 
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 Conclusion  

In the present chapter, an experimental investigation was carried out on a large 

number of unreinforced concrete having notches of different sharpness and tested 

under static/ dynamic Mixed-Mode I/II loadings. The notched specimens were tested 

not only under different loading rates but also under different levels of loading mode 

mixity. All the experimental work was held at the Structures Laboratory of the 

University of Sheffield. The so-called Theory of Critical Distances was reformulated to 

assess notched concrete subjected to Mixed-Mode I/II loading. The results of this 

investigation can be drawn in the following key findings: 

 The concrete strength increases with increasing the applied loading rates on 

notched concrete under Mixed-Mode I/II loading; 

 The maximum opening normal stress governs the crack initiations and initial 

propagation, independently of the applied loading/displacement rate and the 

degree of loading mode mixity; 

 As proposed in this research, the orientation of the focus path can accurately 

model/predict the orientation of the crack initiation planes; 

 Using the TCD philosophy, the notched unreinforced concrete can be designed 

by treating the material as linear-elastic, homogeneous, and isotropic, which 

results in a great simple way in dealing with stress analysis problems;  

 The TCD successfully modelled the notched unreinforced concrete strength 

experience different levels of loading mode mixity and different loading rates; 

 The predictions of the TCD, applied in the form of the PM and LM, were within 

±30% error scattering, which is as wide as the data scattering used for the 

calibration of the approach. 
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Chapter – 6 

6 Theory of Critical Distances: modelling the influence 

of cracks/defects on the static strength of additively 

manufactured concrete  

The study presented in this chapter was published in Engineering Fracture Mechanics: 

Alanazi, N., Kolawole, J. T., Buswell, R. and Susmel, L. (2022) ‘The Theory of Critical 

Distances to assess the effect of cracks/manufacturing defects on the static 

strength of 3D-printed concrete.’ Engineering Fracture Mechanics, 269, 

108563. 

Abstract: 

The chapter aims to investigate the reliability and accuracy of the TCD in modelling 

the detrimental effect of cracks and manufacturing defects on the static strength of 

3D-printed concrete. The accuracy of the proposed approach was checked against 

large experimental results generated by testing 3D-printed concrete specimens. These 

specimens were manufactured to be weakened by saw-cut crack-like notches, surface 

roughness due to the placement of filaments, and manufacturing defects due to poor 

bonding between the extruded filaments. The results revealed a high level of accuracy 

between the TCD-based methodology and the experimental results, making it evident 

that the TCD is a powerful design method and as well as a tool that could be used as 

quality control to assess the effectiveness of the 3D-printing concrete technology.  

 Introduction 

Additively manufactured concrete is the next generation of concrete construction 

because it significantly reduces concrete costs, waste, and carbon dioxide emissions 

(Section 1.1). Instead of conventional concrete construction, additively manufactured 

concrete changes the course of action to make a concrete structure where it is created 

by adding flowable concrete layer by layer using a 3D-printing nozzle. The key behind 
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3D printing of concrete is layering where a new layer of concrete is deposited over the 

previous ones with no need for formwork until finishing the designed structure.  

The additive manufacturing of concrete gained exponential popularity in concrete 

construction applications and academic publications (Buswell et al., 2018; Ma et al., 

2022). In fact, some structural parts and even full-size buildings have already been 

constructed using 3D printing of concrete as shown in Figure 6.1. 

 

Figure 6.1 Some applications of the additively manufactured concrete. On the top: a robotic 
printer constructing a 640m2

 and  9.5 m high building (image from Apis Cor). Bottom: 
additive manufacturing of 10 m base of wind turbines (image from COBOD). 

Due to the filament layering, the anisotropic properties of the 3D printed concrete are 

one of the main issues in adopting this technology. The mechanical properties of 3D-

printed concrete are relatively different from the properties obtained from 

conventional casting, depending on the relative directions of the loading to the 

filament orientation. Filaments that are oriented perpendicularly to the loading 

direction reduce the strength of the printed component (Le et al., 2012). This reduction 

in the bonding strength is inevitably due to the weakened bond strength between the 

printed filaments. Several factors are primarily responsible for weakening the bonding 

strength, such as the environmental conditions, the time gap between the printed 

layers, the concrete pumping rate, and the printing speed (Le et al., 2012). The 
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concrete pumping rate should match the printing speed to eliminate weakening of the 

bonding strength due to filament thining.  

Based on the above-summarized factors, this chapter investigates the effect of the 

stress concentration phenomenon that results from the nature of the 3D printing 

process and has a detrimental impact on the overall strength of the 3D-printed 

structure. These stress concentrators could be in the form of flaws/voids, surface 

roughness, and manufacturing defects. The presence of flaws/gaps in the 3D-printed 

concrete could result from an unexpected interruption in the printing process. The 

surface roughness is due to the natural way of filament depositions. Finally, 

manufacturing defects could result from poor bonds between adjacent filaments due 

to filaments thining.  

Accordingly, in light of the context summarized above, the current investigation deals 

with modelling the static strength of 3D-printed concrete weakened by the above-

mentioned stress concentrators by formulating a methodology based on the TCD. The 

accuracy and reliability of the developed methodology will be checked against the 

experimental results generated from testing 3D-printed concrete under static three-

point bending. 

 Mix proportions and the 3D-printed concrete slabs 

The 3D-printed concrete slabs were manufactured at Loughborough University with 

the mix proportions presented in Table 6.1. Polycarboxylate ester-based 

superplasticiser was added to enhance the workability and strength, and amino tris 

(methylene phosphonic acid) was used to have a sufficient open time and maintain a 

constant pumping rate throughout the printing process.  

Table 6.1 Concrete mix proportions used in this study.  

Material Mixing ratios by weight (%) 

52.5N CEM I Portland Cement 100 

fly ash 29 

Silica fume 14 

sand 214 

Water 36 
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The compressive strength and modulus of rapture were obtained by testing 100 mm 

cubes and 100 mm x 100 mm x 500 beams, respectively. From testing cast and 3D 

printed specimens, it was found that the compressive strength is equal to 100 MPa, 

and the flexural strength is equal to 12 MPa after curing for 28 days. More details about 

the development and applications of the currently employed mix proportions are 

present in Refs (Le et al., 2012; Kinnell et al., 2021). 

A CAD model was used to print 560 mm Χ 200 mm Χ 54 mm concrete slabs using a 10 

mm diameter nozzle and a layer height of 6 mm. Three different printing speeds were 

used: 200 mm/s, 225 mm/s, and 250 mm/s with a constant concrete pumping rate of 

0.77 L/min. The curing process started with covering the slabs with plastic sheets for 

the first 24 hours and then submerging them in water for 28 days.   

The different printing speeds mentioned above with the constant concrete pumping 

rate were intentionally selected to cause manufacturing defects between adjacent 

filaments (Figure 6.2) because the pumping rate does not match the 225 mm/s and 

250 mm/s printing speeds. Consequently, thinner filaments were deposited, which 

caused voids between the filaments. Clearly from Figure 6.2, creating a concrete slab 

at 250 mm/s has the weakest bonds between the interlayers. It should be noted that 

the additively manufactured slabs were produced under laboratory conditions (air 

temperature 21±0.5°C and 65% relative humidity) and less than one minute interlayer 

time, so moisture loss due to environmental conditions could be assumed negligible.  

 

Figure 6.2 Photos of printed slabs at different printing speeds for this study. 

     1 

  1 
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 The 3D-printed concrete specimens, testing procedure, 

and experimental results 

The 3D-printed concrete prisms were obtained by cutting the additively manufactured 

concrete slabs to produce samples with printed filaments that have a direction that is 

either parallel to the axial axis of the specimens (θp = 0 degrees) or perpendicular to 

the axial axis of the specimen (θp = 90 degrees). The produced prisms have a width, 

W, which varies from 44 mm to 53 mm, and a thickness, B, which varies from 34 mm 

to 56 mm; see Figure 6.3. The exact measurements of both W and B are reported in 

Tables 6.2 to 6.5 for each specimen. 

Furthermore, several specimens were made from the same mix design but cast using 

the conventional way of making concrete to understand better the influence of additive 

manufacturing technology on the mechanical properties and fracturing behaviour of 

concrete.  

All the experimental results were generated under the classic three-point bending tests 

(Figure 6.3) using a Shimadzu axial machine at the Structural Laboratory of the 

University of Sheffield. The static tests were conducted at a loading rate of 33.3 N/s as 

recommended by the British Standards Institution (2019d), see Section 1.4.2. The 

span, S, between the lower supports is 100 mm, 80 mm, or 60 mm, as reported in 

Tables 6.2 to 6.5. Also, the tables present the failure forces, which correspond to the 

maximum force that the machine recorded during testing. 

 

Figure 6.3 Conventional three-point bending test set-up of 3D-printed specimens that are: 
free of defects (a),  weakened by crack-like notches (b), rough surface finishing (90° printing 

direction) (c), and manufacturing defects (90° printing direction) (d).  
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The experimental results that were generated from testing un-notched specimens 

(Figure 6.3a) are reported in Table 6.2. Along with the geometrical measurements, the 

table summarizes the failure forces and the flexural strength calculated according to 

the beam theory (see Eq. (1.2)). The flexural strength values, σfm, obtained from the 

cast specimen and 3D-printed specimens with θp = 0 degrees reveal that the strength 

is almost the same, keeping in mind that the 3D-printed samples were free of visible 

manufacturing defects. 

Table 6.2 Experimental results obtained from testing un-notched specimens. 

Specimen 
Code 

W  
[mm] 

B 
[mm] 

S  
[mm] 

Printing 
angle 

[degrees] 

Failure 
force 
[kN] 

Flexural 
Strength 

[MPa] 

C* 40, 40 41.04 39.91 100 - 5.6 12.5 

A1 50, 50 50.44 55.74 100 0 14.15 15 

A2 50, 50 52.61 50.8 100 0 12.41 13.2 

A3 50, 40 52.7 40.1 100 0 9.65 13 

A4 50, 40 51.33 39.9 100 0 9.45 13.5 

*cast concrete       

The experimental results generated from testing specimens containing crack-like 

notches (Figure 6.3b) with depths that vary from 2 mm to 27 mm are summarized in 

Table 6.3. All these notches were made with a circular tip saw of 2.6 mm thickness. 

Figure 6.4 shows some pictures of the cracking behaviour and crack faces. As expected, 

those failures occur due to crack initiation and propagation across the notch bisector, 

which is the classic Mode I governed failures. 
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Table 6.3 Experimental results obtained from testing saw-cut notched specimens. 

Code 
W  

[mm] 
B 

[mm] 
a 

[mm] 
S 

[mm] 

Printing 
angle 

[degrees] 

Failure 
force 
 [kN] 

KIc 
[MPa.m0.5] 

F 

C*0.25 41.0 39.9 10.2 60 - 4.8 1.10 0.95 

A10.25 50.4 55.7 12.2 60 0 11.3 1.45 1.03 

A10.25 52.6 50.8 14.1 60 0 8.8 1.24 1.04 

A10.25 52.7 40.1 13.9 60 0 7.3 1.29 1.04 

A10.25 51.3 39.9 13.4 60 0 5.9 1.07 1.03 

B10.25 53.3 37.5 14.6 60 90 4.8 0.91 1.05 

C*0.5 41.0 39.9 19.7 60 - 2.6 1.05 1.21 

A10.5 50.4 55.7 25.1 60 0 4.8 1.07 1.25 

A20.5 52.6 50.8 26.0 60 0 5.6 1.27 1.24 

A30.5 52.7 40.1 25.5 60 0 4.3 1.19 1.21 

A40.5 51.3 39.9 25.5 60 0 4.0 1.20 1.24 

B10.5 53.3 37.5 26.9 60 90 4.5 1.39 1.26 

AC1 0.05 44.8 31.4 1.9 60 90 7.6 0.94 1.12 

AC2 0.05 45.5 32.2 1.8 60 90 9.2 1.04 1.11 

AC3 0.05 44.2 31.8 2.5 60 90 5.7 0.80 1.10 

AC1 0.11 44.7 32.0 4.6 60 90 7.5 1.32 1.04 

AC2 0.11 44.6 32.1 4.7 60 90 8.4 1.48 1.03 

AC3 0.11 44.1 31.8 5.1 60 90 4.8 0.90 1.01 

*cast concrete 
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Code Side view Crack surfaces 

AC20.05 

  

AC20.11 

  

A20.25 

  

A30.5 

  

Figure 6.4 cracking behaviour resulted from testing specimens containing different lengths 
of crack-like notches. 

Table 6.4 summarizes the results obtained by testing 3D-printed concrete specimens 

with a rough surface finish due to the inherent way of filament depositions. To assess 

the sensitivity of the concrete strength to the surface roughness, the depressions 

between two adjacent filaments were modelled as cracks. The depths of those cracks 

were taken equal to the distance from the maximum depression between two filaments 

to the filament peaks; see Figure 6.3c for better clarification. Following this way of 

modelling the long grooves between the extruded filaments results in measuring 

equivalent crack length that varies from 1.2 mm to 3.5 mm (see Table 6.4). Those 

specimens were tested with the rough surfaces between the lower supports of the test 

machine, which resulted in crack initiation mainly due to debonding between the two 

filaments that experience the maximum bending moment followed by vertical crack 

propagations (Mode I governed failures). Examples of photos to show cracking 

behaviour are presented in Figure 6.5.  
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Table 6.4  Experimental results generated by testing specimens weakened by the rough 
surface. 

Code  
W  

[mm] 
B 

mm] 
a 

[mm] 
S 

 [mm] 

Printing 
angle 

[degrees] 

Failure 
force 
 [kN] 

KIc 
[MPa.m0.5] 

σg 
[MPa] 

F 

B150, 40  53.25 37.47 1.20 100.00 90 7.92 0.70 11.18 1.02 

B250, 40 53.70 37.80 3.50 80.00 90 5.38 0.64 5.92 1.04 

B350, 40 53.30 41.20 3.10 80.00 90 6.62 0.69 6.79 1.03 

B450, 40 52.90 42.23 1.30 80.00 90 9.14 0.64 9.28 1.08 

 

Code Side view Bottom view Crack surfaces 

B2 50, 40 

  
 

B4 50, 40 

   

Figure 6.5 Example photos of side and bottom views of cracking behaviour and crack faces 
resulted from testing 3D-printed concrete of rough finishing. 

The test results gathered from testing specimens that contain manufacturing defects 

(Figure 6.3d) are presented in Table 6.5. These defects were intentionally 

manufactured to have various densities of defects on the side that experience the 

tensile stress, see Figure 6.6. Those defects are assumed to collide during the failure 

process, forming an equivalent crack length equal to the assumed length shown in 

Figures 6.3d and 6.6a. This assumption is made because the bonds between the 

defective filaments are assumed to be negligible. 

As far as the failure of the defective specimens is concerned, most of the samples failed 

at an eccentric distance from the cross-sectional area that experiences the maximum 

bending moment due to the intensive density of defective filaments (see, for instance, 

Figure 6.6a). After that, initial crack propagation occurred mainly across vertical 
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distances, followed by gradual deflection toward the applied centred loading. The 

reason for crack initiations away from the maximum bending moment location is that 

cracks tend to start at cross-sectional areas with the weakest interlinked defects in the 

filaments chain.  As shown in Figure 6.6a, the distance between the crack initiation 

location and the cross-sectional areas that experience the maximum bending moment 

is marked as S1, which was measured and summarized in Table 6.5.  

Finally, the summarized experimental results in this section will be used to examine 

the TCD in assessing the 3D-printed concrete strength in the presence of cracks and 

manufacturing defects. 

Table 6.5 Experimental results generated from testing specimens weakened by 
manufacturing defects.  

Code 
W  

[mm] 
B 

[mm] 
a 

[mm] 

S 
 

[mm] 

S1 
[mm] 

Printing 
angle 

[degrees] 

Failure 
force 
 [kN] 

KIc 
[MPa.m0.5] 

F 

B 50.42 39.31 29.00 100 10.50 90 3.19 1.93 1.69 

B-S1 50.42 39.31 29.00 80 10.00 90 2.64 1.22 1.70 

B-S2 50.42 39.31 29.00 80 10.00 90 3.48 1.61 1.71 

BD4 51.30 39.20 36.00 80 18.80 90 1.99 1.09 2.65 

BD5 51.20 37.90 36.00 80 18.50 90 2.01 1.17 2.66 

BD6 50.80 38.40 37.00 80 19.00 90 1.74 1.12 2.96 

BD7 52.90 41.00 23.00 80 10.00 90 3.90 1.09 1.32 

BD8 52.10 41.10 25.00 80 9.30 90 2.96 0.96 1.40 

BD9 50.80 37.20 33.00 80 0. 90 1.91 1.50 1.95 

BD10 49.40 34.60 37.00 80 0. 90 0.75 1.12 3.09 
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 (a) 

Code Side view Crack surface  

B5 

  

 

B7 

  

 

B8 

  

 

B9 

  (b) 

Figure 6.6  Example of cracking behaviour resulted from testing 3D-printed concrete 
containing various densities of manufacturing defects. 

a

S1
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 Modelling flaws/defects in the 3D-printed concrete 

The first step to check the TCD accuracy and reliability in modelling the presence of 

flaws/defects in the 3D-printed concrete is to determine the associated fracture 

toughness for every experimental result summarized in Tables 6.3 to 6.5. Accordingly, 

every specimen in those tables was modelled with the relevant dimensions (i.e., W, B, 

S, a, and S1) to generate the linear-elastic stress fields across the crack bisector in the 

incipient of failure condition. The steps to obtain those stress fields were according to 

the procedure presented in Appendix C.1.  

The numerically generated stress fields were then used to calculate the critical stress 

intensity factors by following the procedure summarized in Section 2.4. In particular, 

the stress intensity factor was determined numerically by recalling Eq. (2.12) as 

follows:  

𝐾𝐼,𝐹𝐸𝑀 = 𝜎𝑦,𝐹𝐸𝑀√2𝜋𝑟 (6.1) 

where σy, FEM is the linear-elastic stress distribution perpendicular to the crack bisector 

and r is the distance near the crack.   

Furthermore, according to the LEFM framework, the stress intensity factor can be 

determined according to the procedure presented in Section 2.3. In particular, by 

recalling the basic definition given in Eq. (2.6) as:  

𝐾𝐼 = 𝐹 𝜎 √𝜋𝑎 (6.2) 

Where F is the shape factor, σ is the gross nominal stress. Combining Eqs.(6.1) and 

(6.2), the LEFM shape factor could be estimated as follows:  

𝐹 =
𝐾𝐼,𝐹𝐸𝑀

𝜎 √𝜋𝑎
=

𝜎𝑦,𝐹𝐸𝑀√2𝜋𝑟

𝜎 √𝜋𝑎
 (6.3) 
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 For the sake of clarity, an example of obtaining the numerical fracture toughness is 

shown in Figure 6.7.  

 (a)  (b) 

Figure 6.7 An example illustrates the FE modelling procedure to estimate the critical stress 
intensity factor (the fracture toughness).  

Having sorted the problem of obtaining the LEFM shape factor, then the equivalent 

crack length can be calculated for any cracked specimen (see Section 3.5). 

 The TCD can model the presence of short and long cracks by following the procedure 

described in Section 3.5. In particular, the TCD models the gradual transition from the 

short to the long cracks using the PM and LM by recalling Eqs. (3.22) and (3.23), 

respectively as follows:  

𝜎𝑓 = 𝜎𝑈𝑇𝑆 [1 − (
𝑎

𝑎 +
𝐿
2

)

2

]

1/2

 (6.4) 

 𝜎𝑓 = 𝜎𝑈𝑇𝑆 (
𝐿

𝑎+𝐿
)
1/2

 (6.5) 

Having determined the LEFM shape factor and recalled the necessary tools and 

equations to model the presence of defects in 3D-printed concrete, the subsequent 

steps determine the necessary material properties needed to apply the TCD.  
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The material plain strength was simply determined by averaging the resulting flexural 

strength of all specimens. Accordingly, as per Table 6.2, the plain material strength, 

σfm, was taken equal to 13.7 MPa.  

In order to determine the fracture toughness of the 3D-printed concrete, it is 

important to highlight that the fracture toughness values of the cast specimens are 

almost the same as those of the 3D-printed specimens when a/w is equal to ≈ 0.25 and 

equal to ≈ 0.15. To this end, using those experimental results, the numerically 

estimated KIc is equal to 1.15 MPa.m0.5. It is essential to highlight that this procedure 

of estimating KIc was proposed and validated based on the TCD strategy (Susmel and 

Taylor, 2010a). 

The next step is to use σfm and KIc as input parameters to find the TCD critical distance, 

L. This is done by recalling definition (3.3)  as follows:  

𝐿 =
1

𝜋
(
𝐾𝐼𝑐

σ0
)
2

= 2.2 𝑚𝑚 (6.6) 

The necessary material input parameters with the experimental results that were 

reported in Tables 6.3 to 6.5 were then used to construct the Kitagawa-Takahashi 

diagram in Figure 6.8. This diagram shows the overall accuracy of the PM and LM in 

modelling and the static strength of the 3D-printed concrete in the presence of various 

causes of stress concentrations. According to Figure 6.8, the TCD in the form of the 

PM and LM show remarkable accuracy in modelling the effect of saw cut-crack like 

notches on the 3D-printed specimens, independently of the printing direction.  

Furthermore, according to Figure 6.8, the TCD can also model the effect of surface 

roughness on the strength accurately, which shows a reduction in the strength ranges 

between %15 to %25. Accordingly, Figure 6.8 shows experimental evidence that the 

TCD could accurately capture the effect of surface finishing due to the printing process, 

which must be considered in real-life applications. 

Finally, Figure 6.8 clearly shows that the concept of modelling manufacturing defects 

as cracks (see Figure 6.3d) is undoubtedly a very accurate way to capture the 
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detrimental effect of the manufacturing defects that could be introduced during the 

printing process. 

 Indeed, those results make it evident that the TCD could also be used as a guide tool 

to assess the sensitivity of the designed component to the presence of defects.  

 

Figure 6.8 Accuracy of the PM and LM in modelling the strength of 3D-printed concrete 
weakened by cracks and defects.  

 Conclusion 

This chapter aims to formulate and investigate a novel methodology based on the TCD 

that is used to assess the effect of cracks and defects on the overall strength of 3D-

printed concrete specimens. This methodology was checked against many 

experimental results obtained from testing 3D-printed specimens containing stress 

raisers in the form of crack-like notches, surface roughness, and manufacturing 

defects. The findings of this study can be summarized in the following points: 

 There is no significant difference in the strength and fracture toughness of the 

specimen being 3D-printed or cast for this specific mix design and printing 

technology.  
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 In the present study,  the surface roughness due to the nature of the 3D-printing 

of concrete is found to reduce the strength by %15 to %25.  

 The TCD accurately modelled the influence of the surface roughness on the 

strength due to the change in the printing direction. 

 The 3D-printed concrete with manufacturing defects significantly reduced the 

strength.  

 Independently of the geometrical features of the stress raisers, the TCD was 

seen to be capable of modelling the presence of long and short cracks as well as 

the manufacturing defects.  

 This proposed approach can be applied using simple linear-elastic Finite 

Element modelling. 

 For future work, it is suggested to examine the use of the current methodology 

on reinforced 3D-printed concrete.  
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Chapter – 7 

7 Conclusion and recommendations for future work  

 Conclusions  

This PhD research investigates the effectiveness of using the so-called Theory of 

Critical Distances (TCD) to model the strength and fracture behaviour of unreinforced 

concrete containing different stress concentrators.  

The first aim of this research was to provide a novel design tool that could be used to 

assess concrete structures containing notches. In particular, the TCD was 

reformulated to make it suitable for modelling notched unreinforced concrete when 

subjected to complex static/dynamic loading. The main outcomes of this specific study 

are as follows: 

 The strength of notched concrete increases with increasing the applied loading 

rate independently of the degree of loading mode mixity. 

 Regardless of the degree of loading mode mixity and the applied loading rate, 

failures in notched unreinforced concrete are controlled by the location and 

magnitude of maximum opening normal stress on the notch surface.  

 The experimental results revealed that the proposed location and orientation of 

the focus path accurately model the initiations and initial propagations of the 

actual crack planes that were observed on the surfaces of the broken specimens.  

 The proposed extension of the TCD is seen to accurately model the strength of 

notched unreinforced concrete that is subjected to static/dynamic Mixed-mode 

I/II loading.  

 The proposed extension of the TCD is seen to make predictions within ±30% 

error band. This level of accuracy is certainly accepted because it was within the 

scattering level of the data points used to calibrate the TCD. 

The second aim of this research was to conduct a systematic theoretical/experimental 

investigation to find a possible intercorrelation between the length scale parameter of 
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the TCD and the underlying meso-structural features of concrete. The outcomes of this 

study are summarized as follows: 

 There is a direct relationship between the TCD length scale parameter and the 

underlying mesoscopic features of concrete.  

 This study showed that there is no clear relationship between the TCD critical 

distance, the average size of the aggregates, or the average inter-aggregate 

distances.  

 The TCD length scale parameter is seen to be equal to the average distance from 

the notch tip line to the first aggregate particles that act as obstacles that 

arrest/affect the crack growth process.  

The last part of this PhD thesis was to derive a methodology based on the TCD to model 

3D-printed concrete weakened by crack-like notches, surface roughness due to the 

nature of filament placing, and manufacturing defects due to poor bonds between 

adjacent filaments. The formulated approach is applied by simply conducting simple 

linear-elastic Finite Element (FE) modelling, and it was checked against a number of 

experimental results. The outcomes of this study are summarized in the following 

points: 

 For the investigated concrete mix proportions and additive manufacturing 

technology, the values of the fracture toughness and strength obtained from 

cast specimens were seen to have the same values as those obtained from 

additively manufactured specimens with a printing direction parallel to the test 

specimens axial axis.  

 In concrete additive manufacturing technology, the surface finishing due to 

filaments depositing results in long grooves between two adjacent filaments. 

These grooves reduced the static flexural strength by 15% to 25%. 

 Poor bonds (manufacturing defects) between adjacent concrete filaments 

significantly reduce the strength of the 3D-printed specimens.  

 Independently of the geometrical features, the TCD successfully modelled the 

presence of the crack-like notches as well as showed remarkable accuracy in 

detecting and modelling the reduction in the static strength due to surface 

roughness and manufacturing defects. 
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 Recommendations for future work 

 The mechanical properties of concrete are size-dependent. Therefore, more 

work is needed to understand/address the effect of the size on the fracture 

behaviour and the mechanical properties of notched/cracked unreinforced 

concrete from theoretical and experimental angles.  

 In this research, the investigated concrete specimens were made with natural 

rounded river aggregates. The mechanical properties of concrete are sensitive 

to the type of aggregates such as crushed, weak, lightweight, and recycled 

aggregates. In particular, more work is needed to explore the influence of 

aggregate type on fracture behaviour and the TCD critical distance L. 

 Explore in more depth the accuracy of using the TCD in assessing notched 

concrete when subjected to very high dynamic loadings (i.e., under a strain rate 

higher than 1 s-1). In particular, more work is needed to understand the effect 

of high dynamic loadings on fracture behaviour, toughening mechanisms, and 

the calibration process of the TCD parameters. 

 Extend the relevance and accuracy of using the TCD to assess the medium/high 

cyclic fatigue life of notched concrete under different degrees of Mixed-Mode 

I/II loading. 
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A Appendix A: 2D Digital Image Correlation (DIC) 

A.1 Fundamentals of 2D-DIC 

Sutton et al. (1983) and Peters & Ranson (1982) were the first to introduce the Digital 

Image Correlation (DIC) technique by the end of the last century. The DIC is a non-

contact, optical method to obtain full fields of shapes, strains, and displacements by 

tracking and comparing the sub-images before and after loadings/deformations. The 

2D-DIC uses one camera to post-process the digital images, so this technique does not 

account for out of plane motions and deformations. 

When using the 2D-DIC, the movement of the calibrated plane (flat surface) should be 

perpendicular to the camera axis (Sutton et al., 2000; Schreier, 2003). This means 

that the test specimen and the camera should be in parallel, and any out of plane 

deformations should be as small as possible to the point where they could be neglected 

(Figure A.1). 

 

Figure A.1 Typical 2D-DIC system set-up (Pan et al., 2009). 

Any out of plane movements will introduce errors to the 2D-DIC displacements and 

strains. In more detail, if the movement is toward the camera, the image will become 

larger and create biased large strains and displacements. If the movement is away from 

the camera, the image will get smaller, creating biased small strains and 

displacements. Therefore, the planar distance between the camera and the examined 

flat object must remain constant and perpendicular to the camera axis during the 

entire experiment. 
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A.2 Specimens preparation and 2D image acquisition  

In this research, the 2-D DIC technique was used to measure the displacements in the 

vicinity of the notches and at the mid-section of the un-notched specimens. Those 

areas have to be prepared to have a high-contrast random pattern to enable the DIC 

technique of matching the deformed/undeformed sub-images. 

To have a clear random pattern, the area of interest was first cleaned from oil and 

water. Then, a very thin layer of limewash was applied using cotton or a brush. The 

applied layer was then left for a few hours to dry (Figure A.2a). After ensuring that the 

area of interest was coated with a white background, a black paint spray was used to 

apply the fine black speckles on the white region. This was done by pressing firmly on 

the spray cap and passing it quickly over the white area. Figure A.2b shows a high-

contrast region ready for testing.  

 (a)  (b) 

Figure A.2 Preparing a specimen with white background (a) and a specimen after applying 
the random speckle pattern (b). 

A high-speed camera was used to record the digital images in both static and dynamic 

tests. When conducting quasi-static experiments, the camera acquisition rate was set 

at 100 fps, and when encountering dynamic experiments, the framing rate was 10,000 

fps. The camera was set at 90 degrees with the specimen horizontal and vertical axes 

to avoid out of plane movements. Also, the distance between the camera and the 

specimens was kept equal to 500 mm.  

After finishing the camera and the specimen set-ups, the next step is to focus the 

camera to record sharp and clear images. Next, to calculate the displacements, the 

recorded images must be scaled. Scaling the displacements could be done by capturing 
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a ruler next to the specimen, glueing a small piece of paper with gridlines on the 

specimen, or using a known dimension of the specimen.  

The camera was synchronised with the control unit of the hydraulic actuator, so the 

camera was activated automatically when the ramp load was applied. After that, the 

recorded images were analysed using software called GOM-Correlate. The digital 

images were exported to the software in video format (AVI format). After that, the first 

step is to check the quality of the applied speckles. The software generates squared 

facets on the area of interest to create a surface component. However, the surface 

component should be selected manually to avoid the edges and notches of the 

specimens. The software also generates a legend to check the pattern quality. The 

green colour indicates a good pattern quality, the yellow colour indicates a relatively 

lower quality pattern, and the red colour indicates a pattern that is too bad quality to 

make computations. Changing the size of the facets may help to obtain better pattern 

quality. However, if the pattern quality is not good, the speckles should be re-applied 

again. 

Having checked that all the applied speckles are in the green regions, the 

displacements were computed with reference to the displacements on the first image. 

Finally, the displacements at the theoretical crack initiation point and in parallel to the 

focus path directions were exported in text files to be further post-processed with the 

obtained results from the loading cell.  

A.3 2D-DIC concepts and principles  

As mentioned in the previous section, the quality of the speckle pattern is the aspect 

on which the DIC relies to observe deformations. The DIC works by dividing the digital 

image into blocks of pixels (sub-images or facets) (Pan et al., 2009). In this context, 

each subset has a unique identity made of the grey levels of the pixels. For instance, 

zero indicates the white colour and 255 indicates the black colour. The strain and 

displacement vectors are generated by tracking the changes/deformations between the 

undeformed and deformed subsets. To have a better understanding, suppose that the 

square subset of size is equal to  (2M+1) × (2M+1) and centred at P(x0,y0) deformed to 

new coordinates, as in Figure A.3. 
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Figure A.3 Schematic explanation of the undeformed (reference) subset and an example 
shape of the subset after deformation (Pan et al., 2009). 

 To match the deformed subset with the undeformed one, the similarities are 

determined by calculating the peak coordinates of a cross-correlation (CC) criterion or 

sum-squared difference (SSD). The most common expressions to calculate CC and 

SSD are summarized in Tables A.1 and A.2. 

Table A.1 Common used cross-correlations (CC) criteria(Pan et al., 2009). 

Correlation criterion Expression 

Cross-Correlation (CC) 𝐶𝐶𝐶 = ∑ ∑ [𝑓(𝑥𝑖, 𝑦𝑖)

𝑀

𝑗=−𝑀

𝑔(𝑥′
𝑖, 𝑦

′
𝑖)]

𝑀

𝑖=−𝑀

 

Normalised cross-correlation (NCC) 𝐶𝑁𝐶𝐶 = ∑ ∑
[𝑓(𝑥𝑖 , 𝑦𝑖)𝑔(𝑥

′
𝑖, 𝑦

′
𝑖)]

𝑓̅�̅�

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 

Normalised cross-correlation 
(ZNCC) 

𝐶𝑍𝑁𝐶𝐶 = ∑ ∑
[𝑓(𝑥𝑖, 𝑦𝑖) − 𝑓𝑚] × [𝑔(𝑥′

𝑖, 𝑦
′
𝑖) − 𝑔𝑚]

∆𝑓∆𝑔

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 

 Table A.2 Common used sum-squared difference (SSD) correlation criteria (Pan et al., 
2009). 

Correlation criterion Expression 

Sum of squared differences (SSD) 𝐶𝑆𝑆𝐷 = ∑ ∑ [𝑓(𝑥𝑖 , 𝑦𝑖) − 𝑔(𝑥′
𝑖, 𝑦

′
𝑖)]

2

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 

Normalised sum of squared differences (NSSD) 𝐶𝑁𝑆𝑆𝐷 = ∑ ∑ [
𝑓(𝑥𝑖, 𝑦𝑖)

𝑓̅
−
𝑔(𝑥′

𝑖, 𝑦
′
𝑖)

�̅�
]

2𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 

Zero-Normalised sum of squared differences 
(ZNSSD) 

𝐶𝑍𝑁𝐶𝐶 = ∑ ∑ [
𝑓(𝑥𝑖 , 𝑦𝑖) − 𝑓𝑚

∆𝑓
−
𝑔(𝑥′

𝑖, 𝑦
′
𝑖) − 𝑔𝑚

∆𝑔
]

2𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀
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In Tables A.1 and A.2: 

𝑓𝑚 =
1

(2𝑀 + 1)2
∑ ∑ 𝑓(𝑥𝑖, 𝑦𝑗)

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 (A.1) 

𝑔𝑚 =
1

(2𝑀 + 1)2
∑ ∑ 𝑔(𝑥′𝑖, 𝑦′𝑗)

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 (A.2) 

𝑓̅ = √ ∑ ∑ [𝑓(𝑥𝑖 , 𝑦𝑗)]
2

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 
 

(A.3) 

�̅� = √ ∑ ∑ [𝑔(𝑥′𝑖 , 𝑦′𝑗)]
2

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 (A.4) 

According to Figure A.3, the coordinates of a selected point Q(x0,y0) can be mapped 

with reference to the subset centre coordinates P(x0,y0), and after the subset 

deformation Q’(x’0,y’0) can be mapped using the so-called shape function (Schreier 

and Sutton, 2002) or mapping function (Lu and Cary, 2000) as: 

𝑥𝑖
′ = 𝑥𝑖 + 𝜉(𝑥𝑖, 𝑦𝑖) 

(𝑖, 𝑗 = −𝑀:𝑀) 

(A.5) 

𝑥𝑗
′ = 𝑦𝑗 + 𝜂(𝑥𝑖, 𝑦𝑖) (A.6) 

If the coordinates of the mapped points in both the reference and deformed subsets 

are the same, then zero-order shape functions can be solved as (Pan et al., 2009): 

𝜉0(𝑥𝑖, 𝑦𝑖) = 𝑢 (A.7) 
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𝜂0(𝑥𝑖, 𝑦𝑖) = 𝑣 (A.8) 

Suppose there are changes in the shape of the deformed subset. The first-order shape 

functions (Eqs. (A.9) and (A.10)) and second-order shape functions (Eqs.(A.11) and 

(A.12)) can be used to accurately compute the coordinates with respect to the centre 

displacements in the deformed subset (Pan et al., 2009) : 

𝜉1(𝑥𝑖, 𝑦𝑖) = 𝑢 + 𝑢𝑥𝛥𝑥 + 𝑢𝑦𝛥𝑦 (A.9) 

𝜂1(𝑥𝑖, 𝑦𝑖) = 𝑣 + 𝑣𝑥𝛥𝑥 + 𝑣𝑦𝛥𝑦 (A.10) 

𝜉2(𝑥𝑖, 𝑦𝑖) = 𝑢 + 𝑢𝑥𝛥𝑥 + 𝑢𝑦𝛥𝑦 +
1

2
𝑢𝑥𝑥𝛥𝑥

2 +
1

2
𝑢𝑦𝑦𝛥𝑦

2 + 𝑢𝑥𝑦𝛥𝑥𝛥𝑦 (A.11) 

 𝜂2(𝑥𝑖, 𝑦𝑖) = 𝑣 + 𝑣𝑥𝛥𝑥 + 𝑣𝑦𝛥𝑦 +
1

2
𝑣𝑥𝑥𝛥𝑥

2 +
1

2
𝑣𝑦𝑦𝛥𝑦

2 + 𝑣𝑥𝑦𝛥𝑥𝛥𝑦 (A.12) 

where  u, v,  𝛥𝑥 = 𝑥𝑖 − 𝑥0, and 𝛥𝑦 = 𝑦𝑖 − 𝑦0   are the directional displacements in the 

x-axis and y-axis of P(x,y). Also, ux and vx are the components of the first-order 

displacement gradients. And, uxx and yxx are the components of the second-order 

displacement gradients.  
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B Appendix B: Force and Δc curves and cracking behaviour (chapter 4) 

Force and displacement versus time Crack behaviour Cracked face  

   

(a) 

   

(b) 
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(f) 

Figure B.1 Force and displacement vs time of LC un-notched specimens tested under quasi-
static (a-c) and dynamic (e-f) loading. 
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Force and displacement versus time Crack behaviour Cracked face  
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Figure B.2 Force and displacement vs time of LC notched specimens tested under quasi-
static (a-c) and dynamic (e-f) loading. 
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Force and displacement versus time Crack behaviour Cracked face  
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Figure B.3 Force and displacement vs time of DC un-notched specimens tested under 
quasi-static (a-c) and dynamic (e-f) loading. 
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Force and displacement versus time Crack behaviour Cracked face  
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Figure B.4 Force and displacement vs time of DC notched specimens tested under quasi-
static (a-c) and dynamic (e-f) loading. 
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Force and displacement versus time Crack behaviour Cracked face  
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Figure B.5  Force and displacement vs time of LF un-notched specimens tested under 
quasi-static (a-c) and dynamic (e-f) loading. 
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Force and displacement versus time Crack behaviour Cracked face  
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Figure B.6 Force and displacement vs time of LF notched specimens tested under quasi-
static (a-c) and dynamic (e-f) loading. 
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Force and displacement versus time Crack behaviour Cracked face  
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Figure B.7 Force and displacement vs time of DF un-notched specimens tested under 
quasi-static (a-b) and dynamic (c-e) loading. 
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Force and displacement versus time Crack behaviour Cracked face  
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Figure B.8 Force and displacement vs time of DF notched specimens tested under quasi-
static (a-c) and dynamic (e-f) loading. 
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C Appendix C: Finite element (FE) modelling 

C.1 FE model verification  

The application of the TCD method requires finding the stress fields near a 

notch/crack tip under the assumption that the material is linear-elastic, 

homogeneous, and isotropic. In this research, to generate the linear-elastic stress 

fields in the vicinity of a stress concentrator, FE modelling has to be adopted because 

specific analytical solutions could be employed to find the stress fields near cracks and 

crack-like notches. Also, these solutions are restricted to simple geometries and 

loading configurations. Moreover, extending the use of the analytical solutions to non-

zero stress raisers (i.e., U-notches) requires more sophisticated work and, to the 

author’s knowledge, it is a problem still under investigation. Thus, there are no 

analytical solutions to find the stress fields near non-zero notch tips. Fortunately, with 

computer simulations, such as FE analysis, closed-form solutions can be obtained for 

any geometry and loading configuration. In this research, the linear–elastic stress 

fields in the vicinity of all stress concentration features were generated using 2D FE 

models. The 2D models are a cut in the middle of a 3D model. This simplifies the 

problem, significantly reduces the computational time, and requires less storage 

memory. Also, the 2D model allows an organised, refined, and mapped mesh near the 

notch tip. 

Before using any FE model to post-process the linear-elastic stress fields in the vicinity 

of notched specimens, it is essential to validate the accuracy of the utilised FE models. 

The validation exercise was carried out on a simply supported beam with a single edge 

central crack having a depth equal to 50 mm. The geometries and loading arrangement 

are shown in Figure C.1. Under the assumption that concrete is linear-elastic, 

homogeneous, and isotropic, the concrete prisms were modelled using the commercial 

software ANSYS ®.  

The specimens were modelled using solid brick elements (solid 183) with mapped 

mesh refinement near the assessed notches until convergence was reached. 

Convergence means the required optimum element size to find accurate FE results 

where further mesh refinement is not influencing FE results anymore. Global mesh 

refinement is not a good option because it consumes time and computer memory. The 
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stress fields near the notch tips are the areas of interest, so gradual mesh refinement 

near these areas is the perfect option. Using a monotonic convergence curve under a 

load of 1 kN, the mesh density was increased until the optimum mesh size was found 

(Logan, 2016).  

 

Figure C.1 Geometries and boundary conditions of the FE model (dimensions in mm). 

By applying a load of 1 kN (a unity), the validity of the FE model was verified by 

comparing the analytical solution and the numerical solution of σx, which is the linear-

elastic stress field acting perpendicular to the crack bisector. The analytical solution 

was according to the procedure presented in Section 2.5. According to Figure C.2, the 

generated Mode I stress field from the FE model is almost the same as the analytical 

solutions. Thus, the results indicate that the developed model is accurate and verified. 

 

Figure C.2 The analytical and numerical solutions of the stress–distance curve. 

To conclude, this simple FE model exercise allowed the author to pursue generating 

the linear-elastic stress fields in the relevant notched specimens throughout this 

research by simply replacing the crack with assessed notches.  
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C.2 FE modelling of notched specimens (Chapter 4)  

In Chapter 4, only one type of notch is being studied, with a notch rood radius equal 

to 1.3 mm. As explained earlier, the accuracy of the stress fields depends on the mesh 

size (element size). Therefore, a gradual mesh refinement was conducted near the 

relevant notch, as presented in Figure C.3.  

 

Figure C.3 Gradual mesh refinement near the relevant notch tip. 

Gradual mesh refinement was performed until the element sizes did not influence the 

obtained stress-distance fields. This was confirmed by plotting the convergence curve 

of the maximum opening stress at the notch tip (peak stress) under a load of unity 

(Figure C.4).  

 

Figure C.4 Mesh convergence curve of specimens containing crack-like notches (Chapter 
4).  

C.3 FE modelling of notched specimens under pure Mode I loading 

(Chapter 5)  

As presented in Chapter 5, three different U-notches were fabricated with root radii of 

24 mm (Blunt), 12.3 mm (Intermediate), and 1.6 mm (sharp). Each notched specimen 

was modelled with gradual mesh refinement of the areas around the notches. An 
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example of mesh refinement of specimens containing blunt notches is shown in Figure 

C.5. 

 

Figure C.5 Example of gradual mesh refinement in the vicinity of the blunt notch. 

The mesh near these notches was refined until convergence was reached under a load 

of 1 kN. The convergence curves of the notched specimens are presented in Figure C.6.  

 (a)  (b) 

(c) 

Figure C.6 Mesh convergence curve of specimens containing blunt notches (a), 
intermediate notches (b), and sharp notches (c) (Chapter 5). 

C.4 References  
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D Appendix D: Calculations of the stress intensity factors 

In Chapter 5, the level of loading mode mixity was quantified by replacing the notches 

with ideal zero-tip cracks to allow us to calculate the stress intensity factors analytically 

or numerically. In this study, three different loading Mode mixity were considered. 

The level of loading Mode laxity was quantified by calculating the ratios of Mode II to 

Mode I stress intensity factors (i.e. 𝜌 = 𝐾2/𝐾1) for every loading arrangement being 

investigated as follows. 

D.1 Verifying the numerical calculations of the stress intensity factors 

Using the standard symmetric 3PB test arrangement with a central edge crack (Figure 

D.1), then K1 can be calculated according to Section 2.3 as follows: 

𝐾1 =
𝑃

𝐵 √𝑊
 𝑓 (

𝑎

𝑊
) (D.1) 

Where f(a/w) is a geometrical factor and can be solved by recalling Eq. 2.9 as: 

𝑓 (
𝑎

𝑊
) =

3
𝑆
𝑊

√
𝑎
𝑊

2(1 +
2𝑎
𝑊) (1 −

𝑎
𝑊)

3/2
{1.99

−
𝑎

𝑊
(1 −

𝑎

𝑊
) [2.15 − 3.93 (

𝑎

𝑊
) + 2.7 (

𝑎

𝑊
)
2

]} 

(D.2) 

 

Figure D.1 Loading configuration of a beam containing central-edge crack. 
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The input values to the above equations are as follows: 

 P = 1000 N  

 B = 100 mm 

 W = 100 mm 

 a = 50 mm 

 L = 400 mm  

Then,  𝐾1 = 10.65 𝑀𝑃𝑎 × 𝑚𝑚0.5 

The same analytical result is compared to calculating K1 via the Finite Element (FE) 

simulation. In this context, the K1 value was calculated according to the way described 

in Section 2.4. From Figure D.2, the resulting stress intensity factor is as follows: 

𝐾1 ≈ 10.7 𝑀𝑃𝑎 × 𝑚𝑚0.5  

Comparing the K1 values that were obtained analytically and numerically, they are 

almost the same, with a difference of 0.2%. This simple exercise allowed is used to 

verify the accuracy of the numerical procedure to estimate the stress intensity factors.  

 

Figure D.2 Determining the stress intensity factor using FE modelling simulation. 

D.2 Asymmetrical cracked beam under 3-point bending (ρ = 0.18) 

The task here is to present the calculation procedure of ρ when the notch is replaced 

by a crack in beams subjected to three-point bending with eccentric crack location 

(Figure D.3).  
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Figure D.3 Three-point bending beam containing a crack in unsymmetrical position. 

Figures D.4a and D.4b show the estimated values of K1 and K2 values from FE model, 

respectively. 

 (a)   (b) 

Figure D.4 Estimating Mode I (a) and Mode II (b) stress intensity factors under Mixed-
Mode I/II 3PB. 

According to Figure D.4, the stress intensity factors can be estimated and then used to 

calculate ρ as follows: 
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𝐾1
≈

0.72

3.95
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D.3 Symmetrical cracked beam under 4PB (ρ = 0.3) 

The final loading mode mixity was produced by testing notched concrete beams under 

4BP. By replacing the notches with a crack (Figure D.5), the stress intensity factors can 

be estimated using FE models in the same way as in the previous sections. 
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Figure D.5 Symmetrical cracked beam under 4BP.  

According to Figure D.6, the stress intensity factors can be estimated and then used to 

calculate ρ as follows: 

ρ =
𝐾2

𝐾1
≈

0.58

1.88
≈ 0.30 

(a)   (b) 

Figure D.6 Determining Mode I (a) and Mode II (b) stress intensity factors under Mixed-
Mode I/II 4PB. 
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E Appendix E: Force and Δc curves and cracking behaviour (Chapter 5) 

   (a) 

   (b) 

   (c) 

  (d) 

   (e) 

Figure E.1 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of un-notched specimens being tested under Mode I quasi-static 

loading (a-c) and dynamic loading (d-i) 
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   (f) 

   (g) 

   (h) 

  (i) 

Figure E.1 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of un-notched specimens being tested under Mode I quasi-static 

loading (a-c) and dynamic loading (d-i) (continued). 
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   (a) 

   (b) 

   (c) 

  (d) 

   (e) 

Figure E.2 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of blunt-notched specimens (r= 24 mm) being tested under Mode 

I (ρ = 0) quasi-static loading (a-c) and dynamic loading (d-i) 
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   (f) 

   (g) 

   (h) 

Figure E.2 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of blunt-notched specimens (r= 24 mm) being tested under Mode 

I (ρ = 0) quasi-static loading (a-c) and dynamic loading (d-i) (continued). 
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   (a) 

   (b) 

   (c) 

  (d) 

   (e) 

Figure E.3 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of blunt-notched specimens (r= 24 mm) being tested under 

Mixed-Mode I/II (ρ = 0.18) quasi-static loading (a-c) and dynamic loading (d-i). 
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   (f) 

   (g) 

   (h) 

  (i) 

Figure E.3 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of blunt-notched specimens (r= 24 mm) being tested under 

Mixed-Mode I/II (ρ = 0.18) quasi-static loading (a-c) and dynamic loading (d-i) (continued). 
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   (a) 

   (b) 

   (c) 

  (d) 

   (e) 

Figure E.4 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of blunt-notched specimens (r= 24 mm) being tested under 

Mixed-Mode I/II (ρ = 0.30) quasi-static loading (a-c) and dynamic loading (d-i) 
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    (f) 

  (g) 

   (h) 

  (i) 

Figure E.4 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of blunt-notched specimens (r= 24 mm) being tested under 

Mixed-Mode I/II (ρ = 0.30) quasi-static loading (a-c) and dynamic loading (d-i) (continued). 
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  (a) 

   (b) 

   (c) 

  (d) 

   (e) 

Figure E.5 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of intermediate-notched specimens (r= 12.5 mm) being tested 

under Mode I (ρ = 0) quasi-static loading (a-c) and dynamic loading (d-i) 
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    (f) 

   (g) 

   (h) 

  (i) 

Figure E.5 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of intermediate-notched specimens (r= 12.5 mm) being tested 
under Mode I (ρ = 0) quasi-static loading (a-c) and dynamic loading (d-i) (Continued). 
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  (a) 

   (b) 

   (c) 

  (d) 

   (e) 

Figure E.6 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of intermediate-notched specimens (r= 12.5 mm) being tested 
under Mixed-Mode I/II (ρ = 0.18) quasi-static loading (a-c) and dynamic loading (d-i) 
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   (f) 

   (g) 

   (h) 

  (i) 

Figure E.6 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of intermediate-notched specimens (r= 12.5 mm) being tested 
under Mixed-Mode I/II (ρ = 0.18) quasi-static loading (a-c) and dynamic loading (d-i) 

(Continued). 
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  (a) 

   (b) 

   (c) 

  (d) 

   (e) 

Figure E.7 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of intermediate-notched specimens (r= 12.5 mm) being tested 

under Mixed-Mode I (ρ = 0.30) quasi-static loading (a-c) and dynamic loading (d-i) 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40

Δ
c

(m
m

)

L
o

a
d

, 
P

 (
k

N
)

Time (s)

Load, P

Δc 

Specimen Code: S-I1-I/II (4PB)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40
Δ

c
(m

m
)

L
o

a
d

, 
P

 (
k

N
)

Time (s)

Load, P

Δc 

Specimen Code: S-I2-I/II (4PB)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40

Δ
c

(m
m

)

L
o

a
d

, 
P

 (
k

N
)

Time (s)

Load, P

Δc 

Specimen Code: S-I3-I/II (4PB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0

2

4

6

8

10

12

14

16

18

20

0 0.01 0.02 0.03 0.04 0.05 0.06

Δ
c

(m
m

)

L
o

a
d

, 
P

 (
k

N
)

Time (s)

Load, P

Δc 

Specimen Code: M-I1-I/II (4PB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0

2

4

6

8

10

12

14

16

18

20

0 0.01 0.02 0.03 0.04 0.05 0.06

Δ
c

(m
m

)

L
o

a
d

, 
P

 (
k

N
)

Time (s)

Load, P

Δc 

Specimen Code: M-I2-I/II (4PB)



193 

 

   (f) 

  (g) 

   (h) 

  (i) 

Figure E.7 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of intermediate-notched specimens (r= 12.5 mm) being tested 

under Mixed-Mode I (ρ = 0.30) quasi-static loading (a-c) and dynamic loading (d-i) 
(Continued). 
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  (a) 

   (b) 

   (c) 

  (d) 

   (e) 

Figure E.8 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of sharp-notched specimens (r= 1.3 mm) being tested under Mode 

I (ρ = 0) quasi-static loading (a-c) and dynamic loading (d-i). 
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   (f) 

   (g) 

   (h) 

  (i) 

Figure E.8 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of sharp-notched specimens (r= 1.3 mm) being tested under Mode 

I (ρ = 0) quasi-static loading (a-c) and dynamic loading (d-i)(Continued). 
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  (a) 

   (b) 

   (c) 

  (d) 

   (e) 

Figure E.9 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of sharp-notched specimens (r= 12.5 mm) being tested under 

Mixed-Mode I (ρ = 0.18) quasi-static loading (a-c) and dynamic loading (d-i) 
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   (f) 

  (g) 

   (h) 

  (i) 

Figure E.9 Summary of the force and local displacement versus time and the corresponding 
crack initiation behaviour of sharp-notched specimens (r= 12.5 mm) being tested under 

Mixed-Mode I (ρ = 0.18) quasi-static loading (a-c) and dynamic loading (d-i) (Continued). 
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  (a) 

   (b) 

    (c) 

  (d) 

   (e) 

Figure E.10 Summary of the force and local displacement versus time and the 
corresponding crack initiation behaviour of sharp-notched specimens (r= 12.5 mm) being 
tested under Mixed-Mode I (ρ = 0.30) quasi-static loading (a-c) and dynamic loading (d-i) 
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   (f) 

  (g) 

   (h) 

  (i) 

Figure E.10 Summary of the force and local displacement versus time and the 
corresponding crack initiation behaviour of sharp-notched specimens (r= 12.5 mm) being 
tested under Mixed-Mode I (ρ = 0.30) quasi-static loading (a-c) and dynamic loading (d-i) 

(Continued). 
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 (a)   (b) 

 (c)  (d) 

 (e)  (f) 

 (g)  (h) 

 (i)  (j) 

Figure E.11 Summary of all experimental results as a function of the max. opening normal 
stain rate of un-notched (a) and notched specimens with ρ = 0 (b-d), ρ = 0.18 (e-g), and ρ = 

0.3 (i-j). 
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