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The attention that media or investors pay to the market affects the prices of stocks
and assets. This attention is usually called market attention or market interest. It
has been shown that this attention affects stocks and indexes. In recent years, due
to the development of cryptocurrencies, there is an increasing literature that analyzes
the relation between cryptocurrency prices and market attention. Because the value
of cryptocurrencies has increased during the last years, new exchanges have appeared
that offer European options on Bitcoin.

In this thesis we develop six different models that incorporate market attention
into the modelling of Bitcoin option prices. Firstly, we construct two continuous
time models that incorporate market attention into the volatility structure, building
on existing work by Cretarola, Figà-Talamanca, and Patacca (2020). For these two
models we show how we can estimate the parameters and give a closed formula for
pricing European options. Then we construct two continuous time models that contain
jumps in the price structure to take into account that the distribution of Bitcoin
returns has fat tails. Again, for these models, we estimate the parameters and develop
a closed formula for pricing Bitcoin options. Lastly, we construct two discrete time
models in which the volatility is explained by the market attention but also by an
unobserved process. The estimation of these models is quite complex. Because of
that, we will use sequential Monte Carlo methods for the estimation of these models.
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Chapter 1

Introduction

The term market attention is defined as the attention that investors or media pay to a
particular stock or asset. This term is also called investor attention or market interest.
Different proxies can be selected to measure market attention. Traditionally, trading
volume, news coverage, or extreme past returns have been used. These proxies have
been shown to affect stock prices (see K. Hou, Xiong, and Peng (2009) and J. Chen,
Tang, Yao, and Zhou (2022)). Due to the increase in the use of the Internet in the
last two decades, new proxies for market attention have appeared, such as the number
of Google searches or the Twitter volume. Da, Engelberg, and Gao (2011) show that
the number of Google searches affects the prices of stocks in the Russel 3000 index.
It has also been shown that Twitter sentiment affects the prices of the stocks in the
Dow Jones Industrial Average index (Ranco et al., 2015). In addition, Twitter volume
also affects the prices of options (Wei, Mao, & Wang, 2016).

In this thesis, we are interested in developing models for pricing Bitcoin options
that incorporate market attention. Bitcoin was presented by Nakamoto (2008) in
2008 and since then the number of people buying and selling Bitcoin has rapidly
increased. In recent years, due to the increase in the value of Bitcoin, new exchanges
have emerged that offer European Bitcoin options. Some of these exchanges are
Deribit (https://www.deribit.com/), LedgerX (https://derivs.ftx.us/) and Bit (https:
//www.bit.com/).

There is a constantly increasing literature that studies the relation between cryp-
tocurrencies and market attention. For example, Smales (2022) builds a panel regres-
sion model to show that the number of Google searches generates greater returns and
greater volatility for the most important cryptocurrencies. Eom, Kaizoji, Kang, and
Pichl (2019) construct an autoregressive model for volatility that includes the number
of Google searches and they show that the number of Google searches improves the
predictability of Bitcoin volatility. Suardi, Rasel, and Liu (2022) use VADER (Valence
Aware Dictionary for Sentiment Reasoning) to extract information from a collection of
tweets that contain the hashtag Bitcoin. They construct two factors, that they call sen-
timent dispersion and investor attention. Using several econometric models, they show
that an increase in sentiment dispersion increases volatility, and investor attention pre-
dicts trading volume. Also, Philippas, Rjiba, Guesmi, and Goutte (2019) construct
a dual process diffusion model to express that media attention (Google searches and
Twitter volume) partially affects the prices of Bitcoin. Furthermore, López-Cabarcos,
Pérez-Pico, Piñeiro-Chousa, and Šević (2021) construct a sentiment index for Bitcoin
using the software Stanford Core NLP and the web page StockTwits.com. The au-
thors then build GARCH type models and show that the sentiment index affects the
volatility of Bitcoin returns. Aalborg, Molnár, and de Vries (2019) construct several
linear regression models to show that trading volume affects Bitcoin volatility. In the
work of Al Guindy (2021), the author uses a VAR model to prove that an increase in
investor attention, in this case it is the Twitter volume of the last five days, produces

https://www.deribit.com/
https://derivs.ftx.us/
https://www.bit.com/
https://www.bit.com/
StockTwits.com
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an increase in Bitcoin volatility. In addition, using a GARCH-MIDAS model, Liang,
Zhang, Li, and Ma (2022) show that the number of Google searches has an impact
on predicting the volatility of Bitcoin. Kristoufek (2015) uses wavelet analysis to in-
dicate that an increase in interest (number of Google searches and Wikipedia views)
produces an increase in prices during bubble formation and a decrease in prices dur-
ing bubble burst. Evidence of this phenomenon can be found in the work of Zhang,
Lu, Tao, and Wang (2021), where the authors show using the Granger causality test
that an increase in the number of Google searches contributes to bubble formation in
Bitcoin prices. Ciaian, Rajcaniova, and Kancs (2016) show using time series models
that the number of views on Wikipedia also has an impact on the price of Bitcoin in
the short term. Also, Aslanidis, Bariviera, and López (2021) build a Google trends
cryptocurrency index and show that there is a short term bidirectional relation be-
tween the price of Bitcoin and the Google trends index. Figà-Talamanca and Patacca
(2019) using ARMA-GARCH models show that trading volume affects the mean and
the volatility of Bitcoin returns, while the number of Google searches only affects the
volatility of Bitcoin returns. In other paper (Figà-Talamanca & Patacca, 2020), the
same authors using a VAR-EGARCH model show that neither the trading volume
nor the number of Google searches affect the mean of Bitcoin returns. However, both
attention proxies affect the volatility of Bitcoin returns.

We observe that the results in the literature seem to disagree in some aspects.
Some authors claim that market attention influences the mean and volatility of Bit-
coin returns (Ciaian, Rajcaniova, & Kancs, 2016; Figà-Talamanca & Patacca, 2019;
Kristoufek, 2015; Smales, 2022). While other sources have found that market atten-
tion affects only the volatility of Bitcoin returns (Aalborg, Molnár, & de Vries, 2019;
Al Guindy, 2021; Figà-Talamanca & Patacca, 2020; Suardi, Rasel, & Liu, 2022). In
this thesis, we will assume that market attention affects only the volatility of Bitcoin
returns; see Chapter 3.

In most of the econometric models that appear in the previous literature review,
market attention is included in those models with a delay. That is, market attention
does not act instantaneously with respect to the response variable (usually the return
of Bitcoin or the volatility of Bitcoin returns). Because of that, in all models included
in this thesis, market attention acts on the return of Bitcoin with a constant delay.

There is previous work in the literature that analyses the problem of Bitcoin option
pricing. Because Bitcoin prices have high volatility, several models include jumps
in the price structure (K. Chen & Huang, 2021; Olivares, 2020; Shirvani, Mittnik,
Lindquist, & Rachev, 2021). Cao and Celik (2021) propose an equilibrium model to
price Bitcoin options. Cretarola, Figà-Talamanca, and Patacca (2020) construct a
stochastic volatility model that incorporates market attention into the option pricing.
We base the models presented in Chapter 3 and Chapter 4 on this model. All previous
references build models that are continuous in time, but discrete time models have also
been used for pricing Bitcoin options (Siu & Elliott, 2021; Venter, Mare, & Pindza,
2020).

In this thesis, we propose different models to price Bitcoin options that incorporate
market attention. In Chapter 2, we model the interest as a stochastic process and
show how we can perform estimation and validation. In Chapter 3, we construct a first
simple model for pricing Bitcoin options. In this model the volatility of the log-returns
is proportional to the market attention. Based on the model in Chapter 3, we construct
a new model in Chapter 4 that allows us to include jumps in the volatility structure.
In Chapter 5, we build a time changed model, in which an increase in interest produces
an increase in the probability of a price jump. Chapter 6 is somewhat distinct from
the rest of the thesis. In this chapter, we build models in which the volatility is
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explained by an unobserved process and by market attention. To estimate these types
of models, we need to use a set of techniques called sequential Monte Carlo methods.

Before introducing the models of this thesis, we need to introduce some mathe-
matical concepts and some tools that we will use through the thesis.

1.1 Lévy process

In this section, we will provide a brief presentation of Lévy processes. To this end, let
us take (Ω,F ,P, (Ft))t≥0 to be a filtered probability space. Here, we are interested in
knowing when an adapted stochastic process X is a Lévy process and what its main
properties are. We will assume the filtration (Ft))t≥0 to be the filtration generated
by the process X.

Definition 1.1.1. (Pascucci, 2011, Definition 13.10) An adapted stochastic process
X = (X(t))t≥0 that takes values in R, is a Lévy process if X(0) = 0 almost surely and

1. X has independent increments, that is, X(t)−X(s) is independent of Fs for all
0 ≤ s < t.

2. X has stationary increments, that is, X(t)−X(s) has the same distribution as
X(t− s), for all 0 ≤ s < t.

3. X is stochastically continuous that is, for all ϵ > 0 and for all t ≤ 0, we have

lim
h→0

P (|X(t+ h)−X(t)| > ϵ) = 0.

An interesting property of Lévy processes is that they have almost surely cádlág
paths.

Theorem 1.1.1. (Applebaum, 2009, Theorem 2.1.7) Every Lévy process has a cádlág
modification that is itself a Lévy process.

In this thesis, when we work with a Lévy process, we always work with its cádlág
modification. Because Lévy processes have almost surely cádlág paths, the number of
jumps larger than any ϵ > 0 is finite. However, the number of jumps smaller than ϵ
is countable and could be infinite (Pascucci, 2011, p. 438). That is, in the case that
a Lévy process has jumps, it has a finite number of large jumps, but it could have an
infinite number of small jumps.

Example 1.1.1. (Pascucci, 2011, Definition 13.8)
One example of a Lévy process is the compound Poisson process. This process X

is formed by a Poisson process N with parameter λ > 0 and a sequence {Zn}∞n=1 of
independent and identically distributed random variables, which are independent of the
Poisson process N . The compound Poisson process X is defined as

X(t) =

N(t)∑
n=1

Zn for t ≥ 0.

1.1.1 Infinitely divisible distributions

Lévy processes are related to the concept of infinitely divisible distributions.
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Definition 1.1.2. (Pascucci, 2011, Definition 13.16) A random variable Y is said
to be infinitely divisible if, for any n ≥ 2, there exist independent and identically
distributed random variables Y1, . . . , Yn such that:

Y
d
= Y1 + . . .+ Yn,

where d
= means equal in distribution.

Examples of infinitely divisible distributions are the normal distribution, the Pois-
son distribution, the inverse Gaussian distribution, or the gamma distribution. The
following result shows how Lévy processes and infinitely divisible distributions relate.

Proposition 1.1.1. (Cont & Tankov, 2004, Proposition 3.1) Let X be a Lévy process.
Then for every t ≥ 0, X(t) has an infinitely divisible distribution. Conversely, if F
is an infinitely divisible distribution then there exists a Lévy process X such that the
distribution of X(1) is given by F .

We are now interested in the structure of the characteristic function of Lévy pro-
cesses.

Theorem 1.1.2. (Pascucci, 2011, Theorem 13.15) If X is a Lévy process, then there
exists a unique continuous function ΨX : R→ C such that Ψ(0) = 0 and

ΦX(t)(u) = E
[
eiuX(t)

]
= etΨ

X(u), t ≥ 0, u ∈ R.

The function ΨX is called the characteristic exponent of X.

Theorem 1.1.2 tells us that the distribution of a Lévy process X is determined by
the characteristic exponent or what is the same by the distribution of X(1). If X is
a Lévy process then we have from Theorem 1.1.2 that

ΦX(t)(u) =
(
ΦX( t

n
)(u)

)n
, for u ∈ R, n ∈ N, t ≥ 0.

It is possible to obtain an analytical formula for the characteristic function of
X(t) where X is a Lévy process. But first we have to introduce the concepts of Lévy
measure and Jump measure.

1.1.2 Jump measures and Lévy–Itô decomposition

Let us now study the jumps of Lévy processes. If X is a Lévy process, the size of the
jump at time t ≥ 0 is defined as ∆X(t) = X(t) −X(t−). Since X has almost surely
cádlág paths we have that ∆X(t) = 0 almost surely for a fixed t ≥ 0 (Applebaum,
2009, Lemma 2.3.2). It is possible to define a random measure that counts the number
of jumps in a given time period [0, t]. We define the random measure J as

J(t,H) = # {s ∈ [0, t] : ∆X(s) ∈ H}
=

∑
0≤s≤t

1H(∆X(s)) for H ∈ B(R \ {0}) and t ≥ 0,

where

1H(x) =

{
1 if x ∈ H,
0 otherwise.

The random measure J is usually called the jump measure of the process X.
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Using the jump measure J , it is possible to define a new measure v on B(R \ {0})
as

v(H) = E [J(1, H)] , for H ∈ B(R \ {0}).

The measure v is called the Lévy measure of the process X. This measure is not a
probability measure and is not necessarily finite. The measure v counts the expected
number of jumps per unit of time (Applebaum, 2009, p. 87).

We have seen that a Lévy process can have an infinite number of jumps so the
random measure J can take infinite values. Remember that a Lévy process can only
take a finite number of large jumps. Because of that we define H ∈ B(R \ {0}) to
be bounded below if 0 /∈ H̄, where H̄ represents the closure of H. If H is bounded
below, then the random measure J(., H) takes only finite values (Applebaum, 2009,
Lemma 2.3.4). When the set H is bounded below the jump measure, J satisfies certain
interesting properties.

Theorem 1.1.3. (Pascucci, 2011, Lemma 13.33)
Let X be a Lévy process with jump measure J and Lévy measure v. Then

1. If H ∈ B(R) is bounded below, then the process (J(t,H))t≥0 defined as

J(t,H) = # {s ∈ [0, t] : ∆X(s) ∈ H} for t ≥ 0,

is a Poisson process with intensity v(H) and the compensated process
(J̃(t,H))t≥0 defined as

J̃(t,H) = J(t,H)− tv(H) for t ≥ 0,

is a martingale.

2. If H ∈ B(R) is bounded below and f is a measurable function then the process
(Jt(f,H))t≥0 defined as

Jt(f,H) =

∫ t

0

∫
H
f(s.x)J(ds, dx) =

∑
0≤s≤t

f(s,∆X(s))1H(∆X(s)) for t ≥ 0,

is a compound Poisson process.

It is possible to show that Lévy processes can be expressed as the sum of a drift
term, a Brownian motion, a compound Poisson process and a sequence of compensated
compound Poisson processes.

Theorem 1.1.4. (Cont & Tankov, 2004, Proposition 3.7) Lévy-Itô decomposition
Let X be a Lévy process with jump measure J and Lévy measure v. Then the Lévy

measure v satisfies ∫
|x|≥1

v(dx) < ∞,∫
|x|<1

|x|2v(dx) < ∞.

Moreover there exists a Brownian motion B and two constants σ ≥ 0 and γ ∈ R such
that:

X(t) = γt+ σB(t) +X l(t) + lim
ϵ↓0

X̃ϵ(t), (1.1.1)
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where

X l(t) =

∫ t

0

∫
|x|≥1

xJ(ds, dx) is a compound Poisson process,

X̃ϵ(t) =

∫ t

0

∫
ϵ≤|x|<1

xJ̃(ds, dx)

=

∫ t

0

∫
ϵ≤|x|<1

x (J(ds, dx)− v(dx)ds)

is a compensated compound Poisson process.

The terms in (1.1.1) are independent and the convergence of the last term is almost
sure and uniform in t on [0, T ].

Definition 1.1.3. (Cont & Tankov, 2004, p. 80) The triplet (γ, σ2, v) in Theorem
1.1.4 is called the characteristic triplet or the Lévy triplet of the Lévy process X.

1.1.3 Lévy-Khintchine representation

From the Lévy triplet of a Lévy process it is possible to obtain an analytical formula for
its characteristic function. This formula is called the Lévy-Khintchine representation.

Theorem 1.1.5. (Sato, 1999, p. 37) Lévy-Khintchine representation
The characteristic exponent of a Lévy process X with Lévy triplet (γ, σ2, v) is

ΨX(u) = iγu− 1

2
σ2u2 +

∫
R

(
eiux − 1− iux1{|x|≤1}

)
v(dx),

where γ ∈ R, σ > 0 and v is a Lévy measure that satisfies
∫
R
(x2 ∧ 1)v(dx) <∞.

As we have seen before, the Lévy process is determined by its Lévy triplet. Now
let us check two examples that are used in Chapter 4 and in Chapter 5.

Example 1.1.2. Let us consider X to be a compound Poisson process, then X has
characteristic triplet (γ, 0, v) with

v(dx) = λF (dx),

γ =

∫
|x|≤1

xv(dx),

where λ > 0 represents the intensity of the Poisson process and F is the distribution
of the jump. The characteristic exponent of X can be written as

ΨX(u) = λ

∫ ∞

−∞

(
eiux − 1

)
F (dx) for u ∈ R

(Cont & Tankov, 2004, Proposition 3.4, Proposition 3.8).

Example 1.1.3. Let X be a Lévy process of finite variation with Lévy triplet given by
(γ, 0, v). By Cont and Tankov (2004, Corollary 3.1) we have that X can be expressed
as the sum of its jumps between 0 and t and a linear drift term:

X(t) = bt+

∫ t

0

∫
R

xJ(dx, dx) = bt+

∆X(s) ̸=0∑
0<s≤t

∆X(s)
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and its characteristic function can be written as

E
[
eiuX(t)

]
= exp

{
t

(
ibu+

∫
R

(
eiux − 1

)
v(dx)

)}
,

where b = γ −
∫
|x|≤1 xv(dx).

Example 1.1.4. (Schoutens, 2003, p. 53)
A well known Lévy process is the inverse Gaussian Lévy process. This Lévy pro-

cess is related to the inverse Gaussian distribution with parameters a, b > 0. The
characteristic function of the inverse Gaussian distribution is:

ΦIG(u) = exp
{
−a
(√
−2iu+ b2 − b

)}
for u ∈ R,

and the density function is

fIG(x) =
a√
2π

exp{ab}x−3/2 exp

{
−1

2

(
a2x−1 + b2x

)}
1(0,∞)(x) for x ∈ R.

The inverse Gaussian distribution is an infinitely divisible distribution, hence by Propo-
sition 1.1.1 there exists a Levy process X such that X(1) follows an inverse Gaussian
distribution. So we have that the characteristic function of X(t) is:

ΦX(t)(u) = E
[
eiuX(t)

]
= exp

{
−at

(√
−2iu+ b2 − b

)}
for u ∈ R and t ≥ 0.

The inverse Gaussian Lévy process X has Lévy triplet (γ, 0, v) with:

γ =
a

b
(2FN (b|0, 1)− 1),

v(dx) = (2π)−1/2ax−3/2 exp

{
−1
2
b2x

}
1(0,∞)(x)dx,

where FN (.|0, 1) is the cumulative distribution function of a standard normal random
variable.

1.1.4 Martingale properties

This section is devoted to analysing when a Lévy process or an exponential Lévy
process is a martingale. But first let us check when the exponential moment of a Lévy
process is finite.

Proposition 1.1.2. (Pascucci, 2011, Proposition 13.49) Let X be a Lévy process on
R with characteristic triplet (γ, σ2, v). The exponential moment E

[
euX(t)

]
, u ∈ R is

finite iff ∫
|x|≥1

euxv(dx) <∞.

In this case
E
[
euX(t)

]
= etΨ

X(−iu),

where ΨX is the characteristic exponent of X.

Processes that are martingales play a central role in finance because options are
priced when the discounted stock price is a martingale. The next result tells us
when a Lévy process is a martingale, but also when an exponential Lévy process is
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a martingale. This result is important because it allows us to verify if we are in an
equivalent risk-neutral measure when the stock price is modelled by an exponential
Lévy process.

Theorem 1.1.6. (Pascucci, 2011, Theorem 13.50) Let X be a real valued Lévy process
with characteristic triplet (µ, σ, v), we have:

1. If E[|X(1)|] <∞ then (X(t)− E[X(t)])t≥0 is a martingale.

2. If E
[
euX(t)

]
<∞ for some u ∈ R then(

euX(t)

E[euX(t)]

)
t≥0

is a martingale.

1.1.5 Change of measure for Lévy process

If we consider a Lévy process X living in a probability space (Ω,F ,P), we will be
interested in probability measures Q such that they are equivalent to the probability
measure P and that X underQ is still a Lévy process but with a different characteristic
triplet.

Proposition 1.1.3. (Cont & Tankov, 2004, Proposition 9.8)(Pascucci, 2011, Theo-
rem 13.50)

Let X be a Lévy process with triplet (γ, σ2, v) under P. Then the following two
conditions are equivalent:

1. There is a probability measure Q, equivalent to P, such that X = (X(t))t∈[0,T ]

is a Lévy process with triplet (γ̃, σ̃, ṽ) under Q;

2. all of the following conditions hold:

(a) ṽ(dx) = H(x)v(dx) for some Borel function H : R→ (0,∞);

(b) σ̃ = σ;

(c) γ̃ = γ +
∫
|x|≤1 x(H(x)− 1)v(dx) + σ2η for some η ∈ R;

(d)
∫
R

(
1−

√
H(x)

)2
v(dx) <∞.

In addition, if the measures P and Q are equivalent then we have that Q can be
expressed as

Q(A) =

∫
A
Z(T )dP for A ∈ F ,

where the process Z is defined for t ≥ 0 as

Z(t) = exp

{
ηXc(t)− η2σ2t

2
− ηγt

}

exp

lim
ϵ↓0

 ∑
s≤t

|∆X(s)|>ϵ

logH(∆X(s))− t

∫
|x|>ϵ

(H(x)− 1)v(dx)


 ,

with the process Xc being the continuous part of the process X.
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Notice that if the Lévy process has a diffusion part we can freely change the drift,
but the volatility σ has to remain the same. Let us now see an example of how this
change of measure works.

Example 1.1.5. Let X be a compound Poisson process with Lévy triplet (γ, 0, v)
where

v(dx) = λf(x)1D(x)dx,

γ =

∫
|x|≤1

xv(dx),

with λ > 0 and f is a density function with support D. We would like to show that
there exists an equivalent measure Q under which the process X is a Lévy process with
triplet (γ̃, 0, ṽ) where

ṽ(dx) = λ̃f̃(x)1D(x)dx,

γ̃ =

∫
|x|≤1

xṽ(dx),

with λ̃ > 0 and f̃ is a density function with the same support D.
To this end, let us define the function H as

H(x) =
λ̃f̃(x)

λf(x)
1D(x).

Notice that with this selection of H we have that

ṽ(dx) = H(x)v(dx).

For applying Proposition 1.1.3 we need to show that
∫
R

(
1−

√
H(x)

)2
v(dx) < ∞.

Using the fact that (a− b)2 ≤ a2 + b2 for a, b ≥ 0 we can write:∫
R

(
1−

√
H(x)

)2
v(dx) ≤

∫
R

(1 +H(x))v(dx)

=

∫
D
λf(x)dx+

∫
D
λ̃f̃(x)dx

= λ+ λ̃ <∞.

Lastly, notice that:

γ̃ =

∫
|x|<1

x(H(x)− 1)v(dx) + γ

=

∫
|x|≤1

xṽ(dx)−
∫
|x|≤1

xv(dx) +

∫
|x|≤1

xv(dx)

=

∫
|x|≤1

xṽ(dx).

So we can apply Proposition 1.1.3 and obtain the desired equivalent probability mea-
sure.
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1.2 Change of Brownian motion

Let
(
Ω,F ,P, (Ft)t≥0

)
be a filtered probability space, and let W be a Ft-Brownian

motion. This section is concerned with the computation of the following Itô integral∫ T

τ
θ(s− τ)dW (s) for T > τ > 0,

where (θ(t − τ))t≥0 is a left-continuous adapted process with θ(t) = ϕ(t) when
t ∈ [−τ, 0], and where ϕ : [−τ, 0]→ R is a left-continuous deterministic function.

Theorem 1.2.1. Let T, τ ∈ (0,∞) with T > τ and consider the left-continuous
and adapted process (θ(t − τ))t≥0 with θ(t) = ϕ(t) when t ∈ [−τ, 0], and where
ϕ : [−τ, 0]→ R is a left-continuous deterministic function.

If θ satisfies

P

({∫ T

0
θ2(s− τ)ds <∞

})
= 1, (1.2.1)

then ∫ T

τ
θ(s− τ)dW (s) =

∫ T−τ

0
θ(s)dB(s) almost surely,

where B is the Brownian motion defined as

B(t) = W (t+ τ)−W (τ) for t ≥ 0.

Proof. Define X(T ) as

X(T ) =

∫ T

τ
θ(s− τ)dW (s)

=

∫ T

τ
θ(s ∨ τ − τ)dW (s)

=

∫ T

0
1(τ,T ](s)θ(s ∨ τ − τ)dW (s),

where x ∨ y = max{x, y} and the last equality comes from Klebaner (2012, Theorem
4.3.2). Also, let us define Y (T ) as

Y (T ) =

∫ T−τ

0
θ(s)dB(s).

Let us take sequences of partitions 0 = t
(n)
0 < t

(n)
1 < ... < t

(n)
n = T − τ of [0, T − τ ]

such that max1≤k≤n

{
t
(n)
k − t

(n)
k−1

}
→ 0 as n → ∞. Because θ is left-continuous we

can approximate θ by:

θ(n)(s) =
n∑

k=1

θ
(
t
(n)
k−1

)
1(

t
(n)
k−1,t

(n)
k

](s),
(Applebaum, 2009, Lemma 4.3.1). The Itô integral of θ(n) is

Y (n)(T ) =
n∑

k=1

θ
(
t
(n)
k−1

)(
B
(
t
(n)
k

)
−B

(
t
(n)
k−1

))
.
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Because θ satisfies (1.2.1) then Y (n)(T ) converges to Y (T ) in probability (Applebaum,
2009, p. 206).

The random variable Y (n) can be written as

Y (n)(T ) =
n∑

k=1

θ
(
t
(n)
k−1

)(
B
(
t
(n)
k

)
−B

(
t
(n)
k−1

))
=

n∑
k=1

θ
(
t
(n)
k−1

)(
W
(
t
(n)
k + τ

)
−W

(
t
(n)
k−1 + τ

))
.

Define s
(n)
i = t

(n)
k + τ , ∀k = 0, . . . , n then we have τ = s

(n)
0 < s

(n)
1 < . . . < s

(n)
n =

T . Notice that
(
s
(n)
i

)n
i=0

is a sequence of partitions of the interval [τ, T ] such that

max1≤k≤n

{
s
(n)
k − s

(n)
k−1

}
→ 0 as n→∞. Then we can write

Y (n)(T ) =
n∑

k=1

θ
(
t
(n)
k−1

)(
W
(
t
(n)
k + τ

)
−W

(
t
(n)
k−1 + τ

))
=

n∑
k=1

θ
(
s
(n)
k−1 − τ

)(
W
(
s
(n)
k

)
−W

(
s
(n)
k−1

))
=

n∑
k=1

1(τ,T ]

(
s
(n)
k−1

)
θ
(
s
(n)
k−1 ∨ τ − τ

)(
W
(
s
(n)
k

)
−W

(
s
(n)
k−1

))
+

n∑
l=1

1(τ,T ]

(
r
(n)
l−1

)
θ
(
r
(n)
l−1 ∨ τ − τ

)(
W
(
r
(n)
l

)
−W

(
r
(n)
l−1

))
,

where 0 = r
(n)
0 < r

(n)
1 < ... < r

(n)
n = τ is a sequence of partitions of [0, τ ] such that

max1≤l≤n

{
r
(n)
l − r

(n)
l−1

}
→ 0 as n→∞. Now, let us define

s̃
(2n)
k =


r
(n)
k if 0 ≤ k ≤ n

s
(n)
k−n if n+ 1 ≤ k ≤ 2n.

for k = 0, 1 . . . , 2n. Notice that the sequence
(
s̃
(2n)
k

)2n
k=0

is a sequence of partitions of

[0, T ] such that max1≤k≤2n

{
s̃
(n)
k − s̃

(n)
k−1

}
→ 0 as n→∞ . If we define Xn(T ) as

Xn(T ) =

2n∑
k=0

1(τ,T ]

(
s̃
(2n)
k−1

)
θ
(
s̃
(2n)
k−1 ∨ τ − τ

)(
W
(
s̃
(2n)
k

)
−W

(
s̃
(2n)
k−1

))
= Yn(T ).

We know that Xn(T ) converges in probability to X(T ) (Applebaum, 2009, p.206).
Because Xn(T ) converges in probability to X(T ) and also converges in probability
to Y (T ), then X(T ) = Y (T ) almost surely (Sokol & Rønn-Nielsen, 2013, Lemma
1.2.5).

1.3 Conditional characteristic functions

In this subsection we present the concept of the conditional characteristic function and
prove a crucial result that will allow us to do the change of measure and price options.
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Here we consider a probability space (Ω,F ,P) and we would like to compute the
conditional characteristic function of random variables given certain sub-σ-algebras
of F .

Definition 1.3.1. (Yuan & Lei, 2016, p. 3707) Let X be a random variable and
let G ⊂ F be a sub-σ-algebra. The conditional characteristic function of X given G
(G-characteristic function) is:

ΦX|G(λ) = E
[
eiλX |G

]
=

∫
R

eiλxdFX|G(x|G) for all λ ∈ R,

where FX|G(x|G) defined on R×Ω is the conditional distribution function of X given
G, that is FX|G(x|G) = P (X ≤ x|G).

The conditional characteristic function identifies the distribution of a random vari-
able given a sub-σ-algebra G ⊂ F .

Theorem 1.3.1. (Yuan & Lei, 2016, p. 3717)
Let X and Y be two random variables with respective G-characteristic functions

ΦX|G(λ) and ΦY |G(λ). Then ΦX|G(λ) = ΦY |G(λ) almost surely if and only if X and
Y are G-identically distributed.

Assume that our probability space is equipped with a filtration (Ft)t≥0. Let
(W (t))t≥0 be a one-dimensional Brownian motion, and let

(
FW
t

)
t≥0

be the filtra-
tion generated by this Brownian motion and FW

t ⊂ Ft for all t ≥ 0. Define the
filtration (Gt)t≥0 that is independent of

(
FW
t

)
t≥0

and Gt ⊂ Ft for all t ≥ 0. Using the
definition of conditional characteristic function (Definition 1.3.1) and Theorem 1.3.1,
we will show that the Itô integral with respect to W of a left-continuous and (Gt)t≥0-
adapted process follows a Normal distribution under the sub-σ-algebra Gt. First let
us prove the following Lemma.

Lemma 1.3.1. Let (θ(t))t≥0 be a random step process such that it is independent
of
(
FW
t

)
t≥0

and it is adapted with respect to the filtration (Gt)t≥0. Define Xt :=∫ t
0 θ(s)dW (s) hence we have that

ΦXt|Gt(λ) = exp

{
−λ2

∫ t

0

1

2
θ2(s)ds

}
∀λ ∈ R.

Proof. Because θ is a random step process then exists a partition 0 = t0 < t1 < t2 <
... < tl = t of [0, t] such that:

θ(s) =

l∑
k=1

1(tk−1,tk](s)θk,

where θk is Gtk−1
-measurable for all k = 1, . . . , l. Define ∆W (k) = W (tk)−W (tk−1)

and ∆tk = tk − tk−1, then the Itô integral of this random step process is∫ t

0
θ(s)dW (s) =

l∑
k=1

θk∆W (k).

For k = 1, 2, ..., l − 1 define Gt ∨ FW
tk

to be the smallest σ-algebra containing Gt
and FW

tk
. The conditional characteristic function of

∑l
k=1 θk∆W (k) given Gt can be
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expressed as:

E

[
exp

{
iλ

l∑
k=1

θk∆W (k)

}∣∣∣∣∣Gt
]

= E

[
l∏

k=1

exp {iλθk∆W (k)}

∣∣∣∣∣Gt
]

= E

[
E

[
l∏

k=1

exp{iλθk∆W (k)}

∣∣∣∣∣Gt ∨ FW
t1

]∣∣∣∣∣Gt
]

= E

[
exp{iλθ1∆W (1)}E

[
l∏

k=2

exp{iλθk∆W (k)}

∣∣∣∣∣Gt ∨ FW
t1

]∣∣∣∣∣Gt
]
.

Repeating l − 2 times, we obtain the following.

E

[
exp{iλ

l∑
k=1

θk∆W (k)}

∣∣∣∣∣Gt
]
=

E
[
exp{iλθ1∆W (1)}E

[
... E

[
exp{iλθl∆W (l)}| Gt ∨ FW

tl−1

]
...
∣∣∣Gt ∨ FW

t1

]∣∣∣Gt] .
Because θl is Gt ∨ FW

tl−1
-measurable and ∆W (l) is independent of Gt ∨ FW

tl−1
, we have

that

E
[
exp {iλθl∆W (l)}| Gt ∨ FW

l−1

]
= exp

{
−1
2
λ2θ2l ∆tl

}
,

(Kopp, Malczak, & Zastawniak, 2014, Theorem 4.27). Notice that exp
{−1

2 λθ2l ∆tl
}

is
Gt-measurable, so it can be extracted outside the expectation.

Repeating this process l − 1 times:

E

[
exp

{
iλ

l∑
k=1

θk∆W (k)

}∣∣∣∣∣Gt
]

=
l∏

k=1

exp

{
−λ2 1

2
θ2k∆tk

}

= exp

{
l∑

k=1

−λ2 1

2
θ2k∆tk

}
.

Using previous Lemma, we can generalise the result to left-continuous processes.

Theorem 1.3.2. Let (θ(t))t≥0 be a left-continuous process such that

P

(∫ t

0
θ2(s)ds <∞

)
= 1.

This process is independent of
(
FW
t

)
t≥0

and it is adapted with respect to the filtration

(Gt)t≥0. Define the random variable Xt :=
∫ t
0 θ(s)dW (s) hence we have that

ΦXt|Gt(λ) = exp

{
−λ2

∫ t

0

1

2
θ2(s)ds

}
, ∀λ ∈ R.
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Proof. The process θ can be approximated by a sequence of random step processes

θ(l)(s) =

l∑
k=1

1(
t
(l)
k−1,t

(l)
k

](s)θ (t(l)k−1

)
,

where l = 1, 2, . . . and 0 = t
(l)
0 < t

(1)
1 < ... < t

(l)
l = t is a sequence of partitions of [0, t]

such that maxi

{
t
(l)
i − t

(l)
i−1

}
→ 0 as l→∞ (Applebaum, 2009, Lemma 4.3.1). Define

∆W
(
k(l)
)
= W

(
t
(l)
k

)
−W

(
t
(l)
k−1

)
and ∆t

(l)
k = t

(l)
k − t

(l)
k−1. We know that

l−1∑
k=0

θ
(
t
(l)
k−1

)
∆W (k(l))→

∫ t

0
θ(s)dW (s) in probability as l→∞,

(Applebaum, 2009, p.206). Convergence in probability implies the existence of a sub-
sequence that converges almost surely (Klebaner, 2012, p. 38). Define the following
sequence (Xl)

∞
l=1 where Xl =

∑l
k=1 θ

(
t
(l)
k−1

)
∆W

(
k(l)
)
. Now let us consider the sub-

sequence (Yh)
∞
h=1 where Yh = Xlh and l1 < l2 < . . . is an increasing sequence of

indices, such that:

Yh = Xlh =

lh∑
k=1

θ
(
t
(lh)
k−1

)
∆W

(
k(lh)

)
→
∫ t

0
θ(s)dW (s) almost surely as h→∞ .

Because the convergence is almost surely, and by continuity of x→ eiλx, then we
know that:

exp

{
iλ

lh∑
k=1

θ
(
t
(lh)
k−1

)
∆W

(
k(lh)

)}
→ exp

{
iλ

∫ t

0
θ(s)dW (s)

}
as h→∞

almost surely. Applying the Conditional Dominated Convergence Theorem (Williams,
1991, Theorem 9.7 ), we have that

lim
h→∞

E

[
exp

{
iλ

lh∑
k=1

θ
(
t
(lh)
k−1

)
∆W

(
k(lh)

)}∣∣∣∣∣Gt
]
= E

[
exp

{
iλ

∫ t

0
θ(s)dW (s)

}∣∣∣∣Gt]
almost surely. By Lemma 1.3.1 we obtain that

E

[
exp

{
iλ

lh∑
k=1

θ
(
t
(lh)
k−1

)
∆W

(
k(lh)

)}∣∣∣∣∣Gt
]
= exp

{
−λ2

lh∑
k=1

1

2
θ2
(
t
(lh)
k−1

)
∆t

(lh)
k

}
.

At the end we have:
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lim
h→∞

E

[
exp

{
iλ

lh∑
k=1

θ
(
t
(lh)
k−1

)
∆W

(
k(lh)

)}∣∣∣∣∣Gt
]

= lim
h→∞

exp

{
−λ2

lh∑
k=1

1

2
θ2
(
t
(lh)
k−1

)
∆t

(lh)
k

}

= exp

(∫ t

0
−λ2 1

2
θ2(s)ds

)
almost surely.

The last equality comes from the left-continuous paths of θ and from the definition of
the Lebesgue integral.

1.4 Martingale property

This section is devoted to summarising some results that will help us to prove when a
stochastic exponential is a martingale. In this case, let

(
Ω,F ,P, (Ft)t≥0

)
be a filtered

probability space, let W be a Ft-Brownian motion, define
(
FW
t

)
t≥0

to be the filtration
generated by W and assume that FW

t ⊂ Ft for all t ≥ 0. Also, consider the filtration
(Gt)t≥0 such that Gt ⊂ Ft for all t ≥ 0 and it is independent of

(
FW
t

)
t≥0

. The result
of Proposition 1.4.1 will allow us to compute the conditional distribution of an Itô
integral with respect to the σ-algebra Gt under some restrictions.

Proposition 1.4.1. Let (θ(t))t≥0 be a left-continuous process such that

P

(∫ T

0
θ2(s)ds <∞

)
= 1

for all T > 0. If the process θ is independent of
(
FW
t

)
t≥0

and it is adapted with respect
to the filtration (Gt)t≥0, then∫ T

0
θ(s)dW (s)

∣∣∣∣GT ∼ N

(
0,

∫ T

0
θ2(s)ds

)
where 0 < T <∞.

Proof. By Theorem 1.3.2 we know that the conditional characteristic function of∫ t
0 θ(s)dW (s) with respect to Gt is the same as the conditional characteristic func-

tion of a normal random variable with mean zero and variance
∫ t
0 θ

2(s)ds. From
Theorem 1.3.1, we have the desired result.

Proposition 1.4.2. Let (θ(t))t≥0 be a left-continuous process such that

P

(∫ T

0
θ2(s)ds <∞

)
= 1

for all T > 0. If this process θ is independent of
(
FW
t

)
t≥0

and it is adapted with
respect to the filtration (Gt)t≥0, then∫ T

u
θ(s)dW (s)

∣∣∣∣GT ∼ N

(
0,

∫ T

u
θ2(s)ds

)
,∫ T

u
θ(s)dW (s)

∣∣∣∣GT ∨ FW
u ∼ N

(
0,

∫ T

u
θ2(s)ds

)
,
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where 0 < u < T <∞.

Proof. From Theorem 1.2.1 we have that∫ T

u
θ(s)dW (s) =

∫ T−u

0
θ(s+ u)dB(s),

where
B(s) = W (s+ u)−W (u) for s ≥ 0.

Notice that θ(s + u) is measurable with respect to GT when s ∈ [0, T − u]. By
application of Proposition 1.4.1 we have∫ T−u

0
θ(s+ u)dB(s)

∣∣∣∣GT ∼ N

(
0,

∫ T−u

0
θ2(s+ u)ds

)
.

In addition, by the independence of increments of Brownian motion, B is inde-
pendent of the σ-algebra FW

u . Then by Proposition 1.4.1 we have∫ T−u

0
θ(s+ u)dB(s)

∣∣∣∣GT ∨ FW
u ∼ N

(
0,

∫ T−u

0
θ2(s+ u)ds

)
.

Finally, notice that ∫ T−u

0
θ2(s+ u)ds =

∫ T

u
θ2(s)ds.

The next result comes from the work of Mijatović and Urusov (2012). But first
let us introduce the concept of local integrability.

Definition 1.4.1. (Cherny & Engelbert, 2005, Definition 2.1) A measurable function
f : R→ R is locally integrable in a set D ⊆ R, if ∀x ∈ D ∃ϵ > 0 such that∫ x+ϵ

x−ϵ
|f(y)|dy < ∞.

Let us consider the state space J = (l, r), where −∞ ≤ l < r ≤ ∞. Let Y be an
J-valued diffusion governed by the stochastic differential equation

dY (t) = µ(Y (t))dt+ σ(Y (t))dW (t), Y (0) = y ∈ J,

where µ, σ : J → R are Borel functions satisfying the conditions

σ(x) ̸= 0 ∀x ∈ J, (1.4.1)
1

σ2
,
µ

σ2
are locally integrable functions in J. (1.4.2)

Define the stopping time ξ to be the exit time of Y from J . In our case, we are
interested only in the case when P(ξ =∞) = 1. Consider the stochastic exponential

Z(t) = exp

{∫ t∧ξ

0
b(Y (u))dW (u)− 1

2

∫ t∧ξ

0
b2(Y (u))du

}
t ∈ [0,∞),
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where b : J → R and it satisfies the condition:

b2

σ2
is locally integrable in J. (1.4.3)

The next result shows when the stochastic exponential Z is a martingale.

Theorem 1.4.1. (Mijatović & Urusov, 2012, Corollary 2.2)
Assume that Y does not exit J with probability 1 and the conditions (1.4.1),(1.4.2)

and (1.4.3) are satisfied. Then Z is a martingale if and only if Ỹ does not exit J with
probability 1, where Ỹ is the auxiliary process governed by the stochastic differential
equation:

dỸ (t) =
(
µ(Ỹ (t)) + b(Ỹ (t))σ(Ỹ (t))

)
dt+ σ(Ỹ (t))dW (t) with Ỹ (0) = y. (1.4.4)

Now we would like to show how Theorem 1.4.1 can be applied to a particular
example. Let us consider the stochastic differential equation

dX(t) = a(b−X(t))dt+ γ
√

X(t)dW (t) with X(0) = x ∈ (0,∞), (1.4.5)

where b ∈ R, a, γ > 0 and 2ab
γ2 ≥ 1. We know that the equation (1.4.5) has a strong

solution and X remains in the interval (0,∞) almost surely (Gulisashvili, 2012, p. 44,
Theorem 2.27). Let us define the process Z ′ as follows.

Z ′(t) = exp

{∫ t

0

(
− λ1

γ
√

X(u)
− λ2

γ

√
X(u)

)
dW (u)

}

exp

−1

2

∫ t

0

(
λ1

γ
√
X(u)

+
λ2

γ

√
X(u)

)2

du

 for t ≥ 0, (1.4.6)

where λ1, λ2 ∈ R. Now we would like to prove that Z ′ is a martingale.

Proposition 1.4.3. Consider a process X that satisfies the equation (1.4.5) and a
process Z ′ that is defined in equation (1.4.6). Let us define ã = a+λ2 and b̃ = ab−λ1

a+λ2
.

If the conditions

2ãb̃

γ2
≥ 1and (1.4.7)

ã > 0 (1.4.8)

are satisfied, then Z ′ is a martingale.

Proof. First, we are going to check that conditions (1.4.1),(1.4.2) and (1.4.3) are
satisfied. Notice that the condition (1.4.1) is satisfied because γ

√
x > 0, ∀x ∈ (0,∞).

For proving conditions (1.4.2) and (1.4.3) let us define the functions f , g and h as

f(x) =
1

γ2x
, (1.4.9)

g(x) =
ab− ax

γ2x
, (1.4.10)

h(x) =

(
λ1

γ
√
x
+ λ2

γ

√
x
)2

γ2x
=

λ2
1

γ4x2
+

λ2
2

γ4
+

2λ1λ2

γ4x
, (1.4.11)
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for x ∈ (0,∞). Now we will show that the functions f ,g and h are locally integrable
in (0,∞). To that end, let us pick an x ∈ (0,∞) and choose an ϵ = |x|

2 . For the
function f we have ∫ x+ϵ

x−ϵ

1

γ2y
dy =

1

γ2
log(y)|x+ϵ

x−ϵ

=
1

γ2
log

(
x+ ϵ

x− ϵ

)
<∞.

In the case of the function g we obtain∫ x+ϵ

x−ϵ

∣∣∣∣ab− ay

γ2y

∣∣∣∣ dy ≤ 1

γ2

(
ab

∫ x+ϵ

x−ϵ

1

y
dy + a

∫ x+ϵ

x−ϵ
dy

)
=

ab

γ2
log

(
x+ ϵ

x− ϵ

)
+

2a

γ2
ϵ <∞.

Lastly, for the function h, we can show that

∫ x+ϵ

x−ϵ

∣∣∣∣ λ2
1

γ4y2
+

λ2
2

γ4
+

2λ1λ2

γ4y

∣∣∣∣ dy
≤ 1

γ4

(
λ2
1

∫ x+ϵ

x−ϵ

1

y2
dy + λ2

2

∫ x+ϵ

x−ϵ
dy + 2λ1λ2

∫ x+ϵ

x−ϵ

1

y
dy

)
=− λ2

1

γ4y

∣∣∣∣x+ϵ

x−ϵ

+
2λ2

2

γ4
ϵ+

2λ1λ2

γ4
log

(
x+ ϵ

x− ϵ

)
=− λ2

1

γ4(x+ ϵ)
+

λ2
1

γ4(x− ϵ)
+

2λ2
2

γ4
ϵ+

2λ1λ2

γ4
log

(
x+ ϵ

x− ϵ

)
<∞.

We have just shown that the functions f, g and h are locally integrable in (0,∞).
Notice that the auxiliary process X̃ satisfies the stochastic differential equation

dX̃(t) =
(
ab− aX̃(t)− λ1 − λ2X̃(t)

)
dt+ γ

√
X̃(t)dW (t) with X̃(0) = x ∈ (0,∞).

(1.4.12)
Equation (1.4.12) can be rewritten as

dX̃(t) = ã
(
b̃− X̃(t)

)
dt+ γ

√
X̃(t)dW (t) with X̃(0) = x ∈ (0,∞), (1.4.13)

where ã = a+ λ2 and b̃ = ab−λ1
a+λ2

. Because conditions (1.4.7) and (1.4.8) are satisfied,
we know that equation (1.4.13) has a strong solution and it does not exit the interval
(0,∞) almost surely (Gulisashvili, 2012, p. 44, Theorem 2.27). So by application of
Theorem 1.4.1 we know that Z ′ is a martingale.

1.5 Maximum likelihood estimator

Suppose that we have a random variable Y and we have the observation y of this
random variable. Assume that the density function fY of Y is known. The density
function fY depends on the data y and on a vector of unknown parameters θ. Because
of that, we express the density function as fY (y|θ). The parameter θ takes values in
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a parameter space Θ. The objective is to estimate the parameter θ based on the
observation y.

The likelihood of θ based on y is defined as

LY (θ) = fY (y|θ) for θ ∈ Θ

(Davison, 2003, p. 94). We can consider the likelihood as a function of θ for a fixed
y. Usually, it is preferable to work with the log-likelihood that is defined as

lY (θ) = log(LY (θ)).

The maximum likelihood estimator of θ, that we defined as θ̂, is the value of θ that
maximizes the likelihood function, that is

θ̂ = argmax
θ∈Θ

LY (θ).

Because the logarithm is a strictly increasing function, we have that

θ̂ = argmax
θ∈Θ

lY (θ).

1.5.1 Conditional likelihood

In this case, the parameter θ that appears in the density function fY of the random
variable Y can be expressed as

θ = (φ, λ),

where φ is a p× 1 vector of parameters of interest and λ is a q× 1 vector of nuisance
parameters. If we can find a sufficient statistic Rλ for the vector of nuisance parameters
λ that is not a function of φ, then the conditional log-likelihood for the parameter φ
is defined as

lY |Rλ(φ) = log(fY |Rλ(y|Rλ)),

where fY |Rλ(.|Rλ) is the conditional density function of the random variable Y given
Rλ (Kalbfleisch & Sprott, 1970, p. 181). The vector of parameters φ can be estimated
by maximising the function lY |Rλ ,

φ̂ = argmax
φ

lY |Rλ(φ).

Properties of conditional maximum likelihood estimates can be found in Andersen
(1970).

1.6 Data

In this thesis, we will use some data to estimate and calibrate the parameters of the
models presented. In this section, we will introduce the data that will be used in the
next chapters.

As we shall see in Chapter 2 the data that are going to be used as proxies for the
market attention are the number of Wikipedia views of the keyword ‘Altcoin” and
the number of unique active addresses. The data related to the number of views on
Wikipedia are taken from https://pageviews.toolforge.org. The number of unique ac-
tive addresses is taken from https://charts.coinmetrics.io/network-data/. The number
of unique active addresses represents the number of active addresses that participate

https://pageviews.toolforge.org
https://charts.coinmetrics.io/network-data/
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in successful transactions on the blockchain network, either as a sender or as a re-
ceiver. The frequency of market attention data is daily. The periods for which the
data are taken are the following:

1. In Chapter 2 and Chapter 6 market attention data were taken from 2018-09-20
to 2019-09-20.

2. Market attention data in Chapter 3, Chapter 4 and Chapter 5 correspond to
the period from 2018-04-01 to 2019-09-01.

For estimating the parameters of our models, we will also need the historical prices
of Bitcoin in United States dollars. These are taken from https://charts.coinmetrics.
io/network-data/ and consist of the closing price of Bitcoin. The Bitcoin price offered
by Coinmetrics is taken when the New York market exchange closes (16:00 EST). Due
to the fact that Bitcoin is traded on different exchanges, the price given by Coinmetrics
is calculated using their own methodology using the most important exchanges 1. The
data again have daily frequency, and the periods for which the data are taken are the
following:

1. In Chapter 6 market attention data were taken from 2018-09-19 to 2019-09-20.

2. Market attention data in Chapter 3, Chapter 4 and Chapter 5 correspond to
the period from 2018-04-01 to 2019-09-01.

The Bitcoin historical data and the historical data of the market attention, is going
to be used for the estimation of the parameters of the models presented in this thesis.

Apart from the historical data used to estimate the parameters of the proposed
models, we will require option market data to compare the results given by our models
with real market data. The option market data is taken from Tardis (https://docs.
tardis.dev/historical-data-details/deribit). Tardis allows us to download the option
market data of the exchange Deribit for the first day of each month for free. We take
the option market data for the first day of each month, from April 2019 to September
2021. Deribit also offers perpetual options, but in our case, we are only interested
in plain vanilla European call and put options. The underlying asset of the options
offered by Deribit is a Bitcoin index, which is built using the prices of Bitcoin in United
States dollars from different exchanges. 2 Tardis also offers the price in United States
dollars of this index. We will use the value of this index as the initial value of the
underlying for pricing options.

The ask price and bid price of the options are given in number of Bitcoins, not
in United States dollars. Because of that, we need to convert the option prices from
number of Bitcoins to United States dollars. We use the previously mentioned Deribit
Bitcoin index to convert from the price in Bitcoins to the price in United States dollars.
However, the value of the strikes are given in United States dollars. In this thesis, we
assume that the value of the options are given in United States dollars. This approach
has been followed by the literature previously cited. But Alexander and Imeraj (2021)
proposed a method to price options in number of Bitcoins instead of pricing options
in number of United States dollars.

Remark 1.6.1. The data provided by Tardis are intraday data, but the bid and ask
prices vary through the day. Because of that, for each day, we take the first ask and

1For more information, see https://coinmetrics.io/reference-rates/ and https://docs.coinmetrics.
io/methodologies/reference-rates/real-time-reference-rates-methodology.

2For a detailed explanation, see https://legacy.deribit.com/pages/docs/general and https://
legacy.deribit.com/pages/docs/options.

https://charts.coinmetrics.io/network-data/
https://charts.coinmetrics.io/network-data/
https://docs.tardis.dev/historical-data-details/deribit
https://docs.tardis.dev/historical-data-details/deribit
https://coinmetrics.io/reference-rates/
https://docs.coinmetrics.io/methodologies/reference-rates/real-time-reference-rates-methodology
https://docs.coinmetrics.io/methodologies/reference-rates/real-time-reference-rates-methodology
https://legacy.deribit.com/pages/docs/general
https://legacy.deribit.com/pages/docs/options
https://legacy.deribit.com/pages/docs/options
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bid prices of the option that appear in the order book starting at 00:00 UTC. For each
option, we take the last value of the Deribit Bitcoin index that appears on the order
book, before the date in which the option is taken.

Remark 1.6.2. The bid-ask spread in Bitcoin options given in United States dollars
can be quite high. Since we are using the mid price to evaluate our model, we only
take the options that satisfy the following:

AskPrice−BidPrice

AskPrice
< 0.1.

In that way, the bid and ask prices are not too widely spread and it makes sense to
compare the prices given by our model with the mid price.
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Chapter 2

Modelling market attention

2.1 Introduction

As we have seen in Chapter 1, market attention seems to affect Bitcoin volatility. In
this chapter, we are interested in modelling market attention as a stochastic process.
Market attention or interest is always a non-negative quantity, and because of that
we will use only non-negative stochastic processes. We will use continuous stochas-
tic processes for modelling, since we would like to apply market attention to option
pricing. Because of that we will use stochastic differential equations for modelling the
interest.

Let (Ω,F ,P) be a probability space and let process I = (I(t))t≥0 represents mar-
ket attention. We assume that I is the strong solution of the following stochastic
differential equation:

dI(t) = αI(I(t))dt+ βI(I(t))dXI(t), (2.1.1)

where XI is a Lévy process and the functions αI : R→ R, βI : R→ (0,∞) are such
that the equation (2.1.1) has a strong solution.

There are different possibilities for equation (2.1.1), but we impose the following
requirements:

1. The strong solution of (2.1.1) has to be positive with probability 1.

2. The integrated interest process has to be analytically tractable. That is, it
should be possible to compute the characteristic function of the random variable∫ t
0 I(s)ds for t ≥ 0.

With these requirements in mind, we propose that the process I could be a Cox-
Ingersoll-Ross process or a positive Ornstein-Uhlenbeck process.

The stochastic differential equation (2.1.1) depends on an unknown vector of pa-
rameters θI . In this chapter, we are concerned with the estimation of θI . We will
assume that we have a discrete observed sample {yj}Nj=0 of N+1 observations of mar-
ket attention. These observations are equally spaced in time with a time step ∆ > 0.
Each observation yj is assumed to be a realisation of the random variable I(tj) for
j = 0, , 1, . . . , N . We take the initial time t0 to be t0 = 0 and since the observations
are equally spaced in time, we can write tj = j∆ for j = 0, 1, . . . , N . Using these
observations , we will estimate the parameter θI .

Once we know how to estimate the vector of parameters θI , we would like to check
that the observed sequence {yj}Nj=0 has been generated by the proposed process. That
is, we would like to validate our model.
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2.2 Cox-Ingersoll-Ross process

This process has been used in a financial context, to model short-term interest rates
(Cox, Ingersoll, & Ross, 1985) and the volatility of stock prices (Heston, 1993). The
Cox-Ingersoll-Ross process satisfies the following stochastic differential equation:

dI(t) = aI(bI − I(t))dt+ σI
√

I(t)dWI(t) with I(0) = y0, (2.2.1)

where WI = (WI(t))t≥0 is a Brownian motion, bI ∈ R, σI , aI , y0 > 0 and we assume
that

2aIbI
σ2
I

≥ 1. (2.2.2)

It has been proved that equation (2.2.1) has a unique strong solution (Gulisashvili,
2012, p. 44). Furthermore, because we have the assumption (2.2.2) we know that
I(t) > 0 for all t ≥ 0 almost surely (Gulisashvili, 2012, Theorem 2.27).

2.2.1 Estimation

Now we are concerned with the estimation of the parameters aI , bI and σI that appear
in equation (2.2.1).

As we have said, we have a finite number of N +1 of observations {yj}Nj=0, equally
spaced in time with time step ∆. For the estimation of the parameters of the Cox-
Ingersoll-Ross process, we will use the maximum likelihood estimation method.

This method of estimation for the Cox-Ingersoll-Ross process is also used by Iacus
(2009, p. 112) and by Kladívko (2007).

Because the Cox-Ingersoll-Ross process I is a strong solution of a stochastic dif-
ferential equation, it has the Markov property (Karatzas & Shreve, 1998, Theorem
5.4.20). We assume I(0) to be a constant random variable, hence by the Markov
property we can write the likelihood function as

LI(θI) = f I
1:N (y1, . . . , yN |y0, θI) =

N−1∏
j=0

f I
j+1|j(yj+1|yj , θI), (2.2.3)

where f I
1:N is the joint density function of the random variables {I(tj)}Nj=1 given I(0)

and the function f I
j+1|j is the conditional density function of I(tj+1) given I(tj). In

this case, the vector of parameters θI satisfies

θI = (aI , bI , σI).

The conditional density f I
j+1|j is also called the transition density function. Due to

the fact that I is a Cox-Ingersoll-Ross process, the transition density function f I
j+1|j

is known (Jondeau, Poon, & Rockinger, 2007, p. 421). Let us define:

c =
2aI

σ2
I (1− exp(−aI∆))

,

q =
2aIbI
σ2
I

− 1,

uj = cyje
−aI∆ and

pj+1 = 2cyj+1,
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for j = 0, 1 . . . , N − 1. Then the transition density function satisfies

f I
j+1|j(yj+1|yj , θI) = 2cfχ2(pj+1|2q + 2, 2uj) for j = 0, . . . , N − 1, (2.2.4)

where fχ2 (.|2q + 2, 2uj) is the density function of a non central chi-square with 2q+2
degrees freedom and non-centrality parameter 2uj . Using the transition density (2.2.4)
and equation (2.2.3) we can construct the log-likelihood function as

lI(θI) = log(LI(θI))

=
N−1∑
j=0

log
(
f I
j+1|j(yj+1|yj , θI)

)

=

N−1∑
j=0

log
(
2cfχ2(pj+1|2q + 2, 2uj)

)
. (2.2.5)

The maximum likelihood estimation method consists of maximising the likelihood
LI to estimate the vector of parameters θI . Because the logarithmic function is
an increasing function, maximising LI is equivalent to maximising the log-likelihood
function lI .

2.2.2 Validation

Now that we know how to estimate the parameters of the Cox-Ingersoll-Ross process,
we will check that the observed data follows the proposed process. To this end, we
will use the method of the generalized Gaussian residuals (Lindström, 2004, p.64).

This method requires us to determine the conditional distribution function of
I(tj+1) given I(tj), which is defined as

F I
j+1|j (yj+1) = P (I(tj+1) ≤ yj+1|I(tj))

=

∫ yj+1

0
f I
j+1|j(x|yj , θI)dx for j = 0, 1, . . . , N − 1.

We define the sequence {Uj}Nj=1 as

Uj = F I
j|j−1 (I(tj)) for j = 1, 2, . . . , N. (2.2.6)

This is a sequence of independent and identically distributed standard uniform random
variables (Lindström, 2004, Lemma 2.1).

Now let us define the sequence {Mj}Nj=1 as

Mj = F−1
N (Uj |0, 1) for j = 1, . . . N, (2.2.7)

where FN (.|0, 1) is the cumulative distribution function of a normal random variable
with mean 0 and variance 1. The sequence {Mj}Nj=1 is a sequence of independent and
identically distributed standard normal random variables (Lindström, 2004, p.68).
Because of this, the M ′

js are called the generalised Gaussian residuals.
Going back to the observed sample {yj}Nj=0 we can compute a realisation of the

Gaussian residuals {Mj}Nj=1, that we call {mj}Nj=1. Hence for j = 1, . . . , N we have
that:

mj = F−1
N

(
F I
j|j−1 (yj)

)
.
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Under the hypotheses that the observations {yj}Nj=0 have been generated by a
Cox-Ingersoll-Ross process with parameter θI , we have that {mj}Nj=1 has been gener-
ated by a sequence of independent and identically distributed standard normal ran-
dom variables. It is possible to validate the model by checking the assumptions of
normality and independence. To check the normality assumption, we can use the Kol-
mogorov–Smirnov test (Massey, 1951). For independence, we can use the Ljung-Box
test (Ljung & Box, 1978) and check if there is any significant auto-correlation in the
Gaussian residuals and in the squared Gaussian residuals.

2.2.3 Numerical experiments

For testing the methods explained in Section 2.2.1 and in Section 2.2.2 we will develop
different experiments using simulated data. See Appendix D.1 to see how we generate
the synthetic data.

In the first experiment, we generate 1000 simulations of N = 1000 steps of a
Cox-Ingersoll-Ross process with parameters

aI = 0.5, bI = 0.06, σI = 0.15,

an initial value of I(0) = 0.07 and a time step ∆ = 0.1. For each of the simulations we
estimate the parameters of the Cox-Ingersoll-Ross process using the method explained
in Section 2.2.1. Once we estimate the parameters of all of the simulations, we com-
pute the mean of the estimated parameters and its standard deviation. The results
obtained in this experiment are shown in Table 2.1. As we can observe the method
explained in Section 2.2.1 gives good estimates for the parameters. For obtaining the
estimates of the parameters, we need to maximise the function lI defined in (2.2.5).
To maximise the function lI we use the Python function “minimize” with the method
“Sequential Least Squares Programming”, a function that is included in the Python
package “SciPy”. This optimization algorithm needs an initial estimator of the param-
eters to start working. We can generate initial estimators of the parameters, using
the technique explained in Appendix E.1.

Parameter True value Mean Standard deviation

aI 0.5 0.544686 0.11257
bI 0.06 0.060179 0.007503
σI 0.15 0.150045 0.003391

Table 2.1: Mean and standard deviation of the estimated parameters
computed using the maximum likelihood estimation method for 1000

realizations.

For the second experiment, we generate one realisation of N = 1000 steps of the
Cox-Ingersoll-Ross process with the same parameters, initial value, and time step as
in the previous experiment. Using this realization, we first estimate the parameters
and utilising the estimated parameters we compute the Gaussian residuals. We use
the Kolmogorov–Smirnov test and the Ljung-Box test to check the normality and the
dependence of the residuals, respectively. For the Kolmogorov–Smirnov test we obtain
a p-value of 0.932116, so the normal assumption cannot be rejected. In the case of
the Ljung-Box test, we obtain a p-value of 0.537033 for the realization of the residuals
and a p-value of 0.729391 for the realization of the squared residuals. In both cases we
cannot reject the assumption that the auto-correlations of the first 20 lags are zero.
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The results obtained by the statistical tests are in line with the results that appear in
Figure 2.1.

(a) Empirical cumulative distribution func-
tion of the residuals and theoretical distribu-

tion function of a standard normal.
(b) Standard normal quantile-quantile-plot.

(c) Sample auto-correlation function of the
residuals.

(d) Sample auto-correlation function of the
squared residuals.

Figure 2.1: Empirical CDF, QQ-plot and sample auto-correlation of
one realisation of the Gaussian residuals defined in (2.2.7).

2.3 Ornstein-Uhlenbeck processes

Laying aside the Cox-Ingersoll-Ross process introduced in Section 2.2, we must turn
to other processes as well. In this case, we want to estimate and validate Ornstein-
Uhlenbeck processes. Since market attention is always positive, we focus ourselves
only on positive Ornstein-Uhlenbeck processes. Positive Ornstein-Uhlenbeck processes
have been used for modelling energy commodities (Benth, Kallsen, & Meyer-Brandis,
2007) and the volatility of stock prices (Barndorff-Nielsen & Shephard, 2003).

2.3.1 Introduction to Ornstein-Uhlenbeck processes

The overview of Ornstein-Uhlenbeck processes included here is based on the material
presented by Valdivieso (2005) and by Valdivieso, Schoutens, and Tuerlinckx (2009).
This includes Definition 2.3.1 and Propositions 2.3.1–2.3.4.

Let us consider a one dimensional Lévy process ZI = (ZI(t))t≥0 with Lévy char-
acteristic (γ0, σ0, v0). A process I = (I(t))t≥0 is said to be an Ornstein-Uhlenbeck
process if it has cádlág paths and it satisfies the following stochastic differential equa-
tion

dI(t) = −λII(t)dt+ dZI(λIt) with I(0) = y0, (2.3.1)

where λI , y0 > 0. The process ZI is usually called the background driving Lévy
process. The process I is also named a process of Ornstein-Uhlenbeck type generated
by (γ0, σ0, v0, λI).
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For any t ≥ 0 the stochastic differential equation (2.3.1) has a strong solution that
satisfies:

I(t) = e−λI t

(
y0 +

∫ t

0
eλIsdZI(λIs)

)
. (2.3.2)

Sometimes it is more convenient to express the solution in equation (2.3.1) recursively.
Let ∆ > 0 represents a time step. The strong solution of equation (2.3.1) at time
t+∆ can be written in terms of the value at time t as

I(t+∆) = e−λI∆

(
I(t) + e−λI t

∫ t+∆

t
eλIsdZI(λIs)

)
, (2.3.3)

this tells us that the process I is a Markov process.
Now let us focus on the random variable Z∗

I (∆) defined by

Z∗
I (∆) =

∫ λI∆

0
esdZI(s). (2.3.4)

The random variable Z∗
I (∆) is quite important because it will allow us to compute

the conditional characteristic function of the random variable I(t+∆) given I(t), to
that end we will need the following result.

Proposition 2.3.1. For any t ≥ 0 and ∆ ≥ 0

Z∗
I (∆)

d
=

∫ ∆

0
eλIsdZI(λIs)

d
= e−λI t

∫ t+∆

t
eλIsdZI(λIs), (2.3.5)

where d
= means equal in distribution.

Using Proposition 2.3.1 and equation (2.3.3) we have that

eλI∆I(t+∆)− I(t) = e−λI t

∫ t+∆

t
eλIsdZI(λIs)

d
= Z∗

I (∆). (2.3.6)

Equation (2.3.6) will play an important role when computing the maximum like-
lihood estimator.

Remark 2.3.1. If µ is a distribution on R we will use the notation Φµ to indicate the
characteristic function associated with µ and Cµ to represent the cumulant function,
which are defined as

Φµ(u) =

∫
R

eiuxµ(dx) for all u ∈ R,

Cµ(u) = log(Φµ(u)) for all u ∈ R.

If we have a random variable X with law µ then we denote the characteristic function
of X as ΦX and the cumulant function of X as CX . Both of them are defined as

ΦX(u) = E
[
eiuX

]
=

∫
R

eiuxµ(dx) for all u ∈ R,

CX(u) = log
(
ΦX(u)

)
for all u ∈ R.

Ornstein-Uhlenbeck processes are related to a special type of distribution called
self-decomposable distribution, which is defined below.
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Definition 2.3.1. A distribution µ is said to be self-decomposable if for any 0 < a <
1, there exists a distribution va such that:

Φµ(u) = Φµ(au)Φva(u) for all u ∈ R.

Alternatively, a random variable X is said to have a self-decomposable distribution if
for any 0 < a < 1, there exists a random variable Ya, independent of X, such that:

X
d
= aX + Ya.

The proposition below tells us that if we can find a distribution D that is
self-decomposable, then we can construct an Ornstein-Uhlenbeck process that sat-
isfies equation (2.3.1) and that has a stationary distribution D.

Proposition 2.3.2. If I is an Ornstein-Uhlenbeck process generated by a background
driving Lévy process ZI with Lévy triplet (γ0, σ0, v0) and a parameter λI > 0 such that∫

|x|>2
log(|x|)dv0(x) <∞, (2.3.7)

then I has a unique self-decomposable stationary distribution µ.
Conversely, for any λI > 0 and any self-decomposable distribution D, there exists

a unique Lévy triplet (γ0, σ0, v0) satisfying (2.3.7) and a process of Ornstein-Uhlenbeck
type generated by (γ0, σ0, v0, λI) such that D is the stationary distribution of I.

A process I satisfying the converse result of Proposition 2.3.2 is called a D-
Ornstein-Uhlenbeck process. In this thesis we are only interested in stationary D-
Ornstein-Uhlenbeck processes.

Proposition 2.3.2 says that for every self-decomposable distribution D, we can
construct an Ornstein-Uhlenbeck process with stationary distribution D. However,
it does not say anything related to the distribution of the background driving Lévy
process ZI . The next result tells us how the distributions of ZI and D relate.

Proposition 2.3.3. For any u ∈ R:

CZI(1)(u) = log
(
E
[
eiuZI(1)

])
= u

∂CD(u)

∂u
.

We have seen that the distribution of the random variable Z∗
I (∆) is important in

determining the transition distribution of the Ornstein-Uhlenbeck process. Proposi-
tion 2.3.4 allows us to compute the characteristic function of Z∗

I (∆) using the distri-
bution of the background driving Lévy process ZI .

Proposition 2.3.4. For any ∆ > 0 and u ∈ R:

ΦZ∗
I (∆)(u) = E

[
eiuZ

∗
I (∆)

]
= eλ

∫∆
0 CZI (1)(ueλIs)ds.

Using Proposition 2.3.3 and Proposition 2.3.4 we can compute the characteris-
tic function of the random variable Z∗

I (∆) from a self-decomposable distribution D.
From equation (2.3.6) we have that e−λI∆I(t+∆)− I(t) has the same distribution
as Z∗

I (∆). So the characteristic distribution of e−λI∆I(t+∆)− I(t) can also be com-
puted from the self-decomposable distribution D.
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2.3.2 Inverse Gaussian Ornstein-Uhlenbeck process

This type of stationary Ornstein-Uhlenbeck process has as stationary distribution an
inverse Gaussian distribution with parameters aI > 0 and bI > 0, which we denote
as IG(aI , bI). The density function of an inverse Gaussian random variable with
parameters aI and bI is

fIG(x|aI , bI) =
aIe

aIbI
√
2πx3

e
−1
2

(
a2I
x
+b2Ix

)
for all x > 0,

and its characteristic function is:

ΦIG(u|aI , bI) = eaI(bI−
√
b2−2iu) for all u ∈ R.

The inverse Gaussian distribution is self-decomposable. By application of Proposi-
tion 2.3.2, there exists an IG(aI , bI)-Ornstein-Uhlenbeck process, since the inverse
Gaussian distribution is self-decomposable. Using Proposition 2.3.3 we can compute
the cumulant function of the background driving Lévy process ZI of the IG(aI , bI)-
Ornstein-Uhlenbeck process:

CZI(1)(u) = u
∂CIG(u|aI , bI)

∂u

=
aIui√
b2I − 2iu

for all u ∈ R. (2.3.8)

From equation (2.3.8) and by application of Proposition 2.3.4 we have that

ΦZ∗
I (∆)(u) = eλI

∫∆
0 CZI (1)(ueλIs)ds

= e
λI

∫∆
0

aI iue
λIs√

b2
I
−2−iueλs

ds

= e
aI

(√
b2I−2iu−

√
b2I−2iueλI∆

)
for all u ∈ R. (2.3.9)

We have just computed the characteristic function of the random variable Z∗
I (∆) of an

IG(aI , bI)-Ornstein-Uhlenbeck process. The result obtained in equation (2.3.9) will
allow us to approximate the transition density function of an IG(aI , bI)-Ornstein-
Uhlenbeck process. The results presented in this section come from the work of
Valdivieso (2005).

2.3.3 Maximum likelihood estimation for the inverse Gaussian Orn-
stein Uhlenbeck process

We turn our attention to estimate the parameters of an IG(aI , bI)-Ornstein-Uhlenbeck
process. Let I be an IG(aI , bI)-Ornstein-Uhlenbeck process, with an unknown vector
of parameters θI = (aI , bI , λI).

As in Section 2.2.1 we assume a collection of N + 1 observations {yj}Nj=0, which
are equally spaced in time with a time step ∆ > 0. Each yj is a realisation of the
random variable I(tj) for all j = 0, 1, . . . , N . Again, we consider I(0) to be a constant
random variable.



2.3. Ornstein-Uhlenbeck processes 31

By the Markov property, the likelihood function is:

LI(θI) = f I
1:N (y1, . . . , yN |y0, θI) =

N−1∏
j=0

f I
j+1|j(yj+1|yj , θI), (2.3.10)

where f I
1:N is the joint density function of the random variables {I(tj)}Nj=1 given I(0)

and the function f I
j+1|j is the conditional density function of I(tj+1) given I(tj).

Because the observations are equally spaced in time, we can express tj+1 = tj+∆,
for j = 0, 1, . . . , N − 1. From equation (2.3.6) we have that

eλI∆I(tj+1)− I(tj) = eλI∆I(tj +∆)− I(tj)
d
= Z∗

I (∆) (2.3.11)

for all j = 0, 2, . . . , N − 1. Hence, we can write

P (I(tj+1) ≤ yj+1|I(tj) = yj) = P
(
Z∗
I (∆) ≤ eλI∆yj+1 − yj

)
(Valdivieso, Schoutens, & Tuerlinckx, 2009, p. 11), and the conditional density f I

j+1|j
can be written as

f I
j+1|j(yj+1|yj , θI) = eλI∆fZ∗

I (∆)
(
eλI∆yj+1 − yj |θI

)
(2.3.12)

(Valdivieso, 2005, p. 99).
Now we can write the likelihood (2.3.10) as

LI(θI) = eNλI∆
N−1∏
j=0

fZ∗
I (∆)

(
eλI∆yj+1 − yj |θI

)

= eNλI∆
N−1∏
j=0

fZ∗
I (∆)

(
z∗j+1|θI

)
, (2.3.13)

where z∗j+1 = eλI∆yj+1 − yj for j = 0, 1, . . . , N − 1. Since we have an analytical
formula for the characteristic function of Z∗

I (∆), the density function of Z∗
I (∆) can

be computed as

fZ∗
I (∆)(z∗j |θI) =

1

π

∫ ∞

0
ℜ
[
e−iuz∗jΦZ∗

I (∆)(u|θI)
]
du

(Jondeau, Poon, & Rockinger, 2007, p. 483). From equation (2.3.13) we have that the
log-likelihood can be expressed as

lI(θI) = NλI∆+

N−1∑
j=0

log
(
fZ∗

I (∆)
(
z∗j+1|θI

))
. (2.3.14)

We maximise the function lI to estimate the parameter θI .

2.3.4 Validation

Once we know how to estimate the parameters of an IG(aI , bI)-Ornstein-Uhlenbeck
process, we would like to verify that the observed sample {yj}Nk=0 truly follows an in-
verse Gaussian Ornstein-Uhlenbeck process with vector of parameters θI = (aI , bI , λI).
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To that end we define the residuals {Mj}Nj=1 as

Mj+1 = eλI∆I(tj+1)− I(tj) = e−λI tj

∫ tj+∆

tj

eλIsdZI(λIs) for j = 0, . . . , N − 1.

(2.3.15)

Notice that {Mj}Nj=1 is a sequence of independent random variables, since the sequence
of stochastic integrals {

∫ tj+∆
tj

eλIsdZI(λIs)}N−1
j=0 consists of independent random vari-

ables. By Proposition 2.3.1 we have that

Mj
d
= Z∗

I (∆) for j = 1, 2, . . . , N.

If we assume that the data have been generated by an inverse Gaussian Ornstein-
Uhlenbeck process with parameter θI , then the sequence {z∗j }Nj=1, where z∗j = eλI∆yj−
yj−1 for j = 1, . . . , N , has been generated by the sequence of independent and iden-
tically distributed random variables {Mj}Nj=1.

So, under the null hypotheses we have that {z∗j }Nj=1 has been generated by a
sequence of independent and identically distributed random variables, whose distri-
bution is equal to the distribution of Z∗

I (∆). Because Z∗
I (∆) is a continuous random

variable, we can apply the one-sided Kolmogorov–Smirnov test (Massey, 1951). This
test allows us to check if a sample has been generated by a known distribution. This
test is based in comparing the theoretical cumulative distribution function with the
empirical cumulative distribution function.

For applying the one-sided Kolmogorov–Smirnov test, we need to be able to com-
pute the cumulative distribution function of the random variable Z∗

I (∆). We do not
have an analytical form for the cumulative distribution function of Z∗

I (∆). However,
as it is continuous, the cumulative distribution function can be computed form its
characteristic function using the inversion theorem that is,

FZ∗
I (∆)(z∗j |θI) =

1

2
− 1

π

∫ ∞

0

1

u
ℑ
[
e−iuz∗jΦZ∗

I (∆)(u|θI)
]
du

(Jondeau, Poon, & Rockinger, 2007, Proposition 15.2). In addition to checking that
the sequence {z∗j }Nj=1 has been generated by a sequence of random variables with
the same distribution as Z∗

I (∆), we also need to check the independence assumption.
To this end we will use the Ljung-Box test (Ljung & Box, 1978) for checking the
significance of the auto-correlations of the residuals and the squared residuals.

2.3.5 Numerical experiments

As we did with the Cox-Ingersoll-Ross process, we would like to test the methods
explained in Section 2.3.3 and in Section 2.3.4. To that end, we will generate simulated
data (see Appendix D.2).

We first generate a realization of N = 800 steps of an inverse Gaussian Ornstein-
Uhlenbeck process with parameters

aI = 4, bI = 10, λI = 5,

an initial value I(0) = 0.4 and a time step ∆ = 0.0125. For this realisation, we
estimate the parameters of the process using the method explained in Section 2.3.3.
As we can observe in Table 2.2, the method gives good estimates for the parameters.
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Recall that to obtain the parameters we need to maximise the function lI defined in
(2.3.14). To maximize the function lI we use the Python function “minimize” with
the method “Sequential Least Squares Programming”; this function is included in the
Python package “SciPy”. This optimisation algorithm needs an initial estimator of
the parameters to start working. For this reason, we generate initial estimators of the
parameters, using the technique explained in Appendix E.2.

Parameter True value Estimated value

aI 4 3.981078
bI 10 9.744054
λI 5 5.072365

Table 2.2: Estimated parameters using the maximum likelihood es-
timation method.

Once we have estimated the parameters of the inverse Gaussian Ornstein-Uhlenbeck
process, we compute the residuals introduced in Section 2.3.4, using the estimated pa-
rameters. The Kolmogorov–Smirnov test gives us a p-value of 0.447723, so we cannot
reject the assumption that the residuals satisfy the same distribution as Z∗

I (∆). In
the case of the Ljung-Box test, we obtain a p-value of 0.380174 for the realisation of
the residuals and a p-value of 0.586722 for the realisation of the squared residuals. In
both cases, we cannot reject the assumption that the auto-correlations of the first 20
lags are zero. These results are in line with the graphs shown in Figure 2.2.

(a) Empirical cumulative dis-
tribution function of the resid-
uals and the theoretical distri-
bution function of the random

variable Z∗
I (∆).

(b) Sample auto-correlation
function of the residuals.

(c) Sample auto-correlation
function of the squared resid-

uals.

Figure 2.2: Empirical CDF and sample auto-correlation of a realiza-
tion of the residuals {Mj}Nj=1, defined in Section 2.3.4.

2.4 Proxies for the market attention

With the tools presented in previous sections, we would like to verify if the selected
proxies for the interest follow a Cox-Ingersoll-Ross process or an inverse Gaussian
Ornstein-Uhlenbeck process. Some examples of attention proxies that can be found
in the literature are: volume (Figà-Talamanca & Patacca, 2019, 2020), the number of
Google searches (Figà-Talamanca & Patacca, 2019, 2020) , the number of Wikipedia
views (Kristoufek, 2015) or number of tweets (Al Guindy, 2021).

2.4.1 Cox-Ingersoll-Ross process

We are focused on modelling market attention proxies using a Cox-Ingersoll-Ross pro-
cess. Firstly, we analyse the number of daily Wikipedia views for certain keywords.
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All selected keywords are related to Bitcoin. The keywords that we examine are: “Bit-
coin”, “Blockchain”, “Cryptocurrency”, “Bitcoin Network”, “Bitcoin Wallet”, “Binance”,
“Hodl”, “Sathoshi Nakamoto” and “Altcoin”. The only keyword that seems to follow
a Cox-Ingersoll-Ross process is “Altcoin”. The results are presented in Table 2.3. For
each of the different temporal windows, we estimate the parameters and compute the
Gaussian residuals presented in Section 2.2.2. As we can observe, all p-values of the
Kolmogorov-Smirnov test are above 0.05, meaning that we cannot reject the assump-
tion of normality for the residuals. Hence, in all temporal windows, there is statistical
evidence that the number of views follows a Cox-Ingersoll-Ross process. Notice that
the estimated parameters vary depending on which temporal window are estimated.
This could indicate that the Wikipedia views follow a regime switching process, but
these types of processes are outside of the scope of this thesis.

Temporal window aI bI σI p-value

2018-09-20 to 2019-09-20 114.083863 21.76599 35.05684 0.611167
2019-09-20 to 2020-09-20 388.902639 11.288746 36.771933 0.300911
2020-09-20 to 2021-09-20 38.984017 39.869911 33.281242 0.884317
2018-09-20 to 2020-09-20 123.01943 16.502741 33.380029 0.27324
2019-09-20 to 2021-09-20 43.16364 25.446899 31.667167 0.306409

2018-09-20 to 2021-09-20 54.944194 24.149982 32.541913 0.174079

Table 2.3: Estimated parameters of the Cox-Ingersoll-Ross process
when using the number of Wikipedia views of the keyword “Altcoin”
as a proxy for the interest. The p-value of the Kolmogorov-Smirnov

test applied to the Gaussian residuals is also shown.

Another proxy studied is the daily number of unique active addresses. The results
are shown in Table 2.4. The p-values of the Kolmogorov-Smirnov test are above 0.05,
except for the temporal window from 2018-09-20 to 2021-09-20, which has a value
of 0.009635. However, we assume that we have enough evidence to assume that the
number of unique active addresses satisfies a Cox-Ingersoll-Ross process.

Temporal window aI bI σI p-value

2018-09-20 to 2019-09-20 157.196897 696049.730926 2323.112482 0.498187
2019-09-20 to 2020-09-20 106.85478 811354.646069 2178.042426 0.599642
2020-09-20 to 2021-09-20 100.873074 1005752.522156 2267.874974 0.958168
2018-09-20 to 2020-09-20 102.281197 753978.695629 2207.131253 0.087094
2019-09-20 to 2021-09-20 69.263311 909024.347716 2174.369875 0.225312

2018-09-20 to 2021-09-20 58.811268 838703.355729 2165.110738 0.009635

Table 2.4: Estimated parameters of the Cox-Ingersoll-Ross process
when using the number of unique active addresses as a proxy for the
interest. The p-value of the Kolmogorov-Smirnov test applied to the

Gaussian residuals is also shown.

2.4.2 Inverse Gaussian Ornstein-Uhlenbeck process

In the case of the Inverse Gaussian Ornstein-Uhlenbeck process, we analyse the loga-
rithm of the daily number of unique active addresses. Since the values of the number
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of addresses are on the order of 105, we do not have to worry about getting nega-
tive values. So, the time series can still be used to fit a positive Ornstein-Uhlenbeck
process. We fit the inverse Gaussian Ornstein-Uhlenbeck process to different tempo-
ral windows of the time series. For each of the temporal windows, we estimate the
parameters and compute the residuals introduced in Section 2.3.4. The results are
shown in Table 2.5. Notice that the p-values of the Kolmogorov-Smirnov test that
appear in Table 2.5 are all above 0.1. Hence, there is sufficient statistical evidence to
assume that the logarithm of the number of unique active addresses follows an inverse
Gaussian Ornstein-Uhlenbeck process.

Temporal window aI bI λI p-value

2018-09-20 to 2019-09-20 310.839434 23.126722 162.028074 0.414629
2019-09-20 to 2020-09-20 299.362691 22.023851 112.464686 0.736125
2020-09-20 to 2021-09-20 317.616805 23.000978 107.376863 0.957407
2018-09-20 to 2020-09-20 276.400641 20.448327 106.875749 0.128057
2019-09-20 to 2021-09-20 258.05562 18.83415 73.417364 0.672384

2018-09-20 to 2021-09-20 226.78821 16.657239 62.177681 0.136611

Table 2.5: Estimated parameters of the inverse Gaussian Ornstein-
Uhlenbeck process when using the logarithmic number of unique active
addresses as a proxy for the interest. The p-value of the Kolmogorov-

Smirnov test applied to the residuals is also shown.

We also analyse the number of Wikipedia views and the logarithm of Wikipedia
views, but in both cases we cannot find any evidence that the data follow an inverse
Gaussian Ornstein-Uhlenbeck process.

Remark 2.4.1. We have attempted to test the autocorrelation of the residuals and
squared residuals using the Ljung-Box test, but the results show that there is evidence
of autocorrelation in the residuals and squared residuals, for all cases studied in Ta-
bles 2.3, 2.4 and 2.5. This could indicate that there is some kind of memory in the
interest process and because of that Markov processes are not appropriate. One could
use processes that satisfy fractional stochastic differential equations, like the fractional
Cox-Ingersoll-Ross process (Mishura & Yurchenko-Tytarenko, 2018) or the geomet-
ric fractional Brownian motion (Pipiras & Taqqu, 2017, p. 412). These types of
processes are outside of the scope of this thesis. A good result was obtained for the
Kolmogorov-Smirnov test, so we assume that the Cox-Ingersoll-Ross process and the
inverse Gaussian Ornstein-Uhlenbeck process are valid processes for modelling market
attention.

2.5 Conclusion and future work

In this chapter, we discussed the estimation and validation of the Cox-Ingersoll-Ross
process and the inverse Gaussian Ornstein-Uhlenbeck process. In addition, we showed
how these processes can be used to model market attention. In the following chapters,
we will use this knowledge to build models to price Bitcoin options.

Here, we focused only on two processes, but other processes can be used. For exam-
ple, Cretarola, Figà-Talamanca, and Patacca (2020) use a geometric Brownian motion
to model the volume of Bitcoin. Apart from the inverse Gaussian Ornstein-Uhlenbeck
process, other types of positive Ornstein-Uhlenbeck processes can be used, like the
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gamma Ornstein-Uhlenbeck process or the tempered stable Ornstein-Uhlenbeck pro-
cess (Schoutens, 2003, p.68–70). Other processes that could be used to model the
interest are processes used to model population growth, like the stochastic logistic
model (Skiadas, 2010, p. 266).
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Chapter 3

A first simple model

3.1 Introduction

In Chapter 2 we introduced the concept of market attention. In this chapter, we will
be concerned with using market attention to model Bitcoin prices. Here, we proposed
a simple model that relates the prices of Bitcoin to market interest. For this model
we will estimate its parameters and price vanilla options.

How the returns of Bitcoin relates to market attention has previously been studied
in the literature. But the findings of previous literature have been inconsistent. For
example, some sources claim to find that the interest affects both the mean and the
volatility of Bitcoin returns (Figà-Talamanca & Patacca, 2019; Kristoufek, 2015). In
other cases, the authors say that the market attention seems to affect only the volatility
of Bitcoin returns (Aalborg, Molnár, & de Vries, 2019; Figà-Talamanca & Patacca,
2020). In our case, we assume that market attention influences only the volatility
of Bitcoin returns. From our point of view this seems logical because an increase in
the number of news stories or in the number of searches means that investors are
paying attention to Bitcoin and it is likely to produce a change in the price. However,
it is not possible to infer directly from the interest the direction of this change. In
addition, the change in the price is not produced instantaneously, but rather with a
delay (Kristoufek, 2015). Because of that, we propose that the logarithm of Bitcoin
prices satisfies the following stochastic differential equation:

dX(t) = µdt+ g(I(t− τ))dWP (t), (3.1.1)

where X and I represent the logarithm of the price and the interest processes respec-
tively, WP is a Brownian motion, µ ∈ R, τ ≥ 0 and g is a non-decreasing continuous
function. By application of the Itô formula we have that the price process P (t) = eX(t)

for t ≥ 0 will satisfy the following stochastic differential equation

dP (t) =

(
µ+

1

2
g2(I(t− τ))

)
P (t)dt+ g(I(t− τ))P (t)dWP (t). (3.1.2)

The model that appears in equation (3.1.2) is partially based on the model pro-
posed by Cretarola, Figà-Talamanca, and Patacca (2020). Inspired by equation (3.1.1)
we propose a model in which the interest follows an affine process and g(x) = c

√
x

for some c > 0. In that way, we can have a model that is analytically tractable.
Due to the fact that the model presented in this chapter is similar to the model

proposed by Cretarola, Figà-Talamanca, and Patacca (2020), we briefly analyse the
main characteristics of this model. In this article, the authors proposed the following
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model for the Bitcoin price:

dP (t) = µP I(t− τ)P (t)dt+ σP
√
I(t− τ)P (t)dWP (t) with P (0) = p ∈ R

dI(t) = µII(t)dt+ σII(t)dWI(t) for t > 0

if I(t) = ϕI(t) when t ∈ [−L, 0],

where µP , µI ∈ R, σP , σI , L > 0 and τ ∈ [0, L] and WP , WI are two independent
Brownian motions. They use as proxies for market attention the volume of transac-
tions and Google searches of the word "Bitcoin". Notice that in this case the interest
process follows a geometric Brownian motion. The model presented by Cretarola,
Figà-Talamanca, and Patacca (2020) is similar to the stochastic volatility model of
Hull and White (1987), with the difference in the presence of the delay parameter.
Notice that in the model proposed by Cretarola, Figà-Talamanca, and Patacca (2020),
the market attention affects the mean and volatility of the log returns. In the model
that we propose, the market attention only affects the volatility of log returns. We
identify some space for improvement,

1. The model presented by Cretarola, Figà-Talamanca, and Patacca (2020), does
not have a closed formula for pricing plain vanilla European options. We will
show in this chapter that it is possible to construct a stochastic volatility model
that contains a delay parameter.

2. In addition, the empirical density function of the Bitcoin returns has fat tails
(Chan, Chu, Nadarajah, & Osterrieder, 2017). Due to this fact, it is convenient
to include jumps in the price modelling of Bitcoin. We will show that it is
possible to construct models that have jumps in Chapter 5, which have a closed
formula for pricing European options.

3.2 Model specification

Let (Ω,F ,P) be a probability space that contains two independent Brownian motions
WP and WI . Assume that the price P and the interest I satisfy the following system
of stochastic differential equations:

dP (t) =

(
µ+

σ2
P

2
I(t− τ)

)
P (t)dt+ σP

√
I(t− τ)P (t)dWP (t) with (3.2.1)

P (0) = p ∈ R+ = (0,∞),

dI(t) = aI(bI − I(t))dt+ σI
√
I(t)dWI(t) when t > 0 and (3.2.2)

I(t) = ϕI(t), t ∈ [−L, 0],

where µ, bI ∈ R, σP , σI , aI , L > 0, τ ∈ [0, L] and we impose the condition

2aIbI
σ2
I

≥ 1. (3.2.3)

Here τ is a fixed lag parameter and we have the following continuous and deterministic
initial function

ϕI : [−L, 0]→ (0,∞).

Notice that the function ϕI is always positive because the interest is required to be
greater than zero.
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In Section 3.3 we will show that stochastic differential equations (3.2.1)–(3.2.2)
have strong solutions. So equations (3.2.1) and (3.2.2) define the price and the market
attention processes respectively.

In addition, we assume that there is a bond or a market account (B(t))t≥0 with
known interest rate r ≥ 0, that satisfies:

B(t) = B(0)ert.

Define (FWP
t )t≥0 and (FWI

t )t≥0 to be the filtrations generated by Brownian mo-
tions WP and WI respectively. Let us consider the general filtration (Ft)t≥0, which is
defined as

Ft = FWP
t ∨ FWI

t for t ≥ 0,

where FWP
t ∨ FWI

t is the smallest σ-field containing FWP
t and FWI

t . In addition, we
define the delayed filtration (F̃t)t≥0 as

F̃t =

{
FWP
t if t ≤ τ,

FWP
t ∨ FWI

t−τ if t > τ.

Notice that
F̃t ⊆ Ft ∀t ≥ 0.

We assume that both filtrations satisfy the usual hypotheses. These usual hypotheses
are:

1. Completeness: F0 and F̃0 contain all sets of P-measure zero.

2. Right continuity:

Ft = Ft+ where Ft+ =
⋂
ϵ>0

Ft+ϵ,

F̃t = F̃t+ where F̃t+ =
⋂
ϵ>0

F̃t+ϵ,

(Applebaum, 2009, p. 72). In addition, we also assume that Ft ⊆ F for all t ≥ 0.
It is clear that the processes (P (t))t≥0 and (I(t))t≥0 are adapted with respect to the

filtration (Ft)t≥0. Because the deterministic function ϕI is adapted to any filtration
and τ ≥ 0, the process (I(t−τ))t≥0 is also adapted to (Ft)t≥0. The processes (P (t))t≥0

and (I(t− τ))t≥0 are also adapted with respect to the delayed filtration (F̃t)t≥0.

3.3 Strong solutions

In this section, we will show that the stochastic differential equations (3.2.1)–(3.2.2)
have strong solutions.

First, let us show that equation (3.2.2) has a strong solution. Notice that when
t ∈ [−L, 0] we have that I(t) = ϕI(t). In the case when t > 0, we know that the interest
satisfies the stochastic differential equation (3.2.2). From Section 2.2 we know that
there is a unique strong solution for equation (3.2.2) and because of condition (3.2.3)
we have that I(t) > 0 for all t > 0 almost surely.

Now we will show that a strong solution exists for the stochastic differential equa-
tion (3.2.1).
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Proposition 3.3.1. The stochastic differential equation (3.2.1) has a strong solution
and it has the following form:

P (t) = eX(t) for t ≥ 0. (3.3.1)

where

X(t) = X(0) + µt+

∫ t

0
σP
√
I(u− τ)dWP (u) for t ≥ 0, (3.3.2)

with X(0) = logP (0).

Proof. The first thing to notice is that the integral involved in the proposed solution
(3.3.1) is well defined, since (I(t−τ))t≥0 is a continuous and (Ft)t≥0-adapted process.
Now we will show that the proposed solution (3.3.1) satisfies equation (3.2.1). Using
the Itô formula to compute eX(t), we obtain that

dP (t) =

(
eX(t)µ+

1

2
eX(t)σ2

P I(t− τ)

)
dt

+eX(t)σP
√
I(t− τ)dWP (t)

=

(
µ+

σ2
P

2
I(t− τ)

)
P (t)dt+ σP

√
I(t− τ)P (t)dWP (t),

as required.

In general, it is more convenient to work with the log price than with the price.

3.4 Markov property

In this section, we are concerned with the Markov property of the process Y defined
as

Y (t) = (X(t), I(t− τ)) for t ≥ 0. (3.4.1)

Proposition 3.4.1. The process Y defined in (3.4.1) is a Markov process with respect
to the filtration (F̃t)t≥0.

Proof. When t ≤ τ we have

X(t) = X(0) + µt+

∫ t

0
σP

√
ϕI(u− τ)dWP (u),

I(t− τ) = ϕI(t).

Observe that when t ≤ τ the process I is deterministic and X is the strong solution
of a stochastic differential equation. This means that when t ≤ τ we have that Y is a
Markov process (Karatzas & Shreve, 1998, Theorem 5.4.20). When t > τ the process
X can be written as

X(t) = X(0) +

∫ τ

0
µdu+

∫ τ

0
σP

√
ϕI(u− τ)dWP (u)

+

∫ t−τ

0
µdu+

∫ t

τ
σP
√

I(u− τ)dWP (u)

= X(τ) +

∫ t−τ

0
µdu+

∫ t

τ
σP
√
I(u− τ)dWP (u).
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From Theorem 1.2.1 we have that∫ t

τ
σP
√
I(u− τ)dWP (u) =

∫ t−τ

0
σP
√
I(u)dBP (u) almost surely, (3.4.2)

where BP (u) = WP (u+ τ)−WP (τ) for u ≥ 0. Then we can write

X(t) = X(τ) +

∫ t−τ

0
µdu+

∫ t−τ

0
σP
√
I(u)dBP (u).

Define a new process Z as

Z(t) = Z(0) +

∫ t

0
µdu+

∫ t

0
σP
√

I(u)dBP (u) with Z(0) = X(τ). (3.4.3)

Notice that the process Z is adapted with respect to the filtration (F∗
t )t≥0 defined as

F∗
t = FWP

τ ∨ FBP
t ∨ FWI

t for t ≥ 0,

where
(
FBP
t

)
t≥0

is the filtration generated by the Brownian motion BP . Let us

consider s > τ . Now we would like to prove that FWP
s = FWP

τ ∨ FBP
s−τ . Since

BP (s− τ) = WP (s)−WP (τ) we have that BP (s− τ) is FWP
s measurable and

FBP
s−τ ⊆ FWP

s .

Also we have that (FWP
s )s≥0 is a filtration so

FBP
s−τ ∨ FWP

τ ⊆ FWP
s .

Now notice that WP (s) = BP (s− τ) +WP (τ) and that BP (s− τ) is independent of
WP (τ) then

FWP
s ⊆ FBP

s−τ ∨ FWP
τ .

We have just shown that FWP
s = FWP

τ ∨ FBP
s−τ when s > τ and hence F̃s = F∗

s−τ .
From equation (3.4.3) we have that the random variable X(t) = Z(t − τ) when

t > τ . Let us define the process Y ∗ as

Y ∗(t) = (Z(t), I(t)) for t ≥ 0.

The process Y ∗ is (F∗
t )t≥0-adapted and it is the strong solution of the following system

of stochastic differential equations:

dZ(t) = µdt+ σP
√

I(t)dBP (t) with Z(0) = X(τ), (3.4.4)
dI(t) = aI(bI − I(t))dt+ σI

√
I(t)dWI(t) with I(0) = ϕI(0). (3.4.5)

Since the process Y ∗ is the strong solution of a system of stochastic differential equa-
tions, it is a Markov process with respect to the filtration (F∗

t )t≥0 (Karatzas & Shreve,
1998, Theorem 5.4.20). We have that Y (t) = Y ∗(t− τ) = (X(t), I(t− τ)) when t > τ .

We have seen that FWP
t = FWP

τ ∨FBP
t−τ when t > τ , hence we have that F̃t = F∗

t−τ .
We have just shown that (Y ∗(t− τ))t≥τ has the Markov property under the filtra-

tion (F̃t)t≥τ . So Y (t) has the Markov property under (F̃t)t≥τ .
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3.5 Conditional independence of the logarithmic returns

In some instances, we will be interested in computing the distribution of the loga-
rithmic returns given the interest process. Since the market attention is observed
this conditional distribution will help us to estimate the parameters. Given the time
H > 0 we are interested in seeing if the logarithmic return R(s, t) = X(t)−X(s) with
H ≥ t > s ≥ 0 when conditioned to the σ-algebra FWI

H , is independent of Fs.

Proposition 3.5.1. Let λ ∈ R and let H ≥ t > s ≥ 0. Then:

E
[
eiλR(s,t)

∣∣∣Fs ∨ FWI
H

]
= E

[
eiλR(s,t)

∣∣∣FWI
H

]
. (3.5.1)

Proof. Notice that R(s, t) can be written as

R(s, t) = µ(t− s) +

∫ t

s
σP
√

I(u− τ)dWP (u).

By application of Proposition 1.4.2, the left hand side of equation (3.5.1) can be
written as

E
[
eiλR(s,t)

∣∣∣Fs ∨ FWI
H

]
= eiλµ(t−s)E

[
eiλ

∫ t
s σP

√
I(u−τ)dWP (u)

∣∣∣Fs ∨ FWI
H

]
= eiλµ(t−s)e−λ2 σ2

P
2

∫ t
s I(u−τ)du.

In the case of the right hand side of equation (3.5.1) we have from Proposition 1.4.2:

E
[
eiλR(s,t)

∣∣∣FWI
H

]
= eiλµ(t−s)E

[
eiλ

∫ t
s σP

√
I(u−τ)dWP (u)

∣∣∣FWI
H

]
= eiλµ(t−s)e−λ2 σ2

P
2

∫ t
s I(u−τ)du.

Remark 3.5.1. From Proposition 3.5.1 it is clear that the logarithmic returns are
independent given the σ-algebra FWI

H .

3.6 Estimation

Because it is not possible to obtain continuous observations in the real world, we will
have discrete observations of the processes X and I. Using these observations, we
would like to estimate the parameters that appear in the system (3.2.1)–(3.2.2).

We will assume that there are N+1 ∈ N observations equally spaced in time, with
a time step ∆ = H

N and a time horizon H. The lag parameter τ can only take a finite
number of non-negative values, that is τ ∈ {0,∆, 2∆, . . . ,M∆} where M ∈ N with
N ≫ M and we assume that there exists a k ∈ {0, 1, 2, . . . ,M} such that τ = k∆.
We also define L = M∆.

Suppose that we have the following discrete and equally spaced in time obser-
vations {xj}Nj=0, {yj}Nj=−M for the processes X and I respectively, where xj is the
observation of the variable X(tj) and yj is the observation of I(tj) with tj = j∆. The
horizon H can be expressed as H = N∆ = tN .
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Remember that when t ∈ [−L, 0] we have that I(t) = ϕI(t). For the deterministic
function ϕI we approximate it by

ϕ̂I(t) = yj + (t− tj)
yj+1 − yj
tj+1 − tj

when t ∈ [tj , tj+1] and j = −M, . . . ,−1. (3.6.1)

The approximation function ϕ̂I is just linear interpolations of the observations of the
process I when t ∈ [−L, 0]. We use the approximation defined in equation (3.6.1) to
approximate the integrals:∫ tj+1

tj

ϕI(s− τ)ds ≈
∫ tj+1

tj

ϕ̂I(s− τ)ds when t ∈ [tj , tj+1] and j = −M, . . . ,−1.

For the estimation of the parameters of the system (3.2.1)–(3.2.2), we first estimate
the parameters of the interest process and then we estimate the parameters that
appear in equation (3.2.1). For the estimation of the parameters related to the market
attention process, we will use the maximum likelihood estimation method explained
in Chapter 2. In the case of the parameters that appear in equation (3.2.1) we will
use the conditional likelihood estimation method.

It is possible to estimate all the parameters that appear on the system of equations
(3.2.1)–(3.2.2) together, using the maximum likelihood estimation method. Since we
have an affine model, it is possible to compute the joint characteristic function of the
random variables X(t) and I(t−τ). Once the characteristic function is computed, it is
possible to recover the density function. The problem is that we need to approximate
a double integral.

3.6.1 Conditional likelihood estimator

In this method, we will estimate the parameters of the system (3.2.1)–(3.2.2) in a
two-step approach. Since we have the observations of the interest process, we can use
the methods explained in Chapter 2 to estimate the parameters that are related to
the market attention process. For the parameters that appear in the price equation
(3.2.1) we will use the conditional likelihood estimation method (see Section 1.5.1).

From now on we will focus on the estimation of the parameters (µ, σP ). We will
assume that the lag parameter τ is given. The parameter τ will be estimated in Section
3.6.2. In this case, we will use the conditional likelihood method for estimating the
parameters µ and σP . This method is also used by Cretarola and Figà-Talamanca
(2021).

To perform this estimation, we will use the logarithmic returns of the price. Be-
cause of that, we define the vector of the logarithmic returns R as

R = (R(t0, t1), R(t1, t2), . . . R(tN−1, tN )) ,

where
R(tj , tj+1) = X(tj+1)−X(tj) for j = 0, . . . , N − 1.

Let us define
rj+1 = xj+1 − xj for j = 0, 1, . . . , N − 1

as the realizations of the logarithmic returns.
The variable R(tj , tj+1) can be expressed as:

R(tj , tj+1) =

∫ tj+1

tj

µdu+

∫ tj+1

tj

σP
√

I(u− τ)dWP (u),
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for j = 0, . . . , N − 1. In light of Proposition 1.4.2 we know that

fR
j+1

(
rj+1|FWI

H

)
= fN (rj+1|µ∆, v2,jR ) for j = 0, . . . , N − 1, (3.6.2)

where fN (.|µ∆, v2,jR ) is the density function of a normal random variable with mean
µ∆ and variance v2,jR that is defined by

v2,jR = σ2
P

∫ tj+1

tj

I(u− τ)du.

Using Remark 3.5.1 we can express the conditional density of {R(tj , tj+1)}N−1
j=0

given FWI
H as

fR
1:N

(
r1:N |FWI

H

)
=

N−1∏
j=0

fR
j+1

(
rj+1|FWI

H

)
. (3.6.3)

Let us define the random vector JI as

JI =
(
J t0
I , J t1

I , . . . , J
tN−1

I

)
,

where

J
tj
I =

∫ tj+1

tj

I(u− τ)du for j = 0, 1 . . . N − 1.

Proposition 3.6.1. Let uj ∈ R for j = 0, . . . , N − 1 and let σ(JI) be the σ-algebra
generated by the vector of random variables JI . Then:

E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣FWI

H

]
= E

[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣σ(JI)]

=

N−1∏
j=0

eiujµ∆− 1
2
u2
jv

2,j
R . (3.6.4)

A particular case of equation (3.6.4) is

E
[
eiujR(tj ,tj+1)

∣∣∣FWI
H

]
= E

[
eiujR(tj ,tj+1)

∣∣∣σ(JI)]
= eiujµ∆− 1

2
u2
jv

2,j
R for j = 0, 1, . . . , N − 1.

Proof. Notice that from equation (3.6.2) we have that

E
[
eiujR(tj ,tj+1)

∣∣∣FWI
H

]
= eiujµ∆− 1

2
u2
jv

2,j
R for j = 0, 1, . . . , N − 1. (3.6.5)

Notice that the random variable JI is measurable with respect to the σ-algebra FWI
H ,

hence σ(JI) ⊆ FWI
H . By the tower property we have that:

E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣σ(JI)] = E

[
E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣FWI

H

]∣∣∣σ(JI)] . (3.6.6)
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Using the conditional independence of logarithmic returns (Remark 3.5.1) we get

E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣FWI

H

]
=

N−1∏
j=0

E
[
eiujR(tj ,tj+1)

∣∣∣FWI
H

]
. (3.6.7)

From the result in (3.6.5) we obtain:

E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣FWI

H

]
=

N−1∏
j=0

eiujµ∆− 1
2
u2
jv

2,j
R . (3.6.8)

Substituting equation (3.6.8) into equation (3.6.6), we have that

E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣σ(JI)] = E

N−1∏
j=0

eiujµ∆− 1
2
u2
jv

2,j
R

∣∣∣∣∣∣σ(JI)


=
N−1∏
j=0

eiujµ∆− 1
2
u2
jv

2,j
R ,

where the last equality comes from the fact that v2,jR is measurable with respect to
the σ-algebra σ(JI).

From Proposition 3.6.1 we have that

fR
j+1

(
rj+1|FWI

H

)
= fR

j+1 (rj+1|σ (JI)) for j = 0, 1, . . . , N − 1,

and we also have that

fR
1:N

(
r1:N |FWI

H

)
= fR

1:N (r1:N |σ (JI)) .

The random vector R depends on the parameter θR = (λR, ξR), where

λR = (µ, σP ), ξI = (aI , bI , σI).

The parameter of interest is the vector λR and ξI is the vector of nuisance parameters.
We will assume the vector JI to be a sufficient statistic for the parameter ξI .

The conditional log-likelihood is

lR (λR |σ (JI) , τ ) = log
(
fR
1:N (r1:N |σ (JI))

)
=

N−1∑
j=0

log fR
j+1 (rj+1|σ (JI))

=
N−1∑
j=0

log fN (rj+1|µ∆, v2,jR ). (3.6.9)

We will maximize the function lR (. |σ (JI) , τ ) to estimate the parameter λR.
For computing the function lR (. |σ (JI) , τ ) we need to know the value of the

Lebesgue integral that appears in v2,jR . This would not be a problem if the process I
was continuously observed, but because the process I is discretely observed we need
to estimate those integrals. The integrals are estimated by the trapezoid method:
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J
tj
I =

∫ tj+1

tj

I(u− τ)du ≈
∫ tj+1

tj

(
yj−k + (u− tj)

yj+1−k − yj−k

tj+1 − tj

)
du

=
∆

2
(yj+1−k + yj−k).

The approximation is based in integrating the linear interpolation between the obser-
vations at times tj and tj+1.

Due to how we define the approximation function ϕ̂I in (3.6.1). We do not need to
differentiate between the returns at times before τ and after τ , because the conditional
distribution of the returns satisfies equation (3.6.2) independently if tj+1 ≤ tk = τ or
tj+1 > tk = τ .

It is possible to obtain an analytical expression for the maximum likelihood esti-
mators of µ and σP .

Proposition 3.6.2. The maximum likelihood estimates of µ and σP are

µ̂ =

∑N−1
j=0

rj

J
tj
I

∆
∑N−1

j=0
1

J
tj
I

,

σ̂P =

√√√√√ 1

N

N−1∑
j=0

rj − µ̂∆√
J
tj
I

2

.

Proof. From equation (3.6.9) we have that

lR (λR |σ (JI) , τ ) =

N−1∑
j=0

− log

(
σP

√
J
tj
I 2π

)
− 1

2

rj − µ∆

σP

√
J
tj
I

2
= −

N−1∑
j=0

log σP −
N−1∑
j=0

log

√
J
tj
I 2π

−1

2

N−1∑
j=0

(
r2j + µ2∆2 − 2rjµ∆

σ2
PJ

tj
I

)

= −N log σP −
N−1∑
j=0

log

√
J
tj
I 2π

− 1

2σ2
P

N−1∑
j=0

r2j

J
tj
I

− µ2∆2

2σ2
P

N−1∑
j=0

1

J
tj
I

+
µ∆

σ2
P

N−1∑
j=0

rj

J
tj
I

.

Let us define z = σ2
P , so the conditional log-likelihood can be rewritten as

lR (λR |σ (JI) , τ ) = −N

2
log z −

N−1∑
j=0

log

√
J
tj
I 2π

− 1

2z

N−1∑
j=0

r2j

J
tj
I

− µ2∆2

2z

N−1∑
j=0

1

J
tj
I

+
µ∆

z

N−1∑
j=0

rj

J
tj
I

.
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Let us now take the partial derivatives with respect to µ and z:

∂lR (λR |σ (JI) , τ )

∂µ
= −µ∆2

z

N−1∑
j=0

1

J
tj
I

+
∆

z

N−1∑
j=0

rj

J
tj
I

=
1

z

−µ∆2
N−1∑
j=0

1

J
tj
I

+∆
N−1∑
j=0

rj

J
tj
I

 ,

∂lR (λR |σ (JI) , τ )

∂z
= −N

2z
+

1

2z2

N−1∑
j=0

r2j

J
tj
I

+
µ2∆2

2z2

N−1∑
j=0

1

J
tj
I

− µ∆

z2

N−1∑
j=0

rj

J
tj
I

=
1

z2

−N

2
z +

1

2

N−1∑
j=0

r2j

J
tj
I

+
µ2∆2

2

N−1∑
j=0

1

J
tj
I

− µ∆

N−1∑
j=0

rj

J
tj
I

 .

To get the critical values we have to equate the partial derivatives to zero. Since z > 0
it is sufficient to solve the following equations

−µ∆2
N−1∑
j=0

1

J
tj
I

+∆

N−1∑
j=0

rj

J
tj
I

= 0, (3.6.10)

−N

2
z +

1

2

N−1∑
j=0

r2j

J
tj
I

+
µ2∆2

2

N−1∑
j=0

1

J
tj
I

− µ∆

N−1∑
j=0

rj

J
tj
I

= 0. (3.6.11)

For equation (3.6.10) we have that a possible estimate for µ is

µ̂ =

∑N−1
j=0

rj

J
tj
I

∆
∑N−1

j=0
1

J
tj
I

. (3.6.12)

Also from equation (3.6.11) we get that a possible estimate for z is

ẑ =
2

N

1

2

N−1∑
j=0

r2j

J
tj
I

+
µ̂2∆2

2

N−1∑
j=0

1

J
tj
I

− µ̂∆
N−1∑
j=0

rj

J
tj
I


=

1

N

N−1∑
j=0

rj − µ̂∆√
J
tj
I

2

. (3.6.13)

So, a possible estimate for σP is

σ̂P =

√√√√√ 1

N

N−1∑
j=0

rj − µ̂∆√
J
tj
I

2

. (3.6.14)
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The Hessian matrix of the conditional log-likelihood is the following(
∂2lR(λR|σ(JI),τ )

∂µ2
∂2lR(λR|σ(JI),τ )

∂µ∂z
∂2lR(λR|σ(JI),τ )

∂z∂µ
∂2lR(λR|σ(JI),τ )

∂z2

)

=


−∆2

z

∑N−1
j=1

1

J
tj
I

1
z2

(
µ∆2

∑N−1
j=0

1

J
tj
I

−∆
∑N−1

j=0
rj

J
tj
I

)
1
z2

(
µ∆2

∑N−1
j=0

1

J
tj
I

−∆
∑N−1

j=0
rj

J
tj
I

)
1
z3

−1
2

∑N−1
j=1

(
rj−µ∆√

J
tj
I

)2


 .

Substituting the possible estimates for µ and z defined in equation (3.6.12) and (3.6.13)
respectively into the Hessian matrix, we obtain the following

−∆2

ẑ

∑N−1
j=1

1

J
tj
I

0

0 1
ẑ3

−1
2

∑N−1
j=1

(
rj−µ̂∆√

J
tj
I

)2

 . (3.6.15)

The eigenvalues of the matrix (3.6.15) are

λ1 = −∆2

ẑ

N−1∑
j=1

1

J
tj
I

,

λ2 = − 1

2ẑ3

N−1∑
j=1

rj − µ̂∆√
J
tj
I

2

.

Since both eigenvalues are negative we have that µ̂ and ẑ maximize the conditional
log-likelihood function.

3.6.2 Model Selection

Since τ can only take a finite number of values, remember that
τ ∈ {0,∆, 2∆, . . . ,M∆ = L}. The problem of the estimation of τ can be reduced
to a model selection problem. That is, we would select among the following different
models for the price data:

X(t) = X(0) +

∫ t

0
µdu+

∫ t

0
σP
√
I(u−∆r)dWP (u),

for r = 0, 1, . . . ,M . Since the process (I(t))t≥0 is given, we can use the conditional
likelihood function defined in Section 3.6.1. According to the literature (deLeeuw,
1992, p. 605), we should select the model that minimizes the Akaike information
criterion, which is defined as

AIKr = 2q − 2lR
(
λ̂R |σ (JI) , τ = r∆

)
for r = 0, 1, . . .M, (3.6.16)

where q is the number of parameters of the model and λ̂R = (µ̂, σ̂P ) is defined as in
Proposition 3.6.2. Another method consists of minimizing the Bayesian information



3.7. Option pricing 49

criterion (Neath & Cavanaugh, 2012), defined as

BICr = q log(N)− 2lR
(
λ̂R |σ (JI) , τ = r∆

)
for r = 0, 1, . . .M. (3.6.17)

Since the number of parameters is q = 2 for all r = 0, 1, . . .M then, minimizing the
Akaike information criterion and the Bayesian information criterion is equivalent to
maximizing the following expression

lR
(
λ̂R |σ (JI) , τ = r∆

)
for r = 0, 1, . . .M.

That is, we select the model that maximizes the conditional log-likelihood.

3.6.3 Numerical experiments

For the evaluation of the techniques presented in Section 3.6.1 and in Section 3.6.2, we
perform the following experiment. We generate 1000 realizations of N = 1000 steps
of the processes defined in equations (3.2.1)–(3.2.2) with the parameters

aI = 0.5, bI = 0.06, σI = 0.15, µ = 0.2, σP = 2, τ = 10∆,

with time step ∆ = 0.1, L = 20∆ and initial values P (0) = 100 and

ϕI(t) = 0.05 + 0.1 cos2
(
4t+

π

2

)
for t ∈ [−L, 0].

For each of the realizations we estimate the parameters of the model using the tech-
niques explained in Section 3.6. Once we estimate the parameters of all of the simula-
tions, we compute the mean of the estimated parameters and its standard deviation.
The results are shown in Table 3.1. The method gives good estimates for the param-
eters, especially for those that appear in the price equation (3.2.1).

Parameter True value Mean Standard deviation

aI 0.5 0.540466 0.110240
bI 0.06 0.060265 0.007219
σI 0.15 0.150133 0.003414
µ 0.2 0.199620 0.03945
σP 2 2.000897 0.045047
τ 10 ∆ 10.013 ∆ 0.304682 ∆

Table 3.1: Mean and the standard deviation of the estimated pa-
rameters using the estimation method explained in Section 3.6 for

1000 realizations.

3.7 Option pricing

In this section, we will be interested in pricing plain vanilla options with strike price
K and expiration date T . That is, we are interested in pricing European call options
with payoff (P (T )−K)+ and European put options with payoff (K−P (T ))+. Because
the expiration date of the options is T we assume that t ∈ [0, T ] and F = FT .
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3.7.1 Change of measure

For pricing options, we would like to use a risk-neutral measure. To obtain a risk-
neutral measure, let us define the following processes

W ∗
P (t) = WP (t) +

∫ t

0
θP (s)ds for t ∈ [0, T ],

W ∗
I (t) = WI(t) +

∫ t

0
θI(s)ds for t ∈ [0, T ]

and

Z(t) = exp

{
−
∫ t

0
θP (s)dWP (s)−

∫ t

0
θI(s)dWI(s)

}
exp

{
−1

2

∫ t

0
θ2P (s)ds−

1

2

∫ t

0
θ2I (s)ds

}
for t ∈ [0, T ],

where (θP (t))t∈[0,T ] and (θI(t))t∈[0,T ] are two adapted processes with respect to
(Ft)t∈[0,T ]. If the process (Z(t))t∈[0,T ] is a martingale with respect to (Ft)t∈[0,T ] then
we can apply the Girsanov theorem. If Z is a martingale then by the Girsanov the-
orem (W ∗

P (t),W
∗
I (t))t∈[0,T ] is a two dimensional Brownian motion under the measure

Q, where

Q(A) =

∫
A
Z(T )dP ∀A ∈ F .

We will show that under the appropriate choice of θP and θI the process Z is a
martingale.

To have a risk-neutral measure, we need to ensure that the discounted price process
under the new measure Q is a martingale. If the price process under Q satisfies the
following stochastic differential equation

dP (t) = rP (t)dt+ σPP (t)
√
I(t− τ)dW ∗

P (t) (3.7.1)

then it is possible to show that the discounted price process is a martingale.
To obtain equation (3.7.1), different values for the adapted processes θP and θI

can be taken, implying that there are infinitely many risk-neutral measures. In this
case, we choose the following values for the processes θP and θI :

θP (t) =
µ+

σ2
P
2 I(t− τ)− r

σP
√
I(t− τ)

, (3.7.2)

θI(t) =
λ1

σI
√
I(t)

+
λ2

σI

√
I(t), (3.7.3)

where λ1, λ2 ∈ R.
We chose θP and θI as in equations (3.7.2) and (3.7.3) respectively, for the following

reasons:

1. It is possible to obtain the risk-neutral price equation (3.7.1).

2. The interest is still a Cox-Ingersoll-Ross process under the measure Q.

To obtain equations (3.7.4) and (3.7.5), we need to prove that (Z(t))t∈[0,T ] is a
martingale with respect to (Ft)t∈[0,T ].
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If we assume for a moment that (Z(t))t∈[0,T ] is a martingale, then we can apply
the Girsanov theorem, and under the measure Q we have the following system of
stochastic differential equations

dP (t) = rP (t)dt+ σPP (t)
√

I(t− τ)dW ∗
P (t) with P (0) = p ∈ R+, (3.7.4)

dI(t) = (aIbI − λ1 − (aI + λ2)I(t))dt+ σI
√
I(t)dW ∗

I (t) (3.7.5)
if t ∈ [0, T ] and I(t) = ϕI(t) when t ∈ [−L, 0].

Under the probability measure Q equation (3.7.5) can be rewritten as

dI(t) = ãI(b̃I − I(t))dt+ σI
√

I(t)dW ∗
I (t) when t ∈ [0, T ] (3.7.6)

and I(t) = ϕI(t) when t ∈ [−L, 0],

where ãI = aI + λ2 and b̃I = aIbI−λ1
aI+λ2

. If we impose the conditions

2ãI b̃I
σ2
I

≥ 1 (3.7.7)

ãI > 0, (3.7.8)

then equation (3.7.6) has a strong solution (Gulisashvili, 2012, p. 44) and it is greater
than zero almost surely (Gulisashvili, 2012, Theorem 2.27 ).

Theorem 3.7.1. If conditions (3.7.7) and (3.7.8) are satisfied, then (Z(t))t∈[0,T ] is
a martingale with respect to (Ft)t∈[0,T ].

Proof. We know that (Z(t))t∈[0,T ] is a non-negative local martingale because Z is
the stochastic exponential of a local martingale (Klebaner, 2012, p. 227). Hence it
is a supermartingale (Klebaner, 2012, Theorem 7.23). Because of that it is enough
to prove that E[Z(t)] = Z(0) = 1. Conditioning with respect to FWI

t and using
Proposition 1.4.1, we have

E[Z(t)]

=E

[
exp

{
−
∫ t

0
θP (s)dWP (s)−

1

2

∫ t

0
θ2P (s)ds−

∫ t

0
θI(s)dWI(s)−

1

2

∫ t

0
θ2I (s)ds

}]
=E

[
exp

{
−
∫ t

0
θI(s)dWI(s)−

1

2

∫ t

0
θ2I (s)ds−

1

2

∫ t

0
θ2P (s)ds

}
E

[
exp

{
−
∫ t

0
θP (s)dWP (s)

}∣∣∣∣FWI
t

]]
=E

[
exp

{
−
∫ t

0
θI(s)dWI(s)−

1

2

∫ t

0
θ2I (s)ds

}]
.

Now define the process Z ′ as

Z ′(t) = exp

{∫ t

0
θ̃I(s)dWI(s)−

1

2

∫ t

0
θ̃2I (s)ds

}
for t ∈ [0, T ],

where θ̃I = −θI . Because conditions (3.7.7) and (3.7.8) are satisfied, then by Propo-
sition 1.4.3 we know that Z ′ is a martingale. So, we have just shown that

E[Z(t)] = E[Z ′(t)] = Z ′(0) = 1.
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3.7.2 Pricing call options

In Section 3.7.1 we proved the existence of a risk-neutral probability Q under which
we have the following dynamics for the Bitcoin price:

dP (t) = rP (t)dt+ σPP (t)
√
I(t− τ)dW ∗

P (t) (3.7.9)
with P (0) = p ∈ R+ = (0,∞),

dI(t) = ãI(b̃I − I(t))dt+ σI
√
I(t)dW ∗

I (t) when t ∈ [0, T ] (3.7.10)
and I(t) = ϕI(t) t ∈ [−L, 0],

where b̃I ∈ R, τ ∈ [0, L], r ≥ 0 and L, σP , σI , ãI > 0 with the condition 2ãI b̃I
σ2
I
≥ 1. It

is possible to show that the discounted process P̃ , that is defined as P̃ (t) = e−rtP (t)
for t ∈ [0, T ], is a martingale with respect to the filtration (Ft)t∈[0,T ] under the risk-
neutral measure Q. That is

EQ

[
P̃ (t) |Fs

]
= P̃ (s) for T ≥ t ≥ s,

where EQ symbolizes the expected value under the measure Q.

Proposition 3.7.1. The discounted price process P̃ is a martingale with respect to
the filtration (Ft)t∈[0,T ] on the probability space (Ω,F ,Q).

Proof. Applying the Itô formula to
(
e−rtP (t)

)
t∈[0,T ]

we have

dP̃ (t) = σP P̃ (t)
√
I(t− τ)dW ∗

P (t) with P̃ (0) = p > 0. (3.7.11)

From equation (3.7.11) we know that P̃ is a local martingale (Klebaner, 2012, Remark
4.6). Using the Itô formula it is possible to show that

P̃ (t) = P̃ (0) exp

{
−
σ2
P

2

∫ t

0
I(u− τ)du+ σP

∫ t

0

√
I(u− τ)dW ∗

P (u)

}
.

Because the process P̃ is a positive local martingale, we know that P̃ is a supermartin-
gale (Klebaner, 2012, Theorem 7.23). So it is enough to show that

EQ[P̃ (t)] = P̃ (0).

Conditioning with respect to FW ∗
I

t and using Proposition 1.4.1, we have:

EQ[P̃ (t)] = EQ

[
P̃ (0) exp

{
−
σ2
P

2

∫ t

0
I(u− τ)du+ σP

∫ t

0

√
I(u− τ)dW ∗

P (u)

}]
= P̃ (0)EQ

[
exp

{
−
σ2
P

2

∫ t

0
I(u− τ)du

}
EQ

[
exp

{
σP

∫ t

0

√
I(u− τ)dW ∗

P (u)

}∣∣∣∣FW ∗
I

t

]]
= P̃ (0).
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It is possible to show that the discounted price process P̃ is also a martingale with
respect to the delayed filtration

(
F̃t

)
t∈[0,T ]

.

Corollary 3.7.1. The discounted price process P̃ is a martingale with respect to the
filtration (F̃t)t∈[0,T ] on the probability space (Ω,F ,Q).

Proof. Since F̃t ⊂ Ft for all t ∈ [0, T ], we obtain by application of Theorem 3.7.1:

EQ

[
P̃ (t)

∣∣∣ F̃s

]
= EQ

[
EQ

[
P̃ (t)

∣∣∣Fs

]∣∣∣ F̃s

]
= EQ

[
P̃ (s)

∣∣∣ F̃s

]
= P̃ (s),

where T ≥ t ≥ s ≥ 0 and the last equality comes from the fact that the process P̃ is
adapted with respect to the filtration (F̃t)t∈[0,T ].

In this section, we would like to price a European call option with expiration date
T and strike K. Because the discounted price process P̃ is a martingale, the price of
the call option under Q is

C(0) = EQ
[
e−rT (P (T )−K)+

]
.

Before pricing a call option, notice that:∫ T

0
I(u− τ)du =

∫ T−τ

−τ
I(u)du =

{ ∫ 0
−τ ϕ

I(u)du+
∫ T−τ
0 I(u)du if T > τ∫ T−τ

−τ ϕI(u)du if T ≤ τ.

(3.7.12)

From equation (3.7.12) we need to differentiate two cases for pricing options, depend-
ing on whether τ < T or τ ≥ T .

It is not difficult to see that the price process satisfies the following equation

P (t) = P (0) exp

{
rT −

σ2
P

2

∫ t

0
I(u− τ)du+ σP

∫ t

0

√
I(u− τ)dW ∗

P (u)

}
. (3.7.13)

From equation (3.7.13) the logarithm of the price process X, with X(t) = logP (t)
for t ∈ [0, T ] can be expressed as

X(t) = x+ rt− 1

2

∫ t

0
σ2
P I(u− τ)du+

∫ t

0
σP
√
I(u− τ)dW ∗

P (u) (3.7.14)

with X(0) = x = log p.

3.7.3 Pricing a call option when τ ≥ T

From equation (3.7.14) and because τ ≥ T we have that

X(T ) = x+ rT − 1

2

∫ T

0
σ2
Pϕ

I(u− τ)du+

∫ T

0
σP

√
ϕI(u− τ)dW ∗

P (u) with X(0) = x.

(3.7.15)
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From the properties of the Itô integral (Klebaner, 2012, Theorem 4.11) we have that

X(T ) ∼ N
(
µX , σ2

X

)
,

where

µX = x+ rT − 1

2

∫ T−τ

−τ
σ2
Pϕ

I(u)du, (3.7.16)

σ2
X =

∫ T−τ

−τ
σ2
Pϕ

I(u)du. (3.7.17)

The price of a call option when the expiration time T ≤ τ is just a generalization of the
Black-Scholes-Merton formula, so the price of a European call option with expiration
date T ≤ τ and strike K is

C(0) = P (0)FN (d1|0, 1)−Ke−rTFN (d2|0, 1),

where

d1 =
log
(
P (0)
K

)
+ rT +

σ2
P
2

∫ T−τ
−τ ϕI(u)du√

σ2
P

∫ T−τ
−τ ϕI(u)du

d2 = d1 −

√
σ2
P

∫ T−τ

−τ
ϕI(u)du,

and FN (.|0, 1) is the cumulative distribution function of a standard normal random
variable (Wilmott, 2006, p. 148).

3.7.4 Pricing a call option when τ < T

For computing the price of the call option, we will first compute the characteristic
function of the random variable X(T ). The characteristic function of X(T ) is defined
as

ΦX(T )(λ) = EQ

[
eiλX(T )

]
for all λ ∈ R.

For computing the characteristic function of X(T ) with τ < T , it convenient to
differentiate between what happens before τ and after τ . To that end, let us define
the process Z as

Z(t) = X(t+ τ)−X(τ) + x− rt

= x− 1

2

∫ t

0
σ2
P I(u)du+

∫ t

0
σP
√
I(u)dB∗

P (u) for t ≥ 0, (3.7.18)

where the last equality comes from the application of Theorem 1.2.1 and B∗
P (t) =

W ∗
P (t + τ) − W ∗

P (τ) for t ≥ 0. Notice that Z satisfies the stochastic differential
equation

dZ(t) = −1

2
σ2
P I(t)dt+ σP

√
I(t)dB∗

P (t) with Z(0) = x.
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The random variable X(T ) can be expressed in terms of the random variable Z(T −τ)
as

X(T ) = X(τ)− x+ r(T − τ) + Z(T − τ)

= rT − 1

2

∫ τ

0
σ2
Pϕ

I(u− τ)du+

∫ τ

0
σP

√
ϕI(u− τ)dW ∗

P (u) + Z(T − τ).

Because B∗
P (t) is independent of FW ∗

P
τ for all t ≥ 0 then we have that Z(t) is inde-

pendent of FW ∗
P

τ for all t ≥ 0.
Conditioning with respect to FW ∗

P
τ , we obtain

ΦX(T )(λ) = E
[
eiλ(X(τ)−x+r(T−τ)+Z(T−τ))

]
= EQ

[
EQ

[
eiλ(X(τ)−x+r(T−τ)+Z(T−τ))

∣∣∣FW ∗
P

τ

]]
= EQ

[
eiλ(X(τ)−x+r(T−τ))EQ

[
eiλZ(T−τ)

∣∣∣FW ∗
P

τ

]]
= EQ

[
eiλ(X(τ)−x+r(T−τ))

]
EQ

[
eiλZ(T−τ)

]
. (3.7.19)

The first expectation of equation (3.7.19) can be computed as

EQ

[
eiλ(X(τ)−x+r(T−τ))

]
= EQ

[
eiλrT− iλ

2

∫ τ
0 σ2

PϕI(u−τ)du+iλ
∫ τ
0 σP

√
ϕI(u−τ)dW ∗

P (u)
]

= eiλrT−σ2
P
2

ϵ0(iλ+λ2),

where the last equality comes from the properties of the Itô integral (Klebaner, 2012,
Theorem 4.11) and ϵ0 =

∫ 0
−τ ϕ

I(u)du.
Now, for computing the characteristic function of X(T ) we first need to compute

the characteristic function of Z(T − τ). If we define the process V as V (t) = σ2
P I(t)

for t ≥ 0, then Z(T − τ) can be written as

Z(T − τ) = x− 1

2

∫ T−τ

0
V (u)du+

∫ T−τ

0

√
V (u)dB∗

P (u).

By application of the Itô formula, we have that V satisfies the stochastic differential
equation

dV (t) = aV (bV − V (t))dt+ σV
√
V (t)dW ∗

I (t) with V (0) = σ2
Pϕ

I(0),

where aV = ãI , bV = σ2
P b̃I and σV = σPσI . From condition (3.7.7) we have that

2aV bV
σ2
V

=
2ãI b̃I
σ2
I

≥ 1.

The Feller condition is still satisfied, so the process V is greater than zero with prob-
ability one. The process (Z, V ) satisfies the Heston model (Heston, 1993). The char-
acteristic function of the log price in the Heston model is known, so the characteristic
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function of Z(t) with t ≥ 0 can be written as

ΦZ(t)(λ) = EQ

[
eiλZ(t)

]
= exp

{
iλx+ bV aV σ

−2
V

[
(aV − d)t− 2 log

(
1− ge−dt

1− g

)]}
exp

{
V (0)σ−2

V

[
(aV − d)(1− e−dt)

1− ge−dt

]}
,

with

d =
(
a2V − σ2

V (−iλ− λ2)
)1/2

g =
aV − d

aV + d

(Madan, Reyners, & Schoutens, 2019). We have just shown that

ΦX(T )(λ) = eiλrT−σ2
P
2

ϵ0(iλ+λ2)ΦZ(T−τ)(λ).

The benefit of having a closed formula for the characteristic function of the log
price is that we can price European options with it.

If we assume that EQ[e(δ+1)X(T )] is finite for some δ > 0, then the price of the call
option with strike K and maturity T can be computed as

C(0) = EQ
[
e−rT (P (T )−K)+

]
=

e−δ logK

π

∫ ∞

0
e−iλ logKφ(λ)dλ, (3.7.20)

where

φ(λ) =
e−rTΦX(T ) (λ− (δ + 1)i)

δ2 + δ − λ2 + i(2δ + 1)λ
.

(Carr & Madan, 1999, p.64). This result allows us to compute the price of European
call options using the characteristic function of X(T ). But first we need to show for
which values of δ the expectation EQ[e

(δ+1)X(T )] is finite.

Proposition 3.7.2. Let δ̃ ∈ R and D = ã2I + σ2
Pσ

2
I (δ̃ − δ̃2), then

1. If D ≥ 0 then EQ[e
δ̃X(T )] <∞.

2. If D < 0 then limT→T ∗ EQ[e
δ̃X(T )] =∞, where

T ∗ =
2√
−D

(
π + arctan

(√
−D
−aI

))
+ τ.

Proof. Using similar techniques as the ones used to obtain equation (3.7.19), we can
show that EQ[e

δ̃X(T )] can be written as

EQ

[
eδ̃X(T )

]
= EQ

[
eδ̃(X(τ)−x+r(T−τ))

]
EQ

[
eδ̃Z(T−τ)

]
= EQ

[
eδ̃rT− δ̃

2

∫ τ
0 σ2

PϕI(u−τ)du+δ̃
∫ τ
0 σP

√
ϕI(u−τ)dW ∗

P (u)
]

EQ

[
eδ̃Z(T−τ)

]
. (3.7.21)
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The first expected value that appears on equation (3.7.21) is the moment generating
function of a normal random variable, hence this expectation is finite. So EQ

[
eδ̃X(T )

]
will be finite if and only if EQ

[
eδ̃Z(T−τ)

]
is finite. We have seen that Z is the log-

price of the Heston model (Heston, 1993). The values for which the expected value
EQ

[
eδ̃Z(t)

]
is finite have been studied previously. If we define D = a2V − σ2

V (δ̃
2 − δ̃),

then from the results given by Friz and Keller-Ressel (2010) we have that

1. If D ≥ 0 then EQ[e
δ̃Z(t)] <∞ for all t ≥ 0.

2. If D < 0 then limt→t∗ EQ[e
δ̃Z(t)] =∞, where

t∗ =
2√
−D

(
π + arctan

(√
−D
−aV

))
. (3.7.22)

Notice that the value D can be written as D = a2I−σ2
Pσ

2
I (δ̃

2− δ̃). From equation
(3.7.22) we have that when D < 0: limT→T ∗ EQ[e

δ̃Z(T−τ)] =∞, where

T ∗ =
2√
−D

(
π + arctan

(√
−D
−aI

))
+ τ.

Remark 3.7.1. In this chapter, we assume that the Brownian motions that model the
price and interest processes are independent. A discussion about how we could create
a model with correlated Brownian motions is presented in Appendix A.

3.8 Market option prices

In this subsection, we price European options using the model introduced in this
chapter. The parameters, of the model are estimated from historical market data.
With these values for the parameters we price different options and compare the
results obtained with their market prices. Firstly we select a risk-neutral measure
with λ1 = 0 and λ2 = 0 (defined in equation (3.7.3)). That is, the interest process is
the same under the physical measure P and under the risk-neutral measure Q. For
pricing the options, we assume that r = 0. To check the performance of our model,
we compute the root mean square error:

rmse =

√√√√ 1

n

n∑
j=1

(MidPricej −ModelPricej)
2

and the relative root mean square error:

rrmse =

√√√√ 1
n

∑n
j=1 (MidPricej −ModelPricej)

2∑n
j=1MidPrice2j

,

where n is the number of options and MidPricej =
AskPricej+BidPricej

2 .
As we have seen in Section 3.7.1 we can pick any values for λ1 and λ2 as long

as conditions (3.7.7) and (3.7.8) are satisfied. This gives a certain flexibility to our
model. We would like to choose a risk-neutral measure in which the values for λ1 and
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λ2 are optimal. Because of that the values for the parameters λ1 and λ2 are selected
by minimizing the relative root mean square error. In this case, the drift term of the
interest process will be different under the measure P and under the probability Q.
However, the diffusion part will be the same in both measures.

The option market data used in this section is explained in Section 1.6. For
estimating the parameters of the model, we use a temporal window of one year of
historical data. That is, for pricing the options taken at the date 2019-04-01, the
parameters of the model are estimated using the historical data from 2018-04-01 to
2019-04-01. In the case of the options taken at 2019-05-01, we use historical data
from 2018-05-01 to 2019-05-01 for estimating the model parameters. We proceed in a
similar manner for the rest of the options taken at different dates.

As we have seen in Section 2.4 we identify two valid proxies for the interest, when
it is modelled by a Cox-Ingersoll-Ross process. One of these proxies is the number
of Wikipedia views of the keyword “Altcoin". The other one is the unique number
of active addresses. Because of that we separate the analysis into two parts. In the
first part, we do the pricing of options using Wikipedia views as proxy for the interest
(Section 3.8.1). In Section 3.8.2 we price the options using the number of addresses as
the proxy for the interest. All historical data have a daily frequency that is, ∆ = 1

365
and τ can take values in {0, 1∆, 2∆, . . . , 20∆}. An explanation of the market attention
data used in this section can be found in Section 1.6.

3.8.1 Wikipedia views

In the case we select the number of Wikipedia views of the keyword “Altcoin” as a
proxy for the interest, the values for the estimated parameters are shown in Figure 3.1
and in Figure 3.2. Figure 3.1 shows the estimated parameters of the Cox-Ingersoll-
Ross process for each of the temporal windows. We can observe that the values of the
estimated parameters of the interest process vary with time, this phenomenon was also
observed in Chapter 2. The estimated parameters related to the price equation (3.2.1)
are shown in Figure 3.2. For each temporal window, we estimate the parameters using
the techniques explained in Section 3.6. The results show that in all windows, the
estimated delay is always greater than zero.

Each temporal window has a duration of one year and, for example, when the date
2019-09-01 appears on the x-axis of Figures 3.1 and 3.2, this means that the data used
to estimate the model parameter are taken from 2018-09-01 to 2019-09-01.

Remark 3.8.1. The first temporal window shown in Figures 3.1 and 3.2 should be
from 2018-04-01 to 2019-04-01. However, during the temporal frame 2017-09-01 to
2018-09-01, the of number of Wikipedia views takes the value zero several times. Be-
cause of that, we start estimating the parameters of the model from 2018-09-01 to
2019-09-01.

With the values of the parameters shown in Figures 3.1 and 3.2 we compute the
prices of the options taken from 2019-09-01 to 2021-09-01 and we compare them with
their market values. The root mean square error and the relative root mean square
error are shown in Figure 3.3 and in Figure 3.4 respectively. The values of these options
are computed under the risk-neutral probability Q, where λ1 = λ2 = 0. From Section
3.7.1 we have seen that λ1 and λ2 can have different values as long as conditions (3.7.7)
and (3.7.8) are satisfied. We select the values of λ1 and λ2 that minimize the relative
root mean squared error. To that end we use the use the Python function “minimize”
with the algorithm “Sequential Least Squares Programming”, this function is included
in the Python package “SciPy”. For these new values of λ1 and λ2 we obtain a new
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root mean square error and a new relative root mean square error. These are also
shown in Figure 3.3 and in Figure 3.4.

In addition, for these new values of λ1 and λ2 we obtain new values for the param-
eters ãI and b̃I , which are shown in Figure 3.5. As we can observe in Figure 3.5 the
values of the calibrated ãI and b̃I vary more through time than the estimated ones.

We also compute the prices given by the Black-Scholes-Merton model. The pa-
rameters of the model are estimated by the maximum likelihood estimator method
using historical data. The temporal windows used for this model are the same as the
ones defined above. The root mean square error and the relative root mean square
error obtained by the use of Black-Scholes-Merton model, are shown in Figure 3.3 and
in Figure 3.4 respectively. The results obtained by the Black-Scholes-Merton model
are in some instances better and in some instances worse than the proposed model.
However, when we calibrate the proposed model, the model defined in Section 3.2
obtains better results. In addition, we divide the relative root mean square error
obtained by the proposed model by the relative root mean square error obtained by
the Black-Scholes-Merton model. The results are shown in Figure 3.6. When the
value is less than one, it means that the proposed model gives better results than
the Black-Scholes-Merton model. We can observe in Figure 3.6, that the model with
calibration is better that the Black-Scholes-Merton model. When the model is not
calibrated, the proposed model is not consistent in achieving better results than the
Black-Scholes-Merton model.

3.8.2 Unique addresses

Another proxy that we consider is the daily number of unique active addresses. The
results of the parameters related to the interest process are shown in Figure 3.7. The
estimated parameters that appear in the price equation (3.2.1) are shown in Figure
3.8. In general, the delay parameter is always greater than zero, except for some
periods in which it has the value 0.

As in Section 3.8.1 we price the options taken for the dates 2019-04-01 to 2021-
09-01. We compute the root mean square error and the relative root mean square
error, using the values of the parameters shown in Figures 3.7 and 3.8. The root
mean square error and the relative root mean square error that we obtain are shown
in Figure 3.9 and in Figure 3.10 respectively.

As we did before, we would like to select the value for λ1 and λ2 optimally. For
these new values of λ1 and λ2 we obtain a new root mean squared error and a new
relative root mean square error, that are also shown in Figures 3.9–3.10.

As in Section 3.8.1 for these new values for λ1 and λ2, we have new values for the
parameters ãI and b̃I . These are shown in Figure 3.11. In this case, we can see that
in general, the calibrated parameters are greater than the estimated parameters.

We also show the values for the root mean square error and the relative root mean
square root in Figures 3.9–3.10 obtained using the Black-Scholes-Merton model. As
we can observe, the Black-Scholes-Merton model gives similar results to the proposed
model. But when we calibrate the proposed model, we obtain better results than the
Black-Scholes-Merton model. We again compute the ratio between the relative root
mean error given by our model and the ratio between the relative root mean error
obtained by the Black-Scholes-Merton model. These results are shown in Figure 3.12.
When the model is calibrated, the results given by the proposed model are better than
the results given by the Black-Scholes-Merton model. However, this is not the case
when the model is not calibrated.
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3.9 Conclusion and future work

In this chapter, we proposed a model for pricing Bitcoin options in which the volatil-
ity is proportional to the market attention. In this case, we assume that the interest
follows a Cox-Ingersoll-Ross process. In Chapter 4 we will use an inverse Gaussian
Ornstein-Uhlenbeck process, and this will allow us to incorporate jumps into the
volatility process. In addition, we showed how the change of measure could be per-
formed and we derived a semi-closed formula for pricing plain European options. We
compared the prices given by our model with the real market data and showed that
our model gives better results than the Black-Scholes-Merton model.

In the model presented in this chapter, the Brownian motions that appears in
equations (3.2.1) and (3.2.2) are uncorrelated. In Appendix A we introduced a model
with correlation and we derive a semi-closed formula for pricing European options. In
future work, it would be interesting to study this correlated model. In addition, as has
been proposed before, another interesting topic for study would be the construction of
models in which the volatility is affected by several proxies of the interest (Cretarola,
Figà-Talamanca, & Patacca, 2020). In this case we will have a model that is similar
to the double Heston model (Christoffersen, Heston, & Jacobs, 2009, p. 8).
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(a) Estimation of the parameter aI .

(b) Estimation of the parameter bI .

(c) Estimation of the parameter σI .

Figure 3.1: Estimated values for the parameters of the model defined
in Section 3.2 related to market attention process, when the proxy of
the market interest is the number of views on Wikipedia of the keyword

“Altcoin”.
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(a) Estimation of the parameter µ.

(b) Estimation of the parameter σP .

(c) Estimation of the parameter τ .

Figure 3.2: Estimated values for the parameters of the model defined
in Section 3.2 related to the price equation, when the proxy of the
market interest is the number of views on Wikipedia of the keyword

“Altcoin”.
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Figure 3.3: Root mean square error when the proxy of market at-
tention is the number of Wikipedia views of the word “Altcoin”.

Figure 3.4: Relative root mean square error when the proxy for mar-
ket attention is the number of Wikipedia views of the word “Altcoin”.
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(a) Estimated and calibrated values for aI .

(b) Estimated and calibrated values for bI .

Figure 3.5: Calibrated values for the parameters aI and bI when the
proxy of the market interest is the number of views on Wikipedia of

the keyword “Altcoin”.
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Figure 3.6: Relative root mean square error given by our model
divided by the relative root mean square error obtained by the Black-
Scholes-Merton model, when the proxy for market attention is the

number of Wikipedia views of the word “Altcoin”.
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(a) Estimation of the parameter aI .

(b) Estimation of the parameter bI .

(c) Estimation of the parameter σI .

Figure 3.7: Estimated values for the parameters of the model defined
in Section 3.2 related to market attention process, when the proxy of

the market interest is the number of unique active addresses.
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(a) Estimation of the parameter µ.

(b) Estimation of the parameter σP .

(c) Estimation of the parameter τ .

Figure 3.8: Estimated values for the parameters of the model defined
in Section 3.2 related to the price equation, when the proxy of the

market interest is the number of unique active addresses.
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Figure 3.9: Root mean square error when the proxy of the market
interest is the number of unique active addresses.

Figure 3.10: Relative root mean square error when the proxy of the
market interest is the number of unique active addresses.
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(a) Estimated and calibrated values for aI .

(b) Estimated and calibrated values for bI .

Figure 3.11: Calibrated values for the parameters aI and bI when the
proxy of the market interest is the number of unique active addresses.
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Figure 3.12: Relative root mean square error given by our model
divided by the relative root mean square error obtained by the Black-
Scholes-Merton model, when the proxy of the market interest is the

number of unique active addresses.
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Chapter 4

A Simple model with an
Ornstein-Uhlenbeck interest
process

4.1 Introduction

In Chapter 3 we constructed a simple model for Bitcoin option prices. In Chapter
3 we assumed that the market attention follows a Cox-Ingersoll-Ross process. As
we saw in Chapter 2 we could in some cases use an Ornstein-Uhlenbeck process to
model the interest. In this chapter we will introduce a model that has the same
price structure as the model introduced in Chapter 3, meaning that only the volatility
of the log-price is affected by the market attention. In this case, we will assume
that the interest process follows an inverse Gaussian Ornstein-Uhlenbeck process, so
in that way we include jumps when modelling the interest process. The reason for
extending the model presented in Chapter 3, adding jumps in the interest structure
comes from A. Hou, Wang, Chen, and Härdle (2020). In this article, the authors fit
to the historical data of Bitcoin several stochastic volatility models. They show that
the model that gives the best fit to the data is the model that includes jumps in the
volatility structure.

We will show that some results obtained in Chapter 3 can also be applied to this
particular case. The idea of using an Ornstein-Uhlenbeck process for modelling the
volatility of the price was introduced by Barndorff-Nielsen and Shephard (2001) and
these types of models are usually called Barndorff-Nielsen and Shephard models.

Formally, we introduce the following model. Let us assume (Ω,F ,P) to be a prob-
ability space, that contains a Brownian motion WP and a Lévy process ZI . Further-
more, assume that WP and ZI are independent. The process ZI is the background
driving Lévy process of an IG(aI , bI)-Ornstein-Uhlenbeck process with parameter
λI > 0. We assume that the interest process I is this inverse Gaussian Ornstein-
Uhlenbeck process with background driving Lévy process ZI .

Due to the fact that ZI is the background driving Lévy process of an IG(aI , bI)-
Ornstein-Uhlenbeck process, we have that ZI is a positive Lévy process. Hence ZI

has finite variation on a bounded time interval (Cont & Tankov, 2004, Proposition
3.10). In addition, we have that ZI satisfies:

E
[
e−uZI(1)

]
= exp

{
−
∫ ∞

0

(
1− e−ux

)
vI(dx)

}
for u ∈ R,
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where vI is a Lévy measure (Barndorff-Nielsen & Shephard, 2001, p. 6). So the Lévy
triplet of ZI can be written as (γI , 0, vI) where

γI =

∫
|x|≤1

xvI(dx).

In addition, the Lévy measure vI can be written in terms of a Lévy density wI as
vI(dx) = wI(x)dx where

wI(x) =
aI

2
√
2π

x−3/2(1 + b2Ix)e
− 1

2
b2Ix1(0,∞)(x).

Also we have that the process ZI jumps infinitely often because
∫∞
0 wI(x)dx = ∞

(Nicolato & Venardos, 2003, p. 449).
Since the process I is an IG(aI , bI)-Ornstein-Uhlenbeck process with parameter

λI > 0, it satisfies the following stochastic differential equation

dI(t) = −λII(t)dt+ dZI(λIt) when t > 0.

When t ∈ [−L, 0] we assume that I(t) = ϕI(t), where ϕI : [−L, 0] → (0,∞) is a
continuous and deterministic function and L > 0.

Some of the results used in previous chapters are valid for left-continuous processes.
We know that the process I has almost surely càdlàg paths (Valdivieso, Schoutens, &
Tuerlinckx, 2009, p. 4). Because of that we define the process I− = (I−(t))t≥0 as

I−(t) = lim
s→t−

I(s) almost surely. (4.1.1)

We know that the limit (4.1.1) converges almost surely, because the process I has
almost surely càdlàg paths. Notice that since the process I is càdlàg, we have that
the process I− has almost surely càglàd paths.

Finally, for the price process P we assume that it satisfies the following stochastic
differential equation

dP (t) =

(
µ+

σ2
P

2
I−(t− τ)

)
P (t)dt+ σP

√
I−(t− τ)P (t)dWP (t),

where µ ∈ R, σP > 0, τ ∈ [0, L] and P (0) = p > 0.
In addition, we assume that there is a bond or a market account (B(t))t≥0 with

known interest rate r ≥ 0, that satisfies:

B(t) = B(0)ert.

So, at the end, we have assumed that the price process P and the interest process
I satisfy the following system of stochastic differential equations:

dP (t) =

(
µ+

σ2
P

2
I−(t− τ)

)
P (t)dt+ σP

√
I−(t− τ)P (t)dWP (t) (4.1.2)

with P (0) = p ∈ R+,

dI(t) = −λII(t)dt+ dZI(λIt) when t > 0 (4.1.3)
with I(t) = ϕI(t) when t ∈ [−L, 0].

Let us define
(
FWP
t

)
t≥0

and
(
FZI
t

)
t≥0

to be the filtrations generated by the



4.2. Estimation 73

Brownian motion WP and the Lévy process ZI respectively, and we define the general
filtration (Ft)t≥0 to be the filtration defined as

Ft = FWP
t ∨ FZI

t for t ≥ 0,

where FWP
t ∨ FZI

t is the smallest σ-field containing FWP
t and FZI

t . As we did in
Chapter 3 we also define the delayed filtration (F̃t)t≥0 as

F̃t =

{
FWP
t if t ≤ τ,

FWP
t ∨ FWI

t−τ if t > τ.

We have seen in Chapter 2 that equation (4.1.3) has a strong solution, so the
market attention follows an Inverse Gaussian Ornstein-Uhlenbeck processes. Now we
would like to show that the price equation (4.1.2) has a strong solution. By application
of the Itô formula we can show that equation (4.1.2) has the following strong solution

P (t) = P (0) exp

{
µt+

∫ t

0
σP
√

I−(u− τ)dWP (u)

}
for t ≥ 0. (4.1.4)

Notice that the Itô integral that appears in equation (4.1.4) is well defined since the
process I− has almost surely càglàd paths.

In most cases, it is more convenient to work with the log-price. Because of that
we define the process X as

X(t) = log(P (t)) = x+ µt+

∫ t

0
σP
√
I−(u− τ)dWP (u) for t ≥ 0,

where x = log(P (0)) = X(0).

4.2 Estimation

For the estimation procedure, we assume that we have discrete observations of the
processes X and I. We would like to estimate the parameters that appear in the
system (4.1.2)–(4.1.3) using these discrete observations.

Here we will assume that there are N + 1 ∈ N discrete observations with a time
horizon H. All of these observations are assumed to be equispaced in time with a
time step ∆ = H

N . The lag parameter τ can only take a finite number of non-negative
values, that is τ ∈ {0,∆, 2∆, . . . ,M∆} where M ∈ N with N ≫ M and we assume
that there exists a k ∈ {0, 1, 2, . . . ,M} such that τ = k∆. We also define L = M∆.

For the estimation of the parameters, we assume that we have the following ob-
servations {xj}Nj=0, {yj}Nj=−M for the processes X and I respectively, where xj is the
observation of the variable X(tj) and yj is the observation of I(tj) with tj = j∆. The
horizon H can be expressed as H = N∆ = tN .

Remember that when t ∈ [−L, 0] we have I(t) = ϕI(t). For the deterministic
function ϕI we approximate it by linear interpolation, i.e.:

ϕ̂I(t) = yj + (t− tj)
yj+1 − yj
tj+1 − tj

when t ∈ [tj , tj+1] and j = −M, . . . ,−1. (4.2.1)

The approximation function ϕ̂I is just linear interpolations of the observations of the
process I when t ∈ [−L, 0]. We use the approximation defined in equation (4.2.1) to
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approximate the integrals:∫ tj+1

tj

ϕI(s− τ)ds ≈
∫ tj+1

tj

ϕ̂I(s− τ)ds when t ∈ [tj , tj+1] and j = −M, . . . ,−1.

For the estimation of the parameters of the system (4.1.2)–(4.1.3), we first estimate
the parameters of the interest process and then we estimate the parameters that
appear in equation (4.1.2). For the estimation of the parameters related to the market
attention process, we will use the maximum likelihood estimation method explained
in Chapter 2. In the case of the parameters that appear in equation (4.1.2) we will
use the conditional likelihood estimation method.

4.2.1 Conditional likelihood estimator

As we have said, we estimate the parameters (aI , bI , λI) that appear in equation (4.1.3)
using the methods explained in Chapter 2. In the case of the parameters (µ, σP ) that
appear on equation (4.1.2), we will use the conditional likelihood estimation method.

We are interested in the estimation of the parameters (µ, σP ). We will assume
that the lag parameter τ is given. For the estimation of the parameters µ and σP
we will use the conditional likelihood method. Instead of using the log-price for the
estimation, we will use the logarithmic returns of the price. Because of this we define
the vector of the logarithmic returns R as

R = (R(t0, t1), R(t1, t2), . . . R(tN−1, tN )) ,

where
R(tj , tj+1) = X(tj+1)−X(tj) for j = 0, . . . , N − 1.

Let us define
rj+1 = xj+1 − xj for j = 0, 1, . . . , N − 1

as the realizations of the logarithmic returns. Let us define the random vector JI as

JI =
(
J t0
I , J t1

I , . . . , J
tN−1

I

)
,

where

J
tj
I =

∫ tj+1

tj

I−(u− τ)du for j = 0, 1 . . . N − 1.

Remark 4.2.1. Due to the fact that I is a process with almost surely càdlàg paths we
have that∫ tj+1

tj

I−(u− τ)du =

∫ tj+1

tj

I(u− τ)du almost surely for j = 0, 1 . . . N − 1.

Using similar techniques as in Chapter 3, it is possible to show that the logarithmic
returns are independent given the σ-algebra σ(JI) generated by the random variable
JI . In addition, it is possible to show that

fR
j+1 (rj+1|σ(JI)) = fN (rj+1|µ∆, v2,jR ) for j = 0, . . . , N − 1, (4.2.2)
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where fN (.|µ∆, v2,jR ) is the density function of a normal random variable with mean
µ∆ and variance v2,jR that is defined as

v2,jR = σ2
P

∫ tj+1

tj

I(u− τ)du.

Notice that the random vector R depends on the parameter θR = (λR, ξR), where

λR = (µ, σP ), ξR = (aI , bI , λI).

The parameter ξR is estimated using the methods of Chapter 2. So, in this case the
parameter of interest is the vector λR and ξR is the vector of nuisance parameters.
The conditional log-likelihood given JI is

lR (λR |σ (JI) , τ ) = log fR
1:N (r1:N |σ (JI))

=

N−1∑
j=0

log fR
j+1 (rj+1|σ (JI))

=
N−1∑
j=0

log fN (rj+1|µ∆, v2,jR ). (4.2.3)

We will maximize the function lR (. |σ (JI) , τ ) to estimate the parameter λR. It is
possible to obtain an analytical expression for the maximum likelihood estimators of
µ and σP .

Proposition 4.2.1. The maximum likelihood estimators of µ and σP are

µ̂ =

∑N−1
j=0

rj

J
tj
I

∆
∑N−1

j=0
1

J
tj
I

,

σ̂P =

√√√√√ 1

N

N−1∑
j=0

rj − µ̂∆√
J
tj
I

2

.

Proof. See proof of Proposition 3.6.2 in Chapter 3.

For computing the function lR (. |σ (JI) , τ ) we need to know the value of the
Lebesgue integral that appears in v2,jR . As we did in Chapter 3 these integrals are
estimated by the Trapezoid method:

J
tj
I =

∫ tj+1

tj

I(u− τ)du ≈
∫ tj+1

tj

(
yj−k + (u− tj)

yj+1−k − yj−k

tj+1 − tj

)
du

=
∆

2
(yj+1−k + yj−k).

The approximation is based on integrating the linear interpolation between the ob-
servations at times tj and tj+1. Due to how we define the approximation function ϕ̂I

in (4.2.1), we do not need to differentiate between the returns at times before τ and
after τ , because the conditional distribution of the returns satisfies equation (4.2.2)
independently of whether tj+1 ≤ tk = τ or tj+1 > tk = τ .
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Remark 4.2.2. As we did in Section 3.6.2 we reduce the problem of estimating the
parameter τ to a problem of model selection. We select the value of τ that maximizes
the expression:

lR
(
λ̂R |σ (JI) , τ = r∆

)
for r = 0, 1, . . .M,

where λR = (µ̂, σ̂P ) is defined as in Proposition 4.2.1.

4.2.2 Numerical experiments

Now we would like to test the techniques presented in Section 4.2.1. To that end,
we produce 20 realizations of N = 800 steps of the processes defined in equations
(4.1.2)–(4.1.3) with the following values for the parameters

aI = 4, bI = 10, λI = 5, µ = 0.1, σP = 0.3, τ = 10∆,

with time step ∆ = 0.0125, L = 20∆ and initial values P (0) = 100 and

ϕI(t) = 0.4 + 0.2 cos2
(
30t+

π

2

)
for t ∈ [−L, 0].

For each of the realizations, we estimate the parameters of the model using the tech-
niques explained in Section 4.2. Once we estimate the parameters of all of the simula-
tions, we compute the mean of the estimated parameters and its standard deviation.
The results are shown in Table 4.1. We can observe that the methods explained in
Section 4.2.1 give estimates that are near to the true value of the parameters.

Parameter True value Mean Standard deviation

aI 4 3.935182 0.1068459
bI 10 9.7396181 0.284834
λI 5 5.111530 0.064071
µ 0.1 0.084563 0.038136
σP 0.3 0.299311 0.0075191
τ 10 ∆ 10.3 ∆ 2.304343 ∆

Table 4.1: Mean and standard deviation of the estimated parameters
using the estimation method explained in Section 4.2 for 20 realiza-

tions.

4.3 Pricing vanilla options

Now we are interested in pricing European call and put options with strike price K
and expiration date T . Because the expiration date of the options is T we assume
that the time t ∈ [0, T ] and the σ-algebra F = FT .

4.3.1 Change of measure

For pricing options, it is required to be under an equivalent probability measure called
a risk-neutral measure. Under a risk-neutral measure, the discounted stock price is
a martingale. As shown by Nicolato and Venardos (2003) in Barndorff-Nielsen and
Shephard models, it is possible to obtain several risk-neutral measures and under these
measures the volatility process is still an Ornstein-Uhlenbeck process. We cannot
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apply the results of Nicolato and Venardos (2003) directly due to the presence of the
delay parameter τ .

Our objective is to construct a risk-neutral measure Q under which the discounted
stock price is a martingale, and the interest process is still an inverse Gaussian
Ornstein-Uhlenbeck process, possibly with different parameters. To do that, we per-
form the change of measure in two steps. First, we change to a measure under which
the market attention process I is an inverse Gaussian Ornstein-Uhlenbeck process with
different parameters aI and bI . Finally, from this intermediate measure we change to
the desired risk-neutral measure.

First, we would like to find an equivalent Q∗ such that the Lévy process ZI has
the Lévy triplet (γ̃I , 0, ṽI) where

ṽI(dx) = w̃I(x)dx =
ãI

2
√
2π

x−3/2(1 + b̃2Ix)e
− 1

2
b̃2Ix1(0,∞)(x)dx, (4.3.1)

γ̃I =

∫
|x|≤1

xṽI(dx), (4.3.2)

with ãI , b̃I > 0. We choose the Lévy triplet (γ̃I , 0, ṽI) as shown in equations (4.3.1)–
(4.3.2), because in that way the interest process I is still an IG(ãI , b̃I)-Ornstein-
Uhlenbeck process. That is, under this new proposed probability measure Q∗ the
interest process has different parameters ãI and b̃I , but it is still an inverse Gaussian
Ornstein-Uhlenbeck process with parameter λI > 0.

Proposition 4.3.1. If ãI = aI then there exists an equivalent probability measure Q∗

with respect to the measure P such that the Lévy process ZI has Lévy triplet (γ̃I , 0, ṽI)
defined as in equations (4.3.1)–(4.3.2).

The probability measure Q∗ can be expressed as

Q∗(A) =

∫
A
Z∗(T )dP for A ∈ F , (4.3.3)

where the process Z∗ is defined as

Z∗(t) = exp

lim
ϵ↓0

 ∑
s≤t

|∆ZI(s)|>ϵ

log(H(∆ZI(s)))− t

∫
|x|>ϵ

(H(x)− 1)vI(dx)



(4.3.4)

for t ∈ [0, T ], with

H(x) =
1 + b̃2Ix

1 + b2Ix
e−

x
2
(b̃2I−b2I)1(0,∞)(x).

Proof. Let us consider the function H to be the function defined as:

H(x) =
ãI
aI

1 + b̃2Ix

1 + b2Ix
e−

x
2
(b̃2I−b2I)1(0,∞)(x).

Notice that vI and ṽI satisfy the following relation:

ṽI(dx) = H(x)vI(dx).
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Nicolato and Venardos (2003, p. 455) showed that if ãI = aI then we have that∫
R

(
1−

√
H(x)

)2
vI(dx) <∞.

Finally notice that

γ̃I =

∫
|x|≤1

x(H(x)− 1)vI(dx) + γI

=

∫
|x|≤1

xṽI(dx)−
∫
|x|≤1

xvI(dx) +

∫
|x|≤1

xvI(dx)

=

∫
|x|≤1

xṽI(dx).

So, from Proposition 1.1.3 there is an equivalent measure Q∗ under which ZI is a Lévy
process with Lévy triplet (γ̃I , 0, ṽI). In addition, Q∗ is defined as in equation (4.3.3)
and the process Z∗ is defined as in equation (4.3.4).

In Proposition 4.3.1 we showed that ZI is the background driving Lévy process of
an IG(aI , b̃I)-Ornstein-Uhlenbeck process with parameter λI > 0 under the measure
Q∗. Notice that the market attention process I is still an inverse Gaussian process
and its parameters are the same as in the physical measure except for the parameter
bI ; that has changed to the parameter b̃I .

Under the probability measure Q∗ the process ZI is still a Lévy process. But what
happens with the process WP , it is still a Brownian motion? It is possible to show
that under the measure Q∗ the process WP is a Brownian motion and the processes
WP and ZI are independent (see Section B.1).

Now we would like to find an equivalent measure Q with respect to the measure
Q∗ under which the discounted stock price is a martingale. To that end, let us define
the process Z as

Z(t) = exp

{
−
∫ t

0
θP (s)dWP (s)−

1

2

∫ t

0
θ2P (s)ds

}
for t ∈ [0, T ], (4.3.5)

where θP is an adapted process that is defined as

θP (t) =
µ+

σ2
P
2 I−(t− τ)− r

σP
√
I−(t− τ)

for t ∈ [0, T ]. (4.3.6)

We show in Theorem 4.3.1 that Z is a martingale with respect to (Ft)t∈[0,T ] then by
the Girsanov theorem the process W ∗

P defined as

W ∗
P (t) = WP (t) +

∫ t

0
θP (s)ds for t ∈ [0, T ], (4.3.7)

is a Brownian motion under the measure Q, where

Q(A) =

∫
A
Z(T )dQ∗ ∀A ∈ F .

Furthermore, the price process P satisfies the stochastic differential equation

dP (t) = rP (t)dt+ σPP (t)
√

I−(t− τ)dW ∗
P (t). (4.3.8)
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It is possible to show that when the price process P satisfies the equation (4.3.8), then
the discounted stock price is a martingale with respect to (Ft)t∈[0,T ].

Theorem 4.3.1. The process (Z(t))t∈[0,T ] defined in (4.3.5) is a martingale with
respect to (Ft)t∈[0,T ].

Proof. We know that Z is a non-negative local martingale because Z is the stochastic
exponential of a local martingale (Klebaner, 2012, p. 227). Hence it is a supermartin-
gale (Klebaner, 2012, Theorem 7.23). Because of that, it is enough to prove that
E[Z(t)] = Z(0) = 1. Conditioning with respect to FZI

t and using Proposition 1.4.1,
we have that

E[Z(t)] = E

[
exp

{
−
∫ t

0
θP (s)dWP (s)−

1

2

∫ t

0
θ2P (s)ds

}]
= E

[
exp

{
−1

2

∫ t

0
θ2P (s)ds

}
E

[
exp

{
−
∫ t

0
θP (s)dWP (s)

}∣∣∣∣FZI
t

]]
= E

[
exp

{
−1

2

∫ t

0
θ2P (s)ds

}
exp

{
1

2

∫ t

0
θ2P (s)ds

}]
= 1 for t ∈ [0, T ].

In this case under the measure Q the process ZI is still a Lévy process with triplet
(γ̃I , 0, ṽI) and the processes W ∗

P and ZI are independent (see SectionB.2). In addition,
because P is equivalent to Q∗ and Q∗ is equivalent to Q, we have that P is equivalent
to Q. We have just proved that there exists an equivalent probability measure Q
with respect to P such that the price process P satisfies the equation (4.3.8) and the
interest process is an IG(aI , b̃I)-Ornstein-Uhlenbeck process with parameter λI > 0.

We still have to show that the discounted stock price is a martingale with respect
to the filtration (Ft)t∈[0,T ]. Using the Itô formula it is easy to see that under Q the
price P can be written as

P (t) = P (0) exp

{
rt−

σ2
P

2

∫ t

0
I−(u− τ)du+ σP

∫ t

0

√
I−(u− τ)dW ∗

P (u)

}
(4.3.9)

for t ∈ [0, T ]. Now we would like to show that

EQ

[
P̃ (t) |Fs

]
= P̃ (s) for t, s ∈ [0, T ] such that t ≥ s,

where EQ symbolizes the expected value under the measure Q and P̃ is the discounted
stock price, that is defined as

P̃ (t) = e−rtP (t) for t ∈ [0, T ].

Proposition 4.3.2. The discounted price process P̃ is a martingale with respect to
the filtration (Ft)t∈[0,T ] on the probability space (Ω,F ,Q).

Proof. From equation (4.3.9) we know that P̃ satisfies the following equation:

P̃ (t) = P̃ (0) exp

{
−
σ2
P

2

∫ t

0
I−(u− τ)du+ σP

∫ t

0

√
I−(u− τ)dW ∗

P (u)

}
.
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Notice that the process P̃ is the stochastic exponential of a local martingale, hence
it is a non-negative local martingale (Klebaner, 2012, p. 227) and hence it is a super-
martingale (Klebaner, 2012, Theorem 7.23). So it is enough to show that

EQ[P̃ (t)] = P̃ (0).

Conditioning with respect to FZI
t and using Proposition 1.4.1, we have that

EQ[P̃ (t)] = EQ

[
P̃ (0) exp

{
−
σ2
P

2

∫ t

0
I−(u− τ)du+ σP

∫ t

0

√
I−(u− τ)dW ∗

P (u)

}]
= P̃ (0)EQ

[
exp

{
−
σ2
P

2

∫ t

0
I−(u− τ)du

}
EQ

[
exp

{
σP

∫ t

0

√
I−(u− τ)dW ∗

P (u)

}∣∣∣∣FZI
t

]]
= P̃ (0).

In addition, the discounted price process P̃ is also a martingale with respect to
the delayed filtration

(
F̃t

)
t∈[0,T ]

.

Corollary 4.3.1. The discounted price process P̃ is a martingale with respect to the
filtration (F̃t)t∈[0,T ] on the probability space (Ω,F ,Q).

Proof. Since F̃t ⊂ Ft for all t ∈ [0, T ], we obtain by application of Proposition 4.3.2:

EQ

[
P̃ (t)

∣∣∣ F̃s

]
= EQ

[
EQ

[
P̃ (t)

∣∣∣Fs

]∣∣∣ F̃s

]
= EQ

[
P̃ (s)

∣∣∣ F̃s

]
= P̃ (s),

where T ≥ t ≥ s ≥ 0 and the last equality comes from the fact that the process P̃ is
adapted with respect to the filtration (F̃t)t∈[0,T ].

4.4 Pricing call options

We showed that under the risk-neutral probability, the price process P satisfies the
following equation:

dP (t) = rP (t)dt+ σP
√

I−(t− τ)dW ∗
P with P (0) = p ∈ R+, (4.4.1)

where r is a known interest rate, W ∗
P is a Brownian motion, and σP > 0. In addition

we have that the interest process satisfies an IG(aI , b̃I)-Ornstein-Uhlenbeck process
with parameter λI > 0, so the interest I satisfies the stochastic differential equation:

dI(t) = −λII(t)dt+ dZI(λIt) with I(0) = y0, (4.4.2)

where ZI is a Lévy process with Lévy triplet (γ̃I , 0, ṽI) defined as in (4.3.1)–(4.3.2).
In Chapter 2 we have seen that equation (4.4.2) has the following strong solution

I(t) = e−λI t

(
I(0) +

∫ t

0
eλIsdZI(λIs)

)
for t ∈ [0, T ].
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Define the process Z∗
I as

Z∗
I (t) =

∫ t

0
eλIsdZI(λIs) for t ∈ [0, T ].

So, we can express I as

I(t) = e−λI t (I(0) + Z∗
I (t)) for t ∈ [0, T ]. (4.4.3)

From the right hand side of equation (4.4.3) we have that the random variable Z∗
I (t)

identifies the distribution of I(t). From Chapter 2 we have that the characteristic
function of the random variable Z∗

I (t) is

ΦZ∗
I (t)(u) = e

aI

(√
b̃2I−2iu−

√
b̃2I−2iueλIt

)
for all u ∈ R. (4.4.4)

In some cases, we will be interested in the process I multiplied by some positive
constant C > 0. In this case, we will be interested in the distribution of the random
variable CI(t).

Proposition 4.4.1. If V is the process defined as V (t) = CI(t) for t ∈ [0, T ] and
C > 0 then V is an IG(aV , bV )-Ornstein-Uhlenbeck process with parameter λV > 0,
where

aV =
√
CaI , (4.4.5)

bV =
b̃I√
C
, (4.4.6)

λV = λI . (4.4.7)

Proof. For equation (4.4.3) we have that the process V satisfies

V (t) = e−λI t (CI(0) + CZ∗
I (t))

= e−λI t (V (0) + CZ∗
I (t))

= e−λI t (V (0) + Z∗
V (t)) , (4.4.8)

where Z∗
V (t) = CZ∗

I (t) for t ∈ [0, T ]. Equation (4.4.8) shows that the distribution of
V (t) is determined by the distribution of Z∗

V (t). Let u ∈ R, from the result in (4.4.4)
we have that the characteristic function of Z∗

V (t) is

ΦZ∗
V (t)(u) = E

[
eiuCZ∗

I (t)
]

= e
aI

(√
b̃2I−2iCu−

√
b̃2I−2iuCeλIt

)

= e
aI

√
C

√(
b̃I√
C

)2

−2iu−

√(
b̃I√
C

)2

−2iueλIt


. (4.4.9)

Notice that from equations (4.4.8) and (4.4.9) we have that V is an IG(aV , bV )-
Ornstein-Uhlenbeck process with parameter λV > 0, where aV , bV and λV are defined
as in equations (4.4.5), (4.4.6) and (4.4.7) respectively.

As in Chapter 3 for pricing vanilla options with expiration date T and strike K,
we need to differentiate between the cases when T ≤ τ and the cases when T > τ . In
the case when T ≤ τ we have a generalization of the Black-Scholes-Merton formula
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for the price of a call option (see Chapter 3 Section 3.7.3). When the expiration date
T > τ we need to compute the characteristic function of X(T ).

Proposition 4.4.2. Let u ∈ R, the characteristic function of X(T ) can be expressed
as:

ΦX(T )(u) = eiurT−σ2
P
2

ϵ0(iu+u2)ΦY (T−τ)(u),

where Y is a process that satisfies the following stochastic differential equation

dY (t) = −1

2
σ2
P I

−(t)dt+ σP
√
I−(t)dB∗

P (t) with Y (0) = x,

where B∗
P is a Brownian motion, ϵ0 is defined as

ϵ0 =

∫ 0

−τ
ϕI(s)ds

and the characteristic function of Y (t) is

ΦY (t)(u)

= exp

{
iux+

1

2
λ−1
V (−u2 − iu)

(
1− e−λV t

)
V (0) + aV

(√
b2V − 2f1(u)− bV

)}

exp

 2aV f2(u)√
2f2(u)− b2V

[
arctan

(√
b2V

2f2(u)− b2V

)
− arctan

(√
b2V − 2f1(u)

2f2(u)− b2V

)] ,

(4.4.10)

with

f1(u) = −1

2
(u2 + iu)

(
1− e−λV t

)
λ−1
V ,

f2(u) = −1

2
(u2 + iu)λ−1

V ,

aV = σPaI , (4.4.11)

bV =
b̃I
σP

, (4.4.12)

λV = λI , (4.4.13)
V (0) = σ2

P I(0).

Proof. As we showed in Section 3.7.4, the random variable X(T ) can be written as

X(T ) = rT − 1

2

∫ τ

0
σ2
Pϕ

I(s− τ)ds+

∫ τ

0
σP

√
ϕI(s− τ)dW ∗

P (s)

+x− 1

2

∫ T−τ

0
σ2
P I

−(s)ds+

∫ T−τ

0
σP
√
I−(s)dB∗

P (s),

where this result comes from the application of Theorem 1.2.1 and the process B∗
P

defined as B∗
P (t) = W ∗

P (t+ τ)−W ∗
P (τ) for t ≥ 0, is a Brownian motion. Let us now

define the process Y as

Y (t) = x− 1

2

∫ t

0
σ2
P I

−(s)ds+

∫ t

0
σP
√

I−(s)dB∗
P (s) for t ≥ 0. (4.4.14)
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From equation (4.4.14) we have that Y satisfies the stochastic differential equation

dY (t) = −1

2
σ2
P I

−(t)dt+ σP
√
I−(t)dB∗

P (t) with Y (0) = x.

Notice that the random variable X(T ) can be expressed in terms of the random
variable Y (T − τ) as

X(T ) = rT − 1

2

∫ τ

0
σ2
Pϕ

I(s− τ)ds+

∫ τ

0
σP

√
ϕI(s− τ)dW ∗

P (s) + Y (T − τ).

Because B∗
P (t) is independent of FW ∗

P
τ for all t ≥ 0 then we have that Y (t) is inde-

pendent of FW ∗
P

τ for all t ≥ 0.
Let u ∈ R, if we condition with respect to the σ-algebra FW ∗

P
τ then we have that

the characteristic function of X(T ) can be expressed as

ΦX(T )(u) = E
[
eiurT− iu

2

∫ τ
0 σ2

PϕI(s−τ)ds+iu
∫ τ
0 σP

√
ϕI(s−τ)dW ∗

P (s)+iuY (T−τ)
]

= EQ

[
eiurT− iu

2

∫ τ
0 σ2

PϕI(s−τ)ds+iu
∫ τ
0 σP

√
ϕI(s−τ)dW ∗

P (s)
]
EQ

[
eiuY (T−τ)

]
= eiurT−σ2

P
2

ϵ0(iu+u2)EQ

[
eiuY (T−τ)

]
.

For computing the characteristic function of X(T ) first we need to compute the char-
acteristic function of Y (T − τ). If we define the process V as V (t) = σ2

P I(t) for t ≥ 0
then we have from Proposition 4.4.1 that V is an IG(aV , bV )-Ornstein-Uhlenbeck
process with parameter λV > 0, where

aV = σPaI ,

bV =
b̃I
σP

,

λV = λI .

The process Y (T − τ) can be written in terms of the process V as

Y (T − τ) = x− 1

2

∫ T−τ

0
V −(u)du+

∫ T−τ

0

√
V −(u)dB∗

P (u).

The process (Y, V ) is a Barndorff-Nielsen and Shephard model (Barndorff-Nielsen &
Shephard, 2001) and the characteristic function of Y (t) with t ≥ 0, that is defined as

ΦY (t)(u) = E
[
eiuY (t)

]
for u ∈ R

satisfies the equation (4.4.10) (Schoutens, 2003, p. 88). We have just shown that

ΦX(T )(u) = eiurT−σ2
P
2

ϵ0(iu+u2)ΦY (T−τ)(u).

Now that we are able to compute the characteristic function of the log-price at
time T , we would like to know when the exponential moments of the log-price are
finite.
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Proposition 4.4.3. Let δ̃ ∈ R, then we have that

EQ[e
δ̃X(T )] <∞, for all δ̃ ∈ (θ−, θ

+),

where

θ+ =
1

2
+

√
1

4
+

b̃2I
σ2
P

λI

1− e−λI(T−τ)
, (4.4.15)

θ− =
1

2
−

√
1

4
+

b̃2I
σ2
P

λI

1− e−λI(T−τ)
. (4.4.16)

Proof. As we have shown in the proof of Proposition 4.4.2 we can express the random
variable X(T ) as

X(T ) = rT − 1

2

∫ τ

0
σ2
Pϕ

I(u− τ)du+

∫ τ

0
σP

√
ϕI(u− τ)dW ∗

P (u) + Y (T − τ),

where

Y (t) = x− 1

2

∫ t

0
V −(u)du+

∫ t

0

√
V −(u)dB∗

P (u) for t ≥ 0,

the process B∗
P defined as B∗

P (t) = W ∗
P (t+τ)−W ∗

P (τ) for t ≥ 0, is a Brownian motion
and V (t) = σ2

P I(t) for t ≥ 0. Remember that by Proposition 4.4.1 the process V is
an IG(aV , bV )-Ornstein-Uhlenbeck process with parameter λV > 0 where aV , bV and
λV satisfy the equations (4.4.11), (4.4.12) and (4.4.13) respectively.

Notice that B∗
P (t) is independent of FW ∗

P
τ for all t ≥ 0, hence Y (T − τ) is inde-

pendent of FW ∗
P

τ . Conditioning with respect to FW ∗
P

τ we can express the exponential
moment EQ[e

δ̃X(T )] as

EQ

[
eδ̃X(T )

]
= EQ

[
eδ̃rT− δ̃

2

∫ τ
0 σ2

PϕI(u−τ)du+δ̃
∫ τ
0 σP

√
ϕI(u−τ)dW ∗

P (u)

EQ

[
eδ̃Y (T−τ)

∣∣∣FW ∗
P

τ

]]
= EQ

[
eδ̃rT− δ̃

2

∫ τ
0 σ2

PϕI(u−τ)du+δ̃
∫ τ
0 σP

√
ϕI(u−τ)dW ∗

P (u)
]

EQ

[
eδ̃Y (T−τ)

]
. (4.4.17)

The first expected value that appears in equation (4.4.17) is the moment generating
function of a normal random variable, hence this expectation is finite. So EQ

[
eδ̃X(T )

]
will be finite if and only if EQ

[
eδ̃Y (T−τ)

]
is finite.

From Nicolato and Venardos (2003) we have that EQ

[
eδ̃Y (T−τ)

]
is finite if

δ̃ ∈ (θ−, θ
+),

where

θ+ = inf
0≤s<T−τ

{
1

2
+

√
1

4
+ 2θ̂ϵ(s, T − τ)−1

}
,

θ− = sup
0≤s<T−τ

{
1

2
−
√

1

4
+ 2θ̂ϵ(s, T − τ)−1

}
,
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the function ϵ(s, t) is defined as

ϵ(s, t) =
1− e−λV (T−s)

λV
for s ∈ [0, t].

and

θ̂ = sup

θ ∈ R :
aV θ√
b2V − 2θ

<∞

 .

It is easy to see that θ̂ =
b2V
2 , so the open interval (θ−, θ+) can be written as

θ+ = inf
0≤s<T−τ

{
1

2
+

√
1

4
+ b2V

λV

1− e−λV (T−τ−s)

}
,

θ− = sup
0≤s<T−τ

{
1

2
−
√

1

4
+ b2V

λV

1− e−λV (T−τ−s)

}
.

Because ϵ(s, T − τ)−1 is an increasing function with respect to s, when s ∈ [0, T − τ ]
we have that θ+ and θ− satisfy the equations (4.4.15) and (4.4.16) respectively.

4.5 Market option prices

Using the model that is introduced in this chapter, we would like to price European
options and compare the results obtained with the true market prices. We use the
same data that is explained in Chapter 1. As in that chapter, we compute the root
mean square error and the relative root mean square error in order to evaluate the
performance of our model.

As we saw in Chapter 2, we know that the logarithm of the number of unique
active addresses follows an inverse Gaussian Ornstein-Uhlenbeck process. Using this
proxy for the interest, we estimate the parameters of the model using the techniques
explained in Section 4.2. The estimated parameters for each temporal window are
shown in Figure 4.1 and Figure 4.2. In Figure 4.1, we show the estimated parameters
of the interest process, as in Chapter 2 the values change through time.

In Figure 4.2 we show the estimated parameters that appear on equation (4.1.4).
The estimated values of the parameter τ are in general different from zero.

With the values of the estimated parameters shown in Figures 4.1–4.2 we compute
the option prices with b̃I = bI . That is, firstly we compute the option prices with an
interest process I, which has the same parameters under the probability P and under
the probability Q.

As we can observe in Figure 4.1, the estimated values of the parameter λI are above
100. For these values of λI the computer is not able to compute the characteristic
function shown in Proposition 4.4.2. Since the value of λI is high, the following value
that appears in the characteristic function satisfies the following:

arctan

(√
b2V − 2f1(u)

2f2(u)− b2V

)
≈ arctan(i).

But the complex arctan function is not defined at i, hence the computer is not able
to compute the characteristic function. Because of that, we need an approximation
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formula to be able to compute the prices of European options. This approximation is
developed in Section 4.5.1.

4.5.1 Approximation

Due to the fact that it is not possible to use the characteristic function obtained in
Proposition 4.4.2 for computing options with expiration date T > τ , we will use a
formula that approximates the value of an European call option with strike price K
and expiration date T . Here, we will assume that T > τ .

If we define the process V as

V (t) = σ2
P I(t) for t ≥ 0.

It is not difficult to see that the price of an European call option with strike K and
expiration date T > τ > 0 can be expressed as:

C(0) = E [CBS(v)] (4.5.1)

where
CBS(v) = P (0)ϕ (d1(v))−Ke−rTϕ(d2(v))

and

d1(v) =
log(P (0)

K ) + (r + 1
2v)T√

vT
,

d2(v) = d1(v)−
√
vT ,

ϕ(x) =

∫ x

−∞

1√
2π

e
−z2

2 dz,

v =
1

T

∫ T

0
V (s− τ)ds.

Equation (4.5.1) is usually called the Hull-White formula (Hull & White, 1987).
Proceeding as in the work of Hull and White (1987), we can use the Taylor ex-

pansion to approximate equation (4.5.1) in terms of the moments of v.

Proposition 4.5.1. The price of the call option can be expressed as:

C(0) = CBS(µv) +
1

2
σ2
v

∂2CBS

∂v2
(µv) + E[Err],

where

µv = E[v]

σ2
v = V ar[v]

Err =
1

6
(v − µv)

3∂
3CBS

∂v3
(ϵ), and ϵ is a point between v and µv.

Proof. Let us perform the second order Taylor expansion of the function CBS(.)
around the value µv:

CBS(v) = CBS(µv) + (v − µv)
∂CBS

∂v
(µv) +

1

2
(v − µv)

2∂
2CBS

∂v2
(µv) + Err, (4.5.2)
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where the error term is

Err =
1

6
(v − µv)

3∂
3CBS

∂v3
(ϵ), and ϵ is a point between v and µv.

From equations (4.5.2) and (4.5.1) we obtain that

C(0) = E [CBS(v)]

= E

[
CBS(µv) + (v − µv)

∂CBS

∂v
(µv) +

1

2
(v − µv)

2∂
2CBS

∂v2
(µv) + Err

]
= CBS(µv) + E[(v − µv)]

∂CBS

∂v
(µv) +

1

2
E[(v − µv)

2]
∂2CBS

∂v2
(µv) + E[Err]

= CBS(µv) +
1

2
σ2
v

∂2CBS

∂v2
(µv) + E[Err].

If we are able to compute the first moment and the second moment of the random
variable v = 1

T

∫ T
0 V (s− τ)ds then we can apply Proposition 4.5.1 to approximate the

value of an European call option. Of course, we also need to compute the derivative:

∂2CBS

∂v2
.

Proposition 4.5.2. It is possible to show that:

∂2CBS

∂v2
(v) =

1

4v3/2
P (0)

√
T√

2π
exp

{
−d21
2

}
(−1 + d1(v)d2(v))

Proof. In the Black-Scholes model we have that the price of call option is:

CBS(σ
2) = P (0)ϕ

(
d1(σ

2)
)
−Ke−rTϕ(d2(σ

2))

where

d1(σ
2) =

log
(
P (0)
K

)
+
(
r + 1

2σ
2
)
T

√
σ2T

,

d2(σ
2) = d1(σ

2)−
√
σ2T ,

and σ > 0 (Gulisashvili, 2012, p. 235). In addition, the first derivative with respect
to σ (called vega) and the second derivative with respect to σ (called volga) have the
following form:

∂CBS

∂σ
(σ2) =

P (0)
√
T√

2π
exp

{
−d21(σ2)

2

}
, (4.5.3)

∂2CBS

∂σ2
(σ2) =

P (0)
√
T√

2πσ
d1(σ

2)d2(σ
2) exp

{
−d21(σ2)

2

}
, (4.5.4)

(Gulisashvili, 2012, p. 237). Let us define v = σ2, then we have:

∂CBS

∂σ
(σ2) =

∂CBS

∂σ
(v) =

∂CBS

∂v
(v)

∂v

∂σ
=

∂CBS

∂v
(v)2σ
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hence:

∂CBS

∂v
(v) =

∂CBS

∂σ
(v)

1

2
√
v

=
1

2
√
v

P (0)
√
T√

2π
exp

{
−d21(v)

2

}
=

1

2σ

P (0)
√
T√

2π
exp

{
−d21(σ2)

2

}
.

Let us define the function f as:

f(v) =
1

2
√
v

P (0)
√
T√

2π
exp

{
−d21(v)

2

}
=

1

2σ

P (0)
√
T√

2π
exp

{
−d21(σ2)

2

}
= f(σ2).

By the chain rule, we have that:

∂f

∂σ
(v) =

∂f

∂v
(v)

∂v

∂σ
=

∂f

∂v
(v)2σ.

Lastly, we have that:

∂f

∂σ
(σ2) = − 1

2σ2

P (0)
√
T√

2π
exp

{
−d21(σ2)

2

}
+

1

2σ

∂

∂σ

(
P (0)

√
T√

2π
exp

{
−d21(σ2)

2

})

= − 1

2σ2

P (0)
√
T√

2π
exp

{
−d21(σ2)

2

}
+

1

2σ

P (0)
√
T√

2πσ
d1(σ

2)d2(σ
2) exp

{
−d21(σ2)

2

}
=

1

2σ2

P (0)
√
T√

2π
exp

{
−d21(σ2)

2

}(
−1 + d1(σ

2)d2(σ
2)
)
,

where the second equality comes from equation (4.5.4). So, at the end we have just
shown that:

∂2CBS

∂v2
(v) =

∂2f

∂v2
(v)

=
1

2σ

∂f

∂σ
(σ2)

=
1

4σ3

P (0)
√
T√

2π
exp

{
−d21(σ2)

2

}(
−1 + d1(σ

2)d2(σ
2)
)

=
1

4v3/2
P (0)

√
T√

2π
exp

{
−d21(v)

2

}
(−1 + d1(v)d2(v)) ,

as required.

4.5.2 Moments

Now we would like to compute the first and second moments of the random variable
v. In this case, from Proposition 4.4.1 we have that V is an IG(aV , bV )-Ornstein-
Uhlenbeck process with parameter λV > 0 where aV , bV and λV are defined as in
equations (4.4.11)–(4.4.13) respectively. We define the process ZV = (ZV (t))t≥0 as
the background driven Lévy process of the Ornstein-Uhlenbeck process V . Since V is
an inverse Gaussian Ornstein-Uhlenbeck process, we have that the cumulant function
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of the random variable ZV (1) is:

k(θ) = log
(
E
[
eθZV (1)

])
= θaV (b

2
V − 2θ)−1/2 for θ ∈ R, (4.5.5)

(Nicolato & Venardos, 2003, p. 449). Remember that the n-th cumulant of ZV (1) is
defined as

kn =
∂nk

∂θn
(θ)

∣∣∣∣
θ=0

, (4.5.6)

(Pascucci, 2011, p. 460). Based in the cumulant function, we can use the following
theorem to compute the moments of v.

Theorem 4.5.1. (Barndorff-Nielsen & Shephard, 2003, p. 289) If k1, k2 are the first
two cumulants of the random variable ZV (1), then for t ≥ 0 we have:

E

[∫ t

0
V (s)ds

]
=

1− e−λV t

λV
(V (0)− k1) + k1t, (4.5.7)

V ar

[∫ t

0
V (s)ds

]
=

k2
λ2
V

(
λV t− 2 + 2e−λV t +

1

2
− 1

2
e−λV t

)
. (4.5.8)

From equations (4.5.5) and (4.5.6) we have that:

k1 = aV (b
2
V − 2θ)−1/2 + θaV (b

2
V − θ)−3/2

∣∣∣
θ=0

=
aV
bV

,

k2 = aV (b
2
V − θ)−3/2 + aV (b

2
V − 2θ)−3/2 + θaV 3(b

2
V − 2θ)−5/2

∣∣∣
θ=0

=
2aV
b3V

.

The integral v can be expressed as

v =
1

T

∫ T

0
V (s− τ)ds =

ϵ1
T

+
1

T

∫ T−τ

0
V (s)ds,

where ϵ1 =
∫ τ
0 V (s− τ)ds = σ2

P

∫ τ
0 ϕI(s− τ)ds.

So at the end we can write:

µv = E

[
1

T

∫ T

0
V (s− τ)ds

]
=

ϵ1
T

+
1

T
E

[∫ T−τ

0
V (s)ds

]
,

σ2
v = V ar

[
1

T

∫ T

0
V (s− τ)ds

]
=

1

T 2
V ar

[∫ T−τ

0
V (s)ds

]
.

4.5.3 Numerical experiments

For checking the reliability of the approximation, we generate European call prices
using the approximation method explained in Section (4.5.1) and prices using the
characteristic function method explained in Section (4.4). We pick the following values
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for the parameters:

σP = 0.5, aI = 4, bI = 10, λI = 5, τ = 10∆,

∆ = 1
365 and initial values P (0) = 100 and

ϕI(t) = 0.4 + 0.2 cos2
(
30t+

π

2

)
for t ∈ [−τ, 0].

As we can see in Table 4.2, the values given by the approximation formula are
near to the values given by the characteristic function.

Expiration Date Strike Approx. values Characteristic function

1 100 7.372011 7.372036
1 200 0.000682 0.000687
1 50 50.000341 50.000343
2 100 10.540667 10.540675
2 200 0.053607 0.053604
2 50 50.026803 50.026802

0.5 100 5.10482 5.10488
0.5 200 2.162681210−7 2.7930110−7

Table 4.2: Prices of European call options given by the approx-
imation formula in Proposition 4.5.1 and by characteristic function

obtained in Proposition 4.4.2.

4.5.4 Results

Using the approximation formula constructed in Section 4.5.1, we price the market
options with b̃I = bI . That is, the interest process satisfies the same distribution
under the physical measure P and under the risk-neutral measure Q. The root mean
square error and the relative root mean square error obtained for each date are shown
in Figure 4.3 and in Figure 4.4.

As we saw in Section 4.3.1, there are different risk-neutral measures Q for the
different values of b̃I . That is, we can select different values for the parameter b̃I for
pricing options. As we did in Chapter 3, we select the parameter b̃I that minimizes
the relative root mean square error. The values for the root mean square error and
the relative root mean square error are shown in Figures 4.3–4.4. In Figure 4.5 we
show the values of the estimated bI and the calibrated b̃I . We can observe that the
optimal value of b̃I is on some occasions bigger than the estimated value of bI and on
some occasions smaller. We can observe that the estimated bI is more stable than the
calibrated one.

In addition, we compute the prices given by the Black-Scholes-Merton model.
The parameters of the model are estimated by the maximum likelihood estimator
method using historical data. The temporal windows used for this model are the
same as the ones defined above. The root mean square error and the relative root
mean square error obtained by the Black-Scholes-Merton model are shown in Figure
4.3 and in Figure 4.4 respectively. The results obtained by the Black-Scholes-Merton
model are similar to the proposed model. However, when we calibrate the proposed
model, the model defined in Section 4.1 obtains better results. As we did in Chapter
3, we calculate the ratio between the relative root mean square error obtained by
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the proposed model and the relative root mean square error obtained by the Black-
Scholes-Merton model. This is shown in Figure 4.6. The results shown in Figure 4.6
are in line with the results shown in Figures 4.3 and 4.4.

4.6 Conclusion and future work

In this chapter, we proposed a model for pricing Bitcoin options which is similar to the
model proposed in Chapter 3, but in this case we incorporate jumps or discontinuities
into the volatility path. We showed how the estimation of the parameters of the
model can be performed and how we can price options with it. In addition, we also
constructed an approximation formula for European call options for the cases when
the parameters are high, and it is not possible to compute the characteristic function.
We also compared the prices given by our model with the real market data and showed
that our model gives better results than the Black-Scholes-Merton model.

In the model developed in this chapter, we assume that the Brownian motion WP

and the Lévy process ZI are independent. We would like to have asymmetry in the
distribution of the returns. One way of obtaining asymmetry in the returns is by use
of the following model

X(t) = x+ µt+

∫ t

0
σP
√
I−(u− τ)dWP (u)

+1(τ,∞)(t)ρZI(λI((t ∨ τ)− τ)) with X(0) = x ∈ R, (4.6.1)
dI(t) = −λII(t)dt+ dZI(λIt) when t > 0 (4.6.2)

with I(t) = ϕI(t) when t ∈ [−L, 0],

where µ, ρ ∈ R, σP > 0, the processes WP , ZI are independent and the process I is
an IG(aI , bI)-Ornstein-Uhlenbeck process with parameter λI > 0. In future work we
would like to study the model defined in equations (4.6.2)–(4.6.2).

In the Barndorff-Nielsen and Shephard models (Barndorff-Nielsen & Shephard,
2001), the volatility process could be different types of Ornstein-Uhlenbeck processes.
In our case, we only use an inverse Gaussian Ornstein-Uhlenbeck process. However,
other types of Ornstein-Uhlenbeck processes could be used. For example, in the
literature the gamma Ornstein-Uhlenbeck process or the tempered stable Ornstein-
Uhlenbeck process are used(Schoutens, 2003, p.68–70).
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(a) Estimation of the parameter aI .

(b) Estimation of the parameter bI .

(c) Estimation of the parameter λI .

Figure 4.1: Estimated values for the parameters of the model defined
in Section 4.1 related to the market attention process, when the proxy
of the market interest is the logarithm of the number of unique active

addresses.
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(a) Estimation of the parameter µ.

(b) Estimation of the parameter σP .

(c) Estimation of the parameter τ .

Figure 4.2: Estimated values for the parameters of the model de-
fined in Section 4.1 related to the price equation, when the proxy of
the market interest is the logarithm of the number of unique active

addresses.
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Figure 4.3: Root mean square error when the proxy of the interest
is the logarithm of the number of unique active addresses.

Figure 4.4: Relative root mean square error when the proxy of the
interest is the logarithm of the number of unique active addresses.

Figure 4.5: Calibrated values for bI when the proxy of the interest
is the logarithm of the number of unique active addresses.
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Figure 4.6: Relative root mean square error given by our model
divided by the relative root mean square error obtained by the Black-
Scholes-Merton model, when the proxy of the market interest is the

logarithm of the number of unique active addresses.
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Chapter 5

Time changed models

5.1 Introduction and proposed models

In the models that were proposed in Chapter 3 and in Chapter 4, the volatility of
the log-prices is proportional to the market attention process. That is, in previous
chapters we proposed stochastic volatility models in which the volatility is delayed by
a positive parameter.

It is possible to obtain the effects of a stochastic volatility model by the use of a
stochastic time changed model (Carr, Geman, Madan, & Yor, 2003). Apart from that,
it has been observed that the logarithmic returns of Bitcoin prices tend to have fat
tails and are not normally distributed (Chan, Chu, Nadarajah, & Osterrieder, 2017).
Wang, Hou, Chen, and Härdle (2020) estimated several stochastic volatility models
using Bitcoin prices. The results showed that the models that produce the best fit
are the ones with jumps in the price and volatility structure. This seems to indicate
that the conditional distribution of the returns given the volatility does not follow a
normal distribution. This motivates the model proposed in this chapter.

Let (Ω,F ,P) be a probability space. In this space, let us define the price process
P as in equation (5.1.2), and the interest process I, as the strong solution of equation
(5.1.3). In addition, we define the stochastic time changed process TI as

TI(t) =

∫ t

0
I(s− τ)ds, for t ≥ 0. (5.1.1)

The process TI is positive and increasing, since we will assume that the process I is
positive with probability one. So at the end we propose the following model:

P (t) = p exp

{(
µ− σ2

2

)
t+ σWP (t) +XP (TI(t))

}
,

for t ≥ 0 with P (0) = p > 0, (5.1.2)

where µ ∈ R, σ > 0, τ ∈ [0, L] and L > 0, WP is a Brownian motion, XP is a Lévy
process and I is the interest process. The processes WP , XP and I are independent.
For the interest process I we have to distinguish between the behaviour when t > 0
and when t ∈ [−L, 0]. When t > 0 the process I is the strong solution of the following
stochastic differential equation

dI(t) = a(I(t))dt+ b(I(t))dXI(t), (5.1.3)

where XI is a Lévy process independent of WP and XP , the functions a : R → R,
b : R → (0,∞) are such that the equation (5.1.3) has a strong solution. When
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t ∈ [−L, 0] the process I satisfies

I(t) = ϕI(t),

where ϕI : [−L, 0]→ (0,∞) is a continuous and deterministic function.
There are different possibilities for equation (5.1.3), but we impose the following

requirements:

1. The strong solution of (5.1.3) has to be positive with probability 1. Hence the
process TI defined in equation (5.1.1) is increasing.

2. The integrated interest process has to be analytically tractable. That is, it
should be possible to compute the characteristic function of the process(∫ t

0 I(s)ds
)
t≥0

.

Having these requirements in mind, we propose two models for the interest process.

1. In one of the proposed models, the market attention process when t > 0 satis-
fies a Cox-Ingersoll-Ross process. This means that the process I is the strong
solution of the following stochastic differential equation:

dI(t) = aI(bI − I(t))dt+ σI
√

I(t)dWI(t) when t > 0, (5.1.4)

where WI is a Brownian motion, bI ∈ R, aI , σI > 0 and we impose the condition:

2aIbI
σ2
I

≥ 1. (5.1.5)

Condition (5.1.5) guarantees that I is greater than zero with probability 1
(Gulisashvili, 2012, Theorem 2.27).

2. In the other proposed model, the interest process when t > 0 satisfies an inverse
Gaussian Ornstein-Uhlenbeck process with parameters aI , bI , λI > 0. So the
interest I satisfies the stochastic differential equation:

dI(t) = −λII(t)dt+ dZI(λIt) with I(0) = y0, (5.1.6)

where ZI is a Lévy process with Lévy triplet (γI , 0, vI) defined as

vI(dx) =
aI

2
√
2π

x−3/2(1 + b2Ix)e
− 1

2
b2Ix1(0,∞)(x), (5.1.7)

γI =

∫
|x|<1

xvI(dx). (5.1.8)

In the case of the Lévy process XP that appears in the price equation (5.1.2),
different choices can be made. We will restrict ourselves to the case where XP is a
compound Poisson process, that is

XP (t) =

NP (t)∑
k=1

Zk for t ≥ 0,

where NP is a Poisson process with intensity parameter λP > 0 and {Zk}∞k=1 is a
sequence of independent and identically distributed random variables that are inde-
pendent of the Poisson process NP .
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So according to equation (5.1.2), the price process has a continuous part that
behaves like a geometric Brownian motion and a discontinuous part given by a time
changed compound Poisson process. Notice that when the interest process increases,
the probability of a jump increases, provoking an increase in the volatility of the price.
And when the interest process decreases, the probability of a jump decreases, making
for a decrease in the volatility.

Different distributions can be chosen for the sequence of the random variables
{Zk}∞k=1. Common choices that can be found in the literature are:

1. double exponential distribution (Kou, 2002),

2. normal distribution (Merton, 1976).

To keep things simple, let us assume that Zk ∼ N(η, δ2) for all k = 1, 2, . . ., with
η ∈ R and δ > 0. However, using a double exponential distribution will help us to
capture the asymmetry of the jumps. Since XP is a compound Poisson process with
normally distributed jumps, we have that it has Lévy triplet (γP , 0, vP ) with

vP (dx) = λP fN (x|η, δ2)dx (5.1.9)

γP =

∫
|x|<1

xvP (dx), (5.1.10)

where fN (.|η, δ2) is the density function of a normal random variable with mean η
and variance δ2 (Cont & Tankov, 2004, Proposition 3.8 and p. 112).

Lastly, we are interested in defining the filtration with respect to the processes P
and I are adapted. Let us define

FWP =
(
FWP
t

)
t≥0

and FXI =
(
FXI
t

)
t≥0

to be the filtrations generated by WP and XI respectively. Remember that XI = WI

when the interest process satisfies a Cox-Ingersoll-Ross process (see equation (5.1.4))
and XI = ZI when the market attention satisfies an inverse Gaussian Ornstein-
Uhlenbeck process (see equation (5.1.6)). In addition define the filtration
FXP (TI) =

(
FXP (TI)
t

)
t≥0

, where

FXP (TI)
t = σ ({XP (TI(s)) : 0 ≤ s ≤ t})

for all t ≥ 0. The general filtration (Ft)t≥0 is defined as

Ft = FWP
t ∨ FXI

t ∨ FXP (TI)
t , for t ≥ 0,

where FWP
t ∨ FXI

t ∨ FXP (TI)
t is the smallest σ-algebra containing FWP

t , FXI
t and

FXP (TI)
t . The process I is adapted with respect to the filtration

(
FXI
t

)
t≥0

, so I is

adapted to the filtration (Ft)t≥0. Similarly P is adapted with respect to
(
FWP
t ∨ FXP (TI)

t

)
t≥0

,

so it is adapted with respect to (Ft)t≥0.
Let us also define the delayed filtration (F̃t)t≥0 as

F̃t =

{
FWP
t ∨ FXP (TI)

t if t ≤ τ,

FWP
t ∨ FXP (TI)

t ∨ FXI
t−τ if t > τ.
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Notice that F̃t ⊆ Ft for t ≥ 0, and that the process (P (t), I(t − τ))t≥0 is adapted
with respect to the filtration (F̃t)t≥0.

Apart from the stock price P and the interest process I, there is a bond or a
market account (B(t))t≥0 with known interest rate r, that satisfies:

B(t) = B(0)ert for t ≥ 0,

where r ≥ 0.

5.2 Conditional distribution of the logarithmic returns

Before estimating the parameters of our model, let us study the conditional distribu-
tion of the logarithmic returns

R(s, t) = log

(
P (t)

P (s)

)
for t ≥ s, given the σ-algebra FXI

H , where H ≥ t ≥ s ≥ 0. We will show that this
conditional density function can be expressed as an infinite sum of normal density
functions. This will allow us to estimate the parameters that appear in the price
equation (5.1.2).

From equation (5.1.2), we have that the logarithmic return R(s, t) can be expressed
as

R(s, t) =

(
µ− σ2

2

)
(t− s) + σ (WP (t)−WP (s)) +XP (TI(t))−XP (TI(s))

for all t ≥ s ≥ 0.

Remark 5.2.1. From Corollary C.1.1 we have that the increment XP (TI(t))−XP (TI(s))
has the same distribution as the random variable XP (TI(t)− TI(s)). Let us define Js,t

I

as

Js,t
I = TI(t)− TI(s) =

∫ t

s
I(v − τ)dv.

So at the end we have that

XP (TI(t))−XP (TI(s))
d
= XP

(
Js,t
I

)
, (5.2.1)

where d
= means that both sides of the equation (5.1.1) have the same distribution.

From Remark 5.2.1 we can write R(s, t) as:

R(s, t) =

(
µ− σ2

2

)
(t− s) + σ (WP (t)−WP (s)) +XP (TI(t))−XP (TI(s))

d
=

(
µ− σ2

2

)
(t− s) + σ (WP (t)−WP (s)) +XP

(
Js,t
I

)
. (5.2.2)

We would like to compute the conditional characteristic function of R(s, t) given
the σ-algebra FXI

H .



5.2. Conditional distribution of the logarithmic returns 101

Proposition 5.2.1. Let u ∈ R, then the conditional characteristic function of R(s, t)
given FXI

H has the following form:

ΦR(s,t)
(
u
∣∣∣FXI

H

)
= E

[
eiuR(s,t)

∣∣∣FXI
H

]
= e

iu
(
µ−σ2

2

)
(t−s)

e−
u2σ2

2
(t−s)e−Js,t

I λP eJ
s,t
I λP eiuη−

1
2u2δ2

.(5.2.3)

Proof. Let u ∈ R then the conditional characteristic function of R(s, t) given the
σ-algebra FXI

H can be written as

ΦR(s,t)

(
u
∣∣∣FXI

H

)
= E

[
eiuR(s,t)

∣∣∣FXI
H

]
= E

[
e
iu
(
µ−σ2

2

)
(t−s)+iuσ(WP (t)−WP (s))+iuXP (Js,t

I )
∣∣∣∣FXI

H

]
,

where the last equality comes from (5.2.2).
First, let us study the distribution when the σ-algebra FXI

H ∨σ(XP (J
s,t
I )) is given.

Because the random variable WP (t) −WP (s) is independent of FXI
H ∨ σ(XP (J

s,t
I )),

we have that

E

[
e
iu
(
µ−σ2

2

)
(t−s)+iuσ(WP (t)−WP (s))+iuXP (Js,t

I )
∣∣∣∣FXI

H ∨ σ(XP (J
s,t
I ))

]
=e

iu
(
µ−σ2

2

)
(t−s)

eiuXP (Js,t
I )E

[
eiuσ(WP (t)−WP (s))

∣∣∣FXI
H ∨ σ

(
XP (J

s,t
I )
)]

=e
iu
(
µ−σ2

2

)
(t−s)

eiuXP (Js,t
I )E

[
eiuσ(WP (t)−WP (s))

]
= e

iu
(
µ−σ2

2

)
(t−s)

eiuXP (Js,t
I )e−

u2σ2

2
(t−s),

where the last equality comes from the fact that WP (t) −WP (s) ∼ N(0, t − s). By
application of the tower property, we obtain

E
[
eiuR(s,t)

∣∣∣FXI
H

]
= E

[
E
[
eiuR(s,t)

∣∣∣FXI
H ∨ σ(XP (J

s,t
I ))

]∣∣∣FXI
H

]
= E

[
e
iu
(
µ−σ2

2

)
(t−s)

eiuXP (Js,t
I )e−

u2σ2

2
(t−s)

∣∣∣∣FXI
H

]
= e

iu
(
µ−σ2

2

)
(t−s)

e−
u2σ2

2
(t−s)E

[
eiuXP (Js,t

I )
∣∣∣FXI

H

]
.

Since XP is a compound Poisson process with jumps given by a normal distribu-
tion, we have that the the characteristic exponent of XP is

ΨXP (u) = λP

(
eiuη−

1
2
u2δ2 − 1

)
,

(Cont & Tankov, 2004, p.112). Applying Proposition C.0.1, we have that

E
[
eiuXP (Js,t

I )
∣∣∣FXI

H

]
= eJ

s,t
I ΨXP (u)

= e
Js,t
I λP

(
eiuη−

1
2u2δ2−1

)

= e−Js,t
I λP e

Js,t
I λP

(
eiuη−

1
2u2δ2

)
.
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We have just shown the desired result.

Now we are ready to compute the conditional density function of R(s, t) given
FXI
H .

Proposition 5.2.2. Let x ∈ R, the conditional density function of R(s, t) given FXI
H

has the following form:

fR
s,t

(
x
∣∣∣FXI

H

)
=

∞∑
n=0

fP

(
n
∣∣∣λPJ

s,t
I

)
fN
(
x
∣∣mR,n, v

2
R,n

)
, (5.2.4)

where

mR,n =

(
µ− σ2

2

)
(t− s) + nη,

v2R,n = σ2(t− s) + nδ2,

where fP
(
.
∣∣∣λPJ

s,t
I

)
is the probability mass function of a Poisson random variable with

intensity λPJ
s,t
I and fN

(
.
∣∣∣mR,n, v

2
R,n

)
is the density function of a normal random

variable with mean mR,n and variance v2R,n.

Proof. From equation (5.2.3) and power expansion of the exponential function, we
have that:

E
[
eiuR(s,t)

∣∣∣FXI
H

]
= e

iu
(
µ−σ2

2

)
(t−s)

e−
u2σ2

2
(t−s)e−Js,t

I λP e
Js,t
I λP

(
eiuη−

1
2u2δ2

)

= e
iu
(
µ−σ2

2

)
(t−s)

e−
u2σ2

2
(t−s)e−Js,t

I λP

∞∑
n=0

(λP Js,t
I )

n

n! en(iuη−
1
2
u2δ2)

= e
iu
(
µ−σ2

2

)
(t−s)

e−
u2σ2

2
(t−s)

∞∑
n=0

e−Js,t
I λP (λP Js,t

I )
n

n! en(iuη−
1
2
u2δ2)

=

∞∑
n=0

(
(λP Js,t

I )ne
−λP J

s,t
I

n!

e
iu
((

µ−σ2

2

)
(t−s)+nη

)
−u2

2 (σ
2(t−s)+δ2n)

)
(5.2.5)

Notice that the fraction that appears in equation (5.2.5) satisfies the following:

fP

(
n
∣∣∣λPJ

s,t
I

)
=

(λPJ
s,t
I )ne−λP Js,t

I

n!
,

where fP
(
.
∣∣∣λJs,t

I

)
is the probability mass function of a Poisson random variable with

intensity parameter λPJ
s,t
I . In addition we also have that

ΦN

(
u
∣∣mR,n, v

2
R,n

)
= e

iu
((

µ−σ2

2

)
(t−s)+nη

)
−u2

2 (σ
2(t−s)+δ2n)

,
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where ΦN

(
.
∣∣∣mR,n, v

2
R,n

)
is the characteristic function of a normal random variable

with mean mR,n and variance v2R,n where

mR,n =

(
µ− σ2

2

)
(t− s) + nη,

v2R,n = σ2(t− s) + nδ2.

So we can write ΦR(s,t)

(
u
∣∣∣FXI

H

)
as:

ΦR(s,t)

(
u
∣∣∣FXI

H

)
=

∞∑
n=0

fP

(
n
∣∣∣λPJ

s,t
I

)
ΦN

(
u
∣∣mR,n, v

2
R,n

)
. (5.2.6)

Let a, b ∈ R such that b > a, then from the result of Yuan and Lei (2016, Theorem
3.2) we have that

FR
s,t

(
b
∣∣∣FXI

H

)
− FR

s,t

(
a
∣∣∣FXI

H

)
= lim

M→∞

1

2π

∫ M

−M

e−iua − e−iub

iu
ΦR(s,t)

(
u
∣∣∣FXI

H

)
du,

(5.2.7)

where FR
s,t

(
.
∣∣∣FXI

H

)
is the conditional distribution function of R(s, t) given FXI

H . We
can take b = x+h and a = x−h, where x ∈ R and h > 0, then from equation (5.2.7)
we can write

FR
s,t

(
x+ h

∣∣∣FXI
H

)
− FR

s,t

(
x− h

∣∣∣FXI
H

)
2h

= lim
M→∞

1

2π

∫ M

−M

sin(hu)

hu
e−iuxΦR(s,t)

(
u
∣∣∣FXI

H

)
du. (5.2.8)

Using the expression in (5.2.6), the integral that appears in equation (5.2.8) can be
written as:∫ M

−M

sin(hu)

hu
e−iuxΦR(s,t)

(
u
∣∣∣FXI

H

)
du

=

∫ M

−M

( ∞∑
n=0

sin(hu)

hu
e−iuxfP

(
n
∣∣∣λPJ

s,t
I

)
ΦN

(
u
∣∣mR,n, v

2
R,n

))
du. (5.2.9)

We would like to change the order of integration of the integral and the summation
that appears in equation (5.2.9). To do so, we would like to apply Fubini’s theorem.
To that end, we need to show that:∫ M

−M

∞∑
n=0

∣∣∣∣sin(hu)hu
e−iuxfP

(
n
∣∣∣λPJ

s,t
I

)
ΦN

(
u
∣∣mR,n, v

2
R,n

)∣∣∣∣ du <∞.

Notice that because ΦN

(
.
∣∣∣mR,n, v

2
R,n

)
is a characteristic function we have that:∣∣ΦN

(
u
∣∣mR,n, v

2
R,n

)∣∣ ≤ 1 for all n = 1, 2, . . ., and all u ∈ R.

In addition because ∣∣e−iux
∣∣ = 1 ,

∣∣∣∣sin(hu)hu

∣∣∣∣ ≤ 1
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for all u ∈ R, we can write∫ M

−M

∞∑
n=0

∣∣∣∣sin(hu)hu
e−iuxfP

(
n
∣∣∣λPJ

s,t
I

)
ΦN

(
u
∣∣mR,n, v

2
R,n

)∣∣∣∣ du
≤
∫ M

−M

∞∑
n=0

∣∣∣fP (n ∣∣∣λPJ
s,t
I

)∣∣∣ du
=

∫ M

−M

∞∑
n=0

fP

(
n
∣∣∣λPJ

s,t
I

)
du

=

∫ M

−M
du = 2M <∞.

So by Fubini’s theorem, we can write equation (5.2.8) as

FR
s,t

(
x+ h

∣∣∣FXI
H

)
− FR

s,t

(
x− h

∣∣∣FXI
H

)
2h

= lim
M→∞

∞∑
n=0

fP

(
n
∣∣∣λPJ

s,t
I

) 1

2π

∫ M

−M

sin(hu)

hu
e−iuxΦN

(
u
∣∣mR,n, v

2
R,n

)
du. (5.2.10)

Let us consider Θ to be a Poisson random variable with parameter λJs,t
I given the

σ-algebra FXI
H , then equation (5.2.10) can be written as

FR
s,t

(
x+ h

∣∣∣FXI
H

)
− FR

s,t

(
x− h

∣∣∣FXI
H

)
2h

= lim
M→∞

E

[
1

2π

∫ M

−M

sin(hu)

hu
e−iuxΦN

(
u
∣∣mR,Θ, v

2
R,Θ

)
du

∣∣∣∣FXI
H

]
.

Let us define ξ as

ξ(u,Θ) =
sin(hu)

hu
e−iuxΦN

(
u
∣∣mR,Θ, v

2
R,Θ

)
for u ∈ R.

Since ξ takes complex values, let us differentiate between the imaginary and real part.
To that end, define

ξRe(u,Θ) = ℜ(ξ(u,Θ)), ξIm(u,Θ) = ℑ(ξ(u,Θ)) for u ∈ R.

So we can write

FR
s,t

(
x+ h

∣∣∣FXI
H

)
− FR

s,t

(
x− h

∣∣∣FXI
H

)
2h

= lim
M→∞

E

[
1

2π

∫ M

−M
ξRe(u,Θ)du

∣∣∣∣FXI
H

]
+ i lim

M→∞
E

[
1

2π

∫ M

−M
ξIm(u,Θ)du

∣∣∣∣FXI
H

]
.

Now, let us define ξ+Re and ξ−Re to be the positive and negative parts of ξRe respec-
tively. Similarly, we define ξ+Im and ξ−Im to be the positive and negative parts of ξIm
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respectively. Then we can write

FR
s,t

(
x+ h

∣∣∣FXI
H

)
− FR

s,t

(
x− h

∣∣∣FXI
H

)
2h

= lim
M→∞

E

[
1

2π

∫ M

−M
ξ+Re(u,Θ)du

∣∣∣∣FXI
H

]
− lim

M→∞
E

[
1

2π

∫ M

−M
ξ−Re(u,Θ)du

∣∣∣∣FXI
H

]
+ i

(
lim

M→∞
E

[
1

2π

∫ M

−M
ξ+Im(u,Θ)du

∣∣∣∣FXI
H

]
− lim

M→∞
E

[
1

2π

∫ M

−M
ξ−Im(u,Θ)du

∣∣∣∣FXI
H

])
.

(5.2.11)

Now let us define the sequence (gM )∞M=1 as

gM =
1

2π

∫ M

−M
ξ+Re(u,Θ)du forM = 1, 2, . . . .

Notice that gM ≤ gM+1 for all M ∈ N. By the conditional monotone convergence
theorem (Williams, 1991, Theorem 9.7 ), we have that:

lim
M→∞

E

[
1

2π

∫ M

−M
ξ+Re(u,Θ)du

∣∣∣∣FXI
H

]
= E

[
lim

M→∞

1

2π

∫ M

−M
ξ+Re(u,Θ)du

∣∣∣∣FXI
H

]
.

Proceeding in a similar manner for the other limits that appear in equation (5.2.11),
we have that:

FR
s,t

(
x+ h

∣∣∣FXI
H

)
− FR

s,t

(
x− h

∣∣∣FXI
H

)
2h

=E

[
lim

M→∞

1

2π

∫ M

−M
ξ+Re(u,Θ)du

∣∣∣∣FXI
H

]
− E

[
lim

M→∞

1

2π

∫ M

−M
ξ−Re(u,Θ)du

∣∣∣∣FXI
H

]
+ i

(
E

[
lim

M→∞

1

2π

∫ M

−M
ξ+Im(u,Θ)du

∣∣∣∣FXI
H

]
− E

[
lim

M→∞

1

2π

∫ M

−M
ξ−Im(u,Θ)du

∣∣∣∣FXI
H

])
=E

[
lim

M→∞

1

2π

∫ M

−M

sin(hu)

hu
e−iuxΦN

(
u
∣∣mR,Θ, v

2
R,Θ

)
du

∣∣∣∣FXI
H

]
=

∞∑
n=0

(λPJ
s,t
I )ne−λP Js,t

I

n!

(
lim

M→∞

1

2π

∫ M

−M

sin(hu)

hu
e−iuxΦN

(
u
∣∣mR,n, v

2
R,n

)
du

)
.

Lastly, applying the conditional inversion theorem (Yuan & Lei, 2016, Theorem
3.2), we have that:

lim
M→∞

1

2π

∫ M

−M

sin(hu)

hu
e−iuxΦN

(
u
∣∣mR,n, v

2
R,n

)
du

=
FN

(
x+ h

∣∣∣mR,n, v
2
R,n

)
− FN

(
x− h

∣∣∣mR,n, v
2
R,n

)
2h

given the σ-algebra FXI
H ,

where FN

(
.
∣∣∣mR,n, v

2
R,n

)
is the cumulative distribution function of a normal random

variable with mean mR,n and variance v2R,n.
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We have just shown that

FR
s,t

(
x+ h

∣∣∣FXI
H

)
− FR

s,t

(
x− h

∣∣∣FXI
H

)
2h

=

∞∑
n=0

fP

(
n
∣∣∣λPJ

s,t
I

) FN

(
x+ h

∣∣∣mR,n, v
2
R,n

)
− FN

(
x− h

∣∣∣mR,n, v
2
R,n

)
2h

.

We are interested in computing the conditional density function of R(s, t) given
FXI
H which can be obtained from

fR
s,t

(
x
∣∣∣FXI

H

)
=

∂

∂x
FR
s,t

(
x
∣∣∣FXI

H

)
.

So we can write

fR
s,t

(
x
∣∣∣FXI

H

)
= lim

h→0

FR
s,t

(
x+ h

∣∣∣FXI
H

)
− FR

s,t

(
x− h

∣∣∣FXI
H

)
2h

.

Let us consider again the Poisson random variable Θ with parameter λPJ
s,t
I given the

σ-algebra FXI
H , so we can write

lim
h→0

FR
s,t

(
x+ h

∣∣∣FXI
H

)
− FR

s,t

(
x− h

∣∣∣FXI
H

)
2h

= lim
h→0

E

 FN

(
x+ h

∣∣∣mR,Θ, v
2
R,Θ

)
− FN

(
x− h

∣∣∣mR,Θ, v
2
R,Θ

)
2h

∣∣∣∣∣∣FXI
H

 .

By the mean value theorem, we have that:

FN

(
x+ h

∣∣∣mR,Θ, v
2
R,Θ

)
− FN

(
x− h

∣∣∣mR,Θ, v
2
R,Θ

)
2h

= fN
(
χ(h)

∣∣mR,θ, v
2
R,Θ

)
,

where χ(h) ∈ (x−h, x+h) and fN

(
.
∣∣∣mR,Θ, v

2
R,Θ

)
is the density function of a normal

random variable with mean mR,Θ and variance v2R,Θ. The density function of a normal
random variable is bounded by the value obtained when it is evaluated at the mean,
that is

fN
(
χ(h)

∣∣mR,θ, v
2
R,Θ

)
≤ fN

(
mR,θ

∣∣mR,θ, v
2
R,Θ

)
=

1

vR,Θ

√
2π

=
1√

2π (σ2(t− s) + Θδ2))
.

So we have that for all h > 0∣∣∣∣∣∣
FN

(
x+ h

∣∣∣mR,Θ, v
2
R,Θ

)
− FN

(
x− h

∣∣∣mR,Θ, v
2
R,Θ

)
2h

∣∣∣∣∣∣ ≤ 1√
2π (σ2(t− s) + Θδ2))

.
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Hence, by the conditional dominated convergence theorem (Williams, 1991, Theo-
rem 9.7 ) we have that

fR
s,t

(
x
∣∣∣FXI

H

)
= E

 lim
h→0

FN

(
x+ h

∣∣∣mR,Θ, v
2
R,Θ

)
− FN

(
x− h

∣∣∣mR,Θ, v
2
R,Θ

)
2h

∣∣∣∣∣∣FXI
H


= E

[
fN
(
x
∣∣mR,θ, v

2
R,Θ

)∣∣FXI
H

]
=

∞∑
n=0

(λJs,t
I )ne−λJs,t

I

n!
fN
(
x
∣∣mR,n, v

2
R,n

)
as required.

5.3 Estimation

For the estimation procedure, we assume that we have discrete observations of the
processes X and I. We would like to estimate the parameters that appear in the price
equation (5.1.2) and in the interest equation (5.1.3). We assume that the data have
the same structure as in Chapter 3 and Chapter 4 (see Section 3.6 and Section 4.2).

As in previous chapters, we will estimate the parameters of the interest using
the techniques explained in Chapter 2. For the parameters that appear in the price
process (5.1.2), we will use the conditional likelihood estimation method.

5.3.1 Conditional likelihood estimator

We are interested in the estimation of the parameters related to the price; that is, we
are interested in the parameters µ, σ, λP , η, δ and τ . For now, let us assume that the
parameter τ is given.

Let us define the vector R of logarithm returns as

R = (R(t0, t1), R(t1, t2), . . . R(tN−1, tN )) ,

where
R(tj , tj+1) = log

(
P (tj+1)

P (tj)

)
for j = 0, . . . , N − 1.

In addition, we define the vector of random variables JI as

JI =
(
J t0,t1
I , J t1,t2

I , . . . , J
tN−1,tN
I

)
,

where

J
tj ,tj+1

I =

∫ tj+1

tj

I(u− τ)du for j = 0, 1 . . . N − 1.

From Proposition C.1.1 we have that the increments
(XP (TI(tj+1))−XP (TI(tj)))

N−1
j=0 are independent when the σ-algebra FXI

H is given.
So clearly the sequence of logarithmic returns (R(tj , tj+1))

N−1
j=0 are independent when

the σ-algebra FXI
H is given. So we have that the conditional density function of R
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given FXI
H satisfies:

fR
1:N

(
r1:N

∣∣∣FXI
H

)
=

N−1∏
j=0

fR
j+1

(
rj+1

∣∣∣FXI
H

)
, (5.3.1)

where
rj+1 = xj+1 − xj for j = 0, 1, . . . , N − 1

and xj is the observation of the random variable X(tj).
Let us define the set σ (JI) to be the σ-algebra generated by JI . We are now

interested in the conditional distribution given σ (JI).

Proposition 5.3.1. Let uj ∈ R for j = 0, . . . , N − 1 then:

E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣FXI

H

]
= E

[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣σ(JI)]

=
N−1∏
j=0

E
[
eiujR(tj ,tj+1)

∣∣∣σ(JI)]

=

N−1∏
j=0

[
e
iuj

(
µ−σ2

2

)
(t−s)

e−
u2jσ

2

2
(t−s)

e−J
tj ,tj+1
I λP e

J
tj ,tj+1
I λP

(
eiujη−

1
2u2δ2

)]
. (5.3.2)

A particular case of equation (5.3.2) is

E
[
eiujR(tj ,tj+1)

∣∣∣FXI
H

]
= E

[
eiujR(tj ,tj+1)

∣∣∣σ(JI)]
= e

iuj

(
µ−σ2

2

)
(t−s)

e−
u2jσ

2

2
(t−s)

e−J
tj ,tj+1
I λP e

J
tj ,tj+1
I λP

(
eiujη−

1
2u2δ2

)

for j = 0, 1, . . . , N − 1.

Proof. Notice that from Proposition 5.2.1 we have that

E
[
eiujR(tj ,tj+1)

∣∣∣FXI
H

]
= e

iuj

(
µ−σ2

2

)
(t−s)

e−
u2jσ

2

2
(t−s)e−J

tj ,tj+1
I λP e

J
tj ,tj+1
I λP

(
eiujη−

1
2u2δ2

)

(5.3.3)
for j = 0, 1, . . . , N − 1..

Notice that the random variable JI is measurable with respect to the σ-algebra
FXI
H , hence σ(JI) ⊆ FXI

H . By the tower property, we have that:

E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣σ(JI)] = E

[
E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣FXI

H

]∣∣∣σ(JI)] . (5.3.4)

By the conditional independence of the logarithmic returns, we obtain that

E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣FXI

H

]
=

N−1∏
j=0

E
[
eiujR(tj ,tj+1)

∣∣∣FXI
H

]
. (5.3.5)
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From the result in (5.3.3) we obtain:

E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣FXI

H

]
=

N−1∏
j=0

[
e
iuj

(
µ−σ2

2

)
(t−s)

e−
u2jσ

2

2
(t−s)

e−J
tj ,tj+1
I λP e

J
tj ,tj+1
I λP

(
eiujη−

1
2u2δ2

)]
. (5.3.6)

Substituting equation (5.3.6) into equation (5.3.4), we have that

E
[
e
∑N−1

j=0 iujR(tj ,tj+1)
∣∣∣σ(JI)]

=E

N−1∏
j=0

e
iuj

(
µ−σ2

2

)
(t−s)

e−
u2jσ

2

2
(t−s)e−J

tj ,tj+1
I λP e

J
tj ,tj+1
I λP

(
eiujη−

1
2u2δ2

)∣∣∣∣∣∣σ(JI)


=
N−1∏
j=0

e
iuj

(
µ−σ2

2

)
(t−s)

e−
u2jσ

2

2
(t−s)e−J

tj ,tj+1
I λP e

J
tj ,tj+1
I λP

(
eiujη−

1
2u2δ2

)
,

where the last equality comes from the fact that J
tj ,tj+1

I is measurable with respect
to the σ-algebra σ(JI).

From Proposition 5.2.2 we have that

fR
j+1

(
rj+1

∣∣∣FXI
H

)
=

∞∑
n=0

fP

(
n
∣∣∣λPJ

tj ,tj+1

I

)
fN
(
x
∣∣mR,n, v

2
R,n

)
, for j = 0, 1, . . . N − 1,

(5.3.7)

where

mR,n =

(
µ− σ2

2

)
∆+ nη,

v2R,n = σ2∆+ nδ2.

From Proposition 5.3.1 we have that

fR
j+1

(
rj+1

∣∣∣FXI
H

)
= fR

j+1 (rj+1 |σ (JI)) for j = 0, 1, . . . , N − 1,

and we also have that

fR
1:N

(
r1:N

∣∣∣FXI
H

)
= fR

1:N (r1:N |σ (J)) .

The random vector R depends on the vector of parameters θR = (λR, ξR), where

λR = (µ, σ, λP , η, δ), ξR = (aI , bI , σI).
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The parameter of interest is the vector λR and ξR is the vector of nuisance parameters.
So, the conditional log-likelihood can be written as

lR (λR |σ (JI) , τ ) = log fR
1:N (r1:N |σ (JI)) (5.3.8)

=

N−1∑
j=0

log fR
j+1 (rj+1|σ (JI))

=
N−1∑
j=0

log

( ∞∑
n=0

fP

(
n
∣∣∣λPJ

tj ,tj+1

I

)
fN
(
rj+1

∣∣mR,n, v
2
R,n

))

We will maximize the function lR (. |σ (JI) , τ ) to estimate the parameter vector λR.
In Chapters 3 and 4 we were able to find an analytical expression for the parameter
estimates that maximizes the conditional log-likelihood. In this case, we are not able to
find an analytical formula for the parameter estimates that maximizes the expression
(5.3.8). Because of that we have to rely on numerical methods to maximize the
conditional log-likelihood defined in equation (5.3.8).

Remark 5.3.1. As we did in Section 3.6.2 we reduce the problem of estimating the
parameter τ to a problem of model selection. We select the value of τ that maximizes
the following expression

lR
(
λ̂R |σ (JI) , τ = r∆

)
for r = 0, 1, . . .M,

where λ̂R = (µ̂, σ̂, λ̂P , η̂, δ̂) is the vector of parameters that maximizes the conditional
log-likelihood defined in equation (5.3.8).

5.3.2 Numerical experiments

We would like to check the reliability of our estimation method proposed in Section
5.3. To that end, we perform numerical simulations of the two proposed models. We
first focus on the case when the interest is a Cox-Ingersoll-Ross process and then on
the case when the interest is an inverse Gaussian Ornstein-Uhlenbeck process.

When the interest is a Cox-Ingersoll-Ross process, we generate 100 realizations of
N = 1000 steps with the following values for the parameters

aI = 0.5, bI = 0.06, σI = 0.15, µ = 0.05, σP = 0.2,

λP = 20, η = 0, δ = 0.2 τ = 5∆,

with time step ∆ = 0.1, L = 10∆ and initial values P (0) = 100 and

ϕI(t) = 0.05 + 0.1 cos2
(
4t+

π

2

)
for t ∈ [−L, 0].

For each of the realizations we estimate the parameters of the model using the tech-
niques introduced in Section 5.3. Once we estimate the parameters of all of the simu-
lations, we compute the mean of the estimated parameters and its standard deviation.
The results are shown in Table 5.1.

In the case when the interest is an inverse Gaussian Ornstein-Uhlenbeck process,
we generate 20 realizations of N = 1000 steps with the following values for the pa-
rameters

aI = 4, bI = 10, λI = 5, µ = 0.05, σP = 0.2,

λP = 20, η = 0, δ = 0.2 τ = 5∆,
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Variable True value Mean Standard deviation

aI 0.5 0.546785 0.113987
bI 0.06 0.059973 0.007607
σI 0.15 0.150301 0.003112
µ 0.05 0.0490428 0.020118
σ 0.2 0.199536 0.007402
λP 20 20.238023 4.507455
η 0 -0.003124 0.023025
δ 0.2 0.197553 0.024317
τ 5 ∆ 4.8 ∆ 2.198727 ∆

Table 5.1: Estimated values for the parameters for the simulated
model defined in Section 5.1 when the interest is a Cox-Ingersoll-Ross

process.

with time step ∆ = 0.01, L = 20∆ and initial values P (0) = 100 and

ϕI(t) = 0.4 + 0.2 cos2
(
30t+

π

2

)
for t ∈ [−L, 0].

As we did above, we estimate the parameters of the model using the techniques
explained in Section 5.3 and compute the mean of the estimated parameters and its
standard deviation. The results are shown in Table 5.2.

Variable True value Mean Standard deviation

aI 4 4.134514 0.547405
bI 10 10.226795 1.231333
λI 5 5.467092 1.263248
µ 0.05 0.028039 0.065766
σ 0.2 0.200946 0.005251
λP 20 19.655269 2.484821
η 0 0.000198 0.021476
δ 0.2 0.191985 0.018088
τ 5 ∆ 4.5 ∆ 3.278719 ∆

Table 5.2: Estimated values for the parameters for the simulated
model defined in Section 5.1 when the market attention is an inverse

Gaussian Ornstein-Uhlenbeck process.

As we can observe in Tables 5.1 and 5.2 these methods give good estimates for the
parameters.

5.4 Option Pricing

Now we would like to price plain vanilla options with strike price K and expiration
date T . For this case, we will consider t ∈ [0, T ] and F = FT . Options are priced
under a risk–neutral measure Q. Under this measure, the discounted stock prices P̃ ,
defined as P̃ (t) = e−rtP (t) for t ∈ [0, T ], is a martingale. We will show that there is
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a risk–neutral measure Q in which the price satisfies the equation:

P (t) = p exp

{(
r − σ2

2

)
t+ σW ∗

P (t) +XP (TI(t))− TI(t)ξ
XP

}
for t ∈ [0, T ],

(5.4.1)

where W ∗
P is a Brownian motion under Q and

ξXP = λP

(
eη+

δ2

2 − 1

)
. (5.4.2)

When the price satisfies equation (5.4.1), the discounted Bitcoin price is a martingale
(see Proposition 5.4.2 below).

To obtain equation (5.4.1), we need to perform a change of measure. Depending
on the process we use for the market attention, the change of measure is done in a
different manner. Because of that, we need to distinguish between the case when the
interest process satisfies a Cox-Ingersoll-Ross process and when the interest process
is an inverse Gaussian Ornstein-Uhlenbeck process.

5.4.1 Interest process is a Cox-Ingersoll-Ross process

When the market attention process is a Cox-Ingersoll-Ross process, we would like to
obtain a risk–neutral measure Q under which the price equation satisfies equation
(5.4.1) and the interest is still a Cox-Ingersoll-Ross process with possibly different
parameters. Remember that in this case the Lévy process XI of equation (5.1.3) is
the Brownian motion WI .

We are interested in obtaining an equivalent probability measure Q with respect
to P, under which the price process satisfies the equation (5.4.1). To obtain this
equivalent measure Q, let us define the following processes

W ∗
P (t) = WP (t) +

∫ t

0
θP (s)ds for t ∈ [0, T ],

W ∗
I (t) = WI(t) +

∫ t

0
θI(s)ds for t ∈ [0, T ],

and

Z(t) = exp

{
−
∫ t

0
θP (s)dWP (s)−

∫ t

0
θI(s)dWI(s)−

1

2

∫ t

0
θ2P (s)ds−

1

2

∫ t

0
θ2I (s)ds

}
(5.4.3)

for t ∈ [0, T ], where (θP (t))t∈[0,T ] and (θI(t))t∈[0,T ] are two adapted processes with
respect to (Ft)t∈[0,T ] (these processes will be determined below). If the process
(Z(t))t∈[0,T ] is a martingale with respect to (Ft)t∈[0,T ], then we can apply the Gir-
sanov Theorem. By the Girsanov Theorem, the process (W ∗

P (t),W
∗
I (t))t∈[0,T ] is a

two–dimensional Brownian motion under the measure Q, where:

Q(A) =

∫
A
Z(T )dP, ∀A ∈ F .
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To obtain equation (5.4.1), different values for the adapted processes θP and θI
can be taken. In this case, we choose the following values for the processes θP and θI :

θP (t) =
µ− r + ξXP I(t− τ)

σ
for t ∈ [0, T ], (5.4.4)

θI(t) =
λ1

σI
√
I(t)

+
λ2

σI

√
I(t) for t ∈ [0, T ], (5.4.5)

where ξXP is defined as in (5.4.2) and λ1, λ2 ∈ R.
If we assume that (Z(t))t≥0 is a martingale (this is shown in Theorem 5.4.1 below),

then we can apply the Girsanov Theorem. Under the measure Q, we have that the
price P satisfies equation (5.4.1) and the interest I satisfies the following stochastic
differential equation:

dI(t) = (aIbI − λ1 − (aI + λ2)I(t))dt+ σI
√

I(t)dW ∗
I (t) when t ∈ (0, T ], (5.4.6)

and I(t) = ϕI(t) when t ∈ [−L, 0].
Equation (5.4.6) can be rewritten as

dI(t) = ãI(b̃I − I(t))dt+ σI
√

I(t)dW ∗
I (t) when t ∈ (0, T ] (5.4.7)

and I(t) = ϕI(t) when t ∈ [−L, 0], where ãI = aI +λ2 and b̃I = aIbI−λ1
aI+λ2

. If we impose
the conditions

2ãI b̃I
σ2
I

≥ 1 (5.4.8)

ãI > 0, (5.4.9)

then equation (5.4.7) has a strong solution (Gulisashvili, 2012, p. 44) and it is greater
than zero almost surely (Gulisashvili, 2012, Theorem 2.27). It is possible to show that
the process Z defined as in (5.4.3) is a martingale.

Theorem 5.4.1. If conditions (5.4.8) and (5.4.9) are satisfied, then (Z(t))t∈[0,T ] is
a martingale with respect to (Ft)t∈[0,T ].

Proof. The proof of this theorem is very similar to the proof of Theorem 3.7.1.

We have just shown that under Q the process (W ∗
P ,W

∗
I ) is a two–dimensional

Brownian motion. It is also possible to show that under Q the process XP is still a
compound Poisson process with Lévy triplet (γP , 0, vP ) and it is independent of the
process (W ∗

P ,W
∗
I ). The proofs of these results are similar to ones shown in Appendix

B.
In summary, we have just shown the existence of a probability measure Q with

respect to the measure P such that:

1. the interest process satisfies equation (5.4.7),

2. the price process satisfies the process defined in (5.4.1),

3. and the processes W ∗
P , W ∗

I and XP are independent under the measure Q.
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5.4.2 Interest is an inverse Gaussian Ornstein-Uhlenbeck process

When the market attention follows an inverse Gaussian Ornstein-Uhlenbeck process,
we construct an equivalent measure Q under which the price process P satisfies equa-
tion (5.4.1) in two different steps:

1. First, we will construct a measure under which the background driven Lévy
process ZI that appears in equation (5.1.6) could have other parameters;

2. second, we do a change of measure such that the price process satisfies equation
(5.4.1).

Let us find an equivalent measure Q∗ with respect to P, such that the Lévy process
ZI has the Lévy triplet (γ̃I , 0, ṽI) where

ṽI(dx) = w̃I(x)dx =
ãI

2
√
2π

x−3/2(1 + b̃2Ix)e
− 1

2
b̃2Ix1(0,∞)(x)dx, (5.4.10)

γ̃I =

∫
|x|<1

xṽI(dx), (5.4.11)

with ãI , b̃I > 0. That is, under this new proposed probability measure Q∗ the market
attention process could have different parameters.

Proposition 5.4.1. If ãI = aI then there exists an equivalent probability measure Q∗

with respect to the measure P such that the Lévy process ZI has Lévy triplet (γ̃I , 0, ṽI)
where ṽI and γ̃I satisfy equations (5.4.10) and (5.4.11) respectively.

And the probability measure Q∗ can be expressed as

Q∗(A) =

∫
A
Z∗(T )dP for A ∈ F ,

where the process Z∗ is defined as

Z∗(t) = exp

lim
ϵ↓0

 ∑
s≤t

|∆ZI(s)|>ϵ

log(H(∆ZI(s)))− t

∫
|x|>ϵ

(H(x)− 1)vI(dx)




for t ∈ [0, T ], with

H(x) =
1 + b̃2Ix

1 + b2Ix
e−

x
2
(b̃2I−b2I)1(0,∞)(x).

Proof. See proof of Proposition 4.3.1.

So, if we assume that ãI = aI then under the equivalent measure Q∗ the Lévy
process ZI has Lévy triplet (γ̃I , 0, ṽI). Also, under the probability measure Q∗ the
processes WP and XP are still a Brownian motion and a compound Poisson process
with Lévy triplet (γP , 0, vP ) respectively. It is possible to show that under Q∗ the
property of independence between WP , ZI and XP is still maintained. The proofs of
these results are similar to ones shown in Appendix B.

Lastly, we would like to find a measure Q equivalent to Q∗ such that the price
process P satisfies equation (5.4.1). To obtain this equivalent measure Q, let us define
the following process

W ∗
P (t) = WP (t) +

∫ t

0
θP (s)ds for t ∈ [0, T ], (5.4.12)
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and

Z(t) = exp

{
−
∫ t

0
θP (s)dWP (s)−

1

2

∫ t

0
θ2P (s)ds

}
for t ∈ [0, T ], (5.4.13)

where (θP (t))t∈[0,T ] is an adapted process with respect to (Ft)t∈[0,T ] (to be defined
below). If the process Z is a martingale with respect to (Ft)t∈[0,T ] (this is shown below)
then we can apply the Girsanov Theorem. By the Girsanov Theorem, (W ∗

P (t))t∈[0,T ]
is a Brownian motion under the measure Q, where:

Q(A) =

∫
A
Z(T )dQ∗, ∀A ∈ F .

To obtain equation (5.4.1), we chose the process θP as

θP (t) =
µ− r + ξXP I−(t− τ)

σ
for t ∈ [0, T ], (5.4.14)

where ξXP is defined as in (5.4.2) and

I−(t) = lim
s→t−

I(s) almost surely. (5.4.15)

We know that the limit (5.4.15) converges almost surely, because the process I
has almost surely càdlàg paths (Valdivieso, Schoutens, & Tuerlinckx, 2009, p. 4).

Remark 5.4.1. Notice that because the process I has almost surely càdlàg paths we
have that

TI(t) =

∫ t

0
I(s− τ)ds =

∫ t

0
I−(s− τ)ds

almost surely.

From Remark 5.4.1 we know that if we use the change of measure proposed in
equations (5.4.12) and (5.4.14), we obtain the price equation (5.4.1). Finally, we will
show that the process Z is a martingale.

Theorem 5.4.2. The process (Z(t))t∈[0,T ] defined in (5.4.13) is a martingale with
respect to (Ft)t∈[0,T ].

Proof. The proof of this Theorem is similar to the proof of Theorem 4.3.1.

We have just shown that W ∗
P is a Brownian measure under the probability measure

Q. Also, under the measure Q the processes ZI and XP are still a Lévy process with
triplet (γ̃I , 0, ṽI) and a compound Poisson process with triplet (γP , 0, vP ), respectively.
Further, the processes W ∗

P , XP and ZI are independent. The proof of these results is
similar to the ones shown in Appendix B.

Because Q is equivalent to Q∗ and Q∗ is equivalent to P, we arrive at the fact that
Q is equivalent to P.

In summary, we have just shown the existence of a probability measure Q equiva-
lent to P such that:

1. the market attention process satisfies an IG(aI , b̃I)-Ornstein-Uhlenbeck process
with parameter λI > 0,

2. the price process satisfies the process defined in (5.4.1),

3. and the processes W ∗
P , ZI and XP are independent under the measure Q.
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5.4.3 Martingale property

We have proved the existence of an equivalent probability Q under which the price
process P satisfies the equation (5.4.1). Notice that the price process under Q satisfies
equation (5.4.1) independently of whether the market attention process satisfies a Cox-
Ingersoll-Ross process or an inverse Gaussian Ornstein-Uhlenbeck process.

We still have to show that the discounted price process P̃ , is a martingale with
respect to the filtration (Ft)t∈[0,T ] under the measure Q. That is, we would like to
show that

EQ

[
P̃ (t)

∣∣∣Fs

]
= P̃ (s) for t, s ∈ [0, T ] such that t ≥ s,

where EQ symbolizes the expected value under the measure Q. We will denote X∗
I as

X∗
I = W ∗

I when the interest process satisfies a Cox-Ingersoll-Ross process and X∗
I = ZI

when the market attention is an inverse Gaussian Ornstein-Uhlenbeck process. Before
proving the martingale property, we need to prove the following Lemma.

Lemma 5.4.1. If for some θ > 2 we have that

EQ

[
e
TI(T )

(
ξ
XP
θ −θξXP

)]
<∞, (5.4.16)

where

ξXP
θ = ΨXP (−iθ) = λP

(
eθη+

1
2
θ2δ2 − 1

)
,

ξXP = ΨXP (−i) = λP

(
eη+

δ2

2 − 1

)
,

then

E
[
eXP (TI(t))−TI(t)ξ

XP
∣∣∣Fs

]
= eXP (TI(s))−TI(s)ξ

XP for T ≥ t ≥ s ≥ 0.

Proof. This proof is the same as the proof done by Shojaee (2018, Theorem 2.41), but
with minor modifications.

Let us define the process M as

M(v) = eXP (v)−vξXP for v ≥ 0.

Since the process XP is a compound Poisson process with normally distributed
jumps we have that all the exponential moments are finite, that is

EQ

[
eθXP (v)

]
<∞ for θ ∈ R and v ≥ 0 (5.4.17)

(Cont & Tankov, 2004, p. 112). Hence from Proposition 1.1.2 we have that

EQ

[
eθXP (v)

]
= evΨ

XP (−iθ), (5.4.18)

where
ΨXP (u) = λP

(
eiuη−

1
2
u2δ2 − 1

)
.
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From equation (5.4.18) we have that the process M can be written as:

M(v) = eXP (v)−vξXP

= eXP (v)−vΨXP (−i)

=
eXP (v)

EQ
[
eXP (v)

] .
So, from Theorem 1.1.6 we have that M is a martingale with respect to its natural
filtration

(
FM
v

)
v≥0

.
From Proposition C.0.1 and Theorem C.1.1 we have that the process

(XP (TI(t)))t∈[0,T ] is a compound Poisson process with normally distributed jumps

given the σ-algebra FX∗
I

T . Hence, from Proposition 1.1.2 we have that

EQ

[
eθXP (TI(T ))

∣∣∣FX∗
I

T

]
= eTI(T )ΨXP (−iθ)

= eTI(T )ξ
XP
θ ,

where
ξXP
θ = λP

(
eθη+

1
2
θ2δ2 − 1

)
.

Conditioning with respect to the σ-algebra FX∗
I

T we have that the moment EQ[M θ(TI(T ))]
can be expressed as

EQ[M
θ(TI(T ))] = EQ

[
eθXP (TI(T ))−θTI(T )ξXP

]
= EQ

[
e−θTI(T )ξXP EQ

[
eθXP (TI(T ))

∣∣∣FX∗
I

T

]]
= EQ

[
e
TI(T )

(
ξ
XP
θ −θξXP

)]
<∞, (5.4.19)

for some θ > 2 by condition (5.4.16).
Let us now prove that the process (M(TI(u)))u∈[0,T ] is a martingale with respect

to the filtration

(F∗
u)u∈[0,T ] =

(
FM(TI)
u ∨ FX∗

I
u ∨ FW ∗

P
u

)
u∈[0,T ]

,

where
FM(TI)
u = σ ({M(TI(s)) : 0 ≤ s ≤ u}) .

First we define the filtration
(
F̄u

)
u≥0

as

F̄u = FM
u ∨ F

X∗
I

T ∨ FW ∗
P

T for all u ≥ 0,

Notice that if T ≥ t ≥ s ≥ 0 then the sets {TI(T ) ≤ u} , {TI(t) ≤ u} , {TI(s) ≤ u} ∈
F̄u for all u ≥ 0. So TI(T ), TI(t) and TI(s) are stopping times under the filtration(
F̄u

)
u≥0

. Due to the fact that the filtration
(
FM
u

)
u≥0

and the σ-algebra FX∗
I

T ∨F
W ∗

P
T are

independent we have that the
(
FM
u

)
u≥0

-martingale M is also a martingale with respect
to the filtration

(
F̄u

)
u≥0

(Shojaee, 2018, Theorem 2.39). Since M is a martingale and
TI(T ) is a stopping time we have that the process M̃ defined as

M̃(u) = M(u ∧ TI(T )) for u ≥ 0
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is a martingale with respect to
(
F̄u

)
u≥0

(Klebaner, 2012, Theorem 7.14). Next we
will show that M̃ is a uniform integrable martingale. To that end let us show that
supu≥0E[M̃ θ/2(u)] <∞ for some θ > 2. The moment E[M̃ θ/2(u)] can be written as

E[M̃ θ/2(u)] = EQ

[
e

θ
2
XP (u∧TI(T ))− θ

2
(TI(T )∧u)ξXP

]
= EQ

[
e

θ
2
XP (u∧TI(T ))−TI (T )∧u

2
ξ
XP
θ e

TI (T )∧u

2
ξ
XP
θ − θ

2
(TI(T )∧u)ξXP

]
≤

√
EQ

[
eθXP (u∧TI(T ))−(TI(T )∧u)ξXP

θ

]
√

EQ

[
e(TI(T )∧u)ξXP

θ −θ(TI(T )∧u)ξXP
]

=

√
EQ

[
e(TI(T )∧u)(ξXP

θ −θξXP )
]
,

where the last equality comes from the fact that:

EQ

[
eθXP (u∧TI(T ))−(TI(T )∧u)ξXP

θ

]
= EQ

[
e−(TI(T )∧u)ξXP

θ EQ

[
eθXP (u∧TI(T ))

∣∣∣FX∗
I

T

]]
= EQ

[
e−(TI(T )∧u)ξXP

θ e(TI(T )∧u)ΨXP (−iθ)
]
= 1.

Notice that the constant ξXP
θ − θξXP ∈ R and hence we can write

E[M̃ θ/2(u)] ≤
√

EQ

[
e(TI(T )∧u)(ξXP

θ −θξXP )
]

≤


√

EQ

[
eTI(T )(ξ

XP
θ −θξXP )

]
<∞ if ξXP

θ − θξXP > 0

1 if ξXP
θ − θξXP ≤ 0

(5.4.20)

by condition (5.4.16). Noticing that the right hand side of equation (5.4.20) does not
depend on u, we have just shown that

sup
u≥0

E[M̃ θ/2(u)] <∞ for some θ > 2

and hence M̃ is a uniform integrable martingale with respect to
(
F̄u

)
u≥0

(Klebaner,
2012, Theorem 7.7).

Because the process TI is non-decreasing we have that TI(T ) ≥ TI(t) ≥ TI(s) and
by application of the optional sampling theorem (Klebaner, 2012, Theorem 7.18) we
have that

E
[
M(TI(t))

∣∣F̄T (s)

]
= E

[
M̃(TI(t))

∣∣F̄TI(s)

]
= M̃(TI(s)) = M(TI(s)) almost surely.

The random variable M̃(TI(u)) = M(TI(u)) is measurable with respect to F̄TI(u)

for all u ∈ [0, T ] (Le Gall, 2016, Theorem 3.7). Since the stopping times TI(v) ≥ TI(u)
for all v, u ∈ [0, T ] with v ≥ u, we have that F̄TI(u) ⊂ F̄TI(v) (Le Gall, 2016, p. 45).
So we have that FM(TI)

s ⊆ F̄TI(s) and hence we can write

F∗
s = FM(TI)

s ∨ FX∗
I

s ∨ FW ∗
P

s ⊆ F̄TI(s).
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By application of the tower property we obtain

E [M(TI(t)) |F∗
s ] = E

[
E
[
M(TI(t))

∣∣F̄TI(s)

]
|F∗

s

]
= E [M(TI(s)) |F∗

s ]

= M(TI(s)).

We have just shown that the process (M(TI(u)))u∈[0,T ] is a martingale with respect
to the filtration (F∗

u)u≥0. Notice that XP (TI(s)) = log(M(TI(s))) + ξXP TI(s) is
F∗
s -measurable, so we can write:

Fs = FXP (TI)
s ∨ FX∗

I
s ∨ FW ∗

P
s ⊆ F∗

s ,

and finally we can write

E [M(TI(t)) |Fs ] = E [E [M(TI(t)) |F∗
s ] |Fs ]

= E [M(TI(s)) |Fs ]

= M(TI(s)).

With the use of Lemma 5.4.1 we can now prove the martingale property of the
discounted Bitcoin price.

Proposition 5.4.2. If for some θ > 2 we have that

EQ

[
e
TI(T )

(
ξ
XP
θ −θξXP

)]
<∞, (5.4.21)

where

ξXP
θ = λP

(
eθη+

1
2
θ2δ2 − 1

)
,

ξXP = λP

(
eη+

δ2

2 − 1

)
,

then the discounted price process P̃ is a martingale with respect to the filtration
(Ft)t∈[0,T ] in the probability space (Ω,F ,Q).

Proof. From equation (5.4.1) we have that the discounted price process P̃ can be
written as

P̃ (t) = p exp

{
−σ2

2
t+ σW ∗

P (t) +XP (TI(t))− TI(t)ξ
XP

}
for t ∈ [0, T ].

Let t, s ∈ [0, T ] such that t ≥ s and let us compute the conditional expectation of
P̃ (t) with respect to the σ-algebra Fs ∨ σ(TI(t))∨ σ(XP (TI(t))). By independence of
the increment (W ∗

P (t) −W ∗
P (s)) and the σ-algebra Fs ∨ σ(TI(t)) ∨ σ(XP (TI(t))) we

have
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EQ

[
P̃ (t)

∣∣∣Fs ∨ σ(TI(t)) ∨ σ(XP (TI(t)))
]

=pe−
σ
2
t+XP (TI(t))−TI(t)ξ

XP

EQ

[
peσW

∗
P (t)−σW ∗

P (s)+σW ∗
P (s)
∣∣∣Fs ∨ σ(TI(t)) ∨ σ(XP (TI(t)))

]
=pe−

σ
2
t+XP (TI(t))−TI(t)ξ

XP +σW ∗
P (s)

EQ

[
eσ(W

∗
P (t)−W ∗

P (s))
∣∣∣Fs ∨ σ(TI(t)) ∨ σ(XP (TI(t)))

]
=pe−

σ
2
t+XP (TI(t))−TI(t)ξ

XP +σW ∗
P (s)EQ

[
eσ(W

∗
P (t)−W ∗

P (s))
]

=pe−
σ
2
t+XP (TI(t))−TI(t)ξ

XP +σW ∗
P (s)e

σ2

2
(t−s)

=pe−
σ
2
s+σW ∗

P (s)+XP (TI(t))−TI(t)ξ
XP .

By application of the tower property, we have

EQ

[
P̃ (t)

∣∣∣Fs

]
= EQ

[
EQ

[
P̃ (t)

∣∣∣Fs ∨ σ(TI(t)) ∨ σ(XP (TI(t)))
]∣∣∣Fs

]
= EQ

[
pe−

σ
2
s+σW ∗

P (s)+XP (TI(t))−TI(t)ξ
XP
∣∣∣Fs

]
= pe−

σ
2
s+σW ∗

P (s)EQ

[
eXP (TI(t))−TI(t)ξ

XP
∣∣∣Fs

]
. (5.4.22)

By condition (5.4.21) we can apply Lemma 5.4.1 and hence we have that:

EQ

[
P̃ (t)

∣∣∣Fs

]
= = pe−

σ
2
s+σW ∗

P (s)EQ

[
eXP (TI(t))−TI(t)ξ

XP
∣∣∣Fs

]
= e−

σ
2
s+σW ∗

P (s)eXP (TI(s))−TI(s)ξ
XP = P̃ (s),

as required.

Since F̃t ⊆ Ft for all t ∈ [0, T ], by the tower property we have that:

E
[
P̃ (t)

∣∣∣ F̃s

]
= E

[
E
[
P̃ (t)

∣∣∣Fs

]∣∣∣ F̃s

]
= E

[
P̃ (t)

∣∣∣ F̃s

]
= P̃ (s) for t ≥ s with t, s ∈ [0, T ],

where the last equality comes from the fact that P̃ is adapted with respect to the
delayed filtration (F̃t)t∈[0,T ]. So, we have just shown that P̃ is also a martingale with
respect to the delayed filtration (F̃t)t∈[0,T ].

5.4.4 Characteristic function

We are interested in computing the characteristic function of the natural logarithm
of the price process. Using the characteristic function of the natural logarithm of the
price, we can compute the price of vanilla options using the result in Carr and Madan
(1999, p. 6). Of course, we require the discounted Bitcoin price to be a martingale.
Because of that, we assume that condition (5.4.16) is satisfied.

Let us define the process X as:

X(t) = log(P (t)) for t ∈ [0, T ].
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From equation (5.4.1) we have that:

X(t) = x+

(
r − σ2

2

)
t+ σW ∗

P (t) +XP (TI(t))− TI(t)ξ
XP for t ∈ [0, T ], (5.4.23)

where x = log(p). The option has an expiration date T and because of that we are
interested in computing the characteristic function of the random variable X(T ). The
characteristic function of X(T ) is defined as

ΦX(T )(u) = EQ

[
eiuX(T )

]
for all u ∈ R.

Proposition 5.4.3. The characteristic function of X(T ) can be expressed as:

ΦX(T )(u) = e
iux+iu

(
r−σ2

2

)
T−σ2u2T

2 EQ

[
eTI(T )(ΨXP (u)−iuξXP )

]
,

where

ΨXP (u) = λP

(
eiuη−

1
2
u2δ2 − 1

)
,

ξXP = λP

(
eη+

δ2

2 − 1

)
.

Proof. Conditioning with respect to FW ∗
P

T ∨ FX∗
I

T and applying Proposition C.0.1, we
have that:

EQ

[
eiuX(T )

∣∣∣FW ∗
P

T ∨ FX∗
I

T

]
= EQ

[
e
iux+iu

(
r−σ2

2

)
T+iuσW ∗

P (T )+iuXP (TI(T ))−iuTI(T )ξXP

∣∣∣∣FW ∗
P

T ∨ FX∗
I

T

]
= e

iux+iu
(
r−σ2

2

)
T+iuσW ∗

P (T )−iuTI(T )ξXP
EQ

[
eiuXP (TI(T ))

∣∣∣FW ∗
P

T ∨ FX∗
I

T

]
= e

iux+iu
(
r−σ2

2

)
T+iuσW ∗

P (T )−iuTI(T )ξXP
eΨ

XP (u)TI(T ),

where ΨXP (u) is the characteristic exponent of the compound Poisson process XP .
Now, by application of the tower property we have:

EQ

[
eiuX(T )

]
= EQ

[
EQ

[
eiuX(T )

∣∣∣FW ∗
P

T ∨ FX∗
I

T

]]
= EQ

[
e
iux+iu

(
r−σ2

2

)
T+iuσW ∗

P (T )+ΨXP (u)TI(T )−iuTI(T )ξXP

]
.

Conditioning now with respect to FX∗
I

T we obtain:

EQ

[
e
iux+iu

(
r−σ2

2

)
T+iuσW ∗

P (T )+ΨXP (u)TI(T )−iuTI(T )ξXP

∣∣∣∣FX∗
I

T

]
= e

iux+iu
(
r−σ2

2

)
T+ΨXP (u)TI(T )−iuTI(T )ξXP

EQ

[
eiuσW

∗
P (T )

∣∣∣FX∗
I

T

]
= e

iux+iu
(
r−σ2

2

)
T+ΨXP (u)TI(T )−iuTI(T )ξXP

EQ

[
eiuσW

∗
P (T )

]
= e

iux+iu
(
r−σ2

2

)
T+ΨXP (u)TI(T )−iuTI(T )ξXP

e−
σ2u2T

2 .
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Lastly, by application of the tower property we obtain:

EQ

[
eiuX(T )

]
= EQ

[
EQ

[
e
iux+iu

(
r−σ2

2

)
T+iuσW ∗

P (T )+ΨXP (u)TI(T )−iuTI(T )ξXP

∣∣∣∣FX∗
I

T

]]
= EQ

[
e
iux+iu

(
r−σ2

2

)
T−σ2u2T

2
+ΨXP (u)TI(T )−iuTI(T )ξXP

]
= e

iux+iu
(
r−σ2

2

)
T−σ2u2T

2 EQ

[
eTI(T )(ΨXP (u)−iuξXP )

]
.

Notice that the random variable TI(T ) can be written as:

TI(T ) =

∫ T

0
I(s− τ)ds =

∫ T−τ

−τ
I(s)ds =

{ ∫ 0
−τ ϕ

I(s)ds+
∫ T−τ
0 I(s)ds if T > τ∫ T−τ

−τ ϕI(s)ds if T ≤ τ.

(5.4.24)

From equation (5.4.24) it is clear that we have to differentiate between the cases when
T ≤ τ and T > τ .

5.4.5 Characteristic function when T ≤ τ

From equation (5.4.24) and Proposition 5.4.3 we have that the characteristic function
of X(T ) when T ≤ τ is

ΦX(T )(u) = e
iux+iu

(
r−σ2

2

)
T−σ2u2T

2 EQ

[
e(

∫ T−τ
−τ ϕI(s)ds)(ΨXP (u)−iuξXP )

]
= e

iux+iu
(
r−σ2

2

)
T−σ2u2T

2
+(

∫ T−τ
−τ ϕI(s)ds)(ΨXP (u)−iuξXP )

. (5.4.25)

Notice that from equation (5.4.25) we have that the price of the option does not
depend on the interest process chosen when T ≤ τ . That is, we have the same formula
if we choose a Cox-Ingersoll-Ross process or an inverse Gaussian Ornstein-Uhlenbeck
process. However, this is not the case for the options with expiration date T > τ ; in
those cases the price of the option is affected by the market attention process.

5.4.6 Characteristic function when T > τ

In the case when T > τ , from equation (5.4.24) and Proposition 5.4.3 we have that

ΦX(T )(u) = e
iux+iu

(
r−σ2

2

)
T−σ2u2T

2 EQ

[
e(

∫ 0
−τ ϕI(s)ds+

∫ T−τ
0 I(s)ds)(ΨXP (u)−iuξXP )

]
= e

iux+iu
(
r−σ2

2

)
T−σ2u2T

2
+ϵ0(ΨXP (u)−iuξXP )

EQ

[
e(

∫ T−τ
0 I(s)ds)(ΨXP (u)−iuξXP )

]
, (5.4.26)

where ϵ0 =
∫ 0
−τ ϕ

I(u)du. Define the process Y as

Y (t) =

∫ t

0
I(s)ds for t ≥ 0. (5.4.27)
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The expectation that appears in equation (5.4.26) can be written as

EQ

[
e(

∫ T−τ
0 I(s)ds)(ΨXP (u)−iuξXP )

]
= EQ

[
eY (T−τ)(ΨXP (u)−iuξXP )

]
. (5.4.28)

Notice that from the proof of Proposition 5.4.3 we have that the expectation in (5.4.28)
is well defined since∣∣∣EQ [eY (T−τ)(ΨXP (u)−iuξXP )

]∣∣∣ =
∣∣∣EQ [eiuXP (Y (T−τ))−iuξXP Y (T−τ)

]∣∣∣
≤ EQ

[∣∣∣eiuXP (Y (T−τ))−iuξXP Y (T−τ)
∣∣∣] = 1.

So proceeding as in Carr, Geman, Madan, and Yor (2003, p. 359), we have that

EQ

[
eY (T−τ)(ΨXP (u)−iuξXP )

]
= ΦY (T−τ)

(
−iΨXP (u)− uξXP

)
,

where ΦY (T−τ) is the characteristic function of the random variable Y (T − τ).
Hence the characteristic function of X(T ) can be written as

ΦX(T )(u) = e
iux+iu

(
r−σ2

2

)
T−σ2u2T

2
+ϵ0(ΨXP (u)−iuξXP )

ΦY (T−τ)
(
−iΨXP (u)− uξXP

)
.

(5.4.29)
From equation (5.4.29) we have that the characteristic function of X(T ) depends

on the characteristic function of Y (T − τ). So in this case, the price of the option will
depend on the interest process. Hence we have different formulas depending on the
interest process that we choose.

1. If the interest process I is an Cox-Ingersoll-Ross process and satisfies equation
(5.4.7), then the characteristic function of the random variable Y (t) has the
form:

ΦY (t)(u) =
e

ã2I b̃I t

σ2
I e

2I(0)iu
ãI+γ coth(γt/2)(

cosh
(γt

2

)
+ aI

γ sinh
(γt

2

)) 2ãI b̃I
σ2
I

,

where γ =
√
ã2I − 2σ2

I iu, u ∈ R and t ≥ 0 (Schoutens, 2003, p. 89).

2. In the case that the market attention process I satisfies an IG(aI , b̃I)-Ornstein-
Uhlenbeck process with parameter λI > 0, the characteristic function of Y (t)
can be written as

ΦY (t)(u) = exp

{
iuI(0)

λI

(
1− e−λI t

)
+

2aIiu

b̃IλI

A(u, t)

}
, (5.4.30)

where

A(u, t) =
1−

√
1 + κ (1− e−λI t)

κ

+
1√
1 + κ

(
arctanh

(√
1 + κ (1− e−λI t)√

1 + κ

)
− arctanh

(
1√
1 + κ

))
κ = − 2iu

b̃2IλI

,

for u ∈ R and t ≥ 0 (Schoutens, 2003, p. 91).
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5.5 Exponential moments

As we have seen, we need to study the exponential moments of log-price to see if the
price is a martingale (see Proposition 5.4.2). We also need to study the exponential
moments because we use the characteristic function for pricing options. Let θ ∈ R;
the exponential moments of the random variable X(T ) defined in (5.4.23) can be
expressed as

EQ

[
eθX(T )

]
= EQ

[
e
θx+θ

(
r−σ2

2

)
T+θσW ∗

P (T )+θXP (TI(T ))−θTI(T )ξXP

]
.

It is easy to see that the exponential moment of X(T ) can be written as

EQ

[
eθX(T )

]
= EQ

[
e
θx+θ

(
r−σ2

2

)
T+θσW ∗

P (T )
]
EQ

[
eθXP (TI(T ))−θTI(T )ξXP

]
. (5.5.1)

The first expected value that appears in equation (5.5.1) is clearly finite, since it is
the exponential moment of a normal random variable. So to study the exponential
moment of X(T ), we need to study the expected value EQ

[
eθXP (TI(T ))−θTI(T )ξXP

]
.

In the proof of Proposition 5.4.2 (see equation (5.4.19)) we showed that

EQ

[
eθXP (TI(T ))−θTI(T )ξXP

]
= EQ

[
e
TI(T )

(
ξ
XP
θ −θξXP

)]
, (5.5.2)

where

ξXP
θ = λP

(
eθη+

1
2
θ2δ2 − 1

)
,

ξXP = λP

(
eη+

δ2

2 − 1

)
.

From equation (5.4.24) we have to distinguish between the case when T ≤ τ and
when T > τ .

When T ≤ τ we have that equation (5.5.2) can be expressed as

EQ

[
eθXP (TI(T ))−θTI(T )ξXP

]
= EQ

[
e
TI(T )

(
ξ
XP
θ −θξXP

)]
= EQ

[
e
(
∫ T−τ
−τ ϕI(s)ds)

(
ξ
XP
θ −θξXP

)]
= e

(
∫ T−τ
−τ ϕI(s)ds)

(
ξ
XP
θ −θξXP

)
<∞.

So when T ≤ τ all the exponential moments of X(T ) are finite.
A more interesting case is when T > τ . When T > τ we have that equation (5.5.2)

can be expressed as

EQ

[
eθXP (TI(T ))−θTI(T )ξXP

]
= EQ

[
e
TI(T )

(
ξ
XP
θ −θξXP

)]
= EQ

[
e
(
∫ 0
−τ ϕI(s)ds+

∫ T−τ
0 I(s)ds)

(
ξ
XP
θ −θξXP

)]
= e

ϵ0
(
ξ
XP
θ −θξXP

)
EQ

[
eY (T−τ)θ̃

]
, (5.5.3)
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where ϵ0 =
∫ 0
−τ ϕ

I(s)ds, Y is the process defined by (5.4.27) and

θ̃ =
(
ξXP
θ − θξXP

)
∈ R.

From equation (5.5.3) we have that the exponential moment of X(T ) is finite if and
only if EQ

[
eY (T−τ)θ̃

]
is finite. Let us define T ∗ = T − τ and notice that when θ̃ ≤ 0

we have that
EQ

[
eY (T ∗)θ̃

]
≤ 1

since Y (T ∗) > 0. So any explosions of the moment would only appear when θ̃ > 0.
To study the exponential moment of Y (T ∗), we need to differentiate between

the case when I is a Cox-Ingersoll-Ross process and when I is an inverse Gaussian
Ornstein-Uhlenbeck process. In the following subsections, we will focus on the cases
when θ̃ > 0.

5.5.1 Interest is a Cox-Ingersoll-Ross process

In the case that the market attention follows a Cox-Ingersoll-Ross process, we have
that the exponential moment of Y (T ∗) can be expressed as

EQ

[
eθ̃Y (T ∗)

]
= exp

{
A(θ̃, T ∗) + I(0)B(θ̃, T ∗)

}
, (5.5.4)

where

A(θ̃, T ∗) =
ã2I b̃It

σ2
I

− 2ãI b̃I
σ2
I

log

[
sinh

(
γ(θ̃)T ∗

2

)(
coth

(
γ(θ̃)T ∗

2

)
+

ãI

γ(θ̃)

)]
,

B(θ̃, T ∗) =
2θ̃

ãI + γ(θ̃) coth
(
γ(θ̃)T ∗

2

) , (5.5.5)

γ(θ̃) =

√
ã2I − 2σ2

I θ̃,

(Friz & Keller-Ressel, 2010, p. 5).
From Friz and Keller-Ressel (2010, p. 5) we have that equation (5.5.5) and hence

(5.5.4), is well defined for θ̃ < θ̃∗ and explodes when θ̃ ↑ θ̃∗, where θ̃∗ > 0 is the
solution of the equation H(θ̃∗) = 0 where

H(l) = ãI + γ(l) coth

(
γ(l)T ∗

2

)
.

Notice that since coth(x) > 0 for x > 0 and ãI > 0 we have that when ã2I − 2σ2
I l > 0

then H(l) > 0. Hence if

θ̃ <
ã2I
2σ2

I

(5.5.6)

then the exponential moment of Y (T ∗) is finite for all T ∗ ≥ 0.
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5.5.2 Interest is an inverse Gaussian Ornstein-Uhlenbeck process

If the interest process satisfies an IG(aI , b̃I)-Ornstein-Uhlenbeck process with param-
eter λI > 0, we will study the exponential moments of the following Itô integral:∫ T ∗

0

√
I−(u)dB(u),

where B is a Brownian motion independent of the background driving Lévy process
ZI . From Proposition 1.4.1 we have that∫ T ∗

0

√
I−(u)dB(u)

∣∣∣∣∣FZI
T ∗ ∼ N

(
0,

∫ T ∗

0
I−(u)du

)
.

Hence we can write

EQ

[
e

√
2θ̃

∫ T∗
0

√
I−(u)dB(u)

]
= EQ

[
EQ

[
e

√
2θ̃

∫ T∗
0

√
I−(u)dB(u)

∣∣∣∣FZI
T ∗

]]
= EQ

[
eθ̃

∫ T∗
0 I−(u)du

]
= EQ

[
eθ̃Y (T ∗)

]
.

From the result by Nicolato and Venardos (2003, Theorem 2.2) we have that the
moment

EQ

[
e

√
2θ̃

∫ T∗
0

√
I−(u)dB(u)

]
is finite if √

2θ̃ < inf
0≤s<T ∗

√
b̃2Iϵ(s, T

∗)−1, (5.5.7)

where

ϵ(s, T ∗) =
1− e−λI(T

∗−s)

λI
for s ∈ [0, T ∗].

So condition (5.5.7) can be written as

√
2θ̃ < inf

0≤s<T ∗

√
b̃2I

λI

1− e−λI(T ∗−s)
, (5.5.8)

Because ϵ(s, T ∗)−1 is an increasing function with respect to s when s ∈ [0, T ∗], we
have that the condition (5.5.8) can be expressed as

√
2θ̃ <

√
b̃2I

λI

1− e−λTT ∗ . (5.5.9)

Hence, if condition (5.5.9) is satisfied, then the moment EQ

[
eθ̃Y (T ∗)

]
is finite.

5.6 Market option prices

With the models that are introduced in this chapter, we would like to price European
options and compare the results obtained with the true market prices. The data
used in this chapter are the same as the one used in Chapter 3. For evaluating the
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performance of our model, we again compute the root mean square error and the
relative root mean square error.

In this chapter, we consider that the interest process can satisfy a Cox-Ingersoll-
Ross process or an inverse Gaussian Ornstein-Uhlenbeck process. Because of that, we
split the analysis when the interest follows a Cox-Ingersoll-Ross process and when the
interest follows an inverse Gaussian Ornstein-Uhlenbeck process.

5.6.1 Cox-Ingersoll-Ross process

In Chapter 2, we saw that we can use two proxies for the interest when it follows a Cox-
Ingersoll-Ross process. The two proxies are the unique number of active addresses and
the number of views in Wikipedia of the keyword “Altcoin”. We first do the analysis
when the selected proxy is the unique number of active addresses and then when the
selected proxy is the number of views in Wikipedia.

When the proxy of the interest is the number of unique active addresses, the
estimated parameters are shown in Figure 5.1 and Figure 5.2. The results show that
the parameters change through time and that the delay parameter is always greater
than zero.

With the estimated values of the parameters, we would like to compute European
option prices and compare them with the true market prices. We compute the root
mean square error and the relative root mean square error; these are shown in Figure
5.3 and in Figure 5.4 respectively. As we saw in Section 5.4.1, we can select different
values for the parameters λ1 and λ2 defined in equation (5.4.5); that is, we can select
different risk–neutral probabilities. In our case, we are interested in the risk–neutral
probability that minimizes the relative root mean square error. That is, we select
values of λ1 and λ2 that minimize the relative root mean square error. For these new
values of λ1 and λ2 we compute new values for the root mean square error and the
relative root mean square error. These are shown in Figure 5.3 and in Figure 5.4
respectively. As we can observe in Figure 5.5 the values of the calibrated ãI and b̃I
are in general bigger than the estimated values of the parameters. In addition, we
compute the root mean square error and the relative root mean square error obtained
by the Black-Scholes-Merton model. Again, these are shown in Figures 5.3–5.4. As
we can observe when we calibrate the proposed model, we obtain better results than
the Black-Scholes-Merton model. These results can also be observed in Figure 5.6,
where the ratio between the relative root mean square error given by our model and
the relative root mean square error given by the Black-Scholes-Merton model is given.

In the case that the interest proxy is the number of views of the word “Altcoin”,
we obtain the estimated parameters that appear in Figures 5.7–5.8. With these values
for the parameters, we calculate the values of European options and compare them
with their respective market values. The root mean square error and the relative root
mean square error are shown in Figure 5.9 and in Figure 5.10 respectively. Again,
we can choose different values for the parameters λ1 and λ2. As we did before, we
select the values of λ1 and λ2 that minimize the relative root mean square error.
For these new values of λ1 and λ2 we have new values for the parameters ãI and
b̃I , these are shown in Figure 5.11. As we can observe, the estimated values of the
parameters ãI and b̃I are in general greater than the calibrated ones. With these
new values of the parameters ãI and b̃I we price European options and compute the
root mean square error and the relative root mean square error, these are shown in
Figures 5.9–5.10. Again, we compute the root mean square error and the relative root
mean square error given by the Black-Scholes-Merton model; these appear in Figures
5.9–5.10. For this case, the calibrated proposed model obtains better results than
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the Black-Scholes-Merton model. As we did before, we show the relative root mean
square error given by our model divided by the relative root mean square error given
by the Black-Scholes-Merton model in Figure 5.12.

5.6.2 Inverse Gaussian Ornstein-Uhlenbeck process

As we saw in Chapter 2, the logarithm of the number of unique active addresses
satisfies an inverse Gaussian Ornstein-Uhlenbeck process. The estimated parameters
obtained for the different temporal windows are shown in Figures 5.13–5.14.

As we can observe, the values we obtain for the parameter λI are all above 100.
As discussed in Chapter 4 for these values of λI , the computer is not able to compute
the characteristic function that appears in equation (5.4.30). When the value of λI

is high, the following value that appears on the characteristic function satisfies the
following

arctanh

(√
1 + κ (1− e−λI t)√

1 + κ

)
≈ arctanh(1).

But the arctanh is not defined for the value 1 and hence we are not able to compute the
characteristic function. Because of that, we would need an approximation formula for
computing European call options, but the computation of that approximation formula
is outside of the scope of this thesis.

5.7 Summary of models

We are interested in comparing the results obtained by the models presented in Chap-
ter 3, Chapter 4 and Chapter 5. We first compare the relative root mean square error
given by our models with the relative root mean square error given by the Black-
Scholes-Merton model. As we did before, we divide the relative root mean square
error given by the presented models by the relative root mean square error given by
the Black-Scholes-Merton model. The results are shown in Figure 5.15. As we can
observe, at least one of our models always gets better results than the Black-Scholes-
Merton model for each date. In addition, it is interesting to see that the models that
use the number of Wikipedia views as proxy for the interest are the ones that obtain
the best results.

All the models shown in Chapter 3, Chapter 4 and Chapter 5 have several risk
neutral probability measures. Because of that, we can select the risk neutral measure
that minimize the relative root mean square error. Now we would like to compare
the relative root mean square error given by our models when they are calibrated
against options market data. To that end, we divide the relative root mean square
error given by our calibrated models by the root mean square error given by the
Black-Scholes-Merton model. We can see in Figure 5.16 that our calibrated models
give better results than the Black-Scholes-Merton model. When comparing Figure
5.15 and Figure 5.16 it is clear that the calibrated models give better results than the
models without calibration. As happened before, the models that have the number of
Wikipedia views as a proxy for the interest give better results.

5.8 Conclusion and future work

In this chapter, we developed time changed models in which the probability of a price
jump increases when the market attention is high. On the contrary, if the market
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attention is low, the probability of having a jump decreases. We showed how we can
estimate the parameters of these models and how we can price European options.

One of the issues of the presented models is that these models do not capture the
asymmetry of the jumps. One solution would be having a time changed compound
Poisson process with double exponential distributed jumps (Kou, 2002). Another
solution proposed in the literature is the use of a time changed tempered stable process
(Klingler, Kim, Rachev, & Fabozzi, 2013).

Furthermore, it could be interesting to construct models that have several market
attention proxies instead of having just one proxy. In this case, our price process
would be formed by several time changed compound Poisson processes. The problem
with this approach is that the estimation of parameters becomes more difficult.
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(a) Estimation of the parameter aI .

(b) Estimation of the parameter bI .

(c) Estimation of the parameter σI .

Figure 5.1: Estimated values for the parameters of the model defined
in Section 5.1 when the proxy of the interest is the number of unique

active addresses and the interest is a Cox-Ingersoll-Ross process.
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(a) Estimation of the parameter µ. (b) Estimation of the parameter σP .

(c) Estimation of the parameter τ . (d) Estimation of the parameter λP .

(e) Estimation of the parameter η. (f) Estimation of the parameter δ.

Figure 5.2: Estimated values for the parameters of the model defined
in Section 5.1 when the proxy of the interest is the number of unique

active addresses and the interest is a Cox-Ingersoll-Ross process.

Figure 5.3: Root mean square error when the proxy of the interest
is the number of unique active addresses.
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Figure 5.4: Relative root mean square error when the proxy of the
interest is the number of unique active addresses and the interest is a

Cox-Ingersoll-Ross process.
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(a) Estimated and calibrated values for the parameter aI .

(b) Estimated and calibrated values for the parameter bI .

Figure 5.5: Calibrated values for the parameters aI and bI when the
proxy of the interest is the number of unique active addresses and the

interest is a Cox-Ingersoll-Ross process.
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Figure 5.6: Relative root mean square error given by our model
divided by the relative root mean square error obtained by the Black-
Scholes-Merton model, when the proxy of the market interest is the

number of unique active addresses.
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(a) Estimation of the parameter aI .

(b) Estimation of the parameter bI .

(c) Estimation of the parameter σI .

Figure 5.7: Estimated values for the parameters of the model defined
in Section 5.1 when the proxy of the interest is the number of views in
Wikipedia of the keyword “Altcoin” and the interest is a Cox-Ingersoll-

Ross process.
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(a) Estimation of the parameter µ. (b) Estimation of the parameter σP .

(c) Estimation of the parameter τ . (d) Estimation of the parameter λP .

(e) Estimation of the parameter η. (f) Estimation of the parameter δ.

Figure 5.8: Estimated values for the parameters of the model defined
in Section 5.1 when the proxy of the interest is the number of views in
Wikipedia of the keyword “Altcoin” and the interest is a Cox-Ingersoll-

Ross process.

Figure 5.9: Root mean square error when the proxy of the interest
is the number of views in Wikipedia of the keyword “Altcoin” and the

interest is a Cox-Ingersoll-Ross process.
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Figure 5.10: Relative root mean square error when the proxy of the
interest is the number of views in Wikipedia of the keyword “Altcoin”

and the interest is a Cox-Ingersoll-Ross process.
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(a) Estimated and calibrated values for the parameter aI .

(b) Estimated and calibrated values for the parameter bI .

Figure 5.11: Calibrated values for the parameters aI and bI when
the proxy of the interest is the number of views in Wikipedia of the
keyword “Altcoin” and the interest is a Cox-Ingersoll-Ross process.
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Figure 5.12: Relative root mean square error given by our model
divided by the relative root mean square error obtained by the Black-
Scholes-Merton model, when the proxy for market attention is the

number of Wikipedia views of the word “Altcoin”.
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(a) Estimation of the parameter aI .

(b) Estimation of the parameter bI .

(c) Estimation of the parameter λI .

Figure 5.13: Estimated values for the parameters of the model de-
fined in Section 5.1 when the proxy of the interest is the logarithm of
the number of unique active addresses and the interest is an inverse

Gaussian Ornstein-Uhlenbeck process.
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(a) Estimation of the parameter µ. (b) Estimation of the parameter σP .

(c) Estimation of the parameter τ . (d) Estimation of the parameter λP .

(e) Estimation of the parameter η. (f) Estimation of the parameter δ.

Figure 5.14: Estimated values for the parameters of the model de-
fined in Section 5.1 when the proxy of the interest is the logarithm of
the number of unique active addresses and the interest is an inverse

Gaussian Ornstein-Uhlenbeck process.

Figure 5.15: Relative root mean square errors given by our models
divided by the relative root mean square error given by Black-Scholes-

Merton model.



142 Chapter 5. Time changed models

Figure 5.16: Relative root mean square errors given by our calibrated
models divided by the relative root mean square error given by Black-

Scholes-Merton model.
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Chapter 6

Stochastic volatility models with
an exogenous variable

In previous chapters, we have assumed that price volatility is fully explained by an
observed exogenous variable. We have taken this observed variable to be market
attention. In addition, we have assumed that the volatility of Bitcoin is proportional
to the square root of the market attention. Due to the complex nature of financial
markets, it is unlikely that the volatility is truly described by just one variable. Whilst
identifying the main factors that affect the volatility of cryptocurrencies is beyond of
the scope of this thesis, in this chapter we proposed models in which the volatility
is described by an observed exogenous process and an unobserved component that
follows a certain latent model. Again, the observed variable will be market attention
and we expect that the hidden process will capture the effect of the other variables.

To work with models of this kind, we will need new tools. These new tools are
sequential Monte Carlo methods, and they will help us to deal with the unobserved
component of the volatility. Sequential Monte Carlo methods have been used previ-
ously when working with stochastic volatility models; the works of Al-Saadony (2013)
and Yang (2015) contain more information.

6.1 State space models and particle filters

Before studying the models of interest, we will study models in which the volatility is
completely explained by a hidden process. These models are usually called stochastic
volatility models. But first let us introduce the concept of state space model. The
introduction of state space models presented here follows the exposition done in the
work of Chopin and Papaspiliopoulos (2020, Chapter 4), including Proposition 6.1.1.

Notation 6.1.1. Here we will use capital letters to denote random variables and
lower-case letters for the realisations of the random variables. In addition we will use
the semicolon notation to indicate vectors, that is for t = 1, 2, . . . we define the vectors

Y0:t = (Y0, Y1, . . . , Yt), Y1:t = (Y1, Y2, . . . , Yt), (6.1.1)
y0:t = (y0, y1, . . . , yt), y1:t = (y1, y2, . . . , yt), (6.1.2)

where the vectors in (6.1.1) are vectors of random variables and the vectors in (6.1.2)
are vectors of realizations. In addition, we will write P(dx) to indicate the law of the
random variable X and P(dx0:t) to represent the law of (X0, X1, . . . , Xt).

Remark 6.1.1. We will consider X to be a set and B(X ) to be the σ-algebra (usually
a Borel σ-algebra) of the set X ; in this thesis the set X is Rd with d ≥ 1.

State space models are related to the concept of probability kernels.
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Definition 6.1.1. Let (X ,B(X )) and (Y,B(Y)) be two measurable spaces. A prob-
ability kernel from (X ,B(X )) to (Y,B(Y)), P (x, dy) is a function from (X ,B(Y)) to
[0, 1] such that:

1. for every x ∈ X , P (x, .) is a probability measure on (Y,B(Y)),

2. for every A ∈ B(Y), x→ P (x,A) is a measurable function on X .

The definition of probability kernels allows us to work with conditional proba-
bilities, and we can use them to define discrete Markov processes. To that end, we
consider a sequence of probability kernels {Pt}Tt=1 from (X ,B(X )) to (X ,B(X )), for
some T ∈ Z+ and a probability measure P(dx0) on (X ,B(X )).

Definition 6.1.2. A sequence of random variables X0:T with joint distribution given
by

PT (X0:T ∈ dx0:T ) = P0(dx0)

T∏
s=1

Ps(xs−1, dxs) (6.1.3)

is called a (discrete-time) Markov process with state space X , initial distribution P0

for the random variable X0 and transition kernel at time t, Pt.

It can be shown that equation (6.1.3) implies that

PT (Xt ∈ dxt|X0:t−1 = x0:t−1) = PT (Xt ∈ dxt|Xt−1 = xt−1)

= Pt(xt−1, dxt) for all t ≤ T.

Notice that this definition of Markov process is given in terms of the probability
measure PT , however on some occasions we would like to have a sequence of probability
measures Pt for t ≤ T .

Proposition 6.1.1. Consider a sequence of random variables X0:T and a sequence of
probability measures {Pt}Tt=0, defined as

Pt(X0:t ∈ dx0:t) = P0(dx0)

t∏
s=1

Ps(xs−1, dxs),

where Ps is a probability kernel for s = 1,2,. . . ,T. Then for any t ≤ T ,

PT (dx0:t) = Pt(dx0:t).

Proposition 6.1.1 tells us that for every bounded measurable function φ : X t+1 →
R we have that

EPT
[φ(X0:t)] = EPt [φ(X0:t)],

where EPT
[.] and EPt [.] are the expected values with respect to the measures PT

and Pt, respectively. We have just seen that we can use probability kernels to define
Markov processes, but we can go further and use them to define state space models.

Definition 6.1.3. Let X = {X}Tt=0 and Y = {Y }Tt=0 be two stochastic processes such
that Xt ∈ X and Yt ∈ Y, a state space model is the stochastic process {(Xt, Yt)}Tt=0

on the measurable space (X × Y,B(X ) × B(Y)), where B(X ) × B(Y) is the product
σ-algebra. The distribution of the state space model is defined in terms of an ini-
tial distribution P0(dx0) of the random variable X0 and two sequences of probability
kernels {Pt(xt−1, dxt)}Tt=1, {Ft(xt, dyt)}Tt=0 where Pt(xt−1, dxt) is a probability kernel
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from (X ,B(X )) to (X ,B(X )) and Ft(xt, dyt) is a probability kernel from (X ,B(X )) to
(Y,B(Y)) and the joint distribution of (X0:T , Y0:T ) is defined by

PT (X0:T ∈ dx0:T , Y0:T ∈ dy0:T ) = P0(dx0)

T∏
t=1

Pt(xt−1, dxt)

T∏
t=0

Ft(xt, dyt)

= P0(dx0)F0(x0, dy0)
T∏
t=1

Pt(xt−1, dxt)Ft(xt, dyt) (6.1.4)

= PT (dx0:T )
T∏
t=0

Ft(xt, dyt). (6.1.5)

From equation (6.1.4) we have that the process {(Xt, Yt)}Tt=1 is a Markov pro-
cess with initial distribution P0(dx0)F0(x0, dy0) for the random variable (X0, Y0) and
transition kernels {Pt(xt−1, dxt)Ft(xt, dyt)}Tt=1. From equation (6.1.5) we have that
the process X is a Markov process with initial distribution P0(dx0) for the random
variable X0 and transition kernels {Pt(xt−1, dxt)}Tt=1.

These types of models are used to model time series that have been generated by
the process Y . That is, only the realizations of the process Y are observed, while the
realizations of the Markov process X remain unobserved. When the set X is finite,
state space models are also called hidden Markov processes.

Remark 6.1.2. In this thesis, we are interested in an special case of state space
models, in which there are two measures µ and ν on the measurable spaces (X ,B(X ))
and (Y,B(Y)), respectively such that:

P0(dx0) = fX
0 (x0)µ(dx0),

Pt(xt−1|dxt) = f
X|X
t|t−1(xt|xt−1)µ(dxt),

Ft(xt|dyt) = f
Y |X
t|t (yt|xt)ν(dyt),

where fX
0 represents the marginal density of X0, f

X|X
t|t−1 is the conditional density of

Xt given Xt−1 and f
Y |X
t|t is the density of Yt given Xt. Usually the measures µ and ν

are the Lebesgue measure. That is, we focus on state space models whose probability
kernels satisfy continuous distributions.

If we assume that

Ft(xt|dyt) = f
Y |X
t|t (yt|xt)ν(dyt) ∀t,

then the equation (6.1.5) can be rewritten as

PT (X0:T ∈ dx0:T , Y0:T ∈ dy0:T ) = PT (dx0:T )
T∏
t=0

f
Y |X
t|t (yt|xt)ν(dyt). (6.1.6)

On some occasions we will be interested in computing the marginal distribution of
Y0:t, which can be computed as

PT (Y0:t ∈ dy0:t) = EPt

[
t∏

s=0

f
Y |X
s|s (ys|Xs)

]
t∏

s=0

ν(dys), (6.1.7)
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where EPt [.] is the expected value with respect to the probability measure Pt. From
equation (6.1.7) we have that the marginal density of Y0:t is equal to

fY
0:t(y0:t) = EPt

[
t∏

s=0

f
Y |X
s|s (ys|Xs)

]
. (6.1.8)

Using the result in (6.1.8) we can construct the marginal densities fY
0:t for different

values of t. In addition, the conditional density of Yt given Y0:t−1 can be defined in
terms of two consecutive marginal densities, that is

f
Y |Y
t|0:t−1(yt|y0:t−1) =

fY
0:t(y0:t)

fY
0:t−1(y0:t−1)

. (6.1.9)

The ratios defined in equation (6.1.9) are called likelihood ratios since the likelihood
can be defined in terms of them as

fY
0:T (y0:T ) = fY

0 (y0)
T∏

s=1

f
Y |Y
s|0:s−1(ys|y0:s−1). (6.1.10)

Remark 6.1.3. Usually, state space models will depend on a vector of parameters θ
that can take values in a set Θ. When we want to indicate that our model depends on
a vector of parameters θ we will use the notation fY

0:T (y0:T |θ) rather than fY
0:T (y0:T ).

Using this notation, the likelihood in (6.1.10) can be rewritten as:

LY (θ) = fY
0:T (y0:T |θ) = fY

0 (y0|θ)
T∏

s=1

fY
s|s−1(ys|ys−1, θ). (6.1.11)

The log-likelihood is then

lY (θ) = log
(
LY (θ)

)
= log

(
fY
0 (y0|θ)

)
+

T∑
s=1

log
(
fY
s|s−1(ys|ys−1, θ)

)
. (6.1.12)

For estimating the parameter θ, one can try to maximize the function lY , but the
problem is that in general, state space models do not have a close formula for the
likelihood.

In addition, to the likelihood, we are also concerned with the distribution of X0:t

given Y0:t, which can be expressed as

Pt (X0:t ∈ dx0:t|Y0:t = y0:t) =
1

fY
0:t(y0:t)

[
t∏

s=0

f
Y |X
s|s (ys|xs)

]
Pt(dx0:t). (6.1.13)

In this thesis, we are interested in determining the distribution of Xt given Y0:t; this
is known as filtering.

6.1.1 Examples

In this subsection, we will see two examples of stochastic volatility models and their
representation as state space models.

Remark 6.1.4. In all the models to be studied here, the density functions f
Y |X
t|t and

f
X|X
t|t−1 are going to be normal density functions. Because of this, we introduce the
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following notation to indicate the density function of a normal random variable with
mean µ and variance σ2:

fN (z|µ, σ2) =
1√
2πσ

e−
1
2

(z−µ)2

σ2 for all z ∈ R. (6.1.14)

Example 6.1.1. Simple stochastic volatility model.
This is one of the first stochastic volatility models and it was proposed by Taylor

(1982). Let {Yt}∞t=0 and {Xt}∞t=0 represent the logarithmic returns of the price and
the logarithmic volatility squared, respectively. This model is written as

Yt = exp

{
Xt

2

}
ϵt, (6.1.15)

Xt = ρ0 + ρ1Xt−1 + τηt, (6.1.16)

where ρ0 ∈ R, ρ1 ∈ (−1, 1), τ > 0 and where {ηt}∞t=1 and {ϵt}∞t=0 are two independent
sequences of independent standard normal random variables. We assume that the ini-
tial value of the volatility X0 follows a normal distribution with mean µ0 and variance
σ2
0. Notice that the probability kernels of this state space model are

Ft(xt, dyt) = fN (yt|0, ext)m(dyt),

Pt(xt−1, dxt) = fN (xt|ρ0 + ρ1xt−1, τ
2)m(dxt),

where m is the Lebesgue measure.

Example 6.1.2. Heston model.
The Heston model (Heston, 1993) is one of the most popular stochastic volatility

models and it is used in the context of option pricing. This model is a continuous
time model and because of that we have to discretize it. We use the discretization used
by Mrázek and Pospíšil (2017, p. 694). In this case, {Yt}∞t=1 and {Vt}∞t=0 represent
the logarithmic returns of the price and the volatility, respectively. This model can be
written as

Yt =

(
µ− 1

2
V +
t−1

)
∆t+

√
V +
t−1∆tZY

t , (6.1.17)

Vt = Vt−1 + aI(bI − V +
t−1)∆t+ σI

√
V +
t−1∆tZV

t , (6.1.18)

where x+ = max{x, 0}, µ ∈ R, aI , bI , σI ,∆t > 0, and where 2aIbI
σ2
I
≥ 1. In addition,

{ZY
t }∞t=1 and {ZV

t }∞t=1 are two correlated sequences of independent standard normal
random variables with correlation corr[ZY

t , ZV
t ] = ρ ∈ (−1, 1) for all t ≥ 0. Here ∆t

is not a parameter and it represents the time step. Again, the distribution of V0 is a
normal distribution with mean µ0 and variance σ2

0.
The correlated sequences {ZV

t }∞t=1 and {ZY
t }∞t=1 can be expressed in terms of two

independent sequences of independent standard normal random variables {BV
t }∞t=1 and

{BY
t }∞t=1 as:

ZY
t = ρBV

t +
√

1− ρ2BY
t

ZV
t = BV

t ,
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(Hirsa, 2012, p. 233). So, the model introduced in equations (6.1.17)–(6.1.18) can be
rewritten as

Yt =

(
µ− 1

2
V +
t−1

)
∆t+

√
V +
t−1∆t

(
ρBV

t +
√

1− ρ2BY
t

)
(6.1.19)

Vt = Vt−1 + aI(bI − V +
t−1)∆t+ σI

√
V +
t−1∆tBV

t . (6.1.20)

From equation (6.1.20) we have that√
V +
t−1∆tBV

t =
1

σI

(
Vt − Vt−1 − aI(bI − V +

t−1)∆t
)
. (6.1.21)

Substituting equation (6.1.21) into equation (6.1.19) we arrive at

Yt =

(
µ− 1

2
V +
t−1

)
∆t+

ρ

σI

(
Vt − Vt−1 − aI(bI − V +

t−1)∆t
)
+
√
1− ρ2

√
V +
t−1∆tBY

t .

(6.1.22)

In this case, the hidden process has a dimension of two. We define the process {Xt}∞t=1

as

Xt =

(
Xt(1)
Xt(2)

)
=

(
Vt

Vt−1

)
.

So equations (6.1.20) and (6.1.22) can be rewritten in terms of X:

Yt =

(
µ− 1

2
X+

t (2)

)
∆t+

ρ

σI

(
Xt(1)−Xt(2)− aI(bI −X+

t (2))∆t
)

+
√
1− ρ2

√
X+

t (2)∆tBY
t ,(

Xt(1)
Xt(2)

)
=

(
Xt−1(1) + aI(bI −X+

t−1(1))∆t+ σI

√
X+

t−1(1)∆tBV
t

Xt−1(1)

)
.

So, we have just rewritten our model in terms of a Markov process X and an observed
process Y , whose value at time t depends on Xt. That is, we have expressed our model
as a state space model. In this case, the probability kernels are

Ft(xt, dyt) = fN
(
yt
∣∣µF , σ

2
F

)
m(dyt),

Pt(xt−1, dxt) = fN (xt(1)|µP , σ
2
P )δxt−1(1)(dxt(2))m(dxt(1)),

where m is the Lebesgue measure, δxt−1(1) is the Dirac measure concentrated on xt−1(1)
and

µF = (µ− 0.5x+t (2))∆t+
ρ

σI

(
xt(1)− xt(2)− aI(bI − x+t (2))∆t

)
,

σ2
F = (1− ρ2)x+t (2)∆t,

µP = xt−1(1) + aI(bI − x+t−1(1))∆t,

σ2
P = σ2

Ix
+
t−1(1)∆t.

6.1.2 Particle filter

Particle filters are filtering algorithms for state space models. There are different
types of particle filters: auxiliary filters, guided filters or bootstrap filters. Remember
that filtering consists of deriving the distribution of Xt conditional on Y1:t = y1:t,
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for t = 1, . . . , T . Particle filter algorithms approximate the distribution Pt(Xt ∈
dxt|Y0:t = y0:t) sequentially.

Particle filters are related to Monte Carlo methods and they are included in a set
of techniques called sequential Monte Carlo methods.

6.1.3 Importance sampling

Particle filters are based on the importance sampling algorithm. This algorithm works
as follows.

Let us imagine that we have a random variable X that takes values in the set X ,
and the distribution of this random variable is denoted by Q. We are interested in
computing the expected value

EQ [φ(X)] :=

∫
X
φ(x)Q(dx), (6.1.23)

where φ : X → R is a bounded measurable function and EQ[.] is the expected value
with respect to the measure Q.

This integral can be approximated by sampling from the distribution Q. On
some occasions we will not be able to draw samples from Q. Let us consider a new
distribution M, which we know how to sample from, and assume that Q is absolutely
continuous with respect to M. By the Radon-Nikodym theorem, we know that there
exists a non-negative measurable function w such that

Q(dx) = w(x)M(dx). (6.1.24)

Using equation (6.1.24), we can rewrite the expected value in (6.1.23) as

EQ [φ(X)] =

∫
X
φ(x)w(x)M(dx)

=

∫
X
φ(x)

w(x)

EM[w(X)]
M(dx), (6.1.25)

where the last equality comes from the fact that:

EM[w(X)] :=

∫
X
w(x)M(dx) =

∫
X
Q(dx) = 1.

Now we can approximate the expectation in equation (6.1.25) by generating samples
from the distributionM. If we generate a sequence {Xi}Npar

i=1 of Npar ∈ N independent
and identically distributed random variables with distributionM, then the distribution
Q can be approximated by the distribution

QNpar(dx) :=

Npar∑
i=1

W iδXi(dx),

where

W i =
w(Xi)∑Npar

j=1 w(Xj)
for i = 1, . . . , Npar,
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and the expected value (6.1.23) can be approximated by

EQNpar [φ(X
1:Npar)] =

Npar∑
i=1

φ(Xi)W i,

(Chopin & Papaspiliopoulos, 2020, p. 89).

6.1.4 Feynman-Kac models and sequential importance sampling

Particle filter algorithms are based on the importance sampling algorithm, but the
samples are generated sequentially. To construct this type of algorithm, we need to
introduce the concept of a Feynman-Kac model.

Definition 6.1.4. (Chopin & Papaspiliopoulos, 2020, p. 51)
Let us consider a Markov process {Xt}Tt=0 such that Xt ∈ X for all 0 ≤ t ≤ T with

initial distribution M0 for the random variable X0 and transition kernels M1:T , that
satisfies:

MT (dx0:T ) =M0(dx0)
T∏
t=1

Mt(xt−1, dxt).

Consider also a sequence of functions G0 : X → R+, and Gt : X 2 → R+ for 1 ≤ t ≤ T
called potential functions. A sequence of Feynman-Kac models is given by a sequence
of probability measures on

(
X t+1,B(X )t+1

)
for 0 ≤ t ≤ T , defined as the following

changes of measure from Mt:

Qt(dx0:t) =
1

Lt
G0(x0)

[
t∏

s=1

Gs(xs−1, xs)

]
Mt(dx0:t), (6.1.26)

where Lt is the normalising constant needed for Qt to be a probability measure,

Lt =

∫
X t+1

G0(x0)

t∏
s=1

Gs(xs−1, xs)Mt(dx0:t) = EMt

[
G0(X0)

t∏
s=1

Gs(Xs−1, Xs)

]
.

For these models to be well defined, we require 0 < Lt <∞ for all t ≤ T .

The normalizing constant Lt is called the partition function or likelihood function
and we denote the ratios for the successive normalizing constants as

lt =
Lt

Lt−1
.

The Feynman-Kac model defined in equation (6.1.26) is just a change of measure from
the measure Mt(dx0:t) to the measure Qt(dx0:t). From equation (6.1.26) we have that
if we know how to sample from the distribution Mt(dx0:t), then we can approximate
the distribution Qt(dx0:t) using the importance sampling algorithm. Based on this, it
is possible to construct the sequential importance sampling algorithm, see Algorithm
1 (Chopin & Papaspiliopoulos, 2020, p. 132).
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Algorithm 1: Sequential importance sampling
Xi

0 ∼M0(dx0) for i = 1, . . . , Npar;
wi
0 ← G0

(
Xi

0

)
for i = 1, . . . , Npar;

W i
0 ←

wi
0∑Npar

m=1 wm
0

for i = 1, . . . , Npar ;

for t = 1, 2, . . . T do
Xi

t ∼Mt(X
i
t−1, dxt) for i = 1, . . . , Npar;

wi
t ← wi

t−1Gt

(
Xi

t−1, X
i
t

)
for i = 1, . . . , Npar;

W i
t =

wi
t∑Npar

m=1 wm
t

for i = 1, . . . , Npar;

end

Algorithm 1 allow us to approximate Qt(dxt) by

Q
Npar

t (dxt) =

Npar∑
i=1

W i
t δXi

t
(dxt),

and the ratio lt is approximated by

l
Npar

t =

∑Npar

i=1 wi
t∑Npar

i=1 wi
t−1

.

The problem with this algorithm is that some of the weights W i
t that appear

in Algorithm 1 can become zero or near to zero. This is called particle degeneracy.
Because of the recursive nature of the algorithm, we can lose several particles when T is
high. To avoid this, we can perform a re-sampling with replacement at each iteration
of the algorithm. The problem of re-sampling at each step is that it increases the
computing time of the algorithm. Because of that, it is defined the effective sample
size for the weights W

1:Npar

t as

ESS
(
W

1:Npar

t

)
=

1∑Npar

m=1 (W
m
t )2

. (6.1.27)

Notice that when W i
t = 1

Npar
for all i = 1, . . . , Npar we have that ESS

(
W

1:Npar

t

)
=

Npar meaning that all particles in the sample are contributing equally. In the case
when all the weights W

1:Npar

t are equal to zero except one which is equal to one, we
have that ESS

(
W

1:Npar

t

)
= 1. A common policy is to resample when the effective

sample size is smaller than a certain value that we call Ntol. That is, a resampling
will occur at time t if

ESS
(
W

1:Npar

t

)
< Ntol.

A usual value for the tolerance is Ntol = Npar/2.
Using the concept of effective sample size, it is possible to construct a new al-

gorithm based on Algorithm 1, called sequential importance sampling with adaptive
resampling. This appears in Algorithm 2 below (Chopin & Papaspiliopoulos, 2020,
p. 134).
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Algorithm 2: Sequential importance sampling with adaptive resampling
Xi

0 ∼M0(dx0) for i = 1, . . . , Npar;
wi
0 ← G0

(
Xi

0

)
for i = 1, . . . , Npar;

W i
0 ←

wi
0∑Npar

m=1 wm
0

for i = 1, . . . , Npar ;

for t = 1, 2, . . . T do
if ESS

(
W

1:Npar

t−1

)
< Ntol then

Draw (with replacement) Npar indices Iit for i = 1, . . . , Npar using the
normalized weights W

1:Npar

t−1 ;
ŵi
t−1 ← 1 for i = 1, . . . , Npar;

else
Iit ← i for i = 1, . . . , Npar;
ŵi
t−1 ← wi

t−1 for i = 1, . . . , Npar;
end

Xi
t ∼Mt(X

Iit
t−1, dxt) for i = 1, . . . , Npar;

wi
t ← ŵi

t−1Gt

(
X

Iit
t−1, X

i
t

)
for i = 1, . . . , Npar;

W i
t =

wi
t∑Npar

m=1 wm
t

for i = 1, . . . , Npar;

end

From Algorithm 2 we have that the distribution Qt(dxt) is approximated by

Q
Npar

t (dxt) =

Npar∑
i=1

W i
t δXi

t
(dxt), (6.1.28)

and the ratio lt is approximated by

l
Npar

t =


1

Npar

∑Npar

i=1 wi
t, if resampling occurred at time t,∑Npar

i=1 wi
t∑Npar

i=1 wi
t−1

, otherwise.
(6.1.29)

6.1.5 Bootstrap filter

Returning to the definition of state space models, consider a state space model with
initial distribution P0(dx0), probability kernels {Pt(xt−1, dxt)}∞t=1 for the hidden pro-
cess X and a sequence of probability kernels {Ft(xt, dyt)}∞t=o for the observed process
Y . In this case, we assume that the probability kernels {Ft(xt, dyt)}∞t=0 satisfy

Ft(xt, dyt) = f
Y |X
t|t (yt|xt)m(dyt) ∀t ≥ 0,

where m is Lebesgue measure.
Using Feynman-Kac models defined in Section 6.1.4 we can construct particle filter

algorithms for state space models. Depending on how we define the components of
the Feynman-Kac models, we can build different types of filtering algorithms. In this
thesis we focus only on the bootstrap algorithm, but there are other types of filtering
algorithms such as the guided particle filter or the auxiliary particle filter.



6.1. State space models and particle filters 153

Definition 6.1.5. (Chopin & Papaspiliopoulos, 2020, p. 53) The bootstrap Feynman-
Kac formalism is the Feynman-Kac model with the following components

M0(dx0) = P(dx0), G0(x0) = f
Y |X
0|0 (y0|x0),

Mt(xt−1, dxt) = Pt(xt−1, dxt), Gt(xt−1, xt) = f
Y |X
t|t (yt|xt).

Under the bootstrap Feynman-Kac formalism, we have that

Qt(dx0:t) = Pt(X0:t ∈ dx0:t|Y0:t = y0:t),

Lt = fY
0:T (y0:T ),

lt =
Lt

Lt−1
= f

Y |Y
t|0:t−1(yt|y0:t−1).

From Definition 6.1.5 and Algorithm 2 the bootstrap filter algorithm is constructed
as shown in Algorithm 3 (Chopin & Papaspiliopoulos, 2020, p. 136).

Algorithm 3: Bootstrap filter
Xi

0 ∼ P0(dx0) for i = 1, . . . , Npar;
wi
0 ← f

Y |X
0|0 (y0|Xi

0) for i = 1, . . . , Npar;

W i
0 ←

wi
0∑Npar

m=1 wm
0

for i = 1, . . . , Npar ;

for t = 1, 2, . . . T do
if ESS

(
W

1:Npar

t−1

)
< Ntol then

Draw (with replacement) Npar indices Iit for i = 1, . . . , Npar using the
normalized weights W

1:Npar

t−1 ;
ŵi
t−1 ← 1 for i = 1, . . . , Npar;

else
Iit ← i for i = 1, . . . , Npar;
ŵi
t−1 ← wi

t−1 for i = 1, . . . , Npar;
end

Xi
t ∼ Pt

(
X

Iit
t−1, dxt

)
for i = 1, . . . , Npar;

wi
t ← ŵi

t−1f
Y |X
t|t

(
yt|Xi

t

)
for i = 1, . . . , Npar;

W i
t =

wi
t∑Npar

m=1 wm
t

for i = 1, . . . , Npar;

end

Notice that the bootstrap filter algorithm (Algorithm 3) is the same as Algorithm 2
with the components of the Feynman-Kac model as in Definition 6.1.5. Using the boot-
strap filter algorithm, we can approximate the distribution P (Xt ∈ dxt|Y0:t = y0:t) by
Q

Npar

t (dxt) defined as in (6.1.28). And the likelihood LY (θ) = fY
0:T (y0:T |θ) is approx-

imated by

L
Npar

T (θ) =

T∏
t=1

l
Npar

t (θ), (6.1.30)

where l
Npar

t (θ) is defined as in equation (6.1.29).

6.1.6 Particle marginal Metropolis-Hastings algorithm

In the previous section, we saw how to use the bootstrap filter algorithm to generate
samples from the distribution Pt (Xt ∈ dxt|Y0:t = y0:t). In Algorithm 3, the vector of
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parameters θ is assumed to be known. In general, this vector θ is unknown and we
would like to estimate it. To that end, we will use Bayesian estimation techniques.
Before introducing the particle marginal Metropolis-Hastings algorithm, let us first
introduce the Metropolis-Hastings algorithm.

Let us assume that the vector of parameters θ can take values on the set Θ. In
the Bayesian setting, the parameters are assumed to satisfy a prior distribution; that
is, the vector of parameters θ is a random variable with distribution P(dθ). We will
assume that the prior distribution can be expressed as

P(dθ) = fθ(θ)m(dθ),

where m is Lebesgue measure.
The density function fθ is called the prior density function. The objective of the

Bayesian estimation technique is to sample from the conditional distribution of θ given
Y0:N ; that is, we are interested in the distribution

P (θ ∈ dθ|Y0:T = y0:T ) .

If we have that
P (Y0:T ∈ dy0:t|θ) = fY

0:t(y0:T |θ)m(dy0:T ),

then by the Bayes theorem we can express the posterior distribution as

P (θ ∈ dθ|Y0:T = y0:T ) =
1

L
fθ(θ)fY

0:T (y0:T |θ)m(dθ),

where
L =

∫
Θ
fθ(θ)fY

0:T (y0:T |θ)m(dθ)

is the normalizing constant (Hautsch & Ou, 2008, p. 257). We have expressed the
posterior density in terms of the prior density and the likelihood. In the case that the
likelihood has an analytical form and we can compute it, we can use the Metropolis-
Hastings algorithm to sample from the posterior distribution. This algorithm is based
on the rejection sampling algorithm (Rachev, Hsu, Bagasheva, & Fabozzi, 2008, p. 64).
In the rejection sampling algorithm, we want to sample from an objective distribution,
but we can not sample directly from it, we must use a proposal distribution that we
know how to sample from. We generate samples from the proposal distribution and
then those samples are accepted or rejected according to a certain rule.

The objective of the Metropolis-Hastings algorithm is to generate Nsim ∈ N sam-
ples from the posterior distribution. That is, we would like to generate a sequence
θ1:Nsim =

(
θ(1), θ(2), . . . , θ(Nsim)

)
where θ(i) has been sampled from the posterior dis-

tribution P (θ ∈ dθ|Y0:T = y0:T ) for i = 1, 2, . . . , Nsim. The problem is that in gen-
eral it is not possible to sample from the posterior distribution directly. Because of
that, we generate samples in a sequential manner from a proposal probability kernel.
That is given θ(i−1) we generate the proposed sample θ̃ from the probability kernel
M̃(θ(i−1), dθ̃), then θ̃ is accepted with probability

α
(
θ(i−1), θ̃

)
= min

{
1, r

(
θ(i−1), θ̃

)}
,
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where

r
(
θ(i−1), θ̃

)
=

P
(
θ̃ ∈ dθ̃|Y0:T = y0:T

)
M̃
(
θ̃, dθ(i−1)

)
P
(
θ(i−1) ∈ dθ(i−1)|Y0:T = y0:T

)
M̃
(
θ(i−1), dθ̃

)
∝

fθ
(
θ̃
)
fY
0:T

(
y0:T |θ̃

)
m
(
dθ̃
)
M̃
(
θ̃, dθ(i−1)

)
fθ
(
θ(i−1)

)
fY
0:T

(
y0:T |θ(i−1)

)
m
(
dθ(i−1)

)
M̃
(
θ(i−1), dθ̃

) .
If the proposal probability kernel M̃

(
θ(i−1), dθ̃

)
can be written in terms of a density

function m̃ as
M̃
(
θ(i−1), dθ̃

)
= m̃

(
θ̃|θ(i−1)

)
m
(
dθ̃
)
,

then the Metropolis-Hastings algorithm works as it is shown in Algorithm 4 (Rachev,
Hsu, Bagasheva, & Fabozzi, 2008, p. 68).

Algorithm 4: Metropolis-Hastings algorithm
Initialize the sequence with a value θ(0);
for i = 1, 2, . . . Nsim do

Simulate θ̃ ∼ M̃
(
θ(i−1), dθ̃

)
;

Set α = min

{
1,

fθ(θ̃)fY
0:T (y0:T |θ̃)m̃(θ(i−1)|θ̃)

fθ(θ(i−1))fY
0:T (y0:T |θ(i−1))m̃(θ̃|θ(i−1))

}
;

Simulate u ∼ Unif([0, 1]);
if u ≤ α then

Set θ(i) = θ̃;
else

Set θ(i) = θ(i−1);
end

end

A special case of the Metropolis-Hastings algorithm is the random walk Metropolis-
Hastings algorithm, where the proposal samples are generated according to the fol-
lowing probability kernel

M̃
(
θ(i−1), dθ̃

)
= fMN

(
θ̃|θ(i−1), δΣ

)
m
(
dθ̃
)

(6.1.31)

where δ > 0 and fMN (.|θ(i−1), δΣ) is the density function of a multivariate normal dis-
tribution with vector mean θ(i−1) and covariance matrix δΣ (Chopin & Papaspiliopou-
los, 2020, p. 282). Because the normal distribution is symmetric around the mean we
have that

m̃
(
θ̃|θ(i−1)

)
= m̃

(
θ(i−1)|θ̃

)
.

In this particular case we have that

α = min

1,
fθ
(
θ̃
)
fY
0:T

(
y0:T |θ̃

)
fθ
(
θ(i−1)

)
fY
0:T

(
y0:T |θ(i−1)

)
 .
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Remark 6.1.5. The density function of a multivariate normal random variable with
vector mean µ ∈ Rn and n× n covariance matrix Σ is

fMN (x|µ,Σ) =
exp

{
−1

2(x− µ)′Σ−1(x− µ)
}√

(2π)n|Σ|
for x ∈ Rn,

where |Σ| is the determinant of Σ and (x− µ)′ is the transpose of (x− µ).

The sequence θ1:Nsim generated by the Metropolis-Hastings algorithm converges
to the posterior distribution P (θ ∈ dθ|Y0:T = y0:T ) in theory when Nsim → ∞. Of
course, we can not generate a sequence of infinite size. But this means that the
sequence takes some time to converge to the posterior. So the initial values of the
sequence θ1:Nsim may not have converged to the posterior. Because of that we will
get rid of some of the initial values of the sequence θ1:Nsim . We pick a positive integer
Nburn with Nburn < Nsim, called the burn-in period, and we will eliminate all of the
θ(i) with i < Nburn. So at the end, we are only interested in the sequence θNburn:Nsim

(Rachev, Hsu, Bagasheva, & Fabozzi, 2008, p. 75).
In general, for state space models, we do not have an analytical formula for the

likelihood fY
0:T , but we can approximate it using the bootstrap filter algorithm (Algo-

rithm 3). From the result in (6.1.30), we have that the likelihood can be approximated
by L

Npar

T (θ). The particle marginal Metropolis-Hastings algorithm is based on the
Metropolis-Hastings algorithm and on the bootstrap filter. This algorithm allows us
to sample from the posterior distribution and perform Bayesian estimation of the vec-
tor of parameters of the state space model. The particle marginal Metropolis-Hastings
algorithm works as it is explained in Algorithm 5 (Chopin & Papaspiliopoulos, 2020,
p. 308).

Algorithm 5: Particle marginal Metropolis-Hastings algorithm
Initialize the sequence with a value θ(0);
Run the bootstrap filter (Algorithm 3) using θ(0) and obtain L

Npar

T

(
θ(0)
)
;

for i = 1, 2, . . . Nsim do
Simulate θ̃ ∼ M̃

(
θ(i−1), dθ̃

)
;

Run the bootstrap filter (Algorithm 3) using θ̃ and obtain L
Npar

T

(
θ̃
)
;

Set α = min

{
1,

fθ(θ̃)L
Npar
T (θ̃)m̃(θ(i−1)|θ̃)

fθ(θ(i−1))L
Npar
T (θ(i−1))m̃(θ̃|θ(i−1))

}
;

Simulate U ∼ Unif([0, 1]);
if U ≤ α then

Set θ(i) = θ̃;
else

Set θ(i) = θ(i−1);
end

end

6.1.7 Numerical examples

Now that we know how to estimate the vector of parameters θ, we would like to try
the methods introduced in sections 6.1.2 and 6.1.6. We will apply these methods to
synthetic data that has been generated using the models introduced in section 6.1.1.

In all the experiments done in this chapter we use a tolerance of Ntol = 0.5Npar.
The policy used to generate the proposed parameters is the one that is explained
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in equation (6.1.31). That is, we use a random walk particle marginal Metropolis-
Hastings algorithm. So in this case, the value α that appears in Algorithm 5 can be
written as

α = min

1,
fθ
(
θ̃
)
L
Npar

T

(
θ̃
)

fθ
(
θ(i−1)

)
L
Npar

T

(
θ(i−1)

)
 .

Example 6.1.3. Simple stochastic volatility model.
For the model introduced in Example 6.1.1, we simulate 1100 time steps (approxi-

mately three years of daily data) with the following values for the parameters

ρ0 = 0.4, ρ1 = 0.8, τ = 0.5

and an initial distribution which is a normal distribution with mean µ0 = 1 and
variance σ2

0 = 0.05. Using the synthetic data of the logarithmic returns, we would
like to apply the particle marginal Metropolis-Hastings algorithm (Algorithm 5) and
see if we can estimate the parameters. The prior distributions for the parameters are
the ones that appear in Table 6.1. The covariance matrix of the multivariate normal
density of equation (6.1.31) is

δΣ = 0.12I3,

where I3 is the identity matrix of dimension 3.

Parameter Prior Distribution

ρ0 N(0,10)
ρ1 N(0,1)
τ Gamma(1,1/2)

Table 6.1: Table showing prior distributions of the parameters of the
model introduced in Example 6.1.1.

We use Npar = 200 particles for the bootstrap filter part and Nsim = 20000 simu-
lations for the Metropolis-Hastings algorithm part. We can observe in Figure 6.1 that
the algorithm gives estimates that are close to the true values of the parameters.

In addition, we have computed the mean and the 95% confidence interval of the
sequence of the parameters obtained in the particle Metropolis-Hastings algorithm with
a burn-in period of Nburn = 2000. The values that we have obtained appear in Table
6.2 and we observe that the true value of the parameter is always inside the 95%
confidence interval.

Parameter True value Mean 95% confidence interval

ρ0 0.4 0.389004 (0.184163,0.709051)
ρ1 0.8 0.818377 (0.667205,0.919404)
τ 0.4 0.388147 (0.240680,0.554056)

Table 6.2: Table containing the mean and the 95% confidence in-
terval of the posterior distribution of the parameters, obtained using

Algorithm 5 of the model introduced in Example 6.1.1.

Example 6.1.4. Heston model.
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(a) Estimation of the parameter ρ0. (b) Estimation of the parameter ρ1.

(c) Estimation of the parameter τ .

Figure 6.1: Posterior distribution of the parameters of the model
introduced in Example 6.1.1.

In the case of the discretized Heston model introduced in Example 6.1.2, we simu-
late 1100 steps with the following values of the parameters

aI = 0.5, bI = 0.06, σI = 0.15, µ = 0.1, ρ = 0.5,

the initial distribution is a normal distribution with mean µ0 = 0.1 and variance
σ2
0 = 0.01 and a time step of ∆t = 0.1.

Using the synthetic data of the logarithmic returns, we would like to apply the par-
ticle marginal Metropolis-Hastings algorithm (Algorithm 5) and see if we can estimate
the parameters. The prior distributions for the parameters are shown in Table 6.3.
The covariance matrix of the multivariate normal density of equation (6.1.31) is

δΣ = 0.052I5,

where I5 is the identity matrix of dimension 5.

Parameter Prior Distribution

aI Gamma(1,2)
bI Gamma(1,2)
σI Gamma(1,1/2)
µ N(0,1)
ρ Unif(-1,1)

Table 6.3: Table showing the prior distributions of the parameters
of the model introduced in Example 6.1.2.
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Again, we use Npar = 200 particles and Nsim = 20000 simulations for the particle
marginal Metropolis-Hastings algorithm. Figure 6.2 shows the results of the posterior
distribution of the parameters obtained by the particle marginal Metropolis-Hastings
algorithm.

In Table 6.4, we observe the mean and the 95% confidence interval obtained by the
algorithm with a burn-in period of Nburn = 2000. The true values of the parameters
are inside the 95% confidence interval.

(a) Estimation of the parameter aI . (b) Estimation of the parameter bI .

(c) Estimation of the parameter σI . (d) Estimation of the parameter ρ.

(e) Estimation of the parameter µ.

Figure 6.2: Posterior distribution of the parameters of the model
introduced in Example 6.1.2.

6.2 State space models with an exogenous process

In Section 6.1, we introduced state space models. These models have a latent discrete
process X = {Xt}∞t=0 and an observed discrete process Y = {Yt}∞t=0, that is affected by
X. Now we are interested in models in which the observed process Y is affected by the
latent process X and an exogenous discrete process A = {At}∞t=0. Since the process
A is observed, we will assume that we know the values of the following sequence of
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Parameter True value Mean 95% confidence interval

aI 0.5 0.516925 (0.332549,0.816280)
bI 0.06 0.057649 (0.045616,0.071305)
σI 0.15 0.161564 (0.113633,0.205397)
µ 0.1 0.111692 (0.075767,0.145486)
ρ 0.5 0.475196 (0.297232,0.623241)

Table 6.4: Table containing the mean and the 95% confidence in-
terval of the posterior distribution of the parameters, obtained using

Algorithm 5 of the model introduced in Example 6.1.2.

realizations {at}∞t=0 of the process A. We assume that the processes X and Y form
a state space model as in Definition 6.1.3 with a vector of parameters θ such that
{at}∞t=0 ⊆ θ. We can do this due to the fact that the realizations of the process A are
observed. So, we treat these types of models as states space models whose vector of
parameters contains the realizations of the exogenous process. Since we have a state
space model, we can use the techniques introduced in Section 6.1.

Based on the stochastic volatility models introduced in Section 6.1.1, we would like
to construct two different types of models. In the first type of model, the unobserved
volatility of log-returns is partially explained by the market attention. These types
of models have been studied previously by Li, Yang, and Wang (2019) and by Balash
(2013). In the other type of model, the unobserved part of the volatility is independent
of the interest process. That is, the volatility of the log-returns is explained by two
processes, one an unobserved process and the other, the market attention.

6.2.1 Stochastic volatility model with exogenous variable

Based on the model introduced in Example 6.1.1 and on the work of Balash (2013,
p. 35), we construct the following model,

Yt = exp

{
Xt

2

}
ϵt (6.2.1)

Xt = ρ0 + ρ1Xt−1 + ρ2At + τηt, (6.2.2)

where ρ0, ρ2 ∈ R, τ > 0, ρ1 ∈ (−1, 1) and {ηt}∞t=1, {ϵt}∞t=1 are two sequences of
independent standard normal random variables. The distribution of X0 is a normal
distribution with known mean µ0 and known variance σ2

0.
The probability kernels of this state space model are

Ft(xt, dyt) = fN (yt|0, ext)m(dyt),

Pt(xt−1, dxt) = fN (xt|ρ0 + ρ1xt−1 + ρ2at, τ
2)m(dxt).

From equation (6.2.1), we have that the unobserved volatility at time t is not only
explained by its value at time t− 1, but also by the market attention at time t.

For this model, we would like to check that the particle marginal Metropolis-
Hastings algorithm; can accurately estimate the parameters of this model.

For the model introduced in equations (6.2.1)-(6.2.2), we simulate 1100 time steps
with the following values for the parameters

ρ0 = 0.4, ρ1 = 0.8, ρ2 = 0.5, τ = 0.4
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and an initial normal distribution with mean µ0 = 2 and variance σ2
0 = 0.2. Using

the synthetic data of the logarithmic returns, we would like to apply the particle
marginal Metropolis-Hastings algorithm (Algorithm 5) and see if we can estimate the
parameters. The prior distributions for the parameters are the ones that appear in
Table 6.5. Again, the covariance matrix of the multivariate normal density of equation
(6.1.31) is

δΣ = 0.052I4,

where I4 is the identity matrix of dimension 4.

Remark 6.2.1. We still have to specify how we generate the synthetic realizations of
the interest process A. In this case, we assume that the attention follows the following
autoregressive process:

At = ϕ0 + ϕ1At−1 + µϵAt , (6.2.3)

where ϕ0 ∈ R, µ > 0, ϕ1 ∈ (−1, 1), {ϵAt }∞t=1 is a sequence of independent standard
normal random variables and A0 is a constant random variable. For the generation
of the synthetic realizations, we use the following values for the parameters

ϕ0 = 0.3, ϕ1 = 0.4, µ = 0.3

and an initial value of A0 = 0.2.

Parameter Prior Distribution

ρ0 N(0,1)
ρ1 N(0,1)
ρ2 N(0,1)
τ Gamma(1,1/2)

Table 6.5: Table showing the prior distributions of the parameters
of model defined in equations (6.2.1)-(6.2.2).

As in Example 6.1.3, we use Npar = 200 particles and Nsim = 20000 simulations
for the particle marginal Metropolis-Hastings algorithm. We can observe in Figure
6.3 that the algorithm manages to estimate the true value of the parameters.

As shown in Table 6.6, the 95% confidence interval obtained by the algorithm with
a burn-in period of Nburn = 2000 contains the true value of the parameters.

Parameter True value Mean 95% confidence interval

ρ0 0.4 0.470852 (0.273000,0.755202)
ρ1 0.8 0.792326 (0.703900,0.856203)
τ 0.4 0.406326 (0.329099,0.520524)
ρ2 0.5 0.474613 (0.278493,0.641246)

Table 6.6: Table containing the mean and the 95% confidence in-
terval of the posterior distribution of the parameters, obtained using

Algorithm 5, of the model defined in equations (6.2.1)-(6.2.2).

6.2.2 Partially observed volatility model

We are now interested in a model in which the volatility is composed of two parts.
One part is unobserved and the other one is observed. Based on the model introduced
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(a) Estimation of the parameter ρ0. (b) Estimation of the parameter ρ1.

(c) Estimation of the parameter τ . (d) Estimation of the parameter ρ2.

Figure 6.3: Posterior distribution of the parameters of the model
introduced in equations (6.2.1)-(6.2.2).

in Example 6.1.1, we propose the following model,

Yt = exp

{
At

2
+

Xt

2

}
ϵt (6.2.4)

Xt = ρ0 + ρ1Xt−1 + τηt, (6.2.5)

where ρ0 ∈ R, τ > 0, ρ1 ∈ (−1, 1) and where {ηt}∞t=1, {ϵt}∞t=1 are two sequences of
independent standard normal random variables. The distribution of X0 is a normal
distribution with known mean µ0 and known variance σ2

0. From equation (6.2.4), we
observe that in this case the attention and the unobserved part of the volatility are
two separated processes. The probability kernels of this state space model are

Ft(xt, dyt) = fN (yt|0, eat+xt)m(dyt),

Pt(xt−1, dxt) = fN (xt|ρ0 + ρ1xt−1, τ
2)m(dxt).

As in previous examples, we would like to apply the particle marginal Metropolis-
Hastings algorithm to the model introduced in equations (6.2.4)–(6.2.5). To that end,
we simulate 1100 time steps with the following values of the parameters:

ρ0 = 0.4, ρ1 = 0.8, τ = 0.4

and an initial normal distribution with mean µ0 = 2 and variance σ2
0 = 0.07.

We choose Npar = 200 and Nsim = 20000 as the number of particles and sim-
ulations respectively, that are going to be used in the particle marginal Metropolis-
Hastings algorithm. The priors that have been chosen for the parameters appear
in Table 6.7. The covariance matrix of the multivariate normal density of equation



6.3. Real data 163

(6.1.31) is
δΣ = 0.052I3,

where I3 is the identity matrix of dimension 3.

Remark 6.2.2. Again, for the generation of the synthetic data of the interest process,
we use the autoregressive model introduced in equation (6.2.3) with the following values
for the parameters:

ϕ0 = 0.4, ϕ1 = 0.8, µ = 0.4

and an initial value of A0 = 0.2.

Parameter Prior Distribution

ρ0 N(0,1)
ρ1 N(0,1)
τ Gamma(1,1/2)

Table 6.7: Table showing the prior distributions of the parameters
of model defined in equations (6.2.4)-(6.2.5).

Parameter True value Mean 95% confidence interval

ρ0 0.4 0.354721 (0.222827,0.559826)
ρ1 0.8 0.826112 (0.721924,0.891564)
τ 0.4 0.438589 (0.335611,0.567222)

Table 6.8: Table containing the mean and the 95% confidence in-
terval of the posterior distribution of the parameters, obtained using

Algorithm 5, of the model defined in equations (6.2.4)-(6.2.5).

Figure 6.4 and Table 6.8 show that the algorithm manages to give a good estima-
tion for the true value of the parameters. The mean and the confidence interval that
appear in Table 6.8 are computed using a burn-in period of Nburn = 2000.

6.3 Real data

In this section, we would like to fit the models introduced in Section 6.2 to Bitcoin
price data. The price data is taken from https://charts.coinmetrics.io/network-data/
for the dates from 19/09/2018 to 20/09/2021. We will first fit the data to the model
introduced in Section 6.2.1 and then to the model introduced in Section 6.2.2. As in
previous chapters, the proxies for the market attention are going to be the number of
Wikipedia views of the keyword “altcoin” and the unique number of active addresses.
The number of Wikipedia views are taken from https://pageviews.toolforge.org and
the unique number of active addresses is taken from https://charts.coinmetrics.io/
network-data/ for the dates 20/09/2018 to 20/09/2021. The selected proxies for the
market attention are presented in Figure 6.5.

Remark 6.3.1. Due to the fact that the proxies for the attention have large values,
we scale them to fit on the interval [0, 1]. That is, if T is the horizon and {at}Tt=0 is
the sequence of realizations of the data of the attention, we construct the scaled version
of the attention as:

ãt =
at

max{as : s ∈ {0, 1, . . . , T}}
for t = 0, 2, . . . , T.

https://charts.coinmetrics.io/network-data/
https://pageviews.toolforge.org
https://charts.coinmetrics.io/network-data/
https://charts.coinmetrics.io/network-data/
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(a) Estimation of the parameter ρ0. (b) Estimation of the parameter ρ1.

(c) Estimation of the parameter τ .

Figure 6.4: Posterior distribution of the parameters of the model
defined in equations (6.2.4)-(6.2.5).

We use this scaled version of the attention to fit the models presented in Section 6.2.

6.3.1 Benchmark model

We would like to compare the models introduced in Section 6.2 to a benchmark model.
In this case, the benchmark model is the simple stochastic volatility model presented
in Example 6.1.1. For fitting this model, we only use the log-returns of Bitcoin; we
do not use any proxy for the attention. The idea is to compare this model with the
models that contain an exogenous variable. We use the particle marginal Metropolis-
Hastings algorithm with Npar = 200 particles and Nsim = 50000 simulations. The
mean and the confidence interval of the posterior distribution of the parameters are
shown in Table 6.9, which are calculated using a burn-in period of Nburn = 5000. The
posterior distribution of the parameters are shown in Figure 6.6.

Parameter Mean 95% confidence interval

ρ0 -1.124007 (-1.294804,-0.972485)
ρ1 0.842064 (0.819718,0.861390)
τ 0.681720 (0.597685,0.837154)

Table 6.9: Table containing the mean and the 95% confidence in-
terval of the posterior distribution of the parameters, obtained using

Algorithm 5. For the model defined in equations (6.1.15)-(6.1.16).

Using the mean of the posterior distribution of the parameters shown in Table
6.9, we use the bootstrap filter algorithm to filter the hidden process X. The filtered
distribution of the hidden process X is shown in Figure 6.7.
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(a) Number of Wikipedia views of the word
“Altcoin” from 20/09/2018 to 20/09/2021.

(b) Number of unique active addresses taken
from 20/09/2018 to 20/09/2021.

Figure 6.5: Number of Wikipedia views and number of unique active
addresses.

The objective in this section is to compare the volatility given by this benchmark
model with the volatility given by the models with an exogenous variable. Notice that
from equation (6.1.15) we have that the conditional standard deviation of the return
Yt given Xt is: √

V ar[Yt|Xt] = e0.5Xt . (6.3.1)

We would like to compare the conditional standard deviation of this model with the
weekly historical volatility, that is defined as

ht =

√√√√√1

7

t∑
j=t−7

y2j −

1

7

t∑
j=t−7

yj

2

for t = 7, 8, . . . T.

In Figure 6.8, we show the weekly historical volatility and the estimated conditional
standard deviation defined in equation (6.3.1). For each t = 0, 1, 2, . . . , T the random
variable Xt is estimated as the mean of the posterior distribution obtained from the
bootstrap filter. We observe that the weekly historical volatility has spikes that are
not captured by the estimated volatility. We hope that the models that incorporate
the market attention as an exogenous variable will be able to capture these spikes.

Remark 6.3.2. The prior distributions of the parameters used in the particle marginal
Metropolis-Hastings algorithm are the same as the ones used in the numerical example
presented in Example 6.1.3.

As it is done by A. Hou, Wang, Chen, and Härdle (2020) we can compute the
residuals, defined as

ϵt = exp

{
−Xt

2

}
Yt for t = 1, 2, . . . T, (6.3.2)

to validate the model. Under the assumption that the data have been generated by
the model defined in Example 6.1.1 the sequence {ϵt}Tt=1 is a sequence of independent
standard normal random variables. To check this assumption, we can use the Kol-
mogorov–Smirnov test (Massey, 1951). This test gives us a p–value of 0.0061, since
the p–vale is less than 0.05 we can reject the null hypotheses with a 5% confidence
level.

6.3.2 Stochastic volatility model with exogenous variable

For the model introduced in Section 6.2.1, we first fit the model using the number of
Wikipedia views as proxy for the interest process. We use Npar = 200 particles and
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(a) Estimation of the parameter ρ0. (b) Estimation of the parameter ρ1.

(c) Estimation of the parameter τ .

Figure 6.6: Posterior distribution of the parameters of the model
defined in Example 6.1.1 using the log-returns of Bitcoin for fitting

the model.

Nsim = 50000 simulations for the particle marginal Metropolis-Hastings algorithm.
The results related to the posterior distribution of the parameters are shown in

Table 6.10 and in Figure 6.9. The mean and the confidence interval shown in Table
6.10 are computed using a burn-in period of Nburn = 5000.

Parameter Mean 95% confidence interval

ρ0 -2.024311 (-2.341229,-1.754662)
ρ1 0.738657 (0.689649,0.777086)
ρ2 0.798545 (0.584970,0.957000)
τ 0.845450 (0.710839,0.945651)

Table 6.10: Table containing the mean and the 95% confidence in-
terval of the posterior distribution of the parameters, obtained using
Algorithm 5. For the model defined in equations (6.2.1)-(6.2.2) and

where the proxy of attention is the number of Wikipedia views.

We use the mean of the posterior distribution of the parameters shown in Table
6.10 as estimators for the parameters. With those estimators, we use the bootstrap
filter algorithm to filter the hidden process X. The filtered distribution of the hidden
process X appears in Figure 6.10.

From equation (6.2.1), we have that the conditional standard deviation of the
return Yt given Xt is: √

V ar[Yt|Xt] = e0.5Xt . (6.3.3)

As we did in Section 6.3.1, we compare the conditional standard deviation and the
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Figure 6.7: Filtered distribution of the hidden process X of the
model defined in Example 6.1.1 using the log-returns of Bitcoin for
fitting the model. The mean and the 95% confidence interval of the

posterior distribution are shown.

Figure 6.8: Weekly historical volatility and estimated volatility of
the model defined in Example 6.1.1 using the log-returns of Bitcoin

for fitting the model.

weekly historical volatility. This is shown in Figure 6.11. We observe that this model
captures the spikes better than the benchmark model. As we did before, we compute
the residuals for this model. In this case the p–value given by the Kolmogorov-Smirnov
test to check the normality assumption is 0.0227. So, we can reject the normality
assumption with a confidence level of 5% but we cannot reject the assumption with a
confidence level of 1%.

Proceeding in a similar manner and using the number of unique active addresses
as the proxy of attention, we compare the conditional standard deviation defined in
equation (6.3.3) with the weekly historical volatility. This is shown in Figure 6.12.
Again, the proposed model captures the spikes better than the benchmark model. In
this case the p–value of the Kolmogorov-Smirnov test is 0.0064.

Remark 6.3.3. The prior distributions of the parameters used in the particle marginal
Metropolis-Hastings algorithm are the same as the ones used in the numerical example
presented in Section 6.2.1.
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(a) Estimation of the parameter ρ0. (b) Estimation of the parameter ρ1.

(c) Estimation of the parameter τ . (d) Estimation of the parameter ρ2.

Figure 6.9: Posterior distribution of the parameters of the model in-
troduced in equations (6.2.1)-(6.2.2) and where the proxy of attention

is the number of Wikipedia views.

6.3.3 Partially observed volatility model

Let us now focus on the model introduced in Section 6.2.2. For this case, we use Npar =
200 particles and Nsim = 50000 simulations for the particle marginal Metropolis-
Hastings algorithm.

The results of the posterior distribution of the parameters are shown in Table 6.11
and in Figure 6.13. The mean and the confidence interval shown in Table 6.11 are
computed using a burn-in period of Nburn = 5000.

Parameter Mean 95% confidence interval

ρ0 -1.602500 (-2.056705,-1.125938)
ρ1 0.782517 (0.716372,0.848551)
τ 0.814440 (0.703566,0.956670)

Table 6.11: Table containing the mean and the 95% confidence in-
terval of the posterior distribution of the parameters, obtained using
Algorithm 5. For the model defined in equations (6.2.4)-(6.2.5) and

where the proxy of attention is the number of Wikipedia views.

Again, we use the mean of the posterior distribution of the parameters that appears
in Table 6.11, as estimators of the parameters. With those estimators we use the
bootstrap filter algorithm to filter the Markov process X. The filtered distribution of
the hidden process X appears in Figure 6.14.

We are again interested in comparing the volatility given by this model with the
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Figure 6.10: Filtered distribution of the hidden process X of the
model introduced in equations (6.2.1)-(6.2.2) and where the proxy of
attention is the number of Wikipedia views. The mean and the 95%

confidence interval of the posterior distribution are shown.

Figure 6.11: Weekly historical volatility and estimated volatility of
the model defined in equations (6.2.1)-(6.2.2) and where the proxy of

attention is the number of Wikipedia views.

weekly historical volatility. From equation (6.2.4), we have that the conditional stan-
dard deviation of the return Yt given Xt and At is:√

V ar[Yt|Xt, At] = e0.5At+0.5Xt . (6.3.4)

In Figure 6.15, the historical weekly volatility and the conditional standard deviation
defined in equation 6.3.4 are shown. Again, the proposed model captures the spikes
better than the benchmark model. In this case, the residuals are defined as

ϵt = exp

{
−At

2
− Xt

2

}
Yt for t = 1, . . . , T.

For checking the normality assumption of the residuals we compute the p–value of the
Kolmogorov-Smirnov test. In the case the p–value has a value of 0.0280. So, we can
reject the normality assumption with a confidence level of 5% but we cannot reject
the assumption with a confidence level of 1%.

For the unique number of active addresses, we proceed in a similar way and we
compare the conditional standard deviation of the model defined in equation (6.3.4)
with the weekly historical volatility. This is shown in Figure 6.16. We observe that
the results are in line with previous results shown in this section and in Section 6.3.2.
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Figure 6.12: Weekly historical volatility and estimated volatility of
the model defined in equations (6.2.1)-(6.2.2) and where the proxy of

attention is the number of unique active addresses.

For this case, the p-value of the Kolmogorov-Smirnov test is 0.0177.

Remark 6.3.4. The prior distributions of the parameters used in the particle marginal
Metropolis-Hastings algorithm are the same as the ones used in the numerical example
presented in Section 6.2.2.

6.4 Conclusion and future work

In this chapter, we suggested models in which the volatility is explained by an un-
observed process and by market attention. We observe that the volatility of the
proposed models explains the spikes that appear on the historical volatility better
than the benchmark model introduced in Example 6.1.1. These results need to be
expanded by incorporating the study of more proxies for market attention, aside from
those that we studied in this chapter. Also, would be interested to study models that
introduce jumps in price and volatility structure.

Another question that remains is how we can use the models introduced in Section
6.2 for pricing options. One way is the construction of the stochastic volatility mod-
els. For example, Barunik, Chen, and Vecer (2019) proposed a continuous stochastic
volatility model in which the sentiment is incorporated in the structure of the volatil-
ity. Another way consists of assuming that the unobserved process is stochastic,
but no underlying process is specified. This approach is applied in uncertain volatility
models, introduced by Avellaneda, Levy, and Parás (1995). For example, in the model
introduced in Section 6.2.2, instead of assuming that the hidden process X follows an
autoregressive process, we will assume that X is bounded on an interval and X does
not follow a specific process. One of the benefits of introducing uncertainty into the
hidden process is that the option prices can be specified in terms of the bid and ask
prices. Instead of having just one price, we can have an interval of prices. So, we
can have a valid range of Bitcoin option prices which are also influenced by market
attention.
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(a) Estimation of the parameter ρ0. (b) Estimation of the parameter ρ1.

(c) Estimation of the parameter τ .

Figure 6.13: Posterior distribution of the parameters of the model
defined in equations (6.2.4)-(6.2.5) and where the proxy of attention

is the number of Wikipedia views.

Figure 6.14: Filtered distribution of the hidden process X of the
model introduced in equations (6.2.4)-(6.2.5) and where the proxy of
attention is the number of Wikipedia views. The mean and the 95%

confidence interval of the posterior distribution are shown.
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Figure 6.15: Weekly historical volatility and estimated volatility of
the model introduced in equations (6.2.4)-(6.2.5) and where the proxy

of attention is the number of Wikipedia views.

Figure 6.16: Weekly historical volatility and estimated volatility of
the model introduced in equations (6.2.4)-(6.2.5) and where the proxy

of attention is the number of unique active addresses.
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Appendix A

Correlated model

In this section, we focus ourselves on a modified version of the model proposed in
Section 3.7.2. This new model will take into account the correlation between the
underlying Brownian motions of the price and interest processes. Let us assume that
under the risk neutral probability space (Ω,F ,Q) the logarithmic price process X
satisfies the following equation:

X(t) = x+ rt− 1

2

∫ t

0
σ2
P I(u− τ)du

+1(τ,∞)(t)

(∫ t−τ

0
σPρ

√
I(u)dW ∗

I (u)

)
+

∫ t

0
σP
√

1− ρ2
√

I(u− τ)dW ∗
P (u)

with X(0) = x ∈ R, the market attention process is a Cox-Ingersoll-Ross process and
satisfies the following stochastic differential equation

dI(t) = ãI(b̃I − I(t))dt+ σI
√

I(t)dW ∗
I (t) when t > 0 with I(t) = ϕI(t), t ∈ [−L, 0].

where b̃I ∈ R, L, σP , σI , ãI > 0, τ ∈ [0, L], ρ ∈ (−1, 1), r ≥ 0 is the known interest
rate, W ∗

P and W ∗
I are two independent Brownian motions, we have the condition

2ãI b̃I
σ2
I
≥ 1 and ϕI : R→ (0,∞) is a deterministic continuous function.

If we assume that the discounted price process is a martingale, then we have that
the price of a call option with expiry date T and strike K is

C(0) = EQ

[
e−rT

(
eX(T ) −K

)+]
.

When T ≤ τ , the formula for the price of the call option is similar to the price formula
obtained in Section 3.7.3. In the case when T > τ we have to price the option using
the characteristic function of the random variable X(T ).

Theorem A.0.1. Let λ ∈ R, the characteristic function of X(T ) can be expressed as

ΦX(T )(λ) = EQ

[
eiλX(T )

]
= eiλrT−σ2

P
2

ϵ0(iλ+(1−ρ2)λ2)ΦZ(T−τ)(λ),
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where

ϵ0 =

∫ 0

−τ
ϕI(u)du,

ΦZ(t)(λ) = exp {iλx}

exp

{
bV aV σ

−2
V

[
(aV − ρσV λi− d)t− 2log

(
1− ge−dt

1− g

)]}
exp

{
V (0)σ−2

V

[
(aV − ρσV λi− d)(1− e−dt)

1− ge−dt

]}
,

with

d =
(
(ρσV λi− aV )

2 − σ2
V (−iλ− λ2)

)1/2
,

g =
aV − ρσV λi− d

aV − ρσV λi+ d
,

V (0) = σ2
Pϕ

I(0),

aV = ãI ,

bV = σ2
P b̃I ,

σV = σPσI .

Proof. The logarithmic price process at time T can be expressed as

X(T ) = x+ rT − 1

2

∫ T

0
σ2
P I(u− τ)du+

∫ T−τ

0
σPρ

√
I(u)dW ∗

I (u)

+

∫ T

0
σP
√
1− ρ2

√
I(u− τ)dW ∗

P (u)

= x+ rT − 1

2

∫ τ

0
σ2
P I(u− τ)du− 1

2

∫ T

τ
σ2
P I(u− τ)du

+

∫ T−τ

0
σPρ

√
I(u)dW ∗

I (u)

+

∫ τ

0
σP
√

1− ρ2
√

I(u− τ)dW ∗
P (u) +

∫ T

τ
σP
√
1− ρ2

√
I(u− τ)dW ∗

P (u)

= x+ rT − 1

2

∫ τ

0
σ2
Pϕ

I(u− τ)du− 1

2

∫ T−τ

0
σ2
P I(u)du

+

∫ T−τ

0
σPρ

√
I(u)dW ∗

I (u)

+

∫ τ

0
σP
√

1− ρ2
√

I(u− τ)dW ∗
P (u) +

∫ T

τ
σP
√
1− ρ2

√
I(u− τ)dW ∗

P (u)

= rT − 1

2

∫ τ

0
σ2
Pϕ

I(u− τ)du+

∫ τ

0
σP
√
1− ρ2

√
ϕI(u− τ)dW ∗

P (u)

+x− 1

2

∫ T−τ

0
σ2
P I(u)du+

∫ T−τ

0
σPρ

√
I(u)dW ∗

I (u)

+

∫ T−τ

0
σP
√

1− ρ2
√
I(u)dB∗

P (u),
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where the last equality comes from the application of Theorem 1.2.1 and
B∗

P (t) = W ∗
P (t+ τ)−W ∗

P (τ) for t ≥ 0. Let us define the process Z as

Z(t) = x− 1

2

∫ t

0
σ2
P I(u)du+

∫ t

0
σPρ

√
I(u)dW ∗

I (u) +

∫ t

0
σP
√

1− ρ2
√
I(u)dB∗

P (u)

for t ≥ 0. The process Z satisfies the stochastic differential equation

dZ(t) = −1

2
σ2
P I(t)dt+ σPρ

√
I(t)dW ∗

I + σP
√
1− ρ2

√
I(t)dB∗

P (t) with Z(0) = x.

The random variable X(T ) can be expressed as

X(T ) = rT − 1

2

∫ τ

0
σ2
Pϕ

I(u− τ)du+

∫ τ

0
σP
√

1− ρ2
√

ϕI(u− τ)dW ∗
P (u) + Z(T − τ).

Because B∗
P (t) is independent of FW ∗

P
τ for all t ≥ 0 then we have that Z(t) is indepen-

dent of FW ∗
P

τ for all t ≥ 0. Applying a similar argument as in Section 3.7.4, we have
that

ΦX(T )(λ) = eiλrT−σ2
P
2

ϵ0(iλ+(1−ρ2)λ2)EQ

[
eiλZ(T−τ)

]
,

where ϵ0 =
∫ 0
−τ ϕ

I(u)du. It is clear that for computing the characteristic function
of X(T ), we have to compute the characteristic function Z(T − τ). If we define the
process V as V (t) = σ2

P I(t) for t ≥ 0, then Z(T − τ) can be written as

Z(T − τ) = x− 1

2

∫ T−τ

0
V (u)du+

∫ T−τ

0
ρ
√
V (u)dW ∗

I (u) (A.0.1)

+

∫ T−τ

0

√
1− ρ2

√
V (u)dB∗

P (u). (A.0.2)

By the Itô formula, we have that V satisfies the stochastic differential equation

dV (t) = aV (bV − V (t))dt+ σV
√
V (t)dW ∗

I (t) with V (0) = σ2
Pϕ

I(0),

where

aV = ãI , bV = σ2
P b̃I ,

and σV = σPσI .

We also have that
2aV bV
σ2
V

=
2ãI b̃I
σ2
I

≥ 1.

So the Feller condition is satisfied and the process V is greater than zero with proba-
bility one. The process (Z, V ) is the correlated Heston model (Heston, 1993) and the
characteristic function of Z(t) is known and it has the form

ΦZ(t)(λ) = EQ

[
eiλZ(t)

]
= exp {iλx}

exp

{
bV aV σ

−2
V

[
(aV − ρσV λi− d)t− 2log

(
1− ge−dt

1− g

)]}
exp

{
V (0)σ−2

V

[
(aV − ρσV λi− d)(1− e−dt)

1− ge−dt

]}
,
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with

d =
(
(ρσV λi− aV )

2 − σ2
V (−iλ− λ2)

)1/2
,

g =
aV − ρσV λi− d

aV − ρσV λi+ d

(Madan, Reyners, & Schoutens, 2019). We have just shown that

ΦX(T )(λ) = eiλrT−σ2
P
2

ϵ0(iλ+(1−ρ2)λ2)ΦZ(T−τ)(λ).

This section is just a discussion about how a model with correlation could be
constructed and how we could price options with it. More work needs to be done with
the model proposed in this section. For example, we still have to prove the existence
of the risk neutral measure and the martingale property of the discounted stock price.
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Appendix B

Change of measure

In this section, we will show some results that are stated in Section 4.3.1. These results
are quite important because they state that some distributional properties that we
have in the physical measure P are maintained in the equivalent measures Q∗ and Q.

B.1 Change of measure from P to Q∗

Let us consider the change of measure that is defined in Proposition 4.3.1. We would
like to show that under the probability Q∗ the process WP is still a Brownian motion
and that the processes ZI and WP are still independent. Let us first show that WP

is still a Brownian motion.

Proposition B.1.1. The process WP is a Brownian motion under the probability
measure Q∗.

Proof. To show that WP is a Brownian motion, we will have to show that the following
holds true:

1. WP (0) = 0 almost surely.

2. WP has independent increments.

3. WP (t)−WP (s) ∼ N(0, t− s) for 0 ≤ s ≤ t.

4. WP has almost surely continuous sample paths.

First, let us check that WP (0) = 0 almost surely. To that end, define the set N0 as

N0 = {ω ∈ Ω : WP (0, ω) = 0} .

Since P and Q∗ are equivalent probability measures, we have that

Q∗(N0) = P(N0) = 1.

To show the normality property, let us compute the characteristic function of
WP (t)−WP (s) for 0 ≤ s ≤ t. Let u ∈ R then the characteristic function of WP (t)−
WP (s) is:

EQ∗

[
eiu(WP (t)−WP (s))

]
= EP

[
Z∗(T )eiu(WP (t)−WP (s))

]
= EP [Z∗(T )]EP

[
eiu(WP (t)−WP (s))

]
= e−

1
2
u2(t−s). (B.1.1)

So, the random variable WP (t) −WP (s) has the characteristic function of a normal
random variable with mean 0 and variance t− s.
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To prove the independence of increments, let us take the times 0 ≤ t0 < t1 < . . . <
tn ≤ T and define the increments

∆iWP = W (ti)−W (ti−1) for i = 1, . . . , n.

Let u1, u2, . . . , un ∈ R then the joint characteristic function of
(
∆1WP , . . . ,∆

nWP

)
can be written as

EQ∗

[
e
∑n

j=1 iuj∆
jWP

]
= EP

[
Z∗(T )e

∑n
j=1 iuj∆

jWP

]
= EP [Z∗(T )]EP

[
e
∑n

j=1 iuj∆
jWP

]
=

n∏
j=1

EP

[
eiuj∆

jWP

]
. (B.1.2)

From equation (B.1.1) we have that:

EP

[
eiuj∆

jWP

]
= EQ∗

[
eiuj∆

jWP

]
for j = 1, . . . , n. (B.1.3)

Combining equations (B.1.2) and (B.1.3), we arrive at

EQ∗

[
e
∑n

j=1 iuj∆
jWP

]
=

n∏
i=1

EQ∗

[
eiuj∆

jWP

]
.

Hence the increments are independent under the measure Q∗.
Lastly, we will show that WP has almost surely continuous sample paths, to that

end let us define the set NC as

NC = {ω ∈ Ω : the map t→WP (t, ω) is continuous} .

The probability of NC under Q can be written as

Q∗(NC) = EQ∗ [1NC
]

= EP [1NC
Z∗(T )]

= EP [1NC
]EP [Z∗(T )]

= P(NC) = 1.

We have just shown that WP is a Brownian motion under Q∗, but we still have
to prove the independence of WP and ZI under Q∗. But before this, let us define the
concept of independence between two stochastic processes.

Definition B.1.1. (Lapidoth, 2017, Definition 25.2.3) Two stochastic processes (X(t))t∈R
and (Y (t))t∈R defined on the same probability space are said to be independent if for
every n ∈ N and any choice of t1, . . . tn ∈ R the random vectors (X(t1), . . . , X(tn))
and (Y (t1), . . . , Y (tn)) are independent.

Proposition B.1.2. The processes WP and ZI are independent under the probability
measure Q∗.

Proof. Let us consider the times 0 ≤ t1 ≤ . . . ≤ tn ≤ T and let u1, . . . un, v1, . . . vn ∈
R, then the joint characteristic function of (WP (t1), . . . ,WP (tn), ZI(t1), . . . , ZI(tn))
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can be written as

EQ∗

[
e
∑n

j=1 iujWP (tj)e
∑n

j=1 ivjZI(tj)
]

= EP

[
Z∗(T )e

∑n
j=1 iujWP (tj)e

∑n
j=1 ivjZI(tj)

]
= EP

[
e
∑n

j=1 iujWP (tj)
]

EP

[
Z∗(T )e

∑n
j=1 ivjZI(tj)

]
= EP

[
e
∑n

j=1 iujWP (tj)
]
EQ∗

[
e
∑n

j=1 ivjZI(tj)
]
.

From Proposition B.1.1 we have that

EP

[
e
∑n

j=1 iujWP (tj)
]
= EQ∗

[
e
∑n

j=1 iujWP (tj)
]
.

At the end we can write

EQ∗

[
e
∑n

j=1 iujWP (tj)e
∑n

j=1 ivjZI(tj)
]
= EQ∗

[
e
∑n

j=1 iujWP (tj)
]
EQ∗

[
e
∑n

j=1 ivjZI(tj)
]

as required.

B.2 Change of measure from Q∗ to Q

In this case, we are interested in the change of measure defined in Section 4.3.1 from
the measure Q∗ to the measure Q. Recall from equations (4.3.5)–(4.3.6) that the
measure Q is defined as

Q(A) =

∫
A
Z(T )dQ∗ for A ∈ F ,

where the process Z is defined as

Z(t) = exp

{
−
∫ t

0
θP (s)dWP (s)−

1

2

∫ t

0
θ2P (s)ds

}
for t ∈ [0, T ],

where θP is an adapted process that satisfies

θP (t) =
µ+

σ2
P
2 I−(t− τ)− r

σP
√
I−(t− τ)

for t ∈ [0, T ].

We have shown in Section 4.3.1 that the process W ∗
P that is defined as

W ∗
P (t) = WP (t) +

∫ t

0
θP (s)ds for t ∈ [0, T ],

is a Brownian motion under the measure Q. We still have to show that ZI is a Lévy
process with the same distribution as under Q∗ and that the processes WP and ZI

are independent under Q.

Proposition B.2.1. Under the probability measure Q, the process ZI is a Lévy process
with Levy triplet (γ̃, 0, ṽ) given by equations (4.3.1)–(4.3.2), that is the distribution of
ZI is the same under Q as under Q∗.

Proof. First we will show that the distribution of ZI(t) under the measure Q is the
same as the distribution of ZI(t) under the equivalent measure Q∗ for t ∈ [0, T ]. Take
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any u ∈ R. If we condition with respect to the σ-algebra FZI
T and apply Proposition

1.4.2, then the characteristic function of ZI(t) under Q can be expressed as

EQ

[
eiuZI(t)

]
= EQ∗

[
Z(T )eiuZI(t)

]
= EQ∗

[
e−

1
2

∫ T
0 θ2P (s)dseiuZI(t)EQ∗

[
e−

∫ T
0 θP (s)dWP (s)

∣∣∣FZI
T

]]
= EQ∗

[
eiuZI(t)

]
. (B.2.1)

From equation (B.2.1) we have that under the measure Q the random variable ZI(t)
has the same characteristic function as ZI(t) under the measure Q∗. Hence, if we
show that ZI is a Lévy process under the measure Q, then ZI will have Lévy triplet
(γ̃, 0, ṽ). To show that ZI is a Lévy process, we need to show that

1. ZI(0) = 0 almost surely.

2. ZI has independent and stationary increments.

3. ZI is stochastically continuous.

Let us first show that ZI(0) = 0 to that end, let us define the the set

N0 = {ω ∈ Ω : ZI(0, ω) = 0} .

Because Q and Q∗ are equivalent probability measures, we have that:

Q(N0) = Q
∗(N0) = 1.

For the stationarity property, by conditioning with respect to FZI
T and applying Propo-

sition 1.4.2, we have that the characteristic function of ZI(t)−ZI(s) for t ≥ s can be
written for all u ∈ R as

EQ

[
eiu(ZI(t)−ZI(s))

]
= EQ∗

[
Z(T )eiu(ZI(t)−ZI(s))

]
= EQ∗

[
eiu(ZI(t)−ZI(s))

]
= EQ∗

[
eiuZI(t−s)

]
= EQ

[
eiuZI(t−s)

]
,

where the last equality comes from equation (B.2.1).
For the independence property, let us consider a n ∈ N and the time steps

0 ≤ t1 < t2 < . . . < tn ≤ T and define the following increments of ZI :

∆jZI = ZI(tj)− ZI(tj−1) for j = 1, . . . , n.

For the values u1, . . . , un ∈ R we would like to compute the characteristic function of
(∆1ZI , . . . ,∆

nZI). Again, conditioning with respect to the σ-algebra FZI
T and using
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Proposition 1.4.2, we can write the characteristic function of the increments as

EQ

[
e
∑n

j=1 iuj∆
jZI

]
= EQ∗

[
Z(T )e

∑n
j=1 iuj∆

jZI

]
= EQ∗

[
e
∑n

j=1 iuj∆
jZI

]
=

n∏
j=1

EQ∗

[
eiuj∆

jZI

]
=

n∏
j=1

EQ

[
eiuj∆

jZI

]
,

where the last equality comes from equation (B.2.1).
Finally, we would like to show that ZI is stochastically continuous. Let us take an

ϵ > 0 and an s ≥ 0 then we have that

lim
t→s

Q (|ZI(t)− ZI(s)| > ϵ) = lim
t→s

EQ
[
1|ZI(t)−ZI(s)|>ϵ

]
= lim

t→s
EQ∗

[
Z(T )1|ZI(t)−ZI(s)|>ϵ

]
.

Again conditioning with respect to FZI
T and using Proposition 1.4.2, we have that

lim
t→s

Q (|ZI(t)− ZI(s)| > ϵ) = lim
t→s

EQ∗
[
1|ZI(t)−ZI(s)|>ϵ

]
= lim

t→s
Q∗ (|ZI(t)− ZI(s)| > ϵ) = 0,

where the last equality comes from the fact that ZI is a Lévy process under the
measure Q∗.

Before showing the independence between ZI and W ∗
P under Q, let us show the

following result.

Lemma B.2.1. Let us consider the times 0 ≤ t1 < t2 < . . . , tn ≤ T and the values
u1, . . . , un ∈ R, then:

EQ∗

[
e
∑n

j=1 iujWP (tj)−
∫ T
0 θP (s)dWP (s)

∣∣∣FZI
T

]
=EQ

[
ei

∑n
j=1 ujW

∗
P (tj)

]
e

1
2

∫ T
0 θ2P (s)dse−i

∑n
j=1 uj

∫ tj
0 θP (s)ds.

Proof. Let us define the deterministic function f : R→ R as:

f(s) =
n∑

j=1

1(0,tj ](s)uj , for s ∈ R.
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Using the function f , we can write:

n∑
j=1

iujWP (tj)−
∫ T

0
θP (s)dWP (s) =

n∑
j=1

i

∫ T

0
1(0,tj ](s)ujdWP (s)

−
∫ T

0
θP (s)dWP (s)

= i

∫ T

0

 n∑
j=1

1(0,tj ](s)uj

 dWP (s)

−
∫ T

0
θP (s)dWP (s)

= i

∫ T

0
f(s)dWP (s)

−
∫ T

0
θP (s)dWP (s) (B.2.2)

Using Equation B.2.2 we can write

EQ∗

[
e
∑n

j=1 iujWP (tj)−
∫ T
0 θP (s)dWP (s)

∣∣∣FZI
T

]
=EQ∗

[
ei

∫ T
0 f(s)dWP (s)−

∫ T
0 θP (s)dWP (s)

∣∣∣FZI
T

]
. (B.2.3)

Firstly, let us take λ1, λ2 ∈ R and we will compute the joint characteristic function of∫ T
0 f(s)dWP (s) and

∫ T
0 θP (s)dWP (s) given FZI

T as:

E
[
eiλ1

∫ T
0 f(s)dWP (s)+iλ2

∫ T
0 θP (s)dWP (s)

∣∣∣FZI
T

]
=E

[
ei

∫ T
0 (λ1f(s)+λ2θP (s))dWP (s)

∣∣∣FZI
T

]
=e

−1
2

∫ T
0 (λ1f(s)+λ2θP (s))2ds

=e−
λ21
2

∫ T
0 f2(s)ds−λ22

2

∫ T
0 θ2P (s)ds−λ1λ2

∫ T
0 f(s)θP (s)ds, (B.2.4)

where the second equality comes from the use of Proposition 1.4.2. Equation (B.2.4)
is the characteristic function of a bi-variate normal distribution. Let us define the
random variables X and Y as:

X =

∫ T

0
f(s)dWP (s),

Y =

∫ T

0
θP (s)dWP (s),

hence we can write
(X,Y )| FZI

T ∼ NM (0,Σ),

with

Σ =

(
σ2
X σXY

σY X σ2
Y

)
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and

σ2
X =

∫ T

0
f2(s)ds,

σ2
Y =

∫ T

0
θ2(s)ds,

σXY = σY X =

∫ T

0
θ(s)f(s)ds.

Equation (B.2.3) can be written as:

EQ∗

[
ei

∫ T
0 f(s)dWP (s)−

∫ T
0 θP (s)dWP (s)

∣∣∣FZI
T

]
=EQ∗

[
eiX−Y

∣∣FZI
T

]
=EQ∗

[
e−Y E

[
eiX
∣∣FZI

T ∨ σ(Y )
]∣∣∣FZI

T

]
. (B.2.5)

By properties of the bi-variate normal distribution, we have that:

X
∣∣∣FZI

T ∨ σ(Y ) ∼ N(mX|Y , V
2
X|Y ),

where

mX|Y =
σXY

σ2
Y

Y,

V 2
X|Y = σ2

X −
σXY

σ2
Y 2

,

(Murphy, 2012, p. 111). Hence we can write

E∗
Q

[
eiX
∣∣FZI

T ∨ σ(Y )
]
= e

i
σXY
σ2
Y

Y−σ2
X
2

+
σ2
XY
2σ2

Y .

So equation (B.2.5) can be written as:

EQ∗

[
eiX−Y

∣∣FZI
T

]
= EQ∗

[
e
Y

(
i
σXY
σ2
Y

−1

)∣∣∣∣∣FZI
T

]
e
−σ2

X
2

+
σ2
XY
2σ2

Y . (B.2.6)

Since the random variable Y |FZI
T ∼ N(0, σ2

Y ) we can write:

EQ∗

[
e
Y

(
i
σXY
σ2
Y

−1

)∣∣∣∣∣FZI
T

]
= e

σ2
Y
2

(
i
σXY
σ2
Y

−1

)2

= e

σ2
Y
2

(
−σ2

XY
σ4
Y

+1−2i
σXY
σ2
Y

)

= e
−σ2

XY
2σ2

Y

+
σ2
Y
2

−iσXY

. (B.2.7)
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Combining equation (B.2.6) with equation (B.2.7), we arrive to:

EQ∗

[
eiX−Y

∣∣FZI
T

]
= e

−σ2
XY
2σ2

Y

+
σ2
Y
2

−iσXY

e
−σ2

X
2

+
σ2
XY
2σ2

Y

= e
σ2
Y
2

−σ2
X
2

−iσXY

= e
1
2

∫ T
0 θ2P (s)dse−

1
2

∫ T
0 f2(s)dse−i

∫ T
0 f(s)θP (s)ds

= e
1
2

∫ T
0 θ2P (s)dse

− 1
2

∫ T
0

(∑n
j=1 1(0,tj ]

(s)uj

)2
ds

e−i
∑n

j=1 uj

∫ tj
0 θP (s)ds

Lastly, since W ∗
P is a Brownian motion under the probability measure Q we have

that:

EQ

[
e
∑n

j=1 iujW
∗
P (tj)

]
= EQ

[
e
i
∫ T
0

(∑n
j=1 1(0,tj ]

(s)uj

)
dW ∗

P (s)
]

= e
−1
2

∫ T
0

(∑n
j=1 1(0,tj ]

(s)uj

)2
ds
.

We have just shown the desired result.

Now we are ready to show the independence of the processes W ∗
P and ZI .

Proposition B.2.2. The processes W ∗
P and ZI are independent under the equivalent

measure Q.

Proof. For the times 0 ≤ t1 < t2 < . . . , tn ≤ T we will show that the random vectors
(W ∗

P (t1), . . . ,W
∗
P (tn)) and (ZI(t1), . . . , Z

∗
I (tn)) are independent under the measure Q.

To that end, we will compute the joint characteristic function of
(W ∗

P (t1), . . . ,W
∗
P (tn), ZI(t1), . . . , Z

∗
I (tn)).

Let us consider the values u1, . . . , un, v1, . . . , vn ∈ R, then the joint characteristic
function of (W ∗

P (t1), . . . ,W
∗
P (tn), ZI(t1), . . . , Z

∗
I (tn)) can be written as:

EQ

[
e
∑n

j=1 iujW
∗
P (tj)e

∑n
j=1 ivjZI(tj)

]
=EQ∗

[
Z(T )e

∑n
j=1 iujWP (tj)e

∑n
j=1 iuj

∫ tj
0 θP (s)dse

∑n
j=1 ivjZI(tj)

]
=EQ∗

[
e−

1
2

∫ T
0 θ2P (s)ds−

∫ T
0 θP (s)dWP (s)

e
∑n

j=1 iujWP (tj)e
∑n

j=1 iuj

∫ tj
0 θP (s)dse

∑n
j=1 ivjZI(tj)

]
.

Conditioning with respect to the σ-algebra FZI
T we have that:

EQ

[
e
∑n

j=1 iujW
∗
P (tj)e

∑n
j=1 ivjZI(tj)

]
=EQ∗

[
e−

1
2

∫ T
0 θ2P (s)dse

∑n
j=1 iuj

∫ tj
0 θP (s)dse

∑n
j=1 ivjZI(tj)

EQ∗

[
e−

∫ T
0 θP (s)dWP (s)e

∑n
j=1 iujWP (tj)

∣∣∣FZI
T

]]
.
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Using Lemma B.2.1 we can write:

EQ

[
e
∑n

j=1 iujW
∗
P (tj)e

∑n
j=1 ivjZI(tj)

]
=EQ∗

[
e−

1
2

∫ T
0 θ2P (s)dse

∑n
j=1 iuj

∫ tj
0 θP (s)dse

∑n
j=1 ivjZI(tj)

EQ

[
e
∑n

j=1 iujW
∗
P (tj)

]
e

1
2

∫ T
0 θ2P (s)dse−

∑n
j=1 iuj

∫ tj
0 θP (s)ds

]
=EQ

[
e
∑n

j=1 iujW
∗
P (tj)

]
EQ∗

[
e
∑n

j=1 ivjZI(tj)
]
.

Finally from Proposition B.2.1 we have that:

EQ∗

[
e
∑n

j=1 ivjZI(tj)
]
= EQ

[
e
∑n

j=1 ivjZI(tj)
]
.

We have just proved that

EQ

[
e
∑n

j=1 iujW
∗
P (tj)e

∑n
j=1 ivjZI(tj)

]
= EQ

[
e
∑n

j=1 iujW
∗
P (tj)

]
EQ

[
e
∑n

j=1 ivjZI(tj)
]

and hence the processes ZI and W ∗
P are independent under Q.
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Appendix C

Stochastic time changed process:
conditional properties

Let (Ω,F ,P) be a probability space and let (X(t))t≥0 be a Lévy process. Consider a
non-negative and non-decreasing process (T (t))t≥0 which has almost surely continuous
sample paths. This process T is adapted with respect to a filtration (Gt)t≥0. We also
assume that the process T and the filtration (Gt)t≥0 are independent of the process
X. This process T will be used to change the time of the Lévy process X. We define
the time changed Lévy process (Z(t))t≥0 as

Z(t) = X(T (t)) for t ≥ 0.

We are interested in the distribution of the random variable Z(t) given the σ-
algebra Gt. To that end, we will compute the conditional characteristic function of
Z(t) given Gt, defined as

ΦZ(t) (η| Gt) = E
[
eiηZ(t)

∣∣∣Gt] , for all η ∈ R.

But before computing the conditional characteristic function, let us define the
following function:

kn(s) =

n2∑
j=1

j

n
1[ j−1

n
, j
n)
(s), for s ≥ 0 and n ∈ N. (C.0.1)

This function will be used repeatedly in the proofs of Proposition C.0.1 and Theorem
C.1.1.

Proposition C.0.1. The conditional characteristic function of Z(t) given Gt satisfies:

ΦZ(t) (η| Gt) = exp {T (t)ΨX(η)} , ∀η ∈ R, (C.0.2)

where ΨX is the characteristic exponent of X.

Proof. This proof is inspired by the proof of Sato (1999, Theorem 30.1). Fix any
n ∈ N and define the function kn as in (C.0.1). Notice that we can write eiηX(kn(T (t)))

as

eiηX(kn(T (t))) =

n2∑
j=1

eiηX(
j
n)1[ j−1

n
, j
n)
(T (t)).
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By linearity of the conditional expectation and because 1[ j−1
n

, j
n)
(T (t)) is Gt-measurable,

we have that

E
[
eiηX(kn(T (t)))

∣∣∣Gt] =
n2∑
j=1

E
[
eiηX(

j
n)1[ j−1

n
, j
n)
(T (t))

∣∣∣Gt]

=
n2∑
j=1

1[ j−1
n

, j
n)
(T (t))E

[
eiηX(

j
n)
∣∣∣Gt] .

By independence of the process X and the σ-algebra Gt we obtain for all j = 1, 2, . . . , n2

that

E
[
eiηX(

j
n)
∣∣∣Gt] = E

[
eiηX(

j
n)
]

= e
j
n
ΨX(η),

where the last equality comes from Theorem 1.1.2. So we have just shown that

E
[
eiηX(kn(T (t)))

∣∣∣Gt] =
n2∑
j=1

1[ j−1
n

, j
n)
(T (t))e

j
n
ΨX(η).

We will show below (see Proposition C.1.1 and Proposition C.1.2) that for all t ≥ 0
we have:

lim
n→∞

n2∑
j=1

1[ j−1
n

, j
n)
(T (t))e

j
n
ΨX(η) = eT (t)ΨX(η) almost surely,

and

lim
n→∞

eiηX(kn(T (t))) = lim
n→∞

n2∑
j=1

eiηX(
j
n)1[ j−1

n
, j
n)
(T (t))

= eiηX(T (t)) almost surely.

By application of the conditional dominated convergence theorem (Williams, 1991,
Theorem 9.7), we have that

E
[
eiηZ(t)

∣∣∣Gt] = lim
n→∞

E
[
eiηX(kn(T (t)))

∣∣∣Gt]
= lim

n→∞

n2∑
j=1

1[ j−1
n

, j
n)
(T (t))e

j
n
ΨX(η)

= eT (t)ΨX(η)

as required.
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C.1 Limits

In this subsection, we will show that:

lim
n→∞

n2∑
j=1

1[ j−1
n

, j
n)
(T (t))e

j
n
ΨX(η) = eT (t)ΨX(η) almost surely, (C.1.1)

lim
n→∞

n2∑
j=1

eiηX(
j
n)1[ j−1

n
, j
n)
(T (t)) = eiηX(T (t)) almost surely. (C.1.2)

Define two sets NX and NT as

NX = {w ∈ Ω : the map t :→ X(t, ω) is not a càdlàg path} ,
NT = {w ∈ Ω : the map t :→ T (t, ω) is not a continuous path} ,

We know that P (NX) = 0 and P (NT ) = 0. Define the set N as

N = NX ∪NT ,

and notice that P (N ) ≤ P (NT ) + P (NX) = 0. So if we pick an event that does
not belong to the set N , then the paths of X and T for this event are càdlàg and
continuous respectively.

Now let us pick a scenario ω ∈ N c and let us show that

lim
n→∞

kn(T (t, ω)) = T (t, ω) almost surely,

where kn is defined as in equation (C.0.1).
Because ω ∈ N c we know that the path of T is continuous for this ω, we have

that T (t, ω) is bounded from above in the interval [0, t]. For this ω we can define the
integer M(ω) as

M(ω) = min {m ∈ N : m ≥ T (t, ω)} . (C.1.3)

Pick an n(ω) ∈ N such that n(ω) > M(ω), so we can find an integer qn(ω) such that:

qn(ω) = min

{
j ∈ {1, . . . , n2(ω)} : T (t, ω) ∈

[
j − 1

n(ω)
,

j

n(ω)

)}
. (C.1.4)

We can write
kn(T (t, ω)) =

qn(ω)

n(ω)
.

Due to the fact that T is non-decreasing and T (t, ω) ∈
[
qn(ω)−1
n(ω) , q

n(ω)
n(ω)

)
we have

that

|kn(T (t, ω))− T (t, ω)| =
qn(ω)

n(ω)
− T (t, ω)

≤ qn(ω)

n(ω)
− qn(ω)− 1

n(ω)

=
1

n(ω)
.
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Lastly, letting n(ω) goes to infinite we have that |kn(T (t, ω))− T (t, ω)| goes to zero.
We have just show that

lim
n→∞

kn(T (t, ω)) = T (t, ω) for every ω ∈ N c.

Since the set N c has probability 1. We showed that

lim
n→∞

kn(T (t)) = T (t) almost surely.

We are now ready to prove the results in (C.1.1) and (C.1.2).

Proposition C.1.1. For all ω ∈ N c we have that:

lim
n→∞

n2∑
j=1

1[ j−1
n

, j
n)
(T (t, ω))e

j
n
ΨX(η) = eT (t,ω)ΨX(η).

Proof. Let ω ∈ N c and notice that

n2∑
j=1

1[ j−1
n

, j
n)
(T (t, ω))e

j
n
ΨX(η) = ekn(T (t,ω))ΨX(η).

The function f : [0,∞)→ C defined as

f(x) = exΨX(η),

is continuous (Pascucci, 2011, Lemma 13.18).
Because f is a continuous function and limn→∞ kn(T (t, ω)) = T (t, ω), applying

the result from Abbott (2015, Theorem 4.3.2) we have that

lim
n→∞

ekn(T (t,ω))ΨX(η) = lim
n→∞

f(kn(T (t, ω))) = f(T (t, ω)).

Proposition C.1.2. For all ω ∈ N c we have that:

lim
n→∞

n2∑
j=1

eiηX(
j
n
,ω)1[ j−1

n
, j
n)
(T (t, ω)) = eiηX(T (t,ω),ω).

Proof. Let ω ∈ N c. First, we will show that X(kn(T (t, ω)), ω)→ X(T (t, ω), ω) when
n→∞. We have already proved that kn(T (t, ω))→ T (t, ω) from above when n→∞.

Due to the fact that ω ∈ N c, we have that the path of X is càdlàg for this ω. So,
we have that

lim
n→∞

X(kn(T (t, ω)), ω) = X(T (t, ω), ω),

(Applebaum, 2009, p. 117).
The function g : [0,∞)→ C defined as

g(x) = eiηx

= cos(ηx) + i sin(ηx)
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is continuous. Finally, we obtain that

lim
n→∞

g(Yn(ω)) = g(X(T (t, ω), ω)),

where Yn(ω) = X(kn(T (t, ω)), ω) (Abbott, 2015, Theorem 4.3.2).

C.1.1 Independence of increments

Let N ∈ N. We would like to show that the increments (Z(tj) − Z(tj−1))
N
j=1 where

0 ≤ t0 < t1 < . . . < tN are independent when conditioned with respect to the sigma
algebra GH where H ≥ tN . To prove this fact, we will use the following result.

Theorem C.1.1. Let η1, η2, . . . , ηN ∈ R, then:

E
[
e
∑N

j=1 iηj [X(T (tj))−X(T (tj−1))]
∣∣∣GH] = e

∑N
j=1(T (tj)−T (tj−1))ΨX(ηj)

=

N∏
j=1

e(T (tj)−T (tj−1))ΨX(ηj), (C.1.5)

where ΨX is the characteristic exponent of X.

Proof. For every n ∈ N we define the function kn as in (C.0.1). Consider the integer
M ∈ N. We approximate

e
∑N

j=1 iηj [X(T (tj))−X(T (tj−1))]

by
e
∑N

j=1 iηj [X(kM (T (tj)))−X(kM (T (tj−1)))]. (C.1.6)

Approximation (C.1.6) can be written as

e
∑N

j=1 iηj [X(kM (T (tj)))−X(kM (T (tj−1)))]

=

N∑
h=0

M2∑
lh=1

e∑N
j=1 iηj

[
X
(

lj
M

)
−X

(
lj−1
M

)] N∏
j=0

1AM
lj

(T (tj))

 ,

where AM
lj

=
[
lj−1
M ,

lj
M

)
. Taking the conditional expectation on both sides of the

previous equation, we have

E
[
e
∑N

j=1 iηn[X(kM (T (tj)))−X(kM (T (tj−1)))]
∣∣∣GH]

=

N∑
h=0

M2∑
lh=1

E

e∑N
j=1 iηj

[
X
(

lj
M

)
−X

(
lj−1
M

)] N∏
j=0

1AM
lj

(T (tj))

∣∣∣∣∣∣GH


=

N∑
h=0

M2∑
lh=1

E [e∑N
j=1 iηj

[
X
(

lj
M

)
−X

(
lj−1
M

)]∣∣∣∣GH] N∏
j=0

1AM
lj

(T (tj))


=

N∑
h=0

M2∑
lh=1

E [e∑N
j=1 iηj

[
X
(

lj
M

)
−X

(
lj−1
M

)]] N∏
j=0

1AM
lj

(T (tj))


For each of the terms in this summation, we differentiate between the following cases:
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1. When lN
M ≥

lN−1

M ≥ . . . ≥ l1
M ≥

l0
M is satisfied. In this case, we have

E

[
e
∑N

j=1 iηj

[
X
(

lj
M

)
−X

(
lj−1
M

)]]
=

N∏
j=1

E

[
e
iηj

[
X
(

lj
M

)
−X

(
lj−1
M

)]]
(C.1.7)

=
N∏
j=1

E

[
e
iηj

[
X

(
lj
M −

lj−1

M

)]]
(C.1.8)

=

N∏
j=1

e

(
lj
M −

lj−1

M

)
ΨX(ηj)

(C.1.9)

= e

∑N
j=1

(
lj
M −

lj−1

M

)
ΨX(ηj)

,

equalities (C.1.7) and (C.1.8) come from the fact that the increments of a Lévy
process are independent and stationary, respectively. Equality (C.1.9) is ob-
tained by application of the result in Pascucci (2011, Theorem 13.15).

2. When lN
M ≥

lN−1

M ≥ . . . ≥ l1
M ≥

l0
M is not satisfied. For this case, it is possible to

find q, p ∈ {0, 1, . . . , N} with p > q such that

lp
M

<
lq
M

.

Hence we have that lp
M ≤

lq−1
M . So we have

AM
lp ∩AM

lq =

[
lp − 1

M
,
lp
M

)⋂[
lq − 1

M
,
lq
M

)
= ∅.

Because the process T is non-decreasing we have that T (tp) ≥ T (tq), so then

1AM
lp
(T (tp))1AM

lq
(T (tq)) = 0.

We have just proved that when lN
M ≥

lN−1

M ≥ . . . ≥ l1
M ≥

l0
M is not satisfied we

have

E

[
e
∑N

j=1 iηj

[
X
(

lj
M

)
−X

(
lj−1
M

)]] N∏
j=0

1AM
lj

(T (tj)) = 0

= e

∑N
j=1

(
lj
M −

lj−1

M

)
ΨX(ηj)

N∏
j=0

1AM
lj

(T (tj)).

We have just shown that

N∑
h=0

M2∑
lh=1

E [e∑N
j=1 iηj

[
X
(

lj
M

)
−X

(
lj−1
M

)]] N∏
j=0

1AM
lj

(T (tj))


=

N∑
h=0

M2∑
lh=1

e∑N
j=1

(
lj
M −

lj−1

M

)
ΨX(ηj)

N∏
j=0

1AM
lj

(T (tj))


= e

∑N
j=1(kM (T (tj))−kM (T (tj−1)))ΨX(ηj).
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Applying similar results to the ones showed in Proposition C.1.1 and in Proposition
C.1.2, we obtain that

lim
M→∞

e
∑N

j=1(kM (T (tj))−kM (T (tj−1)))ΨX(ηj)

= e
∑N

j=1(T (tj)−T (tj−1))ΨX(ηj)

=

N∏
j=1

e(T (tj)−T (tj−1))ΨX(ηj), almost surely

and

lim
M→∞

e
∑N

j=1 iηj [X(kM (T (tj)))−X(kM (X(tj−1)))]

= e
∑N

j=1 iηj [X(T (tj))−X(T (tj−1))], almost surely.

By application of the conditional dominated convergence theorem (Williams, 1991,
Theorem 9.7 ), we have that

E
[
e
∑N

j=1 iηj [X(T (tj))−X(T (tj−1))]
∣∣∣GH]

= lim
M→∞

E
[
e
∑N

j=1 iηj [X(kM (T (tj)))−X(kM (T (tj−1)))]
∣∣∣GH]

=
N∏
j=1

e(T (tj)−T (tj−1))ΨX(ηj)

C.1.2 Pseudo-stationary increments

We would like to show that for given t, s ∈ [0,∞) such that t ≥ s, the random variable
(X(T (t))−X(T (s))) has the same distribution as the random variable X(T (t)−T (s)).
First we will show that the distributions of (X(T (t))−X(T (s))) and X(T (t)− T (s))
are the same when conditioned with respect to GH where H ≥ t.

Proposition C.1.3. Let η ∈ R, then:

E
[
eiη(X(T (t))−X(T (s)))

∣∣∣GH] = E
[
eiη(X(T (t)−T (s)))

∣∣∣GH] (C.1.10)

= e(T (t)−T (s))ΨX(η).

Proof. Applying Theorem C.1.1 for just one increment we have that

E
[
eiη(X(T (t))−X(T (s)))

∣∣∣GH] = e(T (t)−T (s))ΨX(η).

Define the process (R(s, u))u≥0 as

R(s, u) = 1{u≥s} (T (u)− T (s)) for u ≥ 0.

The process (R(s, u))u≥0 is non-decreasing, non-negative and has continuous sample
paths. Also R(s, u) is Gu-measurable for all u ≥ 0. So, by application of Proposition
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C.0.1 we have:

E
[
eiη(X(T (t)−T (s)))

∣∣∣GH] = E
[
eiηX(R(s,t))

∣∣∣GH]
= eR(s,t)ΨX(η)

= e(T (t)−T (s))ΨX(η).

Corollary C.1.1. Let η ∈ R, then:

E
[
eiη(X(T (t))−X(T (s)))

]
= E

[
eiη(X(T (t)−T (s)))

]
Proof. From Proposition C.1.3 we have that

E
[
eiη(X(T (t))−X(T (s)))

∣∣∣GH] = E
[
eiη(X(T (t)−T (s)))

∣∣∣GH] . (C.1.11)

Taking the expectation on both sides of equation (C.1.11) and applying the tower
property, we arrive at the desired result.

From Corollary C.1.1 we have that the random variables (X(T (t))−X(T (s))) and
X(T (t)− T (s)) have the same distribution.
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Appendix D

Simulation

In this section of the appendix, we explain the techniques for simulating the processes
introduced in Section 2.2 and Section 2.3.

D.1 Cox-Ingersoll-Ross process

One of the advantages of the Cox-Ingersoll-Ross process is that its transition density
function is known and can be sampled from. For simulating N steps of a Cox-Ingersoll-
Ross process with a vector of parameters θI = (aI , bI , σI), time step ∆ > 0 and
an initial value of I(0) = y0 we use algorithm taken from Iacus (2009, p. 83) (see
Algorithm 6). This algorithm generates a realization {yj}Nj=1 of the Cox-Ingersoll-
Ross process for a given vector of parameters θI , time step ∆ and initial value y0.

Algorithm 6: Simulation of the Cox-Ingersoll-Ross process.
c = 2aI

σ2
I (1−exp(−aI∆))

;

q = 2aIbI
σ2
I
− 1;

for j = 1, 2, . . . , N do
uj−1 = cyj−1e

−aI∆;
Draw a sample xj from a non central chi-square with 2q + 2 degrees
freedom and non-centrality parameter 2uj−1;
yj =

xj

2c ;
end

D.2 Inverse Gaussian Ornstein-Uhlenbeck process

We use the Euler method for the simulation of the inverse Gaussian Ornstein-Uhlenbeck
process introduced in Section 2.3.2. For using the Euler method, first we need to know
how to simulate the background driving Lévy process ZI that appears in equation
(2.3.1).

The background driving Lévy process ZI of an IG(aI , bI)-Ornstein-Uhlenbeck pro-
cess can be expressed as the sum of two independent possesses Z

(1)
I and Z

(2)
I , where

Z
(1)
I is an inverse Gaussian Lévy process with parameters aI/2 and bI , and

Z
(2)
I (t) =

1

b2I

NI(t)∑
n=1

X2
i for t ≥ 0,

where NI is a Poisson process with intensity parameter aIbI
2 , {Xi}∞i=1 is a sequence

of independent and identically distributed standard normal random variables and
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the sequence {Xi}∞i=1 and the Poisson process NI are independent (Schoutens, 2003,
p. 69).

Since the background driving Lévy process ZI can be decomposed as the sum of
two other processes that we know how to simulate, we can use the Euler method to
simulate the IG(aI , bI)-Ornstein-Uhlenbeck process:

I(t+∆) ≈ (1− λI∆)I(t) + ZI(λI(t+∆))− ZI(λIt),

for a small time step ∆ > 0 (Protter & Talay, 1997). We use Algorithm 7 to generate
a realization {yj}Nj=1 of an inverse Gaussian Ornstein-Uhlenbeck process with given
vector of parameters θI = (aI , bI , λI), time step ∆ and initial value y0.

Algorithm 7: Simulation of the inverse Gaussian Ornstein-Uhlenbeck pro-
cess.

for j = 1, 2, . . . , N do
Draw a sample ∆zj from the random variable ZI(λItj)− ZI(λItj−1);
yj = (1− λI∆)yj−1 +∆zj ;

end
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Appendix E

Initial values

As we have seen in Sections 2.2.1 and 2.3.3, we need to maximize the likelihood
function to estimate the parameters of the model. The maximization of the likelihood
function relies on numerical techniques. These numerical techniques need a starting
point or an initial estimate so they can work.

E.1 Cox-Ingersoll-Ross process

For the Cox-Ingersoll-Ross process, we discretize the model and use the ordinary least
square estimator to get an initial estimate of aI , bI and σI . This technique is also
used by Kladívko (2007).

For a time step ∆ > 0, the Euler method produces the following approximation
on the interval [t, t+∆) for the Cox-Ingersoll-Ross process:

I(t+∆) ≈ I(t) + aI(bI − I(t))∆ + σI
√

I(t)
√
∆ϵt, (E.1.1)

where ϵt ∼ N(0, 1) (Iacus, 2009, p. 122). Now if we have an equally time–spaced
sample {yj}Nj=0 of the sequence {I(tj)}Nj=0, where each yj is a realization of I(tj),
tj = j∆ and each I(tj) satisfies the discretized equation (E.1.1), then by the Euler
method we have that

I(tj+1)− I(tj) = aI(bI − I(tj))∆ + σI

√
I(tj)

√
∆ϵj for j = 0, 1, . . . , N − 1,

(E.1.2)

where {ϵj}N−1
j=0 is a sequence of independent and standard normal random variables.

Dividing both sides of equation (E.1.2) by
√

I(tj)∆, we arrive at:

I(tj+1)− I(tj)√
I(tj)∆

= aIbI

√
∆

I(tj)
− aI

√
I(tj)∆ + σIϵj for j = 0, 1, . . . , N − 1.

(E.1.3)

Now let us define

Ỹj =
I(tj+1)− I(tj)√

I(tj)∆
, X1,j =

√
∆

I(tj)
, X2,j =

√
I(tj)∆, τj = σIϵj

for j = 0, 1, . . . , N − 1, and

β1 = aIbI , β2 = −aI . (E.1.4)
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Then equation (E.1.3) can be rewritten as

Ỹj = β1X1,j + β2X2,j + τj for j = 0, 1, . . . , N − 1, (E.1.5)

where {τj}N−1
j=0 is a sequence of independent normal random variables with mean 0 and

variance σ2
I . Notice that in equation (E.1.5) we have a linear regression model. Since

we have the sample {yj}Nj=0, we can compute the realization of the sequences {Ỹj}N−1
j=0 ,

{X1,j}N−1
j=0 and {X2,j}N−1

j=0 . The parameters β1, β2 and σI are then estimated using
the ordinary least square estimation method. For linear models, this estimator has
an analytical form. From (E.1.4) we can compute the initial estimators of aI and bI ,
using the results obtained for β1 and β2.

E.2 Inverse Gaussian Ornstein Uhlenbeck process

To optimize the log-likelihood function defined in (2.3.14), we use a numerical opti-
mization method, but this method needs a starting estimate for the parameters aI , bI
and λI . Since the IG(aI , bI)-Ornstein-Uhlenbeck process is a stationary process we
have the following result.

Proposition E.2.1. (Valdivieso, 2005, Proposition 3.5) For any t ≥ 0 and ∆ ∈ R,
the auto-correlation function has the form:

ρ(∆) =
Cov [I(t), I(t+∆)]√
V ar[I(t)]V ar[I(t+∆)]

= e−λI |∆|. (E.2.1)

For the parameter λI the auto-correlation equation (E.2.1) suggests the initial
condition:

λ̂0
I =
− log( ˆacf(1))

∆
,

where ˆacf(1) is the empirical auto-correlation function of lag 1, computed from the
sample data {yj}Nj=0 (Valdivieso, Schoutens, & Tuerlinckx, 2009, p. 9).

In Section 2.3.4 we have defined the sequence of residuals {Mj}Nj=1. We know that
{Mj}Nj=1 is an independent and identically distributed sequence of random variables,
and the random variable Mj has the same distribution as Z∗

I (∆) for all j = 1, . . . , N .
From the observed sample {yj}Nj=0 we can compute a realization of the sequence
{Mj}Nj=1, that we call {mj}Nj=1. Since we can compute the first and second moment
of the random variable Z∗

I (∆) we can use the method of moments for obtaining initial
estimates for the parameters aI and bI . The method of moments gives the following
initial estimators

â0I =
b̂0Im̄

(eλ
0
I∆ − 1)

, b̂0I =
1

sm

√
m̄(e2λ

0
I∆ − 1)

eλ
0
I∆ − 1

,

where

m̄ =
1

N

N∑
j=1

mj , s2m =
1

N

M∑
j=1

(mj − m̄)2,

(Valdivieso, 2005, p. 100).
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