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Abstract44

Animals adapt their systems to optimise for different competing goals at the same time. Ideally, they will reach an45

optimal state of equilibrium where the outcome from any goal cannot get better without at the same time making46

another worse off, similar to the state of Pareto optimaility (Mock 2011). Animals can seek different goals like, to47

maintain their systems’ stability and robustness, or improving their performances in a given computational task,48

which is reflected in their memory capacity and ability to make more rewarding decisions.49

Many species are capable of forming associative memories, they can learn to contextualise sensory stimuli as50

good, bad or neutral, when they are associated by a shortly upcoming salient outcome and bias their behaviours51

to approach or avoid these cues in the future. In this work I will focus on modelling the associative learning in the52

mushroom body circuit of the fruit fly, its center of olfactory associative learning.53

Despite of the small size of the mushroom body circuit, flies can learn to associate an odor (sensory experience)54

with an appetitive or aversive outcome. They do so by modifying the connections between the mushroom body55

intrinsic neurons, called Kenyon cells (KCs), and their downstream mushroom body output neurons (MBONs).56

The fly motor behaviour was found to be biased by the activity of the MBONs to either approach or avoid an odor57

(Aso et al. 2014a; Aso et al. 2014b).58

Although many studies uncovered the molecular mechanisms and the neurons underpinning associative learning59

in different species, there has been no work done to answer some specific questions: (a) Why do the neurons in60

the same circuit within the same animal exhibit variability among each others in their intrinsic properties? It61

is unknown how variability among the same types of neurons in the same circuit and animal would eventually62

affect the animal’s optimal behaviour in a computational task. Even previous studies that tackled inter-neuronal63

variability were trying to study its effect on circuits stability and were dealing with inter-neuronal variability across64

animals and not within an individual circuit (Marder and Goaillard 2006; Golowasch et al. 2002; Schulz, Goaillard,65

and Marder 2006; Schulz, Goaillard, and Marder 2007). Can the observed inter-neuronal variability be a result66

of some optimisation protocol that enhances the circuit computational performance, for example, memory or data67

performance? Or has it just happened at random?68

(b) Learning in the cerebellum (and its alike structures in other animals like the fruit fly mushroom body)69

happen by long term depression (weakening) between its intrinsic neurons -encoding the sensory input- and the70

downstream neurons that guide the animal’s motor behaviour (Ito 1989). Like in (a), I ask if this learning rule has71

been conserved across species for optimising some computational aspects of learning.72

7



8

I studied these questions in a model of the mushroom body, the center of olfactory associative learning in the73

fruit fly. The well-detailed anatomy of the mushroom body, the existence of its great genetic toolkit and the fly74

connectome makes it easier to model the learning mechanisms underpinning some behaviours and map them onto75

neurons in the fly mushroom body. Besides, the striking similarity in the circuit structure between the mushroom76

body in the fruit fly and the mammalian cerebellum means our work might provide computational insights relevant77

across species.78

In this 3 Chapters thesis, I will present a computational model of associative learning in the fruit fly mushroom79

body using realistic input odors statistics, as well as putting some constraints on the model network that were80

observed experimentally in the real mushroom body (e.g. the level of KCs sparse coding, the level of KCs sparse81

coding when their inhibitory inputs are silenced).82

In Chapter 2, I will answer the first question, the first aim, of this thesis and show that random variability83

between the KCs in their intrinsic parameters will impair the fly’s memory performance. I find that the random84

inter-KCs variability will result in a high variability among the neurons in their sparsity values, which results in very85

few neurons being specifically active for some odors whilst the vast majority are activated by all incoming odors,86

that reduces the fly’s ability to distinguish between odors and their identity as ’good’ rewarded or ’bad’ punished87

odors. However, I show that compensatory variability mechanisms will rescue the memory performance. I present88

4 different models (activity-independent and activity-dependent rules) for how this compensatory variability can89

take place in real neurons. Last but not least, I show that the data from the newly released fly connectome actually90

reveal compensatory variability in the KCs which agree with my models’ predictions.91

In Chapter 3, I will answer the second question in this thesis and show that, under some conditions, learning92

by depression can be more optimal than by potentiation. I will show that if the fly’s decision making policy93

integrates the information from the MBONs in a divisive normalisation like manner (I explain more about divisive94

normalisation in Chapter 3), then learning by depression will lead to a higher memory performance. I also suggest95

a biologically plausible implementation for this normalisation decision policy using a winner-take-all (WTA) circuit96

model. I predict that in a WTA circuit that integrates the MBONs outputs, the fly’s memory performance will be97

higher under learning by depression than under potentiation if the noise in the MBONs responses is of multiplicative98

nature (that is, if the noise in the MBONs responses across different trials is higher at higher MBONs firing rates).99
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List of Figures146

1.1 Schematic of the classical conditioning paradigm. Learning phase in the paradigm is shown on the147

left of the dashed line. The conditioned stimulus (CS) can be any arbitrary odour. The temporal148

coupling of the CS with either the reward of food or punishment with an electric shock (unconditioned149

stimulus) induces appetitive or aversive memory formation in the fly’s brain and biases its behaviour.150

Testing of the learned memory is shown on the right of the dashed line. The fly’s learned memory is151

tested when it encounters the same CS again whence it will either approach or avoid it. . . . . . . . 26152

1.2 An illustration of the aversive memory formation by long term depression (LTD). On the top panel153

the fly has the same odour drive to both of the mushroom body output neurons (MBONs) which154

direct the fly motor behaviour. Synaptic strengths between the KCs (black circles) onto the approach155

(green circle) MBON are equal to these onto the avoidance (dark red circle) MBON.156

In the bottom panel synaptic plasticity (LTD) is induced between the active KCs and the approach157

MBON (avoidance MBON) in an aversive (appetitive) learning experiment. The coincident activation158

of subset of the KCs (orange circles) by the CS and the punishment DAN by the US like an electric159

shock weakens the output synapses from the active KCs to the approach promoting MBON. Weakened160

synapses are shown by dashed lines. The connections between the active KCs onto the avoidance161

MBON remains unchanged in aversive learning. In appetitive learning the activation of a reward162

DAN and subset of KCs induces LTD between the KCs and the avoidance MBON (not shown in this163

schematic). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27164

1.3 Schematic of the olfactory pathway in the fruit fly. Image from [Aso et al. 2014]. AL: antennal lobe,165

PN: projection neurons, MB: mushroom body, LH: lateral horn . . . . . . . . . . . . . . . . . . . . . 28166

1.4 (A) Kenyon cell (KC) is tagged with mCD8-GFP (magenta) and colabeled with α-synaptotagmin167

(green) which show the KCs claw-like endings and its presynaptic sites, respectively. KC claws receive168

all of its presynaptic inputs from the boutons on the projection neurons (PNs) axon termini.169

(B-D): Magnifications of the boxed region in A. Images from (Leiss et al. 2009). . . . . . . . . . . . 29170
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1.5 Schematic diagram for the MB lobes and intrinsic neurons. Image taken from (Aso et al. 2014a). KCs171

receive their inputs from around 150 PNs in the input layer shown on the left end of the diagram.172

KCs axons run through the MB lobes in a highly compartmentalised fashion. Axons from different173

KCs types innervate different lobes of the MB. The MB lobes are subdivided into 15 compartments174

based on the innervation patterns of the MBONs (also see Fig.1.6) . . . . . . . . . . . . . . . . . . . 30175

1.6 The MB has 21 MBONs cell types which are classified based on their innervation patterns. MBONs176

receive their inputs from the KC axons in the MB lobes.177

The MBONs compartmentalised innervation patterns subdivide the MB lobes into 15 subunits (gray178

rectangles). MBONs 11, 5 and 6 (encircled in black) send feedforward inputs back into the MB lobes179

to other MBONs.180

Typically MBONs send their outputs (solid arrows) to 5 main neuropils (CRE, SMP, SIP, SLP and181

LH) which are upstream to motor guiding circuits.182

MBONs somas are shown by filled circles, inputs synapses by the half circles, and axons (outputs)183

by directed solid arrows (see inline legend). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31184

1.7 The MB circuit overlaid with the reward and punishment DANs. Most of the PAM DANs (innervating185

the lobes within the green rectangle) are reward DANs except for the γ3 DAN. PPL1 DANs are186

punishment DANs and innervate the MB lobes overlaid with the red rectangles.187

DANs valences are opposite to the valences of MBONs found in the lobes which they innervate. PAM188

DANs (PPL1 DANs) innervate the lobes with the avoidance (approach) promoting MBONs. . . . . 33189

1.8 An early work to model the visual cortex neurons using a multi perceptron network. Image taken190

from (Albus 1971) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34191

2.1 Schematic for the mushroom body network model. Projection neurons in the input layer relay the192

odour responses, xi, downstream to the Kenyon cells (yj). Kenyon cells connect randomly to the193

projection neurons with synaptic weights wji and receive global inhibition from the APL neuron194

with weight αj . Learning occurs when dopaminergic neurons (DANs) carrying punishment (reward)195

signals from the environment depress the synapses (vj) between the active Kenyon cells and the196

mushroom body output neurons (MBONs) that lead to approach (avoidance) behavior. . . . . . . . 54197
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2.2 Inter-KC variability in w, N and θ degrades the model fly’s memory performance. (A) Histograms of198

the experimentally measured distributions for: (A1) w (amplitude of spontaneous excitatory postsy-199

naptic potentials in KCs, mV; data from (Turner, Bazhenov, and Laurent 2008)), (A2) N (number200

of PN inputs per KC, measured as the number of dendritic ‘claws’; data from (Caron et al. 2013)),201

(A3) θ (spiking threshold minus resting potential, mV; data from (Turner, Bazhenov, and Laurent202

2008)). The overlaid black curves show log-normal (w) and Gaussian (N , θ) fits to the data.203

(B) The model fly’s memory performance (given 100 input odours), varying the parameters step204

by step. Fixed and variable parameters are shown by empty and filled circles, respectively. The205

homogeneous model (all parameters fixed, N = 6; black) performs the best and the random model206

(all parameters variable; red) performs the worst. All bars are significantly different from each other207

unless they share the same letter annotations (a, b, etc.), p < 0.05 by Wilcoxon signed-rank test (for208

matched models with the same PN-KC connectivity) or Mann-Whitney test (for unmatched models209

with different PN-KC connectivity, i.e., fixed vs. variable N), with Holm-Bonferroni correction for210

multiple comparisons. n = 30 model instances with different random PN-KC connectivity.211

(C) The performance trend is consistent over a range of different conditions: (C1) number of in-212

put odours, (C2) the learning rate used to update KC-MBON weights, (C3) amount of noise in213

PN activity (half, the same, or double the noise measured in (Bhandawat et al. 2007)), (C4) the214

indeterminacy in the decision making, quantified by log(c), where c is the constant in the soft-max215

function (SI Appendix, Eq. 21). The vertical dotted lines indicate the conditions used in panel B216

(each condition used the best learning rate).217

(D) As KCs receive more inputs (thus more similar inputs), inter-KC variability becomes helpful,218

not harmful, to memory performance, especially when all KCs receive the same inputs (N = 24).219

Blue: KCs vary in excitatory weights (w); red: KCs vary in both w and thresholds (θ). Data for220

N = 6 equivalent to panel B. n=30.221

(E) Inter-KC variability improves performance in dense coding regimes (coding levels 0.7 - 0.9) at222

classifying 100 odours (a hard task) or 20 odours (easy task). Left of dashed line: equivalent to223

panel B, for comparison. Right of dashed line: increasing coding levels, in each case without inhibi-224

tion (because inhibition is constrained to decrease coding level by half, which is impossible if coding225

level > 0.5). n=50. * p < 0.05, Wilcoxon signed-rank test (D) or Mann-Whitney test (E) with226

Holm-Bonferroni correction for multiple comparisons. Error bars show 95% confidence intervals. . . 56227
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2.3 Performance depends on KC lifetime sparseness. (A1,B1) Diagrams of angular distance between228

odours (i.e., between centroids of clusters of noisy trials; A1) and dimensionality of a system with 3229

variables (B1). The system with its states scattered throughout 3D space (green) has dimensionality230

3 while the system with all states on a single line (magenta) has dimensionality 1. (A2,B2) The231

homogeneous model has higher angular distance and dimensionality than the random model (p <232

0.05, Mann-Whitney test), matching the performance difference when coding level = 0.1, but the233

opposite trend to performance when coding level = 0.9. (C-D) Cumulative distribution function (cdf)234

of the lifetime sparseness (C) or valence specificity (D) of KCs in the homogeneous (black) and random235

(red) models, across 50 model instantiations. The gap between 1.0 and the top of the cdf represents236

silent KCs (lifetime sparseness and specificity undefined). At coding level 0.1, the random model has237

many more silent KCs, non-sparse KCs, and non-specific KCs than the homogeneous model, but at238

coding level 0.9, the random model has more KCs with high lifetime sparseness and more KCs with239

high valence specificity. (E) High lifetime sparseness enables high valence specificity, although many240

sparse KCs have low valence specificity because of random valence assignments (data here from241

single model instances). (F) Removing the sparsest or most valence-specific KCs (corresponding242

to the dashed horizontal lines in C,D) removes the performance advantage of the random model243

under dense coding. n=50 network instantiations; * p < 0.05, Mann-Whitney test; error bars, 95%244

confidence interval (horizontal error bars in A2,B2 are smaller than the symbols). These results are245

from the 20-odour task in Fig. 2.2E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58246
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2.4 Additional metrics supporting Figure 3. (A) Dimensionality can be estimated numerically using247

(2.23) given sufficient simulated inputs (dashed line = 50,000, the number used here). Calculations248

here on the homogeneous model, coding level = 0.1, with inhibition. (B-C) As in Fig. 3A,B,249

except models trained to discriminate 100 odours instead of 20 odours. The homogeneous model has250

higher angular distance and dimensionality than the random model (p < 0.05, Mann-Whitney test),251

matching the performance difference when coding level = 0.1, but the opposite trend to performance252

when coding level = 0.9. (D-E) The random model has greater standard deviation of lifetime253

sparseness across KCs, compared to the homogeneous model, in all conditions tested (coding level254

0.1 or 0.9; with or without inhibition) using 20 odours in (D) and 100 odours in (E). Note: Inhibition255

was omitted for comparing coding level 0.1 vs. 0.9 because our model was constrained to have the256

coding level without inhibition be double the coding level with inhibition, which is impossible when257

the coding level with inhibition is 0.9. The results in (D) are from the 20-odour task in Fig. 2.2E.258

(F-G) As in Fig. 3C,D, except models trained to discriminate 100 odours instead of 20 odours.259

Cumulative distribution function (cdf) of the lifetime sparseness (C) or valence specificity (D) of260

KCs in the homogeneous (black) and random (red) models, across 50 model instantiations. The261

gap between 1.0 and the top of the cdf represents silent KCs (lifetime sparseness undefined). At262

coding level 0.1, the random model has many more silent KCs, non-sparse KCs, and non-specific263

KCs than the homogeneous model, but at coding level 0.9, the random model has more KCs with264

high lifetime sparseness and more KCs with high valence specificity. (H) Reproduced from Fig.265

3F for comparison: Removing the sparsest or most valence-specific KCs removes the performance266

advantage of the random model under dense coding. * p < 0.05, Wilcoxon signed-rank test (see Table267

S1). (I) Removing the sparsest or most valence-specific KCs generally reduces angular distance and268

dimensionality, but not in a way that matches the effect on performance shown in (H). Conditions269

are significantly different (Mann-Whitney test) unless they share a letter anotation. n=50 network270

instantiations; error bars, 95% confidence interval (where error bars cannot be seen, they are smaller271

than the symbols); performance data in B,C from the 100-odour task in Fig. 2E. . . . . . . . . . . . 59272
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2.5 Compensation in network parameters rescues memory performance. (A) Schematics of different273

compensation methods. (A1) Activity-independent compensation. Lognormal fit of experimental274

distribution of the synaptic weights (Exp., red), and its component distributions for different N275

and θ, for high N = 7 (dashed) or low N = 2 (solid). Shadings of gray indicate different values276

of θ. (A2-4) Mechanisms for activity-dependent homeostatic compensation. Overly active KCs277

weaken excitatory input weights (wji, A2), strengthen inhibitory input weights (αj , A3), or raise278

spiking thresholds (θj , A4). Inactive KCs do the reverse. (B1) Compensation rescues performance,279

alleviating the defect caused by inter-KC variability in the random model (red) compared to the280

homogeneous model (black), whether compensation occurs by setting w according to N and θ (cyan;281

A1), using activity-dependent homeostatic compensation to adjust excitatory weights (blue; A2),282

inhibitory weights (green; A3) or spiking thresholds (magenta; A4). (B2) Differences between models283

are more apparent when the task is more difficult due to more stochastic decision-making (c = 1284

instead of c = 10 in the softmax function). (C) Compensation reduces variability in KC lifetime285

sparseness. n = 20 model instances with different random PN-KC connectivity; error bars, 95%286

confidence interval. All bars are significantly different from each other unless the share the same287

letter annotations, p < 0.05, by Wilcoxon signed-rank test (for matched models with the same PN-288

KC connectivity) or Mann-Whitney test (for unmatched models with different PN-KC connectivity,289

i.e., fixed vs. variable N), with Holm-Bonferroni correction for multiple comparisons. Annotations290

below bars indicate whether parameters were fixed (empty circle), variable (filled circle), or variable291

following a compensation rule (‘H’ for homeostatic tuning, f(N, θ) for activity-independent tuning).292

Results here are for 100 synthetic odours; see Fig. 2.6B for similar results with odours from (Hallem293

and Carlson 2006). (D) KC excitatory input synaptic weights (w) after tuning to equalize average294

activity (blue) follow a similar distribution to experimental data (black, from Fig. 2.2A1) (E) KC295

spiking thresholds (θ) after tuning to equalize average activity (magenta) have wider variability than296

the experimental distribution (black, from Fig. 2.2A3). (F) Tuning KC inhibitory weights (α) to297

equalize average activity requires many inhibitory weights to be negative, unless the coding level298

without inhibition is as high as 99%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62299

2.6 Similar analyses to Fig. 2 and 4, using the original 110 odour responses from (Hallem and Carlson300

2006). (A) Inter-KC variability degrades the memory performance. (B) Compensation as in Fig.301

4 improves memory performance. n = 30 (A) or 20 (B) model instances with different random302

PN-KC connectivity; error bars, 95% confidence interval. The indeterminacy constant c from the303

softmax equation was set to 10. Bars within a graph that do not share the same letter annotation304

are significantly different, p < 0.05, Mann-Whitney or Wilcoxon test as in Fig.2.2,2.5. . . . . . . . . 63305
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2.7 Robustness of pre-tuned compensations with novel odours. (A) For each model fly, network param-306

eters are tuned as in Fig. 2.5, on a subset of odours. At this stage, no rewards or punishments are307

given, and KC output weights are not modified. Then, the model is trained to classify rewarded308

and punished odours that are the same as or different from the odours used for tuning. Finally, the309

model is tested on new noisy variants of the odours used for training. (B) Empty symbols (‘novel’310

environment): models were tuned on odours from one chemical group (Gi: acids - circles, terpenes -311

triangles, esters - diamonds, or alcohols - squares), then trained and tested on odours from the other312

three groups (Gi 6=j). Each empty symbol is paired with a matched control (filled symbols) showing313

how that model would have fared in a ‘familiar’ environment: a model tuned, trained, and tested all314

on the same three groups of odours as the matched ‘novel’ model was trained and tested on (Gi 6=j).315

(C) Models with activity-dependent compensation (blue, magenta, green) performed significantly316

worse in novel environment than familiar environments (matching indicated by connecting lines)317

(p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction). In contrast, models with318

no compensation (black, red), or activity-independent compensation (cyan), performed similarly in319

novel and familiar environments (p > 0.05 except for homogeneous (black), acids, and random (red),320

terpenes). Mean of 20 model instantiations, where each instantiation received a different permuta-321

tion of odours (see SI Appendix). Annotations below graph indicate whether parameters were fixed322

(empty circle), variable (filled circle), or variable following a compensation rule (‘H’ for homeostatic323

tuning, f(N, θ) for activity-independent tuning). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65324

2.8 Alternative update rules for tuning KCs’ input excitatory weights. (A) Performance of different325

models at different indeterminacy constants (A1: c = 10; A2: c = 1). Blue, left: the method in326

the main figures, (2.47), where a given KC’s input weights are all adjusted equally (‘H’); dark blue,327

middle: (2.46), where a given KC’s input weights are adjusted individually according to the average328

activity of the PN (‘Hindiv’); light blue, right: (2.44), where only non-silent KCs adjust their input329

weights (‘Hactive’). n = 20 model instances with different random PN-KC connectivity. Error bars330

show 95% confidence interval. Bars with the same letter annotations are not significantly different331

from each other; all other comparisons are significant p < 0.05, by Wilcoxon signed-rank test with332

Holm-Bonferroni correction for multiple comparisons. (B,C) Probability distribution of the tuned333

excitatory weights (compare to Fig. 4E). (D) The ‘Hindiv’ model performs worse than the ‘H’ model in334

novel environments (see legend of Fig. 5; the drop in performance from familiar to novel environments335

is significantly greater for the ‘Hindiv’ model, p < 0.05 by Wilcoxon signed-rank test. . . . . . . . . . 66336
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2.9 Variants of activity-dependent compensation models.337

(A) Tuning inhibitory weights to equalize KC average activity improves performance more when338

we remove the constraint that the coding level without inhibition be double (0.2) the coding level339

with inhibition (0.1). Coding level without inhibition was 0.2 (left, light green), 0.5 (middle, medium340

green) or 0.99 (right, dark green).341

(B) Better performance when spiking thresholds are tuned to equalize KC average activity (magenta)342

rather than KC response probability (dark magenta), under both more (c = 10, B1) and less (c = 1,343

B2) deterministic decision-making.344

(D) Probability distribution of spiking thresholds (θ) after tuning them to equalize KCs’ response345

probabilities (compare to Fig. 4E).346

n = 20 model instances with different random PN-KC connectivity. Error bars show 95% confidence347

interval. * p < 0.05, by Mann-Whitney test with Holm-Bonferroni correction (A) or Wilcoxon348

signed-rank test (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66349
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2.10 Connectome analysis reveals compensatory variation in excitatory and inhibitory input strengths.350

(A) Example αβ-c KC (bodyId 5901207528) with inputs from 3 PNs (yellow/green/blue dots) and351

7 dendritic APL-KC synapses (red circles). The magenta circle shows the posterior boundary of the352

peduncle. Line widths not to scale. (B,C) Mean synaptic weight (w) per PN-KC connection is353

inversely related to the number of input PNs in models that tune input weights given N and θ (B),354

or that tune input weights to equalize average activity levels across KCs (C). (D) In the model that355

tunes input inhibitory synaptic weights (α) to equalize average activity levels across KCs, inhibitory356

weights are directly related to the sum of excitatory weights per KC (i.e., wN). Note the negative357

values of α (discussed in text). (E,F) Probability distributions of the number of synapses per PN-KC358

connection (E) and the number of input PNs per KC (F) in the different KCs subtypes (αβ, γ, α′β′).359

Dashed line in (E) shows our threshold for counting connections as genuine. (G) Mean number360

of input synapses per PN-KC connection (averaged across PNs for each KC) is inversely related to361

the number of input PNs per KC, in γ-main KCs (see SI Appendix, Fig. S5 for other KC types).362

(H) Mean distance of PN-KC synapses to the posterior boundary of the peduncle (presumed spike363

initiation zone) is directly related to the number of input PNs per KC. (I) The number of APL-KC364

synapses per KC is directly related to the total number of PN-KC synapses per KC. (J) Four αβ-c365

KCs, one from each neuroblast clone. The posterior boundary of the peduncle (magenta circles) lies366

where the KC axons begin to converge. (K) Grids show Pearson correlation coefficients (r) between367

various KC parameters for all KC subtypes tested (red: positive; blue: negative). Dots indicate368

p < 0.05 (Holm-Bonferroni corrected). Coloured outlines indicate predictions of models (cyan/blue:369

models tuning w (G,H); green: model tuning α (I)). Number of KCs for each subtype, left to right:370

588, 222, 350, 220, 127, 119. In (B,C,G,H), red dots are medians and the widths of the violin plots371

represent the number of KCs in each bin. Trend lines in (D,G,H,I) show linear fits to the data. Scale372

bars in (A,J): D, dorsal, P, posterior, M, medial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68373

2.11 Connectome analysis on all KC subtypes (γ-main, αβ-s, -m and -c; α′β′-ap2 and -m). (A-D)374

Probability distributions of the number of synapses per PN-KC connection (A,C) and the number375

of input PNs per KC (B,D) in αβ and α′β′ KCs separated out by subtype (compare to Fig. 6E,F).376

(E) Mean number of input synapses per PN-KC connection is inversely related to the number of377

input PNs per KC. (F) Mean distance of PN-KC synapses to the posterior boundary of the peduncle378

(presumed spike initiation zone) is directly related to the number of input PNs per KC in γ and379

αβ-c KCs. (G) The number of APL-KC synapses per KC is directly related to the total number of380

PN-KC synapses per KC. (H) The number of PN-KC synapses per KCs grows sublinearly with the381

number of PN inputs per KC. Red dots: medians. Red lines: linear fits. Blue dashed lines: linear382

fits through the origin (if every PN-KC connection had the same number of synapses). Note that the383

red dots follow a concave function relative to both linear fits. . . . . . . . . . . . . . . . . . . . . . . 69384
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3.1 Types of normalisation. The red curve corresponds to the original neuron’s (f-I) curve before gain385

control. (A) the blue curve is the result of modulating the red curve with a subtractive normalisation.386

(B) the blue curve is the result of modulating the red curve with a divisive normalisation. . . . . . 77387

3.2 Normalisation in the olfactory neurons in the fruit fly. (A) The response of an antennal lobe neuron388

to input odour concentration as in Eq.(3.1). γ and σ values are labeled on the graphs. . . . . . . . . 78389

3.3 Each of odour A and B activates unique KCs shown in red and green respectively. Both odours390

activate an overlapping KC shown in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81391

3.4 Changes in the output weights from KCs to MBONs after learning by depression. Learning by392

penalising the wrong action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82393

3.5 Learned bias in depression is always higher than potentiation for any n < 1: (A) n = 0.8, (B)394

n = 0.2. Learned bias by depression remains higher than potentiation for different conditions of z:395

results are shown for z=0.1, 0.4 and 0.6. The gap between the learned biases under depression and396

potentiation closes as the magnitude of the synaptic plasticity, z, increases. . . . . . . . . . . . . . . 84397

3.6 Learned bias by depression is better than potentiation for high values of ak , when n > 1. A learning by398

potentiation outperforms depression for low values of the ratio a
k . The order switches as z increases.399

As z increases, learning by depression crosses the learning curve of potentiation at lower values of c.400

B learning by depression outperforms potentiation under more conditions of z and c when a
k = 1. C401

Depression outperforms potentiation under all conditions of z when k is less than a, ak >1, equals 1.6.402

Learned biases for different values of z are shown by the solid, dashed and dotted curves respectively. 85403

3.7 Toy example to show the effect of the ratio between k and an option value {Zi or Zj} on shifting404

the probability of picking the bigger outcome from a softmax function to a divisive normalisation405

one. Each pixel in every heat map in this 3x4 grid is the probability of picking the bigger outcome406

between Zi and Zj . The heat maps with higher k and/or n reveals a decision function that depends407

only on the gap between the given options values [∆ = Zi − Zj ]. For lower k, k = 0.1 or k = 1,408

and for the same gap between both options the probability of picking the bigger option grows as the409

values of Zi and Zj drops. This is depicted by the isolines divergence in a fan shaped beam from the410

left bottom corner in these maps. Whereas the isolines in the heat maps of higher k run in parallel. 87411

3.8 Learning by potentiation and depression are equivalent under a softmax policy. . . . . . . . . . . . . 88412

3.9 Learning by depression is better than potentiation when the difference from the opposing MBONs413

outputs is normalised by their sum. n=20 random fly networks instantiations. . . . . . . . . . . . . 89414
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3.10 The cumulative distribution function of valence specificity in the different models. odour inputs and415

flies networks instantiations (n=20) used here are similar to those in Chapter 2 Fig. 2.5.416

The random, homogeneous and activity-independent equalisation models (top panels; black, red and417

cyan curves) have higher average valence specificity values than the activity dependent models in the418

bottom panels (blue, green, magenta curves).419

The homogeneous, random and cyan models have few perfectly specific KCs (specificity =1) while420

the activity dependent equalisation models have none. The sharp rise at the end of the black, red421

and cyan curves in the top panels account for the mass of the perfectly specific KCs. . . . . . . . . . 90422

3.11 The cumulative distribution function (cdf) of the differences between the MBONs weights for the423

different models, plotted for different learning rates and under learning by depression (left half of424

the figure) and potentiation (the right half). Odor inputs and flies random networks instantiations425

(n=20) are the same as in Chapter 2, Fig. 2.5. The black arrow shows the direction of increase in426

the learning rate. All models have the same cdf of the differences between their MBONs weights427

(at their peak learning rates) after learning by depression or potentiation under a softmax policy.428

This is shown by the dashed curves (black, red and cyan dashed curves) under potentiation and429

depression for the homogeneous, random and activity-independent equalisation models, and by the430

dashed and dotted curves for the activity-dependent equalisation models (blue, green, and magenta431

curves) under depression and potentiation, respectively. The peak learning rates in the activity-432

dependent equalisation models are roughly the same in learning by potentiation and under a softmax433

or a divisive normalisation policy (the dotted curves in the bottom panels under potentiation). . . . 92434

3.12 The random, Homogeneous and activity-independent equalisation models have their peak perfor-435

mances at different learning rates under each of the decision making policies: softmax and divisive436

normalisation. The peak scores in the random, homogeneous and activity-independent equalisation437

models, shown by the red, black and cyan curves respectively, are shifted more to the right under438

divisive normalisation (B) than in a softmax decision policy (A), n=20. The gray shading highlights439

the region of maximum performance in the red, black and cyan models under each decision rule. . . 93440

3.13 Schematic of the WTA canonical circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94441
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3.14 Toy example similar to Fig. 3.7 in a WTA circuit to show the effect of the noise on shifting the442

probability of picking the bigger outcome from a softmax like to a divisive normalisation function.443

Each pixel in every heat map in this 1x3 grid is the probability of picking the bigger outcome between444

Zi and Zj . For each pair of options values, the probability of picking the bigger option is averaged445

over (n=20) random trials. In each random trial (under a certain noise regime) the noise values were446

randomly added to the WTA circuit’s neurons.447

The panels show 3 different noise regimes, (left panel): additive Gaussian white noise, (middle panel):448

Gaussian noise with zero mean and variance equal
√
Zi/j , (right panel): Gaussian noise with zero449

mean and variance equal Zi/j . The heat map with additive noise (left) reveals a decision function450

that depends only on the gap between the given options [∆ = Zi −Zj ]. Similar to the maps in (Fig.451

3.7) with high k values. The multiplicative noise regimes (middle and right) show a behaviour similar452

to a divisive normalisation function. Compare to the maps in (Fig. 3.7) with low values of k.453

The WTA circuit parameters in this simulation were set as: α=0.7, β=0.9, τη=0.5, ∆t=
τη
50 , τ=1. Zi454

and Zj run from 1 to 20 in steps of 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97455

3.15 Learning by depression and potentiation are equivalent in a WTA circuit with additive noise. . . . . 98456

3.16 performance in learning under depression is higher than in potentiation in a WTA circuit with457

multiplicative noise. Noise variance is the square root of the MBONs firing rate. . . . . . . . . . . . 99458

3.17 Performance versus the power of the multiplicative noise in the MBONs in the WTA model. Learning459

by depression is better than potentiation under various scales of the noise variance. Data shown for460

the peak performances in two models only (Homogeneous and Random) for simplicity. . . . . . . . . 99461

4.1 Similarity between the circuit structure of the MB and the cerebellum. Image courtesy of Modi et462

al.,2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103463

4.2 Activity of the winner (loser) LIP neuron - shown in black and orange traces respectively- ramps up464

(down) as the evidences accumulate to decide the dots motion direction in a visual discrimination465

task. The duration of the dots motion stimulus presentation is indicated by the gray box. Decision466

is made by saccade eye movements when the wining neuron reaches the decision threshold shown by467

the dashed line. Image courtesy of (KF et al. 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . 110468



Chapter 1469

General introduction and Background470

Organisms continually evolve to maximize their chances of survival. As the environment pushes towards the survival471

of certain traits, species evolution also takes place under some constraints. These constraints could be due to the472

physical design of their biological systems (e.g. number of neurons, synaptic capacity or the neural circuits anatomy)473

or other energy constraints. For example, the human cortex has evolved to accommodate for learning new tasks and474

motor acts, which will require the cortex layer to expand as well as the brain to grow in size (Barton and Venditti475

2014). To maximise learning capacity while constraining the brain size to remain moderate, the cortex cells layer476

grew by increasing its surface area and folding of the cortical layer, while keeping its thickness the same as in other477

mammals (Rakic 2009; Hofman 2014).478

Another form of constrained evolution is the observed negative correlation between the brain size and the479

digestive tract size in anthropoid primates. A widely accepted hypothesis in palaeoanthropology and other fields,480

coined as the ‘expensive-tissue’ hypothesis (Aiello and Wheeler 1995), was used to explain how humans adapted481

to satisfy the high energy demands of their bigger brains by minimising the energy requirements in other organs,482

their guts. Moreover, the number of neurons in the olfactory circuits in mammals and invertebrates was found to483

have evolved non-trivially. It depends on the expected lifetime of the animal and evolved in order to optimise its484

associative learning performance and survival (Hiratani and Latham 2022). The biological systems have also evolved485

mechanisms to be always ready for any noisy changes in their gene expressions. Taking neurons as an example,486

while neurons live for appreciable long times in humans and animals, their constituent biochemical molecules and487

proteins are turned over every few days and even hours. To maintain their desired functionality, however, neurons488

undergo homeostatic mechanisms to compensate for any inevitable failure (Marder and Goaillard 2006).489

Most of the species share the amazing premise of synaptic plasticity. No matter how small nerual circuits are,490

all beings have to learn from and memorise past experiences. The process of memory formation has been studied491

many years ago. Vertebrates and invertebrates share the basic common mechanisms for memory formation, like492

long-term depression and potentiation. The coincidence of activity in the presynaptic and postsynaptic neurons,493

with or in the absence of neuromodulatory chemical release, will induce long term changes that will potentiate or494

23
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depress the synaptic strengths between the pre and post-synaptic partners.495

It has been thought for long that plasticity in vertebrates is Hebbian like, that is the synaptic modulation496

only depends on the correlation between the presynaptic and postsynaptic neurons activities; ’neurons that fire497

together, wire together’ (Hebb 2005; Bliss and Collingridge 1993; Caporale and Dan 2008; Glanzman 2010) without498

the need for neuromodulatory chemical release. On the other hand, in invertebrates, it was firmly established499

that the release of neuromodulatory chemicals and the sensory stimulus-evoked activity presynaptically, CS, were500

necessary for plasticity formation; exclusively due to long term presynaptic changes (Glanzman 2010; Castellucci501

and Kandel 1974; Castellucci and Kandel 1976). Some recent studies, however, have proposed that there might502

be some exceptions to these long standing hypotheses, which increase the resemblance between memory formation503

in vertebrates and invertebrates. For example, the release of neuromodulatory chemicals was found necessary for504

inducing the long term freezing responses (aversive memory) in the lateral amygdala pyramidal neurons in mice505

(Johansen et al. 2014). Also, new data has suggested the possibility of the existence of Hebbian like plasticity in506

invertebrates, for e.g. in the sensorimotor learning in aplysia (Lin and Glanzman 1994; Li, Roberts, and Glanzman507

2005), in honeybees (Menzel and Manz 2005), Drosophila (Xia et al. 2005), and leech (Burrell and Sahley 2004).508

The conservation of the mechanisms underlying memory formation between vertebrates and invertebrates makes509

the invertebrate models a unique opportunity to study fundamental questions in neuroscience. Thanks to their510

simple brains and the advancements in the genetic tools we can disentangle the complicated circuits behaviours in511

these small animals, and try to understand the similar circuits in more complicated brains as in humans.512

In my thesis I tried to bridge the gap in understanding the relationship between neuronal variability and its513

computational effects on the networks’ data encoding and memory performance, in particular in sparse networks514

where a small percentage of the neurons are active at any point of time given an input. Sparse coding regime is515

an ubiquitous feature of many neural circuits across different species, it is found in the human cerebellum, fruit516

fly mushroom body, Honey bees, piriform cortex in rodents and many other circuits (Modi, Shuai, and Turner517

2020). Sparse coding is beneficial for memory capacity (Brunel et al. 2004; Földiak and Young 1995) and speed of518

learning (Schweighofer, Doya, and Lay 2001). Sparse encoding of densely overlapping inputs representations was519

first studied by Marr and Albus (Marr 1969; Albus 1971). It was also referred to as expansion recording (Albus520

1971) because the densely responding neurons transfer their recordings of the sensory inputs to an expanded layer521

of neurons, where each responds for few number of times. Later, numerous studies showed numerical and analytical522

evidences for the benefits of sparse coding to enhance the speed of learning, memory reliability and capacity in523

various simulations of the brain circuitry (Brunel et al. 2004; Babadi and Sompolinsky 2014; Schweighofer, Doya,524

and Lay 2001; Memmesheimer et al. 2014).525

The computational implications of inter-neuronal variability in these circuits remained elusive; in this work I will526

present a computational framework and draw predictions from it about these effects. I will attempt these questions527

using a model of the fruit fly center of olfactory learning, the mushroom body. As we will see in Chapter 3 and in the528

sections below, the structure of the mushroom body circuit and its role in olfactory associative learning resembles529
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to a great extent the mammalian cerebellum. The mushroom body receives inputs stimuli through a layer of ≈ 150530

neurons (see below) which then fan out to a greater number of neurons intrinsic to the mushroom body (MB), called531

the Kenyon cells (KCs). The MB has ≈ 2000 KCs which respond very sparsely given any input. This makes them532

act like data encoders in the field of computer science and machine learning. Every input odour will be encoded by533

a unique subset of KCs; the more different these subsets are, the more will be the fly’s memory performance and534

capacity to distinguish between different input odours. The important question I am exploring here is, given the535

experimental data by other studies, why do KCs show different intrinsic properties and connectivity parameters536

(see chapter 3)? From an information and data efficiency point of view, how would this impact the MB’s memory537

performance, i.e. is it better for the computational nodes in the same circuit to vary in their connection parameters538

(e.g. number of inputs, connections strengths) or to be all identical in their properties?539

First, let’s introduce the MB circuit and olfactory associative memory formation in the fruit flies.540

1.1 Olfactory associative memory in the Fruit fly Drosophila541

Drosophila melanogaster, fruit fly, can develop behavioural associations with sensory stimuli. Their learning capa-542

bilities are powerful compared to their simple brains which have ≈ 105 neurons. Associative olfactory learning is543

one type of learning where the fly will experience an input odour, termed as the conditioned stimulus (CS), followed544

by a a sugar reward or an electric shock, the unconditioned stimulus (US), as depicted in (Fig.1.1). Flies will then545

learn a behaviour (approach or avoidance) which they will do upon experiencing the same CS again in the future.546

Olfactory learning and memory is formed in flies in a structure called, the mushroom body (MB). The simultane-547

ous activation of the MB intrinsic neurons (called Kenyon Cells, KCs) and dopamine release from the dopmainergic548

neurons (DANs) within a specific compartment (see next sections for more details) will induce long term plasticity549

in the synapses between the active KCs and the mushroom body output neurons (MBONs), which are upstream to550

intent and motor circuits.551

At all times, the output to the ‘wrong’ behavior is depressed: for example, pairing an odour with electric shock552

weakens the output synapses from the active KCs unto MBONs that promote an approach behavior (Aso et al.553

2014a; Hige et al. 2015; Cohn, Morantte, and Ruta 2015; Handler et al. 2019) (reviewed in (Amin and Lin 2019)),554

as illustrated in (Fig.1.2).555

MBONs Behavioural valences, which were observed by the MBONs optogenetic activation, are opposite to the556

DAN induced memory’s type formed in their compartments (Aso et al. 2014a). In (Aso et al. 2014a), they found557

that the DANs activated by bitter taste or punishment reinforcement signals have mostly innervated the lobes558

which had MBONs with an approach valence, and vice versa. The reverse relation between the valences of the559

DANs memories and the MBONs in the same compartment can in part explain why learning in the MB happens560

by depression; as the only way to reinforce the right behaviour would be by weakening the conditioned odour drive561

to the MBON that promotes the wrong behaviour.562
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Figure 1.1: Schematic of the classical conditioning paradigm. Learning phase in the paradigm is shown on the left of
the dashed line. The conditioned stimulus (CS) can be any arbitrary odour. The temporal coupling of the CS with either
the reward of food or punishment with an electric shock (unconditioned stimulus) induces appetitive or aversive memory
formation in the fly’s brain and biases its behaviour. Testing of the learned memory is shown on the right of the dashed line.
The fly’s learned memory is tested when it encounters the same CS again whence it will either approach or avoid it.
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Figure 1.2: An illustration of the aversive memory formation by long term depression (LTD). On the top panel the fly
has the same odour drive to both of the mushroom body output neurons (MBONs) which direct the fly motor behaviour.
Synaptic strengths between the KCs (black circles) onto the approach (green circle) MBON are equal to these onto the
avoidance (dark red circle) MBON.
In the bottom panel synaptic plasticity (LTD) is induced between the active KCs and the approach MBON (avoidance
MBON) in an aversive (appetitive) learning experiment. The coincident activation of subset of the KCs (orange circles) by
the CS and the punishment DAN by the US like an electric shock weakens the output synapses from the active KCs to the
approach promoting MBON. Weakened synapses are shown by dashed lines. The connections between the active KCs onto
the avoidance MBON remains unchanged in aversive learning. In appetitive learning the activation of a reward DAN and
subset of KCs induces LTD between the KCs and the avoidance MBON (not shown in this schematic).
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Figure 1.3: Schematic of the olfactory pathway in the fruit fly. Image from [Aso et al. 2014]. AL: antennal lobe, PN:
projection neurons, MB: mushroom body, LH: lateral horn

1.2 Anatomy of olfactory processing in the fruit fly563

Fruit flies have around 1300 Olfactory Receptor Neurons (ORNs), in their antenna, with each ORN expressing564

a single, sometimes two, odourant receptors (Couto, Alenius, and Dickson 2005; Fishilevich and Vosshall 2005).565

These ORNs enter the antennal lobe where they send axons into one of the 50 glomerular targets, ORNs expressing566

the same odourants receptors converge on the same glomerulus (Couto, Alenius, and Dickson 2005; Gao, Yuan, and567

Chess 2000). The downstream population of ≈ 150 neurons, called Projection neurons (PNs), then receive their568

inputs from only one of the 50 glomeruli. Most of the glomeruli provide inputs to an average of 2 ±1 PNs except569

for 5 glomeruli which provide inputs to average of 6 ±2 PNs (Grabe et al. 2016).570

Odour responses in the second order olfactory neurons (PNs) are dense, which means a large number of them571

will be active for any given odour. These dense (i.e. non sparse) odour responses are then relayed to the mushroom572

body (MB) and lateral horn neurons, termed as the third or high order olfactory centers, as illustrated by the573

schematic in (Fig.1.3). The lateral horn and MB were found responsible for directing the fly’s innate and acquired574

(learned) behaviours to olfactory stimuli, respectively (Masse, Turner, and Jefferis 2009). However, new studies575

has challenged this distinction and found that the MB output was essential in modulating some innate behaviours576

(Lewis et al. 2015).577

1.2.1 The Kenyon cells578

PNs project onto the mushroom body intrinsic neurons, Kenyon cells (KCs). There are ≈ 2000 KCs in the MB per579

hemisphere. KCs originate from 4 neuroblasts (Ito et al. 1997; Lee, Lee, and Luo 1999; Zhu, Chiang, and Lee 2003).580

They extend their dendritic trees in the MB calyx, where their dendrites form claw-like structures which contact581

boutons in the PNs axons termini (Yasuyama, Meinertzhagen, and Schürmann 2002; Leiss et al. 2009), as shown in582
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(Fig. 1.4); This is also reminiscent of the granule cells to mossy fibres connections in the cerebellum (Huang et al.583

2013).584

A B

C

D

Figure 1.4: (A) Kenyon cell (KC) is tagged with mCD8-GFP (magenta) and colabeled with α-synaptotagmin (green)
which show the KCs claw-like endings and its presynaptic sites, respectively. KC claws receive all of its presynaptic inputs
from the boutons on the projection neurons (PNs) axon termini.
(B-D): Magnifications of the boxed region in A. Images from (Leiss et al. 2009).

KCs sample their inputs from around 5.6 PNs on average (Gruntman and Turner 2013). The KCs-PNs wiring585

was thought to happen randomly in both the adult fly (Caron et al. 2013) and the fly larva (Eichler et al. 2017).586

However, new data set analyses has revealed a mild underlying structure in the wiring (Zheng et al. 2020). They587

showed that there is a subset of the PNs (food-odour-responsive PNs) that project more frequently on individual588

KCs more than expected. Their analysis revealed that these over-convergent PNs send their buttons near each589

other in the MB calyx, which makes the local downstream KCs more probable to receive inputs from them. We590

judged that attempting to model this non-randomness would not add to the realism of our model given that we591

modeled only 24 (out of ≈50) glomeruli (see Methods; Chapter 2).592

One distinct feature about KCs is that they respond sparsely to any input. Only 10% of KCs are activated on593

average by any input odour (Honegger, Campbell, and Turner 2011). This percentage is also referred to as the594

coding level or the population sparsity of the KCs (Gruntman and Turner 2013). The sparsity of KCs responses595

is mostly maintained by global inhibitory feedback from the anterior paired lateral (APL) neuron (Amin and Lin596

2019; Scheffer et al. 2020). There is a single APL neuron per hemisphere (Scheffer et al. 2020). APL and KCs form597

reciprocal synaptic contacts across the entire length of the mushroom body. However, it was found that both the598

activity in the APL and its inhibitory effect on KCs are spatially restricted (Amin et al. 2020), which allows it to599

deferentially inhibit different compartments in the mushroom body.600
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KCs axons exit the calyx and run in parallel where they cross the pedunculus to terminate in the respective MB601

lobes. KCs have been categorized into 3 distinct classes (Lee, Lee, and Luo 1999; Crittenden et al. 1998) based on602

their innervations to the eponymous lobes, as shown by the MB circuit diagram in Fig(1.5). These 3 classes are603

α/β, α
′
/β
′

and γ cells. The β, β
′
, and γ cells constitute the horizontal lobes, while the α and α′ cells make up the604

vertical lobes.605

The three KCs classes then divide into 7 cell types based on their axonal projection patterns in the lobes [Aso606

et al.,2014]. Each type occupy a specific layer in the (α/β), (α
′
/β
′
), and (γ) lobes. Two KC types split the γ lobe,607

into the main and dorsal (d) layers, two types split the (α
′
/β
′
) lobe into the middle (m) and anterior–posterior (ap)608

layers, and three KC types divide the (α/β) lobe into the posterior (p), core (c), and surface (s) layers.609

Five KC cell types have their dendritic arbors mainly in the main calyx, where they exclusively receive olfactory610

inputs. The other two types: γ(d) and α/β(p) receive non-olfactory inputs exclusively from the ventral and dorsal611

accessory calyces (Tanaka, Tanimoto, and Ito 2008). Different KCs innervating each lobe form en passant synapses612

along their axons with the MB Output Neurons (MBONs), which provide great number of connections for each613

MBON.614

Figure 1.5: Schematic diagram for the MB lobes and intrinsic neurons. Image taken from (Aso et al. 2014a). KCs receive
their inputs from around 150 PNs in the input layer shown on the left end of the diagram. KCs axons run through the MB
lobes in a highly compartmentalised fashion. Axons from different KCs types innervate different lobes of the MB. The MB
lobes are subdivided into 15 compartments based on the innervation patterns of the MBONs (also see Fig.1.6)
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1.2.2 The MB output neurons615

The information about an odour converges from the high dimensional representation in 2000 KCs to only 34616

MBONs per hemipshere. The high convergence ratio of the MB outputs means that the MBONs do not encode617

odour identity, rather they convey an abstract representation about the odours (a behavioural bias).618

MBONs are classified into 21 cell types based on their innervations to the MB lobes. The MBONs dendrites are619

thought to subdivide each lobe into 5 compartments, i.e. 15 compartments in all the lobes as shown in Fig.(1.5)620

[figure is inspired by (Aso et al. 2014a)].621

MBONs dendrites tile the 15 compartments where 13 of the MBONs cell types have their inputs restricted to622

only one compartment and 8 project to 2 compartments, as in Fig.(1.6). While many of the MBONs receive their623

inputs from KCs in all the layers within a compartment, 8 types restrict their inputs to specific layers (Tanaka,624

Tanimoto, and Ito 2008; Aso et al. 2014b).625
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Figure 1.6: The MB has 21 MBONs cell types which are classified based on their innervation patterns. MBONs receive
their inputs from the KC axons in the MB lobes.
The MBONs compartmentalised innervation patterns subdivide the MB lobes into 15 subunits (gray rectangles). MBONs
11, 5 and 6 (encircled in black) send feedforward inputs back into the MB lobes to other MBONs.
Typically MBONs send their outputs (solid arrows) to 5 main neuropils (CRE, SMP, SIP, SLP and LH) which are upstream
to motor guiding circuits.
MBONs somas are shown by filled circles, inputs synapses by the half circles, and axons (outputs) by directed solid arrows
(see inline legend).
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A few MBONs types synapse back inside the MB lobes and provide inputs onto other MBONs, which form one626

layer feedforward loops (Li et al. 2020). Following the naming convention in (Aso et al. 2014a), these are MBON11,627

MBON05 and MBON06, labeled with black circles around them in Fig.(1.6). MBONs axons terminates mainly in 5628

major neuropils outside the MB: CRE, SMP, SIP, SLP and the lateral horn (Aso et al. 2014a). To drive behavioural629

changes, MBONs will need to provide their outputs to motor neurons in the Ventral Nerve Cord (VNC). The brain630

connects to the motor neurons in VNC via hundreds of descending neurons (DNs) (Namiki et al. 2018). Although631

no direct connections were reported between MBONs and DNs (Li et al. 2020; Namiki et al. 2018), the optogenetic632

activation of the MBONs drive changes in the fly behaviour (Aso et al. 2014a), with some MBONs driving an633

approach behaviour and others biasing the fly to avoid the stimulus.634

The neat compartmentalisation of the KCs-MBONs connections provides the circuit motif needed to form635

memory associations. In associative memory formation though the animal needs neuromodulatory signals to induce636

plasticity. In flies the teaching signal is provided by another type of neurons which are the Dopaminergic neurons637

(DANs).638

1.2.3 Dopaminergic neurons639

DANs transmit the information about reward or punishment to the MB. There are around 20 types of DANs,640

similar to the MBONs dendrites, each DAN has its output confined to one or 2 compartments. DANs have641

been categorised into 2 families, PAM and PPL1, which mostly convey information about reward and punishment642

respectively as depicted below in (Fig.1.7); with the exception of few PAM neurons like PAM12 (γ3 DANs) which643

convey punishment signals (Schwaerzel et al. 2003; Claridge-Chang et al. 2009; Mao and Davis 2009; Aso et al.644

2010; Burke et al. 2012; Liu et al. 2012; Hige et al. 2015).645

The mushroom body (MB) has 5 PPL1 (punishment) DANs and 150 PAM (reward) DANs. DANs activation646

along with KCs modulate the synaptic efficacy between the active KCs and their downstream MBON in the same647

compartment. Besides the external sources of rewards or punishments, DANs receive direct inputs from MBONs648

themselves. This provides feedback loops within the MB lobes where the DANs activity is modulated by the learned649

odour’s value as predicted by the MBONs: it is a ’good’ (’bad’) odour which promotes an approach (avoidance)650

behaviour (Li et al. 2020). In effect, this can allow the fly to learn more complex paradigms beyond pure classical651

conditioning like, second order conditioning and reinforcement learning. Second order conditioning was indeed652

observed in flies (Tabone and Belle 2011), where the value of a previously learned odour can act as a pseudo-653

reinforcement when coupled with another stimulus; this learning motif resembles a class of algorithms in machine654

learning called the actor-critic models (see Chapter 6 in (Sutton and Barto 2018) for more details). Essentially, these655

MBONs-DANs feedback loops were shown to be necessary for various memory processes like, nutrient-dependent656

consolidation of long term appetitive memory (Ichinose et al. 2015), maintenance of short term courtship memory657

(Zhao et al. 2018), or to ’transfer’ short term memories to long term ones (Séjourné et al. 2011; Jacob and Waddell658

2020; Awata et al. 2019).659
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Figure 1.7: The MB circuit overlaid with the reward and punishment DANs. Most of the PAM DANs (innervating the
lobes within the green rectangle) are reward DANs except for the γ3 DAN. PPL1 DANs are punishment DANs and innervate
the MB lobes overlaid with the red rectangles.
DANs valences are opposite to the valences of MBONs found in the lobes which they innervate. PAM DANs (PPL1 DANs)
innervate the lobes with the avoidance (approach) promoting MBONs.
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1.2.4 Previous computational models of memory and learning660

Olfactory associative learning in flies and sensorimotor learning in an arm reaching task in mammals overlap in661

many aspects with each other. First, the end goal in both systems is to learn a motion sequence or associate an662

input with a class of output behaviour. Secondly, learning in the cerebellum and the mushroom body involves663

integration of sensory inputs, encoding these inputs in a layer of sparse neurons and most importantly receiving a664

neural signal that encode the error in the animal’s action or an unconditioned stimulus which will induce plasticity665

at the outputs of the sparse nodes onto pre-motor neurons (Marr 1969; Ito 1989; Albus 1971; Aso et al. 2014a;666

Modi, Shuai, and Turner 2020).667

Marr, Albus and Ito (Marr 1969; Albus 1971; Ito 1989; Kawato et al. 2021; Ito 2006; Ito 1972) studies were668

pioneering in the field of computational neuroscience, their seminal work has inspired numerous studies after to test669

their hypotheses in vivo (Kawato et al. 2021). Marr and Albus had formulated the objective of cerebellar learning670

to be pattern recognition, whilst Ito had suggested it to be a regression problem (motor control learning). Their671

models on learning and memory formation were the first to view the brain as a typical control circuit problem in672

engineering. They modeled different brain components as circuit blocks which might share feedback signals between673

each other. They used the classical perceptron developed by Rosenblatt in 1958 (Rosenblatt 1958) to model a neural674

circuit. A perceptron is made up of artificial neurons where each receives weighted sum of inputs from upstream675

neurons, as in Fig.1.8. The perceptron goal is to approximate (learn) the function that maps a set of inputs, e.g.676

sensory inputs, to desired output responses or distinct classes.677

Figure 1.8: An early work to model the visual cortex neurons using a multi perceptron network. Image taken from (Albus
1971)
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Besides the growing body of literature in modeling the mammalian cerebellar learning, great advances have been678

made in modelling the memory and learning in smaller animals. In the rest of this subsection I will focus on models679

done in the fruit fly.680

Most of the computational models of the fruit fly learning and memory were done to show the significance681

behind the MB circuit evolution. For e.g., Litwin-Kumar et al, (Litwin-Kumar et al. 2017) have used empirical and682

analytical methods to prove the optimality behind the observed average number of PN inputs per KC, 7. They683

explained how indeed it helped the fly to achieve the best memory performance. Other work showed the significance684

of the circuitry that transforms the ORNs responses to the PNs and its importance to decorrelate odour responses in685

the higher order olfactory circuits (Luo, Axel, and Abbott 2010). In addition, some computational models underwent686

to elucidate the significance of the mildly non-random structure observed in the PNs-KCs connections, and show687

that a given structure pattern was beneficial to prioritize learning of some important odours and generalizes learning688

better to more similar odour groups (Zavitz et al. 2021).689

Other computational work have used the fruit fly model as an inspiration to create better artificial networks and690

algorithms. In (Shen, Dasgupta, and Navlakha 2021), they showed that the fruit fly has evolved a simple continual691

learning algorithm that minimizes catastrophic forgetting, a huge problem in the field of machine learning and692

artificial neural networks. Moreover, many computational studies modeled the surprisingly advanced computational693

features and capabilities arising from the simple MB network like, sensory habituation (Shen, Dasgupta, and694

Navlakha 2020) or encoding route memory in complex natural environments (Ardin et al. 2016), or the important695

role of the MB sparse encoding in the rapid sensorimotor control of foraging flies (Rapp and Nawrot 2020); beside696

other non-elemental learning abilities in the fruit fly MB (Wessnitzer et al. 2012) and other MB networks as in the697

honeybee (Peng and Chittka 2017).698

1.3 Focus of my thesis699

In my thesis I address some unanswered gaps in neuroscience using a computational model of the fruit fly. In700

contrast to the previous work, I aspired to create a realistic model of the fruit fly. For that it was important to use701

real odours inputs to the MB intrinsic neurons (KCs), thanks to the published data in (Hallem and Carlson 2006).702

In addition, I modeled the intrinsic properties of the MB neurons using the published data from (Caron et al. 2013)703

and (Turner, Bazhenov, and Laurent 2008), I even used the statistics from real odours recordings in (Bhandawat704

et al. 2007) to create the noisy trials of odours responses, see Chapter 3 for more details.705

Using my computational framework I tried to answer some main questions. First, I study the effects (advantages706

or disadvantages) of inter-neuronal variability from a computational point of view. To this end, I will model the707

inter-neuronal variability among the intrinsic neurons in the fruit fly’s center of olfactory learning, the Mushroom708

Body, and its effects on the model fly’s memory and data performance. To my knowledge, there is no other study709

(to the date of this thesis) which explored the consequences of inter-neuronal variability among the same type of710

neurons in the same circuit on the data efficiency and performance.711
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In Chapter 2 I introduce the concept of neuronal variability, and elucidate to what extent (and under which712

conditions) can the variability be useful for the model fly’s memory performance. As we will see later, random713

variability is undesirable though and degrades the fly’s memory performance. However, I suggest that compensatory714

variability models will both rescue the memory performance and keep the realistic variability between neurons715

intact. In addition, I found that the correlations between the neuronal parameters that are predicted from these716

compensatory models also exist in real neurons in the fly connectome.717

In the last chapter of the thesis, I present a computational framework to study the potential benefits of learning718

by depression (weakening the wrong behaviour) over potentiation (strengthening the right behaviour). In this719

quest, I used the fruit fly mushroom body model, where learning has been also observed to happen by depression,720

to compare the model’s memory performances in both cases of plasticity rules: learning by depression versus721

potentiation. I found that learning by depression can outperform potentiation if the noise in the mushroom body722

output neurons (MBONs) is multiplicative; I will explain later in Chapter 3 what I mean by multiplicative versus723

additive noise. In flies, the MBONs are upstream to motor guiding behaviour circuits. The results I present724

suggests that the plasticity rule in flies might have evolved in a non-random manner, that it has evolved such that725

the fly’s memory performance is immune to the inevitable noise in the MBONs responses, specifically if it is of a726

multiplicative nature.727



Chapter 2728

Compensatory Variability in network729

parameters enhances memory730

performance in the Drosophila731

mushroom body732

2.1 Introduction733

How does variability between neurons affect neural circuit function? How might neurons behave similarly despite734

having different underlying features? We addressed these questions in neurons called Kenyon cells, which store735

olfactory memories in flies. Kenyon cells differ among themselves in key features that affect how active they are,736

and in a model of the fly’s memory circuit, adding this inter-neuronal variability made the model fly worse at737

learning the values of multiple odours. However, memory performance was rescued if compensation between the738

variable underlying features allowed Kenyon cells to be equally active on average, and we found the hypothesized739

compensatory variability in real Kenyon cells’ anatomy. This work reveals the existence and computational benefits740

of compensatory variability in neural networks.741

Noise and variability are inevitable features of biological systems. Neural circuits achieve consistent activity742

patterns despite this variability using homeostatic plasticity: because neural activity is governed by multiple intrinsic743

and network parameters, variability in one parameter can compensate for variability in another to achieve the same744

circuit behaviour (Golowasch et al. 2002; Achard and DeSchutter 2006; Tobin and Calabrese 2006; Taylor, Goaillard,745

and Marder 2009; Marder and Goaillard 2006). This phenomenon of compensatory variability has typically been746

addressed from the perspective of consistency of neural activity across individual animals (Schulz, Goaillard, and747

Marder 2006; Schulz, Goaillard, and Marder 2007) or over an animal’s lifetime, in the face of circuit perturbations748

37
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(MacLean et al. 2003; MacLean et al. 2005; O’Leary and Marder 2016; Parrish et al. 2014). However, less attention749

has been paid to potential benefits of maintaining consistent neuronal properties across a population of neurons750

within an individual circuit.751

Indeed, previous work has emphasized the benefits of neuronal variability/heterogeneity rather than neuronal752

homogeneity (Gjorgjieva, Drion, and Marder 2016; Marsat and Maler 2010; Zeldenrust, Gutkin, and Denève 2019).753

(Here we follow (Marder and Goaillard 2006) in using ‘heterogeneity’ to refer to qualitative differences, e.g., between754

cell types, and ‘variability’ to refer to quantitative differences in parameter values.) Of course, different neuronal755

classes encode different information (e.g., visual vs. auditory neurons, or ON vs. OFF cells). Yet even in populations756

that ostensibly encode the same kind of stimulus, like olfactory mitral cells, variability of neuronal excitability can757

increase the information content of their population activity (Padmanabhan and Urban 2010; Padmanabhan and758

Urban 2014; Tripathy et al. 2013). In addition, variability in neuronal time scales can improve learning in neural759

networks (Manneschi et al. 2021; Perez-Nieves et al. 2020). In what contexts and in what senses might the opposite760

be true, i.e., when does neuronal similarity provide computational benefits over neuronal variability? And what761

mechanisms could enforce neuronal similarity in the face of inter-neuronal variability?762

Here we address these questions using olfactory associative memory in the mushroom body of the fruit fly763

Drosophila. Flies learn to associate specific odours with salient events (e.g., food or danger). These olfactory764

associative memories are stored in the principal neurons of the mushroom body, called Kenyon cells (KCs), as765

modifications in KCs’ output synapses (Owald et al. 2015; Handler et al. 2019; Hige et al. 2015) (reviewed in (Amin766

and Lin 2019)). Because learning occurs at the single output layer, the nature of the odour representation in the767

KC population is crucial to the fly’s ability to learn to form distinct associative memories for different odours. In768

particular, the fact that KCs respond sparsely to incoming odours (≈ 10% per odour) (Honegger, Campbell, and769

Turner 2011) allows different odours to activate unique, non-overlapping subsets of KCs and thereby enhances flies’770

learned discrimination of similar odours (Lin et al. 2014).771

A potential problem for this sparse coding arises from variability between KCs. KCs receive inputs from second-772

order olfactory neurons called projection neurons (PNs), with an average of ≈ 6 PN inputs per KC, and typically773

require simultaneous activation of multiple input channels in order to spike (Gruntman and Turner 2013), thanks774

to high spiking thresholds and feedback inhibition (Turner, Bazhenov, and Laurent 2008; Lin et al. 2014). However,775

there is substantial variation across KCs in the key parameters controlling their activity, such as the number of PN776

inputs per KC (Caron et al. 2013), the strength of PN-KC synapses, and KC spiking thresholds (Turner, Bazhenov,777

and Laurent 2008). Intuitively, such variation could lead to a situation where some KCs with low spiking thresholds778

and many or strong excitatory inputs fire indiscriminately to many different odours, while other KCs with high779

spiking thresholds and few or weak excitatory inputs never fire; KCs at both extremes are effectively useless for780

learning to classify odours, even if overall only 10% of KCs respond to each odour. However, it remains unclear781

whether biologically realistic inter-KC variability would affect the mushroom body’s memory performance, and782

what potential strategies might counter the effects of inter-KC variability.783
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Here we show in a rate-coding model of the mushroom body that introducing experimentally-derived inter-KC784

variability into the model substantially impairs its memory performance. This impairment arises from increased785

variability in average activity among KCs, which means fewer KCs have sparse enough activity to be specific to786

rewarded vs. punished odours. However, memory performance can be rescued by compensating away variability in787

KC activity while preserving the experimentally observed variation in the underlying parameters. This can occur788

through activity-dependent homeostatic plasticity or direct correlations between key parameters like number vs.789

strength of inputs. Finally, we analyze the hemibrain connectome to show that indeed, the number of PN inputs790

per KC is inversely correlated with the strength of each input, while the strength of inhibitory inputs is correlated791

with the total strength of excitatory inputs. Thus, we show both the existence and computational benefit of792

compensatory variability in mushroom body network parameters.793

2.2 Methods794

2.2.1 Modelling KC activity795

PN activity was simulated using the odour responses of 24 olfactory receptors (Hallem and Carlson 2006), passed796

through an equation proposed by (Olsen, Bhandawat, and Wilson 2010). For an ORN and PN innervating the ith797

glomerulus, their responses to the kth odour can be described using ORNk
i (ORN activity) and xki (PN activity):798

xki = Rmax
(ORNk

i )1.5

(ORNk
i )1.5 + (sk)1.5 + σ1.5

(2.1)799

where sk = m
∑
iORN

k
i /190, m = 10.63, representing the gain of lateral inhibition in the antennal lobe, Rmax =800

165, representing the maximum PN response, and σ = 12, representing the non-linearity of the ORN-PN response801

function. We added noise to PN activity using:802

(xki )trial = xki (1 + CoVN ) (2.2)803

where CoV is the coefficient of variation of PN activity across trials taken from Fig. 2E of (Bhandawat et al. 2007)804

and N is a random sample drawn from a Gaussian distribution with mean 0 and standard deviation 1. For Fig.805

2C3, the CoV was scaled by a factor of 0.5, 1 or 2. To increase the number of stimuli beyond the 110 recorded806

odours in (Hallem and Carlson 2006), we generated odour responses in which the activity of each PN was randomly807

sampled from that PN’s activity across the 110 odours used in (Hallem and Carlson 2006), i.e., xki = xai where808

k = 1...K, K being the number of simulated odours, and a is randomly sampled from integers from 1 to 110 for809

each PN and each odour.810

We modeled 2000 KCs. The jth KC received Nj inputs from randomly selected PNs, where Nj was either fixed811

at 6 or sampled from a Gaussian distribution with mean 6 and standard deviation 1.7 (rounded to the nearest812

integer; minimum 2, maximum 11), based on experimental measurements (Caron et al. 2013; Li et al. 2020). KC813

claws sample PNs with replacement (Li et al. 2020; Zheng et al. 2020), so the number of unique PNs sampled by a814

KC could be lower than Nj . Although more recent results show that PN-KC connectivity is not entirely random, as815
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KCs that receive inputs from a certain group of food-odour-responsive glomeruli are slightly more likely to receive816

other inputs from that same group (Li et al. 2020; Zheng et al. 2020), we judged that attempting to model this817

non-randomness would not add to the realism of our model given that we modeled only 24 (out of ≈50) glomeruli.818

The connection from the ith PN to the jth KC had strength wji, which was 0 for non-connected neurons, and819

for connected neurons was either fixed at 1, sampled from a log-normal distribution (µ = −0.0507 and σ = 0.3527,820

based on (Turner, Bazhenov, and Laurent 2008)), or tuned by one of the methods described below. Weights were821

added for duplicate connections (i.e., KCs connected more than once to the same PN). KCs received inhibition822

from APL (modeled as pseudo-feedforward for simplicity), with a gain that was either constant across all KCs823

(α) or tuned individually as described below (αj). The KCs’ spiking thresholds θj were either constant across all824

KCs, or sampled randomly from a Gaussian distribution with coefficient of variation 0.26, based on experimental825

measurements of the difference between spiking threshold and resting potential in 17 KCs (Turner, Bazhenov, and826

Laurent 2008). These spiking thresholds were subject to a scaling factor Cθ to achieve the correct average coding827

level (see below). Thus, the activity of the jth KC for the kth odour, ykj , was828

ykj = Relu(

24∑
i=1

wjix
k
i − α

M∑
j=1

24∑
i=1

wjix
k
i − Cθθj) (2.3)829

where M = 2000 is the number of KCs and Relu is a rectified linear unit:

Relu(x) =


0 x ≤ 0

x x > 0

The coding level, or fraction of KCs active for each odour, averaged across odours, was defined as:830

CL =
1

K

K∑
k=1

 1

M

M∑
j=1

H(ykj )

 (2.4)831

where K and M are the number of odours and KCs, respectively and H(x) is the Heaviside function:

H(x) =


0 if x ≤ 0

1 if x > 0

Experimental data suggest that coding level is around 0.1 normally, and approximately double that (0.2) when832

inhibition is blocked (Lin et al. 2014). To match these constraints, we minimized this error function with respect833

to Cθ (thus preserving the coefficient of variation of thresholds across KCs, i.e., Cθθj):834

εCL|α=0
= minCθ (

1

2

[
CL |α=0 −CLtarget|α=0

]2
) (2.5)835

where CLtarget|α=0 = 0.2.836

Then, we minimized the error function below with respect to α:837

εCL = minα(
1

2
[CL− CLtarget]2) (2.6)838

where CLtarget = 0.1.839
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We tuned Cθ and α using gradient optimization, using the update equations:840

∆Cθ = −η
dεCL|α=0

dCθ
(2.7)841

842

∆α = −η dεCL
dα

(2.8)843

To derive the update rule for ∆Cθ, we differentiate (2.5) with respect to Cθ:844

dεCL|α=0

dCθ
=
[
CL |α=0 −CLtarget|α=0

] dCL |α=0

dCθ
(2.9)845

To differentiate CL with respect to Cθ, we need to replace the discontinuous Heaviside function with a continuous846

approximation. Similar to (Han and Kloeden 2020) a sigmoid function approximates a Heaviside at the limit σ → 0,847

H(x) ≈ S(x) =
1

1 + e−
x
σ

(2.10)848

Hence, assuming σ = 1, we can define the coding level as:849

CL =
1

K

K∑
k=1

 1

M

M∑
j=1

S(ykj )

 (2.11)850

Given the derivative of a sigmoid is:851

S′(x) =
dS(x)

dx
=

e−
x
σ[

1 + e−
x
σ

]2
= S(x)(1− S(x))

(2.12)852

Thus,853

dCL |α=0

dCθ
=

1

K

K∑
k=1

 1

M

M∑
j=1

[
S′(ykj |α=0)

dykj |α=0

dCθ

]
= − 1

K

K∑
k=1

 1

M

M∑
j=1

[
S′(ykj |α=0)H(ykj |α=0)θj

] (2.13)854

combining (2.9) and (2.13), and plugging in (2.7) we can get the update equation for Cθ as855

∆Cθ = η
[
CL |α=0 −CLtarget|α=0

] 1

K

K∑
k=1

 1

M

M∑
j=1

[
S′(ykj |α=0)H(ykj |α=0)θj

] (2.14)856

For simplicity, this can be re-written using the average operator notation 〈〉 across odours (indexed by k) and KCs857

(indexed by j),858

∆Cθ = η
[
CL |α=0 −CLtarget|α=0

] 〈
S′(ykj |α=0)H(ykj |α=0)θj

〉
j,k

(2.15)859

Similarly, for ∆α we differentiate (2.6) with respect to α,860

dεCL
dα

= [CL− CLtarget]
dCL

dα
(2.16)861
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Similarly,862

dCL

dα
=

1

K

K∑
k=1

 1

M

M∑
j=1

[
S′(ykj )

dykj
dα

]
= − 1

K

K∑
k=1

 1

M

M∑
j=1

S′(ykj )H(ykj )
∑
j

∑
i

wjix
k
i

 (2.17)863

combining (2.16) with (2.17) then putting in (2.8),864

∆α = η [CL− CLtarget]
1

MK

K∑
k=1

M∑
j=1

S′(ykj )H(ykj )
∑
j

∑
i

wjix
k
i

 (2.18)865

and using the 〈〉 notation:866

∆α = η [CL− CLtarget]

〈
S′(ykj )H(ykj )

∑
j

∑
i

wjix
k
i

〉
j,k

(2.19)867

These update equations were used to adjust values of θ and α in any random instantiation of the fly’s network868

to match the experimentally observed coding levels. Note that because the update equation for α is the same for869

all j, the same equation applies when αj is tuned for each KC (see below). In Fig. 2E and part of Fig. 3 and 2.4,870

CLtarget was set to values > 0.1 and α was set to 0 because for CLtarget > 0.5, it is impossible for CLtarget|α=0 to871

be 2CLtarget.872

2.2.2 Modelling olfactory associative learning873

Learning occurred through synaptic depression at the output synapse from KCs onto MBONs according to this874

exponential decay rule:875

∆vj = vj(e
−ηykj − 1) (2.20)876

where vj is the synaptic weight between the jth KC and the MBON of the ‘wrong’ valence and η is the learning877

rate. Thus, KCs active for a punished odour weaken their synapses to the approach MBON while KCs active for878

the rewarded odour weaken their synapses to the avoid MBON. This can be seen as the model fly learning from879

‘mistakes’ during its training phase (Chialvo and Bak 1999; Albus 1971).880

The behavior of the fly was determined by a softmax equation:881

P (approach) =
ecMBONapproach

ecMBONavoid + ecMBONapproach
(2.21)882

where the constant c governs how probabilistic or deterministic the decision-making is. At high c, the model883

approaches a completely deterministic model where the fly will approach the odour 100% of the time whenever the884

approach MBON’s activity is higher than the avoid MBON’s activity; at very low c, the model approaches random885

chance; in between, the fly’s behavior is probabilistic but biased by the imbalance between the activity of the two886

MBONs.887

We trained the model on 15 noisy trials of the odours (no repetitions) and tested it on 15 unseen noisy trials of888

the same odours, and calculated the accuracy as the fraction of trials in which the model behaved correctly (i.e.,889
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avoided punished odours and approached rewarded odours).890

2.2.3 Metrics for evaluating Kenyon cell odour representations891

Angular distance between two vectors A and B (here, A and B are the centroids of each cluster of noisy trials of892

KC responses to two odours) was calculated using:893

φ =
2

π
arccos

A ·B
‖A‖‖B‖

(2.22)894

Dimensionality was calculated according to the equation in (Litwin-Kumar et al. 2017):895

dim(y) =
(
∑m
i=1 λi)

2∑m
i=1 λ

2
i

(2.23)896

where λi are the eigenvalues of the covariance matrix of y. Whereas Litwin-Kumar et al. calculated dimensionality897

analytically given inputs with defined distributions, we calculated it numerically given simulated PN inputs. Because898

dimensionality cannot be accurately calculated with a small number of inputs (Fig. 2.4A), we simulated KC activity899

for 50,000 input odours for dimensionality calculations.900

Sparseness was calculated according to (Lin et al. 2014; Willmore and Tolhurst 2001). Using the notation of901

this paper, the lifetime sparseness of the jth KC for a set of K odours is:902

Sj =
1

1− 1
K

1−

(∑K
k=1

ykj
K

)2

∑K
k=1

(ykj )
2

K

 (2.24)903

If a cell is completely silent, firing to no stimuli, ykj = 0 for all k and sparseness is undefined due to division by zero.904

We defined the ‘valence specificity’ V S of a KC as the degree to which it is more active for the set of rewarded905

odours (R) than punished odours (P ), or vice versa:906

V Sj =

∣∣∣∣∣
∑
k∈R y

k
j −

∑
k∈P y

k
j∑

k∈R y
k
j +

∑
k∈P y

k
j

∣∣∣∣∣ (2.25)907

2.2.4 Models for compensatory variability908

In this section we hypothesise different mechanisms for implementing the compensatory variability given the known909

facts about the synapses types in the mushroom body: for example, the PNs-KCs are excitatory synapses but the910

KCs-APL are inhibitory synapses (Aso et al. 2010; Turner, Bazhenov, and Laurent 2008; Gruntman and Turner911

2013).912

Parametric tuning of excitatory input weights913

We approximated the probability distribution of PN-KC synaptic weights (w) using the distribution of amplitudes914

of spontaneous excitatory post-synaptic potentials (mini-EPSPs) in KCs, measured by (Turner, Bazhenov, and915

Laurent 2008). This experimental distribution was approximately log-normal, as has been described for cortical916

synapses (Song et al. 2005; Buzsáki and Mizuseki 2014), so we modeled w as following a log-normal distribution.917

We simulated values of w such that the overall distribution of w would follow this log-normal distribution, yet918
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individual KCs would sample w from different log-normal distributions depending on N and θ, such that KCs with919

lower N or higher θ would have higher w, i.e., sampling from a log-normal distribution shifted to the right (Fig.920

4A1).921

The probability of PN-to-KC synaptic weights could be estimated from the probability summation rule,922

P (w) =

∫
θ

∫
N

P (w | N, θ)P (N)P (θ)dNdθ (2.26)923

where P (w | N, θ) is the conditional probability distribution of the input synaptic weights for a KC that has N claws924

and spiking threshold θ, sampled from probability distributions P (N) and P (θ), respectively. We approximated925

P (N) and P (θ) as the Gaussian distributions described above (see Fig. 2), and we approximated integration over926

θ as summation at small intervals (∆θ = 2.5).927

We modeled the constituent conditional probability distributions P (w | N, θ) as also being log-normal, based on928

previous studies which approximate the sum of log-normal distributions as another log-normal variable by matching929

the first two moments of the power sum and its individual log-normal contributors (Fenton 1960; Schwartz and930

Yeh 1982; Dufresne 2008). This approximation holds in our case (the Kullback-Leibler Divergence metric (KLD)931

converged to less than 0.001).932

To get the posterior lognormal distributions P (w | N, θ), we minimized the distance metric Kullback-Leibler933

Divergence (KLD) between P (w) and
∫
θ

∫
N
P (w | N, θ)P (N)P (θ)dNdθ. To implement compensatory tuning in934

these conditional probabilities, such that a KC with fewer inputs (lower N) or higher spiking threshold (higher θ)935

would have stronger inputs (higher median w), we parameterized the medians µ̃ of each conditional distribution in936

N and θ as:937

µ̃ = exp (µ) = k

√
θ

N
(2.27)938

Thus,939

µ = ln

(
k

√
θ

N

)
(2.28)940

941

P (w | N, θ) =
1

wσ
√

2π
exp

−
(

ln(w)− ln

(
k
√

θ
N

))2

2σ2

 (2.29)942

We used gradient descent optimization to find the values of σ and k in Eq. 2.29 that would minimize the fitting943

error:944

ε = KLD[P (w), P (w)]

=

∫
P (w) ln

[
P (w)

P (w)

]
dw

(2.30)945

where946

P (w) =

∫
θ

∫
N

P (w | N, θ)P (N)P (θ)dNdθ (2.31)947
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First, we found the optimal σ by gradient optimisation:948

∆σ = −η1
dε

dσ
(2.32)949

The derivative of the fitting error with respect to σ is:950

dε

dσ
= −

∫
dP (w)

dσ

P (w)

P (w)
dw (2.33)951

with,952

dP (w)

dσ
=

∫
θ

∫
N

dP (w | N, θ)
dσ

P (N)P (θ)dNdθ (2.34)953

where dP (w|N,θ)
dσ is:954

dP (w | N, θ)
dσ

=
1

wσ2
√

2π
exp−

(
lnw − ln

(
k
√

θ
N

))2

2σ2

 1

σ2

(
lnw − ln

(
k

√
θ

N

))2

− 1

 (2.35)955

Similarly for k,956

∆k = −η2
dε

dk

dε

dk
= −

∫
dP (w)

dk

P (w)

P (w)
dw

(2.36)957

such that,958

dP (w)

dk
=

∫
θ

∫
N

dP (w | N, θ)
dk

P (N)P (θ)dNdθ (2.37)959

with dP (w|N,θ)
dk given by:960

dP (w | N, θ)
dk

=
1

kwσ3
√

2π
exp−

(
lnw − ln

(
k
√

θ
N

))2

2σ2

(
lnw − ln

(
k

√
θ

N

))
(2.38)961

Starting from arbitrary values for k and σ and using small learning rates η1 and η2, at each iteration, the962

gradient descent algorithm alternated between using σ to update k and using k to update σ. We stopped the963

gradient descent (i.e., the algorithm converged) at ε < 0.001.964

Tuning KC input excitatory weights to equalize KC activity965

In this model, we reduce the high variance in KCs’ average activity levels by tuning their input synaptic weights,966

such that each jth KC adjusts its input synaptic weights (wji) to make its average activity level yj reach a certain967

desired level A0. Although we ended up using a simple synaptic scaling rule in the main figures ((2.47)), we also968

explored other rules based on gradient descent and describe here the mathematical relation between them. We969

initially analyzed this problem using an error function:970

ε =
1

2
[yj −A0]

2

yj =
1

K

K∑
k=1

ykj

(2.39)971
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where ykj is the jth KC’s response to the kth odour calculated as in (2.3) and K is the number of odours. Finding972

the weights to minimize the error in (2.39) can be found by gradient optimisation,973

∆wji = −η dε

dwji
(2.40)974

with,975

dε

dwji
= [yj −A0]

1

K

K∑
k=1

dykj
dwji

(2.41)976

Taking the derivative of ykj w.r.t. wji yields:977

dykj
dwji

= H(ykj )(xki − αxki ) (2.42)978

Plugging (2.42) in (2.41) gives:979

dε

dwji
= [yj −A0]

1

K

K∑
k=1

H(ykj )(xki − αxki )

= [yj −A0]
〈
H(ykj )(1− α)xki

〉
K

(2.43)980

Hence, wji will be updated as follows:981

∆wji = −η [yj −A0]
〈
H(ykj )(1− α)xki

〉
K

(2.44)982

The equation above means that a KC with an average activity yj higher (lower) than A0 will scale down (up)983

its input synaptic weights, wji, proportional to both the difference (ykj − A0) and the average input activity from984

the ith PN. Note that in this derivation a KC must have non-zero average activity, i.e., H(ykj ) = 1 for at least985

one odour, for its weights to be updated. We believe such a rule would be biologically implausible, as there should986

not be a discontinuity between a silent KC and a nearly silent KC. To allow totally silent KCs (which have only987

subthreshold activity) to update their weights in the same way as active KCs, we heuristically apply the following988

rule:989

∆wji = −η [yj −A0]
〈
(1−H(ykj ))(1− α)xki

〉
K

(2.45)990

Adding (2.44) and (2.45) we obtain:991

∆wji = −η [yj −A0]
〈
(1− α)xki

〉
K

(2.46)992

The rule has a fixed point yj = A0 since
〈
(1− α)xki

〉
K
> 0. Note that we apply the constraint wji ≥ 0. How993

updates for wji = 0 are treated depends on the reason why wji = 0: if the ith PN and jth KC are not connected,994

then the update is not applied. But if they were originally connected and the update rule pushed wji to zero, the995

update rule will continue to be applied.996

To test whether performance is affected by adding the heuristic term to allow silent KCs to update their997

weights, we compared the performance using update rule (2.44) vs. (2.46). The rule without the heuristic performed998

significantly worse than the rule with the added heuristic for activating silent KCs (Fig. 2.8A). This means that a999

formally derived update rule for w was not enough, since it would not equalize activity for all KCs (silent KCs will1000

remain silent) and would not enhance the population coding as in the heuristic rule.1001
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We further noted that (2.46) contains a factor xki meaning that the update to wji depends on the average1002

input activity from the ith PN. As this rule makes the biological interpretation more complex (the synaptic update1003

depends on both pre- and post-synaptic activity), we also tested a simplified rule where synaptic changes depend1004

only on the average KC activity:1005

∆wji = −η [yj −A0] (2.47)1006

This simplification did not affect memory performance or the tuned distribution of weights (Fig. 2.8A-C), but it1007

improved the robustness of the model to novel odour environments (Fig. 2.8D). This improvement in the model1008

robustness might be because including the extra factor xki in the learning rule caused the model to be overfitted1009

to the tuning environment. Therefore, we used (2.47) for the results presented in the main figures, as it is simpler1010

and produces better performance, despite not being formally derived from an error function. As with (2.46), this1011

update rule has a fixed point yj = A0.1012

Because KC claws sampled PNs with replacement, some KCs had ‘duplicate’ inputs from the same PN. For these1013

weights, we initialised wji at double the normal level before beginning optimization. When plotting the distribution1014

of values of w in Fig. 4D, we split these ‘duplicate’ weights into two weights of half the strength, on the basis that1015

we were comparing our w values to amplitudes of spontaneous EPSPs from (Turner, Bazhenov, and Laurent 2008),1016

and in a KC with two claws connected to different boutons of the same PN, spontaneous EPSPs from the two claws1017

would likely occur at different times and thus be counted separately.1018

Tuning KC input inhibitory weights to equalize average KC activity1019

In this model, we model each KC as adjusting its individual input inhibitory synaptic weights from APL, to match1020

its average activity level yj to a certain desired level A0. We minimize the error function in (2.39) by adjusting αj1021

instead of wji:1022

∆αj = −η dε

dαj
(2.48)1023

1024

dε

dαj
= [yj −A0]

1

K

K∑
k=1

dykj
dαj

(2.49)1025

Differentiating ykj with respect to αj yields1026

dykj
dαj

= H(ykj )

− M∑
j=1

24∑
i=1

wjix
k
i

 (2.50)1027

Plugging (2.50) in (2.49) gives,1028

dε

dαj
= [yj −A0]

1

K

K∑
k=1

H(ykj )

− M∑
j=1

24∑
i=1

wjix
k
i


= [yj −A0]

〈
H(ykj )(−

M∑
j=1

24∑
i=1

wjix
k
i )

〉
K

(2.51)1029



48 CHAPTER 2. COMPENSATORY VARIABILITY IN NETWORK PARAMETERS ENHANCES MEMORY

Therefore,1030

∆αj = η [yj −A0]

〈
H(ykj )(

M∑
j=1

24∑
i=1

wjix
k
i )

〉
K

(2.52)1031

Similar to the previous section, we assume that weight changes for silent neurons happen in the same way as1032

for active neurons:1033

∆αj = η [yj −A0]

〈
(1−H(ykj ))(

M∑
j=1

24∑
i=1

wjix
k
i )

〉
K

(2.53)1034

.1035

Adding (2.52) and (2.53) we obtain the inhibitory plasticity rule allowing KCs to achieve equal average activity:1036

∆αj = η [yj −A0]

〈
M∑
j=1

24∑
i=1

wjix
k
i

〉
K

(2.54)1037

Given that
〈∑

j

∑
i wjix

k
i

〉
K

is a constant as wji is not updated in this model, this term can be subsumed into1038

the learning rate, so this equation reduces to:1039

∆αj = η [yj −A0] (2.55)1040

Besides the homeostatic tuning of the APL inhibitory feedback values, these individual values of αj also have1041

to satisfy the sparsity constraint in (2.5). Therefore, the learning rule for these inhibitory weights requires simulta-1042

neously optimizing both error functions, (2.5) and (2.39). Thus combining (2.55) and the derivative of the sparsity1043

constraint (CL=10%) with respect to each value of αj ,1044

∆αj = η1 [yj −A0]− η2
dεCL
dαj

(2.56)1045

∆αj = η1 [yj −A0]− η2 [CL− CLtarget]
dCL

dαj
(2.57)1046

where1047

dCL

dαj
= − 1

MK

K∑
k=1

S′(ykj )H(ykj )

M∑
j=1

24∑
i=1

wjix
k
i

 (2.58)1048

Combining (2.57) with (2.58),1049

∆αj = η1 [yj −A0] + η2 [CL− CLtarget]

〈
S′(ykj )H(ykj )

M∑
j=1

24∑
i=1

wjix
k
i

〉
k

(2.59)1050

We tested re-parameterizing αj into Cααj where Cα is tuned across all KCs to adjust coding level while αj is1051

tuned individually to equalize KC activity levels, but this had no effect on memory performance, so we kept the1052

simpler model formulation.1053
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Tuning KC spiking thresholds to equalize average KC activity1054

In this compensatory technique, we tune individual KCs’ spiking thresholds θj to achieve equal average activity1055

across the KC population. Starting with arbitrary initial values, each KC adjusts its spiking threshold so its1056

average activity across K odours reaches a target level, A0, by minimizing the error in average activity as in (2.39)1057

by gradient optimization:1058

∆θj = −η dε
dθj

dε

dθj
= [yj −A0]

1

K

K∑
k=1

dykj
dθj

(2.60)1059

Differentiating ykj , the expression in (2.3), with respect to θj yields1060

dykj
dθj

= H(ykj ) [−Cθ] (2.61)1061

Plugging (2.61) in (2.60) gives,1062

dε

dθj
= [yj −A0]

1

K

K∑
k=1

H(ykj ) [−Cθ]

= − [yj −A0]Cθ
〈
H(ykj )

〉
k

(2.62)1063

Therefore,1064

∆θj = η [yj −A0]Cθ
〈
H(ykj )

〉
k

(2.63)1065

Similar to (2.45), we assume that spiking thresholds are updated for silent KCs as well:1066

∆θj = η [yj −A0]Cθ
〈
(1−H(ykj ))

〉
k

(2.64)1067

Adding (2.63) and (2.64) we obtain the spiking thresholds plasticity rule allowing KCs to achieve equal average1068

activity:1069

∆θj = ηCθ [yj −A0] (2.65)1070

Tuning spiking thresholds to equalize KCs response probabilities1071

We tested an alternative strategy to tune θ suggested in (Kennedy 2019): to equalize not yj but rather the average1072

response probability of each KC across K odours without inhibition, Pj , i.e.:1073

P j =
1

K

K∑
k=1

H(ykj |α=0) (2.66)1074

As in (2.5), we set this target response probability, P targetj |αj=0, to 0.2 to match experimental findings that1075

blocking inhibition approximately doubles response probability (Lin et al. 2014). We minimized the error function:1076

ε =
1

2

[
Pj − P targetj |αj=0

]2
(2.67)1077



50 CHAPTER 2. COMPENSATORY VARIABILITY IN NETWORK PARAMETERS ENHANCES MEMORY

by adjusting θj by gradient optimization:1078

∆θj = −η dε
dθj

dε

dθj
=
[
Pj − P targetj |αj=0

] dPj
dθj

(2.68)1079

To differentiate Pj , as in (2.13), we approximated the discontinuous Heaviside function with a sigmoid:1080

dPj
dθj

=
1

K

K∑
k=1

dS(ykj |α=0)

dθj

dS(ykj |α=0)

dθj
= S′(ykj |α=0)

dykj |α=0

dθj

(2.69)1081

Recalling the formula of ykj in (2.3), it follows1082

dykj |α=0

dθj
= −CθH(ykj ) (2.70)1083

Combining (2.70) with (2.69), and plugging in (2.68),1084

dε

dθj
= −

[
Pj − P targetj | α=0

]
Cθ
〈
S′(ykj |α=0)H(ykj |α=0)

〉
K

(2.71)1085

Thus, θj values are updated by,1086

∆θj = ηCθ
[
Pj − P targetj | α=0

] 〈
S′(ykj |α=0)H(ykj |α=0)

〉
K

(2.72)1087

As in (2.45), (2.64) and (2.53), we can write a symmetric rule for silent KCs:1088

∆θj = ηCθ
[
Pj − P targetj |α=0

] 〈
S′(ykj |α=0)(1−H(ykj |α=0))

〉
K

(2.73)1089

Adding (2.73) and (2.72) leads to an activity-dependent update rule for θj , given all the incoming input odours:1090

∆θj = ηCθ
[
Pj − P targetj |α=0

] 〈
S′(ykj |α=0)

〉
K

(2.74)1091

In this model, the sparsity constraint CLtarget|α=0 = 0.2 is satisfied by P targetj |αj=0 = 0.2, because coding level1092

equals the average of response probabilities across KCs:1093

CL =
1

K

K∑
k=1

(
1

M

M∑
j=1

H(ykj ))

=
1

M

M∑
j=1

(
1

K

K∑
k=1

H(ykj ))

= 〈Pj〉j .

(2.75)1094

Optimization of the multiple objective functions1095

As noted above, homeostatic tuning of wji, θj , or αj needs to happen while maintaining the sparsity constraints,1096

(2.5) and (2.6). (It is important to note that the homeostatic update rules are meant to represent a biological process1097

while the sparsity constraints merely fit our model to experimental data and stand in for unknown processes that1098

lead to a coding level of 0.1.) Since these activity-equalizing tunings both depend on and change the network’s1099

sparsity level, we used a sequential optimization approach to optimize each objective function, Oi, at a time. For1100

each i, we find the optimal parameters {Pi} minimizing an objective Oi, using the current estimates of the other1101
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parameters {Pj} from all the other objectives, {Oj} where j 6= i. The algorithm iterates for all i to minimise each1102

of the objective functions, until it reaches a minimum where the errors from all of the objective functions fall below1103

a certain tolerance, τO.1104

Given an initial estimate for Cθ, α, θj and wji, the algorithm goes as follows:1105

Algorithm 1 Tuning of KCs parameters to equalize activity while constraining coding level

Result: Cθ, α, parameters to be tuned for activity equalization [wji or θj ]

0: Initialize Cθ=1, α=0, ε1= ε2=1, ε3= 1, τ1=0.2 τ2=0.01, τ3= 0.06A0

0: Initialize tuned parameter for activity equalization {wji or θj} ∈ U[0,1] while any in [ε1, ε2, ε3] > [τ1, τ2, τ3] do
0:

1. Using the current values for θj and wji, update Cθ using (2.15)

0: 2. Using the value of Cθ from step (1) and current values for wji, and θj , update α using (2.19)

0: 3. Using Cθ and α from (1) and (2) respectively, update wji using (2.44) or θj using (2.65)

0: 4. Re-calculate the errors for the three objectives, (2.5), (2.6) and (2.39):

{ε1 =| CL|α=0

CL − 2 | , ε2 =| CL− 0.1 |, ε3 =| yj −A0 |}

0:

=0

In our implementation we initialize the parameters to be tuned for activity equalization (wji, θj or αj) from a1106

uniform random distribution U = [0, 1] (the non-tuned parameters follow the distributions in Fig. 2). In addition,1107

we set the error for the first and second sparsity constraint, (2.5) and (2.6), to be τ1=| CL|α=0

CL − 2 |=0.2, while τ2=1108

| CL − 0.1 |=0.01 respectively. This means allowing the coding level without and with the APL feedback to fall1109

within [1.8CL ≤ CL |α=0≤ 2.2CL], and [0.09 ≤ CL ≤ 0.11] respectively. For the activity equalization objective,1110

the error ε3 is a column vector of size M , of the differences between the target average activity value A0, and the1111

current average activity for each KC, yj . This objective function is satisfied when all the values in the vector ε31112

are less than 6% of the target activity.1113

Note that in the inhibition-tuning model, we tune the same parameter, αj (a vector of M values instead of a1114

constant), to jointly satisfy both the sparsity and the activity-equalization objectives. In this case, step (3) above1115

is removed and step (2) updates αj using (2.59).1116

In the model where we tune θj to equalize response probability rather than average activity (Fig. 2.9), equalizing1117

response probability without inhibition to 0.2 also solves the coding level constraint ((2.75)). Thus, in this case, the1118

algorithm iterates between 2 steps: (1) update θj according to (2.74), (2) use these values to update α according1119

to (2.19), as follows,1120

1121
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Algorithm 2 Tuning of KCs spiking thresholds to equalize response probabilities

Result: Cθ, α, [θj ] to be tuned for equalizing KCs response probabilities

0: Initialize: [Cθ=1, α=0, ε1= ε2=1, τ1=0.2, τ2=0.01]

0: Initialize [θj ] ∈ U[0,1]

while any in [ε1, ε2] > [τ1, τ2] do

0: 1. update θj using (2.74)

0: 2. Using these new values of θj in step (1), update α using (2.19)

0: 3. Re-calculate the errors for the two objectives, (2.67) and (2.6):

{ε1 =| Pj − P targetj |αj=0 |, ε2 =| CL− 0.1 |}

0: =0

In our optimization pipeline, there is a potential problem in the models where KC activity is equalized by tuning1122

αj or θj . In these models wji is not tuned, so for values of A0 that are too high relative to values of wji, excitation1123

will be too low to reach the high targets given the constraints Cθθj > 0, CL = 0.1 and CL |α=0= 0.2, meaning the1124

algorithm does not converge. (This is not a problem when tuning wji because wji can go arbitrarily high, whereas1125

thresholds cannot go below zero.) Therefore, wji values must be chosen in a sensible range relative to A0 (keeping1126

in mind that the value of A0 is arbitrary: see below). Rather than further complicating the objective cost functions1127

by introducing a tunable scaling factor for wji, we found that in practice the algorithm converged if wji values1128

(starting from a log-normal distribution with µ = −0.0507, σ = 0.3527) were multiplied by A0

CL (where CL = 0.1).1129

The target activity A0 is arbitrary because if parameters can be found to satisfy our model constraints (yj = A0,1130

CL = 0.1 and CL |α=0= 0.2) for a particular A0 > 0, then a solution also exists for yj = cA0 for any c > 0, because:1131

cykj = c Relu(

24∑
i=1

wjix
k
i − αj

M∑
j=1

24∑
i=1

wjix
k
i − Cθθj)

= Relu(

24∑
i=1

(cwji)x
k
i − αj

M∑
j=1

24∑
i=1

(cwji)x
k
i − cCθθj)

(2.76)1132

That is, to scale yj by a factor c, one need only scale the parameters wji and Cθ by c. In other words, only the1133

relative magnitudes of A0, wji and Cθ, not the absolute magnitudes, are meaningful. Thus, when comparing the1134

distributions of wji and θ to their experimental equivalents in Fig. 4, 2.8 and 2.9, we uniformly scaled all wji and1135

θ values to make their mean match the experimental mean, and present α values in arbitrary units.1136

2.2.5 Robustness analysis1137

Of the 110 odours tested in (Hallem and Carlson 2006), we took the four chemical classes with the most odours1138

(acids, terpenes, alcohols and esters), so that tuning parameters on a single class would provide a reasonable number1139

of odours (at least 15). Because each class had different numbers of odours, and the memory task is more difficult1140

when more odours need to be classified, we equalized the number of odours in each task by randomly sampling 151141

odours from those classes that had more than 15 members (terpenes, 16; alcohols, 18; esters, 24), with a different1142
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random sampling for each model instantiation. Because of the small number of odours used for tuning, it was not1143

always possible to equalize the activity of every single KC, so we allowed a maximum of 5 KCs to fall outside a1144

±7% bound on average activity.1145

2.2.6 Connectome analysis1146

KC neurite skeletons and connectivity were downloaded from the hemibrain connectome v. 1.1 (Scheffer et al.1147

2020). KCs (excluding those that receive significant non-olfactory input) were selected as neurons whose ‘type’1148

field was KCg-m, KCab-c, KCab-m, KCab-s, KCa’b’-ap2 or KCa’b’-m. PN inputs for a KC were identified as1149

neurons whose ‘type’ field included adPN, lPN or vPN (NB: some of these, e.g., vPNs, do not project to the1150

mushroom body and so were never counted) and that formed more than 2 synapses with the KC (see Fig. 6B).1151

KCs with truncated skeletons lacking the dendritic tree were excluded. The posterior boundary of the peduncle1152

was the most posterior node in a skeleton annotated as being in the ‘PED(R)’ region of interest (annotations at1153

https://storage.cloud.google.com/hemibrain/v1.1/hemibrain-v1.1-primary-roi-segmentation.tar.gz). The boundary1154

between the calyx and peduncle regions in the hemibrain was defined by innervation by PNs (or lack thereof). The1155

distance from this point to each PN-KC synapse along the KC’s neurite skeleton (i.e., not the Euclidean distance)1156

was measured as described in (Amin et al. 2020).1157

2.2.7 Code availability1158

Modeling and connectome analysis were carried out using custom code written in MATLAB, which is available at1159

https://github.com/aclinlab/CompensatoryVariability.1160
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2.3 Results1161

Realistic inter-KC variability impairs memory performance under sparse coding1162

To study how variability between KCs might affect the fly’s olfactory memory performance, we modelled the1163

mushroom body as a rate-coding neural network (Fig. 2.1).1164

Projection
neurons

Kenyon cells

Mushroom body
output neurons

Punishment

Reward

Approach

AvoidΣAPL

Learning by
synaptic
depression

Figure 2.1: Schematic for the mushroom body network model. Projection neurons in the input layer relay the odour
responses, xi, downstream to the Kenyon cells (yj). Kenyon cells connect randomly to the projection neurons with synaptic
weights wji and receive global inhibition from the APL neuron with weight αj . Learning occurs when dopaminergic neurons
(DANs) carrying punishment (reward) signals from the environment depress the synapses (vj) between the active Kenyon
cells and the mushroom body output neurons (MBONs) that lead to approach (avoidance) behavior.

To simulate the input activity from PNs, we modeled their activity as a saturating non-linear function of activity1165

of the first-order olfactory receptor neurons (ORNs) (see Eq.(2.3) in the Methods section above; (Olsen, Bhandawat,1166

and Wilson 2010)). We applied this function to the recorded odour responses of 24 different olfactory receptors1167

(Hallem and Carlson 2006) to yield simulated PN activity, as in previous computational studies of fly olfaction1168

(Luo, Axel, and Abbott 2010; Parnas et al. 2013; Krishnamurthy, Hermundstad, and Mora 2017; Kennedy 2019).1169

To simulate variability in PN activity across different encounters with the same odour, we created several ‘trials’ of1170

each odour and added Gaussian noise to PN activity, following the coefficients of variation reported in (Bhandawat1171

et al. 2007). To increase the number of stimuli beyond the 110 recorded odours in (Hallem and Carlson 2006), we1172

generated odour responses in which the activity of each PN was randomly sampled from that PN’s activity across1173

the 110 odours used in (Hallem and Carlson 2006) (results were similar with the ‘real’ 110 odours; see below).1174

Each of the 2000 KCs in our model received excitatory input from a randomly selected set of N PNs, each with1175

strength w. A KC’s response to each odour was the sum of excitatory inputs minus inhibition, minus a spiking1176

threshold θ; if net excitation was below the threshold, the activity was set to zero.1177

Inhibition came from the feedback interneuron APL (‘Anterior Paired Lateral’), which is excited by and inhibits1178

all KCs (Lin et al. 2014). To avoid simulating the network in time, we simplified the feedback inhibition into pseudo-1179

feedforward inhibition, in which APL’s activity was the sum of all post-synaptic excitation of all KCs (without the1180

KCs’ threshold applied); we based this simplification on the fact that KCs and APL form reciprocal synapses with1181

each other on KC dendrites (i.e., before the KCs’ spike initiation zone), and APL activity is somewhat spatially1182

restricted between KC axons and dendrites (Amin et al. 2020). Thresholds and inhibition were scaled so that on1183
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average 10% of KCs were active for each odour (‘coding level’ = 0.1).1184

Learning in flies occurs when KCs (responding to odour) are active at the same time as dopaminergic neurons1185

(DANs, responding to ‘reward’ or ‘punishment’); the coincident activity modifies the output synapse from KCs1186

onto mushroom body output neurons (MBONs) that lead to behavior (e.g., approaching or avoiding an odour).1187

Typically, the output to the ‘wrong’ behavior is depressed: for example, pairing an odour with electric shock weakens1188

the output synapses from KCs activated by that odour onto MBONs that lead to ‘approach’ behavior (Aso et al.1189

2014a; Hige et al. 2015; Cohn, Morantte, and Ruta 2015; Handler et al. 2019) (reviewed in (Amin and Lin 2019)).1190

We simulated this plasticity using a simplified architecture with only two MBONs, ‘approach’ and ‘avoid’. The1191

input odours were randomly divided: half were paired with punishment and half with reward. During training, KCs1192

activated by rewarded odours weakened their synapses onto the ‘avoid’ MBON, while KCs activated by punished1193

odours weakened their synapses onto the ‘approach’ MBON (depression by exponential decay; see Eq.(2.20)). The1194

fly’s behavior then depended probabilistically (via a softmax function; see Eq.(2.21)) on whether the ‘avoid’ or1195

‘approach’ MBON’s activity was greater, and the model’s accuracy in learning was scored as the fraction of correct1196

decisions for unseen noisy variants of the trained odours (i.e., avoiding punished odours and approaching rewarded1197

odours).1198

To test the effect of realistic inter-KC variability on this model, we introduced variability step-by-step. We first1199

tested the performance of the model holding constant across all KCs the 3 parameters N (number of PN inputs per1200

KC), w (strength of each PN-KC connection) and θ (KC spiking threshold). Then we added inter-KC variability1201

step-by-step: first varying only one out of 3 parameters, then 2 out of 3, then all 3 parameters (thus 8 possible1202

models). Inter-KC variability in N , w and θ followed experimentally measured distributions (Fig. 2.2A1-3) (Caron1203

et al. 2013; Turner, Bazhenov, and Laurent 2008). Increasing inter-KC variability systematically degraded the1204

model’s performance when tested on 100 input odours: the more variable parameters there were, the worse the1205

performance (Fig. 2.2B). This performance trend was the same when these 8 models were trained and tested on1206

the real input odours responses from (Hallem and Carlson 2006) (Fig.2.6A). To test whether this effect is robust to1207

different learning and testing conditions, we tested the two extreme cases while varying the numbers of input odours1208

to be classified, the amount of noise in PN activity, the learning rate at the KC-MBON synapse (the two models1209

might have different optimal learning rates: η in Eq.(2.20)), or the indeterminacy of the fly’s decision making (c in1210

Eq.(2.21)). In every case, the model with all parameters fixed (which we call the ‘homogeneous’ model) consistently1211

outperformed the model with all parameters variable (which we call the ‘random’ model) (Fig. 2.2C1-4). These1212

results indicate that biologically realistic variability in KC network parameters impairs the network’s ability to1213

classify odours as rewarded vs. punished.1214

Our conclusion contrasts with earlier results that inter-neuronal variability between mitral cells increases infor-1215

mation content (Padmanabhan and Urban 2010; Padmanabhan and Urban 2014; Tripathy et al. 2013), i.e., that1216

variability is helpful, not harmful. This apparent contradiction can be resolved by noting two differences between1217

our approaches. First, the mitral cell studies provided the same input to every neuron, whereas here, every KC1218
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Figure 2.2: Inter-KC variability in w, N and θ degrades the model fly’s memory performance. (A) Histograms of the
experimentally measured distributions for: (A1) w (amplitude of spontaneous excitatory postsynaptic potentials in KCs,
mV; data from (Turner, Bazhenov, and Laurent 2008)), (A2) N (number of PN inputs per KC, measured as the number of
dendritic ‘claws’; data from (Caron et al. 2013)), (A3) θ (spiking threshold minus resting potential, mV; data from (Turner,
Bazhenov, and Laurent 2008)). The overlaid black curves show log-normal (w) and Gaussian (N , θ) fits to the data.
(B) The model fly’s memory performance (given 100 input odours), varying the parameters step by step. Fixed and variable
parameters are shown by empty and filled circles, respectively. The homogeneous model (all parameters fixed, N = 6;
black) performs the best and the random model (all parameters variable; red) performs the worst. All bars are significantly
different from each other unless they share the same letter annotations (a, b, etc.), p < 0.05 by Wilcoxon signed-rank test (for
matched models with the same PN-KC connectivity) or Mann-Whitney test (for unmatched models with different PN-KC
connectivity, i.e., fixed vs. variable N), with Holm-Bonferroni correction for multiple comparisons. n = 30 model instances
with different random PN-KC connectivity.
(C) The performance trend is consistent over a range of different conditions: (C1) number of input odours, (C2) the learning
rate used to update KC-MBON weights, (C3) amount of noise in PN activity (half, the same, or double the noise measured
in (Bhandawat et al. 2007)), (C4) the indeterminacy in the decision making, quantified by log(c), where c is the constant
in the soft-max function (SI Appendix, Eq. 21). The vertical dotted lines indicate the conditions used in panel B (each
condition used the best learning rate).
(D) As KCs receive more inputs (thus more similar inputs), inter-KC variability becomes helpful, not harmful, to memory
performance, especially when all KCs receive the same inputs (N = 24). Blue: KCs vary in excitatory weights (w); red: KCs
vary in both w and thresholds (θ). Data for N = 6 equivalent to panel B. n=30.
(E) Inter-KC variability improves performance in dense coding regimes (coding levels 0.7 - 0.9) at classifying 100 odours
(a hard task) or 20 odours (easy task). Left of dashed line: equivalent to panel B, for comparison. Right of dashed line:
increasing coding levels, in each case without inhibition (because inhibition is constrained to decrease coding level by half,
which is impossible if coding level > 0.5). n=50. * p < 0.05, Wilcoxon signed-rank test (D) or Mann-Whitney test (E) with
Holm-Bonferroni correction for multiple comparisons. Error bars show 95% confidence intervals.
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receives different inputs thanks to random PN-KC connectivity. Indeed, when we forced every KC to receive input1219

from the same PNs (N = 24, i.e. every KC receives input from every PN; Fig. 2.2D), variability between KCs1220

in input weights actually improved performance compared to the homogeneous model (although both models un-1221

surprisingly performed much worse compared to the more realistic N = 6). In other words, when all KCs receive1222

the same input, only inter-KC variability allows them to have different odour response profiles from each other1223

(Litwin-Kumar et al. 2017), which is required for distinct olfactory memories to be formed at KC output synapses.1224

Second, unlike in our model, the mitral cell studies did not enforce sparse coding where only a small fraction1225

of cells should respond at any given time. Indeed, under dense coding (coding level = 0.9), while all models1226

unsurprisingly performed worse than under sparse coding (coding level = 0.1), the random model out-performed1227

the homogeneous model. While this difference was only marginal when discriminating 100 odours (possibly due1228

to a floor effect), it was more apparent on an easier task where the network learned to classify 20 odours instead1229

of 100 (Fig. 2.2E). Thus, while sparse coding and diverse PN inputs for each KC greatly improve learned odour1230

classification, these features require homogeneous KCs to fully exploit their advantages, thus making inter-KC1231

variability harmful rather than helpful under sparse coding.1232

2.3.1 Performance depends on KC lifetime sparseness1233

We next asked what features of KC population odour representations might account for the worse performance1234

of the random model compared to the homogeneous model under sparse coding, but the reverse under dense1235

coding. Learning KC-MBON weights to correctly classify rewarded versus punished odours is equivalent to finding1236

a hyper-plane (in 2000-dimensional space) to separate KC responses to rewarded odours from those to punished1237

odours. Finding a separating hyper-plane might be easier if (a) odours are far apart from each other in KC1238

coding space (measured by angular distance, a scale-insensitive distance metric, Fig. 2.3A1, used in, e.g., (Turner,1239

Bazhenov, and Laurent 2008)), or (b) odour responses occupy more independent dimensions (measured by a metric1240

for dimensionality developed by (Litwin-Kumar et al. 2017); Fig. 2.3B1). Indeed, under sparse coding (coding level1241

= 0.1), the random model had smaller angular distances and lower dimensionality than the homogeneous model1242

(Fig. 2.3A,B, Fig.2.4B,C). However, surprisingly, the same was true at coding level = 0.9, even though in this1243

condition, the random model out-performed the homogeneous model (Fig. 2.2E), suggesting that separation and1244

dimensionality of KC odour responses alone do not explain inter-KC variability’s effect on performance, at least1245

with the learning rule used here (i.e., depression of KC outputs to ‘wrong’ actions by exponential decay).1246

Instead, we hypothesized that inter-KC variability impairs performance under sparse coding because it makes1247

some KCs indiscriminately active but leaves others completely silent, meaning fewer KCs provide useful odour1248

identity information. Sparse coding requires sparseness in two dimensions: population sparseness (each stimulus1249

activates few neurons) and lifetime sparseness (each neuron responds to few stimuli) (Willmore and Tolhurst 2001).1250

While our models enforced population sparseness (coding level = 0.1), they did not enforce any particular lifetime1251

sparseness. In an extreme case, a model could have very consistent population sparseness with a coding level of1252
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Figure 2.3: Performance depends on KC lifetime sparseness. (A1,B1) Diagrams of angular distance between odours (i.e.,
between centroids of clusters of noisy trials; A1) and dimensionality of a system with 3 variables (B1). The system with its
states scattered throughout 3D space (green) has dimensionality 3 while the system with all states on a single line (magenta)
has dimensionality 1. (A2,B2) The homogeneous model has higher angular distance and dimensionality than the random
model (p < 0.05, Mann-Whitney test), matching the performance difference when coding level = 0.1, but the opposite trend
to performance when coding level = 0.9. (C-D) Cumulative distribution function (cdf) of the lifetime sparseness (C) or
valence specificity (D) of KCs in the homogeneous (black) and random (red) models, across 50 model instantiations. The gap
between 1.0 and the top of the cdf represents silent KCs (lifetime sparseness and specificity undefined). At coding level 0.1,
the random model has many more silent KCs, non-sparse KCs, and non-specific KCs than the homogeneous model, but at
coding level 0.9, the random model has more KCs with high lifetime sparseness and more KCs with high valence specificity.
(E) High lifetime sparseness enables high valence specificity, although many sparse KCs have low valence specificity because
of random valence assignments (data here from single model instances). (F) Removing the sparsest or most valence-specific
KCs (corresponding to the dashed horizontal lines in C,D) removes the performance advantage of the random model under
dense coding. n=50 network instantiations; * p < 0.05, Mann-Whitney test; error bars, 95% confidence interval (horizontal
error bars in A2,B2 are smaller than the symbols). These results are from the 20-odour task in Fig. 2.2E.

0.1 for all odours, simply by having the same 10% of cells responding equally to every odour and the other 90%1253

being completely silent. In this case, no cells would provide any useful information about odour identity. We asked1254

whether a less extreme version of this problem could explain the relative performance of our models.1255

To test this, we quantified the specificity of KCs, both across all odours and for rewarded vs. punished odours.1256

To quantify specificity across odours, we used lifetime sparseness, a metric that is 1 when a cell fires to one stimulus1257

and no other stimuli, vs. 0 when it fires equally to all stimuli. A cell that fires to no stimuli has an undefined1258
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Figure 2.4: Additional metrics supporting Figure 3. (A) Dimensionality can be estimated numerically using (2.23) given
sufficient simulated inputs (dashed line = 50,000, the number used here). Calculations here on the homogeneous model,
coding level = 0.1, with inhibition. (B-C) As in Fig. 3A,B, except models trained to discriminate 100 odours instead of 20
odours. The homogeneous model has higher angular distance and dimensionality than the random model (p < 0.05, Mann-
Whitney test), matching the performance difference when coding level = 0.1, but the opposite trend to performance when
coding level = 0.9. (D-E) The random model has greater standard deviation of lifetime sparseness across KCs, compared
to the homogeneous model, in all conditions tested (coding level 0.1 or 0.9; with or without inhibition) using 20 odours
in (D) and 100 odours in (E). Note: Inhibition was omitted for comparing coding level 0.1 vs. 0.9 because our model was
constrained to have the coding level without inhibition be double the coding level with inhibition, which is impossible when
the coding level with inhibition is 0.9. The results in (D) are from the 20-odour task in Fig. 2.2E. (F-G) As in Fig. 3C,D,
except models trained to discriminate 100 odours instead of 20 odours. Cumulative distribution function (cdf) of the lifetime
sparseness (C) or valence specificity (D) of KCs in the homogeneous (black) and random (red) models, across 50 model
instantiations. The gap between 1.0 and the top of the cdf represents silent KCs (lifetime sparseness undefined). At coding
level 0.1, the random model has many more silent KCs, non-sparse KCs, and non-specific KCs than the homogeneous model,
but at coding level 0.9, the random model has more KCs with high lifetime sparseness and more KCs with high valence
specificity. (H) Reproduced from Fig. 3F for comparison: Removing the sparsest or most valence-specific KCs removes the
performance advantage of the random model under dense coding. * p < 0.05, Wilcoxon signed-rank test (see Table S1). (I)
Removing the sparsest or most valence-specific KCs generally reduces angular distance and dimensionality, but not in a way
that matches the effect on performance shown in (H). Conditions are significantly different (Mann-Whitney test) unless they
share a letter anotation. n=50 network instantiations; error bars, 95% confidence interval (where error bars cannot be seen,
they are smaller than the symbols); performance data in B,C from the 100-odour task in Fig. 2E.

.
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sparseness (see Methods section Eq.(2.24) ). The homogeneous model had fairly consistent lifetime sparseness1259

values, with almost 80% of KCs having a lifetime sparseness between ∼0.85 and 1. In contrast, the random model1260

had KCs with much more variable lifetime sparseness, with a long tail of KCs with low sparseness (below 0.7) and1261

more than 50% of KCs having undefined sparseness (i.e., completely silent). (These figures are when considering 201262

odours; when considering 100 odours, there are fewer silent KCs but the overall pattern is the same: Fig. 2.4F,G.)1263

The contrasting distributions of lifetime sparseness can be seen in the cumulative distribution functions (cdfs) of1264

lifetime sparseness in Fig. 2.3C and Fig. 2.4F, in how the steep curve of the homogeneous model and the shallow1265

curve of the random model cross each other. This result can also be seen in the larger standard deviation of lifetime1266

sparseness across KCs in the random model (Fig. 2.4 D,E). The silent KCs can be seen as the fraction of missing1267

KCs needed for the cdf curves to reach 1; the random model has many more silent KCs than the homogeneous1268

model.1269

To quantify KCs’ specificity for rewarded vs. punished odours, we defined ‘valence specificity’ for each KC as1270

the absolute value of the difference between total activity for all rewarded vs. all punished odours, divided by total1271

activity for all odours. Again, under sparse coding, the homogeneous model had more KCs with higher valence1272

specificity than the random model (Fig. 2.3D). Given random valence assignments, high lifetime sparseness does1273

not guarantee high valence specificity, but does make it more probable (the two measures are correlated: Fig. 2.3E),1274

for the same reason that flipping a coin 5 times is more likely to give all heads than flipping a coin 50 times: a KC1275

active for only a few odours is more likely to be active only for rewarded (or punished) odours, compared to a KC1276

active for many odours.1277

Under dense coding, KCs also have more variable lifetime sparseness in the random model (dashed lines, Fig.1278

2.3C; Fig. 2.4F). However, here, the inter-KC variability is helpful rather than harmful: whereas KCs in the1279

homogeneous model have uniformly low lifetime sparseness (and thus are uniformly useless for odour discrimination),1280

in the random model, the inter-KC variability allows a small minority of KC to have relatively high lifetime1281

sparseness and valence specificity (though still worse than under sparse coding; Fig. 2.3C-E). To test whether this1282

minority of relatively specific KCs explains the better performance of the random model under dense coding, we1283

removed the 10% of KCs with the highest lifetime sparseness or the 5% of KCs with the highest valence specificity1284

(fractions correspond to the approximate parts of the cdfs where the random model had higher values: dashed1285

horizontal lines on 2.3C,D), and replaced them with useless KCs (either silent or responding equally to all odours,1286

to preserve the 0.9 coding level). Indeed, in these cases, the random model no longer outperformed the homogeneous1287

model (Fig. 2.3F). However, these changes did not correspond to the effects of removing the sparsest or most specific1288

KCs on angular distance or dimensionality (Fig. 2.4I), again indicating that angular distance and dimensionality1289

do not always correspond to performance in our model.1290

Together, these results indicate that under sparse (but not dense) coding, introducing realistic inter-KC variabil-1291

ity in w, N , and θ worsens the performance of the network by making KCs’ odour response profiles less consistently1292

sparse and thus less specific to rewarded/punished odours. Because the real mushroom body uses sparse coding,1293
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we focus the rest of our analysis on the sparse coding condition (coding level = 0.1).1294

2.3.2 Compensatory tuning of KC parameters rescues memory performance1295

Because the central problem for memory performance in the random model was inter-KC variability in activity, we1296

hypothesized that performance could be rescued in models where KCs could achieve roughly equal activity across1297

the population, while still preserving experimentally realistic variability in spiking thresholds and number/strength1298

of excitatory inputs.1299

Activity-independent tuning of excitatory input weights1300

First, we tested a model that equalizes KC activity indirectly, by making parameters compensate for each other in1301

an activity-independent way. In particular, we modeled KCs as adjusting input synaptic weights (w) to compensate1302

for variability in spiking threshold (θ) and number of PN inputs (N). Thus, an individual KC with low θ or high1303

N would have low w, while a KC with high θ or low N would have high w. We simulated these correlations1304

(w ∝
√
θ; w ∝ 1/

√
N) constrained by experimental data. To do this, we sampled N and θ from the distributions in1305

Fig. 2.2A, and sampled w from a posterior compensatory distribution, P (w | N, θ), whose overall shape across all1306

KCs was constrained to be the same as the experimental P (w) in Fig. 2.2A1 but which was composed of multiple1307

distributions of P (w) for different values of N and θ. For example, a KC with a relatively high N = 7 would1308

sample its weights from a P (w) shifted to the left (lower w) (Fig. 2.5A1, dashed lines), while a KC with a relatively1309

low N = 2 would sample its weights from a P (w) shifted to the right (higher w) (Fig. 2.5A1, solid lines). The1310

same would be true for different values of θ (Fig. 2.5A1, different shadings). We fitted these component P (w)1311

curves so that with experimentally observed distributions of N and θ, the sum of the components would produce1312

the experimentally observed distribution of w across all KCs (see Methods section). (Note that this algorithm1313

is not meant to describe an actual biological mechanism, merely to create correlations between w vs. N and θ1314

while constraining the parameters to experimentally realistic distributions. Biologically, such correlations could1315

arise through several mechanisms; see Discussion.) This compensatory mechanism rescued the fly’s performance,1316

producing significantly higher accuracy at classifying odours than the random model (Fig. 2.5B, Fig. 2.6B, cyan1317

bars), likely resulting from the reduced variability in KC lifetime sparseness (Fig. 2.5C). (Note however that this1318

model did not perform quite as well as the homogeneous model.)1319

Activity-dependent tuning of KC parameters1320

We next tested compensatory mechanisms based on activity rather than explicit correlations between network1321

parameters. Here, each KC has the same desired average activity level across all odours, A0 (with a tolerance of1322

±6%). We tested three models, each of which equalized average KC activity A0 by tuning a different parameter:1323

input excitatory weights (w), inhibitory weights (α), or spiking thresholds (θ). The non-tuned parameters followed1324

the distributions in Fig. 2.2A (inhibitory weights were constant when non-tuned), while individual KCs adjusted the1325
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Figure 2.5: Compensation in network parameters rescues memory performance. (A) Schematics of different compensation
methods. (A1) Activity-independent compensation. Lognormal fit of experimental distribution of the synaptic weights
(Exp., red), and its component distributions for different N and θ, for high N = 7 (dashed) or low N = 2 (solid). Shadings
of gray indicate different values of θ. (A2-4) Mechanisms for activity-dependent homeostatic compensation. Overly active
KCs weaken excitatory input weights (wji, A2), strengthen inhibitory input weights (αj , A3), or raise spiking thresholds
(θj , A4). Inactive KCs do the reverse. (B1) Compensation rescues performance, alleviating the defect caused by inter-
KC variability in the random model (red) compared to the homogeneous model (black), whether compensation occurs by
setting w according to N and θ (cyan; A1), using activity-dependent homeostatic compensation to adjust excitatory weights
(blue; A2), inhibitory weights (green; A3) or spiking thresholds (magenta; A4). (B2) Differences between models are more
apparent when the task is more difficult due to more stochastic decision-making (c = 1 instead of c = 10 in the softmax
function). (C) Compensation reduces variability in KC lifetime sparseness. n = 20 model instances with different random
PN-KC connectivity; error bars, 95% confidence interval. All bars are significantly different from each other unless the
share the same letter annotations, p < 0.05, by Wilcoxon signed-rank test (for matched models with the same PN-KC
connectivity) or Mann-Whitney test (for unmatched models with different PN-KC connectivity, i.e., fixed vs. variable N),
with Holm-Bonferroni correction for multiple comparisons. Annotations below bars indicate whether parameters were fixed
(empty circle), variable (filled circle), or variable following a compensation rule (‘H’ for homeostatic tuning, f(N, θ) for
activity-independent tuning). Results here are for 100 synthetic odours; see Fig. 2.6B for similar results with odours from
(Hallem and Carlson 2006). (D) KC excitatory input synaptic weights (w) after tuning to equalize average activity (blue)
follow a similar distribution to experimental data (black, from Fig. 2.2A1) (E) KC spiking thresholds (θ) after tuning to
equalize average activity (magenta) have wider variability than the experimental distribution (black, from Fig. 2.2A3). (F)
Tuning KC inhibitory weights (α) to equalize average activity requires many inhibitory weights to be negative, unless the
coding level without inhibition is as high as 99%.
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tuned parameter according to whether their activity was too high or too low. For example, a relatively highly active1326

KC (whether because it has high w or N , low θ, or simply receives input from highly active PNs) would scale down1327

its excitatory weights (Fig. 2.5A2), scale up its inhibitory weights (Fig. 2.5A3), or scale up its spiking threshold1328

(Fig. 2.5A4). Likewise, a relatively inactive (or indeed totally silent) KC would do the reverse (see Methods for1329

details of the update rules underlying the homeostatic tuning and discussion of variant update rules in Fig. 2.8,1330

2.9).1331

All three homeostatic models performed as well as the homogeneous model (Fig. 2.5B1, Fig. 2.6B, blue, green,1332

magenta bars), and indeed even out-performed the homogeneous model when decision-making was more stochastic1333

(lower value of c in the softmax function; Fig. 2.5B2). The more stochastic decision-making makes the task more1334

difficult and thus brings out the enhanced coding by the homeostatic models. Indeed, the variability in KC lifetime1335

sparseness was even lower in the homeostatic models was even higher than in the homogeneous model (Fig. 2.5C).1336

(As average activity and lifetime sparseness are not the same thing, it is notable that tuning to equalize average1337

activity also tended to equalize lifetime sparseness.)1338
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Figure 2.6: Similar analyses to Fig. 2 and 4, using the original 110 odour responses from (Hallem and Carlson 2006). (A)
Inter-KC variability degrades the memory performance. (B) Compensation as in Fig. 4 improves memory performance. n
= 30 (A) or 20 (B) model instances with different random PN-KC connectivity; error bars, 95% confidence interval. The
indeterminacy constant c from the softmax equation was set to 10. Bars within a graph that do not share the same letter
annotation are significantly different, p < 0.05, Mann-Whitney or Wilcoxon test as in Fig.2.2,2.5.

What distributions of excitatory weights, inhibitory weights, or spiking thresholds emerge after activity-dependent1339

tuning to equalize KC activity? Do they match experimentally observed distributions? Tuning excitatory weights1340

led to a distribution fairly similar to the approximately log-normal experimentally observed distribution of EPSP1341

amplitudes (Fig. 2.5D). Tuning spiking thresholds led to a distribution with greater variance than the experimental1342

distribution, although with a qualitatively similar Gaussian shape (Fig. 2.5E). This larger variance of thresholds1343

suggests that natural variation of θ is too small, on its own, to equalize KC activity given the variation in the1344

number/strength of excitatory inputs.1345

The tuned distribution of inhibitory weights differed even more strongly from experimental results. While1346
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there are no experimental measurements of inhibitory weights, equalizing KC activity by tuning inhibitory weights1347

required many of them to be negative (Fig. 2.5G), which is unrealistic, because negative inhibition is actually1348

excitation, and there are no reports of GABAergic excitation of KCs (Inada, Tsuchimoto, and Kazama 2017). Our1349

model required negative inhibition because of the constraint that inhibition is only strong enough to reduce the1350

fraction of active KCs by half (from 20% to 10%, based on results from (Lin et al. 2014)). In other words, 80%1351

of the time, KCs are silent even without inhibition, thanks to high thresholds; such responses cannot be increased1352

by reducing inhibition unless inhibition becomes negative (i.e., excitatory). Indeed, if we relax the constraint that1353

coding level be 0.2 without inhibition, such that sparseness is enforced by inhibition alone (not thresholds), then1354

variable inhibition can equalize KC activity without becoming negative (Fig. 2.5F). However, in this case, the1355

coding level without inhibition was 99%, which is not observed experimentally (Lin et al. 2014). Even allowing a1356

coding level without inhibition of 50%, equalizing KC activity still requires some APL-KC inputs to be negative1357

(Fig. 2.5F). Interestingly, these unrealistic models, where sparseness is mainly driven by inhibition rather than high1358

thresholds, perform better than the three models shown here (Fig. 2.9A) suggesting that biological constraints may1359

limit network performance. Overall, these results suggest that tuning inhibitory weights cannot compensate on its1360

own for variability in other KC parameters. More likely, the system optimizes multiple parameters at once (see Fig.1361

2.10 and Discussion).1362

We also tested whether memory performance can be rescued by equalizing not KC average activity, but rather1363

KC response probability (equivalent to average activity if KC activity is binarized, i.e., 0 or 1). Equalizing response1364

probability (as opposed to average activity) by tuning KC spiking thresholds has been shown to improve separation1365

of KC odour representations in a different computational model (Kennedy 2019). However, in our model, this tech-1366

nique (tuning thresholds to equalize KC response probability) produced somewhat worse classification performance1367

compared to tuning thresholds to equalize KC average activity (Fig. 2.9B,C), though still better than the random1368

model (compare Fig. 2.9 to Fig. 2.5).1369

Robustness of pre-tuned compensations in new environments with novel1370

odours1371

Any activity-dependent tuning depends on the model’s context. If a fly tunes its network parameters based on1372

experience in one odour context (e.g., smelling only odours of one chemical family), will it still perform well at1373

classifying odours in a novel environment with different odours (e.g., odours of a different chemical family)? We1374

hypothesized that performance would depend more on tuning context with the activity-dependent compensation1375

mechanisms than the activity-independent mechanism.1376

To test this, we tuned the parameters in our models using only a subset of odours from (Hallem and Carlson1377

2006), grouped by chemical class, and then trained and tested the models on odour-reward/punishment associations1378

using the other odours. We took the four chemical classes that had the most odours in the dataset: acids, terpenes,1379
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Figure 2.7: Robustness of pre-tuned compensations with novel odours. (A) For each model fly, network parameters are
tuned as in Fig. 2.5, on a subset of odours. At this stage, no rewards or punishments are given, and KC output weights are
not modified. Then, the model is trained to classify rewarded and punished odours that are the same as or different from the
odours used for tuning. Finally, the model is tested on new noisy variants of the odours used for training. (B) Empty symbols
(‘novel’ environment): models were tuned on odours from one chemical group (Gi: acids - circles, terpenes - triangles, esters -
diamonds, or alcohols - squares), then trained and tested on odours from the other three groups (Gi 6=j). Each empty symbol
is paired with a matched control (filled symbols) showing how that model would have fared in a ‘familiar’ environment: a
model tuned, trained, and tested all on the same three groups of odours as the matched ‘novel’ model was trained and tested
on (Gi 6=j). (C) Models with activity-dependent compensation (blue, magenta, green) performed significantly worse in novel
environment than familiar environments (matching indicated by connecting lines) (p < 0.05, Wilcoxon signed-rank test with
Holm-Bonferroni correction). In contrast, models with no compensation (black, red), or activity-independent compensation
(cyan), performed similarly in novel and familiar environments (p > 0.05 except for homogeneous (black), acids, and random
(red), terpenes). Mean of 20 model instantiations, where each instantiation received a different permutation of odours (see
SI Appendix). Annotations below graph indicate whether parameters were fixed (empty circle), variable (filled circle), or
variable following a compensation rule (‘H’ for homeostatic tuning, f(N, θ) for activity-independent tuning).

alcohols and esters. For each class, we tuned the model’s parameters on that class and then trained the model1380

to classify odours in the other 3 classes (‘novel’ environment). For matched controls, we trained models that1381

had been tuned on the same 3 classes used for training/testing (‘familiar’ environment). As expected, the three1382

activity-dependent models performed worse in novel environments than familiar environments, while the activity-1383

independent model performed consistently regardless of tuning environment (blue, green and magenta vs. cyan in1384

Fig. 2.7C). However, in general, tuning odours on one class but training/testing on different classes does not fatally1385

damage the activity-dependent compensation strategies: although performance is worse in novel environments, it1386

remains better than the random model. Thus, activity-dependent compensation is still a good strategy to overcome1387

the pernicious effects of inter-KC variation, even if the compensation environment differs from the classification1388

environment (at least within the range of the odours in (Hallem and Carlson 2006)).1389
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Figure 2.8: Alternative update rules for tuning KCs’ input excitatory weights. (A) Performance of different models at
different indeterminacy constants (A1: c = 10; A2: c = 1). Blue, left: the method in the main figures, (2.47), where a
given KC’s input weights are all adjusted equally (‘H’); dark blue, middle: (2.46), where a given KC’s input weights are
adjusted individually according to the average activity of the PN (‘Hindiv’); light blue, right: (2.44), where only non-silent
KCs adjust their input weights (‘Hactive’). n = 20 model instances with different random PN-KC connectivity. Error bars
show 95% confidence interval. Bars with the same letter annotations are not significantly different from each other; all other
comparisons are significant p < 0.05, by Wilcoxon signed-rank test with Holm-Bonferroni correction for multiple comparisons.
(B,C) Probability distribution of the tuned excitatory weights (compare to Fig. 4E). (D) The ‘Hindiv’ model performs worse
than the ‘H’ model in novel environments (see legend of Fig. 5; the drop in performance from familiar to novel environments
is significantly greater for the ‘Hindiv’ model, p < 0.05 by Wilcoxon signed-rank test.
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2.4 Connectome reveals compensatory variation of input strength and1390

numbers1391

Our proposed compensatory mechanisms predict correlations between the key model parameters. Excitatory weights1392

(w) should be inversely correlated to number of PNs per KC (N) where w is tuned to compensate for variable N1393

and θ (Fig. 2.10B) or where w is tuned to equalize KC activity (Fig. 2.10C). Meanwhile, inhibitory weights (α)1394

should be positively correlated to the sum of excitatory weights (
∑
w, or wN , where w is the mean w per KC)1395

where inhibitory weights are tuned to equalize KC activity (Fig. 2.10D). Such correlations have been observed in1396

larvae (Eichler et al. 2017), but they have not yet been analyzed in the adult mushroom body.1397

To test these predictions, we analyzed the recently published hemibrain connectome (Scheffer et al. 2020; Li1398

et al. 2020), which annotates all synapses between PNs and KCs in the right mushroom body of one fly. The1399

connectome reveals three of our parameters: the number of PN inputs per KC (N), the strength of each PN-1400

KC connection (w), and the strength of inhibitory inputs (α). Although the anatomy does not directly reveal w1401

and α (which can only be measured electrophysiologically), we used an indirect proxy for synaptic strength: the1402

number of synapses per connection (i.e., number of sites between two neurons where neuron 1 has a T-bar and1403

neuron 2 has a postsynaptic density, counted by machine vision; Fig. 2.10A). It seems reasonable to presume that,1404

all else being equal, connections with more synapses are stronger. Indeed, in the Drosophila antennal lobe, when1405

comparing connections from ORNs to ipsilateral PNs vs. contralateral PNs, ipsilateral connections are both stronger1406

(Gaudry et al. 2013) and have more synapses per connection (Tobin, Wilson, and Lee 2017). Moreover, synaptic1407

counts approximate synaptic contact area throughout the larval Drosophila nervous system (Barnes, Bonnery, and1408

Cardona 2020) and synaptic area approximates EPSP amplitude in mammalian cortex (Holler et al. 2021).1409

Therefore, to test if mean w and N are inversely correlated across KCs, we asked if the number of PN inputs1410

per KC was inversely correlated to the number of synapses per PN-KC connection. We ignored PN-KC connections1411

with 2 or fewer synapses, because the number of synapses per PN-KC connection formed a bimodal distribution1412

with a trough around 3-4 (Fig. 2.10E); we presumed that connections with only 1-2 synapses represent annotation1413

errors. We divided KCs into their different subtypes as annotated in the hemibrain (Li et al. 2020), because different1414

subtypes have different numbers of PN inputs per KC and different numbers of synapses per PN-KC connection1415

((Caron et al. 2013); Fig. 2.10E,F, Fig. 2.11A,B,C,D). We excluded KCs that receive significant non-olfactory input1416

(γ-d, γ-t, αβ-p, α′β′-ap1). In all analyzed subtypes of KCs (γ-main, αβ-s, -m and -c; α′β′-ap2 and -m), the number1417

of PN inputs per KC (N) was inversely correlated to the mean number of synapses per PN-KC connection, averaged1418

across the PN inputs onto a KC (proxy for w) (Fig. 2.10G,K, Fig. 2.11E). Linear regression showed that on average,1419

there were ≈ 6−15% fewer input synapses per PN-KC connection (w), for each additional PN per KC (N) (compare1420

to the equivalent slopes for the linear fits to the activity-independent (-22%) and activity-dependent (-18%) model1421

parameters in Fig. 2.10B,C). This negative correlation meant that the number of total PN-KC synapses per KC1422

increased only sublinearly relative to the number of PN inputs per KC (Fig. 2.11H).1423
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Figure 2.10: Connectome analysis reveals compensatory variation in excitatory and inhibitory input strengths. (A)
Example αβ-c KC (bodyId 5901207528) with inputs from 3 PNs (yellow/green/blue dots) and 7 dendritic APL-KC synapses
(red circles). The magenta circle shows the posterior boundary of the peduncle. Line widths not to scale. (B,C) Mean
synaptic weight (w) per PN-KC connection is inversely related to the number of input PNs in models that tune input weights
given N and θ (B), or that tune input weights to equalize average activity levels across KCs (C). (D) In the model that tunes
input inhibitory synaptic weights (α) to equalize average activity levels across KCs, inhibitory weights are directly related
to the sum of excitatory weights per KC (i.e., wN). Note the negative values of α (discussed in text). (E,F) Probability
distributions of the number of synapses per PN-KC connection (E) and the number of input PNs per KC (F) in the different
KCs subtypes (αβ, γ, α′β′). Dashed line in (E) shows our threshold for counting connections as genuine. (G) Mean number
of input synapses per PN-KC connection (averaged across PNs for each KC) is inversely related to the number of input
PNs per KC, in γ-main KCs (see SI Appendix, Fig. S5 for other KC types). (H) Mean distance of PN-KC synapses to
the posterior boundary of the peduncle (presumed spike initiation zone) is directly related to the number of input PNs per
KC. (I) The number of APL-KC synapses per KC is directly related to the total number of PN-KC synapses per KC. (J)
Four αβ-c KCs, one from each neuroblast clone. The posterior boundary of the peduncle (magenta circles) lies where the
KC axons begin to converge. (K) Grids show Pearson correlation coefficients (r) between various KC parameters for all
KC subtypes tested (red: positive; blue: negative). Dots indicate p < 0.05 (Holm-Bonferroni corrected). Coloured outlines
indicate predictions of models (cyan/blue: models tuning w (G,H); green: model tuning α (I)). Number of KCs for each
subtype, left to right: 588, 222, 350, 220, 127, 119. In (B,C,G,H), red dots are medians and the widths of the violin plots
represent the number of KCs in each bin. Trend lines in (D,G,H,I) show linear fits to the data. Scale bars in (A,J): D,
dorsal, P, posterior, M, medial.



2.4. CONNECTOME REVEALS COMPENSATORY VARIATION 69

2 4 6 8 10 12
0

50

100

di
st

. t
o 

po
st

. p
ed

. (
um

)

2 3 4 5 6 7 8 9
0

50

100

1 2 3 4 5 6 7 8
0

20

40

60

80

1 2 3 4 5 6 7 8
# PNs per KC

0

20

40

60

80

1 2 3 4 5 6 7 9
0

50

100

2 3 4 5 6 7 8
0

50

100

r = 0.26 r = –0.17 (ns) r = 0.06 (ns) r = 0.36 r = –0.07 (ns) r = 0.16 (ns)

0 100 200
0

10

20

30

# 
AP

L-
KC

 s
yn

ap
se

s 
pe

r K
C

50 100 150
0

5

10

15

0 50 100 150
0

5

10

15

20

0 50 100
# PN-KC synapses per KC

0

5

10

15

20

0 50 100
0

5

10

15

20

40 60 80 100
0

5

10

15

20

r = 0.26 r = 0.25 r = 0.26 r = 0.26 r = 0.40 r = 0.34

# PNs per KC
2 4 6 8 10 12

0

10

20

30

40

# 
sy

na
ps

es
 p

er
 

PN
-K

C
 c

on
ne

ct
io

n

2 3 4 5 6 7 8 9
0

10

20

1 2 3 4 5 6 7 8
0

10

20

30

40

1 2 3 4 5 6 7 8

8

8
0

10

20

30

1 2 3 4 5 6 7 9
0

10

20

2 3 4 5 6 7 8
0

10

20

30r = –0.56 r = –0.55 r = –0.65 r = –0.22 r = –0.29 r = –0.52

0 20 40
# synapses per PN-KC connection

0

0.05

0.1

0.15

Fr
eq

ue
nc

y 

0 5 10
# PNs per KC

0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y 
0 20 40

# synapses per PN-KC connection

0

0.05

0.1

0.15

Fr
eq

ue
nc

y 

0 5 10
# PNs per KC

0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y 

α′/β′-ap2 α′/β′-mα/β-s α/β-m α/β-cγ-main

# PNs per KC
2 4 6 8 10 12

0

50

100

150

200

# 
PN

-K
C

 s
yn

ap
se

s 
pe

r K
C

2 3 4 5 6 7 8 9
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 9
0

50

100

2 3 4 5 6 7 8
0

50

100

Linear fit
through (0,0)Linear fit

α/β-s
α/β-m
α/β-c

α′/β′-ap2
α′/β′-m

A

E

F

G

H

B C D

Figure 2.11: Connectome analysis on all KC subtypes (γ-main, αβ-s, -m and -c; α′β′-ap2 and -m). (A-D) Probability
distributions of the number of synapses per PN-KC connection (A,C) and the number of input PNs per KC (B,D) in αβ and
α′β′ KCs separated out by subtype (compare to Fig. 6E,F). (E) Mean number of input synapses per PN-KC connection is
inversely related to the number of input PNs per KC. (F) Mean distance of PN-KC synapses to the posterior boundary of
the peduncle (presumed spike initiation zone) is directly related to the number of input PNs per KC in γ and αβ-c KCs.
(G) The number of APL-KC synapses per KC is directly related to the total number of PN-KC synapses per KC. (H) The
number of PN-KC synapses per KCs grows sublinearly with the number of PN inputs per KC. Red dots: medians. Red lines:
linear fits. Blue dashed lines: linear fits through the origin (if every PN-KC connection had the same number of synapses).
Note that the red dots follow a concave function relative to both linear fits.
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We also tested another anatomical proxy of excitatory synaptic strength. Because KCs sum up synaptic inputs1424

linearly or sublinearly, their dendrites likely lack voltage-gated currents that would amplify inputs, so synaptic1425

input currents likely propagate passively (Gruntman and Turner 2013). Therefore, an excitatory input would make1426

a smaller contribution to a KC’s decision to spike the farther away it is from the spike initiation zone (Williams and1427

Stuart 2003). While the spike initiation zone cannot be directly observed in the connectome, the voltage-gated Na+1428

channel para and other markers of the axon initial segment (also called the ‘distal axonal segment’) are concentrated1429

at the posterior end of the peduncle, near where axons from KCs derived from the four neuroblast clones converge1430

(Ravenscroft et al. 2020; Trunova, Baek, and Giniger 2011). This location can be approximated in the connectome1431

as the posterior boundary of the ‘PED(R)’ region of interest (ROI) (magenta dots, Fig. 2.10A,J). From this point, we1432

measured the distance along each KC’s neurite skeleton (i.e., not the Euclidean distance) to each PN-KC synapse.1433

In the αβ-c and γ-main KCs (but not other KCs), this distance was positively correlated with the number of PNs1434

per KC (Fig. 2.10H,K, Fig. 2.11F). That is, the more PN inputs a KC has, the farther away the input synapses1435

are from the putative spike initiation zone (and thus the weaker they are likely to be). Intriguingly, of all the KC1436

subtypes, αβ-c KCs show the strongest correlation between number of PN inputs and PN-peduncle distance, but1437

the weakest correlation between number of PN inputs and number of synapses per PN-KC connection (Fig. 2.10K),1438

suggesting that different types of KCs might use different mechanisms to achieve the same compensatory end.1439

To test if inhibitory and excitatory input are positively correlated across KCs (as predicted in Fig. 2.10D), we1440

approximated α by counting the number of synapses from the APL neuron to every KC in the calyx (the ‘CA(R)’1441

ROI). In all types of KCs, the more total PN-KC synapses there were per KC, the more calyx APL-KC synapses1442

there were (Fig. 2.10I,K, Fig. 2.11G), indicating that indeed, inhibitory and excitatory synaptic input are correlated.1443

These results confirm the predictions of our compensatory models. That correlations exist for both excitation1444

and inhibition suggests that the mushroom body tunes more than one parameter simultaneously (thresholds may be1445

tuned as well, but cannot be measured in the connectome). Such multi-parameter optimization likely explains (1)1446

why the correlations in the connectome are not as steep as when only a single parameter is tuned in our models (Fig.1447

2.10D-F), and (2) why natural compensatory variation of tuned parameters need not be as wide as the variation of1448

tuned parameters in our models (Fig. 2.5F).1449

2.5 Discussion1450

Here we studied under what conditions inter-neuronal variability would improve vs. impair associative memory.1451

Using a computational model of the fly mushroom body, we showed that under sparse coding conditions, associative1452

memory performance is reduced by experimentally realistic variability among Kenyon cells in parameters that1453

control neuronal excitability (spiking threshold and the number/strength of excitatory inputs). These deficits arise1454

from unequal average activity levels among Kenyon cells. However, memory performance can be rescued by using1455

variability along one parameter to compensate for variability along other parameters, thereby equalizing average1456

activity among KCs. These compensatory models predicted that certain KC features would be correlated with1457
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each other, and these predictions were borne out in the hemibrain connectome. In short, we showed (1) the1458

computational benefits of compensatory variation, (2) multiple mechanisms by which such compensation can occur,1459

and (3) anatomical evidence that such compensation does, in fact, occur.1460

Note that when we say ‘equalizing KC activity’, we do not mean that all KCs should respond the same to a1461

given odour. Rather, in each responding uniquely to different odours (due to their unique combinations of inputs1462

from different PNs), they should keep their average activity levels the same. That is, while KCs’ odour responses1463

should be heterogeneous, their average activity should be homogeneous.1464

It will be interesting to use empirically recorded KCs activities to directly test for the existence of compensatory1465

variability mechanisms. First, one could examine the distribution of the KCs average activities in an empirically1466

recorded dataset. That is, one could test if the KCs recorded responses averaged across the input odours (it can be1467

using the odours in the Hallem-Carlson data) are almost equal or not. In addition, since the high variability in the1468

KCs lifetime sparsity values in the random model accounted the most to its impaired memory performance compared1469

to the homogeneous and compensatory variability models (Fig. 2.3 and 2.5C), we can test for the existence of the1470

compensatory variability mechanisms by computing the distribution of the KCs lifetime sparsity levels from their1471

recorded activities and quantifying its fit to the ones obtained from our compensatory models.1472

How robust are our connectome analyses? We found correlations between anatomical proxies for the physiological1473

properties predicted to be correlated in our models (i.e., KCs receiving excitation from more PNs should have weaker1474

excitatory inputs, while KCs receiving more overall excitation should also receive more inhibition). In particular,1475

we measured the number of synapses per connection as a proxy for the strength of a connection. As described1476

above, this proxy seems valid based on matching anatomical and electrophysiological data (Tobin, Wilson, and Lee1477

2017; Barnes, Bonnery, and Cardona 2020; Holler et al. 2021). However, other factors affecting synaptic strength1478

(receptor expression, post-translational modification of receptors, pre-synaptic vesicle release, input resistance, etc.)1479

would not be visible in the connectome. Of course, such factors could further enable compensatory variability (see1480

below). It is also worth noting that the connectome data is from only one individual.1481

We also used the distance between PN-KC synapses and the peduncle as a proxy for the passive decay of synaptic1482

currents as they travel to the spike initiation zone. In the absence of detailed compartmental models of KCs, it is1483

hard to predict exactly how much increased distance would reduce the effective strength of synaptic inputs, but it1484

is plausible to assume that signals decay monotonically with distance. Note that calcium signals are often entirely1485

restricted to one dendritic claw (Gruntman and Turner 2013; Li et al. 2013). Another caveat is that the posterior1486

boundary of the peduncle is only an estimate (though a plausible one: (Ravenscroft et al. 2020; Trunova, Baek,1487

and Giniger 2011)) of the location of the spike initiation zone. However, inaccurate locations should only produce1488

fictitious correlations for Fig. 2.10J and 2.11F if the error is correlated with the number of PN-KC synapses per1489

KC (and only in αβ-c and γ-main KCs, not other KCs), which seems unlikely.1490

Our work is consistent with prior work, both theoretical and experimental, showing that compensatory variability1491

can maintain consistent network behavior (Golowasch et al. 2002; Achard and DeSchutter 2006; Tobin and Calabrese1492
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2006; Taylor, Goaillard, and Marder 2009; Marder and Goaillard 2006; Schulz, Goaillard, and Marder 2006; Schulz,1493

Goaillard, and Marder 2007; MacLean et al. 2003; MacLean et al. 2005; O’Leary and Marder 2016; Parrish et al.1494

2014; Grashow, Brookings, and Marder 2010; Kazama and Wilson 2008). However, to our knowledge, we are the1495

first to analyze the computational benefits of equalizing activity levels across neurons in a population (as opposed1496

to across individual animals or over time). A recent pre-print showed that equalizing response probabilities among1497

KCs reduces memory generalization (Kennedy 2019), but we showed that equalizing average activity outperforms1498

equalizing response probabilities (Fig. 2.9). Another model of the mushroom body used compensatory inhibition,1499

in which the strength of inhibition onto each KC was proportional to its average excitation (Luo, Axel, and Abbott1500

2010), similar to our inhibitory plasticity model (Fig. 2.5A2). However, the previous work did not analyze the specific1501

benefits from the compensatory variation; it also set the inhibition strong enough that average net excitation was1502

zero, whereas we show that when inhibition is constrained to be only strong enough to reduce KC activity by ≈1503

half (consistent with experimental data: (Lin et al. 2014)), inhibition alone cannot realistically equalize KC activity1504

(Fig. 2.5G). In addition, there is experimental support for our models’ predictions that KCs with more PN inputs1505

would have weaker excitatory inputs: when predicting whether calcium influxes in individual claws would add up1506

to cause a supra-threshold response in the whole KC, the most accurate prediction came from dividing the sum of1507

claw responses by the log of the number of claws (Li et al. 2013). However, the functional benefits of this result1508

only become clear with our computational models. Finally, the larval mushroom body shows a similar relationship1509

between number and strength of PN-KC connections: the more PN inputs a KC has, the fewer synapses per PN-KC1510

connection (Eichler et al. 2017); however, again, the larval work did not analyze the computational benefits of this1511

correlation.1512

We modeled two forms of compensation: direct correlations between neuronal parameters (Fig. 2.5A1) and1513

activity-dependent homeostasis (Fig. 2.5A2-4). Both forms improve performance and predict observed correlations1514

in the connectome. Certainly, activity-dependent mechanisms are plausible, as KCs regulate their own activity1515

homeostatically in response to perturbations in activity (Apostolopoulou and Lin 2020). Indeed, different KC sub-1516

types use different combinations of mechanisms for homeostatic plasticity (Apostolopoulou and Lin 2020), consistent1517

with the different correlations observed in the connectome for different KC subtypes. Our activity-dependent mod-1518

els lend themselves to straightforward biological interpretations. Excitatory or inhibitory synaptic weights could be1519

tuned by activity-dependent regulation of number of synapses per connection or expression/localization of receptors1520

or other post-synaptic machinery. Spiking thresholds could be tuned by altering voltage-gated ion conductances1521

or moving/resizing the spike initiation zone (Grubb and Burrone 2010; Trunova, Baek, and Giniger 2011). Such1522

homeostatic plasticity would be akin to the sensory gain control implemented by feedback inhibition, but on a1523

slower timescale.1524

On the other hand, KCs are not infinitely flexible in homeostatic regulation; for example, complete blockade1525

of inhibition causes the same increase in KC activity regardless of whether the blockade is acute (16 - 24 h) or1526

constitutive (throughout life) (Apostolopoulou and Lin 2020). This apparent lack of activity-dependent down-1527
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regulation of excitation suggests that activity-independent mechanisms might contribute to compensatory variation1528

in KCs, as occurs for ion conductances in lobster stomatogastric ganglion neurons (MacLean et al. 2003; MacLean1529

et al. 2005). For example, the inverse correlation of w and N arises from the fact that the number of PN-KC1530

synapses per KC increases only sublinearly with increasing numbers of claws (i.e., PN inputs) (Fig. 2.11H). Perhaps1531

a metabolic or gene regulatory constraint prevents claws from recruiting postsynaptic machinery in linear proportion1532

to their number. (Interestingly, this suppression is stronger in larvae, where the number of PN-KC synapses per KC is1533

actually constant relative to the number of claws: (Eichler et al. 2017).) Meanwhile, the correlation between number1534

of inhibitory synapses and number of excitatory synapses might be explained if excitatory and inhibitory synapses1535

share bottleneck synaptogenesis regulators on the post-synaptic side. Although activity-dependent compensation1536

produced superior performance in our model compared to activity-independent compensation thanks to its more1537

effective equalization of KC average activity (Fig. 2.5) (most likely because it takes into account the unequal1538

activity of different PNs), activity-dependent mechanisms suffered when the model network switched to a novel1539

odour environment (Fig. 2.7). Given that it is desirable for even a newly enclosed fly to learn well, and for flies to1540

learn to discriminate arbitrary novel odours, activity-independent mechanisms for compensatory variation may be1541

more effective in nature.1542

Compensatory variability to equalize activity across neurons could also occur in other systems. The vertebrate1543

cerebellum has an analogous architecture to the insect mushroom body; cerebellar granule cells are strikingly1544

similar to Kenyon cells in their circuit anatomy, proposed role in ‘expansion recoding’ for improved memory, and1545

even signaling pathways for synaptic plasticity (Modi, Shuai, and Turner 2020; Farris 2011; Litwin-Kumar et al.1546

2017; Marr 1969; Handler et al. 2019; Aso et al. 2019). Whereas cortical neurons’ average spontaneous firing rates1547

vary over several orders of magnitude (Buzsáki and Mizuseki 2014), granule cells are, like Kenyon cells, mostly silent1548

at rest, and it is plausible that their average activity levels might be similar (while maintaining distinct responses1549

to different stimuli) (Powell et al. 2015). Granule cell input synapses undergo homeostatic plasticity (Delvendahl,1550

Kita, and Müller 2019), while compartmental models suggest that differences in granule cells’ dendritic morphology1551

would affect their activity levels, an effect attenuated by inhibition (Houston et al. 2017), raising the possibility1552

that granule cells may also modulate inter-neuronal variability through activity-dependent mechanisms. Future1553

experiments may test whether compensatory variability occurs in, and improves the function of, the cerebellum or1554

other brain circuits. Finally, activity-dependent compensation may provide useful techniques for machine learning.1555

For example, we found that performance of a reservoir computing network could be improved if thresholds of1556

individual neurons are initialized to achieve a particular activity probability given the distribution of input activities1557

(Manneschi, Lin, and Vasilaki in press).1558

Note on originality1559

This chapter was previously published as Abdelrahman NY, Vasilaki E, Lin AC (2021). Compensatory1560

variability in network parameters enhances memory performance in the Drosophila mushroom body.1561
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The only edits compared to the published version are to include the supplemental methods and data in the main1563

text. The publication was also edited by my supervisor Andrew C Lin.1564

Some of the plots and analyses were made by my supervisor Andrew C Lin. In particular, the KC schematic in1565

panel (A) of Fig. 2.10, and the analysis of the number of PNs per KCs versus the distance to the posterior peduncle1566

in Fig. 2.10 panel (H). Besides, my supervisor Andrew C Lin has used a custom code I created initially to analyse1567

the KCs sub types γ, α/β and α′/β′ and to identify inhibitory and excitatory synapses, and he extended it to1568

analyse KCs sub types in a more detailed level which is α/β-s, α/β-m,α/β-c, α′/β′-ap2 and α′/β′-m. He analysed1569

and plotted the results for the more detailed KCs sub types in panel (K) Fig. 2.10. Last but not least, he also did1570

the analysis and plots in Fig. 2.11.1571



Chapter 31572

Computational benefits of learning by1573

depression emerge in the model fruit fly1574

under a divisive normalisation decision1575

making policy1576

3.1 Introduction1577

In fruit flies, the repetitive coupling of an input odour (conditioned stimulus) with a reward or punishment (uncon-1578

ditioned stimulus) induces long term plasticity in the KCs’ output synapses onto the MBONs. In particular, this1579

plasticity happens via long term depression (LTD), where the output synapses from the KCs are weakened onto the1580

MBONs that encode a behaviour (approach or avoidance) opposite to the valence of the unconditioned stimulus1581

(reward or punishment); in contrast to learning by potentiating the right behaviour.1582

There exists a great body of literature which has firmly established the biological mechanisms responsible for1583

inducing long term potentiation or depression (LTP and LTD, respectively) in mammals (Malenka 1991; Markram1584

et al. 1997; Dan and Poo 2006) and other species. Nonetheless it remains elusive if the direction of plasticity in1585

these neural circuits has evolved in a non-random way to optimize some aspects of learning.1586

The idea of optimality in neural circuits (and natural systems) has provided some explanations for long left1587

unanswered questions in neuroscience. One among many was to try to explain the observed variability in the1588

plasticity loci, presynaptically or postsynaptically, (Bolshakov and Siegelbaum 1995; Zakharenko, Zablow, and1589

Siegelbaum 2001; Lisman and Raghavachari 2006). Indeed, it was only recently suggested that this variability1590

could be a result of an optimization protocol of the postsynaptic neuron statistics (Costa et al. 2017). In addition,1591

other computational studies showed that the network structure in some circuits has evolved to optimise for different1592

75
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aspects like, energy constraints or learning performance. For example, the degree of neuronal expansion from the1593

PNs to KCs in the fruit fly MB or in the mossy fibres to granule cells in the human cerebellum optimises the learning1594

performance and sensory encoding (Litwin-Kumar et al. 2017). Another work showed that the number of neurons1595

in the third layer of the olfactory circuits, granule cells in mammals and KCs in flies and other insects, scales as the1596

number of the input neurons in a manner that optimises for the learning performance and depends on the animal’s1597

lifetime (Hiratani and Latham 2022). Along the same line of thought here I ask: Can the learning rule observed in1598

the real KCs-MBONs synapses also be a result of an optimization framework?1599

What are the cases where learning by depression would offer better memory performance and data encoding1600

than in potentiation?1601

I approached this question by modeling an associative memory task in the mushroom body using a rate coding1602

network. I modelled two functions for the decision making strategy in this network: a soft-max (see the next section1603

and Chapter 4 for details) and divisive normalisation function, which normalizes the difference between outputs of 21604

MBONs encoding opposing behaviours with their sums (see details in the next section). Interestingly, I found that1605

the memory performance was indeed optimal when learning happens by depression compared to potentiation but1606

only when the decision making strategy was like a divisive normalisation. I also suggest that a Winner-Takes-All1607

circuit (WTA) architecture between the MBONs outputs can serve as a bio-plausible implementation for divisive1608

normalisation. The analysis of this WTA circuit model reveals that depression outperforms potentiation only in1609

the presence of multiplicative noise in the MBONs responses. This steers attention to an attractive avenue where1610

these theoretical predictions can be tested by quantifying the type of the MBONs’ noise in-vivo.1611

3.2 Normalisation as a canonical operation in neural circuits1612

To understand the predictions drawn from my model, one should first get familiar with the concept of normalisation,1613

its potential benefits and existence in neural circuits across different species.1614

Normalisation has been identified as one of the canonical operations in neural computations. Generally, nor-1615

malisation can be seen as the way for the brain to implement gain control on its inputs. Gain control is essentially1616

the ability of a neuron to control its output responses to stay within a certain dynamic range, irrespective of the1617

absolute values of its inputs (mean energy of the inputs).1618

It can have different forms: (a) subtractive (or additive) which is usually implemented via a shunting inhibition-1619

like mechanism (Holt and Koch 1997). This type of normalisation doesn’t change the shape of the neuron’s input-1620

output curve, that is also referred to as firing rate - Input current (f-I) curve as in (Fig3.1A). In contrast, there1621

is another type of normalisation: (b) divisive normalisation, this can change the slope of the neural input-output1622

behaviour Fig(3.1B). In this case the normalisation factor is a constant that scales the slope of the neural linear1623

output function. In contrast, I will use a non-linear neural output function throughout this chapter as depicted in1624

Fig(3.2) (using Eq.(3.1) and (3.2)), where the neural output function becomes non-linear beyond a certain input1625

value and saturates at a maximum level.1626
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In an elegant review by (Carandini and Heeger 2012) divisive normalisation has explained numerous non-linear1627

phenomena in neural responses across various sensory circuits. For instance, it has successfully accounted for the1628

surround suppression phenomenon in the primary visual cortex (Heeger, Landy, and Movshon 1991; Heeger 1992;1629

Albrecht and Geisler 1991; Carandini, Heeger, and Movshon 1997), neural responses in olfactory systems (Olsen,1630

Bhandawat, and Wilson 2010), and in the brain areas responsible for context-based decision making (Louie, Grattan,1631

and Glimcher 2011).1632
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Figure 3.1: Types of normalisation. The red curve corresponds to the original neuron’s (f-I) curve before gain control. (A)
the blue curve is the result of modulating the red curve with a subtractive normalisation. (B) the blue curve is the result of
modulating the red curve with a divisive normalisation.

In fruit flies, the outputs in the antennal lobe neurons was explained using a divisive normalisation transfer1633

function. A neuron response will saturate after the input odour strength increases past a certain value, as in Eq.1634

(3.1); similar to the results from Fig. 2 in (Olsen, Bhandawat, and Wilson 2010). The input value after which the1635

neuron response saturates as well as the value at which it will saturate both depend on the variables γ, σ and n in1636

Eq.(3.1).1637

R = γ
In

σn + In
(3.1)1638

In addition, an antennal lobe neuron’s response was found to be suppressed in the presence of another odour,1639

referred to as ”mask” odour, which would not normally evoke a response in this neuron by its own. This suppression1640

happens by means of divisive normalisation as in Eq.(3.2), as shown in (Fig.3.2B), such that the activity in a neuron1641

will be normalised by dividing its response I, with the pool of activity from the other neurons responding to the1642

mask odour, Im. This explains the shift in the antennal neural responses to the right as the concentration of the1643

mask odour increases. Note that the equation below is similar to the equation I used in Chapter 2 (see Methods,1644
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Eq.2.1) to simulate the PNs inputs to KCs.1645

R = γ
In

σn + Inm + In
(3.2)1646
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Figure 3.2: Normalisation in the olfactory neurons in the fruit fly. (A) The response of an antennal lobe neuron to input
odour concentration as in Eq.(3.1). γ and σ values are labeled on the graphs.

Divisive normalisation helps to maximize the sensitivity of neural responses by shifting the steepest regions1647

(most sensitive to input changes) in their responses curves towards the mean energy in the input stimuli. This1648

was found in the antennal neurons in the fruit fly, as shown in (Fig.3.2B), but was also evident in the retinal1649

neurons, which allowed them to adapt to the wide range of light levels present in the same scene. Through1650

divisive normalisation they can utilise their response ranges maximally to encode relevant features irrespective of1651

the background illumination (Boynton and Whitten 1970; Normann and Perlman 1979; Burkhardt 1994). This1652

results in scale-invariant neural responses, where the retinal neurons will encode the contrast levels in a visual scene1653

the same way if its background illumination was scaled up or down.1654

In addition, divisive normalisation successfully accounts for the cross-orientation suppression phenomenon1655

(among other non-linear properties) observed in the primary visual cortex neurons (V1) (Carandini, Heeger, and1656

Movshon 1997; Bauman and Bonds 1991; Freeman et al. 2002). V1 neurons selectively respond to test gratings1657

which have specific orientations and lie spatially within the neuron’s preferred field of response. However, a neu-1658

ron’s response to a preferred stimulus is reduced if a different, non-preferred stimulus (e.g., another grating moving1659

in a different direction), is superimposed. It was unclear what could cause this non-linear behaviour, until some1660
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experimental work expressly designed to test the normalisation model has strongly suggested its good quantitative1661

fits with the experimental data (Carandini, Heeger, and Movshon 1997).1662

Not only does the divisive normalisation offers scale invariant population responses, but it also helps to increase1663

the neural coding efficiency and reduce its redundancy. Neural responses are considered inefficient if they are highly1664

correlated for different inputs. Divisive normalisation was found to increase the statistical independence among1665

the primary visual cortex neurons responses(V1) (Schwartz and Simoncelli 2001a; Lyu and Simoncelli 2009). As1666

well, it is responsible for eliminating the dependency between the projection neurons compared to the upstream1667

(pre-normalised) olfactory receptor neurons responses (Luo, Axel, and Abbott 2010; Olsen, Bhandawat, and Wilson1668

2010).1669

3.3 Mathematical analysis: Learning by depression is optimal under1670

a divisive normalisation decision making policy.1671

Not only divisive normalisation was observed as a canonical operation across many sensory neural circuits, but it was1672

also evident in cortical areas involved in decision making. It was found that divisive normalisation accounts for the1673

values modulation and relative evaluation of rewarded options presented to the participants in (Louie, Grattan, and1674

Glimcher 2011). In particular, they studied the neurons in the lateral intraparietal cortex (LIP) area in monkeys,1675

these neurons are unique since they are at the nexus of decision making and sensory stimuli representation. LIP1676

neurons are activated by visual stimuli in a certain visual field, as well they fire when the monkey decides to pick1677

an option from a set of visual inputs by saccading eye movements (Platt and Glimcher 1999). In Louie et al, they1678

hypothesized that the LIP neurons activities are modulated via divisive normalisation with respect to the pooled1679

activity of the other LIP neurons, which encode other saccades directions associated with higher or lower rewards.1680

MBONs in the fruit fly are similar to the LIP neurons, to some extent. They receive olfactory responses from1681

the KCs as their inputs and are upstream to behaviour-guiding neurons. It is plausible that MBONs’ outputs may1682

be combined by divisive normalisation. The question that naturally follows, what will be the benefits of divisive1683

normalisation if it exists in the MBONs circuitry? The answer is not too straightforward. It will require formal1684

analyses to reveal it. To this end, I will introduce in this section a mathematical treatment which suggests that1685

the learning rule between the KCs-MBONs weights could have evolved by depression to optimise the memory1686

performance compared to the other alternative rule by potentiation. The computational benefits of learning by1687

depression will follow if and only if the bias towards one decision (difference between the opposite decisions values1688

which are encoded by the MBONs firing rates) is normalised by dividing it with the sum of both decisions values1689

(sum of the MBONs firing rates), i.e. context-based value learning.1690

Consider the learned bias, R, to avoid an odour, ranging from -1 to 1, which is related to the probability of1691

avoiding the odour (ranging from 0 to 1) by,1692

R = 2[probability]–1 (3.3)1693
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Under softmax decision policy, the learned bias to avoid an odour can be written as,1694

R =
enAvoid − enApproach

enAvoid + enApproach

= 2[
enAvoid

enApproach + enAvoid
]− 1

= 2

[
1

e−n(Avoid−Approach) + 1

]
− 1

(3.4)1695

Where Avoid and Approach are the responses of the avoidance and approach MBONs, respectively, to an odour1696

after memory formation. The mulitplicative factor n in Eq.(3.4) controls the steepness of the Sigmoid function,1697

the speed at which the probability shifts given a difference between the Avoid and Approach MBONs readouts. A1698

decision policy with divisive normalisation will use a similar form to Eq. (3.4), but will be:1699

R = g[
Avoidn −Approachn

kn +Avoidn +Approachn
] (3.5)1700

Again, the exponent n expresses how steeply the bias changes with the ratio of Avoid and Approach. g is the1701

gain and k is a constant to prevent division by zero that ends up controlling how ‘divisive’ the normalisation is.1702

Consider a case with one Avoidance MBON and one Approach MBON. The activity of each MBON is the sum1703

of active KCs, weighted by the KC-MBON synaptic strength, e.g., if xi is the activity of the ith KC and Wav,i is1704

the weight of synapse from the ith KC to the Avoid MBON, then Avoid =
∑n
i Wav,ixi. Consider the symmetrical1705

cases: depressing KC-MBON synaptic weights toward incorrect actions from 1 to z (0 ≤ z ≤ 1), Vs. potentiating1706

them towards the correct actions, from z to 1. Suppose odour A activates a set of a unique KCs, shown by red1707

colour in Fig.3.3, odour B activates a set of b unique KCs, shown by green in Fig.3.3, and both A and B activate1708

the same set of c overlapping KCs, assuming one KC for simplicity shown by blue in Fig.3.3. Suppose further that1709

KCs have binary activity of 0 or 1, and the fly experiences a sequential learning of [A+punishment], followed by1710

[B+ reward].1711
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odor A odor B 

Figure 3.3: Each of odour A and B activates unique KCs shown in red and green respectively. Both odours activate an
overlapping KC shown in blue.

In the case of learning by depression, the Approach MBON response to odour A is (a+ c) before training (the1712

left panel in Fig.3.4) and z(a + c) after training (the mid panel in Fig.3.4) because all of the (a + c) KCs have1713

their output synapses depressed from 1 to z. The Avoidance output will stay the same at this stage of training,1714

i.e (a+ c). Yet, after pairing [B+reward] the Avoidance MBON response to odour B will decrease from (b+ c) to1715

z(b+ c). Importantly, after this coupling the Avoidance MBON output response to odour A will not stay the same,1716

instead it will decrease from (a+ c) to (a+ zc), because only the c overlapping KCs were depressed by the pairing1717

of odour [B+reward], as shown by the right panel in Fig.3.4.1718

On the other hand, the case of potentiation, both MBONs’ responses to odour A start out at z(a + c); the1719

Avoidance MBON’s response increases to (a + c) (all (a + c) KCs have their output synapses potentiated from z1720

to 1), while the Approach MBON’s responses increases from (z(a + c)) before training to (za + c) after pairing1721

[B+reward] (the a KCs unique to odour A remain unchanged while the c overlapping ones have their output synapses1722

potentiated from z to 1).1723
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Figure 3.4: Changes in the output weights from KCs to MBONs after learning by depression. Learning by penalising the
wrong action.

Under a softmax policy and learning by depression, the Pavoid will look like:1724

Pavoid =
1

1 + e−n(Avoid−Approach)

=
1

1 + e−n(a+zc−z(a+c))

=
1

1 + e−n(1−z)a

(3.6)1725

Likewise, the Pavoid will be the same when learning by potentiation, because the c terms in the exponent in the1726

denominator will also cancel out. That is, depression and potentiation are equivalent under softmax.1727

On the contrary, under divisive normalisation and learning by depression, the learned bias (Rd) and probability1728

of avoiding odour A (Pavoid|d) will be,1729

Rd = g

(
Avoidn −Approachn

kn +Avoidn +Approachn

)
= g

(
(a+ zc)n − (z(a+ c))n

kn + (a+ zc)n + (z(a+ c))n

) (3.7)1730

And,1731

Pavoid|d = 0.5(Rd + 1)

= 0.5

(
g

(a+ zc)n − (z(a+ c))n

kn + (a+ zc)n + (z(a+ c))n
+ 1

)
= 0.5

(
g

2(a+ zc)n + kn

kn + (a+ zc)n + (z(a+ c))n

) (3.8)1732

Whilst under potentiation the learned bias (Rp) and probability of avoiding odour A (Pavoid|p) will be,1733

Rp = g

(
Avoidn −Approachn

kn +Avoidn +Approachn

)
= g

(
(a+ c)n − (za+ c)n

kn + (a+ c)n + (za+ c)n

) (3.9)1734

And,1735

Pavoid|p = 0.5(Rp + 1)

= 0.5

(
g

(a+ c)n − (za+ c)n

kn + (a+ c)n + (za+ c)n
+ 1

)
= 0.5

(
g

2(a+ zc)n + kn

kn + (a+ c)n + (za+ c)n

) (3.10)1736



3.3. MATHEMATICAL ANALYSIS: LEARNING BY DEPRESSION IS OPTIMAL UNDER A DIVISIVE 83

if n =1, then Eq.(3.8) and (3.10) become,1737

Pavoid|d = 0.5g

(
2a+ 2zc+ k

k + (1 + z)a+ 2zc

)
(3.11)1738

And,1739

Pavoid|p = 0.5g

(
2a+ 2zc+ k

k + (1 + z)a+ 2c

)
(3.12)1740

Comparing Eq. (3.11) and (3.12) and since z <1, the probability to avoid the punished odour A is lower in1741

potentiation than in depression. If c=0, i.e. no overlapping KCs between the responses for odours A and B, then1742

learning by depression and potentiation are equivalent.1743

We can find the conditions under which the learned bias under potentiation is less than that under depression for1744

the more general cases where n > 0. For the sake of simplifying the expression later on, let’s define, the following1745

quantities: [v = a + zc], [p = z(a + c)] and [x = (1 − z)c]. Hence, we can rewrite both Rp (Eq.(3.9)) and Rd1746

(Eq.(3.7)) in terms of these quantities v, p and x as follows,1747

Rd = g

(
(a+ zc)n − (z(a+ c))n

kn + (a+ zc)n + (z(a+ c))n

)
= g

(
vn − pn

kn + vn + pn

) (3.13)1748

Rp = g

(
(a+ c)n − (za+ c)n

kn + (a+ c)n + (za+ c)n

)
= g

(
(v + x)n − (p+ x)n

kn + (v + x)n + (p+ x)n

) (3.14)1749

When there is no overlap between the KCs responses for odours A and B, i.e. c=0 and x = 0, again, the learned1750

bias by potentiation and depression are the same, Eq.(3.13) and (3.14) are the same. However, as c increases, the1751

learned bias under potentiation will always be less than that under depression in the cases where n < 1. To see1752

this, first we need to compute the derivative of the learned bias under potentiation with respect to x, hence:1753

δRp
δx

=
δ

δx
g

(
(v + x)n − (p+ x)n

kn + (v + x)n + (p+ x)n

)
= n

kn[(v + x)n−1 − (p+ x)n−1] + 2(p− v)(p+ x)n−1(v + x)n−1

(kn + (v + x)n + (p+ x)n)2

(3.15)1754

if n < 1, and p < v, then the numerator in the expression above in Eq.(3.15) will always be negative for any x > 0,1755

i.e. δRp
δx will be always negative. Thanks to the rearrangement of the variables (a, b, c) into (v, p, x), it becomes1756

more obvious the different effects that c will have on the learned biases under depression compared to potentiation.1757

In particular when n < 1 the increase in c will cause more decrease in Rp than in Rd, captured in the quantity1758

x, which equals 0 in Rd, (Rd = Rp|x=0). Rd will also drop as c grows, but it will always stay higher than Rp.1759

This is depicted in (Fig3.5) under different values of n and z, while holding the other parameters constant: k = 10,1760

a = b = 10. As c is varying in an arbitrary range from 15 to 60, so is x where x = (1 − z)c. In both cases of n1761

values shown below in (Fig.3.5), as z increases in the values from [0.1, 0.4, 0.6] the range of x decreases, with the1762
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blue and red curves at value of z = 0.6 being shorter than those at z = 0.1, for the same {n, a, b, k}, (Fig.3.5 A1763

and B). Also, as z increases (or x decreases) the learned bias under depression will start to be similar to that under1764

potentiation, bringing the blue and red curves with the same value of z closer to each other, (Fig3.5 A and B).1765
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Figure 3.5: Learned bias in depression is always higher than potentiation for any n < 1: (A) n = 0.8, (B) n = 0.2. Learned
bias by depression remains higher than potentiation for different conditions of z: results are shown for z=0.1, 0.4 and 0.6.
The gap between the learned biases under depression and potentiation closes as the magnitude of the synaptic plasticity, z,
increases.

For the other region of the n space, when n > 1, there will be cases where Rp is less than Rd and others where1766

the reverse will happen. That depends on the relative values of k and a. Rp will be less than Rd for small values1767

of k, in particular when kn is less than the quantity below,1768

kn <
2(vn(p+ x)n − pn(v + x)n)

((v + x)n − vn − (p+ x)n + pn)

kn <
2((a+ zc)n(za+ c)n − zn(a+ c)2n)

((1 + zn)(a+ c)n − (a+ zc)n − (za+ c)n)

(3.16)1769

rewriting Eq.(3.16) using y = c
a , i.e., ratio of overlapping cells to unique cells1770

kn < 2an
(1 + zy)n(z + y)n − zn(1 + y)2n

(1 + zn)(1 + y)n − (1 + zy)n − (z + y)n
(3.17)1771
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This reformulation shows that learning by depression will outperform potentiation for low values of k, in particular1772

when it is small enough relative to a (the number of unique active KCs). Intuitively if an odour elicit sparser1773

responses, then the chance of it having overlapping KCs with other odour responses will be slimmer, which means1774

that k will dominate the denominator in Eq. (3.13) and (3.14) and the learned bias will behave more like a softmax1775

policy. Figure 3.6 illustrates the effect of the relative magnitudes of k and a, at different values of z and c, on Rp1776

and Rd. s1777
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Figure 3.6: Learned bias by depression is better than potentiation for high values of a
k

, when n > 1. A learning by
potentiation outperforms depression for low values of the ratio a

k
. The order switches as z increases. As z increases,

learning by depression crosses the learning curve of potentiation at lower values of c. B learning by depression outperforms
potentiation under more conditions of z and c when a

k
= 1. C Depression outperforms potentiation under all conditions of

z when k is less than a, a
k
>1, equals 1.6. Learned biases for different values of z are shown by the solid, dashed and dotted

curves respectively.

(Please see notes of originality for more details on my partial contribution to the this subsection)1778
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3.4 Simulation results: Learning by depression enhances the memory1779

performance in the fruit fly model under a divisive normalisation1780

decision policy1781

In the last section, I introduced a mathematical reasoning for why learning by depression can be better than1782

potentiation when opposing MBONs are integrated by divisive normalisation.1783

In this subsection I sought to, first visualize the effect of divisive normalisation on the probability of making the1784

right decision (irrespective of the learning rule) in a different view, with more exploration for the parameter space1785

for n, k and Approach(Avoidance). Second, I test the hypothesis of optimality via learning by depression using1786

a MB model with realistic input PN responses. I simulated the learning task (detailed in Chapter 3) using the1787

tuned flies instantiations and inputs in the 6 models (random, homogeneous, activity dependent and independent1788

models) from the previous simulation in Chapter 3 (see Fig.2.5). Then I trained these networks once by depression1789

and another time by potentiation, and calculated their performances in each learning rule using 2 decision making1790

policies: (a) softmax policy as in Eq.(3.6) (b) divisive normalisation policy similar to equations (3.8) and (3.10).1791

For the first aim of this subsection, I used arbitrary values to simulate the MBONs firing rates that encodes1792

opposite actions. The MBONs firing rates are varied arbitrarily in a range from 1 to 10, in steps of 0.5. Then, I1793

measured the probability of choosing the ith action (Zi) using the equation below, which is identical to Eq.(3.8)1794

and (3.10), but using the variables Zi and Zj in place of Approach and Avoidance.1795

Pi = 0.5(Ri + 1)

= 0.5g

(
(Zi)

n − (Zj)
n

kn + (Zi)n + (Zj)n
+ 1

) (3.18)1796

For each pair of action values {Zi and Zj}, I calculated the probability of making the right action by picking1797

the option with the bigger value p as follows,1798

p =


Pi, if {Zi > Zj}

Pj , if{Zj > Zi}
(3.19)1799

I explored the accuracy values under different combinations for n and k. First, n varied from 1 to 3 in steps of1800

1. And k arbitrarily changes from 0.1 to 10 by factors of 10, however an extra scale of k was explored when k > 1,1801

that is k = 5.1802

This result in the grid of probability maps in Fig.3.7. An important observation in the figure below, that the1803

ratio of k
Zi(orZj)

determines how much the decision making policy will behave either as a divisive normalisation1804

function or a soft-max. In the probability maps where k = 0.1, and given the same gap between both the action1805

values ∆, the probability of making the right action (picking the larger outcome) is more if the two action values1806

were small than if they were both large. For instance consider the cases with the same gap ∆ = 1, the probability1807
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of picking Zi over Zj , is bigger when their values are 2 and 1 respectively, than if they were 10 and 9. This is1808

true for all n. This means that for low values of k, relative to the actions values, the decision making will be more1809

like a divisive normalisation, where the same gap between action values is treated more reliably if their absolute1810

values are low than if they were high. In contrast, if k is high or comparable to the action values, like the heat1811

maps for k = 5 and k = 10, k dominates the denominator of Eq.(3.18), so the probability of picking the right1812

action is mostly a function of the gap between both values, more like a softmax function. The normalisation effect1813

can be visualised in these probability maps by examining the shape of what is called ‘isolines’. Isolines represent1814

equal values of probabilities, shown by black curves in Figure 3.7. For low values of k where decision looks more1815

like a divisive normalisation function, these curves diverge in a fan shaped beam from the bottom left corner in a1816

probability map, as shown in the probability maps of low k, k=0.1 and 1. In contrast they will run parallel for high1817

values of k, where the probability is the same for a given gap between action values irrespective of their order of1818

magnitudes, like in the probability maps with k = 5 or 10.1819
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Figure 3.7: Toy example to show the effect of the ratio between k and an option value {Zi or Zj} on shifting the probability
of picking the bigger outcome from a softmax function to a divisive normalisation one. Each pixel in every heat map in this
3x4 grid is the probability of picking the bigger outcome between Zi and Zj . The heat maps with higher k and/or n reveals
a decision function that depends only on the gap between the given options values [∆ = Zi − Zj ]. For lower k, k = 0.1 or
k = 1, and for the same gap between both options the probability of picking the bigger option grows as the values of Zi
and Zj drops. This is depicted by the isolines divergence in a fan shaped beam from the left bottom corner in these maps.
Whereas the isolines in the heat maps of higher k run in parallel.
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3.4.1 Learning by depression enhances the memory performance under a divisive1820

normalisation decision policy and using real odour input responses1821

For the second aim of this subsection, I will test the hypothesis that learning by depression is better than potenti-1822

ation using realistic odour input responses. I simulated the mushroom body network with real odour responses in1823

(Hallem and Carlson 2006) and calculated its performance in the memory task using two decision making policies:1824

(a) softmax policy (b) divisive normalisation policy. To implement the divisive normalisation policy I chose a value1825

for k to be significantly lower than the order of magnitude of the MBONs firing rates, k = 0.001. For simplicity I1826

set n = 1, g = 1.1827

1828

For the softmax policy, learning by depression and potentiation are equivalent, as in Fig.3.8. Performances are1829

shown for the different models presented in Chapter 2, the accuracy values shown below are at the peak learning1830

rate in each model. These results agree with the analytical treatment following Eq.(3.6).1831
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Figure 3.8: Learning by potentiation and depression are equivalent under a softmax policy.

However, and as we suggested, learning by depression is ”optimal” under a divisive normalisation policy, as in1832

Fig.3.9.1833
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Figure 3.9: Learning by depression is better than potentiation when the difference from the opposing MBONs outputs is
normalised by their sum. n=20 random fly networks instantiations.

Although the activity-dependent compensatory models have outperformed the other models under learning by1834

depression and potentiation with a softmax decision policy, as well under potentiation and a divisive normalisation1835

decision policy, it was interesting to see here how this pattern has changed under learning by depression and a1836

divisive normalisation decision policy.1837

Under learning by depression and divisive normalisation decision policy, the activity dependent models had1838

lower memory performances than the random, homogeneous and the activity-independent equalisation models: as1839

the blue, green and magenta bars are smaller than the red, black and cyan bars in Fig.3.9 (and Fig.3.16 in the next1840

section using a winner take all circuit).1841

I hypothesized that this observed change could be due to the large variance in the KCs valence specificity levels1842

in the random, homogeneous and the activity-independent equalisation models. While it was non-beneficial under1843

a softmax policy, the large variance in the KCs valence specificities (and sparsity levels) will become useful, in1844

particular, under depression and a divisive normalisation decision policy.1845

KCs in the activity-dependent equalisation models are more similar among each other in their valence specificity1846

values. Although the KCs in these models are still highly sparse, there is less percentage of them that are perfectly1847

specific compared to the random, homogeneous and activity-independent equalisation models. This is shown in1848

Fig.3.10, the cumulative distribution functions (cdf) of the valence specificity in the homogeneous, random and1849

activity independent equalisation models (top panels) are more shifted to the right and have shallower slopes1850

(higher average valence specificity) than the activity dependent equalisation models in the bottom panels in Fig.1851

3.10.1852
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Figure 3.10: The cumulative distribution function of valence specificity in the different models. odour inputs and flies
networks instantiations (n=20) used here are similar to those in Chapter 2 Fig. 2.5.
The random, homogeneous and activity-independent equalisation models (top panels; black, red and cyan curves) have higher
average valence specificity values than the activity dependent models in the bottom panels (blue, green, magenta curves).
The homogeneous, random and cyan models have few perfectly specific KCs (specificity =1) while the activity dependent
equalisation models have none. The sharp rise at the end of the black, red and cyan curves in the top panels account for the
mass of the perfectly specific KCs.

Under learning by depression, the highly specific KCs will maintain higher differences between their output1853

weights onto the MBONs. Since the homogeneous, random and activity-independent equalisation models have more1854

perfectly specific KCs than the activity-dependent equalisation models, thus we expect that as learning progresses1855

the homogeneous, random and activity-independent models would have a higher number of KCs with large difference1856

between their MBONs weights. To test this hypothesis, I plotted the cumulative distribution functions (cdf) of the1857

absolute difference between the MBONs weights in each of the 6 different models. Since the difference between the1858

MBONs weights depends on the learning rate, I plotted these cdf plots at different learning rates under each learning1859

rule (depression and potentiation) in Fig. 3.11. As learning progresses, the cdf curves of the absolute difference1860

between the MBONs weights will move towards the upper left corner as in Fig. 3.11. Notably I also found that the1861

peak learning rate (peak performances) is different under each decision making policy, shown by the dashed and1862

solid lines in Fig. 3.11; also as we will see in Fig. 3.12.1863

Under a divisive normalisation policy and learning by depression and at the peak learning rates (peak per-1864

formances) the KCs in the homogeneous, random and activity-independent equalisation models retained higher1865

absolute differences between their MBONs weights than in the activity-dependent equalisation models, (bold solid1866

curves in top and bottom panels, respectively, under depression in Fig. 3.11). The cdfs of the activity-dependent1867

equalisation models are sharp L shaped curves with the bend near the upper left corner. Hardly any cells have1868

high difference between their MBONs weights, whereas the random, homogeneous, and activity-independent models1869
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slope more gradually.1870

In contrast, under a softmax policy, each of the 6 models had the same peak learning rate in learning by1871

depression and potentiation; compare the dashed curves in the homogeneous, random, and activity-independent1872

equalisation models (top panels) in Fig. 3.11 under potentiation and depression, and the dashed and dotted curves1873

in the activity-dependent equalisation models (bottom panels) under potentiation and depression. In fact, under1874

a softmax policy and depression, or softmax policy and potentiation the cdfs of the activity-dependent models1875

(dashed curves under depression and dotted curves under potentiation in bottom panels in Fig. 3.11) are actually1876

a bit shifted right compared to the homogeneous, random, and activity-independent models (dashed curves under1877

depression and potentiation in top panels in Fig. 3.11); that’s why the activity-dependent models do better under1878

these conditions. The same trend was found under learning by potentiation and a divisive normalisation policy,1879

shown by the bold solid curves for the homogeneous, random, and activity-independent models (top panels) and1880

dotted curves for the activity-dependent ones (bottom panels) under potentiation in Fig. 3.11.1881

Overall, these results means that the effect of the perfectly specific KCs in the homogeneous, random and1882

activity-independent equalisation models would only be reflected in the models performances under a depression1883

learning rule and a divisive normalisation decision policy. Under these conditions, the more the non-specific and1884

non-sparse KCs are having their output weights silenced, the clearer the right action will become thanks to the1885

responses from the most specific and sparsest neurons. This effect would be enlarged though under a divisive1886

normalisation decision policy, since the differences between action values due to the sparsest and most specific KCs1887

responses will be blown up when normalised by the minute responses from the majority of the non-sparse (or useless)1888

KCs. This is opposed to the case of learning by potentiation (and especially under a divisive normalisation policy),1889

where the higher differences between the opposite action values from the perfectly specific KCs will be diluted when1890

normalised by the high magnitudes of action values from the majority of the non-sparse and non-specific KCs.1891

This also means that the peak performances under learning by depression and a divisive normalisation policy1892

will be happen at higher learning rates than these under learning by depression and a softmax decision policy; i.e.1893

models performances will increase as the KCs-MBONs weights are updated using bigger incremental steps that is1894

when the non-specific KCs will be silenced the most. Indeed as shown in Fig.3.12, for the same model flies and1895

in learning by depression, the random, homogeneous and activity-independent equalisation models have their peak1896

performances under a divisive normalisation policy (Fig.3.12 B) shifted more to the right, higher learning rates than1897

their peak learning rates under a softmax policy (Fig.3.12 A). Same applies for the activity-dependent equalisation1898

models, not highlighted on the graph.1899

At the end of this section, we saw that learning by depression was better than potentiation on average across1900

the different model types if MBONs are integrated by divisive normalisation. This motivated us to think of a1901

bio-plausible mechanistic implementation for divisive normalisation in the MBONs. One appealing option is the1902

Winner-take-all (WTA) circuit architecture. WTA competition between a set of {N} options will output the option1903

with the maximum value. The probability of an option to win increases when its value is greatly higher than the1904
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Figure 3.11: The cumulative distribution function (cdf) of the differences between the MBONs weights for the different
models, plotted for different learning rates and under learning by depression (left half of the figure) and potentiation (the right
half). Odor inputs and flies random networks instantiations (n=20) are the same as in Chapter 2, Fig. 2.5. The black arrow
shows the direction of increase in the learning rate. All models have the same cdf of the differences between their MBONs
weights (at their peak learning rates) after learning by depression or potentiation under a softmax policy. This is shown
by the dashed curves (black, red and cyan dashed curves) under potentiation and depression for the homogeneous, random
and activity-independent equalisation models, and by the dashed and dotted curves for the activity-dependent equalisation
models (blue, green, and magenta curves) under depression and potentiation, respectively. The peak learning rates in the
activity-dependent equalisation models are roughly the same in learning by potentiation and under a softmax or a divisive
normalisation policy (the dotted curves in the bottom panels under potentiation).
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Figure 3.12: The random, Homogeneous and activity-independent equalisation models have their peak performances at
different learning rates under each of the decision making policies: softmax and divisive normalisation. The peak scores in the
random, homogeneous and activity-independent equalisation models, shown by the red, black and cyan curves respectively,
are shifted more to the right under divisive normalisation (B) than in a softmax decision policy (A), n=20. The gray shading
highlights the region of maximum performance in the red, black and cyan models under each decision rule.

rest of the inputs. Intuitively, this behaviour is similar to the probability of choosing this option under a divisive1905

normalisation function; the higher its value compared to the other options, the higher the probability of picking it1906

under a divisive normalisation decision function. In the next section, I will present the general concept of WTA1907

circuits, the conditions under which they can approximate a divisive normalisation policy, and I will predict the1908

nature of noise in the MBONs that will be required to realize the divisive normalisation policy.1909

3.5 Winner-take-all (WTA) circuit model to approximate divisive nor-1910

malisation in different neural circuits1911

Divisive normalisation can give rise to 2 operating regimes based on the values of the input signals. It can either act1912

as an averaging kernel if all the inputs are relatively equal, or as a kernel that find the maximum value among N1913

choices if one of the inputs is significantly higher than the other values. The process of finding the maximum value1914

among a pool of choices is also referred to as max-pooling and sometimes Winner-Take-All competition (WTA).1915
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WTA behaviour is evident in many neural systems that underlie psychophysical decision tasks and attention visual1916

search (Desimone and Duncan 1995; Gold and Shadlen 2007a; Churchland and Ditterich 2012).1917

WTA dynamics is also responsible for the sparse population responses in the fruit fly’s KCs (Stevens 2015),1918

also in the hippocampal place cells (Amaral and Witter 1989; Sreenivasan and Fiete 2011). It is also generally1919

thought to be observed in brain areas with strong inhibition like, the basal ganglia (Bogacz and Gurney 2007; Mink1920

1996; Redgrave, Prescott, and Gurney 1999). In the upcoming sections I predict that WTA competition between1921

the MBONs or between neurons downstream of MBONs can replicate the divisive normalisation behaviour under1922

certain conditions which are: (a) self-excitatory but mutually inhibitory MBONs (b) multiplicative source of noise1923

in the MBONs outputs.1924

Canonical WTA circuit model between the MBONs outputs reproduce the results1925

from divisive normalisation1926

I used the canonical WTA architecture from (Coultrip, Granger, and Lynch 1992; Kriener, Chaudhuri, and Fiete1927

2020a; Xie, Hahnloser, and Seung 2002) to simulate the competition between the MBONs outputs. In the canonical1928

WTA circuit there are noisy b options in {B} which are sampled by a set of observing neurons, zn in {Zn}. After1929

time T , the circuit will reach a steady state where the maximum option in {B}: bmax will be output by its respective1930

observer neuron zmax.1931

At time step (t+δt) each observer neuron (zn) will sample the input value from the source bn, receive excitation1932

from its own state at the previous time step t (self-excitation), as well it will be inhibited by the rest of the observer1933

neurons zm,(m 6=n). This architecture is illustrated as in the figure below,1934

α
β

b1b2b3 < ≤
Δ

3 2 1

Figure 3.13: Schematic of the WTA canonical circuit

In the case of the mushroom body output neurons there will only be 2 competing options in the set {B}:1935

Avoidance and Approach. KCs responses for the jth odour will be integrated by each MBON, we can define the1936

dynamic state of a MBON, zjn, as follows:1937

τ
dzjn
dt

+ zjn = Relu(αzjn − β
∑

m,(m 6=n)

zjm + bjn + ηn) (3.20)1938
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where bjn is the synaptic activation onto the nth MBON, from the KCs responses to the jth odour, as1939

bjn =

K∑
k=1

WnkY
j
k (3.21)1940

Here Relu(.) = max(0, .), a rectifying linear unit which ensures positive firing rates (similar to that used in1941

Chapter 2; see Methods), whereas τ determines the time constant of the MBONs dynamics. In the simulations,1942

τ was set to 1 on arbitrary time units. The change in the neural state of the nth MBON,
dzjn
dt , is function of the1943

strength of the neuron’s self-excitation, α, the strength of lateral inhibition from the other MBON, denoted by β,1944

and the input synaptic activation that it receives from the KCs odour responses, bjn.1945

In a non-deterministic WTA circuit the external evidences in the channels bjn are noisy time series, with an1946

overriding noise process ηn. In reality MBONs synaptic activations can be noisy due to random fluctuations in the1947

MBONs firing responses, or stochastic synaptic failures. I modelled the noise process in each MBON’s synaptic1948

activations using private and statistically identical Ornstein–Uhlenbeck (O-U) processes (Gillespie 1996) given by,1949

τη
dηn(t)

dt
+ ηn(t) = ση

√
2τηξn(t) (3.22)1950

Where ξn(t) is Gaussian white noise such that: 〈ξn(t)〉=0 and 〈ξn(t)ξm(t′)〉= δnmδ(t − t′). For the simulation of1951

the O-U process, I referred to the numerical solution of Eq.(3.22) over a time grid with an increment ∆t, given in1952

(Kriener, Chaudhuri, and Fiete 2020a)(Gillespie 1996), as follows1953

ηn(t+ ∆t) = ηn(t)e
−∆t
τη + ση

√
1− e−

−2∆t
τη ξ(t) (3.23)1954

Here τη is the time constant for the O-U noise process, which I set to 0.5 on an arbitrary scale of time units. The1955

idea was to set τη to be small enough relative to τ , such that the noise process dynamics change fast enough for the1956

MBON states to capture that change. ση though represent the variance of the O-U noise, that is the stochasticity1957

of the MBONs’ synaptic activations.1958

I set the initial conditions zjn(0) = 0 for all n ∈ {Approach,Avoidance}. To guarantee WTA dynamics with1959

a unique winner and convergence of the circuit to a steady state, I have set the parameters values of α and β as1960

in (Xie, Hahnloser, and Seung 2002; Kriener, Chaudhuri, and Fiete 2020a). First, for the system to converge to a1961

steady state, if it exists, the strength of the self excitation has to be less than 1, α < 1. Second, to guarantee a1962

WTA competition with a unique winner (β) has to be greater than (1− α). These constraints can be explained by1963

re-writing Eq.(3.20) in a vector notation for the 2 competing MBONs, in the absence of noise. Thus, I will define1964

~zj ,
~̇
zj , W , and ~bj to denote the following: 2x1 vector of the MBONs states, a 2x1 vector of the gradient of MBONs1965

states, 2x2 coupling matrix which is function of α and β (see the equation below), and 2x1 vector of the input1966

activation from KCs odour responses, respectively:1967

τ
~̇
zj + ~zj = Relu(W ~zj + ~bj) (3.24)1968

where, W is,1969
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W =

 α −β

−β α

 (3.25)1970

The coupling matrix, W has one eigenvalue λcom = −1 +α−β with uniform eigenvector 1 = [1, 1], and another1971

eigenvalue λdiff = −1 + α + β with eigenvector of the difference modes between both MBONs whose entries sum1972

to zero. For the circuit stability, the first eigenvector (uniform vector) has to be decaying as time evolves, this1973

means that λcom should be negative. Therefore, having α < 1, and since β > 0, will be sufficient for the circuit’s1974

convergence to a steady state. To implement the WTA dynamics the lateral inhibition (β) has to be strong enough1975

to allow for one unique winner. In particular, the second eigenvector which represents the differential modes has to1976

be unstable, that will require λdiff to be positive (Xie, Hahnloser, and Seung 2002), i.e,1977

−1 + α+ β > 0

∴ β > (1− α)
(3.26)1978

The winner neuron, or more generally the winner neurons group, should converge to an asymptotic value of xinf =1979

bw
1−α as was shown in (Xie, Hahnloser, and Seung 2002), where bw is the maximum value in the input vector bj .1980

In our case this will be the KCs’ outputs drive unto the MBON with the highest synaptic activations. Next, I1981

simulated the non-deterministic WTA dynamics in model MBONs. I sought to explore the effect of various types1982

of the noise on the memory performance and on their approximation to the behaviour of divisive normalisation. To1983

do this, I have defined the variance of the O-U noise process ση as follows,1984

σjηn = (bjn)ψ (3.27)1985

I varied the variable ψ such that, ψ ∈ [0, 0.5, 1]. When ψ is 0 the noise exponent (σjηn) in Eq.(3.27) will be 1,1986

and the O-U noise process defined in Eq.(3.23) will be a Gaussian noise with zero mean and unit variance, that is1987

an additive noise independent of the MBONs responses. However, at ψ=0.5 or 1 the noise in the MBONs will be a1988

multiplicative like noise, so the higher is the MBON’s output, the more noisy it is.1989

I simulated a toy example to calculate the probability of choosing the bigger outcome between zi and zj in a1990

WTA circuit (similar to Fig.3.7). Under each noise regime ψ ∈ {0, 0.5, 1}, the probability of choosing the bigger1991

outcome was calculated as the average number of successful actions across (T=20) random trials where the winner1992

neuron has the biggest value between (Zi, Zj), as follows:1993
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Figure 3.14: Toy example similar to Fig. 3.7 in a WTA circuit to show the effect of the noise on shifting the probability
of picking the bigger outcome from a softmax like to a divisive normalisation function. Each pixel in every heat map in this
1x3 grid is the probability of picking the bigger outcome between Zi and Zj . For each pair of options values, the probability
of picking the bigger option is averaged over (n=20) random trials. In each random trial (under a certain noise regime) the
noise values were randomly added to the WTA circuit’s neurons.
The panels show 3 different noise regimes, (left panel): additive Gaussian white noise, (middle panel): Gaussian noise with
zero mean and variance equal

√
Zi/j , (right panel): Gaussian noise with zero mean and variance equal Zi/j . The heat map

with additive noise (left) reveals a decision function that depends only on the gap between the given options [∆ = Zi − Zj ].
Similar to the maps in (Fig. 3.7) with high k values. The multiplicative noise regimes (middle and right) show a behaviour
similar to a divisive normalisation function. Compare to the maps in (Fig. 3.7) with low values of k.
The WTA circuit parameters in this simulation were set as: α=0.7, β=0.9, τη=0.5, ∆t=

τη
50

, τ=1. Zi and Zj run from 1 to
20 in steps of 1.

Acc =
1

T

T∑
t=1

pt

pt =


1, if {Zi > Zj}&{WTA(winner) = i}

1, if{Zj > Zi}&{WTA(winner) = j}

0.5, if{Zi = Zj}

(3.28)1994

I found that the results under an additive noise (ψ = 0), shown in the left panel in Fig. 3.14, were similar1995

to these in Fig.3.7 when k>>a (e.g. k=5 and a=2) that is when the decision making policy was behaving like1996

a softmax function. In addition, the isolines in the left panel of (Fig.3.14) run in parallel similar to those in the1997

panels on the 3rd and 4th columns of (Fig.3.7) where k>>a. This means in the additive noise regime the difference1998

between the smaller and bigger outcome is what determines the winning neuron.1999

Note that the off-diagonal probability values in the left panel of Fig. 3.14 are significantly higher than those in2000

(Fig. 3.7) when k >> a; the off-diagonal values in the left panel are mostly 1. The reason is that in the WTA example2001
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I set the probability of choosing the right action to 1 if the winner neuron has the bigger value, as in Eq.(3.28).2002

This contrasts with the probability calculation in (Fig. 3.7) using Eq.(3.19) and (3.18), where the probability value2003

is a real number that drops as k increases in the denominator.2004

On the other hand, when (ψ) is 1 or 0.5 the amount of noise in each outcome value (Eq.(3.27)) will be equal2005

to either the outcome value itself or to its square root, respectively. Thus, the variance of the Gaussian noise2006

in Eq.(3.23) will be modulated by a multiplicative factor that is function of the outcome value. Indeed, in this2007

multiplicative noise regime the probability of choosing the bigger outcome will decrease as the values of the outcomes2008

(zi or zj) increase. This is shown by the divergence of the isolines from the bottom left corners of the middle and2009

right panels in Fig.3.14, a behaviour that is similar to Fig.3.7 when k<<a when the decision making function2010

behaves like a divisive normalisation function.2011

Next, I used the odour inputs and tuned flies instantiations from Chapter 3 in (Fig. 2.5) to test the models2012

performances using a WTA model between the MBONs outputs. Under additive noise regime, i.e. ψ=0, the models2013

performed the same when learning happened by potentiation and depression, as shown in Fig. 3.15. This agrees2014

with the results obtained earlier under a softmax decision making strategy shown in Fig. 3.8.2015
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Figure 3.15: Learning by depression and potentiation are equivalent in a WTA circuit with additive noise.

In contrast, when the noise was implemented in a multiplicative way the performance under the depression2016

learning rule was significantly higher than that under potentiation (Fig.3.16 for (ψ = 0.5)) similar to the results2017

obtained under a divisive normalisation decision function in Fig. 3.9.2018

Notably, this relation was also true for higher powers of the multiplicative noise as shown in Fig.3.17: like with2019

(ψ = 1) that is when the noise in the MBON’s response is equal to the MBON’s synaptic activation.2020
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Figure 3.16: performance in learning under depression is higher than in potentiation in a WTA circuit with multiplicative
noise. Noise variance is the square root of the MBONs firing rate.
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3.6 Discussion2021

In this chapter, I presented an analytical and empirical account for the benefits of learning by depression over2022

potentiation using the fruit fly model. In this model, learning by depression outperforms potentiation only under2023

a divisive normalisation decision function; when the difference between the MBONs outputs, that encode opposite2024

behavioural outputs, is normalised by their sum. Divisive normalisation had been observed as a canonical modality2025

in many neural circuits, though its operating behaviour can lead to a Winner-Takes-All (WTA) like behaviour if2026

the inputs vary significantly in their strengths. Since the WTA circuits had also been found in circuits responsible2027

for decision making tasks, this motivated me to use it also here as a bio-plausible implementation for divisive2028

normalisation.2029

In the WTA model between the MBONs outputs, I found that the noise in the MBONs will need to be of a2030

multiplicative nature in order for the divisive normalisation function to be reproduced.2031

This creates an interesting avenue to probe the nature of noise in real MBONs. However, this can be challenging2032

as one will have to retrieve the component of noise due to the MBONs only from the other noise sources: noise in2033

the upstream neurons (PNs and KCs) and the imaging devices’ noise.2034

This model aligns with the idea of optimality in the neural circuits development (Costa et al. 2017). Neurons2035

which encode opposite decision values are susceptible to noise and synaptic failures. Thus, the direction of learning2036

(here is depression) might have been a result of natural evolution to optimise the circuit memory performance in2037

the face of this noise. In addition, a long track of behavioural analyses and studies has suggested that humans (and2038

animals) evaluate an option relative to the context of a choice set, i.e. normalised relative to the available choices2039

values. It was found that humans and even small animals like honeybees and gray jays do not assign a fixed value2040

for an option but rather its attractiveness is modulated by presenting an extra choice (Tversky and Simonson 1993;2041

Shafir, Waite, and Smith 2002). Thus, it is appealing to see if context-based value modulation also applies in the2042

fruit fly between the MBONs outputs. It will then become be intriguing to model the motor guiding neural circuit2043

downstream to MBONs.2044

Note on originality2045

Some equations and derivations in this chapter were inspired and done by my supervisor Andrew C.Lin. Andrew2046

came up with the main idea of formulating equations, Eq. 3.7, 3.8, 3.9 and 3.10 to prove that learning by depression2047

is better than potentiation under a divisive normalisation decision policy. These are the equations that used different2048

variables- a,b and c- to refer to the magnitudes of unique and overlapping KCs in the MB responses to two different2049

odors.2050

In addition, Andrew reformulated the previous equations’ variables into new parameters set -v, p and x- which2051

made deriving equations Eq.3.15, 3.16 and 3.17 easier and more intuitive. He also has carried out the derivations2052

for Eq. 3.15 and 3.16.2053



Chapter 42054

General Discussion and Future Work2055

4.1 Compensatory variability rescues the memory performance2056

In this work I bridged the gap in understanding the link between inter-neuronal variability, homeostasis and its2057

computational benefits for the brain. Variability is embedded in the nature of our brains and the characteristics of2058

its building units, the neurons. Numerous studies have linked the role of homeostasis for the neurons stability with2059

the inter-neuronal variability. In previous work it safeguarded the neuronal intended behaviour across individual2060

animals and within the same animal in face of noisy gene expressions. However, there have been few studies2061

elucidating on the computational consequences of variability among neurons of the same type (same computing2062

nodes in a circuit) within the same neural network. Are there any benefits of inter-neuronal variability? What2063

would happen if neurons of the same type (unrealistically) all had the same intrinsic parameters?2064

Using the fruit fly model to answer these questions, I found that the memory performance was the highest2065

in an ’unrealistic’ model where all KCs had the same intrinsic parameters. The inter-neuronal homogeneity was2066

rather desired over a random variability. I also showed that this aspect of homogeneity can be realised realistically2067

by equalising the average activity levels among KCs whilst maintaining the inherent variability among the KCs2068

parameters.2069

In this work I suggest that activity independent and homeostatic-like (activity dependent) compensatory models2070

restore the fly’s memory performance to the levels of the ’unrealistic’ homogeneous model and significantly higher2071

than the random model (Fig.2.5B1,B2). The reason the random variability was undesirable in this memory task2072

is that under sparse coding regime only few percentage of the neurons can be active. In the random model, there2073

were few neurons in the circuit (which had more and/or stronger inputs and low spiking thresholds) that were2074

highly active and fired for any input stimulus, whereas the rest were silent. This defies the very objective of the2075

brain to have sparsely encoding neurons. These neurons are supposed to disentangle the broadly tuned responses2076

from a lower number of upstream neurons (PNs) and encode the odours identities. The utility of such biological2077

normalisation mechanisms was also shown to improve the learning capacity and performance of artificial neural2078

101
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networks (Shen, Wang, and Navlakha 2021). In (Shen, Wang, and Navlakha 2021), they showed empirical results of2079

how the typical normalisation techniques used in artificial neural networks (like the batch normalisation and drop2080

out) would enhance the memory capacity and the accuracy of classification as good as the bio-inspired normalisation2081

techniques (like synaptic scaling).2082

In my computational model I used realistic input odour responses and neuronal parameters distributions to build2083

a realistic view for the extent to which random variability degrades the performance. Although I explored different2084

difficulty levels of the learning task, for e.g., number of input odours or levels of noise imposed on the inputs,2085

these conditions cannot exhaust the entire tasks space where random variability could have potentially been less2086

undesirable. As an example, the number of silent KCs and variance among the KCs sparsity levels were significantly2087

higher in the random model than these in the activity independent and dependent compensatory models (which2088

had no idle KCs) (Fig.2.5C). These idle neurons might be beneficial in another scenario like when the distribution of2089

rewards/punishments associated with inputs is non-uniform, i.e. some odours are more ’good’ (’bad’) than others.2090

In this instance the idle neurons could be used to encode these extremely rewarding (or punishing) odour inputs.2091

In contrast, in the activity dependent models there are no silent neurons, which means there will be no available2092

nodes dedicated specially to encode these relatively more important odours.2093

The connectome data has indeed confirmed correlations among the KCs parameters similar to what I predicted2094

in my compensatory models (Fig.2.10 B-I). The correlations observed in the connectome data are inconsistent2095

with random sampling, however the orders of the correlations functions were lower than these in my models. In2096

particular, the order of correlation between the number of input PNs and the average number of synapses per PN-2097

KC connection in the connectome data was of a first order, while the correlation between the number of input PNs2098

and the average synaptic weight per PN-KC connection in both the cyan and blue models were of a second order2099

(quadratic) (Fig. 2.10 B,C,G,H). This suggests that more than one of these compensatory modes could potentially2100

coexist in real KCs.2101

Although these findings in the connectome strikingly support my models, they remain an approximation because:2102

(a) the connectome data is from a single fly (n=1) (b) I used the number of PN-KC synapses as an anatomical2103

proxy for the KCs input synaptic weights. It will be interesting to see if these correlations (Fig. 2.10B-I) though2104

also hold true when EPSPs are recorded in KCs in-vivo.2105

4.1.1 Extending compensatory variability models to the cerebellum and other MB-2106

like neural circuits2107

The MB circuit structure is quite reminiscent of the cerebellum in mammals, see (Fig.4.1). Cerebellum is the brain2108

center responsible of motor learning and movement control. Inside the cerebellum, there are around 200 million2109

mossy fiber cells which carry sensory input to the granule cells (more than 50 billion), which is an expansion ratio2110

around (200:1) in humans. This is analogous to 150 PNs: 2000 KCs, in flies i.e. expansion ratio (13:1).2111
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Figure 4.1: Similarity between the circuit structure of the MB and the cerebellum. Image courtesy of Modi et al.,2020

Granule cells respond to the integrated mossy fibers inputs and relay their outputs to the Purkinje cells. Synaptic2112

plasticity is induced at the outputs of granule cells onto the Purkinje cells when the climbing fibre cell is activated2113

(Albus 1971; Ito 1989; Modi, Shuai, and Turner 2020). This is similar to the memory circuitry in the MB, where2114

KCs integrate inputs from the PNs and relay their output to the MBONs. Similar to the plasticity in the cerebellum,2115

learning in the MB happens by long term depression between the KCs outputs onto the MBONs when the DANs2116

are activated by reward or punishment (US) (Albus 1971; Ito 1989; Aso et al. 2014b). Memory traces formed at2117

the input synapses of the Purkinje cells or MBONs will correct the animal’s motor control or bias its behaviour2118

(approach or avoidance) in the future in the presence of the CS, respectively, without the need for the activity in2119

the climbing fibres or the DANs (US) (Aso et al. 2014a; Aso et al. 2014b; Albus 1971).2120

Given this similarity between the memory circuits in the MB and the cerebellum, could the cerebellar granule2121

cells also show compensatory variability mechanisms similar to the KCs? Cerebellar granule cells are regarded2122

simple and small neurons (Eccles 1967), yet it remained technically challenging to quantify their morphological2123

features due to their small size. A quantitative account of the granule cells morphology and its consequences on2124

their functionality has only been fulfilled recently in (Houston et al. 2017). This study found that granule cells2125

varied among each other in: the distance between the claw-like endings in their dendrites, their axons displacement;2126

which means that in some cases the axon originates from a dendrite rather than from the soma, and what they2127

called the dendrites complexity, which they found to be positively correlated with the distance between the dendrite2128

and axon.2129

In this study they also measured the effect of these different morphological features on the granule cells intrinsic2130

excitability and hence its functionality. For example, they found that the dendrites complexity, that is defined as2131

the ratio of the total dendrite length (dendrite length to claw + dendrite length within the claw) to the dendrites2132

surface areas, decreases as the dendrites are distant from the axon. This can lead the granule cells to preferentially2133

select for the mossy fibers information arriving close to the axons, because the dendrites would be longer and have2134

bigger claws which can have more number of receptors (Houston et al. 2017). This can be mapped to an inter-2135

granule cells variability in their input synaptic weights where the input synaptic weights closer to the axons are2136



104 CHAPTER 4. GENERAL DISCUSSION AND FUTURE WORK

stronger.2137

In addition, the granule cells exhibit diversity in their sizes and shapes, which has affected the latency till2138

detecting the first action potential evoked by mossy fibres stimulation. It was shown that bigger granule cells with2139

longer axons and/or dendrites (and more dendrite branching) are slower in integrating their mossy fibre inputs2140

because they will have higher surface area and hence higher membrane capacitance (Houston et al. 2017; Sultan2141

2001).2142

The previous circuit models of the mossy fibres-granule cells has assumed that a granule cell receive its inputs2143

from independent mossy fibres rosettes (Sultan 2001; Huang et al. 2013). The morphological treatment in (Houston2144

et al. 2017) though has disagreed with this overlooked assumption in the cases of granule cells with branched2145

dendrites, they found that the inter-claw distances are smaller in branched dendrites which could allow for multiple2146

connections from the granule cell to the same mossy fibre rosette.2147

These morphological differences can be mapped onto parameters to describe the inter-granule cell variability2148

in a similar manner to modelling the inter-KCs variability in Chapter 2. The dendrites branching in granule cells2149

could dial up/down the number of independent input mossy fibers, and dendrites complexity can contribute to2150

the variability in the inputs synaptic strength and generally to the granule cells intrinsic variability. It will be2151

intriguing to apply my computational framework to see the effect of these morphological differences on the memory2152

performance in the cerebellum. However, the translation of my framework over to the cerebellum circuit would2153

not be straightforward due to many reasons. First, granule cells were recently found to respond less sparsely2154

(Giovannucci et al. 2017) than what was envisioned by (Albus 1971) and (Marr 1969). Albus, and Marr before him,2155

hypothesized that ideally 1% of granule cells would respond in a given input context, which will increase the learning2156

capacity as different granule cells will respond to fine changes in the inputs contexts (Albus 1971; Marr 1969). New2157

findings in (Giovannucci et al. 2017; Jörntell and Ekerot 2006; Knogler et al. 2017) have challenged this notion2158

about granule cells sparsity, as they found that almost two thirds of the granule cells responded while presenting2159

the conditioned stimulus (CS). Thus, it remains controversial whether we can, using finer spatial resolutions, assume2160

that granule cells also respond sparsely like KCs.2161

Second, granule cells were found to encode the conditioned stimulus (CS), as well as predicting the conditioned2162

response (CR) (Giovannucci et al. 2017), which is very different from the role of the KCs in the MB. This can be due2163

to the closed feedback loop between the cerebellum output and input, the cerebellar nuclei and cortex respectively;2164

it is also referred to as nucleocortical feedback (Raymond and Medina 2018; Brandi et al. 2013). Or it can be due2165

to descending action-related information from corticopontine pathways converging back onto the granule cells as2166

sensory pathways (Huang et al. 2013).2167

The full neural circuitry required in memory formation differs significantly between the cerebellum and MB,2168

which may discourage investigating my models predictions in the cerebellar granular layer. However, various previ-2169

ous findings could remarkably support my hypotheses and boost the potential of its happening in the mammalian2170

cerebellum. For example, activity dependent plasticity has been observed in the granule cells, where they can alter2171
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their intrinsic excitability properties and hence their mean firing rates in response to tetanic stimulation (Aizenman2172

and Linden 2000). In addition, evidences of long term potentiation has been reported between the mossy fibres2173

and granule cells in the rat cerebellum (D’Angelo et al. 1999). These findings reveal a range of ongoing plasticity2174

mechanisms in the cerebellar granular layer, which can have some computational implications related to enhancing2175

the information encoding and memory performance. Indeed, the implications of these plasticity mechanisms has2176

been studied in a few computational models. In (Schweighofer, Doya, and Lay 2001), they suggested that plasticity2177

in the granular layer is relevant to an unsupervised learning, or a gated activity dependent tuning, of the synaptic2178

weights between the mossy fibers and granule cells neurons, which reduced the error in a motor control task. Also in2179

(Litwin-Kumar et al. 2017), the classification error of input patterns was minimised when the weights between the2180

mossy fibres and the granule cells were modified in an activity dependent manner. In particular, an input weight2181

between a given mossy fibre and granule cell was set equal to the inverse square root of the variance in the inputs2182

of this mossy fibre.2183

Although these models used activity dependent methods to model the plasticity between mossy fibres and2184

granule cells, they have assumed that these mechanisms are gated by neuromodulatory signals (e.g. serotonin)2185

which have not been tested to see their effects on weakening the LTP between mossy fibres and granule cells.2186

In contrast, in my models I have suggested simpler ’non-gated’ activity dependent tuning models, whose roles2187

were to reduce the inter-neuronal variability among the expansion layer neurons. The previous modeling studies in2188

(Schweighofer, Doya, and Lay 2001) and (Litwin-Kumar et al. 2017) are still of good relevance to my work as they2189

provide some computational implications for plasticity in the granular layer which was always thought to have fixed2190

(hardwired) input weights. Viewing these plasticity mechanisms in light of the granule cells morphological diversity2191

will be the novel contribution suggested from my work.2192

4.1.2 Compensatory variability in other models2193

Compensatory variability has been implicitly assumed in previous modelling work without showing its computational2194

implications nor explaining the rationale of using it.2195

(Litwin-Kumar et al. 2017) presented a theoretical proof for the optimality of having 7 PNs inputs for every2196

KC, which is the number of average PNs inputs reported in the MB experimental data. They showed that the2197

dimensionality (degree of decorrelation) in the KCs responses is maximised at this number. In their work they2198

modelled the non-linear KCs outputs using Rectified Linear Unit (ReLU) functions and had picked their spiking2199

thresholds such that all KCs will have the same probability of firing, fi. This is somewhat similar to equalising2200

the KCs lifetime sparsity levels, however we achieve this result as a product of tuning KCs spiking thresholds for2201

activity equalisation. Also, I showed that the performance levels after tuning the KCs spiking thresholds for activity2202

equalization were higher than when tuned for equalising their firing probability. Interestingly they also used the2203

same KCs model neurons to show that the optimal degree of synaptic connectivity between the granule-Purkinje2204

cells was indeed equal to 4 which is also the observed value in the cerebellum. This might encourage the chance of2205
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observing compensatory variability also in the cerebellar granule cells.2206

In another interesting study by (Barak, Rigotti, and Fusi 2013), they studied the trade off between discrim-2207

inability and generalization between patterns. In particular they studied how randomly connected neurons (RCNs)2208

layer can improve the classification of p input patterns into their correct output classes. The goal of these RCNs is2209

to transform the input patterns such that they become linearly separable. In their model they tuned the spiking2210

thresholds in the RCNs transfer functions (Rectified Linear Unit, ReLu) such that all RCNs have the same coding2211

level. Their tuning method indeed has achieved the best balance between generalisation and discriminability at2212

coding level =10%; like the sparsity levels reported in the KCs. In addition, they have not distinguished between2213

population sparseness and lifetime sparseness; rather, they used the term coding level interchangeably to refer to2214

the fraction of inputs that activate a given RCN and the fraction of RCNs active on average per input pattern. In2215

contrast, in my models I draw a clear discrimination between both quantities. For example, I showed how they2216

were very distinct in the random model; some KCs were even silent as they had zero lifetime sparsity whilst the2217

population coding level was 10%. I also found that the network performance was better when I tuned the spiking2218

thresholds to equalise activity levels than when they were tuned to equalise their firing probabilities, or coding2219

levels as defined in [(Barak, Rigotti, and Fusi 2013).2220

The computational study in (Barak, Rigotti, and Fusi 2013) and my work has reached similar conclusions but2221

from different angles. In their work they found that a coding level of 10% (i.e. every RCN is activated by 10% of the2222

input patterns and 10% of the RCNS are active for an input) has reduced the classification error, this coding level2223

has optimised the balance between the network discrimination and generalization. In my work though I addressed2224

this the other way around. Given the coding level (population sparseness) in the MB network equal 10%, I found2225

that equalizing the KC activity levels will enhance the memory performance and reduce, as a by product, the2226

variability in the KCs lifetime sparsity levels. The collective conclusions from this study and my work will be that:2227

the classification error will be the minimum when the RCNs or the KCs (in my model) have an equalised sparsity2228

or activity levels, respectively, and in particular when the network coding level or the population sparseness is 10%.2229

4.1.3 Inter-neuronal variability is beneficial in dense coding regimes2230

Compensatory variability no longer rescues the memory performance as the coding level increases, see Fig.2.2 and2231

2.3. This is because as coding level increases, the random model will have more specialised neurons than the2232

homogeneous model and the models with equalised KCs activity levels.2233

Indeed, some studies have suggested the benefits of randomness and variability among neurons which are known2234

to respond densely to input stimuli. In (Tsai et al. 2018), diversity and variability among the lateral inter-neurons2235

(LNs) of the fly’s antennal lobe were found beneficial to optimise the network’s encoding capacity and reliability.2236

They found that different sources of variability in the LNs had complementary effects on the network encoding2237

capacity and reliability. This study provided an insight into why the local inter-neurons in the antennal lobe2238

display morphological variability and randomness (or irregularity) in their connections to other LNs, and why2239
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there are different types (excitatory and inhibitory) of LNs (Tsai et al. 2018). Similarly an intermediate level of2240

inter-neuronal variability in the mitral cells (the vertebrate analog to fly PNs) enhanced the encoding capacity and2241

reduced the representations redundancy (Tripathy et al. 2013; Padmanabhan and Urban 2010).2242
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4.2 Significance of learning by long term depression in the mushroom2243

body and its alike circuits2244

Understanding the mechanisms underlying motor learning in the mammalian cerebellum has been at the center of2245

interest in many neuroscience studies for decades. Although the cerebellum and the fruit fly MB vary significantly2246

in their sizes and in the nature of their mechanisms for memory formation (Ito 1989; Modi, Shuai, and Turner2247

2020), memory formation in both circuits happen by long term depression (LTD) (Aso et al. 2014b; Ito 1989).2248

The conservation of the learning rule in the simple MB circuit and the far-ahead developed cerebellum poses an2249

interesting question to ask: Has the LTD learning rule been conserved across species to optimise for some aspects2250

in the learning and cognition abilities? Or has this just happened by chance?2251

In the cerebellum, an activity burst in the climbing fibres causes an intense depolarization in the postsynaptic2252

Purkinje cell. In particular, the Purkinje cell will respond by a single spike and then pause for around 15-30 msec2253

before it can restore its spontaneous firing rate (Granit and Phillips 1956).2254

Since then numerous investigations underwent to reveal the synaptic plasticity rule at the Purkinje cells’ input2255

synapses. Purkinje cells receive excitatory inputs from the granule cells (parallel fibres) as well the inputs from2256

the climbing fibres. Ahead of any experimental evidences, Marr and Albus have hypothesized the theory behind2257

cerebellar learning, they suggested that activity in the climbing fibre, which carry an error signal in some movement,2258

along with the activation of parallel fibres will induce synaptic plasticity in the active parallel fibres inputs to the2259

Purkinje cells. Whilst Marr suggested this learning to happen by potentiation (Marr 1969), Albus has argued it2260

would rather be by long term depression (LTD) (Albus 1971), which was indeed confirmed decades later in the2261

experiments by Ito (Ito 1989).2262

In his seminal theoretical treatment, Albus has provided some reasons to support why learning in the granule-2263

Purkinje cells synapses would happen by depression (Albus 1971): “if the Purkinje cell learns to pause when the2264

climbing fibres are active then this can only happen by ’weakening’ the excitatory inputs from the granule cells”. In2265

addition, he suggested that learning by depression is better for the circuit stability, because if the granule-Purkinje2266

cells synaptic weights are changed by potentiation then they will grow exponentially and eventually reach saturation.2267

In chapter 4, I accumulate on the evidences that support why learning can happen by depression. In a fly model,2268

I showed that learning by depression lead to a higher memory performance than in potentiation, in specific when2269

the fly’s estimation about an odour’s value, either good or bad, endures noise of multiplicative nature.2270

First I show that learning by depression is better than potentiation if the bias in the fly behaviour to approach or2271

avoid an odour depends on the normalised difference between the MBONs firing rates, which encode the respective2272

behaviours, see Fig.3.9.2273

Divisive normalisation has been used to model the responses in visual and sensory neurons. In some studies it2274

was used to explain why neurons behave in a way that is best described by divisive normalisation and how is it2275

necessary for the efficient coding of sensory stimuli and inputs gain control (Schwartz and Simoncelli 2001b; Olsen2276
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and Wilson 2008; Olsen, Bhandawat, and Wilson 2010; Carandini, Heeger, and Movshon 1997; Carandini and2277

Heeger 2012). In contrast, I used it here to describe how the fly might be choosing between approaching or avoiding2278

a conditioned stimulus. It is important to clarify the difference between how I used divisive normalisation here and2279

how it was used before in other models; the divisive normalisation modality I described here does not describe the2280

MBONs responses, rather it describes the decision making function that could be implemented via another circuit2281

downstream to the MBONs.2282

Moreover, I showed that a WTA circuit, i.e. neural competition, between the MBONs outputs can be a bio-2283

plausible model that will replicate the results from the divisive normalisation model. Compare Fig.3.9 and 3.16,2284

only if the noise in the MBONs responses is multiplicative; i.e. under a given stimulus condition, the variance in2285

the MBON responses is proportional to its mean firing rate.2286

WTA circuits have been used previously to model neural correlates of perceptual decision making in the lateral2287

intraparietal area in monkeys (KF et al. 2007; Wang 2002; Roitman and Shadlen 2002a). In these models the slow2288

NMDA mediated recurrent self excitation and a faster lateral inhibition were key features of the neural dynamics.2289

We can use electrophysiological recordings to test the existence of the slow accumulator component of the WTA2290

behaviour in a circuit downstream to the MBONs. We will need to record the conditioned odour drive simultaneously2291

in opposite valence MBONs or perhaps in downstream neurons, like the Descending Neurons (DNs); (Li et al.,2020)2292

have identified some DNs which receive direct connections from the MBONs and can be potential candidates to2293

study their responses dynamics. We can then see whether these opposite valence neurons (neurons pools) would2294

show slow ramping activities, as well as one of them (or one neurons pool) will have a growing activity while the2295

other neuron (or another neurons pool) with the opposite valence will have a diminishing activity, as it is inhibited2296

by the winner neuron/s, similar to the behaviour observed in the neurons involved in perceptual decision making2297

in mammals, for e.g. the LIP neurons (as shown in Fig.4.2).2298

Previous drift-diffusion and WTA models have focused on using the neurons’ spiking activity, i.e., supra-threshold2299

activity, to represent evidence accumulation in competing neurons pools (Gold and Shadlen 2007b; Shadlen and2300

Kiani 2013; Kriener, Chaudhuri, and Fiete 2020b). The evidences favoring one decision over the other will be2301

accumulated in each opponent pool until one of the opponent neurons/pools will pass the decision making threshold,2302

or silence the other neuron and win the competition, resulting in taking this decision. In contrast, some new2303

studies(Groschner et al. 2018; Vrontou et al. 2021) have drawn the attention to the existence of sensory evidence2304

accumulation in the KCs subthreshold activities. They showed that neurons integrate evidences in their analog2305

graded potentials not in their digital spiking activities. For example, (Groschner et al. 2018) found that subsets2306

of the αβc KCs preferentially respond to the increase and decrease in the input odour concentration. These were2307

referred to as up/on and down/off cells respectively. The analog evidence accumulation in the on and off αβc KCs2308

was then studied in (Vrontou et al. 2021), where they showed that these opponent KCs pools resemble the perceptual2309

neuron-antineuron pools in the drift-diffusion models, with the APL serving the role of lateral inhibition between the2310

opponent neurons. In addition, these KCs have all-to-all feedforward connections to downstream neuron-antineuron2311
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Figure 4.2: Activity of the winner (loser) LIP neuron - shown in black and orange traces respectively- ramps up (down)
as the evidences accumulate to decide the dots motion direction in a visual discrimination task. The duration of the dots
motion stimulus presentation is indicated by the gray box. Decision is made by saccade eye movements when the wining
neuron reaches the decision threshold shown by the dashed line. Image courtesy of (KF et al. 2007)

pool of MBONs which drive the fly’s behavioural intent. The αβc KC pool that will spike first then will instruct2312

the fly’s decision by activating its MBON partners.2313

These findings reveal that flies have neural pathways that share many aspects with the theoretical models for2314

mammalian decision making (Gold and Shadlen 2007b; Roitman and Shadlen 2002b; Latimer et al. 2015). This2315

is motivating for us to look further for other aspects of the mammalian decision making models inside the flies’2316

MB. For instance, it will be interesting to study the evidence integration in the sub-threshold activity of opponent2317

MBONs, or their downstream DNs, or the WTA dynamics in circuits downstream to the MBONs. A few MBONs2318

indeed can inhibit each other (Aso et al. 2014a; Li et al. 2020), however not all the MBONs do; they do not have2319

a candidate to serve the role of global neuron-antineuron inhibitory pool like the APL for the KCs. But we can2320

still investigate the sub-threshold activity in the MBONs that synapse and inhibit one another through direct and2321

indirect feedback loops in (Scheffer et al. 2020; Li et al. 2020).2322

One of classical models for evidence accumulation is the drift diffusion model (DDM) by (Ratcliff 1978). DDM2323

has successfully explained the observed distribution of choice reaction times in humans and other animals (Wald2324

2004; Gold and Shadlen 2002; Hanes and Schall 1996; Shadlen and Newsome 2001). In this model the evidence2325

that support one choice over another is accumulated at a constant rate till it reaches a fixed threshold value where2326

the decision will be made (Bogacz et al. 2006; Ratcliff 1978). Although, this model did not define the value of2327

this threshold, other work have recently suggested models of how animals can vary these threshold levels optimally2328
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to minimise their energy costs (for e.g. attentional efforts) and make accurate decisions (Drugowitsch et al. 2012;2329

Milosavljevic et al. 2010). In addition, other physiologically inspired models were suggested to implement the2330

DDM using two or more evidence integrators (Wang 2002; Usher and Mcclelland 2001; Bogacz et al. 2006). One2331

can test the existence of the evidence accumulation in the MBONs or in their downstream neurons by measuring2332

the spiking thresholds in these neurons to see if they all reach an almost equal threshold level before spiking or2333

not. Another interesting test would be to look for the mutual inhibition or pooled inhibition circuit motifs in2334

the MBONs downstream areas. Recent work in (Keung, Hagen, and Wilson 2020) have suggested that humans2335

might accumulate evidences in a perceptual auditory task using a divisive normalisation circuit motif. They showed2336

that the integration kernel emerging from the divisive normalisation circuit explains well the uneven weighing of2337

evidences in the data. This study would encourage a new testable prediction, that is one could record the MBONs2338

sub-threshold activities to see if they exhibit this uneven weighing (a bump kernel) of the KCs inputs spikes, such2339

that the later and early input spikes from the KCs weigh less than the mid ones.2340

Last but not least, in my model I find that learning by depression is better than potentiation if the MBONs2341

responses have multiplicative noise, i.e. the variance in the MBONs responses is proportional to their mean firing2342

rates. This multiplicative relationship between the responses variances and means has been shown before in the2343

cortical neurons (Tolhurst, Movshon, and Dean 1983; Carandini, Heeger, and Movshon 1997). The responses2344

variability in these neurons were of a Poisson like nature. They found that the variances in the visual cortex2345

neurons responses (in cats and monkeys) were proportional to their means; a least squares regression on this data2346

yielded a slope ≈ 1 (Tolhurst, Movshon, and Dean 1983). However, no similar studies exist to the date of this thesis2347

which confirm such relationship, neither in the MBONs nor in its analogs (like the Purkinje cells in the cerebellum).2348

This could be another potential testable avenue, if the variance in the MBONs noise will be found multiplicative,2349

then this work will be a another evidence to support the case of learning by depression.2350

4.3 Possible extensions and improvements to the models2351

The variability among KCs in their number of PN inputs vary between the different KCs sub-types (Caron et al.2352

2013), also see (Fig.2.10F). For simplicity I ignored modeling the KCs sub-types (and their associated distributions2353

of the number of input PNs). It will be interesting to see the effect of adding this extra level of detail on the2354

performance results across the different models, and if a certain compensatory model will outperform the others.2355

In my models I predicted stronger levels of correlations between the KCs intrinsic parameters than these observed2356

in the connectome, yet the nature of the correlations were the same both in my models and the connectome as2357

depicted in (Fig.2.10 B-I). One possible explanation is that there might be more than one mode of compensation2358

occurring at the same time in real KCs, whereas I have only simulated only one at a time. It will be insightful2359

to either simulate all the compensatory models simultaneously, or feedback the parameters correlations strengths2360

observed in the connectome data into my models and see how the results will change.2361

In addition to the inter-KCs variability in connectivity parameters, KCs also vary in their somas shapes, neu-2362
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rites lengths and dendrites branching patterns. Similar to (Houston et al. 2017), it is compelling to add these2363

morphological differences to the sources of inter-KCs variability that I used in my models. On that account, we can2364

build joint probability distributions for the KCs connectivity parameters (number of their inputs PNs, their spiking2365

thresholds and input synaptic weights) and their morphological features (neurite lengths, somas size, degree of the2366

dendritic branching). This can give a better understanding of which feature among these morphological differences2367

that can be the most detrimental for the memory performance.2368

In this work, the fly behaviour was determined either by the difference or the normalised difference between2369

the MBONs firing rates, where they encode opposite behaviours. But how can the neurons downstream to the2370

MBONs affect the memory performance? MBONs send their axons to 4 major neuropils and to the Lateral Horn2371

(LH), which is hardwired for innate olfactory associated behaviours. In addition, some MBONs send feed forward2372

signals inside the MB lobes (see Fig.1.6) and to some DANs too. In extensions of this work, we can model the2373

downstream circuits involved in decision making and some of the motor control neurons, Descending Neurons (DNs)2374

which receive direct inputs from the MBONs. In addition, we can add the MBON-MBON and MBON-DAN feed2375

forward and feedback connections to see if they provide the neural pathways for the normalisation or inhibitory2376

pool in the WTA and drift-diffusion models.2377
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