
Presentations of strict monoidal

categories and strict monoidal

categories of welded tangle-oids

Hadeel Albeladi

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

Department of Pure Mathematics

March 2022



The candidate confirms that the work submitted is her own, except

where work which has formed part of jointly authored publications has

been included. The contribution of the candidate and the other authors

to this work has been explicitly indicated below. The candidate confirms

that appropriate credit has been given within the thesis where reference

has been made to the work of others.

This copy has been supplied on the understanding that it is copyright

material and that no quotation from the thesis may be published without

proper acknowledgement.

@2022 The University of Leeds and Hadeel Albeladi

i



ii

Acknowledgements

First of all, many thanks are due to almighty God to enable me to complete this thesis.

I appreciate and am extremely grateful to my government and King Abdulaziz University

who funding me to give me this opportunity to complete my PhD in one of the best

universities.

It is my great pleasure to express a deep sense of gratitude to my supervisors, Dr Joao

Martins for great support, kindness, patience and instruction throughout the entirety of

the past four years. To Prof. Paul Martin for great support, guidance, advice and effort

in making my thesis accessible to the reader. Their contribution to the thesis, and my

knowledge of the subject area, has been invaluable, and this document could not have

been completed without them.

I am thankful to my parents who always pray for me. My great thanks to my husband

Hamed who supports me during my journey. Thanks to my children Mayan, Abdullah

and Malk for their endless love. Thanks to my brothers and sisters especially Sara,

Alhanoof and Fatimah for unconditional support.



iii

Abstract

In this thesis, we address combinatorial descriptions of welded knotoids from the point

of view of strict monoidal categories.

To this end, we address combinatorial presentations of strict monoidal categories, by

generators and relations. We do this by addressing presentations of a closely related type

of categorical object, which we call 1
2
-monoidal categories (essentially sesqui-categories

on a single object). A key part of the construction relies on the construction of the

free 1
2
-monoidal category over what we call a monoidal graph ( a graph with monoidal

structure on the set of vertices). We prove that the category of what we called slideable 1
2
-

monoidal categories is equivalent to the category of strict monoidal categories. We prove

that there exists a slidealisation functor, sending a 1
2
-monoidal category to a slideable 1

2
-

monoidal category. We use this to obtain combinatorial presentations of strict monoidal

categories from combinatorial presentations of 1
2
-monoidal categories.

We use this formalism to define presentations of strict monoidal categories of welded

tangle-oids, generalising work of Lambropoulou, Turaev, Kaufmann and others on kno-

toids.

Given a finite group G, more generally a finite group acting on a finite abelian group,

we construct a functor from the monoidal category of welded tangle-oids to a strictified

version of the monoidal category of vector spaces.
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Chapter 1

Introduction

Here we briefly put our work into a broader research context.

We will argue that our work fits into a couple of distinct research contexts. ‘Presen-

tation’ of algebraic structures is a useful tool in areas such as representation theory and

in construction of new examples from old. In category theory: Our approach is in the

spirit of sesquicategories (see e.g. [Haz96] and references therein) in ‘categorification’

(making an algebraic structure more categorical - for whatever reason).

In low-dimensional topology: Our approach is in the spirit of the Siefert–Van Kampen

Theorem, in the sense of taking infinite geometric-topological systems and combinato-

rialising by (finite) presentation.

In this thesis, I will address welded knotoids from the point of view of presentations

of strict monoidal categories (reviewed in Chapter 5). To this end, I will

• define what it means to present a strict monoidal category (by generators and rela-

tions), from the point of view of the more general 1/2-monoidal categories,

• define a strict monoidal category of welded tangle-oids using a presentation. Welded

knotoids are morphisms from the unit object to itself,

• construct functorial invariants of welded tangle-oids.

1
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1.0.1 Structure of the thesis.

• We provide the motivation for this work in section 2.

• In section 3, we explain our notation and conventions for categories, particularly

free categories, and congruence relations. In section 3.5, we define presentations

of categories, and in doing so explain how a relation in the set of morphisms of

a category (a congruence template Definition 3.5.1), gives rise to a congruence

relation called the closure of the congruence template, Theorem 3.5.5. We then

use this to say what we mean by a presentation of a category, Definition 3.5.8. We

apply this framework to the construction of the combinatorial braid category.

• In section 4, we review monoids and the monoid abelianisation functor. This is

in order to prepare for a similar argument when defining the slidealisation functor

for 1
2
-monoidal categories, defined in the following section.

• In section 5, we discuss strict monoidal categories from the point of view of 1
2
-

monoidal categories. In Definition 5.1.2, we define what a 1
2
-monoidal category is,

and in Definition 5.1.5 we define slideable 1
2
-monoidal categories. In section 5.2.2

we construct our crucial slidealisation functor, from the category of 1
2
-monoidal

categories to the category of slideable 1
2
-monoidal categories, and prove that it is

a left adjoint to the inclusion functor from the category of slideable 1
2
-monoidal

categories to the category of 1
2
-monoidal categories. In section 5.3 we give the

definition of a strict monoidal category. In section 5.4 we address the equivalence

between slideable 1
2
-monoidal categories and strict monoidal categories, Theorem

5.4.6.

• In section 6 we define free strict monoidal categories over monoidal graphs. We

define monoidal graphs R in Definition 6.1.1, these are graphs with a monoid

structure on the set of vertices. To each monoidal graph R we associate a graph

R∗, which we call the extent of the monoidal graphR, in 6.1.2. In Definition 6.1.7,

we define free1
2
-monoidal category-triples. In proposition 6.1.9, we prove that the

free category P (R∗) over the graph R∗ naturally becomes a 1
2
-monoidal category

denoted Ω(R). In Proposition 6.1.10, we prove that Ω(R) is a free 1
2
-monoidal

category.
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• Then in section 6.2, we address presentations of strict monoidal categories. We

first explain how a congruence template in the underling category of a 1
2
-monoidal

category gives rise to a 1
2
-monoidal congruence, 6.2.1 called the 1

2
-monoidal clo-

sure of the congruence template: Theorem 6.2.7, Definition 6.2.8. In Defini-

tion 6.2.9, we define presentations of 1
2
-monoidal categories. In Definition 6.2.10,

we define presentation of strict monoidal categories. In section 6.2.2 we apply this

to the construction of the monoidal combinatorial braid category.

• In section 6.3 we sketch the definition of the monoidal category of tangles, because

our categories welded tangle-oids can be seen as a generalisation of it.

• In section 7.2 we define the strict monoidal category of unoriented welded tangle-

oids UWTC, Definition 7.2.2. In section 7.3 we define the strict monoidal cate-

gory of oriented welded tangle-oids OWTC, Definition 7.3.2. In section 7.4.1 we

construct functorial invariants from finite group for the UWTC, Theorem 7.4.1.

In section 7.4.2 we construct functorial invariants from group acting on abelian

group for UWTC, Theorem 7.4.3.



Chapter 2

Motivating Ideas

2.1 Presentations of groups.

A presentation of a group is a way to define the group (by set of ‘generators’ and ‘rela-

tions’) that is useful when studying group homomorphisms from this group (i.e. when

studying representations). The method was introduced by Walther von Dyck [Rob96].

Generalising this idea is a key paradigm for us, so we will review it next.

In this section we assume familiarity with the category of sets — see 3.1.10 for details;

and the category of groups (which we also take to imply familiarity with the language of

basic group theory and so on).

Here the underlying-set functor from the category of groups, see for example [ML13,

page 14], to the category of sets, is denoted U . It is such that if (G, ◦, e) is a group then

we have that U(G, ◦, e) = G. If f : (G, ◦, e) → (G′, ◦′, e′) is a homomorphism then

U(f):G→ G′ is given by f , regarded as a function only.

2.1.1 Free group

Definition 2.1.1. (See for example [Rob96, Rot12, MRR88]). A group (G, ◦, e) is a free

group, on a set X , if there is a function δ:X → G, that satisfies the following universal

4
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property.

Given any group (A, •, e′), and any function f :X → A, there is a unique

group homomorphism F : (G, ◦, e) → (A, •, e′) that makes the diagram be-

low, in the category of sets, commute:

X U(G, ◦, e)

U(A, •, e′)

δ

f
U(F )

An important point about such a G (if it exists — see below) is that a representation

of it in A (i.e. a homomorphism to A) is determined by the image of X . We do not need

to give the image of every element of G.

Given a set X , it is not directly clear that a free group on X exists (or if multiple

non-isomorphic free groups exist). And when we generalise later this will be even less

clear. So let us have one example.

Example 2.1.2. (See for example [Rot12]). We claim that (Z,+, 0) is a free group on

the set X = {1}.

To see this we may proceed as follows. Given a group (A, •, e′), and

f : {1} → U(A, •, e′),

the next diagram commutes:

{1} U(Z,+, 0)

U(A, •, e′)

δ

f
U(F ) (2.1)
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where:

δ: {1} → U(Z,+, 0)

1 7→ 1

and F is given as follows.

Explanation of the group homomorphism F :

First let us give F as a set map.

F :Z→ A

a 7→ f(1)a.

• Here if a > 0, f(1)a = f(1) • . . . • f(1)︸ ︷︷ ︸
a times

.

• If a < 0, f(1)a = f(1)−1 • . . . • f(1)−1︸ ︷︷ ︸
a times

.

• If a = 0, f(1)a = e′.

Finally observe that this map is indeed a group homomorphism.

Clearly the diagram (2.1) commutes.

Also F is unique, because for any such group homomorphism F ′: (Z,+) → (A, •),

then F ′(1) = f(1), because the diagram (2.1) commutes. So the homomorphism gives,

for a > 0

F ′(a) = F ′(1 + · · ·+ 1︸ ︷︷ ︸
a times

)

= F ′(1) • . . . • F ′(1)︸ ︷︷ ︸
a times

= f(1) • . . . • f(1)︸ ︷︷ ︸
a times

.
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If a < 0,

F ′(a) = F ′((−1) + · · ·+ (−1)︸ ︷︷ ︸
a times

)

= F ′(1)
−1 • . . . • F ′(1)

−1︸ ︷︷ ︸
a times

= f(1)−1 • . . . • f(1)−1︸ ︷︷ ︸
a times

.

If a = 0,

F ′(a) = F ′(0) = f(1)0 = e′.

Therefore:

F = F ′.

Theorem 2.1.3. (See for example [Rot12], Theorem 11.1). Given any set X , there is a

free group MX on X.

Later on this thesis we will address closely related free monoids, and also free 1
2
-

monoidal categories.

Proposition 2.1.4. (See for example [Rot12], Corollary 11.2.). Every group G is a

quotient of a free group.

2.1.2 Presentation of groups

Definition 2.1.5. (See for example [Rob96, Rot12]). Let S be a set, and F a free group

on S. We write

〈S|R〉,

for a pair consisting of S and a subsetR ⊂ F . We will call the elements ofR ‘relations’.

This pair is a ‘presentation’ of a group G if

G ∼= F/∼,
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where ∼ the normal closure of R ⊂ F , i.e. the intersection of all normal subgroups of

F that contains the relation set R.

Example 2.1.6. The cyclic group of order n has the presentation:

〈x | xn = e〉.

Here and after we abused notation and instead of putting 〈{x} | {xn}〉 we write 〈x |

xn = e〉.

2.1.3 Presentation of braid groups

In this section we define braid groups in two different ways one by using geometric

braids, and another by using Artin’s presentation. We assume familiarity with the notion

of isotopy, as described for example in [Kas12, JM19].

Definition 2.1.7. (See for example [Oht02, Chapter 2], and [KT08, Lie11]). A geometric

braid on n ∈ N strings is a set B ⊂ R2× [0, 1] that is composed of n disjoint topological

intervals (where a topological interval is the image of injective continuous map from the

unit interval into R3) such that the following are satisfied:

1. B ∩ (R2 × {0}) = {(1, 0, 0), (2, 0, 0), . . . , (n, 0, 0)},

2. B ∩ (R2 × {1}) = {(1, 0, 1), (2, 0, 1), . . . , (n, 0, 1)},

3. If t ∈ [0, 1], then B ∩ (R2 × {t}) has cardinality n.

Definition 2.1.8. (See for example [KT08]). Two geometric braids B1, B2 ⊂ R2× [0, 1]

are called ambient isotopic if there is a continuous map:

h: (R2 × [0, 1])× [0, 1]→ R2 × [0, 1],

such that

1. for all (x, y, z) ∈ R2 × [0, 1], h(x, y, z, 0) = (x, y, z);
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2. given any t ∈ [0, 1], the map

R2 × [0, 1]→ R2 × [0, 1]

(x, y, z) 7→ h(x, y, z, t)

is a homeomorphism;

3. for all t ∈ [0, 1] and (x, y) ∈ R2, we have

• h(x, y, 0, t) = (x, y, 0),

• h(x, y, 1, t) = (x, y, 1);

4. h(B1, 1) = B2;

5. for all t ∈ [0, 1], h(B1, t) is a geometric braid.

Example 2.1.9. ([KT08], page 5). A rough sketch of a geometric braid in four strings.

Proposition 2.1.10 (Geometric braid groups). (See for example [FN62]).

Let n ∈ N, the geometric braid group Bn = (Bn, ◦) is such that

1. Bn is the set of equivalence classes under ambient isotopy of geometric braids on

n strings.

2. If [α], [β] ∈ Bn, their composition is such that

[α] ◦ [β] =
[{

(x, y,
z

2
) | (x, y, z) ∈ α

}]
∪
[{

(x, y,
z

2
+

1

2
) | (x, y, z) ∈ β

}]
.
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3. The identity element is the equivalence class of the geometric braid Idn with n

parallel strings, namely

Idn = {(1, 2, . . . , n)} × {0} × [0, 1] ⊂ R2 × [0, 1].

Note that the composition [α] ◦ [β] does not depend on the choice of representatives, see

[Kas12, Section X.6.1]. The proof that Bn is a group is also in [Kas12, Section X.6.1].

2.1.4 Artin’s presentation:

Note that any geometric braid in Bn can be obtained by multiplying a finite number of

σ1, . . . , σn−1, and their inverses. Here σi is the equivalence class of a geometric braid as

sketched in the figure below.

Definition 2.1.11. (See for example [KT08, Lie11, Cas10]). Let n ≥ 2 be an integer.

The Artin braid group Bn is the group formally generated by:

{σ1, σ2, . . . , σn−1},

and relations σiσj = σjσi, if |i− j|≥ 2,

σiσi+1σi = σi+1σiσi+1, for all i ∈ {1, . . . , n− 1}.

Lemma 2.1.12. ([KT08],Lemma1.2.). Let G be a group with elements g1, g2, . . . , gn−1



11

that satisfy the braid relations, this meansgigj = gjgi, if |i− j|≥ 2,

gigi+1gi = gi+1gigi+1, for all i ∈ {1, . . . , n− 1}.

Then there is a unique group homomorphism f :Bn → G, such that

gi = f(σi), for all i = 1, 2, . . . , n− 1.

Proof. See [KT08].

Example 2.1.13. Consider the cyclic group in example 2.1.6, there is a unique group

homomorphism

f :Bn → 〈x | xn = e〉,

such that

f(σi) = x, for each i ∈ {1, . . . , n− 1}.

This assignment clearly satisfies the braid relations.

Several other examples arise as particular cases of the invariant of welded tangle-oids

in section 7.

2.2 Presentation of welded braid groups

Definition 2.2.1 (Knot). (See for example [Car12]). A knot is an embedding of the circle

into R3.

A knot in R3 can be projected ‘regularly’ onto R2. Projection here is onto one of the

many possible (oriented) R2 subspaces of R3. ‘Regular’ means that the projection is

injective everywhere except at a finite number of crossing points, which are the projec-

tions of only two points of the knot (where both points have tangents, and the projected

tangents are not colinear — see for example [KMY19]). Keeping track of the positive
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normal to the subspace R2, this give the over under crossing information. This data in

the projection is called ‘classical crossing’.

The algebraic-combinatorial aspects of knot theory can be tracked purely at the level

of such projections. The projected formalism is then also amenable to direct generalisa-

tion (i.e. without reference to knots in 3d).

In this thesis, we define presentations of categories of welded tangle-oids that can

be seen as generalizations of welded braid groups. The theory of virtual knots was

introduced by L. Kauffman see [Kau21, Kau00]. In the virtual knots there is a new

crossing that is not a classical crossing which is virtual crossing. You cannot switch over

and under in a virtual crossing. However the idea is not that a virtual crossing is just an

ordinary graphical vertex. Rather, the idea is that the virtual crossing is not really there.

In the next diagrams: (a) and (b) are classical crossings and (c) a virtual crossing:

The virtual braid group arises naturally in virtual knot theory, see [Kau00, Kau21, KL06].

This group is closely related to the welded braid group that was introduced by R. Fenn,

R. Rimányi and C. Rourke [FRR97].

Definition 2.2.2. [Kam07, Kau00, KL04, KL06, Kau21]. The virtual braid group of

degree n ∈ N, V Bn, is the group formally presented in the following way: generators:

{σ1, σ2, . . . , σn−1, τ1, τ2, . . . , τn−1},
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and relations: 

σiσj = σjσi, if |i− j|≥ 2,

σiσi+1σi = σi+1σiσi+1, for all i ∈ {1, . . . , n− 1},

σiσ
−1
i = 1, for all i ∈ {1, . . . , n− 1},

τ 2
i = 1, for all i ∈ {1, . . . , n− 1},

τiτj = τjτi, if |i− j|≥ 2,

τiτi+1τi = τi+1τiτi+1, for all i ∈ {1, . . . , n− 1},

σiτj = τjσi, if |i− j|≥ 2,

σiτi+1τi = τi+1τiσi+1, for all i ∈ {1, . . . , n− 1}.

Definition 2.2.3. [FRR97, Kam07]. The welded braid group is the group formally pre-

sented in the same was as as the virtual braid group, however adding one more relation.

Generators:

{σ1, σ2, . . . , σn−1, τ1, τ2, . . . , τn−1},

and relations: 

σiσj = σjσi, if |i− j|≥ 2,

σiσi+1σi = σi+1σiσi+1, for all i ∈ {1, . . . , n− 1},

σiσ
−1
i = 1, for all i ∈ {1, . . . , n− 1},

τ 2
i = 1, for all i ∈ {1, . . . , n− 1},

τiτj = τjτi, if |i− j|≥ 2,

τiτi+1τi = τi+1τiτi+1, for all i ∈ {1, . . . , n− 1},

σiτj = τjσi, if |i− j|≥ 2,

σiτi+1τi = τi+1τiσi+1, for all i ∈ {1, . . . , n− 1},

τiσi+1σi = σi+1σiτi+1, for all i = 1, 2, . . . , n− 1.



Chapter 3

Categories

In this section I will explain the notion of a category. This is a type of algebraic structure

that I use heavily later.

3.1 Collections, sets and classes

Sets:

Sets can be thought of as the usual sets of intuitive set theory. One construction that can

be performed with sets is the set of all subsets P(X) of the set X (called the power set

of X).

But with this intuition of the sets we can not treat the collection of all sets as a set.

As in “Russell’s paradox” if we consider the set that contains elements which are not

elements of themselves, the collection of all these sets can not be a set. So this lead to

define another concept “Classes” [AHS04].

Classes:

The concept of “class” has been created to deal with large collections of sets. The

members of each class are sets, so the member of the class are sets.

A class that is not a set is called a proper class, and a class that is a set is sometimes

called a small class [AHS04].

14
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3.1.1 Small categories

Definition 3.1.1. A small precategory C is an ordered quadruple consisting of:

1. A set ob(C).

2. For each pair A,B ∈ ob(C) a set homC(A,B).

3. For each triple (A,B,C) ∈ ob(C)× ob(C)× ob(C) a function called composition

homC(A,B)× homC(B,C)→ homC(A,C),

(f, g) 7→ f ? g.

4. For each A ∈ ob(C) an element idA in homC(A,A).

Notation. We might write the data giving a small precategory in the form

C = (ob(C), homC( , ), ?, id ).

This means that we given a set ob(C); and a function from ob(C) × ob(C) to a class of

sets; and for every f ∈ homC(A,B) and g ∈ homC(B,C) a way to construct an element

f ? g ∈ homC(A,C); and a suitable function id from ob(C).

Example 3.1.2. In general giving the ‘composition’ function might be very hard. To get

started we can make this a bit easier by using a construction we already have.

Let homMat(m,n) denote the set of m×n complex matrices (that is, with m rows and

n columns). Let · denote matrix multiplication. Let idn denote the n × n unit matrix.

Then consider the quadruple

Mat = (N, homMat( , ), ·, id ).

If n or m is equal to zero then the only matrix we have is the matrix with no elements.

Claim. We claim this gives the data for a small precategory.
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Idea of proof. It will be clear that the first, second and fourth components are as re-

quired, so it remains to check the third component. This is non-trivial, even in this

familiar case, since matrix multiplication requires that matrices conform in the given

order.

An example to show the order is correct.

Let f =


x x′

z z′

w w′

 ∈ homMat(3, 2), and g =

m n k t

m′ n′ k′ t′

 ∈ homMat(2, 4).

Therefore: f.g ∈ homMat(3, 4).

Definition 3.1.3. (See for example [AHS04, Par70, Lei14, ML13]). A small category is

a small precategory (ob(C), homC( , ), ?, id ) that satisfies the following axioms

• (A1: associativity axiom): for every quadruple (A,B,C,D) ∈ ob(C) × ob(C) ×

ob(C)×ob(C) and every f ∈ homC(A,B), g ∈ homC(B,C) and h ∈ homC(C,D)

we have:

(f ? g) ? h = f ? (g ? h).

• (A2: unit axiom): for every pair (A,B) ∈ ob(C)×ob(C) and any f ∈ homC(A,B)

we have idA ? f = f , and f ? idB = f .

Proposition 3.1.4. The small precategory Mat is a small category.

Proof. To show that precategory Mat is a small category we must show it satisfies the

axioms in 3.1.3:

(A1: associativity axiom): for every quadruple (m,n, s, r) ∈ N4 and every

f ∈ homMat(m,n), g ∈ homMat(n, s) and h ∈ homMat(s, r), we have:

(f · g) · h,

and

f · (g · h),
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and we require to show that these are equal. In particular that ((f.g).h)ij and (f.(g.h))ij

are equal. These are given by

((f.g).h)ij =
n∑
k=1

s∑
l=1

(fikgkl)hlj =
n∑
k=1

s∑
l=1

fik(gklhlj),

where we used associativity of complex multiplication, and

(f.(g.h))ij =
n∑
k=1

s∑
l=1

fik(gklhlj).

The right hand sides of these are equal.

(A2: unit axiom): for every pair (m,n) ∈ N2, and every f ∈ homMat(m,n) we have:

f.idm,

and

idn.f,

and we requie to show that these are equal to f . In particular that (idm.f)ij and (f.idn)ij

are equal to fij . These are given by

(f.idm)ij =
m∑
k=1

fikidkj = fijidjj = fij.

(Note: idkj = 1 if k = j and idkj = 0 if k 6= j)

(idn.f)ij =
n∑
k=1

idikfkj = idiifij = fij.

Definition 3.1.5 (Precategory). The definition of precategory is the same as the definition

of a small precategory but the collection of objects is a class instead of set.

Definition 3.1.6. [Categories] A category is like a small category, but we relax the re-

quirement that the collection of objects is a set.
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3.1.2 Subcategories

Definition 3.1.7. (See for example [ML13, Lei14, Awo10]). Let

C = (ob(C), homC( , ), ?C, id
C)

be a category. A subcategory of C is a pair

S = (ob(S), homS( , ))

consisting of

1. A subclass ob(S) of the class of objects of C.

2. Given (A,B) ∈ ob(S)× ob(S) a subset homS(A,B) ⊂ homC(A,B).

These are required to satisfy

1. Given f ∈ homS(A,B) and g ∈ homS(B,C), then f ?C g ∈ homS(A,C) (here

?C denotes the composition in C ).

2. For all A ∈ ob(S), it holds that idCA ∈ homS(A,A). (Here idCA denotes the identity

of A in ob(C)).

Proposition 3.1.8. (See for example [ML13, AHS04]). Let S = (ob(S), homS( , )) be

a subcategory. Then we have a category

S = (ob(S), homS( , ), ?S, id
S),

such that

1. the class of objects is ob(S);

2. given (A,B) ∈ ob(S)× ob(S), we have a set homS(A,B);
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3. given f ∈ homS(A,B) and g ∈ homS(B,C), the composition in S is

f ?S g = f ?C g;

4. for all A ∈ ob(S), we have idCA = idSA.

Proof. Let S be a subcategory of the category C, we want to prove the category axioms:

1. Associativity: for every quadruple

(A,B,C,D) ∈ ob(S)× ob(S)× ob(S)× ob(S),

and morphisms:

f ∈ homS(A,B) ⊂ homC(A,B),

g ∈ homS(B,C) ⊂ homC(B,C),

h ∈ homS(C,D) ⊂ homC(C,D),

we have:

f ?S g = f ?C g.

Therefore:

f ?S (g ?S h) = (f ?S g) ?S h.

2. Unit: let

(A,B) ∈ ob(S)× ob(S),

f ∈ homS(A,B),

idSA = idCA and idSB = idCB.

Therefore:

f ?S idSB = f ?C idSB = f,

and

idSA ?S f = idSA ?C f = f.
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Definition 3.1.9. (See for example [AHS04]). A subcategory B of a category C is full if

for each X, Y ∈ B, we have:

homB(X, Y ) = homC(X, Y ).

3.1.3 Examples of categories

Example 3.1.10. (See for example [AHS04]). The precategory

SET S = (SET , homSET S( , ), ?, 1 )

is a category where

1. the class SET is the class of all sets,

2. given a pair of objects (A,B) ∈ SET × SET , the set homSET S(A,B) is the set

of all functions from A to B,

3. for every triple of objects (A,B,C) ∈ SET × SET × SET and every f ∈

homSET S(A,B), g ∈ homSET S(B,C), we have

f ? g = g ◦ f,

4. for allA ∈ SET , an arrow 1A ∈ homSET S(A,A) where for all x ∈ A, 1A(x) = x.

Proof. Note that the above quadruple is formally a precategory (with the usual caveat

about collections as above). We will show that SET S satisfies the category axioms.



21

1. Associative, for all f : A→ B, g : B → C, h : C → D, x ∈ A, we have:

h ◦ (g ◦ f)(x) = h(g ◦ f(x))

= h(g(f(x)))

= (h ◦ g)(f(x))

= (h ◦ g) ◦ f(x).

Therefore

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

2. Unit, for every pair of objects (A,B) ∈ SET ×SET and any f : A→ B, x ∈ A,

we have

1B ◦ f(x) = 1B(f(x)) = f(x),

f ◦ 1A(x) = f(1A(x)) = f(x).

Therefore

1B ◦ f = f = f ◦ 1A.

Note we will also allow categories also to be formulated ‘backwards’, so we use no-

tation for composition from the SET convention. So for example we may write that the

quadruple (SET , homSET S(−,−), ◦, 1−) is a precategory and a category (even though

composition is backwards).

Example 3.1.11. (See for example [AHS04]). The precategory

Top = (ob(Top), homTop( , ), ◦, id )

is a category for which

1. the class ob(Top) is the class of all topological spaces,
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2. given a pair of objects (A,B) ∈ ob(Top)× ob(Top), the set homTop(A,B) is the

set of all continuous maps from A to B,

3. for every triple of objects(A,B,C) ∈ ob(Top)×ob(Top)×ob(Top) we define the

composition as

homTop(A,B)× homTop(B,C)→ homTop(A,C)

(f, g) 7→ g ◦ f,

in other words we put f ? g = g ◦ f ,

4. for all A ∈ ob(Top), the arrow idA:A → A is given by the identity map A → A.

(Note that idA ∈ homTop(A,A) as the identity map is always continuous).

Proof. Let us first prove that the composition map is well-defined i.e, if

f ∈ homTop(A,B) and g ∈ homTop(B,C),

Hence

g ◦ f ∈ homTop(A,C),

i.e, g ◦ f :A → C is a continuous map; this follow from the fact that the composition

map of continuous maps is continuous. Let U an open set in C ⇒ g−1(U) an open set

in B ⇒ f−1(g−1(U)) is an open set in A, but

f−1(g−1(U)) = (g ◦ f)−1(U).

Therefore g ◦ f is a continuous map.

Second: Top satisfies the category axioms as follow:

1. Associativity: for all f : A→ B, g : B → C, h : C → D, we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.
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2. Unit: for all f : A 7→ B, we have:

idB ◦ f = f and f ◦ idA = f.

Definition 3.1.12. We have a precategory

V ec = (ob(V ec), homV ec( , ), ◦, id )

of vector spaces where

1. ob(V ec) is the class of finite dimensional of vector spaces;

2. for each pair of objects V, U ∈ ob(V ec)

homV ec(V, U)

is the set of all linear map from V to U ;

3. for each V, U,W ∈ ob(V ec), and f ∈ homV ec(V, U), g ∈ homV ec(U,W ), we

have

f ? g = g ◦ f ;

4. for each object V ∈ ob(V ec), the identity map idV :V → V is a linear map.

Proposition 3.1.13. The precategory of vector spaces

V ec = (ob(V ec), homV ec( , ), ◦, id )

is a category.

Proof. We want to prove the category axioms,

1. Associativity, for each U, V,W,Q ∈ ob(V ec) and linear map f :U → V, g:V →
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W and h:W → Q, and x an element of V we have

h ◦ (g ◦ f)(x) = h(g ◦ f(x))

= h(g(f(x)))

= (h ◦ g)(f(x))

= (h ◦ g) ◦ f(x).

2. Unit, for each V, U ∈ ob(V ec), and a linear map f :V → U . We have

f ◦ idV (x) = f(idV (x))

= f(x).

idU ◦ f(x) = idU(f(x))

= f(x).

Example 3.1.14 (Example of subcategory). Consider the category of topological spaces

Top, there is a subcategory

DTop = (ob(DTop), homDTop( , )),

such that:

1. ob(DTop) are discrete topological spaces, so ob(DTop) ⊂ ob(Top),

2. for all A,B ∈ ob(DTop), homDTop(A,B) is the set of homeomorphism map from

A to B, so

homDTop(A,B) ⊂ homTop(A,B).

3.2 Functors

In this section we define functors between categories.
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Definition 3.2.1. (See for example [ML13, Lei14, Awo10]). Given categories

C = (ob(C), homC( , ), ?C, id
C) and D = (ob(D), homD( , ), ?D, id

D), a functor

F = (F0, F1) : C → D,

consists of

1. for each A ∈ ob(C), an object F0(A) ∈ ob(D);

2. for each f ∈ homC(A,B) an arrow F1(f) ∈ homD(F0A,F0B);

such that

1. for all f : A→ B, g : B → C, we have:

F1(g ?C f) = (F1g) ?D (F1f);

2. for all A ∈ ob(C), we have: F1(idCA) = idDF0A
.

Example 3.2.2. 1. For any category

C = (ob(C), homC( , ), ?, id ),

there is the ‘identity’ functor

Id: C → C;

such that

(a) for each A ∈ ob(C), an object Id0 A = A;

(b) for each f : A→ B ∈ C, an arrow Id1 f = f .

To check that the axioms are satisfied we observe the following,

(a) for all f : A→ B, g : B → C in C, we have

Id(g ? f) = g ? f = (Idg) ? (Idf);



26

(b) for all A ∈ ob(C), we have Id(idA) = idA = idIdA.

2. For any categories:

C = (ob(C), homC( , ), ?C, id
C),

and

D = (ob(D), homD( , ), ?D, id
D),

and B ∈ ob(D), there is a constant functor

CB: C → D,

such that

(a) for each A ∈ ob(C), an object CBA = B;

(b) for each f :A→ A′ ∈ homC(A,A
′), an arrow CB(f :A→ A′) = idB:B →

B.

That satisfies the axioms

(a) for all morphisms f : A→ A′, g : A′ → A′′, we have:

CB(g ?C f) = idB = idB ?D idB = (CBg) ?D (CBf);

(b) for all A ∈ ob(C), we have: CB(idA) = idB = id(CBA).

Note: in the next example we use the same convention for the composition for the

category Mat and category SET S.

Example 3.2.3. (See for example [Per19]). Consider the category of Mat in 3.1.4

Mat = (N, homMat( , ), ·, id ),

and the category of SET S in 3.1.10

SET S = (SET , homSET S( , ), ?, 1 ).
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We have a functor

F = (F0, F1):Mat→ SET S,

such that

1. given a natural number n ∈ ob(Mat), F0(n) = Rn;

2. given f :n→ m then F1(f):F0(n)→ F0(m) is the map given by

v 7→ f tr.v

where each v ∈ Rn is understood as a column vector (and thus both as an element

inside an object in SET S and as a morphism in Mat!). ( Here (−)tr denotes the

usual matrix transpose.)

For example if f : 2 → 3 =

a1 a2 a3

a4 a5 a6

, then F1(f):R2 → R3. Let v =

b1

b2

 ∈ R2, then F1(f)(v) =


a1 a4

a2 a5

a3 a6


b1

b2

 =


a1b1 + a4b2

a2b1 + a5b2

a3b1 + a6b2

 ∈ R3.

Proof. To prove F is a functor we have to prove the functor axioms 3.2.1.

• Let f ∈ homMat(n,m), and g ∈ homMat(m, k)and let v ∈ Rn, we have

F (f.g)(v) = (f.g)trv ∈ Rk

= (gtr.f tr) = gtr(f trv)

= F (g).(F (f).V ) = F (f) ? F (g)(v).

Therefore

F1(f.g) = F1(f) ? F1(g).
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• Let m ∈ N,

F1(idm):F0(m)→ F0(m)

Rm 7→ Rm.

Then

F1(idm) = 1F0(m).

Note this could have been formulated as a functor from Mat to V ec.

3.2.1 Properties of functors

First let us think about composition of functors.

Proposition 3.2.4. Consider the formal quadruple

SmC = (ob(SmC), homSmC( , ), ?, id )

where

1. the ob(SmC) is the class of all small categories,

2. for each pair (A,B) ∈ ob(SmC) × ob(SmC), the set homSmC(A,B) is the set of

all functors from A to B,

3. for every triple of objects

(A,B,C) ∈ ob(SmC)× ob(SmC)× ob(SmC),

and every

F ∈ homSmC(A,B), G ∈ homSmC(B,C),
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we have

homSmC(A,B)× homSmC(B,C)→ homSmC(A,C)

(F,G) 7→ G ? F,

where for all X ∈ ob(A), and morphism f in A, we have

(G ? F )0(X) = G0(F0(X)),

(G ? F )1(f) = G1(F1(f)),

(so far the construction is only formal. We need to show that G ? F is a functor,)

4. for all A ∈ ob(SmC), there is a functor IDA ∈ homSmC(A,A).

This is a category.

Proof. To show that SmC is a precategory we have only to show that G ? F is a functor.

For this let A ∈ ob(SmC), f ∈ homA(X, Y ) and g ∈ homA(Y, Z), we have

(G ? F )1(g ?A f) = G1(F1(g ?A f))

= G1(F1(g) ?B F1(f))

= G1(F1(g)) ?C G1(F1(f))

= G1 ? F1(g) ?C G1 ? F1(f),

which verifies functor-axiom 1. For axiom 2

(G ? F )1(idA) = G1(F1(idA))

= G1(idF0(A))

= idG0(F0(A))

= idG0?F0(A).
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as required. Thus our quadruple is a precategory.

Next we want to show that the precategory SmC satisfies the category axioms:

1. Associativity, for all F :A → B, G:B → C and H:C → D, and X ∈ ob(A) we

have

(H ? (G ? F ))0(X) = H0(G0 ? F0(X))

= H0(G0(F0(X))

= (H0 ? G0)(F0(X))

= (H0 ? G0) ? F0(X),

and for all morphism f in A, we have

H1 ? (G1 ? F1)(f) = H1(G1 ? F1(f))

= H1(G1(F1(f))

= (H1 ? G1)(F1(f))

= (H1 ? G1) ? F1(f).

Then

H ? (G ? F ) = (H ? G) ? F.

2. Unit, for all F :A→ B, and X ∈ ob(A), f morphism in A, we have

(IdB ? F )0(X) = Id0(F0(X)) = F0(X),

(IdB ? F )1(f) = Id1(F1(f)) = F1(f),

(F ? IdA)0(X) = F0(Id0(X)) = F0(X),

(F ? IdA)1(f) = F1(Id1(f)) = F1(f).

Therefore

IdB ? F = F = F ? IdA.



31

Definition 3.2.5 (Faithful functor). (See for example [AHS04]). A functor

F : C → D

is called a faithful functor if it is injective on set of morphisms between objects, i.e all

the maps

F1: homC(A,B)→ homD(F0A,F0B)

are injective.

Example 3.2.6. (See for example [ML13]). Let Grp be a category of groups such that

the objects are groups and the morphisms are the group homomorphisms. There is a

faithful functor

U :Grp→ SET S,

where U is the forgetful functor that forgets the structure of groups.

3.2.2 Product categories

Definition 3.2.7. (See for example [ML13]). Let

C = (ob(C), homC( , ), ?, id )

be a category. We define a precategory

C × C = (ob(C × C), homC×C( , ), ?, id )

as follows

1. ob(C × C) = ob(C)× ob(C) = {(x, y) | x, y ∈ ob(C)},
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2. given a pair of objects ((x, x′), (y, y′)) in ob(C × C)× ob(C × C),

homC×C((x, x
′), (y, y′)) := homC(x, x

′)× homC(y, y
′)

=

(f, g)
∣∣∣ f : x→ y,

g : x′ → y′


3. for every triple of objects ((x, x′), (y, y′), (z, z′)) ∈ ob(C × C) × ob(C × C) ×

ob(C × C), and every f = (f1, f2) ∈ homC×C((x, x
′), (y, y′)), and g = (g1, g2) ∈

homC×C((y, y
′), (z, z′)), we define

g ? f = (g1, g2) ? (f1, f2) = (g1 ? f1, g2 ? f2) ∈ homC×C((x, x
′), (z, z′)),

4. for all (x, x′) ∈ ob(C × C),

id(x,x′) = (idx, idx′) ∈ homC×C((x, x
′), (x, x′)).

Proposition 3.2.8. (See for example [ML13]). The precategory

C × C = (ob(C × C), homC×C( , ), ?, id )

in definition 3.2.7 is a category.

Proof. We want to prove the precategory C × C satisfies the category axioms

1. Associativity, for all f = (f1, f2) ∈ homC×C((x, x
′), (y, y′)), g = (g1, g2)

∈ homC×C((y, y
′), (z, z′)) and h = (h1, h2) ∈ homC×C((z, z

′), (w,w′)), we have:

h ? (g ? f) = (h1, h2) ? ((g1, g2) ? (f1, f2))

= (h1, h2) ? (g1 ? f1, g2 ? f2)

= (h1 ? g1 ? f1, h2 ? g2 ? f2)

= (h1 ? g1, h2 ? g2) ? (f1, f2)

= ((h1, h2) ? (g1, g2)) ? (f1, f2)

= (h ? g) ? f.
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2. Unit, for all (x, x′), (y, y′) ∈ ob(C × C) and

f = (f1, f2) ∈ homC×C((x, x
′), (y, y′)),

we have

(f1, f2) ? (idx, idx′) = (f1 ? idx, f2 ? idx′) = (f1, f2) = (idy, idy′) ? (f1, f2).

3.2.3 Natural transformations

Definition 3.2.9. (See for example [AHS04, AT10]). Let F,G : C → D be functors. A

natural transformation

t:F → G

is a family of morphisms in D indexed by objects A of C,

(
tA:FA→ GA

)
A∈ob(C)

,

such that, for each f :A→ B, a morphism in C, the following diagram commutes.

FA FB

GA GB

Ff

tA tB

Gf

Example 3.2.10. [AT10] Let SET S be the category of set and

Id:SET S → SET S

be the identity functor from Example 3.2.2, and let

δ:SET S → SET S × SET S
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[recall that product categories are defined in Section 3.2.2] be the functor such that for

each A ∈ ob(SET S) we have

A 7→ A× A,

and for all f ∈ homSET S(A,B),

f 7→ f × f.

Then there is a natural transformation

t:F → G

given a set A,

tA:A→ A× A,

such that for all x ∈ A, we have

tA:x ∈ A 7→ (x, x) ∈ A× A.

This makes the next diagram commute

A B

A× A B ×B

f

tA tB

f×f

3.2.4 Adjoint functors

In this section we define adjoint functors in order to use it later where slidealisation

functor from 1
2
-monoidal categories to slideable 1

2
-monoidal categories is a left adjoint

to the inclusion functor from slideable 1
2
-monoidal categories to 1

2
-monoidal categories.

One of the definitions of adjunction can be found in [BW90, Section 13.2], also you

can see for example [ML13, Par70, AHS04].

Definition 3.2.11. (See for example [BW90, Section 13.2]). Let C and D be categories

and let F : C → D and G:D → C be functors. An adjunction is a triple (F,G, δ), where

δ is a natural transformation δ: id → G ◦ F , that for any objects A ∈ C and B ∈ D
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and any arrow f :A → GB, there is a unique arrow g:FA → B that makes the next

diagram commute

A G(F (A))

G(B).

δA

f
G(g)

We say that F is left adjoint to G and G is right adjoint to F and δA is a universal arrow

from A to G.

The next definition is the definition of a right adjoint functor G:D → C.

Definition 3.2.12. (See for examples [AHS04, Chapter V]). A functor

G:D → C

is a right adjoint if for each A ∈ ob(C) there are FA ∈ ob(D) and a morphism δA:A→

G(FA) such that

given B ∈ ob(D) and morphism f :A → G(B), there is a unique mor-

phism g:FA → B that makes the next diagram commute.

A G(FA)

G(B)

δA

f
G(g)

The morphism δA is called a universal arrow from A to G.

Lemma 3.2.13. (See for example [AHS04, Chapter V]). LetG:D → C be a right adjoint

functor. Choose for each object A of C a universal arrow δA:A→ G(FA), from A to G.

Then there is a unique functor F : C → D, where for all A ∈ ob(C), F (A) = FA, such

that δ = (δA:A→ G(FA))A∈ob(C) is a natural transformation from idC toG◦F , i.e, such

that for all A,B ∈ ob(C) and morphism g:A→ B, the next diagram commutes.

A G(FA)

B G(FB)

δA

g G(F (g))

δB
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Moreover that (F,G, δ) is an adjunction.

Proof. Let G:D → C be a right adjoint functor, then from the Def.3.2.12, for each

A ∈ ob(C) there are FA ∈ ob(D) and a given universal arrow δA:A→ G(FA), such that

Given B ∈ ob(D) and morphism f :A → G(B), there is a unique mor-

phism g:FA → B that makes the next diagram commute.

A G(FA)

G(B)

δA

f
G(g)

We want to construct F . The value of F on objects is given. On morphisms, let g:A→

B, then we have universal arrows δA:A→ G(FA) and δB:B → G(FB). Then the value

of F (g:A → B) is the unique map from FA to FB in D that makes the next diagram

commute.
A G(FA)

B G(FB)

δA

g G(F (g))

δB

Now we want to prove F is a functor. For all morphisms g:A→ B and f :B → C in C,

we have that the next diagram commutes

A G(FA)

B G(FB)

C G(FC)

δA

g G(F (g))

δB

f G(F (f))

δC

Also we have the next diagram commutes.

A G(FA)

C G(FC)

δA

f?g G(F (f?g))

δC
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Hence from the universal property

F (f ? g) = F (f) ? F (g).

Also the next two diagram commute

A G(FA)

A G(FA)

δA

idA G(F (idA))

δA

A G(FA)

A G(FA)

δA

idA idGFA=G(idFA )

δA

Then

F (idA) = idFA.

Therefore F is a functor and δ: id → G ◦ F is a natural transformation and (F,G, δ) is

an adjunction.

3.3 Graphs and categories

In this section, we define the free categories over graphs.

Definition 3.3.1 (See for example [Hig71]). A directed graph, or simply “graph”,

X = (V (X), E(X), δ1, δ2)

consists of
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1. A set V = V (X). The elements of V are called vertices.

2. A set E = E(X). The elements of E are called edges.

3. A map, called “incidence map”

δ:E → V × V

x 7→ (δ1x, δ2x).

We call δ1x the source of x and δ2x the target of x.

Example 3.3.2. Consider the next graph (Z5, {x1, x2, x3}, δ1, δ2) such that the functions

δi are determined by the following picture

0

1

2

3

4

x1 x2

x3

Definition 3.3.3. (See for example [Hig71]). A graph-map θ:A → B is a pair of maps

(Vθ, Eθ), where Vθ:V (A)→ V (B) and Eθ:E(A)→ E(B) which preserves incidences,

i.e, for all edge x of A,

δi(Eθ(x)) := Vθ(δix); (i = 1, 2).

Note the class of graphs and maps between them, with the evident identities and com-

position, can be arranged into a category Graphs.
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3.3.1 On freeness and forgetful functors

Lemma 3.3.4 (The forgetful functor from the category of small categories to the category

of graphs). (See for example [ML13]). We have a forgetful functor

U : SmC→ Graphs.

It is defined in the following way. Let C = (ob(C), homC( , ), ?, id ) be a category, then

1.

U(C) = (Mor(C)
δ1
⇒
δ2

ob(C)),

where

Mor(C) :=
⋃

(x,y)∈ob(C)×ob(C)

({x} × homC(x, y)× {y}),

where for every f ∈ homC(x, y)

δ1(x, f, y) = x, δ2(x, f, y) = y.

2. Given small categories C1 = (ob(C1), homC1( , ), ?, id ), and

C2 = (ob(C2), homC2( , ), ?, id ). Given F = (F0, F1) ∈ homSmC(C1, C2).

U(C1) =

ob(C1),
⋃

(x,y)∈ob(C1)×ob(C1)

{x} × homC1(x, y)× {y}, δ1, δ2

 ,

U(C2) =

ob(C2),
⋃

(x′,y′)∈ob(C2)×ob(C2)

{x′} × homC2(x
′, y′)× {y′}, δ′1, δ′2

 .

U(F ) = U(F0, F1) = (U(F )0, U(F )1),
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such that

U(F )0: ob(C1)→ ob(C2),

U(F )1(x, f :x→ y, y) = (F0(x), F1(x
f−→ y), F0(y)).

Definition 3.3.5. (See for example [Hig71]). A free-category-triple on a graph X is a

triple (X, C, δX) where C is a category and δX :X → U(C) is a graph-map such that the

following universal property is satisfied.

Given a category A and a graph-map θ:X → U(A), there is a unique

functor θ∗: C → A such that θ = U(θ∗) ◦ δ in the category of Graphs.

X U(C)

U(A)

δ

θ
U(θ∗)

Here U is the forgetful functor from the category of small categories SmC to the category

of Graphs .

Therefore δX :X → U(C) is a universal arrow from X to U .

Following from definition 3.2.12, the forgetful functor U is a right adjoint if for all

objects X in category of Graphs there is a universal arrow δX :X → U .

Theorem 3.3.6. A free-category-triple over a graph is unique, up to a unique isomor-

phism. Given any two free-categories-triples over a graph X , (X, C, δ) and (X,D, θ),

there is a unique functor f : C → D making the next diagram commute.

X U(C)

U(D)

δX

θ
U(f)

Moreover f is an isomorphism.

Proof. First, we want to prove f exists. Since (X, C, δX) is a free-category-triple, given
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a category A and a graph-map θ:X → U(A), there is a functor f : C → A such that

θ = U(f) ◦ δ. Assume A = D, so the functor f exists.

Second, we want to prove that the functor f is unique. Assume there is h: C → D

another functor such that

U(h) ◦ δ = θ,

but we have

U(f) ◦ δ = θ.

Therefore the functor f is a unique functor i.e,

f = h.

Third, we want to prove that the functor f is an isomorphism. Let g:D → C be the

functor that given by the universal property where (X,D, θX) is a free-category-triple.

So we have to prove f ◦ g = Id = g ◦ f . Since (X, C, δX) and (X,D, θX) are free-

category-triples, so we have the commutative diagram

X C

D

C

δX

δX

f

g◦f

g

But the map IdC: C → C is the only map makes the next diagram commute.

X C

C

δX

δX
IdC
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Then, IdC = g ◦ f . By a same argument, the next diagram commutes.

X D

C

D

θX

θX

g

f◦g

f

The map IdD:D → D is the only map makes the next diagram commute.

X D

D

θX

θX
IdD

Then, IdD = f ◦ g.

3.3.2 Paths on a graph

Definition 3.3.7 (Path). Let

(V (X), E(X), δ1, δ2)

be a graph. A sequence of edges (x1, x2, . . . , xn), xi ∈ E(X), n ∈ N is a path if

δ2xi = δ1xi+1 for all i = 1, 2, ..., n− 1.

A path for which δ1x1 = δ2xn is called a closed path.

Example 3.3.8. From our Example 3.3.2 we have the path (x1, x2), where δ2x1 =

δ1x2 = 2.

Definition 3.3.9. (See for example [Hig71]). LetX = (V (X), E(X), δ1, δ2) be a graph.

For each pair i 6= j ∈ V (X), we define MorX(i, j) to be the set of ‘paths’ from i to j,

i.e.,

MorX(i, j) ={(x1, x2, ..., xn) | for some n ∈ Z+, x1, . . . , xn ∈ E(X), δ1x1 = i, δ2xn = j,

δ2(xk) = δ1(xk+1)∀k ∈ {1, . . . , n− 1}}.
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MorX(i, i) ={(x1, x2, ..., xn) | for some n ∈ Z+, x1, . . . , xn ∈ E(X), δ1x1 = i = δ2xn,

δ2(xk) = δ1(xk+1)∀k ∈ {1, . . . , n− 1}} ∪ φi.

Remark 3.3.10. φi is called the empty path from i, or the path of length 0 from i.

Example 3.3.11. Consider the graph

X = (Z5, {x1, x2, x3, x4}, δ1, δ2),

such that the functions δi are determined by the following picture

0

1

2

3

4

x1 x2

x4 x3

MorX(2, 4) ={(x2, x3), (x2, x3, x4, x1, x2, x3), (x2, x3, x4, x1, x2, x3, x4, x1, x2, x3),

. . . , (x2, x3, x4, x1, x2, x3, x4, x1, x2, x3, . . . , x4, x1, x2, x3), . . . }.

MorX(1, 1) ={φ1} ∪ {(x1, x2, x3, x4), (x1, x2, x3, x4, x1, x2, x3, x4), . . . ,

(x1, x2, x3, x4, . . . , x1, x2, x3, x4), . . . }.

MorX(0, 0) ={φ0}.

MorX(0, 1) ={ }.

Note that { } is the empty set.

Definition 3.3.12. (See for example [Hig71].

Let X be a graph. Then the 4-tuple

P (X) = (V (X),MorX(i, j), •, φ )

is a precategory where
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1. ob(P (X)) = V (X) .

2. For each pair i, j ∈ V (X),MorX(i, j) is as defined in 3.3.9.

3. For each triple i, j, k ∈ V (X) the multiplication of paths is

Mor(i, j)×Mor(j, k)→Mor(i, k)

(p, q) 7→ p • q

given as follows

Let p = (x1, . . . , xn) ∈MorX(i, j) and q = (y1, . . . , ym) ∈MorX(j, k). Then

p • q = (x1, x2 . . . , xn, y1, y2, . . . , ym) ∈MorX(i, k)

this multiplication is defined whenever δ2(p) = δ1(q).

If p = φj ,

φj • q = q.

If q = φj

p • φj = p.

4. For each i ∈ V (X), φi is the identity on i.

Proposition 3.3.13. (See for example [Hig71]). The precategory

P (X) = (V (X),MorX(i, j), •, φ )

is a category.

Proof. We want to check the category axioms in 3.1.3

1. Associative, let p1 = (x1, . . . , xn) ∈ MorX(i, j), p2 = (y1, . . . , ym) ∈ Mor(j, k)

and p3 = (z1, . . . , zr) ∈Mor(k, s), we have

p1 • (p2 •p3) = p1 • (y1, . . . , ym, z1, . . . , zr) = (x1, . . . , xn, y1, . . . , ym, z1, . . . , zr),
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(p1•p2)•p3 = (x1, . . . , xn, y1, . . . , ym)•p3 = (x1, . . . , xn, y1, . . . , ym, z1, . . . , zr).

Then

p1 • (p2 • p3) = (p1 • p2) • p3.

2. Unit, let p = (x1, . . . , xn) ∈MorX(i, j), then

φi • p = p = p • φj.

Theorem 3.3.14. (See for example [Hig71]). Let X be a graph. Then

(X,P (X), δX)

is a free-category-triple on graph X (in the sense of Def. 3.3.5) where

P (X) = (V (X),MorX(i, j), •, φ ),

and for all a ∈ V (X), x ∈ E(X) the graph map δX is the map

δX :X → U(P (X))

x 7→ x

Proof. We want to prove that given a category C = (ob(C), homC( , ), ?, id ) and a

graph map θ:X → U(C), there is a unique functor θ∗:P (X) → C, that makes the

diagram commute

X U(P (X))

U(C).

δX

θ
U(θ∗)

1. Existences, define a functor θ∗ by

θ∗ = (θ∗0, θ
∗
1):P (X)→ C,
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that on objects

a 7→ Vθ(a),

and on morphism

(x1, x2, . . . , xn) 7→ Eθ(x1) ? Eθ(x2) ? . . . ? Eθ(xn).

The map θ∗:P (X)→ C is a functor since for all

p = (x1, x2, . . . , xn) ∈ MorX(i, j) and q = (y1, y2, . . . , ym) ∈ MorX(j, k), we

have

θ∗1(p • q) = θ∗1(x1, x2, . . . , xn, y1, y2, . . . , ym)

= Eθ(x1) ? Eθ(x2) ? . . . ? Eθ(xn) ? Eθ(y1) ? Eθ(y2) ? . . . ? Eθ(ym)

=
(
Eθ(x1) ? Eθ(x2) ? . . . ? Eθ(xn)

)
?
(
Eθ(y1) ? Eθ(y2) ? . . . ? Eθ(ym)

)
= θ∗1(x1, x2, . . . , xn) ? θ∗1(y1, y2, . . . , ym)

= θ∗1(p) ? θ∗1(q).

θ∗1(φa) = Eθ(φa)

= φVθ(a).

2. Uniqueness, suppose there is a functor

θ∗∗ = (θ∗∗0 , θ
∗∗
1 ):P (X)→ C

that makes the next diagram commute

X U(P (X))

U(C)

δX

θ
U(θ∗∗)

Then on objects

θ∗∗0 (a) = Vθ(a),
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and on morphisms

θ∗∗(p) = θ∗∗(x1, . . . , xn)

= θ∗∗(x1) ? . . . ? θ∗∗(xn)

= Eθ(x1) ? . . . ? Eθ(xn).

Therefore there is a unique functor i.e.,

θ∗ = θ∗∗.

Example 3.3.15. 1. LetX be a graph with one vertex and one edge x from the vertex

to itself. Then the category

P (X) = ({i},MorX(i, i), •, φ ).

Here

MorX(i, i) = {φi, p, p • p, p • p • p, . . . },

where p = (x) (path of x).

Then the free-category-triple on X is

(X,P (X), δX).

2. Let X be a graph with two vertices a, b and an edge x from a to b, with

P (X) = ({a, b},MorX( , ), •, φ ).

where for all i, j ∈ V (X) we have,

MorX(a, b) ={(x)},

MorX(a, a) ={φa},

MorX(b, b) ={φb}.
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Then the free-category-triple on X is

(X,P (X), δX).

3.4 Quotient categories

In this section we review congruence relation and quotient categories.

Definition 3.4.1 (Precongruence). Let C be a category, A precongruence relationR on C

is given by for each pair X, Y ∈ ob(C), an equivalence relation RX,Y on homC(X, Y ).

Example 3.4.2. Let C be the category Mat see 3.1.4. Let X, Y ∈ ob(C), and f, g:X →

Y . We define a relation R such that f ∼RX,Y g, if they are projectively equivalent, i.e.

there is a ∈ C, a 6= 0, such that

f = ag.

That is an equivalence relation, since

1. f ∼RX,Y f , where f = (1)f .

2. Let f ∼RX,Y g, this means there is a ∈ C \ {0} such that f = ag, so, g = a−1f ,

then g ∼RX,Y f .

3. Let f ∼RX,Y g and g ∼RX,Y h, there are a, b ∈ C \ {0}, such that, f = ag and

g = bh then f = a(bh) = (ab)h, this mean f ∼RX,Y h.

Definition 3.4.3 (Congruence). (See for example [ML13, page 51-52 ;VO95]). A pre-

congruence relation R on a category C = (ob(C), homC( , ), ?, id ) is called a congru-

ence if it satisfies the following,

for each f1 ∼RX,Y f2 and g1 ∼RY,Z g2, we have

g1 ? f1 ∼RX,Z g2 ? f2.
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Example 3.4.4. The precongruence in Example 3.4.2 is a congruence .

Let f1, f2 ∈ homMat(X, Y ), f1 ∼RX,Y f2 and g1, g2 ∈ homMat(Y, Z), g1 ∼RY,Z g2, we

have

f1 · g1 ∈ homMat(X,Z) and f2 · g2 ∈ homMat(X,Z). Moreover

f1 = af2,

g1 = bg2,

for some a, b ∈ C \ {0}. Hence

f1 · g1 = (af2) · (bg2)

= (ab)(f2 · g2).

Therefore

f1 · g1 ∼RX,Z f2 · g2.

Proposition 3.4.5 (Quotient precategory). (See for example [ML13, page 51]). Let R be

a congruence relation on a category C = (ob(C), homC( , ), ?C, id ), then the quotient

C/R := (ob(C), homC/R( , ), ?C/R, id
′)

is a precategory, where

1. ob(C/R) = ob(C).

2. For X, Y ∈ ob(C),

homC/R(X, Y ) := homC(X, Y )/RX,Y .

(Given f ∈ homC(X, Y ), the equivalence class to which it belong is denoted

[f ]RX,Y ).

3. Given f ∈ homC/R(X, Y ), g ∈ homC/R(Y, Z), then

[g]RY,Z ?C/R [f ]RX,Y := [g ?C f ]RX,Z .
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4. For all X ∈ ob(C/R), we have id′X := [idX ].

Proof. Given f ∈ homC/R(X, Y ), g ∈ homC/R(Y, Z), we want to prove the composi-

tion

[g]RY,Z ?C/R [f ]RX,Y = [g ?C f ]RX,Z

is well defined, namely that it is independent of the choice of representatives. We want

to prove if f ∼ f ′ and g ∼ g′, then

g ?C f ∼ g′ ?C f
′.

This comes directly from the definition of congruence relation 3.4.3.

To C/R we call the quotient precategory.

Proposition 3.4.6. (See for example [ML13, page 51-52 ;VO95]). The quotient precat-

egory

C/R = (ob(C), homC/R( , ), ?C/R, id
′)

of a category C = (ob(C), homC( , ), ?C, id ) is a category.

Proof. We need to check associtiviy and identity axioms in 3.1.3 .

1. For all [f ]RX,Y , [g]RY,Z and [h]RZ,W in C/R,

[h]RZ,W ?C/R ([g]RY,Z ?C/R [f ]RX,Y ) =[h]RZ,W ?C/R ([g ?C f ]RX,Z )

=[h ?C (g ?C f)]RX,W

=[(h ?C g) ?C f ]RX,W

=[(h ?C g)]RY,W ?C/R [f ]RX,Y

=([h]RZ,W ?C/R [g]RY,Z ) ?C/R [f ]RX,Y .
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2. For all [f ]RX,Y in C/R,

[f ]RX,Y ?C/R id′X = [f ]RX,Y ?C/R [idX ]

= [f ?C idX ]RX,Y

= [f ]RX,Y

= [idY ?C f ]RX,Y

= [idY ] ?C/R [f ]RX,Y

= id′Y ?C/R [f ]RX,Y .

Example 3.4.7. Consider the category of Mat and the congruence relation R in 3.4.4,

so we have a quotient category Mat/R, where

1. ob(Mat/R) = ob(Mat).

2. homMat/R(X, Y ) = homMat(X, Y )/R.

Let f, g ∈ homMat(2, 2),

f =

2 6

4 8

 , g =

1 3

2 4


So, f = 2g, then [f ] = [g] ∈ homMat/R(2, 2)

Proposition 3.4.8. (See for example [ML13, page 51-52]). Let C = (ob(C), homC( , ), ?C, id )

be a category and R a congruence. There is a functor F from the category C to the quo-

tient category C/R = (ob(C), homC/R( , ), ?C/R, id
′), where

1. F (X) = X, ∀X ∈ ob(C).

2. F (f) = [f ]RX,Y ∀f ∈ homC(X, Y ).
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Proof. We want to prove F is a functor, let f :X → Y and g:Y → Z morphisms in C,

F (g ?C f) = [g ?C f ]RX,Z

= [g]RY,Z ?C/R [f ]RX,Y

= F (g) ?C/R F (f).

F (idX) = [idX ]

= [idF (X)]

= id′F (X).

3.5 Presentations of small categories

3.5.1 Congruence closure

In this section we recall the definition of congruence and that it yields a quotient cate-

gory and a functor. We will give a way to pass from a collection of relations W to the

‘smallest’ congruence containing W . This is implicitly used in the literature however I

could not find a place where it is rigorously treated.

Definition 3.5.1 (Congruence Template). Let

C = (ob(C), homC( , ), ?, id )

be a category. A congruence template is given by a relation – not necessarily an equiv-

alence relation – WX,Y for each objects X, Y ∈ ob(C). We write f ∼WX,Y
g to say that

f, g:X → Y are related by WX,Y .

Definition 3.5.2. Let

C = (ob(C), homC( , ), ?, id )

be a category that has a congruence template WX,Y for all X, Y ∈ ob(C). We say



53

f, g:X → Y are related in WX,Y , and we put

f ∼WX,Y
g

if there are A,B ∈ ob(C), f ′, g′:A → B and α:X → A, β:B → Y , hence fitting into

the diagram below

X A B Yα

g′

f ′

β

such that f = β ? f ′ ? α and g = β ? g′ ? α, and f ′ ∼WA,B
g′ or g′ ∼WA,B

f ′.

Lemma 3.5.3. Let

C = (ob(C), homC( , ), ?, id )

be a category that has a congruence template W . Let X, Y,X ′, Y ′ ∈ ob(C). Let also

f, g:X → Y , m:X ′ → X and n:Y → Y ′ be morphisms such that

f ∼WX,Y
g.

Then

n ? f ? m ∼WX′,Y ′
n ? g ? m.

Proof. Let f, g:X → Y be morphisms such that

f ∼WX,Y
g.

Then there are A,B ∈ ob(C), f ′, g′:A → B and α:X → A, β:B → Y , such that

f = β ? f ′ ? α and g = β ? g′ ? α, and f ′ ∼WA,B
g′ or g′ ∼WA,B

f ′. Hence

n ? f ? m = n ? β ? f ′ ? α ? m

= (n ? β) ? f ′ ? (α ? m),

n ? g ? m = n ? β ? g′ ? α ? m

= (n ? β) ? g′ ? (α ? m).
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Therefore

n ? f ? m ∼WX′,Y ′
n ? g ? m.

Definition 3.5.4. Let

C = (ob(C), homC( , ), ?, id )

be a category, with a congruence template {WX,Y }(X,Y )∈ob(C)×ob(C). Consider the rela-

tion WX,Y in 3.5.2, defined in homC(X, Y ), for all X, Y ∈ ob(C). Let

WX,Y

be the transitive, reflexive closure of WX,Y . (So WX,Y is an equivalence relation in

homC(X, Y )).

Then f, g:X → Y are related in WX,Y we write

f ∼
WX,Y

g,

if f = g or there exists an n ∈ N, (A1, A2, . . . , An) ∈ ob(C)n, and (B1, B2, . . . , Bn) ∈

ob(C)n, and for all i ∈ {1, 2, . . . , n}, morphisms

αi:X → Ai,

f ′i :Ai → Bi,

g′i:Ai → Bi,

βi:Bi → Y,
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such that

f = f1 = β1 ? f
′
1 ? α1

∼WX,Y
g1 = β1 ? g

′
1 ? α1, where we have f ′1 ∼WA1,B1

g′1 or g′1 ∼WA1,B1
f ′1

= f2 = β2 ? f
′
2 ? α2

∼WX,Y
= g2 = β2 ? g

′
2 ? α2, where we have f ′2 ∼WA2,B2

g′2 or g′2 ∼WA2,B2
f ′2

...

= fn = βn ? f
′
n ? αn

∼WX,Y
gn = βn ? g

′
n ? αn = g, where we have f ′n ∼WAn,Bn

g′n or g′n ∼WAn,Bn
f ′n.

I.e,
X Y

=

X A1 B1 Y

∼WX,Y
where we have f ′1 ∼WA1,B1

g′1 or g′1 ∼WA1,B1
f ′1

X A1 B1 Y

=

X A2 B2 Y

∼WX,Y
where we have f ′2 ∼WA2,B2

g′2 or g′2 ∼WA2,B2
f ′2

X A2 B2 Y

...

X An Bn Y

∼WX,Y
where we have f ′n ∼WAn,Bn

g′n or g′n ∼WAn,Bn
f ′n

X An Bn Y

=

X Y

f

α1

f ′1

β1

α1

g′1

β1

α2

f ′2

β2

α2

g′2

β2

αn

f ′n

βn

αn

g′n

βn

g

Theorem 3.5.5. The equivalence relations WX,Y on homC(X, Y ), for all (X, Y ) ∈
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ob(C)× ob(C), are a congruence in C, see 3.4.3. I.e, if

f ∼
WX,Y

f ′ and g ∼
WY,Z

g′,

then

g ? f ∼
WX,Z

g′ ? f ′.

Proof. Suppose f ∼
WX,Y

f ′, so f = f ′ or there exists n ∈ N and there are f1, f2, . . . , fn:X →

Y , such that

f = f1 ∼WX,Y
f2, f2 ∼WX,Y

f3, . . . , fn−1 ∼WX,Y
fn = f ′.

Suppose g ∼
WY,Z

g′, so g = g′ or there exists m ∈ N and there are g1, g2, . . . , gm:Y →

Z, such that

g = g1 ∼WY,Z
g2, g2 ∼WY,Z

g3, . . . , gm−1 ∼WY,Z
gm = g′.

Then, by Lemma 3.5.3,

g ? f = g ? f1 ∼WX,Z
g ? f2,

g ? f2 ∼WX,Z
g ? f3,

...

g ? fn−1 ∼WX,Z
g ? fn = g ? f ′.

Therefore

g ? f ∼
WX,Z

g ? f ′.
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By similarity

g ? f ′ = g1 ? f
′ ∼WX,Z

g2 ? f
′,

g2 ? f
′ ∼WX,Z

g3 ? f
′

...

gm−1 ? f
′ ∼WX,Z

gm ? f
′ = g′ ? f ′.

Therefore

g ? f ′ ∼
WX,Z

g′ ? f ′.

Hence

g ? f ∼
WX,Z

g′ ? f ′.

Definition 3.5.6. The congruenceWX,Y is called the closure of the congruence template

WX,Y .

Example 3.5.7. Consider the category Mat in 3.1.2 and let it have the following con-

gruence template Wm,n.

If m,n ∈ N and A,B ∈ homMat(m,n) then

A ∼Wm,n B, if

A = B , where m 6= n,

B = λA , for some λ 6= 0, if m = n.

Let m,n ∈ N . Let U, V ∈ homMat(m,n). Suppose V = λU for some λ ∈ C \ {0}

then U ∼
Wm,n

V .

Proof.

U = idm.idm.U,

V = idm.λidm.U.
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By using Def. 3.5.2,

U ∼Wm,n
V.

Therefore

U ∼
Wm,n

V.

Definition 3.5.8 (Category presented by a graph and a congruence template). Let C be

the free category on a graphG, see 3.3.14, and letWX,Y , X, Y ∈ ob(C) be a congruence

template in C. Let WX,Y be its closure. To the quotient category

C/W

we call the category presented by G and W .

3.5.2 Example: the combinatorial braid category

We now use free category and closures of congruence templates, and the ensuing notion

of a presentation of a category, to give an example.

Example 3.5.9. (See [Ver13, section 4]). Consider the graph

β = (N, E, δ1, δ2),

where the set of edges is

E =
{
X+

(i,n) | n ≥ 2, i ∈ {1, . . . , n− 1}
}
∪
{
X−(i,n) | n ≥ 2, i ∈ {1, . . . , n− 1}

}
,

and the incidence function is

δ1X
+
(i,n) = δ1X

−
(i,n) = n δ2X

+
(i,n) = δ2X

−
(i,n) = n. (3.1)
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We will represent the formal symbols X±(i,n) as

X+
(i,n) =

. . . . . .
1 i i+ 1 n

X−(i,n) =
. . . . . .

1 i i+ 1 n

Consider the category (see 3.3.13)

P (β) = (N,MorP (β)(n,m), •, φ ).

So, we have the free-category-triple in sense of Def. 3.3.5

(β, P (β), δ).

We define the formal braid category to be the following quotient

P (β)

/
W n,m.

Where, given m,n ∈ N, then Wn,m is the relation in MorP (β)(n,m) defined as below

• If m 6= n it is clear, from incidence map on (3.1) that MorP (β)(n,m) = ∅. So

Wn,m is the unique equivalence relation on the empty set.

• m,n = 0. Then MorP (β)(0, 0) = {φ0}. The relation W(0,0) is the unique equiva-

lence relation such that φ0 ∼W0,0 φ0.

• m,n = 1. Then MorP (β)(1, 1) = {φ1}. The relation W(1,1) is the unique equiva-

lence relation such that φ1 ∼W1,1 φ1.

• m,n = 2. MorP (β)(2, 2) is the set of words in X+
1,2 and X−1,2. The two pairs of
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related elements are : (note that we omitted • from the notation.)

X+
(1,2)X

−
(1,2) ∼W2,2 φ2,

X−(1,2)X
+
(1,2) ∼W2,2 φ2.

• m,n = 3. MorP (β)(3, 3) is the set of words in X+
1,3, X

+
2,3 and X−1,3, X

−
2,3. The

related elements are

X+
(1,3)X

−
(1,3) ∼W3,3 φ3,

X−(1,3)X
+
(1,3) ∼W3,3 φ3,

X+
(2,3)X

−
(2,3) ∼W3,3 φ3,

X−(2,3)X
+
(2,3) ∼W3,3 φ3,

X+
(1,3)X

+
(2,3)X

+
(1,3) ∼W3,3 X

+
(2,3)X

+
(1,3)X

+
(2,3),

X−(1,3)X
−
(2,3)X

−
(1,3) ∼W3,3 X

−
(2,3)X

−
(1,3)X

−
(2,3).

• m,n = 4. MorP (β)(4, 4) is the set of words inX+
1,4, X

+
2,4, X

+
3,4 andX−1,4, X

−
2,4, X

−
3,4.

The related elements are

X+
(1,4)X

−
(1,4) ∼W4,4 φ4,

X−(1,4)X
+
(1,4) ∼W4,4 φ4,

X+
(2,4)X

−
(2,4) ∼W4,4 φ4,

X−(2,4)X
+
(2,4) ∼W4,4 φ4,

X+
(3,4)X

−
(3,4) ∼W4,4 φ4,

X−(3,4)X
+
(3,4) ∼W4,4 φ4,

X+
(1,4)X

+
(3,4) ∼W4,4 X

+
(3,4)X

+
(1,4),

X+
(1,4)X

+
(2,4)X

+
(1,4) ∼W4,4 X

+
(2,4)X

+
(1,4)X

+
(2,4),

X+
(2,4)X

+
(3,4)X

+
(2,4) ∼W4,4 X

+
(3,4)X

+
(2,4)X

+
(3,4),

X−(1,4)X
−
(2,4)X

−
(1,4) ∼W4,4 X

−
(2,4)X

−
(1,4)X

−
(2,4),

X−(2,4)X
−
(3,4)X

−
(2,4) ∼W4,4 X

−
(3,4)X

−
(2,4)X

−
(3,4).
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• General n ≥ 5 case. As in n = 4.



Chapter 4

Monoids and their abelianisation

The aim of this chapter is understanding the abelianisation functor. This is because

it is very similar to an operation later sending a 1
2
-monoidal category into a slideable

1
2
-monoidal category by imposing slidealisation conditions. A slideable 1

2
-monoidal

category is the same thing as a strict monoidal category, as we discuss below.

4.1 Monoid definition and examples

Definition 4.1.1 (Monoid). (See for example [Ber15, Fac21]). A monoid (G, •, e) is

given by a triple consisting of

1. a set G,

2. a map G×G→ G, denoted by (x, y) ∈ G×G 7→ x • y,

3. e ∈ G (e is called the identity),

such that the following axioms are satisfied

1. associativity, for all x, y, z ∈ G , the equation

(x • y) • z = x • (y • z)

62
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holds,

2. unit, for every element x ∈ G, the equations

e • x = x • e = x

hold.

Definition 4.1.2 (Abelian monoid). (See for example [Red14]). A monoid (A, •, e) is

called abelian if every x, y ∈ A, we have

x • y = y • x.

Example 4.1.3. 1. The set of natural numbers under addition (N,+, 0) is an abelian

monoid.

2. The set of natural numbers N under multiplication with 1 as an identity element

(N,×, 1) is an abelian monoid.

3. Every group is a monoid.

Definition 4.1.4 (Monoid map). (See for example [Fac21, HZ97]). Let (M, •, e) and

(N, •′, e′) be monoids. A monoid map

f : (M, •, e)→ (N, •′, e′)

is a set map f :M → N such that

f(x • y) = f(x) •′ f(y),

and

f(e) = e′.

Proposition 4.1.5. The precategory of monoids

M = (ob(M), homM( , ), ◦, id−)
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is given by

1. ob(M) is the class of all monoids.

2. Given a pair of objects (A,B) ∈ ob(M)× ob(M), the set homM(A,B) is the set

of all monoids maps from A to B.

3. For every triple of objects (A,B,C) ∈ ob(M) × ob(M) × ob(M) and every

f ∈ homM(A,B) and g ∈ homM(B,C) we have

g ◦ f ∈ homM(A,C).

4. For all A ∈ ob(M), an arrow idA ∈ homM(A,A) (the usual identity on the

underlying set of A).

Proof. It is clear the first, second and fourth components are as required, so it remains

to check the third component.

Let (A,B,C) ∈ ob(M)×ob(M)×ob(M) and f ∈ homM(A,B) and g ∈ homM(B,C).

So, f ∈ homSET S(A,B) and g ∈ homSET S(B,C), then

g ◦ f ∈ homSET S(A,C).

Also,

g ◦ f(X •A Y ) = g(f(X) •B f(Y ))

= g(f(X)) •C g(f(Y ))

= g ◦ f(X) •C g ◦ f(Y ),

g ◦ f(eA) = g(eB)

= eC .

Therefore

g ◦ f ∈ homM(A,C).
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Proposition 4.1.6. The precategory in the definition 4.1.5 is a category .

Proof. We can see easily thatM satisfy the category axioms.

Definition 4.1.7. We have a full subcategoryMab = (ob(Mab), homM( , )), where

1. ob(Mab) is the class of abelian monoids, so ob(Mab) ⊂ ob(M).

2. Given a pair of objects (A,B) ∈ ob(Mab) × ob(Mab), the set homMab
(A,B) =

homM(A,B).

We now address the abelianisation of a monoid. This is in preparation for the defini-

tion of the slidealisation of a 1
2
-monoidal category.

Lemma 4.1.8. LetA = (A, •, e) be a monoid. There is another monoidAab = (Aab, •ab, eab).

Here

1. Aab = A/∼. Here ∼ is the transitive closure of ∼0, we say x ∼0 y if there exist

a, b, s, t ∈ A such that x = t • a • b • s and y = t • b • a • s. Note that ∼0 is

reflexive and symmetric.

2. The product •ab in Aab is

[x] •ab [y] = [x • y].

3. The identity is eab = [e].

Moreover, the map ρA:A→ Aab such that

ρA(x) = [x]

is a monoid morphism.

Definition 4.1.9 (Abelianisation of a monoid). Let A = (A, •, e) be a monoid, the

abelianisation of A is Aab = (Aab, •ab, eab) that is defined as in Lem.4.1.8.
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4.1.1 Proof of Lemma 4.1.8

First of all let us prove that [x] •ab [y] = [x • y] is well-defined, namely that it is in-

dependent of the choice of representatives. We want to prove if x ∼ x′ and y ∼ y′,

then

x • y ∼ x′ • y′

Suppose x ∼ x′. So there exists n ∈ N, (t1, t2, . . . , tn) ∈ An, (a1, a2, . . . , an) ∈ An,

(b1, b2, . . . , bn) ∈ An, (s1, s2, . . . , sn) ∈ An and (x1, x2, . . . , xn) ∈ An, such that

x = x1 =t1 • a1 • b1 • s1,

x2 =t1 • b1 • a1 • s1

=t2 • a2 • b2 • s2,

x3 =t2 • b2 • a2 • s2

=t3 • a3 • b3 • s3,

...

x′ = xn =tn−1 • bn−1 • an−1 • sn−1

=tn • an • bn • sn.

So,

x = x1 ∼0 x2, x2 ∼0 x3, . . . , xn−1 ∼0 xn = x′.

Similarly, suppose y ∼ y′, so there arem ∈ N, (h1, h2, . . . , hm) ∈ Am, (c1, c2, . . . , cm) ∈
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Am, (d1, d2, . . . , dm) ∈ Am, (k1, k2, . . . , km) ∈ Am and (y1, y2, . . . , ym) ∈ Am, such that

y = y1 =h1 • c1 • d1 • k1,

y2 =h1 • d1 • c1 • k1

=h2 • c2 • d2 • k2,

y3 =h2 • d2 • c2 • k2

=h3 • c3 • d3 • k3,

...

y′ = ym =hm−1 • dm−1 • cm−1 • km−1

=hm • cm • dm • km.

So,

y = y1 ∼0 y2, y2 ∼0 y3, . . . , ym−1 ∼0 ym = y′.

Now, we prove that x • y ∼ x′ • y′. We first prove x • y ∼ x′ • y. Then we prove

x′ • y ∼ x′ • y′.

x • y = x1 • y =t1 • a1 • b1 • (s1 • y),

x2 • y =t1 • b1 • a1 • (s1 • y)

=t2 • a2 • b2 • (s2 • y),

x3 • y =t2 • b2 • a2 • (s2 • y)

=t3 • a3 • b3 • (s3 • y),

...

x′ • y = xn • y =tn−1 • bn−1 • an−1 • (sn−1 • y)

=tn • an • bn • (sn • y).

So,

x • y = x1 • y ∼0 x2 • y, x2 • y ∼0 x3 • y, . . . , xn−1 • y ∼0 xn • y = x′ • y.
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We have just proven

x • y ∼ x′ • y.

Analogously

x′ • y = x′ • y1 =(x′ • h1) • c1 • d1 • k1,

x′ • y2 =(x′ • h1) • d1 • c1 • k1

=(x′ • h2) • c2 • d2 • k2,

x′ • y3 =(x′ • h2) • d2 • c2 • k2

=(x′ • h3) • d3 • c3 • k3,

...

x′ • y′ = x′ • ym =(x′ • hm−1) • dm−1 • cm−1 • km−1

=(x′ • hm) • cm • dm • km.

So,

x′ • y = x′ • y1 ∼0 x
′ • y2, x

′ • y2 ∼0 x
′ • y3, . . . , x

′ • ym−1 ∼0 x
′ • ym = x′ • y′.

This mean

x′ • y ∼ x′ • y′.

Therefore

x • y ∼ x′ • y′.

Secondly, we want to prove associativity. Let x, y, z ∈ A

([x] •ab [y]) •ab [z] =[x • y] •ab [z]

=[(x • y) • z]

=[x • (y • z)]

=[x] •ab ([y] •ab [z]).
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Now, we want to prove the unit axiom

[eab] •ab [x] =[e • x]

=[x],

[x] •ab [eab] =[x • e]

=[x].

The map ρA:A→ Aab is a monoid morphism. Let x, y ∈ A, we have

ρA(x • y) =[x • y]

=[x] •ab [y]

=ρA(x) •ab ρA(y),

ρA(e) =[e]

=eab.

�

4.1.2 Examples of abelianisation of monoids

Example 4.1.10. Given a set X , (X∗, ?, ∅) is a monoid where

1. ∀i ∈ {1, 2, ...,m}

X∗ = {[x1][x2]...[xm] | m ∈ Z, xi ∈ X} ∪ {∅}

is a set;

2. The monoid operation is such that

?:X∗ ×X∗ → X∗

[x1][x2] . . . [xn] ? [y1][y2] . . . [ym] = [x1] . . . [xn][y1] . . . [ym].
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If [x1][x2] . . . [xn] = ∅,

∅ ? [y1][y2] . . . [ym] 7→ [y1][y2] . . . [ym].

If [y1][y2] . . . [ym] = ∅,

[x1][x2] . . . [xn] ? ∅ 7→ [x1][x2] . . . [xn].

3. ∅ ∈ X∗ is the identity.

Proof. (X∗, ?, ∅) are satisfied the monoid axioms

1. Associativity, for all u, v, w ∈ X∗, such that u = [x1] . . . [xn], v = [y1] . . . [ym]

and w = [z1] . . . [zr].

(u ? v) ? w =([x1] . . . [xn][y1] . . . [ym]) ? [z1] . . . [zr]

=[x1] . . . [xn][y1] . . . [ym][z1] . . . [zr],

u ? (v ? w) =[x1] . . . [xn] ? ([y1] . . . [ym][z1] . . . [zr])

=[x1] . . . [xn][y1] . . . [ym][z1] . . . [zr].

Therefore

(u ? v) ? w = u ? (v ? w).

2. Unit, for every w ∈ X∗,

∅ ? w = w ? ∅ = w.

Example 4.1.11. Consider the monoid A = ({x, y}∗, ?, φ}), define

{x, y}+ = {xnym | n,m ∈ N}.
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So, ({x, y}+, ∗, x0y0) where

xnym ∗ xn′ym′ = xn+n′ym+m′

is clearly an abelian monoid. We have an isomorphism

Fab({x, y}∗, ?, φ}) f−−→ ({x, y}+, ∗, x0y0),

where

f([w]) = xχx(w)yχy(w).

Here χx(w) is the number of x’s in the word w, χy(w) is the number of y’s in the word

w.

Proof. 1. We want to prove that f is well defined i.e,

if w ∼0 w
′, then χx(w) = χx(w

′) and χy(w) = χy(w
′)

Suppose w ∼0 w
′, then there are a, b, s, t ∈ {x, y}∗ such that w = t ? a ? b ? s,

w′ = t ? b ? a ? s clearly this operation preserves χx(w) and χy(w). Now we want

to show that

if w ∼ w′, then χx(w) = χx(w
′) and χy(w) = χy(w

′).

Suppose w ∼ w′, then there are w1, w2, . . . , wn, such that

w = w1 ∼0 w2, w2 ∼0 w3, . . . , wn−1 ∼0 wn = w′.

Then from this χx(w) = χx(w
′) and χy(w) = χy(w

′).
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2. f is a monoid map.

f([w] ? [w′]) = xχx(w?w′)yχy(w?w′)

= xχx(w)+χx(w′)yχy(w)+χy(w′)

= xχx(w)yχy(w)xχx(w′)yχy(w′)

= f([w]) ∗ f([w′]),

f(φ) = xχx(φ)yχy(φ)

= x0y0.

3. The map f is surjective. For each xnym, there is a word w ∈ {x, y}∗ such that

χx(w) = n, χy(w) = m, e.g.

w = x . . . x︸ ︷︷ ︸
n times

y . . . y︸ ︷︷ ︸
m times

.

4. The map f is injective. Let w,w′ ∈ A and suppose that

f([w]) = f([w′]).

So,

χx(w) = χx(w
′),

and

χy(w) = χy(w
′).

Let us argue that [w] ∼ [w′]. Because w and w′ contain the same number of

x’s and y’s, we can go from the word w to the word w′ by a finite number of

operations flipping the order of consecutive symbols x and y. If w and w′ are

connected by a single flip of consecutive symbols, then, there exist words α and

α′ and w = α ? x ? y ? α′ and w′ = α ? y ? x ? α′, or the other way around. If we

have n ∈ N flips, we do one flip every time to have series of equivalent words i.e,

w = w1 ∼ w2, w2 ∼ w3, . . . , wn−1 ∼ wn = w′.
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Then f is an isomorphism and ({x, y}+, ∗, x0y0) is isomorphic to the abelian monoid

of the monoid A = ({x, y}∗, ?, ∅).

Remark 4.1.12. Instead of this section we can apply the previous section of quotient

categories to define abelianisation of a monoid. We can see a monoid (A, •, e) as a

category C with one object x such that homC(x, x) = A. Consider the relation W let

y, z ∈ A, we say y ∼W z, if there exist a, b ∈ A, such that y = a • b and z = b • a.

Then we can define the transitive closure W of the relation W , then we apply Theorem

3.5.5. Hence we can have the quotient category C/W which is the abelianisation of the

monoid (A, •, e).

4.1.3 Monoid abelianisation as a functor

In this section we define abelianisation functor from the category of monoidsM to the

category of abelian monoidsMab, which is left adjoint to the inclusion functor G from

Mab toM.

Lemma 4.1.13. Let g: (A, •, e) → (B, •, e) be a monoid map and let x, x′ ∈ A and

x ∼0 x
′, then

g(x) ∼0 g(x′).

Proof. Suppose x ∼0 x
′, so there exist a, b, s, t ∈ A such that

x = t • a • b • s,

and

x′ = t • b • a • s.
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So, we have

g(x) = g(t • a • b • s)

= g(t) • g(a) • g(b) • g(s),

g(x′) = g(t • b • a • s)

= g(t) • g(b) • g(a) • g(s).

Hence

g(x) ∼0 g(x′).

Corollary 4.1.14. Let g: (A, •, e) → (B, •, e) be a monoid map and let x, x′ ∈ A and

x ∼ x′, then

g(x) ∼ g(x′).

Proof. Suppose x ∼ x′. So there exists n ∈ N and (x1, x2, . . . , xn) ∈ An, such that

x = x1 ∼0 x2, x2 ∼0 x3, . . . , xn−1 ∼0 xn = x′.

By Lemma 4.1.13 we have

g(x) = g(x1) ∼0 g(x2), g(x2) ∼0 g(x3), . . . , g(xn−1) ∼0 g(xn) = g(x′).

Hence

g(x) ∼ g(x′).

Proposition 4.1.15. Let (A, •, e) and (B, •, e) be monoids and let g:A→ B be a monoid

map. Then there is a monoid map gab:Aab → Bab, such that, given x ∈ A

gab([x]) := [g(x)].
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Furthermore the next diagram commutes

A B

Aab Bab

g

ρA ρB

gab

So the crucial fact that if G:Mab → M is the inclusion functor, then the family

of maps ρA:A → G(F (A)) = Aab, where A is a monoid, is a natural transformation

id→ G ◦ F .

Proof. Note that

gab([x]) = [g(x)]

is well defined, because if x ∼ x′, then g(x) ∼ g(x′), see 4.1.14. Also, the diagram

commutes
x g(x)

[x] [g(x)]

g

ρA ρB

gab

Proposition 4.1.16. LetM be the category of monoids, as defined in 4.1.6 andMab the

category of abelian monoids as defined in 4.1.7. There is a functor

F :M→Mab,

where

1. For all A ∈ ob(M), F (A) = Aab.

2. For all f ∈ homM(A,B), F (f) = fab.

Proof. We want to prove F is a functor.

1. Let A, B and C be monoids. If f ∈ homM(A,B), g ∈ homM(B,C), we have,
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for all x ∈ A

F (g ◦ f)([x]) = (g ◦ f)ab([x]) = [(g ◦ f)(x)] by 4.1.15

= [g(f(x)] = gab([f(x)]) by 4.1.15

= gab(fab([x]) = (gab ◦ fab)([x])

= (F (g) ◦ F (f))([x]).

2. For all A ∈ ob(M), given x ∈ A

F (idA([x])) = (idA)ab([x]) = [idA(x)] = idAab
([x]) = idF (A)([x]).

In the proposition below, G denotes the inclusion functorMab →M. This gives that

ρY is a universal arrow.

Proposition 4.1.17. Given any monoid (Y, •Y , eY ) there exists an abelian monoid F (Y )

and a monoid map ρY :Y → G(F (Y )) satisfying the following universal property

Given any abelian monoid (A, •A, eA), and a monoid map

f :Y → G(A),

there exists a unique monoid map f̂ :F (Y ) → A that makes the diagram

commute.
Y G(F (Y ))

G(A)

f

ρY

G(f̂)

Moreover the family of all ρY :Y → G ◦F (Y ) is a natural transformation . I.e, we have

an adjunction (F,G, ρ).
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Proof. Let Y be a monoid. So there exists a monoid map

ρY :Y → F (Y )

y 7→ [y]

Let A be an abelian monoid. Consider a monoid map f :Y → G(A). First, we want to

prove a map f̂ :F (Y )→ A is exists. We define f̂ by

f̂ :F (Y )→ A

[y] 7→ f(y),

that is independence of representatives. If x ∼0 y, so there exist a, b, s, t ∈ Y such that

x = t • a • b • s

and

y = t • b • a • s.

f̂([x]) = f(x) = f(t • a • b • s)

= f(t) • f(a) • f(b) • f(s).

f̂([y]) = f(y) = f(t • b • a • s)

= f(t) • f(b) • f(a) • f(s).

Therefore,

f(x) = f(y).

The map f̂ is a monoid map because

1. For all x, y ∈ Y ,

f̂([x] •ab [y]) = f̂([x •Y y]) = f(x •Y y)

= f(x) •A f(y) = f̂([x]) •A f̂([y]).
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2. f̂([eY ]) = f(eY ) = eA.

Second, we want to prove the uniqueness. Suppose there is a monoid map

f̂1:F (Y )→ A

which makes the diagram commute

Y G(F (Y ))

G(A)

f

ρY

G(f̂1)

So,

f̂1([y]) = f(y).

Therefore there is a unique monoid map i.e,

f̂ = f̂1.

From 4.1.15, for all A,B ∈ ob(M), the next diagram commutes

A B

Aab Bab

g

ρA ρB

gab

where G ◦F (A) = Aab. Then ρ: id→ G ◦F is a natural transformation, i.e, we have an

adjunction (F,G, ρ).

4.2 Free Monoid

Lemma 4.2.1. (See for example [BW90]).We have a forgetful functor

U :M→ SET S,
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from the category of monoids to the category of sets such that:

U(G, •, e) = G,

and sends a monoid-map to underlying set-map as shown below:

U((G, •, e) f−→ (G′, •′, e′)) = (G
f−→ G′).

Definition 4.2.2. (See for example [BW90]). A free-monoid-triple on a set X is a triple

(X,MX , iX) where MX is a monoid, and iX : X → U(MX) is a map of sets that

satisfies the following universal property

Given any monoidG, and any set map f0 : X → U(G), there is a unique

monoid map f :MX → G that makes the diagram below, in the category of

sets, commute:
X U(MX)

U(G)

iX

f0
U(f)

U is the forgetful functor U :M → SET S and iX :X → U(MX) is a universal arrow.

The forgetful functor U is a right adjoint if for all objects X of the category SET S there

is a universal arrow iX :X → U(MX).

Let us prove that free monoid triples on a set X do exist. In order to prve that U is a

right adjoint and in oder to construct a corresponding left adjoint.

Theorem 4.2.3. (See for example [BW90]). Given a set X , (X,X∗, i) is a free-monoid-

triple, where

iX :X → U(X∗, ?, ∅)

x 7→ [x].

Proof. We want to prove that given a monoid (G, •, eG) and a set-map f :X → U(G),

there is a unique monoid map f̄ : (X∗, ?, ∅) → (G, •, eG), that makes the diagram com-
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mute.
X U(X∗)

U(G)

i

f
U(f̄)

1. Existence; define a map f̄ by

f̄ : (X∗, ?, ∅)→ (G, •, eG)

[x1] . . . [xm] 7→ f(x1) • f(x2) • . . . • f(xm).

f̄ is a monoid map since:

i. for every word w,w′ ∈ X , we have

f̄(w ? w′) = f̄(w) • f̄(w′).

That is because: if w 6= ∅ and w′ 6= ∅, then

f̄([x1] . . . [xn] ? [y1] . . . [ym])

= f̄([x1] . . . [xn][y1] . . . [ym])

= f(x1) • f(x2) • . . . • f(xn) • f(y1) • . . . • f(ym)

= (f(x1) • f(x2) • . . . • f(xn)) • (f(y1) • . . . • f(ym))

= f̄([x1] . . . [xn]) • f̄([y1] . . . [ym]).

if w′ = ∅, then

f̄(w ? ∅) = f̄(w),

f̄(w) • f̄(∅) = f̄(w) • eG = f̄(w).

if w = ∅, then

f̄(∅ ? w′) = f̄(w′),

f̄(∅) • f̄(w′) = eG • f̄(w′) = f̄(w′).
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ii. f̄(∅) = f(∅) = eG.

2. Uniqueness; suppose there is a monoid map

f̂ : (X∗, ?, ∅)→ (G, •, eG)

which makes the next diagram commute:

X U(X∗)

U(G)

i

f
U(f̂)

So, as f̂ is a monoid map

f̂([x1][x2] . . . [xn]) = f̂([x1]) • f̂([x2]) • . . . • f̂([xm])

= f(x1) • f(x2) • . . . • f(xm).

Therefore there is a unique monoid map i.e,

f̄ = f̂ .

The main aim of previous chapters was as preparation for the more involved free

monoidal categories.



Chapter 5

1
2-monoidal categories and monoidal

categories

In this chapter we discuss strict monoidal categories from the point of view of 1
2
-monoidal

categories.

5.1 1
2-monoidal categories

In this section we set up some machinery for what we call 1
2
-monoidal categories . This

is useful for technical aspects of (free)-monoidal categories.

5.1.1 The cat’s whiskers: 1
2-monoidal categories

The idea of 1
2
-monoidal category comes for example from Street (Edited by M. Hazewinkel)

[Haz96, chapter 15]. In this paper Street define a sesquicategory1 as an analogous object

to a 2-category, however skipping the interchange law. Also see [PR97, Cra99].

We prove in section 5.4.1 that a slideable 1
2
-monoidal category gives a strict monoidal

category. After that in section 6 we define the free 1
2
-monoidal category over monoidal

1(1 + 1
2 ) is the meaning of ”sesqui”

82
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graph (monoidal graphs are defined in 6.1.1).

Definition 5.1.1 (Pre-1
2
-monoidal structure). (See [PR97]). Let

C = (ob(C), homC( , ), ?, id )

be a category. A pre-1
2
-monoidal structure

(C, I,⊗0,Θ(−), (−)Θ)

in C is given by

1. For each pair of objects x and y in ob(C), another object x⊗0 y in ob(C).

2. An object I ∈ ob(C).

3. For each morphism f :x → y and object z, a morphism x⊗0 z
Θz(f)−−−→ y ⊗0 z. We

will use the notation

(
x⊗0 z

Θz(f)−−−→ y ⊗0 z
)

=
(
x⊗0 z

fΘz−−→ y ⊗0 z
)
.

4. For each morphism f :x → y and object z, a morphism z ⊗0 x
zΘ(f)−−−→ z ⊗0 y. We

will use the notation

(
z ⊗0 x

zΘ(f)−−−→ z ⊗0 y
)

=
(
z ⊗0 x

zΘf−−→ z ⊗0 y
)
.

Definition 5.1.2 (1
2
-monoidal category). (See [PR97]). Let C be a category exactly as

above. A pre-1
2
-monoidal structure on C

(C, I,⊗0,Θ(−), (−)Θ)

gives a 1
2
-monoidal category

(C, I,⊗0,#(−), (−)#)

if the following is satisfied
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1. (ob(C),⊗0, I) is a monoid.

2. Let A be an object of C. Then the pair of assignments

• ob(C)→ ob(C) such that x 7→ x⊗0 A,

• given objects x, y, consider

f ∈ homC(x, y) 7→ ΘA(f):x⊗0 A→ y ⊗0 A

is a functor C → C. (We will denote this functor by #A: C → C.)

3. Let A be an object of C. Then the pair of assignments

• ob(C)→ ob(C) such that x 7→ A⊗0 x.

• Given objects x, y, consider

f ∈ homC(x, y) 7→ AΘ(f):A⊗0 x→ A⊗0 y.

is a functor C → C. (We will denote this functor by A#: C → C.)

4. For each A,B ∈ ob(C)

A# ◦ B# = A⊗0B#. (5.1)

#A ◦#B = #B⊗0A. (5.2)

#A ◦ B# = B# ◦#A. (5.3)

#I = idC. (5.4)

I# = idC. (5.5)

Here idC is the identity functor C → C.

Example 5.1.3. Fix an abelian group (G, •). We have a category

C = (Z, homC( , ), •, 1).

1. Set of objects is Z.
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2. For all m,n ∈ Z, homC(m,n) =

φ, if m 6= n

G, if m = n.

3. The composition in this category is given by the product in the group G. This

means that given any n ∈ Z

homC(n, n)× homC(n, n)→ homC(n, n)

(n
g−−→ n, n

h−−→ n)7→n g•h−−→ n.

4. For each n ∈ Z the identity morphisms idn = 1G ∈ homC(n, n).

We have 1
2
-monoidal category such that (we denote the product of two integers a and b

as a.b)

1. 1 ∈ Z is the identity object.

2. For all n,m ∈ Z;

m⊗0 n = m.n

3. For all A ∈ Z and n
g−−→ n;

#A(n
g−−→ n) = n.A

gA−−→ n.A

A#(n
g−−→ n) = A.n

gA−−→ A.n

This satisfies the 1
2
-monoidal category axioms

1. We want to prove #A and A# are functors for all A, n ∈ Z and for all g, h ∈

homC(n, n) we have

#A(g • h) = n.A
(g•h)A−−−−→ n.A

= n.A
gA•hA−−−−→ n.A

= (n.A
gA−−→ n.A) • (n.A

hA−−→ n.A)

= #A(g) •#A(h)
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Therefore #A is a functor, by similarity A# is a functor.

2. To verify the axiom (5.1), for each A,B, n ∈ ob(C) and g ∈ homC(n, n).

A# ◦ B#(n
g−−→ n) = A#(B.n

gB−−→ B.n)

= n.B.A
(gB)A−−−→ n.B.A

= A.B.n
gA.B−−−→ A.B.n

= A.B#(n
g−−→ n)

= A⊗0B#(n
g−−→ n).

3. To verify the axiom (5.2), for each A,B, n ∈ ob(C) and g ∈ homC(n, n);

#A ◦#B(n
g−−→ n) = #A(n.B

gB−−→ n.B)

= n.B.A
(gB)A−−−→ n.B.A

= n.B.A
gA.B−−−→ n.B.A

= #B.A(n
g−−→ n)

= #B⊗0A(n
g−−→ n).

4. To verify the axiom (5.3), for each A,B, n ∈ ob(C) and g ∈ homC(n, n);

#A ◦ B#(n
g−−→ n) = #A(B.n

gB−−→ B.n)

= n.B.A
(gB)A−−−→ n.B.A

= n.B.A
(gA)B−−−→ n.B.A

= B# ◦#A(n
g−−→ n).

5. To verify the axiom (5.4) and (5.5),

#1(n
g−−→ n) = n

g−−→ n,

1#(n
g−−→ n) = n

g−−→ n.

Example 5.1.4. Let (A, •, 1) be a monoid. We have a category C, such that
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1. the set of objects is {1},

2. homC(1, 1) = A,

3. the composition in the category C is given by the product • in the monoid (A, •, 1),

4. the identity morphism is 1 ∈ homC(1, 1).

We have 1
2
-monoidal category such that

1. 1 is the identity object,

2. 1⊗0 1 = 1,

3. for all g: 1→ 1

#1(1
g−−→ 1) = 1

g−−→ 1.

1#(1
g−−→ 1) = 1

g−−→ 1.

This satisfies the 1
2
-monoidal category axioms.

Definition 5.1.5. Let C = (ob(C), homC( , ), ?, id) be a category. A 1
2
-monoidal cat-

egory (C,⊗0, I,#(−), (−)#) is called slideable if given objects x, y.z, w and a pair of

morphisms f :x→ y and g: z → w we have

(fΘw) ? (xΘg) = (yΘg) ? (fΘz).

Where fΘw:x⊗0 w → y ⊗0 w.

This mean that the next diagram commutes

x⊗0 z x⊗0 w

y ⊗0 z y ⊗0 w

xΘg

fΘz fΘw

yΘg

Example 5.1.6. The 1
2
-monoidal category in example 5.1.3 is slideable .
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Proof. Let m,n ∈ Z and g:m→ m, h:n→ n. We have

(gΘn) • (mΘh) = (m.n
gn−→ m.n) • (m.n

hm−→ m.n)

= (m.n
hm−→ m.n) • (m.n

gn−→ m.n)

= (mΘh) • (gΘn).

Example 5.1.7. The 1
2
-monoidal category in example 5.1.4 is slideable if the monoid A

is abelian.

Proof. Let g, h ∈ homC(1, 1) we have

(gΘ1) • (1Θh) = (1
g−→ 1) • (1

h−→ 1)

= (1
h−→ 1) • (1

g−→ 1)

= (1Θh) • (gΘ1).

5.1.2 Matrix elements and 1
2-monoidal categories

Definition 5.1.8 (Matrix elements). Let V and W be finite dimensional vector spaces

with bases X and Y respectively. Let f :V → W be a linear map. The matrix elements

of f with respect to basis X and Y , denoted (using Dirac notation)

〈x | f | y〉 ∈ C, where x ∈ X, y ∈ Y

are defined by

f(x) =
∑
y∈Y

〈x | f | y〉 y,

where x ∈ X .

We only consider pointed spaces, i,e V and W will be the free vector spaces C(X)
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and C(Y ) over the finite sets X and Y . A linear map is uniquely specified by matrix

elements. This mean if we have a function

X × Y → C

(x, y) 7→ 〈x | f | y〉,

then we have a unique linear map

C(X)
f−→ C(Y ),

such that ∑
x∈X

axx 7→
∑
x∈X

∑
y∈Y

ax〈x | f | y〉 y.

Now, we discuss the matrix elements of a linear map

f :C(Xm)→ C(Xn).

Here X a nonempty finite set and m,n ∈ N. In case m,n 6= 0, then

Xm = {(x1, x2, . . . , xm) | x1, . . . , xm ∈ X}

is a basis of C(Xm) and

Xn = {(y1, y2, . . . , yn) | y1, . . . , yn ∈ X}

is a basis of C(Xn). The matrix elements of f are denoted

〈(x1, x2, . . . , xm) | f | (y1, y2, . . . , yn)〉 ∈ C,
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and the linear map f is such that on the basis Xm of C(Xm) we have

f(x1, x2, . . . , xm) =∑
(y1,...,yn)∈Xn

〈(x1, x2, . . . , xm) | f | (y1, y2, . . . , yn)〉 (y1, y2, . . . , yn).

If m = 0 and n > 0, then C(X0) ∼= C. We will take {1}, to be the basis of C. So

given a linear map

f :C→ C(Xn),

the matrix elements of f are 〈1 | f | (y1, y2, . . . , yn)〉, and the linear map f is such that

on the basis {1} of C

f(1) =
∑

(y1,...,yn)∈Xn

〈1 | f | (y1, y2, . . . , yn)〉 (y1, y2, . . . , yn).

If n = 0, so

f :C(Xm)→ C,

the matrix elements of f are 〈(x1, x2, . . . , xm) | f | 1〉, and the linear map f is such that

on the basis Xm of C(Xm)

f(x1, x2, . . . , xm) = 〈(x1, x2, . . . , xm) | f | 1〉.

If m = n = 0, so

f :C→ C

the matrix elements of f are 〈1 | f | 1〉, and the linear map is such that on the basis {1}

of C we have

f(1) = 〈1 | f | 1〉.
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Example 5.1.9. Let X = {a, b}. Consider the linear map

f :C(X2)→ C(X3)

such that on the bases X2 and X3 we have.

(x1, x2) 7→ (x1, x2, x2).

The basis of C(X2) is {(a, a), (a, b), (b, a), (b, b)}, and the basis

of C(X3) is

{(a, a, a), (a, a, b), (a, b, b), (b, b, b), (b, b, a), (b, a, a), (a, b, a), (b, a, b)}, so explicitly

f(A1(a, a) + A2(a, b) + A3(b, a) + A4(b, b))

= A1(a, a, a) + A2(a, b, b) + A3(b, a, a) + A4(b, b, b).

So explicitly

〈(x, y) | f | (w, z, t)〉 =

1, if (x, y, y) = (w, z, t),

0, otherwise.
(5.6)

Also, consider the linear map,

g:C→ C(X2),

such that on the bases {1} of C, we have

1 7→ (a, a),

g(1) = 1(a, a) + 0(a, b) + 0(b, a) + 0(b, b).
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So,

〈1 | g | (x, y)〉 =

1, if (x, y) = (a, a),

0, otherwise.

Proposition 5.1.10. Let X be a nonempty finite set, we have a category

V ecX = (N, homV ecX ( , ), ◦, id ),

where

1. ob(V ecX) = N,

2. for each objects m,n ∈ N,

homV ecX (m,n) = homV ec(C(Xm),C(Xn)),

where we put C(X0) := C. Here homV ec is defined in 3.1.13

3. for each linear maps f ∈ homV ecX (m,n) = homV ec(C(Xm),C(Xn)) and g ∈

homV ecX (n, s) = homV ec(C(Xn),C(Xs)), then

g ◦ f ∈ homV ecX (m, s) = homV ec(C(Xm),C(Xs)).

4. for each object m ∈ N the identity of m in V ecX is the identity map

idm:C(Xm)→ C(Xm),

which is a linear map.

Proof. We have proved the category axioms in 3.1.13, where we prove that V ec is a

category, since V ecX is essentially a subcategory.

Remark It is a very interesting point that homV ec(V,W ) does not ‘remember’ a basis

of V , even if V was constructed using a basis. So if we want to give a concrete element
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explicitly then we probably first have to give a basis. On the other hand homV ecX (m,n)

comes with a basis for each underlying space. Thus although we gave homV ecX (m,n)

above by identifying it with a set of morphisms in V ec, this only works if we know X ,

and works per X .

Proposition 5.1.11. Let X be a non-empty finite set . Consider the category

V ecX = (N, homV ecX ( , ), ◦, id ).

We have a slideable 1
2
-monoidal category

(V ecX ,+, 0,#(−), (−)#),

where

1. for each m,n ∈ N, m⊗0 n = m+ n;

2. I = 0;

3. consider objects m,n 6= 0. Suppose we have a linear map f :C(Xm) → C(Xn).

We know that Xm = {(x1, x2, . . . , xm) | x1, . . . , xm ∈ X} is a basis of C(Xm)

and Xn = {(y1, y2, . . . , yn) | y1, . . . , yn ∈ X} is a basis of C(Xn).

Let A > 0 be an object, then #A(f) is the linear map

#A(f):C(Xm+A)→ C(Xn+A)

such that on the basis Xm+A of C(Xm+A) has the form

(x1, x2, . . . , xm, a1, a2, . . . , aA) 7→∑
(y1,...,yn)∈Xn

〈(x1, x2, . . . , xm) | f | (y1, y2, . . . , yn)〉

(y1, y2, . . . , yn, a1, a2, . . . , aA).
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Therefore the matrix elements is

〈(x1, x2, . . . , xm, a1, a2, . . . , aA) | #A(f) | (y1, y2, . . . , yn, a
′
1, a
′
2, . . . , a

′
A)〉

=

〈(x1, x2, . . . , xm) | f | (y1, y2, . . . , yn)〉, if (a1, . . . , aA) = (a′1, . . . , a
′
A),

0, otherwise.

If A=0, then

#A(f) = f.

If m = 0, and A, n > 0 the linear map

#A(f):C(XA)→ C(Xn+A)

is such that on the basis XA of C(XA) we have

(a1, a2, . . . , aA) 7→
∑

(y1,...,yn)∈Xn

〈1 | f | (y1, y2, . . . , yn)〉

(y1, y2, . . . , yn, a1, . . . , aA).

The matrix elements is

〈(a1, a2, . . . , aA) | #A(f) | (y1, y2, . . . , yn, a
′
1, a
′
2, . . . , a

′
A)〉

=

〈1 | f | (y1, y2, . . . , yn)〉, if (a1, . . . , aA) = (a′1, . . . , a
′
A),

0, otherwise.

If n = 0,

#A(f):C(Xm+A)→ C(XA)

is such that on the basis Xm+A of C(Xm+A),

(x1, x2 . . . , xm, a1, . . . , aA) 7→ 〈(x1, x2, . . . , xm) | f | 1〉 (a1, . . . , aA).
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The matrix elements is

〈(x1, x2, . . . , xm, a1, a2, . . . , aA) | #A(f) | (a′1, a′2, . . . , a′A)〉

=

〈(x1, x2, . . . , xm) | f | 1〉, if (a1, . . . , aA) = (a′1, . . . , a
′
A)

0, otherwise.

4. For each objects m,n, suppose we have a linear map f :C(Xm) → C(Xn). We

know that Xm = {(x1, x2, . . . , xm) | x1, . . . , xm ∈ X} is a basis of C(Xm) and

Xn = {(y1, y2, . . . , yn) | y1, . . . , yn ∈ X} is a basis ofC(Xn). LetA be an object,

then A#(f) is the linear map

A#(f):C(XA+m)→ C(XA+n)

such that on the basis XA+m of C(XA+m) we have

(a1, a2, . . . , aA, x1, x2, . . . , xm) 7→∑
(y1,y2,...,yn)∈Xn

〈(x1, x2, . . . , xm) | f | (y1, y2, . . . , yn)〉

(a1, a2, . . . , aA, y1, y2, . . . , yn).

The matrix elements is

〈(a1, a2, . . . , aA, x1, x2, . . . , xm) | A#(f) | (a′1, a′2, . . . , a′A, y1, y2, . . . , yn)〉

=

〈(x1, x2, . . . , xm) | f | (y1, y2, . . . , yn)〉, if (a1, . . . , aA) = (a′1, . . . , a
′
A),

0, otherwise.

If m = 0 or n = 0 or A = 0, A#(f) is similar as before in #A(f).

Proof. We require to show first that the 1
2
-monoidal category conditions 1-4 from 5.1.2

are satisfied, and then slideability.

• 1. (N,+, 0) is a monoid.



96

• 2. For each A ∈ N, A# is a functor, let f ∈ homV ecX (m,n)

and g ∈ homV ecX (n, k), we have

f(x1, . . . , xm) =
∑

(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉 (y1, . . . , yn).

g(y1, . . . , yn) =
∑

(z1,...,zk)

〈(y1, . . . , yn) | g | (z1, . . . , zk)〉 (z1, . . . , zk).

g ◦ f(x1, . . . , xm) =
∑

(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉

∑
(z1,...,zk)

〈(y1, . . . , yn) | g | (z1, . . . , zk)〉 (z1, . . . , zk).

A#(g ◦ f)(a1, . . . , aA, x1, . . . , xm) =
∑

(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉

∑
(z1,...,zk)

〈(y1, . . . , yn) | g | (z1, . . . , zk)〉

(a1, . . . , aA, z1, . . . , zk).

A#(g) ◦ A#(f)(a1, . . . , aA, x1, . . . , xm) = A#(g)
(
A#(f)(a1, . . . , aA, x1, . . . , xm)

)
=A#(g)

( ∑
(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉(a1, . . . , aA, y1, . . . , yn)
)

=
∑

(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉
∑

(z1,...,zk)

〈(y1, . . . , yn) | g | (z1, . . . , zk)〉

(a1, . . . , aA, z1, . . . , zk).

Therefore

A#(g ◦ f) = A#(g) ◦ A#(f).

In the following calculations, we will identify a linear map f :C(Xm) → C(Xn)

with its restriction Xm → C(Xn).
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A#(idC(Xm))

= A#
(

(x1, . . . , xm) 7→
∑

(x′1,...,x
′
m)

〈(x1, . . . , xm) | id | (x′1, . . . , x′m)〉

(x′1, . . . , x
′
m)
)

=(a1, . . . , aA, x1, . . . , xm) 7→
∑

(x′1,...,x
′
m)

〈(x1, . . . , xm) | id | (x′1, . . . , x′m)〉

(a1, . . . , aA, x
′
1, . . . , x

′
m)

=id
A#(C(Xm)).

Hence A# is a functor.

3. By similar argument #A is a functor.

• 4. For each A,B ∈ N and a morphism f ∈ homV ecX (m,n), we have

1. To verify axiom in (5.1),

A# ◦ B#
(

(x1, . . . , xm) 7→ f(x1, . . . , xm)
)

= A#
(
B#((x1, . . . , xm) 7→ f(x1, . . . , xm))

)
= A#

(
(b1, . . . , bB, x1, . . . , xm) 7→∑

(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉 (b1, . . . , bB, y1, . . . , yn)
)

= (a1, . . . , aA, b1, . . . , bB, x1, . . . , xm) 7→∑
(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉 (a1, . . . , aA, b1, . . . , bB, y1, . . . , yn)

= (A+B)#
(

(x1, . . . , xm) 7→ f(x1, . . . , xm)
)
.

2. By an analogous calculation the axiom in (5.2) is satisfied.

3. To verify axiom in (5.3),
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#A ◦ B#
(

(x1, . . . , xm) 7→ f(x1, . . . , xm)
)

= #A

(
B#((x1, . . . , xm) 7→ f(x1, . . . , xm))

)
= #A

(
(b1, . . . , bB, x1, . . . , xm) 7→∑

(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉 (b1, . . . , bB, y1, . . . , ym)
)

= (b1, . . . , bB, x1, . . . , xm, a1, . . . , aA) 7→∑
(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉 (b1, . . . , bB, y1, . . . , yn, a1, . . . , aA)

= B#
(

(x1, . . . , xm, a1, . . . , aA) 7→∑
(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉 (y1, . . . , yn, a1, . . . , aA)
)

= B# ◦#A

(
(x1, . . . , xm) 7→∑

(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉 (y1, . . . yn)
)

= B# ◦#A

(
(x1, . . . , xm) 7→ f(x1, . . . , xm)

)
.

4. To verify axioms in (5.4) and (5.5),

#0(f) = f.

0#(f) = f.

In case m = 0.
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5. To verify axiom in (5.1),

A# ◦ B#
(

1 7→ f(1)
)

= A#
(
B#(1 7→ f(1))

)
= A#

(
(b1, . . . , bB) 7→

∑
(y1,...,yn)

〈1 | f | (y1, . . . , yn)〉 (b1, . . . , bB, y1, . . . , yn)
)

= (a1, . . . , aA, b1, . . . , bB) 7→∑
(y1,...,yn)

〈1 | f | (y1, . . . , yn)〉 (a1, . . . , aA, b1, . . . , bB, y1, . . . yn)

= (A+B)#(1 7→ f(1)).

6. By an analogous calculation the axiom in (5.2) is satisfied.

7. To verify axiom in (5.3),

#A ◦ B#(1 7→ f(1)) = #A

(
B#(1 7→ f(1))

)
= #A

(
(b1, . . . , bB) 7→

∑
(y1,...,yn)

〈1 | f | (y1, . . . , yn)〉 (b1, . . . , bB, y1, . . . , yn)
)

= (b1, . . . , bB, a1, . . . , aA) 7→∑
(y1,...,yn)

〈1 | f | (y1, . . . , yn)〉 (b1, . . . , bB, y1, . . . , yn, a1, . . . , aA)

= B#
(

(a1, . . . , aA) 7→
∑

(y1,...,yn)

〈1 | f | (y1, . . . , yn)〉 (y1, . . . yn, a1, . . . , aA)
)

= B# ◦#A

(
1 7→

∑
(y1,...,yn)

〈1 | f | (y1, . . . , yn)〉 (y1, . . . , yn)
)

= B# ◦#A(1 7→ f(1)).

8. To verify axiom in (5.4) and (5.5),

#0(f) = f.

0#(f) = f.

In case n = 0.
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9. To verify axiom in (5.1),

A# ◦ B#
(

(x1, . . . , xm) 7→ f(x1, . . . , xm)
)

= A#
(
B#((x1, . . . , xm) 7→ f(x1, . . . , xm))

)
= A#

(
(b1, . . . , bB, x1, . . . , xm) 7→ 〈(x1, . . . , xm) | f | 1〉 (b1, . . . , bB)

)
= (a1, . . . , aA, b1, . . . , bB, x1, . . . , xm) 7→

〈(x1, . . . , xm) | f | 1〉 (a1, . . . , aA, b1, . . . , bB)

= (A+B)#
(

(x1, . . . , xm) 7→ f(x1, . . . , xm)
)
.

10. By an analogous calculation the axiom in (5.2) is satisfied.

11. To verify axiom in (5.3),

#A ◦ B#
(

(x1, . . . , xm) 7→ (f(x1, . . . , xm)
)

= #A(B#
(

(x1, . . . , xm) 7→ f(x1, . . . , xm)
)

= #A

(
(b1, . . . , bB, x1, . . . , xm) 7→ 〈(x1, . . . , xm) | f | 1〉 (b1, . . . , bB)

)
= (b1, . . . , bB, x1, . . . , xm, a1, . . . , aA) 7→

〈(x1, . . . , xm) | f | 1〉 (b1, . . . , bB, a1, . . . , aA)

= B#
(

(x1, . . . , xm, a1, . . . , aA) 7→ 〈(x1, . . . , xm) | f | 1〉 (a1, . . . , aA)
)

= B# ◦#A

(
(x1, . . . , xm) 7→ f(x1, . . . , xm)

)
.

12. To verify axiom in (5.4) and (5.5),

#0(f) = f.

0#(f) = f.



101

Slideable 5.1.5 because for all morphisms f ∈ homV ecX (m,n) and g ∈ homV ecX (k, s),

(fΘs) ◦ (mΘg) = fΘs
(

(x1, . . . , xm, w1, . . . , wk) 7→∑
(z1,...,zs)

〈(w1, . . . , wk) | g | (z1, . . . , zs)〉 (x1, . . . , xm, z1, . . . , zs)
)

=(x1, . . . , xm, w1, . . . , wk)

7→
∑

(y1,...,yn,z1,...,zs)

〈(w1, . . . , wk) | g | (z1, . . . , zs)〉 〈(x1, . . . , xm) | f | (y1, . . . , yn)〉

(y1, . . . , yn, z1, . . . , zs).

(nΘg) ◦ (fΘk) = nΘg
(

(x1, . . . , xm, w1, . . . , wk) 7→( ∑
(y1,...,yn)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉 (y1, . . . , yn, w1, . . . , wk)
)

= (x1, . . . , xm, w1, . . . , wk) 7→∑
(y1,...,yn,z1,...,zs)

〈(x1, . . . , xm) | f | (y1, . . . , yn)〉〈(w1, . . . , wk) | g | (z1, . . . , zs)〉

(y1, . . . , yn, z1, . . . , zs).

Therefore

(fΘs) ◦ (mΘg) = (nΘg) ◦ (fΘk).

5.1.3 Category of 1
2-monoidal categories.

Definition 5.1.12 ( 1
2
-monoidal functor). A 1

2
-monoidal functor

F : (C, IC,⊗0,#(−), (−)#)→ (D, ID,⊗′0,#′(−), (−)#
′)

between 1
2
-monoidal categories (C, IC,⊗0,#(−), (−)#) and (D, ID⊗′0,#′(−), (−)#

′) is a

functor 3.2.1

F = (F0, F1): C → D,
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such that the following holds

1.

F0: (ob(C),⊗0, IC)→ (ob(D),⊗′0, ID)

is a monoid map (hence in particular for all objects x, y ∈ ob(C),

F0(IC) = ID and F0(x⊗0 y) = F0(x)⊗′0 F0(y);

2. for all A, x, y ∈ ob(C) and f ∈ homC(x, y) we have

F1(#A(f)) =#′F0(A)(F1(f)),

F1(A#(f)) =F0(A)#
′(F1(f)).

Proposition 5.1.13 (Category of 1
2
-monoidal categories). Consider the precategory of

all 1
2
-monoidal categories

1

2
−MC =

(
ob
(1
2
−MC

)
, hom1

2
−MC( , ), ?, id

)
,

where

1. the class ob
(

1
2
−MC

)
is the class of all 1

2
-monoidal categories,

2. for each pair (A,B) ∈ ob
(

1
2
−MC

)
× ob

(
1
2
−MC

)
, the set hom1

2
−MC(A,B) is

the set of all 1
2
-monoidal functors A→ B,

3. for each triple of objects

(A,B,C) ∈ ob
(1
2
−MC

)
× ob

(1
2
−MC

)
× ob

(1
2
−MC

)
,

and for every

F ∈ hom1
2
−MC(A,B) and G ∈ hom1

2
−MC(B,C),
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we have

hom1
2
−MC(A,B)× hom1

2
−MC(B,C)→ hom1

2
−MC(A,C)

(F,G) 7→ G ? F,

where ? is defined in 3.2.4,

4. for all C ∈ ob
(

1
2
−MC

)
, there is an identity functor idC ∈ hom1

2
−MC(C, C), that

is a 1
2
-monoidal functor.

This precategory is a category.

Proof. First, we want to prove G ? F is a 1
2
-monoidal functor. Let F : C → D and

G:D → E , for all A, x ∈ ob(C) and all morphism f ∈ homC(y, z), we have

G ? F (#A(x)) = G(#F (A)(F (x)))

= #G(F (A))(G(F (x)))

= #G?F (A)(G ? F (x)).

G ? F (#A(f) = G(#F (A)(F (f)))

= #G(F (A))(G(F (f)))

= #G?F (A)(G ? F (f)).

Similarly,

G ? F (A#(x) = G?F (A)#(G ? F (x)),

G ? F (A#(f)) = G?F (A)#(G ? F (f)).

Second, the associativity and unit are proved in 3.2.4.

Lemma 5.1.14. We have a full subcategory

s
1

2
−MC = (ob

(
s
1

2
−MC

)
, homs1

2
−MC( , )),

where
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1. ob
(
s1
2
−MC

)
is the class of slideable 1

2
-monoidal categories so

ob
(
s
1

2
−MC

)
⊂ ob

(1
2
−MC

)
.

2. Given a pair of objects (A,B) ∈ ob(s1
2
−MC)× ob

(
s1
2
−MC

)
,

the set homs1
2
−MC(A,B) = hom1

2
−MC(A,B).

Proof. We have ob
(
s1
2
−MC

)
⊂ ob

(
1
2
−MC

)
, so we can consider the full subcategory

s1
2
−MC.

5.2 Towards the slidealisation functor: preliminaries

Lemma 5.2.1. A 1
2
-monoidal category (C, I,⊗0,#(−), (−)#) as in Def. 5.1.2 is slideable

if, and only if, the following diagram is commutative

a′ ⊗0 b

x a⊗0 b a′ ⊗0 b
′ y

a⊗0 b
′

a′#(k)

f

#b(h)

a#(k)

g

#b′ (h)

(5.7)

for all x, y, a, b, a′, b′ ∈ ob(C), for all choices of morphisms h: a→ a′, k: b→ b′, and for

all choices of morphism f :x → a ⊗0 b, and g: a′ ⊗0 b
′ → y. The commutativity of the

diagram is equivalent to the equation below

g ◦ a′#(k) ◦#b(h) ◦ f = g ◦#b′(h) ◦ a#(k) ◦ f.

Proof. Suppose a 1
2
-monoidal category (C, I,⊗0,#(−), (−)#) is slideable. Choose ob-

jects a, b, a′, b′ ∈ ob(C), choose morphisms h: a → a′, k: b → b′, and also morphism

f :x→ a⊗0 b, and g: a′ ⊗0 b
′ → y.
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So from the definition 5.1.5 we have

a′#(k) ◦#b(h) = #b′(h) ◦ a#(k).

By composing the morphisms f, g from the right and lift we have

g ◦ a′#(k) ◦#b(h) ◦ f = g ◦#b′(h) ◦ a#(k) ◦ f.

Now, on the other hand suppose the diagram (5.7) commutes.

Let

x = a⊗0 b, y = a′ ⊗0 b
′, f = idx and g = idy,

hence

a′#(k) ◦#b(h) = #b′(h) ◦ a#(k).

Definition 5.2.2. Consider a 1
2
-monoidal category (C, I,⊗0,#(−), (−)#). Let x, y ∈

ob(C), we define a relation ∼0 on homC(x, y). Given L,R ∈ homC(x, y), L ∼0 R if

there exist objects a, b, a′, b′ ∈ ob(C), morphisms h: a → a′, k: b → b′ and

morphisms f :x→ a⊗0 b, and g: a′ ⊗0 b
′ → y, such that

L = g ◦ a′#(k) ◦#b(h) ◦ f,

R = g ◦#b′(h) ◦ a#k ◦ f.

I.e, (where L and R are obtained by the chosen compositions)

a′ ⊗0 b

L =
(
x a⊗0 b a′ ⊗0 b

′ y
)a′#(k)

f

#b(h)

g

∼0
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R =
(
x a⊗0 b a′ ⊗0 b

′ y
)

a⊗0 b
′

f

a#(k)

g

#b′ (h)

Lemma 5.2.3. Let C = (C, I,⊗0,#(−), (−)#) be a 1
2
-monoidal category and x, y, z, w,A ∈

ob(C). Let L,L′:x→ y, R: y → z and R′:w → x. Suppose that

L ∼0 L
′,

then

1. R ◦ L ∼0 R ◦ L′,

2. L ◦R′ ∼0 L
′ ◦R′,

3. A#L ∼0 A#L′,

4. #AL ∼0 #AL
′.

Proof. Suppose L ∼0 L
′. So, there exist objects a, b, a′, b′ ∈ ob(C), morphisms h: a →

a′, k: b→ b′, and morphisms f :x→ a⊗0 b, and g: a′ ⊗0 b
′ → y such that

L = g ◦ a′#(k) ◦#b(h) ◦ f,

L′ = g ◦#b′(h) ◦ a#(k) ◦ f.

We have

1.

R ◦ L = (R ◦ g) ◦ a′#(k) ◦#b(h) ◦ f,

R ◦ L′ = (R ◦ g) ◦#b′(h) ◦ a#(k) ◦ f.

Hence by definition

R ◦ L ∼0 R ◦ L′.
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2. Analogously,

L ◦R′ = g ◦ a′#(k) ◦#b(h) ◦ (f ◦R′),

L′ ◦R′ = g ◦#b′(h) ◦ a#(k) ◦ (f ◦R′).

Hence,

L ◦R′ ∼0 L
′ ◦R′.

3. We want to prove A#(L) ∼0 A#(L′). L and L′ are given by the compositions

below.

a′ ⊗0 b

L =
(
x a⊗0 b a′ ⊗0 b

′ y
)a′#(k)

f

#b(h)

g

L′ =
(
x a⊗0 b a′ ⊗0 b

′ y
)

a⊗0 b
′

f

a#(k)

g

#b′ (h)

We now apply the functor A#: C → C to both diagrams. And conclude that A#L

and A#L′ are given by the compositions below

A⊗0 a
′ ⊗0 b

A#(L) = A⊗0 x A⊗0 a⊗0 b A⊗0 a
′ ⊗0 b

′ A⊗0 y

A#(a′#(k))

A#(f)

A#(#b(h))

A#(g)

(We have used the fact that A#C → C is functor, and therefore preserves compo-

sitions.) By using 1
2
-monoidal category axioms we have
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(A⊗0 a
′)⊗0 b

A#(L) = A⊗0 x (A⊗0 a)⊗0 b (A⊗0 a
′)⊗0 b

′ A⊗0 y

(A⊗0a
′)#(k)

A#(f)

#b(A#(h))

A#(g)

Analogously

A#(L′) = A⊗0 x A⊗0 a⊗0 b A⊗0 a
′ ⊗0 b

′ A⊗0 y

A⊗0 a⊗0 b
′

A#(f)

A#(a#(k))

A#(g)

A#(#b′ (h))

By using 1
2
-monoidal category axioms we have

A#(L′) = A⊗0 x (A⊗0 a)⊗0 b (A⊗0 a
′)⊗0 b

′ A⊗0 y

(A⊗0 a)⊗0 b
′,

A#(f)

(A⊗0a)
#(k)

A#(g)

#b′ (A#(h))

so,

A#(L) = (A#(g)) ◦ ((A⊗0a′)#(k)) ◦ (#b(A#(h))) ◦ (A#(f)),

and

A#(L′) = (A#(g)) ◦ (#b′(A#(h))) ◦ ((A⊗0a)#(k)) ◦ (A#(f)).

Therefore

A#(L) ∼0 A#(L′).

4. By the similar way

#A(L) ∼0 #A(L′).

Lemma 5.2.4. Let (C, I,⊗0,#(−), (−)#) be a 1
2
-monoidal category. Then

(I) There exists another 1
2
-monoidal category F (C) = (C ′, I ′,⊗′0,#′(−), (−)#

′), where

1. ob(C ′) = ob(C).
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2. Given x, y ∈ ob(C), homC′(x, y) = homC(x, y)/∼ , where

∼ = closure(∼0),

where closure means the transitive and symmetric closure, note that∼0 is reflexive.

3. The composition ◦ in C ′, let L: y → z and R:x→ y

[L] ◦ [R] = [L ◦R].

4. Identity morphisms in C ′. Given A ∈ ob(C ′), id′A = [idA].

5. Given [f ]:x→ y and an object A, #′A([f ]) = [#A(f)].

6. Given [f ]:x→ y and an object A, A#′([f ]) = [A#(f)].

7. The unit object, I ′ = I .

(II) F (C) is slideable.

5.2.1 Proof of Lemma 5.2.4

Explanation of the equivalence relation

Suppose that L,L′:x → y. Then L ∼ L′ if there are morphisms (L1, L2, . . . , Ln), such

that

L = L1 ∼0 L2, L2 ∼0 L3, . . . , Ln−1 ∼0 Ln = L′,

whenever Li ∼0 Li+1 or Li+1 ∼0 Li, for all i = 1, 2, . . . , n− 1.

Proof that the composition is well defined

We want to prove [R]◦′ [L] = [R◦L] is well defined. So, we want to prove that if L ∼ L′

and R ∼ R′, then

R ◦ L ∼ R′ ◦ L′.
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Suppose L,L′:x → y, and L ∼ L′. Then there are morphisms (L1, L2, . . . , Ln), such

that L = L1, L′ = Ln, and for all i = 1, 2, . . . , n− 1,

Li ∼0 Li+1 or Li+1 ∼0 Li.

Similarly, suppose R,R′: y → z and R ∼ R′. Then there are non-negative integer

m and morphisms (R1, R2, . . . , Rm), such that R = R1, Rm = R′, and for all i =

1, 2, . . . ,m− 1,

Ri ∼0 Ri+1 or Ri+1 ∼0 Ri.

Now, we proveR◦L ∼ R′◦L′. So, first proveR◦L ∼ R′◦L, then proveR′◦L ∼ R′◦L′.

We have R = R1, Rm = R′, and for all i = 1, 2, . . . ,m− 1,

Ri ∼0 Ri+1 or Ri+1 ∼0 Ri.

by Lemma 5.2.3 we have

Ri ◦ L ∼0 Ri+1 ◦ L or Ri+1 ◦ L ∼0 Ri ◦ L.

Hence,

R ◦ L ∼ R′ ◦ L.

Now we want to prove R′ ◦ L ∼ R′ ◦ L′. We have L = L1, L′ = Ln, and for all

i = 1, 2, . . . , n− 1,

Li ∼0 Li+1 or Li+1 ∼0 Li.

by Lemma 5.2.3 we have L = L1, L′ = Ln, and for all i = 1, 2, . . . , n− 1,

R′ ◦ Li ∼0 R
′ ◦ Li+1 or R′ ◦ Li+1 ∼0 R

′ ◦ Li.

Hence

R′ ◦ L ∼ R′ ◦ L′.

Therefore

R ◦ L ∼ R′ ◦ L′.
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Proof that F (C) is a category

Now, we want to prove category axioms

1. Associativity, for all f ∈ homC(x, y), g ∈ homC(y, z) and h ∈ homC(z, w), we

have (note that we already proved that composition descends to the quotient):

[h] ◦ ([g] ◦ [f ]) =[h] ◦ ([g ◦ f ]) = [h ◦ (g ◦ f)]

=[(h ◦ g) ◦ f ] = [h ◦ g] ◦ [f ] = ([h] ◦ [g]) ◦ [f ].

2. Unit, for all f ∈ homC(x, y);

[idy] ◦ [f ] =[idy ◦ f ] = [f ],

[f ] ◦ [idx] =[f ◦ idx] = [f ].

Proof that the #′(−), (−)#
′ is well defined

We want to prove

#′A[L] = [#AL]

is well defined for given [L]:x→ y and an object A. So, we want to prove that

if L ∼ R, then #A(L) ∼ #A(R).

Suppose L,R:x → y, and L ∼ R. So there is a non-negative integer n and n-tuples

(L1, L2, . . . , Ln) ∈ Cn, such that

L = L1 ∼0 L2, L2 ∼0 L3, . . . , Ln−1 ∼0 Ln = R,

by Lemma 5.2.3, we have

#A(L) = #A(L1) ∼0 #A(L2),#A(L2) ∼0 #A(L3), . . . ,#A(Ln−1) ∼0 #A(Ln) = #A(R).
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Therefore

#A(L) ∼ #A(R).

By a similar argument

A#(L) ∼ A#(R).

Proof of the axioms of 1
2
-monoidal category.

For each A,B ∈ ob(C) (noting that we already proved that left-whiskering and right-

whiskering, (−)# and #(−) descend to quotient).

1. To verify the axiom in (5.1)

A#′ ◦ B#′([L]) =[A# ◦ B#(L)]

=[A⊗0B#(L)]

=A⊗0B#′([L]).

2. By a similar argument the axiom in (5.2) is satisfied

#′A ◦#′B([L]) = #′B⊗0A
([L]).

3. To verify the axiom in (5.3)

#′A ◦ B#′([L]) =[#A ◦ B#(L)]

=[B# ◦#A(L)]

=B#′ ◦#′A([L]).

4. To verify the axiom in (5.4)

#′I([L]) =[#I(L)] = [L].



113

5. To verify the axiom in (5.5)

I#
′([L]) = [I#(L)] = [L].

(II) We want to prove F (C) is slideable. From the definition of F (C), for all a, b, a′, b′ ∈

ob(C), for all choices of morphisms h: a→ a′, k: b→ b′, and for all choices of morphism

f :x→ a⊗0 b, and g: a′ ⊗0 b
′ → y, we have

g ◦ a′#(k) ◦#b(h) ◦ f∼g ◦#b′(h) ◦ a#(k) ◦ f.

Hence

[g ◦ a′#(k) ◦#b(h) ◦ f ] = [g ◦#b′(h) ◦ a#(k) ◦ f ]

[g] ◦ a′#([k]) ◦#b([h]) ◦ [f ] = [g] ◦#b′([h]) ◦ a#([k]) ◦ [f ].

Hence F (C) is slideable.

2

5.2.2 The slidealisation functor: conclusion

Lemma 5.2.5. Let C and D be 1
2
-monoidal categories and let G: C → D be a 1

2
-

monoidal functor and x, y ∈ ob(C), f, f ′ ∈ homC(x, y), such that f ∼0 f ′, then

G(f) ∼0 G(f ′).

Proof. Assume f ∼0 f
′, then there exist objects a, b, a′, b′ ∈ ob(C), morphisms h: a →

a′, k: b→ b′, and morphisms w:x→ a⊗0 b, and g: a′ ⊗0 b
′ → y such that

f = g ◦ a′#k ◦#bh ◦ w,

f ′ = g ◦#b′h ◦ a#k ◦ w.
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So,

G(f) = G(g) ◦G(a′#k) ◦G(#bh) ◦G(w)

= G(g) ◦ G(a′)#G(k) ◦#G(b)G(h) ◦G(w),

G(f ′) = G(g) ◦G(#b′h) ◦G(a#k) ◦G(w)

= G(g) ◦#G(b′)G(h) ◦ G(a)#G(k) ◦G(w).

Therefore

G(f) ∼0 G(f ′).

Lemma 5.2.6. Let C and D be 1
2
-monoidal categories and let G: C → D be a 1

2
-

monoidal functor and x, y ∈ ob(C), f, f ′ ∈ homC(x, y), such f ∼ f ′, then G(f) ∼

G(f ′).

Proof. Assume f ∼ f ′, then there exist objects n ∈ N and an n-tuple (f1, f2, . . . , fn)

such that

f = f1 ∼0 f2, f2 ∼0 f3, . . . , fn−1 ∼0 fn = f ′.

So,

G(f) = G(f1) ∼0 G(f2), G(f2) ∼0 G(f3), . . . , G(fn−1) ∼0 G(fn) = G(f ′).

Therefore

G(f) ∼ G(f ′).

Lemma 5.2.7. Let C be a 1
2
-monoidal category and F (C) be the slideable 1

2
-monoidal

category as defined in Lem.5.2.4. So there is a 1
2
-monoidal functor ρC: C → F (C) such
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that for all A,B ∈ ob(C) and f ∈ homC(A,B) we have

ρC(A) := A,

ρC(f) := [f ].

Proof. Let A,B,D ∈ ob(C), f ∈ homC(A,B) and g ∈ homC(B,D) we have ρC is

satisfied the axioms of a functor

ρC(g ◦ f) = [g] ◦ [f ] = ρC(g) ◦ ρC(f).

ρC(idA) = [idA] = id′A = id′ρC(A).

Also, ρC is satisfied the axioms of a 1
2
-monoidal functor

ρC(A#(f)) = [A#(f)] = A#′([f ]) = ρC(A)#
′ρC(f).

By a similar argument

ρC(#A(f)) = #′ρC(A)ρC(f).

Proposition 5.2.8. Let δ: C → D be a 1
2
-monoidal functor between 1

2
-monoidal cate-

gories . Then there is a 1
2
-monoidal functor δ′:F (C) → F (D) between slideable 1

2
-

monoidal categories, such that for all A,B ∈ ob(C) and f ∈ homC(A,B)

on objects

δ′(A) := δ(A),

on morphisms

δ′([f ]) := [δ(f)].

Furthermore the next diagram commutes, ρC the functor from C to F (C).
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C D

F (C) F (D)

δ

ρC ρD

δ′

Proof. Note that

δ′([f ]) = [δ(f)]

is well defined because if f ∼ f ′, then δ(f) ∼ δ(f ′), see 5.2.6. δ′:F (C) → F (D)

preserves compositions, identities and whiskerings . For all A,B,D ∈ ob(C), f ∈

homC(A,B) and g ∈ homC(B,D), we have ρC satisfies the axioms of a functor

δ′([g] ◦ [f ]) = δ′([g ◦ f ])

= [δ(g ◦ f)]

= [δ(g) ◦ δ(f)]

= [δ(g)] ◦ [δ(f)]

= δ′([g]) ◦ δ′([f ]).

Also,

δ′(id′A) = δ′([idA]) = [δ(idA)] = [idδ(A)] = [idδ′(A)] = id′δ′(A).

Also, ρC is satisfied the axioms of a 1
2
-monoidal functor

δ′(A#′[f ]) = δ′([A#(f)]

= [δ(A#(f))]

= [δ(A)#(δ(f))]

= δ(A)#
′[δ(f)]

=δ′(A) #′δ′([f ]).

By a similar argument

δ′(#′A[f ]) = #′δ′(A)δ
′([f ]).
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Also, the diagram commutes
f δ(f)

[f ] [δ(f)]

δ

ρC ρD

δ′

Proposition 5.2.9. Let 1
2
−MC be the category of 1

2
-monoidal categories as defined in

5.1.13, and s1
2
−MC be the category of slideable 1

2
-monoidal categories as defined in

5.1.14. Then there is a functor

F = (F0,F1):
1

2
−MC→ s

1

2
−MC,

such that

• for each C ∈ ob(1
2
−MC), F0(C) = F (C),

• for each δ ∈ hom1
2
−MC(C,D), F1(δ) = δ′, that defined in 5.2.8.

Proof. 1. For all δ ∈ hom1
2
−MC(C,D) and λ ∈ hom1

2
−MC(D, E), given a morphism

f in C

F1(λ ◦ δ)([f ]) = (λ ◦ δ)′([f ])

= [(λ ◦ δ)(f)]

= [λ(δ(f))]

= λ′[δ(f)]

= (λ′ ◦ δ′)([f ])

= (F1(λ) ◦ F1(δ))([f ]).

2. For all C ∈ ob(1
2
−MC), given x ∈ ob(C)

F1(idC(x)) = id′F (C)(x) = id′F0(C)(x),
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given f ∈ homC(x, y)

F1(idC([f ])) = id′F (C)([f ]) = id′F0(C)([f ]).

Therefore

F1(idC) = id′F0(C).

In the next theorem, the functor

G: s
1

2
−MC→ 1

2
−MC

is the inclusion functor .

Theorem 5.2.10. Given any 1
2
-monoidal category

C = (C, I,⊗0,#(−), (−)#),

there is a slideable 1
2
-monoidal category F0(C) = F (C) and a 1

2
-monoidal functor

ρC: C → G(F (C)) satisfying the following universal property.

Given any slideable 1
2
-monoidal category D, and a 1

2
-monoidal functor

δ: C → G(D).

Then, there exist a unique 1
2
-monoidal functor δ̂:F (C)→ D that makes the

next diagram commute.

C G(F (C))

G(D)

δ

ρC

δ̂ (5.8)

Note that G is missing in the vertical arrow since it is inclusion functor. Moreover the
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family maps ρC: C → G(F (C)) is a natural transformation. I,e the triple (F, G, ρ) is an

adjunction.

Proof. There exists a 1
2
-monoidal functor

ρC: C → G(F (C))

that on objects, given x ∈ ob(C),

x 7→ x,

on morphisms, given L ∈ homC(x, y),

L 7→ [L].

First, we want to prove a functor δ̂:F (C)→ D is exists. We define δ̂ by

δ̂:F (C)→ D

that on objects, given x ∈ ob(C),

x 7→ δ(x),

on morphisms, given L ∈ homC(x, y),

[L] 7→ δ(L).

Independent of representatives. Suppose L ∼0 L
′. So, there exist objects a, b, a′, b′ ∈

ob(C), morphisms h: a→ a′, k: b→ b′, and morphisms f :x→ a⊗0b, and g: a′⊗0b
′ → y

such that

L = g ◦ a′#k ◦#bh ◦ f,

L′ = g ◦#b′h ◦ a#k ◦ f.
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We have

δ(L) = δ(g ◦ a′#k ◦#bh ◦ f)

= δ(g) ◦ δ(a′#k) ◦ δ(#bh) ◦ δ(f)

= δ(g) ◦ δ(a′)#δ(k) ◦#δ(b)δ(h) ◦ δ(f),

δ(L′) = δ(g ◦#b′h ◦ a#k ◦ f)

= δ(g) ◦ δ(#b′h) ◦ δ(a#k) ◦ δ(f)

= δ(g) ◦#δ(b′)δ(h) ◦ (δ(a)#δ(k)) ◦ δ(f).

Therefore since D is slideable

δ(L) = δ(L′).

The 1
2
-monoidal functor δ̂ is unique that making diagram (5.8) commute. Suppose we

have δ1:F (C)→ D another 1
2
-monoidal functor, making diagram (5.8) commute. So on

objects

[x] 7→ δ(x),

and on morphisms

[L] 7→ δ(L).

Then

δ̂ = δ1.

Note that G(F (C)) = F (C), from Pro.5.2.8, the next diagram commutes.

C D

F (C) F (D)

λ

ρC ρD

λ′

Therefore ρ: id→ G ◦ F is a natural transformation, i.e, (F, G, ρ) is an adjunction.
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5.3 Strict monoidal categories

There are two main ways of thinking about strict monoidal catgories. One uses ‘whiskers’

as in §5.1.1 — composition of objects and morphisms to morphisms. The other gives a

full ‘tensor’ product on morphisms. There are (at least) two ways of giving the axioms

for this full tensor product. Here we give the one way.

Definition 5.3.1 (Pre-monoidal structure). (See [Kas12]). Let C be a category. A pre-

monoidal structure in C is a triple (C, I,⊗ = (⊗0,⊗1)) where I is an object in C and ⊗

is given by

1. Given pair of objects x and y another object x⊗0 y.

2. Given a pair of morphisms f :x → y and g: z → w another morphism (f ⊗1

g):x⊗0 z → y ⊗0 w.

Definition 5.3.2 (Strict monoidal category). (See [Kas12]). A pre-monoidal structure

(C, I,⊗ = (⊗0,⊗1)), as defined in Def. 5.3.1, gives a strict monoidal category, written

(C, I,⊗), if

1. (ob(C),⊗0, I) is a monoid. I.e.,

(a) for all x, y, z ∈ ob(C),

(x⊗0 y)⊗0 z = x⊗0 (y ⊗0 z),

(b) for all x ∈ ob(C),

x⊗0 I = I ⊗0 x = x.

2. (hom(C),⊗1, idI) is a monoid. I.e.,

(a) for all morphisms f, g, h ∈ C,

(f ⊗1 g)⊗1 h = f ⊗1 (g ⊗1 h),
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(b) for all morphism f ∈ C,

idI ⊗1 f = f ⊗1 idI = f,

3. for all A,B ∈ ob(C), we have idA ⊗1 idB = idA⊗0B,

4. for all f :x→ y, f ′: y → z, g:u→ v and g′: v → w, we have

(f ′ ⊗1 g
′) ◦ (f ⊗1 g) = (f ′ ◦ f)⊗1 (g′ ◦ g).

Note(3 and 4) mean that ⊗ := (⊗0,⊗1) is a functor C × C → C.

Example 5.3.3. (See for example [Kas12] P.286) Consider the category

Mat = (N, homMat( , ), ·, id )

in 3.1.4. We have a strict monoidal category

(Mat, 0,⊗ = (+,⊗1))

where: for all n,m ∈ N, we have

n⊗0 m = n+m.

For all f ∈ homMat(n,m) and g ∈ homMat(r, s) we have

f ⊗1 g =

 f 0n,s

0r,m g

 ∈ homMat(n+ r,m+ s)

where 0n,s is the zero matrix∈ homMat(n, s), e.g, if f =

a1 a2

a3 a4

 and g =

b1 b2 b3

b4 b5 b6

,

then



123

f ⊗1 g =


a1 a2 0 0 0

a3 a4 0 0 0

0 0 b1 b2 b3

0 0 b4 b5 b6


Proof. We want to prove (Mat, 0,⊗ = (+,⊗1)) is a strict monoidal category. It is

manifestly a pre-monoidal structure, so we want to satisfy the axioms in 5.3.2

1. the object structure is a monoid because (N,+, 0) is a monoid,

2. we require to show that (hom(Mat),⊗1, id0) is a monoid.

For all f ∈ homMat(n,m), g ∈ homMat(r, s) and h ∈ homMat(t, k) we have

(f ⊗1 g)⊗1 h =

 f 0n,s

0r,m g

⊗1 h =


f 0n,s 0n,k

0r,m g 0r,k

0t,m 0t,s h



f ⊗1 (g ⊗1 h) = f ⊗1

 g 0r,k

0t,s h

 =


f 0n,s 0n,k

0r,m g 0r,k

0t,m 0t,s h

 ,

so,

(f ⊗1 g)⊗1 h = f ⊗1 (g ⊗1 h).

For all matrix f , the next axioms hold

id0 ⊗1 f = f = f ⊗1 id0,

because id0 is the matrix with no elements.

3. For all n,m ∈ N

idn ⊗1 idm ∈ homMat(n+m,n+m),

idn+m ∈ homMat(n+m,n+m),
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such that

idn =


1 0 . . . 0

0 1 . . . 0
...

... . . . ...

0 0 . . . 1


︸ ︷︷ ︸

n

, idm =


1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1


︸ ︷︷ ︸

m

idn ⊗1 idm =



1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

︸ ︷︷ ︸
n

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 0 1 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 0 ︸ ︷︷ ︸
m

0 0 . . . 1


︸ ︷︷ ︸

n+m

.

Hence

idn ⊗1 idm = idn+m,

4. for all f ∈ homMat(n,m), f ′ ∈ homMat(m, r), g ∈ homMat(t, k) and g′ ∈

homMat(k, s) we have

(f⊗1g).(f ′⊗1g
′) =

 f 0n,k

0t,m g

 .

 f ′ 0m,s

0k,r g′

 =

ff ′ 0n,s

0t,r gg′

 = (f.f ′)⊗1(g.g′).
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5.3.1 Strict monoidal functors and the category StriMC

Some references for strict monoidal functors are [Bén67, TV17a, AHS04, ML13, Kas12,

TV17b].

Definition 5.3.4 (Strict monoidal functor). A strict monoidal functor F between the strict

monoidal categories (C, IC,⊗C = (⊗0,⊗1)) and (D, ID,⊗D = (⊗0,⊗1)) is a functor

F = (F0, F1): C → D,

such that for all X, Y ∈ ob(C) and all morphisms f, g ∈ C

F0(IC) = ID,

F0(X ⊗C Y ) = F0(X)⊗D F0(Y ),

F1(f ⊗C g) = F1(f)⊗D F1(g).

There is an example of strict monoidal functor in §7.4.

Proposition 5.3.5. We have a precategory

StriMC = (ob(StriMC), homStriMC( , ), ?, id ),

where

1. the ob(StriMC) is the class of all strict monoidal categories,

2. for each pair (A,B) ∈ ob(StriMC)× ob(StriMC), the set homStriMC(A,B) is

the set of strict monoidal functors,

3. for each triple of objects (A,B,C) ∈ ob(StriMC)×ob(StriMC)×ob(StriMC),

and for every F ∈ homStriMC(A,B), G ∈ homStriMC(B,C), we have

homStriMC(A,B)× homStriMC(B,C)→ homStriMC(A,C)

(G,F ) 7→ G ? F,
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where ? is defined in 3.2.4,

4. for all A ∈ ob(StriMC), there is an identity functor

idA ∈ homStriMC(A,A).

Proof. Item 1 does not require proof.

Item 2 requires only to note that the class of strict monoidal functors here is a set because

for all strct monoidal category (C, I,⊗), C is small category.

Item 3 we want to prove G ? F is a strict monoidal functor. Let x, y objects and f, g

morphisms in category A

G ? F (IA) = G(F (IA)) = G(IB) = IC .

G ? F (x⊗0 y) = G(F (x⊗0 y))

= G(F (x)⊗0 F (y))

= G(F (x))⊗0 G(F (y))

= G ? F (x)⊗0 G ? F (y).

G ? F (f ⊗1 g) = G(F (f ⊗1 g))

= G(F (f)⊗1 F (g))

= G(F (f))⊗1 G(F (g))

= G ? F (f)⊗1 G ? F (g).

Item 4: We require to show that for all A ∈ ob(StriMC), the identity functor idA is

a strict monoidal functor.
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Given objects x, y, z in A and morphisms f, g in A, we have

idA(IA) = IA,

idA(x⊗0 y) = x⊗0 y = idA(x)⊗0 idA(y),

idA(f ⊗1 g) = f ⊗1 g = idA(f)⊗1 idA(g).

Proposition 5.3.6 (Category of strict monoidal categories). The precategory of strict

monoidal categories

StriMC = (ob(StriMC), homStriMC( , ), ?, id ),

that define in 5.3.5 is a category.

Proof. Associativity and unit are inherited from the category of categories as in 3.2.4.
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5.4 Equivalence Theorems

5.4.1 Slideable 1
2-monoidal categories and strict monoidal categories

In this subsection, we prove that the category of strict monoidal categories is isomor-

phic to the category of slideable 1/2-monoidal categories, seen as a subcategory of the

category of 1/2 monoidal categories.

Lemma 5.4.1. Consider a strict monoidal category (C, I,⊗ = (⊗0,⊗1)) with underly-

ing category C = (ob(C), homC( , ), ?, id ). The strict monoidal category (C, I,⊗ =

(⊗0,⊗1)) gives rise to a 1
2
-monoidal category (C, I,⊗0,#(−), (−)#), where C, I and⊗0

do not change and the # functors are as follows.

Given A ∈ ob(C), the functors #A, A# are defined as given B,X, Y ∈ ob(C) and

morphism f ∈ homC(X, Y )

#AB = B ⊗0 A, (5.9)

#A(X
f−→ Y ) = (X

f−→ Y )⊗1 (A
id−→ A), (5.10)

A#B = A⊗0 B, (5.11)

A#(X
f−→ Y ) = (A

id−→ A)⊗1 (X
f−→ Y ). (5.12)

Proof. We have to prove the axioms of 1
2
-monoidal category 5.1.2.

1. First of all we must prove that if A is an object then #A, A# are functors C → C.

Given X, Y, Z ∈ ob(C), f ∈ homC(X, Y ) and g ∈ homC(Y, Z).

A#(f ? g) =idA ⊗1 (f ? g), by (5.12)

=(idA ? idA)⊗1 (f ? g)

=(idA ⊗1 f) ? (idA ⊗1 g), by def. 5.3.2

=A#(f) ? A#(g), by (5.12).
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A#(idB) =idA ⊗1 idB, by (5.12)

=idA⊗0B, by def. 5.3.2

=id
A#B, by (5.11).

By similar way #A: C → C is a functor.

2. Let A,B ∈ ob(C) and f ∈ homC(X, Y ),

A# ◦ B#(f) =A#(B#(f))

=A#(idB ⊗1 f), by (5.12)

=idA ⊗1 (idB ⊗1 f), by (5.12)

=(idA ⊗1 idB)⊗1 f , by def. 5.3.2

=idA⊗0B ⊗1 (f), by def. 5.3.2

=A⊗0B#(f), by (5.12).

3. We can prove by similar way, #A ◦#B = #B⊗0A.

4. Let A,B ∈ ob(C) and f ∈ homC(X, Y ),

#A ◦ B#(f) =#A(B#(f))

=#A(idB ⊗1 f), by (5.12)

=(idB ⊗1 f)⊗1 idA , by (5.10)

=idB ⊗1 (f ⊗1 idA) , by def. 5.3.2

=idB ⊗1 (#A(f)) , by (5.10)

=B#(#A(f)) , by (5.12)

=B# ◦#A(f).
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5. Let A ∈ ob(C) and f ∈ homC(X, Y ),

#I(A) =A⊗0 I , by (5.9)

=A , by def. 5.3.2

#I(f) =f ⊗1 idI , by (5.10)

=f , by def. 5.3.2.

Therefore, #I = idC .

6. We can prove 5 by similarity, I# = idC .

Theorem 5.4.2. The strict monoidal category C = (C, I,⊗ = (⊗0,⊗1)) in 5.3.2 gives

rise to a slideable 1
2
-monoidal category (C, I,⊗0,#(−), (−)#), where C, I and ⊗0 do

not change. Given A ∈ ob(C), the functor #A, A# define by given B,X, Y ∈ ob(C) and

f ∈ homC(X, Y )

#AB = B ⊗0 A

#A(X
f−→ Y ) = (X

f−→ Y )⊗1 (A
id−→ A)

A#B = A⊗0 B

A#(X
f−→ Y ) = (A

id−→ A)⊗1 (X
f−→ Y ).

Proof. We proved the axioms of 1
2
-monoidal category in 5.4.1. We want to prove now

the slideable that mean we want to prove for all f :X → Y and g:Z → W , the following

diagram commutes

X ⊗0 Z X ⊗0 W

Y ⊗0 Z Y ⊗0 W

XΘg

fΘZ fΘW

YΘg

i.e. we have

(fΘW ) ? (XΘg) = (YΘg) ? (fΘZ).
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(fΘW ) ? (XΘg) =(f ⊗1 idW ) ? (idX ⊗1 g), by (5.10)(5.12)

=(f ? idX)⊗1 (idW ? g), by def. 5.3.2

=(idY ? f)⊗1 (g ? idZ), by category axioms.

=(idY ⊗1 g) ? (f ⊗1 idZ), by def. 5.3.2

=(YΘg) ? (fΘZ), by (5.10)(5.12).

Lemma 5.4.3. There is a faithful functor f from the category StriMC of strict monoidal

categories (as in 5.3.6) to the category 1
2
−MC of 1

2
-monoidal categories (as in Prop.

5.1.13), such that

1. on objects, given strict monoidal category C = (C, I,⊗ = (⊗0,⊗1)),

f(C, I,⊗ = (⊗0,⊗1)) = (C, I,⊗0,#(−), (−)#),

from Lemma 5.4.1,

2. on morphisms, given a strict monoidal functor

F : (C, I,⊗ = (⊗0,⊗1))→ (D, I,⊗′ = (⊗′0,⊗′1)),

f(F ) = F.

Proof. We want to prove that given a strict monoidal functor

F : (C, I,⊗ = (⊗0,⊗1))→ (D, I,⊗′ = (⊗′0,⊗′1))

satisfies the axioms of 1
2

monoidal functor in 5.1.12. For all A,B ∈ ob(C) and f, g
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morphisms in C, we have

F (A#(B)) = F (A⊗0 B), by (5.11)

= F (A)⊗0 F (B), because F is strict monoidal functor

= F (A)#(F (B)), by (5.11),

F (A#(g)) = F (idA ⊗1 g), by (5.12)

= F (idA)⊗1 F (g) , because F is strict monoidal functor

= F (A)#(F (g)), by (5.12).

By a similar argument

F (#A(B)) = #F (A)(F (B)),

F (#Ag) = #F (A)(F (g)).

F (I) = I for strict monoidal categories gives the same equation of 1
2
-monoidal cate-

gories.

Theorem 5.4.4. Consider a category C = (ob(C), homC( , ), ◦, id ). A slideable 1
2
-

monoidal category (C, I,⊗0,#(−), (−)#) with underlying category C gives rise to a

strict monoidal category C = (C, I,⊗ = (⊗0,⊗1)) where (C, I and ⊗0 do not

change; and) the functor ⊗ = (⊗0,⊗1) is defined as

Given A,B,X, Y, Z,W ∈ ob(C) and f ∈ homC(X, Y ), g ∈ homC(Z,W ),

B ⊗0 A =#AB (5.13)

f ⊗1 g =(#Wf) ◦ (X#g) (5.14)

=(Y #g) ◦ (#Zf) (5.15)

idA =#IA = I#A (5.16)

Proof. We have to prove the axioms of strict monoidal category in 5.3.2
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1. for all X, Y, Z ∈ ob(C), from the definition

(X ⊗0 Y )⊗0 Z = X ⊗0 (Y ⊗0 Z),

2. for all morphisms f ∈ homC(X, Y ), g ∈ homC(Z,W ), h ∈ homC(R, S), we have

(f ⊗1 g)⊗1 h =((#Wf) ◦ (X#g))⊗1 h, by (5.14)

=#S((#Wf) ◦ (X#g)) ◦ X⊗0Z#h, by (5.14)

=(#S(#Wf) ◦#S(X#g)) ◦ (X⊗0Z)#h, because #S is a functor

=#S(#Wf) ◦ (#S(X#g) ◦ (X⊗0Z)#h), by the associtivity of category.

=#(W⊗0S)f ◦ ((X##Sg) ◦ (X#Z#h)), by (5.2),(5.3),(5.1)

=#(W⊗0S)f ◦ (X#(#Sg ◦ Z#h)), because X# is a functor

=f ⊗1 (g ⊗1 h), by (5.14),

3. for all f :X → Y, f ′:Y → Z, g:U → V and g′:V → W ,

(f ′ ⊗1 g
′) ◦ (f ⊗1 g) =((#Wf

′) ◦ (Y #g′)) ◦ ((#V f) ◦ (X#g)), by (5.14)

=(#Wf
′) ◦ ((Y #g′) ◦ (#V f)) ◦ (X#g)*

=(#Wf
′) ◦ ((#Wf) ◦ (X#g′)) ◦ (X#g)), by (5.14),(5.15)

=((#Wf
′) ◦ (#Wf)) ◦ ((X#g′) ◦ (X#g))*

=(#W (f ′ ◦ f)) ◦ (X#(g′ ◦ g)), because #W and X# are functors

=(f ′ ◦ f)⊗1 (g′ ◦ g), by (5.14).

*By the associativity of the category.

Lemma 5.4.5. There is a faithful functor g from the category s1
2
−MC of slideable 1

2
-

monoidal categories to the category StriMC of strict monoidal categories (as in 5.3.6)

such that

1. on objects, given 1
2
-monoidal category (C, I,⊗0,#(−), (−)#), we have

g(C, I,⊗0,#(−), (−)#) = (C, I,⊗ = (⊗0,⊗1)),
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from Theorem 5.4.4,

2. on morphisms, given a 1
2
-monoidal functor

G: (C, I,⊗0,#(−), (−)#)→ (D, I,⊗′0,#′(−), (−)#
′),

g(G) = G.

Proof. We want to prove that given a 1
2
-monoidal functor

G: (C, I,⊗0,#(−), (−)#)→ (D, I,⊗′0,#′(−), (−)#
′),

G satisfies the axioms of strict monoidal functor in 5.3.4.

1. G(IC) = ID,

2. for all A,B ∈ ob(C) , we have

G(A⊗0 B) = G(A#B), by (5.13)

= G(A)#G(B), G is
1

2
-monoidal functor

= G(A)⊗0 G(B), by (5.13),

3. for all X, Y, Z,W ∈ ob(C) and f ∈ homC(X, Y ), homC(Z,W ), we have

G(f ⊗1 g) = G(#W (f) ◦ X#(g)), by (5.14)

= G(#W (f)) ◦G(X#(g)), G is a functor

= #G(W )G(f) ◦ G(X)#G(g), G is
1

2
-monoidal functor.

= G(f)⊗1 G(g), by (5.14).

Theorem 5.4.6. The category of slideable 1
2
-monoidal categories and the category of

strict monoidal categories are isomorphic. Let C = (C, IC,⊗ = (⊗0,⊗1)) be a strict
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monoidal category and functor f that was defined in Lem. 5.4.3 and for all slideable
1
2
-monoidal category D = (D, ID,⊗0,#(−), (−)#) and functor g that defined in Lem.

5.4.5, we have

f(g(D)) = D and g(f(C)) = C.

Proof.

g(D) = (D, ID,⊗ = (⊗0,⊗1)).

ID and ⊗0 are the same in D and g(D) by definition. Given X, Y, Z,W ∈ ob(D) and

f ∈ homD(X, Y ), g ∈ homD(Z,W ),

f ⊗1 g =(#Wf) ◦ (X#g) , by (5.14)

f(g(D)) = (D, ID,⊗0,#
′
(−), (−)#

′).

ID and ⊗0 are the same in g(D) and f(g(D)) by definition. We want to prove # and #′

are equal. Given A,X, Y ∈ ob(D) and f ∈ homD(X, Y ),

#′A(f) =f ⊗1 idA, by (5.10)

=(#A(f)) ◦ (X#(idA)), by (5.14)

=(f ⊗1 idA) ◦ (idX ⊗1 idA), by (5.10)(5.12)

=#A(f),

A#′(f) =idA ⊗1 f

=(#Y (idA)) ◦ ((A#(f)), by (5.14)

=(idA ⊗1 Y ) ◦ (idA ⊗1 f), by (5.10)(5.12)

=A#(f).

Therefore

f(g(D)) = D.

Also,

f(C) = (C, IC,⊗0,#(−), (−)#).
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IC and ⊗0 are the same in C and f(C) by definition. Given A,X, Y ∈ ob(C) and f ∈

homC(X, Y ),

#A(f) =f ⊗1 idA, by (5.10),

A#(f) =idA ⊗1 f , by (5.12).

g(f(C)) = (C, IC,⊗′ = (⊗0,⊗′1))

IC and ⊗0 are the same in f(C) and g(f(C)) by definition. We want to prove ⊗1 and ⊗′1
are equal. Given X, Y, Z,W ∈ ob(C) and f ∈ homC(X, Y ), g ∈ homC(Z,W ),

f ⊗′1 g =(#Wf) ◦ (X#g), by (5.14)

=(f ⊗1 idW ) ◦ (idX ⊗1 g), by (5.10)(5.12)

=f ⊗1 g.

Therefore

g(f(C)) = C.

So the category of slideable 1
2
-monoidal categories and the category of strict monoidal

categories are isomorphic.



Chapter 6

Free strict monoidal categories

In §3.3 we defined a left adjoint to the forgetful functor from categories to graphs. We

now want to define a free strict monoidal category. We do this by defining a left adjoint

to the forgetful functor from 1
2
-monoidal category to a monoidal graph that is a graph

together with a monoid structure in the set of vertices.

6.1 The category of monoidal graphs

In this section we define a free strict monoidal category over a monoidal graph — that is

a graph 3.3.1 that its vertices have the monoidal structure (in a sense that we explain).

Definition 6.1.1. A monoidal graph is a 6-tuple (V (R),⊗, e, E(R), δ1, δ2) consisting of

1. a set V = V (R);

2. a binary operation ⊗ in V (R);

3. an element e ∈ V (R);

4. a set E = E(R). The elements of E are called edges;

137
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5. a map, called incidence map

δ:E → V × V

x 7→ (δ1(x), δ2(x)).

We call δ1x the source of x and δ2x the target of x.

6. (V,⊗, e) is a monoid.

Definition 6.1.2. Let

R = (V (R),⊗, e, E(R), δ1, δ2)

be a monoidal graph. The extent of the monoidal graph R is the graph

R∗ = (V (R), T (R), δ∗1, δ
∗
2),

where

T (R) = V (R)× E(R)× V (R)

is the set of edges for the graph R∗. The incidence maps are

δ∗1(i, x, j) = i⊗ δ1(x)⊗ j,

δ∗2(i, x, j) = i⊗ δ2(x)⊗ j,

where (i, x, j) ∈ T (R).

Example 6.1.3. Consider the monoidal graph

R = (N,+, 0, {x1, x2, x3, x4}, δ1, δ2),
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where

δ1(x1) = 2, δ2(x1) = 6,

δ1(x2) = 6, δ2(x2) = 8,

δ1(x3) = 8, δ2(x3) = 10,

δ1(x4) = 1, δ2(x4) = 5.

Then there is the extent of the monoidal graph,

R∗ = (N, {yi1j, yi2j, yi3j, yi4j | ∀i, j ∈ N}, δ∗1, δ∗2),

such that

δ∗1(yi1j) = δ1(i, x1, j) = i+ 2 + j,

δ∗2(yi1j) = δ2(i, x1, j) = i+ 6 + j,

δ∗1(yi2j) = δ1(i, x2, j) = i+ 6 + j,

δ∗2(yi2j) = δ2(i, x2, j) = i+ 8 + j,

δ∗1(yi3j) = δ1(i, x3, j) = i+ 8 + j,

δ∗2(yi3j) = δ2(i, x3, j) = i+ 10 + j,

δ∗1(yi4j) = δ1(i, x4, j) = i+ 1 + j,

δ∗2(yi4j) = δ2(i, x4, j) = i+ 5 + j.

Definition 6.1.4 (Monoidal graph map). Let A,B monoidal graphs such that

A = (V (A),⊗A, eA, E(A), δ1, δ2),

and

B = (V (B),⊗B, eB, E(B), δ1, δ2).

A monoidal graph map θ:A → B is a pair of maps (Vθ, Eθ), where Vθ:V (A) → V (B)
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and Eθ:E(A)→ E(B), which preserves incidences, i.e, for all edge x of A,

δi(Eθ(x)) = Vθ(δix); (i = 1, 2),

and moreover preserves the monoid structures in the the sets of vertices, i.e. for all

i, j ∈ A,

Vθ(i⊗A j) = Vθ(i)⊗B Vθ(j),

Vθ(eA) = eB.

Proposition 6.1.5. We have a category

(ob(MGraphs), homMGraphs( , ), ?, id ),

where

1. ob(MGraphs) is the class of all monoidal graphs,

2. for all monoidal graph A and B, homMGraphs(A,B), is the set of all monoidal

graph maps from A to B,

3. for all monoidal graphs A,B and C and for all monoidal graph maps f =

(Vf , Ef ):A→ B, g = (Vg, Eg):B → C, and

f ? g:A→ C

is the monoidal graph map from A to C, such that for all a ∈ V (A), we have

(Vf ? Vg)(a) = Vg(Vf (a)),

and for all x ∈ E(A), we have

(Ef ? Eg)(x) = Eg(Ef (x)),



141

4. for all monoidal graph A, the identity morphism idA:A→ A is a monoidal graph

map, such that for all a ∈ V (A), we have

(VidA)(a) = a,

and for all x ∈ E(A), we have

(EidA)(x) = x.

Proof. Note that the monoidal graph map is a graph map preserving monoidal structure

in the sets of vertices. First we want to prove for all monoidal graphs A,B and C and

for all monoidal graph maps f :A→ B, g:B → C

f ? g:A→ C

is a monoidal graph map from A to C, for all i, j ∈ V (A), we have

(Vf ? Vg)(i⊗A j) = Vg(Vf (i⊗A j))

= Vg(Vf (i)⊗B Vf (j))

= Vg(Vf (i))⊗C Vg(Vf (j))

= Vf ? Vg(i)⊗C Vf ? Vg(j).

(Vf ? Vg)(eA) = Vg(Vf (eA))

= Vg(eB) = eC .

Second we want to prove the category axioms for all monoidal graphs A,B,C and D

and for all monoidal graph maps f :A → B, g:B → C and h:C → D, and for all

i ∈ V (A), x ∈ E(A) we have
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(Vf ? (Vg ? Vh))(i) = Vg ? Vh(Vf (i))

= Vh(Vg(Vf (i)))

= Vg(Vf (i)) ? Vh

= ((Vf ? Vg) ? Vh)(i).

(Ef ? (Eg ? Eh))(x) = Eg ? Eh(Ef (x))

= Eh(Eg(Ef (x)))

= Eg(Ef (x)) ? Eh

= ((Ef ? Eg) ? Eh)(x).

Definition 6.1.6. (The forgetful functor from the category of 1
2
-monoidal categories to

the category of monoidal graphs). We have a forgetful functor

U :
1

2
−MC→MGraphs,

such that for the 1
2
-monoidal category C = (C, I,⊗0,#(−), (−)#) we have,

1.

U(C) = (ob(C), I,⊗0,Mor(C)
δ1
⇒
δ2

ob(C)),

where

Mor(C) =
⋃

(x,y)∈ob(C)×ob(C)

({x} × homC(x, y)× {y}),

where for every f :x→ y,

δ1(x, f, y) = x, δ2(x, f, y) = y.
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2. Let C = (C, I,⊗0,#(−), (−)#) and D = (D, I ′,⊗′0,#′(−), (−)#
′) be 1

2
-monoidal

categories and let

F = (F0, F1): C → D

be a 1
2
-monoidal functor, we have

U(C) =

ob(C), I,⊗0,
⋃

(x,y)∈ob(C)×ob(C)

({x} × homC(x, y)× {y})

 ,

U(D) =

ob(D), I ′,⊗′0
⋃

(x′,y′)∈ob(D)×ob(D)

({x′} × homD(x′, y′)× {y′})


and

U(F ) = U(F0, F1) = (U(F )0, U(F )1),

where

U(F )0 = F0,

and

U(F )1(x, f :x→ y, y) = (F0(x), F1(x
f−→ y), F0(y)).

Definition 6.1.7. A free-1
2
-monoidal category-triple on a monoidal graph R is a triple

(R, C, δR), where C is a 1
2
-monoidal category and δR:R → U(C) is a monoidal graph-

map such that the following universal property is satisfied.

Given a 1
2
-monoidal category A and a monoidal graph map θ:R →

U(A), there is a unique 1
2
-monoidal functor θ∗: C → A such that θ = δR ?

U(θ∗), i,e the next diagram commutes

R U(C)

U(A)

δR

θ
U(θ∗)

Where U is the forgetful functor from the category of 1
2
-monoidal categories to the cate-

gory of monoidal graphs. This is to say that the arrow δR is a universal arrow from R to

U .
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We want to prove that U is a right adjoint by proving that a universal arrow δR:R →

U(C) – what we called a free 1/2-monoidal category triple – exists for all R.

Proposition 6.1.8. Given any free-1
2
-monoidal category-triple (R, C, δ), a universal ar-

rows from object R to U(C), if it exists, is unique up to ismorphism. I.e, if there is

another free-1
2
-monoidal category-triple (R,D, θ), then there exists a unique functor

g: C → D that makes the diagram commute. Moreover, that unique functor is an isomor-

phism.

R U(C)

U(D)

δR

θR
g

Proof. The proof is similar to the proof in 3.3.6.

We want to construct the free 1
2
-monoidal category Ω(R) over a monoidal graph R.

As a first step, we first consider the extent R∗ of the monoidal graph R, namely

R∗ = (V (R), e, T (R), δ∗1, δ
∗
2),

and then consider the free category over R∗ 3.3.12, that is

P (R∗) = (V (R), homP (R∗)( , ), •, φ).

Here, for all a, b ∈ V (R), we have

homP (R∗)(a, b) := {(a1, r1, b1)(a2, r2, b2)...(an, rn, bn) | for some n ∈ N, a = δ∗1(a1, r1, b1),

b = δ∗2(an, rn, bn), δ∗2(ai, ri, bi) = δ∗1(ai+1, ri+1, bi+1),

, ri ∈ E(R), i ∈ {1, ..., n− 1}}.

Proposition 6.1.9. Let

P (R∗) = (V (R), homP (R∗)(a, b), •, φ),
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where R∗ is the extent of monoidal graph R, then

Ω(R) := (P (R∗), e,⊗0, (a#)a∈V (R), (#b)b∈V (R))

is a 1
2
-monoidal category. Here a, b ∈ V (R),

a#((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn))

:= (a⊗0 a1, x1, b1), (a⊗ a2, x2, b2), . . . , (a⊗0 an, xn, bn).

#b((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn))

:= (a1, x1, b1 ⊗0 b), (a2, x2, b2 ⊗0 b), . . . , (an, xn, bn ⊗0 b).

Proof. First we want to prove that for all a ∈ V (R), #a and a# are functors, for all

morphisms f, g ∈ P (R∗) where

f = (a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn),

and

g = (h1, y1, l1), (h2, y2, l2), . . . , (hm, ym, lm),

such that

δ2(an, xn, bn) = δ1(h1, y1, l1),

we have

#a(f • g) = #a

(
(a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn), (h1, y1, l1),

(h2, y2, l2), . . . , (hm, ym, lm)
)
.

= (a1, x1, b1 ⊗0 a), (a2, x2, b2 ⊗0 a), . . . , (an, xn, bn ⊗0 a), (h1, y1, l1 ⊗0 a),

(h2, y2, l2 ⊗0 a), . . . , (hm, ym, lm ⊗0 a).

=
(

(a1, x1, b1 ⊗0 a), (a2, x2, b2 ⊗0 a), . . . , (an, xn, bn ⊗0 a)
)

(
(h1, y1, l1 ⊗0 a), (h2, y2, l2 ⊗0 a), . . . , (hm, ym, lm ⊗0 a)

)
= #a(f) •#a(g).
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Let i ∈ V (R),

#a(φi) = #a(e, φi, e) = (e, φi, a) = φ#a(i),

where φi is the identity morphism i.e, the empty path in the path category over the extent

of monoidal graph R∗, where every edge write as V × E × V.

By a similar argument a# is a functor. We want to verify the remaining axioms of 1
2
-

monoidal category in 5.1.2.

1. To verify the axiom in (5.1)

a# ◦ b#((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn))

= a#((b⊗0 a1, x1, b1), (b⊗0 a2, x2, b2), . . . , (b⊗0 an, xn, bn))

= (a⊗0 b⊗0 a1, x1, b1), (a⊗0 b⊗0 a2, x2, b2), . . . , (a⊗0 b⊗0 an, xn, bn)

= a⊗0b#((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn)).

2. To verify the axiom in (5.2)

#a ◦#b((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn))

= #a((a1, x1, b1 ⊗0 b), (a2, x2, b2 ⊗0 b), . . . , (an, xn, bn ⊗0 b))

= (a1, x1, b1 ⊗0 b⊗0 a), (a2, x2, b2 ⊗0 b⊗0 a), . . . , (an, xn, bn ⊗0 b⊗0 a)

= #b⊗0a((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn)).

3. To verify the axiom in (5.3)

#a ◦ b#((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn))

= #a((b⊗0 a1, x1, b1), (b⊗0 a2, x2, b2), . . . , (b⊗0 an, xn, bn))

= ((b⊗0 a1, x1, b1 ⊗0 a), (b⊗0 a2, x2, b2 ⊗0 a), . . . , (b⊗0 an, xn, bn ⊗0 a))

= b#((a1, x1, b1 ⊗0 a), (a2, x2, b2 ⊗0 a), . . . , (an, xn, bn ⊗0 a))

= b# ◦#a((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn)).
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4. To verify the axiom in (5.4)

#e((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn))

= (a1, x1, b1 ⊗0 e), (a2, x2, b2 ⊗0 e), . . . , (an, xn, bn ⊗0 e)

= (a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn).

5. To verify the axiom in (5.5)

e#((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn))

= (e⊗0 a1, x1, b1), (e⊗0 a2, x2, b2), . . . , (e⊗0 an, xn, bn)

= (a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn).

So,

e# = #e = idP (R∗).

Proposition 6.1.10. LetR be a monoidal graph. Then (R,Ω(R), δ) is a free 1
2
- monoidal

category triple, where

δ:R→ U(Ω(R))

that is on vertices

a 7→ a,

and on edges

x 7→ (e, x, e).

Proof. We want to prove that given a 1
2
-monoidal category

C = (C, IC,⊗0,#(−), (−)#)
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and a monoidal graph map F :R→ U(C), there is a unique 1
2
-monoidal functor 5.1.12

F ′: Ω(R)→ C

that makes the next diagram commute

R U(Ω(R))

U(C).

δ

F
U(F ′) (6.1)

First, we want to prove the existence; define the map

F ′: Ω(R)→ C

that is on objects

a 7→ F0(a),

and on morphisms

(a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn) 7→(
F0(a1)ΘF1(x1)ΘF0(b1)

)
?
(
F0(a2)ΘF1(x2)ΘF0(b2)

)
?. . .?

(
F0(an)ΘF1(xn)ΘF0(bn)

)
.

Note Θ is whiskering where B# ◦#A(x
f−→ y) = (B ⊗ x⊗0 A

BΘfΘA−−−−→ B ⊗ y ⊗0 A).

Now, we want to prove F ′ is a functor, for all morphism f, g ∈ Ω(R)

f = (a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn)

and

g = (h1, y1, l1), (h2, y2, l2), . . . , (hm, ym, lm),

such that

δ2(an, xn, bn) = δ1(h1, y1, l1),
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we have

F ′1(f • g) = F ′1((a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn), (h1, y1, l1),

(h2, y2, l2), . . . , (hm, ym, lm))

=
(
F0(a1)ΘF1(x1)ΘF0(b1)

)
?
(
F0(a2)ΘF1(x2)ΘF0(b2)

)
? . . . ?(

F0(an)ΘF1(xn)ΘF0(bn)
)
?
(
F0(h1)ΘF1(y1)ΘF0(l1)

)
?(

F0(h2)ΘF1(y2)ΘF0(l2)
)
? . . . ?

(
F0(hm)ΘF1(ym)ΘF0(lm)

)
=

((
F0(a1)ΘF1(x1)ΘF0(b1)

)
?
(
F0(a2)ΘF1(x2)ΘF0(b2)

)
? . . . ?(

F0(an)ΘF1(xn)ΘF0(bn)
))

?

((
F0(h1)ΘF1(y1)ΘF0(l1)

)
?(

F0(h2)ΘF1(y2)ΘF0(l2)
)
? . . . ?

(
F0(hm)ΘF1(ym)ΘF0(lm)

))
= F ′(f) ?C F

′(g).

For each a ∈ ob(Ω(R))

F ′1(φa) = F1(φa) = φF0(a) = φF ′0(a).

Hence F ′ is a functor. Now we want to prove F ′ is a 1
2
-monoidal functor in 5.1.12

1. Let e be the identity element,

F ′(e) = IC.

2. For all a, b ∈ ob(Ω(R)) we have

F ′0(a⊗0 b) = F0(a⊗0 b)

= F0(a)⊗0 F0(b)

= F ′0(a)⊗0 F
′
0(b).
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3. For all A ∈ ob(Ω(R) and f ∈ homP (R∗)(i, j) we have

F ′1(A#(f)) = F ′1

(
A#
(

(a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn)
))

= F ′1

(
(A⊗0 a1, x1, b1), (A⊗0 a2, x2, b2), . . . , (A⊗0 an, xn, bn)

)
=
(
F0(A⊗0 a1)ΘF1(x1)ΘF0(b1)

)
?
(
F0(A⊗0 a2)ΘF1(x2)ΘF0(b2)

)
? . . . ?

(
F0(A⊗0 an)ΘF1(xn)ΘF0(bn)

)
=
(

(F0(A)⊗ F0(a1))ΘF1(x1)Θ(F0(b1))
)
?(

(F0(A)⊗0 F0(a2))ΘF1(x2)Θ(F0(b2))
)

? . . . ?
(

(F0(A)⊗0 F0(an))ΘF1(xn)ΘF0(bn)
)

∗
=
(
F0(A)Θ(F0(a1)ΘF1(x1)ΘF0(b1))

)
?(

F0(A)Θ(F0(a2)ΘF1(x2)ΘF0(b2))
)
? . . . ?(

F0(A)Θ(F0(an)ΘF1(xn)ΘF0(bn))
)

∗∗
=F0(A) #

((
F0(a1)ΘF1(x1)ΘF0(b1)

)
?
(
F0(a2)ΘF1(x2)ΘF0(b2)

)
? . . . ?

(
F0(an)ΘF1(xn)ΘF0(bn)

))
=F0(A)#F

′
1

(
(a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn)

)
=F0(A) #F ′1(f)

=F ′0(A) #F ′1(f).

Therefore

F ′(A#(f)) =F ′(A) #(F ′(f)).

* follow from (5.1).

** Since #F0(A) is a functor.

4. By a similar argument

F ′(#A(f)) = #F ′(A)(F
′(f)).
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Second uniqueness; suppose we have another 1
2
-monoidal functor

F ′′: Ω(R)→ C

that makes the diagram (6.1) commute. Then

F ′′(f) =F ′′
(

(a1, x1, b1), (a2, x2, b2), . . . , (an, xn, bn)
)

=F ′′(a1, xx, b1) ? F ′′(a2, x2, b2) ? . . . ? F ′′(an, xn, bn)

=
(
F0(a1)ΘF1(x1)ΘF0(b1)

)
?
(
F0(a2)ΘF1(x2)ΘF0(b2)

)
? . . . ?

(
F0(an)ΘF1(xn)ΘF0(bn)

)
=F ′(f).

6.2 Presentations of Strict Monoidal Categories

In this section we define presentation of strict monoidal categories by defining presenta-

tions of 1
2
-monoidal categories . To this end we define 1

2
-monoidal congruence , then we

define 1
2
-monoidal closure W of a congruence template W . Then we quotient the free

1
2
-monoidal category byW . Finally we have the presentation of strict monoidal category

by applying the slidealisation functor to the quotient.

Definition 6.2.1 (1
2
-monoidal congruence). Let (C, I,⊗0,#(−), (−)#) be a 1

2
-monoidal

category. A 1
2
-monoidal congruence R is a congruence relation 3.4.3 in the category C

such that, for all object A, and morphisms f, g:X → Y if f ∼RX,Y g. then

#A(f) ∼RX⊗0A,Y⊗0A
#A(g),

and

A#(f) ∼RA⊗0X,A⊗0Y
A#(g).
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Proposition 6.2.2. Let R be a 1
2
-monoidal congruence on a 1

2
-monoidal category

(C, I,⊗0,#(−), (−)#).

Consider the quotient category

C/R = (ob(C), homC/R( , ), ?C/R, id
′),

as defined in 3.4.6. (Note that R is in particular a congruence in C, so it makes sense to

take the quotient category). Then

(C/R, I,⊗0,#(−), (−)#)

is a 1
2
-monoidal category, where for all A ∈ ob(C), and f ∈ homC/R(X, Y )

A#([f ]RX,Y ) = [A#(f)]RA⊗0X,A⊗0Y
,

#A([f ]RX,Y ) = [#A(f)]RX⊗0A,Y⊗0A
.

Proof. First we want to prove that

A#([f ]RX,Y ) = [A#(f)]RA⊗0X,A⊗0Y
,

#A([f ]RX,Y ) = [#A(f)]RX⊗0A,Y⊗0A
.

are well defined.

Let f ∼RX,Y g, we have

A#(f) ∼RA⊗0X,A⊗0Y
A#(g),

#A(f) ∼RX⊗0A,Y⊗0A
#A(g).

This follows from the definition of 1
2
-monoidal congruence in 6.2.1.

Secondly, we want to prove the 1
2
-monoidal category axioms.

We want to prove for all A ∈ ob(C/R) , A# and #A are functors. Given X, Y, Z ∈
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ob(C/R), [f ] ∈ homC/R(X, Y ) and [g] ∈ homC/R(Y, Z).

A#([g]RY,Z ? [f ]RX,Y ) = A#([g ? f ]RX,Z )

= [A#(g ? f)]RA⊗0X,A⊗0Z

= [A#(g) ? A#(f)]RA⊗0X,A⊗0Z

= [A#(g)]RA⊗0Y,A⊗0Z
? [A#(f)]RA⊗0X,A⊗0Y

= A#([g]RY,Z ) ? A#([f ]RX,Y ).

Also,

A#(id′X) = A#([idX ]) = [A#(idX)] = [id
A#(X)] = id′

A#(X).

By a similar argument

#A([g]RY,Z ? [f ]RX,Y ) = #A([g]RY,Z ) ?#A([f ]RX,Y ).

#A(id′X) = id′#A(X).

For all A,B ∈ ob(C) and morphisms [f ] ∈ homC/R(X, Y ), we have

A#(B#([f ]RX,Y )) = A#([B#(f)]RB⊗0X,⊗0Y
)

= [A#(B#(f))]RA⊗0B⊗0X,A⊗0B⊗0Y

by(5.1)
= [A⊗0B#(f)]RA⊗0B⊗0X,A⊗0B⊗0Y

= A⊗0B#([f ]RX,Y ).

#A(#B([f ]RX,Y )) = #A([#B(f)]RX⊗0B,Y⊗0B
)

= [#A(#B(f))]RX⊗0B⊗0A,X⊗0B⊗0A

by(5.2)
= [#B⊗0A(f)]RX⊗0B⊗0A,Y⊗0B⊗0A

= #B⊗0A([f ]RX,Y ).
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#A(B#([f ]RX,Y )) = #A([B#f ]RB⊗0X,B⊗0Y
)

= [#A(B#(f))]RB⊗0X⊗0A,B⊗0Y⊗0A

by(5.3)
= [B#(#A(f))]RB⊗0X⊗0A,B⊗0Y⊗0A

= B#(#A([f ]RX,Y )).

#I([f ]RX,Y ) = [#I(f)]RX,Y

by(5.4)
= [f ]RX,Y .

I#([f ]RX,Y )
by(5.5)

= [I#(f)]RX,Y

= [f ]RX,Y .

Proposition 6.2.3. In the conditions of the previous proposition. If the 1/2-monoidal

category is slideable, then so is the quotient.

Proof. Assume

(C, I,⊗0,#(−), (−)#)

is a slideable 1
2
-monoidal category. Then if given a pair of morphisms f :x → y and

g: z → w we have

(fΘw) ? (xΘg) = (yΘg) ? (fΘz).

Assume

(C/R, I,⊗0,#(−), (−)#)

is a quotient of the slideable 1
2
-monoidal category. Let [f ] ∈ homC/R(x, y) and [g] ∈

homC/R(z, w), we have

([f ]Θw) ? (xΘ[g]) =([fΘw]) ? ([xΘg])

=[(fΘw) ? (xΘg)]

=[(yΘg) ? (fΘz)]

=(yΘ[g]) ? ([f ]Θz).
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Hence the quotient 1
2
-monoidal category is slideable.

6.2.1 The 1/2-monoidal closure of a congruence template

We defined in 3.5.6 the closure of a congruence template, defined in 3.5.1, in order to

define presentations of categories. We now define the 1/2-monoidal closure of a congru-

ence template, in order to define presentations of 1/2 monoidal and monoidal categories.

Note: We will use the notation x#y(f) instead of x# ◦#y(f) = #y ◦ x#(f).

Definition 6.2.4. Let

(C, I,⊗0,#(−), (−)#)

be a 1
2
-monoidal category such that C has a congruence template WX,Y , for all X, Y ∈

ob(C). We say f, g:X → Y are related in WX,Y ,and we put

f ∼WX,Y
g

if there are A,B, x, y ∈ ob(C), f ′, g′:A→ B and

α:X → x⊗0 A⊗0 y, and β:x⊗0 B ⊗0 y → Y,

hence fitting into the diagram below

X x⊗0 A⊗0 y x⊗0 B ⊗0 y Yα

xΘg′Θy

xΘf ′Θy

β

such that f = β ? (x#yf
′) ?α and g = β ? (x#yg

′) ?α, and f ′ ∼WA,B
g′ or g′ ∼WA,B

f ′.

Lemma 6.2.5. Let

(C, I,⊗0,#(−), (−)#)

be a 1
2
-monoidal category such that C has a congruence template WX,Y for all X, Y ∈

ob(C). Let also U ∈ ob(C), f, g:X → Y , m:X ′ → X and n:Y → Y ′ be morphisms
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such that

f ∼WX,Y
g.

Then

U#(n ? f ? m) ∼WU⊗0X
′,U⊗0Y

′ U#(n ? g ? m),

#U(n ? f ? m) ∼WX′⊗0U,Y
′⊗0U

#U(n ? g ? m).

In particular (putting U = I) given then

n ? f ? m ∼WX′,Y ′
n ? g ? m

as maps X ′ → Y ′.

Proof. We have

f ∼WX,Y
g.

So, there are A,B, x, y ∈ ob(C), f ′, g′:A→ B and

α:X → x⊗0 A⊗0 y and β:x⊗0 B ⊗0 y → Y

such that f = β ? (x#yf
′) ? α and g = β ? (x#yg

′) ? α and f ′ ∼WA,B
g′ or g′ ∼WA,B

f ′.

Thus

f = β ? (x#yf
′) ? α

n ? f ? m = n ? β ? (x#yf
′) ? α ? m

= (n ? β) ? (x#yf
′) ? (α ? m),

and

U#(n ? f ? m) = U#((n ? β) ? (x#yf
′) ? (α ? m))

= U#(n ? β) ? U#(x#yf
′) ? U#(α ? m)

by(5.1)
= U#(n ? β) ? (U⊗0x#yf

′) ? U#(α ? m).
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Also,

g = β ? (x#yg
′) ? α

n ? g ? m = n ? β ? (x#yg
′) ? α ? m

= (n ? β) ? (x#yg
′) ? (α ? m),

and

U#(n ? g ? m) = U#((n ? β) ? (x#yg
′) ? (α ? m))

= U#(n ? β) ? U#(x#yg
′) ? U#(α ? m)

by(5.1)
= U#(n ? β) ? (U⊗0x#yg

′) ? U#(α ? m).

Therefore

U#(n ? f ? m) ∼WU⊗0X
′,U⊗0Y

′ U#(n ? g ? m).

By a similar calculation.

#U(n ? f ? m) ∼WX′⊗0U,Y
′⊗0U

#U(n ? g ? m).

Definition 6.2.6. Let

(C, I,⊗0,#(−), (−)#)

be a 1
2
-monoidal category with a congruence template {WX,Y }(X,Y )∈ob(C)×ob(C). Con-

sider the relationWX,Y in 6.2.4, defined in homC(X, Y ), for allX, Y ∈ ob(C). For each

(X, Y ) ∈ ob(C)× ob(C), let

WX,Y

be the transitive, reflexive closure of WX,Y . (So WX,Y is a relation in homC(X, Y )).

If f, g:X → Y are related in WX,Y we write

f ∼WX,Y
g,

f = g or there exists an n ∈ N, (A1, A2, . . . , An) ∈ ob(C)n, (B1, B2, . . . , Bn) ∈

ob(C)n,(x1, x2, . . . , xn) ∈ ob(C)n and (y1, y2, . . . , yn) ∈ ob(C)n for all i ∈ {1, 2, . . . , n},
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morphisms

αi:X → xi ⊗0 Ai ⊗0 yi,

f ′i :Ai → Bi,

g′i:Ai → Bi,

βi:xi ⊗0 yi ⊗0 Bi → Y,

such that

f = f1 = β1 ? (x1#y1f
′
1) ? α1

∼WX,Y
g1 = β1 ? (x1#y1g

′
1) ? α1, where we have f ′1 ∼WA1,B1

g′1 or g′1 ∼WA1,B1
f ′1

= f2 = β2 ? (x2#y2f
′
2) ? α2

∼WX,Y
= g2 = β2 ? (x2#y2g

′
2) ? α2, where we have f ′2 ∼WA2,B2

g′2 or g′2 ∼WA2,B2
f ′2

...

= fn = βn ? (xn#ynf
′
n) ? αn

∼WX,Y
gn = βn ? (xn#yng

′
n) ? αn = g, where we have f ′n ∼WAn,Bn

g′n or g′n ∼WAn,Bn
f ′n.

Theorem 6.2.7. The equivalence relations WX,Y on homC(X, Y ), for all (X, Y ) ∈

ob(C)× ob(C), are a 1
2
-monoidal congruence in C 6.2.1. I.e, if

f ∼WX,Y
f ′ and g ∼WY,Z

g′.

Then

g ? f ∼WX,Z
g′ ? f ′,

#A(f) ∼WX⊗0A,Y⊗0A
#A(f ′),

A#(f) ∼WA⊗0X,A⊗0A
A#(f ′).

Proof. Suppose

f ∼WX,Y
f ′.
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Then f = f ′ or there exists n ∈ N and there are f1, f2, . . . , fn:X → Y , such that

f = f1 ∼WX,Y
f2, f2 ∼WX,Y

f3, . . . , fn−1 ∼WX,Y
fn = f ′.

Suppose

g ∼WY,Z
g′,

then g = g′ or there exists m ∈ N and there are g1, g2, . . . , gm:Y → Z, such that

g = g1 ∼WY,Z
g2, g2 ∼WY,Z

g3, . . . , gm−1 ∼WY,Z
gm = g′.

Then by Lemma 6.2.5

g ? f = g ? f1 ∼WX,Z
g ? f2,

g ? f2 ∼WX,Z
g ? f3,

...

g ? fn−1 ∼WX,Z
g ? fn = g ? f ′.

Therefore

g ? f ∼WX,Z
g ? f ′.

Similarly

g ? f ′ = g1 ? f
′ ∼WX,Z

g2 ? f
′,

g2 ? f
′ ∼WX,Z

g3 ? f
′,

...

gm−1 ? f
′ ∼WX,Z

gm ? f
′ = g′ ? f ′.

Therefore,

g ? f ′ ∼WX,Z
g′ ? f ′.

Hence,

g ? f ∼WX,Z
g′ ? f ′.
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Also,

#A(f) = #A(f1) ∼WX⊗0A,Y⊗0A
#A(f2),

#A(f2) ∼WX⊗0A,Y⊗0A
#A(f3),

...

#A(fn−1) ∼WX⊗0A,Y⊗0A
#A(fn) = #A(f ′).

Therefore,

#A(f) ∼WX⊗0A,Y⊗0A
#A(f ′).

A#(f) = A#f1 ∼WA⊗0X,A⊗0Y
A#(f2),

A#(f2) ∼WA⊗0X,A⊗0Y
A#(f3),

...

A#(fn−1) ∼WA⊗0X,A⊗0Y
A#(fn) = A#(f ′).

Therefore,

A#(f) ∼WA⊗0X,A⊗0Y
A#(f ′).

Definition 6.2.8 (1/2-monoidal closure of a congruence template). The equivalence re-

lations WX,Y is called the 1
2
-monoidal closure of congruence template WX,Y .

Definition 6.2.9 (Presentation of 1
2
-monoidal category). Let C be a free 1

2
-monoidal cat-

egory over the monoidal graph R. Let WX,Y be a congruence template on the C. We say

that

C/WX,Y

is the 1
2
-monoidal category that is presented by R and relations WX,Y .

Definition 6.2.10 (Presentation of strict monoidal category). Let C be a free 1
2
-monoidal

category over the monoidal graph R. Let WX,Y be a congruence template on C. We say

that

F(C/WX,Y )
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is the slideable 1
2
-monoidal category that is presented by R and relations WX,Y . Here

we applied the slidealisation functor F in Proposition 5.2.9.

By using Theorem 5.4.6, then

F(C/WX,Y )

has equivalent information to a strict monoidal category.

6.2.2 Example: the monoidal combinatorial braid category

Example 6.2.11. Consider the monoidal graph

β = (N, E,⊗0, 0, δ1, δ2),

where for all n,m ∈ N, we have

m⊗0 n = m+ n,

and E = {X+, X−},

δ1X
+ = δ2X

+ = δ1X
− = δ2X

− = 2.

Consider the path category over the extent β∗ of the monoidal graph β (see 3.3.13).

P (β∗) = (N, homP (β∗)(n,m), •, φ ),

we have a 1
2
-monoidal category

Ω(β) = (P (β∗),⊗0, 0, n#,#m)

where

δ1(n#mX
+) = δ2(n#mX

+) = δ1(n#mX
−) = δ2(n#mX

−) = n+ 2 +m (6.2)
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So, we have the free-1
2
-monoidal category-triple in sense of Def. 6.1.7

(β,Ω(β), δ).

We define the monoidal combinatorial braid category to the following quotient

F

(
Ω(β)

/
W n,m

)
.

Where, given m,n ∈ N, then Wn,m is the relation in homP (β∗)(n,m) defined as below

(note that we omitted • from the notation)

• Ifm 6= n it is clear from incidences maps (6.2) that homP (β∗)(n,m) = ∅. SoWn,m

is the unique equivalence relation on the empty set.

• m,n = 0. Then homP (β∗)(0, 0) = {φ0}. The relation W0,0 is the unique equiva-

lence relation such that φ0 ∼W0,0 φ0.

• m,n = 1. Then homP (β∗)(1, 1) = {φ1}. The relation W1,1 is the unique equiva-

lence relation such that φ1 ∼W1,1 φ1.

• m,n = 2. homP (β∗)(2, 2) is the set of words in X+ and X−. The two pairs of

related elements are

X+X− ∼W2,2 φ2,

X−X+ ∼W2,2 φ2.

• m,n = 3. homP (β∗)(3, 3) is the set of words in 0#1X
+, 1#0X

+ and 0#1X
−, 1#0X

−.

The related elements are

1#0X
+

0#1X
+

1#0X
+ ∼W3,3 0#1X

+
1#0X

+
0#1X

+,

1#0X
−

0#1X
−

1#0X
− ∼W3,3 0#1X

−
1#0X

−
0#1X

−.
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In the next example we apply the congruence template W2,2,

T = (#2(X+X−))(2#(X+X−)) ∼W2,2 (2#φ2)(#2φ2) = φ4φ4 = φ4.

I.e,

6.3 Tangles

In this section, we first define tangles from the geometric point of view. Then we give, a

presentation of the tangle category by generators and relations. These constructions are

discussed for example by Kassel [Kas12] and Turaev [Tur90].

Kassel constructed a presentation for the tangle category [Kas12, Chapter XII] in

similar way to group presentation. In group presentation, let G be a group and F be

a subset of G and R be a set of pairs of words in the alphabet F . Then (F,R) is a

presentation of the group G if the two following conditions are satisfied:

• the subset F generates G,

• two words a and b in the alphabet F represent the same element in G if and only

if one may pass from a to b by operations replacing any subword of the form c by

a subword of the form d where (c, d) belongs to R.

So Kassel took a collection of morphisms from the strict monoidal category (C,⊗, I),

of tangles as generators. Then he define the equivalence between words in order to

have strict monoidal category. This presentation of the tangle category is not completely

combinatorial because it uses the category of tangles to explain how the generators and

relations for the monoidal category of tangles are to be interpreted.
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We provided in section §6.2 a combinatorial presentation of strict monoidal categories,

by using presentations of 1
2
-monoidal categories. So we can use this to define formally

category of tangles by generators and relations.

Definition 6.3.1. (See for example [Kas12, Tur90, BS19, CR89]). Let n,m two integers,

so a geometric tangle T from n to m is an embedded union of polygonal circles and

intervals in R2 × I , such that:

T ∩ (R2 × {0}) = {1, 2, . . . , n} × {0} × {0},

T ∩ (R2 × {1}) = {1, 2, . . . ,m} × {0} × {1}.

Example 6.3.2. The next picture represents a geometric tangle T from 5 to 3.

Definition 6.3.3. (See for example [Kas12, Tur90, BS19, CR89]). Two geometric tangles

T1, T2 ⊂ R2 × [0, 1] are called ambient isotopic if there is a continuous map:

h: (R2 × [0, 1])× [0, 1]→ R2 × [0, 1],

such that

1. for all (x, y, z, 0) ∈ (R2 × [0, 1])× [0, 1], h(x, y, z, 0) = (x, y, z);
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2. given any t ∈ [0, 1], the map

R2 × [0, 1]→ R2 × [0, 1]

(x, y, z) 7→ h(x, y, z, t)

is a homeomorphism;

3. for all t ∈ [0, 1] and (x, y) ∈ R2

• h(x, y, 0, t) = (x, y, 0),

• h(x, y, 1, t) = (x, y, 1).

4. h(T1, 1) = T2,

5. h(T1, t) is a tangle for all t ∈ [0, 1].

Proposition 6.3.4. (See for example[BL98]). We have a strict monoidal category of

tangles where

1. the set of objects is the set N of natural number,

2. for all n,m ∈ N, the set of morphism from m to n is the set of equivalence classes

of ambient isotopy of (m,n)-tangles,

3. composition and identities are defined as in the case of braids,

4. the tensor product T1 ⊗ T2 is the isotopy class of the tangle obtained by placing

L2 to the right of T1. (For the precise way to do this see [Kas12, Section XII.2]).

Definition 6.3.5 (Category of combinatorial tangles). (See for example [CDM12]). The

strict monoidal category T is the strict monoidal category (in the sense of Definition 5.3.2),

whose set of objects is the set N, where the object monoid is (N,+, 0).

The monoidal graph

β = (N, E(β),⊗0, 0, δ1, δ2),

where for all m,n ∈ N, m⊗0 n = m+ n, and

E(β) = {X+, X−,∪,∩},
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where

δ1X+ = 2, δ2X+ = 2,

δ1X− = 2, δ2X− = 2,

δ1∪ = 0, δ2∪ = 2,

δ1∩ = 2, δ2∩ = 0,

that satisfy the following relations

• [T1] : (id1 ⊗ ∩)(X+ ⊗ id1)(id1 ⊗ ∪) ∼= id1
∼= (id1 ⊗ ∩)(X− ⊗ id1)(id1 ⊗ ∪).

• [T2] : (∩ ⊗ id1)(id1 ⊗ ∪) ∼= id1
∼= (id1 ⊗ ∩)(∪ ⊗ id1).

• [T3] : X−X+
∼= id2

∼= X+X−.

• [T4] : (X+ ⊗ id1)(id1 ⊗X+)(X+ ⊗ id1) ∼= (id1 ⊗X+)(X+ ⊗ id1)(id1 ⊗X+).

• [T5] : (∩ ⊗ id1)(id1 ⊗X−) ∼= (id1 ⊗ ∩)(X+ ⊗ id1).

• [T5]′ : (∩ ⊗ id1)(id1 ⊗X+) ∼= (id1 ⊗ ∩)(X− ⊗ id1).

Note here similarly to the monoidal combinatorial braid category we have a 1/2-monoidal

closure to the congruence template W defined in the 1
2
-monoidal category Ω(β) and the

pairs above are the only pairs related by W1,1,W2,2,W3,3,W3,1,W1,3.
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These relations can be presented geometrically as:



Chapter 7

Welded Tangle-oid Categories

7.1 Introduction

The theory of knotoids was introduced by Turaev and Lambropoulou [Tur12, GKL16].

“ Knotoids are represented by diagrams in a surface which differ from the usual knot di-

agrams in that the underlying curve is a segment rather than a circle. Knotoid diagrams

are considered up to Reidemeister moves applied away from the endpoints of the under-

lying segment” [Tur12]. “The two endpoints may lie in different regions of the diagram.

They may move within their regions by planar isotopy, but they are not allowed to cross

over or under any arcs of the diagram. These are the ‘forbidden moves’ of the theory”

[GKL16].

168
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Below we can see a geometric representation of four different knotoids.

My idea to consider welded tangle-oids categories arose from a talk by Sofia Lam-

bropoulou [GKL16] in the conference Loops in Leeds” 1-4 July 2019. Welded tan-

gleoids generalise the welded virtual arcs defined in [KM08] and also considered in

[Sat00], the definition of welded virtual arcs is similar to the definition of welded virtual

knots with addition move [WT13]′ and [WT14]′ in the definition of welded tangle-oids

categories below. Also, we can see welded tangle-oids categories as a generalisation of

tangle categories by added welded virtual arcs.

We here consider a formulation of welded knotoids within a strict monoidal category

of welded tangle-oids, which we define by using generators and relations. We will take

the presentation of the category of tangles as our starting point.

7.2 Unoriented Welded Tangle-oids

We will define a monoidal category of unoriented welded tangle-oids by giving a pre-

sentation, as defined in Definition 6.2.10, by using presentation of slideable 1
2
-monoidal

categories . We proved in 5.4.6 slideable 1
2
-monoidal categories are isomorphic to strict

monoidal categories.

Definition 7.2.1. Consider the monoidal graph

β = (N, E(β),⊗0, 0, δ1, δ2),
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where for all m,n ∈ N, m⊗0 n = m+ n,and

E(β) = {X+, X−, X,∪,∩, ¡, !},

the incidence maps

δ1X+ = 2, δ2X+ = 2, δ1X− = 2, δ2X− = 2,

δ1X = 2, δ2X = 2, δ1∪ = 0, δ2∪ = 2,

δ1∩ = 2, δ2∩ = 0, δ1¡ = 1, δ2¡ = 0,

δ1! = 0, δ2! = 1.

These generators can be presented geometrically as

Consider the path category, see 3.3.13 over β∗, the extent of the monoidal graph β.

P (β∗) = (N, homP (β∗)(n,m), •, φ ).

Therefore

Ω(β) = (P (β∗),⊗0, 0, n#,#m)

is a 1
2
-monoidal category, whose set of objects is the set of natural numbers, where for

all n,m, k ∈ N ;

n#m(k) = n⊗0 k ⊗0 m = n+ k +m,

and for all generating morphism (f : k → k′) ∈ E(β), we have

n#m(f) = n+ k +m
nΘfΘm−−−−→ n+ k′ +m.



171

Then we have the free-1
2
-monoidal category-triple in sense of Definition 6.1.7

(β,Ω(β), δ).

Definition 7.2.2 (Unoriented welded tangloids category). The unoriented welded tan-

gloids category UWTC is the strict monoidal category formally presented by

F
(

Ω(β)

/
W
)
,

where Ω(β) defined in Definition 7.2.1 and W is the 1
2
-monoidal closure of the congru-

ence template W that is defined as follows.

Given m,n ∈ N, then Wm,n is the relation in homP (β∗)(m,n), defined as ( the picture

will follow)

In homP (β∗)(1, 1), we have the only relations

• [WT1] : (id1⊗∩)(X⊗ id1)(id1⊗∪) ∼W1,1 id1 ∼W1,1 (∩⊗ id1)(id1⊗X)(∪⊗ id1).

• [WT2] : (id1⊗∩)(X+⊗id1)(id1⊗∪) ∼W1,1 id1 ∼W1,1 (id1⊗∩)(X−⊗id1)(id1⊗∪).

• [WT3] : (∩⊗id1)(id1⊗X−)(∪⊗id1) ∼W1,1 id1 ∼W1,1 (∩⊗id1)(id1⊗X+)(∪⊗id1).

• [WT4] : (∩ ⊗ id1)(id1 ⊗ ∪) ∼W1,1 id1 ∼W1,1 (id1 ⊗ ∩)(∪ ⊗ id1).

In homP (β∗)(2, 2), we have the only relation

• [WT5] : X−X+ ∼W2,2 id2 ∼W2,2 X+X−.

In homP (β∗)(3, 3), we have the only relations

• [WT6] : (X+⊗ id1)(id1⊗X+)(X+⊗ id1) ∼W3,3 (id1⊗X+)(X+⊗ id1)(id1⊗X+).

• [WT7] : (X+ ⊗ id1)(id1 ⊗X)(X ⊗ id1) ∼W3,3 (id1 ⊗X)(X ⊗ id1)(id1 ⊗X+).

• [WT8] : (X ⊗ id1)(id1⊗X+)(X+⊗ id1) ∼W3,3 (id1⊗X+)(X+⊗ id1)(id1⊗X).
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In homP (β∗)(3, 1), we have the only relations

• [WT9] : (∩ ⊗ id1)(id1 ⊗X−) ∼W3,1 (id1 ⊗ ∩)(X+ ⊗ id1).

• [WT9]′ : (∩ ⊗ id1)(id1 ⊗X+) ∼W3,1 (id1 ⊗ ∩)(X− ⊗ id1).

• [WT9]′′ : (∩ ⊗ id1)(id1 ⊗X) ∼W3,1 (id1 ⊗ ∩)(X ⊗ id1).

In homP (β∗)(1, 3), we have the only relations

• [WT10] : (id1 ⊗X+)(∪ ⊗ id1) ∼W1,3 (X− ⊗ id1)(id1 ⊗ ∪).

• [WT10]′ : (id1 ⊗X−)(∪ ⊗ id1) ∼W1,3 (X+ ⊗ id1)(id1 ⊗ ∪).

• [WT10]′′ : (id1 ⊗X)(∪ ⊗ id1) ∼W1,3 (X ⊗ id1)(id1 ⊗ ∪).

In homP (β∗)(1, 0), we have the only relation

• [WT11] : ∩(id1⊗!) ∼W1,0 ¡ ∼W1,0 ∩(!⊗ id1).

In homP (β∗)(0, 1), we have the only relation:

• [WT12] : (id1⊗¡)∪ ∼W0,1 ! ∼W0,1 (¡⊗ id1)∪.

In homP (β∗)(2, 1), we have the only relations

• [WT13] : (¡⊗ id1)X+ ∼W2,1 id1⊗¡.

• [WT13]′ : (id1⊗¡)X− ∼W2,1 ¡⊗ id1.

• [WT14] : (¡⊗ id1)X ∼W2,1 id1⊗¡.

• [WT14]′ : (id1⊗¡)X ∼W2,1 ¡⊗ id1.

Note that we do not impose that in homP (β∗)(2, 1):

(¡⊗ id1)X− �W2,1 id1⊗¡.
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These relations can be present geometrically as (note we read the diagram from bot-

tom to top)
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7.3 Oriented Welded Tangle-oids

Now we will define the oriented case of welded tangle-oids categories by using presen-

tation of slideable 1
2
-monoidal categories.

Definition 7.3.1. Consider the monoidal graph

β = ({+,−}∗, E(β),⊗0, ∅, δ1, δ2),

where for all words u, v ∈ {+,−}∗, we have

u⊗0 v = uv.
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Note {+,−}∗ means the monoid of words on set {+,−}.

E(β) = {←−∪ ,−→∪ ,←−∩ ,−→∩ , X̂+, X+,
←−
X+,
−→
X+, X̂−, X−,

←−
X−,
−→
X−, X̂,X,

←−
X,
−→
X, ¡̂, ¡, !̂, !}.

δ1X̂+ = ++, δ2X̂+ = ++, δ1X+ = −−, δ2X+ = −−,

δ1

←−
X+ = −+, δ2

←−
X+ = +−, δ1

−→
X+ = +−, δ2

−→
X+ = −+,

δ1X̂− = ++, δ2X̂− = ++, δ1X− = −−, δ2X− = −−,

δ1

←−
X− = −+, δ2

←−
X− = +−, δ1

−→
X− = +−, δ2

−→
X− = −+,

δ1X̂ = ++, δ2X = ++, δ1X = −−, δ2X = −−,

δ1

←−
X = −+, δ2

←−
X = +−, δ1

−→
X = +−, δ2

−→
X = −+,

δ1
←−∩ = −+, δ2

←−∩ = ∅, δ1
−→∩ = +−, δ2

−→∩ = ∅,

δ1
←−∪ = ∅, δ2

←−∪ = +−, δ1
−→∪ = ∅, δ2

−→∪ = −+,

δ1̂¡ = +, δ2̂¡ = ∅, δ1¡ = −, δ2¡ = ∅,

δ1̂! = ∅, δ2̂! = +, δ1! = ∅, δ2! = −.

These generators can be present geometrically as
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Consider the path category, see 3.3.13 over β∗, the extent of monoidal graph β (see

3.3.13).

P (β∗) = ({+,−}∗, homP (β∗)( , ), •, φ ).

Therefore

Ω(β) = (P (β∗),⊗0, ∅, u#,#v)

is a 1
2
-monoidal category where for all sequences u, v, k of {+,−}∗,

u#v(k) = n⊗0 k ⊗0 m = ukv,

and for all generators morphism (f : k → k′) ∈ E(β), we have

u#v(f) = u⊗0 k ⊗0 v
uΘfΘv−−−−→ u⊗0 k

′ ⊗0 v.

Then we have the free-1
2
-monoidal category-triple in sense of Def. 6.1.7

(β,Ω(β), δ).

Definition 7.3.2 (Oriented welded tangle-oids category). The oriented welded tangle-

oids category OWTC is the slideable 1
2
-monoidal category formally presented as

F
(

Ω(β)

/
W
)
.

Where Ω(β) defined in Def.7.2.1 and W is the 1
2
-monoidal closure of congruence tem-

plate W that define as follows. The pairs of morphisms below are the only ones that W

relates.

Given u, v ∈ {+,−}∗, then Wu,v is the relation in homP (β∗)(u, v), defined as below

In homP (β∗)(+,+), we have the relations

• [WT1] : (id+ ⊗
−→∩ )(X̂ ⊗ id−)(id+ ⊗

←−∪ ) ∼W+,+ id+ ∼W+,+ (
←−∩ ⊗ id+)(id− ⊗

X̂)(
−→∪ ⊗ id+).
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• [WT2] : (id+ ⊗
−→∩ )(X̂+ ⊗ id−)(id+ ⊗

←−∪ ) ∼W+,+ id+ ∼W+,+ (id+ ⊗
−→∩ )(X̂− ⊗

id−)(id+ ⊗
←−∪ ).

• [WT3] : (
←−∩ ⊗ id+)(id− ⊗ X̂−)(

−→∪ ⊗ id+) ∼W+,+ id+ ∼W+,+ (
←−∩ ⊗ id+)(id− ⊗

X̂+)(
−→∪ ⊗ id+)

• [WT4] : (
−→∩ ⊗ id+)(id+ ⊗

−→∪ ) ∼W+,+ id+ ∼W+,+ (id+ ⊗
←−∩ )(
←−∪ ⊗ id+).

In homP (β∗)(++,++), we have the only relation:

• [WT5] : X̂−X̂+ ∼W++,++ id+ ⊗ id+ ∼W++,++ X̂+X̂−.

In homP (β∗)(+ + +,+ + +), we have the only relations:

• [WT6] : (X̂+ ⊗ id+)(id+ ⊗ X̂+)(X̂+ ⊗ id+) ∼W+++,+++ (id+ ⊗ X̂+)(X̂+ ⊗

id+)(id+ ⊗ X̂+).

• [WT7] : (X̂+⊗ id+)(id+⊗ X̂)(X̂ ⊗ id+) ∼W+++,+++ (id+⊗ X̂)(X̂ ⊗ id+)(id+⊗

X̂+).

• [WT8] : (X̂⊗id+)(id+⊗X̂+)(X̂+⊗id+) ∼W+++,+++ (id+⊗X̂+)(X̂+⊗id+)(id+⊗

X̂)

In homP (β∗)(+ +−,+), we have the only relations:

• [WT9] : (
−→∩ ⊗ id+)(id+ ⊗

−→
X−) ∼W++−,+ (id+ ⊗

−→∩ )(X̂+ ⊗ id−).

In homP (β∗)(−+ +,+), we have the only relations:

• [WT9]′ : (
←−∩ ⊗ id+)(id− ⊗ X̂+) ∼W−++,+ (id+ ⊗

−→∩ )(
←−
X− ⊗ id−).

• [WT9]′′ : (
←−∩ ⊗ id+)(id− ⊗ X̂) ∼W−++,+ (id+ ⊗

−→∩ )(
←−
X ⊗ id−).

In homP (β∗)(+,−+ +), we have the relations:
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• [WT10] : (id− ⊗ X̂+)(
−→∪ ⊗ id+) ∼W+,−++ (

−→
X− ⊗ id+)(id+ ⊗

−→∪ ).

In homP (β∗)(+,+ +−), we have the relations:

• [WT10]′ : (id+ ⊗
←−
X−)(

←−∪ ⊗ id+) ∼W+,++− (X̂+ ⊗ id−)(id+ ⊗
←−
∪).

• [WT10]′′ : (id+ ⊗
←−
X )(
←−∪ ⊗ id+) ∼W+,++− (X̂ ⊗ id−)(id+ ⊗

←−
∪).

In homP (β∗)(+, ∅), we have the relation:

• [WT11] :
−→∩ (id+⊗!) ∼W+,∅ ¡̂ ∼W+,∅

←−∩ (!⊗ id+).

In homP (β∗)(∅,+), we have the relation:

• [WT12] : (id+⊗¡)
←−∪ ∼W∅,+ !̂ ∼W∅,+ (¡⊗ id+)

−→∪ .

In homP (β∗)(++,+), we have the relations:

• [WT13] : (̂¡⊗ id+)X̂+ ∼W++,+ id+ ⊗ ¡̂.

• [WT13]′ : (id+ ⊗ ¡̂)X̂− ∼W++,+ ¡̂⊗ id+.

• [WT14] : (̂¡⊗ id+)X̂ ∼W++,+ id+ ⊗ ¡̂.

• [WT14]′ : (id+ ⊗ ¡̂)X̂ ∼W++,+ ¡̂⊗ id+.

Note that we do not impose that in homP (β∗)(++,+):

(̂¡⊗ id+)X̂− �W++,+ id+ ⊗ ¡̂.

These relations can be presented geometrically as
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Note: We read the diagram from bottom to top.
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Note: In the oriented case of welded tangleois, the level of complexity of the relations

is a lot higher, in comparison with the unoriented case, as there are several other cases

depending on orientations. To the relations above we still need to add more relations

with different orientation conventions.
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7.4 Functorial invariants for Welded Tangle-oids cate-

gories

In this section we define functorial invariants for welded tangle-ids categories from a

finite group and from a group acting on an abelian group. Useful references are [KM08,

BMM18, DMM21]. is inspired by the invariants of tangles and welded virtual arcs in

[KM08].

7.4.1 Functorial invariants from finite groups for the UWTC

Theorem 7.4.1. Let G be a finite group. There is a unique strict monoidal functor F

from the category of welded tangle-oids to the strict monoidal category V ecG defined in

5.1.11, such that on objects for all n ∈ N

F (n) = n.

On morphisms

•

F (∪):F (0)→ F (2)

is the map in V ec

C→ C(G×G)

t 7→ t
∑
g∈G

(g, g−1)

So the matrix elements of F (∪) are

〈1 | F (∪) | (g, h)〉 =

1, if h = g−1,

0, otherwise.
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•

F (∩):F (2)→ F (0)

is the map in V ec

C(G×G)→ C

such that on the basis G×G of C(G×G), we have

(g, h) 7→ δ(g, h−1).

So the matrix elements of F (∩) are

〈(g, h) | F (∩) | 1〉 =

1, if h = g−1,

0, otherwise.

.

•

F (X+):F (2)→ F (2)

is the map in V ec

C(G×G)→ C(G×G)

such that, on the basis G×G of C(G×G), we have

(g, h) 7→ (ghg−1, g).

So the matrix elements of F (X+) are

〈(g, h) | F (X+) | (g′, h′)〉 =

1, if g′ = ghg−1, h′ = g

0, otherwise

•

F (X−):F (2)→ F (2)
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is the map in V ec

C(G×G)→ C(G×G)

such that, on the basis G×G of C(G×G), we have

(g, h) 7→ (h, h−1gh).

So the matrix elements of F (X−) are

〈(g, h) | F (X−) | (g′, h′)〉 =

1, if g′ = h, h′ = h−1gh

0, otherwise.

•

F (X):F (2)→ F (2)

is the map in V ec

C(G×G)→ C(G×G)

such that, on the basis G×G of C(G×G), we have

(g, h) 7→ (h, g).

So the matrix elements of F (X) are

〈(g, h) | F (X) | (g′, h′)〉 =

1, if g′ = h, h′ = g

0, otherwise.

•

F (!):F (0)→ F (1)

is the map in V ec

C→ C(G)

t 7→ t
∑
g∈G

g
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So the matrix elements of F (!) are

〈1 | F (!) | g〉 = 1.

•

F (¡):F (1)→ F (0)

is the map in V ec

C(G)→ C

such that, on the basis G of C(G), we have

g 7→ 1.

So the matrix elements of F (¡) are

〈g | F (¡) | 1〉 = 1.

Proof. Step 1: Ω(β) is a free -1
2
-monoidal category-triple over the monoidal graph β

and δ: β → U(Ω(β)) is a monoidal graph map 6.1.4, such that, on objects, n 7→ n,

and on morphisms x 7→ (0, x, 0). Let A = V ecG, there is a monoidal graph map

θ: β → U(V ecG) that on objects n ∈ N.

n 7→ n,

and on morphisms E(β) = {X+, X−, X,∪,∩, ¡, !}, θ define as F in the statement of this

theorem.
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To prove θ is a monoid map need to show for all x ∈ E(β), δi(Eθ(x)) = Vθ(δix).

δ1(Eθ(X+)) = 2 = Vθ(δ1X+),

δ2(Eθ(X+)) = 2 = Vθ(δ2X+),

δ1(Eθ(X−)) = 2 = Vθ(δ1X−),

δ2(Eθ(X−)) = 2 = Vθ(δ2X−),

δ1(Eθ(X)) = 2 = Vθ(δ1X),

δ2(Eθ(X)) = 2 = Vθ(δ2X),

δ1(Eθ(∪)) = 0 = Vθ(δ1∪),

δ2(Eθ(∪)) = 2 = Vθ(δ2∪),

δ1(Eθ(∩)) = 2 = Vθ(δ1∩),

δ2(Eθ(∩)) = 0 = Vθ(δ2∩),

δ1(Eθ(¡)) = 1 = Vθ(δ1¡),

δ2(Eθ(¡)) = 0 = Vθ(δ2¡),

δ1(Eθ(!)) = 0 = Vθ(δ1!),

δ2(Eθ(!)) = 1 = Vθ(δ2!).

Also for all n,m ∈ N ,

Vθ(n+m) = n+m = Vθ(n) + Vθ(m).

By applying the universal property, we have a unique 1
2
-monoidal functor F : Ω(β) →

V ecG, that makes the next diagram commute.

β U(Ω(β))

U(V ecG)

θ

δ

F

Step 2: Consider the 1
2
-monoidal functor F : Ω(β) → V ecG. Let W be the congru-

ence template that was defined in 7.2.2. We have for all objects n,m ∈ ob(Ω(β)), and
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morphisms f, g:m→ n.

• If f ∼W g then F (f) = F (g), by a series of explicit calculations that we will do

in step 4.

• If f ∼W g, then there are objects x, y, A,B, and morphisms f ′, g′:A → B,

α:m → x + A + y and λ:x + B + y → n, all in the category Ω(β), such that

f = λ ? (x#yf
′) ? α and g = λ ? (x#yg

′) ? α, and f ′ ∼WA,B
g′.

We know F (f ′) = F (g′). Therefore, since F is a 1/2-monoidal functor

F (f) = F (λ) ? (F (x)#F (y)F (f ′)) ? F (α),

F (g) = F (λ) ? (F (x)#F (y)F (g′)) ? F (α).

Hence

F (f) = F (g).

• If f ∼=W g, then there is n ∈ N, n-morphisms f1, f2, . . . , fn, such that f =

f1, fn = g and

f = f1 ∼W f2 ∼W f3 ∼W . . . ∼W fn = g.

Then

F (f) = F (f1) = F (f2) = · · · = F (fn) = F (g).

• The 1
2
-monoidal functor F : Ω(β) → V ecG ”descends” to Ω(β)/W . This means

that there exists a unique 1
2
-monoidal functor F ′: Ω(β)/W → V ecG, that on ob-

jects

F ′(n) = n,

and on morphisms

F ′([f ]) = F (f),
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F ′ is 1
2
-monoidal functor because

F ′(A#B([f ])) =F ′([A#B(f)])

=F (A#B(f))

=F (A)#F (B)(F (f))

=F ′(A)#F ′(B)(F
′([f ])).

Note that the diagram commutes

Ω(β) Ω(β)/W

V ecG

F

P

F ′

Step 3: Recall that V ecG is slideable. From the universal property of slidification

5.2.10, we have a unique functor F ′′:F(Ω(β)/W )→ V ecG that makes the next diagram

commute.
Ω(β)/W F(Ω(β)/W )

V ecG

F ′
F ′′

Step 4: Let us now show the explicit calculations. Here [WTi], i = 1, . . . , 14, is the

relation of welded tangle-oids categories as in the definition.

• Let g ∈ G. We have

[WT1] g
F (id1⊗∪)−−−−−→

∑
h∈G

(g, h, h−1)
F (X⊗id1)−−−−−→

∑
h∈G

(h, g, h−1)

F (id1⊗∩)−−−−−→
∑
h∈G

h δ(g, h) = g.

g
F (∪⊗id1)−−−−−→

∑
h∈G

(h, h−1, g)
F (id1⊗X)−−−−−→

∑
h∈G

(h, g, h−1)

F (∩⊗id1)−−−−−→
∑
h∈G

δ(h, g−1)h−1 = g.
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• Let g ∈ G. We have

[WT2] g
F (id1⊗∪)−−−−−→

∑
h∈G

(g, h, h−1)
F (X+⊗id1)−−−−−−→

∑
h∈G

(ghg−1, g, h−1)

F (id1⊗∩)−−−−−→
∑
h∈G

ghg−1δ(g, h) = g.

g
F (id1⊗∪)−−−−−→

∑
h∈G

(g, h, h−1)
F (X−⊗id1)−−−−−−→

∑
h∈G

(h, h−1gh, h−1)

F (id1⊗∩)−−−−−→
∑
h∈G

h δ(h−1gh, h) = g.

Since h−1gh = h⇔ h−1g = 1⇔ h = g.

• Let g ∈ G. We have

[WT3] g
F (∪⊗id1)−−−−−→

∑
h∈G

(h, h−1, g)
F (id1⊗X−)−−−−−−→

∑
h∈G

(h, g, g−1h−1g)

F (∩⊗id1)−−−−−→
∑
h∈G

δ(h, g−1)g−1h−1g = g.

g
F (∪⊗id1)−−−−−→

∑
h∈G

(h, h−1, g)
F (id1⊗X+)−−−−−−→

∑
h∈G

(h, h−1gh, h−1)

F (∩⊗id1)−−−−−→
∑
h∈G

δ(h, h−1g−1h)h−1 = g.

Since h = h−1g−1h⇔ h−1 = g.

• Let g ∈ G. We have

[WT4] g
F (id1⊗∪)−−−−−→

∑
h∈G

(g, h, h−1)
F (∩⊗id1)−−−−−→

∑
h∈G

δ(g, h−1)h−1 = g.

g
F (∪⊗id1)−−−−−→

∑
h∈G

(h, h−1, g)
F (id1⊗∩)−−−−−→

∑
h∈G

h δ(h−1, g−1) = g.

• Let (g, h) ∈ G×G. We have

[WT5] (g, h)
F (X+)−−−−→ (ghg−1, g)

F (X−)−−−−→ (g, g−1ghg−1g) = (g, h).

(g, h)
F (X−)−−−−→ (h, h−1gh)

F (X+)−−−−→ (hh−1ghh−1, h) = (g, h).
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• Let (g, h, k) ∈ G×G×G. We have

[WT6] (g, h, k)
F (X+⊗id1)−−−−−−→ (ghg−1, g, k)

F (id1⊗X+)−−−−−−→ (ghg−1, gkg−1, g)
F (X+⊗id1)−−−−−−→

(ghg−1gkg−1gh−1g−1, ghg−1, g) = (ghkh−1g−1, ghg−1, g).

(g, h, k)
F (id1⊗X+)−−−−−−→ (g, hkh−1, h)

F (X+⊗id1)−−−−−−→ (ghkh−1g−1, g, h)
F (id1⊗X+)−−−−−−→

(ghkh−1g−1, ghg−1, g).

• Let (g, h, k) ∈ G×G×G. We have

[WT7] (g, h, k)
F (X⊗id1)−−−−−→ (h, g, k)

F (id1⊗X)−−−−−→ (h, k, g)
F (X+⊗id1)−−−−−−→ (hkh−1, h, g).

(g, h, k)
F (id1⊗X+)−−−−−−→ (g, hkh−1, h)

F (X⊗id1)−−−−−→ (hkh−1, g, h)

F (id1⊗X)−−−−−→ (hkh−1, h, g).

• Let (g, h, k) ∈ G×G×G. We have

[WT8] (g, h, k)
F (X+⊗id1)−−−−−−→ (ghg−1, g, k)

F (id1⊗X+)−−−−−−→ (ghg−1, gkg−1, g)

F (X⊗id1)−−−−−→ (gkg−1, ghg−1, g).

(g, h, k)
F (id1⊗X)−−−−−→ (g, k, h)

F (X+⊗id1)−−−−−−→ (gkg−1, g, h)

F (id1⊗X+)−−−−−−→ (gkg−1, ghg−1, g).

• Let (g, h, k) ∈ G×G×G. We have

[WT9] (g, h, k)
F (id1⊗X−)−−−−−−→ (g, k, k−1hk)

F (∩⊗id1)−−−−−→ δ(g, k−1)k−1hk

=

ghg
−1, if g = k−1

0, if g 6= k−1.

(g, h, k)
F (X+⊗id1)−−−−−−→ (ghg−1, g, k)

F (id1⊗∩)−−−−−→ ghg−1δ(g, k−1)

=

ghg
−1, if g = k−1

0, if g 6= k−1.
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• Let (g, h, k) ∈ G×G×G. We have

[WT9]′ (g, h, k)
F (id1⊗X+)−−−−−−→ (g, hkh−1, h)

F (∩⊗id1)−−−−−→ δ(g, hk−1h−1)h

=

h, if g = hk−1h−1

0, if g 6= hk−1h−1.

(g, h, k)
F (X−⊗id1)−−−−−−→ (h, h−1gh, k)

F (id1⊗∩)−−−−−→ h δ(h−1gh, k−1)

=

h, if h−1gh = k−1

0, if h−1gh 6= k−1.

Note: g = hk−1h−1 ⇔ h−1gh = k−1.

• Let (g, h, k) ∈ G×G×G. We have

[WT9]′′ (g, h, k)
F (id1⊗X)−−−−−→ (g, k, h)

F (∩⊗id1)−−−−−→ δ(g, k−1)h

=

h, if g = k−1

0, if g 6= k−1.

(g, h, k)
F (X⊗id1)−−−−−→ (h, g, k)

F (id1⊗∩)−−−−−→ h δ(g, k−1)

=

h, if g = k−1

0, if g 6= k−1.

• Let g ∈ G. We have

[WT10] g
F (∪⊗id1)−−−−−→

∑
h∈G

(h, h−1, g)
F (id1⊗X+)−−−−−−→

∑
h∈G

(h, h−1gh, h−1).

g
F (id1⊗∪)−−−−−→

∑
h∈G

(g, h, h−1)
F (X−⊗id1)−−−−−−→

∑
h∈G

(h, h−1gh, h−1).

• Let g ∈ G. We have

[WT10]′ g
F (∪⊗id1)−−−−−→

∑
h∈G

(h, h−1, g)
F (id1⊗X−)−−−−−−→

∑
h∈G

(h, g, g−1h−1g).

g
F (id1⊗∪)−−−−−→

∑
h∈G

(g, h, h−1)
F (X+⊗id1)−−−−−−→

∑
h∈G

(ghg−1, g, h−1).
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• Let g ∈ G. We have

[WT10]′′ g
F (∪⊗id1)−−−−−→

∑
h∈G

(h, h−1, g)
F (id1⊗X)−−−−−→

∑
h∈G

(h, g, h−1).

g
F (id1⊗∪)−−−−−→

∑
h∈G

(g, h, h−1)
F (X⊗id1)−−−−−→

∑
h∈G

(h, g, h−1).

• Let g ∈ G. We have

[WT11] g
F (id⊗!)−−−−→

∑
h∈G

(g, h)
F (∩)−−→

∑
h∈G

δ(g, h−1) = 1.

g
F (¡)−−→ 1.

g
F (!⊗id1)−−−−−→

∑
h∈G

(h, g)
F (∩)−−→

∑
h∈G

δ(h, g−1) = 1.

•

[WT12] 1
F (∪)−−→

∑
g∈G

(g, g−1)
F (id1⊗¡)−−−−−→

∑
g∈G

g.

1
F (!)−−→

∑
g∈G

g.

1
F (∪)−−→

∑
g∈G

(g, g−1)
F (¡⊗id1)−−−−−→

∑
g∈G

g−1.

• Let (g, h) ∈ G×G. We have

[WT13] (g, h)
F (X+)−−−−→ (ghg−1, g)

F (¡⊗id1)−−−−−→ g.

(g, h)
F (id1⊗¡)−−−−−→ g.

• Let (g, h) ∈ G×G. We have

[WT13]′ (g, h)
F (X−)−−−−→ (h, h−1gh)

F (id1⊗¡)−−−−−→ h.

(g, h)
F (¡⊗id1)−−−−−→ h.
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Let (g, h) ∈ G×G. We have

[WT14] (g, h)
F (X)−−−→ (h, g)

F (¡⊗id1)−−−−−→ g.

(g, h)
F (id1⊗¡)−−−−−→ g.

[WT14]′ (g, h)
F (X)−−−→ (h, g)

F (id1⊗¡)−−−−−→ h.

(g, h)
F (¡⊗id1)−−−−−→ h.

The following example is in [KM08].

Example 7.4.2. Consider the following morphisms of the category of UWTC.

We want to calculate the functorial invariant from finite group.

F (L) =1
F (∪⊗∪)−−−−→

∑
g,h∈G

(g, g−1, h, h−1)
F (id1⊗X+⊗id1)−−−−−−−−−→

∑
g,h∈G

(g, g−1hg, g−1, h−1)

F (id1⊗X+⊗id1)−−−−−−−−−→
∑
g,h∈G

(g, g−1hg−1h−1g, g−1hg, h−1)
F (∩⊗∩)−−−−→

∑
g,h∈G

δ(g, g−1hgh−1g)δ(g−1hg, h) =| {(g, h) | gh = hg} | .
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F (L′) =1
F (∪⊗∪)−−−−→

∑
g,h∈G

(g, g−1, h, h−1)
F (id1⊗X⊗id1)−−−−−−−−→

∑
g,h∈G

(g, h, g−1, h−1)

F (id1⊗X+⊗id1)−−−−−−−−−→
∑
g,h∈G

(g, hg−1h−1, h, h−1)
F (∩⊗∩)−−−−→

∑
g,h∈G

δ(g, hgh−1)δ(h, h) =| {(g, h) | gh = hg} | .

Then

F (L) = F (L′).

We can see in this example although the two knots is different but the invariants are the

same, so this invariants do not separate all knots. Now we will define another invariants

and we will see after that if this invariants will separate this knots in the example.

7.4.2 Functorial invariants from group acting on abelian group for

the UWTC

This is construction is inspired by the invariants of welded virtual arcs in [KM08].

Theorem 7.4.3. Let G be a finite group act on an abelian group A . There is a strict

monoidal functor F from the category of welded tangl-oids to the strict monoidal cate-

gory of V ecG×A, such that for all n ∈ N,

F (n) = n.

Moreover

•

F (∪):F (0)→ F (2)
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is the map in V ec

C→ C((G× A)× (G× A))

t 7→ t
∑

g∈G,a∈A

(g, a, g−1, a−1).

So the matrix elements of F (∪) are

〈1 | F (∪) | (g, a, h, b)〉 =

1, if h = g−1, b = a−1,

0, otherwise.

•

F (∩):F (2)→ F (0)

is the map in V ec

C((G× A)× (G× A))→ C

such that, on the basis (G× A)× (G× A), we have

(g, a, h, b) 7→ δ(g, h−1)δ(a, b−1).

So the matrix elements of F (∩) are

〈(g, a, h, b) | F | 1〉 = 1.

•

F (X+):F (2)→ F (2)

is the map in V ec

C((G× A)× (G× A))→ C((G× A)× (G× A))

such that, on the basis (G× A)× (G× A), we have

(g, a, h, b) 7→
(
ghg−1, (g . b), g, (g . b−1)ab

)
.
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So the matrix elements of F (X+) are

〈(g, a, h, b) |F (X+) | (g′, a′, h′, b′)〉

=

1, if g′ = ghg−1, a′ = g . b, h′ = g, b′ = g . b−1ab,

0, otherwise.

•

F (X−):F (2)→ F (2)

is the map in V ec

C((G× A)× (G× A))→ C((G× A)× (G× A))

such that, on the basis (G× A)× (G× A), we have

(g, a, h, b) 7→
(
h, (h−1 . a−1)ab, h−1gh, (h−1 . a)

)
.

So the matrix elements of F (X−) are:

〈(g, a, h, b) |F (X−) | (g′, a′, h′, b′)〉

=

1, if g′ = h, a′ = h−1 . a−1ab, h′ = h−1gh, b′ = h−1 . a,

0, otherwise.

•

F (X):F (2)→ F (2)

is the map in V ec

C((G× A)× (G× A))→ C((G× A)× (G× A))

such that, on the basis (G× A)× (G× A), we have

(g, a, h, b) 7→ (h, b, g, a).
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So the matrix elements of F (X) are

〈(g, a, h, b) | F (X) | (g′, a′, h′, b′)〉 =

1, if g′ = h, a′ = b, h′ = g, b′ = a,

0, otherwise.

•

F (!):F (0)→ F (1)

is the map in V ec

C→ C(G× A)

t 7→ t
∑
g∈G

(g, 0A).

So the matrix elements of F (!) are

〈1 | F (!) | (g, a)〉 =

1, if a = 0A,

0, otherwise.

•

F (¡):F (1)→ F (0)

is the map in V ec

C(G× A)→ C

such that, on the basis G× A, we have

C(G× A)→ C

(g, a) 7→

1 if a = 0A,

0 otherwise.

So the matrix elements of F (¡) are

〈(g, a) | F (¡) | 1〉 = 1.
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Proof. • Let (g, a) ∈ G× A, we have

[WT1] (g, a)
F (id1⊗∪)−−−−−→

∑
h∈G,b∈A

(g, a, h, b, h−1, b−1)
F (X⊗id1)−−−−−→

∑
h∈G,b∈A

(h, b, g, a, h−1, b−1)
F (id1⊗∩)−−−−−→

∑
h∈G,b∈A

(h, b)δ(g, h)δ(a, b) = (g, a).

(g, a)
F (∪⊗id1)−−−−−→

∑
h∈G,b∈A

(h, b, h−1, b−1, g, a)
F (id1⊗X)−−−−−→

∑
h∈G,b∈A

(h, b, g, a, h−1, b−1)
F (∩⊗id1)−−−−−→

∑
h∈G,b∈A

δ(h, g−1)δ(b, a−1)(h−1, b−1) = (g, a).

• Let (g, a) ∈ G× A, we have

[WT2] (g, a)
F (id1⊗∪)−−−−−→

∑
h∈G,b∈A

(g, a, h, b, h−1, b−1)
F (X+⊗id1)−−−−−−→

∑
h∈G,b∈A

(
ghg−1, (g . b), g, (g . b−1)ab, h−1, b−1

)
F (id1⊗∩)−−−−−→

∑
h∈G,b∈A

(
ghg−1, g . b

)(
δ(g, h)δ((g . b−1)ab, b)

)
= (g, a).

Note: δ((g . b−1)ab, b) = 1⇔ (g . b−1)ab = b⇔ g . b−1 = a−1 ⇔ g . b = a.

(g, a)
F (id1⊗∪)−−−−−→

∑
h∈G,b∈A

(g, a, h, b, h−1, b−1)
F (X−⊗id1)−−−−−−→

∑
h∈G,b∈A

(
h, (h−1 . a−1)ab, h−1gh, (h−1 . a), h−1, b−1

)
F (id1⊗∩)−−−−−→

∑
h∈G,b∈A

(
h, (h−1 . a−1)ab

)(
δ(h−1gh, h)δ(h−1 . a, b)

)
= (g, a).

Note: δ(h−1gh, h) = 1⇔ h−1gh = h⇔ g = h.

δ(h−1 . a, b) = 1⇔ h−1 . a = b⇔ h−1 . a−1 = b−1.
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• Let (g, a) ∈ G× A, we have

[WT3] (g, a)
F (∪⊗id1)−−−−−→

∑
h∈G,b∈A

(h, b, h−1, b−1, g, a)
F (id1⊗X−)−−−−−−→

∑
h∈G,b∈A

(
h, b, g, (g−1 . b)b−1a, g−1h−1g, (g−1 . b−1)

)
F (∩⊗id1)−−−−−→

∑
h∈G,b∈A

(
δ(h, g−1)δ(b, ((g−1 . b)b−1a)−1

)(
g−1h−1g, g−1 . b−1

)
= (g, a).

Note: δ(b, ((g−1 . b)b−1a)−1) = 1⇔ b = (g−1 . b−1)a−1b⇔ a = g−1 . b−1.

(g, a)
F (∪⊗id1)−−−−−→=

∑
h∈G,b∈A

(h, b, h−1, b−1, g, a)
F (id1⊗X+)−−−−−−→

∑
h∈G,b∈A

(
h, b, h−1gh, (h−1 . a), h−1, (h−1 . a−1)b−1a

)
F (∩⊗id1)−−−−−→

∑
h∈G,b∈A

(
δ(h, h−1g−1h)δ(b, h−1 . a−1)

)(
h−1, (h−1 . a−1)b−1a

)
= (g, a).

• Let (g, a) ∈ G× A, we have

[WT4] (g, a)
F (id1⊗∪)−−−−−→

∑
h∈G,b∈A

(g, a, h, b, h−1, b−1)
F (∩⊗id1)−−−−−→

∑
h∈G,b∈A

δ(g, h−1)δ(a, b−1)(h−1, b−1) = (g, a).

(g, a)
F (∪⊗id1)−−−−−→

∑
h∈G,b∈A

(h, b, h−1, b−1, g, a)
F (id1⊗∩)−−−−−→

∑
h∈G,b∈A

(h, b)δ(h−1, g−1)δ(b−1, a−1) = (g, a).
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• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT5] (g, a, h, b)
F (X+)−−−−→

(
ghg−1, (g . b), g, (g . b−1)ab

)
F (X−)−−−−→(

g, (g−1 . (g . b)−1)(g . b)(g . b−1)ab), g−1ghg−1g, g−1 . g . b
)

= (g, a, h, b) ∗ .

(g, a, h, b)
F (X−)−−−−→

(
h, (h−1 . a−1)ab, h−1gh, (h−1 . a)

)
F (X+)−−−−→(

hh−1ghh−1, (h . h−1 . a), h, h . (h−1 . a)−1(h−1 . a−1)ab(h−1 . a)
)

= (g, a, h, b) ∗ ∗.

* g−1.(g.b)−1(g.b)(g.b−1)ab = g−1.(g.b)−1(g.bb−1)ab) = g−1.(g.b)−1(ab) =

g−1 . (g . b−1)(ab) = b−1ab = a.

** h.(h−1.a)−1(h−1.a−1)ab(h−1.a) = h.h−1.a−1(h−1.a−1)(h−1.a)(ab) =

a−1ab = b.

• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT6]
(
g, a, h, b, k, c

)
F (X+⊗id1)−−−−−−→

(
ghg−1, (g . b), g, (g . b−1)ab, k, c

)
F (id1⊗X+)−−−−−−→(

ghg−1, (g . b), gkg−1, (g . c), g, (g . c−1)((g . b−1)ab)c
)

F (X+⊗id1)−−−−−−→(
ghg−1gkg−1gh−1g−1, ghg−1 . (g . c), ghg−1,

ghg−1 . (g . c)−1(g . b)(g . c), g, (g . c−1)((g . b−1)abc)
)

=
(
ghkh−1g−1, (gh . g−1 . g . c), ghg−1, (gh . g−1 . g . c−1)(g . bc),

g, (g . (bc)−1)abc
)

=
(
ghkh−1g−1, (gh . c), ghg−1, (gh . c−1)(g . bc), g, (g . (bc)−1)abc

)
.
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(
g, a, h, b, k, c

)
F (id1⊗X+)−−−−−−→

(
g, a, hkh−1, (h . c), h, (h . c−1)bc

)
F (X+⊗id1)−−−−−−→(

ghkh−1g−1, (g . h . c), g, (g . (h . c)−1)a(h . c), h, (h . c−1)bc
)

F (id1⊗X+)−−−−−−→(
ghkh−1g−1, (g . h . c), ghg−1, g . ((h . c−1)bc),

g, g . ((h . c−1)(bc))−1(g . (h . c)−1a(h . c))((h . c−1)bc)
)

=
(
ghkh−1g−1, (gh . c), ghg−1, (gh . c−1)(g . bc), g,

(g . h . c)(g . (bc)−1)(g . h . c−1)a(h . c)(h . c−1)bc
)

=
(
ghkh−1g−1, (gh . c), ghg−1, (gh . c−1)(g . bc), g, (g . (bc)−1)abc

)
.

• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT7]
(
g, a, h, b, k, c)

F (X⊗id1)−−−−−→
(
h, b, g, a, k, c

)
F (id1⊗X)−−−−−→(

h, b, k, c, g, a
)

F (X+⊗id1)−−−−−−→
(
hkh−1, (h . c), h, (h . c−1)bc, g, a

)
.

(
g, a, h, b, k, c)

F (id1⊗X+)−−−−−−→
(
g, a, hkh−1, (h . c), h, (h . c−1)bc

)
F (X⊗id1)−−−−−→

(
hkh−1, (h . c), g, a, h, (h . c−1)bc

)
F (id1⊗X)−−−−−→

(
hkh−1, (h . c), h, (h . c−1)bc, g, a

)
.

• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT8]
(
g, a, h, b, k, c)

F (X+⊗id1)−−−−−−→
(
ghg−1, (g . b), g, (g . b−1)ab, k, c)

F (id1⊗X+)−−−−−−→(
ghg−1, (g . b), gkg−1, (g . c), g, (g . c−1)(g . b−1)abc

)
F (X⊗id1)−−−−−→(

gkg−1, (g . c), ghg−1, (g . b), g, (g . c−1)(g . b−1)abc
)
.

(
g, a, h, b, k, c)

F (id1⊗X)−−−−−→
(
g, a, k, c, h, b

)
F (X+⊗id1)−−−−−−→(

gkg−1, (g . c), g, (g . c−1)ac, h, b
)

F (id1⊗X+)−−−−−−→(
gkg−1, (g . c), ghg−1, (g . b), g, (g . b−1)(g . c−1)acb

)
.
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• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT9]
(
g, a, h, b, k, c)

F (id1⊗X−)−−−−−−→
(
g, a, k, (k−1 . b−1)bc, k−1hk, (k−1 . b)

)
F (∩⊗id1)−−−−−→

(
δ(g, k−1)δ(a, (k−1 . b)b−1c−1)(k−1hk, k−1 . b)

)
=

(ghg−1, g . b), if g = k−1, a = (k−1 . b)b−1c−1,

0 otherwise.

(
g, a, h, b, k, c)

F (X+⊗id1)−−−−−−→
(
ghg−1, (g . b), g, (g . b−1)ab, k, c

)
F (id1⊗∩)−−−−−→(

(ghg−1, g . b)δ(g, k−1)δ((g . b−1)ab, c−1)
)

=

(ghg−1, g . b), if g = k−1, c−1 = (g . b−1)ab

0 otherwise.

Note: δ(g, k−1) = 1⇔ g = k−1 and,

δ(a, (k−1 . b)b−1c−1) = 1⇔ δ((g . b−1)ab, c−1) = 1.

• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT9]′
(
g, a, h, b, k, c

)
F (id1⊗X+)−−−−−−→

(
g, a, hkh−1, (h . c), h, (h . c−1)bc

)
F (∩⊗id1)−−−−−→

(
δ(g, hk−1h−1)δ(a, h . c−1)(h, (h . c−1)bc)

)
=

(h, abc) if g = hk−1h−1, a = h . c−1,

0 otherwise.

(
g, a, h, b, k, c

)
F (X−⊗id1)−−−−−−→

(
h, (h−1 . a−1)ab, h−1gh, (h−1 . a), k, c

)
F (id1⊗∩)−−−−−→

(
(h, (h−1 . a−1)ab)δ(h−1gh, k−1)δ(h−1 . a, c−1)

)
=

(h, abc) if k−1 = h−1gh, c−1 = h−1 . a,

0 otherwise.
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• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT9]′′
(
g, a, h, b, k, c

)
F (id1⊗X)−−−−−→

(
g, a, k, c, h, b

)
F (∩⊗id1)−−−−−→

(
δ(g, k−1)δ(a, c−1)(h, b)

)
=

(h, b) if g = k−1, a = c−1,

0 otherwise.

(
g, a, h, b, k, c

)
F (X⊗id1)−−−−−→

(
h, b, g, a, k, c

)
F (id1⊗∩)−−−−−→

(
(h, b)δ(g, k−1)δ(a, c−1)

)
=

(h, b) if g = k−1, a = c−1,

0 otherwise.

• Let (g, a) ∈ (G× A), we have

[WT10] (g, a)
F (∪⊗id1)−−−−−→

∑
h∈G,b∈A

(h, b, h−1, b−1, g, a)
F (id1⊗X+)−−−−−−→

∑
h∈G,b∈A

(h, b, h−1gh, (h−1 . a), h−1, (h−1 . a−1)b−1a).

(g, a)
F (id1⊗∪)−−−−−→

∑
h∈G,b∈A

(g, a, h, b, h−1, b−1)
F (X−⊗id1)−−−−−−→

∑
h∈G,b∈A

(h, (h−1 . a−1)ab, h−1gh, (h−1 . a), h−1, b−1).
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• Let (g, a) ∈ (G× A), we have

[WT10]′ (g, a)
F (∪⊗id1)−−−−−→

∑
h∈G,b∈A

(h, b, h−1, b−1, g, a)
F (id1⊗X−)−−−−−−→

∑
h∈G,b∈A

(h, b, g, (g−1 . b)b−1a, g−1h−1g, (g−1 . b−1)) ∗ .

(g, a)
F (id1⊗∪)−−−−−→

∑
h∈G,b∈A

(g, a, h, b, h−1, b−1)
F (X+⊗id1)−−−−−−→

∑
h∈G,b∈A

(ghg−1, (g . b), g, (g . b−1)ab, h−1, b−1) ∗ ∗.

* and ** are equal because the
∑

it is over all h ∈ G and b ∈ A.

• Let (g, a) ∈ (G× A), we have

[WT10]′′ (g, a)
F (∪⊗id1)−−−−−→

∑
h∈G,b∈A

(h, b, h−1, b−1, g, a)
F (id1⊗X)−−−−−→

∑
h∈G,b∈A

(h, b, g, a, h−1, b−1).

(g, a)
F (id1⊗∪)−−−−−→

∑
h∈G,b∈A

(g, a, h, b, h−1, b−1)
F (X⊗id1)−−−−−→

∑
h∈G,b∈A

(h, b, g, a, h−1, b−1).
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• Let (g, a) ∈ (G× A), we have

[WT11] (g, a)
F (id⊗!)−−−−→

∑
h∈G

(g, a, h, 0A)
F (∩)−−→

∑
h∈G

δ(g, h−1)δ(a, 0A)

=

1 if a = 0A,

0 otherwise.

(g, a)
F (¡)−−→

1 if a = 0A,

0 otherwise.

(g, a)
F (!⊗id1)−−−−−→

∑
h∈G

(h, 0A, g, a)
F (∩)−−→

∑
h∈G

δ(h, g−1)δ(0A, a
−1)

=

1 if a = 0A,

0 otherwise.

•

[WT12] 1
F (∪)−−→

∑
g∈G,a∈A

(g, a, g−1, a−1)
F (id1⊗¡)−−−−−→

∑
g∈G

(g, 0A).

1
F (!)−−→

∑
g∈G

(g, 0A).

1
F (∪)−−→

∑
g∈G,a∈A

(g, a, g−1, a−1)
F (¡⊗id1)−−−−−→

∑
g∈G

(g−1, 0A).
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• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT13] (g, a, h, b)
F (X+)−−−−→ (ghg−1, (g . b), g, (g . b−1)ab)

F (¡⊗id1)−−−−−→

(g, a) if g . b = 0A,

0 otherwise.

(g, a, h, b)
F (id1⊗¡)−−−−−→

(g, a) if b = 0A,

0 otherwise.

• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT13]′(g, a, h, b)
F (X−)−−−−→ (h, (h−1 . a−1)ab, h−1gh, (h−1 . a))

F (id1⊗¡)−−−−−→

(h, b) if h−1 . a = 0A,

0 otherwise.

(g, a, h, b)
F (¡⊗id1)−−−−−→

(h, b) if a = 0A,

0 otherwise.

• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT14] (g, a, h, b)
F (X)−−−→ (h, b, g, a)

F (¡⊗id1)−−−−−→

(g, a) if b = 0A,

0 otherwise.

(g, a, h, b)
F (id1⊗¡)−−−−−→

(g, a) if b = 0A,

0 otherwise.
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• Let (g, a, h, b) ∈ (G× A)× (G× A), we have

[WT14]′(g, a, h, b)
F (X)−−−→ (h, b, g, a)

F (id1⊗¡)−−−−−→

(h, b) if a = 0A,

0 otherwise.

(g, a, h, b)
F (¡⊗id1)−−−−−→

(h, b) if a = 0A,

0 otherwise.

Example 7.4.4. Consider the following morphisms of the category of UWTC.

We want to calculate the functorial invariant from finite group.

F (L) =1
F (∪⊗∪)−−−−→

∑
g,h∈G,a,b∈A

(g, a, g−1, a−1, h, b, h−1, b−1)
F (id1⊗X+⊗id1)−−−−−−−−−→

∑
g,h∈G,a,b∈A

(
g, a, g−1hg, (g−1 . b), g−1, (g−1 . b−1)a−1b, h−1, b−1

)
F (id1⊗X+⊗id1)−−−−−−−−−→

∑
g,h∈G,a,b∈A

(
g, a, (g−1hgg−1g−1h−1g),

(
g−1hg . ((g−1 . b−1)a−1b)

)
, g−1hg,

g−1hg . ((g−1 . b−1)a−1b)−1(g−1 . b)((g−1 . b−1)a−1b), h−1, b−1
)

=∑
g,h∈G,a,b∈A

(g, a, (g−1hg−1h−1g), (g−1hg . a−1)(g . b), g−1hg,

((g . b−1)(g−1hg . a)a−1b), h−1, b−1)
F (∩⊗∩)−−−−→∑

g,h∈G,a,b∈A

δ
(
g, g−1hgh−1g

)
δ
(
a, (g−1hg . a)(g . b−1)

)
δ
(
g−1hg, h

)
δ
(

((g . b−1)(g−1hg . a)a−1b), b
)

=| {(g, a, h, b) | gh = hg, a = (g−1hg . a)(g . b−1), b = (g . b−1)(g−1hg . a)a−1b)} | .
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F (L′) =1
F (∪⊗∪)−−−−→

∑
g,h∈G,a,b∈A

(g, a, g−1, a−1, h, b, h−1, b−1)
F (id1⊗X⊗id1)−−−−−−−−→

∑
g,h∈G,a,b∈A

(g, a, h, b, g−1, a−1, h−1, b−1)
F (id1⊗X+⊗id1)−−−−−−−−−→

∑
g,h∈G,a,b∈A

(g, a, hg−1h−1, (h . a−1), h, (h . a)ba−1, h−1, b−1)
F (∩⊗∩)−−−−→

∑
g,h∈G,a,b∈A

δ(g, hgh−1)δ(a, h . a)δ(h, h)δ((h . a)ba−1, b)

=| {(g, a, h, b) | gh = hg, a = h . a} |

Therefore

F (L) 6= F (L′),

then this invariants separate these two knots.
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