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Abstract

In recent times, our reliance on software and software-controlled systems has drastically
increased, as has the impact of failures in the operation of these systems. To guarantee
the correct operation of software systems, it is necessary both to verify that they meet
their functional requirements and to analyse their nonfunctional properties such as
performance and reliability.

This thesis presents a novel two-pronged approach to the analysis and refactoring
of software systems that must comply with strict nonfunctional requirements. The
approach operates at both code-level and system architecture-level. At code-level, we
use a new tool-supported method for the formal analysis of timing, resource use, and
other quantitative aspects of the components of a software system. The new method
synthesises a discrete-time Markov chain model of the analysed code, computes its
transition probabilities using information from program logs, and employs probabilistic
model checking to evaluate its performance properties of interest.

At system architecture-level, we use a new method that employs performance
antipatterns, i.e., commonly occurring mistakes during software development with
their solutions, and stochastic modelling to support any system refactoring that might
be needed. Our method identifies the performance antipatterns present across the
operational profile space of a software system, enabling engineers to detect operational
profiles likely to be problematic for the analysed design, and supporting the selection of
refactoring actions when performance requirements are violated.

The two methods are integrated into an end-to-end software performance engineer-
ing methodology that uniquely combines code-level probabilistic analysis with the use
of performance antipatterns to guide refactoring.

We evaluate the proposed methods and the approach that integrates them using code
obtained from several Java programs, including Android applications, and a foreign
currency exchange service-based system comprising a combination of third-party and
in-house components. Our results, subject to the case studies used in the evaluation,
demonstrate the accuracy, efficiency and decision-making of the new approaches.
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Chapter 1

Introduction

Whether or not a system will be able
to exhibit its desired (or required)
quality attributes is largely determined
by the time the architecture is chosen.

P. Clements and L. Northrop
Software Engineering Institute

Carnegie Mellon University, 1996

It has long been known that software systems exhibit errors. In order to increase the
dependability of these systems, software engineers devote a substantial amount of time
to their testing and debugging. There has always been research focusing on developing
new or improving the existing software verification methods [63]. Verification is the
area that includes all the techniques aiming to improve software quality—and to provide
evidence that the final product conforms to the specified requirements [89]. Some of
the techniques subsumed under verification are [115] formal verification [57, 97, 135],
testing [13, 19, 150] and simulation [23, 90, 154].

Testing is considered an essential activity in software engineering [121]. It is
defined as the process of examining the system’s behaviour with the aim of identifying
potential malfunctions [20]. With the increase of involvement of software and hardware
systems in our everyday lives, testing has become more complex but at the same time
necessary to ensure the correct functionality of these systems. Although successful
testing identifies a significant amount of errors, it is still impossible to capture all
of them [112], especially in dynamic environments. As a result, computer systems
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CHAPTER 1. INTRODUCTION

undergoing only testing can still be afflicted by errors which could potentially lead to
severe consequences, e.g., in the case of safety-critical systems.

The need for guaranteeing the correct operation of computer systems led to the de-
velopment of formal verification techniques such as model checking [40] and stochastic
verification [104] (probabilistic model checking) which are able to address issues that
testing alone is not able to identify. Both of these techniques are also known as formal
methods, which is a line of study that takes advantage of the fact that that computer
systems can be depicted as mathematical objects whose behaviour is, in principle,
well determined [63]. Model checking establishes mathematical guarantees that the
functional requirements of a system are met, and in case of requirement violations,
counterexamples are provided as a proof of failure. While model checking has become
a common activity during hardware and software design, it provides absolute guarantees
of system correctness (e.g., the system’s processes will never fail) that may not be
applicable to systems that exhibit stochastic behaviour or operate in uncertain environ-
ments. Software systems of this nature can be found in applications used in aircrafts
and vehicles, as well as in personal devices such as mobile phones. In order to be able
to verify the correctness of these systems, it is necessary to analyse quantitative prop-
erties such as performance and reliability. Probabilistic model checking can establish
such properties by providing a probabilistic bound on the result, and thus probabilistic
guarantees such as ‘the probability of failure for any of the system’s processes is less
than 0.05%’.

While the functionality delivered by a software system is evidently important, it
should not be the only focus of verification during the software development process.
Over the last two decades, research has shown the significance of integrating activities
for nonfunctional property analysis into the development process, with the aim of
meeting nonfunctional requirements. As stated in [148], “the cost of a software product
over its lifetime is determined more by how well it achieves its objectives for quality
attributes such as performance, reliability or maintainability, than by its functionality”.
The quality of the final software product can be vastly affected during the early stages of
the development process, and wrong decisions early on may require costly modifications
late in the development process, even involving changes to the overall design of the
system. Therefore, the system’s quality attributes must be assessed early in the software
development process to avoid the violation of requirements and failure of entire projects.
Consider the following example quoted from [145]:

The National Aeronautics and Space Administration (NASA) was forced to
delay the launch of a satellite for at least eight months. The satellite and
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the Flight Operations Segment (FOS) software running it are a key compo-
nent of the multi billion-dollar Earth Science Enterprise, an international
research effort to study the interdependence of the Earth’s ecosystems. The
delay was caused because the FOS software had unacceptable response
times for developing satellite schedules, and poor performance in analyz-
ing satellite status and telemetry data. There were also problems with the
implementation of a control language used to automate operations. The
cost of this rework and the resulting delay has not yet been determined.
Nevertheless it is clearly significant, and the high visibility and bad press
is potentially damaging to the overall mission. Members of Congress also
questioned NASA’s ability to manage the program.

The success of today’s software systems is critically affected by their performance.
However, a large percentage of the produced software fails to meet the performance
objectives set during the design stage. As there are many inter-dependencies and trade-
offs between quality attributes within a system, fixing occurring problems at later stages
can be both costly and challenging.

1.1 Motivation and Research Hypothesis

Software is among the most flexible engineering artifacts. Computer code can run
unmodified on hardware platforms as different as desktop PCs and smartphones, or
with different usage profiles (i.e., probability distributions of the program inputs). Even
when the code is modified, the change can be localised: a function or module is easy to
replace with a functionally equivalent one that is, for instance, faster or more reliable.

This flexibility is a great strength, but makes the analysis of the performance and
other quality aspects of software systems very challenging. Changes in platform,
usage profile and individual functions or modules may not affect the functionality
of programs, but can impact their execution time and use of resources significantly.
Given the importance of these properties, software performance analysis has been the
subject of intense research for several decades [5, 12, 102, 131]. Nevertheless, the
solutions delivered by this research focus on analysing the performance of software at
architectural level, e.g. [16, 45, 49, 71, 79].

The equally important and challenging analysis of software performance at code-
level is typically carried out through program instrumentation, monitoring and profil-
ing [4, 11, 103, 139, 163]. While these techniques produce accurate results, they have
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the significant drawback that the code needs to be actually executed for every platform
and usage profile of interest, and after every code change.

Performance antipatterns [24, 149] and stochastic modelling (e.g., using queueing
networks, stochastic Petri nets, and Markov models [21, 50, 157]) have long been
used in conjunction, to analyse performance of software systems and to drive system
refactoring when requirements are violated. End-to-end approaches supporting this
analysis and refinement processes have been developed (e.g., [6, 26, 74]), often using
established tools for the simulation or formal verification of stochastic models of the
software system under development (SUD).

While these approaches can significantly speed up the development of systems
that meet their performance requirements, they are only applicable when the SUD
operational profile (i.e., a quantitative characterization of the system’s intended be-
haviour [119]) is known and does not change over time. Both of these are strong
assumptions. In practice, software systems are often used in applications affected
by uncertainty, due both to incomplete knowledge of and to changes in workloads,
availability of shared resources, etc.

This thesis presents research that complements, and addresses several limitations
of, the solutions summarised above. To that end, we introduce a new end-to-end
software performance methodology that enables the performance analysis of software
systems at both code-level and system architecture-level. At code-level, we synthesise a
discrete-time Markov model representations of the code of interest, and we analyse the
nonfunctional properties for this code. At system architecture-level, we combine in a
new way probabilistic modelling and performance antipatterns. Finally, we integrate
the two methods into a novel end-to-end software performance engineering approach.
The hypothesis underlying the research in this thesis is as follows:

Given the formalisation of the architecture of a software system and/or
of the source code of its relevant components as discrete-time Markov
chains, and a set of nonfunctional requirements encoded in probabilistic
temporal logic, probabilistic model checking combined with performance
antipatterns can:

1. provide guarantees that these requirements are met for certain opera-
tional-profile regions;

2. guide the refactoring of the software system to ensure it meets the
requirements for operational-profile regions of interest for which its
initial version violates these requirements.
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1.2 Contributions

The main contributions of the thesis, described in Chapters 3–5, are summarised below.

Probabilistic Analysis of Code Performance

In Chapter 3 we introduce a tool-supported method (PROPER) for the formal analysis of
timing, resource use, cost and other quality aspects of computer programs. PROPER (a)
synthesises a Markov-chain model of the analysed code, (b) computes this quantitative
model’s transition probabilities using information from program logs, and (c) employs
probabilistic model checking to evaluate the performance properties of interest. Unlike
existing solutions, our method can reuse the probabilistic model to accurately predict
how the program performance would change if the code ran on a different hardware
platform, used a new function library, or had a different usage profile.

We evaluate PROPER through its application in analysing the performance of Java
code that is used in real-world systems. Specifically, the fragments of Java code used
in the PROPER evaluation from Chapter 3 come from the Apache Commons Math
library, the Android messaging app Telegram, and an existing implementation of the
Knapsack algorithm. We demonstrate the method’s effectiveness by proving its (1)
accuracy, i.e., the supported analysis of nonfunctional properties of interest can achieve
the same accuracy compared to other established alternatives, (2) decision-making,
i.e., our method is able to correctly guide software engineers in their decision-making,
and (3) efficiency, i.e., our method has lower computational overheads than alternative
approaches.

Software System Analysis & Refinement Using Performance Antipattern Profiles

In Chapter 4 we propose a novel method that uses performance antipatterns and stochas-
tic modelling to support the analysis and refinement of software systems at architectural
level. The new approach computes the performance antipatterns present across the
operational profile space of a software system under development, enabling engineers
to identify operational profiles likely to be problematic for the analysed design, and
supporting the selection of refactoring actions when performance requirements are
violated for an operational profile region of interest.

We demonstrate the applicability of our approach for a software system comprising
a combination of internal (i.e., in-house) components and external third-party services.
The chosen system, adapted from [34], is based on a real-world service-based system
from the foreign exchange trading domain. More information on the system can
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be found in Section 4.1. Our experiments show that the approach can successfully
provide insights on the performance antipattern profile of a specific design, and support
performance-driven refactoring decisions on the basis of the performance antipattern
profile.

Since this research involved collaborative work, it is important to clarify that our
collaborators provided performance antipattern expertise, supervisory support (particu-
larly on the aspects of the work requiring this expertise), and input into the planning and
evaluation of the experimental results. In turn, the PhD project involved the conceptual-
isation and development of the proposed approach, the development of the case study
and its use to evaluate the approach (including the stochastic modelling, requirement
specification, and the execution of all the experiments), and the development of the tool
that automates several steps of the approach.

Software Performance Engineering With Code-level Probabilistic Analysis and
Performance Antipatterns

In Chapter 5 we introduce a new approach that integrates the two software performance
engineering methods summarised above. The integrated approach obtained in this
way allows software engineers to verify performance properties at both code-level
and system architecture-level, supporting the selection of refactoring actions when a
performance requirement violation occurs. Monitoring the effect of changes in the
system’s code and architecture gives a better overview of (and control over) the system’s
performance objectives.

To validate the integrated methodology, we assess its application in a case study
involving the performance analysis and refactoring of the foreign exchange trading
service-based system introduced in Chapter 4, which comprises a combination of
internal components and third-party services. The results of this evaluation show the
feasibility of meaningfully using results obtained via PROPER for software performance
engineering at system architecture-level, enabling a combined performance analysis
approach.

1.3 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2 contains the background information, essential for the development of
our techniques in later chapters. Section 2.1 briefly presents model checking, the need
for such technique, and some of its main characteristics for the purpose of introducing
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probabilistic model checking in Section 2.2 and to enable us to dive deeply into the
semantics of this follow-up technique. Sections 2.2.1 and 2.2.2 introduce the Markov
chain models and probabilistic variants of temporal logic used throughout the thesis,
respectively. Section 2.2.3 overviews the available tools that automate the verification
techniques employed by probabilistic model checking. Section 2.3 presents the concept
of performance antipatterns, focusing on a more detailed description and examples of
the three performance antipatterns exploited in the thesis. Finally, Section 2.4 provides
a summary of the chapter.

Chapter 3 describes PROPER, our probabilistic analysis of code performance
method. PROPER synthesises discrete-time Markov chain (DTMC) model representa-
tions of Java source code, and uses probabilistic model checking to verify nonfunctional
properties of interest. The chapter starts with an introduction of the main aim and the
contributions of this work. Section 3.1 presents a motivating example that showcases
PROPER’s application. Sections 3.2.1–3.2.4 provide a detailed analysis of the method
by breaking down its steps, and give insight into how PROPER can be used in further
application scenarios. Specifically, the probabilistic model synthesis step is detailed
in Section 3.2.1, followed by the calculation of transition probabilities (Section 3.2.2),
the application of probabilistic model checking (Section 3.2.3) and further application
scenarios for PROPER (Section 3.2.4). Section 3.3 describes our open-source PROPER
tool that automates the probabilistic model synthesis step and enables the generation
of DTMCs from input Java code. Sections 3.4.1–3.4.4 present PROPER’s evaluation
by highlighting our research questions (Section 3.4.1), explaining our experimental
setup (Section 3.4.2), discussing the obtained results (Section 3.4.3) and presenting the
identified threats to validity (Section 3.4.4). Sections 3.5 and 3.6 compare PROPER
with existing approaches and summarise the chapter, respectively.

Chapter 4 introduces our software system analysis and refinement approach that
makes use of performance antipattern profiles. The introductory paragraphs of the
chapter present the approach, listing the key points it tries to address and its main
contributions to the area of software systems’ architecture analysis and refinement.
Sections 4.1.1–4.1.4 introduce a motivating example that showcases the benefit of
applying our approach in a case study from the foreign currency exchange domain.
Sections 4.2.1–4.2.5 describe the steps of the approach. We start with the modelling
step (Section 4.2.1), where the synthesis of parametric Markov models takes place,
followed by the model instantiation (Section 4.2.2) and analysis (Section 4.2.3), and
the generation of antipattern profiles for the analysed system (Section 4.2.4). The
description of the approach ends with the refactoring step (Section 4.2.5), which assesses
whether any refactoring actions are required. Section 4.3 describes our implemented
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tool for the automatic generation of antipattern profiles. Sections 4.4.1–4.4.4 present the
evaluation of the approach by first defining the research questions that will be explored
(Section 4.4.1, followed by the experimental scenarios (Section 4.4.2) and a discussion
on the obtained results (Section 4.4.3), and concludes with presenting the identified
threats to the validity of the approach (Section 4.4.4). Sections 4.5 and 4.6 compare
our software system analysis and refinement approach with existing approaches and
summarise the chapter, respectively.

Chapter 5 describes the combination of the two methods from Chapters 3 and 4 into
an end-to-end methodology that enables the performance analysis of software systems at
both code-level and system architecture-level. The introduction of this chapter presents
the new combined approach and highlights the aim of this integration. Section 5.1
illustrates the application of the approach using a motivating example that combines the
FX system, first presented in Section 4.1, and a Java representation of the minimum
path sum algorithm. Sections 5.2.1–5.2.5 describe the steps of the integrated approach,
starting with the identification of the system components of interest (Section 5.2.1).
Then, PROPER is employed to generate the DTMC model representations based on
the source code of these components (Section 5.2.2), and its results are given as input
to the architecture-level model synthesised in the next step (Section 5.2.3). Following
the model construction, the antipattern-based analysis method is used to analyse the
system model and check whether requirements are violated (Section 5.2.4). The last
step involves the initiation of refactoring actions if required and the option of modifying
both the system’s internal components and the way in which it uses external services
(Section 5.2.5). Section 5.3 evaluates the approach, and Section 5.3.4 discusses threats to
validity. Sections 5.4 and 5.5 compare our integrated software performance engineering
methodology with existing approaches and conclude the chapter, respectively.

Chapter 6 concludes the thesis by summarising the findings and contributions of
this research, and discusses directions for future work.
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Chapter 2

Background

Our reliance on software and software-controlled systems is rapidly growing, as does
the complexity of these systems. Embedded systems such as smart cards, personal
computers and mobile phones, and online services including banking and healthcare
are now an integral part of daily life.

Traditional verification techniques, such as testing and simulation, are often not
effective in finding errors in systems of high complexity or when these systems exhibit
probabilistic behaviour, e.g., due to operating in uncertain environments. To address
the limitations of these techniques, formal verification has been introduced. Formal
verification is capable of providing correctness guarantees for certain properties of a
software system. Formal verification techniques have become prominent over the years
for ensuring not only the correct functionality of systems, but also for establishing their
quality attributes such as performance and reliability.

This chapter introduces terminology and concepts used throughout the rest of the
thesis. Specifically, we focus on modelling and analysis techniques that allow for the
formal verification of probabilistic models, and for identifying bad software engineering
practices which can lead to system performance degradation. These tehcniques underpin
the work undertaken later in the thesis. Section 2.1 introduces the concept of model
checking. Section 2.2 then defines probabilistic model checking, the two model variants
used in this thesis (i.e., discrete-time and continuous-time Markov chain models) and
the temporal logics necessary for analysing the properties of these probabilistic models,
and briefly outlines the use of probabilistic model checking tools. Section 2.3 defines
performance antipatterns, with a focus on the antipatterns used later in the thesis to
assess the performance of software systems. Finally, Section 2.4 provides a summary
of the chapter.

27



CHAPTER 2. BACKGROUND

2.1 Model Checking

Model checking is an automated technique that focuses on the verification of finite-state
systems. The technique was firstly developed by Clarke and Emerson in 1981 [40] and
independently discovered by Queille and Sifakis in 1982 [43]. The system semantics are
given by means of a Kripke structure, and the specification of its properties is expressed
using temporal logic [41]. Clarke and Emerson mentioned that the use of the name
Model Checking resulted from their work in determining whether a Kripke structure
M was a model for a formula of temporal logic f [40]. In model checking, both the
system and the specification must be formally described; that is why the use of Kripke
structures and temporal logic is necessary.

A Kripke structure is a labeled graph that contains all the possible states of a system
and the transitions between them. The states are represented by the vertices of the
graph and the transitions by the graph’s edges. Formally, a Kripke structure is a tuple
M = (S,s0,R,AP,L), where S is a set of states, s0 ⊆ S is a set of initial states, R ⊆ S×S
is a transition relation, AP is a set of atomic propositions and L : S → 2AP is a labeling
function that maps each state to the set of propositional variables from AP that hold in
it.

Figure 2.1 shows a simple four-state Kripke structure model of an alarm clock,
adapted from [43]. The four states (s0, s1, s2 and s3) correspond to the alarm being off,
on, ringing and snoozed, respectively. One of the system’s transitions is from state s2 to
state s3, meaning that it is possible for the alarm clock to go from its ringing state to the
state where it has been snoozed. However, there is no transition from state s1 to state s3,
as the alarm cannot be snoozed if it is not ringing.

Temporal logic, which is an extension of propositional logic [100], is a “formalism
for reasoning about time without introducing it explicitly" [43]. There are two main
views regarding the nature of time. One considers time to be linear and is called Linear-
Time Temporal Logic (LTL), and the other that time has a branching, tree-like nature,
and is called Computation Tree Logic (CTL), i.e., LTL takes into account one path at a
time, while CTL can consider multiple paths. The syntax of both LTL and CTL consists
of logical and temporal operators, e.g., ¬,∨,G for always, F for eventual. Another type
of temporal logic CTL* has been introduced in [64], and supports the expressions of
both CTL and LTL. The reason behind the creation of CTL* was to address issues that
result from nondeterminism that is present in many concurrent programs. All these
types of temporal logic can be used to express properties verified by model checking.
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s0 s1 s2 s3

{off} {on} {ring} {snooze}

turned on

turned off

time reached

stop pressed

snooze pressed

stop pressed

time reached

Fig. 2.1: State transition system of an alarm clock, adapted from [43]

Consider again the alarm model in Figure 2.1. The initial state satisfies the formula
AG¬(ring∧ snooze), where A is the universal path quantifier and G (globally) is a
temporal operator, since no state exists that is both ringing and snoozing. On the other
hand, it does not satisfy the formula E[¬ring U snooze], where E is the existential path
quantifier and U (until) is a temporal operator, since in order to reach a snoozed state, a
ringing state has to be reached first.

Model checking is used to provide absolute guarantees of correctness for software
systems, such as “deadlock freeness” or “the program eventually terminates”. However,
many real-world systems that operate in uncertain environments exhibit stochastic be-
haviour and, thus, rigid guarantees cannot be established. Probabilistic model checking
(also known as quantitative verification) is a formal verification technique suitable for
this purpose. It uses finite state transition models extended with probabilities/rates and
verifies properties expressed in probabilistic temporal logic.

2.2 Probabilistic Model Checking

Probabilistic Model Checking (PMC) [95, 104] is a formal verification technique used
to establish the correctness, reliability and performance of systems with stochastic
behaviour, where this behaviour is formalised using Markov models (see Section 2.2.1).
These models are Kripke structures whose edges are annotated with the probability
or rate of taking the associated transition, depending on the model type. To enable
the analysis of additional types of properties, Markov models can be augmented with
cost/reward structures that associate non-negative values with their states and transitions.

The properties of interest analysed using these models are formally expressed in
probabilistic variants of temporal logic (see Section 2.2.2). These expressions (i.e.,
specifications) enable reasoning about the probability of different events occurrencing
during the operation of the modelled system, or about the costs/rewards associated with
these events. The specified properties capture not only the system’s “correctness”, but
also a variety of its quantitative characteristics, such as reliability and performance.
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Software system

System
requirements

Probabilistic model

Specification
(temporal logic)

Probabilistic
model checking
(e.g., PRISM)

Numerical results

Verification results

P=?[F “success”]

Fig. 2.2: Overview of probabilistic model checking, adapted from [123]

Examples of properties expressed in both natural language and probabilistic temporal
logic are the following:

• For a system in which failures may occur:

“What is the probability of successful program termination?” : P =?[F “success”]

• For a battery-powered device:

“What is the expected power consumption?” : R{“energy”}=?[F “success”]

where F (eventually) is a temporal operator and “success” is a label referring to the
model’s final state, i.e, successful termination.

An overview of PMC adapted from [123] is depicted in Figure 2.2. A Markov
model representing the system under consideration and a list of properties expressed
in probabilistic temporal logic are given as input to a probabilistic model checker. An
exhaustive analysis is then performed to establish the values of the properties and
produce the results of verification. By using PMC, the engineers can determine if a
given property meets a specified bound (or a given threshold) and thus be informed
about the satisfaction or not of the system’s requirements. Moreover, verification results
in the form of probabilities or costs/rewards associated with a particular event can be
used to examine the system’s behaviour and support decision making. To enable the
practical application and automation of PMC, probabilistic model checking tools such
as PRISM [109], MRMC [96] and Storm [60] have been implemented and widely used
both by the research community and industry. A discussion about probabilistic model
checkers is given later in this chapter (see Section 2.2.3).
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The increasing role of probability in the design and analysis of software systems,
and the importance of techniques such as PMC, can be seen in their practical appli-
cations [134]. Nowadays, it is common for many systems to be deployed in dynamic
or uncertain environments. This stochastic behaviour can be modelled and predicted
using PMC. Additionally, the randomisation in distributed algorithms can be used as a
symmetry breaker and vastly contribute in devising efficient solutions; e.g., randomised
leader election [91] assumes a random identity from a finite domain for each of the
available processors, which they send around the network. Following the algorithm’s
successful termination, a leader is selected (with high probability). Finally, probability
can be used to model system failures and the overall system performance. Typical
reliability and performance examples in a service-based system include, “the probability
that the system fails within 60s is at most 0.001” and “the expected response time of
service X must not exceed 10ms”, respectively.

The remainder of this section is split into three parts. The definition of the Markov
chain model variants used by the methods developed in this thesis is presented in
Section 2.2.1 and covers both discrete-time and continuous-time domains. The definition
of probabilistic temporal logics, necessary for quantifying system properties using the
synthesised Markov chain models is provided in Section 2.2.2. Finally, Section 2.2.3
presents widely used probabilistic model checking tools that automate the verification
of Markov models.

2.2.1 Markov Models

Markov models are commonly used to represent software systems that exhibit proba-
bilistic behaviour, and to make predictions about them. Specific aspects of a system’s
behaviour can then be modelled as a stochastic process, which is described as a system
evolving in time while undergoing chance fluctuations [44]. Formally, a stochastic
process is defined as a collection of random variables {X(τ)}, indexed by a param-
eter τ , where τ is interpreted as time and belongs to an index set T , and X(τ) is the
state of the process at time τ ∈ T [132]. Additionally, the set S of all possible X(τ)

values is called the state space of the stochastic process. If T is a set of integers,
i.e., T ⊆ Z+ = {0,1,2, . . .}, representing specific time points, we have a discrete-time
process {X(τ)}; otherwise, if T is the real line (or some interval of the real line), i.e.,
T ⊆ R+ = [0,∞), we have a continuous-time process {X(τ)}.

A stochastic process can be also characterised by the fact that it retains no memory
of previous states, i.e., only the current state can influence its evolution [124]. Such
a process that satisfies the Markov property (Def. 2.1), also known as memoryless
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property, is called a Markov process. The term memoryless property results from the
fact that a state of the stochastic process at time-step τ is decided only by the state at
the previous time-step τ −1.

Definition 2.1. A stochastic process {X(τ)} satisfies the Markov property if

P{X(τ) = sτ | X(τ −1) = sτ−1, . . . ,X(0) = s0}= P{X(τ) = sτ | X(τ −1) = sτ−1}
(2.1)

where s0, . . . ,sn ∈ S represent successive states of the process and τ > 0.

All models defined in the following sections are variants of the Markov process.
While there are many types of probabilistic models [95], our focus is on discrete-time
and continuous-time Markov chains.

2.2.1.1 Discrete-Time Markov Chains

Discrete-Time Markov chains (DTMCs) are labelled state-transition systems aug-
mented with probabilities. A DTMC consists of a discrete set of states representing
possible configurations of the system being modelled. The transitions between states
occur in discrete time-steps, and the probability of making these transitions between
states is given by discrete probability distributions. The following formal definition was
adapted from [104].

Definition 2.2. A discrete-time Markov chain (DTMC) is a tuple D = (S,s0,P,AP,L)
where:

• S is a finite set of states;

• s0 ∈ S is the initial state;

• P : S×S → [0,1] is a transition probability matrix, such that for all s ∈ S:

∑
s′∈S

P(s,s′) = 1; (2.2)

• AP is a set of atomic propositions (i.e., statements associated with system states
and that evaluate to true or false depending on whether they hold or not);

• L : S → 2AP is a state labelling function that maps each state s ∈ S to the set
L(s)⊆ AP of atomic propositions that hold in state s.

Every element P(s,s′) of the transition probability matrix P gives the probability of
taking a transition from state s to state s′. The transition probabilities associated with
the outgoing transitions from a single state must sum up to one. States with only an
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outgoing transition to themselves are called terminating states, and are modelled by
adding a self loop with probability of 1 [105]. Additionally, the behaviour of a DTMC
model is represented as a set of paths. A path π is a non-empty sequence of states
π = s0,s1,s2, . . . where si ∈ S and P(si,si+1)> 0 for all i ≥ 0. Paths can either be finite
or infinite. The i-th state of a path π is denoted by π(i) and its length by |π|. The set of
all paths of a DTMC D, starting in a given state s, are denoted as PathD(s).

To reason about the stochastic behaviour of the DTMC, we need to obtain the
probability that certain paths are taken. This is accomplished by defining, for each state
s ∈ S, a probability measure Prs over the set of paths PathD(s). The probability measure
is then induced by the probability matrix P as follows:

Definition 2.3. For any finite path π = s0,s1,s2, . . . ,sn ∈ PathD(s):

Ps(π) =

1 i f n = 0

P(s0,s1) · P(s1,s2) · . . . · P(sn−1,sn) otherwise
(2.3)

where s0 is the starting state and sn is the target state.

More details can be found in [134, 9].

Extending DTMCs with rewards

The types of properties that can be analysed using DTMCs can be enhanced through the
addition of cost/reward structures. These refer to non-negative, real-valued quantities
that are associated with states and transitions in the model. The difference between
a cost and a reward is purely semantic. There is no mathematical distinction, just
a commonly adopted notion that costs should be minimised and rewards should be
maximised.

For a DTMC D = (S,s0,P,AP,L) a reward structure (
¯
ρ, ι) enables the specification

of two distinct types of rewards: state rewards and transition rewards. The former are
assigned to states by means of the reward function

¯
ρ : S → R≥0, and the latter, are

assigned to transitions by means of the reward function ι : S× S → R≥0. The state
reward

¯
ρ(s) is obtained in state s per occurred time-step, and the transition reward

ι(s,s′) is obtained each time a transition between states s and s′ takes place. State and
transition rewards are also known as cumulative and instantaneous rewards, respectively.

Definition 2.4. A cost/reward structure over a DTMC D = (S,s0,P,AP,L) is a pair of
real-valued functions (

¯
ρ, ι) where:
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Fig. 2.3: DTMC weather prediction model, adapted from [154]

•
¯
ρ : S → R≥0 is a state reward function that defines the value (cost/reward) ρ(s)
obtained when D is in state s ∈ S for one time step.

• ι : S×S →R≥0 is a transition reward function that defines the value (cost/reward)
ι(s,s′) obtained each time a transition occurs from state s ∈ S and to state s′ ∈ S.

Example 2.1. Figure 2.3 depicts a DTMC that describes an imagined daily weather
pattern for York, UK (well known for its unpredictable weather). The weather model
is simplified by considering only three types of weather: rainy, cloudy and sunny. The
three weather conditions are associated with the three states of the DTMC. State s0

represents a rainy day; state s1 a cloudy day; and state s2 a sunny day. The weather
is observed daily, and on any given rainy day, the probability of rainfall on the next
day is estimated at 0.8, and the probabilities that the next day will be either cloudy or
sunny are 0.15 and 0.05, respectively. Probabilities are also assigned when a particular
day is cloudy or sunny as shown in the weather model’s depiction. Additionally, the
weather model is augmented with a state reward structure, shown in green colour, that
associates a time of 1 second with each observation (i.e., it takes 1 second to report the
results when an observation state is reached).

The elements of the DTMC model are:

The set of states S = {s0,s1,s2}

The initial state s0

The transition probability matrix P =

0.8 0.15 0.05
0.7 0.2 0.1
0.5 0.3 0.2


The set of atomic propositions AP = {rainy,cloudy,sunny}
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The labelling function L : L(s0) = {rainy}, L(s1) = {cloudy}, L(s2) = {sunny}

All elements in P represent conditional probabilities. For example, given that today is
sunny, suppose we want to estimate the probability that tomorrow is cloudy and the day
after is rainy, i.e., the probability for the path π = s2,s1,s0:

Ps(π) = P(s2,s1) ·P(s1,s0) = 0.3×0.7 = 0.21

Each state (s0,s1,s2) within the weather model is associated with a reward. The rewards
correspond to the time needed to complete the observation process and report back the
result. The value of each reward is equal to 1 and their structure is defined as:

ι = 03,3

¯
ρ

time = (1,1,1)

where 03,3 denotes a 3×3 matrix populated with zeros, and (1,1,1) refers to the reward
value in each of the existing states.

2.2.1.2 Continuous-Time Markov Chains

Continuous-Time Markov Chains (CTMCs) allow the modelling of systems consist-
ing of discrete states, but where time progresses continuously. The transitions between
states occur at any point in time, and the delays are modelled by exponential probability
distributions [108]. Like DTMCs, CTMCs satisfy the Markov (memoryless) property,
i.e., the probability of transitioning to another state depends only on the current state.
Additionally, the probability is independent of the amount of time spent in the current
state. The application of CTMCs can be observed across various fields, where they are
used to analyse nonfunctional properties of systems such as performance and reliability.
Typical examples of such systems are control systems, queuing networks, and biological
pathways.

Definition 2.5. A continuous-time Markov Chain (CTMC) is a tuple C = (S,s0,R,AP,L)
where:

• S is a finite set of states;

• s0 ∈ S is the initial state;

• R : S×S → R≥0 is a transition rate matrix;

• AP is a set of atomic propositions;
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• L : S → 2AP is a state labelling function that maps each state s ∈ S to the set
L(s)⊆ AP of atomic propositions that hold in that state.

The transition rate matrix R is responsible for associating rates with each pair of
states in the CTMC. A transition between any states s and s′ ∈ S can only occur if
R(s,s′) > 0, and the probability of a transition within t time-units is given by the negative
exponential distribution 1− e−R(s,s′)·t . Given a state s, if there is more than one state s′

such that R(s,s′) > 0, the first transition to occur determines the next state of the CTMC
(race condition). The time spent in state s, before a transition occurs, is exponentially
distributed with rate:

E(s) = ∑
s′∈S

R(s,s′) (2.4)

where E(s) is the exit rate of state s. Unlike DTMCs, states in CTMCs might have no
outgoing transitions, and such a state is called an absorbing state. It is also possible
to determine the probability of moving to state s′ when leaving state s, independently
of the time spent in s. This is achieved by extracting the embedded DTMC from the
CTMC.

Definition 2.6. The embedded DTMC D of a CTMC C = (S,s0,R,AP,L) is a tuple
emb(C) = (S,s0,Pemb(C),AP,L) where for s,s′ ∈ S:

Pemb(C)(s,s′) =


R(s,s′)

E(s)
if E(s) ̸= 0

1 if E(s) = 0 and s = s′

0 otherwise

(2.5)

The above definition enables the CTMC’s behaviour to be alternatively considered
as staying in a state s for a delay exponentially distributed with rate E(s), followed by
a transition to state s′ with probability given by Pemb(C)(s,s′). To further allow for the
analysis of the CTMC, the infinitesimal generator matrix must be extracted.

Definition 2.7. The infinitesimal generator matrix for the CTMC C = (S,s0,R,AP,L) is
the matrix Q : S×S → R defined as:

Q(s,s′) =

R(s,s′) if s ̸= s′

−∑s′′ ̸=s R(s,s′′) otherwise
(2.6)

In Section 2.2.1.1 we provided the definition of paths in a DTMC. Here we extend
this definition to accommodate the needs of the continuous-time domain. Consequently,

36



2.2 Probabilistic Model Checking

a path π in a CTMC is a non-empty sequence of states π = s0, t0,s1, t1,s2, t2, . . . where
R(si,si+1)> 0 and ti ∈ R>0 represents the time spent in state si, for all i ≥ 0. State si

is the i-th state of path π and is denoted by π(i), ti is the time spent in state si and is
denoted by time(π, i), and the occupied state at time t is denoted by π@t and is given
by π(ω), where ω is the smallest index for which ∑

ω
i=0 ti ≥ t. The set of all paths of C,

starting in a given state s, is denoted PathC(s).

Analysing the behaviour of a CTMC entails identifying the probability of traversing
specific paths. Based on the definition from [10], C(s0, I0, . . . , In−1,sn) denotes a cylin-
der set consisting of all PathC(s) with non-empty intervals I0, . . . , In−1 ∈R>0, such that
π(i) = si for all i ≤ n and time(π, i) ∈ Ii for all i < n. The probability measure (Prs) of
the cylinder C is then inductively defined by Prs(C(s0)) = 1 and

Prs(C(s0, . . . , In,sn+1)) =

Prs(C(s0, . . . ,sn)) ·Pemb(C)(sn,sn+1) · (e−E(sn)·α − e−E(sn)·β )
(2.7)

where α = inf In is the greatest lower bound, and β = sup In is the least upper bound of
the interval In.

Extending CTMCs with rewards

Similarly to DTMCs, CTMCs can be annotated with cost/reward structures that assign
non-negative real-valued quantities to states and transitions. However, in contrast to
DTMCs, the state costs/rewards are calculated based on the time spent in that state of
the model. For instance, a reward of t ·ρ(s) is obtained for t ∈ R≥0 time units that the
model remained in state s.

Definition 2.8. A cost/reward structure over a CTMC C = (S,s0,R,AP,L) is a pair of
real-valued functions (

¯
ρ, ι) where:

•
¯
ρ : S → R≥0 is a state reward function that defines the rate ρ(s) at which the
cost/reward is obtained in a state s ∈ S of C.

• ι : S×S →R≥0 is a transition reward function that defines the value (cost/reward)
ι(s,s′) obtained each time a transition occurs from state s ∈ S to state s′ ∈ S.

Example 2.2. Figure 2.4 depicts a four-state CTMC modelling a queue of jobs, where
state number i in state si indicates that there are i jobs in the queue. The graphical
notation remains identical to that of DTMCs, with the only exception that transitions are
now labelled with rates instead of probabilities. In this example, the queue is initially
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s0 s1 s2 s3

{empty} {full}2 2 2

4 4 40 1 2 3

1 1 1

Fig. 2.4: A CTMC with four states modelling a queue of jobs, adapted from [134]

empty, and the maximum number of jobs it can hold is 3. Additionally, we assume a
time unit of seconds and label each edge with the transition rate between states. Jobs
arrive with a rate of 2, and are removed from the queue with a rate of 4. State s0 is the
initial state of the model, which corresponds to the queue being empty, and is labelled
accordingly. The queue reaches its full capacity in state s3. An incoming job request,
considering that the queue is not full, is processed with a rate of 2 (Eqn. 2.4), i.e., the
mean time spent in that state is 1

2 seconds.

The CTMC is augmented with two different reward structures, whose values are
shown in green and red dashed rectangular boxes, respectively. The first reward,
indicated by green colour, associates with each state the number of requests that are
awaiting service. This structure can be used when it is of interest to determine the queue
size at any point in time or over extended time periods. The second reward, indicated by
red colour, assigns 1 to the transitions corresponding to a request being served. Such a
structure can be used for counting the number of served requests within a given time
frame or for extended time periods.

The elements of the CTMC model are:

The set of states S = {s0,s1,s2,s3}

The initial state s0

The set of atomic propositions AP = {empty, f ull}

The labelling function L : L(s0) = {empty}, L(s3) = { f ull}

The corresponding system matrices are:

R =


0 2 0 0
4 0 2 0
0 4 0 2
0 0 4 0

 Pemb(C) =


0 1 0 0
2
3 0 1

3 0
0 2

3 0 1
3

0 0 1 0

 Q =


−2 2 0 0

4 −6 2 0
0 4 −6 2
0 0 4 −4
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and the reward structures are defined as:

ι =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 ¯
ρ

queue_size = (0,1,2,3)

Finally, suppose that we want to identify the probability of leaving the initial state s0

and passing to state s1 within the first 2 time units. This translates to the following
sequence of states and intervals 0, [0,2]1 (i.e, s0 = 0, I0 = [0,2], and s1 = 1).

Using the probability measure for the initial state s0 of the CTMC, for the cylinder set
C(0, [0,2],1), we have:

Prs0(C(0, [0,2],1)) =1 ·Pemb(C)(0,1) · (e−E(0)·0 − e−E(0)·2)

=1 ·1 · (e0 − e−4) = 1− e−4 ≃ 0.981684

2.2.2 Probabilistic Temporal Logics

The next step following the synthesis of Markov chain model variants (e.g., DTMCs
or CTMCs), representing the behaviour of a software system, is the quantification of
the respective system’s properties to enable reasoning whether requirements have been
met. These properties represent nonfunctional aspects of a system, such as performance,
reliability, response time, and cost, and they are formally expressed using probabilistic
variants of temporal logic. The use of probabilistic temporal logics enables reasoning
about the intended behaviour of a system as time progresses, and since transitions within
Markov chain models are probabilistic, the interest falls in determining the likelihood
of an event’s occurrence, rather than on the event itself (i.e., if the event is true or not).

This section defines the syntax of Probabilistic Computation Tree Logic (PCTL) [8,
85] and Continuous Stochastic Logic (CSL) [7, 10], the probabilistic variants of tempo-
ral logic used to formalise the properties of DTMCs and CTMCs, respectively.

2.2.2.1 Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic (PCTL) [8, 85] is a probabilistic extension of the
temporal logic CTL [42] that allows for quantification of probabilistic properties of a
DTMC, i.e, extends CTL with a probabilistic operator P. Any property defined in PCTL
references states and possible execution paths within a model D starting from an initial
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state s0. In this thesis, we use a cost-reward augmented PCTL variant with the syntax
adopted from [104].

Definition 2.9. The syntax of Probabilistic Computation Tree Logic (PCTL) is defined
as follows:

Φ ::= true | a | ¬ Φ | Φ ∧ Φ | P▷◁p[φ ]

φ ::= X Φ | Φ ∪≤k
Φ

and the cost/reward augmented PCTL state formulae are defined as:

R▷◁r[C≤k] | R▷◁r[I=k] | R▷◁r[F Φ]

where a ∈ AP is an atomic proposition with AP being a set of atomic propositions,
▷◁ ∈ {<,≤,≥,>} is a relational operator, k ∈ N∪ {∞}, p ∈ [0,1] is a probability
bound (or threshold), and r ∈ R≥0 is a reward bound.

In the definition above, Φ and φ denote state and path formulae, respectively. State
formulae Φ are always used to specify properties of a DTMC, and path formulae φ can
only occur within the scope of the probabilistic operator P▷◁p[·]. For instance, a state
s of a DTMC D satisfies P▷◁p[φ ] if the probability of taking a path from s satisfying φ

meets the bounds defined by ▷◁ p. For a path π , the “next” formula XΦ holds if Φ is
satisfied in the next state. The “bounded until” formula Φ1∪≤kΦ2 holds if Φ2 is satisfied
within k time-steps and Φ1 is true up until that point. If k = ∞, the formula becomes
“unbounded until”, and Φ1 ∪≤k Φ2 is abbreviated by Φ1 ∪ Φ2. Finally, formula P=?[φ ]

can be used to obtain the probability of a path formula φ .

Given a state s in a DTMC D, the interpretation of cost/reward operator R is:

• R▷◁r[C≤k] holds if the amount of the expected accumulated reward along a path π

up to k time-steps meets the bound defined by ▷◁ r;

• R▷◁r[I=k] is true if the expected state reward at k time-steps satisfies the bound
defined by ▷◁ r;

• R▷◁r[F Φ] holds if from state s the expected cumulative reward before reaching a
state that satisfies Φ meets the bound ▷◁ r.

The R operator, which works in a similar fashion to the P operator, can be used to
quantify over states and transitions of a DTMC D, and to calculate the expected value
of a cost/reward by using the formula R=?[·].

The semantics of PCTL are defined formally over a DTMC D as follows:
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Definition 2.10. For any state s ∈ S and path π ∈ PathD of a labelled DTMC D =

(S,s0,P,AP,L), the satisfaction relation |= is inductively defined by:

s |= true ∀ s ∈ S

s |= a ⇔ a ∈ L(s)

s |= ¬Φ ⇔ s ̸|= Φ

s |= Φ1 ∧Φ2 ⇔ s |= Φ1 ∧ s |= Φ2

s |= P▷◁p[φ ] ⇔ ProbD(s,φ) ▷◁ p

where
ProbD(s,φ) = Prs(π ∈ PathsD(s) |π |= φ)

is the probability that a path starting from s satisfies φ , and for any path π ∈ PathD(s):

π |= XΦ ⇔ π(1) |= Φ

π |= Φ1 ∪≤k
Φ2 ⇔∃ i ∈ N.(i ≤ k∧π(i) |= Φ2 ∧∀ j < i.(π( j) |= Φ1))

Finally, for the cost/reward structures:

s |= R▷◁r[C≤k]⇔ExpD(s,ΨC≤k) ▷◁ r

s |= R▷◁r[I=k] ⇔ExpD(s,ΨI=k) ▷◁ r

s |= R▷◁r[F Φ]⇔ExpD(s,ΨFΦ) ▷◁ r

where ExpD(s,Ψ) refers to the expectation of the random variable Ψ : PathD(s)→R≥0

with respect to the probability measure Prs, and for any path π = s0s1s2 · · · ∈ PathD(s):

ΨC≤k(π) :=

 0 if k = 0

∑
k−1
i=0

¯
ρ(si)+ ι(si,si+1) otherwise

ΨI=k(π) :=
¯
ρ(sk)

ΨFΦ(π) :=


0 if s0 |= Φ

∞ if ∀i ∈ N. si ̸|= Φ

∑
min{ j | s j |= Φ}−1
i=0

¯
ρ(si)+ ι(si,si+1) otherwise

Example 2.3. Consider again the DTMC model of Figure 2.3, representing a fictitious
daily weather pattern. Table 2.1 shows a set of requirements for the weather model that
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Table 2.1: System requirements for the weather prediction DTMC model

Req. Description PCTL Result

R1
The probability of reaching the sunny state
without visiting the cloudy state is at most 35%

P≤0.35[¬“cloudy” U “sunny”] 25% ✔

R2
The probability of reaching the cloudy state
within 20 time steps (NB: corresponding to
20 days) is greater than 68%

P>0.68[true U≤20 “cloudy”] 97% ✔

R3
The expected time when the sunny state is
eventually reached is less than 17 time steps
(i.e., days)

R“time”
<17 [F “sunny”] 17.3 ✘

are used to quantify several requirements of interest. The requirements are expressed in
both natural language and in PCTL.

2.2.2.2 Continuous Stochastic Logic

Continuous Stochastic Logic (CSL) [10, 7] is a variant of probabilistic temporal logic
that is used to specify properties of CTMCs. CSL allows reasoning about path-based
properties, similarly to PCTL with the use of the probabilistic operator P, and about
steady-state, with the use of the steady-state operator S, and transient behaviour. The
syntax of the cost-reward augmented CSL variant adopted in this thesis [105] is defined
below.

Definition 2.11. The syntax of a Continuous Stochastic Logic (CSL) state formula Φ

and that of a path CSL formula φ are defined as follows:

Φ ::= true | a | ¬ Φ | Φ ∧ Φ | P▷◁p[φ ] | S▷◁p[Φ]

φ ::= X Φ | Φ ∪ I
Φ

and the cost/reward augmented CSL state formulae are defined as:

R▷◁r[C≤t ] | R▷◁r[I=t ] | R▷◁r[F Φ] | R▷◁r[S]

where a ∈ AP is an atomic proposition with AP being a set of atomic propositions,
▷◁ ∈ {<,≤,≥,>} is a relational operator, I ⊆R≥0 and t ∈R≥0 are a time interval and
a time instant, respectively, p ∈ [0,1] is a probability bound (or threshold), and r ∈ R≥0

is a reward bound.

The interpretation of CSL formulae is similar to that of PCTL formulae, with the
exception of the interval I ∈ R≥0 parameter of the “until” operator U . For a path π ,
the “next” formula XΦ holds if Φ is satisfied in the next state. The “time-bounded
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until” path formula Φ1 ∪ I Φ2 holds if Φ2 becomes true at some time instant in the
interval I, and Φ1 holds at all previous time instants. If I = [0,∞), the formula becomes
“unbounded until”. The steady-state S operator describes the behaviour of the CTMC in
the long-run, and thus, formula S▷◁p[Φ] asserts that the steady-state probability of being
in a state s satisfying Φ meets the bound ▷◁ p. Finally, the formula P=?[φ ] quantifies the
probability of a path formula φ .

Given a state s in a CTMC C, the interpretation of cost/reward operator R is:

• R▷◁r[C≤t ] holds if the amount of the accumulated reward along a path π up to
time t meets the bound defined by ▷◁ r;

• R▷◁r[I=t ] is true if the expected state reward at time instant t satisfies the bound
defined by ▷◁ r;

• R▷◁r[F Φ] holds if from state s the expected cumulative reward before reaching a
state that satisfies Φ meets the bound ▷◁ r;

• R▷◁r[S] holds if the long-run average expected reward satisfies ▷◁ r.

As in PCTL, the formula R=?[·] can be used with CSL to obtain the expected value
of a cost/reward.

The semantics of CSL are defined formally over a CTMC C as follows.

Definition 2.12. For any state s ∈ S and path π ∈ PathC of a labelled CTMC C =

(S,s0,R,AP,L), the satisfaction relation |= is inductively defined by:

s |= true ∀ s ∈ S

s |= a ⇔ a ∈ L(s)

s |= ¬Φ ⇔ s ̸|= Φ

s |= Φ1 ∧Φ2 ⇔ s |= Φ1 ∧ s |= Φ2

s |= P▷◁p[φ ] ⇔ ProbC(s,φ) ▷◁ p

s |= S▷◁p[Φ] ⇔ ∑
s′|=Φ

PsC
s (s

′) ▷◁ p

where
ProbC(s,φ) = Prs(π ∈ PathsC(s) |π |= φ)

is the probability that a path starting from s satisfies φ , and for any path π ∈ PathC(s):

π |= XΦ ⇔ π(1) |= Φ

π |= Φ1 ∪≤I
Φ2 ⇔∃ t ∈ I.(π@t |= Φ2 ∧∀t ′ ∈ [0, t).(π@t ′ |= Φ1))
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Table 2.2: System requirements for the queue of jobs CTMC model

Req. Description CSL Result

R1
The probability of reaching the full state of the
queue within 8 seconds must be lower than 70%

P<0.7[true U [0,8] “ f ull”] 77% ✘

R2
The expected queue size in the first 5 seconds is
less than 2

R“queue_size”
<2 [I=5] 0.73 ✔

R3
The expected number of requests served before
the queue becomes full is greater or equal to 2

R“served_reqs”
≥2 [F “ f ull”] 7.99 ✔

and PsC
s (s

′) is the steady-state probability, i.e., the probability of finally reaching state
s′ from a state s (in the long-run).

Finally, for the cost/reward structures:

s |= R▷◁r[C≤t ]⇔ExpC(s,ΨC≤t ) ▷◁ r

s |= R▷◁r[I=t ] ⇔ExpC(s,ΨI=t ) ▷◁ r

s |= R▷◁r[F Φ]⇔ExpC(s,ΨFΦ) ▷◁ r

s |= R▷◁r[S] ⇔ limt→∞

ExpC(s,ΨC≤t )

t
▷◁ r

where ExpC(s,Ψ) refers to the expectation of the random variable Ψ : PathC(s)→R≥0

with respect to the probability measure Prs, and for any path π = s0t0s1t1s2t2 · · · ∈
PathC(s):

ΨC≤t (π) :=
jt−1

∑
i=0

(
ti ·

¯
ρ(si)+ ι(si,si+1)

)
+

(
t −

jt−1

∑
i=0

ti

)
·
¯
ρ(s jt )

ΨI=t (π) :=
¯
ρ(π@t)

ΨFΦ(π) :=


0 if π(0) |= Φ

∞ if ∀i ∈ N. si ̸|= Φ

∑
min{ j | s j |= Φ}−1
i=0 ti ·

¯
ρ(si)+ ι(si,si+1) otherwise

Example 2.4. Consider again the CTMC model of Figure 2.4, representing a queue
of jobs. Table 2.2 shows a set of system requirements for this queue, expressed in both
natural language and CSL.
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2.2.3 Probabilistic Model Checking Tools and Applications

The introduction of the first probabilistic model checking algorithms was made in the
1980s; however, the first “industrial strength probabilistic model checkers” appeared
later in the early 2000s [106]. The development of suitable probabilistic model checking
tools enabled the practical application of these techniques. Today, there is a wide range
of such tools, some of which are summarised below.

PRISM [107, 109] is a tool aiming to model and analyse systems that exhibit
random or probabilistic behaviour. It was initially developed at the University of
Birmingham and now shares development and extensions with the University of Oxford.
PRISM can build and analyse several types of probabilistic models such as discrete-
time Markov chains, continuous-time Markov chains, and Markov decision processes
(MDPs). Models are described using the PRISM state-based language, and a wide range
of quantitative properties expressed in PCTL or CSL can be analysed.

Storm [60, 86] is another probabilistic model checker that has been developed at
Aachen University and went open-source in 2017. Some of its main characteristics are
its modular set-up, which enables the exchange of different solvers, and its focus on
performance by providing a good space-time tradeoff. Furthermore, it offers support
for several major input languages, including PRISM’s state-based language and the
specification of properties in PCTL and CSL.

Another notable mention is the Markov Reward Model Checker (MRMC) [96],
which was developed by the Formal Methods & Tools (FMT) group and the Software
Modeling and Verification (MOVES) group at the University of Twente and Aachen
University, respectively. It is a command-line tool written in the C programming
language, based on a sparse matrix representation. Similarly to the previous tools, it
supports PCTL and CSL model checking, as well as their reward extensions. Prominent
features of MRMC include quantification of time- and reward-bounded reachability
probabilities, bisimulation minimisation, and precise steady-state detection.

PRISM and MRMC provide support for all three major operating systems, while
Storm is only supported in Mac OS X and Linux. As far as models are concerned, all
tools support DTMCs and CTMCs, but exhibit differences in the rest of the supported
models. PRISM supports probabilistic automata (PAs) and probabilistic timed automata
(PTAs), Storm supports Markov automata (MAs), and MRMC supports continuous-
time Markov decision processes (CTMDPs), unlike PRISM and Storm, which support
Markov Decision processes (MDPs).
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Table 2.3: Summary of probabilistic model checking tools

PRISM Storm MRMC
Year of
release 2000 2017 2005

Platform
support

Windows, Linux,
Mac OS X

Linux, Mac OS X
Windows, Linux,
Mac OS X

Model
support

DTMC, CTMC,
MDP, PA, PTA

DTMC, CTMC,
MDP, MA

eDTMC, CTMC,
CTMDP

GUI Yes No No

Performance
Good memory usage
and speed even for
larger models

Most efficient option
out of the three listed

Good option for
small models

Other
features

Models can easily be
created and exported
to other tools

Supports several types
of input, provides a
Python API

Simple input format,
more appropriate as
back-end verification
engine

One of the major aspects that determines tool selection between alternatives among
both research community and industry is performance. Jansen et al., in their 2008
paper [92], performed a comparison between 5 probabilistic model checking tools and
based on these findings, we can make the following observations. PRISM has good
memory usage and speed overall, but the area where it excels the most is in dealing with
larger models. On the other hand, MRMC is better at analysing smaller models, but
when dealing with larger, more complex models, it becomes significantly slower. Storm
was not available at the time of this comparison, but results obtained in the analysis
performed by Dehnert et al. in their 2017 paper [60], showed that Storm outperforms
its rivals in most cases.

In this thesis, both PRISM and Storm were chosen as the tool of choice depending
on the scenarios we faced. We used PRISM for constructing models, specifying and
verifying properties when modelling and verification were done manually, due to the
ease of using its graphical user interface (GUI), and Storm when we were dealing with
larger models, and modelling and verification were automated. Table 2.3 summarises
the key characteristics of each of the mentioned probabilistic model checkers.

Probabilistic model checking has seen practical application in various domains
and has been successfully used to analyse real-world problems. Examples of such
domains include, but are not limited to, reliability engineering for safety-critical systems,
dependability modelling and analysis of spacecraft systems, performance modelling
techniques, and systems biology [95]. However, challenges still remain [108], mainly
related to the accuracy of model representations of real systems [128, 129]. Predicting
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real-world behaviours is not a trivial task, and existing tools can only effectively support
the design and verification of these systems when accurate model representations exist.

2.3 Performance Antipatterns

Software patterns [46, 72] are considered “abstractions of positive experience” [141],
and essentially are documented solutions to problems that not only occur in various
contexts, but also have the same underlying causes. Antipatterns [24, 25], which are
conceptually similar to patterns in the sense that they document solutions to recurring
design problems, capture common mistakes made during software development along
with ways to prevent them. The definition of an antipattern includes the problem and its
solution (i.e., actions to solve the problem). Some of these antipatterns have their roots
in poor software development practices, some in hardware-related issues, and some are
just common mistakes made during the design or development phases. Antipatterns are
meant to be refactored (based on their documented solution) to overcome the addressed
problem. Refactoring is an effective approach for improving the software’s quality,
while maintaining its correctness [24].

In this thesis, we are interested in using antipatterns from a performance perspective.
Research on defining performance antipatterns is mainly reflected by the work of Smith
and Williams across the years [144, 146, 147]. An overview of the current performance
antipatterns, adopted from [158], can be seen in Table 2.4. From this list, we focus
on the definition of the three highlighted antipatterns based on [144, 146]. These
antipatterns are used later on in Chapter 4 to identify performance problems in our case
studies and guide refactoring.

THE “GOD” CLASS (OR BLOB1)

Problem - A single class of the system monopolises the processing, leading to relegation
of the other classes to minor roles. Another BLOB variant, instead of monopolising the
processing contains all system data. Both variants cause an increased exchange of mes-
sages to perform any function that results in degradation of the system’s performance.

In the case of the first BLOB variant, the system contains a complex controller class
that performs most of the processing while the rest of the classes primarily encapsulate
data. These classes usually contain only accessor functions (i.e., get() and set() methods)

1The name BLOB has been given to the “GOD” class antipattern after the analogy to the monster
from the 1958 film The Blob, which absorbed anything it touched and grew larger and larger over time.
The BLOB antipattern has been infamous for such behaviour with respect to object-oriented architectures.
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Table 2.4: Overview of performance antipatterns, adopted from [158]

Antipattern Problem Solution
Circuitous Treasure
Hunt

Search in a database requires
a large amount of processing

Refactor the design to enable
alternative access paths

Concurrent
Processing Systems

Inefficient use of
available processors

Balance the system’s load
or enable multi-threading

Empty Semi Trucks
Excessive number of requests
required to perform a task

Use the Batching and Coupling
performance patterns, and the
Session Facade and Aggregate
Entity design patterns [147]

Excessive Dynamic
Allocation

Unnecessary creation and
destruction of same class
objects within an application

1) Recycle objects when needed
2) Use the Flyweight pattern to
prevent creating new objects [144]

Extensive
Processing

A long running process
monopolizes a processor

Restructure, re-order and/or
remove the processing steps

More is Less
“Thrashing” caused by too
many processes being relative
to the available resources

Quantify the thrashing thresholds
and determine if the architecture
can meet its performance goals
while staying below the thresholds

One-lane Bridge
One or few processes can
execute concurrently while
the other wait their turn

Use the shared resources
principle [143] to minimize
conflicts

“Pipe & Filter”
Architectures

Slowest filter negatively
affects throughput

Reduce overhead by dividing
long and combining short filters

The “God” Class
Excessive messaging leading
to performance degradation

Uniform distribution of
intelligence

The Ramp
Processing time increases
as the system is used

Select self-adapting algorithms
based on the size of data

Tower of Babel
Excessive translation of
information into an exchange
format, such as XML

Use the Fast Path and Coupling
performance patterns [147]

Traffic Jam
A large backlog of jobs wait-
ing for service produces wide
variability in response time

Eliminate the original cause of the
backlog or provide sufficient power
to handle the worst-case load

and do not take part in any major processing operations. On the other hand, the BLOB
controller class obtains information from the other classes using their get() methods,
performs computations, and then updates the data using their set() methods.

In the case of the second BLOB variant, a single class contains most of the data
of a system, and all other functions are assigned to the rest of the classes. When a
data-driven operation needs to be performed from any of the other classes, the BLOB
class supplies them with the required data, i.e., they contact the BLOB class via their
get() and set() methods to obtain and update data, respectively.
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ControllerClass

ControllerClass

BLOB antipattern: problem

BLOB antipattern: solution

Valve

Valve

status : enum

status : enum

getStatus()

open()

close()

open()

close()

. . .

. . .

openValve()

closeValve()

. . .

. . .

openValve()

closeValve()

void openValve() {
status currentStatus;

currentStatus = theValve ->

getStatus();

if (currentStatus != open)

Valve -> open();

}

ControllerClass

ControllerClass

void openValve() {
theValve -> open();

}
V alve

void open() {
if (status != open)

status = open;

}

Fig. 2.5: BLOB in industrial process control application, adapted from [144]

The “GOD” class is the product of a poorly distributed system intelligence. In
object-oriented systems, this is a result of distributing related data and system behaviour
in different classes or components. In both BLOB cases, performing a function requires
a larger amount of exchanged messages in comparison to a design that assigns related
data and behaviour to the same class. The excessive message traffic between the BLOB
entity and the rest of the classes impacts the system’s performance.

Solution - Refactor the system design to uniformly distribute intelligence over the
top-level classes, and keep the related data and behavior within the same class.

The BLOB antipattern’s solution focuses on refactoring the system design, with an
emphasis on keeping related data and behavior together. The performance gain for the
refactored solution is defined by Ts = Ms×O, where Ts is the saved processing time, Ms

is the number of saved messages and O is the mean overhead per message. The amount
of a message’s overhead depends on the call’s type (e.g., a remote procedure call has
more overhead than a local call).

Example 2.5. The first class diagram from Figure 2.5 illustrates a possible design
for an industrial process control application, adapted from [144]. In this application,
it is required to control the status of a valve which is either open or closed. The
ControllerClass behaves like a BLOB entity as it performs all of the work. The
Valve class, on the other hand, has no intelligence and its main purpose is to report its
status and respond to the open() and close() method invocations. The first code fragment
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in Figure 2.5 shows that the ControllerClass is inordinately linked to the Valve
class, and requires additional messages to perform any of its simple operations. E.g., to
open the valve, the controller must first request the valve’s status, check if the valve is
open, and then proceed with opening the valve.

To solve the problem of ControllerClass behaving like a BLOB entity, refac-
toring is needed to reduce the coupling, and the amount of exchanged messages between
the two classes. This is achieved by moving the status check operation inside the
Valve class (as seen in the second class diagram and code fragments). The status
check operation now takes place inside the appropriate class, i.e., the one that contains
the required data to perform the check.

The following two antipatterns are manifestations of the UNBALANCED PRO-
CESSING antipattern [146]. This antipattern and its manifestations are linked to
problems arising during concurrent processing. A common cause of such problems is
when multiple threads wait for other processing to complete, which impacts scalability.

CONCURRENT PROCESSING SYSTEMS (CPS)

Problem - The system’s processes cannot effectively use the available processors.

The unbalanced processing occurrence is due to the system’s processes inability to
use the available processors effectively. This is a result of either an inefficient distribu-
tion of tasks that leads to the unavailability of some processors or because the code is
single-threaded. In the CPS manifestation, it is necessary to ensure that the system is
able to use the available processors.

Solution - Use system execution and performance models to assess the load balance
of threads to processors, and identify alternatives that improve the performance of the
system.

If the problem results from an unbalanced distribution of threads to processors, the
solution is to use system execution models to quantify the net effect of each assign-
ment. Based on the outcome of the quantification, the engineer can then restructure the
system’s components to balance the load. If the problem results from single-threading
work, the solution is to use performance models to identify alternatives that enable
multi-threading or execute concurrently multiple copies of the same process if possible.

Example 2.6. Consider the application of the CPS antipattern on the system depicted
in Figure 2.6, adapted from [146]. The violation of performance requirements is caused
by a routing algorithm that is based on static properties, resulting in an unbalanced
distribution of tasks, i.e., a queue is heavily targeted with tasks sent from the routing
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Queues ProcessorsTasks

Fig. 2.6: Unbalanced processing caused by routing algorithm, adapted from [146]

algorithm compared to the overload of the other queues. The antipattern’s solution is to
use a dynamic algorithm instead that assigns tasks to queues based on the requirements
of each task and the system’s congestion.

“PIPE AND FILTER” ARCHITECTURES (P&F)

Problem - The slowest filter (component) in a “Pipe and Filter” architecture determines
the overall throughput of the system, violating the respective system requirement for
throughput.

The overall system throughput is determined by the slowest filter and deemed
unacceptable by the system’s performance requirements. In more detail, a bottleneck
is formed due to a filter in the system’s pipeline being significantly slower than all the
others. Only when the slowest filter terminates, the remaining filters can resume or
initiate their workload.

Solution - Use modeling techniques to determine the system’s processing requirements
and apply refactoring actions, targeting the filter(s) responsible for the violation of
these requirements.

The solution to the P&F antipattern is twofold. Dividing long processing filters
into multiple, smaller ones that can execute in parallel to reduce processing time, and
combining short processing filters to reduce context switching overhead and other
delays for shared resources.

Example 2.7. Consider the P&F architecture from Figure 2.7, adapted from [146].
The application of the antipattern can inform the system’s engineers that unbalanced
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Data
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processing filters
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Fig. 2.7: Unbalanced processing in a P&F architecture, adapted from [146]

processing is caused due to filters of unmatched sizes, as shown in the execution graph
of the figure. The colour for each filter indicates its relative processing time. Yellow
colour reflects small processing time, orange colour reflects normal/expected, as per
the system’s requirements, processing time, and red colour reflects long processing time.
The solution obtained from this antipattern analysis is to combine the two filters with
short processing times to reduce overhead, and divide the filter with long processing time
into multiple smaller instances that can execute in parallel, thus improving performance
(as indicated by the notes at the bottom of Figure 2.7).

2.4 Summary

This chapter defined key elements of existing work focusing on system modelling and
analysis techniques, which enable the formal verification of system models, and allow
reasoning about nonfunctional system requirements (e.g, performance). Section 2.2
introduced the concept of probabilistic model checking, whose application can be
found in all main chapters of this thesis, and focuses on the verification of nonfunctional
properties of systems. Specifically, Section 2.2.1 and Section 2.2.2 defined the two types
of probabilistic models (DTMCs and CTMCs) used in our work, and the probabilistic
temporal logics (PCTL and CSL) that allow for the formal specification of properties of
interest over these types of models, respectively. Additionally, we provided an overview
of the most popular probabilistic model checking tools used by both the research
community and industry in Section 2.2.3. Finally, in Section 2.3 we introduced the
concept of performance antipatterns, along with definition of the types of antipatterns
used in Chapters 4 and 5 of this thesis.
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Chapter 3

Probabilistic Analysis of Code
Performance

This chapter introduces a probabilistic program performance analysis (PROPER) method
that circumvents a major drawback of current software performance analysis approaches
at code-level, i.e, the need for executing the code for every platform and usage profile
of interest, and after every change in the code (as described in Section 1.1). To this
end, we automatically derive a discrete-time Markov chain (DTMC) model of the
analysed code, exploiting usage profile information from program logs to calculate the
model’s transition probabilities. Performance concerns such as the execution time or
energy use of individual statements or library function calls are encoded as DTMC
reward structures, and the program performance properties of interest are formalised in
probabilistic temporal logic and evaluated through the probabilistic model checking of
this DTMC. PROPER supports the what-if analysis of program performance in several
scenarios of practical importance:

• before deploying the code on a new platform;

• for an expected change in the usage profile of the software;

• to assess the performance impact of using a new implementation of a function
called by the analysed code.

As discussed later in Section 3.5, PROPER is the first method that uses probabilistic
model checking to automatically evaluate software performance properties at code level.
An approach that uses probabilistic modelling for code-level analysis was proposed
in [69, 70]. However, unlike our PROPER method, this approach addresses the analysis
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of program reliability, uses bounded loop unfolding to handle loops, and therefore can
only perform approximate analysis for programs that contain loops.

The main contributions of the work presented in this chapter are:

• the theoretical foundation underpinning the generation of the PROPER Markov-
chain models;

• a prototype tool that implements our theoretical results, automating the PROPER
synthesis of DTMC models for the performance analysis of Java methods;

• an extensive evaluation of the PROPER method and tool for code from an existing
Java library, Android application, and optimisation algorithm implementation.

We organised the rest of the chapter as follows. Section 3.1 introduces a running ex-
ample used to illustrate the application of our performance analysis method. Section 3.2
presents the PROPER theoretical foundation and our prototype tool, starting with a brief
highlighting of the key steps of the approach. In the first step (Section 3.2.1), a reward-
augmented DTMC model is automatically extracted from the Java code of interest.
The second step (Section 3.2.2), involves the calculation of the transition probabilities
associated with states in the generated DTMC that model the conditional statements
and loops from the code. In the third and final step (Section 3.2.3), probabilistic model
checking is applied to the DTMC model to analyse performance properties of interest.
Finally, we present the evaluation of our program performance analysis method in
Section 3.4, we discuss related research in Section 3.5, and we conclude with a brief
summary in Section 3.6.

3.1 Motivating Example

To illustrate the steps and application of our PROPER method, we consider the
distance1 Java method from the Apache Commons Math library.1 This method
calculates the L1 distance between two points in multidimensional space, which is a
distance metric widely used in applications such as machine learning. As shown in
Figure 3.1, the method receives as input two integer arrays, and checks whether the
arrays have equal length in line 3. An exception is thrown if the arrays have different
lengths (line 4). Otherwise, the absolute distance between the points is calculated using
the Math.abs function (line 11) and is returned in line 14.

1https://commons.apache.org/proper/commons-math/
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1 public static int distance1(int[] p1, int[] p2)

2 throws DimensionMismatchException {

3 if (checkEqualLength(p1, p2) == false) {

4 throw new DimensionMismatchException

5 (p1.length, p2.length); // @cost=7

6 }

7 else {

8 int sum = 0;

9 int i = 0;

10 while (i < p1.length) {

11 sum += Math.abs(p1[i]-p2[i]); // @time=2.5

12 i++;

13 }

14 return sum;

15 }

16 }

Fig. 3.1: Java method distance1 from the Apache Commons Math library

We suppose that the method distance1 is used by an application for which a
detailed log reflecting the method’s usage profile (i.e., the typical combinations of
argument lengths that distance1 is invoked with) is available. Additionally, we
suppose that the application’s developers want to assess:

• the expected cost (i.e., the mean cost) for an invocation of the method, given that
a cost of 7 is incurred each time when the method throws an exception in line 4;

• the method’s expected execution time, if each execution of the statement from
line 11 requires 2.5ns on average.

The annotations ‘@cost=7’ and ‘@time=2.5’ appended as comments to lines 5 and 11,
respectively, are used to specify the two performance properties whose evaluation is of
interest. We assume that the rest of the lines of code from Figure 3.1 take a negligible
amount of time to be executed; thus, they are not annotated with a ‘time’ property.

Instead of annotating each relevant statement of a block of code with a property
value, it is possible to annotate the block of code with the sum of these values. However,
this limits the information that the user can extract about specific lines in the code.
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Fig. 3.2: PROPER program performance analysis

3.2 Approach

As shown in Figure 3.2, PROPER carries out the analysis of the performance properties
of a program in three steps. In the first step, a reward-augmented DTMC model is
automatically extracted from the analysed Java code. To that end, the code is first
annotated with the performance properties of interest by appending a comment of the
form

// @property=value (3.1)

to the Java statements that these performance properties are associated with. In this
PROPER annotation, property can be any one-word label (e.g., ‘cost’ or ‘time’, as
shown in Figure 3.1), and value is a positive quantity such as 7 or 2.5. The same
property label can be added to as many statements as required, e.g., to indicate that a
non-negligible cost or execution time is associated with multiple statements.

The second PROPER step calculates the transition probabilities associated with
the DTMC states that model the conditional statements and the loops from the code.
This calculation is carried out based on the usage profile of the analysed code, taken or
derived from program logs, where we assume that the code is appropriately instrumented
to generate logs containing this information.

The first two steps can take place in parallel as seen in Figure 3.2. The transition
probabilities can be calculated directly from the usage profile of the analysed code (see
Section 3.2.2) and then be added to the resulting DTMC model.

In the third PROPER step, the performance properties of interest, specified in PCTL,
are analysed by applying probabilistic model checking to the DTMC model obtained in
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step 1. To enable this analysis, the transition probabilities of the DTMC are set to the
probability values calculated in step 2.

The three steps of our method and further types of analyses enabled by the DTMC
model are described in detail in the remainder of this section. The PROPER method
is applicable to the performance analysis of single-threaded Java code. The current
version of our PROPER prototype tool can handle the analysis of single Java methods
that use variables declared locally or passed as arguments to the method, and whose
invocations of other methods have no side effects (i.e., do not change the analysed
method’s variables). However, these constraints are only a limitation of the current
implementation: the steps of our method do not impose any of these constraints.

The reason for choosing Java as the programming language of choice for the first
PROPER step is due to the popularity and application of the language in various
domains, such as desktop computing [65], mobile computing [38, 87] and numeric
computing [118], among others. For instance, WorldWind2 is a NASA desktop com-
puting application developed in Java. There is even notable research work aiming at
bringing to safety-critical industry the possibility of using Java [113, 117]. According
to the index published by the TIOBE Programming Community3, Java has consistently
held the number-one slot between 2004 and 2020 [155] for the most used programming
language. The selection of Java does not limit the application of the approach, which
can be used with any other object-oriented language, such as C++ or Python. The
translation of programming constructs into DTMCs for these languages would follow
the same transformation principles. Additionally, PROPER could also be used with
procedural languages, such as C.

PROPER supports the reuse of existing probabilistic models in scenarios where
only the usage profile of the application has changed, and there are no major changes or
introduction of additional code. Changes in the usage profile correspond to changes in
the transition probability calculation (i.e., updating the transition probabilities in the
model). If the value of a property derived from an annotation in the code needs to be
updated, it can easily be done by modifying the model’s rewards structures only, leaving
the probabilistic structure of the Markov chain (states and transition probabilities)
unchanged. Some cases of minor changes in the code can still be addressed without

2A geographic information system that provides graphical access to terabytes of imagery and
elevation models for planets and other celestial objects (https://worldwind.arc.nasa.gov/).

3The TIOBE Programming Community index is an indicator of the popularity of programming
languages (https://www.tiobe.com/tiobe-index/).
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if (condition) {
codeBlock1

}
else {
codeBlock2

}

while (condition) {
codeBlock

}

var = expression

methodCall(args)

return expression
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1− pif
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sub-model
for
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for
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pwhile

1

1− pwhile

end
1

Fig. 3.3: PROPER code-to-model transformation rules

reapplying the model extraction step, and examples of such cases are presented in
Section 3.4.

3.2.1 Probabilistic Model Extraction

The synthesis of the DTMC model is carried out by recursively applying the code-to-
model transformation rules from Figure 3.3. We distinguish between four types of
statements:

1. Assignment statements and method calls (with no side effects) are modelled
using a single DTMC state. This state has one incoming transition (from the
DTMC fragment modelling the previous statement in the code) and one outgoing
transition (to the DTMC fragment modelling the next statement).

2. Conditional statements are modelled using a state with two outgoing transitions,
one to the DTMC fragment modelling the statements from the ‘if’ branch, and one
to the DTMC fragment modelling the ‘else’ branch. The latter DTMC fragment
is empty if the else branch is missing. The derivation of the probability pif from
the program logs is described in the next section.
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Fig. 3.4: DTMC model for the distance1 Java method

3. Loops are modelled using a state with two outgoing transitions, one leading to the
DTMC fragment modelling the statements from the loop body, and one leading to
the fragment modelling the statement that comes after the loop. Additionally, the
outgoing transition of the DTMC fragment modelling the statements from the loop
body leads back to the initial state of the loop. The derivation of the probability
pwhile for the initial state of the loop is described in the next section. Note that we
only focus on ‘while’ loops since other types of loops (e.g., ‘for’ loops) can easily
be converted into ‘while’ loops. PROPER supports the quantitative analysis of
the expected value of a random variable4 associated with a property of interest,
i.e., the first moment of the distribution for this property; this value is computed
by modelling the distribution with a geometric distribution with the same mean.

4. Return statements and exceptions are modelled using a state whose only outgoing
transitions leads to the “end” state of the DTMC. This state, shown in dashed
line in Figure 3.3, has a self-loop transition of probability 1, does not correspond
to any statement from the code, and is used as the sink state for all outgoing
transitions corresponding to final statements from the code.

Example 3.1. Figure 3.4 shows the DTMC obtained by applying these rules to the
Java code from our running example. The statement modelled by each DTMC state is
mentioned under the state, and the states are numbered 0 to 8.

To allow the use of model checkers to analyse its synthesised DTMCs, PROPER
uses the rules from Figure 3.3 to generate these DTMCs in the high-level modelling
language of the PRISM model checker [109], which models a system as the parallel

4Note that the property is analysed as a random variable [37, 165, 169]. It represents the expected
total amount of reward cumulated (over a number of steps, until a set of states is reached, or indefinitely)
or the expected value of a reward structure at a particular instant. A formal definition can be found in
Section 2.2.2.1.
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composition of a set of modules. The state of a module is determined by a set of finite-
range local variables, and its state transitions are specified by probabilistic guarded
commands that modify these variables, and have the form:

[action] guard → e1 : update1 + . . . + en : updaten;

where guard is a boolean expression over all model variables. If the guard is true, the
arithmetic expression ei,1 ≤ i ≤ n, gives the probability with which the updatei change
of the module variables occurs. When the optional label action is present, all modules
comprising commands with the same action must perform one of these commands
simultaneously.

The DTMC produced by PROPER comprises a single PRISM module, and is
generated by the function BUILDMODEL from Algorithm 1. This function takes as
input a Java method, parses its code into an abstract syntax tree ast in line 33, and
obtains the PRISM module commands by invoking the function SYNTHESIS. These
commands—prefixed with the appropriate model preamble assembled in lines 35
and 36, and followed by the model ending built in line 37—are then returned in line 38.
PROPER enables the automated mapping between statements in the code and states in
the resulting DTMC model.

SYNTHESIS starts with a model comprising an empty sequence of commands
(line 3). The model’s guarded commands are then generated by the for loop in lines 4–
29. The iterations of this loop handle one statement from the ast abstract syntax tree at
a time, by using the switch from lines 5–25 to handle each statement according to its
type. The four cases of the switch statement correspond to the four types of statements
described earlier in this section. This part of the algorithm uses the counters stateCtr
and condCtr (initialised in line 1) to keep track of the index for the states and transition
probabilities being generated, respectively.

A single guarded command is generated if the processed statement stmt is an
assignment or a method call (line 7). If stmt is a conditional, a new state with two
outgoing transitions is created (line 9). The first transition, corresponding to the ‘if’
branch of the conditional, points to the next state with a probability pcondCtr. The
second transition, corresponding to the ‘else’ branch (if this branch exists) or to the
statement after the conditional (otherwise), has probability 1−pcondCtr, points to a state
identified (in line 12 if the else branch is missing, or in line 14 otherwise) after the
model commands for the ‘if’ branch are obtained by invoking SYNTHESIS recursively
in line 10. These commands are appended to the model in line 12 if the ‘else’ branch is
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Algorithm 1: DTMC model synthesis (shaded strings indicate literals included
in the model)
1 stateCtr=0, condCtr=0, rewards = ()
2 function SYNTHESIS(ast)
3 model = ‘’
4 for each stmt ∈ ast do
5 switch (stmt)
6 case assignment or methodCall :
7 model += ‘[] s=’ + (stateCtr++) + ‘→ 1:(s’=’ + (stateCtr) + ‘);’
8 case conditional :
9 model += ‘[] s=’ + (stateCtr++) + ‘→ p’ + condCtr + ‘:(s’=’ +

(stateCtr) + ‘)+(1-p’ + (condCtr++) + ‘):(s’=’
10 if _branch_model = SYNTHESIS(stmt.thenStmts);
11 if ¬stmt.hasElseBranch then
12 model += (stateCtr) + ‘);’ + if _branch_model
13 else
14 model += (++stateCtr) + ‘);’ + if _branch_model + ‘[] s=’ +

(stateCtr−1) + ‘→ 1:(s’=’
15 else_branch_model = SYNTHESIS(stmt.elseStmts)
16 model += (stateCtr) + ‘);’ + else_branch_model
17 end
18 case loop :
19 loopStartingState=stateCtr
20 model += ‘[] s=’ + (stateCtr++) + ‘→ p’ + condCtr + ‘:(s’=’ +

(stateCtr) + ‘)+(1-p’ + (condCtr++) + ‘):(s’=’
21 loop_body_model = SYNTHESIS(stmt.loopBody)
22 model += (++stateCtr) + ‘);’ + loop_body_model + ‘[] s=’ +

(stateCtr−1) + ‘→ 1:(s’=’ + loopStartingState + ‘);’
23 case return or exception :
24 model += ‘[]s=’ + (stateCtr++) + ‘→1:(s’=end_state);’
25 end
26 while reward = stmt.getNextReward do
27 rewards[reward.name] += (stateCtr−1,reward.value)
28 end
29 end
30 return model
31 end
32 function BUILDMODEL(method)
33 ast = PARSE(method)
34 model_commands = SYNTHESIS (ast)
35 model_preamble = ‘dtmc’+ ADDVARIABLES(condCtr) + ‘const int end_state

=’ + stateCtr + ‘;\n’
36 model_preamble += ‘module’+ ast.methodName + ‘\n s : [0..end_state] init

0; \n’
37 model_ending = ‘[] s=’ + stateCtr + ‘→ 1:(s’=’ + stateCtr + ‘);\n endmodule’ +

ADDREWARDSTRUCTURES(rewards)
38 return model_preamble + model_commands + model_ending
39 end

missing, or in line 14 otherwise. In the latter case, the commands for the ‘else’ branch
are then generated (line 15) and added to the model (line 16).
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The model commands when stmt is a loop statement are generated in lines 19–22,
by following a similar process to that used for a conditional statement, except that the
last state modelling the loop body has its only outgoing transition leading back to the
first state modelling the loop (line 22). To allow this, the stateCtr value for the first
state of the loop commands is recorded in line 19.

Finally, when stmt is a return or an exception statement, a new model state is
created (line 24). The only outgoing transition of this state points to the end_state of
the model. This state is declared in the model_preamble in line 35 of BUILDMODEL

and is generated in the model_ending in line 37 of BUILDMODEL, after the execution
of SYNTHESIS finishes and the index of this state is known.

To enable the generation of the reward structures for the model, SYNTHESIS records
the reward annotations from all statements (lines 26–28) into the rewards dictionary
initialised in line 1. The reward structures are then included in the model_ending by in-
voking the auxiliary function ADDREWARDSTRUCTURES in line 37 of BUILDMODEL.
Finally, the auxiliary function ADDVARIABLES is invoked in line 35 of BUILDMODEL

to create the variable declarations for all unknown transition probabilities generated by
SYNTHESIS for conditional statements and loops. The format of the reward structures
and variable declarations generated by the two auxiliary functions is illustrated in the
following example.

Example 3.2. Figure 3.5 shows the PRISM-encoded DTMC model generated by Al-
gorithm 1 for the distance1 Java method from our running example. The model
has two reward structures, corresponding to the time and cost annotations from the
Java code in Figure 3.1. The transition probabilities p1 and p2 correspond to the ‘if’
statement and ‘while’ loop from the Java code. Their values depend on the usage profile
of the code, and are determined as described in the next section.

The current version of our PROPER prototype tool supports the analysis of a subset
of Java features and programming constructs, due to the constraints discussed earlier.
The Backus-Naur Form (BNF) found under Section A.1 of the Appendix A provides
a detailed description of the subset’s syntax. This syntax can be easily expanded to
include additional Java features or constructs. The main constraint of the prototype
tool’s current version is the handling of multiple Java methods within the same DTMC
model. This can be addressed by creating a module for each function located inside the
method of interest. The result would be a DTMC model containing multiple modules
for each function that appears in the code, and whose contents can be associated with
properties of interest. However, further experimentation is necessary in order to prove
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1 dtmc
2
3 const double p1;
4 const double p2;
5 const int end_state = 8;
6
7 module distance1
8 s : [0..end_state] init 0;
9

10 [] s=0 -> p1:(s’=1)+(1-p1):(s’=2); //line:3
11 [] s=1 -> 1:(s’=end_state); //line:4
12 [] s=2 -> 1:(s’=3); //line:8
13 [] s=3 -> 1:(s’=4); //line:9
14 [] s=4 -> p2:(s’=5)+(1-p2):(s’=7); //line:10
15 [] s=5 -> 1:(s’=6); //line:11
16 [] s=6 -> 1:(s’=4); //line:12
17 [] s=7 -> 1:(s’=end_state); //line:14
18 [] s=8 -> 1:(s’=8);
19 endmodule
20
21 rewards "cost"
22 s=1 : 7;
23 endrewards
24
25 rewards "time"
26 s=5 : 2.5;
27 endrewards

Fig. 3.5: PRISM model synthesised for the distance1 Java method

the correctness of this extension and is part of the future work as discussed later in
Section 6.2.1 of the thesis.

3.2.2 Transition Probability Calculation

The transition probabilities for the DTMC states modelling conditional statements and
loops are calculated from the usage profile of the analysed code. PROPER requires
a usage profile that provides, for each conditional statement and loop, the (expected)
number of executions of the ‘if’ branch of the conditional statement or of body of the
loop, respectively, over N0 executions of the analysed code. There are multiple ways in
which this usage profile can be obtained:

• directly from the program logs, if the code is instrumented to log this information;
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• through a technique called model counting [22], which can calculate expected
values for these counts from empirical probability distributions of the program
inputs, where these distributions are taken from program logs;

• by Monte Carlo simulation applied to a simplified version of the code, where
the program inputs for the simulation are drawn randomly from logs that reflect
the empirical probability distributions of these inputs. Regarding the validity of
the simplification process, only the statements with no impact on the required
execution counts are removed, i.e., statements that do not affect the code’s op-
erational profile. The code’s simplification is due to the constraints discussed
at the beginning of Section 3.2, following the syntax of the Java subset that our
PROPER prototype tool can handle.

Given a usage profile with these characteristics, consider a set of n ≥ 1 nested
conditional statements and/or loops from the analysed code. If the execution counts for
these conditional statements/loops are N1, N2, . . . , Nn,5 then the transition probability
associated with the i-th conditional statement/loop is calculated as:

pi =


Ni

Ni−1
, if statement i is a conditional

Ni
Ni−1+Ni

, otherwise (if statement i is a loop)
(3.2)

where 1 ≤ i ≤ n. For conditional statements and loops that are not nested within other
conditional statements/loops (such as those from our running example), the number of
executions of the analysed code is used in (3.2), i.e., Ni−1 = N0. Note that the number
of executions of the else branch of a conditional statement is denoted as N′

i , and its
value is obtained by subtracting Ni from the number of executions of the analysed code,
i.e., N′

i = N0 −Ni. For conditional statements that are nested within other conditional
statements/loops N0 in the previous formula is replaced by Ni−1.

Example 3.3. Suppose that the usage profile for the Java method distance1 from
our running example indicates that across N0 = 10,000 invocations of the method, the
if branch of the conditional statement starting in line 3 from Figure 3.1 was executed
N1 = 15 times, and the body of the while loop from lines 10–13 was executed N2 =

254,000 times. Accordingly, the values of the unspecified transition probabilities for
the DTMC model from Figure 3.5 are given by p1 = N1

N0
= 15

10,000 = 0.0015 and p2 =

5For a conditional statement, the count is of the number of executions of the if branch, if this branch
is part of the statement nest, or of the else branch, if this branch exists and is part of the statement nest.
For a loop, the count is of the number of executions of the statements within the body of the loop.
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N2
N′

1+N2
= 254,000

(10,000−15)+254,000 = 0.9621, where N′
1 represents the number of executions of

the else branch starting in line 7 of the Java method from our running example.

The following result shows that the PROPER probabilistic model synthesised in
Section 3.2.1 and instantiated with the probabilities calculated above can be used to
determine the performance properties of the code under analysis.

Theorem 3.1. Given a Java method annotated with a performance property (3.1),
its DTMC D generated by Algorithm 1, and the DTMC transition probabilities (3.2)
calculated for a usage profile of the method, the expected value of a random variable
associated with the property for this usage profile is given by the probabilistic model
checking of the reward property R=?[F s = end_state] over D.

Proof. The performance properties analysed by our PROPER method are additive, i.e.,
if the execution time, cost or resource use under analysis is due to multiple program
statements, the analysis can be carried out by adding up the property values determined
separately for each of these statements. As such, we only need to prove the theorem for
a property that associates a value v > 0 with a single program statement. We consider
the general case where this statement is part of the body of n ≥ 0 nested loops and/or
conditional statements. Given N0 program executions representative for the analysed
usage profile, let Ni ≥ 0, 1 ≤ i ≤ n, be the total number of executions of the n-th such
loop/conditional statement over the N0 program executions.

The relevant part of the DTMC model D generated for the analysed code (i.e., the
part modelling the n loop/conditional statement nest) comprises (a) n nested loop/condi-
tional statement model constructs with the structure from Figure 3.3 and probabilities
pwhile = p1, p2, . . . , pi given by (3.2); and (b) a reward structure that associates the value
v with a state within the innermost of these constructs. As such, the probabilistic model
checking of the reward property R=?[F s = end_state] over D yields the expected reward
value:

r = f1 f2 . . . fn · v, (3.3)

where fi is a multiplicative factor associated with the i-th model construct, 1 ≤ i ≤ n.
For a model construct associated with a loop, this factor is given by

fi = pi(1+ pi(1+ pi(. . .))) = limk→∞

(
pi

1−pk
i

1−pi

)
= pi

1−pi
=

Ni
Ni−1+Ni

1− Ni
Ni−1+Ni

= Ni
Ni−1

(3.4)
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1 public static double power (int n1,

int n2) {↪→

2 while (n1 < 5) {

3 n1 = n1+1;

4 while (n2 < 5 ) {

5 n2=n2+1;

6 }

7 }

8 return Math.pow(n1,n2);

9 }

(a) Java method power

1 dtmc
2 const double p1; const double p2;
3 module power
4 s : [0..4] init 0;
5 [] s=0 -> p1:(s’=1)+(1-p1):(s’=4);//l:2
6 [] s=1 -> 1:(s’=2); //l:3
7 [] s=2 -> p2:(s’=3)+(1-p2):(s’=0);//l:4
8 [] s=3 -> 1:(s’=2); //l:5
9 [] s=4 -> 1:(s’=4); //l:8

10 endmodule
11 rewards "time"
12 s=3 : 1;
13 endrewards

(b) Synthesised DTMC model

Fig. 3.6: Java method power on the left side of the figure, and its synthesised PRISM
model representation on the right side.

due to the repeated execution of i-th loop with probability pi. For a model construct
associated with a conditional statement, the factor is simply fi = pi =

Ni
Ni−1

. Replacing
these factor values in (3.3) gives an expected reward value

r = N1
N0

· N2
N1

· . . . · Nn
Nn−1

· v = Nn
N0

· v, (3.5)

i.e., the mean value of the analysed property for the considered usage profile (because the
value v is associated with a statement executed Ni times across N0 program executions).

The above theorem proves that PROPER can obtain the value of additive reward
properties. Non-additive or reachability properties, such as the probability of reaching a
state n in the model (P=?[F s = n]), could also be used to formalise reliability require-
ments of the code. The current version of our approach only partially supports this type
of property. Specifically, we can obtain the probability of reaching a state inside a Java
method if it does not contain loops; conditional statements are supported. The reason
for this is that calculating the probability of reaching a state inside a loop is different
than the probability of satisfying the loop’s condition, which we already support in
our transition probability calculation step. Preliminary experimentation has shown the
need of expanding the current used models or constructing new ones to support the
calculation of reachability properties.

Example 3.4. We show this limitation using the simple Java method power from
Figure 3.6a, whose associated parametric DTMC model is provided in Figure 3.6b.
Consider now that we want to obtain the probability of reaching state s = 3 in Fig-
ure 3.6b. We start by calculating the values of the transition probabilities p1 and p2
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using the method’s usage profile. Across N0 = 10,000 invocations of the method, the
first while loop starting in line 2 of Figure 3.6a was executed N1 = 13,457 times and
the second while loop from line 4 was executed N2 = 18,375 times. Accordingly, the
values of the transition probabilities are given by p1 = N1

N0+N1
= 13,457

10,000+13,457 = 0.5736

and p2 = N2
N1+N2

= 18,375
13,457+18,375 = 0.5772. The analysis of R =?[F done] yields time =

1.836, as expected. However, the analysis of P =?[F s = 3] yields 0.437, which differs
from the actual value of 0.204 for the probability of reaching the associated line from
the Java method.

3.2.3 Probabilistic Model Checking

In this PROPER step, we use a probabilistic model checker, e.g., PRISM [109] or
Storm [60], to analyse the PCTL-encoded performance properties of interest over the
DTMC synthesised by Algorithm 1, with the probabilities computed in (3.2).

Example 3.5. Consider again our running example (Section 3.1). Determining the
values of the ‘cost’ and ‘time’ properties specified using PROPER annotations in
Figure 3.1 involves the probabilistic model checking of the reward PCTL properties
R{“cost”}=?[F s = end_state] and R{“time”}=?[F s = end_state] over the DTMC
model from Figure 3.5. To carry out these analyses for the usage profile from Example 3,
the unspecified DTMC probabilities need to be initialised such that p1 = 0.0015 and
p2 = 0.9651. The results of these analyses (using PRISM) are cost = 0.0105 and
time = 69.0275.

3.2.4 Further Application Scenarios

Besides supporting the analysis of the performance properties specified by the initial
code annotations, the PROPER DTMC model can be reused for additional analyses
in scenarios encountered in software engineering practice. One such scenario occurs
when a method invocation from the analysed code is replaced with the invocation of a
functionally equivalent method with different performance characteristics.

Example 3.6. The impact of replacing the Math.abs function call from line 11 of
the distance1 Java method from Figure 3.1 with a call to the improved function
FastMath.abs can be analysed using the same DTMC model as in Example 4, after
only updating the reward value from line 25 of the model (see Figure 3.5) to match the
specifications of the new function.

Another scenario in which the DTMC model can be reused is when the code needs
to be deployed on a new hardware platform with different quality attributes. As shown
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by the following example, new quality properties can be analysed in this scenario by
defining new reward structures for the DTMC.

Example 3.7. Suppose that the application using the method distance1 from our
running example needs to be deployed on a smart phone on which its invocations of
checkEqualLength and Math.abs consume 90 and 85 units of energy, respectively. The
expected energy consumption of distance1 can be predicted before actually running
the application on the new hardware, by simply augmenting the DTMC model from
Figure 3.5 with the new rewards structure

rewards "energy"

s=0 : 90;

s=5 : 85;

endrewards

where s = 0 and s = 5 are the DTMC states modelling the statements that use checkE-
qualLength and Math.abs.

3.3 Implementation

To automate the performance analysis of probabilistic programs using PROPER, we
implemented a tool with the architecture in Fig. 3.2. Our PROPER tool uses JavaParser6

to parse the Java code of interest and generate the corresponding DTMC models
(Section 3.2.1). We developed a customised Monte Carlo simulation method in Java to
calculate the transition probabilities (Section 3.2.2) and employ the probabilistic model
checker PRISM [109] to analyse properties of interest (Section 3.2.3). The PROPER
open-source prototype tool, the full experimental results summarised next, additional
information about our approach and the case studies used for its evaluation are available
at https://github.com/is742/PROPER.

3.4 Evaluation

3.4.1 Research Questions

We evaluated PROPER by performing extensive experiments to answer the following
research questions.

6https://javaparser.org
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RQ1 (Accuracy): How accurately does PROPER support the analysis of non-
functional properties of interest? We used this research question to establish if our
method can achieve the same accuracy levels compared to the standard practice of
analysing quality properties of interest via simulation or by running the system in
normal working conditions.

RQ2 (Efficiency): What are the computational overheads of PROPER? We
evaluated the execution time and memory footprint incurred by PROPER and compared
them against the overheads incurred by simulation or real system execution.

3.4.2 Experimental Setup

We applied PROPER in multiple scenarios using Java source-code adapted from four
Java libraries and applications:

1. The distance1 Java method from the Apache Commons Math library7 (see
running example in Section 3.1).

2. The getDevicePerfomanceClass method from the Android messsaging
app Telegram8 (abbreviated ‘devPerf’ in this section). Given a mobile device in
which Telegram operates, this method identifies the specifications of the operating
device and determines its performance class. The performance categories that
a device can be linked with are: low, average and high. In our case study, we
assumed that based on the result returned by this method, Telegram adapts to the
specifications and shifts the performance of some of its features. Additionally,
we introduced a new performance category (very high) to show the applicability
of our approach in cases where additional code is being introduced.

3. The fst method from the Apache Commons Maths library. This method imple-
ments the fast sine transformer algorithm for one-dimensional real data sets.

4. The knapsackDPmethod from a public tutorial series on GitHub.9 This method
is an implementation of the widely used dynamic-programming knapsack algo-
rithm.

Table 3.1 provides an overview of our case studies, along with a list of identified
performance properties of interest, formally expressed in PCTL [85], that can be
evaluated using our tool-supported PROPER method. The Java code for each of the

7https://commons.apache.org/proper/commons-math/
8https://github.com/DrKLO/Telegram/
9https://github.com/eugenp/tutorials/
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Table 3.1: Description of case studies’ models and properties of interest expressed in
both natural language and PCTL.

Case
studies #states #trans. #linesOfcode Performance

property description PCTL

distance1 8 10 16 What is the expected time? R{“time”}= ? [ F s = end_state ]
What is the expected cost? R{“cost”}= ? [ F s = end_state ]

devPerf 17 21 40
What is the expected
energy consumption? R{“energy”}= ? [ F s = end_state ]

fst 30 35 47 What is the expected time? R{“time”}= ? [ F s = end_state ]
What is the expected cost? R{“cost”}= ? [ F s = end_state ]

knapsackDP 18 23 29
What is the expected
energy consumption? R{“energy”}= ? [ F s = end_state ]

What is the expected time? R{“time”}= ? [ F s = end_state ]

above scenarios along with the respective DTMC models, generated by PROPER, can
be found in Appendix A.

For the evaluation of all research questions, we assume that the values of the rewards
of interest linked with a service or state, e.g., cost, execution time or energy consumption,
are obtained from the service provider, and that logs capturing the program’s usage
profile are available. In the distance1 case study, we measure the expected time and
cost associated with the Math.abs method and with throwing the exception, respectively.
In the devPerf case study, we are interested in the expected energy consumption of
running the code, due to an Animations method that sets the level of the application’s
visual quality. Depending on its input mode, each instance of this method is linked
to a different amount of energy (28, 34, 40 or 48). Similarly, in the fst case study,
we measure the expected time associated with the FastMath.sin method (where each
execution takes 1.5 time units), together with the expected cost of reaching any of
the two exceptions (of cost 5 each). Finally, in the knapsackDP case study, we are
interested in the expected energy consumption due to a display method located in the
code (whose executions use 67 units of energy each), and in the expected time associated
with the Math.max method, each invocation of which takes 2 time units.

All experiments were run on a macOS Big Sur Macbook Pro with 2 GHz Dual-Core
Intel Core i5 CPU and 8 GB RAM. The source code, Markov models, data used for
the experimental evaluation and full experimental results are publicly available in our
GitHub repository https://github.com/is742/PROPER.

3.4.3 Results and Discussion

We answer RQ1 by comparing the PROPER results with those produced by simulating
the execution of the programs from Table 3.1 in a realistic environment and with a
suitably instrumented operational profile. To achieve this, we deployed the code of each
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Table 3.2: Comparison in accuracy of results obtained using PROPER and simulation.

Properties PROPER Simulation
distance1 fst knapsackDP devPerf distance1 fst knapsackDP devPerf

R{“tim”}=?[F s=end_state] 2.5 1.14 21.96 N/A 2.5 1.11 21.19 N/A
R{“cost”}=?[F s=end_state] 4.66 1.91 N/A N/A 4.63 1.89 N/A N/A
R{“energy”}=?[F s=end_state] N/A N/A 735.93 30.96 N/A N/A 710.24 31.02

program in a mobile device in the form of a stand-alone application using the Android
studio’s emulator and performed simulation directly on the device.

Table 3.2 shows the results obtained from the verification of properties of interest
using PROPER and simulation. The N/A option in the table refers to the property not
being applicable to that specific case study; thus, no value has been reported. To execute
the PMC step of PROPER (Section 3.2.3), we used the PRISM model checker [109] and
provided as input to the DTMC models the probabilities obtained during the transition
probability calculation step of the approach (Section 3.2.2). Then, we quantified the
properties shown in Table 3.1. To obtain the values from simulation, we performed 104

simulated runs of each case study. The input for the methods during every simulation
was randomly selected from the program’s log. Due to the randomness of selecting data
from the log, the results, as expected, were slightly different every time we performed
the simulation. To alleviate this validity threat (cf. Section 3.4.4) and to increase
the accuracy of simulation results, we created 10 sets of simulated runs of 104 code
executions and calculated the average property values.

As can be seen from the results in Table 3.2, the quality properties evaluated using
PROPER are within 3.5% of those obtained in simulation. The small differences in the
results in Table 3.2 are due to the randomness in simulation. Increasing the number of
simulation runs would reduce further the delta; experimenting further on this research
thread is part of our future work.

Summary for RQ1: These above results confirm the capability of our approach to
accurately analyse performance properties of probabilistic programs without the
need to execute the source code in simulation.

To answer RQ2, we measured the execution time and memory consumption of
running the code in real time with obtaining results using PROPER. To measure
the code’s execution time we used the currentTimeMillis method from Oracle’s Sys-
tem(https://docs.oracle.com/javase) class and for the probabilistic model checking step
of PROPER we used the output log from PRISM [109] to obtain both the time needed
for model construction and model checking for each of the specified properties. We
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Table 3.3: Time and memory consumption comparison between PROPER and simula-
tion.

Properties PROPER Simulation
distance1 fst knapsackDP devPerf distance1 fst knapsackDP devPerf

Execution time (seconds) 0.003 0.005 0.01 0.004 256.2 193.2 2826.6 264.6
Memory consumption (MB) [12-39] [12-36] [12-37] [11-36] [3.4-37.7] [4.3-37.4] [6-49] [2.7-36]

measured the memory consumption using the JavaVisualVM profiling tool which comes
with the Java Development Kit (JDK). Also, we used the method sleep from Oracle’s
Threadclass to simulate a server response time of 2ms for each function invocation.

The experimental results in Table 3.3 show that PROPER is much faster than execut-
ing the code in its operating environment. In terms of memory, PROPER independent
of the case study consumes on average the same amount of memory. With simulation,
however, the knapsackDP method which had a longer execution time than the rest
case studies, showed an increase in the min and max values of used memory too.

Summary for RQ2: The above results reveal PROPER method’s efficiency compared
against the overheads of simulation or real execution, both in terms of execution
time and memory consumption.

Exploitation of PROPER in Engineering Scenarios

PROPER can be a useful tool in helping software engineers making informed deci-
sions in various engineering scenarios. Below we present two modification scenarios
(Scenario A and Scenario B) that frequently occur in the domains of product obsoles-
cence [14] and software modernisation [56].

In Scenario A, software engineers replace one of the external methods used by the
program of interest to optimise the requirements defined during the design phase of
the program. Such a modification may involve, for example, replacing an existing
external method with a faster alternative to reduce response time, or using a less reliable
but cheaper method to reduce the operational cost, provided that the method does not
critically affect the application’s functionality. Since the operational profile of the
application does not change, and given the reward values for the new method by the
service providers in the form of a service-level agreement, we can use PROPER to
quantify quality properties of interest without simulating the code’s execution. This
will not only save time and effort, but it will also enable engineers to verify additional
properties that were not considered during system design.
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Table 3.4: Results obtained using PROPER for two different scenarios. Scenario A:
replacement of a program method with a functionally-equivalent method with different
performance characteristics. Scenario B: Program deployment on a new hardware
platform with different quality attributes.

Properties Scenario A Scenario B
distance1 fst knapsackDP devPerf distance1 fst knapsackDP devPerf

R{“time”}=?[F s=end_state] 1.8 1.67 14.27 N/A 3.2 1.97 30.75 N/A
R{“cost”}=?[F s=end_state] 4.66 1.91 N/A N/A 4.66 1.91 N/A N/A
R{“energy”}=?[F s=end_state] N/A N/A 856.76 26.27 N/A N/A 900.69 35.73

Table 3.4 shows the updated results in bold obtained during Scenario A for the
selected case studies. In distance1 case study, we used the method FastMath.abs
that offered improved execution time (=1.8) instead of Math.abs whose execution time
was 2.5. The expected cost was not affected by this change, as it is associated with
the exception. In the fst case study, we replaced the FastMath.sin method with the
slower (=2.2 per invocation) but more reliable Math.sin method which resulted in a
slight increase in execution time (i.e., 1.14 with FastMath.sin vs 1.67 with Math.sin).
Similarly to distance1, the cost was not affected. The change in the knapsackDP
program affected both the expected time and energy consumption. In particular, we
introduced the faster (=1.3) method FastMath.max instead of the Math.max method,
which resulted in reduced execution time (14.27 vs 21.96). We also updated the display
method to increase performance using a more computationally-expensive method (=78),
which led to increased overall energy consumption (735.03 vs 856.76 before and
after the change, respectively). Finally, in the devPerf program we assumed that
the Animations method was updated to offer better optimisations making use of the
increased number of cores in modern mobile devices (=23,30,35,43). This change
resulted in a decrease of energy consumption (30.96 vs 26.27) in all its invocations.

In Scenario B, software engineers do not make any internal changes in the code;
instead, the application is deployed in a new device with different capabilities and
specifications. Such scenarios may arise when transferring the same software between
mobile devices or when deploying the same software in robotic systems with different
performance, memory, networking and other characteristics (e.g., a robot using a
Raspberry Pi 4 and another using a Raspberry Pi Zero).

Since the applied changes are only external and the operational profile of the
application does not change, we can employ PROPER and obtain the updated values
for the quality attributes of interest. Table 3.4 (Scenario B) shows in bold the updated
values of the performance properties for the four applications assuming that they have
been deployed in a device with reduced hardware performance.
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The experimental results from both scenarios show that PROPER can provide
useful insights on the impact of potential internal changes in the code or external
in the operating environment of an application. The impact of such changes can be
assessed without updating the code or deploying it in the target hardware platform, thus
reducing significantly the effort and cost in analysing performance properties of interest.
These results provide evidence how PROPER can assist software engineers in making
informed decisions.

3.4.4 Threats to Validity

Construct validity threats may arise from the construction of the case studies’ models
based on the selected Java code. To mitigate this threat, all use cases are based on
real-world applications, and the produced models refer to parts of these applications’
source code. The presented case studies are selected from various domains to cover
several types of Java applications, including mobile and desktop computing. While the
selected case studies are indicative of the generality of the approach, more experiments
are necessary for PROPER’s future extensions. For instance, such extensions are needed
to cover cases with additional programming constructs and Java features.

Internal validity threats can originate from obtaining inaccurate results via simu-
lating the code’s execution. To mitigate these threats, we performed simulation up to
104 times. Additionally, we created 10 sets of these simulation runs and calculated the
average of their output values.

External validity threats might be due to the difficulty of representing part of a
Java application’s source code as a DTMC model. To mitigate this threat, we carefully
compared each model to its respective code method, and built an automated imple-
mentation of PROPER to assist us in the code-to-model transformation process. As
previously stated, further experiments are needed to evaluate our method for additional
code samples.

3.5 Related Work

Probabilistic software analysis (PSA) [62] has been used successfully in many domains,
including testing, cryptographic protocols, cyber-physical systems, biology, and reli-
ability analysis [83]. However, to the best of our knowledge, our method is the first
PSA approach that synthesises a probabilistic model (DTMC) directly from source code
to verify properties of interest that appear within the code. The only related work we
are aware of belongs to the areas of software maintenance [17] and software reliability
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analysis [116]. Unlike our approach, research in these areas uses mostly techniques
such as symbolic execution [73, 164] and simulation [80, 88], rather than probabilistic
model checking.

Probabilistic symbolic execution, firstly introduced in [73], is an extension of
symbolic execution that allows probabilistic reasoning. It has been implemented as
an extension of the Symbolic PathFinder system to perform quantitative reasoning,
i.e., the calculation of path probabilities within a program. In order to calculate these
probabilities, model counting techniques [81, 82, 166] have been successfully applied.
Based on this work, the authors of [164] describe a probabilistic environment for
Java that is based on symbolic execution. This framework can handle probabilistic
programming features, such as observe statements, and can be used for the encoding
and analysis of Discrete Time Markov Chains (DTMC), Bayesian Networks, etc. The
main difference between the listed approaches and ours lies in the way that symbolic
execution deals with loop constructs. While a bound is required for the exploration
depth, our approach achieves precise exploration of loops.

Additionally, the approach presented in [69] introduces a general methodology that
uses symbolic execution of source code for extracting failure and success paths that can
be used for probabilistic reliability assessment, against relevant usage scenarios. The
result of symbolic execution is a finite set of paths, each with a path condition. These
paths can either lead to success, failure or can be interrupted by the bounded exploration.
This approach performs reliability analysis directly on source code, in contrast with
most of the current approaches that are limited on architectural level. However, only
reliability has been addressed, and the bounded exploration can potentially lead to loss of
information necessary for nonfunctional property analysis. Our research aims to address
the problem of bounded exploration of loops, and to consider additional nonfunctional
properties, e.g. performance. The research in [70] extends the previous approach, by
building upon the symbolic execution framework, with the aim of computing a precise
numeric characterization of program changes. This leads to the ranking of different
program changes based on their probability of execution and their impact on target
events.

The approach introduced in [171] performs reliability assessment by using software
metrics for reliability modeling which are collected from source codes of post versions.
During the application of the approach, redundant metric elements are filtered out and
the rest are aggregated to represent the module reliability. Moreover, the authors propose
a framework to automatically apply the module value and calculate overall reliability
by introducing formal methods. This work differs from ours, as it uses DTMC models
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built around the control transfer relationship between components and it is not directly
applied on source code. Also, its main focus is only towards reliability assessment in
comparison with our approach which targets multiple nonfunctional properties.

Focusing on simulation based approaches, the project described in [80] develops
simulation procedures to assess the impact of individual components on the reliability
of an application in the presence of fault detection and repair strategies that may be
employed during testing. Additional simulation procedures are also developed to
analyze the application reliability for various operational configurations. While this
approach and ours are similar in the sense that they both achieve precise exploration
of loops, they have clear differences related to the nature of the used verification
method (simulation and probabilistic model checking). Probabilistic model checking
outperforms simulation, which can also be seen in our evaluation, and it can also be
used to verify properties of interest identified at later stages of software development
without the need of re-running the code.

On a different track, [61] introduces two automated reduction methods for prob-
abilistic programs that operate purely on a syntactic level. The aim of this research
is to address the need of reduction methods to automatically generate probabilistic
models for reliability analysis, which turned out to either being not feasible due to
memory constraints or where the reliability analysis exceeds reasonable time limits.
The approach proposed in [88] implements an adaptive framework of incorporating
path testing into reliability estimation for modular software systems. Three estimated
methods based on common program structures (sequence, branch, loop) are proposed
to calculate the path reliability. The derived path reliabilities can be applied to the
estimates of software reliability. Both of these approaches differ from ours as they focus
on the verification of reliability related properties and use bounded exploration of loops,
whereas our approach focuses on model generation from source code with the ability to
verify various nonfunctional properties and deal with bounded exploration of loops.

The nonfunctional property analysis techniques are not limited at code-level, with
many existing approaches focusing at system architecture-level. The following research
work belongs on the second category. An overview of all listed approaches in this
section can be seen in Table 3.5.
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3.5 Related Work

Table 3.5: Overview of related research

Approach Type of analysis Input Models Properties Loop handling Tool support
Architecture-based approaches

Synthesis and
quantitative

verification [35]

Probabilistic
model checking

Architectural
style and
elements

DTMCs Reliability,
performance,

cost

N/A N/A

Improving
self-adaptation
planning [71]

Probabilistic
model checking

Software
architecture in
the form of an

ADL

DTMCs Reliability N/A N/A

Exploiting
traceability

uncertainty [160]

Mean value
analysis (MVA)
and simulation

Annotated
software

architectural
model

Queueing Network
(QN) models

Performance,
security

N/A Yes

Model-based
verification of
quantitative

properties [79]

Probabilistic
model checking

Variable
sequence

diagrams (SDs)

DTMCs Reliability,
energy

consumption

N/A Yes

Performance and
reliability analysis

[49]

COBRA [140]
and PRIMA [47]
methodologies

UML diagrams
(use case,
sequence,

deployment)

Model driven
architecture

(MDA) models

Reliability,
performance

N/A N/A

Code-based approaches
Quantification of
software changes

[70]

Model counting,
symbolic
execution

Java code Symbolic
execution tree

Reliability Bounded
exploration

depths for loop
structures

Symbolic
PathFinder

(SPF)

Probabilistic
programming for

Java [164]

Model counting,
symbolic
execution

Java code Symbolic
execution tree

Reliability Bounded
exploration

depths for loop
structures

Probabilistic
extension of

symbolic
PathFinder

(SPF)
Reliability
analysis in
symbolic

Pathfinder [69]

Model counting,
symbolic
execution

Java code Symbolic
execution tree

Reliability Bounded
exploration

depths for loop
structures

Symbolic
PathFinder

(SPF)

Probabilistic
symbolic

execution [73]

Model counting,
symbolic
execution

Java code Symbolic
execution tree

Reliability Bounded
exploration

depths for loop
structures

Probabilistic
extension of

symbolic
PathFinder

(SPF)
Reduction

methods [61]
Probabilistic

model checking
SIMULINK

models
DTMCs Reliability Bounded

exploration
depths for loop

structures

Yes

Structure-based
software reliability

model [171]

Reliability
calculation based

on module
parameters and
expression forms

Control transfer
relationship

between
components

DTMCs Reliability N/A Yes

Structure-based
software reliability

analysis [80]

Simulation Methods in C
programming

language

Nonhomogeneous
continuous-time
Markov chains
(NHCTMCs)

Reliability Precise
exploration of

loops

N/A

An Adaptive
Reliability

Analysis [88]

Simulation, path
reliability

calculation

Control flow
graph

Markov processes Reliability,
Criticality

Bounded
exploration

depths for loop
structures

N/A

Our approach
Probabilistic

analysis of code
performance

Probabilistic
model checking

Java code DTMCs/
pDTMCs

Performance,
cost, energy
consumption

Precise
exploration of

loops

Yes

The approach proposed in [35] combines synthesis of spaces of system design
alternatives from formal specifications of architectural styles with probabilistic formal
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verification. Additionally, the work presented in [71] introduces an improvement
to the planning stage of self-adaptive systems by predicting the outcome of each
adaptation strategy. Specifically, a stochastic model is derived from a formal architecture
description of the managed system with the changes imposed by each strategy. This
information is then used to optimize the self-adaptation decisions to fulfill the desired
quality goals.

The approach introduced in [160] aims to automate the traceability between software
architectural models and extra-functional results by investigating the uncertainty while
bridging these two domains. This approach makes use of extra-functional patterns and
antipatterns, to deduce the logical consequences between the architectural elements
and analysis results. By building a graph of traces, it becomes possible to identify the
most critical causes of extra-functional flaws. The model-based approach described
in [79] enables software engineers to assess their design solutions for software product
lines in the early stages of development. A nonfunctional MDA framework (NFMDA)
is considered in [49]; it embeds new types of model transformations that allow the
generation of quantitative models for nonfunctional analysis. By using the framework
with two methodologies, one for performance analysis and one for reliability assessment,
an illustration of the relationships between nonfunctional models and software models
is achieved.

The approaches mentioned above differ from ours as they target the software system
at the architectural level and do not provide insights on the nonfunctional properties
existing at code-level. However, they include a wider variety of verifiable properties in
contrast to the code-level approaches, which are mainly focused towards reliability. Our
approach is similar to the architecture-based approaches in terms of variety of identified
properties.

3.6 Summary

We presented PROPER, a tool-supported method for the formal analysis of performance
properties of the components of a software system. PROPER synthesises a DTMC using
code annotated with performance properties of interest (e.g., timing, resource use, cost),
calculates the transition probabilities of the DTMC using program logs, and executes
probabilistic model checking to quantify these properties. We evaluated PROPER on
four applications and demonstrated how it can support the performance analysis in
scenarios involving changes in hardware platforms, function libraries or usage profile.
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Chapter 4

Software System Analysis and
Refinement Using Performance
Antipattern Profiles

Over the last two decades, research highlighted the importance of integrating quantita-
tive analysis in the software development process, in order to ensure that nonfunctional
requirements have been met [50]. Prominent techniques in this area, such as perfor-
mance antipatterns [144] and probabilistic model checking [95], have been extensively
applied to enable the analysis of performance properties of software systems, and to
support refactoring when requirements are violated.

While approaches enabling this type of analysis do exist [6, 26, 74], they are
typically applicable only in cases where the SUD operational profile is known and
does not exhibit changes over time. However, many of today’s systems operate under
uncertainty, often in the safety-critical domain. Thus, it is necessary to ensure that the
system can continue to achieve its performance objectives and to identify any possible
operational space areas where this might not be the case.

In this chapter, we introduce a novel performance analysis and refactoring approach
that addresses this need. The new approach considers the uncertainty in the operational
profile of a system under development by identifying the performance antipatterns
present in predefined operational profile regions. These regions capture aleatoric
and epistemic operational profile uncertainties due to unavoidable changes in the
environment (e.g., workload variations) and to insufficiently measured environment
properties (e.g., CPU speed), respectively.
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A few existing solutions [2, 31, 66] employ sensitivity analysis to assess the ro-
bustness of software to variations in its operational profile. However, these solutions
are incapable of capturing major operational profile changes like our approach, and
therefore focus on establishing the effect of small operational profile variations on the
performance of the SUD. In contrast, our new approach provides a global perspective
on the performance antipatterns associated with a wide range of operational profiles.
This perspective enables software engineers to identify operational profile regions in
which their SUD is likely to require refactoring, and supports the selection of suitable
refactoring actions for such regions.

The main contributions of the approach presented in this chapter are:

1. We introduce the concept of a performance antipattern profile (i.e., a “map”
showing the antipatterns present in different regions from the operational pro-
file space of a SUD), and a method for synthesising such profiles for systems
comprising a mix of internal and external software components. We define as
internal the components of a system that are deployed on the servers of the organ-
isation or company that owns the system. External components are the system’s
components that are supplied by third-party providers, and therefore cannot be
modified; they can only be replaced with other components that provide the same
functionality.

2. We present a tool-supported approach that uses our performance antipattern profile
synthesis method, and we define best practices for refactoring the architecture of
a SUD using performance antipattern profiles.

3. We demonstrate the application of our approach for a software system comprising
a combination of internal (i.e., in-house) components and external (i.e., third-
party) services.

The remainder of this chapter is organized as follows. Section 4.1 introduces a
software system that we use to illustrate the application of our approach throughout
this chapter. Section 4.2 presents the new approach for the performance analysis and
refactoring of software systems, and Section 4.3 provides a description of the approach’s
implementation to support the automated synthesis of antipattern profiles. Section 4.4
describes its application to the service-based system from our motivating example.
Section 4.5 compares our solution with existing approaches. Finally, Section 4.6
summarises the benefits and limitations of our approach, and suggests directions for
future work.
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Order

normal modeexpert mode

objectives
satisfied

error

objectives
not met

Notification

Alarm

Market
Watch

Analysis
FundamentalTechnical

Analysis

end

perform
transaction

Fig. 4.1: Workflow of the foreign currency trading system (FX). The internal compo-
nents of the system are depicted in blue colour and the external services in red.

4.1 Motivating Example

To illustrate the application of our approach, we consider a heterogeneous software
system comprising both internal components and external services. We assume that
the internal components are deployed on the private servers of the organisation that
owns the system. As such, the architecture and resources of these components can
be modified if needed. In contrast, the external services are accessed remotely from
third-party providers and cannot be modified. These services can only be replaced with
(or can be used alongside) other services that are functionally equivalent but may induce
different performance.

4.1.1 System Description

The system we use as a running example is adapted from [34, 75] and comes from the
foreign exchange trading domain. The workflow implemented by this “FX” system is
shown in Figure 4.1, and involves handling requests sent by currency traders.

The user of the FX system (also known as trader) can choose between two operation
modes. In the so-called “expert” mode, a loop is executed by the system that enables
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the analysis of market activity, which identifies patterns that satisfy the objectives set by
the trader. If the objectives are met, the system automatically completes the respective
trade(s). In more detail, the “market watch” service extracts real-time exchange rates of
selected currency pairs. The data obtained from “market watch” is then supplied to a
“technical analysis” service that assesses the current trading conditions, considers the
possible scenarios of future price movements, and determines whether the objectives
set are (a) satisfied; (b) not satisfied; or (c) not satisfied with high variance. In the first
case, an “order" service is invoked to finalise the trade. In the second case, “market
watch" is re-invoked, and in the last case, an “alarm” service is invoked to inform
the trader about errors or opportunities not covered by the current objectives. In the
“normal” mode, FX evaluates the profile of a country from an economic perspective
using a “fundamental analysis” service that enables the collection and analysis of
information such as economic data and news reports, and concludes to an evaluation
of the country’s currency. The outcome of this assessment can also lead to the “order”
service’s invocation to buy or sell currency initiated by the trader, and a “notification”
service confirms the trade’s completion.

In line with the system’s description, two types of requests are possible: requests
that must be handled in “expert” mode, and requests handled in “normal” mode. The
request type determines whether the system starts with a “fundamental analysis” (FA)
operation or a “market watch” (MW) operation. Both of these operations use external
services. “Technical analysis” (TA) is an operation provided by an internal component.
As mentioned above, TA’s assessment could result in case (c), i.e., an internal “alarm”
operation is triggered to inform the user about this outcome. The optimal results of
either technical or fundamental analysis (satisfied objectives/trade acceptance) lead to
the execution of an external “order” operation that completes the trade, and is followed
by an internal “notification” operation that confirms the successful completion of the
workflow.

4.1.2 External Services

For the operations executed using external services, multiple services can be used
as equivalent alternatives or in some combination deemed suitable. Given n > 1
functionally equivalent services, three options for combining them are possible:

• Sequential (SEQ): first invoke service 1; if the invocation succeeds, use its
response; if it fails, then invoke service 2, etc., until service n is invoked, if
needed. This option improves reliability, but it does not benefit performance.
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• Parallel (PAR): invoke all n services at once, and use the first result that comes
back. This option improves both reliability and performance, but it is expensive.

• Probabilistic (PROB): invoke one of the n available services, selected based on a
discrete probability distribution. This option improves the average reliability and
response time by invoking an expensive service once in a while.

Therefore, we need to choose a “good” option (i.e., one that enables the system to
satisfy its performance requirements) starting from information about the performance
characteristics shown by each of these services, which we assume known from either
the service-level agreement (SLA) published by the providers of these services, from
our observations, or from both. Additionally, we assume that all these services already
satisfy the functional requirements.

4.1.3 Internal Components

The internal operations are executed by software components belonging to the or-
ganisation that “owns” the system, and are running on their private physical servers.
We assume that technical analysis (TA) has a much more significant impact on the
performance of the system compared to the other two in-house components (alarm
and notification), which require only modest resources. Consequently, it is necessary
to identify possible antipattern-driven refactoring actions for the TA component, to
ensure that the system operates with an optimal performance. If and when needed,
the refactoring actions we consider are: (i) duplicate the TA software component and
load balance the incoming requests among the two TA instances; or (ii) replace the TA
instance with a faster one. These actions will increase the cost, but may be needed to
satisfy the performance requirements of the system.

4.1.4 Operational Profile Parameters

Several parameters of the system are outside the control of its developers. These param-
eters represent the operational profile of the system. For our FX system, they include
the probability that a user request needs expert-mode handling, and the probability of a
transaction being performed after the execution of the fundamental analysis operation
(cf. Figure 4.1). The choice of these parameter ranges reflects, for instance, the engi-
neers’ expectation about a particular deployment of the system, numerical values will
be provided in Section 4.4.
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Fig. 4.2: Performance analysis and refactoring using antipattern profiles

4.2 Approach

As shown in Figure 4.2, our approach to performance analysis and system refactoring
comprises five steps. In step 1, a model representation of the system of interest is
developed with an emphasis on its performance characteristics. This step needs to be
performed by an engineer with expertise in performance modelling, and its output is a set
of parametric performance models which are instantiated, in step 2, for combinations of
parameter values covering the system’s entire operational profile space. The instantiated
performance models are then analysed in step 3 to establish the performance indices
related to all considered combinations of operational profile parameter values. In step 4,
the performance indices along with a portfolio of antipattern detection rules are used
to identify the occurrence of performance antipatterns for different combinations of
parameter values. Finally, step 5 determines the need for refactoring actions, based on
whether performance antipatterns are present or not in areas of the operational profile
space where the system is expected to operate.

4.2.1 Modelling

Starting from an initial system design proposed by a software engineer, step 1 involves
modelling the performance characteristics of the system across its entire operational pro-
file space (i.e., for all possible values of the operational profile parameters). As such, the
performance models produced by the modelling step are parametric models—models
containing (uninstantiated) parameters like the probabilities of receiving different types
of user requests. Our approach is not prescriptive about the type of performance models
that can be used in its modelling step. However, these models must be able to capture
the uncertainty associated with the operational profile of the system. Therefore, in
this approach we use parametric discrete-time and continuous-time Markov chains
(parametric DTMCs and CTMCs).
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ctmc

//Parameters of the FX model
const double pObjNotMet;
const double pObjSatisfied;
const double pObjNotMetHighVar = 1-pObjSatisfied-pObjNotMet;
const double pExpertMode;
const double pFAMode = 1-pExpertMode;
const double pPerformTransaction;
const double MWsucc;
const double FASucc;
const double OrderSucc;
const double MWrate;
const double FARate;
const double OrderRate;
const double reqRate;
const int nthreads;
const int MAX_QUEUE_SIZE;
const double ta1Rate;
const double alarmRate;
const double notifRate;
const double internalOpRate;

Fig. 4.3: Parameters of the parametric CTMC model (FX)

In the case of our example, we construct parametric DTMCs to model the external
services used by the FX system (Figure 4.1), namely market watch, fundamental analysis
and order, and parametric CTMCs to model the system in its entirety.

Figures 4.3–4.7 depict a parametric CTMC modelling the system’s (initial) architec-
ture. As seen in Figure 4.3, the parametric CTMC model contains a set of parameters
that are later instantiated in step 2 of the approach (Section 4.2.2) and correspond to
the probabilities of following a path within the system (i.e., pObjNotMet, pObjSatis-
fied, pObjNotMetHighVar, pExpertMode, pFAMode, pPerformTransaction), the service
rates of each of the internal components and external services (i.e, MWrate, FARate,
OrderRate, ta1Rate, alarmRate, notifRate), the invocation probabilities for each of
the external services (i.e, MWsucc, FASucc, OrderSucc), the arrival rate of incoming
requests (i.e., reqRate), the number of system threads (i.e, nthreads), the service rate for
internal operations (i.e, internalOpRate), and the size of the queue handling incoming
requests (i.e, MAX_QUEUE_SIZE).

The model consists of a RequestQueue module (Figure 4.4) that handles the incom-
ing requests, a main module Workflow1 (Figure 4.5) that performs the FX system’s
main functionalities, and a TA1 instance module (Figure 4.6) that, as an instance of
the TA internal component, is responsible for executing TA’s functionalities when
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module RequestQueue
q : [0..MAX_QUEUE_SIZE] init 0;

[NewReq] true -> reqRate:(q'=min(q+1,MAX_QUEUE_SIZE)); //req
arrival: increase req queue size (or drop request)

[ServeReq1] q>0 -> internalOpRate:(q'=q-1); //thread 1 serves
request

endmodule

Fig. 4.4: Request queue of the parametric CTMC model (FX)

invoked. Note that the number ‘1’ following the names of the modules Workflow1 and
TA1 indicates the thread and instance number, respectively. In our experimentation in
Section 4.4, we cover cases where models are constructed with multiple threads and TA
instances. An example of such model can be seen in Section B.2 of Appendix B.

The Workflow1 module (Figure 4.5) models the main workflow of the FX system as
follows. Starting from the initial stage, a request is extracted from the queue (Figure 4.4)
and its type is established, namely expert or normal mode. In the former case, the MW
external service is invoked with a service rate and a probability of success. If the MW
invocation succeeds, an instance of the TA component is then invoked if it is not already
in use (Figure 4.6). While waiting for the execution of the TA instance to be completed,
its outcome will determine the next steps of the workflow. If the objectives set are
satisfied, then the order external service is invoked to proceed with the trade. Following
the trade’s successful completion, the notification internal component notifies the user
with an appropriate message. If the objectives are not satisfied, MW is re-invoked and
the process is repeated until a trade that satisfies the objectives has been reached. There
is also a case in which the objectives are not satisfied but with a high variance. In this
case, the alarm internal component is triggered and informs the user about this variance
from the objectives set. This operation concludes the different cases within the expert
mode branch. In the latter case of normal mode, the FA operation is initiated with the
invocation of associated external services. This operation can also lead to a potential
trade which, if successful, initiates the invocation of both the order external service and
the notification internal component.

The reward structures defined in the CTMC model are related to properties of interest
and associated with the system’s requirements. For example, the information we can
obtain from the verification of the rewards as depicted in Figure 4.7, within a specified
number of T time-steps, is the number of dropped requests (i.e, droppedRequests),
the number of handled requests (i.e., numOfReqsHandled), the number of invocations
for each of the internal components and external services (i.e., MWcount, Notifcount,
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module Workflow1
s1 : [0..9] init 0;

//1. Extract request from queue & establish request type
[ServeReq1] s1=0 -> pExpertMode:(s1’=1) + pFAMode:(s1’=8);

//2.1. EM request - invoke ext. service(s) for the MW operation
[] s1=1 -> MWsucc*MWrate:(s1’=2) + (1-MWsucc)*MWrate:(s1’=9);

//2.2. Invoke internal component for the TA operation
[TA1Invoke1] s1=2 -> 1:(s1’=3); // invoke TA instance 1
[TA1Exec1] s1=3 -> pObjSatisfied:(s1’=6) + pObjNotMet:(s1’=1) +
pObjNotMetHighVar:(s1’=4); // wait for TA to complete

//2.3. Invoke internal component for the Alarm operation
[] s1=4 -> alarmRate:(s1’=5);

//2.4. Done - successful outcome
[] s1=5 -> internalOpRate:(s1’=0);

//2.5. Invoke external service(s) for the Order operation
[] s1=6 -> OrderSucc*OrderRate:(s1’=7) + (1-OrderSucc)*OrderRate:(
s1’=9);

//2.6. Invoke internal component for the notification operation
[] s1=7 -> notifRate:(s1’=5);

//3. FA request - invoke ext. service(s) for the FA operation
[] s1=8 -> FASucc*FARate*pPerformTransaction:(s1’=6) + FASucc*
FARate*(1-pPerformTransaction):(s1’=5)+(1-FASucc)*FARate:(s1’=9);

//4. Done - unsuccessful outcome (ext.-service invocation failed)
[] s1=9 -> internalOpRate:(s1’=0);

endmodule

Fig. 4.5: Main workflow of the parametric CTMC model (FX)

Alarmcount, FAcount, Ordercount, servedTA), the processing time of the system (i.e.,
processingTime), the number of failed invocations for the external services of the system
(i.e, extFails), the number of served requests (i.e., served), the length of the queue (i.e.,
qLen), and the time required for invoking and executing the TA component (i.e., taTime).

The information available about the external components of a system is usually
very limited, e.g., it is typically not possible to know how a third-party web service is
organising its request buffering, how many threads it uses or how many clients send
requests to it. As such, it is not possible to develop detailed models of the behaviour
of these components. However, simpler models are useful for determining important
characteristics such as probabilities of successful invocation and expected response
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// Internal component Technical Analysis, instance 1
module TA1

t1 : [0..1] init 0;
[TA1Invoke1] t1=0 -> internalOpRate:(t1’=1);
[TA1Exec1] t1=1 -> ta1Rate:(t1’=0);

endmodule

Fig. 4.6: Internal TA instance of the parametric CTMC model (FX)

// Reward structures
rewards "droppedRequests"
[NewReq] q=MAX_QUEUE_SIZE : 1;

endrewards

rewards "numOfReqsHandled"
[NewReq] q<MAX_QUEUE_SIZE : 1;

endrewards

rewards "MWcount"
[] s1=1 : 1;

endrewards

...

rewards "Ordercount"
[] s1=6 : 1;

endrewards

rewards "served"
[ServeReq1] true : 1;

endrewards

rewards "extFails"
s1=9 : 1;

endrewards

rewards "processingTime"
s1>0 : 1;

endrewards

rewards "qLen"
true : q;

endrewards

rewards "servedTA"
[TA1Invoke1] true : 1;

endrewards

rewards "taTime"
s1=2 : 1;
s1=3 : 1;

endrewards

Fig. 4.7: Reward structures of the parametric CTMC model (FX)

times. We provide such models for the external services used by the FX system from
our motivating example in Section B.1 of Appendix B.

4.2.2 Model Instantiation

Step 2 of the approach instantiates the parametric performance models for combinations
of parameter values covering the entire operational profile space. As regularly done,
e.g., in the so-called “experiments” performed using the probabilistic model checker
PRISM, a suitable discretization of any continuous parameters of the model needs to be
used for this purpose. This requires knowing the value ranges that the parameters have
when the system is deployed, and deciding the granularity of the discretisation.

The main aim of instantiation in our approach is to select values for the system’s
parameters that cover its entire operational profile space, enabling the antipatterns’
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detection (Section 4.2.4) in regions where the system operates or is expected to operate.
There is notable work in the literature on parameter synthesis [59, 93] and on determin-
ing optimal parameter settings [151], i.e., which instantiation meets a given objective
the best.

For example, the probabilistic model for the FX system from our motivating example
has six continuous parameters—pOb jNotMet, pOb jSatis f ied, pOb jNotMetHighVar,
pExpertMode, pFAMode and pPer f ormTransaction, and we considered the range of
possible values [0.01,0.99] for each of these parameters. A possible discretisation for
these intervals (which we used in our experiments) involves assigning to each parameter
values starting from the lower bound of their ranges to the upper bound with a step
of 0.1 for pExpertMode and 0.1 for pPer f ormTransaction. For pFAMode, which is
defined as 1− pExpertMode, the assignment of parameter values starts from the upper
bound of its range to the lower bound with a step of 0.1. The rationale behind choosing
0.1 as a stating value for the above parameters and their increment with a step of 0.1 was
to cover the entire operational profile space of the system. The reason for not choosing
a smaller step value was due to our experimentation with smaller values reporting
no variations in the results. For pOb jSatis f ied and pOb jNotMet we did not explore
their whole range, but bounded their values under three cases: {(0.21),(0.48),(0.98)}
and {(0.78),(0.01),(0.01)}, respectively. Consequently, for pOb jNotMetHighVar,
which is defined as 1− pOb jSatis f ied − pOb jNotMet, the values of the three cases
are {(0.01),(0.51),(0.01)}.

The number of model instances produced in this step can potentially be very high,
e.g. for our motivating example we ended up with 30 model instances. This means that
the granularity of the discretisation needs to be adjusted so that it is lower when the
model has large numbers of parameters, which will impact the accuracy of the analysis
from the next step.

4.2.3 Model Analysis

The performance models are then analysed in step 3 to compute the performance indices
corresponding to all considered combinations of operational profile parameter values.
Existing analysis tools suitable for the adopted type of performance models need to be
used in this step–in the case of our DTMC and CTMC models, a probabilistic model
checker such as PRISM [109] or Storm [60].

In this analysis step we choose to verify a number of system and component related
properties for the CTMC model from Figures 4.3–4.7 that are used in the following
sections to identify the occurrence of performance antipatterns across the operational
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profile of the system. These properties capture information about the performance and
operation of both the overall system and the individual components comprising it. For
the FX system from our motivating example, these properties included:

(P1) R{“droppedRequests”}=?[C <= T ]/T

Desc.: The dropping rate of requests by the queue in T time-steps.

(P2) R{“served”}=?[C <= T ]/T

Desc.: The service rate of requests in T time-steps.

(P3) R{“processingTime”}=?[C <= T ]/R{“served”}=?[C <= T ]

Desc.: The system’s average processing time in T time-steps.

(P4) (R{“qLen”}=?[S]/nthreads+1)∗R{“processingTime”}=?[C <= T ]/
R{“served”}=?[C <= T ]

Desc.: The system’s average response time in T time-steps.

(P5) (R{“qLen”}=?[S]/nthreads+1)∗R{“taTime”}=?[C <= T ]/
R{“servedTA”}=?[C <= T ]

Desc.: TA’s response time in T time-steps.

(P6) R{“Cname_count”}=?[C <= T ]/T

Desc.: Invocation rate of internal/external components (per time unit).

(P7) R{“Cname_count”}=?[F s1 = 5 | s1 = 9]

Desc.: Number of internal/external component invocations (per request).

(P8) P =?[“Path”U “Path_End”]

Desc.: The probability of executing a path of the system (i.e, a sequence of states
in the model until the state specified as final has been reached).

In these properties, T is the number of time-steps, Cname_count refers to any of the in-
ternal components or external services of the system (e.g., MWcount), Path refers to the
components of that path (and their corresponding states), e.g., “MWTAOrNoPath” =
(s1 = 0 | s1 = 1 | s1 = 2 | s1 = 3 | s1 = 6 | s1 = 7), and Path_End refers to the last state
of that path; e.g., in the previous example s1 = 7. Example graphs for some of these
properties, generated while varying the operational profile parameters of the system,
can be found in Section B.3 of Appendix A.

90



4.2 Approach

4.2.4 Antipattern Profile Generation

Step 4 of the approach is using the performance indices and a portfolio of antipattern
detection rules to identify the performance antipatterns that occur for different combina-
tions of parameter values. This step produces a series of maps that show the distribution
of such antipatterns across the operational profile space, thus highlighting problematic
(from a performance viewpoint) areas.

4.2.4.1 Antipattern Detection Rules

The concept of Performance Antipattern has been introduced several years ago [149] to
define bad design practices that can induce performance problems in software systems.
This concept has been later formalized in First-Order Logics [51] and then employed,
in the context of Software Performance Engineering processes, for the purpose of
automating the detection and solution of performance problems [138]. More information
regarding the concept of performance antipatterns along with definitions for the ones
used in this chapter can be found in Section 2.3.

Inspired by the formalization provided in [51], we have here bounded the detection
rules of three performance antipatterns to the modeling and analysis context of this
approach. This binding is indeed required for any context, due to specificities and
possible limitations of the notations adopted. In our case, Markov models of service-
based software systems, on one hand, offer the advantage of easy analysis of component
and system properties of interest and, on the other hand, suffer of lack of separation
between software and hardware parameters. The latter are in fact implicitly taken into
account in execution rates of operations.

Hereafter we report the formalization of the performance antipattern detection rules
that we have used in this approach, while their parameters are defined in Table 4.1,
where we also specify whether each parameter is available for external services (‘EXT’),
for internal components (‘INT’), or for both (‘EXT/INT’).

- BLOB

General description

It occurs when a component performs most of the work of an application,
thus resulting in excessive components’ interactions that can degrade
performance.

Internal components

(InvReq > AvgInvReq)∧ (Util >UtilT hresh)∧ (Util > AvgUtil)
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Table 4.1: Detection rule parameters.

Variable Scope Description
InvReq EXT/INT Number of invocations per request

AvgInvReq EXT/INT Average number of invocations per request
InvTime EXT/INT Number of invocations per time unit

AvgInvTime EXT/INT Average number of invocations per time unit
ServRate INT Service rate

Util INT Utilization
AvgUtil INT Average utilization

UtilThresh INT Fixed utilization threshold
RespTime EXT Response time

AvgRespTime EXT Average response time
PathProb EXT/INT Probability of path execution

AvgPathProb EXT/INT Average probability of path execution
PathProbThresh EXT/INT Fixed threshold for probability of path execution

External components

InvReq > AvgInvReq

- CONCURRENT PROCESSING SYSTEMS (CPS)

General description

It occurs either when too many resources are dedicated to a component
(MAX) or when a component does not make use of available resources
(MIN).

Internal components

MAX - (Util >UtilT hresh)∧ (Util > AvgUtil)

MIN - (Util <UtilT hresh)∧ (Util < AvgUtil)

External components

MAX - PAR pattern∧ (RespTime > AvgRespTime)

MIN - PAR pattern∧ (RespTime < AvgRespTime)

- PIPE AND FILTER (P&F)

General description

It occurs when the slowest filter in a “pipe and filter” architecture
causes the system to have unacceptable throughput.
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Internal and External components

(InvTime > AvgInvTime)∧ (PathProb > PathProbT hresh)∧
∧ (PathProb > AvgPathProb)

We remark that, in our context, the rules for detecting a specific antipattern on
internal components may differ from the ones defined for external services. This is
because the parameters available for external services are obviously more limited than
those of the internally developed components. For example, the whole response time
(i.e., service plus waiting time) of an external service is usually negotiated in a service-
level agreement, but it is difficult to isolate the net service time contribution to it, due to
lack of control on the execution platform and the amount of resources dedicated to the
service by the provider. Both indices can instead be estimated for internal components.
As a consequence, wherever the service time (or any derived index like utilization)
appears in a detection rule, the corresponding predicate has to be skipped/modified
for external services. For this reason, in our case BLOB and CPS antipatterns have
different rules when applied to internal components or external services because, as
reported in Table 4.1, utilization cannot be estimated for the latter ones. In the BLOB
case, the predicates including utilization for internal components are simply skipped in
the external service formulation, because no other predicate would make sense there.
Instead, in the CPS case, the predicates on utilization have been replaced with similar
ones on response time for external services, because the CPS definition is compliant
with this modification.

We highlight that all predicates include parameters that evidently change across
different areas of the system operational profile (e.g., InvReq, Util), hence we expect
that the occurrences of the corresponding antipatterns vary. The only exceptions are
the CPS rules for external services, because their parameters and thresholds do not
depend on the operational profile. Such rules refer to the response time that, for these
components, is based on service level agreement, and thus it cannot vary with the
operational profile. This will evidently reflect on our experimental results, where CPS
on external services will appear either everywhere or nowhere in the operational profile
space.

As previously mentioned, in our approach we focused on the detection of three
performance antipatterns. However, we expect that the approach can be used with any
combination or all of the available performance antipatterns listed in Section 2.3. There
has been existing work in the literature aiming at addressing performance problems
in software systems by deploying modelling techniques, specifically queuing network
models [111], in order to provide evidence of how antipatterns may affect the overall
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Fig. 4.8: Example of antipattern profile

system performance (e.g., [48, 54, 130]). Queuing networks can be expressed as Markov
chains (e.g., [101, 153]), giving us the confidence to pursue an extension of our current
approach in the future.

The reason for not expanding the list of detection rules has to do primarily with the
system we choose to demonstrate the applicability of our approach. The appearance of
antipatterns is related to the type of the software system and to the various components
comprising it. Thus, it is highly unlikely that all existing antipatterns are applicable
to a given software system. Later in the evaluation of the approach (Section 4.4), we
mention two additional antipatterns that were included in our initial experimentation,
but our analysis results indicated that they do not affect the performance of the FX
system.

4.2.4.2 Synthesis of Antipattern Profiles

The more software applications are being used worldwide from different types of users,
the more difficult is to estimate a representative average behaviour of users that induces
a specific operational profile. In fact, not only can users have different operational
profiles depending on their locations [39], but even in the same area the users behaviour
can (sometime radically) change over time [98].

Nevertheless, applications should show acceptable performance across different
operational profiles. A motivation for our work is that different operational profiles
can induce various performance problems, for example because a higher execution
frequency of a path can overload components involved in that path. Hence, the idea is
that, in order to identify the most appropriate refactoring actions to apply for overcoming
performance problems, these problems must be identified across different operational
profiles.

94



4.2 Approach

In this work, we introduce the concept of Performance Antipattern Profile, which
is a representation of performance antipattern occurrences while varying operational
profile parameters. As discussed above, different antipattern occurrences are expected
to appear in different areas of an operational profile. For instance, Figure 4.8 shows
two operational profile parameters which vary (from 0 to 1) on the axes, and different
coloured shapes in the graph indicate the occurrences of different antipatterns. Only with
this information in hand, the performance experts can suggest appropriate refactoring
actions when the system falls within a certain operational profile area, or even (in a
proactive way) when the system is expected to enter a specific operational profile area.

4.2.5 Refactoring

Finally, step 5 assesses whether refactoring actions are required, because performance
antipatterns occur in regions of the operational profile space where the deployed system
is expected to operate. When refactoring is required, suitable refactoring actions
(selected from a repository of such actions) are used to update the system design.
Updated system designs are then further evaluated through re-executing the five steps of
the approach, until a design with suitable performance antipattern profiles is obtained.

The notational aspects outlined in the previous section for antipattern detection
obviously reflect in the portfolio of refactoring actions aimed at removing performance
antipatterns. In general, a refactoring action modifies some available architectural knob
(e.g., the number of messages exchanged between two components, the list of operations
provided by a component) to remove a source of the antipattern causes. The type and
number of knobs depend on the adopted notation, so the portfolio of refactoring actions
does the same.

Our notation distinguished between internal components and external services. The
two types of system elements are characterized by a few common parameters and by
parameters specific to each type (see Table 4.1). Therefore, our portfolio of refactoring
actions is partitioned in two sets, as detailed below.

Actions for internal components

• Change service rate - The modification of a component service rate can
be induced by several actions on the system, which could act on the hardware
platform or on the software architecture, such as: (i) redeploy the component to a
platform node with different hardware characteristics, (ii) replace some devices
of the platform node where the component is currently allocated, (iii) redesign the
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software component so that its resource requests change, (iv) split a component
into two (or more) components and re-deploy them.

• Change number of threads - This action is always possible where the
control on the number of threads is on the designer’s hands, and indeed for
internal components this is guaranteed.

Actions for external services

• Change pattern - We have considered three combination patterns for exter-
nal services, that are: SEQ, PAR, and PROB (see Section 4.1.2). They are used to
combine (a subset of) the available instances of a certain external service. This
action requires to modify the combination pattern, by keeping unchanged the set
of combined services.

• Change the pattern parameters - Some patterns are regulated by pa-
rameters, in particular: PROB has a probability of each instance invocation, and
SEQ has a failure probability for each instance. A change in the PROB prob-
abilities is always feasible, because they are under full control of the designer.
Instead, a change in the failure probabilities within a SEQ pattern implies that the
designers are able to carry out deeper modifications in the involved instances that
can induce different reliability, and this is not often the case.

• Change combination of service instances - This action requires
to replace some (or all) of service instances that are combined to provide a certain
operation, by keeping unchanged the combination pattern.

Of course, the above actions can be combined together to study their joint effects on
the performance improvement.

In general, identifying refactorings that are relevant to specific antipatterns requires
domain knowledge. However, suitable actions have been proposed in the literature to
guide software engineers into making the right decisions (see Section 2.3). Additionally,
there is published research in the area of performance antipatterns that focuses on
formalising the refactoring embedded into performance antipattern definitions, pointing
to potential sources of performance problems and suggesting refactoring actions in
order to remove these problems [6]. To further support the selection of the most
optimal refactoring action from a performance perspective, the work in [159] employs
visualisation techniques to assess the impact of each refactoring.
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Understanding what are the most suitable refactoring actions for a system’s archi-
tecture is not a trivial task, and providing further guidance for the selection process is
definitely an interesting line of future work for our approach.

4.3 Implementation

To automate the synthesis of antipattern profiles for the system in our motivating
example, we implemented an application-specific tool that (a) enables the generation
of both DTMC and CTMC models for the external services and the entire system,
respectively, (b) verifies properties of interest via probabilistic model checking, and
(c) generates maps that show the appearance of performance antipatterns across the
operational profile space of the system. The implemented tool, the models and the full
experimental results are available at: https://github.com/Fase20/automated-antipattern-detection.

To achieve the full automation of the approach, including the representation of
the architecture of an arbitrary application as probabilistic model(s), the identification
and application of suitable refactoring actions when antipatterns do appear, non-trivial
work is required. Nevertheless, existing research has already achieved some of these
objectives and can potentially be adapted into our approach. Specifically, the work
in [161] and its extension in [162] makes use of the Palladio Component Model (PCM)
modelling language [16] to capture information about component-based software ar-
chitectures. The PCM models are then used to synthesise performance models whose
analysis leads to automatically detect and solve performance antipatterns. There is also
information provided with regard to which antipatterns can be automatically detected
by using this approach, and whether they can also be automatically solved.

Furthermore, [55] and [99] employ Unified Modeling Language (UML) diagrams
[114] to model the architecture of software systems, annotated with nonfunctional
characteristics. The former introduces a framework to jointly model and analyse the
security and performance attributes of software architectures. The latter presents a
performance modeling framework that enables the generation of CTMC models from
a system specification description captured by UML diagrams. The CTMCs are then
analysed to validate the performance requirements set at an early stage of the system’s
development life cycle.

The above cited research proves that full automation of our approach can be achieved,
and there are a few possible directions that one can consider adopting into this work in
the future.
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Table 4.2: System parameters.

Parameter Values
ExtReqs-rate 10s−1

QueueSize 10

TA-rate 3s−1

Alarm-rate 40s−1

Notif-rate 55s−1

MW-rate 19.92s−1

FA-rate 24.99s−1

Order-rate 19.09s−1

TA-threads 1

4.4 Evaluation

In this section, we first introduce the research questions that we intend to address (see
Section 4.4.1). Thereafter, we describe the experimental scenarios (see Section 4.4.2)
and discuss the obtained results (see Section 4.4.3). We finally report the threats to
validity in Section 4.4.4.

4.4.1 Research Questions

The detection and solution of performance antipatterns largely depends on the oper-
ational profile, which is determined by the end-users behaviour, thus it can only be
known after the system deployment. Naturally, some antipatterns are more affected
than others by the operational profile that can have a considerable influence on the
software system and, consequently, on its performance characteristics. Through our
experimentation, we aim at answering the following two research questions:

• RQ1: Does our approach provide insights on the performance antipattern profile
of a specific design?

• RQ2: Does our approach support performance-driven refactoring decisions on the
basis of the performance antipattern profile?

In order to answer these questions, we apply our approach to the running example
introduced in Section 4.1.
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4.4.2 Experimental Scenarios

Table 4.2 reports the system parameters of the default configuration we have used
for our experiments. It is structured in three different groups. First, system settings,
i.e., ExtReqs-rate (rate of external requests incoming to the system), and QueueSize
(maximum number of queueing requests). These values are both set to 10. Second, the
rate of internal components and external services, e.g., TA-rate = 3 is the execution
rate of the Technical Analysis (TA) internal component. For external services, this rate
corresponds to the inverse of the response time (as explained in Section 4.2.4.1), and it
was obtained through the analysis of discrete-time Markov chain (DTMC) models of
the service combinations (i.e., SEQ, PAR or PROB) used for the external operations of
the system. The model checker Storm was used to perform this analysis. The choice
of the rates values was based on reflecting the operation of each internal component
and external service. For instance, the Alarm internal component, when triggered, will
immediately serve its purpose without a significant computational cost. Thus, it has
a higher rate than the FA external service, which needs to perform an analysis before
reporting back the results. Third, TA (as internal component) has a number of threads
that is initially set to 1, but we provide a refactoring action that can change such number
to modify the parallelism degree for such component.

The operational profile space of our running example (see Figure 4.1) is fully defined
by the following branching point probabilities: (i) pExpertMode (pEM), i.e., the
probability of executing the workflow in expert mode; (ii) pPerformTransaction
(pPT ), i.e., the probability of successfully performing a transaction; (iii) pObjecti-
vesSatisfied (pOS) and pObjectivesNotMet (pON), i.e., the probabilities of
satisfying or not the objectives, respectively. As a consequence, 1− (pOS + pON) is the
resulting probability of an error occurring.

The experimental scenarios that we analyze in the next section include the variations
of pEM and pPT within their full range [0,1] with a 0.1 step. Additionally, we decided
to bind (pOS, pON) to three scenarios, namely: { (0.21, 0.78), (0.48, 0.01),
(0.98, 0.01) }, which in the following we call scenarioA, scenarioB, and scenarioC,
respectively.

We have considered the following design changes for refactoring purposes:

(R1) the service rate of the TA internal component can be modified from 3 to 6 jobs
per second (i.e., it becomes faster when performing computations) when TA is
detected as an instance of a BLOB performance antipattern;
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(R2) a further thread of the TA component can be added to split the incoming load and
manage users’ requests, again as a solution of a BLOB performance antipattern
on TA;

(R3) change pattern (from SEQ to PAR) and service rate (from 50.21 to 500) of the
MW external service, when MW has been detected as part of a Pipe and Filter
antipattern;

(R4) change service rate (from 40.02 to 400) of the FA external service while keeping
the same pattern (i.e., PAR), and this is suggested as a solution of a Pipe and
Filter antipattern that involves FA.

The results presented in the next section were obtained using the tool we developed
to implement the analysis and refactoring process from Figure 4.2. This tool generates
antipattern profiles using the antipattern detection rules from Section 4.2 and perfor-
mance indices computed through the probabilistic model checking of a continuous-time
Markov chain (CTMC) model of the entire FX system from Figure 4.1. The model
checker Storm is automatically invoked by the tool for this purpose. The tool and the
parametric CTMC models we used are available in our project’s GitHub repository.

4.4.3 Experimental Results

In order to answer RQ1, we have investigated the occurrence of performance antipatterns
across different operational profiles, so as to obtain performance antipattern profiles.
Figures 4.9, 4.10, and 4.11 report the BLOB, CPS, and P&F detected antipatterns,
respectively, across the operational profile space. Each figure shows the three considered
scenarios for pOS and pON and, for each scenario, pEM varies from 0 to 1 (with a step
size of 0.1) on the x-axis, while pPT varies in the same range on the y-axis. Antipatterns
occurring in each operational profile point are denoted by specific symbols.

We have here considered full ranges of the operational profile parameters, even
though, in each instant of its runtime, the system will fall in a single point of the profile.
Therefore, suitable refactoring actions depend on the area where the running system
profile falls in the considered time. In particular, if it runs in an area where antipatterns
do not occur, then no refactoring action is suggested.

In Figure 4.9(a) we can notice that in scenarioA (i.e., pOS = 0.21 and pON =

0.78) four different components are detected as BLOB antipatterns, specifically: (i)
BLOB(FA) occurs for low values of pEM only (i.e., up to 0.2); as opposite, (ii)
BLOB(TA) occurs for larger values of pEM; (iii) BLOB(MW) shows a very simi-
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Fig. 4.9: BLOB antipattern instances while varying operational profiles.
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Fig. 4.10: CPS antipattern instances while varying operational profiles.

lar behaviour with respect to BLOB(TA) except in two corner cases where it occurs
alone; (iv) BLOB(Order) occurs for low values of pEM and high values of pPT only.

Figure 4.9(b) interestingly shows that in scenarioB (i.e., pOS = 0.48, and pON =

0.01), BLOB(TA) and BLOB(MW) occur in a smaller portion of the operational profile
space, i.e., the right-most side (starting when pEM= 0.7). Also the other antipatterns are
subject to the probability changes, in fact both BLOB(FA) and BLOB(Order) occur in
a larger portion of the space, i.e., the left-most side (up to pEM=0.5). This is because
scenarioB moves a consistent part of the workload far from the MW-TA loop, with
respect to scenarioA.

Figure 4.9(c) illustrates the case of scenarioC (i.e., pOS = 0.98, and pON = 0.01),
where further differences appear. In particular, BLOB(TA) antipattern does not occur
anymore since the higher value of pOS induces less computation in TA. BLOB(MW)
is confined to three cases of large pEM values and low pPT values. This is because the
major load is going here to FA and Order that in fact more widely are detected as BLOB
antipatterns.
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Fig. 4.11: P&F antipattern instances while varying operational profiles.

Figure 4.10 depicts the CPS antipattern profile that, as compared to the BLOB
one, does not considerably vary across different scenarios. For readability reasons,
CPS(FA)min is not reported in this figure, although it occurs across the whole opera-
tional space for all the three scenarios. We recall that this is due to the CPS detection
rule that takes into account the response time for external services, which does not
change with users’ behaviour since it is a fixed value outcoming from service-level
agreements. CPS(TA)min is not affected at all by the scenario variations, as it always
occurs in the same operational profile area. Instead, the CPS(TA)max instances progres-
sively decrease when increasing pOS. A pOS growth, in fact, relieves the MW-TA loop,
thus inducing less unbalancing in its components.

Figure 4.11 shows the P&F antipattern profile, where the antipattern instances
obviously refer to execution paths instead of single components/services. Hence,
different symbols represents different paths where one of the components/services is
the slowest filter. For example, MW/MWTAOrNo means that MW is the slowest filter
of the MW-TA-Order-Notification path. Interesting variations of this antipattern profile
appear across scenarios, again driven by variations in the operational profile parameter
values.

Summary for RQ1: The above experimentation shows the ability of our approach
in identifying performance problems in a given software system through the ap-
pearance of performance antipatterns. These antipatterns are reported using the
detection rules from Section 4.2.4.1. The violation of a rule indicates the presence of
a performance problem within the system as per antipattern’s description. We also
observe that the antipatterns’ appearance is dependent on the system’s operational
profile. Figures 4.9–4.11 act as evidence for the previous statement as we observe
antipattern variations for different values of operational profile parameters. Our ap-
proach provides insights on the performance antipattern profile of a specific design.
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Fig. 4.12: BLOB antipattern instances across different refactorings - scenarioA.

In fact, we are able to identify considerable variations in the detected antipattern
instances while varying the operational profile parameters.

In order to answer RQ2, we have investigated the occurrence of performance antipat-
terns after applying refactoring actions that we have defined in Section 4.4.2, across the
operational profile space. The most interesting cases are discussed hereafter, and specif-
ically: (i) Figures 4.12 and 4.13 report the BLOB refactoring effects on scenarioA and
scenarioB, respectively; (ii) Figure 4.14 illustrates refactorings for the CPS antipattern
in scenarioA; (iii) Figure 4.15 shows the P&F refactoring effect on scenarioC.

In Figure 4.12, we can notice the following effects of refactorings actions. Upon
(R1) application, as expected, less BLOB(TA) instances appear because this refactoring
consists of doubling the TA computation speed, while all other instances remains
unvaried. (R2) introduces a further TA thread and, in this case, this induces less BLOB
(TA) because more quickly requests are processed by these two threads, and realistically
FA becomes the overloaded one thus inducing more BLOB(FA) instances to appear.
(R3) modifies the rate of MW and makes it much slower, thus inducing the side effect
of providing much less load to TA; in fact all the BLOB(TA) instances disappear, and
all the other instances remain unvaried. (R4) decreases the rate of FA and, similarly to
above, it has the effect of providing less load to TA, in fact the number of BLOB(TA)
instances decreases.
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Fig. 4.13: BLOB antipattern instances across different refactorings - scenarioB.

Figure 4.13 illustrates the effect of BLOB refactorings on scenarioB. (R1) refac-
toring consists of making the TA component two times faster, hence the BLOB(TA)
instance completely disappears from the operational space, while all the other antipat-
terns are not affected. (R2), introduces a further TA thread, but in this case it occurs in
a quite less stressed context with respect to scenarioA. This aspect, together with the
fact that two threads allow to drop less requests, given that the queue length remains
unvaried, in practice does not relieve TA itself. This is the reason for BLOB(TA) to
not disappear. The decrease of BLOB(Order) instances is very likely due to the fact
that, if performance indices change for some components/services, then their calculated
average value change as well, hence inequalities in detection rules can change their
results due to changes in the right-hand-side targets. (R3), similarly to Figure 4.12,
modifies the MW rate and makes it much slower, thus having the effect of providing
much less load to TA, in fact all BLOB(TA) instances disappear. Also (R4) behaves
similarly to Figure 4.12.

Figure 4.14 depicts scenarioA (i.e., the pOS = 0.21 and pON = 0.78 case) when
considering CPS antipattern instances. We recall that the detection rule for CPS
on external services operates on response time values that do not change with the
operational profile. This leads that CPS(FA)min occurs in the whole operational space
(not only for the initial system, but also after R1, R2, and R3 refactorings). Instead, for
R4 refactoring, we found CPS(FA)max always occurring, and this is due to nature of
this refactoring that modifies the FA rate. For R3 refactoring, besides CPS(FA)min, we
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Fig. 4.14: CPS antipattern instances across different refactorings - scenarioA.

also found CPS(MW)max always occurring, and this is again due to the fact that R3

modifies the MW rate.

In addition to this, we can make the following specific considerations. (R1), makes
the TA component two times faster, hence less CPS(TA)max instances appear, as
expected. (R2) introduces a further TA thread but it is not beneficial for the system,
in fact the number of CPS(TA)max instances increase in the operational profile space.
This effect is again very likely due to the fact that, with two threads, less requests are
dropped than in the one thread case. Hence the work on TA in practice increases. This
apparent anomaly would be mitigated whether, in the analysis, the number of dropped
requests would be considered. (R3), decreases the MW rate, so it has the effect of
providing less load to TA; in fact CPS(TA)max instances disappear, and (as mentioned
above) a CPS(MW)max instance appears in the whole operational profile space. (R4)
decreases the FA rate, thus having the effect of increasing the number of CPS(TA)min
instances and decreasing the CPS(TA)max ones.

Figure 4.15 illustrates scenarioC (i.e., the pOS = 0.98 and pON = 0.01 case) when
considering P&F antipattern instances. Quite small variations can be observed here,
as compared to other antipatterns and scenarios, always limitedly to single points of
the operational profile space. Some specific comments follow. (R1) induces less P&F
instances where TA is the slowest filter and, on the same path, introduces more instances
where Order is the slowest filter. This is an expected behaviour due to the refactoring
action that makes TA faster. (R2) has no effect at all. (R3) modifies the rate of MW
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Fig. 4.15: P&F antipattern instances across different refactorings - scenarioC.

component and makes it much slower, thus inducing less load to TA. The effect on
the P&F antipattern is minimal and coherent, because one more P&F(MW) instance
and one less P&F(TA) instance occur in the same path. (R4) only introduces one more
P&F(MW) on the same path as above, and this could be a side effect of changing the
average values of performance indices.

Summary for RQ2: The above experimentation with the applied refactoring actions
demonstrates the capability of our approach to support performance-driven refac-
toring decisions based on antipattern profiles. Refactorings yield different effects
on different regions of the system’s operational profile space and that is evident
in Figures 4.12–4.15. As a result, performance antipattern profiles can inform the
system’s engineers about the impact of an applied refactoring and assist them with
making the right decisions towards ensuring the system’s performance objectives.

4.4.4 Threats to Validity

Construct validity. To mitigate the threats that may arise from the construction of
the parametric DTMC and CTMC models, we adapted a case study that has already
been applied in other research work [34], and modelled the corresponding system as a
parametric CTMC model following the diagram of Figure 4.1. For the modelling of
the parametric DTMCs representing external services, we took into consideration that
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multiple services can be used as equivalent alternatives, thus, we used three options for
combining these services as detailed in Section 4.1.2.

Internal validity. In order to spot internal errors in our implementation for au-
tomatically detecting multiple performance antipatterns, we have thoroughly tested
it. First, we ensured that the results obtained from the verification of the formalised
properties, located in Section 4.2.3, represent the expected values for each combination
of parameter values. Secondly, we verified that the detected performance antipatterns
follow the given rules defined in their specification (Section 4.2.4.1), along with the
expected performance indicators. Finally, we assessed the above in scenarios involving
the detection of three performance antipatterns, with different detection rules for an-
tipattern instances related to internal components and external services of the system.
Note that the detection and solution of performance antipatterns relies on our previous
experience in this domain [51], but in the future we are interested to involve external
users that will be enabled to add their own rules for detection and refactoring.

External validity. We are aware that one case study is not enough to thoroughly
validate the effectiveness of our approach. Nevertheless, several experiments have been
performed beside the proposed experimental scenarios, in order to inspect the large
number of variabilities in the operational profile space that may affect performance
characteristics in unexpected ways. These experiments were performed to further assess
the correctness of our approach and produced similar results with the ones displayed in
Section 4.4.3. As future work, we would like to better investigate the effectiveness of
our approach by applying it to further case studies (including industrial applications).

4.5 Related Work

In the literature, the operational profile of a software system has been recognized as a
very relevant factor in many areas of software engineering, including software reliabil-
ity [126] and testing [142]. In the context of performance analysis of software systems,
there are many techniques developed to act at: (i) design-time, i.e., providing model-
based predictions [18, 32, 156]; and (ii) run-time, i.e., actual measurements derived
from system monitoring [29, 33, 170]. Software refactoring, instead, is a more recent
research direction, and many issues arise when modifying different system abstrac-
tions [3, 125, 15]. This approach contributes in demonstrating that both performance
analysis and refactoring are affected by operational profiles, and in the following we
review the related work aimed at pursuing this research direction.
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In [94], a method for uncertainty analysis of the operational profile is presented,
and the perturbation theory is used to evaluate how the execution rates of software
components are affected by changes in the operational profile. Our approach also
considers execution rates, but it is intended to support designers in the task of identifying
performance-critical scenarios (i.e., when antipatterns occur and their evolution when
refactoring actions are applied). In [167], performance antipatterns are used to isolate the
problems’ root causes, and facilitating their solutions; the TPC-W benchmark showed a
relevant increase in the maximum throughput, proving the usefulness of performance
antipatterns. However, the choice of representative usage profiles is recognized by the
authors as a limitation of the approach, since no directives are given for this scope. Our
approach, instead, is intentionally focused on exploiting the performance antipatterns
while considering the operational profile space as a first-class citizen of the conducted
analysis.

The static technique proposed in [122] detects and fixes performance problems (i.e.,
break out of the loop when a given condition becomes true). It has been applied to
real-world Java and C/C++ applications, producing very promising results since a large
number of new performance bugs were discovered. Like [167], this approach neglects
the operational profile that instead may trigger the presence of further performance
problems. In contrast, our goal is to shed light on the importance of the operational
profile space, and our experimentation demonstrates that performance problems and
solutions indeed vary across this space.

In [77], performance anomalies in testing data are detected through a new metric,
namely the transaction profile (TP), that is inferred from the testing data along with a
queuing network model of the testing system. The key intuition is that TP is independent
from the workload, and sensitive to variations caused by software updates only. Our
approach also investigates which refactorings are more responsible for performance
issues, along with the characteristics of the operational profile. In fact, refactorings
produce regions of the operational profile space that are differently affected, and these
differences can be used by the designers to understand the suitability of a specific
design.

The work most related to our approach is [133], where sequences of code refac-
torings (for Java-like programs) are driven by the avoidance of antipatterns (i.e., the
BLOB only) and aimed at improving the system security. These refactorings consider
the attack surface (i.e., how users/attackers access to software functionalities) as an
additional optimization objective. Our approach shares the intuition that antipattern-
based refactorings are beneficial for software quality (i.e., performance in our case)
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and that the operational profile needs to be part of the evaluation. Unlike [133], we
target software design abstractions, and we provide a global view of the antipatterns
encountered by software systems across their entire operational profile space.

A systematic literature review on software architecture optimization methods is
provided in [1], but users’ operational profiles are neglected. This further motivates
our work as promoter of a research line that should foster more attention on the role of
users and their effects on the available software resources.

Summarizing, to the best of our knowledge, there is no approach that focuses on
how the operational profile affects the performance analysis and refactoring of software
systems, and the idea of adopting performance antipatterns for this scope seems to be
promising according to our experimentation.

4.6 Summary

We presented a novel approach that considers the operational profile space of a system
under development as a first class citizen in performance-driven analysis and refactoring
of software systems. Performance antipatterns profiles have been used to support design-
ers in the nontrivial task of identifying problematic (from a performance perspective)
areas of the operational profile space, and refactoring actions are applied to improve the
system performance in such areas. Experimental results confirm the usefulness of the
approach, and show how it can be used to evaluate the suitability of a specific design in
different regions of the operational profile space.
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Chapter 5

Software Performance Engineering
with Code-level Probabilistic Analysis
and Performance Antipatterns

As explained in earlier chapters of this thesis, much of the recent research on software
performance has focused on the architecture of software systems [1, 6, 74]. The code
analysis technique introduced in Chapter 3 complements these architecture-level anal-
ysis methods. However, both architecture-level and code-level software performance
engineering are important, and need to be used in conjunction for best results.

This chapter introduces a methodology that integrates these two types of analysis
in a novel way, by combining the performance analysis and refactoring techniques
from Chapters 3 and 4, based on probabilistic modelling [95] and performance antipat-
terns [144], respectively. The combination of the two techniques enables the use of
the integrated methodology at both code-level and system architecture-level. PROPER
analyzes code performance, yielding verification results that then support the mod-
elling of the system at architectural level, and the antipattern-based analysis method
performs system-level performance analysis that guides refactoring using synthesised
performance antipattern profiles.

The remainder of this chapter is organised as follows. Section 5.1 presents a moti-
vating example that is used to illustrate the applicability of the integrated methodology.
Section 5.2 presents the aforementioned hybrid methodology for software performance
engineering. The first step of the methodology (A in Figure 5.2) involves the identifica-
tion of system components of interest (Section 5.2.1). The second step (B in Figure 5.2)
employs PROPER to verify performance properties of these components at code-level
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(Section 5.2.2). The third step (C in Figure 5.2) provides the results obtained during
the previous step as input to the synthesised architecture-level system representation
(Section 5.2.3). The fourth step (D in Figure 5.2) employs the antipattern-based analysis
method to analyse the synthesised system model and identify potential areas in the
system’s operational profile where requirements are violated (Section 5.2.4). The fifth
and final step (E in Figure 5.2) guides refactoring actions on both internal components
and third-party services of the system if needed (Section 5.2.5). Section 5.3 evaluates
the integrated methodology using the FX system case study from Chapter 4 combined
with Java source code obtained from GitHub. Finally, Section 5.4 provides a comparison
to related work in this area and Section 5.5 summarises the chapter.

5.1 Motivating example

To illustrate the application of our integrated approach, we consider the software system
introduced in Chapter 4. More information regarding the type of requests and the
system’s workflow can be found in Section 4.1. We assume that the software engineers
have full control over the internal components of the system, and thus, can modify
their source code when needed. The parameters of the system that are outside the
control of its developers represent its operational profile. The ranges of values that
the engineers consider for these parameters typically reflect the engineers’ expectation
about a particular deployment of the system.

Under the previous assumption, we create a scenario, in which we suppose that the
source code of the internal “technical analysis” (TA) component includes an imple-
mentation of the minimumPathSum algorithm. We further suppose that this is the
dynamic-programming implementation of the algorithm freely available on GitHub at
https://github.com/TheAlgorithms/Java/. This method calculates the minimum path sum in a
M×N matrix, where M and N refer to length and width of the input array, respectively.
As shown in Figure 5.1, the method receives as input a two-dimensional array, and
performs the calculations based on the following rules: a) moving from the top left
corner to the down right corner, and b) moving one step down or right.

In the context of our motivating example, the Java implementation of the algorithm
depicted in Figure 5.1, and in general shortest path algorithms, can be applied in currency
trading applications to offer solutions and improve the trading patterns. This use of
minimumPathSum by a potential TA component is demonstrated in the scenario
below.
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1 public static int minimumPathSum(int[][] grid) {
2 int m = grid.length, n = grid[0].length;
3 if (n == 0) {
4 return 0;
5 }
6 int[][] dp = new int[m][n];
7 dp[0][0] = grid[0][0];
8 int i = 0;
9 while (i < n - 1) {

10 dp[0][i + 1] = dp[0][i] + grid[0][i + 1];
11 i++;
12 }
13 i = 0;
14 while (i < m - 1) {
15 dp[i + 1][0] = dp[i][0] + grid[i + 1][0];
16 i++;
17 }
18 i=1;
19 while (i < m) {
20 int j=1;
21 while (j < n) {
22 dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) +

grid[i][j]; // @time=0.005↪→

23 j++;
24 }
25 i++;
26 }
27 return dp[m - 1][n - 1];
28 }

Fig. 5.1: Java method minimumPathSum for calculating the minimum path sum in a
M×N matrix.

Let c1, c2,. . . , cn be n different currencies. For instance, c1, c2, and c3 are euros,
pounds, and dollars, respectively. The exchange rate rx,y between any two currencies cx

and cy means that purchasing rx,y units of currency cy requires exchanging one unit of
currency cx. Additionally, the exchange rate rx,y satisfies the condition that rx,y · ry,x < 1,
in the sense that starting with a unit of currency cx, changing it into currency cy, and
then converting back the unit(s) to currency cx, results into having less than one unit
of currency cx. This difference is due to the cost of the transactions. Given a set
of exchange rates ry,x and two currencies cx and cy, a trader is able to find the most
advantageous sequence of currency exchanges for converting currency cx into currency
cy using the functionalities offered by the FX system.

Since we could not obtain the code of the TA component, we based our example
on the following assumptions. The TA component could potentially consist of several
different classes and Java methods. In our example, we focus on minimumPathSum
which we suppose to be one of the TA component’s methods and also the most compute-
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intensive part of it. In addition, we assume that changes in other parts of the TA
component do not offer any significant improvements to the component’s performance
or cause the violation of performance requirements at system level. Thus, the focus of
the software engineers is to assess the performance of this method in case of a violation
in any of the TA component’s performance requirements.

Another method that is part of TA is search. Its impact will be explored later in
Section 5.3.2 as it is not included in the initial performance assessment of TA, conducted
by the engineers of the system.

We suppose that a detailed log reflecting the method’s usage profile is available, i.e.,
the typical combinations of matrices that minimumPathSum is invoked with. Also,
we suppose that engineers want to assess the method’s expected execution time, if each
execution of the statement from line 22 requires 0.005s on average. The annotation
‘@time=0.005’ appended as comment to line 22 is used to specify the performance
property whose evaluation is of interest.

5.2 Approach

To allow the integration of the two types of analysis, we developed a combined method-
ology that carries out performance analysis and refactoring both at code-level and at
system architecture-level. The essence of this joint analysis is to a) enable the combined
refactoring actions mentioned previously and b) give the software engineers the flexibil-
ity of tackling performance issues from different perspectives. No additional changes
have been made to the two techniques, instead connection points have been introduced
to facilitate the transitioning between the steps of the approach.

The steps of this methodology are depicted in Figure 5.2. The blue (step B) and
yellow (step D) coloured steps indicate the analysis techniques presented in the previous
two chapters of the thesis. The grey-coloured steps (A, C and E) are new steps required
for the integration of the two methods . The two outgoing dotted red lines from step E
are optional actions that are only undertaken if refactoring is required. These actions
allow software performance engineering to be applied to both internal components
and external services of the system, enabling code-level and system architecture-level
refactoring for the internal components, and system architecture-level refactoring for
the external services. The five steps of our approach are described in the following
sections.

114



5.2 Approach

try new external
service instance

modify internal
components

Probabilistic analysis
of code performance

(PROPER)
B

– generate DTMC models

– obtain probabilities using
any method of choice

– verify properties using PMC

System modellingC

– create architecture-level
system representation

– exploit PROPER results
within the system model

– analyse the system model
and identify grey areas
in the operational profile
where requirements are
violated

Antipattern-based
system analysisD

RefactoringE

– perform refactoring on
internal components and
third-party services

– repeat the analysis until
requirements are satisfied

Identification of system
components of interestA

– select the parts of the
code to be assessed

– annotate code of
interest

modify internal
components

Fig. 5.2: Overview of the integrated approach for software performance engineering

5.2.1 Identification of System Components of Interest

In step A, the software engineer identifies internal components of interest from the
system under analysis, and selects parts of the source code to be assessed. The selection
of parts of the source code to be assessed is a process to be performed by the respective
system’s engineers and requires knowledge of the system’s components and functionali-
ties. As a general rule, the selection should focus on parts of the source code that are
computationally intensive, and are responsible for most of the system’s functionalities.
In addition, attention should also be given to parts of the code that require the invocation
of external functions in order to complete the tasks of the software system.

The assessment includes the analysis of performance properties, specified using
annotations in the code. These annotations capture performance characteristics and
are appended as comments (//@property=value) after the Java statements that
these performance properties are associated with. For instance, consider line 22 in our
motivating example (Figure 5.1) where a time value of 0.005 is associated with the
invocation of Math.min function (//@time=0.005).

5.2.2 Probabilistic Analysis of Code Performance

Step B of the approach uses our probabilistic program performance analysis (PROPER)
method, introduced in Chapter 3, to assess the annotated performance properties. This
step includes the extraction of a discrete-time Markov chain (DTMC) model from (Java)
source code (Section 3.2.1), the calculation of transition probabilities between states in
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the DTMC model (Section 3.2.2), and the verification of properties using probabilistic
model checking (Section 3.2.3).

PROPER receives as input the annotated Java code from step A and generates a
reward-augmented DTMC model. The automated model extraction process is followed
by the transition probability calculation for the model states corresponding to conditional
statements and loops in the code. This calculation is performed based on the usage
profile of the analysed code, obtained from program logs, under the assumption that the
code is appropriately instrumented to generate logs containing this information.

Finally, the performance properties of interest, specified in PCTL, are verified by
applying probabilistic model checking to the DTMC model. For this analysis, the
DTMC transition probabilities are set to the previously calculated probabilities.

5.2.3 System Modelling

In step C, the performance model representing the entire system is manually developed
to enable the analysis and computation of performance indices. Section 4.3 in Chapter 4
presents existing work on automating the above process. The effort required to develop
and analyse these performance models depends on the complexity of the application
domain and the expertise of the analysts. Our approach is not prescriptive about the type
of performance models that can be used for system modelling. The only requirement
is that the selected models must be able to capture the uncertainty associated with the
operational profile of the system. As also mentioned in Chapter 4, our experiments use
discrete-time and continuous-time Markov chains (DTMCs and CTMCs) for this part
of the approach, with the purpose of capturing uncertainty.

The results of step B, obtained using PROPER, are then used within the system
architecture-level model, together with the rest of the system parameters. This step
involves the instantiation of the devised models as in Section 4.2.2, with the difference
that now the internal components can be analysed using PROPER to obtain the associ-
ated parameter values. This introduces more options for the software engineers towards
ensuring the system’s optimal performance.

5.2.4 Antipattern-based System Analysis

Step D of the approach applies our antipattern-based performance analysis method from
Chapter 4 to the system model, and identifies areas in the system’s operational profile
where requirements may potentially be violated.
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The antipattern-based analysis method receives as input the performance models
developed in setp C and computes the performance indices corresponding to all con-
sidered combinations of operational profile parameter values (see Section 4.2.3). The
resulting performance indices and a portfolio of antipattern detection rules are then
used to identify the performance antipatterns that occur for different combinations
of parameter values. As described in Section 4.2.4, this method produces a series of
maps that depict the distribution of antipatterns across the system’s entire operational
profile space, and highlight areas where performance violations occur. The occurrence
of performance antipatterns indicates whether refactoring actions are required, e.g.,
in regions of the operational profile space where the deployed system is expected to
operate.

5.2.5 Refactoring

Suitable refactoring actions are then considered in the final step to satisfy any require-
ments that have been violated. The refactoring actions can target the system components
both at system architecture-level (e.g., trying a new external service instance), and at
code-level (e.g., replacing a function in the source code). The analysis and refactoring
processes are repeated until the system operation is satisfactory from a performance
viewpoint.

One of the main benefits of the integrated approach is the choice between refactoring
actions. A portfolio of such actions is provided from the antipattern-based system
analysis method, which focuses on system architecture-level, and can be adapted to
support additional case studies. At the same time, PROPER’s application and analysis
on the internal components’ source code can guide the software engineers towards
appropriate refactoring actions at code-level. These code-level refactoring actions may
include the use of approximate functions (e.g., replacing a function with a functionally
equivalent but faster function) or the restructuring of code (e.g., reordering an else-if
statement that includes a performance-wise costly operation in the condition of the first
if-statement and is rarely satisfied, by changing the order of the if-statements so that
other conditions are evaluated first).

The flexibility of performance assessment at both system architecture-level and code-
level can lead to efficient system performance optimisation, minimizing the potential
cost. For instance, replacing a function in the target internal component’s source
code with a faster alternative is less costly than introducing a second thread at system
level of that component, while both options satisfy the performance requirements.
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This combination of refactoring actions provides better control over the system, and
empowers engineers to tackle performance violations from different perspectives.

5.3 Evaluation

In this section, we first introduce the research questions that we intend to address (see
Section 5.3.1). Thereafter, we describe the experimental scenarios (see Section 5.3.2)
and discuss the obtained results (see Section 5.3.3). We finally report the threats to
validity in Section 5.3.4.

5.3.1 Research Questions

We evaluated the integrated approach by performing combined experiments to answer
the following research questions.

• RQ1: Does the integrated approach guide refactoring actions at code-level through
system architecture-level performance analysis?

• RQ2: Does PROPER provide results that can be meaningfully used at system
architecture-level for a combined performance analysis?

• RQ3: Does the integrated approach provide insights on the performance of a
software system using the combined code-level and system architecture-level
performance analysis?

In order to answer these questions, we applied the integrated approach to the FX
system from Chapter 4 (Section 4.1) and the code introduced in Sections 5.1 and 5.3.2
of this chapter.

5.3.2 Experimental Scenarios

The application of our integrated approach starts with annotating the code of interest
(step A), and proceeding to analyse it using PROPER (step B). Figure 5.3 shows the
DTMC obtained by applying PROPER to the Java code from Figure 5.1. The statement
modelled by each of the 21 DTMC states is mentioned under the state.

Figure 5.4 shows the PRISM-encoded DTMC model generated by PROPER for
the minimumPathSum Java method in our case study. The model has one reward
structure, corresponding to the time annotation from the Java code in Figure 5.1. The
transition probabilities p1 and p2, p3, p4, p5 correspond to the ‘if’ statement and
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Fig. 5.3: DTMC model for minimumPathSum Java method.

‘while’ loops from the Java code, respectively. Their values depend on the usage profile
of the code, and are determined as described in Chapter 3.

Using a log that captures the method’s usage profile, we can extract the probabilities
of executing different branches within the code. By adding these probabilities to the
DTMC model, we can quantify the ‘time’ property through probabilistic model check-
ing of the reward PCTL property R{“time”}=?[F s=end_state] over the DTMC model
from Figure 5.4. In our experimental study, we used a synthetic-data log that was auto-
matically populated with randomly generated input data for the minimumPathSum
method. Using this log, the result of the PROPER analysis is time = 0.0919s.

In step C, we combine the result obtained via the PROPER analysis with the system
model. The system architecture-level model of this case study uses the rate of each
internal component and third-party service as parameters. To calculate the execution
rate of the TA component, first we must obtain all ‘time’ property values associated
with each of the parts of TA, as done for minimumPathSum method of our example
above. Then by adding up all the values obtained via PROPER analysis on each part of

119



CHAPTER 5. PERF. ENGINEERING WITH PROBABILISTIC ANALYSIS & ANTIPATTERNS

1 dtmc
2

3 const double p1;
4 const double p2;
5 const double p3;
6 const double p4;
7 const double p5;
8 const int end_state = 21;
9

10 module minimumPathSum
11 s : [0..end_state] init 0;
12

13 [] s=0 -> 1:(s’=1); //line:2
14 [] s=1 -> p1:(s’=2)+(1-p1):(s’=3); //line:3
15 [] s=2 -> 1:(s’=end_state); //line:4
16 [] s=3 -> 1:(s’=4); //line:6
17 [] s=4 -> 1:(s’=5); //line:7
18 [] s=5 -> 1:(s’=6); //line:8
19 [] s=6 -> p2:(s’=7)+(1-p2):(s’=9); //line:9
20 [] s=7 -> 1:(s’=8); //line:10
21 [] s=8 -> 1:(s’=6); //line:11
22 [] s=9 -> 1:(s’=10); //line:13
23 [] s=10 -> p3:(s’=11)+(1-p3):(s’=13); //line:14
24 [] s=11 -> 1:(s’=12); //line:15
25 [] s=12 -> 1:(s’=10); //line:16
26 [] s=13 -> 1:(s’=14); //line:18
27 [] s=14 -> p4:(s’=15)+(1-p4):(s’=20); //line:19
28 [] s=15 -> 1:(s’=16); //line:20
29 [] s=16 -> p5:(s’=17)+(1-p5):(s’=19); //line:21
30 [] s=17 -> 1:(s’=18); //line:22
31 [] s=18 -> 1:(s’=16); //line:23
32 [] s=19 -> 1:(s’=14); //line:25
33 [] s=20 -> 1:(s’=end_state); //line:27
34 [] s=21 -> 1:(s’=21);
35 endmodule
36

37 rewards "time"
38 s=17 : 0.005;
39 endrewards

Fig. 5.4: PRISM model synthesised for the minimumPathSum Java method.

TA we can calculate TA’s rate as follows:

TAtime = TAtime1 +TAtime2 + · · ·+TAtimen

TAtime = TAtimeminPathSum +TAtimeotherParts

TAtime = 0.0919+0.1839

TAtime = 0.2758
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TArate =
1

TAtime

TArate =
1

0.2758
TArate = 3.625

where TAtime1 . . .TAtimen refer to the obtained ‘time’ property results for each of the
parts of TA, TAtimeminPathSum is the time value for minimumPathSum, and we suppose
that TAtimeotherParts represents the added time value for the other parts of TA.

We can now apply the antipattern-based performance analysis to the complete system
model and identify potential areas of requirement violation (step D). Figure 5.7 shows
the automatically generated maps for identifying “BLOB” antipattern occurrences in
different operational profile scenarios. This antipattern characterises components that

“perform most of the work of the system, relegating other classes to minor, supporting
roles” [144]. If the system operates in areas of the operational profile where antipatterns
appear, software engineers can then apply suitable refactoring actions to remedy these
issues (step E).

The maps obtained for the initial configuration of the system (Figure 5.7) indicated
the need for refactoring actions for the TA component. To demonstrate another appli-
cation of our approach at code-level, we consider a scenario in which the engineers
of the system, instead of improving the response time of minimumPathSum method
that the TA component uses, seek to improve the response time of the search method
(also part of the TA component), briefly introduced in Section 5.1.

This method implements a binary search algorithm, i.e., finds the position of a target
value within a sorted array. We suppose that the implementation of this method is the
one available freely on GitHub at https://github.com/TheAlgorithms/Java/. An example of the
method’s use in the FX system would be to obtain the position of a value, corresponding
to the exchange rate of a currency, from a sorted list containing all the exchange rates
of that currency towards all other currencies.

In this scenario, the improvement in search’s response time could be achieved by
code restructuring. A procedure that not only improves the code’s efficiency but also is
less costly than invoking a faster but potentially more expensive external function, e.g.,
as in the case of minimumPathSum. The Java source code of search method along
with the respective generated DTMC model, before restructuring has been applied, can
be seen in Figures 5.5 and 5.6, respectively.

Figure 5.5 depicts the respective Java code consisting of multiple ‘if’ and ‘if-else’
statements, some of which contain function invocations in their conditions (lines 9
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1 public class BinarySearch {

2

3 public int search(int array[], int key, int left, int right) {

4 if (right < left) {

5 return -1;

6 }

7 int median = (left + right) >>> 1;

8

9 if (Integer.compare(key,array[median]) == 0) {

//@time=0.0238↪→

10 return median;

11 }

12 else {

13 if (Integer.compare(key,array[median]) < 0) {

//@time=0.0238↪→

14 return search(array, key, left, median - 1);

15 }

16 else {

17 return search(array, key, median + 1, right);

18 }

19 }

20 }

21 }

Fig. 5.5: Java implementation of the search method

and 13). The associated ‘time’ property value for each of these statements is 0.0238s.
As each function invocation that checks whether the condition of the ‘if’ statement is
satisfied takes 0.0238s, it would be efficient performance-wise to arrange the statements
starting with the one whose condition is more likely to be satisfied. This can be
determined using historical data logs for the search method, as previously done for
minimumPathSum.

Using a synthetic log that captures the method’s usage profile, we were able to obtain
the probabilities of executing the different branches within the code. These probabilities
were used to both quantify the ‘time’ property through probabilistic model checking
of the reward PCTL property R{“time”}=?[F s=end_state] over the DTMC model
from Figure 5.6, and to assess the likelihood of executing each of the ‘if’ conditions.
The result of PROPER analysis for this method is TAtimesearch = 0.0918s (included in
TAtimeotherParts), and corresponds to the response time before the mentioned refactoring.
The results for this method after the applied refactoring can be seen in the following
section.
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1 dtmc
2
3 const double p1;
4 const double p2;
5 const double p3;
6
7 const int end_state = 8;
8
9 module binarySearch

10 s : [0..end_state] init 0;
11
12 [] s=0 -> p1:(s’=1)+(1-p1):(s’=2); //line:4
13 [] s=1 -> 1:(s’=end_state); //line:5
14 [] s=2 -> 1:(s’=3); //line:7
15 [] s=3 -> p2:(s’=4)+(1-p2):(s’=5); //line:9
16 [] s=4 -> 1:(s’=end_state); //line:10
17 [] s=5 -> p3:(s’=6)+(1-p3):(s’=7); //line:13
18 [] s=6 -> 1:(s’=0); //line:14
19 [] s=7 -> 1:(s’=0); //line:17
20 [] s=8 -> true;
21 endmodule
22
23 rewards "time"
24 s=3 : 0.0238;
25 s=5 : 0.0238;
26 endrewards

Fig. 5.6: DTMC model representation of the search Java method

5.3.3 Results and Discussion

The operational profile space of our adapted heterogeneous software system is fully
defined by the following branching point probabilities: (i) the probability of executing
the workflow in expert mode (pEM); (ii) the probability of successfully performing a
transaction (pPT ); (iii) the probabilities of satisfying the objectives (pOS) or not (pON).
As such, the resulting probability of an error occurring is 1− (pOS + pON).

The experimental scenarios analyzed in this section vary pEM and pPT within
their full range [0,1] with a 0.1 step. For pOS and pON we use two combinations of
values, i.e., (0.21,0.78) and (0.48,0.01), which we refer to as scenarioA and scenarioB,
respectively.

We present results obtained using the automated tool and detection rules that
we introduced in Chapter 4. The tool generates maps of antipattern occurrences
across the entire operation profile space (depicted as coloured shapes in the maps).
The antipattern occurrences for each system component appear in the general form:
antipattern_name(component_name) (e.g., BLOB(Order)).
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Fig. 5.7: BLOB antipattern instances while varying operational profiles.
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Fig. 5.8: BLOB antipattern instances when improving the rate of the TA component
(code-level refactoring).

Figures 5.7a and 5.7b show the antipattern occurrences in two different operational
profile scenarios (scenarioA and scenarioB) for the system with TArate = 3.625. To
reduce the occurrences of the BLOB(TA) antipattern in the region of the operational
profile where the system is expected to operate, the software engineers can introduce a
faster function in the code (Figure 5.1 line 22) FastMath.min that requires 0.002s on
average instead of 0.005s. This improvement (which is not an architectural change, but
was identified through architectural-level analysis) results in a reduction in the expected
time of minimumPathSum (time = 0.0367s), and an increase in the overall rate of
the TA component:

TArate =
1

0.0367+0.1839

TArate =
1

0.2206
TArate = 4.53

Figures 5.8a and 5.8b show the decreased BLOB(TA) antipattern occurrences after
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Fig. 5.9: BLOB antipattern instances when introducing a second thread of the TA
component (architecture-level refactoring).

the applied refactoring action.

Summary for RQ1: The above findings provide the answer to RQ1 from Section 5.3.1
by showing that our approach enables the identification of suitable refactoring
actions at code-level through system architecture-level performance analysis.

Figures 5.9a and 5.9b show the antipattern occurrences in scenarioA and scenarioB

after introducing a second thread of the TA component to the already refactored system
(Figures 5.8a and 5.8b). This second thread is added to split the incoming load and
manage users’ requests, reducing their drop rate given that the queue length remains
unchanged. However, in practice it does not relieve TA itself and that is the reason for
BLOB(TA) to not disappear. More BLOB(TA) instances appear after this refactoring as
more user requests are being handled. At the same time, a better balance between the
two system branches has been achieved with now less BLOB(MW) and BLOB(order)
instances and more BLOB(FA) instances being depicted in Figures 5.9a and 5.9b.

The option of combining architecture and code-level refactoring actions enhances
the control that software engineers have over the system towards the satisfaction of its
performance requirements, and it is up to them to decide which refactoring action best
suits the system’s needs.

Summary for RQ2: The above findings provide the answer to RQ2 by showing that
our approach enables a combined performance analysis using the two mentioned
approaches. Specifically, PROPER’s results, obtained at code-level, are used within
the system architecture-level model, and after applying the antipattern-based ap-
proach, the engineers are informed whether any of the system’s requirements has
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been violated and can apply suitable refactoring actions at any level (as seen in the
two cases described above).

From the previous experiments we obtained TAtimeminPathSum = 0.0919s for the re-
sponse time of the minimumPathSum Java method, TAtimesearch = 0.0918s for the
response time of the search method, and given the TAtimeotherParts = 0.0921s as the
assumed response time for the remaining parts of TA, we obtain TAtime = 0.2758s as
the overall response time of the TA component for the initial system configuration.

After the PROPER analysis of the search method (Figure 5.5), we identified that
the ‘if’ statement in line 13 and the ‘else’ statement in line 16 have higher probabilities
of execution than the earlier ‘if’ statement in line 9. This observation is interpreted based
on the probabilities obtained from the log capturing the method’s usage. The current
structure of the method results into additional execution time as the compare function
in the condition of the ‘if’ statement (line 9) will be invoked multiple times without the
condition being satisfied. This could be prevented by applying code restructuring and
improve the performance of the method.

The applied changes can be observed ( highlighted ) in Figures 5.10 and 5.11 de-
picting the Java code and the resulting DTMC model, respectively. The ‘if’ statement
at line 9 in Figure 5.5 is now moved at the end of the ‘if-else’ block at line 16 in
Figure 5.10 as its condition has the lowest probability of being satisfied. The result
of PROPER analysis for the updated search method is only TAtimesearch = 0.0737s.
Accordingly, the new TArate achieved after this restructuring is given by the following
calculations:

TAtime = TAtimeminPathSum +TAtimesearch +TAtimeotherParts

TAtime = 0.0919+0.0737+0.0921

TAtime = 0.2577

TArate =
1

0.2577
TArate = 3.88

The generated maps of antipattern occurrences for the system with TArate = 3.88
(concerning scenarioA and scenarioB) are identical to the ones from Figures 5.8a and
5.8b. This means that, without improving the response time of minimumPathSum
method (i.e., just by performing code restructuring in searchmethod), we were able to
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1 public class BinarySearch {

2

3 public int search(int array[], int key, int left, int right) {

4 if (right < left) {

5 return -1;

6 }

7 int median = (left + right) >>> 1;

8

9 if (Integer.compare(key,array[median]) < 0) {

//@time=0.0238↪→

10 return search(array, key, left, median - 1);

11 }

12 else {

13 if (Integer.compare(key,array[median]) > 0){

//@time=0.0238↪→

14 return search(array, key, median + 1, right);

15 }

16 else {

17 return median;

18 }

19 }

20 }

21 }

Fig. 5.10: Java implementation of the search method after code restructuring has
been applied

increase the overall rate of the TA component up to a level that satisfies the performance
objectives of the system without increasing the potential cost.

Of course, in a scenario in which the system’s performance objectives were not
satisfied from the above refactoring action, the engineers would need to continue to
assess the impact of the requirement(s) violation. Such an assessment may lead to the
engineers deciding to proceed with improving the minimumPathSum to achieve a
better rate for the TA component, or to keep the potential cost as well as the rate at
a lower level. The latter option would be particularly appropriate if the antipattern
occurrences are in regions of the operational profile where the system is less likely to
operate.

Summary for RQ3: The findings throughout Section 5.3.3 show that our integrated
methodology can provide insights on the performance of a software system using a
combination of both levels of performance analysis (code and system architecture-
level).
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1 dtmc
2
3 const double p1;
4 const double p2;
5 const double p3;
6
7 const int end_state = 8;
8
9 module binarySearch

10 s : [0..end_state] init 0;
11
12 [] s=0 -> p1:(s’=1)+(1-p1):(s’=2); //line:4
13 [] s=1 -> 1:(s’=end_state); //line:5
14 [] s=2 -> 1:(s’=3); //line:7
15 [] s=3 -> p2:(s’=4)+(1-p2):(s’=5); //line:9
16 [] s=4 -> 1:(s’=0); //line:10
17 [] s=5 -> p3:(s’=6)+(1-p3):(s’=7); //line:13
18 [] s=6 -> 1:(s’=0); //line:14
19 [] s=7 -> 1:(s’=end_state); //line:17
20 [] s=8 -> true;
21 endmodule
22
23 rewards "time"
24 s=3 : 0.0238;
25 s=5 : 0.0238;
26 endrewards

Fig. 5.11: Updated DTMC model representation of the search Java method

5.3.4 Threats to Validity

Construct validity. Threats may arise from the simplifications and assumptioms made
when constructing the parametric DTMC and CTMC models for the selected Java code
and the architecture of the software system from the case study. To mitigate these threats,
we devised these models using our peer-reviewed methods from [28] and [152], and
employed established software performance engineering simplifications (e.g., assuming
exponentially distributed request arrival rates).

Internal validity. Threats can originate from obtaining inaccurate results via simu-
lating the code’s execution, and can also be associated with errors resulting from the
detection of potentially spurious performance antipatterns. To mitigate the first type of
threats, we performed simulation up to 104 times. Additionally, we created 10 sets of
these simulation runs and calculated the average of their output values. Regarding the
second type of threats, we verified that the detected performance antipatterns follow
the given rules defined in their specification, along with the expected performance
indicators as in Section 4.4.4.
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External validity. Threats arise due to the difficulty of applying the proposed
methodology to other software systems than the one from our case study. To mitigate this
threat, we based our case study on a component-based software system taken from the
research literature and used by mutliple other projects, and we applied the PROPER step
of the methodology to Java methods taken from existing software libraries. Nevertheless,
additional case studies and experiments are needed to confirm the generality of our
methodology.

5.4 Related Work

Existing approaches focusing on the performance analysis of software systems at both
code-level (e.g. [4], [11], [103]) and architecture-level (e.g. [1], [6], [74]) do exist, and
have been explored in the previous chapters. However, to the best of our knowledge,
there is no work in the literature that aims for an integrated performance analysis at both
levels, which is achieved by our approach. Additionally, there is no architecture-level
approach that focuses on how the operational profile affects the performance analysis
and refactoring of software systems, and the idea of employing performance antipatterns
shows promising results according to our experimental results in both Sections 4.4
and 5.3.

The approach introduced in [68] enables reliability modelling and analysis for
component-based systems. Additionally, it allows dealing with multiple failure modes,
studying the error propagation among components, and ensuring an optimal combination
of component reliability properties’ values. This approach differs from our methodology
as it focuses on reliability modelling and analysis. However, we see the benefit of a
potential integration of this approach into the solution introduced in this chapter, as a
way to enable the analysis of reliability properties by our methodology.

In [36] a decentralized architecture is proposed for building a fully functional
assembly of distributed services, not only able to optimize its energy consumption, but
also paying attention to arising issues regarding the delivered quality of service. This
approach differs from ours as it lies within the area of service selection and composition
in a distributed environment.

Focusing on the analysis of nonfunctional attributes of component-based systems,
[84] defines a model-driven transformation framework based on a kernel language that
captures relevant information, enabling this type of analysis. This approach brings
together design-oriented and analysis-oriented notations and reduces the burden of
defining a variety of direct transformations between notations with the kernel language
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acting as an intermediary. While this approach is limited at architectural level compared
to ours, it offers a solution to the problem of automating the transformation of design
models to analysis models.

5.5 Summary

We presented an integrated approach for the verification of software performance prop-
erties at both code-level and system architecture-level, that allows software engineers to
perform suitable refactoring actions when a performance requirement violation occurs.
PROPER is used for synthesising a DTMC model using code annotated with perfor-
mance properties of interest and quantifying these properties by applying probabilistic
model checking. The obtained results are combined with a system architecture-level
model and analysed by the antipattern-based system analysis method to identify regions
of the system’s operational profile where antipatterns occur, and drive suitable refactor-
ing actions. We applied this approach in a case study, and showed how it can be used to
assist software engineers maintaining the performance requirements set at both system
and code-level.
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Chapter 6

Conclusion and Further Research
Directions

6.1 Conclusion

This thesis highlighted the importance of performance analysis during the development
process of a software system, and addressed several limitations of existing solutions.
Analysing software performance at code-level, carried out by existing techniques is
a tedious and time consuming process that needs to be repeated for every consid-
ered platform, usage profile of interest and after every code change. Existing system
architecture-level performance analysis techniques have also restricted application due
to the fact that they operate under the assumption that the system’s operational profile is
known and does not change over time. Considering these limitations, we defined the
following research hypothesis:

Given the formalisation of the architecture of a software system and/or
of the source code of its relevant components as discrete-time Markov
chains, and a set of nonfunctional requirements encoded in probabilistic
temporal logic, probabilistic model checking combined with performance
antipatterns can:

1. provide guarantees that these requirements are met for certain opera-
tional-profile regions;

2. guide the refactoring of the software system to ensure it meets the
requirements for operational-profile regions of interest for which its
initial version violates these requirements.
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The two-pronged approach that we devised enables the analysis and refactoring
of software systems that must comply with strict nonfunctional requirements. Unlike
previous solutions, this approach operates at both code level and system architecture
level.

To support performance analysis at code-level, we developed PROPER, a tool-
supported method for the formal analysis of timing, resource use and other quality
aspects of computer programs. PROPER synthesises a Markov chain model of the
analysed code, computes its transition probabilities using information from program
logs, and employs probabilistic model checking to evaluate the performance properties
of interest. Additionally, the Markov chain model transformation step of PROPER
has been automated to assist engineers by eliminating potential errors occurring from
manually transforming the code into a Markov chain model. We demonstrated how
quality attributes can be first identified in the source code of interest and then established
using code fragments obtained from real-world applications. Our experimentation
showed the benefits of using PROPER compared to simulating the execution of the
code, in terms of accuracy, decision-making and efficiency.

For system architecture-level performance analysis, we devised an antipattern-based
method that employs performance antipatterns and stochastic modelling to support
refactoring. This method computes the performance antipatterns present across the
operational profile space of a software system, enabling engineers to detect operational
profiles likely to be problematic for the analysed design, and supporting the selection
of refactoring actions when performance requirements are violated. We introduced the
concept of Performance Antipattern Profile, which is a representation of performance
antipattern occurrences while varying the operational profile parameters, and showed
how a portfolio of refactoring actions can be defined for both internal components and
external services. This portfolio can be used by the software engineers in selecting
suitable refactoring actions when a performance requirement of the system has been
violated. We demonstrated the application of the method in a scenario involving a
foreign currency trading system comprising both in-house components and external
services. The results of our experimentation highlighted the ability of the approach to
identify problematic areas from a performance viewpoint in the system’s operational
profile and suggest suitable refactoring actions.

Finally, the two methods are integrated into an end-to-end software performance
methodology that combines code-level probabilistic analysis with the use of perfor-
mance antipatterns to guide refactoring. We illustrated the applicability of combining
the proposed approaches using code obtained from various Java programs, includ-
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ing Android applications, and the high-level design of a foreign currency exchange
service-based system.

6.2 Further Research Directions

The research presented in this thesis can potentially be refined and extended in multiple
directions. In this chapter we present those opportunities for improvement and expansion
which we identified as the most promising research directions.

6.2.1 Probabilistic Analysis of Code Performance

We propose four directions of further research for the code-level analysis method intro-
duced in the thesis: (1) extending PROPER to support analysis of reliability properties;
(2) investigating methods to support the computation of confidence intervals of perfor-
mance properties [27]; (3) applying PROPER to other applications and scenarios, and
assessing its scalability to larger programs; and (4) validating PROPER in studies where
it is used by practitioners. Each of these directions of further research is detailed next.

6.2.1.1 Reliability Properties

The current implementation of PROPER supports the analysis of performance properties.
The type of supported properties can be expanded, starting with reliability. We have
already performed an initial experimentation towards this direction and reliability
properties can be defined using PCTL in the form P =?[F s = “n”], where n represents
a state of interest for the system’s engineers. This PCTL property is translated in natural
language as ‘the probability of eventually reaching state n’. While the analysis of
reliability properties is possible using PROPER’s current state, it is only applicable
when dealing with fragments of code that do not contain loops.

In the case of loops, restrictions apply that require further experimentation to
generalise the verification of reliability properties using PROPER. Specifically, as also
mentioned in Section 3.2.2, the reason for this is that the calculation of the probability
of reaching a state n inside a loop is different than the probability of satisfying the
loop’s condition. An extension of the theoretical foundation used by the approach is
required, so that DTMCs can be created that support the analysis of the unsupported
property types.
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6.2.1.2 Confidence Intervals for Performance Properties

Another direction of further research is the computation of confidence intervals for
the performance properties identified in source code using PROPER. In preliminary
experimentation, we incorporated FACT [30] into PROPER’s workflow, replacing the
transition probability calculation step with the computation of confidence intervals for
the evaluated properties.

FACT is a probabilistic model checker that was built based on the concept of
explicitly taking into account the estimation errors that can appear in quantitative
verification [27]. Dealing with estimation errors becomes possible by computing
confidence intervals for the evaluated properties of parametric DTMCs with unknown
transition probabilities when observations of these transitions are available. As there is
no longer a need to calculate the transition probabilities between the states of the model,
only the counts of reaching each branch in the code need to be extracted. These counts
can be obtained directly from program logs and be given as input to FACT along with
the respective parametric DTMC model.

The result of a verifiable property depends on the information we have about the
operational profile of the system, i.e., the number of entries in the log of the application.
The more entries a log contains, the higher the confidence of results obtained via
verification will be.

6.2.1.3 Scalability

In order to assess the scalability of the approach, it is necessary to apply it in larger
programs and scenarios. The restrictions of PROPER’s current implementation, sum-
marised in Section 3.2, need to be first addressed to support additional scenarios and
variations of source code identified in real-world applications. As these restrictions are
only associated with the current implementation of the automated tool and not with the
method, we are positive that PROPER can be used to evaluate larger programs as quan-
titative verification has shown its efficiency when dealing with larger models. Advances
in this area targeting the scalability problem include the use of abstraction [67] and
compositional verification [110], while a general overview is given in [108]. Further
experimentation is necessary to address scalability concerns and it is definitely an
important line of future work for our approach.

6.2.1.4 Practicality

Even though the current case studies cover a variety of domains (see Section 4.1.2),
PROPER needs to be further evaluated through studies where it is used by practitioners.
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In Section 3.2 we referred to Java application domains and examples of applications
that PROPER can potentially be applied to in the future. Additionally, to expand on its
practicality, PROPER needs to support more programming languages as Java is only
one of the most prominent ones. An initial discussion on this matter is also provided
in Section 3.2 where we explain that this extension could be achieved without a lot of
effort.

6.2.2 Software System Analysis & Refinement Using Performance
Antipattern Profiles

In addition to the areas of further research mentioned in Section 4.4.4, our approach
for software analysis and refinement using performance antipattern profiles can be
augmented with the ability to handle reliability and costs constraints, and thus to
support trade-off analysis among multiple quality attributes. The applicability of the
approach could also be extended by developing a portfolio of generic refactoring actions
(which need to be feasible with our modelling and analysis techniques), and methods
that automate the selection of suitable actions from this portfolio. Additional details
about these research directions are provided in the following sections.

6.2.2.1 Trade-off Analysis

Supporting trade-off analysis by handling additional nonfunctional properties enables
better control over the system’s performance objectives, and provides alternative so-
lutions to performance requirements’ violations while, at the same time, ensuring the
overall system’s performance.

Research work focusing on trade-off analysis between nonfunctional requirements
has already been established [52, 53, 55, 120, 136, 137] and can potentially be adapted
by our approach to ensure the balanced operation of a software system under devel-
opment. Specifically for handling reliability and cost quality attributes, [52] enables
the selection of software components based on a cost/reliability trade-off, aiming at
minimizing the cost of the whole assembly subject to reliability constraints. Trade-off
analysis is not limited between the system’s nonfunctional requirements, but work has
also been done [127] towards the direction of enabling the trade-off between functional
and nonfunctional system requirements.

6.2.2.2 Portfolio of Generic Actions and Methods

To assist software engineers or users of our approach, we identify the need of extending
the applicability of the approach by devising a portfolio of generic refactoring actions,
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and automate their selection. In the evaluation of the FOREX case study (Section 4.4.2),
we established various refactoring actions as a solution to the occurrence of the consid-
ered performance antipatterns. The refactoring actions included replacing an internal
component instance with a faster alternative, supplying the system with an additional
thread to split the incoming load, and change the pattern of the external services. These
actions can be generalised and associated with the occurrence of specific antipatterns,
and thus, applied in other systems that exhibit similar antipattern occurrences in their
operational profile space. For example, if an external service of the SUD is identified as
a P&F antipattern, a possible generalised action would be to either change the service
pattern or invoke a faster service instance. These actions could also be supported by
the trade-off analysis, i.e., performing the suggested refactoring only when the other
nonfunctional requirements such as cost remain satisfied.

6.2.3 Software Performance Engineering With Code-level Proba-
bilistic Analysis and Performance Antipatterns

The further work directions for our integrated approach include its evaluation within
additional case studies and automating steps of the approach that still require manual
effort. The following sections contain information on how these research directions can
be pursued.

6.2.3.1 Additional Case Studies

The aim of this further research direction is to showcase the applicability of the approach
in different contexts, and provide more examples of how the connection between code-
level and system architecture-level performance objectives can assist in optimising the
overall system’s performance. We have identified a potential case study in [78] (Happy
Hour Organiser) that can be adopted to further evaluate the integrated methodology
presented in this thesis. Also, more examples showing the interdependence between the
code-level and system architecture-level analysis are needed to evaluate the applicability
of the integrated methodology in various performance scenarios.

6.2.3.2 Automation

The process of synthesising the probabilistic model representing a software system is
non-trivial and error-prone if done manually. Thus, we highlight the importance of
automating parts of the integrated methodology that require manual effort. Achieving
complete automation will not only minimise the error factor, but at the same time will
save a significant amount of time allocated for model synthesis and evaluation. Last
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but not least, full automation would enable the use of the methodology within the
control loop of self-adaptive and autonomous systems [58, 76, 168], e.g., to support the
reconfiguration of these systems in response to changes in their environment.

Step C of the integrated methodology (as seen in Figure 5.2) is associated with the
creation of the architecture-level system representation, and a candidate for automation.
A detailed discussion on how architectural descriptions can be automatically translated
into probabilistic models is given in Section 4.3. Another approach that could potentially
be applicable in our methodology is [79], which enables the transformation of UML
sequence diagrams to Markov models. We believe that with the integration of any of
the methods, presented both in Chapter 4 and in this section, into our methodology or
with the development of a similar method, the automation of this step can be achieved.
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Appendix A

Chapter 3 - Supplementary Material

The BNF listed on Section A.1 defines the syntax rules of the subset of Java that our
PROPER method can handle. The Java source code and parametric DTMC models
listed on Sections A.2, A.3 and A.4 were used for the evaluation of PROPER method,
introduced in Chapter 3. The Java code was given as input to the method and the
DTMC models were devised as described in the probabilistic model extraction step
(Section 3.2.1).

A.1 Java Subset Syntax Specification

Declarations

⟨variable declarator⟩ ::= ⟨variable declarator id⟩
| ⟨variable declarator id⟩ = ⟨variable initializer⟩

⟨variable declarator id⟩ ::= ⟨identifier⟩ | ⟨variable declarator id⟩ ‘[’ ‘]’

⟨variable initializer⟩ ::= ⟨expression⟩ | ⟨array initializer⟩

⟨method declaration⟩ ::= ⟨method header⟩ ⟨method body⟩

⟨method header⟩ ::= ⟨method declarator⟩

⟨method declarator⟩ ::= ⟨identifier⟩

⟨method body⟩ ::= ⟨block⟩ | ‘;’

⟨array initializer⟩ ::= ‘{’ ⟨variable initializers⟩? , ? ‘}’

⟨variable initializers⟩ ::= ⟨variable initializer⟩ | ⟨variable initializers⟩ , ⟨variable initializer⟩

⟨variable initializer⟩ ::= ⟨expression⟩ | ⟨array initializer⟩
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Blocks and Commands

⟨block⟩ ::= ⟨block statements⟩?

⟨block statements⟩ ::= ⟨block statement⟩ | ⟨block statements⟩ ⟨block statement⟩

⟨block statement⟩ ::= ⟨local variable declaration statement⟩ | ⟨statement⟩

⟨local variable declaration statement⟩ ::= ⟨local variable declaration⟩ ‘;’

⟨local variable declaration⟩ ::= ⟨type⟩ ⟨variable declarators⟩

⟨statement⟩ ::= ⟨statement without trailing substatement⟩
| ⟨if then statement⟩ | ⟨if then else statement⟩ | ⟨while statement⟩ | ⟨for statement⟩

⟨statement no short if ⟩ ::= ⟨statement without trailing substatement⟩
| ⟨if then else statement no short if ⟩ | ⟨while statement no short if ⟩

⟨statement without trailing substatement⟩ ::= ⟨block⟩ | ⟨empty statement⟩
| ⟨expression statement⟩ | ⟨return statement⟩

⟨empty statement⟩ ::= ‘;’

⟨expression statement⟩ ::= ⟨statement expression⟩ ‘;’

⟨statement expression⟩ ::= ⟨assignment⟩ | ⟨preincrement expression⟩
| ⟨postincrement expression⟩ | ⟨predecrement expression⟩
| ⟨postdecrement expression⟩ | ⟨method invocation⟩

⟨if then statement⟩ ::= ‘if’ ‘(’ ⟨expression⟩ ‘)’ ⟨statement⟩

⟨if then else statement⟩ ::= ‘if’ ‘(’ ⟨expression⟩ ‘)’ ⟨statement no short if ⟩ ‘else’
⟨statement⟩

⟨if then else statement no short if ⟩ ::= ‘if’ ‘(’ ⟨expression⟩ ‘)’ ⟨statement no short if ⟩ ‘else’
⟨statement no short if ⟩

⟨while statement⟩ ::= ‘while’ ‘(’ ⟨expression⟩ ‘)’ ⟨statement⟩

⟨while statement no short if ⟩ ::= ‘while’ ‘(’ ⟨expression⟩ ‘)’ ⟨statement no short if ⟩

⟨statement expression list⟩ ::= ⟨statement expression⟩
| ⟨statement expression list⟩ , ⟨statement expression⟩

⟨return statement⟩ ::= ‘return’ ⟨expression⟩? ‘;’

Expressions

⟨constant expression⟩ ::= ⟨expression⟩

⟨expression⟩ ::= ⟨assignment expression⟩

⟨assignment expression⟩ ::= ⟨conditional expression⟩ | ⟨assignment⟩
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⟨assignment⟩ ::= ⟨left hand side⟩ ⟨assignment operator⟩ ⟨assignment expression⟩

⟨left hand side⟩ ::= ⟨expression name⟩ | ⟨field access⟩ | ⟨array access⟩

⟨assignment operator⟩ ::= ‘=’ | ‘*=’ | ‘/=’ | ‘%=’ | ‘+=’ | ‘-=’ | ‘<<=’ | ‘>>=’
| ‘>>>=’ | ‘&=’ | ‘^=’ | ‘|=’

⟨conditional expression⟩ ::= ⟨conditional or expression⟩
| ⟨conditional or expression⟩ ‘?’ ⟨expression⟩ ‘:’ ⟨conditional expression⟩

⟨conditional or expression⟩ ::= ⟨conditional and expression⟩
| ⟨conditional or expression⟩ ‘||’ ⟨conditional and expression⟩

⟨conditional and expression⟩ ::= ⟨inclusive or expression⟩
| ⟨conditional and expression⟩ ‘&&’ ⟨inclusive or expression⟩

⟨inclusive or expression⟩ ::= ⟨exclusive or expression⟩
| ⟨inclusive or expression⟩
| ⟨exclusive or expression⟩

⟨exclusive or expression⟩ ::= ⟨and expression⟩
| ⟨exclusive or expression⟩ ‘^’ ⟨and expression⟩

⟨and expression⟩ ::= ⟨equality expression⟩
| ⟨and expression⟩ ‘&’ ⟨equality expression⟩

⟨equality expression⟩ ::= ⟨relational expression⟩
| ⟨equality expression⟩ ‘==’ ⟨relational expression⟩
| ⟨equality expression⟩ ‘!=’ ⟨relational expression⟩

⟨relational expression⟩ ::= ⟨shift expression⟩
| ⟨relational expression⟩ ‘<’ ⟨shift expression⟩
| ⟨relational expression⟩ ‘>’ ⟨shift expression⟩
| ⟨relational expression⟩ ‘<=’ ⟨shift expression⟩
| ⟨relational expression⟩ ‘>=’ ⟨shift expression⟩
| ⟨relational expression⟩ ‘instanceof’ ⟨reference type⟩

⟨shift expression⟩ ::= ⟨additive expression⟩
| ⟨shift expression⟩ ‘<<’ ⟨additive expression⟩
| ⟨shift expression⟩ ‘>>’ ⟨additive expression⟩
| ⟨shift expression⟩ ‘>>>’ ⟨additive expression⟩

⟨additive expression⟩ ::= ⟨multiplicative expression⟩
| ⟨additive expression⟩ ‘+’ ⟨multiplicative expression⟩
| ⟨additive expression⟩ ‘-’ ⟨multiplicative expression⟩

⟨multiplicative expression⟩ ::= ⟨unary expression⟩
| ⟨multiplicative expression⟩ ‘*’ ⟨unary expression⟩
| ⟨multiplicative expression⟩ ‘/’ ⟨unary expression⟩
| ⟨multiplicative expression⟩ ‘%’ ⟨unary expression⟩
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⟨cast expression⟩ ::= ‘(’ ⟨primitive type⟩ ‘)’ ⟨unary expression⟩
| ‘(’ ⟨reference type⟩ ‘)’ ⟨unary expression not plus minus⟩

⟨unary expression⟩ ::= ⟨preincrement expression⟩
| ⟨predecrement expression⟩
| ‘+’ ⟨unary expression⟩
| ‘-’ ⟨unary expression⟩
| ⟨unary expression not plus minus⟩

⟨predecrement expression⟩ ::= ‘-’ ⟨unary expression⟩

⟨preincrement expression⟩ ::= ‘++’ ⟨unary expression⟩

⟨unary expression not plus minus⟩ ::= ⟨postfix expression⟩
| ‘~’ ⟨unary expression⟩
| ‘!’ ⟨unary expression⟩
| ⟨cast expression⟩

⟨postdecrement expression⟩ ::= ⟨postfix expression⟩ ‘-’

⟨postincrement expression⟩ ::= ⟨postfix expression⟩ ‘++’

⟨postfix expression⟩ ::= ⟨primary⟩
| ⟨expression name⟩
| ⟨postincrement expression⟩
| ⟨postdecrement expression⟩

⟨method invocation⟩ ::= ⟨method name⟩ ‘(’ ⟨argument list⟩? ‘)’
| ⟨primary⟩ . ⟨identifier⟩ ‘(’ ⟨argument list⟩? ‘)’
| ‘super’ . ⟨identifier⟩ ‘(’ ⟨argument list⟩? ‘)’

⟨field access⟩ ::= ⟨primary⟩ ‘.’ ⟨identifier⟩ | ‘super’ . ⟨identifier⟩

⟨primary⟩ ::= ⟨primary no new array⟩ | ⟨array creation expression⟩

⟨primary no new array⟩ ::= ⟨literal⟩ | ‘this’ | ‘(’ ⟨expression⟩ ‘)’
| ⟨class instance creation expression⟩ | ⟨field access⟩
| ⟨method invocation⟩ | ⟨array access⟩

⟨class instance creation expression⟩ ::= ‘new’ ⟨class type⟩ ‘(’ ⟨argument list⟩? ‘)’

⟨argument list⟩ ::= ⟨expression⟩ | ⟨argument list⟩ , ⟨expression⟩

⟨array creation expression⟩ ::= ‘new’ ⟨primitive type⟩ ⟨dim exprs⟩ ⟨dims⟩?
| ‘new’ ⟨class or interface type⟩ ⟨dim exprs⟩ ⟨dims⟩?

⟨dim exprs⟩ ::= ⟨dim expr⟩ | ⟨dim exprs⟩ ⟨dim expr⟩

⟨dim expr⟩ ::= ‘[’ ⟨expression⟩ ‘]’

⟨dims⟩ ::= ‘[’ ‘]’ | ⟨dims⟩ ‘[’ ‘]’

⟨array access⟩ ::= ⟨expression name⟩ ‘[’ ⟨expression⟩ ‘]’
| ⟨primary no new array⟩ ‘[’ ⟨expression⟩ ‘]’
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Tokens

⟨expression name⟩ ::= ⟨identifier⟩ | ⟨ambiguous name⟩ . ⟨identifier⟩

⟨method name⟩ ::= ⟨identifier⟩ | ⟨ambiguous name⟩ . ⟨identifier⟩

⟨ambiguous name⟩ ::= ⟨identifier⟩ | ⟨ambiguous name⟩ . ⟨identifier⟩

⟨literal⟩ ::= ⟨integer literal⟩ | ⟨floating-point literal⟩ | ⟨boolean literal⟩ | ⟨character literal⟩
| ⟨string literal⟩ | ⟨null literal⟩

⟨integer literal⟩ ::= ⟨decimal integer literal⟩ | ⟨hex integer literal⟩ | ⟨octal integer literal⟩

⟨decimal integer literal⟩ ::= ⟨decimal numeral⟩ ⟨integer type suffix⟩?

⟨hex integer literal⟩ ::= ⟨hex numeral⟩ ⟨integer type suffix⟩?

⟨octal integer literal⟩ ::= ⟨octal numeral⟩ ⟨integer type suffix⟩?

⟨integer type suffix⟩ ::= ‘l’ | ‘L’

⟨decimal numeral⟩ ::= 0 | ⟨non zero digit⟩ ⟨digits⟩?

⟨digits⟩ ::= ⟨digit⟩ | ⟨digits⟩ ⟨digit⟩

⟨digit⟩ ::= 0 | ⟨non zero digit⟩

⟨non zero digit⟩ ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

⟨hex numeral⟩ ::= 0 x ⟨hex digit⟩ | 0 X ⟨hex digit⟩ | ⟨hex numeral⟩ ⟨hex digit⟩

⟨hex digit⟩ :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f | A | B | C | D | E | F

⟨octal numeral⟩ ::= 0 ⟨octal digit⟩ | ⟨octal numeral⟩ ⟨octal digit⟩

⟨octal digit⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

⟨floating-point literal⟩ ::= ⟨digits⟩ . ⟨digits⟩? ⟨exponent part⟩? ⟨float type suffix⟩?

⟨digits⟩ ::= ⟨exponent part⟩? ⟨float type suffix⟩?

⟨exponent part⟩ ::= ⟨exponent indicator⟩ ⟨signed integer⟩

⟨exponent indicator⟩ ::= e | E

⟨signed integer⟩ ::= ⟨sign⟩? ⟨digits⟩

⟨sign⟩ ::= + | -

⟨float type suffix⟩ ::= f | F | d | D

⟨boolean literal⟩ ::= ‘true’ | ‘false’

⟨character literal⟩ ::= ' ⟨single character⟩ ' | ' ⟨escape sequence⟩ '

⟨single character⟩ ::= ⟨input character⟩ except ' and \

⟨string literal⟩ ::= '' ⟨string characters⟩? ''
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⟨string characters⟩ ::= ⟨string character⟩ | ⟨string characters⟩ ⟨string character⟩

⟨string character⟩ ::= ⟨input character⟩ except ' and \ | ⟨escape character⟩

⟨null literal⟩ ::= ‘null’

⟨keyword⟩ ::= ‘boolean’ | ‘char’ | ‘const’ | ‘double’ | ‘else’ | ‘final’
| ‘float’ | ‘if’ | ‘int’ | ‘long’ | ‘new’ | ‘private’ | ‘protected’
| ‘public’ | ‘return’ | ‘short’ | ‘static’ | ‘this’ | ‘void’ | ‘while’

A.2 Device Performance Case Study

1 public class DevPerf {

2

3 static int devicePerformanceClass = -1;

4 static int PERFORMANCE_CLASS_LOW=0;

5 static int PERFORMANCE_CLASS_AVERAGE=1;

6 static int PERFORMANCE_CLASS_HIGH=2;

7 static int PERFORMANCE_CLASS_VERY_HIGH=3;

8 static int performance_mode = 1, default_mode = 2, power_mode =

3, high_power_mode = 4, mode;↪→

9

10 public static int getDevicePerfomanceClass(int androidVersion,

int cpuCount,↪→

11 int memoryClass, int maxCpuFreq) {

12 if (devicePerformanceClass == -1) {

13 if (androidVersion < 21 || cpuCount <= 2 || memoryClass <=

100 || cpuCount <= 4 && maxCpuFreq != -1 && maxCpuFreq

<= 1250 || cpuCount <= 4 && maxCpuFreq <= 1600 &&

memoryClass <= 128 && androidVersion <= 21 || cpuCount

<= 4 && maxCpuFreq <= 1300 && memoryClass <= 128 &&

androidVersion <= 24) {

↪→

↪→

↪→

↪→

↪→
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14 devicePerformanceClass = PERFORMANCE_CLASS_LOW;

15 mode = performance_mode;

16 Animations(mode); //@energy=28

17 } else {

18 if (cpuCount < 8 || memoryClass <= 160 || maxCpuFreq

!= -1 && maxCpuFreq <= 1650 || maxCpuFreq == -1 &&

cpuCount == 8 && androidVersion <= 23) {

↪→

↪→

19 devicePerformanceClass =

PERFORMANCE_CLASS_AVERAGE;↪→

20 mode = default_mode;

21 Animations(mode); //@energy=34

22 } else {

23 if (cpuCount < 8 || memoryClass <= 200 ||

maxCpuFreq != -1 && maxCpuFreq <= 1950 ||

maxCpuFreq == -1 && cpuCount == 8 &&

androidVersion <= 25){

↪→

↪→

↪→

24 devicePerformanceClass =

PERFORMANCE_CLASS_HIGH;↪→

25 mode = power_mode;

26 Animations(mode); //@energy=40

27 } else {

28 devicePerformanceClass =

PERFORMANCE_CLASS_VERY_HIGH;↪→

29 mode = high_power_mode;

30 Animations(mode); //@energy=48

31 }

32 }

33 }

34 }

35 return devicePerformanceClass;

36 }

37 }

Fig. A2.1: Java method DevPerf from the Telegram android application
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1 dtmc

2

3 const double p1;

4 const double p2;

5 const double p3;

6 const double p4;

7

8 const int end_state = 17;

9

10 module DevPerf

11 s : [0..end_state] init 0;

12

13 [] s=0 -> p1:(s’=1) + (1-p1):(s’=16); //line:12

14 [] s=1 -> p2:(s’=2) + (1-p2):(s’=5); //line:15

15 [] s=2 -> 1:(s’=3); //line:16

16 [] s=3 -> 1:(s’=4); //line:17

17 [] s=4 -> 1:(s’=16); //line:18

18 [] s=5 -> p3:(s’=6) + (1-p3):(s’=9); //line:20

19 [] s=6 -> 1:(s’=7); //line:21

20 [] s=7 -> 1:(s’=8); //line:22

21 [] s=8 -> 1:(s’=16); //line:23

22 [] s=9 -> p4:(s’=10) + (1-p4):(s’=13); //line:25

23 [] s=10 -> 1:(s’=11); //line:26

24 [] s=11 -> 1:(s’=12); //line:27

25 [] s=12 -> 1:(s’=16); //line:28

26 [] s=13 -> 1:(s’=14); //line:30

27 [] s=14 -> 1:(s’=15); //line:31

28 [] s=15 -> 1:(s’=16); //line:32

29 [] s=16 -> 1:(s’=end_state); //line:38

30 [] s=17 -> true;

31 endmodule

32

33 rewards "energy"

34 s=4 : 28;

35 s=8 : 34;

36 s=12 : 40;

37 s=15 : 48;

38 endrewards

Fig. A2.2: PRISM model synthesised for the DevPerf Java method
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A.3 Fast Sine Transformer Case Study

1 public class FastSineTransformer {

2

3 public static double[] fst(double[] f) throws

MathIllegalArgumentException {↪→

4

5 double[] transformed = new double[f.length];

6 if (!ArithmeticUtils.isPowerOfTwo(f.length)) {

7 throw new MathIllegalArgumentException(

LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING,

Integer.valueOf(f.length)); //@cost=5

↪→

↪→

8 }

9

10 if (f[0] != 0.0) {

11 throw new MathIllegalArgumentException(

12 LocalizedFormats.FIRST_ELEMENT_NOT_ZERO,

Double.valueOf(f[0])); //@cost=5↪→

13 }

14

15 int n = f.length;

16 if (n == 1) {

17 transformed[0] = 0.0;

18 return transformed;

19 }

20

21 double[] x = new double[n];

22 x[0] = 0.0;

23 x[n >> 1] = 2.0 * f[n >> 1];

24 int i=1;

25 while (i < (n >> 1)) {

26 double a = FastMath.sin(i * FastMath.PI / n) * (f[i] + f[n

- i]); //@time=1.5↪→

27 double b = 0.5 * (f[i] - f[n - i]);

28 x[i] = a + b;

29 x[n - i] = a - b;

30 i++;

31 }

32 FastFourierTransformer transformer;

33 transformer = new

FastFourierTransformer(DftNormalization.STANDARD);↪→
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34 Complex[] y = transformer.transform(x,

TransformType.FORWARD);↪→

35

36 transformed[0] = 0.0;

37 transformed[1] = 0.5 * y[0].getReal();

38 int j = 1;

39 while (j < (n >> 1)) {

40 transformed[2 * j] = -y[j].getImaginary();

41 transformed[2 * j + 1] = y[j].getReal() + transformed[2 *
j - 1];↪→

42 j++;

43 }

44

45 return transformed;

46 }

47 }

Fig. A3.1: Java method fst from the Apache Commons Math library

1 dtmc

2

3 const double p1;

4 const double p2;

5 const double p3;

6 const double p4;

7 const double p5;

8

9 const int end_state=30;

10

11 module FastSineTransformer

12 s : [0..end_state] init 0;

13

14 [] s=0 -> 1:(s’=1); //line:5

15 [] s=1 -> p1:(s’=2) + (1-p1):(s’=3); //line:6

16 [] s=2 -> 1:(s’=end_state); //line:7

17 [] s=3 -> p2:(s’=4) + (1-p2):(s’=5); //line:10

18 [] s=4 -> 1:(s’=end_state); //line:11

19 [] s=5 -> 1:(s’=6); //line:15

20 [] s=6 -> p3:(s’=7) + (1-p3):(s’=9); //line:16

21 [] s=7 -> 1:(s’=8); //line:17

22 [] s=8 -> 1:(s’=end_state); //line:18
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23 [] s=9 -> 1:(s’=10); //line:21

24 [] s=10 -> 1:(s’=11); //line:22

25 [] s=11 -> 1:(s’=12); //line:23

26 [] s=12 -> 1:(s’=13); //line:24

27 [] s=13 -> p4:(s’=14) + (1-p4):(s’=19); //line:25

28 [] s=14 -> 1:(s’=15); //line:26

29 [] s=15 -> 1:(s’=16); //line:27

30 [] s=16 -> 1:(s’=17); //line:28

31 [] s=17 -> 1:(s’=18); //line:29

32 [] s=18 -> 1:(s’=13); //line:30

33 [] s=19 -> 1:(s’=20); //line:32

34 [] s=20 -> 1:(s’=21); //line:33

35 [] s=21 -> 1:(s’=22); //line:34

36 [] s=22 -> 1:(s’=23); //line:36

37 [] s=23 -> 1:(s’=24); //line:37

38 [] s=24 -> 1:(s’=25); //line:38

39 [] s=25 -> p5:(s’=26) + (1-p5):(s’=29); //line:39

40 [] s=26 -> 1:(s’=27); //line:40

41 [] s=27 -> 1:(s’=28); //line:41

42 [] s=28 -> 1:(s’=25); //line:42

43 [] s=29 -> 1:(s’=end_state); //line:45

44 [] s=30 -> true;

45 endmodule

46

47 rewards "time"

48 s=14 : 2.6;

49 endrewards

50

51 rewards "cost"

52 s=2 : 5;

53 s=4 : 5;

54 endrewards

Fig. A3.2: PRISM model synthesised for the fst Java method
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A.4 Knapsack Algorithm Case Study

1 public class Knapsack {

2

3 public int knapsackDP(int[] w, int[] v, int n, int W) {

4 if (n <= 0 || W <= 0) {

5 return 0;

6 }

7

8 int[][] m = new int[n + 1][W + 1];

9

10 int j = 0;

11 while (j <= W) {

12 m[0][j] = 0;

13 j++;

14 }

15

16 int i = 1;

17 while (i <= n) {

18 int k = 1;

19 while (k <= W) {

20 if (w[i - 1] > k) {

21 m[i][k] = m[i - 1][k];

22 } else {

23 m[i][k] = Math.max(m[i - 1][k], m[i - 1][k -

w[i - 1]] + v[i - 1]); //@time=2↪→

24 display(); // @energy:67

25 }

26 k++;

27 }

28 i++;

29 }

30 return m[n][W];

31 }

32 }

Fig. A4.1: Java implementation of the knapsack algorithm
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1 dtmc

2

3 const double p1;

4 const double p2;

5 const double p3;

6 const double p4;

7 const double p5;

8

9 const int end_state=18;

10

11 module Knapsack

12 s : [0..end_state] init 0;

13

14 [] s=0 -> p1:(s’=1) + (1-p1):(s’=2); //line:4

15 [] s=1 -> 1:(s’=end_state); //line:5

16 [] s=2 -> 1:(s’=3); //line:8

17 [] s=3 -> 1:(s’=4); //line:10

18 [] s=4 -> p2:(s’=5) + (1-p2):(s’=7); //line:11

19 [] s=5 -> 1:(s’=6); //line:12

20 [] s=6 -> 1:(s’=4); //line:13

21 [] s=7 -> 1:(s’=8); //line:16

22 [] s=8 -> p3:(s’=9) + (1-p3):(s’=17); //line:17

23 [] s=9 -> 1:(s’=10); //line:18

24 [] s=10 -> p4:(s’=11) + (1-p4):(s’=16); //line:19

25 [] s=11 -> p5:(s’=12) + (1-p5):(s’=13); //line:20

26 [] s=12 -> 1:(s’=15); //line:21

27 [] s=13 -> 1:(s’=14); //line:23

28 [] s=14 -> 1:(s’=15); //line:24

29 [] s=15 -> 1:(s’=10); //line:26

30 [] s=16 -> 1:(s’=8); //line:28

31 [] s=17 -> 1:(s’=end_state); //line:30

32 [] s=18 -> true;

33 endmodule

34

35 rewards "time"

36 s=13 : 2.0;

37 endrewards

38

39 rewards "energy"

40 s=14 : 67;

41 endrewards

Fig. A4.2: PRISM model synthesised for the knapsack Java implementation

151





Appendix B

Chapter 4 - Supplementary Material

B.1 Parametric DTMC Models

The parametric DTMC models listed below are examples of the models used for the
extraction of the success probabilities for each of the external services, namely MW, FA
and Order, and their response times. The results of the verification process were then
supplied to the parametric CTMC model during the model analysis step (Section 4.2.3)
of the antipattern-based analysis approach in Chapter 4. The above mentioned properties
expressed in PCTL are:

(P1) P =?[F “success”]

(P2) R{“response_time”}=?[F “done”]

where “success” refers to the state that a service instance has successfully been invoked,
and “done” refers to the final state of the model, which is reached after either failed or
successful service invocation attempts.

In the models below, MW service instances (Figure B1.1) are invoked using with
the parallel (PAR) pattern, i.e., all services instances are invoked simultaneously and
the first successful invoked instance is selected. FA service instances (Figure B1.2) are
invoked using the sequential (SEQ) pattern, i.e., the first invoked service instance must
fail in order for the second to be invoked, etc. Order service instance (Figure B1.3) are
invoked using the probabilistic (PROB) pattern, i.e., the services are selected based on a
discrete probability distribution.

The patterns of invoking the services’ instances are not tied to a specific service, and
they can be used in any combination of service-pattern deemed suitable. For example, in
our experimentation in Section 4.4.2 refactoring actions indicated the need for changing
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the service pattern in some external services to satisfy the system’s requirements. Note
that the Order operation is not idempotent, so the parallel option cannot be used for it.

1 dtmc

2

3 const double p1;

4 const double p2;

5 const double p3;

6 const double rt1;

7 const double rt2;

8 const double rt3;

9 const double timeout;

10

11 module MARKET_WATCH

12 s : [1..9] init 1;

13

14 [] s=1 -> p1:(s’=4) + (1-p1):(s’=2); // MW_1

15 [] s=2 -> p2:(s’=5) + (1-p2):(s’=3); // MW_2

16 [] s=3 -> p3:(s’=6) + (1-p3):(s’=7); // MW_3

17

18 [] s=4 -> (s’=8); // MW_1 success

19 [] s=5 -> (s’=8); // MW_2 success

20 [] s=6 -> (s’=8); // MW_3 success

21

22 [] s=7 -> (s’=9); // failure

23 [] s=8 -> (s’=9); // success

24 [] s=9 -> (s’=9); // done

25 endmodule

26

27 rewards "rt"

28 s=4 : rt1;

29 s=5 : rt2;

30 s=6 : rt3;

31 s=7 : timeout;

32 endrewards

Fig. B1.1: DTMC model for MW synthesised using the PAR pattern
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1 dtmc

2

3 const double p1;

4 const double p2;

5 const double p3;

6 const double rt1;

7 const double rt2;

8 const double rt3;

9 const double delay;

10

11 module FUNDAMENTAL_ANALYSIS

12 s : [1..12] init 1;

13

14 [] s=1 -> p1:(s’=4) + (1-p1):(s’=5); // FA_1

15 [] s=2 -> p2:(s’=6) + (1-p2):(s’=7); // FA_2

16 [] s=3 -> p3:(s’=8) + (1-p3):(s’=9); // FA_3

17

18 [] s=4 -> (s’=10); // FA_1 success

19 [] s=5 -> (s’=2); // failure, go to next impl

20

21 [] s=6 -> (s’=10); // FA_2 success

22 [] s=7 -> (s’=3); // failure, go to next impl

23

24 [] s=8 -> (s’=10); // FA_3 success

25 [] s=9 -> (s’=11); // failure, go to next impl

26

27 [] s=10 -> (s’=12); // success

28 [] s=11 -> (s’=12); // failure

29 [] s=12 -> (s’=12); // done

30 endmodule

31

32 rewards "rt"

33 s=4 : rt1;

34 s=6 : rt2;

35 s=8 : rt3;

36 s=5|s=7|s=9 : delay;

37 endrewards

Fig. B1.2: DTMC model for FA synthesised using the SEQ pattern
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1 dtmc

2

3 const double x1;

4 const double x2;

5 const double x3=1-x1-x2;

6

7 const double p1;

8 const double p2;

9 const double p3;

10

11 const double rt1;

12 const double rt2;

13 const double rt3;

14 const double timeout;

15

16 module ORDER

17 s : [1..10] init 1;

18

19 [] s=1 -> x1:(s’=2) + x2:(s’=3) + x3:(s’=4); // select one of

the N=3 implementations based on a discrete probability

distribution

20

21 [] s=2 -> p1:(s’=5) + (1-p1):(s’=8); // O1

22 [] s=3 -> p2:(s’=6) + (1-p2):(s’=8); // O2

23 [] s=4 -> p3:(s’=7) + (1-p3):(s’=8); // O3

24

25 [] s=5 -> (s’=9); // success O1

26 [] s=6 -> (s’=9); // success O2

27 [] s=7 -> (s’=9); // success O3

28

29 [] s=8 -> (s’=10); // timeout failure

30 [] s=9 -> (s’=10); // success

31 [] s=10 -> (s’=10); // done

32 endmodule

33

34 rewards "rt"

35 s=5 : rt1;

36 s=6 : rt2;

37 s=7 : rt3;

38 s=8 : timeout;

39 endrewards

Fig. B1.3: DTMC model for Order synthesised using the PROB pattern
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B.2 Parametric CTMC Model

The CTMC model depicted in this section represents the FX system with one additional
thread and instance of the TA component. It was used during the Evaluation (Section 4.4)
of the antipattern-based approach in Chapter 4 as part of the second refactoring action
(R2), which introduced the addition of a second thread in the system.

1 ctmc

2

3 const double pObjNotMet;

4 const double pObjSatisfied;

5 const double pObjNotMetHighVar = 1-pObjSatisfied-pObjNotMet;

6 const double pExpertMode;

7 const double pFAMode = 1-pExpertMode;

8 const double pPerformTransaction;

9 const double MWsucc;

10 const double FASucc;

11 const double OrderSucc;

12 const double MWrate;

13 const double FARate;

14 const double OrderRate;

15 const double reqRate;

16 const int nthreads;

17 const int MAX_QUEUE_SIZE;

18 const double ta1Rate;

19 const double ta2Rate;

20 const double alarmRate;

21 const double notifRate;

22 const double internalOpRate;

23

24 module RequestQueue

25 q : [0..MAX_QUEUE_SIZE] init 0;

26

27 [NewReq] true -> reqRate : (q'=min(q+1,MAX_QUEUE_SIZE));

28 //thread 1 and 2 serving requests

29 [ServeReq1] q>0 -> internalOpRate:(q'=q-1);

30 [ServeReq2] q>0 -> internalOpRate:(q'=q-1);

31 endmodule
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32 module Workflow1

33 s1 : [0..10] init 0;

34

35 [ServeReq1] s1=0 -> pExpertMode:(s1’=1) + pFAMode:(s1’=9);

36

37 [MW1] s1=1 -> MWsucc*MWrate:(s1’=2)+(1-MWsucc)*MWrate:(s1’=10);

38

39 [TA1Invoke1] s1=2 -> 1:(s1’=3); //thread 1 invokes TA1 instance

40 [TA1Invoke1] s1=2 -> 1:(s1’=4); //thread 1 invokes TA2 instance

41 [TA1Exec1] s1=3 -> pObjSatisfied:(s1’=7) + pObjNotMet:(s1’=1)

+ pObjNotMetHighVar:(s1’=5); // wait for TA1 to complete

42 [TA1Exec1] s1=4 -> pObjSatisfied:(s1’=7) + pObjNotMet:(s1’=1)

+ pObjNotMetHighVar:(s1’=5); // wait for TA2 to complete

43

44 [Alarm1] s1=5 -> alarmRate:(s1’=6);

45

46 [] s1=6 -> internalOpRate:(s1’=0);

47

48 [Order1] s1=7 -> OrderSucc*OrderRate:(s1’=8) + (1-OrderSucc)*
OrderRate:(s1’=10);

49

50 [Notif1] s1=8 -> notifRate:(s1’=6);

51

52 [FA1] s1=9 -> FASucc*FARate*pPerformTransaction:(s1’=7) +

FASucc*FARate*(1-pPerformTransaction):(s1’=6) + (1-FASucc)*
FARate:(s1’=10);

53

54 [] s1=10 -> internalOpRate:(s1’=0);

55 endmodule

56

57 // Other workflow threads

58 module Workflow2 = Workflow1[s1=s2, ServeReq1=ServeReq2, MW1=MW2,

TA1Invoke1=TA1Invoke2, TA1Invoke1=TA1Invoke2, TA1Exec1=TA1

Exec2, TA1Exec1=TA1Exec2, Alarm1=Alarm2, Order1=Order2, Notif1

=Notif2, FA1=FA2] endmodule

59

60 // Internal component Technical Analysis, instance 1

61 module TA1

62 t1 : [0..2] init 0;

63 [TA1Invoke1] t1=0 -> internalOpRate:(t1’=1);

64 [TA1Invoke2] t1=0 -> internalOpRate:(t1’=2);

65 [TA1Exec1] t1=1 -> ta1Rate:(t1’=0);

66 [TA1Exec2] t1=2 -> ta1Rate:(t1’=0);

67 endmodule
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68 // Internal component Technical Analysis, instance 2

69 module TA1 = TA1 [t1=t2, TA1Invoke1=TA1Invoke1, TA1Invoke2=TA1

Invoke2, TA1Exec1=TA1Exec1, TA1Exec2=TA1Exec2, ta1Rate=ta2Rate

] endmodule

70

71 rewards "droppedRequests"

72 [NewReq] q=MAX_QUEUE_SIZE:1;

73 endrewards

74

75 rewards "numOfReqsHandled"

76 [NewReq] q<MAX_QUEUE_SIZE:1;

77 endrewards

78

79 rewards "MWcount"

80 [MW1] true : 1;

81 [MW2] true : 1;

82 endrewards

83

84 rewards "Notifcount"

85 [Notif1] true : 1;

86 [Notif2] true : 1;

87 endrewards

88

89 rewards "Alarmcount"

90 [Alarm1] true : 1;

91 [Alarm2] true : 1;

92 endrewards

93

94 rewards "FAcount"

95 [FA1] true : 1;

96 [FA2] true : 1;

97 endrewards

98

99 rewards "Ordercount"

100 [Order1] s1=7 : 1;

101 [Order2] s2=7 : 1;

102 endrewards

103

104 rewards "served"

105 [ServeReq1] true : 1;

106 [ServeReq2] true : 1;

107 endrewards

108

109 rewards "extFails"

110 s1=10 : 1;

111 s2=10 : 1;

112 endrewards

113

114 rewards "processingTime"

115 s1>0 : 1;

116 s2>0 : 1;

117 endrewards

118

119 rewards "idle"

120 s1=0 : 1;

121 s2=0 : 1;

122 endrewards

123

124 rewards "qLen"

125 true : q;

126 endrewards

127

128 rewards "servedTA"

129 [TA1Invoke1] true : 1;

130 [TA1Invoke2] true : 1;

131 [TA1Invoke1] true : 1;

132 [TA1Invoke2] true : 1;

133 endrewards

134

135 rewards "taTime"

136 s1=2 : 1;

137 s1=3 : 1;

138 s2=2 : 1;

139 s2=3 : 1;

140 endrewards

Fig. B2.1: CTMC model representation of the FX system consisted of two threads and
two instances of TA component
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B.3 Graphs for the CTMC Model’s Properties

This section contains generated graphs for selected properties of the CTMC model,
verified using the PRISM model checker. These graphs are generated based on the initial
configuration of the system, i.e., varying the probability of executing the workflow
in expert mode (pEM) and the probability of successfully performing a transaction
(pPT ) between 0.01 and 1 with a step of 0.1, and the probabilities of satisfying or
not the objectives are pOb jectivesSatis f ied = 0.21 and pOb jectivesNotMet = 0.78,
respectively.

Figure B3.1 shows the number of invocations for the Order external service in
T = 10 time-steps. The maximum number of Order’s invocations is reached when (a)
the probability of successfully performing a transaction (pPT ) also reaches its maximum
value (0.91), and (b) the probability of operating in expert mode is the lowest, i.e., the
system operates in fundamental analysis mode. This is due to the low probability of
satisfying the objectives set in expert mode (pOb jectivesSatis f ied = 0.21), and for
high values of pEM we see that pPT does not affect the number of Order’s invocations
as expected.

Fig. B3.1: Number of Order service invocations per time unit

Figure B3.2 depicts the probability of executing the FA → Order → Notification
path, while varying the system’s parameters. The lower pEM is, the higher is the
probability of executing the fundamental analysis branch, and thus, the probability
of invoking the listed components in the mentioned order. Also, pPT affects the path
probability as it dictates the occurrence of transactions, leading to the invocation of the
Order external service, and following, the Notification internal component.
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Fig. B3.2: The path probability of executing the FA and Order external services, and
the Notification internal component

Figure B3.3 shows the response time of the TA component while varying the
operational profile of the system. As expected, when the probability of executing
the workflow in expert mode increases, TA’s response time also increases as more
requests are going through that branch of the system. Additionally, we observe that the
probability of performing a transaction (pPT ) has a minimal effect on TA’s response
time, and when the value of pEM increases all various pPT cases merge.

Fig. B3.3: TA internal component’s response time
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