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Abstract

Storage of atmospheric carbon in northern peatlands imparts a cooling effect upon
global climate. Climate change may alter peatland carbon cycling, accelerating both
decomposition and plant productivity, potentially driving positive or negative climate
feedbacks. Experimental and palaeoecological methods are commonly used to
investigate peatland responses to climate change, but results are often in disagreement.
Whether positive or negative climate feedbacks will dominate in the future is uncertain.
This tresis links experimental and palaeoecological approaches on a raised bog in Wales
(Cors Fochno), testing the effects of tgears of warming and increased drought
frequency upon ecosystem functioning, and comparing climate responses with those

that have ocarred in the bog during the past ~1500 years.

In the experimental plots, warming reduced both carbon accumulation and methane
emissions, and when combined with drought caused the bog to become a net carbon
emitter. Shrub abundance increased with warminghich was also seen in the
palaeoecological recordSphagnumabundance did not respond to experimental
manipulations. During the past ~1500 years, changes in carbon accumulation
corresponded with vegetational succession. Sustained water table drawdown and
wildfires resulted in more decagsilient plant communities. Climate manipulation
altered the stabilisation of organic matter with depth. Temperature increases similar to
those in the past millennium did not affect decay rates in the plots. Decay dureng t
last ~1500 years resulted from vegetation changes, rather than from temperature

changes.

Climate change may cause positive feedbacks to dominate in the short term, but long
term shifts towards more decay resistant plant species may offset emissions and
contribute to climate cooling. The climatic sensitivity of peatland palaeoecological
proxies should be tested in modern settings before they are used to test climate models.
As a result of anthropogenic disturbance, palaeoecological records are no kbbgged

analogue for contemporary and future peatland functioning.
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Chapter 1 Introduction
1.1. Motivation
In 2015, global average atmospheric carbon dioxide concentrations exceeded 400 ppm
for the first time in recorded history. As of 2021, average rates exceed 415ppmaeand ar
increasing (NOAA, 2021). The past six years have seen record breaking global
temperatures, with 2020 and 2016 the warmest years since records b@gawsen,

2021).

azaild 2F GKS ¢g2NIRQa SOz2aedaisSvya | NBanétFTTFSOI
al., 2018). These impacts may affect ecosystem functions such as carbon cycling in
terrestrial ecosystems, potentially imptingfeedback mechanisms that may ametite

or intensify climate warminFieldet al.,2007). One such ecosystem is peatlands, which
store around 600 billion tonnes of carbon in their sffls, 2011). This has accumulated
throughout the past c. 10,000 years due to an imbalance between prodiycand
decay(Gorham, 1991; MacDonakt al.,2006). Peat initiation mainly occurs in cooler,
wetter ecosystems such as those that occuhigher latitudegLimpenset al.,2008; Xu

et al.,2018).While ropicaland Southern Hemisphempeatlandsalsorepresent globally
significant carbon storeand are alsaesponsive to the effects of climate change (Leng

et al, 2019) the focus of this thesis is on Northern Hemispheric peatlahadshe
NorthernHemispherethe biggest future changes in temperatures and precipitation are
projected to occur due to climate chan@eeeet al.,2021). These changes may disrupt

the carbon balance of peatlandBelyea, 2009; Frolkirgt al.,2011).
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Peatland ecosstems are complex and climate change may impact on a number of
' dzi23SyAO FyR Fff23SyA0 LINRPOSaasSa (KI G
stressors(Frolkinget al., 2009; Waddingtoret al., 2015). Peatlands influence climate
primarily through exchanges of two important greenhouse gases with the atmosphere:
carbon dioxide(CQ) and methane(CH) (Blodau, 2002; Bridgharet al., 2006). The
former is more abundant, but the latter has a more pateffect upon radiative forcing
(Forster et al., 2021). C@is mainly produced in aerobic conditions whereass CH
production occurs under anaerobic conditions beneath the water table, and peatlands
absorb C@by photosynthesis of plants and microbes livorgtheir surfacgBubieret

al., 1995; Wu and Roulet, 2014). Currently, pristine peatlands are considered to be net
carbon sinks, cooling global clima&orholg 1995; Frolking and Roulet, 2007).
However, the effects of climate change are likely to dffee proportion in which these
gases are emitted to the atmosphere from peatlands: warming may increase plant
productivity, increasing Giptake, but may also increase the rate of decay resulting in
increased C@production (Fenner and Freeman, 2001; &l and Yu, 2013). Likewise,
CH emissions may increase with rising temperatures but soil drying may reduce CH
production (Couwenburg, 2009; Huargt al., 2021). Climate change is also likely to
influence plant community composition in peatlands, whick &amdamental for peat
growth and ecosystem functionir(gvalkeret al.,2016; Dielemaret al.,2015). Changes

in peatland vegetation may influence carbon accumulation, decomposition rates and
CH emissiongWardet al.,2013; 2015; Beé#t al.,2018) Peatsoils aremainly composed
from the remains ofleadvegetation The character of theverlyingplant community
thereforedirectly influencerates ofcarbon accumulatioand decompositioriDieleman

et al.,2015;Walkeret al., 201§.Sphagnummossesare an important peat forming moss
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which function asecosystem enginesr maintainng peatland ecosystem functioning
(van Breemen, 1995Changes isphagnuntover and replacement by other vegetation
types €.9.,vascular plants such as shrubs or sejlgesy drive substantial changes in
soil biogeochemistryhydrology, plant productivityand decanposition (Ward et al.,
2013 Norby et al., 2019, resulting in changes in carbon cycling UK peatlands, a
particularly abundanshrub species i€alluna vulgariéWalkeret al., 2015).Thisspecies
forms associationswith ericoid mycorrhizal fungi in the $pallowing them toacquire
additional resources from the nutriersparse peti(Readet al, 2004).While sirubs
such agGallunavulgarisare able togrow rapidly, sequestering relatively largenounts
of carbon relative tslower growingSphagnummosses (Walkeet al., 2015) they also
produce oot exudateswhich may prime decompositionof belowground peat,
enhancing CPemissiongWalkeret al., 2016).Sedges are another type of vegetation
that commonly inhabit peatlandsn northern peatlandsthe most widespreadgedges
are thoseof the genusCarexand the speciesEriophorum vaginatunfRobroeket al.,
2017).Sedgesexhibitboth highproductivityratesandrapid biomass turnover, meaning
that they may contribute little to carbon accumulatig but like shrubs they can
stimulate peat decay byincreasing the supplgf readily decomposegblant litter and
root exudatesnto the subsoil(Marinieret al.,2004).Furthermore, sedges can increase
emissions of CHowingto some species possessisgecialisedellsin their rootscalled
aerenchymahat canfacilitate methane transportrom deep pea{Greenupet al.,200Q

Stracket al., 20063.

It is currently unclear how peatlands will respond to projected climate changes in the

future. Two different approaches are generally used to investigate this issue:
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Experimental and palaeoecological studies. Experimental studies manipulate changes in
envionmental conditions(e.g., temperature, precipitation) in laboratory or field
settings and monitor how peatland ecosystem functions and processes respond to these
changege.g., Warckt al., 2013, Dielemart al.,2015; Jassegt al.,2015; Wilsoret al.,

2016; Liet al, 2021). Palaeoenvironmental studies investigatew longterm
accumulation of carbon by peatlands, inferred from peat cores, changes in response to
climate over both space and tinfslauquoyet al.,2002; Gallegéalaet al.,2018). Both
approaches have specific advantages and limitations: Experimental studies can be highly
detailed and allow for control of climate variables, but are typically small scale, short
lived and are subject to experimental artefagt$§pdegraffet al.,2001; Johnsort al.,
2013). Palaeoecological studies allow for consideration of peatland responses to real
climate change events over tingeriods far longer than are possible with experimental
studies(multi-decadal to millennid), but do not allow for mechanisms dfi@nge to be
explored at the same level of detail as is possible with experimental st(d&squoy

and Yeloff, 2008). Additionally, carbon accumulation rates derived from peat cores are
subject to artefacts relating to differences in the degree of decontjosthat has taken

place through timeas well as by removal of peathich may occuas a result of wildfire
lossvia hydrological pathwaysrosion,or peatextraction Holden, 2005Ratcliffeet al.,

2018) Corederivedcarbon accumulation rates cannejuantify carbon lossefsom the
system(Younget al., 2019; 2020). Both methods are complimentary and could be
applied together for the same sit&his mayallow for a better understanihg of the
results of experimental studies in the contextlof & lorig&eamistory and to better
understand the mechasims that influence both shorand longterm processege.g,

carbon accumulationin peatlandgLamentowiczt al.,2016).
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However, these approaches are rarely applied together. The results of both approaches
are often very different. For example, experimental research in peatlands suggests that
climate warming may result in the rapid loss of ancient, deep carbdmarcingclimate
warming (Dorrepaal et al., 2009; Walkeret al., 2016). By contrast, much of the
palaeoecological research suggests the opposite: peatlands accumulate greater
quantities of carbon under warmer climatic conditiofMauquoyet al.,2002; Charman

et al.,2013; Gallegsaleet al.,2018).

The aim of this thesis is to understand how climate chamgeming and droughtinay
affect northern peatlands in an interdisciplinary studycombiningexperimental and

palaeoecological approaches to identify which result is closest to reality.

1.2. Aims, objectives and hypotheses

The objectivesof this thesisare addressed using a loterm climate manipulation
experiment that integrates passive experimental warming with simulated periods of
episodic, seasonal water table drawdown to determine the effects of climate warming
and drought upon ecosystem functiomsnorthern ombrotrophic peatland®roughts,

as defined in this study, refer to reduced precipitation resulting in low streamflow in
rivers and low water levels in lakes and groundwdi@n Loon, 2015PRalaeoecological
reconstructions are generated ugj a peat core taken from the sameatland adjacent

to the experimental site. The overarching aim of this thesis is to integrate

palaeoecological and experimental studies to better understand peatland ecosystem
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function and climate feedback responsesdiimate warming and increased drought

severity.

This thesis tests the following primary hypothesiZeatlands will impart a net positive
climate feedbackn response tprojected warming andhcreased drought frequencipe
to anthropogenicclimate changeThis will be accomplished by addressing four general

objectives:

1. Calculate modern carbon budgets for the experimental treatments

This study will measure G@nd CHfluxes and porewater DOC concentratidingem
experimentally manipulated plots oan ombrotrophic peat bog and assess how each
carbon flux differs in response to experimental warming, drought and combined
warming and drought. Functional relationships wil balculated between measured
carbon fluxes and environmental variables, and models used to estimate-yealti
annual carbon budgets fall measured carbon fluxesithin each plot, using logged
environmental conditions for each experimental treatment.e¥t multi year carbon
budgets will then be assessed to test the effects of each climate manipulations upon

annual carbon accumulation rates.

2. Relate the longterm context of carbon accumulation to the modern carbon budgets

This study will create a record of Late Holocene peat accumulation for the site where
the experiment is located, as well as letegm (Holocene) average apparent rates of

carbon accumulation. Averagg@parentcarbon accumulation ratgslerived from a peat
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core)will be calculated for known periods of climate change during the Late Holocene.
These results will be compared with the modernltiryear carbon budgets for each
experimental treatment, toassesswhere the carbon budgets for thalifferent
manipulationsfall within the late Holocene envelope. Finally, possible reasons for the
general disagreement between coderived carbon accumutian rates and estimated

net ecosystem carbon budgets will be explored.

3. Test the sensitivity and effectiveness of palaeoenvironmental proxies to simulated

warming and drought

This study will assess how organic matter decomposition rates and commady us
palaeoecological proxies for decomposition are affected by warming, drought and
combined warming and drought within the experimental site. The climatic sensitivity of
each palaeoenvironmental proxy to changes in temperatwighin the experimental
plotswill be tested. The chang@stemperature imparted by the experimental warming
are comparable to those that have occurred during the Late Holoc@&ne magnitude

and direction of changes observed within the experiment will be compared with changes
in each proxy reconstructed from the Late Holocene record, in order to see how

faithfully these proxies reflect climate change effects seen in the experiment.

4. Compae responses in thexperimentwith responsego real climatic changen the

past

This study will compare peatland responses to warming and drought seen in the

experiment with responses to real climate change that the site has experienced during

31



the Late HoloceneBy correlating Late Holocene carboncamulation rates at Cors
Fochno with longerm (> 350 year)instrumental measurements of environmental
conditionsfor central Englangand reconstruded average temperature anomalidsr

the Northern Hemisphere relationships between longerm drivers of carbon
accumulationmay be explored. The drivers of losigrm carbon accumulation will be
compared with those governing contemporary carbon fluxes in the expatah@lots.
Furthermore, changes in vegetation community composition and carbon accumulation
rates between known periods of climate change: the Medieval Climate AnqiMal;

c. 950¢ 1250 CE) and the Little Ice A@4A; c. 135@ 1850 CEjMann et al.,2009)will

be compared with the annual carbon budgets from the experimental plots, to determine
whether the experiment realistically reflects the magnitude and direction of change

seen following climatic changes in the past.

Together, these objectives meet the overarching aim of uncovering the reasons
underlying the apparent disparity between the results of experimental and
palaeoecologicadtudies andwill reduce uncertainty as to how peatlands may respond
to future anthropogenic climate changedetermining their future role in the global

climate system.

1.3.Thesis structure

This thesis is presented as a sequence of three standalone papers, applying a novel suite
of interdisciplinary methods to address the above set of objectives. The first chapter
provides a general introduction, setting the motivation, aims and objectivethef

thesis. This is followed by a literature review summarising the background and rationale

32



behind the project. The second chapter provides a comprehensive methodology for the
thesis, detailing how the objectives will be met using a radiftciplinary famework,
applying asuite of field, laboratory,and statistical methods. The third chapter assesses
whether changes in vegetation community seen in the experimental treatments are
represented by the longerm palaecvegetation record during past periodswéarming

and watertable drawdown.

In thisthesis,the following hypotheses are tested:

1. The experimental sitat Cors Fochnmnparts a significantreatment effect upon
air temperature and water table depth comparable to futyrejected climate
changedor the region

2. Ten years of xperimental warming drought and combined warming and
drought drives significant changes in plant community composition aor
experimental site

3. The effects of experimental warmingnd drought upon plant community
composition areamplified in the plots where these treatments are applied in
combination.

4. Changes in plant community compositioseen inthe experimental plots
resemblethose that occurred in the longerm vegetationrecord within the

samesite over the past c. 1500 yedrsresponse t@astwarming and drought.

In chapterfour, measured carbon fluxes and muear annual carbon budgets are

compared with corederived longterm carbon accumulation rates from the same site,
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and reasons for the apparent disparity between palaeo and experimental studies are

explored.This chapterésts the following hypothees:

1. Experimental varming droughtand combined warming and drought cause a net
reduction incarbon accumulatiomates within the experimental plots.

2. Experimental werming drought and combined warming and drougiricrease
the rate ofnet carbondioxide emissionfrom the experimental plots.

3. Experimental varming droughtand combined warming and drought reduce the
productivity rate of vegetation within the experimental plots.

4. Experimental varming droughtand combined warming and drougiicrease
the rate ofmethane emissionwithin the experimental plots

5. Experimental warming, drought and combined warming and droulgtriease
the production rateof dissolved organic carbasithin the experimental plots

6. Experimental warming, drought and combined warming and drowglse the
peatland to switch from a netirsk to a net source of carbon.

7. The effectsof warming and droughtipon eachcomponent of thecarbon cyat
areamplifiedwithin the combinedtreatment plots.

8. The main environmentaldrivers governingcarbon accumulatiorrates in the
experimental plotsresemble those that have controlledlongterm carbon
accumulatiorratesfor the same site.

9. Longterm carbon accumulation ratederived from peat coreare comparable
to carbon budget®stimated for the experimental plots.

10.Changes in arbon accumulation rates seen in the experimentally manipulated
plots resemble those seen duringvarmer and/or drier periods in the

palaeoecological recordf the same site
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Finally, the effects of experimental warming and drought upon organic matter
decomposition and stabilisation and the sensitivity of three palaeoecological
decomposition proxies are testesh chapter five This chapter tests the following

hypotheses:

1. Increased temperatures and drought frequency increthserate of
decompositiorfor below and aboveground litter.

2. Thesechanges are driven hgifferences in environmental conditionsuch as
temperature, water table depth and vegetation community composition, within
the experimental plots.

3. (Changesn decomposition and litter stabilisation ratese reflected by changes
in the palaeoecologicgbroxies.

4. The danges seen in the palaeoecological proxies in responsggderimentally
simulated warming and droughéflect those seen in the palaeoecological
record in terms of magnitude and directiamresponse® past climate

warming and/ordrying

Chapter sisynthesises the results of teethree chapters andliscussesheir overall
implications fitting them into the context of the existing literaturanddiscussgthe
implicationsof these findings fopeatlands in the UK arfdr northern peatlands as a
whole. A final concluding chapter describes how, when taken together, the chapters
meet the aims and objectives of thisesis andvhether wecanaccept the primary

hypothesis.
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1.4.Literature review

1.4.1.Climate change

¢KS EBROKY y3ISQ R SaadsNdktters &harfges yiiatal, regional, or
global temperature and weather patternst K N2 dz3 K2 dzi 91 NI KQ&
greenhouse gasoncentrationshaveinfluenad globalclimate (MacDonaldet al.,2006;
Haywoodet al., 2011). For examp#, the transition between the generally warmer
Medieval Climate AnomalMCA; c. 95@ 1250 CE) to the cooler Little Ice AgeA; c.
1350 ¢ 1850 CE) was associated lwiteduced atmospheric C®concentrationsof

between 7¢ 10 ppmv(Lamb, 1965; Manet al.,2008; 2009).

The global carbon cycldescribesthe movement of carbon between the ocean,
atmosphere,and terrestrial biosphergIPCC, 2021Figure 1.). The carbonbased
greenhousegases Cgand CHareimportant componentsof thiscycle(Friedlingsteiret
al., 2020. Sincel750, atmospheric concentrations of €dhd CH have riserby 47%
and 156 % respectivelymainly as a consequence @nthropogenic activities such as
fossil fuel combustioand land use changéd?CC, 2021). This haarmedglobal mean
surface temperatures, such that 2001 2020 was the warmest 2@ear periodin
recorded historywith temperatureshigherby c.1°Crelative t01850¢ 1900 baselines
(IPCC, 2021)Prnjections of future climate changeindicate that global mean
temperatures will continue to increase throughout thes2dentury (Loweet al.,2018;
IPCC 2021Eventhe most optimistic projectionsndicate that global temperatures will
increaseby at least 1.5 °@y 2100(IPCC2021) Climate warming iprojected toaffect
global weather patternschangeregional precipitationrates, and may increa® the

frequency and intensity of drougbin some regiongLeeet al.,2021).
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Figurel.l. Simple model of the global carbon cycle showing its main comporfeigis.e
adapted from IPCC, 2021.

Terrestrial ecosystems such as peatlaads important contributors tahe biological
carbon cycle, exchanging £&ahd CH with the atmosphere and storingast quantities
of organic carbon in their soi{§&orham, 1991; Clymet al.,1998; Davidson and Jasss,
2006; Nichols and Peteet, 2019her ability to sequester and storearbondepends
upon prevalentlimatic conditionghat govern the balance between carbon uptake and
microbial decayHarendaet al.,2018). Future climate change threatens to disruptith
balance, potentially releasing ancient, storetbon into the atmospheréChapiret al.,
2006 Dorrepaal et al.,, 2009. Ths potential for climate feedbackmeans that
understanding how peatlands will respond to future climate changesn important

research priorityWilsonet al.,2016; Hopplest al.,2020).

1.4.2. What are peatlands?

Peatlands are terrestrial wetland ecosystems characterisatidiyanoxicwaterlogged
soils which arecomposed mostly of organic mater{g60 %)Joosten and Clarke, 2002;
Chambers and Charman, 200Bgatlands differ from other terrestrial wetlands due to

their shallow water tableand anoxic biogeochemistryhat facilitates their highly
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efficient carbon store functiofCharman, 2002)lheyare important habitats fomany
specialised species pfantsand animals and provida wealth ofecosystem services
that areof importanceto society,such agirinking water provision, flood mitigation and

carbon sequestratiofiGorham, 19916 aoet al.,2016;Fenneret al.,2021).

Peatlands covermproximately4.2 million kn¥ of terrestrial land roughly equivalent to
the areacovered byall EU member statgqXuet al.,2018) Theydevelopwhereclimatic
and topographic conditionallow fororganic matterto accumulate more quickly thah
can decay(Clymoet al., 1998. These conditions are most prevalent the Northern
Hemisphergbetween 45¢ 75 N), wherec. 80% of albeatlands reside, with the largest
concentrations found ilRussiaCanadaand theUnited States of AmericiLimpenset
al., 2008 Xuet al.,2018). In these regions large proportionof peatlandsare underlain

by permafrost(Hugeliuset al.,2020).

1.4.3. Peatlandformation, classificationand development

Modern peatland initiationin the Northern Hemispherebeganfollowing the end of the
last Glacial Periadlhe oldest sites develaalin icefree portions of North America and
Asiac. 16 ¢ 14 kyr BP (thousand yeardefore present: 195QCH followed by more
widespread initiation as glacial ice recededith the highest rats of peat initiation
occurringbetween12 and 8kyr BP(MacDonaldet al.,2006). Peatnitiation occurs by
three pathways: lterrestrialisation where organic matter fills a lake or depression until
peatland vegetation establishes; @rimary peat formation on exposed mineral soils

where peat develops without an aquatic phadbleet al.,1984; van Breemen, 1995)
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and 3. paludification, where peat expands laterally from its site of initigf@rholaet

al., 1996; Andersoret al.,2003).

Methods for the classification of peatlds differ regionally and between disciplines
(Lindsay, 2016)Peatlands are mostly described in terms of their hydrology
example, onbrotrophic(rain-fed) bogs depend upon precipitation for their hydrological
and mineral inputs, whereas minerotrophierfs are fed by ground or surface water and
thus their soils are relatively enriched by nutrients and minef@lkeeler and Proctor,
2000; Bridghanet al.,2008). Fens can be further classified by the relative richness of
their mineralogical supply, rangirfigom relatively nutrient poofoligotrophic) to heavily
enriched(eutrophic) sitegLindsay, 2016). Fens may also be differentiated by their water
source: some are fed primarily by ground wai@pogenous) while others by overland

water flow (soligenousfWheeler, 1984).

Followinginitiation, peatlands undergo gradual vegetational sgsionsresulting in
ecological transitiorin response to changes in their hydrology and nutrient supply over

time (Granathet al.,2010). For example, a fen may transition into a relatively nutrient
RSTAOASY (G WLR2NI FSyQ 2 N vedcalpyadacdunfulatdry 6 NP (
separateshe surface peat from its groundwater supplyngram, 1982; Belyea, 2009).
Transitions intambrotrophicbogsonly occurin areas where precipitation ratexceed

those of evapotranspiration and rwoff, allowing apostive water balance to be
maintained(Lindsay, 2016). Ombrotrophic bogs often difiemn one-anotherin terms

of their continental setting oceanic bogs receavincreased supplies of nutrients and

ionsfrom seawatethan continental siteand thus often exhibit differing vegetation and
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ecosystem functiongSparlinget al., 1967). Large differencesin pore waterchemistry,
litter quality, trace gas flles carbon accumulation rates and water table leveds
occur between sites ofdiffering trophic status(Bridghamet al., 1996; 1998; 2008;
Chapinet al., 2004).Differences imutrient supplyoften mean peatlands exhibit large
variation in plant community compositionvith fens typicallyhavingmore abundant
sedgesand limited shrubcover, while ombrotrophic bogs are mostly dominated by
mosses(Lindsay, 2016)These differences in vegetation may explain tlaiation in
ecosystem functioningpetween fens and bogs, since plant community composition in
peatlandsare key drivers behind many ecosystem functiGh&ard et al., 2013; Kuiper

et al.,2014; Robroelet al.,2015 2017.

The waterloggedacidic,and nutrient deficient conditioacharacteristic opeatlandsoils
are hostile to many types ofvegetation thus northern peatlandsare botanically simple
ecosystemgRodwell, 1991 )Northern peatlandsretypically dominated by bryophytes,
particularly in the case of ombrotrophic bofi®ydin and Jeglum 2006) Mossesof the
family Sphagnaceaare characteristic of northern peatlands and are widebnsidered
to be the most important peaforming vegetationin the world (van Breemen, 1995).
Sphagnummossesgrow vertically from their terminal apexthe capitulum). They
feature multiple branches that radiate from a central stem, coveredsibglecelled
leaves featuring two distinctive cell types Onetype of cellis enlarged, porous and
thickened facilitatingwater storage anderticaltransportto the growing parts of the
plant (hyaline cells) The other cell type is smaller and enclosed, facilitating
photosynthesigchlorophyllosecelly (Clymoand Haywargd 19&8). Sphagnummosses

are fundamental to the stability and resilience mdrthern peatlandqTuretskyet al.,
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2012) produdng decayresistant litter (Dorrepaalet al., 2005; Wardet al., 2009)
antimicrobial compounds that inhibit demposition(vanBreemen, 1995; Opetit al.,
2007) andcontributing to the water-holding capacityof peat, whilst simultaneously
creating their own ecological niche at the expense of other vegetdtian Breemen,

1995).

Despite the adverse growing conditions createdSphagnunmossesother vegetation
alsofrequently co-occurin peatlands(Dorrepaalet al.,2005; Kuipeet al.,2014). These
includevascular plants such as sedges, forbs, graseesbs,and trees The latter two
often occur asstunted, dwarfed formsdue to the nutrient deficient and waterlogged
conditions in which they growvan Breemen, 1995)The distribution of peatland
vegetationvaries within sitesacross ecological gradientglatingto spatialvariationin
nutrient availability and hydrologfAndersenet al.,2011). Thes spatial differentiation
results inthe development oinundulating microtopographgcross peatland surfaces
Within this heterogenous landscapéhe distribution of competing speciedepends
upon their ecological preferencéfnderseret al.,2011).Dry-tolerant speciesnayform
raised hummocksvhile others occupy hollowsor lawnswhich areclose to the water

table (Clymo and Pearce, 1995; Andersral.,2011).

1.4.4. Peat accumulationcarbon cycling and storage

Peatgrowsover thousands of years as vegetative material accumulates vertically over
time. Decomposition ignhibited by the anaerobic and cool conditioms the subsoil

(Yavittet al.,1997; Billetet al.,2010).Organic carbon stored within thisuried organic
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matter may be storedfor thousands of yearsinder these conditiongDavidson and
Jassens, 200@elyea, 200P Thesteady accumulation of peaver thousands of years
has resulted innorthern peatlandsstoring more carbon than any other terrestrial
ecosystemegestimated at around 612 billion tonnes of carb(@t C)(Yu 2011)despite
their relativelysmall extent(c. 3 % of terrestrial landover) (Gorham, 1991Xuet al.,
2018. Thisconstitutes around one third of all terrestrial soil stock§&orham, 1991
Waddingtonet al.,2015), while some estimatesuggest thathe peatland carborstore
is higher thanl000 Gt GNichols and Peteet, 2020)he continuous sequestration and
storage of atmospheric carbon by peatlands since their initiatsoastimated to have
cooled global temperatures by :50°C throughout the Holocer{Korholaet al.,1995;
Frolking and Roulet, 2007eatlands do not alwaykave acooling effect upon global
climate (MacDonaldet al., 2006). Peat soilsanalsobe sources ofjreenhouse gases,
emitted in the form of C@and CH, which are producedis end products of decay

processesn the peat(Blodau, 2002; Bridghaet al.,2006).

A sinplified version of the peatland carbon cycle is shown by Figj2é>eatland carbon
balances are governed loyfferent processesccuring within twaoseparate stratigraphic
zones, dferentiated byaerated(oxic) and permanently waterloggédnoxic)conditions
(Frolkinget al., 2009). The uppermostzoneg representing recently accumulated peat
above the water table is termed the acrotel(mgram, 1978). This zone is typically
between20 ¢ 30 cm thick and isharacterised by fluctuatingoil moisture leveldiving
vascular plantoots anda large supplyf labile (readily decomposedyrganic maerial
(Lindsay, 1968; Limpenset al.,2008). In the acrotelm, peat is relatively uncompacted,

allowing forwater to flow both lateraly and verticaly (Reeveet al.,2000; Jenningst
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al., 2020). Here, amospheric C@ is sequestered byautotrophs (vegetation and
photosynthetic microbesin the uppermost surface(Jasseyet al., 2015). Northern
peatlands typically sequester €4 a rate of between 20 to 60 g €QCm2y?* (Wu and
Roulet, 2014), with productivity rategvernedby the availability ofight, temperature,
soil moisture andhe composition of theoverlyingvegetation communityFrolkinget
al.,1998; Bubieet al.,1999; Dinsmoret al.,2013; Peichét al.,2018).Within this zone,
aerobic conditions allow heterotrophic microbes to use oxygen in their metabolic
processesproducing mainly C{as a byprodud of the decayof organic méer (Clymo
and Hayward1982). Thehighabundance of labil¢eadily decayedprganicmaterialin
the acrotelmmeans that c. 996 of all the carbontered in this zonas promptly returned

to the atmosphergGorham, 1995).

Decay ratesdecline as temperatures fall and recalcitrafitecay resistantjorganic
matter concentratiorsincrease with depthihroughout the peat profil§Gorham, 1995;
Moore, 2002).Remainingburied organic materiakeventuallyentersthe zone of peat
permanently beneath the wateiable, termed the catoteln(ingram, 1978 This zones
characterised by reduced hydraulic conductivity, lower soil temperatures thed
presence omethanogensorganisms of the kingdom Euryarchae@@@main Archaea
These nethanogengroduce CH as the finalproductin the decay obrganic maerial.

In the catotelm, therate of decay is greatly reduced and organic carbon entering this
zone may be stored for timescales from centuriesntdlennia (Wilsonet al., 2016).
Radiocarbon analysis of £&hd CQemissions from peat suggests that most trace gas
emissions derive from recently deposited material rather than older caf@arman

et al., 1999; Chasaet al, 2000; Wilson et al., 2016) This suggests that most €H
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production is notentirely derived from the older accumulation of peat buried at depth
(Chasaet al.,2000. Therefore, although decay processes do continue at depth, carbon

storedwithin the catotelm is moreor-less stable.

Because thelepth of each zone is defined by tieightof the water table hydrological
changedeterminethe volume & substrateavailablefor aerobicand anaerobiacecay
to occur (Rowsonet al., 2013). Lowered water tablesresulting from drought or
anthropogenic disturbangencreasethe depth of the acrotelmgenerallyfacilitating
increasel CQ emissions and redueg CH emissiongTuretskyet al.,2008; Frolkinget
al.,2011). Such changemn causendividual peatlands to switch from being net carbon

sinks to source@Moore and Roulet, 199&AImet al.,1999).
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1.4.5. Methane production, emission,and oxidation

CH production (methanogenesispccurs under anaerobic conditionsand is mainly
driven by soil moisture andvater table depth(Moore and Roulet, 1993ubieret al.,
1995. Other important controls also includeplant community composition
temperature the character of thenicrobial communityandthe chemical propertiesf
the soil(Turetskyet al.,2008 Wardet al.,2013) Due to thenumber offactors that can
influence methanogenesighe rate of CH production can show greatspatial and
temporalvariation(Moore et al., 1990) In peatlands, acetlastic methanogerssand
CQ reductionare the most common pathways f@H generation(Conrad, 1999%igure
1.3). In fens with a high abundance Gfarexsedgesthe supply ofhigh-quality root
exudates has been shown téavour CH promotion by acetate fermentationGalandet
al., 2005; Keller and Bridgham 2Q0Woyceet al., 2014 whereas in Sphagnum
dominated peatbogs more methane is produced by the reduction dfssolvedCQ
(Kellyet al.,1992).

Figurel.3. Diagramillustratingmethaneproduction pathwagin peatlands (Based upon

CO,
Autotrophs fix CO,

from atmosphere by photosynthesis

Oxic zone

Anoxic zone

Kotsyurbenkeet al., 2019).
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In general CH productionratesincrea® along with increasing temperatures and fall
with increased water table deptfTuretskyet al.,2008; Frolkinget al.,2011) Methane
productionrates are alsonfluenced by theabundance of other microorganisntisat
compete with archaeafor metabolic substrates(Kotsyurbenkoet al., 2019) such as
sulphate or iron reducing bacteria and acetogens (Huregex.,2015) A large portion
of the CH produced by peatlands is oxidised into A methanotrophic organismm
the oxic layemabove the water tabl¢Smemo and Yauvitt, 2011; Gumtal.,2012; Boon
et al., 2014) The balance between GHproduction (methanogenesis) and oxidation
(methanotrophy) determiesthe rate at whichCH is emitted from peatlands into the
atmosphere(Couwenburg, 2009 5ome methanotrophs are symbiotic wiBphagnum
meaning thatthe presence oSphagnunmay limit the amount of CH releasedfrom

peatlands(Hornibrooket al.,2009;Kipet al.,2010;Nicholset al., 2014)

CH istransported through the peainto the atmosphereby three pathways: diffusion
through the soil ebullition (bubbling) andvia plant mediated transport channelled
through gas conduitiermed aerenchyma, preseirt the rootsof vascular plant species
mostly sedgdype vegetation (Bubier and Moore, 1994; Joabssat al., 1999;
Couwenburg, 2009; Greenuwg al., 2000). Aerenchymare an adaptation thagallow
species possessitigem to surwe in waterlogged soilsy providing aroute for oxygen
to reach ther growing rootgKelker and Chanton, 1997)ansportof CH eitherthrough
aerenchymaor by ebullitionmeansCH canbypasshe methanotrophiclayerat the peat
surface and thushigh sedge abundance can lead to large @HissiongSegers, 1998;

Bridghamet al.,2013; Couwenberg, 200Because sedgeasdten develop roots that can
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be tens oftentimetresdeep, the presence athesevegetation mayreatlyenhanceCH

production and transportgreatly increasing Glgmissions (La2009).

Ebulliton is anothermajor pathway for methane emissions from peatlands (Rangtez
al., 2015). Ebullition is the process wherel3H is emitted to the atmosphere as
bubbleswhichform when pore waters becomsupersaturaied with CH, (Chanton and
Whiting, 1995)These bubbles accumulatathin the porespaces in the peandtravel
through the peat column as more ¢id prodwced(Ramirezt al.,2015) If these bubbles
are emitted slowlymuch of this CHmay be consumed by methanotrophlsowever
abrupt emissions can occlirthis gas is suddenly released allbaice, either the result
of agas pressure thresholoeingcrossed, ofollowing disturbance(Lai, 2009 Ramirez

et al.,2015).

Greenhouse gases have differing radiation absorption efficiency and atmospheric
residency timestherefore their effect upon climatds oftendisproportionate totheir

total emissionsPeatlands are one of the biggest natural sources of atmospherc CH
emitting almost as much GHannually as is produced by human activiiyikaloff-
Fletcheret al., 2004; Frolkinget al., 2011). ChWis an important greenhouse gas,
contributing c. 20% of all radiative forcingated to greenhouse gassasd contributes

the most to climate change after GQ@espite constituting only a minute fractigo. 1 %

on amol/mol basis)of total atmospheric cdron (Abdallaet al., 2016). The elative
contributions of greenhouse gasare oftencompared using an index known as Global
Warming Potentiagf GWP) This indexaccounsfor differences irthe radiative properties

and atmospheric lifetimesf different greenhouse gase®lative to CQ (Stokeret al.,
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2013). Most studies follow the Kyoto Protodot estimating GWPwhich usesa 100
year time horizon and only considedirect radiative effectof greenhouse gapulse
emissiongGrubbet al., 1999; Roulet, 2000)The IPCConsides CH to have a GWPc.
27.2 times higher than C®over a 100year horizon(Forsteret al., 2021). By this
protocol, the combinedcontributions of C@and CH from peatlandsare frequently
consideredo act asnet sources of atmospheric greenhouse gasasl thus contribute
towards climate warmingver short timescale§/NVhiting and Chanton, 200 Frolking
and Roulet2007). However, oved 00 yeas, the warming effect ofCH, which has an
atmospheric haHife of c. 8.6 yeargjiminishes(Muller and Muller, 2017)By thistime
the warming effect ofhe remainingCH isovercome by the net sequestration of €14y
peatlands,and they areconsiderednet greenhouse gasinks imparting a net cooling
effect upon global climaté-rolkinget al.,2006; WhitingandChanton 2001; Frolking and
Roulet, 2007)However,GWPestimatesare highly uncertaindue to their reliance on
several doubtfulassumptions e.g., that atmospheric concentrationf greenhouse
gasesare unchanging over tim@Roulet, 2000Lashof, 2000Theymay be misleading,
because thesestimates are based upon single puésaissionsand donot considerthe
cumulativeeffects of changes i@H emissionover time(Allenet al., 2018;Lynchet al,

2020).

1.4.6. Hydrologicalcarbon fuxesfrom peatlands

Another important yet often overlookeacomponentof peatland soicarbonfluxes are
those lost via hydrological pathways the form of particulate and dissolved organic
carbon (POC and DO@ys well as dissolved inorganic carb@C) (Freemanet al.,

2004a; Dawsonet al., 2004; Stracket al., 2008; Dinsmoreet al.,2013. DOCincludes
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organic carbon smaller thab45um (Thurman, 1985andis comprised of a mixture of
simple organic acids and complex molecules such as humic and fulvic acids, principally
derived from plant exudates and soil organic matt@oore and Dalva, 2001;

2 A012YANR] A | y).Btudiek df aggadic|caron fluxieampeatiandgend

to focus onDOC because the other fluxes typicallgpresenta relatively insignificant
portion of peatland carbon lossegarticularlyin pristine siteswhere peat erosion is
minimal(Lindsay2010;Dinsmoreet al.,2013) although a certain amount of DIC can be

added in the form of dilute carbonic adidrainfall andas dissolved GQLindsay, 2010)

Fluxes of both POC and CAf@ generallyconsidered to bedw from acidic peat soils
although both have the potential teepresentimportant carbon fluxegrom peatland
systemgDavidson and Janssens, 199Rese fluxes @ commonlyignoredin peatland
carbon budgeting studies (Ryder al., 2014) with the exception of d&ew studiesfor

upland peat catchmentm the UK(e.g.,Worrallet al.,2003; 2007).

DOCcan bequantified both in terms of itsin-situ production and exporfrom a site
(Stracket al., 2008). Porewvater DOC concentrationgary widely betweensites with
valuesranging from3 to 400 mg-t, although valuesypically averag around 30 mg#
(Stracket al.,2008). DOC productidmas beerinked to several physical and hydrological
factors including soil properties andascularplant productivity, with increased root
exudate supply promoting DOC productiioore and Dalva, 2001; Freema al.,
2004g; Dinsmoreet al.,2013). Reduced saihoisture has been shown to increase pore
water DOC production bgnhancing the rate opeat erosion(Holden, 2005). Other

factors include changes inatmospheric CQ concentration, higher air and soll
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temperatures,changes immicrobial and enzymactivity andsoil chemistryWorrall and
Burt, 2008; Freemast al.,2001a; 2004; Monteith et al.,2007; Oulehlest al., 2013;
Kanget al., 2018). DOC concentratisnn waterwayshave increased inpeatland
dominated catchmentthroughout the past few decadgSchlunz and Schneider, 2000;

Freemaret al.,2001; Worralket al.,2003 Evanst al.,2012).

While future changesn water table depth vegetation,and droughtsdue to climate
change may enhance D@@oduction (Freemanet al., 2004a; Tanget al., 2013) the
increasel DOQproduction seen in recent years has been attributedctmngingDOC
solubility following recoveryafter acidification(Kanget al., 2018) Theexport of peat
DOCis controlled byhydrologyand is greater in peatlands with higher discharge rates
(Pastoret al.,2003; Freemaret al.,2001). Large hydrological carboriluxescanoccur
followingextreme flow eventsuch as storméHintonet al.,1997 Austne<et al.,2010),
especially followingperiods of prolonged drought,as biogeochemicaland physical
changegpromote decomposition and erosion of pg@reemaret al.,2001;Worrall and
Burt, 2004;Worrall et al.,2006;Ryderet al., 2014) DOC fluxe$ollowing storm events
tend to behighestduring the summer and autunmelative tothoseoccurringduring the
winter and springdue to therapidflushing of DO@roduced duingthe warmer months

following thefirst heavy rainfall evengKohleret al., 2009;Jenning®t al., 2020.

Rates of DO@fflux from intact peatlandgypically rangebetween 10¢ 20 g C rhfyr> ™

(Frolkinget al.,2009) butcanbe as high as 2§ 40 g C m*yr> Yrom degraded sites

(Billett et al.,2004; Dinsmoret al.,2010; Strack and Zuback, 201Byerefore DOC can
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representanimportant carbon fluxsufficiently large tacausea peatlando switchfrom

being a net sink to a net source when considered in annual carbon budgets

1.4.7.Nitrous oxide

In addition to C@ and CH, peatlands contributethe greenhouse ga#\.O to the
atmosphere. MO hasa GWP 23 times greater than C{bver a 106year time-period
(Forsteret al.,2021). However, fluxe®f this gasare negligible from intact peatlands
whichcontribute less than 0.2% dbtal N>O emissions from natural sourcéSrolkinget
al., 2011) Although these relatively small emissions have the potemtialmpart a
significant climate forcing affect considering their GWED is not a component of the
carbon cycleof peatlands Forthese reasonsve do not consider pO emissionsn this

study.

1.4.8. Effects of anthropogenic dsturbanceon peatland carbon cycling

Althoughnatural peatlandsire considereaverallnet sinksand storesof carbon these
ecosystem functiondave been negativelympactedby anthropogenic disturbancia
recent centuriegTuretsky and St.ouis, 200% Approximately 156 ofall peatlandshave
been degradedby human activities such adrainage, land conversion for agriculture,
grazingburningand depositbn of atmospheric pollutants such as nitrogen and sulphur
(Turetsky and St.ouis, 2006Payne 2014;Meyeret al.,2015;Joosten, 2016 In Europe,
this disturbancehasdisrupted peatland hydrologgver the past c. 300 yearsuch that
only c. 50% of the estimated c. 600,000 %af existing peatlands arestill actively

accumulating peafTannenbergeeet al., 2017 Swindleset al., 2019. These changes
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have caused mangegradedpeatlands to become net carbon sourqg@airetskyet al.,
2002) despite a net reduction ilCH emissionsfollowing water table drawdown
(Drosleret al.,2008; Swindle®t al., 2019; Frolking and Roulet, 2007; Turetskyal.,
2012).Even in relatively pristiner restoredsites, peatlandunctioningmay be affected

by past disturbances or atmospheric pollutigralbotet al., 2014; Swindlest al.,2016).
Anthropogenic disturbance can alatier the vegetation composition in peatland$his
may begradual in responsdo changes in environmental conditiofi3ageet al.,2016),

or abrupt, resulting fromchance eventssuch aswildfire (Shiller et al., 2014)
Anthropogenic pollution, such as increased inputs of atmospheric nutrients, also drives
local or regional extinction of key specisach as the case f@phagnum austiniwhich
was aformerly comma speciesn northern peatlands prior to its widespread decline
over the past c. 2000 yearSwindleset al., 2015 Schillereffet al., 2021). Changesin
peatland vegetation compositiohave been shown tanfluencecarbon accumulation
rates and greenhouseagemissiongMalmer and Wallén2004;Wardet al.,2013;Gatis

et al., 2016; Swindleset al.,2019) Changes in thestoichiometryof phosphorous and
nitrogen in peat soilsdue to human activities can also influence decomposition rates
and carbon accumulation rates, which miaytially stimulate peataccumulation,but
also higher rates of decay once certain ecological thresholds are cr{f3ceitiereffet

al., 2021).Peatlands argetherefore, susceptible to become carbon sources as a direct

result of human activities.

1.4.9.The role of peatlands in the future climate system
In recentyears, there has been growiragvareness of theotential vulnerability ofthe

peatlandcarbonbalanceand store to anthropogenicclimate changeimpacts(Millar et
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al.,2018). Processes that increase the rate of carbon emissions to the atmosphere could
amplify climate warmin@Belyea, 2009; Frolkirgg al.,2011).Climate change is expected

to transform the ecology and ecosystem functioning of peatlandsodifying
decompositionrates, hydrology,and vegetation communitieBuet al.,2011) Climate
change driven increases in land surface temperatures and changes in precipitation rates
are projected be greatest in the northern latitudes where most peatlands rg3idet

al., 2018; Leeet al., 2021)(Figurel.4). Thestability of thevastcarbon poolstored by
northern peatlandsmay be vulnerabléo such changeswhich threaten to disrupt the
hydroclimatic balance favouring peat accumulation above degagh oncern ishased

on severalstudieswhere warmer and drier conditions & to enhanceddecayrates

from peatlandgIseet al.,2008; Dorrepaatt al.,2009; Fenner and Freemg011).Drier
conditions may promote CG(production in peatlands but also suppressis@hhissions
(Huanget al.,2021). These two competing responsesfound attempts to determine

the magnitude and direction of future climate feedbacks from peatlands in response to

warming(Losielet al.,2021;Huanget al.,2021).
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Figurel.4. Figure illustrating how midange climate projections will affect areas with
existing peatland climatehangea. PEATMAP, showing global distribution of peatlands.
The horizontal dashed line reflects the position of the garfallel. All peatlands north

of this line are northern peatlands. Figure from &fual. (2018). b.Projected anual
mean temperature changdsr the period 20812100relative to 18561900 baselines at
2°C global warming. c. annual mean changes in precipitébiothe period 20812100
relative to 1850; 1900 baselinesPaneld andc are adapted fromPCC(2021).

On one handwarmer temperaturesre likely toenhance decay rateand promote CQ@
emissionssufficient to alter the carbon sink capacafmany peatlandglseet al.,2008;
Bridghamet al., 2008; Dorrepaaét al.,2009; Huanget al., 2021).Such a change may
lead to substantial losses of deep, ancient pgarrepaalet al.,2009).Changes in soil
moisture and thermal regimes magxposeformerly waterlogged peato oxygen

increasingates ofaerobic deay(Blodauet al.,2004; Roulett al., 2007; Bridghanet
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al.,2008; Walkeet al.,2016) Increased patland carbon emissions may be triggered by
the ¥nzymic latcmechanism(Fenner and Freeman, 2001; Freemetnal., 2004).
Waterlogged conditions inhibit pheh oxidase activity an enzyme that degrades
phenolic compoundghat limit organic matter decompositioim peat. Increased phenol
oxidase activity may occur as peat is oxygenated following drought or increased
evapotranspiration(Fenner and Freeman, 2001). This magrea® CQ and CH
emissiongand promoe the production ofDOChy removing theconstraints thatusually
inhibit decay(Fenner and Freeman, 20; Freemaret al., 2004; Huanget al., 2021).
Warming in northern regions is also likely to promgtermafrost thaw resulting in
increased decomposition and greenhouse gas emisdiamm affected sites driving
positive feedbacksupon global climate(Christensenet al., 2004; Heimann and
Reichstein, 2008). Permafrost thaw may also expose formerly frozen labile organic
material to aerobic conditions whilst simultaneouslychangng the structure and
hydrological conductivity of peafacilitating lower water tables andincreasedsoil
aeration. This mayaccelerate CQ production further, enhandng positive climate
feedbacks(Frolkinget al., 2011; Wisseet al., 2011). Future climate projectionglso
indicate that some regions will experience an increase in the datgtion,and severity

of droughts (Stockeret al.,2013; IPCC, 2028easonalirought can shifpeatlandsfrom
functioning as carbon sinks to becoming significant sou(Eesemanet al., 2001)
although the severity of thisepends upon many factors includinghe water-holding
capacity of the sojthe sensitivity of overlying vegetation to droughhe durationand
severity of the droughaind the time of year in which the drought occiieimann and
Reichstein, 2008Lundet al.,2012 Goodrichet al.,2017). While the effects of single

drought events and sustained water table drawdohave beerrelatively well studied
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in recent yearge.g, Rnneet al.,2020), few studiehaveexamiredthe longterm effects

that may occur du¢o increased droughoccurrence In addition to drought, increased
shrub-abundance and drier conditions may promote the frequency and severity of
wildfires. These indirect climate change impacts may further exacerbate carbon losses
from peatlands in affected region$logget al., 1992; Tiretskyet al., 2011a; 2011p

BourgeauChavezt al.,2020).

On the other hand,peatland carbon accumulation may benefit from increased
temperatures, longer growing seasons and increased atmosphercdDentrations
(Lund et al., 2010; Charmaret al., 2013). Warmer conditionsmay promote plant
productivity in areas where moisture levelee unchanged or enhancday runoff from
permafrost thaw increasedsnowmelt, or changes in precipitationDavidsonand
Janssens, 2006; Strack and Waddington, 2007; Maugtiay., 2002; 2008; Yet al.,
2011; Loisel and Yu, 2013; Charnetnal., 2013. This ncreasedproductivity may
compensate for increasen demmposition The notion thatcarbon accumulation may
increase in northernmost regions supported byevidence from peat cores, where
carbonaccumulation ratefhiaveaccelerated throughout the last centuacrossboreal
regions (Hinzmanet al., 2005; Kleinet al., 2013; Loisel and Yu, 2013j)varmer
temperatures may also permit peatlands to expand beyond their current climatic range
(Clymoet al.,1998; Limpenst al.,2008; Yiet al.,2011; Frolkingt al.,2011; Dieleman

et al.,2015).However, there may be topogphical limits to this expansiqAndersonet

al., 2003)as well as temperature thresholds that limit the amount of warming that can
be withstood by peatland vegetatiojiallegeSalaet al.,2018). Rduced soil moisture

due to enhancedevapotranspirationand changing precipitatiormay reduce CH
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emissionrates, asdrier conditionsinhibit CH production, compensating for increased

CQ emissions in the shotterm (Stracket al.,2004; Huanget al.,2021)

Peatlands exhibit aumber of autogenic (internal) feedbact®at are mainly governed
by the position of thewater table (Waddingtonet al., 2015) Thesefeedbacks are
complex and interact over a range of spatial and temporal scales, making intggrat
peatlands into globalltnate models challenging (Frolkiegal., 2009).The response of
the carbon cycle to these feedbackanbe both positiveand negative (Waddingtonet

al., 2015) Autogenic feedbackesegulate peatland responses to external influeneesl
may in some casa®nferto them someresistance gainstchanges in climatéHeimann
andReichstein, 2008; Dise, 2009; Belyea, 200addingtoret al.,2015. For example,
peatlandsurfacesare able toadjust in response t@éhangingsoil moisture,rising and
falling along with fluctuations inhe water table. Thisfeedbackhelps peatlands to
maintaina relatively constant water levgleducing the effectsf changes in water table
depth upon water availability forSphagnum(Dise, 2009 Waddingtonet al., 2015).
Accelerated peat growtimayresult in the accumulation of loose, poorly decomposed
peat,enhanangits water holding capacityDise, 2009; Iset al.,2008. This allowshe
water table to rise along with the growing peat surfaggpromoting further growth
(Waddingtonet al., 2015) Converselythis may alsancreasethe rate at which water
flows laterally through the surface peapotentially increasng water loses that drive
increases inpeat humification Increased peat decay caredue hydrological
conductivity allowingmore water to be retainedPriceet al.,2008).Encroachment of
vascular plantsn response ta lowering of thewater tablemay increase transpiration

and interception rates, causingadditional increases irwater table depth whilst
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promoting further encroachmentoy vascular plantéWeltzinet al., 2015, Waddington
et al.,2015). Howeverincreased vascular plant covecreases the amount of shading
which mayreduce evapotranspiratiorrates (Ketteridgeet al.,2013).When cessicated
Sphagnuntapitulabecome lighter in coloufWaddingtonet al., 2015).Thisbleaching
causesvapotranspiratiorrates to declineas water is no longer drawn up Bphagnum
from the water tableto the peatland surfacéThompson and Waddington, 2008his
bleachingmayincrea® surface albedpreflecting heat andnaintaining cool conditions

beneath the surfacéKetteridge and Baird, 2008).

Within autogenic systemaegative feedbacksgypically outweigh positive feedbacks
however, the strengtts of these feedbacksgaryby site dependingn environmental and
site-specific conditionsuch as climatic setting and trophic status, withgs and poor
fens incontinentalareasshowinga greater propensity towards positive feedbacks than
fens or bogs and poor fens itpastalareas (Waddingtonet al., 2015). Therefore,
autogenic feedbacks aloneannot be relied upon to prevent ecosystem changes

following changes in climate or environmental conditions

1.4.10.Vegetation change and associated feedbacks

An important additionafeedback mechanism relates to changes in peatland vegetation
resulting fromchanges in climateAlthough peatland plant communities are generally
stable through time andreresilient to changes in clima{Backus, 1972Belyea, 2009;

Churchillet al.,2015), abrupt changesay occur, oftenin response to relatively small
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changes in hydrology or temperatu(@elyea and Malmer, 2004; Yu, 2006; Belyea 2009
Mauquoyet al.,2002; Magnaret al.,2019). Such abrupt shifts arfrequently seen in
peatland palaeoecological recordahere rapid changesn vegetationcan occur in
response torelatively graduakchanges in climatéKleinet al., 2013; Magnaret al.,
2019).Vegetation composition is fundamental to peatland carbon cycling and carbon
storage (Ward et al., 2013; 2015); therefore, the response of peatlands talimate
changeis intrinsically linked to the response of their overlying vegetation communities
(Vitt, 2006; Ward et al., 2013; 2015; Walker et al., 2016; Dielemanet al., 2015.
Vegetation responses to climate change stressors can differ between species, making
future changes difficult to predidWeltzinet al.,2000)and studies linking vegetation
responses to greenhouse gas fluxes and carbon accumulation rates are limited, and

often of short duration(e.g., Warcet al.,2013).

Of all peatland vegetationSphagnums the most vital fomaintainng the stability and
resilience of peatlands to environmental charagelupholdskey ecosystem functiang
includingcarbonsequestration and storag@ uretskyet al.,2012; van Breemen, 1995
Kuiperet al., 2014). Sphagnumproductivity is sensitive to changes in soil moisture
(Gunnarsson, 20Q5Robroeket al.,2007a; 2007h as these mossesonduct waterto
their growing parts(capituld via capillary actiofThompson and Waddington., 2008).
How Sphagnummosseswill respond to warmings less cleain somecasesSphagnum
productivity has been shown tacrea® alongside risingemperature(Pakarinen, 1978;
Johansson and Linder, 1980indholm and Vasander 1990; Gerdolet al., 1998

Dorrepaalet al.,2004; Robroelet al.,2007), while in other casesvarmingeither has
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no effect (Weltzin et al., 2000 2003; Walkeret al., 2006) or reducesproductivity
(Dorrepaalet al., 2004; Breeuweret al., 2008). A critical temperature folSphagnum
decline appears to existith productivity fallingwhen Sphagnumis exposedto
temperature increases.5°Cabove ambient conditionielemanret al.,2015; Bragazza

et al.,2016; Norbyet al.,2019).

Changes in peatland plant community composition that redSgdhagnumcover in
favour of other vascular plants maignificantly altepeatland carbon cyclin@ieleman

et al.,2015;2016; Norbyet al.,2019).Increased temperaturesyater tabledepths and
elevated atmospheric GQ&oncentrationshave been shown to favour vascular plant
expansion at the expense 8phagnumsincevascular plants are often better adapted
to cope with drier condition§Weltzinet al.,2000, Straclet al.,2006a; GallegeSala and
Prentice, 2012; Pearsoet al., 2013; Dielemaret al., 2015. This has been seen in
permafrost areas, where increased theskarst lake development and peat subsidence
has facilitated plant succession resulting in a shifttowards non-peat forming
communities(Christenseret al.,2004; Swindlest al.,2015).Warminghas been shown
to drive increases in the abundance of ericaceous shf\itedtzinet al.,2003; Buttleret
al., 2015; Malhotraet al.,2020) which can increase soil respiration ra(g¢ardet al.,
2013) Increased vascular plant expansion aBghagnumdedine may stimulate
microbial activity, asncreasedsupply ofreadily decomposedhigh quality) litter and
root exudatescoincide with a reduced supply wihibitory polyphenol compoundsom
Sphagnun(Crow and Wieder, 2005; Fennand Freeman, 2011; Bragaz#aal., 2013
Bellet al.,2018). Taller vegetation may also shade dotv-lying vegetatiorand drive a

reduction in soil moisturenegatively impactingphagnumproductivity (Norby et al.,
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2019).Sphagnundecline is not unanimously reported with warmi(egg., Dorrepaagt
al., 2004), and in areas where warming increaSghagnunproductivity, Sphagnum
mosses may be able to maintain their competitive advantage over other plants,
stabilising peatland vegetmin against change(Keuper et al., 2011). Increased
graminoid cover due to climate chan¢geg.,Dielemanret al.,2015) may drive increases
in both CQ and CH emissionsas aerenchymapresent in the roots of these plants
facilitates the transport of oxygen intpreviously anoxi@eats, whilesimultaneously
providing a conduit for CkHemissiongo travel unimpeded through the peafGreenup
et al., 2000; Straclet al., 2006; Hardieet al., 2009).Increased graminoid covenay
also increase evapotranspiratiomates, leading to reduced soil moistureand
accelerating C®production (Admiral and Lafleur, 20@7 20071 although thiseffect

may alsanhibit CH production(Abdallaet al.,2016).

Increased vascular plant cover does not always nedgtigpact carbon accumulation
rates Calluna vulgarisitter (a commonly occurring shrub type specikay been shown
to suppres microbialactivity where it falls lowering soil respiration rategReadet al.,

2004; Wardet al., 2009; 2015) Vascular plant expansionan alsoincrease primary
productivity rates insome casesas these plantypesare typicallyfaster growing than

Sphagnun{Pearsoret al.,2013).

1.4.11. Addressing thiproblem usingpalaeoecological and experimental approaches
It is important to determine whether positive or negative feedback mechanisms will
dominate when assessing the future role of peatlands in the global climate system

(Limpenset al.,2008). It is considered that terrestrial ecosystems will provide mostly

61



positive feedbacks under climate warmin@harmanet al., 2013; Heimannand
Reichstein, 2008) and expert assessment suggests that peatlands will undergo net losses
in their carbon storegLoiselet al., 2021) with recent developments suggesting that
projected drier conditions will cause a net increase in.@Ad reduction of CH
emissions from peatlands, causing a net warming effect on future cli(rlatenget al.,

2021; Evanst al.,2021).However, confidence in these projectioisdow (Loiselet al.,
2021). Because of these uncertainties, and the complexity and variation of peatland
responses to climate change, peatlands are rarely included in global terrestrial models
(IPCC, 2021) and ¥Yayet to be incorporated into any Earth system modketsselet al.,
2021). This is despite their proven role in driving changes in global climate throughout
the Holoceng(MacDonaldet al.,2006) and the potential for large positive feedbacks

should ther carbon store be compromisgtimpenset al.,2008).

Two approacheare in common usag® addressthe issueof whether peatlands will
intensify or ameliorate future climatehange experimental climate manipulation and
palaeoecologicamethods Climate manipulatiorstudies, which can beeither field
basedor undertakenin vitro using peat mesocosmsmulate climaticchemical,and
hydrological changes in peatlande measure ecosystem responses to changing
environmental conditionge.g.,Bridghamet al., 2008; Dorrepaaét al.,2009; Ward et

al., 2013, Dielemaret al.,2015; Jassesgt al.,2015; Wilsoret al.,2016 Liet al.,2021).
Over the past c. 20 years, sustudies have beernncreasinglyused to probe the
responses of carbon cyclifBorrepaalet al.,2009; Zhangt al.,2021) decomposition
(Bellet al.,2018;Goreckiet al.,2021) and vegetation communitieeuperet al.,2011;

Wardet al.,2013; Walkeet al.,2016; Malhotraet al.,2020) to changes inemperature,

62



water table depthsand a number of other environmental stressors peatlands
(Updegraffet al., 2001; Strack and Waddington, 200Chiverset al., 2009. Climate
manipulation studies generally report increased greenhouse gas emisstoaswith
warming(e.g., Turetsket al.,2008; Sampsost al.,2018)andincreased C@emissions
but reduced CHemissionsoccurfollowing water table drawdowrfDenget al.,2015).
However, studies also repoxtarying effectsof warming and water table drawdown
upon plant productivity and net carbon accumulatiorates, which are sometimes
influenced by the methods used to achieverming (Erikssoret al.,2010s; Pearsoret
al., 2015 Gonget al.,2020. Insomecases, certairstudiesproduce resultghat are in
stark contrast withthose ofother studies promoting further uncertaintyfLaihq 2006;
Erikssoret al.,2010gs; 2010h. Toresolvethe often-contrasting results of these studies,
Gong et al. (2020) analysed the results ofultiple field climate manipulation
experiments in northern peatlands a metaanalysis Theyfound that most studies
indicate that warmingsignificantly increased GQemissions, productivity and GH
emissions from peat, overall resulting in reduced carbon accumulation. re@sever,
these results were based on a limited number of studi#. Huanget al. (2021)were
able to compile a muclarger data sef96 publications) to test the effects of water table
drawdownupon greenhouse gas fluxeSheyprojected these findings onteestimated
future water table conditiondor global peatlandsunder highrange climate change
emission scenarigdinding that water table drawdown due to climate change and
human activities will increase C@emissions by approximately 1.1 Gt'ywhereas Ckl

CQ-equivalent emissions will decrease by 0.26 Gt. yirhus, experimental studies

indicate that future projected changes in climate are likely to increase net carbon

emissions and exert a positive climate feedback.
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Climate manipulatiorstudiesare frequently shodived, rarely exceeding five growing
seasongUpdegraffet al., 2001; Lafleuret al., 2005 see Table 1.1). Therefore, these
studies are of limited use for probing lotgrm responses to sustained climate change
asthesecanoccur over longr time periods(Belyea, 2009 Gonget al. (2020 report
that CQ and CH emissionrates are higher where warming has been sustained for
longer periods although only two longterm studies wereused to draw these
conclusioms. Experimental studiegan also baffected by experimental artefactiue to
disturbance during establishment or by taking repeated measuremeatsnBal drying
by infrared lamps, and substantial differences betwette results oflaboratory and
field experimentscan also artificially influence resul{&ennedy, 1995; yling and
Beier, 2013;Johnsonet al., 2013; Freiet al., 2020 Gong et al, 2020 Experimental
manipulation studiesare also biasd towards the study of festype ecosystems, with
ombrotrophic sites relatively underrepresented in the literat&onget al.,2020,see
Table 1.1). Additionally many regions argoorly represented by gbal datasets. In
particular, there is a lack afata fromRussia peatlandsdespite this regiortontainng

> 30 % ofglobal peatlandsvithin the higher latitudesvhere the greatestchanges in
temperature andprecipitation are projectedto occur(Xuet al., 2018 Fewsteret al.,
2022. Theseissues limit the usefulness and reliability of such studiesdpturingthe
longterm response®f peatlands to future projected climate chaneorrepaalet al.,

2009)

Peatlands record a sensitive archive of environmental and climatic chartgen their

stratigraphic profiles tracing environmental change ovelecadal to millennial
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timescales (Barber, 1993; Chambers and Charman, 2003lae@nvironmental
conditionscanbe inferred from biologicalchemical,or physical proxieshroughout a
peat core using methods such testate amoebae(Mitchell et al., 2008 and peat
humificationanalysigPayne andlackford,2008), allowingfor detailedreconstructions
of palaeoenvironmental change through timeat profiles can belated using a suite
of methods, allowing foa high level othronological contrgloften within sub-decadal
resolution(Turetskyet al.,2004; Piotrowskat al.,2011;Swindles, 201Bwindle<t al.,
2010). These studiesllow for the examination of longerm peatland responsesto
climatic and environmentathange for examplechanges in carbon accumulation rates
can be derived from peat coreand related to changes or spatial differences in
environmental conditios (Beilmanet al.,2009; Charmaet al.,2013;2015;Holmquist

et al.,2014; 2016GallegeSalaet al.,2018;Magnanet al.,2019. Records covering the
past millennium are particularly useftdr assesmg peatland contributions to global
carbon cycling, since climatic conditions during this relatively recent-piered are

well-known for many regionfGallegeSalaet al.,2016)

Palaeoecological studies aimited by the difficulty of discerning climatic effects from
anthropogenic impacts in some instanc@aurneret al., 2014) as well asby issues
relating todating uncertainties antphonomic effects influencinthe preservation of
biologicalproxiesthroughout a cor§Mauquoy and Yeloff, 2008Yhese factorseduce

the precision with whichmechanisms of changean be probedising these methods
(Kuhry and Turunen2006, Mauquoy and Yeloff, 2008; Swindkgsal., 2020). Past
changesin climate may be poor analogies for future climate changes due to

anthropogenic emissionsjncemostprojectedincreases itemperaturedue to climate
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changeexceedhe variationseenthroughout the Holocen@Mauquoy and Yeloff, ZIB).

In addition, many commonly used proxies are qualitative and have not been tested
experimentally. Wiile reconstructions based upon biological proxjgest commonly
testate amoebae in ombrotrophic peatlands) have been validated and refimed
experimental and compati&ve studies(e.g., Charmart al., 2009; Payneet al., 2011,
Swindleset al., 2015; 2020),several commonly used qualitative climate proxies
measuring changes iecompositionrates through time(e.g., peat humification, C/N
ratios) have rarely been tested experimentall¥acconeet al., 2018). The validity of
these methodsfor faithfully reconstructing paleoclimat signalshas been criticised
(Yeloff and Mauquoy, 2006; Payne and Blackford, 20@88yever, they remain
frequently usel in recent peatbased palaeoenvironmental reconstructiofesg, Zhang

et al.,2021; Tsyganov et al, 2021; Babeskkal.,2021).

Our understanding of peatland responses to future climate chamtgess short and long
timescalescould be improved byncorporating both climate manipulation studies and
centennial or millenniakcale proxy recordsRull 2010; Seddoret al., 2014,
Lamentavicz et al., 2016) Both methods are complementary, and could be applied
together for the same site, permitting comparison between skertm (experimental)
changes with longerm changes in response to warmer and/or drier conditions, and
comparison betwer short and longerm drivers of changéRull 2010; Seddoret al.,
2014; Lamentowicazt al., 2016). The use of palaeoecology alongside experimental
studies may alsallow for presentday responses to beonsideed inthe context of its

longterm history(Williset al.,2010; Lamentowicet al.,2016).
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Palaeoecological and experimentudies arerarely applied togethe (Frolkinget al.,
2014;Lamentowiczt al.,2016) Both methodften producecontrastingresults For
instance whilethere is a great deal of variation in the resultseafperimentalstudies
examining the effects of warming and drought upon peatlarf@iable 1.1), they
generally indicatehat climate warmingwill lead to rapid loss oblder, formerly stored
carbon resulting inpositive feedback$o climate changédlseet al.,2008; Bridghanet

al., 2008; Dorrepaaét al., 2009 Walkeret al., 2016 Huanget al.,2021). In contrast,
many palaeoecologicastudiessuggestthat peatlandshaveaccumulatel more carbon

in the pastunderwarmer climaic conditions(van Belleret al.,2011; Charmaret al.,
2013; Turneret al., 2014 van der Linderet al.,2014). For example, van Bellest al.
(2020)took cores from seven sites around Northern Alberta in Canada, finding that the
highest rates of carbon accumulation occurred around c. 1100 CE and the lowest rates
were around c. 1750 CE, during the MCA Baidespectively. Other studies have found
simiar results Malmer and Wallén2004) analysed carbon accumulation rates and
environmental conditions from Swedish peatlands, finding that southern sites
accumulated more carbon during the MCa&nd both southern and northern sites
accumulated less carborudng the LIALarge global compilations of peat accumulation
rates have been related t@patial variation in environmental and climatic conditions
(Charmaret al.,2013;GallegeSalaet al.,2018).Charmaret al. (2013)found evidence

to supportthe notion thatwarmerclimaticconditions will enhance carbon accumulation
rates Gallegp-Salaet al. (2018)found that the length of the growing season was the
dominant factor governing carbon accumulation in northern peatlands and wiaite
rising temper&ures may drive increased carbon accumulation, a temperattureshold

may be met by 2100 CE theduld reverse this trend, causing peatlandswatch from
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exertinganegativeclimatefeedback taa positiveone.Both gudiessuggest thatlimatic
variables governingroductivity ratesare the dominantcontrolsinfluencing longerm
carbon accumulation rateover hydrological conditions that govern de¢@parmaret

al., 2013 GallegeSala et al., 2018. However, studies of carboraccumulation rates
based upon individual coresrequently show a relationship between carbon
accumulation rates anthe botanical composition of the pegMalmer and Wallén
2004; Mauquoy et al., 2002; Loisel and Garneau, 201@nthropogenic disturbances
such aswildfires and nitrogenpollution have also had great impacts upon apparent
carbon accumulation rates in peatlands in recent years, even in relatively pristine sites

(Shilleret al.,2014; Lamentowicet al.,2016).

Another factor thatcomplicatesthe integration of experimental and palaeoecological
methods is that carbon accumulation rates derived framntemporarygreenhouse gas
measurements from peatland ecosystems often faitbmverge with long term carbon
accumulatiorrates derivel from peat coregFrolkinget al.,2014; Ratcliffeet al.,2018)
This has been related to known artefact that affects palaeoecological estimates of
carbon accumulation. Losses of carbitmough time cannot bequantified by these
methods and negative Vviaes are impossibleresulting in an apparent reduction of
carbon accumulation ratesluring periods of carbon los&lymo, 1984; Yu, 2011;
Frolkinget al.,2014; Youngpt al.,2019; 2021). In addition, carbon accumulation rates
derived from recently accuntated peat are often higher than in the deeper peats, due
to the incomplete decomposition of labile organic material at the peat surtdceing

et al.,2019; 2021)These artefacts mean that carbon accumulation rates derived from

a peat core do not accuraly reflect the amount of carbon accumulated at the time of
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deposition, but instead reflect the amount of carbon retained after initial captGrene
studies haveelated changes in recently accumulated carbatesto land management
practices(Heinemeyeret al., 2018; Marrset al., 2019, howeverthese rates are not

directly comparable téhose fromdeeperpeat(Younget al., 2019)

Despite these issueduslies that linkpalaeo and experimental approachesy improve

our understanding of how future climate change will affect peatland ecosystem
functioning over different timescalegLamentowiczet al., 2016). Interdisciplinary
studies that link both approaches and reseamtmmunities are necessary to work

towards generating a common understanding of peatland carbon dynamics and drivers.
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Tablel.1. Table of geatland climate manipulation experiments and their resuigperimental treatment effects are gives reported in the cited
paperwhere availake. Site names are given except when they are not reported, insttai® names or nearbjocationsare given.Increasesn
temperature andwater table depths ee indicated by a plus sign. The study by Rowetoal. (2012) indicatedoy anasterisk relates to this study,
reporting on the early results of the experimental climate manipulation experiment used in this the&ds not a comphensive list of all climate
manipulation experiments that have been conducted in peatlands.

Source Years Dates Experiment Location Peatland Measured Experimental treatments Results
type type fluxes
Balantyne et al., 2 20092010 Field Seney National Fen CQ, CH Longterm (>80 years) Inundation decreased GC
2014 Wildlife Refuge water table drawdown of respiration and productivity, but
peatland, Michigan + 15 cm and inundation b’ increased CHemissions. Reduce!
USA 10 cm water tables increased GC

respiration and productivity but
decreased CHemissions.

Bragazzaet al., 3 2011¢ 2013 Transplantation Hoscrajen and Bog o{e] Warming (+5°C) and Soil respiration increased and pe
2016 (climate Lormoos bogs, reduced precipitation-60 accumulation fell by 30 % i
gradient) Swizerland %) transplanted mesocosms.
Bridgham et al., 7 1994¢ 2002 Mesocosm Alborn, Minnesota, Fen and Soil Warming by infrared Bog: Initial increase in carbo
2008 USA Bog carbon lamps between 1.§4.1°C accumulation, greatest with highe

balance and increased water table water tables, but levels off after :
(changes depth(+3, +16+25 cm)  years. Fen: losses in carbon or

in  mean change, with the greatest losse
surface occurring in the drier and warme
height) mesocosms.
Chivers et al. 2 2005-2006  Field Alaska Peatlanc Fen CQ Warming(0.7 °C) by OTC Lowered water tables reduce:
2009 Experiment (APEX), and increase@+5¢ +8 cm) productivity,  weakening, ol
Alaska, USA and reduced-9 ¢ -11 cm) reversing the carbon sink functior
water table depths. Flooded plots were greater GC
sinks due to increasel

productivity. Warmirg increased
bothn CQ emissions and
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Denget al., 2015

Dorrepaal et al.,

2009
Eriksson et
201
Eriksson et
2010a
Hanson et
2020
Hopple et
2020
Johnson et
2013

al.,
al.,

al.,

al.,

al.,

(e¢]

12

2004¢ 2006

2000¢ 2007

2005¢ 2006

1996¢ 2007

2016¢ 2018

2015¢ 2018

2009-2010

Field

Field

Field
Mesocosm

Whole
ecosystem

Whole
ecosystem

Field

Alaska Peatlanc
Experiment (APEX),
Alaska, USA

Abisko, north Sweder
Degerd Stormyr,
Sweden

Degerdo Stormyr,
Sweden

S1 Bog, Minnesota
USA

S1 Bog, Minnesota,
USA

Site in Michigan, USA

Fen

Blanket
bog

Mixed
mire
Mixed
mire
Bog

Bog

Fen

71

CQ,CH

Co

CH

CH

CQ, CH

CQ, CH

CQ, CH

Warming (+0.7°C, 0.9°C
and 0.6°C by OTCs, al
increased (+8.1cm) and
decreased-20 cm) water
table depths.

Warming(OTC) c. +1° C

Warming(OTC) +1.5°C
Warming(OTCs +~3.6°C

Warming(+2.3°C, #4.5°C,

+ 6.8°C, +> 9°C) by
propane fired furnaces
and increased

atmospheric C&(+ 800 ¢
900 ppmv)

Warming(+2.3°C, 4.5°C,
+ 6.8°C, +> 9°C) by
propane fired furnaces
and increased
atmospheric C® (+ 500
ppmv) for last 3 years
Warming by OTCs(nho
significant warming
effect) and Infrared heai
lamps of +1.4 1.9°C

productivity, and thus did nof
affect carbon balances.

CQ uptake was reduced in botl
very cold or very warm condition
and increased with increased sc
moisture. Cklemissions increases
with increasing temperatres and
higher water tables.

CQ emissions increased due t
warming, with the emission:
traced isotopically as being fror
deep, ancient peat.

CH emissions were reduced b
warming by 30 % on average
Warming decreased GF
production by 34%.

Increased COand CH emissions
with increased warming
accelerating carbon losses by 4
to 18 times relative to historica
accumulation rates. No effect c
increased atmospheric GC
concentrations.

Warming increases Gtand CQ
emissions, while increase
atmospheric C® has no
discernible effect on gas fluxes.

Warming with infrared lamps
increased productivity, while OTC
had no effect on CO fluxes.
Warming from both OTCs an



Juszczaket al, 1 2015

2016

Laineet al.,2019 3 2011¢ 2013
Liet al., 2021 2 20182020
Munir and 3 2011¢ 2013
Strack, 2014

Munir et al., 3 2011-2013

2014

Field

Field

Mesocosm

Field

Field

Rzecin
Poland

Sites near Siikajaki Fens

Finland

peatland Fen

La Guette peatland Fen

France

Wandering
Canada

Wandering
Canada

River, Bog

River, Bog

72

Ccao

CQ, CH

CQ, CH

CH

Ccao

Reduced precipitatiorf35
%) and warming of ai
temperatures (0.4°C)
using heat lamps

Warming by OTCs an
land use differences
resulting in water table
differences of ~ 20 cm.

Warming of air
temperature (0.9°C) using
OTCs

Warming by OTCs~1°C)
and increased water table
depth (+ 38, +74 and +
120 cm)

Warming (~1°C) by OTC
and increased water table

Infra-red lamps increased Gt
emissions however.

Warming increased C@missions
and productivity, drought reducec
productivity and for combinec
warming and drought CO
emissions were reduced.
Warming increased productivit
rates for all land use types
Reduced water table depth an
temperature increases increase
CH only slightly since these site
were already dry.

Increased C© uptake with
warming. Respiration, carbo
balances and Ghhot effected.
Water table drawdown reducec
Ch emissions differently
depending on the age of drainag
(emissions were higher in aree
that had been drained for longer)
Warming increased GHlux, which
also increased with water tabli
drawdown. In hummocks, the
opposite happened. GHmissions
were reduced by warming anc
declined further with as watel
table depths fell. Combinec
warming and drought effects ol
CH were overall negative but no
significant.

CQ accumulation increased witt
warming, showing an interactiol



Olefeldt et
2017
Pearson et
2015
Rowson et
2012*
Strack et
2004
Strack et
2006

al.,

al.,

al.,

al.,

2005¢ 2013

2008¢ 2010

2010¢ 2012

2001¢ 2003

2001¢ 2002

Field

Field

Field

Mesocosm

Field

Alaska Peatlanc Fen
Experiment (APEX),
Alaska, USA

Lakkasuo, Narhinnev Fens

and Lompolojankka,
sites in Finland.

CorsFochno, Wales Bog

St. Charlesle- Fen
Bellachasse, Quebei
Canada

St. Charlesle- Fen
Bellachasse, Quebe:
Canada
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CQ, CH

CQ, CH

Ccao

CH

Cca

depth (+ 38, +74 and +
120 cm) over long ant
short terms.

Warming by OTC.7°C,
0.9°C and 0.6°C for
control), and increasec
and lowered water table
depth (+8.1,-20 cm)
Warming by oTC
between +0.2; 2.0°C) and
longterm water table
drawdown(+5-10 cm and
+10- 30 cm)
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1.5. Summary

Northern peatlands contain a vastore of carbon and are important components of the
global carbon cycle. Anthropogenic climate change threatens to disrupt the ecosystem
functioning ofpeatlands and may cause this carbon to be returned to the atmosphere,
potentially imparting large posite feedbacks, amplifying climate warming. However,
the future response of peatlands to climate change is unclear, and they are not currently
included in Earth System Models, despite their significance in the global climate system.
An important impedimentin resolving this uncertainty is the disconnect between
different approaches used by experimental ecologists and palaeoecologists. By
combining both palaeoecological and experimental approaches using an- inter
disciplinary approach, this project aims to readubstantive progress towards reducing

this uncertainty.
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Chapter 2 Methodology

2.1. General introduction

The purpose of this work is to integrate shoetm peatland manipulation experiments
with longterm highresolution palaeoecological investigations, to better undanst

how these ecosystenmmayrespond to future warming and increased drought frequency
as a result of anthropogenic climate change. Integrating both approaches in this manner
will improve interpretations for both approaches, helping to reduce the aqurre
uncertainty surrounding the future role of peatlands in the global climate system. To
achieve this aim, it is necessary to implement a cdissiplinary approach, integrating

a suite of field, laboratory, and statistical methods from both the bioldgica

(experimental ecology) and geographi@ahlacoecology) sciences.

2.2.Study site

To fulfil the objectives outlined in the previous chapter, this thesis makes use of an
experimental climate manipulation experiment situated on Cors Fochno, located in mid
Wales(Figure 2.1). Cors Fochiloat: 52.50, Long4.01) is located east of the towof

Borth, on the south side of the Dyfi estugiigure 2.1). The canalised River Leri runs
through the western margin of the bog. Peat initiation began at the site around c. 6 kyr
BP(Wilks, 1979). In the central raised portion of the bog, the peatiastdepths greater

than 7 m and the peatland surface is approximately 1 m above sea(\#ilks, 1979;
Hughes and Schulz, 2001; CCW 2011). The site is underlain by estuarine silts and clays,
while the underlying geology of the area is of Silurian Abenytstwrits group(Howells,

2007).
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Figure 2.1. Location of the experimental site: a. Map of Wales. Red shaded areas show
the area indicated by the following panel. b. topographic map showing the area from
Machynlleth(red dot) to Aberystwytl{yellow dot).(Stamen terrain background). c. ESRI
Satellie image of Cors Fochno showing the location of the experimental site and
location of core BO1{blue dot).

Cors Fochno is a nature reserve of international importance. It forms part of the Dyfi
UNESCO Biosphere Reserve, the only example of such a res#&Wades. It is also a
Special Area of Conservation and a Site of Special Scientific Interest. It represents the
type locality for estuarine raised mires and is one of the largest remaining expanses of
primary surface lowland bog in Britain. The centrefivee zone comprises c. 2 Rrof
primary surface peat, surrounded by c. 4%wmhdegraded peatland, which was drained

for peat harvesting or improved for agricultug@oucher, 2009).
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Throughout much of its history, the site experienced only-lewel human activity
characterised by local mining, habitation, grazing and bur(fayicher, 2009; Mighall

et al.,2017). Around the 10 century CEa wooden trackway was built traversing the
southern side of the bofPageet al.,2012). Human activity intensified towards the end

of the 18th century, reaching its zenith during the 1940s as the war effort increased the
need fa agriculturalland(Poucher, 2009; Pags al.,2012; Mighalkt al.,2017). Around
1970, the first restoration efforts began to restore degraded areas of the bog. As a result
of this, many formerly damaged areas are now actively regenerating and suppoft peat
forming vegetation; however, large areas iaiproved acidic grassland persist, with
some areas overlying peat which are still actively grazed by stiRempher, 2009). In

the present day, restoration work continues, with the-ElFE funded project New LIFE
for Welsh Raised Bogs improving margiraba and blocking former drainage channels

on the site(Natural Resources Wales, 2021)

The vegetation on the central active zone compares with the National Vegetation
Classification M18Erica tetralix¢ Sphagnum papillosumaised and blanket mire
(Rodwell, 1991). Figure 2.2 shows the typical vegetation community composition of the
central portion of the site. Other areas feature vegetation communities resembling M1,
M2, M3, M19 and M20 plant communities, all of which are classes associated with raised
mires(Rodwell, 1991; Elkington et al 2001). Vegetation communities are dominated by
Sphagmim, mostly byS. pulchrun{Figure 2.3)and the site is one of the last refugia for
the formerly abundant specieS. austinii Other species abundant in thelatively
undisturbedcentralportion of the site includ&khynchospora alh@ndromeda polifolia

Drosera anglicaEriophorum angustifoliumCalluna vulgarisErica tetralixand Myrica
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gale The maritime margins of the site are characterised Sshoenus nigricans
Degraded areas are characterisedglinia caerulea, Phragmitesd Juncuspp., and

some areas are covered by wet woodland and areas of deteselium aquilinunscrub.

Figure 2.2 View from the central portion of Cors Foch(facing North) showing the
vegetation community compaosition and microtopography of the é&phagnuntarpet
overlain by hummock#lyrica gale, Calluna vulgarend Rhynchospora alha(Photo:
Luke Andrews)

Figure 2.3.Photograph ofSphagnum pulchrungrowing on Cors Fochno, a dominant
peatforming species in the central raised portion of the bog. Each capitulum is c. 1 cm
across(Photo: Luke Andrews)
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This site has been the subject of many scientific studies over ohergdes. These vary
from studies examining the ecological effects of peatland manager(fémt; 1984;
Slater and Agnew, 1977; Slater, 2012), biogenic gas production and movement in peat
soils(Bairdet al., 2004; Kettridge and Binley, 2008; Redekeal., 2015) and testing
remote sensing technique®r measumg peatland hydrology(Harris et al., 2006),
amongst many others. Much of the research of the site has concerned thetdomg
KAald2NR 2F SO02ft23A0Fft OKL y 3 Sdopniekt)rangingl @S
from examination of the longerm peatland development and plant success{Schulz,

2006; Hughes and Schulz, 2001) to changes in land use and pol({@miwin and

Newton, 1938; Hughest al.,2007; 2008; Mighakt al.,2009; 2017).

2.3. Experimental setup

2.3.1. Experimental site history and purpose

The Cors Fochno experiment was established between Malane of 2010. It is a fully
factorial in-situ climate manipulation experiment, consisting of twelve 2 x 2 m plots of
Sphagnuniawn, replicated in three blocks along a trans@€igure 2.4)The veetation

in this area comprisemostly of Sphagnum pulchrunfawns. In some areasshallow
poolsare populatedby Sphagnum cuspidatumvhilethe sedgefRhynchospora alband
Eriophorum angustifoliumare abundant in wetter areadn drier areas,Sphagnum
capillifolium and Sphagnum apillosum form hummockswhich are often densely
populatedby the dwarf-shrubsCalluna vulgaris, Erica tetraland Myrica gale(CCW,

2011).
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Each plot is subjected to one of four experimental treatments, con{radreatment),
warming, increased drought frequency and combined warming and increased drought
frequency(an additional drought every c. 2.5 yepr§he purpose of this experiment is

to determine the effects of climate warming and drought at the range predicted for the
region from the present until c. 207@oweet al.,2018) upon ecosystem functions in

northern ombrotrophic peatlands.

UKtemperatures are projected to increasy 0.3¢ 2.6 °Chy 2080¢ 2099based upon
the RCP2.6 climate scenanielative to baseline temperaturesif 1981¢ 2000(Loweet
al., 2018). Recipitationis projectedo increasen winter anddecrease irsummer(Lowe
et al, 2018) resulting inincreasingly frequent and sere seasonaldrought ard
rainstorms(Hanlonet al., 2021) Although there is a great deal of regional variatianth
between 1.5¢ 4.0 °C of warming, weragesummerdrought severityis projected to
increase by as much as 19Whiledaysin whichhigh-impactheavy rainfaleventsoccur

are projectedto increase byl ¢ 8 per year(Hanlonet al., 2021).

Figure 2.4 Experimental design schematic, showing the position of each experimental
plot along the boardwalknot to scale). The blocks are delineated by dashed vertical
lines.
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