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Abstract

A new software tool for the solution of complex time-dependent systems of partial differential
equations is presented. High levels of parallelization are achieved in a framework that allows the
application developer to implement ad-hoc solvers for computationally challenging problems on
a higher abstraction level without the need to understand in the low-level parallel implemen-
tation. Moreover, thanks to this new implementation, advanced numerical methods, such as
mesh adaptivity, implicit time stepping, and multigrid methods can be employed with ease.
Here the implementation of this new tool is presented and validated against simple elliptic and
more complex phase-field models. Its parallel performance is then assessed.
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Chapter 1

Introduction

A deep understanding of the phenomena that occur in an alloy during its solidification process
is of fundamental importance in metallurgy applications such as the casting industry. Castings
are made by pouring melted metals into a mold allowing the production of items whose shape
could be impossible to obtain with other techniques. During the transformation from the liquid
to the solid state in the mold, many small crystals are formed in the metal affecting the final
properties of castings [13].

The primary motivation for this research is to extend an existing open source software
tool to allow it to solve complex time-dependent systems of PDEs, including models for phase
change, to allow investigation of phenomena such as crystal dendrite formation using advanced
numerical techniques.

This work adds new functionalities to an existing parallel computational framework and
implements a general abstract interface that allows the solution not only of phase-field models,
but of a wide family of problems that can be modelled by systems of time-dependent partial
differential equations.

1.1 Litterature Review

In recent literature, phase field models represent a standard approach in modelling systems
where two or more phases of the same component coexist [16, 27, 48, 49, 56, 65]. The math-
ematical idea behind these models, in the case of two phases, is to introduce a continuous
auxiliary function ϕ defined over the spatial domain, Ω ⊂ RN , that assumes fixed values in
each bulk phase and that smoothly varies between them over a thin region where the actual
phase transition occurs. Note that an alternative to the phase-field approach is the level-set
method (e.g. [89]), which represents the interface between two phases as the zero level set of
an auxiliary function: however we do not consider the level set approach in this thesis

1
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Numerical simulations, both in 2D and 3D, have been performed by other authors using
phase field models: Narski and Picasso [70], for example, used phase field models with an
adaptive isotropic mesh, Tonhard and Amberg [91] and Lin et al. [60], instead, used structured
isotropic adaptive mesh and the finite difference method, while Sarkis et al. [87] used the
finite element method over an anisotropic unstructured adaptive mesh, and Guo and Xiong
[37] implemented a finite volume scheme with structured adaptive mesh refinement. These
works demonstrate the need of adaptive mesh refinement techniques while solving the phase
field model. However, all of them made use of explicit time stepping, while it has been shown
by Rosam et al. [79, 80] that an implicit scheme is preferable for some families of phase-field
models once a certain level of refinement is reached. The same authors [7, 34] have shown
that the system of the non-linear equations resulting from the application of a finite difference
method can be solved efficiently with non-linear multi-grid techniques. An analogue solver for
block-structured grids has been used also by Wise et al.[100] for the efficient solution of a similar
set of equations but with applications within biomedical engineering.

The trade-off between accuracy and computational time often leads researchers to carry
out simulations in two dimensions or with model parameters that are far from resembling
configurations of physical interest. Without such simplification, numerical simulations would
simply take too long and require too much memory.

To overcome such limitation, an highly scalable solver is necessary in order to achieve results
of physical interest within reasonable time, and overcome the sub-optimal scalability properties
of the implementation in [7].

Given the scale of the problems we aim to solve, this research focuses on the block-structured
adaptive mesh refinement method (SAMR), which has been extensively used over the last decade
in computational high-level frameworks. Few SAMR frameworks, however, are open source,
actively developed, and have been used also by users out of the organizations developing them.

At the beginning of this research, BoxLib [106], Chombo [21], and SAMRAI [44] where
the popular general frameworks that provided all the functionality for solving different systems
of hyperbolic, parabolic and elliptic equations. PARAMESH [63], was an even more general
library the only implements the mesh management, and therefore is completely independent on
the equations being solved. A more exhaustive list of the software available then that implement
SAMR, as well as other adaptive mesh refinement (AMR) techniques can be found at [38].

BoxLib is a Fortran/C++ software framework that provides extensive support for both ex-
plicit and implicit grid-based and particle fields on hierarchical adaptive meshes. It includes
multigrid solvers for both cell-based and node-based data. Parallelism is mainly achieved rep-
resenting the grid as the union of blocks at each level and organizing data in arrays on each
single block. Operations spanning across these blocks are distributed among the computational
nodes, with arrays at each level of refinement being distributed independently. Each node stores
all meta-data needed to describe the whole geometry and processor assignments. To optimize
communications patterns, this meta-data must be used to dynamically change communication
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patterns and share data amongst nodes by each specific algorithm. The scaling behavior of
BoxLib is therefore strongly dependent on the specific algorithm.

Chombo is also a mixed-language software framework that uses C++ for high-level abstrac-
tions and Fortran for calculations on regular patches. It supports a wide variety of applications
that use AMR by means of a common software framework as well as built-in diagnostic and
performance tools. Its approach to parallelism is similar to AMReX’s, with the main difference
being that meta-data is replicated across all MPI ranks to reduce communication. Moreover,
data in Chombo is templated on data type and data centering and has a hierarchy: from grid
data to global. Moreover, Chombo provides support to embedded boundary algorithms [22].

Enzo’s SAMR implements rectangular blocks of arbitrary size and aspect ratios and adaptive
time-stepping. Each refinement level uses its own timestep. Also Enzo uses C++ for the
data, comunications and task managment and Fortran-90 for its local solvers. Non-local solvers
however require substantial amounts of communication. Two level of concurrency are supported:
block-level and deeper level. Its development is very active since the project is fully open source
and community-driven. Much effort was given at that time to port solver to graphics processing
units (GPUs), and using the hybrid-parallelism.

FLASH is a component base software that combines two frameworks, an Eulerian dis-
cretized mesh and a Lagrangian approach [76]. FLASH support explicit stencil-type solvers
using PARAMESH and Chombo. Only explicit solvers are completely agnostic of the underly-
ing mesh, elliptic and parabolic solvers interact explicitly with the mesh using the PARAMESH
interface.

For this research, the the Uintah Computational Framework (UCF) has been chosen, be-
cause of its approach to parallelism and for it being, at that time, perhaps ahead of others in
terms of programming abstractions. It consists of software components and libraries that can
execute efficiently multi-physics simulations by identifying its simulation stages and automat-
ically analyzing their dependencies and communication patterns. Similarly to Charm++ [46],
Uintah uses task-graphs, but also implements a data warehouse which manages data transfers,
and which ensures that the user’s code is independent of the communications layer. Uintah’s
makes it possible to improve scalability through adaptive self-tuning, making its scaling be-
haviour independent on the specific algorithm.

Uintah’s user base has continuously expanded since 2008, and kept improving its scalability
properties. Uintah-based simulations of next generation coal boilers have been successfully
performed on different architectures, including heterogeneous architectures and have scaled up
to 96K, 262K, and 512K cores on the NSF Stampede, DOE Titan, and DOE Mira, respectively
[6, 68].

During this research the other framework kept improving as well, but other frameworks had
to undergo relatively greater changes than Uintah. While Uintah, thanks to its component
based organization simply tested new technologies such as Kokkos and Hedgehog [41], Enzo has
been completely rewritten from scratch (Enzo-E), Flash underwent an architectural refactoring
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(Flash-X) [26], and BoxLib has been replaced by AMReX [105].
Given the many changes in the SAMR software panorama during the years of this research,

Uintah has proven to be a solid choice as development framework, allowing my work to progress
without being affected by its continuous development.

1.2 Contribution to Uintah

The Uintah Computational Framework is a continuously developing SAMR software which is
organized in well separated components. When I started this research work, although all the
components required to perform time-dependent partial differential equations where available,
not all of them could work well together. In particular, the current implicit solver interface
component wasn’t designed to work with multi-level structured grids. An earlier and unmain-
tained and AMR implicit solver implementation was present in the code base, but it had never
worked properly. It was developed for a specific application and the main problem was re-
lated with handling the interfaces between fine and coarse levels without introducing numerical
instabilities. For this application an ad-hoc smoothing operator was sufficient to control this
issue.

The main challenge and contribution of my work to Uintah is the development of a fully func-
tional and generic implicit solver component that acts as a bridge between the AMR structures
of Uintah and the semi-structured solver interface of HYPRE. HYPRE has been the natural
choice for the linear algebra library, since also the Uintah’s current implicit solver component
for single level grids did already use it.

The second contribution to Uintah is the introduction of a new abstract family of templated
classes that act as viewers of the SAMR data structures in Uintah’s data warehouse. This
provides the final user a higher level of abstraction to implement finite differences/volume
discrete models. In fact, all previous applications of Uintah were specialized for solving specific
model equations and each for each one specific kernels were implemented at the patch level to
assemble matrices and to progress the solution from one timestep to the next.

This research, on the contrary, targets multiple applications and different model equations.
For this reason the introduction of such an higher level interface has been crucial to allow a
much more straightforward implementation of kernels at the patch level. This same high level
interface also hides the complexity of boundary and fine/coarse interface conditions so that the
same kernel can be used for any patch on any level and any combination of conditions.

Thanks to this interface, it is possible to configure boundary conditions and fine/coarse
interface strategies in the problem specification file, which is loaded at run time, giving much
greater flexibility to the final user of Uintah.
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1.3 Thesis Structure

This thesis is structured in nine chapters in addition to this introduction.
Chapter 2 is composed of three sections which provide an overview of the physical models,

the software tools and the numerical techniques on which this research work is based. In §2.1
some phase field models for describing the solidification process of pure metals are introduced; in
particular, the Allen–Cahn and Cahn–Hillard equations are discussed in §2.1.3. Four problems
of these types have been identified as representative of the challenges that can arise during phase
field simulations and will then be used to benchmark the software implementation produced by
this research. In §2.1.1, the isotropic and the anisotropic models which describe the solidification
problem of pure metals is introduced.

In §2.2 the Uintah Computational Framework is presented, focusing on how high degrees
of parallelism are achieved by the framework. In §2.2.2, the different available schedulers
are presented, then, in §2.2.3, the organization in levels and patches of adaptive meshes is
described. How data is stored and how it is shared between processes within distribute memory
architectures is discussed in §2.2.4. Ultimately, in §2.2.4, the mesh regridder within the UCF
is presented.

A brief introduction of the numerical techniques implemented in this research work is pro-
vided in §2.3. In §2.3.1 the simpler heat diffusion equation is introduced as a model problem to
showcase such techniques. The use of finite differences to discretize spatial differential operators
is described in §2.3.2, while the time stepping schemes are discussed in section §2.3.2. The last
section of the chapter, §2.3.3 is dedicated to a brief presentation of the numerical techniques
used to solve the linear systems that arise when non explicit time schemes are implemented.

Chapter 3 presents the overall research approach and how the software components devel-
oped and evaluated in Chapters 4–8 come together. The same chapter also articulates what
the challenges are in working with a large software package such as Uintah.

In Chapter 4 a short overview of the initial stages of the software development of this
research project is provided. The very first implementation in C++ of an explicit pure metal
solver without mesh adaptivity is described in §4.1. The following section, §4.2 describes
how the same problem is implemented within the UCF using the same numerical techniques.
Parallelism is achieved by this implementation but the applications of this solver are very
limited due to the restrictions imposed by the explicit time scheme and the uniformity of the
computational grid. In the last section of the chapter, §4.3, a solver to the simpler heat diffusion
problem is implemented. This implementation provides a base implementation on top of which
more advanced numerical techniques are built and tested. The implementation of boundary
condition mesh adaptivity for this solver showed that a different and more abstract approach
was needed to provide a tool for the implementation of phase field components within the
UCF. Without this abstract approach, error prone and heavily duplicated code would have
been necessary each time an additional phase model model was added to the framework.
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Chapter 5 describes the details of the implementation which allows this more abstract ap-
proach. In particular, the implementation of the view framework which provides for a general
interface to spatial finite differences operators is described for periodic geometries. The general
view framework is then extended in Chapter 6 and Chapter 7 to support bounded computa-
tional domains and adaptive grid refinement respectively. In Chapter 8, details on how linear
solvers are interfaced by Uintah are given. In particular, how to use the existing driver to the
HYPRE library [29] is described in §8.2.1. An additional driver which supports structured grids
(a general class of grids that includes adaptive grids) is also implemented §8.2.2. Each of these
three chapters is structured in three sections: the first one is an analysis of the requirements
of the implementation at that stage of development, then details on how that requirements
are matched by the implementation are provided, and, ultimately, appropriate test cases are
selected to validate the new implementation.

The next Chapter 9 analyses the behaviour of the implementations developed during this
research in terms of parallel performance.

The last Chapter 10 summarizes the achievements of this research and provides for ideas on
how this work can be extended and further developed.



Chapter 2

Background

2.1 Phase-Field Models

In recent literature, phase field models represent a standard approach in modelling systems
where two or more phases of the same component coexist [56, 27, 16, 48, 49]. The math-
ematical idea behind these models, in the case of two phases, is to introduce a continuous
auxiliary function ψ defined over the spatial domain, Ω ⊂ RN , that assumes fixed values in
each bulk phase and that varies smoothly between them over a thin region where the actual
phase transition occurs.

The evolution of the interface is modelled by non-linear partial differential equations making
it unnecessary to track explicitly the solid phase front.

2.1.1 Pure Metal Isotropic solidification

The simplest phase field model that has been considered describes the process of isotropic
solidification of a pure undercooled metal [48]:

(2.1)
τ∂tψ = W 2∆ψ + ∂ψf(ψ, u;λ)

∂tu = α∆u+ 1
2∂th(ψ) ,

where the unknowns are: the phase field, ψ : Ω → [−1, 1], which varies from −1 in the liquid
to 1 in the solid; and the dimensionless temperature field, u : Ω→ R, defined by

u := T−TM
L/cp

,

where T is the temperature field, TM is the melting temperature, L is the latent heat of melting,
and cp is the specific heat at constant pressure. The parameters used in this model are: the
characteristic time of attachment of atoms at the interface, τ , whose typical value is about

7
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Figure 2.1: Graph of the potential, f , for three different values of non dimensional
temperature, u, given λ = 1.

10−13 s; the interface thickness, W , in the order of the Angstrom; the thermal diffusivity,
α; and the dimensionless coupling parameter, λ, that controls the strength of the the coupling
between the two fields. The remaining terms in (2.1) represent a double-well potential, f(·, ·;λ) :
[−1, 1]× R→ R, and a latent heat source, h : [−1, 1]→ R.

This model is a combination of both dimensional and non-dimensional quantities; in fact,
space and time domains are dimensional as well as the parameters τ , W , and α, while the
temperature and phase fields are dimensionless as is the coupling parameter λ.

The function f can be chosen to be defined by

(2.2) f(ψ, u;λ) :=
[
ψ4

4 −
ψ2

2

]
− λu

[
ψ5

5 −
2ψ3

3 + ψ
]
,

which is double-well potential where the barrier between the solid and the liquid phase varies
with the temperature. See Figure 2.1 for examples of its graph at different values of u.

Eqns. 2.1 can be derived from the variational form of a single Lyapunov functional as in
Langer [58], which has been later interpreted as the total entropy of the system in a given
volume [74, 94].

2.1.2 Pure Metal Anisotropic Solidification

The isotropic model (2.1), as others [56, 99, 93, 65, 48], can be extended to describe the process
of anisotropic solidification by introducing a functional dependence of τ and W upon the normal
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Figure 2.2: Plot of the anisotropy function, A, for three different values of mode
number, k, given ε = 1

4 .

direction to the interface,
n := ∇ψ

|∇ψ| ,

which is is achieved by setting τ ≡ τ(n) := τ0A(n) and W ≡W (n) := W0A(n).
In the derivation of the model equations, as for the isotropic case, the variational derivative

of the total entropy must be computed which, due to the dependency W and τ upon n, leads
to a more complex system of equations:

(2.3)
τ0A∂tψ = W 2

0∇·(A2∇ψ) +W 2
0∇·

[
|∇ψ|2A ∂∇ψA

]
+ ∂ψf(ψ, u;λ)

∂tu = α∆u+ 1
2∂th(ψ) .

In two dimensions it is common practice to define the azimuth angle, ϕ, between n and the
axis of abscissae (y = 0),

ϕ := arctan ∂yψ
∂xψ

,

and setting the anisotropy function to

(2.4) A(ϕ; ε, k) := 1 + ε cos(kϕ) ,

which is parametrized by the anisotropy strength, ε, and the mode number, k.
With this choice of coordinates for the anisotropy function it is possible to rewrite (2.3) as
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follows:

(2.5)
τ0A∂tψ = W 2

0∇·(A2∇ψ)−W 2
0 ∂x[AA′∂yψ] +W 2

0 ∂y[AA′∂xψ] + ∂ψf(ψ, u;λ)

∂tu = α∆u+ 1
2∂th(ψ) .

The shape of the anisotropy function governs the direction along which the dendrite growth is
favoured. In Figure 2.2 a polar plot of A is shown to illustrate the shapes it assumes for several
values of the mode number.

The choice k = 4, for example, corresponds to modelling a crystal whose growth is favoured
along the main Cartesian axes. In the literature other anisotropy functions are used to take into
account, for example, asymmetry between extreme values of A, as in [107], or faceted crystals
[25, 69].

In three dimensions, anisotropy function is commonly chosen to favour the growth of crystal
branches along the Cartesian axes [49, 48, 15, 59, 7]

(2.6) A(ϕ, ϑ; ε) := 1 + ε cos(4ϕ)− 2ε sin2(2ϑ) sin4(ϕ) ,

where ϕ, and ϑ are respectively the azimuthal and zenith angle of the normal versor to the
interface in spherical coordinates. In Figure 2.3 a spherical plot of A is shown.

−2
2

−1

0

2

1

0

2

0

−2 −2

Figure 2.3: Plot of the three dimensional anisotropy function, A, for four fold
symmetry, given ε = 1.

Formulations such as (2.4) and (2.6), where anisotropy is defined as a function of angular co-
ordinates, allow to express straightforwardly their parametric dependence on the mode number
but, at the same time, introduce some singularities where such angles are not well defined.
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By means of the trigonometric identities for multiple angles, it is possible to expand those
formulation as linear combinations of powers of sines and cosines of the angular coordinates
which can than be identified with the components of the normal vector, n.

The resulting expression can than be reformulated within the spherical or cubic harmonics
formalism, depending on the dimension of the model [103]. In general, all formulations of the
anisotropy function can be expressed as linear combinations of spherical harmonics, in two
dimensions, or cubic harmonics in three dimensions [30, 75].

In this regard, the following expressions for the anisotropy function are adopted in this work
for the two and three dimensions cases respectively:

A2D(n) := 1− 3ε+ 4ε(n4
x + n4

y) , A3D(n) := 1− 3ε+ 4ε(n4
x + n4

y + n4
z) ,(2.7)

which correspond, the first, to (2.4) for k = 4 and, the latter, to (2.6). Since the normal vector
to the interface, n, is well defined only for |∇ψ| 6= 0 and we want to extend the functions above
to the whole computational domain, we can embed our N -dimension problem into RN+1. In
this way, where |∇Nψ| = 0, the normal vector to the interface is the unitary vector orthogonal
to the original N -dimension subspace and the anisotropy function assumes the constant value
1 + ε.

Due to the artificial definition of ψ, these models assume a quantitative meaning only in
the sharp-interface limit, when the interface thickness between the liquid and the solid phases
is negligible. In this limit, Eqns. 2.3 reduce to the standard free-boundary formulation [48]:

(2.8)
∂tu = α∆u

v = α
[
∂−nu− ∂+

nu
]

ui = −κd0 − βv ,

where v, ui, and κ are the normal velocity, the temperature, and the principal curvature of the
interface, respectively. Parameters d0 and β are the capillary length and the kinetic coefficient
and are linked to those in model (2.3) by the following [49] relations:

d0 = a1
W
λ , β = a1

[
τ
λW − a2

W
α

]
,(2.9)

where a1, a2 ∈ O(1) are positive constants depending on the choice of f and h.

The usual initial condition for both the isotropic model (2.1) and the anisotropic one (2.5)
describes a solid seed surrounded by an undercooled liquid phase:

(2.10)
ψ(x) = − tanh(γψ[|x− x0|2 −R2

0])

u(x, 0) = −∆
2 [1− tanh(γu[|x− x0|2 −R2

0])] ,
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where the γ’s control the initial interface width of the phase and the temperature fields, ∆ is
the initial undercooling and R− 0 and −x0 are the initial seed radius and centre.

More complex models are available in literature for describing crystal dendrite formation
process in solidifying metals to take into account binary or higher component alloys [77], heat
transfer phenomena[48] and chemical reactions [47].

These have been considered in this research but it has been decided to focus on the im-
plementation of the computational framework, therefore only the simplest models have been
implemented, leaving the development of these more complex models to future research.

2.1.3 Benchmark Models1

Phase field models are largely used in materials science and there is a large literature of numer-
ical methods for them. The prototype models are the Allen-Cahn and Cahn-Hilliard equations
and, as such, these models can be used to benchmark the software implementations of this
research work. Four benchmark problems for these equations have been identified together
with a wide group of researchers (Zhenlin Guo, University of California, Irvine; Keith Promis-
low, Michigan State University; Brian Wetton, University of British Columbia; Steven Wise,
University of Tennessee Knoxwille; Fengwei Yang, University of Sussex) as representative of
numerically challenging problems. Several numerical techniques have been compared together
with the aim of computing benchmark values on which most methods could agree to be used
as references by researcher in the broad community to assess the reliability of their phase field
implementations. A deeper discussion of the techniques used and of the outcome of this joint
research is available in [20]. The goal of this paper is to provide the scientific community with
a reliable reference point for assessing the accuracy and reliability of future software for this
important class of problem.

Allen–Cahn Equation

Benchmark I: 2D Allen Cahn The first benchmark is for the Allen-Cahn equation [1]:

∂tu = ε2∆u−W ′(u), in Ω, t ≥ 0,(2.11)

where W (u) := 1
4 (u2 − 1)2. It describes the evolution of crystal grains of the same material

during annealing. It can also be called a Ginzberg-Landau equation. The chosen benchmark
problem is a simple 2D problem in a doubly periodic domain

u|xi=0 = u|xi=2π, on I, t > 0, i = 1, 2,(2.12)
1Some parts of the work presented in this section have been published in [20].



CHAPTER 2. BACKGROUND 13

with initial conditions

u(x, 0) = tanh
(
|x−c|−2
ε
√

2

)
, x ∈ Ω,(2.13)

with I = [0, 2π], Ω = I2, c = (π, π)t, and ε = 0.2, 0.1, 0.05.
The benchmark is the time T at which the value at the domain centre c changes from

negative to positive.
The free energy of a system described by the Allen-Cahn model can be expressed as the

following integral:

E =
∫

Ω

1
2ε

2|∇u|2 +W (u) dx.(2.14)

Some snapshots of the dynamics are shown in Figure 2.4. A video of the dynamics is also
available [96].

t = 0 t = 100 t = 180

Figure 2.4: Benchmark I: Allen Cahn dynamics with ε = 0.1.

Cahn–Hillard Equation

The Cahn-Hilliard (CH) [11] equation that describes phase separation of a binary alloy during
annealing. The problem is described by a scalar function u of space x and time t that takes
values u = +1 in one phase and u = −1 in the other.

∂tu = −ε2∆2u+ ∆[W ′(u)], in Ω, t ≥ 0(2.15)

where W (u) = 1
4 (u2 − 1)2 and ∆ is the Laplacian operator. The parameter ε in the model is a

length scale – the width of the layers between the regions of different phases.
The study of equilibrium of the Cahn-Hilliard equation is equivalent to the study of the

minimizers of the Cahn-Hilliard free energy

(2.16) E (u) :=
∫
Ω

1
2ε|∇u

2|+ ε−1W (u) dx .

Note that the benchmark problems focus on pure materials science applications rather than
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the use of Cahn-Hilliard equations to track interfaces in so-called diffuse interface methods [104,
8] in which the CH dynamics are coupled to other physics.

Benchmark II: 2D Cahn Hilliard seven circles The second benchmark is for the 2D
Cahn Hilliard dynamics (2.15), again in the doubly periodic domain Ω = I2

u|xi=0 = u|xi=2π, on I, t > 0, i = 1, 2,(2.17)

with I = [0, 2π].
Initial conditions are seven circles with different centres and radii dressed with a smooth

profile:

u(x, 0) = −1 +
7∑

n=1
ψ
(
|x−cn|−rn

ε

)
, x ∈ Ω,(2.18)

where
ψ(s) :=

{
2 exp(−s−2) if s < 0

0 otherwise

and

c1 = (π2 ,
π
2 )t r1 = π

5

c2 = (π4 ,
3π
4 )t r2 = 2π

15

c3 = (π2 ,
5π
4 )t r3 = 2π

15

c4 = (π, π4 )t r4 = π
10

c5 = ( 3π
2 ,

π
4 )t r4 = π

10

c6 = (π, π)t r6 = π
4

c7 = ( 3π
2 ,

3π
2 )t r7 = π

4

Computations are done with ε = 0.1, 0.05, and 0.025. The benchmarks are the times T1

and T2 at which the value at the points (π/2, π/2) and (3π/2, 3π/2) change from positive to
negative. Some snapshots of the dynamics are shown in Figure 2.5. A video of the dynamics is
also available [98].

Benchmark III: 1D Cahn Hilliard This problem was originally proposed in [17]. It is set
in the periodic domain x ∈ Ω = [0, 2π]

u|x=0 = u|x=2π, t > 0,(2.19)
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t = 0 t = 2.5

t = 80 t = 210

Figure 2.5: Benchmark II: Allen Cahn dynamics with ε = 0.05.

with ε = 0.18 and initial data

u(x, 0) = cos(2x) + 1
100 exp(cos(x+ 1

10 )), x ∈ Ω.(2.20)

Over a short time, the solution tends to two intervals each of values close to ±1 with
interfaces of width ε between them. The second term on the right is a small perturbation so that
these intervals are not symmetric. At very large times, the intervals will slowly (exponentially
slow in ε) evolve and merge [73, 78] as shown in Figure 2.6. A video of the dynamics is also
available [95]. The final state with two transition layers is steady. The benchmark is the time
T at which the midpoint value u(π, t) changes from positive to negative. This ripening event
happens at a very fast time scale after the long, slow transient. It is the wide range in time
scales of the dynamics that makes this a challenging computation.

Benchmark IV: 2D Cahn Hillard Energy Decay This is a modified version of the bench-
mark proposed in [45]. When scaled, their formulation of Cahn Hilliard is equivalent to (2.15)
in the periodic domain Ω = I2

u|xi=0 = u|xi=2π, on I, t > 0, i = 1, 2,(2.21)

with I = [0, 2π] and ε = π
√

10
500 . Their proposed initial conditions have discontinuities at the

periodic boundary conditions which implies infinite initial energy, and the early dynamics are
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Figure 2.6: This figure corresponds to the solution of the 1D Cahn-Hilliard
equation (2.15) with initial conditions (2.20) for ε = 0.18 near the benchmark
time.

dominated by the smoothing of these discontinuities. We replace their initial conditions with
smooth, periodic ones that give roughly the same energy decay that will be the target of the
benchmark:

u(x, 0) = cos(3x0) cos(4x1)+cos2(4x0) cos2(3x1)+cos(x0−5x1) cos(2x0−x1)
20 , x ∈ Ω.(2.22)

Some snapshots of the dynamics are shown in Figure 2.7 and a video of the dynamics is
available [97]. The plot of ln E versus ln t, where E is the energy (2.16) and natural logarithms
are used, is shown in Figure 2.8. It is the L1 error to this function that is the benchmark.
Specifically, the differences D1 and D2 between the exact E∗(t) and computed Ec(t) is given by
the benchmarks

D1 =
∫ 7

−5
| ln E∗(ϑ)− ln Ec(ϑ)|dϑ(2.23)

D2 =
∫ 2

−5
| ln E∗(ϑ)− ln Ec(ϑ)|dϑ(2.24)

where ϑ = ln t. Pointwise values of an accurate approximation of E∗(t) can be found online
[101]. For the accuracy reported in our computations, approximating the integrals in D1,2 with
Trapezoidal rule and 1,000 equally spaced points in the interval, using linear interpolation of
the computed E values, is sufficient.

These are proposed because often in applications the exact details of the computational
results are not important, but the trend of the evolution of length scales is a key feature [5].
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Figure 2.7: Benchmark IV: Cahn Hillard Energy Decay.
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Figure 2.8: This figure shows the energy decay profile for the benchmark IV: 2D
Cahn Hilliard problem.
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The difference D1 measures the difference over the full dynamics, while D2 covers only the first
part of the dynamics and omits the fine details of the final transition to steady state.

2.2 Uintah

2.2.1 Introduction

The Uintah Computational Framework (UCF), is a collection of software developed for run-
ning on parallel systems with the purpose of solving partial differential equations (PDEs) on
structured grids implementing adaptive mesh refinement (AMR). The software is structured in
self-contained modules (components) and libraries following the specifications of the Common
Component Architecture (CCA).

UCF started as a project funded by the U.S. Department of Energy and developed by the
Center for Simulation of Accidental Fires and Explosions (C-SAFE) at the University of Utah
to be, then, released to to the broader scientific and engineering community in 2009.

Its component based architecture allows the developer to integrate together different sim-
ulation components leaving the framework itself to identify their dependencies and interfaces.
Tasks are represented in Uintah by abstract graphs describing the computation scheme and
communication [72, 71] which are interpreted and analysed by a specific UCF component that

SchedulerData Archiver
tasks

callbacks
Simulation

tasks

callbacks
Models

Simulation
Controller

M
PI

Checkpoints
D

ata
I/O

Load Balancer Regridder

Tuning Expert Domain Expert

Problem
Specification

XML

Figure 2.9: Uintah Framework separation between parallel components and sim-
ulation components which belong to different expertise fields (edited from [62]).
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is capable to automatically identify the best workloads and communication patterns and achieve
optimal global resource utilization during parallel multi-physics simulations. Moreover, its mod-
ular approach makes it possible for the UCF to maintain overall scalability even when different
components are adopted jointly.

Thanks to the aforementioned Uintah’s ability to analyse the computation scheme, the
developer can take advantage of automatic load balancing, parallel input/output, breakpoints
and suspend/restart procedures.

Another positive feature that arises from Uintah’s component based architecture is the
logical independence of the actual parallel implementation from the application. This gives
the designer the ability to implement simulation on AMR grids with a high level of parallelism
without the need to understand in depth the low-level parallel implementation, as depicted in
Figure 2.9. Components, belonging to the area of expertise of the tuning expert, such as the
simulation controller, the regridder, the load balancer, the data archiver and the scheduler are
well isolated from those belonging to specific applications which are written and modified by
experts in those specific domains.

Uintah implements domain-based parallelism: the computational grid is divided into hexa-
hedral mesh patches and each of them is associated to a different process. In this scheme, the
designer has to focus on the single patches: to her/him, in fact, it is required only to specify
the solution scheme as a sequential flow of a tasks to be executed on each patch.

Each task, which is meant to be executed at every timestep, has to be characterized by
which variables (and relative states) the computation is dependent upon and which of them are
actually modified during the computation, together with their respective stencils. Analysing this
information, the UCF computes a directed acyclic task graph to control parallel communication
and execution. For each time step the scheduler controls the task execution order following this
graph, assigning the execution of a task over a patch to the core this patch belongs to, and
managing communication between neighbour patches and different AMR levels.

When no mesh refinement is adopted, the scheduler is instantiated once at the beginning of
the simulation and than invoked cyclically at every timestep. Conversely, the scheduler has to
be built every time regridding is executed since this procedure affects patches and requires the
load balancing to reassign patches to different cores.

In its initial design, Uintah has been used to run simulations efficiently on up to a few
thousand cores. Memory usage, data storage and computational loadings were preventing it
to scale to larger than 4000 cores [61]. Data structure design was limiting the scalability:
as increasing of the number cores (and thus of patches), also increasing memory usage was
increasing, reaching the limit of available resources. Strong and weak scalability has, since
then, been improved up to 96K, 262K, and 512K cores on the NSF Stampede, DOE Titan, and
DOE Mira, respectively [6, 68].

The modular architecture of the UCF makes it an excellent research platform, making it
possible to modify, exchange and test components without modifying the other components.



CHAPTER 2. BACKGROUND 20

taskgraph

Running
Task

Data
Warehouse

N
et

w
or

k

Task Queue sc
he

du
le

ne
xt

get

put

send

receive

add
foreign

var

Figure 2.10: MPI Scheduler (edited from [62]).

This adaptability has already allowed use of Uintah across a wide range of applications: from
the original problem of explosions in containers to haemodynamics of microvessels [35], analysis
of foam subject to large deformation [10] and fire propagation [57].

Three main simulation components are available in Uintah at present: ICE, which imple-
ments an algorithm for both compressible and incompressible flows for systems of materials
[52, 50, 51]; MPM, that is a particle in cell (PIC) method for solid mechanics on complex
geometries [35] subject to large deformations [10] and fracture [36]; and MPMICE, which is
the combination of the previous and is meant for fluid-structure simulations and overcomes the
load imbalance that moving particles in MPM can cause when combined with ICE [61].

Many sub-components are also available within the UCF implementing various state equa-
tions, reaction models and constitutive laws.

2.2.2 Schedulers and Tasks

The Task Scheduler is the UCF component which controls the order in which tasks are executed
and ensures that communications between processes are not corrupted. It analyses task and
variables dependencies in order to be able to schedule the execution of each task in the correct
sequence and builds two task graphs, one within the scope of the single process, and one for
tasks operating between processes: the first is responsible for executing tasks in the necessary
order, the latter for managing required communications.

Four main schedulers are available within Uintah:

Single Processor Scheduler which is designed to control the execution of tasks on a single
processor. It doesn’t use MPI and builds a static graph for the deterministic execution of
tasks.

MPI Scheduler it is the basic scheduler and is designed to be used on distributed memory
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Figure 2.11: DynamicMPI Scheduler (edited from [62]).

architectures such as HPC clusters. A schematic representation of this scheduler is given
in Figure 2.10. The model implemented by this schedule uses one process per core and to
each process the same task-graph is distributed (static task ordering) which is executed
in the same order (deterministic execution) on each core.

Dynamic MPI this scheduler overrides the limits of deterministic execution affecting the MPI
scheduler. In such an execution scheme, in fact, a thread can sit idle while it is waiting
for a message. This dynamic scheduler, as shown in Figure 2.11, can instead modify the
order of execution of tasks to overlap communication and computation. This is achieved
by generating two distinct task queues: one for internal and one for external tasks. Once
a task has satisfied all of its internal dependency it is added to the internal queue where
it waits for all MPI communications to complete. When the counter of its outstanding
MPI messages reaches 0 it means that all communications have been completed, thus, the
scheduler moves it to the external queue awaiting execution.

Unified Scheduler as depicted in Figure 2.12, this scheduler implements hybrid parallelism:
it take advantage of the shared memory architecture of each computational node using
pthreads for managing communications between processes within the same computational
core and MPI for communications across different nodes. On each core there exists an
access task queue which is shared among all the threads instantiated on that node. Within
this paradigm, each thread, when it has completed its previous task, can assign to itself
the next available task from the queue. This model can also take advantage of graphics
processing units (GPUs), when available. In this case the scheduler builds a queue also
for GPU tasks that can be accessed by the graphic units as the ordinary task queue is by
normal CPU threads.

The approach implemented by the MPI Scheduler is well consolidated up to 100k cores but,
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as the number of cores exceeds this limit, MPI communication time increases drastically due
to memory usage associated with ghost cells and global metadata and becomes a barrier to
scalability. On the contrary, the Unified Scheduler is demonstrated to overcome such a barrier
assuring good scalability features up to 768k cores on the DOW Mira system [6].

2.2.3 Grid and Patches

Parallelism within Uintah is achieved by Patch-based domain decomposition. Each level of the
computational grid is subdivided in patches which are assigned to available processors by the
load balancer. Continuity of the solution, and when needed of its moments, among patches is
imposed as boundary conditions on the single patches and the exchange of information between
two adjacent patches is implemented via the introduction of ghost cells. When the MPI and
the DynamicMPI schedulers are used, ghost cells are introduced around each patch since each
patch is assigned to different processes each of which with its own individually assigned areas
in memory. As a consequence, information between patches can be exchanged only via MPI
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Figure 2.13: Ghost cells: memory usage is drastically reduced when hybrid-
programming approach is adopted since the volume of ghost cells (green) is dropped
when the volume of patch cells (blue) is kept constant.

messages. On the contrary, when the Unified scheduler is used, patches are grouped in clusters
of adjacent patches which are assigned to the same node. In this architecture, each patch
belonging to the same cluster is assigned to different threads on the same computational node.
Since threads that belongs to the same same node can access the same shared region of memory,
in this case, there is no need to create ghost cells between patches assigned to the same process,
as shown in Figure 2.13. This hybrid programming approach drastically reduces, both, the
amount of data that has to be stored in memory, and the size of MPI messages.

2.2.4 Data Warehouses and Variables

The variables in a physical model and its discretization can be of several types according to
their spatial dependency and to which element of the grid their discrete values are associated.
Uintah supports the following type of variables

GridVariable — this kind of variable is used to store the discretization of physical fields and any
other function which is dependent on the spatial position. Depending on the grid element
to which the discrete values are associated one of the following variable type derived from
GridVariable can be used: CCVariable, for cell-centred discretizations; NCVariable for vertex
based ones; or one of SFCXVariable, SFCYVariable and SFCZVariable for staggered face based
discretizations.

PerPatch — this type of variable can be used to store information that are shared by all grid
entries in a given patch, or that are associated to the patch itself.

SoleVariable — this kind of variable is used to handle values that are level specific, like
functions of the grid refinement.
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ReductionVariable — this kind of variable stores global quantities, like the time during the
simulation or the norm of a field.

All of these variable types are templated on the data type they store; for example scalar fields
are usually represented as CCVariable<double>, and the current timestep is of type Reduction-
Variable<int>.

Variables are then stored in Data Warehouses, which collect together all the variables asso-
ciated to the same stage of the simulation: there is a datawarehouse associated to the previous
timestep and one to the current. Additional data warehouses whenever the grid is updated so
that data associated to both the old grid and the new grid can be accessed.

When variables are accessed or modified by an application task a query is made to retrieve
their data from the right datawarehouse for a given spatial range. If this range is within the
patch on which a task is executed, accessing the datawarehouse is a straightforward operation
since the data to retrieve belongs to the same processor executing the task. If the range
extends beyond the path boundaries the query assumes that the information that may belong
to other processors is already available within the datawarehouse because MPI communications
are expected to be performed before the task is added to a scheduler queue. In fact, when
an application schedule a task it must specify all task dependencies and computes, that is a
list of the variables that are accessed, computed or updated by a given task together with the
thickness of the ghost layer. This allows the scheduler to complete any MPI communication
required by a task before executing it without exposing any of the communication complexity
to the application itself.

AMR Grids

Within Uintah it is possible to compute multiple levels of mesh refinement, both adaptively
and non-adaptively. In the latter case, meshes are created statically, from the coarsest to
the finest, at the beginning of the simulation prior to solving any timestep. In the first case,
conversely, a refinement flag is computed before each timestep and, depending on its values
over the computational domain, the Regridder component decides whether to update or not
the different levels of the grid.

The implementation of the task responsible for updating the refinement flag is left to the
developer allowing maximum flexibility of the framework. The refinement flag is intended to
be set to true on the cells where the approximation error is greater than a desired value.

The following input options controls the behaviour of the default Regridder component:

– M ∈ N, the maximum number of levels;

– rl ∈ N3, the cell refinement ratio vector for each level l = 0, . . . ,M − 1;

– s ∈ N3, the cell stability dilatation vector;

– r ∈ N3, the cell regridding dilatation vector;
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– b ∈ N3, the minimum number of cell between one level’s coarser level and its finer level.

At the beginning of the simulation, the coarsest level of the grid is computed following the
specifications in the input file and a natural indexing of the cells is introduced, where indices
are triplets of integers indicating the ordering of each cell along each direction. Then, a local
error estimation is performed in order to flag which cells need to be regridded. Subsequently,
the region of flagged cells is padded according to the cell stability and regridding dilatation
vectors: the stability dilatation vector defines the number of cells that are used for padding in
each direction around the flagged cell region with the purpose of enhancing the stability of the
solution (such padding occurs at every timestep); the regridding dilatation vector controls the
padding width with the purpose of reducing the frequency of regriddings (such padding occurs
only before the regridding algorithm is invoked).

After all required levels have been generated, the regridder checks, for every level but the
finest and the coarsest, that there exists a minimum number of cells between the boundaries of
its coarser and finer levels as specified by b, i.e., it checks that, along the x direction, there are
at least bx cells in level 2 that lie between the boundary of level 1 and that of level 3.

In addition, it is possible to control how often the regridding occurs by imposing the mini-
mum and maximum number of timesteps that can occur between two regriddings (otherwise the
refinement flag is updated after each timestep and regridding can occur before each timestep).

2.3 Numerical Techniques

In this section a brief overview of the numerical techniques adopted in this research work is
given. First, a simpler reference model is introduced to simplify the following presentation.
How to use finite-differences approximations to discretize a model both in space and in time is
described. The resulting discrete model may be explicit or require the resolution of an implicit
equation which may be solved using an implicit solver. In the last subsection the linear solvers
adopted are briefly presented.

2.3.1 Model Problem: Heat Equation

The simplest time dependent partial differential equation is the heat diffusion model

∂tu(x, t) = α∆u(x, t), x ∈ Ω, t > 0 ,(2.25)

where α > 0 is the constant diffusion coefficient.
This is completed with a generic initial condition u(x, 0) = v(x). In addition to periodic

boundary conditions on rectangular domains, on more generic domains, it is common to impose
a combination of Dirichlet boundary conditions u|ΓD = g and Neumann conditions ∂nu|ΓN = r,
where ΓD and ΓR form a disjoint partition of the domain boundary ∂Ω = ΓD ∪· ΓN . Whenever
g or r is constantly null, such conditions are said homogeneous.



CHAPTER 2. BACKGROUND 26

2.3.2 Spatial Discretization

For the sake of simplicity, let Ω ⊆ R be the a compact, Ω = [0, L], for which it is possible
to chose a grid step, h, such that L = M h, with M a positive integer. In this way it is
straightforward to introduce the grid with the following nodes (or vertices)

xi = ih.

The field u is then identified with its values at the grid nodes

ui(t) = u(xi, t).

The next step is to approximate the differential operators in (2.25) with finite differences. The
most of common finite difference formulas for the first order derivative are listed hereafter:

[Dxu]i+ 1
2

= ui+1 − ui
h

,(2.26a)

[D2xu]i = ui+1 − ui−1

2h ,(2.26b)

[D−x u]i = ui − ui−1

h
,(2.26c)

[D+
x u]i = ui+1 − ui

h
.(2.26d)

Formulae (2.26a,2.26b) are both symmetric with respect to the point where the finite-difference
is evaluated: Eqn. 2.26b involves only grid nodes, but it spans over three of them, while (2.26b)
spans on two adjacent nodes but is associated to their midpoint xi+ 1

2
. Also (2.26c,2.26d) span

on two adjacent nodes but the finite-difference is associated to one of the two. This avoids
the introduction of the midpoint, but makes the formulae non-symmetric. The standard finite-
difference approximation of the second order derivative is obtained applying (2.26a) twice

[DtDtu]n = ui+1 − 2ui + ui−1

h2 .(2.26e)

If the field u is sufficiently regular, it is possible to write its Taylor series and compute the
leading order error that is associated with each of the finite-difference above.

[Dxu]i+ 1
2
− ux = 1

24uxxx(xi)h2 +Oh4(2.27a)

[D2xu]i − ux = 1
6uxxx(xi)h2 +Oh4(2.27b)

[D−x u]i − ux = −1
2uxx(xi)h+Oh2(2.27c)

[D+
x u]i − ux = 1

2uxx(xi)h+Oh2(2.27d)

[DxDxu]n − uxx = 1
12uxxxx(xi)h2 +Oh4(2.27e)
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When (2.26a) is used to approximate the Laplacian in 1D the following system of semi-
discrete equation is obtained for problem over the grid nodes (2.25)

∂ut(xi, t) = α
ui+1 − 2ui + ui−1

h2 , i = 0, . . . ,M, t > 0(2.28)

which involves values of the solution – u−1, uM+1 that are associated to ghost nodes outside of
the computational domain.

It is possible also to associate the discrete values of u to the sub-intervals of size h identified
by the grid nodes. These intervals are usually called cells, and in this case the discrete value of
u are associated to cell midpoints. Cells are indexed by the index of their lower end. Therefore,
in this case, ui(t) = u(xi+ 1

2
, t) and the semi-discrete system obtained differs from the nodal

case only in the range for i: i = 0, . . . ,M − 1. In this case ghost values are introduced at x− 1
2

and xM+ 1
2
.

Boundary Conditions The value of the solution at ghost nodes can be extrapolated accord-
ing to the boundary condition imposed on each end of the domain.

If the domain is periodic, the ghost nodes, x−1 and xM+1 can be identified with xM−1 and
x1 respectively. It is possible therefore to define

u−1 :=uM−1 uM+1 :=u1

and the semi-discrete equations for i = 0 and i = M become identical. When the problem is
cell centred, instead, the midpoint of the ghost cells, x− 1

2
and xM+ 1

2
can be identified with xM

and x0 respectively, which will not make identical ant semi-discrete equation.
When Dirichlet boundary condition are imposed to an end, it is possible to extrapolate the

ghost value prolonging the derivative of u out of the computational domain. For example, in
the cell based case at the lower end of the domain, imposing

u0 − u(x0)
h/2 = u0 − u−1

h/2 ,

and u(x0) = g gives the following expression for the ghost value

u−1 = g − 2u0 .

Ghost values for Neumann conditions are computed, instead, by imposing the value of the
discrete derivative. For example, in the vertex based case at the higher end of the domain,
imposing

uM+1 − uM
h

= r ,

and u(xM ) = r gives
uM+1 = uM + hr .
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Temporal Discretization

In order to fully discretize (2.28), or its counterpart for the cell centred case, a time step k > 0
is chosen so that the problem is solved at the discrete times tn = nk. The notation

uni ≈ ui(tn)

is introduced for the discrete solution which may be different from the analytical solution
because it is not possible any more to write uni = u(xi, tn) since we approximate the temporal
derivative in (2.28) with finite difference.

Forward Euler When the forward finite difference (2.26d) is used, the following fully discrete
system is obtained:

un+1
i − uni

k
= α

uni+1 − 2uni + uni−1
h2 , i ∈ I , n = 0, . . . ,(2.29)

where the set of spatial indices, I , is chosen accordingly to the variable base (cell centred, or
vertex based).

Supposing that the discrete solution, un = (uni ), at the n-th timestep is known, it is possible
to write an explicit expression for computing the solution at the next timestep which depends
only the values of un:

un+1
i = uni + kα

uni+1 − 2uni + uni−1
h2 , i ∈ I , n = 0, . . . .(2.30)

For this reason, method (2.30) is called Explicit Euler or Forward Euler. This method has the
advantage to provide an explicit formula to compute the discrete solution un+1 recursively from
the discrete initial condition u0 :=(v(xi)).

The approximation of (2.25) with the Explicit Euler method, introduces a truncation error
that is related to the approximation of the differential operators and a solution error, or simply
error, that takes into account the differences between the numerical discrete solution and the
true solution u that build up at every time iteration of the method. The first error can be
estimated supposing that the known solution un is the exact solution uni = u(xi, tn) and its
order in terms of the discretization parameters, h and k, can be computed using the leading
order errors (2.27). This method truncation error is found to be linear in time, O(k), and
quadratic in space O(h2). The solution error for this method, however, is not guaranteed to
vanish as the discretization steps are reduced, h, k → 0; a von Neumann stability analysis [14]
finds that the error is bounded over time (the norm of the discrete solution does not explode)
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only if the following condition is satisfied

r = αk

h2 ≤
1
2 ,

and for this reason this method is said conditionally stable.

Backward Euler When the forward finite difference (2.26c) is used to fully discretize (2.28),
the following fully discrete system is obtained:

un+1
i − uni

k
= α

un+1
i+1 − 2un+1

i + un+1
i−1

h2 , i ∈ I , n = 0, . . . ,(2.31)

where the set of spatial indices, I , is chosen accordingly to the variable base.
In this case it is not possible to write an explicit expression for computing the solution at

the next timestep which depends only the values of un. In this case the fully discrete system
can be expressed as the following linear system

Aun+1 = un + b, n = 0, . . . , ,(2.32)

where A is a tri-diagonal matrix with diagonal entries equal to 1 + 2αk
h2 and off-diagonal entries

equal to −αkh2 , and b takes into account for the boundary conditions. This system must be solved
at every time iteration and, for this reason, this is an implicit method and is called Implicit
Euler or Backward Euler. This method truncation error is linear in time, O(k), and quadratic
in space O(h2), like the Explicit Euler method, but has the advantage to be unconditionally
stable.

Crank Nicholson When the centred finite difference (2.26a) is used to fully discretize (2.28),
and the mid-point solution un+ 1

2 is defined as the average between the previous and the next
timestep solution

u
n+ 1

2
i := uni + un+1

i

2
the fully discrete system can be expressed as a linear system

Aun+1 = vn + b, n = 0, . . . , ,(2.33)

where the matrix A is tri-diagonal with diagonal entries equal to 1+ αk
h2 and off-diagonal entries

equal to − αk
2h2 , and vn = αk∆∆un (with ∆∆ being the discrete Laplacian operator, the tri-diagonal

matrix with diagonal values equal to − 2
h2 and off-diagonal values equal to 1

h2 ) and b takes into
account for the boundary conditions. This implicit method is called Crank-Nicholson ant its
truncation error is quadratic both in time and space, O(k2 + h2) and is unconditionally stable
like the Backward Euler method.
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2.3.3 Linear Solvers

The implicit time stepping methods introduced in the previous section – Backward Euler and
Crank Nicholson – require that a linear system is solved to compute the current time step
solution from the previous one. hereafter we briefly present the linear solver used in this work.
This is not an exhaustive list of possible linear solvers, but covers the linear solvers provided
by the HYPRE library which is used by Uintah.

For the sake of simplicity, in this section we consider the following generic linear system:

Ax = b, A ∈ Rm×m, x, b ∈ Rm.

To reduce the condition number of A it is common practice to resort to a preconditioner P ,
that is a non singular matrix that is simple enough to invert and solve the following equivalent
linear system

P−1Ax = P−1b

Ideally the condition number of P−1A should be uniformly bounded in m, so that the number
of iterations required by the following iterative methods to converge is bounded as the matrix
order increases. This will allow the solver to scale well as the problem dimension/number of
processes is increased.

A simple preconditioner is provided by the diagonal matrix

P =


a00 0 · · · 0

0 a11
. . . ...

... . . . . . . 0
0 · · · 0 amm


which is called the Jacobi preconditioner.

Even though the choice of the best preconditioner is crucial in controlling the performance
of linear solvers, little focus has been given to them in this research work. The reason behind
this, is that the main focus of this research is the implementation of a scalable software for
solving phase-field problems, therefore only support for preconditioners has been developed.
The analysis of which particular preconditioner is the most suitable for any of the applications
considered has been left to future work since it is beyond the remit of this work.

The scalability performance of the solvers listed below is assessed in the following chapters
taking into account the resources required by each method with either no preconditioner or
Jacobi’s. The performance of the solver using few iterations of another method as preconditioner
will then be a combination of the performance of the two methods as unpreconditioned solver.
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GMRES The General Minimal Residual Method [83] is an iterative Krylov solver. The n-th
Krylov space is the subspace generated by the images of the initial error2, r0 = b−Ax0, under
the first n powers of A:

Kn =
〈
Akr0

〉n−1
k=0 .

The first step of the algorithm is to compute an orthonormal basis, qk ∈ Rm (k = 0, n− 1), for
Kn and a matrix Hn ∈ Rn×n+1 such that

AQn = Qn+1Hn ,

where Qn ∈ Rm×n is the juxtaposition of the first n qk base vectors. These are computed
using the Arnoldi’s method [2]. Introducing the vector yn :=Q−1

n (xn − x0) it can be shown
that the n-th residual, rn := b− Axn can be written as rn = Hyn − ‖r0‖e0. The second step
of the GMRES iteration is therefore to compute the yn which minimizes rn solving a linear
least square problem of size n. If the residual is small enough then the solution is computed as
xn = x0 +Qnyn. Otherwise n is increased by one and the algorithm is reiterated.

LGMRES When the dimension of the Krylov space increases, the memory requirement of
GMRES grows since the number of required vectors increases. Also the number of multiplica-
tion is 1

2mn
2. To avoid this difficulties, the GMRES method can be restarted every k iterations,

being k a fixed integer parameter. The restarted GMRES present some problems in the con-
verges, due to alternating residual vectors. The LGMRES method [4] is designed to avoid the
slowing of convergence in restarted GMRES.

FlexGMRES The Flexible Inner-Outer Preconditioned GMRES Algorithm [82] is a variant
of the GMRES algorithm. It allows to change preconditioner at every step. Thanks to this
flexibility, any iterative method could be used as a preconditioner. An even more interesting
application is using FlexGMRES together with relaxation techniques such as those of multilevel
solver.

BiCGStab The Stabilized Bi-Conjugate Gradient method [92], is a modification of the Bi-
Conjugate Gradient (BiCG) method [31] which converges more smoothly than the latter. As
for the BiCG method, the idea to generalize the Conjugate Gradient (CG) method [39] is to
build two different sets of residual vector, rk and r̃k, such that rk̄ is orthogonal to any r̃k with
k = 0, . . . , k̄ − 1 and vice versa.

Hybrid This method provides a tool to switch between the diagonally scaled GMRES solver
(using the simple Jacobi preconditioner) and a GMRES solver using a more complex and more

2when no guess is given x0 is chosen to be 0 and r0 ≡ b
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expensive preconditioner. It starts with diagonally scaled solver and monitors how fast the
Krylov solver converges to switch to the other when there is not sufficient progress.

CycRED The Cyclic Reduction method [32], contrarily to the previous ones, in not an it-
erative method. The method proceeds by splitting the problem separating different rows and
columns in multiple sub-problems. If the linear matrix A is a block Toeplix matrix, as it is
the case for the heat problem, the collection of resulting sub-problems are correspond to 1D
tri-diagonal systems which can be solved cheaply by a direct method.

SMG The parallel Semi-coarsening Multigrid Solver [88, 9, 28] is a multigrid solver for the
linear systems arising from the discretization of the diffusion equation on rectangular grids.
The basic idea of multigrid solvers it to speed up the convergence of iterative methods avoiding
the low frequencies component of the error by changing the grid. Low frequency smooth errors
which hold back convergence can be solved on coarser grids, while high frequency errors that
are not visible on a coarse grid are solver on finer grids. The multigrid levels, generally, do
not correspond to the AMR levels: in the first case, levels are introduced to improve the speed
of an iterative method, in the latter, they are introduced to reduce the size of the problem to
solve.

Let us consider a family of discrete linear problems

Ajxj = bj , j = 0, . . . ,M

where the index M corresponds to the linear system we want to solve. The j-th linear problem
can be regarded as the discretization of a given problem on a spatial grid with spacing hj =
2hj+1 with hM = h the finest (highest) level. For each level we consider a generic preconditioned
iterative method

xk+1
j = xkj + Pj(bj −Ajxkj ) ,

where Pj is the preconditioner for the j-th problem. The error at the k-th iteration on the j-th
level can be written as

ekj = Bje
k
j ,

where Bj := I− PjAj .
Generally, the multigrid algorithm performs npre times a pre-smoothing step of the initial

guess x0
j on the finest grid (j = M)

xkj = xk−1
j + Pj(bj −Ajxk−1

j ), k = 1, . . . , npre .

Then, the coarse grid correction step is performed, which involves three sub-steps:
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1. restrict the residual rj := bj −Ajxnpre
j on the coarse grid

rj−1 = Rj−1
j rj

being Rj−1
j an opportune restriction operator which maps a discrete fields on the j-th

(fine) grid to a field on the (j − 1)-th (coarse) grid;

2. solve the defect problem:
Aj−1xj−1 = rj−1

3. correct the solution
x̄0
j = x

npre
j + Πj

j−1xj−1

where Πj
j−1 is an opportune prolongation operator which maps a discrete fields on the

(j − 1)-th (coarse) to a field on the grid j-th (fine) grid.

Finally, the multigrid algorithm performs npost times a post-smoothing step on x̄0
j on the

finest grid (j = M)

x̄kj = x̄k−1
j + Pj(bj −Ajx̄k−1

j ), k = 1, . . . , npost .

This basic multigrid algorithm is referred to as V-cycle. Multiple V-cycles can be applied
recursively, which increases the number of level of the method.

SMG is a particularly robust method. The algorithm semi-coarsens in the highest order
direction to obtain a problem defined on a lower dimension grid. This problem is solver using
the SMG method until the resulting problem is defined over a 1D grid. This inner problem is
then resolved with one V-cycle.

PFMG, SysPFMG The PFMG solve [3, 28] is a parallel semi-coarsening multigrid solver
similar to SMG which is much more efficient per V-cycle but less robust than SMG.
The SysPFMG solver, is a generalization of the PFMG solver for system of elliptic PDEs.

FAC The FAC solver is a parallel Fast Adaptive Composite grid solver, which implements a
multigrid solver on complex grid such as AMR grids. For details of the basic overall algorithms,
see [64].

Split The Split solver is another solver for composite girds. It is a parallel block Gauss-
Seidel method [33] which, for problems with only one variable, can be viewed as a domain-
decomposition solver without overlapping. Each grid part is solved performing either a SMG
or a PFMG V-cycle.



Chapter 3

Development Approach and
Challenges

3.1 Development Approach

The implementation of a Phase Field solver within the Uintah Computational Framework has
followed an incremental approach. Features have been added to the implementation one at the
time.

3.1.1 PureMetal Solver

The first software being developed during this research is a node-centered sequential implemen-
tation of an explicit solver for the Pure Metal problem (2.5).

This implementation, which is presented in §4.1, is a standalone software, called PureMetal,
which doesn’t use Uintah. Its purpose is to have an initial implementation and in its devel-
opment the fully discretized equations for the model are introduced. For simplifying these
equations, auxiliary anisotropic quantities are defined whose computation will represent one of
the tasks in the following implementation within Uintah.

The post-processing of the output of this initial PureMetal implementation is then performed
using Matlab.

3.1.2 PhaseField Initial Component

The second step in the development is the implementation of the PhaseField Uintah Compo-
nent described in §4.2. This step is articulated in three phases. In the first of these phases,
parallelism is achieved taking advantage of the Uintah Computational Framework. This is done
by developing two distinct components for cell-centred and node-centred explicit solvers of the
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pure metal model in two dimensions. Fixed Dirichlet or Neumann/Dirichlet boundary condi-
tions are imposed depending on the computational domain: the first ones are used when the
problem is solved over the full computational domain, while the second conditions are used if
symmetry has been taken advantage of to quarter the computational domain.

The second phase is to use the data structures and methods provided by Uintah to implement
adaptive mesh refinement. For these initial Uintah components a naive approach is chosen to
maximally simplify this phase: only two grid levels are introduced with the assumption that the
fine level is wide enough that the solution evolves only within this level, so that no fine/coarse
interface condition has to be implemented at this stage.

In the third phase, effort has been given to extend the cell-centered and node-centered
component to solve pure metal model in three dimensions and to implement fine/coarse interface
conditions. However these efforts stressed out the limitations in the implementation of the
current approach which proved to be too prone to errors.

3.1.3 Heat Component

To have a simpler starting point on top of which implement and test new features, also a Heat
component has been developed §4.3. That is because the heat problem (2.25) is the simplest
elliptical problem with an explicit analytical solution.

Two different development paths branched from this component: an early implementation
of an implicit solver which served the purpose of understanding how Uintah implements its
support to HYPRE and its linear solvers and preconditioners; and the development of more
general implementation of the finite difference approximations that could be used to quicker
implement solvers for multiple applications that are also more efficient.

The progress made in these two directions resulted in a redesign of the Heat Component
which provided additional features and resulted to be a general finite difference development
framework within Uintah: a new PhaseField component with multiple applications for solving
different problems.

3.1.4 View Framework

The first step in the direction of providing a more general finite-difference framework has been
the implementation of the backbone of the framework itself as described in Chapter 5. In this
chapter, the concepts of view (View) and finite-difference view (FDView) are introduced. They
are interfaces to be used by application developers to access finite difference implementations
through high level classes and methods.

A great advantage of the view concepts is that the same kernel can be implemented for
each task of an application to update the solution on a patch regardless of its topological
characteristics and of those of its neighbour patches. The view interfaces successfully take away
from the application developer the responsibility to distinguish internal and boundary patches.
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It also hide effectively from him/her any complexity in handling different boundary or interface
conditions that may be applied.

In the first step of the implementation, as presented in Chapter 5, boundary conditions and
fine coarse interfaces are not yet implemented, but the great flexibility introduced by the new
approach is already evident in the applications for solving the proposed benchmark problems on
periodic domains. The results in §5.3 show how the explicit solvers implemented as applications
of the new PhaseField component can solve second-order Allen-Cahn and fourth-order Cahn-
Hilliard problems as long as these problem are not too stiff to be explicitly solved.

3.1.5 Boundary Conditions

The second step in the development of the general framework is the implementation of generic
boundary conditions.

This is achieved thanks to three features. First, the definition of as many implementation
of the view interfaces as the possible combinations of boundary conditions and faces on which
such conditions must be applied. These boundary views are introduced in Chapter 6 using
class templates and meta-programming techniques so that these combinations are automatically
created by the compiler using implementation of the discretised boundary conditions that are
independent of the face and direction on which these are applied. This aspect is fundamental
in limiting code duplication and errors while implementing new boundary conditions.

The second feature is the introduction of a partitioner algorithm to detect which portions
of each patch can share the same view implementation. Thanks to the partitioner the different
view implementations are instantiated at the beginning of a simulation or when the geometry
is updated so that at each timestep the solution can be computed iterating over the partitioned
regions instead of over the patches. This change is key in avoiding wasting computational time
in looking up for the implementation appropriate to each region.

The third feature is the introduction of the Problem structure as the container that holds
at the same time all the information about each region identified by the partitioner and all the
view implementation instances for that region.

Thanks to these three new features the application developer can loop over the list of
Problems and use its view interfaces to evaluate the same kernel definition. The compiler will
then create several instances of the kernel for each view implementation which is specific to
that view implementation.

3.1.6 Adaptive Mesh Refinement

The third step in the development of the general finite difference framework provided by the
PhaseField component is the implementation of Fine/Coarse Interfaces as described in Chap-
ter 7. This step is made simple by the Uintah Computational Framework as well as by the
previous step.
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On one hand Uintah already provides for all the infrastructure for handling different grid
levels and for the necessary regrid procedures, on the other hand the implementation of bound-
ary conditions is general enough that fine/coarse interfaces can be implemented simply defining
the generic view implementation for those regions identified by the partitioner to be the edge
of a patch adjacent to a patch on a different grid level.

In addition to the new view implementations of the interface condition, special views have
been defined to provide operators of interpolation and restriction between different levels. These
special views are extensions of the view interfaces and take advantage of the view and problem
framework so that also their definition is general and independent of the patch location and
boundaries.

However, the choice of which fine/coarse interface condition is best suited for solving phase-
field problems is less trivial. Great effort at this stage has been given in developing tools
to evaluate the error introduced by fine/coarse interfaces and in identifying which regridding
parameters provide the best compromise between accuracy and speed.

3.1.7 Implicit Solvers

While the general phase-field framework was being developed, work has been done also in the
direction of implementing implicit and semi-implicit solvers. In particular, the first step in this
direction has been to extend the Heat component to use the existing driver to HYPRE provided
by Uintah. This driver provides a bridge between Uintah’s structures and HYPRE’s linear
solvers and preconditioners on structured grids and as such does not support grids composed
of multiple levels.

The first implementation of an implicit solver for the heat problem could solve only one
level at a time. The coarser level is solved first, using the problem boundary conditions and
the restriction of the solution at the previous time step as initial condition. Each finer level is
then solved in sequence from the coarser to the finest using the solution at the coarser level as
boundary conditions.

A second step in the development has been the implementation of a new driver to HYPRE’s
semi structured linear solvers. These solvers can handle geometries represented as the union
of patches with different refinement steps and therefore can be used to update solutions over
AMR grids.

Few changes where required to the view framework to support implicit solvers, mainly
related to the fact that differential operators in this case must return coefficients for stencil
entries of a linear matrix and a right-hand-side vector.

3.2 Challenges

Working with a large software package such as Uintah presents many challenges. First of all
is the size of the code base itself. Over thirty years of development, the Uintah repository
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grew to count about 5,000 files with more than 500,000 non-blank lines of C++ code. C++

represents about 80% of the codebase, but other languages are present, such as Matlab, Python
and Fortran.

Being Uintah a research software in continuous active development, most of the lower level
code is either undocumented or has little or not updated documentation. However, the com-
ponent based design and an homogeneous code style, simplify the task of understanding the
codebase whose learning curve remains in any case very steep. It is reasonable to estimate that
understanding how to work within Uintah could take about a year.

The second main challenge in working with such a big research software is that it is being
actively developed and that other researcher can make changes to other components that affect
the code you are currently working on. This problem was exaggerated for this research by two
factors:

– the new component being developed required features and behaviours not shared by other
applications of Uintah for which no continuous integration test was in place; and

– the revisioning approach adopted by Uintah being centralised, which resulted in a longer
process of validation for the new code before it was included into the central repository.

During the whole research it has been very complicated to understand when to commit changes
to the central repository and when to keep up with changes in the central repository. Re-
cently, Uintah moved to a distributed version control system making much easier the process
of developing new features.

The third main challenge has been the integration of HYPRE semi-structured solvers. This
is another actively developed research software which presents similar challenges to Uintah.
Despite implicit solvers and semi-structured grid were supported both by Uintah, they couldn’t
work together. In the process of integrating these two features, some changes in the workflow
of Uintah have been necessary because new edge have cases being introduced. This integration
required to understand the behaviour of most of the components of Uintah. Small changes had
been necessary to the datawarehouse, the scheduler and also to the MPI messages handler to
make the two feature integrate.
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Initial Implementations

In this first chapter about the implementations developed during this research work, focus is
given to the early stages of development. This will help highlighting the most critical aspects
in the development of a phase field component within the UCF.

Throughout the whole research, an incremental approach to the development of the compo-
nent has been used: only one degree of complexity is added at a time. Each development stage
is then tested before adding more complexity to the implementation. At first, a sequential code
for the explicit solution of the 2D pure metal problem (2.5) has been developed, as described
in §4.1. This initial sequential code has then been ported to Uintah as one of its components.

At this stage two path of development could have been followed: implementing an implicit
time-stepping method, or implementing mesh adaptivity. To follow the first path, a simpler
Uintah component has been developed in §4.3, the Heat component. This component, as dis-
cussed in §4.3, implements a solver for the heat diffusion problem (2.25). Being this problem
the simplest elliptic partial differential equation, it has been extensively studied both analyti-
cally and numerically. It is therefore the most natural choice while developing an implicit time
stepping algorithm, at least in the initial stage when the implementation of the liner solver has
to be validated.

Following the second path (§4.2.3 and extending the component to three dimension problems
(§4.2.5, instead, stressed out critical aspects of the implementation. These are discussed in
§4.3.2 and will need an ad-hoc solution in Uintah, which is presented in the following chapters.

4.1 Pure Metal C++ Sequential Code

The first step in this research was to implement a simple software to simulate a solidification
process governed by model (2.1) for an isotropic pure metal in two dimensions. For the sake
of simplicity, a finite differences explicit Euler scheme has been chosen for the discretization of
the problem. Subsequently, the anisotropy function has been added to the model while keeping
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the same discretization scheme.

4.1.1 2D Isotropic Model

Since, in this case, eitherW and τ are constant, given the definition (2.2) and setting1 h(ψ) := ψ,
the governing equations reduce to the following:

τ∂tψ = W 2∇2ψ + ψ(1− ψ2)− λu(1− ψ2)2

∂tu = α∇2u+ 1
2∂tψ ,

on Ω ⊂ RN , ∀t > 0 .(4.1)

These are completed by the set of initial conditions in (2.10), and boundary conditions can be
chosen to be either Dirichlet,

ψ ≡ −1 , u ≡ −∆ , on ΓD ,

or homogeneous Neumann,

∂nψ ≡ 0 , ∂nu ≡ 0 , on ΓN ,

where ΓD and ΓN is a disjoint partition of the boundary of the computational domain, ΓD ∪·
ΓN = ∂Ω.

Nondimensionalisation

Eqns. 4.1 can be nondimensionalised setting x̃ := x
W , and t̃ := t

τ :

∂t̃ψ = ∇̃2ψ + ψ(1− ψ2)− λu(1− ψ2)2

∂t̃u = α̃∇̃2u+ 1
2∂t̃ψ ,

on Ω̃ ⊂ RN , ∀t̃ > 0 ,

where the nondimensional thermal diffusivity is defined by α̃ := ατ
W 2 . Since parameters α and

λ are bonded together by (2.9), if kinetics is neglected by setting β = 0, it is possible to write
λ = ατ

a2W 2 = α̃
a2

(where a1 = 0.8839 and a2 = 0.6267 [49]). This leaves α̃ to be the only
parameter left to be chosen.

Time Discretization

Fix a timestep ∆t > 0 and let tn := (∆t)n, then the forward Euler (explicit) time discretization
of the problem is:

∆ψn = ∆t[∆ψn + ψn(1− [ψn]2)− α
a2
un(1− [ψn]2)2]

1This choice corresponds to an isothermal variational formulation of the problem that cannot be derived
from a single-Lyapunov functional but is more computational appealing [49].
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ψn+1 = ψn + ∆ψn

∂tu
n+1 = un + α∆t∆un + 1

2∆ψn , n > 0 ,

where the tilde has been omitted for the sake of simplicity. Defining ψ0 := ψ0 and u0 := u0, ψn

and un are then, for all n ≥ 0, approximations of the nondimensional temperature and phase
fields at time tn.

Space Discretization

Let h > 0 be the spacing of an uniform grid {(xi, yj) : i = 0, . . . , Nx, j = 0, . . . , Ny} where
xi := x0 +ih and yj := x0 +jh. Naming ψni,j and uni,j the approximations of the nondimensional
temperature and phase fields at time tn on the node (xi, yj) derivatives can be approximated
by central differences:

∂xψ
n(xi, yj) ≈

ψni+1,j−ψ
n
i−1,j

2h , ∂2
xψ

n(xi, yj) ≈
ψni+1,j+ψ

n
i−1,j−2ψni,j
h2 ,

∂yψ
n(xi, yj) ≈

ψni,j+1−ψ
n
i,j−1

2h , ∂2
yψ

n(xi, yj) ≈
ψni,j+1+ψni,j−1−2ψni,j

h2 .

The numerical scheme for inner nodes then becomes:

∆ψni,j = ∆t[ψ
n
i+1,j+ψ

n
i−1,j+ψ

n
i,j+1+ψni,j−1−4ψni,j
h2 − ψni,j(1− [ψni,j ]2)− α

a2
uni,j(1− [ψni,j ]2)2]

ψn+1
i,j = ψni,j + ∆ψni,j
un+1
i,j = un + α∆t u

n
i+1,j+u

n
i−1,j+u

n
i,j+1+uni,j−1−4uni,j
h2 + 1

2∆ψni,j ,

0 < i < Nx, 0 < j < Ny, ∀n > 0 .

How to compute field values at boundary nodes is straightforward in the case of Dirichlet
conditions while homogeneous Neumann condition are implemented by the introduction of
ghost nodes at i = −1, Nx + 1 and j = −1, Ny + 1 and defining:

ψn−1,j := ψn1,j , ψnNx+1,j := ψnNx−1,j , u−1,j := un1,j , unNx+1,j := unNx−1,j ,

ψni,−1 := ψni,1 , ψni,Ny+1 := ψni,Ny−1 ui,−1 := uni,1 , uni,Ny+1 := uni,Ny−1 .

4.1.2 2D Anisotropic Model

With the same choice of h and f and choosing formulation (2.7) for the anisotropy function,
model (2.3) becomes:

τ0A∂tψ = W 2
0∇·(A2∇ψ) +W 2

0∇·
[
|∇ψ|2A ∂∇ψA

]
+ ψ(1− ψ2)− λu(1−ψ2)2

∂tu = α∆u+ 1
2∂tψ , on Ω ⊂ RN , ∀t > 0 .
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Expanding the divergence operators in two dimensions, the following is obtain:

τ0A∂tψ = W 2
0A

2∆ψ +∇[A2] · ∇ψ +W 2
0 ∂x

[
|∇ψ|2A ∂∂xψA

]
+W 2

0 ∂y
[
|∇ψ|2A ∂∂yψA

]
+

+ ψ(1− ψ2)− λu(1−ψ2)2

∂tu = α∆u+ 1
2∂tψ on Ω ⊂ RN , ∀t > 0 .

Observing that

∂ψαA =

∂nA · ∂ψαn = ∂nA ·
(

eα
|∇ψ| − ∂αψ

∇ψ
|∇ψ|3

)
, for |∇ψ| 6= 0

0 , otherwise
α = x, y ,

it is possible to write:

τ0A∂tψ = W 2
0A

2∆ψ +∇[A2] · ∇ψ +W 2
0 ∂x

[
A∂nA
|∇ψ| ·

[∂yψ]2, −∂xψ ∂yψ
t ]+

+W 2
0 ∂y

[
A∂nA
|∇ψ| ·

−∂xψ ∂yψ, [∂xψ]2
t ]+ ψ(1− ψ2)− λu(1−ψ2)2

∂tu = α∆u+ 1
2∂tψ , for |∇ψ| 6= 0 ,

which leads to the following system:

τ0A∂tψ = W 2
0A

2∆ψ +∇[A2] · ∇ψ +W 2
0 ∂x

[
∂yψ

A
|∇ψ| (∂nxA∂yψ − ∂nyA∂xψ)

]
+

+W 2
0 ∂y

[
∂xψ

A
|∇ψ| (∂nyA∂xψ − ∂nxA∂yψ)

]
+ ψ(1− ψ2)− λu(1−ψ2)2

∂tu = α∆u+ 1
2∂tψ , for |∇ψ| 6= 0 ,

The following functions of the normal vector are introduced

Bα,β := A
|∇ψ| (∂nαA∂βψ − ∂nβA∂αψ) , α, β ∈ {x, y} ,

which are extended to value 0 where |∇ψ| = 0.
Using this definition, observing that Bα,β = −Bβ,α, and apply the Leibniz rule to the

derivatives of the products ∂αψBβ,α, the previous system simplifies to:

τ0A∂tψ = W 2
0A

2∆ψ +∇[A2] · ∇ψ −W 2
0 ∂xψ ∂yBx,y +

+W 2
0 ∂yψ ∂xBx,y + ψ(1− ψ2)− λu(1−ψ2)2

∂tu = α∇2u+ 1
2∂tψ , on Ω ⊂ RN , ∀t > 0 .
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Nondimensionalisation

Analogously to the previous model, let define x̃ := x
W0

, t̃ := t
τ0

; this leads to:

A∂t̃ψ = A2∇̃2ψ + ∇̃[A2] · ∇̃ψ − ∂x̃ψ ∂ỹBx,y + ∂ỹψ ∂x̃Bx,y + ψ(1− ψ2)− α̃
a2
u(1−ψ2)2

∂t̃u = α̃∇̃2u+ 1
2∂tψ , on Ω̃ ⊂ RN , ∀t̃ > 0 ,

where α̃ : ατ0
W 2

0
.

Time discretization

The following forward Euler time discretization of the nondimensional anisotropic problem is
chosen:

∆ψn = ∆t
An

{
[A2]n∇2ψn +∇[A2]n · ∇ψn − ∂xψn ∂y[Bx,y]n +

+ ∂yψ
n ∂x[Bx,y]n + ψn(1− [ψn]2)− α

a2
un(1− [ψn]2)2

}
ψn+1 = ψn + ∆ψn

∂tu
n+1 = un + α∆t∇2un + 1

2∆ψn ,

n > 0 ,

where the tilde has been omitted for the sake of simplicity, and the following definitions are
introduced:

nn = ∇ψn
|∇ψn| , An :=

A(nn) if |∇ψn| 6= 0

1 + ε otherwise ,

[A2]n := [An]2 , [Bx,y]n :=

Bx,y(nn) if |∇ψn| 6= 0

0 otherwise .
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Space discretization

The same central differences introduced before are used based on the same regular grid. As for
the previous model, the numerical scheme for inner nodes then becomes (for |∇ψn| 6= 0):

[δxψ]ni,j = ψni+1,j−ψ
n
i−1,j

2h

[δyψ]ni,j = ψni,j+1−ψ
n
i,j−1

2h

[n2]ni,j = ([δxψ]ni,j)2 + ([δyψ]ni,j)2

[nx]ni,j = [δxψ]ni,j
[n2]n

i,j

[ny]ni,j = [δyψ]ni,j
[n2]n

i,j

ani,j = A(ϕni,j)

[δnxa]ni,j = ∂nxA([nx]ni,j , [ny]ni,j)

[δnya]ni,j = ∂nyA([nx]ni,j , [ny]ni,j)

[bx,y]ni,j = ani,j
([n2]n

i,j
)1/2 ([δxψ]ni,j [δnya]ni,j − [δyψ]ni,j [δnxa]ni,j)

∆ψni,j = ∆t
an
i,j

{
[ani,j ]2

ψni+1,j+ψ
n
i−1,j+ψ

n
i,j+1+ψni,j−1−4ψni,j
h2 +

+
[

[ani+1,j ]
2−[ani−1,j ]

2

2h − [bx,y ]ni,j+1−[bx,y ]ni,j−1
2h

]
[δxψ]ni,j +

+
[

[bx,y ]ni+1,j−[bx,y ]ni−1,j
2h + [ani,j+1]2−[ani,j−1]2

2h

]
[δyψ]ni,j +

+ ψni,j(1− [ψni,j ]2)− α
a2
uni,j(1− [ψni,j ]2)2

}
ψn+1
i,j = ψni,j + ∆ψni,j
un+1
i,j = uni,j + α∆t∇2uni,j + 1

2∆ψni,j
0 < i < Nx, 0 < j < Ny, n > 0 .

(4.2)

4.1.3 Interface Characterization

As phase field models assume a quantitative meaning only in the sharp-interface limit (2.8), it
is important to compute the variables appearing therein starting from the numerical phase field
solution. These quantities are the interface position, x, velocity, v, and curvature, κ. Their
computation is strongly dependent on the accuracy of the interface position evaluation defined
as the distance from the origin of the 0-level of the phase field. Assuming a dendrite arm grow-
ing in the direction of the positive x semi axis, and that indexing is chosen such that ȳ = 0,
the following Algorithm 1 has been implemented as in [49].
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Algorithm 1
1: for all timestep k do
2: identify the minimum ı̄ such that xı̄ > 0 and that ψı̄−1,̄ψı̄+1,̄ < 0
3: compute the fourth-order polynomial interpolant, ψ̃n(x), of ψn at nodes xi for i = ı̄−2, . . . , ı̄+2
4: compute the interface position xnintf as the root of ψ̃n(x)
5: compute tip velocity as vnintf = xnintf−x

n−1
intf

∆t
6: for i = ı̄− 2 to ı̄+ 2 do
7: compute the fourth-order polynomial interpolant, ψ̃ni (y), of ψn at nodes yj with j = ̄ −

2, . . . , ̄+ 2;
8: compute δ2

yψ̃
n
i = ∂2

yψ̃
n
i (0)

9: end for
10: compute δ2

yψ̃
n(x) as the fourth-order polynomial interpolant of δ2

yψ̃
n
i at points xi with i =

ı̄− 2, . . . , ı̄+ 2
11: for j = ̄− 2 to ̄+ 2 do
12: compute the fourth-order polynomial interpolant, ψ̃nj (x), of ψn at nodes xi with i = ı̄ −

2, . . . , ı̄+ 2;
13: compute δxψ̃nj = ∂xψ̃

n
j (xintf)

14: end for
15: compute δxψ̃

n(y) as the fourth-order polynomial interpolant of δxψ̃nj at points yj with j =
̄− 2, . . . , ̄+ 2

16: compute κnintf = [ρnintf]−1 ≈ δ2yψ̃
n(xintf)

|δyψ̃n(0)|
17: end for

A simpler algorithm for calculating the tip properties is the following:

Algorithm 2
1: for all timestep k do
2: identify the minimum ı̄ such that xı̄ > 0 and that ψı̄−1,̄ψı̄+1,̄ < 0
3: for j = ̄− 2 to ̄+ 2 do
4: compute the fourth-order polynomial interpolant, ψ̃nj (x), of ψn at nodes xi for i = ı̄−2, . . . , ı̄+2
5: compute the interface positions xn0,j as the root of ψ̃nj (x)
6: end for
7: set the tip position xnintf = xn0,0

8: compute tip velocity as vnintf = xnintf−x
n−1
intf

∆t
9: compute the fourth-order polynomial interpolant of the interface, x̃n0 (y), of xn0,j at nodes yj

10: compute κnintf = [ρnintf]−1 ≈ ∂2
y x̃

n
0 (0)

11: end for

In literature [49, 77, 90], a parabolic model for the dendrite tip shape is often adopted for
the anisotropic case. For comparison purpose, the parabolic curvature and radius of curvature
can be computed from the parabolic interpolant of the contour level corresponding to ψ = 0 for
a tip growing along one of the directions favoured by anisotropy. In doing this it is important to
omit points close to the actual arm tip (see Figure 4.1), since the actual shape of the interface
is deviating from being parabolic close to the tip. It is important to remark that the definition
of such a radius is arbitrary being it strongly dependent on the choice of interpolation points
and method.
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Figure 4.1: Tip radius calculation at two different time, t = 1000 (top), and
t = 3000 (bottom): the local osculating circles, computed with Algorithm 1 (blue)
and with Algorithm 2 (green), are compared with the interpolant parabola (red)
computed using the portion of the interface contour represented by the thick black
line. In the zoomed plots on the right, it is clear how the local curvature gives
an accurate description of the interface in the neighbour of the tip, while the
parabolic fit of the arm is a good model for the dendrite arm far from the tip.
[α = 1, ε = 0.05, R0 = 5, ∆ = 0.65, M = 400, h = 0.4, ∆t = 0.015]

4.1.4 Validation

The first simulations here reported have the purpose of validate the results of this first serial
implementation in two dimensions. To assess the quality of the software, the interface evolution
over time, has been compared, at first, qualitatively with the results reported in [49], and then,
quantitatively in terms of the interface tip velocity, and curvature values obtained by post-
processing the computed output and in particular their steady-state values.

Interface Evolution

Thanks to the symmetry of the isotropic model, it is possible to reduce the computational
time needed for simulations limiting the domain on which the solutions are actually computed.
In particular, choosing Ω = [0,M ]2 and imposing Neumann boundary conditions on ΓN :=
({0}× [0,M ]∪ [0,M ]×{0}, it is possible to use a grid which is four times smaller than the one
corresponding to the same level of accuracy on the full domain.

In order to asses the reliability of the implemented solution for the anisotropic model, the
evolution of liquid-solid interface over time has been considered. Results have been compared
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Figure 4.2: Sequence of interface pattern shown every 25000 iterations. [α = 1,
ε = 0.05, R0 = 5, ∆ = 0.65, M = 1400, h = 0.4, ∆t = 0.015]

with those available in literature [79, 48, 49] and good qualitative accordance has been found.
A typical sequence of dendritic shapes is shown in Figure 4.2, where the 0-contour level of the
phase field is plotted every 25000 iterations. The evolution of the temperature field over time
is shown in Figure 4.3, as a sequence of colour plots.

Two numerical phenomena could arise and affect the reliability of the simulations. The first
one is related to the space discretization step, h, and the thermal diffusivity α and is known as
grid anisotropy: due to the low order finite difference approximation, diffusion is observed to
be favoured along the bisectors of the I-III and II-IV quadrants. This numerical phenomenon
is empathized by low values of thermal diffusivity and appears to vanish when h→ 0.

The second numerical issue is a consequence of the explicit time discretization. The com-
puted solution is observed to oscillate around the physical one with increasing magnitude when
the time discretization step is too long. In particular, the explicit time discretization scheme
introduces a numerical stability constraint on the timestep [76]:

(4.3) ∆t < Ch2 ,

where C is a suitable constant depending on the model parameters and initial condition.
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time 500 time 1000

time 1500 time 2000

time 2500 time 3000

Figure 4.3: Nondimensional temperature field evolution at time intervals of
length 500. The 0-contour of ψ (black) corresponds to the liquid/solid interface.
[α = 1, ε = 0.05, R0 = 5, ∆ = 0.65, M = 300, h = 1, ∆t = 0.1]
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Figure 4.4: Tip position profile. [α = 1, ε = 0.05, R0 = 5, ∆ = 0.65, M = 1400,
h = 0.4, ∆t = 0.015]

Interface Characterization

In order to asses quantitatively the reliability of the results produced by this implementation,
the steady-state tip velocity is compared with that computed by the Green function method as
reported in Table II by Karma et al. [49],

Vtip = DṼtip

d0
,

where Ṽtip is the dimensionless tip velocity as defined therein.
In Figures 4.4–4.6 are report the tip position, velocity and curvature profiles computed as

described in Algorithm 1 and in Algorithm 2.
In Figure 4.5 it has been plotted a reference line in correspondence to the steady-state

velocity calculated by the Green function method whose value for this choice of parameters
is 0.847. This graph shows that there is also a good quantitative comparison between this
implementation and literature results.
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Figure 4.5: Tip velocity profile. In blue, the reference steady-state velocity value
computed by the Green function method. [α = 1, ε = 0.05, R0 = 5, ∆ = 0.65,
M = 1400, h = 0.4, ∆t = 0.015]
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Figure 4.6: Curvature profiles. Comparison between local tip curvature com-
puted with Algorithm 1 (blue) and in Algorithm 2 (green) and the parabolic arm
curvature (red). [α = 1, ε = 0.05, M = 1400, h = 0.4, R0 = 5, ∆ = 0.65,
∆t = 0.015]
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4.2 PhaseField Uintah Component

In the second phase of the development, focus has been given to the implementation of the same
schemes presented in §4.1 within the Uintah Computational Framework. This second phase was
articulated in three steps. In the first step (§4.2.1) adaptive mesh refinement techniques are
not introduced in the new component aiming to achieve parallelization on its own. This step is
validated and its parallel performance assessed in §4.2.2.

Then, in §4.2.3, adaptivity is added to the component and, in §4.2.4, results obtained with
new implementation have been compared with those computed on uniform grids with the first
implementation.

The third step of this phase of development (§4.2.5) has been the implementation of the
phase field model (2.5) in three dimension.

4.2.1 Parallelisation – Implementation

As described in §2.2, within Uintah parallelism is achieve by splitting, both, the simulation
into tasks and the computational domain into patches which are a partition of the grid among
processing units. In order to make it possible for the Uintah TaskGraph Compiler to build a
task-graph, it is essential to specify correctly dependencies, width and kind of the ghost cells
which a task relies on, and which variables are created, computed, or updated within that task.

In writing the component for scheme (4.2), the computation of the solution at each timestep
has been split into three tasks:

Task 1 Compute the gradient of the phase field and its norm using the previous solution.

[δxψ]ni,j = ψni+1,j−ψ
n
i−1,j

2h

[δyψ]ni,j = ψni,j+1−ψ
n
i,j−1

2h

[n2]ni,j = ([δxψ]ni,j)2 + ([δyψ]ni,j)2 .

This task depends only on the value of the phase field at the previous time step ψn

and computes the derivative of the phase field along the coordinate directions, δxψn and
δyψ

n and the square of its norm, [n2]n. Since for each index (i, j) this formula requires
that the values of the phase field is known at adjacent nodes/cells, it has to be specified
to the framework that this task requires one ghost node/cell around each side of the patch.

Task 2 Compute the terms depending on the anisotropy function and its derivatives. When
using the 2D formulation (2.7) for the anisotropy function the relevant equation from the
space discretization (4.2) becomes:
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if [n2]ni,j = 0 , ani,j = 1 + ε

[a2]ni,j = (ani,j)2

[bx,y]ni,j = 0 ;

otherwise , ani,j = 1 + ε{4 ([δxψ]ni,j)
4+([δyψ]ni,j)

4

([n2]n
i,j

)2 − 3}

[a2]ni,j = (ani,j)2

[bx,y]ni,j = 16εani,j
[δxψ]ni,j [δyψ]ni,j

[n2]n
i,j

([δxψ]ni,j)
2−([δyψ]ni,j)

2

[n2]n
i,j

.

This task depends on the value of the component and the square of the norm of the gra-
dient of the phase field, δxψn, δyψn and [n2]n, and computes the quantities an, [a2]n,
[bx]n, and [by]n. It does not require information exchange between patches.

Task 3 Compute the new phase and thermal fields at next time-step.

∆ψni,j = ∆t
an
i,j

{
[ani,j ]2

ψni+1,j+ψ
n
i−1,j+ψ

n
i,j+1+ψni,j−1−4ψni,j
h2 +

+
(

[ani+1,j ]
2−[ani−1,j ]

2

2h − [bx,y]ni,j+1−[bx,y]ni,j−1
2h

)
[δxψ]ni,j +

+
(

[bx,y]ni+1,j−[bx,y]ni−1,j
2h + [ani,j+1]2−[ani,j−1]2

2h

)
[δyψ]ni,j +

+ ψni,j(1− [ψni,j ]2)− α
a2
uni,j(1− [ψni,j ]2)2

}
ψn+1
i,j = ψni,j + ∆ψni,j
un+1
i,j = uni,j + α∆t∇2uni,j + 1

2∆ψni,j .

This task depends on both the values of the solution at previous time step, ψn, un and
the variables computed by Task 1 (δxψn, δyψn and [n2]n), and Task 2 (an, [a2]n, [bx]n,
and [by]n), and requires a one node/cell layer of ghosts around patches for ψn, un, [a2]n,
[bx]n, and [by]n.

The reason for splitting the computation of the new solution over tree tasks and not merging
the first two is that the computation of the phase field gradient is a task that may be performed
for estimating the error, and therefore deciding where mesh refinement should be performed.
Even though the current implementation does not use error estimation adaptivity yet (see
§4.2.3), this separation will be useful in further improvements.
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4.2.2 Parallelisation – Results

For this implementation, as for the serial one, the first result presented is the validation of
the software. Simulations are analysed, qualitatively, plotting the interface evolution over time
and, quantitatively, comparing the interface tip velocity, and curvature values obtained by post-
processing the computed output to the previous results. Eventually, some scalability tests have
been performed to asses the level of parallelism achieved.

Interface Evolution

To asses the quality of the solution computed by the component within Uintah, evolution of
the interface and of the temperature field has been compared to results computed using the
previous implementation. In Figure 4.7 the results computed using the cell-centred and the
node-centred variables’ representation are shown at successive timesteps. As a second quality
assessment, the same algorithms described in §4.1 are used to compute the tip position, velocity
and curvatures profiles which, then, have been compared with the respective ones computed
with the previous implementation. The maximum relative error between such profiles does not
exceed 2% making a graphical comparison of them not appreciable.

Parallel Scalability

To analyse the properties of the parallel implementation within Uintah a series of simulations
has been performed using an increasing number of computational nodes. All simulations have
been performed on ARC3, the HPC service of the University of Leeds. Its standard nodes have
24 cores at 2.2GHz and 128GB of memory.

Both weak and strong scalability tests have been considered. Weak scalability tests measure
how a software performs when the number of cores is increased while keeping the working load
constant, i.e. the problem size per processor is kept constant. It is a useful tool, for example,
to understand the parallel performance of a software when resources are fully exploited.

On the contrary strong scalability tests are used to measure the performance of a software
when the number of cores is increased while keeping the global problem size constant. These
tests are a useful tool to quantify what fraction of the whole calculation is parallelized: in fact,
only if the computation is fully parallelized, an inverse proportionality is observed between
computation time and number of processors.

Tests have been performed using 1, 4, 16 and 64 nodes corresponding to 24, 96, 384 and
1536 cores. It has been tested that using 864 million cells per node corresponds to using more
than the 96% of the memory available, when cell centred data representation is used, while
for the node centred case 384 million cells per node are enough to fill more than 90% of the
memory. The larger use of memory of the latter is to be addressed to the fact that for each cell
in Uintah is three dimensional even for two dimensional simulations, roughly doubling the size
of variables.
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time 1000

time 2000

time 3000

Figure 4.7: Comparison between the nondimensional temperature field com-
puted using cell-centred (left) and node-centred (right) variables at time intervals
of length 1000. The 0-contour of ψ (black) corresponds to the liquid/solid interface.
[α = 1, ε = 0.05, R0 = 5, ∆ = 0.65, Ω = [−300, 300]2, h = 1, ∆t = 0.1]
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Figure 4.8: Scalability for the cell centred case. Results for different choices of the
scheduled are shown. Week scalability paths are drawn with solid lines, the top-
most of which corresponds to a almost complete use the memory resources. Strong
scalability paths (dashed) can be compared to the reference triangle corresponding
to ideal strong scalability.

In Figures 4.8 and 4.9 the execution time of the simulations performed is reported as a func-
tion on the number of cores utilized for the cell centred and the node centred cases respectively.

In general the node centred implementation seems to have slightly better weak scalability
performance especially when the use of memory is more abundant. Both implementation show,
overall, almost optimal scaling behaviours, either weak and strong, within the range tested.

4.2.3 Adaptive Mesh Refinement – Implementation

The application of Adaptive Mesh Refinement methods to the previous parallel component is
achieved within the Uintah Computational Framework by telling to the task-graph compiler
which task to perform for each of the following activities:

Refine tasks belonging to this activity are executed every time that, after the initial time-step,
it is required to refine a given level of the mesh. These tasks are responsible for defining
the solution at the new finest level, usually by interpolation of the solution at coarser
levels. Such tasks are not executed when refinement happens on the initial time-step,
since in this case the initialization tasks are executed instead.

Coarsen tasks belonging to this activity are executed after every time-step. They are respon-
sible to copy the solution from the finest to the coarsest level, by restriction or average of
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Figure 4.9: Scalability for the node centred case. Results for different choices
of the scheduled are shown. Week scalability paths are drawn with solid lines,
the topmost of which corresponds to a almost complete use the memory resources.
Strong scalability paths (dashed) can be compared to the reference triangle corre-
sponding to ideal strong scalability.

the solution at the finer level.

InitialErrorEstimate tasks belonging to this activity are executed before the first time-step.
The aim of these tasks is to set a refinement flag on every patch and level in order to
control whether refinement or coarsening is there required.

ErrorEstimate tasks belonging to this activity are executed before every time-step but the
first. The aim of these tasks is the same of those belonging to the InitialErrorEstimate
activity.

For the sake of simplicity, in current implementation, the assumption that boundary edges of
every level are far enough from the region where the solidification process occurs has been made.
To make this assumption hold, the same task has been used for both InitialErrorEstimate and
ErrorEstimate activities. This task sets the refinement flag to true on every patch on which
[n2] < tol, for a given small positive tolerance value, tol. Thanks to this assumption, at this
stage, it has been possible to avoid the imposition of any boundary conditions to grant the
continuity of the solution between levels. This assumption is not optimal since does not spread
the approximation error on the solution evenly over the grid in order to achieve a desired level
of accuracy, and will become restrictive for more complex phase field models. For this reasons,
it is planned to implement inter-level boundary condition in the next months.
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Figure 4.10: Grid refinement with cell centred data. Variables’ values on the
new grid level (diamonds) are copied from the values at corresponding cell on the
coarser level (circles). No data exchange is necessary between adjacent patches.

Figure 4.11: Grid refinement with node centred data. Variables’ values on the
new grid level corresponding to new nodes (diamonds) are interpolated from the
values at neighbour nodes on the coarser level (circles). When the new node lies
on a cell that shares an edge/face with a cell on an adjacent patch, exchange of
information may be required among those patches.

In current implementation one task for each of the previous activities has been introduced:

Refine the implementation of the refinement task is dependent on the representation of the
variables as node or cell centred. In the former case it is possible to copy the variables’
nodal values from the coarser to the finer level and compute the remaining nodal values
by interpolation. In this case (see Figure 4.11) it is not possible to state that all nodes
needed for the interpolation process belong to the same patch and it is needed to specify its
dependency on ghost nodes. On the contrary, when we are refining cell centred variables,
no interpolation is needed and it is possible to simply copy a value from a coarser cell to
its corresponding finer cells (see Figure 4.10) without using ghost cells.

Coarsen the implementation of this task, as well as the Refine one, is dependent on the
variables’ representation. In the node-centred case, all nodes in the coarser level are
also on the finer one and thus it is sufficient to copy values from the latter to the first.
Conversely, when variables representation is cell-centred, the value on the coarser level is
computed as the average of the values at the corresponding cells on the finer level. In
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both cases it is not necessary to use ghost elements.

InitialErrorEstimate/ErrorEstimate this task must set the refinement flag on a cell basis
independently of the phase field representation. When node-centred representation is
used, the norm of the gradient at a given cell is estimated with first order finite difference
using the vertices of that cell while in the cell-centred case, finite differences are applied
on surrounding cells. In both cases it is necessary to use one layer of ghost elements.

4.2.4 Results

For this implementation the same validation and weak scalability tests as for the previous
implementation within Uintah not involving AMR have been performed.

Interface Evolution

The first comparison performed between the implementation with Adaptive Mesh Refinement
techniques and those not involving them, is qualitative. In Figure 4.12 colour plots of the
nondimensional temperature field together with the curve ψ = 0 which corresponds to the
liquid/solid interface are reported for tree different timesteps. Those simulations have been
performed using three grid levels, the coarsest of which with h = 4, and a refinement ratio of 2,
so that the finest level has the same grid spacing of the simulations performed without AMR.

Two different phenomena affect these results: when using adaptivity together with cell cen-
tred data representation, they are observed a speed up of the dendrite growth, and lower values
of curvature for the dendrite tips and arms. When, instead, adaptivity is used in conjunction
with node-centred variables no such speed up is find but the temperature field diffuse more at
coarser levels.

In Figures 4.13–4.15 it is possible to appreciate quantitatively how such phenomena affect
the dendrite arm properties.

It is still to study the dependency of the aforementioned behaviours with respect to dis-
cretization and adaptivity parameters, but it is plausible that they have been amplified by the
very large space discretization step on the coarsest level.

4.2.5 3D Model – Implementation

In this third step, the three dimensional model for pure metal solidification is developed. The
component described in §4.2.1 is extended to this case redefining the task introduced therein
keeping the same structure for the component.
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time 1000

time 2000

time 3000

Figure 4.12: Comparison between the nondimensional temperature field com-
puted using AMR and cell-centred (left) and node-centred (right) variables at time
intervals of length 1000. The 0-contour of ψ (black) corresponds to the liquid/solid
interface. [α = 1, ε = 0.05, R0 = 5, ∆ = 0.65, Ω = [−300, 300]2, h = {4, 2, 1},
∆t = 0.1]
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Figure 4.13: Tip position profile. [α = 1, ε = 0.05, Ω = [−560, 560]2, h =
{3.2, 1.6, 0.8, 0.4}, R0 = 5, ∆ = 0.65, ∆t = 0.015]
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Figure 4.14: Tip velocity profile. In blue, the reference steady-state velocity
value computed by the Green function method. [α = 1, ε = 0.05, Ω = [−560, 560]2,
h = {3.2, 1.6, 0.8, 0.4}, R0 = 5, ∆ = 0.65, ∆t = 0.015]
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Figure 4.15: Curvature profiles. Local tip curvature computed with Algorithm 1
(blue) and in Algorithm 2 (green) is compare with the parabolic arm curvature
(red). [α = 1, ε = 0.05, Ω = [−560, 560]2, h = 1.6, 0.8, 0.4, R0 = 5, ∆ = 0.65,
∆t = 0.015]

3D Anisotropic Model

With the usual choice of h and f model (2.3) for the three dimensional anisotropic case can be
rewritten, following the same procedure as in §4.2.1, as follows:

τ0A∂tψ = W 2
0A

2∆ψ +∇[A2] · ∇ψ −W 2
0 ∂xψ ∂yBx,y −W 2

0 ∂xψ ∂zBx,z +

−W 2
0 ∂yψ ∂xBx,y +W 2

0 ∂yψ ∂zBy,z +W 2
0 ∂zψ ∂zBx,z +W 2

0 ∂zψ ∂yBy,z +

+ ψ(1− ψ2)− λu(1−ψ2)2

∂tu = α∆u+ 1
2∂tψ , on Ω, ∀t > 0 .

Nondimensionalization Defining, as for the other models, x̃ := x
W0

, t̃ := t
τ0

, the following
nondimensional model is derived:

A∂t̃ψ = A2∇̃2ψ + ∇̃[A2] · ∇̃ψ +

−W 2
0 ∂x̃ψ ∂ỹBx,y −W 2

0 ∂x̃ψ ∂z̃Bx,z −W 2
0 ∂ỹψ ∂x̃Bx,y +

+W 2
0 ∂ỹψ ∂z̃By,z +W 2

0 ∂z̃ψ ∂x̃Bx,z +W 2
0 ∂z̃ψ ∂ỹBy,z +

+ ψ(1− ψ2)− λu(1−ψ2)2

∂tu = α∇̃2u+ 1
2∂t̃ψ , on Ω̃, ∀t̃ > 0 .
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where α̃ := ατ0
W 2

0
.

Time discretization The same forward Euler time discretization used for the two dimen-
sional model is chosen:

∆ψn = ∆t
An

{
[A2]n∇2ψn +∇[A2]n · ∇ψn +

− ∂xψn ∂y[Bx,y]n − ∂xψn ∂z[Bx,z]n − ∂yψn ∂x[Bx,y]n +

+ ∂yψ
n ∂z[By,z]n + ∂zψ

n ∂x[Bx,z]n + ∂zψ
n ∂y[By,z]n +

+ ψn(1− [ψn]2)− α
a2
un(1− [ψn]2)2

}
ψn+1 = ψn + ∆ψn

∂tu
n+1 = un + α∆t∇2un + 1

2∆ψn , n > 0 .

Space discretization Let h > 0 be the spacing of an uniform grid {(xi, yj , zk) : i =
0, . . . , Nx, j = 0, . . . , Ny, k = 0, . . . , Nz} where xi := x0 + ih, yj := x0 + jh and zk := z0 + kh.
Naming ψni,j,k and uni,j,k the approximations of the nondimensional temperature and phase fields
at time tn on the node (xi, yj , zk), the derivatives along the z direction can be approximated
by central differences:

∂zψ
n(xi, yj , zk) ≈ ψni,j,k+1−ψ

n
i,j,k−1

2h ∂2
zψ

n(xi, yj , zk) ≈ ψni,j,k+1+ψni,j,k−1−2ψni,j,k
h2

The numerical scheme for inner nodes then becomes (for |∇ψ| 6= 0):

[δxψ]ni,j,k = ψni+1,j,k−ψ
n
i−1,j,k

2h

[δyψ]ni,j,k = ψni,j+1,k−ψ
n
i,j−1,k

2h

[δzψ]ni,j,k = ψni,j+1,k−ψ
n
i,j−1,k

2h

[n2]ni,j,k = ([δxψ]ni,j,k)2 + ([δyψ]ni,j,k)2 + ([δzψ]ni,j,k)2

[nx]ni,j,k = [δxψ]ni,j,k
[n2]n

i,j,k

[ny]ni,j,k = [δyψ]ni,j,k
[n2]n

i,j,k

[nz]ni,j,k = [δzψ]ni,j,k
[n2]n

i,j,k

ani,j,k = A(ϕni,j,k)

[δnxa]ni,j,k = ∂nxA([nx]ni,j,k, [ny]ni,j,k, [nz]ni,j,k)

[δnya]ni,j,k = ∂nyA([nx]ni,j,k, [ny]ni,j,k, [nz]ni,j,k)

[δnza]ni,j,k = ∂nzA([nx]ni,j,k, [ny]ni,j,k, [nz]ni,j,k)

[bx,y]ni,j,k = ani,j,k
([n2]n

i,j,k
)1/2 ([δxψ]ni,j,k[δnya]ni,j,k − [δyψ]ni,j,k[δnxa]ni,j,k)
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[bx,z]ni,j,k = ani,j,k
([n2]n

i,j,k
)1/2 ([δxψ]ni,j,k[δnya]ni,j,k − [δzψ]ni,j,k[δnxa]ni,j,k)

[by,z]ni,j,k = ani,j,k
([n2]n

i,j,k
)1/2 ([δyψ]ni,j,k[δnya]ni,j,k − [δzψ]ni,j,k[δnxa]ni,j,k)

∆ψni,j,k = ∆t
an
i,j,k

{
[ani,j,k]2 ψ

n
i+1,j,k+ψni−1,j,k+ψni,j+1,k+ψni,j−1,k+ψni,j,k+1+ψni,j,k−1−6ψni,j,k

h2 +

+
[

[ani+1,j,k]2−[ani−1,j,k]2

2h − [bx,y]ni,j+1,k−[bx,y ]ni,j−1,k
2h − [bx,z ]ni,j,k+1−[bx,z ]ni,j,k−1

2h

]
[δxψ]ni,j,k +

+
[

[bx,y ]ni+1,j,k−[bx,y]ni−1,j,k
2h + [ani,j+1]2−[ani,j−1]2

2h − [by,z ]ni,j,k+1−[bx,z ]ni,j,k−1
2h

]
[δyψ]ni,j,k +

+
[

[bx,y ]ni+1,j,k−[bx,y]ni−1,j,k
2h + [by,z ]ni,j+1,k−[bx,z ]ni,j−1,k

2h + [ani,j,k+1]2−[ani,j,k−1]2

2h

]
[δzψ]ni,j,k

}
+

+ ψni,j(1− [ψni,j ]2)− α
a2
uni,j(1− [ψni,j ]2)2

}
ψn+1
i,j = ψni,j + ∆ψni,j
un+1
i,j = uni,j + α∆t∇2uni,j + 1

2∆ψni,j ,

0 < i < Nx, 0 < j < Ny, 0 < k < Nz, n > 0 .

Parallelization

Following the same subdivision into task described in §4.2.1, some modification are made to
the two dimensional implementation:

Task 1 Compute the gradient of the phase field and its norm using the previous solution.

[δxψ]ni,j,k = ψni+1,j,k−ψ
n
i−1,j,k

2h

[δyψ]ni,j,k = ψni,j+1,k−ψ
n
i,j−1,k

2h

[δzψ]ni,j,k = ψni,j,k+1−ψ
n
i,j,k−1

2h

[n2]ni,j,k = ([δxψ]ni,j,k)2 + ([δyψ]ni,j,k)2 + ([δzψ]ni,j,k)2 .

Task dependency are unchanged while δzψn must be added to the list of computed out-
puts.
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Task 2 Compute the terms depending on the anisotropy function and its derivatives.

if [n2]ni,j,k = 0 , ani,j,k = 1 + ε

[a2]ni,j,k = (ani,j,k)2

[bx,y]ni,j,k = 0 ;

otherwise, ani,j,k = 1 + ε{4 ([δxψ]ni,j,k)4+([δyψ]ni,j,k)4+([δzψ]ni,j,k)4

([n2]n
i,j,k

)2 − 3}

[a2]ni,j,k = (ani,j,k)2

[bx,y]ni,j,k = 16εani,j,k
[δxψ]ni,j,k[δyψ]ni,j,k

[n2]n
i,j,k

([δxψ]ni,j,k)2−([δyψ]ni,j,k)2

[n2]n
i,j,k

[bx,z]ni,j,k = 16εani,j,k
[δxψ]ni,j,k[δzψ]ni,j,k

[n2]n
i,j,k

([δxψ]ni,j,k)2−([δzψ]ni,j,k)2

[n2]n
i,j,k

[by,z]ni,j,k = 16εani,j,k
[δyψ]ni,j,k[δzψ]ni,j,k

[n2]n
i,j,k

([δyψ]ni,j,k)2−([δzψ]ni,j,k)2

[n2]n
i,j,k

.

δzψ
n must be added to the dependency list of this task and also [bx,z]n, and [by,x]n must

to the compute outputs one. The task still does not require information exchange between
patches.

Task 3 Compute the new phase and thermal fields at next time-step.

∆ψni,j,k = ∆t
an
i,j,k

{
[ani,j,k]2 ψ

n
i+1,j,k+ψni−1,j,k+ψni,j+1,k+ψni,j−1,k+ψni,j,k+1+ψni,j,k−1−6ψni,j,k

h2 +

+
(

[ani+1,j,k]2−[ani−1,j,k]2

2h − [bx,y]ni,j+1,k−[bx,y ]ni,j−1,k
2h − [bx,z ]ni,j,k+1−[bx,y ]ni,j,k−1

2h

)
[δxψ]ni,j,k +

+
(

[bx,y ]ni+1,j,k−[bx,y]ni−1,j,k
2h + [ani,j+1,k]2−[ani,j−1,k]2

2h − [by,z ]ni,j,k+1−[by,z ]ni,j,k−1
2h

)
[δyψ]ni,j,k +

+
(

[bx,z ]ni+1,j,k−[bx,z ]ni−1,j,k
2h + [by,z ]ni,j+1,k−[by,z ]ni,j−1,k

2h + [ani,j,k+1]2−[ani,j,k−1]2

2h

)
[δyψ]ni,j,k +

+ ψni,j,k(1− [ψni,j,k]2)− α
a2
uni,j,k(1− [ψni,j,k]2)2

}
ψn+1
i,j,k = ψni,j,k + ∆ψni,j,k
un+1
i,j,k = uni,j,k + α∆t∇2uni,j,k + 1

2∆ψni,j,k.

To the dependency list of this task must be added the additional outputs of the previous
two task. A one element thick layer of ghosts are required for variables computed by
Task 2.

4.2.6 3D Model – Results

Since the implementation of the three dimensional model stressed out some limitations (dis-
cussed in §4.3.2) in the component implementation at this stage, the validation of this step has
been postponed to the next chapters, when such limitations will be overcame.

As a demonstration of the stage progress, a simulation on a computational domain with
2003 cells with cell-centred data and no adaptivity has been performed. In Figure 4.16 a plot
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of the iso-surface ψ = 0 corresponding to the liquid/solid interface at time t = 340 is presented.
The corresponding nondimensional temperature field is, instead, illustrated in Figure 4.17 by
means of colour plots on the planes generated by the coordinate axes.

Figure 4.16: Iso-surface ψ = 0 at time t = 340. [α = 1, ε = 0.05, R0 = 5,
∆ = 0.65, Ω = [−100, 100]3, h = 1, ∆t = 0.1]

Figure 4.17: Colour plots for u on the planes generated by the coordinate axes.
In black is shown the contour line for ψ = 0 on those planes. [α = 1, ε = 0.05,
R0 = 5, ∆ = 0.65, Ω = [−100, 100]3, h = 1, ∆t = 0.1]
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4.3 Heat Uintah Component

The reason to implement a component for solving the heat diffusion problem, is to have the
simplest Uintah component implementation possible. In this way it is possible to implement
and more quickly new features.

4.3.1 Implementation

Initially a Heat component has been developed for solving problem (2.25) on uniform 2D grids
with explicit time stepping. The only task implemented in the component to update the solution
at each timestep is the task_time_advance_solution.

To distinguish between internal grid elements and elements lying on a boundary, the task,
first, computes the range of internal grid elements and invokes the default version of the kernel
time_advance_solution and then, for each boundary face, it retrieves the information about the
boundary condition to apply on each face and passes it as arguments to an overridden version
of the time_advance_solution kernel.

The default kernel use the old solution to approximate the Laplacian on each grid entry ac-
cessing directly the elements pointed by the 5 point stencil. The boundary kernel, instead, must
identify which entries on the stencil are out of the computational domain (ghost elements) and
select the appropriate implementation according to the boundary face and condition prescribed.

There are eight different possible cases just for grid elements on a boundary face (four faces
times two boundary types). Each face case have then to distinguish between inner edge entries,
where only one condition is imposed, and vertices, where two conditions may apply.

In the next step of the implementation, AMR support is added introducing the AMRHeat
class, which inherits from the Heat class implementing the new component.

As described in §4.2.3 the new class overrides some of the Application schedulings in order
to execute the refinement, coarsening and error estimation tasks. In addition to implementing
these tasks and their relative kernels, the task_time_advance_solution has been modified to han-
dle not only computational boundaries, but also the interfaces between coarse and refined levels.
The way internal ranges are computed has been updated and also the boundary implementation
of the time_advance_solution has been updated.

Additional implementations have been added for approximating the Laplacian at the in-
terfaces. This approach of adding additional implementation is lacking of generality, prone to
errors and very hard to maintain as discussed in the next section.

In the last step, implicit time stepping strategies are implemented in the component for
uniform grids. Two additional tasks have been so implemented for the Backward–Euler and
the Crank–Nicolson schemes respectively: task_time_advance_solution_backward_euler and task_
time_advance_solution_crank_nicholson. For the sake of simplicity, initially only periodic do-
mains have been supported. This feature is supported directly by the UCF, therefore only the
kernels for interior grid elements have been implemented. The scheduler which scheduled the
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task_time_advance_solution has been modified to switch between the tasks depending on the
user input.

As soon the implementation of boundary conditions has started, the limitations of the ap-
proach chosen for the Heat component became evident. For this reason, the changed approach
with the implementation described in the next chapter, before the boundary conditions imple-
mentation was completed here, therefore this step has not been validated extensively and no
results are reported here.

4.3.2 Limits

From the implementation section the lack of generality of the current approach is evident. The
boundary kernel for updating the solution has many nested switches to take into account all
the possible combinations of boundary conditions and patch disposition across levels. This
makes the boundary kernels too complicated too maintain and extremely prone to errors. The
amount of code duplication make their source very hard to maintain as well. For more complex
applications, each time advance kernel will require the same ramifications of cases and switches
and these must be replicated for any different phase field application that could be implemented
in the future.

A second limit of the current approach is the patch partitioning into internal and boundary
regions performed by time advance tasks. These partitioning is performed at every time step
even if the resulting sub regions are the same since they depend exclusively on which boundary
conditions the user has specified in the problem specification file, on the problem dimension,
on the variable basis, and on the given stencil width.

The current approach is not generic and does not fit into the general framework of the
UCF and prevents the application developer from implementing additional applications without
focusing on lower level implementations.



Chapter 5

PhaseField Component
General Framework

The development of a phase–field solver within Uintah until this stage resulted in two dis-
tinct components: the initial PhaseField and the Heat components. The first one implements
a finite–difference solver with explicit forward Euler time stepping for the anisotropic pure
metal problem (2.5) which is an actual phase-field problem; the latter, a more complete finite–
difference solver for the Heat equation (2.25) which, despite not being a phase-field problem,
has been used for testing new implementations.

The goal of this next development step is to merge the Heat component into the Phase-
Field one before their implementations diverge further. This is achieved by building a general
framework which will also increase the maintainability of the code: in this way improvements
made to one application will automatically apply to the others. A detailed discussion of which
features are to be implemented into this framework is presented in §5.1.

In order to focus exclusively on building such a general finite–difference framework for
multiple applications, of mainly phase-field models, neither boundary conditions nor implicit
time stepping are to be implemented at this stage. Nevertheless, the previous implementation
within the Heat component of these features, even if temporarily set aside, will influence the
development of this general framework as described in §5.2.

No boundary condition implementation will be available within the component after this
step. As a consequence, problem (2.25) is not a feasible candidate to validate the reliability of
the PhaseField component. For this purpose the four phase–field models introduced in §2.1.3
have been implemented as new applications within the PhaseField component, and their results
have been compared in [20] with those from different implementations by various researchers.
In §5.3 details of this validation step are provided.

68
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5.1 Analysis

The aforementioned developments in §4.2 and §4.3 resulted in two new and distinct components
available within the UCF: PhaseField and Heat.

After the previous stage, the PhaseField component featured adaptive mesh refinement but
no boundary–conditions enforcement: the restrictive assumption that everything happens far
from the boundaries (physical and artificial) was made, but several features in its implementa-
tion are desirable to keep in the implementation of the general frameworks. These include:

– Grid types and functions templatization on the type of variable basis (cell–centered, CC,
or node–centered, NC), which allows the application developer to implement only one class
template rather than two distinct classes for using both spatial discretization techniques
for the same application.

– Introduction of View and ConstView alias templates whose declarations are dependent on
the data interfaces chosen at compile-time (none, Kokkos, CUDA, etc.). These take the
responsibility of handling the different cases away from application developers by offering
them a more abstract adaptor. This approach is in line with the Uintah philosophy to
isolate application developers from the underlying programming model (e.g.portable loop
statements: see [40]).

– Definition of finite–difference approximations as function templates with the variable base,
the stencil width and the problem dimension as non-type template parameters. The
application developer can use the same one class template to implement the same one
application using different stencils for different problem dimensions.

– Mesh adaptivity implementation as an extension of the single grid application through
class inheritance. In this way the two implementations are distinct, with two classes
making it easier to distinguish between their two different work-flows and, at the same
time, avoiding the need to duplicate common implementations.

The Heat component, on the other hand, consisted of many different applications: one for
each type of variable basis and dimension. This was beneficial during the implementation of
boundary condition enforcement and implicit time stepping, but resulted in multiple copies of
the same code. Such an approach is not feasible as it affects the maintainability of the code
when new features or bug fixes are added since they would need to be replicated for each one
of the applications.

5.2 Implementation

As illustrated in §2.2, the design of a new component within the Uintah Computation Frame-
work articulates in the implementation of three different kinds of methods. These are:
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Schedulings – they are responsible for creating Tasks, defining which variables need to be
retrieved from which data-warehouse as well as the kind and thickness of the ghost layer
requested for each of them. Schedulings also define which variables are to be modified or
created in the new data-warehouse. They also need to add these Tasks to the scheduler
and specify how to parallelize their execution.

Tasks – their purpose is to retrieve input data from the data-warehouses and allocate data
for output in the new data-warehouse, as well as performing all computations required to
perform a simulation step. If their implementation involves iterations over grid elements
they should use the adaptor loop parallel_for, which is an interface to the implementation
of a concurrent loop. In order to do so, retrieved data and allocated variables need to be
wrapped by the appropriate view and functors need to be defined for the computations
to be made at each grid element.

Kernels – they implement the computation at the grid–element level. Functors for concurrent
loops are instantiated as closures by means of lambda expressions.

The different schedulings are declared as virtual methods within the ApplicationCommon inter-
face, one for each simulation step that form the work-flow of the chosen SimulationController.
Their number and signature is predefined while the tasks they are adding to the scheduler are
strongly dependent on the particular application. As such, no further generalization is needed
for these methods. Moreover, these methods are invoked only when the TaskGraph needs to
be compiled (initially and, for AMR simulations, after a regrid has occurred, unless otherwise
specified); therefore their optimization will not be particularly beneficial.

Conversely tasks may benefit from a higher level of abstraction. The work-flow of a Task
operating over a set of patches is often the same on each patch:

1. retrieve input data,
2. allocate output data,
3. select appropriate data wrapper,
4. iterate kernels over grid entries,
5. save reduced variables.

For the implementation of boundary conditions and mesh adaptivity for the Heat compo-
nent using the forward Euler method it was necessary, first, to define two different kernels
for updating the solution on the interior and at the boundary and, second, to re-implement a
different task for updating the solution on refined regions. To switch between which kernel to
update the inner solution (non–checking for out of range indices) and the boundary one, a task
needed to: (a) partition the patch into an inner region and faces, (b) loop the inner kernel over
the inner region, (c) for each face retrieve which boundary condition applies, and (d) iterate
the boundary kernel over each face.
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In addition the task on a refined region has to retrieve data from the coarser regions at
all fine–coarse interfaces and, before iterating over a face at an artificial boundary, it also has
to perform an appropriate interpolation of the data from the coarser level prior to invoking
the refinement kernel. In this setup, boundary and refinement kernels are switching between
different implementations for each possible boundary condition (faces) and combinations of
boundary conditions (edges and vertices), which led to multiple nested checks and increasing
code duplication with the implementation of three–dimensional problems and new boundary
conditions.

Beside maintainability, also performance is an issue for this approach. In fact steps (a) and
(c) are performed at each time step despite being required only on geometry changes. Even
worse is the fact that checks and switches to select the correct implementation within boundary
and refinement kernels are made at each time step and each boundary grid element, when also
they could just be performed only when the geometry is updated.

Our approach to overcome these problems is to create a container for each patch for storing
its partition into interior/faces/edges/vertices and to provide views to the data, offering a
common interface to the various implementations. The first step towards this abstraction was
to focus on the implementation of the interfaces and to temporarily set aside the implementation
of patch sub-partitioning.

5.2.1 View Interfaces

Two different template interfaces have then implemented for the application developer:

View – which wraps the grid variable classes for accessing grid data from a data-warehouse;

FDView – which extends the View interface with pure virtual methods, allowing the abstract
invocation of the various finite-difference approximations of differential operators.

Both view interfaces are templated on the type of field behind the grid data: ScalarField<
T> for uni–dimensional physical fields of type T or VectorField<T,N> for N-dimensional vector
fields. In addition to the field type, FDView is also templated on the type of stencil used for the
finite–difference approximations.

All classes implementing the scalar view interface must provide the following:

– two versions of the set method for making the view range over either a patch (the first),
or over a region (the second), where a region is any proper or improper rectangular subset
of a patch;

– the clone method for allowing instantiation of a new copy of the implementation from the
interface;

– a get_support method to retrieve the region over which the view is defined;
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– an is_defined_at method to check if the view has access to the field value at a given
location in the grid; and

– both a const and a non-const operator[] for accessing or modifying the value of the field
at a given grid element.

It was considered appropriate to isolate the declarations of the complex differential oper-
ators – gradient and laplacian, from the implementation of the other simple finite–difference
methods which they are dependent upon. An intermediate interface class, detail::basic_fd_
view<ScalarField<T>>, has been introduced to provide the methods:

– dx, dy, dz to evaluate finite–difference approximations of the first order derivatives of the
field at grid elements;

– dxx, dyy, dzz to approximate the second order derivatives of the field.

These interfaces are then inherited by the FDView interface so that its implementation must
provide the definition of the following methods:

– gradient to get the approximate vector of the derivatives;

– laplacian to evaluate the discrete nabla operator.

Vector views are then defined to use the use scalar views for each of their component. This
is achieved introducing the detail::view_array class template and using the curiously recurring
template pattern (CRTP) [24]. A detailed descrption of this and the previous implementations
together with the UML class diagram of the view interface are available in the manual that is
provided with the source code on the researcher’s GitHub [18].

5.2.2 Data-Warehouse View Implementations

The implementation of the View interface to be used on inner non–boundary grid elements is
called DWView since only the data from the data-warehouse are required to perform all operations
needed by the interface.

It has two non-type template parameters in addition to View: the variable type representation
(VAR), and the problem dimension (DIM).

Since views are designed to be able to compute themselves what data to retrieve from the
data-warehouse, they store references to the variable label and the material which are the
indexes to look up the data data in the data-warehouse.

When DWViews are initialized, they can either automatically retrieve the data associated to
their patch or this stage can be delayed abd the set method must be explicitly used for setting
a view either on a whole patch or a subset rectangular region of that patch.

The actual grid region retrieved from the data-warehouse is computed according to the
variable type VAR, the problem dimension and the number of ghost elements GN.
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(a) P3: 3–point 1D (b) P5: 5–point 2D (c) P7: 7–point 3D

Figure 5.1: Stencil types available in the StnType enumeration.

For scalar DWViews, the get_support and is_defined_at methods are also provided to check
which grid region of the domain the view has access to and if an index belongs to it. The former
return an object of type Support which is generally a list of rectangular Regions, but in this case
it consists of just one region whose first and past-the-end indices are obtained, calling the inner
m_variable getLowIndex and getHighIndex methods.

The data-warehouse FDView implementation is named DWFDView. Its scalar specialization
is derived upon the detail::dw_fd class template which provides the implementations of the
methods:

1 template <DirType DIR> inline T d ( const IntVector & id ) const;
2 template <DirType DIR> inline T d2 ( const IntVector & id ) const;

for computing the approximations of the first and second order derivatives.
This is the lower level of implementation of the differential operators since these direction

independent definitions are the at base of any other differential operator that may be defined
for a given stencil.

At the next level in the view data-warehouse hierarchy there is the detail::dw_basic_fd_
view template class with the field, stencil and variable types as parameters. It inherits the dw_
fd class and defines the direction–specific differential operators required by the _basic_fd_view
intermediate interface.

One more step up the view ladder is the detail::dw_fd_view, which implements the complex
differential operators gradient and laplacian by calling the simple operations interfaces made
available by the detail::basic_fd_view interface.

These implementations correspond to the three– (P3), five– (P5), and seven–point (P7) stencils
respectively in one, two and three dimensions as shown in Figure 5.1 (in parenthesis are the
names used to identify each stencil in the StnType enumeration of available stencils).

It is also possible to implement additional stencils by adding a new element to the StnType
enumeration and implementing accordingly just the dw_fd class or also the gradient and lapla-
cian methods of the corresponding detail::dw_fd_view class specialization.

In the PhaseField component implementation, each view implements the clone method for
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creating new view instances of the same class implementation from the abstract view interface
without explicitly knowing its type. This will be particularly beneficial when more implemen-
tations of the view interfaces will be available for handling boundary conditions and multi–grid
interfaces. For example, an AMR application may need to have access to the same refined re-
gion both, from that refined level, for updating the solution and, from coarser one, for enforcing
the continuity of the solution between that level and the refined one; in this case it may be
useful to have an additional view for accessing the data over that same refined region from the
other level in addition to the one already instatiated to be used on the same refinement level.
Being able to use the existing instance as a prototype, in this case, makes it possible to skip the
need to implement again all the logic needed to choose the appropriate view implementation,
which could be an expensive task if all possible topological and geometrical configurations of
the specific region have to be taken into account. The clone methods take a flag, deep, as an
input parameter to control if the inner variable has to be reinstantiate as well or if is enough
to simply point to the one owned by the prototype.

In addition to the standard constructors and to the prototype creational pattern, it may
be desirable to implement the Factory Method Pattern as well. This is a creational pattern
designed for dealing with the problem of creating object instances without having to specify
explicitly the exact class type. This paradigm is particularly useful when the choice of which
implementation to instantiate is determined at run time, for example, from parsing an input
file: in this case, in fact, a string can be constructed from the specifications given in the input
file to uniquely identify a specific implementation.

An indirect positive consequence of this paradigm is beneficial when the factory implemen-
tation classes are templates, since their factory name has to be explicitly defined once and only
once for each combination of template parameters that are used by any application, even if the
factory pattern is not used for creating them. However, the definition of the factory name cases
the explicit instantiation of any instance of the class template specialization it refers to.

This ensures that only one instance for each class template specialization is compiled, re-
ducing the overall compilation time and the final size of the compiled binary files.

The inheritance diagram of the data-warehouse view implementations and a more detailed
descption of the aforementioned implementation is available in [18].

5.2.3 Application Implementation

The template interface Application has been implemented to be used as the base class for all
application implementations within the PhaseField component. It is templated on the variable
representation type used for the model variables (VAR), the problem dimension (DIM) and the
finite–difference stencil (STN) to be used for the spacial discretization. It publicly inherits the
default ApplicationCommon interface used as base class by all other Uintah components as well
as the DWInterface<VAR,DIM> utility class which provides static methods for browsing the grid
and accessing the data-warehouse in a unified fashion (see [18] for an UML class diagram and
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a more in depth description of its implementation). To retrieve the coordinates relative to a
given grid index, two get_position methods are provided: the first version uses a Patch object
to identify which refinement level the grid index corresponds to, the second one uses directly a
Level object for that purpose. The inverse of the get_position method is the find_point method.
This checks if a given set of coordinates belongs to a patch and, if true, saves the corresponding
index to the IntVector reference specified as input parameter and returns true, otherwise it
returns false. The methods get_low, get_high and get_range are then provided to retrieve the
first, past-the-end and range of indices of the grid elements belonging to a given patch. All
these methods are redirecting to template interfaces within the detail namespace: detail::
dw_interface0<VAR> and detail::dw_interface1<VAR,DIM>. Their template class specializations
provide general named wrapper methods to implementation–specific methods within original
Uintah classes; as an example the get_low definition is given below:

1 static inline IntVector
2 get_low ( const Patch * p )
3 {
4 return p->getCellLowIndex();
5 }

The original PhaseField component implementing the anisotropic pure metal problem now
becomes the PureMetal application and the various implementations of the heat component
merge together into the one Heat application. At this stage, for the sake of simplicity, these
applications temporarily drop the support to boundary conditions and the implicit solver. Such
features will then be reintroduced and improved later in the development.

Thanks to the new interfaces, it is now possible to implement more easily the solvers for the
benchmark problems (§2.1.3) as new applications within the PhaseField component. It is the
solutions to these problems that have been used to assess the reliability of the developments
introduced at this stage since they do not require the implementation of any boundary conditions
(since periodic geometries are handled natively within Uintah).

An example of the improvements for the application developer is the implementation of
the task_forward_euler_time_advance. This is the code used to loop over each patch in the
given PatchSubset, to retrieve the old variable from the old data-warehouse, to allocate the
same variable in the new data-warehouse for the updated solution, and to actually compute
that solution depended on whether cell–centered or vertex–based variables were used, on the
number of ghost elements required by the chosen stencil, and on the problem dimension. This
is all evident in the snippet below, taken from the cell–centered, 2D implementation of the old
heat component.

1 constCCVariable<double> u_old;
2 dw_old->get(u_old, u_label, 0, patch, Ghost::AroundCells, 1);
3

4 CCVariable<double> u_new;
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5 dw_new->allocateAndPut(u_new, u_label, 0, patch);
6

7 BlockRange range {
8 patch->getCellLowIndex() + IntVector (
9 patch->getBCType ( Patch::xminus ) == Patch::Neighbor ? 0 : 1,

10 patch->getBCType ( Patch::yminus ) == Patch::Neighbor ? 0 : 1,
11 0 ),
12 patch->getCellHighIndex() - IntVector (
13 patch->getBCType ( Patch::xplus ) == Patch::Neighbor ? 0 : 1,
14 patch->getBCType ( Patch::yplus ) == Patch::Neighbor ? 0 : 1,
15 0 )
16 };
17

18 parallel_for ( range, [patch, &u_old, &u_new, this] ( int i, int j, int k )->void {
forward_euler_time_advance ( i, j, k, patch, get_view ( u_old ), get_view ( u_new ) ); } );

The same task is now simplified as below:

1 DWFDView<ScalarField<const double>,STN,VAR> u_old_view(dw_old, u_label, material, patch);
2 DWView<ScalarField<double>,VAR,DIM> u_new (dw_new, u_label, material, patch);
3 BlockRange range ( this->get_range ( patch ) );
4 parallel_for ( range, [patch, &u_old, &u_new, this] ( int i, int j, int k )->void {

time_advance_solution_forward_euler ( {i, j, k}, u_old, u_new ); } );

This same code can be used for all variable types, discretization stencils, and problem dimen-
sions. The grid variable type and the ghost layer specification don’t have to be explicitly coded
and the appropriate choice is made by the compiler when resolving the templates according to
the parameters specified.

The .ups input file is an xml file whose root node is named Uintah_specification. To specify
that the PhaseField component has to be used it is necessary to set the type attribute of
the SimulationComponent first level child to the string 'phasefield' and to select a particular
application the type attribute of the PhaseField child of the root node is used. Possible values
are 'pure_metal', 'heat', 'benchmark01', 'benchmark02', 'benchmark03, and 'benchmark04'.

in the following an overall description of all PhaseField application implementations is pro-
vided. For a more in-depth description and the UML class diagram for phase field applications
see [18].

5.2.4 PureMetal Implementation

Almost the same tasks used in §4.2 for the initial PhaseField component have been implemented
here for the PureMetal application. The previous task_initialize method has been now split
into two different tasks: one, task_initialize_solution, initializes the solution variables psi and
u to the initial conditions (2.10) and the anisotropy functions a, a2 and b to zero; the other, task_
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initialize_grad_psi, computes the grad_psi variable from the just initialized phase field one.
The task_time_advance_current_solution task has been renamed to task_time_advance_solution.
The other tasks that were already implemented for the initial PhaseField component (task_
compute_stable_timestep, task_time_advance_grad_psi, and task_time_advance_anisotropy_terms)
are performing the same work as before.

For each of the tasks a scheduling method (scheduler) has been defined to specify which
variables it requires from the previous and current timesteps

The main difference between this implementation and the previous is that the task for
computing the gradient of the phase field is now performed at the end of each time step and
not at the beginning of them. This will allow, when AMR is introduced, for use of the value of
grad_psi from the previous timestep to estimate the error and decide which regions to refine or
coarsen, avoiding the need to compute the phase field derivatives twice.

As a consequence, it is now necessary to initialize the grad_psi variable; it is for this reason
that the task_initialize_grad_psi has been introduced. However it uses the same kernel as
the task_time_advance_grad_psi, since the only difference between them is from which data-
warehouse the phase field variable is retrieved.

Since support to boundary conditions has been dropped, just one version of the kernel for
internal grid entries has been kept from the previous PhaseField component. Finite difference
implementations are now available as methods of the FDView interface and they are not defined
anymore as methods of the component itself; the application developer no longer needs to
modify the component/application implementation to change the finite difference stencil being
used.

5.2.5 Heat Implementation

During the merge of the multiple implementations of the old Heat component into the Phase-
Field component as a single application, some modifications were introduced in order to be able
to use this application, not only as a testing ground for implementing new features, but also as
a tool to assess their reliability quantitatively.

Instead of the hyperbolic tangent phase–field like initial condition, the following has been
implemented in the initialize_solution kernel:

u(x, 0) =
d−1∏
i=0

cos πxi2L , ∀x ∈ Ω ⊂ Rd ,(5.1)

where L ∈ R+ is a positive constant that represent the minimal distance from each coordinate
axes at which the initial condition is null and d = 1, 2, 3 is the problem dimension.

When the domain is Ω = [−L,L]d and homogeneous Dirichlet boundary conditions are
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chosen the solution is known explicitly:

u(x, t) = exp(−da2t)
d−1∏
i=0

cos(axi), ∀x ∈ Ω, t > 0 ,(5.2)

where a := π
2L is the angular frequency of each cosinusoidal component of the solution. The

same solution is obtained if the domain is restricted to the first octant (Ω = [0, L]d) and
homogeneous Neumann conditions are imposed at xi = 0 while keeping homogeneous Dirichlet
conditions at xi = L (i = 0, . . . , d− 1).

The task task_time_advance_solution_error has then been introduced to provide measures
of the difference, εN , between the analytical and the computed solution at a given timestep
tN = kN with N = 1, 2, . . . , where k > 0 is the temporal discretization step.

The square of the L2-norm of the solution u at a fixed time is computed by observing that
variables in (5.2) are separated:

‖u(·, t)‖20 := ‖u(·, t)‖2L2(Ω) :=
∫

Ω
[u(x, t)]2 dx = exp(−2da2t)

∫
[−L,L]d

d−1∏
i=0

cos2(axi) dx

= exp(−2da2t)
d−1∏
i=0

∫ L

−L
cos2(aξ) dξ

= exp(−2da2t)
[
L+ sin(2aL)

2a

]d
, t ≥ 0 ,

which gives the following expression:

‖u(·, t)‖20 =
[
L exp(−2a2t)

]d , t ≥ 0 .(5.3)

For each timestep tN = kN , let the spatial discretization, T N , at tN be defined as the set
of grid cells which have no coarser cells below them. T N is a partition of the computational
domain Ω (see Figure 5.2). Each grid cell is rectangular and can be expressed as the Cartesian
product of real compacts INji = [xNji0, xNji1], for i = 0, . . . , d − 1. Chosen an ordering over T N ,
all cells can be denoted as ΩNj , with j = 0, . . . ,MN

c − 1 where MN is the cardinality of the
spatial discretization.

With Tmax, is denoted instead the uniform grid corresponding to the maximum level of
refinement, which does not depend on the given timestep. It can be observed that any fine cell
ω ∈ Tmax is a subset of only a given grid cell ΩN ∈ T N and that any grid cell can be expressed
as the union of fine cells.

When using a cell-centered approximation, we can denote with uN := (uNj )M
N
c −1

j=0 ∈ RMN
c

the vector of the computed solution at the N -th timestep over T N .
The following expression is used to define a local L2-discrete norm of a discrete vector
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(a) Grid with 3 refinement levels. (b) Corresponding partition T N .

Figure 5.2: Example of how to compute the partition T N (b) from an adaptive
grid (a). In grey the cells which have been refined and lay below a finer cells; T N

is then the set of all cells which have not been greyed.

v ∈ RMN
c over the cell ΩNj :

‖v‖20c,ΩN
j

:=
∑

ω∈Tmax
ω⊂ΩNj

|ω|(πωv)2, j = 0, . . . ,MN
c − 1, N = 0, 1, . . . .

where πω is a given interpolation operator to approximate over ω the discrete field over T N

represented by v.
A global L2-discrete norm can is then defined as the sum over T N of the local discrete

norms:

‖v‖20c,T N :=
MN
c −1∑
j=0

‖u‖20c,ΩN
j

, N = 0, 1, . . . .

For simulations with just one level of refinement, T N coincides with Tmax and ΩNj is the only
fine cell contained in itself, therefore the operator πΩN

j
is chosen to return the j-th component

of v and the previous expressions simply to

‖v‖20c,ΩN
j

:= |ΩNj |v2
j ‖v‖20c,T N :=

MN
c −1∑
j=0

|ΩNj |v2
j , N = 0, 1, . . . .(5.4)

When using a vertex-based approximation, there may be more vertices than cells. Let V N
j
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be the set of vertices of the grid cell ΩNj (j = 0, . . . ,MN
c − 1). We define V N =

⋃MN
c −1

j=0 V N
j

to be the set of all vertices in the grid and MN
v to be its cardinality. With this representation,

the computed solution at the N -th timestep over T N can be represented as a vector uN :=
(uNj )M

N
v −1

j=0 ∈ RMN
v .

With Vmax, is now denoted the set of all vertices of the uniform grid corresponding to the
maximum level of refinement. The expression used to define a local L2-discrete norm of a
discrete vector v ∈ RMN

c over the cell ΩNj is defined as:

‖v‖20v,ΩN
j

:=
∑

x∈Vmax
x∈ΩNj

A

wNj (x)
(πxv)2, j = 0, . . . ,MN

c − 1, N = 0, 1, . . . .

where πx is a given interpolation operator to approximate at x the discrete field over T N

represented by v, A is the measure of any finest cell, and wNj (x) is a weight that takes into
account the position of x in ΩNj =

∏d−1
i=0 . If we denote with

codimΩj (x) :=
∣∣{(i, s) : xi = xNjis, i = 0, . . . , d− 1, s = 0, 1

}∣∣
the number of faces of the cell ΩNj which the vertex x = (xi)d−1

i=0 belong to, the weight wNj (x)
is defined to be

wNj (x) := 2
codimΩN

j
(x)

.

A global L2-discrete norm can is then defined as the sum over T N of the local discrete
norms:

‖v‖20v,T N :=
MN
c −1∑
j=0

‖u‖20v,ΩN
j

, N = 0, 1, . . . .

For non boundary vertex, x 6∈ ∂Ω, wNj (x) is the number of grid cells sharing the vertex x;
therefore, for simulations with just one level of refinement, it is possible to rewrite the previous
expressions for the global L2-discrete norm as

‖v‖20v,T N :=
MN
v −1∑
j=0

A

wj
v2
j , N = 0, 1, . . . ,(5.5)

having observed that V N
j ≡ Vmax and that, for each xj ∈ Vmax, the interpolator πxj can chosen

to be defined by πxj (v) = vj . The weight wj =
∑
ω∈Tmax
xj∈ω

wNj (xj) can be interpreted as a factor
taking into account the position of the vertex xj with respect to the computational domain. For
each vertex holds wj = 2codim(xj), where codim(xj) is the number of non-periodic boundary
faces which the vertex belongs to, which coincides with the number of boundary conditions
imposed on that vertex.
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A measure of the global approximation error at timestep tN is then the L2-discrete norm of
the residual vector, εN , at tN ,

εNj := uNj − u(xj , tN ), j = 0, 1, . . . ,MN , N = 0, 1, . . . ,

where uN is the vector representing of the computed solution (either cell-centered or vector-
based) at the timestep tN . Hereafter, for uniformity of notations and where not ambiguous,
the subscripts c and v will be omitted.

This measure of the approximation error, however, is not suitable for comparing results from
different AMR strategies or maximum refinement levels. Moreover, since the grid T N changes
over time and so the error definition itself, this choice will make not trivial understanding the
evolution of the error with time. This issue can be resolved by choosing a uniform reference
grid T̃ whose set of vertices Ṽ is a superset of Vmax for each simulation we want to be able
to compare and using the L2-discrete norm over T̃ as a measure of the global approximation
error. In order to use this norm, it is necessary to evaluate the difference between the computed
and the analytical solutions over the reference grid elements and an interpolation operator, π̃,
has to be chosen so that it is possible to define the residual ε̃N ∈ RM̃

ε̃Ñ := π̃uN (ξ̃̃)− u(ξ̃̃, tN ), ̃ = 0, 1, . . . , M̃ , N = 0, 1, . . . ,(5.6)

where an ordering over G̃ (G̃ = T̃ or G̃ = Ṽ , depending on the variable basis) is given, M̃ is
its cardinality, and ξ̃̃ is the coordinate of the ̃-th grid element, η̃̃. For cell-centered variables
η̃j = ω̃j and ξ̃̃ is its centroid; otherwise, ξ̃̃ = x̃̃ and η̃̃ = {x̃̃}.

The (global) L2-error (referred to the spatial discretization T̃ ) at timestep tN is so defined
to be

errN
0,T̃

:= ‖ε̃N‖0,T̃ , N = 0, 1, . . . ,(5.7)

which, since T N is uniform, can be written as

(
errN

0,T̃

)2 =
M̃−1∑
̃=0

α̃ ε̃
2
̃ , N = 0, 1, . . . ,

which is a general form of both (5.4) and (5.5), where setting α̃ ≡ Ã (with Ã the measure of
a cell in T̃ ), gives the first and α̃ := Ã/w̃ the latter equation.

By grouping the terms in the previous summation conveniently it is possible to express the
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global L2-error as the sum of local terms over each cell in T N

(
errN

0,T̃

)2 =
∑

ΩN
j
∈T N

[ ∑
η̃̃∈T̃

η̃̃⊂ΩNj

α̃ε̃
2
̃

]
=
MN
c −1∑
j=0

|ΩNj |
(

errN0,j
)2, N = 0, 1, . . . ,(5.8)

with errN0,j := |ΩNj |−1[∑
̃ α̃ε̃

2
̃

] 1
2 .

The vector of these terms, errN0 := (errN0,j)
MN
c −1

j=0 , will be referred to as the vector of the local
L2-errors at tN , which is a cell-centered vector independently on the variable basis of uN .

The task_time_advance_solution_error is saving εN to the variable epsilon_u and the local
error, errN0 , to error_u. It is also using the reduction variables error_norm2_L2 and u_norm2_L2 to
store the square of the global L2-error at each timestep and the square of the global L2-discrete
norm for being compared with (5.3).

When the preprocessor variable PhaseField_Heat_DBG_DERIVATIVES is defined, also the tasks
task_time_advance_dbg_derivatives and task_time_advance_dbg_derivatives are compiled and
scheduled to be executed during a simulation.

The H1
0 - and H2

0 -norms1 of the solution at t > 0 are computed, analogously to the L2 one:

‖u(·, t)‖21 := ‖u(·, t)‖2H1
0 (Ω) := ‖∇u(·, t)‖2[L2(Ω)]d dx(5.9)

=
∫

Ω
|∇u(x, t)|2 =

∫
Ω

d−1∑
i=0
|∂iu(x, t)|2 dx

= a2 exp(−2da2t)
d−1∑
i=0

{(∫ L

−L
sin2(axi) dxi

)( d−1∏
j=0
j 6=i

∫ L

−L
cos2(axj) dxj

)}

= a2 exp(−2da2t)
d−1∑
i=0

{
L

d−1∏
j=0
j 6=i

L

}
= da2[L exp(−2a2t)]d

= da2‖u(·, t)‖20

‖u(·, t)‖22 := ‖u(·, t)‖2H2
0 (Ω) := ‖∆u(·, t)‖20(5.10)

=
∫

Ω
|∆u(x, t)|2 dx =

∫
Ω

∣∣∣∑
i

∂2
i u(x, t)

∣∣∣2 dx

= d2a4
∫

Ω
|u(x, t)|2 dx = d2a4‖u(·, t)‖20, t ≥ 0 ,

1Note that it is legitimate to embed the solution at each time, u(·, t), in the functional subspaces H1
0 (Ω) and

H2
0 (Ω) only when Dirichlet conditions are imposed on at least a portion the domain boundary ∂Ω, otherwise

only the general Sobolev spaces H1(Ω) and H2(Ω) can be used. In the latter case the Poincaré inequality does
not hold and ‖ · ‖1 and ‖ · ‖2 as defined here are seminorms rather than norm.
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Let D1
iu
N
j and D2

ii′u
N
j denote a finite–difference approximation of the first and second order

spatial derivatives along the i-th (and i′-th) coordinate direction(s) of the numerical solution
uN referred to the j-th grid element at the N -th timestep.
The notations D1uN := (D1uNj )M

N−1
j=0 and D2 uN := (D2uNj )M

N−1
j=0 , where

D1uNj :=
∣∣(D1

iu
N
j )d−1

i=0
∣∣ =

[ d−1∑
i=0

(
D1
iu
N
j

)2] 1
2

D2uNj :=
d−1∑
i=0

D2
iiu

N
j ,

j = 0, . . . ,MN , N = 0, 1, . . . ,

are introduced for the MN–dimensional euclidean norm of the discrete-gradient and discrete-
laplacian of v over GN (GN = T N or GN = V N , depending on the variable basis of v).
With D1

iu
N := (D1

iu
N
j )M

N−1
j=0 and D2

iu
N := (D2

iiu
N
j )M

N−1
j=0 , instead, we denote the MN–

dimensional vectors representing the discrete approximations of the first and second order
derivatives of the computed solution at tN over the grid T N .

In analogy to the continuous case, it is possible to define the local and global Hp
0 -discrete

norms (p = 1, 2) for a discrete vector v ∈ RMN as:

‖v‖2p,ΩN
j

:= ‖Dpv‖20,ΩN
k

, ‖v‖2p,T N :=
MN−1∑
j=0

‖v‖2p,ΩN
j

,

j = 0, . . . ,M − 1, N = 0, 1, . . . .

Using the p–residual matrices, εN,p ∈ RMN×d, over the computational grid T N at tN ,

(
εN.p

)
j,i

:= Dp
iu
N
j − ∂

p
i u(ξj , tN ), j = 0, 1, . . . ,MN , N = 0, 1, . . . ,

to evaluate the approximation error of the solution derivatives would, as for the approximation
of the solution itself, make it difficult to both evaluate its evolution over time and to compare
different simulations.

A measure of the error in the approximation of the first and second order derivatives of the
solution is then computed from the derivatives p–residuals, ε̃N,pi over the same reference grid
T̃ introduced for (5.6):

ε̃N,pi,̃ := π̃Dp
iu

N (ξ̃̃)− ∂pi u(ξ̃̃, tN ),

i = 0, . . . , d− 1, ̃ = 0, . . . , M̃ , N = 0, 1, . . .

The (local) p–errors, errNp ∈ RM
N
c ×d, (referred to the spatial discretization T̃ at timestep

tN are then defined, as in (5.8), as matrices for which the L2–discrete norm (referred to the
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computational grid T N ) of the i-th column is equal to the L2–discrete norm (referred to the
reference grid T̃ ) of the corresponding p–residual (p = 1, 2)

|ΩNj |
(

errNp
)2
j,i

:=
∑
η̃̃∈T̃

η̃̃⊂ΩNj

α̃
(
ε̃N,pi,̃

)2,

i = 0, . . . , d− 1, j = 0, . . . ,MN
c , N = 0, 1, . . .

In analogy to the vectors Dp uN introduced to define the Hp
0 –discrete norms, the vectors

ε̃N,p are introduced

ε̃N,1̃ :=
∣∣(εN,1i,̃ )d−1

i=0
∣∣ =

[ d−1∑
i=0

(
εN,1i,̃

)2] 1
2

ε̃N,2̃ :=
d−1∑
i=0

εN,2i,̃ ,

̃ = 0, . . . , M̃ , N = 0, 1, . . . ,

so that the (global) Hp
0 –errors (referred to the spatial discretization T̃ at timestep tN can be

defined as

errN
p,T̃

:= ‖ε̃N,p‖0,T̃ , N = 0, 1, . . . .(5.11)

The task_time_advance_dbg_derivatives uses the solution computed at the previous timestep
to compute and save into the du and duu views, the finite–difference approximations of first and
second order spatial derivatives Dp

i u
N−1.

The task_time_advance_solution_dbg_derivatives_error is then saving the residuals εN,p and
local derivatives errors errNp , in the DataWarehouse. Reduction error are then used to store
the square of the global Hp

0 -error at each timestep and the square of the global Hp
0 -norm to be

compared with (5.9, 5.10).
Since it is meaningful to evaluate the numerical against the analytical solution (5.2) only for

particular geometries and boundary conditions, the scheduling of task_time_advance_solution_
error and task_time_advance_solution_dbg_derivatives_error is conditioned to the value of the
node test within the problem specification file.

All different implementation of tasks within the previous Heat component are now merged
together.
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5.2.6 Allen–Cahn Implementation
Benchmark01

A solver for problem (2.11, 2.12, 2.13) has been implemented as the Benchmark01 application
within the PhaseField component. For its discretization, spatial derivatives have been approxi-
mated with finite–differences (∆∆ denotes the operator approximating the laplacian) which leads
to the system

∂tu
N = ε2∆∆uN − (uN + 1) ◦ (uN − 1) ◦ uN , on T N , N = 1, 2, . . .

where 1 := (1, 1, . . . , 1)t ∈ RM , and ·◦· denotes the Hadamard product. When the Explicit Euler
scheme is used to approximate the temporal derivative we obtain the fully discrete problem:

uN+1 = uN+ k
[
ε2∆∆uN− (uN+ 1) ◦ (uN− 1) ◦ uN

]
, on T N, N = 1, 2, . . .(5.12)

Since the benchmark value is computed by interpolation of the solution of (5.12) at c = (π, π)t,
two tasks have been implemented for time advancing the simulation:

task_time_advance_solution which, for each given patch: (1) instantiates a DWFDView to the u
variable in the old data-warehouse retrieving the data required; (2) instantiates a DWView
allocating the memory required for storing the updated value of solution; and (3) iterates
over the grid entries in that patch using the parallel_for adaptor with the task_time_
advance_solution kernel.

task_time_advance_postprocess which computes two reduction variables using the solution com-
puted by the previous task: u0 and energy, which are the solution value at the center of
the domain, c, and the free energy of the system (2.14), the first of which is used for
benchmark computations.

Two more tasks are defined, one for computing the initial solution and the other to advance
the timestep. As usual, their list is given below together with their scheduling, kernel methods,
and dependencies.

The task_time_advance_solution is not much different from its analogue in the Heat applica-
tion: it loops on all given patches as specified by the scheduler and retrieves for each one of them
the data from the old data-warehouse, dw_old, through an instance of DWFDView over a constant
ScalarField. It then allocates memory for the updated solution in the new data-warehouse,
dw_new, using an instance of DWView of a non constant ScalarField. Finally, it iterates over the
grid elements within each patch using the parallel_for adaptor with the time_advance_solution
kernel functor.

On the other hand, in the task_time_advance_post-process definition, Uintah’s reduction
variables are used for the first time. During the problem setup, the variable type to be used for
the solution at (π, π)t, u0 and the free energy of the system energy has been set to sum_vartype
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when defining their labels

1 u0_label = VarLabel::create ( "u0", sum_vartype::getTypeDescription() );
2 energy_label = VarLabel::create ( "energy", sum_vartype::getTypeDescription() );

which is the type used for global variables whose value is depending only on time and whose
global value is computed as the sum of local patch values, one for each patch. These local
values, of type double, have to be computed within a task and then added to the global value
in the data-warehouse via the put method as shown in the code below. Here, the two reduction
variables are used differently: u0 is used to save a punctual value that may or may not belong
to a patch; energy is instead used for computing a spatial integral. The first is regarded as the
sum of the solution values at a specific point if that point corresponds to a grid element in the
patch, or zero otherwise; the latter is itself a sum over the patch grid elements which has to be
computed using the parallel_reduce_sum instead of the parallel_for adaptor.

Since the reduction operator is designed not to distinguish between patches that have been
further refined and those that have not, it is the application developer’s responsibility to avoid
adding the same term twice. For example if adaptivity was implemented and the region around
(π, π)t was refined, the current implementation would give the value of the solution at the center
as the actual solution times the number of refinement levels at that point.

The kernel implementations mirror the Allen–Cahn discretization (5.12) and approximate
the energy integral (2.14).

1 template<VarType VAR, StnType STN>
2 void Benchmark01<VAR, STN>::time_advance_solution (
3 const IntVector & id,
4 const FDView < ScalarField<const double>, STN > & u_old,
5 View< ScalarField<double> > & u_new
6 )
7 {
8 const double & u = u_old[id];
9 double lap = u_old.laplacian ( id );

10 double src = u * ( u * u - 1. );
11 double delta_u = delt * ( epsilon * epsilon * lap - src );
12 u_new[id] = u + delta_u;
13 }

1 template<VarType VAR, StnType STN>
2 void Benchmark01<VAR, STN>::time_advance_post-process_energy (
3 const IntVector & id,
4 const Patch * patch,
5 const FDView < ScalarField<const double>, STN > & u_new,
6 double & energy
7 )
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8 {
9 const double & u = u_new[id];

10 auto grad = u_new.gradient ( id );
11 double A = patch->getLevel()->dCell() [0] * patch->getLevel()->dCell() [1];
12 energy += A * ( epsilon * epsilon * ( grad[0] * grad[0] + grad[1] * grad[1] ) / 2.

+ ( u * u * u * u - 2 * u * u + 1. ) / 4. );
13 }

5.2.7 Cahn–Hilliard Implementations
Benchmark02, Benchmark03, and Benchmark04

Three different Cahn–Hilliard problems are implemented within the PhaseField component:
Benchmark02, a solver for the seven circles problem (2.15, 2.17, 2.18); Benchmark03, for the one
dimension problem (2.15, 2.19, 2.20); and Benchmark04, for the energy decay problem (2.15, 2.21,
2.22). In order to compute the approximation of the biharmonic operator ∆2, an auxiliary
variable, v = ∇u, is defined and the original problem is split into a system of two equations{

∂tu = ∆v
v = −ε2∆u+W ′(u)

When finite–differences are introduced for the spatial derivatives and Explicit Euler time step-
ping is introduced, the following discrete problem is obtained{

uN+1 = uN + k∆∆vN

vN = −ε2∆∆uN + (uN + 1) ◦ (uN + 1) ◦ uN

The task for advancing the solution is split as well in two distinct tasks: task_time_advance_
v and task_time_advance_u. The first is computing the current value of the v variable as the
discrete laplacian of the solution at the previous timestep, while the second is using both the
newly computed value of v and the old value of u to compute the new solution. Since the view
implementations are general with respect to the problem dimension, these tasks, as well as their
kernels, are defined identically in all applications, despite the Benchmark03 problem dimension
being different from the others.

The task for advancing the intermediate variable v listed above is similar to the one advanc-
ing the problem variable u whose code can be found hereafter. Their structures are similar:
there is an outer loop over the patches assigned to the current process by the scheduler, then
the views for accessing the variables required by the task are instantiated, than the kernels are
executed over the cells in the range of each patch using the parallel_for adaptor.

The main difference between the task implementations above is in the initialization of the
views required by the kernels. Using the correct view type is fundamental in controlling if a
view can modify or just read the values from the data warehouse and whether ghost nodes
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are required. On one hand, the kernel time_advance_v computes the value of v_new using the
laplacian of u_old, so u_old field is not modified but requires ghost nodes, while v_new needs to
write to the data warehouse but does not need ghost nodes. Therefore, the appropriate types
are DWFDView<const double>, for u_old, and DWView<double>, for v_new. The kernel time_advance_u
, on the other hand, uses the value of u_old and the laplacian of v_new to compute the value of
u_new, so the types used for the variables in task_time_advance_u are FDView<const double>, for
u_old, DWFDView<const double>, for v_new, and DWView<double>, for u_new.

The differences in the implementation of these benchmark applications are only in the initial
conditions and in the quantities used for benchmarking. In fact, the seven circles problem is
using as benchmark the solution values at two circles centers, the one dimensional one is using
the solution value at the domain midpoint, x = π, while the energy decay one is using the
system free energy only. All of the applications compute with task_time_advance_post-process
the energy variable (Benchmark03 implementation is different from the others), while, for storing
the solution values at the points used for benchmarking, Benchmark02 computes also u1 and u2
variables and Benchmark03 computes u0.

5.3 Validation2

The implementation of these benchmark applications was instrumental in joining a project
whose aim was to provide high accuracy benchmark solutions to Allen–Cahn and Cahn–Hilliard
problems in 1D and 2D; to highlight accuracy/efficiency issues of different implementations; and
to compare their performance. Several researchers, other than the author, worked on this project
together, each one with their own solvers: Zhenlin Guo (University of California, Irvine), Keith
Promislow (Michigan State University), Brian Wetton (University of British Columbia), Steven
Wise (University of Tennessee Knoxwille), Fengwei Yang (University of Sussex).

The approach here presented, based upon second order five point finite difference stencils for
spatial discretization and explicit time stepping, represents the simplest among those adopted.
Regular grids with spacing h = 2π/m have been used. The adopted Forward Euler (FE)
time discretization with fixed time step is first order accurate and conditionally stable; as a
consequence, for some of the benchmark problems reported in the following, the level of spatial
accuracy required resulted in a maximum stable time step that is too small to be able to perform
runs of sufficient simulation time with this method.

Benchmark transition time estimates are determined by linear interpolation between the
two computed values on either side of the transition event. The following MATLAB function
has been used

1 function T = computeT(fname)
2

3 dat = load(fname);

2Some parts of the work presented in this section have been published in [20].
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cell–centered vertex based
k m T pk ph m T pk ph

3 10−2 63 48.8126 64 48.7928
9 10−3 63 48.7867 64 48.7670
3 10−3 63 48.7793 1.00 64 48.7596 1.00
9 10−4 63 48.7767 1.00 64 48.7570 1.00
3 10−4 63 48.7760 1.00 64 48.7563 1.00
9 10−5 63 48.7757 1.00 64 48.7560 1.00
9 10−3 127 48.3194 128 48.3171
3 10−3 127 48.3122 128 48.3098
9 10−4 127 48.3096 1.00 128 48.3073 1.00
3 10−4 127 48.3089 1.00 128 48.3066 1.00
9 10−5 127 48.3086 1.00 128 48.3063 1.00
3 10−3 255 48.2011 2.05 256 48.2008 2.04
9 10−4 255 48.1985 2.05 256 48.1982 2.04
3 10−4 255 48.1978 1.00 2.05 256 48.1975 1.00 2.04
9 10−5 255 48.1976 1.00 2.05 256 48.1973 1.00 2.04
9 10−4 511 48.1712 2.01 512 48.1712 2.01
3 10−4 511 48.1705 2.01 512 48.1705 2.01
9 10−5 511 48.1702 1.00 2.01 512 48.1702 1.00 2.01

Table 5.1: Benchmark I. Computed approximations of the transition time T for
ε = 0.2.

4 t = dat(:,1);
5 u = dat(:,2);
6

7 i0=find(u(2:end).*u(1:end-1)<=0);
8 if (i0)
9 i1=i0+1;

10 T=t(i0) - (t(i1)-t(i0)) * u(i0)/(u(i1)-u(i0));
11 else
12 T=NaN;
13 end
14

15 end

Benchmark I — The number m of mesh cells used to spatially discretize the computational
domain in each dimension has been chosen to make the domain center coincide with a com-
putational point: either a cell center or a grid node, depending on the chosen representation
(i.e. cell–centered or vertex-based finite differences). For each choice of m, increasingly small
time steps have been considered and the corresponding benchmark time computed. From these
values it has also been possible to estimate the order of convergence in space and time of this
method. Results for ε = 0.2 are reported in Table 5.1.

The order of convergence in space ph and in time pk can be estimated using tree subsequent
estimates of T . In fact, if T1, T2 and T3 are three estimates computed using the same N and
decreasing timesteps, k1 > k2 > k3, it is possible to estimate pk without knowing the exact
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value of T solving the equation [81]

(5.13) T3 − T2

rp23 − 1 = rp12
T2 − T1

rp12 − 1 ,

with p = pk and rij = kj/ki.
This equation can be solved explicitly when the ratio between two subsequent discretization

parameters is kept constant r = r12 = r23

p =
log T3−T2

T2−T1

log r .

When r12 6= r23, equation (5.13) is solved using the following Picard iterative process:

p0 =
log T3−T2

T2−T1

log r12
, pi+1 =

log T3−T2
T2−T1

− log r
pi
23−1
r
pi
12−1

log r12
= p0 −

log r
pi
23−1
r
pi
12−1

log r12
, i = 0, 1, . . . .

Equation (5.13) can also be used to estimate ph from three subsequent estimates of T
computed using the same timestep k while increasing number of grid elements N1 < N2 < N3

by setting p = ph and rij = Ni/Nj .
Since theoretical convergence orders are achieved, it is possible to extrapolate the results

in Table 5.1 in m based upon the last two grids and compute T for m → ∞. For example,
the vertex-based scheme has a difference of 48.1973− 48.1702 = 0.0271. If this is quartered for
each subsequent grid level it gives the sequence 0.0068, 0.0017, 0.0004, 0.0001 which yields the
extrapolated value of 48.1612. A similar conclusion holds for the cell–centered case.

The equivalent convergence study for smaller choices of ε, based on results reported in
Table 5.2 and Table 5.3, gives the following results:

T → 197.71, for ε = 0.1,

T → 797.17, for ε = 0.05.

The benchmark values extrapolated are in agreement with the values computed by all other
solvers in [20] to the second decimal figure, for the cases ε = 0.2, 0.1, and to the first decimal
figure, for ε = 0.05. In this latter case agreement to the second decimal figure is achieved only
with one of the other solver (labelled Cb in [20]) which implements a multigrid solver for BDF2
finite difference schemes [102].

Benchmark II — The same criterion for choosing both spatial and temporal discretization
steps has been used. For this application, however, the stability constraint associated with the
explicit time step becomes a practical barrier as m increases, which means that even for ε = 0.1
we have only just started to approach the asymptotic regime that allows us to extrapolate values
for T1 and T2 in the limit as m→∞. Smaller values of ε require finer spatial discretization steps
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cell–centered vertex based
k m T pk ph m T pk ph

3 10−2 63 209.4351 64 209.0065
9 10−3 63 209.3992 64 208.9705
3 10−3 63 209.3889 1.00 64 208.9602 1.00
9 10−4 63 209.3853 1.00 64 208.9566 1.00
3 10−4 63 209.3842 1.00 64 208.9556 1.00
9 10−5 63 209.3839 1.00 64 208.9552 1.00
3 10−2 127 200.2524 128 200.2122
9 10−3 127 200.2192 128 200.1790
3 10−3 127 200.2097 1.00 128 200.1694 1.00
9 10−4 127 200.2063 1.00 128 200.1661 1.00
3 10−4 127 200.2054 1.00 128 200.1651 1.00
9 10−5 127 200.2050 1.00 128 200.1648 1.00
9 10−3 255 198.3261 2.25 256 198.3214 2.24
3 10−3 255 198.3167 2.25 256 198.3120 2.24
9 10−4 255 198.3134 1.00 2.25 256 198.3087 1.00 2.24
3 10−4 255 198.3125 1.00 2.25 256 198.3077 1.00 2.24
9 10−5 255 198.3121 1.00 2.25 256 198.3074 1.00 2.24
3 10−3 511 197.8629 2.05 512 197.8623 2.05
9 10−4 511 197.8596 2.05 512 197.8590 2.05
3 10−4 511 197.8587 1.00 2.05 512 197.8581 1.00 2.05
9 10−5 511 197.8584 1.00 2.05 512 197.8578 1.00 2.05

Table 5.2: Benchmark I. Computed approximations of the transition time T for
ε = 0.1.

cell–centered vertex based
k m T pk ph m T pk ph

3 10−2 127 844.5886 128 843.6202
9 10−3 127 844.5436 128 843.5758
3 10−3 127 844.5307 1.00 128 843.5631 1.00
9 10−4 127 844.5262 1.00 128 843.5586 1.00
3 10−4 127 844.5249 1.00 128 843.5574 1.00
9 10−5 127 844.5244 1.00 128 843.5569 1.00
3 10−2 255 807.3297 256 807.2487
9 10−3 255 807.2890 256 807.2081
3 10−3 255 807.2774 1.00 256 807.1965 1.00
9 10−4 255 807.2733 1.00 256 807.1924 1.00
3 10−4 255 807.2721 1.00 256 807.1913 1.00
9 10−5 255 807.2717 1.00 256 807.1909 1.00
9 10−3 511 799.7058 2.28 512 799.6963 2.28
3 10−3 511 799.6943 2.28 512 799.6848 2.28
9 10−4 511 799.6903 1.00 2.28 512 799.6807 1.00 2.28
3 10−4 511 799.6892 1.00 2.28 512 799.6796 1.00 2.28
9 10−5 511 799.6887 1.00 2.28 512 799.6792 1.00 2.28

Table 5.3: Benchmark I. Computed approximations of the transition time T for
ε = 0.05.
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cell–centered vertex based
k m T1 T2 m T1 T2

10−4 62 6.6699 25.6796 64 6.6428 26.6155
10−5 62 6.6697 25.6794 64 6.6427 26.6153
10−6 62 6.6697 25.6794 64 6.6427 26.6153
10−5 126 6.3957 26.2164 128 6.3964 26.1783
10−6 126 6.3957 26.2164 128 6.3964 26.1782
10−6 254 6.3509 26.0519 256 6.3508 26.0509

Table 5.4: Benchmark II. Computed approximations of the transition times T1,
T2 for ε = 0.1.

cell–centered vertex based
k m T m T

3 10−4 63 7347.3036 64 7282.6372
9 10−5 63 7347.2837 64 7282.6174
3 10−5 63 7347.2779 64 7282.6117

Table 5.5: Benchmark III. Computed approximations of the transition time T1.

which correspond to even more restrictive choices of time step and are therefore not reported.
Results are shown in Table 5.4 for ε = 0.1. Extrapolation based on second order convergence

yields improved estimates of T1 ≈ 6.34 and T2 ≈ 26.01. These benchmark values are in
agreement with the values computed by all other solvers in [20] to the second decimal figure.

Benchmark III — For this application the spatial resolution required to describe accurately
the evolution of the field u imposes a time step stability constraint that is simply too restrictive
to perform accurate simulation using this explicit scheme. Only simulation with m = 63 and
m = 64 could be performed with the cell–centered and vertex-based schemes respectively and
their results are reported in Table 5.5. However, the coarse spatial resolution allows to compute
a value for the benchmark time T which has only the same order of magnitude of the values
computed by other codes in [20].

This problem is just one example of many problems that require discretization steps too
restrictive to be solved with an explicit solver and that justify the implementation of implicit
time schemes in the PhaseField component as presented in Chapter 8.

Benchmark IV — For this application, simulations have been performed for m = 96, 192, 384
using cell–centered spatial discretizations. One choice of timestep k to ensure numerically sta-
bility has been used for each grid size. It was found that only m = 384 yielded spatial accuracy
to ensure that the solution evolves following the correct energy profile, as shown in Figure 5.3.
As reference profile, E∗, the point-wise values available from an accurate approximation have
been used and can be found online [101]. The benchmark for this application is the L1-log error
between the computed free energy E and the reference energy profile E∗ over a logarithmic time
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Figure 5.3: Convergence of the energy decay profile for Benchmark IV with
respect to grid size m.

span. Specifically, the differences D1 and D2 have been chosen as benchmarks

D1 =
∫ 7

−5
| log E∗ − log E |d[log t](5.14)

D2 =
∫ 2

−5
| log E∗ − log E |d[log t](5.15)

These are proposed because often in applications the exact details of the computational results
are not important, but the trend of the evolution of length scales is a key feature [5]. The
quantity D1 measures the difference over the full dynamics, while D2 covers only the first part
of the dynamics and omits the fine details of the final transition to steady state.

The convergence in the energy profile as the grid and time step are refined is shown in
Table 5.6, where the integrals in (5.14) and (5.15) have been approximated with the trapezoidal
rule over one thousand equispaced logarithmic times using linear interpolation of the computed
energy profile to estimate the value of E at such nodes.

Benchmark values for problem I and II are in perfect accordance with the values all solvers
agreed on in [20]. In addition, convergence to an accurate energy profile is shown for problem
IV. On the other hand, problem III cannot be solved with sufficient accuracy in a feasible time
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k m D1 D2
4.2 10−4 96 1.21 101 2.70 100

5.4 10−5 192 1.12 100 5.06 10−1

4.8 10−6 384 6.02 10−1 3.25 10−1

Table 5.6: Benchmark IV: Convergence of the logarithmic energy profile in D1
(5.14) and D2 (5.15).

with the Explicit Euler scheme and cannot be used to benchmark the PhaseField” component.
However, all other benchmark problems demonstrated the reliability of the finite differences
implementation of spatial derivatives and of the Explicit Euler scheme within the PhaseField
component and it was therefore possible to move to the next development step.



Chapter 6

PhaseField Component
Boundary Conditions

As the result of the previous stage of development, all implementations merged into the same
component: the PhaseField component. It groups together different applications sharing
the same framework for finite–difference spatial discretization: Heat, PureMetal, Benchmark01,
Benchmark02, Benchmark03 and Benchmark04.

The goal of the next development phase, described in this section, is to implement, within
this general framework, a general strategy to enforce boundary conditions. Such an implemen-
tation will need to maintain the same level of abstraction already provided by the framework to
offer the application developer a simple high level interface to the complexity of the underlying
implementation. A detailed analysis of the chosen strategy is given in §6.1.

In expanding the general framework for handling boundary–conditions, both the imple-
mentation of mesh adaptivity and implicit time-stepping are intentionally withheld to focus
exclusively on the current task. The experience in the implementations of such techniques for
the previous PhaseField and Heat components will, however, influence the boundary–conditions
implementation as reported in §6.2.

To assess the reliability of the implementations performed at this stage, the benchmark
problems used at the previous step cannot be used as their domains are periodic. Instead,
a convergence analysis for problem (2.25) is performed by comparing the analytical solution
(5.2) to the one computed by the PhaseField component for the Heat application. A second
validation is also performed by comparing the values of the asymptotic tip velocity from a set
of simulations using the PureMetal application with values from literature. These results are
available in §6.3.

95
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6.1 Analysis

The implementation of boundary conditions has been already discussed in §4.3.2 for the previous
components. In that implementation, the task updating the solution on a given patch was, first,
computing the range of internal grid elements and invoking a default version of the appropriate
kernel and then, for each boundary face, it was retrieving the kind of boundary condition
and the corresponding value to pass as arguments to an overridden version of the kernel for
updating the solution. This second version of the kernel featured many nested if statements
to switch between implementations and select the appropriate one for updating the solution at
the boundary.

In that first step, each patch was partitioned into sub regions over which the implementation
selected for time advancing the solution was the same. The resulting sub regions were the same
at each time step since the partitioning step depends exclusively on which boundary conditions
the user has specified in the problem specification file, on the problem dimension, on the variable
basis, and on the given stencil width. Nevertheless, in the old implementation, this step was
performed at each time step. To improve the efficiency of the solver it is thus desirable to
introduce a structure for saving this partition and avoiding redundant computations. Moreover,
the interfaces to both this structure and to the methods used to create it will need to be generic,
in order to fit into the general framework and to allow the application developer to implement
the same one task for all possible choices of dimension, variable basis and stencil.

The second step of the Heat boundary–conditions implementation was to choose the ap-
propriate implementation for updating the solution at each boundary face. This choice was
performed, inefficiently, at each time step and for each cell even though, as for the previous
step, it could have been performed only once. In order to save the choice made, dynamic
polymorphism will be used. Each implementation will be instantiated at the beginning of the
simulation and saved into the same structure introduced for the first step. This structure will
access these implementations through pointers to a common interface, which is already available
in the framework. In fact, all boundary implementations have been introduced to approximate
derivatives at boundaries and FDView already provides an interface to such functions. It is thanks
to the generality of this interface that, to the ultimate advantage for the application developer,
it is possible to use the same kernel over each sub region, regardless of whether it is internal or
corresponds to a physical boundary.

6.2 Implementation

The implementation of boundary conditions within the PhaseField component is presented
below in four subsections. The first one describes the design of the Problem class template that
has been introduced to hold all information and views required to update the solution on each
of the subregions identified by partitioning the patches. In the second one, details are given
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on the boundary views implementation. These class templates provide the high level interface
to the different low level implementations for approximating the differential operators which
allows the application developer to use the same one kernel for updating the problem variables
on all subregions of each patch. The third subsection describes the partitioning algorithm that
has been implemented to divide each patch. Its output is a list containing one Problem for each
subregion. In the last of the four subsections, focus is given to how Problems have been used –
and could be used by application developers – to enforce user defined boundary conditions in
PhaseField applications.

6.2.1 The Problem Class Template

From the previous analysis emerges the importance of designing the container that represents
each one of the subproblems into which the computations performed over each patch are going
to be partitioned. The term subproblem, or just problem, is hereafter used to describe collec-
tively both each one of the regions in the patch partition together with the corresponding view
implementation instances and their interfaces. This structure must offer the same interface to
all different applications. Since: (1) the choice of the variable basis affects the range of grid
indices belonging to a given patch, (2) which faces can be boundary faces depends on the prob-
lem dimension (all patches within Uintah are three dimensional), and (3) the thickness of each
face depends on the chosen stencil, the Problem class must be templated on both VarType and
StnType.

Each subproblem region is rectangular and, so, can be uniquely identified by its Level,
and the IntVectors corresponding to its first and past-the-end indices. Moreover each region
is characterized by the list of patch faces it belongs to, with internal regions identified by
empty lists. These lists can contain at most as many faces as the problem dimension, with the
constraint that any pair of faces in the list cannot be parallel.

In general, each patch can be partitioned into at most 3d subproblems, but fewer are re-
quired if boundary conditions are not applied to some of its faces. For example, a patch for a
two dimensional problem with only its 〈x−〉- and 〈y+〉-faces lying on physical boundaries (as
illustrated in Figure 6.1) must be partitioned into only four regions: the 〈x−〉- and 〈y+〉-edges,
whose face lists are {x−} and {y+} respectively; the 〈x−, y+〉-vertex, whose face list is {x−, y+};
and the remaining region, whose face list is empty. Hereafter we will call this remaining re-
gion internal and, consequently, the corresponding problem, despite it consisting of not only
the internal region of a patch but also all its faces that are not lying on physical boundaries.
Moreover, it is worth remarking that the same face list may represent different kinds of region
depending on the problem dimension: {x−} is a vertex in one dimension and a face in three.

For holding just a partitioned region, there would be no need to make the subproblem
container templated on either the VarType nor the StnType but, since it is also holding instances
of FDView implementations, it is necessary to templatize the Problem class also on these non-type
parameters and also on the list of field types of those variables for which boundary condition
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〈x−, y+〉-vertex 〈y+〉-edge

〈x−〉-edge interior

Figure 6.1: Example of part partitioning of a patch for a two dimensional cell–
centered problem when the stencil width is equal to one.

may be imposed. These variables will be referred to as boundary variables. Depending on the
particular application, in fact, it may be necessary to impose boundary conditions on multiple
variables. For this reason, the subproblem container is designed to specify the list of Field type
for these boundary variables as a template parameter pack. The new class template is named
Problem and is declared as follows.

template <VarType VAR, StnType STN, typename... Field> class Problem;

Two versions each of the get_view and get_fd_view are implemented for getting a View or
FDView interface to a particular view instance. Integer template parameters, are used to specify
which boundary view within the Field... parameter pack to retrieved and, for vector fields,
which one of its components. The first version of each method access view interfaces without
retrieving any data from the data-warehouse; the other gets the views and at the same time
retrieves the data necessary to evaluate them over the problem’s partitioned region. The first
version can be used whenever the same view instance may be used over different data-warehouse,
for example across multiple timesteps; while the second version is useful when the view instance
is used immediately to access the data-warehouse.

The choice of using a parameter pack rather than just a single parameter is driven by
the sake of generality for allowing higher dimensional fields, such as tensor fields, in future
developments.

Two constructors are available for the Problem container: one for instantiating subproblems
over internal partitions, and one for boundary problems. The first version of the constructor
stores the region and variables identifiers from input into the corresponding fields and creates
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a new DWFDView instance for each boundary variable, since the data-warehouse view implemen-
tation provides the finite–difference approximations appropriate for inner regions.

For the second version of the constructor, which is also storing the region and variables iden-
tifiers specified in input to the corresponding fields, the parameter pack expansion of Field...
is instead not sufficient to instantiate the correct view implementation for each boundary vari-
able. In fact, as it will be shown hereafter, boundary view implementations require as one of
their template parameters the index of the corresponding boundary variable within the Field...
parameter pack.

It has to be remarked that all constructors for the Problem class template instantiate all
views without retrieving any data from the data-warehouse since these instances are created
once at the beginning of any single grid simulations. Data retrieval is delayed until a simulation
task triggers it through the get_view and get_fd_view methods.

6.2.2 Boundary Views

Before discussing the details of the algorithm used to partition boundary patches, it is worth
analyzing how the implementation of boundary FDViews has been designed.

In order to isolate the enforcement of boundary conditions from the knowledge of the overall
geometry, it is important to provide a local implementation for each condition. This is an imple-
mentation that is not aware either of the geometry of surrounding patches, or of the particular
characteristics of the region over which it is being applied to, and that focuses on the impo-
sition of one specific boundary condition over one generic face. These local implementations,
detail::bc_fd, are the boundary counterparts of the data-warehouse view implemenetation and,
in analogy to them, they implement the methods

template <DirType DIR> inline T d ( const IntVector & id ) const;
template <DirType DIR> inline T d2 ( const IntVector & id ) const;

for approximating the first and second order spatial derivatives. These local boundary imple-
mentation, as with its data-warehouse counterpart, are parameterized upon the variable field
type, the stencil and variable basis as well as the width of the stencil, and, in addition to them,
also on the face and boundary condition types. The face parameter is used to deduce, at com-
pile time, static constant expressions for the direction and sign of the outward vector normal to
the given face. At this stage, implementations are given for Dirichlet and Neumann boundary
conditions for stencils whose width is equal to one. In particular, the same implementation
is used for the P3, P5, and P7 stencils. Additional implementations can be introduced for new
boundary condition types by defining new partial specializations of the detail::bc_fd template
for newly defined values of the BC enumeration or, for new stencils, by defining new partial
specializations of the template interface for newly defined values of the StnType enumeration
and its corresponding width.

In order to be able to evaluate their variables over their boundary region, each detail::bc_
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fd instance stores a pointer to the detail::view interface which points to the view implemen-
tation instance that has been passed to their constructor. Even if not strictly required by the
currently implemented stencils, the use of the general detail::view interface is ensuring that
these boundary implementations are local by taking away the need for any knowledge of the
surrounding geometry. It may happen, for example, that for approximating the derivative along
the x direction at a boundary vertex, say the 〈x−, y−〉-vertex, with a wider stencil it is required
to evaluate the variable field also at grid entries that are on the other side of the 〈y−〉-face; for
guaranteeing its local nature the implementation cannot be aware of the fact that the patch
〈y−〉-face lies on a physical boundary, and so it will try to retrieve that value that is out of the
computational domain hrough its inner view interface. The actual implementation of how to
extrapolate the field value at that ghost point is, in this setting, hidden behind that interface.
The only ghost elements that a detail::bc_fd specialization has to account for are those lying
on the other side of the boundary face upon which they are parametrized.

The same strategies presented in §2.3.2, have been adopted for the d and d2 methods.
The set view virtual method is provided for setting view supports which, in this case, are

boundary regions and never coincides with a whole patch. Therefore, the version of the set
methods for setting the support over a patch is implemented to produce a runtime error. The
only fully implemented version of the set method uses the given boundary region to compute
the bounding indices of the ghost region on the other side of the view boundary face, which
will be its support. This region can be accessed by the get_support method and it is possible to
check if an index belongs to it using the is_defined_at member function. The square brackets
operator operator[] is implemented, in its constant version, to return the value of its field
extrapolated over a ghost index, while its non–constant version raises a runtime error (being
meaningless to assign the field value at a ghost index).

The remaining methods required to fully implement the virtual detail::basic_fd_view inter-
face are implemented, rather than in each detail::bc_fd specialization, within the ScalarField
specialization of the detail::bc_basic_fd_view template interface since their implementation is
independent of the actual boundary conditions.

The detail::bc_basic_fd_view template interface is templated differently from the detail::
bc_fd implementation to better resemble those of the detail::basic_fd_view abstract interface:
in addition to the detail::basic_fd_view parameters, field and stencil type, and to the variable
basis of the inner view, a non-type template parameter of type BCF is used. This parameter
merges together, into a single integral value, the boundary face and condition types. The packed
value of the different boundary enumerators’ values – which will be referred to as boundary pack
– is computed, and unpacked, using bitwise operations taking advantage of the fact that the
values of the scoped and typed BC enumeration have non-zero bits only within the second byte
and that those of the FaceType one are using just the first byte.

The so implemented detail::bc_basic_fd_view class, despite being a full implementation
of the detail::basic_fd_view, is not suitable for replacing the dw_basic_fd_view on boundary



CHAPTER 6. PHASEFIELD COMPONENT – BOUNDARY CONDITIONS 101

regions. In fact, it has no control on the view used to access the data-warehouse and, since it
can be used to compute derivatives only along the normal to its boundary face and to evaluate
the field over its ghost region, it cannot handle boundary regions with co-dimension grater than
one (because of the use of three–dimensional patches regardless of the problem dimension these
regions are always patch faces, even when they represent edges or vertices). The boundary
equivalent of the detail::dw_basic_fd_view template interface is indeed named detail::bcs_
basic_fd_view, where the additional s is used to specify that this class can handle regions over
which multiple boundary faces intersect and multiple boundary conditions apply.

The idea for handling boundary regions, – faces, edges or vertices – in a generic fashion is to
develop an implementation of the detail::basic_fd_view which provides an efficient mechanism
to switch between multiple view instances: one detail::dw_basic_fd_view instance to access
data, and as many detail::bc_basic_fd_view instances as there are boundary faces intersecting
over the given boundary region for extrapolating field values at ghost regions and approximating
derivatives.

For this reason the detail::bcs_basic_fd_view template interface is parametrized, other than
on the field and stencil type, also on the parameter pack P... providing the list of boundary
packs over a boundary region. The introduction of the boundary pack, BCF, allows the use of
different boundary conditions for each face.

Another two template parameters are used to characterize the detail::bcs_basic_fd_view
template interface: Problem and Index. The Problem typename is used to specify a particular
type instance of the Problem class template introduced in the previous subsection. The Index
typename, instead, specifies which position within the Problem’s list of boundary variables cor-
responds to the particular instance of detail::bcs_basic_fd_view. Index can also indicate, for
vector fields, which component of the specified boundary view the detail::bcs_basic_fd_view
type instance corresponds to.

Of the two types of constructors usually provided for view implementations, only the one
that defer the retrieving of data from the data-warehouse has been implemented, since boundary
views are designed to be instantiated only at the beginning of a simulation and to then access
the data-warehouse at each time step. It is templated on the variable field type and contains
a bc field, for the BC enumerator corresponding to the type of boundary condition in the input
file, and a value field, for its boundary value. This may have the same type as the variable field
value type if it is a ScalarField, or a array with the same type and size of the variable field
components if this is a VectorField.

The detail::bcs_basic_fd_view class template scalar implementation derives from the
detail::piecewise_view class template. This class has been introduced to wrap together several
detail::view interfaces into a unified detail::view. As with the detail::view interface, it is
templated on the field type. When evaluating a piecewise_view at a location, a loop over its
view is performed to find the first view that is defined over that location and the value of this
inner view is returned as the valued of the piecewise_view at such location.
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The detail::piecewise_view class template, as with the detail::bcs_basic_fd_view, is de-
signed to be used only as a base class for other implementations of the view interface and leaves
the management of the inner view list to the super classes. The inner view list is declared to
be a protected member and it is this list that is being populated in the body of the detail::
bcs_basic_fd_view constructor listed above.

Before moving to the description on how these lists of Problem instances are created, the
BCFDView class template is still to be introduced. This is the boundary implementation of the
FDView interface to be used by application developers.

The BCFDView class is templated only on the problem type, the field index and the list of
boundary packs. The template parameters required by its base class

Lastly, the BCFDView class template also inherits from the Implementation type instance for
the FDView interface. This provides, using the factory design pattern, an encapsulated method
for the dynamic instantiation of boundary implementation of the polymorphic FDView interface.
As explained in §5.2, in order to be able to use a particular type instance of the BCFDView
template, it is necessary to define its name and register it to its factory. For each instantiated
FDView type a Factory type instance is required, and the BCFactoryFDView alias template can be
used to specify these with the same template parameter list used for their FDView base interface.
For convenience, alias templates are defined for the Problem class templates required by those
applications introduced so far in the PhaseField component for which boundary conditions
can be given. The physical model of the Heat application has only one scalar variable, the
temperature field, which is also a boundary variable, and so the following Problem alias typename
is defined for it:

template<VarType VAR, StnType STN>
using HeatProblem = Problem < VAR, STN, ScalarField<const double> >;

The PureMetal application, instead, has not only two model variables – the phase and the
temperature scalar fields – which are both boundary variables, but also artificial variables
which are also differentiated in the model and, therefore, require to be evaluated over ghost
regions which is implemented by imposing boundary conditions. These are the square of the
anisotropy function scalar field, and the vector field containing the terms arising from the spatial
differentiation of the anisotropic function, whose size is dependent on the problem dimension.
The corresponding Problem alias template definition is listed below.

template<VarType VAR, StnType STN>
using PureMetalProblem = Problem < VAR, STN,

ScalarField<const double>, ScalarField<const double>, ScalarField<const double>,
VectorField < const double, combinations< get_stn<STN>::dim, 2>::value > >;

The number of type instances of the BCFDView template required by an application, given
its dimension d, can be computed as the product of the number of variable bases available (2),
the number of available stencils (in the current implementation 1), the number of boundary
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Problem DimType # VarTypes # StnTypes # Indexes # P... # BCFDView
HeatProblem D2 2 1 1 24 48
HeatProblem D3 2 1 1 124 248

PureMetalProblem D2 2 1 4 24 192
PureMetalProblem D3 2 1 4 124 992

Table 6.1: Number of BCFDView type instances required by phase field applications.

variables for that application (1 for heat and 4 for pure metal) and the number of possible
combinations of boundary faces/conditions1 (5d − 1). In Table 6.1 such numbers are listed for
all phase field application except for benchmark applications, as they are defined on periodic
domains and, thus, do not have any boundary condition.

It would be unpractical, and error prone, to write the source file with the definitions of the
name for all these type instances without using a script. For this reason, the BCFDView-bld.sh
bash script has been implemented.

The diagram of all classes introduced for boundary views is given in [18] together with a
more detailed description of their implementations.

6.2.3 Partition Algorithm

The review of the implementation of boundary views is now complete and it is left to analyze
the algorithm used to partition the problem of updating the solution over each patch into
subproblems. They consist of both the partitioned region and of the views required to get
variables’ grid values and evaluate spatial derivative approximations.

The partitioning is performed in two steps. The first of which is to scan the list of boundary
conditions provided by the user in the Uintah Problem Specification file and identify, for each
patch, which faces are boundary faces, which are those faces that lie on the domain boundary and
over which a boundary condition has been specified for at least one of the given set of boundary
variables. Independently from the problem dimension, d, grids are always three–dimensional
in Uintah, so, for lower dimensional problems, the computational domain is shaped to have
only one grid cell along directions whose (zero based) index is less that d. When looking for
boundary conditions, then, only faces with normal vectors parallel to the first d directions are
to be considered and so, since on a patch there are two faces per direction, an array of flags
with twice as many entries as the problem dimension is used to keep track of which faces are
boundary faces. In this first step, all information about boundary conditions is organized in
one array of BCInfos per boundary variable with the same size of the flag array. In this way
boundary information for a given variable on a given face can be easily accessed by retrieving
the face value as the index corresponding to that variable in the array.

The second step is to partition patches into subregions and instantiate views of the ap-
propriate type for each boundary variable on each partition of each patch. This is performed

1For each of the d allowed directions, five cases are possible (Dirichlet condition on either the positive or
the negative face, Neumann condition in either face, or no conditions) except for the combination where no
condition is given in any directions.
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(a) Initial partitioning (b) After y partitioning (c) After x partitioning

Figure 6.2: Example of computed subregions in the problem partitioning of a
patch for a 2D problem with boundary faces at 〈x−〉-, 〈x+〉- and 〈y+〉-faces.

using the flags and boundary information arrays from the previous step. The set of partitioned
regions is initially set to contain the whole patch and, starting form the highest direction less
than d, recursion is used to split each region in the set of partitioned regions accordingly to the
patch boundary flags for that direction, until the lowest direction, X, is reached. A graphical
representation of this second step is given in Figure 6.2. Views for each boundary variable are
then instantiated and the partitioning is complete.

This algorithm is implemented, within the BCInterface stucture template, as the partition_
patch static template method. The list of partitioned subproblems is returned by this method
as a list of Problems with, as template parameters, the same values of variable basis and stencil
type of its BCInterface container template parameters and the same list of field types used for
the method itself.

The class diagram of the BCInterface and the functors introduced to implement its partition_
patch method is given in [18].

6.2.4 Applications: How to Enforce Boundary Conditions

Thanks to the introduction into the general framework of the subproblem partitioning and of
the boundary views, only few modifications have been necessary to handle generic boundary
conditions in PhaseField applications. The following description of the modifications made to
the Heat application is the best example of how much simpler it is for the application developer
to implement boundary conditions within the application when compared to their previous
implementation in §4.3.

In the Heat application, the only boundary variable is the temperature field, u. The alias
template HeatProblem, has already been introduced for being used instead of Problem template in
the development of this component. This alias is parameterized on the application variable basis
and stencil type and is equivalent to the Problem template where the variadic list of boundary
field types is composed by only the type for the temperature field, ScalarField<const double>
. For convenience the static constant expression U has been defined within the Heat class to
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be used as the index in the boundary view list corresponding to the temperature field. In
addition to this, only the subproblems_label has been added to the application members for
storing the pointer to the VarLabel object used to identify subproblems in the data-warehouse.
To instantiate and to free the instances of this label together with the application, a line has
been added to both the Heat constructor and destructor for calling, respectively, the VarLabel
constructor and destructor. A line has been added also to the problemSetup method for telling the
scheduler how to behave with the subproblem variable (currently Uintah, due to their generality,
leaves to application developer the responsibility on how PerPatch variables are updated and
moved between data-warehouses and this line is required to tell the scheduler that management
of the subproblem variables is completely handled by the application).

Bigger changes are required for the application scheduler members. An additional task has
to be scheduled by the scheduleInitialize method to initialize the subproblems variable at the
beginning of the simulation. For isolating the scheduling of this task from the one initializing
the solution variable two separate scheduling private methods are defined: scheduleInitialize_
subproblems and HeatscheduleInitialize˙solution. These private methods are called in sequence
when the public scheduleInitialize method is invoked. The first of the two private schedulings
tells the scheduler that for each patch the task_initialize_subproblems can be used to create
the subproblems variable on each patch with no other variable required. The body of second
the one is unchanged from the original body of the previous scheduleInitialize implementation
since the same task_initialize_solution task as before can be used to initialize the temperature
field variable. The task_initialize_subproblems implementation is very simple: it loops over the
given PatchSubset to instantiate, for each patch therein, a PerPatch variable and set its data to be
a new SubProblems object and puts it in the new data-warehouse. This automatically populates
the list of subproblems for each patch contained in each SubProblems instance.

The other scheduling method that has been modified is the scheduleTimeAdvance which now
calls the scheduleTimeAdvance_subproblems before calling the same private time advance sched-
ulers as before. The scheduleTimeAdvance_subproblems is used to add to the task_time_advance_
subproblems to the queue, which moves the SubProblems instances for each patch from the old
data-warehouse to the new one. This task is not performing any computation over grid ele-
ments and therefore is not using any kernel. It simply gets the subproblems variable instance
for each patch from the old data-warehouse and puts it in the new one. All previous private
time advance scheduling is also modified to add to their task dependencies the subproblems’
variable from the old data-warehouse.

The previous implementations of these tasks all followed the same scheme:

– loop over the given PatchSubset and for each patch

1. instantiate required DWViews and DWFDViews,

2. use the parallel_for adaptor to execute the corresponding kernel over each grid
element in the patch.
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In the new implementations, explicit instantiations of DWFDViews are replaced by retrieving
FDView interfaces to the view instances already instantiated in the subproblems variable. The
new scheme is therefore the following:

– loop over the given PatchSubset and for each patch

1. retrieve for each patch its subproblems,

2. instantiate required DWViews,

3. loop over the retrieved subproblems and for each Problem therein

(a) get the required FDViews interfaces with its get_fd_view method specifying from
which data-warehouse its data has to be retrieved,

(b) use the parallel_for adaptor to execution the corresponding kernel over each
grid element in the problem region.

The body of the patch loop of the task_time_advance_subproblems task, whose previous ver-
sion is listed in §5.2, is now the following:

DWView < ScalarField<double>, VAR, DIM > u_new ( dw_new, u_label, material, patch );

Variable < PP, SubProblems < HeatProblem<VAR, STN> > > subproblems;
dw_new->get ( subproblems, subproblems_label, material, patch );
auto problems = subproblems.get().get_rep();

for ( const auto & p : *problems )
{

FDView < ScalarField<const double>, STN > & u_old = p.template get_fd_view<U> ( dw_old );
parallel_for ( p.get_range(), [patch, &u_old, &u_new, this] ( int i, int j, int k )->void {

time_advance_solution_forward_euler ( {i, j, k}, u_old, u_new ); } );
}

No further modifications are needed since boundary conditions implementations are hidden
behind the FDView interface and all kernels remain unaltered.

Analogous modifications are made to the PureMetal application to support boundary con-
ditions. The ease with which it is possible to introduce boundary condition in an application
is not the only improvement coming from their implementation in this development step. The
resulting code is also more efficient since all nested if and switch statements and for loops that
were, previously, performed at each time step to select at runtime the correct implementation
over a patch are now replaced by a single for loop and the virtual tables used in the resolution
of the virtual methods of the FDView interface.
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6.3 Validation

Two sets of simulations have been performed to assess the reliability of the implementation of
boundary conditions here introduced. The first set of simulations is performed to analyze the
convergence to the analytical solution of the Heat problem with Dirichlet boundary conditions
as both the space and time discretization steps are reduced. The second set of simulations is
performed using the PureMetal application. Different post-processing algorithms are used to
compute the asymptotic tip velocity of problems with different parameters. These values are
then compared to the results from [49].

6.3.1 Convergence Analysis for the Heat Application

As described in §5.2, the solution to the heat problem (2.25) with homogeneous Dirichlet
conditions and initial conditions (5.1) over the domain Ω = [−L,L]d admits an open form
solution (5.2). This allows to evaluate at every timestep a global discrete error of the solution
(5.7) and of its first and second order derivatives as (5.11). These errors are therefore computed
for different values of the grid step, h, and time step, k, and the speed with which these errors
are converging to zero is compared to the order of the truncation error that is computed a
priori.

The truncation error, Et at the j-th grid location and timestep tn is the residual in the
discrete model when the discrete solution is replaced with the exact solution u:

[D+
t u](xj , t

n) = α

d−1∑
i=0

[DνDνu](xj , t
n) + Et(xj , t

n),

where notations (2.26d) and (2.26e) have been used. Since u satisfies (2.25) we can write,
omitting the function arguments:

Et = [D+
t u− α

d−1∑
i=0

DiDiu− ut + α

d−1∑
i=0

uii

=
[
D+
t u− ut

]
− α

d−1∑
i=0

[DiDiu− uii] .

The the truncation is therefore the sum of two terms: a temporal error which arises from
the discretisation of the time derivative and a spatial error due to the discretization of the
laplacian operator. These terms can be evaluated using the leading-order error formulae for
finite differences approximations (2.27)

Et = 1
2utt k +O(k2)− α

12

d−1∑
ν=0

uiiiih
2 +O(h4)
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=
[
d2α2c4

2 k − dαc4

12 h2
]
u+O(h4 + k2)

= dαc4

12
[
6dα k − h2]u+O(h4 + k2) .

The truncation error for the considered heat problem is therefore linear in time and quadratic
in space. Moreover, if h2 > 6dα k, the spatial term dominates the temporal one.

For all simulations performed, the same diffusion coefficient has been used (α = 0.1). The
values for the spatial and temporal discretization steps considered are h = 2−i with (i =
0, 1, . . . , 4) and k = 2−j with (j = 1, 2, . . . , 6).

As discussed in §2.3.2 the forward Euler scheme is conditionally stable and the following
condition must be verified for the round-off error to not be amplified from one timestep to the
next

h2 ≥ 2dα k .

Simulations for which the condition is not satisfied are, in fact, found to be numerically
unstable and are not shown in the plots hereafter.

In Figures 6.3–6.4 the discrete 1-norm,
∑
N | errNp |, of the computed global discrete errors

(5.11) are plotted in logarithmic scale, first, against the timestep and, then, against the grid
step. Values of error corresponding to the same choice of the other discretisation parameter are
joint with solid lines, while values with the same h2

k ratio are joint with dashed lines.
Looking at the solid line in Figure 6.3a, it is evident how halving the timestep is beneficial

only for the first stable choice of k. Moreover, the inclination of the dashed lines in Figure 6.3a
is the same of the reference line and confirms the expected linear convergence of the error with
respect to k. The expected second order convergence in time of the global L2-discrete error is
also evident in Figure 6.3b.

Generally, for solutions with minimal regularity (C 1), one order of convergence in time is lost
when the global H1

0 -discrete error is considered. This is expected, therefore to vanish linearly
with h, and to be constant in k. In fact, this error is a measure of the discretisation error
of the solution’s spatial first order derivatives, and is necessarily independent of k. Figure 6.4
confirms that the globalH1

0 -discrete error is purely spatial, but a higher quadratic h-convergence
is observed. This behavior can be explained by the regularity of the solution (5.2).

Another order of convergence is expected to be lost for the H2
0 -discrete error with C 2

solutions. This will imply that the guaranteed theoretical convergence in both h and k is zero.
Being the global H2

0 -discrete error a measure of the discretisation error of the solution’s spatial
second order derivatives, as for global H1

0 -discrete error, this is found from Figure 6.5 to be
constant in k and quadratic in h. In fact, not only the solution (5.2) is analytical, but its second
order derivatives are proportional to the solution itself.
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Figure 6.3: Convergence analysis of the global L2 error for the Heat problem
(α = 0.1). Its 1-norm over time for different discretization parameters is shown
as dependent on the timestep (a) and on the grid size (b). Theoretical order of
convergence is plotted for reference as a dotted line.



CHAPTER 6. PHASEFIELD COMPONENT – BOUNDARY CONDITIONS 110

2−6 2−5 2−4 2−3 2−2 2−1
k

10−2

10−1

h = 1

h = 1/2

h = 1/4

h = 1/8

h
2 /k

= 16

h
2 /k

= 8

h
2 /k

= 4

h
2 /k

= 2

h
2 /k

= 1

h
2 /k

= 1/2 O(k
1 )

(a) k-convergence

2−3 2−2 2−1 20
h

10−3

10−2

10−1

k
= 1/2

k
= 1/4

k
= 1/8

k
= 1/1

6

k
= 1/3

2

k
= 1/6

4

h
2 /k

= 16
h
2 /k

= 8

h
2 /k

= 4
h
2 /k

= 2

h
2 /k

= 1
h
2 /k

= 1/2

O(h
2 )

(b) h-convergence

Figure 6.4: Convergence analysis of the global H1
0 error for the Heat problem

(α = 0.1). Its 1-norm over time for different discretization parameters is shown as
dependent on the timestep (a) and on the grid size (b). Graphs proportional to k1

and h2 are plotted for reference as a dotted lines.
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Figure 6.5: Convergence analysis of the global H2
0 error for the Heat problem

(α = 0.1). Its 1-norm over time for different discretization parameters is shown as
dependent on the timestep (a) and on the grid size (b). Graphs proportional to k1

and h2 are plotted for reference as a dotted lines.
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∆ |ε| D d0 Ṽtip Vtip
i 0.65 0.05 1 0.554 0.0469 0.0847
ii 0.55 0.05 2 0.277 0.0170 0.1227
iii 0.60 0.03 2 0.277 0.0188 0.1357
iv 0.55 0.02 2 0.277 0.00685 0.04946

Table 6.2: Steady-state velocity obtained by Green’s function calculations for
different sets of problem parameters.

6.3.2 Asymptotic Tip Velocities for the PureMetal Application

The implementation of boundary conditions, made possible to run simulations using the Pure-
Metal application of the PhaseField Uintah’s component. To benchmark the implementation
it is possible to compare quantitatively the asymptotic tip velocity computed from the solution
when a constant value is reached with its steady-state value computed by means of the Green’s
function method [55, 67]. The input parameteres for those calulations used in [49] to solve
the free-boundary formulation (2.8) with β(ϕ) = 0, and d0(ϕ) = d0(1 − 15ε cos 4ϕ) with d0 =
WI/λJ . These input parameters for the Green’s function calculations have been chosen to
correspond exactly to the anisotropic model (2.3). This model, in fact, reduces in the sharp-
interface limit to the free-boundary formulation (2.8) with:

d0(ϕ) = I

λJ
[W (ϕ) +W ′′(ϕ)

β(ϕ) = I

λJ

τ(ϕ)
W (ϕ)

[
1− λ W (ϕ)2

2Dτ(ϕ)
K + JF

I

]
,

where the term in square brackets on the right-hand-side of the equation for β represent the
correction arising from the variation of u in the interface thickness.

In [49], the authors provide a table of values for the steady-state velocity obtained by Green’s
function calculations for different sets of problem parameters. These velocity, Ṽtip, are reported
dimensionless thanks to the following non-dimensionaliation

Ṽtip = d0

D
Vtip ,

where d0 is the capillary length and D is the thermal diffusivity.
The same discretization parameters (h = 0.4, k = 0.016) used by the authors have been

used here and the explicit time scheme is found to be numerically stable only for four of the
eleven set of parameters provided in [49]. These are named with roman ordinals and are listed
together with the corresponding non-dimensional and dimensional Green’s function steady-state
velocities in Table 6.2.

Plots for each problem of the tip position, velocity and curvature together with the arm
curvature are shown in Figures 6.6–6.9. In these plots, both results from simulation where the
dendrite growth is favored along the Cartesian axes (parallel case) and where the favored growth
direction is along the quadrant bisectors are shown. In each case both the polynomial and the
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Lpar Ldiag tmax
i 240 180 2100
ii 320 240 2100
iii 240 180 1500
iv 320 240 4000

Table 6.3: Width of the computational domain for the parallel and diagonal
cases, and maximum simulation time for each set of problem parameters.

hyperbolic tangent post-processing approach are used with either cell centered or vertex based
discretization.

Simulations have been performed on the first quadrant using homogeneous Neumann con-
ditions on the lower boundaries while Dirichlet condition are used on the upper boundaries so
that the temperature field is there equal to the undercooling, ∆, throughout the simulation.
This choice of domanin and boundary conditions on the lower boundaries allows to quarter
the problem domain taking advantage of the problem symmetry with respect to the Cartesian
axes. Dirichlet conditions are insted modelling a problem where undercooled metal is found
all around the computational domain with the assumption that the upper boundaries are far
enough from the seed that any change in the temperature and phase field is observable there
during the period of time over which the simulation spans. The width of the computational
domain for the parallel and diagonal cases, Ω = [0, L]2, and the maximum simulation time tmax,
for each set of problem parameters are shown in table Table 6.3.

For Problem i, the effects of grid anisotropy due to the size of h are evident in the plots of
the tip positions for all of the parameter sets. Looking at Figure 6.6a, in fact it can be observed
that the dendrite is growing faster in the diagonal case than in the parallel case.

From Figure 6.6b it can be observed that the asymptotic tip velocity in Problem i is reached
after 1700 time units in the diagonal case and after 1900 time units in the parallel case which is
growing more slowly. In the first case the computed velocity is 0.0851 while in the latter case it is
0.0750. The higher error with respect to the green function value is found the parallel case (11%)
while very good agreement with the steady-state value is observed in the diagonal case with an
error of less than 0.5%. In the diagonal case. moreover, the tip velocity is observed to increase
after 1800 time units. This behavior has to be ascribed to the Dirichlet condition imposed at
the upper boundary. At this timetep the tip is about 182 spatial units from the origin which
is less than 50 units from the computational upper boundary, being the computational domain
used for this simulation [0, 180]2. In the parallel case, no boundary effect is appreciable with
the chosen computational domain [0, 240]2 with the tip at the final simulation time t = 2100
190 spatial units from the origin which is, evidently, far enough from the upper boundary for
not being affected by its Dirichlet condition.

From the curvature plots, Figures 6.6c, 6.9d, it can be only observed that the choice of
the variable basis affects the curvatures’ computations in the parallel case while the choice of
the post-processing algorithm affects the computations in the diagonal case. These figures are
however given for completeness and are not compared with any reference value which is not
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Figure 6.6: Dendirite characterization from the PureMetal simulation using the Problem i set of pa-
rameters. Diagonal and parallel growth cases are compared using different post-processing algorithms.
Steady-state velocity computed with the green function method is shown for reference in (b).
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Figure 6.7: Dendirite characterization from the PureMetal simulation using the Problem ii set of pa-
rameters. Diagonal and parallel growth cases are compared using different post-processing algorithms.
Steady-state velocity computed with the green function method is shown for reference in (b).
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Figure 6.8: Dendirite characterization from the PureMetal simulation using the Problem iii set of pa-
rameters. Diagonal and parallel growth cases are compared using different post-processing algorithms.
Steady-state velocity computed with the green function method is shown for reference in (b).
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Figure 6.9: Dendirite characterization from the PureMetal simulation using the Problem iv set of pa-
rameters. Diagonal and parallel growth cases are compared using different post-processing algorithms.
Steady-state velocity computed with the green function method is shown for reference in (b).
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cc diagonal nc diagonal cc parallel nc parallel
i 0.0851 (0.5%) 0.0851 (0.5%) 0.0750 (11%) 0.0750 (11%)
ii 0.1272 (4%) 0.1272 (4%) 0.1083 (12%) 0.1083 (12%)
iii 0.1372 (1%) 0.1398 (2%) 0.1167 (14%) 0.1244 (8%)
iv 0.06359 (29%) 0.6397 (29%) 0.05434 (10%) 0.05660 (15%)

Table 6.4: Asymptotic tip velocities and their error (in parenthesis) relative to
steady-state velocity obtained by Green’s function calculations.

provided in [49].
Grid anisotropy, is evident also for the other Problems ii–iv and from Figures 6.7–6.9.a can

be observed that the dendrite is always growing slower in the parallel than in the diagonal case.
Moreover, in the parallel case, cell centered simulations provide less accurate positions and
velocity estimates because, in addition to the poor spatial resolution, in this case also no grid
location lies on the axis along which the dendrite growth is favored and on which the dendritic
arm tip is found.

For Problems ii and iii, asymptotic tip velocities computed from diagonal simulations are
closer to the steady-state values computed using the Green function method when compared
with their values computed when ε > 0 while the parallel case predicts velocity in better
accordance with Green function computations for Problem iv.

In Table 6.4 a summary of the computed asymptotic velocities for the for problems is given
together with the error relative to the steady-state velocity from [49]. Since the choice of
the post-processing algorithm does not affect appreciably the value of the tip velocity, values
reported therein are distinguished only by their direction and variable basis.

Boundary effects are evident also in Problem ii in the diagonal case when after timestep 1700
when the tip position is about 240 spatial units from the origin which is about 70 units from
the top and right domain boundaries. Also in Problem iii boundary effects start to become
evident when the tip is about 75 units from the upper boundaries, both in the parallel and
in the diagonal case. For Problem iv, instead, the tip profiles are perturbed by appreciable
boundary effects when the tip is less then 90 spatial units away from the upper boundaries.

The above values suggest that when choosing the computational domain size for PureMetal
simulations, this has to be large enough to avoid boundary effect and that the margin to be left
between position of the tip at the end of the simulation and the upper boundaries is dependent
on the problem parameters.

Moreover, in the general case, a diagonal growth produces more accurate result, since it is
less dependant on the grid resolution. Smaller values of the anisotropy parameter also require
finer grids to avoid larger discretisation errors.



Chapter 7

PhaseField Component
AMR Fine/Coarse Interfaces

To allow the use of Adaptive Mesh Refinement (AMR) techniques within applications of the
PhaseField component, continuity conditions between grid layers with different levels of refine-
ment are to be implemented. All algorithms required for the generation and update of the
composite grid resulting from AMR are already provided by the UCF. However, analogously as
for boundary conditions, no general implementation is provided for handling artificial bound-
aries of finer levels. The aim of this step of the development is their implementation within
the same general framework used for boundary conditions. An analysis of which features to
implement in this step is given in §7.1 while a detailed description of their implementation
follows in §7.2.

At last, different approaches will be considered and their performance assessed by comparing
the convergence of the solution provided by the Heat, PureMetal and Benchmark02 as reported
in §7.3.

7.1 Analysis

As already discussed in §4.2.3, three additional steps are to be performed periodically during a
simulation in order to use AMR in Uintah’s components. These are:

error estimation in this step it is chosen which patches need refinement and which can be
coarsened. This choice is controlled by a cell–centered integer valued variable, RefineFlag,
and a per patch boolean variable, PatchFlag. Where the grid resolution could be insuffi-
cient to ensure sufficiently accurate solutions, the first variable should assume non-zero
values and the second should be set to true.

variable refinement when new patches are added to refined levels, in the data-warehouse

119
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no value exists for any of the variables over them. This step is intended to allow the
application developer to compute any value that may be necessary for the execution of
tasks for time advancing the solution. As such, this step is performed after each geometry
update.

variable coarsening this step is introduced to allow the developer to update, if needed, the
values of variables at grid cells that have been further refined. In fact, depending on the
application, tasks for time advancing the solution may update variables’ values only on
the most refined regions or may also need to be able to evaluate them on each level. This
step is performed at the end of each time step.

The execution order of the steps above is controlled by Unitah’s scheduler according to the
specifications coded by the application developer in the corresponding scheduling methods of
each application.

Via the input file, the final user can control how often the geometry regridding process, and
thus the first two steps, may occur as well as other parameters that control how refinement is
performed.

Previously, when in §4.2.3 support to AMR has been introduced, it has been necessary to
modify most of the methods used for time advancing the solution. Not only did schedulings
require new implementations for specifying that on refined patches some task required access
to coarser levels, but also tasks needed new ad-hoc implementations for refined patches. These
were, first, computing the region on the coarser level where variable values had to be retrieved
from the data-warehouse, and, then, they were actually instantiating one or more variables
to access and retrieve such values before invoking a kernel. However, most kernels (those
involving finite difference computations) had to be modified as well in order to handle fine
coarse interfaces.

The main target of this development step is to reduce the work required to the application
developer to introduce AMR support in their components by removing, as already done for
boundary conditions, the need to implement ad-hoc kernels for handling finite difference ap-
proximations at fine coarse interfaces. Differences between the implementation of kernels for
inner and physical boundary’s grid elements arise, on a refined patch, when the finite differ-
ence stencil extends out of the boundaries of a refined level but no boundary condition can
be used to extrapolate the missing values. In analogy to conditions on a physical boundary,
ghost elements can still be used but the corresponding variable values have to be approximated,
instead of imposing a boundary condition, by interpolation of its values at nearby grid elements
on the coarser level. This analogy allows the use of the same framework introduced in §6.2.
New view type instances can be easily introduced to approximate spatial derivatives at fine
coarse interfaces by implementing appropriate detail::bc_fd template specializations. These
type instances will then need to be explicitly instantiated with automatically generated code as
for their boundary condition counterparts. The same factory creational pattern which allows
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boundary conditions to be chosen by the final user in the input file will provide the user with
an analogue method to choose which fine/coarse interface (FCI ) scheme to use as well.

Moreover, this implementation will result, not only in lightening the burden for application
developers and providing better control to final users, but also in a more efficient time advance
phase, and in removing any duplication of task methods. The first improvement will be the
consequence of AMR views being instantiated only after each geometry update rather that
at each time step. The second one will derive from the local nature of the detail::bc_fd
implementations; in fact, to achieve the same locality characterizing their boundary conditions
counterparts, it will be necessary to access information from coarser levels only through views
providing an interface that is unaware of any complexity in the coarser level geometry.

Modifying the detail::get_bc functor to mark as boundary conditions also fine coarse inter-
faces will make the detail::partition_range functor create a subproblem also for each artificial
boundary problem on refined patches. These artificial boundary problems are almost identical
to the physical boundary ones, except for their variable views over the refined region which
may use detail::bc_fd implementations that will contain also instances of views over coarser
regions.

By ensuring that refined patches are partitioned after those on the previous (coarser) level, it
will be possible to create these coarser view instances by copying the instances already created
for the coarser level subproblems, thanks to the prototypical creational pattern provided by
views. In this way, refined views can avoid processing again any information about the coarser
geometry since coarser views already store all the information required for retrieving and data
that may be needed from the data-warehouse. Since data retrieval for coarser views is triggered
when their owners detail::bc_fd views access the data-warehouse, it will no longer be necessary
to explicitly access coarser levels’ data from applications tasks on refined patches. It will
possible, therefore, to use the same implementation for task methods both on refined and
unrefined patches.

It has been found that interpolation is required both in the variable refinement and time
advance phases of AMR simulation. It is therefore desirable to provide a common interface to
interpolation methods for use both by the framework developer in the detail::bc_fd implemen-
tation and by the application developer in the refine application tasks. The AMRInterpolator
template interfaces will be provided as such common interface to interpolate values from coarser
levels onto refined positions. Analogously, the AMRRestrictor will be introduced for the inverse
problem of using refined values to compute the value of variables over coarser grid entries.
These template interfaces will allow a simpler implementation of the variable refinement and
coarsening steps for the application developer, which provides also a way to isolate the partic-
ular implementation of restriction/interpolation operators from their application in simulation
components, better addressing the component–based design of the overall UCF.
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7.2 Implementation

7.2.1 Interpolators/Restrictors

In the previous analysis it has been shown that isolating the implementation of interpolation
and restriction operators is desirable. The AMRInterpolator and AMRRestrictor template inter-
faces are provided to the application developer to access such implementations. They are both
name aliases of their respective implementations in the detail namespace. These aliases are
templated, similarly to the BCFDView template interfaces, upon the problem type and the index
identifying which position in the problem list of boundary variables correspond to the field
being interpolated. Instead of the variadic list of boundary packs used to identify the boundary
condition, the interpolation order is used as a non-type template parameter. This choice of tem-
plate parameters allows the application developer to use the AMRInterpolator and AMRRestrictor
template interfaces only with variables in the list of boundary variables of the problem type.
This could appear as a restrictive choice since boundary conditions are normally specified for
those fields that appear differentiated in the physical model in order to be able to compute
their derivatives at physical boundaries, while interpolation may be defined on any variable.
Interpolators, as well as restrictors, however use multiple grid values to approximate field values
at generic locations and, when these locations are close to a physical boundary, it could happen
that some of these values should correspond to a grid position that is actually lying out of the
physical domain and are therefore not available. To address this issue, the same interpolation
algorithms can be used on any grid entry, treating such grid entries as ghost entries and using
the appropriate boundary conditions to extrapolate any missing variable value.

Four distinct specializations for ScalarFields are provided for the detail::amr_interpolator
and two are provided for the detail::amr_restrictor, all of which implement the virtual detail::
view interface for ScalarFields. The first of these amr_interpolator implementations is indepen-
dent of the problem dimension and corresponds to the piecewise constant interpolator; its square
bracket operator returns, for a given coarse grid index, the value of the underlying variable at
the corresponding index on the coarser level. This coarser index is computed by calling the
get_coarser static member of the AMRInterface utility class.

The AMRInterface is the analogue of the DWInterface utility class and, as such, it is parame-
trized upon the variable type and problem dimension. It offers two static methods for moving
from coarse to refined levels and vice-versa.

To complete the implementation of the square bracket operator for the piecewise constant
interpolator, it is necessary to implement an appropriate view for accessing the data-warehouse
at coarse indices as computed by the AMRInterface. This composite coarse view is implemented
in the detail::amr_coarser_view.

The detail::amr_coarser_view, as for all other view implementations for ScalarFields, can
be created seting the support to be the coarse region underlying a given refined patch and
retrieving immediately the corresponding coarse data from the specified data-warehouse, or by
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seting only the variable and subproblem labels, as well as the material index, which postpones
the data retrieval to a later moment when the set method will be used to specify its support.

In the create_views body, the AMRInterface interface is used to compute the coarse indices
identifying the rectangular region underlying the given fine region and, when needed, these
coarse indices are modified to be sure that all coarse grid entries that may be required are
included. A list of all coarse patches intersecting this coarse region is then retrieved by calling
the selectPatches method of the coarse level. For each of the coarse patches in this list, the
corresponding subproblem partition is retrieved from the new data-warehouse. From each
subproblem in this partition whose subregion intersects the requested coarse region, the view
instance for the request is accessed, cloned and added to the detail::piecewise_view m_view list.
Immediately after being added at the end of the list, the view clones’ supports are also set to
the intersection between their subregion and the requested region as the detail::amr_coarser_
view m_support member is modified to include this intersection.

The other three implementations of the interpolator provided, one for each possible prob-
lem dimension, define three corresponding partial specializations of the template detail::amr_
interpolator interface for linear interpolation. As for the piecewise constant implementation,
these specializations also use a detail::amr_coarser_view instance to access values from the
coarser level. The differences with it are in the implementation of the coarse data retrieval and
of the square bracket operator.

The square bracket operator for the one-dimensional linear interpolator interpolates the
variable values at the two coarser indices whose position are closest to that of the requested fine
index. For higher dimensions this process is performed, first, on the edges parallel to the lowest
direction to approximate the value of the variable at the orthogonal projection of the requested
fine location over those edges. These computed values are then used to linearly interpolate
along the next direction until the last direction allowed by the problem dimension is reached.
In Figure 7.1 a graphical representation of the piecewise constant and linear interpolators is
given for a bidimensional point. The interpolation point, xl+1

ı̄,̄ on the refined level l + 1 is
intentionally drawn not at the baricenter of the four nearest grid entries on the coarser level l
to stress out that the refinement ratio in each direction is arbitrary and not necessarily equal
to 2. In the example the indices on the coarser level l are chosen to have xli ≤ xl+1

ı̄ < xli+1

and ylj ≤ y
l+1
j̄

< ylj+1, in analogy to the indexing criteria used in the detail::amr_interpolator
implementation of the square bracket operator. In the example, the coarse index closest to the
interpolation point, as returned by the get_coarser method of the AMRInterpolator utility, is
xli+1,j+1, but it may be any of the other three surrounding indices. To retrieve the coordinates
relative to both fine and coarse indices, the get_position static method of the DWInterface is
used which, depending on the problem variable basis, returns the coordinate of the centroid or
of the lower vertex of the grid cell corresponding to the given index at the given level.

When representing a field discretized with a cell–centered variable, it is common practice
to associate each grid value to the whole corresponding cell; the natural choice of interpolation



CHAPTER 7. PHASEFIELD COMPONENT – AMR FINE/COARSE INTERFACES 124

xl+1
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Figure 7.1: Piecewise constant (left) and linear (right) interpolation schemes
for a bidimensional problem. On the top, a graphical representation of the two
schemes: in this example the interpolated value, ul+1

ı̄,̄ , is equal to the coarser value
uli+1,j+1 when using the piecewise constant interpolator. If, otherwise, the linear
interpolator is used, the intermediate 1D linear interpolations (blue), ulj and ulj+1,
are used to compute the final interpolated value (red). At the bottom, the graph
of the two interpolators.
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Figure 7.2: Cell–centered averaging (left) and node centered constant (right)
restrictors for a bidimensional problem. The value associated to a coarse cell
(left) or to its vertices (right) is computed, in the first case, averaging the values
associated to the corresponding refined cells; or, in the second case, using directly
the value associated to the coarse vertex at the same location.
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scheme in this case is therefore the piecewise constant; otherwise, in the vertex–based case, the
linear interpolation is the usual choice.

Similar to detail::amr_interpolator are the two implementations provided for the detail::
amr_restrictor template interface: one, for cell–centered variables, that averages the values at
finer levels to compute coarser values and one, for node centered variables, which uses as value
at coarse nodes the value at the fine nodes which have the same coordinates.

In Figure 7.2 a representation of the two implementations for two dimensional problems
is given. These implementations make use of the detail::amr_finer_view template interface
which plays the same role played by the detail::amr_coarser_view interface in the interpolator
implementation. The detail::amr_finer_view interface is templated as its counterpart and, as
such, its partial specialization for ScalarFields implements the detail::view interface by publicly
inheriting the detail::piecewise_view class. Its implementation is symmetrical to the detail::
amr_coarser_view one.

7.2.2 Fine/Coarse Interfaces schemes

The introduction of artificial boundaries coming with AMR can result in numerical instability.
When the finite–difference stencil used to approximate a differential operator at a refined grid
element extends out of the refined level grid for a given variable, it is necessary to estimate the
values assumed by that variable at those locations that are required to apply the stencil but
that are not available in data-warehouse since they do not coincide with the location of any
grid entry. As an example, in Figure 7.3 all different possible placements up to rotations of the
5-point stencil over Fine/Coarse Interfaces are shown and entries for which no value is available
are drawn in red.

The approximation of these values introduces an additional error to the discretization one.
If the estimation strategy is not chosen carefully, this error, which initially is localized at
artificial boundaries, can grow and spread to the whole geometry. The natural choice for the
estimation strategy is to use the values from coarser levels and adopt the same interpolation
scheme that will be used to populate variable values in the data warehouse when new refined
patches are created during the simulation. Two interpolation schemes have been introduced for
this purpose: a piecewise constant interpolation, which returns the value of the variable at the
coarse grid entry closest to the requested fine location; and a bi-linear interpolation using the
2d closest coarse grid entries.

Figure 7.4 shows the grid entries on the coarser level required by these interpolators for
estimating the value of a variable at the refined location pointed by the east entry of the
5-point stencil on the same configurations of the previous example.

As for the previous analysis, for implementing these FCI schemes it has been necessary to
implement just a template specialization of the detail::bc_fd class template. As stated above,
this implementation uses an AMRInterpolator instance to compute ghost values. Since the order
of interpolation appears as one of the AMRInterpolator template parameters, it is necessary to
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Figure 7.3: Example of different placements of the 5-point stencil over different
artificial boundary configurations. Above: cell–centered variable basis case. Below:
node centered variable basis case. In red the stencil entries for which variable values
need to be estimated.

add to the detail::bc_fd template interface an additional template parameter, C2F, of type FC.
Based on it, the value of the interpolation order is deduced at compile

The use of a template interface for the detail::amr_interpolator instances allows to define
one detail::bc_fd partial specialization that provides for both the FCI scheme using piecewise
constant interpolation and the linear one.

To allow the use of these schemes, two more steps are necessary. First, the detail::get_bc
functor implementation has to be modified to handle artificial boundaries; then a script for the
generation of the source files containing all explicit instantiations of BCFDView type instances has
to be provided.

The first step requires to add an additional field, c2f, to the BCInfo structure that stores
all user specification about boundaries as parsed from input files. The parsing of the input
file fragment specifying which FCI scheme to use on artificial boundary conditions, has to be
implemented by the application developer in the body of the problemSetup for each application
that supports AMR.

By processing the input file, the problemSetup method creates a std::map between boundary
variable identifiers and FCI schemes to be used by the detail::get_bc functor. Its implemen-
tation collects together all information about boundary specifications for each given patch and
assembles them in a BCInfo structure.

The resulting patch boundary information structure can be used by the factory constructor
for BCFDViews to build at run time the string identifying each boundary configuration and to
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(a) Piecewise constant interpolation for cell–centered (above) and node-centered (below)
variable basis.

(b) Bi-linear interpolation for cell–centered (above) and node-centered (below) variable
basis.

Figure 7.4: Coarser interpolation for 5-point stencil at fine/coarse interfaces.
Coarser elements used by interpolators to approximate a variable at the refined
location (red diamond) are represented with blue squares. An unfilled square is
used for coarser elements with null weights.
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instantiate an object of the correct type instance.
All different names identifying the additional BCFDView type instances required by AMR

simulations, are registered to the BCFDViewFactory by their definition in automatically generated
source files.

Different estimation schemes to those introduced above, have been implemented by observing
that it is possible to use both refined and coarser grid entries rather than only coarse ones as
used by interpolators in the estimation of variable values at refined ghost locations. For the sake
of simplicity, at this stage only two dimensional alternative schemes for cell–centered variables
and refine factors equal to 2 have been investigated; leaving the previous schemes the only
available for simulations in three dimensions. In particular, three additional schemes have been
identified:

simple 1-D linear interpolation using the values at the two closest grid cells whose centers are
aligned with the interpolation point,

linear 2-D linear interpolation using the values at the three grid cells closest to the interpolation
point,

bilinear 2-D bilinear interpolation using the values at the four grid cells closest to the inter-
polation point.

The simple FCI scheme can be considered to be an improvement to the previous implemen-
tation when using the piecewise constant interpolator. As shown in Figure 7.5(a), the closest
available grid entry to the interpolation point in red is still the corresponding coarse cell. To
select then the other grid element to use with the 1D interpolation it is possible to follow the
direction of the segment joining the coarse cell center and the target point until the next grid
element is found. In most configurations, the selected element is one of the fine cells already
indicated by the five-point stencil, however, when the finite–difference stencil is centered at the
vertex where two artificial boundaries intersect, the selected element is another coarse cell. The
fact that two possible cases may apply forces the implementation of the detail::bc_fd interface
to depend on the surrounding geometry. Since the view used to access the fine level is the same
used by all the detail::basic_fd_view implementations used by the parent detail::bcs_basic_
fd_view, the simplest way to check if the first case applies is to check if the fine view support
includes the requested fine index or not. In fact, when the selected fine index belongs to a patch
different from the one at the center of the stencil, the check using just grid information may
not be trivial, while its support would already be set to include the selected fine index, since
the fine view will have already retrieved any ghost value from neighbor fine patches before the
execution of any detail::bc_fd method.

The interpolator instance is created in the same way as it is for the FCI implementation of
the detail::bc_fd class described earlier.

The linear FCI scheme is proposed as an improvement to the piecewise constant interpolator
scheme with the aim of providing a better estimate of variable values at artificial ghost nodes
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(a) Simple FCI scheme.

(b) Linear FCI scheme.

(c) Bi-linear FCI scheme.

Figure 7.5: Approximation schemes for 5-point stencil at fine/coarse interfaces.
Coarser elements used by the scheme to approximate a variable at the refined
location (red diamond) are represented with blue squares while blue diamonds are
used when fine cell values are used. An unfilled square is used for coarser elements
with null weights.
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without requiring access to any values in addition to those already required by it. Bidimensional
linear interpolation is used for this scheme, for which three control points are required. As
shown in Figure 7.5(b), the nearest three points to the interpolation one among the center of
cells used by the five point-stencil and the piecewise constant interpolator are the coarse one
and the stencil center. The stencil point opposite to the target one is the farmost, while the
remaining two are equidistant from the interpolation point. Of these two, however, only one is
granted to be available in any configuration and is chosen as control point. Choosing the other
one, however, would have been equivalent to the simple FCI scheme.

On one hand, since the target point is not included in the convex hull of the control point,
this approximation is an extrapolation rather than a proper interpolation, and greater care has
to be used when using this scheme; on the other hand, the resulting scheme is independent of
the geometry of the fine region which makes this detail::bc_fd implementation truly local.

At last the bi-linear FCI scheme is introduced. The four control points required are chosen to
be the closest to the interpolation point whose convex hull includes the requested interpolation
point. As shown in Figure 7.5(c), the choice of the control points is dependent on the fine grid
geometry and three different cases can be identified.

When the stencil is centered at the intersection of two artificial boundaries, in particular,
the coarse control point opposite to the fine region convex vertex can be ignored since its weight
is zero.

7.3 Validation

Three different sets of tests have been performed to assess the behavior and the reliability of
the FCI schemes implemented in the PhaseField component.

The first one aims to pick which of the FCI schemes results in a better control of the error
introduced by artificial interfaces. Heat diffusion simulations have been performed on two-levels
2D adaptive grids, so that the error introduced at the artificial interfaces can be compared for
the different schemes.

The second set of tests consists in the comparing the output of 2D PureMetal simulations
for Problem i (cfr Table 6.2) when different refinement threshold and dilation parameters are
used in either cases where the dendritic growth is favored along the carterian axes and along
the quadrant diagonals.

7.3.1 Comparison of the implemented FCI schemes

In addition to the two FCI schemes using interpolators to approximate ghost values on a
refined grid using values from its coarser level, (piecewise-constant, FC0, and linear, FC1),
three additional schemes have been introduced for cell-centered approximations. To asses which
FCI scheme introduces the smaller error the artificial interfaces 2D Heat simulations have been
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performed over 10000 timesteps of size 0.1 on a two-levels adaptive grid over the computational
domain Ω = [0, 32]2 with maximum refinement h = 1 using both cell-centered (CC) and vertex-
based discretizations (NC). Homogeneous Dirichlet conditions have been imposed on the x+
and y+ boundaries and homogeneous Neumann conditions on the x− and y− boundaries.

In Table 7.1, the relative error profiles from the different schemes are plotted together with
the profiles from simulations on uniform grids with h = 1 (labelled fine) and h = 2 (labeled
coarse) as references. All relative errors are computed as the ratio between the global errors
errNp referred to the finest uniform grid and the exact solution norm using (5.7) and (5.11).

Looking at the L2-relative error profiles, it can be observed how, in the uniform fine cases,
this error increase vanishes over time as the solution flattens due to diffusion. The profiles
for the uniform coarse cases are instead almost constant over time, since these profiles account
mainly for the interpolation error. Since this interpolation is piecewise-constant for cell-centered
variables and bi-linear for vertex-based variables, the CC coarse profile is higher than the NC
coarse one.

Focusing on cell-centered profiles, it can be observed that all FCI schemes produces profiles
between the two reference uniform profiles, meaning that the error introduced at the artificial
interfaces is bounded by the interpolation error. All FCI schemes but the FC0 result in almost
identical L2- and H1

0 -relative error profiles. These are constant over time and about eight
times smaller than the reference coarse one. The FC0 L2 profile, is instead increasing over
time: at the beginning of the simulation the L2-relative error is comparable to the other FCI
scheme, but at the end of the simulation it reached the interpolation error. This behavior can
be explained looking at the H1

0 profiles, which provide a measure of the error in the solution
derivatives over time. While all other schemes’ H1

0 -profiles are bounded by the CC coarse one,
the CC FC0 profile is always higher than the reference coarse one and it is also increasing
over time. Regridding is affecting appreciably only the H2

0 profiles: when a regird occurs the
interpolation/reduction of the solution over the new grid result in a peak in the profile above
the reference CC FC0 which is rapidly smoothed by diffusion and, overall, all profiles but the
CC FC0 are lower than the CC coarse one.

Moving our focus to the vertex-based profiles, these seems to be not bounded by the reference
NC coarse one. Two factors can be accounted for this undesired behavior: the regularity of
the solution, and some issues in how Uintah handles adaptive vertex-based grids. Being the
exact solution to the considered problem harmonic, the interpolation error represented by the
NC coarse profile is much lower than for a generic problem since the interpolation error of the
bi-linear interpolator is controlled by the second order derivatives of the solution which is in
turn the solution itself times a constant. This is evident by looking at Figure 7.10.a; the local
error (5.8) after 500 timesteps has the same spatial distribution as the solution. The analogue
plot for the cell-centered coarse reference case Figure 7.9.a shows instead, how the local error,
in this case, has the same spatial distribution of the solution’s gradient norm.

The second factor is evident in Figure 7.7.a; the artificial interface after 500 iteration is
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NC CC
time coarse FC0 FC1 fine coarse FC0 FCSimple FCLinear FCBilinear FC1 fine

0 1.51 10−4 8.54 10−5 1.02 10−4 2.03 10−10 1.11 10−2 3.79 10−3 3.79 10−3 3.79 10−3 3.79 10−3 3.79 10−3 2.03 10−10

10 1.51 10−4 7.40 10−3 1.58 10−4 2.03 10−8 1.11 10−2 3.81 10−3 3.79 10−3 3.79 10−3 3.79 10−3 3.79 10−3 2.03 10−8

20 1.51 10−4 1.34 10−2 2.16 10−4 4.06 10−8 1.11 10−2 4.52 10−3 3.79 10−3 3.79 10−3 3.79 10−3 3.79 10−3 4.06 10−8

30 1.50 10−4 1.96 10−2 2.69 10−4 6.09 10−8 1.11 10−2 5.30 10−3 3.87 10−3 3.87 10−3 3.87 10−3 3.87 10−3 6.09 10−8

40 1.50 10−4 2.53 10−2 3.17 10−4 8.12 10−8 1.11 10−2 6.00 10−3 3.89 10−3 3.89 10−3 3.89 10−3 3.89 10−3 8.12 10−8

50 1.50 10−4 3.10 10−2 3.64 10−4 1.01 10−7 1.11 10−2 6.80 10−3 4.02 10−3 4.02 10−3 4.02 10−3 4.02 10−3 1.01 10−7

60 1.50 10−4 3.62 10−2 4.08 10−4 1.22 10−7 1.11 10−2 7.52 10−3 4.17 10−3 4.17 10−3 4.17 10−3 4.17 10−3 1.22 10−7

70 1.49 10−4 4.06 10−2 4.48 10−4 1.42 10−7 1.11 10−2 8.28 10−3 4.28 10−3 4.28 10−3 4.28 10−3 4.28 10−3 1.42 10−7

80 1.49 10−4 4.44 10−2 4.99 10−4 1.62 10−7 1.11 10−2 9.07 10−3 4.32 10−3 4.32 10−3 4.32 10−3 4.32 10−3 1.62 10−7

90 1.49 10−4 4.78 10−2 5.43 10−4 1.83 10−7 1.11 10−2 9.79 10−3 4.43 10−3 4.43 10−3 4.43 10−3 4.43 10−3 1.83 10−7

100 1.49 10−4 5.05 10−2 5.86 10−4 2.03 10−7 1.11 10−2 1.06 10−2 4.51 10−3 4.51 10−3 4.51 10−3 4.51 10−3 2.03 10−7

(a) L2-relative error

NC CC
time coarse FC0 FC1 fine coarse FC0 FCSimple FCLinear FCBilinear FC1 fine

0 3.01 10−4 3.97 10−2 4.67 10−4 4.11 10−5 8.57 10−3 2.82 10−2 3.71 10−3 3.70 10−3 3.70 10−3 3.73 10−3 4.11 10−5

10 3.01 10−4 6.22 10−2 1.06 10−3 4.11 10−5 8.57 10−3 2.77 10−2 3.84 10−3 3.75 10−3 3.81 10−3 3.91 10−3 4.11 10−5

20 3.00 10−4 8.50 10−2 1.29 10−3 4.12 10−5 8.57 10−3 3.18 10−2 3.90 10−3 3.79 10−3 3.88 10−3 4.03 10−3 4.12 10−5

30 3.00 10−4 1.07 10−1 1.46 10−3 4.12 10−5 8.57 10−3 3.40 10−2 3.99 10−3 3.82 10−3 3.96 10−3 4.11 10−3 4.12 10−5

40 3.00 10−4 1.38 10−1 1.57 10−3 4.12 10−5 8.57 10−3 3.51 10−2 4.03 10−3 3.84 10−3 4.01 10−3 4.22 10−3 4.12 10−5

50 2.99 10−4 1.49 10−1 1.68 10−3 4.12 10−5 8.57 10−3 3.71 10−2 4.15 10−3 3.94 10−3 4.13 10−3 4.33 10−3 4.12 10−5

60 2.99 10−4 1.52 10−1 1.77 10−3 4.12 10−5 8.57 10−3 3.87 10−2 4.26 10−3 4.02 10−3 4.24 10−3 4.48 10−3 4.12 10−5

70 2.99 10−4 1.62 10−1 1.83 10−3 4.13 10−5 8.57 10−3 4.01 10−2 4.33 10−3 4.07 10−3 4.31 10−3 4.55 10−3 4.13 10−5

80 2.99 10−4 1.73 10−1 1.97 10−3 4.13 10−5 8.57 10−3 4.19 10−2 4.37 10−3 4.09 10−3 4.36 10−3 4.60 10−3 4.13 10−5

90 2.98 10−4 1.84 10−1 2.07 10−3 4.13 10−5 8.57 10−3 4.31 10−2 4.44 10−3 4.12 10−3 4.42 10−3 4.68 10−3 4.13 10−5

100 2.98 10−4 1.95 10−1 2.15 10−3 4.13 10−5 8.57 10−3 4.52 10−2 4.47 10−3 4.16 10−3 4.46 10−3 4.72 10−3 4.13 10−5

(b) H1
0 -relative error

NC CC
time coarse FC0 FC1 fine coarse FC0 FCSimple FCLinear FCBilinear FC1 fine

0 2.22 10−4 9.42 10−1 3.34 10−2 2.06 10−5 1.32 10−2 9.24 10−1 7.35 10−2 4.90 10−2 4.61 10−2 6.84 10−2 2.06 10−5

10 2.22 10−4 9.32 10−1 1.75 10−2 2.06 10−5 1.32 10−2 2.79 10−1 9.32 10−3 4.80 10−3 9.53 10−3 1.24 10−2 2.06 10−5

20 2.22 10−4 9.40 10−1 1.69 10−2 2.06 10−5 1.32 10−2 8.92 10−1 7.71 10−3 4.17 10−3 7.92 10−3 1.11 10−2 2.06 10−5

30 2.21 10−4 9.48 10−1 1.70 10−2 2.06 10−5 1.32 10−2 9.65 10−1 7.38 10−3 4.13 10−3 7.52 10−3 9.40 10−3 2.06 10−5

40 2.21 10−4 9.62 10−1 1.71 10−2 2.06 10−5 1.32 10−2 1.82 10−1 7.06 10−3 4.09 10−3 7.17 10−3 1.10 10−2 2.06 10−5

50 2.21 10−4 9.56 10−1 1.68 10−2 2.07 10−5 1.32 10−2 1.52 10−1 8.47 10−3 4.75 10−3 8.57 10−3 9.82 10−3 2.07 10−5

60 2.21 10−4 9.60 10−1 1.68 10−2 2.07 10−5 1.32 10−2 1.57 10−1 7.88 10−3 5.18 10−3 8.03 10−3 1.14 10−2 2.07 10−5

70 2.20 10−4 9.53 10−1 1.66 10−2 2.07 10−5 1.32 10−2 1.54 10−1 7.53 10−3 4.86 10−3 7.64 10−3 9.33 10−3 2.07 10−5

80 2.20 10−4 9.47 10−1 1.83 10−2 2.07 10−5 1.32 10−2 7.65 10−1 7.21 10−3 4.82 10−3 7.36 10−3 9.10 10−3 2.07 10−5

90 2.20 10−4 9.58 10−1 1.77 10−2 2.07 10−5 1.32 10−2 1.62 10−1 9.08 10−3 4.23 10−3 9.20 10−3 1.08 10−2 2.07 10−5

100 2.20 10−4 9.33 10−1 1.77 10−2 2.08 10−5 1.32 10−2 6.86 10−1 7.45 10−3 4.87 10−3 7.51 10−3 8.89 10−3 2.08 10−5

(c) H2
0 -relative error

Table 7.1: Relative errors from Heat simulations for the different FCI schemes.
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not symmetrical with respect to the bisector of the first quadrant when the exact solution is.
Debugging made possible to find that the issue is related to Uintah not handling correctly
ghosts values of the flag variable used to keep track of where refinement is necessary when
vertex-based grids are used, which already add additional grid entries to handle nodes on the
right/top/above edges.
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Figure 7.6: Pseudocolor plots of the 0-residual, εN0 , (left) and of the local L2-error, errN0 (right) after
five timesteps, tN = 5 for Heat simulations using cell-centered variable representation and standard
interpolators at fine–coarse interfaces: piecewise-constant (a), and piecewise-linear (b).

For each choice of FCI scheme and variable basis, pseudocolor plots of the residual (5.6) and
local L2-error (5.8) are available in Figures 7.6-7.10. In addition to the previous observations,
it can be seen that the residual at the artificial interfaces is not smooth in the cell-centered case
when using the piecewise-constant coarse interpolation (FC0), the simple (FCSimple) or the
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Figure 7.7: Pseudocolor plots of the 0-residual, εN0 , (left) and of the local L2-error, errN0 (right) after
five timesteps, tN = 5 for Heat simulations using vertex-based variable representation and standard
interpolators at fine–coarse interfaces: piecewise-constant (a), and piecewise-linear (b).
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(b) CC FCLinear
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xFigure 7.8: Pseudocolor plots of the 0-residual, εN0 , (left) and of the local L2-error, errN0 (right)
after five timesteps, tN = 5 for Heat simulations using cell-centered variable representation and ad–hoc
interpolators at fine–coarse interfaces: simple (a), linear (b) and bilinear (c).
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Figure 7.9: Pseudocolor plots of the 0-residual, εN0 , (left) and of the local L2-error, errN0 (right) after
five timesteps, tN = 5 for Heat simulations using cell-centered variable representation over uniform
grids: coarse, h = 2 (a); and fine, h = 1 (b).
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Figure 7.10: Pseudocolor plots of the 0-residual, εN0 , (left) and of the local L2-error, errN0 (right)
after five timesteps, tN = 5 for Heat simulations using vertex-based variable representation over uniform
grids: coarse, h = 2 (a); and fine, h = 1 (b).
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linear scheme (FCLinear). Moreover the sign of the residual in the FC0 and FCLinear cases
has alternating signs on both sides of fine/coarse interfaces.

From the above results, it is evident that when using AMR, only cell-centered discretizations
should be used since vertex-based variable representation in conjunction with AMR is still not
fully supported by the Uintah Computation Framework. Concerning the choice of the FCI
scheme, it can be concluded that the best choices are the FCBilinear and the FC1. Both
schemes produce almost identical error profiles for the solution and its first order derivatives,
with the latter producing slightly smaller errors in the approximation of the solution’s second
order derivatives (H2

0 -profiles). For these reasons, in the following tests and AMR simulations
cell-centered discretization is used together with the FC1 scheme.

7.3.2 Choice of refinement threshold and dilation parameters

The second set of tests has been conducted to investigate how the solution is affected by the
parameters affecting the regridding phase of a simulation. These parameters are the refinement
threshold τ which identifies the region, Rfinest, of the computational domain that needs to be
covered by the finest level of the adaptive grid. This approach does not try to estimate the
local error of the solution and choose to refine further the grid where the error estimate is
above a given tolerance and coarsen the grid where the error is below that tolerance. The
geometry of the levels between the finest and the coarsest are therefore not controlled by τ but
only by dilation parameters, that are parameters controlling the number of cells that should
exist in a level between the interface with its finer level and the interface with its coarser level.
Two parameters control this number: the stability–dilation, ns, and the regrid–dilation, nr,
parameters. Both of the two specify the number of cells that should exist in the AMR grid
between adjacent artificial interfaces. They differ in the fequency by which the Unitah regridder
checks if the grid satisfies these specifications. The first is verified after each timestep, while
the latter only after a regrid occurs, as described in §2.2.4. Due to the implementation of FCI
schemes described in the previous section which requires each artificial boundary to be between
adjacent levels, the stability–dilation parameter must satisfy ns ≥ 1.

In the following are reported the results from several 2D PureMetal simulations of Problem
i. The first subset of which is intended to investigate the relation between the refine threshold
τ and the error in the computation of the asymptotic tip velocity with respect to its value
as computed in [49] using the green function method. The same problem has been simulated
on AMR grids with maximum number of levels, nl, in the range1 1–8 but keeping fixed the
finest grid step. When the favored dendritic growth disection is parallel, the computational
domain Ω = [0, L]2 with L = 240 has been used with up to three AMR levels. When more
levels are used, the domain has been enlarged to ensure that the domain upper bound satisfied
L = m2nl−1hfinest for some integer m. The same precaution is used in the diagonal case where

18 is the maximum number of levels allowed by Uintah’s regridder
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L = 179.2 is the minimal upper bound considered. All simulation in this subset used the
minimal dilation parameters ns = 1 and nr = 0, while the following refinement threshold have
been considered: τ = 0.01, 0.005, 0.0025.

The computed asymptotic velocity values are summarized, together with its errors, in Tables
7.2–7.4. These tables contain also information about the AMR grid for each simulation: the
number of regrids occurred, together with the time average, minimum and maximum total
number of cells across all levels. Profiles of the tip characteristics and of the total number of
cells are also given in Figures 7.11–7.13.

tip velocity total cells
levels asymptotic abs err rel err regrids avg min max

pa
ra

lle
l

1 0.07534 0.93106 10.9% 1 360000 360000 360000
2 0.07323 0.01141 13.4% 2855 100185 90896 108064
3 0.07021 0.01443 17.0% 2782 36281 23924 46676
4 0.06671 0.01794 21.1% 2649 20767 7504 31792
5 0.06343 0.02122 25.0% 2543 16859 3444 27828
6 0.06215 0.02250 26.5% 2522 16052 2496 26992
7 0.06200 0.02264 26.7% 2507 15897 2260 26868
8 0.06200 0.02265 26.7% 2507 15925 2260 26932

di
ag

on
al

1 0.08505 0.00039 0.4% 1 200704 200704 200704
2 0.08245 0.00220 2.6% 3046 60837 51104 70128
3 0.07887 0.00577 6.8% 2969 26788 13968 39168
4 0.07476 0.00989 11.6% 2846 18534 4880 31712
5 0.07143 0.01322 15.6% 2761 16572 2816 29728
6 0.06975 0.01490 17.6% 2693 16181 2308 29268
7 0.06944 0.01521 17.9% 2712 16181 2240 29392
8 0.06944 0.01521 17.9% 2712 16197 2256 29408

Table 7.2: Computed asymptotic velocities and total number of cells for
PureMetal Problem i when τ = 0.01 for different number of levels, nl, and minimal
dilation parameters, ns = 1 and nr = 0.

Looking at the results obtained for each considered value of τ within each one of Tables 7.2–
7.4, it is possible to observe how the value of hfinest is not fine enough to avoid grid anisotropy
with parallel simulations producing less accurate solution than diagonal ones. However a finer
value for hfinest, due to the stability constraint on the timestep, would result in unpractical
simulation times. It is evident how increasing the number of levels nl reduces considerabily the
total number of cells in the grid up to about a tenth of the size of the uniform grid. For the
problem considered, however, the reduction of the overall grid size due to using an additional
level decrease sensibly as the nl increases. It appears that using more than four or five levels
is not beneficial in reducing the overall grid size. The number of regrids performed during
the simulation seems independent of the number of levels. The number of AMR levels affects
instead the error in the tip velocity: as nl increases a sensible worsening of the tip velocity is
observed until a maximum relative error is reached. This behavior may suggest that the finest
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region Rfinest is to narrow around the phase-field interface. It seem that there exists a value
of nl after which adding a level is coarsening only region that don’t affect the quality of the
solution. The comparison between Tables 7.2–7.4, however allows to conclude that lowering the
refinement threshold does not help to reduce the worsening of the solution as additional AMR
levels are introduced. This is due to the way region Rfinest is defined; in fact, the gradient of
the phase-field vanishes immediately away from the solid-liquid interface, therefore lowering τ
is not enough to widen enough Rfinest around the solid-liquid interface.

A better approach to improve the quality of the solution when increasing the number of AMR
levels would be to increase the width of the finest region around the liquid-solid interface. This
can be done by changing the dilation parameters. For this reason the second subset of tests has
been conducted to compare the tip velocities computed with different values of ns. In Uintah
there is a hard limit on the overall thickness of the dilation layer when parallel simulations
are performed. In the Core/Parallel/Parallel.h header file the macro MAX_HALO_DEPTH is defined
to 5 and is used by the loadbalancer to separate out the standard from the distal ghost cell
requirements and the scheduler will then generate two different set of patch neighbors. Uintah’s
regridder is looking only in the first set of neighbors when dilation is applied (it is assuming that
dilation should not involve distal patches to semplify the already expensive regridding step).
For this reason parallel simulation where ns + nr < MAX HALO DEPTH may behave unexpectedly
when the dilated finest region crosses patches assigned to different processors.

The considered values for ns are 2 and 4 and the results reported in Tables 7.5 and 7.6
should be compared with Table 7.4 since the refinement tolerance chosen for these simulations
is τ = 0.0025 and the refinement dilation parameter is nr = 0. In Figures 7.11–7.13, the
profiles of the tip characteristics and of the total number of cells are available. A drawback
of this approach is that the same dilation is applied to each level leading to bigger grids than
necessary in the current application. Here it is important to dilate only the finest level while on
intermediate levels only one cell layer is required by FCI schemes between artificial interfaces.

Looking at the total cell maximum values we can observe as incrementing the dilation by
one unit result in increasing the AMR grid size by a small factor (3%), but using ns = 4
can increment the grid size almost by half. Also the overall number of regrids is affected by
enlarging the dilation layer. Setting ns = 4 can result in the regridding occurring almost 30%
more often.

Small benefit in the tip velocity computations is observed for ns = 2 but the error is halved
for ns = 4, which confirms that the additional error caused by the introduction of AMR levels
observed in the previous subset of test is due to the finest region being to narrow around the
solid-liquid interface.

However, since the regridding phase can be quite computationally expensive, it can be useful
to check if a smaller error can be achieved by increasing the regrid-dilation parameter instead
of ns. This parameter enlarges the finest region only after a regrid and then, as the simulation
progresses and the physical interface moves forward, the layer of cells between the physical and
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Figure 7.11: Profiles of dendrite characteristics (a–d) and total number of grid cells (e) for PureMetal
Problem i when τ = 0.01 for different number of levels, nl, and minimal dilation parameters, ns = 1
and nr = 0.
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Figure 7.12: Profiles of dendrite characteristics (a–d) and total number of grid cells (e) for PureMetal
Problem i when τ = 0.01 for different number of levels, nl, and minimal dilation parameters, ns = 1
and nr = 0.
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Figure 7.13: Profiles of dendrite characteristics (a–d) and total number of grid cells (e) for PureMetal
Problem i when τ = 0.01 for different number of levels, nl, and minimal dilation parameters, ns = 1
and nr = 0.
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artificial interfaces in the finest level continue to thin until it reaches ns cell widths. When this
limit is reached a regrid is triggered. In the general case, therefore, the thickness of the dilation
layer ranges between ns + nr and ns.

For this reason the third subset of tests were performed for nr = 2, 4 while keeping the
ns = 1 and τ = 0.0025. Tip velocities and the errors in its computation are given in Tables 7.7
and 7.8 where also information about the total number of cells and regrids are given. It can be
observed that specifying a regrid dilation parameter greater than zero reduces the occurrence
of regrids by more than a third and similar improvements are recorded for both nr = 2 and
nr = 4. In terms of total number of cells, an increase of about a sixth is observed when the
regrid dilation is set to two cells while almost a 50% percent size increase is observed for nr = 4.
The first increment is comparable to the one observed in 7.7 for diagonal problems as the last
one is with those in 7.8, even if in these cases the total with of the dilation layer is one cell
wider (since rs = 1) than in the previous two.

When comparing results obtained for different values of regrid–dilation parameter with
the analogue obtained varying the stability–dilation parameter in terms of accuracy in the
computation of the dendritic tip velocity, it is evident that a smaller reduction in the error is
achieved by increasing nr instead of ns.

From the profiles provided in Figures 7.16 and 7.17, in particular from the curvature plots of
the second one, some discontinuities are observed for nr = 4. These are related to the fact that
being nr + ns ≮ MAX HALO DEPTH there are issues in retrieving the phase field values around
the tip required for computing the tip characteristics when the dendrite tip approaches the
boundary between patches belonging to different processors.

From the observations above, it can be concluded that in the case of PureMetal simula-
tions using the PhaseField component, the best approach is to use the following set of regrid
parameters

τ = 0.0025, ns = 4 nr = 2 .(7.1)

This choice of parameter requires to redefine the macro MAX_HALO_DEPTH to at least 7 but has the
advantage to both lowering the error in computing the tip velocity and reducing the frequency of
regrids, with the cost, however, of increasing the grid size more than necessary. This compromise
could be improved in the future but either allowing different dilation parameters for each AMR
level, or by adding a finer dilation parameter for enlarging the finest region immediately after the
error estimate task is executed and before the current dilation algorithm is run by the regridder.
The first approach needs to be implemented at a lower level within Uintah’s Framework, wile
the latter approch could be implemented both by the application developer as an additional
task scheduled to run after the error estimate one, or the framework itself.
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Figure 7.14: Profiles of dendrite characteristics (a–d) and total number of grid cells (e) for PureMetal
Problem i when ns = 2 for different number of levels, nl, and fixed τ = 0.0025 and nr = 0.
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Figure 7.15: Profiles of dendrite characteristics (a–d) and total number of grid cells (e) for PureMetal
Problem i when ns = 4 for different number of levels, nl, and fixed τ = 0.0025 and nr = 0.
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Figure 7.16: Profiles of dendrite characteristics (a–d) and total number of grid cells (e) for PureMetal
Problem i when nr = 2 for different number of levels, nl, and fixed τ = 0.0025 and ns = 1.
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Figure 7.17: Profiles of dendrite characteristics (a–d) and total number of grid cells (e) for PureMetal
Problem i when nr = 4 for different number of levels, nl, and fixed τ = 0.0025 and ns = 1.
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tip velocity total cells
levels asymptotic abs err rel err regrids avg min max

pa
ra

lle
l

1 0.07534 0.00931 10.9% 1 360000 360000 360000
2 0.07332 0.01133 13.3% 2927 101069 90960 109728
3 0.07040 0.01424 16.8% 2791 37377 23988 48628
4 0.06700 0.01765 20.8% 2708 21912 7648 33824
5 0.06386 0.02079 24.5% 2608 18012 3476 30132
6 0.06239 0.02226 26.2% 2563 17206 2512 29008
7 0.06225 0.02240 26.4% 2571 17052 2276 28948
8 0.06224 0.02240 26.4% 2569 17080 2276 29012

di
ag

on
al

1 0.08505 0.00039 0.4% 1 200704 200704 200704
2 0.08254 0.00210 2.4% 3079 61792 51136 72160
3 0.07911 0.00554 6.5% 2969 27972 14032 41248
4 0.07524 0.00941 11.1% 2853 19769 5040 33744
5 0.07190 0.01275 15.0% 2737 17814 2832 31952
6 0.07038 0.01427 16.8% 2718 17426 2372 31508
7 0.07001 0.01464 17.2% 2700 17429 2304 31632
8 0.07001 0.01464 17.2% 2700 17445 2320 31648

Table 7.3: Computed asymptotic velocities and total number of cells for
PureMetal Problem i when τ = 0.005 for different number of levels, nl, and mini-
mal dilation parameters, ns = 1 and nr = 0.

tip velocity total cells
levels asymptotic abs err rel err regrids avg min max

pa
ra

lle
l

1 0.07534 0.00931 10.9% 1 360000 360000 360000
2 0.07338 0.01127 13.3% 2939 101948 90960 111376
3 0.07062 0.01403 16.5% 2840 38472 23988 50756
4 0.06723 0.01742 20.5% 2721 23055 7520 35744
5 0.06441 0.02024 23.9% 2649 19167 3476 32228
6 0.06282 0.02183 25.7% 2649 18365 2512 31296
7 0.06263 0.02201 26.0% 2651 18212 2276 31236
8 0.06263 0.02202 26.0% 2651 18241 2276 31300

di
ag

on
al

1 0.08505 0.00039 0.4% 1 200704 200704 200704
2 0.08265 0.00199 2.3% 3077 62747 51136 73648
3 0.07929 0.00536 6.3% 2966 29158 14032 43552
4 0.07566 0.00899 10.6% 2872 21010 5008 36160
5 0.07221 0.01243 14.6% 2820 19061 2816 34096
6 0.07087 0.01378 16.2% 2767 18680 2308 33764
7 0.07049 0.01416 16.7% 2759 18684 2240 33920
8 0.07049 0.01416 16.7% 2759 18700 2256 33936

Table 7.4: Computed asymptotic velocities and total number of cells for
PureMetal Problem i when τ = 0.0025 for different number of levels, nl, and
minimal dilation parameters, ns = 1 and nr = 0.
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tip velocity total cells
levels asymptotic abs err rel err regrids avg min max

pa
ra

lle
l

1 0.07534 0.00931 10.9% 1 360000 360000 360000
2 0.07342 0.01122 13.2% 2817 102151 91216 111472
3 0.07068 0.01397 16.5% 2774 38724 24340 50884
4 0.06730 0.01734 20.4% 2725 23347 7888 36032
5 0.06485 0.01980 23.3% 2679 19547 3828 32580
6 0.06388 0.02077 24.5% 2672 18807 2944 31984
7 0.06378 0.02087 24.6% 2682 18671 2708 31956
8 0.06378 0.02087 24.6% 2682 18703 2708 32020

di
ag

on
al

1 0.08505 0.00039 0.4% 1 200704 200704 200704
2 0.08270 0.00195 2.3% 3060 62743 51392 73920
3 0.07934 0.00531 6.2% 3225 29169 14384 43680
4 0.07580 0.00885 10.4% 3242 21082 5248 36480
5 0.07298 0.01166 13.7% 3171 19254 3072 34736
6 0.07201 0.01263 14.9% 3167 18970 2708 34596
7 0.07188 0.01276 15.0% 3166 19008 2640 34656
8 0.07188 0.01276 15.0% 3166 19024 2656 34672

Table 7.5: Computed asymptotic velocities and total number of cells for
PureMetal Problem i when ns = 2 for different number of levels, nl, and fixed
τ = 0.0025 and nr = 0.

tip velocity total cells
levels asymptotic abs err rel err regrids avg min max

pa
ra

lle
l

1 0.07534 0.00931 10.9% 1 360000 360000 360000
2 0.07375 0.01089 12.8% 2792 106075 91856 118128
3 0.07173 0.01292 15.2% 3296 44576 25300 61060
4 0.06997 0.01467 17.3% 3316 30325 9120 48224
5 0.06916 0.01549 18.3% 3387 27149 5204 45764
6 0.06908 0.01556 18.3% 3386 26665 4432 45600
7 0.06909 0.01556 18.3% 3386 26655 4276 45652
8 0.06908 0.01556 18.3% 3387 26741 4276 45828

di
ag

on
al

1 0.08505 0.00039 0.4% 1 200704 200704 200704
2 0.08316 0.00149 1.7% 2980 66555 52032 81184
3 0.08085 0.00380 4.4% 3485 34928 15344 54976
4 0.07881 0.00584 6.9% 3563 27974 6352 49872
5 0.07801 0.00664 7.8% 3570 26753 4384 49552
6 0.07797 0.00668 7.8% 3567 26704 4100 49716
7 0.07786 0.00679 8.0% 3577 26828 4112 50032
8 0.07786 0.00679 8.0% 3577 26844 4128 50048

Table 7.6: Computed asymptotic velocities and total number of cells for
PureMetal Problem i when ns = 4 for different number of levels, nl, and fixed
τ = 0.0025 and nr = 0.
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tip velocity total cells
levels asymptotic abs err rel err regrids avg min max

pa
ra

lle
l

1 0.07534 0.00931 10.9% 1 360000 360000 360000
2 0.07360 0.01105 13.0% 1789 104079 91984 114752
3 0.07102 0.01362 16.0% 1765 41132 25588 55012
4 0.06794 0.01671 19.7% 1723 25841 9456 40400
5 0.06543 0.01922 22.7% 1709 22022 5332 36708
6 0.06436 0.02028 23.9% 1713 21278 4480 35952
7 0.06425 0.02040 24.0% 1707 21143 4244 35924
8 0.06425 0.02040 24.1% 1707 21176 4244 35988

di
ag

on
al

1 0.08505 0.00039 0.4% 1 200704 200704 200704
2 0.08292 0.00172 2.0% 1890 64618 52224 77408
3 0.07995 0.00470 5.5% 1826 31511 15712 48272
4 0.07642 0.00823 9.7% 1834 23473 6720 41056
5 0.07373 0.01091 12.8% 1782 21629 4672 39584
6 0.07277 0.01188 14.0% 1801 21340 4308 39412
7 0.07263 0.01201 14.1% 1805 21380 4240 39504
8 0.07263 0.01201 14.1% 1805 21395 4256 39520

Table 7.7: Computed asymptotic velocities and total number of cells for
PureMetal Problem i when nr = 2 for different number of levels, nl, and fixed
τ = 0.0025 and ns = 1.

tip velocity total cells
levels asymptotic abs err rel err regrids avg min max

pa
ra

lle
l

1 0.07534 0.00931 10.9% 1 360000 360000 360000
2 0.07391 0.01074 12.6% 1767 107978 92848 121456
3 0.07174 0.01291 15.2% 1751 46031 26612 63428
4 0.06902 0.01562 18.4% 1713 30989 10400 49296
5 0.06660 0.01805 21.3% 1694 27186 6308 45476
6 0.06557 0.01908 22.5% 1744 26436 5424 44912
7 0.06545 0.01920 22.6% 1733 26303 5188 44820
8 0.06545 0.01920 22.6% 1733 26336 5188 44884

di
ag

on
al

1 0.08505 0.00039 0.4% 1 200704 200704 200704
2 0.08333 0.00131 1.5% 1849 68421 53024 84912
3 0.08082 0.00383 4.5% 1815 36293 16432 57520
4 0.07772 0.00693 8.1% 1781 28501 7728 51216
5 0.07492 0.00973 11.4% 1792 26624 5712 48848
6 0.07408 0.01057 12.4% 1793 26331 5252 49012
7 0.07393 0.01072 12.6% 1783 26371 5184 49136
8 0.07393 0.01072 12.6% 1783 26387 5200 49152

Table 7.8: Computed asymptotic velocities and total number of cells for
PureMetal Problem i when nr = 4 for different number of levels, nl, and fixed
τ = 0.0025 and ns = 1.



Chapter 8

PhaseField Uintah Component
Implicit Solvers

In the previous section, support to adaptive mesh refinement has been introduced with the
aim to reduce the computational grid size while maintaining the spatial refinement required to
describe the phase field gradient at the physical interface between liquid and solid phases. In
this section, support to an implicit solver is introduced to allow to overcome the limitations on
the timestep size due to the stability constraint of the explicit Euler time scheme.

Implicit or semi-implicit time schemes are implemented in the PhaseField component for
the Heat and Allen–Cahn Benchmark and PureMetal applications which require the solution of
linear systems. For this purpose, the Uintah Computational Framework provides a driver to the
HYPRE library [29], which features a collection of highly scalable solvers and preconditioners.

An analysis of the current status of Uintah’s support of HYPRE solvers is given §8.1; two
strategies are there presented for allowing the resolution of linear systems on semi-structured
grids as those arising from AMR. The first allows to use the current Uintah’s driver with fewer
modifications to its implementations, while the second is the implementation of an additional
driver to support HYPRE semi-structured solvers.

Details of the implementation of both strategies are available in §8.2.
To validate the two implementations, in §8.3 convergence analyses are presented for the Heat

problem in 2D and 3D, and the Allen–Cahn benchmark, and for the PureMetal applications.

The two implementaions proposed here differ from other sotware implementations. For
example, the AMReX [105] sotware, which offers probably one of the most complete and mature
framework for block-structured adaptive mesh refinement (it replaces Chombo [21] and BoxLib
[106]), follows the following approach. Starting from the finest AMR level a V-cycle is performed
on each level, down to the coarsest one. Then either HYPRE, petsc, or some internal linear
solver is then used to solve the problem on the full-coarsest level including the regions under

153
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refined block. A correction is eventually interpolated from the coarset to the finest AMR level.
Theese steps are iterated until the norm of the residual on the finest level is below a given
tolerance.

Both the smooth operator used by the V-cycle on refined levels and the solve operator on the
coarsest level which assemble the linear matrix are implemented for each problem and for each
variable basis (either at cell centers or nodes). At the moment of writing, AMReX implements
solvers for two kind of problems: the first can be used for solving problems in the canonical
form

(Aα−B∇·β∇)ϕ = f ,

where A and B are scalar constants, α and β are scalar fields, ϕ is the unknown, and f is the
right-hand side of the equation; the second one for solving the Poisson’s equation, which is a
special case of the canonical form.

The approach proposed here differs from the other software, in using the external solver
library HYPRE to update the solution on all the AMR levels. A second difference is that
the solution is computed only on those portions of each level that are not refined any further,
which reduces the overall problem size. The third and most beneficial novelty is the fact that
the implicit solver implementation presented here decouples the definition of the problem from
the linear solver implementation, making it possible to write new solver for new problems only
by implementing new kernels instead of adding new solver implementations.

It has to be reminded that little focus has been given to them in this research work, even
though the choice of the preconditioner greatly affects the performance of linear solvers. This
research has focused more on the implementation of the software itself and only support for
preconditioners has been developed. Which particular preconditioner is the most suitable for
any of the applications considered is beyond the remit of this work.

8.1 Analysis

The HYPRE library offers four different conceptual interfaces to a collection of parallel multi-
grid solvers and preconditioners;

Structured Grid System Interface, which is suitable for applications over computational do-
mains that can be described as unions of rectangular grids with the same grid step and a
fixed stencil pattern of non-zeros at each grid point; this interface supports only a single
unknown per grid point

Semi-Structured Grid System Interface, which is appropriate for applications whose domain
can be described as union of structured grids as it is the case of composite grids arising
from adaptive mesh refinement applications; this interface supports multiple unknowns
per grid point
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Finite Element Interface, which is convenient for linear problems arising from finite element
discretization

Linear-Algebraic System Interface, which provides the traditional interface to matrices and
vectors through row and column indices.

Within the UCF only the structured interface is fully supported for cell-centred variables
by the HypreSolver driver. Only experimental support is provided for vertex-based variables
with the structured interface. Unfortunately, this driver is not suitable for AMR simulations
since the structured grid interface does not support the semi-structured grids on which such
simulations are performed.

An old unmaintained driver is implemented which was developed to provide an interface to
the semi-structured implementations within HYPRE. This AMRSolver driver, unfortunately, has
never been working properly according to its developer and therefore its development has been
abandoned.

Two different approaches have been identified for using HYPRE solvers on AMR semi-
structure grids. The first consist in solving each AMR level separately using the already im-
plemented structured HypreSolver driver. This is possible since each AMR level is a structured
grid on its own. At each time step, first the problem on the coarsest level is solved. Since the
coarsest grid coincides with the whole computational domain, its boundaries are only physical
boundaries, therefore the physical boundary conditions are sufficient to compute the solution
xN+1,0 given its values at the previous timestep xN,0. On refined levels, T N

l (l = 1, . . . , lmax),
the grid boundaries may not be physical boundaries but artificial fine coarse interfaces. For
this reason the solution xN+1,l−1 on the coarser level is used as Dirichlet condition on arti-
ficial boundaries to compute xN+1,l from xN,l. This requires that the coarser level is solved
before being able to solve the next refined level. Since the initialization of HYPRE structures
is quite expensive, these may be reused across several timesteps. These structures depend on
the level geometry and therefore a set of HYPRE structures is necessary for each level. Some
tweaks have been necessary to allow having multiple sets of HYPRE structures coexist in the
DataWarehouse as described in the next section. However these structures must be reinitialized
after each regrid.

The second approach is to implement a driver to HYPRE’s semi-structured interfaces. It
has been decided to implement a new driver rather than fix the existing AMRSolver since it would
have been easier to start from the structured working HypreSolver driver and then modify it
in steps by adding a feature at a time from the AMRSolver fixing any bug and updating the
interfaces to the latest release of the HYPRE library. Luckily, HYPRE’s semi-structured grids
are structured very similarly to Uintah’s: Uintah’s grid are organized in levels, each of which is
a structured grid. Levels are then subdivided in patches, that are cubic clusters of cells. Patches
are then distributed across MPI processes. Within HYPRE, the level counterpart is called part
and patches are called boxes. The main difference between the two implementation, is that
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in Uintah the geometry is generated by the Regridder component and then the LoadBalancer
divides the patches between processes, so that every MPI process is given the whole geometry
and then works on only some patches of it. On the contrary in HYPRE, minimal global
information is shared between processes and boxes are initialized only on the process owning
it. This means that the initialization of HYPRE structures has to be delayed to after patches
have been distributed, that is HYPRE must be initialized by tasks.

Another similarity between HYPRE and Uintah is the use of stencils. In Uintah the stencil
is fixed to 5-points in two dimensions and 7-points in three while in HYPRE any stencil up to
27 points can be specified (1 layer around each point) and therefore the driver has to take care
of mapping stencil values from Uintah’s DataWharehouse to HYPRE matrices. In Uintah only
matrices are exclusively represented as stencil-valued fields, therefore in the semi-structured
cases where the matrix associated to the problem may have non-zero entries other than stencil
entries, such as connecting cells between levels, this will require the introduction of new structure
in the UCF to store these entries. Since we want to be able to initialize HYPRE structures
only when required, these structures for handling the additional matrix entries must provide
a mechanism for defining the non-zero matrix pattern while the HYPRE matrix structure is
initialized and modifying their values at any timestep. Since extra matrix values in HYPRE
are stored in a vector it is important that the structure introduced for handling extra entries
stores the position of each entry within this vector to allow an efficient update of the matrices
values at any given timestep.

The semi-structured driver is implemented here to support only one variable, but it can
be extended to solve algebraic systems of multiple variables as supported by HYPRE’s semi-
structured interface. This will be necessary to solve fourth order problems such as the Cahn-
Hilliard ones. The most straightforward strategy suitable to tackle this family of problem is to
introduce an auxiliary variable v = ∆u, since the discretization of the bi-Laplacian would require
wider stencils not supported by HYPRE. The only interface supporting multiple variables in
HYPRE is the semi-structured one. For these reason, the implementation of the new semi-
structured driver is designed to support multiple variables at a later stage.

8.2 Implementation

As depicted in the previous analysis, two strategies are going to be implemented hereafter. The
first one consists in using the existing HypreSolver2 driver on each AMR level, and requires fewer
modifications to run; the second one consists in implementing a new driver, SStructSolver, to be
used on the whole AMR composite grid. These drivers implementation is described in the next
two paragraphs. In the following paragraph, the list of modifications that have been necessary
for the variable views introduced in the previous two sections are given. In the last paragraph
of this section, an overview on how to integrate the drivers in a PhaseField application is given.
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8.2.1 Structured Grid Solver

The typical workflow for using the HypreSolver2 driver that is followed by Uintah’s non-AMR
applications on a structured grid is the following:

1. The HypreSolver2 driver is instantiated by the Uintah’s SolverFacory when sus’s main is ex-
ecuted. The driver is then accessible to applications as a port through the SolverInterface
interface.

2. Uintah’s variables for storing the linear system to be solved are created within the appli-
cation constructor. Grid variables of type Stencil7 are used for the linear matrix in the
general non-symmetric case and of type double for the solution, guess and right–hand–side
vectors.

3. The SolverInterface’s readParameters method is invoked by the application problemSetup
method to parse the input file and initialize an instance of the class HypreParams, which
specializes SolverParameters class, and will be later used to select which HYPRE solver to
use and its configuration. This step is executed by the SimulationController immediately
after all components are initialized by sus.

4. When the application initialization task is scheduled at the first (with its scheduleInitial-
ize method) or at a restart timestep (with scheduleRestartInitialize), the application also
schedules the solver’s initialize task by invoking its scheduleInitialize method. This
task is specified to be of type OncePerProc so that it will then executed by each available
process exactly once.

5. When the application scheduleTimeAdvance method is executed to schedule the task that
advances the solution to the next timestep, it invokes the solver’s scheduleSolve method.
This method first creates an instance of the class template HypreStencil7 whose purpose
is to store all information about which VarLabels from which DataWarehouse must be used
to populate the values of the structures required to solve a linear system within HYPRE.
This class is templated upon the type of variable basis used in Uintah (cell-, face- or
vertex-based) while for HYPRE the cell-centered base is always used, since it is the most
widely supported. To comply with this changes Patches ranges must be adjusted when
later they are converted to boxes in the HYPRE structured grid. The scheduleSolve then
schedules the HypreStencil7’s solve task, whose TaskType is OncePerProc.

6. After the TaskGraph is compiled, the Scheduler ensures that the solver initialize task is
executed by each process once per process. This task allocates all HYPRE’s structures:
the matrix, vectors and solver structures that constitute the members of the hypre_solver_
struct class which is then saved in the DataWarehouse as a SoleVariable so that the same
instance is shared by all patches belonging to the same processor.
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7. At each timestep, the Scheduler controls the execution of the HypreStencil7’s solve task.
This is executed once by each available process, and it is within this task that HYPRE
routines are invoked to actually populate HYPRE structures, assemble and solve the
linear system associated to the application. The following steps are performed by the
solve task:

Structures Retrieval — The hypre_solver_struct containing all HYPRE instances is
retrieved from the DataWharehouse.

(a) First the current DataWharehouse is searched and if the structure is not found
this is moved from the old to the current. This check has to be performed
because there are applications that may use the same solver more than once per
timestep and the solver structure may have been already moved from the old
DataWarehouse.

Grid and Stencil Setup — If the current timestep is a setup timestep – i.e. it is the first
one at the beginning of a simulation or after it has been restarted or if the number of
timestep since last setup coincides with the frequency the user has specified with the
parameter setupFrequency in Solver/Parameters node of the ups file – the following
setup and assemble steps are performed:

(b) HYPRE_StructGrid is created (or deleted and recreated). For each patch belonging
to the processor the function HYPRE_SetExtents is used to specify the geometry
of the boxes for HYPRE’s structured grid and HYPRE_SetPeriodic is called if
Uintah’s grid is periodic in any direction. Finally the grid is assembled with
HYPRE_StructGridAssemble.

(c) HYPRE_Stencil is (re)created and its elements are populated with the offset vec-
tors corresponding to the members of the Uintah’s Stencil7 class calling HYPRE_
StructStencilSetElement. Stencil7 are mapped to offsets in the following order: p
7→ {0,0,0}, e 7→ {1,0,0}, w 7→ {-1,0,0}, n 7→ {0,1,0}, s 7→ {0,-1,0}, t 7→ {0,0,1},
b 7→ {0,0,-1}. Nonsymmetric problems are treated in HYPRE, as in all other
Uintah’s components, as three dimensional problems regardless of the physical
dimension of the problem. For cell centered problems, as those considered here,
this approach does not affect the size of the linear system in HYPRE.

Matrix Setup, Update and Assemble — Matrix is created, its entries are set/up-
dated and the matrix finalized.

(d) HYPRE_StructMatrix is (re)created from the given grid and stencil and its proper-
ties (symmetry and number of ghosts) are set. Finally the matrix is initialized
via the HYPRE_StructMatrixInitialize function.

(e) If the current timestep is a setup timestep or if the number of timesteps since last
update coincides with the frequency the user has specified with the parameter
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updateCoefFrequency in Solver/Parameters node of the ups file, the matrix entries
are set using the grid Stencil7 values from a given variable from the DataWarehouse
. Values from the Stencil7 grid values of A, in particular, are rearranged to match
the order of offsets in the HYPRE_StructStencil object.

(f) If the current timestep is a setup timestep the HYPRE matrix is assembled
calling the HYPRE_StructMatrixAssemble routine.

RHS Vector Setup, Update and Assemble — The right-hand-side vector and the
solution vector is created, its entries are set/updated and the vector is finalized.
These steps are grouped in HypreStencil7’s method createPopulateHypreVector

(g) If the current is a setup timestep an HYPRE_StructVector is (re)created and ini-
tialized.

(h) Its coefficients are always updated, contrarily to the matrix ones. Analogously
to the matrix, however, values are filled by lines of cells. In this case there is no
need to rearrange the values from the grid variables since values corresponding
to a line are adjacent within the Uintah’s grid variable associated to a vector.

(i) If the current timestep is a setup timestep the HYPRE vector is assembled
calling the HYPRE_StructVectorAssemble routine.

Solution Vector Setup, Update and Assemble — The solution vector is created,
its entries are set/updated and the vector is finalized. When specified, this vector
can also be used as the initial guess by HYPRE’s iterative solvers.
HypreStencil7’s method createPopulateHypreVector is invoked so that steps (g–i) are
performed for the solution/guess vector.

System Resolution – A switch clause is used to switch between different HYPRE solver
implementations and the following steps are performed

(j) It the current is a setup timestep, a solver object is (re)created and setup accord-
ing to the parameters specified by the user in input. The solver instance is saved
as a member of the hypre_solver_struct object which is kept in the DataWarehouse
a SoleVariable.

(k) It the current is a setup timestep and a preconditioner has been selected in
the user input, a preconditioner object is (re)created, setup and passed to the
solver. The preconditioner instance is saved as a member of the hypre_solver_
struct object.

(l) The linear system is solved using the appropriate HYPRE solve routine.
(m) The number of performed iterations and the final relative residual norm are

retrieved and a convergence check is performed.
(n) The values of the solution are copied back from the HYPRE˙StructVector object

to Uintah’s grid variable.
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(o) If the current is a setup timestep, the HYPRE grid and stencil objects are
destroyed, since they are no longer needed after the matrix and vector have
been assembled.

(p) If the convergence check is unsuccessful, a ConvergenceFailure exception is thrown
to be caught by the SimulationController.

8. After the last timestep, the hypre_solver_struct object is destroyed and with it all instan-
tiated HYPRE structures left are destroyed as well.

The following modifications have been necessary to allow the use of multiple hypre_solver_
struct instances for solving one linear system for each AMR level. Since each grid level is
executed individually by Uintah’s scheduler, the tasks described before of the type OncePerProc,
are actually executed by each process once per level. This means that when a solver task is
executed all the patches within the same execution of a task belong to the same level, and that
it can happen that, for a particular level, there are no patches assigned to a specific process.
This edge case is assured to not happen by the load balancer on structured grids, since the
condition that the number of total patches must be at least equal to the number of available
processes is enforced. Some minor checks had to been added to correctly handle this case.

Apart from these small changes, the most significant modification concerned the use of
multiple hypre_solver_struct instances, one for each AMR level. First, it has been necessary
to associate a different VarLabel to each level’s hypre_solver_struct instance. Secondly it has
been necessary to modify step 7(a) of the previous workflow. In fact, it is now possible that
the hypre_solver_struct relative to a level is not available in either the current nor the previous
DataWarehouse. This may happen if after a regrid a level has been added. In this case a new
instance of the hypre_solver_struct class is created and initialized similarly to step (6).

In addition to the previously available HYPRE structured solver for non-symmetric problems
(GMRES, PFMG, SMG), support has been added also to the following: CycRed, BiCGSTAB,
LGMRES, FlexGMRES, and Hybrid1. All of these solvers — except for the CycRed which is
an exact solver — can be used also as preconditioners. For details about these solvers please
refer to §2.3.3 and to the references therein.

8.2.2 Semi Structured Grid Solver

The biggest difference between solving multiple linear systems on each AMR level and solving
a single global system for the whole AMR grid is that, in the first case, each system has no
non-zero entries other than stencil entries while, in the latter, at fine-coarse interfaces additional
non-zero entries are required.

For these reason the HypreSStruct::AdditionalEntries structure has been introduced to store
these additional entries in Uintah’s DataWharehouses as the Stencil7 structure is used to store

1The Hybrid implementation was already available but supported only PCG as Krylov solver. The previous
implementation has been modified to allow using GMRES as well
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stencil ones.
The HypreSStruct::AdditionalEntries class maps keys of type HypreSStruct::MatrixIndex to

double values. The HypreSStruct::MatrixIndex class has been defined to represent additional
entries in the linear matrix that are not accessible via a cell-index and a stencil entry. The
associated value is the coefficient of the linear matrix corresponding to a key.

HypreSStruct::AdditionalEntries key-values pair types can be passed to its the compound
assignment by sum operator, +=, allowing an agile syntax for setting non-stencil entries from
kernels of PhaseField applications. This operator either adds the entry to the map or, if its key
is found in the map, updates its associated value with the given one.

For structured geometries in HYPRE it is sufficient to add to a HYPRE_StructGrid instance
all its boxes (Uintah’s patches). For semi-structured grids, however, it is necessary to add to a
HYPRE_SStructGrid instance all its parts (Uintah’s levels) and to each part its boxes. However,
defining a grid is not sufficient because it is necessary to define also the connections between
each part. The definition of the grid and, in particular, of the graph is not trivial but is
common to all semi-structured solvers, therefore the information and functions introduced to
this purpose have been defined as members and methods of the HypreSStruct::detail::sstruct_
implementation template class. The template parameters are the problem dimension, DIM and
the type of coarse to fine interpolation to use, C2F. The first template parameter allows to
optimize some implementations while the second one is used to specify the order of interpolation
to use when a connection is created from a coarse patch to a fine patch. Details of these
implementations are given later in [18].

The HypreSStruct::detail::sstruct_implementation class partially corresponds to the Hypre-
Stencil7 class of the structured driver. However this class only contains those steps of the
HYPRE workflow that are independent on the choice of the solver. In fact, the factory design
pattern is used instead of the switch clause to select the implementation requested at runtime
by the user.

The list of available solver and preconditioner semi-structured from HYPRE is given in Ta-
ble 8.1

Application developers can access the semi-structered implementations through the Hypre-
SStruct::SStructInterface abstract interface. This interface provides for the following pure
virtual functions:

globalData — to retrieve all the information about the grid that is independent on the distri-
bution of boxes (patches) to processors.

partData/isPartSet/setPart — to retrieve, to check if set or to set the HypreSStruct::PartData
object that contains the information about a given part of the structured grid.

addBox — to assign a box to the current processor; its arguments are the part index, the patch
id within Uintah, and the triplets with the bounding indices of box.
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Implementation S P
SysPFMG 1
Split −2
FAC −3
Maxwell −4
PCG 5
GMRES 6
FlexGMRES 7
LGMRES 8
BiCGSTAB 9
None – 0
Diagonal – −1

Table 8.1: Semi-structured solver and preconditioner implementations from
HYPRE. On the right columns their underlying values in the HypreSStruct::S and
HypreSStruct::P enumerations. Last two entries are not proper solver implemen-
tations but have been added to the HypreSStruct::P enumeration to count for the
case where none or a diagonal scale precondition is used.

gridInitialize — to execute the step corresponding to (7.b) of the structured grid workflow.
It creates the HYPRE_SStructGrid instance, assigns boxes, and set the grid variables and
periodicity. Its only argument is the MPI communicator since all information required by
the step should be previously provided via the constructor and setPart

stencilInitialize — to create and initialize the HYPRE_SStructStencil instance. This method
corresponds to step (7.c) of the structured grid workflow. Its only argument is the MPI
communicator since all information required to create the HYPRE stencil structure and
to populate its entries are the problem dimension and the stencil offsets which depend
only on the problem dimension, which is a template parameter of the HypreSStruct::
SStructInterface class.

graphInitialize — to initialize the HYPRE_SStructGraph object. This step is the most complex
addition to the structured grid workflow. In addition to the MPI communicator, an handle
to Uintah’s grid is requested as an input parameter together with an 3D-array of pointers
to HypreSStruct::AdditionalEntries. This array is meant to provide the information about
which entries must be added to the semi-structured graph for each variable, level/part
and patch/box whose indices are those identifying the entries in the input 3D-array.

matrixInitialize — to create and initialize a HYPRE_SStructMatrix instance. This method cor-
responds to step (7.d) of the structured grid workflow. Its only argument is the MPI
communicator since all information required to create and initialize the HYPRE matrix
structure is the semi-structured graph which is supposed to be already initialized.

rhsInitialize/solutionInitialize — to execute the step corresponding to (7.g) of the struc-
tured grid workflow for either initializing the right-hand-side or the solution vector. Their
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only argument is the MPI communicator since all information required to create and ini-
tialize an HYPRE semi-strucured vector structure is the semi-structured grid which is
supposed to be already initialized.

solverInitialize — to create and set the solver implementation parameters. This method cor-
responds to step (7.j) of the structured grid workflow but does includes the part where Uin-
tah’s data wharehouse is accessed. Implementations of the HypreSStruct::SStructInterface
interface, in fact, are designed to provide implementations specific to the HYPRE work-
flow for solving a linear system on semi-structured AMR grids. Uintah’s specific workflow
is implemented in the HypreSStruct::Solver template class which will be discussed later
in this subsection.

matrixUpdate — to execute the step corresponding to (7.e) of the structured grid workflow
which updates the coefficients of the linear matrix. Its parameters are two 3D arrays,
stencil_entries and additional_entries, whose elements are instances of Stencil7 Uintah’s
grid variables, for the first array, and pointers to HypreSStruct::AdditionalEntries, for the
second one. These are indexed, as for the graphInitialize argument, by the variable,
level/part and patch/box indices.

rhsUpdate/guessUpdate — to update the coefficient of either the right-hand-side or the solution
vector. These methods correspond to step (7.h) of the structured grid workflow. Their in-
put argument is a 3D array whose elements are instances of double Uintah’s grid variables,
which are used to populate HYPRE’s vector coefficients. Again, this array is indexed by
the variable, level/part and patch/box indices.

assemble — to execute steps (7.f) and (7.i) of the structured grid workflow. This method tells
HYPRE to assemble all the elements of the linear systems. It has no arguments.

solverUpdate — to setup the solver and, if necessary, the preconditioner in HYPRE. This
method is equivalent to steps (7.j) and (7.k) and requires no arguments.

solve — to make HYPRE solve the linear system. As only parameter this methods requires
a pointer to an instance of the structure HypreSStruct::SolverOutput where information
about the resolution are saved: in particular the number of iterations and the Euclidean
norm of the solution. This method corresponds to steps (7.l) and (7.m) of the structured
grid workflow.

getSolution — to execute step (7.n) of the structured grid workflow. This method updates
the given instance of double grid variable in input with the values of the solution vector
computed by HYPRE solver.

finalize/restart — to free resources and reset the status of the HYPRE workflow. The first
method is meant to be called at the end of a simulation while the latter should be called
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when, during the simulation, all structures must be reinitialized either because a regrid
has occurred or because the user has specified so. These methods take no arguments and
correspond to step (7.o).

For all semi-strucured solvers in Table 8.1 but Maxwell (which is as solver specific for the
resolution of Maxwell equations) a partial template specialization has been defined. These
specializations, in addition to the implementation of the virtual function required to com-
plete the HypreSStruct::SStructInterface, whose implementations are straightforward, provide
implementation independent names to access to the HYPRE routines that must be used to
set a preconditioner, setup the solver and solve the assembled linear system with the chosen
semi-structured solver implementation.

Only the graphInitialize and matrixUpdate method definitions are not straightforward.
These two methods are the only ones that have to handle the semi-structured graph.

When the grid, the stencil and the graph are then used by HYPRE for initializing the HYPRE_
StructMatrix, for each row a vector is reserved to contain as many values as entries in the stencil
and in the graph. The first values are the matrix coefficients corresponding to stencil entries
and the following correspond to the entries in the graph. Their order determines to which
entry of the graph they correspond and when the matrix values are set or updated these are
identified only by their index, therefore in the implementation of the semi-structured driver it
is necessary to provide for an efficient mechanism to store the position in the matrix values
arrays corresponding to additional entries.

Another issue related to the population of the HYPRE_SStructGraph entries is the fact that
multiple contributions can affect the same graph entry. For example, at the corner of a refined
patch which has its two adjacent edges lying on a fine-coarse interface, the interpolation of both
the two virtual fine cells involves the same coarse cell opposite to that corner.

For this reason the SStructInterface contains two lists for storing additional entries: extra_
stn_entries and extra_add_entries. The first list stores the information about connections
that affect stencil values in a matrix row but that are not directly associated to an entry in
the Stencil7 grid variable associated to the matrix in Uintah, while the second list is used
determine the additional values in a matrix row. To the first container, for example, belong
entries for setting to zero stencil entries that cross a fine-coarse interface, but also more complex
contributions arising from the interpolation/restriction operations.

Thanks to these containers the implementation of the matrixUpdate method, which is listed
and described in detail in [18], is much simpler.

This method loops over all parts, boxes and variables indices to set the stencil matrix values,
analogously to its structured counterpart described earlier. Here, however, in addition to setting
the values using the Stencil7 grid variables, both the extra_stn_entries and extra_add_entries
containers’ elements are traversed for each part and variable index to update the matrix-non
stencil coefficients and to modify any stencil coefficient that may need to be updated.

The last step of the matrixUpdate method is ensuring that: (1) all stencil entries that point
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to ghost cells (because across a fine-coarse interface) are zeroed out; (2) all rows corresponding
to cells that have been refined are zeroed with the exception of their diagonal entry. For this
purpose routines provided for the semi structured FAC solver can be used because of their
general implementation.

The containers that make this implementation simple extra_stn_entries and extra_add_
entries are popuplated by the graphInitialize listed in [18].

The graph structure is created, configured and the stencil is set analogously to the structered
case. Then the non stencil part of the graph is setup. First, entries connecting fine cells to
coarse cells are added to the graph, then coarse to fine cells entries. In both cases the outer
loop is performed over the fine patches, since in Uintah there is no direct way to check if a
coarse cell has been refined by the Regridder, but it is immediate to retrieve which patches and
cell ranges are covered by a refined patch on its coarser level.

Two type of coarse to fine connections are created, the first one is an artificial connection
between a coarse cell and its refined one because in the FAC implementation, HYPRE reassigns
coarse boxes to the available processors so that interpolation and restriction operations can be
executed with fewer MPI communications, in particular it tries to assign coarse boxes to the
same processor that owns its refined boxes. This reassignment, however, can fail if there is no
entry in the matrix that connects the two original and the new processes. The introduction of
this additional entry of zero-value in the matrix forces the communication of some information
about the matrix structure and geometry before the reassignment is performed and prevents
the FAC implementation from failing.

The second type of coarse to fine entries that are to be added to the graph are those
connecting coarse cells to adjacent fine cells across a fine–coarse interface. After coarse to
fine connections have been processed, the updateMatrix method moves to the fine to coarse
connections. These are not determined by the geometrical collocation of fine patches with
respect to coarser ones, but they are determined by the entries in the Uintah’s HypreSStruct::
AdditionalEntries variable instance. Before adding a fine to coarse connection, however, some
checks must be performed. A MatrixEntry is, in fact, created when a differential operator of a
view over a Uintah variable is called at a location on a fine-coarse interface. For their design,
views are ignorant of any geometry information outside of the patches their instantiated on,
and therefore it may happen that an additional entry may connect a fine cell to a coarse ghost
cell that is actually being refined. In this case fine-to-fine entries arte pushed back to one of
the extra container To select the right container to which to add each fine-to-fine entry, a check
must be performed to see if each fine-to-fine entry correspond to a stencil entry. Otherwise, an
entry is added to the extra_add_entries container and eventually an entry to HYPRE’s graph
is added. At the end of the matrixUpdate method, HYPRE’s graph is eventually assembled.
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8.2.3 Views

In this paragraph the modification to the view structures introduced in §5.2 and extended in
§6.2 for supporting both implicit drivers is given.

The idea is to provide alternative implementation to differential operators to the ones im-
plemented for the explicit time stepping scheme. The Laplacian method should return at each
point the values of the stencil entries of the matrix and of the contribution to the correspond-
ing entry of the right-hand-side vector of the linear system, for the structured solver, or, in
addition to these, also the non-stencil additional entries of the matrix for the semi-structured
solver. Moreover, since for some applications the linear matrix is independent on the timestep,
additional implementation should be provided for computing only the contributions on the
right-hand-side vector.

For this reason the following additional methods are defined for the PhaseField::DWFDView
in its public base class PhaseField::detail::dw_fd_view<ScalarField<T>: laplacian_sys_hypre,
laplacian_rhs_hypre, laplacian_sys_hypresstruct, and laplacian_rhs_hypresstruct.

Methods with the hypre suffix are meant to be used with the HypreSolver2 driver while
those with the the hypresstruct suffix are meant to be used with the HypreSStruct driver. The
sys suffix identifies the methods which return both matrix and rhs entries while the rhs one
identifies those which return only the rhs contributions.

These methods forward to the methods which are templetazed on the direction along which
the second order derivative is approximated. Dynamic polymorphism is used to provide for the
implementation appropriate to the particular grid partition (see §5.2) and take into account
any boundary and fine-coarse conditions.

For internal regions, the second order derivatives influence only stencil entries, therefore rhs
implementations need do nothing.

Boundary views, instead, contribute to both stencil entries of the matrix and to the right-
hand-side vector. For example, the PhaseField::detail::bc_fd template specialization for cell-
centered ScalarField and 1-cell offset stencils, on faces F where a BC::Neumann boundary condition
is enforced, provides for the following implementations:

/// Boundary face normal vector direction
static constexpr DirType D = get_face<F>::dir;

/// Boundary face normal vector sign (int)
static constexpr int SGN = get_face<F>::sgn;

/// Boundary face normal vector sign (double)
static constexpr double DSGN = get_face<F>::dsgn;

template < DirType DIR >
inline typename std::enable_if < D == DIR, void >::type
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add_d2_sys_hypre ( const IntVector &, S & stencil_entries, V & rhs ) const
{

double h2 = m_h[D] * m_h[D];
stencil_entries[F - SGN] += 1. / h2;
stencil_entries.p += -1. / h2;
rhs += DSGN * m_h[D] * m_value;

}

template < DirType DIR >
inline typename std::enable_if < D == DIR, void >::type
add_d2_rhs_hypre ( const IntVector &, V & rhs ) const
{

rhs += DSGN * m_value;
}

template < DirType DIR >
inline typename std::enable_if < D == DIR, void >::type
add_d2_sys_hypresstruct ( const IntVector &, S & stencil_entries, A &, V & rhs ) const
{

double h2 = m_h[D] * m_h[D];
stencil_entries[F - SGN] += 1. / h2;
stencil_entries.p += -1. / h2;
rhs += DSGN * m_h[D] * m_value;

}

template < DirType DIR >
inline typename std::enable_if < D == DIR, void >::type
add_d2_rhs_hypresstruct ( const IntVector &, V & rhs ) const
{

rhs += DSGN * m_value;
}

Additional non-stencil entries are created only at fine-coarse interfaces since it is only at
these interfaces that the stencil connects two different parts of the semi-structured AMR grid.
In [18] are listed the implementations of the second order derivative operator for this case
together with a detailed description of the code.

8.2.4 Applications

Two implicit time-stepping methods have been considered: the Backward Euler and the Crank–
Nicolson. These methods have been implemented for the Heat application and for the other
applications, whose problem is nonlinear, they have been applied to as semi-implicit schemes
where the nonlinear terms of the problem have been evaluated at the previous timestep. The
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derivation of the linear systems resulting from these methods for the heat problem has already
been discussed in §2.3.2.

The Allen–Chan semi-discrete equation corresponding to 2.11 is, for the Backward Euler
scheme,

uN+1 − uN

k
= ε2∆uN+1 − [(uN )2 + 1]uN+1, on Ω ,

or, for the Crank–Nicolson scheme,

uN+1 − uN

k
= ε2∆uN+1 + uN

2 − [(uN )2 + 1]u
N+1 + uN

2 , on Ω .

When finite differences are used to discretize the equation in space, the following linear system
is obtained for the first scheme

[1− kBN + kε2∆∆]uN+1 = uN + bN , N = 1, 2, . . . ,

and the following for the second one

[1− k
2B

N + k
2 ε

2∆∆]uN+1 = [1+ k
2B

N − k
2 ε

2∆∆]uN + bN , N = 1, 2, . . . ,

where 1 ∈ RM×M is the identity matrix, ∆∆ ∈ RM×M is the matrix arising from the discretization
of the Laplacian, and BN ∈ RM×M : BNij := δij [(uNi )2− 1] is the diagonal matrix corresponding
to the non-linear part of the equation, and the vector bN arises from the imposition of boundary
conditions. While ∆∆ is constant over the simulation (at least when no regrid is performed), the
matrix BN depends on the timestep, therefore, contrarily to the heat application, the linear
matrix for this application must be updated at every timestep. The matrix ∆∆ is the same
matrix arising from the discretization of the heat problem, and depends on the implicit solver
driver being used. When a structured solver is used for each AMR level, this matrix can be
written as a lower triangular block matrix with the first diagonal block corresponding to the
coarsest level. These schemes have been implemented in the Benchmark02 application.

No semi-implicit time scheme has been yet implemented for the other benchmark applica-
tions, because Cahn-Hilliard problems (2.15) require, for the discretization of the bi-Laplacian,
either a larger stencil, which is not supported by HYPRE, or to introduce an auxiliary variable
v = ∆u, so that at every time step a system of two second order equations has to be solved,
but multiple variables is not supported by the structured interface and not yet implemented in
the semi-structured driver. However, in the second approach, the Backward-Euler semi-implicit
scheme will result in the following semi-discrete system of equations{

uN+1 = uN − k∆vN+1

vN+1 = ε2∆uN+1 − [(uN )2 − 1]uN+1 , on Ω ,
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and the Crank-Nicolson scheme will result in the following semi-discrete system of equations{
uN+1 = uN − k

2 ∆vN+1 − k
2 ∆vN

vN+1 = ε2

2 ∆uN+1 + ε2

2 ∆uN − (uN )2−1
2 uN+1 − (uN )2−1

2 uN
, on Ω .

The associated fully-discrete linear system is, for the first method[
1 k∆∆

−ε2∆∆ +BN O

][
uN+1

vN+1

]
=
[
uN

0

]
+ bN , N = 1, 2, . . . ,

and, for the Crank-Nicolson scheme it is[
1 k

2 ∆∆
− ε

2

2 ∆∆ + 1
2B

N O

][
uN+1

vN+1

]
=
[

−k2 ∆∆vN

[ ε22 ∆∆− 1
2B

N ]uN

]
+ bN , N = 1, 2, . . . ,

where [ ε22 ∆∆− 1
2B

N ]uN differs from vN = [ ε22 ∆∆− 1
2B

N−1]uN in the matrix B being the current
instead of the previous. Defining vN+ 1

2 :=[ ε22 ∆∆ − 1
2B

N ]uN , and approximating the Laplacian
of vN+ 1

2 instead of vN in the right-hand-side, the previous system could be rewritten as[
1 k

2 ∆∆
− ε

2

2 ∆∆ + 1
2B

N O

][
uN+1

vN+1

]
=
[
−k2 ∆∆vN+ 1

2

vN+ 1
2

]
+ bN , N = 1, 2, . . . .

For the PureMetal problem (2.5), the following semi-discrete equation can be implemented
as a semi-implicit time scheme


ψN+1 − ψN

k
= 1
A(ψN )

{
A2(ψN )∆ψ? +C(ψN ) · ∇ψ?+

− [(ψN )2 − 1]ψ? − λ[(ψN )2 − 1]2u?
}

uN+1 − uN

k
= α∆u? + ψN+1 − ψN

2k

, on Ω .

where either ψ? = ψN+1 and u? = uN+1, as for the Backward-Euler case, or ψ? = ψN+1+ψN
2

and u? = uN+1+uN
2 , as for the Crank-Nicolson scheme. The vector field, C, is introduced to

simplify the notation
Cζ(ψ) := ∂ζA

2(ψ)−
∑
ξ 6=ζ

∂ξBζξ(ψ) .

The corresponding fully-discrete system is then, in the first case,[
AN − k(AN )2∆∆ + kBN − kCN kλ(BN )2

1
21 1− kα∆∆

][
ψN+1

uN+1

]
=
[
ANψN

uN − 1
2ψ

N

]
+ bN , N = 1, 2, . . . ,
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or, in the second, case[
2AN − k(AN )2∆∆ + kBN − kCN kλ(BN )2

−1 21− kα∆∆

][
ψN+1

uN+1

]
=

=
[

2AN + k(AN )2∆∆ + kCN − kBN −kλ(BN )2

−1 21+ kα∆∆

][
ψN

uN

]
+ bN , N = 1, 2, . . . .

The matrix blocks AN , BN are time-dependent diagonal matrices defined as

ANij := δijA(ψNi ) BNij := δij [(ψNi )2 − 1], i, j = 1, 2, . . . ,M ,

while CN is not diagonal, but can be expressed as a sum of products of diagonal and stencil
matrices,

CN =
∑
ζ

CNζ

∆∆

ζ ,

where the diagonal matrices are defined as (Cζ)ij := δijCζ(ψi) and the matrices

∆∆

ζ , (1, . . . ,M−
1) are the linear discrete operators corresponding to each component of the gradient. These
matrices are stencil matrices in the sense that their non-zero pattern is a subset of the pattern
of ∆∆ and their coefficients can be accessed, in HYPRE, through the same stencil interface.

For the PhaseField component, therefore, in addition to adding to the semi-structured driver
support for solving systems of multiple variables, it is necessary to define a gradient method to
the PhaseField::detail::dw_fd_view analogously as for the Laplacian operator.

The PhaseField::Application base class methods scheduleInitializeSystemVars and schedule-
RefineSystemVars ensure that the tasks for initializing the solver whenever the grid is created
or refined is invoked. These methods where introduced earlier to ensure that the SubProblems
objects are initialized whenever the grid is created or refined, and are scheduled before the
application specific steps: scheduleInitialize and scheduleRefine.

Each application is responsible for creating the variable labels for the stencil and additional
matrix entries and for the right-hand-side vector in the DataWharehouse, to update these
variable during the simulation and to feed them to the solver. Applications are also responsible
to schedule the solver’s task for solving the linear system. In [18], details are given about how
this is implemented within the PhaseField::Heat application.

The implementation for grid with only one level first selects the scheduling method cor-
responding to the time_scheme, invokes it, and then invokes the solver scheduling method for
solving the linear system.

More complex is the implementation when AMR grids are used. Firstly, all levels must be
scheduled at the same time. Then the implementation splits between the semi-structured driver
and the structured diver. As for the one level implementation, both driver’s implementations
firstly select the scheduling methods corresponding to the time_scheme are selected. In any
case, two scheduling methods are selected: one for the coarsest level, and one for refined levels.



CHAPTER 8. PHASEFIELD UINTAH COMPONENT – IMPLICIT SOLVERS 171

This distinction is needed as with both driver the task for assembling the linear system on
refined level depends on the solution on coarser levels: in the semi-structured case, the previous
solution is used to interpolate matrix entries at fine-coarse interfaces; in the structured case,
the current solution is used as boundary condition at these interfaces. In the structured branch
of the implementation, the next step is to schedule the assemble and solve tasks on the coarsest
level and then to loop over all refined levels to schedule the assemble and solve tasks on those
levels as well.

The semi-structured branch of the implementation, instead, first loops over all levels to
schedule the assemble tasks. In this case, the solver task must be scheduled only once per
processor, but before scheduling this task it is necessary to schedule an empty task, to ensure
that all pending MPI communications are completed before HYPRE routines are executed. If
this task were not scheduled, HYPRE internal communications may overlap with Uintah’s own
communications causing the program to crash, or to behave unexpectedly.

The scheduling methods introduced here for supporting implicit time schemes are very
similar to all other scheduling methods. They specify which variables are required and which
are updated by each task.

Thanks to the modifications to the view interfaces described in the previous paragraphs and
to the introduction of the PhasePhield::AdditionalEntries class, the kernel implementation for
these tasks is straightforward. Hereafter, the definition of the kernels used for the Backward
Euler time scheme are provided.

template<VarType VAR, DimType DIM, StnType STN, bool AMR, bool TST>
void
Heat<VAR, DIM, STN, AMR, TST>::time_advance_solution_backward_euler_assemble_hypre_full
(

const IntVector & id,
const FDView < ScalarField<const double>, STN > & u_old,
View < ScalarField<Stencil7> > & A,
View < ScalarField<double> > & b

)
{

std::tuple<Stencil7, double> sys = u_old.laplacian_sys_hypre ( id );

const Stencil7 & lap_stn = std::get<0> ( sys );
const double & rhs = std::get<1> ( sys );
const double a = alpha * delt;

for ( int i = 0; i < 7; ++i )
A[id][i] = -a * lap_stn[i];

A[id].p += 1;
b[id] = u_old[id] + a * rhs;

}
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template<VarType VAR, DimType DIM, StnType STN, bool AMR, bool TST>
void
Heat<VAR, DIM, STN, AMR, TST>::time_advance_solution_backward_euler_assemble_hypre_rhs
(

const IntVector & id,
const FDView < ScalarField<const double>, STN > & u_old,
View < ScalarField<double> > & b

)
{

double rhs = u_old.laplacian_rhs_hypre ( id );
const double a = alpha * delt;

b[id] = u_old[id] + a * rhs;
}

template<VarType VAR, DimType DIM, StnType STN, bool AMR, bool TST>
void
Heat<VAR, DIM, STN, AMR, TST>::time_advance_solution_backward_euler_assemble_hypresstruct_full
(

const IntVector & id,
const FDView < ScalarField<const double>, STN > & u_old,
View < ScalarField<Stencil7> > & A_stencil,
HypreSStruct::AdditionalEntries * A_additional,
View < ScalarField<double> > & b

)
{

std::tuple<Stencil7, HypreSStruct::AdditionalEntries, double> sys = u_old.
laplacian_sys_hypresstruct ( id );

const Stencil7 & lap_stn = std::get<0> ( sys );
HypreSStruct::AdditionalEntries & lap_add = std::get<1> ( sys );
const double & rhs = std::get<2> ( sys );
const double a = alpha * delt;

for ( int i = 0; i < 7; ++i )
A_stencil[id][i] = -a * lap_stn[i];

A_stencil[id].p += 1;
for ( auto & entry : lap_add )

*A_additional += -a * entry;
b[id] = u_old[id] + a * rhs;

}
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template<VarType VAR, DimType DIM, StnType STN, bool AMR, bool TST>
void
Heat<VAR, DIM, STN, AMR, TST>::time_advance_solution_backward_euler_assemble_hypresstruct_rhs
(

const IntVector & id,
const FDView < ScalarField<const double>, STN > & u_old,
View < ScalarField<double> > & b

)
{

double rhs = u_old.laplacian_rhs_hypresstruct ( id );
const double a = alpha * delt;

b[id] = u_old[id] + a * rhs;
}

From the code above, it is evident how views and the additional entries structures implemented
in the PhaseField component achieve the target of allowing the application developer to easily
implement new applications for the simulation of phase field problems approximated with finite-
differences. The same kernel can be used on each cell regardless of its position on the grid and
of the geometry around it. Few remarks are to be made. First, all seven entries of the Stencil7
class are always used regardless of the problem dimension (17 , 56 ), as this is the common
practice in Uintah. Moreover, the syntax for updating additional entries (59 –60 ) is almost
identical to the one for updating stencil entries (56 –57 ).

Similar implementations have been added also to the Benchmark02 application.

8.3 Validation

To assess the reliability of the implementation of implicit time stepping methods here introduced
a set of simulations is performed to analyse the convergence to the analytical solution of the
Heat problem with Dirichlet boundary conditions as both the space and time discretization
steps are reduced.

Since the explicit analytical expression of the solution to the heat problem (2.25) with
homogeneous Dirichlet conditions and initial conditions (5.1) over the domain Ω = [−L,L]d

know, as described in §5.2, it is possible to evaluate at every timestep a global discrete error
of the solution (5.7) and of its first and second order derivatives as (5.11). These errors are
therefore computed for different values of the grid step, h, and time step, k, and the speed with
which these errors are converging to zero is compared to the order of the truncation error that
is computed a priori for different maximum number of AMR levels.

Using the leading-order error formulae for finite differences approximations (2.27) as in §6.3
it can be shown that the truncation error is linear in time and quadratic in space for the
Backward–Euler (BE) scheme and quadratic both in time and space for the Crank–Nicolson
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(CN) method when the discretisation grid is uniform.
The values for the spatial and temporal discretization steps considered are h = 2−i with

(i = 1, 2, . . . , 5) and k = 2−j with (j = 1, 2, . . . , 5). Both implicit time stepping schemes are
unconditionally stable.

Tests have been performed with most of the available structured and semi-structured solvers,
and all gave very similar results. In Figures 8.1–8.3 the discrete 1-norm,

∑
N | errNp |, of the

computed global discrete errors (5.11) are plotted in logarithmic scale, first, against the timestep
and, then, against the grid step for the Backward–Euler time scheme using the structured LGM-
RES linear solver. Values of error corresponding to the same choice of the other discretisation
parameter are joint with solid lines, while values with the same h2

k ratio are joint with dashed
lines.

In Figures 8.4–8.6 analogue plots are provided for the Crank–Nicolson scheme using the
structured GMRES linear solver. The dashed lines, in this case, join cases with the same h2

k

ratio.
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Figure 8.1: Convergence analysis of the global L2 error for the Heat problem using Backward-
Euler time stepping and the structured LGMRES linear solver. Its 1-norm over time for different
discretization parameters is shown as dependent on the timestep (left) and on the grid size (right)
for different numbers of AMR levels. Graphs proportional to k1 and h2 are plotted for reference as a
dotted lines.
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Figure 8.2: Convergence analysis of the global H1
0 error for the Heat problem using Backward-

Euler time stepping and the structured LGMRES linear solver. Its 1-norm over time for different
discretization parameters is shown as dependent on the timestep (left) and on the grid size (right)
for different numbers of AMR levels. Graphs proportional to k1 and h2 are plotted for reference as a
dotted lines.
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Figure 8.3: Convergence analysis of the global H2
0 error for the Heat problem using Backward-

Euler time stepping and the structured LGMRES linear solver. Its 1-norm over time for different
discretization parameters is shown as dependent on the timestep (left) and on the grid size (right)
for different numbers of AMR levels. Graphs proportional to k1 and h2 are plotted for reference as a
dotted lines.



CHAPTER 8. PHASEFIELD UINTAH COMPONENT – IMPLICIT SOLVERS 178

2-5 2 -4 2 -3 2 -2 2 -1

k

10 -3

10 -2

h2 /k 2 =1/4
h2 /k 2 =1
h2 /k 2 =4
h=2 -1

h=2 -2

h=2 -3

2-3 2 -2 2 -1

h

10 -3

10 -2

h2 /k 2 =1/4
h2 /k 2 =1
h2 /k 2 =4
k=2 -1

k=2 -2

k=2 -3

k=2 -4

k=2 -5

(a) one level

2-5 2 -4 2 -3 2 -2 2 -1

k

10 1

h2 /k 2 =1/4
h2 /k 2 =1
h2 /k 2 =4
h=2 -1

h=2 -2

h=2 -3

2-3 2 -2 2 -1

h

10 1

h2 /k 2 =1/4
h2 /k 2 =1
h2 /k 2 =4
k=2 -1

k=2 -2

k=2 -3

k=2 -4

k=2 -5

(b) two levels

2-5 2 -4 2 -3 2 -2 2 -1

k

10 1

10 2

h2 /k 2 =1/4
h2 /k 2 =1
h2 /k 2 =4
h=2 -1

h=2 -2

h=2 -3

2-3 2 -2 2 -1

h

10 1

10 2

h2 /k 2 =1/4
h2 /k 2 =1
h2 /k 2 =4
k=2 -1

k=2 -2

k=2 -3

k=2 -4

k=2 -5

(c) three levels

2-5 2 -4 2 -3 2 -2 2 -1

k

10 2

h2 /k 2 =1/4
h2 /k 2 =1
h2 /k 2 =4
h=2 -1

h=2 -2

h=2 -3

2-3 2 -2 2 -1

h

10 2

h2 /k 2 =1/4
h2 /k 2 =1
h2 /k 2 =4
k=2 -1

k=2 -2

k=2 -3

k=2 -4

k=2 -5

(d) four levels

Figure 8.4: Convergence analysis of the global L2 error for the Heat problem using Crank-Nicholson
time stepping and the structured GMRES linear solver. Its 1-norm over time for different discretization
parameters is shown as dependent on the timestep (left) and on the grid size (right) for different numbers
of AMR levels. Graphs proportional to k2 and h2 are plotted for reference as a dotted lines.
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Figure 8.5: Convergence analysis of the global H1
0 error for the Heat problem using Crank-Nicholson

time stepping and the structured GMRES linear solver. Its 1-norm over time for different discretization
parameters is shown as dependent on the timestep (left) and on the grid size (right) for different numbers
of AMR levels. Graphs proportional to k2 and h2 are plotted for reference as a dotted lines.
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Figure 8.6: Convergence analysis of the global H2
0 error for the Heat problem using Crank-Nicholson

time stepping and the structured GMRES linear solver. Its 1-norm over time for different discretization
parameters is shown as dependent on the timestep (left) and on the grid size (right) for different numbers
of AMR levels. Graphs proportional to k2 and h2 are plotted for reference as a dotted lines.
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Looking at the solid line in the plots on the left-hand side of Figure 8.1, it is evident how
halving the timestep is not beneficial with AMR grids, since the truncation error in this case is
dominated by the spatial component. Looking at the graphics on the right-hand side, it can be
noticed that an order of convergence in space is lost when adaptivity is introduced regardless
of the number of levels. This means that the interpolation error for the Heat application
contributes to the overall error more than the truncation component. Also the convergence
order in time is affected by the introduction of adaptive levels, as evident from looking at the
dashed lines.

For the Crank–Nicolson scheme, the spatial component of the error dominates the temporal
in all the considered cases. Theoretical convergence orders are however observed only without
AMR. When adaptive grid are used, an order of convergence is lost with respect to both the
spatial and temporal discretisation steps.



Chapter 9

Parallel Performance

The parallel scalability results that are reported in this chapter are all performed on homo-
geneous architecture using only CPU cores. However, since computer architectures such as
those designed for exascale computations are rapidly evolving, Uintah developers are contin-
uously working on implementing solutions that are portable across heterogeneous platforms
while exploiting all the computational power provided by these architectures.

In [85], for example, the author introduces a new unified, portable, Single Instruction Mul-
tiple Data (SIMD) primitive which allows both intrinsics-based vectorization on CPUs and
many-core architectures, as well as Single Instruction Multiple Threads (SIMD) based exe-
cution on GPUs. Thanks to this unified primitive, together with the Kokkos framework, it
is possible to develop explicitly vectorized code which is also portable across heterogeneous
system.

Kokkos [12], as other Performance Portability Layers (PPL), promise portability across
different platforms thanks to their ability to interact with different underlying programming
models (e.g., CUDA, HIP, OpenMP, etc) through a unified higher level interface. They hide
the low-level details of the underlying programming models and simplify the task of efficiently
run the same code on heterogeneous nodes. Alternative to Kokkos, are OCCA [66], RAJA [43],
and SYCL [54]. In [42], the authors show performance improvements up to 4.4x when using a
heterogeneous MPI+Kokkos task scheduler in the Uintah Computational Framework.

Recently [41], significant work has been done, also, in combining Uintah and Hedgehog with
the end goal of building an asynchronous many-task runtime system specializing in both node-
level and large-scale performance while increasing their accessibility with portable abstractions.
Hedgehog is a general-purpose performance-oriented C++17 headers-only library specializing
in maximizing single-node utilization with emphasis on heterogeneous nodes. Lying at the
other extreme is Uintah which emphasizes on large-scale simulations performance on major
HPC systems.

Uintah developers also actively worked on optimizing the HYPRE solver for manycore and

182
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GPU architectures [86, 84].
It has to be noted that, despite the PhaseField component have not been tested on hetero-

geneous platforms during this research, that all implementations of the PhaseField component
and of its application have been developed using the unified portable interfaces provided by
Uintah, and that, therefore, the PhaseField component may benefit from the aforementioned
active developments of the Uintah Computational Framework toward exascale computing.

9.1 Scalability Test Setup

To analyse the properties of the parallel implementation within Uintah a series of simulations
has been performed using an increasing number of computational nodes. All simulations have
been performed on ARC4, the HPC service of the University of Leeds. Its standard nodes have
40 cores and 192GB of memory each and an SSD within the node with 170GB. All system
CPUs are Intel Xeon Gold 6138 CPUs (‘Sky Lake’).

Both weak and strong scalability tests have been considered. Weak scalability tests measure
how a software performs when the number of cores is increased while keeping the working
load constant, i.e. the problem size per processor, is kept constant. Weak scalability tests are
a useful tool, for example, in understanding the parallel performance of a software when its
resources are fully exploited.

Conversely, strong scalability tests are used to measure the performance of a software when
the number of cores is increased while keeping the global problem size constant, thus decreasing
the processors’ load. These tests are a useful tool to quantify what fraction of the whole
calculation is parallelised: in fact, only if the computation is fully parallelised, an inverse
proportionality is observed between computation time and number of processors.

Three sets of tests have been performed to assess the performance of the newly implemented
PhaseField component of the Uintah Computational Framework. In §9.2, the performance of
the solver is tested with the PureMetal application on both two and three dimension geome-
tries, while increasing the number of adaptive levels. The Heat application is then used to
assess the parallel scalability of the component while using structured linear solvers (§9.3) and
semi-structured (§9.4) from HYPRE, while increasing the number of adaptive levels. For all
simulations only cell-centred discretisation have been used.

9.2 AMR Scalability: Assessment of Performance with
Increasing Level of Adaptivity

The first family of parallel performance test performed on the PhaseField component is intended
to assess the scalability of the implementation as the number of AMR level is increased from
one to eight, which is the maximum allowed by Uintah.
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These tests focuses on the scalability of the explicit solver on those timesteps that does not
perform any additional tasks other than those necessary to update the solution. To avoid taking
into account the initial timestep and any regrid timestep, fixed geometry configurations have
been used. The result obtained using fixed semi structured geometries is still representative of
runs where the mesh is adaptively updated throughout the simulation since error estimation
tasks are still scheduled and executed; therefore the same tasks that would have been performed
on a truly adaptive grid are completed.

To analyse the solver parallel performance in two dimensions, three different grid arrange-
ments have been considered:

Case I : each additional level refines the left half of the previous most refined level;

Case II : each additional level refines the bottom-left quart of the previous most refined level;

Case III : each additional level refines the central quart of the previous most refined level.

As an example of these arrangements, in Figure 9.1 a representation of the three cases is given
for three AMR levels. In Case I, each level adds twice as many cells as in the previous most
refined level, in the other Cases, each level has the same number of cells. In all simulation the
patch size is fixed to 16×16 cells, with the coarsest level having four patches for the smallest load
case. To consider problems of increasing size, different geometries are considered by iteratively
quadrupling the number of patches on each level. In this way weak scalability can be assessed
comparing simulations with the same load, that is with the same ratio of cells per core.

The different configurations have been chosen to compare cases where different proportions
of cells on fine/coarse interfaces with respect to the overall number of cells. When more interface
cells are present, more MPI communication is performed. The three Cases allows to infer how
these may affect the scalability performance of the PhaseField component when AMR is enabled.

In Figures 9.2–9.4 the execution time (EMA) of the simulations performed is reported as a
function on the number of cores (np) utilized for the different cases respectively.

It can be observed that, in all three cases, strong scalability is almost optimal when AMR
is used. Only when one AMR level is used, it can be observe that for the simulations with the

(a) Case I (b) Case II (c) Case III

Figure 9.1: Refinement configurations with three AMR levels in 2D.
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Figure 9.2: Scalability for the 2D PureMetal application with AMR, Case I. Week scalability paths
are drawn with dashed lines. Strong scalability paths (solid) can be compared to the reference triangle
corresponding to ideal strong scalability.
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Figure 9.3: Scalability for the 2D PureMetal application with AMR, Case II. Week scalability paths
are drawn with dashed lines. Strong scalability paths (solid) can be compared to the reference triangle
corresponding to ideal strong scalability.
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Figure 9.4: Scalability for the 2D PureMetal application with AMR, Case III. Week scalability paths
are drawn with dashed lines. Strong scalability paths (solid) can be compared to the reference triangle
corresponding to ideal strong scalability.
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larger geometries strong scalability is less then optimal.
The weak scalability paths, moreover, show that for smaller loads and fewer levels the com-

munication overhead introduced by increasing the number of cores can dominate the speed
increase in the computation itself. There is a lower limit on the number of cells per proces-
sor that must be taken into account when considering to increase the number of cores for a
simulation.

Another observation is that the slope of the weak scalability paths is steeper as the load
increases. This behaviour is more evident for tests using more AMR levels.

In the other cases (II and III), no dependency of the slope of the weak scalability paths on
the load is appreciable. The main difference between Case I and Case II and III, is the ratio of
the number of cells between adjacent levels. In Case I, the size of the FCI interfaces is smaller
than in the others. This behaviour, therefore, could be explained by the fact that the number
of levels and cells per level is increased faster than the number of cores.

Also for the tests in three dimensions, three different grid arrangements have been consid-
ered:

Case I: each additional level refines the left half of the previous most refined level;

Case II: each additional level refines the front-bottom-left octave of the previous most refined
level;

Case III: each additional level refines the central octave of the previous most refined level.

In all simulation the patch size is fixed to 16× 16× 16 cells, with the coarsest level having
eight patches for the smallest load case.

To consider problems of increasing size, different geometries are considered by iteratively
multiplying by eight the number of patches on each level. In this way weak scalability can be
assessed comparing simulations with the same load, considering the sequence 80, 81, . . . for the
number of cores.

In Figures 9.5–9.7 the execution time (EMA) of the simulations performed is reported as a
function on the number of cores (np) utilized for the different cases respectively.

Fewer combinations of loads/number of cores have been tested, but for all three AMR
configurations, the strong scalability observed is almost ideal. Also the slope of the weak
scalability paths is minimal, which is very promising. The execution time of each time step in
3D is quite expensive in the range of processors considered and that limited the amount of tests
performed in this research. However, the tests performed suggest that increasing the number
of cores will produce an optimal increase in the computation speed.

The sizes of the patches considered in the tests above is relatively small. Increasing the size of
the patches may be beneficial in some applications since it reduces the amount of communication
between nodes processors owning adjacent patches since the ratio between communication and
load is proportional to the ratio between the patch perimeter and area. Such tests have not
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Figure 9.5: Scalability for the 3D PureMetal application with AMR, Case I. Week
scalability paths are drawn with dashed lines. Strong scalability paths (solid) can
be compared to the reference triangle corresponding to ideal strong scalability.
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Figure 9.6: Scalability for the 3D PureMetal application with AMR, Case II. Week scalability paths
are drawn with dashed lines. Strong scalability paths (solid) can be compared to the reference triangle
corresponding to ideal strong scalability.
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Figure 9.7: Scalability for the 3D PureMetal application with AMR, Case III. Week scalability paths
are drawn with dashed lines. Strong scalability paths (solid) can be compared to the reference triangle
corresponding to ideal strong scalability.
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been performed during this research work and may be object of future work. However, using
large patches may be unfeasible in those applications, such as some PhaseField applications,
where only a thin layer of refined cells is required to model a sharp interface.

9.3 AMR Scalability: Assessment of Performance with
Structured Linear Solvers

For assessing the behaviour of the PhaseField component in combination with the structured
linear solver provided by HYPRE, the same three AMR configurations used in the previous
section are considered for each of the suitable structured linear solver from the HYPRE library
against the Heat application in two dimensions. They have been used with the default choice
of parameters and unpreconditioned.

The execution times (EMA) observed with different solvers show similar scalability be-
haviour. For this reason only plots for tests sake performed using the FlexGMRES structured
solver are reported here (Figures 9.8–9.10). Analogue plots for tests using the other structured
solvers are available online [19].

In all three AMR grid configurations, the tests performed using the Heat application revealed
that the strong scalability is almost ideal until 44 cores with all the structured solvers.

The same Heat tests revealed that the GMRES, LGMRES, and the FlexGMRES weak
scalability is worse with smaller problems – with fewer levels or smaller loads – if compared
with more computationally challenging problems. This behaviour –which is even more evident
when the with the BiCGStab and CycRED solvers– is most probably due to the processors
being assigned not enough computational work to compensate the increasing computational
overhead due to the handing an increasing number of parallel tasks across the available cores.

The multigrid SMG solver suffers more heavily than the others from this minimum load
limitation. For more than 43 cores the execution times per timestep are almost the same
independently of the problem size, specifically on the smaller grids with less than seven levels.

The behaviour of the other multigrid solver, PFMG, is less regular and it is more difficult
to identify patterns and infer parallel behaviours, especially in Case I. For example, with seven
and eight AMR levels, strong scalability patterns can be observed for different grid sizes, but
with four levels, increasing the number of cores does not appreciably result in speeding up the
timestep execution.
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Figure 9.8: Scalability for the 2D Heat application with the FlexGMRES structured linear solver,
Case I. Week scalability paths are drawn with dashed lines. Strong scalability paths (solid) can be
compared to the reference triangle corresponding to ideal strong scalability.
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Figure 9.9: Scalability for the 2D Heat application with the FlexGMRES structured linear solver,
Case II. Week scalability paths are drawn with dashed lines. Strong scalability paths (solid) can be
compared to the reference triangle corresponding to ideal strong scalability.
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Figure 9.10: Scalability for the 2D Heat application with the FlexGMRES structured linear solver,
Case III. Week scalability paths are drawn with dashed lines. Strong scalability paths (solid) can be
compared to the reference triangle corresponding to ideal strong scalability.
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9.4 AMR Scalability: Assessment of Performance with
Semi-Structured Linear Solvers

Fewer tests have been run for assessing the parallel behaviour of the PhaseField component in
combination with the semi-structured linear solver provided by HYPRE. As for the previous
sections, the same three AMR configurations are considered for each of the suitable semi-
structured linear solver from the HYPRE library for the 2D Heat problem. All the solvers have
been used with the default choice of parameters and unpreconditioned.

Figures 9.11– 9.13 show the scalability patterns for the FlexGMRES semi-structured solver.
Similar plots can be accessed online [19] for the other semi-structured solvers. From these plots,
it is evident that optimal scalability is achieved by the PhaseField solver only when enough
load is given to each processor. The same scalability patterns are showed also by the GMRES
and the LGMRES semi-structured solvers.

In the case of the BiCGStab semi-structured solver, the impact of MPI communication on
the execution times seems to be less evident.

The semi-structured multigrid solver present some issues with MPI communication within
HYPRE overlapping with those between Uintah tasks. During this research a lot of effort has
been put trying to fix these issues both on the Uintah’s side and within HYPRE, but it was not
possible to make the solver run smoothly with more than few MPI processes. For these reason
no scalability tests are presented here.

A limited number of tests run successfully with the domain decomposition solver, Split.
For this solver, the few strong scalability paths are almost ideal. Weak scalability paths for
the same load are consistent across the different combinations of number of AMR levels and
geometry configurations.

In general it seems that, when HYPRE solvers are used, almost ideal scalability is achieved
only when the problem size is very large that the task computations take longer than MPI
communication. This limit was not evident from the explicit results in §9.2. An explanation of
this could be that the optimal patch size for Uintah produces boxes that are too small for the
HYPRE implementation. This aspect should be investigated further in a future research which
should take into account the recent progresses in [86, 84].
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Figure 9.11: Scalability for the 2D Heat application with the FlexGMRES semi-structured linear
solver, Case I. Week scalability paths are drawn with dashed lines. Strong scalability paths (solid) can
be compared to the reference triangle corresponding to ideal strong scalability.
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Figure 9.12: Scalability for the 2D Heat application with the FlexGMRES semi-structured linear
solver, Case II. Week scalability paths are drawn with dashed lines. Strong scalability paths (solid)
can be compared to the reference triangle corresponding to ideal strong scalability.
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Figure 9.13: Scalability for the 2D Heat application with the FlexGMRES semi-structured linear
solver, Case III. Week scalability paths are drawn with dashed lines. Strong scalability paths (solid)
can be compared to the reference triangle corresponding to ideal strong scalability.



Chapter 10

Conclusions and Further
Developments

The main result of this research work has been the implementation of the PhaseField component
within the Uintah Computation Framework. This new software tool allows the implementa-
tion of highly scalable parallel solvers for complex system of partial differential equations more
conveniently than before. The UCF, in fact, already provided a convenient framework that
effectively separated the low-level complexity associated to managing efficiently thousands of
processes working in parallel from the high-level implementation of a numerical solver for a
specific application. However, before this research, each application had to be developed in-
dependently as an individual component. Each of these components used their own numerical
techniques and, as a result, techniques implemented for a specific application not necessarily
worked for another application.

In the new PhaseField component, effort has been made to ensure that these techniques
could have been used together: for example, in Uintah, some application was already using
adaptive mesh refinement and some other were implementing implicit time stepping, but these
techniques could not be used together effectively.

Another achievement of this research work is the implementation of an abstract interface to
the finite differences discretisation of differential operators. This additional abstraction serves
three purposes: first, it allows the application developer to implement the finite differences
discretisation of any system of PDEs without the need to focus on edge cases such as boundary
conditions and fine/coarse interfaces; second, it avoids any code duplication making the compo-
nent code easier to maintain; and, third, it provides an efficient mechanism to switch between
general and edge cases implementations.
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Novelty

No other structured adaptive grid software offers the same level of abstraction and flexibility
that this new component offers. The framework developed in the PhaseField component is at
the same time portable across multiple platform, highly optimized while offering a high level
interface that effectively decouples the definition of the discretized model from the implementa-
tion of the solver. The syntax offered by the view interfaces has been demonstrated to provide
the application developer a way to implement new finite differences/element solvers for general
applications that can benefit from SAMR and implicit time stepping over large system with
unprecedented ease. All low level complexity is effectively hidden from the application devel-
oper: parallelism and adaptivity are hidden in Uintah’s framework, boundary and fine/coarse
interface conditions and the assembly of implicit matrices are hidden in PhaseField’s view
framework, while the linear solver integration is hidden in the new SStructSolver component.

Summary of Contributions

The list of contributions from this research can be grouped in software and application contri-
butions.

Software contributions

– abstract interface for fields independent of their discretisation (cell centred or vertex
based)

– abstract interface for discrete differential operators independent on the stencil and
problem dimension

– boundary and fine/coarse interface conditions automatically imposed according to
runtime specifications

– linear system assembly with abstract interface which hides any complexity due to
AMR geometry and boundary conditions

– immediate access to all HYPRE solvers and preconditioner

– automatic conversion between Uintah and HYPRE structures

Applications contributions

– template implementation of explicit and implicit solvers for the heat problem as
reference implementation for PhaseField applications.

– implementation of Allen-Chan and Cahn-Hillard solvers as benchmark applications

– implementation of the PureMetal solver which showcases a typical phase field prob-
lem application.
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Future Work

In the future, the PhaseField component development may follow two main paths. The first
one consists in the implementation of more complex models, such as multi phase field models,
which can exploit fully the solving capability of the component. The second path consists in the
improvement of the PhaseField component and SStructSover implementations themselves. For
example, since template class are used extensively throughout the new finite differences frame-
work, the compilation time of the new component could be improved by adding appropriate
explicit class instantiations.

Further improvements to the component implementation could be aiming to simplify further
the interface for the application developer, which at the moment must use different methods
for approximating differential operators depending on which time-stepping method and solver
is used.

Also the process for specifying task dependencies could be simplified. In particular inter level
dependencies when using AMR could be handled automatically by the PhaseField component.

Overlapping the two paths could be the implementation of additional time stepping methods.
At present, each time scheme must be implemented for each application since the responsibility
of their implementation is of the application developer. This is because task dependencies for
each timestep are specified in the application implementation. However, it may be convenient
to implement an abstract interface to time stepping methods similar to the finite differences
interface here implemented.
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Appendix A

Computing Tip Characteristics
form PureMetal Solutions

Tip position, velocity and curvatures are all quantities of physical interest that usually are not
explicitly computed during a simulation, but later by post-processing the simulation output.

When required, they must be evaluated from the grid values of the phase field, ϕi, either
during the simulation or post processing the output.

Since the output produced by Uintah can be large, it has been chosen to allow the computa-
tion of these quantities during the simulations itself. When the user requests it in the problem
specification file, the tasks for the computation of these quantities are scheduled at the end
of each timestep and files are created. These files store the values of the computed position,
velocity and curvature at every time step, independently from the output frequency of grid
variables.

Different algorithms have to be implemented according to the direction along which the
dendrite growth is favored. This direction is determined by the sign of the anisotropy strength.
When ε > 0, the arm growth is favored along the cartesian axes (this case is referred as the
parallel case) and the algorithm for computing the tip quantities focuses on the arm along the
positive x semi-axis; otherwise the dendrite arms grow along the bisectors (or trisectors) (also
diagonal case) and the algorithm focuses on the arm growing along x = y(= z).

The diagonal growth case present the advantage of requiring a smaller computational do-
main but introduces some complications in the computation of the tip position, velocity, and
curvature.

For each of these cases, two different approaches have been considered: the first generalizes
the approach in [49] and alternates unidimensional polynomial approximations in the directions
parallel and orthogonal to the arm growth; the second approach uses bidimensional non linear
regression to fit the computed phase field grid values.

In two dimensions, the tip position at a given time, t ≥ 0, is so defined as the positive
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time-dependent scalar quantity rtip(t) > 0 such that

ψ(rtipearm, t) = 0, t > 0 ,

where etip denotes the arm direction: etip = (1, 0)t in the parallel case and etip = 1√
2 (1, 1)t in

the diagonal one. The tip velocity is then the derivative of the tip position

vtip := r′tip .

The following expression of the curvature for implicit surfaces can be used to compute the
curvature at the solid/liquid interface (ψ = 0):

(A.1) κ =
−ψ2

xψyy + ψxψyψxy − ψ2
yψxx

(ψ2
x + ψ2

y)3/2 ,

where the pedices are used to denote first and second order spatial derivatives in the Cartesian
coordinate directions.

To estimate the tip curvature, it is then necessary either to approximate the derivatives
in (A.1) using the discrete values of the phase field computed during the simulation to build
multiple univariated polynomial regressors to interpolate the tip and arm characteristics, or to
build a single bivariate non-linear regressor and then compute analytically its derivatives; in
both approaches it is fundamental to have the most accurate estimate of the tip position rtip.

A.1 The Polynomial Approach

The following polynomial approach, which generalizes the algorithm proposed by Karma and
Rappel [49], is of the first kind.

A.1.1 Parallel Arm Growth

If we focus to the parallel case and omit the time dependency, we can assume ψ to be even with
respect to y

(A.2) ψ(x, y; t) = ψ(x,−y; t) .

Far from the tip the liquid/solid interface of each arm is observed to be approximable by a
parabola with the axis parallel to the favored direction of growth, that is there exists a region
Iarm over which it is possible to define a function g : R→ R such that

ψ(g(y), y) ≡ 0, (g(y), y)t ∈ Iarm ,

and g(y) ≈ garm(y) = ay2 + by + c. Because of (A.2), the coefficient b has to be zero and the
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parameters a and c can be estimated using linear regression over an opportune set of zeros of
the function ψ that belong to Iarm. The set Iarm has to be be a subset of the region between the
x axis and the bisector of the first quadrant in order to use only the portion of the liquid/solid
interface that belongs to the arm growing in the positive x direction that has positive ordinate.
Moreover we have to ensure that g is well defined, therefore we have to choose Iarm to not
contain any point where ψx = 0.

At the tip, x = rtip, y = 0 and ψy = 0, therefore the tip curvature expression (A.1) simplifies
to

(A.3) κtip = −ψyy(rtip, 0)
ψx(rtip, 0)

Given the discrete solution over the first quadrant at the n-th timestep ψn = (ψnij : i, j =
0, 1, . . .M) (for AMR simulations we use the only values from the most refined grid and suppose
this is wide enough to contain all required grid entries), the first step is to find the index
itip at which the arm tip is located. This could be found by searching for the index, itip ∈
{0, 1, . . . ,M − 1}, that satisfies the following condition1:

ψnitip,0 ψ
n
itip+1,0 ≤ 0 .

In practice, we first look for all the locations next to the solid/liquid interface:

L n
arm := {lni = (i, ji) ∈ N2 : ψni,ji ψ

n
i,ji+1 ≤ 0 ∧ i < m ∧ ji ≤ i} .

It is safe to assume that only one such location lni for each abscissa index can be found; this
justifies using i to index them. The first condition ensures that ψ|x=xi has a zero in the interval
(yji , yji+1], while the second and third conditions that only locations belonging the arm growing
in the positive x direction and with positive ordinates are considered. In order to ensure that
also ψx = 0, a location lni in L n

arm has to be discarded if exists lni+1 ∈ L n
arm and lni+1 ≥ lni

L n?
arm := {lni ∈ L n

arm : lni+1 ∈ L n
arm ⇒ ji+1 < ji} .

The tip location is then computed as the maximum index for which such a location exists.
The second step is to estimate both the tip position, rtip, and the derivative ψx(rtip, 0).

Chosen n2 ≥ 2, let Fj be an approximation of ψ|y=yj for j = 0, . . . , n2 − 1. In particular, let
Fj be the polynomial of degree d0 > 0 that fits the n0 > d0 points (xi, ψni,j), itip − bn0

2 c ≤
i < itip + dn0

2 e. In Figure A.1 these points are colored in green. The details of the polynomial
fitting algorithm used hereafter and of its implementation are available in [53].

We then define zj (j = 0, . . . , n2−1) to be the zero of Fj in the interval [xitip−bn0
2 c
, xitip+dn0

2 e−1]

1the value ψnitip+1,0 if well defined also when i = M − 1 even if the index i + 1 refers to a location outside
the computational domain thanks to the use of ghost nodes.
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n3

Figure A.1: Cell centred polynomial interpolation of the tip characteristic in the
parallel case.

and dFj to be its derivative at zj

Fj(zj) = 0 , dFj = F ′j(zj) .

These values are then fitted to approximate g ◦ h and ψx|x=g(y) ◦ h close to the tip, where the
transformation h(y) := y2 is introduced, since (A.2), to enforce to approximation to be even
with respect to t. Therefore, let gtip be the polynomial of degree 0 < d2 < n2 that fits the
n2 points (y2

j , zj), and Fx be the d2-degree polynomial regressor of the n2 points (y2
j , dFj).

Evaluating these regressors at y2 = 0 it is then possible to approximate the tip position and ψx
at the tip:

rtip(tn) ≈ rntip := gtip(0) , ψx(rtip, 0) ≈ Fx(0), n = 0, 1, . . . .

The tip velocity is estimated immediately using a backward finite-difference

vtip(tn) ≈ vntip :=
rntip − rn−1

tip

k
, n = 1, 2, . . . .(A.4)

An approximation ψyy(rtip, 0) is still needed to estimate (A.3). Similar to the approximation
of ψx(rtip, 0), let Gi be an approximation of ψ|x=xi ◦ h for itip − bn3

2 c ≤ i < itip + dn3
2 e, where

n3 ≥ 2 is an arbitrary integer. In particular let Gi be the polynomial of degree d1 > 0 that fits
the n1 > d1 points (y2

j , ψ
n
ij), (j = 0, . . . n1 − 1). These points are shown in green in Figure A.1.

An approximation Gyy of ψyy |y=0 is then computed fitting the ordinates ddGi :=G′′i (0)[h′(0)]2+
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G′i(0)h′′(0) = 2Ḡ′i(0) at the abscissae xi (i = 0, . . . , n3 − 1) with a polynomial of degree 0 <
d3 < n3. The expression for ddGi is obtained by applying the Faà di Bruno’s formula in the
computation of the second order derivative of ψ|x=xi ◦ h.

The tip curvature is then evaluated thanks to these approximations using the following
approximation

(A.5) κntip :=−Gyy(rtip)
Fx(0) .

For computing the arm curvature (or parabolic curvature) we could use location sets intro-
duced earlier L n?

arm, but we may want as well to exclude locations close to the tip, where the
arm shape departs from being parabolic.

Then for li ∈ L n?
arm we denote with gi the polynomial of degree d0 that approximates ψ|x=xi

by fitting the n0 points with the given ascissa index, i, closest to the location li = (i, ji):
(yj , ψij) with ji − bn0

2 c ≤ j < ji + dn0
2 e. These points are drawn in red in Figure A.1. The

root zi of gi that lies in the interval [yji−bn0
2 c
, yji+dn0

2 e−1] is then computed for each location
li ∈ L n?

arm.
At last, the linear regressor, f? : y 7→ a?y + c?, fitting the values xi at the points z2

i . The
parabola approximating the arm is then

gn?arm := a?y
2 + c? .

Its curvature at its vertex, (y = 0, x = c?), is easily computed

(A.6) κn?arm = gn?′′arm(0)
(1 + gn?′arm(0))3/2 = 2a?

To identify which locations are close enough to the tip that the arm profile there is not
parabolic we can check if the following finite difference is less than a given threshold α > 0

|z2
i+1 + z2

i−1 − 2z2
i |

h2 < α

that is that the second order derivative of the arm profile g ◦ h with respect to h is bounded.
Therefore, the linear regression, f?? : y 7→ a??y + c??, fitting only values relative to the

following location set

L n??
arm := {lni ∈ L n?

arm : ∃lni±1 ∈ L n
arm ∧ |z2

i+1 + z2
i−1 − 2z2

i | < αh2} .

will produce a better approximation of the parabolic profile of the dendritic arm and therefore
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a better estimate of the parabolic curvature

(A.7) κn??arm = 2a?? .

A.1.2 Diagonal Arm Growth

The polynomial approach described above for the parallel growth case has to be adapted for the
diagonal case. Let us introduce a new coordinate system, (r, s), where r = x+ y and s = x− y,
so that we can focus on the dendritic arm growing in along the positive r directions. The
assumption (A.2) has to be replaced with the following equation that express the symmetry of
the phase field with respect to the axis s = 0:

(A.8) F (r, s) = F (r,−s) .

The change in the variables of differentiation in (A.1) gives the following expression for the
curvature of the implicit curve ψ = 0

(A.9) κ = −ψ
2
r(ψrr + 3ψss) + 4ψrψsψrs − ψ2

s(3ψrr − ψss)
[2(ψ2

r + ψ2
s)]3/2

At the tip, r = rtip, s = 0 and ψs = 0 so

(A.10) κtip = −ψrr(rtip, 0) + 3ψss(rtip, 0)
23/2ψr(rtip, 0)

The first step is again to find the location of the arm tip. For this reason we introduce an
indexing that is coherent with the new coordinate system (i, j) → (ρ = i + j, ς = i − j). The
tip location is then the maximum index ρ for which an entry exists in the locations next to the
liquid/solid interface

L n?
arm := {lnρ ∈ L n

arm : lnρ+2 ∈ L n
arm ⇒ ςρ+2 < ςρ} ,

where

L n
arm := {lnρ = (ρ, ςρ) ∈ N2 : ψnρ,ςρψρ,ςρ+1 ≤ 0 ∧ ρ < 2m ∧ ςρ ≤ min{ρ, 2m− ρ}} .

The definition of the last set of location is almost identical to the one used for the parallel case
where the indices have been replaced with the newly defined ones and their ranges have been
updated accordingly. In the definition of L n?

arm, on the contrary, the condition for ensuring
the monotonicity of the arm profile had to be corrected since ςρ > ςρ+1 does not imply that
sρ > sρ+1, where sρ is the zero of ψ|r=rρ closest to zρ and (rρ, zρ) are the coordinates of the
location lρ. This is due to the fact that only grid elements with indices of the same parity are
aligned.
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(a) even and odd

n0
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(b) only even

Figure A.2: Cell centred polynomial interpolation of the tip characteristic in the
diagonal case.

The second step is to estimate both the tip position, rtip, and the derivative ψr(rtip, 0). As
for the parallel case, we want to use n2 approximation of ψ|s=sς for ς = 0, 1 . . . , n2 − 1 or for
ς = 0, 2 . . . , n2−1. The two different choices for the ς index are shown in Figure A.2, both even
and odd values on the left and only even values on the right.

These approximations, let Fς are polynomial of degree d0 computed by fit the n0 values
discrete values of ψn. In Figure A.2 these points are colored in green.

The values zς and dFς are defined, as before, as the closest zero to the tip of Fς and as its
derivative at zς . In addition to these values, since in (A.10) appears also the term ψrr(r tip, 0),
we define also ddFς :=Fς(zς).

These values are then fitted to approximate g ◦ h, ψr|r=g(s) ◦ h and ψrr|r=g(s) ◦ h with the
d2-degree polynomials gtip, Fr and Frr. Here g is the graph of ψ with respect to s close to tip:
ψ(g(s), s) ≡ 0 in an opportune neighbor of the tip.

Evaluating these regressors at s2 = 0 it is then possible to approximate the tip position rtip

and the derivatives of the phase field in the r direction at the tip:

rtip(tn) ≈ rntip := gtip(0) , ψr(rtip, 0) ≈ Fr(0) , ψrr(rtip, 0) ≈ Frr(0), n = 0, 1, . . . .
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The tip velocity is estimated using the same backward finite-difference (A.4).
To approximate ψss(rtip, 0) we introduce, as before, n3 approximations Gρ of ψ|r=rρ ◦ h.

These are polynomial of degree d1 fitting n1 values of ψn each. We have here the same choice
between using values with both even and odd indices for ρ or with only even ρs. These entries
are shown in green in Figure A.2. A polynomial, Gss of degree d3 is then fitted to the points
(rρ, ddGρ) to approximate the function ψss|s=0. The values ddGi are defined, as above, as
ddGρ := 2Ḡ′ρ(0).

The tip curvature is then evaluated thanks to these approximations using the following
approximation

(A.11) κntip :=−Frr(0) + 3Gss(rtip)
23/2Fr(0) .

For computing the parabolic curvatures, as for the parallel case, we denote with gρ the
polynomial of degree d0 that approximates ψ|r=rρ by fitting the n0 values of the phase field
each location li ∈ L n?

arm. These points are drawn in red in Figure A.2.
The roots zρ of gρ closest to the location lρ are then computed and linear regression is used

to compute the line f? : y 7→ a?y + c? that fits the values rρ at the points z2
ρ. One parabolic

curvature is then compute as κn?arm = 2a?.
Excluding for the set of regression points the locations where the following condition is not

satisfied
|z2
ρ+1 + z2

ρ−1 − 2z2
ρ|

2h2 < α

the linear regression, f?? : y 7→ a??y+c??, is computed and the second estimate of the parabolic
curvature is evaluated as κn??arm = 2a??.

A.2 The Hyperbolic Tangent Approach

As stated previously, an alternative approach to use multiple univariated polynomial regressors
for computing the arm profile and the tip and arm characteristics. This tanh approach uses
fits the following bivariate function to the same n1×n3 points at the tip that would have been
used for the approximation of ψyy(rtip, 0), in the parallel case, ψss(rtip, 0), in the diagonal one

ψ̂n(ξ, ζ) = − tanh(a+ bξ + cξ2 + dζ2)

where, depending on the case, either (ξ, ζ) 7→ (x, y) or (ξ, ζ) 7→ (r, s). The expression of ψ̂n

is similar to the initial conditions (2.10) with an additional term bξ which takes into account
that the focus of the conic approximation of the arm profile at the tip is moving along the axis
ζ = 0. The unbounded trust region algorithm used to compute the non linear regressor ψ̂n is
described in [23].
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The implicit equation for the arm profile is then a conic with the ζ = 0 as axis of symmetry

a

d
+ b

d
ξ + c

d
ξ2 + ζ2 = 0 ,

where d is assumed to be not equal to zero, otherwise the arm profile would be parallel to one
of the ζ axis.

When c = 0 this is a parabola and the graph of the arm profile is

g(ζ) = −a+ dζ2

b
.

If c · d < 0, the conic section is elliptic and its right half graph can be used to describe the arm
profile

g(ζ) = − b

2c +
√
b2 − 4c(a+ dζ2)

2|c| ;

if instead c · d > 0, the conic is an hyperbola and its left arm has to be used

g(ζ) = − b

2c −
√
b2 − 4c(a+ dζ2)

2|c| .

The tip position rtip is then

rtip := g(0) =

−ab , if c = 0

− b+sign d
√
b2−4ac

2c , otherwise

and, from it, also the tip velocity is computed using (A.4).
In the parallel case, we can substitute ψ̂n for ψ in (A.3) to obtain the following expression

for the tip curvature

κntip = −
ψ̂nyy(rtip, 0)
ψ̂nx (rtip, 0)

= − −2d
−(b+ 2crtip) = − 2d

b+ 2crtip
,

while in the diagonal case the same substitution is done in (A.10)

κntip = − ψ̂
n
rr(rtip, 0) + 3ψ̂nss(rtip, 0)

23/2ψ̂nr (rtip, 0)
= − −2(c+ 3d)
−23/2(b+ 2crtip) = − c+ 3d

21/2(b+ 2crtip) .

For computing the parabolic curvatures, the liquid/solid interface is still computed fitting
the zeros of functions approximating ψ|x=xi or ψ|r = rρ, according to the growth direction.
The same n0 points used for the polynomial fitting are now used to compute the non linear
regressors

ĝi(ρ)(ξ) = − tanh(bξ + cξ2) .

A9



Their zeros, zi(rho), (or a subset of theirs), are then used to compute the linear regressors f?(?)
of the points (z2

i , x) from which the curvatures at the regressor parabola are then evaluated
using (A.6) and (A.7).

A.3 Calibration of the Parameters

To find the best combination of post-processing parameters several simulations of the same pure
metal problem (α = 1, |ε| = 0.05, r0 = 16, ∆ = 0.65) on a uniform grid with the same choice of
discretization parameters (h = 0.4, k = 0.032) while changing the post-processing parameters.

Only the first 200 non-dimensional time units of the simulation have been performed for
this purpose. This allowed to limit the computational domain to [0, 60]2 using homogeneous
Neumann conditions on the x, y = 0 edges and Dirichlet conditions on x, y = 60.

The three algorithms implementing the polynomial approach (parallel case, diagonal case
using both even and odd indices, and diagonal case using only even indices) and two imple-
menting the hyperbolic tangent approach (parallel case, and diagonal case using both even and
odd indices) are used for simulations using both cell centered and node centered variable bases.

A.3.1 Literature parameters

The polynomial algorithm for the parallel case coincides with the one proposed in [49] when a
node centered discretization for ψ is adopted and the following post-processing parameters are
chosen: n0 = n3 = 5, n1 = 3, n2 = 1, d0 = d3 = 4, d1 = 2, and d2 = 0. When cell centered
discretization is adopted, the phase filed has to be interpolated on y = 0, therefore n2 must
be greater than 1. When d2 = n2 − 1 the polynomial regressor is the polynomial interpolator,
therefore, for the vertex based case, this choice is equivalent to using only values of the phase
field on y = 0 (n2 = 1, and d2 = 0). The graphs of the arm characteristics for the choice of
post-processing parameters n0 = n2 = n3 = 5, n1 = 3, d0 = d2 = d3 = 4, and d1 = 2 are shown
in Figure A.3.

Looking at the post-processed values of the position (Figure A.3a) grid anisotropy can be
observed; the dendritic tip position is growing faster in the diagonal direction (the dashed lines
in the plot) as compared with simulations with ε > 0. Moreover, it can be observed that, while
all algorithm and choice of variable basis produce similar values for the tip position when ε < 0,
the choice between cell centered (square marks) or vertex based (circle marks) discretization
affects the position result.

From the analysis of the tip velocity values (Figure A.3b), grid anisotropy is still evident with
a grow velocity in the diagonal direction slightly faster than the one in the parallel direction.
The choice of variable basis, instead, is not affecting the velocity estimate in neither cases, which
means that the differences observed in the computation of the tip position for the parallel case is
constant over the simulation. This suggest that this difference is imputable to the post-process
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Figure A.3: Tip characteristics computed with literature post-processing parameters (n0 = n2 =
n3 = 5, n1 = 3, d0 = d2 = d3 = 4, and d1 = 2). Only the first 200 non-dimensional units of time of the
simulation are performed. The arm curvature is κn?arm and is computed fitting all locations in L n?

arm.
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itself. Graphs produced by the hyperbolic tangent approach are discontinuous and shows peaks
corresponding to the timesteps where the tip go across a grid position (a cell centroid or a
vertex). Graphs produced by the polynomial approach, instead, are smoother and presents
very limited steps when the tip is at a grid position only when considering problem with ε < 0.

The tip curvature (Figure A.3c) is the tip characteristic that presents the most variability to
the choices of variable basis, favored arm growth direction, and post-processing algorithm. This
variability is limited when only values computed from simulations with ε < 0 are considered.
In this case, the difference between tip curvature estimations with a different choice of variable
basis is negligible and it is also negligible the difference between the values produced by the
polynomial approach using both even and odd indices (black markers) and those produced by
the polynomial approach using only even indices (white markers). The values estimated by the
hyperbolic tangent approach (red markers) are about 6% smaller than the polynomial estimates.

Looking at the arm curvature values (Figure A.3d) it can be observed that this are not
smooth and that their variability is higher when the arm growth is favored along the cartesian
axes. The arm curvature values, however, are not dependent on the post-processing algorithm
and depend only on the choice of variable basis and favored growth direction. Smaller differences
are observed between simulations with ε < 0.

A.3.2 Calibration of Parameter n0

One parameter at a time is modified while keeping the other constant. First, values in the range
2 ÷ 9 are considered for the parameter n0 (for algorithm using the polynomial approach d0 is
modified accordingly so that the polynomial interpolator is chosen as regressor d0 = n0 − 1).

From the simulations’ outputs can be observed that the dependency upon n0 of the tip
position is negligible (less than 0.03%) with the difference between results with consecutive
values of n0 but same ε and post-processing algorithm decreasing as n0 increases.

This negligible differences, however, result in negligible differences in the tip velocities only
when the hyperbolic tangent approach is adopted. In fact for simulation using a polynomial
approach it can be observed that using values more than six regression values results in tip
velocity profiles that present great irregularities, with a variability that increases as n0 increases.
On the other hand, also using fewer regression points results in less smooth profiles. In particular
the profiles present bigger steps corresponding to the timesteps where the tip goes across a grid
position as n0 ranges from 6 to 2. Discontinuities of the velocity profile are observer also for the
hyperbolic tangent algorithms which present peaks where the tip goes across a grid position;
however the size of this peaks is independent on the choice of n0 and is about 10% for problems
with diagonal arm growth and less than 5% for parallel growth.

Negligible dependency on n0 for hyperbolic tangent algorithms is observed also in the tip
curvature computations. The tip curvature profile for the diagonal cases has big steps (∼ 65%)
when n0 = 2. The magnitude of these steps vanishes as the number of regression points
increases and almost indistiguishible smooth profiles are obtained with n0 ≥ 6. Profiles of
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parallel problems have a similar dependency on n0, but the size of the step discontinuities for
n0 = 2 is relatively smaller (∼ 6%).

For all choices of post-processing algorithm, variable basis, and favored growth direction
no appreciable dependency on n0 is observed and all the arm curvature profiles present step
discontinuities of about 2%.

A.3.3 Calibration of Parameter d0

From the observations above, n0 = 6 is the best choice for the number of regression points n0.
This allows the parameter d0 of the polynomial approach to range between 1 and 5. When
d0 = 1, 2, the position profile obtained shows step discontinuities of limited magnitude (∼ 2%).
Higher values of d0 results in almost indistinguishable smooth position profiles. Small values of
d0 produce peaks in the velocity profile where the tip goes across a grid position. These peaks
are maximum (∼ 6500%) when d0, decrease as d0 increases and vanish for d0 = 5. Limited
fluctuations (< 1%) in tip curvature profiles are observed for d0 = 1, 2. Fluctuation vanishes
as profiles converge to the same profile as d0 reaches 5.

For diagonal problems also the arm curvature shows a dependency upon the choice of d0

which however does not affect significantly the magnitude of the step discontinuities.
For the next simulations using a polynomial approach the degree d0 is therefore chosen to

be 5.

A.3.4 Calibration of Parameter n1

Varying the parameter n1 in the range 2 ÷ 9 result in very limited variations (< 0.5%) in the
tip position estimations for all combinations of post-processing algorithm, growth direction and
variable basis.

The changes of the parameter n1 don’t affect also the velocity profiles computed with a
polynomial approach which don’t present discontinuities of any kind. However, when using a
hyperbolic tangent fitting, the number of regression points n1, affects the magnitude of the
peaks corresponding to the tip going across a grid position. Their magnitude is slightly higher
for cell centered simulations and is about 5% when n1 = 2, is minimal (∼ 1.5%) for n1 = 2,
and increases as n1 increases above 2 reaching a relative value of about 1/4 when n1 = 9.

Greater dependency on n1 is observed in the tip curvature profiles. All algorithms show
the difference between the profiles computed using two adjacent values of n1 decrease as this
number is increased. However the asymptotic profiles to which the different approaches tend
are all different in the parallel case. Remembering that n1 is the number of regression points
used to interpolate the phase field over the axis of the favored direction of growth ζ = 0, it
is reasonable to believe that this differences should be smaller for diagonal problems and for
vertex based variables; in these cases, in fact, grid locations exist on ζ = 0. Moreover, since
such locations are more dense in the diagonal case, it could be expected that for this case the
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differences in the tip curvature profiles are smaller. Smaller differences are in fact observed
between simulations of the diagonal problem than between parallel outputs. In addition to
this, it can be argued that, while it is improving the smothness of the profiles, increasing n1 is
also making the tip estimation less local. This is corroborated by the fact that in the parallel
the profiles with n1 = 2 and the same variable basis overlaps, while they asymptotic profile
are different. In the diagonal case as well, tip curvature profiles from different approaches are
closer for smaller values of n1.

The arm curvature is independent of n1, therefore, from the arguments above, the best choice
for n1 is to set n1 = 2 which implies also the choice d1 = 1 for the polynomial approaches.

A.3.5 Calibration of Parameter n2

The parameter n2 appears only in the polynomial approaches and affects appreciably only the
tip curvature profile of parallel problems using cell centered variables. In particular, increasing
the value of n2 decreases the difference between subsequent profiles. However the difference
between the profile with n2 = 2 and n2 = 9 is less than 0.001%. In the following analysis,
therefore, the choices n2 = 2 and d2 = 1 are made.

A.3.6 Calibration of Parameter n3

Varying n3 in the range 2 ÷ 9 affect only the tip velocity and curvature profiles. Negligible
differences between position profile are observed with the parallel approaches. The hyperbolic
tangent approach for parallel problems is unstable when n3 = 2. Peaks at grid positions
are otherwise observed for all other simulation using the hyperbolic tangent approach. Their
magnitude is minimal when n3 = 3.

With regards to the tip curvature profiles, the polynomial interpolation is found unstable
for n3 ≥ 8. Setting n3 = 2 produces fluctuation in the tip curvature profiles in the order of 2%
for parallel simulations using both the polynomial and the hyperbolic tangent approaches. The
profile for parallel simulations are otherwise almost undistinguished. The fluctuation found in
the tip curvature profile for diagonal polynomial simulations have a magnitude of about 5%
that is independent on n3, when both even and odd regression locations are used and that
vanishes when n3 is increased. In this last case, most of the fluctuations is removed already
when n3 = 5 when the fluctuations’ amplitude is less then 0.3%. Step discontinuities are present
in the tip curvature profiles of diagonal simulations using the hyperbolic tangent approach with
an amplitude (∼ 5%) that is independent of n3.

The arm curvature profile is in any case independent of n3, therefore the best choice for
n3 appears to be n3 = 5 and the best polynomial approach for diagonal problems is the one
using only even locations. This choice for n3 allows d3 to range between 1 and 4. Only the tip
curvature profile is affected by this choice: profile with d3 = 1 have steps about 10% wide that
are reduced to about 1% for d3 = 4.
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A.3.7 Calibration of Parameter α

The last parameter to calibrate is the threshold used α for identify which locations are too close
to the tip to be used as regression locations in the computation of the arm curvature. For this
reason the following values of α have been considered: α = 1, 0.5, 0.25, 0.125. The difference
between subsequent profiles decreases as α is halved, therefore the value α = 0.125 is used
hereafter.

A.3.8 Default parameters

From the discussion above, best for the polynomial approach is the following choice of param-
eters

n0 = 6 , d0 = 5 , n1 = n2 = 2 , d1 = d2 = 1 ,n3 = 5 ,d3 = 4 ,α = 0.125 ,

and using only even locations when ε < 0. Moreover, the best choice of parameter for the
hyperbolic tangent approach is

n0 = 6 , n1 = 2 , n3 = 5 , α = 0.125 .

The graphs of the arm characteristics for these choices of post-processing parameters are
shown in Figure A.4.

Looking at the position profiles (Figure A.4a) grid anisotropy is still observed, since such
behavior is related to the coarseness of the computational grid rather than on the post-process
itself. The small difference between the positions computed from cell centered and vertex
based simulations with ε > 0 is still appreciable and is not dependent on the post-processing
approach and parameters, so it is a behavior that can be considered depending only on the
choice of variable basis.

The tip velocity profiles (Figure A.4b) are affected by grif anisotropy as well, with diagonal
profiles slightly faster than the parallel ones

Graphs produced by the hyperbolic tangent approach show peak discontinities at timesteps
where the tip go across a grid position. Profiles computed with the polynomial approach,
instead, are smooth.

Great improvement are found in the tip curvature profiles (Figure A.4c) when compared to
ones with the initial choice of parameters (Figure A.3c. Both the polynomial and the hyperbolic
tangent approach produce the same profile for the parallel case, which are dependent, as the tip
position, only on the variable basis. In the diagonal case, all approaches produce similar profiles
independently of the variable basis. These profile have the same average trend but present
different variability: using the hyperbolic tangent approach produces profile with step-like
discontinities while the polynomial approach produces profiles with fluctuations. The smaller
variability (< 1%) is observed when using only even indices with the polynomial approach.
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Figure A.4: Tip characteristics computed with default post-processing parameters (n0 = 6, n1 =
n2 = 2, n3 = 5, d0 = 5, d1 = d2 = 1, and d3 = 4). Only the first 200 non-dimensional units of time of
the simulation are performed. The arm curvature is κn??arm and is computed excluding locations close to
the tip (α = 0.125) by fitting locations in L n??

arm .
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Also the arm curvature profiles (Figure A.4d) are greatly improved by calibrating α. The
profiles obtained are smoother and almost undistinguished between different problems and
approaches.

A.4 Computing Tip Characteristics for 3D Problems

When considering three dimensional problems, the arm morphology can be computed as for
the two dimensional cases given that we restrict our computations on a planar section of the
dendrite that contains one of the lines joining the dendrite center and one of its tips. This
can be the plane x = 0 or x = y depending on the sign of the anisotropy coefficient ε. By
doing so, the same exact algorithms described for 2D problems can be used except for the
simulations using cell-centered variables’ representation where the growth is favored along the
cartesian axes (parallel case). In fact in these simulation the plane x = 0 is not identifiable
with a layer of cells since their centroid are either on one or the other side of the plane. For
such simulations, therefore, computing the characteristics of the dendritic arm and tip would
require interpolation or fitting also in the direction orthogonal to the plane.
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