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Abstract. The construction of the Khovanov homology of links motivates an interest in dec-
orated Boolean lattices. Placing this work in the context of a bundle theory of presheaves
on small categories, we produce, for a certain set of naturally occurring cases, a Leray-Serre
type spectral sequence relating the bundle to the cohomology of the total sheaf. This gives a
reduction property for the cohomology of sheaves on certain posets.



VI

In the 19th century, Lord Kelvin came to the idea that atoms are knots of swirling
vortices in the æther. A ‘table of elements’ then, was a table of distinct knots – the
Scottish physicist and Kelvin’s collaborator Peter Guthrie Tait prepared meticulous
lists of unique knots, believing he was describing something fundamental to the ma-
terial world. And while the vortex theory became obsolete, the mathematics of knots
has found modern applications in biology and chemistry, from protein folding to de-
termining the chirality of molecules. Among the various applications of knot theory
to physics is the topological quantum computer [Kit03], which uses braids for its
logical gates.

The most relevant point on the chain of inspiration for this work is Mikhail Kho-
vanov’s breakthrough discovery of a link invariant [Kho00] that generalises the Jones
polynomial. As with other fruitful advancements, ‘Khovanov homology’ intersects
two relatively disjoint fields – knot theory, with its chiefly combinatorial approach,
and homological algebra. This connection was realised early, but it is the work of
Brent Everitt and Paul Turner ([ET09, ET12, ET15]) that makes it explicit in our
context. Indeed, Everitt and Turner realise Khovanov’s construction as a presheaf of
modules on a poset.

The main aim of this thesis is to generalise and expand the results of [ET12]. That
paper devises a homology theory, called ‘coloured poset homology’, and shows how
a Leray-Serre style spectral sequence converges to the coloured poset homology of
the total sheaf of a bundle. Here, we move to the broader context of sheaves on small
categories and employ the usual definition of cohomology for such objects, namely
the values of the derived limits. Our main theorem, proved in Section 7.5, is

Main Theorem. Let ξ : B → Sh be a poset bundle of sheaves with B a recur-
sively admissible finite poset, and (Eξ; Fξ) the associated total sheaf. Then there is a
spectral sequence that converges to the cohomology of the total sheaf:

Ep,q
2 = Hp(B;Hq

f ib(ξ))⇒ H•(Eξ; Fξ).

We proceed as follows. Chapter 1 traces the main beats in the development of
knot theory, culminating in the detailed definitions of the Jones polynomial and of
Khovanov homology. After that, in Chapter 2, we lay out the categorical notation and
the homological apparatus that the following arguments are based on. Particularly
useful in certain cases is the formulation of adjointness in terms of universal arrows.

Sheaves on small categories are introduced in Chapter 3 and the construction of
a simplicial complex from the nerve of a category C is given in Chapter 4. Section
3.2 sets up the argument in Section 4.2 that the higher limits of a sheaf F on a small
category C are isomorphic to the simplicial cohomology of that sheaf.

Chapter 5 brings in the theory of spectral sequences, with constructions for filtra-
tions of complexes and for bicomplexes. The bundle of sheaves, defined in Chapter
6, naturally defines a bicomplex K•,• and thus gives rise to a spectral sequence. Sec-
tion 6.3 considers this construction for a constant sheaf and finds an explicit quasi-
isomorphism, employed in the proof of the main theorem.

For the main theoretical result in Chapter 7 we impose the general assumption
that the base B of our bundle ξ : B → Sh is a poset category and that for each
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x ∈ B, the small category of ξ(x) is also a poset category; we call such a bundle a
poset bundle of sheaves. We further explain the technical requirement of ‘recursive
admissibility’ on the base poset category of our bundles and then give an explicit
chain mapω• between the simplicial complex of the total sheaf and the total complex
of the bicomplex K•,•. Two long exact sequences in terms of the above two objects
are discussed in Sections 7.3 and 7.4. The main theorem stitches the two long exact
sequences via the chain map ω• and completes the result by induction on the size of
the base poset category. Section 7.6 gives an example of a bundle over a non-poset
base and shows that the result of the main theorem remains true, suggesting it might
apply more broadly than what we prove here.

The final chapter explores some consequences of Theorem 7.14. In the context
of sheaf cohomology, the spectral sequence for a poset bundle of sheaves converges
to the cohomology of the fiber at the maximum of the base. Thus, while the main
theorem of [ET12] is able to model Khovanov homology, out key application is as
follows.

Main Application. Let E and B be posets, with B recursively admissible. Suppose
that π : E → B is an onto poset map such that for all x < y in B, the subposet
π−1(x) ∪ π−1(y) of E is admissible for π−1(x), π−1(y). Then

H•(E; F) � H•(π−1(1); F),

for all F ∈ Sh(E), where 1 is the unique maximum of B.
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Variable naming conventions

Some effort has been made to keep notation between chapters consistent. The fol-
lowing table gives commonly used objects and possible variable names associated to
them.
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Object Variable names

Knot/link or knot/link diagram L
Boolean sequence µ, ν

Category C,D
Object of category (Chapter 2) A, B,C

Object of category (Chapters 3-8) x, y, z
Morphism in a category f , g, h

Functor F,G
Natural transformation α, β

(Co)chain complex C•,D•,M•,N•
(Co)chain map φ•, ψ

•, θ•

Ring R
R-module A, B

R-module homomorphism f , g, h
Object of the category Sh (C; F), (D; G)

Morphism in the category Sh γ = (γ1, γ2)
Simplex in the nerve of a category σ, τ

Spectral sequence E
Filtration F ,J

Bundle of sheaves ξ

Total sheaf of a bundle ξ (Eξ; Fξ)
Bicomplex K•,•,L•,•

Total complex of a bicomplex K T •
K
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Motivation: knot invariants

1.1 The basics

A link L of n components is a subset of R3 ⊆ R3 ∪ {∞} = S 3, consisting of n
disjoint piecewise linear simple closed curves, where each curve has finitely many
pieces. A knot is a link with one component. Occasionally, the components of L are
also oriented, in which case we have an oriented link. The 3-sphere S 3 is always
oriented.

Some authors (eg. [Kau87b]) use a more topological definition of a link. A link
L of n components is a subset of R3 ⊆ S 3 consisting of n disjoint embeddings of S 1.
This version allows for wild knots – knots where there is a point p in S 3, such that
each neighbourhood of p contains infinitely many crossings. We will be interested
only in tame links – a link L is tame if any point on a component of the link has
a neighbourhood in S 3 that intersects only a neighbourhood of that component. In
other words, a neighbourhood of any point of the link is homeomorphic to the ‘ball
and arc’ pair below.

arc

ball

Two links L1 and L2 are equivalent, or ambient isotopic, if there exists an
orientation-preserving homeomorphism h : S 3 → S 3 such that h(L1) = L2. If L1, L2
are oriented, then h(L1) must be oriented the same way as L2.

We can also focus on the combinatorial nature of knots and links. To that effect,
we consider link diagrams – projections of links onto R2 ⊆ S 2 ⊆ S 3 that correspond
to four-regular plane multigraphs, where each vertex is decorated with a crossing
indicator in some orientation (see [Liv93, §2.4]). When the link is oriented, the link
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diagram inherits the appropriate orientation for the plane graph. For convenience the
same label is used for a link and (any of) its diagram(s).

Reidemeister [Rei27] proved in the 1920s that two links are ambient isotopic
if and only if their diagrams can be transformed into each other by planar isotopy
(continuous deformations in R2) and the three Reidemeister moves, shown in Figure
1.1.

RI: ←→ ←→ RII: ←→

RIII: ←→

Fig. 1.1: The three Reidemeister moves.

One can also define a finer notion of equivalence – two links are regularly isotopic if
they can be transformed into each other by planar isotopy and Reidemeister moves
II and III only.

Reidemeister’s theorem also applies to oriented links – the oriented Reidemeis-
ter moves are simply the moves in Figure 1.1 with any orientation assigned to the
appearing strands.

1.2 Some topological invariants of knots and links

Knot theorists have historically been interested in determining when two knot di-
agrams represent the same knot up to isotopy. Using Reidemeister moves directly
becomes hopelessly difficult in practice – for a diagram of the unknot with n cross-
ings, [Lac15] shows that up to (236n)11 moves are needed to remove all crossings.
The way forward is to use invariants: an invariant of a link L is a mathematical ob-
ject (a space, a polynomial, etc.) that does not depend on the particular diagram or
geometric realisation of L. Thus, if the invariants of two links differ, we know that
those links are not equivalent.

One invariant suggests itself directly from the definition of equivalence. If two
links L1, L2 are equivalent, then the orientation-preserving homeomorphism that
shows their equivalence also shows that the two complements S 3\L1, S 3\L2 are
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homeomorphic as oriented spaces. The converse is not true in general ([Rol76,
§3.A]), but it is true for knots:

Theorem 1.1 ([Gor89]). If two knots have complements that are homeomorphic by
an orientation-preserving homeomorphism, then they are [ambient] isotopic.

A simpler invariant is to consider just the fundamental group of the complement
of a knot – this is the knot group. While clearly not nearly as discerning as con-
sidering the entirety of the complement, the knot group is easily computable via
its Wirtinger presentation [Tie08] and distinguishes prime knots ([Gor89, Corollary
2.1]). An example of non-equivalent knots with isomorphic knot groups is given in
Figure 1.2.

Fig. 1.2: The Granny knot (left) and the Square knot (right) both have
⟨x, y, z | xyx = yxy, xzx = zxz⟩ as their knot group

A link L is called hyperbolic if its complement admits a complete metric of con-
stant curvature −1. Equivalently, L is hyperbolic if S 3\L = H3/Γ, where H3 is hy-
perbolic 3-space and Γ is a discrete, torsion-free group of isometries, isomorphic to
π1(S 3\L) (the knot group, if L is a knot). By Mostow-Prasad rigidity ([Mos73]), the
hyperbolic structure is unique up to isometry and thus the volume of S 3\L as a hy-
perbolic manifold is an invariant of the link. A theorem by Jørgensen and Thurston
[Thu97] implies that there are only finitely many links with a given hyperbolic vol-
ume. If we include the canonical decomposition [Sak21] of S 3\L into ideal polyhe-
dra, we have a complete invariant of hyperbolic knots (due to Theorem 1.1).

1.3 Combinatorial invariants

It turns out that even just a link diagram of a link gives a lot of ways to distinguish
it from other links. When defining invariants via diagrams, we need to first consider
whether the different diagrams of the same link give the same result. Conveniently,
we only need to check the Reidemeister moves given above – since any two diagrams
of the same link are related by a finite number of moves, if the invariant does not
change when applying a move, then it is indeed an invariant of the link.

We start with a simple construction (see [Liv93, §3.2]). In a knot diagram D, an
arc is a path in the plane multigraph, passing through over-crossings and ending at
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under-crossings; visually, an arc is a connected curve in the diagram, disconnected
by under-crossings. A knot is called tricolourable if for a diagram D all arcs can be
coloured with three colours, such that

• at least two colours appear, and
• at every crossing the three incident arcs are either all the same colour or three

different colours.

Figure 1.3 shows the trefoil with its three arcs in different colours. The proof that
tricolourability is a knot invariant consists of just colouring the Reidemeister moves
– see Figure 1.4. Since the unknot cannot be tricoloured (we cannot get more than
one colour to appear), this invariant gives a straightforward proof that the trefoil is
knotted. For if the trefoil and the unknot were equivalent, then they would be con-
nected by a finite number of Reidemeister moves; but those moves preserve whether
a knot is tricolourable or not.

Fig. 1.3: The trefoil knot with a valid tricolouring.

Fig. 1.4: Tricolouring the Reidemeister moves.

The first knot polynomial invariant was described by Alexander in the 1920s
[Ale28]. It is originally constructed by considering the infinite cyclic cover of the



1.4 The Jones polynomial and Khovanov homology 5

knot complement. More than 40 years later, John Conway [Con70] rediscovered it
in a different form. The Alexander-Conway polynomial ∇(z) has integer coefficients
and is entirely determined for any knot by the following requirements:

• ∇(z) is an ambient isotopy invariant,
• ∇( ) = 1, and
• ∇( ) − ∇( ) = z∇( ).

The culmination of this line of inquiry came after Vaughan Jones constructed an-
other polynomial invariant VL(t) ([Jon85]). Jones’ original definition stems from his
work on von Neumann algebras, but his paper also gives a combinatorial description
via the skein relation

1
t

V − tV =

(
√

t −
1
√

t

)
V .

The following theorem (appearing in [FYH+85] and independently in [PT88])
gives a three-variable link polynomial PL that specialises to both ∇(z) and VL(t):

Theorem 1.2. There is a unique function P from the set of isotopy classes of tame
oriented links to the set of homogeneous Laurent polynomials of degree 0 in x, y, z
such that

• xP( ) + yP( ) + zP( ) = 0,
• PL(x, y, z) = 1 if L consists of a single unknotted component.

We then have the specialisations

∇L(z) = PL(1,−1, z),VL(t) = PL(t,−t−1, t
1
2 − t−

1
2 ).

1.4 The Jones polynomial and Khovanov homology

The last stop on the way to the main motivation for this thesis is the bracket polyno-
mial. Kauffman [Kau87a] realised that while VL(t) is an invariant of oriented links,
‘most’ of what it measures is recoverable from only the unoriented diagram of the
link. The rest of the Jones polynomial comes from the ‘twistedness’, or writhe, of
the diagram:

Definition 1.3. The writhe of an oriented link diagram L is

w(L) = #{ crossings in L} − #{ crossings in L}.

The two types of crossings are called positive and negative, respectively.

If L is an unoriented diagram, a state S of L is a full resolution, i.e. a diagram
where each crossing of L is replaced by either or . For a crossing , we call its
0-smoothing and its 1-smoothing.

Definition 1.4. The Kaufmann bracket ⟨L⟩ of a link diagram L is a Laurent polyno-
mial in A defined by:
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• ⟨ ⟩ = 1,
• if S is a state of L, then define ⟨L | S ⟩ to be:

⟨L | S ⟩ := Ai− j,

where i and j are the number of 0-smoothings and 1-smoothings in S , respec-
tively,
• if |S | denotes the number of disjoint components in the diagram S , then

⟨L⟩ =
∑

S

⟨L | S ⟩ · (−A2 − A−2)|S |−1.

The bracket polynomial is not a link invariant – it is not invariant under Reide-
meister move I. It is invariant under moves II and III however, making it an invariant
of regular isotopy (recall end of Section 1.1). Combining the bracket and the writhe
for an oriented link diagram gives a link invariant that is a change-of-variable away
from the Jones polynomial.

Theorem 1.5 ([Kau87a]). Suppose L is an oriented link diagram and L′ is the same
diagram with the orientation removed. Then

f [L](A) = (−A)−3w(L)⟨L′⟩

is a link invariant. Moreover,

VL(t) = f [L](t−1/4).

It is useful to visualise the state sum for a given link. We do that with the help of
a certain poset that will be widely used in what is to follow.

Definition 1.6. A Boolean lattice Bn of rank n is a poset with elements the n-long
Boolean sequences {0, 1}n and a relation ≤ defined by µ ≤ ν if and only if µi ≤ νi for
all i ∈ {1, · · · , n}.

This is isomorphic to the poset of all subsets of a set of size n ordered by inclu-
sion, but it will be useful for our purposes to consider it as defined above.

If d = (A2 + A−2), then the calculation of the bracket of the trefoil T can be
seen as constructing the Boolean lattice of rank 3, where each vertex is a state of
T associated to a Boolean sequence µ. The picture in Figure 1.5 has a satisfyingly
similar analogue for constructing Khovanov homology – both consider the same
states of a given diagram, foreshadowing the description of the (unnormalised) Jones
polynomial as the Euler characteristic of Khovanov homology (Theorem 1.8).

Finally, we come to the description of Khovanov’s celebrated construction in
[Kho00] of a double-graded R-module link invariant. The following is based on Bar-
Natan’s survey on the topic in [BN02]. The basic ingredient here is the graded R-
module V with V1 = V−1 = R:
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Fig. 1.5: Calculating the bracket polynomial of the trefoil T from the states of T .

R

R

1

0

−1

V =

In this thesis we will have R = Z, but part of the literature also looks at R = Q. Our
preference for integral Khovanov homology (as opposed to rational) comes from the
richer (and more complex) values of the invariant, including non-obvious appear-
ances of finite quotients of Z in the final results.

For readability, whenever we have a copy of V , we will write the generator of
the module in graded (or q-)degree 1 as a 1 and the generator in q-degree −1 as u.
Displaying the generators of V , then, would look like the following (note the gray fill
– tables with gray fill always give generators of modules as opposed to the modules
themselves).

1

u

1

0

−1

V =

An operation on graded modules we will frequently be using is the q-degree shift:

V{k}i = Vi−k.

For example,
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1

u

4

3

2

V{3} =

Finally, we often take tensor products of copies of V:

(V ⊗W)i =
⊕
k+ℓ=i

Vk ⊗Wℓ.

For example,

1

u

1

0

−1
V⊗2 =

1

u

1

0

−1

⊗ =

1 ⊗ 1

1 ⊗ u, u ⊗ 1

u ⊗ u

2

1

0

−1

−2

Now suppose L is a link diagram. We can construct the lattice of full resolutions
of L as before, but we now assign a graded module to each state S µ associated to a
Boolean sequence µ. Define

Kh(L | S µ) := V⊗|S µ |{
∑
µ},

where |S µ| is the number of disjoint components in the diagram S µ and
∑
µ is the

number of 1-smoothings in S µ. For the trefoil again, we get the picture in Figure 1.6.

The arrows in the figure indicate a single switch of a 0-smoothing to a 1-
smoothing. There are two options for the effect of that switch on a diagram – it
can either merge two disjoint components, or split one component in two. We assign
one of two maps m and ∆, depending on whether the effect is ‘merge’ or ‘split’, re-
spectively. In both cases, the copies of V that are involved in the morphism are the
ones associated to the concerned components.

1 ⊗ 1

1 ⊗ u, u ⊗ 1

u ⊗ u

k + 2

k + 1

k

k − 1

k − 2

m : (V ⊗ V){k} → V{k + 1} :

1

u

k + 2

k + 1

k
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Fig. 1.6: The graded modules assigned to each state of the trefoil.

1

u

k + 1

k

k − 1

∆ : V{k} → (V ⊗ V){k + 1} :

1 ⊗ 1

1 ⊗ u, u ⊗ 1

u ⊗ u

k + 3

k + 2

k + 1

k

k − 1

On the generators, m and ∆ act as follows.

m(1 ⊗ 1) = 1
m(1 ⊗ u) = m(u ⊗ 1) = u

m(u ⊗ u) = 0
∆(1) = 1 ⊗ u + u ⊗ 1
∆(u) = u ⊗ u.

We refer to a pair (µ, ν) of n-long Boolean sequences as j-adjacent if they differ
only in their j-th place, with µ j = 0 and ν j = 1. We call a pair (µ, ν) just adjacent, if
it is j-adjacent for some j. Thus, for adjacent (µ, ν), we have defined a morphism of
graded modules dνµ : Kh(L | S µ)→ Kh(L | S ν).

The final piece of the machinery that needs setting up arises from the fact that as
currently defined, the morphisms assigned to arrows make the squares in the Boolean
lattice commute. We want to build a chain complex, so we would have to flip the sign
of some of them, so they anti-commute. If (µ, ν) are j-adjacent, then define

ϵνµ = µ1 + µ2 + · · · + µ j−1.
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All we have left is to construct the chain complex C•(L). Let

Ci(L) =
⊕
∑
µ=i

Kh(L | S µ)

and define the differential di : Ci(L)→ Ci+1(L) as

di =
⊕
(µ,ν)

(−1)ϵ
ν
µdνµ,

where the sum ranges over adjacent pairs (µ, ν) with
∑
µ = i. The ‘Jedi sign trick’

of adding the (−1)ϵ
ν
µ factor on the morphisms ensures that all squares anti-commute.

Therefore d2 = 0 and this is indeed a chain complex.

Definition 1.7. The unnormalised Khovanov homology Kh
•
(L) of a link diagram L

is the homology of the above complex:

Kh
•
(L) = HC•(L).

If L is oriented and N+ and N− are the number of positive and negative crossings,
respectively, then the normalised Khovanov homology of L is

Kh•(L) = Kh
•−N− (L){N+ − 2N−},

where curly brackets denote q-degree shift.

Theorem 1.8. The double-graded Z-module Kh•(L) is an invariant of L. Moreover,
its graded Euler characteristic is the (renormalised) Jones polynomial.

Remark 1.9. A link L with n crossings produces a chain complex C•(L) with n + 1
non-zero degrees coming from 2n states (or full resolutions) of L. To make explicit
calculations more tractable, several techniques have been developed.

• For any chosen crossing, there is a skein exact sequence ([BN02,Vir02,Kho00])

0→ C•( )→ C•( )→ C•( )→ 0.

• Unnormalised Khovanov homology can be interpreted as the derived limits of a
slightly modified Boolean lattice B+n (see [ET14] and Section 4.2)

Kh
•
(L) � lim

←−−
•

B+n
FKh.

• Spectral sequences can also be constructed, effectively extending the short exact
skein sequence ([Tur08, ET12]).
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Category-theoretical preliminaries

In this chapter we lay out the (standard) category-theoretical setup used for the rest
of the thesis. This author’s understanding of Category Theory and its applications
has been permanently shaped by Paolo Aluffi’s ‘Algebra: Chapter 0’ [Alu09]. Thus,
most of the exposition here is based on that book. One exception to this is the material
on universal arrows; this can be found in Mac Lane’s ‘Categories for the Working
Mathematician’ [ML98, III].

2.1 Categories

Definition 2.1. A category C consists of the following data

• a class Obj(C) of objects,
• for all A, B ∈ Obj(C), a class C(A, B) of arrows (or morphisms) from A to B,
• for all A, B,C ∈ Obj(C), a (class) function

C(A, B) × C(B,C)→ C(A,C)
( f , g) 7→ g ◦ f

called composition,
• for each A ∈ Obj(C), an arrow 1A ∈ C(A, A) (or idA), called the identity

subject to the following axioms:

• associativity: for all f : A→ B, g : B→ C, h : C → D, we have

h ◦ (g ◦ f ) = (h ◦ g) ◦ f ,

• unit: for all f : A→ B, we have 1B ◦ f = f and f ◦ 1A = f .

We usually omit the circle in g ◦ f and simply write g f for the composition of f
and g.

Definition 2.2. Let C be a category.
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• The category C is said to be small if its class of objects Obj(C) is a set and the
class C(A, B) is a set for all A, B ∈ C. If Obj(C) is a proper class, but C(A, B) is
a set for all A, B ∈ C, then C is called locally small. If Obj(C) is a proper class
and there are A, B ∈ C such that C(A, B) is a proper class, then C is large (for
example, the category Cat of all small categories).
• The category C is said to be a poset if C is small, the set C(A, B) consists of at

most one element for all A, B ∈ C, and the set of all arrows in C forms a partial
order (denoted ≤) on Obj C.
• A category D is said to be a subcategory of C if

– Obj D ⊆ Obj C;
– D(A, B) ⊆ C(A, B) for all A, B ∈ Obj D;
– idA ∈ D(A, A) for all A ∈ D;
– g f ∈ D(A,C) for all f ∈ D(A, B), g ∈ D(B,C), where A, B,C ∈ Obj D.

A subcategory D of C is a full subcategory if D(A, B) = C(A, B) for all objects
A, B ∈ D.

Example 2.3. If S is a set, then we can construct the poset PS of subsets of S : the
set of objects of PS is the powerset P(S ) of S and for A, B ∈ P(S ) there is a unique
arrow A → B if and only if A ⊆ B. For finite sets S with |S | = n, the poset PS is the
Boolean lattice Bn of rank n. For example, if S = {0, 1, 2}, we get the Boolean lattice
of rank 3.

•

• • •

• • •

•

∅

{0, 1, 2}

Definition 2.4. An arrow f ∈ C(A, B) is a monomorphism (or just monic) if for all
objects C and all α′, α′′ ∈ C(C, A), we have that fα′ = fα′′ implies α′ = α′′.

An arrow g ∈ C(A, B) is an epimorphism (or epic) if for all objects C and all
β′, β′′ ∈ C(B,C), we have that β′g = β′′g implies β′ = β′′.

Definition 2.5. An arrow f ∈ C(A, B) is an isomorphism if and only if there exists
g : B→ A such that

f g = 1B and g f = 1A.

Example 2.6. • The isomorphisms in the category Set of sets are the bijections.
• The isomorphisms in the category Grp of groups are the group isomorphisms.
• The isomorphisms in the category Top of topological spaces are the homeomor-

phisms.
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• The familiar statement ‘isomorphism if and only if monic and epic’ holds in
any abelian category (Definition 2.19), but not in general. For example, in the
category defined by ≤ on Z, every morphism is both monic and epic, while the
only isomorphisms are the identities.

Definition 2.7. If C is a category, the opposite category or dual category Cop is ob-
tained by formally reversing the direction of the arrows. More precisely:

• the set of objects Obj(Cop) is the same as Obj(C),
• the sets of arrows of Cop are

Cop(B, A) = { f op | f ∈ C(A, B)},

• the composition of arrows in Cop agrees with the composition in C:

f opgop = (g f )op,

• the identity arrows are preserved, i.e. 1op
A is the identity arrow of A ∈ Obj(Cop).

Definition 2.8. Given categories C and D, a (covariant) functor

F : C→ D

consists of

• for each A ∈ C, an object FA ∈ D,
• for each f ∈ C(A, B), an arrow F f ∈ D(FA, FB),

such that

• for all f ∈ C(A, B), g ∈ C(B,C), we have

F(g f ) = (Fg)(F f ),

• for all A ∈ C, we have F(1A) = 1FA.

A contravariant functor F : C→ D is a covariant functor Cop → D.

Definition 2.9. Let F,G : C→ D be functors. A natural transformation

α : F → G

consists of an arrow
αA : FA→ GA in D

for each A ∈ Obj(C), such that the square

FA

FB GB

GA

F f

αB

αA

G f



14 2 Category-theoretical preliminaries

commutes for every f ∈ C(A, B). This can also be denoted by the diagram

C D

F

G

α

If αA is an isomorphism for every A ∈ Obj(C), then α is called a natural isomor-
phism.

Definition 2.10. Let C be a category.

• We say that I ∈ Obj(C) is initial in C if for every A ∈ Obj(C) there exists exactly
one morphism I → A in C.
• An object J ∈ C if final in C if for every A ∈ Obj(C) there exists exactly one

morphism A→ J in C.
• An object is called a zero object if it is both initial and final.

Example 2.11. • If S is a set, then the empty set ∅ ∈ Obj(PS ) is initial in PS (recall
Example 2.3).
• The trivial group {e} is a zero object of Grp.
• The space {•} consisting of a single point is a final object of Top.

Definition 2.12. Let I,C be categories and F : I→ C be a covariant functor. A limit
of F is an object lim

←−−
F ∈ C, endowed with morphisms λI : lim

←−−
F → FI for all

objects I ∈ I, satisfying the following properties.

• If α ∈ I(I, J), then λJ = F(α)λI :

FI FJ

lim
←−−

F

Fα

λI λJ

• lim
←−−

F is final with respect to this property: that is, if A is another object, endowed
with morphisms µI , also satisfying the above requirement, then there exists a
unique morphism A→ lim

←−−
F making all the relevant diagrams commute.

The ‘dual notion’ to the limit is the colimit of a functor F : I→ C. The colimit is an
object lim

−−→
F ∈ C, endowed with morphisms χI : F(I) → lim

−−→
F for all objects I ∈ I

such that χI = χJ Fα for all α ∈ C(I, J) and that lim
−−→

F is initial with respect to this
requirement.

Remark 2.13. If the functor F in the above definition is instead contravariant, we
have that Fα : FJ → FI. The required commutativity is then λI = F(α)λJ .
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Example 2.14. If I is the ‘discrete category’ consisting of n ∈ N objects with only
identity morphisms, then if F : I → C is a functor, the limit lim

−−→
F (if it exists) is

called the coproduct of the objects {FI}I∈I. The colimit lim
←−−

F is called the product of
those objects.

Definition 2.15. A category C is additive if it has a zero-object, both finite products
and finite coproducts exist, and each set of morphisms C(A, B) is endowed with an
abelian group structure, in such a way that the composition maps are bilinear. A
functor between two additive categories is additive if it preserves the abelian group
structures of the sets of morphisms.

2.2 Homological algebra

If a category is additive, it makes sense to talk about ‘zero morphisms’ (denoted by 0)
and to use addition and subtraction for the group operation in the sets of morphisms.

Definition 2.16. Let C be an additive category and let f ∈ C(A, B). An arrow
ι ∈ C(K, A) is a kernel of f if f ι = 0 and for all morphisms g ∈ C(Z, A) such that
f g = 0, there exists a unique g̃ ∈ C(Z,K) making the diagram

Z

K

A B

g̃

g f
ι

0

commute. A morphism π ∈ C(B,C) is a cokernel of f if π f = 0 and for all morphisms
g ∈ C(B,Z) such that g f = 0, there exists a unique g̃ ∈ C(C,Z) making the diagram

A

C

B Z

g̃
f g

π

0

commute.

Lemma 2.17. In any additive category, kernels are monomorphisms and cokernels
are epimorphisms.

Remark 2.18. It is convenient to think of monomorphisms A→ B as defining A as a
‘subobject’ of B. Similarly, it is convenient to think of epimorphisms as ‘quotients’:
if φ : A→ B is a monomorphism, we can use B/A to denote (the target of) cokerφ.
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Definition 2.19. An additive category C is abelian if kernels and cokernels exist in
C, every monomorphism is the kernel of some morphism, and every epimorphism is
the cokernel of some morphism.

Definition 2.20. A (possibly infinite) sequence of objects and morphisms in an
abelian category

· · · A B C · · ·
f g

is exact at B if

• g f = 0 and
• coker f ker g = 0.

If this is true for every object in the sequence, then we say that the sequence is exact.

Definition 2.21. Let f ∈ C(A, B) be a morphism in an abelian category. The image
of f is defined as im f := ker(coker f ). The coimage of f is coim f := coker(ker f ).

This means that the condition defining exactness can be summarised simply as
im f = ker g.

Definition 2.22. Let C and D be categories and F : C→ D be a functor. The functor
F is exact if for any exact sequence in C

0 A B C 0
f g

the image sequence in D

0 FA FB FC 0
F f Fg

is exact.
We say that F is left-exact if whenever

0 A B C
f g

is exact in C, then so is

0 FA FB FC .
F f Fg

Similarly for F being right-exact.
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Definition 2.23. A chain complex (M•, d•) in an abelian category C is a sequence of
objects and morphisms,

· · · Mi+1 Mi Mi−1 · · ·
di+2 di+1 di di−1

such that didi+1 = 0 for all i. We can just as well use ascending indices (which are
then traditionally written as superscripts),

· · · Mi−1 Mi Mi+1 · · ·
di−2 di−1 di di+1

and impose didi−1 = 0. This is a cochain complex (M•, d•). The morphisms di (or di)
are the differentials of the complex.

Definition 2.24. The homology of a chain complex (M•, d•) in an abelian category is
a collection of objects {Hi(M•)}i∈Z, where

Hi(M•) :=
ker di

im di+1
.

The cohomology of a cochain complex (M•, d•) is a collection of objects {Hi(M•)}i∈Z,
where

Hi(M•) :=
ker di

im di−1 .

Definition 2.25. Let C be an abelian category. The category Ch(C) of cochain com-
plexes in C is defined by

• Obj(Ch(C)) = {cochain complexes in C};
• for cochain complexes M• = (M•, d•M) and N• = (N•, d•N), the morphism set

Ch(C)(M•,N•) consists of cochain maps, that is commutative diagrams

· · · N i−1 N i N i+1 · · ·

· · · Mi−1 Mi Mi+1 · · ·

di−1
N di

N

di−1
M di

M

φi−1 φi φi+1

in C. We denote by φ• the cochain map determined by the collection {φi}i∈N.

Remark 2.26. We occasionally use a superscript to indicate where the non-zero ob-
jects of a complex are. For example, M• ∈ Ch≤0 has Mi = 0 for all i > 0.

Let C be an abelian category and C ∈ C be an object. A trivial (but convenient)
example of a cochain complex is the one with C in degree 0, with all other objects
and morphisms 0. We denote this complex by ι•(C).

· · · 0 C 0 · · ·ι•(C) :
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Lemma 2.27. If C is an abelian category, then so is Ch(C).

Lemma 2.28. For every integer i, the assignment

Hi : M• 7→ Hi(M•)

defines an additive covariant functor Ch(C)→ C.

Definition 2.29. A (co)chain map φ• of cochain complexes is a quasi-isomorphism
if it induces an isomorphism in cohomology.

Definition 2.30. A homotopy between two morphisms of cochain complexes

φ•, ψ• : L• → M•

is a collection of morphisms
hi : Li → Mi−1

such that for each i we have

φi − ψi = di−1
M• h

i + hi+1di
L• .

We say that φ• is homotopic to ψ• and write φ• ∼ ψ• if there is a homotopy between
φ• and ψ•. The following diagram of the setup is not assumed to be commutative:

· · · Mi−1 Mi Mi+1

· · · Li−1 Li Li+1

· · ·

· · ·

di−2
M• di−1

M• di
M• di+1

M•

di−2
L• di−1

L• di
L• di+1

L•

hi−1 hi hi+1 hi+2

ψi−1φi−1 ψiφi ψi+1φi+1

Definition 2.31. A morphism φ• : L• → M• is a homotopy equivalence if there
is a morphism ψ• : M• → L• such that φ•ψ• ∼ idM• and ψ•φ• ∼ idL• . In this
case, the complexes M•, L• are called homotopy equivalent. In particular, a homotopy
equivalence φ• is a quasi-isomorphism, but a quasi-isomorphism is not necessarily a
homotopy equivalence.

Proposition 2.32. Homotopy equivalent complexes have isomorphic cohomology.

Remark 2.33. We can, of course, define homotopy and homotopy equivalence for
chain complexes in an analogous way. The last proposition also extends to this case
– homotopy equivalent chain complexes have isomorphic homology.

Lemma 2.34. A (short) exact sequence in Ch(C)

0→ L• → M• → N• → 0

determines a (long) exact sequence in C

· · · → Hi−1(N•)→ Hi(L•)→ Hi(M•)→ Hi(N•)→ Hi+1(L•)→ · · · .
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Lemma 2.35 (5-Lemma). Let the following be a commutative diagram in C

A′ B′ C′ D′ E′

A B C D E

f g h i j

where the rows are exact, the maps g and i are isomorphisms and the maps f and j
are epic and monic, respectively. Then h is an isomorphism.

Definition 2.36. Let C be an abelian category. An object P ∈ C is projective if and
only if for any epimorphism f ∈ C(M,N) and any morphism g ∈ C(P,N), there
exists a morphism g̃ ∈ C(P,M) such that the diagram

M N 0

P

f

g
g̃

commutes. An object Q ∈ C is injective if and only if for any monomorphism
k ∈ C(L,M) and any morphism ℓ ∈ C(L,Q), there exists a morphism ℓ̃ ∈ C(M,Q)
such that the diagram

0 L M

Q

k

ℓ
ℓ̃

commutes.

Definition 2.37. An abelian category C has enough projectives if for every object
C ∈ C there exists a projective object P ∈ C and an epimorphism P → C. The
category has enough injectives if for every object C ∈ C there is an injective object
Q ∈ C and a monomorphism C → Q.

Definition 2.38. Let C be an object of an abelian category C. A projective resolution
of C is an exact sequence

P0 ← P1 ← P2 ← · · ·

and a quasi-isomorphism P• → ι•(C), where P• ∈ Ch(C) with each of its objects
projective. An injective resolution of C is an exact sequence

Q0 → Q1 → Q2 → · · ·

and a quasi-isomorphism ι•(C) → Q•, where Q• ∈ Ch(C) with each of its objects
injective. We usually refer to the resolutions as just P• or Q•, leaving the quasi-
isomorphism understood.
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Definition 2.39. Let C and D be abelian categories and assume C has enough pro-
jectives. Let F : C→ D be an additive, covariant, right exact functor and C an object
of C. The left-derived functor LiF(C) of F at C is obtained by finding any projective
resolution PC

• of C, applying the functor F to the complex PC
• to obtain a complex

in Ch(D), and taking the i-th homology of this complex. Similarly, the right-derived
functor RiG(C) of a left exact functor G at C is obtained by finding any injective
resolution Q•C of C, applying the functor G to the complex Q•C to obtain a complex
in Ch(D), and taking the i-th cohomology of this complex.

Remark 2.40. Since contravariant functors F : C → D are just covariant functors
Cop → D, if the functor F in the definition above is contravariant, then the roles
of injectives and projectives should be swapped – the right-derived functors of an
additive contravariant functor C → D will be defined if C has enough projectives
(i.e. Cop will have enough injectives, as needed).

Proposition 2.41. The above description results in well-defined functors, i.e. any two
resolutions PC

• , P
′C
• (or Q•C ,Q

′•
C ) of an object C of C give quasi-isomorphic complexes

F(PC
• ), F(P

′C
• ) (or F(Q•C), F(Q

′•
C )).

Definition 2.42. Let G : D → C be a functor and A ∈ C. A universal arrow from A
to G is a pair

(FA, ηA : A→ G(FA))

such that FA ∈ D and for every B ∈ D and g ∈ C(A,GB) there is a unique arrow
g̃ ∈ D(FA, B) such that

G(g̃)ηA = g.

A

G(B)

G(FA)

C

B

FA

D
ηA

G(g̃)

G

g̃
g

Definition 2.43. Let G : D→ C and F : C→ D be functors. An adjunction between
F and G is a family of bijections

θA,B : D(FA, B)→ C(A,GB)

that are natural in A ∈ C and B ∈ D. We say that (F,G) is an adjoint pair (and we say
that F is left-adjoint to G; G is right-adjoint to F).

Theorem 2.44. Let G : D→ C be a functor. The following are equivalent:

• To give a functor F : C→ D and a family of bijections

θA,B : D(FA, B)→ C(A,GB)

that are natural in A ∈ C and B ∈ D.
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• To give, for every A ∈ C, a universal arrow from A to G

(FA, ηA : A→ G(FA)).

Proposition 2.45. Every right-(left-)adjoint functor between two abelian categories
is left-(right-)exact.

Proposition 2.46. If F is left-adjoint to an exact functor, then FA is projective when-
ever A is projective.
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Sheaves and the category Sh

3.1 Sheaves

In Section 1.4, we assigned graded modules to each element of a Boolean lattice and
described morphisms between them. This construction is an example of a presheaf
of modules on a small category. In this section, we lay out the particular definitions
we will be working with. Our treatment follows, but also aims to generalise, the
treatment of ‘coloured posets’ in [ET09].

One further note. It occasionally happens that the same concept is given differ-
ent names in order to reflect a specific perspective or attitude. In this way, the term
‘presheaf’ is a concept with an attitude – it is called a presheaf, because it is not yet
‘sheafified’ into a sheaf, or because it indicates interest in the ‘presheaf topos’. We
will, in fact, not be engaging explicitly with either and thus will contend ourselves
with using sheaf for the relevant functor, as opposed to presheaf.

From now on, let C be a small category and R be a commutative ring with 1.
For the rest of the thesis we will switch to using x, y, z for objects of categories (as
opposed to A, B,C) and will reserve A, B,C, etc. for R-modules.

Definition 3.1. A sheaf F on C is a contravariant functor F : C→ RMod.

C : x y

F : Fx Fy
Fg

g

We write Fy
x for F(x→ y) : F(y)→ F(x). These are the structure maps of F.

Example 3.2. If P is a poset with a unique maximal element, then the coloured poset
(P, F) ([ET09, Definition 1]) is a sheaf F on Pop.
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Definition 3.3. A map of sheaves is a morphism α : F → G, where F and G are
sheaves on C, such that α is a natural transformation of functors (recall Definition
2.9).

C : x y

F : Fx Fy

G : Gx Gy

Fg

g

Gg

αx αy

The category of sheaves on C is denoted Sh(C).

Example 3.4. A basic example is the constant sheaf on C. Let A ∈ RMod. Then
define ∆A : C→ RMod by ∆A(x) = A and for any x→ y ∈ C(x, y)

∆A(x→ y) : ∆A(x)
∥
A

id
←− ∆A(y)

∥
A

.

If A and B are R-modules and f : A → B is an R-module homomorphism, then
we have an induced map of sheaves α : ∆A→ ∆B.

x y C

A A ∆A

B B ∆B

g

id

id

f f α

This makes ∆ a covariant functor RMod → Sh(C).

We can also functorially get an R-module from a sheaf. If F is a sheaf on C,
then we have a functor F : C → RMod and we can explicitly construct the limit
lim
←−−C

F (recall Definition 2.12) as a submodule of the product
∏

x∈C F(x). The prod-
uct consists of arbitrary sequences (ax)x∈C of elements ax ∈ F(x). Say that a sequence
(ax)x∈C is coherent if for every x1 → x2 ∈ C we have ax1 = F x2

x1 (ax2 ). Define

lim
←−−C

F =

(ax)x∈C ∈
∏
x∈C

F(x) | (ax)x∈C is coherent

 .
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The canonical projections πx :
∏

y F(y) → F(x) restrict to lim
←−−C

F and so give the
required limit morphisms that commute with the module morphisms in the sheaf.

We can also explicitly construct the colimit lim
−−→C

F as a quotient of the sum:

lim
−−→C

F =
⊕
x∈C

F(x)/I,

where I is generated by all the ay−Fy
x(ay) for x→ y in C and ay ∈ F(y). The quotient

maps of the canonical inclusions F(y)→
⊕

x F(x) provide the colimit morphisms.

Example 3.5. Let C be a poset category (Definition 2.2) and F be a sheaf on C as
represented below.

C =

•

•

•

• F =

D

C

A

B ⟲

f1 f2

f3 f4

If (a, b, c, d) ∈ lim
←−−C

F, then

(a, b, c, d) = (a, f1a, f2a, f3 f1a),

so lim
←−−C

F � A.
If (a, b, c, d) ∈ lim

−−→C
F, then

(a, b, c, d) = (0, 0, 0, d − f3 f1a − f3b − f4c),

so lim
−−→C

F � D.
More generally ([Yuz91]), whenever we have a poset category C with a unique

maximum (or a unique minimum) x, the same argument gives lim
←−−C

F � F(x) (or
lim
−−→C

F � F(x)).

We have constructed two R-modules lim
←−−C

F and lim
−−→C

F from a sheaf F. Now
suppose we have two sheaves F,G on C and a sheaf morphism α : F → G. For an
arrow x→ y ∈ C consider the following diagram

lim
←−−C

F

F(x) G(x)

G(y)F(y)

lim
−−→C

F

αy

αx
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The left and right triangles commute by the definition of the limit and colimit, re-
spectively. The square commutes since α is a natural transformation. We can then
compose the limit maps with the α morphisms and the α morphisms with the col-
imit maps. The universal properties of the limit and the colimit imply that there are
unique morphisms

lim
←−−C

F → lim
←−−C

G and lim
−−→C

F → lim
−−→C

G

and so lim
←−−C

and lim
−−→C

are covariant functors Sh(C)→ RMod.

Proposition 3.6. Let C be a small abelian category. The functors ∆ : RMod → Sh(C)
and lim
←−−C

: Sh(C)→ RMod form an adjoint pair (∆, lim
←−−C

).

Proof. Theorem 2.44 means that we only need to define for each A ∈ RMod a uni-
versal arrow (∆A, ηA : A → lim

←−−C
∆A). Let B ∈ Sh(C) and g : A → lim

←−−C
B. Finally,

let x→ y be an arrow in C and consider the diagram in Figure 3.1.

A

lim
←−−C

∆A

lim
←−−C

B

A(x) A(y)

B(x) B(y)

ηA

g

id

id
id

Fig. 3.1: Construction of the universal arrow A→ lim
←−−C

∆A.

If A(x) := ∆A(x) � A and A(y) = ∆A � A, then the identity maps A → A(z) for
every z ∈ C give a unique morphism ηA : A → lim

←−−C
∆A from the universal property

of the limit. This means that the portion of the diagram with solid arrows now com-
mutes. We want to find the unique morphism g̃ : ∆A→ B such that lim

←−−C
(g̃)ηA = g.

In order to maintain commutativity, for each z ∈ C, we can only construct the
arrow A(z) → B(z) as the composition A(z) → A → lim

←−−C
B → B(z). This gives the

sheaf morphism g̃. The curved dashed arrow represents lim
←−−C

(g̃) and, since everything
in sight commutes, we have verified that lim

←−−C
(g̃)ηA = g. ⊓⊔

Similarly, (lim
−−→C

, ∆) also form an adjoint pair. Therefore lim
←−−C

is a left exact func-
tor and lim

−−→C
is a right exact functor.
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Definition 3.7. The higher limits lim
←−−

i
C

are defined as the derived functors Ri lim
←−−C

.

The higher colimits lim
−−→

i
C

are defined as the derived functors Li lim
−−→C

. We also define
the cohomology and homology of C with coefficients in F by

Hi(C; F) := lim
←−−

i
C

F and Hi(C; F) := lim
−−→

i
C

F.

We can also vary the small category C that encodes the shape of the sheaf.

Definition 3.8 (Category Sh). An object (C, F) of Sh consists of a small category
C and a sheaf F on C. A Sh-morphism γ : (C, F) → (D,G) is a pair of maps
(γ1, γ2), where γ1 : D → C is a covariant functor and γ2 : Fγ1 → G is a natural
transformation:

C

D

RMod or

F(γ1(x)) F(γ1(y))

G(x) G(y)

⟳

F

γ1

G

γ2x

G(y→x)

F(γ1(y)→γ1(x))

γ2yγ2

The composition of two morphisms γ : (C, F)→ (D,G) and δ : (D,G)→ (E,H)
is then (γ1δ1, δ2γ2) : (C, F)→ (E,H).

3.2 Computing the cohomology of a sheaf

The next chapter will give a ‘simplicial’ homology theory for computing the higher
colimits of a sheaf. This section gives an alternative way to compute Hi(C; F). We
start by collecting some facts into the following proposition.

Proposition 3.9. Let C be a small category. Then Sh(C) is abelian, has enough pro-
jectives and injectives; kernels, cokernels, and exactness in Sh(C) can be determined
locally, or ‘pointwise’.

Most of Proposition 3.9 can be found in Chapters 5 and 6 of [Rot09], for example
Corollary 5.94, Propositions 6.2 and 6.5, etc.

A special case of the adjointness of (∆, lim
←−−C

) (Proposition 3.6) when A = R gives

HomSh(C)(∆R, _) � HomR(R, lim
←−−C

) � lim
←−−C

.

Proposition 3.10. For any F,G ∈ Sh(C), we have

Ri HomSh(C)(F, _)(G) � Ri HomSh(C)(_,G)(F).

Proof. In view of Proposition 3.9, the proof goes through analogously to any stan-
dard proof in RMod (for example, [Wei94, §2.7]). ⊓⊔
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Therefore we have

lim
←−−

i
C

F � Ri HomSh(C)(∆R, _)(F) � Ri HomSh(C)(_, F)(∆R).

Suppose then that we have a projective resolution P• of ∆R in Sh(C), i.e. an exact
sequence

· · · → P2 → P1 → P0 → ∆R→ 0,

where the Pi’s are projective sheaves. Then the above isomorphism means that
lim
←−−

i
C

F is isomorphic to the degree-i cohomology of

· · · ← HomSh(C)(P1, F)← HomSh(C)(P0, F)← 0.
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Combinatorial Cohomology

In the previous chapter we gave the theoretical procedure for finding the cohomology
of a sheaf via the higher limits. The goal now is to define a cochain complex that
computes the limit of a sheaf, but that is not obscured behind the abstract veil of
derived functors. In the first section we define such a complex, with the proof that it
indeed computes the higher limits left to the second. A version of the exposition in
this chapter can be found in [Moe95].

4.1 The complex S•

From a small category C we will define a simplicial complex NC called the nerve of
C:

• An i-simplex σ is a chain x0 → x1 → · · · → xi, where each x j is an object of C
and each x j → x j+1 is an arrow in C.
• A subsimplex τ ⊆ σ is a choice of a set {i0, . . . , ik} ⊆ {0, . . . , i}with i j < i j+1. This

gives a k-simplex xi0 → xi1 → · · · → xik , where the arrows are the appropriate
compositions of arrows from σ.

A sheaf F on C gives a covariant functor Fh from the poset of simplices of NC
to RMod:

Fh(x0 → x1 → · · · → xi) = F(x0),

Fh(xi0 → · · · → xik ⊆ x0 → · · · → xi0 ) = F(x0 → xi) = F(xi0 )→ F(x0),

where the arrow x0 → xi0 is given by the appropriate composition of arrows in σ.
We form the module for the k-cochains (k ≥ 0):

Sk(NC; F) =
∏
σ

Fh(σ),

where the product ranges over all k-simplices σ. For k < 0, Sk(NC; F) = 0.
The differential dk : Sk−1(NC; F)→ Sk(NC; F) is defined for k > 0 by
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dku|σ =
k∑

j=0

(−1) jFh(σ j ⊆ σ)(u|σ j ),

where σ = x0 → x1 → · · · → xk, u ∈ Sk(NC; F), s|σ is the component of u indexed
by σ, and

σ j = x0 → · · · → x̂ j → · · · → xk

= x0 → · · · → x j−1 → x j+1 → · · · → xk.

For k ≤ 0, dk = 0.

Lemma 4.1. S•(NC; F) is a cochain complex.

Proof. We need to show that d2u is zero at each coordinate. If σ is as above, then it
is not hard to see that dkdk−1u|σ is a sum of terms of u in coordinates corresponding
to x0 → · · · → x̂i → · · · → x̂ j → · · · → xk, where each of these terms appears
exactly twice. One of these terms arises when xi is deleted first, x j second. Its sign
is (−1)i(−1) j−1 = (−1)i+ j−1. If x j is deleted first, xi second, the sign of the term is
(−1) j(−1)i = (−1)i+ j. So the two terms cancel.

In the case where i = 0, j = 1, the two terms are not coordinates of u, but
F(x1 → x2) ◦ F(x0 → x1) and F(x0 → x2) applied to a coordinate of u. The two are
the same by the functoriality of F. ⊓⊔

Given a Sh-morphism γ : (C, F)→ (D,G), there is an induced map

γ• : S•(NC; F)→ S•(ND; G)

defined by
γ•u|σ = γ2x0 (u|γ1(σ)).

Lemma 4.2. The induced map γ• is a well-defined chain map.

Proof. We want to show that dγ• = γ•d. If u ∈ Sk−1(NC; F) and σ = x0 → · · · → xk

is a k-simplex in ND, then

dγ•u|σ = Gh(σ0 ⊆ σ)(γ•u|σ0 ) +
k∑

j=1

(−1) jGh(σ j ⊆ σ)(γ•u|σ j )

= G(x0 → x1)(γ2x1 (u|γ1(σ0))) +
k∑

j=1

(−1) jγ2x0 (u|γ1(σ j))

= γ2x0 (Fh(γ1(σ)0 ⊆ γ1(σ))(u|γ1(σ0)))+

+ γ2x0

 k∑
j=1

(−1) jFh(γ1(σ) j ⊆ γ1(σ))(u|γ1(σ) j )


= γ2x0 (du|γ1(σ))
= γ•du|σ,

where the middle equals holds because of the naturality of γ2. ⊓⊔
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Remark 4.3. We can also define the chain modules S•(NC; F) in a similar way:

Sk(NC; F) =
⊕
σ

Fh(σ),

with the differential dk : Sk(NC; F)→ Sk−1(NC; F) given by

u|σ 7→
k∑

j=0

(−1) jFh(σ j ⊆ σ)(u|σ j ).

Analogously to the above two lemmas, we have that S•(NC; F) is a chain complex
and a Sh-morphism γ induces a chain map γ•.

We have thus defined a covariant functor

S• : Sh→ ChR,

from pairs of small categories and sheaves to chain complexes over R. In particular,
for each q ∈ Z we have a covariant functor

Sq : Sh→ RMod.

Since homology is a functor from chain complexes to graded R-modules, we also
have a covariant functor

H•S• : Sh→ Gr RMod.

In particular, for each q ∈ Z we have a covariant functor

HqS• : Sh→ RMod.

In the next section, we will make use of one particular fact about the chain com-
plex S•(NC;∆R) when C has an initial object.

Proposition 4.4. Suppose C is a small category with an initial object x and let ∆R
be the constant sheaf on C. Then

HnS•(NC;∆R) �

R, n = 0,
0, otherwise.

Proof. We construct a homotopy hi : Si(NC;∆R) → Si+1(NC;∆R) between the
chain maps id• and 0•. If σ is an n-simplex x0 → · · · → xn of NC, then

hn : u|σ 7→ u|x→σ,

where x→ σ = x→ x0 → · · · → xn and the arrow x→ x0 is the unique arrow from
the initial object x. We have the following (non-commutative) diagram
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S0 S1 S2 S3

S0 S1 S2 S3

· · ·

· · ·

h0 h1 h2 h3
0id 0id 0id 0id

We need to show that id = dh + hd. Indeed, if σ = x0 → · · · → xn, then

(dh + hd)(u|σ) = d(u|x→σ) + h(
n∑

j=0

(−1) ju|σ j

=

n+1∑
j=1

(−1) ju|x→σ j−1 + u|σ +
n∑

j=0

(−1) ju|x→σ j

= u|σ.

This means that for all n > 0 we have HnS•(NC;∆R) = 0. The 0-th homology we
can find directly. The differential d1 sends elements of the form u|x0→x1 to u|x1 − u|x0 .
Since there is a unique arrow x → x0 for each object x0, the module H0S•(NC;∆R)
is generated by one copy of R associated to σ = x. ⊓⊔

4.2 S• computes the higher limits of the sheaf

Definition 4.5. Let C be a small category and let A ∈ RMod. The Yoneda embedding
YonA : C→ Sh(C) is defined as follows:

• if x, y ∈ Obj(C), then
(YonA(x))(y) =

⊕
C(y,x)

A;

• if x, y, z ∈ Obj(C), f ∈ C(y, z), then

(YonA(x))( f ) =
⊕
C(z,x)

A→
⊕
C(y,x)

A,

where the last map is defined by identity mapping an A-summand associated
with g ∈ C(z, x) to an A-summand associated with g f ∈ C(y, x).

We want to show that higher limits and S• compute the same objects. The next few
results will be used to prove the following proposition by the end of the section.

Proposition 4.6. Let (C, F) ∈ Sh. Then

lim
←−−

i
C

F � HiS•(NC, F).
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Following Section 3.2, we construct a projective resolution P• of ∆R. Let C be a
small category. Define

Pn :=
⊕

x0→···→xn∈NC

YonR(x0)

for n ≥ 0. Since the coproduct (direct sum in this case) of projective objects is
projective, it is enough to show that YonR(x) is projective for any x ∈ C. In the
following, Yon_(x) is the functor from R-modules to sheaves on C that takes a module
A to the sheaf YonA(x); the functor _(x) : Sh(C) → RMod is the ‘evaluation at x’
functor that sends a sheaf F to the module F(x).

Lemma 4.7. Let x be a fixed object of C. Then (Yon_(x), _(x)) is an adjoint pair. 1

Proof. We again use Theorem 2.44. Assume A ∈ RMod and set FA = YonA(x).
Then _(x)(YonA(x)) =

⊕
C(x,x) A, so define ηA : A →

⊕
C(x,x) A as the identity

homomorphism onto the summand associated to id ∈ C(x, x). Now let F be a sheaf
on C and g : A → F(x) be a homomorphism. We have the following diagram from
the definition of the universal arrow.

A

F(x)

⊕
C(x,x)

A

RMod

F

YonA(x)

Sh(C)
ηA

g̃x

_(x)

g̃
g

For the left triangle to commute, we need g̃x to send the summand associated to
id ∈ C(x, x) to F(x) by g. But if g̃ is to be a sheaf morphism, then g̃x needs to map
a summand associated to f ∈ C(x, x) via F( f )g. To see this, suppose g̃ is a sheaf
morphism, i.e. a natural transformation, so the following diagram commutes.⊕

C(x,x) A

F(x)

F(x)

⊕
C(x,x) A

g̃x

g̃x

YonA(x)( f ) F f

The summand associated to the identity is sent to F( f )g on the left. Since it is mapped
onto the summand associated to f by YonA(x)( f ), in order for the diagram to com-
mute, we need that summand sent to F( f )g. We have thus only one choice for g̃x.

1 This is a version of the so-called ‘Yoneda Lemma’. The story goes that Saunders Mac
Lane met with a young Nobuo Yoneda in Paris while interviewing category theorists for a
book. The contents of their conversation later appeared in Mac Lane’s writings as a lemma
dedicated to Yoneda.
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Considering any f ∈ C(x, y) and a diagram similar to that above, there is always a
unique choice for building g̃. ⊓⊔

Now, Proposition 3.9 means that _(x) is an exact functor (since exactness in
Sh(C) is checked ‘pointwise’). Then Proposition 2.46, together with the fact that
R is projective in RMod, ensures that YonR(x) is a projective object of Sh(C).

Next, we define the maps δn : Pn → Pn−1. If f ∈ C(x, y), then there is an induced
map Yon f

R : YonR(x)→ YonR(y) defined at z ∈ C by⊕
C(z,x)

R→
⊕
C(z,y)

R,

where an R-summand associated to g ∈ C(z, x) is identically mapped to an R-
summand associated to f g ∈ C(z, y). Then for σ = x0 → · · · → xn ∈ NC we
have

δn : YonR(x0)|σ 7→
n∑

j=1

(−1) j YonR(x0)|σ j + Yonx0→x1
R (YonR(x0))|σ0 .

Lemma 4.8. The object P• is a chain complex, i.e. P• ∈ Ch(Sh(C)). Moreover,

HnP• �

∆R, n = 0,
0, otherwise.

Proof. The δn maps define the usual simplicial differential, so it is clear that P• is a
chain complex.

Now fix x ∈ C and consider

Pn(x) =

 ⊕
x0→···→xn

YonR(x0)

 (x) =
⊕

x0→···→xn

⊕
C(x,x0)

R =
⊕

x→x0→···→xn

R.

We define the under category x/C as follows

• the objects of x/C consist of morphisms x→ y in C,
• the morphisms of x/C consist of commuting triangles in C:

y z

x

Note that this category has an initial object idx ∈ C(x, x). Explicitly, if g : x → y is
an object of x/C, then the dashed arrow in the diagram

x y

x
idx g
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can only be g ∈ C(x, y) if the triangle is to commute. Therefore, there is a unique
morphism in x/C from idx to any object of x/C.

Looking back at the expression for Pn(x) above, we can rephrase the direct sum
as

Pn(x) =
⊕

z0→···→zn

R,

where zi ∈ Obj(x/C). Thus, we have

P•(x) = S•(Nx/C;∆R).

Now Proposition 4.4 implies that

HnS•(Nx/C; F) �

R, n = 0,
0, otherwise,

and so ‘gluing up’ P• (and using Proposition 3.9 again) gives the required result. ⊓⊔

We now have our projective resolution P• of ∆R and thus HomSh(C)(P•, F) com-
putes the higher limits lim

←−−
i
C

F of a sheaf F over C.

Proof of Proposition 4.6. Let Pn be the sheaves on C constructed above. Since R
is projective in RMod, Lemma 4.7 and Proposition 2.46 imply that Pn is projective
(as the direct sum of projective objects). The chain complex P• (with differential δn

defined earlier in this section) forms a projective resolution of ∆R (due to Lemma
4.8), so by Proposition 3.10

lim
←−−

i
C

F � Hi HomSh(C)(P•, F).

But (again by Lemma 4.7) we have a natural isomorphism

HomSh(C)(YonR(x), F) � HomR(R, F(x)) � F(x)

and so

HomSh(C)(Pn, F) = HomSh(C)

 ⊕
x0→···→xn

YonR(x0), F

 � ∏
x0→···→xn

F(x0) = Sn(NC; F).

Therefore
Hi(C; F) = lim

←−−
i
C

F � HiS•(NC; F). ⊓⊔

4.3 Computing Khovanov homology with S•

The method described in Section 3.2 and employed in the previous section can also
connect the higher limits of a sheaf to other homology theories. Most relevant to our
discussion is the reinterpretation of unnormalised Khovanov homology of a link as



4.3 Computing Khovanov homology with S• 35

the derived limit over a modified Boolean lattice. The following exposition is based
on [ET15, §1].

We’ll need to construct a contravariant Khovanov sheaf on a modified poset.
Since the differentials given in Section 1.4 increase

∑
µ, we take Bop

n as the starting
point of our modification.

Definition 4.9. A Boolean+ lattice B+n of rank n is the poset with objects

ObjB+n = ObjBn ∪ {1+},

such that if µ1, µ2 ∈ Bn, then µ1 ≤ µ2 in B+n if and only if µ1 ≥ µ2 in Bn; and µ ≤ 1+

in B+n for all µ ∈ Bn\{(0, · · · , 0)}, where (0, · · · , 0) is the unique object of Bn with
sum 0. For ease of reference, we adopt the convention

∑
1+ = 0.

B3 :

•

• • •

• • •

•

(0, · · · , 0)

(1, · · · , 1)

B+3 :

•

• • •

• • •

• •(0, · · · , 0) 1+

(1, · · · , 1)

The Boolean+ posets are also the cell posets of certain CW complexes. To see
this, take the (n − 1)-simplex ∆n−1. Let X be the suspension S∆n−1, which is home-
omorphic to the closed n-dimensional ball Bn. Let the two suspension points (1 and
1+) in X be the two 0-cells. Each (k − 1)-cell of ∆n−1 determines a k-cell suspension
of that cell in X. The simplex ∆n−1 has

(
n
k

)
-many (k − 1)-cells, so for 1 ≤ k ≤ n, X

has
(

n
k

)
-many k-cells. We can define a partial order on the cells of X by x ≤ y if and

only if x ⊇ y, where x is the (CW-)closure of the cell x. This is the cell poset of the
CW complex X. It is clear from the description above that this poset is B+n ; Figure
4.1 illustrates the construction for n = 3.

Recall that in the context of Khovanov homology we made the choice to have
R = Z. To match the definitions given there, for the rest of this section we will
consider our sheaves as functors to ZMod, i.e. the category Ab of abelian groups.

We now construct another projective resolution, this time of ∆Z over B+n . For
m ∈ N, define

Pm :=
⊕
∑
µ=m

YonZ(µ).

The Pm’s are projective for the same reason the Pn’s in the previous section were:
sums of projectives are projective and Yon_(µ) is left-adjoint to the exact functor
_(µ).

Using Lemma 4.7 again, if F ∈ Sh(B+n ) we have

HomSh(B+n )(Pm, F) = HomSh(B+n )

⊕∑
µ=m

YonZ(µ), F

 � ⊕
∑
µ=m

F(µ).
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•

• •

•

•

x1 x2

x3

1+

1

•

• • •

• • •

• •1 1+

Fig. 4.1: The suspension S∆2 with each cell coloured and indicated in the cell poset.

Now recall the signage given by the ϵνµ symbols, defined towards the end of Sec-
tion 1.4. We can extend that signage to the whole of B+n by setting ϵµ1+ = 1 for all
µ ≺ 1+. Assembling the resolution, define δm,µ : Pm(µ)→ Pm−1(µ) by

δm,µ(ν) =
∑
λ≻ν

(−1)ϵ
ν
λλ,

where
∑
ν = m.

The key property of ϵνµ makes the squares in B+n anti-commute, so the above map
δ gives a chain complex of sheaves

· · · → Pm
δm
−→ Pm−1

δm−1
−→ Pm−2 → · · · .

By Proposition 3.9, the complex P• is exact if and only if P•(µ) is exact for each
µ ∈ B+n . If we look at the cell poset interpretation of B+n again, YonZ(µ) has one copy
of Z at µ and at each ν < µ. This means that if Pm(µ) = Zk, then there are k many
objects with sum m that are ≥ µ; equivalently, there are k many m-cells in the closure
of the cell µ. But then P•(µ) is just the cell decomposition of a single cell, connected
with boundary maps. Therefore

HmP•(µ) =

Z, m = 0,
0, otherwise,

and so P• is a projective resolution of ∆Z.
For a given link diagram L with n crossings, we define the Khovanov sheaf

FKh : B+n → Ab as follows (recall the terminology from Section 1.4).

• FKh(1+) = 0 and FKh(µ ≤ 1+) = 0 for all µ;
• FKh(µ) = Kh(L | S µ) for µ , 1+;
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• FKh(µ ≺ ν) = dµν : FKh(ν)→ FKh(µ) for (ν, µ) adjacent and ν , 1+.

It remains to show that

HomSh(B+n )(P•, FKh) � C•(L).

We have already established that there is an isomorphism

f : HomSh(B+n )(Pm, FKh)→
⊕
∑
µ=m

FKh(µ),

so we only need to show that the following diagram commutes.

Cm+1(L) Cm(L)

HomSh(B+n )(Pm+1, FKh) HomSh(B+n )(Pm, FKh)

d

δ

f f

Let α : Pm → FKh. This natural transformation is determined by what it does to
the modules associated to objects with sum m. In particular,

fα =
∑

∑
µ=m

αµ(µ).

We thus have
d( fα) =

∑
∑
µ=m

∑
ν≺µ

(−1)ϵ
ν
µFKh(ν ≺ µ)(αµ(µ)).

Similarly, δ(α) = αδ is determined by what it does to the modules associated to
objects with sum m+1. Using the naturality of α, we have that, for νwith

∑
ν = m+1,

αδ(ν) = αν

∑
ν≺µ

(−1)ϵ
ν
µµ

 =∑
ν≺µ

(−1)ϵ
ν
µFKh(ν ≺ µ)(αµ(µ)).

Therefore,
f (δ(α)) =

∑
∑
ν=m+1

∑
ν≺µ

(−1)ϵ
ν
µFKh(ν ≺ µ)(αµ(µ)).

Note that the addition of 1+ does not affect the map f . It does, however, affect
the sheaf cohomology; as we have seen, a poset with a unique maximum has zero
cohomology in all degrees , 0. The result of the above discussion is the following
theorem.

Theorem 4.10. Let L be a link diagram with n crossings and let B+n and FKh be as
above. Then

Kh
•
(L) � lim

←−−
•

B+n
FKh.
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Spectral sequences

5.1 Definition of spectral sequence

In the next chapters we will be using a spectral sequence to recover the cohomology
of a sheaf. Here we set out the standard definitions and basic facts about cohomo-
logical spectral sequences. This exposition can be found in [Wei94] and [ML95].

Definition 5.1. A (cohomological) spectral sequence consists of R-modules Ep,q
r ,

collected in pages Ea, Ea+1, . . . (usually a = 0, 1, or 2), and maps

Ep,q
r → Ep+r,q−(r−1)

r ,

such that
· · · → Ep−r,q+(r−1)

r → Ep,q
r → Ep+r,q−(r−1)

r → · · ·

is a chain complex, for each p, q ∈ Z, r ∈ {a, a + 1, . . .}. Furthermore, Ep,q
r+1 is the

homology of the above complex at the p, q position.

Er = q

Ep−r,q+(r−1)
r

Ep,q
r

Ep+r,q−(r−1)
r

p

In particular,



5.1 Definition of spectral sequence 39

E0 =

· · ·

· · ·

· · ·

E1 =

· · ·

· · ·

· · ·

E2 =

· · ·

· · ·

· · ·

What all of these maps have in common is they increase the total degree by 1. If
n = p + q is the total degree, then on the Er page we have a differential

Ep,q
r → Ep+r,q−(r−1)

r

where the total degree of Ep+r,q−(r−1)
r is

p + r + q − (r − 1) = p + q + 1 = n + 1.

Definition 5.2. If for all p, q ∈ Z there exists r0 = r0(p, q) such that

Ep,q
r = Ep,q

r0 ,

for all r ≥ r0, then we say the E∞ page exists and we set

Ep,q
∞ = Ep,q

r0(p,q).

Definition 5.3. A page in a spectral sequence is bounded if for all n ∈ Z there
are only finitely many non-zero entries with total degree n. A spectral sequence is
bounded if it has a bounded page.

Proposition 5.4. Bounded spectral sequences have E∞ pages.

Proof. As Ep,q
r+1 is a subquotient of Ep,q

r for all p, q, r, if Ep,q
r = 0, we have Ep,q

r+1 = 0.
Therefore if the Er page is bounded, then so are all pages Es for s ≥ r.

Now pick p, q ∈ Z and suppose Er is a bounded page. Since Er is bounded, there
is an r0 = r0(p, q) such that for all s ≥ r0 both Ep−s,q+(s−1)

r and Ep+s,q−(s−1)
r are zero.

But they are also zero on the Es page and on that page there are maps

· · · → Ep−s,q+(s−1)
s

∥
0

→ Ep,q
s → Ep+s,q−(s−1)

s
∥
0

→ · · · ,

therefore Ep,q
s+1 = Ep,q

s and so Ep,q
r0 = Ep,q

∞ . ⊓⊔

Example 5.5 (Collapsing). Suppose the Er page (r > 1) has only one non-zero row,
say the p0-th row:

Er =

0

Ep0,q
r

0
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Then each Ep0,q
r+1 is the homology of the complex

· · · → 0→ Ep0,q
r → 0→ · · · ,

so Ep0,q
r+1 � Ep0,q

r for each q. But then the (r + 1)-th page also has only one non-zero
row, hence the Er page coincides with the E∞ page.

5.2 Convergence and mapping

Definition 5.6. A filtration (F ,C•) (or just F ) of a chain complex C• is a collection
{F pC•}p∈Z of complexes with

· · · ⊆ F p+1C• ⊆ F pC• ⊆ · · · ⊆ C•,

i.e. each F pC• is a subcomplex of C• with the given inclusions.

Definition 5.7. Let (F1,C•1) and (F2,C•2) be filtrations. A morphism of filtrations
φ : (F1,C•1)→ (F2,C•2) is a chain map φ• : C•1 → C•2 with φ•(F p

1 C•1) ⊆ F p
2 C•2.

Definition 5.8. Let F be a filtration of a chain complex C•.

• We say F is bounded above if for any n ∈ Z there are integers tn such that
F tnCn = Cn.
• We say F is bounded below if for any n ∈ Z there are integers sn such that
F snCn = 0.
• We say F is bounded if it is both bounded above and below, i.e.

0 = F snCn ⊆ F sn−1Cn ⊆ · · · ⊆ F tnCn = Cn.

• We say F is convergent above if⋃
p

F pC• = C•.

Now suppose H• = {Hi}i∈Z are R-modules, usually the cohomology of some
object. We say that F is a filtration of H• if there are R-modules {F pHn}p∈Z for each
n such that

· · · ⊆ F p+1Hn ⊆ F pHn ⊆ F p−1Hn ⊆ · · · ⊆ Hn.

Equivalently, we can extend the definition of a filtration to H• by (artificially) defin-
ing ‘differentials’ di

H• = 0.

Definition 5.9. A spectral sequence E converges to H•, written E ⇒ H•, if and only
if

a) the spectral sequence has an E∞ page, and
b) there is a bounded filtration F of H• with

Ep,q
∞ =

F pHp+q

F p+1Hp+q .
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Definition 5.10. A morphism f : E → E′ of spectral sequences is a collection of
maps f p,q

r : Ep,q
r → E′p,qr for r ∈ {r0, r0 + 1, · · · } with r0 ≥ a, such that dr fr = frd′r,

and where f p,q
r+1 : Ep,q

r+1 → E′p,qr+1 is the map induced by f p,q
r : Ep,q

r → E′p,qr on the
homologies of the concerned modules.

Definition 5.11. A spectral sequence E is bounded below if for each degree n there
is an integer s = s(n) such that Ep,q

0 = 0 when p < s and p + q = n.

Lemma 5.12 (Mapping Lemma). Let f : E → E′ be a morphism of spectral se-
quences and suppose for some r that f p,q

r : Ep,q
r → E′r

p,q is an isomorphism for each
p and q. Then f p,q

s : Ep,q
s → E′p,qs is also an isomorphism for each p and q when s ≥ r

(by the Five Lemma 2.35). If E and E′ are bounded below, then f p,q
∞ : Ep,q

∞ → E′p,q∞
is also an isomorphism.

5.3 Construction of spectral sequences

Abstractly defined, the differentials at each page of a spectral sequence do not nec-
essarily have anything to do with each other. In practice, however, all differentials
of a spectral sequence are induced by morphisms between other objects. We will
be making use of two such constructions – the spectral sequence of a filtration and
the spectral sequence of a bicomplex. Descriptions of how the first few pages are
constructed will follow the relevant theorems; we will fall short of giving a detailed
exposition of the (opaque) general definition of all differentials.

Theorem 5.13. A filtration F of a complex C• naturally determines a spectral se-
quence starting with Ep,q

0 = F
pCp+q/F p+1Cp+q. If F is a bounded filtration, then

E ⇒ H•(C•).

By construction of the filtration, the differentials on the E0 page are

dp,q
0 :

F pCp+q

F p+1Cp+q →
F pCp+q+1

F p+1Cp+q+1 ,

induced by the differential of the complex C•. The E1 page thus has modules

Ep,q
1 = Hq

(
F pCp+•

F p+1Cp+•

)
.

Lemma 5.14 (Mapping Lemma for filtrations). Let F1,F2 be convergent below
and bounded above filtrations of C•1,C

•
2, respectively, and let E, E′ be the spec-

tral sequences determined by F1 and F2, respectively. If a morphism of filtrations
φ : (F1,C•1)→ (F2,C•2) is such that for some r the induced map

φ
p,q
r : Ep,q

r → E′p,qr

is an isomorphism for each p, q ∈ Z, then φ induces an isomorphism

φ• : H•(C•1)→ H•(C•2).
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We can also start with a bicomplex, giving us explicitly two full pages of sensible
differentials.

Definition 5.15. A bicomplex K•,• is a family {K p,q}p,q∈Z of R-modules, together
with maps

dh : K p,q → K p+1,q dv : K p,q → K p,q+1

such that dhdh = dvdv = dhdv + dvdh = 0. The total complex T •
K

of a bicomplex K•,•

is
T n
K
=

∏
p+q=n

K p,q.

Note that this is a (co)chain complex due to the restrictions on dh and dv.

Note that we can ‘transpose’ a bicomplex K•,• to get another bicomplex K•,•t
with K p,q

t = Kq,p and dh
Kt
= dv

K
, dv
Kt
= dh

K
.

Definition 5.16. Let K•,• and L•,• be bicomplexes. A morphism of bicomplexes
ψ : K•,• → L•,• consists of homomorphisms ψp,q : K p,q → Lp,q for each p, q ∈ Z,
such that ψp,• and ψ•,q are chain maps.

Theorem 5.17. A bicomplex K•,• naturally determines a spectral sequence starting
with Ep,q

0 = K
p,q. If K p,q = 0 when p < 0 or q < 0, then

E ⇒ H•(T •
K

).

The standard approach for constructing the spectral sequence of a bicomplex is
to filter the total complex in one of two ways (by rows or by columns) and then fol-
low Theorem 5.13. One can also be slightly more explicit. Setting Ep,q

0 = K p,q, the
E0 page differentials are the vertical differentials dv of K•,•. The E1 page differen-
tials are induced by dh on the modules HqK p,•. Now if we assume we have defined
differentials dp,q

r and dp,q
r+1 on the Er and Er+1 pages, respectively, then

dp,q
r+2 : Ep,q

r+2 → Ep+r+2,q−r−1
r+2

can be defined by chasing the following diagram:

Ep−r,q+r−1
r Ep+1,q−1

r Ep+r+2,q−r+−1
r

Ep,q
r Ep+r+1,q−r

r

dr+1 dr+1

dr+1

dr dr

Lemma 5.18 (Mapping Lemma for bicomplexes). Let ψ : K•,• → L•,• be a mor-
phism of bicomplexes and let E, E′ be the spectral sequences determined byK•,• and
L•,•, respectively. If for some r the induced map

ψ
p,q
r : Ep,q

r → E′p,qr

is an isomorphism for each p, q ∈ Z, then ψ induces an isomorphism

ψ• : H•(T •
K

)→ H•(T •L).
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Bundles of sheaves

One of the key results of [ET12] is that we can break down the calculation of
H•(C; F) for some large finite C into more manageable chunks by splitting C. The
way to do this is via a bundle of sheaves – some of the morphisms ‘stay in the
fiber’ and some become parts of the maps of sheaves connecting the bundle. We can
‘glue-up’ these fibers to recover the large C we started with. It turns out that we
can calculate the cohomology of each fiber of the bundle separately and then, via a
spectral sequence, recover the cohomology of (C; F).

This chapter lays out the final prerequisites for completing the above procedure.

6.1 Bundle of sheaves

Definition 6.1. Let B be a small category. A bundle of sheaves with base B is a
contravariant functor ξ : B→ Sh.

Example 6.2. a) A constant bundle ξ = B × (C; F) is a bundle of sheaves with
ξ(x) = (C; F) for all x ∈ B and ξ(x→ y) = id(C;F) for all arrows x→ y.

b) A bundle of coloured posets with base B in the language of [ET12] is a covariant
functor ζ : B → CPR where B is a poset with a unique maximum and CPR is
the category of coloured posets. Such a bundle of coloured posets gives rise to a
bundle of sheaves ξ : Bop → Sh, where if ζ(x) = (P, F), then ξ(x) = (Pop; F).

c) If P and Q are posets, then an object F ∈ Sh(P × Q) determines a bundle of
sheaves ξ : P → Sh. For any x ∈ P, denote by Fx the functor from the full
subcategory {x} × Q of P × Q that agrees with F. Then ξ(x) = (Q, Fx) for all
x ∈ P and ξ(x→ y) = (idQ, Fx→y), where

Fx→y|z : Fy(y, z)→ Fx(x, z)

agrees with F.
d) We can also model a group action on a sheaf (C; F). Let the category CG have

one object • and let the morphisms of CG be given by G, with composition
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given by the group operation. Then a bundle of sheaves ξ : CG → Sh with
ξ(•) = (C; F) describes the action of G on (C; F).

For clarity, if ξ is a bundle of sheaves with base B and x ∈ B, then we will use the
notation Ex for the small category that is the first coordinate of ξ(x) and Fx for the
second coordinate of ξ(x). Also, if y ∈ Ex, then π(y) = x, i.e. π indicates which fiber
y comes from. Finally, we write ξ1(x1 → x2) : Ex1 → Ex2 for the first coordinate
of the Sh-morphism ξ(x1 → x2) : (Ex2 ; Fx2 ) → (Ex1 ; Fx1 ) instead of ξ(x1 → x2)1,
similarly ξ2(x1 → x2) : Fx2ξ1(x1 → x2)→ Fx1 instead of ξ(x1 → x2)2.

Definition 6.3. Let B be a small category and ξ a bundle of sheaves with base B.
The associated total sheaf (Eξ; Fξ) consists of a small category Eξ and a sheaf
Fξ : Eξ → RMod, defined as follows (also see Figure 6.1):

• As a small category,
Obj(Eξ) =

⊔
x∈B

Obj(Ex).

The simple arrows of Eξ are of two types. There is an arrow y1 → y2 in Eξ if
a) y1, y2 ∈ Ex for some x ∈ B and y1 → y2 is an arrow in Ex;
b) x1 → x2 is a non-identity arrow in B, y1 and y2 are objects of Ex1 and Ex2 ,

respectively, and we have ξ1(x1 → x2)(y1) = y2.
The set of all arrows of Eξ is the smallest set containing the simple arrows that is
closed under composition, where

– for any x ∈ B, composition of arrows of type a) from Ex is given by the
composition in Ex,

– composition of arrows of type b) (and identity arrows) is given by composition
in B.

Additionally, we impose the commutativity of squares: if x1 → x2 is an arrow in B
and y1 → y2 is an arrow in Ex1 , then the square below commutes in Eξ:

x1 x2

y1 ξ1(x1 → x2)(y1)

y2 ξ1(x1 → x2)(y2)

• As a sheaf, Fξ sends an object y ∈ Eξ with π(y) = x to Fx(y). Arrows y1 → y2 of
type a) from some Ex are sent to the map Fx(y1 → y2); arrows y1 → y2 of type b)
with π(y1) = x1, π(y2) = x2 are sent to ξ2(x1 → x2)y1 . Composition arrows are sent
to the appropriate composition of the above maps.

Remark 6.4. The commutativity of squares imposed on Eξ above enables us to prove
Proposition 6.5 at the category level. Indeed, a similar proposition necessarily holds
at the level of the sheaf, since the module homomorphisms at type b) arrows come



6.1 Bundle of sheaves 45

B : x1 x2

Sh : (C1, F1) (C2, F2)

Eξ :

y1 z1

y2 z2

RMod :

F1(y1) F2(z1)

F1(y2) F2(z2)

ξ(x1 → x2) = γ

γ1(y1) = z1

y1 → y2 ∈ C1 z1 → z2 ∈ C2

γ1(y2) = z2

γ2|y1

F1(y1 → y2)
γ2|y2

F2(z1 → z2)

ξ

Fξ

Fig. 6.1: Constructing the total sheaf (Eξ; Fξ). Arrows of type a) are in blue, arrows of type
b) are in red, and composition arrows are in purple.

from the natural transformations ξ2(x1 → x2) and so the relevant squares commute.
We prefer pushing the commutativity to the category Eξ, because of certain later
arguments (e.g. Lemma 7.5).

Proposition 6.5. Any composition arrow f in Eξ is equal to gh, for some type a)
arrow g and some type b) arrow h.

Proof. Since compositions of arrows of type a) are still arrows of the same type
(similarly for type b)), a composition arrow in Eξ is an alternating sequence of arrows
of type a) and b). Suppose f starts with a type a) arrow and ends with a type b). We
have the following picture in Eξ:

a) arrows

b) arrows
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Consider any sequence of an arrow of type a) followed by an arrow of type b):

y′0

y′1 y′2

Now, the horizontal map is of type b), so it comes from an arrow π(y′1)→ π(y′2) ∈ B,
whereas the vertical arrow comes from Eπ(y′0) = Eπ(y′1). Therefore

y′2 = ξ1(π(y′1)→ π(y′2))(y′1)

and the square below commutes in Eξ:

π(y′1) π(y′2)

y′0 ξ1(π(y′1)→ π(y′2))(y′0)

y′1 ξ1(π(y′1)→ π(y′2))(y′1)

Applying this to the picture of f above, we get a commutative grid

a) arrows

b) arrows

Therefore f is equal to the composition of the green arrows. But all vertical arrows
are of type a), so the composition of all the green vertical arrows is some type a)
arrow g. Analogously, the composition of the green horizontal arrows is some type
b) arrow h.

Finally, if f starts with a type b) or ends with a type a), the last paragraph sub-
sumes those with the other horizontal or vertical green arrows, again giving a result-
ing composition of gh for some h of type b) and some g of type a). ⊓⊔

Proposition 6.6. The pair (Eξ; Fξ) above is an object of Sh.
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Proof. The identity arrow at an object y ∈ Eξ is given by the identity arrow at
y ∈ Eπ(y). The requirement that composition of arrows of type a) and type b) is given
by composition in Ex and B, respectively, ensures that the property of the identity
arrow is satisfied. Associativity follows from the previous proposition.

Finally, since the action of Fξ on composition arrows is defined as the composi-
tion of actions on simple arrows, functoriality of Fξ follows from the functoriality of
ξ and Fx for all x ∈ B. ⊓⊔

Example 6.7. Let P and Q be posets and F ∈ Sh(P × Q). We can define a bundle of
sheaves ξ : P→ Sh(Q) (recall Example 6.2 c)). We claim that (Eξ, Fξ) = (P×Q, F):
arrows of type a) in Eξ connect elements of the form (y, z1) ≤ (y, z2) with z1 ≤ z2 ∈ Q,
while arrows of type b) connect (y1, z) ≤ (y2, z) with y1 ≤ y2 ∈ P. Thus, if we have
(y1, z1) ≤ (y2, z2) in Eξ, then (y1, z1) ≤ (y2, z2) in P ×Q.

Conversely, if (y1, z1) ≤ (y2, z2) in P×Q, then (y1, z1) ≤ (y1, z2) ≤ (y2, z2), but the
first inequality is given by an arrow of type a) and the second by an arrow of type b).
Therefore, Eξ and P×Q are the same category. And since Fξ and F agree on simple
arrows (type a) and type b)), by construction this means that (Eξ, Fξ) = (P ×Q, F).

6.2 The bicomplex Sp(B,Sq)

Definition 6.8. Given a bundle ξ : B → Sh, for any q ∈ Z the q-cochain sheaf on B
is the sheaf Sq : B→ RMod, i.e. the composition

B
ξ
−→ Sh

Sq

−→ RMod.

Similarly, the q-homology of the fibers sheaf on B is the sheaf Hq
f ib : B → RMod,

i.e. the composition

B
ξ
−→ Sh

S•

−→ ChR
Hq

−→ RMod.

Explicitly, if x ∈ B, thenHq
f ib(x) = Hq(Ex; Fx).

Let ξ : B → Sh be a bundle of sheaves and suppose x → y is an arrow in B. We
have the commutative square

Sq−1(Ey; Fy)

Sq−1(Ex; Fx) Sq(Ex; Fx)

Sq(Ey; Fy)

d

d

where the vertical maps are the chain map from Lemma 4.2 induced by ξ(x→ y). In
particular, the differential d induces a Sh-morphism γ : (B;Sq−1) → (B;Sq), where
γ1 is the identity functor and γ2 are the differentials at each object of B. This gives
us the induced map
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γ• : S•(B;Sq−1)→ S•(B;Sq).

Applying this for all q ∈ Z we get the commutative grid

Sp−1(B;Sq−1)

Sp−1(B;Sq) Sp(B;Sq)

Sp(B;Sq−1)

...
...

· · ·

· · ·

...
...

· · ·

· · ·

To make the squares anti-commute instead, we apply the usual ‘Jedi sign trick’,
i.e. we include a factor of −1 in every other horizontal map. We will be concerned
with this bicomplex in particular in later chapters, so we will sometimes refer to it as
just K p,q

ξ . Explicitly, we have

K
p,q
ξ = S

p(B;Sq);

if we denote

σ = x0 → . . .→ xp ∈ NB and τ = y0 → . . .→ yq ∈ NEx0 ,

then the vertical differential dv : Sp(B;Sq−1)→ Sp(B;Sq) is defined by

dv(u)|σ,τ = Fx0 (y0 → y1)(u|σ,τ0 ) +
q∑

j=1

(−1) j(u|σ,τ j )

and the horizontal differential dh : Sp−1(B;Sq)→ Sp(B;Sq) is defined by

dh(u)|σ,τ = (−1)p+q

γy0 (u|σ0,γ1(τ)) +
p∑

i=1

(−1)i(u|σ j,τ)

 ,
where ξ2(x0 → x1) = γ.

We can place the modules K p,q
ξ on the E0 page of a spectral sequence and use

the vertical maps as the differentials on that page. We can further use the quotients
of the horizontal maps for the differentials on the E1 page.

Proposition 6.9. The E2 page of the spectral sequence defined above has

Ep,q
2 = Hp(B;Hq

f ib(ξ)).
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Proof. Note that the differentials on the E2 page are of degree (2,−1). Consider the
following diagram

ξ (B;S•) Sp(B;S•) H•(Sp(B;S•))

(B;H•f ib(ξ)) Sp(B;H•f ib(ξ))

S• Sp H•

H•
Sp

The top path is how we get the modules in a given column on the E1 page –
we take vertical homology of a column in E0. On the other hand, taking horizon-
tal homology of rows formed by Sp(B;Hq

f ib(ξ)) clearly gives the required modules
Hp(B;Hq

f ib(ξ)). It is then enough to show that the two graded modules at the ends
of the two paths are equal for each p ∈ Z. This follows directly from cohomology
commuting with the direct product. ⊓⊔

Now, recall that there is a total complex associated to K p,q
ξ . To reduce notational

clutter, instead of naming this total complex T •
Kξ

, we will denote it as T •ξ . Explicitly,

T n
ξ :=

∏
p+q=n

K
p,q
ξ ,

with d = dh + dv. Then, from the general construction of a spectral sequence from
a bicomplex (Theorem 5.17) and from the above proposition, we have the sheaf
cohomological version of [ET12, Proposition 2.2]:

Proposition 6.10. If ξ : B → Sh is a bundle of sheaves, then there is a spectral
sequence

Ep,q
2 = Hp(B;Hq

f ib) =⇒ H•(T •ξ ).

Calculating H•(T •ξ ) on its own is usually unfeasible, but in certain situations we
can relate it to the cohomology of the total sheaf (Eξ; Fξ). Before doing that in the
next chapter, it will be useful to examine a case where it is possible to easily identify
what H•(T •ξ ) is.

6.3 Constant bundles over posets with a unique minimum

Proposition 6.11. Suppose B is a poset (recall Definition 2.2), x ∈ B is a unique
minimum, and (C; F) is an object of Sh. If ξ = B× (C; F) is a constant bundle (recall
Example 6.2), then there is a chain map

φ• : S•(C; F)→ T •ξ

such that the induced map

φ• : H•(C; F)→ H•T •ξ

is an isomorphism.
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Proof. It is straightforward to see why S•(C; F) is quasi-isomorphic to T •ξ . The E2
page of the spectral sequence for ξ has

Ep,q
2 = Hp(B, ∆Hq(C; F)).

Since the right-hand side is the cohomology of a constant sheaf, the only non-zero
positions on the E2 page are in the column p = 0; so the sequence collapses and we
can read off H•T •ξ . Explicitly,

Hp(B;∆Hq(C; F)) =

 Hq(C; F), if p = 0,
0, otherwise.

So H•(C; F) � H•T •ξ . It is, still, useful to describe the explicit quasi-isomorphism;
we will use a version of this explicit chain map in the proof of Proposition 7.11.

First consider the constant sheaf (P;∆A), where P is a poset with a unique mini-
mum. Recall that

Hn(P;∆A) �

 A, if n = 0,
0, otherwise.

Our first goal is to find an explicit map for the isomorphism above. So let
u ∈ S0(P;∆A) be such that du = 0. Since we have a unique minimum 0, for any
x ∈ P, there is an arrow 0 ≤ x in P. Then

0 = du|0≤x = u|x − u|0,

so u|x = u|0 for all x ∈ P. Denote such a constant element of S0(P;∆A) by
ua if ua|x = a ∈ A for all x ∈ P. So the isomorphism we are looking for is
θ : A→ H0(P, ∆A) : a 7→ ua.

Now consider the (trivial) chain complex ι•(A) defined by

ιn(A) =

 A, if n = 0,
0, otherwise,

and dn
ι•(A) = 0 for all n. Define the map ψ• : ι•(A)→ S•(P;∆A) as

ψn =

 θ, if n = 0,
0, otherwise.

· · · 0 A 0 · · ·

· · · 0 S0(P;∆A) S1(P;∆A) · · ·

0 θ 0
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To see this is a chain map, note that θ(a) ∈ ker(d0), so dθ = 0. All other squares
commute since all compositions are the 0 map.

Crucially, ψ• is a quasi-isomorphism. This is because H0ι•(A) = A and by con-
struction θ induces the isomorphism H0ι•(A) → H0S•(P;∆A). Note that the map
−ψ• is also a quasi-isomorphism, since −θ induces − id : A→ A in homology.

Returning to the case of the constant bundle ξ = B × (P; F), we can now define
φn : Sn(C; F)→ T n

ξ by

φu|σ,τ =

u|τ, if length(σ) = 0,
0, otherwise.

To see that this is a chain map, note that if length(σ) ≥ 2, both φdu and dφu are
0. If length(σ) = 1, then

dφu|x0≤x1,y0≤···≤yn = (−1)n+1φu|x1,y0≤···≤yn − (−1)n+1φu|x0,y0≤···≤yn+

+ (−1)n+1
n∑

i=0

(−1)iφu|x0≤x1,y0≤···≤ŷi≤···≤yn

= 0
= φdu|x0≤x1,y0≤···≤yn .

Finally, if length(σ) = 0, then

dφu|x0,y0≤···≤yn =

n∑
i=0

(−1)iφu|x0,y0≤···≤ŷi≤···≤yn

=

n∑
i=0

(−1)iu|y0≤···≤ŷi≤···≤yn

= du|y0≤···≤yn

= φdu|x0,y0≤···≤yn .

We define a bicomplex L•,• by

Lp,q =

Sq(C; F) if p = 0,
0, otherwise

and we let dh
L
= 0, dv

L
= 0 on the non-zero columns, and dv

L
= dS•(C;F) on the 0-th

column.

0 S0(C; F) 0 · · ·

0 S1(C; F) 0 · · ·

L•,• :
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Now take the bicomplex defined in Section 6.2.

K
p,q
ξ = S

p(B;Sq)

· · · Sp(B;Sq) Sp+1(B;Sq) · · ·

· · · Sp(B;Sq+1) Sp+1(B;Sq+1) · · ·

K
•,•
ξ :

We want to show that φ induces a morphism of these two bicomplexes. To that effect,
we need three facts:

a) First, it is clear that φ(Sq(C; F)) ⊆ S0(B;Sq).
b) Second, we need φ to induce a chain map on the vertical complexes. This is the

zero map for p , 0. Consider the diagram

Sq(C; F)

Sq+1(C; F)

S0(B;Sq)

S0(B;Sq+1)

d dv

φ

φ

We want to show that dvφ = φd. Let u ∈ S0(B;Sq+1), x ∈ B, y0 ≤ · · · ≤ yq+1 ∈ C.

dvφu|x,y0≤···≤yq+1 =

q+1∑
i=0

φu|x,y0≤···≤ŷi≤···≤yq+1

=

q+1∑
i=0

u|x,y0≤···≤ŷi≤···≤yq+1

= du|y0≤···≤yq+1

= φdu|x,y0≤···≤yq+1 .

Therefore φ induces a chain map on vertical complexes.
c) Finally, we need φ to induce chain maps on horizontal complexes. Consider the

diagram
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· · · 0 Sq(C; F) 0 · · ·

· · · 0 S0(B;Sq) S1(B;Sq) · · ·

0 φ 0

If we denote Sq(C; F) = A, this is just an instance of the map ψ.

Now consider the two spectral sequences E and E′ associated to the bicomplexes
L•,• and K•,•ξ , respectively. The morphism of bicomplexes φ induces a morphism
E → E′ of spectral sequences. Note also that both E and E′ are bounded below. The
first pages of E and E′ are as follows.

· · · H0(C; F) 0 · · ·

· · · H1(C; F) 0 · · ·

E1 :

· · · S0(B;H0
f ib) S1(B;H0

f ib) · · ·

· · · S0(B;H1
f ib) S1(B;H1

f ib) · · ·

E′1 :

As in the case of a constant bundle, the induced maps φ are quasi-isomorphisms
on the horizontal complexes. This means that φ induces isomorphisms on the second
pages of E and E′. By the Mapping Lemma (Lemma 5.18), we have an induced
isomorphism

φ : Ep,q
∞ → E′p,q∞ .

By the above, the construction of the total complex of a bicomplex, and Proposi-
tion 6.10, we can conclude that φ gives an isomorphism

φ : H•(C; F)→ H•T •ξ . ⊓⊔
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The spectral sequence and the total sheaf

Up to this point, for a bundle of sheaves ξ : B → Sh, we have constructed the
total sheaf (Eξ, Fξ) and its simplicial complex S•(Eξ, Fξ), as well as the bicomplex
K
•,•
ξ and its total complex T •ξ . We know that the spectral sequence of the bicomplex

converges to H•T •ξ , but we would like to identify cases where it converges to the
cohomology of the total sheaf. In this chapter, we will define a chain map ω between
the two complexes and show that, under certain (fairly strong) assumptions, it is
a quasi-isomorphism. This puts the results of [ET12] into the sheaf cohomology
setting.

7.1 Assumptions

For most of this chapter, we will have to (substantially) restrict the categories we
consider.

Definition 7.1. A bundle of sheaves ξ : B → Sh is a poset bundle of sheaves if both
B and Ex for all x ∈ B are finite posets (recall Definition 2.2).

Unless otherwise stated, all small categories in sight are assumed to be finite
posets. If x, y ∈ B, we say that y covers x (denoted x ≺ y) if, whenever z ∈ B is such
that x ≤ z ≤ y, we have z = x or z = y. We also say that B has a 0 (or is a poset with
0) if B has a unique minimal element 0 ∈ B.

Now, for an element x ∈ B, define B≥x and B≱x to be the full subcategories of B
with

Obj B≥x := {z ∈ Obj B | x ≤ z} and Obj B≱x := Obj B\Obj B≥x.

Note that both B≥x and B≱x inherit the poset structure of B. We will occasionally
omit Obj when we refer to the objects of a poset category if the meaning is clear
from context.

Lemma 7.2. If ξ : B → Sh is a poset bundle of sheaves, then the small category Eξ

associated to ξ is also a poset.
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Proof. Any arrow f in Eξ is either of type a), of type b), or a composition arrow
(recall Definition 6.3). If f is of type a), then it comes from one of the posets Ex. If
it is of type b), then it comes from the poset B. And if f is a composition arrow, then
it is equal to the composition gh, for an arrow g of type a) and an arrow h of type
b) (by Proposition 6.5). But both of those come from posets, so the composition is
unique. ⊓⊔

The key property we will exploit in this chapter is the following.

Definition 7.3. Assume B is a poset.

a) Let B1 and B2 be full subposets (full subcategories) of B. We call B admissible
for B1,B2 if
• B1 ∩ B2 = ∅,
• B1 ∪ B2 = B,
• there are no x ∈ B2 and y ∈ B1 with x ≤ y, and
• for all x ∈ B1, the full subposet {y ∈ B2 | x ≤ y} ⊆ B2 is non-empty and has

a unique minimum.
b) We call B admissible for x ∈ B if B is admissible for B≱x,B≥x. Note that the first

three requirements of admissibility are automatically satisfied for B≱x,B≥x (see
Figure 7.1). We also denote the poset in the last requirement by

B≥y
≥x := {z ∈ B≥x | y ≤ z} = B≥x ∩ B≥y.

c) We call B recursively admissible if B has a 0 and either
• B is Boolean of rank 1, or
• B is admissible for some x ≻ 0 and both B≥x and B≱x are recursively admis-

sible.

0
x

y

B≱x

B≥x

B≥y
≥x

B

Fig. 7.1: A poset B with x ≻ 0 and y ∈ B≱x.
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Example 7.4. • The Boolean lattices Bn (recall Definition 1.6) are recursively ad-
missible (Figure 7.2). Indeed, if n > 1 and µ = (1, 0, · · · , 0), then µ ≻ 0 and

Bn,≥µ � Bn,≱µ � Bn−1.

Moreover, if ν ∈ Bn,≱µ, then minB≥νn,≥µ = µ + ν.

•

• • •

• • •

•

0

1

xB3,≥x

B3,≱x

Fig. 7.2: The poset B3 is admissible for x.

• In the homological setup of [ET12], the Bruhat posets of type I2(m) are specially
admissible (see [ET12, Example 3.7]). In the language of this thesis they are just
admissible (Figure 7.3): let x ≺ 1, I2(m) = B, and consider

B2 := {x→ 1} and B1 := B\B2.

If y ∈ B1 with y ≺ 1, then min{z ∈ B2 | y ≤ z} = 1; if y is any other object of B1,
then min{z ∈ B2 | y ≤ z} = x. We will see in the next chapter that we do indeed
retain a property similar to ‘special admissibility’ for I2(m).

•

•

•

•

•

•

•

•

•

•· · ·0 1

x

B1

B2

Fig. 7.3: The poset I2(m) is admissible for B1,B2.

• Let B+n be the poset with objects

ObjB+n = ObjBn ∪ {1+},

such that if x1, x2 ∈ Bn, then x1 ≤ x2 in B+n if and only if Bn; and x ≤ 1+ for all
x ∈ Bn\{1} (where 1 is the maximum of Bn). By inspection, both B+1 and B+2 are
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B+1 :
•

• •

•

• •

• •

B+2 :

1 1+
1 1+

Fig. 7.4: The posets B+1 and B+2 are non-admissible.

non-admissible (Figure 7.4). In fact, B+n is not recursively admissible for any n
(Proposition 8.1).

If we have a poset bundle of sheaves ξ : B → Sh and a subcategory C of B,
we can restrict the bundle ξ to C to obtain another bundle ξC : C → Sh with total
sheaf (EξC ; FξC ). When the bundle ξ is clear from context, we will just use (EC; FC).
Note that we use (Ex; Fx) for the sheaf ξ(x) when x is an object of B, which (almost)
coincides with (EC; FC) when C is the subcategory of B consisting only of x and its
identity arrow.

The next lemma shows how admissibility of B extends to Eξ.

Lemma 7.5. Let B be admissible for some x ∈ B and ξ : B → Sh be a poset bundle
of sheaves with total sheaf (Eξ; Fξ). Then Eξ is admissible for EB≱x ,EB≥x .

Proof. It is immediate that EB≱x and EB≥x are disjoint, that EB≱x ∪EB≥x = Eξ, and that
there is no arrow from an object of EB≱x to an object of EB≥x . It remains to show that
for all w ∈ EB≱x , the subposet

{z ∈ EB≥x | w ≤ z}

has a unique minimal element.
Since w ∈ EB≱x , w is an element of a particular Ey for some y ∈ B≱x. By the

admissibility of B, that means that the poset B≥y
≥x has a unique minimum, say v. Then

y ≤ v and thus there is an arrow y → v in B. Denote the sheaf morphism given by
this arrow as γ. By the construction of the total sheaf, we have that w ≤ γ1(w).

Suppose w ≤ z for some z ∈ EB≥x and suppose z ∈ Eu, u ∈ B≥x. Then by our
argument in Proposition 6.5 we have a z0 ∈ Eu with w ≤ z0 ≤ z and an arrow
y → u giving rise to a sheaf morphism γ′. Thus u is in B≥y

≥x, not just B≥x. Since
v is the minimal element of B≥y

≥x, we have that v ≤ u. But there is a unique arrow
y→ u, so γ′1 factors through Ev and the sheaf morphism given by v→ u maps γ1(w)
to z0. This means that γ1(w) ≤ z0 ≤ z, therefore γ1(w) is the minimum of the set
{z ∈ EB≥x | w ≤ z}. Refer to Figure 7.5 for the relevant objects. ⊓⊔
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0
x

y

v
u

w

Ey

γ1(w)

z0

z

Ev Eu

γ γ′

γ1

γ′1

Fig. 7.5: The poset B and the fibers over y, v and u.

7.2 Grid Traversals

For a given poset bundle of sheaves ξ, we define a chain map ω : S•(Eξ; Fξ)→ T •ξ ,
whereS•(Eξ; Fξ) is the chain complex constructed in Section 4.1 on the total sheaf of
ξ (recall Definition 6.3), and T •ξ is the total complex associated to the bicomplexK•,•ξ
constructed in Section 6.2. To do that, if σ = x0 → · · · → xp ∈ NB and τ ∈ NEx0 ,
then to each pair (σ, τ) we will associate a (signed) combination of all traversals of a
particular grid in Eξ.

To form this grid, we lay out σ and τ and complete the grid using the morphisms
ξ(xi → xi+1):

σ x0 x1 · · · xp

y0,0

...

y0,q

τ

q

=

y1,0

...

y1,q

· · ·

· · ·

yp,0

...

yp,q
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where y0, j = y j and yi+1, j = ξ1(xi → xi+1)(yi, j).

Definition 7.6. If σ = x0 → · · · → xp ∈ NB and τ = y0 → · · · → yq ∈ NEx0 , then a
grid traversal z ∈ NEξ of the grid of (σ, τ) is a chain of length (p + q) of arrows in
the grid. In particular, each arrow in z is either

ξ1(x0 → xi)(y j → y j+1) or yi, j → ξ1(xi → xi+1)(yi, j).

Note that these correspond to type a) and type b) in Definition 6.3.

Definition 7.7. For each grid traversal z of the grid of (σ, τ), define

m(z) = #{squares in the grid below and to the right of z}.

Furthermore, define ς(q) =
⌈q
2

⌉
= min

{
n ∈ Z | n ≥

q
2

}
.

We can now define the chain map we are interested in.

Definition 7.8. The map ω : S•(Eξ; Fξ)→ T •ξ is defined, for any u ∈ S•(Eξ; Fξ), by

ω(u)|σ,τ = (−1)ς(q)
∑

z

(−1)m(z)u|z,

where the sum is taken over all traversals z of the grid of (σ, τ).

Proposition 7.9. The map ω defined above is a chain map.

Proof. We need to show that

ωdu|σ,τ = dωu|σ,τ

for all appropriate d, σ, and τ.
For the rest of this proof we allow a slight abuse of notation – in cases where the

head of a chain of arrows is deleted, we will write u|σ0 instead of F(x0 → x1)(u|σ0 ).
If σ = x0 → · · · → xp and τ = y0 → · · · → yq, writing out the various formulae

gives
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ωdu|σ,τ = (−1)ς(q)
∑

z

(−1)m(z)
p+q∑
i=0

(−1)iuzi ,

dωu|σ,τ =
p∑

r=0

(−1)rωu|σr ,τ + (−1)p+q
∑

t

ωu|σ,τt

=

p∑
r=0

∑
z̃

(−1)r+m(z̃)+ς(q)u|z̃ +
q∑

t=0

∑
ẑ

(−1)p+q+t+m(ẑ)+ς(q−1)u|ẑ,

where z traverses (σ, τ), z̃ traverses (σr, τ), and ẑ traverses (σ, τt).
Now, a priori there are more summands in ωdu|σ,τ. The extra summands arise

from deleting the corners of traversals:

z : { zi :

But all of these corners come in pairs – a lower-right and an upper-left. The difference
in squares below and to the right in the grid for these paired traversals is exactly one,
and so m(z) is of the opposite parity. Thus the summands corresponding to paired
corner-cuts cancel out in φdu|σ,τ.

We are left with two cases – when zi is shortened along a vertical stretch and
when it is shortened along a horizontal stretch.

(Case 1). Suppose zi is shortened along a vertical stretch of z:

z : t

r

{ zi :

The traversal ẑ matching zi in dφu|σ,τ appears when τ is shortened at t. The
coefficient of zi is (−1)ς(q)+m(z)+i and the coefficient of the matching traversal is
(−1)p+q+t+m(ẑ)+ς(q−1). There are p − r squares in the grid to the right of any of the
arrows pictured. This means that

m(z) = m(ẑ) + p − r.

Also note that i = t + r. We have

ς(q) + m(z) + i + p + q + t + m(ẑ) + ς(q − 1) =
= ς(q) + ς(q − 1) + 2m(ẑ) + 2p + i + r + t ≡

≡ ς(q) + ς(q − 1) + q + 2i

≡ 0, mod 2
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thus the two coefficients are the same.
(Case 2). Suppose zi is shortened along a horizontal stretch of z:

z : t

r

{ zi :

The traversal z̃ matching zi in dωu|σ,τ appears when σ is shortened at r. The
coefficient of zi is (−1)ς(q)+m(z)+i and the coefficient of the matching traversal is
(−1)r+m(z̃)+ς(q). There are t squares in the grid below any of the arrows pictured.
This means that

m(z) = m(ẑ) + t.

Again note that i = t + r. We have

ς(q)+m(z) + i + r + m(z̃) + ς(q) =
= 2ς(q) + 2m(z̃) + i + r + t ≡

≡ 2i

≡ 0, mod 2

thus the two coefficients are the same.

⊓⊔

7.3 Long exact sequence in the cohomology of the total complex

If we have a poset bundle ξ : B → Sh and a subcategory C of B, then we will
denote the chain complex T •ξC

(recall Section 6.2) by just T •C. Below we headline the
main result of this section and leave the proof until we have built up the required
machinery.

Theorem 7.10. Let ξ : B → Sh be a poset bundle of sheaves with B an admissible
poset for x ≻ 0. Then there is a long exact sequence

· · · → Hn−1T •B≱x
→ HnT •ξ → HnT •B≥x

⊕ HnT •B≱x
→ HnT •B≱x

→ Hn+1T •ξ → · · ·

We will need to leverage the admissibility condition in the theorem to establish
the connection between the total complex of the whole sheaf and those of the two
smaller parts B≥x and B≱x, determined by the element x ≻ 0. Recall that we assume
all the Ey are posets.

Where possible, we will use x’s to refer to objects in B≱x and z’s to refer to objects
of B≥x. We can write down explicitly what T n

ξ , T n
B≥x

, and T n
B≱x

are:
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T n
ξ =

⊕
p+q=n

∏
x0≤···≤xp∈B

∏
y0≤···≤yq∈Ex0

Fx0 (y0).

T n
B≥x
=

⊕
p+q=n

∏
z0≤···≤zp∈B≥x

∏
y0≤···≤yq∈Ez0

Fz0 (y0).

T n
B≱x
=

⊕
p+q=n

∏
x0≤···≤xp∈B≱x

∏
y0≤···≤yq∈Ex0

Fx0 (y0).

Define the quotient map

ρ : T n
ξ → T n

B≥x
⊕ T n

B≱x

by setting to 0 any coordinate corresponding to a sequence x0 ≤ · · · ≤ xp ∈ B that
has objects in both B≥x and B≱x. Explicitly, if u ∈ T p+q

ξ , σ = x0 ≤ · · · ≤ xp ∈ B≥x or
B≱x, and τ = y0 ≤ · · · ≤ yq ∈ Ex0 , then

ρu|σ,τ = u|σ,τ.

To see that ρ is a chain map, let xi ∈ B≥x for all i. We have

ρdu|σ,τ = du|σ,τ

=

p∑
i=0

(−1)iu|σi,τ + (−1)p+q
q∑

j=0

(−1) ju|σ,τ j

=

p∑
i=0

(−1)iρu|σi,τ + (−1)p+q
q∑

j=0

(−1) jρu|σ,τ j

= dρu|σ,τ.

The calculation is analogous if xi ∈ B≱x for all i. Therefore ρ is a chain map.
It is also clearly surjective, so we have a short exact sequence

0→ M• → T •ξ → T •B≥x
⊕ T •B≱x

→ 0

for a particular chain complex M•.
We describe M• explicitly:

Mn =
⊕
p+q=n

∏
x0≤···≤xp

∏
y0≤···≤yq∈Ex0

Fx0 (y0),

where x0 ∈ B≱x, xp ∈ B≥x.
We can rewrite M• to pay attention to how many of the xi’s are in B≱x and how

many are in B≥x:

Mn =
⊕

s+t+q=n

∏
x0≤···≤xs≤z0≤···≤zt−1

∏
y0≤···≤yq∈Ex0

Fx0 (y0),

where xi ∈ B≱x, zi ∈ B≥x, s ≥ 0, t ≥ 1.
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Proposition 7.11. Let ξ : B→ Sh be a poset bundle of sheaves with B an admissible
poset for x ≻ 0. If M• is as above, there is a chain map

φ1 : T n−1
B≱x
→ Mn

that induces an isomorphism in cohomology.

Proof. In an attempt to keep the notation less cluttered, denote

Kn = T n−1
B≱x

.

We define the chain map φ1 : Kn → Mn, which will extend to a morphism of
filtered complexes. By showing that φ1 induces isomorphisms on the first pages of
the two spectral sequences associated to the two filtrations, the Mapping Lemma 5.14
implies that it is a quasi-isomorphism.

Let σ = x0 ≤ · · · ≤ xs ≤ z0 ≤ · · · ≤ zt−1 be a sequence in B with xi ∈ B≱x,
zi ∈ B≥x, s ≥ 0, t ≥ 1. Denote σ′ = x0 ≤ · · · ≤ xs. Also let τ = y0 ≤ · · · ≤ yq be a
sequence in Ex0 . Now if s + t + q = n, we define φ1 : Kn → Mn by

φ1u|σ,τ =

 (−1)qu|σ′,τ if t = 1
0 otherwise.

Intuitively, φ1 acts like the map φ in Proposition 6.11 on the portion of M• that
matches T •B≱x

. To see that φ1 is a chain map, note that if t ≥ 3, both φ1du and dφ1u
are 0. If t = 2, then

dφ1u|x0≤···≤xs≤z0≤z1,y0≤···≤yq =

s∑
i=0

(−1)iφ1u|x0≤···≤x̂i≤···≤xs≤z0≤z1,y0≤···≤yq+

(−1)s+1φ1u|x0≤···≤xs≤z1,y0≤···≤yq+

(−1)s+2φ1u|x0≤···≤xs≤z0,y0≤···≤yq+

(−1)n
q∑

j=0

φ1u|x0≤···≤xs≤z0≤z1,y0≤···≤ŷi≤···≤yq

= 0
= φ1du|x0≤···≤xs≤z0≤z1,y0≤···≤yq .

Finally, if t = 1, then
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dφ1u|x0≤···≤xs≤z0,y0≤···≤yq =

s∑
i=0

φ1u|x0≤···≤x̂i≤···≤xs≤z0,y0≤···≤yq+

(−1)s+q+1
q∑

j=0

φ1u|x0≤···≤xs≤z0,y0≤···≤ŷi≤···≤yq

= (−1)q
s∑

i=0

u|x0≤···≤x̂i≤···≤xs,y0≤···≤yq+

(−1)s+2q
q∑

j=0

u|x0≤···≤xs≤z0,y0≤···≤ŷi≤···≤yq

= (−1)qdu|x0≤···≤xs,y0≤···≤yq

= φ1du|x0≤···≤xs≤z0,y0≤···≤yq .

Now we define filtrations of M• and K•:

F pMn = {u ∈ Mn : u|σ,τ , 0⇒ σ = x0 ≤ · · · ≤ xs ≤ z0 ≤ · · · ≤ zt−1 with s ≥ p},

J pKn = {u ∈ Kn : u|σ,τ , 0⇒ σ = x0 ≤ · · · ≤ xs with s ≥ p}.

We want to use the Mapping Lemma 5.14 for these two filtrations, so the next
step is establishing all the assumptions of the lemma. We prove them for F with the
arguments for J being analogous.

(F is a filtration). It is clear from the definition of F that F p+1Mn ⊆ F pMn for each
p and n. Remains to show that F pM• is a complex for each p. Let u ∈ F pMn

and σ = x0 ≤ · · · ≤ xs ≤ z0 ≤ · · · ≤ zt−1 with s < p. Then for any sequence
τ ∈ Ex0 (of appropriate length q) we have

du|σ,τ =
s∑

i=0

(−1)iu|σi,τ + (−1)s+1
t−1∑
k=0

(−1)ku|σs+k ,τ + +(−1)s+t+q
q∑
ℓ=0

(−1)ℓu|σ,τℓ .

The summands in the first sum correspond to x-sequences of length s − 1 < p,
while the summands in the other two sums correspond to x-sequences of length
s < p. All those coordinates are 0 in u ∈ F pMn, so d induces a differential on
F pM•.

(F is convergent below). Observe that F 0Mn = Mn, since Mn does not have any
coordinates corresponding to sequences in B not containing elements of B≱x.

(F is bounded above). Observe that F nMn = 0, since we need s + t + q = n and
t ≥ 1.

(φ1 is a morphism of filtrations). Let u ∈ J pKn, set σ = x0 ≤ · · · ≤ xs ≤ z and
τ = y0 ≤ · · · ≤ yq. First suppose s + q + 1 , n. The potentially non-zero
coordinates of φ1u|σ,τ correspond to sequences of combined length satisfying
s + q , n − 1, so they are also 0. Now suppose s < p. Again, the potentially
non-zero coordinates of φ1u|σ,τ correspond to x-sequences of length s < p, so
are also 0. Thus φ1(J pKn) ⊆ F pMn.
To see that φ1 induces chain maps J pK• → F pM• for every p, note that we
already know that dφ1 = φ1d and that φ1(J pKn) ⊆ F pMn.
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Let E, E′ be the spectral sequences associated to the filtrations F ,J , respec-
tively. We have

Ep,q
0 =

F pMp+q

F p+1Mp+q = {u ∈ Mp+q : u|σ,τ , 0⇒ σ = x0 ≤ · · · ≤ xp ≤ z0 ≤ · · · ≤ zt−1},

E′p,q0 =
J pK p+q

J p+1K p+q = {u ∈ K p+q : u|σ,τ , 0⇒ σ = x0 ≤ · · · ≤ xp}.

The vertical differentials in E0 are given by

du|x0≤···≤xp≤z0≤···≤zt−1,y0≤···≤yq−t = (−1)p+1
t−1∑
i=0

(−1)iu|x0≤···≤xp≤z0≤···≤ẑi≤···≤zt−1,y0≤···≤yq−t+

+ (−1)p+q
q−t∑
ℓ=0

(−1)ℓu|x0≤···≤xp≤z0≤···≤zt−1,y0≤···≤ŷℓ≤···≤yq−t

and the vertical differentials in E′0 are given by

du|x0≤···≤xp,y0≤···≤yq = (−1)p+q
q∑
ℓ=0

(−1)ℓu|x0≤···≤xp,y0≤···≤ŷℓ≤···≤yq .

Using the notation from Definition 7.3 we can thus rewrite

Ep,•
0 =

∏
x0≤···≤xp

(−1)p+1T •−1
B≥xp
≥x ×(Ex0 ;Fx0 )

and
E′0

p,• =
∏

x0≤···≤xp

(−1)p+qS•−1(Ex0 ; Fx0 ).

Now note that φ1 acts as the product over all p-long x-sequences in B≱x of the
maps in Proposition 6.11, since B is an admissible poset and thus the subposet B≥xp

≥x
has a unique minimum. This means that φ1 : E′0

p,• → Ep,•
0 is a quasi-isomorphism

and thus

E′1
p,q = Hp(E′0

p,•)
φ•1
� Hp(Ep,•

0 ) = Ep,q
1 .

The Mapping Lemma 5.14 then implies that

φ•1 : Hn−1T •B≱x
� Hn(M•). ⊓⊔

We can now easily complete the proof of the theorem, headlined in this section.

Proof of Theorem 7.10. We have the short exact sequence from before

0→ M• → T •ξ → T n
B≥x
⊕ T n

B≱x
→ 0,

from which we get a long exact sequence in homology
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· · · → Hn−1T •B≥x
⊕ Hn−1T •B≱x

→ HnM• → HnT •ξ → HnT •B≥x
⊕ HnT •B≱x

→

→ Hn+1M• → · · ·

Replacing the occurrences of HnM• with Hn−1T •B≱x
and the maps around those occur-

rences with the appropriate compositions with φ•1 and φ•1
−1 gives the required long

exact sequence. ⊓⊔

7.4 Long exact sequence in sheaf cohomology

We now repeat this procedure for the cochain complex of the total sheaf (Eξ; Fξ). The
story is fairly similar to that of the previous section, so we are a little briefer. Again,
we headline the main result, with the proof delayed until the end of the section.

Theorem 7.12. Let ξ : B → Sh be a poset bundle of sheaves with B an admissible
poset. Then there is a long exact sequence

· · · → Hn−1(EB≱x ;FB≱x )→ Hn(Eξ; Fξ)→ Hn(EB≥x ; FB≥x ) ⊕ Hn(EB≱x ; FB≱x )→ · · ·

Where possible, we will use x’s to refer to objects in EB≱x and z’s to refer to
objects of EB≥x . We can write down explicitly what Sn(Eξ; Fξ), Sn(EB≥x ; FB≥x ), and
Sn(EB≱x ; FB≱x ) are:

Sn(Eξ; Fξ) =
∏

x0≤···≤xn∈Eξ

Fξ(x0)

Sn(EB≥x ; FB≥x ) =
∏

z0≤···≤zn∈EB≥x

Fξ(x0)

Sn(EB≱x ; FB≱x ) =
∏

x0≤···≤xn∈EB≱x

Fξ(x0)

Define another quotient map

ρ : Sn(Eξ; Fξ)→ Sn(EB≥x ; FB≥x ) ⊕ S
n(EB≱x ; FB≱x )

by setting to 0 any coordinate corresponding to a sequence x0 ≤ · · · ≤ xn in Eξ that
has objects in both EB≥x and EB≱x . This is a chain map by an analogous argument to
the one for the quotient before Proposition 7.11.

The map ρ is clearly surjective, so we have an short exact sequence

0→ N• → S•(Eξ; Fξ)→ Sn(EB≥x ; FB≥x ) ⊕ S
n(EB≱x ; FB≱x )→ 0

for a particular chain complex N•.
We describe N• explicitly:

Nn =
∏

x0≤···≤xn

Fξ(x0),
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where x0 ∈ EB≱x , xn ∈ EB≥x .
We can rewrite N• to pay attention to how many of the xi’s are in EB≱x and how

many are in EB≥x :
Nn =

∏
x0≤···≤xp≤z0≤···≤zn−p−1

Fξ(x0),

where xi ∈ EB≱x , zi ∈ EB≥x , p ≥ 0, n − p ≥ 1.

Proposition 7.13. Let ξ : B→ Sh be a poset bundle of sheaves with B an admissible
poset for x ≻ 0. If N• is as above, there is a chain map

φ2 : Sn−1(EB≱x ; FB≱x )→ Nn

that induces an isomorphism in cohomology.

Proof. We define a filtration J of N•:

J pNn = {u ∈ Nn : u|σ , 0⇒ σ = x0 ≤ · · · ≤ xs ≤ z0 ≤ · · · ≤ zn−s−1, with s ≥ p}.

The proof that this is a filtration is analogous to the proofs of the filtrations from
Proposition 7.11.

Let E be the spectral sequence associated to the filtration J of N. We have

Ep+q
0 =

J pN p+q

J p+1N p+q = {u ∈ Bn : u|σ , 0⇒ σ = x0 ≤ · · · ≤ xp ≤ z0 ≤ · · · ≤ zq−1}.

The vertical differentials in E0 are given by

du|x0≤···≤xp≤z0≤···≤zq−1 = (−1)p+1
q−1∑
i=0

(−1)iu|x0≤···≤xp≤z0≤···≤ẑi≤···≤zq−1 .

We can thus write

Ep,•
0 =

∏
x0≤···≤xp

(−1)p+1S•−1({z ∈ EB≥x | z ≥ xp}, ∆Fξ(x0)).

But the S complex on the right is of a poset with a constant sheaf. By Lemma
7.5 the underlying poset has a unique minimum, so

Ep,q
1 = HqEp,•

0 =


∏

x0≤···≤xp

(−1)p+1Fξ(x0) if q = 1,

0 otherwise.

=

 (−1)nSn−1(EB≱x ; FB≱x ) if q = 1,
0 otherwise.

So on the E1 page we have the single q = 1 row

· · · → (−1)nSn−1(EB≱x ; FB≱x )→ (−1)n+1Sn(EB≱x ; FB≱x )→ · · · .
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The differential on this page is induced by the differential

du|x0≤···≤xp≤z0≤···≤zq−1 =

p∑
i=0

(−1)iu|x0≤···≤x̂i≤···≤xp≤z0≤···≤zq−1 ,

which, since it keeps the z-sequence constant, induces the following differential on
the above row on the E1 page:

du|x0≤···≤xp =

p∑
i=0

(−1)iu|x0≤···≤x̂i≤···≤xp .

Since d(−d) = (−d)d = 0, ker(−d) = ker d, and im(−d) = im d, we have that the E2
page is

Ep,q
2 �

 Hp+q−1S•(EB≱x ; FB≱x ) if q = 1,
0 otherwise.

Then Ep,q
2 � Ep,q

∞ and so

E ⇒ Hn−1S•(EB≱x ; FB≱x ) � Nn.

In particular, this isomorphism is witnessed by a similar quasi-isomorphism to that
in Proposition 7.11, namely φ2 : Sn−1(EB≱x ; FB≱x )→ Nn defined by

φ2u|x0≤···≤xn =

u|x0≤···≤xn−1 if xn−1 ∈ EB≱x , xn ∈ EB≥x ,

0 otherwise.
⊓⊔

We can now, again, easily prove the headlined theorem.

Proof of Theorem 7.12. We have the short exact sequence from before

0→ N• → S•(Eξ; Fξ)→ S•(EB≱x ; FB≱x ) ⊕ S
•(EB≥x ; FB≥x )→ 0,

from which we get a long exact sequence in homology

· · · → Hn−1(EB≥x ; FB≥x ) ⊕ Hn−1(EB≱x ; FB≱x )→ HnN• → Hn(Eξ; Fξ)→

→ Hn(EB≥x ; FB≥x ) ⊕ Hn(EB≱x ; FB≱x )→ Hn+1N• → · · ·

Replacing the occurrences of HnN• with Hn−1(EB≱x ; FB≱x ) and the maps around those
occurrences with the appropriate compositions with φ•2 and φ•2

−1 gives the required
long exact sequence. ⊓⊔

7.5 The bicomplex and the total sheaf

We have all the necessary prerequisites to prove the main theorem:
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Theorem 7.14. Let ξ : B→ Sh be a poset bundle of sheaves with B a recursively ad-
missible finite poset, and (Eξ; Fξ) the associated total sheaf. Then there is a spectral
sequence

Ep,q
2 = Hp(B;Hq

f ib(ξ))⇒ H•(Eξ; Fξ).

Proof. Proposition 6.10 gives us

Ep,q
2 = Hp(B;Hq

f ib(ξ))⇒ H•T •ξ ,

so it is enough to show that H•T •ξ � H•(Eξ, Fξ). We will do this by induction on the
cardinality of B. Recall the chain map ω : S•(Eξ; Fξ)→ T •ξ from Section 7.2:

ωu|σ,τ = (−1)ς(q)
∑

z

(−1)m(z)u|z,

where the sum is taken over all traversals z of the grid of (σ, τ). We have two short
exact sequences from Theorems 7.11 and 7.13. The mapω gives a morphism of these
short exact sequences

0 Mn T n
ξ

T n
B≱x
⊕ T n

B≥x 0

0 Nn Sn(Eξ; Fξ) Sn(EB≱x ; FB≱x ) ⊕ S
n(EB≥x ; FB≥x ) 0

ε π

ε π

ω′ ω ω ⊕ ω

where the maps ε are the injections and the maps π the projections of the respective
modules. The map ω′ is the restriction of ω to the subcomplexes Nn and Mn. We
need to check the commutativity of the two squares.

(Left square). The maps ε are just injections, so we have

εωu|σ,τ = ωu|σ,τ = (−1)ς(q)
∑

z

(−1)m(z)u|z

= (−1)ς(q)
∑

z

(−1)m(z)εu|z = ωεu|σ,τ.

(Right square). Similarly, the maps π are projections, so

πωu|σ,τ = ωu|σ,τ = (−1)ς(q)
∑

z

(−1)m(z)u|z

= (−1)ς(q)
∑

z

(−1)m(z)πu|z = ωπu|σ,τ.

The naturality of the homology functor then gives a morphism of long exact
sequences, which contains the commutative diagram in Figure 7.6.

Recall from Propositions 7.11 and 7.13 the quasi-isomorphisms

φ1 : T n−1
B≱x
→ Mn and φ2 : Sn−1(EB≱x ; FB≱x )→ Mn.
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Hn−1T •B≱x
⊕ Hn−1T •B≥x

HnM•

HnT •ξ

HnT •B≱x
⊕ HnT •B≥x

Hn+1M•

Hn−1(EB≱x ; FB≱x ) ⊕ Hn−1(EB≥x ; FB≥x )

HnN•

Hn(Eξ, Fξ)

Hn(EB≱x ; FB≱x ) ⊕ Hn(EB≥x ; FB≥x )

Hn+1N•

δ

ε•

π•

δ

δ

ε•

π•

δ

ω′•

ω•

ω• ⊕ ω•

ω• ⊕ ω•

ω′•

Fig. 7.6: A portion of the commutative diagram given by the morphism of short exact
sequences.

Claim. The following diagram commutes

T n−1
B≱x

Sn−1(EB≱x ; FB≱x ) Nn

Mn

ω

φ2

ω′

φ1

Proof of claim. Let u ∈ Sn−1(EB≱x ; FB≱x ). Suppose

σ = x0 ≤ · · · ≤ xs ≤ z0 ≤ · · · ≤ zt−1, τ = y0 ≤ · · · ≤ yq

with s + t + q = n. If t > 1, it is clear that

φ1ωu|σ,τ = 0 = ω′φ2u|σ,τ,

since each summand of ω′φ2u|σ,τ is 0 under φ2.
If t = 1, let σ′ = x0 ≤ · · · ≤ xs. Then we have

ω′φ2u|σ,τ = (−1)ς(q)
∑

z′
(−1)m(z′)φ2u|z′ ,
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where the sum is taken over the traversals z′ of (σ, τ).
Pick a traversal z′ of (σ, τ). We zoom in on the top right of the grid of (σ, τ).

y′0

y′1 y′2· · ·

...

...

Note that y′0, y
′
2 ∈ Ez0 . If z′ passes through y′0, then φ2u|z′ = 0. If z′ passes through

y′1, then φ2u|z′ = u|z, for a particular traversal z of (σ′, τ). Moreover, in this second
case there are exactly q many squares in the rightmost column that are in the count
for m(z′), so m(z′) = q + m(z). Therefore we have

ω′φ2u|σ,τ = (−1)ς(q)
∑

z′
(−1)m(z′)φ2u|z′ = (−1)ς(q)

∑
z

(−1)m(z)+qu|z

= (−1)q(−1)ς(q)
∑

z

(−1)m(z)u|z = (−1)qωuσ′,τ = φ1ωu|σ,τ. ⊓⊔

We can then form the augmented commutative diagram in Figure 7.7.
The two columns are exact since, by Propositions 7.11 and 7.13, the maps φ•1 and

φ•2 are isomorphisms. The squares commute by the commutativity of the diagram
from the morphism of long exact sequences and the claim.

We finish the proof by induction on the cardinality of B. If |Obj B| = 1, then

T n
ξ = S

0(B;Sn) =
∏
x∈B

Sn(Ex; Fx) = Sn(Eξ; Fξ),

and ω = (−1)ς(q) id, so ω is a quasi-isomorphism.
If ω : Sn(Eξ; Fξ)→ T n

ξ is a quasi-isomorphism for |Obj B| < i, then we can form
the commutative diagram in Figure 7.7 for |Obj B| = i . Each row other than the
middle one contains an instance of the inductive hypothesis, since both B≱x and B≥x

have fewer objects than B; and B is recursively admissible. Therefore, by the Five
Lemma 2.35, the middle row is an isomorphism and thus ω is a quasi-isomorphism.
This completes the induction and the proof of the theorem. ⊓⊔

7.6 A bundle over a non-poset base

The restriction to poset bundles over a recursively admissible base in this chapter
has been dictated by the techniques in the proof of Theorem 7.14. It is possible,
however, to find examples that do not satisfy this requirement, but for which the
theorem still holds. In this section we describe a bundle ξ over the category CZ\2Z
(recall Example 6.2) and explicitly construct an isomorphism ϑ : Tξ → S(Eξ; Fξ).
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Hn−1T •B≱x
⊕ Hn−1T •B≥x

Hn−1T •B≱x

HnT •ξ

HnT •B≱x
⊕ HnT •B≥x

HnT •B≱x

Hn−1(EB≱x ; FB≱x ) ⊕ Hn−1(EB≥x ; FB≥x )

Hn−1(EB≱x ; FB≱x )

Hn(Eξ; Fξ)

Hn(EB≱x ; FB≱x ) ⊕ Hn(EB≥x ; FB≥x )

Hn(EB≱x ; FB≱x )

φ•1
−1δ

ε•φ•1

π•

φ•1
−1δ

φ•2
−1δ

ε•φ•2

π•

φ•2
−1δ

φ•1
−1ω′•φ•2

ω•

ω• ⊕ ω•

ω• ⊕ ω•

φ•1
−1ω′•φ•2

Fig. 7.7: Augmented commutative diagram, where the instances of H•B• and H•A• are
replaced.

Together with Proposition 6.10 this implies that the claim of Theorem 7.14 is true
for this non-poset bundle ξ.

Let B = CZ/2Z with its only object denoted by ◦, and let C be the category
with two objects x and y and no non-identity arrows. Define F : C → Ab by
F(x) = F(y) = Z. Let g be the unique non-identity arrow in B. To describe the bundle
ξ : B → Sh we set ξ(◦) = (C, F) and give the sheaf morphism ξ(g) = γ (also see
Figure 7.8):

γ1(x) = y γ1(y) = x γ2(m|y) = m|x γ2(m|x) = m|y.

The total sheaf (Eξ, F) is then as follows

Eξ : x Fξ :y Z Z

id

id

Let C•1 = S
•(Eξ; Fξ). Since between any two objects of Eξ there is a unique

arrow, we can describe an n-simplex of NEξ by just a string w0w1 . . .wn of n + 1
objects of Eξ. Explicitly,

Cn
1 =

⊕
w0...wn

Z.
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◦ ◦

Z Z

y y

x x

Z Z

g

id

id

Fig. 7.8: The definition of the sheaf morphism ξ(g). The elements in red are the modules in
the sheaf.

Now, let E be the spectral sequence associated with ξ and consider

Ep,q
1 = S

p(B,Hq
f ib).

The category B has only one object and we have

H
q
f ib(◦) = Hq(C; F) =

Z2, if q = 0,
0, otherwise,

since C has no non-identity arrows. Furthermore, H0
f ib(g) : (m, n) 7→ (n,m). Then

(B,H0
f ib) is given by

B : ◦

g

H0
f ib : Z2

(m, n) 7→ (n,m)

Let C•2 = S
•(B;H0

f ib). Since there is only one object in B, we can describe an n-
simplex of NB by a string f1 f2 . . . fn of n arrows in B. Explicitly,

Cn
2 =

⊕
f1... fn

Z2.

We will informally associate the first coordinate of Z2 above with x and the second
with y.

We now construct a chain isomorphism ϑ : C•2 → C•1. To do that we introduce
some notation. Let _ † _ : Obj(Eξ)2 → B(◦, ◦) be a set function defined by

w0 † w1 =

 g, if w0 , w1,

id, if w0 = w1.
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Then let h : NEξ → NB be defined by

h(w0w1 . . .wn) = {w0 † w1}{w1 † w2} . . . {wn−1 † wn}.

Finally, if τ ∈ NB is an n-simplex and u ∈ S(B;H0
f ib) with u|τ = (m, n), we will write

(u|τ)1 = m and (u|τ)2 = n.
For an n-simplex σ = w0 . . .wn ∈ NEξ and u ∈ S•(Eξ; Fξ), we define

ϑu|σ =

 (u|h(σ))1, if w0 = x,
(u|h(σ))2, if w0 = y,

Consider the set function h again. Each n-simplex in NB determines two n-
simplices in NEξ – one starting with x and one starting with y. For example,

h(xyxx) = h(yxyy) = gg id .

This means that h is two-to-one and therefore ϑ : Cn
2 → Cn

1 is an isomorphism for
each n. Remains to show that ϑ is also a chain map. We want the following diagram
to commute

Cn
2 Cn+1

2

Cn
1 Cn+1

1

d2

ϑϑ

d1

Recall from Section 4.1 that if σ = x0 → x1 → · · · → xn is a simplex, for
j ∈ {0, . . . , n} we write

σ j = x0 → · · · → x j−1 → x j+1 → · · · → xn,

where the arrow x j−1 → x j+1 is the composition x j−1 → x j → x j+1.
Now, if σ = w0w1 . . .wn ∈ NEξ, we claim that h(σ j) = h(σ) j. If j = 0 or n, this

is clear from the definition of h. Otherwise, we have

h(σ j) =

h(σ) j =

· · · ◦ ◦ · · ·

· · · ◦ ◦ · · ·

w j−1†w j+1

{w j−1†w j}◦{w j†w j+1}

But gg = id, so these are the same arrow.
Let u ∈ Cn

2 and σ = xw1 . . .wn+1 ∈ NB. We have

(d1ϑu)|σ = ϑu|σ0 +

n+1∑
j=1

(−1) jϑu|σ j = ϑu|σ0 +

n+1∑
j=1

(−1) j(u|h(σ j))1
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and

(ϑd2u)|σ = (d2u|h(σ))1 = (H0
f ib(x † w1)(u|h(σ)0 ))1 +

n+1∑
j=1

(−1) j(u|h(σ) j )1.

Since we established that h(σ j) = h(σ) j, we only need to consider the first summands
of each expression:

(
H0

f ib(x † w1)(u|h(σ)0 )
)

1
=

 (u|h(σ)0 )1, if w1 = x,
(u|h(σ)0 )2, if w1 = y,

 = ϑu|σ0 .

The argument goes through analogously if σ starts with y. Therefore ϑ : C•2 → C•1 is
a chain isomorphism and H•C•2 � H•C•1. Returning to where C•2 came from, we have
that

Ep,q
2 =

 HpC•2, if q = 0,
0, otherwise.

And since there is only one non-zero row on the E2 page, the spectral sequence
collapses and

H•T •ξ � H•C•2 � H•C•1 = H•(Eξ; Fξ).

This confirms the claim of Theorem 7.14 for this bundle ξ : CZ/2Z → Sh.
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Applications

The statement of 7.14 closely resembles that of [ET12, Theorem 5.1]. Despite this,
the reframing of the result in terms of sheaf cohomology, as opposed to coloured
poset homology, leads to applications that are quite different from those of the
coloured poset version. The key difference, explored in this chapter, is that while
the theorem in [ET12] models complex interactions between the homologies of the
fibers of a bundle of coloured posets (seen in the application to Khovanov homol-
ogy), the main theorem of this thesis implies that if ξ : B → Sh is a poset bundle of
sheaves with B recursively admissible, then it is only the cohomology of the sheaf at
the maximum of B that contributes to the cohomology of the total sheaf of ξ.

By the end of this chapter, we will be able to conclude that, for example, the
cohomology of a sheaf on the poset in Figure 8.1 can only be non-zero in degrees 0
and 1.

• •

• • • • •

• • •

• • • •

• • •

•

Fig. 8.1: The cohomology of any sheaf on this poset is zero in all degrees , 0, 1. Convention
is that arrows go up.

It turns out that the restriction to recursively admissible posets means that we
only deal with posets with 1.
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Proposition 8.1. Let B be a recursively admissible poset. Then B has a unique max-
imum.

Proof. This follows from the recursive definition (Definition 7.3): the poset B is
either Boolean of rank 1, so it has a unique maximum, or all its maximums are
contained in B≥x for some x ≻ 0, since B≥y

≥x , ∅ for all y ∈ B≱x. Equivalently, the
statement follows by induction on the size of B. ⊓⊔

The admissibility property provides a kind of ‘factorisation’ for posets into bun-
dles. The simplest way to do this is to turn an admissible poset into a bundle over B1.
Note that Boolean lattices are recursively admissible, so we can later apply Theorem
7.14.

Lemma 8.2. Let E be an admissible poset for E′,E′′ and (E, F) ∈ Sh. Then there
is a poset bundle of sheaves ξ : B1 → Sh such that (Eξ, Fξ) = (E, F) (recall the
construction of the total sheaf (Eξ, Fξ), Definition 6.3).

Proof. We need to specify ξ(0), ξ(1), and ξ(0 ≤ 1).
• ξ(0) = (E′, F),
• ξ(1) = (E′′, F),
• the sheaf morphism γ = ξ(0 ≤ 1) consists of a covariant functor (or just a poset

map in this setting) γ1 : E′ → E′′ and a natural transformation γ2 : Fγ1 → F:
– Let γ1(x) be the unique minimum of {y ∈ E′′ | x ≤ y}. Then if x ≤ x′ in E′,

we have {y ∈ E′′ | x ≤ y} ⊇ {y ∈ E′′ | x′ ≤ y} and so γ1(x) ≤ γ1(x′).
– Since x ≤ γ1(x), we have a morphism F(x)← F(γ1(x)) from (E, F). Set γ2,x

to be this morphism.
Remains to show that (E, F) = (Eξ, Fξ). It is enough to show that E = Eξ by

the construction of Fξ. If x ≤ y in E and either x, y ∈ E′ or x, y ∈ E′′, then clearly
x ≤ y in Eξ (as an arrow of type a)). Suppose x ≤ y in E and x ∈ E′, y ∈ E′′. Then
x ≤ γ1(x) ≤ y, so x ≤ y in Eξ. Conversely, the set of arrows in Eξ is generated by
inequalities that hold in E. Therefore, x ≤ y in E if and only if x ≤ y in Eξ. ⊓⊔

We can also ‘factorise’ a poset into a bundle over a more complicated base.

Proposition 8.3. Let E and B be posets, let (E, F) ∈ Sh, and let π : E → B be an
onto poset map, such that for all x < y in B, the subposet π−1(x) ∪ π−1(y) of E is
admissible for π−1(x), π−1(y). Then there is a poset bundle of sheaves ξ : B → Sh
such that (E, F) = (Eξ, Fξ).

Proof. Following the approach from the previous proposition, set ξ(x) = (π−1(x), F)
and if x < y in B, then ξ1(x < y) sends z ∈ π−1(x) to the minimum of the subposet
{w ∈ π−1(y) | z ≤ w}.

Now suppose z < w in E and z ∈ π−1(x), w ∈ π−1(y). Since π is a poset map,
x < y in B and z < ξ1(x < y)(z) ≤ w in Eξ.

If z < w in Eξ is an arrow of type b) or a composition arrow, then by Proposition
6.5 there is a v ∈ π−1(π(w)), such that z < v < w in Eξ, where z < v and v < w are
arrows of type b) and a), respectively. But both those arrows exist in E, so z < w in
E. ⊓⊔
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The following is a consequence of recursively admissible posets’ having a unique
maximum (or final object).

Proposition 8.4. Let B be a recursively admissible poset and let ξ : B → Sh be a
poset bundle of sheaves. If 1 ∈ B is the unique maximal object, then

H•(Eξ, Fξ) � H•(ξ(1)).

Proof. Let E be the spectral sequence associated with ξ. We know that

Ep,q
2 = Hp(B,Hq

f ib).

Now, B has a unique maximum 1 (Proposition 8.1), so the functors lim
←−−B

and the
‘evaluation at 1’ functor _(1) : Sh(B) → RMod are naturally isomorphic (recall
Example 3.5). But by Proposition 3.9 we know that evaluation functors are exact.
Therefore

Hp(B;Hq
f ib) =

 Hq(ξ(1)), if p = 0,
0, otherwise.

Thus the spectral sequence collapses, we get Hn(T •ξ ) � Hn(ξ(1)), and since B is
recursively admissible, Theorem 7.14 applies. This means we have

H•(ξ(1)) � H•(T •ξ ) � H•(Eξ, Fξ). ⊓⊔

We can now package the discussion into the following self-contained application.

Theorem 8.5. Let E and B be posets, with B recursively admissible. Suppose that
π : E→ B is an onto poset map such that for all x < y in B, the subposet
π−1(x) ∪ π−1(y) of E is admissible for π−1(x), π−1(y). Then

H•(E; F) � H•(π−1(1); F)

for all F ∈ Sh(E), where 1 is the unique maximum of B.

Remark 8.6. The above recipe can be applied repeatedly. Indeed, one can imagine
cases where a poset E is admissible for E1,E2, and E2 is admissible for E3,E4, but
E1 is not admissible, so the poset map π : E → B2 required for the above theorem
does not exist. Despite this, we can apply the theorem twice with B = B1 and deduce
that

H•(E; F) � H•(E4; F),

for any F ∈ Sh(E).
Conversely, if the required poset map π : E → B exists for some recursively

admissible B, we can instead repeatedly apply Theorem 8.5 for B1, at each step ap-
plying the recursive definition. The upshot is that replacing the recursively admissible
B with the concrete B1 in the above theorem results in an equivalent statement.
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Example 8.7. We can now examine the explicit poset given at the start of the chapter
(with arrowheads omitted, but always pointing up). Let E be the poset in Figure 8.1
and choose an F ∈ Sh(E). First, E is admissible for E1,E2 by inspection of the
following diagram.

• •

• • • • •

• • •

• • • •

• • •

•

E1

E2

Thus, Theorem 8.5 implies that H•(E; F) � H•(E2; F). We can apply the theorem
again, this time with B = B2, giving H•(E; F) � H•(E6; F):

• •

• • • • •

• • •

• • • •

•E3

E6

E5E4

Another two applications of Theorem 8.5 with B = B1 reduce the poset even further.

• •

• • •

• •

•

•

•

•

•

•

•

E7
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We thus have that H•(E; F) � H•(E7; F). To see that the cohomology of (E7; F) is
zero for all degrees ≥ 2, we can use the chain complex

T •(E7; F) := S•(E7; F)/D•,

where D• is the subcomplex consisting of the degenerate simplices in E7, i.e. the
simplices that involve an identity arrow. This new chain complex T • is homotopy
equivalent to S• ([ET15, p.138]) and since it only involves non-degenerate simplices,
its cohomology is clearly trivial at degrees ≥ 2.

There is also a more general example that we can apply our theorem to.

Proposition 8.8. Let E be a poset and let x ∈ E be a total point, i.e. for all y ∈ E,
either x ≤ y or y ≤ x. Then

H•(E; F) � H•(E≥x; F)

for any F ∈ Sh(E).

Proof. If E<x = ∅, then E = E≥x and the statement of the proposition is trivial.
Otherwise, consider the subposets E≥x and E<x:

• x

E<x

E≥x

For any y ∈ E<x, we have min E≥y
≥x = x and so E is admissible for E<x,E≥x. Applying

Theorem 8.5 gives the required result. ⊓⊔
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