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Abstract

Heat-Assisted Magnetic Recording (HAMR) has emerged as a promising next-generation
approach for magnetic recording. The functioning of HAMR requires the recording media
to be made of magnetic materials with high anisotropy and suitable Curie temperature. Iron
Platinum in the L10-phase (L10-FePt) has been found to satisfy these two requirements, thus
having been attracting extensive attention and investigation. This Thesis presents a coherent
and comprehensive computational research on the impacts of finite-size and surface effects
in L10-FePt for potential HAMR applications. Simulations are performed by VAMPIRE an
atomistic simulation code developed in the University of York and several key findings have
been obtained. First, the existence of a size threshold at 3.5 nm is discovered below which
finite-size effects are found to permeate into the centre of the L10-FePt grains leading to the
well-known Curie temperature dispersion of the recording medium. A correlation between
the Curie temperature dispersion and surface disorder is formulated which can be extended
beyond L10-FePt to be applicable to different crystal structures. Second, a novel fourth-order
anisotropy component is found in a phase-coupled core-shell structured L10/A1-FePt grain
which exhibits strong size and geometry-dependence unseen in previous literature. Additionally,
the scaling to magnetisation of this fourth-order anisotropy is found to disobey the classical
Callen-Callen power law. These properties can be successfully explained by an analytic model
which demonstrates the origin of this novel fourth-order anisotropy to be from the canting of
the core and shell magnetisation. The applicability of this analytic model, also, is shown to
extend to be valid in a generic soft-hard coupled nanocomposite magnetic system. Finally,
the switching efficiency of this phase-coupled core-shell structured L10/A1-FePt grain is
investigated. Available data demonstrate the existence of a non-negligible switching error
rate in all tested grain configurations. Reducing the grain size and using shorter write pulses
are found to induce higher switching error rate. However, it is shown that these detriments
can be mitigated by surface engineering. Overall, the studies presented in this Thesis have
addressed and provided many helpful insights into outstanding challenges on the path toward
the realisation of L10-FePt in HAMR recording media.
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1

Introduction to magnetic recording and
heat-assisted magnetic recording

1.1 Magnetic recording and the trilemma

Magnetic recording refers to the process of writing and storing data on a magnetised medium
made from the grains of magnetisable materials [1]. Durable storage of information requires the
writing media to be made of suitable magnetic materials which exhibit at least two thermally
well-defined states corresponding to the two binary "0" and "1" states of the information bit. A
very ambitious target for the future is set that a bit of information will be stored on a single
grain, but today several grains are required [2]. A qualified magnetic storage is expected to
meet the three following standards. First, it ought to exhibit a large saturation magnetisation
necessary for the production of clear signals in the read-head. Second, it ought to exhibit
a suitable coercivity field which enables the writing of information via switching magnetic
moments from one binary state to another. Finally, it ought to exhibit a high level of thermal
stability which is required for a long-lasting preservation and extraction of the information
stored on it for a duration of several years.

Historically, one of the first techniques of magnetic recording in Hard Disk Drive (HDD)
was the Longitudinal Recording Technology (LRT) in which the writing media are magnetised
horizontally to the write head and in parallel to the surface of the disk [1]. This recording
technique confers many desirable qualities, such as satisfactory areal density, good signal-to-
noise ratio (SNR) if high anisotropy is retained in the recording layers, and low thickness [3],
but on the downside suffers from severe thermal instabilities found in the longitudinal writing
media [4]. After many attempts at further improving the areal density, LRT was rendered
obsolete by a new technique coined Perpendicular Recording Technology (PRT). The most
notable difference between LRT and PRT, a comparison of which is shown in Fig. 1.1, is that
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in PRT the written data bits on the writing medium are polarised perpendicular to the disk
surface. This perpendicular alignment of the bits, in either parallel or anti-parallel orientation
corresponding to the binary state "1" or "0" respectively, helps to minimise demagnetisation
effects and stray fields thus allowing the achievement of higher areal density [5, 6]. The typical
structure of a PRT recording medium consists of four layers: a soft-magnetic under-layer,
a seed or intermediary layer, the recording layer, and a protection layer. First, the presence
of a soft-magnetic under-layer mirrors the magnetic pole of the write-head and minimises
interference effects of neighbouring grains, thus amplifying and confining the write field to
a perpendicular direction to the thin film in a single-bit region [7]. The amplified write field,
in turn, allows magnetic writing to be done on media with a large coercivity field by which
it is now made possible to enhance areal density via decreasing grain size and increasing
anisotropy without sacrificing thermal stability - the balance of these trio of factors is known as
the magnetic recording trilemma which will be discussed in detail later. Next, the seed layer
helps to decouple the soft-magnetic under-layer from the recording layer and to promote the
growth of the recording layer with a perpendicular easy axis. Finally, the protection layer, as its
name already implies, is added to protect the recording layer from mechanical damages [6–8].
Since its inception, PRT has largely replaced LRT and remained to be the dominant magnetic
recording technique in use today.

Fig. 1.1 A comparison between the operating principle of (a) the Longitudinal Recording
Technique (LRT) and (b) the Perpencicular Rercording Technique (PRT): the written bits are
aligned parallel to the media surface in LRT but perpendicular to the media surface in PRT.
Source: excerpt from [9].

Magnetic recording functions on the balance between three main factors which form the
well-known magnetic recording trilemma: the task of optimising the signal-to-noise (SNR)
ratio, thermal stability, and writability [10]. The intertwined connections between these three
factors are illustrated in Fig. 1.2. The ultimate design aim of magnetic recording is to improve
areal density, and the first consideration is to achieve this target whilst maintaining sufficient
Signal-to-Noise (SNR) ratio. In simple terms, in any recording medium there always exists a



1.1 Magnetic recording and the trilemma 3

portion of "defect" grains with anomalously large switching field higher than the maximum
magnitude of the externally applied writing field. These "defect" grains will not be switched
by the writing field, thus leading to switching errors. The SNR depends on the ratio for every
single data bit between the "functioning" grains that can switch and contribute to information
storage and the "defect" grains that do not switch and lead to errors. To achieve an acceptable
SNR, it therefore requires to increase the number of grains per bit in order to improve this
ratio. However increasing the number of grains per bit obviously decreases areal density, so an
alternative has to be found.

Fig. 1.2 The trilemma of magnetic recording: to improve areal density the grain volume V
in the recording media has to be reduced in order to maintain a sufficient Signal-to-Noise
ratio. With decreasing grain volume the energy barrier ∆EB = KV is decreased, which can
be compensated for by the use of a high coercive material with a large anisotropy constant K.
However the write field is proportional to K which in turns limits the maximum usable high K
value materials. Source: excerpt from [11].

If the number of grains per bit, for now, is found difficult to be reduced, the said alternative
to improve areal density is to reduce the grain volume instead. However, reducing grain volume
means loss of thermal stability because of a smaller energy barrier KV - with K the anisotropy
density and V the volume. It has been shown that an energy barrier of KV ≈ 40kBT - where kB

is the Boltzmann constant and T the absolute temperature in Kelvin - is required for reliable
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information storage for roughly 10 years at room temperature; and yet for practical applications,
the minimum requirement has to be pushed to KV ≥ 60kBT so as to leave some margin for
external demagnetisation fields and other factors [2]. In order to maintain a sufficient energy
barrier when using smaller-sized grains, therefore, it has to be compensated for by finding
a recording layer material with high uniaxial anisotropy density K. However, using a high-
anisotropy material for the recording medium produces yet another issue that a correspondingly
high write field from the writing transducer would be required to switch the grain magnetisation
since the write field is proportional to the anisotropy density K. Since the maximum achievable
magnitude of write field is largely restricted by current technologies available, the usable high-
anisotropy materials are also limited [1, 2, 10]. These considerations constitute the description
of the magnetic recording trilemma which any new technological development of the magnetic
recording has to take into account for a practical solution.

1.2 Heat-assisted magnetic recording and the quadrilemma

Beyond the previously discussed three factors that constitute the magnetic recording trilemma, a
fourth factor has recently been discovered and has to be taken into consideration: a probability of
back-switching of spins during the assisted-writing process due to thermally induced transitions.
The process of magnetic recording is far from error-free: as the write transducer writes the
information bit via switching the grain magnetisation, there is a chance that at any time the
switching would fail due to many thermally-driven irregularities. Therefore, besides the original
three factors, it is necessary to take into account the rate of switching error. This switching
error rate is termed the Bit-Error-Rate (BER) [12] and can be generally understood as the
probability of wrongly coding the information to the writing medium. Apparently, high BER
would damage the integrity of stored information. In order to achieve an acceptable level of
BER, the material saturation magnetisation - Ms - and the external magnetic field produced by
the writing transducer - Hwr - must be maximised. Currently this acts as a source of DC noise,
however in terms of ultra-high storage densities involving heated dot recording, this gives
a potential limit of magnetic recording density [12]. The introduction of the BER therefore
extends the original trilemma to a quadrilemma that provides a more complete account of
considerations for magnetic recording. Overall, the quadrilemma emphasises the importance
of thermal fluctuation for small-sized systems which are prone to high BER and thus require
design optimisation for applications in the recording media technologies. An illustration of the
magnetic recording quadrilemma is shown in Fig. 1.3.

In the quest of finding a solution to the magnetic recording quadrilemma, the Advanced
Storage Technology Consortium (ASTC) - currently the Advanced Storage Research Consor-
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Fig. 1.3 The quadrilemma of magnetic recording: the use of grains with reduced volume
requires an compensation in the form of increasing the anisotropy constant K to maintain
thermal stability, and also maximising the saturation magnetisation Ms to ensure thermal
writability. Source: excerpt from [12].

tium (ASRC) - Technology Roadmap displayed in Fig. 1.4 suggests two main approaches. The
first approach is Bit-Patterned Recording (BPR) which aims for achieving ultra-high areal
density by reducing the current number of grains required per data bit to as low as one [13].
The second approach is to address the writability issue via the addition of a write assist by
which the switching field during the recording process can be reduced without forgoing thermal
stability. The scope of this Thesis focuses on one particular form of write-assisted magnetic
recording: the thermally-assisted or more commonly known as Heat-Assisted Magnetic Record-
ing (HAMR) [14–16]. The HAMR write-head first applies an intense, highly localised heat
spot for a very short time to a recording medium in order to heat it up to or beyond its Curie
temperature (TC), then writes the data inductively after which cooling to ambient temperature
restores thermal stability. Since the recording process is performed near the Curie temperature
of the writing medium where the anisotropy has been drastically reduced, a write field of mag-
nitude much lower than what would otherwise be required can still switch the magnetisation
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equally effectively. An illustration of a typical HAMR design and its operating principle is
shown in Fig. 1.5. HAMR has been demonstrated to be able to achieve an areal density close
to 1 Tb/in2 [2, 17] with recent progresses aiming up to 1.402 Tb/in2 [17] or even more ambi-
tious 4 Tb/in2 [14]. The theoretical limit of storage densities achievable in HAMR, because
of the inevitability of switching error rate, has been suggested be capped at around 15 Tb/in2

to 20 Tb/in2 [12]. An ultimate solution which combines the write-assist method with BPR
scheme has been envisioned to yield the ultimate densities [18, 19].

Fig. 1.4 ASTC/ASRC Technology Roadmap showing envisioned progression of storage densi-
ties in the near future. Source: excerpt from [20].

Fig. 1.5 An illustration of (a) a typical design of HAMR head-media recording image and (b)
HAMR operating principle. Source: excerpt from [15].
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1.3 Thesis outline

This Thesis is aimed to present a coherent and comprehensive research of finite-size and surface
effects in Iron Platinum in the L10 phase (L10-FePt) for potential applications in Heat-assisted
Magnetic Recording (HAMR). Each Chapter is intended not only to be built upon the previous
but also to lay the foundation for the next, so as to convey a clear sense of progression in not
only computational techniques but also scientific complexity. To achieve such purpose, the
Thesis structure is designed to follow this outline.

Chapter 1 - Introduction to magnetic recording and heat-assisted magnetic recording has
reviewed the context of Magnetic Recording and it well-known associating trilemma. Rapid
developments in the field has culminated in the Heat-Assisted Magnetic Recording (HAMR)
technique and consequently extended the trilemma to a quadrilemma.

Chapter 2 - Methodology and theories of magnetic modelling: This Chapter presents an
overview of magnetic modelling frameworks of ubiquitous use today, with a focus on the
atomistic modelling method which is implemented in this research via the VAMPIRE atomistic
simulation code developed at the University of York. Additionally, the key concepts of the
Mean-field theory and of the 2-ion anisotropy model of L10-FePt are also introduced.

Chapter 3 - The influence of finite-size effects on the Curie temperature of L10-FePt: This
Chapter covers the first part of the L10-FePt study which explains why L10-FePt is a material
highly suitable for HAMR, as well as presents the results of the investigation of the dependence
of the Curie temperature dispersion of L10-FePt on finite-size and surface effects.

Chapter 4 - Higher-order magnetic anisotropy in soft-hard nanocomposite materials: This
Chapter encapsulates the second part of the L10-FePt study which extends the established
results in Chapter 3 to investigate the effects of surface faceting and interface interaction on the
fourth-order anisotropy of L10-FePt in a novel phase-coupled core-shell structured grain which
closely resembles a real HAMR grain. An analytic model is formulated to explain the results in
this Chapter of which applicability is shown to extend beyond the studied core-shell L10-FePt
structure to any generic soft-hard nanocomposite material.

Chapter 5 - HAMR switching efficiency in core-shell L10/A1-FePt grain: This Chapter
presents the last part of the L10-FePt study in which the established findings of the previous
Chapter 3 and 4 are put in use and combined into an investigation of the switching efficiency of
the core-shell structured L10-FePt grain in a HAMR write process.

Chapter 6 - Conclusions and further works: The Thesis will then conclude with a summary
which recaptures the key findings of the research and their relevance to the field of study.
Further remarks will also be made on potential future directions for a continued development
of the research.
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Methodology and theories of magnetic modelling

2.1 Fundamental concepts of an atomistic model

In this Section, the fundamental concepts of the atomistic modellling method will be pre-
sented, including the derivation and discussion of the exchange energy, the magneto-crystalline
anisotropy, the energy of an externally applied magnetic field, and the stochastic Landau-
Lifshitz-Gilbert dynamics

2.1.1 The exchange energy

The exchange energy is the energy resulting from inter-atomic interactions which try to align
neighbouring spins. In ferromagnetic materials, the exchange energy is generally the dominant
contribution to the spin Hamiltonian and is responsible for long-range magnetic order. The
exchange interaction has its origin as a quantum mechanical effect [21–23] and is caused by a
combination of the symmetry of the electron wavefunction and the Pauli exclusion principle
which dictates possible orientations of spins in overlapping electron orbitals [24, 25].

For a simple derivation [23, 24], consider the simplest case of a system consisting of
2 indistinguishable electrons: one electron at r1 in state ψA(r1) and another electron at r2

in state ψB(r2). The combined wavefunction of the system, ψ(r1,r2) can be written as the
linear combination of the wavefunctions of the 2 constituent electron ψ(r1,r2) = ψA(r1)ψB(r2)

which solves the Schrödinger Equation:[
ℏ2

2m
∇

2
1 +

ℏ2

2m
∇

2
2 +V (r1)+V (r2)

]
ψ(r1,r2) = (EA +EB)ψ(r1,r2) = Eψ(r1,r2), (2.1)

where the energy of the system, E, is the sum of the energy of the 2 constituent electrons E =

EA+EB and V (ri) is the potential at ri. Since the 2 electrons in the system are indistinguishable,
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the wavefunction of the system can also be written as ψ(r2,r1) = ψA(r2)ψB(r1) which also
must be another solution to the Schrödinger equation in Eq. (2.1). For this to be the case, the
following equality must be upheld:

|ψ(r1,r2)|2dr1dr2 = |ψ(r2,r1)|2dr2dr1, (2.2)

which yields either a symmetric solution ψ(r1,r2) = ψ(r2,r1) or an anti-symmetric solution
ψ(r1,r2) = −ψ(r2,r1). The general solution to the wavefunction of the system will be a
normalised linear combination of either the symmetric or the anti-symmetric solution. However,
because the Pauli exclusion principle dictates that no 2 identical electrons in a system can occupy
the same quantum state simultaneously, the symmetric solution is not possible. Therefore,
the general wavefunction of the system consisting of 2 indistinguishable electrons must be
anti-symmetric:

ψanti(r1,r2) =
1√
2
[ψA(r1)ψB(r2)−ψA(r2)ψB(r1)] . (2.3)

To calculate the total energy of the system, the Heitler-London approximation method
can be used by which the orbital wavefunction of a system consisting of 2 indistinguishable
electrons is approximated as a linear combination of the atomic orbital wave functions of the
said 2 constituent electrons each localised on an atomic site [26, 23]. The total energy E is then
given by:

E =
∫ ∫

ψ
∗(r1,r2)Hψ(r1,r2)δr1δr2, (2.4)

where the system Hamiltonian H can be split into the sum of 3 components H=H1+H2+H12

with H1 representing the contribution from electron A, H2 the contribution from electron B,
and H12 the contribution from their interaction. The energy component that concerns only the
interaction contribution between the 2 electrons can therefore be expressed by replacing the
overall H by the specific H12:

E12 =
∫ ∫

ψ
∗(r1,r2)H12ψ(r1,r2)δr1δr2. (2.5)

The interaction energy E12 in Eq. (2.5) is made up of firstly, the Coulomb interaction
between each of the negatively-charged electron and its respective positively-charged nucleus,
and secondly, an exchange interaction component. This exchange interaction component - it has
to be emphasised - is purely quantum mechanical in origin because in the classical scenario the
exchange interaction between 2 electrons would not alter the system energy. A link between this
quantum mechanical exchange interaction and spin correlation can be established by splitting
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the total general wavefunction ψ further into the product of a radial part φ(r) and a spin part χ ,
such that ψ(r) = φ(r).χ . In order to maintain the already established anti-symmetric nature of
the total wavefunction ψ , the radial φ(r) and spin part χ can neither be both symmetric nor
anti-symmetric. Consider the spin part χ first: it can be in either an anti-symmetric singlet state
with paired electrons and total spin S = 0, or a symmetric triplet state with unpaired electrons
and total spin S = 1 [27, 28]. Consequently, a system with the spin part in the anti-symmetric
singlet state χsinglet will require the radial part to be symmetric φsym. Contrarily, a system with
the spin part in the symmetric triplet state χtriplet will require the radial part to be anti-symmetric
φanti. Therefore, the total wavefunction with the spin part in the singlet state - ψsinglet - and one
with the spin part in the triplet state - ψtriplet - will have the form of:

ψsinglet(r1,r2) = φsymχsinglet

=
1√
2
[φA(r1)φB(r2)+φA(r2)φB(r1)]χsinglet,

(2.6)

and:

ψtriplet(r1,r2) = φantiχtriplet

=
1√
2
[φA(r1)φB(r2)−φA(r2)φB(r1)]χtriplet,

(2.7)

with the energy for each case given by the integral:

Esinglet/triplet =
∫ ∫

ψ
∗
singlet/tripletH12ψsinglet/tripletδr1δr2. (2.8)

The exchange energy between the 2 electrons in the system can then be computed as the
difference between the energy of system in the singlet state and in the triplet state:

Eexchange = Esinglet −Etriplet

= 2
∫ ∫

[φA(r1)φB(r2)H12φA(r2)φB(r1)]δr1δr2.
(2.9)

In our case with electrons, it is a system of 2 spin-half particles which are coupled by an
exchange interaction that can be expressed mathematically by a joint operator Stotal = S1 +S2

i.e. S2
total = S2

1 +S2
2 +2S1 ·S2. Therefore, the exchange energy, which is the energy difference

between the singlet and triplet state, will take the form of a multiplier of S1 ·S2. Combining the 2
spin-half particles will result in a system with spin quantum number of either S = 0 (i.e. overall
singlet) if the 2 spin-halves are anti-parallel, or S = 1 (i.e. overall triplet) if the 2 spin-halves are
parallel. Since the magnitude of the squared spin operator S2 is given by S(S+1), for the singlet
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case it reads 0(0+1) = 1
2

(1
2 +1

)
+ 1

2

(1
2 +1

)
+2S1 ·S2 i.e. 0 = 3/2+2S1 ·S2 which yields

S1 ·S2 =−3/4. Similarly, for the triplet case it reads 1(1+1) = 1
2

(1
2 +1

)
+ 1

2

(1
2 +1

)
+2S1 ·S2

i.e. 2 = 3/2+2S1 ·S2 which yields S1 ·S2 = 1/4 [24, 27]. The effective Hamiltonian of the
system of 2 electrons, therefore, can be written in this form [24]:

H=
1
4
(Esinglet +3Etriplet)− (Esinglet −Etriplet)S1 ·S2

=Hradial +Hspin,
(2.10)

which yields the eigenvalue Esinglet for the singlet state i.e. when S1 ·S2 =−3/4 and Etriplet for
the triplet state i.e. when S1 ·S2 = 1/4 as is desired. Note that the first term of the effective
Hamiltonian, Hradial, does not include any spins and thus can be defined as a spin-independent
radial component, whilst the second term Hspin includes the spins and thus can be defined as
a spin-dependent spin component. Since the spin component Hspin is summed up for both
electrons, the contribution from each electron can be calculated by halving it:

Hspin =−1
2
(Esinglet −Etriplet)S1 ·S2, (2.11)

and from Eq. (2.11) the exchange constant Jexchange can then be defined as:

Jexchange =
1
2
(Esinglet −Etriplet) =

∫ ∫
φA(r1)φB(r2)HspinφA(r2)φB(r1)δr1δr2, (2.12)

which helps to simplify the exchange Hamiltonian in the system of indistinguishable 2 electrons
to:

Hexchange =−Jexchange (S1 ·S2) . (2.13)

Generalise this result to a generic system consisting of many particles:

Hexchange =−1
2 ∑

i, j
Ji j (Ŝi · Ŝ j), (2.14)

where Ji j is the exchange energy strength between Ŝi and Ŝ j the unit vector of local spin at
site i and j respectively. Note the factor of 1/2 is added in order to avoid double counting of
duplicate (i, j) and ( j, i) pairs. In atomistic simulations, the exact form of Ji j generally depends
on the specific form of the exchange interaction present in the system. For example, in a simple
scenario Ji j can be treated as a simple scalar quantity, whilst in a more complex case Ji j can
take the form of a tensor. Generally, Ji j > 0 corresponds to a system with quantised-parallel,
triplet-state ferrormagnetic (FM) spin configuration, whilst Ji j < 0 refers to an anti-parallel,
singlet-state anti-ferromagnetic (AFM) spin configuration [28, 23]. The numerical value of Ji j
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used in atomistic simulations is typically obtainable from either ab-initio calculations or fitting
to experimental data [29, 30]. Additionally, another important note is that although in Eq. (2.14)
the exchange interaction between all pairs of spins present in the system are accounted for
- thus can be conveniently referred to as the "full" exchange Hamiltonian, the magnitude of
the exchange energy decreases quickly with increasing distances between increasing levels of
nearest-neighbours. Therefore, in practice the exchange contributions from further than the
third-level of nearest neighbours can often be safely ignored [31]. This point will be revisited
with greater depth in the specific discussions later on the modelling of Iron Platinum in the L10

phase (L10-FePt).

2.1.2 The magnetocrystalline anisotropy

Anisotropy refers to the spatial preference of the magnetic properties of a material caused by
the preferential alignment of the spins in a material along a specific direction. There are many
types of anisotropy, and thus many origins and mechanisms. A convenient way to visualise
anisotropy can be achieved by an example of what is known as shape anisotropy, which takes
roots in the geometry of a particle. Consider a uniformly magnetised particle which is elongated
in shape along a specific direction as seen in Fig. 2.1. Similar to the case of dielectrics, when an
external magnetic field H is applied, magnetic polarisation will happen leading to the formation
of fictitious magnetic poles at the surface, which in turn leads to the creation of a demagnetising
field Hd within the particle in opposition to the external field H. Because the said particle is
elongated in a specific direction, the demagnetising field cannot be the same in all directions i.e.
an-isotropic. In the particular case of the particle in Fig. 2.1, the demagnetising field Hd will be
largest when the external field Hd is applied parallel to the short axis because of the shortest
distance separating the 2 magnetic poles, and smallest when Hd is applied along the long axis
because of the longest separating distance. Since Hd opposes H, the spins will prefer to align
along the long axis where Hd is smallest, or the axis of elongation, leading to the anisotropy of
the particle. To make the spins deviate away from the preferred axis, therefore, will require an
energy imposed on the system. This energy is called the anisotropy energy [32].

The most common source of anisotropy is known as the magneto-crystalline anisotropy
which occurs due to the spin-orbit coupling of the electrons under influence of the crystallo-
graphic structure of the material [32, 33]. Spin-orbit coupling is a relativistic effect which
determines the interaction between the spin of a particle and its orbital angular momentum
around the nucleus [34], whilst the crystallographic structure represents the local crystal sym-
metries which decide the spatial orientation and arrangement of electron orbitals. Since electron
orbitals are generally non-spherical, they tend to orient along specific crystallographic direc-
tions. Therefore, when electron spins interact with orbitals, the spins are induced to “prefer”
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Fig. 2.1 Shape anisotropy in an elongated particle. The demagnetising field Hd is largest when
the external field H is applied (a) along the short axis, and smallest when H is applied along
the (b) long axis. Thus the preferred direction for the spins to align is along the long axis i.e.
the axis of elongation. Source: excerpt from [33].

the alignment along well-defined crystallographic axes which are known as easy axes or easy
directions. This preference is the root of the magneto-crystalline anisotropy, which as expected
heavily depends on the lattice structure of a material. Similar to the aforementioned case of
shape anisotropy, trying to push the spins away from their preferred easy directions will cost
anisotropy energy [33].

Magneto-crystalline anisotropy includes many forms. The simplest case is known as uni-
axial anisotropy, in which, as the name suggests, the spins prefer to align along a single axis.
Uniaxial anisotropy is commonly encountered in materials with shape distortion along a specific
direction, for example Iron Platinum in the L10 phase because of the alternating Iron-Platinum
layers on the z-dimension, or hexagonal crystals such as Cobalt. The expression of uniaxial
anisotropy energy is given as:

Hanisotropy =−ku ∑
i
(Ŝi · ê)2, (2.15)

where Ŝi is the spin at site i and ku the uniaxial anisotropy constant having an easy direction
along ê. Generally, uniaxial anisotropy energy can be written in terms of series of anisotropy
constants [35] as:

Eanisotropy = KV sin2(φ)+higher−order terms, (2.16)

where φ is the angle between the easy direction and the magnetisation, K the first uniaxial
anisotropy constant (also often denoted K2 and called the second-order uniaxial constant
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corresponding to the second-order of sin(φ)), and V the volume of the sample. Higher-order
terms correspond to higher-order powers of trigonometric functions and are usually insignificant
compared to the first term, thus normally neglected. This expression produces the uniaxial
anisotropy energy along one easy axis with two energy minima, separated by a maximum. The
resulting energy barrier leads to hysteresis [33].

2.1.3 The energy of an externally applied field

The presence of an externally applied magnetic field, Bapplied or where possible for simplicity
just B, will have an impact on the energy levels of electrons within a given magnetic system.
The interaction between a given magnetic system and an external magnetic field follows
principles of the Zeeman effect [36], and the potential energy resulting from such interaction,
Hfield, is given as:

Hfield =−∑
i

µi(Ŝi ·B), (2.17)

where µi is the atomic spin moment of spin Ŝi and B the externally applied magnetic field.
The total potential energy is summed up from all sites i of the system. It can be seen that
the coupling strength between spin ŝi and the field B is proportional to the magnitude of the
magnetic moment µi, and minimum energy is attained when all spins align with the direction
of the external field.

2.1.4 The stochastic Landau-Lifshitz-Gilbert equation

The time-dependent dynamics of a magnetic system is described by the Landau-Lifshitz
equation [37] which is given as:

∂M
∂ t

=−γeM×H− γeαM× (M×H) , (2.18)

where γe = 1.76×1011rads−1T−1 is the gyro-magnetic ratio of an electron, M the magneti-
sation, H the externally applied magnetic field, and α a phenomenological damping constant
specific to the material. This equation consists of two terms. The first term is a precession term
which describes an un-damped precession of a magnetisation around an applied field, and the
second term the damping term which accounts for the relaxation of the magnetisation towards
the effective field direction under the added effect of damping. A damped precession even-
tually aligns the magnetisation along the external magnetic field. It was later found that the
Landau-Lifshitz equation is valid only for systems with small damping; otherwise, the damp-
ing term had to be rectified by Gilbert in 1956. This rectified damping term transformed the
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original Landau-Lifshitz equation to the Landau-Lifshitz-Gilbert (LLG) equation [38]. For
atomistic spin dynamics, the LLG equation can be expressed for each magnetic spin by con-
verting the magnetisation M to the spin S via the relation M = µsS with µs being the local spin
moment. Another important note is that in the macroscopic-LLG the phenomenological damp-
ing constant α includes both intrinsic contributions (such as spin–lattice and spin–electron
interactions) and extrinsic contributions (such as spin-spin interactions arising from demag-
netisation fields, surface defects, doping, temperature), while the atomistic-LLG only includes
the local intrinsic damping contributions. Therefore, in order to distinguish the two forms of
damping, a microscopic damping constant λ needs to be used to replace the phenomenological
damping constant α [39]. This leads to the atomistic-LLG equation:

∂Si

∂ t
=− γe

1+λ 2 Si × (Hi +λSi ×Hi) , (2.19)

where Si is the spin of site i and Hi the corresponding effective magnetic field acting on it. The
effective field is derived from the first derivative of the complete spin Hamiltonian H which is
given as:

Hi =− 1
µs

∂H
∂Si

. (2.20)

Since the description of the atomistic-LLG equation does not include any temperature-
dependent term, it is strictly valid at T = 0K only and thus can also be referred to as the
"deterministic" LLG. In order to extend its applicability to non-zero temperatures, i.e. to
account for thermal effects, a stochastic term ξi(t) has to be added to the effective field Hi in
Eq. (2.20) which now reads:

Hi =− 1
µs

∂H
∂Si

+ξi(t). (2.21)

The introduction of the stochastic term ξi(t) is known as the Langevin Dynamics in which
the thermal fluctuations are given in form of a zero-mean Gaussian distribution in three
dimensions [39, 40]. It has been shown that the stochastic term ξi(t) can be defined through
these correlations:

⟨ξi(t)⟩= 0

⟨ξiη(t)ξ jυ(t ′)⟩=
2λkBT

γeµs
δ
(
t − t ′

)
δi jδηυ ,

(2.22)

where the notation ⟨⟩ denotes the mean value averaging over different realisations of the
fluctuation field, i and j the spin sites, η and υ the Cartesian coordinates, t and t ′ the time
at which the Gaussian fluctuations are evaluated, kBT the thermal energy with kB = 1.38×
10−23J/K being the Boltzmann constant and T the absolute temperature in Kelvin, δi j and δηυ
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the Kronecker Delta of respective indices, and δ (t − t ′) the Delta function. The addition of the
stochastic term ξi(t) to the effective field Hi converts the deterministic-LLG to the stochastic-
LLG. An illustration that compares the dynamics of undamped precession, deterministic-LLG,
and stochastic-LLG is shown in Fig. 2.2.

Fig. 2.2 The dynamics of (a) undamped precession, (b) deterministic-LLG (strictly T = 0),
and (c) stochastic-LLG (T ≥ 0). The black arrow indicates the effective field Hi acting on the
spin Si (purple arrows) together with the precession (blue arrows) and damping (green arrows)
energy terms, which result in the red trajectory. The lower plots show the temporal evolution of
the three magnetisation components. The Analytics line corresponds to an analytic solution to
the LLG equation in a special case, with further discussion in [41]. Source: excerpt from [41].

2.2 A review of magnetic modelling frameworks

The origin of long-range magnetic order in a sub-class of magnetic materials is a fundamental
scientific question which despite extensive investigation remains yet to be fully understood. In
the field of magnetism, there has not been a single comprehensive, universally accepted grand
theory applicable on all length-scales over all time-scales which could successfully capture
and explain all the complex magnetic properties of magnetic materials. Instead, today there
are three widely used computational frameworks which are still being continuously developed
for the study of magnetic materials: Micromagnetics, Atomistic, and Ab-initio in a decreasing
order of level of length-scale of the studied system. Given a particular question, depending on
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the level of complexity that it poses, a specific degree of precision will be required and one of
the three available modelling frameworks might be best suited to study the said question.

2.2.1 Micromagnetics

Overview

The oldest of the three computational frameworks is Micromagnetics. The birth of Micromag-
netics can be traced back to a paper by Landau and Lifshitz in 1935 on the structure of a domain
wall between two anti-parallel domains [37], followed by further studies by W. F. Brown in the
40s. The groundwork of the Micromagnetics model is laid out by Brown two decades later in
his book “Micromagnetics” [42]. Micromagnetics as a theory is proposed to link classical Elec-
tromagnetism with Heisenberg’s quantum mechanical treatment of the exchange energy [21].
At the foundation of Micromagnetics is the hypothesis that macroscopic magnetic properties
arise from a combination of two factors: first, the very short-range exchange energy between
neighbouring atomistic spins, and second, the longer-range magnetostatic energy which in-
cludes surface and boundary contributions from the shape of the material [43]. Obviously,
these two factors are effective on entirely different length-scales, and therefore the objective
of Micromagnetics is to provide a framework which enables the computational investigation
of macroscopic properties of a material using a reasonable approximation of its microscopic
properties.

Micromagnetics is most suitable to study systems at the length-scale of micrometres at
which it is both sufficiently small to retain the classical representation of atomic spins and
sufficiently large to resolve magnetic domains. The underlying principle is to replace atomistic
spins by a continuous vector field which can be used to calculate magnetostatic fields within
the system. In particular, in a ferromagnetic system, atomistic spins aligning in a co-linear
orientation due to an internal magnetic field are collectively combined as macrospins, with
each macrospin being assigned the representative equivalence of a magnetisation vector. In
Micromagnetics theory, these macrospins function as irreducible building blocks upon which
other magnetic properties of the said ferromagnetic system can be fully derived. The exact
definition of macrospins, however, varies across different Micromagnetics frameworks [44]:
the finite-difference approach divides the system into a finite mesh of cuboids with each cuboid
represented by a macrospin, whilst in the finite-element method the discretised finite mesh
can be made up of tetrahedral- or triangular-shaped elements. An illustration of comparison
between the two methods is shown in Fig. 2.3: it can be seen that the finite-element method
allows more flexible covering of irregular surfaces without increasing computational cost, thus
resulting in a smoother discretisation of the system. The replacement of the atomistic spins
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Fig. 2.3 Comparison of (a) the finite-difference and (b) finite-element meshes with different
shapes of elements in the discretised system. Source: excerpt from [44].

by the magnetisation vector field then allows the replacement of the Heisenberg’s quantum
mechanical treatment by a continuous approximation formalism of the exchange interaction.
This approximation to the exchange interaction and the energy minimisation principle form the
basis of the classical Micromagnetics formalism [33].

Different computational models based on Micromagnetics are capable of simulating large
systems of multi-micrometres in sizes over microseconds in time with acceptable degrees of
precision [45–49]. The downsides of Micromagnetics, however, lies inherently in its fundamen-
tal assumption of a continuous magnetisation vector field since the macrospin representation
method does not allow sufficiently rapid spatial variation of the magnetisation vector. Further-
more, the resolution limit of the model is at a length-scale usually much larger than a typical
atomistic lattice spacing, which explains why the exchange energy can only be approximated.
Overall, Micromagnetics have been proven less than ideal for the calculation of magnetic prop-
erties when a very high level of precision is desired, especially at elevated temperatures such at
the Curie temperature. Simply put, Micromagnetics is not the best tool available nowadays to
determine intrinsic material properties; rather, it is useful for determining how the material,
with known properties, will behave.



20 Methodology and theories of magnetic modelling

Formalism

The basic formalism of Micromagnetics can be summarised as following [33]. Under the
Heisenberg’s quantum mechanical treatment of exchange interaction, the exchange energy
between neighbouring pairs of atomistic spins Ŝi and Ŝ j is given by:

Eexchange =−2Ji j
(
Ŝi · Ŝ j

)
, (2.23)

where Ji j is the exchange integral as discussed earlier. Generally, Ji j assumes positive values
for ferromagnetic materials and negative values for anti-ferromagnetic materials. Also, Ji j

depends on the specific distance between the two atoms in consideration. The fundamental
principle of Micromagnetics assumes the magnetisation to be a continuous vector field M(r) of
the position vector r satisfying:

M(r) = Msm(r), (2.24)

where Ms is the saturation magnetisation and m(r) ·m(r) = 1. The basic approach of Micro-
magnetics involves calculating the magnetic energy in term of this continuous magnetisation
vector field and then minimise the energy to determine static magnetisation structures of the
material. For the exchange energy, this is done by assuming a short-range summation over near-
est neighbouring atoms i and j only and a slow spatial variation of the magnetisation vector
m(r). A slow spatial variation of the magnetisation vector means that the dot-product between
neighbouring spins Ŝi and Ŝ j can be expressed as Ŝi · Ŝ j = S2 cos

(
φi j
)
, where the angle φi j be-

tween spin Ŝi and Ŝ j is small. Therefore, applying the first-order expansion of the Taylor series
of cosine (dropping the constant 1) will transform Eq. (2.23) to:

Eexchange =−2JS2
∑
i, j

cos
(
φi j
)
=−2JS2

∑
i, j

−φ 2
i j

2
= JS2

∑
i, j

φ
2
i j. (2.25)

Since φi j is a small angle, following Equation (2.24) it can be approximated as the difference
between mi and m j of neighbouring spins i and j, which can be further expanded as:

φi j ≈ |mi −m j|= |(si ·∇)m j|2, (2.26)

where si is the displacement vector between the lattice point i and j. Substitute Eq. (2.26) into
Eq. (2.25) to obtain:

Eexchange = JS2
∑

i
∑
si

|(si ·∇)m j|2, (2.27)
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where the first summation involving each spin i can be converted into a volume integral over
the entire system. Also, note that the second summation involving si is carried out over nearest-
neighbour spins of the referenced spin i only. Consider the calculation of Eexchange in the
simplest case of a system of simple cubic crystal structure with a lattice constant a:

Ecubic
exchange =

∮
V

JS2

a
(∇M)2 dV, (2.28)

where (∇M)2 = (∇Mx)
2 +(∇My)

2 +(∇Mz)
2 [33]. The material constant A can be defined as

A = JS2/a. Eq. (2.28) is significant in the regard that it has established a relation between the
intrinsic atomistic properties of the material - represented via the exchange integral J which
can be obtained from experiment - and the continuous magnetisation vector field - represented
via the spatial gradient (∇M). Therefore, the fundamental hypothesis of Micromagnetics has
now been fulfilled.

Additionally, it is important to note a critical limitation of the classic energy minimisation
principle that whilst it can help to determine the nucleation fields of a micromagnetic system,
it is incapable of making a consistently accurate description of the state of the system after
magnetisation reversal [33]. A solution to this weakness is found in the development of
dynamic approaches instead, which are based on the Landau-Lifshitz equation of motion [37].
The first progress was made by Gilbert in 1956, later known as the Landau-Liftshitz-Gilbert
(LLG) equation [38], in which the damping effect is added to the classical description of an
un-damped precessional motion by using a Rayleigh dissipation function. However, the LLG
model still adheres to the fundamental micromagnetic assumption of a slow spatial variation
of the magnetisation vector - which means the magnetisation length remains unchanged. This
requirement restricts the applicability of the LLG model to low temperatures only where
ferromagnetic order still remains conserved and no loss of magnetisation of the macrospins has
occurred. The next significant improvement was achieved in 1997 when a closed equation of
motion for magnetisation - now known as the LLB equation - was derived which interpolated
between the classical Landau-Lifshitz equation at low temperatures the and Bloch equation
at high temperatures [50]. Therefore, the new LLB model finally enabled the simulation of
micromagnetic systems at both high and low temperature range, and both the LLG and LLB
models have remained in common use today.

2.2.2 Ab-initio and atomistic Spin models

In contrast to Micromagnetics, the most recent computational framework is the ab-initio
approach which aims to produce a discrete description of a simulated system down at the
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electronic length-scale. Magnetic properties can be calculated directly from electronic structure
via first principles without the need of approximation. As a result, a very high level of precision
of calculation can be achieved. However, the cost of an extraordinary level of precision is a
severe restriction in length-scale where only few thousands of atoms can be simulated even
on massively parallel computers [51]. Since the magnetic system that can be simulated using
the ab-initio method is far too small in size, dynamics calculations - especially of properties
that are heavily dependent on size effects such as the Curie temperature - are extremely limited.
The ab-initio framework today, despite promising potentials, has still remained largely under
development.

The atomistic framework, therefore, has its place as a compromise between the large length-
scale of Micromagnetics and the high precision of ab-initio. In particular, a typical atomistic
model will utilise material magnetic parameters that can be obtained from ab-initio calculations
- for example electronic structure, exchange integral, anisotropies, magnetic moments etc.- in a
system of the length-scale of nanometres consisting of millions of atoms via higher order of
approximation than that of Micromagnetics [39]. Since the spins are no longer replaced by a
continuous magnetisation vector field as in Micromagnetics, although still necessarily assumed
having fixed lengths, rapid spatial variation is made possible. Furthermore, the resolution
limit is now comparable to atomistic lattice spacing so in comparison to Micromagnetics, a
more precise calculation of not only the exchange energy but also other magnetic properties at
all temperature ranges can be achieved. Although the atomistic approach is less precise than
ab-initio, it requires much less computational cost and can simulate much larger systems, thus
being much more flexible with dynamics calculations. A detailed description of fundamental
concepts of the atomistic modelling method has already been presented in the preceding
section 2.1.

2.3 The VAMPIRE atomistic simulation software package

The Atomistic modelling method which has so far been discussed in this Chapter has been
implemented into the VAMPIRE code, an open-source atomistic spin dynamics software
package developed by the Computational Magnetism group at the University of York [39, 52].
The code base is written in C++ and can run on most hardware, in either serial, parallel or GPU
modes. The work carried out in this Thesis is mainly conducted from simulations performed
by VAMPIRE which handles both simulations and data output. The simulations are all run
extensively on the VIKING Cluster, which a high performance compute facility provided by
the University of York. In this Section, the main operating principles of the VAMPIRE code
will be outlined.
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2.3.1 The Monte-Carlo and constrained Monte-Carlo methods

Time-dependent dynamics and properties can be investigated in the VAMPIRE atomistic code
using the LLG equations. In this case, the calculation is performed from the starting point of
the simulation through the equilibrium point where the system is fully relaxed. However, the
time-scale for this whole calculation to be completed is usually impractically long. Meanwhile,
there are scenarios where the interest lies solely with the investigation of the final equilibrium
point, not the entire dynamics of the process. In these situations, an alternative to the LLG is
required, which is found in the Metropolis Monte-Carlo algorithm [53]. The Metropolis Monte-
Carlo algorithm, or for convenience just Monte-Carlo, is a very robust and efficient algorithm
to determine equilibrium properties without the cost of fully investigating the intermediate
dynamics.

In a classical spin system, the Monte-Carlo algorithm starts with choosing a random spin at
site i being at the initial direction Sinitial

i . The direction of the said spin is then moved to a new
direction, called a "trial" direction, S f inal

i and the energy difference between the 2 directions is
calculated as ∆E = E(S f inal

i )−E(Sinitial
i ). Whether this move will be accepted or rejected will

be decided by calculating the acceptance probability P given by:

P = exp
(
− ∆E

kBT

)
, (2.29)

where kB is the Boltzmann constant and T the temperature (Kelvin) at the moment of the trial
move. It can be immediately noted that in the special case where ∆E < 0 i.e. the energy of the
trial state is less than the energy of the initial state, P > 1 and thus the move is automatically
accepted. Otherwise, if P < 1, the acceptance probability P will then be compared to a random
number between 0 and 1, and the trial move will only be accepted if P is larger than the said
number. The purpose of this trial move is to allow for thermal fluctuations to cause a small
increase in energy before making the decision to accept the move or not. The whole process is
applied for every spin in the system, and once the outcomes have been determined for all spins
in the system it is said that one single Monte-Carlo step has been completed.

There are two requirements for a valid Monte-Carlo process: reversibility and ergodicity.
First, reversibility means that the probability of a move from position A to B must be the same
as from B to A. This requirement is immediately satisfied by Eq. (2.29) since the acceptance
probability P depends only on the initial and final energy. Second, ergodicity, requires that
all moves should be possible so that all states are accessible. This is mainly true at high
temperatures where the probabilities of moves can be considered equally probable. However, at
low temperatures, the exchange energy only allows moves which result in small deviations in
spin direction, hence most trial moves will likely be rejected. A solution is to use a more tuned
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step size, for example a Gaussian trial move algorithm developed by Hinzke and Nowak [54]
which ensures a uniform distribution of points but allows the angular displacement of the
spin moments to be tuned to the temperature. A trial step, Strial

i , is made from the initial spin
position, Sinitial

i by:
Strial

i = Sinitial
i +δ

k
i , (2.30)

where the superscript k refers to the x, y, z direction and δ k
i , also on the respective coordinate

direction, is a Gaussian random number with a mean of zero and width ρ where ρ is a function
of temperature. The new trial spin position is then normalised to unit length [55]. The width
of the Gaussian distribution needs to be predetermined so as to yield an acceptance rate of
Monte-Carlo moves at around 50 percent, which is required for an optimal sampling of the
phase space [31].

Later developments of the Metropolis Monte-Carlo algorithm led to a modification known
as the Constrained Monte-Carlo method [56]. The Constrained Monte-Carlo method enables
the traversing of the phase space of a classical spin system while in the meantime fixing the
direction of the magnetisation vector M. One direct application of the Constrained Monte-
Carlo method, which will be discussed in more details in Chapter 4, is that an atomistic
simulation can be run in which magnetisation vector M can be constrained at and angle θ

to the easy axis. The Constrained Monte-Carlo method has been shown to be capable of
modelling the temperature dependence of magnetic anisotropy, in particular for bulk uniaxial
and cubic anisotropies it can successfully reproduces the low-temperature Callen-Callen power
laws of M [57]. The basic principles of the Constrained Monte-Carlo method is to compute
thermodynamic properties by averaging over the Boltzmann distribution using the Metropolis
algorithm by which the elementary moves of the random walk can be modified so as to conserve
the average magnetization direction M̂ =

(
∑i Ŝi

)
/||∑i Ŝi||. The key benefit this method offers

is that the system can be kept out of thermodynamic equilibrium in a controlled manner whilst
its microscopic degrees of freedom are still allowed to thermalise. It is important to note that
since the system is not allowed to reach full equilibrium, the average of the total internal torque
does not vanish and is shown to be equal to the macroscopic torque on the system. From this
torque, the temperature-dependence anisotropy constants can be calculated.

2.3.2 The temperature rescaling method

The VAMPIRE atomistic code can model a very wide range of magnetic materials of various
forms. Material parameters obtained from ab-initio or experiments can be input into VAMPIRE
simulations to produce well defined outputs of the simulated system. However, in comparison
with experimental literature, a disparity has been noticed in the temperature-scaling behaviours
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of the magnetisation or specific heat. The main cause of this disparity lies in the classical in
nature of the VAMPIRE model where the spins are defined as localised, classical atomistic on
the surface of the unit sphere. Therefore, in a classical system, the spins can be assigned in any
directions. However, in reality magnetic spins at the atomistic length-scale obey principles of
quantum mechanics, thus being quantised to particular eigenvalues and constrained to particular
directions. This effect leads to different thermodynamic outputs at the macroscopic scale.

A solution to this problem is proposed by Evans et al. [58]. The key idea is to apply a
temperature-rescaling method to equate the temperature-dependent magnetisation obtained
from a classical regime with that from a quantum mechanical regime. An illustration for the
effect of temperature-rescaling on the physical representation of the spins is shown in Fig. 2.4

Fig. 2.4 The effect of temperature rescaling on the physical representation of spins in (a) a
quantum mechanical regime where the spins are quantised and restricted to specific directions,
(b) a classical regime where the spins can take any directions, and (c) a classical regime
with temperature-rescaling where the spins are "rescaled" as close as possible to the available
quantised states as in a quantum mechanical regime. Source: courtesy of Dr. Sarah Jenkins.

It is found that the effect of spin quantisation is negligible in the high temperature range
close to the Curie temperature TC of the material where the magnetisation generally obeys the
scaling power law:

M(τ) = (1− τ)β , (2.31)

where τ = T/TC is the reduced temperature and β the critical scaling exponent. For a Heisen-
berg model, the numerical value of β is usually taken as 1/3 [59, 60]. It is observed that the
behaviours of classical and quantum mechanical regimes can be easily related at low tempera-
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tures, and converge at high temperatures. Therefore, it is suggested that the Bloch’s law [24]
which governs low-temperature behaviour can be extrapolated to link with high-temperature
behaviour which follows the aforementioned scaling power law. The result is a good match
between both regimes for all temperatures which can be formalised using the Curie-Bloch
equation:

M(τ) = (1− τ
α)β , (2.32)

where α is the temperature-rescaling exponent. Note that since the parameter β is assumed
to be the same for both classical and quantum mechanical regime, the temperature-rescaling
exponent α is the only parameter required to be determined from fitting to experimental data.
Once an appropriate value of α and the Curie temperature TC of the material have been found,
a VAMPIRE simulation can be rerun with the temperatures being rescaled by:

Tsimulation

TC
=

(
Texperiment

TC

)α

. (2.33)

This temperature-rescaling method has been applied to elemental ferromagnets and shown to be
able to produce outputs in very good agreement with experimentally measured magnetisations
for all studied materials [58]. A sampled comparison can be seen in Fig. 2.5.

2.3.3 The atomistic Spin Hamiltonian

In the Atomistic model adopting Monte-Carlo simulations, the energy of a magnetic system is
described in terms of the Spin Hamiltonian H as the sum of all energy contributions [28]. The
three most important contributions include the exchange interaction between pairs of local spins
Hexchange, the magnetic uniaxial anisotropy Hanisotropy, and the externally applied magnetostatic
field Hfield. In most cases, all these three major contributions need to be accounted for since the
dynamics of the simulated material depends on the balance between these energy terms. It is
generally unfeasible to treat the magnetostatic and anisotropy contribution as a perturbation of
the exchange energy using a quantum mechanical approach. The explicit form and/or derivation
of these three major energy contributions have been presented before, and combined together
the explicit expression of the atomistic spin Hamiltonian of a simulated system therefore can
be given as follows:

H=Hexchange +Hanisotropy +Hfield

=−1
2 ∑

i, j
Ji j (Ŝi · Ŝ j)− ku ∑

i
(Ŝi · ê)2 −∑

i
µi(Ŝi ·B),

(2.34)
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Fig. 2.5 Temperature-dependent magnetisation for the elemental ferromagnets (a) Co, (b) Fe,
(c) Ni, and (d) Gd. Blue curves plot the non-scaled mangetisation and gold curves the rescaled
temperatures fitted by Eq. (2.32) with very good agreement with experimental data. Insets
are plots of relative error of the rescaled magnetisation compared to the fit. Source: excerpt
from [58].

where Ji j is the exchange energy strength between Ŝi and Ŝ j the unit vector of local spins at
site i and j, ku is the uniaxial anisotropy constant having an easy direction ê, µi the atomic
spin moment, and B the externally applied magnetic field. As previously discussed, it can be
noted that out of the three major energy contributions, the exchange and anisotropy terms are
intrinsic to the specific material. The last term, the external field contribution, accounts for
the effect of external magnetic forces, such as from other magnetic materials in the vicinity or
from an electric current. The relation between the exchange energy strength Ji j and the Curie
temperature TC of the material is then given by Garanin [61] as:

Ji j =
3kBTc

εz
, (2.35)
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where kB is the Boltzmann constant, z the number of nearest-neighbour interactions in a unit-
cell, and ε the correction factor relating to the coordination-dependent spin wave stiffness.
Both z and ε are uniquely determined for each crystal structure [39, 61].

2.4 The Mean-field theory

The main focus of this Thesis is a comprehensive study of finite-size and surface effects on
magnetic properties of nanograins for potential application in Heat-assisted Magnetic Recording
media. Previous literature, especially those by Penny et al.[62] have shown that a mean-field
approach is particularly valuable for the investigation of finite size effects, including lattice
types and particle shapes. Therefore, in order to support the interpretation atomistic model
calculations which will be presented and analysed in later Chapters, a lattice site resolved
Mean-field model is employed which can be outlined as follows [63]. Consider the standard
Heisenberg spin Hamiltonian including an applied field B and here using for convenience the
same spin notation as in [63]:

H=−1
2

J ∑
⟨i j⟩

ŝi · ŝ j −µ ∑
i

ŝi ·B, (2.36)

where the individual terms represent the ferromagnetic exchange interaction energy and the
Zeeman energy. The symbol ⟨·⟩ in the first sum implies that only the nearest neighbour spin
pairs are summed over. The spin variables are unit vectors ŝi = µi/µ , i = 1, . . . ,N, where µi is
the magnetic moment associated with the spin i and µ = |µi| is its magnitude.

A conventional way to derive the mean-field approximation is to express the spin variables
in Eq. (2.36) as ŝi = m̃i +δ ŝi, where m̃i and δ ŝi are respectively the thermally averaged and
fluctuating parts of the spin variable ŝi. Neglect the fluctuations δ ŝi beyond the first order and
rewrite Eq. (2.36) as:

Hmf =
1
2

J ∑
⟨i j⟩

m̃i · m̃ j −∑
i

ŝi ·

(
J ∑

j∈i
m̃ j +µB

)
, (2.37)

where the expression in the parentheses:

µBe
i = J ∑

j∈i
m̃ j +µB (2.38)

is the effective field acting on the mean-field spin moment m̃i due to its neighbours j and is
derived as the variational derivative with respect to m̃i. The notation j ∈ i means the summation
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is carried out over all interacting neighbours j of the spin i. The mean-field spin moment m̃i

can be evaluated from Eq. (2.37) using the canonical statistical mechanics:

m̃i =
Trsisi exp(−βHmf)

Trsi exp(−βHmf)
. (2.39)

Note that since m̃ is no longer a unit vector, Eq. (2.37) no longer conforms with the usual
Heisenberg definition of the exchange. However, if we transform to unit vectors by multiplying
through by m̃2/m̃2 we are left with the prefactor of the summation term in Eq. (2.37) as
Jm̃2 which represents the temperature dependence of the effective exchange in the mean-field
sense [64]. Upon considering that stable moment configurations are aligned with their effective
fields, i.e. m̃i ∥ B̃e

i , allows expressing m̃i as:

m̃i = L
(
β µ|B̃e

i |
) B̃e

i

|B̃e
i |
. (2.40)

Here L(x) = cothx− x−1 is the Langevin function, and β = (kBT )−1 with kB being the Boltz-
mann constant and T the temperature. Eq. (2.38) and Eq. (2.40) represent a set of coupled
nonlinear algebraic equations which can be solved iteratively in a straightforward way, as
discussed elsewhere [63].

Furthermore, it can be shown that the relation between the exchange energy constant Ji j and
the Curie temperature TC can be derived from the Mean-field theory. First rewrite Eq. (2.40) in
the scalar form as:

mi = L(β µBe
i ), (2.41)

where as before:

µBe
i = J ∑

j∈i
m j +µB. (2.42)

Assume zero applied field B = 0 and express mi = L(βJ ∑ j m j). Imagine the system is in a
paramagnetic state, then mi = 0 for all i in the mean-field model. When the freezing occurs at TC

then all spins will freeze co-linearly (because there is no DMI which would prefer non-collinear
spin alignment, for example), and get some finite moment mi = m. Rewrite the equation as
m = L(βJzm), where z is the spin-coordination number, i.e. ∑ j m = zm. Differentiate this
rewritten function of m with respect to the field B (imagine an increment to small non-zero
field), by chain-rule it gives:

dm
dB

= L′(βJzm).βJz.
dm
dB

, (2.43)
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where L′(βJzm) is the derivative of the Langevin function with respect to the field B, which
expanded to the first order yields the factor of 1/3. Insert this factor in and express:

dm
dB

(
1− 1

3
βJz
)
= 0. (2.44)

This has a non-trivial solution if 3−1βJz = 1, which upon arranging gives:

TC =
zJ

3kB
. (2.45)

This relation is the same as in Eq. (2.35) before, apart from the omission of the correction factor
ε which in the mean-field model ε = 1. Thus, Eq. (2.35) derived from a spin Hamiltonian
model is essentially a mean-field formula with a correction factor ε , which is needed in order
to "fit" the mean-field solution ansatz to non-mean-field models.

2.5 The 2-ion anisotropy model for Iron Platinum FePt

The material of interest in this Thesis, Iron Platimum in the L10-phase (L10-FePt) has a
exceptionally large magneto-crystalline uniaxial anisotropy that persists even at extremely
small grain sizes [65]. Interestingly, the majority of this large anisotropy does not come from
the local, single-site anisotropy of the constituent Fe and Pt atoms, but rather from a so-called
2-ion anisotropy component. This 2-ion anisotropy component stems from the strong spin-orbit
coupling between the 3d-element Fe and 5d-element Pt interlayers along the (001) lattice
direction in which the Fe moments can be viewed to be mediated by the Pt moments. This
strong Fe-Pt spin-orbit coupling produces, in addition to the local single-site anisotropies, a
much more dominating 2-ion anisotropy component [66].

A study by Mryasov in 2005 [67] presented a comprehensive investigation on how this
dominant 2-ion anisotropy in L10-FePt can be incorporated into the spin Hamiltonian model.
Ab-inito calculations [67] show that the Fe moment is well localised whilst the Pt moment is
delocalised. This presents a problem to the fundamental assumption of the Heisenberg model
which requires that moments are localised to the atomic sites. However, Fe moments are also
found to polarise the Pt moments, so numerically the effective delocalised Pt moments mv can
be reasonably well approximated by the exchange field from surrounding Fe moments by:

mv =
χv

M0
v
∑

i
JivSi, (2.46)
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where χv is the local Pt susceptibility, M0
v the local Pt saturation magnetisation, Jiv the Fe-Pt

exchange interaction strength, and Si the Fe moment. An explicit spin Hamiltonian consisting
of the localised Fe moments and delocalised Pt moments can be written as:

H=−1
2 ∑

i, j
Ji jSi ·S j −∑

i
kFe(Sz

i )
2 −∑

v
Im2

v −∑
v

kPtm2
v , (2.47)

where Ji j is the Fe-Pt exchange interaction strength and I the Pt-Pt exchange interaction
strength, kFe = −0.097 meV is the Fe anisotropy constant and kPt = 1.427 meV the Pt
anisotropy constant. Note that the superscript z refers to the z-component of the spins. By using
the Fe moments-dependence expression for Pt moments in Eq. (2.46), this explicit Hamilto-
nian in Eq. (2.47) can be reduced to an effective form that depends only on the Fe degrees of
freedom:

H=−1
2 ∑

i, j
Ji jSi ·S j −dz

i (S
z
i )

2 − 1
2 ∑

i, j
dz

i jS
z
i ·S

z
j, (2.48)

where Ji j is the effective Fe-Fe exchange interaction strength, di the effective single-ion
anisotropy constant, and di j the effective 2-ion anisotropy constant. The explicit expressions
for Ji j, di, and di j are given as:

Ji j = Ji j +I
(

χv

M0
v

)2

∑
v

JivJ jv, (2.49)

dz
i = kFe + kPt

(
χv

M0
v

)2

∑
v

J2
iv, (2.50)

dz
i j = kPt

(
χv

M0
v

)2

∑
v

JivJ jv. (2.51)

The expression of this reduced effective spin Hamiltonian of FePt induces a 2-ion anisotropy
which depends on the effective Fe-Pt exchange interaction, Jiv, therefore clearly illustrating
the effect of the delocalised moments on the overall magnetic properties of FePt. Since the
single-ion anisotropy is approximatedly 10 times smaller than the 2-ion anisotropy, it is the
2-ion anisotropy which forms the dominant part of the overall macroscopic anisotropy constant.
Additionally, since in Eq. (2.48) both the 2-ion anisotropy term and the exchange interaction
term share a similar mathematical form, in VAMPIRE simulations it is possible, and in fact
more computationally efficient, to combine the 2-ion anisotropy component into the exchange
interaction to form an anisotropic exchange. Using this approach, the vector components of the
effective Hamiltonian can be expressed explicitly, by decomposing and collecting the terms in
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Eq. (2.48) in respective spin component, as:

Hx =−1
2 ∑

i, j
Ji jSx

i ·Sx
j, (2.52)

Hy =−1
2 ∑

i, j
Ji jSy

i ·S
y
j, (2.53)

Hz =−dz
i (S

z
i )

2 − 1
2 ∑

i, j

(
Ji j +dz

i j

)
Sz

i ·S
z
j. (2.54)

Note that the z-component of the Hamiltonian Hz now includes both the single-ion anisotropy
contribution expressed through the dz

i term, and the 2-ion anisotropy contribution incorporated

into the exchange interaction via the
(
Ji j +dz

i j

)
term. This is the mechanism by which the

2-ion anisotropy of L10-FePt is implemented in VAMPIRE simulations in later Chapters 4
and 5.

2.6 Summary

In this Chapter an overview of different magnetic modelling frameworks has been presented
with a brief summary and context of the Micromagnetics and Ab-inito methods as well as a
deeper focus on fundamental principles of Atomistic modelling. A description of the imple-
mentation of the Atomistic modelling method into the VAMPIRE simulation code has also
been given, which will lay the foundation for computational studies presented in subsequent
Chapters. Finally, the key concepts of the Mean-field theory as well as of the 2-ion anisotropy
model in L10-FePt have also been outlined, both of which will become essential to enable the
analysis and discussions of simulation results in Chapters 4 and 5.
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The influence of finite-size effects on the Curie
temperature of L10-FePt

We employ an atomistic model using a nearest-neighbour Heisenberg Hamiltonian exchange
to study computationally the dependence of the Curie temperature of L10-FePt on finite-size
and surface effects in Heat-assisted Magnetic Recording (HAMR) media. We demonstrate
the existence of a size threshold at 3.5nm below which the impact of finite-size effects start to
permeate into the centre of the grains and contribute to the reduction of the Curie temperature.
We find a correlation between the Curie temperature and the percentage of atomistic bonds
lost on the surface as a function of grain size, which can be extended to apply to not only
L10-FePt but also generic magnetic systems of any crystal structure. The investigation gives
insight into finite-size effects which, because the inevitable grain size dispersion leads to an
irreducible contribution to a dispersion of the Curie temperature, has been predicted to be a
serious limitation of HAMR.

3.1 Motivation

Heat-assisted Magnetic Recording (HAMR) is emerging as the next-generation approach for
magnetic recording [68, 69]. The HAMR writing head first applies an intense, highly localised
heat spot for a very short time to a recording medium to heat it up to or beyond its Curie
temperature (TC), then writes the data inductively after which cooling to ambient temperature
restores thermal stability. The functioning of HAMR therefore requires the writing medium
to be made of a magnetic material with high anisotropy and relatively low Curie temperature.
Iron Platinum in the L10 phase satisfies these two requirements, and thus has been receiving
extensive studies [15, 16] for potential HAMR applications in which L10-FePt can function
either as a single layer or as part of a composite multi-layer recording medium [15, 70–74].
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In room condition, bulk-alloy FePt exists in the A1 phase in which the constituent Fe and Pt
atoms are randomly distributed, thus resulting in a very low uniaxial anisotropy. However, at
temperatures in the typical range of a HAMR write-head, FePt can undergo a transition to the
L10 phase [75]. L10-FePt has a face-centre cubic (fcc) crystal structure - sketched in Fig. 3.1
- which comprises of alternating layers of 3d-element Fe and 5d-element Pt atoms along the
(001) direction and therefore is highly chemically ordered. As discussed before in Chapter 2, in
the L10 phase the Fe spins polarise the Pt spins and the strong spin-orbit coupling between the
Fe and Pt inter-layers produces, in addition to the much weaker local single-site anisotropies,
an exceptionally large 2-ion anisotropy component [66] necessary for the thermal stability of
data storage [67, 16]. A detailed mathematical formalism of this dominant 2-ion anisotropy
component of L10-FePt has already been given in Chapter 2, and an investigation of the 2-ion
anisotropy of FePt will be the focus of the next Chapter 4.

Fig. 3.1 Crystal structures of FePt: (left) disordered A1-fcc bulk-alloy Fe0.5Pt0.5 at room
temperature; (right) ordered L10-fct at HAMR temperature

Simulations by Li and Zhu [76, 77] have shown that the dispersion of TC is a serious
limitation for the ultimate storage density achievable for HAMR. Consequently, a crucial
aspect for successful HAMR media is controlling the Curie temperature dispersion of the
recording medium. However, the exact Curie temperature of L10-FePt has yet to be established;
rather, it has been reported to fall between 650K and 780K under various treatments and
measurements [78]. Also, the Curie temperature of L10-FePt was shown to exhibit a strong
dependence on grain size [79, 80]. Consequently, in a recording medium using L10-FePt the
grain size distribution, which always exists, would inevitably lead to an irreducible dispersion
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of the Curie temperature σTc which potentially limits the recording density. Therefore, it poses
an important question to determine not only the precise dependence of the Curie temperature
distribution in L10-FePt grains on finite size effects but also the governing mechanisms behind
it.

This Chapter presents a computational investigation of the impact of finite-size effects in
L10-FePt grains using a nearest-neighbour Heisenberg Hamiltonian atomistic Spin model in
which short-range exchange interactions are assumed to dominate. Although the exchange
interactions in FePt are long-ranged, Waters et al. [78] have shown that the critical exponent
of FePt conforms to the three dimensional Heisenberg universality class. The starting point
is the consideration of thermal fluctuations, which can modify TC and even shift the ground
state solutions to induce changes in magnetic phases. To verify this, it is necessary to look
at how the free energy changes as a function of system size. Generally, the free energy will
have a functional part reflecting the surface effects due to reduced coordination number, but
there will be another term that will correspond to renormalisation of state energies resulting
from fluctuations [81]. Which part is more important will depend on the system and the size. A
correlation is then hypothesised between the Curie temperature distribution of L10-FePt and the
percentage of atomistic bond loss on the surface of the grains as a function of grain size, which
allows to separate the surface and fluctuation contributions to the finite-size effects. It is found
that this hypothesised correlation could be extended to encompass the role of crystal structure,
which suggests it is not restricted to L10-FePt specifically but is universally applicable for any
generic magnetic system.

3.2 Simulation methods and settings

3.2.1 Theoretical background

The underlying theories that will be employed for the analyses of calculations in this Chapter
include the Atomistic Spin Hamiltonian and the Mean-field models - both of which have been
discussed in details in Chapter 2. Therefore, in order to aid the flow of arguments, only a
few key points will need to be briefly recapped. Numerical simulations are carried out by
the VAMPIRE atomistic code [52, 39] version 4 using an Atomistic Spin model in which the
energy of a magnetic system is described by the general Hamiltonian H as the sum of energy
contributions. All simulations in this Chapter are carried out under the absence of an externally
applied magnetic field B, so the field - or Zeeman - component in the general Spin Hamiltonian
can be omitted, which leaves the Spin Hamiltonian with just the exchange interaction Hexchange
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and the anisotropy Hanisotropy terms:

H=−1
2 ∑

i, j
Ji j (Ŝi · Ŝ j)− ku ∑

i
(Ŝi · ê)2, (3.1)

where Ji j is the exchange energy strength between Ŝi and Ŝ j - the unit vector of local spin at
site i and j respectively, and ku the uniaxial anisotropy constant having an easy direction along
ê. Furthermore, because finite-size effects are being investigated, the exchange interaction
does not have to be fully long-range - i.e. inclusive of all neighbouring atoms in the simulated
system. Instead, the exchange interaction can reasonably be limited to a short-range exchange
involving nearest-neighbours only in order to account for broken and missing atomistic bonds
on the surface. Therefore, the exchange energy strength Ji j between each neighbouring pair of
spins Ŝi and Ŝ j can be reduced to a constant - with its notation simplified to just J and pulled
out of the summation. Consequently, Eq. (3.1) can be simplified to:

H=−1
2

J ∑
i, j
(Ŝi · Ŝ j)− ku ∑

i
(Ŝi · ê)2. (3.2)

The Hamiltonian of L10-FePt derived from first principle calculations includes anisotropy
contributions from both constituent Fe and Pt atoms. However, as previously discussed in
Chapter 2, Mryasov et al. [67] using Density Functional Theory in the constrained local-
spin-density approximation has theoretically demonstrated that the Pt moments can be well
approximated by the neighbouring Fe moments, and therefore the Hamiltonian of L10-FePt
could be rewritten to be dependent on the Fe degree of freedom only. Consequently, the
energy of a L10-FePt system will depend only on the lattice arrangement of the Fe atoms. This
conclusion leads to two crucial implications. First, following Mryasov et al.’s treatment, the
original fct lattice structure of L10-FePt in Fig. 3.1 can be reduced to an effective tetragonal
simple-cubic (sc) lattice structure by removing all Pt atoms in the middle-layers [60, 82] - an
illustration of this method is sketched in Fig. 3.2. The remaining Fe-only system with modified
lattice properties - a configuration henceforth will be referred to as the modified-sc FePt - is
still equivalent to the original fct lattice L10-FePt, whilst in the meantime because of having
fewer atoms can help to reduce computational time significantly. The second implication
is that because only the Fe lattice arrangement will matter, it will be possible to extend the
investigation of finite-size effects to encompass the role of different crystal structures beyond
the strictly fct L10-FePt. In particular, two artificial configurations of FePt are added to the
investigation: a face-centre cubic (fcc) and a body-centre cubic (bcc) lattice systems both of
which, for comparison purpose, are made to share the same magnetic attributes of the original
fct L10-FePt system.
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Fig. 3.2 An illustration of the creation of an equivalent modified-sc pseudo-cell from the
original fct primitive cell of L10-FePt.

3.2.2 Construction of FePt grains

FePt grains are constructed in parallelepiped shape. As aforementioned, in order to account
for the effects of crystal structure, three lattice configurations of FePt grains are simulated:
a modified-sc lattice FePt configuration which is equivalent to the original fct L10-FePt, an
artificial fcc lattice FePt and an artificial bcc lattice FePt configuration both of which are
assigned similar magnetic attributes of the original fct L10-FePt. An illustrative cross-sectional
view of the three simulated lattice structures are shown in Fig. 3.3. The unit cells of all
three configurations following the experimentally derived data for bulk powder are set to have
dimensions of x0 = y0 = 2.72 Å and z0 = 3.85 Å [83, 84].

The height for each grain along the z-dimension is fixed at the nominal value of 10 nm.
The base of each grain on the xy-dimension is square-shaped and can be varied in a nominal
range from 1 nm to 10 nm in 0.5 nm increment. It has to be noted that the adjective "nominal"
prefixing the grain sizes is used for a convenient reference only, whilst the "exact" grain sizes
are slightly different. Since finite-size effects are the focus of investigation, it is undesirable to
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Fig. 3.3 Sampled cross-sectional views of the 3 simulated lattice structures: (left) modified-sc
lattice FePt equivalent to the original fct L10-FePt, (middle) an artificial fcc lattice FePt, and
(right) an artificial bcc lattice FePt. Visualisation using Jmol [85].

create grains with incomplete unit cells - i.e. with dangling atoms - on the surface. Therefore,
a grain having a specific nominal base size D̃ is made to comprise of an integer number of
unit cells N in each xy-dimension of the base so that the exact base size D = N × x0, which
numerically is a multiplier of x0, must be as close to D̃ as possible. The nominal grain sizes D̃,
each with the corresponding number of unit cells included in the grain base N and the exact
grain size D, are presented in Table 3.1.

D̃ (nm) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
N 4 6 7 9 11 13 15 17 18 20

D (nm) 1.088 1.632 1.904 2.448 2.992 3.536 4.080 4.624 4.896 5.440

D̃ (nm) 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
N 22 24 26 28 29 31 33 35 37

D (nm) 5.984 6.528 7.072 7.616 7.888 8.432 8.976 9.520 10.064
Table 3.1 The nominal and exact grain sizes of simulated FePt grains

3.2.3 Determining the Curie temperature

VAMPIRE simulations use a Metropolis Monte-Carlo integrator - which follows the mechanism
already described in Chapter 2 - to compute the value of normalised mean magnetisation
length ⟨M/Ms⟩ and the longitudinal susceptibility χ at each temperature T of the simulated
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temperature range. Combining all values of ⟨M/Ms⟩ and χ obtained from across the entire
simulated temperature range will produce the normalised magnetisation distribution ⟨M/Ms⟩(T )
and longitudinal susceptibility distribution χ(T ) as functions of temperature - an example is
given in Fig. 3.4(a) and Fig. 3.4(b) respectively. It can be noted that a small magnetic "tail",
where the magnetisation does not drop down to zero, can be seen above the Curie temperature
in the ⟨M/Ms⟩ plot in Fig. 3.4(a). This visible trailing tail is essentially a finite size effect due
to a finite probability of a spontaneous instantaneous magnetisation in small-sized of systems.
Applying the temperature-rescaling method in Chapter 2 with appropriate parameteres can
help to "rectify" this trailing tail, thus modifying the ⟨M/Ms⟩ curve to be more aligning with
experimental data.

There are then 2 commonly used methods to determine the Curie temperature. First, the
Curie temperature can be found by fitting the scaling law given by Eq. (2.31) in Chapter 2
directly into ⟨M/Ms⟩(T ). The precision of this method, however, depends heavily on the
behaviour of magnetisation - in particular where the magnetisation curve drops to zero - and
therefore is only accurate at fitting into bulk material of large-sized grains where the correlation
length has diverged. Alternatively, a more accurate method involves finding the peak of the
susceptibility distribution χ(T ). The justification of the susceptibility-peak method is given
through the Curie-Weiss law which links the Curie temperature TC with the susceptibility χ of
a ferromagnet in the paramagnetic region above the Curie temperature [23] by:

χ =
C

T −TC
, (3.3)

where C is the Curie constant. Therefore, as T approaches TC, χ attains the maximum value
which is the peak of the susceptibility distribution. This means the χ(T ) curve always exhibits
a well-define peak at the location of the Curie temperature, thus making the susceptibility-peak
method applicable for even smaller-sized grains. An illustration of how the susceptibility-peak
method is implemented is given in Fig. 3.4(b).

However, the method of finding the peak of susceptibility distribution will return an accu-
rate value of Curie temperature only if the susceptibility distribution obtained from VAMPIRE
simulation is sufficiently smooth, especially around the Curie temperature region, thus display-
ing a well-defined peak. This condition can only be met when the simulated system has been
properly equilibrated before calculations are performed on it. In VAMPIRE, there are two simu-
lation parameters which control this process: the Monte-Carlo (MC) Equilibration step and the
MC Total time step. The system is first let to equilibrate for a number of MC steps specified by
the Equilibration step, during which VAMPIRE tries to "equilibrate" the magnetisation. Once
the equilibration has been completed, the system is "reset" and started afresh during which cal-
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(a)

(b)

Fig. 3.4 A sample of the temperature-dependent distribution of the (a) Magnetisation ⟨M/Ms⟩,
and (b) Longitudinal susceptibility χ(T ) obtained from VAMPIRE atomistic simulation for a
sampled sc-lattice grain of 9×9×10 nm size. Note that the Longitudinal susceptibility plot
exhibits a sharp, well-defined peak necessary for an accurate locating of the Curie temperature.
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culations will be performed using the final value of magnetisation retained at the end of the
equilibration period. The total number of MC steps carried out during the entire simulation,
inlcuding the equilibration period, is equal to the MC Total time steps.

Fig. 3.5 The effects on Monte-Carlo Equilibration and Total time steps on the equilibrating
of the simulated system. Sample is taken at 300 K with an Equilibration step set to 100000 -
where an upward strike is visible at 100000 MC step indicating that the equilibration process
has been completed and the system is to be reset after which calculations will take place. The
bottom plot is a close-up view during the equilibration period of the upper ⟨M/Ms⟩ plot. It can
be seen in the ⟨M/Ms⟩ plot that the magnetisation curve does not converge to a stable value
until almost 50000 MC steps, meaning that the Equilibration step must be set to at least 50000.

An illustration for the impact of these MC steps on simulation can be seen in Fig. 3.5. In
this example the MC Equilibration step is set to 100000, which is observable via the visible
upward strike in the ⟨M/Ms⟩(T ) plot at the 100000th MC step. During the equilibration period,
as can be seen, the numerical value of ⟨M/Ms⟩, after being initiated from starting conditions,
are converging to a stable value at around the 50000th MC step. This means the preset value
of the Equilibration step of 100000 is in fact a bit higher than necessary, so for computational
optimisation it can be lower to around but not less than 50000. At the reset point at the 100000th

MC step, the aforementioned converging, stable value of ⟨M/Ms⟩ is recorded and simulation
restarts. Since the equilibration process has been done properly, the stable value of ⟨M/Ms⟩(T )
is carried onto later calculations until final output. Otherwise, if the equilibration process
has not been done properly, ⟨M/Ms⟩ will not converge before system reset. Consequently,
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subsequent calculations using an non-equilibrated value of ⟨M/Ms⟩ will lead to a heavily noised
χ(T ) curve without a well-defined peak. The Equilibration and Total time steps can only be
determined via trial and error, and they are found to be dependent on grain sizes. The grain
size-dependent MC parameters appropriate for the simulations in this Chapter are given in
Table 3.2. Simulations can be repeated many times to compute statistical values. In order
to re-create varying initial conditions as in real experiments, each time the simulation runs,
a randomly generated number can be assigned to it which represents a unique sets of initial
conditions.

Grain Size (nm) Equilibration step Total time step
1.0 - 1.5 5×107 2.5×108

2.0 - 2.5 107 108

3.0 - 5.5 106 107

≥ 6.0 105 106

Table 3.2 VAMPIRE MC parameters

3.2.4 Simulation parameters of FePt

The effects of crystal lattices are investigated with the Curie temperature in each case first
preset to a theoretically calculated critical temperature of 660K [86] in the largest-sized grain
of 10nm nominal base size. Recall the linear relation between the Curie temperature TC and the
exchange energy strength J [61]:

J =
3kBTC

εz
, (3.4)

where kB is the Boltzmann constant, z the number of nearest-neighbour interactions in a unit
cell, and ε the correction factor relating to the coordination-dependent spin wave stiffness. It has
already been shown in Chapter 2 that Eq. (3.4) can also be derived from the Mean-field theory.
Both z and ε are uniquely determined for each crystal structure [39, 61]. For a specific lattice
structure, J is determined computationally by interpolation to give a consistent TC = 660K
- a reference value derived from previous studies [86, 87] - for each lattice structure using
Eq. (3.4) as shown in Fig. 3.6. Numerical values of J, z, and ε are given in Table 3.3. Other
parameters representing magnetic properties of FePt which are shared by all three simulated
crystal configurations include the atomic spin moment µS and uniaxial anisotropy constant ku,
which followed from Strungaru et al. [60] are fixed at µS = 3.23µB (with µB = 9.274×10−24



3.3 Results and discussion 43

J/T being the Bohr magneton constant) and ku = 2.63×10−22 J/atom respectively. Sampled
VAMPIRE input and material files for the simulations of this Chapter are given in Appendix B.

Fig. 3.6 Determination of the exchange energy constant for simulated FePt grains with different
crystal structures. As expected there is a linear dependence of Curie temperature on exchange
strength. By interpolation the exchange energy is determined to give a consistent TC = 660K
for each lattice structure.

Configuration z ε J (Joule per link)
modified-sc 6 0.719 (6.303±0.004)×10−21

fcc 12 0.790 (2.866±0.002)×10−21

bcc 8 0.766 (4.430±0.002)×10−21

Table 3.3 Unit cell parameters for each simulated configuration of FePt.

3.3 Results and discussion

3.3.1 The Curie temperature variation with grain size

The Curie temperatures of each grain size D for each simulated lattice structure are given in
Table A.1 of Appendix A and plotted in Fig. 3.7. The Curie temperature variation with grain
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size TC(D) generally conforms to the well known Finite-size Scaling Law (FSSL) which is
given by [79, 88]:

TC(D) = TC(bulk)(1− x0D−1/ν), (3.5)

where D is the characteristic grain size, ν is a critical exponent, and x0 is a fitting parameter on
the order of the lattice spacing. Eq. (3.5) is applied to determine x0 and ν as well as the bulk
Curie temperature TC(bulk). The percentage Curie temperature decrease, ∆TC(D), can then be
defined as the percentage difference between the Curie temperature at each grain size TC(D)

and the bulk Curie temperature TC(bulk) obtained from the FSSL fit:

∆TC(D) =
TC(bulk)−TC(D)

TC(bulk)
= x0D−1/ν , (3.6)

which shares the similar mathematical form as seen in previous literature [89, 90]. It is
important to remark that the fits to the FSSL often give values of ν which differ: in apparent
contradiction to the nature of ν as a universal exponent. As a result, ν−1 is often replaced by
a so-called shift exponent λ which may or may not agree with ν depending on the various
system properties [89]. A possible mechanism for the deviation from the critical exponent will
be proposed later.

The investigation of finite-size dependence of the Curie temperature is carried out using
the atomistic model outlined earlier. Fig. 3.7 demonstrates that the dependence of the Curie
temperature on size TC(D) fits well to the (FSSL) [88] given in Eq. (3.5), consistent with
previous experimental data [78, 80, 87]. Numerical values extracted from the FSSL for the
fitting parameter x0, the critical exponent ν , and the bulk Curie temperature TC(bulk) are
given in Table 3.4. It can be noted that, although the FSSL fits the data well for all grain
sizes investigated, the values found for ν do not agree exactly with the expected value of
0.7 for the Heisenberg model [80, 91] - a deviation which has been seen and discussed
before in literature [92, 93]. This deviation of ν can be explained by considering how the
FSSL is obtained in the first place. the FSSL follows from the correlation scaling relation
ξ ∼ (1−T/Tc)

−ν [43, 89] which leads to the scaling law in Eq. (3.6). Note that this scaling
relation for ξ is valid only for bulk systems, leading, in fitting to experimental data, to the
empirical replacement of the exponent ν , which is universal, by the so-called shift exponent λ

which is non-universal and may include corrections to scaling [80]. Here, a possibility has to
be given considerations that, for small grain sizes, the correlation length becomes dependent
on the characteristic size as a result of the rescaling of system energies resulting from the
fluctuations.
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Fig. 3.7 The dependence of Curie temperature on grain size fits well with the FSSL for all 3
simulated crystal structures. The TC increases sharply at smallest grain sizes and converges to
the bulk value from around 8 nm. In section 3.3.4, an analytic model is described to discuss the
comparison between the three simulated cases.

Configuration TC(bulk) x0 ν

modified-sc 674.2±1.1 0.352±0.002 0.783±0.014
fcc 666.2±0.7 0.260±0.002 0.651±0.013
bcc 668.3±0.9 0.375±0.003 0.656±0.011

Table 3.4 FSSL fitting parameters for each simulated configuration of FePt.

3.3.2 The layer-resolved magnetisation profiles

To provide further insight, it is necessary to look into a detailed analysis of the layer-resolved
magnetisation profiles which are obtained by averaging the spins in each layer. Examples of
the magnetisation profile at 550 K in the x-direction along the grain depth are given in Fig. 3.8
for different grain sizes of the fcc lattice grains. In larger grains (9.0 nm) surface disorder (low
magnetisation) causing the drop in magnetisation is seen to penetrate only a few layers inside
the grain. On the contrary, in smaller grains where the total number of layers is reduced to the
10-12 range, surface effects begin to dominate. Calculations show that in smaller-sized grains
the loss of order causing the decrease of Curie temperature across surface layers propagates
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into the centre of the grain: an effect potentially responsible for causing a larger overall drop in
the Curie temperature of the whole grain.

Fig. 3.8 The layer-resolved magnetisation profile for fcc lattice grains of selected sizes at 550
K showing that in smaller grains (fewer atomistic layers) the magnetisation drop on the surface
contributes more to the overall loss of the grain magnetisation.

Similar patterns can be seen for the modified-sc and bcc lattices. The magnetisation profile
for modified-sc lattice is shown in Fig. 3.9 and bcc-FePt lattice in Fig. 3.10. As expected the
behaviour is similar to the fcc lattice results in Fig. 3.8, although the penetration depth is clearly
smaller for the modified-sc lattice. It can be seen that there is a periodic behaviour for the
bcc lattice, which is a physical effect arising from atoms having different numbers of nearest
neighbors. Interestingly this persists to elevated temperatures in the bulk of the grain albeit
somewhat reduced at the grain boundaries, suggesting that the disorder propagates inward from
the surfaces.

The magnetisation profiles obtained from atomistic simulations are next compared with
calculations from the Mean-field model, a mathematical description of which has been given
in Chapter 2. The mean-field data for FePt grains used in this comparison are obtained in
collaboration with Dr. Sergiu Ruta. Two regimes of behaviour for small and large grain sizes
can be seen in Fig. 3.11. Particularly, the larger grains retain order in the central region,
with increasing loss of order close to the surface, whereas for the smaller grains the disorder
essentially penetrates the whole grain. The Mean-field model gives good qualitative agreement
with the atomistic model calculations, supporting the localisation of the disorder close to the
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Fig. 3.9 The layer-resolved magnetisation profile for modified-sc lattice grains - equivalent
of the original fct L10-FePt - of selected sizes at 550 K showing that in smaller grains (fewer
atomistic layers) the magnetisation drop on the surface contributes more to the overall loss of
the grain magnetisation.

Fig. 3.10 The layer-resolved magnetisation profile for bcc lattice grains of selected sizes at 550
K showing that in smaller grains (fewer atomistic layers) the magnetisation drop on the surface
contributes more to the overall loss of the grain magnetisation. The bcc structure exhibits a
periodic behaviour which is a physical effect due to atoms having different numbers of nearest
neighbours.
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surface of the grain. Based on these results, a simple analysis designed to characterise the
penetration depth of the disordered region can be formalised and presented in section 3.3.4.

Fig. 3.11 Comparison between atomistic and semi-analytic mean field calculation of layer-
resolved magnetisation at 550 K for grains of size (a) 1.0 nm, (b) 2.5 nm, (c) 4.0 nm, and (d)
6.5 nm shows a good agreement between 2 models, with a slight disparity occurring at the
outermost surface layers of each grain.

3.3.3 The cross-sectional magnetisation profiles

The evolution of the cross-sectional magnetisation profile for the fcc lattice grains at 550 K
in Fig. 3.12 shows a decrease of magnetisation across the grain surface which appears to be
more pronounced in smaller grains, consistent with the data shown before in Fig. 3.8. These
patterns suggest that surface disorder might be an important contribution to the rapid drop in
TC at smaller sizes as captured before by the FSSL: the hypothesis is that the propagation of
the surface disorder into the grain has an effect on the correlation length such that ξ = ξ (D).
This hypothesis is consistent with the effects of a term corresponding to renormalisation
of state energies which results from fluctuations [81]. Hence, the correlation length is also
modified. However, in Fig. 3.8 it is clear that the renormalisation of the state energies decreases
with distance away from the surface. Additionally, similar behaviours are again observed
for modified-sc and bbc lattice grains - as illustrated in Fig. 3.13 and Fig. 3.14 respectively.
This observation suggests that the decrease of magnetisation across the grain surface is not a
lattice-specific but rather a universal property.
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Fig. 3.12 Evolution of the cross-sectional magnetisation profile for fcc lattice grains at 550 K
of (a) 1.0 nm, (b) 1.5 nm, (c) 2.5 nm, (d) 4.0 nm, (e) 5.5 nm, and (f) 7.0 nm in size. The grain
magnetisation can be seen to be decreasing across the grain surface.
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Fig. 3.13 Evolution of the cross-sectional magnetisation profile for modified-sc lattice grains at
550 K of (a) 1.0 nm, (b) 1.5 nm, (c) 2.5 nm, (d) 4.0 nm, (e) 5.5 nm, and (f) 7.0 nm in size. The
grain magnetisation can be seen to be decreasing across the grain surface.
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Fig. 3.14 Evolution of the cross-sectional magnetisation profile for bcc lattice grains at 550 K
of (a) 1.0 nm, (b) 1.5 nm, (c) 2.5 nm, (d) 4.0 nm, (e) 5.5 nm, and (f) 7.0 nm in size. The grain
magnetisation can be seen to be decreasing across the grain surface.
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3.3.4 The correlation between the magnetisation loss and the atomistic
bond loss

A simple analysis model reflecting both contributions - which are the loss of magnetisation on
the grain surface and the propagation of surface disorder into the grain bulk - can be formalised
as follows. The starting point is to assume that the Curie temperature reduction ∆Tc, relative
to the bulk value TC(bulk), is entirely due to the loss of coordination at the surface. Thus ∆Tc

is assumed proportional to the number of surface bonds broken. As a first approximation it
can be assumed that the number of broken bonds nbb is proportional to the surface area of the
grains. Then, it is straightforward to show that the fractional increase in broken bonds ∆nbb -
which is related to the number of total bonds in the bulk - as a function of the grain height h
and dimater (width) D is given by:

∆nbb = B(h−1 +2D−1), (3.7)

where h is the height of the grain and B is a constant depending on the crystal structure and is
determined by fitting to the numerical calculation. The exact amount of atomistic bonds lost in
a particular grain can be calculated computationally: for each atom in the grain, the number
of nearest-neighbours can be counted and thus the number of missing nearest-neighbours
can be determined, noting that a "fully bonded" atom should have 6 nearest-neighbours in
a modified-sc lattice system, 12 in a fcc lattice system, and 8 in a bcc lattice system. If the
grain were a part of the bulk, a grain made up of N atoms in modified-sc, fcc, and bcc lattice
structure would have an "ideal" total of 6N, 12N, and 8N nearest-neighbour atomistic bonds
respectively. Then, summing up over all atoms and comparing with the "ideal" number of
total bonds for each lattice type will yield the fractional or percentage bond loss ∆nbb. The
percentage bond loss and Curie temperature reduction for each simulated lattice structure are
tabulated in Table A.2 of Appendix A.

Eq. (3.7) is found to give a good fit to the numerical results for all crystal structures studied,
as shown in the inset of Fig. 3.15(a). In terms of fitting to the values of ∆Tc, it is found that
the assumption of ∆Tc ∝ ∆nbb with ∆nbb following the expression in Eq. (3.7) is valid only for
large diameters, indicating that in this regime the decrease in TC is essentially a surface effect.
As is shown later, for small diameter, the surface disorder propagates into the center of the
grain leading to a more rapid decrease of TC, albeit one which is captured by the finite size
scaling law. This effect can be quantified this by fitting to a modified function:

∆Tc = α exp(−D/Dp)+β∆nbb, (3.8)
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where α and β are fitting constants and Dp is a characteristic distance associated with the
propagation of the disorder into the center of the grain. As shown in Fig. 3.15(a), Eq. (3.8)
fits well to the numerical calculation for all lattice structures. Values of the fitting constants
are given in Table 3.5. A propagation term ∆Tcp which represents the propagation of surface
disorder into the grain can then be defined as follows:

∆Tcp = ∆Tc −β∆nbb. (3.9)

Eq. (3.9), along with the numerical calculation, is shown in Fig. 3.15(b). It can be seen that,
for diameter D ⪅ 3.5 nm there is an exponential increase in ∆Tc as the diameter decreases.
Note that the cut-off value of 3.5nm can be interpreted as the penetration depth of surface
magnetisation loss into the grain bulk. It is approximately 4 times Dp, which from Eq. (3.8)
corresponds to approximately 1.8% of TC drop. Clearly the lost surface bonds drive the loss
of magnetic order and the reduction in TC. However, it is important to note the role played by
the renormalisation of the state energies arising from the fluctuations originating at the surface.
This gives rise to the progressive decrease of the loss of magnetisation when moving toward
the centre of the grain. For small grain sizes D ≤ 3.5nm, the decrease in magnetic order due to
state energy renormalisation cannot be stabilised by a fully-ordered central core. In this regime
the state energy renormalisation becomes the dominant factor leading to a rapid collapse of the
magnetisation and TC. Hovorka et al. [80] have given an expression relating the dispersion of
TC directly to the dispersion of diameter. This suggests that for decreasing grain sizes, such
as expected for the evolution of Heat-assisted Magnetic Recording, any grain size variation
would give an increasingly large distribution of TC which could become a limiting factor for
the technology. On the other hand, numerous designs for Heat-assisted Magnetic Recording
media involve coupling layers with high anisotropy and low TC with layers of lower anisotropy
and higher TC. It is likely, from the analysis presented here, that for strongly exchange coupled
layers the surface disorder and hence reduction of the TC of the high anisotropy could be
somewhat mediated by the proximity effect of a higher TC layer. Finally, the existence and the
lattice-type dependence of a threshold size above which the percentage Curie temperature drop
∆TC rapidly becomes negligible - as illustrated in Fig. 3.15 - are again in good agreement with
mean-field calculations seen in previous literature [62].
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Fig. 3.15 Correlation between the Curie temperature drop and atomistic bond loss for each
lattice structure: (a) ∆TC(D) following from the FSSL fit to Eq. (3.8) and the inset showing the
percentage bond loss; (b) The surface-effects propagation term ∆Tcp showing a cut-off value at
D ≈ 3.5 nm for all 3 studied lattice structures.

3.4 Further remarks

On a final remark, it is worth to mention that during this research there was an intention to
include, in addition to the study of the role of crystal structure already presented, an investigation
of the role of grain shape on finite-size effects. In fact, different grain shapes including
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Configuration α Dp (nm) β

modified-sc 54.4±2.7 1.049±0.046 0.779±0.034
fcc 59.4±4.3 0.846±0.046 0.386±0.031
bcc 83.1±4.4 0.863±0.035 0.368±0.022

Table 3.5 Correlation fitting parameters for each simulated configuration of FePt.

cylindrical grains and "voronoi" grains were initially tested - the latter case involves grains
having irregular, randomly-generated surfaces. An illustration of a sampled voronoi-structured
grain is shown in Fig. 3.16. Unfortunately, the version 4 of the VAMPIRE code used at that time
suffered from a serious limitation that the extraction of magnetic properties of each atomistic
layer, which is a crucial prerequisite feature for the construction and analysis of magnetisation
profiles later, can be done for only parallelepiped-shaped grains. It is especially difficult to

Fig. 3.16 A sample of voronoi-structured grains. Source: courtesy of Dr. Sergiu Ruta.

study voronoi-structured grains which do not have clear layers. Therefore, the investigation
of non-parallelepiped grains could not be proceeded further. However, the omitted role of
grain shape has been effectively mitigated by the later introduction of the shape-independent
surface bond loss as the main variable in the mathematical description of magnetisation loss
propagation. However, with more sophisticated versions of the VAMPIRE code having been
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continuously developed since then, there is a possibility to revive the said investigation of the
role of grain shape on finite-size effects. These could be the ideas for potential research in the
future.

3.5 Summary

In this Chapter, the finite-size effects in small grains have been investigated. Simulation data
fit to the classic Finite-size Scaling Law and show a rapid decrease of TC at small sizes. We
show that this is due to the propagation of surface disorder resulting from the loss of exchange
coordination at the surface into the grain. This effect becomes important at grain sizes smaller
than 4nm and is supported by semi-analytic mean field calculation. The findings overall are
consistent with the mean-field calculation and have been extended to incorporate different
crystal structures, which strongly suggests that if using a suitable correlation factor the TC

distribution of a generic material can be correlated to the percentage of atomistic bond loss on
the surface as a universal parameter. The reduction of TC is driven by surface magnetic disorder
resulting from the loss of exchange coordination at the surface. These fluctuations cause a
renormalisation of state energies through which the magnetic disorder propagates into the grain.
A physically reasonable expression is proposed which separates the two processes, and defines
a penetration depth for the propagation of disorder into the grain. For small grain sizes less
than around 3-4 nm, the decrease in magnetic order due to state energy renormalisation cannot
be stabilised by a fully-ordered central core. In this regime the state energy renormalisation
becomes the dominant factor leading to a rapid collapse of the magnetisation and TC and
a consequent increase of the dispersion of TC for small diameter. From the viewpoint of
materials design for nanoscale applications such as spintronics and particularly Heat Assisted
Magnetic Recording, finite size effects will become an increasingly important consideration
with decreasing device size. Because of the strong surface effects on the decrease of TC, the
increased TC dispersion for small grains could be somewhat mediated in designs coupling low
TC hard materials such as FePt with high TC materials which would reduce the loss of magnetic
order through the proximity effect. Overall, surface effects could limit the performance of
Heat-assisted Magnetic Recording, which could be important for L10-FePt in particular because
of the 2-ion anisotropy which will be further explored in the next Chapter 4.



4

Higher-order magnetic anisotropy in soft-hard
nanocomposite materials

We studied computationally the properties of higher-order magnetic anisotropy constants in
a L10/A1-FePt core-shell system which is characterised by a strong 2-ion Fe-Pt anisotropy
component. We discover that the core-shell structure exhibits an unexpected fourth-order
anisotropy term whose magnitude depends on the core-size ratio R. The K2/K1 ratio, with
K1 and K2 being the second and fourth-order anisotropy constant respectively, displays a
non-monotonic variation with a peak occurring at R ≈ 0.50. Furthermore, we find that K2

scales with the normalised magnetisation (M/Ms) at temperatures below the Curie temperature
with a scaling exponent of approximately 2.2 - a remarkable deviation from the established
Callen-Callen theory which instead predicts a scaling exponent of 10. We construct a simple
analytic model which shows the fourth-order term to arise from the canting of the core and shell
magnetisation. In particular, our model demonstrates that the magnitude of the fourth-order
term is proportional to K2

1/J, with J the exchange coupling. Given that in L10-FePt the 2-ion
K1 constant scales approximately with (M/Ms)

2.1 and J with (M/Ms)
2, the predicted scaling

exponent agrees very well with our simulation. Generally, the fourth-order anisotropy constant
is shown to exhibit a strong dependence on the system geometry, thus suggesting that the
Callen-Callen power law is non-universal and valid only for single-ion anisotropies.

4.1 Motivation

Chapter 3 has discussed the suitability of L10-FePt as a recording media for Heat-assisted
Magnetic Recording (HAMR) and presented a study on the first key magnetic attribute of
L10-FePt for potential applications in HAMR, namely the strong size-dependence of its Curie
temperature. This Chapter, in turn, will encompass an investigation on the second magnetic
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attribute of L10-FePt which is its very strong 2-ion anisotropy contribution to the overall
exceptionally high uniaxial anisotropy of the material [66, 94]. The origin of this 2-ion
anisotropy component in the chemically layered ferromagnet L10-FePt has been well established
to be from the contribution of the 5d element which has a large spin-orbit coupling whilst the
3d element provides the exchange splitting of the 5d sub-lattice [95–100].

Measurements of the second-order anisotropy constant K1 in L10-FePt using a simple an-
gular form of the magnetic anisotropy energy function E = K1 sin2

θ have generally been
consistent and well established [66, 87, 94, 101, 102] with values for the magnetic anisotropy
energy as high as 6.2 MJ/m3 [103]. On the contrary, there has not been a consensus on the
existence and the significance of the fourth-order term K2. Previous studies have arrived at
conflicting conclusions where K2 has been argued to be a misinterpretation [103], negligi-
bly small compared to K1 [102], or non-negligible [66]. This presents a potential problem
for HAMR application since the thermal stability of the writing medium is determined by
anisotropy. In addition, there has been a reported deviation of the scaling of K2 [102] from the
classical Callen-Callen power law [57] which, interestingly, has also been observed in other
materials [104, 105].

Furthermore, a recent study by Sepehri-Amin et al. [106] on L10-FePt thin film discovered
an effect of Pt enrichment on the film surface regardless of the FePt composition, which
subsequently was shown to distort the ordered structure of the L10 phase and thus reduce the
magnetocrystalline anisotropy of the FePt grain. This phenomenon is illustrated in Fig. 4.1
taken from Sepehri-Amin et al. [106] which clearly shows a heavy intermixing of the Fe atoms
and Pt atoms on the grain surface. The proportions of Fe and Pt atoms at various distances
from the surface, which are plotted in the sub-graphs underneath, are shown to be dependent
on grain size. The intermingling between Fe and Pt atoms at the grain surface compromises the
chemical ordering of L10-FePt grain, thus reducing the grain uniaxial anisotropy. The impact
of this Pt segregation is found to be more pronounced in grains smaller than 15nm, which
is detrimental for HAMR functioning where smaller grain sizes are desired. Furthermore,
the varying relative proportion of the two L10/A1 phases has also been reported to affect the
uniaxial magnetic anisotropy in previous experimental studies of phase-graded thin films [72].
The effect of Pt surface segregation in a phase-graded FePt system, therefore, necessitates
a substantial investigation into the role of grain shape and composition on the anisotropy of
L10-FePt.

The background contexts which have recently been discussed provide the justifications
for the focus of this Chapter on an investigation of higher-order anisotropy of L10-FePt, in
particular the properties of the fourth-order anisotropy constant K2, for the implementation of
L10-FePt as a HAMR recording media. In this Chapter, an analytic model will be proposed and
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Fig. 4.1 Pt surface segregation observed in experimental L10-FePt grains of various compo-
sitions. The Fe atoms in green and Pt atoms in red are seen to be intermixed heavily at the
grain surface. The proportions of Fe and Pt atoms as a function of distance from the surface
are plotted in the sub-graphs underneath and show a grain-size dependence. Source: excerpt
from [106]

described to explain the origin and mechanism of this fourth-order anisotropy. The applicability
of this analytic model will be shown to be extendable to not just L10-FePt but a generic
nanocomposite material with soft-hard magnetic inter-layers.

4.2 Simulation methods and settings

4.2.1 Construction of the FePt core-shell grains

In Chapter 3, because of the particular interest of extracting magnetic properties on the scale
of atomistic layers, FePt grains were deliberately simplified to having paralellepiped shape
which offers the highest degree of symmetry and regularity. Real grains which are produced
and tested in experiments, rarely have such cubic shape. In this Chapter, therefore, simulated
FePt grains are created in an elongated cylindrical shape with faceted surfaces which more
closely resembles ones typically found in a HAMR recording media. The VAMPIRE code



60 Higher-order magnetic anisotropy in soft-hard nanocomposite materials

features the creation of such faceted, systems via the input specification of 3 cutting fractional
radii along the [100], [110], and [111] crystal lattice directions [107]. The characteristic grain
diameter, based on the investigation of grain sizes in Chapter 3, is chosen to be 8nm. The
grains are made elongated along its height on the z-dimension by a shape factor of 1.5, thus
resulting in the overall dimensional sizes of 8×8×12 nm. The front, side, and top views of
the VAMPIRE-generated FePt grains are shown in Fig. 4.2.

Fig. 4.2 Jmol-generated visualisations of the faceted, elongated FePt grain with Fe atoms in
green and Pt atoms in white: (left) front view, (middle) side view, and (right) top view. This
grain is created with the cutting fractional radius of 1.00, 1.05, and 1.00 along the [100], [110],
and [111] crystal lattice direction respectively.

In order to replicate the effect of Pt surface segregation in Sepehri-Amin et al. [106], the
simulated FePt grain will have a core-shell structure with a core made of the ordered L10-phase
FePt surrounded by a disordered A1-phase FePt shell. The diameter of the core, dcore, can be
freely adjusted so as to reproduce the varying degrees of ordering. The fractional core size R of
the grain is defined as the ratio of the core diameter dcore to the entire grain diameter dgrain and
in simulations is varied between 0.05 and 0.95 in a 0.5 increment:

R =
dshell

dgrain
. (4.1)

The lower and upper bounds of R represent two extreme cases: when R = 0.05 the L10 core
consists of only one single atom, whilst when R = 0.95 the grain has only one atomistic layer
of the A1-phase shell. An illustration of the cross-sectional views of the constructed core-shell
grains with various core sizes R are shown in Fig. 4.3. The unit cell of the fct L10-FePt is
slightly compressed on the c-axis [82, 83, 108] whilst the unit cell of the fcc A1-FePt is not.
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To average this disparity, a common unit cell is implemented for both the L10 and A1 phases
with a uniform cubic shape and a lattice spacing of a = 0.3795 nm which is obtained from
experiments and in consistency with previous computational studies [70, 83, 108, 109].

Fig. 4.3 Jmol-visualised cross-sectional view of sampled core-shell grains with core size (left)
R = 0.80, (middle) R = 0.60 and (right) R = 0.40. The size-adjustable core is made of the
ordered L10-FePt whilst the shell is made of the disordered A1-FePt. Pt atoms are coloured in
white; Fe atoms in brown if of the L10 phase and in green if of the A1 phase.

4.2.2 The truncated exchange interaction

The exchange interaction Ji j implemented in the core-shell simulations in this Chapter takes
the form of a 3-dimensional tensor including components on the xyz-dimensional directions
and extending further than the strictly nearest-neighbour only form which was presented
in the previous Chapter 3 - the reason for which, again, is to account for the impact of
surface disorder due to the aforementioned Pt segregation effect [106]. However, as previously
explained in Chapter 2, the exchange interaction strength decreases sharply with increasing
distances between neighbouring atoms, thus quickly dropping to a negligible magnitude.
Therefore, instead of using a full-range exchange interaction derived from ab-initio calculation,
a reasonably good estimation will include the exchange interactions up to the third-level of
nearest-neighbours. This model of the exchange is termed a truncated exchange interaction
- illustrated in Fig. 4.4 - and is calculated from the full-range version in order to preserve
the bulk properties of FePt. The truncated exchange interaction strength can be expressed
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mathematically as:
J0 = ∑

k=1,2,3
nkJk, (4.2)

where J0 is the "total" exchange interaction strength summing from all k-level nearest-neighbour
components, nk the number of k-level nearest-neighbours, and Jk the exchange interaction
between k-level nearest-neighbours. Note the use of the term "k-level" prefixing "nearest-
neighbours" is purely for simplicity, so that the 1st-level refers to the nearest neighbours,
2nd-level the next-nearest neighbours, and 3rd-level the next-next-nearest neighbours.

Fig. 4.4 Visualisation of the Fe neighbours in L10-FePt up to the third-level of nearest-neighbour.
The Fe atoms are coloured brown; the Pt atoms are coloured yellow and are incorporated into
the effective Hamiltonian following Mryasov et al.’s treatment [67] utilising only the Fe degrees
of freedom. Each kth − level nearest-neighbour has its own associated effective exchange
interaction Jk.

Because the exchange tensor Ji j applies to both the fct-lattice L10 and fcc-lattice A1
phases, the calculation of the exchange component Jk - with the superscript k denoting the
interaction between the referenced atom with its k-level of nearest neighbours - will need
to take into account the different numbers of k-level nearest-neighbours, nk, existing in the
lattice structure of each phase. The starting point is the observation that for the "artificial"
bulk fcc-FePt configuration investigated in Chapter 3, using an exchange energy strength of
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Jnn
f cc ≈ 3×10−21 J/link, where the superscript nn indicates nearest-neighbour interaction, would

yield a Curie temperature of approximately 700 K which is reasonable in comparison with
experiment [80]. Since simulations in Chapter 3 involves only nearest neighbours, which in
bulk fcc is a total of 12, the total exchange interaction strength in bulk fcc is summed up from
all 12 nearest-neighbours and can be expressed as J0

f cc = 12Jnn
f cc. Since both the A1-FePt and

L10-FePt are lattice-wise equivalent to the bulk fcc, the total exchange interaction strength of
each phase can similarly be assigned the same numerical value J0

A1 = J0
L10

= J0
f cc = 12Jnn

f cc.
Mryasov et al.’s model of the 2-ion anisotropy component of L10-FePt [67] allows the

removal of Pt atoms from the fct lattice structure, thus leaving only Fe-Fe interactions with
modified properties as explained in detail in Chapter 3. For the A1 phase, the random distribution
of Fe and Pt atoms results in a highly chemically disordered structure with extremely low
uniaxial anisotropy [110] in which the non-magnetic Fe-Pt interactions do not contribute to the
magnetic properties of the material. Consequently, in VAMPIRE simulations the Pt atoms of
both A1 and L10 phase of FePt are treated as non-magnetic and will not be accounted for in
calculations.

In the A1 phase, an atom can have at maximum 12, 6, and 24 1st-level, 2nd-level, and
3rd-level nearest neighbours respectively. However, since statistically 50 percent of total atoms
in the A1 phase are the non-magnetic Pt, the averaged numbers of neighbours in the A1 phase
need to be correspondingly halved. Therefore Eq. (4.2) applied for the A1 phase will become:

J0
A1 = 6J1 +3J2 +12J3 = 12Jnn

f cc. (4.3)

For the L10 phase, with 4 Pt atoms in each middle layers being removed, there are 4, 6, and 8
nearest-neighbours of the 1st, 2nd, and 3rd-level respectively. Therefore the total exchange
interaction strength in the L10 phase can be expressed as:

J0
L10

= 4J1 +6J2 +8J3 = 12Jnn
f cc. (4.4)

Another approximation is derived from a study by Hinzke et al. [111] which found that for
the L10 phase the ratio between out-of-plane total exchange to in-plane total exchange can be
roughly estimated at 3/4. From the illustration in Fig. 4.4 it can be seen that the out-of-plane
exchange comprises of all 8 J3 components and the 2 J2 components along the [001] lattice
direction, whilst the in-plane exchange includes all 4 J1 components and the 4 remaining J2

components along the [100] and [010] lattice direction. Therefore:

8J3 +2J2 =
3
4
(
4J1 +4J2) . (4.5)
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Solving Eq. (4.3), Eq. (4.4), and Eq. (4.5) simultaneously yields the solution, to 7 decimals and
being imported directly into VAMPIRE simulations, as:

J1
xyz = 0.7142857Jnn

f cc = 2.1428571×10−21 J/link

J2
xyz = Jnn

f cc = 3.0000000×10−21 J/link

J3
xyz = 0.3928571Jnn

f cc = 1.1785714×10−21 J/link.

(4.6)

Overall, under these treatments, the entire core-shell grain is expected to exhibit closely
comparable Curie temperatures for both the L10 core and the A1 shell which again, is consistent
with experiment [106].

4.2.3 The truncated 2-ion anisotropy

The implementation of the dominant 2-ion anisotropy in the L10 phase is done in a similar
method to the previous calculation of the truncated exchange interaction. First, the 2-ion
anisotropy also takes the form of a 3-dimensional tensor K2ion

i j which, following Mryasov et
al.’s treatment [67], introduces a 2-ion Hamiltonian component H2ion:

H2ion =−1
2 ∑

i, j∈core

(
Ŝz

i
)T K2ion

i j Ŝz
j, (4.7)

where Ŝi and Ŝ j are spin unit vectors and the superscript z indicates that the 2-ion anisotropy
applies only to the z-component of the spins - thus the 2-ion anisotropy tensor K2ion

i j has all x
and y-dimensional components equal 0. Furthermore, the 2-ion anisotropy tensor K2ion

i j is also
truncated instead of being fully long-range, extending up to the 3rd-level of nearest-neighbours.
The numerical values of the non-zero z-component of the 2-ion anisotropy applicable for each
1st, 2nd, and 3rd-level nearest-neighbours are the solution to the following 3 simultaneous
equations:

6K1 +3K2 +12K3 = k2ion

4K1 +6K2 +8K3 = k2ion

8K3 +2K2 =
3
4
(
4K1 +4K2) , (4.8)

where k2ion = 12K0 = 1.427 meV/link = 2.2832×10−22 J/link is the 2-ion anisotropy constant
extracted from Mryasov et al. [67]. The solution, similar to the exchange solution before and
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recalling that the 2-ion anisotropy tensor has only a non-zero z-component, is given as:

K1
z = 0.7142857K0 = 1.9026667×10−23 J/link

K2
z = K0 = 1.3590476×10−23 J/link

K3
z = 0.3928571K0 = 7.4747611×10−24 J/link.

(4.9)

4.2.4 The Spin Hamiltonian

The spin Hamiltonian of the core-shell simulations is the sum of the respective Hamiltonian of
the L10-phase core and of the A1-phase shell H=Hcore+Hshell which, following the standard
Heisenberg form, includes the exchange and anisotropy components. Similar to simulations
in Chapter 3 there will be no externally applied magnetic field B. The explicit mathematical
expression for the Hamiltonian of the core and of the shell are given as follows:

Hcore =−1
2 ∑

i, j∈core∗

(
Ŝi
)T Ji jŜ j − kL10

loc ∑
i∈core

(Ŝz
i )

2 − 1
2 ∑

i, j∈core

(
ŜT

i
)zK2ionŜz

j, (4.10)

Hshell =−1
2 ∑

i, j∈shell

(
Ŝi
)T Ji jŜ j − kA1

loc ∑
i∈shell

(Ŝz
i )

2, (4.11)

where Ŝi and ŜJ are spin unit vectors, Ji j the exchange energy tensor between neighbouring
pair (i, j), and kloc the local, in-plane single-site anisotropies of the respective phase. The
notation i, j ∈ core∗ of the first summation in Eq. (4.10) accounts for exchange interactions
not only in the core but also across the core/shell interface as well. The superscript z, where
applicable, denotes the z-component of the spins. The superscript T , where applicable, denotes
the transpose of the spin matrix. In VAMPIRE simulations the numerical values of the
in-plane single-site anisotropies are set to kA1

loc = 0 [110] and kL10
loc = −0.097 meV/atom =

−1.552×10−23 J/atom [67]
Furthermore, as explained before in Chapter 2, since the 2-ion anisotropy acts on neigh-

bouring pairs of spins in a similar fashion to that of the exchange interaction, for computational
efficiency it can be combined directly with the exchange energy term to form an anisotropic
exchange. A sample of the VAMPIRE material file showing the implementation of such
anisotropic exchange in simulations is given in Appendix B.

4.2.5 The torque method

The magnetocrystalline anisotropy constants of the core-shell grains are computed by the
torque method [112, 113], with the basic principles outlined as follows. First, the torque τ(θ)
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can be defined as the angular derivative of the energy E(θ) by τ(θ) = −dE(θ)/dθ . In a
uniaxial system, the angular-dependent magnetocrystalline anisotropy energy E(θ) can be
mathematically expressed as a series of anisotropy constants in even orders of sin(θ) such that
E = E0 +K1 sin2(θ)+K2 sin4(θ)+ ... which can be expanded as much as appropriate, where
the constant E0 can usually be omitted in mathematical formalism and K1 and K2 are the second
and fourth-order anisotropy constants respectively. Therefore, by fitting to the torque computed
from simulation output, the values of anisotropy constants can be determined. Also, the
magnetocrystalline anisotropy energy can be calculated by Eanisotropy = E(θ = 90o)−E(θ =

0o) = K1 +K2 + .... In specific cases which include up to the fourth-order anisotropy constant,
it can be shown straightforwardly that the magnetocrystalline anisotropy energy can also be
calculated via the torque as Eanisotropy =−τ(θ = 45o).

Calculations based on the torque method are performed in the VAMPIRE atomistic code [39,
52] through the implementation of a constrained Monte-Carlo (CMC) integrator [56] in which
the system magnetisation can be constrained at an angle θ to the easy axis. In the case of L10-
FePt, the easy axis lies along the [001] lattice direction which is chosen to be the z-dimension.
At each value of the angle θ , the angular dependence of the restoring torque τ(θ) on the
simulated system can be calculated and output. At any given temperature, a full angular sweep
is performed for θ from 0 to 180 degrees in 5-degree steps. The simulation is then carried out
for temperature from 0 K to 1000 K in 5 K steps.

Other technical aspects of VAMPIRE simulations which have been previously described in
Chapter 2 and 3 are all valid and continue to be applicable. In summary, the numerical values
of exchange energy and anisotropies, as well as other simulation parameters are tabulated in
Table 4.1. Sampled VAMPIRE input and material files for the simulations of this Chapter are
given in Appendix B.

Parameter Notation Unit L10-phase A1-phase
Damping Constant ζ 1.0 1.0
Atomistic Spin Moment µs µB 3.23 3.23
Local anisotropy kloc J/atom −1.55×10−23 0
2-ion anisotropy k2ion J/atom 2.23×10−22 0
Total Exchange Strength J0 J/link 3×10−21 3×10−21

CMC Equilibration step 2×105 2×105

CMC Total step 8×105 8×105

Table 4.1 VAMPIRE parameters for the core-shell simulations.
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4.3 Results and discussion

4.3.1 Validating the scaling law of the second-order anisotropy

The Callen-Callen theory [57] describes the temperature dependence of the nth-order mag-
netic anisotropy constant for simple, single-sublattice ferromagnets by scaling it against the
magnetisation by a power law:

K(T )
K(0)

=

[
Ms(T )
Ms(0)

]β

, (4.12)

where the scaling exponent obeys β = n(n + 1)/2. Therefore, for the second-order and
fourth-order anisotropy constant the scaling exponent according to the Callen-Callen power
law would be β = 3 and β = 10 respectively. For the case of the second-order anisotropy
constant K1 of FePt specifically, classical mean-field estimations [114] and low-temperature
measurements [87] somewhat conforms to Callen-Callen prediction, whereas more refined
numerical calculation and experiment data [67, 114–119] have established a more precise and
widely accepted value of β ≈ 2.1. This well-established scaling exponent of K1 of L10-FePt,
therefore, can serve as a reliable benchmark against which the previously described models
of the truncated exchange interaction and 2-ion anisotropy can be validated. The argument is
that if the calculations are done correctly, the values of the truncated exchange interaction and
2-ion anisotropy components obtained from Eq. (4.6) and Eq. (4.9), when applied to a bulk L10

system, should yield a scaling exponent of K1 in good agreement with the known value β ≈ 2.1.
In order to conduct this test, a bulk L10-FePt grain is created in form of a 8nm×8nm×8nm cube
with periodic boundary conditions - see Fig. 4.5. The original expression of the Callen-Callen
power law in Eq. (4.12) can be rewritten in a linear log-log fit as:

ln [K1(T )] = ln

[
K1(0)

[
Ms(T )
Ms(0)

]β
]
= ln [K1(0)]+β

Ms(T )
Ms(0)

= constant +β
Ms(T )
Ms(0)

,

(4.13)

which when plotted against Ms(T )/Ms(0) will yield the scaling exponent β as the gradient. The
values of the second-order anisotropy constant K1 extracted from the simulated bulk L10-FePt
are fit against the log-magnetisation by Eq. (4.13). The result is shown in Fig. 4.6 with the
obtained scaling exponent of β = 2.050±0.002 which is extremely close to the established
value, thus validating the use of the truncated exchange energy and 2-ion anisotropy components
presented earlier.
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Fig. 4.5 Jmol-generated visualisation of the bulk L10 grain with a cubic shape of size 8nm. The
Fe atoms are coloured brown and the Pt atoms white.

Fig. 4.6 The scaling of second-order anisotropy constant K1 against M in a bulk L1−0-system
yields a scaling exponent of β = 2.050±0.002 which is highly agreeable with the established
value from literature.
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4.3.2 The existence and magnitude of the fourth-order anisotropy

(a) R = 0.40

(b) R = 0.50

(c) R = 0.70

Fig. 4.7 Fitting to the torque τ for sampled core sizes (a) R = 0.40, (b) R = 0.50, and (c)
R = 0.70 shows a discernible deviation from data if including only a second-order anisotropy
term (dashed lines), whilst better matching if adding a fourth-order anisotropy term (solid
lines).
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The system magnetocrystalline anisotropy energy if assumed to include only the second-
order anisotropy term E = K sin2(θ) would imply an exerting torque in form of τ =−dE/dθ ∝

sin(2θ). However, data obtained from simulations as shown in Fig. 4.7 demonstrates that in
core-shell grains of certain core sizes R, a torque fit in such form - represented by the dashed
line - is noticeably skewed from simulation data - represented in solid symbols. In contrast,
when a fourth-order anisotropy term is added to the magnetocrystalline anisotropy energy
expression i.e. E = K1 sin2(θ)+K2 sin4(θ), the new torque fit - represented by the solid line in
Fig. 4.7 and having the mathematical form expressed by:

τ =−dE
dθ

=−K1 sin(2θ)−2K2 sin3
θ sin(2θ), (4.14)

now matches the simulated data extremely well. The discernible skewing of the torque curve in
comparison to a simple sin(2θ) profile has been observed in a previous experimental study on
FePt granular films [120], although interestingly it should be noted that the authors of the cited
paper themselves, whilst presenting multiple clearly skewed torque curves in their Figure 5
for films of various magnetic layer thickness dmag, did not seem to recognise the very effect.
For the core-shell simulations, however, the drawn conclusion is that the skewed torque curves
seen in Fig. 4.7 are an indicator that the core-shell grains of certain core sizes R do exhibit a
significant fourth-order anisotropy component which should not be neglected.

The temperature-dependent second and fourth-order anisotropy constants, K1 and K2, can
then be extracted from the torque fit in Fig. 4.7 by using Eq. (4.14). The K2/K1 ratio is found
to be dependent on the core size R with a non-monotonic variation that has not been reported
elsewhere. Low-temperature data shown in Fig. 4.8, with sampled values of K2/K1 at 10 K
tabulated in Table A.3 of Appendix A, indicate that the magnitude of K2 can exceed 20% of K1

which is a significant proportion.

4.3.3 The scaling law of the fourth-order anisotropy

In addition, the classical Callen-Callen power law predicts the scaling exponent of β = 10 for
the fourth-order anisotropy constant K2. However, simulation data appear to contradict this
prediction. Fig. 4.9 illustrates an example of K2 scaling obtained from simulation for core size
R = 0.70 in which β ≈ 2.3. Overall, the scaling exponent β across the simulated core size R
range is found to be consistently lower than the Callen-Callen predicted theoretical value of
10 by significant amounts. The variation of the scaling exponent β as a function of the core
size R for the fourth-order anisotropy K2 as shown in Fig. 4.10, excluding the 2 extreme cases
when R = 0.05 and R ≥ 0.90 which will be revisited later, generally conforms to the range
2 ⪅ β ⪅ 3.
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Fig. 4.8 The anisotropy K2/K1 ratio obtained from core-shell simulations exhibits a core size-
dependent variation. The magnitude of K2 can exceeded 20% of K1. The variation of K2/K1 is
later explained and quantified in an analytic model described in Section 4.4.

4.3.4 The temperature-dependent magnetisation

The temperature-dependent magnetisation M(T ) curves are plotted for simulated core-shell
grains of varying core size R in Fig. 4.11 - (a) for the entire grain and (b) for the L10-core only.
The total grain magnetisation curves are stable across different core sizes but the L10 core,
shows significant finite-size effects. The behaviour of the L10-core is because of small number
of spins exhibiting finite-size effects, and is consistent with previous results in Chapter 3.

The behaviour of the temperature-dependent magnetisation M(T ) of the entire core-shell
grain as well as of each individual phase L10 and A1 is more closely examined in Fig. 4.12
for sampled core sizes. The magnetisation of the highly ordered L10-core is, expectedly, seen
to be higher than that of the disordered A1-shell, and between the two phases there exists a
clear exchange-coupling effect which results in the overall averaged-out magnetisation of the
entire core-shell grain. This graded-phase exchange-coupling effect which occurs at the phase
boundary has been seen before in experimental thin-film studies [72] and will be taken into
account in the formulation of an analytic model later.

In summary, in this section the existence of a non-negligible fourth-order anisotropy term
has been demonstrated which is also shown to exhibit two remarkable properties: first the
non-monotonic core size-dependent variation of its magnitude, and second the non-Callen
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Fig. 4.9 Sampled scaling of the fourth-order anisotropy constant K2 to the magnetisation for
the core size R = 0.70 yields a scaling exponent β ≈ 2.3 which remarkably disagrees with the
Callen-Callen power law of β = 10.

Fig. 4.10 Variation of the scaling exponent β of the fourth-order anisotropy constant K2 as a
function of the core size R.
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(a)

(b)

Fig. 4.11 The temperature-dependent magnetisation M(T ) for different core sizes R of (a) the
entire grain, and (b) the L10-core only. Finite-size effects are clearly shown for the L10-core,
which becomes extreme at low R.
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(a) R = 0.40

(b) R = 0.60

(c) R = 0.80

Fig. 4.12 The temperature-dependent magnetisation M(T ) of the entire core-shell grain and
of each phase for core size (a) R = 0.40, (b) R = 0.60, and (c) R = 0.80 shows a coupling
effect between the higher-magnetisation L10 core with the lower-magnetisation A1 shell. The
resulting magnetisation of the entire core-shell is averaged out between the two.
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scaling to the magnetisation. In order to discuss and explain the origin and behaviours of this
novel fourth-order anisotropy term, a general analytic model will be proposed in the following
section which will be shown to be applicable to not only the specific simulated core-shell FePt
grains so far but also any generic material comprising of soft/hard magnetic interlayers.

4.4 An analytic model for the fourth-order anisotropy

In this section the derivation of an expression for the fourth-order anisotropy constant arising
from an interface between two magnetic materials will be presented. This depends strongly on
the system geometry and a derivation valid in the general case will be formalised. The starting
point is to recall that the anisotropy is determined by calculating the torque on the system with
the magnetisation constrained at an angle θ to the easy axis. Consider a general core-shell
system in which the core is made of a hard-magnetic material and the shell a soft-magnetic one.
First, a derivation which demonstrates the origin of the fourth-order anisotropy term to arise
from the interface exchange energy and spin canting between the core and shell will be given.
Next, the effect of an in-plane anisotropy term will be incorporated into the model. Finally,
the analytic model will be applied, with considerations specific to the simulated core-shell
structure, to re-examine the computational results presented earlier.

4.4.1 The derivation without an in-plane anisotropy

The model assumes that in order to minimise the energy the angles θh and θs in the hard and
soft-magnetic phase can deviate from the system constrained angle θ by an amount of δθh

and δθs respectively, thus θh = θ + δθh and θs = θ + δθs. Because of the strength of the
exchange coupling at the hard/soft interface it can reasonably be assumed that δθh and δθs are
small and thus can be treated as perturbations. The energy of the 2-phase system, assuming for
simplicity a scenario similar to the simulated FePt core-shell in which hard-magnetic material
has a uniaxial anisotropy per volume Ku and the soft-magnetic one has a negligible uniaxial
anisotropy, can then be written as:

E = KuVc sin2(θ +δθh)−
JAcs

a2 cos(δθh −δθs), (4.15)

where Vc is the volume of the hard-phase core, Acs the area of the core/shell interface, a the
lattice spacing, and J the exchange integral per link. The system energy E in Eq (4.15) consists
of two components: the first a normal anisotropy term and the second an exchange energy term
which represents the aforementioned exchange coupling between spins in the core and spins in
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the shell. For simplicity, denote:

A = KuVc,

B =
JAcs

a2 .
(4.16)

Eq. (4.15) must be minimised subject to the constraint function:

f cosθh +(1− f )cosθs − cosθ = 0, (4.17)

with f being the fractional volume of the hard phase. This constraint function originates from
the observation the constrained angle of the magnetisation of the hard and of soft phase is
averaged from contributions of all spins in each respective phase. Therefore, the proportional
sum of the hard and soft phase constrained angles - which is f cosθh +(1− f )cosθs - must
result in the overall system constrained angle - which is cosθ . Since θh = θ + δθh and
θs = θ +δθs, to first-order approximation it is straightforward to show that:

δθs =− f
1− f

δθh =−Fδθh, (4.18)

where F = f/(1− f ) and thus δθh−δθs = δθh+Fδθh = δθh(1+F). To minimise the energy,
derivative of E in Eq. (4.15) must be taken w.r.t. δθh which gives:

Asin [2(θ +δθh)]+B(1+F)sin [δθh (1+F)] = 0. (4.19)

The solution of Eq. (4.19), up to the first-order of δθh, yields:

δθh =− sinθ cosθ

B
2A(1+F)2

. (4.20)

The energy E can then be calculated by substituting for δθh and δθs into Eq. (4.15), giving:

E = Asin2(θ +δθh)−Bcos

(
−sinθ cosθ

B
2A(1+F)

)
. (4.21)
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Consider the expansion of the anisotropy term in Eq. (4.21) to first-order in small quantities:

sin2(θ +δθh) = (sinθ cosδθh + cosθ sinδθh)
2

= sin2
θ cos2

δθh +2sinθ cosδθh cosθ sinδθh + cos2
θ sin2

δθh

≈ sin2
θ +(2sinθ cosθ)δθh

= sin2
θ − 2sin2

θ cos2 θ

B
2A(1+F)2

= sin2
θ − sin2

θ

B
4A(1+F)2

+
sin4

θ

B
4A(1+F)2

.

(4.22)

Next, expand the exchange term in Eq. (4.21) noting that the cosine argument is small:

cos(δθh −δθs) = cos(δθh(1+F)) = cos

(
−sinθ cosθ

B
2A(1+F)

)

≈ 1− sin2
θ cos2 θ

2
[ B

2A(1+F)
]2

= 1− sin2
θ

2
[ B

2A(1+F)
]2 + sin4

θ

2
[B

A(1+F)
]2 ,

(4.23)

from which the constant can be dropped to give:

cos(δθh −δθs) =− sin2
θ

B2

2A2 (1+F)2
+

sin4
θ

B2

2A2 (1+F)2
. (4.24)

Substituting Eq. (4.22) and Eq. (4.24) into Eq. (4.21) gives:

E = A

[
sin2

θ − sin2
θ

B
4A (1+F)2 +

sin4
θ

B
4A(1+F)2

]
−B

[
− sin2

θ

B2

2A2 (1+F)2
+

sin4
θ

B2

2A2 (1+F)2

]

=

[
A− 4A2

B(1+F)2 +
2A2

B(1+F)2

]
sin2

θ +

[
4A2

B(1+F)2 −
2A2

B(1+F)2

]
sin4

θ

=

[
A− 2A2

B(1+F)2

]
sin2

θ +
2A2

B(1+F)2 sin4
θ

=

[
A− 2A2

B
(1− f )2

]
sin2

θ +

[
2A2

B
(1− f )2

]
sin4

θ .

(4.25)



78 Higher-order magnetic anisotropy in soft-hard nanocomposite materials

Evidently, it has been mathematically proven that the core/shell interaction has introduced a
higher fourth-order anisotropy term with a coefficient:

K2 =
2A2

B
(1− f )2. (4.26)

Also, the coefficient of the second-order anisotropy term, instead of just A = KuVc, is subse-
quently modified to become:

K1 = A− 2A2

B
(1− f )2. (4.27)

The ratio of the fourth and second-order anisotropy constant, to a first-order approximation, is
therefore given by:

K2

K1
=

2A2

B (1− f )2

A− 2A2

B (1− f )2
=

2A(1− f )2

B−2A(1− f )2

≈ 2A
B
(1− f )2.

(4.28)

The above expressions are perfectly general for a system with a uniaxial anisotropy constant K1.
However, as discussed before FePt also has a small in-plane anisotropy from the local single-site
Fe anisotropy. This in-plane anisotropy will become dominant in small-sized systems because
of the loss of 2-ion anisotropy at the surface, most notably such as in the extreme core-shell
case R = 0.05, and therefore must be accounted for. In the following, these effects are treated
in an approximate way which is appropriate for straightforward calculations for high-symmetry
geometries.

4.4.2 Approximate introduction of the in-plane single-site anisotropy

Assume that the surface layer of the core loses the 2-ion anisotropy due to the loss of Pt
neighbours from the next-immediate atomistic layer of the shell only. Then, introduce an
in-plane single-site anisotropy Kip into Eq. (4.15). The energy, which for simplicity still retains
the unmodified Ku term, can be rewritten as:

E =[Ku(Vc −aAcs)−KipVc]sin2(θ +δθh)−
JAcs

a2 cos(δθh −δθs). (4.29)

It can be reasonably assumed that, to a first approximation, δθh and δθs are still given by
Eq. (4.18). Following the same procedure for previous case without the in-plane anisotropy
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results in the energy E of a mathematically similar form:

E = [Ku(Vc −aAcs)−KipVc]sin2
θ +

2 [Ku(Vc −aAc)−KipVc]
2

B(1+F)2 sin4
θ , (4.30)

from which the ratio of the second and fourth-order anisotropy can be calculated as:

K2

K1
≈

2 [Ku(Vc −aAcs)−KipVc]

B(1+F)2

=
2A

B(1+F)2

[(
1− aAcs

Vc

)
−

Kip

Ku

]
=

2A(1− f )2

B

(
1− aAcs

Vc
−

Kip

Ku

)
.

(4.31)

A remark can be made that the addition of the in-plane anisotropy and the reduction of 2-ion
anisotropy due to surface neighbour loss has therefore induced an extra "conversion" factor, in
form of the second bracket in the final expression of Eq. (4.31), in comparison to the original
Eq. (4.28). Note that the in-plane anisotropy component for simplicity has been introduced in
an approximate form in order to allow a reasonable calculation of the modified second and
fourth-order terms based on the geometry of the system. In the following, expressions for
the main parameters for high symmetry cases will be presented. Furthermore, the general
geometry-independent formulation will be finalised in which the system parameters transform
to the number of spins in the core Nc, the number of interface spins Nint , and the total number
of spins in the system Ntot . In the latter case the in-plane anisotropy term will be introduced in
the exact form.

4.4.3 Analytic calculation of high-symmetry cases

Recall that the magnitude and properties of the fourth-order anisotropy constant are dependent
on the system geometry and the analytic model investigated here is based on a realistic core-shell
structure of FePt with a faceted structure and competing perpendicular and smaller in-plane
anisotropies. The calculations of the values of the material-dependent constants for specific
geometries are detailed as follows, with a summary tabulated in Table 4.2. Note that for each
case, R remains to be the L10-phase core-size ratio which indicates the relative thickness of the
L10-phase.

For the 1D Planar-bilayer case with L being the bilayer thickness:

A
B
=

KuVc

JAcs/a2 =
Ku(LRAcs)

JAcs/a2 =
KuLR
J/a2 , (4.32)
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where the K2/K1 maximum occurs at maximum of the function g(R) = R(1−R)2 i.e. at
R = 1/3 ≈ 0.333.

For the 2D Cylinder case with L being the cylindrical base radius:

A
B
=

KuVc

JAcs/a2 =
Ku(π(LR)2h)
J(2πLRh)/a2 =

1
2KuLR
J/a2 , (4.33)

where the K2/K1 maximum occurs at maximum of the function g(R) = R(1−R2)2 i.e. at
R = 1/

√
(5)≈ 0.447.

For the 3D Sphere case with L being the sphere radius:

A
B
=

KuVc

JAcs/a2 =
Ku(

4
3π(LR)3)

J(4π(LR)2)/a2 =
1
3KuLR
J/a2 , (4.34)

where the K2/K1 maximum occurs at maximum of the function g(R) = R(1−R3)2 i.e. at
R = 1/ 3

√
(7)≈ 0.523 which is very close to the maximum location of the simulated core-shell

grains at R ≈ 0.5 seen before in Fig. 4.8.

Geometry A/B (1− f )2 K2/K1 Maximum L
Planar bilayer (Ku/J)La2R (1−R)2 R = 1/3 ≈ 0.333 Bilayer thickness

Cylinder (Ku/2J)La2R (1−R2)2 R = 1/
√

5 ≈ 0.447 Cylinder radius
Sphere (Ku/3J)La2R (1−R3)2 R = 1/ 3

√
7 ≈ 0.523 Sphere radius

General (Ku/J)(Nc/Nint) (1−Nc/Ntot)
2 - -

Table 4.2 Values of A/B and (1− f )2 for various high-symmetry geometries with L the system
size as defined by the geometry. The general case is characterised by Nc and Nint the number of
core and interface spins respectively.

4.4.4 General geometry-independent formulation

Fig. 4.3 shows a cross-sectional view of the faceted, elongated core-shell grains investigated
numerically. Clearly, this core-shell structure cannot be modelled as one of the high-symmetry
cases given earlier. Without reference to a specific geometry, the problem can be reformulated
in terms of the number of atoms in specific locations as follows. First, the energy given in
Eq. (4.15) can be rewritten as:

E = kuNc sin2(θ +δθh)− JNint cos(δθh −δθs), (4.35)

where the geometry-dependant variables Vc the core volume and Acs the core/shell interface
area have been replaced by the corresponding geometry-independent variables Nc and Nint -
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which are the number of spins in the core and core/shell interface respectively. The constants A
and B now become:

A = kuNc,

B = JNint ,
(4.36)

and similarly:

f =
Nc

Ntot
,

F =
Nc/Ntot

1−Nc/Ntot
,

(4.37)

where Ntot is the total number of spins. Substituting these variables into Eq. (4.27), Eq. (4.26),
and Eq. (4.28) will result in a new expressions for the second-order anisotropy, the fourth-order
anisotropy, and their ratio respectively:

K1 = kuNc −
2(kuNc)

2

JNint

(
1− Nc

Ntot

)2

, (4.38)

K2 =
2(kuNc)

2

JNint

(
1− Nc

Ntot

)2

, (4.39)

and:
K2

K1
≈ 2kuNc

JNint

(
1− Nc

Ntot

)2

. (4.40)

To incorporate the in-plane anisotropy component again, note that Acs = a2Nint and Vc = a3Nc

and substitute into Eq. (4.31) to obtain:

K2

K1
≈ 2kuNc

JNint

(
1− Nc

Ntot

)2(
1− Nint

Nc
−

kip

ku

)
, (4.41)

which completes the analytic model of the fourth-order anisotropy. In the next section, the
analytic model recently described will be applied to revisit the simulation results of the FePt
core-shell.
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4.5 An analysis of simulation results of the FePt core-shell

4.5.1 The canting between the core and the shell magnetisation

The fundamental assumption of the analytic model of the fourth-order anisotropy is the proposi-
tion of a canting between the magnetisation of the hard-magnetic core and of the soft-magnetic
shell. To verify the existence and magnitude of this canting, the dimensional components of the
magnetisation vectors of the entire core-shell system, as well as of the core and of the shell
individually are extracted directly from simulation output data. From this, the respective devia-
tion angles between the core magnetisation to the system magnetisation - δθh - and between
the shell magnetisation to the system magnetisation - δθs - can subsequently be calculated via
simple trigonometry. The canting ratio δθs/δθh is then plotted in Fig. 4.13 - in which the cant-
ing of the core and shell magnetisation is confirmed to occur. The plot includes analytic fits for
both the geometry-dependent case following Eq. (4.18) and the geometry-independent case fol-
lowing Eq. (4.37). Given the faceted shape of the simulated core-shell system, it is unsurprising
that the geometry-independent fit matches the data extremely well whilst geometry-dependent
fit is seen to deviate from data from R ≥ 0.75.

Fig. 4.13 The canting of the core and shell magnetisation with both geometry-dependent
and geometry-independent analytic fits shown. It is seen that the geometry-independent fit
matches the data extremely well whilst geometry-dependent fit is seen to deviate from data
from R ≥ 0.75.
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4.5.2 Representation of the 2-ion anisotropy of FePt and calculation of
the second-order anisotropy

FePt has a dominant 2-ion anisotropy mediated by the Pt ions [67] which in principle is quite
long-ranged. A simplified representation of this 2-ion anisotropy can be made which involves
up to the 3rd-level of nearest-neighbour Fe spins. Since in the simulated core-shell structure
the highly disordered A1-phase shell has negligible anisotropy, the total anisotropy energy of
the core-shell can be written as the sum of contributions over all spins of the highly ordered
L10-phase core including both the 2-ion and the in-plane single-ion kip terms:

Eanis =
Nc

∑
i=1

3

∑
j=1

ni jki j − kipNc, (4.42)

where 2-ion anisotropy is described in the summation with the superscript j indicating the level
of nearest-neighbours, and ni j and ki j the number of jth-level nearest-neighbours and their
corresponding anisotropy contribution respectively. Note that Eq. (4.43) has introduced the
exact expression for the anisotropy energy rather than the single-surface-layer approximation
as in Eq. (4.31). In the bulk material, for all i, ni j = 4,6,8 for j = 1,2,3 respectively and
the values ki j are set such that EanisN−1

c is equal to the net 2-ion anisotropy. However, for a
finite-size system, because of the loss of coordination at the surface this is no longer the case
for all i, and in the analytic model calculations a core size-dependent effective value of uniaxial
anisotropy has to be used instead which takes into account the in-plane anisotropy component.
This effective uniaxial anisotropy keff

u is given by:

keff
u (R) = N−1

c (R)
Nc(R)

∑
i=1

3

∑
j=1

ni jk j − kip. (4.43)

where the number of jth-level nearest-neighbours ni j now has to be determined numerically for
the specific core-shell system in investigation.

Fig. 4.14 illustrates the variation of the second-order anisotropy constant K1 per atom
against the core size R at low temperature. Two fits are also shown for comparison: first an
fit from the analytic model using an effective uniaxial anisotropy keff

u which is described by
Eq. (4.43), and second a fit that excludes the contribution of the A1-phase shell which is derived
from Eq. (4.38) and Eq. (4.40). The form of the variation is seen to be a combination of both the
2-ion and in-plane single-ion anisotropies. For small core size R, the anisotropy is dominated by
the in-plane anisotropy and increases from a small negative value as the larger 2-ion term begins
to dominate. Rather than reaching an asymptotic value, the second-order anisotropy increases
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Fig. 4.14 The variation of the second-order anisotropy constant K1 per atom with the core size
R: symbols are the numerically determined data from the atomistic simulations; the solid blue
line is the fit by the described analytic model using an effective uniaxial anisotropy keff

u ; the
solid brown line is the fit without the contribution of the A1-phase shell; and the dashed brown
line is the known value for bulk k2ion in literature.

monotonically as the loss of anisotropy at the surface decreases relatively in importance. A
further remark can be made is that without the contribution of the A1-phase shell, which gives to
the fourth-order anisotropy in the simulated core-shell system, the second-order anisotropy K1

will increase asymptotically, converging to the well-known value of the bulk 2-ion anisotropy
kion of L10-FePt. Overall, the agreement is excellent, thus validating the formulation of the
effective uniaxial anisotropy keff

u term.

4.5.3 The fourth-order anisotropy and its behaviours

Using the aforementioned definition of the effective uniaxial anisotropy keff
u , the fourth-order

anisotropy from Eq. (4.39) and incorporating the in-plane component can now be expressed as:

K2 =
(keff

u Nc)
2

JNint

(
1− Nc

Ntot

)2(
1− Nint

Nc
−

kip

keff
u

)2

, (4.44)
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and consequently, the ratio K2/K1 from Eq. (4.41) becomes:

K2

K1
=

(keff
u Nc)

JNint

(
1− Nc

Ntot

)2(
1− Nint

Nc
−

kip

keff
u

)
. (4.45)

Calculations from the analytic model following Eq. (4.44) and Eq. (4.45) are compared with
computational results in Fig. 4.15 and Fig. 4.16 respectively. Fig. 4.15 shows the variation of
the the fourth-order anisotropy, per atom, with the core size R. Both analytic and numerical
variations are of similar form: non-monotonic with a peak at R ≈ 0.55. The agreement for
R > 0.5 is extremely good, whilst for R < 0.5 the K2 values appear to be slightly over-estimated
by the analytic model. Nonetheless the overall agreement is highly satisfactory. Similar verdicts
are clear by inspection of the data of Fig. 4.16 which shows the dependence of the ratio K2/K1

on the core size R. The overall good agreement between the numerical results supports the
hypothesis that the fourth-order anisotropy arises from the core/shell spin canting and the
exchange energy contribution at the core/shell interface.

Fig. 4.15 The variation of the fourth-order anisotropy constant K2 per atom with the core size
R: symbols are the numerically determined values from atomistic simulations and the solid line
is the predicted analytic fit.

Furthermore, the scaling exponent 2 ⪅ β ⪅ 3 of the fourth-order anisotropy K2 to mag-
netisation seen before can now be explained as follows. Eq. (4.44) essentially expresses the
relation K2 ∝ (keff

u )2/J in which it has been established that keff
u ∝ (M/Ms)

2.1 - following the
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Fig. 4.16 The variation of the K2/K1 ratio with the core size R: symbols are the numerically
determined values from atomistic simulations and the solid line is the predicted analytic fit.

same well-known scaling relation of the bulk 2-ion anisotropy k2ion - and J ∝ (M/Ms)
2 via

mean-field calculations [64, 121]. The final scaling, therefore, results in K2 ∝ (M/Ms)
2.2 thus

leading to a scaling exponent β ≈ 2.2 in good agreement with computational results obtained
from the core-shell simulation. Finally, extreme deviations from the analytic model seen in the
two boundary values of core size R = 0.05 and R ≧ 0.90 can be explained from the inherent pe-
culiarities of their respective grain structures. In the R = 0.05 case, the L10 core is so small that
it consists of a single Fe atom which means the 2-ion anisotropy component of the L10 phase
has been completely eliminated, leaving the core with just the negative in-plane single-site local
anisotropy of Fe - thus explaining the negative value of K1/K1 at R = 0.05 seen in Table A.3 of
Appendix A. Meanwhile, for the R ≧ 0.90 case, the A1 shell is so thin that has exactly one or
two atomistic layers, hence invalidating the fundamental premise of the analytic calculations
which assumes interactions up to the 3rd-level of nearest neighbours. Therefore, as seen in
Fig. 4.10, the scaling exponent β of the R ≧ 0.90 case was seen to increase exponentially out
of the normal 2 ⪅ β ⪅ 3 range for other core sizes, albeit still significantly different from the
Callen-Callen prediction of β = 10 for the fourth-order anisotropy.
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4.6 Summary

In this Chapter, a comprehensive study of higher-order anisotropy of FePt has been presented
via a thorough investigation of a L10/A1-FePt core-shell system. A non-negligible new fourth-
order anisotropy term has been found to exist which exhibits a strong dependence on the
system geometry. The origin of this fourth-order anisotropy is ascribed to a combination of
the canting of the core and shell magnetisation and of the exchange coupling occurring at
the core/shell interface. Additionally, the new fourth-order anisotropy constant is found to
scales with (M/Ms)

2.2, thus conclusively does not conform with the Callen-Callen power law.
An analytic model has been formulated to explain the behaviours of this new fourth-order
anisotropy from which overall good agreements with simulation data have been achieved.
Overall, the findings presented in this Chapter provide substantial insights into a topic that
has otherwise been lacking attention. The significance of fourth-order anisotropy of L10-FePt
can potentially translate to an issue of consideration for HAMR-related applications of the
material because it is anisotropy that decides thermal stability of the writing medium. With
such justification, the core-shell structure and its properties will be carried onto a further
investigation of the switching probability of HAMR-applicable grains which will be presented
in the next Chapter 5.





5

HAMR switching efficiency in core-shell
L10/A1-FePt grain

Reducing the grain size still remains the main obstacle for the realisation of L10-FePt for
potential applications in Heat-Assisted Magnetic Recording (HAMR) because of reducing
thermal stability and, consequently, thermal writability. A specially constructed phase-coupled
L10/A1 core-shell structure has previously been demonstrated to enhance further the already
significantly strong magneto-crystalline uniaxial anisotropy of L10-FePt via the induction of an
additional fourth-order anisotropy component. Therefore, in this research we aim to implement
the said core-shell structure for a computational investigation of switching efficiency in a
simulated HAMR-applicable writing medium. Elongated, faceted cylindrical FePt grains are
created with three different configurations in order to account for the effect of finite-size and
surface disorder due to the surface segregation of Pt atoms. An external cooling magnetic
field and a laser pulse of varied duration replicating the intensive, highly localised heat-dot of
a typical HAMR write-head are applied to switch the spins. Simulation results demonstrate
that the switching efficiencies of FePt grains of all three tested configurations increase sharply
around the Curie temperature and finally saturate at a maximum probability lower than the
ideal 100%, which indicates the existence of a noticeable switching error rate. It is found that
reducing the grain size and using a shorter laser pulse induce higher switching error rate,
which are undesirable for HAMR functioning. However, these effects could be mitigated by
surface engineering – in this case the addition of a disorder A1 shell around the ordered L10

core in order to stabilise the magnetisation of the L10-phase.
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5.1 Motivation

A magnetic-recording writing medium generally consists of many grains of randomly dis-
tributed sizes, and the areal density of information bits that can be stored on it is ultimately
limited by the grain size. Therefore, the first step to increase areal density is to try to reduce the
mean and standard deviation of the grain size distribution [122]. Although L10-FePt has been
attracting significant attention for potential applications in Heat-Assisted Magnetic Recording
(HAMR), it still remains a challenging task to reduce grain size because of reducing thermal
stability and, consequently, thermal writability. Reducing the grain size has to be compensated
by enhancing magnetocrystalline uniaxial anisotropy in order to prevent information loss due
to thermally activated magnetisation reversal. In Chapter 4, the phase-coupled L10/A1-FePt
core-shell structure has been demonstrated to exhibit a very large uniaxial anisotropy which is
further strengthened by an induced fourth-order anisotropy component. Therefore, it is a natural
progression to implement the said core-shell structured FePt grain and examine computationally
its switching efficiency in a simulated HAMR-applicable writing media.

Fig. 5.1 An illustration of the energy barrier: (left) without the presence of an externally applied
magnetic field B, and (right) with the presence of an externally applied magnetic field. Source:
excerpt from [41].

The mechanism of thermally-induced spin switching at high temperatures is illustrated
by the energy barrier sketch in Fig. 5.1 which can be briefly explained as follows. In the
absence of an externally applied magnetic field and without the application of a heat pulse,
a system with uniaxial anisotropy exhibits two energy minima of similar magnitudes, and
thus the system can equally likely switch from one minimum state to another. Therefore, the
system magnetisation M under sufficient thermal excitation can end up in either the negative or
positive direction with equal probability. However, this balanced likelihood is lost when an
external magnetic field B is applied along the negative direction. The presence of such negative
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magnetic field reduces the energy barrier from the positively-orientated to the negatively-
oriented magnetisation, hence making it easier for the system spins to be flipped over to the
negative energy minimum. Consequently, the system magnetisation prefers to be aligned in the
negative energy minimum state. The consideration changes again, however, with the addition
of a heat pulse. If the peak temperature of the pulse is sufficiently high – which more than often
the case in typical HAMR writing since it involves heating up the writing medium close to the
Curie temperature of the material – the induced thermal energy can be sufficiently high for
the system magnetisation to overcome the larger energy barrier and cross back to the positive
energy minimum state. Then, if the subsequent cooling process occurs sufficiently fast – which
is achievable in pulses with narrow temperature widths – the system has no time to relax back
to the preferred negative energy minimum, thus remaining “blocked” in the positive energy
minimum with its magnetisation being oriented in the positive direction as opposed to the
negative direction of the externally applied magnetic field B. This effect, therefore, results in a
reduction in switching probability.

Evans et al. [12] investigated the thermodynamics of HAMR using a simplified case of
Heated-Dot Magnetic Recording. This is the limiting case of magnetic recording where HAMR
is used to write information on a single magnetic island. In this case it is straightforward to
calculate a Bit Error Rate (BER) and use this to investigate the limits of recording density.
The formulation of BER for Heated-Dot Magnetic Recording has been proposed by Evans et
al. [12] to be related to the thermal equilibrium magnetisation me of the system which is given
by:

me = tanh
(

µµ0Hwr

kBT

)
, (5.1)

where µ = MsV is the magnetic moment of the grain with Ms the material saturation magneti-
sation and V the grain volume, Hwr the writing magnetic field from the write transducer, T
the temperature, µ0 the vacuum permeability, and kB the Boltzmann constant. BER is then
mathematically expressed as:

BER =
1−me

2
= exp

(
−2µµ0Hwr

kBT

)
. (5.2)

The existence of the thermally-induced BER has extended the concept of writability, which
previously referred to only the magnetic field needed to switch the magnetisation. The thermal
writability of the medium can now be defined as the requirement to maintain sufficiently large
value of

(
µµ0Hwr

kBT

)
in order to avoid thermally driven switching failures and to achieve the

desired BER. Since the strength of the externally applied writing field Hwr is technologically
restricted, the more viable solution to reduce BER is by using material with large magnetic
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moment µ; and since increasing the grain volume is undesirable, this requirement effectively
translates to finding a material with high saturation magnetisation Ms. The introduction of
thermal writability, therefore, has extended the original magnetic trilemma to a quadrilemma.
In the case of current HAMR, where information is stored on many grains, the BER is not
straightforward and beyond the scope of this Thesis. However, the thermal writability is
nonetheless a limiting factor as being investigated here using the switching probability of
isolated grains after the HAMR process. Previous studies have shown that magnetic switching
in HAMR is constrained by many factors notably the duration of the applied pulse, the strength
of the externally applied cooling field, grain size etc. [2, 12, 65, 122–125]. The investigation
in this Chapter, therefore, focuses on the viability of core-shell structured sub-10 nm FePt
grains for HAMR applications, taking into account not only these factors but also the impact
of surface disorder via the effect of Pt surface segregation first introduced and discussed in
Chapter 4.

5.2 Simulation methods and settings

5.2.1 Three configurations of FePt grains

The same method to create an elongated, faceted cylindrical core-shell structure which has
been described in Chapter 4 is continued to be used for the construction of three different
configurations of FePt grains in this Chapter. The height elongation factor of 1.5 as well as
the fractional faceting radii of 1.00;1.05;1.00 along the [100], [110] and [111] lattice direction
respectively are still retained.

The investigation of switching efficiency is carried out with a deliberate intention to include
the effects of grain size - which in Chapter 3 has been shown to amplify the magnetisation
loss on the grain surface - as well as the effects of the presence of an A1-phase - which
in Chapter 4 has been demonstrated to induce an exchange-coupling effect with the L10-
phase. Therefore, three configurations of the simulated FePt grain - which are illustrated in
Fig. 5.2 - are carefully chosen as follows. The first configuration is a core-shell grain of 5.0
nm diameter with a core size R = 0.90. This core-shell structure is two-phased, consisting
of a 4.5 nm L10-core surrounded by an A1-shell of 0.5 nm total thickness - see Fig. 5.2(b).
The second configuration is then created by removing the A1-shell of the first configuration,
thus leaving only a standalone, single-phase L10 core of 4.5 nm diameter - see Fig. 5.2(a).
Lastly, the third configuration is just a slightly enlarged version of the second configuration
which again is a standalone, single-phase L10-core of 5.0 nm diameter - see Fig. 5.2(c). For a
convenient reference, the three simulated configurations of FePt grain will henceforth be termed
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Fig. 5.2 Jmol-visualised cross-sectional sketch of the three simulated configurations of FePt
grain: (a) L10 −45; (b) L10/A1−45/05; and (c) L10 −50. Pt atoms are coloured white (L10-
phase) and light grey (A1-phase); Fe atoms green (A1-phase) or brown (L10-phase).

"L10/A1−45/05", "L10 −45", and "L10 −50" respectively. These three grain configurations
allow for many useful cross-comparisons to be made: the effect of adding an A1-shell can be
examined between the L10/A1−45/05 and L10 −45, the effect of size between the L10 −45
and L10 − 50, and the effect of two-phase versus single-phase between the L10 − 50 and
L10/A1−45/05 both of which have the same grain volume but different phase-compositions.
The temperature-dependent behaviours of magnetisation M(T ) of the three grain configurations
are compared in Fig. 5.3. In case of the L10/A1−45/05 configuration, the magnetisation of
the L10-core - Mcore(T ) - is also plotted which, because of the induced exchange-coupling
effect with the low-magnetisation A1-shell consistent with results in Chapter 4, is shown to
exhibit higher magnetisation than that of the entire grain.

5.2.2 Application of a laser pulse and an external magnetic field

A VAMPIRE-generated laser pulse which imitates an intensive, highly localised heat-dot of a
typical HAMR write-head is applied to switch the spins in the core-shell grains, which initially
are set to align to the [001] lattice direction along the easy axis of the L10-phase, for very short
duration of time. This very short duration of time is controlled by the cooling time parameter
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Fig. 5.3 The Magnetisation M(T ) of each FePt-grain configuration. Note that for the L10/A1−
45/05 configuration the Mcore(T ) is also plotted which because of the coupling effect with the
A1 shell shows a higher magnetisation.

Fig. 5.4 A sampled temperature profile of a laser pulse of 1.0 ns cooling time and Tmax = 700 K
with Gaussian fit.
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τ . The values of cooling time of the laser pulse in this investigation are initially set to 0.2 ns
and 0.5 ns, and then later it is increased to 1.0 ns. The temperature profile of the laser pulse
assumes a Gaussian distribution shape consistent with previous studies [123, 125–127] which
can characterised by the equation:

T (t) = 300+(Tmax −300)exp

[
−(t −3τ)2

τ2

]
, (5.3)

where the constant 300 K refers to the initial ambient temperature when the laser pulse has
not been applied, and Tmax is the peak temperature of the laser pulse which in simulations is
assigned to vary from 400 K to 800 K in 10 K steps. This Gaussian temperature profile reaches
the peak temperature when t = 3τ . During the application of the heating laser pulse, a field
cooling process is implemented via an external magnetic field B of magnitude |B| = 0.8 Tesla
which is applied along the [001] lattice direction - i.e. against the initial magnetisation of the
grain [125]. The laser pulse will last for a duration of 6 times the corresponding cooling time. A
sampled temperature profile of a laser pulse having τ = 1.0ns and Tmax = 700K with Gaussian
fit following Eq. (5.3) is illustrated in Fig. 5.4.

In order to determine whether after the application of the laser pulse the spins in a simulated
grain have switched or not, it is required to perform a check if the orientation of the z-component
of the grain magnetisation - Mz - has changed. Initially the spins are orientated along the [001]
lattice direction thus Mz assumes positive values. At the very end of the duration of the laser
pulse, if the final orientation of Mz turns negative then the spins are concluded to have been
switched. Extra emphasis has to be given that for an accurate identification of switching, the
check must be done at the exact end of the laser pulse. During the laser pulse, an effect called
back-switching may occur in which Mz may flip multiple times, especially at temperatures
close to the Curie temperature TC of the grain, but only the final orientation of Mz at the very
end of the laser pulse will be the deciding factor. Examples of switching and non-switching
cases with and without instances of back-switching are illustrated in Fig. 5.5.

The laser pulse is applied with three different cooling times, τ = 0.2 ns; 0.5 ns; 1.0 ns. At
each cooling time, the peak temperature is varied between 400 K and 800 K in 10 K steps. At
each value of the peak temperature, the simulation is repeated for N = 100 trials with each
time the outcome being recorded as "1" if the spins have switched or as "0" if the spins have
not switched. The switching probability P, therefore, statistically takes form of a binomial
distribution and can be calculated by dividing the number of switched spins by the number of
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Fig. 5.5 Examples of switching and non-switching after the application of a laser pulse of 0.5 ns
cooling time: in (a) and (c) the spins have switched; in (b) and (d) the spins have not switched.
Note in (a) and (d) back-switching occurs multiple times during the duration of the laser pulse
but it does not change the final state of the spins.

total trials N = 100 with an uncertainty ∆P given by:

P =
Nswitched

N
=

Nswitched

100
,

∆P =
σ√
N

=
σ

10
,

(5.4)

where σ is the standard deviation of the switching probability distribution. Obviously, the
achievable switching probability described by Eq. (5.4) takes numerical values from 0 to 1.

5.2.3 Temperature rescaling

The investigation in this Chapter aim to imitate the real conditions of a grain in a HAMR-
applicable writing media. Therefore, it is necessary to modify the behaviour of the magneti-
sation curves M(T ) obtained from atomistic simulation to be closer to experimental data in
order to enable more quantitative predictions of the temperature-dependent magnetisation. To
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achieve this purpose, temperature rescaling - the method which has been discussed in Chapter 2
- is applied to the L10 phase of each simulated grain configuration - which means to the en-
tire grain of the single-phase L10 −45 and L10 −50 but only to the L10-core of the two-phase
L10/A1− 45/05. It has to be noted that temperature rescaling cannot be applied to the A1
phase yet because of a lack of referable experiment data in literature which is prerequisite for
the estimation of the scaling exponent of the A1 phase.

Temperature rescaling in VAMPIRE requires the input of two parameters: the Curie
temperature TC obtained from atomistic calculation and a scaling exponent α . The calculation
of the Curie temperature follows the same susceptibility-peak method previously described
in Chapter 3. The value of Curie temperature for each configuration of the simulated grain,
averaged out after 10 trials, are given in Table 5.1. The other parameter, the scaling exponent α ,
has to be derived from fitting to experiment measurements of the magnetisation. Unfortunately,
in the case of L10-FePt, the availability of reliable sources has been rather limited. In these
simulations, α is chosen to be α = 1.75 which is estimated from Thiele et al. [118] and
Okamoto et al. [66] and consistent with previous computational studies [127]. The application
of temperature rescaling modifies the gradient of the temperature-dependent magnetisation
curve - an effect illustrated in Fig 5.6 in which the gradients of M(T ) in the vicinity of the Curie
temperature have become discernibly steeper whilst significantly flatter at low temperatures.
For reference, computational data obtained from atomistic simulations will have an indicator
"rescaled" attached if temperature rescaling is applied, or "atomistic" if not.

Configuration TC(K) of the L10-phase
L10/A1−45/05 685
L10 −45 696
L10 −50 693

Table 5.1 The Curie temperature TC of the L10-phase of each configuration of the simulated
FePt grain.

5.2.4 The Spin Hamiltonian

The Spin Hamiltonian incorporates the same truncated exchange interaction and 2-ion anisotropy
models, thus re-assuming the same forms as previously described in Chapter 4, with the only
modification being that a non-vanishing field term Hfield representing the contribution of the
externally applied magnetic field B now has to be included which induces a torque proportional
to Mx and My. The explicit expressions of the Spin Hamiltonian, which has now been fully
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(a) L10/A1−45/05

(b) L10 −45

(c) L10 −50

Fig. 5.6 The effect of temperature rescaling on the magnetisation of the L10-phase of the three
FePt-grain configurations. The magnetisation gradient becomes steeper around the TC region.
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expanded to include all three major energy contributors, therefore can be written as follows:

Hcore =−1
2 ∑

i, j∈core∗

(
Ŝi
)T Ji jŜ j − kL10

loc ∑
i∈core

(Ŝz
i )

2 − 1
2 ∑

i, j∈core

(
ŜT

i
)zK2ionŜz

j,− ∑
i∈core

µi(Ŝi ·B),

(5.5)
and where applicable:

Hshell =−1
2 ∑

i, j∈shell

(
Ŝi
)T Ji jŜ j − kA1

loc ∑
i∈shell

(Ŝz
i )

2 − ∑
i∈shell

µi(Ŝi ·B). (5.6)

Here, as before, Ŝi and ŜJ are spin unit vectors. The notation i, j ∈ core∗ of the first summation
in Eq. (5.5) accounts for exchange interactions not only in the core but also across the core/shell
interface as well. The superscript z, where applicable, denotes z-dimension part of the spins.
The superscript T , where applicable, denotes the transpose of the spin matrix. The local, single-
site anisotropies kloc of the each phase, indicated by the respective superscript, are assigned
numerical values of kA1

loc = 0 [110] and kL10
loc =−0.097 meV/link =−1.552×10−23 J/link [67].

The atomic spin moment µi takes value of µS = 3.23µB - with µB = 9.274×10−24 J/T being
the Bohr magneton constant, and the externally applied magnetic field B = (0,0,−0.8) is fixed.
Ji j and Ki j are respectively the exchange energy and the 2-ion anisotropy tensors between
neighbouring spins (i, j) with components Jα

i j and Kα
i j where α = 1,2,3 being the neighbouring

shell to which the spin belongs. The calculations of Jα
i j and Kα

i j have been presented in detail in
Chapter 5, and their values are recalled to be given by:

J1
xyz = 2.1428571×10−21 J/link

J2
xyz = 3.0000000×10−21 J/link

J3
xyz = 1.1785714×10−21 J/link,

(5.7)

and

K1
z = 1.9026667×10−23 J/link

K2
z = 1.3590476×10−23 J/link

K3
z = 7.4747611×10−24 J/link.

(5.8)

5.2.5 Other parameters

The simulations in this Chapter are performed by the VAMPIRE code using a Metropolis Monte-
Carlo integrator which has been discussed in Chapter 2 and first applied in Chapter 3. Magnetic
and Monte-Carlo parameters are imported from the core-shell simulations in Chapter 4 with one
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Parameter Notation Unit L10-phase A1-phase
Damping Constant ζ 0.05 0.05
Atomistic Spin Moment µs µB 3.23 3.23
Local anisotropy kloc J/atom −1.55×10−23 0
2-ion anisotropy k2ion J/atom 2.23×10−22 0
Total Exchange Strength J0 J/link 3×10−21 3×10−21

MC Equilibration step 2×105 2×105

MC Total step 8×105 8×105

Table 5.2 VAMPIRE parameters for the switching efficiency investigation.

exception that the Gilbert damping constant ζ is now reduced to 0.05 closer to experiment [128].
For a summary, simulation parameters are tabulated in Table 5.2 and a sampled VAMPIRE input
is given in Appendix B. The investigation of switching efficiency in this Chapter, therefore, can
be viewed as a natural progression from previous Chapters which is built on already established
results and combines previously discussed features.

5.3 Results and discussion

Simulations are carried out for three FePt-grain configurations - the L10/A1−45/05, L10−45,
and L10 −50. For each configuration, a laser pulse of three different cooling times τ of 0.2ns,
0.5ns, and 1.0ns is applied sequentially. First, the switching probability for each setting is
presented both with and without temperature rescaling, from which the overall behaviours and
the saturated switching probability in relation to the aforementioned BER can be discussed. It
should be noted that since the faster switching cases already showed the effect of temperature
rescaling, the 1.0ns-cooling data were calculated only for the more realistic rescaled case.
Next, the effect of varying cooling time of the applied laser pulse as well as of different grain
configurations on the saturated switching probability and on the blocking temperature are
quantitatively analysed, which will lay the groundwork for future tasks.

5.3.1 Effects of temperature-rescaling on switching behaviour

The switching probability of each setting calculated from computational simulation following
Eq. (5.4) is presented in Fig. 5.7, Fig. 5.8, and Fig. 5.9 from which two major observations
can be made. First, applying temperature-rescaling is clearly seen to have a significant impact
on the switching probability. The temperature-rescaled gradient of the temperature-dependent
magnetisation M(T ) at lower temperatures, especially around the Curie temperature TC region,
displays a significantly lower blocking temperature - where spin switching starts to happen -



5.3 Results and discussion 101

and a much steeper transitional gradient at the TC vicinity. The non-rescaled atomistic data,
on the other hand, display a more jagged, gradual change over wider transitional temperature
widths. An implication which follows from this comparison is that rescaled data indicates
a requirement of higher peak temperature of the applied laser pulse to achieve comparably
high switching probability - thus comparably low switching error rate. Since in literature,
comprehensive studies of effect of applying temperature-rescaling in atomistic simulations have
been rather lacking, this observation would necessitate further investigations to be validated.
Nonetheless, since the rescaled temperature calculations reproduce the experimental M(T )
curves this is an important observation for HAMR simulations.

The second observation is that the saturated switching probabilities of all cases do not
converge to the ideal 100% even at very high temperatures well above the Curie temperature.
This is a direct evidence for the existence of a non-negligible switching error rate in atomistic
simulations which has been observed in many previous studies [2, 12, 41, 123, 125, 126, 129].
The post-TC behaviours of the probability curve are clearly shown to depend on the cooling time
of the applied laser pulse and the specific grain configuration, both of which will be analysed
in the forthcoming sections. Theoretically, the probability curves can be fit by a cumulative
distribution function (CDF) [41, 123] defined as:

f (x) =
Pmax

2

[
1+ erf

(
x−µ

σ
√

2

)]
, (5.9)

where Pmax is the saturated switching probability, σ defines the width of the transition and µ

the mean transition temperature. Additionally, the error function erf(x) is given by evaluating
the integral:

erf(x) =
2
π

∫ z

0
exp(−t2)dt. (5.10)

In the ideal case where back-switching is negligible, the saturated switching probability Pmax

should reach 100% with a narrow transition width. In fact, thermal and finite-size induced
effects lead to a relatively wide transition of 15 K - 30 K and the switching probability saturating
to less than the ideal 100% - both these properties have been fully reproduced in Fig. 5.7,
Fig. 5.8, and Fig 5.9.

5.3.2 Effects of cooling time on switching behaviour

The effects of varying the cooling time tcool of the applied laser pulse, for a convenient
comparison, are demonstrated in Fig. 5.10, Fig. 5.11, and Fig. 5.12 for the L10/A1−45/05,
L10 −45, and L10 −50 grain configuration respectively. In any setting, the same conclusion is
reached that increasing cooling time improves switching probability by a significant amount.
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(a) L10/A1−45/05

(b) L10 −45

(c) L10 −50

Fig. 5.7 Switching probabilities of three FePt-grain configurations when the laser pulse is
applied with cooling time τ = 0.2 ns: (a) L10/A1− 45/05, (b) L10 − 45, and (c) L10 − 50.
Completed "rescaled" and "atomistic" data-sets are shown for comparison.
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(a) L10/A1−45/05

(b) L10 −45

(c) L10 −50

Fig. 5.8 Switching probabilities of three FePt-grain configurations when the laser pulse is
applied with cooling time τ = 0.5 ns: (a) L10/A1− 45/05, (b) L10 − 45, and (c) L10 − 50.
Completed "rescaled" and "atomistic" data-sets are shown for comparison.
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(a) L10/A1−45/05

(b) L10 −45

(c) L10 −50

Fig. 5.9 Switching probabilities of three FePt-grain configurations when the laser pulse is
applied with cooling time τ = 1.0 ns: (a) L10/A1− 45/05, (b) L10 − 45, and (c) L10 − 50.
Completed "rescaled" and "atomistic" data-sets are shown for comparison.
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Heating using laser pulse with longer cooling time is shown to not only push the achievable
saturated probability closer to the ideal 100%, thus reducing switching error rate, but also
to minimise post-transition fluctuations, hence stabilising the final switching error rate. This
conclusion is consistent with previous studies [125, 41, 129]. Physically, longer cooling times
leave more time for the spins to relax back to the correct state, thus lowering the chance of
being blocked in the wrong state. However, unfortunately, the use of a longer-time laser pulses
is against the progression of HAMR which naturally aims for achieving faster writing time. In
order to find a solution to this dilemma, it is necessary to take into consideration the effects of
grain configurations on switching behaviour.

5.3.3 Effects of grain configurations on switching behaviour

The effects of grain configurations on switching behaviours, for convenient comparison, are
illustrated in Fig. 5.13 and 5.14 for rescaled and non-rescaled atomistic data respectively. It
can be seen for all tested cooling times that out of all three simulated grain configurations,
the L10 −45 exhibits the worst switching behaviour in terms of both the saturated switching
probability and post-TC switching stability. Since this configuration is a bare L10-core of
smallest size, finite-size effects are, as having been demonstrated previously in Chapter 3, the
strongest. The most obvious remedy to finite-size effects, consistent with results in Chapter 3,
is simply to increase the grain size. The effectiveness of this solution is confirmed by data of
the L10−50 configuration which demonstrate discernibly improved switching behaviour. More
remarkably, a still better alternative is observed in the remaining L10/A1−45/05 configuration
which is found to exhibit the best switching behaviour of all three tested configurations. The
implication, consequently, seems to be that adding a 0.5 nm-thick layer of A1-phase seems to
be more effective than adding an equivalent 0.5 nm-thick layer of L10-phase. The presence
of an A1-shell, therefore, seems to "protect" and stabilise the magnetisation order of the L10

core more effectively via the interface-induced exchange-coupling effect already discussed in
Chapter 4, thus resulting in a more appreciable improvement of the overall switching behaviour.

5.3.4 Effects of grain configurations on the blocking temperature

Fig. 5.13 and Fig. 5.14 also present another interesting observation in regard to the blocking
temperatures exhibited by the three grain configurations. The blocking temperature TB derived
from Néel-Arrhenius equation [27] is expressed as:

TB =
KV

kB ln
(

τm
τ0

) , (5.11)
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(a) Without temperature-rescaling

(b) With temperature-rescaling

Fig. 5.10 The impact of varying cooling time of the applied laser pulse in the L10/A1−45/05
grain configuration: (a) atomistic data; and (b) temperature-rescaled data.
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(a) Without temperature-rescaling

(b) With temperature-rescaling

Fig. 5.11 The impact of varying cooling time of the applied laser pulse in the L10 −45 grain
configuration: (a) atomistic data; and (b) temperature-rescaled data.
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(a) Without temperature-rescaling

(b) With temperature-rescaling

Fig. 5.12 The impact of varying cooling time of the applied laser pulse in the L10 −50 grain
configuration: (a) atomistic data; and (b) temperature-rescaled data.
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(a) tcool = 0.2ns

(b) tcool = 0.5ns

(c) tcool = 1.0ns

Fig. 5.13 The effect of grain configurations on the switching probability for varying cooling
time of (a) 0.2 ns, (b) 0.5 ns, and (c) 1.0 ns. Data are temperature-rescaled.



110 HAMR switching efficiency in core-shell L10/A1-FePt grain

(a) tcool = 0.2ns

(b) tcool = 0.5ns

(c) tcool = 1.0ns

Fig. 5.14 The effect of grain configurations on the switching probability for varying cooling
time of (a) 0.2 ns, (b) 0.5 ns, and (c) 1.0 ns. Data are not temperature-rescaled.
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where the product KV with K being the magneto-crytalline anisotropy density and V the grain
volume is the volume anisotropy, kB the Boltzmann constant, τm the measurement time which
in this case is equal τN the Néel relaxation time, and τ0 the characteristic attempt time of order
τ0 ≈ 10−9 −10−10 s. From this relation, the blocking temperature is decided by the volume
anisotropy KV .

A comparison of switching probability between the L10/A1− 45/05 and L10 − 45 con-
figurations seems to conform to the prediction of Eq. (5.11). Previous results in Chapter 4
shows that in the L10/A1−45/05 configuration the exchange-coupling effect between the L10

with the A1-phase induces a fourth-order anisotropy component, although for the particular
grain core size R = 0.90 this fourth-order anisotropy is of extremely small magnitude. Since
the anisotropy in Chapter 4 is calculated from fitting to the system torque, it is the volume
anisotropy KV of the entire system. Therefore the L10/A1−45/05 and L10 −45 grains can be
deemed to have similar KV . Simulation results confirms that the L10/A1−45/05 and L10−45
configurations exhibit almost the same blocking temperatures, an effect especially pronounced
at the longest cooling time of 1.0 ns. At shorter cooling times, the blocking temperatures of the
two configurations are observed to start to diverge slightly, although not yet conclusively. If
this observation is to be validated, a possibility can be suggested that at smaller cooling times
the magnetic spin moment MsV might start to have a more significant impact which can slightly
alter the blocking temperatures of the L10/A1−45/05 and L10 −45 configuration.

Comparison between the L10/A1−45/05 and L10 −50 configurations, on the other hand,
is rather questionable. The volume anisotropy KV of the L10 −50 grain is just slightly higher
than that of the L10/A1−45/05 because of the replacement of the very thin low-anisotropy
A1 phase in the former by the higher-anisotropy L10 phase. However, for the cooling time
of 1.0 ns the blocking temperature of the L10 −50 grain is shown to be significantly higher
than that of the L10/A1−45/05, with the estimated difference to be approximately 50 K. This
effect persists at shorter cooling times of 0.5 ns and 0.2 ns as well, albeit with reduced disparity.
Again, the previously mentioned manifestation of MsV at shorter cooling times might need to
be taken into consideration here.

5.4 Further remarks and summary

An important conclusion that can be drawn is that for the implementation of a L10-FePt grain of
a significantly reduced size, such as those tested in this Chapter, thermally-induced switching
error rate is inevitable and non-negligible, especially with the application of a faster laser pulse
as is desirable for HAMR. The hints to a solution, however, have been found in form of surface
engineering via the addition of a disorder A1 shell around the ordered L10 core in order to
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stabilise the magnetisation of the L10-phase. Remarkably, it appears that enclosing the L10

core by a layer of A1 phase seems to improve switching probability more effectively than
increasing the size of the said L10 core by an equivalent amount. A possible explanation is
that the additional L10 phase, whilst enhancing thermal writability via increasing the MsV H
factor, also increases the volume anisotropy KV which increases the blocking temperature - as
seen for the L10 −50 grain configuration. On the other hand, adding the A1 phase enhances
thermal writability comparably without increasing the blocking temperature - as seen for the
L10/A1−45/05 grain configuration. Overall, the interplay between the role of MsV and KV
has been seen to be a subtle effect which will necessitate further investigation in the future.

A very promising option for future consideration is to incorporate into the existing L10/A1-
FePt core-shell structure, in addition to the soft-magnetic A1-FePt, an extra material of high
Curie temperature which can further stabilise the L10-phase magnetisation order through the
proximity effect [126, 127]. The combination of a high-anisotropy hard-magnetic material
with a soft-magnetic material of higher Curie temperature but lower anisotropy has been
demonstrated to trigger magnetisation reversal through a high-temperature exchange spring and
such combination structures are known as exchange-coupled composite (ECC) media [130].
An optimised ECC-structured composition with 20% soft magnetic and 80% hard magnetic
material has been reported to achieve a remarkable switching efficiency higher than 99.2% [131].
A notable candidate for such additional soft-magnetic material is Iron, which has been explored
substantially in literature [127, 129, 131, 132]. An ECC medium consisting of a soft-magnetic
Fe layer on top of the hard-magnetic L10-FePt layer has been reported to reduce thermally-
induced switching error rate and to activate switching at lower temperatures [132–134]. All
these considerations have been discussed and left open for implementation in the future.
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Conclusions and further works

The Thesis has presented a comprehensive investigation of the two outstanding challenges
which are still blocking the path toward the realisation of L10-FePt in HAMR recording media.
These two challenges, interestingly, relate directly to the key magnetic qualities of L10-FePt
which have made the material particularly promising for HAMR applications in the first place.
The first challenge is the well-known size-dependent dispersion of the Curie temperature of
the material, which because of the inevitable grain size distribution in any recording media
presents a serious potential limitation of the thermal stability of HAMR. The second challenge
is the existence and magnitude of higher anisotropies in the material due to phase-coupling
effects, which has been shown in literature to be intrinsic to the fabrication of FePt grains.
Any further enhancement to the already very strong uniaxial anisotropy of the material will
have a direct impact on the switching chance of the grain magnetisation and consequently the
switching error rate. In the following, the key findings of each result Chapter will be recapped
from which an overall conclusion can be drawn.

Chapter 3 addresses the influence of finite-size effects on the Curie temperature dispersion
of L10-FePt, the first of the two aforementioned challenges. Numerical simulations are able to
reproduce the well-known size-dependence of the Curie temperature especially the rapid drop at
smaller grain sizes. In order to explain this drop, besides the expected contribution from surface
disorder due to the loss of exchange coordination at the grain surface, a deeper analysis of
layer-resolved and cross-sectional magnetisation profiles in each grain reveals the propagation
of surface disorder into the grain bulk which further amplifies the overall magnetisation loss.
This propagation effect is found to become pronounced when the grain size is reduced to the
sub-4 nm range. An analytic model is formulated to separate the two contributions from which
a penetration depth characterising the propagation of surface disorder into the grain is defined.
For small-sized grain, the decrease in magnetic order due to state energy renormalisation can
no longer be compensated for by a fully-ordered central core. In this regime, therefore, the
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state energy renormalisation becomes the dominant contributor leading to a rapid collapse of
the grain magnetisation and consequent an increased dispersion of the Curie temperature as
observed. The analytic model is strongly supported by comparable mean-field calculations and
is subsequently shown to be valid for different lattice structure beyond the L10-FePt. The results
presented in this Chapter, overall, affirm that finite size effects will become an increasingly
important consideration for the aim of decreasing grain size in magnetic recording. Also, the
results suggest that the Curie temperature dispersion in smaller-sized grains can be alleviated
by an appropriate exchange-coupling composition in which the exchange-coupling between
a low TC hard material such as FePt with a high TC material would help to reduce the loss of
magnetic order through the proximity effect.

Chapter 4, in turn, explores the second challenge which is the pending question about
the existence and behaviours of higher-order anistrotropies in L10-FePt. A previous study
has found that in experimental L10-FePt grains the Pt atoms tend to segregate toward the
grain surface, thus heavily compromising the atom composition and effectively converting the
grain surface to the disordered A1-phase. To replicate this effect, a phase-coupled core-shell
structured L10/A1-FePt system is computationally constructed and simulated from which a
non-negligible fourth-order anisotropy is found to exist. This fourth-order anisotropy exhibits
strong dependence on the system geometry and size of the L10 phase since its magnitude in
relative to the second-order anisotropy is found to follow a non-monotonic pattern unseen in
previous literature. Furthermore, a close examination shows that the scaling of the fourth-
order anisotropy to magnetisation returns a scaling exponent of approximately 2.2 which is
a remarkable departure from the classical Callen-Callen power law which instead predicts a
scaling exponent of 10. An analytic model is then formulated to study the origin and behaviours
of the new fourth-order term which achieves excellent agreement with numerical data. First,
the origin of the fourth-order anisotropy is ascribed to a combination of the canting of the
core/shell magnetisation and of the induced exchange coupling at the core/shell interface.
Second, the derived expression of the fourth-order anisotropy from the analytic model relates
it to the second-order anisotropy and the exchange interaction strength, which subsequently
successfully explains the deviation of the obtained scaling exponent from the Callen-Callen
power law. Overall, the results of this Chapter provide substantial insights into a topic that has
otherwise been lacking attention, as well as solid justifications for further investigations of the
core-shell structure in HAMR-applicable recording media.

Chapter 5 is built on the foundation laid by the previous two Chapters in which the
knowledge gained from the impact of finite-size effects as well as the existence and behaviours
of the fourth-order anisotropy in the phase-coupled core-shell structured L10/A1-FePt grains
are combined for an investigation of the feasibility of such grains for a HAMR-applicable
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recording medium. Although available data at this stage are yet sufficient to reach a conclusive
verdict, which indicates the need for further work in the immediate future, two substantial
observations can already been made. First, a thermally-induced switching exists which has
been demonstrated to be inevitable and non-negligible. Reducing the grain size and using
shorter heating pulses seem to worsen this switching error rate. Second, an interesting solution
has been found in surface engineering of which evidences at this stage suggest would be able
to yield an even better switching efficiency than increasing the grain size. This observation, if
true, will potentially uncover many promising future directions for the research.

Overall, it is still a long way to go for the optimisation of L10-FePt for HAMR recording
media. The material, whist still fascinating and exhibiting many key qualities necessary for
an efficient HAMR functioning, is not yet ready for an economically and technologically
feasible implementation. The Thesis, nevertheless, has contributed in several aspects to the
understanding of not just L10-FePt as a material but also the underlying physics of the broader
field. However, the studies do not end here; instead many questions are still left open as well as
possibilities remained to be explored further, with many more promising discoveries awaiting
to be made. A list of further developments stemmed from the research presented in this Thesis
is discussed in the follows.

• The investigation of finite-size effects in L10-FePt: The investigation presented has
been restricted to parallelepiped-shaped grains only because of the limitations of the
VAMPIRE code version at that time. New features can be developed and implemented
into the VAMPIRE code which enable the extraction of layer-resolved and cross-sectional
magnetic properties for grains of different shapes - amongst which most notably the
cylindrical and voronoi-structured grains. The randomly-generated voronoi shape is of
particular interest since it offers the highest degree of surface irregularities which can
set up a much stronger test for the correlation proposed between the Curie temperature
dispersion and the surface magnetisation loss due to missing exchange coordination.
However, it is also quite challenging to apply the same method to study the voronoi
structure because of the lack of clear layers. Another interesting idea once discussed is
to investigate the discovered propagation of surface disorder from a different dimension.
In the ideal scenario if the necessary computational capabilities are all made available, a
three-dimensional - instead of the presented one and two-dimensional - magnetisation
profile can be hoped to be obtained which can provide a much more complete and
accurate description of what really happens to the magnetisation inside the grain. This,
if can be achieved, is essential for the derivation of a general mathematical expression
which can quantify precisely the contribution of each individual part of the grain to the
overall magnetisation.
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• The investigation of higher-order anisotropy in core-shell L10/A1-FePt: Although the
content of this Chapter is rather complete, a question still remains about the accuracy
of the analytic model in the specific core size range 0.05 ≤ R ≤ 0.45 where analytic
predictions are seen to be slightly higher than numerical data. Furthermore, the validity
of the analytic model in more complex systems is a very exciting aspect to be explored.
Especially, since a possibility has been proposed in Chapter 5 to add an extra layer of Fe
around the core-shell L10/A1-FePt to improve magnetisation order stability, an immediate
idea would be extending the analytic model to a three-layer system incorporating the
third exchange-coupling material with high Curie temperature but lower anisotropy.

• The investigation of switching efficiency of core-shell L10/A1-FePt: The previously
discussed interplay between MsV and KV , especially the role of MsV , requires further
examination, for example adding additional layer with zero-anisotropy which seems to
help reduce the back-switching as is expected in terms of the model of Evans et al. [12].
Additionally, the aforementioned solution of grain surface engineering solution can be
further explored. The current plan is to modify the existing core-shell structure to an
exchange-coupled composite structure via the addition of an extra material with high
Curie temperature, with a prominent choice being Fe because of the high availability of
previous studies for this material in literature.

• The investigation of temperature-rescaling effects in atomistic simulations: Finally, it is
time to address the pending question on the effects of temperature-rescaling in atomistic
simulations. The main issue is that the temperature-rescaling exponent can only be
derived from fitting to available experimental data, which in literature have been very
lacking. Throughout the simulations in Chapter 5, a temperature-rescaling exponent
of 1.75 has been applied. However, higher values have been suggested which would
induce more drastic modifications to temperature-dependent magnetisation curve: a
much flatter gradient below the Curie temperature and a much steeper drop close to the
Curie temperature. Both of these effects, as already seen in available data presented, will
alter the blocking temperature of each grain configuration and therefore might help to
clarify the inconsistencies in their comparisons. Otherwise, the possibility mentioned in
Chapter 5 about the role of the volume magnetisation MV to the blocking temperature at
shorter cooling times might need to be seriously considered and investigated.
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Simulation data tables

A.1 The grain size-dependent Curie temperature variation

D (nm) modified-sc fcc bcc
1.088 463±5 514±5 449±5
1.632 544±5 584±5 547±5
1.904 570±5 600±5 573±5
2.448 600±5 625±5 605±5
2.992 615±5 635±5 622±5
3.536 628±5 640±5 635±5
4.080 635±5 645±5 640±5
4.624 641±5 650±5 645±5
4.896 645±5 650±5 645±5
5.440 649±5 655±5 650±5
5.984 651±5 655±5 652±5
6.528 653±5 655±5 655±5
7.072 655±5 658±5 655±5
7.616 655±5 660±5 655±5
7.888 657±5 660±5 655±5
8.432 658±5 660±5 660±5
8.976 660±5 660±5 660±5
9.520 660±5 660±5 660±5

10.064 660±5 660±5 660±5

Table A.1 The Curie temperatures - in Kelvin, to 3 significant figures - of each grain size D
for each simulated lattice structure. Note that since the temperature resolution in simulations
is set at 5 K, the uncertainty is assigned whichever larger between statistical uncertainty and
temperature resolution. Data are plotted in Fig. 3.7 of Chapter 3.
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A.2 The correlation between the Curie temperature drop
and atomistic bond loss

D (nm) ∆nsc
bb ∆T sc

C ∆n f cc
bb ∆T f cc

C ∆nbcc
bb ∆T bcc

C

1.088 14.6 31.4 15.5 22.8 23.7 32.8
1.632 10.8 19.3 11.2 12.3 17.1 18.2
1.904 9.6 15.5 9.9 9.9 15.1 14.2
2.448 7.9 11.1 8.1 6.2 12.4 9.5
2.992 6.8 8.8 6.9 4.7 10.5 7.0
3.536 6.0 6.8 6.1 3.9 9.3 5.0
4.080 5.4 5.8 5.5 3.2 8.3 4.2
4.624 4.9 5.0 5.0 2.4 7.6 3.5
4.896 4.7 4.3 4.8 2.4 7.3 3.5
5.440 4.4 3.7 4.5 1.7 6.8 2.7
5.984 4.1 3.5 4.2 1.7 6.3 2.5
6.528 3.9 3.1 3.9 1.7 6.0 2.0
7.072 3.7 2.8 3.7 1.2 5.7 2.0
7.616 3.5 2.8 3.6 0.9 5.4 2.0
7.888 3.5 2.6 3.5 0.9 5.3 2.0
8.432 3.3 2.4 3.3 0.9 5.1 1.2
8.976 3.2 2.1 3.2 0.9 4.9 1.2
9.520 3.1 2.1 3.1 0.9 4.7 1.2

10.064 3.0 2.1 3.0 0.9 4.6 1.2

Table A.2 The percentage atomistic bond loss ∆nbb and Curie temperature reduction ∆TC at
each grain size D for each simulated lattice structure - rounded up to 1 decimal. The superscript
indicates the lattice type. Data are plotted in Fig. 3.15 of Chapter 3.

A.3 The core size-dependent magnitude of the fourth-order
anisotropy

This Section provides the tabulated core size-dependent percentage magnitude of the fourth-
order anisotropy in relative to the second-order anisotropy, K2/K1, at T = 10 K. A negative
K2/K1 is obtained at the extreme case R = 0.05 in which the L10 core consists of a single Fe
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atom, thus the 2-ion anisotropy is completely eliminated leaving only the negative single-site
local anisotropy.

R K2/K1 (%)
0.05 -0.04
0.10 1.47
0.15 3.52
0.20 5.81
0.25 8.72
0.30 12.19
0.35 14.69
0.40 17.81
0.45 19.88
0.50 22.41
0.55 22.28
0.60 21.47
0.65 19.98
0.70 18.18
0.75 16.17
0.80 12.49
0.95 9.01
0.90 5.73
0.95 1.24

Table A.3 The percentage magnitude of the fourth-order anisotropy constant in relative to the
second-order anisotropy constant, K2/K1, for each core size R at T = 10 K. Data are plotted in
Fig. 4.8 of Chapter 4.
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Sampled VAMPIRE simulation files

The Appendix provides the sampled VAMPIRE-compatible inputs and material files for the
simulations presented in Chapter 3, 4, and 5 with explanatory comments in italic.

B.1 Chapter 3 - Investigation of finite-size effects

The parallelepiped FePt grains are constructed by stacking up atomistic layers along the grain
height. This method allows the extraction of magnetic properties on each atomistic layer which
is necessary for the computation of the layer-resolved and cross-sectional magnetisation profiles
of the grains. The simulation is run at each temperature between 0 K and 1000 K in 5 K steps,
and the outputs of each temperature point are combined to create a "master" output file. The
sampled input and material file of a modified-sc FePt grain of 101.1 Å height and 11.88 Å base
sizes which comprises of 4 sc-unitcells i.e. 5 atomistic layers at 100 K are shown below.

B.1.1 Input

Specify lattice structure, unitcell sizes, and grain sizes: "!A" = Å
create:crystal-structure=sc
dimensions:unit-cell-size-x = 2.72 !A
dimensions:unit-cell-size-y = 2.72 !A
dimensions:unit-cell-size-z = 3.85 !A
dimensions:system-size-x = 11.88 !A
dimensions:system-size-y = 11.88 !A
dimensions:system-size-z = 101.1 !A

Specify the name of material file to be used:
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material:file=FePtsc6350.mat

Specify simulation integrators and parameters:
sim:program=time-series
sim:integrator=monte-carlo
sim:integrator-random-seed=22696
sim:equilibration-temperature=100
sim:temperature=100
sim:time-steps-increment=1
sim:time-step=1.0E-16
sim:equilibration-time-steps=50000000
sim:total-time-steps=250000000
sim:applied-field-strength=0 !T

B.1.2 Material file

Specify number of atomistic layers included in the grain: each layer = material
material:num-materials=5

Specify magnetic parameters for each atomistic layer:
material[1]:material-name="FePt-1"
material[1]:damping-constant=1.0
material[1]:atomic-spin-moment=3.23 !muB
material[1]:uniaxial-anisotropy-constant=2.63e-22
material[1]:minimum-height=0
material[1]:maximum-height=0.2
material[1]:exchange-matrix[1]=6.350e-21
material[1]:exchange-matrix[2]=6.350e-21
material[1]:exchange-matrix[3]=6.350e-21
material[1]:exchange-matrix[4]=6.350e-21
material[1]:exchange-matrix[5]=6.350e-21

material[2]:material-name="FePt-2"
material[2]:damping-constant=1.0
material[2]:atomic-spin-moment=3.23 !muB
material[2]:uniaxial-anisotropy-constant=2.63e-22
material[2]:minimum-height=0.2
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material[2]:maximum-height=0.4
material[2]:exchange-matrix[1]=6.350e-21
material[2]:exchange-matrix[2]=6.350e-21
material[2]:exchange-matrix[3]=6.350e-21
material[2]:exchange-matrix[4]=6.350e-21
material[2]:exchange-matrix[5]=6.350e-21

material[3]:material-name="FePt-3"
material[3]:damping-constant=1.0
material[3]:atomic-spin-moment=3.23 !muB
material[3]:uniaxial-anisotropy-constant=2.63e-22
material[3]:minimum-height=0.4
material[3]:maximum-height=0.6
material[3]:exchange-matrix[1]=6.350e-21
material[3]:exchange-matrix[2]=6.350e-21
material[3]:exchange-matrix[3]=6.350e-21
material[3]:exchange-matrix[4]=6.350e-21
material[3]:exchange-matrix[5]=6.350e-21

material[4]:material-name="FePt-4"
material[4]:damping-constant=1.0
material[4]:atomic-spin-moment=3.23 !muB
material[4]:uniaxial-anisotropy-constant=2.63e-22
material[4]:minimum-height=0.6
material[4]:maximum-height=0.8
material[4]:exchange-matrix[1]=6.350e-21
material[4]:exchange-matrix[2]=6.350e-21
material[4]:exchange-matrix[3]=6.350e-21
material[4]:exchange-matrix[4]=6.350e-21
material[4]:exchange-matrix[5]=6.350e-21

material[5]:material-name="FePt-5"
material[5]:damping-constant=1.0
material[5]:atomic-spin-moment=3.23 !muB
material[5]:uniaxial-anisotropy-constant=2.63e-22
material[5]:minimum-height=0.8
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material[5]:maximum-height=1
material[5]:exchange-matrix[1]=6.350e-21
material[5]:exchange-matrix[2]=6.350e-21
material[5]:exchange-matrix[3]=6.350e-21
material[5]:exchange-matrix[4]=6.350e-21
material[5]:exchange-matrix[5]=6.350e-21

B.2 Chapter 4 - Investigation of the core-shell structure

The phase-coupled L10/A1 core-shell structured FePt grains were created with variable frac-
tional core size using the core-shell feature of VAMPIRE. The construction of the L10/A1
phases starts with first creating an all-Fe fcc lattice structure for both phases, then substituting
the non-magnetic Pt atoms for Fe in appropriate positions and proportions for respective phase:
for the L10 phase the Pt atoms occupy well-defined alternating-layer positions whilst for the A1
phase the Pt atoms are simply mixed-in randomly with a proportion ratio of 0.5. Furthermore,
the exchange interactions for each constituent atom type are defined three-dimensional and ex-
tending to the third-level of nearest neighbours, with the 2-ion anisotropy being added to the
z-dimension components of L10-phased Fe-Fe interactions. The sampled input and material
file of the grain with fractional core size = 0.5 at 100 K being constrained by 45o degree to the
easy axis are shown below.

B.2.1 Input

Specify lattice structure, unitcell sizes, and grain sizes and shape with faceting fractional radii
along the [001], [110], and [111] lattice direction: "!A" = Å
create:crystal-structure=fcc
create:crystal-sublattice-materials
create:faceted-particle = 1.00,1.15,1.00
dimensions:unit-cell-size = 3.795 !A
dimensions:system-size-x = 8.1 !nm
dimensions:system-size-y = 8.1 !nm
dimensions:system-size-z = 12.1 !nm
dimensions:particle-size= 8 !nm
dimensions:particle-shape-factor-z=1.5

Specify the range and type of truncated exchange interaction:
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exchange:interaction-range = 1.8
exchange:function = shell

Specify the name of material file to be used:
material:file=FePtCS.mat

Specify simulation integrators and parameters:
sim:program=time-series
sim:integrator=constrained-monte-carlo
sim:integrator-random-seed=16214
sim:equilibration-temperature=100
sim:temperature=100
sim:time-steps-increment=1
sim:equilibration-time-steps=200000
sim:total-time-steps=800000
sim:time-step=1.0E-16
sim:applied-field-strength=0 !T
sim:constraint-angle-phi = 45
sim:constraint-angle-theta = 0

B.2.2 Material file

There are 10 materials in total. Materials of number (1,2,3,4) and (6,7,8,9) for the Fe-basis of
each L10 and A1 phase respectively, and two non-magnetic Pt material 5 and 10 to be substi-
tuted into the L10 and A1 phase respectively.
material:num-materials=10

Specify magnetic parameters:
material[1]:material-name=L10-FePt1
material[1]:damping-constant=1.0
material[1]:atomic-spin-moment=3.23 !muB
material[1]:second-order-uniaxial-anisotropy-constant=-1.552e-23
material[1]:material-element=Fe
material[1]:minimum-height=0.0
material[1]:maximum-height=1.0
material[1]:core-shell-size = 0.500
material[1]:unit-cell-category=1
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Specify the proportion to be substituted by Pt atoms: 0 or 1 if L10 phase, 0.5 if A1 phase
material[1]:host-alloy=homogeneous
material[1]:alloy-fraction[5]=0.0

L10-Fe and L10-Fe interaction: with 2-ion anisotropy added to the z-component
material[1]:exchange-matrix-1st-nn[1] = 2.1428571e-21,2.1428571e-21,2.1564476e-21
material[1]:exchange-matrix-2nd-nn[1] = 3.0000000e-21,3.0000000e-21,3.0190267e-21
material[1]:exchange-matrix-3rd-nn[1] = 1.1785714e-21,1.1785714e-21,1.1860462e-21

L10-Fe and L10-Fe interaction: with 2-ion anisotropy added to the z-component
material[1]:exchange-matrix-1st-nn[2] = 2.1428571e-21,2.1428571e-21,2.1564476e-21
material[1]:exchange-matrix-2nd-nn[2] = 3.0000000e-21,3.0000000e-21,3.0190267e-21
material[1]:exchange-matrix-3rd-nn[2] = 1.1785714e-21,1.1785714e-21,1.1860462e-21

L10-Fe and L10-Pt interaction: without 2-ion anisotropy added
material[1]:exchange-matrix-1st-nn[3] = 2.1428571e-21,2.1428571e-21,2.1428571e-21
material[1]:exchange-matrix-2nd-nn[3] = 3.0000000e-21,3.0000000e-21,3.0000000e-21
material[1]:exchange-matrix-3rd-nn[3] = 1.1785714e-21,1.1785714e-21,1.1785714e-21

L10-Fe and L10-Pt interaction: without 2-ion anisotropy added
material[1]:exchange-matrix-1st-nn[4] = 2.1428571e-21,2.1428571e-21,2.1428571e-21
material[1]:exchange-matrix-2nd-nn[4] = 3.0000000e-21,3.0000000e-21,3.0000000e-21
material[1]:exchange-matrix-3rd-nn[4] = 1.1785714e-21,1.1785714e-21,1.1785714e-21

L10-Fe and A1-Fe interaction: without 2-ion anisotropy added
material[1]:exchange-matrix-1st-nn[6] = 2.1428571e-21,2.1428571e-21,2.1428571e-21
material[1]:exchange-matrix-2nd-nn[6] = 3.0000000e-21,3.0000000e-21,3.0000000e-21
material[1]:exchange-matrix-3rd-nn[6] = 1.1785714e-21,1.1785714e-21,1.1785714e-21

L10-Fe and A1-Fe interaction: without 2-ion anisotropy added
material[1]:exchange-matrix-1st-nn[7] = 2.1428571e-21,2.1428571e-21,2.1428571e-21
material[1]:exchange-matrix-2nd-nn[7] = 3.0000000e-21,3.0000000e-21,3.0000000e-21
material[1]:exchange-matrix-3rd-nn[7] = 1.1785714e-21,1.1785714e-21,1.1785714e-21

L10-Fe and A1-Fe interaction: without 2-ion anisotropy added
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material[1]:exchange-matrix-1st-nn[8] = 2.1428571e-21,2.1428571e-21,2.1428571e-21
material[1]:exchange-matrix-2nd-nn[8] = 3.0000000e-21,3.0000000e-21,3.0000000e-21
material[1]:exchange-matrix-3rd-nn[8] = 1.1785714e-21,1.1785714e-21,1.1785714e-21

L10-Fe and A1-Pt interaction: without 2-ion anisotropy added
material[1]:exchange-matrix-1st-nn[9] = 2.1428571e-21,2.1428571e-21,2.1428571e-21
material[1]:exchange-matrix-2nd-nn[9] = 3.0000000e-21,3.0000000e-21,3.0000000e-21
material[1]:exchange-matrix-3rd-nn[9] = 1.1785714e-21,1.1785714e-21,1.1785714e-21

And so on for material (2,3,4,6,7,8,9)...

Pt-substitution material 5 and 10 follow this form:
material[5]:material-name=L10-Pt
material[5]:damping-constant=1.0
material[5]:atomic-spin-moment=1.0 !muB
material[5]:material-element=Pt
material[5]:minimum-height=0.0
material[5]:maximum-height=0.0
material[5]:non-magnetic=remove

B.3 Chapter 5 - Investigation of the switching efficiency

The input and material files in this Chapter follow the same format as those in Chapter 4 with
the only modification being to include the externally laser pulse and magnetic cooling field in
the input. These command lines below are added to or modified the corresponding ones in the
sampled input of Chapter 4.

Change the simulation integrators:
sim:program=field-cool
sim:cooling-function=double-gaussian
sim:integrator=llg-heun
sim:integrator-random-seed=25033
sim:simulation-cycles=1

Add the parameters of the laser pulse: ambient temperature 300K, peak temperature 700K,
cooling time 0.5ns
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sim:cooling-time=0.500 !ns
sim:minimum-temperature=300
sim:maximum-temperature=700
sim:equilibration-temperature=300

Add the parameters of the magnetic cooling field: magnitude 0.8 Tesla opposing the ini-
tial magnetisation
sim:applied-field-strength=-0.8 !T
sim:applied-field-unit-vector=0.0,0.0,1.0

Other parameters
sim:time-steps-increment=1
sim:time-step=1.0E-16
sim:preconditioning-steps=1000
sim:equilibration-time-steps=10000
sim:total-time-steps=30000000
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