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Abstract 

Gestational Diabetes Mellitus (GDM) is the most common pregnancy 
complication worldwide. However, GDM prevalence is substantially lower in 
white Europeans (WEs) compared to other ethnicities, especially South 
Asians (SAs) who experience the highest risk. Globally, healthy diet promotion 
is the mainstay in GDM prevention, however current guidelines are 
predominantly based on evidence from WEs. Furthermore, metabolic factors 
responsible for the disparities in prevalence are unknown but may offer 
guidance for improved prevention and management. 

 

This project aimed to (i) assess the association between diet and GDM across 
ethnic groups, (ii) determine if distinct metabolic profiles characterise GDM in 
SAs and WEs, and (iii) evaluate the presence of ethnic-specific causal 
associations between metabolites and gestational dysglycemia. Aims (ii) and 
(iii) utilised data from the Born in Bradford cohort (mean gestational age 26.1 
weeks). 

 

First, through a systematic review of observational and randomised studies, 
pre-pregnancy diet was found to associate with GDM in WEs, but not in 
Asians. Secondly, the multivariate analyses of metabolites identified 7 
metabolites that were characteristic of GDM in both ethnicities, with an 
additional 6 characteristic in WEs only. Finally, through Mendelian 
Randomisation (MR) analyses, 14 metabolites associated with pregnancy 
dysglycemia in WEs and 11 in SAs. No metabolites were identified in both 
ethnicities. Cholesterols and fatty acids were the most commonly identified 
classes identified in WEs and SAs, respectively.  

 

This project demonstrated (i) inconsistencies in the association between diet 
and GDM across ethnicities (ii) distinct metabolic profiles that associate with 
GDM in WEs and SAs and offers and supports the need for ethnic-specific 
manage GDM management strategies. In high-risk SAs, fatty acids may be 
the most important predictors of GDM. Future work should evaluate the role 
of pre-pregnancy fatty acid intake in GDM development in SAs to aid in the 
development of culturally tailored dietary interventions.  
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Chapter 1: Literature Review 

 

1.1 Gestational Diabetes Mellitus 

Gestational Diabetes Mellitus (GDM) is defined as the development of 

hyperglycaemia during pregnancy (typically at 24-28 weeks) (McIntyre et al., 

2019; Lorenzo-Almorós et al., 2019). Affecting approximately 1 in 6 

pregnancies globally and 20.4 million live births in 2019, GDM is the most 

common pregnancy complication to occur worldwide and encompasses 70-

90% of all incidences of hyperglycaemia during pregnancy (Newman and 

Dunne, 2021; McIntyre et al., 2020; Nielsen et al., 2018; Yuen et al., 2018). 

Despite this already substantial disease burden, GDM prevalence is on the 

continual rise, in part due to the global obesity epidemic (Wang et al., 2021; 

Kuller and Catov, 2017; Dalfrà et al., 2020). For example, in a serial cross-

sectional analysis in the US, age-standardised rates of GDM per 1000 live 

births increased from 47.6 (95% confidence interval (CI) 47.1- 48.0) in 2011 

to 63.5 (95% CI 63.1 - 64.0) in 2019 (Shah et al., 2021). Australia also 

experienced a 2.87-fold increase in GDM between 2010-2019, making GDM 

the fastest growing type of diabetes in this country. This increase is expected 

to continue, with an additional 500,000 GDM cases expected to occur in 

Australia over the next decade (Diabetes Australia, 2020). The UK has also 

experienced a substantial rise in GDM prevalence since 2010, with prevalence 

estimates for increasing from 1-3% pre-2010 to 8-24% post-2010 (Farrar et 

al., 2016). 

The implementation of the International Association of Diabetes on 

Pregnancy Study Groups (IADSPG) GDM diagnostic criteria now 

recommended for use by the World Health Organisation (WHO) is thought to 

be partially responsible for this increased prevalence globally (Coustan et al., 

2010; World Health Organization Consultation, 2014; Farrar et al., 2016). 

These criteria state that a single measure of fasting plasma glucose between 

5.1-6.9 mmol/l, 1-hour post 75g oral glycose load ≥ 10.0 mmol/l, or 2-hour post 

glucose levels between 8.5-11.0 mmol/l following a 75g oral glucose tolerance 

test (OGTT) is sufficient to be indicative of GDM. These are more permissive 
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criteria than those previously utilised, resulting in a rise in GDM diagnoses 

globally (Coustan et al., 2010; World Health Organization Consultation, 2014). 

Indeed, a 2019 study of 51 population-based studies including 5,349,476 

pregnant women found the pooled global estimate of GDM to be 4.4% (95% 

CI 4.3 - 4.4) when historically used GDM diagnostic criteria were utilised. This 

estimate increased drastically to 10.6% (95% CI 10.5 - 10.6) when only 

studies that utilised the IADSPG diagnostic criteria were included (Behboudi-

Gandevani et al., 2019). Likewise, a 2021 systematic review and meta-

analysis of cohort and cross-sectional studies conducted in 2010 - 2018 found 

that the utilisation of the IADPSG criteria resulted in a 75% increase in the 

number of women diagnosed with GDM (Risk Ratio (RR) 1.75, 95% CI 1.53 - 

2.01) worldwide (Saeedi et al., 2021).  

The utilisation of these new criteria also results in high heterogeneity 

of GDM prevalence estimates, particularly in countries where the uptake of 

these new criteria is inconsistent (Kanguru et al., 2014). For example, a recent 

review of Indian studies found prevalence estimates to range from 0% - 49%, 

making it difficult to untangle the extent to which the rise in prevalence is due 

to new diagnostic criteria, demographic changes, including an increase in 

maternal age and BMI (both risk factors of GDM), or increasing urbanisation 

(McIntyre et al., 2019; Thanawala et al., 2021). Importantly, despite the lower 

uptake of the IADPSG criteria in low-middle income countries (LMICs), 87.6% 

of GDM cases are still believed to occur in LMICs (Nielsen et al., 2018). 

Considering that a GDM pregnancy is predicted to cost healthcare services 

an additional 25% compared to a non-GDM pregnancy, GDM can place a 

great strain onto healthcare services, particularly in LMICs (Xu et al., 2017). 

Indeed, in 2015 GDM cost the Chinese economy an estimated $5.59 billion 

(Xu et al., 2017). As GDM rates continue to rise, so will the burden of GDM on 

healthcare systems globally, highlighting the urgent need for effective 

methods of GDM prevention. 

1.1.1 Health consequences of GDM 

In addition to its economic burden, the health consequences of GDM can 

also be severe in both mothers and children, even in mild cases. This is in 

spite of the fact that initial symptoms of GDM are relatively minor and common 
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in general pregnancy (e.g., tiredness and increased urination) (Chong et al., 

2014; International Diabetes Federation, 2019). Short-term, the mother’s 

likelihood of suffering a miscarriage or birth complications is substantially 

increased (Plows et al., 2018). These birth complications include, but are not 

limited to increased likelihood of pre-eclampsia (~30% increased odds), 

vaginal candidiasis  (~6 times the risk) and the need for caesarean section 

(~50% increase in risk). (Odar et al., 2004; Kanguru et al., 2014; McIntyre et 

al., 2020; Weissgerber and Mudd, 2015; Gorgal et al., 2012) In addition to the 

physical implications of a GDM diagnosis, the quality of life and mental health 

of mothers with GDM are known to be impacted, with GDM increasing the risk 

of post-natal depression nearly 2-fold (McIntyre et al., 2019; Barakat et al., 

2014; Kunasegaran et al., 2021). In addition, a women with GDM is at an 

increased risk of hypertension and is 2.3 times more likely to develop 

cardiovascular disease (CVD) in the decade following their diagnosis. (Kuller 

and Catov, 2017; Kramer et al., 2019; Schiavone et al., 2016).  Despite these 

risks, the key concern of a GDM diagnosis is the increased risk of type 2 

diabetes (T2D) experienced by the mother in later life. Following a GDM 

diagnosis, a women is 7 times more likely to develop T2D, often in 3-6 years 

of their GDM diagnosis (International Diabetes Federation, 2019). This 

increased risk in a reasonably short period can result in a GDM mother 

experiencing T2D in middle age, which can have life-long health and quality 

of life consequences for the mother. From a public health perspective, this 

places a large burden on healthcare systems: an estimated one third of 

women with T2D (who have been pregnant) expected to have had GDM 

during at least one pregnancy, making GDM the strongest historical predictor 

of T2D (McIntyre et al., 2020; Damm et al., 2016). Furthermore, loss of follow 

up in a healthcare setting after a GDM diagnosis and pregnancy delivery is 

very common and can make it challenging to manage future diabetes risk, 

particularly in communities that have less healthcare access (Moon et al., 

2017). Concerningly, the risk of stillbirth is also significantly increased in 

pregnant women with GDM: in a multi-ethnic retrospective US cohort the risk 

of stillbirth in women with GDM compared to in women without GDM is also 

increased (RR = 1.34, 95% CI 1.20 – 1.50) (Rosenstein et al., 2012). 
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Reoccurrence rates of GDM are also high, with 70% of cases developing GDM 

again in a future pregnancy (Diabetes Australia, 2020). 

 Offspring of a GDM mother also have increased health risks in both the 

short and long term. This relationships between maternal glycemia and 

adverse neonatal outcomes due to intrauterine hyperglycaemia is thought to 

be linear, with increased glucose levels increasing the offspring’s risk of 3 of 

macrosomia 3-fold, (itself increasing the likelihood of nerve damage and 

fracture during birth), hyperbilirubinemia 2-fold and congenital heart 

abnormalities 2-fold. (Kanguru et al., 2014; McIntyre et al., 2020; Rai et al., 

2021; Dalfrà et al., 2020; Kc et al., 2015; Chen, L. et al., 2019b; Kouhkan et 

al., 2021). Most importantly, the offspring’s risk of T2D and obesity are also 

increased, the latter due to increases in adiposity tissue as a result of GDM 

increasing the offspring’s fat mass (Popova et al., 2021; Plows et al., 2018; 

Kanguru et al., 2014; Kandasamy et al., 2021; International Diabetes 

Federation, 2019). This risk of T2D in GDM offspring has been suggested to 

be 8 times of that in the general population in a Danish cohort (Damm et al., 

2016). Likewise,  A 2018 systematic review and meta-analysis found the BMI 

z-score of GDM offspring in childhood to be higher compared to offspring from 

non-GDM mothers (mean differenceBMI z-score 0.14, 95% CI 0.04 - 0.24), while 

also 2-hour post glucose levels in early adulthood were also higher in GDM 

offspring (mean difference2-hour post glucose 0.43mmol/L, 95% CI 0.18 - 0.69) 

(Kawasaki et al., 2018). Worryingly, as both an increased BMI and a family 

history of T2D are risk factors for GDM, an inter-generational disease cycle 

can become embedded in a population that is difficult to break (Unnikrishnan 

et al., 2016; Plows et al., 2018). In addition, CVD risk is also increased in 

offspring of GDM mothers (RR = 1.19, 95% CI 1.07 – 1.32) (Yu et al., 2019). 

Likewise, a 2020 systematic review also found GDM offspring to have a 

significantly higher systolic blood pressure (mean difference 1.75 mmHg, 95% 

CI 0.57 – 2.94) compared to in non-GDM offspring (Pathirana et al., 2020). 
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1.1.2 GDM aetiology  

To date the biological mechanisms responsible for the development of 

GDM remain unknown. However, they are expected to be complex and 

multifactorial, involving a range of pathways including hormonal, 

inflammatory, autoimmune, metabolomic and genetic processes that are 

triggered by metabolic changes that occur during pregnancy (Schiavone et al., 

2016; Clish, 2015; Dalfrà et al., 2020). Furthermore. It is thought that the early 

stages of GDM, namely insulin resistance and β-cell dysfunction, are likely 

asymptomatic and may present before conception and then manifest during 

pregnancy; suggesting that some individuals, including those living with 

obesity, are predisposed to GDM before pregnancy begins (McIntyre et al., 

2019). 

 During pregnancy, there is a natural increase in catabolism to ensure 

that the foetus’ energy demands for growth and development are met (Plows 

et al., 2018; Taylor et al., 2019; Mills et al., 2019).  In the early stages of 

pregnancy, both maternal lipogenesis and insulin sensitivity increase to 

facilitate maternal energy storage in preparation for the ~14-fold increase in 

energy demand required for foetal growth and development during the 2nd and 

3rd trimesters of pregnancy, resulting in β-cell expansion and increased lipid 

storage (Kuller and Catov, 2017; Smith, 2010; Lorenzo-Almorós et al., 2019). 

As the pregnancy advances and enters the 2nd trimester, the mother 

progresses into a state of hyperinsulinemia and insulin resistance in peripheral 

tissues, as well as a state of elevated lipolysis, hepatic gluconeogenesis, and 

a 50-60% reduction in insulin sensitivity (Schiavone et al., 2016; Layton et al., 

2019; Lorenzo-Almorós et al., 2019; McIntyre et al., 2019; Kampmann et al., 

2019). Insulin resistance is defined as the reduced ability of target tissues, the 

liver and adipose tissue, to respond to circulating insulin (Sonagra et al., 

2014). Increases in insulin resistance occur in all pregnancies in order to 

facilitate glucose uptake by the foetus by limiting glucose uptake in the mother 

(Kampmann et al., 2019). This increase in maternal blood glucose and insulin 

resistance in peripheral tissues is governed by increasing maternal adiposity 

and the insulin-agnostic paracrine action of placental hormones and placental 

factors, including human placental lactogen, oestrogen, progesterone, leptin, 
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cortisol, and placental growth hormone (Popova et al., 2021; Plows et al., 

2018; Schiavone et al., 2016; Clish, 2015; Dalfrà et al., 2020).  

To compensate for this decreased level of insulin sensitivity and 

increased insulin resistance occurring in later stages of pregnancy, the body 

undergoes a 2-3-fold increase in insulin secretion (McIntyre et al., 2019). 

Although essential, an inability to effectively control this increase in insulin 

resistance is suspected to be the cause of 80% of GDM diagnoses, with the 

remaining 20% possibly being attributable to pancreatic diseases, chemically-

induced diabetes (for example, as a result of organ transplant or HIV infection) 

or autoimmune disorders (Plows et al., 2018). These defects in insulin 

resistance are likely a result of the additive effect of increased insulin 

resistance as a result of pregnancy occurring alongside β-cell dysfunction and 

a pre-existing background of chronic insulin resistance. This β-cell dysfunction 

can occur as a result of insulin-producing pancreatic β-cells being 

overburdened by increased blood glucose levels and, when occurring 

alongside increased insulin resistance observed during pregnancy, can result 

in pregnancy dysglycemia and with it GDM (22). The biological mechanisms 

that lead to β-cell dysfunction are unclear but are expected to affect all stages 

of insulin synthesis and excretion, partially as a result of the metabolic 

changes that occur throughout even a healthy pregnancy that act as β-cell 

stressors (McIntyre et al., 2019).  

In addition to hyperglycaemia, hyperlipidaemia is also a characterising 

factor of GDM (Mauro et al., 2022; Layton et al., 2019). The foetus is unable 

to synthesise fatty acids that are required for growth and development and is, 

therefore, completely reliant on the mother during pregnancy (Mills et al., 

2019). Lipid metabolites have been associated with GDM and the 

physiological changes in lipid metabolism that accompany a normal 

pregnancy are expected to be amplified in GDM cases, although the precise 

mechanism by which hyperlipidaemia (elevated blood lipids) can influence 

GDM is unclear. However, it is suspected to be dependent on aetiology of 

insulin resistance (i.e., the extent to which an insulin sensitivity defect is 

present alongside an insulin resistance defect) and the interactions between 

distinct lipid subtypes (Layton et al., 2019). For example, in a European cohort 

of 805 individuals, nonesterified fatty acids were elevated in 8-hour fasting 
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serum samples in all cases, whereas those with increased insulin resistance 

had higher levels of triglycerides and lower levels of HDL than individuals 

compared to individuals’ insulin secretion defects  (Layton et al., 2019). 

Moreover, individuals with insulin secretion defects had comparable lipid 

profiles to individuals without GDM (Layton et al., 2019). This illustrates the 

complexity of the metabolic changes that characterise GDM and the 

heterogeneity of GDM cases. 

In summary, the aetiology of GDM is multifaceted with numerous 

potential pathways leading to the single prognosis of elevated maternal blood 

glucose levels. If not managed, the condition will lead to prolonged exposure 

of the mother and foetus to elevated glucose that elevates their risk for future 

health conditions. 

1.1.3 GDM epidemiology  

Numerous well-recognised risk factors of GDM have been identified 

(Figure 1.1). Firstly, BMI is a major, well-established risk factor for GDM. 

Pregnant women with a BMI ≥30 kg/m2 experience 3 times the odds (adjusted 

odds ratio (aOR) = 3.07, 95% CI 2.10 – 4.49) of GDM compared to women 

with a healthy BMI (≤25 kg/m2)  (El-Chaar et al., 2013). This increase in GDM 

odds increases as BMI increases, with pregnant women with a BMI ≥ 40 kg/m2 

being at 5.7 times the odds (aOR = 5.70, 95% CI 3.73 – 8.70) of the disease 

compared to individuals in the healthy BMI range (El-Chaar et al., 2013). 

Alongside increased BMI, increased maternal age (specifically ≥35 years of 

age) is a major GDM risk factor that is becoming ever-more important as 

childbearing age rises globally (McIntyre et al., 2019; Menard et al., 2020). 

Additional GDM risk factors include multiple pregnancies (i.e., twins or 

triplets), carrying a male offspring, the number of previous children (parity), 

smoking, or having a family history of T2D. Additional environmental risk 

factors for GDM have also been proposed, including exposure to endocrine-

disruptors in the form of organic pollutants, although these are less well 

established (McIntyre et al., 2019). 
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To date, one of the strongest known risk factors for GDM is ethnicity, with 

white European (WE) women consistently being found to have a lower risk of 

GDM compared to women of non-white European ancestries. The median 

GDM prevalence estimate from 2015 - 2018 in the European WHO region 

(assumed to be majority WE) was 6.1% (inter quartile range (IQR) 1.8% – 

31%), was lower than all other global regions. North America and the 

Caribbean experienced the second lowest prevalence estimate at 7% (IQR 

6.5% - 11.9%), while the prevalence estimates in the South-East Asian region 

(formed of 11 countries including India, Bangladesh, Nepal, Sri Lanka and 

Indonesia) were more than double the European prevalence at 15% (IQR 

9.6% - 18.3%). The region with the highest prevalence estimates during this 

period was the Middle East and North Africa region (formed of 20 

countries/territories including Pakistan, Iran, Israel, Saudi-Arabia, Oman and 

Egypt) where prevalence reached 15.2% (IQR 8.8% - 20%) (McIntyre et al., 

2019). Moreover, although the IADSPG diagnostic criteria are well accepted 

across Asia, limited resources often prevent the uptake of these criteria, 

Figure 1.1: Schematic of known GDM risk factors. 
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potentially resulting in as many as 50% of GDM cases being missed across 

Asia (Xu et al., 2017; Chong et al., 2014). This means that the above 

discrepancies in prevalence may be underestimated meaning that disparities 

in prevalence may be even more pronounced (McIntyre et al., 2019). 

Notable trends in prevalence estimates also exist across continental Asia, 

with East Asian (EA) countries (e.g., China, South Korea, Japan and Taiwan), 

and South-East Asian countries (e.g., Thailand, Cambodia, Vietnam, Malaysia 

and the Philippians) experiencing a lower level of prevalence compared to 

their South Asian (SA) (India, Pakistan, Sri Lanka and Bangladesh) 

neighbours (Schiavone et al., 2016). Indeed, the estimated prevalence of 

GDM in the WHO Western Pacific region from 2015-2018 was 10.3% (4.5% – 

20.3%), 4.7% lower than that experienced in the South-East Asian WHO 

region (which encompasses both SA and South-East Asian countries) 

(McIntyre et al., 2019). In the Asian subcontinent, intra-country variation in 

GDM prevalence also exists. For example, although a third of pregnancies in 

India are expected to be impacted by GDM, prevalence estimates for the 

disease vary from 3.8% to 16.2% across the country (Thanawala et al., 2021; 

Unnikrishnan et al., 2016). 

It has been repeatedly shown that women of SA descent outside of SA are 

also at increased risk of GDM, even after emigrating and accounting for 

immigrant status (Menard et al., 2020; Sanchalika and Teresa, 2015). When 

compared to WEs, SAs living in Canada are at almost 3 times the odds (aOR 

= 2.88, 95% CI 1.03 – 8.07) of GDM after accounting for BMI, income, infant 

sex, education, parity, age, weight gain and marital status (Menard et al., 

2020). Likewise, in the US, Bangladeshis, Indians, Sri Lankans, and 

Pakistanis (PKs) have 4.3, 3.9, 3,7 and 3.4 times the odds of GDM, 

respectively, after adjusting for maternal age, parity, smoking and measures 

of socioeconomic status, compared to WEs in the US (Sanchalika and Teresa, 

2015). This trend can also be seen in Europe, where SAs account for 9.2% of 

UK pregnancies, but 25.6% of UK GDM diagnoses (Read et al., 2019; 

Greenhalgh et al., 2015).  

Moreover, the absolute aggregate risk (i.e., the risk of an individual with a 

set of risk factors developing a disease) has increased over time in immigrant 

populations, highlighting the increased burden of GDM in non-white 
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communities (Gail, 2008). For example, in the US between 2011- 2019, the 

absolute aggregate risk of GDM in nulliparous individuals was highest in Asian 

individuals and increased significantly from 90.8 (95% CI 85.9- 95.9) per 1000 

live births in 2011 to 129.1 (95% CI 124.1 - 134.2) per 1000 live births in 2019 

(Shah et al., 2021). This increase resulted in Asian-Indian individuals having 

2.24 times the rate (95% CI 2.15 - 2.33) compared to non-Hispanic white 

individuals in 2019: a larger disparity to that seen in 2011, where Asian Indian 

women experienced a 2.06 times greater rate of GDM (95% CI 1.94 - 2.18) 

compared to non-Hispanic whites. This increase in GDM in the Asian Indian 

strata occurred despite lower BMI levels and higher rates of educational 

attainment compared to non-Hispanic whites (Shah et al., 2021).  

Furthermore, the difference in GDM risk between EAs and SAs is also 

observed in immigrant populations. In a 2021 Norwegian cohort, prevalence 

of GDM was higher in all immigrant populations compared to non-immigrant 

populations, with the highest odds of GDM being observed within SA 

immigrants (OR = 5.45, 95% CI 5.05 – 5.89) (Strandberg et al., 2021). In 

addition, odds of GDM were also increased in other immigrant populations, 

with the combined odds of GDM in immigrants from Southeast Asia, East Asia 

and Oceania immigrants and the combined odds of immigrants from North 

Africa and the Middle East being 4.03 and 3.09 respectively (Strandberg et 

al., 2021). There is also evidence to suggest that GDM is increasing at a 

higher rate in SA immigrant populations compared to EA immigrant 

populations. Compared to 2011, 2019 rates of GDM were not significantly 

different in the Japanese stratum of a US cohort but were significantly higher 

across this period in the Asian-Indian stratum (Shah et al., 2021).  

In Asian immigrant populations the increased risk of GDM also remains 

after accounting for acculturation. Acculturation is the process of assimilating 

into a different culture and can involve the processes of regaining financial 

security, developing new social ties and habits, and embedding oneself into 

the new culture, including modification of diet, physical activity, and leisure 

activities. For example, a 2019 study from Los Angeles found that only 15.9% 

of the increased risk experienced by Asian immigrants could be attributed to 

factors related to acculturation (Chen, L. et al., 2019a). Herein, the majority of 

the risk remained, suggesting a role of robust biological and genetic factors 
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driving elevated GDM risk. Likewise, in a study of 231,618 pregnant women 

who immigrated to Canada after 1985, those carrying their first pregnancy 

were at a greater risk of GDM compared to long-term residents after 

accounting for confounding (RR = 1.73, 95% CI 1.66 - 1.81) (Read et al., 

2021). This further suggests that ethnicity increases GDM risk in ways other 

than acculturation, possibly because immigrant women from minority 

backgrounds have more risk factors for GDM, including lower education 

levels, cultural obligations, lower-income, higher levels of dysglycemia 

preconception, and an increased likelihood of having family members with 

diabetes (Read et al., 2019). Taken together, these data show that SAs are at 

a substantially higher risk of GDM compared to WEs, independent of an 

individual’s geographical location or immigration status. Hence, for GDM 

burden to be reduced globally, it is crucial that GDM prevention and 

intervention efforts are targeted at SAs. 

Factors driving these ethnic disparities in GDM risk are unclear, although 

behavioural, cultural, and biological factors are thought to be involved (Read 

et al., 2019; McDonald et al., 2015). Despite known differences in adiposity 

between WEs and SAs, with SAs having a higher level of body fat at a lower 

BMI compared to WEs, it has been demonstrated that adiposity alone is not 

responsible for the increased risk of GDM in SAs (Read et al., 2021; McIntyre 

et al., 2019; Chong et al., 2014). In addition, even at a lower BMIs, SA women 

are at a greater risk of GDM compared to WEs. In a Canadian prospective 

cohort, GDM prevalence exceeded 5% in SAs when the average BMI was 

21.5 kg/m2 (i.e., a healthy BMI), while in the general population, the prevalence 

only reached 5% when the average BMI reached 29.5 kg/m2 (i.e., a near 

obese BMI) (Read et al., 2021). Likewise, it was shown that in a multi-ethnic 

UK population the risk of GDM in SAs and EAs at a BMI of 21 kg/m2 was 

equivalent to the risk of GDM experienced by WE women with a BMI of 30 

kg/m2 (Nishikawa et al., 2017). 

In addition to BMI, several physiological drivers have been identified which 

could increase GDM risk, but as with BMI no factor has been found to be 

responsible for the vast disparity in prevalence estimates observed between 

the ethnicities. These drivers include increased insulin resistance during 

pregnancy in SAs compared to WEs (after accounting for age, pregnancy 
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weight gain and a history of diabetes) and an increased likelihood of a SA 

newborn baby being born small for gestational age while also having 

increased adiposity levels, which could increase their own future GDM risk 

(McDonald et al., 2015; Menard et al., 2020; Lorenzo-Almorós et al., 2019; 

McIntyre et al., 2019). In summary, although numerous factors are suspected 

to increase GDM risk in SAs, no individual factor has been identified to 

markedly contribute to the disparity in risk observed between the ethnicities, 

meaning additional avenues need to be explored to understand this increased 

risk. 

1.1.3.1 Impact of GDM in non-white ethnicities 

In addition to being at an increased risk for GDM, non-white ethnicities 

are also more likely to experience detrimental health outcomes following their 

GDM diagnosis. Non-white ethnicities were found to have a higher rate of 

GDM reoccurrence compared to WEs in a 2015 meta-analysis: 38% (95% CI 

33% -  44%) of WEs experienced GDM reoccurrence compared to 55% (95% 

CI 44% - 68%) of non-WEs (Schwartz et al., 2015). When non-White 

ethnicities were stratified into distinct ethnic groups, Hispanic women were 

found to have the highest rate of GDM reoccurrence (59%, 95% CI 38% - 

80%). However, heterogeneity was greater in Hispanics compared to Asian 

women, who experienced a slightly lower reoccurrence rate (54%, 95% CI 

34% - 74%) but a lower heterogeneity (I2 = 57.2% in SAs vs 96.1% in 

Hispanics), indicating a greater certainty regarding the rate of reoccurrence in 

SAs (Schwartz et al., 2015).  

Furthermore, not only do non-white individuals have an increased risk of 

GDM reoccurrence, but they are also at increased risk of T2D following their 

GDM diagnosis (30). A 2020 meta-analysis found the cumulative incidence of 

T2D to be 15.4% (95% CI 13.3% – 17.9%) in non-white ethnicities compared 

to 9.9% (95% CI 9.4% - 10.4%) in white ethnicities, despite the fact that mean 

follow up was shorter in WE studies (7.28 years vs 6 years) (Vounzoulaki et 

al., 2020). This estimate is slightly lower than that obtained in a separate meta-

analysis of SA women (from both western countries and the Asian sub-

continent), which found the cumulative incidence of T2D to be 17.3% (95% CI 

12 – 23.8) at 5 years and 33% (95% 31.3 – 34.8) at 10 years post GDM 
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diagnoses (Gadve et al., 2021). This study found previous SA GDM cases to 

be at 10.8 times the risk of developing T2D (95% CI 7.6- 15.4) compared to 

SA women without GDM. In summary, this evidence suggests that SAs are at 

a greater risk of GDM complications compared to WEs, with a stronger 

evidence base supporting this increased risk in SAs compared to other non-

white ethnic groups. 

1.1.4 Diet and GDM  

Consuming a healthy diet during pregnancy is important for the health of 

both mother and child. The WHO defines a healthy diet during pregnancy as 

one that “contains adequate energy, proteins, vitamins, and minerals, 

obtained through the consumption of a variety of foods, including green and 

orange variables, meat, fish, beans, nuts and pasteurized dairy products and 

fruits” (Super and Wagemakers, 2021). A similar but more detailed definition 

of a healthy diet during pregnancy is provided by the UK’s National Health 

Service (NHS), who state that a healthy diet during pregnancy does not need 

to be ‘special’ but should be balanced  (NHS, 2020). In addition, NHS 

guidelines suggest that pregnancy diets should be high in fibre and over a 

third of the diet should be comprised of carbohydrates, which should ideally 

be wholegrains and not refined carbohydrates. These guidelines also suggest 

limiting oily fish to two portions week (because fish can contain pollutants) and 

limiting the intake of unpasteurised cheese and saturated fats. Finally, low-fat 

dairy varieties are recommended as a  replacement of other dairy products. 

Interestingly, although some expectant mothers may unknowingly not satisfy 

current nutritional guidelines, women may be more motivated to engage in 

diet modification during pregnancy due to the desire to foster a heathy baby 

(Nielsen et al., 2018; Super and Wagemakers, 2021; Zinsser et al., 2020; 

Herring et al., 2012). Furthermore, as pregnancy itself is a risk factor for new 

or persistent obesity, providing nutritional intervention during pregnancy can 

mitigate risk of maternal obesity as well as improving offspring health and 

health behaviours of the whole family unit (Menard et al., 2020).  

Given the clear link between diet and glycaemia, promotion of healthy 

dietary guidelines during pregnancy is at the forefront for GDM prevention 

strategy globally (Newman and Dunne, 2021; McIntyre et al., 2019).  Dietary 
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guidelines for GDM prevention are similar to generic guidelines for a healthy 

diet during pregnancy, however GDM guidelines have a greater focus on 

glycaemic control. For example, the NHS states that during pregnancy low 

glycaemic foods should be consumed three times a day alongside plentiful 

fruit and vegetables, while the intake of sugary foods and drinks should be 

limited to aid in the prevention of GDM (NHS, 2019). Very similar advice is 

also provided by Australian and American diabetes organisations (Diabetes 

Australia, 2021; UCSF Health, 2022). 

In addition to dietary guidelines, pharmaceutical methods for preventing 

GDM are utilised globally; however dietary guidelines remain the preferential 

treatment due to potential side-effects of pharmaceuticals. For example, 

Metformin (a glucose lowering drug) may reduce birth weight while 

simultaneously accelerating offspring growth in later childhood, contributing to 

a reluctance to prescribe pharmaceuticals during pregnancy unless essential 

(Tarry-Adkins et al., 2021). Furthermore, the evidence base supporting the 

effectiveness of metformin in preventing GDM is still debated, with a 2021 

meta-analysis concluding that Metformin may not prevent GDM in 46% of 

women (Tarry-Adkins et al., 2021). Due to these potential side effects and 

unknown effectiveness of therapeutic interventions in preventing GDM as well 

as an increased motivation to make lifestyle changes during pregnancy, 

dietary interventions are the preferred method of GDM prevention and 

treatment. However, for these dietary interventions to be effective, it is crucial 

that dietary interventions targeted at non-white ethnicities are culturally 

sensitive, considering individual preferences, cultural beliefs, and lifestyles, 

between and in ethnic groups (Super and Wagemakers, 2021; 

Bandyopadhyay, 2021; Valentini et al., 2012). To summarise, dietary 

guidelines focusing on the consumption of a healthy diet during pregnancy are 

at the forefront of GDM prevention,  which could lead to long-term health 

benefits as a result of individuals being more amendable to lifestyle changes 

during pregnancy if these guidelines are effective. 

1.1.4.1 Evidence from Randomised Controlled Trials (RCTs). 

Although healthy dietary guidelines are embedded in routine clinical 

care, current evidence regarding the effectiveness of such interventions for 



 

 15 

GDM prevention across global populations is inconsistent and uncertain 

(McIntyre et al., 2019; Griffith et al., 2020). The most recent Cochrane Review 

(2020) evaluated methods of GDM prevention failed to identify a single 

lifestyle or medical intervention that significantly prevented GDM, and 

concluded the effect of diet on GDM prevention as being of  ‘unknown benefit 

or harm’ (Griffith et al., 2020). Moreover, the quality of the evidence upon 

which ‘healthy dietary’ guidelines were based was found to be ‘very-low’ while 

the evidence supporting ‘low-glycaemic index’ diets was found to be ‘low’. 

Interestingly, a recent (2022) systematic review of interventions reported that 

diet was effective against GDM (OR: 0.61, 95% CI 0.45 – 0.82)  but was limited 

only to studies/diets focussed on the management of gestational weight gain 

(GWG) (Teede et al., 2022). This suggests that a relationship between diet 

and GDM exists but that it may be best mediated through gestational weight 

gain rather than attempting to directly moderate dysglycemia. Importantly, in 

these reviews, very few included studies with majority non-WE populations 

and none presented analyses stratified by ethnicity, despite non-white 

populations being at highest risk of GDM and have differing dietary habits. 

Indeed, throughout the field of non-communicable disease epidemiology, 

nutritional approaches aimed at reducing disease incidence rarely considers 

ethnic variability in food metabolism and dietary habits (Franzago et al., 2020). 

Currently the evidence does not confidently demonstrate the effectiveness of 

dietary interventions commonly tested in WE populations on GDM prevention 

in non-WEs (McIntyre et al., 2019). 

To date, all meta-analyses evaluating the effectiveness of healthy 

dietary interventions in preventing GDM have focussed on randomised control 

trials (RCTs). RCTs are considered the ‘gold standard’ of epidemiological 

study designs. When recruitment and randomisation are carefully considered, 

RCTs allow causality to be inferred to an extent that is not possible in other 

designs more susceptible to confounding and biases (Hariton and Locascio, 

2018). Despite these strengths, RCTs also have their limitations: (i) they are 

costly which often restricts both how long the study can last and the sample 

size; (ii) they are often not generalizable due to limited sample size and 

restricted recruitment strategies (Hariton and Locascio, 2018); (iii) it is not 

often possible to assess the long-term effect of a diet on a health outcome 
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(Davies, G. et al., 2018); (iv) it is not possible to assess the impact of non-

healthy diets on a disease due to ethical concerns.  

In summary, out of all epidemiological study designs RCTs are the gold 

standard; when carefully conducted, the randomisation process allows for 

associations to be determined while confounding is simultaneously minimised 

meaning the true effect of an intervention can be more accurately determined. 

Despite this clear strength, the practicality of performing RCTs over long-time 

periods means it is often not possible to determine the long-term effect of diet 

on an outcome in a randomised setting, particularly in large samples. Instead, 

an alternative approach involving observational studies needs to be utilised. 

1.1.4.2 Evidence from observational studies 

Observational studies aim to estimate the impact of an exposure on an 

outcome without intervening on a participants lifestyle or behaviours. Although 

observational studies are susceptible to a range of biases (including recall 

bias and performance bias) and confounding, they can be conducted in much 

larger samples and over a more prolonged period of time than RCTs, thereby 

improving the generalisability of findings (Viswanathan et al., 2013). 

Additionally, because they can be prospective in nature, the effects of self-

reported habitual ‘healthy’ or ‘unhealthy’ dietary habits on disease risk can 

both be evaluated. 

To date, one systematic review has been conducted to summarise 

current evidence regarding the impact of dietary patterns on GDM in an 

observational setting, but no meta-analyses were performed. This review 

reported that increased consumption of fat (1-5% of energy intake of 

carbohydrates replaced with fat), cholesterol (≥300 mg/day), heme iron (≥ 1.1 

mg/day), red/processed meat (1 serving/day) and egg (≥ 7 per week) were 

associated with increased risk of GDM risk (Schoenaker et al., 2016). 

Conversely, diets high in fruit, vegetables, whole grains, and high-fat dairy 

protected against GDM. Nevertheless, the authors acknowledge some 

limitations of this study. Firstly, results were not stratified by ethnicity and the 

majority of studies included in the analysis focussed on a single cohort 

(Nurses’ Health Study II); therefore, the results may not be generalisable. 
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Secondly, both cohort and case-control studies were included meaning 

temporality could not be inferred. 

When considering data solely from the Nurses’ Health Study II, it has 

been suggested that 45% of GDM cases are potentially preventable through 

the uptake of a healthy diet alongside additional lifestyle modifications, such 

as smoking cessation and ≥ 30 mins/day of exercise, although it is not known 

whether these lifestyle changes would need to be adopted before pregnancy 

(McIntyre et al., 2019; Zhang et al., 2014). In addition, the limited number of 

non-white individuals in the Nurses’ Health Study II means that future studies 

are needed to analyse the relationship between lifestyle modification and 

GDM prevention in non-WE populations to determine if the association is 

generalisable (Zhang et al., 2014). In fact, various discrepancies exist in the 

literature regarding the variation in magnitude and direction of effect sizes of 

pre-pregnancy dietary patterns on GDM between ethnicities. For example, in 

a WE cohort, a meat-based dietary pattern increased the odds of GDM (OR 

1.38, 95% CI 1.14 – 1.68) while a comparable diet in a Chinese cohort 

reported no association (OR 0.89, 95% CI 0.58 – 1.36) (Mak et al., 2018; Bao 

et al., 2013). This absence of association in an Asian population could be due 

to numerous factors. 

 Firstly, even if dietary patterns are similar between populations, 

differences in the type of meat product consumed along with preparation and 

cooking methods may vary between ethnicities. This supports the notion that 

for dietary assessment to be effective in non-white populations, culturally 

sensitive assessment tools need to be utilised that account for these factors 

(Super and Wagemakers, 2021; Bandyopadhyay, 2021; Valentini et al., 2012). 

Secondly, it is possible that either the demographic characteristics of the two 

cohorts are not comparable, or that there is insufficient statistical power in the 

smaller Asian population to detect any effect. However, it is also possible that 

biological differences exist between the ethnicities which result in dietary 

patterns having differential effects. Indeed, there are multiple examples in the 

literature identifying ethnicity as a mediator of associations between diet and 

disease outcomes. For instance, associations between the Alternate Healthy 

Eating Index (AHEI) and diabetes in postmenopausal women have been 

observed in WEs but not in individuals of Asian or African descent (Qiao et 
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al., 2014) whereas the Mediterranean diet has been associated with a lower 

risk of T2D in WEs but not in Japanese-American or Native Hawaiian 

individuals (Sotos-Prieto and Mattei, 2018). Additionally, the multi-ethnic 

NUTRIGEN consortium reported that maternal adherence to a plant-based 

diet during pregnancy was associated with increased birth weight in SAs but 

reduced birth weight in WEs (Zulyniak et al., 2017). 

Taken together, this evidence shows that, although diet has been found 

to be associated with GDM in observational settings, how this association 

differs between ethnicities has not yet been assessed. Given that diet has 

been shown to have varying impacts on other disease outcomes across 

ethnicities, and that different ethnicities consume different foodstuffs and 

prepare food in different ways, it is possible that the impact of diet on GDM 

may be distinct between different ethnic groups.  

1.1.4.3 Importance of culturally sensitive interventions 

Factors responsible for the ethnic-specific differences in the associations 

between diet and disease outcomes assessed in the observational setting are 

still unknown. Although they may be a result of biological factors and/or 

differences in dietary consumption between populations, differenced may also 

be a result of methodological limitations. Due to the differences in dietary 

consumption between populations, it is possible that the tools used to assess 

the intake of dietary patterns typically characterised in WEs (e.g., the 

Mediterranean diet) do not directly translate to other ethnicities (Kunasegaran 

et al., 2021; Sotos-Prieto and Mattei, 2018; Mchiza et al., 2010). Likewise, the 

methodological decision to broadly categorise ethnic groups (e.g., ‘Asian’ 

rather than SA or EA), often as a result of smaller sample sizes and numbers, 

can obscure associations in individual ethnic sub-groups due to differing 

socio-economic, lifestyle or dietary habits in immigrant populations. 

Furthermore, considerable differences exist in how medical nutritional therapy 

is utilised in different cultures which may impact the success of dietary 

interventions. It has previously been shown that dietary interventions or 

nutritional guidelines prescribed in predominantly WE countries may not take 

into account cultural differences or individual preferences between the WE 

community and immigrant communities which can limit the success of the 



 

 19 

intervention in immigrant populations (Yuen et al., 2018; Read et al., 2019; 

Bandyopadhyay, 2021; Super and Wagemakers, 2021; Valentini et al., 2012). 

For example, immigrant women can often be reluctant to give up foods 

traditional to their culture or consume different foods to which they are used 

to and may also lack the skills required to prepare the foods in alternative 

ways. These foods are often vegetarian, and higher in carbohydrates (often in 

the form of roti and rice) and fats due to preparation methods using oil and 

ghee meaning they can negatively impact glycaemic control.  First-generation 

immigrants may also be less likely to have a family support network 

throughout their pregnancy to help them engage in healthy behaviours and 

dietary changes (Kandasamy et al., 2021). Even when these support networks 

do exist women often report prioritising the needs of family members over their 

own health needs and can also feel pressure from family members to 

consume traditional foods that negatively impact glycaemic control, 

particularly at social gatherings (Bandyopadhyay, 2021; Kandasamy et al., 

2021). These social pressures can also influence mealtimes, which can further 

hinder glycaemic control, as can Ramadan for SAs who are of the Islamic 

faith, even though pregnant women are excused from fasting (Yuen et al., 

2018).  

Although difficulties in balancing work and family responsibilities during 

pregnancy are likely experienced by most women, advice from family 

members that conflicts with that of medical professionals has been identified 

as a particular issue for SAs (Kandasamy et al., 2021; Read et al., 2019; 

Nielsen et al., 2018; Thanawala et al., 2021). In SA communities, it has been 

reported that advice from female family members often emphasises the need 

to increase food consumption during pregnancy to ‘eat for two’, while also 

decreasing physical activity to facilitate the baby’s growth (Kandasamy et al., 

2021). Furthermore, beliefs surrounding the idea that exercise can increase 

the risk of miscarriage are often commonly reported by this community. 

(Kandasamy et al., 2021; Read et al., 2019; Nielsen et al., 2018; Thanawala 

et al., 2021).  Regarding the ‘eating for two’ belief, it has been found that when 

women did restrict their food intake, this was often linked to negative 

pregnancy symptoms, including headaches, fainting and lack of energy, with 

food being viewed as medication: a belief that can be counter-productive when 
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trying to regulate glycaemic levels (Kandasamy et al., 2021). This can be 

particularly problematic as SA women can be more reluctant to share sensitive 

information with their healthcare provider, which can hinder the flow of 

information between both parties and hence prevent the uptake of those 

dietary modifications needed to improve glycaemia (Kandasamy et al., 2021). 

It is also important to note that in western countries women from minority 

ethnic backgrounds are more likely to experience systemic barriers that 

prevent them from maintaining a healthy pregnancy and can impact a 

woman’s ability to consume a healthy diet during pregnancy (Phonyiam and 

Berry, 2021).  

These cultural barriers may be responsible for some of the differences 

in effects seen in the literature regarding diet and GDM development. To begin 

to assess this, the effect of diet on GDM development in distinct ethnic groups 

is required to investigate inconsistencies, compare the effect of diet pre- and 

post-conception, and offer direction. If ethnic-specific associations between 

diet and GDM are demonstrated, it would support the use of maternal dietary 

guidelines that are tailored to a mother’s ethnicity in GDM prevention. 

Moreover, if diet is shown to have a differential impact on GDM between ethnic 

groups, it may shed light on biological pathways that contribute to the disparity 

in GDM risk between the ethnicities. However, to draw conclusions regarding 

the absence/presence of an association between diet and GDM in SAs it is 

crucial that SA women can engage fully in nutritional care and that culturally 

sensitivity interventions and assessment methods are utilised, otherwise 

these factors could confound the true relationship between diet and GDM in 

SAs. 

1.2 Metabolomics 

One potential biological factor that may contribute to the disparity in 

GDM risk between SAs and WEs is differences in underlying metabolism.  The 

metabolome, defined as ‘the comprehensive analysis of metabolites in a 

biological specimen’, provides a snapshot of the biological molecules in the 

individual at the time of sample collection and can provide insights into the 

biological mechanisms of metabolic diseases (Wang et al., 2021).  
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Downstream from the genotype, transcriptome and proteome, the 

metabolome reflects both genetic and environmental factors making it 

particularly valuable when investigating the relationship between diet and 

disease progression (McIntyre et al., 2019; McIntyre et al., 2020). Indeed, the 

plasma metabolome is known to be influenced by a range of factors including 

diet, environmental exposures, medication, an individual’s health status and 

the microbiome (Li et al., 2020).  As a result of this, metabolomics (the study 

of metabolites) is an ideal tool to study GDM, a disease linked to metabolomic 

dysregulation. Indeed, in 2018 the Diabetic Pregnancy Study Group 

specifically called for more research into the metabolome in relation to GDM 

(Wang et al., 2021; Kuller and Catov, 2017; Clish, 2015; Schaefer-Graf et al., 

2018). Furthermore, the group also empathised the importance of considering 

how GDM risk factors influence the metabolome, including ethnicity 

(Schaefer-Graf et al., 2018). 

There are numerous advantages to using metabolomics to study 

disease progression. Firstly, the rapid development and decreasing costs of 

quantification techniques now permit larger metabolite panels to be examined 

concurrently, facilitating the advancement of biomarker discovery and 

precision medicine (Kettunen et al., 2012). As the metabolome is downstream 

of the genome, changes in the genome are magnified at the level of the 

metabolome, making it easier to detect biological changes, which can also 

show temporal tissue specificity and provide  more detailed insight into 

disease mechanisms (Clish, 2015). Additionally, as there are far fewer 

metabolites (~ 4,000 metabolites in human serum) compared to genes 

(~30,000),  mRNA, and proteins (~90,000), it is more manageable and easier 

to identify unique features and responses (Dalfrà et al., 2020; Wang et al., 

2021; NIH, 2020a; NIH, 2020b). Numerous sample types can be examined 

via metabolomics (including urine, blood, amniotic fluid, and breast milk) via a 

range of quantification techniques (including nuclear magnetic resonance 

(NMR), mass spectroscopy, liquid chromatography-mass spectroscopy, and 

gas chromatography-mass spectroscopy) depending on the sample and 

metabolites of interest. As such, metabolomics is a valuable tool to investigate 

disease aetiology and identify early metabolic perturbations (Franzago et al., 

2020; Wang and Hu, 2018). 
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In addition, metabolomics can aid in the development of precision 

nutrition, particularly when combined with other ‘omics techniques, including 

proteomics and transcriptomics (de Toro-Martin et al., 2017; Wang and Hu, 

2018). The goal of precision nutrition is to facilitate the development of tailored 

and dynamic dietary guidelines recommended to an individual (or group) 

based upon internal and external environmental exposures and demographic 

factors, such as age, sex and ethnicity (de Toro-Martin et al., 2017). Although 

yet to be realised, it has been proposed that customizing dietary interventions 

to an individual’s specific needs may be cost-effective when compared to 

generalised interventions (Tebani and Bekri, 2019). Taken together, when 

considering both the increasing ease of quantifying metabolites in biological 

samples, their use in precision medicine and the known metabolic 

dysregulation that characterises a GDM diagnosis, investigations into the 

metabolome have the potential to shed light on the disparities in GDM risk 

seen between WEs and SAs and may allow for a better understanding of GDM 

pathology and preventative options. 

1.2.1 Diet and the metabolome 

Diet has been shown to influence serum metabolites more robustly than 

clinical parameters (age and sex), the microbiome, diurnal variation, and other 

lifestyle factors (e.g., smoking, stress, exercise, and sleep) (Bar et al., 2020). 

In total, dietary factors explain almost 50% of the observed variation in serum 

metabolite levels. In light of this, distinct metabolite signatures have been 

identified that are associated with common dietary patterns. For example, a 

2020 study identified a metabolomic signature comprised of 67 metabolites 

that characterised adherence to a Mediterranean diet in a cohort of Spanish 

and US participants (Li et al., 2020). Unsurprisingly, this signature was 

predominantly characterised by metabolites involved in the metabolism of 

polyunsaturated fatty acids (PUFAs) and lipids, key components of the 

Mediterranean diet.  In addition to being associated with the Mediterranean 

dietary pattern, this signature was also associated with genetic loci linked to 

fatty acid metabolism and CVD risk, highlighting a link between diet, the 

metabolome, the genome, and disease risk (Li et al., 2020). Moreover, it has 

been established that an individual’s metabolome can alter both their dietary 
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requirements and their response to diet (Tebani and Bekri, 2019). Therefore, 

the metabolome offers a unique opportunity to investigate why the effect of 

diet on GDM is heterogenous in nature as well as potentially providing an 

opportunity to prevent GDM by allowing for the development of tailored dietary 

interventions and advances in the field of precision nutrition.  

1.2.2 GDM and the metabolome 

Numerous metabolites have been associated with GDM, however few 

reproducible results have been obtained. In a review of 9 studies that 

investigated associations between metabolites and GDM, numerous 

metabolites assessed in the blood (plasma or serum) were not replicated in 

more than one study, sometimes due to identified associations not being 

replicated across studies or due to the fact that individual metabolites were 

not analysed in more than one study (Chen et al., 2018). Examples of 

metabolites that have been associated with GDM in serum samples include 

lipoproteins, amino acids, lactate, pyruvate, carbohydrates, carboxylic acids, 

alcohols, bile acids and various organic compounds, although often these 

were only identified in a single cohort (Wang et al., 2021; Clish, 2015; Mauro 

et al., 2022). A summary of the current evidence regarding the role of  

macronutrients in GDM development can be found in Table 1.1. 

 Numerous factors likely contribute to poor reproducibility between 

metabolomics studies, including small sample sizes, heterogeneous methods 

of sample quantification, varied sample types, varied metabolite panels, 

differences in time of sample collection (in relation to both pregnancy trimester 

and pre/post GDM diagnosis) and population heterogeneity (Chen et al., 

2018). Indeed, samples taken in early pregnancy may represent potential 

GDM therapeutic targets, helping the identification of biomarkers, while 

samples taken during late pregnancy may represent changes in the 

metabolome that have occurred as a result of GDM (Wang et al., 2021). 

Finally, levels of certain metabolites are also strongly correlated meaning that 

they may only impart an effect in the presence/absence of additional 

metabolites. For the above reasons, it is difficult to compare metabolomic 

results from different studies in order to investigate the role of ethnicity in the 

metabolome. Instead, to limit confounding a multi-ethnic population should be 



 

 24 

utilised where samples are taken at the same time in comparable conditions, 

utilising multivariate statistical techniques to account for the correlation 

structure present in metabolomics data. 

Table 1.1: Summary of associations between macronutrients and GDM. 

 

 

Interestingly, only one study has examined the association of the 

metabolome with GDM risk in SAs (Taylor et al., 2019). In this study, 

multivariable statistical analyses were conducted in the multi-ethnic Born in 

Bradford (BiB) cohort, containing an almost equal proportion of SAs and WEs. 

Herein, differences in the levels of a range of metabolite values were identified 

when comparing SA and WE GDM cases, with SA GDM cases having higher 

levels of fatty acids, amino acids and glucose (Taylor et al., 2019) compared 

to WE GDM cases. Some evidence of ethnic-specific associations between 

fatty acids and GDM were also identified, with positive associations only 

present in WEs, although adjusting for education and parity reduced this 

difference. Furthermore, differences between the metabolomes of SAs and 

WEs during pregnancy irrespective of GDM were also observed (Taylor et al., 

2019). This highlights the possibility that differences in metabolism during 

Biological 
molecule Examples 

Mechanism linking 
biological molecule 
to dysglycemia 
during pregnancy 

GDM association 

Carbohydrates 
Hexose, 
tricarboxylic acid 
metabolites 

Dysregulation of 
glycolysis 

Promotion of lipid 
synthesis 

Increased in GDM cases 
during early pregnancy 
and post-partum 

Amino Acids Branched chain 
amino acids  

Increased insulin 
resistance 

Inhabitation of β-cell 
function 

Elevated in early 
pregnancy in GDM 
cases 

Lipids Fatty acid 
metabolites 

Increased 
hyperglycaemia 

Increased Insulin 
sensitivity 

Increased Oxidative 
stress 

Increased 
Inflammation 

Differing effects on GDM 
status dependent on 
dosage and timing. 
Strongest associations 
observed during the 3rd 
trimester. 
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pregnancy may contribute to differences in risk for GDM between ethnic 

groups.   

1.2.3 Genetics and the metabolome 

In addition to the environmental factors such as diet that influence the 

metabolome, it is also well-established that an individual’s metabolite levels 

are partially determined by genetics (Rhee, 2020). Differences in metabolism 

between ethnicities may be supported by genetic differences between 

ethnicities. To determine differences at a genetic level, genomic data needs 

to be utilised. Genomics is the study of an individual’s genome, its interaction 

with the environment, and its effect on health and disease (NIH, 2020a). The 

field of genomics has developed rapidly over the past few decades following 

the initial sequencing of the human genome and subsequent advances in 

sequencing technology. Through these advances, it has become possible to 

determine genetic risk factors for a range of diseases and to study how these 

risk factors interact with environmental factors to influence certain traits 

(Burton et al., 2014; NIH, 2020a). Furthermore, genomics can also help 

identify biological mechanisms associated with a disease, aiding in the 

development of personalised medical interventions and more advanced 

diagnostics and screening procedures (Burton et al., 2014). Indeed, through 

the use of genomics, it is possible to gain a better understanding of how an 

individual’s genets impact their metabolism and risk of GDM.  

In a genome-wide association study (GWAS) of 8,330 Finnish 

individuals, heritability estimates (i.e., the proportion of the variance of a trait 

in a population attributable to genetics)  of >0.6 were found for almost 40% of 

tested serum metabolites (Kettunen et al., 2012; Tebani and Bekri, 2019; 

Visscher et al., 2008). In this study heritability estimates were highest for 

lipoproteins (range 0.5 - 0.76) and lipids (range 0.48 - 0.62), and were lowest 

for the amino acids, where estimates were often ~ 0.2 (Kettunen et al., 2012). 

Similar heritability estimates were identified for lipids in a 2020 meta-analysis 

of heritability estimates of blood metabolites (serum and blood) (Hagenbeek 

et al., 2020). Although the heritability of amino acids was found to be greater 

when considering plasma samples and additional cohorts of mixed ethnicity 

(median heritability of amino acids ~40%) (Hagenbeek et al., 2020). None of 
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the studies identified in this meta-analysis were conducted in SA populations. 

Therefore, differences in the heritability of metabolites could not be compared 

between SAs and WEs, which could help determine the extent in which 

genetic predictors or metabolism vary between SAs and WEs.  

As a consequence of this high heritability, variation in the genome has 

been linked to variation in an individual’s metabolome, with lipid, carbohydrate 

and folate metabolism all being shown to have strong genetic components 

(Franzago et al., 2020). This highlights the need to integrate metabolomics 

and genomics data to better understand the combined role of diet, ethnicity, 

and the metabolome in GDM development (Tebani and Bekri, 2019; Dalfrà et 

al., 2020). Moreover, genetic variation in metabolite levels has also been 

linked to historical geographical differences in dietary consumption, 

highlighting how historical diets have acted as a selective pressure, impacting 

metabolite levels in modern-day populations (Koletzko et al., 2019).  

For example, variability in the FADS genes has been shown to influence 

PUFA levels (especially n-6 PUFAs) highlighting the importance of genetic 

variance in influencing metabolite levels (Koletzko et al., 2019). Furthermore, 

stark differences between the global distribution of the common FADS 

genotypes across the globe are thought to be influenced by varying dietary 

patterns acting as distinct selective pressures (Ameur et al., 2012). For 

example, only 1% of Africans have haplotype A (comprised of  a distinct 

pattern of 28 SNPs across the FADS region), associated with a lower rate of 

long-chain PUFA (LC-PUFA) conversion. Meanwhile, 50% of EAs and >95% 

of Native Americans have this haplotype (Koletzko et al., 2019), Instead, 

African populations are more likely to have the D haplotype, associated with 

a higher rate of LC-PUFA conversion. These disparities in allele frequency are 

believed to be a result of the variations in the LC-PUFA content of historical 

diets resulting in distinct selective pressure on genotypes; populations that 

consume large quantities of LC-PUFAs (i.e., the protein and seafood-rich diets 

consumed by Native Americans) more likely to be homozygous for allele A, 

due to the lesser requirement of LC-PUFA conversion. Additional ways in 

which diet can impact the genome have also been suggested, including 

epigenetic changes such as methylation which can have upstream effects on 

genome instability, miRNA production and protein production (Franzago et al., 
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2020; Tebani and Bekri, 2019; Dalfrà et al., 2020). This illustrates the close 

interplay between diet and genetics and highlights how diet can act as a 

distinct selection pressure to metabolite related genes, which may have an 

impact on disease risk. Furthermore, a 2018 study identified a positive 

correlation between genes associated with lipid polymorphisms and genes 

associated with GDM in WEs (Franzago et al., 2018). This correlation 

highlights how dietary metabolism may be associated with GDM risk and 

highlights how nutritional interventions aimed at altering levels of specific 

metabolites may reduce the incidence of GDM in genetically suspectable 

populations. 

1.2.4 Genetics and GDM 

The stark differences in GDM burden between ethnicities indicate that 

the development of GDM may have a genetic component. Indeed, Insulin 

sensitivity and secretion (key factors that drive the development of GDM) have 

heritability estimates of 53% and 75% respectively indicating that these factors 

are greatly influenced by genetics (Ding et al., 2018). Differences in genetic 

risk factors for GDM have also been reported between populations, for 

example, a 2018 meta-analysis found the GCKR gene to be associated with 

an increased risk of GDM in WEs but not in African or Korean populations 

(Guo et al., 2018). Additionally, a 2020 meta-analysis found adiponectin, a 

hormone that contributes to the regulation of carbohydrate and fatty acid 

metabolism, to increase the risk of GDM in Asians and WEs but to decrease 

the risk in North American and South American populations (Bai et al., 2020), 

indicating that biological molecules closely related to metabolism may have 

an ethnic-specific impact on GDM development. To date, no study has directly 

utilised genomic data to establish how metabolites impact GDM in an ethnic-

specific manner. Through the determination of ethnic-specific metabolite-gene 

associations it may be possible to highlight distinct metabolic profiles that drive 

GDM in SAs compared to WEs, while also allowing for causal associations to 

be tested via Mendelian Randomisation (MR); an instrumental variable (IV) 

approach that utilises genetic data as proxies for an exposure to test for 

associations in the absence of confounding.  
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1.3 Mendelian Randomisation 

Traditional observational studies are subjected to confounding, both 

known and unknown, that cannot be fully accounted for. Therefore, in an 

observational setting, even when an exposure is consistently associated with 

an outcome, the presence of causality is not assured. Biases imparted on 

associations as a result of confounding are especially problematic for both 

dietary exposures and  pregnancy-related health outcomes due to the large 

number of factors that influence diet, maternal health and offspring health; 

including genetics, lifestyle factors and socioeconomic status (Diemer et al., 

2021). 

Over the last decade to resolve the issue of confounding in observational 

studies the IV  approach of MR has been adopted in the field of genetic 

epidemiology where a single or set of genetic variables act as a proxy for the 

exposure. MR biologically mimics a RCT as an individual’s genetic variants 

are randomised during independent assortment in meiotic cell division and 

fertilisation, in the absence of confounders (Sheehan et al., 2011). MR exploits 

this non-confounded relationship by utilising those SNPs associated with the 

exposure of interest as a genetic proxy for the exposure. In this way the SNPs 

are employed as IVs. This means that the lifetime effect of an exposure on an 

outcome, or the effect of an exposure at a distinct period of life, can be 

assessed in the absence of confounding (Sheehan et al., 2011; Liu et al., 

2017; Carreras-Torres et al., 2017). For these causal associations to be valid, 

the selected IVs must satisfy 3 assumptions: (i) they are associated with the 

exposure, (ii) they are not associated with potential confounders, and (iii) there 

are no alternative pathways that link the IV-exposure to the outcome (iii) 

(Sheehan et al., 2011; Liu et al., 2017; Carreras-Torres et al., 2017). These 

assumptions are represented in Figure 1:2.  
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To date no MR study has been performed with either GDM or 

postprandial glucose measures as the outcome (Diemer et al., 2021), likely 

due to the limited number of published GWASs for these outcome variables. 

Furthermore, few MR studies have been performed in SA populations, likely 

due to the relatively lower proportion of non-WE GWAS data compared to WE 

data and the abundance of WE data in publicly available resources often 

utilised for MR. In 2016, only 19% of all DNA samples taken were from 

individuals of non-WE descent, 14% of which were obtained from EAs. (Cooke 

et al., 2020; Popejoy and Fullerton, 2016). Despite these limited data, MR has 

been used to highlight ethnic-specific causal associations in a SA population. 

A 2021 study found that the loss of function variant rs138326449 in the 

APOC3 gene (associated with circulating triglyceride levels) was causally 

associated with coronary artery disease in WEs but not in a SA population, 

although how this difference could impact the prevention or treatment of 

coronary artery disease was not explored (Goyal et al., 2021). This study is 

an example of how performing MR in distinct ethnicities can make it possible 

to infer whether differences in causality between ethnic groups exist and how 

metabolites may be causally associated with disease outcomes in an ethnic-

 

 

Figure 1.2: Directed acyclic graph showing the MR assumptions. Bold arrow 
illustrates investigated association. 1st assumption: Genetic instruments must 
be associated with the exposure. 2nd assumption: IVs must not be associated 
with a confounder. 3rd assumption: IVs must not be associated with the 
outcome via any pathway other than through the exposure. Figure adapted 
from Davey Smith and Hemani, 2014.(Davey Smith and Hemani, 2014). 
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specific manner. In turn, this highlights the potential of utilising MR to identify 

ethnic-specific associations between metabolites and GDM. 

The most common type of MR design utilised is a two-sample design. 

The use of a two-sample MR design requires summary level data, typically 

from previously published GWAS studies. However, despite the popularity of 

GWASs, only two published GWAS studies have been conducted with GDM 

as an outcome to date, both of which were conducted in EA populations (one 

in a population of 1710 overweight Korean women and the other in a smaller 

Chinese cohort (n=218)) (Tam et al., 2019; Kwak et al., 2012). In the absence 

of published GWAS studies in both WE and SA populations, a one-sample 

study design (that relies on individual level data) in an ethnically diverse cohort 

with genomic and metabolomic data and information on GDM status (i.e., the 

outcome) is required to investigate the causal role of ethnic-specific metabolic 

perturbations on GDM. An example of such a cohort is the multi-ethnic Born 

in Bradford (BiB) cohort. 

1.4 Born in Bradford 

BiB is a large multi-ethnic prospective longitudinal birth cohort, 

established in 2007 and based in Bradford, a city in the northeast of England. 

Bradford is also one of the most deprived cities in the UK, with 60% of babies 

born in babies being in the poorest 20% of the population of England and 

Wales (Wright et al., 2013). BiB was established with the aim of characterising 

maternal, foetal and childhood disease determinants in a multi-ethnic, 

economically deprived population. Bradford has one of the largest populations 

of SAs and the largest proportion of PKs individuals in the UK, meaning the 

rates of GDM in Bradford are also high, making it an ideal cohort to study 

determinants of GDM. (Wright et al., 2013; Bradford Metropolitan District 

Council, 2022).  

The cohort aimed to recruit all mothers giving birth at the Bradford Royal 

Infirmary (the largest hospital in Bradford) between March 2007 and 

December 2010 (Wright et al., 2013). In total, 13,858 babies (including 

stillbirths and multiple pregnancies) from 12,453 mothers, ~45% of PK 

descent, are included in the cohort and continue to be monitored to this day. 

Upon recruitment detailed questionnaires were completed, permission to 
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access medical records granted, and over 250,000 fasting serum blood and 

urine samples were taken and stored, with further biological samples being 

taken after 2010 (Wright et al., 2013). Following fasting serum sample 

collection, a panel of 227 metabolite values was quantified by high-throughput 

NMR (Nightingale Health © (Helsinki, Finland)) (Taylor et al., 2019). DNA was 

also collected from participants and genotyping was conducted on two 

genome-wide arrays, one containing ~550K SNPs and the other ~640K SNPs 

(Arciero et al., 2021). The richness of the data and the large proportion of SA 

individuals makes the BIB cohort the ideal setting to investigate differences in 

risk factors and disease outcomes between SA and WE women.  

1.5 Summary 

GDM places a large burden on healthcare systems due to its high 

prevalence and associated health complications for both mother and child. 

Metabolism is thought to play a key role in determining GDM risk, although 

the underlying mechanisms behind these associations are unclear and 

reproducibility in the field is limited. Furthermore, little is known about how 

ethnic-specific metabolic characteristics may be associated with increased 

GDM risk. Through the integration of genomics and metabolomics data, it may 

be possible to achieve a better understanding of how metabolism impacts 

GDM risk through the utilisation of MR, a causal inference technique. BiB, a 

large multi-ethnic birth cohort with a large proportion of SA mothers and 

offspring, provides an ideal setting to test whether ethnics-specific differences 

in metabolism contribute to the elevated risk for GDM experienced by SAs. 

Furthermore, because metabolites can be moderated by diet, a better 

understanding of the metabolites that are associated with GDM may aid in the 

future development of more effective intervention strategies to reduce GDM 

risk.  

This thesis aims to contribute to these evidence gaps and aid in the 

understanding of the ethnic specific role of metabolism in characterising GDM 

by i) evaluating the current evidence base regarding the role of diet in GDM 

prevention in distinct ethnicities, ii) determining metabolite profiles 

characteristic of GDM in SAs and WEs, and iii) assessing the causality of 

relationships between pregnancy metabolites and GDM in SAs and WEs. 
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Chapter 2: Aims and Hypothesis 

 

2.1 Hypothesis 

SA women are at 3 times the risk of GDM compared to WEs yet the 

factors driving this discrepancy are unclear (Menard et al., 2020). Both 

pregnancy and GDM are characterised by metabolic dysregulation meaning 

that ethnic differences in metabolism may be partially responsible for the 

disparity in risk experienced between WEs and SAs. This research project 

aims to test the hypothesis that ethnic differences in metabolism are causally 

associated with GDM. 

2.2 Aims 

Aim 1 (Chapter 3) 
1 To determine whether common dietary patterns are associated with GDM 

incidence similarly across ethnic populations before and during 

pregnancy. 

 

Aim 2 (Chapter 4) 
2 To investigate whether metabolite profiles during pregnancy differ 

between SAs and WEs. 

2.a To examine whether metabolic profiles associated with GDM differ 

between SAs and WEs. 

 

Aim 3 (Chapter 5) 
3 To assess whether metabolites are causally associated with postprandial 

glucose measures in SAs and WEs.  

3.a To identify genetic variants associated with serum metabolites in SAs 

and WEs. 
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Chapter 3: Ethnic-specific Associations Between Diet and 
Gestational Diabetes Mellitus Incidence: a Meta-

Analysis 

 

Authors original report of the study published as Fuller H, et al. PLOS Global 
Public Health. 2022. https://doi.org/10.1371/journal.pgph.0000250. 

3.1 Abstract 

GDM is the most common pregnancy complication to occur worldwide 

and confers short-term and long-term health risks on both the mother and the 

child. Although the implementation of healthy dietary interventions during 

pregnancy is the cornerstone of GDM prevention, the evidence supporting the 

effectiveness of these interventions in non-white ethnicities is lacking. To 

better inform prevention strategies, this review aims to summarise the effects 

of unhealthy and healthy diets on GDM risk in distinct ethnic groups. 

PubMed, Scopus, Cochrane and OVID were systematically searched to 

identify randomised controlled trials (RCTs) and observational studies that 

investigated diet and GDM. Grouped analyses of common ‘healthy’ and 

‘unhealthy’ diets were performed first, before analysing individual dietary 

patterns. Random effect models, sensitivity analyses and dose-response 

analyses were performed where possible (PROSPERO: CRD42019140873). 

Thirty-eight publications encompassing 5 population groups (white 

European, Asian, Iranian, Mediterranean and Australian Nationals) were 

included in this review.  No associations were identified between healthy diets 

and GDM incidence in RCTs in any ethnicity. However, in observational 

studies, healthy diets were found to reduce the odds of GDM by 24% 

(OR=0.76, 95% CI 0.70 - 0.89, p value <0.0001, I2 = 75%), while unhealthy 

diets were found to increase GDM odds by 59% (OR= 1.59, 95% CI 1.41 – 

1.81, p value <0.0001, I2=0) in WEs. No evidence of consistent effects in other 

ethnicities were observed, despite adequate power (≥80%) to detect the 

magnitude of effects identified in WEs in Asians. In conclusion, pre-pregnancy 

diet was consistently associated with GDM risk in WEs only, despite non-white 

ethnicities being at an increased risk of GDM and the common utilisation of 

culturally sensitive assessment tools in non-white populations. 
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3.2 Background 

Globally, healthy dietary recommendations are the most common tool 

utilised in the prevention and treatment of GDM. Despite this, the evidence of 

the effectiveness of dietary interventions in preventing GDM is limited, with a 

2020 Cochrane review concluding that the evidence supporting the 

association between diet and GDM was of  ‘low quality’, and that there was 

an ‘unknown benefit or harm’ of dietary interventions on GDM (Griffith et al., 

2020). However, this review did not investigate whether ethnicity impacts on 

the association between diet and GDM, despite the substantial variation in 

GDM prevalence between ethnicities (McIntyre et al., 2019). Likewise, a 2018 

systematic review found fewer than 50% of included RCTs mentioned the 

ethnicity of participants (Yamamoto et al., 2018), while other previously 

published reviews had failed to report the ethnic-specific effects of dietary 

intervention on GDM development (Griffith et al., 2020; Schoenaker et al., 

2016; Mijatovic-Vukas et al., 2018; Guo et al., 2019). 

Data supporting the association between diet and GDM obtained in 

observational settings are also limited, despite the fact that observational 

studies can capture the long-term effects of an exposure in typically larger 

populations compared to RCTs. A single systematic review of observational 

studies exploring the association between diet and GDM was conducted in 

2016 (Schoenaker et al., 2016). The authors found evidence of associations 

between a range of dietary factors and GDM, including positive associations 

with heme and cholesterol and negative associations with vegetables and 

refined grains. However, in this study, no meta-analysis was conducted so the 

effects of these dietary factors were not quantified. Furthermore, their results 

were not stratified by ethnicity. It is possible that the association between diet 

and GDM may differ between ethnicities, either due to the cultural 

appropriateness of dietary measurement tools used or variation in biological 

effects between the ethnicities. To assess this, and help aid in the 

development of ethnic-specific GDM prevention strategies, in this chapter I 

aimed to evaluate the impact of diet on GDM incidence in distinct populations 

through a systematic review and meta-analyses of both RCTs and 

observational studies. 
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3.3 Hypotheses 

i. Associations between diet and GDM are ethnic specific and could 

partially explain the disparities in disease risk observed between 

different ethnicities. 

ii. Associations between diet and GDM incidence assessed in 

observational studies will be stronger than those assessed in 

randomised trials due to the larger sample sizes and typically longer 

time spans of observational studies. 

 

3.4 Methods 

3.4.1 Search strategy 

The Ovid (AMID, CAB abstracts, EBM, EMBASE, Global Health, Health 

Care Management Information Consortium, MIDRIS, OVID Medline R), 

Cochrane (including trial registries), Scopus and PubMed databases were 

searched from inception until 31st January 2021. Where possible, databases 

were limited to original human-based studies written in the English language. 

Searches were structured using PICO (Population, Intervention, Comparison, 

Outcome) and MESH indexing, and included key terms (and synonyms 

thereof) for pregnancy (P), diet (I), ethnicity (C) and gestational diabetes (O); 

along with the terms for the included study designs as shown below:  

‘(Gestational diabetes OR "Diabetes, Gestational/diagnosis"[Mesh] OR 

"Diabetes, Gestational/epidemiology"[Mesh] OR "Diabetes, Gestational/diet 

therapy"[Mesh]) AND (ethnicit* or ethnic or native or minorit* or “high risk” or 

race or "Population Groups"[Mesh] OR "Ethnic Groups"[Mesh] OR "Race 

Factors"[Mesh] OR "Minority Groups"[Mesh]) AND (Diet* OR Dietary OR 

“Feeding behaviour*” OR “Eating behaviour*” OR Eating OR “Feeding habit*” 

OR “Nutritional habit*”OR “Eating habit*” OR Food OR “food consumption*” 

OR “Nutritional consumption” OR Calorie OR “Calorie consumption” OR 

Caloric intake OR “Diet*pattern*” OR “Eating pattern*” OR “Nutritional intake” 

OR Cooking OR "Diet"[Mesh] OR "Protective Factors"[Mesh] OR 

"Drinking"[Mesh] OR "Energy Intake"[Mesh] OR "Diet Therapy"[Mesh] OR 
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"Nutrition Therapy"[Mesh] OR "Feeding Behavior"[Mesh] OR "Nutritional 

Status"[Mesh] OR "Food"[Mesh] OR "Nutrients"[Mesh] OR 

"Eating"[Mesh:NoExp] OR "Cooking"[Mesh:NoExp])AND (Prospective OR 

Retrospective OR Longitudinal OR Cohort OR follow-up OR observational or 

Randomised Controlled Trial* or controlled trial*, or clinical trial*, or clinical 

stud* OR "Epidemiologic Studies"[Mesh] OR "Nutrition Surveys"[Mesh] OR 

AND "Health Surveys"[Mesh:NoExp] OR "Diet Records"[Mesh] OR 

"Nutritional Sciences"[Mesh] OR "Clinical Studies as Topic"[Mesh] OR 

"Observational Studies as Topic"[Mesh])AND (“pre-pregnancy” or “pre 

pregnancy” or “early pregnancy” or “prenatal” or “pre-natal” or “pregnant” or 

“pregnancy” or "Prenatal Nutritional Physiological Phenomena"[Mesh] OR 

"Prenatal Care"[Mesh] OR "Preconception Care"[Mesh]). Limited to humans/ 

English’ 

Prior to screening, PROSPERO registration was obtained for this review 

(PROSPERO registration number CRD42019140873). Following full text 

screening, citation lists of included studies were searched for additional 

relevant studies until no further studies were identified. 

3.4.2 Inclusion and exclusion criteria 

RCTs and observational studies published in English were eligible for 

inclusion in this review (with the exception of non-nested case control studies 

due to the inability to infer temporality). During the abstract screening stage, 

studies that explored the association between diet and GDM (reporting ORs, 

RRs or raw data) were included. During full text screening, studies were 

deemed eligible if they reported details of the ethnicity of the participants. 

Studies were excluded if: they commenced in the third trimester, followed up 

for less than 1 trimester, combined diet with other lifestyle interventions, 

included unhealthy participants (i.e., individuals with pre-existing diabetes or 

individuals living with morbid obesity), or did not report participant ethnicity or 

nationality. Where effect estimates were adjusted for ethnicity without stating 

the ethnicity, the baseline group was assumed to be the ethnic majority (≥60% 

of the population). Where this was not possible to confirm, corresponding 

authors were contacted. If no additional data were obtained the study was 
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excluded. Abstracts were screened in duplicate, with disagreements mediated 

by a third reviewer. 

3.4.3 Data extraction 

The following variables were extracted from all studies when provided: 

the numbers of participants, cases, control, unexposed and exposed 

individuals, summary statistics for participant’s age and BMI, country of 

residence of study participants, main ethnicity of study participants (and the 

% of participants with this ethnicity),GDM diagnostic criteria utilised, and 

unadjusted/ adjusted effect estimates were extracted for all studies. For 

adjusted effect estimates, the covariates adjusted for were also extracted 

alongside information on whether studies had excluded multiparous women, 

women with a multiple pregnancy or previous miscarriage/stillbirth upon 

recruitment. Additionally, for RCTs the time of study initiation during 

pregnancy and the duration of the intervention were extracted and details of 

the intervention were extracted; while for observational studies, details of the 

dietary pattern assessed were extracted. 10% of included studies were 

randomly selected and data extraction was performed in duplicate by a 

second reviewer. 

3.4.4 Data analysis 

Identified RCTs and observational studies were analysed separately. 

Crude and adjusted effect estimates were obtained for all studies. When 

multiple effect estimates were presented, the estimate adjusted for the most 

confounders was utilised in the analysis. Studies were grouped based on their 

dietary exposures and then split into subgroups based on the participants’ 

ethnicity.  Healthy and unhealthy diet categories were defined based on: (i) 

study authors’ definition, or (ii) common definitions according to major health 

bodies (e.g., WHO, WCRF, NHS UK, ADA) (World Health Organisation 

(WHO), 2020; National Health Service (NHS), 2019; Centre for Disease 

Control (CDC), 2019; American Diabetes Association (ADA), 2020). In 

general, ‘healthy’ diets were characterised by fruit and vegetables, 

wholegrains, fish, lean meats, and unsaturated fats; while ‘unhealthy’ diets 
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were characterised by red/ processed meats, fried foods, confectionary, sugar 

sweetened beverages (SSBs), saturated fats, and added sugars. Where it 

was difficult to group with confidence, diets were unclassified. Unclassified 

diets required ≥2 studies to be considered. When exposure data was 

presented categorically, highest consumers were compared to lowest 

consumers.  

RRs were converted to ORs with 95% confidence intervals before 

running generic inverse variance weighted random-effect meta-analysis using 

the DerSimonian-Laird (DL) approach performed in Review Manager 5.3 

(RevMan) from the Cochrane collaboration (The Cochrane Collaboration, 

2020). Review Manager 5.3 was also used to assess differences in effect 

estimates between ethnic groups. Due to reports of inflated type 1 error 

leading to low reliability of the DL approach when study numbers are low (n<5) 

a sensitivity analyses using the Hartung-Knapp-Sidik-Jonkman (HKSJ) 

random effects model was performed through the use of the meta package 

(V4.9-6) in the R Studio environment (version 1.2.5019) (Jackson et al., 2017; 

Inthout et al., 2014; Tobias et al., 2012). To account for multiple testing a 

Bonferroni correction was applied as necessary.  

3.4.5 Risk of Bias (ROB) assessment 

For each study, ROB was assessed using a modified version of the 

2016 Academy of Nutrition and Dietetics tool ‘Evidence Analysis Manual: 

Steps in the Academy Evidence Analysis Process’, a tool translatable to both 

RCTs and observational studies and designed for nutritional research 

(Academy of Nutrition Dietetics., 2016). The tool contains 10 validity questions 

that can be answered with either a positive score, a neutral score, or a 

negative score when the source of bias is likely to influence study conclusions. 

To aid the user in assigning a score, each validity question is composed of 

weighted ‘important’ sub-questions, and where ≥ 6 validity questions are 

answered ‘negative’ a study is determined to have a high risk of bias. Despite 

these guidelines, the protocol provides no strict guidelines for translating 

subgroup question scores to overall scores for each validity question. To 

ensure a systematic approach, a protocol was developed and followed to 

translate the scores of the sub-questions to the scores of the validity 
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questions. When an ‘important’ sub-question and/or ≥ 50% of all sub-

questions was assessed to be negative, the overall validity question was 

assigned as negative. When all sub-questions were assigned to be positive, 

the overall validity question was assigned to be positive. In situations meeting 

neither of the above criteria, the validity question was assigned to be neutral. 

The tool was also modified to exclude question 5.1 as it is unfeasible to blind 

participants to their food intake. For the purpose of this chapter, the meaning 

of blinding was modified to refer only to the blinding of data collection for 

exposure collection and the blinding of a participant’s diet when assessing the 

outcome (i.e., GDM). When ≥ 10 studies were present for an exposure, 

publication bias was also assessed via funnel plot asymmetry in STATA 

(StataCorp, 2017). 

3.4.6 Sensitivity analyses 

Sensitivity analyses were performed on all exposures classified as 

having ‘considerable’ or ‘substantial’ heterogeneity based upon I2 values (i.e., 

I2 ≥40) as defined by Cochrane (Higgins et al., 2019). Sensitivity analyses to 

account for GDM confounders were performed by subgroup analyses on the 

following variables: (i) studies of dietary intervention during pregnancy; (ii) 

studies of older mothers; (iii) studies of mothers with an underweight/ healthy 

BMI; (iv) studies including overweight/ obese mothers (BMI ≥ 25 kg/m2 in non-

Asian populations or ≥23 kg/m2 in Asian populations 29); and (v) studies 

conducted in an east Asian (EA) vs south Asian (SA) population. The average 

age of mothers in each study was classed as young or old if the average age 

of mothers in the study was below or above the average age of a woman 

during her first pregnancy in that country/region. Cut-off values for this 

analysis were obtained from the Office of National Statistics (UK), CIA (USA, 

Spain, Australia, Iceland, Finland, Japan, France, Italy, Singapore), OECD 

and EU average (Malaysia and multinational studies), China (Pulitzer Center), 

Iran (Worldbank) and India (Times of India). No sensitivity analysis was 

performed if all studies in the meta-analyses were classified similarly for the 

same confounder (e.g., all were studies of young mothers). Likewise, the 

obstetric adjustment sensitivity analyses were not run if all studies examining 

that exposure had accounted for obstetric risk factors. Where possible, 
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estimates unadjusted for age and BMI were calculated in the sensitivity 

analyses.  

3.4.7 Dose-response analysis  

A dose response relationship was examined for observational studies 

reporting multiple levels of consumption of a dietary factor using linear, 

quadratic or cubic spline models. This analysis was done using the 

dosresmeta package (version 1.2.5019) in R Studio (Crippa and Orsini, 2016). 

To minimise heterogeneity and maximise power, the existence of a dose 

response relationship between dietary exposures and GDM was explored in 

observational studies that reported multiple measures of adherence to a 

dietary pattern or levels of consumption of a macronutrient or foodstuff. For 

this, the required data (number of cases, number of controls, ORs and 95% 

CIs) were obtained for all stated doses. To allow studies to be combined, the 

scales of all studies for an exposure were transformed onto the same scale 

(i.e., a study measuring adherence in quartiles changed to represent units of 

1.25, 2.5, 3.75, 5 if combined with a study measuring adherence in quintiles). 

Studies using binary classification for exposure adherence (exposed and 

unexposed) were excluded before the development of quadratic spline and 

cubic spline models, due to the intractability of the algorithm when these 

studies were included.  

To minimise this limitation for quadratic models, an exponential curve 

was plotted using the ORs for the exposed and unexposed groups as the 

maximum and minimum effect sizes. From this, the median dose was 

calculated which could be included in a new quadratic model (hereafter 

referred to as quadratic*). The sample size for the calculated OR data point 

was assumed to be the same as the sample size of exposed individuals. 

These quadratic* models were utilised to minimise the data loss that would 

have occurred by excluding studies with only two adherence effect sizes 

presented and was possible due to the ease of extracting an additional point 

from an exponential curve. 3k models (knots at 0.1, 0.5, 0.9) and 4k models 

(knots at 0.05, 0.35, 0.65, 0.95) were run when possible (Perperoglou et al., 

2019). Knots indicate percentile of the dose distribution where the linear trend 

deviates and the trend curves allowing for flexible trends in the data to be 
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modelled. Between each pair of successive knots cubic splines are formed 

using cubic polynomials (Orsini et al., 2012). In order to fit either a 3K or 4K 

spline model it is essential that all included studies contained at least as many 

doses as the number of splines, meaning that all studies included in a 3K 

models must present at least 3 effect sizes (i.e., 3 measures of adherence) 

and all studies included in 4K models must present at least 4 effect sizes (i.e., 

4 measures of adherence). Wald test estimates were used to determine 

whether the cubic spline relationship provided evidence of deviation from the 

linear model. Log likelihood (LogL) values were used to select the best fitting 

model overall.  

3.4.8 Power analysis 

The motivation driving meta-analysis studies is the increase in power 

that comes from combining studies. However, it is possible for a random 

effects analysis to be underpowered even if the total number of participants is 

high, either if the total number of studies is small or if the study effect estimates 

are highly dispersed (Borenstein et al., 2009). Post-hoc power analyses were 

undertaken using fixed-effects (tau2=0) or random-effects (tau2>0) methods. 

Exposed and unexposed were calculated as an average of the exposed/ 

unexposed sizes of all studies for the exposure. Power ≥80% was considered 

adequate while a meaningful change in effect size was considered as 20% 

(i.e., a change in OR of ± 0.2) based upon recent meta-analyses investigating 

the association between a range of diets and GDM in European, American 

and Asian populations (Mijatovic-Vukas et al., 2018; Hassani et al., 2020).  

3.5 Results 

3.5.1 Summary of included studies 

Abstract screening identified 3,393 studies after the removal of 

duplicates; of which, 57 of these were retained for full text screening and 38 

(6 RCTs and 32 observational studies) were kept for the final analyses (Figure 
3.1). Identified studies included a total of 251,778 participants encompassing 

5 distinct ethnic groups: white European (WE) (83%), Asian (9%, East and 

South Asian), Mediterranean (i.e., southern European populations; 5%) 
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(Seldin et al., 2006). Australian nationals (Australian residents with an almost 

equal proportion of Asians and WEs; 3%) and Iranian (<1%). The maternal 

age of study participants ranged from 24–36 years, and 14/38 studies reported 

an average BMI of overweight or obese (Appendix Figures A.1, A.2 and 
A.3). 

 

3.5.1.1 Exposure assessment  

Twenty-five studies reported on one or more of the following healthy 

dietary patterns: healthy recommendations (n=13), Mediterranean diet (n=6), 

prudent diet (n=4), plant-based diet (n=6) or a healthy snack-based 

intervention (n=1). Thirteen studies also reported on a dietary pattern that 

could be considered unhealthy: Western diet (n=6), fried/fast food (n=4), 

sweet and seafood dietary pattern (n=2) and an unhealthy dietary score (n=1). 

Additional dietary patterns included in this review that were classified as 

neither healthy nor unhealthy, there were grouped as ‘unclassified’ (meat 

pattern, high protein diet, a traditional Asian diet, high-fish diets, high-fat diets, 

high-carbohydrate diets, high-animal protein diet and high-vegetable protein 

diet); all of which were included in ≥ 2 of the identified studies (Appendix 
Figure A.4) 

3.5.1.2 Outcome assessment  

All included RCTs utilised a 75g OGTT for GDM diagnosis while 62.5% 

of observational studies utilised an OGTT with clearly defined diagnostic 

criteria. For both study types, IADPSG (2010/2013) guidelines were the most 

commonly utilised. Following a chi-squared test, no significant difference was 

found between the proportion of studies with and without stated GDM 

diagnostic criteria between ethnicities or the proportion of studies that utilised 

an OGTT test for GDM diagnosis between ethnicities. (Appendix Table A.1). 

3.5.2 RCTs  

Six RCTs, including 3,041 individuals from 4 population groups (Asian, 

Australian nationals, Mediterranean and WE), evaluated the impact of healthy 
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dietary interventions on GDM incidence (Table 3.1). Four studies reported on 

the effect of generalised healthy dietary interventions. One study reported on 

the effect of the Mediterranean diet, and 1 study reported on the effectiveness 

of a healthy snack intervention during pregnancy. When analysed collectively, 

there was no evidence that these interventions were effective in reducing 

GDM incidence (Figure 3.2). Likewise, when stratified by intervention type, 

no evidence was found to support the effectiveness of healthy 

recommendations or the consumption of a healthy snack in reducing GDM 

incidence (Appendix Figure A.5). 

 

Figure 3.1: PRISMA diagram highlighting systematic search. Records were identified 
via searches in Pubmed, OVID, Scopus and Cochrane databases. Databases were 
searched from their inception through to the 31/01/2021. 
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Table 3.1: Included RCTs. 

Study 
Country of 
study and 
participant 
ethnicity 

GDM 
Diagnostic 

Criteria 

Pre/ 
During 

pregnancy 

Initiation (I) 
and 

Duration (D) 

Sample 
size 

(Int/C) 
Exposure Intervention Control 

Assaf-
balut, 2017 
(Assaf-
Balut et 
al., 2017) 

Spain 
 

Mediterranean 

 
75g OGTT, 
≥1 of the 
following: 
Fasting 

≥5.1 mmol/L 
1-hr ≥10 
mmol/L 
2-hour 

≥8.5mmol/L 

During 
Pregnancy 

I: 12th week 
gestation 
D: 24-26 
weeks’ 

gestation 

874 
(434/440) 

Healthy 
 

Med diet 

• 3 servings/day 
vegetables, fruit (not 

including juices), 
skimmed dairy, and 

wholegrains 
• 2-3 servings/week 

legumes and fish 
consumption 

• Limited red meat, refined 
sugars, and convenience/ 

processed foods 
• Supplemented with olive 

oil and pistachios 

Usual 
standard of 

care 

Markovic, 
2016 
(Markovic 
et al., 
2016) 

Australia 
 

Australian 
Nationals 

75g OGTT 
Fasting ≥ 5.5 

mmol/L 
1-hr ≥ 10 
mmol/L 

2-hour ≥ 8 
mmol/L 

During 
Pregnancy 

I: 14-20 
weeks’   

gestation 
D: Not 

reported 

125 
(65/60) 

Healthy 
 

HR 
• Low GI diet 

High fibre, 
moderate-

GI diet 

Opie, 2016 
(Opie et 
al., 2016) 

Australia 
 

White 
European 

75g OGTT 
Fasting 

≥ 5.5mmol/L 

During 
Pregnancy 

I: 24-28 
weeks’ 

gestation 

153 
(82/71) Healthy 

 
HR 

• AGHE modified for 
pregnancy 

Usual 
standard of 

care 58 
(10/48) 
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Bolded exposures show overarching exposure. C: Control. D: Duration. HR: Healthy recommendations. I: Initiation. Int: Intervention. 

 
 

 

 
Asian 

2-hour ≥8 
mmol/L 

D: Not 
reported 

Rono, 
2018  
(Rönö et 
al., 2018) 

Finland 
 

White 
European 

75g OGTT 
Fasting 

≥5.3 mmol/L 
1-hr ≥10 
mmol/L 

2-hour ≥8.6 
mmol/L 

During 
pregnancy 

I: <20 weeks’ 
gestation 
D: Until 

OGTT test 
based upon 

335 
(235/100) 

Healthy 
 

HR 

• Structured and 
individually modified 

dietary advice based on 
the Nordic nutritional 

recommendations 

Usual 
standard of 

care 

Sahariah, 
2016 
(Sahariah 
et al., 
2016) 

India 
 

Asian 

75g OGTT, ≥1 
of the following: 

Fasting 
≥ 5.1 mmol/L 

2-hour > 
8.5mmol/L 

Pre and 
During 

pregnancy 
 

I: ≥ 90 days 
pre- 

pregnancy 
D: Until 
delivery 

1008 
(492/516) 

Healthy 
 

Healthy 
Snack 

• Supplementation with 
leafy green vegetables, 

fruit and milk 

Snacks 
made of 

low macro-
nutrient 

vegetables 
including 
potatoes 

and onions 

Simmons, 
2017 
(Simmons 
et al., 
2017) 

European 
countries 

 
Mediterranean 

75g OGTT, ≥1 
of the following: 

Fasting 
≥ 5.1 mmol/L 

2-hour > 
8.5mmol/ 

During 
pregnancy 

 

I: <20 weeks’ 
gestation 
D: Until 
delivery 

206 
(106/100) 

Healthy 
 

HR 

• Lower simple/complex 
carbohydrate and fat 

intake 
• Higher fibre and protein 

intake. Calorie deficit 
focused on portion 

control 

Usual 
standard of 

care 
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Conversely, the consumption of a Mediterranean diet enriched with extra 

virgin olive oil and pistachios was found to be protective against GDM in a 

single study in a Mediterranean population (OR = 0.67, 95% CI 0.48 – 0.98) 

(Sahariah et al., 2016). Only 2/3 of dietary interventions were found to be 

culturally sensitive. 

 

 
 

 

 

3.5.3 Observational studies 

Thirty-two observational studies, including 248,737 individuals from 5 

ethnic groups (Asian, Australian Nationals, Iranian, Mediterranean and WEs) 

across 20 countries, were identified for this review. In total 17 dietary patterns 

were reported across these studies (Table 3.2).

Figure 3:3: Forest plot of RCTs for the healthy diet exposure. 

 

 

Figure 3.2: Forest plot of healthy dietary interventions. Results from a DerSimonian and 
Lard (DL) approach. CI: confidence interval. IV: inverse variance. OR: odds ratio. SE: 
standard error. TE: treatment effect. 
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 Table 3.2: Included observational studies. 

Study 
Country of 
study and 
participant 
ethnicity 

GDM 
Diagnostic 

Criteria 

Method of 
dietary 

assessment 
Timing of 

assessment Exposure 
Sample 

Size 
(High /low) 

Dietary Pattern 

Assaf-Balut, 
2018  
(Assaf-Balut 
et al., 2018) 

Spain 
 

Mediterranean 
Not stated FFQ 

During 
pregnancy: 12-

14 weeks 

Healthy 
 

Mediterranean 
diet 

759 
(623/136) 

Frequent consumption of 
vegetables, legumes, fruits, 

nuts, EVOO, oily fish, 
canned fish, wholegrains, 

cereals, pasta and skimmed 
dairy products 

Badon, 2016  
(Badon et al., 
2017) 

USA 
 

White 
European 

 

 
100g OGTT 

≥2 of the 
following: 

Fasting ≥ 105 
mg/dL 

1-hr ≥190 mg/dL 
2-hour ≥165 

mg/dL 
3-hr ≥ 145 mg/dL 

 

FFQ- Diet over 
the previous 

year 

During 
pregnancy: 

15 weeks, +/- 3 
weeks) 

Healthy 
 

HR 

3305 
(611/2694) 

• Modified version of AHEI-
2010 

• Increased consumption of 
vegetables, fruit, whole 

grains, nuts, long- chain (n-
3) fatty acids, and PUFAs 

• Limited intake of SSBs, 
red/processed meat, trans-

fat and sodium 

Bao, 2013 
(Bao et al., 
2013) 
 

USA 
 

White 
European 

 

Self-reported FFQ every 4 
years 

Prior to 
pregnancy: 

2001 

High-protein 
diet 

 
5799 

(2793/3006) 

• Individuals’ total protein 
intake, split into quintiles 

based on population (%TE) 

Vegetable 
protein 

 
6159 

(2871/3288) 

• Individuals’ vegetable 
protein intake, split into 

quintiles based on 
population intake (%TE) 

Meat pattern/ 
Animal protein 

 
5877 

• Individuals’ animal protein 
intake, split into quintiles 
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(2862/3015) 
 

based on population intake. 
(%TE) 

Bao, 2014  
(Bao, W. et al., 
2014) 

USA 
 

White 
European 

 

Self-reported 

FFQ – Diet 
over the 

previous day 
(x4) 

Prior to 
pregnancy: 

2001 
 

Healthy 
 

Plant-based 
pattern 

10860 
(3685/7175) 

• Determined on the basis of 
percentage of energy from 
carbohydrate, vegetable 
protein and vegetable fat 

• Higher score reflects a 
higher intake of vegetable 

protein/ fat and a lower 
intake of carbohydrate 

Meat pattern 10301 
(4642/5659) 

• Determined on the basis of 
percentage of energy from 
carbohydrate, total protein 

and total fat 
• Higher score reflects a 
higher intake of protein/ fat 

and a lower intake of 
carbohydrate 

High Protein 

 
10864 

(4591/6273) 
 

• Determined on the basis of 
percentage of energy from 

carbohydrate, animal 
protein and animal fat 

• Higher score reflects a 
higher intake of animal 
protein/ fat and a lower 
intake of carbohydrate 

Bao, 20142  

(Bao, Wei et al., 
2014) 

USA 
 

White 
European 

 

Self-reported FFQ every 4 
years 

Prior to 
pregnancy: 

2001 

Unhealthy 
 

Fried/ fast food 

 
10866 

(348/10518) 
 

• Frequent consumption of 
fast food 

Bowers, 2012  
(Bowers et al., 
2012) 

USA 
 

White 
European 

Self-reported – no 
information on the 

criteria used 

FFQ every 2 
years – Diet 

over the 
previous year 

Pre-pregnancy: 
Most recent 

questionaries 
Fat 

 
6020 

(2190/3110) 
 

• Total fat (%TE) 
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Domingues, 
2014  
(Domingues et 
al., 2014) 

Spain 
 

Mediterranean 

Self-reported and 
then confirmed 
via a panel of 

medical doctors. 
Most common 
criteria used 

National Diabetes 
Group Criteria 
and Carpenter 

and Coustan cut-
offs 

FFQ every 2 
years 

Pre-pregnancy: 
Most recent 

questionnaire 

Unhealthy 
 

Fried/ fast food 

1587 
(971/616) 

• Frequent consumption of 
hamburgers, sausages and 

pizza 

Donazar-
Ezcurra, 2017  
(Donazar-
ezcurra et al., 
2017) 

Spain 
 

Mediterranean 
Not stated 

FFQ- Diet over 
the previous 

24 hours 

Pre-pregnancy: 
Most recent 

questionnaire 

Healthy 
 

Mediterranean 
diet 

1727 
(863/864) 

• High intake of poultry, olive 
oil, nuts, low-fat dairy 
products, whole grain 
bread, fish, fruit and 

vegetables 

Unhealthy 
 

Western diet 

1727 
(863/864) 

• Frequent intake of high-fat 
processed meats, potatoes, 
commercial bakery goods, 
whole dairy products, fast 
food, sauces, pre-cooked 

foods, SSB's and 
confectionary 

Flynn, 2016 
(Flynn et al., 
2016) 

UK 
 

White 
European 

 

75g OGTT 
≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 
2-hour > 8.5 

mmol/L 
 

FFQ – Diet 
over the 

previous week 

During 
pregnancy: 

15-18 weeks 
until 27-28 

weeks 

Unhealthy 
 

Western diet 

425 
(206/219) 

• High intake of potato, 
French fries, crisps, 

processed meat, fizzy 
drinks (SSB's and sugar 
free), root vegetables, 
green vegetables and 

chocolate 
Healthy 

 
Plant-based 

pattern 

429 
(213/216) 

• Frequent intake of 
fresh/citrus/tropical fruits, 

green/root/salad 
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vegetables, bananas and 
yoghurt 

Gicevic 2018  
(Gicevic et al., 
2018) 

USA 
 

White 
European 

 

Self-reported – 
No information on 

most common 
criteria used 

FFQ- Diet over 
the previous 

year 

Pre-pregnancy: 
Most recent 

dietary 
assessment 
(1991-2001) 

 

Healthy 
 

HR 

7274 
(4206/3068) 

• AHEI 2010 adherence 
score. 

• Characterised by high 
intakes of nuts, long chain 

omega-3 fats, 
polyunsaturated acids, nuts 

and low intakes of red 
meat, refined sugar, refined 

grains and SSBs 

He, 2015  
(He et al., 
2015) 
 
 

China 
 

Asian 

75g OGTT 
≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 
2-hour > 8.5 

mmol/L 
 

FFQ- Diet over 
the previous 
week (x3) 

During 
pregnancy: 
Week 16, 

Weeks 24-27, 
Weeks 35-38 

Healthy 
 

Prudent diet 

369 
(188/181) 

• Frequent intake of dairy 
products, nuts, eggs, fish, 

soups and fruits. 
• Infrequent intake of 
processed meats, SSBs, 

and processed vegetables 

Healthy 
 
 

Plant-based 
pattern 

2040 
(1019/1021) 

• Frequent intake of, beans, 
mushroom, melon 

vegetables, seaweed, 
legumes, fruits, 

leafy/root/cruciferous 
vegetables, nuts and 

cooking oil 

High-protein 
diet 

2046 
(1023/1023) 

• High intake of poultry 
red/animal/processed/organ 

meat, grains, fish, soups, 
leafy/ cruciferous 

vegetables and eggs 
Unhealthy 

 
Sweets and 

Seafood 
pattern 

2043 
(1019/1024) 

• Frequent intake of 
Cantonese desserts, 

molluscs, shellfish and 
SSBs 
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Hrolfsdottir, 
2020  
(Hrolfsdottir et 
al., 2019) 

Iceland 
 

White 
European 

 

75g OGTT 
≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 
2-hour > 8.5 

mmol/L 
 

FFQ – Diet 
over the 
previous 
month 

During 
pregnancy: 

11th -14th week 

Unhealthy 
 

Unhealthy diet 
score 

709 
(302/407) 

• Low intake of fruit, 
vegetables fish, dairy, 

wholegrains, beans, nuts, 
seeds, and vitamin D 

supplementation 
• High intake of refined 

sugars and grains, and 
processed foods, dairy, and 

low-quality fat (i.e., using 
butter rather than oil). 

Hu, 2019  
(Hu et al., 
2019) 

China 
 

Asian 

75g OGTT 
≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 
2-hour > 8.5 

mmol/L 
 
 
 

FFQ – Diet 
over the 

previous 2 
months 

During 
pregnancy: 
22nd week 

 

Unhealthy 
 

Sweets and 
Seafood 
pattern 

508 
(255/253) 

• Frequent intake of pastries, 
candid, sweet beverages, 

shrimps, crabs, fruit, 
mussels and  red meat 

Fish- Seafood 508 
(255/253) 

• Frequent intake of marine 
fish, shrimp, crabs and 

mussels, freshwater fish 
and seaweed 

• Infrequent intake of eggs, 
dairy products and rice 

Traditional 
Asian diet 

 
508 

(255/253) 
 

• Frequent intake of tubers, 
vegetables, fruit, rice, red 

meat, eggs and nuts 

Karamanos, 
2014 
(Karamanos et 
al., 2014) 

Mediterranean 
countries 
(Algeria, 
France, 

Greece, Italy, 
Lebanon, 

Malta, Morocco, 
Serbia, Syria, 

Tunisia) 
 

75g OGTT 
≥2 of the 
following: 

Fasting ≥ 5.3 
mmol/L 

1-hr ≥ 10 mmol/L 
2-hour > 8.6 

mmol/L 
 

OR 

FFQ 

During 
pregnancy: 

Before OGTT 
(24th-28 week) 

Healthy 
 

Mediterranean 
diet 

668 
(334/334) 

• High adherence to the Med 
Diet pyramid 

• Characterised by frequent 
intake of bread, cereals, 

legumes, vegetables, fruits, 
meat, fish, eggs, potatoes, 
cheese and dairy products 
• High ratio of olive oil to 

animal fat 
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Mediterranean ≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 
 

Lamyian, 2017  
(Lamyian et 
al., 2017) 

Iran 
 

Irani 

75g OGTT 
≥2 of the 
following: 

Fasting 95≥ 
mg/dL 

1-hr ≥180mg /dL 
2-hour ≥155mg 

/dL 
3-hr ≥140mg /dL 

FFQ- Diet over 
the previous 

year 

During 
pregnancy: 

Before 6th week 

Unhealthy 
 

Fried/ fast food 

513 
(256/257) 

• High intake of hamburger, 
bologna, pizza, sausage 

and French fries 

Le Donne, 
2016  
(Le Donne et 
al., 2016) 

Italy 
 

White 
European 

Not stated 
FFQ- Diet over 

the previous 
week 

During 
pregnancy: 
34th week 

Fish 114 
(104/10) 

• Intake of tuna, swordfish, 
mackerel, salmon, anchovy, 

garfish, spatula, sardine, 
sea gilt-head bream, sea 

bass, cod, sea bream, 
perch and shellfish 

Liang, 2018 
(Liang et al., 
2018) 

China 
 

Asian 

 
75g OGTT 
≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 
2-hour > 8.5 

mmol/L 
 
 

FFQ- Diet over 
the previous 

day 

Pre-pregnancy: 
(Assessed at 
first routine 
ultrasound) 

 

High-protein 
diet 

714 
(342/372) 

• High intake of meats, fish, 
shrimps, dairy products, 

soybeans and nuts 
Fish - • Intake of fish and shrimp 

Vegetable 
protein 

796 
(439/357) 

• Intake of Beans (soybeans 
and soybean products) and 

nuts 

Meat pattern/ 
Animal protein 

5877 
(2862/3015) 

• High intake of animal 
protein (% TE) 

• Characterised by intake of 
meats, fish, shrimps and 

dairy products 
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Looman, 2018 
(Looman et 
al., 2018) 

Australia 
 

Australian 
Nationals 

 
 

Self-reported 
 

Diagnostic criteria 
during study 

period 
 

75g OGTT 
Fasting ≥ 

5.5mmol/L 
2-hour ≥8.0 

mmol/L 
 

OR 
 

75g OGTT 
≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 
2-hour > 8.5 

mmol/L 

FFQ- Diet over 
the previous 

year 

Pre- 
pregnancy: 

Dietary 
information 
collected in 

2003 used as 
baseline. 

Pregnancies 
reported in 
years 2006, 

2009, 2012 and 
2015. 

Healthy 
 

HR 

 
2431 

(1529/902) 
 

• Low GI diet 
• Lowest group median 

glycaemic index 47.8. 
Highest group median  
glycaemic index 56.7 

High protein 
diet 

 
2483 

(1537/901) 
 

• Low Carbohydrate Diet 
score 

Carbohydrate 

 
3051 

(1510/1541) 
 

• Carbohydrate intake (%TE) 

Mak, 2018 
(Mak et al., 
2018) 

China 
 

Asian 

75g OGTT 
≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 
2-hour > 8.5 

mmol/L 
 

FFQ 
 

During 
pregnancy: 

Between 15th-
20th week 

Meat pattern 892 
446/446) 

• Frequent intake of 
organ/processed meat, ox 
tripe, pig blood curd, squid, 

pork, and mushrooms 

Healthy 
 

Plant-based 
pattern 

892 
(446/446) 

• High intakes of green leafy 
vegetable/ cruciferous/ 

gourd/melon family/red or 
orange/root/bean 

vegetables 
• High intake of potatoes, 
bean products, mushrooms 

and fruits 
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• Low intake of lean pork 
meat 

High-protein 
diet 

891 
(445/446) 

• High intake of eggs, milk, 
lean pork meat and fish 

• Low intake of bread and 
sea vegetables 

Marí-Sanchis, 
2018 (Sanchis 
et al., 2018) 
 
 

Spain 
 

Mediterranean 

Self-reported and 
then confirmed 

via an 
endocrinologist 
Most common 
criteria used 

National Diabetes 
Group Criteria 
and Carpenter 

and Coustan cut-
offs 

FFQ every 2 
years 

Pre- pregnancy 
 Meat pattern 1649 

(824/825) 

• Frequent intake of 
red/processed/ 

unprocessed meats, poultry 
and rabbit 

Mohanty, 2015 
(Mohanty et 
al., 2015)  

USA 
 

White 
European 

100g OGTT 
≥2 of the 
following: 

Fasting ≥ 105 
mg/dL 

1-hr ≥190 mg/dL 
2-hour ≥165 

mg/dL 
3-hr ≥ 145 mg/dL 

FFQ – Diet 3 
months prior to 

conception 
and during the 
first trimester. 

During 
pregnancy: 
16th week 

Fish 2418 
(2116/302) 

• Intake of shellfish, lean fish 
and fatty fish 

Osorio-Yáñez, 
2017  
(Osorio-Yáñez 
et al., 2017) 

USA 
 

White 
European 

100g OGTT 
≥2 of the 
following: 

Fasting ≥ 95 
mg/dL 

1-hr ≥180 mg/dL 
2-hour ≥155 

mg/dL 

FFQ- Diet over 
the previous 3 

months 

During 
pregnancy: 
15th week 

Unhealthy 
 

Fried/ fast food 

4207 
(3414/793) 

• Intake of fried potatoes, 
fried chicken, fried fish, 

doughnuts and snack crisps 
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3-hr ≥ 140 mg/dL 
USA 

 
White European 

Pang, 2017  
(Pang et al., 
2017) 

Singapore 
 

Asian 

75g OGTT 
≥1 of the 
following: 

Fasting ≥ 7 
mmol/L 

2-hour ≥ 7.8 
mmol/L 

 
 

FFQ- Diet over 
the previous 
24 hours/ 3 

days 
 

During 
pregnancy: 

26th-28th week 

High-protein 
diet 

 
490 

(245/245) 
 

• Protein intake from animal 
and vegetable sources 

combined 

Vegetable 
protein 

 
490 

(245/245) 
 

• Protein intake from 
vegetables, rice, noodles, 

desserts and beans 

Meat pattern/ 
Animal protein 

 
490 

(245/245) 
 

• High intake of animal 
protein (% TE) 

Schoenaker, 
2015  
(Schoenaker 
et al., 2015) 

Australia 
 

White 
European 

 
During study 

period following 
recommendations 
used in Australia: 

 
75g OGTT 

Fasting ≥5.6 
mmol/L 

2-hour ≥ 8 mmol/L 

FFQ- Diet over 
the previous 
12 months 

During 
pregnancy: 

Varied times 
 

Healthy 
 

Mediterranean 
diet 

4376 
(2249/2127) 

• High intake of vegetables, 
legumes, nuts, tofu, rice, 

pasta, rye bread, wine and 
fish 

Unhealthy 
 

Western diet 

4365 
(2137/2228) 

• Frequent intake of red/ 
processed meat, snacks, 
sweets (including cakes, 
chocolate and biscuits), 

pizza and fruit juice 
Healthy 

 
Plant-based 

pattern 

4706 
(2125/2554) 

• Frequent intake of carrots, 
peas, cauliflower, broccoli, 
potatoes, pumpkin, green 

beans and cabbage 

Tajima, 2017 
(Tajima et al., 
2017) 

Japan 
 

Asian 

75g OGTT 
≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 

FFQ- Diet over 
the previous 3 

days 

During 
pregnancy: 

First prenatal 
visit 

Fat 125 
(105/110) 

• Total fat (%TE) 
 

Carbohydrate 
216 

(108/108) 
 

• Carbohydrate (%TE) 
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2-hour > 8.5 
mmol 

Tobias, 2012 
(Tobias et al., 
2012) 

USA 
 

White 
European 

Self-reported, 
most commonly 
by the National 
Diabetes Data 
Group Criteria 

FFQ 

Pre-pregnancy: 
Most recent 

questionnaire 
(survey every 

two years) 

Healthy 
 

HR 

9637 
(6141/3496) 

• High intake of AHEI diet 
• Increased intake of fruit, 

vegetables, cereal fibre, 
nuts and multivitamins 

• A high white: red meat ratio 
and PUFA:SFA ratio. 
• Moderate alcohol 

consumption 
• Decreased consumption of 

trans-fat 
 

Healthy 
 

Mediterranean 
diet 

8572 
(5275/3297) 

• Increased intake of fruits, 
vegetables, nuts, legumes, 
soy, fish and wholegrains 

• Moderate intake of alcohol 
and MUFA: SFA servings/d 

• Limited intake of red and 
processed meat 

Tryggvadottir, 
2015  
(Tryggvadottir 
et al., 2015) 

Iceland 
 

White 
European 

75g OGTT 
≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 
2-hour > 8.5 

mmol/L 
 

FFQ – Diet 
over the 

previous 4 
Days 

During 
pregnancy: 
20 weeks 

Healthy 
 

HR 

 
168 

(56/112) 
 

• High adherence to the 
Healthy Eating Index. 

Healthy 
 

Prudent diet 

168 
(56/112) 

• Frequent intake of seafood, 
eggs, fruits, vegetables, 

vegetable oils, nuts, seeds, 
pasta, breakfast cereals, 

coffee, tea and cocoa 
powder 

• Limited intake of soft drinks 
and French fries. 

Fish NA • Intake of fish, seafood and 
shellfish products 
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Yi, 2017  
(Yi et al., 2017) 

China 
 

Asian 

75g OGTT 
≥1 of the 
following: 

Fasting ≥ 5.1 
mmol/L 

1-hr ≥ 10 mmol/L 
2-hour > 8.5 

mmol/L 
 

2 x FFQ- 24hr 
recall on 3 
occasions 

 
During 

pregnancy: 
1 questionnaire 

during 5-15-
week period, 1 
questionnaire 

during 
24-28-week 

period 

Unhealthy 
 

Western diet 

352 
(173/179) 

• Frequent intake of dairy, 
baked/fried food and white 

meat 

Traditional 
Asian diet 

346 
(179/167) 

• Frequent intake of light-
coloured vegetables, fine 

grain, red meat and tubers 

Healthy 
 

Prudent diet 

351 
(181/170) 

• Frequent intake of dark 
coloured vegetables and 

deep-sea fish 

Yong, 2020  
(Yong et al., 
2020) 
 

Malaysia 
 

Asian 
 

 
75g OGTT 
≥1 of the 
following: 
Fasting ≥ 

5.6mmol/L 
2-hour ≥ 

7.8mmol/L 

FFQ – Diet 
over the 

previous 6 
months 

During 
pregnancy: 

 
~10 weeks, 
~12 weeks, 
~27 weeks 

Healthy 
 

Plant-based† 

300 
(150/150) 

• High intake of vegetables, 
nuts, seeds, legumes, fruits, 

eggs and dairy products 

Unhealthy 
 

Western diet† 

300 
(150/150) 

• High intake of poultry, meat, 
sweet foods, seafoods, oil, 
fat, rice, noodles and pasta 

Zhang, 2006 
(Zhang et al., 
2006) 
 

USA 
 

White 
European 

Self-reported 
following a 
previous 

diagnosis. Most 
common criteria 

used was 
National Diabetes 

Group criteria 

FFQ- Diet over 
the previous 

year 

Pre-pregnancy: 
1-7 years 

Healthy 
 

Prudent diet 

 
5185 

(2519/2666) 
 

• High intake of fruit, green 
leafy vegetables, poultry 

and fish 

Unhealthy 
 

Western diet 

5196 
(2530/2666) 

• Highest meat (poultry, red 
and processed), pizza, 
dessert, sweet, French 
fries, dairy products and 

refined grain intake 

Zhang, 2014  
(Zhang et al., 
2014) 

USA 
 

White 
European 

Self-reported 
following a 
previous 

diagnosis. Most 
common criteria 

used was 
National Diabetes 

Group criteria 

FFQ- Diet over 
the previous 

year 

Pre-pregnancy: 
Most recent 

questionnaire 

Healthy 
 

HR 

8236 
(4219/4017) 

• Modified version of AHEI-
2010 (10/11 components, 

excluding alcohol) 
• Higher intakes of 
vegetables, fruit, whole 

grains, nuts, long- chain (n-
3) fatty acids, and PUFAs 
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Bolded exposures represent overarching grouped exposure FFQ: food frequency questionnaire. SSB: Sugar sweetened beverages. TE: Total energy intake. HR: 
Healthy recommendation. † Number in each tertial calculated as a third of the study population.††Number in each quartile calculated as a quarter of the study 
population.  

 

• Lower intakes of SSBs, 
red/processed meat, trans-

fat, and sodium 

Zhou, 2018  
(Zhou et al., 
2018) 

 
 
China 
 
Asian 

75g OGTT 
≥1 of the 
following: 
Fasting ≥ 5.1 
mmol/L 
1-hr ≥ 10 mmol/L 
2-hour > 8.5 
mmol/L 
 

FFQ- Diet over 
the previous 
month 
 

During 
pregnancy: 
2 weeks before 
OGTT  
(OGTT at 24-
28 weeks) 

Healthy 
 
Plant-based 
pattern 

131 
(60/71) 

• Frequent intake of root 
vegetables, melon, 
solanaceous/leafy/crucifero
us vegetables, mushrooms, 
algae, beans and bean 
products 

Meat pattern 132 
(79/53) 

• Frequent intake of animal 
organs and blood, seafood 
and poultry 

High-protein 
diet†† 

1356 
(668/668) • Total protein intake (%TE) 

Animal 
protein†† 

1356 
(668/668) • Animal protein (%TE) 

 Fat†† 1356 
(668/668) • Total fat (%TE) 

Carbohydrate†† 1356 
(668/668) • Carbohydrate (%TE) 

Vegetable 
protein†† 

1356 
(668/668) • Vegetable protein (%TE) 
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3.5.3.1 Healthy diets 

Twenty studies reported on the relationship between healthy dietary 

patterns and GDM incidence in observational studies. These studies 

encompassed four distinct dietary patterns (i.e., healthy dietary 

recommendations, Mediterranean diet, prudent diet and plant-based diet) in 4 

population groups (Asian, Australian Nationals, Mediterranean and WEs). 

When analysed collectively, high adherence to a healthy dietary pattern was 

found to be associated with a decreased odds of GDM by 22% (OR = 0.78, 

95% CI 0.70 – 0.88, I2 = 74%) compared to those with the lowest level of 

adherence (Figure 3.3). When stratified by ethnicity, healthy diets were also 

found to lower the odds of GDM in WE (OR = 0.75, 95% CI 0.65 – 0.88, I2 = 

79%), however, significant associations were not found in other ethnicities. 

Likewise, when stratified by healthy diet type, healthy diet recommendations 

and the Mediterranean diet were found to be associated with a lower odds of 

GDM solely in WEs. However, when the more stringent HKSJ approach was 

applied only healthy dietary recommendations retained significance 

(Appendix Table A.2). The prudent diet and plant-based diet were not 

associated with a lower odds of GDM in any ethnicity (Appendix Figure A.6). 

3.5.3.2 Unhealthy diets 

Thirteen studies reported on the relationship between unhealthy diets 

(Western diet, fried/fast food, unhealthy dietary score, sweet and seafood 

pattern) and GDM across 4 ethnicities (Asian, Iranian, Mediterranean and 

WE). When including all ethnicities, high adherence to an unhealthy dietary 

pattern associated with an increased odds of GDM by 44% (OR = 1.44, 95% 

CI 1.25 – 1.67, I2 =41%) (Figure 3.4). This association was identified in WE 

(OR = 1.59, 95% CI 1.41 – 1.81, I2 =0), Mediterranean (OR = 1.69, 95% CI 

1.21 -2 35, I2 =0), and Iranian (OR = 2.12, 95% CI 1.12 – 4.01) populations, 

although only one Iranian study was identified.  Following stratification by 

unhealthy diet type, high adherence to a Western diet (n=6), fried/fast food 

(n=4) and an unhealthy diet score (n=1) was found to significantly associate 

with an increase 
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Figure 3.4: Forest plot of observational studies for healthy diets. Results from a 
DerSimonian and Lard (DL) approach. CI: confidence interval. IV: inverse variance. 
OR: odds ratio. SE: standard error. TE: treatment effect. 
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in GDM odds  by 51%, 66% and 50% respectively, the latter in a single WE 

population (Appendix Figure A.7). Significant associations in the WE 

subtypes were also observed for the Western diet and fried food exposures.  

The only population for which unhealthy diets were not associated with an 

increase in GDM odds was the Asian population, where no association was 

identified in the collective analysis of all unhealthy diets, the Western diet and 

the sweet and seafood pattern.  

3.5.3.3 Unclassified diets 

 Four dietary patterns (meat-based, high protein, traditional Asian and 

high-fish diets) could not be classified as healthy or unhealthy due to their 

constituent components. The meat-based pattern was associated with an 

increased odds of GDM when evaluating all individuals collectively (OR = 

1.41, 95% CI 1.22 – 1.63, I2= 23%), and when evaluating the WE subgroup 

Figure 3.5: Forest plot of unhealthy diets. Results from a DerSimonian and Lard (DL) 
approach. CI: confidence interval. IV: inverse variance. OR: odds ratio. SE: standard 
error. TE: treatment effect. 
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(OR = 1.41, 95% CI 1.18 – 1.68, I2=0%) or the Mediterranean subgroup (OR 

=1.68, 95% CI 1.07 – 2.65) separately. Only one study was identified in a 

Mediterranean population (Appendix Figure A.8). A high protein diet was 

also found to associate with an increased risk of GDM in the overall population 

(OR = 1.36, 95% CI 1.05 – 1.76, I2=78%) and in WEs (OR=1.28, 95% CI 1.09 

– 1.52, I2 = 0%), but not in Asians. Likewise, no association between fish 

intake and GDM was identified in Asians, while a protective effect was 

identified in WEs (OR = 0.85, 95% CI 0.73 – 0.98, I2 = 0%).  

3.5.3.4 Macronutrients 

Four dietary exposures identified in this review were classified based 

on the % of total energy intake of a specific macronutrient: animal protein, 

vegetable protein, fat and carbohydrate. Animal protein (OR=1.49, 95% CI 

1.25 – 1.77, I2=0), carbohydrates (OR=0.49, 95% CI 0.38 – 0.63, I2 =0) and 

fat (OR = 1.50, 95% CI 1.22 – 1.83, I2=0), were all associated with the risk of 

GDM in the combined analyses of all ethnic groups (Appendix Figure A.9). 
These associations were also found to be significant in both the WE and Asian 

subgroups with comparable effect sizes being identified in both ethnicities. All 

associations remained significant following a Bonferroni correction and after 

the HKSJ approach with the exception of animal protein in Asians (Appendix 
Figures A.10, A.11, Table A.2). Vegetable protein intake was not found to be 

associated with GDM incidence in any ethnicity.   

3.5.3.5 Dose-response analyses 

Healthy diets, HRs, a Mediterranean diet, prudent diet, plant-based 

diets, unhealthy diets , western diets, fried/ fast food, meat pattern and high 

protein diets showed evidence of a dose response following the visual 

inspection of ORs; however, no strong evidence of a dose response was 

identified for any exposure (Appendix Figure A.11, Figure A.12). Limited 

evidence of a dose-response relationship was identified for HRs and fried/ fast 

food intake in WEs (βHR= -0.098, βFried = 0.138) in the quadratic models 

however these associations were no longer significant following a Bonferroni 

correction (Appendix Table A.3, Figure A.13). A significant Wald ratio (P 
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value = 0.0001) was also obtained in the 3K cubic spline model of fried/fast 

food intake in WEs adding further evidence that any dose response related to 

fried/fast food intake in WEs may not be linear. However, the quadratic model 

was consistently found to be the best fitting model for all exposures 

(Appendix Table A.3). 

3.5.4 Post-hoc analyses: Combination of RCTs and 
observational studies 

For exposures investigated in both RCTs and observational studies 

(i.e., overall healthy diet exposure, healthy dietary recommendations and the 

Mediterranean diet), the effect estimates obtained from the analyses of each 

study design were similar and often had overlapping confidence intervals as 

well as comparable I2 statistics. As a result of this, a post-hoc analysis 

involving the combination of both study types were performed in order to 

increase power (Appendix Figure A.13). This analysis showed a novel 

association between healthy diets and GDM in Australian nationals (OR 

=0.92, 95% CI 0.88 – 0.97, I2=0), while only negligible changes in the effect 

sizes of other associations were observed. The combination of RCTs and 

observational studies improved power for analyses in all ethnicities.   

3.5.5 Sensitivity analyses 

Following the combination of study types, sensitivity analyses were 

performed for analyses with an I2 ≥ 40% in an attempt to minimise 

heterogeneity. Sensitivity analyses were executed based upon: (i) 

assessment of diet during pregnancy, (ii) adjustment for obstetric risk factors 

(parity, gravidity or multiple pregnancy), (iii) pre-pregnancy BMI, classified with 

ethnic-specific cut-offs, (iv) maternal age, and (v) Asian subpopulation (East 

Asian: Chinese and Japanese, South/South-East Asian: Indian subcontinent 

and Malaysia). When only considering dietary intake during pregnancy, no 

association was found between healthy diets and GDM in any ethnicity. 

(Appendix A, Tables 3-4). In addition, when considering the impact of 

unhealthy diets overall, or the Western diets, no association was found with 

GDM in overweight/obese WEs. Interestingly, a high protein diet increased 

odds of GDM in older women that was driven by WEs (OR=1∙28;95%CI:1∙09-
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1∙52; I2=0). Almost all sensitivity analyses were well powered (0∙80%) to 

detect an effect size ≥10% with the majority suitably powered to detect an 

effect size ≥5%. Two exceptions were the assessments of the plant-based diet 

in overweight women and healthy diets in overweight/obese Asian women. 

3.5.6 Subgroup differences 

Prior to the implementation of a Bonferroni correction, the effect size of 

the association between unhealthy diets and GDM were significantly different 

when comparing WEs to Asians (p = 0.03). Effect sizes were not statistically 

different between any pair of ethnic subgroups for all other exposures. 

3.5.7 Risk of Bias 

No study included in this review exceeded the Academy of Nutrition 

and Dietetics’ exclusion threshold for high ROB (i.e., 6 negative scores) 

Appendix Figure A.14). On average, RCTs scored positively for ROB 45% 

of the time, neutrally 34% of the time and negatively 21% of the time, indicating 

some risk of bias. Areas of the greatest concern were the comparability of 

study groups, blinding and the management of withdrawals. (Appendix 
Figure A.15). 

On average, observational studies had a lower risk of bias than RCTs, 

with 55% of studies having a high risk of bias, 22% a neutral risk of bias, and 

24% having a high risk of bias (Appendix Figure A.16). Dietary exposures 

with the highest risk of bias were the carbohydrate, fat and Mediterranean 

dietary patterns. On the contrary, the prudent diet and fast-food exposures 

had the lowest risk of bias. When considering RCTS, WE studies had a higher 

risk of bias than Asian or Mediterranean studies. In observational studies 

Asian studies had a higher risk of bias than WE or Mediterranean studies, 

although the results were similar across ethnicities. ROB was similar in all 

domains when comparing study types (Appendix Figures A.17, A.18). Four 

analyses, healthy (observational), unhealthy (observational), healthy 

(combined), healthy recommendations (combined) and unhealthy had a 

sufficient number of studies (≥10) to assess for funnel plot asymmetry without 

the introduction of bias (Sterne et al., 2017). The tests for asymmetry of the 
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funnel plot (the Harbord modified test) were non-significant for both exposures 

and funnel plots visually looked symmetrical indicating an absence of 

publication bias. (Appendix Figure A.19) 

3.5.8 Power analysis 

All analyses with the exception of the single sensitivity analysis of the 

effect of consumption of a Western diet during pregnancy had inadequate 

power to detect a change in odds of 20%. (Appendix Table A.5). In RCTs, 

power was lowest for the WE subgroup where a change in odds of 18% could 

be detected for the healthy dietary exposure. In observational studies, power 

was lowest for the Asian subgroups of Asian traditional and fish exposures 

where analyses were powered to detect an 18% change in odds. 

3.6 Discussion 

This review aimed to assess the role of diet in GDM prevention in 

distinct ethnic groups through the evaluation of evidence from both RCT and 

observational studies. Six RCTs were identified in ethnically distinct 

populations, 5 of which commenced during pregnancy. No evidence of an 

association between healthy dietary interventions or healthy dietary 

interventions which focused on providing healthy dietary recommendations 

and GDM incidence was obtained before or after stratifying results by 

ethnicity. This agrees with the most up-to-date Cochrane review that found 

dietary interventions to have an unknown benefit or harm regarding GDM  

(Griffith et al., 2020), although no ethnically stratified analyses were presented 

in this review.  Despite these findings, a meta-analysis of 37 RCTs aimed at 

reducing gestational weight gain did find dietary interventions to be effective 

in preventing GDM, suggesting that for dietary interventions to be effective at 

preventing GDM they may need to place a greater emphasis on weight 

management and may not apply to all women (Bennett et al., 2018).  

Through the inclusion of observational studies in the review the impact 

of pre-pregnancy diet on GDM could be determined. This is the first review to 

evaluate, by  meta-analysis, the impact of diet and ethnicity on GDM as 

assessed in observational studies. A single systematic review has been 
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conducted in relation to both cohort and case-control studies, which found a 

high consumption of cholesterol, heme iron, and processed meat increased 

risk of GDM, while patterns rich in fruit, wholegrains and vegetables reduced 

risk of GDM (Schoenaker et al., 2016). However, a high heterogeneity was 

observed by authors, possibly due to ethnic specific-effects that were not 

accounted for. 

To address this, this study involved the use of meta-analyses 

performed in ethnic-specific subgroups; thereby, minimising confounding in 

each ethnic analysis, while permitting a comparison of effect sizes between 

them. For this, identified dietary exposures were classified as either healthy, 

unhealthy, or unclassified depending on their constituent components. In 

observational studies healthy diets were found to associate with a decreased 

odds of GDM in WEs but not in Asians, while unhealthy diets were found to 

associate with an increased risk of GDM in WEs but not Asians. Likewise, a 

meat-based diet and high-protein diet were found to associate with an 

increased risk of GDM in WEs but not Asians. No additional associations were 

identified when stratifying the Asian population by their geographical location 

(i.e., East vs South). A prudent diet, plant-based diet, the sweet and seafood 

and a traditional Asian diet were not associated with GDM in any ethnicity.  

Interestingly, almost all associations were unaffected by mother’s age 

and BMI, suggesting that modified guidelines for WE women at high-risk of 

GDM due to age or BMI may not be required. The presence of an association 

in WEs in observational studies but not RCTs could be a result of increased 

power, or it could highlight the importance of a healthy diet prior to conception. 

However, future RCTs investigating dietary interventions during ‘family 

planning’ are required to test this hypothesis. 

When considering macronutrients, an increased intake of animal 

protein and fat associated with an increased odds of GDM by up to 50% in 

both WEs and Asians, whereas a carbohydrate-rich diet associated with a 

reduced the odds of GDM by ≈ 50%. Unfortunately, because all exposures 

were quantified as % energy intake, it was not possible to tease apart whether 

the protective effect on GDM was driven by reductions in protein and fat or 

increased consumption of carbohydrates, or a combination thereof. 

Interestingly, while animal protein associated with GDM risk in WEs and 
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Asians, no association was observed with the meat-based dietary pattern in 

Asians. While the animal-protein diet may have been carbohydrate-rich and 

negated the effects of high-animal protein, an alternative explanation may be 

that ethnic-specific foods and cooking methods are difficult to capture with 

some dietary recall tools. 

 Due to the limited number of associations identified in non-WE studies 

and the similar effect sizes and risk of bias obtained in the analysis of RCTs 

and observational studies, an additional post-hoc sensitivity analysis of the 

study types combined was performed to increase power. Through this, an 

additional association between healthy diets and GDM in Australian nationals, 

(a heterogeneous group comprised of WEs and Asians) was identified, but no 

other additional associations were reported. Overall, this meta-analyses has 

a moderate risk of bias specifically in terms of blinding and comparability of 

study groups. Practically however these biases may not be less important in 

this context in a real-world setting. Blinding of a practitioner to diet is less 

important in a disease such as GDM with a stringent diagnostic criterion, while 

differences in the demographics of cases compared to non-cases is expected 

in relation to factors such as age and BMI. 

 Despite numerous significant associations between diet and GDM in 

WEs no consistent evidence was found in other ethnicities. The reason for this 

is unclear, but the inconsistent reporting (or limited use) of ethnically tailored 

and culturally informed assessment tools may have contributed to this, 

especially in RCTs where a third of studies did not report the cultural 

appropriateness of their interventions (Appendix Table A.6). However, in 

observational settings, the majority of studies did report on the cultural validity 

of the assessment tools utilised, with only 11% (1/9) of Asian studies failing to 

do this. This indicates that although the appropriateness of assessment tools 

may contribute to discrepancies in effect estimates between ethnicities, other 

factors, including biological factors, are likely to contribute to the observed 

discrepancies in effects. For example, one potential biological factor driving 

the disparity in the association between diet and GDM between ethnicities is 

the metabolome. Indeed, recent work in a the multi-ethnic NUTRIGEN 

consortium also found diet to have different impacts between ethnicities, with 
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a plant-based diet increasing birthweight in a SA while reducing birthweight in 

WEs (Zulyniak et al., 2017). 

This study had numerous strengths. Firstly, this is the first study to meta-

analyse the results of both RCTs and observational studies in relation to diet 

and GDM. It is also the first study to examine the role of ethnicity in the 

relationship between diet and GDM. Furthermore, both the standard meta-

analysis method (DL) and the more conservative HKSJ approach were utilised 

when ≤ 5 studies were available for an exposure. Moreover, a single ROB 

assessment that is translatable for both RCTs and observational studies 

permitted comparison of bias between study design. Finally, power analyses 

confirmed adequate power throughout.  

Nonetheless, this study also has several limitations. Firstly, only studies 

written in English were included in this review. Given that the aim of the review 

was to identify studies conducted in distinct ethnic populations, studies 

conducted in non-English speaking regions of the globe (including South Asia) 

may have been excluded from the review. This could mean that some studies 

exploring the association between diet and GDM conducted in high-risk 

ethnicities may have been missed which could have contributed to the 

absence of effect identified in Asian populations.   

Secondly, although all observational studies are limited by confounding, 

the comparability of the effect estimates obtained from RCTs, and 

observational studies implies that this was accounted for reasonably well by 

study authors. It is however likely that some residual confounding does exist 

(for example as a result of varying population demographics) in the included 

observational studies which could explain the high heterogeneity for some 

exposures and can make comparisons between study populations more 

difficult. In an attempt to help minimise this confounding from known GDM risk 

factors (including increased maternal age and BMI) a range of sensitivity 

analyses were utilised in this review.  

Thirdly, heterogeneity was present throughout this analysis, likely due to a 

range of methodological reasons. For example, numerous studies derived 

dietary patterns via principal component analyses (PCA) conducted on FFQ 

results. This can introduce heterogeneity due to the consumption of varied 

foodstuffs between populations that may result in differing components 
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defining dietary patterns in different populations, depending on how frequently 

these components were consumed and how their input was characterised by 

FFQs in individual studies. Furthermore, differing cut-offs of what was 

considered to be an 'important loading variable in PCA analyses conducted in 

different studies may also contribute to the observed heterogeneity. 

 Furthermore, through this method it is possible that the factors which 

characterise a dietary pattern in one study may not in another, adding further 

heterogeneity. In addition, the categorical nature used to classify individuals 

as ‘high consumers’ or ‘low consumers’ are population specific results in the 

possibility of highest consumers in one study being incompatible with the 

highest consumers from another study obtained from a different population or 

region. This use of the categorical scale also disadvantageously prevents the 

aggregation of multiple relevant effect estimates from a single study into a 

single estimate due to the inability to assess whether the exposed and 

unexposed groups were comprised of the same individuals.  Specifically, this 

could result in a potential bias in the analyses of healthy diets in observational 

studies and in the combined analyses. In order to assess the impact of this 

bias, one exposure from each relevant study was randomly dropped. This 

resulted in limited deviations in effect sizes suggesting the impact of this bias 

to be minor. Similarly because numerous studies utilised the Nurses’ Health 

Study there is a risk of a type 2 error, as noted by a previously published 

systematic review of observational studies (Schoenaker et al., 2016). To 

account for this, studies including the Nurses’ Health Study were dropped at 

random, which was shown to have no impact on the results. 

In conclusion, through the analysis of both RCTs and observational studies 

the impact of diet on GDM incidence has been assessed in distinct ethnic 

groups. This analysis has confirmed the presence of an association between 

healthy and unhealthy diets evaluated in observational studies with GDM in 

WEs but not in Asians, despite evidence of sufficient power and the wide-

spread use of culturally sensitive dietary assessment tools.  

3.7 Summary 

• Healthy dietary interventions administered via RCTs were not found to 

be effective in reducing GDM incidence in any population. 
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• In observational studies healthy dietary patterns were found to reduce 

GDM incidence in WEs but not in Asians.  

• Unhealthy dietary patterns assessed in an observational setting were 

found to increase the odds of GDM development in WEs but not 

Asians. 

• Known GDM risk factors, including age and BMI were not found to 

influence the identified associations. Furthermore, power was sufficient 

to detect a ± 0.2 change in odds in the majority of analyses. 

• The use of culturally sensitive dietary interventions was somewhat 

limited in RCTs, however the majority of observational studies utilised 

culturally sensitive assessment measures to record dietary intake. 

• Differences in the associations between dietary patterns and GDM 

between ethnicities may be of a result of ethnic-specific differences in 

the biological drivers of GDM. 
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Chapter 4: Metabolomic Analysis of the Born in Bradford 
Cohort: A Multivariate Analysis 

 

Authors original report of the study submitted as Fuller H, et al. to the Journal 
of Nutrition.  https://doi.org/10.1101/2022.04.11.22273658.  

4.1 Abstract 

Despite the high disease burden of GDM, the biological mechanisms 

driving GDM development are still largely unknown, however metabolism is 

thought to play a key role. Current evidence that utilises metabolomics to 

investigating the role of metabolism in GDM developed in South Asians (SAs) 

is however limited. To address this, this study aimed to (i) characterise the 

metabolic profiles of GDM in white Europeans (WEs) and SAs and to (ii) 

evaluate the association between metabolite values and pregnancy 

dysglycemia in an ethnic-specific manner. 

146 metabolite values from fasting serum samples from 2,668 WE and 

2,671 SA women from the Born in Bradford (BiB) cohort (mean gestational 

age 26.1 weeks). These values were analysed using partial least squares 

discriminatory analyses (PLSDA) to identify metabolites characteristic of GDM 

in each ethnicity. Linear associations between metabolites and pregnancy 

dysglycemia were also tested via linear regression. 

Seven metabolites associated (VIP ≥1) with GDM in both ethnicities, 

with an additional 6 associated with GDM in WEs only. Unique metabolic 

profiles were observed in women of healthy weight who later developed GDM, 

with distinct metabolite patterns identified by ethnicity and BMI status. 

Furthermore, lactate, histidine, apolipoprotein A1, HDL cholesterol, HDL2 

cholesterol, and DHA, as well as the diameter (nm) of very low-density 

lipoprotein particles (VLDL_D) were associated with dysglycemia in WEs. In 

SA women only albumin was associated with dysglycemia. These results 

suggest that pathways involving fatty acids, cholesterols, glycolysis and amino 

acids may be characteristic of GDM, in both ethnicities with fatty acids being 

the most frequently identified class. This is the first study to show that the 

metabolic patterns of GDM may differ between ethnicities, and highlights the 

potential need for ethnically appropriate GDM prevention strategies. 
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4.2 Background 

During pregnancy, there is a natural shift towards increased catabolism 

to ensure that energy demands of the foetus are met (Schaefer-Graf et al., 

2018; Chen et al., 2018). This process is governed by maternal hormones and 

starts as a mild reduction in insulin sensitivity, progressing through 

hyperinsulinemia to controlled insulin resistance by the start of the third 

trimester (Chen et al., 2018; Mao et al., 2017; Taylor et al., 2019). When this 

insulin resistance exceeds beyond the normal levels, an intermittent state of 

hyperglycaemia can ensue resulting in the development of GDM (Wright et 

al., 2013; Bird et al., 2019). GDM is the most common complication to occur 

during pregnancy worldwide; its prevalence is estimated to be 2-3-fold higher 

in SA populations compared to WE populations, with SAs being at increased 

risk of further health consequences following a GDM diagnosis (McIntyre et 

al., 2019; Vounzoulaki et al., 2020). This dysregulation in insulin resistance in 

GDM cases is thought to be a result of metabolomic dysregulation, as seen in 

T2D. As a consequence of this, the Diabetic Pregnancy Study Group called 

for increased research into the role of metabolism (through investigation of the 

metabolome) in the development of GDM in 2018 (Schaefer-Graf et al., 2018). 

However, to date, the metabolic drivers of GDM remain unclear. Results from 

different studies have been difficult to reproduce, likely due to varying 

methodologies (in regard to sample types, metabolite panels and 

quantification techniques), case-control designs (meaning temporality cannot 

be inferred) and small, ethnically heterogeneous cohorts (Mao et al., 2017). 

Indeed, only one study has conducted an analysis of individual metabolites 

and GDM in an ethnic-specific approach, despite the well-established 

increased disease risk in SAs. Taylor et al conducted univariate tests of 

association between numerous metabolites and GDM in the multi-ethnic BiB 

cohort and demonstrated evidence of ethnic-specific associations between 

fatty acids and GDM in a stratified sample of WE and SA women. 

 It is possible that discrepancies in the current evidence for the 

effectiveness of diet as a means of GDM prevention, particularly in high-risk 

ethnicities, may be a result of unique shifts in metabolism that predispose 

certain populations to elevated GDM risk (Chen et al., 2018; Wang et al., 2016; 

Law and Zhang, 2017; McCabe and Perng, 2017). For example, evidence 
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from BiB suggests that modified GDM assessment criteria for SAs are 

required because even at current “safe levels” of glucose thresholds, SAs are 

at increased risk of delivery complications and new born macrosomia 

compared to WEs (Farrar et al., 2015). 

Currently, evidence highlighting potential ethnic differences in 

associations between metabolites and GDM has been obtained through the 

use of univariate statistical analyses. Univariate analyses test for independent 

associations between each individual metabolite value and a single outcome. 

However, metabolite profiles are heterogeneous mixtures of metabolites, 

many of which are strongly correlated and interact with other metabolites to 

exhibit an effect. Therefore, the use of multivariate approaches that consider 

all metabolites and their interactions may uncover novel associations that are 

more reflective of true metabolism. These multivariate techniques can reveal 

both combinations of metabolites that associate with GDM risk as well as 

cardinal metabolites that independently associate with GDM risk. Therefore, 

in this chapter I aim to build upon existing evidence by identifying underlying 

metabolite patterns that are correlated with GDM to identify ethnic-specific 

metabolic drivers of GDM risk. 

 

4.3 Hypotheses 

i. The metabolomic profiles of GDM cases and non-cases are distinct and 

ethnic-specific. 

ii. The relationship between the metabolome and GDM may be 

moderated by confounders, especially BMI. 

 

4.4 Methods 

4.4.1 Population characteristics  

BiB is an ethnically diverse (45% SA) prospective birth cohort recruited 

from the north of England to examine the determinants of maternal and 

offspring health during and after pregnancy, and their association with the 

future health of the mother and offspring (Wright et al., 2013). BiB recruited 
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12,453 women (26-28 weeks’ gestation, mean maternal age 27.8) at the 

Bradford Royal Infirmary between 2007 and 2010, collecting baseline data on 

13,776 pregnancies and 13,858 births (Wright et al., 2013; Bird et al., 2019). 

Of these, 11,480 (~80%) women provided fasting serum blood samples for 

metabolite analyses, taken at the time of the 75g oral glucose tolerance 

(OGTT) test for GDM assessment, offered to all women at the Bradford Royal 

Infirmary (Raynor and Born in Bradford Collaborative, 2008). Written consent 

was gained from all participants and ethical approval was granted by the 

Bradford Research Ethics Committee (ref07/H1302/112) (Wright et al., 2013). 

4.4.2 Blood metabolite analysis  

Overnight fasting serum blood samples were taken at the Bradford 

Royal Infirmary by trained phlebotomists, processed in 2.5 hours and stored 

at -80°C in the absence of freeze-thaw cycles (Taylor et al., 2019; Taylor et 

al., 2021). Samples were processed using a previously validated high-

throughput automated NMR platform (Nightingale Health ©; Helsinki, Finland), 

which utilized 3 molecular windows in the same experimental set-up to 

measure each sample, two from the native sample (LIPO and LMWM, 37°C) 

and one from lipid serum extracts (LIPID, 22°C). These 3 platforms quantify 

distinct metabolites: LIPO includes spectra from a broad range of lipids found 

in a range of lipoproteins, LMWM represents spectra for a range of low-

molecular-weight molecules while the LIPID window is acquired with a 

standard 1D spectrum involving 32 transients (Taylor et al., 2019; Wurtz et al., 

2015). All spectra were quantified using a Bruker ADVANCE III spectrometer 

at 600 MHz (Taylor et al., 2019). 

Of the 227 metabolites quantified, 146 were presented as absolute 

values and 81 were relative measures of percentages and ratios. To ease 

interpretation and minimize redundancy this analysis focused on the 146 

metabolite values expressed as absolute measures. This panel comprised 

measures of 98 lipoproteins, 9 amino acids, 2 apolipoproteins, 9 cholesterols, 

8 fatty acids, 8 glycerides and phospholipids, 4 glycolysis-related metabolites, 

2 ketone bodies, 3 measures of fluid balance and inflammation, and 3 

measures of the mean lipoprotein particle diameter (Appendix Table B.1). In 

regard to fatty acids, all were assumed to be cis isomers because typical levels 
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of trans isomers are below the detection threshold (Santos Ferreira et al., 

2017). For lipid data, high-performance liquid chromatography was used to 

calibrate the quantification process, with lipids individually being cross-

validated against NMR-independent lipid data (Taylor et al., 2021). Spectra 

for low molecular weight molecules were calibrated against a panel of 

manually fitted metabolite values. 

4.4.3 Participant selection 

4.4.3.1 Metabolite data and imputation 

Of the 11,480 blood samples analyzed for metabolites, 54 samples were 

excluded because they failed one of five Nightingale Health © quality control 

measures (low glucose, high lactate, high pyruvate, low protein concentration 

and plasma samples). Glucose levels are well defined biologically, particularly 

for values at the low end of the distribution. Deviations from these expected 

ranges of values can therefore indicate a quantification error. Alongside high 

levels of pyruvate and lactate, low glucose levels can also indicate increased 

metabolism post-collection due to samples being kept at room temperature for 

extended periods before freezing. Furthermore, sample dilution can also be 

determined by a low protein concentration (signified by low albumin), also 

indicating a low-quality sample. Of the 11,426 remaining samples, ~3% were 

missing ≥1 metabolite value for unknown reasons. To test whether these 

values were missing at random, the structure of missing data was assessed 

via the visualization and imputation of missing values (VIM) package in R 

(Alexander Kowarik, 2016). This package examines the frequency of all 

possible combinations of missing data to test for non-random distributions of 

missingness. In addition, multiple correspondence analysis (MCA) was also 

implemented to assess the randomness of missing data. No combination of 

metabolites was identified to be frequently missing in the data via the use of 

the VIM package. Likewise, following the utilization of MCA analysis, having  

low levels of a metabolite (i.e., quartile 1 of the distribution) was found to 

correlate with having a low-level of another metabolite value, while having high 

levels of metabolites (i.e., quartile 4) was found to correlate with having high 

levels of other metabolites. Hence there was no evidence that missingness 
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occurred in a non-random pattern, suggesting that it was appropriate to impute 

missing values (Appendix Figure B.1). 
Optimised multiple imputation with iterative principal component 

analysis (PCA; 100 simulations, K-fold cross validation) based upon the 

minimisation of mean square error of prediction (MSEP) was performed using 

the missMDA package (Josse and Husson, 2016). Unlike non-multivariate 

methods of imputation (such as imputing missing values with the mean value) 

this technique considers the data structure during imputation, leading to more 

accurate imputation. The impact of mothers with ≥3% metabolite values 

missing on imputation quality was assessed through the exclusion of these 

individuals (nexcluded = 88), resulting in no detectable difference in imputation 

quality. Therefore, all 11,426 samples were included for imputation. 

4.4.3.2 Descriptive data 

Imputed metabolite data were then combined with descriptive BiB 

reported characteristics, including participant’s ethnicity, GDM status, 

gestational age at sample collection, history of diabetes, age, BMI, smoking 

status, parity and whether they were carrying a singleton/multiple pregnancy. 

Ethnicity was self-reported and based upon guidelines from the UK Office of 

National Statistics (ONS) (Taylor et al., 2019). Participants whose samples 

were collected after GDM diagnosis (28th week or later) were excluded from 

the analysis as well as mothers with a history of diabetes. Individuals who 

reported being of South Asian origin other than Pakistani (PK) were also 

excluded, due to the small sample size (therefore limited power) of other SA 

ancestry groups. Utilising the ONS guidelines, for a participant to be 

categorised as PK they had to be classified as belonging to the Asian/British 

Asian subcategory and be labelled as having PK ancestry. From here on in, 

the included SA group hence refers to the PK population in the BiB cohort. 

Additional information on the country of birth was obtained for SA women, 

along with the country of birth of their parents and partner (Lawlor et al., 2014).  

WEs were categorized as individuals of either WE or White British descent 

(Taylor et al., 2019). If a participant’s ethnicity was not collected at recruitment 

the information was obtained from primary medical records which utilise a 
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similar classification for ethnicity as the ONS. Information on parity and the 

number of registerable births was also obtained from primary care records. 

In total, 5,339 participants, 2,671 SA and 2,668 WE women were 

retained for analysis (Appendix Figure B.2). All women were recruited prior 

to their scheduled GDM assessment (mean gestational age 26.1 weeks), and 

prior to the 28th week of pregnancy. GDM was diagnosed using a modified 

version of the World Health Organization criteria: a 75g OGTT of fasting 

glucose ≥6.1 mmol/L and/or a 2-hour post-load glucose level of ≥ 7.8mmol/L 

at 26-28 weeks of pregnancy (Taylor et al., 2019; Wright et al., 2013). Maternal 

age was recorded at pregnancy booking and BMI was calculated using height 

measured at recruitment and maternal weight recorded at the first antenatal 

visit. When examined as a categorical variable, ethnic-specific cut-offs were 

used to classify mothers into BMI groups (overweight: 25-29.9 kg/m2 for WE 

or 23-27.4 kg/m2 for SA women; obese: > 30kg/m2 for WE or >27.5kg/m2 for 

SA women) (WHO Expert Consultation, 2004). Smoking status was self-

reported at baseline. 

4.4.4 Unsupervised analyses  

PCA is a dimensionality reduction technique that utilises the correlation 

structure in large scale datasets to reduce the number of components in a 

dataset while capturing the maximum proportion of the dataset’s variation 

(Jolliffe and Cadima, 2016) During this process, the initial data are 

transformed into a new dataset of uncorrelated principal components (PCs), 

which contain linear combinations of the initial variables and progressively 

explain smaller proportions of the variation of the dataset. As PCA utilises 

variation in a dataset to perform dimensionality reduction it is an ideal tool to 

uncover underlying grouping in metabolite datasets as it will also separate 

uncorrelated groups from one another, while highly correlated data points will 

cluster together. PCA determines this grouping in an unsupervised way, 

meaning that the algorithm is not informed of the potentially desired expected 

groupings prior to analyses and will only separate these groupings if this 

separation arises during the PCA process from the underlining correlation 

structure of the data (Jolliffe and Cadima, 2016). 
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Prior to PCA, the Normality of metabolite values was assessed using 

histograms and Q-Q plots. Most metabolite values (136/146) required 

Normalisation. Initially, a log Normalisation was implemented, however, if 

metabolite distributions still appeared to deviate from Normal (87/146 

metabolites), a square-root transformation was utilised. In scenarios where 

metabolite distributions still appeared to be non-Normal (42/146) a Normal 

score transformation (NST) was implemented via the rcompanion package 

(Mangiafico, 2021).  Data were Pareto scaled and mean-centred prior to 

analyses. PCA was performed using the prcomp function. All analyses were 

conducted in R version 4.0.2 (R Development Core Team, 2020). 

4.4.5 Metabolite discriminatory analysis 

Partial least squares discriminatory analysis (PLSDA) is a supervised 

dimensionality reduction technique. PLSDA utilises all included variables to 

discriminate group data based upon predefined outcome groups by trying to 

maximise the covariance explained between the input and output variables, 

as opposed to PCA which aims to maximise the variance explained in the 

output variables. In PLSDA, included variables are then ranked by the degree 

to which they explain the variance between groups (i.e., GDM vs non-GDM). 

These are known as variable importance in the projection (VIPs), where VIPs 

≥1 denote a variable with good discriminatory quality and predictive ability 

(Perreault et al., 2014; Badoud et al., 2014). Through PLSDA it is possible to 

assess the predictive capacity of metabolite values for GDM in models 

unadjusted and adjusted for other known GDM risk factors. Models were 

adjusted for BMI, maternal age, parity, multiple pregnancies, and smoking 

status (yes/no) initially and then additionally for ethnicity to identify metabolite 

values predictive of GDM in the whole population. Following this PLSDA 

models were fitted in each ethnic group to determine whether ethnic-specific 

effects were present. To assess bi-directionality, models predicting ethnicity 

were fitted in the overall population and GDM cases/ non-cases separately 

using the same criteria as above.  

The optimal number of components to include in the model was 

selected based upon the component’s ability to significantly predict group 

membership in the training (pR2Y =0.05) and validation (pQ2Y= 0.05) datasets 
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using the NIPALS algorithm and 7-fold cross validation. When multiple 

components’ were significantly predictive (pR2Y ≤0.05, pQ2Y≤ 0.05), the 

component that best discriminated between groups (i.e., maximisation of 

outcome variance explained, R2Y) with the minimal error (root mean squared 

error of estimation (RMSEE)) was selected. External validity was assessed 

via 7-fold cross-validation. PLSDA models were performed using the ropls 

package in R (Thevenot et al., 2015). When the size of the outcome groups 

differed by ≥ 1% the larger group was randomly sampled (n=20) to minimise 

error. The VIPs for each metabolite were mean averaged  across all significant 

iterations (pR2Y =0.05, pQ2Y=0.05) and presented with their standard errors 

(SEs) following the removal of outlier VIPs, defined as 1.5 x interquartile range 

of VIP values. Differences in the distribution of VIPs between ethnicities and 

case status were assessed for significant iterations using a Mann-Whitney 

(MW) test; this was possible because all comparisons were tested against the 

same panel of metabolite measures.  

4.5 Results 

4.5.1 Population characteristics  

In the overall study population, women’s mean age was 27.3 years, 

had a mean BMI of 26.2, with 59% of the population being considered 

overweight or obese when using ethnic-specific BMI cut-offs. (Table 4.1). The 

included pregnancy was the first pregnancy for most women (43.2%) and 

almost all were singleton pregnancies (98.8%). GDM cases were significantly 

older and heavier than non-cases in the overall population and in both ethnic 

groups. In WEs, GDM cases were more likely to be smokers compared to non-

cases. This association was not identified in SAs, possibly due to the small 

proportion of SA smokers (3.3%). SA women were significantly younger than 

WE women in the overall population and in GDM non-cases, but not in GDM 

cases and had a significantly higher BMI than WEs in all three groupings. No 

difference in the proportion of singleton pregnancies (>97%) was observed 

between WE women and SA women. Alcohol intake was not assessed 

because it was reported by only 1% of SA women. The mean gestational age 

at time of sample collection was 187 days. 



 

 80 

 

4.5.2 Unsupervised analysis 

No overt differences were seen between ethnic groups in the overall 

set of metabolites or in any one metabolite class via PCA. Likewise, no 

difference between ethnicities was seen when the analysis was applied only 

to first-time mothers or BMI group (examined as a categorical or examines a 

binary variable (above/below overweight BMI threshold)). When examined as 

a binary or categorical variable BMI was classified utilising ethnic-specific BMI 

cut-offs for SAs and WEs: 23 kg/m2 and 27.5 kg/m2 were classified as 

overweight or obese in SAs; 25kg/m2 and 30kg/m2 were classified as 

overweight or obese in WEs (WHO Expert Consultation, 2004). In the PCA 

analysis of the included study sample (n=5,339), PC1 explained 63.6% of the 

variation in metabolite values while PC2, PC3, PC4, PC5 explained 19%, 

7.5%, 2.8% and 1.8% respectively. Cumulatively the first 10 PCs explained 

98% of the variation in the dataset indicating that the metabolite values were 

highly correlated. The lack of separation (assessed via visual inspection of 

PCA plots) between groups in an unsupervised method highlighted the need 

for supervised multivariate statistical methods to determine metabolite values 

characteristic of GDM status.
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Table 4.1: Characteristics of individuals included in the multivariate analyses. 
 

Population 
Characteristics 
 

Overall White European (WE) South Asian (SA) WE vs SA P values 

Total 
(n=5,339) 

Total 
(n=2,668) 

GDM 
(n=128) 

Non-GDM 
(n=2,540) P value Total 

(n=2,671) 
GDM 
(n=286) 

Non-GDM 
(n=2,385) P value Overall 

(n=5,339) 
GDM 
(n=414) 

Non-GDM 
(n=4,925) 

Age 27.3 (0.08) 26.7 (0.1) 30 (0.5) 26.5 (0.1) < 0.001 25.7 (0.1) 30.6 (0.3) 27.6 (0.1) < 0.001 < 0.001 0.29 < 0.001 
Mother’s Booking 
Weight (Kg) 68.8 (0.2) 72.0 (0.3) 76.8 (1.6) 71.8 (0.3) 0.002 65.5 (0.3) 72.3 (0.9) 64.7 (0.3) < 0.001 < 0.001 0.03 < 0.001 
Mother’s height (cm) 162 (0.09) 164.3 (0.1) 163.8 (0.5) 164.3 (0.1) 0.47 159.7 (0.1) 158.1 (0.3) 159.9 (0.1) < 0.001 < 0.001 < 0.001 < 0.001 
BMI             
mean (kg/m2) 26.2 (0.08) 26.7 (0.1) 28.5 (0.5) 26.6 (0.1) < 0.001 25.7 (0.1) 28.9 (0.4) 25.3 (0.1) < 0.001 < 0.001 0.49 < 0.001 
underweight/normal 2198 (41.2) 1254 (47) 47 (36.7%) 1207 (47.5%) 0.02 944 (35.3) 46 (16.1) 898 (37.7) < 0.001 < 0.001 < 0.001 < 0.001 overweight or obese 3141 (58.8) 1414 (53) 81 (63.3%) 1333 (52.5%) 1727 (64.7) 240 (83.9) 1487 (62.3) 
Parity     

0.47 

   

< 0.001 < 0.001 < 0.001 < 0.001 
0 2311 (43.2) 1394 (52.2) 73 (57) 1321 (52) 917 (34.3) 82 (28.7) 835 (36.5) 
1 1508 (28.2) 813 (30) 39 (30.5) 774 (30.5) 695 (26) 49 (17.1) 646 (28.3) 
2 813 (15.2) 293 (11) 11 (8.6) 282 (11.1) 520 (19.5) 57 (19.9) 463 (20.3) 
≥ 3 707 (13.2) 168 (6.3) 5 (3.9) 163 (10.4) 539 (20.2) 98 (34.3) 441 (14.9) 
Singleton pregnancy 
(%) 5274 (98.8) 2634 (98.7) 123 (96.1) 2511 (98.9) 0.01 2640 (98.8) 280 (97.9) 2360 (99) 0.12 0.70 0.29 0.75 

Smoked during 
pregnancy (%) 958 (17.9) 870 (32.6) 25 (19.5) 845 (33.3) 0.001 88 (3.3) 12 (4.2) 76 (3.2) 0.37 < 0.001 <0.001 < 0.001 

Summary table of population characteristics.  Continuous variables are expressed as a mean and standard error (SE). Categorical variables are expressed as 
counts (%). Differences between women with and without GDM for continuous variables were tested using a Mann-Whitney test. Differences for 
categorical variables were tested using Pearson’s Chi-squared test. Significant p values are shown in bold. 
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4.5.3 Metabolite characterisation of GDM 

In the analysis of the full study sample (n=5,339) PLSDA models 

including known GDM risk factors (i.e., BMI, age, parity, multiple pregnancy, 

smoking status, and ethnicity) explained 21.7% of the variation between GDM 

and non-GDM groups in optimised models (i.e., minimisation of RMSEE and 

maximisation of R2Y). All included covariates had an average VIP ≥1 

confirming their importance as GDM risk factors. The model including 

metabolite values and known GDM risk factors explained an additional 9.3% 

of the variance when compared to the model containing only known GDM risk 

factors and significantly characterised GDM status (p value R2 < 0.05, p value 

Q2<0.05). Models only including these risk factors (i.e., BMI, age, parity, 

multiple pregnancy, smoking status, and ethnicity) explained 12.4% of the 

variation between cases and non-cases and were also statistically significant, 

confirming their ability to characterise GDM cases from non-cases.  On the 

contrary, although the model containing only metabolite values explained a 

comparable amount of the variance in GDM status (13.5%) this model could 

not significantly predict GDM status (p value R2 > 0.05, p value Q2>0.05).  

In total 6 metabolite values were important in the prediction of GDM 

status in the overall population when models were adjusted for maternal age, 

BMI (continuous), smoking status, parity, and multiple pregnancy status. 

These were lactate, VLDL_D, total fatty acids, total monounsaturated fatty 

acids (MUFAs), 18:2 linoleic acid and total saturated fatty acids (SUFAs) 

(Figure 4.1, Table 4.2). Following the addition of ethnicity into the model, 

26.6% of the variation in GDM case status was explained, an additional 3% 

compared to when ethnicity was not included in the model (i.e., model 1). 

The addition of ethnicity into the model also resulted in an additional 

metabolite, esterified cholesterol, which was also found to be important in the 

characterisation of GDM status, resulting in a total of 7 metabolites being 

identified as important variables ( VIP ≥1). 4 of these metabolites were fatty 

acid measures, 1 was a measure of lipoprotein density, 1 was a glycolysis 

related metabolite and 1 cholesterol measure.  

 



 

 83 

 

Table 4.2: VIPs of variables that discriminate GDM from non-GDM. 

Mean VIP scores of important variables (VIP ≥1) and standard errors (SE) across 20 model 

iterations. Model 1: Adjusted for maternal age, BMI (continuous), smoking status, parity, 

and multiple pregnancy status. Model 2: Model 1 adjustment + ethnicity. SFA: total 

saturated fatty acids. MUFA: total monounsaturated fatty acids. VLDL_D: diameter of 

very-low density lipoproteins. 

 

 

 

 

Variable Model 1 Model 2 
Age 6.4 (0.03) 5.9 (0.03) 

BMI 5.4 (0.04) 5.1 (0.02) 

Ethnicity - 2.9 (0.02) 

Parity 2.4 (0.01) 2.3 (0.01) 

Smoking Status 1.9 (0.02) 1.7 (0.01) 

Multiple Pregnancy 1.5 (0.01) 1.3 (0.009) 

Lactate 1.5 (0.01) 1.2 (0.008) 

VLDL_D 1.3 (0.01) 1.3 (0.01) 

Total FAs 1.2 (0.01) 1.5 (0.01) 

Total MUFA 1.2 (0.001) 1.2 (0.008) 

18:2 Linoleic Acid 1.1 (0.01) 1.1 (0.004) 

Total SFA 1.1 (0.01) 1.2 (0.007) 

Esterified Cholesterol - 1.0 (0.008) 
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Figure 4.1: VIPs for metabolites in the characterisation of GDM. VIPs from PLSDA 

models adjusted for maternal age, BMI, smoking status, parity, multiple pregnancy 

status, and ethnicity. Red line denotes VIP cut-off of 1. Bolder bars indicate metabolites 

with a VIP ≥ 1. No lipoprotein had a VIP ≥1 so the lipoprotein class was not included 

in this plot in order to conserve space. GRM: Glycolysis Related Metabolites. LPS: 

Lipoprotein Particle Size. MUFA: total monounsaturated fatty acids. SFA: total 

saturated fatty acids. VLDL_D: mean diameter of very-low density lipoproteins. Units 

mmol/L unless stated. 
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4.5.4 Characterisation of GDM: Ethnically stratified analysis  

In an ethnically stratified analysis (20 iterations), models that only 

included established risk factors for GDM significantly predicted GDM and 

explained a median of 3.3% of the variation in GDM case status in SAs and a 

median of 12.8% of the variation in WEs. Conversely, models with only 

metabolite values were not significant but explained a median of 6.5% of the 

variation in GDM status in SAs women and 5.8% of the variation in WE 

women. The combination of models resulted in significant prediction of GDM 

in both ethnicities, with models explaining 26% of the variance in GDM status 

in WEs and 20% of this variation in SAs (Appendix  Table B.2). In the WE 

population maternal age was the most important predictor of GDM status (VIP 

= 5.99) whereas in SAs, BMI was the most important predictor (VIP = 7.06). 

When comparing the VIPs obtained across model iterations in both ethnicities 

via a Mann-Whitney (MW) test, only the importance of BMI and smoking status 

on GDM status significantly differed between ethnicities, although all adjusted 

covariates were categorized as important in both ethnicities (Appendix Table 

B.3). 

After adjusting for known GDM risk factors (i.e., BMI, age, parity, 

multiple pregnancy, smoking status) 7 metabolite values characterized GDM 

status in both ethnicities: total fatty acids, total MUFA, total SFA, linoleic acid, 

glycoprotein acetyls, lactate, and mean diameter of VLDL. Aside from 

glycoprotein acetyls, these were the same metabolites that characterised 

GDM in the analysis of the overall cohort before stratification by ethnicity 

(Table 4.2). Three of these metabolites, lactate, glycoprotein acetyls and 

linoleic acid were found to characterise GDM comparatively well between the 

ethnicities (VIP≥1; MW p value>0.05), while total fatty acids, total MUFA, total 

SFA and VLDL_D were more robust predictors in WEs (VIP≥1 in both 

ethnicities; MW p value<0.05 between ethnicities) (Figure 4.2, Appendix 

Table B.4). Additionally, alanine, glutamine, total cholesterol, total n-6 PUFA, 

total PUFA, and citrate were markers (VIP≥1) of GDM status in WE women 

only. No markers of GDM were specific to SA women.  
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4.5.5 Metabolites characteristic of ethnicity  

In order to explore the underlying metabolic profiles in each ethnic 

group, PLSDA models with ethnicity as an outcome variable were conducted 

in the whole population and then in GDM cases and in GDM non-cases 

separately. In PLSDA (i.e., adjusted for maternal age, smoking status, parity, 

Figure 4.2: VIPs for metabolites distinguishing GDM and non-GDM women in an 
ethnically stratified analyses. VIPs for PLSDA models in South Asians (blue) and 

white Europeans (red). Models were adjusted for maternal age, BMI, smoking status, 

parity, and multiple pregnancy status. Red circular line denotes VIP cut-off of 1. Bolder 

bars indicate metabolites with a VIP ≥ 1. No lipoprotein demonstrated a VIP ≥1 and 

were not included in the figure to preserve space. GRM: Glycolysis Related 

Metabolites. LPS: Lipoprotein Particle Size. MUFA: total monounsaturated fatty acids. 

SFA: total saturated fatty acids. VLDL_D: diameter of very-low density lipoproteins. 
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BMI, and GDM status), 12 metabolic measures characterised ethnicity in the 

overall population: total fatty acids, total serum cholesterol, total saturated 

fatty acids (SFA), total MUFA, n-6 fatty acids (FAw6), total esterified 

cholesterol, 18:2 linoleic acid (LA), remnant cholesterol, phosphatidylcholine 

and total cholesterol (Appendix Table B.5). 

  Following analyses in GDM cases and controls separately 9 metabolite 

values were found to be predictive of ethnicity in both the case and non-case 

stratum (total serum cholesterol, LDL cholesterol, total esterified cholesterol, 

n-3 fatty acids (FAw3), total PUFAs, total MUFAs, total SFAs, 

phosphatidylcholine and total chlorines), 5 of which were identified in the 

analyses of the overall population.  Additionally, 6 metabolite values (alanine, 

total fatty acids, LA, glycoprotein acetyls, lactate and mean diameter of VLDL 

(VLDL_D))  were found to characterise ethnicity in GDM cases but not GDM 

non-cases, indicating that these metabolites may be part of ethnic-specific 

pathways involved in the development of GDM. Finally, 1 metabolite (remnant 

cholesterol) was predictive of ethnicity only in non-cases, potentially indicating 

shared pathways of GDM development. (Appendix Table B.3, Figure B.3).  

4.5.6 Post-hoc analyses: Characterisation of smoking status   

Smoking is a very well-established risk factor for many non-

communicable diseases, including GDM (McIntyre et al., 2019). In addition to 

the suspected causal associations between smoking and a range of diseases, 

smoking is highly correlated to other demographic factors, including 

socioeconomic status and diet. Furthermore, smoking prevalence is known to 

vary between ethnicities, with a significantly higher proportion of WE in this 

study cohort smoking compared to SA women (Table 4.2).  

To assess the impact of smoking on the results, women were stratified 

by their smoking status during pregnancy (yes/no) and their ethnicity and 

PLSDA models predicting GDM status were performed as before (i.e., 20 

iterations averaged over components with a pR2Y ≤ 0.05 and pQ2Y ≤0.05). 

Models were adjusted for BMI, age, parity and multiple pregnancy. 

Limited evidence was found to support differences in the VIP scores for 

the majority of metabolites in this analysis following stratification by ethnicity 

and smoking status (Appendix Figure B.4). LDL cholesterol (LDL-C), 
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phosphatidylcholine, remnant cholesterol (Remnant-C), serum triglycerides 

(serum TG) and VLDL triglycerides (VLDL-TG) appeared to be more important 

in determining GDM in WE smokers, however, the evidence in SA was limited 

due to the low number of significant iterations, likely due to a restricted sample 

size of this group (12 cases, 76 non-cases).  

4.5.7 Post-hoc analysis: Characterisation of GDM in low-risk 
women 

 An increased BMI is an established risk factor for GDM and it has also 

been shown that BMI has an impact on the metabolome. Therefore, it is 

possible that BMI is a mediator along the causal pathway that links 

metabolism and GDM (McIntyre et al., 2019). Moreover, SA women have 

been found to be at an increased risk of GDM at lower BMIs, indicating that it 

is possible that BMI has differential impacts on GDM risk between ethnicities 

(Read et al., 2021). Indeed, in this study, BMI was found to have a significantly 

higher VIP score in SA compared to WEs (VIPSA = 7.06 ± 0.22 vs. VIPWE = 

4.33 ± 0.22; p value<0.001). 

To explore this finding further, the ethnic-specific impact of BMI on the 

metabolome and subsequent GDM diagnoses was investigated post-hoc 

using sPLSDA. sPLSDA is a supervised multivariate technique with the ability 

to predict group membership in multiclass problems (i.e., stratification by 

ethnicity, bodyweight, and GDM status) by simultaneously performing variable 

selection (in turn reducing noise) with group discrimination (Lê Cao et al., 

2011). Women were classified as ‘healthy or ‘overweight’ based upon ethnic-

specific cut-offs (BMI ≥ 25kg/m2 for WE women and BMI≥ 23kg/m2 for SA 

women). To examine the role of BMI and ethnicity in the absence of other 

GDM risk factors mothers who were either (i) carrying a multiple pregnancy 

(ii) had previous children, (iii) smoked during pregnancy, or (iiii) were ≥35 

years of age were excluded from the analysis. This resulted in a sample of 

1,736 low-risk women (872 WE, 864 SA) whose only major risk observable 

GDM risk factors were ethnicity or BMI status. Furthermore, as sPLSDA 

performs variable selection prior to group discrimination the inclusion of GDM 

risk factors in the model would result in the inclusion of fewer metabolites due 

to the fact that these risk factors are likely to be more important determinants 
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of GDM status than individual metabolites, meaning GDM risk factors would 

be included in the models in place of metabolite values.  

Healthy weight SA women who developed GDM (SAHealthy-GDM) 

presented the most distinct metabolic profile (Receiver Operator Curve; ROC 

= 0.783) and were most similar to healthy weight WE women who developed 

GDM (WEHealthy-GDM; ROC = 0.691) (Appendix Figure B.5). The remaining 

groups of SA women and WE women, including all non-GDM and overweight 

women, were indistinguishable from each other. When the dataset was 

reduced to only the 4 GDM groups, healthy SA women (SAHealthy-GDM) 

remained distinguishable. A sensitivity analysis involving the removal of 

underweight mothers (nremoved = 93, BMI ≤18.5 kg/m2) was conducted due to 

the higher proportion of underweight SA mothers, however, this did not affect 

the outcome. 

 Metabolites selected by sPLSDA in each comparison were included in 

PLSDA models (20 iterations) alongside highly correlated metabolites 

(Pearson’s correlation coefficient  ≥0.9) to identify key metabolic drivers of this 

separation. Alanine, glutamine, and glycerol were important to distinguish 

healthy weight SA women who developed GDM (SAHealthy- GDM) from all others, 

while fatty acids were important to distinguish SAHealthy- GDM from other GDM 

cases. Interestingly, in healthy women, aromatic and BCAAs distinguished 

GDM and non-GDM women between (but not in) ethnic groups (Appendix 

Figure B.6). Glycerol distributions were significantly different in all 

comparisons (MW p value <0.05).  

4.5.7.1 Characterisation of GDM in low-risk women by BMI 
and ethnicity   

In addition to sPLSDA, orthogonal partial least squares discriminant 

analysis (oPLSDA) was utilised as a sensitivity analysis. oPLSDA is a 

supervised multivariate technique that separates variation in each predictor 

variable based upon its linear (correlated) and orthogonal (uncorrelated) 

association with the outcome variable (Worley and Powers, 2013; Blasco et 

al., 2015). This can provide better separation along fewer components when 

a large proportion of variance in the dataset does not directly correlate with 

the outcome variable. Furthermore, through the creation of shared and unique 
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structure (SUS) plots it is possible to determine shared and unique factors of 

a main group of interest from the two most relevant comparisons. In this 

instance, the main group of interest is the healthy weight SA cases (SAC-N) 

because this group developed GDM in the absence of the other key GDM risk 

factors. By comparing this group to healthy weight SA non-cases (SANC-N) 

and healthy weight WE cases (WEC-N) it may be possible to determine 

unique metabolic features that (i) characterise GDM development in 

“apparently” low-risk SAs and (ii) highlight ethnic-specific metabolic features 

that associate with GDM in low-risk women.  

In this analysis, no significant separation was identified via oPLSDA 

and the creation of SUS plots between these three groups. Following the 

inclusion of BMI and age in the models the SAC-N group separated from the 

other three groups. In this model, pyruvate, L-HDL and XL-HDL contributed 

toward the separation of the SAC-N group but with low reliability, as shown in 

SUS plots (Appendix Figure B.7). 

4.5.8 Post-hoc analysis: Correlation between identified 
metabolites and postprandial glucose measures 

4.5.8.1 Fasting glucose 

In a post-hoc analysis correlation between metabolite values and the 

composite glucose measures utilised by BiB for GDM diagnosis (i.e., fasting 

glucose and 2-hour post glucose) were assessed via the assessment of 

Pearson correlation coefficient with each ethnic stratum. Both fasting glucose 

and 2-hour post glucose values were log normalised before analyses. 

 Nineteen metabolite values were found to be significantly correlated (1 

positive, 18 negative) with fasting glucose in WE after stratification by 

ethnicity. The majority of these correlated metabolites were HDL measures, 

except for lactate, mean diameter of LDL and Apolipoprotein A1 (Appendix 

Figure B.8). Overall, significant correlations ranged from R=0.042 to 0.064 

indicating that metabolites were associated with postprandial glucose 

measures during pregnancy and explained a reasonable amount of variation 

in these glucose levels. No metabolite values were significantly correlated with 

fasting glucose in SAs. Following a 2x2 stratification by ethnicity and case 
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status, significant correlations were only observed in WE non-cases, where 1 

metabolite was positively correlated with fasting glucose levels (mean 

diameter LDL) and 20 were negatively correlated with fasting glucose levels.  

4.5.8.2 2-hour post glucose  

No metabolite values were correlated with 2-hour post glucose in either 

ethnic group. When the sample was stratified by case status, 4 metabolite 

values (DHA,  concentration of XL-HDL (XL-HDL-P), phospholipids in X-HDL 

(X-HDL-PL),  and lipids in XL-HDL (XL-HDL-L)) were positively correlated (R 

≈ 0.03, p value <0.05) with 2-hour post glucose. No associations were 

observed in cases (Appendix Figure B.9).  Following stratification by ethnicity 

and case status, DHA was significantly correlated with 2-hour post-glucose (R 

≈ 0.05, p value = 0.018) in WE non-cases. While in WE cases, lactate was 

negatively correlated (R ≈ -0.20, p value = 0.03) and glycine and histidine were 

positively correlated to a similar degree (R ≈ 0.03, p value <0.05) with 2-hour 

post-glucose.  

4.5.9 Post-hoc analysis: Linear regression between identified 
metabolites and postprandial glucose measures 

In light of the observed correlation between metabolites and 

postprandial glucose measures metabolite values identified in multivariate 

analyses were regression on the outcomes of fasting glucose and 2-hour post 

glucose (two key components of an OGTT) to test for the presence of linear 

associations. Linear regression models were adjusted for maternal age, 

gestational age, parity, and smoking status during pregnancy. As before, post-

prandial glucose measures were log normalised prior to analysis. When 

metabolite values were identified as significant predictors in linear regression 

(p value ≤ 0.05), BMI was added to the model first as a continuous variable 

and then alternatively as a dichotomous variable of overweight status 

(assessed using ethnic-specific BMI cut-offs) to assess the role of BMI as a 

mediator of dysglycemia during pregnancy. In order to assess multicollinearity 

between model covariates variance inflation factors (VIFs) were calculated in 

R. In the overall population, all covariates had an average VIF below 1.35 

indicating the absence of multicollinearity (Johnston et al., 2018). 
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4.5.9.1 Fasting glucose 

Three metabolite values, Lactate, Albumin and mean diameter of LDL 

particles (LDL_D), were associated with fasting glucose levels in the overall 

population in all models (Appendix Table B.6). Following the inclusion of BMI 

(dichotomous) in the model, a 1 unit increase in lactate (mmol/L) was 

associated with a 0.01 mmol/l decrease in fasting glucose (SE 0.002) while a 

1 unit increase of albumin signal area was associated with a decrease of 0.61 

in fasting glucose (SE 0.23). A 1nm increase in the mean diameter of LDL 

particles was associated with a 0.05 increase in fasting glucose (SE 0.02).  

When stratified by ethnicity, Lactate and mean diameter of LDL particles were 

associated with fasting glucose levels WEs only, to a similar extent to that 

seen in the overall population. Meanwhile, Albumin was only associated with 

fasting glucose in SAs, to a greater extent than in the overall population (1 unit 

increase associated with a decrease of 0.86 of fasting glucose, SE = 0.35). In 

addition to these associations, increases in histidine, apolipoprotein A1, HDL 

cholesterol and HDL2 cholesterol were all associated with a decrease in 

fasting glucose. No additional associations were identified in SAs. 

4.5.9.2 2-hour post glucose 

No metabolite value was associated with 2-hour post glucose level in 

the overall cohort (Appendix Table B.7). Following stratification by ethnicity, 

DHA was positively associated with 2-hour post glucose (1 mmol/L increase 

in DHA was associated with a 0.2 mmol/L increase in fasting glucose (SE 

0.01) in WEs). In SAs, Albumin was negatively associated with 2-hour post 

glucose (1 unit increase in Albumin was associated with 1.89 mmol/L 

decrease in 2-hour post glucose SE 0.81). No other metabolite values were 

associated with 2-hour post glucose. A summary of the identified associations 

can be seen in Table 4.3.  
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Table 4.3: Associations between metabolites and postprandial glucose. 

Metabolites associated (P<0.05) with measures of fasting glucose or 2-hour post oral glucose 

tolerance test (OGTT) in multivariable linear regression in the overall population or in 

ethnic-specific analyses are presented. All models were adjusted for maternal age, 

gestational age, parity, BMI (continuous), and smoking status during pregnancy. For 

ease of interpretation, the direction of associations is presented in brackets, i.e., 

positive (+) or negative (-). DHA: docosahexaenoic acid. HDL-C: High-density 

lipoprotein cholesterol. HDL2-C: High-density lipoprotein-2 cholesterol. LDL_D: Mean 

diameter of low-density lipoprotein (nm). 

 

4.6 Discussion 

Using a cohort with an equal proportion of WE and SA women, ethnic-

specific metabolite signatures of GDM were identified. Of the 146 metabolite 

values tested, 7 were important for stratifying GDM and non-GDM across both 

ethnic groups: lactate, VLDL_D, total FAs, total MUFAs, LA, total SFA and 

esterified cholesterol. Following stratification by ethnicity, 7 metabolite values 

were found to characterise GDM in both WE and SA women, 6 of which were 

identified in the collective analysis of the overall cohort. 4 metabolite values 

were identified to be characteristic of GDM status in both ethnicities and were 

significantly more predictive of GDM in WE women (total FAs, total MUFA, 

total SFA and VLDL_D) following a MW test. In addition, 6 metabolite values 

(alanine, glutamine, total serum cholesterol, n-6 FAs, PUFAs, and citrate) 

were found to be characteristic of GDM only in WEs. No metabolite value were 

identified as being uniquely predictive of GDM status in SA women.  

Postprandial 
glucose measure 

(mmol/L) 

Overall 

(n=5,538) 

South Asian 

(n=2,671) 

White European 

(n=2,267) 

Fasting 

glucose 

Albumin (-) 

Lactate (-) 

LDL_D (+) 

Albumin (-) Lactate (-) 

Histidine (-) 

Apolipoprotein A1 (-) 

HDL-C (-) 

HDL2-C (-) 

LDL_D (+) 

2-hour post glucose 
 

Albumin (-) DHA (+) 
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Previous work, utilising the Omega cohort (78.5% non-Hispanic white; 

nested case-control; 46 cases, 47 controls), demonstrated a distinct metabolic 

profile during early pregnancy that was associated with subsequent diagnosis 

of GDM (Enquobahrie et al., 2015). The pattern, identified consisted of fatty 

acids, sugars, alcohols, amino acids and organic acids. This pattern, 

determined by penalized logistical regression models, shares many common 

features with a previous univariate analysis (Taylor et al., 2019) and the 

present multivariate analysis in BiB — namely, amino acids, glycolysis related 

metabolites, and FAs. Furthermore, this evidence agrees with a recent 

evidence review of evidence (2021) of GDM metabolic biomarkers which 

found amino acids, lipids, carbohydrates and purines to be the most 

commonly identified metabolite classes associated with GDM (Alesi et al., 

2021). 

Previous molecular analyses have also found evidence to suggest that 

fatty acids alter insulin resistance and insulin secretion during pregnancy, 

which could in turn contribute to GDM risk (Villafan-Bernal et al., 2019; Chen, 

X. et al., 2019). This association between fatty acids and dysglycemia has 

been previously observed in Asian populations, with PUFA-derived 

eicosanoids discriminating between type-2 diabetics and controls with good 

accuracy (R2X = 0.824, R2Y = 0.995, Q2 = 0.779) in a Chinese population (Xia 

et al., 2020). Regarding SAs, earlier work by Taylor et al (Taylor et al., 2019) 

that utilised univariate statistical techniques in the BiB cohort identified some 

evidence of ethnic-specific associations between fatty acids and GDM and 

agrees with molecular analyses that demonstrate that fatty acids alter insulin 

resistance and insulin secretion during pregnancy (Villafan-Bernal et al., 2019; 

Chen, X. et al., 2019). It is also known that differences in PUFA metabolism 

exist between ethnicities meaning that it is plausible for fatty acid metabolism 

to have differential impacts on GDM risk in different ethnic groups (Gray et al., 

2013; Benedetti et al., 2019; Ralston et al., 2013). 

Through the multivariate analysis of the BiB cohort, this study identified 

fatty acids to be the most represented class of metabolites to be deemed as 

important (VIP≥1) in characterising GDM status in the overall BiB cohort, 

agreeing with previous work that has highlighted the importance of the fatty 

acid class in modulating pregnancy dysglycemia. Furthermore, in the separate 
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analysis of each ethnic stratum, fatty acids were commonly identified as 

important metabolites in WEs and SAs, with 75% and 50% of included fatty 

acids measures being ‘important’ to characterise GDM in WE women, while 

in SA women fatty acids constituted more than half of all important 

metabolites. Evidence of ethnic-specific associations between fatty acid 

metabolites and GDM were also discovered, with a larger number of fatty 

acids metabolites being classified as important in WEs, and total fatty acids, 

total MUFA, total SFA being significantly more important in determining GDM 

status in WEs. Furthermore, of the numerous fatty acid measures that were 

associated with GDM, only DHA was associated with an increase in 2-hour 

post glucose levels in WE women.  

Overall, DHA is considered a protective metabolite against insulin 

resistance (HOMA-IR); however, recent evidence suggests high 

heterogeneity in the direction and magnitude of effect (Chen, X. et al., 2019; 

Zhu et al., 2019; Brown et al., 2019). Similarly, researchers investigating the 

Camden pregnancy cohort (n=1,368) reported a significant positive linear 

association between DHA and HOMA-IR (0.303 ± 0.152 per unit DHA %; p 

value<0.05) (Chen, X. et al., 2019), while, conversely, the DOMINO trial 

(n=1990 pregnant women) reported no difference in 1-hr post-OGTT glucose 

levels between DHA supplemented mothers and controls (Zhou et al., 2012). 

The reason for such discrepancies is unclear but may be because n-3 PUFAs 

(such as DHA) require interactions with other metabolites (e.g., Vitamin D) 

(Jamilian et al., 2017) to impart an effect, levels of which vary considerably 

between populations, seasons, and geographic region (Darling et al., 2013; 

Sedhain et al., 2020; Lagunova et al., 2009). 

Outside of the fatty acid class, analine, glutamine and citrate were all 

identified to be important in the characterisation of GDM status in WEs. 

Analine, glutamine, and citrate are biologically connected and could moderate 

dysglycemia through their interaction with the tricarboxylic acid cycle (TCA) to 

promote the formation of TCA intermediates, fatty acid synthesis, and 

modulate glucagon and insulin secretion (Newsholme et al., 2005; Haber et 

al., 2006). Taken together, it may be that alanine and glutamine are more 

robust markers of dysglycemia, while citrate is a marker of metabolic or 

physiologic stress, such as pregnancy, in diabetic individuals — such as 
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pregnancy. The association between metabolites that interact with the TCA 

cycle and dysglycemia has also been reported elsewhere: a small case-

control study (26 T2Ds vs 7 controls) that found alanine, glutamine, and citrate 

to characterize T2D, with citrate being a key marker of diabetics with 

underlying complications (e.g., CVD) (Del Coco et al., 2019), and in a cohort 

study of 431 pregnant Chinese women (12-16 weeks’ gestation), where 

alanine and glutamine associated with GDM (Jiang et al., 2020).  

An additional metabolite value that has previously been associated with 

dysglycaemia is the mean diameter of VLDL particles, with a recent 

hypothesis linking increased VLDL diameter to increased insulin resistance 

and triglyceride synthesis (Zhao et al., 2019; Krauss, 2004). In this Chapter, 

VLDL diameter was found to be predictive of GDM in the overall population 

(VIP = 1.30) and in both ethnic strata (albeit a significantly stronger predictor 

in WEs), agreeing with the previous findings linking VLDL diameter to 

increased dysglycemia.  

In addition to VLDL diameter, lactate has also been proposed as a 

regulator of insulin resistance and metabolic syndrome severity (Wu et al., 

2016; Jones et al., 2019) and identified to be associated with GDM in a small 

Chinese case-control study (n=12 GDM; n=10 controls) (Liu et al., 2016). 

Here, lactate was identified to be characteristic of GDM status in PLSDA 

models, where it was one of the strongest predictors of GDM in both 

ethnicities. Furthermore, lactate was also found to be negatively associated 

with fasting glucose in WEs but not in SAs via linear regression models. The 

multi-ethnic HAPO cohort demonstrated a similar ethnic-specific association 

between lactate and fasting glucose in individuals of Northern European 

ancestry but not minority ethnic groups (Enquobahrie et al., 2015; Jacob et 

al., 2017; Chen et al., 1993).  

Additional metabolites identified as associated with postprandial 

glucose measures in this study were HDLC and HDL2C, both cholesterol 

metabolites. Despite these associations, the majority of cholesterol metabolite 

values in this study were not found to be predictive of GDM, with only total 

cholesterol identified as an important predictor (VIP≥1) of GDM and only in 

WEs. Despite this, remnant cholesterol was identified to be an important 

metabolite (VIP≥1) in the characterisation of ethnicity only in non-cases, 
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indicating more similar levels of remnant cholesterol in cases compared to 

non-cases between the WEs and SAs. When also considering that esterified 

cholesterol was identified to be important in the overall cohort following 

adjustment by ethnicity, this could indicate a shared role for cholesterol 

metabolism in the development of GDM between the ethnicities. The lack of 

consistent associations between cholesterol metabolites and GDM in this 

study aligns with the current evidence base which suggests that total 

cholesterol is not convincingly associated with dysglycemia (a meta-analysis 

of 73 observational studies found no association) (Ryckman et al., 2015), 

suggesting that associations between total cholesterol and GDM are complex 

and/or subject to confounding. Future studies should be conducted that aim 

to minimise this confounding to better examine the relationship between 

cholesterol metabolites and GDM development. 

Overall, metabolite values identified in both ethnicities points to the 

importance of fatty acid metabolism in characterising GDM. Related pathways 

of amino acids glycolysis, cholesterol metabolism were also identified to be 

important classes of metabolites in WEs in regards to characterising GDM. All 

metabolites were found to be more important in determining GDM in WEs, 

fatty acids were the most frequent class of metabolite identified in both 

ethnicities highlighting their importance in characterising GDM.  

This study has several strengths. It is the first study to perform 

multivariate statistical analyses to characterise GDM in a multi-ethnic 

population through the utilisation of a range of statistical techniques. 

Nonetheless, this study also has several limitations. These results may not be 

generalisable across other ethnic groups or geographic regions, including 

other regions of South Asia. Samples were also taken at a single time point 

before 28 weeks gestation; therefore (i) we were unable to account for 

differences in fasting duration and diurnal variation; and (ii) our results are not 

generalisable across the full-term of pregnancy. In addition, although samples 

were taken at the time of GDM diagnoses and all before the 28th week (i.e., 

before or at the time of a typical GDM diagnosis) it is not possible to know if 

the metabolomic profiles identified in this study were as a result of the 

diagnosis itself, meaning that reverse causality cannot be ruled out. 

Beneficially however, no included sample was taken after the 28 week and 
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variation in time of was minimal meaning variation in time of sample collection 

did not need to be accounted for in the analysis 

Secondly, as with all observational studies, the effect of confounding 

cannot be disregarded, and causality cannot be inferred. Although 

confounding cannot be eliminated, all models were adjusted for known GDM 

confounders present in the BiB dataset (i.e, age, BMI, parity, multiple 

pregnancy and smoking status). However, other factors that may influence 

GDM development, including dietary information, hormonal measures or 

information on polycystic ovary syndrome status could not be including within 

the models as these variables were not collected by BiB.  

Despite this, this is the first study to use a panel of multivariate 

statistical techniques to characterise GDM in a large prospective cohort with 

an equal representation of WE women and women from a minority ethnic 

population from a single geographical area. Additionally, the biological validity 

of the identified metabolites was tested, with many metabolites being found to 

be correlated with postprandial glucose measures. In additions, models 

characterising the overall metabolic differences between ethnicities were also 

performed to test the presence of reverse associations.  

The findings from this study contribute to a greater understanding of 

the metabolites (and biological processes) that characterise GDM in SAs and 

WEs. Aetiologically, this study has shown the importance of fatty acid 

metabolism in GDM development in both WEs and SAs and highlights the 

need of future research to explore pathways related to fatty acid metabolism 

(including glycolysis related pathways) in order to gain a better understanding 

of the biological causes of GDM. Regarding public health, this study illustrates 

that metabolites commonly associated with diet (including fatty acid and 

cholesterol metabolites) may be characteristic of GDM. Future work should 

aim to explore these associations further and confirm these findings in 

additional cohorts to help inform ethnic-specific GDM prevention strategies.  

In conclusion, a range of metabolite values characteristic of GDM 

status have been identified, including fatty acids, glycolysis related 

metabolites and measures of lipoprotein size. Evidence of ethnically distinct 

metabolic profiles in relation to GDM have also been identified.  
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4.7 Summary 

 

• Numerous metabolites were found to be associated GDM in WEs, while 

no ethnic-specific associations were found in SA. 

• Numerous metabolites that characterised GDM in WEs were associated 

with postprandial glucose measures, while in SAs only albumin was 

associated with postprandial glucose measures. 

• Metabolites appear to be important for characterising GDM in WEs in 

general while in SAs, metabolites appear most strongly associated with 

GDM in non-overweight/obese women. 

• Differences in metabolic profiles characteristic of GDM in WEs and SAs 

may be due to underlining genetic differences between the populations 

that influence how metabolism impacts GDM development. 
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Chapter 5: Metabolites and Postprandial Glucose 
Measures During Pregnancy: a Mendelian 

Randomisation Analysis  

5.1 Abstract 

South Asians (SAs) are at three times greater risk of GDM compared 

to white European (WEs), which may be partially attributable to differences in 

metabolism. To assess the presence of ethnic-specific causal associations 

between metabolites and pregnancy dysglycemia one-sample Mendelian 

Randomisation (MR) was performed utilising genetic and metabolomic data 

for 146 metabolites  from 3,668 SA and 3,354 WE women from the BiB cohort.  

Genome wide association analysis (GWAS) was performed for all 

metabolites in both ethnicities.  For each metabolite, identified SNPs (p value 

≤ 1 x 10-5) were included within MR analyses against log-Normalised fasting 

glucose and a 2-hour post oral glucose tolerance test (OGTT) levels.   

Robust genetic instruments were identified for most metabolites (93% 

instruments of F-statistic ≥10). Fourteen metabolites were associated with 

postprandial glucose measures in WEs and 11 in SAs. In WEs, HDL 

cholesterols were the most prominent metabolite class identified, although the 

direction of the identified associations were mixed. In addition, a 1 mmol/L 

increase in leucine was also found to decrease fasting glucose and 2-hour 

post glucose by 0.19 and 0.44 mmol/L respectively in WEs. In SAs fatty acids 

were the most commonly identified metabolite class, with an increase of 1 

mmol/L of FAw6 and 1 mmol/L of linoleic acid (mmol/L) both resulting in an 

increase of 2-hour post glucose levels by 0.4 mmol/L. No metabolite values 

were associated with pregnancy dysglycemia in both ethnic groups. Leave-

one out analyses highlighted limited bias in the identified associations. 

A range of metabolites were found to be associated with dysglycemia 

during pregnancy, with cholesterols and fatty acids being the most important 

classes in WEs and SAs, respectively. Metabolites associated with 

postprandial glucose in SAs were fewer in number and distinct from those 

identified in WEs, suggesting that metabolism may contribute differently to 

GDM in SAs and WEs.  
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5.2 Background 

Current evidence, including that from earlier work (Chapter 4) 

demonstrated that the metabolic profiles of GDM and non-GDM women differ 

and suggests that some of this discrepancy may be driven by ethnicity (Taylor 

et al., 2019). Collectively this confirms that metabolism contributes to GDM 

development and also suggests that ethnic disparities in GDM risk may be 

partly explained by differences in metabolism between pregnant SA and WE 

women. This implies that underlying differences in metabolism may contribute 

to the disparity in GDM risk that is observed between ethnicities.  

Unfortunately, metabolite profiles and analyses of GDM from previous 

studies are largely heterogeneous as a result of varying quantification 

methods, sample types, and GDM diagnostic criteria (de Souza et al., 2020; 

Wang et al., 2021). This makes it difficult make comparisons between cohorts 

and to clearly evaluate the role of individual metabolites on GDM risk as it’s 

possible that metabolites have temporal variations in their associations with 

GDM and that some metabolites are only associated when assessed via 

certain quantification techniques and in certain sample types. Furthermore, 

differences in the classification of metabolites (i.e., using cumulative 

measures to measure associations with types of metabolites rather than using 

specific metabolite measures) also makes it difficult to compare results across 

cohorts. 

Additionally, as well as genetic and heritable influences on metabolism, 

the metabolome is influenced by a range of environmental factors (including 

diet, physical activity, medication, and environmental pollutants) which all 

need to be accounted for in an observational setting to accurately compare 

results between studies (Zulyniak and Mutch, 2011). Collectively, this makes 

it difficult to confidently infer the causal role of inherited metabolic traits on 

GDM and their contribution to GDM disparity between ethnic groups in an 

observational setting. However, if the role of individual dietary related 

metabolites on GDM were to be accurately ascertained in an ethnic-specific 

manner it may be possible to develop ethnic-specific dietary guidelines that 

would be more effective in preventing GDM. Furthermore, if causative 

associations were identified between metabolite levels during pregnancy and 

GDM, it may be possible to develop dietary interventions aimed at favourably 
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moderating the levels of these metabolites to reduce GDM risk or 

dysglyceamia. Indeed, current evidence suggests that dietary strategies are 

not equally effective across ethnic groups at reducing GDM risk (Chapter 2) 

(Griffith et al., 2020). Finally, a better understanding of how metabolites impact 

dysglycemia during pregnancy will provide a clearer understanding of the 

pathology of the disease which is not fully understood (Chen et al., 2018; 

Schaefer-Graf et al., 2018).  

One epidemiological method that can allow for the causal role of 

exposures on outcomes to be inferred with limited confounding is Mendelian 

Randomisation (MR). MR is a tool that uses a set of genetic variants that are 

associated with an exposure as instrumental variables (IVs) that acts as a 

proxy for the exposure.( Figure 5.1). This is possible because genetic variants 

are randomly assigned during fertilisation and, therefore, the association 

between these variants and the outcome should be largely free of confounding 

(Sheehan et al., 2011; Liu et al., 2017; Carreras-Torres et al., 2017). This can 

be inferred if the 3 core assumptions of MR are satisfied: that (i) genetic 

variants are associated with the exposure (ii) while not being associated with 

confounding factors and (iii) genetic variants they must influence the outcome 

only via the exposure and not through an alternative pathway (i.e., horizontal 

pleiotropy) (Sheehan et al., 2011; Liu et al., 2017; Carreras-Torres et al., 

2017). In practice, the only MR assumption that can be empirically tested is 

the first assumption. The second and third assumptions have to be evaluated 

through the implementation of sensitivity analyses, depending on the MR 

approach utilised. For one-sample MR, variants are typically dropped 

successively in order to assess the impact of individual variants on the 

outcome to assess whether any appear to have a more substantial impact on 

the outcome, a potential indicator of pleiotropy. A wider range of sensitivity 

analyses can be implemented in a two-sample setting, however in practice the 

choice utilising a one or two sample approach is based upon the data 

available, with a one-sample approach requiring individual level data whereas 

a two-sample approach requiring summary level data,  

Despite the rising popularity of MR, no MR study has been conducted 

on post-prandial glucose measures during pregnancy (Diemer et al., 2021).  

Through the conduction of a MR analysis  examining the association between 
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metabolite levels during pregnancy and measures of pregnancy dysglycemia 

it may be possible to better understand how metabolism impacts GDM 

development due to the ability of MR to identify causal associations. This 

chapter aims to determine whether there are ethnic-specific causal 

associations between metabolites and continuous glucose measures 

assessed at the 28th week of pregnancy that may contribute to  GDM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Hypotheses 

i. Due to the metabolic dysregulation that characterises GDM, the same 

metabolite value may be causally associated with postprandial glucose 

measures in both ethnicities. However, additional ethnic-specific causal 

associations between metabolites and postprandial glucose measures 

may also exist which could explain some of the disparities in GDM risk.  

ii. Some metabolite levels in WE and SA populations are associated with 

different genetic variants. This could either be due to differences selection 

as a result of historically varying diets that results in different allele 

Figure 5.1 Schematic highlighting how MR mimics an RCT. 
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frequencies in both populations, or due to different gene-environment 

interactions in SAs compared to WEs as a result of varied lifestyle.  

iii. Metabolites on common biological pathways are associated with similar 

genetic signals in both ethnicities. 

 

5.4 Methods 

5.4.1 Exposure data  

Metabolite data from 11,480 fasting serum samples were obtained from 

BiB as described in Chapter 4 of this thesis. In brief, a metabolite panel from 

Nightingale Health © were quantified by high throughput NMR in a previously 

validated workflow (Taylor et al., 2019).  Redundancy was minimised in the 

panel through the removal of metabolite values expressed as a percentage or 

ratio resulting in 146 metabolites being retained for analysis. This panel of 146 

metabolites included metabolites from a range of biochemical classes, 

including lipoproteins, fatty acids, cholesterols, glycerides and phospholipids, 

triglycerides, amino acids, apolipoproteins, ketone bodes, glycolysis-related 

metabolites, measures of fluid balance and inflammation and measures of the 

mean diameter of lipoproteins (Appendix Table B.1). Samples failing quality 

control as defined by Nightingale Health © were removed from the dataset 

and missing data were imputed using multiple imputation.  

5.4.2 Outcome data  

In BiB, GDM was defined with a 75g OGTT at 26-28weeks based upon 

modified WHO diagnostic criteria utilising 2 postprandial glucose measures 

(fasting glucose and 2-hour post glucose). Using these criteria, individuals 

were diagnosed with GDM if either their fasting glucose concentration exceed  

6.1 mmol/L or if 2-hour post-load glucose concentrations exceeded7.8 

mmol/L. The OGTT was completed in the morning following an overnight fast 

and involved the consumption of a standard 75g of anhydrous glucose 

solution over a 5-minute period (Lawlor et al., 2014). To maximise analytical 

power, MR analyses were performed to detect causal associations between 

metabolite values and fasting glucose and 2-hour post glucose rather than 
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GDM. Fasting glucose and 2-hour post glucose values were log Normalised 

prior to analysis.  

5.4.3 Participant data  

Exposure and outcome data were combined with covariate data from 

BiB including ethnicity (self-reported), ancestry information (i.e., the country of 

birth of the mothers’ parents, paternal grandparents and maternal 

grandparents), parity, age and BMI. Mothers with a history of T2D were 

excluded from analysis, as were those with fasting serum samples taken after 

the 28th week.   

5.4.4 Genetic data 

Imputed genetic data was obtained from BiB. BiB samples were 

genotyped using two chips: the Infinium Global Sequencing Array-24 v.1 

(GSA) (~640K SNPs) and the Infinium CoreExome-24 v1.1 BeadChip (~550K 

SNPs) (Arciero et al., 2021). Genetic data from the Illumina Global 

Sequencing Array (GSA) and Illumina CoreExome SNPs were combined and 

SNPs missing in >5% of individuals were excluded (Arciero et al., 2021). 

When evaluating imputed data the R2 value can be a measure of quality 

control as it refers to the proportion of genetic variation maintained in the 

imputed data. As a result SNPs with an R2 <0.9 were excluded prior to 

analysis. 

5.4.5 GWAS  

Conventionally a GWAS assumes individuals are unrelated; the 

inclusion of related individuals can potentially lead to spurious associations 

(Marees et al., 2018; Uffelmann et al., 2021). However, the removal of related 

individuals from the BiB sample would substantially reduce the sample size. 

In addition, high rates of consanguinity also exist in the SA strata of the cohort 

which can make relatedness difficult to assess when self-reported (Sheridan 

et al., 2013). As such, a GWAS mixed linear model association (MLMA) 

analysis was conducted that allowed for the inclusion of related individuals. 

MLMA models include a fixed effect, adjusted covariates, and an additional 
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random effect comprised of a variance-covariance matrix that models the 

correlation (here relatedness) between individuals to be accounted for. The 

inclusion of this random effects term avoids the inflation of the test statistic 

from related individuals, thereby maintaining the correct type 1 error rate for 

associations between the SNP and the outcome. (Yang et al., 2014; 

Uffelmann et al., 2021). GWAS MLMA models were implemented using the 

GCTA (Yang et al., 2011) on ARC4, part of the University of Leeds’ High 

Performance Computing facility. MLMA GWAS modelling was conducted for 

each metabolite in both ethnicities (Yang et al., 2011). To increase power, 

MLMA-loco (leave-one-out) analysis was utilised, preventing a SNP from 

being included in both the fixed and random effects concurrently, thereby 

double fitting the SNP’s effect (Yang et al., 2014). 

Population stratification in a sample of genetic data can result in 

spurious associations as a result of variations in allele frequencies between 

sub-populations in the genetic data which should be accounted for in a GWAS 

(Uffelmann et al., 2021). To account for this potential stratification, PCA can 

be conducted on genetic data which will result in the grouping of sub-

populations that can then be adjusted for in a GWAS model by including 

Principal Components (PCs) as covariates in the GWAS. Steps taken to 

perform PCA analyses are highlighted in the appendix (Appendix Figures 

C.1, C.2). In brief, SNPs missing in ≥ 10% of individuals were removed along 

with SNPs in known regions of strong LD, such as regions with large 

inversions that restrict recombination, and rare  SNPs (minor allele frequency 

(MAF) ≤ 0.005) (Appendix Table C.1).  Remaining SNPs were pruned by LD 

(R2 > 0.3) and non-autosomal SNPs were removed. Following PCA, clear 

stratification was seen across PC1 and PC2 meaning GWAS models were 

included as covariates in the model. Alongside PC1 and PC2 to account for 

population stratification, MLMA models were also adjusted for parity. Those 

covariates to be adjusted for were selected based upon  covariates adjusted 

for in previously published GDM GWAS studies, while also ensuring the 

maximum sample size; adjusting for parity alongside excluding mothers with 

a history of T2D (as mentioned above) resulted in a total of loss of  7.1% and 

6.6% of SA and WE women respectively (Kwak et al., 2012; Wu et al., 2021). 

Further adjusting for maternal age would have resulted in a loss of 10.1% and 
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9.6% of SA and WEs respectively while adjusting for smoking would have 

resulted in a loss of 19.2% of SA women and 13.7% of WE women for BMI 

22.1% of SA and 16.6% of WEs.  Gestational age showed little variation so 

was not adjusted for (median gestational age SA = 184 days, IQR= 182-186.7, 

median gestational age WE = 184 days, IQR= 182-187). After combining with 

postprandial glucose data, 3,693 SA and 3,377 individuals whose samples 

were taken before the 28th week of pregnancy were retained before outlier 

removal. 

Outliers were removed (those outside of 1.5 x IQR) were removed for 

each metabolite in each ethnicity separately and metabolite values were 

Normalised by taking the log, square root or NST as appropriate following the 

visual inspection of histograms and QQ plots. The final sample size used for 

all metabolite values following the removal of outliers can be found in the 

appendices. (Appendix Tables C.2, C.3).   

5.4.6 Assessment of genomic inflation 

To minimise false-positives and evaluate residual population 

stratification, genomic inflation factors (λ) were calculated, with a λ ≥ 1.1 

considered indicative of genomic inflation (van den Berg et al., 2019; 

Rivadeneira and Uitterlinden, 2021). λ was calculated for all models after the 

utilisation minor allele frequency (MAF) cut offs of MAF <0.001, 0.001≤ MAF 

< 0.005, 0.005 ≤ MAF < 0.01, 0.01 ≤MAF < 0.05, 0.05 ≤ MAF < 0.1, and MAF 

≥ 0.1. A MAF cut-off of <0.05 was found to reduce λ to ~1 meaning this cut off 

was utilised in the analysis (Appendix Table C.4, Figure C.3). 

5.4.7 Meta-analysis of GWAS results 

When a SNP was found to be associated with a metabolite value in 

only one ethnicity, a fixed effect inverse-variance weighted meta-analysis was 

implemented in METAL, a command-line tool that meta-analyses large scale 

GWAS data by weighting each estimated effect size (β) value by the reciprocal 

of its SE (Willer et al., 2010). This allowed for the heterogeneity of the 

identified associations in SAs and WEs to be determined as well as an  overall 

effect size for each SNP in a larger multi-ethnic sample. Similarities in the 
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GWAS results between ethnicities were visualised using the PheGWAS 

package in Rstudio (version 4.0.2) (George et al., 2020; R Development Core 

Team, 2020). 

5.4.8 Genetic Instruments 

One-Sample MR was conducted for all 146 metabolite values in both 

ethnic populations using SNPs identified as significant beyond a genome-wide 

suggestive level (p value ≤ 1 x 10-5).  Metabolites were grouped into their 

overall classes and SNPs in each class were thinned by LD (R2<0.2) via the 

NIH LDlink online tool, reducing the overlap of instruments in each class 

(Machiela and Chanock, 2015; Myers et al., 2020). Following clumping by LD, 

the most significant SNP was selected from each LD block. For individuals of 

white European (WE) ancestry, all European (EUR) populations (Utah 

Residents from North and West Europe, the Toscani in Italia, Finnish in 

Finland, British in England and Scotland and Iberian in Spain) populations 

were used in LDlink to estimate LD all 1000G SA populations (Gujarati Indian 

from Houston Texas, Punjabi from Lahore Pakistan, Bengali from 

Bangladesh, Sri Lankan Tamil from the UK and Indian Telugu from the UK) 

were selected to estimate LD in BiB SAs. The decision to use all SA 

populations was due to the expected similarity in their LD structure allowing 

for an increase sample size and resultant improvement in the accuracy of LD 

estimates (Genomes Project Consortium, 2015).  

As LDlink utilised 1000 Genome (1000G) data to determine LD 

estimates and SAs in BiB predominantly originated from a distinct region of 

Pakistan (Mirpur) the similarity between 1000 Genome and BiB SA samples 

was evaluated by performing PCA on genetic variants found in both datasets 

to assess whether LD structure was likely to be similar in the two datasets. 

This is of particular importance in SA populations as even geographically 

close populations can have differing allele frequencies due to differing Biraderi 

(‘Brotherhood’) membership between population subgroups. Biraderi 

membership is assigned at birth, is an indicator of male lineage as well as 

social-occupational status which largely governs partner choice and can result 

in higher levels of consanguinity in the population (Arciero et al., 2021). The 

same methodology utilised in obtaining the PC1 and PC2 covariates were 
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utilised along with an additional SNP of checking allele pairings in BiB and 

1000G to check that they matched. 

5.4.9 MR analyses  

Genetic Risk Scores (GRS) summate the effect of multiple SNPs into 

a single score which can then be used as an instrument variable to assess the 

impact of a set of genetic variants on an outcome (Burgess and Thompson, 

2013). Weighted GRSs were created in PLINK (version 1.9) for each 

metabolite with each SNP receiving a weight based on its estimated effect 

size on the metabolite (Chang et al., 2015).  Scores for each individual are 

then summated across all included SNPs based on the number of risk alleles 

an individual has for each SNP (0,1,2), with this number being multiplied by 

the weight of each SNP. 

One-sample MR was then performed by Two-Stage Least Squares 

(TSLS) regression to obtain a causal estimate for the effect of each metabolite 

value on the log-Normalised continuous measures of dysglycemia following a 

75g OGTT, fasting glucose, and 2-hour post glucose (Budu-Aggrey et al., 

2019). Here, the level of a metabolite is regressed on its respective GRS score 

and, subsequently, the outcome is regressed onto these fitted values in the 

second stage. TSLS was performed using the ivpack and AER packages in R 

version 4.0.2. All MR results have been reported according to STROBE-MR 

guidelines (Skrivankova et al., 2021). 

For significant associations leave-one-out analysis was performed; 

SNPs were removed in turn from the instrument and the impact on the effect 

estimate and F statistic was assessed. If the exclusion of a SNP was found to 

drastically alter either the effect estimates or F statistic (through the 

visualisation of forest plots) it is possible that the SNP is influencing the 

outcome via an alternative pathway to other SNPs, potentially highlighting a 

violation of the 2nd or 3rd MR assumption. To further test for violations of these 

assumptions, SNPs included in significant instruments were searched for in 

both the Phenoscanner and GWAS Catalog databases in case of any 

previously identified associations (Buniello et al., 2019; Staley et al., 2016; 

Kamat et al., 2019). Specifically, in Phenoscanner the ‘disease and traits’ 

database was searched, and SNPs were recorded to be associated with a 
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different outcome if the p value for this association was below 1 x 10-5 (the 

suggestive level utilised in GWAS). Differences between MR and linear 

regression results were also evaluated via the Wu-Hausman statistic to 

assess deviation of the instrumental variable estimate from the ordinary least 

squares (OLS) estimate  (Davies, N.M. et al., 2018). Deviations in these two 

measures can indicate confounding in the OLS estimate, violations of the MR 

assumptions or could be due to the fact that MR represents a lifelong estimate 

for the exposure-outcome association. 

5.4.10 Post-hoc power analyses 

Post-hoc power analyses were performed via the mRnd CNS genomics 

tool (https://shiny.cnsgenomics.com/mRnd/) in both ethnicities for all 

metabolites identified as associated with either postprandial glucose measure 

in only one ethnic group to assess whether the absence of an association in 

the alternate ethnicity was due to limited power (Brion et al., 2012). This tool 

estimates power in a given size by utilising estimates of the proportion of 

exposure variance explained by the instrument and the true causal exposure- 

outcome association by calculating the asymptotic mean of the instrumental 

variable along with its variance  (Brion et al., 2012) 

Observational and ‘true’ associations required by the tool were initially 

obtained by performing linear regression of the outcome on the metabolite and 

obtaining unadjusted and adjusted estimates (adjusted for maternal age 

(years), BMI (continuous), smoking status, multiple pregnancy, parity, and 

gestational age) respectively as advised by the tool. Due to the post-hoc 

nature of this analysis, additional power analyses could be conducted 

assuming the MR to be the true causal effect. This analysis was performed in 

the non-significant population for each metabolite associated in only one 

ethnicity. If power was found to be significant at the 5% level (α = 0.05) level 

power was also assessed at the 1% level (α = 0.01). 
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5.5 Results 

5.5.1 GWAS results 

In SAs genome-wide significant SNPs were identified for two 

metabolite values: tyrosine (15 SNPs) and acetate (1 SNP, rs10945476).  No 

previous associations have been identified for SNP rs10945476, with this 

study being the first to report on its association with acetate. All 15 SNPs found 

to be associated with tyrosine are located on the p arm of Chromosome 17 

and were in LD with one another (all R2 ≥ 0.38. 3/15 of the SNPs are found in 

the gene SLC13A2 involved in the transmembrane transport, 10/15 SNPs are 

found in the  transcription factor gene, FOXN1 (Ensembl, 2021b; Ensembl, 

2021a). To date, neither gene has been associated with tyrosine levels. The 

remaining two SNPs are currently not in any known gene.  No previous 

associations have been identified for SNP rs10945476, with this study being 

the first to report on its association with acetate. 

Following meta-analysis of effect estimates across ethnicities, 

genome-wide significant associations were observed for 4 SNPs in relation to 

the alanine, even though these SNPs were only initially identified to be 

associated with alanine in the SA population at the genome wide suggestive 

level. These SNPs (rs12256633, rs17121228, rs7096521, rs12240368) are all 

found on chromosome 10 in the receptor gene SORCS1, and are in strong LD 

with each other (R2=1) and have not been associated with alanine levels 

(Howe et al., 2020; Ensembl, 2021c). For 90 metabolite values, no 

associations were found to exceed the genome-wide suggestive level 

following meta-analysis between ethnicities, a further indication of distinct 

signals in both ethnicities. SNPs were found to be associated at the 

suggestive level despite the differing direction of effects in both SAs and WEs 

for four metabolite measures:  concentration of XL-HDL, total lipids in M-

VLDL, mean density of VLDL and citrate. 

5.5.2 Genetic instruments 

To ensure that SNPs included in each genetic instrument are 

independent it is necessary to thin SNPS by LD prior to performing MR 

analyses. The online LD link tool provides LD estimates in distinct population 
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groups, however this tool utilised 1000G samples to obtain LD estimates and 

1000G SA samples are from a different SA populations (Gujarati Indian from 

Houston Texas, Punjabi from Lahore Pakistan, Bengali from Bangladesh, Sri 

Lankan Tamil from the UK and Indian Telugu from the UK) than BiB SA 

samples. In order to assess whether these SA samples appear similar to BiB 

SA samples PCA was utilised to compare the genomic data from BiB and 

1000G. 

PCA analysis of WE and SA BiB samples and SA samples from 1000G 

showed some separation between BiB SA samples and SA 1000G samples, 

with PC1 explaining 14.3% of the variation and PC2 explaining 7.9%. 

However, when performing PCA analyses on all ancestries from 1000G BiB 

SAs were found to be in close proximity to SA samples The greatest 

separation of the overall SA population from all other groups was seen when 

plotting PC2 against PC3. The BIB SA population was found to overlap with 

the 1000G SA populations from Lahore, Pakistan and Gujarati Indians. This 

is not surprising given that these two 1000G populations are geographically 

closer to Mirpur, Pakistan, where the BiB population predominantly originates 

from. (Appendix Figures C.4, C.5, C.6). This same overlap was observed 

when restricting the analysis to BiB SAs and 1000G SAs indicating that BiB 

and 1000G SA samples were similar enough to allow for the utilisation of 

1000G data and the LD link tool in order to assess LD structure in the SA 

stratum of BiB. 

The number of SNPs remaining in each instrument following thinning 

by LD can be seen in the appendix (Appendix Table C.5, Figures C.6, C.7).  

2.7% and 11.6% of genetic instruments in WEs and SA respectively had an F 

statistic ≥ 10, indicating the majority of instruments were not subjected to weak 

instrument bias. The average F statistic for WEs instruments was 72.4%, while 

in SAs it was considerably lower at 26.7%.   

5.5.3 MR analysis: White Europeans 

Two metabolite values, leucine and mean density of HDL (HDL_D) 

lipoproteins were found to be associated with both fasting glucose and 2-hour 

post glucose. A 1mmol/L increase in leucine was associated with a decrease 

of 0.193 mmol/L of fasting glucose and a 0.443 mmol/L decrease in 2-hour 
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post glucose while a 1nm increase in the mean diameter of HDL was 

associated with a 0.082 mmol/L decrease in fasting glucose and a 0.191 

mmol/L decrease in 2-hour post glucose. 

An additional two metabolite values, an increase in 1mmol/L total 

cholesterol in M-HDL (M-HDL-C) and cholesterol esters in M-HDL (M-HDL-

CE) were also found to be associated with a decrease in fasting glucose 

measures 0.189 mmol/L and -0.327 mmol/L respectively meaning that a total 

of 4 metabolite values were associated with fasting glucose in WEs (Table 

5.1). In addition to Leucine and HDL_D, 9 additional metabolites were also 

identified as associated with 2-hour post glucose. Eight of these metabolite 

values were positively associated (HDLC, HDL2C, HDL3C, triglycerides in 

XSVLDL, cholesterol esters in XL-HDL, total concentration of L-HDL, total 

lipids in L-HDL and cholesterol esters in S-HDL) and one (total concentration 

of S-LDL) was negatively associated. Cholesterol metabolites, measures of 

total cholesterols in lipoproteins and total cholesterols in lipoproteins were the 

most common types of metabolite to be associated with postprandial glucose 

in WEs, with leucine being the only metabolite identified in WEs which did not 

belong to a cholesterol or lipoprotein related metabolite class. All cholesterol 

metabolites associated with 2-hour post glucose resulted in an increase in 

glucose while all cholesterol metabolites associated with fasting glucose 

resulted in a decrease in glucose. Wu-Hausman p values < 0.05  indicate 

deviations of the instrumental variable estimate from the OLS estimate (Table 

5.1). 

5.5.3.1 White European: Sensitivity analyses   

All leave-out one analyses maintained significance (P≤ 0.05) indicating 

that no individual SNP was driving the identified associations for 6 of the 

identified metabolite values in WEs: leucine, mean diameter of HDL, total 

lipids in L-HDL, cholesterol esters in S-HDL and cholesterol esters in M-HDL 

(Appendix Figure C.8). For the remaining metabolites, β values were 

consistent across leave-one-out analyses although not all associations 

remained significant following successive removal of SNPs. Furthermore, F 

statistics did not substantially differ through the exclusion of individual SNPs 

from the instruments of most identified metabolites, suggesting that 
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instruments were not substantially impacted by an individual SNP, a potential 

indicator of pleiotropy (Appendix Figure C.9). The exception to this was for 

the metabolite value of cholesterol esters in M-HDL, where the exclusion of 

rs2138011 or rs739018 increased the F statistic, suggesting that these SNPs 

contributed less to the instrument strength than the other SNPs comprising in 

the instrument.  

Three of the metabolites (Leucine, L-HDL_L, L-HDL-C) identified as 

associated with postprandial glucose in WEs included a SNP in their 

instrument have previously been associated (p ≤ 1 x 10-5) with at least one 

potential confounder (BMI, hypertension or waist circumference) (Appendix 

Table C.6).  The removal of these SNPs from the instrument was not found to 

impact the significance of the associations identified between Leucine and 

either glucose measure or L-HDL_L and 2-hour post glucose (Table 5.2). In 

the L-HDL-C instrument, two SNPS (rs5576825 and rs6811162) were 

identified as associated with a potential confounder (waist circumference and 

hypertension respectively). The exclusion of either or both SNPs resulted in 

non-significant associations between L-HDL-C and 2-hour post glucose. 

Importantly, for both of these SNPs it is conceivable that the identified 

confounders could reside on their causal pathway (i.e., vertically pleiotropic) 

rather than be in horizontal pleiotropy; therefore, these SNPs may not violate 

the 2nd MR assumption. 
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Table 5.1 Significant MR results in White Europeans. 

Glucose measures are expressed as mmol/L. HDL_D: mean diameter of HDLs (nm). HDLC: 

total cholesterol in HDL (mmol/L). HDL2C: total cholesterol in HDL2 (mmol/L). HDL3C: 

total cholesterol in HDL3 (mmol/L). L-HDL-C: total cholesterols in L-HDL (mmol/L). L-

HDL_L: total lipids in L-HDL (mol/L). L-HDL-P: concentration of L-HDL (mol/L). M-HDL-

C: total cholesterol in M-HDL (mmol/L). M-HDL-CE: cholesterol esters in M-HDL 

(mmol/L). S-HDL-CE: cholesterol esters in S-HDL (mmol/L). S-LDL-P: concentration of 

S-LDL (mol/L).  XL-HDL-CE: cholesterol esters in XL-HDL (mmol/L). XS-VLDL-TG: 

triglycerides in XSVLDL (mmol/L). WuH: Wu-Hausman p value.   

 

 

 Class Metabolite Outcome F 
statistic 

β estimate 
(95% CI) WuH 

R
e
d
u
c
e
 G

lu
c
o
s
e
 

S-LDL S-LDL-P 2-hour post 41.7 
-1000 

(-20, -1984) 
0.017 

Amino 

Acids 
Leucine 

Fasting glucose 

67.3 

-0.193 

(-0.069, -0.319) 
0.005 

2-hour post 
-0.443 

(-0.113, -0.774) 
0.008 

M-HDL 

M-HDL-CE Fasting glucose 62.4 
-0.327 

(0.069, -0.586) 
0.043 

M-HDL-C Fasting glucose 117 
-0.189 

(-0.021, -0.358) 
0.117 

In
c
re

a
s
e
 G

lu
c
o
s
e
 

Lipoprotein 

Density 
HDL_D 

Fasting glucose 

131 

0.082 

(0.026, 0.138) 
0.004 

2-hour post 
0.191 

(0.043, 0.339) 
0.024 

L-HDL 

L-HDL-P 2-hour post 108 
220 

(41.3, 397) 
0.02 

L-HDL_L 2-hour post 131 
0.264 

(0.062, 0,464) 
0.014 

L-HDL-C 2-hour post 120 
0.279 

(0.012, 0.544) 
0.048 

Cholesterol 

HDL2C 2-hour post 103 
0.288 

(0.007, 0.583) 
0.025 

HDLC 2-hour post 90.6 
0.296 

(0.007, 0.583) 
0.047 

HDL3C 2-hour post 66.6 
1.58 

(0.002, 3.15) 
0.074 

XL-HDL XL-HDL-CE 2-hour post 109 
0.541 

(0.079, 1.00) 
0.039 

XSVLDL 
XS-VLDL-

TG 
2-hour post 87.8 

0.841 

(0.098, 1.58) 
0.042 

S-HDL S-HDL-CE 2-hour post 41.9 
1.78 

(0.448, 3.11) 
0.007 
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Table 5.2 Removal of potentially pleiotropic SNPs 

Ethnicity Metabolite SNP Gene Associated confounder 
Initial Confounder removal 

β estimate 
(95% CI) WuH β estimate 

(95% CI) WuH 

WE 

Leucine rs2984433 ACTG1P9 BMI, Obesity class 1, weight 

-0.193 
(-0.319, -0.068) FG 0.004 -0.203 

(-0.339, -0.068) FG 0.006 

-0.443 
(-0.774, -0.113) 2H 0.024 -0.547 

(-0.909, -0.185) 2H 0.002 

L-HDL_L rs6811162 ENPEP Self-reported hypertension, diagnosed 
high blood pressure 

0.264 
(0.062, 0.464) 0.014 0.301 

(0.092, 0.510) 0.006 

L-HDL-C 

rs5576825 LINC01621 
ELOVL4 Waist circumference 

0.279 
(0.012, 0.544) 0.048 

0.323 
(0.0456, 0.602) 0.107 

rs6811162 ENPEP Self-reported hypertension, diagnosed 
high blood pressure 

0.241 
(-0.037, 0.519) 0.026 

rs5576825 + 
rs6811162 - - 0.287 

(-0.004, 0.578) 0.063 

XL-HDL 
class rs5576825 LINC01621 

ELOVL4 Waist circumference -0.285 
(-0.552, -0.018) 0.015 -0.244 

( -0.528, 0.040) 0.135 

SA 
LA rs12720820 APOB 

Self-reported high cholesterol, coronary 
artery disease, treatment with 
cholesterol lowering medication 

0.477 
(0.013, 0.939) 0.030 0.335 

(-0.982, 0.763) 0.459 

FAw6 rs12720820 APOB 
Self-reported high cholesterol, coronary 
artery disease, treatment with 
cholesterol lowering medication 

0.445 
(0.094, 0.794) 0.007 0.223 

(-0.398, 0.843) 0.105 

 L-HDL-PL rs7486176 C12orf76 Systolic blood pressure, diagnosed high 
blood pressure, hypertension 

0.692 
(0.106, 1.28) 0.021 0.853 

(0.170, 1.54) 0.013 

 Fatty Acid 
class  rs12720820 APOB 

Self-reported high cholesterol, coronary 
artery disease, treatment with 
cholesterol lowering medication 

0.172 
(0.018, 0.327) 0.018 0.142 

(-0.049, 0.334) 0.119 

2H: 2-hour post glucose. FAw6: Total n-6 fatty acids. FG: fasting glucose. LA: 18:2 linoleic acid (mmol/L). L-HDL-C: total cholesterols in L-HDL (mmol/L). L-HDL_L:     
total lipids in L-HDL (mmol/L). L-HDL-PL: phospholipids in L-HDL (mmol/L). SA: South Asian. WE: White European.  WUH: Wu-Hausman p value. 
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5.5.4 MR analysis: South Asians 

In SAs, 2 metabolites were associated with fasting glucose (FAw3 and 

S-HDL-C) and 9 associated with 2-hour post glucose : LA, FAw6, total lipids 

in M-VLDL (M-VLDL-L), total cholesterols in IDL (IDL-C), cholesterol esters in 

IDL (IDL-CE) concentration of  L-LDL (L-LDL-P), total phospholipids in S-LDL 

(S-LDL-PL,), total phospholipids in L-HDL (L-HDL-PL), total lipids in small S-

HDL (S-HDL-L),  total cholesterols in S-HDL (S-HDL-C) (Table 5.3). 

Fatty Acids were the class of metabolites most frequently associated 

with postprandial glucose in SAs. All three fatty acids (LA, FAw3 and FAw6) 

in the dataset were associated with an increase in either postprandial glucose 

measure to a similar magnitude ‒ i.e., a 1 mmol/l increase associated with a 

+0.4 mmol/l increase in fasting glucose (FAw3) or 2-hour post glucose (FAw6 

and LA).  In addition to fatty acid metabolites, an increase in 1mmol/L of total 

cholesterols in IDL (IDL-C) and increase in 1mmol/L cholesterol esters in IDL 

(IDL-CE) in SAs were associated with a decrease of 1.19 mmol/L of and 1.34 

mmol/L of 2-hour post glucose respectively. 

No metabolite found to be associated with postprandial glucose 

measures in WEs was found to be associated with postprandial glucose in 

SAs. However, in both populations, members of the S-HDL class were found 

to be associated with postprandial glucose: in SAs S-HDL-L was associated 

with a decrease in 2-hour post glucose (-1.23 mmol/L) and S-HDL-C was 

associated with an increase in fasting glucose (+ 1 mmol/L) while in WEs S-

HDL-CE was associated with an increase in fasting glucose (+ 1.78 mmol/L). 

In addition to the S-HDL class, members of the L-HDL class were found to be 

associated with postprandial glucose measures in both populations. Total 

lipids in L-HDL and total cholesterol in L-HDL were both associated with a 

~0.3 mmol/L increase in 2-hour post glucose in WEs and a 1 mol/L increase 

in the concentration of L-HDL particles associated with a 200 mmol/L increase 

in 2-hour post glucose also. In SAs, an increase of 1 mmol/L in phospholipids 

in L-HDL was associated with an increase of 0.682 mmol/L in 2-hour post 

glucose. 
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Table 5.3 Significant MR results in South Asians. 

Glucose measures are expressed as mmol/L. FAw3: total n-3 fatty acids. FAw6: total n-6 fatty 

acids. IDL-C: total cholesterols in LDL (mmol/L). IDL-CE: cholesterol esters in LDL 

(mmol/L). LA: 18:2 Linoleic Acid (mmol/L). LDL_P: concentration of LDL particles 

(mol/L).  L-HDL-PL: phospholipids in L-HDL (mmol/L). M-VLDL-L: total lipids in M-VLDL 

(mmol/L). S-HDL-C: total cholesterols in S-HDL (mmol/L). S-HDL-L: total lipids in S-

HDL (mmol/L). WuH: Wu-Hausman p value.  

 

5.5.4.1 South Asians: Sensitivity analyses 

Seven instruments in SAs were comprised of a single SNP meaning it 

was not possible to perform a leave-one-out analysis for these metabolites to 

assess the impact of pleiotropy on these identified associations. For the 

remaining 5 metabolites, no metabolite was consistently significant in each 

leave-one-out analyses. Nonetheless, associations were consistent across 

each leave-one-out analyses, particularly for the metabolite exposures of total 

lipids in M-VLDL and phospholipids in L-HDL, indicating that a single SNP was 

unlikely to be driving the associations (Appendix Figure C.10). Likewise, no 

large differences in F statistics following the removal of individual SNPs were 

identified in any instrument (Appendix Figure C.11). 

 Class Metabolite Outcome F 
statistic 

β  estimate 
(95% CI) WuH 

R
e
d
u
c
e
 
G

l
u
c
o
s
e
 

L-LDL LDL_P 2-hour post 11.1 

-3.86 

(0.467, -7.27) 

0.015 

IDL 

IDL-C 2-hour post 10.9 

-1.19 

(-0.12, -2.27) 

0.021 

IDL-CE 2-hour post 11.8 

-1.34 

(-0.144, -2.55) 

0.023 

S-HDL S-HDL-L 2-hour post 11.4 

-1.23 

(-0.137, -2.32) 

0.012 

I
n
c
r
e
a
s
e
 
G

l
u
c
o
s
e
 

Fatty 

Acids 

LA 2-hour post 20.9 

0.477 

(0.013, 0.939) 

0.030 

FAw3 Fasting glucose 10 

0.432 

(0.063, 0.798) 

0.008 

FAw6 2-hour post 33.4 

0.445 

(0.094, 0.794) 

0.007 

M-VLDL M-VLDL-L 2-hour post 68.4 

0.046 

(0.009, 0.083) 

0.008 

L-HDL L-HDL-PL 2-hour post 43.3 

0.692 

(0.106, 1.28) 

0.021 

S-HDL S-HDL-C Fasting glucose 22 1 (0.116,1.882) 0.012 
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Just as in WEs, 3 metabolites identified in SAs included SNPs 

associated with cholesterol or hypertension, which are  potential confounders 

of the association between metabolites and dysglycemia (Appendix Table 

C.6). Significance was maintained following the removal of SNP rs7486176 

(found within the C12orf76 gene) from the total phospholipids in L-HDL 

instrument. For the LA and FAw6, the removal of SNP rs12720820 (found 

within the APOB gene) resulted in a non-significant association indicating that 

this SNP was the main driver of the identified effect. In leave-one-out analyses 

the removal of SNP rs58865405 from the FAw6 instrument resulted in non-

significance, although the biological role of this SNP remains unknown. 

5.5.5 Post-hoc analysis: Analysis of metabolite classes 

Numerous SNPs were found to be associated with more than one 

metabolite value, particularly for metabolites in the same metabolite class 

(Appendix Figures C.12, C.13). This is to be expected as metabolomic 

pathways are intrinsically intertwined, particularly when considering 

metabolites in the same class.  To minimise the risk of violation of the 3rd MR 

assumption (i.e., the genetic instrument must only influence the outcome via 

the exposure and not via an alternative biological pathway) (Sheehan et al., 

2011) the collective effect of each metabolite class on postprandial glucose 

measures was examined in each metabolite class through the creation of a 

composite score from PC1 values obtained from PCA for each metabolite 

class. Metabolite classes with > 2 metabolites in WEs and SAs respectively 

had ≥70% of their variation explained by PC1, indicating that PC1 accounted 

for the majority of the variation in the metabolite class, suggesting that it is a 

strong composite score for the class. To assess the impact of outliers on PCA 

results, outliers were defined and removed based on two cut-offs: a standard 

1.5 X IQR difference from the median and a less stringent cut off of 3 x IQR. 

Values for PC1 and PC2 were found to be similar in both ethnicities following 

the removal of an outlier (defined as 1.5 x IQR) when compared to PC1 and 

PC2 values following the removal of ‘extreme’ outliers (defined as 3 x IQR). 

As a result, only extreme outliers were removed prior to analyses in order to 

maximise sample size (Appendix Tables C.7, C.8). 
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4 classes were associated with a glucose measure in WEs: 2 with 

fasting glucose (M-LDL and all LDLS, i.e., the collective grouping of HDLs, 

MDLs and SDLs), 1 with 2-hour post glucose (XL-HDLs) and 1 with both 

measures (S-LDLs) (Table 5.4). Fatty acids were the only metabolite class to 

be associated with either glucose measure in SAs, where they were found to 

be associated with an increase in 2-hour post glucose levels. Compared to 

the analysis of individual metabolites, instruments tended to be weaker when 

analysing each metabolite class collectively (Appendix Figure C.14, Table 

C.9). 

The removal of an individual SNP was not found to greatly impact the 

F statistic in any instrument. Associations between all LDLs and M-LDL 

classes and fasting glucose were found to be robust throughout leave-one-out 

analyses (Appendix Figure C.15, C.16). As with the individual analyses of 

LA and FAw6, the exclusion of SNP rs12720820 as well as the removal of 

rs7159441 (found within the PELI2 gene) (GeneCards Suite., 2022a) resulted 

in non-significant associations, indicating that SNPs rs12720820 and 

rs7159441 had the largest impact on postprandial glucose levels. For the XL-

HDL exposure, the removal of SNP rs55768285 also resulted in a non-

significant association (Table 5.4, Appendix Table C.10). 

 

 

Table 5.4 Significant MR results from the analysis of metabolite classes 

Glucose measures are expressed as mmol/L. WuH: Wu-Hausman p value. 

Ethnicity Metabolite 
class Outcome F 

statistic 
β  estimate 

(95% CI) WUH 

White 
European 

XL-HDL 2-hour post 96.2 

-0.285 

(-0.018, -0.552) 

0.015 

M-LDL Fasting glucose 95.5 

-0.048 

(-0.004, - 0.091) 

0.024 

S-LDL 

Fasting glucose 98 

0.084 

(0.007, 0.162) 

0.024 

2-hour post 98 

-0.249 

(-0.016, -0.482) 

0.066 

All LDL Fasting glucose 95 

0.038 

(-0.005, -0.068) 

0.016 

South 
Asian Fatty Acids 2-hour post 32.8 

0.172 

(0.018, 0.327) 

0.0184 
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5.5.6 Power analyses 

In order to determine whether the absence of an association in one 

ethnic stratum when a causal association was identified in the other ethnic 

stratum was potentially due to an ethnic-specific effect rather than a lack of 

power in the other ethnicity, post-hoc power analyses were performed.  

When using β estimates from unadjusted linear regression models as 

an estimate of the true causal effect,  power was low (~5%) and comparable 

between ethnicities in the majority of analyses, with the exception of S-LDL-P 

and L-HDL-P in WE, LL-LDL-P in SAs and the overall fatty acid class in SAs 

which were all adequately powered (≥80% power) at both 0.05 level 

(Appendix Table C.11).  When using β estimates from unadjusted linear 

regression models as an estimate of the true causal effect power was low in 

the majority of analyses, with the exception of S-LDL-P and L-HDL-P in WE, 

LL-LDL-P in SAs and the overall fatty acid class in SAs which were all 

adequately powered (≥80% power) at both 0.05 level.  However, when using 

MR estimates as an estimate for the true causal effect both the analyses of 

FAw3 and the overall fatty acid class in WEs were adequately powered to 

detect the observed MR effect in both populations, despite this association 

being non-significant, suggesting that the absence of an effect of FAw3 in 

WEs in these analyses may not be due to inadequate power. Likewise, the 

analysis of HDL3C in SAs was adequately powered at the 80% level to detect 

the identified MR association in SAs (power with SAestimate = 0.92) as well as 

the effect identified in WEs (power with WEestimate= 0.71), despite the fact that 

HDL3C was not found to be associated with postprandial glucose in SAs. The 

analysis of HDL2C in SAs was also sufficiently powered to detect the 

observed MR effect in WEs. R2 values were consistently lower in the ethnic 

group where an effect was not detected, as expected. Despite this, all genetic 

instruments for the identified metabolite values had an F statistic ≥ 10 in both 

ethnicities indicating that weak instrument bias was not responsible for the 

absence of effects identified in the other ethnicity. 
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5.6 Discussion 

This analysis has identified ethnically distinct associations between a 

range of metabolites and postprandial glucose measures during pregnancy in 

SAs and WEs, although no shared associations were identified. These 

findings support the idea that metabolite levels are heritable and that individual 

risk of GDM is somewhat genetically predisposed (Kettunen et al., 2012). 

Fourteen metabolites were found to be associated with postprandial glucose 

measures in WEs while a distinct set of 11 metabolites were identified in SAs. 

In WEs cholesterols and lipoproteins were the most commonly identified class, 

while in SAs fatty acids were found to have the greatest influence on 

postprandial glucose levels. Through conducting GWAS analyses of 

metabolites, novel genome-wide significant associations have also been 

identified in relation to acetate (1 SNP) and tyrosine (15 SNPs) in SAs. 10/15 

newly identified SNPs associated with tyrosine were found in the FOXN gene, 

a transcription factor that has previously been associated with ceramide levels 

(a lipid metabolite) in a Chinese cohort (Chai et al., 2020). Ceramide has been 

shown to induce tyrosine phosphorylation in membrane proteins meaning it is 

plausible that a gene associated with ceramide is also associated with tyrosine 

levels in an Asian population (Gulbins et al., 1997). 

5.6.1 Identified associations in WEs 

5.6.1.1 Leucine 

Branched-chain amino acids (BCAAs), including leucine, valine and 

isoleucine are predominantly metabolised in skeletal muscles (as opposed to 

other types of amino acids which are predominantly oxidised in the liver) 

where they are involved in signal transduction in the regulation of protein 

synthesis and mitochondrial function (Rondanelli et al., 2021). In addition to 

their roles in skeletal muscles, BCAAs are hormonal signalling regulators and 

are expected to module insulin resistance (IR). Although mixed results 

regarding the direction of the association between leucine and Insulin 

Resistance (IR) have been identified, likely as a result of heterogenous 

cohorts with differences in sex and obesity status, leucine is suspected to 

increase insulin secretion (Nie et al., 2018; Leenders and van Loon, 2011). 
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Leucine is an essential amino acid and, therefore, must be obtained from 

dietary sources (Rondanelli et al., 2021). Common dietary sources of leucine 

include meat products and cheese, with smaller amounts of leucine also being 

present in other dairy products (such as dairy and yoghurt), fish and in certain 

legumes and nuts, such as dried raw broad beans and pine nuts (Rondanelli 

et al., 2021). 

Few studies have looked at the role of leucine in influencing continuous 

postprandial glucose measures during pregnancy. However, the ratio of 

Leucine/ Isoleucine has been associated with a decrease in fasting glucose in 

the HAPO study: a multi-ethnic cohort of pregnant women of Afro-Caribbean, 

Mexican American, Northern European, and Thai ancestry with serum 

samples taken at ~28 weeks’ gestation (Liu et al., 2020). Outside of 

pregnancy, an RCT of a water-based supplement containing 2.6g of an amino 

acid mixture (including L-Leucine, L-Threonine, L-Monohydrochloride, L-

Isoleucine and L-Valine) and chromium picolate was found to decrease 

venous blood glucose (measures as an incremental area under the curve, 

iAUC0-120min)) when consumed alongside a carbohydrate-rich meal in a cohort 

of overweight men and women (Östman et al., 2020). Furthermore, Leucine 

has also been found to improve glucose tolerance and insulin resistance in 

mice. Mice fed a high-fat diet alongside Leucine supplementation were found 

to have significantly lower glucose levels at all time points (15 minutes – 2 

hours) following a GTT compared to mice who had only been fed a high-fat 

diet (Macotela et al., 2011) It has also been previously suggested that the 

increased consumption of leucine may stimulate insulin production resulting 

in a reduction in postprandial glucose levels in type 2 diabetics, particularly 

when combined with dietary interventions that improve the blood lipid profile 

(Leenders and van Loon, 2011). This study found leucine to be negatively 

associated with both fasting glucose and 2-hour post glucose levels during 

pregnancy in WEs, with 1 mmol/L of leucine decrease of 0.193 mmol/L of 

fasting glucose and 0.327 mmol/L 2-hour post glucose respectively. Dietary 

interventions aimed at increasing leucine levels during pregnancy, possibly 

through a dietary intervention promoting the consumption of lean animal 

protein, low-fat dairy and nuts, may help prevent GDM in WE populations.   
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5.6.1.2 Cholesterols 

HDL cholesterol is seen as ‘good cholesterol’ due to its role in the 

removal of cholesterols from atherosclerotic plaque, in turn reducing an 

individual’s risk of CVD (CDC, 2020). On the other hand, LDL cholesterol is 

seen as ‘bad cholesterol’ due to its ability to form atherosclerotic plaque 

deposits in blood vessels, increasing an individual’s risk of CVD. Modifying 

dietary consumption of fats is widely utilised to control the ratio of HDL to LDL 

in the blood, with reductions in trans-fat consumption reducing LDL levels 

(Mayo Clinic, 2022). In addition to contributing to an increase in atherosclerotic 

plaque formation, low HDL levels have also commonly been associated with 

diabetes, with HDL being thought to increase insulin secretion and β-cell 

survival (Wong et al., 2018). Despite this, discrepancies in the direct effect of 

HDL cholesterol and dysglycemia have also been identified in the MR 

literature (Wong et al., 2018), with studies reporting heterogonous effects of 

HDL in relation to diabetes, with some finding a protective effect and others 

reporting no effect. To our knowledge, no previous study has conducted an 

MR of metabolites and GDM; a 2015 review did however find HDL levels to 

be higher in GDM cases compared to controls during the second and third 

trimesters, however heterogeneity was high in all analyses (I2 ≥ 54%) 

(Ryckman et al., 2015).  

Here, through the analysis of the BiB cohort, numerous associations 

between HDL cholesterol measures and postprandial glucose measures were 

identified in WEs; however, the directions of effects of these metabolites were 

mixed. Total cholesterol in HDL, total cholesterol in HDL2C, total cholesterol 

in HDL3C, total cholesterol in L-HDL, cholesterol esters in S-HDL, cholesterol 

esters in XL-HDL, the concentration of L-HDL and total lipids in L-HDL were 

all positively associated with 2-hour post glucose. Conversely, total 

cholesterols in M-HDL and cholesterol esters in M-HDL were negatively 

associated with fasting glucose. In addition to these identified associations for 

individual metabolites, the XL-HDL class was also associated with 2-hour post 

glucose in WEs. The majority of these associations were consistent across 

each leave-one out analysis; however, the removal of SNP rs6922 from the 

instrument for the phospholipids in L-HDL resulted in a large change in effect 

estimates. rs6922 is found in the RGL1 gene and its protein product Ral 
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guanine nucleotide dissociation stimulator like 1 is classified as a metabolic 

protein under the HPA classification system due to its known role in the 

regulation of lipid metabolism (Reactome, 2022; Gillespie et al., 2021; 

GeneCards Suite., 2022b).  

Although increased HDL levels have been associated with a decrease 

in GDM risk (Ryckman et al., 2015; Wang et al., 2019), this study identified 

numerous HDL metabolites to be associated with an increase in 2-hour post 

glucose. Indeed, some of these associations have been identified previously, 

with a Finnish sample of overweight and obese women finding cholesterol 

esters in S-HDL to be higher in the serum samples of GDM cases at ~14 

weeks gestation (Mokkala et al., 2020). 

When considering LDL cholesterols, the only LDL metabolite measure 

identified to be associated with pregnancy dysglycemia was the concentration 

of S-LDLs, which was associated with a decrease in fasting glucose of 1000 

mol/L in WEs.  However, when evaluating the collective effect of lipid classes, 

M-LDLs and ‘all LDLs’ (a combined measure of S-LDLs, M-LDLs and HDLs), 

were associated with fasting glucose. Additionally, the S-LDL class was found 

to be associated with both fasting glucose and 2-hour post glucose in WEs. 

Unfortunately, because composite scores were comprised of PC1 coordinates 

the direction of effect of these associations could not be evaluated. However, 

these results support the presence of a causal association between a range 

of cholesterol metabolites and pregnancy dysglycemia in WE populations.  

The heterogeneous nature of the direction of associations obtained in 

this MR study highlight the complexity of biological mechanisms linking 

metabolites and disease in both an observational and MR setting, with even 

well-established biological mechanisms potentially being subjected to 

confounding from numerous sources, including diet, alternative biological 

molecules, and demographic factors such as BMI.  In addition, the timing of 

sample collection is known to impact cholesterol levels during pregnancy, with 

total cholesterol, HDL cholesterol and LDL cholesterol have all been shown to 

be higher in third trimester compared to the first trimester (Emet et al., 2013). 

This temporal variation in cholesterol levels throughout pregnancy may result 

in different associations between cholesterol metabolites and pregnancy 

outcome measures being identified in studies that have taken metabolite 
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samples at different pregnancy time-points (Hu et al., 2021). OGTT samples 

in BiB were taken on the cusp of the second and third trimester, with the third 

trimester starting at the 27th week of pregnancy which means cholesterol 

levels are likely to be higher in these samples compared to ones taken during 

early pregnancy. Future work evaluating the role of cholesterol metabolites in 

pregnancy health outcomes should aim for large enough sample sizes to 

stratify by BMI with adequate power, while considering the timing of sample 

collection, potentially by comparing cholesterol levels in the sample with a 

non-pregnant control population to assess the extent of elevated cholesterol 

levels during pregnancy. Additionally, performing multiple MR analyses on 

samples collected at varied time points may also help shed light on the 

dynamic nature of metabolites during pregnancy and also the timing of GDM 

on set at a molecular level. 

5.6.1.3 Triglycerides 

Triglycerides are an abundant class of lipid particles found in the blood. 

Like cholesterols, triglycerides have been associated with an increase in CVD 

risk and an increase in atherosclerotic plaque formation, although it is not 

known whether these associations are causal or a result of biological 

interactions between triglycerides and cholesterols (Wiesner and Watson, 

2017). Triglycerides can enter the bloodstream either through intestinal 

absorption (the route of entry for dietary triglycerides) or as a result of hepatic 

synthesis (Alexopoulos et al., 2019). Once in the blood, triglycerides can be 

incorporated into HDL and LDL cholesterol particles where they contribute to 

cholesterol metabolism. Dietary sources of triglycerides include foods high in 

saturated fats, and it has been suggested that the best way to manage 

triglyceride levels is through a reduction in overall calorific intake by limiting 

the consumption of processed meat, oils and confectionery products (Laufs et 

al., 2020). In addition to triglyceride consumption, dietary fatty acids are also 

commonly converted into triglycerides before they enter circulation, 

highlighting the complex relationship between triglyceride, cholesterol, and 

fatty acid levels (Alexopoulos et al., 2019).  

Increased triglyceride levels have been associated with both diabetes 

(Alexopoulos et al., 2019) and GDM. A  2021 meta-analysis reported that 
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triglyceride levels were higher in GDM cases than GDM non-cases in every 

trimester, although considerable heterogeneity was detected in all analyses 

(I2 ≥ 84%) (Hu et al., 2021). Interesting, when stratifying studies by 

geographical location no difference in triglyceride levels in GDM cases and 

controls was identified in South Asian studies (Hu et al., 2021). The reasons 

for this are unclear but it has also been shown that SAs have a higher 

prevalence of hypertriglyceridemia than WEs and at lower BMI levels, 

meaning it is possible that the difference in triglyceride levels and in SA GDM 

cases and controls is less pronounced than it is in WEs (Makshood et al., 

2019).  

Similar, to the above meta-analysis, no triglyceride metabolite values 

were associated with postprandial glucose measures in the SA stratum of the 

BiB cohort. However, triglycerides in XSVLDL (XS-VLDL-TG) were associated 

with an increased 2-hour post glucose (0.841 mmol/L) in WEs.  In agreement 

with these findings, increased triglycerides in XSVLDL levels have also 

previously been associated with increased likelihood of GDM in a Finnish 

population (Mokkala et al., 2020). Despite this finding, no other triglyceride 

values were found to be associated with pregnancy dysglycemia in the WE 

strata of BiB in this analysis. One explanation regarding why no additional 

associations were detected could due to the average BMI of the WEs in BiB, 

with an additional analysis of a prospective Irish cohort (~94% WE) finding 

that triglyceride levels were only associated with GDM in obese individuals, a 

higher average BMI than that observed in the BiB cohort (O'Malley et al., 

2020). If these findings of increased triglycerides in XSVLDLs are confirmed 

it is possible that this association is partially responsible for the identified 

associations between diets high in fats (such as the western diet) and 

increased GDM in WEs. 

5.6.2 Identified associations in SAs 

5.6.2.1 Fatty Acids 

Polyunsaturated acids FAw3 and FAw6 are commonly consumed via 

diet, two of which are essential and cannot be produced by the body (i.e., 

alpha-LA and LA). (Koletzko et al., 2019). Once consumed, the body then 
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converts PUFAs to long-chain PUFAs (lc-PUFAs), from precursors such as 

LA, in order to produce membrane lipids, eicosanoids and docosanoids.  

Changes in dietary patterns can have a large impact on fatty acid 

composition in the body, with a Western diet increasing n-6 fatty acid levels 

that could in turn impact GDM risk (Hosseinkhani et al., 2021). Increased 

saturated fat consumption (characteristic of a western diet) during pregnancy 

is also known to increase lipolysis in maternal adipose tissue, elevating the 

levels of free fatty acids and with it increasing insulin resistance (Hernandez 

et al., 2018). Broadly, dietary sources of n-3 fatty acids include plant oils, 

walnuts, flaxseeds, and oily fish, although the exact sources are dependent 

on the type of n-3 fatty acid (Gebauer et al., 2006). Furthermore, some PUFAs 

have been found to be present at more consistent levels throughout 

pregnancy compared to other types of fatty acids, potentially making them a 

more reliable biomarker for GDM if an association does exist (Hosseinkhani 

et al., 2021).  This makes fatty acids an ideal target for dietary interventions 

aiming to prevent or manage GDM if the causal association between fatty 

acids and GDM is confirmed. 

The association between fatty acids and dysglycemia in Asian 

populations has been previously reported. In a cohort of Chinese adults, total 

n-6 fatty acids and 18:2 n-6 levels at baseline were both found to associate 

with an increased risk of T2D after ~8 years of follow up, while n-3 fatty acids 

were protective against T2D (Bragg et al., 2021). However, a two-sample MR 

could only confirm a negligible effect of n-6 PUFA synthesis on T2D in a 

predominantly WE cohort (Zulyniak et al., 2020). In regard to GDM, a recent 

systematic review (2021) exploring the relationship between n-3, n-6 and n-9 

fatty acids and GDM was inconclusive, and none of the identified studies 

(n=15) were conducted in a SA population (Hosseinkhani et al., 2021). A more 

recent observational study investigating the role of fatty acids in GDM 

development in 2 cohorts of Chinese individuals also found mixed results 

regarding the associations between a range of fatty acids (measured at 

approximately 10-14 weeks) and GDM incidence. Together these studies 

highlight the need for more studies exploring the role of fatty acids in GDM 

developed in Asian populations (Pan et al., 2021). 
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Through the utilisation of one-sample MR this study has provided 

evidence for the presence of an association between FAw6 and LA levels and 

an increase in 2-hour post glucose levels in SAs. In addition, the fatty acid 

metabolite class was also found to be associated with 2-hour post glucose in 

SAs. In addition, FAw3 was found to be associated with an in increase 2-hour 

post glucose, however only one SNP was included in the instrument which 

meant potential for pleiotropy could not be fully explored. Through the use of 

a leave-out-one sensitivity analyses for the FAw6 and LA instruments, the 

removal of the SNP rs12720820 (found within the APOB gene) was found to 

result in non-significant associations for both exposures, indicating that this 

SNP was the largest contributor to the identified associations. APOB is 

responsible for encoding two versions of Apolipoprotein B, a protein involved 

in fat and cholesterol transport; indeed, rs12720820 has previously been 

associated with cholesterol levels and the use of cholesterol lowering drugs 

(MedlinePlus, 2021). It is well established that fatty acid profiles can impact 

blood cholesterol levels (Mensink et al., 2003; Jacobson et al., 2012; Ooi et 

al., 2013). In addition, increased dietary cholesterol has previously been 

associated with an increased risk of GDM in a systematic review of 

observational studies (Schoenaker et al., 2016). Taken together, this evidence 

suggest that it is possible that fatty acids and cholesterol metabolites may be 

vertically pleotropic, impacting postprandial glucose and measures and GDM 

risk via the same causal pathway, with n-6 fatty acids fatty acids impacting 

GDM risk via their role in cholesterol metabolism. Unlike horizontal pleiotropy, 

vertical pleiotropy does not result in a violation of the 2nd MR assumption as 

cholesterol is not acting as a confounder, meaning MR estimates are still valid 

(Figure 5.2). Furthermore, it is also possible that this interaction between fatty 

acids and cholesterols may be ethnic-specific due to the absence of 

associations identified between fatty acids and postprandial glucose 

measures in WEs, despite numerous associations being identified between 

cholesterol measures and postprandial glucose measures in WEs. In addition 

to possible variations in cholesterol metabolism, it is also plausible that 

variations in fatty acid synthesis are partially responsible for the increased 

GDM risk experienced by SAs. For example, variants within the FADS genes 

have been shown to impact lc-PUFA conversion, with haplotype D resulting in 
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a higher blood lipid level of lc-PUFAs due to higher rates of lc-PUFA 

conversion, while haplotype A is associated with lower conversion (Koletzko 

et al., 2019; Ameur et al., 2012). Currently, evidence suggests that in SAs 

haplotype D is slightly more common than it is in WEs, highlighting potential 

underlying differences in lipid metabolism which could differentially impact 

disease risk in both populations  (Koletzko et al., 2019; Ameur et al., 2012). 

 

 

 

 

Unfortunately, due to the data cleaning steps prior to MR no SNPs 

within the FADs genes were included in the GWAS of metabolites in SAs 

meaning it was not possible to determine whether i) these SNPs were 

associated with fatty acids in this study and, if so, ii) these SNPs impacted the 

MR result.  Despite this, shared and distinct patterns of genetic associations 

were identified when comparing GWAS results in both ethnicities, indicating 

that throughout the genome there may be ethnic specific genes associated 

with fatty acid metabolism (Appendix Figure C.17). If these ethnic differences 

in fatty acid metabolism are confirmed, this finding could aid in the 

development of ethnically tailored GDM prevention strategies that focus on 

modifying fatty acid profiles in an ethnic-specific manner. 

 

Figure 5.2 Schematic of horizontal and vertical pleiotropy. A: Illustration of horizontal 

pleiotropy. B: Illustration of vertical pleiotropy. Vertical pleiotropy does not result in a 

violation of the 2
nd

 MR assumption. 
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5.6.3 Strengths and limitations 

This analysis has several strengths. Firstly, this study involved a large 

and comprehensive panel of metabolites spanning a range of metabolite 

classes allowing for the role of the metabolites in postprandial glucose to be 

thoroughly investigated. Secondly, this is the first MR study to investigate 

dysglycemia during pregnancy while also being one of the few MR studies to 

be conducted in a SA population. Finally, through leave-one-out analyses and 

the searching of both Phenoscanner and GWAS Catalog databases violations 

of the 2nd and 3rd MR assumptions were thoroughly investigated meaning that 

it was possible to conclude that identified associations may not be subjected 

to horizontal pleiotropy and that identified causal associations are valid due to 

the absence of detectable violations of the MR assumptions. 

Nonetheless, this study has some limitations. Metabolites are highly 

correlated meaning it is not possible to confidently interpret that an individual 

metabolite is associated with a postprandial outcome measure as metabolites 

may be highly correlated or in the same biological pathway to the true causal 

metabolite (vertical pleiotropy) (Burgess and Harshfield, 2016). In this 

scenario, it is only possible to determine the role of the causal association of 

the overall pathway rather than an individual metabolite. In an attempt to 

account for this limitation MR analyses were performed on composite 

measures of each metabolite class (when PC1 explained ≥70% of the 

variation in the metabolite class) in order to assess the overall impact of each 

metabolite class on pregnancy dysglycemia. Furthermore, MR also assumes 

the level of exposure from conception to the time of measurement is constant, 

which is unlikely when studying metabolites. The limited sample size of this 

study also means that some associations may have been underpowered to 

detect an effect; however, a post hoc-power analyses did find that for some 

metabolite values significant effects only identified in one ethnicity were 

possible to detect in the alternate ethnicity. In addition, some genetic 

instruments included only one SNP meaning it was not possible to evaluate 

the impact of pleiotropy for any identified associations involving these 

instruments. Finally, due to limitations in data availability on SAs a two-sample 

MR could not be conducted as sensitivity analyses meaning it was not 

possible to assess the generalisability of the findings identified in this study. 
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5.6.4 Conclusions 

The presence of causal relationships between a comprehensive set of 

metabolites and postprandial glucose measures (fasting glucose and 2-hour 

post glucose) in mid-pregnancy have been established. This study has found 

a range of metabolite values to be associated with postprandial glucose 

measures in WEs and high-risk SA women, although more associations were 

identified in WEs despite these individuals being of a lower risk of GDM. In 

high-risk SA women total n-6 fatty acids and the n-6 fatty acid, LA appears to 

increase postprandial glucose levels suggesting that fatty acids may be 

partially responsible for the increased GDM burden experienced by this 

population. Future work in a larger sample (potentially utilising a two-sample 

MR) should aim to utilise a larger panel of fatty acid metabolites in SAs to 

confirm these findings, ideally over the course of a pregnancy in order to aid 

in GDM prevention in this high-risk population. 

 

5.7 Summary 

• Metabolites are causally associate with postprandial glucose in both 

SAs and WEs. 

• Cholesterols and lipoproteins are the most common type of 

metabolite to be causally associated with postprandial glucose in 

WEs. 

• Fatty acids are the most common type of metabolite to be causally 

associated with GDM in SAs. 

• Distinct metabolite classes are associated with postprandial glucose 

in both ethnicities, with members of the L-HDL and S-HDL classes 

being associated in both ethnicities. 
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Chapter 6: Conclusions and Future Work 

 

6.1 Main findings 

The main aim of this thesis was to determine whether metabolites are 

causally associated with GDM in an ethnic-specific manner, with a focus on 

high-risk SA women. In addition, as diet is also the mainstay in GDM 

prevention and can alter the metabolome, this study also aimed to examine 

the presence of associations between diet and GDM in distinct ethnic 

populations. 

The first research chapter of this thesis (Chapter 3) reviewed the role 

of diet on GDM incidence in ethnically distinct populations, evaluating 

evidence from both randomised and observational settings in order to 

determine whether the effect of diet on GDM incidence was similar across 

ethnic groups. Through conducting a thorough systematic review and meta-

analysis, 38 studies (32 observational studies and 6 RCTs) that reported on 

the association between diet and GDM were identified. Encompassing 5 

ethnicities, 16 individual dietary patterns and 2 overarching dietary patterns 

(healthy and unhealthy), this review did not find evidence to support the use 

of  healthy dietary interventions during pregnancy as a means of preventing 

GDM, agreeing with previous reviews (Griffith et al., 2020). However, an 

association between healthy diets and unhealthy diets assessed in an 

observational setting was identified in WE populations, with a healthy diet 

reducing an individual’s odds of GDM by 24%, while an unhealthy diet 

increased an individual’s odds by 59%. In addition, associations were also 

identified for the western, fried/fast food, a high meat and high protein dietary 

patterns and increased GDM risk in WEs. However, in Asian populations, no 

associations were identified between any dietary pattern and GDM incidence, 

before or after stratifying the Asian population by east and south Asian 

subgroups despite adequate power to detect even small changes in effect. 

Three macronutrients, expressed as a percentage of total energy intake (fat, 

animal protein and carbohydrate) were however associated with GDM 

incidence in both WE and Asian populations, with increased intake of fat and 
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animal protein raising the odds of GDM while increased carbohydrate intake 

decreased the odds. In subsequent sensitivity analyses, BMI and maternal 

age were not found to change the significance or magnitude of identified 

associations in WEs. Furthermore, no dose-response relationship was 

identified for any exposure. When considering observational studies that 

assessed dietary intake during pregnancy, no association was identified 

between diet and GDM in WEs, agreeing with the absence of an association 

identified between RCTs implemented during pregnancy and GDM incidence, 

collectively suggesting that for healthy diets to have a protective effect against 

GDM they must precede pregnancy. Finally, in a post-hoc power analysis in 

the Asian population power was consistently found to be adequate (at the 80% 

level) to detect the changes in odds of GDM identified in WEs. This  means 

that, despite the lower number of studies identified in Asians compared to 

WEs, the analysis should have been adequately powered to detect even small 

associations between diet and GDM incidence in Asian populations. With the 

majority of identified studies conducted in non-white populations utilising 

validated culturally tailored interventions (66% of non-white RCTs) or dietary 

assessment tools (87.5% of non-white observational studies), it can be 

assumed that diet was captured to the same level of accuracy in both 

populations. In summary, evidence from this review suggests that diet may 

have differing impacts on GDM development in WEs and Asians and it is 

possible that the absence of observed associations in Asians is not due to a 

lack of culturally specific interventions or dietary assessment tools utilised in 

Asian studies. This suggests that the absence of an effect between diet and 

GDM in Asians may be due to biological differences between the populations. 

In an attempt to establish whether any potential differences in the 

association between diet and GDM between ethnicities was as a result of 

ethnic-specific biological differences, Chapter 4 aimed to identify whether the 

metabolomic profiles of GDM cases and non-GDM cases differed in an 

ethnically diverse cohort (50% WEs and 50% SAs), due to the well-

established relationship between diet and the metabolome. Furthermore, this 

chapter aimed to investigate whether the metabolic profiles of GDM cases and 

non-cases differ by ethnicity to see if the absence of association observed 
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between diet and GDM in Asians in Chapter 1 could also be observed at the 

metabolite level in a SA population. 

In an overall analysis of the BiB cohort, metabolites explained 11.4 % 

of the variation in GDM status after accounting for known clinical GDM risk 

factors (i.e., maternal BMI, maternal age, parity, multiple pregnancy, smoking 

status, and ethnicity). In this analysis, 7 metabolite values (lactate, mean 

diameter of VLDL, TotFA, MUFAs, LA, SFA and esterified cholesterol) were 

considered important (VIP ≥1) to characterise GDM status, all of which are 

dietary related metabolites. Interestingly, in Chapter 3 fat intake (expressed 

as a % of energy intake) was one of the only dietary components found to 

associate with GDM incidence in Asians and was the most common class of 

metabolites to be determined to be important in distinguishing GDM in SA from 

the BiB cohort, albeit to a lesser extent than in WEs. 

After stratifying the cohort by ethnicity, these metabolites remained 

important along with glycoprotein acetyls in characterising GDM status in both 

ethnicities. A further 6 metabolites (FAw6, PUFAs, alanine, glutamine, serum 

cholesterol, and citrate) were deemed important to characterise GDM status 

in WEs, all of which are also dietary related and adding further support to the 

associations between diet and GDM in WEs identified in Chapter 3. Despite 

these additional associations in WEs, no unique metabolite-GDM associations 

were identified in SAs. It was also noted that when applied to the SA ethnicity 

the models explained less of the variation in GDM status than they did in WEs 

(20% vs 26%). Also, many of the metabolite values identified as characteristic 

of GDM in both ethnicities’ VIPs were significantly higher in WEs than in SAs 

(MW p value ≤ 0.05). Taken together, it appears that the maternal metabolome 

characterised in BiB is more closely associated with GDM case status in WEs 

than SAs. This builds on the last chapter suggesting that diet may have a more 

important impact in determining GDM status in WE compared to Asian 

populations. In this chapter, dietary related metabolites characteristic of GDM 

in both ethnicities (including total fatty acids, SFAs and MUFAs) were more 

characteristic of GDM in WEs, suggesting that diet may be more important in 

determining GDM status in WEs. 

 Finally, this chapter observed that low risk (i.e., non-smokers who 

carried a singleton pregnancy and had no previous children) healthy-weight 
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(BMI ≤ 23kg/m2) SA women with GDM have a distinct metabolic profile when 

compared to all other low-risk SA and WE cases and individuals. This pattern 

identified in healthy-weight SA women suggests that low-risk SAs have a 

unique metabolic profile that is associated with an increased GDM risk. Future 

work should aim to confirm these findings in a larger cohort while also aiming 

to identify drivers of this elevated risk profile in healthy-weight SAs.  

All statistical analysis in Chapter 4 utilised data from the prospective 

BiB birth cohort. Despite the fact that all analyses were adjusted for known 

GDM risk factors, residual confounding is likely to still be present in this 

analysis due to the fact that BiB is an observational cohort. In an attempt to 

bypass this issue of residual confounding, Chapter 5 of this thesis utilised an 

MR design that can account for residual confounding. Herein, the presence of 

causal associations between metabolite values and postprandial glucose 

measures (key components of a GDM diagnosis) in both ethnic groups in BiB 

using one-sample MR. By doing so, causal associations between metabolites 

identified to be important in distinguishing GDM cases from non-cases in a 

multivariate approach could be confirmed and the direction and magnitude of 

effects assessed, something that could also not be achieved in the utilised 

multivariate approaches. 

In both ethnicities, GWASs identified SNPs that were associated (p 

value ≤ 1x 10-5) with the majority of metabolite values. Interestingly, for a range 

of metabolites, shared and unique genomic regions were found to be 

associated with metabolite levels between SAs and WEs. This suggests that 

shared and unique genetic markers of metabolism exist in SAs and WEs, 

relating to the previous findings from Chapter 4 that that found common and 

distinct features in the metabolomic profiles of GDM cases and non-cases 

between the ethnicities.  

The MR analysis found that 14 metabolite values were causally 

associated with fasting glucose or 2-hour post glucose in WEs whilst two 

metabolite values (leucine and mean diameter of HDLs) were associated with 

both postprandial glucose measures in WEs. In WEs, cholesterol and 

lipoprotein-related metabolites were the most represented class of 

metabolites to be associated with postprandial glucose measures. In the SA 

population, 11 metabolite values were causally associated with postprandial 
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glucose, including three fatty acid measures (FAw6, LA, FAw3). The 

identification of more causal associations in WEs compared to SAs agrees 

with the findings of Chapter 4 which suggested that metabolites may have a 

more influential role in determining GDM status in WEs compared to SAs.  

Building on from Chapter 4 which accounted for correlation between 

metabolites utilising multivariate statistical approaches, in Chapter 5 MR 

analyses were also performed utilising PC1 from the PCA analysis of highly 

correlated metabolite classes (i.e., classes where PC1 explained ≥70% of the 

class variation). In this analysis the fatty acid class was associated with 2-hour 

post glucose in SAs while the XL-HDL, M-LDL, S-LDL and All LDL classes 

were associated with either fasting glucose or 2-hour post glucose in WEs. 

This finding of fatty acids being the only metabolite class to be causally 

associated with postprandial glucose agrees with the finding from Chapter 4 

that found fatty acids to be the most frequent class of metabolites to be 

classified as being important in determining GDM case status in SAs. 

The majority of associations were robust, with only negligible shifts 

following the successive removal of individual SNPs in each instrument 

(leave-one-out sensitivity analysis). F-statistics were constant across each 

leave-out-one out analyses indicating that individual SNPs were not driving 

the identified associations and all potential confounders identified in 

Phenoscanner and GWAS Catalog are plausibly believed to be in vertical 

rather than horizontal pleiotropy. Therefore, all assumptions of MR were 

supported in the present analysis where it was demonstrated that a range of 

metabolite values (including dietary-related metabolites) are causally 

associated with pregnancy dysglycemia in an ethnic-specific manner. The 

identification of causal associations between fatty acid metabolites and 

postprandial glucose measures in SAs agrees with the finding of fatty acid 

metabolites being the most frequent class of metabolites identified in 

multivariate analyses in Chapter 4, and the association between fat intake and 

GDM in Asians identified in Chapter 3. Likewise, in WEs, leucine and 

numerous measures of cholesterol intake were found to be causally 

associated with postprandial glucose in WEs, all of which are dietary related 

and could help explain the observed associations between diet and GDM 
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identified in Chapter 3. A summary of all major findings of this thesis can be 

seen in Figure 6.1.  

Taken together, these findings suggest that biological pathways 

involved in fatty acid, cellular (i.e., glycolytic metabolites) and cholesterol 

metabolism may all be important in determining GDM status and future work 

should focus on better understanding the mechanisms that link dysregulation 

in these pathways to GDM. Clinically, the findings of this project emphasise 

the fact that individuals from different ethnicities may have underlining 

biological risk differences to GDM and highlights the need of personalised 

care. Furthermore, the absence of any detected effect between diet and GDM 

in Asian populations in Chapter 3 of this thesis further empathises the need 

for culturally sensitive dietary assessment tools and nutritional advice to be 

developed and utilised. In addition, these findings have also shown the 

importance of adopting healthy dietary changes as early as possible during 

pregnancy, and ideally pre-conception for women of child bearing age in all 

ethnicities. From a public health perspective it is critical that the importance of 

pre-conception diet to help ensure a health pregnancy is sufficiently 

communicated to women and that the importance of ethnicity as a clinical risk 

factor is understood by those conducting research. Ethnically disaggregated 

data should be collected whenever possible and ideally recruitment strategies 

should allow for sufficient numbers in minority ethnicities to prevent the 

grouping of culturally distinct ethnic subgroups into broader ethnic categories 

(i.e., Asian rather than EA or SA), which may obscure important cultural and 

biological differences between the groups. For women, the findings of this 

thesis also highlights the importance of pre-pregnancy diet in determining 

conception health but also how modifiable risk factors (such as fatty acid 

intake) may contribute to their disease risk. 

 

6.2 Limitations and future work 

The main aim of this PhD was to test whether metabolic profiles, as 

reflected by metabolites, play a causal role in GDM across and within 

ethnically distinct populations ‒ namely WEs and SAs ‒ in order to better 

understand the role of metabolism in GDM prevention. To build upon the 
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conclusions and limitations of this work, recommended future investigations 

are summarised in Table 6.1. More detail on the future work that could be 

conducted to build upon each research chapter of this thesis is also outlined 

below. 

6.2.1 Chapter 3 

Chapter 3 of this thesis did not find evidence that dietary interventions during 

pregnancy are effective in preventing GDM in any ethnicity, agreeing with the 

most recent Cochrane review (Griffith et al., 2020) . Furthermore, this study 

also found that when stratifying observational studies by the time of dietary 

assessment (before vs during pregnancy) diets assessed in an observational 

setting were not effective in preventing GDM either, suggesting that adopting 

a healthy diet during pregnancy may not be sufficient in preventing the 

metabolic changes that contribute to GDM. Evidence from Chapter 3 does, 

however, support the association between pre-pregnancy diet and GDM in 

WEs. To assess the importance of diet pre- and peri-conception on GDM risk: 

(i) a prospective cohort evaluating dietary intake at multiple time points before 

pregnancy could be used to assess how long a healthy diet would need to be 

adopted before pregnancy to achieve effective GDM prevention, or (ii) an RCT 

of women attending family planning clinics may be prescribed healthy diets 

until or throughout conception. One limitation of this review was that it utilised 

FFQ results to assess adherence to dietary patterns. Adherence to dietary 

patterns is likely to fluctuate over time which would not be captured by a single 

FFQ, so individuals classified as following a healthy diet may actually be 

misclassified, biasing any observed association between diet and GDM. 

Future cohorts should aim to conduct multiple FFQs throughout pregnancy to 

better understand how adherence to dietary patterns changes during 

pregnancy and in the pre-conception period, especially as it is known that 

women often alter their diets when trying to become pregnant/ once pregnant. 
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Figure 6.1: Schematic of the main findings of this thesis. Dashed lines represent the time of 
sample collection and GDM diagnosis via a 75g OGTT in Born in Bradford. SA: South Asians. 
WE: White Europeans. 
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 A further limitation of this review was that a very limited number of 

studies were conducted in SA populations, with the majority of Asian studies 

involving Chinese populations. Although sensitivity analyses were conducted 

to assess differences in the results between SAs and EAs, it is possible that 

these analyses were underpowered to detect any difference in effect (indeed, 

it is known that EAs and SAs experience differing GDM risks). Ideally, future 

cohorts would be adequately powered to investigate ethnic-specific 

associations in a range high-risk SA populations. This may be achievable 

through utilising a cohort including a SA immigrant population which could 

allow for multiple SA groups to be assessed in a single country or research 

site. Furthermore, by directly comparing an established non-WE cohort to a 

cohort of non-immigrant WEs, dietary patterns may be more comparable 

between groups due to the groups having a more similar environment when 

residing in the same geographical location. In addition, through the 

assessment of individual foodstuffs (rather overall dietary patterns) it may be 

easier to compare association between diet and GDM between ethnicities due 

to the fact that foodstuffs may be more comparable between ethnicities, 

although preparation methods may differ. Through the consideration of 

individual foodstuffs it may be possible to compare the impact of diet across 

populations while also minimising heterogeneity: a limitation of the systematic 

review and meta-analysis conducted in Chapter 3. 

It is imperative that any future study examining the role of diet in GDM 

incidence in SAs utilises a culturally sensitive GDM assessment tool that 

considers the consumption of culturally specific food items as well as any 

difference in preparation methods. Ideally, any tool utilised in a SA population 

would collect as much nutritional information as feasibly possible when 

assessing intake, since the composition of foods frequently consumed in non-

white ethnicities may differ considerably from commonly consumed foodstuffs 

in WEs. Furthermore, if a suitable culturally sensitive dietary tool was 

produced that could be tailored for use in different ethnicities it may help in the 

comparison of the effect of dietary patterns across ethnicities; herein, the use 

of PCA in individual studies to assess adherence to dietary patterns likely 

contributed significantly to the high heterogeneity estimates seen in the meta-
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analyses, which may be reducible by the use of an appropriate standardised 

tool.  

6.2.2 Chapter 4 

This study provided evidence of distinct metabolomic profiles present 

at the time of OGTT in WE and SA women. Due to the fact that these samples 

were taken at the time of OGTT, it is possible that they represent changes in 

the metabolome that have occurred concurrently with GDM development. In 

order to bypass this limitation and better understand the temporal relationship 

between metabolites and GDM (and whether this changes during the time 

course of pregnancy) a prospective cohort where fasting serum samples are 

repeatedly collected in early pregnancy would offer a better understanding of 

the role of metabolites in GDM development, a finding have could have 

significant clinical value. These analyses would also build on the finding that 

healthy-weight SA cases had distinct metabolic profiles compared to other SA 

cases which, if replicated during early pregnancy, could help identify SAs who 

are at high risk of GDM even though they have a healthy BMI. 

In addition to collecting metabolite samples at a wider range of time 

points during pregnancy, utilising a different metabolite panel to quantity the 

metabolite profiles in the samples may also be beneficial. The Nightingale 

Health © panel utilised by BiB has the advantage of being affordable and 

comprehensive, covering a range of metabolite classes making it ideal for 

exploratory analyses. However, this thesis has identified a range of 

metabolites as being of particular importance in determining GDM in both 

Chapters 4 and 5. Utilising a metabolite panel that includes more metabolites 

in the identified classes would be beneficial. For example, fatty acids were 

consistently identified to be important in determining GDM cases from non 

GDM cases in multivariate analyses (Chapter 4) and MR (Chapter 5), 

however, most measures of fatty acids in BiB encompass a class of fatty acids 

(for example, total n-3 fatty acids and total PUFAs) rather than individual fatty 

acids. This limitation means it is not possible to determine which individual 

members of each fatty acid class are responsible for the identified 

associations, information that could aid in the development of culturally 

specific dietary interventions. By utilising a more comprehensive panel of fatty 
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acids it may be possible to better understand the biological pathways which 

link fatty acids to GDM development and to identify which fatty acid should be 

targeted in dietary interventions in GDM prevention. Based upon the findings 

of Chapters 4 and 5, in addition to fatty acids, cholesterols, amino acids, and 

glycolysis related metabolites should also be explored in more depth in 

relation to GDM also. 

6.2.3 Chapter 5 

In this thesis, a one-sample MR was conducted to evaluate the 

presence of causal associations between a range of metabolites and two 

measures of postprandial glucose in 2 ethnicities. Although this sample had 

the benefit of including a large number of SAs (particularly when compared to 

the current literature) a sample size of approximately 3,500 is still 

comparatively small compared to large genetic consortia which may prevent 

the identification of weaker associations identified due to a lack of power. 

Furthermore, as a result of this sample size (and with it the limited number of 

GDM cases), it was not possible to investigate GDM as an outcome via MR. 

In order to examine genetic risk factors for GDM in SAs, larger genetic 

consortia are needed in SAs populations, ideally including multiple SA groups 

due to the unique genetic architecture present in some SA populations as a 

result of the cultural practice of marrying in Baradaris which could have limited 

the generalisability of the findings of this thesis. Likewise, larger cohorts of 

GDM cases of WE ancestry are also needed, particularly due to the lower 

prevalence of GDM in this population.  

Generalisability of the findings may also be limited due to the fact that 

a one-sample MR approach was utilised meaning only one cohort was 

considered in the analysis. Additional GWASs in relation to both metabolites 

and GDM would also allow for two-sample MR to be conducted in relation to 

this topic, hopefully allowing for the findings of Chapter 5 of this thesis to be 

confirmed in multiple cohorts. In addition to larger cohorts and additional 

GWAS studies, it is also important to assess the causality of the relationship 

between metabolite measures taken during early pregnancy and postprandial 

glucose measures due to the fact that the metabolome varies during 

pregnancy (Monni et al., 2021). Confirmation of whether the same 
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associations between metabolite values and postprandial glucose measures 

identified in this study are also identified in early pregnancy may aid in the 

development of dietary interventions designed to be implemented in early 

pregnancy.  

6.2.4 All chapters 

A consistent theme arising from this thesis is the potential role of fatty acids 

in modulating GDM risk in SAs: in Chapter 3, fat (expressed as % total energy 

intake) was one of the only dietary-related associations identified in Asians, in 

Chapter 4 fatty acids were the most represented metabolite class in the 

metabolite panel that characterised GDM in SAs, and in Chapter 5 causal 

associations were identified for a range of fatty acid measures and 

postprandial glucose measures in SAs. When considering all results, a RCT 

aiming to reduce fat consumption in SA women of child-bearing age may be 

effective in reducing GDM incidence, although this may be methodologically 

challenging to implement due to difficulties that arise when trying to implement 

a RCT for an extended time period. Finally, it is important to note that 

throughout this thesis it appears that metabolites may make a smaller 

contribution to GDM risk in SAs than WEs. Although metabolites (particularly 

fatty acids) may be partially responsible for GDM incidence in SAs, it is 

important that other avenues are explored for potential explanations for the 

high GDM burden in SAs, such as differences in inflammatory factors or 

pregnancy hormones, especially as GDM incidence continues to rise globally.  
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6.2.5 Conclusions 

In conclusion, this thesis has found significant evidence that pre-

pregnancy diet impacts GDM incidence in WE populations, however this same 

evidence currently does not exist in Asian populations. Furthermore, this 

thesis has also established that distinct metabolic profiles characterise GDM 

risk in SAs and WEs. Finally, this thesis has identified ethnic-specific causal 

associations between a range of metabolites and postprandial glucose 

measures. Overall it appears that the metabolome may have a greater impact 

in determining GDM risk in WEs, despite the lower risk of GDM in this 

population. Despite this, fatty acids appear to be the most important 

metabolite class in determining GDM risk in SAs. Future work should aim to 

better understand the relationship between fatty acids and GDM in SAs. in 

order to aid in the development of culturally sensitive dietary interventions 

tailored towards this high risk population. 

Table 6.1 Summary of proposed future work from this thesis. 

Related 
Chapter Aim Proposed Methods 

3 
 

To determine the temporal relationship 
between pre-pregnancy diet and GDM in 
a multi-ethnic population 

A prospective multi-ethnic cohort 
study in a multi-ethnic examining 
the dietary intake in women of 
childbearing age at multiple time 
points before pregnancy, ideally 
including women of different ethnic 
ancestries residing in the same 
country. 

To investigate whether pre-pregnancy diet 
is associated with GDM in a large SA 
population, using well defined culturally 
sensitive dietary assessment tools that 
also capture the intake of individual 
foodstuffs, allowing for a better 
comparison between populations 

4 
 

To determine how the relationship 
between metabolites and GDM changes 
from early pregnancy in WEs and SAs 

Prospective cohort of fasting serum 
samples taken at multiple time 
points during pregnancy. Metabolite 
quantification using a more 
comprehensive panel of fatty acid 
metabolites  

To determine how fatty acid profiles differ 
in SAs and WEs during pregnancy in 
relation to GDM status 

5 

Confirm findings from MR analyses of the 
relationship between metabolite values 
and in a secondary cohort ideally 
including multiple SA populations, 
potentially utilising a two-sample MR 
design 

Genetic sequencing of a larger 
sample of SAs, including more 
GDM cases alongside frequent 
literature searches of published 
GWASs related to metabolites, 
GDM or postprandial glucose in 
WEs and SAs. 

Perform MR analyses to examine the 
relationship between metabolite values 
and GDM status   

3+4+5 
To determine whether dietary 
interventions focusing on the reduction of 
fats are effective in preventing GDM in 
SAs 

An RCT initiated before pregnancy 
in women planning to conceive or 
as early as feasibly possible in a 
cohort of SAs and WEs  
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7.2 Peer review articles under review 
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2. The 7th PhD Conference in Food Science and Nutrition, 2020: 
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cohort. Fuller, H., Iles, M.M., Moore, J.B. and Zulyniak, M.A.  

 

3. American Society of Nutrition, 2021: Distinct Serum Metabolic 
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Incidence in High-risk Women. Fuller, H., Iles, M.M., Moore, J.B. and 

Zulyniak, M.A. (doi.org/10.1093/cdn/nzab046_045) 

 
4. The 8th PhD Conference in Food Science and Nutrition, 2021: The 

role of the Metabolome in the development of Gestational Diabetes 
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and Zulyniak, M.A. 

 
5. NUTRIGEN Fellows Seminar, McMaster University, December 

2021: The Role of the Metabolome in the Development of Gestational 

Diabetes Mellitus in High-risk Minority Women. 

7.5 Conference poster presentations 

1. UK Association of the Study of Obesity, 2019: The impact of diet on 

gestational diabetes mellitus incidence within distinct and diverse 

ethnic populations: A systematic review and meta-analysis. Fuller, H., 
Moore, J.B., Iles, M.M. and Zulyniak, M.A. (doi/ 10.1530/obabs.01.P58) 

 

2. The 6th PhD Conference in Food Science and Nutrition, 2019: 
Current Practice of GDM Prevention Through Dietary Intervention is 

Ineffective in Highest Risk Ethnic Groups. Fuller, H., Iles, M.M., Moore, 

J.B. and Zulyniak, M.A. 

 

3. Nutrition Society Summer Conference, 2020: Predictive 

metabolomic profiling within a diverse population of pregnant women 

at low or high risk of gestational diabetes.  Fuller, H., Iles, M.M., Moore, 

J.B. and Zulyniak, M.A. (doi.org/10.1017/S002966512000765X) 

 

4. Nutrition Society Summer Conference, 2021: Serum dietary-related 

metabolites are predictive of GDM risk in an ethnic specific manner: A 

multivariate analysis of the Born in Bradford cohort. Fuller, H., Iles, 

M.M., Moore, J.B. and Zulyniak, M.A.  

(doi.org/10.1017/S0029665121003268). 
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5. Society of Social Medicine and Population Health, 2021: The role 

of the serum metabolome in driving GDM in white Europeans and high-

risk Pakistani women: A multivariate analysis of the Born in Bradford 

cohort. Fuller, H., Iles, M.M., Moore, J.B. and Zulyniak, M.A. 

 

6. European Congress on Obesity, 2022: Metabolic differences in a 

multi-ethnic birth cohort contribute to disparity of risk for gestational 

diabetes: A Mendelian Randomisation analysis of metabolites. Fuller, 
H., Iles, M.M., Moore, J.B. and Zulyniak, M.A.  

 

7.6 Submitted conference abstracts  

1. International Society for Developmental Origins of Health and 
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J.B., O’Brien A. Lipidomics analyses of ATTIRE trial patients' plasma 

at day 1 demonstrates that reduced cholesterol esterification predicts 

development of hospital acquired infection. 

7.8.3 Conference abstracts 

1. Nutrition Society Spring Conference, 2021: Characterisation of 

microRNAs regulated by vitamin D and lipid loading in immortalised 

hepatocytes. Zhang, Z., Moon, R., Fuller, H., Thorne, J.L. and Moore, 

J.B. (doi.org/10.1017/S0029665121000689) 

 

2. Nutrition Society Summer Conference, 2021: Characterisation of 

microRNAs regulated by vitamin D and lipid loading in immortalised 

hepatic stellate cells. Zhang, Z., Moon, R., Fuller, H., Tan, X., Holmes, 
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acquired infection. Fuller, H., Tittanegro, T.H., Maini A.A., China, L., 

Thorne, J.L, Moore, J.B., O’Brien A. (Oral presentation)



 

 150 

Appendix A 
Supplementary data for Chapter 3 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Map of studies included in the systematic review.  
Studies shown on the map are greater than the number of studies as some studies were multinational. 
The countries shading represents the ethnic subgroup that the country was grouped as. Red: WE, 
yellow: Mediterranean, green: Iranian, orange: Asian, navy: Australian Nationals. (~60% WE and 
~40% Asian). Base map was obtained from the rworld map package in R studio. 
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Figure A.2: Plots showing average age of study participants. 

Plots of demographics of included studies. Dotted lines represent 
commonly cited cut-offs of GDM risk. 6 studies were excluded from this 
plot due to not including average age estimates. When more than one 
average was stated in a study all were plotted. * Represents studies with 
more than one exposure included in this review. 
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Figure A.3: Plots showing average BMI of study participants. 

Dotted lines represent ethnic specific BMI cut-offs for overweight status. 
When more than one average was stated in a study all were plotted. * 
Represents studies with more than one exposure included in this review. 
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Figure A.4: Schematic highlighting exposure characteristics. 

Schematic of the number of studies and characterises of each exposure. 2 overarching exposures, healthy (n=25, 6 subsets) and 
unhealthy (n=13, 4 subsets) were included in this review. Exposures which did not match to either the healthy or unhealthy pattern 
were classed as unclassified and were analysed independently. TE: Total Energy (%). 
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Table A.1 : Summary of utilised GDM diagnostic criteria in observational studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A: Categorisation of studies based on if GDM diagnostic criteria was stated. B Categorisation of studies based upon if specific 
OGTT cut-offs were stated. P values for the Chi-squared test to determine if significant differences between the observed and 
expected frequencies between all ethnicities and between the Asian and WE groups. OGTT: oral glucose tolerance test. WEs: 
White Europeans.

Diagnosis criteria Australian Nationals Mediterranean Iranian Asian WEs 
Criteria stated 1 3 1 9 11 
No criteria stated - 2 - - 5 
 Chi squared p value = 0.73 
    Chi squared p value = 0.48 

OGGT use Australian Nationals Mediterranean Iranian Asian WEs 
OGGT used 1 1 1 9 8 
No mention of OGGT - 4 - - 8 
 Chi squared p value = 0.07 
    Chi squared p value = 0.16 

A 

B 
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Figure A.5: Forest plot of the effect of RCTs utilising healthy 
dietary recommendations on GDM. 

Associations between healthy dietary interventions and GDM in RCTs 
stratified by ethnicity subgroups using a DerSimonian and Laird (DL) 
random effects model. TE: treatment effect, SE: standard error, IV: 
inverse variance method, CI: Confidence interval. 

 

 

  



 

 156 

 

  

A 

B 

C 



 

 157 

 

 

 

Figure A.6: Forest plot of the effect of healthy dietary 
exposures assessed in an observational setting on GDM. 

Associations between subsets of the healthy dietary exposure and GDM 
assessed in observational setting utilising  DerSimonian and Laird (DL) 
random effects models. A: Healthy recommendations. B: Mediterranean 
diet. C: Prudent diet.  D: Plant-based pattern. TE: treatment effect, SE: 
standard error, IV: inverse variance method, CI: Confidence interval. 
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Figure A.7: Forest plot of the effect of unhealthy dietary 
exposures assessed in an observational setting on GDM. 

Associations between subsets of the unhealthy dietary exposure and 
GDM assessed in observational setting utilising DerSimonian and Laird 
(DL) random effects models. A: Western diet. B: Fried/ fast food. C: 
Sweets and Seafood pattern. 
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Figure A.8: Forest plot of the effect of unclassified dietary      
exposures assessed in an observational setting on GDM. 

 
 
 

 
  

C 

D 

Associations between unclassified dietary patterns assessed in an 
observational setting and GDM in an observational setting utilising  
DerSimonian and Laird (DL) random effects models: A: Meat pattern. B: 
High-protein pattern. C: Fish. D: Traditional Asian. 
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Figure A.9: Forest plot of the effect of macronutrient dietary 
exposures assessed in an observational setting on GDM. 

Associations between macronutrient-defined diets and GDM in an 
observational setting utilising DerSimonian and Laird (DL) random 
effects models: A: Animal protein. B: Vegetable protein. C: Carbohydrate 
D: Fat. All macronutrient exposures were assessed as a % of total 
energy intake (TE). 
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Figure A.10: Significance of observational results following a Bonferroni correction. 

  Top: P values from observational analyses and their significance after a Bonferroni correction. Bottom left: P value ≤ 
0.05. Bottom right: P value ≤ 0.01. BF-Y: Significant following a Bonferroni correction. BF-N: Non-significant following 
a Bonferroni correction.  
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Table A.3 : Random effects meta-analysis: HKSJ approach. 

     
Random effects     

D-L HKSJ 
Exposure Study type Subclass N OR (95% CI) P value Tau² OR (95% CI) P value Tau² 

Healthy 

RCT 

Overall 7* 0.86 (0.69 - 1.08) 0.19 0.01 0.88 (0.65 - 1.18) 0.32 0.06 
Asian 2 0.76 (0.48 - 1.20) 0.24 0 0.72 (0.03 - 20.6) 0.43 0.79 
Australian National 1 0.91 (0.34 - 2.47) 0.85 NA 0.91 (0.34 - 2.47) 0.85 NA 
Mediterranean 2 0.92 (0.43 - 1.96) 0.83 0.22 0.92 (0.01 - 123.9) 0.86 0.20 
White European 2 0.69 (0.24 - 1.98) 0.50 0.46 0.70 (0.01 - 630) 0.63 0.41 

Observational 

Overall 22*** 0.79 (0.70 - 0.89) ≤0.001 0.05 0.78 (0.67 - 0.90) ≤0.01 0.09 
Asian 6* 0.91 (0.42 - 1.53) 0.28 0.01 0.91 (0.73 - 1.11) 0.26 0.03 
Australian National 1 0.92 (0.66 - 1.29) 0.63 NA 0.92 (0.66 - 1.29) 0.63 NA 
Mediterranean 3 0.64 (0.35 - 1.15) 0.14 0.20 0.64 (0.16 - 2.54) 0.29 0.24 
White European 12** 0.76 (0.64 - 0.89) ≤0.001 0.06 0.75 (0.61 - 0.93) 0.01 0.12 

Combined 

Overall 29*** 0.75 (0.66 - 0.86) ≤0.0001 0.05 0.80 (0.70 - 0.90) 0.007 0.08 
Asian 8* 0.90 (0.78 - 1.04) 0.18 0.01 0.87 (0.73 - 1.05) 0.13 0.04 
Australian National 2 0.92 (0.67 - 1.26) 0.60 0.00 0.92 (0.88 - 0.97) 0.03 0 
Mediterranean 5 0.75 (0.50 - 1.07) 0.11 0.12 0.74 (0.39 - 1.40) 0.25 0.21 
White European 14** 0.77 (0.65 - 0.90) ≤0.001 0.06 0.72 (0.58 - 0.90) ≤0.01 0.11 

HR 
RCT 

Overall 4 0.62 (0.29 - 1.30) 0.20 0.35 0.60 (0.17 - 2.15) 0.29 0.46 
Asian 1 0.16 (0.03 - 0.86) 0.03 NA 0.16 (0.03 - 0.86) 0.03 NA 
White European 3 0.79 (0.42 - 1.50) 0.47 0.18 0.78 (0.19 - 3.17) 0.53 0.19 

Observational Overall 7 0.72 (0.60 - 0.86) ≤0.001 0.04 0.72 (0.55 - 0.94) 0.02 0.09 



 

 165 

Australian National 1 0.92 (0.66 - 1.29) 0.63 NA 0.92 (0.66 - 1.29) 0.63 NA 
White European 6 0.69 (0.57 - 0.84) ≤0.001 0.04 0.69 (0.50 - 0.94) 0.03 0.10 

Combined 

Overall 11 0.73 (0.61 - 0.87) ≤0.001 0.05 0.67 (0.52 - 0.94) 0.02 0.19 
Australian National 1 0.92 (0.67 - 1.26) 0.63 NA 0.92 (0.67 - 1.26) 0.63 NA 
Asian 1 0.16 (0.031 - 0.86) 0.03 NA 0.16 (0.031 - 0.86) 0.03 NA 
White European 9 0.72 (0.60 - 0.87) ≤0.001 0.04 0.71 (0.54 - 0.94) 0.02 0.11 

Mediterranean 

Observational 

Overall 5 0.66 (0.50 - 0.85) ≤0.01 0.05 0.65 (0.41 - 1.036) 0.06 0.11 
Mediterranean 3 0.64 (0.35 - 1.15) 0.14 0.20 0.64 (0.16 - 2.54) 0.29 0.24 
White European 2 0.66 (0.49 - 0.89) ≤0.01 0.04 0.66 (0.10 - 4.55) 0.22 0.03 

Combined 

Overall 6 0.66 (0.54 - 0.82) ≤0.0001 0.0344 0.65 (0.46 - 0.92) 0.03 0.08 
Mediterranean 4 0.66 (0.45 -  0.95) 0.03 0.0811 0.65 (0.32 - 1.31) 0.15 0.14 
White European 2 0.66 (0.49 - 0.89) 0.01 0.0335 0.66 (0.10 - 4.55) 0.22 0.66 

Prudent diet Observational 

Overall 4 0.86 (0.59 - 1.26) 0.39 0.0887 0.80 (0.36 - 1.77) 0.44 0.18 
Asian 2 0.81 (0.43 - 1.52) 0.50 0.132 0.80 (0.01 - 51.50) 0.63 0.81 
White European 2 0.78 (0.29 - 2.10) 0.61 0.441 0.77 (0 - 486.71) 0.70 0.77 

Plant-based diet Observational 

Overall 6 0.93 (0.82 - 1.06) 0.30 0.0086 0.93 (0.79 - 1.10) 0.32 0.01 
Asian 3 0.91 (0.73 - 1.15) 0.45 0.0253 0.92 (0.58 - 1.45) 0.50 0.02 
White European 3 0.94 (0.79 - 1.11) 0.46 0.0028 0.95 (0.65 - 1.39) 0.60 0.01 

Unhealthy diets Observational 

Overall 13 1.44 (1.25 - 1.67) ≤0.0001 0.0257 1.43 (1.20 - 1.72) ≤0.001 0.06 
Asian 4 1.04 (0.72 - 1.51) 0.83 0.0701 1.04 (0.59 - 1.83) 0.84 0.08 
Iranian 1 2.12 (1.12 - 4.01) 0.02 NA 2.12 (1.12 - 4.01) 0.02 NA 
Mediterranean 2 1.69 (1.21 - 2.35) ≤0.01 0 1.68 (0.54 - 5.24) 0.11 0.002 
White European 6 1.59 (1.41 - 1.81) ≤0.0001 0 1.57 (1.33 - 1.84) ≤0.001 0.01 

Fried/ fast food Observational 
Overall 4 1.66 (1.42 - 1.93) ≤0.0001 0 1.65 (1.24 - 2.19) ≤0.01 0.02 
Iranian 1 2.12 (1.12 - 4.01) 0.02 NA 2.12 (1.12 - 4.01) 0.02 NA 
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Mediterranean 1 1.86 (1.13 - 3.06) ≤0.01 NA 1.86 (1.13 - 3.06) ≤0.01 NA 
White European 2 1.57 (1.23 - 1.99) 0.0004 0.01 1.55 (0.31 - 7.82) 0.18 0.02 

Western diet Observational 

Overall 7 1.51 (1.23 - 1.86) ≤0.0001 0.0049 1.48 (1.09 - 2.01) 0.02 0.05 
Asian 2 1.09 (0.52 - 2.26) 0.82 0.10 1.09 (0.01 - 129.8) 0.86 0.13 
Mediterranean 1 1.56 (1.00 - 2.43) 0.05 NA 1.55 (1.00 - 2.42) 0.05 NA 
White European 3 1.60 (1.26 - 2.02) ≤0.0001 0.0014 1.60 (0.90 - 2.82) 0.07 0.03 

Sweets and 
Seafood pattern Observational Asian 2 1.01 (0.58 - 1.74) 0.98 0.13 1.01 (0.03 - 34.14) 0.98 0.18 

Traditional 
Asian Observational Asian 2 1.05 (0.15 - 7.30) 0.96 1.81 1.05 (0 - 301,857) 0.97 1.71 

Meat pattern Observational 

Overall 7 1.41(1.22 - 1.63) ≤0.0001 0.01 1.41 (1.14 - 1.75) ≤0.01 0.03 
Asian 4 1.34 (0.98 - 1.84) 0.07 0.06 1.34 (0.79 - 2.23) 0.18 0.07 
Mediterranean 1 1.68 (1.07 - 2.65) 0.02 NA 1.68 (1.07 - 2.65) 0.02 NA 
White European 2 1.41(1.18 - 1.68) ≤0.0001 0 1.40 (0.88 - 2.24) 0.07 0.0003 

High protein 
diet Observational 

Overall 7 1.19 (0.94 - 1.52) 0.15 0.06 1.20 (0.88 - 1.65) 0.20 0.08 
Asian 5 1.13 (0.82 - 1.56) 0.45 0.09 1.15 (0.68 - 1.93) 0.50 0.36 
Australian National 1 1.45(1.03 - 2.05) 0.18 NA 1.45 (1.03 - 2.04) 0.18 NA 
White European 1 1.28 (0.9 - 1.84) 0.17 NA 1.28 (0.90 - 1.84) 0.17 NA 

Animal protein Observational 
Overall 4 1.49 (1.25 - 1.77) < 0.0001 0 1.51 (1.16 - 1.97) 0.02 0.01 
Asian 3 1.51 (1.20  - 1.89) ≤0.001 ≤0.01 1.53 (0.91 - 2.57) 0.07 0.02 
White European 1 1.51 (1.03 - 2.20) 0.03 NA 1.51 (1.03 - 2.20) 0.03 NA 

Vegetable 
protein Observational 

Overall 4 1.11 (0.72 - 1.70) 0.67 0.12 1.10 (0.56 - 2.16) 0.67 0.12 
Asian 3 1.30 (0.95 - 1.77) 0.10 0.0021 1.33 (0.67 - 2.63) 0.22 0.03 
White European 1 0.69 (0.49 - 0.97) 0.03 NA 0.69 (0.97 - 90.49) 0.03 NA 

Fat Observational 
Overall 3 1.50 (1.22 - 1.83) ≤0.0001 0 1.53 (1.04 - 2.25) 0.04 0.01 
Asian 1 1.85 (1.21 - 2.83) ≤0.01 NA 1.86 (1.22 - 2.84) ≤0.01 NA 
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White European 2 1.41 (1.12 - 1.77) ≤0.01 0 1.42 (0.73 - 2.76) 0.20 0.04 

Carbohydrate Observational 

Overall 3 0.49 (0.38 - 0.63) ≤0.0001 0 0.49 (0.35 - 0.68) 0.01 0.0026 
Asian 2 0.44 (0.30 - 0.63) ≤0.0001 0 0.44 (0.30 - 0.65) 0.02 <0.0001 
White European 1 0.54 (0.38 -0.78) ≤0.001 NA 0.54 (0.38 - 0.77) ≤0.001 NA 

Fish Observational 

Overall 5 0.87 (0.75 - 1.00) 0.05 0 0.92 (0.73 - 1.15) 0.35 0.02 
Asian 2 1.09 (0.71 - 1.68) 0.70 0 1.11 (0.06 - 19.30) 0.72 0.04 
White European 3 0.85 (0.75 - 1.00) 0.03 0 0.85 (0.77 - 0.94) 0.02 0.0014 

 
NA represents ethnic subgroup with only one study meaning a random effects meta-analysis was not required. DL: DerSimonian 
and Laird HKSJ: Hartung-Knapp-Sidik-Jonkman HR: Healthy recommendations  
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Figure A.11: Exposures indicating trends between quantiles of adherence in observational studies. 

A: Healthy diets. B: Healthy recommendations. C: Mediterranean diet D: Prudent. E: Plant-based pattern. F: Unhealthy diets.  
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Figure A.11 (cont): Exposures indicating trends between quantiles of adherence in observational studies. 

G: Western diet. H: Fried/fast food. I: Meat pattern. J: High-protein diets. 
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Figure A.12: Exposures with no indication trends between quantiles of adherence in observational studies. 

Exposures with no apparent trends or missing case/control data for all quantiles meaning dose response relationships were not 
investigated. A: Sweet and seafood. B: Fish C: Traditional Asian D: Fat  E: Carbohydrate. F: Animal protein G: Vegetable protein. 
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Table A.3 : Dose response analyses. 

 

 

Table showing dose response analyses results.* Represent models were the quadratic* model was performed. Bolded LogLik values 
illustrate the best fitting model. P-values of the best fitting models are shown in brackets. No identified associations were significant 
following a Bonferroni correction. Wald ratios illustrate deviation from a linear model. 4K cubic spline models were performed when each 
study presented at least 4 measures of adherence due to the intractability of the algorithm if less than 4 were included. 
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Figure A.13: Forest plot for the combined analyses of RCTs 
and observational studies. 

Associations between healthy diets and GDM stratified assessed in 

either a RCT or observational study assessed via a  DerSimonian and 

Laird (DL) random effects meta-analysis: A: Overall Healthy diet B: 

Healthy recommendations C: Mediterranean diet. 

C 
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Table A.4: Sensitivity analysis results. 

 
    

Random effects 
    

DL HKSJ 

Exposure Study type Subclass N OR (95% CI) P value Tau² OR (95% CI) P value Tau² 

Healthy diets 

During 
pregnancy 

Overall 14*** 0.84(0.71 - 1.00) 0.05 0.05 0.81 (0.63 - 1.03) 0.08 0.14 

Asian 5* 0.93 (0.75 - 1.10) 0.39 0.01 0.93 (0.78 -1.10) 0.39 0.14 

Mediterranean 3 0.68 (0.35 - 1.32) 0.26 0.25 0.69 (0.12 - 3.88) 0.45 0.38 

White European 5* 0.78 (0.50 - 1.22) 0.28 0.11 0.74 (0.37 - 1.51) 0.31 0.22 

Australian National 1 0.91(0.33 - 2.48) 0.86 NA 0.91 (0.33 - 2.48) 0.86 NA 

Obstetric 
adjustments 

Overall 17** 0.76 (0.66 - 0.87) ≤0.0001 0.06 0.75 (0.63 - 0.89) ≤0.01 0.10 

Asian 4 0.91 (0.75 - 1.11) 0.36 0.02 0.92 (0.70 -1.20) 0.38 0.01 

Mediterranean 2 0.51 (0.27 -0.97) 0.04 0.15 0.52 (0.01 - 31.0) 0.28 0.13 

Australian National 1 0.91 (0.34 - 2.48) 0.86 NA 0.91 (0.34 - 2.48) 0.86 NA 

White European 10** 0.73 (0.61 - 0.87) ≤0.001 0.06 0.72 (0.56 -0.92) 0.02 0.12 

BMI under 

Overall 17* 0.81 (0.71 - 0.93) ≤0.01 0.05 0.81 (0.71 - 0.93) ≤0.01 0.05 

Asian 6 0.89 (0.75 -1.07) 0.22 0.02 0.88 (0.68 - 1.14) 0.26 0.05 

Mediterranean 3 0.82 (0.62 - 1.08) 0.15 0.02 0.82 (0.46 -1.48) 0.29 0.03 

Australian National 1 0.91 (0.34 - 2.48) 0.86 NA 0.91 (0.34 - 2.48) 0.86 NA 

White European 7* 0.76 (0.61 - 0.95) ≤0.01 0.07 0.76 (0.57 - 1.00) 0.05 0.08 

BMI over Overall 12** 0.68 (0.49 – 0.94) 0.02 0.16 0.64 (0.40 - 1.02) 0.06 0.46 
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Asian 2 0.72 (0.36 – 1.44) 0.34 0 0.69 (0.01 - 39.9) 0.45 0.07 

Mediterranean 3 0.54 (0.17 -1.69) 0.29 0.73 0.44 (0.01 - 26.25) 0.48 2.28 

Australian National 1 0.91 (0.34 - 2.48) 0.86 NA 0.91 (0.34 - 2.48) 0.86 NA 

White European 6* 0.66 (0.41 - 1.04) 0.07 0.19 0.64 (0.35 - 1.20) 0.13 0.25 

Older 
mothers 

Overall 23*** 0.76 (0.68 -0.84) <0.0001 0.02 0.76 (0.67 - 0.87) 0.0003 0.08 

Asian 6 0.66 (0.43-1.00) 0.03 0 0.83 (0.70 - 0.99) 0.03 0 

Mediterranean 4 0.66 (0.43 - 1.00) 0.05 0.11 0.66 (0.28 - 1.59) 0.23 0.24 

Australian National 1 0.91 (0.34 - 2.48) 0.86 NA 0.91 (0.34 - 2.48) 0.86 NA 

White European 12** 0.75 (0.66 -0.86) <0.0001 0.03 0.76 (0.63 - 0.90) 0.005 0.07 

HR 

During 
pregnancy 

Overall 7** 0.77 (0.63 - 0.93) 0.01 0.05 0.78 (0.60 - 1.00) 0.049 0.11 

Asian 1 0.38 (0.07 - 2.00) 0.25 NA 0.38 (0.07 - 2.00) 0.25 NA 

Mediterranean 1 1.48 (0.69 - 3.16) 0.31 NA 1.48 (0.69 - 3.16) 0.31 NA 

White European 5* 0.72 (0.58 – 0.89) 0.03 0.04 0.73 (0.55 - 0.96) 0.03 0.09 

Obstetric 
adjustments 

Overall 5 0.67 (0.53 - 0.84) ≤0.001 0.04 0.66 (0.44 - 1.00) 0.05 0.11 

Australian National 1 0.92 (0.66 - 1.29) 0.64 NA 0.92 (0.66 - 1.29) 0.64 NA 

White European 4 0.62 (0.49 - 0.80) ≤0.001 0.04 0.65 (0.37 - 0.98) 0.05 0.10 

BMI 
Healthy/ 
underweight 

Overall 5 0.71 (0.58 -0.87) ≤0.001 0.04 0.70 (0.50 - 0.98) 0.03 0.11 

Australian National 1 0.92 (0.66 - 1.29) 0.64 NA 0.92 (0.66 - 1.29) 0.64 NA 

White European 4 0.67 (0.54 - 0.84) ≤0.001 0.04 0.67 (0.47 - 0.97) 0.04 0.04 

BMI over 

Overall 6* 0.96 (0.65 - 1.42) 0.85 0.04 0.86 (0.46 - 1.63) 0.58 0.23 

Asian 1 0.38 (0.07 - 2.00) 0.26 NA 0.38 (0.07 - 2.00) 0.26 NA 

Mediterranean 1 1.48 (0.69 - 3.16) 0.31 NA 1.48 (0.69 - 3.16) 0.31 NA 
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White European 4 0.90 (0.56 - 1.45) 0.66 0.06 0.81 (0.32 - 2.06) 0.53 0.22 

Older 
mothers 

Overall 10* 0.73 (0.59 - 0.90) 0.003 0.05 0.73 (0.55 -0.97) 0.03 0.13 

Asian 1 0.38 (0.07 - 2.00) 0.26 NA 0.38 (0.07 - 2.00) 0.26 NA 

Australian National 1 0.91 (0.34 - 2.48) 0.86 NA 0.91 (0.34 -2.48) 0.86 NA 

Mediterranean 1 1.48 (0.69 - 3.16) 0.31 NA 1.48 (0.69 - 3.16) 0.31 NA 

White European 7 0.72 (0.58 - 0.89) 0.003 0.04 0.73 (0.55 - 0.96) 0.03 0.09 

Mediterranean diet 

During 
pregnancy 

Mediterranean 2 0.51 (0.27 - 0.97) 0.04 0.15 0.52 (0.01 - 31.5) 0.29 0.13 

Obstetric 
adjustments 

Overall 4 0.62 (0.48 - 0.79) ≤0.0001 0.04 0.60 (0.38 - 0.95) 0.04 0.06 

Mediterranean 2 0.66 (0.49 - 0.89) ≤0.01 0.03 0.52 (0.01 - 31.2) 0.29 0.36 

White European 2 0.51 (0.27 - 0.97) 0.04 0.15 0.66 (0.10 - 4.55) 0.22 0.17 

BMI under 

Overall 4 0.73 (0.56 -0.96) ≤0.01 0.03 0.74 (0.49 - 1.12) 0.10 0.04 

Mediterranean 3 0.83 (0.63 -1.09) 0.18 0.01 0.82 (0.46 - 1.48) 0.29 0.03 

White European 1 0.59 (0.47 -0.47) ≤ 0.0001 NA 0.59 (0.47 -0.47) ≤0.0001 NA 

BMI over 

Overall 3 0.48 (0.27-0.83) ≤0.01 0.13 0.33 (0.016 - 6.89) 0.26 1.25 

Mediterranean 2 0.22 (0.02 - 2.46) 0.22 2.59 0.22 (0 - >1000) 0.44 2.32 

White European 1 0.51 (0.37 - 0.70) ≤ 0.0001 NA 0.51 (0.37 - 0.70) ≤0.0001 NA 

Older 
mothers 

Overall 4 0.65 (0.52 - 0.82) ≤ 0.001 0.02 0.62 (0.40 - 0.99) 0.05 0.06 

Mediterranean 3 0.58 (0.42 - 0.80) ≤ 0.001 0.03 0.56 (0.25 - 1.25) 0.09 0.07 

White European 1 0.75 (0.65 - 0.86) ≤ 0.0001 NA 0.75 (0.65 - 0.86) ≤ 0.0001 NA 
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Prudent diet 

During 
pregnancy 

Overall 3 0.66 (0.36 - 1.22) 0.19 0.19 0.68 (0.21 - 2.21) 0.30 0.13 

Asian 2 0.81 (0.42 - 1.52) 0.51 0.13 0.81 (0.13 - 49.8) 0.63 0.13 

White European 1 0.44 (0.21 - 0.92) 0.03 NA 0.44 (0.21 - 0.92) 0.03 NA 

BMI under 

Overall 3 1.04 (0.80 - 1.35) 0.77 0.03 0.95 (0.32 - 2.80) 0.85 0.16 

Asian 2 0.78 (0.37 - 1.65) 0.51 0.22 0.78 (0.01 - 98.47) 0.64 0.20 

White European 1 1.22 (0.99 - 1.50) 0.07 NA 1.22 (0.99 -1.50) 0.07 NA 

BMI over White European 1 0.31 (0.13 - 0.74) ≤ 0.001 NA 0.31 (0.13 - 0.74) ≤ 0.001 NA 

Older 
mothers 

Overall 4 0.80 (0.63 - 1.03) 0.08 0.02 0.81 (0.52 - 1.26) 0.22 0.05 

Asian 2 1.05 (0.72 - 1.53) 0.80 0 1.05 (1.02 - 1.09) 0.03 ≤ 0.001 

White European 2 0.72 (0.55 - 0.92) ≤0.01 0.01 0.70 (0.11 - 4.48) 0.25 0.02 

Plant based pattern 

During 
pregnancy 

Overall 3 0.92 (0.72 - 1.17) 0.51 0.03 0.92 (0.58 - 1.48) 0.54 0.02 

Asian 2 0.90 (0.65 - 1.23) 0.50 0.04 0.90 (0.11 - 7.03) 0.62 0.04 

White European 1 1.03 (0.64 - 1.66) 0.90 NA 1.03 (0.64 - 1.66) 0.90 NA 

BMI under 

Overall 4 0.88 (0.76 - 1.03) 0.10 ≤ 0.01 0.89 (0.68 -1.15) 0.25 0.02 

Asian 3 0.88 (0.70 - 1.12) 0.31 0.02 0.89 (0.52 - 1.51) 0.44 0.03 

White European 1 0.91 (0.73 - 1.13) 0.37 NA 0.91 (0.73 -1.13) 0.37 NA 

BMI over 

Overall 2 0.97 (0.65 - 1.45) 0.87 0 0.97 (0.26 - 3.56) 0.79 ≤ 0.01 

Asian 1 1.03 (0.64 - 1.66) 0.90 NA 1.03 (0.64 - 1.66) 0.90 NA 

White European 1 0.82 (0.38 - 1.77) 0.61 NA 0.82 (0.38 - 1.77) 0.61 NA 

Older 
mothers 

Overall 5 0.88 (0.77 - 1.00) 0.05 0 0.87 (0.76 - 1.00) 0.06 ≤ 0.01 

Asian 3 0.79 (0.66 - 0.96) 0.02 0 0.79 (0.71 - 0.89) ≤0.01 0 

White European 2 0.96 (0.80 - 1.16) 0.70 0 0.98 (0.42 - 2.30) 0.42 0 

Unhealthy diets Overall 6 1.31 (1.03 – 1.67) 0.03 0 0.98 (0.42 - 2.30) 0.42 0 
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During 
pregnancy 

Asian 3 1.01 (0.71 - 1.71) 0.67 0.09 1.10 (0.42 - 2.90) 0.71 0.10 

White European 3 1.52 (1.19 - 1.94) ≤0.001 ≤0.001 1.54 (0.88 -2.68) 0.08 0.02 

BMI under 

Overall 9 1.73 (1.34 - 2.24) ≤0.0001 0.12 1.73 (1.32 - 2.27) ≤0.01 0.09 

Asian 3 1.29 (1.21 - 1.38) ≤0.0001 0 1.29 (0.81 - 2.04) 0.15 0.03 

Mediterranean 2 1.60 (1.16 - 2.21) ≤0.01 0 1.60 (0.41 - 6.29) 0.14 ≤0.01 

White European 4 2.17 (1.59 - 2.96) ≤0.0001 0.07 2.16 (1.23 - 3.79) 0.02 0.09 

BMI over 

Overall 3 1.32 (0.80 - 1.21) 0.28 0.11 1.31 (0.42 - 4.13) 0.41 0.14 

Asian 1 0.79 (0.38 - 1.64) 0.53 NA 0.79 (0.38 - 1.64) 0.53 NA 

White European 2 1.58 (0.96 - 2.60) 0.07 0.07 1.58 (0.06 - 40.16) 0.34 0.07 

Older 
mothers 

Overall 9 1.45 (1.24 - 1.70) ≤0.0001 0.02 1.46 (1.17 - 1.82) ≤0.01 0.06 

Asian 4 1.28 (1.16 - 1.41) ≤0.0001 ≤0.01 1.20 (0.77 - 1.87) 0.28 0.06 

Mediterranean 1 1.37 (0.89 - 2.13) 0.15 NA 1.37 (0.89 - 2.13) 0.15 NA 

White European 4 1.68 (1.34 - 2.11) ≤0.0001 0.02 1.69 (1.16 - 2.48) 0.02 0.03 

Fried/ fast food 

During 
pregnancy 

White European 1 1.28 (0.84 - 1.93) 0.25 NA 1.28 (0.84 - 1.93) 0.25 NA 

BMI under 

Overall 3 2.03 (1.17 - 3.52) 0.01 0.19 2.03 (0.64 -6.48) 0.12 0.16 

Mediterranean 1 1.80 (1.11 - 2.91) 0.02  1.80 (1.11 - 2.91) 0.02 NA 

White European 2 2.13 (0.88 - 5.15) 0.10 0.36 2.13 (0.01 - 657.1) 0.34 0.33 

Western diet 

During 
pregnancy 

Overall 2 1.96 (0.13 - 3.06) ≤0.01 0 1.96 (0.68 - 5.66) 0.08 0.04 

Asian 1 1.68 (0.66 - 4.27) 0.28 NA 1.68 (0.66 - 4.27) 0.28 NA 

White European 1 2.05 (1.23 - 3.41) ≤0.01 NA 2.05 (1.23 - 3.41) ≤0.01 NA 

BMI under 

Overall 3 1.90 (1.55 -2.38) ≤0.0001 0 1.85 (1.16- 2.97) 0.03 0.01 

Asian 1 1.94 (0.80 - 4.96) 0.14 NA 1.94 (0.80 - 4.96) 0.14 NA 

Mediterranean 1 1.45 (0.94 - 2.25) 0.10 NA 1.45 (0.94 - 2.25) 0.10 NA 

White European 1 2.05 (1.62 - 2.61) ≤0.001 NA 2.05 (1.62 - 2.61) ≤0.001 NA 
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Table showing the comparison between initial (DL) random effects model compared to the Hartung-Knapp-Sidik-Jonkman (HKSJ) 
model the sensitivity analyses. Ethnic-specific BMI thresholds of 23 kg/m2 for BMI in Asians and 25 kg/m2 in white Europeans to 
classify studies as BMI under or BMI over. * Represents studies including two relevant exposures. The random exclusion of one 
exposure from each of these studies was not found to impact the overall effect estimate for all exposures. HR: Healthy 
recommendations 

BMI over 

Overall 3 1.32 (0.80 -1.21) 0.28 0.11 1.31 (0.42 - 4.13) 0.41 0.14 

Asian 1 0.79 (0.38 - 1.64) 0.53 NA 0.79 (0.38 - 1.64) 0.53 NA 

White European 2 1.58 (0.96 - 2.60) 0.07 0.07 
1.58 (0.062 - 
40.16) 

0.33 0.07 

Older 
mothers 

Overall 6 1.48 (1.23  - 1.78) ≤0.0001 0.01 1.47 (1.09 - 1.96) 0.02 0.06 

Asian 2 1.19 (0.50 - 2.87) 0.53 0.23 
1.19 (0.004 - 
352.62) 

0.76 0.22 

Mediterranean 1 1.37 (0.89 - 2.13) 0.10 NA 1.37 (0.89 - 2.13) 0.10 NA 

White European 3 1.55 (1.26 - 1.91) ≤0.0001 ≤0.01 1.56 (0.95 - 2.55) 0.06 0.02 

High protein diet 

During 
pregnancy 

Asian 4 1.69 (0.92 - 3.09) 0.09 0.32 1.20 (0.77 - 1.87) 0.28 0.06 

Older 
mothers 

Overall 5 1.36 (1.01 - 1.83) 0.04 0.08 1.36 (0.85 - 2.19) 0.14 0.11 

Asian 3 1.45 (0.72 - 2.90) 0.30 0.32 1.45 (0.37 - 5.64) 0.36 0.24 

White European 2 1.28 (1.09 - 1.52) ≤0.01 0 1.28 (1.28 - 1.29) ≤0.001 ≤0.0001 

Vegetable protein 

During 
pregnancy 

Asian 3 1.20 (0.84 - 1.73) 0.32 0.03 1.21 (0.53- 2.76) 0.43 0.06 

Older 
mothers 

Overall 3 0.94 (0.64 - 1.40) 0.76 0.07 0.94 (0.41 - 2.18) 0.78 0.07 

Asian 2 1.15 (0.82 - 1.610 0.43 0 1.15 (0.31 - 4.20) 0.40 ≤0.01 

White European 1 0.68 (0.49 - 0.95) 0.02 NA 0.68 (0.49 - 0.95) 0.02 NA 
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 Table A.5: Sensitivity analyses results of Asian subgroups. 

 
    Random effect model type 
    D-L HKSJ 

Exposure Analysis Subclass N OR (95% CI) P value Tau² OR (95% CI) P value Tau² 

Healthy 

During pregnancy East Asian 4* 0.94 (0.79 - 1.11) 0.45 0.01 0.94 (0.73 -1.20) 0.47 ≤0.01 

Studies adjusted/ 
accounting for 
obstetric risk factors 

East Asian 4* 0.94 (0.79 - 1.11) 0.45 0.01 0.94 (0.73 - 1.20) 0.47 0.012 

South/ South-east Asian 1 0.82 (0.38 - 1.77) 0.61 NA 0.82 (0.38 - 1.77) 0.61 NA 

BMI under 
East Asian 4 0.94 (0.78 - 1.13) 0.48 0.02 0.94 (0.70 - 1.26) 0.52 0.02 

South/ South-east Asian 1 0.81 (0.50 - 1.30) 0.38 NA 0.81 (0.50 - 1.30) 0.38 NA 

Older mothers East Asian 3* 0.84 (0.69 - 1.02) 0.08 0 0.86 (0.55 - 1.34) 0.29 0.01 

BMI over South/ South-east Asian 1 0.82 (0.38 - 1.77) 0.61 NA 0.82 (0.38 - 1.77) 0.61 NA 

Plant 
based 

During pregnancy East Asian † 2 0.90 (0.65 - 1.23) 0.50 0.04 0.90 (0.11 - 7.03) 0.62 0.04 

Studies adjusted/ 
accounting for 
obstetric risk factors 

East Asian 3 1.02 (0.90 - 1.17) 0.72 0 1.02 (0.89 - 1.19) 0.61 ≤0.01 

South/ South-east Asian 1 0.82 (0.38 - 1.77) 0.61 NA 0.82 (0.38 - 1.77) 0.61 NA 

BMI under East Asian † 3 0.88 (0.70 - 1.12) 0.31 0.02 0.90 (0.69-1.18) 0.34 0.04 

BMI over South/ South-east Asian 1 0.82 (0.38 - 1.77) 0.61 NA 0.82 (0.38 - 1.77) 0.61 NA 

Older mothers 
East Asian 2 0.84 (0.71 – 1.00) 0.05 0 0.85 (0.68 – 1.07) 0.11 0.01 

South/ South-east Asian 1 0.82 (0.38 - 1.77) 0.61 NA 0.82 (0.38 - 1.77) 0.61 NA 

Prudent 
BMI under East Asian † 2 0.78 (0.37 - 1.65) 0.51 0.22 0.78 (0.01 - 98.47) 0.64 0.19 

Older mothers East Asian † 2 1.05 (0.72 - 1.53) 0.80 0 1.05 (1.02 - 1.09) 0.03 ≤0.001 

Unhealthy 

During pregnancy East Asian † 3 1.01 (0.71 - 1.71) 0.67 0.09 1.10 (0.42 - 2.90) 0.71 0.10 

BMI under East Asian † 3 1.29 (1.21 - 1.38) ≤0.0001 0 1.29 (0.81 - 2.04) 0.15 0.03 

BMI over South/ South-east Asian † 1 0.79 (0.38 - 1.64) 0.53 NA 0.79 (0.38 - 1.64) 0.53 NA 
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Older mothers 
East Asian 3 1.29 (1.21 -1.38) ≤0.0001 0 1.29 (0.81 - 2.04) 0.15 0.03 

South/ South-east Asian 1 0.79 (0.38 - 1.64) 0.53 NA 0.79 (0.38 - 1.64) 0.53 NA 

High 
protein 
diet 

During pregnancy 
East Asian 4 1.28 (0.73 - 2.63) 0.39 0.2813 1.28 (0.51 - 3.25) 0.46 0.28 

South/ South-east Asian 1 0.79 (0.38 - 1.64) 0.53 NA 0.79 (0.38 - 1.64) 0.53 NA 

Older mothers East Asian † 3 1.45 (0.72 -2.90) 0.30 0.324 1.45 (0.37 - 5.64) 0.36 0.24 

Vegetable 
protein 

During pregnancy 
East Asian 2 1.15 (0.80 – 1.64) 0.45 0 1.16 (0.22 – 6.20) 0.47 0.01 

South/ South-east Asian 1 1.78 (0.99 - 3.20) 0.05 NA 1.78 (0.99 - 3.20) 0.05 NA 

Older mothers East Asian † 2 1.15 (0.82 - 1.610 0.43 0 1.15 (0.31 - 4.20) 0.40 ≤0.01 

 
Table showing the comparison between initial (DL) random effects model compared to the Hartung-Knapp-Sidik-Jonkman (HKSJ) 
model the sensitivity analyses of Asian subgroups. Ethnic-specific BMI thresholds of 23 kg/m2 for BMI in Asians and 25 kg/m2 in 
white Europeans to classify studies as BMI under or BMI over.* Represent studies including two relevant exposures. † Represents 
exposures where all Asian studies were categorised as east or South/ South-east Asian. The random exclusion of one exposure 
from each of these studies was not found to impact the overall effect estimate for all exposures. 
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Figure A.14: Guide for ADA Risk of Bias tool. 

Guide to how a question in the ADA tool was assigned to having a high, 
neutral or low ROB. Bolded sub-questions are sub-questions assigned 
as having a greater importance in the ADA tool. Coloured circles 
represent the score given to the overall question in each of the above 
scenarios. Green = positive, yellow = neutral, red = negative. For a study 
to be excluded 6 questions had to be assigned as negative, as stated in 
the ADA guidance.  
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Figure A.15: Risk of Bias scores for RCTs. 
V1-V10 correspond to the questions represented on the ADA tool. 
In brief, questions can be summarised as follows: V1: Clear 
research question, V2: Participant selection. V3: Comparable 
study groups. V4: Managing withdrawals. V5: Blinding. V6: 
Comparisons and exposures. V7: Outcome measurement. V8: 
Statistical analyses. V9: Conclusions and limitations. V10: Funding 
and sponsorship. 
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Figure A.16: Risk of Bias scores for observational studies. 
V1-V10 correspond to the questions represented on the ADA tool. In brief, questions can be summarised as 
follows: V1: Clear research question, V2: Participant selection. V3: Comparable study groups. V4: Managing 
withdrawals. V5: Blinding. V6: Comparisons and exposures. V7: Outcome measurement. V8: Statistical 
analyses. V9: Conclusions and limitations. V10: Funding and sponsorship. 
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Figure A.17: Breakdown of Risk of Bias scores by ethnicity. 
Average number of positive, negative or neutral scores per study by ethnicity and study type. Only 
ethnicities with ≥2 studies are represented. A: RCTs. B: Observational studies. 
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 Figure A.18: Risk of Bias scores by study type.

A 
B 

V1-V10 correspond to the questions represented on the ADA tool. In 
brief, questions can be summarised as follows: V1: Clear research 
question. V2: Participant selection. V3: Comparable study groups. 
V4: Managing withdrawals. V5: Blinding/ V6- Comparisons and 
exposures. V7: Outcome measurement. V8: Statistical analyse. V9: 
Conclusions and limitations. V10: Funding and sponsorship. A: Score 
breakdown for RCTs. B: Score breakdown for observational studies. 
C: Score breakdown for combined analyses. 
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Figure A19: Assessment of publication bias.   

A: Healthy (Observational) B: Unhealthy C: Healthy Recommendations (Combined) D: Healthy (Combined).
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Table A.6: Power analyses. 

 

 

Exposure Group OR (95% CI) Detectable ES 

 
Healthy 
 

Overall 0.86 (0.69 - 1.08) 0.04 
Asian 0.76 (0.48 - 1.20) 0.17 
Mediterranean 0.92 (0.43 – 1.96) 0.09 
White European 0.69 (0.24 – 1.98) 0.18 

HR 
 

Overall 0.77 (0.43 – 1.39) 0.10 
White European 0.79 (0.42 – 1.49) 0.10 

Exposure Group OR (95% CI) Detectable ES 

Healthy 

Overall 0.79 (0.70 - 0.89) <0.01 
Asian 0.91 (0.78 - 1.07) <0.01 

Mediterranean 0.64 (0.35 - 1.15) 0.03 
White European 0.76 (0.64 - 0.90) <0.01 

HR Overall 0.70 (0.56 - 0.86) <0.01 
White European 0.66 (0.53 - 0.83) <0.01 

Mediterranean diet 
Overall 0.66 (0.50 - 0.85) <0.01 

Mediterranean 0.64 (0.35 - 1.15) 0.03 
White European 0.66 (0.49 - 0.89) 0.02 

Prudent 
Overall 0.86 (0.59 - 1.26) 0.03 
Asian 0.81 (0.43 - 1.52) 0.02 

White European 0.78 (0.29 - 2.10) 0.03 

Plant based 
Overall 0.93 (0.83 - 1.04) <0.01 
Asian 0.91 (0.75 - 1.11) 0.02 

White European* 0.92 (0.78 - 1.08) 0.06 

Unhealthy 

Overall 1.44 (1.25 - 1.67) <0.01 
Asian 1.04 (0.72 - 1.51) 0.09 

Mediterranean 1.69 (1.21 - 2.35) 0.07 
White European 1.59 (1.41 - 1.81) 0.04 

Fried/ Fast food Overall* 1.66 (1.42 - 1.93) 0.07 
White European 1.57 (1.23 - 1.99) <0.01 

Western 
Overall 1.51 (1.23 - 1.86) <0.01 
Asian 1.09 (0.52 - 2.26) 0.03 

White European 1.60 (1.26 - 2.02) <0.01 
Sweets and Seafood Asian 1.01 (0.58 - 1.74) 0.03 

Meat 
Overall 1.41 (1.22 - 1.63) <0.01 
Asian 1.34 (0.98 - 1.84) 0.01 

White European 1.41 (1.18 – 1.68) 0.05 

High protein diet  
Overall 1.36 (1.05 - 1.76) 0.02 
Asian 1.42 (0.85 - 2.35) 0.05 

White European* 1.28 (1.06 - 1.55) 0.05 
Asian Traditional Asian 1.05 (0.15 - 7.30) 0.18 

Fish 
Overall 0.87 (0.75 - 1.00) 0.11 
Asian 1.09 (0.71 - 1.68) 0.18 

White European 0.85 (0.73 - 0.98) 0.14 

Carbohydrate Overall 0.49 (0.38 - 0.63) 0.11 
Asian 0.44 (0.30 - 0.63) 0.13 

Fat Overall* 1.50 (1.22 - 1.83) 0.07 
White European* 1.41 (1.12 - 1.77) 0.08 

Animal protein Overall* 1.49 (1.25 - 1.77) 0.05 
Asian* 1.51 (1.20 - 1.77) 0.06 

Vegetable protein Overall 1.11 (0.72 - 1.70) 0.02 
Asian 1.30 (0.95 - 1.77) <0.01 

A 

B 
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Exposure Group OR (95% CI) Detectable ES 

 
Healthy 
 

Overall 0.75 (0.66 -0.86) <0.01 
Asian 0.90 (0.78-1.04) 0.02 
Mediterranean 0.73 (0.50 - 1.07) 0.03 
White European 0.76 (0.64 - 0.90) <0.01 

HR 
 

Overall 0.74 (0.60 - 0.91) <0.01 
White European 0.70 (0.56 - 0.87) <0.01 

Mediterranean diet 
Overall 0.66 (0.54 - 082) <0.01 
Mediterranean 0.66 (0.45 - 0.95) 0.03 
White European 0.66 (0.49 - 0.89) 0.02 

Exposure Analysis Group OR (95% CI) Detectable ES 

HR 

During 
pregnancy 

Overall 0.77 (0.63 – 0.93) 0.09 
White European 0.72 (0.58 – 0.89) 0.11 

Obstetric 
adjustments 

Overall 0.67 (0.53 - 0.84) 0.01 
White European 0.62 (0.49 - 0.80) 0.01 

BMI Healthy/ 
underweight 

Overall 0.71 (0.58 -0.87) 0.01 
White European 0.67 (0.54 - 0.84) 0.01 

BMI 
overweight/ 
obese 

Overall 0.96 (0.62 – 1.47) 0.10 

White European 0.71 (0.26 – 1.93) 0.15 

Older 
mothers 

Overall 0.73 (0.59 -0.90) 0.01 
White European 0.72 (0.58 – 0.89) 0.02 

Healthy diets 

During 
pregnancy 

Overall 0.84 (0.71 – 1.00) 0.01 
Asian 0.93(0.75 – 1.10) 0.02 
Mediterranean 0.77 (0.47 - 1.28) 0.05 
White European 0.78 (0.50 – 1.22) 0.01 

Obstetric 
adjustments 

Overall 0.76 (0.66 - 0.87) 0.01 
Asian 0.91 (0.75 - 1.11) 0.01 
Mediterranean 0.51 (0.27 - 0.97) 0.04 
White European 0.73 (0.61 - 0.87) 0.01 

BMI 
underweight/ 
healthy 

Overall 0.81 (0.71 - 0.93) 0.01 
Asian 0.89 (0.75 -1.07) 0.02 
Mediterranean 0.82 (0.62 - 1.08) 0.02 
White European 0.76 (0.61 - 0.95) 0.01 

BMI 
overweight/ 
obese 

Overall 0.68 (0.49 -0.95) 0.05 
Asian 0.44 (0.09-2.03) 0.47 
Mediterranean 0.54 (0.17 -1.69) 0.15 
White European 0.66 (0.41 – 1.04) 0.05 

Older 
mothers 

Overall 0.76 (0.68 – 0.84) 0.01 
Asian* 0.83 (0.69 – 1.00) 0.10 
Mediterranean 0.66 (0.43 – 1.00) 0.04 
White European 0.75 (0.66 – 0.86) 0.01 

Mediterranean 

During 
pregnancy Mediterranean 0.51 (0.27 - 0.97) 

 0.06 

Obstetric 
adjustments 

Overall 0.62 (0.48 - 0.79) 0.01 
Mediterranean 0.66 (0.49 - 0.89) 0.06 
White European 0.51 (0.27 - 0.97) 0.02 

BMI 
underweight/ 
healthy 

Overall 0.73 (0.56 -0.96) 0.01 

Mediterranean 0.83 (0.63 -1.09) 0.02 

BMI 
overweight/ 
obese 

Overall 0.48 (0.27-0.83) 0.02 
Mediterranean 0.22 (0.02 - 2.46) NA 
White European 0.51 (0.37 - 0.70) 0.02 
Overall 0.65 (0.52 - 0.82) 0.02 

C 

D 
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Older 
mothers 

Mediterranean 0.58 (0.42 - 0.80) 0.01 
White European 0.75 (0.65 - 0.86) 0.03 

Prudent diet 

During 
pregnancy 

Overall 0.66 (0.36 - 1.22) 0.08 
Asian 0.81 (0.42 - 1.52) 0.09 

BMI 
underweight/ 
healthy 

Overall 1.04 (0.80 - 1.35) 0.02 

Asian 0.78 (0.37 - 1.65) 0.05 

Older 
mothers 

Overall 0.80 (0.63 - 1.03) 0.01 
Asian 1.05 (0.72 - 1.53) 0.21 
White European 0.72 (0.55 - 0.92) 0.01 

Unhealthy 
diets 

During 
pregnancy 

Overall 1.31 (1.03 - 1.67) 0.02 
Asian 1.01 (0.71 - 1.71) 0.04 
White European 1.52 (1.19 -1.94) 0.01 

BMI 
underweight/ 
healthy 

Overall 1.73 (1.34 - 2.24) 0.01 
Asian* 1.29 (1.21 - 1.38) 0.07 
Mediterranean* 1.60 (1.16 - 2.21) 0.10 
White European 2.17 (1.56 - 2.95) 0.02 

BMI 
overweight/ 
obese 

Overall 1.32 (0.80 -1.21) 0.03 

White European 1.58 (0.96 - 2.60) 0.03 

Older 
mothers 

Overall 1.45 (1.24 - 1.70) 0.01 
Asian 1.28 (1.16 - 1.41) 0.01 
White European 1.68 (1.34 - 2.11) 0.01 

Western diet 

During 
pregnancy Overall* 1.96 (0.13 - 3.06) 

 0.21 

BMI 
underweight/ 
healthy 

Overall* 1.90 (1.55 -2.38) 0.07 

BMI 
overweight/ 
obese 

Overall 1.32 (0.80 -1.21) 0.03 

White European 1.58 (0.96 -2.60) 0.03 

Older 
mothers 

Overall 1.48 (1.23 - 1.78) 0.01 
Asian 1.19 (0.50 - 2.87) 0.11 
White European 1.55 (1.26 - 1.91) 0.01 

Fried/ fast 
food 

BMI 
underweight/ 
healthy 

Overall 2.03 (1.17 - 3.52) 0.03 

White European 2.13 (0.88 - 5.15) 0.05 

Plant based 
pattern 

During 
pregnancy 

Overall 0.92 (0.72 - 1.17 0.02 
Asian 0.90 (0.65 - 1.23) 0.03 

Obstetric 
adjustments 

Overall 0.92 (0.81 - 1.04) 0.01 
Asian 0.91 (0.75 - 1.11) 0.01 
White European 0.92 (0.74 - 1.13) 0.01 

BMI 
underweight/ 
healthy 

Overall 0.88 (0.76 - 1.03) 0.01 

Asian 0.88 (0.70 - 1.12) 0.02 

BMI 
overweight/ 
obese 

Overall* 0.97 (0.65 -1.45) 0.20 

Older 
mothers 

Overall* 0.88 (0.77 - 1.00) 0.05 
Asian* 0.79 (0.66 - 0.96) 0.10 
White European* 0.96 (0.80 - 1.16) 0.01 

High protein 
diet 

During 
pregnancy Asian 1.69 (0.92 - 3.09) 0.05 

Older 
mothers 

Overall 1.36 (1.01 - 1.83) 0.06 
Asian 1.45 (0.72 - 2.90) 0.06 
White European* 1.28 (1.09 - 1.52) 0.05 

Vegetable 
protein 

During 
pregnancy Asian 1.20 (0.84 - 1.73) 0.03 

Older 
mothers Overall 0.79 (0.31 - 2.01) 0.05 

E 
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Detectable effect size based at an 80% power level for all exposures/ 
subgroups containing ≥ 2 studies. Ethnic-specific BMI thresholds of 23 
kg/m2 for BMI in Asians and 25 kg/m2 in white Europeans to classify 
studies as BMI under or BMI over. * Analysis represents power 
determined under a fixed effect model (tau2 of main DL analysis =0). ES: 
Effect size HR: Healthy recommendations. A: Analysis of RCTs. B: 
Observational studies. C: Combined Analysis. D: Sensitivity Analyses. E: 
Asian subgroups. F: Asian subgroups sensitivity analyses.  

Exposure Group OR (95% CI) Detectable ES 

Healthy East Asian 0.87 (0.72 - 1.06) 0.02 
South/ South-east Asian 0.81 (0.54 - 1.22) 0.13 

Plant based East Asian 0.91 (0.73 - 1.15) 0.18 
Unhealthy East Asian 1.10 (0.71 - 1.71) 0.04 
Animal protein East Asian 1.81 (1.25 - 2.62) 0.06 

Exposure Group Analysis OR (95% CI) Detectable ES 

Healthy East 
Asian 

During pregnancy 0.94 (0.79 - 1.11) 0.02 
Studies adjusted/ 
accounting for 
obstetric risk 
factors 

0.94 (0.79 - 1.11) 0.02 

BMI under 0.94 (0.78 - 1.13) 0.02 
Older mothers 0.84 (0.71 - 1.00) 0.11 

Plant based East 
Asian Older mothers 0.79 (0.65 - 0.96) 0.09 

Unhealthy East 
Asian Older mothers 1.29 (1.21 - 1.38) 0.11 

High Protein 
Diet 

East 
Asian During pregnancy 1.28 (0.73 - 2.63) 0.01 

Vegetable 
protein 

East 
Asian During pregnancy 1.15 (0.80 - 1.64) 0.06 

F 
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Table A.7: Summary of the cultural sensitivity of interventions and assessment tools utilised in non-white 
studies. 

 

 

 

 

 

 

Study Ethnicity 
Was the 
intervention 
culturally 
tailored? 

Details on how the intervention was ethnically tailored for the individual 
participants 

Assaf-balut, 2017   
(Assaf-Balut et al., 2017) Mediterranean Yes 

MedDiet recommendations. Treatment group supplemented with 40ml of EVOO and 

25-30g of pistachios daily 

Markovic, 2016  
(Markovic et al., 2016) 

Australian 

Nationals 
No 

Diets were not ethnically tailored but individualised dietary consultations were 

provided. In the case of noncompliance alternative foods that were suitable for the 

intervention diets (low GI / high-fiber moderate GI) were suggested. 

Opie, 2016 

(Opie et al., 2016) 
Asian and White 

European 
Yes 

Intervention focused on AGHE guidelines. Sustainable, patient driven goals were 

provided in a culturally sensitive manner (in relation to foods, aversions, 

allergies/intolerances, preferences, medical needs and food insecurity) 

Sahariah, 2016  
(Sahariah et al., 2016) Asian Yes 

Daily snack resembling local street food including fresh samosas and fritters fried in 

sunflower oil 

Simmons, 2017  
(Simmons et al., 2017) 

Mediterranean 

populations* 
No 

Healthy dietary recommendations involving face-to-face coaching sessions.  The 

intervention was not ethnically tailored 

A 
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Study Ethnicity 
Was dietary 
assessment  
culturally 
sensitive? 

Details on how the intervention was ethnically tailored for the individual 
participants 

Assaf-Balut, 2018  
(Assaf-Balut et al., 2018) Mediterranean Yes 

DNCT and MEDAS questionnaires validated in older Spanish adults in the PREDIMED 

to have a moderate correlation 

Domingues, 2014 

(Domingues et al., 2014)  Mediterranean Yes Previously validated FFQ. Nutrient intake assessed via Spanish food composition tables 

Donazar-Ezcurra, 2017 
(Donazar-ezcurra et al., 
2017) 

Mediterranean Yes Previously validated FFQ. Nutrient intake assessed via Spanish food composition tables 

He, 2015 

(He et al., 2015) Asian No FFQ validated in a subsample of study participants and not an external cohort 

Hu, 2019  
(Hu et al., 2019) Asian Yes 

Food frequency questionnaire contained 25 food items which represented commonly 

consumed Chinese dishes. Daily food and nutritional intakes calculated using Chinese 

food composition databases. Tool not previously validated 

Karamanos, 2014  
(Karamanos et al., 2014) Mediterranean Yes Dietary questionnaire previously validated in 8 Mediterranean countries 

Lamyian, 2017 

(Lamyian et al., 2017) Tehranian Yes 
Validated FFQ including food commonly consumed by Iranians. Composition of foods 

assessed via USDA due to incompleteness of the Iranian Food Composition table. 

Liang, 2018 

(Liang et al., 2018) Asian Yes 
FFQ and 24-hr dietary recall previously validated in a Chinese population. Total energy 

and nutrient intake reported to reflect Chinese food 

Looman, 2018 

(Looman et al., 2018) 
Australian 

Nationals 
No 

Nutrient intake assessed via the use of national government food database for 

Australian foods validated in women of reproductive age. No information on ethnicity. 

Mak, 2018 

(Mak et al., 2018) Asian Yes 
FFQ validated in western China, with the exception of 10 oils/ condiments deemed too 

difficult to estimate 

Marí-Sanchis, 2018  
(Sanchis et al., 2018) Mediterranean Yes 

Previously validated FFQ including dietary habits common to those consuming a 

Mediterranean diet. 

B 
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Table summarising interventions and assessment tools used for non-white studies and evaluation of whether these 
interventions/tools are culturally sensitive. AGHE: Australian Guide to Healthy Eating. DNCT: Diabetes Nutrition and Complications 
Trial. EVOO: Extra Virgin Olive Oil. FFQ: Food Frequency Questionnaire. USDA: US Department of Agriculture. A: RCTs. B: 
Observational studies.   

Pang, 2017  
(Pang et al., 2017) Asian Yes 

24-hour recall and 3-day food diary performed by trained professionals. Database of 

locally available foods used to assess nutrient composition of food along with food 

labels and nutrient software. 

Tajima, 2017  
(Tajima et al., 2017) Asian Yes 

Weighted 3-day food diary. Nutrient intake assessed via standard tables of food 

composition from Japan. 

Yi, 2017 

(Yi et al., 2017) Asian Yes 
FFQ validated in pregnant women in Taiwan. Nutrient and energy intake assessed 

based on estimates from the China Food Composition table 

Yong, 2020  
(Yong et al., 2020) Asia Yes 

Semi quantitative FFQ with a previously shown good reliability in pregnant Malaysian 

women 

Zhou, 2018 

(Zhou et al., 2018) Asia Yes 
Previously validated semi-quantitative FFQ with shown reliability in urban-dwelling 

pregnant women from central China 
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Appendix B 
Supplementary data for Chapter 4 

 

Table B.1: List of metabolite values included within this study. 

Metabolite 
Class 

Metabolite 
Code Full Name (Unit) 

XXL-VLDL 

XXL-VLDL-P Concentration of XXL-VLDL  (mol/l) 
XXL-VLDL-L Total lipids in XXL-VLDL (mmol/l) 
XXL-VLDL-PL Phospholipids in XXL-VLDL (mmol/l) 
XXL-VLDL-C Total Cholesterol in XXL-VLDL (mmol/l) 
XXL-VLDL-CE Cholesterol esters in XXL-VLDL (mmol/l) 
XXL-VLDL-FC Free cholesterol in XXL-VLDL (mmol/l) 
XXL-VLDL-TG Triglycerides in XXL-VLDL (mmol/l) 

XL-VLDL 
 
 

XL-VLDL-P Concentration of XL-VLDL (mol/l) 
XL-VLDL-L Total lipids in XL-VLDL (mmol/l) 
XL-VLDL-PL Phospholipids in XL-VLDL (mmol/l) 
XL-VLDL-C Total Cholesterol in XL-VLDL (mmol/l) 
XL-VLDL-CE Cholesterol esters in XL-VLDL (mmol/l) 
XL-VLDL-FC Free cholesterol in XL-VLDL (mmol/l) 
XL-VLDL-TG Triglycerides in XL-VLDL (mmol/l) 

L-VLDL 

L-VLDL-P Concentration of L-VLDL (mol/l) 
L-VLDL-L Total lipids in L-VLDL (mmol/l) 
L-VLDL-PL Phospholipids in L-VLDL (mmol/l) 
L-VLDL-C Total Cholesterol in L-VLDL (mmol/l) 
L-VLDL-CE Cholesterol esters in L-VLDL (mmol/l) 
L-VLDL-FC Free cholesterol in L-VLDL (mmol/l) 
L-VLDL-TG Triglycerides in L-VLDL (mmol/l) 

M-VLDL 

M-VLDL-P Concentration of M-VLDL (mol/l) 
M-VLDL-L Total lipids in M-VLDL (mmol/l) 
M-VLDL-PL Phospholipids in M-VLDL (mmol/l) 
M-VLDL-C Total Cholesterol in M-VLDL (mmol/l) 
M-VLDL-CE Cholesterol esters in M-VLDL (mmol/l) 
M-VLDL-FC Free cholesterol in M-VLDL (mmol/l) 
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M-VLDL-TG Triglycerides in M-VLDL (mmol/l) 

S-VLDL 

S-VLDL-P Concentration of S-VLDL (mol/l) 
S-VLDL-L Total lipids in S-VLDL (mmol/l) 
S-VLDL-PL Phospholipids in S-VLDL (mmol/l) 
S-VLDL-C Total Cholesterol in S-VLDL (mmol/l) 
S-VLDL-CE Cholesterol esters in S-VLDL (mmol/l) 
S-VLDL-FC Free cholesterol in S-VLDL (mmol/l) 
S-VLDL-TG Triglycerides in S-VLDL (mmol/l) 

XS-VLDL 

XS-VLDL-P Concentration of XS-VLDL (mol/l) 
XS-VLDL-L Total lipids in XS-VLDL (mmol/l) 
XS-VLDL-PL Phospholipids in XS-VLDL (mmol/l) 
XS-VLDL-C Total Cholesterol in XS-VLDL (mmol/l) 
XS-VLDL-CE Cholesterol esters in XS-VLDL (mmol/l) 
XS-VLDL-FC Free cholesterol in XS-VLDL (mmol/l) 
XS-VLDL-TG Triglycerides in XS-VLDL (mmol/l) 

IDL  

IDL-P Concentration of IDL-P (mol/l) 
IDL-L Total lipids in IDL-L (mmol/l) 
IDL-PL Phospholipids in IDL-PL (mmol/l) 
IDL-C Total Cholesterol in IDL-C (mmol/l) 
IDL-CE Cholesterol esters in IDL-CE (mmol/l) 
IDL-FC Free cholesterol in IDL-FC (mmol/l) 
IDL-TG Triglycerides in IDL-TG (mmol/l) 

L-LDL 

L-LDL-P Concentration of L-LDL-P (mol/l) 
L-LDL-L Total lipids in L-LDL-L (mmol/l) 
L-LDL-PL Phospholipids in L-LDL-PL (mmol/l) 
L-LDL-C Total Cholesterol in L-LDL-C (mmol/l) 
L-LDL-CE Cholesterol esters in L-LDL-CE (mmol/l) 
L-LDL-FC Free cholesterol in L-LDL-FC (mmol/l) 
L-LDL-TG Triglycerides in L-LDL-TG (mmol/l) 

M-LDL 

M-LDL-P Concentration of M-LDL-P (mol/l) 
M-LDL-L Total lipids in M-LDL-L (mmol/l) 
M-LDL-PL Phospholipids in M-LDL-PL (mmol/l) 
M-LDL-C Total Cholesterol in M-LDL-C (mmol/l) 
M-LDL-CE Cholesterol esters in M-LDL-CE (mmol/l) 
M-LDL-FC Free cholesterol in M-LDL-FC (mmol/l) 
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M-LDL-TG Triglycerides in M-LDL-TG (mmol/l) 

S-LDL 

S-LDL-P Concentration of S-LDL-P (mol/l) 
S-LDL-L Total lipids in S-LDL-L (mmol/l) 
S-LDL-PL Phospholipids in S-LDL-PL (mmol/l) 
S-LDL-C Total Cholesterol in S-LDL-C (mmol/l) 
S-LDL-CE Cholesterol esters in S-LDL-CE (mmol/l) 
S-LDL-FC Free cholesterol in S-LDL-FC (mmol/l) 
S-LDL-TG Triglycerides in S-LDL-TG (mmol/l) 

XL-HDL 

XL-HDL-P Concentration of XL-HDL-P (mol/l) 
XL-HDL-L Total lipids in XL-HDL-L (mmol/l) 
XL-HDL-PL Phospholipids in XL-HDL-PL (mmol/l) 
XL-HDL-C Total Cholesterol in XL-HDL-C (mmol/l) 

XL-HDL-CE Cholesterol esters in XL-HDL-CE 
(mmol/l) 

XL-HDL-FC Free cholesterol in XL-HDL-FC (mmol/l) 
XL-HDL-TG Triglycerides in XL-HDL-TG (mmol/l) 

L-HDL 

L-HDL-P Concentration of L-HDL-P (mol/l) 
L-HDL-L Total lipids in L-HDL-L (mmol/l) 
L-HDL-PL Phospholipids in L-HDL-PL (mmol/l) 
L-HDL-C Total Cholesterol in L-HDL-C (mmol/l) 
L-HDL-CE Cholesterol esters in L-HDL-CE (mmol/l) 
L-HDL-FC Free cholesterol in L-HDL-FC (mmol/l) 
L-HDL-TG Triglycerides in L-HDL-TG (mmol/l) 

M-HDL 

M-HDL-P Concentration of M-HDL-P (mol/l) 
M-HDL-L Total lipids in M-HDL-L (mmol/l) 
M-HDL-PL Phospholipids in M-HDL-PL (mmol/l) 
M-HDL-C Total Cholesterol in M-HDL-C (mmol/l) 
M-HDL-CE Cholesterol esters in M-HDL-CE (mmol/l) 
M-HDL-FC Free cholesterol in M-HDL-FC (mmol/l) 
M-HDL-TG Triglycerides in M-HDL-TG (mmol/l) 

S-HDL 

S-HDL-P Concentration of S-HDL-P (mol/l) 
S-HDL-L Total lipids in S-HDL-L (mmol/l) 
S-HDL-PL Phospholipids in S-HDL-PL (mmol/l) 
S-HDL-C Total Cholesterol in S-HDL-C (mmol/l) 
S-HDL-CE Cholesterol esters in S-HDL-CE (mmol/l) 
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S-HDL-FC Free cholesterol in S-HDL-FC (mmol/l) 
S-HDL-TG Triglycerides in S-HDL-TG (mmol/l) 

Lipoprotien 
Density 

VLDL_D Mean diameter of VLDL (nm) 
LDL_D Mean diameter of LDL (nm) 
HDL_D Mean diameter of HDL (nm) 

Cholesterols 

Serum_C Total serum cholesterol (mmol/l) 
VLDL_C VLDL cholesterol (mmol/l) 
Remnant_C Remnant cholesterol* (mmol/l) 
LDL_C LDL cholesterol (mmol/l) 
HDL_C HDL cholesterol (mmol/l) 
HDL2_C HDL2 cholesterol (mmol/l) 
HDL3_C HDL3 cholesterol (mmol/l) 
EstC Total esterified cholesterol (mmol/l) 
FreeC Free Cholesterol (mmol/l) 

Glycerides and 
Phospholipids 

Serum_TG Total serum  triglycerides (mmol/l) 
VLDL-TG VLDL triglycerides (mmol/l) 
LDL-TG LDL triglycerides (mmol/l) 
HDL-TG HDL triglycerides (mmol/l) 
TotPG Total phosphoglycerides (mmol/l) 
PC Phosphatidylcholine*  (mmol/l) 
SM Sphingomyelins (mmol/l) 
TotCho Total cholines (mmol/l) 

Apolipoproteins 
ApoA1 Apolipoprotein A1 (g/l) 
ApoB Apolipoprotein B (g/l) 

Fatty Acids 

TotFA Total fatty acids (mmol/l) 
DHA 22:6, docosahexaenoic acid (mmol/l) 
LA 18:2, linoleic acid (mmol/l) 
FAw3 Omega-3 fatty acids (mmol/l) 
FAw6 Omega-6 fatty acids (mmol/l)  
PUFA Polyunsaturated fatty acids 
MUFA Monounsaturated fatty acids ** (mmol/l) 
SFA Saturated fatty acids (mmol/l) 

Glycolysis 
Related 
Metabolites 

Lac Lactate (mmol/l) 
Pyr Pyruvate (mmol/l) 
Cit Citrate (mmol/l) 
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Glol Glycerol (mmol/l) 

Amino Acids 

Ala Alanine (mmol/l) 
Gln Glycine (mmol/l) 
Gly Glycerol (mmol/l) 
His Histidine (mmol/l) 
Ile Isoleucine (mmol/l) 
Leu Leucine (mmol/l) 
Val Valine (mmol/l) 
Phe Phenylalanine (mmol/l) 
Tyr Tyrosine (mmol/l) 

Ketone Bodies 
Ace Acetate (mmol/l) 
bOHBut 3-hydroxybutyrate (mmol/l) 

Fluid Balance 
and 
Inflammation 

Crea Creatine (mmol/l) 
Alb Albumin (signal area) 
Gp Glycoprotein acetyls (mmol/l) 

*non-HDL and non-LDL cholesterol. ** And other cholines.  *** 16:1 and 18:1 
monounsaturated fatty acids. **** Mainly a1-acid glycoprotein. 
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Figure B.1: MCA plot examining missing data. 

MCA factor maps highlighting the correlation between missing and 
observed (split into quartiles) categories for each metabolite. Cos2 
represents the groups contribution to the map position. 
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Figure B.2: Flow of study participants. 

BiB: Born in Bradford. All individuals with BMI data also had 
information on maternal age, multiple pregnancy and parity. 
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Table B.2: Cumulative R2Y values for PLSDA models 
characterising GDM status. 

 

 Optimised component 
number 

All components 

Iteration White 
European 

South Asian White 
European 

South 
Asian 

1 0.572 0.247 0.621 0.364 
2 0.363 0.149 0.651 0.298 
3 0.631 0.325 0.656 0.336 
4 0.301 0.210 0.594 0.353 
5 0.201 0.177 0.564 0.364 
6 0.477 0.194 0.602 0.352 
7 0.370 0.155 0.609 0.353 
8 0.168 0.157 0.555 0.348 
9 0.316 0.186 0.591 0.334 

10 0.285 0.131 0.547 0.301 
11 0.187 0.182 0.604 0.332 
12 0.350 0.236 0.636 0.365 
13 0.106 0.336 0.609 0.354 
14 0.234 0.243 0.586 0.378 
15 0.194 0.338 0.553 0.368 
16 0.234 0.203 0.583 0.343 
17 0.227 0.188 0.601 0.302 
18 0.146 0.392 0.631 0.403 
19 0.218 0.243 0.619 0.297 
20 0.421 0.242 0.596 0.347 

Median 
(range) 

0.26 
(0.11 – 0.63) 

0.20 
(0.13 – 0.39) 

0.60 
(0.55 – 0.66) 

0.35 
(0.30-0.40) 

 

Optimised component number selected based upon the significance of 
pR2Y and pQ2, the minimisation of RMSEE and the maximisation of 
R2Y. Models included the following covariates: BMI (continuous), age 
(continuous), multiple pregnancy, parity and smoking status.  
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Table B.3: Mean VIPs for GDM adjusted covariates in 
ethnically stratified PLSDA models. 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

Standard errors of 20 model iterations are shown in brackets. MW: Mann-
Whitney test. PLSDA: Partial Least Squares Discriminatory Analysis. 

 Prediction of GDM 
Covariate White European South Asian MW P value 

Age (continuous) 5.99 (0.27) 5.84 (0.17) 0.53 
BMI (continuous) 4.33 (0.22) 7.06 (0.21) ≤ 0.001 

Parity 2.91 (0.14) 2.72 (0.04) 0.41 
Multiple Pregnancy 1.59 (0.13) 1.38 (0.09) 0.10 

Smoking Status 2.12 (0.11) 1.31 (0.10) ≤ 0.001 
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Table B.4: Mean VIPs of metabolite measures in PLSDA analysis 
  Prediction of Case Status Prediction of Ethnicity 

Metabolite Class Metabolite White 
European 

South 
Asian 

MW 
P- value Cases Non - 

Cases 
MW 

P- value 

XXL-VLDL 

Total Lipids 0.26 (0.03) 0.28 (0.04) 0.86 0.41 (0.05) 0.30 (0.00) 0.29 
Phospholipids 0.09 (0.01) 0.08 (0.01) 0.53 0.19 (0.03) 0.20 (0.00) 0.03 
Total Cholesterol 0.13 (0.02) 0.13 (0.02) 0.99 0.25 (0.04) 0.24 (0.00) 0.09 
Cholesterol Esters 0.13 (0.02) 0.10 (0.01) 0.90 0.29 (0.06) 0.28 (0.00) 0.04 
Free Cholesterol 0.07 (0.01) 0.07 (0.01) 0.76 0.18 (0.04) 0.19 (0.00) 0.03 
Triglycerides 0.20 (0.02) 0.23 (0.04) 0.97 0.39 (0.06) 0.30 (0.00) 0.11 

XL-VLDL 

Total Lipids 0.39 (0.03) 0.30 (0.02) 0.34 0.47 (0.05) 0.37 (0.00) 0.002 
Phospholipids 0.18 (0.03) 0.13 (0.01) 0.51 0.30 (0.05) 0.29 (0.00) 0.02 
Total Cholesterol 0.20 (0.02) 0.20 (0.02) 0.95 0.35 (0.05) 0.27 (0.00) 0.11 
Cholesterol Esters 0.15 (0.01) 0.16 (0.02) 0.76 0.34 (0.06) 0.27 (0.00) 0.11 
Free Cholesterol 0.16 (0.03) 0.13 (0.02) 0.64 0.25 (0.04) 0.22 (0.00) 0.03 
Triglycerides 0.28 (0.02) 0.23 (0.01) 0.09 0.44 (0.06) 0.35 (0.00) 0.17 

L-VLDL 

Total Lipids 0.60 (0.01) 0.49 (0.02) 0.01 0.67 (0.04) 0.59 (0.00) ≤0.001 
Phospholipids 0.25 (0.01) 0.22 (0.02) 0.01 0.36 (0.04) 0.34 (0.00) 0.03 
Total Cholesterol 0.30 (0.02) 0.27 (0.02) 0.13 0.41 (0.04) 0.34 (0.00) 0.82 
Cholesterol Esters 0.22 (0.02) 0.20 (0.01) 0.50 0.37 (0.04) 0.33 (0.00) 0.11 
Free Cholesterol 0.23 (0.02) 0.17 (0.01) 0.03 0.35 (0.04) 0.30 (0.00) 0.01 
Triglycerides 0.49 (0.01) 0.37 (0.01) 0.01 0.56 (0.04) 0.47 (0.00) ≤0.001 

M-VLDL 

Total Lipids 0.66 (0.05) 0.56 (0.02) ≤0.01 0.76 (0.04) 0.69 (0.00) ≤0.001 
Phospholipids 0.28 (0.03) 0.22 (0.01) ≤0.01 0.40 (0.04) 0.39 (0.00) 0.03 
Total Cholesterol 0.40 (0.04) 0.38 (0.03) 0.09 0.49 (0.03) 0.45 (0.00) 0.25 
Cholesterol Esters 0.41 (0.05) 0.42 (0.05) 0.88 0.50 (0.05) 0.40 (0.00) 0.47 
Free Cholesterol 0.24 (0.02) 0.18 (0.01) ≤0.01 0.36 (0.04) 0.32 (0.00) 0.11 
Triglycerides 0.54 (0.04) 0.41 (0.01) 0.01 0.60 (0.04) 0.50 (0.00) ≤0.001 

S-VLDL Total Lipids 0.62 (0.05) 0.45 (0.03) ≤0.01 0.69 (0.04) 0.64 (0.00) ≤0.001 
Phospholipids 0.43 (0.05) 0.22 (0.01) ≤0.01 0.41 (0.03) 0.35 (0.00) 0.01 
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Total Cholesterol 0.45 (0.0) 0.35 (0.03) 0.11 0.49 (0.03) 0.48 (0.00) 0.66 
Cholesterol Esters 0.37 (0.04) 0.31 (0.03) 0.55 0.50 (0.04) 0.43 (0.00) 0.68 
Free Cholesterol 0.28 (0.03) 0.17 (0.01) ≤0.01 0.33 (0.03) 0.30 (0.00) 0.49 
Triglycerides 0.42 (0.04) 0.35 (0.03) 0.04 0.55 (0.05) 0.44 (0.00) 0.01 

XS-VLDL 
 

Total Lipids 0.59 (0.05) 0.44 (0.03) ≤0.01 0.65 (0.03) 0.65 (0.00) 0.29 
Phospholipids 0.44 (0.06) 0.26 (0.02) 0.06 0.53 (0.05) 0.42 (0.00) 0.43 
Total Cholesterol 0.52 (0.05) 0.36 (0.03) 0.02 0.52 (0.04) 0.47 (0.00) 0.56 
Cholesterol Esters 0.56 (0.06) 0.29 (0.02) 0.07 0.55 (0.05) 0.41 (0.00) 0.09 
Free Cholesterol 0.27 (0.04) 0.19 (0.02) 0.24 0.43 (0.05) 0.37 (0.00) 0.60 
Triglycerides 0.37 (0.04) 0.27 (0.02) 0.18 0.49 (0.06) 0.40 (0.00) 0.23 

IDL 
 

Concentration 0.00 (0.00) 0.00 (0.00) 0.12 0.00 (0.00) 0.04 (0.01) ≤0.001 
Total Lipids 0.62 (0.05) 0.48 (0.02) ≤0.01 0.81 (0.04) 0.93 (0.00) 0.01 
Phospholipids 0.35 (0.03) 0.25 (0.01) ≤0.01 0.51 (0.04) 0.49 (0.00) 0.47 
Total Cholesterol 0.56 (0.05) 0.40 (0.02) ≤0.01 0.69 (0.04) 0.74 (0.00) 0.06 
Cholesterol Esters 0.55 (0.05) 0.34 (0.01) ≤0.01 0.62 (0.04) 0.65 (0.00) 0.04 
Free Cholesterol 0.31 (0.04) 0.21 (0.01) ≤0.01 0.40 (0.03) 0.42 (0.00) 0.01 
Triglycerides 0.40 (0.04) 0.30 (0.01) 0.12 0.44 (0.04) 0.39 (0.00) 0.82 

L-LDL 

Concentration 0.00 (0.00) 0.00 (0.00) ≤0.01 0.00 (0.00) 0.03 (0.01) ≤0.001 
Total Lipids 0.70 (0.50) 0.51 (0.02) ≤0.01 0.85 (0.04) 1.00 (0.00) ≤0.001 
Phospholipids 0.33 (0.03) 0.23 (0.01) ≤0.01 0.49 (0.04) 0.49 (0.00) 0.01 
Total Cholesterol 0.62 (0.05) 0.45 (0.02) ≤0.01 0.73 (0.04) 0.84 (0.00) ≤0.001 
Cholesterol Esters 0.55 (0.04) 0.39 (0.02) ≤0.01 0.65 (0.03) 0.75 (0.00) ≤0.001 
Free Cholesterol 0.30 (0.03) 0.23 (0.01) ≤0.01 0.42 (0.03) 0.43 (0.00) 0.06 
Triglycerides 0.38 (0.04) 0.28 (0.02) 0.07 0.44 (0.04) 0.37 (0.00) 0.16 

M-LDL 

Concentration 0.00 (0.00) 0.00 (0.00) 0.01 0.00 (0.00) 0.02 (0.00) ≤0.001 
Total Lipids 0.58 (0.04) 0.42 (0.02) ≤0.01 0.68 (0.04) 0.79 (0.00) ≤0.001 
Phospholipids 0.26 (0.03) 0.17 (0.01) ≤0.01 0.40 (0.04) 0.41 (0.00) 0.01 
Total Cholesterol 0.51 (0.04) 0.40 (0.02) ≤0.01 0.59 (0.03) 0.67 (0.00) 0.004 
Cholesterol Esters 0.48 (0.04) 0.36 (0.02) ≤0.01 0.56 (0.03) 0.61 (0.00) 0.04 
Free Cholesterol 0.25 (0.02) 0.17 (0.01) ≤0.01 0.34 (0.03) 0.37 (0.00) 0.01 
Triglycerides 0.31 (0.03) 0.20 (0.01) 0.09 0.35 (0.04) 0.33 (0.00) 0.09 

S-LDL 

Concentration 0.00 (0.00) 0.00 (0.00) ≤0.01 0.00 (0.00) 0.03 (0.01) ≤0.001 
Total Lipids 0.47 (0.04) 0.33 (0.01) ≤0.01 0.58 (0.03) 0.64 (0.00) 0.02 
Phospholipids 0.27 (0.03) 0.17 (0.01) ≤0.01 0.39 (0.04) 0.37 (0.00) 0.10 
Total Cholesterol 0.42 (0.04) 0.31 (0.01) ≤0.01 0.49 (0.03) 0.54 (0.00) 0.03 
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Cholesterol Esters 0.38 (0.03) 0.28 (0.01) ≤0.01 0.44 (0.02) 0.48 (0.00) 0.05 
Free Cholesterol 0.22 (0.02) 0.16 (0.01) 0.01 0.34 (0.04) 0.29 (0.00) 0.13 
Triglycerides 0.19 (0.02) 0.14 (0.01) 0.02 0.31 (0.04) 0.29 (0.00) 0.05 

XL-HDL 

Concentration 0.00 (0.00) 0.00 (0.00) 0.10 0.00 (0.00) 0.06 (0.01) ≤0.001 
Total Lipids 0.81 (0.06) 0.64 (0.03) ≤0.01 0.80 (0.04) 0.49 (0.00) ≤0.001 
Phospholipids 0.67 (0.06) 0.46 (0.03) 0.05 0.66 (0.05) 0.38 (0.00) ≤0.001 
Total Cholesterol 0.63 (0.05) 0.51 (0.02) 0.06 0.64 (0.04) 0.39 (0.00) ≤0.001 
Cholesterol Esters 0.59 (0.05) 0.41 (0.02) 0.17 0.56 (0.04) 0.37 (0.00) ≤0.001 
Free Cholesterol 0.35 (0.03) 0.26 (0.01) 0.16 0.41 (0.04) 0.27 (0.00) ≤0.001 
Triglycerides 0.23 (0.02) 0.17 (0.01) 0.80 0.34 (0.05) 0.31 (0.00) 0.03 

L-HDL  

Concentration 0.00 (0.00) 0.00 (0.00) 0.02 0.00 (0.00) 0.08 (0.01) ≤0.001 
Total Lipids 0.86 (0.06) 0.67 (0.03) ≤0.01 0.86 (0.05) 0.44 (0.01) ≤0.001 
Phospholipids 0.59 (0.05) 0.42 (0.02) 0.02 0.67 (0.06) 0.39 (0.00) ≤0.001 
Total Cholesterol 0.67 (0.05) 0.51 (0.02) 0.01 0.65 (0.04) 0.35 (0.00) ≤0.001 
Total Cholesterol 0.67 (0.05) 0.51 (0.02) 0.01 0.65 (0.04) 0.35 (0.00) ≤0.001 
Cholesterol Esters 0.60 (0.05) 0.44 (0.02) 0.01 0.57 (0.04) 0.33 (0.00) ≤0.001 
Free Cholesterol 0.33 (0.03) 0.23 (0.01) 0.05 0.35 (0.03) 0.21 (0.00) ≤0.001 
Triglycerides 0.40 (0.06) 0.23 (0.03) 0.58 0.41 (0.06) 0.32 (0.00) 0.29 

M-HDL 

Concentration 0.00 (0.00) 0.00 (0.00) 0.01 0.00 (0.00) 0.09 (0.01) ≤0.001 
Total Lipids 0.91 (0.08) 0.74 (0.03) ≤0.01 0.79 (0.04) 0.28 (0.00) ≤0.001 
Phospholipids 0.66 (0.06) 0.50 (0.02) 0.01 0.64 (0.06) 0.30 (0.00) ≤0.001 
Total Cholesterol 0.72 (0.05) 0.56 (0.02) ≤0.01 0.63 (0.04) 0.28 (0.00) ≤0.001 
Cholesterol Esters 0.68 (0.05) 0.49 (0.02) 0.01 0.60 (0.04) 0.28 (0.00) ≤0.001 
Free Cholesterol 0.33 (0.03) 0.24 (0.01) 0.01 0.32 (0.03) 0.20 (0.00) ≤0.001 
Triglycerides 0.37 (0.04) 0.27 (0.03) 0.66 0.42 (0.05) 0.31 (0.00) 0.21 

S-HDL 

Concentration 0.00 (0.00) 0.00 (0.00) 0.01 0.00 (0.00) 0.09 (0.01) ≤0.001 
Total Lipids 0.97 (0.07) 0.77 (0.02) ≤0.01 0.79 (0.05) 0.30 (0.00) ≤0.001 
Phospholipids 0.79 (0.06) 0.62 (0.03) ≤0.01 0.63 (0.05) 0.32 (0.00) ≤0.001 
Total Cholesterol 0.71 (0.05) 0.55 (0.02) 0.01 0.61 (0.04) 0.31 (0.00) ≤0.001 
Cholesterol Esters 0.69 (0.05) 0.51 (0.01) 0.05 0.60 (0.04) 0.32 (0.00) ≤0.001 
Free Cholesterol 0.37 (0.04) 0.24 (0.01) 0.02 0.41 (0.06) 0.26 (0.00) 0.13 
Triglycerides 0.28 (0.03) 0.19 (0.01) 0.13 0.35 (0.05) 0.34 (0.00) 0.01 

Lipoprotein particle size 
Mean diameter VLDL 1.58 (0.07) 1.38 (0.07) 0.04 1.51 (0.09) 0.88 (0.00) ≤0.001 
Mean diameter LDL  0.94 (0.07) 0.88 (0.04) 0.58 0.92 (0.06) 0.36 (0.00) ≤0.001 
Mean diameter HDL  0.87 (0.06) 0.75 (0.04) 0.03 0.85 (0.05) 0.44 (0.00) ≤0.001 
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Amino Acids 

Alanine 1.02 (0.1) 0.89 (0.05) 0.09 1.10 (0.08) 0.35 (0.00) ≤0.001 
Glutamine 1.08 (0.09) 0.96 (0.06) 0.18 0.74 (0.08) 0.34 (0.01) ≤0.001 
Glycine 0.89 (0.10) 0.73 (0.07) 0.231 0.70 (0.06) 0.39 (0.00) ≤0.001 
Histidine 0.55 (0.08) 0.79 (0.05) 0.02 0.49 (0.06) 0.36 (0.00) 0.10 
Isoleucine 0.53 (0.08) 0.51 (0.06) 0.99 0.46 (0.06) 0.32 (0.00) 0.13 
Leucine 0.59 (0.09) 0.60 (0.07) 0.97 0.51 (0.06) 0.33 (0.00) 0.01 
Valine 0.71 (0.08) 0.77 (0.06) 0.66 0.56 (0.06) 0.31 (0.00) 0.003 
Phenylalanine 0.89 (0.07) 0.53 (0.07) ≤0.01 0.72 (0.06) 0.39  (0.00) ≤0.001 
Tyrosine  0.61 (0.09) 0.51 (0.06) 0.37 0.43 (0.05) 0.39  (0.01) 0.29 

Apolipoproteins Apolipoprotein A1 0.70 (0.01) 0.54 (0.01) ≤0.01 0.73 (0.05) 1.12 (0.00) ≤0.001 
Apolipoprotein B 0.57 (0.05) 0.37 (0.02) ≤0.01 0.81 (0.06) 0.54 (0.00) 0.01 

Cholesterols 
 

Total serum cholesterol 1.04 (0.04) 0.71 (0.03) ≤0.01 1.33 (0.07) 1.69 (0.01) ≤0.001 
VLDL cholesterol 0.62 (0.02) 0.48 (0.03) ≤0.01 0.74 (0.04) 0.80 (0.00) 0.05 
Remnant cholesterol 0.75 (0.02) 0.54 (0.03) ≤0.01 0.92 (0.05) 1.10 (0.00) ≤0.001 
LDL Cholesterol 0.84 (0.02) 0.64 (0.02) ≤0.01 1.01 (0.05) 1.17 (0.00) 0.01 
HDL Cholesterol 0.80 (0.04) 0.62 (0.02) ≤0.01 0.81 (0.04) 0.46 (0.01) ≤0.001 
HDL2 Cholesterol 0.80 (0.03) 0.62 (0.01) ≤0.01 0.78 (0.04) 0.43 (0.01) ≤0.001 
HDL3 Cholesterol 0.56 (0.07) 0.39 (0.04) 0.36 0.56 (0.06) 0.39 (0.00) 0.03 
Total esterified cholesterol 0.99 (0.03) 0.76 (0.04) ≤0.01 1.18 (0.06) 1.42 (0.01) ≤0.001 
Total free Cholesterol 0.78 (0.05) 0.66 (0.04) 0.06 0.87 (0.05) 0.98 (0.00) 0.01 

Fatty Acids 
 

Total fatty acids 1.71 (0.09) 1.13 (0.05) ≤0.01 2.15 (0.12) 0.83 (0.01) ≤0.001 
Docosahexaenoic acid 0.75 (0.07) 0.65 (0.05) 0.18 0.79 (0.05) 2.71 (0.00) ≤0.001 
18:2 Linoleic acid 1.34 (0.06) 1.24 (0.03) 0.11 1.38 (0.07) 0.37 (0.01) ≤0.001 
n-3 fatty acids 0.85 (0.08) 0.73 (0.06) 0.17 1.03 (0.06) 1.26 (0.00) ≤0.001 
n-6 fatty acids 1.08 (0.03) 0.92 (0.03) ≤0.01 1.28 (0.07) 0.49 (0.01) 0.13 
PUFA 1.08 (0.03) 0.92 (0.03) ≤0.01 1.33 (0.07) 1.42 (0.01) 0.12 
MUFA 1.60 (0.04) 1.22 (0.05) ≤0.01 1.49 (0.08) 1.48 (0.00) 0.02 
SFA 1.40 (0.06) 1.00 (0.05) ≤0.01 1.51 (0.08) 1.52 (0.01) 0.06 

Glycerides and Phospholipids 
 

Total serum triglycerides 0.88 (0.02) 0.67 (0.01) ≤0.01 0.98 (0.05) 0.99 (0.00) 0.11 
VLDL triglycerides 0.85 (0.01) 0.65 (0.01) ≤0.01 0.89 (0.05) 0.81 (0.00) ≤0.001 
LDL triglycerides 0.49 (0.03) 0.39 (0.03) 0.03 0.52 (0.03) 0.47 (0.00) 0.03 
HDL triglycerides 0.44 (0.04) 0.30 (0.02) 0.13 0.49 (0.05) 0.41 (0.00) 0.82 
Total phosphoglycerides 0.96 (0.04) 0.72 (0.03) ≤0.01 1.02 (0.06) 1.01 (0.00) 0.03 
Phosphatidylcholine 0.92 (0.04) 0.70 (0.04) ≤0.01 0.98 (0.05) 1.12 (0.00) 0.002 
Sphingomyelins 0.69 (0.06) 0.56 (0.06) 0.18 0.65 (0.05) 0.54 (0.00) 0.02 
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Total cholines 0.96 (0.04) 0.74 (0.04) ≤0.01 1.08 (0.06) 1.12 (0.00) 0.68 

Glycolysis Related Metabolites 
 

Lactate 1.86 (0.17) 1.73 (0.05) 0.19 1.60 (0.09) 0.53 (0.00) ≤0.001 
Pyruvate 0.79 (0.09) 0.62 (0.05) 0.06 0.66 (0.06) 0.28 (0.00) ≤0.001 
Citrate 1.12 (0.09) 0.57 (0.06) ≤0.01 0.91 (0.07) 0.29 (0.00) ≤0.001 
Glycerol 0.69 (0.07) 0.60 (0.05) 0.43 0.53 (0.08) 0.34 (0.00) ≤0.001 

Ketone Bodies Acetate 0.59 (0.09) 0.59 (0.07) 0.84 0.50 (0.05) 0.28 (0.00) ≤0.001 
Beta- hydroxybutyrate 0.85 (0.10) 0.87 (0.04) 0.29 0.72 (0.07) 0.35 (0.00) ≤0.001 

Fluid Balance and Inflammation 
 

Creatinine 0.64 (0.09) 0.51 (0.06) 0.51 0.66 (0.05) 0.27 (0.00) ≤0.001 
Albumin 0.65 (0.07) 0.91 (0.05) 0.01 0.85 (0.06) 0.35 (0.00) ≤0.001 
Glycoprotein acetyls 1.25 (0.08) 1.09 (0.06) 0.13 1.14 (0.07) 0.53 (0.01) ≤0.001 

VIPS were mean averaged across 20 model iterations of PLSDA. Standard errors (SE) are shown in brackets. All model iterations were significant  (p value 
R2<0.05, p value Q2 < 0.05).The distributions of VIP values for each metabolite measure were compared between populations using a MW test. Standard 
errors shown in brackets. MW: Mann-Whitney test. PLSDA: Partial Least Squares Discriminatory Analysis.
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Table B.5: VIPs for the prediction of ethnicity. 

Table showing VIP scores from PLSDA models predicting ethnicity in the overall population (n=5339). 
Model 1: Included covariates of maternal age (years), smoking status, parity, and BMI 
(continuous). Model 2: Model one covariates + GDM status. Both models were statistically 
significant (p value R2 < 0.05 and p value Q2 <0.05).  

 

 

 

 

 

 

 

 

 

 

 

Variable Model 1 Model 2 
Age 5.49 5.34 

Smoking Status 5.08 4.83 
Parity 5.01 4.83 
BMI 4.68 4.56 

Total Fatty Acids 2.60 2.55 
Serum Cholesterol 1.60 1.58 

SFA 1.56 1.55 
MUFA 1.42 1.42 
PUFA 1.41 1.40 
FAw6 1.35 1.34 

GDM Status - 1.33 
Esterified Cholesterol 1.33 1.33 

LA 1.18 1.19 
LDL Cholesterol 1.10 1.09 

Remnant Cholesterol 1.04 1.03 
PC 1.03 1.05 

Total Cholesterol 1.03 1.04 
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Figure B.3: Important metabolites (VIP ≥1) in distinguishing WE and 
SA women in GDM and non-GDM women. 

Circular bar plot of VIPs from 20 iterations of PLSDA models predicting ethnicity 
in cases (n=256) and non-cases (n= 4770). Bars represent standard errors. 
PLSDA adjusted for maternal age (years), BMI (continuous), smoking status, 
parity, and multiple pregnancy status. Red line denotes VIP cut-off of 1. Dark 
pink: GDM cases, VIP ≥ 1, light pink: GDM cases, VIP <1, dark green: GDM non-
cases, VIP ≥1, light green: GDM non-case, VIP <1. Units mmol/l unless stated. 
GRM: Glycolysis Related Metabolites. LPS: Lipoprotein Particle Size. MUFA: 
total monounsaturated fatty acids. SFA: total saturated fatty acids. VLDL_D: 
mean diameter of very-low density lipoproteins.



 

 211 

 

Figure B.4: The impact of smoking on the metabolome. 

Boxplots of VIPs from significant model iterations following stratification by ethnicity and smoking status. Diamonds represent 
the mean VIP score. Dashed line illustrates the cut off for an important variable (VIP ≥ 1). Models were adjusted for age, BMI, 
parity and multiple pregnancy. SANS: South Asian Non-smokers. SA: South Asian Smokers. WENS: White European Non-
Smokers. WES: WE Smokers. 
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Figure B.4 continued: The impact of smoking on the metabolome. 
Boxplots of VIPs from significant model iterations following stratification by ethnicity and smoking status. Diamonds represent 
the mean VIP score. Dashed line illustrates the cut off for an important variable (VIP ≥ 1). Models were adjusted for age, BMI, 
parity and multiple pregnancy. SANS: South Asian Non-smokers. SA: South Asian Smokers. WENS: White European Non-
Smokers. WES: WE Smokers. 
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Figure B.5: GDM in low-risk women. 

A: sPLSDA plot for the separation of low-risk mothers (n=1385) based upon their ethnicity, GDM status and BMI (normal vs 
high). B: Receiver Operator Curve (ROC) for sPLSDA model. SAC-H: high weight South Asian case (n=53) ; SAC-N: healthy 
weight South Asian case (n=20) ; SANC-H: high weight South Asian non-case (n=384); SANC-N health weight South Asian non 
case (n=407); WENC-H: high weight White European non-case (n=29) ; WEC-N: healthy weight White European Case (n=24); 
WENC-H: high weight White European non-case (n=374); WENC-N: healthy weight White European non-case (n=445).
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Figure B.6. VIPs from PLSDA of metabolites identified in sPLSDA 
as important in distinguishing healthy-weight SA cases. 

 
Mean VIPs and standard errors of metabolites driving the distinction between 
comparisions with healthy-weight SA cases. A: healthy-weight SA cases vs 
healthy-weight WE cases. B:  healthy-weight SA cases vs high-weight SA cases. 
C: healthy-weight SA cases from healthy-weight SA non-cases. Light Shaded 
colours illustrate metabolites selected based upon their high correlation 
(Pearson’s correlation ≥ 0.90) with a metabolite identified in sPLSDA. Metabolite 
measures absent from the circle plot/ with a VIP of 0 indicate metabolite 
measures which were not identified as important in sPLSDA. All units mmol/L 
unless stated. SA: Surface area

C 
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Figure B.7: SUS plots of metabolites identified in sPLDSA to be important in characterising healthy-
weight SA cases. 

Distance along the diagonals represents higher reliability. Distance along the horizontal represents higher magnitude. Top right/ 
bottom left corner represents metabolite values with the higher magnitude and higher reliability. A: Model including 34 
metabolites identified in sPLSDA analysis. Orthogonal PLSDA (oPLSDA) models were non-significant. B: Model A + adjustment 
for maternal age and BMI (continuous). Centre metabolites represent lowest magnitude and lower reliability. OPLS-DA p value 
SAC-N vs SAC-H  p value< 0.05,  SAC-N vs WEC-N p value < 0.05. SAC-N: Healthy weight SA cases. SANC-N: Healthy weight 
SA non-cases.  WEC-N: Healthy weight WE cases.



 

 218 

 
 A 



 

 219 

B 



 

 220 

 

 

 

 

 

 

 

 

 

 

 

Figure B.8: Metabolite values correlated with fasting glucose. 

 

C 

A: Metabolite values with significant Pearson correlation coefficients with fasting glucose following stratification by 
ethnicity. Blue: South Asian. Red: White European. B: Metabolite values with a significant Pearson correlation coefficients 
with fasting glucose following stratification by case status. Pink: Cases. Green: Non-cases. C:  Metabolite values with a 
significant Pearson correlation coefficients with fasting glucose following stratification by ethnicity and case status. Yellow: 
South Asian cases. Orange: South Asian non-cases. Blue: White European cases. Light blue: White European non-
cases. 
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Figure B.9: Metabolite values correlated with 2-hour post glucose. 

Top row: Metabolite values with a significantly correlated with 2-hour post glucose following stratification by case status. Pink: 
Cases. Green: Non-cases. Bottom row:  Metabolite values with a significantly correlated with 2-hour post glucose following 
stratification by ethnicity and case status. Yellow: South Asian cases. Orange: South Asian non-cases. Blue: White European 
cases Light blue: White European non-cases.  R= Pearson correlation coefficient  
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Table B.6: Linear regression of fasting glucose. 
 

Overall (n=5538*) 
 

Model 1 Model 2 Model 3 

Metabolite value β SE P value β SE P value β SE P value 

Lactate (mmol/l) -0.008 0.003 0.003 -0.009 0.003 0.001 -0.009 0.003 0.001 

Mean Diameter for VLDL particles (nm) 0.000 0.001 0.824 
      

Total Fatty Acids (mmol/l) 0.000 0.000 0.718 
      

MUFA (mmol/l) 0.001 0.001 0.507 
      

18:2 Linoleic Acid (mmol/l) 0.000 0.002 0.892 
      

SFA (mmol/l) 0.000 0.001 0.770 
      

Esterified Cholesterol (mmol/l) 0.001 0.002 0.706 
      

Analine (mmol/l) -0.034 0.029 0.247 
      

Glutamine (mmol/l) -0.036 0.031 0.243 
      

Total Serum Cholesterol 0.000 0.001 0.725 
      

n-6 Fatty Acids (mmol/l) 0.000 0.002 0.999 
      

PUFA (mmol/l) 0.000 0.001 0.965 
      

Glycoprotein Acetyls (mmol/l) 0.005 0.007 0.488 
      

Citrate (mmol/l) -0.071 0.082 0.388 
      

Glycine (mmol/l) -0.055 0.043 0.203 
      

Histidine (mmol/l) -0.055 0.047 0.239 
      

Phenylanaline (mmol/l) -0.016 0.032 0.624 
      

Tyrosine (mmol/l) -0.030 0.041 0.461 
      

A 
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Apolipoprotein A1 (g/l) -0.009 0.006 0.166 
      

LDL Cholesterol (mmol/l) 0.002 0.002 0.514 
      

HDL Cholesterol (mmol/l) -0.006 0.004 0.142 
      

HDL2 Cholesterol (mmol/l) -0.006 0.004 0.134 
      

HDL3 Cholesterol (mmol/l) -0.030 0.032 0.343 
      

n-3 Fatty Acids (mmol/l) 0.005 0.013 0.694 
      

DHA (mmol/l) 0.031 0.031 0.230 
      

Creatine (mmol/l) -0.368 0.226 0.103 
      

Albumin (Signal Area) -0.599 0.238 0.012 -0.596 0.231 0.010 -0.611 0.233 0.009 

Serum triglycerides (mmol/l) 0.002 0.002 0.445 
      

VLDL triglycerides (mmol/l) 0.002 0.003 0.537 
      

Phosphoglycerides (mmol/l) -0.001 0.003 0.751 
      

Phosphatidylchlorine (mmol/l) 0.001 0.003 0.861 
      

Sphingomyelins (mmol/l) -0.002 0.016 0.897 
      

Total Cholines (mmol/l) 0.000 0.003 0.991 
      

Pyruvate (mmol/l) -0.008 0.064 0.899 
      

Glycerol (mmol/l) 0.000 0.086 0.996 
      

Beta- hydroxybutyrate (mmol/l) 0.068 0.035 0.057 
      

Mean Diameter for LDL particles (nm) 0.051 0.022 0.020 0.047 0.021 0.027 0.049 0.021 0.022 

Mean Diameter for HDL particles (nm) 0.005 0.007 0.474 
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White European (n=2267)* 

 Model 1 Model 2 Model 3 

Metabolite Measure β SE P value β SE P value β SE P value 

Lactate (mmol/l) -0.009 0.003 0.006 -0.011 0.003 0.001 -0.010 0.003 0.003 

Mean Diameter for VLDL particles (nm) 0.001 0.002 0.545       

Total Fatty Acids (mmol/l) 0.000 0.001 0.926       

MUFA (mmol/l) 0.000 0.002 0.917       

18:2 Linoleic Acid (mmol/l) -0.001 0.002 0.784       

SFA (mmol/l) 0.000 0.001 0.995       

Esterified Cholesterol (mmol/l) -0.001 0.002 0.575       

Analine (mmol/l) -0.014 0.034 0.674       

Glutamine (mmol/l) -0.036 0.036 0.315       

Total Serum Cholesterol -0.001 0.001 0.580       

n-6 Fatty Acids (mmol/l) -0.001 0.002 0.652       

PUFA (mmol/l) -0.001 0.002 0.698       

Glycoprotein Acetyls (mmol/l) 0.011 0.009 0.211       

Citrate (mmol/l) -0.087 0.095 0.362       

Glycine (mmol/l) 0.060 0.050 0.225       

Histidine (mmol/l) -0.428 0.173 0.014 -0.459 0.167 0.006 -0.449 0.170 0.008 

Phenylanaline (mmol/l) -0.065 0.151 0.666       

Tyrosine (mmol/l) -0.373 0.303 0.219       

Apolipoprotein A1 (g/l) -0.018 0.007 0.014 -0.017 0.007 0.019 -0.018 0.007 0.014 

LDL Cholesterol (mmol/l) 0.000 0.003 0.955       

B 
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HDL Cholesterol (mmol/l) -0.011 0.004 0.012 -0.010 0.004 0.019 -0.011 0.004 0.011 

HDL2 Cholesterol (mmol/l) -0.013 0.005 0.011 -0.011 0.005 0.019 -0.012 0.005 0.010 

HDL3 Cholesterol (mmol/l) -0.066 0.037 0.077       

n-3 Fatty Acids (mmol/l) 0.003 0.015 0.830       

DHA (mmol/l) 0.042 0.036 0.249       

Creatine (mmol/l) -0.166 0.277 0.548       

Albumin (Signal Area) -0.387 0.276 0.160       

Serum triglycerides (mmol/l) 0.002 0.003 0.433       

VLDL triglycerides (mmol/l) 0.003 0.004 0.416       

Phosphoglycerides (mmol/l) -0.004 0.004 0.313       

Phosphatidylchlorine (mmol/l) -0.002 0.003 0.548       

Sphingomyelins (mmol/l) -0.016 0.019 0.381       

Total Cholines (mmol/l) -0.002 0.003 0.458       

Pyruvate (mmol/l) 0.113 0.075 0.134       

Glycerol (mmol/l) 0.075 0.101 0.457       

Beta- hydroxybutyrate (mmol/l) 0.070 0.039 0.074       

Mean Diameter for LDL particles (nm) 0.061 0.025 0.016 0.055 0.024 0.025 0.056 0.025 0.024 

Mean Diameter for HDL particles (nm) -0.002 0.008 0.783       
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South Asian (n=2671) 

 Model 1 Model 2 Model 3 

Metabolite Measure β SE P value β SE P value β SE P value 

Lactate (mmol/l) -0.007 0.004 0.105       

Mean Diameter for VLDL particles (nm) -0.001 0.002 0.561       

Total Fatty Acids (mmol/l) 0.000 0.001 0.605       

MUFA (mmol/l) 0.002 0.002 0.435       

18:2 Linoleic Acid (mmol/l) 0.001 0.003 0.683       

SFA (mmol/l) 0.001 0.002 0.726       

Esterified Cholesterol (mmol/l) 0.002 0.003 0.510       

Analine (mmol/l) -0.042 0.046 0.360       

Glutamine (mmol/l) -0.024 0.049 0.619       

Total Serum Cholesterol 0.001 0.002 0.526       

n-6 Fatty Acids (mmol/l) 0.001 0.003 0.752       

PUFA (mmol/l) 0.001 0.002 0.745       

Glycoprotein Acetyls (mmol/l) 0.003 0.011 0.772       

Citrate (mmol/l) -0.031 0.131 0.813       

Glycine (mmol/l) -0.029 0.069 0.676       

Histidine (mmol/l) -0.044 0.054 0.417       

Phenylanaline (mmol/l) -0.017 0.036 0.633       

Tyrosine (mmol/l) -0.031 0.046 0.498       

Apolipoprotein A1 (g/l) -0.002 0.010 0.875       

LDL Cholesterol (mmol/l) 0.002 0.004 0.501       

C 
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HDL Cholesterol (mmol/l) -0.001 0.006 0.824       

HDL2 Cholesterol (mmol/l) -0.002 0.007 0.808       

HDL3 Cholesterol (mmol/l) -0.001 0.051 0.983       

n-3 Fatty Acids (mmol/l) 0.007 0.020 0.745       

DHA (mmol/l) 0.035 0.049 0.474       

Creatine (mmol/l) -0.619 0.343 0.071       

Albumin (Signal Area) -0.866 0.382 0.024 -0.818 0.366 0.025 -0.858 0.375 0.022 

Serum triglycerides (mmol/l) 0.002 0.004 0.660       

VLDL triglycerides (mmol/l) 0.001 0.005 0.792       

Phosphoglycerides (mmol/l) 0.002 0.005 0.766       

Phosphatidylchlorine (mmol/l) 0.003 0.005 0.576       

Sphingomyelins (mmol/l) 0.007 0.025 0.790       

Total Cholines (mmol/l) 0.002 0.004 0.645       

Pyruvate (mmol/l) -0.115 0.101 0.254       

Glycerol (mmol/l) -0.080 0.137 0.559       

Beta- hydroxybutyrate (mmol/l) 0.073 0.060 0.225       

Mean Diameter for LDL particles (nm) 0.049 0.035 0.158       

Mean Diameter for HDL particles (nm) 0.009 0.011 0.428       

β coefficients of metabolite measures from linear regression models predicting fasting glucose (mmol/L). * 1 White European sample had a missing fasting glucose 
measure and was excluded from the analysis. Model 1 adjusted for maternal age, gestational age, parity and smoking status during pregnancy (yes/no). 
When β coefficients were significant (p value ≤ 0.05) models were additionally adjusted for BMI as a continuous variable (Model 2) and BMI as a dichotomous 
variable, grouping mothers based on whether they were above their ethnic specific cut off for overweight on the BMI scale. (Model 3) A: Overall sample 
results. B: White European. C: South Asian.  
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Table B.7: Linear regression of 2-hour post glucose. 

 
  Overall (n=5538*) 

  Model 1 Model 2 Model 3 

Metabolite Measure β SE P value β SE P value β SE P value 

Lactate (mmol/l) -0.008 0.007 0.246 
      

Mean Diameter for VLDL particles (nm) 0.000 0.003 0.996 
      

Total Fatty Acids (mmol/l) 0.001 0.001 0.285 
      

MUFA (mmol/l) 0.004 0.003 0.239 
      

18:2 Linoleic Acid (mmol/l) 0.001 0.004 0.808 
      

SFA (mmol/l) 0.004 0.003 0.221 
      

Esterified Cholesterol (mmol/l) 0.005 0.004 0.243 
      

Analine (mmol/l) 0.009 0.068 0.899 
      

Glutamine (mmol/l) -0.052 0.072 0.471 
      

Total Serum Cholesterol 0.003 0.003 0.267 
      

n-6 Fatty Acids (mmol/l) 0.002 0.004 0.624 
      

PUFA (mmol/l) 0.002 0.003 0.566 
      

Glycoprotein Acetyls (mmol/l) 0.006 0.017 0.710 
      

Citrate (mmol/l) 0.160 0.192 0.405 
      

Glycine (mmol/l) -0.164 0.101 0.103 
      

Histidine (mmol/l) -0.094 0.110 0.391 
      

Phenylanaline (mmol/l) -0.048 0.074 0.521 
      

Tyrosine (mmol/l) -0.074 0.095 0.437 
      

Apolipoprotein A1 (g/l) 0.018 0.015 0.238 
      

A 
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LDL Cholesterol (mmol/l) 0.004 0.005 0.479   
 

  
  

  

HDL Cholesterol (mmol/l) 0.010 0.009 0.253   
 

  
  

  

HDL2 Cholesterol (mmol/l) 0.010 0.010 0.289   
 

  
  

  

HDL3 Cholesterol (mmol/l) 0.114 0.075 0.129   
 

  
  

  

n-3 Fatty Acids (mmol/l) 0.033 0.030 0.276   
 

  
  

  

DHA (mmol/l) 0.129 0.072 0.075   
 

  
  

  

Creatine (mmol/l) 0.108 0.528 0.837   
 

  
  

  

Albumin (Signal Area) -0.773 0.165 0.165 
      

Serum triglycerides (mmol/l) 0.003 0.006 0.628   
 

  
  

  

VLDL triglycerides (mmol/l) 0.001 0.007 0.931   
 

  
  

  

Phosphoglycerides (mmol/l) 0.011 0.008 0.171   
 

  
  

  

Phosphatidylchlorine (mmol/l) 0.009 0.007 0.199   
 

  
  

  

Sphingomyelins (mmol/l) 0.031 0.037 0.408   
 

  
  

  

Total Cholines (mmol/l) 0.009 0.007 0.164   
 

  
  

  

Pyruvate (mmol/l) 0.110 0.150 0.463   
 

  
  

  

Glycerol (mmol/l) 0.112 0.201 0.578   
 

  
  

  

Beta- hydroxybutyrate (mmol/l) 0.006 0.083 0.945   
 

  
  

  

Mean Diameter for LDL particles (nm) 0.058 0.051 0.253 
      

Mean Diameter for HDL particles (nm) 0.022 0.016 0.158             
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  White European (n=2267)* 

  Model 1 Model 2 Model 3 

Metabolite Measure β SE P value β SE P value β SE P value 

Lactate (mmol/l) -0.008 0.009 0.380 
      

Mean Diameter for VLDL particles (nm) 0.001 0.004 0.842 
      

Total Fatty Acids (mmol/l) 0.002 0.002 0.181 
      

MUFA (mmol/l) 0.005 0.004 0.249 
      

18:2 Linoleic Acid (mmol/l) 0.005 0.006 0.434 
      

SFA (mmol/l) 0.006 0.004 0.118 
      

Esterified Cholesterol (mmol/l) 0.010 0.006 0.075 
      

Analine (mmol/l) 0.080 0.093 0.390 
      

Glutamine (mmol/l) 0.021 0.098 0.833 
      

Total Serum Cholesterol 0.007 0.004 0.091 
      

n-6 Fatty Acids (mmol/l) 0.005 0.005 0.351 
      

PUFA (mmol/l) 0.005 0.005 0.298 
      

Glycoprotein Acetyls (mmol/l) 0.009 0.023 0.692 
      

Citrate (mmol/l) -0.164 0.260 0.527 
      

Glycine (mmol/l) -0.110 0.135 0.417 
      

Histidine (mmol/l) -0.213 0.472 0.652 
      

Phenylanaline (mmol/l) 0.011 0.411 0.979 
      

Tyrosine (mmol/l) -0.598 0.824 0.468 
      

Apolipoprotein A1 (g/l) 0.023 0.020 0.268 
      

LDL Cholesterol (mmol/l) 0.011 0.007 0.126 
      

HDL Cholesterol (mmol/l) 0.009 0.012 0.474 
      

B 
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HDL2 Cholesterol (mmol/l) 0.008 0.013 0.534 
      

HDL3 Cholesterol (mmol/l) 0.128 0.101 0.205 
      

n-3 Fatty Acids (mmol/l) 0.069 0.041 0.097 
      

DHA (mmol/l) 0.196 0.098 0.047 0.203 0.097 0.037 0.195 0.097 0.045 

Creatine (mmol/l) -0.302 0.753 0.688 
      

Albumin (Signal Area) 0.294 0.750 0.695 
      

Serum triglycerides (mmol/l) 0.006 0.008 0.459 
      

VLDL triglycerides (mmol/l) 0.005 0.010 0.630 
      

Phosphoglycerides (mmol/l) 0.014 0.011 0.190 
      

Phosphatidylchlorine (mmol/l) 0.013 0.009 0.167 
      

Sphingomyelins (mmol/l) 0.074 0.051 0.151 
      

Total Cholines (mmol/l) 0.013 0.009 0.147 
      

Pyruvate (mmol/l) 0.193 0.205 0.348 
      

Glycerol (mmol/l) 0.172 0.273 0.530 
      

Beta- hydroxybutyrate (mmol/l) -0.077 0.106 0.468 
      

Mean Diameter for LDL particles (nm) -0.077 0.106 0.468 
      

Mean Diameter for HDL particles (nm) 0.021 0.021 0.328 
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  South Asian (n=2671) 

  Model 1 Model 2 Model 3 

Metabolite Measure β SE P value β SE P value β SE P value 

Lactate (mmol/l) -0.007 0.009 0.479 
      

Mean Diameter for VLDL particles (nm) 0.000 0.005 0.979 
      

Total Fatty Acids (mmol/l) 0.000 0.002 0.793 
      

MUFA (mmol/l) 0.003 0.005 0.547 
      

18:2 Linoleic Acid (mmol/l) -0.002 0.006 0.718 
      

SFA (mmol/l) 0.001 0.004 0.790 
      

Esterified Cholesterol (mmol/l) -0.001 0.006 0.862 
      

Analine (mmol/l) -0.043 0.098 0.665 
      

Glutamine (mmol/l) -0.111 0.104 0.285 
      

Total Serum Cholesterol -0.001 0.004 0.875 
      

n-6 Fatty Acids (mmol/l) -0.001 0.006 0.856 
      

PUFA (mmol/l) -0.001 0.005 0.869 
      

Glycoprotein Acetyls (mmol/l) 0.010 0.024 0.690 
      

Citrate (mmol/l) 0.511 0.281 0.069 
      

Glycine (mmol/l) -0.196 0.148 0.187 
      

Histidine (mmol/l) -0.101 0.116 0.384 
      

Phenylanaline (mmol/l) -0.055 0.077 0.481 
      

Tyrosine (mmol/l) -0.076 0.098 0.438 
      

Apolipoprotein A1 (g/l) 0.010 0.022 0.652 
      

LDL Cholesterol (mmol/l) -0.004 0.008 0.586 
      

HDL Cholesterol (mmol/l) 0.010 0.013 0.458 
      

HDL2 Cholesterol (mmol/l) 0.010 0.014 0.479 
      

C 
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HDL3 Cholesterol (mmol/l) 0.090 0.109 0.408 
      

n-3 Fatty Acids (mmol/l) 0.000 0.044 0.992 
      

DHA (mmol/l) 0.071 0.105 0.497 
      

Creatine (mmol/l) 0.365 0.734 0.619 
      

Albumin (Signal Area) -1.900 0.816 0.020 -1.824 0.797 0.022 -1.887 0.808 0.020 

Serum triglycerides (mmol/l) 0.001 0.008 0.940 
      

VLDL triglycerides (mmol/l) -0.002 0.010 0.837 
      

Phosphoglycerides (mmol/l) 0.008 0.012 0.504 
      

Phosphatidylchlorine (mmol/l) 0.004 0.010 0.661 
      

Sphingomyelins (mmol/l) -0.016 0.054 0.767 
      

Total Cholines (mmol/l) 0.005 0.010 0.583 
      

Pyruvate (mmol/l) 0.046 0.216 0.832 
      

Glycerol (mmol/l) 0.042 0.292 0.885 
      

Beta- hydroxybutyrate (mmol/l) 0.118 0.128 0.355 
      

Mean Diameter for LDL particles (nm) 0.097 0.075 0.194 
      

Mean Diameter for HDL particles (nm) 0.019 0.023 0.416 
      

β coefficients of metabolite measures from linear regression models of 2-hour post glucose (mmol/L). * 1 White European sample had a missing fasting glucose 
measure and was excluded from the analysis. Model 1 adjusted for maternal age, gestational age, parity and smoking status during pregnancy (yes/no). 
When β coefficients were significant (p value ≤ 0.05) models were additionally adjusted for BMI as a continuous variable (Model 2) and BMI as a dichotomous 
variable, grouping mothers based on whether they were above their ethnic specific cut off for overweight on the BMI scale (Model 3). A: Overall sample 
results. B: White European. C: South Asian.  
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Appendix C 
Supplementary data for Chapter 5 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1: PCA to account for population stratification. 

  A:  Schematic of data processing steps taken prior to PCA analysis of genetic data. A R2 cut-off of 0.3 was 
utilised for LD pruning. During LD, pruning windows of 50 variants were checked for LD before moving the 
window 5bp. MAF: minor allele frequency. B: PCA plot of BiB genotype data calculated to account for 
population stratification. Blue: SAs. Red: WEs. 
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Figure C.2: Population stratification within BiB. 

A: PCA of genetic data from retained WEs coloured based upon mother’s country of birth. B: PCA of genetic data from retained 
SAs coloured based upon mother’s Biraderi (‘Brotherhood’) membership.
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Table C.1: Regions of high LD excluded from PCA of genetic 
data. 

    BP: base pair. LD: linkage disequilibrium. 

 

 

 

 

 

 

 

 

 

 

Chromosome Start (bp) End (bp) 
1 48000000 52000000 

2 
86000000 100500000 

134500000 138000000 
183000000 190000000 

3 
47500000 50000000 
83500000 87000000 
89000000 97500000 

5 

44500000 50500000 
98000000 100500000 

129000000 132000000 
135500000 138500000 
25500000 33500000 

6 
57000000 64000000 

140000000 142500000 
7 55000000 66000000 

8 
8000000 12000000 

43000000 50000000 
112000000 115000000 

10 37000000 43000000 

11 
87500000 90500000 
46000000 57000000 

12 
33000000 40000000 

109500000 112000000 
20 32000000 34500000 
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Table C.2 : Proportion of outliers identified in each ethnicity. 

 South Asian White European 
Metabolite Number kept % Lost Number kept % Lost 

XXL-VLDL-P 3586 2.90 3247 3.79 
XXL-VLDL-L 3589 2.82 3250 3.70 

XXL-VLDL-PL 3592 2.73 3253 3.61 
XXL-VLDL-C 3605 2.38 3270 3.11 

XXL-VLDL-CE 3615 2.11 3276 2.93 
XXL-VLDL-FC 3591 2.76 3264 3.29 
XXL-VLDL-TG 3584 2.95 3241 3.97 

XL-VLDL-P 3585 2.92 3261 3.38 
XL-VLDL-L 3587 2.87 3261 3.38 

XL-VLDL-PL 3587 2.87 3255 3.56 
XL-VLDL-C 3599 2.55 3259 3.44 

XL-VLDL-CE 3600 2.52 3256 3.53 
XL-VLDL-FC 3595 2.65 3258 3.47 
XL-VLDL-TG 3587 2.87 3262 3.35 

L-VLDL-P 3588 2.84 3264 3.29 
L-VLDL-L 3592 2.73 3265 3.26 

L-VLDL-PL 3596 2.63 3266 3.23 
L-VLDL-C 3590 2.79 3257 3.50 

L-VLDL-CE 3607 2.33 3256 3.53 
L-VLDL-FC 3593 2.71 3265 3.26 
L-VLDL-TG 3588 2.84 3262 3.35 
M-VLDL-P 3601 2.49 3266 3.23 
M-VLDL-L 3603 2.44 3261 3.38 

M-VLDL-PL 3610 2.25 3268 3.17 
M-VLDL-C 3614 2.14 3271 3.08 

M-VLDL-CE 3616 2.09 3289 2.55 
M-VLDL-FC 3608 2.30 3266 3.23 
M-VLDL-TG 3589 2.82 3268 3.17 
S-VLDL-P 3617 2.06 3295 2.37 
S-VLDL-L 3615 2.11 3291 2.49 

S-VLDL-PL 3627 1.79 3301 2.19 
S-VLDL-C 3627 1.79 3303 2.13 

S-VLDL-CE 3627 1.79 3309 1.96 
S-VLDL-FC 3617 2.06 3300 2.22 
S-VLDL-TG 3606 2.36 3271 3.08 
XS-VLDL-P 3623 1.90 3316 1.75 
XS-VLDL-L 3627 1.79 3315 1.78 

XS-VLDL-PL 3627 1.79 3311 1.90 
XS-VLDL-C 3632 1.65 3305 2.07 

XS-VLDL-CE 3634 1.60 3308 1.99 
XS-VLDL-FC 3626 1.81 3308 1.99 
XS-VLDL-TG 3614 2.14 3295 2.37 

IDL-P 3628 1.76 3312 1.87 
IDL-L 3629 1.73 3310 1.93 

IDL-PL 3628 1.76 3307 2.01 
IDL-C 3628 1.76 3311 1.90 

IDL-CE 3630 1.71 3310 1.93 
IDL-FC 3624 1.87 3318 1.69 
IDL-TG 3619 2.00 3303 2.13 
L-LDL-P 3630 1.71 3307 2.01 
L-LDL-L 3630 1.71 3308 1.99 

L-LDL-PL 3632 1.65 3304 2.10 
L-LDL-C 3627 1.79 3307 2.01 
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L-LDL-CE 3628 1.76 3306 2.04 
L-LDL-FC 3622 1.92 3315 1.78 
L-LDL-TG 3621 1.95 3310 1.93 
M-LDL-P 3629 1.73 3307 2.01 
M-LDL-L 3628 1.76 3310 1.93 

M-LDL-PL 3634 1.60 3307 2.01 
M-LDL-C 3628 1.76 3308 1.99 

M-LDL-CE 3628 1.76 3304 2.10 
M-LDL-FC 3634 1.60 3307 2.01 
M-LDL-TG 3621 1.95 3310 1.93 
S-LDL-P 3631 1.68 3313 1.84 
S-LDL-L 3636 1.54 3306 2.04 

S-LDL-PL 3635 1.57 3309 1.96 
S-LDL-C 3631 1.68 3310 1.93 

S-LDL-CE 3623 1.90 3308 1.99 
S-LDL-FC 3630 1.71 3311 1.90 
S-LDL-TG 3628 1.76 3303 2.13 
XL-HDL-P 3646 1.27 3340 1.04 
XL-HDL-L 3645 1.30 3343 0.95 

XL-HDL-PL 3649 1.19 3345 0.89 
XL-HDL-C 3640 1.44 3340 1.04 

XL-HDL-CE 3646 1.27 3344 0.92 
XL-HDL-FC 3633 1.62 3338 1.10 
XL-HDL-TG 3642 1.38 3323 1.54 

L-HDL-P 3646 1.27 3340 1.04 
L-HDL-L 3645 1.30 3340 1.04 

L-HDL-PL 3648 1.22 3342 0.98 
L-HDL-C 3644 1.33 3342 0.98 

L-HDL-CE 3647 1.25 3342 0.98 
L-HDL-FC 3647 1.25 3339 1.07 
L-HDL-TG 3638 1.49 3325 1.48 
M-HDL-P 3645 1.30 3320 1.63 
M-HDL-L 3642 1.38 3321 1.60 

M-HDL-PL 3645 1.30 3312 1.87 
M-HDL-C 3640 1.44 3332 1.27 

M-HDL-CE 3638 1.49 3330 1.33 
M-HDL-FC 3643 1.35 3329 1.36 
M-HDL-TG 3634 1.60 3315 1.78 
S-HDL-P 3635 1.57 3324 1.51 
S-HDL-L 3633 1.62 3324 1.51 

S-HDL-PL 3635 1.57 3307 2.01 
S-HDL-C 3625 1.84 3307 2.01 

S-HDL-CE 3618 2.03 3317 1.72 
S-HDL-FC 3636 1.54 3310 1.93 
S-HDL-TG 3618 2.03 3311 1.90 
VLDL_D 3644 1.33 3326 1.45 
LDL_D 3625 1.84 3234 4.18 
HDL_D 3668 0.68 3354 0.62 

Serum_C 3638 1.49 3309 1.96 
VLDL_C 3626 1.81 3292 2.46 

Remnant_C 3626 1.81 3314 1.81 
LDL_C 3625 1.84 3304 2.10 
HDL_C 3643 1.35 3340 1.04 
HDL2_C 3650 1.16 3338 1.10 
HDL3_C 3631 1.68 3323 1.54 

EstC 3640 1.44 3311 1.90 
FreeC 3640 1.44 3306 2.04 

Serum_TG 3611 2.22 3278 2.87 
VLDL-TG 3601 2.49 3266 3.23 
LDL-TG 3621 1.95 3308 1.99 
HDL-TG 3618 2.03 3319 1.66 
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Table C.3: Normalisation of metabolites.  

 

Percentage of each metabolites normalised by each transformation method. 

TotPG 3642 1.38 3326 1.45 
PC 3648 1.22 3311 1.90 
SM 3641 1.41 3312 1.87 

TotCho 3637 1.52 3320 1.63 
ApoA1 3642 1.38 3328 1.39 
ApoB 3626 1.81 3312 1.87 
TotFA 3630 1.71 3311 1.90 
DHA 3602 2.46 3303 2.13 
LA 3638 1.49 3323 1.54 

FAw3 3616 2.09 3305 2.07 
FAw6 3639 1.46 3314 1.81 
PUFA 3640 1.44 3308 1.99 
MUFA 3611 2.22 3298 2.28 
SFA 3622 1.92 3302 2.16 
Lac 3516 4.79 3244 3.88 
Pyr 3578 3.11 3288 2.58 
Cit 3641 1.41 3302 2.16 

Glol 3624 1.87 3293 2.43 
Ala 3640 1.44 3338 1.10 
Gln 3642 1.38 3320 1.63 
Gly 3629 1.73 3328 1.39 
His 3634 1.60 3324 1.51 
Ile 3609 2.27 3284 2.70 

Leu 3635 1.57 3309 1.96 
Val 3621 1.95 3319 1.66 
Phe 3640 1.44 3328 1.39 
Tyr 3649 1.19 3320 1.63 
Ace 3594 2.68 3280 2.81 

bOHBut 3519 4.71 3184 5.66 
Crea 3654 1.06 3329 1.36 
Alb 3472 5.98 3158 6.43 
Gp 3630 1.71 3296 2.34 

Transformation used South Asian (%) White European (%) 
None 2.1 1.4 
Log 16.4 19.2 

Square Root 69.2 74.6 
Normal Score Transformation 12.3 4.8 
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Table C.4: Absolute deviations in λ from 1 in each ethnicity.  

 

Average differences of λ values from 1 in each ethnicity averaged across 
146 metabolite values. MAF: Minor Allele Frequency. 

 

 

 

MAF cut off White European South Asian 
MAF <0.001 0.184 0.047 

0.001≤ MAF <0.005 0.071 0.028 
0.005≤ MAF <0.01 0.070 0.030 
0.01≤ MAF <0.05 0.029 0.017 
0.05≤ MAF <0.10 0.020 0.026 
0.10≤ MAF <0.15 0.023 0.018 
0.15≤ MAF <0.20 0.011 0.010 
0.20≤ MAF <0.25 0.011 0.010 
0.25≤ MAF <0.30 0.015 0.012 
0.30≤ MAF <0.35 0.016 0.014 
0.35≤ MAF <0.40 0.022 0.014 
0.40≤ MAF <0.45 0.026 0.020 
0.45≤ MAF <0.50 0.022 0.023 
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Figure C.3: Plot of λ for each MAF cut-off by ethnicity. 

Top: λ values at varying MAF cut-offs in SAs. Bottom: λ values at varying MAF cut-offs in WEs. MAF: Minor allele frequency. 
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Figure C.4: PCA comparing BiB data to all SA data from 1000G. 

A: PCA plot of SA BiB and SA data from 1000G. BiB: Born in Bradford, BEB: Bengali in Bangladesh, GIH: Gujarati Indian from 
Houston, Texas. ITU: Indian Telugu in the UK. PJL: Punjabi in Lahore, Pakistan STU: Sri Lankan Tamil in the UK. B: PCA plot of 
BiB data (WE and SA) and South Asian and European data from 1000G. 
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Figure C.5: PCA comparing BiB data to all data from 1000G. 

A: PCA plot of PC1 vs PC2. B: PCA plot of PC2 vs PC3. C: PCA plot of PC3 vs PC4. PK_BIB: Pakistani BiB sample; WE_BIB: 
White European BiB Sample. 
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Figure C.6: Modified Appendix Figure C.5 including the Pakistani BiB and SA 1000G populations. 

A: Map of the Indian subcontinent with the location of each South Asian 1000G population illustrated. Brackets represent the 
country in which the sample was taken from. Colours of labels illustrate data points in PCA plots B: PC1 vs PC2. C: PC2 vs PC3. 
Base map for panel A was obtained from the rworld map package in R studio.  
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Table C.5: Number of SNPs identified in the GWAS analyses 
before and after LD thinning. 

Metabolite 
class Metabolite 

White European South Asian 
Suggestive 
(significant) Thinned Suggestive 

(significant) Thinned 

XXL-VLDL 

XXL-VLDL-P 25 4 1 1 
XXL-VLDL-L 55 9 29 1 

XXL-VLDL-PL 56 10 52 2 
XXL-VLDL-C 60 11 3 1 

XXL-VLDL-CE 64 6 6 2 
XXL-VLDL-FC 34 11 24 2 
XXL-VLDL-TG 65 11 24 1 

XL-VLDL 

XL-VLDL-P 44 7 53 5 
XL-VLDL-L 42 10 41 2 

XL-VLDL-PL 31 9 54 3 
XL-VLDL-C 31 6 13 3 

XL-VLDL-CE 26 7 17 4 
XL-VLDL-FC 38 8 24 4 
XL-VLDL-TG 42 10 50 3 

L-VLDL 

L-VLDL-P 11 3 58 4 
L-VLDL-L 15 4 69 5 

L-VLDL-PL 17 5 68 4 
L-VLDL-C 21 7 79 3 

L-VLDL-CE 17 5 27 4 
L-VLDL-FC 17 6 39 4 
L-VLDL-TG 24 5 43 5 

M-VLDL 

M-VLDL-P 26 5 53 1 
M-VLDL-L 222 47 102 6 

M-VLDL-PL 24 4 42 3 
M-VLDL-C 35 9 26 1 

M-VLDL-CE 16 7 89 8 
M-VLDL-FC 226 35 85 3 
M-VLDL-TG 254 33 91 5 

S-VLDL 

S-VLDL-P 52 5 24 3 
S-VLDL-L 47 4 25 1 

S-VLDL-PL 48 4 32 1 
S-VLDL-C 35 5 2 0 

S-VLDL-CE 11 5 7 3 
S-VLDL-FC 49 4 33 2 
S-VLDL-TG 12 6 193 24 

XS-VLDL 

XS-VLDL-P 10 8 6 1 
XS-VLDL-L 16 8 9 1 

XS-VLDL-PL 21 8 7 3 
XS-VLDL-C 14 5 2 2 

XS-VLDL-CE 23 9 1 1 
XS-VLDL-FC 18 9 8 2 
XS-VLDL-TG 61 8 59 5 

IDL 

IDL-P 7 4 13 3 
IDL-L 6 3 11 2 

IDL-PL 8 3 0 0 
IDL-C 5 3 1 1 

IDL-CE 10 6 7 1 
IDL-FC 5 1 0 0 
IDL-TG 28 10 2 1 

L-LDL 

L-LDL-P 7 2 6 1 
L-LDL-L 8 2 9 2 

L-LDL-PL 12 2 8 2 
L-LDL-C 10 3 8 1 
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L-LDL-CE 13 3 8 1 
L-LDL-FC 4 1 0 0 
L-LDL-TG 30 8 8 2 

M-LDL 

M-LDL-P 5 3 14 2 
M-LDL-L 6 2 14 2 

M-LDL-PL 6 1 7 1 
M-LDL-C 14 3 8 1 

M-LDL-CE 14 3 0 0 
M-LDL-FC 8 3 9 2 
M-LDL-TG 37 8 9 3 

S-LDL 

S-LDL-P 9 4 14 2 
S-LDL-L 11 3 9 2 

S-LDL-PL 33 5 1 1 
S-LDL-C 13 4 9 2 

S-LDL-CE 19 4 0 0 
S-LDL-FC 21 4 13 4 
S-LDL-TG 40 14 11 3 

XL-HDL 

XL-HDL-P 76 10 8 2 
XL-HDL-L 84 11 8 2 

XL-HDL-PL 48 10 10 2 
XL-HDL-C 52 13 5 1 

XL-HDL-CE 54 9 6 1 
XL-HDL-FC 41 9 12 3 
XL-HDL-TG 16 7 37 5 

L-HDL 

L-HDL-P 57 10 85 4 
L-HDL-L 57 12 83 4 

L-HDL-PL 63 6 61 4 
L-HDL-C 53 11 75 4 

L-HDL-CE 52 11 8 4 
L-HDL-FC 61 10 8 4 
L-HDL-TG 32 10 7 3 

M HDL 

M-HDL-P 32 11 7 3 
M-HDL-L 53 7 10 2 

M-HDL-PL 64 9 17 3 
M-HDL-C 49 13 2 1 

M-HDL-CE 36 13 6 2 
M-HDL-FC 74 12 13 3 
M-HDL-TG 20 6 1 1 

S-HDL 

S-HDL-P 56 8 1 1 
S-HDL-L 81 9 1 1 

S-HDL-PL 140 10 19 1 
S-HDL-C 19 4 3 2 

S-HDL-CE 12 4 9 3 
S-HDL-FC 76 9 3 2 
S-HDL-TG 57 7 18 2 

Lipoprotein 
Density 

VLDL_D 39 7 20 3 
LDL_D 20 6 46 5 
HDL_D 74 12 31 4 

Cholesterol 

Serum_C 62 4 19 3 
VLDL_C 23 3 0 0 

Remnant_C 39 8 11 5 
LDL_C 7 3 0 0 
HDL_C 58 8 63 4 
HDL2_C 67 9 31 6 
HDL3_C 63 6 12 3 

EstC 111 4 17 3 
FreeC 23 3 9 2 

Triglycerides 

Serum_TG 19 4 34 3 
VLDL-TG 17 7 50 3 
LDL-TG 22 8 8 1 
HDL-TG 49 11 49 2 
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TotPG 56 7 23 4 
PC 69 10 20 2 
SM 117 6 24 4 

TotCho 43 7 17 2 

Apolipoproteins ApoA1 58 10 32 6 
ApoB 33 6 13 4 

Fatty Acids 

TotFA 40 3 8 3 
DHA 33 5 4 1 
LA 17 2 5 2 

FAw3 69 2 2 1 
FAw6 21 1 15 3 
PUFA 26 1 20 4 
MUFA 47 5 28 1 
SFA 32 2 4 2 

Glycolysis 
Related 

Metabolites 

Lac 63 5 1 1 
Pyr 63 4 6 3 
Cit 156 12 32 6 
Glol 29 7 3 2 

Unbranched 
Amino Acids 

Ala 156 14 53 2 
Gln 5 2 2 2 
Gly 15 8 9 2 
His 127 7 9 5 

Branched Chain 
Amino Acids 

Ile 26 6 0 0 
Leu 32 7 1 1 
Val 6 4 8 3 

Aromatic Amino 
Acids 

Phe 5 3 59 4 
Tyr 11 5 23 (15) 2 

Ketone Bodies Ace 27 5 49 (1) 4 
bOHBut 23 6 0 0 

Fluid Balance 
and Inflammation 

Crea 108 13 52 6 
Alb 15 1 1 1 
Gp 22 5 2 2 

 
SNPs were classified as being in LD if their R2 value exceeded 0.2. Suggestive 
level: p value≤ 1 x 10-5. Numbers in brackets represent the number of SNPs 
associated at the genome wide significant level (p value≤ 5 x 10-8). 
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Figure C.7: Histograms showing the number of SNPs and the 
strength of in each instrument. 

A: Histogram of number of SNPs identified for each metabolite at the 
suggestive level (p value 1 x 10-5). B: Histogram of the number of SNPs 
remaining after thinning by LD (R2 >0.2). C: Histogram of the F statistics 
for each instrument. Dashed line shows  F statistic of 10. An F statistic < 
10 is an indicator of weak instrument bias. Blue: South Asians Red: 
White Europeans. 
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Figure C.8: Forest plots of β values following leave-one-out analyses for identified associations in WEs. 

Forest plots showing β values and 95% CIs following the leave-one-out analyses of each SNP in each instrument. Dashed line 
represents no effect. Associations shown in purple indicating associations with 2-hour post glucose while associations shown in 
blue indicate associations with fasting glucose. A: Leucine. B: HDL_D.  
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Figure C.8 continued: Forest plots of β values following leave-one-out analyses for identified associations in WEs. 
Forest plots showing β values and 95% CIs following the leave-one-out analyses of each SNP in each instrument. Dashed line 
represents no effect. Associations shown in purple indicating associations with 2-hour post glucose while associations shown in 
blue indicate associations with fasting glucose. C: HDLC. D: HDL2C. E: HDL3C. F: XS-VLDL-TG. G: XL-HDL-CE. H: L-HDL-P. 
I: L-HDL_L. J: L-HDL-C. K: S-HDL-CE. L: M-HDL-C. M: M-HDL-CE 
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Figure C.9: F statistics following leave-one-out analyses for identified associations in WEs. 

Dashed line indicates a F statistic of 10, below which an instrument is classified as weak. Associations shown in purple indicate 
associations with 2-hour post glucose while associations shown in blue indicate associations with fasting glucose. Green bars 
indicate metabolite measures associated with both fasting glucose and 2-hour post glucose. A: Leucine. B: HDL_D. 
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Figure C.9 continued: F statistics following leave-one-out analyses for identified associations in WEs. 
Dashed line indicates an F statistic of 10, below which an instrument is classified as weak. Associations shown in purple indicate 
associations with 2-hour post glucose while associations shown in blue indicate associations with fasting glucose. Green bars 
indicate metabolite measures associated with both fasting glucose and 2-hour post glucose. C: HDLC. D: HDL2C. E: HDL3C. F: 
XS-VLDL-TG. G: XL-HDL-CE. H: L-HDL-P. I: L-HDL_L. J: L-HDL-C. K: S-HDL-CE. L: M-HDL-C. M: M-HDL-CE. 
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Table C.6: Investigation of pleiotropy in MR analyses. 

 

 
 

Metabolite SNP GWAS Catalog Phenoscanner Gene 

Leucine 

rs11586886 - - - 
rs11241582 - - - 
rs2984433 - BMI, Obesity class 1, weight, ACTG1P9 
rs225598 - - - 

rs11270713 - - - 

rs73404871 - Mean corpuscular haemoglobin, mean corpuscular 
volume TRIM56 

rs879918 - Self-reported Hepatitis A - 

HDL_D 

rs13007852 - - - 
rs2320799 - - - 

rs13187167 - - - 
rs76030404 - - - 

rs153744 - - - 

rs55768285 - 

Height, sitting height, comparative height size at age 
10, trunk fat-free mass, whole body fat free mass, 

arm predicted mass (left and right), whole water body 
mass, arm fat free mass (left) 

RP11-
207F8.1 

rs10899584 - - - 
rs996382 - - - 

rs55890848 - - - 

A 
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rs35251956 - 

Other malignant neoplasms of skin, mean 
corpuscular volume, self- reported malignant 

melanoma, red blood cell count, mean platelet 
volume, self-reported basal cell carcinoma 

CPNE7 

rs12456654 - - - 
rs34733998 - - - 
rs16999687 - - - 

HDLC 

rs17525600 - Stomatitis and related lesions AC007682.1 
rs2555761 - - - 

rs10109848 - - - 
rs10219564 - - - 
rs7490538 - - - 

rs59137888 - - - 
rs16964949 - - - 
rs34733998 - - - 

HDL2C 

rs77662164 - - - 
rs2555761 - - - 

rs13200375 - - - 
rs10109848 - - - 
rs10219564 - - - 
rs7490538 - - - 

rs59137888 - - - 
rs16964949 - - - 
rs34733998 - - - 

HDL3C 

rs1104779 - - - 
rs6443637 - - - 
rs7490538 - - - 
rs7321144 - - - 
rs4555250 - - - 
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rs34733998 - - - 

XS-VLDL-TG 

rs11685644 - - - 
rs17168796 - - - 
rs77423873 - - - 
rs1573510 - Height OR5AL2P 

rs34447547 Total PHF- tau (SNP x 
SNP interaction) - - 

rs4781176 - Qualifications: college or university degree  
rs35085155 - Hand grip strength left AP000472.3 
rs28385583 - - - 

S-LDL-P 
rs10915339 - - - 
rs77266229 - - - 
rs10908948 Age at menarche Age at menarche UNQ6494 
rs35710612 - - - 

XL-HDL-CE 

rs7766216 - - - 
rs2555761 - - - 

rs10109848 - - - 
rs10219564 - - - 
rs9510560 - - - 
rs7321144 - - - 

rs55890848 - - - 
rs10402413 - - - 
rs6126252 - - - 

rs35380742 - - - 

L-HDL-P 

rs77662164 - - - 
rs2555761 - - - 

rs10109848 - - - 
rs10219564 - - - 
rs9510560 - - - 
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rs7321144 - - - 
rs55890848 - - - 
rs10402413 - - - 

rs6126252 - - - 
rs35380742 - - - 

L-HDL_L 

rs17525600 - Stomatitis and related lesions AC007682.1 

rs6811162 - Self-reported hypertension. Vascular or heart 
problems diagnosed by doctor: high blood pressure ENPEP 

rs77662164 - - - 
rs13200375 - - - 

rs2555761 - - - 
rs10109848 - - - 
rs10219564 - - - 

rs9510560 - - - 
rs7321144 - - - 

rs35163069 - - - 
rs6126252 - - - 

rs35380742 - - - 

L-HDL-C 

rs6811162 - Self-reported hypertension. Vascular or heart 
problems diagnosed by doctor: high blood pressure ENPEP 

rs6834601 - - - 
rs77662164 - - - 
rs13200375 - - - 

rs55768285 Waist circumference 
adjusted for BMI 

Height, sitting height, comparative height size at age 
10, Trunk fat-free mass, whole body fat free mass, 

arm predicted mass (left and right), whole water body 
mass, arm fat free mass (left) 

LINC01621, 
ELOVL4 

rs2555761 - - - 
rs10109848 - - - 
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rs10219564 - - - 
rs2028592 - - - 

rs35163069 - - - 
rs35380742 - - - 

M-HDL-C 

rs6663801 - Comparative height size at age 10 RP5-
855F14.2 

rs10033924 - - - 
rs79991518 - - - 
rs13171149 - - - 
rs62443510 - - - 
rs62445582 - - - 
rs76303188 - - - 
rs17073913 - - - 
rs10085955 - - - 

rs904558 - - - 
rs12578234 - - - 
rs7398018 - - - 

rs16964930 - - - 

M-HDL-CE 

rs6663801 - Comparative height size at age 10 RP5-
855F14.2 

rs10033924 - - - 
rs79991518 - - - 
rs62445582 - - - 
rs76303188 - - - 
rs17073913 - - - 
rs10085955 - - - 
rs17346889 - - - 
rs11593054 - - - 
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rs904558 - - - 
rs12578234 - - - 
rs2138011 - - - 
rs7398018 - - - 

S-HDL-CE 
rs11206525 - - - 
rs1881817 - - - 

rs12769447 - Lymphocyte count C10orf128 
rs9795921 - - - 

 
 

Metabolite SNP GWAS Catalog Phenoscanner Gene 

LA rs12720820 - Self-reported high cholesterol, coronary artery disease, treatment 
with cholesterol lowering medication APOB 

rs721632 - - - 
FAw3 rs7040631 - -  

FAw6 
rs12720820 - Self-reported high cholesterol, coronary artery disease, treatment 

with cholesterol lowering medication  

rs11683770 - mDC:%32+; mDC subset (CD32+)  
rs58865405 - -  

M-VLDL-L 

rs17028714 - -  
rs62294143 - -  
rs7856692 - -  

rs11597600 - -  
rs7224672 - -  

rs73481716 - -  
IDL-C rs41286967 - - - 

B 
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Bolded SNPs indicate potential confounders. A: Individual metabolites in White Europeans. B: Individual metabolites in South Asians.  

 
  

IDL-CE rs41286967 - - - 
L-LDL-P rs41286967 - - - 

S-LDL-PL rs41286968 - - - 
 rs3814329 - Sitting height RGL1 
 rs10207578 - - - 

L-HDL-PL rs6922 - - - 

 rs7486176 - Systolic blood pressure, vascular or heart problems diagnosed by 
doctor: high blood pressure, self-reported hypertension C12orf76 

S-HDL-L rs6490057 - - - 

S-HDL-C rs6679531 - - - 
rs9938230 - - - 



 

 260 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.10: Forest plots of β values following leave-one-out analyses for identified associations in SAs. 

Forest plots showing β values and 95% CIs following the leave-one-out analyses of each SNP in each instrument. Dashed line 
represents no effect. Associations shown in purple indicate associations with 2-hour post glucose while associations shown in 
blue indicate associations with fasting glucose. A: FAw6. B: LA. C: M-VLDL-L. D: L-HDL-PL. E: S-HDL-C. 
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Figure C.11: F statistics following leave-one- out analyses for identified associations in SAs. 

Dashed line indicates an F statistic of 10, below which an instrument is classified as weak Associations shown in purple indicate 
associations with 2-hour post glucose while associations shown in blue indicate associations with fasting glucose. A: FAw6. B: 
LA. C: M-VLDL-L. D: L-HDL-PL. E: S-HDL-C. 
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Figure C.12: Overlap of SNPs identified by class in WEs. 

Venn diagram showing the overlap between suggestive (p value 1 x 10-5) SNPs 
in WEs. SNPs in the apolipoprotein, lipoprotein density, ketone Bodies and fluid 
Balance/ inflammation, aromatic amino acids and non-branched amino acids 
were not found to overlap in WEs. Classes with ≥5 metabolites have been split 
for clarity. A: Fatty Acids. B: Cholesterols. C: Glycerides and Phospholipids. D: 
Glycolysis related metabolites. E: Branched amino acids. 
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Figure C.13: Overlap of SNPs identified by class in SAs. 

Venn diagram highlighting the overlap between suggestive (p value 1 x 10-5) 
SNPs in SAs. SNPs in the apolipoprotein, lipoprotein density, ketone Bodies and 
fluid Balance/ inflammation, and amino acids were not found to overlap in WEs. 
Classes with ≥5 metabolites have been split for clarity. A: Fatty Acids. B: 
Cholesterols. C: Glycerides and Phospholipids. D: Glycolysis related 
metabolites.  
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Table C.7: Percentage of variation explained by PC1 in each 
metabolite class. 

 

 

Percentage of variation explained by PC1 in the PCA analysis of each metabolite class 
following the removal of extreme outliers (3 x IQR). GWAS were performed on 
all classes with ≥ 2 metabolites where PC1 explained ≥70% of the variation.  

 

 

 

 

Metabolite class White 
Europeans 

South Asians 

XS-VLDL 88 91.5 
S-VLDL 96.8 91.8 
M-VLDL 98.9 95.6 
L-VLDL 98.5 99.0 

XL-VLDL 99.1 96.7 
XXL-VLDL 96.7 95.1 

All VLDL classes 91.9 86 
IDL 85.8 92.1 

S-LDL 98.0 97.5 
M-LDL 95.5 95.3 
L-LDL 92.5 91.7 

All LDL classes 95.0 94.5 
S-HDL 57.3 56 
M-HDL 92.1 97.3 
L-HDL 97.0 91.9 

XL-HDL 95.2 97.8 
All HDL classes 49.2 97.8 

Glycolysis Related Metabolites 63.9 51.7 
Fatty Acids 82.7 87.4 

Lipoprotein Density 80.9 72.2 
Cholesterol 69.7 59.7 

Glycerides and Phospholipids 79.1 81.5 
Branched Amino Acids 78.8 79.3 

Unbranched Amino Acids 48.3 84.8 
All Amino Acids 45.8 66 
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Table C.8: Correlation between PC1 and PC2 following outlier 
removal. 

 

 

 

Correlation between PC1 and PC2 following the removal of outliers (1.5 x IQR) and 
extreme outliers (3 x 1QR) in metabolite classes where PC1 explained ≥ 70 the 
variation in the metabolite class in at least one ethnicity. 

 

 

 

 

 

 

 PC1 PC2 

Metabolite Class 
White 

Europeans 
South 
Asians 

White 
Europeans 

South 
Asians 

XXL-VLDL 1 1 0.99 0.97 
XL-VLDL 1 1 0.99 0.59 
L-VLDL 1 1 -0.39 0.89 
M-VLDL 1 1 0.99 0.98 
S-VLDL -0.99 -0.99 0.99 0.97 

XS-VLDL 1 1 1 1 
All VLDL 1 1 1 1 

IDL -0.83 1 -1 -0.63 
L-LDL -0.79 1 0.99 0.53 
M-LDL 1 1 1 -1 
S-LDL 1 1 -0.37 0.98 

XL-HDL 1 1 1 1 
L-HDL 1 -0.79 1 1 
M-HDL 1 1 1 0.99 
S-HDL 1 1 1 1 
All HDL 0.94 0.94 1 0.41 

Lipoprotein Density 1 1 1 1 
Cholesterols 1 -0.95 1 0.95 

Glycerides and 
Phospholipids 1 0.97 1 0.84 

Fatty Acids 1 1 0.99 1 
Branched Amino Acids 1 1 1 1 

Unbranched Amino Acids 1 1 1 1 
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Table C.9: Number of SNPs identified in the GWAS analysis before 
and after LD thinning for the analysis in each class. 

 

 

SNPs were classified as being in LD if their R2 value exceeded 0.2. Suggestive level 
(p value ≤ 1 x 10-5). 

 

 

 

 

 

 

 

 

 White European South Asians 
Metabolite class Suggestive Thinned Suggestive Thinned 

XS-VLDL 18 7 1 1 
S -VLDL 9 3 1 1 
M-VLDL 9 4 1 1 
L-VLDL 10 2 27 2 

XL-VLDL 11 4 1 1 
XXL-VLDL 34 5 1 1 

All VLDL classes 21 10 16 6 
IDL 41 12 8 2 

S-LDL 31 4 5 3 
M-LDL 18 7 1 1 
L-LDL 24 10 2 3 

All LDL classes 17 7 2 2 
M-HDL - - 15 3 
L-HDL 37 3 10 3 

XL-HDL 38 2 4 2 
All HDL classes - - 5 3 

Fatty Acids 38 11 18 3 
Lipoprotein Density 11 5 27 5 

Cholesterol 46 8 - - 
Glycerides and Phospholipids 16 6 15 2 

Branched Amino Acids 10 7 2 2 
Unbranched Amino Acids - - 58 5 
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Figure C.14: Histograms of the number of SNPs and strength of 
each instrument in the analysis of each metabolite class. 

A: Histogram of number of SNPs identified for each metabolite class at the 
suggestive level (p≤ 1 x 10-5). B: Histogram of the number of SNPs remaining 
after thinning by LD (R2>0.2).C: Histogram of the F statistics for each instrument. 
Dashed line shows an F statistic of 10. An F statistic < 10 is an indicator of weak 
instrument bias. Blue: SAs. Red: WEs.
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Figure C.15: Forest plots of β values following leave-one-out analyses for identified associations in the 
analysis of metabolite class. 

Forest plots showing β values and 95% CIs following the leave-one-out analyses of each SNP in each instrument. Dashed line 

represents no effect. Associations shown in purple indicate associations with 2-hour post glucose while associations shown in 

blue indicate associations with fasting glucose. A: Fatty acid class, SAs. B: XL-HDL class, WEs. C: M-LDL class, WEs. D: All 

LDL class, WEs. E: S-LDL class, WEs. 
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Figure C.16: F statistics following leave-one-out analyses for identified associations in the analysis of 
metabolite classes. 

Dashed line indicates an F statistic of 10, below which an instrument is classified as weak. Associations shown in purple 

indicating associations with 2-hour post glucose while associations shown in blue indicate associations with fasting glucose. 

Green bars indicate metabolite measures associated with both fasting glucose and 2-hour post glucose. A: Fatty acid class, 

SAs. B: XL-HDL class, WEs. C: M-LDL class, WEs. D: All LDL class, WEs. E: S-LDL class, WEs.  
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Table C.10: Investigation of pleiotropy in MR analyses of metabolite classes. 

 

Ethnicity Metabolite 
group SNP GWAS Catalog Phenoscanner Gene 

White 
Europeans 

XL-HDL 

rs16999687 - - - 
rs34733998 - - - 
rs28446733 - - - 
rs9926366 - - - 
rs7321144 - - - 
rs10219564 - - - 
rs11237706 - - - 

rs55768285 Waist circumference 
adjusted for BMI 

Height, sitting height, comparative height at age 10, trunk fat-
free mass, trunk predicted mass, whole body fat-free mass, arm 
predicted mass (left and right), whole body water mass, arm fat-

free mass (left), forced vital capacity 

LINC01621, 
ELOVL4 

rs139019016 - - - 

M-LDL 

rs5766358 - - - 
rs29863 - - - 

rs12419613 - - - 
rs2247545 - - - 
rs4489027 - - - 
rs7577530 - - - 
rs10915339 - - - 

S-LDL 

rs5766358 - - - 
rs29863 - -  

rs12419634 Primary biliary 
cholangitis - POU2AF1 

rs62447465  treatment with Berroca effervescent tablet CDCA7L 

All LDL 
classes 

rs132057 - Tinnitus severity or nuisance - 
rs29863 - - - 

rs12419613 - - - 
rs79596299 - - - 
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rs2247545 - - - 
rs4489027 - - - 
rs7577530 - - - 

South 
Asians Fatty Acids 

rs7159441 - - - 
rs55728495 - - - 
rs12720820 - Self-reported high cholesterol APOB 
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Table C.11: Post-hoc power analysis 

 

       Power (α = 0.05) Power (α = 0.01) 

Analysis Group True β Obs R2 
Variance 

of 
exposure 

Variance 
of 

Outcome 

β from 
Unadjusted 

linear 
regression 

β from 
MR 

β from MR 
in 

significant 
ethnicity 

β from  
MR 

β from MR 
in 

significant 
ethnicity 

FAw3 
 

Fasting 

SA 0.00662 -0.00646 0.00552 0.0257 0.0130 0.05 - - - - 
WE 0.00327 0.0368 0.0139 0.0260 0.00819 0.05 0.98 0.99 0.93 0.97 

FAw6 
 

2-hour 

SA -0.000584 -0.0121 0.0176 0.0322 0.0623 0.05 - - - - 

WE 0.00341 0.0303 0.00633 0.0261 0.0566 0.05 0.07 0.25 - - 

LA 
 

2-hour 

SA -0.00128 -0.00948 0.0113 0.0292 0.0624 0.05 - - - - 

WE 0.00335 0.0231 0.0125 0.0264 0.0567 0.05 0.34 0.47 - - 

M-VLDL-L 
 

2-hour 

SA -0.00333 -0.00212 0.0363 1.34 0.0617 0.05 - - - - 

WE 0.00540 0.00623 0.237 0.457 0.0564 0.07 0.95 0.35 0.85 0.16 

IDL-C 
 

2-hour 

SA -0.00365 -0.0772 0.00556 0.0129 0.0623 0.05 - - - - 

WE 0.0223 0.0646 0.0191 0.0127 0.0564 0.05 0.11 0.97 0.03 0.9 

IDL-CE 
 

2-hour 

SA -0.00615 -0.0966 0.00571 0.00925 0.0623 0.05 - - - - 
WE 0.0315 0.0767 0.0311 0.00908 0.0566 0.05 0.05 1 0.01 0.99 

A 
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L-LDL-P 
 

2-hour 

SA 5.51E+03 22.9 0.0220 3.27E-08 0.0625 1 - - - - 

WE 4.76E+03 17.3 0.0605 3.46E-08 0.0565 1 1 1 1 1 

S-LDL-PL 
 

2-hour 

SA -0.0179 -0.183 0.00549 0.00130 0.0624 0.05 - - - - 

WE 0.145 0.221 0.03193 0.00127 0.0566 0.06 0.38 1 0.18 1 

L-HDL-PL 
 

2-hour 

SA 0.0187 0.0372 0.0227 0.00867 0.0624 0.05 - - - - 

WE 0.0163 0.0311 0.0408 0.00912 0.0566 0.05 0.33 0.88 0.15 0.71 

S-HDL-L 
 

2-hour 

SA 0.00781 0.0105 0.00599 0.0116 0.0624 0.05 - - - - 

WE -0.00316 -0.0415 0.0546 0.0115 0.0565 0.05 0.24 1 0.09 1 

S-HDL-C 
 

2-hour 

SA -0.0126 0.00359 0.0176 0.00166 0.0623 0.05 - - - - 

WE 0.0370 0.0419 0.0245 0.00164 0.0566 0.05 0.05 0.33 - - 

       Power (α = 0.05) Power (α = 0.01) 

Analysis Group True β 
 Obs R2 

Variance 
of 

exposure 

Variance 
of 

Outcome 

β from 
Unadjusted 

linear 
regression 

β from 
MR 

β from MR 
in 

significant 
ethnicity 

β from 
MR 

β from MR in 
significant 
ethnicity 

Fatty 
Acids 

 
2-hour 

SA 0.000693 -0.000612 0.0175 6.86 0.01308 0.047 - - - - 

WE 0.00380 0.00650 0.0518 1.19 0.00814 0.028 1 1 1 1 

B 
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       Power (α = 0.05) Power (α = 0.01) 

Analysis Group True β Obs R2 
Variance 

of 
exposure 

Variance 
of 

Outcome 

β from 
Unadjusted 

linear 
regression 

β from 
MR 

β from MR 
in 

significant 
ethnicity 

β from 
MR 

β from MR 
in 

significant 
ethnicity 

Leucine 
 

Fasting 
2-hour 

WE -0.129 -0.0220 0.0428 0.0161 0.00813 1 - - - - 
SA -0.0672 -0.0117 0.00195 0.0170 0.0131 0.05 0.04 0.08 - - 
WE -0.00698 -0.0143 0.0428 0.0161 0.0566 1 - - - - 
SA -0.0881 -0.0334 0.00195 0.0170 0.0621 0.05 0.3 0.09 - - 

HDL_D 
 

Fasting 
2-hour 

WE -0.00144 0.00367 0.0747 0.0415 0.00816 0.05 - - - - 
SA 0.00591 0.00626 0.0229 0.0395 0.0131 0.05 0.05 0.25 - - 
WE -0.00133 0.0211 0.0747 0.0415 0.0565 0.05 - - - - 
SA 0.0117 0.00682 0.0229 0.0395 0.0621 0.05 0.08 0.28 - - 

HDLC 
 

2-hour 

WE 0.00654 0.0140 0.0515 0.0155 0.0565 0.05 - - - - 

SA 0.00592 0.0223 0.0171 0.0148 0.06241 0.05 0.11 0.2 - - 

HDL2C 
 

2-hour 

WE 0.00636 0.0142 0.0584 0.0183 0.0566 0.05 - - - - 

SA 0.00617 0.00823 0.0200 0.0966 0.0623 0.05 0.08 0.82 0.02 0.62 

HDL3C 
 

2-hour 

WE 0.0931 0.183 0.0381 0.000698 0.0566 0.05 - - - - 

SA 0.0598 0.0676 0.0676 0.000658 0.0622 0.05 0.92 0.71 0.79 0.47 

XS-VLDL-TG 
 

2-hour 

WE 0.0625 0.0984 0.0501 0.00242 0.0564 0.05 - - - - 

SA 0.0230 -0.0335 0.0296 0.00244 0.0619 0.05 0.33 0.4 - - 

S-LDL-P 
 

2-hour 

WE 8.31E+04 1.42E+02 0.0243 3.01E-09 0.0565 1 - - - - 

SA -1.74E+04 -139.5 0.0114 3.06E-09 0.0624 1 0.05 0.05 - - 

XL-HDL-CE 
 

2-hour 

WE 0.0525 0.0745 0.0603 0.00506 0.0567 0.06 - - - - 

SA 0.0314 -0.0102 0.00600 0.00477 0.0618 0.05 0.45 0.11 - - 

L-HDL-P 
 

2-hour 

WE 4.76E+03 17.3 0.0605 3.46E-08 0.0565 1 - - - - 

SA 5.51E+03 22.9 0.0220 3.27E-08 0.0625 1 0.31 0.29 - - 

L-HDL-PL 
 

2-hour 

WE 0.00732 0.0225 0.0722 0.0226 0.0565 0.05 - - - - 

SA 0.00857 0.0297 0.0218 0.0214 0.0625 0.05 0.31 0.28 - - 

L-HDL-C WE 0.0129 0.0214 0.0669 0.0138 0.0565 0.05 - - - - 

C 
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2-hour SA 0.00149 0.0296 0.0223 0.0130 0.0623 0.05 0.2 0.21 - - 

M-HDL-C 
 

2-hour 

WE -0.0357 -0.0592 0.06553 0.00503 0.00814 0.07 - - - - 

SA -0.0184 -0.0253 0.00614 0.00991 0.01304 0.05 0.15 0.12 - - 

M-HDL-CE 
 

2-hour 

WE -0.0450 -0.0680 0.0362 0.00398 0.00814 0.06 - - - - 

SA -0.0240 -0.0314 0.0114 0.00629 0.0130 0.05 0.16 0.3 - - 

S-HDL-CE 
 

2-hour 

WE 0.0370 0.0419 0.0245 0.00164 0.0566 0.05 - - - - 
SA -0.01257 0.00359 0.01757 0.00166 0.06233 0.05 0.08 0.6 - - 
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Tables showing post-hoc MR calculation from mRND (https://shiny.cnsgenomics.com/mRnd/). Observational associations were 

obtained from linear regression models adjusted for maternal age (years), BMI (continuous), smoking status, multiple pregnancy, 

parity, and gestational age. Initial true β estimates were obtained from unadjusted linear regression models.. Additional power 

analyses were performed in the non-significant ethnicity to determine the power to predict the β estimate obtained from the MR 

analyses and the power to detect the β estimate from the significant model in the alternative ethnicity. If the power from either 

analysis exceeded 80% then power was also calculated for α = 0.01. Obs: β from adjusted observational studies A: Individual 

metabolite analysis in South Asians. B: Analysis of metabolite classes in South Asians. C: Analysis of Individual metabolites in 

White Europeans. D: Analysis of metabolite classes in White Europeans.  

 

 

       Power (α = 0.05) Power (α = 0.01) 

Metabolite 
Class Group True β Obs R2 

Variance 
of 

exposure 

Variance 
of 

Outcome 

β from 
Unadjusted 

linear 
regression 

β 
from 
MR 

β from MR 
in 

significant 
ethnicity 

β 
from 
MR 

β from MR in 
significant 
ethnicity 

XL-HDL 
 

2-hour 

WE -0.00536 -0.00886 0.0585 0.4555 0.0565 0.06 - - - - 

SA 0.00192 0.00120 0.0109 2.57 0.0623 0.05 0.45 1 0.23 1 

S-LDL 
Fasting 
2-hour 

WE 0.000358 -0.000274 0.0227 1.57 0.00814 0.05 - - - - 
SA 0.000358 0.000672 0.0171 0.964 0.0131 0.05 0.92 1 0.78 7 
WE -0.00363 -0.00694 0.0227 1.57 0.0565 0.05 - - - - 
SA -0.00215 0.00662 0.0171 0.964 0.0622 0.05 0.19 1 0.78 0.98 

M-LDL 
 

Fasting 
 

WE -1.39E-04 0.000253 0.0409 2.69 0.00814 0.05 - - - - 

SA 0.000672 0.000405 0.00572 2.25 0.0131 0.05 0.58 0.58 - - 

All LDL 
 

Fasting 
 

WE -1.26E-04 0.000219 0.0409 5.19 0.00814 0.05 - - - - 

SA -0.000492 -0.000285 0.00138 4.10 0.0131 0.05 0.05 0.06 - - 

D 
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Figure C.17: Heat maps highlighting p values above the suggestive 
level between ethnicities for fatty acids. 

A: TotFA, B: PUFA, C: MUFA, D: SFA, E: FAw3, F: FAw6, G: LA, H: DHA
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Appendix D 
Online supplementary data for Chapter 5 
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