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Abstract

Blockchain technologies enable a number of new ways to gamble online.

Very little is known about engagement with one such new way of gambling:

decentralised gambling applications, which provide simple casino games like

dice rolls and coin flips. This is important as understanding engagement

with any type of gambling is a crucial first step to assessing the risk of

experiencing gambling related harm within the population. This thesis

first surveys existing literature for methods of describing engagement in

gambling, and then applies these methods to actual transaction data gathered

from several decentralised gambling applications. This replication-oriented

approach means results can be grounded against existing findings, and the

descriptions of player engagement in this new domain have some context

for comparison. It also means that descriptions can be tentatively mapped

to similar scenarios, such as risk of experiencing gambling related harm in

other studies. The results of several replication oriented studies presented

herein find that engagement in the decentralised gambling domain is typically

less than in comparable online casino games, but that a heavily involved

subgroup is more involved. It also finds that engagement with gambling-

like mechanisms in blockchain games is much less than in decentralised

gambling applications, guiding future studies in gambling research away from

blockchain games despite their mechanical similarities. Finally, behavioural

groups in the decentralised gambling domain do not appear to be comparable

with existing research in the centralised online casino game domain. The

results of these studies provide a first look at engagement in this emerging

domain, a comparative description with similar forms of gambling, and a

description of behavioural groups, which provides essential context for further

research to asses the scale of the risk of experiencing gambling related harm.
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Chapter 1

Introduction

“Computer science is no more about computers

than astronomy is about telescopes.”

Edsger Dijkstra

Cryptocurrency technologies enable a number of new ways to gamble on-

line [5]. One such way is through the use of decentralised applications, which

process payments and calculate game outcomes using code executed within

a cryptocurrency blockchain. Recent advances in cryptocurrency technology

mean that several such applications now exist, and provide simple casino

games such as dice rolls and coin flips to a global audience. The technical

properties of such applications means that they are resistant to regulatory

actions commonly taken against unlicensed operators [6]. Additionally, their

relative youth, in combination with their technical sophistication, mean

that academic research into such applications has been limited [7]. This

means that the way in which players engage with these applications is largely

unknown, despite its importance to policy decisions and consumer protection

efforts. This is the problem that this thesis aims to address.

1.1 Motivation

A small portion of players who engage in gambling experience some form

of gambling related harm [8]. By understanding how people engage with

different types of gambling, and how these types of engagement relate to

experiencing such harms, existing studies have provided essential evidence

to policy makers and regulators with the hope of mitigating these potential

1
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harms. A foundational step in performing such studies is understanding

how players engage with different types of gambling at the population

level. Developing an understanding of player engagement in cryptocurrency

gambling through decentralised applications is the first step on the long

journey of reducing harms in this emerging domain.

1.2 Research Questions

This thesis aims to establish an understanding of player behaviours in the

cryptocurrency gambling domain. Specifically, it focuses on the use of

decentralised applications which offer simple casino games like dice rolls and

coin flips. This aim can be broken down into the following set of research

questions;

1. Which cryptocurrency transaction data be used for gambling research?

(a) How can this data be accessed?

(b) Does this data need preprocessing?

2. Which analytical methods can be meaningfully applied?

(a) Which behavioural measures can be computed?

(b) How can they be used?

3. How prevalent are decentralised gambling applications?

(a) Which applications may provide the most data?

4. What are player behaviours in these applications?

(a) How do they compare to other forms of gambling?

5. Which behavioural groups exist in this domain?

(a) How prevalent are they within the population?

(b) How do they compare to other forms of gambling?

1.3 Thesis Outline

The research presented in this thesis covers six studies which broadly map

to the research questions outlined above. These are;
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Behavioural Clustering in
Crypto Gambling
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Figure 1.1: The structure of the chapters in this thesis, with arrows indicating
logical dependencies between chapters.

1. A Systematic Review of Behavioural Measures used in Player Behaviour

Tracking Research

2. Decentralised Gambling Application Prevalence

3. Blockchain Game Prevalence

4. Behavioural Distributions in Decentralised Gambling Applications

5. Behavioural Distributions in Blockchain Games

6. Behavioural Groups in Decentralised Gambling Applications

These studies are distributed throughout this thesis, following the struc-

ture presented in Figure 1.1. From this list of studies and structure, it is

clear that a portion of this thesis is dedicated to blockchain games, rather

than decentralised gambling applications. This is because such games can

contain randomised reward mechanisms, which are mechanically similar to

the simple casino games offered by the gambling applications [9]. The exact

similarities are expanded upon in Chapters 6 and 8, but in the context of

this thesis such mechanisms are considered a unique form of cryptocurrency

gambling via a special case of decentralised gambling applications, so are

therefore of interest.
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1.4 Scope

This thesis does not explore all types of gambling using cryptocurrency [5].

Instead, it focuses exclusively on transactions to and from decentralised

gambling applications, which execute bet placement functions atop a cryp-

tocurrency network (see Chapter 2). This means that although the work

in this thesis develops our understanding of the use of these applications

in particular, the findings may not apply more broadly to other forms of

cryptocurrency gambling such as gambling using cryptocurrency as stake in

a regular casino. Additionally, this thesis focuses on simple casino games

such as dice rolls and coin flips, as these are the most prevalent in available

applications. This means that findings may not generalise to other types of

gambling activity within cryptocurrency gambling.

Each of the studies in this thesis are also limited to the data available on

the Ethereum cryptocurrency blockchain, chosen as it is the largest (by market

capitalisation) and oldest network which explicitly enables the creation of

decentralised gambling applications. While other cryptocurrencies do exist

which contain the functionality needed to create such applications, these

other currencies are not considered in scope of this thesis. This limitation

is a result of the finite hours available to study different cryptocurrencies

and applications, and means that while this work presents the beginning

of academic research into such applications, much more can be done in the

future.

In addition to this thesis’ focus being on the Ethereum network, all

subsequent analyses retain the native currency of the Ethereum network

(ETH) for reporting. This means that throughout this thesis, the values

of bets, payouts, and any derivative values are all described in terms of

ETH rather than USD, GBP, or any other fiat currency. This approach

has been taken over any ‘real value’ conversions (to USD for example)

as in order to make such a conversion, the fundamental assumption that

gamblers are buying, gambling, and then cashing out, their cryptocurrency

close to the point of gambling must be met, due to the inherent volatility

of cryptocurrencies in general and ETH in particular. Given the limited

research into the use of decentralised gambling applications, the exact timings

regarding player purchasing and selling cryptocurrency remains unknown.

Until a description of these behaviours specific to the applications explored in
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this thesis are published, it is difficult to commit to such a hard assumption

and therefore more appropriate to retain the ‘native’ currency of ETH.

1.5 Contributions

The novel contributions presented in this thesis include parts of work pre-

viously published in peer reviewed conferences and an academic journal.

Study 1 focuses on charting the development of the field of player behaviour

tracking. This study reveals that despite consistent innovation across the

field in terms of creating new behavioural measures, a core set of established

measures exist which have been broadly applied across different gambling

domains. A second key finding of this study is that in order to understand

gambling in new domains, this set of established measures can be applied

using transaction data alone in order to generate a meaningful description of

behaviours upon which further work can be built.

Studies 2 and 3 focus on research question 3, and present both an

overview of the scale of the usage of decentralised applications, and candidate

applications whose available data invites analysis in a resource-efficient way.

These studies each provide broader context for the later studies in this thesis,

and provide empirical support for the choice of applications in these studies.

Study 4 applies the findings from Study 1 to the data gathered from

leading decentralised gambling applications uncovered in Study 2. This

presents the first ever behavioural description of players in this domain, and

suggests that while the majority of players in this emerging domain do not

engage with these applications very heavily, a small portion of players do

spend extreme amounts. This is compared against similar studies in different

domains, building a picture of the differences and similarities in behaviours

between these domains.

Study 5 applies the findings from Study 1 to specific gambling-like

mechanisms found in blockchain games. This reveals that the way in which

players engage with these gambling-like mechanisms is very different from

how players engage with comparable simple casino games, specifically that

their financial involvement is far lower. These results suggest, at least in

the cryptocurrency domain, that despite growing evidence of a link between

problem gambling and engagement with such mechanisms, more research is

needed to understand how/if this link actually affects player behaviours.
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Study 6 extends Study 4 by applying behavioural clustering techniques

in order to understand the distribution of behaviours within the population.

This study finds that although a single ‘high activity, high variability’ group

is not empirically identified as in comparable research [3], several groups

exhibit extreme behaviours which suggest further research is required.

These contributions are important for the field of player behaviour track-

ing, as they demonstrate that cryptocurrency transaction data is in-fact

useful for academic research, and suggest that the use of decentralised gam-

bling applications is a unique method of gambling worth academic inquiry in

its own right. As the use of cryptocurrency technology for gambling matures,

one can expect to see more advanced casino games, sports betting, and other

gambling activities provided in this way. This means that although this

thesis focuses on simple casino games, its methodology may be later applied

to understand and compare behaviours across other cryptocurrency gambling

activities. A more detailed discussion of these contributions with reference

to the research questions posed in Section 1.2 is deferred to Chapter 10.



Chapter 2

Cryptocurrency

Fundamentals

“Cryptography is the ultimate form of non-violent

direct action.”

Julian Assange

Cryptocurrencies are an advanced technology which make use of a num-

ber of different cryptographic and computational concepts. This chapter

introduces these concepts, providing a necessary technical background to the

subsequent chapters in this thesis. Section 2.1 introduces the necessary cryp-

tographic primitives for understanding subsequent sections in this chapter.

Section 2.2 then introduces blockchains - a type of data structure used in all

cryptocurrencies. Section 2.2.2 then introduces distributed computing, with

subsections describing how this concept can be combined with blockchains

to provide distributed storage, and how this storage can be synchronised

across the network. Section 2.3 then describes how cryptographic primitives,

blockchain data structures, and distributed computing can be combined to

create cryptocurrencies. Finally, Section 2.4 describes how applications can

be built atop these cryptocurrencies, followed by a summary.

2.1 Cryptographic Primitives

Cryptographic primitives are a basic building block for higher-level cryp-

tographic algorithms [10]. A basic knowledge of several such primitives is

7
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necessary in order to understand how they are used to achieve different design

goals in both blockchains and cryptocurrencies. The primitives important to

discussion of cryptocurrencies are hash functions, asymmetric cryptosystems,

and digital signatures.

2.1.1 Hash Functions

A hash function is an algorithm which takes an arbitrary length string and

compresses it into a fixed length output [11]. These functions are also ‘one-

way’, meaning that the data used as input cannot be determined from the

output (a property known as preimage resistance). Further, for many hash

functions a desired input cannot be computed which has the same output

as a given output (known as second preimage resistance). Examples of

hash functions include SHA-256 [12], Keccak-256 [13], and MD5 [14]. These

functions are deterministic, which means that for any given input the output

is always the same. This is a desirable property because for a given piece

of data they can be used to generate a fixed length unique summary or

fingerprint of that data. This can be used to provide the security notion

of integrity, which means that if given a purported piece of data, and its

original hash, one can cryptographically confirm that the data in question

has not been maliciously modified1. Figure 2.1 shows how a hash function

can be used to compare two ‘copies’ of a piece data; an original (left), and one

which has been maliciously modified (right). The ability of a hash function

to provide a fixed length, unique summary of a piece of data, which can be

used to check its integrity, makes them very useful in data structures where

integrity is required (See Section 2.2).

2.1.2 Asymmetric Cryptosystems

Asymmetric cryptosystems, or public-key cryptosystems, are systems which

use a pair of cryptographic keys to perform cryptographic tasks like encryption

and digital signing [15]. The central component of these systems is a key

generation algorithm, which for a given input (typically a large random

number) generates two mathematically related numbers, called keys. These

keys are related in that data encrypted using one key (public key) can be

1Assuming a secure channel is available to share the hash, and except in the case of a
collision, which in practical terms is extremely unlikely
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Data Data

Hash Hash

0xA53B2EE21... 0x89B2DF473...

Figure 2.1: Visual example of how the output of a hash function on a piece
of data, and the same data which has been maliciously modified (red boxes
signify malicious changes), are different.

decrypted by the other (private key). When used for encryption, asymmetric

cryptosystems can be used to provide confidentiality - that only the intended

recipient can decipher a message. Asymmetric cryptosystems are most

relevant for their use in creating digital signatures, which combine the

unique summary capabilities of hashing algorithms above with asymmetric

encryption to create a way to ensure that not only has a message not been

maliciously modified, but that it is indeed from the original sender.

2.1.3 Digital Signatures

Digital signatures are a way to create unique summaries of data similar to

hash functions, which can then be verified to have been created by a specific

person [16]. They achieve this by implementing a key generation algorithm,

a signing algorithm, and a verification algorithm, the usage for which is

shown in Figure 2.2. Examples of digital signature algorithms are RSA [17],

ElGamal [18], and NTRUSign [19].

The ability of digital signatures to create and verify summaries of data

which can be linked to an individual mean that they provide authenticity -

that the message was indeed from the original sender, and integrity - that

the message was not maliciously altered. This is an essential requirement in

scenarios where the identity of the sender is relevant to the content of the data,

such as financial transfer requests, and is why they find several applications

in cryptocurrency implementations (See section 2.3). Before discussing how

each of these primitives function in cryptocurrencies in general, two other

concepts require brief discussion - blockchains, and distributed computing.
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Figure 2.2: Visualisation of how the three functions of a digital signature
scheme (key generation, signing function, and verification function) interact
to provide authenticity to a given piece of data using a public-private key
pair.
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Hash(2)

1 2 30

Figure 2.3: A simple blockchain with a genesis block and three appended
blocks. Each appended block contains a hash of the previous block, forming
a singly linked append-only chain.

2.2 Blockchains

A blockchain is a data structure in which pieces of data (known as blocks)

are appended to one another to form a chain [20]. They are also stored in a

distributed way across a network of computers, and use a consensus mecha-

nism to securely append new blocks. This section describes the fundamental

concepts behind blockchains, including dedicated sections to distributed

computation (2.2.2), and consensus mechanisms (2.2.3).

2.2.1 Data Structure

The process of appending a block to a blockchain includes computing and

storing a cryptographic hash (see Section 2.1.1) of the previous block. This

cryptographic hash can be considered a unique summary, or fingerprint, of

the data in that block. Since each block contains a hash of the previous

block, and that block contains the hash of its previous block, and so on,

this appending process creates a one-way (singly linked) chain of blocks - a

blockchain (see Figure 2.3) [15]. The only exception to this process is the

very first block in the chain, known as the genesis block. The genesis block

can contain anything its creator sees fit, such as details about the sizes of

blocks in the chain or parameters for the hashing algorithm, and can be

thought of as the starting point, or root, of all of the subsequent blocks and

hashes in the blockchain.

2.2.2 Distributed Computing

Computers connected to one another via the internet can communicate to

complete tasks and store data, forming a distributed computing network [21].

These tasks can range from solving complex problems such as protein folding
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[22], to storing pieces of data [23], to routing communications in unpredictable

ways [24][25][26]. One way in which a distributed network of computers can

be used is to store a blockchain. When storing a blockchain, each of the

computers in the distributed network is responsible for storing a copy of the

given blockchain, and can be referred to as a nodes [27]. In practical terms,

each node is running an instance of an identical piece of software which

contains all of the functionality needed to gather existing blocks from other

nodes in the network. In addition to simply storing whatever the current

state of the blockchain is, nodes need to be able to append new blocks to the

blockchain as new data is added, and have these new blocks be distributed

to other nodes in the network. The exact process by which all of these nodes

reach a consensus on which new block to append and distribute is called a

consensus mechanism [28].

2.2.3 Consensus Mechanisms

Blockchains have new blocks appended to them over time, so require some

mechanism by which this can be achieved. This becomes somewhat complex

as all of the computers in the network must each agree to make additions to

their stored chains in a certain way, and must therefore reach some sort of

consensus amongst themselves as to the content and order of new blocks in

the chain. This way of adding new blocks to the chain is commonly referred

to as a consensus mechanism, and is an important mechanism for the security

of the underlying blockchain, as the introduction of new (or malicious) blocks

in the chain may affect the cumulative values of previous items in the chain.

The nodes on the network which participate in this consensus mechanism are

called miners. An in depth discussion around different consensus mechanisms

is not essential to understanding further work in this thesis, but Wang et al

provide a recent (2019) survey [28] which contains a description of several

consensus mechanisms used in blockchain networks for reference.

So far this chapter has described how cryptographic hashing and dis-

tributed computing can be used to create a decentralised data structure

which is resistant to malicious modification. To summarise;

• A blockchain is a distributed append-only data structure

• The computers across which a blockchain is distributed are called nodes
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• Nodes use consensus mechanisms to add new blocks to a blockchain

One such data type which particularly benefits from the combination

of distributed storage and blockchains is financial transaction data, as this

can ultimately result in a censorship resistant, globally distributed payment

processing network supported by robust cryptographic principles. The

following section describes exactly how this next step (from blockchains

to cryptocurrencies) is made, and introduces the main topic in this thesis;

cryptocurrencies.

2.3 Cryptocurrencies

Cryptocurrencies work by storing copies of a blockchain containing transac-

tion data across a distributed network of computers [29]. This means each

computer on the network is running a program which communicates with

other computers in that network to synchronise and update a blockchain. As

discussed in the previous section, these networks must each have a shared

understanding of how the blockchain will be updated, called a consensus

mechanism, and details about what data the contents of each block should

be. The exact synchronisation and consensus mechanisms used vary between

cryptocurrencies, and are typically unique between any two cryptocurrencies

although this is not always the case [28][30].

The first cryptocurrency to function in this distributed and consensus

driven way was Bitcoin, which was first published under the pseudonym

Satoshi Nakamoto on the 31st of October 2008 [31]. However, several similar

variants of what we now know as cryptocurrencies, or digital cash, had been

attempted before this. Of these precursors, David Chaum’s eCash - based

on his cryptographic primitive of blind signatures published in 1983 [32] - is

generally similar to Bitcoin in its architecture, but failed to gain widespread

use following its implementation in 1995. Similarly, Wei Dai’s B-money

employed similar ideas in 1998 [33], again failing to gain widespread use.

Finally, Nick Szabo’s Bit Gold published in the same year [34] shares many

similarities with all of the above, but was never implemented - although

many of Szabo’s ideas are identical to those presented in Satoshi Nakamoto’s

Bitcoin paper published a decade later [31]. These precursors to Bitcoin,

and indeed the vast collection of cryptocurrencies that followed, do however

highlight the pace of innovation in this new and emerging technology. A
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key innovation that separates these precursors from their more successful

descendants is the idea that they could store more than simply a record of

transactions within their blockchains.

More advanced cryptocurrency implementations offer not only the ability

to store and update transaction data, but the ability to store and execute

computer code. This means that rather than using blockchains to just

store data in a secure way, computer code could be executed on each of the

nodes in the network, and the results of that computation (and the code) be

stored within the blockchain itself. This addition enables a host of technical

possibilities which combine the benefits of regular distributed computing

with the benefits of robust cryptographically verifiable storage. Examples

of such implementations, which can be most accurately described as dis-

tributed computing systems which also include cryptocurrency integrations,

are Ethereum2, EOS3, and Solana4.

2.3.1 Addresses & Wallets

The previous sections have described blockchain data structures, distributed

computing, and how they interact to enable the creation of cryptocurrencies.

However, the mechanism by which value is actually stored within cryptocur-

rency blockchains has not yet been discussed, but is crucial to further work

in extracting the value transfers stored within these data structures. The

three key components to this discussion are;

• asymmetric cryptographic keys

• cryptocurrency addresses

• cryptocurrency wallets

which represent three levels of abstraction in actually sending and receiving

cryptocurrency.

Within a cryptocurrency blockchain, user accounts must have unique

identifiers which can somehow be used to receive and authorise the transfer of

funds. One way in which accounts can be represented is by using a public key,

which can be created using a public-key, or asymmetric, cryptosystem. As

2See https://ethereum.org/en/, accessed 12/05/2021.
3See https://eos.io/, accessed 12/05/2021.
4See https://solana.com/, accessed 31/01/2022.

https://ethereum.org/en/
https://eos.io/
https://solana.com/
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described in Section 2.1.2 above, asymmetric cryptosystems use pairs of cryp-

tographic keys for different cryptographic operations, rather than symmetric

cryptosystems which identical keys [11]. In the context of cryptocurrencies

this means that every user account has both a public and private key, which

are simply two mathematically related numbers (typically between 32 and

256 characters long). Conceptually, these public and private keys can be

thought of in the same way as email addresses and passwords, albeit with a

number of useful but omitted cryptographic properties. Like emails, funds

can be sent to the public key, and the transfer of funds out of the account

can only be authorised by use of the private key.

As a concrete example, if Alice wanted to send some cryptocurrency5 to

Bob, Bob would first need to generate a public-private key pair using an

asymmetric cryptosystem, and then share his public key with Alice (Alice’s

public key may also be known to Bob thereby linking each person to their

cryptographic key, this can be achieved using public key infrastructure such

as a website or other out-of-band message). Alice would then create a

cryptocurrency transaction and sign it (see Section 2.1.3) using her private

key, which only she knows. The computers on the cryptocurrency network

would then see that a new transaction to Bob had been received and that

it had been signed by Alice. Since it has been signed, the nodes in the

network can verify it (see Figure 2.2), and if the transaction was indeed

signed by Alice then the transaction can be considered valid. They would

then add this transaction to the next block in the blockchain, and whatever

value Alice had specified in her transaction would now be available for Bob

to spend. Once the block has been added to the blockchain (using some

consensus mechanism), the transaction would appear as a transfer of an

amount of cryptocurrency from Alice’s public key to Bob’s public key on the

blockchain itself. Note that the total amount of cryptocurrency that Bob

has at any given time is implied by the sum of all transactions to his public

key6. Also note that Bob cannot maliciously create a transfer of funds from

Alice, as he does not have access to her private key, and therefore cannot

sign transactions from her public key (address).

In this example, the public and private keys are used for different purposes.

5This is a generic example, specific cryptocurrencies may use different asymmetric
cryptosystems to generate keys.

6Although the current state of each address could be stored on the nodes in the network
too.
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Both Alice and Bob’s public keys can be described as their cryptocurrency

addresses, which, like email addresses, can be used to send things (cryp-

tocurrency) to them. This means that when further discussions in this thesis

describe cryptocurrency addresses, it refers to the public keys which serve to

uniquely identify accounts. Their private keys in this scenario act as a sort

of password, allowing them to sign (see Figure 2.2) transactions which make

them valid (and therefore added to the blockchain) in the eyes of each of the

nodes in the network. This is much the same concept as cryptographically

signing documents to verify that they are indeed from the sender. Without

a private key, transactions from their respective addresses cannot be signed

and therefore will not be validated by the nodes in the network, so funds

cannot be transferred out of the address.

Finally, a cryptocurrency wallet is simply a device, piece of software, or

simply a text file, which contains a user’s public and private keys. Once a

user generates their public-private key pair, their wallet is the term for the

location in which these values are stored. This location can be in a browser

extension such as MetaMask7 or TrustWallet8, an encrypted physical device

such as Trezor T9 or Ledger Nano10, a text file on the user’s desktop titled

‘my keys.txt’, or even a physically written out or printed document with the

cryptographic keys on. Each of these different wallet solutions offer different

levels of permanence and usability. For the remainder of work in this thesis,

it is assumed that cryptocurrency has been sent using a browser extension

wallet as the applications in question are predominantly web applications.

To summarise;

• User accounts in cryptocurrency networks are typically represented

using a public-private key pair

• The public key part of this pair is referred to as the user’s address

• The private key part of this pair is conceptually most similar to a

password so is kept private by the user

• A wallet refers to the location of a user’s public-private key pair, and

is required to send transactions

7See https://metamask.io/, accessed 31/01/2022.
8See https://trustwallet.com/, accessed 31/01/2022.
9See https://trezor.io/, accessed 31/01/2022.

10See https://www.ledger.com/, accessed 31/01/2022.

https://metamask.io/
https://trustwallet.com/
https://trezor.io/
https://www.ledger.com/
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• Once verified, transactions are added to the blockchain by nodes on

the network

With addresses, wallets, and a simple example transaction briefly dis-

cussed, the next important concept in understanding how to decode cryp-

tocurrency transactions for this thesis is smart contracts.

2.3.2 Smart Contracts

Smart contracts are a type of computer mediated agreement between two

or more parties over a computer network, an idea first published in 1996 by

Szabo [35] and formalised one year later [36]. Smart contracts extend the

idea of sending funds to eachother described above by allowing either Alice,

or Bob, or both, to be a computer program known as a smart contract. These

contracts represent any agreement between two parties by programmatically

verifying that a set of conditions was met, rather than relying on a human

third party verifier as used in regular contracts. Unlike regular contracts

which are written in human language, smart contracts need to be represented

as a set of programmable instructions, so can be thought of as computer

programs which bind two or more parties together. This use of a computer

network to mediate agreements has the critical effect of removing the need

for a third party, instead replacing it with the need for a computer network.

Whilst implementing this idea meant that such computer networks could now

exist, it was not until the conception of Bitcoin [37], and the later conception

of Ethereum [27], that accessible and flexible implementations of this concept

became widely known.

An important observation is that the computer network described above

does not necessarily need to have payment processing capabilities built in, as

a smart contract may simply return a yes/no answer to a query, for example.

However, if the computer network is also a cryptocurrency network, then

payments can be processed in the native cryptocurrency and delivered to

the parties’ cryptocurrency addresses by the contract itself. This computer

mediation of financial agreements in particular - as opposed to political or

social agreements for example - raises the utility of smart contracts from

simply a way of verifying a set of generic conditions, to enabling the automatic

transfer of wealth based on those conditions. This technology is extremely

powerful and has implications across societal governance, the operation and
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transparency of financial institutions, and the financial freedoms of citizens to

transfer wealth in new ways, to name a few. As this thesis focuses specifically

on the gambling domain, it is first important to concretely define what a

smart contract is in the context of a specific cryptocurrency network and

what makes this capability possible.

Ethereum Network

All of the studies in this thesis focus on data available on the Ethereum net-

work, chosen because it is the oldest (2014) [27] and largest (approximately

£240Bn)11 cryptocurrency network by market capitalization which explicitly

contains smart contract functionality. This means that it has a compara-

bly mature ecosystem of applications and developer resources versus other

cryptocurrencies, making it an ideal candidate for gambling research. The

Ethereum network makes computer mediated financial agreements possible

by combining its blockchain with a Turing complete programming language

called Solidity12 in a single abstracted layer, thereby allowing smart contracts

to interact directly with its blockchain. It does this by executing a program

known as the Ethereum Virtual Machine (EVM) on each of the nodes in the

network, which does more than simply synchronise and update the Ethereum

blockchain. Here, a smart contract is a program which governs the behaviour

of accounts within the Ethereum state. These contracts are stored within the

blockchain itself, so can be accessed by anyone with a computer connected

to one of the nodes in the network. In plain terms, this means it can send

and receive the native cryptocurrency Ether (ETH), and given Solidity’s

Turing completeness can express all computable tasks [27]. Such contracts

can be executed by transacting with them in the same way as a regular cryp-

tocurrency address, but with details about the function call and parameters

embedded within the transaction. This mechanism is discussed in greater

detail in Chapter 3. This technology therefore pulls ideas from cryptography,

blockchains, distributed computing, economics, and computational theory

together to create a powerful system of automatic, programmable, and secure

wealth transfer which has not yet existed at such a scale in the history of

human civilisation. Of course, such a powerful technology has a number

of applications. One such application is gambling, and is the focus of this

11At time of writing (01/02/2022), see coinmarketcap.com accessed same date.
12See https://docs.soliditylang.org/, accessed 01/02/2022.

coinmarketcap.com
https://docs.soliditylang.org/
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thesis.

Smart contracts, like other pieces of computer code, can store variables

which can be modified by code held in the contract itself. These variables

may contain objects which relate to real world objects, events, or capabilities,

and in some cases can be traded between users. In the context of gambling,

these may be things like casino chips, loyalty cards, or other tokens of interest.

In the context of gaming, these may be in-game items, subscription tokens,

or achievements such as participation in a notable in-game event. While

these variables can take a number of forms, those most relevant to this thesis

are referred to as a non-fungible tokens, which is discussed in detail in the

following section.

2.3.3 Non-Fungible Tokens

In economics and by extension virtual economics [38], non-fungible goods

are those which are not interchangeable for equivalent value, as opposed

to fungible goods which are generally similar or identical and are therefore

considered to be of equivalent value. For example, the majority of food

products such as apples, potatoes, and so on, are fungible in the sense that

one is interchangeable for another with no change in value. Non-fungible

items on the other hand are those which are unique, and which cannot readily

be exchanged for another similar or even identical item. For example, the

Mona Lisa - like the majority of fine art - is non-fungible, meaning that

even a perfect replica would likely have a considerably different value to the

original, and the two would therefore not be interchangeable.

The smart contracts described in the preceding section can be used to

create tokens which can represent anything from real world goods, to virtual

goods, to abstract concepts such as voting rights or access to privileged

information. These tokens therefore exist simply as transactions in the

blockchain, as does the underlying cryptocurrency. These transactions, and

the contracts which they are defined within, follow technical standards such

as those described by the Ethereum Foundation, and can be implemented

in a similar way to other virtual goods; i.e. with some issuance mechanism,

a transfer mechanism, and any other verification mechanisms which may

be useful for proving ownership. In the context of the Ethereum network,

fungible tokens can be implemented following the ERC-2013 standard, and

13See https://ethereum.org/en/developers/docs/standards/tokens/erc-20/, ac-

https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
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Figure 2.4: An example NFT from the Bored Ape Yacht
Club collection (See https://boredapeyachtclub.com/, accessed
01/02/2022). This particular ape (See https://opensea.io/assets/

0xbc4ca0eda7647a8ab7c2061c2e118a18a936f13d/8585 for details, ac-
cessed 01/02/2022) sold on October 19 2021 for 696.969ETH, which at the
time of writing is equal to approximately £1.4m (time of sale approximately
£1.9m).

non-fungible tokens can be implemented following the ERC-72114 or similar

standard15 (See Figure 2.4 for an example). In plain terms this means that

for a given non-fungible token, or NFT, a smart contract exists which defines

the issuance and transfer mechanisms along one of these standards, and

ownership of that token can be granted by a function call to that contract.

Non-fungible tokens, and indeed fungible tokens, are two types of crypto-

asset which can be created atop cryptocurrency networks, and which can be

cessed 28/04/2021.
14See https://ethereum.org/en/developers/docs/standards/tokens/erc-721/, ac-

cessed 28/04/2021.
15Several standards exist which vary from ERC-721 in some way but perform generally

the same function.

https://boredapeyachtclub.com/
https://opensea.io/assets/0xbc4ca0eda7647a8ab7c2061c2e118a18a936f13d/8585
https://opensea.io/assets/0xbc4ca0eda7647a8ab7c2061c2e118a18a936f13d/8585
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
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transferred in much the same way as the cryptocurrencies with which they are

defined. Because they can be transferred in this way, and because they share

all of the cryptographic properties of the contracts and transactions atop

the network, they draw into question their classification from an academic,

legislative, and regulatory perspective [39][40]. For example, if a smart

contract issues a fungible token called ‘apples’ which can be transferred freely

between people and can be bought and sold for a given cryptocurrency, then

this token is simply a deeper abstraction of the cryptocurrency with which

it can be bought and sold for. However, the same could be said for a non-

perishable fungible token in the real world such as gold. In this instance, gold

ingots are not a currency per se, but rather a store of value. Understanding

this distinction, and how it manifests in terms of the differences in behaviours

across systems which use these types of token, is currently unknown, and

beyond the scope of this thesis. However, findings presented in studies below

will touch on this issue as encountered as exploration in this area is an

important part of future work in cryptocurrency research.

Before moving on to discuss how NFT’s, smart contracts, cryptocurrency

wallets, and the Ethereum network, can be used to create gambling and

gaming platforms, the very concept of value in cryptocurrencies can be briefly

discussed. This short detour will be important for framing the scale of the

studies in the decentralised gambling domain presented in this thesis.

2.3.4 Price Volatility

Cryptocurrencies, as the previous sections have described, exist as distributed

blockchains containing transaction data and sometimes also computer code.

These transactions and code store variables which can correspond to amounts

of the cryptocurrency itself, non-fungible tokens, and other variables which

all exist solely within the blockchain. As these distributed computing systems

exist at a global scale, their prices can be affected by changes in policy at

the national and international level [41][42], price changes in other currencies

[43], and fundamental factors such as the number of users and the computa-

tional power of the networks themselves [44] to name a few. The prices of

cryptocurrencies are also subject to market manipulation [45][46], including

coordinated pump-and-dump schemes [47] which seek to artificially inflate

(and deflate) prices for a short period of time. These factors, paired with

the youth of this new technology, make cryptocurrencies extremely volatile
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Figure 2.5: The price of ETH (the native currency of the Ethereum network)
over time, see https://www.coingecko.com/en/coins/ethereum, accessed
04/11/2021.

in comparison to other asset classes (see Figure 2.5). As any derivatives,

such as NFTs, sit atop these systems, they too can exhibit extreme volatility,

frustrating efforts to reliably value them over a given period of time.

In the context of gambling, this means that bet sizes, payouts, and the

real monetary value of any tokens generated as a result of player activity can

be extremely volatile. This has important ramifications when interpreting

the results presented in later chapters, but also invites a number of questions

around the perception of monetary value in this new and technologically

advanced domain. Such questions are not the focus of this thesis, but are

nevertheless related and may benefit from the findings presented herein.

Although understanding exactly which factors contribute to the market

prices of given cryptocurrencies is a huge and complicated task, for gambling

only the current market price is needed, as this is ultimately what will

contribute to understanding behaviours in real terms. Since cryptocurrencies

exists purely digitally and are not tied to a specific geographic region or

country, they are traded on cryptocurrency exchanges [5] which function

in the same way as stock markets but are open 24/7. These exchanges

can be used to derive current and historic valuations of cryptocurrencies,

which greatly simplifies mapping user actions to equivalent real monetary

costs. With a brief discussion of the value of cryptocurrencies presented,

one can return to the main thread of this chapter to discuss decentralised

applications.

https://www.coingecko.com/en/coins/ethereum
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Figure 2.6: Uniswap user interface example converting from one cryptocur-
rency (ETH) into another (MANA).

2.4 Decentralised Applications

Decentralised applications are computer programs whose code is executed in

whole or in part atop a cryptocurrency network. They typically have at least

two core architectural components which operate in unison to provide both

an interface for users, and the underlying computational functions needed

to complete their objectives. The interfaces of these applications can be

a website, mobile app, or other client-side program. The computational

functions for these applications are stored partially or fully within smart

contracts. These contracts are created to accept function calls from the

interface, which pack the client side actions into cryptocurrency transactions

and execute them across the cryptocurrency network.

An example of a decentralised application is Uniswap, a token exchange

platform operating atop the Ethereum network. This application has an

interface, available at https://app.uniswap.org (or see Figure 2.6), and

a collection of smart contracts which each offer some functionality such as

swapping tokens. The application’s interface is simply a web page like any

other, with the addition of scripts which can link the interface to a user’s

cryptocurrency wallet, allowing funds to be sent and received. Here, the

term ‘cryptocurrency wallet’, rather than being simply a public-private key

https://app.uniswap.org
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pair corresponding to a given Ethereum address, refers to a web browser

extension or other application which holds this information for the user (see

Section 2.3.1 above). This is conceptually similar to contactless payment

technologies in the physical world, which hold account information in a secure

way, and allow spending without having to enter card details at every store.

Decentralised applications can take a number of forms, from offering

financial services, to marketplaces, to gambling and digital games. The

two most relevant to this thesis are decentralised gambling applications and

decentralised gaming applications, as discussed below.

2.4.1 Gambling

Decentralised gambling applications are those which provide a gambling

service of some kind such as casino games or sports betting, accepting

cryptocurrency as stake [48]. The vast number of cryptocurrencies that

currently exist, paired with the vast number of different ways in which they

can be used, means decentralised gambling applications come in many forms.

Examples of decentralised gambling applications are;

• dice2.win - a casino offering simple games such as coinflips and dice

rolls

• etheroll.com - a simple 1-100 roll style application

• dicether.com - a casino offering dice, keno, and other simple games

These applications typically have simple interfaces which present a selection

of games, a bet size input field, and a ‘place bet’ button or similar - similar in

design to typical centralised online casinos. As this technology matures, more

sophisticated decentralised gambling applications will undoubtedly become

available, however in the context of this thesis only those which provide

simple casino games are considered. See Chapter 7 for a complete discussion

of the decentralised gambling applications studied in this thesis.

Sources of Randomness

An important detail of decentralised applications, and decentralised gambling

applications in particular, is how exactly randomness is generated. Two

main ways exist in the applications studied in this thesis, the first is to
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use some external source of randomness and simply commit its output to

the blockchain. Applications which choose this option are architecturally

somewhat more complex as they must rely on a callback of some kind

from the off-chain source. The second way is to use the output of some

cryptographic computation which cannot be predicted or manipulated at

the time a player commits to a given outcome. The mechanism by which

this can be achieved relies on using the output of hash functions (see Section

2.1.1) as a source of entropy in some computation, although for additional

security a commit-reveal (use hash of some value to commit to an output,

then reveal the value at the point of computation) construction is also used.

The reasons behind the security of this technique are somewhat technically

involved and application specific so are not expanded upon here. For the

purposes of this thesis, understanding the source of on-chain randomness is

not essential to the analysis of transactions to a given application, but is

nonetheless an important architectural influence to be aware of.

2.4.2 Gaming

Decentralised gaming applications, or blockchain games [49], are decentralised

applications which provide a gaming service such as the trading card game

Gods Unchained, or the collectable kitten breeding game Cryptokitties [40].

These games differ from the decentralised gambling applications described

above in that they typically enable the generation and use of some virtual

good, such as trading cards or virtual kittens in the case of these two particular

blockchain games. In the same way that the landscape of centralised digital

games differs dramatically from centralised casino games, so too does the

range of mechanisms within blockchain games vary dramatically from those

found in decentralised gambling applications. However, as in other forms of

digital game, blockchain games can incorporate chance based mechanisms

into their design, making them mechanically similar to simple casino games

[9], and therefore of interest in this thesis.

Like their centralised counterparts, decentralised gaming applications

are extremely diverse in their architectures, genres, and mechanics [49]. As

such, a complete discussion of all of them is beyond the scope of this thesis.

Instead, see Chapter 6 for an in depth discussion of those studied at the

aggregate level, and Chapter 8 for a specific case study and analysis of the

behavioural distributions of players which use a mechanism within it.
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2.5 Summary

This chapter has presented the fundamental building blocks needed to under-

stand how cryptocurrency networks work, and how they can be used to create

decentralised applications. It has shown how blockchain data structures can

be distributed across a computer network to store financial transactions, and

how these networks can make use of modern cryptographic primitives to form

robust, secure, payment systems capable of transacting value at a global

scale. The issue remains of how this understanding of the fundamental build-

ing blocks translates into actually gathering and decoding cryptocurrency

transactions for academic research. The next chapter is therefore dedicated

to understanding how this theory can be applied in the real world to extract

actual cryptocurrency transactions, decode their smart contract function

calls, and identify application-specific mechanisms in decentralised digital

and casino games.
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Decoding Cryptocurrency

Transactions

“Meesa not a Jedi.”

Darth Jar Jar Binks

The Clone Wars

This chapter includes concepts and rewrites of work published in CHI Play titled

‘Ethereum crypto-games: Mechanics, prevalence, and gambling similari-

ties’, and work published in PLOS One titled ‘Inside the decentralised casino:

A longitudinal study of actual cryptocurrency gambling transactions’.

As discussed in the previous chapter, behavioural data such as bet place-

ments, NFT minting, and other financial transactions are all stored within

cryptocurrency blockchains. In order to understand the use of cryptocurrency

technology, this data must be retrieved, and variables from these transactions

extracted to understand which user actions they represent. This chapter

begins with Section 3.1, which describes in practical terms how data stored

in cryptocurrency blockchains can be accessed. Section 3.2 then describes

the two different types of transaction stored within the Ethereum blockchain.

Section 3.3 then describes the process for identifying function calls within

these transactions, an essential process for transforming the encoded data

on the blockchain into a usable academic data set. Section 3.4 then details

how in complex applications, part or all of the internal mechanisms of the

application require emulation in order to compute run-time variables from

27
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transactions, rather than simply extracting the transaction parameters alone.

Finally, Section 3.5 describes the process of matching pairs of transactions,

where the second transaction represents the outcome of whichever function

was called in the first, e.g. the payout of a bet.

3.1 Accessing Cryptocurrency Transactions

Chapter 2 described the fundamental building blocks of cryptocurrencies,

and showed that they store transaction data in synchronised blockchains

distributed across a network of computers. Two methods exist for accessing

the transaction data stored within such cryptocurrency blockchains. These

are node synchronisation, and the use of public API’s. This section outlines

and discusses each through the lens of research accessibility.

3.1.1 Node Synchronisation

Node synchronisation refers to the process of executing a cryptocurrency’s

synchronisation program on a local machine. For cryptocurrencies with public

blockchains this program is typically available through a public repository

provider such as GitHub. For example, one can freely access the program

executed by nodes on the Ethereum network via the Ethereum foundation’s

github page1. When executed, such programs connect to other devices in the

network and begin downloading and verifying the entire blockchain of that

cryptocurrency to local storage from its peers. Nodes can be configured in

different ways depending on their available hardware and usage requirements2.

In the Ethereum network, three types of node can be configured;

• Full node - stores full blockchain data, participates in block validation,

provides data on request

• Light node - stores header chain data, can verify data against these

headers, typically used in low-capacity devices

• Archive node - a full node which builds an archive of historical states,

allowing full historical access to all events in the blockchain

1See https://github.com/ethereum/go-ethereum, accessed 03/02/2022.
2See https://ethereum.org/en/developers/docs/nodes-and-clients/#node-types

for a complete description, accessed 03/02/2022.

https://github.com/ethereum/go-ethereum
https://ethereum.org/en/developers/docs/nodes-and-clients/#node-types
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For academic research an archive node would be most useful, however in

the case of the Ethereum network an archive node requires several terabytes

of storage3. Furthermore, in both full and archive nodes each of the blocks

in the downloaded blockchain need to be executed locally, i.e. every action

ever performed on the blockchain must be verified by your local machine.

Once verified, transactions can be retrieved by querying the synchronisation

program as if it were an API, the exact data returned will depend on the

type of query executed. It should be noted that light node synchronisation

is not useful for accessing historical transaction data as they do not store

the historical state of the Ethereum virtual machine, and so cannot be used

to retrieve all transactions to/from a given application, for example.

This full blockchain verification would not be a problem were the under-

lying data structure highly parallelisable and therefore efficient execution

mechanisms were available, however, as the underlying data structure is a

blockchain, by definition the blocks must be verified in series. This introduces

a significant time overhead of several weeks or months for full or archival

node synchronisation to occur even on advanced CPU architectures using

solid state storage. For these reasons - cost and time - the node synchro-

nisation method for accessing cryptocurrency transactions should only be

chosen should the physical resources be available to perform it (high capacity

SSD storage and a powerful CPU, with a stable and high capacity internet

connection), else public API’s are preferred.

3.1.2 Public API’s

The high financial and time costs of node synchronisation make it prohibitively

expensive in the context of typical research, but fortunately several public

API’s exist whose fully synchronised and archival nodes are available via

web requests. In some cases these are simply nodes of the cryptocurrency

network itself configured to accept data requests from anywhere, subject

to their own terms of use, but public API’s may also take the form of

dedicated data providers for developers and/or academics for the explicit

purpose of analysing blockchain data. In the case of the Ethereum network,

the independent block explorer and analytics platform Etherscan4 provides

3See https://etherscan.io/chartsync/chainarchive for up to date chain size, ac-
cessed 23/04/2021

4See https://etherscan.io, accessed 24/04/2021.

https://etherscan.io/chartsync/chainarchive
https://etherscan.io
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Figure 3.1: A simplified representation of the difference between normal and
internal transactions, with a human user and two smart contracts. Both the
human user and smart contracts have cryptocurrency addresses.

Ethereum developers with an API as a community service. This API can be

used to access all historical transaction data from the Ethereum blockchain,

subject to a rate limit, without having to fully synchronise a node locally. It

therefore dramatically reduces the data gathering time for small to moderately

sized experiments, and is free to use. The disadvantage of such API’s is that

the data gathering process is dependent on the availability of the API.

All of the data gathered in connection with this thesis has been gathered

through the Etherscan API, although access to a second API provider

ArchiveNode5 was sought and granted as insurance against any changes or

outage of the former. ArchiveNode operates a request only access model, so

for future work should the Etherscan API become unavailable one should

request access.

3.2 Transaction Types

The transactions gathered via either of the methods discussed in Section

3.1 above will typically arrive as JSON objects representing a collection of

transactions for a given cryptocurrency address or block (depending on API

call/request made6). The simplest way to save this data is in folder for each

address, although in practice extracting only the data specific to the study

(such as sender, recipient, amount, etc) in question should be pruned and

then saved in order to avoid bloated memory usage (such as storing the hash

values for each transaction, for example). It is important to note that there

are two types of transaction which this section summarises, although as I

discuss below this naming convention is less than intuitive.

5See https://archivenode.io/, accessed 24/04/2021.
6See https://docs.etherscan.io/api-endpoints/accounts#

get-a-list-of-normal-transactions-by-address for an example API call, accessed
07/02/2022.

https://archivenode.io/
https://docs.etherscan.io/api-endpoints/accounts#get-a-list-of-normal-transactions-by-address
https://docs.etherscan.io/api-endpoints/accounts#get-a-list-of-normal-transactions-by-address
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3.2.1 Normal Transactions

A ‘normal’ function call, as opposed to an ‘internal’ function call, can be

described as any transaction originating from an address whose origin is

not a smart contract (see Figure 3.1). The official Ethereum documentation

describes this as ‘an action initiated by an externally-owned account’7 i.e.

an account managed by a human rather than a smart contract. For example,

a user purchasing some Ether through an exchange, then using that Ether

to place a bet, would typically generate a normal transaction to a smart

contract which would call some gambling function. This would appear as a

normal transaction in the gathered data and could be analysed accordingly.

The process of identifying these calls is described in more detail in Section

3.3 below.

The majority of transactions of interest in association with this thesis

will be ‘normal’ transactions as they intuitively represent the direct actions

of a human. However, not all transactions in the Ethereum blockchain are

‘normal’, and are of broader interest in terms of understanding the resulting

effects of a human’s actions. For example, one ‘normal’ transaction may

represent the action of a user, but that action may trigger a smart contract

to perform an action which itself would be another (internal) transaction on

the blockchain. This issue of user action subroutines is expanded upon in an

analysis of the blockchain game CryptoKitties in Section 8.2.2 later in this

thesis.

3.2.2 Internal Transactions

In the case that a smart contract itself transfers value to another address,

such as paying out a bet or generating a virtual good, the transaction will be

‘internal’. Here, the term ‘internal transaction’ is not completely accurate,

as value transfers out of a smart contract are not explicitly transactions

per se, but rather changes in the state of the Ethereum virtual machine.

Nevertheless, it helps to conceptualise ‘normal’ and ‘internal’ transactions as

incoming and outgoing value transfers from the perspective of a given smart

contract. An example of an internal transaction would be a decentralised

gambling application smart contract paying out an amount of cryptocurrency

7See https://ethereum.org/en/developers/docs/transactions/, accessed
24/04/2021

https://ethereum.org/en/developers/docs/transactions/
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66756E6374696F6E206D616B655F6
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function make_diagram(size, color){
    diagram d;
    d = new Diagram(size);
    d.color = color; 
    return d; 
} 

Source Code Encoded Contract

Figure 3.2: Example of a basic function whose source code (in green) is
compiled and encoded (in yellow) when stored on the blockchain. It is
clear that in cases where the source code for a given contract is unavailable,
determining its functions and capabilities becomes a reverse engineering
problem.

to a user following a winning bet.

3.3 Identifying Function Calls

The existence of smart contracts in some cryptocurrency networks means that

transactions to these contracts typically represent function calls. In the con-

text of this thesis, these function calls may be place bet(), settle bet(),

etc. Identifying which functions have been called in a given contract is largely

cryptocurrency specific, as different cryptocurrencies may use different con-

ventions, hashing algorithms, etc. As this thesis focuses on the Ethereum

network, this section is dedicated to concepts specific to smart contracts

on the Ethereum network, although some concepts may apply to similar

networks.

3.3.1 Solidity Programming

All smart contracts atop the Ethereum network are written in the Solidity

programming language [27]. This language is similar in structure to Python

and JavaScript, and targets the Ethereum Virtual Machine which runs on

all nodes in the Ethereum network. When a smart contract is deployed, its

source code is compiled down and stored within the blockchain in an encoded

form (see Figure 3.2). This encoded form is not self-describing so is specified

in the Solidity documentation and expanded upon below.
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The Solidity language, as with other modern computing languages, con-

tains many different structures and capabilities which are beyond the required

understanding for this thesis - e.g. multiple inheritance and interfaces. The

key concept for decoding transactions in the gambling and gaming domains

are the use of method signatures (detailed in Section 3.3.3), which are found

in each function call to a smart contract and can be decoded to provide

the exact function being executed by that transaction, along with the pa-

rameter values therein. The terms ‘method’ and ‘function’ here are used

interchangeably.

3.3.2 Gas Fees

In the Ethereum network, gas is a unit of measurement for the amount of

computational power needed to execute a given operation or set of operations.

Before moving to discuss the role of method signatures and parameter counts

in identifying function calls, a brief overview of gas fees is required to set

the scene for understanding why in some cases transactions may be harder

to analyse than expected. As defined by Ethereum’s yellow paper [50]

(Appendix G: Fee Schedule), the minimum amount of gas required for any

transaction to succeed is 21,000, plus any other costs which result from

operations relating to that transaction. This means that for a transaction to

succeed, users must pay a certain amount of gas to the miners (see Section

2.2.3) whose computers constitute the Ethereum network. For example,

simply sending Ether from one address to another could be completed with

exactly 21,000 gas attached to the transaction. However, asking a smart

contract to perform some complicated computation may take hundreds of

thousands of gas depending on its complexity [51].

A second consideration when associating gas with a transaction is the

price of that gas, which is a parameter set in the transaction used by miners to

determine whether or not to accept and process a transaction. Conceptually,

this can be solidified in the following scenario; I’d like a courier to complete

a delivery, and want to give them an incentive do do so. I give them a bag

of 100 coins which they may use to complete tasks on their journey - a train

ticket may be 20 coins, a ferry trip may be 50 coins, etc. The number of

coins used per task is not set by either of us, and is a property of the world

we live in (i.e. the network). I also say that I’m happy to pay 10 pence

per coin used, so if all of the tasks on their journey cost a total of 80 coins
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they will earn £8. My arch rival wants to complete a similar delivery, but

offers 90 coins and is happy to pay 8 pence per coin. The courier can still

complete their delivery as all of the tasks still take 80 coins, leaving 10 spare,

but the courier will only receive £6.40 if they take my rival’s offer (because

the number of coins actually used is the same, but I am willing to pay more

per coin). This is a simplified example of how miners on the Ethereum

network operate, accepting and rejecting offers, processing or not processing

transactions and executing functions, based on the amount they stand to

gain by doing so.

cost = gasQuantity × gasPrice (3.1)

The amount of gas attached to a given transaction, and its price, is

set at the point of payment, past which if the amount of gas provided is

too low for the computation to complete, or the smart contract rejects the

transaction for some other reason, the transaction fails. A failed transaction

will still appear in the blockchain with a ‘failed’ status, the gas originally

used will be lost, and any transfer of funds will be reverted. Alternatively,

a successful transaction will use no more than the total amount of gas

associated with that transaction, and will refund the rest to the original

account (the courier will return any unused coins). This can happen when

a user want’s a transaction to execute quickly so would pay a higher gas

price (not gas quantity, see Equation 3.1) - a miner on the network is then

more likely to accept the transaction for processing and will return any gas

(quantity) that is not used. In the context of gambling apps, gas fees and

gas prices are not necessarily relevant to the analysis as they will be broadly

similar for all players at a given time. However, in the case that gas prices be

dramatically different between time periods (i.e. the cost to play a particular

game or interact with a particular smart contract is greater or lesser), it may

be meaningful to factor in gas prices into the analyses. This holds across

different cryptocurrency networks which use a similar payment incentive for

processing on the network.

3.3.3 Method Signatures

Like in other programming languages, Solidity’s method signatures represent

the name of the function being called, and the values of any parameters
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Method Signature
(0xbffee939)

Padded Parameter Value
(0x0000000000000000000000000000000000000000000000000000000000000001)

Transaction Input Field

Figure 3.3: The structure of an Ethereum transaction’s input field on a
method with one parameter.

bffee939d2d073d0cf1804f2382cfd6f486bccd6...
bffee939cb494e0a637e3aaee4aa31b59162a074...
ce77be3484c5ecca54d4824cc66256a0813fc154... 
bffee9390074666fb2d5242844a399c19b443379...
0fe4c89a6b573802288a8e302ce0f4c390e58512...

Figure 3.4: Example data set of transaction input fields showing that the
function being called (e.g. place bet()) can be identified by the signature
at the start of the input field.

it accepts e.g. make coffee(container, amount, milk, sugar) [50]. These

parameters can be of different data types, e.g. enum for container, unsigned

integer for amount, etc, and each of these parameter data types can be used

to create unique signatures - even with overloaded functions. In the case of

the Ethereum network, transactions can not only transfer cryptocurrency,

but can also execute methods in smart contracts. This is done by encoding

the parameters and appending them to the method signature of the method

the transaction is calling. In plain terms, an Ethereum transaction can

have not only a sender, receiver, and value, but also an ‘input’ containing a

method signature and some parameter values.

Understanding this mechanism by which transactions can be used to

call methods is central to decoding their contents, and ultimately under-

standing which transactions are doing what on the network. To apply this

in the context of decoding cryptocurrency transactions, the ‘input’ field of

each transaction can be decomposed into the method signature and the

parameter set (see Figure 3.3). Following the Solidity documentation on

transaction encoding, the method signature is always ‘the first four bytes

of the Keccak hash (see Section 2.1.1) of the ASCII form of the signa-
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ture’8. Following the example above, the ASCII representation is simply

‘make coffee(uint8,uint32,bool,bool)’9, the Keccak-256 hash of which is ‘bf-

fee939cb6f01ce9665e4...’. Taking the first four bytes gives us ‘bffee939’, so in

transactions to a smart contract with a make coffee method as above, any of

those with input values which begin with ‘bffee939’ are calls of that function

(see Figure 3.4).

It is important to note that this process of method signature matching is

only possible when the source code for the contract is available, as it relies on

being able to compute the signature yourself and then looking for matches in

the data. This is of course possible by simply looking at the unique method

signatures of transactions to a given smart contract, but lacking the context

of the source code it may be difficult to determine exactly what is happening.

An alternative but generally less accurate means of identifying function calls

is by simply counting the number of parameters, under the assumption that

any contract of interest has few methods in the first place thereby reducing

the likelihood of collisions. Understanding how parameters are encoded is

also useful for extracting the values passed to the method, which may be

things such as the game being played, the players choice of outcome, and so

on.

3.3.4 Parameter Counts & Values

Following the method signature in any transaction input field is an encoded

list of parameters, which are the values passed to that method. Each

parameter exists as a padded 32 byte chunk or multiple 32 byte chunks as

shown in Figure 3.3, which can be extracted using a simple split operation on

the remaining part of the input once the method signature has been removed.

The parameter count then is simply the length of the list of chunks. For each

parameter in a given method, the actual value of the parameter is simply

the decoded value of the chunk extracted directly from the transaction input

field. The data type of a given method can be retrieved if the source code of

the smart contract is known. In practice, part or all of the source code for a

given gambling or gaming DApp is typically published by the developer in

8See https://docs.soliditylang.org/en/develop/abi-spec.html#examples, ac-
cessed 22/04/2021.

9The enum type is mapped to an 8 bit unsigned int in the version of Solidity (0.8.5)
specific to work in this thesis.

https://docs.soliditylang.org/en/develop/abi-spec.html#examples
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the interest of transparency.

3.4 Emulating Application Mechanics

In a simple application, the parameters and name of a function being called

are all that are needed to begin detailed analysis of user behaviours. However,

the gas fee system inherent to the Ethereum network acts as an invisible

hand, pushing application developers toward computationally efficient and

highly compressed implementations of simple tasks. This is both to lower

the costs to their users of interacting with their applications, and to lower

their own expenses as any transactions that their smart contracts attempt

(e.g. to their other contracts such as a treasury or croupier) must also pay a

gas fee. Following the example used in Section 3.3.2 above, this is akin to the

courier working to make the delivery route as simple and cheap as possible

so that they can offer their service for fewer coins and thereby undercut their

competition.

This aggressive simplification does not always frustrate analyses as it can

force developers to remove any excess or inefficient code, however, in some

cases it can lead to solutions which require emulation (at least once, if not per

transaction) to extract useful data. An example of such an implementation

is the dice2.win platform’s placeBet function, which will be the focus of a full

subsection in Chapter 7. In this case, the function performs a generic chance

based calculation based on modulo and betmask values which determine the

type of game being played, and the user’s outcome selection respectively.

This is very useful from the application’s perspective as multiple games can

be implemented via calls to the generic chance function with different modulo

values, but it also means that in order to extract the desired outcome chosen

by the player, the method’s internal mechanics must be emulated. In other

words, one can tell from the function call what the game being played is

because the modulo value will be fixed, e.g. 6 for a single dice roll, 36 for

two dice, etc. Yet the betmask value represents the player’s choice before

an application-specific calculation is made, therefore in order to extract the

derived ’rollUnder’ variable (the value a random roll would need to be under

in order to win), the internals of the method need to be at least partly

emulated.

This process of extracting application-specific variables in order to better
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understand how the choices players are making maps to low level transaction

data can be very time intensive for complex applications. This complexity

is compounded in the case of crypto-games, which with their multiple cur-

rency layers, items, and other features may draw on many methods in many

contracts. This hard mental resource limitation is discussed as encountered

in Chapters 7 and 8, and has a strong effect on the types of behavioural

data available. For this reason it contributes to the choice of application for

study, and the type of analysis performed. With the potential for emulat-

ing application mechanics discussed, the next important step in decoding

cryptocurrency transactions is matching the bets to the payouts. This is

especially important in gambling applications but can be abstracted into the

digital games domain via item rarity mapping, a concept discussed in detail

in Chapter 8.

3.5 Matching Payouts

Behavioural measures in the loss domain, described in Section 5.2.3, require

not only the transactions corresponding to the placement of a bet, but also

the payouts received by the player as a result of those bets. Whilst at the

highest level of aggregation (entire career) only the sums of bets and payouts

are required to compute these measures, more granular measures require

matching individual bets to individual payouts. This matching process first

appears trivial, however, the use of cryptocurrency networks for processing

payments introduces a variable length time delay between bet placement

and payout transactions. This delay means that multiple bets placed in

rapid succession may result in payouts being processed out of order. Two

possible solutions I propose to this payout-ordering problem are the naive

chronological stitch method, and the breadcrumb trace method, outlined

in the subsections below. These solutions are posed as my understanding

of the data returned by the Etherscan API is that it does not return the

stack trace created when an internal transaction is made (which would allow

perfect matching). This means that a deeper understanding of this API or

indeed the mechanisms within the Ethereum network may render this section

obsolete, but in the context of understanding gambling transactions it is still

useful.
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3.5.1 Naive Chronological Stitch

As the name implies, performing a naive chronological stitch between a set of

bet placement transaction and payout transactions means ordering them in

time and mapping them one-to-one in their chronological order. This follows

the overly optimistic assumption that each transaction has been processed

in uniform time, and that no two transactions ever overlap.

One advantage of employing this matching system is that it is trivial

to implement, however, the underlying assumption is catastrophically bro-

ken not only when a large and small bets overlap - such that a small bet

appears to have an impossibly large payout - but when any of the bet or

payout transactions fail. One transaction failure when applying the naive

chronological stitch method can offset an entire side by one step, rendering

any more granular derivative analysis useless. Additionally, employment of

such a brute force approach implies zero knowledge of the structure of the

application in question. For example, it may be that all payout methods

contain a cryptographic hash of the bet method, or some similar nonce which

ties each transaction pair together. Operationalising this application specific

knowledge means applying the more sophisticated breadcrumb trace method

described below.

3.5.2 Breadcrumb Trace

An alternative to the naive chronological stitch outlined above is what can

best be described as a breadcrumb trace method. This method involves a

manual exploration of the parameters and architectures of bet and payout

methods within a smart contract, with the goal of identifying a shared value

between them. A shared value, or nonce, generated by the first function and

used by the second allows exact pairwise matching for each bet-payout pair.

This method, unlike the naive chronological stitch above, is less sensitive to

transaction failures and other ordering problems, and is more accurate for all

but the most temporally distant bet-payout sequences. Furthermore, it can

generate perfect data in the sense that every bet and payout is accounted for,

allowing granular explorations of player behaviours using the most detailed

behavioural measures.

A significant disadvantage of this technique however, is that it can be

extremely human-resource intensive in the form of studying each of the
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functions in a given smart contract. This is because in order to apply

this technique at least some understanding of the execution process of a

given application is required, although once gained this could be automated.

This means that when applying a broad analytical stroke to understanding

spending in the decentralised application domain e.g. multiple application’s

transactions, the naive chronological stitch - despite its disadvantages - may

be the only option. These challenges are addressed in detail when they are

encountered in practice in the following chapters.

3.6 Summary

This chapter has described the core technical principles required to begin de-

coding cryptocurrency transactions. As the introduction outlined, blockchain

data structures and distributed computing can be combined with the addi-

tion of cryptographic primitives to form cryptocurrency networks. These

networks can not only be used to transfer value, but in some cases can

execute smart contracts which form the foundation of decentralised digital

and casino games.

Accessing these transactions can be somewhat resource intensive if a

public API is not available, however for the use cases in the following chapters

API’s are available. Furthermore, normal and internal transaction types

make distinguishing between bets and payouts, or purchases and rewards,

simpler, but still more is needed before meaningful data can be extracted.

Function calls can be identified using transaction’s input parameters, and

their method name and parameters extracted thereafter. Source code avail-

ability makes this process much simpler, but cannot be relied upon for all

decentralised applications. In some cases, identifying the type of transaction,

the function it calls, and the parameter values it uses, is still not enough, in

which case emulating part of the application itself may be required. This

is an extremely intensive process and is practically impossible to do for

all decentralised applications combined as there are simply too many, and

they can be extremely complex. Finally, with all of the above information

extracted, there is still one more step - matching bets to payouts. In the

case of casino games this is an often simpler task than for digital games

given that bets and payouts are typically paid in the same currency, but as

discussed in Chapter 8 techniques can be applied to transfer these ideas into
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the randomised reward mechanism domain.



Chapter 4

Player Behaviour Tracking

“An algorithm must be seen to be believed.”

Donald Knuth

So far, this thesis has described the technical concepts underpinning

cryptocurrencies, including their basic cryptographic building blocks and

how to extract data from their blockchains. This chapter introduces the

second field of background literature needed to address the research questions

posed in Chapter 1: player behaviour tracking.

A small portion of players who engage in gambling experience some form

of gambling related harm [8]. An area of gambling research known as player

behaviour tracking aims to understand how players within a population

engage in different types of gambling, and how different engagement patterns

across these types of gambling relate to experiencing harms [1]. One way

in which engagement in gambling can be modelled is through the use of

transaction data. That is, data corresponding to the placement of individual

bets and payouts. Behavioural profiles can be constructed using this data,

and these profiles correlated with external harm related variables such as

self reported problem gambling severity [52] or self exclusion due to problem

gambling [53].

This chapter reviews existing literature on the use of these behavioural

measures to understand player behaviour. It begins with Section 4.1 providing

an historical overview of the types of gambling, followed by 4.2 describing

types of games in which transaction data are generated, then an overview of

the structure of the data they provide in Section 4.3. With basic gambling

42
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games and other activities described, Section 4.4 then presents the results of

a systematic literature review, the aim of which was to gather the collection

of behavioural measures used in player tracking research, so that the current

collection of state of the art measures can be extracted. Given the importance

of understanding the behavioural measures used across existing literature, a

detailed discussion of each of their computations and motivations is deferred

to a dedicated Chapter 5. Instead, Section 4.4 describes how broadly the

literature applies player behaviour tracking techniques, and a high level

summary of the breadth and depth of behavioural measures used.

4.1 Types of Gambling

Gambling has formed a part of human activity since the dawn of civilisation,

or as Schwartz writes; is ‘simply older than history’ [54]. This long history

means a vast number of different forms of gambling currently exist, ranging

from supernaturally attributed acts of divination, through to blood sports,

team sports betting, mechanical games, card games, political betting, and

more. These many branches each integrate two key concepts, namely some

chance based event, and payment of some kind based on that event. More

concretely, Griffiths poses four criteria to be met for an activity to be

considered gambling in his discussion around loot boxes in digital games [55],

derived from his earlier set of five criteria [56]. These criteria are;

• The exchange is determined by the outcome of a future event, which is

unknown at the time of betting

• The outcome of the future event is at least partly due to chance

• An exchange of money/objects of financial value occurs, typically

without productive work from either side

• Losses can be avoided by not taking part in the activity

• (earlier & removed) Winners gain at the sole expense of losers

Each of the gambling applications, and indeed parts of the gaming

applications, studied in this thesis meet all four of these criteria, as do the

activities studied in the field of player tracking described above. It is however

important to note that this set of criteria, whilst widely used in the literature,
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are a purely academic definition. In the case of the relationships between

gambling and gaming it is also important when framing findings to consider

relevant legal definitions around these topics. That said, detailed discussion

of legal definitions in different jurisdictions and across different activities is

out of scope of this thesis, but will be briefly discussed as encountered in

discussions of results below.

4.1.1 Mercantile versus Social Gambling

Given many different types of gambling activities exist, which can be con-

figured for play at different speeds, a third important descriptor of such

activities is the type of party from which the payouts are paid. Mercantile

gambling, also known as commercial gambling, encompasses all games in

which a player competes against an institution or ‘house’ [54]. This means

that it is the gambling operator (merchant)’s role to provide the mechanisms

by which the player can gamble, ensure that these mechanisms are fair, and

that payouts are delivered. Different jurisdictions around the world have

different regulations which describe exactly how operators can provide these

mechanisms, the nature of the specific mechanisms, and which licenses are

required in order for the operator to provide access to the mechanisms to

their customers. Typical examples of mercantile gambling games include

Roulette, Baccarat, and and all manor of electronic or physical terminal type

games such as video poker and slot machines which can typically be found

(although not exclusively) in casinos.

Social gambling encompasses all games which are played between two

or more people [54]. Although social gambling games themselves may be

mediated by a third party, the payouts are directly funded by other players.

This detail is captured in Griffiths removed criteria for gambling activities that

winners gain at the sole expense of losers - the removal of this criteria means

that his revised set can include both mercantile and social gambling. This

lack of a ‘house’ in the mercantile sense means that the third party mediating

the game may take a portion of the bets per round as payment for their

mediation services. Any ‘house’ edge in social games therefore comparable

to the house edge in mercantile gambling in the sense that it represents

money lost by all players - a feature which will become important when later

discussing the computation of behavioural measures. Examples of social

gambling includes Poker, (social) Baccarat, and Mahjong. As with mercantile
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gambling, social gambling can be created around essentially any chance based

mechanic, although following the taxonomy outlined by Gainsbury et al [57],

should the outcome be determined by skill alone the activity can be classified

as a tournament or competition rather than gambling.

It should be noted that there are branches of gambling and games studies

which focus on so called ‘social casino games’ [58, 57]. Social casino games

are typically implementations of casino games (both social and mercantile),

which instead of using a government backed (fiat) currency as stake instead

use a token of some kind which is specific to that game or user account. These

tokens typically do not hold any real world value, and cannot be exchanged

for real world currency at the game level1, but nonetheless function as scrip

in the context of these games. Social casino games are not simple casino

games - the focus of this thesis - so are not discussed further.

4.2 Types of Game

Of the many different forms of gambling discussed above, the most relevant

to this thesis are gambling games, specifically casino games - as opposed

to sports betting etc. Casino games come in many forms, and central to

distinguishing between different types of game within this sub-category is

the role that skill and chance play in the outcomes. This section therefore

discusses some of the many different types of game available, and specifies

which on this broad spectrum this thesis is most concerned with.

4.2.1 Games of Skill

Games of skill include all games in which the outcome is not wholly probabilis-

tic, in other words, more skillful players will usually beat less skilled players.

Examples of games of skill include Chess, Backgammon, and Mahjong. Such

games can become gambling games when wagers are placed on the outcomes,

or are integrated into the rounds or specific player actions within the games

themselves. For example, a game of chess can be crudely converted into a

gambling game by placing a payout penalty of £10 on each of the players

rooks. In this scenario, a player that takes two rooks and wins the game

would receive a payout of £20 should they have both their rooks remaining.

1As with all virtual economies, trading at the account level i.e. selling and buying
account with virtual currency inside, can still occur.
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In other words, an exchange of money can occur based on some in-game

outcome. As one can imagine, simply adding financial penalties to games of

skill can drastically change the very objectives of the games, so is uncommon

in gambling games in general, as purpose-built games have been created

which better capture financial commitments.

One such game of skill in which financial commitments are integrated

into the game itself is poker. Interestingly, the debate around whether or not

poker is a game of skill or chance is still openly contested, with legal cases in

the USA ruling that poker (Texas Hold’em) is predominantly determined by

skill [59]. However, this does not consider the duration of play, as a single

hand in poker between two players is almost completely probabilistic, yet

playing many hands allows the elements of skill in the game e.g. bluffing,

stake management, and folding strategies, to play a more substantive role

in the long term outcome. Indeed, the very existence of professional poker

players indicates the innate ability of some players to become successful

enough over a sustained duration to form a career from their play - although

whether this career can be attributed to tournament winnings or simply

sponsorships is another question. Skill and chance are not mutually exclusive,

and coexist in many gambling games. Games of skill are not the focus of

this thesis so are not discussed further.

4.2.2 Games of Chance

Games of chance include all games in which the outcome is purely probabilis-

tic, where player skill has no effect [60]. Games of chance include Roulette,

Craps, and lottery type games including Bingo. These games are extremely

prevalent, and are essentially ubiquitous in physical and online casinos glob-

ally. Importantly, from an analytical perspective, individual skill in games of

chance cannot be evaluated as it simply doesn’t exist. For example, analysis

of a Poker player’s betting patterns may reveal details about their knowledge

of the statistical probabilities of winning their hands, indicating a level of skill

in their play. However, no such analysis is possible on the betting pattern of a

Roulette player as no player actions can meaningfully influence the outcome.

One caveat to this difference is that betting systems can be used across both

chance based and skill based games, which effectively leverage a player’s

bank roll against the probabilities inherent to the game [54]. An example

of such a system is the Martingale (double-or-nothing) system, whereby a
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player doubles the size of their bet if the previous outcome was a loss. This

ensures that given a large enough bank roll, and a short enough sequence of

losses, a player will always recover their losses. Of course, this strategy is

inherently flawed as just six losses in a row with an initial bet of £10 would

require a single £1,000,000 bet, but nevertheless the existence of betting

systems as tools for players of chance based games should be acknowledged.

4.2.3 The Skill-Chance Spectrum

Many of the games discussed above, despite being grouped into their skil-

l/chance subsections, can be more accurately described as existing on a

spectrum with skill on one end and chance on the other. For example, chess

would exist at the purely skill end, and a coin flip would exist on the purely

chance end. As discussed in the case of poker, duration of play - in addition

to just the mechanics - can play a role in the amount of chance or skill

that a given gambling activity requires. All of the studies in connection

with this thesis focus on games which exist solely at the chance based end

of this spectrum. This is because they are typically simpler to analyse,

as methods from coin flip games can be directly applied to dice rolls, for

example, and because they are the type of game which currently available

implementations of cryptocurrency technology allow. A brief discussion of

the types of data generated by these games is now required, which is then

followed by a systematic review of their academic analyses.

4.3 Data Types

The types of game described in section 4.2 each generate behavioural data,

yet this data can be captured in different forms and at different levels. These

include account level data, and transaction level data, which can be used to

explore behaviours at different levels in the player-game interaction. This

section briefly introduces the different types of data so that in later sections

these variables can be the focus of specific investigations.

4.3.1 Account Level

Account level transaction data concerns incoming and outgoing funds with

respect to a player’s account, e.g. deposits and withdrawals. This naturally
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only applies to operators and activities where an account is required. This

high level data is useful for comparing non-granular behaviours between

players, but is limited in that it cannot be used to understand behaviours

within a game itself, only the player’s external financial interactions with the

operator. Many studies employ account level data to understand gambling

behaviours in the context of income data, geographic data, and other meta-

level variables which assess the social and economic impacts of gambling at the

highest level. As this thesis focuses on the use of transaction data specifically,

further discussion around account level data and derivative analyses is not

explicitly relevant. That considered, many account level studies appear in

later sections and provide useful insights for framing findings based on more

granular data.

4.3.2 Transaction Level

Individual transaction level data is the most granular data possible regarding

in-game payments. In gambling terms, each observation corresponds to

the placement of a single bet, therefore capturing all in-game activity in

casino games, and any financial activity in digital games. Transaction level

data can therefore be used to generate detailed player behaviour profiles

depending on the measures used, but are also subject to significant limitations

which are discussed in subsequent chapters as encountered. Importantly, all

gambling transactions have a fixed set of variables, or anatomy, upon which

all behavioural analyses are built.

Anatomy of a Bet

The simple casino games most relevant to this thesis have a very basic

anatomy that generates a fixed number of variables for each bet placed.

Mapping these variables is essential to understanding which behavioural

measures can be derived from their sets, and how these measures actually

represent the behaviours and actions of the player. Taking the example of a

simple coin flip game, four key variables exist which can completely describe

the placement of a bet. These are (i) the player’s identity, (ii) the size of

the bet, (iii) the time the bet is placed, and (iv) the odds of the bet. The

data types of the first three values can be simply integers (taking a unix

time representation), however the odds of a bet can be represented in several
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ways. For the analyses performed in association with this thesis, all odds are

shown using decimal point representation, which in the case of a coin flip

would be 2.0. This means that for every £1.00 bet, upon winning a player

would receive £2.00. Alternative representation schemes include fractional

representation and US or moneyline representations. Decimal odds are most

intuitive to interpret so are the only ones discussed here.

From these four values, derivatives such as the expected value of the

bet (£1.00), and the maximum payout can be computed. Additionally, in

the context of simple casino games, the type of game being played can be

derived from the odds as there are a finite number of games each with a

fixed number of possible outcomes. For example, odds of 2.0 represent a

coin flip, odds of 6.0 represent a single dice roll, odds of 36.0 represent a

two-dice roll (for doubles), and so on. This derivation of game type from odds

breaks down for more complex games, but holds for the simple casino games

explored in this thesis. Any work exploring gambling and gaming transactions

through the lens of gambling studies must therefore meet these minimum

data requirements for each bet, or provide aggregate values thereof. As the

following systematic review reveals, granular transaction level data has been

historically difficult to acquire [1], yet in the context of cryptocurrencies this

level of data access is the norm, albeit in an encoded form (as demonstrated

in Chapter 3).

Before moving to a systematic review of the use of transaction data

in existing research, a note on payout data is needed. Specifically, payout

data is the natural mirror of bet data, so contains all of the same variables

minus the odds. From a behavioural analysis perspective the bet placement

transaction data is therefore more valuable than payout transaction data,

although in reality the two complement one another to enable a host of richer

analytical methods. As further chapters explore, gathering bet placement

and payout data in the cryptocurrency domain, and indeed the blockchain

games domain, is somewhat more complex.

4.4 Study 1: Systematic Review

The data that gambling activities generate can be used to build behavioural

profiles of players in a number of ways. The most relevant to this thesis is

the computation of behavioural measures which are derived from gambling



CHAPTER 4 50

transaction data. In order to fully capture the range of behavioural measures

employed across existing literature, a systematic literature review is required.

This review should ideally capture the majority of studies found by existing

systematic reviews, but should also capture studies published since publica-

tion of any existing reviews. The insights generated from this review will

therefore provide a unique collection of commonly used computations. For

example, authors may compute the sum of all bet sizes, known as the total

amount wagered, as a proxy measure for gambling involvement [61], and base

further analyses on that measure. It is also important to capture not only

the way each measure is computed, but also the motivations behind each.

These motivations, along with the broader contexts of the studies in which

the measures are applied, will ultimately be used for framing comparisons

between decentralised and centralised gambling in subsequent studies in this

thesis.

4.4.1 Introduction

Systematic reviews are a widely recognised method of capturing the state

of the art in an academic subject, and there are many ways in which they

can be performed. At the highest level, a systematic review consists of

utilising a scholarly search engine to gather all studies which match a given

set of search terms. Once gathered, these studies can then be analysed,

first to determine whether they meet some criteria of usefulness, and then

their contents can be extracted. Several systematic reviews have already

been conducted in the field of gambling studies, each aiming to describe

some aspect of the field. For example, Chagas and Gomes (2017) review [1]

critically analyses behavioural tracking research, outlining several trends in

the methods employed, relationships between findings, and future directions

of the field. They discuss some of the behavioural measures used in the studies

identified, but do not focus explicitly on this aspect of each of the studies

as they are instead more interested in the broader issues around gambling

research such as self exclusion, behavioural feedback, and other wider issues.

A more recent (2020) review by Lawn et al [7] takes a similar approach,

outlining several more recent studies in the field but at a much higher level

than specifically focusing on transaction analytics. Unlike Chagas and Gomes

review, Lawn et al’s approach focuses on the identification of gaps in the

literature, one such gap of note is that ‘the emergence of cryptocurrency
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Table 4.1: Search terms used in Chagas and Gomes’ systematic review [1]
(top) and the search terms used in the systematic review for this thesis
(bottom). The key changes are the inclusion of the British spelling of
‘behavioural’, and ‘machine learning’ over ‘player card’ and ‘loyalty card’ to
capture more technically oriented papers.

Study Search Term

Chagas & Gomes (”actual” OR ”behavioral* tracking” OR ”tracking data” OR
”big data” OR ”real world” OR ”player card” OR ”loyalty card”)
AND ”gambling”

This Study (”actual” OR ”behavio$ral tracking” OR ”tracking data” OR ”big
data” OR ”real world” OR ”machine learning”) AND ”gambling”

and block chain will likely also warrant research’. Studies of this nature are

immensely important for developing a broader understanding of gambling

research, yet in the context of cryptocurrency research where transaction

data is the primary resource, a narrower and more specific focus is required.

Specifically, this study addresses RQ2 - Which behavioural measures can

be applied in [new] domains. This requires understanding both the range of

behavioural measures themselves, plus their relationship to any harm related

variables such as self exclusion, as these relationships are what will ultimately

inform interpretation of their application to the cryptocurrency domain.

4.4.2 Method

As Gusenbauer and Haddaway discuss, crawler based scholarly search engines

such as Google Scholar are not best suited to perform systematic search

tasks given their lower search precision and lack of features [62]. With this in

mind, the Web Of Science search engine was chosen given its broad reach and

good performance along their ‘necessary’ performance requirements [62]. The

Web of Science functionality available for the search included the databases;

Web of Science Core Collection, KCI-Korean Journal Database, MEDLINE,

Russian Science Citation Index, and SciELO Citation Index. Unlike Chagas

and Gomes’ review, only English language papers could be analysed, so no

other languages were included. The Web of Science search tool also allows

specification of document type, here only those listed as the ‘article’ type

were taken forward. Finally, the publication date for the search was from

2007 (first publication in the field [61]) to 2021 (March 27th) inclusive.

The first step of this systematic review is to gather each of the studies
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and identify whether or not their contents meet the minimum criteria of

interest for this thesis. I use a modified variant of those used by Chagas and

Gomes terms to adequately capture machine learning based studies since the

publication of their review, given the development of the field outlined by

Lawn et al [7]. I also applied a generalisation of the “behavioural tracking”

term to include both American and British English spellings (See Table

4.1). With a collection of articles ready to be reviewed, studies pass the

first stage if they use betting data to compute behavioural measures of some

kind. Applying Fiedler’s observation that a behavioural measure is simply

any variable derived from betting data [63], this first stage identification is

fairly broad and still contains a number of papers whose contents will not

ultimately be useful. This requires a first pass of reading to determine firstly

if the study uses data or is simply a commentary or other type of article, and

then whether or not the study computes any variables based on this data.

After the studies have been labelled, all relevant studies’ measures can

be extracted. This step requires a thorough analysis of each of the ‘useful’

papers returned by the previous stage. At this point it’s important to note

that the behavioural measures used between papers may be computationally

identical but with different descriptors, or computationally different but

with identical descriptors. Here, behavioural measures should be extracted

based on how they are presented in each paper alone, i.e. the output of

this stage is not a set of globally unique measures, but rather a set of the

‘raw’ representation of behavioural measures in existing literature. This raw

collection can then be distilled by a process of repeated readings in order to

identify which measures in the collection are in fact computationally identical.

For example, Auer & Griffiths report the behavioural measure of ‘customer

tenure’ [64], which is computationally identical (with a different unit) to that

of ‘duration’ in earlier work by LaBrie et al [61]. At this final stage these two

measures would be considered identical, and could be merged accordingly.

The aim of this distillation is therefore to standardise the raw collection so

that a complete picture of the development and use of different behavioural

measures can be created. The stages of this review process are outlined in

Figure 4.1.
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Extract Titles,
Authors, and Links

Web of Science
HTML Output

Mark if
Useful

Unlabelled Sheet

Labelled Sheet

Mark if
Useful

Extract
Measures

Useful Papers

Mark Unique
Measures

Original Measures

Chagas & Gomes
Bibliography

Mark if
Useful

Globally Unique
Collection

Chagas & Gomes Sheet

Figure 4.1: Each of the stages in the systematic review method, taking input
collections of papers from Chagas & Gomes review, plus the up to date Web
Of Science output. The result of this pipeline is a globally unique collection
of behavioural measures used in gambling research.
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4.4.3 Results

The Web of Science search using the terms presented in Table 4.1 yielded

469 results in total, 424 of which were classified as articles so were included

in this review. Other document types which were not uncovered included

reviews, meetings, and editorial material. Of the 424 articles found by the

Web of Science search, only 47 met the minimum criteria described in Section

4.4.2. Additionally, of the 52 articles cited in Chagas and Gomes’ original

review, only 27 met this minimum requirement as many were commentaries

or not transaction data driven studies. Given the similarity of the search

terms and time scales in which the articles were gathered, it is not surprising

that the 47 useful Web of Science articles plus the 27 Chagas and Gomes

articles yield a total of 52 unique articles for further study in this review.

This substantial overlap confirms that this more recent systematic review

does indeed refresh the search process undertaken in Chagas and Gomes’

work. With 52 unique studies identified between 2007 and 2021, the second

stage of the review could be completed.

Removed Variables

The second stage of this review’s methodology was to extract each of the

behavioural measures used across these 52 unique studies. Given the broad

scope of the first pass, not all of these studies used transaction data alone,

and many used variables which were based on transaction data but were at

the population group level, such as Ukhov et al’s work exploring differences

between sports and casino bettors [53]. Additionally, many studies such as

those by Fiedler [65][63], Luquiens et al [66], and Auer and Griffiths [67],

used game-type specific variables (See Section 4.2) such as the number of

tables played, number of buy-ins, and other poker specific variables which

cannot be generalised to other casino games.

In addition to these removals (group level variables and game specific

variables), a further category of non-behavioural measure variables include

those which exist at the account level, such as the number and size of deposits

and withdrawals. These account level variables are important to developing a

more holistic understanding of player’s circumstances, but are not considered

behavioural measures in the context of this thesis, so were removed. Studies

which used account level variables included Haeusler’s exploration of machine
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learning methods to predict self exclusion [68], Braverman et al’s study

identifying high-risk gamblers [69], and indeed Ukhov et al’s work mentioned

previously [53].

Mixed Objectives

The collection of studies uncovered by this systematic review cover a broad

range of objectives, and therefore employ a number of different experimental

configurations. These varying study objectives include understanding be-

havioural differences between different types of gambling activities [53][70],

measuring predictors of self-exclusion [71][72], broader studies around the

impacts of personalised feedback on behaviour [73][74], and more. This mixed

set of objectives is reflected in the broad range of behavioural measures used

to investigate these issues, and is likely a driving force behind the use of

functionally identical measures with varying textual descriptions.

In the context of this thesis, the most important aspect of each of the

behavioural measures used is the motivation behind their use, or more plainly,

why did the authors choose to compute any particular measure as a descriptor

of gambling behaviour. The motivations behind of each of the measures

found will be more comprehensively discussed in the dedicated ‘Behavioural

Measures’ section below (Section 5.1), but generally fall under aiming to

either capture the financial or temporal involvement of the player with the

gambling activity in question. For example, Auer and Griffiths note in their

multi-publication discussion of their measure of theoretical loss [75] that

their measure ‘theoretical loss does not intend to cover other important

aspects of gambling such as time involvement’, also noting that ‘gambling

cannot be understood solely by looking at monetary aspects’. This view is

generally held across the studies identified by this systematic review, with

many studies computing both financially oriented and temporally oriented

behavioural measures. Specific examples of relationships between different

types of behavioural measure and conditions of interest, such as account

closure due to gambling related problems, is discussed in Section 5.1 below.

Proprietary Collaborations

Several studies returned by the search conducted for this review included

proprietary computations over player data which were not explicitly and
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transparently defined. Studies which apply proprietary classification systems

in peer reviewed research are not useful to furthering academic discourse

as they cannot be replicated, so are not discussed in detail. These studies

were Auer and Griffiths 2021 study on gambling before and after the global

pandemic [76], the same author’s 2020 work on personalised wager messages

[77], and Challet-Bouju et al’s 2020 work on generic player modelling [78],

among others [79]. These studies use either the proprietary Mentor classifica-

tion system2, or the Playscan classification system3 [80], which are owned by

Neccton GmbH and AB Svenska Spel respectively. It is however important to

note that these systems each advertise a mix of survey and/or account level

data, plus transaction data, in their computations. This mixed input means

that even if their internal workings were known and could be replicated,

their outputs cannot be considered behavioural measures in the context of

this thesis, so are not of use anyway. A second important note from these

publications is that behavioural measures derived from player transaction

data are actually used in the computation of these classification systems

[80], and that these classification systems are currently deployed across large

populations of gambling operator customers to help identify players at risk of

gambling related harms. This inadvertently supports a central tenet of this

thesis; that measures derived from transaction data are in fact meaningful

in identifying players at risk of gambling related harm. It does however also

support the notion that it is important to incorporate multiple data sources

in classification algorithms - a limitation discussed in detail in subsequent

chapters.

Unique Measures

A total of 438 mixed-type variables were found across these 52 unique studies,

200 of which can be derived from a single player’s transaction data. Of these

200 raw variables, 51 can be described as globally unique, and computed

using betting transaction data alone, so are considered behavioural measures

in the context of this thesis. Figure 4.2 charts each of these measures in

relation to the data required to compute them, with the majority of measures

derived from bet time data alone (See Section 4.3.2 above). This figure

also visualises the interaction between the different data types discussed

2See https://www.neccton.com/, accessed 06/05/2021.
3See http://playscan.com/, accessed 06/05/2021.

https://www.neccton.com/
http://playscan.com/
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in Section 4.3.2 above, and how they can be used to derive more complex

behavioural measures than any single data type in isolation.

The 51 globally unique behavioural measures discovered by the iterative

extraction process described above have not found equal application across

each of the studies. Indeed, older behavioural measures have generally

been applied more times than those created more recently, despite calls for

more recent measures to replace their older counterparts [75]. This is to

be expected and caveats the interpretation of the number of uses of each

measure as a proxy of their effectiveness or reliability. The distribution of the

number of uses each of these measures in the studies collected is available in

Figure 4.3. Given the importance to this thesis of the collection of measures

uncovered by this review, a complete discussion of each of the behavioural

measures is deferred to its own section (5.1) in this thesis. The following

discussion is therefore specific to the execution of this systematic review

alone.

4.4.4 Discussion

In the context of the size of the gambling industry globally, the number of

studies which use actual gambling transaction data to develop any under-

standing of players in any capacity is somewhat underwhelming. In addition

to this lack of quantity, many studies utilise data sets which are not publicly

available, therefore even the published and peer reviewed results are impos-

sible to verify. This lack of quantity and transparency directly affect the

number of behavioural measures which can be applied to new domains, such

as those later in this thesis, but may be as much an artefact of the relative

youth of this field as it is a reflection of the transparency and collaborative

drive of the industry.

This considered, the set of 438 non-unique variables found in the 52

studies does indicate a somewhat rapid pace of innovation within the field

itself, with researchers quickly branching out to uncover new relationships

and descriptive methods for players in general. The 51 globally unique

behavioural measures in particular reflect this innovation, although as the

graph (Figure 4.3) of their distribution within the literature shows, many are

not yet mature enough to be meaningfully applied for comparative purposes

in new domains. For example, the behavioural measure of ‘mean amount

wagered per session’ has only been used once (that this review returns), which
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Figure 4.2: Globally unique collection of behavioural measures identified
in Study I in this thesis. Colour coding indicates the domain in which
each behavioural measure resides, this is based on the information needed
to compute each measure - a concept expanded upon below in Section 5.1.
Greyed out measures required contextual information (time zone), and arrows
signify a computational dependency between measures, e.g. Total number of
sessions is required to compute amount wagered per session.
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Figure 4.3: The distribution of behavioural measures used in studies uncov-
ered by the systematic review. It is important to note that the raw number
of times a behavioural measure is used in the literature is not necessarily
and indicator of its validity, but acts as a useful starting point for further
investigation.



CHAPTER 4 60

to
ta

l a
m

ou
nt

 w
ag

er
ed

 (3
4)

ne
t l

os
s (

32
)

fre
qu

en
cy

 (2
1)

to
ta

l n
um

be
r o

f b
et

s (
19

)
be

ts
 p

er
 d

ay
 (1

9)
du

ra
tio

n 
(1

7)
m

ea
n 

be
t s

ize
 (1

4)
fre

qu
en

cy
 p

er
ce

nt
 (1

3)
pe

rc
en

t l
os

s (
12

)
th

eo
re

tic
al

 lo
ss

 (8
)

to
ta

l p
la

y 
tim

e 
(6

)
be

t s
ize

 d
ev

ia
tio

n 
(6

)
to

ta
l n

um
be

r o
f s

es
sio

ns
 (5

)
se

ss
io

ns
 p

er
 d

ay
 (5

)
su

m
 o

f p
ay

ou
ts

 (5
)

be
t s

ize
 tr

aj
ec

to
ry

 (5
)

co
st

 o
f p

la
y 

(4
)

m
ea

n 
se

ss
io

n 
du

ra
tio

n 
(4

)
am

ou
nt

 w
ag

er
ed

 p
er

 d
ay

 (3
)

be
ts

 p
er

 se
ss

io
n 

(3
)

pl
ay

sc
an

 sc
or

e 
(3

)
tra

je
ct

or
y 

sig
ni

fic
an

ce
 (3

)
fre

qu
en

cy
 si

gn
ifi

ca
nc

e 
(3

)
m

en
to

r s
co

re
 (2

)
va

ria
nc

e 
of

 se
ss

io
n 

du
ra

tio
ns

 (2
)

ne
t l

os
s p

er
 se

ss
io

n 
(2

)
ne

t l
os

s o
n 

la
st

 d
ay

 (2
)

ac
co

un
t a

ge
 (2

)
se

ss
io

n 
du

ra
tio

n 
tra

je
ct

or
y 

(2
)

pa
yo

ut
-b

et
 c

ou
nt

 ra
tio

 (2
)

m
ax

 b
et

 (2
)

be
ts

 p
er

 d
ay

 si
gn

ifi
ca

nc
e 

(2
)

be
t d

ev
ia

tio
n 

pe
r d

ay
 (2

)
m

ea
n 

pl
ay

 ti
m

e 
(2

)
pe

rs
ist

en
ce

 (1
)

bi
g 

wi
n 

(1
)

re
la

tiv
e 

bi
g 

wi
n 

(1
)

to
ta

l g
am

es
 p

la
ye

d 
(1

)
va

ria
nc

e 
of

 b
et

s p
er

 se
ss

io
n 

(1
)

va
ria

nc
e 

of
 to

ta
l a

m
ou

nt
 w

ag
er

ed
 p

er
 se

ss
io

n 
(1

)
cla

m
pe

d 
ne

t w
in

 (1
)

ov
er

al
l b

in
ar

y 
lo

se
r (

1)
un

iq
ue

 g
am

es
 p

la
ye

d 
(1

)
va

ria
nc

e 
of

 in
ac

tiv
e 

da
y 

st
re

ak
s (

1)
la

te
 n

ig
ht

 n
um

be
r o

f b
et

s p
or

tio
n 

(1
)

sa
tu

rd
ay

 n
um

be
r o

f b
et

s p
or

tio
n 

(1
)

pa
yo

ut
-b

et
 ra

tio
 (1

)
va

ria
nc

e 
of

 to
ta

l a
m

ou
nt

 w
ag

er
ed

 p
er

 d
ay

 (1
)

m
ea

n 
pa

yo
ut

 si
ze

 (1
)

be
t s

ize
 ra

ng
e 

(1
)

ac
tiv

e 
da

y 
tra

je
ct

or
y 

(1
)

be
t c

ou
nt

 tr
aj

ec
to

ry
 (1

)
we

ek
en

d 
to

ta
l a

m
ou

nt
 w

ag
er

ed
 ra

tio
 (1

)
we

ek
en

d 
nu

m
be

r o
f b

et
s r

at
io

 (1
)

co
st

 o
f p

la
y 

pe
r d

ay
 (1

)
sa

wt
oo

th
 o

cc
ur

an
ce

s (
1)

m
in

 b
et

 (1
)

to
ta

l a
m

ou
nt

 w
ag

er
ed

 a
cr

os
s d

ur
at

io
n 

(1
)

od
ds

 p
er

 b
et

 (1
)

m
ea

n 
am

ou
nt

 w
ag

er
ed

 p
er

 se
ss

io
n 

(1
)

LaBrie2007assessing
Nelson2008real

LaPlante2008population
Broda2008virtual
LaBrie2008inside

LaPlante2009sitting
Xuan2009how

Dragicevic2011analysis
Fiedler2011the

LaBrie2011identifying
Braverman2011a

Gainsbury2012wagering
Brosowski2012analyses

Braverman2012how
Gray2012behavioral
Auer2013voluntary
Adami2013markers

Fiedler2013gamblers'
Braverman2013using
LaPlante2014breadth

Braverman2014accuracy
Ma2014online

Auer2014an
Dragicevic2015a

Auer2015the
Gray2015expanding
Auer2015theoretical

Leino2015the
Percy2016predicting
Haeusler2016follow

Auer2016personalized
Leino2016an

Wohl2017how
Auer2017self-reported

Sagoe2018does
Auer2018the

Luquiens2018description
Nelson2019patterns

Jonsson2019reaching
Han2019recognizing
Auer2019predicting
Auer2020gambling

Ukhov2020online
Challet-Bouju2020modeling

Auer2020the
Kainulainen2020does

Scholten2020inside
Finkenwirth2020using

Auer2021reasons
Catania2021understanding

Auer2021gambling
Edson2021a

Figure 4.4: Each of the unique behavioural measures uncovered by the
systematic review, plotted against the studies they were used in. Note that
in some instances in text a measure may be referenced as being used in
two studies but appears as a three in this figure. This is due to variants or
transformations of the same measure being used in a single study.
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means that if one were to compute this measure in a new domain, it would

be difficult to compare the two values in any meaningful way. Naturally

this does not discount the approach one may take of applying all of the

behavioural measures to the new domain under the rationale that they may

one day be meaningful for comparison, but this exploratory ‘apply everything’

approach may not make the best thesis.

Limitations

This systematic literature review, whilst gathering a large sample of studies

and behavioural measures, has several important limitations. The most

significant limitation is that only one scholarly search engine (Web of Science)

was used. While this search engine does cover a number of different databases,

incorporating multiple search engines would naturally return more articles

at the obvious cost of additional search and analysis time. An alternative to

increasing the number of search engines used would be to take a publication-

oriented approach based on an existing systematic review. For example,

one may take the venue of publication of each of Chagas and Gomes’ cited

studies and search each of them for new and useful articles. This approach

may however miss work published farther afield, and in newly created venues,

so was not used for this review.

An additional limitation of this systematic review is that although the

term ‘machine learning’ was included in the search terms, many of the now

widely recognised machine learning based studies in the field of gambling

research were not successfully returned. Examples of work that were not

returned by the search include the seminal study on data mining techniques

and player data by Philander [81] and work by Sarkar et al which applies

knowledge extraction techniques to machine learning methods for safer

gambling [82]. This non-exhaustive set includes studies which have been

extremely important to the development of machine learning applications in

gambling research, but which were not explored as part of this review.

One reason that these studies were not returned by the search is that they

may use more specific terms than simply ‘machine learning’ in their titles

and keywords. The remedy for this would be to further expand the search

query to include all specific terms of interest, however this broadening of

search terms - especially in the direction of machine learning research - would

lead to the return of a prohibitively large number of papers, particularly
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across unrelated fields such as machine learning applications for AI in digital

games, for example. A second reason several machine learning oriented

studies may not have been returned is that they simply don’t exist in the

databases indexed by this particular scholarly search engine so would not

have been returned no matter the query design. In any case, a set of known

(and missed) machine learning oriented studies will be referenced throughout

the dissection of behavioural measures below for completeness. These have

been uncovered by manually searching for citations of Philander’s seminal

work on data mining [81].

Outcome Variables

A final limitation of this review, and indeed of the studies identified across

the field of player behaviour tracking, is that the choice of outcome variables

is not consistent, and that of the outcome variables chosen, some may lack

broader validity when used in different contexts. Specifically, several studies

use outcome variables such as likelihood of self-exclusion or self-reported

problem gambling severity, which naturally rely on the affected individual

being aware of their circumstance and take proactive steps to mitigate

gambling’s effect on their lives. Using such variables as outcomes in a study

may mean missing the sub-population of players who experience some kind

of gambling related harm but are unable to self-identify (and subsequently

seek help) and therefore continue to experience harm. It is by identifying not

only those who experience harm and act on it, but all those who experience

harm, that a more holistic understanding of gambling behaviours can be

created. This is not to say that these studies are not useful in the context of

this thesis, but rather that they contribute to a subset of our understanding

of behaviours and should be considered in the broader framing of outcome

variable validity.

4.5 Summary

This chapter has discussed types of gambling, types of game, and the types

of data they generate, which serve as essential background for understanding

a field of research within gambling studies known as player behaviour track-

ing. Player behaviour tracking concerns understanding players using their

transaction data. This can be achieved by computing behavioural measures
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across player’s betting data, and then applying statistical analyses to these

measures. In order to fully understand the range of different measures used

across this research, a systematic review was conducted, finding a large col-

lection of studies which employed a range of different measures. The entire

next chapter is dedicated to exploring the range of behavioural measures

uncovered by this systematic review, and delves deeper into the motivations

behind each of these measures and their implementations.



Chapter 5

Understanding Behavioural

Measures

“Excuse Me.”

Darth Jar Jar Binks

The Phantom Menace

The previous chapter introduced the field of player behaviour tracking,

including a discussion of the study-level results of a systematic literature

review. This chapter delves deeper into each of the studies returned by the

systematic review, focusing explicitly on which transaction level behavioural

measures are used, and the motivations behind their use. It begins by

describing the broad differences within existing research in Section 5.1, such as

the different scales in time used, parametric and non-parametric equivalents,

and inter-period derivatives of the same measures. These broad differences

are important to discuss here as they affect how these behavioural measures

are interpreted when applied. It then describes each of the behavioural

measures discovered in Section 5.2, dividing the collection of measures by the

information required to compute them. This information-oriented taxonomy

was chosen over alternatives (such as type of gambling activity studied)

as it maps directly to the process of decoding cryptocurrency transactions

as described in Chapter 3. For example, Section 5.2.1 describes the time

domain, whose behavioural measures require the time of each bet placement.

This means that by retrieving the time of each bet placement transaction,

all of the measures in the time domain can be computed.

64
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5.1 Existing Research

Study 1 above uncovered a collection of papers, each applying some kind

of computation to a set of transaction data. These computations typically

aim to derive a single value from a set of data, commonly referred to as a

behavioural measure, and relate that measure to some internal or external

condition of interest such as self exclusion, or self reported problem gambling

severity, for example. These behavioural measures therefore contribute to

developing a behavioural profile of the players in each of these studies, inviting

the question of exactly how many unique behavioural measures have been

used, how they relate to one another, and how they relate to the external

conditions of interest.

This section expands the findings of the systematic review by decom-

posing the collection of behavioural measures into groups by the level of

information required about each bet required to compute each measure. This

implementation-oriented decomposition is used over alternatives, such as

grouping by the type of gambling activity the measures were used on, in order

to develop a more practical understanding of exactly which data is required -

as in the context of this thesis this may become a limiting factor. Motivations

behind each of the behavioural measures are also discussed, including any

work exploring their correlation with other measures where possible. Provid-

ing a broader motivational backdrop for each of the behavioural measures

allows not only a deeper understanding of how they are conceptually similar,

but is key to interpreting their results when they are computed across a set

of actual transaction data in a new domain in the studies below.

Additionally, it is important to note that although the following discussion

outlines each of the behavioural measures in isolation, and their contribution

to external harm related variables, it is the emergent profile generated by

the use of multiple measures at the same time which provides the richest

descriptions of player behaviours. The reductionist approach of answering

which measure is most important or descriptive for capturing a given aspect of

player behaviour is then less meaningful. Instead, uncovering which collection

of measures accurately and broadly relates to some external variable in the

most reliable way helps build a more holistic picture of the different types of

behaviours that can exist in gamblers. To this end, each of the descriptions

of the behavioural measures below also contains a brief discussion of its



CHAPTER 5 66

relation to other measures where known.

5.1.1 Study Variation

Although the collection of measures themselves can be broken down by the

information required to compute them, several notes can be made about

the variation in the studies themselves and how these variations affect the

interpretation of the behavioural measures in question. Specifically, the set of

studies returned by the systematic review varied in terms of the scales in time

that they used, the use of parametric vs non-parametric statistics, and the

use of inter-period derivatives (which are simply measures computed across

different time periods for comparison). This subsection briefly discusses these

three aspects.

Scales in Time

The issue of the many different scales in time that studies can explore must be

addressed, as this has a significant effect on the way behavioural measures are

interpreted (e.g. frequency per day or frequency per month), and the types of

measures that can be computed. At the highest level, the scales of time under

inspection in gambling research vary from the individual session level, to the

weekly or monthly scales, up to describing and comparing entire gambling

careers. As discussed briefly above, this can become entangled with the types

of measures computed, since a study may be exploring gambling behaviour

across an observation period - or scale - of two years, but compute behavioural

measures such as mean session length. Conversely, a study may focus on

understanding within-session behaviour, but may also include variables at

the career level. In order to avoid any confusion in the following discussion,

and across each of the studies presented in this thesis, the following naming

convention is used; Time Scale refers to the total period of data available for

a given study. Time Domain refers to the group of behavioural measures

which may be computed using bet-time based data - e.g. frequency in the 2

week time domain.

It is also common to encounter studies which are concerned with a single

time scale (e.g. gambling involvement over a period of 6 months), but which

apply behavioural measures from multiple time domains (e.g. session level

variables, monthly variables, and career variables). Possible scales in time
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include the individual bet level (e.g. [83]), any arbitrary length of time (e.g.

one week [84], two weeks [85], three months [86], etc), empirically determined

lengths of time such as sessions [65][63], or entire player careers [87][61]. This

rich range of study time scales presents many opportunities for verifying

or challenging findings in across the different scales, but in the context

of discussing the computations and motivations behind the behavioural

measures themselves is not discussed further. This considered, the scales

in time in which studies exist is vital when framing comparisons in their

findings with similar studies in new domains. The studies presented herein

will explicitly address these varying scales when comparisons are made, and

interpret results accordingly.

Parametric vs Non-Parametric

Many of the measures encountered in the systematic review can be described

as parametric or non-parametric equivalents of the same fundamental com-

putation. For example, the behavioural measure of session duration can be

described by its mean or median value, since the computation of session

duration for a given player is itself a sequence of values. One important

observation is that mean values can be derived from aggregate sequences

of bets, but median values require knowledge of the individual transaction

data. For example, the mean bet size can be computed as the sum of all

bet sizes divided by the number of bets placed, whereas the median bet

size cannot. In data sets where these values are already aggregated and the

individual bets are not available, such as many of the bwin data sets used

in the Harvard studies [61][2][88], this means that median bet sizes cannot

be computed. These types of parametric and non-parametric behavioural

measures are treated equally in this chapter and indeed this thesis, but it

should be noted that actual gambling transaction data is rarely normally

distributed, so non-parametric measures are typically preferred. This pref-

erence is well documented [88], and motivates the use for non-parametric

statistics throughout the work presented in this thesis.

Inter-Period Derivatives

Finally, inter-period derivatives can be described as the computation of the

same behavioural measure across different time periods, with the ultimate
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goal of deriving some metric of change between the two. For example, Percy

et al’s work predicting online gambling self exclusion [72] computed five key

behavioural measures. They also applied several transformations to these

measures to create derivative behavioural measures which described changes

between periods of time. An example from their work is the measure of

bets per day, which meets the definition for inclusion in this thesis described

above. However, further derivatives of this measure such as the statistical

significance of the change in this measure between two periods of time, as

used in their paper, sits one level higher in the analytical sense than the

behavioural measure itself as it is contextually dependent on the experimental

configuration of their study. These types of inter-period derivatives have

been removed during the data cleaning process described in Section 4.4.2

as they depend on external information (experimental configurations) in

addition to the raw transaction data.

5.2 Behavioural Domains

Following extraction of each of the behavioural measures from the systematic

review described in the previous chapter, it became apparent that the set of

measures used across player tracking research naturally fall into a groups

along two axes. The first axis is the scale in time in which the behavioural

measure exists. For example, total amount wagered uses the exists in a time

scale equal to the entire (continuous) duration of the study, whereas amount

wagered per week naturally exists at a (discrete) weekly scale. The second

axis is the information required to compute each of the behavioural measures.

The following sections break down the behavioural measures identified along

the information required to compute them, then by the scale of time they

exist within.

5.2.1 Time Domain

Behavioural measures in the time domain aim to capture temporal patterns

of play in some way, and are typically motivated by a desire to operationalise

the temporal aspect - as opposed to the financial aspect - of gambling

involvement [89]. Measures therefore exist in the time domain if they can

be computed using only knowledge of the times that bets have been placed.

Formally, behavioural measures in the time domain can be defined as any
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value derived from the finite sequence T , where T = (t0, t1, t2, ..., tn). Here T

is simply a sequence of timestamps. Following the discussion of transaction

level data and the anatomy of a bet in Section 4.3.2 above, this is one of the

core components of betting transaction data, and can be applied to both

betting and payout transactions. Importantly, this means that behavioural

measures based on bet times can be applied to payout times to generate

similar but mirrored variables, although in practice bets and payouts are

typically treated as a single transaction for analytical purposes. Measures

in this domain also include all of those which can be computed using any

derivative of T , for example, each of the times tx can be grouped into sessions,

or into discrete bins equating to a fixed time period e.g. days, weeks, and so

on. Each of these derivatives of T bring their own limitations, so have their

own dedicated sections below.

With this in mind, and in order to capture these patterns more accurately,

measures in the time domain can be split into the continuous, discrete, and

session sub-domains. Continuous time domain measures view the entire

collection of betting data as a single collection, or formally, use the values

in the sequence T . Discretising this sequence means grouping bets into

bins corresponding to fixed time intervals, thereby creating a sequence of

sequences. Behavioural measures in the discrete time domain therefore

require transaction level data at a minimum, or in cases where measures are

based on sums of these discretised bins (such as total amount wagered per

day) require the aggregate values of these discrete bins. Finally, grouping

bets by temporal proximity with some fixed time window yields the session

subdomain. The following subsections outline each of these sub-domains in

detail, and the measures uncovered by the systematic review which fall into

these domains.

Continuous Time Domain

Behavioural measures computed in the continuous time domain treat the

whole sequence T as a single and complete collection. This highest possible

level grouping allows the computation of measures across the maximum

possible length of observation for each player, and therefore holds commonly

used behavioural measures uncovered by the systematic review. The very

general nature of this domain does however mean that there are a finite

number of computations that can be performed, and therefore a small number
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(2) of behavioural measures in this specific subdomain.

The most commonly occurring behavioural measure in the continuous

time domain is that of duration, which is simply the difference between the

first and last elements of T , or tn−t0. This makes duration a useful descriptor

at the aggregate level when establishing differences in observational periods

between participants for data gathered over a fixed period of time. Given

its career-level nature, it does not capture any granular details about the

player’s interaction with a gambling activity, but has seen widespread use,

especially in studies using the Harvard-affiliated bwin datasets [2][3][88], with

its first use by LaBrie et al [61] in 2007. Including the Harvard series of

studies, duration has been applied in a total of 16 studies across a number of

different types of gambling. Duration is an important behavioural measure

for providing temporal context to more granular measures, and can also be

used to naively distinguish between levels of temporal involvement in data

sets over a fixed time period. As Fiedler notes in his longitudinal studies

of Poker players [65][63], many of the behavioural measures that appear

below can be combined with duration to provide richer descriptions of player

behaviours.

The total number of bets, computed as simply the length of sequence

T , is another common behavioural measure which captures the level of

gambling involvement per player in a very simplistic way. As with the

behavioural measure of duration, the total number of bets was first used

by LaBrie et al [61], and has been used 18 times in the studies returned

by this review. The total number of bets has been positively related to

structural game characteristics (rewards and betting options) by Leino et al

[90], making it most meaningful when used to compare between two similar

types of game. Additionally, the total number of bets has been found to

be substantially higher in so-called ‘heavily involved bettors’ [61][91], which

makes intuitive sense given ‘heavy involvement’ is typically a top percentage

of players by total amount wagered. This relationship - between total number

of bets and total amount wagered - is discussed below.

The career level nature of analysing a player’s betting activity as a single

continuous sequence has several limitations. The most important of these

limitations to note is that any measure at this level by its design holds little

descriptive power over more granular time scales. For example, the measure

of duration gives no insight into the actual play time of a given player, and
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the total number of bets gives no insight into the frequency of betting. For

more granular insights, static discretisation (fixed time intervals) or dynamic

discretisation (partitioning into sessions) is required.

Discrete Time Domain

Discretising a continuous series such as transaction data invites the develop-

ment of more nuanced behavioural measures at the cost of granularity, as the

discretisation process naively merges contiguous observations. As mentioned

above, there are several levels of discretisation, the most common of which

being daily bets. This aggregation results in one sequence D which contains

bets for each calendar day upon which at least one bet was placed. For

example, a player placing six bets split equally across two separate calendar

days would yield a sequence D of length 2, where each element of D would

itself be a sequence containing three timestamps. Equations 5.1 and 5.2 show

how the sequence of six bets can be split this way.

T = (t0, t1, t2, t3, t4, t5) (5.1)

D = ((t0, t1, t2), (t3, t4, t5)) (5.2)

The most commonly used behavioural measure in the discrete time

domain is that of frequency, which can be described as the length of the

derivative sequence D. In other words, this is the number of calendar days

upon which at least one bet was placed. This measure appears in over 20 of

the studies uncovered by the systematic review, making it one of the top 3

most commonly used in the field. First used by Xuan and Shaffer [92] as a

purely descriptive variable, frequency has since been used by Dragičević et al

[93] as a ‘risk factor’ in their cluster analysis of casino game players, finding

that two clusters (n=80,n=6) exist in their sample (n=546) which exhibit

extremely high values along this measure. This matched Braverman and

Shaffer’s earlier study using an identical methodology [3]. These early studies

suggested that frequency - an obvious metric of time involvement - could be

used to make meaningful distinctions between groups of players. This idea

matched work by LaBrie and Shaffer in 2011 [94] which found that betting

frequency was higher in players who closed their accounts due to gambling

related problems (as opposed to other reasons). This finding was confirmed
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by Gray et al [95] in the context of account closure vs non-closure, although

is challenged in Gray et al’s later work [91] which divided players into groups

based on total amount wagered and total number of bets. These findings

taken together suggest that the naive approach of taking the top percent by

any single metric may not be meaningful in the context of understanding

the potential for gambling related harms, but instead functions as a purely

descriptive analytical technique.

The measure of frequency percent is an example of combining an

existing behavioural measure with that of duration in order to derive a

normalised value across players. Formally, frequency percent is simply

frequency above represented as a percentage of duration. Although frequency

percent appears to simply be an alternative representation of frequency, the

use of duration in its computation makes it a unique behavioural measure

in its own right in the context of this thesis. Frequency percent has been

described using a number of different terms such as ‘frequency of betting’

[96] in the studies returned by the systematic review (and is often conflated

with just frequency). Frequency percent is less common than frequency, with

a total of 13 uses overall, starting again with LaBrie et al’s 2007 study [61]

through to Edson et al’s 2021 study [97]. Nelson et al’s 2008 study [98] found

that frequency percent was significantly different (higher) in self-limiting

players (pre limit setting) than non-self-limiting players (players who choose

to add financial limits to their accounts) across sports betting participants.

Similarly, Gray et al [95] in addition to computing frequency also computed

frequency percent, finding it was also slightly greater in account closure

cases vs non-closures. These studies, and others returned by this review,

provide empirical support for Currie et al’s assertion that ‘the chances of

experiencing gambling related harm increase[d] steadily the more often one

gambles...’ [8]. This makes intuitive sense, and shows that both frequency

and frequency percent can be meaningfully applied to describe behaviours in

new domains.

Closely related to the concept of duration is that of persistence, which

is defined as the number of consecutive months with at least one active day

(one bet). This more nuanced variant of duration naturally places emphasis

on continuous play, so should in theory be more descriptive than measures

like duration when comparing external variables such as self exclusion. Un-

fortunately, very little work has explored this behavioural measure, as the
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first and only paper to use is was Edson et al in 2021 [97]. It is therefore

unclear how persistence relates to gambling related harms, and any proxy

measures thereof such as self exclusion, ultimately making it difficult to apply

to new domains.

Similarly, Active day trajectory is one of a family of measures which

compute the trajectory of the values in a sequence. This means using the

slope of a linear regression fit to the sequence as the measure, with active

day trajectory referring to the slope coefficient fit to the number of active

days across time periods. For example, Braverman et al use this measure

in their 2013 study on early identification of high-risk internet gamblers

[69]. Their study splits a player’s wagers in half, computing the trajectory

between the two halves and categorising the result as one either increasing,

decreasing, or stable. Unfortunately, as with other behavioural measures

which have only been used in a single study, it is difficult to concretely map

the distribution or interaction of this measure to a harm related external

variable. This considered, Braverman et al did include the measure in their

final classification tree (Chi-square Automatic Interaction Detection tree1),

which in context means that it has meaningful power in predicting whether

or not a user will be flagged by the bwin.party responsible gambling program

as having gambling related problems. Nonetheless, the strength of this power

is unknown, and has not been confirmed in any similar settings by any

subsequent studies. This means that the measure of active day trajectory

alone cannot be used to provide meaningful distinctions between groups of

players in new domains, but this does not mean that it is not still informative.

The measure of inactive day streak variance refers to the variation

in days between wagers. As with many other measures uncovered in this

review, this measure has only been applied once - in a recent study by Ukhov

et al [53] exploring differences between casino and sports bettors. Their

study reveals that the inactive day streak variance is only slightly meaningful

in explaining the risk of exclusion due to problem gambling. This weak

relationship (Median normalised absolute Shapley value of 0.2 for casino

players and 0.05 for sports bettors) extracted from a classification model

(XGBoost by Chen and Guestrin [99]), means this behavioural measure is

generally of little predictive power, and is not of use in the context of this

1This is one of the oldest classification tree algorithms available, and has not been used
in any of the other studies returned by the systematic review.
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thesis.

The behavioural measure of bets per day is one of the most commonly

used measures in gambling literature, and is simply the mean or median of

the lengths of each sequence of bets per day in D. Intuitively, bets per day

captures the amount of gambling occurring, albeit in a more mechanically

focused way than measures like frequency above. With a total of 19 uses

starting with LaBrie et al’s seminal work [61], high values of this measure

have been positively related to responsible gambling events [95], presence

in heavily involved subgroups in casino players [2], and likelihood of being

flagged by the bwin.party responsible gambling program as having gambling

related problems [69] to name a few. As with frequency and frequency percent

above, this makes intuitive sense given the nature of gambling related harms,

and makes bets per day a strong candidate for application to new domains

for exploring the scale of potential harms.

The bet deviation per day refers to the standard deviation of the

number of bets placed across all of the active betting days in a transaction

sequence. It therefore partially captures both the financial and temporal

aspects of gambling involvement, and was alternatively described as ‘bet

variability’ when in was used by Braverman et al in 2013 [69]. The first

study to use this behavioural measure returned by this systematic review

was Dragičević, Tsogas, and Kudic’s 2011 study on behavioural risk markers

for high-risk gambling [93], although the first ever study to use this measure

was Braverman et al in 2010 [3]. Having only seen use twice, bet deviation

per day has not been applied broadly enough to reliably relate it to factors

such as responsible gambling events, however it has been used in the context

of behavioural clustering - a type of study described in a dedicated section

(5.3) below.

The second trajectory oriented measure is that of bet count trajectory,

which requires fitting a linear regression to a sequence of bet counts aggregated

to discrete intervals. The measure, like the active day trajectory described

above, is the coefficient of this model, although this value can also be

categorised into one of ‘increasing’, ‘decreasing’, or ‘stable’ depending on its

value (positive, negative, zero, respectively). As with the previous measure,

bet count trajectory was used in Braverman et al’s 2013 study [69], although

it is important to note that this is not the same as bet size trajectory - a

similar but financially-oriented measure in the bet domain which has been
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used in similar work. Unlike the other measures used across Braverman et

al’s studies, bet count trajectory has not been used in any other studies

returned by this systematic review, which unfortunately means that little

information exists around its relationship to other behavioural measures, and

indeed to other external variables of interest such as potential for gambling

related harms. This does not mean that these insights are not informative,

however. For example, the ‘trajectory of bets’ as they describe it is included

in their final model for the early identification of high-risk internet gamblers

for fixed odds betting games, making it a potentially fruitful area of further

investigation in new labelled data sets. That considered, the lack of studies

which use it means it is ultimately not useful in further analyses in this

thesis.

Session Domain

Behavioural measures relying on session level data require partitioning the

continuous time domain into chunks, where each chunk contains a set of

bets in close temporal proximity to one another. This proximity, typically

determined by a fixed time value, is referred to as the session window. Session

windows in existing work range from 10 minutes [66] to 30 minutes [65], the

exact value to use is a decision is typically made at the discretion of the

authors rather than by any empirical means. This variable session window can

ultimately impact the distribution of any session level behavioural measures,

an issue highlighted as encountered throughout this thesis.

The most obvious behavioural measure in the session domain is that

of the total number of sessions. First used by LaPlante et al in their

study of poker players [100], this measure is formally defined as the length

of the sequence S. Since its conception it has been used a total of 5 times,

in subsequent studies of poker players [65] [63], in Ukhov et al’s work com-

paring behavioural profiles of casino players and sports bettors [53], and in

Finkenwirth et al’s study of online gambler’s self exclusion [101]. Of the five

studies which have employed the use of the total number of sessions as a

behavioural measure, Finkenwirth et al found that it had little importance

as a feature for predicting voluntary self exclusion in a balanced sample of

2,157 self excluders and 2,157 non self excluders [101]. Similarly, Ukhov et

al found it ‘less informative for sports betting compared to casino gambling’,

in the context of its relationship to a risk score developed to operationalise
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likelihood of self exclusion related to problem gambling. These findings

likely stem from the high correlation between duration and total number of

sessions discovered in poker players by Fiedler [63]. This makes intuitive

sense, as the longer a player is gambling over time, the more sessions they

are likely to play. Subsequently, given the aggregate nature of the measure,

it is unlikely to be useful as a distinguishing factor between self exclusion

and non self exclusion as it is unable to capture more nuanced differences in

player profiles. This means its application to new domains may not provide

any meaningful insight which simply using duration would reveal.

The first behavioural measure to make use of both the discretised time

domain and the session domain is that of sessions per day. Formally,

this is the mean or median of the number of sessions played per active day,

which is the elements of sequence D themselves decomposed into elements s

representing each of the sessions within that day. First used by LaPlante

et al in their 2009 study of internet poker gambling behaviour [100], the

behavioural measure of sessions per day has since been used a handful

of times, especially in studies focusing on poker transaction data [65][63].

Despite it’s poker-centric origins, the measure of sessions per day has been

transferable to gambling more generally, as Dragicevic et al showed in their

2015 research into self exclusion [102], and again in Finkenwirth et al’s 2020

research [101]. Despite these more recent and non-poker focused studies,

little information about sessions per day exists in the context of simple casino

games, making it difficult to find meaningful application in the context of

this thesis. For this reason sessions per day is not explored further.

The measure of session duration, also known as play time, is the mean

or median value of the lengths of each of the sessions a player has had.

Formally, this a measure of centrality of the sequence of lengths of each

session (tn − t0 for each t, for each session). It therefore aims to capture the

typical time commitment of a player to a gambling application, although in

practice only the parametric variant of this measure has been used, which

can easily be skewed by extreme values. (mean) Session duration was first

used by Fiedler in his 2011 study of poker players [65], and has been used

a total of 3 other times in the papers returned by this systematic review.

These include Fiedler’s later poker study [63], Percy et al’s exploration of

predictive machine learning models [72], and Finkenwirth et al’s study of

self exclusion [101]. Like other session domain measures, session duration
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has simply not been applied broadly enough to make its application to new

casino game domains meaningful, so again is not explored further.

A complementary measure following the typical time commitment of a

player above, is how varied this time commitment is across all of their gam-

bling sessions. The measure of session duration variance captures exactly

that by computing the variance (in the statistical sense) of the sequence of

session durations, computed as described in the previous measure. Unlike

other measures in the session domain which have been used in analysing

poker data, session duration variance has only been used twice in the stud-

ies returned by this systematic review - first by Ukhov et al in 2020 [53],

and then in the same year by Finkenwirth et al [101]. Both studies take a

predictive approach to using behavioural tracking data, using a battery of

behavioural measures and performing analyses across them. Ukhov et al find

session duration variance to be only weakly useful (#12/40) for explaining

gambling related exclusion in casino game players, but find it to be the 6th

most powerful variable (in their set of 40) for their sample of sports bettors.

Finkenwirth et al however, apply the measure of session duration variance but

do not discuss it in their paper, making it difficult to conclusively determine

its relation to any external harm related variable.

Like other trajectory type measures, the session duration trajectory

is the coefficient of a linear regression, but here it is on the lengths of each

session. This measure can therefore be most intuitively described as a players

change in temporal gambling involvement across sessions, but has a weakness

it shares with all of those in the session domain that a player may go a long

time between playing, thereby potentially skewing this value This measure

has been used by Ukhov et al [53] and Percy et al [72]. Ukhov et al find that

the session duration trajectory is important for predicting problem gambling

in casino players, although as discussed above their model is somewhat poorly

fit to their data. Percy et al instead found that there was no substantial

difference between a self excluding cohort and a control group, and that the

self excluding cohort actually averaged (mean) a value of 0.0 for this measure.

These results are therefore somewhat opposed, drawing into question the

meaningfulness of this measure’s application in new domains.

At the more granular scale in the session time domain are the measures

of bets per session, and variance of bets per session, which have been

used a total of 2 and 1 times respectively. As the names suggest, these
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each capture the centrality and variance of the number of bets per session.

Both are applied by Finkenwirth et al [101], with bets per session being

additionally applied by Sagoe et al [70]. Finkenwirth et al found both to be

less descriptive than alternatives in their sample, suggesting they explain

less than 3% of the variance between voluntary self excluders an non-self

excluders. Sagoe et al focussed on behavioural effects of physical gambling

venues, so neither measures nor this particular study are discussed further.

The final behavioural measure in the session time domain is that of total

play time, which is the sum of session durations. With a total of 6 uses it

has been gaining adoption following its introduction by Fiedler in 2011[65],

including by Auer & Griffiths study on limit setting [75], Dragicevic et al’s

work on self exclusion [102], Sagoe et al’s work described above [70], Ukhov

et al [53], and a second time by Fiedler [63]. Dragicevic et al found only a

small difference (mean 19.5 versus 19 hours, median 6.0 versus 5.5 hours) in

total play time between self excluders and their control group. Both Fiedler,

Sagoe et al, and Auer & Griffith’s studies used total play time in a descriptive

context rather than in relation to a harm related variable, hence it is difficult

to support or refute Dragicevic et al’s finding, and therefore meaningfully

apply it to new domains. For this reason, we can now move to the second

major behavioural measure domain; the bet domain.

5.2.2 Bet Domain

In addition to measures identified in the time domain, measures in the bet

domain require information regarding the size of each bet placed. Following

the sequence notation used above, this gives sequence B = b0, b1, ..., bn, where

bx is the size of a bet in whichever currency is being used as stake. As in the

time domain, the bet domain can be treated as a single continuous collection,

discretised using a fixed time window, or dynamically discretised into sessions

using a session window. This subsection presents each of the bet sub-domains

and their behavioural measures.

Continuous Bet Domain

The most commonly used behavioural measure is that of the total amount

wagered, which is operationalised as the sum of the sequence B. Having

been used over 30 times across a range of different studies, the behavioural
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measure of total amount wagered is the most intuitive measure of financial

involvement in gambling and has been positively linked to a number of harm

related variables. First used in LaBrie et al’s seminal work [61], total amount

wagered has also been used as a population grouping measure in its own right.

For example, epidemiological studies by LaBrie et al [2] and LaPlante et al

[100] have used top portions of players along this metric as distinct ‘heavily

involved’ groups. As discussed in Subsection 5.2.1 above, this naive grouping

may not be informative for understanding potential harms in the population,

but does provide an important broader context for understanding how the

population is composed.

When used to explore links between total amount wagered and harm

related variables, Gray and Shaffer found this measure to be dramatically

higher in players who trigger responsible gambling interventions than in their

control group across fixed-odds sports betting, live-action sports betting,

and casino betting [95]. Similarly, Catania & Griffiths found (mean) total

amount wagered across a their sample of voluntary self excluders to again

be dramatically higher in those who self-reported gambling addiction versus

other self excluders [71]. Conversely, Finkenwirth et al found a variant of

this measure - total amount wagered from promotional offers - to be the

fourth most important feature in their random forest model for predicting self

excluders, although total amount wagered itself was not found to be useful

[101]. The findings that total amount wagered or a contextual derivative

thereof appear to be related to a number of harm related variables makes

intuitive sense. As described when discussing frequency percent above, this

supports the second part of Currie et al’s assertion that ‘the chances of

experiencing gambling related harm increase[s] steadily ... the more money

one invests in gambling’[8]. The behavioural measure of total amount wagered

is therefore considered essential to understanding potential harms in new

domains, and will be used where possible in later studies in this thesis.

The behavioural measures of bet size and bet size deviation capture

both the central tendency and spread of the values in the sequence B, and

have seen use 14 times and 5 times respectively. As the 7th most commonly

used behavioural measure, (mean) bet size has been used both to provide

epidemiological descriptions of populations of players [2][100][61][103][91],

and in relation to harm related variables such as self-limiting behaviours

[98][104], account closure due to gambling related problems [105], and trig-
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gering corporate responsible gambling interventions [95]. Nelson et al found

that (mean) bet size alone is not meaningful as a predictor of self-limiting

behaviour[98]. Although Broda et al found that (mean) bet size was higher

in both fixed-odds and live-action bettors who exceeded their deposit limits.

This finding is supported by Gray et al’s study on corporate interventions,

who found that both mean and median bet size was also generally higher

in positive responsible gambling cases [95]. Braverman and Shaffer [105]

unfortunately don’t discuss (mean) bet size in their results despite describing

it in their methods. From these studies it is clear that bet size may not be

the perfect behavioural measure for identifying the potential for gambling

related harms, but it appears to be informative nonetheless so is likely useful

in the context of understanding new domains.

Bet size deviation has seen less use, first used by Braverman and Shaffer

[3], then by Dragicevic et al [93], Adami et al [106], again by Braverman et

al [69], and finally by Percy et al [72]. These studies each use focus on the

use of unsupervised machine learning to address gambling specific research

questions, finding that bet size deviation (also referred to as variability) is

an important measure in the identification of self-reported gambling related

problems [3]. Dragicevic et al’s findings largely echoed those of Braverman

and Shaffer, identifying a single behavioural group within their sample who

exhibited extreme values along this measure [93]. In Dragicevic et al’s study,

the group scoring highest in this measure also exhibited the largest mean net

losses of e21,650 in comparison to e2,570 over a one year period. Similarly,

Adami et al’s study into the behavioural clustering of problem gamblers

applies bet size deviation amongst a number of other measures, finding that

it is substantially higher in one of their clusters, which contained 9 problem

gambling cases out of 16 members. This was the highest problem gambling

concentration proportionally (56%) of all groups in their study. These studies

all add to the notion that not only is bet size deviation important to the

identification of potential harms using transaction data, but that behavioural

groups exhibiting high values in this measure may be at a greater risk than

the general population. Bet size deviation is therefore an important measure

to compute as a harm related proxy, and less as a generic descriptive variable

such as duration.

With the centrality and spread of the sequence B captured, another deriva-

tive is that of bet size trajectory, the fourth ‘trajectory type’ measure



CHAPTER 5 81

uncovered so far. The earliest use of bet size trajectory was by Braverman and

Shaffer in 2010 [3] in their study of behavioural markers for high-risk internet

gambling. In their work, the bet trajectory is applied at the aggregation level

of daily bets and at the one month time scale. This level of aggregation was

a limitation incurred by their data set which only included daily aggregate

data, hence they were unable to determine if trajectory changes were caused

by an identical number of larger bets or by more numerous bets of the

same size. Nevertheless they find that bet size trajectory was highest in a

high activity, high variability behavioural cluster of which 73% of members

reported closing their account due to gambling related problems. Dragicevic

et al’s subsequent study found mixed results regarding bet size trajectory,

with a high frequency behavioural cluster exhibiting only moderately positive

values for this measure [93]. Similarly, Adami et al’s application of bet size

trajectory appears to be inconclusive for distinguishing between distinct

behavioural clusters including problem gamblers [106]. Percy et al on the

other hand found bet size trajectory to be notably different between a self

excluding cohort and control group (19 versus −50), although this finding

was not statistically significant (p=0.2). Bet size trajectory therefore cannot

be conclusively related to any harm related variable, but has seen broad use

in behavioural clustering methods uncovered by this review. This will be

discussed further in Chapter 9.

The final measures in the continuous bet domain are the three closely

related behavioural measures of maximum bet size, minimum bet size,

and bet size range, which capture in simple terms the scope of a player’s

wagering. Each of these three measures have only been used once in the

literature gathered by the systematic review, making in difficult to determine

their applicability both between existing domains, and with respect to the

emerging domain of decentralised gambling. For this reason, discussion of

these three measures is not taken further, although further studies in the

field may provide greater context for their application in new data sets.

Discrete Bet Domain

The measure of amount wagered per day can be described as a measure

of centrality of the sum of bets on each active betting day. Like other

centrality type measures, it can therefore be computed at the aggregate

level if parametric variant is used. Amount wagered per day has seen three
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uses, first by Percy et al [72], then by Han et al [107], and finally by Auer

and Griffiths [76]. These three studies each look at very different topics,

specifically machine learning, identification of roles in illegal online gambling,

and the impact of the COVID-19 pandemic on casino gamblers. Only one

of these (Percy et al) use harm related variables, making it difficult to

conclusively relate this measure to such variables. For this reason this

measure is not discussed further.

Unlike the ‘raw’ total amount wagered described above, the total amount

wagered across duration is simply the total amount wagered divided by

the duration. This intuitively yields a number which describes the amount

wagered across a player’s career were they to gamble every day of that career.

This measure was first used by Fiedler in his 2011 study on poker players [65],

but has not seen broader adoption in the studies returned by the systematic

review performed as part of this thesis. Similarly, the measure of variance

of total amount wagered per day has only been used once, and like

amount wagered per day above this was by Han et al in their exploration

of roles in illegal online gambling [107]. The limited uses of all measures in

the discrete bet domain make them unsuitable as candidates for developing

our understanding of players in new domains, but may be a fruitful area of

further work in existing and labelled domains.

Session Bet Domain

Both behavioural measures in the session bet domain have seen only a single

use in the studies returned by this review. This includes the amount wa-

gered per session, and the variance of amount wagered per session.

Interestingly, the former was first used by LaPlante et al in their 2009 study

of poker players [100], but has not seen use since, despite appearing to yield

notably different distributions between heavily involved and non-heavily

involved groups of players. Although it should be noted that this may be

due simply to the way in which heavily involved players were distinguished

(by total amount wagered in the continuous domain), which likely correlates

strongly to amount wagered per session. The measure of the variance of

amount wagered per session has only been used once by Finkenwirth et al

[101], who found that it was highly important in a random forest model of

classification of self-exclusion status in online gamblers. Unfortunately it’s

limited use means it may not find meaningful use in new domains, although
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these recent (2021) results indicate that it could become an important mea-

sure to use in future work. Like the discrete bet domain before, the session

bet domain is somewhat underdeveloped and therefore not of further use in

the context of this thesis.

5.2.3 Loss Domain

Behavioural measures in the loss domain are unique in that they require

additional transaction data not used by any of the measures discussed in

previous sections. Specifically, they require the resulting payout from a given

bet, such that the player’s loss (or gain) can be computed for each bet placed.

Formally, this can be represented using the finite sequence of payouts P ,

where P = (p0, p1, p2, ..., pn). This sequence can have a maximum length

equal to the number of bets placed, but may contain zero or null values in

cases where bets were unsuccessful. The sequence P may also be shorter

than its counterpart B, as bets whose outcome is unsuccessful may simply

not be included in the sequence. Additionally, in cases where no bets were

successful, the sequence P may be of length zero. In order to provide a

consistent representation of payout sequences in this thesis, the sequence

P will always be padded with zeros for unsuccessful bets, resulting in the

sequence always being of equal length to B.

The use of payout data unlocks a number of measures which can be used

to describe a player’s activity, although not all of them contribute more

information to what is already known about the player from the measures

described above. For example, the duration computed across bets and the

duration computed across payouts would likely not yield measures which

are meaningfully different. As with the core sequences in the time and bet

domains, the sequence P can be divided into discrete and session domains.

Continuous Loss Domain

Like the two continuous domains above, the continuous loss domain treats all

payouts as a single sequence. Two behavioural measures in the continuous

loss domain are particularly prevalent in current literature; these are net loss,

and percent loss. Net Loss is simply the sum of all payouts minus the sum

of all bets, and like total amount wagered above has been used over 30 times.

Here, since the measure takes bet sizes from payout sizes, a positive net
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loss indicates an actual loss of value, whereas a negative net loss indicates

an overall gain. As the house edge is ultimately taken from payouts, this

derivation of net loss is functionally identical to what several authors refer to

as the gross gaming revenue [84], which is an industry centric term referring

to the amount of revenue generated by a given player as a result of their

gambling activity. In the remainder of this thesis the term net loss is used,

as in the context of transaction data in isolation it more accurately expresses

the computation, but the two are effectively interchangeable.

Net loss has been positively associated with a number of harm related

variables, including account closure due to gambling related problems [92],

subsequent online gambling [108], and self exclusion [93], although many

studies do not explore its potency in relation to external variables, but rather

as a descriptive measure for groups of players. This includes many popula-

tion level analyses [61][2][91][100], indicating that net loss as a behavioural

measure is be as important for describing population level economic effects

as it is a measure to associate with gambling related harms. Additionally,

few measures uncovered in this review have found such broad application

across a range of gambling domains. This makes net loss an ideal candidate

for application in new domains.

In addition to net loss, percent loss is the net loss represented as a

fraction of the total amount wagered Since the measure of net loss is simply

the difference between the sum of bets and payouts, it can be a maximum of

the total amount wagered multiplied by the odds (if every bet is successful),

and can be a minimum of the negative total amount wagered. Similarly,

percent loss can reach a maximum value of 100%, and has a minimum

value equal to the result of the sum of P as a percentage of B if each bet

was successful in a given game. Despite requiring identical information to

compute as net loss, percent loss is less commonly used, with a total of 12

uses in the studies returned by this review. Unlike net loss above, percent

loss has been used almost exclusively in studies which describe populations

of players, rather than exploring its relationship to harm related variables.

For this reason, percent loss is a strong candidate for providing population

level descriptions in a comparative way, but lacks concrete links to harm

related variables so is not discussed in this context further.

The final continuous loss domain measure to be discussed is that of sum

of payouts, which as the name implies is simply the sum of the sequence
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P . First used by LaBrie and Shaffer in 2011 [94] this measure, also known

as ‘Total Winnings’, has been used a total of 5 times in work by Gainsbury

[103], Leino et al [90], Luquiens et al [66], and Auer and Griffiths [109].

These studies vary in their motivations, from developing predictive methods

for limit-setting [109], to population level exploratory work [90]. At the

population level, sum of payouts was not found to be a significantly different

measure between self excluders due to addiction motives versus commercial

reasons [66]. Similarly, in Auer and Griffiths’ predictive work, their variable

of ‘Amount Won’ only appears important (number 5 out of 5) to one of the

five predictive methods employed [109]. This lack of a relationship between

sum of payouts and any harm related variable means it is not considered

especially useful in the context of this thesis so is not discussed further.

The remainder of the behavioural measures in the continuous loss domain

have each only been used once. These include the mean/median of the

sequence P , known as payout size [72], the payout-bet size ratio [53],

the presence of a big win or relative big win in a player’s transaction

sequence [97], two clamped variables (clamped net win [101] and overall

loser (binary) [110]), and finally the presence of sawtooth occurrences

within the transaction sequence [106]. The single use of each of these

measures makes their application to new domains difficult, as any findings

have not been replicated and their experimental domains and configurations

are broadly variable. Furthermore, computation of the final measure of

sawtooth occurrences could not be replicated even if it were applicable to

new domains, as the original code used and a granular enough description of

that code is no longer available2.

An additional computation on player transaction data which meets the

definition of behavioural measure used in this thesis, is that of payout-

bet count ratio, alternatively described as ‘the average hit frequency of

a game’ by Leino et al [90]. In Leino et al’s study it is used to describe

game characteristics, but it has also been used by Ukhov et al [53] - although

was found not to be useful for distinguishing problem gamblers in casino or

sports betting. The game centric nature of this measure and its limited use

means it will not be discussed further.

2Discovered following correspondence with the original analyst on the project.
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Discrete Loss Domain

Only one measure exists in the discrete loss domain; net loss on last day,

which was used once by Kainulainen in 2021 [110]. He found that, using

binary variants of net loss on last day, that this measure is a significant and

positive predictor of the amount of time to the next betting day. In addition,

this effect was found to be weaker in gamblers with higher experience,

and that older gamblers tended to return sooner after losses than younger

gamblers. These finding may be important for building a more holistic

understanding how sequences of losses (or wins) affect future play, but in

the context of this thesis may not be useful as they focus on player analysis

at the individual/session rather than population level.

Session Loss Domain

As with the discrete loss domain above, the session loss domain has just

a single measure, which has only been used once across all of the studies

returned by the systematic review. The measure of net loss per session

was used in Finkenwirth et al’s 2020 study on predicting self-exclusion [101],

but was not presented in their results section so is assumed to be of little

importance to their aim. For this reason, this measure, and indeed this

subdomain, are not discussed further.

5.2.4 Risk Domain

The fourth and final distinct behavioural domain is that of the risk (in the

probabilistic sense) taken by the player. Concretely, this domain concerns

any variables derived from the finite sequence O, where O = (o0, o1, o2, ..., on).

Here, each ox holds the decimal odds for a given bet, completing the set of

information available for each bet described in Section 4.3.2 above.

Surprisingly, the only behavioural measure which uses any odds data is

that of mean/median odds per bet, used in Xuan and Shaffer’s study of

behaviour prior to account closure [92]. Despite it’s early (2009) use, none

of the subsequent studies in player tracking research have applied it, which

may be due to the more specific data on each of the bets that it requires. It

is therefore unclear how generalisable its application can be, although Xuan

and Shaffer’s work finds that self-identified problem gamblers seek shorter

(less risky) odds than the population in the days preceding account closure.
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This potentially important finding needs further examination, although first

in the context of a single domain rather than for understanding new domains

as presented within this thesis. For this reason, the risk domain is highlighted

as being particularly underutilised in comparison to the other domains, but

is not discussed further.

5.2.5 Miscellaneous Domain

Not all of the behavioural measures uncovered by this systematic review

fit neatly into one of the three domains described above. While they can

still be plotted in the atlas of behavioural measures (see Figure 4.2), their

allocation to the ‘Miscellaneous Domain’ may be due to their incorporation

of an additional data source in their calculation, or that they are specific to

a certain type of gambling activity - for example, the measure of total rake

paid in poker [65][63].

The most widely used behavioural measure in this miscellaneous domain

is that of theoretical loss, first proposed by Auer et al in 2013 [75]. This

measure is simply the product of the house advantage and bet size for each

bet placed, and has been subject to lengthy debate across a number of papers

[75][67][84][111]. The core of this debate is whether or not total amount

wagered or theoretical loss is a ‘better’ measure of gambling involvement (or

gambling intensity). This is of course dependent on how this term is defined,

with Auer & Griffiths using ‘the amount of money that a player is willing

to risk’ - which is explained by the computation of theoretical loss [112].

This debate is covered comprehensively in Chagas & Gomes’ review [1], so is

not presented in detail here, although to summarize Chagas & Gomes pose

that ‘the circumstances must influence the methods and tools chosen’. In

the context of this thesis, this means that in cases where house edge data

is available and comparable studies have been done, theoretical loss may

be applied. Unfortunately, of the 8 papers which present an application of

theoretical loss, only two relate the measurement to a harm related variable

(limit setting [109][75]). The remaining 6 papers each explored the effects of

personalised feedback and other feedback mechanisms in gambling operators,

so are not pertinent to this thesis [67][112][85][84][86][73]. This limited

number of comparable uses means theoretical loss is arguably less meaningful

for applications in new domains, so is not discussed further.

Several other behavioural measures discovered either do not fit neatly
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into any of the above domains, or apply some external context to their

computation. For example, the measure of portion of late night bets and

portion of bets placed on a Saturday used by Ukhov et al [53] exist in

the continuous time domain but do not strictly use all of the values in the

sequence. Similarly, the ratio of total amount wagered on weekends

and the ratio of the number of bets placed on weekends used by

Braverman et al [69] use specific days/times as cutoffs in their computation.

Each of these four measures has been used once in the studies returned by

this review, so are not discussed further, although it is important to note

that the concept of weekend or late-night bets does require the additional

context of the timezone in which the bets exist. In the context of this thesis,

and in the cryptocurrency domain in general, this is not always possible.

Discussion of each of the unique behavioural measures uncovered by

this systematic review is now complete. Before moving out of the gambling

literature and into the cryptocurrency domain, a brief discussion around how

specific groups of measures have been used to identify behavioural profiles

of players is required. This will ultimately inform how the measures above

can be applied to the cryptocurrency domain, and which behavioural groups

exist in comparable domains.

5.3 Behavioural Measure Clustering

A significant limitation of all of the behavioural measures work above is

that any single measure cannot fully capture the nuances of a person’s

gambling behaviour. This is to be expected, as in this context each new

behavioural measure computed simply adds a new descriptive dimension

to the behavioural profile of a player. Taking an example from a different

domain; when understanding different ability levels in sports, it would not be

very meaningful to describe different players according to just their height,

weight, or combination of the two. Instead, a richer set of measurements can

be taken to describe each player in a more granular way, such as their time

spent playing, training, number of games won, etc.

This example, as in clustering behavioural measures in gambling studies,

raises questions around which measurements to take for each observation in

the data set. This is especially important when considering classifications

as potential problem gamblers, at risk gamblers, and recreational gamblers.



CHAPTER 5 89

Intuitively one may wish to take every possible measurement available, feed

all of them into a clustering algorithm, and see which ones explain different

cluster memberships the best. This approach, while perhaps valid in the

sense of understanding the underlying structure of the data in isolation, can

only be more broadly meaningful if the resulting clusters can be related back

to some existing ground truth. For example, using this technique, one may

find that the number of different pairs of shoes worn by an athlete strongly

explains their ability level. This finding is only useful if the measurement of

‘number of different pairs of shoes worn’ has been related to some external

variable such as a player’s overall experience, as those who compete more

often will naturally me more likely to have higher values for this measurement.

One can therefore say that the number of different pairs of shoes worn is

a proxy measure for overall experience, although as in player tracking the

concept of overall experience (or gambling involvement) may have multiple

concepts within it.

Focusing explicitly back on gambling studies then, much of the existing

literature has aimed to classify different groups of players according to their

behavioural profiles along a set number of behavioural measures - typically

with the aim of capturing both financial and temporal aspects of gambling

involvement. One of the earliest studies in this area was Braverman and

Shaffer’s work identifying behavioural markers for high risk internet gambling

using a player’s first month of betting data [3]. Braverman and Shaffer found

that four distinct gambling behaviour profiles exist in their sample of 530

live action gamblers. These included a high activity & high variability group,

a low activity group, a high activity & low variability group, and a moderate

betting group which made up the majority of players. Crucially, they found

that 73% of the high activity & high variability group had reported closing

their accounts due to gambling-related problems. This is in contrast to 45%,

29%, and 32% of the other groups respectively. Whilst the limited sample

size of this study with respect to the number of measures used (4) and the

number of clusters identified (4) means one can only tentatively generalise

its findings, it indicates that important factors about players can be inferred

from their transaction data alone, and that clusters within such data can

reveal meaningful and externally relevant player behaviours of interest.

Adding to the identification of player profiles, Braverman, working with

LaPlante, Nelson, and Shaffer in 2013 [69] then employed a different machine
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learning technique (CHAID decision tree rather than k-means) in order to

identify characteristics that distinguished a subgroup of high-risk internet

gamblers from within a sample of 4,056 players, again using their first month’s

betting data. Their results on this larger data set confirm, again with this

different clustering method, that highly variable gambling is an important

marker for the development of gambling related problems. They also note

that participation in multiple gambling activities contributes to making this

distinction, although in the context of this thesis’ focus on transaction level

data this remains an important but non-applicable finding.

The previous year, Gray, LaPlante, and Shaffer’s study into the be-

havioural characteristics of internet gamblers who trigger corporate responsi-

bility gambling interventions [95] found that measures of gambling intensity

(total number of bets and bets per day) could be used to distinguish from

controls. This adds to the idea that for describing a population of gamblers

in general, a broad set of behavioural measures can be used, but when

building profiles of subgroups within that population, measures which have

been used before, and the methods in which they were analysed, should be

replicated for the most directly comparable results. This topic of replication

and compatibility is discussed as encountered in the behavioural clustering

study in Chapter 9.

5.4 Cost of Gambling

Before concluding this chapter, a brief discussion of factoring in the cost of

gambling into behavioural measures can be presented. This is particularly im-

portant in the context of cryptocurrency gambling which this thesis explores,

as the cost of gambling can come from gas fees incurred by a transaction

(See Section 3.3.2).

This systematic review has identified many behavioural measures which

focus not on the broader cost associated with gambling as an activity, but

rather of the costs incurred by each individual bet. This means that although

individuals costs of gambling (including subscriptions to gambling platforms,

travel expenses, etc) do broadly fall into what can be described as the

costs associated with gambling, they have not historically been relevant to

describing an individuals gambling in the context of behavioural profiling.

Gas fees can then best be described as a fixed non-refundable fee paid by
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each player for each bet placed. For this reason, gas fees will not be included

in further studies in this thesis, as they are considered out of scope of the

behavioural profiling techniques explored in this chapter, and indeed the

field. This is not to say that analyses of this nature is not useful, but rather

that it sits closer to the study of the economics of gambling, and not player

behaviour tracking.

5.5 Summary

This chapter has introduced a sub field of gambling studies known as player

behaviour tracking, and the many behavioural measures which are applied

within it. Breaking down the behavioural measures uncovered by the system-

atic review in the previous chapter according to the information required to

compute them has revealed a mix of widely-used and barely-used measures

across a range of studies. This information-oriented taxonomy reflects the

broader context of this thesis - specifically the data available in decentralised

gambling applications - showing that many of the most widely used mea-

sures can be computed with bet time, size, and payout information. Using

a systematic review, over 50 unique studies were discovered, employing a

total of 51 unique behavioural measures. These measures each add a new

descriptive dimension to a player, although not all of them can be concretely

associated with an external harm related variable such as probability of self

exclusion or self reported problem gambling severity. Furthermore, a subset

of studies have been identified which aim to identify behavioural groups

within populations, rather than simply describe them. These studies use

more granular behavioural measures than their population-level counterparts,

and provide a promising set of measures and methods to be applied in new

domains.

In the context of understanding new domains such as cryptocurrency

gambling, it appears a replication-oriented approach would yield the most

meaningful results, as although several of the measures uncovered have seen

widespread use, the number of different experimental configurations and

gambling activities makes selecting a generic and meaningful single set of

behavioural measures difficult. This limitation is inherent to the size and

age of the field itself, rather than a reflection of the quality of the work

therein, however, it is not severe enough to prohibit the exploration of new
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domains, as later experiments in this thesis aim to show. The next chapter

in this thesis begins applying metrics to actual transaction data, before the

measures described here are applied in Chapters 7, 8, and 9.



Chapter 6

Decentralised Gambling

Application Prevalence

“If your experiment needs a statistician, you need

a better experiment.”

Ernest Rutherford

Chapters 2 and 3 described the fundamental concepts behind cryptocur-

rency networks, and the process for extracting their transactions to produce

collections of useful behavioural data. Before the behavioural profiling tech-

niques uncovered in Chapters 4 and 5 can be applied, an analysis of the

prevalence of gambling and gaming applications in the cryptocurrency do-

main is required. This follows that a number of popular blockchain games

operating atop the Ethereum network contain payments to randomised re-

ward mechanisms which are mechanically similar to gambling applications

[9]. Such mechanisms within blockchain gaming applications are considered

a form of gambling in this thesis, and are therefore of interest in the context

of understanding gambling in this emerging domain.

The motivation behind these prevalence analyses are two-fold. First,

an understanding of the scale of use of cryptocurrency technology in both

gambling and gaming provides essential context for subsequent behavioural

profiling studies - a context unavailable in existing peer-reviewed literature.

While several application ranking services do provide prevalence data, it

is not clear whether the results presented by such services are based on

actual blockchain transaction data, or are influenced by the presence of

93
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misclassified applications. Second, by understanding the prevalence of such

applications, a sample of market leaders can be extracted whose transactions

contain a large sample for subsequent research. This is important as decoding

transactions as described in 2 is a resource intensive and application-specific

task, so knowing which applications may provide the most data is essential

to maximising sample size in subsequent research.

6.1 Study 2: Gambling Application Prevalence

Before applying the behavioural measures described in Chapter 5 to decen-

tralised gambling transaction data, a preliminary analysis can be performed

with the focus of understanding the scale and trajectory of the currently

available applications. Such analyses will help frame further studies in a

broader context, and contribute to our understanding of the scale of use of

this new technology. It is also important to apply the insights generated by

subsequent chapters rather than simply re-print analyses which are freely

available on generic blockchain explorer applications or ranking services. For

example, the StateOfTheDApps ranking service provides a collection of inter-

active visualisations1 which offer insights into the trajectories of a number of

metrics across their set of application genres. This section therefore presents

analyses specific to the data set gathered as part of this thesis.

6.1.1 Introduction

In the sparse decentralised gambling domain literature [87, 113], very little

is known about the scale and overall trajectory of the set of available appli-

cations. This presents a problem for interpreting the results of such work, as

results are difficult to contextualise. For example, if the average involvement

per player is larger than in comparable centralised gambling, but only a few

players actually use these applications, then it may be more effective for

gambling research to remain focused on centralised data sets. However, if the

population or expenditure of decentralised gamblers is growing, then given

the immutable and globally accessible nature of these applications, it could

raise significant regulatory and public health concerns at a scale greater than

or equal to their centralised counterparts over the coming years. To this end,

1Available at https://www.stateofthedapps.com/stats, accessed 29/04/2021.

https://www.stateofthedapps.com/stats


CHAPTER 6 95

metrics of interest include the number of users over time, the total amount

of value transacted over time, and the total number of transactions over

time. These three metrics can be broadly applied to any web application,

and indeed any e-commerce sites, and are chosen as they have been used as

precursors to discussions around behavioural measures[61][3], and in similar

work understanding application growth across cryptocurrencies [49].

Using these three metrics the following research questions can be ad-

dressed, which extend research question 3 posed in Chapter 1 - How prevalent

are decentralised gambling applications?;

1. What is the rate of spending in decentralised gambling applications?

2. What is the rate of new user adoption?

3. What is the volume of betting activity?

Additionally, market-leader driven questions can also be addressed, which

may support the idea that a representative sample of players in the decen-

tralised gambling domain can be generated via the analysis of a select set of

market leaders, rather than requiring in-depth analysis of many applications;

1. Which decentralised gambling applications contain the most transac-

tions?

2. Which applications have the most historical users?

6.1.2 Method

Data Gathering

The public and transparent nature of the Ethereum blockchain means every

decentralised gambling application that has ever existed on the network is

available for study. In order to convert this abstract truth into a list of actual

applications, an application ranking service can be used. Such application

ranking services function similarly to top music or film charts, but instead

rank decentralised applications. In the context of this thesis, the rank given

by these services is not meaningful, as all of the transactions for all of the

applications will be gathered regardless. Instead, such a service is useful

only for identifying the names of existing applications and the addresses

of the smart contracts they use. One such service is StateOfTheDApps,
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a multi-cryptocurrency, multi-category (gambling, fintech, games, social,

etc) service which can be used to create a list of decentralised gambling

applications and their associated smart contract addresses.

Using StateOfTheDApp.com’s search functionality, a list of gambling

applications on the Ethereum network can be retrieved, which returns a

total of 195 unique names at the time of writing2. Each application has its

own page on the StateOfTheDApps service which lists the addresses of any

associated smart contracts. This list, and indeed the existence of a given

application on the site, follows an open submission process which can be

performed by anyone, but is advertised towards developers and marketing

teams behind these applications3. This study relies on the StateOfTheDApps

tag system, with tags being assigned as part of the submission process by

the submitting party.

Usage Metrics

In order to plot each of the three metrics described above across the appli-

cations in the collection, all of the normal transactions (see Section 3.2.1)

should be retrieved, as these generally represent the actions of users rather

than the internal actions of the applications themselves. Once isolated, the

number of users over time can be visualised as the cumulative sum of the

number of unique addresses found in the normal transaction set for each

application (sorted chronologically). The first difference of the cumulative

sum can also be used to show the rate at which new users are entering the

decentralised gambling application ecosystem, although as discussed in the

limitations below, this is not a perfect representation. The total amount of

value transacted over time can be represented using the cumulative sum of

Ether sent to each of the application’s smart contracts. As with the number

of users, the first difference of this data can be used to assess the rate at

which the total value is increasing. Finally, the raw number of transactions

can be represented in an identical way, again with first differencing allowing

a broad understanding of the rate of change over time.

With collection-level metrics presented, the distribution of the top 20

platforms by each metric will be presented. This top selection of platforms

should be similar or identical across all of the metrics, with any discrepancies

225/04/2021
3See https://www.stateofthedapps.com/dapps/submit/new, accessed 25/04/2021.

https://www.stateofthedapps.com/dapps/submit/new
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e.g. an application in the top 20 by user count but not transaction count,

potentially indicative of non-human activity or some other difference of

architectural or phenomenological interest. This idea of suspicious activity

due to botting will be discussed in more detail in the dedicated Section

7.3.3 below. These top collections present the most fruitful applications

for subsequent research given their larger data sets than the majority of

applications. As with other classes of web applications, the distribution of

players across each of these metrics is expected to be severely skewed, with

a handful of applications enjoying a majority market share. Reasons behind

this skew are beyond the scope of this thesis, but how this skew compares to

non-decentralised applications and indeed decentralised applications of other

types poses an interesting area of future work.

Data Sample

The data set gathered for this macroscopic market analysis of decentralised

gambling applications included 13,956,372 transactions across 147 unique

applications. This number of applications is lower than the 195 above as some

may have no transactions, only internal transactions, or may not have contract

information entered correctly or completely in their StateOfTheDApps entry.

These transactions span from 07/06/2016 through to 26/07/2021, or block

number 1,660,887 to 12,900,878 on the Ethereum blockchain, providing an

extensive longitudinal sample across world events like the COVID pandemic,

price bubbles and crashes, and the introduction of new applications to the

ecosystem.

6.1.3 Results

Population Level Metrics

The first population level metric of interest is the total value transacted over

time across all applications in the sample. Figure 6.1a visualises this sum,

totalling almost 5,000,000 ETH by mid 2021, equivalent to almost 21.5 billion

dollars with a current ETH price of $4,3004. This static current valuation is

naturally not wholly meaningful in the context of gambling data, as payouts

of successful bets which are re-spent all add to the total, but nevertheless

it can be used to compare with centralised gambling operator metrics, or

4See https://coinmarketcap.com/currencies/ethereum/, accessed 01/11/2021.

https://coinmarketcap.com/currencies/ethereum/
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used with house edge percentages to compute approximate gross gambling

yield across the market. With this in mind, the plot shows the year 2019 was

significant in terms of value growth in the ecosystem, increasing almost 600%

from 0.5M to 3M ETH. A further almost 50% growth to 4.3M ETH in 2020

brings us close to current levels. An interesting artefact of the cumulative

value transacted is that it does not appear to have been noticeably affected

by the COVID pandemic - exploring this further is considered out of scope

of this study, but presents an interesting comparative opportunity to similar

work in the centralised domain [76].

The weekly change (first difference) by its nature shows the exact rate

of change in the cumulative sum, highlighting a strong peak in the second

quarter of 2019. These do not appear to correspond with any significant

changes in other metrics, nor do they visually map to any drastic change

in price (See Figure 2.5 in Chapter 3). Instead these may be artefacts

of the launch of new applications, the result of botting activity, or some

other external effect. Both the cumulative value and the first difference in

cumulative value are particularly meaningful in the context of the price of

the underlying cryptocurrency, Ether. With a sharp increase from late 2020

through to 2021, although the raw weekly change in cumulative value (ETH)

appears low historically, in the context of underlying growth from £500

to almost £3,000 in the same period the usage of decentralised gambling

applications in real terms appears to be increasing through 2021. This may

be due to the increase in user numbers in 2021, as discussed next.

The second population level metric of interest is that of ‘player’ count,

or in blockchain terms, the number of unique addresses transacted with

over time. Similarly to the cumulative value above, the number of unique

addresses shown in Figure 6.1e has seen growth across the time period,

although this time peaking in late 2019. In the context of a total 5M

ETH spent in Figure 6.1a, the additional context of the number of unique

addresses shows that applications saw relatively high rates of adoption as

early as late 2017 although this early adoption did not lead to a spending

increase. Interestingly, this peak in 2018 does coincide with a price peak of

$1000 at the start of 2018, although given the nature of such comparisons

this may simply be a coincidence.

The change in unique addresses, as with change in cumulative value,

appears extremely variable with no obvious trend. Notable features include a
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Figure 6.1: Usage metrics across all 147 decentralised gambling applications
gathered as part of this thesis.

period of sustained and increasing uptake in across the 2019 winter, although

this abruptly ends, resolving to a gentler increase across 2020 through 2021.

This 2019 spike is an area of phenomenological interest as it does not appear

as strongly in any of the other metrics. This may indicate the explosive

growth of a single application or group of applications following some viral

marketing strategy, or may be the historical artefact of foul play such as

the introduction of non-human players to the ecosystem. This is explored in

more detail in the following study in this thesis.

The final population level metric is that of cumulative transaction count.

In the raw transaction data context, it cannot be assumed that each of

these transactions equate to the placement of a bet, but rather a financial

interaction with an application of some kind. This third descriptive dimension

supports the idea of a general increase in adoption throughout 2019, and also

highlights a drop in weekly transaction count in late 2020 which has not risen

since. The addition of this third metric to the previous two also suggests
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that the 2019 spike in cumulative value is not actually representative of a

general increase in the number of transactions sent to these applications, as

a similar peak of over 100,000 weekly transactions exists in late 2018. It

is impossible to tell from these aggregate charts whether this was caused

by an increase in stakes by the same players throughout this period, the

creation of new applications, or any number of other causes, although it is

important to remember that throughout 2021 the price of Ether has increased

dramatically.

Market Leaders

With population level metrics presented, a brief review of the market leaders

in the decentralised gambling domain can be presented. The metrics used

are identical to those used at the population level, but are instead presented

as aggregate sums for only the top 20 per metric rather than accumulations

over time. Identifying market leaders in this way acts both to provide a

broader context for subsequent research, and presents fruitful options for

analysis as more prominent applications will likely yield more usable data

once decoded.

All of the metrics describing the market leaders in Figures A.1b, 6.4c,

and 6.4a, are heavily skewed, with the dice2win application enjoying a

disproportionately large market share across both the value and transaction

count metrics. Both the FCK and Etheroll applications place second and

third in these metrics respectively, although these top three are not leaders

by unique address counts, but do appear in the top 20. Interestingly, the

leaders by unique address counts (FunFair and YOLOrekt) do not appear in

the top 20 by total value. This may be caused by differences in architectures

and function, as the FunFair application offers casino games, but also offers

a wallet for integrating with other decentralised applications. Similarly,

although YOLOrekt is tagged as gambling, it provides users with a gamified

options trading platform rather than casino games. These subtle differences

highlight the somewhat generic nature of the StateOfTheDApps tagging

system, although the dice2win, FCK, and Etheroll market leaders actually

contain bet placement functionality for casino games, so present themselves

as strong candidates for further study, despite ranking lower by unique

address (player) count.

Before discussing these results and the hypotheses tested by this study, it
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Figure 6.2: Usage metrics of the top 20 decentralised gambling applications
in the data sample gathered for this study.
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is important to acknowledge that the results presented are in fact a second

analysis of this data set, with the first discarded as all metrics were heavily

skewed by two misclassified applications. Specifically, the Etherpromoswin

application and the CoinGathernator applications. Etherpromoswin does not

appear to be a decentralised casino at all, but rather a tokenisation contract

based on ETH5. Similarly, the CoinGathernator application does not appear

to contain decentralised casino functionality either, with the Etherscan

platform reporting it as being involved in the ‘Plus Token Ponzi Scam’ - a

coordinated international Ponzi scheme which saw a total of 89 members

arrested and $5.7 billion worth of cryptocurrency taken from approximately

2 million people 6. These two applications were originally included in this

analysis, but were discovered to be skewing all metrics as they appeared as

market leaders despite containing no gambling functionality, so were removed.

The figures generated by this first analysis are presented in Appendix A for

completeness, and show how inclusion of these two application’s transactions

affected the metrics.

6.1.4 Discussion

Both the population level and market leader usage metrics presented in this

study offer insight into the way in which decentralised gambling applications

have developed over recent years. As with the adoption of cryptocurrency

technology in general, they experienced slow initial growth, and exhibit some

artefacts in their growth which echo the price of the underlying cryptocur-

rency on which they are built. This considered, there does appear to be a

disconnect in overall trends between the price chart and each of the metrics

presented. This supports the idea that the scale and growth of decentralised

gambling applications is not simply a function of the price of the underlying

currency, but rather a distinct phenomena which grows in sometimes related

but sometimes unpredictable ways. The application of more sophisticated

analytical techniques to quantify the price correlation with different usage

metrics in the decentralised gambling domain present an interesting area of

future work.

5See https://weth.io/, accessed 28/11/2021.
6See https://uk.finance.yahoo.com/news/blockchain-bites-plus-token-ponzi-164410318.

html, and https://www.coindesk.com/policy/2020/07/30/

police-arrest-27-alleged-masterminds-behind-57b-plus-token-crypto-scam/,
accessed 28/11/2021.

https://weth.io/
https://uk.finance.yahoo.com/news/blockchain-bites-plus-token-ponzi-164410318.html
https://uk.finance.yahoo.com/news/blockchain-bites-plus-token-ponzi-164410318.html
https://www.coindesk.com/policy/2020/07/30/police-arrest-27-alleged-masterminds-behind-57b-plus-token-crypto-scam/
https://www.coindesk.com/policy/2020/07/30/police-arrest-27-alleged-masterminds-behind-57b-plus-token-crypto-scam/
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The results of an initial market leader analysis uncovered the Ether-

promoswin and CoinGathernator applications, which are not decentralised

gambling applications, but which nonetheless appeared in the top three

market leaders by each metric. Similarly, PointCrypto is less of a decen-

tralised gambling application in particular but rather a platform upon which

decentralised gambling applications could exist. This finding suggests that

while the methodology of taking application listings from a decentralised

application ranking service does indeed uncover applications of the desired

type (dice2win, Etheroll, FCK), such samples cannot be considered free from

misclassifications. The large and growing number of applications invites

computational approaches for smart contract classification, a problem which

has already been approached by Tian et al [114] and others [115][116]. Such

automated approaches could be used in the context of gambling research

not only to save time removing misclassfied applications in existing data

sets, but to automatically search the Ethereum blockchain for applications

which do not appear on particular ranking services. The key insight from

this work however, is that raw ranking service categories and other tags

cannot be used as training data without some level of cleaning first. In the

experimental configuration used in this study, removing the two misclassified

applications and re-running the analysis could completely negate their effects

on the metrics, however in more computationally oriented analyses such as

the machine learning approaches presented in [114], it may not always so

clear from outputs that the data is being heavily skewed.

Somewhat counter-intuitively, the relatively steady growth of the three

population level metrics matches examples of the rise of centralised internet

gambling, with Koivula et al’s study of internet gambling in Finland showing

a similar near-linear trend from a market share perspective [117]. Both cryp-

tocurrencies and the internet can be described as transformative technologies

with respect to how they challenge existing ways of providing gambling

services, making early linear growth a potential hallmark of future ubiquity.

This projection can however only ever be anecdotal, as such technological

advancements have only happened a handful of times in history, making it

impossible to say at this stage whether or not the results presented here

indicate future market domination of cryptocurrencies for gambling. Instead,

these results simply show that the decentralised gambling domain has grown

from nothing to almost 300k unique addresses having spent a cumulative 5M
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ETH over the past four years on the Ethereum network alone, warranting

further research in this emerging domain.

The population level hypotheses outlined in Section 6.1.1 can all be firmly

rejected, as the growth across each of the metrics at the population level is

clearly not exponential. Similarly, H5 can also be rejected, as although the

dice2win, FCK, and Etheroll applications lead by total value and transaction

count, they do not simultaneously lead by unique address count. Finally,

H4 cannot be rejected, as the distribution of market leaders across each

metric is indeed heavily skewed. Confirming this heavy skew supports the

idea that given the high time cost of analysing application architectures,

researchers will be most efficient in terms of extracting the most amount

of usable data by focusing on a select few market leaders. This appears

obvious, however the market leaders as presented by ranking services may

not actually be decentralised casinos but rather tokenisation platforms, Ponzi

schemes, or other misclassified applications. This highlights the dangers of

using uncleaned aggregate data, and shows that just because all historical

data is preserved on the Ethereum blockchain does not mean that it is all

meaningful and usable.

Limitations

Understanding the adoption of applications which use a new technology is

difficult, even when transactions to these applications are publicly available.

This is in part due to the pace of innovation, with new applications appearing,

and existing ones going offline with relative frequency. While applications

going offline is less of a problem in the context of decentralised applications

(as transactions remain available on the blockchain), un-ranked applications

cannot be accounted for in the analysis presented here and are simply a

known unknown. This applies not only to unknown applications atop the

Ethereum network, but to applications on other networks whose transactions

were naturally not a part of the data set. With this considered, the findings

from this preliminary analysis provide insight into just a fraction of the

decentralised gambling applications available atop cryptocurrencies in general,

but likely capture a large portion of those operating atop the Ethereum

network. Similarly, of the applications included in this study, at least

two (Etherpromoswin and CoinGathernator) were not in fact decentralised

gambling applications in the casino-game sense, but rather a tokenisation
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platform and an alleged part of a Ponzi scheme respectively. This deliberate

or inadvertent misclassification means that the metrics presented are at

least partly skewed by the presence of similar applications, although the

large number of applications gathered means this skew should not prohibit

understanding of the overall market growth.

A further limitation of this relatively simplistic analysis is the potential

for the presence of bots to skew the findings. As described above, this has a

dedicated section in this chapter (Section 7.3.3), but it’s important to note

that the presence (or lack of) bots in a cryptocurrency transaction data set

cannot easily be determined using macroscopic metrics. As presented in

Section 7.3.3, there are techniques for identifying suspicious addresses in the

context of gaming and gambling applications, so before these techniques are

applied, findings may be adversely affected by the presence of non-human

transactions.

A third limitation of applying these findings to understanding the scale

and trajectory of decentralised gambling applications at the macroscopic

level is that they do not necessarily describe the scales of harm associated

with this new domain. For example, while an increasing number of users by

the metric above may indicate a growing application user base, it may be

the case that each of these users uses the application infrequently or only

engages a few times before leaving permanently. Conversely, heavily involved

users may counterbalance these lightly involved users, making an application

appear fairly typical by these metrics while hiding the potential for significant

harm. These metrics may therefore present a somewhat simplistic view of

actual gambling behaviour. It’s also important to note that the aim of this

preliminary analysis was not to present an overview of the scales of harm

associated with these applications, but rather to provide context for such

analysis, so this limitation is overcome by the application of more sensitive

and granular measures.

Finally, there is a possibility for users of the application studied above to

use multiple accounts to transact with the same application. Whilst it is not

clear what the benefit for doing this might be, it is nonetheless still possible

and something that researchers may wish to account for in further studies.

It was not considered here as to determine whether a single individual is

responsible for multiple accounts, and which accounts they are, may quickly

become a very involved task.
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6.1.5 Conclusion

The cryptocurrency ecosystem, and the collection of decentralised gambling

applications within it, have experienced huge growth in the years since

their inception. This growth has been most noticeable in the past three

years, and coincides with an increase in public awareness and discourse

around cryptocurrencies in general [118][119]. This growth however, does not

appear to have penetrated into the decentralised gambling domain, with the

metrics of spending, new user accounts, and transaction volume, exhibiting

approximately linear growth. This considered, several decentralised gambling

applications present themselves as strong candidates for further research

given their high total values and transaction counts. These are the dice2win,

Etheroll, and FCK applications, although by the metric of unique address

counts several other candidates are available. The heavily skewed nature of

the usage metrics in this emerging domain means that researchers will benefit

most in terms of extracting representative samples of players by analysing

the architectures of market leading applications.

6.2 Study 3: Blockchain Game Prevalence

As discussed at the start of this chapter, blockchain games can contain

randomised reward mechanisms which are mechanically similar to the simple

casino games provided by decentralised gambling applications [9]. As in the

previous study, before behavioural measures can be applied to blockchain

games, it is first necessary to understand the broader properties of the ecosys-

tem in which blockchain games exist. This contributes to an understanding

of player behaviours in this domain at the macroscopic level, and therefore

lays the foundation for more specific analyses. This can be done, like in

the gambling domain, by exploring the number of users, the number of

transactions, and the volume transferred to all of the applications in the

data set described in Section 6.2.2 below.

6.2.1 Introduction

Much like the decentralised gambling domain discussed in Chapter 7, very

little work exists in understanding player behaviours in the blockchain games

domain. This may be in part due to the youth of the technology, and may also
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be driven by the somewhat high technical barrier to entry that blockchain

technology, and the Ethereum network in particular, incur. The development

of blockchain explorers like Etherscan have helped lower this barrier, making

it easier to access transactions by providing independent APIs, although

broader knowledge and use of such explorers remains limited.

This study aims to establish an understanding of the rate of growth and

prevalence of blockchain games. Similar work has already been done by Min et

al, published in 2019 [49], although the very early nature of their work means

that their analysis only extends up to late 2018. As many of the transactions

analysed here fall in 2019, 2020, and 2021, a more recent understanding of

the development of the domain is required. Additionally, while Min et al

analyse a broad range of games, across a number of cryptocurrency networks,

their analysis includes ‘Trade & Investment’ and other types of application.

This study therefore focuses exclusively on self identified blockchain games

(as found on the StateOfTheDApps ranking service), and those operating

atop the Ethereum network given this thesis’ Ethereum-centric focus.

As in Study 6.1, using the three metrics above, the following research

questions can be addressed;

1. What is the rate of spending in blockchain games?

2. What is the rate of new user adoption?

3. What is the volume of betting activity?

A similar analysis of market leaders presents the following research

questions, with the ultimate goal of establishing a shortlist of applications

whose architectural analysis would yield the most usable data for further

research;

1. Which blockchain games contain the most transactions?

2. Which have the most historical users?

6.2.2 Method

In order to understand the development of the blockchain games ecosystem,

three key metrics are applied. The first is the total value (in ETH) of

transactions. This first metric may depart from previous analyses in the

decentralised gambling domain, as the value components of each of the
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transactions in blockchain games can be zero, with the underlying ‘value’

transfer being a token of some kind. This difference means for example that

the value of transactions at this level, measured in this way, captures the

expenditure from each unique address to each application, rather than the

actual transfer of ‘value’ in the economic sense. For example, a transaction

may have a value of 0.01 ETH which could be a flat fee set by the application

itself, but within that 0.01 ETH transaction could be the transfer of a token

worth 30 ETH. An example in the physical world would be using the value of

containers of objects for analysis, rather than the objects themselves. In some

cases (the decentralised gambling domain), the container itself represents

100% of the economic value of the objects being transferred, but here this

may not always be the case. It should be noted that while the existence

of NFT marketplaces makes approximate valuation of each of the objects

within the transactions themselves possible, this represents a substantial task

considered out of scope7 of this study.

The second metric is that of the total number of unique addresses trans-

acted with. This naively captures the number of players, although as the

previous study has shown, the presence of non-human players within any

sample of cryptocurrency transactions should be assumed and accounted for

in discussion. Despite the presence of non-human players, this metric can

still be informative as it provides an upper-limit of the number of human

players to be presented against the other usage metrics.

The final metric is that of the total number of transactions sent to

blockchain games applications. This metric, and specifically its first difference,

can be used as a proxy for the level of engagement with a given application

over time. Indeed, Min et al [49] explored weekly transaction volume in

both EOS and Ethereum blockchain games in their work as a measure of

popularity. Additionally it is important to note that in blockchain games,

each in-game action which is stored atop the Ethereum blockchain is by

definition represented as a transaction. Capturing this metric may therefore

not capture all actions within each of the blockchain games, but captures all

of those which the application creators deemed necessary to store immutably

(plus any subroutines discussed in Section 8.2.2).

As with the previous population level study in this thesis, the first (weekly)

7This study is framed as a precursor to further application of player tracking techniques,
rather than a study of blockchain games economics in its own right.
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difference of each of the metrics will also be presented. These provide a more

detailed view of the weekly changes across each of the three metrics, and

when plotted can be used to better visualise the rate of change, which itself

may be of phenomenological or contextual interest.

Data Sample

The data sample gathered for this study includes successful transactions

from 260 unique blockchain games applications. These span from 16/20/2017

through to 06/08/2021, or from block number 4,370,026 through to block num-

ber 12,970,252 in the Ethereum blockchain. This sample covers 14,564,063

individual transactions, which represent everything from in-game actions such

as breeding CryptoKitties through to initialising quests in MyCryptoHeroes.

Additionally, the total number of unique addresses from which transactions

originate is 868,536, although as with previous studies in the decentralised

gambling domain, it cannot be assumed that each of these correspond to

a human player. Despite the high number of transactions in this data set,

it can be loaded and analysed on a moderately equipped PC, consuming

approximately 12GB of RAM for analysis using Jupyter Lab (Python), and

taking 6.8GB on disk.

Gathering the set of crypto gaming transactions used in this research

through the Etherscan platform took approximately 240 days on a residential

internet connection with a one second delay between API requests as per

their terms of service. Furthermore, as in the case of the gathering efforts

in the previous chapter, one cannot simply request all transactions from/to

these addresses, instead windowed requests between block numbers needed to

be sent. This windowed walk along the blockchain from the creation of these

applications to present is not an efficient process, and a more expensive but

faster approach would be to fully synchronise an archive node and extract

the data from that. Alternatively, the Etherscan platform offers a ‘CSV

Export’ feature on each contract’s address page. This allows the user to

manually download 5000 transactions at a time, however at the scales under

inspection for this thesis this would be prohibitively slow.
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Figure 6.3: Usage metrics across all 260 blockchain games applications
gathered as part of this thesis.

6.2.3 Results

Population Level Metrics

The population level metrics across each of the blockchain games gathered

and their weekly first differences are presented in Figure 6.3. Unlike the same

metrics in the decentralised gambling domain, the blockchain games metrics

present relatively consistent growth over a period of three years starting in

2018. All three metrics begin with a sharp increase in December of 2017. This

coincides with the launch of CryptoKitties, which by 10/12/2017 provides

over 100,000 transactions on the Ethereum blockchain, explaining the early

spikes across all metrics. Aside from these initial spikes in growth, both

the cumulative value and cumulative transaction counts do not contain any

noteworthy features across the data sample. This monotony is broken in the

weekly change in unique addresses, which spikes sharply in early 2021 and

continues to break the previous year’s values until the end of the sample.
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Market Leaders

An analysis of the market leaders in the blockchain games domain can help

guide further research by highlighting which applications may provide the

most data for subsequent analysis. Given the resource intensive process of

mapping the architectures of such applications, and then using this knowledge

to decode their transactions, knowing which applications to even attempt

to map is critical to maximising the amount of useful data generated per

amount of time spent.

Figures 6.4a, 6.4b, and 6.4c show the top 20 market leaders by cumulative

value for each of the three usage metrics used in the previous section. As in

the decentralised gambling domain described in the previous chapter, the

blockchain games market leaders are sharply distributed across all metrics,

with a top four applications enjoying the majority of the historical market

share.

Unlike the market leaders in the previous chapter, the top 5 leaders in

total value (CryptoKitties, Sorare, Gods Unchained, Axie Infinity, and ZED),

are indeed all blockchain games, all of which focus on the collection and use

of tokens in their respective smart contracts. This does not hold true across

all metrics though, as the Enjin Coin application is not a crypto-game similar

to those previously mentioned, but is rather an ecosystem built to support

the use of NFT’s created atop the Ethereum network8. It therefore doesn’t

offer any gameplay at all, but instead offers a user wallet application, several

tokens (ENJ and EFI), and more. This application, like the Etherpromoswin

and CoinGathernator applications in Section 7.3, has been removed from the

data set and all visualisations in this study recreated without its transactions,

although its presence did not influence any of the metrics as strongly as the

examples in the decentralised gambling domain.

6.2.4 Discussion

At first glance, the consistent growth along all of the population level metrics

presented above does not appear to provide anything of academic or phe-

nomenological interest other than the knowledge that the growth is relatively

consistent. However, in the broader context of the growing global interest

in cryptocurrencies, extreme price volatility, world events, and the rate of

8See https://enjin.io/, accessed 28/11/2021.

https://enjin.io/
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Figure 6.4: Usage metrics of the top 20 blockchain games in the data sample
gathered for this study.
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release of new blockchain games over time, such consistent growth is remark-

able. Taking price volatility as an example alone; over the almost four year

span of the data sample under inspection the price of ETH has varied from

approximately £300 up to £3,000. Despite this, the cumulative value sent

across the 260 blockchain games gathered has grown at approximately 2,000

ETH/week over the more than three year period (equivalent to £60,000 up

to £6,000,000 per week over the period). This consistency (in ETH terms)

shows either a growing investment in real terms per player, or the spending

of existing funds by players with older funds - this is expanded on in the

limitations section below.

The first research question regarding the rate of spending in the blockchain

games domain can be answered as in ETH terms it is clearly linear. However,

when paired with the price chart in Figure 2.5, the rate of spending in real

terms appears to be increasing at a greater-than-linear rate. There are

however artefacts in the price series which may frustrate efforts to neatly

describe spending in real terms. For example, 2018 shows a steep decrease

in price by almost 80%, 2019 shows almost no movement, and the growth in

2021 may appear somewhat exponential in the context of 2020, but taking

2021’s time series alone may in fact show a linear growth in that year. The

complexities of time series analyses are not expanded upon further in this

thesis, but future work may employ techniques described by Chatfield to

capture these artefacts in scientifically meaningful ways [120].

This study’s use of cumulative unique address count has also added

a non-financial dimension to understanding the rate of growth, with the

number of players also growing consistently, albeit with an increase in the

rate of adoption through 2021. One may tentatively map this 2021 rate

change to an overall increase in public discourse around cryptocurrencies,

and NFTs in particular [121][122], although it should be noted that not all

NFT projects are blockchain games. As with the first research question in

this study, the rate of new user adoption is increasing approximately linearly,

with an apparent break in the first quarter of 2021. It should be noted

however that this study only uses data from the Ethereum blockchain, hence

it may be possible that the growth of the entire blockchain games ecosystem

across cryptocurrencies may be greater-than-linear, but that is impossible to

verify using just one blockchain’s data in isolation.

The final population level question in this study, regarding the volume of
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gaming activity, can again be addressed as the rate of growth by transaction

count appears linear with little deviation. This is to be expected given the

linear growth in cumulative unique address count, so acts as a supporting

finding for the idea that the overall growth of blockchain games on the

Ethereum blockchain is linear. It should however be noted that a slight

decrease from late 2020 through to the end of the sample is apparent, an

artefact not found in either of the previous two metrics.

The market leader based questions concerning the distribution of leaders

across metrics can be answered by the graphical depiction of each metric

presented in Figure 6.4. Much like the decentralised gambling domain in

Section 6.1, several leaders in each metric dominate the market, or at the

least have dominated the market at some stage in their existence. The

second leader based hypothesis, that leaders dominate multiple domains

simultaneously, cannot be so easily supported, as only the CryptoKitties

application appears in the top three by each metric, with the top 10 being

generally consistent albeit in a different order across metrics. This finding

is not surprising given the vastly different architectures of applications in

this domain - expanded upon in Section 8.2 below, as each transaction may

represent a number of user actions. The key conclusion from these results in

the context of this thesis is that the CryptoKitties application is a strong

candidate for further analysis as it leads in total value and transaction counts,

and places third by unique address count.

Limitations

The primary limitation of this study is the macroscopic nature of the met-

rics used. Specifically, by using only the total value, address counts, and

transaction counts, more granular phenomena regarding the usage of the

applications cannot be explored. For example, while the total number of

unique addresses transacting with applications is broadly informative, it

cannot tell us whether these addresses are engaging on a regular basis, how

long they typically engage for, and other interaction behaviours. In order to

explore these granular phenomena, more granular behavioural measurements

are required.

In a similar vein, the analysis performed here did not warrant the use of

more advanced statistical tests as used in similar work [121]. For example, it

is clear from the cumulative value plot that its rate of growth is approximately
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constant, hence the use of tests for seasonality, computing autocorrelation

coefficients, and other time series analytical techniques are unlikely to provide

any additional insight which is not obvious from the visualisation. This

considered, like other studies in this thesis, computing tests used in similar

work, or in similar domains, would allow direct comparison between results,

however in this study this was not the objective so is instead considered an

important area of future work.

A second limitation of this study is the lack of third-party data, which

could be used to explore relationships between the (lack of) features in each

of the population metrics versus other time series. The only third-party data

gathered was the price of ETH over the observation period, which was then

used as a visual comparison with each of the metrics. While this comparison

enabled a deeper understanding of the underlying volatility of the price of the

currency these applications accept as payment, it cannot capture important

details such as when each of the users bought the ETH used in the application.

For example, there is a substantial difference between a user buying ETH in

2017 when its price was roughly £300, and then spending it in 2021 when its

real value has increased in value ten-fold, versus a user purchasing in 2021

and spending it in 2021. Accounting for such differences would require the

use of cryptocurrency exchange data, in a similar way to the use of banking

data for gambling studies [123]. This presents a challenging area of future

work, but one in which important findings regarding individuals financial

management strategies may be found.

A third limitation of this study is that the analysis of market leaders

applied historical aggregates of each of the usage metrics, rather than an

age-decayed or time sensitive metric favouring recent activity. This means

that of the top applications, it is not clear whether or not they are still

at the top of the market, or whether their position in these charts is due

to historical positions which have since decayed. In the broader context in

which this study exists however, this is not prohibitive to building on these

findings, as the question of which applications may provide most data for

further work is unaffected. Yet, it does mean that despite still being ‘market

leaders’ in this analysis, the intensity of applications’ historical usage should

be accounted for in all further work for findings to be relevant to the rapidly

changing landscape of blockchain games.

Finally, this study has taken the StateOfTheDApps ‘Games’ self-identification
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as a starting point for analysis. While this study confirmed that many of

the top applications in the sample are indeed blockchain games (unlike the

non-gambling applications in the previous study), there may still be applica-

tions within the data set which may not be considered blockchain games in

the context of this study. This potential for being skewed by non blockchain

games does not appear to be as significant a problem as in the previous

chapter, but nonetheless persists in this domain. This can be circumvented by

an initial auditing/verification step in the analysis whereby each application

would be analysed before inclusion, although this would be an extremely

resource intensive task as outlined in Chapter 3.

Future Work

The exact reasons for the consistent growth of the blockchain games ecosystem

cannot be inferred from the transaction level analysis presented in this

study alone, however, several areas of future work present themselves as a

result. The most obvious in the context of this thesis is the extent to which

behavioural similarities exist between spending in blockchain games and

spending in decentralised gambling applications. This will involve computing

more granular measures used in player tracking research such that population

descriptions can be compared. An economics oriented branch of further work

may apply deeper analysis to the properties of the time series of each of the

metrics presented. Such analysis may explore time series modelling of each of

the metrics in order to quantify trends and other features, cross-correlation

with other third party data to identify relationships in growth such as social

media sentiment, and so on. Finally, a comparison with different types of

centralised games, gaming platforms, and other similar applications could

yield useful results for projecting the growth of blockchain games over the

next few years. Such speculation was considered out of scope of this study,

but has important implications for regulation around this emerging domain.

6.2.5 Conclusion

This study has provided empirical support for the idea that blockchain games

are steadily growing in usage, and have been doing so over the last four

years. Furthermore, of the market leaders in this domain, the CryptoKitties

application remains a market leader both by total value transacted and
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transaction count, and appears third by unique address (player) count. This

suggests that this application may yield the most data for representative

analysis of player behaviour in this domain, and is of particular interest for

future work.

6.3 Summary

This chapter has explored the prevalence of both decentralised gambling

applications and blockchain games atop the Ethereum network. Several

market leading applications in each domain present themselves as data-rich

options for further analysis, although a ‘long tail’ of lesser used applications

are also available. An important finding in the decentralised gambling domain

is that the application ranking service provided several applications which

were not correctly classified. This has implications for using such services to

broadly assess the scale of spending in this emerging domain, although such

applications were easily removed by manually comparing the capabilities

they offered against other leading applications. The findings from both of

the studies presented in this chapter lay the foundation for further research,

specifically analysis of the behaviours of users of the leading applications

uncovered, using the player behaviour tracking techniques described in

Chapters 4 and 5.



Chapter 7

Inside Decentralised

Gambling Applications

“Can’t repeat the past? Why of course you can!”

F. Scott Fitzgerald

The Great Gatsby

This chapter includes concepts and rewrites of work published in PLOS One titled

‘Inside the decentralised casino: A longitudinal study of actual cryptocur-

rency gambling transactions’.

A small portion of players who engage in gambling experience some form

of gambling related harm [8]. Before applying granular behavioural profiling

techniques which map to external harm related variables as discussed in

Chapter 5, an understanding of player behaviours at the population level

is required. This chapter therefore aims to apply all of the knowledge from

Chapters 2, 3, and 5, to the domain of decentralised gambling applications.

After the introductory Section 7.1, Section 7.2 presents a summary of the

architectures of several leading applications identified in Study 2, describing

how methods discussed in Chapter 3 could be used to generate data sets

from this knowledge. This chapter concludes with the third major study of

this thesis in Section 7.3, which applies a collection of behavioural measures

discussed in Chapter 5 to a data set generated by the leading applications,

presenting the first study of population level gambling behaviours in this

new domain.
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7.1 Introduction

Decentralised gambling applications are a new form of online gambling which

use cryptocurrency technology to process payments and calculate game

outcomes [5]. These applications vary in terms of the games they provide,

and the cryptocurrencies they use. This work focuses on simple casino type

games of chance, like dice rolls and coin flips, available through several

applications operating atop the Ethereum cryptocurrency network. The

Ethereum network is the oldest and most popular by market capitalisation of

cryptocurrency networks which explicitly support smart contracts 1, making

it a strong candidate for gathering representative samples of players in this

new domain. These contracts, as described in the Chapter 3, are the core

technology enabling decentralised gambling applications [27].

7.2 Application Architectures

Before analysing the player behaviours in the decentralised gambling ap-

plications under investigation, it is first useful to provide broader context

around how player interactions actually manifest in transaction sequences by

describing their general architectures. In other words, when a player takes

actions within a gambling application, which transactions are generated and

are therefore which are of interest for research. This will be useful later

on in the interpretation of the results, and will use several case studies to

help broadly describe the entire class of decentralised gambling application

online today. Importantly, this understanding of decentralised gambling

application’s internal architectures is the difference between being able to use

their transactions for meaningful research and not, so is a central contribution

of this thesis and foundational first step in the cryptocurrency gambling

research domain.

Given the relative youth of the underlying technology, the core archi-

tectures of decentralised gambling applications vary dramatically, and are

subject to constant innovation. However, like any other business, in order to

provide games of chance to their users, a minimum set of functionality must

always be implemented. These include, for example, at least one variant of

bet placement function, which accepts payment from a user along with a

1See https://www.coinbase.com/, accessed 12/11/2019.

https://www.coinbase.com/
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collection of game parameters and executes the required random calculations

before triggering a payout. Such functions may be obfuscated by different

architectures, for example one may implement the ‘bet placement’ event and

the setting of related parameters across a number of different function calls,

or use some sort of token or other layers to complicate the core process.

Three case studies are presented below of applications whose architectures

are ‘flat’ in the sense that they typically use a single contract and are therefore

relatively easy to decode by applying the knowledge presented in Chapter

3. As with analysing any system, decentralised or not, those with more

sophisticated architectures and multiple contracts will undoubtedly take

more time to fully understand. This is not to say that a comprehensive

architectural understanding of every platform is not possible, but rather that

the amount of human effort required to do so is beyond the scope of a single

thesis. For this reason, three applications have been selected based on their

market position (as described in Study II above), and on their architectural

complexity.

A final note before presenting the case studies is that this type of source

code analysis is only possible because the original authors have submitted

copies of the Solidity source code for independent verification by a third party

(Etherscan). Without access to these verified submissions, a prospective

researcher would need to reverse engineer the source code from the encoded

blob stored atop the Ethereum blockchain. Whilst reverse engineering in

general, and reverse engineering of Solidity code in particular, is entirely

possible, it is a hugely time intensive process which naturally grows with the

complexity of a given application. For this reason it is clear that the types

of analysis performed in this thesis, and indeed developing an understanding

of the architectures of these applications at all, would not be possible in

any reasonable time without the efforts of the Etherscan team and the

transparency of the application authors. The full source code for each of

the applications below is available through their respective pages on the

Etherscan blockchain explorer platform described in Section 3.1.2.

7.2.1 Case Study: dice2.win

The dice2win application presents a collection of simple casino games using

a web interface (available at https://dice2.win), supported by a single

smart contract. This application offers four distinct games, namely a coin

https://dice2.win
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flip, a single dice roll, a double dice roll, and a 1–100 roll - the user interfaces

for which are presented in Figure 7.2. As with other Ethereum based

decentralised applications, the dice2win application relies on the browser

extension MetaMask to provide the interface between a user’s cryptocurrency

wallet and the application itself. In practical terms this means that in order

to use this application, prospective gamblers must first acquire some Ether,

transfer that Ether to their MetaMask wallet (as discussed in Section 2.3.1),

and then navigate to the url above in their web browser. With these three

steps complete, players can select one of the four casino games to play, set

their bet sizes & chosen outcomes, and place their bets.

Contract ABI

The dice2win application’s smart contract ABI (Application Blockchain

Interface) is the simplest of those audited as part of this thesis, containing

a total of 20 methods. Much like different business departments in cen-

tralised casinos, gambling DApps typically include a number of different

methods alongside their core game logic which perform various management,

treasury, and cryptographic verification tasks. For example, the methods

‘owner’, ‘acceptNextOwner’, and ‘approveNextOwner’, each, as the names

imply, relate to accessing and managing the ownership of the contract. The

concept of ‘ownership’ here differs from the initial creator of the contract

in the Ethereum blockchain in that it is a construct within the contract

itself which is used to manage withdrawals and other privileges within the

application. In practice the internal ‘owner’ of the contract, and the its

original creator, can relate to the same Ethereum address, although this is

naturally not a requirement. Additionally, the ‘maxProfit’, ‘setMaxProfit’,

and ‘setCroupier’ functions each relate to the treasury functions of the

application, allowing the owner to access or modify the contracts behaviour

as programmed.

A sample list of method names is available in Table 7.1, and can be

verified as an exact match to the encoded version stored on the Ethereum

blockchain by comparing an identical encoding of the candidate Solidity

contract to that stored in the actual blockchain. This comparison with a

submitted Solidity contract has been completed as part of the Etherscan

platform’s verification process for the dice2win application. This means that

we can be sure that the ABI extracted, and therefore the submitted source
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Table 7.1: A sample of dice2win smart contract ABI methods and their
functionality (verified from address:
0xD1CEeeeee83F8bCF3BEDad437202b6154E9F5405).

Method Name Description

acceptNextOwner Sets a previously approved ‘next owner’ (new administrator) to
the contract, the owner of the contract has access to a number
of executive functions

placeBet Enables the placement of a bet by anyone with an Ethereum
address and sufficient funds, this method is a parameterised
chance function so can be used to provide multiple casino games

withdrawFunds Allows the owner of the contract to withdraw funds from the
contract

Figure 7.1: The dice2win application’s bitwise roll under oper-
ation, taken from source code verified by Etherscan at address
0xD1CEeeeee83F8bCF3BEDad437202b6154E9F5405.

code, is the same as that which is in operation on the Ethereum network.

The most useful method within this ABI to this thesis’ aims is that of

‘placeBet’, which as expected handles all of the bet placement functionality

for the application. This method accepts six parameters, namely the betMask,

modulo, commitLastBlock, commit, r, and s. The betMask and modulo

parameters contain the desired outcome of the user, and the possible number

of outcomes for the chosen game respectively. These are the two most

important parameters to extract as they contain actual user choices. For

example, a user may be playing a single dice roll game which would require

a modulo value of 6. The betMask parameter is somewhat more opaque,

as it functions differently depending on the size of the modulo (See Figure

7.1). For large modulos, the betMask is equal to the ‘rollUnder’ value - the

number which the internal random number generation must fall below in
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order for a bet to be won by the player (thereby triggering a payout). For

small modulos it is used in the same way but via an intermediate bitwise

operation which efficiently converts it into a rollUnder value. Emulating this

bitwise computation is the key to unlocking the selections made by players in

the dice2win application’s betting functionality, and is the most important

line (250) regarding this thesis in the smart contract. The remaining four

parameters concern the commit value itself (breadcrumb described in 3.5.2)

and the commit time-to-live, and two components (r and s) of an eliptic

curve digital signature algorithm (ECDSA) [124] which are used to verify the

integrity of the commit values. These final four parameters act to secure the

bet placement against tampering from all parties, including malicious miners

on the network. When a player places a bet through the user interface, their

MetaMask wallet is used to create a transaction on the blockchain which

calls the placeBet method, therefore providing each of the parameters for

analysis.

7.2.2 Case Study: Etheroll.com

The Etheroll.com application is the conceptually simplest of the gambling

applications whose data has been gathered as part of this research as the

only game it offers is a 1–100 roll. As advertised on the application’s

website, Etheroll is an Ethereum smart contract for placing bets on our

provably-fair dice game using Ether with no deposits or sign-ups (https:

//etheroll.com/#/about, accessed 13/09/2021). This description is in

fact a more specific (dice oriented) summary of the application’s use case,

as a user chooses their desired probability of winning out of 100, bets a

certain amount, and then awaits a payout from the smart contract after the

underlying chance function executes. As described in Section 3.4, such a

simple chance based mechanism can be directly mapped to the outcomes of

large number of different casino games - including dice rolls - which makes

this application in particular an excellent resource for gambling researchers.

Contract ABI

Like the dice2win application above, the Etheroll application’s source code

and ABI have been verified by the Etherscan source code submission process,

so can be analysed with the security that the code available is true to

https://etheroll.com/#/about
https://etheroll.com/#/about
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(a) Coin Flip game user interface. (b) Single Dice Roll game user in-
terface.

(c) Two Dice Roll game user in-
terface.

(d) 1–100 roll game user interface.

Figure 7.2: dice2win application user interfaces available at https://dice2.
win, accessed 11/08/2021.

https://dice2.win
https://dice2.win
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Table 7.2: A sample of Etheroll smart contract ABI methods (verified
from address: 0xf478c8Bc5448236d52067c96F8f4C8376E62Fa8f). Method
in bold represents the core player action of interest used in further studies.

Method Name Description

ownerPauseGame Allows the owner to disable new bets, effectively closing the
application to all players

playerRollDice Contains all functionality required for players to play the dice
roll game, including parameters chosen by the player at the time
of the bet placement

ownerTransferEther Allows the owner to send Ether to another address from the
contract itself, much like a withdrawal but to a given address

ownerChangeOwner Sets a new administrator to the contract, the owner of the
contract has access to a number of executive functions including
the transfer and pause methods above

that held on the blockchain. The Etheroll application offers only one game

(see Figure 7.3), so should in theory be architecturally simpler than the

dice2win application, however, this is not the case. The Etheroll ABI contains

a total of 38 methods, spread broadly across a number of management,

treasury, and verification functions. Unlike the dice2win application discussed

above, Etheroll allows the internal ‘owner’ to manage the application’s

parameters with finer detail, for example, implementing the ability for the

owner to ownerPausePayouts and ownerSetMaxProfitAsPercentOfHouse.

These finer grain controls are not essential to the function of the application,

but rather allow the owner more easily modify the behaviour of the application

without having to add an entirely new contract to the blockchain with the

desired changes. This architecture makes the Etheroll application more

adaptable to market changes such as price fluctuations, as the owner can

ownerSetMinBet and ownerSetCallbackGasPrice, which set the minimum

bet size, and set the gas price to be used in Oraclize methods (used as an

external source of randomness within the application) accordingly.

Unlike the dice2win application above, the Etheroll application’s bet

placement function is called ‘playerRollDice’, and is not a generalised

chance-payout function, but contains only the functionality equal to the

‘rollUnder’ process within the dice2win application. This function accepts

only one parameter (rollUnder), which is the value under which the random

process must roll in order for a bet to be considered successful and a payout

triggered. This makes analysis of the Etheroll application’s transactions

more straightforward than those of the dice2win application above, as the
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Figure 7.3: Etheroll application user interface, available at https://

etheroll.com accessed 13/09/2021.

raw transaction data can simply be decoded and used directly without any

application emulation. The disadvantage of this approach from a research

perspective is that the lack of a nonce parameter makes matching payouts

to bets somewhat more complex. This complexity manifests in the need

to understand a ‘ callback’ function which exists as part of a call to an

Oraclize (now renamed to Provable) function within the ‘playerRollDice’

call, which is a way for smart contracts to use random number data from

internet sources. Understanding this function is not necessary when applying

a naive chronological stitch to the bet and payout transactions discussed in

Section 3.5.1.

https://etheroll.com
https://etheroll.com
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7.2.3 Case Study: FCK.com

The final gambling application case study performed as part of this thesis

is that of FCK (https://fck.com), which as of writing is no longer in

operation. This considered, the nature of blockchain technology means that

its transactions are still available, making this application of interest to

researchers given its apparent large number of players, amount transacted,

and relatively simple architecture.

While in operation, FCK offered an identical roster of games as dice2win,

plus a roulette game. Each of the games accepted stakes in the native Ether

cryptocurrency, and as with the previous case studies can be interacted with

using the MetaMask wallet installed in the player’s web browser. Much like

the dice2win application, the FCK application smart contract employs a

single chance-based method (placeBet) which can be called with different

parameters to run and resolve bets from each of the different games. It

also contains a number of management methods similar to the dice2win

application, which are similar in function to those already discussed in the

dice2win analysis above.

Contract ABI

The Etherscan blockchain explorer platform offers a collection of addresses

linked to the FCK application. The address of most relevance in the con-

text of understanding the key player transactions within the application

is 0x999999C60566e0a78DF17F71886333E1dACE0BAE, to which a total of

700,307 transactions have been sent. This address contains verified source

code similar to those of the two previous case studies, containing 30 methods

in total, again generally divided by business function. Table 7.3 shows the

full ABI of this contract.

The FCK application’s placeBet method is functionally identical to

that of the dice2win application discussed in Section 7.2.1, and includes all

of the same parameters. This makes decoding its transactions an almost

identical process to the dice2win application, although the bitwise operations

have been slightly modified (See Figure 7.4). This exact operation differs

from the dice2win application in that modulos of different sizes are handled

differently through the call of a ‘getRollUnder’ method. It is not clear

why the contract is structured in this way over the more simple dice2win

https://fck.com
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Table 7.3: A sample of FCK smart contract ABI methods (verified from
address: 0x999999C60566e0a78DF17F71886333E1dACE0BAE).

Method Name Description

setMaxProfit Change the maximum bet reward size, which limits the maximum
possible size of bets placed to the contract

setCroupier Change the croupier (second contract which settles bets placed
by this contract)

placeBet Allows the placement of bets to this smart contract, parame-
terised to provide a number of different games as an abstract
chance mechanism

withdrawFunds Administrative function which allows transfer of smart contract
funds to any address

Figure 7.4: Source code of the bitwise roll under operation found in the
FCK smart contract. Source code verified by Etherscan from address
0x999999C60566e0a78DF17F71886333E1dACE0BAE.
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contract, but nevertheless emulation of this functionality is required in order

to extract exactly which game a player is playing, and their choice, from the

raw encoded data stored on the Ethereum blockchain.

7.3 Study 4: Behavioural Distributions in Gam-

bling Applications

The fourth major study performed in connection with this thesis concerned

the application of a simple set of behavioural measures to decentralised

gambling transaction data in order to establish a baseline of player behaviours

in comparison to existing online casinos. As discovered in Study 1 (Chapter

5), no one set of behavioural measures can be considered perfect for describing

a population of gamblers, instead a replication oriented approach is required.

Furthermore, Study 2 uncovered a list of popular candidate applications

whose architectures have been audited as part of the case studies in Section 7.2,

allowing meaningful behavioural data to be generated from their transactions.

To this end, the results of behavioural measure computation across these

three applications is presented. This section contains findings presented as

part of the 2020 PLOS One article by Scholten, Zendle, and Walker [87],

and describes the first ever peer reviewed analysis of decentralised gambling

applications.

7.3.1 Introduction

This study describes the behaviour of a large cohort of decentralised gambling

application users over a 583 day period, spanning from the creation of each

application’s smart contracts up until the 9th March 2020 (see Figure 7.5 and

7.6). By using cryptocurrency transaction data gathered directly from the

Ethereum cryptocurrency blockchain one can calculate behavioural measures

using individual bet level data as opposed to aggregates of any kind, e.g.

daily/weekly. Behavioural measures, including descriptions of the typical

(median) player of each of the games available through each of the applications

is described. Four distinct analyses were performed, following identification

of likely non-human players:

(i) a statistical comparison between human and bot players’ behavioural

measures
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Dice2.Win
(n=7,868  b=1,527,123)

Etheroll.com
(n=3,086  b=362,324)

Coin Flip
(n=5,742)

(b=702,502)

Dice Roll
(n=2,979)

(b=240,728)

Two Dice
(n=1,633)

(b=167,759)

1-100 Roll
(n=3,014)

(b=416,134)

Decentralised Gambling Application Player Transaction Data
(n=10,357  b=1,743,478)

Coin Flip
(n=13,877)
(b=137,011)

Dice Roll
(n=567)

(b=48,331)

Two Dice
(n=293)

(b=27,163)

1-100 Roll
(n=396)

(b=36,316)

FCK.com
(n=14,466  b=248,821)

1-100 Roll
(n=3,086)

(b=362,324)

Figure 7.5: Provider-game combinations, including unique address and bet
counts taken forward to the final player transaction set.

(ii) an epidemiological description of the gambling behaviour of (human)

players of decentralised gambling applications

(iii) a statistical assessment of the relationships between existing behavioural

measures of players in this new domain

(iv) an epidemiological description of the gambling behaviours of empirically-

determined heavily involved players as found in LaBrie et al.’s original

work [2], and Nelson et al’s recent (2021) study [125]

7.3.2 Method

Data Selection

Data gathered for this study includes transactions to and from three decen-

tralised gambling applications operating atop the Ethereum cryptocurrency

network. These applications were selected based both on their rank on

a widely used application ranking service StateOfTheDApps, available at

https://stateofthedapps.com, and on the subjective technical simplicity

of their smart contracts. This simplicity is dependent on the author’s un-

derstanding of the Solidity programming language, as encoded transactions

to these contracts require decoding in order to extract the sizes of bets and

player outcome selections. A deeper understanding of the language these

contracts are written in, and an increase in available human resources, would

increase the number of applications that could be analysed. However, given

the youth of this technology, the goal here is to first understand a small

sample.

Summary statistics of the data collected from these applications is pre-

sented in Table 7.5.

https://stateofthedapps.com
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Table 7.4: Smart contract addresses for each decentralised gambling applica-
tion used in this study.

Provider Address

dice2.win 0xD1CEeeeee83F8bCF3BEDad437202b6154E9F5405

Etheroll.com 0xA52e014B3f5Cc48287c2D483A3E026C32cc76E6d

FCK.com 0x999999C60566e0a78DF17F71886333E1dACE0BAE

Table 7.5: Meta data for each application gathered as part of this study. Bet
and Payout values are given in ETH, and starting and ending blocks and
dates represent the time window from which transactions were gathered.

Etheroll FCK dice2win

Unique Users 3,086 14,466 7.868
Games 1 4 4
Bet Value 420,942.442 465,195.853 1,267,239.951
Payout Value 419,067.602 462,136.712 1,245,815.279
Start Block 6084746 6859200 6287216
End Block 9638617 8071084 9639151
Start Date 2018-08-04 2018-12-10 2018-09-07
End Date 2020-03-09 2019-07-02 2020-03-09

Data Cleaning

Transactions to and from the contracts associated with each of the applica-

tions, gathered from the start of their operations until 9th March 2020 (see

Figure 7.6), yield a total of 2,232,741 bets originating from 24,234 unique

addresses. Of these addresses, 14,466 transacted with the FCK application,

a further 7,868 with the dice2win application, and a final 3,086 with the

Etheroll application (see Figure 7.5). Figure 7.7 plots the cumulative value

of the bets placed both in each application alone, and combined across the

duration of this study.

The transaction data for each of these applications was gathered using

the Etherscan API, which offers an interface through which transactions on

the Ethereum blockchain can be directly inspected. The Etherscan API can

be found at https://etherscan.io.

As the raw dataset is publicly available via the Ethereum blockchain, the

data repository associated with this work contains the matched bets used

to calculate the measures below in an accessible format (CSV). This data

includes the hashes (unique identifiers) of both the bet placement and payout

transactions such that the sums of the costs to and from each unique address

0xD1CEeeeee83F8bCF3BEDad437202b6154E9F5405
0xA52e014B3f5Cc48287c2D483A3E026C32cc76E6d
0x999999C60566e0a78DF17F71886333E1dACE0BAE
https://etherscan.io


CHAPTER 7 132

Oct 2018 Jan 2019 Apr 2019 Jul 2019 Oct 2019 Jan 2020 Apr 2020

Etheroll.com

FCK.com

Dice2.Win

Figure 7.6: Transaction data gathering timelines for each of the three de-
centralised gambling applications studied. FCK ceased operation in July
2019.
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Figure 7.7: Cumulative value of bets placed through each application indi-
vidually, and all applications combined over the period studied. The data
and code used to create this figure is available at https://osf.io/8bfyj/.

https://osf.io/8bfyj/
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can be verified. The transaction data used for this study are available in full

at https://osf.io/8bfyj/.

Measures

The psuedo-anonymous nature of the cryptocurrency transactions from which

the present data set was drawn mean that no demographic information such

as age, gender, or income, is available for any of the unique cryptocurrency

addresses in the set. As such, no demographic analysis was possible - this

aligns with existing literature where demographic data was not found to be

of particular interest in comparison to behavioural measures based on the

transaction data alone [61, 2].

The variables computed as part of this study are based on those calculated

by LaBrie et al.’s seminal investigation into internet casino games [2], given

the finding that a replication oriented approach should be taken in Chapter

5. These include the duration of betting, which is calculated as the time

elapsed (in days) between the placement of the first bet and the placement of

the last. This is rounded up to the nearest day (following naive cast to UTC)

in cases where bets were made across a midnight boundary, for example, the

placement of bets both at 22:00 on a given day and again at 09:00 on the

following day, are counted as having a duration of two days even though

they are within 24 hours of one another. Using this I could compute the

frequency of betting activity by taking the total number of days in which

one or more bets was placed and dividing it by the duration of betting. This

yields a percentage, with value of 100% equating to betting every day for

the known duration of the use of the decentralised gambling application.

As in the original work, I calculated the average bets per day by dividing

the total number of bets made by each player, by the total number of days

on which a bet was placed (as used when computing the frequency above).

The total amount wagered (in ETH) for each player is also retrieved, along

with the total losses they incurred (also in ETH), from which their net loss

is calculated. Finally, the percentage loss for each player is determined by

dividing the net loss by the total amount wagered, and multiplying by 100.

As in LaBrie et al.’s original work, the large sample size (n=23,365) of the

players of the three decentralised gambling applications gathered in this work

mean that the practical significance of any statistical differences between

any of the measures calculated may be limited.

https://osf.io/8bfyj/
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In order to promote reproducibility in this work, and to encourage

further studies in this domain, the code used to calculate these measures

across each of the unique addresses is available as part of the gamba library

(www.gamba.dev). This library also contains methods capable of exactly

replicating LaBrie et al.’s original work [2], plus each of the computations

required to replicate all tables in the present study. The publication of the

complete data set and fully documented analytical code is a core contribution

of this study.

7.3.3 Results

Non-human players

Before presenting descriptive statistics for cryptocurrency gamblers, one

must first ensure that the transactions used originate from human players.

Given the lack of established methods in making this distinction, a naive

approach, inspired by LaPlante et al.’s use of the Kolmogorov-Smirnov test

[100], is to quantify the differences between the distributions of each of the

behavioural measures for players across each of the games. I reason that if

the majority of unique addresses’ transactions originate from human players,

collections of addresses transactions’ which deviate significantly from this

norm may be non-human in origin. This reasoning finds support in the

fictitious scenario where an auto-betting algorithm with few parameters

is used by many accounts, as this would create groups of behaviourally

similar transaction sequences which would stand out. Figure 7.8 illustrates

this theory, with a smaller peak indicating human players in a population

with non-human players, and a second peak indicating non-human player

behaviours.

To this end, I first split the collection of all gathered transactions by

application, and then again by game. This resulted in 9 distinct transaction

sets, each for a single application-game combination - for example; coin-

flip players on the dice2.win application, two-dice players on the fck.com

application, etc. The dice2.win and fck.com applications each offer 4 games,

plus etheroll.com’s 1–100 roll, yields 9 different games in total. From here,

a two sample Kolmogorov-Smirnov test (K-S II) - which quantifies the

likelihood that two samples have been drawn from the same distribution -

was computed for each pair of measures, across each of the applications. This

www.gamba.dev
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Figure 7.8: Theoretical differences in distributions of behavioural measures
between human and non-human players. The second spike is created when
multiple addresses transact in the same way, e.g. using by using computer
code.

resulted in a 9 × 9 × 8 matrix of coefficients, with axes; application-game

combinations (9), application-game combinations again (9), and behavioural

measures (8). Algorithm 1 shows the design of this pairwise behavioural

measure comparison, a Python implementation of which is available at

www.gamba.dev. It should be noted that performing this many K-S II tests

without correction limits their individual descriptive power. That considered,

the uncorrected coefficients of these tests can still be used to broadly assess

differences between the distributions.

Table 7.6 shows a single slice of this coefficient matrix corresponding to

the behavioural measure of duration for each application-game combination

described in Figure 7.5. From this slice alone it is clear that the coin-flip

game on the fck.com application stands out against almost all others in

terms of the size of the K-S II coefficient. The K-S II coefficient can be

interpreted as the probability that the two distributions are different. It is

therefore possible that if the players of the other games are human, then

fck.com coin-flip players are not. The results of these tests across each of the

behavioural measures in the matrix appears to indicate non-zero differences

between the fck.com coin-flip players against players of all other provider-

game combinations. Add to this that the fck.com coin-flip game amassed

www.gamba.dev
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Data: Behavioural measures for all players
Result: K-S II tests between measures for each application-game

combination

data = [player measures for each app-game combination];
allMeasureTests = [];
for measure in measures do

// 2D matrix for one measure;
testResults = [];
for column in data do

for row in data do
testResults.append(KStest(column, row));

end

end
allMeasureTests.append(testResults);

end
Algorithm 1: Two sample Kolmogorov-Smirnov tests for each be-
havioural measure between groups of players, where each group represents
the players of a single game on a single application. The Python imple-
mentation used in this study is available as part of the gamba library at
www.gamba.dev.

13,877 unique players over it’s lifespan of 209 days compared to 567, 293,

and 396 players among its other three games, it appears unlikely that the

majority of transactions to this game are human in origin.

The two sample Kolmogorov-Smirnov test results between the dice2win

coin flip players and the fck.com double dice players are also higher than

any other non fck.com pair. Yet with no other pairs indicating distributional

differences with this group this may be an artefact of the choice of game,

or may be coincidental given the number of tests conducted. In each case,

this anomaly invites further exploration but is considered out of scope of the

present study.

Under the assumption that each of the remaining provider-game pairs’

transactions originate from human players - which I found no evidence

to refute - the fck.com coin-flip transactions were discarded. This left 8

application-game combinations of interest, whose 10,357 unique players’

behavioural measures - using 1,743,478 transactions - were combined into

a single data set, as performed in existing work in gambling behaviour

analysis [2]. A graphical breakdown of these application-game combinations

is provided in Figure 7.5. As with the matched transactions described above,

www.gamba.dev
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Table 7.6: Two sample Kolmogorov-Smirnov test results for player durations
across all provider-game combinations. † denotes a significant result (p < 0.01)
and coefficients greater than 0.35 are highlighted. Key: d2w = dice2.win,
fck = FCK.com, eroll = Etheroll.com, cf = coin flip, sd = single dice roll, dd
= double dice roll, oh = 1–100 roll.

DApp d2w fck eroll

Game cf sd dd oh cf sd dd oh oh
d2w cf -

sd 0.16 -

dd 0.24† 0.10 -
oh 0.17 0.03 0.08 -

fck cf 0.55† 0.39† 0.46† 0.39† -

sd 0.22† 0.08† 0.05 0.05 0.43† -

dd 0.40† 0.25† 0.16† 0.23† 0.59† 0.20† -

oh 0.34† 0.19† 0.10† 0.17† 0.54† 0.13† 0.07 -

eroll oh 0.09 0.12 0.19† 0.11 0.49† 0.14† 0.34† 0.27† -

the table of behavioural measures calculated for each unique address in this

study is available through https://osf.io/8bfyj/.

Cryptocurrency gambling behaviours

Table 7.7 presents the behavioural measures described in the Measures section

above for the cohort of players in the remaining transaction set. The majority

of the measures have heavily skewed distributions, which limits the descriptive

power of the parametric statistics presented. This table therefore extends

LaBrie et al’s original metrics [2] by including the inter-quartile ranges of each

of the measures, plus the coefficients of a one sample Kolmogorov-Smirnov

test for normality as reported by LaPlante et al [100].

The results show that with a median duration of 1 day and frequency

of 100%, the typical player of decentralised gambling applications bets in a

non-commital, and non-intense way. This contrasts LaBrie et al’s original

findings on regular casino players, who with a median duration of 246 days

and frequency of 7% bet across a much longer term. This contrast may be

explained in part by the youth of the applications studied here. Add to

this a median bet count of 11 and we may assume that this typical player

would play for one short session on a single application and then cease play

altogether or move to another application. This considered, the inter-quartile

range for the duration indicates a portion of players remaining engaged for

over a week of play. Combine this with the inter-quartile ranges for both

https://osf.io/8bfyj/
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Table 7.7: Gambling behaviour of 10,357 decentralised gambling application
players including a one sample Kolmogorov-Smirnov (K-S) test for normality.
All K-S test statistic values are significant at the p < 0.01 level, STD =
standard deviation, IQR = inter-quartile range.

Metric Mean STD Median IQR K-S

Duration (days) 30 81 1 10 0.841
Frequency (%) 76 36 100 50 0.966
Number of Bets 168 992 11 62 0.841
Mean Bets/Day 23 48 6 21 0.841
Mean Bet Size 1.15 11.8 0.11 035 0.504
Total Wagered 213.77 2451.85 1.40 16.59 0.504
Net Loss 2.91 49.86 0.04 0.71 0.213
Percent Loss 10.9 112.1 5.3 52 0.548

the frequency and number of bets measures and we observe a wide range

of possible behaviours between the 25th and 75th percentiles of the sample,

across the measures calculated. This sentiment is shared in the number

of bets placed per betting day, which, with a median of 6 and IQR of 21,

encapsulates a wide range of possible behaviours for the majority of the

sample.

The top four behavioural measures also present the highest one sample

K-S test statistics of all of the measures. This is most likely an artefact of

the heavily skewed nature of these measures, with thorough investigations of

outliers across each measure representing an interesting area of future work.

The financially oriented measures, including the ETH per bet and the

total amount wagered show similar oddities to the results regarding duration

and frequency. With a median bet size in ETH of 0.11 (approximately

equivalent to $14 , see https://www.coinbase.com/price/ethereum for

exchange rate data used throughout this work) and total amount wagered

of 1.40 ETH (approximately $200), the typical player’s spending is high

considering the short duration of play. The granular and longitudinal nature

of the transaction data prepared as part of this work mean that questions

surrounding this behaviour, and its relation to external harm related variables,

can be explored in greater detail in further work, but are not expanded upon

here.

The most comparable measure presented here with other gambling ac-

tivities is the net and percentage loss measures, which with median values

of 0.04 (ETH) and 5.3% respectively indicate modest losses for the typical

https://www.coinbase.com/price/ethereum
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Table 7.8: Non-parametric Spearman rank-order correlations between all
behavioural measures for decentralised gambling application players. All
values are significant at the p < 0.01 level. Coefficients of magnitude greater
than 0.70 are highlighted.

# Bets Eth Total Net %
Measure Duration Frequency Bets /day /bet Wagered loss loss

Duration -
Frequency −0.89 -
# Bets 0.63 −0.45 -
Bets/day 0.35 −0.19 0.93 -
Eth/bet 0.16 −0.10 0.26 0.24 -
Total Wagered 0.53 −0.39 0.84 0.78 0.72 -
Net loss 0.12 −0.10 0.15 0.14 0.15 0.20 -
% loss -0.10 0.06 −0.15 −0.12 −0.07 −0.14 0.67 -

player. As with other financially oriented measures, when framed in terms

of the median duration this equates to a loss of 5.3% of the total amount

bet per day.

Unlike the top four measures presented, the financially oriented measures

do not present such high K-S test statistics, so are likely drawn from less

extreme distributions. That considered, with test statistics of 0.504, the

ETH per bet and total amount wagered measures still cannot be effectively

described using parametric methods. As such, the means and standard devia-

tions for each of the measures are reported in line with existing literature, but

in this domain do little to develop our understanding of typical transactional

behaviour.

Relationships between behaviours

As with previous work exploring the behavioural measures used in this work

[61][100], heavily non-normal distributions mean that rank-order correla-

tions are preferred over their parametric equivalents. Table 7.8 presents

Spearman rank-order correlation coefficients between all of the behavioural

measures calculated for players of all games combined, excluding the fck.com

application’s coin-flip players.

Of particular interest in these coefficients are those of substantial mag-

nitude, as highlighted. I find that, as expected, frequency is negatively

correlated with duration - this makes sense as given a larger number of

possible days on which to place a bet, the probability of a player not placing
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one on a given day naturally increases. The measure of duration does not

appear substantially correlated with any remaining measures, with moderate

values for both number of bets and total amount wagered. These each loosely

support notions that the longer an individual uses a decentralised gambling

application, the more bets they will place and the greater their total amount

wagered will become. These each also make logical sense in the context of

the gambling games these applications present.

Apart from its correlation with duration, the measure of frequency does

not appear to relate to any other measures in any substantial way. With

a coefficient of 0.46, its correlation with the number of bets an individual

makes also makes intuitive sense. The more frequently a player places bets,

the more bets they are likely to place over their gameplay career.

The number of bets appears strongly correlated to both the number

of bets per day and the total amount wagered for users of decentralised

gambling applications. With a coefficient of 0.93 - the strongest of all pairs -

it is clear that the number of bets an individual places over their duration of

play directly relates to the number of bets they are likely to place on a given

day. The number of bets measure also relates strongly (0.84) to the total

amount wagered. Unsurprisingly, the number of bets an individual places on

a given day is also strongly correlated (0.78) with their total amount wagered.

As with other relationships between measures, this makes intuitive sense in

the context of gambling games but nonetheless contributes to establishing a

baseline for human players of such games.

The final coefficient of interest, and that of most potential scientific

significance, is that between the ETH per bet and the total amount wagered.

With a reported coefficient of 0.78, these results suggest that those who place

larger bets are more likely to wager larger total amounts over the duration

of their betting careers. The implications of this finding are deferred to the

discussion. However, this appears to suggest that this measure may be an

important predictive indicator in the cryptocurrency domain. It may assist

in terms of identifying the potential for financial harm via unsustainable

spending among players - a finding in line with existing work in player

behaviour tracking research [1].

Both the measures of net loss and percent loss do not appear meaningful in

relation to the other measures reported in this work, so will not be discussed

in detail. One can now move on to report descriptive statistics regarding
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Table 7.9: Non-parametric descriptive statistics of the behavioural measures
for the top 5% most heavily involved bettors by total amount wagered,
and the other 95% of players. All one sample K-S test statistic values are
significant at the p < 0.01 level indicating the data for each measure is
non-normally distributed.

Top 5% (n = 518) Other 95% (n = 9, 839)

Measure Median IQR K-S Median IQR K-S

Duration (in days) 35 120 0.91 1 7 0.84
Frequency 50 78 0.98 100 50 0.97
Number of bets 644 1660 1 9 47 0.84
Bets per day 68 77 1 5 18 0.84
ETH per bet 1.84 5.61 0.53 0.10 0.28 0.50
Total wagered 986.39 1759.01 1 1.10 10.89 0.50
Net loss 10.3 102.6 0.56 0.04 0.6 0.22
Percent loss 0.9 7.6 0.38 6.6 57.6 0.56

the most heavily involved bettors in the data set, and contrast them to the

majority of low and moderately involved bettors.

Heavily involved bettors

Heavy involvement by any of the behavioural measures used here may be

detrimental to the individuals affected. For example, those most heavily

involved in terms of the duration of their play will naturally have less time

for other commitments, or those with large net losses may face financial

repercussions should their income not support such expenditure. I explore

heavy involvement with respect to total wagered, as it has the most obvious

financial repercussions for the individuals in the cohort. This follows LaBrie

et al.’s rationale for exploring the same measure in a cohort of casino gamblers

[2]. I include LaBrie et al’s original figures for quick comparison in Table

7.10, although such comparisons are heavily nuanced given the differences

between decentralised and regular online casinos.

Table 7.9 presents each of the descriptive statistics for each of the be-

havioural measures, for both the top 5% most heavily involved bettors by

total wagered, and the remaining 95% of the sample. Parametric statistics for

both cohorts are not reported given their heavily skewed nature as described

in the previous section.

These results begin with substantial differences in the typical duration

of play between those most heavily involved and the remaining 95% of the
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Table 7.10: Gambling behaviour of extreme 5 and 95% subgroups of casino
bettors, reprinted from LaBrie et al’s 2008 study [2].

Most involved casino bettors
top 5% (n = 212)

Other 95% of
participants (n = 4, 010)

Measure Mean (SD) Median Mean (SD) Median

Duration 476 (232) 529 290 (233) 246
Frequency 24% (17) 20% 16% (21) 7%
Number of bets 24,558 (36,779) 10,465 2,403 (7,819) 486
Bets per day 285 (344) 188 107 (176) 46
Euros per Bet 213 (682) 25 25 (97) 4
Total Wagered 345,579 (354,890) 233,195 10,338 (19,360) 2,284
Net Loss 8,746 (11,213) 6,698 422 (939) 107
Percent Loss 2.6 (3) 2.5 8.0 (12) 5.9

sample. Whilst the typical player in the majority only plays for a single day,

placing approximately 9 bets in total, the typical heavily involved bettor

plays for over one month, placing over 600 bets. Furthermore, the typical

heavily involved bettor appears to spread these bets over the month, betting

approximately every other day, just under 70 times. The difference between

the typical bets per day multiplied by the typical number of betting days

per month (70 × 15 = 1050), and the typical number of bets alone (644),

indicates a difference in the range of behaviours these players are exhibiting.

Exploring these differences represents a key area of future work.

Each of the bets of the typical heavily involved bettor are also not

insignificant in size, being almost 20 times higher than the typical player in

the majority of the sample - a median 1.84 ETH (roughly $200) compared to

0.1 ETH (roughly $10). The most dramatic difference, and most concerning

for the players affected, is the difference between the median total amount

wagered between the most heavily involved bettors and the remaining players.

With a median of almost 1,000 ETH (equivalent to approximately $100,000),

it dwarfs the median 1.1 ETH ( $110) presented by the majority of bettors.

This proportional difference is consistent with LaBrie et al’s original study

on regular online casino gamblers (see Table 7.7), but appears to amplified in

decentralised gambling application use. This difference of an almost 1000×
greater total amount typically wagered by heavily involved players compared

to the majority of players is a key finding of this work.

As with the behavioural measures reported for the entire sample in Table

7.7, the inter-quartile ranges of each of the measures leaves a wide range of
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potential transaction behaviours for those in the top 5%. This includes the

duration measure, with players engaging with the decentralised gambling

applications across a range of 0 to 155 days or more. This holds for the

frequencies, with some heavily involved players betting every day throughout

the duration of use, and some betting only a few times with large wagers.

Most varied in terms of non-financially oriented measures is the number of

bets placed, which presents an inter-quartile range of over 1,600 for the top

5% compared to 47 for the majority. This is of particular interest regarding

the use of this data for transaction pattern analysis, a potentially fruitful area

of research extending this work, and discussed in more detail below. With

so comparatively few transactions made by the majority of players, further

studies using this data should use behavioural measures which account for

this difference.

Other widely varying measures include the total amounts wagered and

the net loss. The median values of total amount wagered are 986 and 1.1

with inter-quartile ranges of 1759 and 11 respectively between cohorts. Net

loss shows similar ranges with medians of 10.3 and 0.04 with inter-quartile

ranges of 103 and 58 respectively. This develops the previous finding that

among the top 5% of most heavily involved players, a wide range of potential

patterns exist, confirming the existing idea that there is no single behaviour

indicative of heavy involvement, rather a spectrum of potential patterns and

behaviours which each result in large total expenditures.

Lastly, with respect to the descriptive statistics presented, the percent

loss between the most heavily involved players and the majority presents

a counter-intuitive result. With a larger total amount wagered, the losses

one may anticipate for the typical heavily involved individual would be high,

although, in decentralised gambling applications it appears to be the opposite.

With a median percent loss of just 0.9 and an inter-quartile range of 7.6,

the typical heavily involved bettor does not appear to lose the amount they

wager in as varied a fashion as the other 95% of the sample. These values

align with Labrie et al’s original work, which also reports lower percent losses

for heavily involved bettors (2.5%) than for the majority of the population

(5.9%). This may be an artefact of the provable fairness of these games as

described in the Data Sample section above, where players can be certain

of the amount the ‘house’ is taking from each bet, or it may be a result

of extensive repeated play, where the range of potential losses is effectively
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smoothed by the larger sample available for each player. In the case of the

majority of players, a median percent loss of 6.6 and inter-quartile range of

57.6, suggests large relative wins and losses for the relatively small bets they

place. This finding differs from the original work, but makes logical sense

given the non-commital and non-intense behaviours described above for the

typical player of decentralised gambling applications.

The one sample K-S statistics reported for the behavioural measures of

the heavily involved portion of players and the remaining 95% indicate several

measures of interest for future work. Specifically, the differences between

the first four measures (duration, frequency, bet count, and bets per day)

do not appear substantially different from one another. The differences in

distributions between the total amounts wagered however are vastly different,

with a coefficient of 1.00 (to 2 decimal places) for heavily involved bettors

compared to 0.50 for the majority. This may be a fruitful area of further

exploration, as the underlying distributional differences for these measures

may be used in conjunction with other measures to predict heavy involvement.

7.3.4 Discussion

This study presents the first ever analysis of decentralised gambling transac-

tions on the Ethereum blockchain. Decentralised gambling, and the contract

components of their architectures, present significant regulatory challenges

[5], whilst simultaneously offering rich transaction level data for research.

Whist this transaction level data exists in large quantities, we have shown

that the entire set is not immediately useful for research given the likely

presence of non-human players. This means that although a large, publicly

available, in-vivo data source for player behaviour research has emerged,

scholars must take care when using it to solve existing problems, especially

when exploring issues around disordered transaction patterns and player

behaviour clustering.

Non-human players in decentralised gambling applications

The first distinct analysis involved employing statistical tests to detect

differences between transactions of (likely) human and non-human origin.

To this end, I found that performing two sample Kolmogorov-Smirnov tests

between behavioural measures, and between games provided by decentralised
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gambling applications, can be effective for detecting the presence of players

whose transactions stand out against those in other games. This simple

method invites improvements, but shows that relying on distributional

differences between human and non-human players is enough for meaningful

distinction at this early stage.

Importantly, I hold the assumption that of the nine application-game

combinations we explored, the one that stands out as different is not being

transacted with by human players, as opposed to the other way around. Under

this assumption, one may suggest that the reason it differs so substantially

from others is that the majority of the players are in fact not human, but

instead are cryptocurrency spending/betting algorithms designed to transact

with the application, potentially to inflate perceived popularity. Exploring

motivations behind deploying algorithmic interactions with these applications

presents an interesting but tangentially related area of future work.

Cryptocurrency gamblers and behavioural relationships

The second and third analyses described in Section 7.3.1 above aimed to

describe the gambling behaviours of users of decentralised gambling appli-

cations, and assess the relationships between these measures. These results

suggest, as with similar existing work [2], that the distributions of all be-

havioural measures are significantly skewed, and therefore benefit from the

application of non-parametric statistics. Applying such statistics, and with-

out breaking down the sample of players into meaningful sub-samples, the

typical user of decentralised gambling applications does not appear to be

heavily involved, and does not appear to place a substantial number of high

of bets. However, this description fails to capture the most important aspect

of the findings in this study, which are that those most heavily involved in the

use of decentralised gambling applications appear to spend significantly more

than both the majority of the population, and more than heavily involved

gamblers in other types of online gambling. Exploring this relationship

further and breaking down differences in terms of the behavioural measures

calculated for each player, presents a fruitful area of further work if findings

building on previous studies are to be translated to this new domain.

Furthermore, this study’s design draws heavy inspiration from early

work describing online casino game players. The data available to the

original researchers took a daily aggregate form. This means that the
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behavioural measures they devised to describe cohorts of players perhaps do

not capture the depth of insight available when using individual transaction

level data as available via cryptocurrency transactions. There may therefore

be behavioural measures which appear inaccessible at the daily aggregate

level, such as average gambling session length or average rate of spending. To

the author’s knowledge, studies in the field of player behaviour tracking have

not yet explored such granular measures, nor applied them to data sets across

different types of online gambling. That considered, measure-oriented work

such as Kainulainen’s [110], which describes a new measure of risk taking

specific to gambling, presents the opportunity to apply new techniques to

gain deeper insight on player behaviours.

Heavily involved cohort characteristics

The final analysis aimed to provide an epidemiological description of the

gambling behaviours of an empirically determined group of heavily involved

gamblers. The results regarding this cohort of players, identified as heavily

involved by total amount wagered, suggest a number of important discoveries.

Firstly, although the typical heavily involved player spends the equivalent

of over $120,000 during a 35 day period, the losses they typically incur as a

percentage of their amount wagered are under 1%. This means that although

their expenses dwarf the majority of players by over 1000×, they do not

appear to be losing as much proportionally as the majority of players, who,

when placing approximately $105 worth of bets in total over a one day period

typically lose under 6%, or $7. It is important to note that this difference

in losses between heavily and non-heavily involved players is not unique to

decentralised gambling applications, as evidenced by LaBrie et al’s original

findings (Table 7.10).

Another important result of the analysis regarding heavily involved

bettors is the typical difference in bet size, with heavily involved players

wagering just under 20× more than their low to moderate counterparts. This

result can be used to inform further research on the use of cryptocurrencies

for gambling, and the analysis of their transactions, for the early detection

of unsustainable spending, for example. This is just one of many possible -

and much needed - avenues of work extending these findings into the domain

of responsible gambling analytics.
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Limitations

The analyses performed here are subject to many of the same limitations

of the use of online gambling data for behaviour tracking research generally

[1]. These include issues surrounding the generalisability of findings. In the

context of the use of cryptocurrencies for gambling - specifically through

decentralised gambling applications - is unclear whether the analysis under-

taken here will have similar results across other comparable applications.

Furthermore, it may be the case that the behavioural patterns uncovered

here are incomplete as true player gambling behaviour may be spread across

several unobserved applications in addition to the applications discussed

here.

Such fundamental limitations can not be completely negated through

experimental design. However, future work should focus on increasing the

sample size, both to more applications and more players, which may address

the issue of generalisablity regarding decentralised gambling applications.

An additional point may be made regarding the transaction matching

process performed which pairs incoming and outgoing transactions. The

data that this analysis was conducted over involves a complete record of each

player’s ingoing and outgoing transactions. However, it does not contain a

reliable temporal ordering for this data. In order to create a more useful

data set than the incoming and outgoing transactions in isolation, they can

be matched such that an outgoing transaction chronologically following an

incoming transaction from the same address can be taken to be the payout

of a previously placed bet, but that other candidate transactions may be

considered in the case that one transaction is completed ahead of another.

Perfect transaction matching, as described above, is unnecessary for the

methodology used in this paper, as all behavioural measures computed use

the aggregation of an individual’s ingoing and outgoing transactions. For

example, the behavioural measure of percentage loss for a given player only

requires the sum of their bets and the sum of their payouts. However, one

might imagine the calculation of more sophisticated behavioural measures

that do require matched data in order that more sophisticated analyses might

take place. For example, one might attempt to calculate the phenomenon of

‘chasing losses’ by measuring the extent to which players place larger bets

after losing money on a prior bet. Such an analysis is not possible using

the data set outlined above, as any given payout could not be conclusively
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matched to a single bet. This matching process is briefly mentioned here as

it will be essential for future work in this area at the individual bet and risk

analysis levels - both techniques are considered out of scope of the present

study.

Other limitations relate to the nature of the applications themselves in

comparison to other online gambling platforms. Specifically, each of the

applications used here - and all decentralised applications atop cryptocurrency

networks - must use cryptocurrencies or similar tokens by design. This means

that although the real world value (e.g. in US$ or GBP) for any amount

of cryptocurrency can be determined in real terms, it is unclear whether or

not this relationship affects wagering, and in what way. An area of future

work exploring this relationship may investigate the distributions of bet

sizes, and may uncover more detailed findings in terms of how decentralised

gambling differs from other online gambling. These studies may also help

in understanding how the use of virtual goods and currencies affects the

behaviour of players with respect to spending. In this vein, comparisons

with other uses of cryptocurrency technology, such as the development of

crypto-games [9], may provide a useful basis for comparison.

The differences between these applications and other online gambling

providers also inherently affects the populations who use them. This means

that the sample of players considered in this work is a sub-population

of individuals who have purchased cryptocurrencies - a volatile [9] and

technologically sophisticated means of facilitating e-commerce [5].

A final limitation of this work, given the context of recent advances in

player behaviour tracking research, is that it only explores simple behavioural

measures based on those used to explore casino gamblers [2]. It therefore does

not reach into more advanced analytical methods for describing, classifying,

or predicting player behaviours. This includes work by Fiedler which explores

more granular behavioural measures [63, 65], multiple studies by Percy [72]

and Dragic̆ević et al. [102], which employ neural networks and other machine

learning methods for responsible gambling, and other data mining procedures

for identifying high risk gamblers as done by Philander [81]. In order to

apply supervised machine learning as in these studies, labelling heuristics for

players should also be explored.
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Future Work

The analysis presented here recreates that of a series of papers originating

from Harvard Medical School [61, 2, 100]. Since that series was first published,

a number of other descriptive measures have been used such as the intensity,

variability, frequency, and trajectory of a player’s bets [3], and more specific

variables such as the number of betting sessions and total time spent betting

[63]. Extending the present study by exploring player behaviours across

these dimensions would give a more complete picture of the player base of

decentralised gambling applications, and would give stronger grounds on

which these transactions may be compared with other types of gambling.

A second avenue of research extending the descriptive and test statistics

reported here is the use of this data for identifying and predicting high risk

gambling. Existing work has identified transaction patterns and behaviours

to be markers of high-risk play [69, 106] - exploring such methods in this new

domain may therefore help identify those at risk, and better describe the way

these applications are used. The development of such identification methods

may spur regulators and policy makers to further explore cryptocurrency

exchanges, whose operations provide financial access to these applications. An

obvious and useful first step would be formally requiring currency exchange

reporting for responsible gambling analysis.

Finally, the findings presented here may be tentatively mapped to other

forms of gambling in which similar work has been reported. Generalisations

drawn from such mappings may require further data gathering from both

additional cryptocurrencies, such as the EOS network, and more applications

on the Ethereum network as described in this study and elsewhere. Increasing

the sample size of players, both human and otherwise, represents a strong

second step in creating reliable and generalisable findings, which extend this

work.

7.3.5 Conclusion

In this study, 2, 232, 741 transactions to and from three decentralised gambling

applications, originating from 24, 234 unique cryptocurrency addresses, were

gathered, and four distinct analyses performed. These findings suggest that

not all transactions to decentralised gambling applications originate from

human players, making data cleaning crucial in all further academic work
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concerning this type of data. The analysis presented found a pairwise two

sample Kolmogorov-Smirnov test across players behavioural measures to

be effective in distinguishing assumed non-human players. Of transactions

believed to originate from human players, the behavioural measures computed

naively were found to describe non-intensive but moderate spending over

a short duration for the typical player. This description was then found

to mask a small portion of heavily involved bettors, whose typical bet size

appears to be almost 20× larger than their non-heavily involved counterparts,

and their total amount wagered appears to be over 1000× larger over their

duration of play. Contributions presented in this paper are two-fold; the

work presented primarily illustrates the power and scale of transaction data

that decentralised gambling applications can provide gambling researchers.

Secondly, it describes a large cohort of players from three such applications,

and uncovers extreme behaviours, such as large bet sizes and substantially

larger total wagering among heavily involved players. This work should draw

attention to cryptocurrency transactions as a tool for large scale in-vivo

gambling research, and presents a robust foundation upon which multiple

avenues of further analyses can be pursued.

7.4 Summary

This chapter has presented the first ever study of player behaviours in

decentralised gambling applications using actual cryptocurrency gambling

transaction data. This data was taken from the market leaders established in

Study 2 presented in Chapter 6, and extracted from the Ethereum blockchain

by applying knowledge of the application architectures from each of the case

studies. This study found that in comparison to existing epidemiological

profiles, gamblers in the cryptocurrency domain engage less overall, but the

most involved portion of the population engages significantly more than

their non-heavily involved counterparts (Table 7.9). Additionally, a subset

of suspected non-human players were identified by measuring the difference

in distributions of behavioural measures - a technique not yet applied in

other player behaviour tracking studies, but which successfully detected an

entire game (FCK coin flips) which contains transactions which are likely

non-human in origin. This study provides an important epidemiological

profile of players in this emerging domain, and can be used to frame more
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detailed behavioural profiling methods as presented in Chapter 9. The next

chapter in this thesis branches into the blockchain games domain, extending

the profiles established in this chapter to this adjacent but related domain.



Chapter 8

Inside Blockchain Games

“Once more unto the breach, dear friends, once

more”

William Shakespeare

Some mechanisms in digital games exhibit mechanical similarities to

gambling [126]. One such type of mechanism is commonly referred to as loot

boxes [127][128] or randomised reward mechanisms [4], and are of academic

and phenomenological interest to player behaviour tracking researchers given

their potential for gambling related harms [128]. Blockchain games can be

considered a type of digital game, and therefore may contain randomised

reward mechanisms. In existing literature, no studies have explored the

behavioural profiles of players interacting with such mechanisms in particular,

specifically through the lens of player behaviour tracking research [1]. This

chapter addresses this by providing a population level behavioural analysis

of players engaging with randomised reward mechanisms.

This chapter, like the previous chapter, aims to apply all of the knowledge

from Chapters 2, 3, and 5, to cryptocurrency transaction data - this time

to the domain of decentralised gaming applications, or blockchain games.

Following the introductory Section 8.1, Section 8.2 discusses the architecture

of a leading blockchain game (CryptoKitties), the understanding of which can

then be used to generate meaningful data sets from the raw transaction data

available on the blockchain. Section 8.3 then presents the fifth major study

in this thesis which applies the same behavioural measures as used in Study

4, this time to a set of randomised reward mechanism function calls in the

CryptoKitties application. The application of behavioural measures in this

152
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way allows a direct comparison between behaviours in these studies, enabling

a broader understanding of similarities and differences between these two

distinct but related application types. Finally, Section 8.4 concludes this

chapter, summarising the key findings from this study.

8.1 Introduction

So far, this thesis has explored the use of cryptocurrency technology in

applications marketed explicitly for gambling. Before moving to more detailed

behavioural analyses in the gambling domain, a brief detour into the closely

related realm of crypto-gaming is presented. These so-called blockchain

games share many of the mechanical properties of the decentralised gambling

applications analysed in the previous chapter, but also incorporate gameplay

elements similar to many digital games, such as quests, collectable items,

and so on. As they contain randomised reward function calls [4], which

act in much the same way as bet placement functions described in previous

chapters, an analysis of the population of players through the lens of player

tracking is warranted. This chapter therefore presents two studies, the first

maps the rate of adoption of this new domain, providing broader context for

the second, which establishes a behavioural baseline for comparison with the

gambling applications in the previous chapter.

Smart contracts can be used in digital games to store in-game tokens or

currencies on a blockchain. Once stored in this way, these tokens can be

transacted in the same way as the underlying cryptocurrency. This gives

players the ability to trade their virtual goods, and enables interoperability of

virtual goods between games. This is notably different to centralised games

in which a single server or cloud holds all player data and falls under total

governance of the game developer/publisher. In the latter, interoperability

and trading is only possible if the centralised developer allows it, wheres in

the former, players have full control over their virtual goods and how they

are used. Crucially, all these transactions are stored atop a cryptocurrency

blockchain, so can be directly accessed and decoded in order to gain insights

into the behaviours of players at the population and individual levels.
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Eligibility condition Random procedure Reward

Figure 8.1: The general form of randomised reward mechanisms described
by Nielsen and Grabarczyk [4].

8.2 Application Architectures

Before applying more granular behavioural measures to blockchain games

transaction data, a brief analysis of application architectures is presented.

Unlike the decentralised gambling applications discussed in the previous

chapter, blockchain games can exhibit vastly different architectures given

their practically limitless creative directions and resulting programmatic

requirements. This diversity becomes particularly challenging when deeper

explorations of player behaviours - which require decoded transaction data -

are needed, as there is an upper limit to the depth of understanding a lone

or even team of researchers can build across a sample of this size. For this

reason, this thesis presents a case study of the popular blockchain games

CryptoKitties, following a more concrete discussion of which function calls

are of academic interest in the context of gambling.

8.2.1 Randomised Reward Function Calls

Randomised reward mechanisms as described by Nielsen and Grabarczyk

[4] consist of a structure with a very general three part form, reproduced in

Figure 8.1. These three parts - some eligibility criteria followed by a random

procedure followed by a reward - can be identified in the internal mechanisms

of crypto games via examination of the smart contracts associated with these

games. For example, CryptoKitties is a collectable kitten breeding game

which uses smart contracts to process payments and calculate outcomes.

The CryptoKitties’ smart contracts are mostly1 open source and can be

inspected via the Etherscan platform as described in Section 3.4. In the

case of CryptoKitties, a breedWithAuto function exists whose purpose is to

commit two kittens to a breeding process such that after some time delay a

new kitten will be created. This new kitten creation process hinges on a secret

1The genetic mixing algorithm used by the CryptoKitties smart contract is not publicly
avaliable in raw source code form, only in the encoded form stored on the Ethereum
blockchain.
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Figure 8.2: Description of CryptoKitties, taken from https://www.

cryptokitties.co/, accessed 06/07/2021.

probabilistic gene mixing function, which determines the characteristics (and

therefore the value) of the resulting virtual kitten, which is then returned

to the original caller of the function. This relatively simple mechanism

matches the general form of a randomised reward mechanism in [4], and is

therefore of interest in subsequent transaction analytics as part of this thesis,

as transactions representing function calls to this smart contract directly

capture player’s interactions with this randomised reward mechanism.

8.2.2 Case Study: CryptoKitties

Study 3 in Chapter 6 found that CryptoKitties is a market leader in both

user count, transaction count, and transaction value. CryptoKitties is a

collectable kitten breeding game created by DapperLabs in 2017 [40]. The

objective of this game is to repeatedly breed virtual kittens in order to create

rarer, more valuable kittens which can then be sold or bred again (See Figure

8.2). Each kitten exists as an ERC-721 token, which means they are non

fungible and can be used in other interoperable applications by their owners

once created or purchased. This collection of compatible applications is

referred to as the Kittyverse by DapperLabs, but is not the focus of this

case study. Instead, this case study focuses on the core functionality of the

blockchain game, as described in the application’s ‘core’ contract.

https://www.cryptokitties.co/
https://www.cryptokitties.co/
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Contract ABI

Given the CryptoKitties application’s richer functionality than the decen-

tralised gambling applications analysed in the previous chapter, its smart

contract is naturally more complex. Specifically, the application has a ‘core’

contract, which contains all of the core game logic for breeding and trans-

ferring the kittens, but also has a number of other contracts which contain

sales auction, siring auction, and other broader functionality. This modu-

lar design makes research into specific user actions within the application

relatively simple, although an understanding of how those user actions are

represented programmatically is still required. This case study therefore

focuses explicitly on the KittyCore smart contract currently in operation at

0x06012c8cf97bead5deae237070f9587f8e7a266d.

This contract contains 64 functions (compared to a maximum of 38

(Etheroll) in the previous case studies), which range in functionality from as-

signing new executive addresses (setCEO, setCFO, etc), through to game man-

agement (setGeneScienceAddress, setAutoBirthFee, ContractUpgrade),

and basic Kitten functionality (createPromoKitty, breedWithAuto,

createSiringAuction) to name a few. Many of these functions will never

be interacted with by players, but exist instead as the blockchain equivalent

of management commands which can only be executed by those with author-

ity within the application. Such functions are therefore not of interest for

understanding player behaviours, so are not discussed further. Additionally,

several functions do not correspond to direct player actions, but are instead

subroutines within a player action. For example, the isReadyToBreed func-

tion checks whether a supplied Kitten can engage in the breeding process.

This function is only called in the breedWithAuto, createSiringAuction,

bidOnSiringAuction functions, and would therefore never be called directly

by a player, but is instead called when they call one of these three functions.

The existence of subroutines highlights the importance of developing a deep

understanding of a given application before selecting function calls for analy-

sis. As in the gambling domain, this is a resource and time intensive process

which can become prohibitively costly for all but the simplest of blockchain

games.

As described in Section 8.3.1 above, the CryptoKitties breedWithAuto

function captures the interaction of players with the probalistic breeding

process which meets Nielsen and Grabarczyk’s definition of a randomised
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reward mechanism [4]. For this reason, only an understanding of this function

is required for further analysis in this domain. Additionally, unlike the

applications in the decentralised gambling domain, there is no question of

which specific game is being played, or which parameters are of interest, as

it is engagement with the function itself which is of interest. This means

that an audit of the parameters and internal operations within this function

are not required in order to generate meaningful data sets for analysis using

the raw blockchain data available on the Ethereum network.

8.3 Study 5: Behavioural Distributions in

Blockchain Games

The fifth study in connection with this thesis concerns understanding the

behavioural profiles of blockchain games players when interacting with ran-

domised reward mechanisms, which in the cryptocurrency domain (and

therefore in this thesis) are considered a unique form of decentralised gam-

bling application. This study specifically aims to establish an epidemiological

baseline of blockchain games players using the same behavioural measures

applied in comparable gambling research. This can be achieved by isolating

randomised reward function calls in these games, as these are the most

mechanically similar user actions to the placement of bets in casino games

[4]. The subsequent behavioural measures therefore provide an empirical

description not of how users engage with blockchain games in general, but

how they engage with the most gambling-like features within these games

specifically. This study therefore advances our understanding of blockchain

games in two key ways. The first by providing an epidemiological account of

engagement with randomised reward mechanisms in the blockchain games

domain, and the second by providing an empirically based comparison of

this engagement with actual gambling also in the cryptocurrency domain.

8.3.1 Introduction

The previous study in this thesis has shown that the use of Ethereum

blockchain games has shown consistent growth despite the volatility of the

underlying cryptocurrency. Should this rate of growth continue, ever more

players will choose to play blockchain games, and existing centralised game
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developers may choose to integrate cryptocurrency technology into their

existing intellectual properties. This potential for increased adoption of this

new technology, and the almost 700,000 existing unique accounts, means

understanding how users are interacting with these games is essential to

fostering informed academic and regulatory discussions around their use.

This understanding is made even more crucial in the specific context of

problematic player spending and monetisation - a topic within games research

and human-computer interaction aimed at minimising harm in digital games

in which there is much debate [127][128][129]. Importantly, evidence within

this debate is lacking in the blockchain games domain, with only a few studies

exploring their mechanisms [40], and fewer still applying behavioural data

analyses.

Like their centralised counterparts, blockchain games employ a number

of monetisation techniques, the most obvious of which being the intergra-

tion of randomised reward mechanisms (RRMs) into the core gameplay

loop (See Section above for a description of RRMs). However, unlike their

centralised counterparts, transactions representing player interactions with

these mechanisms are stored in the publicly available Ethereum blockchain,

rather than on private servers. This means they can be accessed through

blockchain explorers such as Etherscan, or through a fully synchronised

archival Ethereum node, by any researcher with an internet connection,

and a detailed knowledge of the architectures of such applications. This

full historical data availability represents a paradigm shift in digital games

research, and enables a host of novel research directions, the most relevant

to this study being the use of these transactions for behavioural profiling of

players through the lens of player behaviour tracking.

Whilst studies of CryptoKitties transaction data have been published

in recent years [130], none have taken a player behaviour tracking oriented

approach, making this study the first to allow direct comparisons with

gambling research. This is important as it adds ongoing discussion around

the similarities between randomised reward mechanisms and gambling, which

if mechanically similar, should yield similar behavioural profiles.

Randomised Reward Mechanism

The CryptoKitties game includes several randomised reward mechanisms

which are responsible for initiating a breeding process and generating new
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Kittens. One such mechanism for automatically breeding Kittens is isolated in

the smart contract as a ‘breedWithAuto’ function, accepting a fixed amount

of ETH as payment and returning a new Kitten to the cryptocurrency address

which invoked the function call. This function’s architecture follows Nielsen

and Grabarczyk’s generalised form of randomised reward mechanisms [4],

and has obvious similarities to gambling via simple casino games, although

here the ‘payout’ in the casino sense is the new kitten itself rather than

return in the same currency the payment was made (ETH). Importantly, this

architecture means that by decoding Ethereum blockchain transactions one

can identify those which invoke this function and group them into a single

data set which represents the entire CryptoKitties player base’ interaction

with this mechanic. One cannot, however, easily valuate the resulting Kittens,

making analysis in the loss domain (See Chapter 5) difficult - this limitation

is discussed as encountered.

8.3.2 Method

The application of behavioural measures in the context of digital games

includes those in the time and cost domains described in Chapter 5. This is

because, as mentioned above, the payout takes the form of a token (kitten)

rather than an amount of currency. This means that to properly valuate

the payout, one would need to use third party data from an NFT exchange

and pair it to the transactions. The global nature of cryptocurrencies

however, means that one may need to gather data from multiple exchanges

simultaneously, matching transactions to previous breeding events where

possible, or guessing the approximate values for payouts which do not appear

on the gathered exchanges. This step is considered out of scope for this study

given the focus on the exclusive use blockchain transactions, but presents an

interesting and challenging area of future work.

Of the set of measures which fall under the time and cost domains, only

those that are also in the subset of measures used in early work [61][2] are

applied (again given the youth and sparsity of behavioural measures used

as described in Chapter 5), as they typically concern high level behavioural

descriptors such as the total amount wagered, and total number of bets,

which aim to capture levels of temporal and financial gambling involvement.

This means they can be more broadly compared to existing studies in the

player behaviour tracking domain, as opposed to more recently created
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measures which may not be broadly comparable. The set of behavioural

measures applied in this study are duration, frequency (percent), number of

bets, mean bets per day, mean bet size and total amount wagered. These

were chosen because they have each been broadly applied in the field of player

behaviour tracking and can be (tentatively) related in different experimental

configurations to external harm related variables such as self reported harms

due to problem gambling (See Chapter 5).

Each of these measures will be computed across a collection of transac-

tions from the CryptoKitties breedWithAuto function call transaction set

stored on the Ethereum blockchain. Further analysis will explore Spearman’s

correlation coefficients across each of the pairs of measures in this set. This

two-step approach follows a methodology common to studies in the field of

player tracking [2][94][105], and will contribute to our understanding of the

currently unknown relationships between these measures in this technologi-

cally advanced, and gambling-adjacent domain. Importantly, this will allow

not only a comparison of each measure individually at the population level,

but of how the measures relate to one another in comparison to gambling

activities.

The third distinct analysis will be the isolation of so-called ‘heavily

involved players’, which can be extracted as the top percentage of players

by total amount wagered [2]. As discussed in the systematic review of

behavioural measures used in player tracking research (See Chapter 5), this

division along a single measure is not meaningful in distinguishing between

at-risk problem gamblers, but rather acts as an epidemiological descriptive

technique for understanding the distribution of levels of involvement within

the population. This is important because not all players who exhibit heavy

involvement are at risk of problem gambling, but a large portion of players

who exhibit heavy involvement have been linked to self identified gambling

related problems [3].

Data Sample

The sample of successful transactions to the breedWithAuto function call in

the CryptoKitties application consisted of 1,629,171 transactions originating

from 64,044 unique addresses. This sample’s first successful transaction

occurred at 18:57 on 23/11/2017, with the last at 04:48 on 06/08/2021,

meaning the total sample covers three years and eight months, or a full
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1352 days. Like previous studies in player behaviour tracking research, this

study clips players whose durations (time between first and last interaction

with the application) are less than three days. This acts to remove players

who have simply tried out the application and then quit, thereby skewing

data. Of the 64,044 unique addresses (players) in the sample, 21,897 ( 34%)

engaged with CryptoKitties for three or more days, so were taken forward to

the following analysis.

8.3.3 Results

Population Behaviours

The behavioural measures computed across the entire (n=21,897) sample

are presented in Table 8.1. In order to make these results comparable with

the centralised and decentralised gambling literature, parametric and non-

parametric measures of centrality are presented, plus results of a one sample

Kolmogorov-Smirnov test which tests for normality (the p-values for which

are in column p).

The results of the K-S tests indicate a highly non-normal distribution

across all measures. This is to be expected across behavioural measures, and

is a phenomena well-documented in existing literature [1]. Confirming this in

the blockchain games domain means the parametric statistics presented can

be largely ignored, however they remain included to provide a reference for

the non-parametric equivalents. For example, it is clear that the number of

bets is likely non-normal, and with median and inter-quartile range value of

7 and 12 respectively. However, the mean and standard deviation values of

69 and 1734 show that the sample indeed exhibits massive skew, the extent

of which is not clear from the non-parametric values alone.

The first measure of duration, given the more than three year observation

period, appears to be very low, with a median player interaction period of

11 days (See Figure 8.3 for centile distribution). Furthermore, even with the

upper inter-quartile range considered, an engagement duration of 47 days

out of a possible 1352 shows that the majority of players generally are not

particularly invested in this application. This observation is matched in the

number of bets, which with values of 7 and 12 as above, shows that the

majority of players do not engage very heavily in terms of their interactions

with this particular (breedWithAuto) mechanism.
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Figure 8.3: Distribution of the behavioural measure of duration within
the blockchain games player sample (n=21,897). Note that the x-axis is
discontinuous to highlight the extreme nature of the distribution.

Table 8.1: Behavioural measures applied to CryptoKitties’ breedWithAuto
function calls.

Mean Std Median IQR K-S Score p-value

duration (days) 88.53 201.79 11.00 36.00 1.00 < 0.01
frequency percent 39.81 30.21 36.43 47.23 0.89 < 0.01
number of bets 68.97 1734.79 7.00 12.00 0.98 < 0.01
mean bets per day 3.15 7.14 1.73 1.83 0.84 < 0.01
mean bet size (ETH) 0.01 0.01 0.01 0.0 0.50 < 0.01
total wagered (ETH) 0.58 13.96 0.06 0.12 0.50 < 0.01
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Table 8.2: Spearman’s correlation coefficient scores between each pair of
the six measures computed across CryptoKitties breedWithAuto function
calls. Key: dur = duration, freq = frequency percent, num = number of
bets, mday = mean number of bets per day, msize = mean bet size, tot =
total amount wagered. All values are significant at p < 0.05.

dur freq num mday msize tot

dur -
freq -0.81 -
num 0.24 0.23 -
mday 0.05 0.26 0.87 -
msize -0.19 0.19 -0.04 -0.03 -
tot 0.2 0.24 0.93 0.81 0.24 -

Understanding the typical temporal involvement of players is then com-

plemented by the use of frequency percent and mean bets per day, which

both show that although players may engage a median 36% of days, placing

a median 1.73 bets. This pattern varies dramatically from the decentralised

gambling domain [87], which (even including players whose durations are

less than 3) place a median 6 bets per day. Finally the financial involvement

oriented measures of mean bet size and total amount wagered again diverge

from what we now know in the decentralised gambling domain. In the case

of mean bet size this is to be expected, as the ‘bet’ in this context is fixed

by the application’s developers so therefore is not expected to change. The

total amount wagered however is dramatically lower, with a median and

inter-quartile range of 0.06ETH and 0.12ETH respectively. This is extremely

low in comparison to the gambling domain (See Chapter 7), and indicates

a generally low level of financial involvement amongst players with this

mechanism.

As in existing studies of gambling behaviours, exploring the rank order

correlations between each of the different behavioural measures provides

insight into the relationships between gambling behaviours [100]. Table 8.2

shows the Spearman correlation coefficients and their significance between

each pair of behavioural measures computed. The largest coefficient of 0.93

between total wagered and total number of bets makes sense in the context

of the breedWithAuto function as the ‘bet size‘ or value is fixed by the

application itself. The reason this correlation is not perfect can be explained

by changes to the fixed value by the developers over the lifetime of the smart

contract. Similarly, strong positive correlations between mean bets per day
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Table 8.3: Descriptive statistics on the set of behavioural measures computed
(n=21,897), split by heavy involvement (top 5%) by total amount wagered.
Key: dur = duration, freq = frequency percent, num = number of bets,
mday = mean number of bets per day, msize = mean bet size, tot = total
amount wagered.

Top 5% (n=1,095) Other 95% (n=20,802)
Mean Std Median IQR Mean Std Median IQR

dur 290.37 350.89 133.00 445.50 77.91 184.75 10.00 28.00
freq 47.42 34.18 37.80 65.39 39.41 29.94 36.36 47.50
num 1132.28 7683.42 255.00 491.00 13.00 20.64 6.00 11.00
mday 17.62 26.11 11.07 13.40 2.38 2.50 1.67 1.67
msize 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.00
tot 9.40 61.80 2.25 4.10 0.12 0.15 0.06 0.10

and total number of bets, and between total wagered and mean bets per

day, make intuitive sense, as they capture aspects of the volume and rate of

financial involvement with this particular mechanism in the application.

Aside from these obvious strongly positive correlations, the negative 0.81

between frequency percent and duration echoes engagement with gambling

applications, but as with all applications, the greater a player’s duration the

less likely they are to engage with it every day generally, so this is of less

phenomenological interest. All other correlations are no greater than 0.26 so

do not appear to be meaningful in any descriptive sense so are not discussed

further.

Heavily Involved Players

Taking the entire population’s behavioural measures described above and

partitioning them by membership in the top 5% by the measure of total

wagered yields the split descriptive Table 8.2. This table tells a very different

story of the population, with this top 5% group exhibiting dramatically

higher values across all behavioural measures except frequency. As in the

previous Study in this thesis, Table 8.4 shows LaBrie et al’s original results

[2] for quick comparison.

This heavily involved group (n=1,095) engaged for a median 133 days,

placing a median 255 ‘bets’ at a rate of 11 per day. This higher rate

of spending, paired with the fixed ‘bet size’ is reflected in a median and

inter-quartile range in total wagered of 2.25ETH and 4.10ETH respectively.

While these values are still not close to their gambling counterparts, they
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Table 8.4: Gambling behaviour of extreme 5 and 95% subgroups of casino
bettors, reprinted from LaBrie et al’s 2008 study [2].

Most involved casino bettors
top 5% (n = 212)

Other 95% of
participants (n = 4, 010)

Mean (SD) Median Mean (SD) Median

Duration 476 (232) 529 290 (233) 246
Frequency 24% (17) 20% 16% (21) 7%
Number of bets 24,558 (36,779) 10,465 2,403 (7,819) 486
Bets per day 285 (344) 188 107 (176) 46
Euros per Bet 213 (682) 25 25 (97) 4
Total Wagered 345,579 (354,890) 233,195 10,338 (19,360) 2,284
Net Loss 8,746 (11,213) 6,698 422 (939) 107
Percent Loss 2.6 (3) 2.5 8.0 (12) 5.9

do highlight an almost 40x increase compared to the remaining 95% of the

population. It is however important to remember that this 5%-95% split is

on the 34% of the total population whose duration is greater than 3, making

the top 5% (n=1,095) here equate to the top 1.7% of the total population

who have ever engaged with this mechanism.

8.3.4 Discussion

The results presented above provide a population level behavioural profiles

of blockchain gamers who engage with the CryptoKitties breedWithAuto

mechanic. Beginning with the data sample itself, this study found the size

and longitude of the data available on the Ethereum blockchain available

for this type of analysis to be extensive. This, even when a duration-based

exclusion criteria was applied, left transactions from over 20,000 unique

addresses open to analyses.

Using this large sample size, the behaviours at the population level

presented a somewhat underwhelming picture of engagement with the ran-

domised reward mechanism within the CryptoKitties application. This is

in stark contrast to recent studies in games research which have found a

link between problem gambling severity and the use of randomised reward

mechanisms [127][128], which may intuitively suggest high engagement with

such mechanisms. Although many of the behavioural measures computed

were heavily skewed, the median and interquartile ranges across the pop-

ulation appear low, and not indicative of any heavy involvement or other

patterns of phenomenological interest. The results of the Spearman correla-
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tion coefficients between pairs of measures at the population level echoed

this finding, with no unexpected correlations between measures of different

types (time domain vs cost domain). These results, in the broader context

of the known similarities between randomised reward mechanisms and forms

of gambling, suggest that while there may be a relationship of some kind, it

may not manifest in users actually engaging with such mechanisms in the

same way as gamblers engaging with casino games.

The results of this study have also presented the behavioural profiles of a

heavily involved subset of players, whose total amounts wagered are much

greater than the broader population, but whose spending still appears to be

much lower than in the decentralised gambling domain. The behaviour of

this subset is indeed more extreme than the majority of players, but still

generally less extreme than gamblers in the decentralised domain. This

study is therefore cannot conclusively establish a behavioural link between

randomised reward mechanisms and gambling in the cryptocurrency domain,

although given the dangers that such an empirically supported [127][128]

link poses in the centralised domain, further research in this area is required.

It is possible that the behavioural measures are different, particularly in

the cost domain, due to the difference in the form of the payout, as unlike

in casino games a player receiving a valuable reward from a randomised

reward mechanism is not instantly able to reuse that payout for subsequent

spending. As measures in the cost domain typically aggregate spending, the

re-use of payouts can dramatically inflate measures such as total amount

wagered and mean bet size. However, this need to liquidate the payout

and resulting deflation of behavioural measures cannot explain the links

repeatedly established in existing literature between randomised reward

mechanism spending and problem gambling severity [127][128]. A second

possibility then emerges that the profiles of blockchain gamers in particular

show behaviours which are unique to their centralised counterparts. The

lack of behavioural data in the centralised domain makes this possibility

particularly difficult to explore, but as industry collaborations with academia

grow, studies of centralised randomised reward mechanism transactions will

no doubt appear for future comparison.
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Limitations

The primary limitation of this study’s methodology is that behavioural

measures in the loss domain have not been applied. This is due to the

difficulty in reliable valuation of the resulting NFTs at the moment of

generation, paired with the rationale that this valuation may likewise not

be immediately obvious to the player so may not be relevant. Interestingly,

the low total amount wagered exhibited by blockchain games players in

general, suggests that players are not selling the results of their randomised

reward mechanism interactions in order to purchase more randomised reward

mechanisms (thereby converting the output back into the original currency

of the ‘bet’), although this suggestion requires further empirical analysis to

confirm.

A second limitation of this study is that it only considers transactions from

the popular blockchain game CryptoKitties. This limitation is due to the time

resources required to audit the architectures of blockchain games for specific

mechanisms of interest, as to analyse every possible blockchain game would

require several years. In CryptoKitties for example, the breedWithAuto

function can be easily recognised and isolated, although this is not always the

case. The use of a single blockchain game in this study means that the results

may not generalise fully across blockchain games. This does not mean these

findings are not informative, but rather that this study represents a first

step into understanding behaviours in the emerging domain of blockchain

games, and that further study is needed before any concrete conclusions can

be drawn.

A third limitation of this study is that the data covers transactions over a

period of several years. While this may not appear to be a limitation, in the

context of the rapidly changing landscape of cryptocurrency adoption and

the development of new games, behavioural data even a few years old may be

considered out of date. This limitation can be overcome by the development

of more sophisticated real-time analytics applications, although these are

considered out of scope of this work.

Finally, in the decentralised gambling domain, differences in behavioural

profiles between games have been used in order to identify and remove likely

non-human engagement with given applications. In the case of engagement

with the breedWithAuto function presented here, no such profiles for other

games exist, inviting the possibility that no non-human players exist in this
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data set, or that all of the players are non-human. While the former is unlikely,

it is possible that a number of non-human accounts are skewing the data,

although the unlike in the decentralised gambling domain, it is unclear what

incentive may prompt the creation of such accounts. Nevertheless, exploring

non-human engagement in blockchain games represents an interesting and

related area of future work which may help address this limitation.

8.3.5 Conclusion

This study has presented an analysis of player behaviour when using a ran-

domised reward mechanism in the popular blockchain game CryptoKitties.

The methodology for this analysis has been informed by the field of player

behaviour tracking - a branch of gambling studies concerned with under-

standing player behaviours. The analysis found that while a few high level

behavioural similarities exist between player behaviour in blockchain games

and decentralised gambling applications, these similarities appear superficial

and importantly diverge when the scales of the total amount wagered are

considered. In gambling research, both temporal and financial involvement

have been found to be important aspects of problematic engagement. The

generally low scores across behavioural measures used to capture both of

these types of involvement with the breedWithAuto randomised reward

mechanism show that while these mechanisms do share structural similarities

with casino games, these similarities do not appear to be reflected in how

users actually engage with them. This finding is heavily nuanced and may

only apply to the blockchain games domain, but this study has applied one

methodology by which such comparisons can be made.

Future Work

This study presents several areas of future work in both the blockchain

games and decentralised gambling domains. Most obviously, the inconclu-

sive similarities between player interactions with the randomised reward

mechanism selected here and decentralised casino games warrant further

investigation. This investigation could employ a different set of behavioural

measures entirely, or focus on a particular domain of behavioural measures

to pick apart further similarities and differences. Of particular interest are

the trajectory based measures described in Chapter 5, which can be used to
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uncover an escalation in involvement (or not) by players.

Conversely, existing work which associates problem gambling severity

with randomised reward mechanism spending may be revisited with a view

to obtain actual transaction data from affected players. The methodology

applied here could then be replicated and the differences between the use of

these mechanisms in blockchain games and centralised games could be better

understood. Such pairing of qualitative and quantitative data could provide a

holistic understanding of behaviours, leading researchers to better understand

this relationship in the cryptocurrency domain and others. Whilst this study

has found a lack of similarities between decentralised gambling applications

and blockchain games spending behaviours, whether this difference generalises

to their centralised counterparts remains unknown.

8.4 Summary

This chapter has temporarily departed from the central theme of gambling

presented throughout this thesis. This departure is warranted by architec-

tural similarities between specific mechanisms within blockchain games and

gambling mechanisms found in decentralised gambling applications. An ex-

ploratory study through the lens of player behaviour tracking has revealed a

very different landscape in player behaviours in the blockchain games domain

than in the decentralised gambling domain. Their differences highlight a need

for further research in the blockchain games domain, with a specific focus on

their similarities to other forms of randomised reward mechanisms. Addition-

ally, the transaction data centric approach used here can by definition only

capture the actions of the players themselves, rather than the circumstances

and environments they exist within, or their motivations for doing so. This

limitation is inherent to all player behaviour tracking research, and does not

prohibit analyses of this nature, but rather incurs a strict upper-limit to

the generalisability of these results. As presented in the thesis overview in

Chapter 1, this chapter concludes the exploratory branch into blockchain

games.



Chapter 9

Identifying Behavioural

Groups

“Science is what we understand well enough to

explain to a computer. Art is everything else we

do.”

Donald Knuth

Chapter 7 provided the first population level analysis of decentralised gam-

bling application players using a widely used group of behavioural measures

discovered in Chapter 5. This was a strong first step towards understanding

behaviours in this emerging domain, however Chapter 5 also found that the

analysis of any single behavioural measure in isolation has limited effective-

ness when describing a population with respect to the potential gambling

related harm they may experience. This limitation is overcome by the appli-

cation of analytical methods which consider multiple behavioural measures

simultaneously. One such approach used in existing work is player behaviour

clustering described in Section 5.3. This chapter builds on the population

level analysis of gambling in the cryptocurrency domain presented in Chapter

7 by applying player behaviour clustering techniques and comparing the

unique behavioural groups uncovered in this domain to existing studies in

the field.

This chapter presents the final study in this thesis. Section 9.1 presents

the study itself, followed by a summary Section 9.2 which reviews the key

findings ahead of the final chapter of this thesis. The broader implications of

170
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the findings of this final study are deferred to Chapter 10, which will include

discussion of all studies and findings uncovered by the research presented in

this thesis.

9.1 Study 6: Behavioural Groups in Decentralised

Gambling

In order to more accurately assess the scale of potential gambling related

harm in the data sample gathered for this thesis, a more detailed exploration

of player behaviours is required. Specifically, the nature and prevalence of

different behavioural groups which have been empirically associated with a

risk of experiencing gambling related harms can be explored, allowing direct

comparison with existing studies in other forms of gambling. While this

comparative approach cannot conclusively determine the number of players

who actually experience gambling related harms, it can provide an estimate

of the number of players at risk of harm when framed in the context of

existing studies. This is important both for regulatory discussions around

this emerging technology, and for informing the direction of further academic

research. This study is therefore dedicated to answering all parts of Research

Question 5 from the first chapter in this thesis: Which behavioural groups

exist in the cryptocurrency gambling domain?

9.1.1 Introduction

The goal of this study is to identify unique behavioural patterns displayed

during the first month of gambling in order to compare these patterns with

other populations of gamblers. This selection of the first month of play is

used as a cutoff to make between-player comparisons meaningful [3], rather

than using a player’s entire career data which may be of different lengths. A

growing body of literature has explored the link between different behavioural

measures and account closing due to gambling related problems at different

periods in their careers [92][3]. These studies each take a labelled data set

of players, with each label corresponding to their status as having closed

their account, the reason for closure, plus a collection of transaction data

containing their bets and payouts over a given period. From this data, a set

of behavioural measures is computed, to which an unsupervised clustering
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algorithm is applied in order to classify the population into distinct and

behaviourally unique groups, under the assumption that those who experience

different forms of gambling related harm engage with gambling applications

in distinct ways. These clusters, and their membership, can then be compared

to the labels such that relationships between certain behavioural profiles can

be, or not be, associated with certain labels. For example, in Braverman and

Shaffer’s 2010 study of high-risk internet gambling [3], a group of players

exhibiting high activity and high bet size variability was found to contain

73% players who reported closing their accounts due to gambling related

problems. Similarly, Xuan and Shaffer [92] found that players who closed

their accounts due to gambling related problems showed an increase in

monetary loss, increase in stakes per bet, and increasingly shorter odds up

to the time of their account closure.

This study aims to anchor its approach against Braverman and Shaffer’s

2010 study on the identification of high-risk internet gamblers using their

transaction data [3]. This study was chosen over others uncovered by the

systematic review presented in Chapters 4 and 5 for four key reasons. The

first is that it focuses on an open data set of live action sports bettors - a

subject which has received a lot of attention in the studies uncovered by the

systematic review presented in Chapter 5. This means that a much broader

description of the players in this data set exists than any other comparable

study, making it an excellent candidate for comparison. The second is that

although this study is now over a decade old, the original author’s colleagues

at the Division of Addiction and Harvard Medical School have recently

(2021) published a further study assessing the changes in this domain over

the last decade [125]. Importantly, they find that ‘sports wagering behaviour

has remained relatively stable over time despite legislative changes and an

increase in popularity’. This means that even though the original study’s

findings are now relatively old, they are still of relevance in light of the

stability of behaviours in the sports wagering domain. The third is live

action sports betting and casino gambling are mechanically relatively similar

activities (depending on the time scale of the sports betting). The exact

differences in terms of the behavioural measures between the two is still

open to debate, with Ukhov et al’s recent comparative work [53] being an

insightful albeit tentative comparison (using a model with precision of 0.45

and 0.60, and recall of 0.27 and 0.42, for casino gamblers and sports bettors
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respectively1). A fourth reason that this study was chosen, is that no similar

unsupervised machine learning studies exist on casino game transaction data.

K-Means Clustering

Braverman and Shaffer applied the k-means clustering algorithm [131] to a set

of behavioural measures derived from player’s first month of gambling activity.

This algorithm is widely recognised as a simple and easily interpretable

clustering method which seeks to partition a collection of observations into a

predefined number (k) of clusters [132]. It does this by randomnly adding k

points to the data set, and iterating over their positions until their distances

from other nearby data points becomes stable. These k points are known

as centroids, and their positions are used as descriptors for the group of

data points which they are closest to. This iterative partitioning relies on

the knowledge of the value of k, which can be empirically determined by

repeatedly performing clustering over a range of values of k whilst measuring

some goodness of fit metric. As Kodinariya and Makwana describe [133],

many goodness of fit metrics exist, one of the simplest of which is plotting a

cost function against a range of values of k. One such cost function is that of

inertia, which is simply the sum of the squared distance between each cluster

centroid and its members. Plotting the mean inertia across a range of values

of k can therefore be used to indicate the point at which the addition of new

clusters only marginally improves the distance between each cluster centroid

and its members. The ‘elbow’ of this plot can then be used to visually select

acceptable values of k.

Research Questions

The behavioural profiles of subgroups within the cryptocurrency gambling

population are unknown, which means the prevalence of behavioural groups

which have previously been linked to harm related variables is also unknown.

The volatile nature of cryptocurrency prices suggests that those who own

them may exhibit a higher risk tolerance than the general population [134].

One may therefore expect a higher portion of cryptocurrency gamblers to be

in an empirically determined high activity, high variability subgroup than in

1This means that it only has a moderately reliable detection mechanism (0.45), and
correctly detects only 27% (0.27) of true positives for casino gamblers.
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other forms of gambling - a subgroup identified as containing mostly (77%)

at-risk players by Braverman and Shaffer [3]. This study therefore explores

the final research questions presented in Chapter 1;

• Which behavioural groups exist in this domain?

1. How prevalent are they within the population?

2. How do they compare to other forms of gambling?

9.1.2 Method

Data Sample

The data sample used in this study is an updated version of the data gathered

as part of the fourth study in this thesis (Chapter 7), including more recent

transactions in order to maximise the sample size of players. This includes

transactions to and from the Dice2Win, Etheroll, and FCK decentralised

gambling applications, which each correspond to the placement of a bet (each

application’s architectures are described in Section 7.2 above). As discovered

in Chapter 7, the raw transaction data available on the Ethereum blockchain

to and from these applications contains a number of likely non-human actions.

These are removed from the data set by identifying each of the addresses

which have at least one transaction to the FCK coin flip game, and removing

all of their transactions. This removes a total of 598,327 transactions from a

total sample of 2,934,795 leaving 2,336,468 for analysis. These approximately

2.3M transactions originate from 14,462 players, and cover a time period of

almost three years; from August 2018 through to July 2021. The cumulative

value across each of the respective applications over time is provided in

Figure 9.1.

Measures

The measures computed for this study fall into two groups. The first group is

the four variables which describe the pattern of gambling activity during the

first month of play. These, as in the Braverman and Shaffer study [3], include

the frequency (total number of active days), intensity (total number of bets

divided by frequency, or mean bets per active day), variability (standard

deviation of the total amount wagered per active day), and trajectory (the

trajectory of total amount wagered per active day). The original author’s
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Figure 9.1: Total value transacted (ETH) by all bets placed in the data
sample (n=14,462, tx=2,336,468).

Table 9.1: Behavioural measures which are used as input to the clustering
algorithm (as used by Braverman and Shaffer [3]), computed using players’
first month of transaction data.

Name Description

Frequency Total number of active days
Intensity Total number of bets divided by frequency
Variability Standard deviation of total amount wagered per active day
Trajectory Coefficient of total amount wagered per active day

rationale for selection of these four measures in particular is based in find-

ings from several previous studies which relate each of them to uncommon

behaviours within a population [2][88][61][100], plus an operationalisation

of the ‘need to gamble with increasing amounts of money’ described in the

American Psychiatric Association’s Diagnostic and Statistical manual of

Mental Disorders [135] for gambling disorder. Table 9.1 provides a summary

of these measures for reference. These measures will each be standardised

using the z-score transformation as in the original study. This transformation

will enable direct comparison of cluster centroids with the original study, as

z-scores describe an observation’s position relative to the population mean.

The second group of measures are those which describe the players over

the entire duration of their careers to date. Again as in the original study,

this includes the period of gambling (duration), total amount wagered, total

number of bets, mean bets per day, and the net loss for the entire period.

These variables were originally chosen to ‘summarise betting behaviour for

the entire period of gambling’ [3], and act in the same way as in Studies IV

and V in this thesis to provide richer descriptions of player behaviours. An
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Table 9.2: Behavioural measures which are used to describe player’s be-
haviours, computed on both the first month of data and entire careers of
data - these are not used as input to the clustering algorithm.

Name Description

Total Wagered Sum of all bet sizes
Number of Bets Total number of bets placed
Mean Bet Size Total wagered divided by number of bets
Duration Calendar days between first and last bet
Net Loss Total wagered minus total payouts

additional computation of this second group of measures across transactions

from each individual’s first month of play will also be performed. This

was not performed in the original study, however, because this study uses

unlabelled data, this first month description may help better contextualise

the behaviours shown in each of the clusters, providing greater context for the

results of the clustering. This dual month and career descriptive approach

also allows comparison between each player’s first month (the transactions

on which they were clustered), and their career. This comparison may reveal

important details about the way in which different clusters engaged with

these gambling applications over time.

Clustering

In order to make the results of this study directly comparable to those of

Braverman and Shaffer’s existing work [3], the k-means clustering algorithm

will be applied, as this was applied in the original work. Following correspon-

dence with the original authors, the original analytical code is not available,

so a readily available implementation of the algorithm from the scikit-learn

library will be used [136]. Although the original study finds a four cluster

solution to be most ‘stable and reliable’, I do not assume that this solution

holds in the cryptocurrency domain. For this reason, an ensemble of solutions

will be computed, with the mean inertia score across each k value plotted

against k. Here, the inertia score is the total absolute distance between each

cluster centroid and its member data points, which naturally decreases with

increasing k. This plot should exhibit an ‘elbow’ much like a scree plot in

principle component analysis, which occurs as the rate of decreasing inertia

slows as k increases due to new solutions more completely capturing the

‘true’ clustering in the data set. The elbow in this plot can be used to inform
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Figure 9.2: Mean inertia scores across repeated clustering solutions in the
data sample (first month of gambling, repeats per k=30, n=3,870).

the final value of k, as an extreme solution would have an inertia of zero and

a value of k corresponding to however many distinct groups exist within a

given population (under the assumption that groups are unique and contain

homogeneous members).

9.1.3 Results

Cluster Solutions

Figure 9.2 presents the mean inertia scores across the solution ensemble for

different values of k. Unlike Braverman and Shaffer’s original study, this

figure shows that a five or six cluster solution appears to be the point at

which the rate of inertia decrease with increasing k begins to slow. This

means that although the inertia score generally decreases with increasing

k, at values of 5 and 6 for k the rate of decrease is still higher than this

expected decrease. Although there is rarely a single ‘correct’ answer as to

what the value of k should be for any given data set, the value of 5 is taken

forward for the remainder of this study. This limitation is discussed further

in Section 9.1.4.

This choice of 5 for the value of k represents a margin call driven by two

forces. On one hand, the value of k should be as low as reasonably possible

in order to segment the sample into approximate groups, not an ‘over-fit’

solution which may classify one part of a larger group as its own distinct

group. On the other, the value of k should be as high as reasonably possible

to ensure that any groups in the population are successfully identified, and

that no similar but distinct groups are incorrectly clustered together. It is
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Table 9.3: Standardised behavioural measure (number of standard deviations
from mean) scores of cluster centroids using a five cluster solution across the
first month of cryptocurrency gambling activity (n=3,870). Extreme values
are displayed in bold.

Cluster Number 1 2 3 4 5
Cluster Size n=3092 n=458 n=279 n=29 n=12
Description moderate

betting
high
frequency

high
intensity

extreme
variability

negative
trajectory

Frequency -0.35 2.16 0.32 0.50 -0.51
Mean Bets per Day -0.27 0.24 2.61 -0.35 0.68
Bet Size Deviation -0.09 -0.06 -0.01 10.08 2.44
Bet Size Trajectory 0.02 0.04 0.18 0.43 -12.10

Table 9.4: Clustering results reproduced from the original study for reference
[3]. Extreme values are displayed in bold.

Cluster Number 1 2 3 4
Cluster Size n=15 n=22 n=115 n=378
Description high activ-

ity, high
variability

low first-
month
activity

high ac-
tivity, low
variability

moderate
betting

Frequency 2.63 -0.54 2.39 0.28
Mean Bets per Day 1.79 0.04 1.90 0.00
Bet Size Deviation 4.41 0.16 0.26 -0.04
Bet Size Trajectory 0.27 -2.49 0.14 0.22

important to note that this is also in the context of providing an approximate

description of groups within the population, rather than a robust classification

of some pre-existing label as typically done in studies of machine learning. I

can therefore proceed with a value of 5 in this study, although as with any

descriptive technique, further studies may pursue higher or lower values.

Descriptions of Clusters

Table 9.3 shows the behavioural profiles of each of the groups in the five

cluster solution, plus the number of members of each. As in Braverman and

Shaffer’s original study (results reproduced in Table 9.4 for reference), a

single majority group exists which exhibits near average scores across each

of the four behavioural measures. This is proportionally larger (80%) in

comparison to the 73% majority group in the original study, leaving 20% or

778 players across the remaining four clusters combined. Clusters 2 and 3 are

the second and third largest by member count respectively, and each exhibit
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Table 9.5: Behavioural measures describing the first month of gambling
activity for each cluster identified using the k-means algorithm. Notable
values are displayed in bold.

Cluster Number 1 2 3 4 5
Cluster Size n=3,092 n=458 n=279 n=29 n=12

Total Wagered 82.52 609.47 2,735.44 14,266.92 3,109.19
Number of Bets 96.53 873.15 1,462.65 149.07 329.58
Mean Bet Size 0.82 0.76 1.12 112.56 27.45
Duration 13.72 26.36 14.87 16.72 9.33
Net Loss 1.22 -12.04 15.30 220.33 61.07

extreme behaviour along a single behavioural measure (in bold in Table

9.3). Cluster 2 contains 458 players whose frequency is much higher than

any other cluster, but whose other measures remain close to the population

average. Cluster 3 contains 279 players, although their mean bets per day

(intensity in original study) was higher than any other cluster - again with

other measures close to the population average.

Clusters 2, 3, and the majority group, account for 3,829 (99%) of players

in the data sample, leaving 41 players between clusters 4 and 5. These clusters

each exhibit extremely high scores along a single behavioural measure, making

them significant outliers from all other groups. Cluster 4, with 29 members,

exhibits a bet size deviation score of 10.08 yet somewhat counter-intuitively

exhibits typical values across the remaining three measures. Cluster 5, with

just 12 members, shows a bet size trajectory score of -12.10, plus a high bet

size deviation score of 2.44. This highly negative bet size trajectory means

that players in this group are rapidly decreasing the sizes of their bets, which

also partially explains the high bet size deviation score. Using these cluster

descriptions alone, it is clear that three large groups have been identified by

the k-means algorithm, with a further two capturing the few players who do

not fall into one of these three groups - this mix of three large and two small

will naturally be affected by the choice of k.

Month Descriptions

Table 9.5 shows the mean behavioural measures for each of the cluster

centroids across the first month of play. These (month descriptions) were

not computed in the original study, but provide richer insight into the

behavioural differences between each of the clusters which Braverman and
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Shaffer’s approach yield. The first obvious difference between each of the

clusters is that although none of the four measures on which they were

clustered contain any information regarding the sum of wagers, the total

amount wagered varies dramatically between the five clusters - with the

exception of clusters 3 and 5. For example, in the first month of activity,

players in the majority group typically wagered a total of 82.52 ETH, whereas

those in cluster 2 wagered a total of over 600 ETH, an almost 8x increase

which continues through cluster 3 (2,735 ETH) and 4 (14,267 ETH). Cluster

5’s total amount wagered of 3,109 is closest to that of cluster 2, although

it deviates substantially in mean bet size and duration, standing out as a

group of 12 players who placed many bets, of substantial size (27.45 ETH),

and who lost the second highest amount of any of the clusters (61 ETH).

This first month descriptions adds to the cluster descriptions in Section

9.1.3 by highlighting that the 279 players in cluster 3, despite showing only

abnormal intensity (mean bets per day) along the clustered measures, show

both high total amount wagered and a high number of bets in comparison

to the other clusters. This heavy financial involvement paired with the high

temporal involvement that placing a mean 1,462 bets over a period of 15 days

incurs, indicates that although this subgroup does not match Braverman

and Shaffer’s high activity, high variability subgroup (and therefore cannot

conclusively be related to any harm related variable), it may still warrant

further investigation. Similarly, clusters 4 and 5 when viewed through the

clustered measures alone do not show high activity and high variablity, but

as with cluster 3 they show a large number of bets, large net losses, and

high total amounts wagered, making them candidates for further work in

understanding the external conditions of their members.

Career Descriptions

Table 9.6 presents the behavioural measures of members in each of the clusters,

computed across their entire gambling careers with the three applications.

As with the first month descriptions in Table 9.5, this information can be

used to create a more detailed picture of the different behavioural profiles

of each of the clusters, yet over the course of each player’s entire career.

For example, the career level behavioural measures in tandem with the first

month measures above show that players in cluster 5 typically only play for

12 days, therefore showing similar characteristics at both the one month
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Table 9.6: Behavioural measures describing the entire careers of gambling
activity for players in each cluster identified by the k-means algorithm.
Notable values are displayed in bold.

Cluster Number 1 2 3 4 5
Cluster Size n=3092 n=458 n=279 n=29 n=12

Total Wagered 151.92 1029.57 4563.19 23073.17 3111.24
Number of Bets 181.75 1595.82 2075.66 650.97 341.92
Mean Bet Size 0.83 0.75 1.16 116.26 27.43
Duration 75.16 148.65 87.02 60.00 12.25
Net Loss 1.95 -4.89 39.68 274.39 61.10

and career scales. The duration scores for players in cluster 2 echo the

first month’s activity, as with a mean duration of 148 days they are the

group engaged with the three applications over the longest period, and again

somewhat counter-intuitively are the only group whose net loss is negative -

although not as negative as in their first month of play.

Further behavioural differences at the career level exist between players

in clusters 2 and 3, as although they place a similar number of bets (1,596

versus 2,075), those in cluster 3 wager over 4x the amount, and typically

lose 40 ETH in comparison to cluster 2’s small profit. Those in cluster 3

also engage with the three applications for approximately half as long as

those in cluster 2, making cluster 3’s high losses in a relatively short period a

concerning and potentially fruitful area of future work. This view of cluster

3’s behavioural profile at the career level supports the concerning features

presented at the first-month level.

9.1.4 Discussion

This study found that a five cluster solution using the k-means algorithm

could capture behavioural differences between players in the cryptocurrency

gambling domain. This differs from Braverman an Shaffer’s original study [3]

which finds a four cluster solution of players to be stable and reliable in the

live-action sports betting domain. This difference in the number of clusters

between these two studies may be due to sampling differences, as this study

used all available bets for each player, whereas the original study used a

subset of players who had closed their account between 1 month and 2 years

of starting playing. As the concept of a player ‘account’ in the applications

analysed in this study does not apply, this eventual desire for exclusion from
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gambling cannot be inferred without using a survey or similar data gathering

method to augment the available transaction data set - this is expanded

upon in the limitations section below.

The five clusters identified each exhibit different behaviours, although no

single cluster matches the high activity and high variability behavioural profile

identified in the original study. One can therefore reject both hypotheses

posed in Section 9.1.1, that behavioural subgroups in the cryptocurrency

domain match those found by Braverman and Shaffer, and that this subgroup

is proportionally larger in the cryptocurrency domain. This is important

as 77% of this group’s membership in the original study was found to have

closed their account due to gambling related problems. The lack of a similar

distinct behavioural group in this data sample, despite Study 4 (Chapter

7) in this thesis finding a heavily involved subgroup spending more than

in comparable populations of gamblers, means the scale of those who may

be at risk of experiencing gambling related problems in the cryptocurrency

domain remains unknown. This considered, one cluster identified in this

study contains 279 (7% of players) members whose temporal and financial

involvement across the applications presented is dramatically higher than the

empirically determined ‘majority group’ (3,092 or 80% of players) in their

first month of play. This higher involvement however was only detected by

examination of descriptive measures computed across their first month of play

- a technique not applied in the original study. While this result is therefore

inconclusive with respect to understanding gambling related problems in the

cryptocurrency domain, it has still been informative, and has highlighted

significant deviations between distinct subgroups within the population.

Understanding more holistically what causes these deviations, and possible

relationships to other harm related variables remains an important area of

future work.

One counter-intuitive result uncovered in this study is that a behavioural

group exists in the cryptocurrency gambling domain whose typical member

profits from their interaction with the gambling applications (despite no

loss related variables being used in the clustering). This may simply be by

chance, or may be related to how they engage with the applications; This

groups duration of play was the highest of all groups, and their number

of bets placed second highest. While this may simply be an artefact of

any population of players engaging with casino games, none of the groups
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identified in the original study exhibited such negative losses at the career

level. This may imply that behavioural groups in casino games generally

are distinct from live action sports bettors, or that behavioural groups in

cryptocurrency casino games are distinct from live action sports bettors. This

invites similar analysis of casino game players so that a deeper understanding

of the behavioural differences between different types of gambling can be

generated, which may support or refute Ukhov et al’s [53] early analysis.

Limitations

The primary limitation of this study is that it only applies a single clustering

algorithm - a limitation which at first seems trivial, but in the context of

existing player behaviour tracking becomes somewhat complex. This is

because although applying other clustering algorithms is an obvious and

technically simple next step, no comparable studies exist in other (labelled

or unlabelled) domains with which to compare results. As k-means was

used in the original study by Braverman and Shaffer, it was also used here

in order to make results directly comparable. This means that although

several unique behavioural clusters were identified, it is difficult to know

conclusively whether they represent the ground truth of behavioural partitions

within the population, or whether they are simply one possible solution in

a multiverse of possible solutions. This limitation could be overcome by

applying multiple clustering algorithms, with a goal to explore how different

behavioural subgroups within the population are identified by these different

algorithms, and how stable these groups are across the different algorithms.

This multiple algorithm approach could support the findings presented in

this study, or be used to assess the reliability of clustering itself as an

approach to understanding player behaviours in the cryptocurrency domain.

However, as with any study in an emerging domain, such work would need

grounding against existing studies or replication on existing data sets in

order to generate meaningful insights. This represents an important but

large area of future work.

A second limitation of this study shared by all studies in this thesis, is

that the prevalence of those experiencing gambling related harms is unknown

in the cryptocurrency transaction data sample. This means that while a

comparable study was used to frame findings in an attempt to understanding

its prevalence in the cryptocurrency domain, the rate of actual experience of
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gambling related harms may be much higher or much lower in this sample

than in the original study, thereby potentially skewing the results. For

example, it could be that the majority of members in one or all of the

clusters are experiencing gambling related harms, yet as no single cluster

matches Braverman and Shaffer’s high activity and high variability group, the

estimated prevalence of these harms remains unknown. As with behavioural

research in other domains, transaction data oriented studies alone cannot

conclusively infer complex situations such as experiencing gambling related

harms, or an understanding of a player’s motivation to gamble. This does

not mean that the finding presented here are not informative, but rather

that they represent a first step towards building a holistic understanding

of behaviours in this emerging domain. This highlights the need for both

qualitative and quantitative data to be used together in further work to

address this limitation.

A third limitation of this study is that only a select set of behavioural

measures were computed based on the original study [3] which were then

used as input to the k-means clustering. This means that although from

this study it is clear that Braverman and Shaffer’s method yields distinct

behavioural groups, it is unclear whether or not their originally identified

groups may actually exist in this sample but may be better identified in the

cryptocurrency domain using a different set of behavioural measures. For

example, the addition of a measure from the loss domain such as net loss

may provide enough additional information such that a four cluster solution

becomes preferable. Similarly, this study found that despite not using total

amount wagered as measure for clustering, each of the clusters’ values of

total amount wagered were different, making it a potentially important

explanatory variable for behavioural segmentation of players. Computing

additional measures from any domain would however be difficult to justify,

as it would be impossible to ascribe meaning to such results without findings

from identical application in another domain. As with the first limitation

above, this can be overcome by more studies in other domains using identical

methodologies, from which a richer understanding of behavioural groups

within the cryptocurrency gambling domain could be generated.
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9.2 Summary

This study has applied the k-means clustering algorithm to actual cryp-

tocurrency betting data derived from three casino game applications on the

Ethereum blockchain, and presents the first ever analysis of behavioural

groups within a population in this domain. The results of this clustering

shows several differences to previous work in player tracking research, with a

five cluster solution appearing optimal using inertia scores across an ensemble

of possible solutions. This increased number of clusters in comparison to

existing work revealed a single majority group containing 3,092 (80%) of the

sample which contained no extreme behaviour, two moderately sized clusters

of 458 (12%) and 279 (7%) each showing high frequency and high mean bets

per day respectively, and two smaller clusters of 29 (<1%) and 12 (<1%)

which showed extreme behaviours in bet size deviation and (negative) bet

size trajectory respectively.

Descriptive behavioural measures across the first month and entire careers

of play revealed extreme spending and losses in clusters 4 and 5, with cluster

3 showing heavy involvement by number of bets, high total amount wagered,

and significant losses. The clustering methodology used in this study cannot

conclusively relate membership with any of these clusters to an external harm

related variable, but has identified these three groups’ extreme behaviour,

presenting a potentially important direction for future work.

This chapter has presented the final study in this thesis, which built

upon the descriptive findings of gamblers in the cryptocurrency domain

presented in Chapter 7 by applying a clustering approach used in existing

work by Braverman and Shaffer [3]. This approach revealed five distinct

behavioural groups, three of which presented extreme behavioural measures

which in the context of findings of the systematic review presented in Chapter

5 present a potentially important area of future work. While this study’s

findings are inconclusive with respect to understanding the scale of potential

at-risk players in this data sample, the results have still been informative,

and provide a first step towards understanding behavioural groups in this

domain.
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Conclusion

“The world is changing, the planet’s heating up.

What the fuck is going on?”

Bo Burnham

Comedy

This thesis has presented six studies, including a systematic review, two

studies of the prevalence of decentralised applications containing gambling

and gambling-like mechanisms, two studies of the behavioural distributions

of users of a sample of these applications, and finally a study of behavioural

groups within decentralised gambling applications. The key findings from

these studies are;

• Only a handful of behavioural measures have seen enough use to reliably

relate them to external harm related variables such as self reported

gambling related harms (Figure 4.3).

• Several decentralised gambling and gaming applications offer large data

sets for academic research (Chapter 6).

• A subset of players in the decentralised gambling domain show very

high financial involvement (Chapter 7).

• Typical engagement with both decentralised gambling applications and

randomised reward mechanisms in blockchain games is non-intensive

(Chapter 8).

• Behavioural clustering of these gamblers was dissimilar to groups found

in previous work, inviting further exploration (Chapter 9).

186
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This chapter provides a brief summary of the research completed as part

of this thesis, revisiting each of the research questions posed in the first

chapter in light of the contributions made. It then discusses the implications

of each of the key findings. Broader limitations of this research are then

described, followed by a closing discussion of the future work which these

findings suggest.

10.1 Contributions

10.1.1 Behavioural Measures

Study 1 in this thesis presented a systematic review of existing research in

the field of player behaviour tracking, addressing research question 2; Which

analytical methods can be meaningfully applied (to gambling transaction

data). The key finding from this review was that the field is not yet developed

enough for a robust theory of the relationship between specific behavioural

measures and external harm related variables to have emerged. This signifi-

cantly limits the application of behavioural measures to new domains, such

as decentralised gambling applications, although as Studies 4 and 5 showed,

this limitation is not prohibitive to understanding new domains.

This review also found that the behavioural measures used in existing

work can be taxonomised according to the data required to compute them,

and that using this taxonomy reveals areas (risk domain (Section 5.2.4)

and miscellaneous domain (Section 5.2.5) which despite using intuitively

important data (betting odds and house edge) have received little academic

attention. While the work in this thesis did not set out to further develop

these methods themselves, the finding that these gaps exist is important

to further research in the field of player behaviour tracking, and is again a

limiting factor in exploring new domains.

10.1.2 Decentralised Application Prevalence

Studies 2 and 3 in this thesis each explored the prevalence of decentralised

applications, finding that in both gambling and gaming rankings, a small sub-

set of applications are clear market leaders across several key metrics. These

studies each contributed to answering research question 3 posed in the first

chapter; How prevalent are decentralised gambling applications, and which
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applications may provide the most data. The key contributions in each of

these studies are the resulting selection of applications which present fruitful

options for subsequent analysis, including dice2win, etheroll, fck.com, and

CryptoKitties. Additionally, the finding that taking the classifications of any

group of applications from a ranking service at face value will likely include

several applications which are misclassified. In the case of blockchain games

such misclassifications do not appear to adversely affect the market-level anal-

yses, however several applications are incorrectly classified as decentralised

gambling applications. These misclassified ‘gambling’ applications included

large sets of transactions with a large number of ‘users’, thereby skewing

analyses before their removal. The solution used to address this problem

in this thesis was a manual exploration of the top portion of applications,

however some form of automated smart contract classification presents an

interesting and technically challenging area of future work.

10.1.3 Decentralised Gambling Behaviours

Study 4 applied the findings from studies 1 and 2 to provide the third

important contribution in this thesis; a description of player behaviours in

the decentralised gambling domain. This description applied behavioural

measures broadly used across player behaviour tracking studies, finding

that a small portion of heavily involved bettors in this emerging domain

wager proportionally more than in other domains. This provides evidence to

address research question 4; What are player behaviours in these applications,

and how do they compare to other forms of gambling. Additionally, the

typical user of decentralised gambling applications does not engage with the

applications in any long term or financially significant way. This finding is

somewhat counter-intuitive given the largely unregulated nature of these

applications, and their lack of consumer protection mechanisms, but may be

a feature of their simplistic and minimalistic design [137].

The application of behavioural measures to the transaction data generated

by these applications also revealed a portion of players which exhibit suspi-

ciously similar behaviours. Users of the fck.com application’s coinflip game in

particular were significantly different across behavioural measures from the

measures computed across other application-game combinations. This set of

users can be tentatively labelled as ‘non-human’, as the behavioural profiles

discovered could be created by a simple betting algorithm, although further
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work on the deployment of automated betting algorithms to decentralised

gambling applications is an interesting area of future work.

10.1.4 Blockchain Gaming Behaviours

Similarly to Study 4, Study 5 applied behavioural measures to transaction

data gathered from the CryptoKitties blockchain game, specifically transac-

tions to its breedWithAuto function, which acts as a gambling-like mechanism

but instead of probabilistically returning currency, it probabilistically returns

a kitten of unknown value. Unlike the decentralised gambling applications,

this study revealed a pattern of much lower spending across the popula-

tion of players, including a top portion of players whose involvement was

much lower than in gambling applications. This generally lower involvement

in blockchain games in comparison to decentralised gambling applications

makes intuitive sense given the low payout liquidity, as the return of a kitten

rather than currency means that players cannot instantaneously use payouts

to place more ‘bets’. This finding does however invite further research to

explore how the link between randomised reward mechanism engagement

and problem gambling severity manifest in terms of actual behaviours in

gaming applications.

10.1.5 Behavioural Groups in Decentralised Gambling

Applications

The sixth and final study in this thesis applied a behavioural clustering ap-

proach established by Braverman and Shaffer [3] to the behavioural profiles

generated using transaction data from the decentralised gambling appli-

cations uncovered in Study 2. This addresses research question 5; which

behavioural groups exist in the decentralised gambling domain. Unlike in

the original study, the data set taken from these applications is unlabelled,

meaning that the rate of those at risk of gambling related harms is unknown.

This study therefore applies a comparative approach, instead seeking groups

whose behaviours are similar to those identified in the original study such

that labels may be tentatively inferred. Unfortunately, the application of

Braverman and Shaffer’s clustering approach did not yield any single group

which exhibited similar behaviours to their ‘high activity, high variability’

group - 77% of which were at risk of gambling related harms. This inconclu-
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sive result may be due to sampling differences between this study and the

original, subtle differences at the implementation level of the approach as the

original code was not available, or may be the ground truth of behaviours in

the decentralised gambling domain. As with inconclusive results in other dis-

ciplines, this study invites more work into the application of other clustering

approaches, surveys seeking labels for players in the data set, and more in

order to confirm or refute this finding - however, such further studies will

likely be very resource intensive.

10.2 Limitations

Each of the studies in connection with this thesis are subject to a number

of limitations. In the case of Study 1, it is possible that the choice of

search tool and databases may not fully capture all of the player behaviour

tracking research which has been published. While the comparison against

the results returned by my review with the studies found by Chagas and

Gomes’ review [1] supports the idea that the majority of studies have been

identified, coverage of existing literature can always be improved by using

more databases, more languages and so on.

Studies 2 and 3’s limitations can be broadly grouped together as they

share the same methodology. The first limitation of this methodology is that

only one application ranking service was used (StateOfTheDApps.com). This

means that while it is a widely recognised ranking service, several applications

may be missing which may provide useful and large data sets for further

academic research. This can be addressed by incorporating the results from

multiple ranking services simultaneously, which would be analagous to using

the Apple App Store, the Google Play Store, and other mobile app stores

together in order to assess the size of the mobile app market.

The final three studies (4, 5, and 6) can also be broadly grouped together

as they each use transaction data gathered from the Ethereum blockchain.

They therefore suffer all of the shortcomings of all player behaviour track-

ing research [1], the most important of which is that despite the actual

behaviours of players of these games being known, no data exists regarding

their circumstances which is very important when contextualising their gam-

bling behaviours. Additionally, no demographic data exists describing the

populations studied in this thesis, leaving inferential descriptions the current
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best option for assessing the player’s characteristics. This limitation may be

overcome by taking a survey-based approach, seeking to gather demographic

and circumstantial data on players and their cryptocurrency address, but

this would be enough work to fill a second thesis.

This limitation of the circumstances of the gamblers studied in this thesis

being unknown may also be overcome by performing a deeper exploration

of their on-chain transactions. Specifically which other platforms they have

engaged with, including non-gambling applications, and other transfers of

cryptocurrency to/from their addresses. This may also help shed light on the

way in which users of decentralised gambling applications buy and sell the

currency itself. As described in Section 1.4, not knowing when users purchase

an amount of cryptocurrency which is then used for gambling means that it

is difficult to express the value of the bets placed in terms which are ‘real’ to

the player. In the studies throughout this thesis it may be that all of the

bets are from currency first acquired in 2015, making the bet-time value of

each bet very low. It may however be the case that cryptocurrency is bought

immediately before the bets are placed, making the real value transacted

closer to that of other online casinos. This limitation does not mean that the

explorations set out in this thesis are void, but rather that they approach

the problem from a cryptocurrency-centric perspective, making further and

broader economics-focused work essential to holistically understanding this

emerging domain.

A final limitation spanning all of the studies in this thesis is that all of

the data studied was derived from the Ethereum blockchain. This means

that although findings may apply to decentralised gambling applications

implemented using other cryptocurrencies, the exact generalisability of the

findings remains unknown, especially when considering networks with dif-

ferent architectures which offer lower transaction confirmation times - and

therefore more responsive casino games. This limitation could be overcome

by repeating all of the studies presented on new data, although the different

languages, features, and configurations, of different cryptocurrency networks

makes this process very resource intensive.
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10.3 Further Work

All of the studies in this thesis present only the tip of the iceberg in terms

of what is now possible in player tracking research given the availability of

large scale in-vivo data sets provided by decentralised gambling applications.

Unfortunately, existing player behaviour tracking research as a field is not

developed enough to robustly identify those at risk of experiencing gambling

related harms using transaction data in new domains. However, informative

results can still be obtained by taking a comparative approach as in Studies

4, 5, and 6, framing interpretations of results against domains in which

academic work has been established.

Having completed this thesis, the most obvious and likely impactful

area of future work would be the creation of real time blockchain analytics

tools similar to the ranking services described in this work, but which could

provide each of the analyses in the studies presented in real time. The pace

of innovation in the cryptocurrency and decentralised application space is

such that despite their creation as early as 2017, only in this thesis and in

limited recent work have decoded transactions to these applications actually

been used. Analyses available in real time would be an excellent resource

for all of the stakeholders of the work in this thesis, and could be expanded

to include multiple cryptocurrencies, multiple applications, and other data

sources over time.

A second avenue of useful future work building on the work presented

above would be to gather qualitative data sets which could provide broader

context to the transaction data freely available on cryptocurrency blockchains.

Such qualitative data such as demographic information, income data, and

other broader information could be used to compare the profiles of players in

a more holistic way, therefore building a more complete picture of potential

harms in this emerging domain. Such data would also complement the

cluster descriptions in studies like Study 6 in this thesis, providing context

for different types of engagement with these applications.

Despite the systematic review revealing the field of player behaviour

tracking to be still in its infancy, another exciting avenue of further work is to

continue the trend of exploring new behavioural measures which use new and

different computations on gambling transaction data. The emerging domain

of cryptocurrency gambling via decentralised applications will likely continue
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to offer large (and growing) data sets for academic research, upon which new

behavioural measures could be tested. As discussed in Section 4.4.4, it is

important to choose meaningful outcome variables in such measure-oriented

research, but these can be gathered via qualitative methods described above,

and may find equal application outside of cryptocurrency research.

Finally, it is clear from the systematic review in Chapter 5 that the

behavioural profiling capabilities available to academics are far behind those

used by the gambling industry. One way to close this gap would be to take

an open source approach to the algorithms used in player behaviour tracking,

such that researchers could easily access the code and data used by previous

authors. Unfortunately, this is as much a cultural movement as it is an area

of future work, but one which I hope will gain support as the field matures.

“I go, and it is done; the bell invites me.

Hear it not, Duncan, for it is a knell

That summons thee to heaven or to hell.”



Appendix A

Study 2 Raw Plots

The plots in this section were originally written into Study 2 in Chapter

6, but revealed the presence of two large and misclassified applications

(Etherpromoswin and CoinGathernator). This spurred the removal of these

applications from the study, and a re-run of the visualisations which now

appear in the chapter.
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Figure A.1: Usage metrics across all 147 decentralised gambling applications
gathered as part of this thesis.
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Figure A.2: Usage metrics of the top 10 decentralised gambling applications
in the data sample gathered for this study.
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Study 4 Additional Results

The contents of Chapter 7 was published in a PLOS One article [87], but has

a limitation that it is now (15-03-2022) somewhat out of date. This appendix

presents the results of the same code executed across a more recent version

(up to 26-07-2021) of the data set. Additionally, the cutoff of duration less

than 4 is applied, so that the results can be directly compared with LaBrie

et al’s original study [2], rather than the broader comparison provided in

Chapter 7. For each of the tables in this section, n=4,328.

Table B.1: Behavioural measure scores across the entire sample.

Mean Std Median IQR K-S Score p-value

duration 101.465 158.528 31.000 108.000 1.000 0.000
frequency percent 31.038 29.720 20.000 43.182 0.904 0.000
number of bets 428.514 1,618.011 70.000 272.000 0.977 0.000
mean bets per day 29.381 46.785 12.000 32.636 0.872 0.000
mean bet size 0.907 3.264 0.194 0.522 0.504 0.000
total wagered 564.125 5,391.429 14.770 101.270 0.733 0.000
net loss 4.649 85.077 0.199 2.979 0.254 0.000
percent loss 5.780 58.698 3.091 21.251 0.523 0.000
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Table B.2: Spearman’s rank correlation coefficient between behavioural
measures across all players.

dur freq num mday msize tot nloss

dur -
freq -0.8** -
num 0.19** 0.29** -
mday -0.05** 0.32** 0.9** -
msize 0.03* 0.07** 0.2** 0.18** -
tot 0.15** 0.25** 0.82** 0.74** 0.7** -
nloss 0.06** -0.04* 0.13** 0.15** 0.14** 0.18** -
ploss -0.010 -0.1** -0.15** -0.1** -0.07** -0.14** 0.71** -

Table B.3: Heavily involved and non-heavily involved split across all players.
Total player counts are lower than the study presented in Chapter 7 as
although the data covers a longer period of time, players with duration less
than 4 (9,241 out of 13,569) have been removed.

Top 5% (n = 217) Other 95% (n = 4, 111)

Mean Std Median IQR Mean Std Median IQR

dur 195.645 227.435 111.000 251.000 96.494 152.468 29.000 101.000
freq 40.088 31.751 29.545 49.580 30.560 29.536 20.000 43.348
bets 3,477.724 5,921.406 1,559.000 3,603.000 267.561 629.796 59.000 223.500
mday 102.387 91.875 77.979 90.616 25.527 39.554 10.786 28.361
msize 5.340 7.266 2.333 5.048 0.673 2.711 0.175 0.432
tot 9,389.143 22,339.823 2,805.210 4,209.180 98.295 211.732 12.120 70.260
nloss 58.334 362.748 16.543 169.475 1.815 23.337 0.188 2.502
ploss 0.569 5.200 0.673 4.300 6.055 60.203 3.545 22.863
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