
Wave propagation and tidal dissipation

in giant planets containing regions of

stable stratification

Christina Mary Pontin

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

Department of Applied Mathematics

May 2022



ii



iii

The candidate confirms that the work submitted is their own, except where work

which has formed part of jointly authored publications has been included. The

contribution of the candidate and the other authors to this work has been explicitly

indicated below. The candidate confirms that appropriate credit has been given

within the thesis where reference has been made to the work of others.

Chapters 2 and 3 contain material from the jointly authored publication,

• Pontin C. M., Barker A. J., Hollerbach R., André Q., Mathis S. (2020)

Wave propagation in semiconvective regions of giant planets,

Monthly Notices of the Royal Astronomical Society, Volume 493, Issue 4, April

2020, Pages 5788–5806

C.M. Pontin carried out the majority of the calculations and writing for the paper,

producing all figures. A. J. Barker and R. Hollerbach provided advice, verified some

calculations and edited the paper draft. Q. André, S. Mathis were involved in some

discussions and provided editorial comments on the paper.

This copy has been supplied on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper

acknowledgement.

The right of Christina Mary Pontin to be identified as Author of this work has been

asserted by Christina Mary Pontin in accordance with the Copyright, Designs and

Patents Act 1988.



iv



v

For

Sheila Marshall



vi



vii

Acknowledgements

First and foremost, I would like to thank my supervisors Adrian Barker and Rainer

Hollerbach for your support and guidance throughout my PhD. Your continued

assistance and extensive knowledge has in no doubt enhanced the content of this

thesis. I would like to thank my examiners Chris Jones and Gordon Ogilvie for

examining my thesis and the useful comments that came from my viva.

I would like to thank my tutor Chris, for the additional support and guidance you

have given me when faced with some of the hardest tasks required in putting

together this thesis. Thank you for never letting me think any task was beyond

my ability.

It has been wonderful to be part of such an active research community both in

Leeds and further afield. I would like to thank all who have contributed to this

community, for all the interesting conversations and all I have learnt from you over

the course of my PhD. In particular I thank my co-authors for the joint papers. I

am fortunate to have taken part in the Kavli Summer Programme in Astrophysics

and would like to acknowledge The Kavli Foundation for funding, as well as my

supervisor Nic Brummell, and Bhishek Manek working with me throughout the

programme.

I am also grateful for the funding received from the STFC to complete this research.

And finally for the more personal acknowledgements. I thank my parents and

grandparents for the emotional, academic, and financial support that you have

given me over the last 28 years, without which I would not be where I am today.

Also, my partner, brothers, extended family, and friends (near and far) who have

supported in so many different ways. Whether it be coffee breaks, badminton,

boardgames, pub trips (when the government guidance allowed them) or the

numerous video calls that got us through the multiple lockdowns. Your support

is truly appreciated.



viii



ix

Abstract
Tidal interactions impact the long-term evolution of orbits and spins of

planet-satellite systems. Observations of these orbits and spins for giant planets

in our solar system suggest efficient tidal dissipation. We also know that tidal

dissipation is strongly influenced by the internal structure of a planet. This, coupled

with evidence for stable stratification or semi-convective layerswithin giant planets,

motivates considering the effect of stratification on tidal interactions.

In this thesis we analyse how stable stratification within giant planets

can alter tidal dissipation rates through excitation and subsequent dissipation of

internal and inertial waves. We combine a mixture of analytical calculations with

numerical results in a global spherical Boussinesq model, both with and without

rotation. We analyse the free modes and transmission of waves through layered

staircase structures, as well as studying the dissipation rates of tidally forced

systems where stably stratified layers form.

We find that a staircase density structure can alter the free modes and the

transmission of waves through such a medium. We find our results tend towards

the behaviour of a continuously stratified medium as the number of steps in the

staircase increases, and that the transmission of short wavelength waves through

a staircase is only efficient when they are resonant with the free modes.

Enhanced tidal dissipation arises when the tidal forcing frequency is close

to a resonance of the system. By varying parameters, we find overarching trends

in dissipation rates. In particular, that an extended core can enhance the inertial

wave response, but such a response is not strongly altered by the properties of

the core itself. Therefore, we find that as well as introducing additional internal

gravity and gravito-inertial wave resonances into the system, stable stratification

can enhance the inertial wave response, all of which can contribute to the resultant

tidal dissipation.
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Chapter 1

Introduction

1.1 Planetary Context

The study of planetary interiors is a large and active subject of research. Although

far too large a field to fully summarise here, we begin by outlining some of

the current understanding of giant planet interiors and highlight some of the

uncertainties in these models. It is these uncertainties that underline and motivate

the research carried out in this thesis.

1.1.1 The standard “3-layer” model

Scientists have been studying the formation and interiors of giant planets for many

years, since at least the 1950’s (Hubbard & Smoluchowski, 1973). The various

compositions and structures possible for the interiors of giant planets have been

continuously evolving since. Both historically, and currently when it is convenient

to simplify analysis, the structures of our Solar System’s giant planets are often

described by the “3-layer model”. This structure is sketched in Figure 1.1, and as the

name suggests, consists of three distinct layers (e.g Stevenson, 1982; Guillot, 2005;

Helled et al., 2014):



Chapter 1. Introduction 2

Figure 1.1: Diagrams of Jupiter’s and Saturn’s interior profile, from Guillot (1999).

1. The first is a dense, typically solid, inner core. This is thought to consist

predominantly of heavy elements. This is sometimes also referred to as a

rocky or icy core.

2. Above the inner core sits a convective layer which is composed mostly

of Hydrogen and Helium. The temperature and pressure in this region is

sufficiently high that Hydrogen exists in its metallic form. It is in this region

wheremagnetic fields are thought to be produced by themotion of electrically

conducting fluid.

3. The final layer is an outer envelope, again consisting of Hydrogen and Helium

but in molecular form. This layer is normally expected to have a lower Helium

content than the metallic region.

In the 3-layer model, each layer is usually assumed to be chemically

homogeneous, and convection to be sufficiently efficient that the entropy profile

is considered to be adiabatic (i.e. neutrally stable to convection). This standard

model can do very well at explaining many of the observations of giant planets.

Therefore, it is a useful baseline for further work, however the exact nature and

location of the transition regions between layers are hard to constrain and cannot
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Figure 1.2: Historical estimates from different sources for the coremass of Jupiter in Earthmasses.
Figure taken from Fortney & Nettelmann (2010).

always explain observational results. Additionally, the predictions for our planets

vary significantly, suggesting the range of possible core structures for giant planets

elsewhere is large. This motivates continued interest in researching this field.

1.1.2 Departure from the “3-layer model” and recent

advancements

Our understanding of the giant planets in our solar system is constantly developing.

For instance Figure 1.2, taken from Fortney & Nettelmann (2010), shows estimates

of the core masses of Jupiter from various studies from 1970 to 2010, and

demonstrates how significantly our predictions have varied with time and between

studies. Note in particular that this figure pre-dates results of the Juno mission

which has considerably changed current estimated bounds on Jupiter’s coremass.

There is significant motivation for the presence of a solid core. Firstly,

this dense centre fits with most planetary formation models. Although there are

multiple formation mechanisms and only some rely on a solid core, those that do

not initially can later evolve to form a dense core. Themechanism of core accretion
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relies on the formation of a solid core which is followed by the rapid accretion of

nebular gas; the required core sizes vary significantly inmodels (∼ 2M⊕ to∼ 10M⊕)

however they would be expected to remain (Pollack et al., 1996; Wahl et al., 2017).

Alternatively, considering a formationmechanism such as the collapse of a portion

of a disk due to a gravitational instability does not rule out a core forming later in

the evolution (Helled & Schubert, 2009; Wahl et al., 2017).

It is possible that this dense core is not necessarily solid but partially

fluid, which could lead to additional physics beyond the scope of this thesis.

However, this does not mean it cannot have a significantly higher density from its

surroundings (Goodman & Lackner, 2009).

Measurement of the gravity fields of the giant planets can be used to

establish their masses and how this mass is distributed. Recent advancements, in

particular with data from the Junomission, are driving planetarymodels away from

three distinct layers and instead towards models including more inhomogeneous

distributions of heavy elements, including the transition regions between the

previously-adopted layers. In particular, these gravity field measurements indicate

that instead of a small dense core, the heavy-elements of Jupiter are probably

distributed throughout the inner regions of the planet (Wahl et al., 2017; Helled &

Stevenson, 2017; Bolton et al., 2017; Debras & Chabrier, 2019).

Kronoseismology measurements of Saturn give further information on its

interior. By detecting and measuring the frequency of waves in Saturn’s rings this

gives some information on their potential couplingwith the possible interiormodes.

These modes are expected to be excited by tidal interactions. Recent observations

suggest that frequencies in Saturn’s rings are consistent with frequencies excited

by gravitational forcing due to global oscillation modes (g-modes) inside Saturn,

therefore requiring some form of stratification (Marley & Porco, 1993; Hedman

& Nicholson, 2013; Hedman et al., 2018). In fact some studies suggest that

the frequencies reached could only exist if there are large regions of strong

stable stratification within the planet; these internal modes (g-modes) mix with
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Figure 1.3: Possible interior profiles of Saturn from Kronoseismology and gravity field
measurements. Figure taken from Mankovich & Fuller (2021), shows, (a) heavy element mass
fraction, (b) density and (c) Brunt-Väisälä frequency for a series of model runs.
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the surface gravity (f-modes) creating the mixed modes observed (Fuller, 2014).

Kronoseismology data combined with gravity field measurements can be used to

constrain the internal stratification (Mankovich & Fuller, 2021; Dewberry et al., 2021).

Figure 1.3, taken from Mankovich & Fuller (2021), shows the density and buoyancy

frequency profiles found using this data, where a dilute core of heavy elements

extends into the convective region.

As a result of these findings, there has beenmuchongoing research in recent

years to explore planetary models incorporating compositional gradients or non-

adiabatic structures (e.g. Leconte & Chabrier, 2012; Vazan et al., 2016; Berardo

& Cumming, 2017; Lozovsky et al., 2017; Vazan et al., 2018; Debras & Chabrier,

2019). If a stably stratified region exists within the planet, it could inhibit convection,

which in turn could reduce the transport of energy to the surface (Chabrier &

Baraffe, 2007). A consequence of this reduced energy transport is a decrease in

the luminosity observed at the surface, which could be responsible for Saturn’s

observed luminosity (Leconte & Chabrier, 2013). Secondly, some hot Jupiters are

thought to have an inflated radius, which formation models suggest again could be

a result of reduced energy transport (e.g Chabrier & Baraffe, 2007).

1.2 Double diffusive convection

Adapting planetary models to include a layer of stable stratification can result

in additional interesting physics. One such consequence is double diffusive

convection, a mechanism caused by a linear instability, that can lead to interesting

non-linear physics. Here, we will outline the main consequences but for a thorough

review see Garaud (2018).

In previous models, by considering well-mixed convective regions, the

planetary layers consist of unstable entropy gradients. Now that we are additionally

considering that there is a stable composition gradient, there are two competing

components contributing to the local density gradient. There are two possible
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regimes for this instability to occur, depending on the rate of the stable component

compared with that of the unstable component as well as the relative gradients

of the quantities concerned. There are three key parameters which dictate which

regime is expected to develop; Prandtl number Pr = ν
κ
, ratio of diffusivities τ = κc

κ
,

and the density ratio R0 =
α

∣∣dT0
dz

−dTad
dz

∣∣
β|dC0

dz
|

which is a measure of stratification (see

Garaud (2018)), where ν is the kinematic viscosity, κ is the thermal diffusivity, and

κc is the compositional diffusivity. In giant planets (and most other astrophysically

relevant scenarios), it is expected that temperature diffusesmuchmore rapidly than

momentum and composition and therefore Pr ≪ 1 and τ ≪ 1. This means that a

layer that might be considered stable to standard convection, can in fact become

unstable to the double-diffusive instability.

For the case where the rapidly diffusive component is unstable (in our case

entropy/temperature), and the slowly diffusing component is stable (composition),

this gives rise to oscillatory double diffusive convection (ODDC). Alternatively,

however, we could consider a regime in which the rapidly diffusing component is

stabilising, and the slowly diffusing component is destabilising, which gives rise

to fingering convection. This is not discussed here as it is not the focus of this

study, but see the review of Garaud (2018) for more detail. Note that it does not

matter which component diffuses faster, composition or entropy, or even that they

are entropy and composition, just that they are competing gradients with different

rates. Double diffusive convection can also occur when there are two distinct

chemical concentrations, however the regimes that the instability develops into can

depend on the nature of the stability gradients (Garaud, 2018).

1.2.1 Initial linear instability

We first consider the behaviour of the initial linear instability that forms because of

these competing gradients.

If we take a systemwith a stable composition gradient and constant entropy,
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Figure 1.4: Diagram of the Oscillatory Double Diffusive convection instability, showing enhanced
gravity wave oscillations, from Garaud (2018).

when a perturbed fluid parcel is displaced upwards it is denser than the surrounding

fluid and will therefore sink before adjusting to the surroundings (or vice-versa for a

fluid parcel displaced downwards). This forms a traditional internal gravity wave as

will be discussed in Section 1.5. However, if we now consider that there is also

a more rapidly diffusing, destabilising entropy gradient, when the fluid parcel is

displaced, again considering upwards, the fast diffusion of heat occurs, which cools

down the fluid parcel more rapidly than any diffusion of composition. Therefore,

when the fluid sinks it is now cooler than the surrounding fluid. This enhances the

amplitude of the oscillations as shown in Figure 1.4; this is often referred to as an

oscillatory instability or overstability.

The size of the structures that develop in this linear regime can be shown to

be of the order (Walin, 1964; Kato, 1966; Baines & Gill, 1969),

d =

(
κν

N2

) 1
4

, (1.1)

whereN2 is the Brunt-Väisälä frequency defined in Section 1.4. Although we expect

this value to be small in giant planets, we note that in the subsequent non-linear

interactions they can evolve into much larger structures.
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Figure 1.5: 3-D simulation showing the formation and consequential merger of semi-convective
layers by double diffusive convection, figure taken from Wood et al. (2013).

Linear stability analysis shows that a system can be unstable to the

oscillatory double diffusive convection when in the following regime (Baines & Gill,

1969),

1 < R−1
0 <

Pr + 1

Pr + τ
, (1.2)

where R0 and τ are the density ratio and ratio of diffusivities as defined previously.

From this we can see that when considering the low Prandtl number regime, where

typically Pr ∼ τ ≪ 1, the upper limit is much larger than one and there can be

a large parameter space in which an instability can occur. Additionally, there have

been observations of such an instability occurring outside the regime defined in

equation 1.2. This suggests that there is still much more to understand about this

problem, and the instabilities that can cause it (Garaud (2018) and therein).

1.2.2 Non-linear saturation

The behaviour of the system changes as it develops into a non-linear instability,

and this has been an active area of research where analysis has been carried out

by 3-D numerical simulations. It is after this point that non-linear interactions occur

and the dynamics change significantly from that observed in the linear instability

(Mirouh et al., 2012).
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Upon saturation there are again two regimes observed; in cases where the

system is more stably stratified homogeneous turbulence forms. In the case of

weakly stably stratified systems spontaneous layering can form. It is this layering

that is of particular interest in this case. The system evolves into layers that can

be seen to form and then merge over time. Figure 1.5, from Wood et al. (2013),

shows a simulation of these layers forming and thenmerging. Referred to as semi-

convective layers, they consist of homogeneous well-mixed convective layers that

are separated by narrow diffusive interfaces, and it is the consequence of these

interfaces that is one aspect we wish to investigate further.

It is possible that these layers form in the deep interiors of giant planets;

however the fact that the simulations find these layers to eventually merge over

time makes it difficult to predict the number and size of these layers that could

potentially form in a realistic system (Wood et al., 2013).

1.2.3 Planetary consequences of double diffusive convection

As discussed in Section 1.1.2, it is possible that giant planets contain stabilising

composition gradients near the transition regions in the 3 layer model. Therefore,

the conditions could be consistent with the parameters required to exhibit double

diffusive convection and ultimately evolve to form semi-convective layers.

Just outside the core, where a stabilising composition gradient is consistent

with the gravity field observations from Juno, a compositional gradient could be

produced by the erosion or dissolution of the solid inner core. The temperature and

pressure near the core boundary in a giant planet could be sufficient that heavy

elements from the core can dissolve into themetallic Hydrogen/Helium region. This

would then cause this extended core structure to generate a stable composition

gradient (Guillot et al., 2004; Wilson & Militzer, 2012; Wahl et al., 2017; Moll et al.,

2017). Alternatively, some studies suggest that a direct impact during the early

formation of Jupiter could lead to an extended dilute core, (Liu et al., 2019; Guillot,

2019).
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In the second transition region, further out between the metallic and

molecular layers, it is thought that the temperature and pressure conditions are

such that Helium molecules can form what is referred to as Helium rain, which

sinks Helium further into the deep interior (Nettelmann et al., 2015; Stevenson &

Salpeter, 1977).

1.2.4 Other applications of double diffusive convection

It is not just in the deep interiors of giant planets that these instabilities are thought

to occur. Other astrophysical applications include stellar interiors. It is thought

that density gradients may also be present outside the cores of massive stars,

where heavy elements generated through nuclear reactions can diffuse into the

neighbouring convective region (Maeder, 2009; Kippenhahn et al., 2012).

Although current technology means that observations of stars and giant

planets are not sufficient to directly detect these density staircases, they can be

observed elsewhere. Competing gradients occur in the deep oceans on Earth,

where a stabilising salinity gradient competes against the destabilising temperature

gradient. Direct observations of these layers have been observed in the Arctic

oceans on Earth, where there is a stabilising salinity gradient and a destabilising

thermal gradient (e.g. Ghaemsaidi et al., 2016; Shibley et al., 2017; Shibley &

Timmermans, 2019).

1.3 Tides
Any two real bodies orbiting one another exert a tidal force, the consequences of

which can vary depending on the parameters of the bodies and orbit, but they can

be significant for the ultimate evolution of the system. This tidal force and the

consequences of tidal dissipation (particularly for giant planets) is the focus of this

study. We consider the implications of various density structures containing stably

stratified layers for tidal behaviour in giant planets. Therefore, here we introduce

some background in tidal theory.
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Figure 1.6: Schematic of 2-body tidal interaction adapted from Ogilvie (2014). It shows a planet-
moon system, where Body 1 (massM1, positionR1 and spinΩs), is tidally deformed by the orbiting
Body 2 (mass M2, position R2 and orbit Ωo).

1.3.1 Tidal forcing

While tidal theory applies for any orbiting bodies, we will consider here a system

consisting of a planet and a satellite. Figure 1.6 illustrates the two-body system we

are considering. It consists of an isolated system where a point mass satellite,

hereafter “Body 2”, is orbiting an extended planet, “Body 1”. This follows other

standard derivations of tidal dynamics such asMurray &Dermott (2000) andOgilvie

(2014).

Starting by considering classical Newtonian physics, we know that there is

a gravitational force that one body applies to other bodies. In this case we know

that the potential caused by Body 2 at a point r in Body 1 is,

Φ = − GM2

|r −R2|
, (1.3)
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where the force exerted on a component of mass m′ is F = −m′∇Φ. By taking a

Taylor series about the point r = R1 it can be shown that,

Φ ≈ −GM2

|d|

[
1 +

d · x
|d|2

+
3(d · x)2 − |d|2|x|2

2|d|4
+ · · ·

]
, (1.4)

where d = R2 −R1 and x = r −R1. This can be expressed in exact form using

Legendre polynomials as

Φ = −GM2

|d|

∞∑
l=0

|x|l

|d|l
Pl

(
d · x
|d||x|

)
, (1.5)

where Pl is the normalised Legendre polynomial of degree l.

We note that if we assume that |x| ≪ |d|, as is true in a planet-moon system,

that terms in this series are of the order O(|x/d|l). Therefore, higher order terms

can be neglectedwhen taking an appropriate approximation. Considering the terms

in equation 1.5 and remembering that the resultant force applied is proportional to

∇Φ, we find that,

1. The 1st term (l = 0) is a constant and thus does not contribute to the overall

force.

2. The 2nd term (l = 1) causes Body 1 to undergo orbitalmotion about the centre

of mass of the system.

3. The remaining higher order terms, (l ≥ 2) are then considered to be the tidal

potential Ψ.

We therefore define the tidal potential to be,

Ψ = −GM2

|d|

∞∑
l=2

|x|l

|d|l
Pl

(
d · x
|d||x|

)
≈ −GM2

|d|

[
3(d · x)2 − |d|2|x|2

2|d|4
+ · · ·

]
. (1.6)

By setting the co-ordinate system to align with the centre of Body 1, such that
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R1 = 0, d = R2 and x = r, the tidal potential can be further simplified to,

Ψ = −GM2

|d|

∞∑
l=2

|r|l

|d|l
Pl

(
d · r
|d||r|

)
= −GM2

|d|

∞∑
l=2

rl

|d|l
Pl

(
cos θ

)
. (1.7)

Currently this formulation allows for a general vector d, but as we consider

the bodies to be undergoing Keplerian motion we know that it must describe the

orbit of Body 2. Therefore, it can be defined as that of an orbit with eccentricity e,

inclination i and semi major axis a (Kaula, 1961; Polfliet & Smeyers, 1990; Ogilvie,

2014). Finally, the Legendre polynomials can be written in terms of normalised

spherical harmonics, where l and m are the spherical harmonic degree and order,

i.e.,

Ψ = Re
∞∑
l=2

l∑
m=0

∞∑
n=−∞

GM2

a
Al,m,n(e, i)

(
r

a

)l

Y m
l (θ, ϕ)e−inΩot, (1.8)

where Al,m,n depends on the orbital parameters, n is the temporal harmonic of the

orbit andRe signifies the real part of a quantity. Ωo is the averaged orbital frequency

of Body 2,
√
GM1/a3. Note that here, in a non-rotating frame, we have a tidal

frequency of 2Ωo; if we were in a frame rotating with the spin angular velocity of

Body 1 there is a Doppler shift and the tidal frequency becomes 2(Ωo − Ωs).

In general, throughout this thesis, we are considering cases where r ≪ a

and therefore it is a reasonable approximation to consider just the l = 2, n = 2,

m = 2 component and define our tidal potential to be

ψ = Re

[
ψ0r

2Y 2
2 (θ, ϕ)e

−iωt

]
, (1.9)

where ω = 2(Ωo − Ωs), ψ0 = G M2

a3
A2,2,2 and A2,2,2 =

√
6π/5 as is found in Ogilvie

(2014) for a circular orbit in the equatorial plane, and therefore relevant for the

moons of Jupiter and Saturn.

This can be written in an alternative form where the parameters of the
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Body 1 Body 2 ϵ

Earth Moon 5.6× 10−8

Jupiter Io 2.3× 10−7

Jupiter Europa 3.1× 10−8

Jupiter Ganymede 2.3× 10−8

Jupiter Callisto 3.1× 10−9

Saturn Titan 2.8× 10−8

Saturn Enceladus 3.1× 10−9

Saturn Mimas 2.3× 10−9

WASP-18 WASP-18b 1.7× 10−4

WASP-19 WASP-19b 1.7× 10−5

WASP-19b WASP-19 5.5× 10−2

Table 1.1: Example values of the tidal amplitude factor, data taken from Jet Propulsion Laboratory
(2022) and Exoplanet.eu (2022).

problem are combined into the parameter An,

Ψ = Re

[
An

(
r

R1

)2

Y 2
2 (θ, ϕ)e

−inΩot

]
, (1.10)

where An =
G M2R2

1

a3
A2,2,n.

1.3.2 Tidal dissipation and tidal torque

The tidal amplitude factor, ϵ, is a dimensionless quantity that can be used to

estimate the magnitude of the tidal deformation. It is defined to be the ratio of the

tidal gravity due to Body 2, GM2R1

d3
, and the gravity due to itself, GM1

R2
1
, at the surface

of Body 1, i.e.,

ϵ =
M2

M1

(
R1

d

)3

. (1.11)

For context, table 1.1 shows some expected values for the tidal amplitude factor for

various planet-moon and star-exoplanet systems.
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Looking back at Figure 1.6, the tidal forcing causes a tidal bulge in Body 1.

If thinking naively this bulge would align with the orbit of Body 2 in the absence

of dissipation. However, unless Body 1 is completely elastic there are dissipative

effects that cause the bulge to shift either ahead or behind the orbit depending on

the relative orbital and spin frequencies.

The perturbed response to the tidal forcing takes the form of the regular

solutions to Laplace’s equations proportional to r−(l+1) outside Body 1,

Φ′ = Re

[
B
(
R

r

)3

Y 2
2 (θ, ϕ)e

−inΩot

]
, (1.12)

where B is the complex amplitude of the tidal response to be determined.

It is helpful now to define the complex Love number, which is defined to be

the ratio between the perturbed response in Body 1 to the applied tidal potential.

The Love number is a dimensionless complex number that can parametrise the

tidal response (Love, 1892, 1909),

kml (ω) =
B
A
. (1.13)

The real part of the Love number corresponds to the in-phase, elastic response

to the forcing, and the imaginary part corresponds to the out-of-phase, dissipative

response, which can be linked to the tidal torque and consequential exchange of

angular momentum.

Another dimensionless quantity often used to quantify the tidal response is

the tidal quality factor,Q, defined by Goldreich (1963) as the ratio of peak energy in

one oscillation E∗, to the energy dissipated per oscillation, i.e.

Q =
2πE∗∮
Ė dt

. (1.14)
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This can be described in terms of the imaginary component of the Love number

(Ogilvie, 2014) as

| Im[kml (ω)]| =
kl
Q

=
khom

Q′ , (1.15)

where kl is the hydrostatic Love number assuming an elastic response, which is

real and independent ofm, true for a axisymmetric body. khom is the Love number,

for a homogeneous body (for a fluid body khom2 = 3
2
), and Q′ is the modified tidal

quality factor.

It is important to note at this point that the tidal quality factor is a linear-fit to

what is inherently a non-linear problem and therefore should be used with caution

(Goldreich, 1963; Ogilvie, 2014). Therefore, typically it is advantageous to instead

use the imaginary part of the Love number which we define to be,

κl,m,n = Im[kml (ω)]. (1.16)

The torque acting on the orbit of Body 2 can be calculated using T = r×F .

We can see that the only component of the tidal forcing (F = −M2∇Φ′) is that

perpendicular to r, the ϕ component (Ogilvie, 2016). Therefore for an aligned and

circular orbit it can be shown that,

T = −M2r sin θ

(
− 1

r sin θ

∂Φ′

∂ϕ

)∣∣∣∣
r=a,θ=π/2,ϕ=Ωot

ẑ, (1.17)

T = −Re

(
M2k

2
2

GM2

4a3
R5

1

a3
2i

)
ẑ = Im(k22)

3GM2
2R

5
1

2a6
ẑ. (1.18)

We know from Newton’s third law that there is an equal and opposite torque acting

on the spin of Body 1, and the associated exchange of angular momentum is

dLo

dt
= −T. (1.19)
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Figure 1.7: Signs of the leading order contributions to the evolution of orbit and spin parameters
(the left hand sides of equations 1.20 to 1.23). An upward arrow denotes positive and a downwards
arrow negative. Figure taken from Ogilvie (2014).

where Lo = M1M2

M1+M2
(GMa)

1
2 and T the component of vector T is the z direction.

Substituting in the definition of angular momentum and the calculated torque, the

evolution of the semi-major axis, a, can be shown to be (Ogilvie, 2016)

1

a

da

dt
= −3κ2,2,2

M2

M1

(
R1

a

)5

Ωo. (1.20)

We can see clearly from this equation that there is a direct link between the

exchange of angular momentum and the evolution of the orbit of Body 2. The

evolution of the spin of Body 1 and other orbital parameters can be derived similarly

(Ogilvie, 2014) leading to
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1

Ωs

dΩs

dt
= −3

2
κ2,2,2

Lo

Ls

M2

M1

(
R1

a

)5

Ωo, (1.21)

1

e

de

dt
=

3

16
(4κ2,2,2 − 6κ2,0,1 + κ2,2,1 − 49κ2,2,3)

M2

M1

(
R1

a

)5

Ωo, (1.22)

1

i

di

dt
=

3

4

[
(κ2,2,2

(
1− Lo

Ls

)
− (κ2,1,0 − κ2,1,2)

(
1 +

Lo

Ls

)]
M2

M1

(
R1

a

)5

Ωo. (1.23)

The directions of evolution of each of these quantities depends on the ratio

and relative directions of the spin and orbital angular frequencies. The sign of the

lowest-order contributions to these quantities can be seen in Figure 1.7, taken from

Ogilvie (2014).

Assuming that observations of orbital and spin parameters are sufficiently

well constrained, observations over time can be related to the rates of dissipation

within planetary interiors. Then, in turn, we can in principle constrain planetary

interior models due to the strong dependence of dissipation on the internal

structure of a planet.

1.3.3 Observations of tidal evolution

We observe the effects of tidal dissipation and the consequential evolution of the

spin-orbit coupling in multiple astrophysical applications.

We consider first our own Earth and its satellite, the Moon. In this case,

the Moon’s orbital frequency is smaller than the rotational frequency of the Earth,

therefore the tidal bulge lags behind the Moon’s orbit and the resultant spin-orbit

coupling leads to theMoonmigrating outwards and to the lengthening of the Earth’s

day (Munk & MacDonald, 1960; Cartwright, 2000). Some studies show that it is

possible that the Moon formed with a highly elliptical orbit (large eccentricity) and

has evolved to the current orbit (Ćuk et al., 2016; Ćuk et al., 2021). Due to the obvious

importance of understanding Earth’s tides, it is a large and active area of research,

but not the focus of this study.
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(a)

(b)

Figure 1.8: Mass-period and eccentricity-period plots for confirmed exoplanets, collated from
multiple detection methods. Taken from the NASA Exoplanet Archive (2022).



Chapter 1. Introduction 21

Since 1992 we have been observing exoplanets around stars other than our

own Sun. A significant number of these exoplanets are classified to be hot Jupiters.

These are planets as massive as Jupiter that are observed orbiting close in to their

host star. Figure 1.8a from the NASA exoplanet archive shows the mass vs orbital

periods for confirmed exoplanets. It shows a concentration of confirmed planets

with Jupiter’s mass or larger that have orbital periods of less than approximately

10 Earth days. Figure 1.8b is a similar plot from the NASA exoplanet archive

showing eccentricity vs orbital period fromwhichwe can see a concentration at low

eccentricity. Most formation models expect that planets of this size form further

out from their host stars and therefore amechanism such as tidal dissipationmust

have occurred to cause inward migration. As scientists have now been observing

these planets over several decades we are beginning to collect data on the inward

migration of planets. In some cases this can be observed such as in WASP-12b

(Yee et al., 2019; Turner et al., 2021) but not in other cases e.g. WASP-18b (Wilkins

et al., 2017).

The giant planets in our solar system also supply evidence of tidalmigration.

In this case we are observing themigration rate of themoons of Jupiter and Saturn.

Both planets have a significant number of moons, and the consequential tidal

effects vary significantly depending on the size and orbit, as can be estimated

for example with the tidal amplitude factor, ϵ. Astrometric measurements have

been able to monitor the migration rates of these natural satellites and have

established that their moons are migrating outwards at rates that require efficient

tidal dissipation inside these planets (Lainey et al., 2009; Lainey et al., 2012, 2017,

2020).

These measurements suggest the rates of tidal dissipation to be much

stronger than previously believed (Goldreich & Soter, 1966). It is uncertain how such

efficient tidal dissipation can be explained theoretically, therefore suggesting the

consideration of additional mechanisms for tidal dissipation. It is this application

of tidal migration that we focus our attention on in this thesis.
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1.3.4 Possible mechanisms for tidal dissipation

There are multiple possible mechanisms for tidal dissipation that are active areas

of research to explain the enhanced dissipation observed, and in reality, the solution

is probably a combination of multiple mechanisms.

One possibility, and the one which motivates the research in this thesis, is

that the presence of stably-stratified layers, or layers of semi-convection, within

giant planets could be enabling the excitation (and subsequent dissipation) of both

internal gravity waves and gravito-inertial waves. These layers can also impact on

the internalmodes in adjacent convection regions. Studies have been done to show

the tidal dissipation in convection zones through the excitation and dissipation

of inertial waves in convective regions (Ogilvie & Lin, 2004; Wu, 2005a,b; Favier

et al., 2014), and in older planet models including a stratified layer near the surface

(Ioannou & Lindzen, 1993a,b). The resonant locking of tidal gravito-inertial modes

with internal oscillationmodes of the planet can cause rapid tidal migration giving a

mechanism for tidal dissipation rates to change over time. However this may also

require a stable layer to operate effectively (Fuller et al., 2016). It is possible that

inner rocky/icy cores of giant planets exhibit visco-elastic properties. This would

allow for tidal dissipation within the core, which may lead to additional dissipation

(Remus et al., 2012).

Note that the effective viscosity of turbulent convection acting on the non-

wavelike tidal flows is unlikely to be important in the case of giant planets and

is more likely to play a role in the circularisation of binary/giant star systems or

planetary migration around these stars (e.g. Goldreich & Nicholson, 1977; Duguid

et al., 2019, 2020).
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1.4 Boussinesq approximation

Throughout this thesis we adopt what is regarded as the Boussinesq

approximation. This approximation assumes that perturbations to the density are

sufficiently small that they can be neglected in places where they occur in the

equations. They are only retained in the governing equations when accompanied

by gravity, as this term can be large. This is beneficial to allow us to obtain

analytical solutions to complement our numerical work. It removes the sound

waves from the system, which are often high frequency and can make the system

numerically demanding to resolve in numerical simulations. Although this would

not be strictly true for planetary applications, we have found this to be a good initial

starting point, and in later discussion sections we will comment on the limitations

this has introduced.

To avoid repetition we do not include here a full derivation of the Boussinesq

equations, as it is done in part later in the thesis, however full derivations can be

found in Spiegel & Veronis (1960), or in various text books (e.g. Sutherland, 2010;

Vallis, 2017).

The Boussinesq momentum equation in a frame rotating with uniform

angular velocity Ω is

∂u

∂t
+ 2Ω× u = − 1

ρ0
∇p+ br̂ + ν∇2u+ f , (1.24)

where u and p are the Eulerian perturbations to velocity and pressure, ρ0 is the

background reference density and ν the kinematic viscosity which is assumed to

be constant. We define the buoyancy variable b to be b = −g ρ
ρ0

and has units of

acceleration; the only term in which the density perturbation ρ has been retained.

f denotes any external forcing (in our case this would be the tidal forcing). Note

that in Chapters 4 to 6 we use a different definition of b to aid manipulation of g,

however it is mathematically equivalent. Neglecting density perturbations in mass
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conservation gives,

ρ0∇ · u = 0. (1.25)

A combination of the thermodynamic equation and the equation of state becomes,

∂b

∂t
+ urN

2 = κ∇2b, (1.26)

whereN2 is the Brunt-Väisälä frequency or buoyancy frequency, and κ the thermal

diffusivity which is assume to be constant. The Brunt-Väisälä frequency is defined

as

N2 = g

(
1

Γ1

d ln p0
dr

− d ln ρ0
dr

)
. (1.27)

where Γ1 =
(

∂ ln p0
∂ ln ρ0

)
ad

is the first adiabatic exponent. It is here where the

information on the stratification is contained. Often (and throughout this study)

for ease of interpretation we approximate this by assuming Γ1 → ∞, therefore

neglecting the first term. This allows us to relate the buoyancy frequency to density

gradients by,

N2 ≈ − g

ρ0

dρ0
dr

. (1.28)

The stability of a fluid can be related to the buoyancy frequency where N2 > 0

describes a stably stratified medium, N2 < 0 a convective medium and N2 = 0 a

well-mixed neutrally stratified medium.

1.5 Internal waves

As we are considering the dissipation of tidally forced waves, we now introduce

the main types of internal waves. In general waves are classified by the restoring

force generating them. Havingmade the Boussinesq approximation (and as we are

assuming there are no magnetic effects) we are left with gravity and the Coriolis

force to act as restoring forces. We therefore consider the following main forms of

waves:
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Figure 1.9: Figure showing the possible range of internal modes in stratified and convective regions
of planets, adapted from Mathis et al. (2014).

• Internal gravitywaves (g-modes) arewave-like perturbations occurringwhen

there is a stable density gradient and gravity acts as a restoring force.

• Surface gravity (f-mode) / interfacial waves are oscillations of the boundary

between fluids of two different densities.

• Inertial waves occur in a rotating body where the Coriolis acceleration acts

as a restoring force.

Of course, in general applications are more complicated than isolated single wave

type behaviour. In some cases, there is a significantly dominant force but in others

this can lead to modes being split and mixed modes. In particular for this study,

we consider the existence of gravito-inertial waves. Figure 1.9 shows the regimes

in which these modes are expected to exist and will be expanded upon in the

rest of this section. Neglected from this study are waves with other restoring

forces, most notably acoustic waves (p-modes) which are driven by pressure

variations neglected by taking the Boussinesq approximation, and Alfvén waves

where tension in magnetic field lines acts as a restoring force.
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Internal gravity waves

By considering perturbations of the form exp (i(k · r − ωt)), where frequency ω and

wavenumber k are real, and considering equations 1.24 and 1.26 without rotation

(Ω = 0) or dissipative effects (ν = κ = 0) the following dispersion relation can be

found (Sutherland, 2010; Vallis, 2017; Christensen-Dalsgaard, 2014) for constant N

ω2 =
N2 k2⊥
k2

, (1.29)

where k⊥ is the component of the wave number perpendicular to the direction

of gravity, e.g. with g and N constant and in the z/r direction, in Cartesian

geometry k⊥ =
√
k2x + k2y and k =

√
k2x + k2y + k2z , and in spherical geometry

k⊥ =
√
l(l + 1)/r.

From this we can see that as k2 ≥ k2⊥ this has a maximum value of N2

and therefore the possible frequency range of internal gravity waves is bounded by

ω < |N |, see top panel of Figure 1.9. We note additionally for internal waves to form

the fluid must be stably stratified, therefore N2 > 0.

The phase velocity and group velocity can be shown to be,

cp =
ω

k
k̂ =

N k⊥
k2

k̂, (1.30)

and,

cg =
∂ω

∂k
=
N kz
k3 k⊥

(
kxkz, kykz,−k2⊥

)
, (1.31)

from which we note that the group and phase velocity for an internal gravity wave

are perpendicular to each other i.e. cp ⊥ cg.

Inertial waves

Similarly to above, by considering the same form of perturbation

(exp (i(k · r − ωt))), and again neglecting dissipative effects (ν = κ = 0), but
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now consideringN = 0 and Ω ̸= 0, the dispersion relation for inertial waves can be

shown to be (e.g. Rieutord, 2009; Sutherland, 2010; Christensen-Dalsgaard, 2014).

ω2 =
(2Ω · k)2

k2
, (1.32)

where kz is the wavenumber in the direction parallel to the rotation axis. Again,

we note that the range of frequencies is bounded, this time ω < |2Ω|. In general,

we typically expect N > 2Ω; therefore although both are considered to be low

frequency waves, inertial waves are thought to occupy a lower range than internal

gravity waves in most applications, see Figure 1.9. We also note that the frequency

is independent of the magnitude of the wavenumber, depending on rotation rate

and propagation angle only, therefore waves of different wavenumbers can exist

with the same frequencies.

The phase and group velocities can be shown to be (e.g. André et al., 2017),

cp =
ω

k
k̂ = sgn(ω)

(2Ω · k)
k2

k̂, (1.33)

and

cg =
∂ω

∂k
= sgn(ω)

k × (2Ω× k)

k3
, (1.34)

which as for internal gravity waves are perpendicular.

Gravito-inertial modes

When considering both constant stratification and rotationwith similarmagnitudes

it is possible to establishmixed gravito-inertial modes. Still neglecting viscosity and

thermal diffusivity, the dispersion relation can be shown to be (e.g. Dintrans et al.,

1999; André et al., 2017),

ω2 =
N2 k2⊥
k2

+
(2Ω · k)2

k2
. (1.35)
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The frequency range for these modes can be found for example by

considering the Poincaré equation (see Rieutord, 2009; Mathis et al., 2014) where

it can be shown that the critical surfaces which separate the regions in which a

gravito-inertial wave can and cannot propagate satisfy

ω4 − (N2 + 4Ω2)ω2 + 4Ω2N2 cos2 θ = 0, (1.36)

where θ is the angle from the rotation axis. This can be solved to find,

ω± =
1

2

√
(N2 + 4Ω2)±

√
(N2 + 4Ω2)− (4ΩN cos θ)2. (1.37)

Therefore the frequency range of gravito-inertial modes can be shown to be

ω− < ω < ω+ which has limits of 0 < ω <
√
N2 + 4Ω2.

The group velocity can be shown to be (e.g. André et al., 2017),

cp =
ω

k
k̂ =

sgn(ω)

k2

√
N2 k2⊥ + (2Ω · k)2, (1.38)

and,

cg =
∂ω

∂k
=

sgn(ω)

ω

[
N2

(
kz
k

)
k × (−êz × k)

k3
+

(
2Ω · k
k

)
k × (2Ω× k)

k3

]
. (1.39)
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Chapter 2

Free modes of a density staircase in

spherical geometry

In this first chapter we aim to gain some understanding of the free modes of an

idealised giant planet containing stably-stratified layers or a density staircase. We

analyse how they depend on the parameters of the problem. We will build on this

by exploring wave propagation and tidal dissipation in later chapters.

We will do this by considering the modes of the possible internal waves

in spherical geometry. We start with an isolated region consisting of well-mixed

convective layers separated by infinitesimally thin interfaces, i.e. a density staircase.

This chapter extends the work of Belyaev et al. (2015) and André et al. (2017) to

spherical geometry. We illustrate the regions in a giant planet where stable layers

could be present in Figure 2.1, although we focus our attention on studying wave

propagation in either the stable layer near the core of the planet or near the H/He

molecular to metallic transition radius, where helium rain may occur.
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2.1 Model

We adopt the Boussinesq approximation (Spiegel & Veronis, 1960) for simplicity,

see Section 1.4 for more details, and to facilitate understanding before a more

complicated physical model is studied. This is appropriate for studying waves

with shorter wavelengths than a pressure or density scale height, and with phase

speeds that are slow relative to the sound speed. This is likely to be a reasonable

approximation for studying the freemodes of a density staircase, though it is strictly

not valid for studying the largest wavelength waves in a planet. We also adopt

the Cowling approximation (Cowling, 1941), thereby neglecting perturbations to the

gravitational potential (e.g. Φ = Φ0(r), where Φ0 is the gravitational potential in

hydrostatic equilibrium). This is a reasonable approximation for studying internal

waves, particularly those with (horizontal and radial) wavelengths that are shorter

than the planetary radius. It is likely that many low frequency tidally forced waves

are in this regime making both these approximations reasonable.

In this chapter we also neglect viscous and thermal dissipation, which will

be considered in later chapters. We are studying only the free resonances, therefore

consider an unforced system. This allows the system to be solved analytically.

2.1.1 Governing equations

We briefly outline the derivation of the linear adiabatic equations of motion

describing the non-radial oscillations of a non-rotating spherical planet (Gough,

1993; Thompson, 2006; Christensen-Dalsgaard, 2014). We use spherical polar

coordinates (r, θ, ϕ), where r = 0 corresponds to the centre of the planet, and

adopt a basic state that is a spherically-symmetric planetary model in hydrostatic

equilibrium, with density ρ0(r), pressure p0(r) and gravitational potential Φ0(r). We

consider linear perturbations to this basic state of the form

p(r, t) = p0(r) + p′(r, t),
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H + He rain

H/He
(molecular)

Figure 2.1: Diagram showing the expected radial locations of stably-stratified layers in giant planet
interiors. Figure adapted from André et al. (2017).

and similarly for other variables, where a prime denotes the Eulerian perturbation. ξ

is the Eulerian displacement such that u = ∂ξ/∂t is the fluid velocity. The resulting

linearised adiabatic (thus far fully compressible) equations of motions are,

ρ′ +∇ · (ρ0ξ) = 0, (2.1)

ρ0
∂2ξ

∂t2
= −∇p′ + ρ′g0, (2.2)

p′ + ξ ·∇p0 =
Γ1p0
ρ0

(ρ′ + ξ ·∇ρ0) , (2.3)

where Γ1 =
(

∂ ln p0
∂ ln ρ0

)
ad

is the first adiabatic exponent. The gravitational acceleration

is g0 = −∇Φ0 where perturbations to gravitational potential (∇2Φ′ = 4πGρ′) have

been neglected due to the Cowling approximation.

The displacement is split into radial and horizontal components,

ξ = ξrr̂ + ξh,

where r̂ · ξh = 0, and r̂ is the radial unit vector. Since the basic state is static and
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spherically-symmetric, we may expand perturbations using spherical harmonics

with harmonic time-dependence, i.e.

ξr(r, θ, ϕ, t) = ξ̃r(r)Y
m
l (θ, ϕ)e−iωt,

and similarly for other variables, where the physical quantity is the real part of this

expression, andwe use orthonormalised spherical harmonics Y m
l . Substituting this

into equations 2.1 to 2.3, and using these to eliminate ξ̃h and ρ̃, we obtain:

dξ̃r
dr

= −
(
2

r
+

1

Γ1p0

dp0
dr

)
ξ̃r +

1

ρ0ω2c2

(
S2
l − ω2

)
p̃′, (2.4)

dp̃′

dr
= ρ0

(
ω2 −N2

)
ξ̃r +

1

Γ1p0

dp0
dr

p̃′, (2.5)

where the squared adiabatic sound speed is

c2 = Γ1
p0
ρ0
, (2.6)

the squared Lamb frequency is

S2
l =

l(l + 1)c2

r2
, (2.7)

and the squared buoyancy frequency, or Brunt-Väisälä frequency, is

N2 = g

(
1

Γ1

d ln p0
dr

− d ln ρ0
dr

)
. (2.8)

We have also defined g0 = −g(r)r̂. The radial dependence of g(r) involves the

density structure of the entire region within that radius, not just the staircase.

Note that in general

N2 = −T0αT

cp
g0 · ∇s0, (2.9)

where αT is the coefficient of thermal expansion, cp is the specific heat capacity at

constant pressure, and T0 and s0 are the temperature and specific entropy profiles
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for the basic state. Specific entropy is defined to be s0 = cp ln(p/ρ
Γ1
0 ) and we have

assumed we are considering a perfect gas. This means that N2 ∝ ∂rs0. In the

next section, we will specify a background profile of s0(r) that represents a layered

profile, and we are strictly considering an “entropy staircase”, once we correctly

account for the difference between the density and entropy of the gas.

For clarity of presentation and comparison with prior work, we will refer to

this as a “density staircase”, whichwill be represented by a particular choice of ρ0(r),

that is related to the buoyancy frequency in the incompressible limit by

N2 ≈ − g

ρ0

dρ0
dr

. (2.10)

To simplify our analysis we assume that the background variations in density and
pressure are much smaller than their maximum values, and that the wave speed

is much smaller than the adiabatic sound speed, or equivalently, that ω2 ≪ S2
l and

Γ1 → ∞. The above system then reduces to

dξ̃r
dr

= −2ξ̃r
r

+
1

ρ0ω2

l(l + 1)

r2
p̃′, (2.11)

dp̃′

dr
= ρ0ω

2

(
1− N2

ω2

)
ξ̃r, (2.12)

which can be combined to give

d2ξ̃r
dr2

+
4

r

dξ̃r
dr

+

[(
N2

ω2
− 1

)
l(l + 1) + 2

]
ξ̃r
r2

= 0. (2.13)

We note that equation 2.13 can be simplified using the substitution χ = r2ξ̃r ,

reducing it to the form,

d2χ

dr2
+

(
N2

ω2
− 1

)
l(l + 1)

χ

r2
= 0, (2.14)

where the effective radial wavenumber can therefore be more easily identified as,

k2r =
l(l + 1)

r2

(
N2

ω2
− 1

)
. (2.15)
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Equivalence with the Boussinesq approximation

We can show that equation 2.13 is equivalent to adopting the Boussinesq

approximation from the outset, which we now outline starting from the linearised

Boussinesq system (neglecting viscosity and thermal diffusion).

∂u

∂t
= − 1

ρ0
∇p+ br, (2.16)

∂b

∂t
+ ur

N2

r
= 0, (2.17)

where b = − gρ
rρ0

is a buoyancy variable, N2 is defined by equation 2.10, and u is

incompressible. We note that the definition of b here is different to that used in

Chapters 4 to 6, which is addressed in those chapters. The radial and horizontal

components of the Eulerian displacement satisfy

∂2ξr
∂t2

= − 1

ρ0

∂p

∂r
+ rb, (2.18)

∂2ξh
∂t2

= − 1

ρ0
∇hp. (2.19)

Using incompressibility, together with equation 2.19, we can eliminate ξh to obtain

1

r2
∂

∂r

(
r2
∂2ξr
∂t2

)
− 1

ρ0
∇2

hp = 0. (2.20)

When perturbations are expanded using spherical harmonics with harmonic time-

dependence (as previously done), and with some algebra, equations 2.17, 2.18, and

2.20, can be combined to eliminate b̃ and p̃, resulting in equation 2.13.

2.2 Density profile

We consider a staircase like that shown in Figure 2.2. We define our (semi-

convective) density staircase to have a typical radius r0 (i.e. 1 in dimensionless

radii) from the centre of the planet, which represents its inner radius. The staircase
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Figure 2.2: Illustrations of our model, which consists of m steps of size d, separated by m + 1
interfaces with density jumps of ∆ρ, with initial radius r0. In Panel a amplitudes of the downward
(An) and upward (Bn) propagating waves in each layer are shown. Panel b shows the density profile
with amean gradient ∆ρ

d , shown by the red dashed line. Panel c shows the corresponding buoyancy
frequency squared, consisting of δ-functions with mean value N̄2 = g∆ρ

ρ0d
. Figures adapted from

André et al. (2017).

consists of m steps of well-mixed (constant density), convective fluid layers with

uniform depth d, in which N = 0. These layers are separated by m + 1 equal-

sized density jumps of magnitude ∆ρ. In reality, we might expect a staircase to

possess a range of layer depths and density jumps, but we will primarily adopt

equal-sized layers with equal density jumps to simplify the analysis. Extending our

model to explore a range of layer depths and density jumps is straightforward, and

is partly explored later in Section 3.2.2 (see also Sutherland, 2016; André et al., 2017,

in Cartesian geometry). We define a dimensionless parameter

ϵ =
d

r0
, (2.21)

which represents the fractional depth of each convective layer relative to the typical

inner radius of the staircase. We usually expect ϵ ≪ 1 (e.g. Leconte & Chabrier,

2012), though this need not be the case if the layer is close to the centre of the

planet.
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We will vary the properties of the end regions that connect to the inner and

outer radii of the staircase. First, we will consider an isolated staircase in which,

similarly to the steps, the end regions are also well-mixed convective layers with

N = 0. This means gravity waves are evanescent in these layers. In the absence

of a solid core, if we include r = 0, a regularity condition must be imposed there.

We will generally adopt a core of radius rc ≪ r0, which we will treat as perfectly

absorbing for the purposes of calculating the transmission of waves through the

staircase.

The density profile is modelled as a series of δ-functions at each interface

between adjacent steps, such that the mean buoyancy frequency is N̄ , i.e.,

N2 =
m∑

n=0

dN̄2δ(r0 + nd− r), (2.22)

where we define

N̄2 ≡ g∆ρ

ρ0d
, (2.23)

ρ0 is the (constant) reference density, and∆ρ is the density jump at each interface.

The factor of d in equation 2.22 arises from combining the density gradient,
dρ
dr

= −∆ρδ(r − r0 − nd), and the given definition of N̄ . This preserves the overall

dimensions of the quantity as it balances the inverse length units of the δ-function

when its argument has units of length. As previously discussed, we are strictly

considering entropy jumps and would not necessarily expect to have equal-sized

density jumps, but we consider them here to obtain concrete analytical results.

In what follows we non-dimensionalise quantities, using a mean buoyancy

frequency N̄−1 as our unit of time, and a typical radius r0 as our unit of length.

However, we choose to retain (but set to 1 in calculations) N̄ and r0 in some

formulae and figures, even if these strictly should not appear, so that they can be

more easily tracked in the derivations.
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2.3 Solutions for the radial displacement in the

staircase

When we substitute equation 2.22 into equation 2.13 we obtain a discontinuous

differential equation, so we may obtain the solution in each region separately as

long as we apply suitable matching conditions at the interfaces. Within the n-th

convective step N2 = 0 so that

d2ξn
dr2

+
4

r

dξn
dr

− l(l + 1)− 2

r2
ξn = 0, (2.24)

which has solutions for the radial displacement

ξn = Anr
l−1 +Bnr

−l−2. (2.25)

We have omitted the subscript r from ξr , and replaced it with a new subscript n

to identify the appropriate step number to which the solution applies. The radial

displacement across the entire region is therefore described by

ξ =


A0r

l−1 +B0r
−l−2 rc

r0
< r < 1,

Anr
l−1 +Bnr

−l−2 rn−1 < r < rn,

Am+1r
l−1 +Bm+1r

−l−2 r > 1 +mϵ,

(2.26)

where rn = 1 + nϵ, and n = 1, . . . ,m.

It can be verified that the coefficients An and Bn denote the upwards and

downwards component of the solution, respectively, by considering the flux of the

relevant component, see Section 3.1.1 for details on the flux calculation.
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Solution for radial displacement in a stratified region

If we instead consider an extended region with a spatially uniform (constant)

buoyancy frequency N = N̄ , then equation 2.13 would have the solution

ξ = Arλ+ +Brλ− , (2.27)

where A and B denote the amplitude of the downward/upward propagating wave,

and

λ± = −3

2
± 1

2

√
1 + 4

(
1− N̄2

ω2

)
l(l + 1). (2.28)

We will later use this solution when we consider the transmission of waves through

a staircase sandwiched by two stably-stratified layers, and also when we compare

the frequencies of the free modes of a staircase with those of a uniformly stably-

stratified layer.

2.3.1 Interface conditions and transfer matrices

Since equation 2.13 is a second-order differential equation in r, we must apply

two boundary conditions at each interface. Here, we generalise those used in

André et al. (2017) to spherical geometry. Firstly, we must ensure that there is

no separation of the fluid on either side of each interface, therefore ξ must be

continuous there. This requires

ξn+1(1 + nϵ) = ξn(1 + nϵ), (2.29)

and using equation 2.26 we find

An+1 − An +
(
Bn+1 −Bn

)(
1 + nϵ

)−2l−1
= 0. (2.30)

Our second condition follows from the requirement that the momentum flux, and

therefore the pressure perturbation, is continuous across each interface. We obtain
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this condition by integrating equation 2.13 over a small volume of radial extent 2∆

around an interface. For the n-th interface, we obtain,

∫ 1+nϵ+∆

1+nϵ−∆

r2
d2ξ

dr2
dr +

∫ 1+nϵ+∆

1+nϵ−∆

4r
dξ

dr
dr =

∫ 1+nϵ+∆

1+nϵ−∆

(l(l + 1)− 2)ξdr −
∫ 1+nϵ+∆

1+nϵ−∆

N2

ω2
l(l + 1)ξdr. (2.31)

We can then take the limit of vanishing volume, such that∆ tends to 0, to derive the

boundary condition. We use integration by parts on the left hand side (LHS) of the

equation and apply the continuity of ξ (equation 2.29), so that the limit∆ → 0 leads

to

LHS =
(
1 + nϵ

)2[dξn+1

dr
− dξn

dr

]
r=1+nϵ

. (2.32)

On the right hand side (RHS), we also apply the continuity of ξ such that on taking

∆ → 0 the first term does not contribute. Upon substitution of equation 2.22 the

second term becomes

RHS = −N̄
2ϵ

ω2
l(l + 1)

∫ 1+nϵ+∆

1+nϵ−∆

δ(1 + nϵ− r)ξdr. (2.33)

After integration we obtain our second interface condition:

[
dξn+1

dr
− dξn

dr

]
r=1+nϵ

= − N̄2l(l + 1)ϵ

ω2(1 + nϵ)2
ξn

∣∣∣∣
r=1+nϵ

. (2.34)

Using equation 2.26 we then find

(l − 1)(An+1 − An)− (l + 2)
(
Bn+1 −Bn(1 + nϵ)−2l−1

)

=
−N̄2l(l + 1)ϵ

ω2(1 + nϵ)2

[
An(1 + nϵ) +Bn(1 + nϵ)−2l

]
. (2.35)
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The two interface conditions (equations 2.30 and 2.35) allow the solution in

each step to be written in terms of the solution in an adjacent step. Therefore, with

some algebra, the coefficients in adjacent layers are related byAn+1

Bn+1

 = Tn

An

Bn

 , (2.36)

where the transfer matrix Tn is defined as,

Tn =


1− ϵl(l + 1)N̄2

(2l + 1)(1 + nϵ)ω2

−ϵl(l + 1)N̄2

(2l + 1) (1 + nϵ)2(l+1) ω2

ϵl(l + 1)(1 + nϵ)2lN̄2

(2l + 1)ω2
1 +

ϵl(l + 1)N̄2

(2l + 1)(1 + nϵ)ω2

 . (2.37)

We identify that we can consider two limits; first we can recover the results found

in Cartesian geometry in Belyaev et al. (2015), Sutherland (2016) and André et al.

(2017) by taking the limits l ≫ 1, nϵ≪ 1 and nϵl ≪ 1, identify k2⊥ = l(l+1)

r20
and noting

that in the evanescent region k⊥ = kr.

Tn =


1− k⊥d

N̄2

ω2
−k⊥d

N̄2

ω2

k⊥d
N̄2

ω2
1 + k⊥d

N̄2

ω2

 . (2.38)

In the second case we take ϵ→ 0, therefore removing the interfaces, and note that

Tn reduces to the identity matrix.

This formalism allows us to determine the solution in the (m + 1)-th layer

in terms of the solution in the 0-th layer by repeatedly applying the transfer matrix.

Note that Tn depends on the radius of the n-th interface, which complicates the

following analysis compared with the Cartesian case (even with constant d and

∆ρ) in André et al. (2017). But we may still define a 2× 2 matrix such that,Am+1

Bm+1

 = X

A0

B0

 , (2.39)
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where

X = TmTm−1 . . . T1T0 (2.40)

relates the solution in the end regions. With appropriate choices of the end

regions, this formalism allows us to analyse the free modes of a density staircase

(Section 2.4).

2.4 Free modes of a density staircase

We now derive a dispersion relation that describes the free internal modes of a

density staircase. We will consider three cases

1. A finite staircase confined between two well-mixed convective regions.

2. A finite staircase confined by a solid wall at either end.

3. A finite staircase with a solid wall at the inner boundary (closest to the core)

and a well-mixed convective region at the outer boundary.

The first would be most representative of a staircase forming near a H/He

transition region and the third a staircase forming just above a solid inner core. In

each case we analyse the properties of the free modes and how they depend on

the parameters describing the staircase.

2.4.1 Finite staircase embedded in a convective medium

Our first example considers a finite staircase embedded in a convective medium,

which could represent a staircase in the helium rain region. We enforce boundary

conditions such that the solution decays away from the first and last interface as

would be expected in a convective medium. This corresponds with setting B0 = 0

and Am+1 = 0, the coefficient of the non-decaying components of the solution.
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Therefore, by considering equation 2.39 the top left entry of X is then required to

be zero, i.e.,

X1,1 = 0. (2.41)

This represents a polynomial in ω2, which is the dispersion relation describing the

freemodes of the staircase. The polynomial has degree (m+1), implying that there

are an equal number of (oppositely-signed pairs of) free modes in the system as

there are interfaces in the staircase (see also Belyaev et al., 2015; André et al., 2017).

Single step (m = 1)

We first solve equation 2.41 for a staircase consisting of a single convective step

and two interfaces (m = 1) which gives the dispersion relation

ω2 =
ϵl(l + 1)N̄2(1 + 2ϵ)−1−l

2(2l + 1)(1 + ϵ)(
(1 + 2ϵ)l(2 + 3ϵ)±

√
4(1 + ϵ)2l+2 + ϵ2(1 + 2ϵ)2l

)
. (2.42)

This describes the frequencies of two (pairs of oppositely-signed) free modes. We

can further analyse the two solutions by expanding in the small parameter ϵ. The

first solution is

ω2 =
1

2
l(l + 1)N̄2ϵ2 +O(ϵ3), (2.43)

and thereforeω2 ∝ l2 for large l. This is similar to the behaviour of an internal gravity

wave (see Section 1.5). The second solution is

ω2 =
2l(l + 1)N̄2ϵ

2l + 1
+O(ϵ2), (2.44)

so that ω2 ∝ l for large l. This can be compared with the properties of an interfacial

gravity wave. Figure 2.3 shows the dependence of the mode frequencies on l and

d (red line).

To justify our assertions, we consider the dispersion relation of internal
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Figure 2.3: Dependence of the mode frequency ω for each mode on the parameters of the staircase
and the boundary conditions on the end regions, shown for the single step, m = 1, case. The
red (thin-dashed) lines show a finite staircase embedded in a convective medium, blue (dashed)
lines show a finite staircase with solid wall boundary conditions. The green (thick-dashed) lines
show a finite staircase with a solid wall beneath and a convective medium above. Finally, the black
(solid) line shows the solution with a constant stratification between two solid walls. Panel a shows
dependence of ω for each mode on the angular wavenumber l and Panel b shows dependence on
step size d.

gravity waves in spherical geometry to be described by the following (Christensen-

Dalsgaard, 2014):

ω2 ≈ N̄2 k2⊥d
2

k2rd
2 + k2⊥d

2
≈ l(l + 1)

k2rd
2
N̄2ϵ2, (2.45)

in the “plane-wave limit" in which kr ≫ k⊥, and we identify k2⊥ = l(l + 1)/r20. Still

within this limit, we again consider large l, we find ω2 ∝ l2, just like in equation 2.43.

By comparing equation 2.45 to equation 2.43, we observe that these are equivalent

if k2r ≈ 2
d2
. Indeed, we have confirmed numerically that the free modes in the single

step case are well described by equation 2.45 if kr ≈ 145, which is just slightly

higher than
√
2/d ≈ 141. The corresponding wavelength λr = 2π

kr
> d, as we would

expect for a mode with the character of an internal gravity wave.

Single interface (m=0)

The dispersion relation describing an interfacial gravity mode can be found by

considering the case of a single interface (m = 0) to be

ω2 =
l(l + 1)N̄2ϵ

(2l + 1)
=
l(l + 1)

(2l + 1)

g∆ρ

r0ρ0
. (2.46)
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Figure 2.4: Radial displacement at each interface for the case of a staircase embedded within a
convective medium. Panels a and c show the one step (m = 1) case where a shows the internal
wave-like solution with the two interfaces oscillating out of phase, and c shows the interfacial wave
solution with both interfaces in phase. Panels b and d similarly show the interfaces for the six step
(m = 6) case.
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For large l, we find ω2 ∝ l, which behaves similarly to equation 2.44. This appears

to differ from equation 2.44 by a factor of 2, but this only arises because it is the

total density jump (across both steps) that is relevant, and this is twice as large in

the single step case.

We show the radial displacement as a function of time at both interfaces in

Figures 2.4a and 2.4c for both types of solution. Note that the overall amplitude is

arbitrary but the relative amplitudes aremeaningful. Figure 2.4a shows the solution

corresponding to equation 2.43, in which both interfaces oscillate out of phase

with each other, as we would expect if they are located either side of a node in a

corresponding internal gravitymode. Figure 2.4c shows the solution corresponding

to equation 2.44. This solution clearly has interfacial wave character because both

interfaces oscillate in phase with one other, behaving as an “extended interface".

Multiple steps (m > 1)

We can also explore the free modes of an m-step staircase in a similar way when

m > 1, except that we now obtain a polynomial of degree (m + 1). The solutions

are too complicated to gain any insight from writing them down, but we can

use a computer algebra package (e.g. Mathematica) to analyse their properties.

The solutions for multiple steps exhibit similar behaviour to the case of a single

step. We again find that the highest frequency mode is an interfacial gravity-like

mode, in which all of the interfaces oscillate in phase, so that the whole staircase

behaves like a single extended interface. The othermodes behavemore like internal

gravity modes, in which the interfaces do not all oscillate in phase, and the number

of interfaces that are in phase can be related to the number of nodes in the

corresponding gravity mode.

For the case with m = 6 steps, we show the radial displacement at each

interface (again, with an arbitrary overall amplitude) in Figure 2.4d for the one

interfacial mode in which all interfaces oscillate in phase, and one example (chosen

from 6) of an internal gravity-like mode in Figure 2.4b. In the latter, the interfaces do
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Figure 2.5: Dependence of the frequency of the interfacial mode for each step number m, for l = 2,
N̄ = 1. Panel a interfacial-like mode for a fixed staircase size x = (m + 1)ϵ = 0.1, such that the
step size ϵ and density jump ∆ρ decrease as the step number increases. Solid line showing y = 1.
Panel b interfacial-like mode for a fixed step size ϵ = 0.01, such that the total length of the staircase
and total density jump increase as the step number increases. Solid line showing y = m+ 1.

not all oscillate in phase, indicating that this is like an internal gravity mode (with a

continuous uniform stratification) with 3 nodes. Formultiple steps, the dependence

on l, d and r0 is qualitatively similar to that of a single step. Series expansions to

explore the dependence of the frequencies of the waves on the parameters were

not carried out in this case because the behaviour can be obtained qualitatively.

There are two ways to explore how the dispersion relation depends on the

number of steps. If we fix the mean stratification, the total density jump and total

length of the staircase, x, but we increase the number of steps, then ϵ and ∆ρ

will decrease as steps are added such that ∆ρ = 1
(m+1)

∆ρtotal and ϵ = 1
(m+1)

x.

Figure 2.5a shows the interfacial wave solutions dependence onm for the case of a

staircase with fixed size and total density jump. All solutions have been normalised

by them = 15 solution and tend to 1 asm is increased. This suggests that the total

density jump ∆ρtotal is an important quantity for the dispersion relation.

If the step size and mean stratification are maintained, this will lead to

a longer staircase and increased total density jump; the frequency therefore

increases. Figure 2.5b shows the solution for ω for different numbers of steps,

which corresponds to the interfacial wave solution, normalised by the m = 0

solution. We would expect to see a roughly linear dependence on m. We can see
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the trend falls away from the y = m+ 1 line for largem. As the total staircase gets

larger we would expect the approximation to one thin interface to be less accurate

and therefore expect the solution to depart from this prediction.

2.4.2 Finite staircase with solid walls

We now consider the case of a finite staircase confined between solid walls at both

ends, which might be relevant for the case of a stably-stratified terrestrial planetary

core, for example. In particular, we consider solid walls at r0 and r0 + (m + 2)d, on

which we enforce ξr = 0. The first interface is at r0+d, and the buoyancy frequency

is defined as,

N2 =
m+1∑
n=1

N̄2ϵδ(1 + nϵ− r). (2.47)

The interface conditions remain unchanged and, as before, we construct a

transfer matrix to relate our coefficients in the first and last layer,Am+1

Bm+1

 = X ′

A0

B0

 , (2.48)

where
X ′ = Tm+1Tm . . . T1. (2.49)

Instead of considering decaying solutions we now consider solid wall boundary
conditions such that the radial displacement at either end of the staircase is zero,

i.e.
ξ0(r = 1) = ξm+1(r = 1 + (m+ 2)ϵ) = 0. (2.50)

These combine to give four simultaneous equations,

A0 +B0 = 0, (2.51)

Am+1(1 + (m+ 2)ϵ)l−1 +Bm+1(1 + (m+ 2)ϵ)−l−2 = 0, (2.52)

Am+1 = A0X
′
1,1 +B0X

′
1,2, (2.53)

Bm+1 = A0X
′
2,1 +B0X

′
2,2. (2.54)
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We seek non-trivial solutions, which requires

X ′
1,2 + (1 + (m+ 2)ϵ)−2l−1X ′

2,2 = (X ′
1,1 + (1 + (m+ 2)ϵ)−2l−1X ′

2,1). (2.55)

This allows us to determine the dispersion relation describing the free modes of

the staircase. We again obtain a polynomial of degree (m + 1), and so we obtain

(m+ 1) (pairs of) free modes.

The solution can be found for the single step (m = 1) case, and we also

expand each solution assuming ϵ≪ 1 to obtain,

ω2 = l(l + 1)N̄2ϵ2 +O(ϵ3), (2.56)

and

ω2 =
1

3
l(l + 1)N̄2ϵ2 +O(ϵ3). (2.57)

As for the cases with decay boundary conditions in Section 2.4.1, we observe that

there aremodes for which ω2 ∝ l2 for large l, which is the expected behaviour for an

internal gravity wave. However, the highest frequencymode no longer corresponds

with an interfacial wave, and in fact none of the waves have the dependence ω2 ∝ l

for large l expected of such waves. This is due to the boundary conditions that we

have adopted. The highest frequency mode still has all of its interfaces oscillating

in phase, but it no longer behaves as an interfacial wave. Instead, it behaves more

like a gravity mode with no internal nodes. We show the roots of the dispersion

relation in Figure 2.3 (blue dashed line).

2.4.3 Finite staircase with mixed boundary conditions

Finally, we consider the case where the staircase has a solid wall at the lower

boundary and lies below a convective region. This case might be a better

representation of a stratified layer at the edge of a solid inner core, which connects

onto a convective envelope at its outer radius. The method used is a combination
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of the previous two methods, with a solid wall at r0 and modes that decay

above the staircase. The buoyancy profile N2 and matrix X ′ are unchanged from

Section 2.4.2.

Considering zero radial displacement at the bottom of the staircase to give,

ξ0(r0 = 1) = 0, (2.58)

and forcing purely decaying solutions at the top of the staircase requires,

Am+1 = 0. (2.59)

These combine to give three simultaneous equations,

A0 +B0 = 0, (2.60)

A0X
′
1,1 +B0X

′
1,2 = 0, (2.61)

Bm+1 = A0X
′
2,1 +B0X

′
2,2. (2.62)

Non-trivial solutions require

X ′
1,2 = X ′

1,1. (2.63)

Similarly to the previous cases this allows us to determine the dispersion relation

describing the freemodes of the staircase. We again obtain a polynomial of degree

(m+ 1), and so we obtain (m+ 1) (pairs of) free modes.

Expanding each solution in the single step case, assuming ϵ≪ 1, we obtain

the two solutions,

ω2 =
1

2
(3 +

√
5)l(l + 1)N̄2ϵ2 +O(ϵ3), (2.64)

and

ω2 =
1

2
(3−

√
5)l(l + 1)N̄2ϵ2 +O(ϵ3). (2.65)

As in the case of solid wall boundary conditions in Section 2.4.2 we observe only

modes where ω2 ∝ l2 for large l, corresponding to internal gravity wave behaviour.
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The highest frequency modes with all interfaces oscillating in phase also act as an

internal mode with no nodes instead of an interfacial mode. The roots of these two

solutions are shown in Figure 2.3 (green thick-dashed line), which shows that they

lie between the two previous cases.

2.4.4 Comparison with a uniform, continuously-stratified

medium

We aim to further understand how density staircases behave differently from a

uniform and continuously-stratified medium. Therefore we now turn to comparing

the frequencies of the free modes of a staircase with those of a continuously-

stratified medium with the same mean (constant) buoyancy frequency. We

choose to compare the case with solid wall boundary conditions at either end

(i.e. ξr(1) = ξr(1 + (m+ 2)ϵ) = 0), which we have already computed for a staircase

in Section 2.4.2. We apply these boundary conditions to the solution given by

equations 2.27 and 2.28 to obtain an infinite set of modes in the continuous case.

We index these by a positive integer n which refers to the number of radial nodes

in the solution. The resulting frequencies are

ω = ±

√
4l(l + 1)N̄2(log(1 + (m+ 2)ϵ))2

(2l + 1)2(log(1 + (m+ 2)ϵ))2 + 4π2n2
. (2.66)

For these calculations we fix the total size of the region and the total density jump

across the staircase, and vary the number of stepsm.

To compare the infinite set of free modes found in the stratified case to the

freemodes of the staircase, we take the firstm+1modes of the uniformly-stratified

layer and compare these to the free modes of the staircase. Figure 2.6a shows the

wave frequencies for all modes as a function of the number of steps m. It is clear

that as m increases, the difference between the uniformly-stratified case and the

staircase decreases.
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Figure 2.6: Comparison of the frequencies of the free modes of a uniformly-stratified layer with
a density staircase with the same mean stratification N̄ . This shows that the frequencies of the
modes of a staircase approach those of a uniformly-stratified layer (behaving like m−2) as the
number of steps is increased, but that there is a consistently positive frequency shift.

To more clearly and quantitatively analyse the differences in frequency

between a staircase and a uniformly-stratified medium, we define the fractional

difference as
∆ω

ω
=
ωc − ωs

ωc

, (2.67)

where ωs is the frequency of the staircase mode and ωc is the frequency of

the constant stratification mode. The magnitude of this quantity is plotted in

Figure 2.6b, and is re-plotted using a log-log scale (base 10) in Figure 2.6c to

determine its scaling behaviour. We find the mode frequencies in the case

of a uniformly-stratified layer are always smaller than those in the staircase.

Similar results are also expected with mixed boundary conditions, which might be

considered the most astrophysically relevant case (e.g. Section 2.4.3).
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Figure 2.7: Comparison of the period spacing of the adjacent free modes for a uniformly-stratified
layer with a density staircase with the same N̄ .

Figure 2.6 shows that as the number of steps is increased, the fractional

difference decreases, indicating that the free modes of a staircase converge to

those of a uniformly-stratified medium with the same mean buoyancy frequency.

This agrees with the results in Cartesian geometry found by Belyaev et al. (2015).

As steps are added, the number of modes in the staircase increases. The fractional

difference for each mode with a given number of radial nodes decreases as

we increase the number of steps. However, the lowest frequency mode with

the shortest corresponding radial wavelength (largest number of radial nodes) is

always the most affected by the staircase and has the largest fractional frequency

difference. This is expected as when the wavelength is sufficiently large compared

to the step size it “sees the staircase” as a continuous medium with constant

buoyancy frequency N̄ .

The dependence of the fractional frequency difference can be fitted with a
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power law for the purposes of extrapolation to a staircase with a large number of

steps. We find
∆ω

ω
∝ (m+ 1)−α ∼ ϵα, (2.68)

with a range in exponent α ≈ 1.7 − 2.3 found for the highest frequency modes.

This is consistent with Belyaev et al. (2015), who found in their Cartesian model

that α = 2. This power law is useful as it allows us to extrapolate the frequency

shifts to a large number of steps. This is important since the number of steps in a

stably-stratified layer of a giant planet is uncertain (e.g. Leconte & Chabrier, 2012).

The staircase also alters the period spacing between two adjacent modes

(Belyaev et al., 2015). This is interesting to analyse because the period spacing

between adjacent internal gravity modes in a continuously-stratified medium is

independent of the number of nodes (i.e the mode frequency) in the short-

wavelength limit. However, the presence of a staircase may modify this relation

and lead to potentially observable shifts in the period spacings. To analyse the

period spacing between adjacent modes, we define

∆Px = 2π

(
1

ωx,n

− 1

ωx,n+1

)
. (2.69)

Therefore, the dependence on a staircase can be analysed by considering the

fractional difference,

∆Pf =
∆Pc −∆Ps

∆Pc

, (2.70)

where again the subscript s refers to a staircase mode, and a subscript c refers to a

continuous stratification mode. Figure 2.7a shows that the staircase decreases

the period spacing between adjacent modes (blue symbols and lines), and the

constant stratification result is independent of node number (orange). As found

in the analysis of the frequency shifts above, the fractional difference between a

stably-stratified medium and a staircase structure decreases as the number of

steps increases, and is largest for the lowest frequency modes with the shortest

wavelengths in each case. The fitted dependence is also found, for the purpose of



Chapter 2. Free modes of a density staircase in spherical geometry 54

extrapolation,

∆Pf ∝ (m+ 1)−β ∼ ϵβ, (2.71)

where β ≈ 1.8 − 2 for the highest frequency modes. This is also consistent with

Belyaev et al. (2015), who found the staircase decreases the spacingwith a squared

dependence in ϵ.

2.5 Conclusion

We have built on previous work that analysed the free modes of a density staircase

(Belyaev et al., 2015; André et al., 2017). We extended these works by adopting

a simplified global (spherical) Boussinesq model. As a first step to tackling this

problem in a global model, we have omitted planetary rotation. Our model allows

us to analyse the behaviour of waves with wavelengths comparable with the radius

of the stratified layer, whichmay be important for the inner regions of these planets,

and those with small harmonic degrees that may be the easiest to observe. Global

effects may also be important for the modes of an extended staircase region and

are likely to be required to study tidal forcing self-consistently, which we turn to in

Chapters 4 to 6.

In this chapter we have presented idealised calculations to study the

properties of waves in stably-stratified planetary layers containing a layered density

structure. We have analysed the properties of the free modes and our main result

is that wave propagation is strongly affected by the presence of a density staircase.

This extends and confirms prior work in Cartesian geometry (Belyaev et al., 2015;

André et al., 2017).

By determining the free modes in a region containing a density staircase we

found they consist of both internal and interfacial gravity waves, with the presence

of the latter depending on the properties of the surrounding fluid. Solid wall

boundary conditions do not exhibit modes with interfacial-like behaviour, whereas
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a staircase embedded in a convectivemedium (decaying boundary conditions) has

a clear interfacial wave solution.

We have compared the free modes in a density staircase with those of a

continuously-stratified layer. In the limit of infinitely many steps, the frequencies

of the free modes converge towards those of a continuously-stratified medium.

However, for a finite number of steps, themodes of a staircase typically have larger

frequencies than those of a continuously-stratified medium. We have quantified

this frequency shift due to the presence of a staircase as a function of its properties,

as well as the shift in the period spacing between adjacent modes. In both cases

we find they scale as (m + 1)−2, where m is the number of steps in the staircase.

This is consistent with the Cartesian results of Belyaev et al. (2015). For the largest

wavelength modes with low harmonic degrees, the shift is found to be very small

if there are as many as 106 steps, so this may be difficult to detect observationally.

But if such a signal is detected by analysing the properties of the mixed f-g modes

that are resonant with density waves in the rings (e.g. Marley & Porco, 1993; Fuller,

2014; Hedman & Nicholson, 2013; Hedman et al., 2018), for example, then this

could constrain the properties of any stable layer that is present in the planetary

interior. We note that semi-convection in massive stars (M∗ ≳ 15M⊙) could also

produce stable layers that could in principle be constrained in a similar way using

asteroseismology (Schwarzschild & Härm, 1958; Sakashita & Hayashi, 1959).
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Chapter 3

Transmission through a density

staircase in spherical geometry

Now we have explored the properties of the free modes we turn our attention

to exploring the transmission of internal waves through density staircases. We

continue to adopt spherical geometry, which extends prior work in Cartesian

geometry (Sutherland, 2016; André et al., 2017).

Planetary models suggest that it is possible that only parts of a stratified

layer have a layered density structure. Therefore, an internal gravity wave (that may

be excited by tidal forcing or by interaction with neighbouring convection zones)

can propagate in the continuously stratified region adjacent to layers of semi-

convection.

In this chapter, we consider a staircase embedded in a medium that

supports internal waves. This allows us to analyse how the density staircase

affects the transmission of these waves. This will further the understanding of

how these waves travel through the interior of the planet, particularly where they

can propagate, and where they may dissipate.
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3.1 Model

Wenowconsider a staircase-like structure embeddedwithin a stably-stratified layer

which permits the propagation of internal gravity waves. To do so, we must alter

the density profile used in Section 2.1 to have non-zero buoyancy frequency in each

end region. We now define the buoyancy frequency as,

N2 =



N2
a

rc
r0

≪ r < 1,
m∑

n=0

N̄2ϵδ(1 + nϵ− r) 1 < r < 1 +mϵ,

N2
b r > 1 +mϵ,

(3.1)

where N2
a and N2

b are assumed to be positive constants. We continue to consider

a perfectly absorbing core to exist at a small radius rc ≪ r0, which removes the

requirement to impose a regularity condition at r = 0. If we were to include r = 0,

then we would simply be modelling the transmission of a wave from a radius r0,

to the centre, and back again. Since we neglect dissipative processes in this first

instance, this would not be an informative calculation.

By combining equations 2.13 and 3.1 and solving as before, the entire

solution for the radial displacement is

ξn =


A0r

λa+ +B0r
λa− rc

r0
≪ r < 1,

Anr
l−1 +Bnr

−l−2 rn−1 < r < rn,

Am+1r
λb+ +Bm+1r

λb− r > 1 +mϵ,

(3.2)

where rn = 1 + nϵ, n = 1, . . . ,m, and

λa/b± = −3

2
± 1

2

√√√√1 + 4

(
1−

N2
a/b

ω2

)
l(l + 1). (3.3)

For the wave to propagate in the end regions, we require complex solutions
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where Im[λa/b± ] ̸= 0. Therefore, from equation 3.3, the following condition must be

satisfied for waves to exist in an end region:

ω2

N2
x

<
4l(l + 1)

4l(l + 1) + 1
, (3.4)

where Nx takes the appropriate value for the region considered. This restricts the

allowable values of k⊥ and ω that permit wave-like solutions in the end regions. We

will later mark these limits on our plots showing the transmission of waves.

3.1.1 Transmission coefficient

We would like to analyse how efficiently an incident internal gravity wave is

transmitted (and how much is reflected) when it propagates through a staircase.

To do so, we define the transmission coefficient to be the ratio of the radial energy

flux of the incident wave (Fin) with that of the outgoing wave (Ftr),

T =
Ftr

Fin

. (3.5)

The energy flux is defined using the standard definition for a linear wave

F = πr2
∫ π

0

Re[−iωξrp∗] sin θdθ, (3.6)

where ξr is the radial displacement and p∗ is the complex conjugate of the pressure

perturbation, containing the r and θ and ϕ. We are only concerned with the ratio

of the energy flux at different radial locations, and therefore it is not necessary to

evaluate the energy flux exactly. As a result, we drop unnecessary factors from this

analysis, and hence find

F ∝ Im[ωξ̃rp̃
∗]r2. (3.7)
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We then use equation 2.11 to eliminate p̃∗, so that

F ∝ Im

[
ω3

(
r2ξ̃r

dξ̃∗r
dr

+ 2rξ̃rξ̃
∗
r

)]
r2, (3.8)

and using equation 3.2 we find

F ∝ Im

[
r2λ∗±|A/Bn|2r2Re[λ±]−1 + 2r|A/Bn|2r2Re[λ±]

]
r2. (3.9)

Therefore, the flux in the downward and upward propagating waves is

Fdown ∝ Im[λ∗+]|An|2, (3.10)

and

Fup ∝ Im[λ∗−]|Bn|2, (3.11)

which allow us define two different transmission coefficients depending on the

direction of propagation of the incident wave. For a downward propagating wave,

Tdown =
|A0|2

|Am+1|2
Im[λ∗a+ ]

Im[λ∗b+ ]
, (3.12)

and for an upward propagating wave,

Tup =
|Bm+1|2

|B0|2
Im[λ∗b− ]

Im[λ∗a− ]
. (3.13)

These can be shown to be equivalent to the transmission coefficient obtained in

the Cartesian case by André et al. (2017). From these formulations we can see

that the transmission depends on both the amplitudes and vertical wavenumbers

of the solution in the end regions. This difference in wavenumbers originates from

the varying group velocity. The group velocity of an internal gravity wave depends

on the stratification of a region and therefore if the stratification in the end regions

is different (e.g. Na ̸= Nb) this factor contributes to the result.

We use the same interface conditions as in Section 2.1 (equations 2.34
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and 2.34) and the matrixX is constructed as before.

We consider first a downwards propagating wave, originating above the

staircase and travelling towards the centre of the planet. By considering the left

hand panel of Figure 2.2, we have an incident wave with coefficient Am, which

is partially transmitted (and partially reflected) at each interface. Therefore, the

solution within each layer is a combination of both an incident and reflected

component, except the final layer where we have assumed no reflection from the

core. As a result of this we define the upward component in that layer to be zero

(B0 = 0) to give, Am+1

Bm+1

 = X

A0

0

 , (3.14)

so that the transmission coefficient becomes

Tdown =
1

|X1,1|2
Im[λ∗a+ ]

Im[λ∗b+ ]
. (3.15)

For an upward propagating wave, starting near the centre of the planet and

propagating outwards, there is similarly no reflected wave in the upper layer

(Am+1 = 0), so that  0

Bm+1

 = X

A0

B0

 , (3.16)

giving a transmission coefficient,

Tup =
1

|X−1
2,2 |2

Im[λ∗b− ]

Im[λ∗a− ]
. (3.17)

Equations 3.15 and 3.17 allow us to determine the transmission of an incident down-

going or up-going wave through a density staircase. The properties of the staircase

enter through the entries of theX matrix, and that of the incident wave and the end

regions enter through the wavenumber ratio. As a result of the spherical geometry,

it is possible forTup andTdown to differ for the same incidentwave and staircase/end

region properties, unlike in the Cartesian case. We expect the transmission to
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recover the Cartesian results when ϵ ≪ 1 (and r0 ≫ (m + 1)d), at least for waves

with l ≫ 1. On the other hand, spherical effects are expected to become important

when ϵ ∼ 1 (or r0 ∼ (m+ 1)d) or l ∼ O(1).

3.2 Results for wave transmission

We present our results for the transmission coefficient as a function of incident

wave frequency ω, and horizontal wavenumber k⊥ =
√
l(l + 1)/r, where r will

take the value of the location of the first interface for the incident wave, in a

series of plots for various parameter values (varying m, ϵ, Na and Nb). We have

treated k⊥d as a continuous parameter to aid plotting and interpretation, although

l strictly only takes integer values and therefore gives discrete values for k⊥d.

Unless specified otherwise, we show the downward transmission coefficient in

these figures, according to equation 3.15, thoughwe explore the difference between

this and the upward propagation result in one case (Section 3.2.4).

In each figure, we also over-plot the frequencies of the free modes of the

staircase computed from equation 2.41 using blue dashed lines, in the case where

the staircase is sandwiched between two convective layers (decaying boundary

conditions), following Section 2.4.1. The frequency cut-off for wave propagation in

the end regions, according to equation 3.4 is shown by the solid coloured lines. The

yellow and green lines show the criterion for solutions in the top and bottom layer to

be propagative, respectively, while the red line shows the region in which the wave

is propagative if this region was instead of a staircase a uniformly-stratified layer

with the same mean stratification. For cases in which Na = Nb = N̄ only the red

line is shown and for cases where Na = Nb ̸= N̄ only the red and yellow lines are

shown.

We begin by verifying our method by reproducing results from Cartesian

geometry. To do so, we take the double limit l ≫ 1, and (m+1)ϵ≪ 1, where for the

latter we simply choose ϵ ≪ 1. Figure 3.1 shows the transmission through a one
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m = 1

Tdown

ω/N̄

m = 5

Tdown

ω/N̄

m = 10

Tdown

ω/N̄

Figure 3.1: Transmission coefficient for a downward propagating wave Tdown as a function of
incident wave frequency (ω/N̄ ) and scaled horizontal wavenumber k⊥d =

√
l(l + 1)ϵ, for a range of

step numbers and a fixed small staircase size (m+ 1)ϵ. Top left panel shows (m+ 1)ϵ = 0.01, with
m = 1, the top right and bottom left panels show the samecasewithm = 5 andm = 10, respectively.
Each panel has Na = Nb = N̄ = 1. Over-plotted are the free modes of the same staircase (blue
dashed lines), the frequency limits for wave propagation in the end regions and for the staircase if
this was instead uniformly-stratified (red, close to axis). The bottom right panel shows a 1D profile
at ω = 0.5, for m = 1 (black), m = 5 (green) and m = 10 (blue).
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m = 1

Tdown

ω/N̄

m = 5

Tdown

ω/N̄

m = 10

Tdown

ω/N̄

Figure 3.2: Same as Figure 3.1, except that the staircase is larger relative to the radius of the planet
such that (m+ 1)ϵ = 1.
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(m = 1), five (m = 5), and ten (m = 10) step staircase, assuming ϵ is small. These

agree quantitatively with Figures 9a and 18b in André et al. (2017). We observe

that long wavelength (lowwavenumber) waves are near-perfectly transmitted. This

limit is when the waves “sees” the staircase as a continuously-stratified medium,

and is little affected by the discreteness of the steps. On the other hand, shorter

wavelength waves, such that k⊥d ∼ 1 are only transmitted when they are resonant

with a free mode of the staircase. As a result, we observe bands of enhanced

transmission that align well with the free modes of the staircase as calculated in

Chapter 2.

The number of peaks of enhanced transmission is always one smaller than

the number of free modes of the staircase. The transmission peaks do not lie

directly on top of the freemodes of the staircase, with the agreement depending on

the parameters adopted. This is presumably because the stratified end regions and

the boundary conditions these dictate modify the wave frequencies, as was found

in Chapter 2.

3.2.1 Dependence on ϵ (relative step size)

In spherical geometry, the transmission depends on the relative step size, ϵ, in

addition to how this modifies k⊥. This differs from the Cartesian case in André

et al. (2017) where the two quantities always arise in equations as the product k⊥d.

First, we explore the dependence on step size by fixing the total size of

the staircase x = (m + 1)ϵ and increasing the number of steps, m, therefore

decreasing ϵ.

Figure 3.1 and Figure 3.2 show the overall transmission for x = 0.01 and

x = 1, respectively. In the case of a small staircase (x = 0.01), ϵ remains small for

all panels, leading to little change in the region of transmission. The only observable

effects are the additional and narrower bands of enhanced transmission, reducing

the overall transmission. In the case of the large staircase the variation in ϵ has a



Chapter 3. Transmission through a density staircase in spherical geometry 66

ϵ = 0.01

Tdown

ω/N̄

ϵ = 0.1

Tdown

ω/N̄

ϵ = 1

Tdown

ω/N̄

Figure 3.3: Transmission coefficient for a downward propagating wave Tdown as a function of
incident wave frequency (ω/N̄ ) and scaled horizontal wavenumber k⊥d =

√
l(l + 1)ϵ, for a range of

relative step sizes ϵ. Top left panel shows m = 5 steps, with ϵ = 0.01, the top right and bottom left
panels show the same case with ϵ = 0.1 and ϵ = 1, respectively. Each panel hasNa = Nb = N̄ = 1.
Over-plotted are the free modes of the same staircase (blue dashed lines), the frequency limits for
wave propagation in the end regions and for the staircase if this was instead uniformly-stratified
(red). The bottom right panel shows a 1D profile at ω = 0.5, for ϵ = 0.01 (blue), ϵ = 0.1 (green) and
ϵ = 1 (black).
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greater effect as the size of the staircase is comparable to the staircase radius r0.

We can see the reduced size of the transmission region as ϵ increases, as well as

the additional bands observed before. The frequency range in which a wave-like

solution can exist (described by equation 3.4) also becomes smaller.

By analogywith equation 2.15, we expect that asω decreases kr will increase

and due the dependence of both quantities on l, we note that for a given ω, as

k⊥ increases so will kr. As we expect short radial wavelength waves to be more

strongly affected by the staircase we predict to observe the largest effect on

transmission at high k⊥ and low ω values. This is shown in the bottom right panel of

Figure 3.2 by observing that the peaks at the largest k⊥d for a given ω are affected

the most strongly as ϵ is increased.

Additionally, we explore how the transmission depends on ϵ as the step

number remains constant. Figure 3.3 shows transmission decreasing as ϵ is

increased. As ϵ is increased the peaks of transmission at high k⊥ values become

sufficiently small that these are only visiblewith extra contours for smaller T values.

This behaviour is due to the fact that, as ϵ is increased (for fixedm, ∆ρ and N̄ ), the

total size of the staircase increases, thus the total size of the evanescent layers

increases, leading to reduced transmission. An additional effect of ϵ observed here

is that as ϵ is increased, the transmission peaks shift from lying below to above the

free mode predictions.

3.2.2 Non-uniform step size

In reality, we might expect the sizes and density jumps of the convective layers

to vary. To explore this effect, we consider non-uniformly sized convective layers

by building upon the Cartesian analysis (Sutherland, 2016; André et al., 2017). The
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γ = 0.2

Tdown

ω/N̄

(a)

γ = 0.6

Tdown

ω/N̄

(b)

Figure 3.4: Transmission coefficient for a downward propagating wave Tdown as a function of
incident wave frequency (ω/N̄ ) and scaled horizontal wavenumber k⊥d =

√
l(l + 1)ϵ, for non-

uniform step size and x = (m+1)ϵ = 1. Over-plotted are the freemodes of the same staircase (blue
dashed lines), the frequency limits for wave propagation in the end regions and for the staircase if
this was instead uniformly-stratified (red). Panel a γ = 0.2 and Panel b γ = 0.6.

location of each interface is now taken to be

rn = 1 + nϵn, (3.18)

ϵn = ϵ

(
1 +

γ

n
σn

)
, (3.19)

where γ is a free parameter taken to be less than 1, and σn is a random number

between −1 and 1 for n = 1, . . . , (m− 1), and σ0 = 0 and σm = 0.

Figure 3.4 shows the transmission for two cases with the same set of σn

values with γ = 0.2 and γ = 0.6. We observe the location of the bands of enhanced

transmission have shifted to align with the now irregular spacing of the freemodes.

Overall, the transmission of waves is reduced by the non-uniform step size and

continues to decrease as γ is increased. The bands of enhanced transmission

become narrower. We note that this remains true for a small shift in the interface

locations (γ = 0.2), where the effect on the free modes is small whilst the effect on

transmission remains significant.
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3.2.3 Changing the properties of the end regions (Na, Nb)

The stratification at the bottom and top of the staircase (Na and Nb) can be

varied independently of other staircase properties. Figure 3.5 shows that as the

stratification is altered such that they differ from the mean stratification of the

staircase, the bands of enhanced transmission become narrower with reduced

transmission for adjacent non-resonant modes.

As we require wavelike solutions at both the bottom and top of the staircase,

the range of frequencies transmitted are constrained by the smallest buoyancy

frequency in these regions (Na and Nb), as defined by equation 3.4. The wave is

always evanescent inside the staircase, therefore the value ofmean stratification N̄

does not restrict the range of frequencies transmitted. An interesting consequence

is that this allows the staircase to increase the range of transmitted waves

to frequencies larger than that of the mean stratification, which would not be

transmitted by a uniformly-stratified medium – see the bottom panel of Figure 3.5,

for example.

3.2.4 Testing up/down symmetry

We always observe that the upward and downward transmission differs only by the

definition of incident k⊥d. This symmetry is expected in the Cartesian limit due to

the up/down symmetry of the Boussinesq system (e.g. Sutherland, 2010). However,

this symmetry no longer holds in spherical geometry. Figure 3.6 shows the upward

and downward transmission, where in both cases k⊥d value is taken at the top of

the staircase, k⊥ =

√
l(l+1)

1+mϵ
. The transmission is identical in both cases when we

scale the y-axis in this way. If we were instead to plot the same data as a function

of the incident wavenumber, this would only re-scale the y-axis values in the right

panel. This is consistent with the transmission peaks aligning with the free modes

of the staircase, which do not depend on the direction of propagation of the incident

wave.
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Na = Nb = 0.8

Tdown

ω/N̄

(a)

Na = Nb = 1.1

Tdown

ω/N̄

(b)

Na = Nb = 1.5

Tdown

ω/N̄

(c)

Figure 3.5: Transmission coefficient for a downward propagating wave Tdown as a function of
incident wave frequency (ω/N̄ ) and scaled horizontal wavenumber k⊥d =

√
l(l + 1)ϵ, for a range

of stratification values in the adjacent regions, Na, Nb and a fixed step number, m = 5 and a fixed
staircase size (m+1)ϵ=0.1. Panels a, b, c showNa = Nb = 0.8, 1.1, 1.5, respectively. Over-plotted are
the free modes of the same staircase (blue dashed lines), the frequency limits for wave propagation
in the end regions (yellow) and for the staircase if this was instead uniformly-stratified (red).
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Tdown

/N̄

(a)

Tup

/N̄

(b)

Figure 3.6: Comparison of the transmission coefficient for a downward (Tdown, panel a) and upward
(Tup, panel b) propagating incident wave as a function of the scaled wave frequency (ω/N̄ ) and
horizontal wavenumber k⊥ (specified in the text). Both panels have m = 5 steps, ϵ = 0.1, and
Na = Nb = N̄ = 1. Over-plotted are the free modes of the same staircase (blue dashed lines) and
the frequency limits for wave propagation in the end regions and for the staircase if this was instead
uniformly-stratified (red). This shows the symmetry between upward and downward propagating
waves, even when ϵ is no longer small.

In Cartesian geometry the transmission is also symmetric with respect

to exchanging Na and Nb, which ultimately results from the up/down symmetry

of the Boussinesq system in that case. This can be observed when looking at

transmission in the Cartesian limit (with ϵ = 0.01) in Figure 3.7. On the other

hand, when we increase ϵ, spherical effects become important and the symmetry

between upward and downward propagating waves does not hold whenNa andNb

are swapped. This shows that the Boussinesq symmetry previously observed no

longer holds in the global case. In all cases the effect of reducing the stratification

on the transmission is seen in agreement with the discussion in Section 3.2.3.

3.2.5 Reflection coefficient

We note at this point that it is also possible to consider the reflection coefficient.

This is defined to be the ratio of the radial energy flux of the incident wave (Fin) with

that of the reflected wave (Fre),

R =
Fre

Fin

. (3.20)
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Na = 0.8, Nb = 1.2, x = 0.1

Tdown

ω/N̄

Na = 1.2, Nb = 0.8, x = 0.1

Tdown

ω/N̄

Na = 0.8, Nb = 1.2, x = 1

Tdown

ω/N̄

Na = 1.2, Nb = 0.8, x = 1

Tdown

ω/N̄

Figure 3.7: Transmission coefficient for a downward propagating wave Tdown as a function of
incident wave frequency (ω/N̄ ) and scaled horizontal wavenumber k⊥d =

√
l(l + 1)ϵ, for a range

of stratification in the adjacent regions, Na, Nb and a fixed step number, m = 5. Four cases x = 1
and x = 0.1 and Na = 0.8, Nb = 1.2 and Na = 1.2, Nb = 0.8. Over-plotted are the free modes of
the same staircase (blue dashed lines), the frequency limits for wave propagation in the end regions
(yellow for the top region and green for the bottom, respectively) and for the staircase if this was
instead uniformly-stratified (red).
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By similar analysis as is used to calculate the transmission coefficient, the reflection

coefficient for downward and upward propagating waves can be shown to be,

Tdown =
|Bm+1|2

|Am+1|2
Im[λ∗b− ]

Im[λ∗b+ ]
= −

|X−1
2,1 |

|X−1
2,2 |

, (3.21)

and,

Tup =
|A0|2

|B0|2
Im[λ∗a+ ]

Im[λ∗a− ]
= −|X1,2|

|X1,1|
. (3.22)

As there is no energy source or dissipation in the system, we know that,

R = 1− T, (3.23)

and the results have been validated by plotting R + T , and R + T = 1 was verified

to be true, to within machine precision.

3.3 Conclusion

In this chapter we have presented idealised calculations to study the transmission

of waves in stably-stratified planetary layers containing a layered density structure.

As in Chapter 2, for this first step in using a globalmodel, we have omitted planetary

rotation and adopted a simplified Boussinesq model in spherical geometry.

We have analysed the transmission of internal waves through a density

staircase and found that additionally to the dependence on the freemodes, trends in

the transmission are affected by the parameters of a density staircase. This again

extends and confirms prior work in Cartesian geometry (Sutherland, 2016; André

et al., 2017).

The transmission of internal waves through a density staircase was shown

to be a strong function of the properties of the incident wave and of the staircase.

Waves with large wavelengths are efficiently transmitted, but shorter wavelength

waves (comparable with a step-size) are strongly affected by the staircase and
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can be weakly transmitted. Efficient transmission for short-wavelength waves only

occurs when the incident wave is resonant with a free mode of the staircase.

This agrees with prior results in Cartesian geometry (André et al., 2017). Spherical

geometry introduces an additional frequency cut-off to the propagation of waves

dictated by the allowed frequencies in the adjacent convective regions. This has

the most significant effect on transmission when the staircase size is comparable

with the distance from the centre of the planet.
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Chapter 4

Governing equations and numerical

model

In the following three chapters we explore the tidal dissipation due to internal and

inertial waves in giant planets by examining numerically how stable stratification

can alter the excitation and dissipation of tidally forced waves. In this chapter

we outline our methodology for studying these waves and will address the results

in Chapters 5 and 6. We do this by extending André et al. (2019), in which tidal

dissipation in semi-convective layers is studied in a Cartesian box model. Our

extension employs a global spherical model and adopts similar methods to Ogilvie

(2009).

In this initial study we adopt the simplified Boussinesq approximation, see

Section 1.4, as this is the simplest computationally and allows for complementary

analytical calculations. As we have discussed in the analysis in the preceding

two chapters, although this is not a strictly valid approximation, it is likely to be

reasonable for studying the dominant effects of stable stratification on tidally

forced waves.



Chapter 4. Governing equations and numerical model 76

4.1 Governing equations

We build a global spherical model using spherical polar co-ordinates (r, θ, ϕ), which

are centred on the planet of mass M and radius r0. We will neglect the distortion

from spherical geometry caused by centrifugal effects and tidal forcing by using

spherical harmonics to describe the angular structure of solutions. Neglecting the

tidal deformation is reasonable in giant planets due to the small tidal amplitudes

(see Table 1.1). The neglect of rotational distortion, however, is more significant;

although it would be possible to include this (e.g. Dewberry & Lai, 2022) we choose

not to in this case as it would complicate analysis considerably, and is unlikely to

significantly alter the conclusions.

We now outline how we arrive at the governing equations used in our

numerical calculation. Considering the incompressible form of the momentum

equation,

ρ

(
∂u

∂t
+ u · ∇u+ 2Ω× u

)
= −∇p+ ρg + ρν∇2u− ρ∇ψ, (4.1)

where u, p are velocity and pressure, ρ density and ψ the tidal potential and Ω

the uniform rotation of the body (neglecting differential rotation). We include

dissipative effects, therefore ν denotes the kinematic viscosity which we are

assuming to be constant in space and time. We have neglected self-gravity to

allow us to more easily explore our system analytically and because it is only likely

to lead to a small linear effect on the quantitative results. We linearise about a

stationary background state, ρ = ρ0 + ρ̃, u = ũ, p = p0 + p̃, ψ = ψ̃, where terms

denoted with a subscript 0 refer to the background state and those with a tilde the

Eulerian perturbation. We note that the tidal potential does not have a zeroth order

quantity (Ψ0 = 0) leading to a spherically symmetric background state. By taking

the Boussinesq approximation (see Section 1.4), to first order in perturbation it can

be shown that,

ρ0

(
∂u

∂t
+ 2Ω× u

)
= −∇p+ ρg − ρ0∇ψ + ρ0ν∇2u, (4.2)
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where tildes have been dropped for concise notation. Therefore, by defining the

buoyancy variable b = − ρ
ρ0
, we find,

∂u

∂t
+ 2Ω× u = − 1

ρ0
∇p+ bg −∇ψ + ν∇2u. (4.3)

Note that this is not the standard definition for the buoyancy variable b and does

not have units of acceleration; instead it is a dimensionless quantity. This is done

to allow us to define the radial dependence of the gravitational term separately,

g = −g(r)r̂, which allows for easy manipulation of the model to account for

different gravity profiles. In this study we focus predominantly on the gravity profile

for a homogeneous body by considering g = g0r, where g0 is the surface gravitywith

r measured in units of planetary radius. We will discuss how the results vary for a

centrally condensed mass in Section 5.5, where we consider g = g0
r2
. We consider

our system to be incompressible and conservation of mass gives

∇ · u = 0. (4.4)

Considering the following form of the heat equation (e.g. Landau & Lifshitz, 1987),

∂T

∂t
+ u · ∇T = κ∇2T, (4.5)

where T is our temperature and κ is the thermal diffusivity which, like viscosity, we

consider to be constant in space and time. We again linearise by introducing a small

perturbation, T = T0+ T̃ , u = ũ, and dropping the tildes, the first order perturbation

is
∂T

∂t
+ u · ∇T0 = κ∇2T. (4.6)

Using the thermodynamic relation, ρ = ρ0 − αTρ0T , where αT = 1
V

(
∂V
∂T

)
p
is the

coefficient of expansion of the fluid (Tritton, 2012), it can be shown that

∂b

∂t
+
ur
g
N2 = κ∇2b, (4.7)
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whereN2 is the radially dependent Brunt-Väisälä frequency, or buoyancy frequency,

defined to be,
N2 = g

(
1

Γ1

d ln p0
dr

− d ln ρ0
dr

)
, (4.8)

where Γ1 =
(

∂ ln p0
∂ ln ρ0

)
ad

is the first adiabatic exponent. This is equivalent to the

system used in Chapters 2 and 3, as well as Pontin et al. (2020), except for the

addition of dissipative terms and realistic tidal forcing. As in those chapters, we

approximate the buoyancy frequency to represent a density gradient as

N2 ≈ − g

ρ0

dρ0
dr

. (4.9)

We introduce tidal forcing into our model by considering the dominant l = m = 2

component of the tidal potential, see discussion in Section 1.3.1,

ψ = ψ0 r
2Y 2

2 (θ, ϕ)e
−iωt, (4.10)

where ψ0 =
√

6π
5

M2

M1
ω2
d

(
r0
a

)3. In this case we have taken the l = m = n = 2

dimensional tidal amplitude for a circular orbit as defined in Ogilvie (2014). The

forcing frequency is ω = 2(Ωs−Ωo), whereΩo is the orbital frequency of the satellite

and Ωs the spin frequency of the planet. This is most relevant for a circular aligned

orbit of a non-synchronously orbiting moon.

We expand the perturbations using spherical harmonics with a harmonic

time-dependence such that,

ur(r, θ, ϕ, t) =
∞∑

l=m

ũlr(r)Y
m
l (θ, ϕ)e−iωt, (4.11)

uθ(r, θ, ϕ, t) = r
∞∑

l=m

[
ũlb(r)

∂

∂θ
+
ũlc(r)

sin θ

∂

∂ϕ

]
Y m
l (θ, ϕ)e−iωt, (4.12)

uϕ(r, θ, ϕ, t) = r
∞∑

l=m

[
ũlb(r)

sin θ

∂

∂ϕ
− ũlc(r)

∂

∂θ

]
Y m
l (θ, ϕ)e−iωt, (4.13)

p(r, θ, ϕ, t) =
∞∑

l=m

p̃l(r)Y m
l (θ, ϕ)e−iωt, (4.14)



Chapter 4. Governing equations and numerical model 79

b(r, θ, ϕ, t) =
∞∑

l=m

b̃l(r)Y m
l (θ, ϕ)e−iωt, (4.15)

where the spherical harmonics have been normalized such that,

∫ 2π

0

∫ π

0

[Y m′

l′ (θ, ϕ)]∗Y m
l (θ, ϕ) sin2 θdθdϕ = δl,l′δm,m′ .

The resulting equations are (where again tildes have been dropped for clearer

notation)

(−iω)ulr + 2Ωr
(
− imulb + (l − 1)qlu

l−1
c − (l + 2)ql+1u

l+1
c

)
= − 1

ρ0

dp

dr
+ gbl − dψl

dr
δl,2 − ν

l(l + 1)

r2

[
ulr −

d

dr
(r2ulb)

]
, (4.16)

(−iω)r2ulb + 2Ωr2
(

−im
l(l + 1)

(
ulr
r

+ ulb

)
+
l − 1

l
qlu

l−1
c +

l + 2

l + 1
ql+1u

l+1
c

)
= − pl

ρ0
− ψlδl,2 + ν

[
2ulr
r

+
1

r2
d

dr

(
r4
dulb
dr

)
− (l − 1)(l + 2)ulb

]
, (4.17)

(−iω)r2ulc + 2Ωr2
(

−im
l(l + 1)

uc

+
ql
l

ul−1
r

r
− ql+1

l + 1

ul+1
r

r
+
l − 1

l
qlu

l−1
b − l + 2

l + 1
ql+1u

l+1
b

)
= ν

[
1

r2
d

dr

(
r4
dulc
dr

)
− (l − 1)(l + 2)ulc

]
, (4.18)

1

r2
d

dr
(r2ulr)− l(l + 1)ulb = 0, (4.19)

(−iω)bl +N2u
l
r

g
= κ

[
1

r2
d

dr

(
r2
dbl

dr

)
− l(l + 1)

r2
bl

]
, (4.20)

where ql =
(
l2−m2

4l2−1

) 1
2 , consistentwith those inOgilvie (2009). The equations for each

m are inherently uncoupled due to the axisymmetric basic state, but the Coriolis

term couples components with different angular wavenumber l. Hence, we solve
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our system form = 2 and l from 2 to lmax, where lmax is taken to be sufficiently large

such that the solution converges. Typically when including rotation lmax is taken to

be between 60 and 100.

We non-dimensionalise our system using units of length in terms of the

planetary radius r0, the Boussinesq reference density ρ0 for density, and our unit

of time is the dynamical frequency of the system, ωd =
√
GM/r30 , where G is the

gravitational constant, M the planet mass. Therefore, we introduce the following

dimensionless parameters, r = r0r̂, ur = r0ωdûr , ub = ωdûb, uc = ωdûc, ψ = ψ0ψ̂,

b = b̂, g = g0ĝ, p = ρ0r0gp̂, ω =
√

g0
r0
ω̂, where g0 = ω2

dr0 is the surface gravity. We

then drop the hats to simplify notation, giving us,

(−iω)ulr + 2

√
r0Ω2

g0
r
(
− imulb + (l − 1)qlu

l−1
c − (l + 2)ql+1ξ

l+1
c

)
= − 1

ρ0

dpl

dr
+ gb− ψ0

r0g0

dψl

dr
δl,2 −

ν√
r30g0

l(l + 1)

r2

[
ulr −

d

dr
(r2ulb)

]
, (4.21)

(−iω)r2ulb + 2

√
r0Ω2

g0
r2
(

−im
l(l + 1)

(
ulr
r

+ ulb

)
+
l − 1

l
qlu

l−1
c +

l + 2

l + 1
ql+1u

l+1
c

)
= −pl − ψ0

r0g0
ψlδl,2 +

ν√
r30g0

[
2ulr
r

+
1

r2
d

dr

(
r4
dulb
dr

)
− (l − 1)(l + 2)ulb

]
, (4.22)

(−iω)r2ulc + 2

√
r0Ω2

g0
r2
(

−im
l(l + 1)

uc

+
ql
l

ul−1
r

r
− ql+1

l + 1

ul+1
r

r
+
l − 1

l
qlu

l−1
b − l + 2

l + 1
ql+1u

l+1
b

)
=

ν√
r30g0

[
1

r2
d

dr

(
r4
dulc
dr

)
− (l − 1)(l + 2)ulc

]
, (4.23)

1

r2
d

dr
(r2ulr)− l(l + 1)ulb = 0, (4.24)

(−iω)bl + N2r0
g0

ulr
g

=
κ√
r30g0

[
1

r2
d

dr

(
r2
dbl

dr

)
− l(l + 1)

r2
bl

]
. (4.25)



Chapter 4. Governing equations and numerical model 81

We highlight that we have four key dimensionless parameters,

Ω

ωd

,
N2

ω2
d

,
ν

r20ωd

and
κ

r20ωd

(
or alternatively Pr =

ν

κ

)
,

which are varied in later analysis, and referred to simply as Ω, N2, ν and Pr as we

used units of r0 = 1 and ωd = 1.

4.2 Boundary conditions

In our numerical calculations we enforce boundary conditions at either end of the

domain, which extends from a non-zero inner core boundary αr0 to the planet’s

radius r0. We assume there is a rigid inner core that remains spherical, thereby

neglecting any deformation caused by rotation or the tidal forcing. Therefore, we

impose no normal flow at the inner core,

ulr = 0 at r = αr0. (4.26)

At the tidally-perturbed outer boundary we consider it to be a free surface on which

the normal stresses vanish. Therefore, we consider the perturbations to the normal

stress to include the Lagrangian pressure perturbation∆p, and the normal viscous

stress, i.e.

∆p− 2νerr = (p̃+ ξ · ∇po)− 2νerr = 0, (4.27)

where p̃ is the Eulerian perturbation for this equation only. This can be evaluated to

give the boundary condition,

W − g0
(−iω)

ulr − 2ν
dulr
dr

= ψ0δl2 at r = r0, (4.28)

where g0 is the surface gravity, which can be related to the dynamical frequency of

the system gr̂ = −ω2
drr̂ evaluated at r0, andW = p

ρ0
+ ψ, neglecting self-gravity.

At both boundaries, we consider stress-free conditions (no tangential
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stress), which is consistent with a free surface. Realistically we expect the inner

core would be closer to non-slip but it is numerically convenient to consider

stress-free conditions without it having any significant effect on the qualitative or

quantitative results. This means that

dulb
dr

+
ulr
r2

= 0 at r = αr0 and r = r0, (4.29)

dulc
dr

= 0 at r = αr0 and r = r0. (4.30)

We considered different boundary conditions on the buoyancy variable, however,
we found that there was no significant effect on the results as long as the condition

chosen did not contradict the governing equations. For the results shown in this

study, we have considered the inner core to be fixed entropy, such that there is no

perturbation to the quantity b, i.e.

bl = 0 at r = αr0, (4.31)

and no perturbation to the buoyancy flux through the surface, i.e.

∂bl

∂r
= 0 at r = r0. (4.32)

4.3 Energy balance

As we aim to further understanding on the dissipation of tidally forced internal

waves, so we turn our attention to the energetic quantities and their balances.

Considering the standard definition for work, the mean rate of energy injection by

the tidal forcing is defined to be

I =

∫
V

ρ0
(
u · F

)
dV, (4.33)

where F = −∇ψ is the tidal acceleration.
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Therefore, by taking the scalar product of equation 4.3 with ρ0u, using

equation 4.7 and integrating over the volume, the following energy balance is found,

I =
dEK

dt
+

dEPE

dt
+

1

V

∮
S

pu · dS +Dther +Dvisc. (4.34)

The rate of change of kinetic energy is,

dEK

dt
=

∫
V

ρ0
2

∂|u|2

∂t
dV, (4.35)

and the rate of change of potential energy,

dEPE

dt
=

∫
V

g2

2N2

∂b2

∂t
dV, (4.36)

except when N = 0, in which case EPE = 0 and dEPE

dt
= 0. The volume integrated

viscous dissipation rate is given by,

Dvisc = −
∫
V

ρ0νu · ∇2udV, (4.37)

and volume integrated thermal dissipation rate is written,

Dther = −
∫
V

ρ0κ
g2

N2
b∇2bdV, (4.38)

again as for potential energy when N = 0,Dther = 0.

In Appendix A, we show how the viscous dissipation can be divided into two

separate components. These consist of the viscous dissipation within the bulk of

the fluid and the normal viscous stresses. The viscous dissipation within the bulk

can be written (Ogilvie, 2009),

Dinterior =
ρ0ν

2

∑
l

(
l(l + 1)

(∣∣∣∣ul∗rr + r
dulb
dr

∣∣∣∣2 + ∣∣∣∣rdulcdr

∣∣∣∣2
)

+ 3

∣∣∣∣dulrdr

∣∣∣∣2
+ (l − 1)l(l + 1)(l + 2)

(
|ulb|2 + |ulc|2

))
. (4.39)
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Throughout this thesis when considering viscous dissipation we consider the

quantity defined in equation 4.37, however we note that in this model, with the

parameters considered, the difference between these quantities is negligible.

Using the divergence theorem, the mean energy injection rate from the tidal

forcing can be written in the form,

I =

∫
V

ρ0u · (−∇ψ)dV = −
∮
S

ρ0ψu · dS. (4.40)

In a steady state, averaged over the forcing period of 2π
ω
, the kinetic and

potential energy terms (equations 4.35 and 4.36) will be identically zero. Therefore,

the injection rate I will balance the total viscous and thermal dissipation terms,

Dvsic and Dther. It can be shown numerically that an additional balance between

the dissipation within the bulk of the fluid defined in equation 4.39, and the pressure

integral in equation 4.34 also exists. In the following chapters we will analyse

further how the dissipation ratesDvisc andDther depend on other properties of the

system. For some analysis in this thesis Dther has been calculated by considering

this balance, as it is less numerically demanding to reach a converged result.

4.4 Density structure

We want to consider regions in a giant planet where stable layers have formed,

or which could have evolved into semi-convective layers due to double-diffusive

convection. As discussed in Chapter 1 there are two regions to consider, one

close to the core, or alternatively somewhere near the H/He molecular to metallic

transition radius.

To incorporate both continuous stable stratification and semi-convective

layers in our model, as well as considering multiple locations for these layers, we

define the buoyancy frequency in several ways. First, we consider a density profile

representative of a continuous stably stratified region, with a constantN which sits
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N s

r

0

αr0

βr0

r0

Inner Core

Outer Core

Convective Region

Planet Radius

N s

r

0

αr0

βr0

r0

Figure 4.1: Illustrative examples of the entropy profile and Brunt-Väisälä frequency (N2) for both a
continuously stratified layer (left hand side) and semi-convective layers (right hand side). In both
cases there is a solid inner core that extends to αr0, outer core containing a stable stratification
extending to βr0, and planetary radius r0. The bottom panels show examples of the numerically
smooth profiles used.
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above the solid core extending a defined distance into the planetary envelope. This

is shown on the left hand side of Figure 4.1. This is described by a step function

in the buoyancy profile N2(r) that is non-zero from the inner core boundary αr0 to

the outer core boundary βr0. To allow for numerical calculations to be executed,

when the stable layer does not extend to the planetary surface (β ̸= 1), we consider

a smoothly varying buoyancy profile,

N2(r) =
N̄2

2

(
tanh

(
∆(βr0 − r)

)
+ 1
)
. (4.41)

Unless specified otherwise the value of ∆ = 100. For numerical reasons, the

buoyancy term is set to be identically zero away from the step, when N2(r) < N̄2

107
.

For cases where β = 1 the buoyancy profile is constant throughout the domain,

N2(r) = N̄2. (4.42)

The second density structure used represents a semi-convective structure

with nmax steps within the stratified layer. We want to consider a series of

δ-functions in the buoyancy variable to give a staircase-like density profile, shown

on the right hand side of Figure 4.1. To do this numerically, we consider finitely thin

and smoothly varying interfaces by taking N to be,

N2(r) =


N2

0

2

(
1 + cos

(
2π r−rn

δr

))
|r − rn| < δr

2
,

0 otherwise,
(4.43)

for 1 < n < nmax, where rn = αr0 + nd, d = (β−α)r0
nmax

, and ϵ = δr
d
.

N2
0 is set to a value which gives a mean stratification for the staircase

equivalent to a region with constant stratification N̄2,

N2
0 = N̄2 (β − α)r0

nmax δr
. (4.44)

This allows for comparison between a stratified layer and semi-convective region.
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Note that if β = 1, the profile is adjusted such that the final step isn’t included at

the planetary radius (0 < n < nmax − 1), and N0 is adjusted to maintain the mean

stratification.

Finally, the formulation in equation 4.43 can also be used to represent a

stratified layer at the metallic/molecular transition zone, where instead of multiple

steps we consider one wide step in the transition region,

N2(r) =


N2

0

2

(
1 + cos

(
2π r−β

δr

))
|r − β| < δr

2
,

0 otherwise,
(4.45)

and

N2
0 = N̄2 (r0 − α)r0

δr
. (4.46)

This single step can be used as an isolated region of stable stratification embedded

within a convective medium. The choice of N0 to compare with a stratified layer

across the entire domain is somewhat arbitrary as it is not insightful to make

comparisons between these quantities.

4.5 Frequency-averaged dissipation

Although the response to tidal forcing is known to be inherently dependent on the

forcing frequency (e.g. Ogilvie & Lin, 2004; Fuller et al., 2016; André et al., 2019), to

fully explore the system’s dependence on the parameters and functional form of

the stratification profile, it is helpful to define a quantity that gives a quantitative

measure of the dissipation that can be compared as the parameters are varied.

Therefore, we consider the frequency-averaged dissipation as a measure of overall

dissipation (Ogilvie, 2014),

D̄ =

∫ ωmax

ωmin

D(ω)

ω
dω. (4.47)
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This gives more emphasis to the lower frequency values which are expected to be

more significant when considering a tidally forced system. We take a numerically

appropriate non-zero limit for the lower bound of the integral, found by checking

for convergence of the results. Unless otherwise stated, ωmax is taken to be N̄ .

This allows analysis of the low frequency dependence without it being dominated

by the surface gravity (f-mode) behaviour. Removing the surface gravity mode and

this limit and the 1
ω
weighting is appropriate to study planet-satellite systemswhere

we expect the tidal forcing to be small compared to the dynamical frequency of

the body. Note, in Chapter 6 we compare this quantity with different integrated

quantities.

4.6 Comparison to a simple harmonic oscillator

Parallels exist between the response of a body to a tidal potential and that of a

forced, damped, simple harmonic oscillator. For this reason, a simple harmonic

oscillator is often used as an analogy for a planet-moon system and is helpful for

understanding some of our later results. Considering a forced, damped, simple

harmonic oscillator for a quantity a(t) with a single resonant frequency ω0, we can

write,
d2a

dt2
+ ω2

0a = F̂ cosωt− ϵω0
da

dt
, (4.48)

where F̂ cosωt is the forcing and ϵω0
da
dt

is the damping. By considering a solution

of the form Re[â e−iωt], dissipation can be shown to be,

D =

〈
ϵ
(da
dt

)2
ω0

〉
∝ ϵω0ω

2

(ω2
0 − ω2)2 + ϵ2ω2

0ω
2
. (4.49)

From this we can see there is a resonance at ω = ±ω0 and if we consider the

dissipation at these frequencies, we find

Dmax ∝ 1

ϵω0

, (4.50)
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showing there is a clear inverse relationship between the damping rate ϵ and the

peak dissipation.

We define the edge of a peak to be the frequency at which the dissipation

has decreased to half the maximum peak height. The frequencies either side of

±ω0 where this value is reached are,

ω+, 1
2
=
ω0

2

(
± ϵ+

√
ϵ2 + 4

)
, (4.51)

and similarly for −ω0

ω−, 1
2
=
ω0

2

(
± ϵ−

√
ϵ2 + 4

)
. (4.52)

Therefore the half-width of the peak ∆ is

∆ = ϵω0, (4.53)

showing there is a linear relationship between damping rate and peak width. We

refer to these two relationships when discussing our findings in later chapters.

4.7 Eigenvalue problem

It is informative to see how the dissipation patterns correspond with the expected

freemodes of the system. Althoughwe gained some understanding of the possible

free modes for the inviscid case in Chapter 2, we can also examine these by

considering the numerical eigenvalues of the dissipative system.

To do this we consider the unforced case where ψ0 = 0, which becomes the

following generalised linear eigenvalue problem with eigenvalue (−iω),

(−iω)A


u

p

b

 = B


u

p

b

 , (4.54)
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where A and B are matrices that describe equations 4.21 to 4.25 with ψ0 = 0

and we keep the same boundary conditions. This is then solved using an

inbuilt MATLAB linear algebra routine, to give the eigenvalues (−iω), and the

corresponding eigenvectors for u, p, b. We can then consider the Re[ω] and Im[ω]

parts separately as they are the frequency of themode, and the associated damping

rate, respectively. We use the iterative “eigs” method to scan the relevant frequency

range as a non-iterative method would be prohibitive in its memory requirements

in the rotating case.

4.8 Numerical method

We solve the system of ordinary differential equations in radius, equations 4.21

to 4.25 for each l using a Chebyshev collocation method, where the ordinary

differential equations in r are converted into a linear system of equations on a

Chebyshev grid.

Remembering that the angular dependence has been handled by the use of

spherical harmonics, we consider points in radius as a set of (ncheb + 1) Gauss-

Lobatto-Chebyshev points, which are defined as,

xj = cos

(
jπ

Nc

)
, j = 0, · · · , Nc, (4.55)

where Nc is taken as the value for which convergence is found. This value varies

with choice of density structure and parameters, but we typically take Nc = 100

to Nc = 400. These are an appropriate choice of basis for many non-periodic

problems and have been shown to have good convergence properties (Boyd,

2001). In particular, spectral methods such as this converge exponentially fast with

resolution Nc for smooth solutions (Boyd, 2001).

We consider our system as a linear algebra problem by converting the

differential operators into differentiation matrices using polynomial interpolation
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(Trefethen, 2000; Boyd, 2001). By considering the linear interpolation of a

polynomial p(x), through two data points v0 and v1 at positions x0 and x1,

respectively,
p(x) =

(1 + x)v0 + (1− x)v1
x0 − x1

, (4.56)

for which the derivative is

p′(x) =
v0 − v1
x0 − x1

. (4.57)

We can see in this case that the 2× 2 derivative matrix would be,

D =

 1
x0−x1

−1
x0−x1

1
x0−x1

−1
x0−x1

 . (4.58)

This can be extended to arbitraryNc by considering the general form of polynomial

interpolation (Trefethen, 2000),

pj(x) =
1

aj

Nc∏
k=0
k ̸=j

(x− xk), where aj =
Nc∏
k=0
k ̸=j

(xj − xk), (4.59)

which differentiates to,

p′j(x) = pj(x)
Nc∑
k=0
k ̸=j

(x− xk)
−1. (4.60)

Therefore, the components of the general differentiation matrix are written,

Dij =
1

aj

Nc∏
k=0
k ̸=j

(xi − xk) =
ai

aj(xi − xj)
for i ̸= j, (4.61)

and
Djj =

Nc∑
k=0
k ̸=j

(xj − xk)
−1. (4.62)

The general form for arbitrary Nc on a set of Chebyshev grid points {xj} is

(Trefethen, 2000),

(DNc)00 =
2n2 + 1

6
, (4.63)
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(DNc)NcNc =
−2n2 + 1

6
, (4.64)

(DNc)jj =
−xj

2(1− xj)2
, j = 1, . . . , Nc − 1, (4.65)

(DNc)ij =
ci
cj

(−1)i+j

(xi − xj)
, i ̸= j, j = 1, . . . , Nc where ci

2, i = 0 or Nc,

1, otherwise.

(4.66)

which is shown more clearly in Figure 4.2 taken from Trefethen (2000).

Now we have a linear algebra problem which we solve using the inbuilt

MATLAB routine “mldivide”, where matrices are stored in sparse form to reduce

the numerical memory requirements. The solutions for u, p and b can then be used

in equations 4.37 and 4.38.

Figure 4.2: Schematic of the Chebyshev differentiation matrix using Nc + 1 points, adapted from
Trefethen (2000).
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Chapter 5

Tidal dissipation in stratified planets

Having established the framework for our numerical work in the preceding chapter

we now consider the results for the case of a non-rotating body with Ω = 0. This

will allow us to gain an initial understanding of the system with reduced numerical

cost, and complementary analytical calculations, before turning our attention to the

inclusion of rotation and its additional effects in Chapter 6.

We use the governing equations andmethods introduced in Chapter 4 to find

the eigenvalues and linear response to tidal forcing, including dissipation rates of

the system. We will discuss the basic properties of our system before considering

how the dissipative properties depend on the model’s key parameters, and discuss

the implications for astrophysical tidal evolution.

5.1 Outline of key features

First, we summarise the overarching trends that we observed when evaluating the

frequency dependence of the viscous, thermal and total dissipation, defined by

equations 4.37 and 4.38. We know from previous studies, both with and without

rotation, that the magnitude of the dissipation has a strong dependence on the
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(a) α = 0.1, β = 1.0, N̄2 = 1, ν = κ = 10−6

(b) α = 0.1, β = 0.5, N̄2 = 1, ν = κ = 10−6

(c) α = 0.1, β = 0.5, N̄2 = 1, steps= 3, δr = 0.06, ν = κ = 10−6

Figure 5.1: Illustrative examples of the dissipation as a function of frequency with eigenvalue
solutions and analytical calculations for two cases considering uniform stratification (panels a
and b), and one considering semi-convective layers (panel c). The y-axis values for the analytical
calculations are arbitrary and those for eigenvalue frequencies are the associated damping rates.
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forcing frequency (e.g. Ogilvie & Lin, 2004; Ogilvie, 2009; André et al., 2019) and

indeed we find this again here.

Illustrative examples for three different profiles are shown in Figure 5.1,

where we can see a strong frequency dependence. They show viscous (Dvisc),

thermal (Dtherm), and total (Dvisc + Dtherm) dissipation rates as a function of the

forcing frequency (ω). The eigenvalue solutions for the frequencies of the free

modes for each case have been found using the methods described in Section 4.7.

These are shown by the purple squares and in this case we plot the frequency of

the mode (Re[ω]) on the x-axis and the damping rate (Im[ω]) on the y-axis. The

green crosses show the analytical calculation for the frequencies of the g-modes,

as derived in Appendix B. Circles show the analytical calculation for the frequencies

of the f-mode, shown in Appendix C. For all analytical calculations the y-axis values

are arbitrary. Dissipation D is measured in units of ρ0r50ω3
d , and ω is shown in

units of ωd. In all three cases we have fixed the following parameters; inner core

α = 0.1, mean stratification N̄ = 1,viscosity, thermal diffusivity and Prandtl number

ν = κ = 10−6, Pr = 1.

Figure 5.1a is an example of a fully stratified interior, where a stably stratified

layer with constant buoyancy frequency N̄ = 1 extends from the solid inner core all

the way to the planetary radius, described by equation 4.41 with β = 1 and N̄ = 1.

Figure 5.1b similarly contains a uniformly stratified region, however in this case it

extends to half the planetary radius (β = 0.5). Finally, Figure 5.1c has a stratified

layer that is equivalent to that shown in Figure 5.1b but with a staircase structure

as described by equation 4.43 with β = 0.5. In this case we consider also steps= 3

and δr = 0.06. In these (and all following non-rotating) cases we only show positive

frequencies as the results are symmetric about ω = 0, D(ω) = D(−ω), leading to

no further information when considering negative frequencies.

In all three cases we observe many tall narrow peaks of enhanced

dissipation which occur over an extended frequency range. We note that the

locations and magnitudes of these peaks vary considerably between these three
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(a) α = 0.1, β = 1.0, N̄2 = 1, ν = κ = 10−6 ,
ω = 0.1474

(b) α = 0.1, β = 1.0, N̄2 = 1, ν = κ = 10−6 ,
ω = 1.565

Figure 5.2: Illustrative examples of the forced response at two different frequencies for uniform
stable stratification with constant N2. Panel a is an example of an internal gravity wave (g-mode)
and panel b a surface gravity (f-mode) wave.

examples. This is due to the strong link between the stratification profile and

the properties of the modes, something we explore further in this section. This

is carried out by examining the peaks and trends in dissipation, as well as

comparisons to both the eigenvalue solutions from Section 4.7 and analytical

calculations for the modes from the Appendices B and C.

Uniform stable stratification extending to the planetary radius

We look first at Figure 5.1a, in whichwe are considering uniform stable stratification

with N2 = 1 throughout, which allows for internal gravity waves (g-modes) to be

excited and subsequently dissipated. These appear as a regular, discrete set of

peaks, visible at frequencies less than N̄ , in agreement with the expected range.

The purple squares are the frequencies found from the corresponding eigenvalue

problem, where the x-axis is the frequency of oscillation Re[ω], and the y-axis

is the magnitude of the damping rate of the mode Abs
[
Im[ω]

]
; note all modes

are stable, as expected for N̄ > 0. We see very good agreement between the
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eigenvalue solution and the sharp resonant peak and a clear increase in damping

rate as the forcing frequency decreases. This corresponds with the clear decrease

in peak height and increase in width in agreement with our expectations based

on the forced damped simple harmonic oscillator discussed in Section 4.6. The

green crosses which represent the analytical prediction of the internal gravity mode

frequencies also agree well with the dissipation peaks. The slight discrepancies are

expected due to neglected factors in the analytical calculation (viscosity, thermal

diffusivity, and the departure from the free-surface condition by the use of solid wall

boundary conditions). The discrepancies aremore significant at higher frequencies,

although these solutions have a larger characteristic wavelength and are therefore

less affected by viscosity; they are more affected by the free surface condition,

which has a larger contribution to shifting the mode frequency. In this case we do

not have a straightforward value for the damping rate as dissipation was neglected

to allow for analytical solutions, therefore the y−axis value is arbitrary.

To understand the mode properties further we look at the spatial structure

of the solutions at a given frequency. Figure 5.2a shows the forced response

for the uniform case shown in Figure 5.1a at a frequency of ω = 0.1474, well

within the range characteristic of internal gravity waves (ω < N̄ ). We observe

a series of oscillations in r, characteristic of an internal gravity wave, where the

number of nodes (and corresponding wavelength) is frequency dependent, with

wavelength decreasing with decreasing frequency. Figure 5.2b shows the solution

at ω = 1.565, also for the model shown in Figure 5.1a. This is the surface gravity

(f-mode) response, introduced because we are using the free surface boundary

condition at the planetary surface. It corresponds to the large peak around ω = 1.5,

approximately ω = ωd

√
ℓ with l = 2. This is the expected location of the surface

gravity mode for a homogeneous body, neglecting self-gravity, being forced with

a l = m = 2 forcing term (Barker et al., 2016). In this case the mode has been

shifted to a higher frequency due to effects of both the finite core size and stable

stratification. The analytical approximations incorporating both of these shifts are

provided in Appendix C and are plotted on Figure 5.1a. The shift due to a stably
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(a) α = 0.1, β = 0.5, N̄2 = 1, steps= 3, ν = κ = 10−6 ,
ω = 0.4037

(b) α = 0.1, β = 0.5, N̄2 = 1, steps= 3, ν = κ = 10−6 ,
ω = 0.09359

Figure 5.3: Illustrative examples of the forced response at two different frequencies for semi-
convective layers with a staircase-like density structure. Panel a is an example of an interfacial
mode where the staircase interfaces give a "g-mode like" response, and Panel b a short wavelength
g-mode forming within the finite width of an interface.

stratified interior is shown by the blue circle and can be seen to agree well with

the resulting resonance; the shift due to a finite core size in this case is far less

significant than the shift due to stratification and therefore can be neglected. The

shape of this response is characteristic of a Y 2
2 spherical harmonic shape, which

can be identified by the single zero crossing in θ, as the number of zero crossings is

equal to l− |m|. Note this calculation neglects rotation and therefore we only solve

for l = m = 2 as all l’s are decoupled.

Uniform stable stratification extending to half the planetary radius

Figure 5.1b, the case where uniform stratification extends to half the planetary

radius, has many similar properties to Figure 5.1a. We again see the regular,

discrete set of peaks at frequencies less than the buoyancy frequency, ω < N̄ ,

corresponding to internal gravity modes, and a resonance with the surface gravity
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mode around
√
2, all of which agreewell with the eigenvalue solutions. However, we

can also see there are a number of differences, most notably in our agreement with

analytical calculations. The agreement with the analytical calculation of the internal

gravity modes (Appendix B) is significantly worse. As we are now considering

a stratified layer beneath a convective medium, the use of solid wall boundary

conditions is more significant. The frequency of the surface gravity mode peak

agrees more closely with the predicted shift due to a finite core than that of a

stratified planet, which is expected because our analytical calculation neglects the

convective envelope. Finally we note that the overall magnitude of dissipation is

lower; this will be discussed further in Section 5.2.2. Further analysis of the spatial

structure shows similar behaviour as in the previous case and therefore has not

been included.

Staircase structure extending to half the planetary radius

Figure 5.1c shows the dissipation in a system with a semi-convective layer where

a staircase-like density profile sits above the core, extending to half the planetary

radius, above which we have a convective region. This is relevant as a staircase is

a potential result of double-diffusive convection in giant planet interiors. As in the

first two examples, we see good agreement with the eigenvalue solutions (purple

squares) in both oscillatory frequency and damping rate.

The staircase we are considering has three steps and we observe three

clear corresponding peaks. These peaks align with three interfacial gravity wave

frequencies of the system which correspond to the modes found and discussed

in Chapter 2 and Pontin et al. (2020). Figure 5.3a shows the forced solution at

ω = 0.4037, where the adjacent interfaces can be seen to be oscillating out of phase

with one another, exhibiting "g-mode like" behaviour. Thismode is analogous to that

of an internal gravity mode with three interior nodes. The green crosses show the

predicted values for an equivalent uniformly stratified layer, and we can see that

although the interfacial mode peaks appear in the same frequency range as the
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internal gravity modes ω < N̄ , the exact frequency of the peaks has been shifted

due to the properties of the staircase.

Additionally in Figure 5.1c, we can see a small collection of resonances at

low frequencies, approximately near ω = 0.1, an example of which is shown in

Figure 5.3b. These are internal gravity wave modes sustained by the finite width

of the interfaces. These small regions of stable stratification allow the internal

modes to exist, which in turn allow wave resonances at low frequencies. The blue

crosses predict the internal gravity mode resonances expected to form within the

finite width of the interface (Appendix B), and can be seen to correspond to the

additional peaks observed. We expect slightly different frequencies for each of the

three steps, however here we plot just one set for clarity.

The surface gravity (f-mode) response is again significant in Figure 5.1c,

however is no longer significantly affected by the stably stratified layer. As we can

see the shift due to a finite core at α = 0.1 (red circle) predicts the location of the

peak well, but the adjustment predicted by stratification does not, due to its neglect

of the convective region from βr0 to r0.

5.1.1 Travelling wave regime

To aid understanding of our numerical results we first consider an analytical limit

of our model. We assume that the dampingmechanism is sufficiently efficient that

a wave propagating inwards is fully damped before reflecting from the core and

forming a standing wave. Therefore, we can assume that all the energy from the

wave is dissipated into the system and equate the inward travelling energy flux with

the total tidal dissipation rate. In this model our damping mechanism is kinematic

viscosity, and thermal diffusivity and therefore this regime applies to low frequency

waves which have sufficiently short wavelengths.

For this approximation to hold, we consider frequencies for which the

damping timescale is shorter than the group travel time. Full mathematical details
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ν = κ

N̄
0.1 1 5

10−2 0.128 0.717 2.40

10−4 0.0403 0.227 0.758

10−6 0.0128 0.0717 0.234

10−8 0.00403 0.0227 0.0758

Table 5.1: The critical frequency ωcrit approximately below which the travelling wave approximation
is valid, for different damping rates (ν, κ) and stratifications (N̄ ), and α = 0.1, β = 1.0. The values
have been calculated with equation 5.1.

of the calculation are found in Appendix D, where the critical frequency is found to

be approximately

ωcrit =
(
(1− α)r0(ν + κ)(Nk⊥)

3
) 1

4 . (5.1)

For reference, the critical frequencies for some parameter values are shown in

Table 5.1. Although we are only considering low frequencies, this regime is

potentially relevant for planetary applications if the forcing frequency is sufficiently

low compared with the dynamical frequency of the planet, provided the waves are

fully damped. As this calculation is independent of the damping mechanism it

therefore holds when considering other mechanisms such as wave breaking or

critical layer absorption, provided complete absorption has also occurred (Barker &

Ogilvie, 2010; Su et al., 2020).

Figure 5.4a shows the radial dependence of the solution at a forcing

frequency of ω = 0.05 for various different viscosity and thermal diffusivity values,

with other parameters kept fixed at α = 0.1, β = 1, N̄ = 1 and Pr = 1. We can see

that as the viscosity increases, as well as altering the wavelength of the solution

(see Section 5.2.3), the depth within the planet that the wave propagates to before

being absorbed is decreased. We see that for both the ν = 10−2 (black solid) and

ν = 10−4 (red-dashed) cases, which are well below the critical frequency at which

the waves are absorbed before reaching the inner boundary. For the ν = 10−4 (blue-

dotted) case where we are approaching the critical frequency the wave propagates
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(a) Radial dependence of forced solution to illustrate the propagation depth
and critical frequency, for α = 0.1, β = 1.0, N̄ = 1, ω = 0.05.

(b) Total dissipation for analytical travelling wave calculation (crosses and
straight lines) and numerical result (solid line). Vertical lines show the
critical frequency given by equation 5.1.

(c) Comparison of the analytical travelling wave calculation and the
numerical frequency-averaged dissipation using ωmax = ωcrit.

Figure 5.4: Comparison of the travelling wave calculations and numerical results, for all cases α =
0.1, β = 1 and in Panel c ν = κ = 10−4.
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most of theway through the interior. Finally in the ν = 10−8 (green dot-dashed) case

we are above the critical frequency and the wave behaviour extends throughout the

entire domain.

As complete wave absorption has occurred, we only need to consider the

inwardly travelling component of the wave solution, setting the outward coefficient

to be identically zero. This allows us to calculate the total energy flux in the wave

and equate it to the total dissipation. Fullmathematical details of the calculation are

found in Appendix D, where we show that if β = 1, the total dissipation is described

by

DTW =
|ψ0|2r50N̄ω2

2
√
l(l + 1)

. (5.2)

Figure 5.4b shows the analytical dissipation as described by equation 5.2,

compared to numerical results for three cases. All three cases have α = 0.1, β = 1,

and the blue, red and yellow lines are for N̄ = 1 and ν = κ = 10−4, N̄ = 1 and ν =

κ = 10−6, and N̄ = 5 and ν = κ = 10−4, respectively. We can see when comparing

at low frequencies there is particularly good quantitative agreement between the

travelling wave calculation (crosses) and numerical results (solid lines), where both

follow a clear ω2 trend with the same slope. The dashed lines indicate the critical

frequencies below which this approximation would be valid, and we can see that

this estimation approximately holds.

At sufficiently low frequencies we observe no dependence on viscosity or

thermal diffusivity as both the blue and red lines agree. As we assume the wave is

fully damped, the timescale over which dissipation occurs is not then significant. By

comparing the blue and yellow lines, we can see that there is a linear dependence

on N̄ , showing the strength of the stable stratification does play an important role

in the magnitude of dissipation.

In Appendix D we also find the frequency-averaged travelling wave

dissipation defined by equation 4.47. When we take limits of ωmin = 0 and
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ωmax = N̄ , it is found that

D̄TW =
|ψ0|2r50N̄3

4
√
l(l + 1)

, (5.3)

and when we take ωmax = ωcrit and ωmin = 0, we find

D̄TW =
|ψ0|2r50N̄

5
2 (β − α)

1
2 (ν + κ)

1
2 (l(l + 1))

1
4

4
. (5.4)

We compare the travelling wave frequency-average dissipation to the

numerically equivalent calculation, using ωcrit as our upper integration bound in

both cases. Figure 5.4c shows that the numerical calculation agrees well with the

travelling wave approximation, where we have α = 0.1, β = 1, ν = κ = 10−4 and we

vary N̄ . We can see that for small values the agreement is almost exact, and only

begins to deviate for N̄ > 1. This agrees with the departure between analytical and

numerical results seen in Figure 5.4b, and is a result of the relevant damping per

wavelength decreasing as we increase N̄ , to be discussed further in Section 5.2.1.

5.2 Parameter dependences for uniform stable

stratification

Moving on, we now consider how the key parameters in our model alter the

expected viscous, thermal and total dissipation, by varying each parameter in turn.

For reference, Table 5.2 has been created to give some astrophysical context to the

parameters explored.

5.2.1 Varying the strength of the stable stratification

Perhaps themost important parameter when considering stable stratification is the

buoyancy frequency, N̄ , which is ameasure of the strength of the stratification as it

dictates the density/entropy gradient. Planetary evolutionmodels and observations
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Planet Buoyancy Frequency Dilute Core Size Viscosity Prandtl Number

Units s−1 ω−1
d Reference km r0 Reference m2s−1 ν

r20ωd
Reference Reference

Jupiter 34956 ∼ 0.5 Wahl et al. (2017) 3× 10−7 to 10−5 1× 10−13 to 3× 10−12 Guillot et al. (2004) 10−4 to 10−1 Guillot et al. (2004)
48938 ∼ 0.7 Debras & Chabrier (2019)

Saturn
0 to 8.8× 10−4 0 to 2 Mankovich & Fuller (2021) 34939 ∼ 0.6 Mankovich & Fuller (2021)
0 to 8.8× 10−4 0 to 2 Fuller (2014) 23293 ∼ 0.4 Fuller (2014)

Neptune 17336 ∼ 0.4 Bailey & Stevenson (2021)

Table 5.2: Estimates for parameters in Jupiter and Saturn, in SI units and the non-dimensional units used in this study. Data taken from various sources
spanning different techniques.
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(a) ν = κ = 10−4 (b) ν = κ = 10−6

Figure 5.5: Frequency-averageddissipation as a function of stratification strength N̄ for twodifferent
viscosities and thermal diffusivities. In both cases ωmax = N̄ and α = 0.1, β = 1.0.

give a range of results for the properties of the stable stratification, therefore

here we explore what implications different values could have, using the values in

Table 5.2 to motivate our parameter surveys.

Figure 5.5 shows the frequency-averaged dissipation as a function of N̄

showing the viscous D̄visc, thermal D̄ther , and total D̄total frequency-averages, where

integration limits have been taken as ωmin = 0 and ωmax = N̄ . In both cases we

are considering a uniform stable stratification extending to the planetary radius,

therefore α = 0.1 and β = 1, however we consider two different values for the

viscosity and thermal diffusivity, such that Figure 5.5a is for the case ν = κ = 10−4

and Figure 5.5b for ν = κ = 10−6. At this stage we simply note the similarity

between the two plots and discuss them concurrently, expanding on the similarities

further in Section 5.2.3. There is a clear N̄3 dependence when N̄ < 1, which agrees

with the analytical travelling wave calculation given by equation 5.3 discussed

previously. This holds despite the change in the limit used for ωmax, as in this

case we have integrated beyond the critical frequency so would not necessarily

expect complete agreement. We note that the same trend is exhibited in both

the thermal and viscous dissipation as the resonant waves dissipate through both

mechanisms.
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(a) ν = κ = 10−4 (b) ν = κ = 10−4

(c) ν = κ = 10−6 (d) ν = κ = 10−6

Figure 5.6: Panels a and c show dissipation rate as a function of frequency for different magnitudes
of uniform stable stratification. Panels b and d show the radial dependence of ur for the given
parameters. Note the y−axis has been scaled for illustrative purposes, (N̄ = 1, ω = 0.1) × 50,
(N̄ = 1, ω = 0.3)× 5, (N̄ = 0.1, ω = 0.01)× 500.

Figures 5.6a and 5.6c show the frequency dependence of dissipation for

the cases, which when integrated, give the data for the frequency-averaged values

shown in Figures 5.5a and 5.5b respectively. The x-axis has been scaled by N̄ in

these figures to allow for easy comparison. We can clearly see the characteristic g-

mode peaks that appear at a similar location in ω
N̄

in each case. The first mode,

located just below N̄ , contains one node in radius, therefore the wavelength is

equal to the layer depth. Following on from this, additional lower frequency modes

correspond to waves with additional nodes, which have lower frequencies and

shorter wavelengths. These exist as an infinite set of nodes, see equation B.17,

however the first 10 have been plotted in this case. The frequency of the internal

gravity modes obtained analytically is linear in N̄ , therefore when plotting on the ω
N̄
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axis the predictions lie on top of one another. The modes of the full system clearly

have a dependence on N̄ , and roughly speaking the N̄ < 1 trends deviatemore than

N̄ > 1 cases. There are several factors in balance here; the effect of neglecting

viscosity and thermal diffusivity is more prevalent at low frequencies and low N̄ ,

and the effect of the free surface is more prevalent at frequencies comparable with

ωd and large N̄ . It is the balance between these opposing effects that gives the

non-obvious dependence in accuracy.

As N̄ increases, more resonances are visible as clear peaks and the modes

appear to be narrower and sharper. Though this is initially counter-intuitive, as the

eigenvalue solutions, shown by the squares with the corresponding colour, show

that the damping rate increases with N̄ , it can be explained by considering the

relevant time scales. If we consider the ratio of the group travel time to the damping

time, we find the following,

tg
td

=
2(β − α)r0k

2
r

k⊥N̄
÷ 2

(ν + κ)k2r
=

(ν + κ)(β − α)r0
N̄

k4r
k⊥
. (5.5)

We can see that this ratio is linearly dependent on N̄ and therefore despite the

overall damping rate (∝ t−1
d ) increasing the “damping per wave crossing time"

decreases which leads to sharper and narrower peaks.

Figures 5.6b and 5.6d show the forced solution for ur as a function of r

for different frequencies and stratification strengths, but note the y-axis has been

scaled so all examples can be viewedononeplot. All the cases shownare examples

of internal gravity (g-mode) waves as shown in Figure 5.2a. Both the wavelength

and amplitude of the solutions are strongly dependent on the forcing frequency and

stratification. The amplitude (not shown on these plots), depends on how close the

forcing frequency is to a resonance, where we note that dissipation is proportional

to amplitude squared.

By comparing the solid black (N̄ = 1, ω = 0.1) and red-dashed (N̄ = 1,

ω = 0.3) lines we can see that decreasing the forcing frequency (i.e. ratio of ω
N̄
),

decreases the wavelength. Each peak in dissipation corresponds to a resonance
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(a) (b)

Figure 5.7: Frequency-averaged dissipation as a function of stratified layer size α and β. In both
cases ωmax = N̄ and other parameters are fixed, N̄ = 1, ν = κ = 10−6.

where a multiple of half-integer wavelengths fit within the stratified layer. This

relationship can be more clearly seen in the ν = κ = 10−6 case as the frequencies

shown are both well above the critical frequency (ωcrit = 0.072). By comparing the

black solid line (N̄ = 1, ω = 0.1) with the blue-dotted line (N̄ = 0.1, ω = 0.01) and

the red-dashed line (N̄ = 1, ω = 0.3) with the green dot-dashed line (N̄ = 5, ω = 1.5)

we can see that the wavelengths are roughly comparable for the same ω
N̄
. Again,

proximity to the critical frequency affects the robustness of this result.

5.2.2 Varying the size of the stably stratified layer

As we have outlined in Chapter 1, in realistic planetary models we expect the stable

stratification would not extend all the way to the planetary radius but sit below

a convective region. It is therefore informative to consider the consequences of

varying the radius of the stratified layer. We now consider a buoyancy frequency as

described in equation 4.41 with β ̸= 1. As our numerical model requires a finite size

solid core for regularity of the solutions, we must consider a non-zero inner core

size αr0, therefore, along with β, we explore how this parameter alters the results.

Figure 5.7a shows how the frequency-averaged dissipation varieswithα and

β, for N̄ = 1, ν = κ = 10−6. Figure 5.7b shows the same parameter values but in
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(a) (b)

Figure 5.8: Panel a shows total dissipation rate as a function of frequency for variousα and β values.
Panel b shows the radial dependence of the ur for given parameters.

this case we have calculated the corresponding volume of the stratified layer for

each pair of α and β values. The darker coloured lines show the dependence on

α for a fixed β = 1.0, and the lighter lines show the dependence on β for fixed

α = 0.1. When fitted, the β dependence is roughly D̄ ∝ β5, which we note is

the same as the dependence on r0 found in the travelling approximation when

considering β = 1, see equation 5.2. It is clear from Figure 5.7b that there is a

strong volume effect, for which total dissipation decreases as the volume of the

stratified layer decreases. However as these results found in Figure 5.7b do not

show a strictly linear relationship, there are additional dependencies on α and β

that are independent of the volume of the layer.

This result is due to a combination of factors altering the amplitude of

the forced response, which can be related to the rate of dissipation. Firstly, the

waves are launched from the outer edge of the stratified layer at βr0 and propagate

inwards. The initial amplitude of the forced wave depends on this radius and

decreases as β decreases. However in the case of a standing wave the amplitude

increases as the wave propagates inwards, leading to larger rates of dissipation

close to the inner core.

The frequencies of the internal gravity modes depend strongly on α and

β. This is expected as the resonant frequencies depend on the half-integer
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wavelengths that fit inside the stratified layer, as shown by equation B.17. The

solutions for a forcing frequency of ω = 0.1 are shown in Figure 5.8b, where the

differences in wavelength are clear. The green-dashed line shows the case where

the stratified layer only extends to half the planetary radius, where the wavelike

behaviour can be seen to be confined to the stratified region and not persist in the

convective region, in which the solution is evanescent.

5.2.3 Varying viscosity, thermal diffusivity and Prandtl number

The interiors of giant planets are, like most astrophysical fluids, expected to

consist of regions of low viscosity, thermal diffusivity and Prandtl number, as

we indicate in Table 5.2. It is often numerically unrealistic to carry out studies

in this parameter regime as the time and length scales required to be resolved

are extremely small. For the purposes of our calculations, this means we would

require very high radial resolution to resolve tidally forced waves with realistic

planetary properties. Therefore, studies like ours must focus on parameter values

that are more numerically achievable. In this section we also consider numerically

convenient values, which allows us to explore the likely trends in dissipation rates.

Initially we consider cases with a constant Prandtl number, while varying

viscosity ν , and thermal diffusivity κ, simultaneously. In Figure 5.9a for which

α = 0.1, β = 1.0, N̄ = 1 we can see that the frequency averaged dissipation has

little dependence on viscosity and thermal diffusivity. This is a useful result when

considering average trends for planetary applications, since realistic parameters

are likely to be far from those considered here. This means that the overall

frequency-averaged dissipative properties are insensitive to diffusivities, even if the

dissipation at a given frequency is strongly dependent on these values.

This can be explained by considering the low-frequency and mid-frequency

regimes separately. For frequencies sufficiently low that the travelling wave

approximation is valid (see Section 5.1.1), the result is found to be independent
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(a) Pr = 1

(b) κ = 10−2 (c) ν = 10−8

Figure 5.9: Frequency-averaged dissipation as a function of viscosity, thermal diffusivity and Prandtl
number, for α = 0.1, β = 1.0, N̄ = 1. In all cases ωmax = N̄ .

of damping mechanism and therefore each of ν , κ and Pr. To consider the mid-

frequency range where resonant peaks are clear, we refer back to the analogy

of a forced damped harmonic oscillator discussed in section 4.6. There we

established that the width of the peak was proportional to the damping rate, and

the height of the peak inversely proportional to the damping rate. Therefore, upon

integration, they have counteracting effects in the frequency-averaged dissipation,

this is confirmed in Figure 5.10a, where these effect are visible. Although the

point at which we transition into the travelling wave regime varies considerably, see

Table 5.1, this has no effect on the overall results.

In Figure 5.10a we also observe that the effect of viscosity on the frequency

of the internal gravity modes is very small, in fact the dependence is not observable

on the scale of these plots. Instead, the mode frequency is strongly dependent on
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(a) Dtotal (b) ω = 0.1

(c) Viscous dissipation (d) Thermal dissipation

Figure 5.10: Panel a shows total dissipation as a function of frequency for different viscosities and
thermal diffusivities with Pr = 1. Panel b shows the radial dependence of ur at forcing frequency
of ω = 0.1 for the given parameters. Panels c and d show the viscous and thermal dissipation,
respectively, for ν = 10−8.

the location and strength of the stable stratification, which is kept constant across

these cases.

Figure 5.10b shows the radial dependence ofur at a tidal forcing frequency of

ω = 0.1 for different viscosities and thermal diffusivitieswith a fixed Prandtl number

Pr = 1. At this tidal forcing frequency we are below the regime in which a discrete

set of resonances are visible at all but the lowest viscosity, and it is clear in the case

of the largest viscosity that we are in the travelling wave regime. We observe that,

although the integrated dissipation is independent of viscosity, the spatial structure

of the response, like the frequency dependent dissipation, is sensitive to viscosity

and thermal diffusivity.
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Turning our attention now to varying the Prandtl number, Figure 5.9b and

5.9c show the frequency-averaged dissipation as a function of Prandtl number. We

consider two cases, one of fixed viscosity ν = 10−8, and the other fixed thermal

diffusivity κ = 10−2, both cases again fix α = 0.1, β = 1.0 and N̄ = 1 as

before. We find the integrated dissipation Dtotal has very little dependence on

Prandtl number and the main consequence of decreasing Prandtl number is the

subsequent decrease in the ratio of Dvisc to Dther ; we also note the similarity

between the figures despite the significant variation in total diffusivity ν+κ. Looking

at the frequency dependence in Figures 5.10c and 5.10d, we see the width and

height of the resonant peaks also exhibit the expected behaviour similar to the

forced damped harmonic oscillator.

5.3 Parameter dependences for semi-convective

layers

As it is possible that stratified layers in giant planets could be unstable to double-

diffusive convection, leading to the presence of staircase-like density structures,

we now consider how semi-convective layers can alter the measured dissipation.

Instead of a uniformly stratified medium, we now consider a series of convective

steps with stably stratified interfaces, as described by equations 4.43, which have

an equivalent mean stratification to a uniformly stratified layer of equal depth.

5.3.1 Convergence with step number

Shown in Figures 5.11a and 5.11b is the frequency-averaged dissipation as a

function of step number for cases in which the staircase extends across the entire

depth of the planet. In both cases we fix α = 0.1, β = 1, N̄ = 1 and ν = κ = 10−6,

but in Figure 5.11a the width of each interface is fixed, and in Figure 5.11b the total

width of all interfaces is fixed with the height of the peaks adjusted accordingly.
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(a) Fixed step width, δr = 0.03 (b) Fixed total step width,
∑

δr = 0.54

Figure 5.11: Frequency-averaged dissipation as a function of the number of steps in a staircase, for
α = 0.1, β = 1.0, N̄ = 1, ν = κ = 10−6.

(a) δr = 0.03 (b)
∑

δr = 0.54

Figure 5.12: Dissipation as a function of frequency for different numbers of steps with fixed α = 0.1,
β = 1.0, N̄ = 1, ν = κ = 10−6. Panel a shows the case for fixed step width δr = 0.03. Panel b
shows the case for fixed total step width

∑
δr = 0.54.

Although it is likely that a staircase structure does not extend all the way to the

planetary surface, we have considered β = 1 in these cases to reduce the required

radial resolution, allowing us to consider cases with a higher step number whilst

keeping numerical demand low. In both cases the total dissipation D̄total for the

equivalent uniformly stratified case has been plotted (black-dashed line).
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(a) Varying N̄ with fixed ν = κ = 10−6 , steps= 3 (b) Varying N̄ with fixed ν = κ = 10−6 , steps= 3

Figure 5.13: Panel a shows the frequency-averaged dissipation as a function of stratification
strength, N̄ for the case of a staircase-like density structure with other parameters fixed at α = 0.1,
β = 1.0, steps = 3, δr = 0.06, ν = κ = 10−6. Panel b shows the corresponding frequency
dependence.

Although for very low step numbers these cases exhibit slightly different

trends, where the total dissipation is larger than that of a uniformly stratified

layer, the total frequency-averaged dissipation very quickly converges to that of

the uniform stratified layer. There is large uncertainty in the number of steps that

could form, and it is likely to evolve with time as they merge (Belyaev et al., 2015;

Wood et al., 2013); however this suggests unless there are very few layers in the

system the staircase will act similarly to a uniformly stratified medium, although it

will depend of the frequency on the tidal forcing.

The frequency dependence of the dissipation profiles for different step

numbers is shown in Figures 5.12a and 5.12b for fixed stepwidth and fixed total step

width respectively. We see additional peaks arising with increasing step number

and observe low frequency internal gravity mode resonances at low frequencies.

These shortwavelengthmodes have formedwithin the finitewidth of the interfaces,

in the case of a fixed step size they occur for ω < 0.2, and have little contribution to

the frequency-averaged dissipation. However, in the case of fixed total step width

they occur at much higher frequencies (ω < 0.5 in steps = 1 case). This is due to

the large interface width in the case of a single layer, allowing for internal gravity

waves with comparably large wavelengths to form.
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5.3.2 Varying the strength of the staircase stratification

Aswe did for the uniformly stratified case, we consider how the frequency-averaged

dissipation rate depends on the strength of the stratification in Figure 5.13a. We

see that the trend found in Section 5.2.1, and the agreement with the travelling

wave calculation, holds here also as the staircase-like structure behaves like a

uniform medium. This suggest that the results from this calculation could be

useful in this case also and looking at the dissipation profile in Figure 5.13b, we

can see the same narrowing of peaks as stratification strength increases. The

notable difference between these cases is the behaviour of the g-modes forming

within the interfaces. The resonances with these modes can be seen to increase

significantly with stratification, and in fact even with only moderate stratification

(N̄ = 5) they have a magnitude comparable to that of the interfacial modes, and

therefore contribute significantly to the frequency-averaged dissipation.

5.4 Isolated stable layer - Helium rain layer

Having explored a stable layer just outside the core, we now consider an isolated

stable layer near the transition region between the metallic and molecular regions,

potentially caused by Helium rain, see Chapter 1. We use equation 4.43 to describe

a single wide step (δr = 0.1) to represent an isolated transition layer. In Figure 5.15a

we show total dissipation (Dtotal) for caseswhere N̄ = 1, ν = κ = 10−6, andα = 0.1.

The location of thewide interface is varied using β, which here represents the centre

of the layer. We see the large surface gravity resonance about ω = 1.6, the single

interfacial mode (where the layer oscillates as an interface) between ω = 0.6 and

ω = 1.5, and a series of shorter wavelength internal gravity mode resonances at

low frequencies.

There are two things to note in this figure. First, the frequency of the

interfacial mode depends strongly on the location of the layer β, which could have

consequences when considering observations of mode-mixing or the possibility of

resonance-locking (Fuller, 2014; Fuller et al., 2016; Dewberry et al., 2021). Second,
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(a) ωmin = 0, ωmax = 2 (b) ωmin = 0, ωmax = 0.6

Figure 5.14: Frequency-averaged dissipation as a function of Helium layer location for cases with
α = 0.1, N̄ = 1, δr = 0.1, ν = κ = 10−6.

(a) α = 0.1, N̄ = 1, δr = 0.1, ν = κ = 10−6 (b) α = 0.1, N̄ = 1, δr = 0.1, ν = κ = 10−6 , β = 0.7

Figure 5.15: Panel a shows dissipation as a function of frequency for an isolated stable layer at
different radii. Panel b shows the radial dependence of the forced solution at different frequencies.

the amplitude of the interfacial and surface gravity mode peaks decrease in height

as the layer moves outwards whilst the internal gravity waves peaks increase in

magnitude. Figure 5.14 shows the frequency-averaged dissipation, and we can see

in panel a where the upper frequency limit has been taken to be ωmax = 2, that

dissipation decreases as the layer is moved outwards. However, in panel b we

take ωmax = 0.6 so that the integrated quantity only includes the internal gravity

wave resonances within the step, there is a increase in dissipation. Therefore, the

importance and consequences of an isolated stably stratified layer depends on

whether the forcing frequency is close to the interfacial mode resonance or the

internal gravity mode resonances.
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(a)

Figure 5.16: Dissipation rates for a case considering the gravity profile of a dense core. Parameter
values are α = 0.1, β = 1.0, N̄ = 1, ν = κ = 10−6. The solid lines show results for g ∝ 1

r2 and the
dashed lines g ∝ r for comparison.

5.5 Gravity profile for a dense core with g ∝ 1/r2

So far in this thesiswe have considered a gravity profile suitable for a homogeneous

body where g ∝ r. We do not expect a planet to be a homogeneous body

and therefore consider how changing this profile to consider the gravity field of a

centrally condensed body affects our results. To do this, we consider g ∝ 1
r2
, which

results in the following governing equations, but note that the surface gravity g0 is

still 1,

∂u

∂t
= − 1

ρ0
∇p+ b

r2
r̂ + ν∇2u−∇ψ, (5.6)

∂b

∂t
+ r2urN

2 = κ∇2b, (5.7)

with similar changes in the boundary conditions and dissipation calculations. We

note that the buoyancy force and gravity term appear on their own, in the same

term in equation 5.6, and in the absence of thermal diffusivity, equation 5.7 could

be rearranged similarly. This results in an identical calculation for the analytical

prediction of free modes, and the differences in the forced response arise solely in

the buoyancy variable directly affecting thermal dissipation only. Hence, we expect

the dissipative responses to be very similar for both gravity profiles.
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Our numerical results have confirmed this and we found that changing the

gravity profile did not significantly alter our conclusions. As expected the resultant

velocity, and in turn, the viscous dissipation remained unchanged and only the

thermal dissipation varies. Figure 5.16a shows the total, viscous and thermal

dissipation rates with the gravity profile of a dense core (solid line) compared with

that of a homogeneous body (dashed line), where we note only minor quantitative

differences.

5.6 Comparison to realistic values and observed tidal

quality factors

Here we have discussed a simplified model and the values for tidal dissipation

rates found here should not be taken too far out of this context. However, it is

still informative to consider the extrapolation of our results to compute tidal quality

factors to appreciate the astrophysical significance of our results. Following Ogilvie

(2014), the total tidal dissipation rate can be related to the dimensionless complex

Love number by

D = |ω|(2l + 1)r0|A|2

8πG
Im[kml (ω)]. (5.8)

Therefore considering for a homogeneous fluid body that Im[km2 (ω)] = 3
2Q′ and

A = ψ0r
2
0 , we can write,

Q′ = |ω|(2l + 1)r30|ψ0|2

8πG

3

2D
. (5.9)

Therefore, using the non-dimensionalisation used previously, noting that G = 1 in

our units, the tidal quality factor can be written in terms of our variables as,

Q′ = |ω|(2l + 1)|ψ0|2

8π

3

2D
. (5.10)
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Figure 5.17: Tidal quality factor for the case shown in Figure 5.1a, with parameters, α = 0.1, β = 1.0,
N̄ = 1, ν = κ = 10−6.

We note that as we have considered the linear problem,D ∝ ψ2
0 and thereforeQ′ is

independent of tidal amplitude. Setting l = 2 and |ψ0| = 1 as we have considered

in our numerical results, we find

Q′ =
15|ω|
16πD

. (5.11)

Therefore, taking our first example of a dissipation profile shown in Figure 5.1a, we

can find the frequency-dependent tidal quality factor shown in Figure 5.17.

Using the formula for dissipation found using the travelling wave

approximation, equation 5.2, we find,

Q′ =
30
√
6

16π

1

N̄ |ω|
. (5.12)

From this it is possible to calculate quantities such as the circularisation timescale.

Taking from Barker (2020) the timescale for circularisation as

τe =
2

63
Q′
(
M

M2

)(
M +M2

M

) 5
3 P

13
3

orb

P
10
3

dyn

, (5.13)

and using some approximate numbers for which we use the values for the hot

JupiterWASP-12b, data taken fromExoplanet.eu (2022),M = 1.5MJ = 2.8×1027kg,

M2 = 1.4M⊙ = 2.9 × 1030kg, Porb = 1.1 days, r0 = 1.9RJ , Pdyn = 0.26 days, and a
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rough estimation of the tidal quality factor from Figure 5.17 of Q′ = 103. Thus,

τe ≈ 1.2× 103 years, (5.14)

which shows there could be efficient tidal circularisation is possible with the

excitation of internal waves.

Similarly we can take from Barker (2020) the calculation for the timescale of

orbital migration from initial orbit with semi-major axis a to an orbit with semi-major

axis 2a due to dissipation inside the planet as,

τa =
4

117

(
2

13
2 − 1

)Q′

Ωo

(
M2

M

)(
a

R

)5

, (5.15)

where we have assumed Ω0 ∝ a−
3
2 and Q′ ∝ Ωs. Using values for Io and Jupiter

taken from the Jet Propulsion Laboratory (2022) M = MJ = 1.90 × 1027kg, M2 =

8.93× 1022kg, R = RJ = 6.99× 104km, a = 4.22× 105km, ω ≈ 4.2× 10−5seconds−1

and again taking a rough value for tidal quality factor to be Q′ = 103 we find,

τa ≈ 5.0× 105 years. (5.16)

Although such efficient dissipation rates would require large portions of the planet

to be stably stratified, this calculation indicates the potential importance of such

layers on tidal dissipation rates.

5.7 Conclusion

In this chapter we have used the model outlined in Chapter 4, combining

numerical and analytical techniques, to gain understanding of how the tidally forced

dissipation depends on some of the parameters in our system, particularly those

that dictate the properties of a stably stratified layer. Our numerical calculations

allow us to consider the dissipation of internal waves through viscous forces and
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thermal damping using realistic tidal forcing. We used a numerically smooth profile

to represent uniform stably stratified layers that extend to a specified radius or a

staircase-like density structure.

As expected from previous studies (e.g. Ogilvie & Lin, 2004; Ogilvie, 2009;

André et al., 2019), we observed a strong frequency dependence in the dissipation

rate in which there are clear resonances with the modes of the system. In this non-

rotating system, when considering uniformstratificationweobserve internal gravity

modes, resonant within the width of the layer. In the case of a staircase-like density

profile, we observe interfacial modes as well as short wavelength internal gravity

modes that form within the width of the interfaces. In both cases we observe a

large resonance with the surface gravity mode. We found good agreement with

both the oscillation frequency and damping rate with the eigenvalue problem and

analytical calculations of the free modes.

We quantify the dissipation using a frequency-averaged quantity, which

allows us to determine overarching trends on the parameters of the system. Using

this quantity, we establish that the dissipation rate is proportional to stratification

strength N̄ and depends on radius of stratification as ∝ β5. These results agree

with the corresponding analytical calculation in the travelling wave regime. We

found the integrated dissipation rates to be largely independent of viscosity and

thermal diffusivity, despite the differences in the frequency dependent profiles. This

is a useful result as our parameter values lie outside the range of realistic values

due to computational constraints. This is also in agreement with the analogy

with a damped harmonic oscillator, where we established that the peak width is

proportional to the damping rate, and peak heights are inversely proportional to

damping, resulting in counteracting effects in the integrated quantity.

When comparing a staircase-like profile with an equivalent uniformly

stratified layer, we found that provided there are a sufficient number of steps (a few)

the staircase acts like that of a uniformly stratified layer inmost cases. Despite this,

however, it does alter the frequency dependent dissipation, particularly in frequency



Chapter 5. Tidal dissipation in stratified planets 124

ranges containing resonances, so it could impact the dissipation rate significantly

depending on the tidal forcing frequency. When considering the case of an isolated

stratified layer near the molecular/metallic transition region, we observe a large

resonance corresponding to a single interfacial mode. This can have a significant

contribution to the overall dissipation rate and due to the magnitude of this single

resonance could have an impact for resonance locking scenarios. The stable layer

also supports short wavelength internal gravity waves leading to low frequency

resonances that contribute to the dissipation rate.

Overall, we found that stable stratification, whether a uniform layer, a

staircase-like structure, or a Helium rain layer, can contribute to the dissipation

rate by the introduction of additional resonances into the system. Even in cases

where the contribution to the integrated dissipation quantity is low, the properties

of the stable stratification can have a strong effect at particular frequencies, which

if sufficiently close to those of the tidal forcing, could have implications for orbit

and spin migration rates.
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Chapter 6

Tidal dissipation in rotating and

stratified planets

In this final results chapter, we are considering a rotating body to study the

preliminary effects rotation has on the dynamics. We continue to use the governing

equations and numerical methods that were outlined in Chapter 4, however, unlike

in the preceding chapter we now consider cases in which Ω ̸= 0. Most notably,

this allows for inertial and gravito-inertial waves to be excited and subsequently

dissipated (see Section 1.5). This is a more realistic model as it is likely that the

Coriolis force is important for planetary applications, in particular at the frequencies

of tidal forcing in these systems.

6.1 The additional properties of a rotating system

The additional excitation of inertial wave andgravito-inertial waves (over the internal

gravity waves, interfacial waves and surface gravity waves observed in Chapter 5)

means we now see more resonances at low frequencies that align with these

modes. Figure 6.1a shows the viscous (Dvisc), thermal (Dtherm), and total (Dtotal)

dissipation rates for a rotating body with Ω = 0.4 for which α = 0.5, N̄ = 0
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(a) α = 0.5, N̄2 = 0 (b) α = 0.1, β = 0.5, N̄2 = 1

Figure 6.1: Illustrative examples of the dissipation as a function of frequency in two models with
the addition of rotation, and the eigenvalues solutions over-plotted for both cases. One example
of an entirely convective interior outside a solid inner core (panel a) and one with a stratified layer
extending to half the planetary radius (panel b). In both cases we keep Ω = 0.4, ν = κ = 10−6.

and ν = κ = 10−6. We adopt Ω = 0.4 throughout most of this chapter as

this is approximately Saturn-like. This portrays a planet in which a large solid

core is surrounded by a well-mixed convective envelope allowing for pure inertial

waves to be excited in this envelope at low frequencies |ω| < 2Ω = 0.8, as well

as the surface gravity modes at higher frequencies. We can observe the peaks

of enhanced dissipation close to resonances with inertial modes leading to the

irregular frequency dependence characteristic of these modes. We used a large

core size here to enhance the appearance of inertial waves in the tidal response,

in order to illustrate their properties (Ogilvie, 2009; Rieutord, 2009; Rieutord &

Valdettaro, 2010). The eigenvalues (purple squares) agree well with the locations

and heights of the peaks, where the least dampedmodes correspond to the largest

resonances, with the strongest dissipation. In this case only the least damped

modes have been plotted, with the cut-off chosen purely for aesthetic reasons.

As in the non-rotating case, we excite the large surface gravity mode

resonance around ω = 1, however in this case it has been shifted to a significantly

lower frequency. It can be shown (e.g. Lebovitz, 1961; Barker et al., 2016), that

rotation causes the splitting of this mode for a given l and different m values.

For example, in Lebovitz (1961) where they consider a rotationally deformed, self-

gravitating body, in the limit is small rotation (deformation) the l = 2 surface gravity
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(a) ω = 0.181 (b) ω = 0.561

Figure 6.2: Illustrative examples of the forced response in a convective envelope, for which α = 0.5,
β = 1.0, N̄2 = 0, Ω = 0.4, ν = κ = 10−6. Both panels are examples of tidally-forced inertial waves
with Panel a an example with a lower forcing frequency.

mode is split into fivemodes, ω = ω0− m
2
Ω, wherem = −2,−1, 0, 1, 2 and ω0 is non-

rotating frequency ω0 = ±ωd

√
l. Similar results could be obtained in this model

and as we are restricted to m = 2 due to the symmetry, in our system only the

m = 2 splitting of the mode is relevant and appears as a shift in the location of the

surface gravity mode. There is an additional resonance close to ω = 1.8, which is

caused by the coupling of different spherical harmonics due to the Coriolis force

and therefore corresponds to resonance with the l = 4, m = 2, surface gravity

mode (again shifted due to the splitting). Around ω = 1.5 there is an eigenvalue

solution that does not align to any peak, this corresponds to the l = 3 surface

gravity mode which, although a solution to the unforced eigenvalue problem, is not

excited in reality, as although all l’s are coupled by the Coriolis force, the symmetry

in the l = 2 tidal forcing means that only modes with the same symmetry (i.e.

equatorially symmetric in ur and therefore even l form = 2) are excited.
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(a) ω = 0.514 (b) ω = 0.95

Figure 6.3: Illustrative examples of the forced response within a planet with a stably stratified core
and convective envelope. In both cases we keep α = 0.1, β = 0.5, N̄2 = 1, Ω = 0.4, ν = κ =
10−6. Panel a shows gravito-inertial waves in the stratified layer and inertial waves in the convective
envelope. Panel b shows gravito-inertial waves in the stratified layer only.

In Figures 6.2 to 6.4 we show the spatial structure of our forced response,

which is consistent with previous studies incorporating rotation and stratification

(e.g. Rieutord & Valdettaro, 1997; Dintrans et al., 1999; Ogilvie & Lin, 2004; Rieutord,

2009). In Figure 6.2, we show the spatial structure of the forced response at two

different forcing frequencies, and we observe the inertial wave beams that form

in the convective shell. Figure 6.2a and Figure 6.2b show the spatial structure for

forcing frequencies ω = 0.181 and ω = 0.561, respectively. It can be shown using

the dispersion relation, equation 1.32, that

cos θi =
ω

2Ω
, (6.1)

where θi is the angle between the rotation axis Ω̂ andwavenumber k̂. By comparing

the two cases we see the expected correspondence between the angle of the wave

beam with the axis of rotation and forcing frequency.
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(a) ω = 0.732

Figure 6.4: Illustrative examples of the forced response within a rotating planet with a stratified
layer, showing a gravito-inertial wave response. Parameters are α = 0.5, β = 1.0, N̄2 = 1, Ω = 0.4,
ν = κ = 10−6.

Figure 6.1b shows a similar but potentiallymore realistic casewhere instead

of a large solid core we consider a stably stratified layer that extends to half

the planetary radius. Therefore we consider a buoyancy profile described using

equations 4.41 with α = 0.1, β = 0.5, and N̄ = 1. We have kept rotation, viscosity,

and thermal diffusivity constant with Ω = 0.4, ν = κ = 10−6. This is also equivalent

to the case considered in Figure 5.1b but with the addition of rotation. Therefore

as well as exciting the inertial waves in the outer convective envelope, as observed

in the solid core case, we also excite gravito-inertial waves in the extended stably

stratified layer over a larger range of frequencies |ω| <
√
N̄2 + 4Ω2 = 1.28.

In Figure 6.3a we consider the spatial structure of the forced solution at

a frequency of ω = 0.514, a frequency which is within the range of both gravito-

inertial waves and inertial waves if N̄ = 0. We observe both these waves to be

excited, the gravito-inertial waves within the stratified core, and the inertial waves

within the convective envelope. At this point we note the similarity between the

spatial structure in the outer envelopewith the example shown in Figure 6.2bwhere
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Figure 6.5: Illustrative example of the dissipation rate as a function of tidal forcing frequency for both
positive and negative frequencies. The model considered is the same as that shown in Figure 6.1a
with α = 0.5, N̄ = 0, Ω = 0.4, ν = κ = 10−6.

the forcing frequency is similar. When we consider a higher frequency ω = 0.95,

outside the inertial wave range but within the gravito-inertial wave range, shown in

Figure 6.3b, we can see that only gravito-inertial waves within the stably stratified

layer are excited.

Finally, Figure 6.4 is an example of a gravito-inertial wave excited in a stably

stratified envelope around a solid core, where in this case α = 0.5, β = 1.0, N̄ = 1,

ν = κ = 10−6. This demonstrates how in a region with stable stratification, instead

of the straight lines characteristic of an inertial wave we observe the curved lines

characteristic of the gravito-inertial waves (Dintrans et al., 1999).

Negative frequencies

One significant differences between the tidal response in a rotating and a non-

rotating case is the breaking of the symmetry between negative and positive forcing

frequencies, such that D(ω) ̸= D(−ω). Figure 6.5 shows the dissipation rate

for both positive and negative tidal forcing frequencies for the same model as is

shown in Figure 6.1a, with α = 0.5, N̄ = 0, Ω = 0.4, ν = κ = 10−6. At low
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magnitude frequencieswe have additional Rossbymodes (also known as planetary

waves). Rossby modes can be found by considering conservation of vorticity, and

in the absence of a background flow and stratification, have a dispersion relation

(Papaloizou & Pringle, 1978; Zaqarashvili et al., 2021),

ω = − 2mΩ

l(l + 1)
, (6.2)

which has strictly the opposite sign to rotation (retrograde). Additionally (and

again in the absence of stratification), purely toroidal modes can be excited with

a dispersion relation (Ogilvie, 2009),

ω = − 2Ω

m+ 1
, (6.3)

where again we note the strictly negative frequency. At higher magnitude of

frequencies, the direction of the shift in frequency of the surface gravitymode again

depends on the sign of Ω, which we also observe.

Although this does affect the dissipation rate at some forcing frequencies

(e.g. Ogilvie, 2009), and may well have implications when comparing to real

observational quantities, due to time constraints and to allow easier comparison

with the non-rotating system, we continue to discuss only the positive frequencies

here. This is reasonable as we are primarily concerned with the overarching

behaviour of themodes in general rather than specific resonances, therefore expect

our conclusions to hold generally for negative frequencies.

6.2 Dependences on the parameters of the system

As we did for the analysis carried out in Chapter 5, we again would like to further

understand how the dissipation depends on the parameters of the system. In this

chapter however we consider two different frequency weightings. We continue

to consider the frequency-averaged dissipation introduced in Section 4.5 that
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was used in Chapter 5, however in some circumstances we consider a different

weighting,

D̄2 =

∫ ωmax

ωmin

D(ω)

ω2
dω. (6.4)

We consider this quantity as it allows for comparisonwith the impulsive calculation

in Ogilvie (2013), where in the low frequency limit, for the unstratified case with a

solid core, they used impulsive forcing to calculate the associated energy transfer Ê

analytically. They find that Ê ∝
∫
Im[kml ]/ω dω, which can be shown to correspond

tidal dissipation by

Ê =
1

2π

∫ ∞

∞

D

ω2
dω, (6.5)

which has an ω−2 dependency, motivating this weighting.

We note that in many of the parameter ranges considered in the

rotating cases, the highest frequency gravito-inertial waves can have frequencies

comparable to those of the surface gravity modes, therefore it is not always

possible to separate the behaviour of these two types of modes. Unlike in the

non-rotating case where ωmax = N̄ was an obvious limit to take to include internal

gravity modes and exclude the surface gravity mode behaviour, we can’t make the

same assumption here about the gravito-inertial wave limit ωmax =
√
N̄2 + 4Ω2.

We include some examples of an integrated quantity in this chapter, as it still

has illustrative uses, but we emphasise that these results should be interpreted

with caution as the frequency-averaged dissipation measure is less robust to the

frequency interval considered than in the non-rotating case.

6.2.1 Dependence on rotation rate Ω

Having introduced rotation as a new and key element in the problem, we first

turn our attention to altering this parameter and studying the consequences. We

focus on two key profiles, a stably stratified layer extending across the entire planet

β = 1.0 and a stably stratified layer that extends to half the planetary radius β = 0.5,

with a well-mixed convective region above.
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(a) D̄ =
∫
D/ω dω (b) D̄ =

∫
D/ω2 dω

(c) D̄ = (1/∆ω)
∫
D dω

Figure 6.6: Comparison of different frequency weightings for the frequency-averaged dissipation as
a function of rotation rate. Other parameters are fixed at α = 0.1, β = 0.5, N̄ = 1, ν = κ = 10−6. In
all cases the integration limits have been taken to be ωmin = 0 and ωmax =

√
N̄ + 4Ω2.

In Figure 6.6 we consider just the case for which only half the planet is stably

stratified, β = 0.5, and first compare the outcomes of three different weightings for

the integrated (frequency-averaged) dissipation rate. We consider: the 1
ω
weighting

used in Chapter 5, the 1
ω2 weighting for comparison with Ogilvie (2013) and a "mean

average", which we define to be D̄ = 1
ωmax−ωmin

∫
D dω. In all three cases we have

kept the integration limits the same as the range for gravito-inertial waves, ωmin = 0

and ωmax =
√
N̄2 + 4Ω2; the same quantity for the corresponding non-rotating

case has been plotted for reference in each case. We can see that there is a slight

quantitative difference between these three weightings but there are no qualitative

differences. In all three cases we see that the dissipation is larger than found in

the non-rotating case and a large jump between Ω = 0.2 and Ω = 0.4. However, we

remember than in the case of rotation, ωmax =
√
N2 + 4Ω2 is no longer a robust limit
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and it ismore instructive to consider the frequency dependent solution. Considering

the vertical lines in Figure 6.9, which mark the gravito-inertial wave limit, we can

see that for the rotation rates Ω = 0, 0.1, 0.2, the surface gravity mode is well above

ωmax, whereas for Ω = 0.4, 0.6, it is below this limit. In fact, we see that in the case

of Ω = 0.6, the surface gravity mode no longer appears as an isolated peak. It is

therefore likely that the surface gravity mode is to a large part dictating the trends

observed in Figure 6.6.

In Figure 6.7 we consider different integration limits, again showing all three

frequency weightings. On the left-hand side, we consider a lower upper limit

ωmax = 1 which removes the surface gravity mode from most cases (for Ω = 0.6

the surface gravity mode is still included). We can see that in all three plots the

frequency-averaged quantities increase away from the non-rotating baseline as

rotation rate increases and the inertial wave response is enhanced. On the right-

hand side, we consider a higher integration limit ωmax = 1.8, which incorporates the

surface gravity mode behaviour in all cases. Using this limit, we observe that there

is a difference between the different weightings and in fact the weightings that give

themost emphasis to dissipation due to inertial wave excitation shows an increase

in the averaged quantity as rotation rate increases.

We also consider the case in which the stratified layer extends to the

planetary radius β = 1.0, Figure 6.8 with all other parameters fixed at α = 0.1,

N̄ = 1, ν = κ = 10−6. Due to the similarities between the weightings, we have

shown here just the frequency-averaged measure used in the non-rotating case,

but we have included all three limits of integration discussed so far in this section.

We see that the trends observed in the case of β = 0.5, hold here. The only key

difference is that, for data points in which the surface gravity mode is not included

in the integration, the overall dissipation is lower in the case of β = 0.5, as the low

frequency dissipation rate is lower in this case.

Due to the uncertainty in the integrated quantity, it is important to discuss

the profiles of the frequency-dependent dissipation alongside the spatial structure



Chapter 6. Tidal dissipation in rotating and stratified planets 135

(a) D̄ =
∫
D/ω dω, ωmin = 0, ωmax = 1 (b) D̄ =

∫
D/ω dω, ωmin = 0, ωmax = 1.8

(c) D̄ =
∫
D/ω2 dω, ωmin = 0, ωmax = 1 (d) D̄ =

∫
D/ω2 dω, ωmin = 0, ωmax = 1.8

(e) D̄ = (1/∆ω)
∫
D dω, ωmin = 0, ωmax = 1 (f) D̄ = (1/∆ω)

∫
D dω, ωmin = 0, ωmax = 1.8

Figure 6.7: Comparison of different frequency weightings and integration limits for frequency-
averaged dissipation as a function of rotation rate. Other parameters are fixed at α = 0.1, β = 0.5,
N̄ = 1, ν = κ = 10−6.
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(a) D̄ =
∫
D/ω dω, ωmin = 0, ωmax = 1 (b) D̄ =

∫
D/ω dω, ωmin = 0, ωmax =

√
N2 + 4Ω2

(c) D̄ =
∫
D/ω dω, ωmin = 0, ωmax = 1.8

Figure 6.8: Comparison of integration limits for the frequency-averaged dissipation as a function
of rotation rate for a fully stratified planet. Other parameters at fixed at α = 0.1, β = 0.5, N̄ = 1,
ν = κ = 10−6.

of the forced solution. Figures 6.9a and 6.9b show the total dissipation (Dtotal)

for four different rotation rates, as well as the corresponding non-rotating cases

from Chapter 5 (black-dashed line); the cases shown are for β = 1 and β = 0.5,

respectively. We can see that there is a non-trivial balance between the roles of the

buoyancy and Coriolis forces. In all rotating cases we see gravito-inertial waves in

the expected range ω <
√
N̄2 + 4Ω2. As well as observing the increasing range

of modes we also see that the irregular pattern characteristic of inertial modes

is more pronounced as rotation rate increases. Indeed, at a low rotation rate,

Ω = 0.1, the profile is similar to that of Ω = 0, as the buoyancy forces appear

to dominate. We also note when comparing the two figures that in the case of

a partially stratified planet, varying rotation has a more pronounced effect. This
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(a) β = 0.5

(b) β = 1 (c) β = 1

Figure 6.9: Frequency dependence of the dissipation rate for varying rotation rates, in all cases
α = 0.1, N̄ = 1, ν = κ = 10−6. Panel a shows a stratified layer extending to half the planetary
radius, panels b and c show a uniform layer extending to the planet radius, with c showing just the
low frequency regime (travelling wave).

is because the stratified layer acts similarly to a large solid core, enhancing the

excitation of inertial waves, which are not excited in a homogeneous full sphere.

Figure 6.9c, shows the low frequency range in the case of a stratified layer extending

to the planetary surface. We can see that at low frequencies there is a clear

dependence on Ω, which transitions between the two regions. It is possible that

similar analysis to that carried out in the travelling wave regime in Section 5.1.1

(and has been considered for other models such as Papaloizou & Savonije (1997);

Ogilvie & Lin (2004); Chernov et al. (2013)) could explain this dependence but this

we leave as an open question.

Turning our attention to the spatial structure we consider Figure 6.10 which

shows the forced solution for the four different increasing rotation rates (rows)
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ω = 0.25 ω = 0.95 ω = 1.1

Ω = 0.1

Ω = 0.2

Ω = 0.4

Ω = 0.6

Figure 6.10: Examples of the spatial structure for different rotation rates and forcing frequencies, in
all cases we consider a stably stratified layer extending to half the planetary radius α = 0.1, β = 0.5,
N̄ = 1, ν = κ = 10−6.
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(a) D̄ =
∫
D/ω dω, ωmin = 0, ωmax = 1

Figure 6.11: Frequency-averaged dissipation as a function of core size. Comparison cases where a
convective layer sits above a solid core (N̄ = 0 and varying α) with a case where a stably stratified
layer extends to the same radius (N̄ = 1, α = 0.1, varying β). Other parameters kept constant at
Ω = 0.4 and ν = κ = 10−6.

with increasing forcing frequency (columns). We see clear agreement with the

predicted range for inertial and gravito-inertial waves in the convective envelope and

outer core, respectively, as wemove between the different regimes. Additionally we

observe largermagnitude inertial waves as rotation rateΩ increases, corresponding

to the larger rates of dissipation. Note the changing colour bars between the

different cases.

6.2.2 Dependence on core size

A large area of uncertainty is how far a stable layer that forms would extend

throughout a planetary interior, with current estimations varying significantly, see

Table 5.2. We know from previous studies that the size of a solid core can

significantly enhance the excitation of inertial waves. Here we compare two

scenarios, caseswith a solid core with a convective envelope above (N̄ = 0, varying

α) and caseswhere a small solid core is surrounded by a stably stratified layer again

beneath a convective envelope (N̄ = 1, α = 0.1, varying β).

Figure 6.11 shows the frequency-averaged profiles for these two cases. The

darker lines show the case without stratification where the dependence on the

radius of the solid core α, whilst the lighter coloured lines show the cases with a
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(a) N̄ = 0 and varying α (b) N̄ = 1, α = 0.1, varying β

(c) Core extending to 0.25r0 (d) Core extending to 0.55r0

(e) Core extending to 0.85r0

Figure 6.12: Frequency dependence of the dissipation rate for different core sizes, comparing both
a solid core and stably stratified core, in all cases Ω = 0.4, ν = κ = 10−6. Panels a and b show
a solid core and stratified layer, respectively, for different core sizes. Panels c to e compare a solid
core to a stratified layer for three different radii.
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stably stratified core β. The black line shows the equivalent trend found in the non-

rotating cases, where we consider a small core with a stably stratified region above.

We can see that, in both cases, the frequency-averaged dissipation shows a strong

dependence on core size, but this trend varies between the two core types. For

core sizes less than 0.5r0 there are larger dissipation rates where there is a stably

stratified core; for larger core sizes (perhaps larger than would be expected in the

case of Jupiter and Saturn), we see the opposite trend. This suggests that for the

smaller core sizes, the stratified layer acts as a solid core for the excitation of inertial

waves, with additional contribution to the overall dissipation rate arising from the

excitation of gravito-inertial waves in the stratified layer. We consider the trend

found for a larger core with caution, as when considering the frequency-dependent

dissipation in Figure 6.12, we can see that for these cases the surface gravity mode

has shifted to frequencies less that the integration limit ω = 1 when considering a

solid core which contributes to the dissipation rate.

Considering further the frequency-dependent dissipation rate in Figure 6.12,

we can understandmore about the contribution of a stratified core. In Figures 6.12a

and 6.12b we compare cases with differently sized cores for a solid core and

a stratified core, respectively. In both cases, we see that the magnitude of the

resonances increases as the core size increases, but we note however some

differences. For cases with a stratified core, we observe the increased frequency

range of the resonances matching that of gravito-inertial waves rather than inertial

waves. Additionally, in the case when a stably stratified layer extends to 0.7r0, there

are regular discrete peaks that are characteristic of internal gravity waves dominate

around a forcing frequency of 0.2. In Figures 6.12c to 6.12e, we have compared the

total dissipation rates for cases with a solid core and stably stratified core for three

different radii, 0.25, 0.55 and 0.85. We can see clearly that for the smallest core size,

the inertial wave response is very similar in both cases, departing from each other

at frequencies around 0.6 − 0.9 only. However, as we increase the core size we

increase the contribution of the gravito-inertial waves so this agreement is worse.

Indeed, when the core extends as far as 0.85r0, we can see at frequencies less
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than 0.6, the dissipation rate in the case of a stably stratified core resembles that of

the results found in the equivalent non-rotating system, more than the equivalent

solid core case. We note also that the shift in the frequency of the surface gravity

mode varies between these cases as the stratified layer does have an effect on

the frequency of this mode. Finally, we note, that it is when considering these thin

shell convective regions (large cores) thatwe expect the negative frequency Rossby

modes to be more significant, which require further investigation than carried out

here.

6.2.3 Dependence on step number

We now explore the consequences of semi-convective layers forming potentially

as a result of double-diffusive convection. As in the non-rotating case, we consider

a staircase-like density profile as defined by equation 4.43, and will consider cases

in which α = 0.1, β = 1.0, N̄ = 1, δr = 0.03, Ω = 0.4 and ν = κ = 10−6, with varying

step number. As we discussed in the non-rotating case we consider β = 1.0, to

allow for larger step numbers with reduced numerical demand. In Figure 6.13a we

show the frequency-averaged dissipation as step number increases; we have in this

case shown just the 1
ω
weighting and used an upper integration limit of ωmax = 1 to

exclude the surface gravity wave dependence. Note, the lower limit of ωmin = 0.1

has been chosen for purely numerical reasons; lowest frequency waves require the

highest resolution and contribute little to the overall dissipation in thismeasure. For

comparison, we also show the equivalent non-rotating case as a function of step

number (black-dashed line), as well as the uniformly stratified layer with equivalent

mean stratification (black solid line).

We can see that the dissipation for all step numbers considered is higher

than both a uniformly stratified medium and the non-rotating cases. We can see

that although there is a trend towards the uniformly stratified case, it does not

converge to this result as quickly as we found in the non-rotating case as we

increase the number of steps (see Figure 5.11a). Considering Figure 6.14, which

shows the frequency-dependent dissipation rates for different step numbers, we



Chapter 6. Tidal dissipation in rotating and stratified planets 143

(a) D̄ =
∫
D/ω dω„ ωmin = 0.1, ωmax = 1 (b) D̄ =

∫
D/ω dω„ ωmin = 0.1, ωmax = 1

Figure 6.13: Frequency-averaged dissipation as a function of number of steps. Other parameters
kept constant at α = 0.1, β = 1.0, N̄ = 1, Ω = 0.4, ν = κ = 10−6. Panel a compare total, viscous
and thermal dissipation with the total dissipation of the uniformly stratified case as well as the non-
rotating case. Panel b compares two different viscosities with fixed Prandtl number.

can see that at low frequencies the behaviour varies for different numbers of

steps. Note the the limit for gravito-inertial waves is ω <
√
N2

max + 4Ω2 and when

considering a staircase-like structure Nmax ≥ N̄ , increasing the range for inertial

waves slightly (but with no significant implications for our parameter values, so we

do not focus on this aspect).

We first compare the cases of zero steps, one step and five steps, noting

that zero steps consists of a small solid core with a convective envelope to

the outer edge. At low frequencies, although inertial waves are excited in the

convective shells in all three cases, these are barely visible for the case of zero

steps, where there is only the small solid core to launch inertial waves from. As

we increase the number of steps to one and then five, the excitation of inertial

waves occurs from boundaries at additional and increasingly larger radii, leading

to additional dissipation. Following this, we now compare the cases with five, nine

and 13 steps and find there are significantly smaller differences between these

cases. At this point the outer radius does not vary significantly as the number

of steps is increased. Figure 6.15 shows the forced solutions at ω = 0.25 for all

five step numbers in which we can see the inertial wave beams forming in the

convective layers, with a very small amplitude response in the case of zero steps,

and increasing amplitude of the response as we increase the number of steps.
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(a) ν = κ = 10−6 (b) ν = κ = 10−4

Figure 6.14: Frequency dependence of dissipation for different numbers of steps in the staircase
density profile. In all cases α = 0.1, β = 1, N̄ = 1. In panel a, we fix ν = κ = 10−6 and in panel b we
fix ν = κ = 10−4.

(a) steps= 0 (b) steps= 1 (c) steps= 5

(d) steps= 9 (e) steps= 13

Figure 6.15: Examples of the spatial structure for 0,1,5,9 and 13 steps, in all cases α = 0.1, β = 1.0,
N̄ = 1, ν = κ = 10−6, and a forcing frequency ω = 0.25.
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(a) Single interface (b) Five interfaces

Figure 6.16: Comparison between total dissipation for profiles with interfaces, uniformly stratified
layers and a solid core, in all cases Ω = 0.4 and ν = κ = 10−6. The black solid lines are the single
and five step cases in panels a and b respectively. The dashed coloured lines describe a stratified
layer with α = 0.1 and N̄ = 1, and solid coloured lines a solid core with N̄ = 0. The blue aligns the
core/stratification with the first (or only) interface and the red the last interface.

We are beginning to see that the size of the convective envelope is key to

the behaviour of the inertial waves and the corresponding dissipation, which is

consistent with the expectation from studies of the unstratified case (e.g. Ogilvie,

2009; Goodman & Lackner, 2009; Rieutord & Valdettaro, 2010; Ogilvie, 2013).

Therefore, we compare caseswith a solid or stratified core that extends to the same

radii as the staircase interfaces. The solid black lines on Figures 6.16a and 6.16b are

the total dissipation for a single step and five steps, respectively. In Figure 6.16a, we

have compared this case to both a solid core, and a stratified layer extending to that

radius, α = 0.55 and N̄ = 0 and α = 0.1, β = 0.55 and N̄ = 1. We can see that at low

frequencies there is very good agreement between these three profiles, suggesting

that the forced wave response in the outer envelope only weakly depends on what

is below the envelope, provided the buoyancy frequency is sufficiently strong. In

Figure 6.16b we have similarly shown a solid core and a stably stratified layer, this

time extending to the first interface (blue, α/β = 0.25) and last interface (red,

α/β = 0.85). We notice although the agreement is not as good as in the single step

case, there is still closer agreement between the cases where the core corresponds

to the last interface of the staircase. This suggests that this is the key interface

in dictating the dissipation due to inertial waves. We note that the dissipation is

larger in the staircase model due to the additional layers where inertial waves are
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excited. In both figures there is significantly different behaviour in the mid to high

frequencieswhere it is expected that the buoyancy effects dominate. This suggests

that the importance of buoyancy forces compared with Coriolis forces will strongly

depend on the forcing frequency.

In Figure 6.13b we take a preliminary check on the effect of varying viscosity

and thermal diffusivity, showing total dissipation for ν = κ = 10−6 compared with

ν = κ = 10−4. Although it is hard to draw robust conclusions from two data points,

these initial results suggest that varying viscosity does not significantly alter the

overall conclusions drawn here, and suggests that the findings in this section may

be robust to varying viscosity and thermal diffusivity. We also expect that varying

the Prandtl number to not be important and, as in Chapter 5, it will primarily alter

the balance between viscous and thermal dissipation rates.

6.3 Comparison of dilute core models

As it is likely that the interiors of giant planets consist of an extended core, but that

there is uncertainty in the exact properties of such a layer, in this section we explore

further the consequences of different buoyancy frequency profiles describing

stable stratification. We consider four cases that have different buoyancy profiles

but all represent a stratified outer core extending to half of the planetary radius

surrounded by a convective envelope. We compare,

• Case 1 - a large solid core with a convective envelope, α = 0.5, N̄ = 0,

• Case 2 - a uniformly stably stratified layer extending from an inner core

boundary to an outer core boundary, α = 0.1, β = 0.5, N̄ = 1,

• Case 3 - a single stable interface at the outer core boundary βr0, α = 0.1,

β = 0.5, N̄ = 1,

• Case 4 - a staircase extending from an inner core boundary to an outer core

boundary, α = 0.1, β = 0.5, N̄ = 1, steps= 3.
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Figure 6.17: Total dissipation for different dilute coremodes, where in all caseΩ = 0.4, ν = κ = 10−6.

All other parameters are kept constant with Ω = 0.4, ν = κ = 10−6. We plot the

total dissipation in each case in Figure 6.17.

We find that when considering the low frequency inertial range, the

frequency-dependent dissipation is very similar in all four cases. The inertial wave

behaviour in the convective envelope appears to dominate the behaviour and is

little affected by the form of the stratification beneath it. We see that the stable

layer and staircases act like a solid boundary for the propagation of inertial waves

in the convective envelope and enhance the dissipation similarly. The cases with

a stratified layer and staircase structure have higher dissipation rates due to the

contribution of gravito-inertial waves in the stratified region.

Within the mid-frequency range between 0.8 ⪅ ω ⪅ 1, the behaviour varies

significantly, as it is in this frequency range that the gravito-inertial modes within

the stratified region are dominant. These modes are sensitive to the form of the

stratification, and we observe peaks corresponding to g-modes in the case of a

uniformly stratified layer, as well as the interfacial modes that are characteristic of

a staircase structure.

In Figure 6.18, we compare the spatial structure in all four cases at three

different forcing frequencies. Considering the first column for which the forcing

frequency is low, ω = 0.21, within the inertial wave range, we observe that the

solution in the convective envelope is very similar in each case. In all examples
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ω = 0.21 ω = 0.73 ω = 0.90

Case 1

Case 2

Case 3

Case 4

Figure 6.18: Examples of the spatial structure for different dilute cores and forcing frequencies, in
all cases ν = κ = 10−6 and Ω = 0.4.
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the stable stratification is acting effectively as a solid boundary for the propagation

of inertial waves, showing that an extended stratified core acts like a large solid

core, enhancing the dissipation over cases with a small core.

In the second column, at a higher forcing frequency of ω = 0.73, the spatial

structure observed in the convective region again remains consistent. However,

we now see the different modes that form within the stratified region, which vary

significantly, contributing to the differences between the resultant dissipation. At

both forcing frequencies, for the staircase and interface cases we faintly observe

additional inertial modes in the deep convective layers, as well as internal gravity

modes in the uniformly stratified layer. This can explain the slight increase in

dissipation observed in the other cases over the case of a solid core (Case 1).

Finally, in the last columnweconsider the highest forcing frequency, atwhich

we are outside of the inertial wave range but within the gravito-inertial wave ranges.

We clearly observe different responses in each case that depend on the stratified

region with wavelike behaviour only observable in the case with a stratified layer

and a staircase structure.

6.4 Example with Saturn-like parameter values

Finally, we consider a case with parameter values similar to those consistent with

the latest models for Saturn. For this we consider the values similar to those used

in Mankovich & Fuller (2021), and therefore consider an example where α = 0.1,

β = 0.6, N̄ = 2, Ω = 0.4. We consider both a uniformly stratified case as well

as a staircase structure with one, five and nine steps. Figure 6.19a shows the

dissipation rate using these four profiles and Figure 6.19b shows the tidal quality

factor calculated using equation 5.12 for the case of a uniformly stratified layer. The

black vertical lines show the tidal frequency of six of Saturn’s major moons: Mimas,

Enceladus, Tethys, Dione, Rhea and Titan, as a point of reference for the relevant

frequency regimes. The tidal forcing frequencies are also shown in Table 6.1.
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Satellite Period Ωo Tidal frequency Tidal frequency

Units (days) (ωd) (ωd) (ωd/N̄)

Mimas 0.942 0.176 -0.395 -0.198

Enceladus 1.37 0.121 -0.505 -0.253

Tethys 1.89 0.0879 -0.572 -0.286

Dione 2.74 0.0606 -0.626 -0.313

Rhea 4.52 0.0367 -0.674 -0.337

Titan 15.9 0.0104 -0.727 -0.363

Table 6.1: Tidal forcing frequency ω = 2(Ωo −Ωs), for six of Saturn’s major moons, data taken from
Jet Propulsion Laboratory (2022). In this case N̄ = 2ωd.

We can see that all four cases show qualitatively and quantitatively similar

dissipation profiles, and the frequency-averaged dissipation is almost unchanged

as the step number is varied. In these examples all three wave frequency ranges

overlap, gravito-inertial, inertial, and surface gravity modes, making it difficult to

separate the behaviour of each. However, given the sensitivity to the frequency

of the tidal forcing due to the moons shown, the stably stratified layer could have

important implications for the tidal dissipation rates.

The tidal quality factor found, in Figure 6.19b, is evaluated to be around

102 to 104 at the frequencies relevant for Saturn’s moons. This is comparable

to the observational constraints from the migration rates of Saturn’s moons (e.g.

Lainey et al., 2017). This idealised calculation therefore highlights the importance

of considering stably-stratified layers on the excitation and dissipation of inertial

and internal waves in planets. This may be a key mechanism of tidal dissipation

that could help to explain observations.
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(a)

(b)

Figure 6.19: Example of total dissipation and tidal quality factor for Saturn-like parameters, with the
tidal forcing of six of Saturn’smoons over-plotted, Mimas, Enceladus, Tethys, Dione, Rhea and Titan.
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6.5 Conclusion

In this chapter we built on the results obtained in Chapter 5 by including rotation

into our system. The primary difference between the results in this chapter is

that as well as the internal gravity and surface gravity modes we have observed

in the purely stratified cases, we additionally observe inertial waves and gravito-

inertial waves, and these can exhibit different dependencies on the parameters of

our model. These additional resonances occur in similar frequency ranges to the

internal gravity waves considered previously, and are likely to be significant at the

relevant frequencies of tidal forcing. These additional resonances can contribute

to large rates of dissipation which enhance the overall rate of dissipation.

As in the non-rotating analysis, we used a frequency-averaged quantity to

establish some overarching trends in the system. We established that increasing

the rate of the rotation enhances the inertial wave response, in turn increasing the

total dissipation rate. In general we found that the results found in the non-rotating

study were consistent with those found in this chapter. Increasing the size of the

core, whether it is a solid core or a stably stratified layer, significantly increases

the dissipation rate, and we found that the gravito-inertial waves excited in a stably

stratified layer can enhance the dissipation compared to that of a solid core with

the same radius. As in the non-rotating case, we established that provided a

sufficient number of steps in a staircase-like density structure, the layer will behave

as a uniformly stably stratified layer, when considering any frequency integrated

quantities with differences occurring the frequency dependent dissipation.

We found that a key parameter in the excitation of inertial waves was the

size of the outer convective envelope (i.e. the radius to which the dilute core

extends), and that the dissipative properties can be independent of the buoyancy

profile beneath it, whether it is a stably stratified layer, single interface or solid

core for Saturn-like parameter values. The buoyancy frequency profile beneath this

layer can alter the dissipation trends but the significance of this depends on the

parameters being considered.
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Chapter 7

Conclusion

The inclusion of stratified layers and semi-convective regions has significant

potential impact on the tidal dynamics of giant planet systems. In this thesis

we have considered the implications of including regions of stable stratification

within the interiors of giant planets on the tidal response, in line with recent

observations that indicate the presence of such layers within these planets. It is

possible that the excitation and dissipation of tidally forced waves could contribute

to the efficient dissipation and consequential fast migration rates of the satellites

of giant planets. We analyse how the presence of stably stratified layers impact

the transmission, excitation and dissipation of internal waves in a global spherical

Boussinesq system.

Free modes of a density staircase

We present results in Chapter 2 for the free modes of semi-convective layers

that form a staircase-like density/entropy structure by considering the unforced

inviscid system. We found the internalmodes can exhibit dispersion relations of the

structure of both interfacial and internal gravity waves, depending on the properties

of the surrounding fluid. As the number of steps in the staircase increases, thereby

decreasing the step size, the solutions found tend towards that of a uniformly
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stratifiedmedium. The shift in frequency (and period) between a staircase structure

and continuousmedium can be shown to have an approximate scaling of (m+1)−2

where m denotes the number of interfaces that make up the staircase. We found

this to be in agreement with the results found in the Cartesian case.

Transmission through a staircase

In Chapter 3 we turned our attention to the transmission of waves through a

medium containing semi-convective layers, continuing to use the unforced inviscid

system, but now considering a wave like solution in the end region. We found

that the transmission through the staircase depends strongly on the properties of

the staircase, and is largest when the incoming wave is resonant with the modes

previously found. We showed that for large wavelength waves the transmission is

largely unaffected by the presence of a staircase. In these cases, the wavelengths

are sufficiently large compared to the step size that the staircase acts as if it was

a continuously stratified layer. However, wavelengths comparable to the step size

or smaller are only transmitted when resonant with a free mode of the system.

Tidally forced problem

In Chapters 5 and 6, we considered tidal forcing and dissipative effects, as

ultimately the dissipation rates are the quantities for which comparison can be

made with observed tidal migration rates. We continued in a global spherical

Boussinesq system with the addition of viscosity and thermal diffusivity, as well

as incorporating realistic tidal forcing. We used numerical calculations to evaluate

directly the dissipation of internal waves, as well as numerical eigenvalue solutions

and analytical results to supplement the direct dissipation results. We explore how

uniformly stratified layers as well as semi-convective staircases alter the excitation

of internal and inertial modes, and the consequences of varying the parameters of

our system, on both the frequency and dissipation of these modes.
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By considering first a non-rotating system we were able to establish scaling

relations for various parameters of the system both numerically and analytically

using a low frequency approximation. In these cases, we found that the strength

and size of the stratification altered the resulting dissipation significantly. The

dissipation is found to be directly proportional to the mean stratification N̄ , and

scale as (βr0)
5 where βr0 is the size of the stratified layer. We find very little

dependence on viscosity and Prandtl number in the integrated rate of dissipation,

suggesting that our results could be robust to the more realistic viscosities and

Prandtl numbers expected for giant planet interiors.

As we found in Chapters 2 and 3, when comparing a staircase-like density

structure with a stably stratified layer, the results converged very quickly with

step number, and therefore it is likely to have similar implications for the tidal

problem. We considered the effect of having an isolated stable layer in the Helium

metallic/molecular transition region; this allows for both a large interfacial mode

resonance, and internal gravity modes to form within the layer, both of which could

contribute to dissipation rates aligned with the forcing frequency.

Finally, we considered the consequences of the inertial effects by

introducing rotation to the system. We found that an extended core can enhance

the inertial wave response in a surrounding convective layer, thereby significantly

contributing to the overall dissipation. When comparing different structures for

the internal core we found that for the Ω and N values considered, the inertial

wave response is largely unaffected by the properties of the stable layer, with

stable stratification and a staircase structure both acting as a solid core. The

stable stratification does lead to additional gravito-inertial and interfacial wave

resonances, however, these do not have as significant a contribution to the overall

dissipation as the inertial waves and therefore the overall dissipation is little

affected. This is likely to change for lowerΩ or higherN as these gravito-inertial and

interfacial waves do still contribute and would have a more significant contribution

when considering these different parameters regimes.
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Consequence for planetary applications

Wehave found that regions of stable stratification can have implications for the tidal

dissipation in planetary systems. They can introduce new modes, which although

the contribution to the frequency-averaged dissipation may not be as significant,

due to the strong frequency dependence of dissipation, if additional modes are

excited they could have a significant contribution to tidal dissipation. These modes

also have implications for resonance locking andmode-mixing due to the sensitivity

to mode frequencies of this process. We found that a stably stratified layer can act

as a large core in enhancing the inertial wave response, hence a dilute core can

potentially have a significant contribution to the inertial wave response.

Future work

We have carried out an initial study on the effects of stable stratification and

established that such layers can have important consequences on dissipation, but

there are undoubtedly implications beyond this work.

Within the bounds of the model constructed in Chapter 4, it would be

possible to consider many more permutations of the parameters than we have

done in Chapters 5 and 6. Most significantly, for rotating systems the dependence

on stratification strength N̄ , viscosity ν , and Prandtl number Pr, could be more

rigorously considered. It is likely that at higher stratification values than considered

in this thesis, the contribution of gravito-inertial and interfacial modes relative to

inertial modes increases, and therefore the parallels between a stably stratified

layer, solid core and staircase structure become weaker as the importance of

internal gravity waves and gravito-inertial waves become more important. It is

possible that some of the analytical calculations carried out to complement the

non-rotating results could be extended to the rotating case, allowing for analytical

dependencies to be established, such as the travelling wave limit.
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It would be simple to modify the form of the buoyancy frequency used in

this model to consider different stratification profiles that more closely align with

the shape and values of observations. Although we expect overarching trends to

be insensitive to the exact shape of the buoyancy profile, it would allow for more

direct comparison with recent data.

It is also true that the Boussineq approximation is not strictly valid in

the case of giant planets, some of the implications of which have already been

discussed. Extending themodel to incorporate the anelastic (or fully compressible)

approximation would be more accurate for giant planets (Jones et al., 2011).

This would allow for the study of realistic large-scale density variations. Finally,

throughout this thesis we have neglecting the effects of magnetic fields and

the additional physics that their inclusion would introduce. Giant planets have

significant magnetic fields (e.g. Moore et al., 2018) with consequences on the

physics governing their interiors (e.g. Jones, 2011) and it would likely be an

interesting (albeit complex) addition to this study.
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Appendices

A Viscous dissipation

It can be informative to separate the viscous dissipation into two components: the

viscous dissipation occurring in the bulk of the fluid and the normal viscous flux

through the boundary. Considering the momentum equation 4.3 (without rotation

for simplicity, and as Coriolis forces do nowork), and using index notation, wewrite,

∂tui = bgi + ∂jσij, (A.1)

where σij = −(p + ψ)δij + 2νeij , is the total stress tensor for an incompressible

Newtonian fluid and eij strain-rate tensor defined later. When taking the scalar

product with ui and making use of the product rule, we find,

1

2
∂tuiui = buigi + ∂j(σijui)− σij∂jui. (A.2)

The strain-rate tensor for an incompressible Newtonian fluid is (Acheson, 1991),

eij =
1

2
(∂iuj + ∂jui), (A.3)

therefore by noting that by definition eij = eji, and by extension σij = σji, using

equation A.3 we find,

σijeij = σij∂iuj. (A.4)
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Using this result in equation A.2 gives,

1

2
∂tuiui = buigi + ∂j(σijui)− σijeij. (A.5)

Therefore, by expanding using the definition of σij in the last term,

1

2
∂tuiui = buigi + ∂j(σijui) + (p+ ψ)eii − 2νeijeij. (A.6)

By noting that eii = 0 as we are considering an incompressible system where

∇ · u = 0, and by expanding all terms we find,

1

2
∂tuiui = buigi − ∂j(p+ ψ)δijui − 2ν∂jeijui − 2νeijeij, (A.7)

and taking the volume integral (as in Section 4.3), the following energy balance can

be found,

dKE

dt
= −dPE

dt
−Dtherm−

∮
S

(p+ψ)(δijui)n̂j dS+2ν

(∮
S

eijui ·n̂j dS−
∫
V

eijeij dV

)
.

(A.8)

The viscous dissipation term is separated into two components, one corresponds

to the dissipation within the fluid (the volume integrated component) and is as

calculated in equation 31 of Ogilvie (2009). The other is the normal viscous flux

through the surface (the surface integral term). We can now establish an additional

balance in the system as it can be shown numerically that the normal viscous

fluxes balance the pressure integral, and the bulk viscosity component balances

the injection term (involving ψ) in the absence of buoyancy forces.
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B Analytical calculation of g-modes

The frequencies of the internal gravity (g-mode) resonances in a uniformly stratified

medium with constant N2 and g ∝ r, can be analytically calculated given

suitable approximations. To allow for analytical calculations we neglect viscosity

and thermal diffusivity and consider alternative solid wall boundary conditions.

Neglecting viscosity and thermal diffusivity is valid here as the group travel time

of the modes is significantly larger than the viscous (damping) time scale.

Wemay reduce our system to that used in Pontin et al. (2020) and Chapter 3,

where the governing equations become

d2ξr
dr2

+
4

r

dξr
dr

−
[(

1− N̄2

ω2

)
l(l + 1)

r2
− 2

]
ξr = 0, (B.9)

which can be solved to give

ξr = Arλ+ +Brλ− , (B.10)

where

λ± = −3

2
± 1

2

√
1 + 4

(
1− N̄2

ω2

)
l(l + 1). (B.11)

Here we are using displacement, ξ = ∂u
∂t
, where ξr denotes the radial component.

We are considering N̄2 > 0 and therefore consider oscillatory solutions with

complex λ±. The critical value for ω that bounds the internal gravity wave regime is

found to be,

ω2 <
4N̄2l(l + 1)

4l(l + 1) + 1
. (B.12)

Defining λi = Im[λ] and λr = Re[λ], the solution for displacement ξr can instead be

written in the form,

ξr = Arλreiλi ln(r) +Brλre−iλi ln(r). (B.13)
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We then apply solid wall boundary conditions at either end of the domain,

ξr = 0 r = αr0 and r = βr0. (B.14)

This departs from the boundary conditions used in the numerical calculations but

maintains simplicity in the analytical calculations with little effect on the final result

when ω2 ≪ ω2
d. These combine to give

− eiλi(ln(βr0)−2 ln(αr0)) + e−iλi ln(βr0) = 0, (B.15)

from which follows

2λi(ln(βr0)− ln(αr0)) = 2πn, (B.16)

where n is an integer, from 1 to ∞. The final dispersion relation for the frequencies

given is therefore

ω2 =
4l(l + 1)N̄2(ln(βr0)− ln(αr0))

2

(2l + 1)2(ln(βr0)− ln(αr0))2 + 4π2n2
. (B.17)
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C Analytical calculation of f-modes

To quantify the variation in frequency of the surface gravity (f-mode) resonance

on the parameters of the system, it is helpful to analytically compute these mode

frequencies. As in Appendix B we neglect the viscosity and thermal diffusivity to

recover the system used in Pontin et al. (2020). However in this case instead we

consider the equation for the pressure perturbation,

d2p

dr2
+

2

r

dp

dr
−
(
1− N2

ω2

)
l(l + 1)

r2
p = 0, (C.18)

and include the free surface boundary condition. This can then easily be solved to

find

p = Arµ+ +Brµ− , (C.19)

where

µ± = λ± + 1 = −1

2
± 1

2

√
1 + 4

(
1− N̄2

ω2

)
l(l + 1). (C.20)

Using the relation, dp
dr

= ω2
(
1− N2

ω2

)
ξr , we can find the radial displacement to be

ξr =
1

ω2(1− N2

ω2 )

(
µ+Ar

µ+−1 + µ−Br
µ−−1

)
. (C.21)

We use the same boundary conditions as in the Section 4.2, no radial displacement

at the core, and a free surface at the planetary radius. Therefore with r0 = 1 these

two conditions can be combined to give,

1− µ+

µ−
αµ+−µ1 =

ω2
d

ω2 −N2

(
µ+ − µ+α

µ+−µ−
)
, (C.22)

where ωd =
√

GM
r30

. We consider this in different cases to predict the location in

frequency of the f-mode peak, in each case taking the positive complex solution.
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First we consider the case with no core and no stratification, N = 0 and

α = 0, and recover the expected limit (Barker et al., 2016)

ω2 = ω2
dl. (C.23)

If we consider the case in which there is a stratified layer and no inner core, N ̸= 0

and α = 0, we obtain

ω2 =
1

2

(
N2 − ω2

d +
√
N4 − 2N2ω2

d + (1 + 2l)2ω4
d

)
. (C.24)

Taking the limit in which there is a fully convective layer with a finite core size,N = 0

and α ̸= 0, we find

ω2 = ω2
d(l + 1)

α−2(l+1) − 1
l+1
l
α−2(l+1) + 1

. (C.25)

The final case in which N ̸= 0 and α ̸= 0 can be calculated using symbolic algebra

packages (e.g. Mathematica). The frequency predictions in this case are plotted on

some figures, but we do not show the expression here because it does not reduce

to a simple form.
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D Analytical dissipation in the travelling wave regime

For a sufficiently low frequency tidal forcing ω2 ≪ ω2
d , such as those that would

be expected in some tidal applications, the forced waves will be damped before

they reach the inner core and form a standing mode. In these cases therefore the

energy of the waves is fully dissipated into the medium. Note, although in this case

we are considering the wave to be damped by viscosity and thermal diffusivity, this

calculation is independent of the particular damping mechanism, and would apply

in any circumstance in which waves are efficiently excited and then subsequently

fully damped. For example, this regime would also occur if wave breaking occurs

due to nonlinear effects (e.g. Barker & Ogilvie, 2010). We again neglect viscosity

and thermal diffusivity and consider the modified pressure perturbationW = p+ψ

and radial displacement ξr to obtain

W = Arµ+ +Brµ− , (D.26)

ξr =
1

ρ0ω2(1− N2

ω2 )

(
µ+Ar

µ+−1 + µ−Br
µ−−1

)
, (D.27)

where µ± is as defined in equation C.20.

If we consider frequencies sufficiently low such that the wave is damped

due to viscous forces before reflecting off the inner core and returning to the

outer surface, then we can assume that at (or just inside) the outer surface only

the ingoing component of the wave solution is non-zero. Therefore the additional

constraint we include is that

B = 0. (D.28)

We continue to use the free surface condition used in our numerical results,

∆p = 0 r = r0, (D.29)
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which gives us

A =
ψr

2−µ+

0

1− ω2
d

ρ0(ω2−N2)
µ+

. (D.30)

The energy flux is defined using the standard definition for a linear wave,

F = πr2
∫ π

0

Re[−iωξrW ∗] sin θdθ, (D.31)

where ξr andW have r and θ dependence, which here evaluates to

F =
r2

2
Im[ωξrW

∗]. (D.32)

where ξr and W have only r dependence. Using equations D.26 and D.27, we

calculate the flux close to the outer surface by continuing to assume B = 0. In

reality the flux is radially dependent, but we are just concerned about the flux just

below the outer boundary, where B = 0 holds if there is no reflected wave there.

Therefore the flux can be written as

F =
ω3

2l(l + 1)ρ20

|µ+A|2

(ω2 −N2)2
Im
[
µ+

]
r0. (D.33)

By substituting in A and µ+ and taking the limit ω2 ≪ ω2
d ∼ N2,

F =
|ψ0|2r50Nω2

2
√
l(l + 1)

. (D.34)

As the assumption being made is such that the wave is fully damped before

reaching the inner core, we can assume that the energy dissipated is equal to the

total flux of the wave, i.e. the total dissipation rate in this travelling wave calculation

is given byDTW = F .

The frequency-averaged dissipation in the travellingwave dominated regime

is

D̄TW =

∫ ωmax DTW

ω
dω =

|ψ0|2r50N̄
2
√
l(l + 1)

∫ ωmax

ω dω. (D.35)
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Therefore, it is given by

D̄TW =
|ψ0|2r50N̄
4
√
l(l + 1)

[
ω2
]ωmax

ωmin

. (D.36)

In most instances we take ωmax = N̄ , ωmin = 0, therefore

D̄TW =
|ψ0|2r50N̄3

4
√
l(l + 1)

, (D.37)

but if we take ωmax = ωcrit where ωcrit, is defined below,

D̄TW =
|ψ0|2r50N̄

5
2 (β − α)

1
2 (ν + κ)

1
2 (l(l + 1))

1
4

4
. (D.38)

D.1 Transition frequency

We are considering a wave for which its damping time scale is sufficiently short

that the wave does not propagate back to the outer edge of the stratified layer after

it has been launched. As we are considering viscous and thermal damping in our

linear calculation, we can predict the frequency describing the transition point by

comparing the radial group travel time for a gravity wave packet with the viscous

and thermal damping timescale.

The radial group velocity is defined as,

cg,r = r̂ · cg =
∂ω

∂kr
, (D.39)

where for a plane internal gravity wave with a sufficiently short wavelength

ω2 =
k2⊥N

2

k2r + k2⊥
. (D.40)

Therefore,

cg,r =
−k⊥krN

(k2r + k2⊥)
3/2
, (D.41)



Appendices 168

with k⊥ =

√
l(l+1)

r0
. As we are considering low frequencies, we can assume that

k⊥ ≪ kr , and

cg,r ≈ −k⊥N
k2r

. (D.42)

Therefore, by considering the distance required to travel 2(β − α), the group travel

time is

tg =
2(β − α)r0

cg,r
=

2(β − α)r0k
2
r

k⊥N
. (D.43)

The viscous/thermal damping time is defined as

td ≈
2

(ν + κ)k2r
, (D.44)

which means that taking tg ≲ td gives

k4r ≲
Nk⊥

(β − α)r0(ν + κ)
, (D.45)

or equivalently in terms of our tidal forcing frequency

ω ≲
(
(β − α)r0(ν + κ)(Nk⊥)

3
) 1

4 . (D.46)

Therefore we expect the tidal response for frequencies smaller than this

approximate value to be in the travelling wave regime in our linear calculations.

In reality other effects including wave breaking or other non-linear effects can

cause efficient damping of propagating waves; this would perhaps alter the critical

frequency but we would expect to obtain the same prediction for the dissipation

rate also in this case.
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Glossary

adiabatic A process for which internal energy is conserved and no heat is

transferred to the surroundings. 2, 24

Boussinesq approximation An approximation where variations in density are

assumed sufficiently small that they can be neglected except whenmultiplied

by gravitational acceleration. 23, 24, 30

Brunt-Väisälä frequency (buoyancy frequency), the frequency at which a fluid

parcel would oscillate in a stratified fluid if it is displaced vertically,

consequentially a measure of stratification. 5, 8, 24, 32

buoyancy frequency See, Brunt-Väisälä frequency. 24

Cartesian geometry A system of numerical co-ordinates in which the component

axes are perpendicular to each other. 26, 35, 40, 54

dispersion relation An equation that relates the frequency of a wave to its

wavenumbers. 26, 41

Eulerian A frame of referencewhere you consider the properties of a fluid vary over

time at a given location rather than considering the properties of a fluid parcel

(Lagrangian). 23, 31, 76

gravito-inertial wave a classification of internal wave, where both buoyancy and

Coriolis force acts as a restoring force causing oscillations within a rotating

stably stratified medium. 22, 25, 125



Glossary 170

group velocity The speed and direction the energy of the wave is transported. 26,

60

inertial wave a classification of wave, where the Coriolis acceleration acts as a

restoring force causing oscillations within a rotating medium. 22, 25, 125

interfacial gravity wave classification of gravity wave, where gravity acts as a

restoring force, causing oscillations in the boundary between two fluids of

different densities.. 42, 99

internal gravity wave (g-mode) a classification of internal wave, where gravity acts

as a restoring force causing oscillations within a stably stratified medium. 8,

22, 25, 42, 59, 96, 125

Kronoseismology the observations and studies of waves in Saturn. 4

Love number dimensionless complex number that can quantify the tidal response,

defined to be the ratio between the perturbed gravitational potential response

in a body to the applied tidal potential. 16, 17, 120

phase velocity The speed and direction the wave crests are moving. 26

spherical geometry A system of numerical co-ordinates in which the position is

defined by distance from the origin r, polar angle from the vertical axis θ and

azimuthal angle in the horizontal plane, ϕ. 26, 29, 57, 76

tidal quality factor dimensionless quantity used to quantify the tidal response. 16,

120

transmission coefficient ratio of the radial energy flux of the incident wave with

that of the outgoing wave. 59, 62
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