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Abstract

Computational memorability prediction has allowed significant advances in the under-
standing of human visual memory; and in turn, advances in understanding what makes
an image memorable. Recently, this research has expanded to the second dimension,
with Visual Memory Schemas (VMS) maps revealing the specific regions in a scene
that lead to that scene being remembered. In this thesis, we explore the concept of
VMS maps in detail, develop new VMS datasets, novel models for VMS prediction,
explore whether human memory can be modulated with VMS maps, and finally invest-
igate the relationship between scene memorability and scene complexity. We propose
three new approaches for predicting visual memory schemas, starting with a variational
autoencoder-based model, before exploring the role of self-attention, multi-scale inform-
ation, and depth in the prediction of scene memorability. Based upon this work, we
develop a novel "dual-feedback" model that uses both VMS datasets and pre-existing
single-score memorability datasets to predict memorability maps for scene images, set-
ting a new state-of-the-art for VMS prediction. This work is supported by our efforts in
expanding VMS datasets; from the original 800 images, up to a dataset of over 4000+
scenes and VMS maps. We make use of our VMS predictors by integrating them with
generative models with the goal of synthesising scene images of controllable memorab-
ility. We test our generated scenes against real-world human observers and find that
images we synthesise to be more memorable have a greater hit-rate than images we
synthesise to be less memorable. Finally, we investigate the relationship between scene
complexity and scene memorability, developing novel techniques and architectures cap-
able of predicting how complex a human finds a scene, and ultimately finding that the
complexity of the scene plays a small, but significant role, in the memorability of that

scene.
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Abbreviations

AE Autoencoder.

ANOVA Analysis of Variance.
BCE Binary Cross Entropy.

CE Cross Entropy.

CNN Convolutional Neural Network.

DF Dual Feedback.

DFVMS Dual Feedback - Visual Memory Schema.

ELBO Evidence Lower Bound.

EMD Earth Mover Distance.

FAR False Alarm Rate.

FID Fréschet Inception Distance.

GAN Generative Adversarial Network.
GBVS Graph Based Visual Saliency.

GPU Graphics Processing Unit.



Abbreviations

HOG Histogram of Gradients.
HR Hit Rate.

HR A Hierarchical Regression Analysis.

HSV Hue, Saturation, Value.

KL Kullback-Leibler.

KLD Kullback-Leibler Divergence.

LOP Level of Processing.

LSTM Long Short-Term Memory.

MLP Multi-layer Perceptron.
MSB Multi-scale block.

MSE Mean Squared Error.

ONR Old/New Recognition.

RELU Rectified Linear Unit.
RGB Red, Green, Blue.
RNN Recurrent Neural Network.

ROC Receiver Operating Characteristic.

SGD Stochastic Gradient Descent.
SIFT Scale Invariant Feature Transform.

SIM Histogram Similarity.

SoTA State of the Art.
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Abbreviations

SSIM Structural Similarity Index.
SVM Support Vector Machine.

SVR Support Vector Regression.

VAE Variational Autoencoder.

VGG Visual Geometry Group.

VLTM Visual Long-Term Memory.

VMS Visual Memory Schema.

WGAN Wasserstein GAN.
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Key Terms

Complexity An intrinsic property of images, of which humans are capable of judging
consistently. Dependent upon both low-level textural features and high-level se-
mantic content. There is not yet an agreed-upon definition for complexity in the
context of human perception, though it’s computational counterparts are well un-

derstood..

Memorability An intrinsic property of images (often represented as a scalar value
between 0 and 1.0) that corresponds to how well that image is remembered, on
average, by humans. Does not relate strongly to many other image properties such
as interestingness or aesthetics, nor to human predictions of image memorability.

Mostly driven by the semantic content of the image..

Saliency The likelihood of an image area to draw the attention of the observer. A
saliency map reveals the areas of an image that humans fixate on first upon viewing

the image..

Scene Scene, in this work, refers to natural scenes. Specifically, a still image of a
common environment in which a person may reasonably be expected to have been
immersed. Kitchen, living room, golf course, and playground images are examples
of natural scene images. A collection of items (e.g, kitchen implements) arranged
on a table and photographed do not represent a scene as defined by this work,
nor do images of single objects (a toaster) or an image where a few prototypical
elements of the scene consume the vast majority of the frame (an image of a

fridge near a counter edge). The scene image typically displays the majority of
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Key Terms

prototypical elements common to that scene, where present, as well as captures

the overall structure of the scene (‘the whole kitchen’) in the still image..
Schema A mental construct characterising concepts and the relationship between them..

Semantics The high-level features present in the image that compose the scene, distinct
from low-level image features such as spatial frequencies, colour, or scene statistics.
The objects present (e.g, a chair) are considered semantic scene elements, as are
composite arrangements of objects (e.g, a dining table surrounded by chairs). The

scene category itself may also be considered a semantic feature of the scene..

Visual Memory Schema A cognitive representation of a scene, containing semantic
elements and the relationship between them, which facilitates encoding of said
scene. Scene images that more strongly match held visual memory schemas are

more strongly encoded. See Chapter 3.
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CHAPTER 1

Introduction

1.1 Motivation

Psychologists have long explored the characteristics of visual memory, investigating ca-
pacity and level of detail alongside accuracy and fallibility. However, until relatively

recently two significant questions remained without clear answers:

e What makes an image memorable - and why are some images more memorable

than others?

e Can we predict how well a human will recall having seen a given image, either with

classical or machine-learned models?

Solving this problem in its entirety would require not only an understanding of the
mechanisms of human visual memory, but also a method to understand and represent
an image such that memorable factors can be evaluated. It would further understanding
of why certain things are memorable, and not others, and provide insights into how the
brain processes memory and what it prioritises. It is only with the advent of recent
computational techniques that this problem has begun to become tractable. While
there has been clear progress towards predicting memorability, deciphering exactly what
causes an image to be memorable remains somewhat unclear; and so far defining an

image in the terms of its exact "memorable components" remains difficult.

While analysing and predicting memorability remains in the realm of research, potential

practical applications for this topic are numerous. Once memorability can be predicted,
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this goes a long way to allowing memorability to be altered. The most obvious applic-
ation is commercial, allowing for the memorability and hence efficacy of adverts to be
assessed rapidly and automatically. Educational aids can be evaluated to determine how
likely they are to be remembered, as can important public information and infographics.
There are also medical applications - a baseline memorability score for a set of images

could be used to track the decline of patients with cognitive diseases.

1.1.1 A Computational Approach

Recent advances in machine learning have led to techniques that allow computers to
replicate certain human cognitive abilities. In certain cases, such techniques provide
results indistinguishable from that of a human addressing the same cognitive task. It is
this replicative ability that is of interest in the area of memorability prediction. Without
computational assistance, predicting the memorability of an image is a nearly intract-
able problem. Not only are humans incapable of predicting which images are memorable,
large scale human prediction of hundreds of thousands of images would be an exceedingly
expensive, time consuming task. If a computer can be taught to emulate the function
of human memory, these issues vanish. Computational power allowing, rapid image
memorability prediction becomes possible. In the case of more complex models, determ-
ining why the model arrives at a given output can reveal hints about how human visual
memory functions. These complex computational models are not without their draw-
backs. They can provide stunningly accurate predictions, and even match human-level

performance, but their interior logic can be obscure and difficult to interpret.

Computational memorability prediction and analysis is a field just under a decade old.
In this relatively short time, memorability prediction has made progress in leaps and
bounds (the progress in analysis remains harder to quantify). Generally, memorability
prediction is framed as a regression task, the goal of which is to output a score, between
0 and 1, that indicates how likely that image is to be remembered by an ‘average per-
son’. Psychological experiments gather data on a set of images, determining how well
humans remember an image (often this takes the form of a repeat-recognition task). The
predicted values and the ground truth values are then compared to determine the degree
of consistency between them. If humans find one image generally more memorable than
another, the computational model of memory should reflect this. Like most research that

involves machine learning, this field rapidly grew to leverage the power of deep neural
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networks, the best of which are currently able to predict memorability scores with a
consistency close to that which groups of humans share with each other. These mod-
els have allowed the relationship between memorability and other psychological image
properties such as saliency, aesthetics, and interestingness to be evaluated. Neither of
these properties are capable of explaining the variance inherent in image memorability,

and in many cases, there is no relationship at all.

This research has shown that there is a high degree of consistency (p = 0.75) between
participants memory for images; in general, people will remember the same memorable
image, and forget the same non-memorable image. Low-level image features, such as
colour, intensity, or object counts do not correlate strongly with image memorability [69,
68]. Instead, high level semantic attributes such as image category, the contents of the
image [20], the objects present [40, 141], and scene dynamics and category [94] appear
to better correlate with image memorability scores. Features relevant to memorability
can be extracted through deep learning mechanisms [9] in order to predict memorability

scores [8, 44, 125] for images, with recent deep models reaching human-level performance.

1.1.2 Beyond Single-Score Metrics

Compared to overall memorability score prediction, there has been less research into
examining memorability across an image, rather than with a single summative score.
Probabilistic models have been created but lack a ground truth dataset to compare with.
The effect of the memorability of individual objects in an image has been examined,
but remains a much more difficult task due to need for segmentation of the image, a
notoriously difficult problem. Recent work on this topic moves away from memorability
score prediction towards a more complete model of visual memory. The Visual Memory
Schema (VMS) maps gathered via the VISCHEMA experiment define the regions of
an image that causes that image to be either remembered - or falsely remembered.
VMS maps are highly consistent (correlation histogram mean of 0.7) [2], indicative that
participants agree on which regions cause a given scene image to be remembered. This
work combines cognitive theories of visual memory with machine learning, and introduces
the concept of visual schemas. Visual schemas are mental structures that enable an
image to be remembered. These schemas allow generalisation about memorability across
different images in different categories, and across individuals, providing significantly

more information than a single score metric that describes memorability. With these
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schemas, an image can be defined in terms of its ‘memorable regions’. The elements
contained in these regions directly relate to that images’ memorability; that is, the
structure, objects, and semantic units contained within this region aid in that image
being remembered. However, predicting these schemas is more difficult than predicting
a score alone. Predicting a one-dimensional metric is easier than predicting a three-
dimensional schema which varies both spatially, and in intensity. Predictive efforts are
made more difficult by the lack of available training data: the only currently existing
dataset of Visual Memory Schemas and their corresponding scene images has only 800
images; a significantly lower amount compared to single-score memorability datasets

(which number in the tens of thousands of images).

With memorability score prediction now having a close correlation with inter-human
memorability scores, there is now the opportunity to start looking beyond score predic-
tion towards a finer-grained understanding of memorability. The VISCHEMA experi-
ment represents an initial step in this direction. However, there remains a long way to
go before the consistency between predictions about visual schemas and ground-truth
scores reach the same level as memorability score prediction. However, further invest-
igating visual schema generation for images could lead to models that better represent
human visual memory and hence improve overall understanding about memory. An-
other relatively unexplored avenue opened by computational memorability prediction
is examining the effects of attempting to modify images to improve or reduce their
memorability. This moves beyond asking what makes an image memorable, to actively
employing what we already know to create images that cause a direct change inside the
human visual long-term memory system. Much existing work in this field focuses on
either modifying existing images, or on those of face images which is a sample set dis-
tinct from those of the natural scenes. Recent advances in machine learning and image
generation, combined with maps that define which regions of images cause an image to
be remembered, open a path towards the generation of memorable images from scratch,
rather than modifying already existing images. Attacking this problem is an important

first step towards real-world applications of research into memorability.

1.1.3 Scene Complexity

The correlation between image memorability and several other perceptual characteristics

has already been examined, and few of these characteristics are capable of explaining
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scene memorability. This holds for aesthetics, ‘interestingness’, and colour properties.
However, the relationship between how complex a scene is and the memorability of that
scene remains relatively unexplored. Understanding scene complexity, and how humans
process and evaluate said complexity is a worthwhile endeavour by itself, leading us
towards a better understanding of the brain and its vision processing systems. Much
like image memorability, scene complexity suffers the same limiting factor of requiring
humans "in-the-loop" to extract data for any given scene; predictive models offer the
chance to evaluate complexity for any scene image, whether human data exists for that
image or not. Perceptual complexity itself has prior theoretical grounding, which defines
complexity as the intricacy or detail present in a line drawing [123|, as the degree of
difficulty involved in generating a verbal description of a texture [60], or evaluates com-
plexity in context of aesthetics [35]. However, these measures do not specifically target
scene perception; with initial research on scenes [105| finding evidence that clutter and
mirror symmetry play a key role in visual complexity, along with openness and object

organisation [103].

There are direct applications of scene complexity understanding, from marketing applic-
ations (e.g; perhaps you want your advert to be easier to visually process and compre-
hend and thus less complex), to potential impacts for psychological experiments (you
may want all your visual stimuli to be of similar complexity to exclude a confounding
factor) to healthcare applications (the evaluation of cognitive processing disorders; how
easily a patient can process an image of known complexity). However, through the lens
of image memorability, scene complexity affords us an additional metric that may help
explain why some images are more memorable than others. A visual memory schema
captures the overall memorable semantics of the image; but complexity may offer the
ability to investigate how the overall detail present in the scene affects the memorability
of that scene. Two problems face this line of inquiry. One is the lack of existing data,
as there are very few scene datasets that exist with both memorability and complex-
ity annotations; and none suitable for large-scale machine learning. The other is that
factors that explain the complexity of scenes are not well understood, and that cur-
rently all complexity measures remain firmly in the single-score domain; with minimal

exploration of which regions in an image contribute to its perceived complexity.
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1.1.4 Research Direction

The research in this thesis focuses in three main directions, that each build on the

concept of Visual Memory Schemas. These directions are as follows:

1. VMS maps define the areas of an image that cause the image to be remembered
or falsely remembered. However, prediction of these maps is a difficult task and so
far has only been accomplished in a limited capacity. The current limitations of
generating these maps are examined, and improved methods of generating them
explored. This involves the development and application of more advanced ma-
chine learning techniques to the problem of VMS map generation, as well as the
creation of novel architectures/approaches. As the existing dataset is of limited
size, posing issues for existing machine learning methods, larger-scale VMS data-
sets will need to gathered. This further exploration of visual memory schemas with
modern deep learning techniques offers the potential to better understand what

makes images memorable.

2. It has recently become possible to create highly realistic images using generat-
ive models. Such generated images do not exist in the dataset used to train
the models, and can be considered ‘new’ images. Combining VMS map mod-
els with generative models could lead towards the generation of memorable or
non-memorable images. The generated images would be evaluated via human
memorability experiments in order to evaluate how well the model learned to gen-
erate memorable/non-memorable features in images. Successfully accomplishing
this further validates the VMS model of image memorability. The results of these
experiments would have interesting implications for the future of the applications

of memorability manipulation.

3. The relationship between memorability and complexity in scene images is not well
understood, and neither are the elements that contribute to the perception of a
scenes’ complexity. Visual memory schemas offer the opportunity to investigate
how the memorable regions of an image relate to that images’ complexity, and
increase our understanding of both memorability and complexity. However, as
no dataset currently exists that contains both scene complexity scores, labelled
regions, and memorability information, this data must first be acquired. Such

a dataset would ideally be large enough to afford the chance to develop neural
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network models capable of predicting scene complexity, and evaluation of this

model could lead to a better understanding of how humans perceive complexity.

1.2 Thesis Structure

The remainder of this thesis is organised into six chapters, and is intended to both
provide the reader with a background in computational memorability and complexity
prediction, and of the advances made during this research project. The chapters are

structured as follows:

Chapter 2 is intended to provide the reader with a general background in memory,

other perceptual image characteristics, and deep neural networks.

Chapter 3 first introduces the concept of a Visual Memory Schema in greater de-
tail, describes the existing dataset, and details the experiments conducted to gather
further data and better understand what that data reveals about scene memorability.
Secondly, the chapter explores progress made in developing neural network models of
visual memory schemas, and evaluates several differing techniques as applied to image

memorability prediction.

Chapter 4 presents a novel neural network model that combines work on predicting
VMS maps with that of generative models in an attempt to synthesise memorable or
non-memorable images. The chapter also details the design and results of a repeat-

recognition experiment to understand the efficacy of the model on human memory.

Chapter 5 describes a perceptual complexity experiment that gathers two-dimensional
complexity information from humans for a scene dataset, and operationalises several
psychologically grounded factors that explain the complexity ratings given by humans.
A neural model, combined with said factors reaches human-level performance for the
dataset. The influence of semantics is explored through examining the complexity of

inverted scenes.
Chapter 6 analyses the relationship between scene complexity and scene memorability.

And finally, Chapter 7 reviews the work as a whole, summarises the contributions of

the work, and discusses the potential future directions this research could be taken in.
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CHAPTER 2

Background

In this chapter we aim to give an overview of the fundamental concepts that this work
employs. This covers both the basics of human memory, foundational machine learning,
and perceptual image characteristics. These topics are vast, and cannot be covered in
their entirety; instead we focus on areas directly relevant to the work presented in this
thesis. From a psychological perspective, we briefly cover memory as a whole; then focus
explicitly on Visual Long-Term Memory (VLTM). On the computational side of things,
basic neural networks components, and common architectures used later in this work
are defined. This chapter is intended to serve as an overview; more detailed literature
sections that relate directly to discussed work are available at the start of each chapter,

where relevant.

2.1 A Brief Overview of Memory

It is well accepted that memory can be effectively modelled as a combination of two
different high level subsystems; that of semantic memory and that of episodic memory
[41]. Semantic memory contains things implicitly known, such as how to read, speak, and
perform arithmetic. In general, learned skills are recorded in semantic memory. Con-
trasting this, episodic memory records the autobiographical events of our lives. When
events and items from our past are recalled, this utilises the episodic memory store. As
disparate events can be separated by either (and both) time and space, this entails that
there is a degree of temporal-spatial tagging to information stored in episodic memory;

we can usually recall both the time and location of an event, and can additionally recall
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the temporal-spatial relationship between one event and others, for example, recalling
that you walked into the kitchen prior to walking into the living room. [129] adopts the

term ‘engram’ to refer to information encoded in specifically in episodic memory.

Semantic memory, however does not record events and experiences, instead storing rules,
symbols, concepts, and the relationship between them; thus providing the foundational
elements for storing implicit knowledge. Further differences arise when considering the
loss of information from either system, as well as the consequences of information re-
trieval. Episodic events appear far more readily lost than semantic knowledge ("one
does not forget how to ride a bike"), and understanding of what causes loss of semantic
knowledge lags behind the understanding of which conditions lead to loss of episodic
knowledge. No matter which system information is recalled from, the actual act of re-
calling is often entered into the episodic store (you remember remembering), providing

an interesting form of feedback between the two systems.

While these subsystems are often considered separately, Tulving [41] originally hypothes-
ised some degree of interdependence between them beyond that mentioned above. While
not all episodic encodings require an intervention of the semantic memory system, some
experiences may benefit from semantic store assistance; for example, a mathematician
may better remember a seminar talk than a lay-person due to semantic knowledge of
the presented formulas. The act of recalling was hypothesised to combine engram in-

formation with semantic store information in order to reconstruct the memory.

Since Tulving’s theory was written, much research has supported the distinction between
the two types of memory; and most convincing is neurological studies that find clear evid-
ence that the semantic and episodic stores can be damaged independently of each other.
However, Greenberg finds that semantic and episodic memory are in fact reasonably
intertwined, and damage to one system impedes the other[52], especially with regards
to the learning of new information. As Tulving hypothesised, the episodic store is in-
strumental in fast learning of semantic knowledge; and when this store is damaged, the
ability to learn new skills diminishes. In turn, when the semantic store is disrupted,
the ability to encode new episodic memories is similarly harmed; both memory stores
appear to support the other. While it is still possible to remember experiences with a
damaged semantic store, and to learn skills with a damaged episodic store, the ability

to do so is greatly below normal.

10
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This culminates in the conclusion that not only does the semantic store facilitate the
encoding of episodic memories, but that episodic memory also aids in the encoding of
semantic knowledge. That is, known skills help you to recall events, and recorded events
help you encode new skills. This entanglement of memory subsystems holds at retrieval
as well, with episodic memory providing a fast pathway for the efficient retrieval of
semantic knowledge; when episodic memory is impaired, semantic recall falters. When
the semantic store declines in functionality, while episodic memories can still be recalled,
these memories lack specific detail. Further decline leads to worse autobiographical recall

in general.

It has been known for a long time that memory is not perfect; and is not an exact, lossless
recording of data. Instead, episodic memory is widely considered to be reconstructive,
rather than reproductive. Tulving frames this as a ‘recoding’ of stored engrams; a
set of operations that takes place on the engram once it has already been encoded into
memory. Thus, remembered events are not reproduced exactly as they occurred. Instead,
memories may be pieced together from recorded fragments. Schacter [116] hypothesised
that the reason for this is that a constructive memory system can be re-purposed to
imagine future events, and that lack of a rote-recording system is a positive, rather than
a negative, and is in fact representative of an adaptive recording system. The past does
not repeat verbatim in the future, but it does echo, and being able to draw upon multiple
prior experiences aids in constructing adequate responses to future situations. Indeed,
similar brain regions activate when imagining the future versus remembering the past.
[116, 117]. We further examine the reliability of memory, and visual long-term memory
in general, in Section 2.2. In part, in this thesis we probe and model visual long-term
memory, a subset of episodic memory, by investigating the memorability of scene images

that are perceived and stored for longer than a few seconds.

2.2 Remembering Images

The human capacity for recognising images that we have seen at an early time appears
very large. Standing [126] evaluated the capacity of visual memory through a recognition
task with increasingly large amounts of images. In the largest experiment conducted,
10,000 images were shown to each participant. Standing found a linear relationship;

as the number of images shown increased, both the number of images remembered
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and the number of images forgotten increased, leading Standing to hypothesise that
the capacity of visual memory is ‘practically limitless’. It is generally assumed that as
memories move from working memory, to short term memory, to long term memory,
that the detail in the memory fades, leaving only a general gist of the image; such as
the category of the image, and general scene elements. While the capacity of visual
long-term memory appears very large, this could be an illusion - storing just the gist of
an image requires much less information than storing a detailed representation of the
image. This stored gist trace would be sufficient to determine which image you have
seen before when presented with multiple possible options, but recognition performance
would start to degrade when those options are semantically similar to each other. Brady
conducted a study to determine the capacity of detailed visual long term memory via a
2-Alternative Forced Choice methodology paired with three options - category distinct
foil, same category, different item foil, and same category, same item, different state
foil. 2,500 real world objects were used in the images shown. Despite the difficulty,
recognition performance remained high, dropping to only 87% in the most difficult case
[15]. Repeats of images were also tested, and identified correctly 96% of the time. It
follows from this that visual memory not only has a large capacity for images, but
that representations stored in visual memory are highly detailed. Brady places the

information-theoretic capacity of VLTM at approximately 228000 unique codes.

Cunningham, however, while agreeing on capacity, concludes that long-term memory
remains highly dependent on gist [33], and that the difference in memory performance is
often due to differences in testing techniques. Two Alternative Forced Choice, a common
choice for memory studies, where two images are compared and one must be chosen, may
not accurately reflect the memory stored in the brain, and it is unclear what influence
familiarity vs recollection has on the choice. Cunningham makes use of an ONR (old /new
recognition) test to reduce the effect of noisy or incomplete recollections leading to a
correct result regardless of quality of the memory stored. The Brady experiment was
replicated, finding that ONR performance degraded where 2AFC performance did not.
It appears that while the capacity of VLTM is large; this capacity is in fact highly
dependent upon stored gist traces as well as detailed representations. So far, these
experiments have examined the memorability of objects; it is natural to assume that
remembering scenes is more difficult, and that there is likely to be a fall in performance

when tasked to recall complex scene images. However, Konkle et al. [79] show that
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even tasked to remember 2,800 scene images, and shown same category-distractors,
recognition accuracy for scenes is high. This implies that scene memorability is high-
fidelity, and stores enough detail about a scene image for it be selected against other,
similar scenes. That is, more than just the scene category is preserved in visual long-
term memory. As memory for abstract images is very poor [80], it appears that some

kind of preexisting mental structure is required for this level of memory performance.

It has been found that VLTM is also subject to the level of processing (LOP) effect [5],
where deeper processing leads to better recognition. Here, level of processing refers to
the amount of additional processing undertaken when viewing a stimulus; for example,
judging the ‘intelligence’ of a face shown in a photograph. The LOP effect has primarily
been studied in faces; with somewhat mixed results. Generally, making some form of
judgement on a face enhances recognition of that face; though it is unclear exactly what
depth of processing is necessary to cause the effect. In some cases, tasks thought to
require deeper processing show less of an effect than shallower tasks. Recently, this
effect has been investigated beyond that of faces; examining the effect on images of
doors. The LOP effect was consistent for this image set, though modest, whereas in
the contrasting verbal processing experiment, effect size varied widely. Baddeley et al.
[5] relates this to the concept of affordance, where the relation of some concept to an
organism affords some possible action, such as a chair being capable of being used for
sitting, or as a potential weapon. Baddeley notes that rich encoding does not necessarily
lead to good recognition unless the coding is sufficiently complex enough to defeat similar
distractors. Hence, one reason the LOP effect appears relatively small for visual stimuli
is that discriminative features in the stimuli set used were not powerful enough to defeat
similar distractors present in that dataset. Verbal stimuli lend themselves more easily
to semantic elaboration when being deeply encoded, as they afford a rich tapestry of
related words and meanings. Door images, however, afford little to the observer, and

hence their encoding depends more upon perceptual features present in the image.

It would be incorrect to assume that an images memorability is a binary property.
While a single person may recall or forget an image, over a population, that image’s
memorability exists on a continuum; between ‘most likely to be recalled’” and ‘least
likely to be recalled’. Le-Hoa Vo [134] shows that these differences in intrinsic image
memorability appear rapidly after presentation of the image, and the longer the lag

between presentation and test, the greater the divergence between memorable and less-
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memorable images. Vo defines memorability as a function of the hit rate of the image,
where a hit corresponds to a previously shown image being recognised. The target
image could be repeated at any one of four ‘lags’ after that image was shown, which
correspond to how many images are shown in-between repetitions of the target image.
The shortest lag on average was 20 seconds, as each image was shown for two seconds
with a 500 millisecond fixation target in between, while the longest lag corresponds to
over ten minutes. Poorly memorable images show a decrease in recognition of 20% after
20 seconds. After ten minutes, this has decreased to 32% compared to the drop from
97% to 78% for highly memorable images. Vo also tracked pupillary response and blink
rate to gain an understanding of how cognitive load differs when recalling memorable
or non-memorable images. In this context, pupillary response refers to the change in
size of the pupil, and blink rate refers to how many blinks occur per measured time
period. Blink rates tend to decrease under high cognitive loads, while pupils dilate more
in response to ‘seen’ items vs new items. Poorly memorable images correspond with
increased pupillary responses and decreased blink rates. Vo states that the increased
pupillary responses mirror the greater cognitive load required for recollective processes,
and hence that poorly memorable images are more difficult to retrieve than memorable

images.

While the neural correlates of memory are still not well-understood, it does appear that
there exists a distinct processing stream associated with memory, that ‘tags’ viewed
stimuli for later encoding. Bainbridge et al. conducted a study employing fMRI ima-
ging paired with a task that involved dividing stimulus into male/female (for faces) or
indoor/outdoor (for scenes) [7]. No mention of memory was made to the participants.
After the scanning task, participants are tasked with a memory test that they were not
aware was coming. There was evidence of significant sensitivity in the ventral visual
stream and the medial temporal lobe to the memorability of viewed image. Forgotten
images when viewed again caused a similar stimulus to arise in the memorability-sensitive
brain regions as the first time the image was viewed. These brain regions are the same
brain regions that activate during first time viewing of the image. This processing
stream is termed ‘memorability’, as it appears responsible for determining whether a
given stimulus should be remembered. Memorability occurs beyond low-level perception
(no sensitivity in early visual cortex), and may ‘reflect the statistical distinctiveness of

a stimulus along a multidimensional set of axes’, and hence be used to tag stimuli for
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later memory encoding by the medial temporal lobe. Later work reinforces the idea of
a ‘perceptual trace’ of memorability, finding that signals associated with highly mem-
orable images propagate across several brain regions associated with high-level visual
processing [97]. The brain appears to be able to subject memorable stimuli to a deeper

level of visual processing than comparative low-memorability stimuli.

It is natural to assume that intending to remember an image improves how well that
image is remembered. Given a task, it makes sense that exerting effort at that task
will lead to better performance. Previous studies have shown little to no effect from
intending to remember images (although there is a significant effect when the stimuli
is verbal). Block et al. suggests this may be due to other effects overshadowing the
effect, such as the level of processing effect combined with rehearsal strategies [13].
To determine whether an effect exists when these confounding variables are excluded
pictorial stimuli are shown rapidly after one another, preventing either deep analysis or
rehearsal. Block found a significant intent to remember effect vs incidental remembering
when participants were tested with briefly presented, unrehearsable pictorial stimuli of
faces. This appears to indicate that the intent-to-remember effect only arises in the
most difficult cases. Evans and Baddeley [43] test this further, employing visual stimuli
that have distinctive detail removed. In the relevant case where an intent to remember
effect appeared, participants were tasked with remembering scenes of doors that had
potential diagnostic features removed. It may be the intent to learn helps in selection
of diagnostic features, or simply increases the amount of features encoded, and in most
cases is not required. Only in the most difficult cases is a conscious effort beneficial for

visual memory.

2.3 The Fallibility of Visual Memory

As we established in Section 2.1, episodic memory, and by way of inheritance, visual
long-term memory, is reconstructive, rather than reproductive. To reiterate, while visual
long-term memory clearly has a large, detailed capacity, it is by no means perfect. Errors
often occur, some due to the reconstructive nature of episodic memory, and others due to
perceptual errors that occur at sensory input. While this reconstructive ability is almost
certainly an evolutionary advantage, it does lead to an interesting defect; that of false

remembering. While it is obvious that during an image memorability experiment some
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images will almost certainly be forgotten, somewhat more surprising is that some images
will be marked as ‘remembered’ even if the participant has never seen that image before.
In fact, many of the previously examined studies show these ‘false recognition’ events.
In addition to this apparent tricking of the reconstructive visual memory system, there
also exists perceptual effects that alter stimuli almost as soon as they are received as
input. Most notable to that of image perception is the boundary extension effect; where
participants remember more of a scene than in fact they actually saw - constructing an

‘artificial’ boundary beyond the edges of the image.

While it is certainly interesting to learn about remembering, false remembering offers
the equally valuable opportunity to gain a better understanding of exactly how visual
long-term memory operates. Koutstaal et al. tested the recognition performance of older
and younger adults for detailed coloured pictures of objects, looking specifically at false
recognition [81]. While both older and younger adults showed significant false recognition
for each image category, older adults showed reduced recognition of unrelated targets
(targets not similar to the overall image category theme being tested), indicating they
relied more on conceptual/perceptual similarity, which Koutstaal believes is indicative
that only the gist trace of the image is being retained; thus making it easier to ‘false
alarm’ due to similar gist traces from similar images. Specifically, for within category
lures, older adults had a higher false alarm rate vs younger adults. This may indicate
that correct recognition of images is due to specific, detailed traces, but in the case
of false recognition, recognition defaults to a gist trace, sensitive to general semantics

present during the initial encoding of the viewed image.

While not strictly related to visual memory, episodic memory itself is vulnerable to ‘mis-
information’ where a memory is affected by post-encoding information. Loftus demon-
strates that being warned about misinformation does not necessarily avoid the damaging
effect of this new information [91]. Loftus goes on to show that it is possible, over several
weeks, to construct rich, detailed, and entirely false memories in participants. This is
demonstrated by holding a series of interviews with a participant about an event that
never occurred. As the interviews progress over the weeks, the false memory becomes
increasingly detailed. Given that entire false experiences can be implanted by a re-
searcher, it is not surprising that this occurs in the much more limited case of believing
to have seen an image. Interestingly, these false memories contain less detail [118], which

matches nicely with the later work of Koutstaal et al. [80]
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Other errors occur not during encoding, but at perception. The boundary extension
effect is where, upon viewing an image of a scene, and then later being asked to identify if
that same image is identical or zoomed in, participants commonly choose the ‘zoomed in’
option, suggesting that people construct the scene mentally beyond the actual boundaries
shown. Intraub shows that this effect takes place in only 1/20th of a second, and
hypothesises that this effect is an integral part of the perceptual system. Our senses
exist to let us construct the world around us, and the boundary extension effect appears
to ‘pre-empt’ parts of the world that may be likely to be looked at shortly [66]. Spano et
al later examined these boundaries further, and find that they persist even among people
with impaired hippocampuses [124], indicating that it is a brain-wide phenomena, and

not localised to one area associated with memory.

Much remains to be understood about false remembering from the perspective of visual
long-term memory. Just as it not entirely clear what causes certain images to be re-
membered over others, it is equally unclear as to what causes the false remembering
of certain images. The only thing that is clear is that human memory is certainly not
infallible, and that a complete model of visual memory would be capable of explaining
both why an image is memorable, and why an image might cause false remembering.
As we explore later, computational models have allowed great progress in the former;
the latter remains relatively unexplored. However, memorability is not the only charac-
teristic attributable to images, and the next section explores other perceptual measures

that may associate with memory.

2.4 Interestingness and Aesthetics

We have established so far that images can be remembered, and that how memorable
a given image is can vary. But memorability is not the only intrinsic characteristic
common to images. Images can be judged along multiple different perceptual axes, all of
which depend upon the content of the image. Most studied are those of interestingness
and aesthetics; both image properties consistent among observers, and which have been
shown to be capable of being modelled. While we will study image memorability itself
in more detail in Chapter 3, in this section we will briefly discuss these other perceptual
metrics, and whether how interesting, or pretty, an image is, has anything to do with

how well it is remembered.
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2.4.1 Interestingness

What causes images to be percieved as interesting? It could be their degree of aesthetic
attractiveness; asking whether ‘prettier’ images are more interesting. Turner et al. com-
pares the idea that interestingness relies on appraisal of a high degree of pleasantness
against the idea that stimuli can be interesting and unpleasant [1]. Participants were
asked to view paintings and rate them for emotional and cognitive responses on a bipolar
Likert scale. Turner found that ratings of pleasantness and ratings of interest were es-
sentially independent. Disturbing paintings tended to be appraised as more interesting,
though less enjoyable. At least in the case of paintings, it appears that interestingness
lacks a relationship with aesthetics, and that visual stimuli can be both unpleasant to
observe, yet interesting, and alternatively pleasant, but boring. Instead, it appears that
interestingness is a function of image content and composition. Dhar et al. examines
how well interestingness can be predicted by several high level attributes, including com-
positional, content, and sky-illumination attributes [37]. The work takes advantage of
measures of photographic quality commonly used among photographers, including op-
posing colors, low depth of field, and the two-thirds rule. These metrics, when used to
train a Support Vector Machine (see Section 2.5), performs extremely well at predicting
interestingness. Generally, more interesting images appear to be clearer depictions of

their category; with less interesting images being less clear or more cluttered.

But does the degree of interestingness of an image have anything to do with the memor-
ability of that image? While at a glance the assumption that interesting images are more
likely to be remembered makes sense, in practice, there is little relationship between the
two properties. Isola et al., in one of the first papers on computational memorability
[68] (see Chapter 3) briefly examines interestingness and memorability, and finds no
relation. Gygli et al. also finds that interesting images are not necessarily memorable
[55], and instead finds a negative correlation between how interesting an image is, and
the memorability score of the image. This may be due to an artifact of the dataset;
memorable but dull images appear to contain singular objects; whereas interesting im-
ages contain more detail, which may make them more difficult to recall. Interestingness
does correlate with "assumed memorability" ratings from the human participants, which
suggests that when estimating how memorable an image is likely to be, humans employ
interestingness as a metric; even though this does not actually predict memorability.

In contrast, aesthetics and interestingness are correlated with each other, contradicting
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Turners original findings. This may be because the dataset of images used by Gygli and
Isola lacked images specifically designed to be unpleasant. In order to facilitate com-
putational prediction of interestingness, Gygli introduces a measure of ‘unusualness’,
which defines how different an image is from its neighbours, and uses a similar metric
to determine how unusual selected patches in the image are in relation to each other,
hypothesising that a key aspect of how interesting an image is unusual features across an
image. This predictive measure, combined with aesthetics estimation and several other
metrics, including a complexity estimator, can predict interestingness with a strong cor-
relation to ground-truth scores. They find the most unusual images tend to be the most

interesting.

2.4.2 Aesthetics

Aesthetics in images generally refers to how ‘pleasing’ that image is to perceive. In this
context, we might consider a landscape photograph of rolling hills, lit by a deep orange
sunset highly aesthetic, and yet an image of a decaying garbage heap much less so. Being
capable of determining the aesthetics of images has several real-world applications, such
as image retrieval (‘find the best looking image in a database’), or as a teaching aid for
novice photographers. However, it is also of interest to cognitive scientists; determining
what causes images to be perceived as aesthetic, and which factors relate to aesthetics,

helps to reveal how the brain processes visual stimuli.

Dhar et al. uses their set of describable image attributes (previously used for interesting-
ness evaluation) and a dataset of 16,000 images with aesthetic ratings to train a support
vector machine. They find that the same attributes that lead to good estimations of
interestingness also lead to good aesthetic predictions, reinforcing the findings of Gygli
et al. that for photographs, aesthetics and interestingness are interrelated. Much like
interestingness, the predictive power of these high-level attributes is much greater than
previously studied low-level metrics such as contrast or brightness [71]. Murray and
Perronnin note a need for a large, diverse dataset for aesthetics reserach, and hence
introduce introduce AVA: A large scale database for aesthetics [98]. AVA contains over
250,000 images, combined with a variety of accompanying meta-data, including aesthetic
scores, semantic labels, and photographic style-related labels. They show that generic
models trained on a large-scale dataset outperform small-scale models that employ hand-

picked features, tested over the same dataset. They additionally find that images with
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the greatest variance in aesthetic ratings tended to be non-conventional photographs;
i.e, those more open to individual differences when it comes to personal interpretation

of the image.

Aside from these unconventional images, in general, real world scenes have consistent
aesthetic preference scores between individuals. However, abstract images are much more
specific to individual tastes. Vessel and Rubin compare scene preferences, abstract image
preferences, and abstract vs scene preferences [132]. They suggest that visual preferences
are driven by semantic content of stimuli, and shared semantic interpretations lead to
shared preferences. They confirm this by de-emphasising the semantic content of real
world scenes by intermixing real images with abstract in the image streams shown to
participants. In this condition, individual preferences arise, which they hypothesise is
caused by direct comparisons between previously viewed abstract images and real-world
images. Abstract images themselves may not span the same semantic context as real
world images, leading to less preference correlation; there is less ‘shared meaning’. The
lack of agreement between the preferences of abstract images means computationally
predicting aesthetic preference from a general dataset is likely to be more difficult than
predicting aesthetics of scene images; and that the performance of artificial prediction

of abstract art preference is unlikely to ever match that of real-world scene performance.

2.4.3 Relationship to Memorability

We have already seen above, in the work of both Isola et al. [68] and Gygli et al. [55] that
memorability has either no relation with interestingness, or a weak inverse correlation.
That is, how interesting an image is has apparently little to do with how well it will
be remembered. Khosla et al. introduces LaMem [75], a large image dataset composed
of several image subsets with various perceptual ratings. These subsets include ratings
for image popularity, ranked as the view-count of images drawn from Flickr, saliency,
taken from an image eye-fixation dataset, and emotions from the affective image dataset.
Ratings for aesthetics are taken from the AVA dataset. All subsets have memorability
ratings. Khosla et al. finds that these attributes, despite being high-level, have relatively
little to do with memorability.

Highly memorable images appear to be more popular, but aside from the most mem-

orable case, the difference disappears. The reason for this difference is not discussed,
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and appears unknown, though it is reasonable to consider that it may be due to context
effects (discussed further in chapter 3). Saliency shows a minor effect, with a difference
between the most and least memorable images; more memorable images contain more
consistent fixations between participants. This implies that memorable images contain
singular specific items to focus on (i.e an object), though this is may be an effect of the
dataset; remembering a single object is likely to be easier than remembering a scene

image.

The emotional content of the image appears related to its memorability, with strong neg-
ative emotions (disgust, anger, fear) being more easily remembered than other emotions.
The least memorable emotions seem to be pleasanter, such as awe, and contentment.
This matches findings in [68]. Interestingly, images rated as ‘amusing’ appear statistic-
ally similar in memorability to those with ‘disgust’ ratings. However, the images with
these ratings were drawn from a dataset specifically designed to contain images with
affective content; a dataset of scenes or objects are unlikely to have a strong emotional

component to their memorability.

Khosla et al. [73] find no relationship at all between aesthetics and memory; not even the
weak negative correlation that might be implied by aesthetics strong relationship with
interestingness. We can say with confidence that across a large and diverse dataset, that
how ‘pretty’ an image is has little to do with whether that image will be remembered.
In general, while image memorability has some limited relationships with other image
properties, none of these properties are capable of fully explaining the memorability of an
image, and certainly are not capable of describing memorability in all cases. Humans are
certainly capable of remembering images even if they do not cause a consistent emotional
response, or contain single objects to focus upon. This implies that memorability is a
distinct image property; intrinsic to the image itself. Later work on image memorability
takes advantage of relatively recent developments in both classical and neural-network
based machine-learning methods; the next section describes some of these techniques,

and their application to memorability prediction is discussed throughout this work.

2.5 Machine Learning

This section is intended to give an overview of some of the more common machine

learning techniques that are often applied to the problem of memorability prediction.
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This ranges from support vector machines (SVM), which used to rank among the most
commonly used, to convolutional neural networks and other, more esoteric networks that

are in use today.

2.5.1 Support Vector Machines

The technique that developed into what we today call a ‘Support Vector Machine’ was
originally proposed in 1992 by Boser et al. [14] as a method for finding the maximal
margin between ‘training patterns’ and a decision boundary. In other words, a support
vector machine (SVM) is a machine learning algorithm that attempts to learn a decision
boundary that divides a set of datapoints into different classes [32]. The ‘decision bound-
ary’ is the optimal hyperplane that can best divide the training data into their separate
classes. This hyperplane, by definition, has the greatest margin between the differing
classes in the data, and is constructed by the support vectors of the data. These support
vectors are those closest to the hyperplane (hence a subset of the input data), and as
such are instrumental in describing the direction and placement of the plane. So far, this
description works for binary classification; one hyperplane to divide two classes of data.
In the case of multi-class classification, the problem is broken down into multiple binary
classification problems; either finding multiple hyperplanes across the data, or determ-
ining a hyperplane capable of separating one class from all others. Most memorability
studies that make use of support vector machines in fact use them for support vector
regression (SVR). SVR operates in a very similar manner to a SVM, the only difference

being that the hyperplane is used for regression rather than classification.

Naturally, the use of a hyperplane implies that the data is linearly separable; that is, it
already exists in ‘clusters’ that between which, a straight line (in the two-dimensional
case) can be drawn. In practice however, complex real-world data is unlikely to exist in
this structured form. To solve this issue, SVMs employ the ‘kernel trick” method [63].
This approach transforms the data (in whichever dimension it currently exists) into a
representation in a higher dimension. This allows a non-linear lower-dimensional feature
space to be restructured into a higher-dimensional linear feature space, which allows an

optimal hyperplane to be found.

22



CHAPTER 2. BACKGROUND

2.5.2 Feature Extraction

For support vector machines to function (and indeed, all machine-learning techniques)
they need to be provided with some form of input. For SVMs, this is rarely the ori-
ginal data; it is far more efficient to find some relevant features that capture whichever
characteristic is being predicted, extract them from the data, and use those instead.
Memorability prediction models tend to fall into two camps; those that make use of
more classical features, and those that make use of neural networks, either for final
classification, or as an entirely contained system. Older work, before the general rise
of deep neural networks tends towards classical features combined with support vector
machines. Newer models either use neural networks to extract features and then classify
based upon those features with an SVM, or are self-contained systems that use neural
networks for both feature extraction and prediction. It is hence worth providing an over-
view of what these classical features actually are, and how they are produced, before we

discuss computational memorability prediction in detail in Chapter 3.

Table 2.1 shows some of the most common types of classical features employed for mem-
orability prediction. Though not an exhaustive list, these features in some combination

show up in most classical models.

Graph-based visual saliency (GBVS) [56] is a computational model of human saliency -
i.e, how likely is it that an image feature will capture our attention, developed by Harel
et al. This model captures human behaviour with a receiver operating characteristic
(ROC) of 98% against human ROC; making GBVS a highly accurate model of human
attention. GBVS works by calculating the dissimilarity between a given region of the
image with other neighbouring regions. These regions are used as nodes in a graph,
where the transition cost between each node is based upon the similarity of each region.
Areas of the image are then highlighted with an intensity based upon the amount of time
a random walker would spend at a node before continuing. As crossing from a similar
region to a disjoint similar region is less likely, these areas are walked less versus nodes

that correspond to similar regions.

Histograms of oriented gradients (HOG) [34] calculates the direction of edges in an
image, which in turn captures the shapes present within the image. HOG is invariant
to geometric transforms aside from object orientation, and is generally used for object

detection. The structural similarity index (SSIM) compares two images and produces

23



2.5. MACHINE LEARNING

Acronym | Full Name Reference

GBVS Graph Based Visual Saliency Harel 2007[56]

HOG Histogram of Oriented Gradients Dalal 2005[34]
SSIM Structural Similarity Index Wang 2004[137]
GIST N/A Oliva 2001[103)
SIFT Scale Invariant Feature Transform Lowe 2004[92]

Table 2.1: The most common feature extractors shared among memorability prediction
and analysis models.

a metric of how similar they are to one another. SSIM works upon various windows
extracted from the two images, and compares the averages, variances, covariances, and
dynamic ranges of three metrics; luminance, contrast, and structure (local intensity

patterns).

The GIST model [103] provides a computational representation of the ‘spatial envelope’
of an image; where the spatial envelope is a low dimensional representation of that scene.
Each dimension is based upon a perceptual feature that captures the spatial arrangement
and textural makeup present in the scene. This model is loosely related to ‘scene gist’
a low-level, relatively un-detailed representation of a scene that can be extracted in less
than 100ms. Rapidly determining the category of an image seen for very short amounts

of time; or being able to describe a few objects present in the scene and their surrounding
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context both involve the use of gist. The GIST model represents the scene as a set of
spectra along the various dimensions of naturalness, openness, roughness, expansion,
and ruggedness (pictured in Table 2.1). These spectra are generally similar for images

in the same category, and diverge for images in different categories.

Scale invariant feature transform (SIFT) [92] is a feature detection algorithm that can be
used to generate feature vectors that describes an image. SIF'T functions by extracting
many scale-invariant keypoints from an image. Each keypoint is tagged with an assumed
orientation, which helps SIFT remain rotation invariant. The feature vector consisting
of extracted keypoints can then be used to match objects in a separate image to the
same object in the original image (as the keypoints will match, even if the object is
rotated or present at different scale). For computing memorability scores, the generated
SIFT keypoint vector is passed directly into an support vector machine without further

processing, and simply serves as description of the image.

2.5.3 Neural Networks

Neural networks have a history that stretches back over fifty years, and to cover every
variation and evolution of the basic concept would be impractical. Nonetheless, modern
neural networks share several defining features, and in this section we will briefly review
these shared functions upon which which the majority of neural networks rely on to
operate. A neural network is a set of connected artificial neurons. These neurons are
generally structured into distinct layers, with each layer receiving the output of the
preceding layer. As an input flows through a trained network from start to end, the
input signal is transformed by the weights and biases of the artificial neurons into an
output signal that represents some learned metric of the input, for example, the class of
the input sample. The simplest possible ‘neural network’ is the perceptron; essentially a
single artificial neuron [110]. This artificial neuron has a set of inputs x, a set of weights
W and a set of biases b. The output, y is computed through the relation y = o(Wx+b).
o represents an activation function; a function that non-linearly transforms the output.
This, much like an SVM, allows the perceptron to learn a hyperplane that separates the
data. In the case of linearly separable data, perceptrons are guaranteed to converge.
However, as with SVMs, most real-world data is not linearly separable, and in this case,

perceptrons will never converge.
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However, this relatively significant issue can be solved by stacking perceptrons into
layers, and feeding the output of the previous layer forward to the next. The aptly named
Multi-Layer Perceptron (MLP) represented the first step toward modern deep-learning,
and allows the additional layers of the network to learn non-linear transformations of the
data; much as the SVM kernel trick allows for non-separable low-dimensional data to be
projected as points in a separable higher-dimensional space. Multi-Layer Perceptrons are
powerful machines, and can be considered universal function approximators, indicating
that the calculation performed via the weights of a trained MLP can represent a large
assortment of functions. However, this does not imply that those weights can be learned;
simply that it is possible that some assortment of weights can exist to approximate a

given function.

In order for a neural network to be useful it must be trained. The weights and biases are
initially set to random values; and are thus highly unlikely to solve whichever task the
network is intended to solve. The process of updating these weights to values that allow
the network to solve an arbitrary task is known as training the network, and requires

two key components; a loss function, and an optimiser.

Loss Functions

The loss function of the network does nothing more than compare the current output
of the neural network to the desired output of the network, and return some metric
that indicates the difference between these two values. The choice of loss function is
relatively critical to the performance of the network; and there is no guarantee that
the loss function that works well for one task can be readily applied to a different task.
There is a wide variety of loss functions, far more than could be listed here. However,
a few are both common enough, and robust enough to different problems that they are

worth mentioning here. For classification problems, the categorical cross-entropy loss
N C

My, 9) =— > > yS -log(75) has seen extensive use. For categorical cross-entropy, the
n=1c=1

label n with class ¢, ¥ is a binary value (0 or 1) that determines whether the label is a

member of class c. The prediction gy, is a probability between 0 and 1 that label n is a
member of class ¢. The goal is to minimise the difference between the actual class label
and the predicted class label. The log function penalises large errors more than small

errors; which helps to prevent confident, yet incorrect predictions.
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For regression problems there are no class labels, so cross-entropy loss cannot be used.
The natural choice in this case is often Mean Squared Error (MSE), which penalises the
squared difference between the output of the network and the actual labels. The MSE
loss is defined as follows: A = 137" (V; — Y;)2. The MSE loss can easily be extended
to multiple dimensions, and such can be used to allow neural networks to find the error
in two-dimensional data (for example, learning to generate saliency maps). There are
many more possible loss functions, such as the variational loss found in autoencoder
models of the same name, and the Wasserstein and hinge losses found in GANs, which

will be discussed later.

Optimisers

Optimisers are algorithms responsible for the actual learning of the network; they update
the weights of each neuron based on the error provided by the loss function. However, the
optimiser needs to know which direction the weights should be changed in to minimise
the error. This is accomplished via the backpropagation algorithm. Backpropagation
itself is not an optimiser; instead, it is an algorithm that can calculate the gradient of
the loss function with respect to the current weights of the network. The optimiser uses
these gradients to ‘step’ along the weight gradients. Exactly how the optimiser uses the
provided gradients differs depending on the optimiser used; as with loss functions, there’s
a wide variety of possible choices for optimisation algorithms, some of which may work
better than others for certain problems. Generally however, they are all variations on
Stochastic Gradient Descent (SGD), an algorithm which calculates the loss gradient
for a random subset of the input data and updates the weights by an amount defined by
the step size (or learning rate). This has the effect of traversing the multidimensional
landscape defined by the loss function, with the goal of coming to rest in a ‘global

minimum’ - the set of weights with the lowest possible loss.

SGD and has mostly been superseded by more modern algorithms designed to reduce the
amount of iterations required by the network to converge. These include the RMSProp
algorithm, based upon the AdaDelta algorithm, which maintains a different, adaptive
learning rate for each parameter in the network. In the AdaDelta [145] algorithm, the
learning rate is based on continually accumulating gradients, which eventually results in
the learning rate shrinking to nothing. RMSProp solves this by keeping a decaying mov-

ing average of the calculated squared gradients; allowing it to focus on newer calculated

27



2.5. MACHINE LEARNING

gradients and avoid the learning rate diminishing. The Adam optimiser |77] likewise
maintains a decaying average of both previous gradients, and those gradients squared.
These additional parameters serve to simulate momentum; allowing the optimiser to
‘skip’ over local increases in loss if the loss has been decreasing up to that point. Adam
has seen successful use in many types of neural network architectures, from CNNs to
generative models; though it does come with its own hyperparameters that occasionally

need to be tuned to the problem at hand, complicating training.

2.5.4 Convolutional Neural Networks

Convolutional neural networks (CNN) are among the most common types of neural
networks seen today, and are likely responsible for the popularity of deep-learning. Be-
fore CNNs, machine learning problems involving images required carefully handcrafted
features, or were constrained to very small images. With CNNs, it suddenly became
possible to train a neural network to classify a wide variety of images with remarkable
accuracy. This developed into CNNs becoming the primary choice for object recog-
nition, image segmentation, and more. While usually known for their effectiveness at
image classification, they also often appear in any complex model where learning features
about spatially sensitive data is useful. In more recent studies examining memorability
prediction in particular, CNNs tend to dominate due to their ability to extract useful

features from image data.

A standard Multi-layer Perceptron network involves connections between each neuron
of one layer and all the neurons of the preceding layer. While this allows the network
to integrate global features (‘fully connected’ layers are still used for this purpose),
applying this model to high-dimensional data such as images, results in a network with an
enormous amount of connections. As all these connections need their weights updating,
the model quickly becomes computationally bound. Additionally, while images tend to
have spatial constraints on their structure, fully connected models have no concept of
spatial locality - each input is treated independently even when some spatial relationship
exists. E.g, an MLP can not learn to detect the "eye structure" in faces invariant of

where in the image the eye actually appears.

CNNs solve this problem by connecting each neuron with only a small window of the

input at a time, termed the ‘receptive field’ (See Fig 2.1) of the neuron. This window

28



CHAPTER 2. BACKGROUND

o1 featy C3:f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x08 ps 16@

32x32 52:f. ma
6@14x1

| | Full conrleciion | Gaussian connections
Convolutions Subsampling Convalutions ~ Subsampling Full connection

Figure 2.1: LeCunn et al’s LeNet - one of the first convolutional neural network archi-
tectures. The feature maps mentioned are analogous to filters. Dimensionality reduction
is accomplished through subsampling. [Fig. 2 in [87]]

‘slides’ over the image. This sparse connectivity means fewer weights are required to
learn the patterns in the data, as the receptive field does not have to cover the whole
image. This spatial constraint allows each neuron to learn to detect spatially local
features. In the case of the above (simplified) example, an "eye detector" may arise
in a neuron; that will activate whenever its receptive field encounters an eye in the
input. This detector is structured as a set of ‘filters’ that activate in response to given
patterns in the previous layers. As the input flows through the CNN network, these
filters become more powerful. Filters in early layers may detect lines, edges, or corners,
while later layers detect arrangements of these components - objects. Much in the
same way one might employ convolution with an edge-detection kernel to find edges
in an image, a convolutional neural network uses convolution with its filters to detect
whichever feature the network filters have learned it’s advantageous to detect. These

convolution operations give the network its name.

To help keep the number of computations required under control, and to force the
network to learn the most relevant features in the data, as the data is passed through
the network it usually undergoes some form of dimensionality reduction. The features
that survive the reduction process are considered to be the most important to solving
whichever task the network is being trained to perform; and generally, the deeper the
network, the more powerful, and more abstract, the representation of the input data
becomes. There are many forms of dimensionality reduction, but usually this takes the

form of some kind of pooling; often used is MaxPooling, which preserves the maximum
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value in the pooled regions, or AvgPooling which preserves the average value of the

pooled region.

As with multilayer perceptrons, convolutional neural networks generally have some form
of activation after each layer. Historically, both the logistic function and hyperbolic
tangent functions have been used, with the hyperbolic tangent (tanh) outperforming
the older logistic function. Unfortunately, both these activations tend to saturate where
large activations become locked to 1, and small activations locked to 0 (or -1). As
the error backpropagated through the network depends upon the derivative of these
functions, the lack of sensitivity leads to the wvanishing gradient problem, where the
gradient needed to update the weights and keep the network learning tends towards
zero. Once this happens, training collapses. The Rectified Linear Unit (ReLU), defined
as RELU(z) = max(0, z) helps solve this issue by essentially being unbounded in the
positive direction. This helps prevent the vanishing gradient problem, while remaining a
non-linear function. However, if the output of a pre-activation neuron becomes negative
despite the input, it will be clamped to zero, and stay that way; never learning (a ‘dead’
neuron). An incremental update to the ReLU activation, the Leaky ReL.U helps prevent
this by allowing small negative values to pass through the activation function; keeping

the advantages of ReLU without the issue of neurons becoming unable to learn.

2.5.5 Recurrent Neural Networks

Recurrent neural networks (RNN) are a form of neural network that maintains a ‘memory’
of the data that it has seen previously. This allows it to process information based not
only upon the current input, but also upon the previous input that it has seen at an
earlier time. This kind of neural network works best with data that has some natural
ordering, usually along a ‘time’ axis. This includes data such as text (recurrent networks

frequently form the backbone of natural language processing architectures) and audio.

A basic RNN architecture contains a hidden state that propagates forward, but has no
control over what this hidden state should contain. A more complex form of RNN,
the Long Short-Term Memory (LSTM) network 62| introduces the concept of learnable
‘gates’ that allow the network to learn which information should be persisted, and which
information can be safely forgotten. The ‘first’ gate in the LSTM learns what information

to accept into the LSTM core state, the second two gates decide what information to
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update that state with, and the final gate decides the output of the neuron. This allows
the network greater flexibility in deciding how best to adapt to the data it is being
shown. While standard RNNs are not widely used, LSTMs remain popular.

2.5.6 Additional Network Types

There are of course many more network types than just CNNs and RNNs, some of which
we discuss later in this thesis, such as the Variational Autoencoder (VAEs) (Chapter 3.2)
and Generative Adversarial Networks (GANs) (Chapter 4). While the building blocks of
these networks are mostly the same basic methods discussed in the preceding chapters,
these types of neural network are more specialised, and benefit from a contextual discus-
sion rather than a general overview. In general, modern neural network architectures,
whatever their application, tend to make use of either CNN or RNN components. If
a neural network is involved in processing images in any form, it is a safe assumption
that convolutional layers will be involved, and if the network needs to modify its output
based on previous input, recurrent layers are likely to make an appearance. In the next
section we will discuss transfer learning, and a few common neural network architectures

that see widespread use.

2.5.7 Transfer Learning & Common Architectures

When considering computational image memorability prediction, and indeed many other
domains, it rarely makes sense to develop and train a network completely from scratch.
After all, neural networks are expensive and time consuming to train. A sensible altern-
ative is retasking and extending an architecture that’s already been developed, and is
known to work well. If the pre-trained weights for that architecture are also available,
this could easily save a vast amount of computation time; there is no point re-training a
network for object detection for the purposes of memorability estimation, if there already
exists a network that performs object detection for the purpose of image classification!
All that is necessary is the network be re-tasked from classifying images to predicting
memorability. This is, in essence, transfer learning, where a network originally trained

for one task is re-trained for another.

As we have seen above, neural networks learn feature detectors of increasing power
throughout their layers. These detectors are abstract, and in a sufficiently complex image

classification network trained on a diverse dataset, could be responsible for detecting

31



2.5. MACHINE LEARNING

objects, animals, or people. It is only in the last few layers of the network that these
detectors are recruited for the purpose of determining image class (e.g, an airplane, a
boat, a beach). There is no reason these features cannot be employed for an entirely
different purpose; and there are several ways to accomplish this. In the simplest case,
the weights of the network can be frozen (not updated during training), with only the
last few layers left free to update. The network can then be trained on a different
dataset, and the layers responsible for integrating the features into a prediction will
learn to classify on the new dataset. In more complex cases, those layers can be entirely
removed and replaced with a stack of layers more suitable for the new task. In doing
so, as these new layers are the only layers that need to be trained, the network can be
trained much faster, and with less training data, on the new task than on it’s original
task. This has significant benefits when working in problem domains that benefit from
basic functionality (e.g the ability to detect objects), but do not have sufficient training
data to train object detectors from scratch in a deep neural network. We will now
briefly examine two popular convolutional neural network architectures that have seen
widespread use, and often form the "backbone" for applications that involve transfer

learning.

VGG

The VGG ("Visual Geometry Group") architecture [122| was influential enough that it
is still commonly used today, despite being nearly seven years old at time of writing.
The VGG network achieved state-of-the-art performance on the ILSVRC-2014, a large-
scale classification challenge based on the ImageNet dataset [36]. The challenge involves
classifying images into one of a thousand possible categories. The most common variant,
VGG16, uses 16 layers with trainable weights, and this notation holds for all other VGG-
type architectures. The convolutional layers use convolutions with a receptive field size of
3x3, and a stride of 1, which provides the ability to capture spatial directions in the input;
but are relatively computationally cheap. The last three layers of the network are fully
connected, with the final layer containing one thousand neurons which match to the one
thousand classes of the ILSVRC challenge. All layers use the Rectified Linear Unit non-
linearity. A trained VGG network contains deep features that lend themselves well to
other applications; in the original paper the network was transfer-learned across several

different datasets, showing good performance on each. Since then, any application that
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could make use of deep features that describe the semantic content of images has often
made use of the VGG network.

ResNet

While the VGG architecture was highly successful, it was constrained by an upper
limit on number of layers that the network could have before it became both too time-
consuming, and too unstable to train. Indeed, adding layer upon layer eventually leads
to the network eventually destabilising, with each layer added causing a decrease in final
training accuracy. This problem was eventually solved by an architecture we know now
as ‘ResNet’ - a network that contains residual connections [58|. These connections allow
much deeper networks to be easily trained; a well known variant has 152 trainable layers.
The residual connections themselves are implemented by way of shortcut connections
which ‘skip’ a subset of layers, adding the original input back to the processed output.
The hypothesis in the original paper suggests these skip connections, which act as an
identity operation of the original input, allow the network to choose to either add deeper
representation of the problem, or to continue with the original input if deeper repres-
entation causes a greater loss. Residual networks have set state-of-the-art performance
on a wide variety of image classification/object detection datasets, and have become
widespread. If a transfer-learning problem requires a more powerful representation than
the VGG architecture can provide, often a residual backbone is used instead. However,
even now, exactly why residual connections improve performance is not well-understood.
Interestingly, as the number of layers in a residual network increase, the individual re-
sponse of that layer decreases, suggesting there is some form of learnt normalisation
across the whole network that prevents destabilisation. While there have been improve-
ments to the architecture over the years since ResNets’ introduction, the basic principle,

that residual connections improve performance, remains the same.

2.6 A General Overview of Complexity

It is readily apparent that humans are capable of determining the complexity of a given
image; shown a blank canvas and an abstract painting, it is easy to identify the more
complex of the two. However, it is less clear how humans perceive the everyday com-
plexity in which they are immersed; that of the natural scene. Like memorability, image

complexity has also seen increasing focus on applying computational techniques in or-
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der to model and understand how humans perceive the complexity of a given image.
However, before modern machine-learning based approaches, psychologists have long
attempted to understand which factors cause an image to be regarded as complex or
non-complex [12]. While the majority of these efforts are not scene focused, they non-
etheless reveal some clues on how the brain processes complexity in general. As discussed
earlier, image memorability appears to have both a gist trace and a detail trace. While
gist is relatively well understood [102, 104, 85|, which features of the image contribute to
the detail trace in memory has had less examination. Could image complexity serve as
an analogue for the ‘detail’ level of the image, and in some manner interact with visual
memory? This is especially interesting to consider in the context of natural scene images;
perhaps the complexity of the scene affects how well that scene can be recalled. While
the relationship of aesthetics, interestingness, and other intrinsic image properties with
memorability is well understood, how image complexity relates to image memorability

is much less clear.

The origins of complexity theory and its relation to other image properties can be traced
back to the early 20th century, where G. D. Birkhoff defined an aesthetic measure [12]
as a ratio between the order and the complexity of an image, where complexity relates
to the count of elements and order relates to the count of regularities present. A few
decades later complexity is examined in the context of aesthetics [35], finding that for
very simple images (polygons) symmetry was a key determinant of rated complexity,
while later still complexity was redefined either as the detail present in a line drawing
of an image[123] or as the degree of difficulty in providing a verbal description of a
texture in by Heaps & Handel [60]. Heaps & Handel find complexity to be correlated
significantly with the structure, orientation, and repetitiveness of the texture. In this
case, structure refers to how much organisation vs randomness exist in the lines and

parts of the texture.

In 2004, Oliva et al. [105], in the first study to examine scenes explicitly, hypothesises
that complexity perception is affected both by the variety of objects in the scene, and
the variety of surface textures present. In an experiment to determine which factors
affect perception of complexity, they find that complexity could be modelled along two
main dimensions for interior scenes; that of mirror symmetry and that of clutter. A year
on, in 2005, Rigau et al. [108] proposes an information-theoretic framework for mod-

elling complexity, based upon Birkhoffs’ aesthetic measure, which partitions an image

34



CHAPTER 2. BACKGROUND

into several homogeneous regions then calculates the mutual information between these
regions. How this relates to human perceptual complexity was not explored, nor was
it explored in later work [109], which uses Kolmogorov complexity [78] as a potential
measure for image complexity. Kolmogorov complexity can most easily be understood as
the length of the shortest program to compute a given output on a universal computer;
i.e, the most compressed that output can be. Kolmogorov complexity is uncomputable,
but can be estimated by compression algorithms [108|. Random structures are difficult
to compress, so it has been suggested that the complexity of an image is related to the
structures in an image that lie somewhere on an axis between trivial regularity (the
‘order’ of Birkhoff) and meaningless randomness; that is complete order and complete

randomness are similarly lacking in complexity [39].

To investigate the overlap between machine methods and human perception, Cardaci
et al. frame image complexity as a fuzzy process [21], and conduct a trial to evaluate
whether their computational method matches reported complexity values from human
observers for paintings. They extract local image features and build an entropy-based
distance function to determine how far a given image is from the simplest image in the
set. However, they define human perceptual complexity as related to the perceived time
to observe an image; and while they find a relation between their fuzzy measure and
perceived time, it is unclear what visual processes drive this. Yu et al. [143] instead
examine spatial information measures (such as edge magnitude) and find they correlate
with compression-based complexity measures [45]. However, these measures are often
tested on line drawings, polygons, or icon images; all of which are a long way from a
rich natural scene. Even paintings, while of interest for aesthetics perception, do not
reveal much about how scene complexity is perceived. Finally, in [95] it was found
that computational measures of complexity correlated with ratings of visual complexity,
and ratings of visual complexity correlated with measures of affect, but computational
complexity did not correlate with affect. That is, complex pictures tend to be rated
more ‘pleasant’ and ‘arousing’ than non-complex images, yet existing computational
techniques do not indicate this relationship exists. There appear to be minimal studies
that directly relate image complexity to image memorability, though one study suggests
that high complexity images may be more memorable than medium complexity images
[123].
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2.7 Summary

It is evident there is much yet to be understood about complexity perception; and even
more to understand about scene complexity perception. Later in this work, in Chapter 5
we discuss modern approaches to analysing and predicting image complexity, including
various methods that make use of deep learning. However, it is still unknown exactly
how image complexity and image memorability relate; and for scene images, there is
even less data. Later in the same chapter we explore the gathering of complexity data
purely for scenes, and discuss how this relates to those scenes memorability. In the
next chapter however, we will discuss how the memorability data for those scenes was
obtained and what this reveals about image memorability in general via a new approach:

the Visual Memory Schema.
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Visual Memory Schemas

While there have been several approaches to predicting the memorability of images
through computational means, until now these approaches have been limited to a single
‘score’ that defines how memorable an image is; without explaining why the image has
that score. In contrast, VMS Maps identify the regions in an image that cause a human
to be able to remember that image. For the first time, there exists a dataset that contains
two-dimensional human memorability data. However, due to the resources required to
gather this sort of data, the original dataset is limited, consisting of only 800 images;
making prediction of VMS maps difficult. In this chapter, we present the relevant
background needed to understand computational image memorability prediction, and
our efforts to expand available VMS datasets and VMS prediction methods. We explore
the differences in two-dimensional memorability information across categories, and for
the first time employ computational methods to quantify the semantic ‘units’ that make
up a Visual Memory Schema; that is, we find which arrangement of elements and objects

in a scene cause that scene to be remembered.

3.1 Background

Studies of human visual memory in psychology stretch back decades, but research em-
ploying computational methods to understand image memorability are relatively recent.
With an increase in computational power and an advancement in image processing tech-
niques, computational investigation into perceptual image properties became possible.

For the first time, large-scale crowd-sourced image memorability datasets could be ac-
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quired, and based on this data, early machine learning techniques could be employed
to learn from this data; and predict the memorability of a given image. As classical
techniques gave-way to deep learning, prediction accuracy has only increased; eventu-
ally reaching human-level performance. However, these methods (and the data on which
they are trained) give a single score for the entire image; and do not reveal what it is
about the image that causes it to be remembered. Later work introduces Visual Memory
Schemas, two dimensional memorability maps. Training computational models to learn
which parts of an image are memorable and which is not is significantly more complex
than single-score regression; and there is still a way to go before reaching human level

performance.

3.1.1 Computational Memorability

The first study to introduce the notion of large-scale computational memorability pre-
diction is that of Isola et al. in 2011. Isola developed a ‘memory game’[69] in which
workers on the Amazon Mechanical Turk platform were presented a series of images,
displayed for one second, with a 1.4 second gap in between. The workers were asked
to press the space bar when a repeated image was shown (a variant of the old/new
recognition test). Fach series was 120 images long, which constituted a ‘level’ in the
game, and each participant could complete up to thirty levels. 665 participants played
the game. Of the images shown to the participants, 2222 images were targets, and 8220
images were fillers, which were not repeated. Participants were not shown ahead of time
which images were targets, and each target was repeated only once. Similarly, each filler
was only shown once. Each image was scored by an average of 78 participants, with
the mean memorability score lying around 67.5% (defined as the percentage of correct
recognitions), with a false alarm rate of 10.7%. Isola also found that when humans are
asked to predict if an image is likely to be memorable or not, the results were actually
weakly negatively correlated with memorability[68], indicating that humans are actually

very bad at determining whether an image is likely to be remembered or forgotten.

Critically, the Spearmans rank over 25 randomly split memorability trials is 0.75, indic-
ating a high degree of consistency between participants. Because of this high degree of
consistency, Isola hypothesised that there is in fact some intrinsic component to mem-
orability in images. If memorability had more to do with the participants viewing the

image than the image itself, then the overall consistency of memorability scores would
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be expected to be much lower (or perhaps nonexistent). Because of this consistency,
indicative that it is more to do with the image than the viewers, the memorability score
of an image should be able to be predicted by an algorithm. Isola developed a predict-
ive algorithm based upon classical global image features that included pixel histograms,
GIST, SIFT, HoG and and SSIM (detailed in Chapter 2.5). Together with a Support
Vector Regression (SVR) machine, the predicted scores had a rank correlation of 0.54
with the ground-truth human scores. Object statistics were also examined, finding that
simple statistics such as mean class coverage or the count of an object are not predictive
of memorability, though scene category did appear to summarise much of what made an

image memorable.

The first, and until much later, only investigation into memorability beyond a single
score was Khosla et al.’s |[73] work into predicting memorable regions of a given image.
By examining selected regions, and predicting how likely said region is to be forgot-
ten or hallucinated, then pooling these feature maps into one overall map, the general
memorability of the image can be predicted. Khosla et al. use a probabilistic model to
simulate a ‘noisy memory process’, and hypothesise that the likelihood of an image be-
ing remembered is the distance between the actual image and a noisy degraded internal
representation. In the model, they define this distance as the inverse of that images
memorability score. Multiple descriptors are used for each feature region: gradient,
color, texture, saliency, shape, semantic. They achieve a Spearmans rank correlation of
0.5 between ground truth and predicted, though they do not predict a true memorabil-
ity score, only a ranking between images. Different regions have different memorability
scores, but how accurate these are for the region itself cannot be calculated, as no ground
truth region-memorability dataset existed at this time, and Khosla did not create one.
This means the accuracy of these ‘memorability maps’ cannot be verified against human
data.

Khosla later introduces the LaMem database 75|, a dataset of 60000 images and a
memorability score for each image. This database is used to train a CNN to predict
memorability, reaching a rank correlation of 0.64. Rather than train the model from
scratch, Khosla used a pre-trained model and retrained it over the LaMem dataset,
terming the resulting model ‘MemNet’. The model was first pre-trained on both the
Places dataset (made up of over seven million labelled scenes) and the Imagenet dataset,

and used an AlexNet [3] backbone (which consists of eight layers, five convolutional
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and three pooling). Interestingly, the network finds that faces and bodies correlate
strongly with memorability, while regions of natural scenes seem not to. This is the
first major application of a large-scale convolutional neural network to the problem of
memorability prediction, and achieves a rank correlation outperforming every hand-
picked method presented previously. Following this success, most image memorability
prediction methods involved neural networks to some degree; even if just as feature

extractors.

Dubey et al. [40] used a CNN pretrained on the Imagenet dataset for feature extraction
purposes. The features were then passed into an SVR machine for memorability score
prediction. Imagenet [36] is a vast database of images that is commonly used for pre-
training of neural networks, under the hypothesis that the same learned features that
work well for classifying images will also work well for predicting other image-related
characteristics. Dubey’s CNN model achieved a correlation of 0.7 with ground truth hu-
man scores, though this score may be artificially high due to the small amount of images
used (850). Dubey also combined this model with a semantic segmentation technique
that could extract individual objects from images, using it to predict the memorability
of these objects. This network had a much lower correlation of 0.39. However, as the
CNN alone performed well, the error in the prediction is more likely to do with errors
in the segmentation technique (a notoriously difficult problem) than with the prediction

network.
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Figure 3.1: The AlexNet Architecture [3]. The second GPU processing stream is trun-
cated, but follows the same architecture as the first.

Lukavsky [94] explores the effect of an image being different from its neighbours, as

well as the effect of being in a different category to its neighbours. They accomplish
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this with a convolutional neural network known as ‘Places-CNN’, which is built upon
the AlexNet architecture and trained on the Places dataset [148] to classify images into
scene categories (compared to Imagenet, which tends to be object categories). First,
feature vectors are extracted by truncating the network prior to the final classification
step. Secondly, the L2 norm is used to compute the difference between extracted features
from two images. A smaller L2 norm means the semantic content of the image is closer
to each other, and thus the images are "in-context" with each other. This method was
used to computationally determine which images are out of context with others in the

dataset, and hence to explore the effects of context on memorability.

Yoon et al. [141] later examines the effect of spatial relationships upon memorability by
using both a neural network to segment objects from the image, and a neural network
to predict the memorability of those segmented areas. For memorability prediction,
Yoon used Khosla’s MemNet [75] to extract memorability-relevant features, and then
employed DilatedNet [149] to extract a segmented map of the scene. These features
were combined via a support vector regression machine, which was trained to infer the
memorability score. This model achieved a correlation of 0.66 with the ground truth,
close to the LaMem human split correlation of 0.68, and significantly more accurate than

Dubey’s earlier model.

Most early works were not "end-to-end" neural networks; rather than having a single
neural network that computes memorability scores, they instead used neural networks
for feature extraction, but passed these features into other algorithms to compute mem-
orability scores. In contrast, Squalli-Houssani et al. [11] develop an end-to-end neural
network that incorporates both CNN features and features from an image-captioning
system, intending to capture the powerful memorability-descriptive effects of semantics.
Squalli-Houssani accomplishes this by making use of an LSTM-CNN combination. The
CNN extract relevant images features, and the LSTM network uses these features to
infer likely combinations of words that describe the image - essentially, captions that
describe the semantic content of the image. These features are merged with standard
CNN features extracted using the VGG16 architecture. By combining these features
together, they achieve a final Spearmans correlation of 0.72 over the LaMem dataset.
However, to accomplish this images are divided into four distinct classes, from low to
high memorability, based upon their LaMem scores, turning memorability prediction

into a classification, rather than regression problem. It is generally easier to compute
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aggregated classes rather than a direct regression score, which explains the unusually

high performance.

Fajtl et al. also investigates the pairing of recurrent neural networks with convolutional
neural networks for the purposes of memorability prediction and develops a neural net-
work[44] that uses an iteratively generated attention based metric. This network uses an
LSTM to generate attention maps (three iterations provide the best results). It should
be noted that these attention maps are unrelated to what is typically known as ‘at-
tention’ in the cognitive science world; they are not models of saliency or eye fixation.
They instead determine which parts of the image the neural network should process. To
create these maps, a method known as ‘soft attention’ is used, which assigns a probab-
ility weight to every informational element in the feature maps of the network, rather
than only ‘attending’ to elements that are greater than some arbitrary boundary. These
probabilities determine how much the neural network weight the network should assign
to a given element, which in turn weights the future generation of attention maps. Fajtl

achieved a 0.677 Spearmans rank, very close to the 0.68 of human consistency.

The base of the network is a pretrained residual network. Features are extracted from
the penultimate layers of the network, and fed into the attention predictor and LSTM
network, whose iterative attention maps are then summed together. The LSTM hidden
state is mapped to the normalised memorability score of the input image to regularise

the final output. The loss function:

L= (j—y)’ + ALa, (3.1)

is standard root mean squared error combined with a penalty AL, that encourages the
model to explore all image regions over the LSTM iterations, and prevent the algorithm
becoming ‘stuck’ in one spatial region. This penalty is a function of all activations over
the attention maps. While this approach certainly provides good overall results, the
improvement is relatively minor compared to the same network with attention features
disabled (0.663), indicating that learned deep features in a sufficiently complex network
remain the best predictor for memorability, and that likely the most critical elements
for memorability prediction is 1.) a sufficiently deep network and 2.) a sufficiently large

dataset.
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What can computational approaches tell us about memorability?

Image saliency defines regions of an image that draw an observers attention. Do high
levels of saliency influence how memorable an image is? Mancas found that eye fixa-
tion durations were longer the more memorable the image [96], and that congruency
between fixations is also higher for more memorable images vs less memorable images.
This is indicative of some link between attention and memorability. Mancas built upon
this by constructing a classifier that made use of attention-based features (saliency),
combined with Isola’s original image attributes, and found they improve image mem-
orability prediction. Even when 1512 of Isola’s feature dimensions were replaced with
17 attention based dimensions, overall Spearmans rank consistency between predicted
and ground truth was still higher than Isola’s model alone (0.479). Celikkale [23] later
explored combinations of semantic features (the scene category label), object features
(annotations on the image describing it’s object content) and dense visual features, such
as colour histograms, GIST, HOG, and SSIM (described in more detail in Section 2.5.2,
with a method that pools together salient regions in the image. Object level saliency
and bottom-up saliency maps are obtained and used for attention-based pooling of im-
age regions, that generates the final feature vector, and allowed Celikkale to achieve a
Spearmans rank correlation of 0.52 with the ground truth [23|. While it is clear that sa-
liency has a relation to memorability, it certainly does not fully explain it, as techniques

that predict using saliency remain far from the human level consistency.

In general, exactly how image content relates to the ‘memorability’ of that image is still
not well understood, and multiple feature dimensions (extracted from the image) are
required to provide a reasonable explanation of single-score image memorability [113].
The best descriptors of image memorability appear to be high level scene semantics,
those that deal with emotion, scene dynamics, actions, and demographics. Isola [67]
found that these attributes alone outperform all other tested feature extractors, with a
rank correlation of 0.51 with ground-truth scores. Combining these attributes with other
semantic predictors such as objects present and scene category boosts the final perform-
ance of the predictor to 0.54, which isn’t surpassed until neural network based methods
are developed. Taking a more fine-grained approach, Dubey et al. [40] found that indi-
vidual objects present in an image have varying degrees of memorability. Ground truth
memorability values for objects in images were obtained in similar fashion to Isola et al.

Participants played a ‘memory game’, though in this case shown images were masked,
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leaving only individual objects available for encoding. Object memorability has a high
consistency (Spearmans correlation of 0.76), which suggests that individual objects have

a level of memorability intrinsic to their structure.

Natural, outdoor scene images are some of the most difficult images to predict mem-
orability for, with machine techniques falling short of efforts to predict memorability
for both indoor scenes and object-focused images. Lu et al. [93] find that certain
Hue-Saturation-Value (HSV) values correlate with human memorability, and develop a
dataset that contains only natural scene images (such as forests and deserts). The HSV
feature contributes to memorability prediction of the natural scene images to a larger
degree than low-level predictors and the model overall outperforms Isola et al.’s model,
with the HSV feature resulting in an increase of 7.3% to the Spearmans rank correla-
tion between ground truth and predicted values. However, Lu’s dataset is very small,
consisting of only 258 images, and colour has been shown previously to be only weakly
predictive of memorability. The effect seen here is likely a result of the small dataset
combined with the difficulty of the task, but does indicate that in the absence of rich

descriptive features colour does play a small part in memorability.

Bylinskii et al. [20] find that images distinct to their context are remembered. For
example, in a dataset of deserts, a forest image may be better remembered as it stands
out against the context in which it has been presented. Bylinskii also finds that certain
image categories are more memorable than others, and that memorability rankings of
scene categories have a Spearmans rank of 0.68 over 25 half splits. Similarly, Isola found
that scene category alone had a correlation of 0.37 with ground truth memorability.
One possible explanation for variation in category memorability is that scene categories
with a greater amount of contextually distinct images appear to be more memorable; it
is potentially variety throughout the category that improves the memorability of that
category. An alternative explanation for variances in memorability could be due to
the perceived depth and motion of that image. Basavaraju et al. compute the depth
and motion of an image with optical flow and depth estimation methods. A set of
convolutional models were trained to predict memorability based on depth, motion, or
both. Neither the model based on depth or the model based on motion outperformed
the original MemNet CNN introduced by Khosla et al. However, when these features are
combined, this model slightly outperforms MemNet (0.64 vs 0.655) [9]. The issue here

may arise from lack of an accurate baseline. Both motion and depth of the images were
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found computationally, not drawn from the (unavailable) ground truth. If the calculation
of these factors is not accurate, it would be difficult to draw any conclusions about
memorability. Nonetheless, it appears even with potentially inaccurate depth/motion
estimations there is enough additional information to improve memorability prediction

performance.

3.1.2 Visual Memory Schemas

In cognitive science, a schema is a mental construct that facilitates the encoding of a
scene. For example, the average person may maintain a ‘kitchen’ schema that consists
of arrangements of common elements typically found in a kitchen. Viewed scenes that
better match this schema are therefore better encoded and retrieved. Visual Memory
Schemas represent a way of operationalising this idea of a ‘schema’ and extracting which
scene elements directly correspond to the mental structures that enable remembering of
the scene. Visual Memory Schemas were introduced recently in the work of Akagunduz
et al.|2] via the VISCHEMA Experiment, culminating in the creation and analysis of an
800 image scene dataset paired with 800 ‘Visual Memory Schema’ (VMS) maps. These
VMS Maps capture the regions in the scene images that cause a person to remember, or
falsely remember, that scene. In turn, these regions are thought to contain elements that
match the cognitive schema for that scene. The images and VMS maps have a resolution
of 700 pixels by 700 pixels and are full colour. For this dataset, images widely regarded in
the literature as being ‘highly memorable’ are excluded, by purposefully removing images
with recognisable landmarks, attention-drawing text, and people looking directly at the
camera. This results in a more stable dataset, as the memorability data for each scene
is more likely to be effected by scene semantic content rather than known memorable
features. In the VISCHEMA experiment, participants (n = 90) are asked to memorise
400 images drawn from the dataset, and then tested on another set of 400 images (of
which 200 are repeats and the other 200 are fillers) to determine how well those images
are remembered. Participants are asked to select on a scale between 0 and 100 how
confident they are that they have seen that particular image before. Over a certain
threshold (30) participants are asked to draw boxes on the image over the regions of the
image that they believe has caused them to remember that image. These maps are highly
consistent, with a Pearsons 2D correlation of 0.7 - participants agree on the areas that

caused the image to be recognised. VMS Maps hence are two dimensional probability
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distribution maps that indicate how likely a region in an image is to cause that image to
remembered or falsely remembered (Fig. 3.2). These maps represent cognitive elements,
shared among the participants that took part in the experiment (n = 90) that influence
the memorability of an image. Because of this spatial element, Visual Memory Schemas
allow analysis of which regions in an image causes a human to remember, or falsely

remember, that image.

HR:0.762 FAR:0.143

HR:0.905

Figure 3.2: An example from the VISCHEMA dataset produced in [2]

True VMS Maps, which indicate the areas that cause an image to be correctly re-
membered have a high level of consistency between randomised equal splits of the par-
ticipants, while False VMS maps, which indicate areas that cause an image to be falsely
remembered, have a lower level of consistency. From these data it appears that while it

is relatively easy to agree on what is memorable, regions that cause humans to believe
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they have seen an image, when in fact they have not, are more subjective. A VMS
Map of an image has a Spearmans correlation with the computed saliency (GBVS) of
that image (0.581), much lower than the correlation between participant VMS Maps
(0.7), indicative that saliency cannot fully explain what makes an image memorable.
Additionally, VMS Maps were compared with eye fixation data gathered at the same
time the experiment was conducted, and no significant correlation between eye fixations
and VMS maps was found. This clearly indicates VMS Maps clearly capture inform-
ation about memorability beyond that of simple attention-based metrics. True VMS
maps are more consistent than false VMS maps across observers, which is hypothesised
to be because the encoding of more easily remembered images relies upon more estab-
lished mental schemas, whereas falsely remembered images are more due to reliance on

individual experience.

Akagunduz et al. |2] employ transfer learning and five different neural network architec-
tures in order to determine the best combination for predicting combined VMS maps.
The five different pretrained networks were MemNet, and four VGG variations: VGG-S,
VGG-M, VGGI16, and VGG19. The original classification layers of the networks are
removed, and new layers attached consisting of 3 256 neuron hidden layers and a 400
neuron output layer. Twenty-one variations on these architectures are tested, dependent
upon which final layer of the pretrained networks the new output network is appended
to. The final output of each network is a 20 x 20 pixel combined VMS map. Each network
is trained for each possible 80/20 split of the training data, and considering two possible
loss functions (The L1 and L2 norms). This results in 210 total different experiments.
They find that deeper layers in the neural architecture perform better at reconstructing
VMS maps, though interestingly the deepest layer in the network perform more poorly
compared to previous layers. This is hypothesised as being caused by the deepest layer
being fine tuned for image classification rather than VMS map reconstruction. The best
performing network is VGG19, and the best reconstructed category is ‘work-home’ with

a Pearsons 2D correlation of 0.677 with ground truth data.

3.2 Methodology

Predicting the memorability score for an image representing how likely a given image is

to be remembered by a human during a recognition test, is a difficult task - memorability
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has been shown to be associated with the semantic content of the image, a complex di-
mension to extract. With the advent of large memorability datasets that contain tens of
thousands of images paired with ground truth memorability scores, recent deep learning
models have succeeded in achieving close-to-human performance in predicting how likely
an image is to be remembered. Previous work in the arena of memorability prediction
has been engineered with the goal of predicting memorability scores for a given image.
Few research studies explored creating models capable of predicting the regions of an
image that contribute the most to an image’s memorability. These models’ predictions
of memorable regions lack a clear relation to the ground truth, as until very recently
no dataset of the regions that cause humans to find a given image memorable, existed.
In this section, we present the methodology of several approaches to predicting visual
memory schemas. We start with a variational autoencoder based approach, trained on
the original VISCHEMA dataset of 800 images. We then explore additional computa-
tional techniques which may aid in the prediction of visual memory schemas, and finally
we develop a novel architecture that incorporates these techniques, and makes use of
existing single-score memorability datasets. Results for all proposed approaches can be

found in Section 3.3.

3.2.1 Predicting Visual Memory Schemas with Variational Autoen-
coders

Autoencoders (AE) attempt to learn efficient latent-space encodings of the input data
that would allow its reconstruction from such an encoding. A variational autoencoder
(VAE) [76] is an extension of the AE, which has the training aim to maximise the lower
bound of the marginal log-likelihood of the data following encoding and reconstruction.
This means minimising the KL divergence between the posterior and a prior: data dis-
tributions during the training. Rather than just learning a compressed encoding of the
data, a VAE learns a probability distribution that is an approximation of the true prob-
ability distribution of the underlying data. This allows a VAE to be used as a generative

model based on sampling in the latent space.

VAEs are made up of two components - an encoder which converts input data x into
a latent space representation z, and a decoder that converts a latent space variable
z back into data z’ akin to the input z. Convolutional neural networks (CNNs) are

used for implementing both the encoder and the decoder. The encoder is defined as
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a probabilistic machine gg(z|z) that extracts a specific latent space code z where 6
represents the parameters of the encoder’ network. Meanwhile, the decoder maps the
information in a probabilistic sense defined by py(z|z) in the opposite way from the code
z back to the data space x, where ¢ defined the parameters of the decoder network.
The encoder and decoder are related through the loss function which consists of two

components:

L(0,¢) = —E.go(zl2)[l0g s (2|2)] + K L(go(z]2)[|p(2)) (3.2)

where K L(-) represents the Kullback-Liebler divergence between the a priori distribution
of the latent space gp(z|z;) and its estimated distribution p(z). The first term from
equation (3.2) represents the reconstruction loss and the second term regularises the
learnt distribution. The latter term helps the VAE to learn to group conceptually similar

data in the same regions of the latent space.

Here, we are aiming to develop a generative method for Visual Memory Schemas (VMS),
for a given input image (specifically, those of scenes). In our approach we aim to gen-
erate both true and false VMSs, simultaneously. This is defined as an image-to-image
translation problem by making use of an VAE consisting of two CNNs, with the first
one, the encoder designed to learn a mapping from an image to a latent code, while the
decoder to learn the mapping from that latent code to a VMS. Previous work [94, 46]
has shown that CNNs work well at extracting high-level image features that also allow
for the prediction of memorability [11]. CNNs such as VGG-16 network have also been
shown to be capable of learning to reconstruct VMS maps at some degree for certain
image categories [2]. We propose using VAE models which have good ability to learn
data classification in the latent space, as exemplified in Fig. 3.3. This model would
allow a good separation of the false and positive VMS encoding spaces and then for
the generation of dual channel VMS maps for generic scene input images corresponding
to true and false VMS structures in which given random memorable images produce
latent codes similar to those indicated experimentally by humans in memorable images.
Moreover, the learned latent space modelled by VAEs can be easily inspected in or-
der to find relations between the memorability and false memorability of images; and
to determine whether extracted deep neural network features are separable into those
that define high-memorability VMS maps, and those that define low memorability VMS

maps.
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Latent Encoding  |—»|

Figure 3.3: Predicting VAEs in images using an autoencoder.

For the training we use a pre-trained VGG network architecture [122] for the encoder
after truncating the network before the classification step and using only the convolu-
tional layers. The final output of the VGG architecture will be connected to a dense
layer in order to compress the representation further, followed by the latent encoding.
In CNNs the deep features that would emerge capture structures of the objects in the

scene [147| and semantic structures [50| present in the input image.

The decoder benefits from being able to be simpler than the encoder. Whereas the input
of the encoder consists of real world scenes, the output of the decoder is a VMS map,
which consists of only two channels representing the spatial density of how likely a given
image region is to cause that image to be remembered. There is no benefit in using a
very deep architecture for the decoder, as we do not need to recreate any meaningful
semantic features in the output. Additionally, a simpler architecture keeps the number
of trainable parameters low, which is important when considering the low amount of

available training data.

The loss function for this model is similar to the standard VAE loss function from (3.2),
with the exception that in the reconstruction term, instead of reconstructing the original
image data, aims to reconstruct associated information, such as VMSs. If X is the set of
scene images and Y the set of associated VMS maps, with x € X and y € Y representing

corresponding images drawn from these sets, our loss function is:

L= _Ez~q¢(z|:v) [logp\p(y]z)] + KL(QQ(Z‘l')Hp(Z)) (33)

where W represents the parameters associated with the VAE reconstructing the VMSs
data y at the end of the encoder. We additionally investigate replacing the reconstruction

term with the l1-norm as in [2].
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3.2.2 Exploring Visual Memory Schema Prediction with Multi-Scale
Information, Depth, and Self-Attention

We have shown that an artificial learning model, such as a Variational Autoencoder
(VAE) [76], can predict VMS maps for scene images (see results in Section 3.3). How-
ever, the family of models capable of specifically indicating regions from images which
are responsible for their memorisation, have not been studied in depth compared to
their single-score counterparts. Here we propose multiple different approaches to mem-
orability map prediction, examining the effects of multi-scale information, non-local self-
attention, the inclusion of depth information, and various combinations of these factors.
We also draw on evaluation metrics from visual saliency prediction in order to set a new,

comprehensive baseline for VMS map prediction.

To accomplish this, we developed a series of models capable of predicting visual memory
schemas for scenes, testing the influence of depth, self-attention, and multi-scale in-
formation. We examine both the impact of latent-space dimension on our variational
architectures, as well as develop standard deconvolutional models, and for each network
where feasible we test the effect of introducing self-attention and depth information.
Our goal is to discover both which techniques are applicable to VMS prediction, and to

set a variety of comprehensive baselines for future work.

Single-head output

i
28x28x3

1

——
28x28x1

Dual-head output

Figure 3.4: End-to-end deconvolutional network showing single and dual headed outputs.
The height and width of the convolution filters is given above, while the channels are
given below the diagram. The dimensions of the output is given below each output.
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Figure 3.5: Multi-scale VMS predictor with multi-scale blocks (MSB) from [64].

Deep learning architectures

We choose three architectures as potential baselines against which to evaluate further
developments to our VMS predictor models. First, we choose a straightforward end-to-
end deconvolutional (CNN-deconv) architecture similar to that used in [2]. A pretrained
VGG16 network feeds features into five convolutional blocks, with upscaling at specified
intervals, as in the architecture shown in Figure 3.4. The output of the network is
represented by one (single-headed) or two (dual-headed) memorability maps. The former
generates a two-channel memorability map, while the latter generates both memorable
and falsely memorable maps as distinct outputs. All convolutional blocks use a filter

size of 3 x 3 aside from the final outputs, which are 1 x 1.

Structures that influence image memorability arise at various scales in the image. Given
the recent success of multi-scale information in finding conditional image correspond-
ences for image-retrieval [64], we employ a similar methodology for enabling a deep learn-
ing architecture with multiple scale analysis and assess its efficiency for visual memory
schema prediction. This multi-scale architecture replaces the three starting convolu-
tional blocks with two multi-scale blocks (MSB) in the architecture from Figure 3.5.

Finally, given the capabilities of image generation by VAEs [76], we also consider our
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VAE model, which was used for VMS prediction, presented above in Section 3.2.1

14x14 26x28
7x7

64

Figure 3.6: Multiscale architecture modified to embed depth-map information.

Loss function

Current state-of-the-art for VMS prediction is based upon variational autoencoding
(VAE) models. VAEs consist of two networks: an encoder and a decoder. The en-
coder estimates a latent space z corresponding to the given data x and the decoder
aims to reconstruct the data from the latent space encoding. As in [83], to predict
VMS maps we maximize the evidence lower bound (ELBO) on the sample log-likelihood
characteristic to the classical VAE [76] :

log p(z) >E, 4y (zle) [log Py (2]2)] — Dicr[go(2]2)||p(2)] (3.4)

where pg(x|2) is calculated by the decoder of parameters ¢ and gg(z|x) is an inference
model implemented by a neural network of parameters 6, which has Gaussian-specific
prior parameters {u, o} for its last layer’s outputs and Dy, is the Kullback-Leibler (KL)

divergence, where

Dislantelo)lpa)] = [ afelo)in B2 (55)

VAE models employ the standard variational loss D, where the first term reconstructs
the log-likelihood and the latter implements the Kullback-Leibler divergence between the
distribution gg(z|z) and the prior p(z).

We consider three loss functions: binary cross-entropy, Kullback-Leibler (KL) divergence
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(shown to be effective for saliency map prediction [82]), and the ELBO loss (3.4). Ad-
ditionally, we expand the research undertaken in [83] by varying the size of the latent

space as |z| = {8,32,64,128}, where | - | denotes the cardinality.

Studying the influence of depth in the scene

Previous research indicated the importance of depth in the scene for influencing the
memorability score prediction performance, according to Basavaraju et al., [8]. However,
whether this effect holds for visual memory schemas has not been explored. In the
experiments undertaken in this study we generate depth maps for our dataset using
MiDaS [86], a state of the art monocular depth estimation model. We concatenate
features learnt from depth images with the features from the original image with the

same dimension as shown in Figure 3.6 .

Introducing self-attention mechanisms

Cognitive structures that lend themselves to remembering are rarely single objects in an
image. Frequently, memorable regions are scattered throughout an image, or indicate an
arrangement of objects (such as for example that of a table surrounded by chairs in an
indoor scene) rather than a single object (a glass of water). A structural or semantical
representation of the scene can indicate additional memorisation clues [141]|. Non-local
blocks [136] are designed to capture long-range dependencies by allowing the network to
determine which features should be attended to, across the entire input. In the following
we integrate the ‘Embedded Gaussian’ variant from [136] in order to determine whether

long-range modelling aids VMS map prediction.

Given the embedding spaces Wyx; for the given input z, and the learnable weighting
hyperparameter A and the re-introduction of original feature maps given in [146|, the

self-attention output is given by:
y =\ softmaz (' Wi Wyz)g(z) + 2, (3.6)

where g(z) is a linear function of the input.

We combine the non-local blocks with our memorability predictors in the following

manners: in multi-scale architectures, after the first multi-scale block, after the second
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multiscale block + convolutional layer, and prior to the output (including in the archi-
tectures where we also consider the depth). In our variational architectures, we include

the non-local layer in the decoder, two layers before the output.

3.2.3 A Dual-Feedback Approach to Visual Memory Schema Predic-
tion

While we have expanded available visual memory schema datasets from just 800 images
to over 4000 (details in Section 3.3.1), compared to single score datasets, this is still a
relatively small amount of data. The LaMem dataset [75]| contains 60,000 images paired
with single-score memorability data. Although these images are not scene-focused (and
may consist of objects, faces, or even animals), it would be advantageous if this data
could be taken advantage of from the perspective of two-dimensional memorability.
To that end, we design a new architecture that can be trained both on visual memory
schema and scene data, while also containing an auxiliary loss we can train on the LaMem
dataset, in the hope that the network can learn additional memorable features. These
features can then be re-used for identifying which regions of a scene cause that scene
to be remembered (or falsely remembered). In this section we describe the architecture
and loss function for a Dual-Feedback VMS Prediction Network.

-—

I:‘ Optional Self-Attention (SA} Block

LaMem Feedback

56%56 X G
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Figure 3.7: Architecture of proposed Visual Memory Schema predictor with Dual Mem-
orability Feedback. Colors refer to layer types and are given in the legend.

Drawing on our results from Section 3.3.3, our architecture for visual memory schema
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prediction employs transfer learning, self-attention, and multi-scale information. To
take advantage of existing memorability datasets, we additionally employ a dual feed-
back mechanism and condition the network to predict both memorability maps and
memorability scores for input images. The architecture for the network is shown in Fig.
3.7. The network first extracts features from multiple scales in the backbone architec-
ture, optionally computes attention maps for these features, and finally combines these

multi-scale attention maps to predict the output map.

Multi-scale Feature Extraction We consider two backbone architectures: VGG16
[122] and RESNET50 [58], and employ these to extract semantic features from the input
images. As memorability information occurs at multiple different scales throughout
an image, we extract the semantic features at three different scales corresponding to

processing blocks in the backbone architecture. Given an input image I,, € R?24x224x3,

]R56><56><2567 SQ c R28X28X512, and

for each backbone we extract feature maps at S €
Sy € RI4X14X512 where Sp, Sy, and S3 we call Scale 1, Scale 2, and Scale 3 respectively.
All scale images are passed through a 1 x 1 convolution for dimensionality reduction
resulting in 51, So, S35 € RE*HsxWs where C' is hyperparameter defining the number of
desired feature maps for each scale, and Hs; and W, define the height and width of the

feature map at that scale.

Optional Self Attention Self attention has shown promise in single-score memorability
predictors [44]. We examine whether self-attention offers any benefit for memorability
map prediction. Given the embedding spaces Wyx; for the given input € 51, 52,53
[136], and the learnable weighting hyperparameter A and the re-introduction of original

feature maps given in [146], the self-attention output is given by:
y =\ softmaz (27 Wi Wyx)g(z) +z, (3.7)

where g(x) is a linear function of the input. We compute self-attention maps for each
scale. Each embedding space is parameterised by a 1 x 1 convolution. If self-attention

is disabled, each block is replaced by a 3 x 3 convolution with C' channels.

Feature Concatenation & Dual Feedback Whether self-attention is enabled or
not, the multiscale feature maps are combined via channel-wise concatenation, giving

a singular weight matrix representing memorable features at the three scales. With
S1,52,53 € RCX56X56, Sm = [51,52,83], Sm € R3CX56x56  Thig is followed by two
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output heads. The primary output consists of a 3 x 3 convolution followed by a 1 x 1
convolution that produces VMS map V for input image i, V; € R?6%56x3  The auxiliary
head consists of two stacked 3 x 3 convolution + max pooling blocks, followed by channel-

wise global average pooling [88], and the output score L; € (0,1) C R is given by four
F F
204>
256 and C to be 16, balanced for available compute budget, dataset size, and empirical

stacked fully connected layers with {F, 1} neurons respectively. We choose F' to be

studies (a greater value for C' did not lead to additional performance gains).

Loss Function

We train our predictor via the loss function given in Equation 3.8.

IR A
Loss(V, L) = - E Vi-Vi)*+a
i=1

k
> (Li— LY (3.8)
i=1

| =

The first term represents the loss over the samples of ground truth and predicted memor-
ability maps, with V representing a predicted visual memory schema and 1% representing
a ground-truth map. The second term contains the loss over ground truth and predicted
memorability scores, L and L respectively. v and k represent sample populations of
training data. « is a weighting hyperparameter that controls the contribution of mem-
orability score feedback when training to predict visual memory schemas. This can be

set to 0 to disable dual feedback, and train on visual memory schema data alone.

3.3 Experimental Results

In this section we present the results for the proposed approaches given above. We
start with a detailed description of all the datasets used in this work, from the initial
VISCHEMA dataset, to those that we have developed over the course of this project.
We additionally quantify the elements that actually ‘make up’ a schema; providing a
human-readable description of mental schemas that aid in the remembering of scene
images. We then give results for the initial VAE-based model, over the original 800-
image VISCHEMA dataset, before examining potential model improvements on our
expanded 1600 image dataset. Finally, we show the results for our current deep learning

model over a new 4000+ image dataset of scenes and visual memory schemas.
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3.3.1 Visual Memory Schema Datasets

Over the course of the work presented in this thesis two new datasets consisting of
images and their corresponding VMS maps have been developed. In this section we will
describe these datasets, how they were gathered, and their nomenclature. We will also
explore the additional information we gain by taking a two-dimensional view of scene
memorability compared to a single-score approach. The datasets used in this work are

as follows:
e VISCHEMA
e VISCHEMA 2
e VISCHEMA PLUS
o VMS4k

VISCHEMA is the original dataset from the Akagunduz et al. experiment described
above. VISCHEMA 2 is a replica of that experiment, consisting of 800 new images
in the same categories as VISCHEMA, and with the same pre-processing paradigm
applied (images that contained obvious text, people looking at the camera, and obvious
landmarks were removed). VISCHEMA PLUS refers to these two datasets combined
into a single 1600 image/VMS Map dataset, representing a 100% increase in available
visual memory schema data. The available data was then further increased via the

VMS4k experiment, resulting in over 4000 total scenes with paired VMS maps.

3.3.1.1 VMS4k

Indoor Outdoor

Images

Figure 3.8: Examples from the VMS4k Dataset. Green areas indicate that region caused
the image to be remembered, red areas indicate regions that caused an image to be falsely
remembered; indicated as seen despite never being shown to a participant.
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The full VMS4k dataset consists of 4000 images. These images are divided into two
categories: indoor scenes, and outdoor scenes. The images themselves are drawn from
the SUN dataset [140]. The indoor category is made up of 2000 images, the majority of
which are extracted from the SUN kitchen and living room categories, with additional
images from the conference room and airport terminal categories. These images provide
a general collection of commonly encountered indoor environments, with a focus on en-
vironments encountered day-to-day. The outdoor category is more varied, and contains
2000 images extracted from the house, skyscraper, amusement park, playground, pas-
ture, golf course, mountain, badlands, coast, and hill SUN categories. As environments
encountered outdoors tend to be more varied than those indoors, a wider variety of

images were collected for the purposes of the outdoor category.

Image Repeat

Image Stream Repeat
Detected

Annotate

Figure 3.9: Repeat-recognition experiment structure

While the original VISCHEMA experiment [2] used a two-phase in-person study/test
paradigm, we instead design a continuous image-stream experiment, similar to [75]. This
allows us to employ cloud-based experimentation platforms. Our dataset was divided
into image sequences of 600 images, consisting of 200 targets, 200 fillers (i.e. images that
were not repeated), and 200 repeats of the targets, yielding 20 distinct image sequences,
each seen by human observers. Target repeats were distributed throughout the sequence
such that there was an average of 300 images between the first showing of a target and its
repeats. Each image was shown to the participant for three seconds. Once an image in
the stream was indicated by the participant to have been remembered, they were asked
to annotate the image with the region(s) of the image that they believed caused them to
remember the image (Fig. 3.9). Participants were allowed to annotate multiple regions
in the images. In total, 93 participants undertook the experiment. Participants show
good memory performance for the images shown during the image sequences, (Fig. 3.10)
with the majority of participants showing a d-prime of over 2.0, indicating suitable

performance.
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Figure 3.10: Participant D-Primes reveal good memory performance for the shown im-
ages. No participants were excluded from the analysis.

Of these 4000 shown images, not every image in the sequence was either (1) recognised
as a repeat or (2) falsely recognised as a repeat. These images lack annotations, and
for the purposes of this dataset, can be safely ignored. After this process, this leaves
3,461 images with corresponding annotations indicating the regions that caused the
participants to remember that image. Examples from both the indoor and outdoor
categories with corresponding memorability maps are shown in Fig. 3.8. The VMS map
images consist of two channels; one containing regions labelled as memorable, and one
containing regions that are ‘falsely memorable’; i.e, regions that caused the participant to
false alarm on the image. In this work, we focus primarily on memorability, and concern
ourselves with the memorability channel of the visual memory schemas. However, the
dataset does contain false-memorability information that could be utilised in future
work. We are able to safely combine this dataset with existing VMS datasets for a total
of 4,261 image/VMS pairs (3,461 novel).
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Per-Category Memorability
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Figure 3.11: True and false memorability for the VISCHEMA image set.

3.3.1.2 Category Differences

It is well known that memorability varies across categories; some are by default more
memorable than others. For the VISCHEMA dataset, the memorability (and false mem-
orability) of each category is shown in Fig. 3.11. In this case, we condense the visual
memory maps down to a single score based on the average value of each channel (either
memorability, or false memorability) of the map. This represents how consistent parti-
cipants were when annotating regions of the image as memorable, or falsely memorable.
However, in condensing this information down to a single score, the two-dimensional

aspect of the data is lost.

Two-dimensional memorability annotations allow us to understand not just which images
are memorable, but the differences between images that, on the surface, appear to have
the same level of memorability. Such a difference is obscured if a single-score perspect-
ive is taken. We investigate the difference between the two categories of scene images
(Fig. 3.12), and find no significant difference (p>0.05, one-way independent ANOVA)

in memorability, defined by per-image hitrate (correct detection of the target). There
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Figure 3.12: There is no difference in memorability performance between categories as
measured by hit-rate or VMS intensity (an analogue for participant consistency).

is also no significant difference (p>0.05, one-way independent ANOVA) in participant
consistency for indoor or outdoor scene categories, defined by the average intensity of
the VMS memorability channel (0.157, indoor vs 0.159, outdoor). While prior work finds
memorability differences across categories (and indeed we show this for the VISCHEMA
dataset), in those cases the categories were significantly more fine-grained compared
to the coarseness of "indoor" or "outdoor". In this case, both categories can be con-
sidered ‘identically memorable’ - at least if just a single-score rating of memorability is

considered.

However, the two-dimensional annotations reveal more differences between the categor-
ies (Fig. 3.13, Fig. 3.14) than are immediately apparent from examining single-score
metrics. Indoor scenes had significantly more annotations (p<0.05, Kruskal-Wallis) per-
image than outdoor scenes, which show a clear bias towards lower counts of annotations;
that is, participants believe fewer regions of the image caused them to remember that
image compared to indoor scenes (Fig. 3.15). This suggests that despite the similar
overall memorability between the two categories, the memorability of outdoor scenes is
related to fewer semantic structures within the scene, whereas for indoor images, multiple

regions spread spatially across the scene together cause that scene to be remembered.

Beyond number of labelled memorable regions, we also find a significant difference
(p<0.05, Kruskal-Wallis) in the sizes of the memorable regions (Fig. 3.15) between

the two categories, with memorable regions in indoor scenes being significantly smaller,
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Figure 3.13: Outdoor scenes (right) show bias towards larger annotation areas compared
to indoor scene images (left).
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Figure 3.14: Outdoor scenes (right) show a greater bias towards fewer per-image an-
notations than indoor scenes (left).

(size defined by percentage of image covered with annotation) than those from outdoor
scenes. Intuitively, this makes sense; outdoor scenes often portray grander vistas than
indoor scenes (a coastline, vs a kitchen) and as such have appropriately sized memorable
semantic structures. Hence, memorable indoor scene images appear memorable due to
multiple smaller regions (a combination and arrangement of multiple objects, e.g tables,
chairs, couches), while outdoor scene images are memorable due to larger, more singular
regions (a mountain; a coastline). These details are lost when VMS maps, and image

memorability in general, is treated as a singular score.
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Figure 3.15: The average annotations per-image is significantly greater for indoor, than
outdoor scenes (left), and there is a significant difference between the sizes of annotations
between indoor and outdoor regions (right).
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Figure 3.16: MaskFormer architecture; a neural network that can be used for state-of-
the-art semantic segmentation, [Fig 2| from [26].

3.3.1.3 Quantifying the Schema

While visual memory schemas reveal the regions that drive scene memorability, and
hence represent the schema elements used to encode that image, it is difficult to go
from a VMS map to a human-understandable description of the schema. A person can
easily determine the objects and arrangement of elements contained within a memorable
region; but to do this over the entire VMS4k dataset would be intractable, both timewise
and financially. Instead, we would like to be able to computationally gather the scene
elements that have been captured within a memorable region. This is not an easy
task; the ground-truth images in VMS4k come with no pixel-level labels that reveal

which objects and semantic units (walls, skylines, floors, fields, etc) are contained in
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any given image. Extracting which objects and semantic units have caused an image to
be memorable, and generalising this over our VMS categories would allow us to extract
what is being contained within every memorable region in the dataset; revealing the

actual schemas being used to encode our scene images.

To do this, we employ the MaskFormer architecture [26] (Fig. 3.16). MaskFormer is a
semantic segmentation network. While an object-detection network may be tasked to
identify every object in a scene, and be able to delineate said objects with bounding
boxes, the goal of a semantic segmentation algorithm is to decompose an image into
a set of pixel-level labels, that identify exactly which object, or semantic unit, that
pixel belongs. MaskFormer takes a slightly different approach, instead attempting to
generate and classify binary masks, each of which segments out one part of the image.
A transformer component (‘transformer decoder’) [131] generates sets of class predictions
and mask embeddings via a multilayer perceptron (MLP). The pixel decoder extracts
per-pixel embeddings, which are combined with the output of the transformer decoder to
compute both a binary mask. The output of the MLP is used directly to generate class
predictions. The mask and class predictions are then combined via matrix multiplication
in the final module of the network. The network that we use for extracting the content
of memorable regions is pre-trained upon the ADE20k-Full dataset, with 847 classes. At

the time of writing, MaskFormer is both more efficient and more accurate than other

segmentation models.

Figure 3.17: ‘Semantic units’ contained within the regions of images that participants
have labelled as causing them to successfully remember that image.

Some examples of content found and labelled inside memorable regions of the VMS4k
dataset is shown in Fig. 3.17. While the predictions are not always perfectly accurate;
they are accurate enough that a reasonable picture of the schema for each image can

be seen. For example, in the image of a field; it is obvious that not one single element
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contributed to that image being remembered. Instead, it is the arrangement of the
house, with the trees, placed in a field with the sky as a background. These are the
scene elements that have matched with the mental schema held in the participants
which labelled this image, and aided in encoding of the scene. To extract a general
schema for each category, we ask which scene components commonly occur with each
other inside memorable regions; that is, which arrangement of elements most frequently
leads to a region of the image being labelled as causing recognition of the scene. We
do this by calculating the number of times each extracted element co-occurs with other

element(s) across all memorable regions in that image.

3-ads for kitchen . 3-ads for work-home

o
cabinet window cabinet cabinet cabinet building tree grass sky tree
sink cabinet sink stove stove sky plant plant tree grass
sink kitchen island  kitchen island tray tree house house house plant

Figure 3.18: These objects frequently appear together inside the memorable regions
of an image, of that category. Limited to three objects; higher amounts of object co-
occurrences can be examined.

In Fig. 3.18 we show some examples of this procedure, for the kitchen and work-home
(pictures of houses, or office buildings) category. We limit this analysis to co-occurrences
of just three objects; higher amounts of objects can also be examined (see Appendix
A). Likewise, we only show the top five most frequent ‘schemas’. From this we can
determine that the most likely cause of encoding of a kitchen image is the presence
of cabinets, sinks, and stoves (greater than other arrangements of memorable kitchen
semantic units; e.g the presence of cabinets, stoves, and trays). For the work-home
category most frequent is buildings, skylines, and trees; whereas arrangements of trees,
grass, and plants appear to occur less frequently inside the regions that have caused
recollection of that image. These elements, appearing together, appear to capture the
‘schema’ used to encode scene images for a given category; we have gone from a mental
schema, to two-dimensional maps, and finally to human-understandable descriptions of
those schemas for each VISCHEMA category. While we have hypothesised that some

scenes are remembered better due to their content; and because they better match a held
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schema in a human observer, through quantifying that schema we can see that this does
in fact appear to be the case. Some arrangements of objects are labelled more frequently
as "causing the remembering of that image" than other arrangements of objects; across

entire categories of similar scenes.

3.3.2 Variational Autoencoder Approach

We train our variational network over the VISCHEMA dataset, and we also use the
images from the VISCHEMA?2 dataset (ground-truth scores were not available at the
time of this study) for evaluating the model. We employed the LaMem dataset to
evaluate the relationship between VMS maps and single-score ratings. For the encoder
we use a pretrained VGG-16 network to extract a 7 x 7 x 512 representation of an
image, then compress this further using an n dimensional dense layer, which leads to a
latent space with a dimension of m. All parameters of the VGG network are frozen, by
considering learning rates set to 0 during training, to avoid damaging the deep features
while training on a small dataset such as ours. We employ data augmentation for
training due to the small size of the training set. Data augmentation involves various
realistic image manipulations, such as for example shifting the image either horizontally
or vertically by 0.1 of the total image width, zooming the image, and horizontal flipping,

which artificially increases the training data, and helps to reduce network overfitting.

Transposed Transposed Transposed Transposed Transposed
Convolution Convolution Convolution Convolution Convolution
256 128 64 3
(512,3,3) (3.3) (3.3) (3,3) (3,3)

Latent Code

Upsampling
(2x2)

Figure 3.19: Structure of the Decoder.
The decoder consists of a five layer upsampling network, shown in Fig. 3.19, that im-
plements transposed convolutions in order to convert the m-dimensional latent variable
space back into an image. We apply batch normalisation after every convolution and
employ 12 kernel regularisation [31], 1 = 0.02, and a learning rate of 0.0001. We use a
batch size of 32 and train the network for 250 epochs with 20 steps per epoch. In the
experiments we evaluate three different architectures considering: 1) n = 64 and m=S8;
2) n = 64 and m=8 with an [1 reconstruction loss; 3) n = 128 and m=32. The input

and output of the entire architecture is a 224 x 224 image. The model is implemented
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in Keras!.

We evaluate reconstruction results of the original VISCHEMA dataset using both stand-
ard mean squared error (MSE) over all test images and the two dimensional Pearson
product-moment correlation coefficients p?”. We average the results on all true VMSs,
and false VMSs, separately. True VMSs represent the VMS map regions indicated by
participants in the experiments that represent what made them remember that image,
while false VMSs represent regions from images, falsely indicated by people that made
them remember those images. Actually those images have not been shown to them be-
fore. We obtain this metrics for all visual schemas and then evaluate the relation between
this metric and the more standard ‘memorability score’ provided in the LaMem dataset
[44]. The relationship between visual memory schemas and computational saliency is
also explored. Computational saliency maps for the VISCHEMA datasets are generated
via the Graph Based Visual Saliency (GBVS) algorithm [56].

Finally, we employ a single-score memorability prediction network and evaluate the re-
lation between the VISCHEMA datasets memorability scores of the predicted VMS and
the VMSs corresponding to the choices made by people, for both datasets, VISCHEMA
and the VISCHEMAZ2. For all evaluations of our memorability metrics and standard
memorability scores we follow prior work from [69], [75] and use Spearmans rank correl-

ation.

Latent Space VMS | p?P | MSE
Dimension (m)

True | 0.545 | 92.54

32 False | 0.369 | 70.526
All 0.57 | 85.379
True | 0.513 | 90.812
8 False | 0.333 | 64.228
All 0.53 | 83.472
True | 0.543 | 72.348
8 and L1 norm in (3.3) | False | 0.168 | 25.131
All 0.559 | 72.052

Table 3.1: Reconstruction accuracy for three deep learning architectures.

Table 3.1 shows the reconstruction results in terms of both MSE and Spearmans rank

"https://keras.io
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correlation, p*P. The network with an m=8 dimensional latent space and an 11-norm
component to its loss function has the overall best MSE, while the network with the
overall best Pearsons correlation with the ground truth is the network with a m=32 di-
mensional latent space. Our overall p?” results are slightly worse than those presented
in [2], though it should be noted that we generate both the true and false maps simul-
taneously. This allows us to investigate how well the individual true and false VMS are
reconstructed. In general, false VMS maps are more difficult to accurately reconstruct
than true VMS maps. This is likely due to the overall lower consistency between hu-
man observers for false VMS maps. While what is memorable tends to be well agreed
on among people, what causes false remembering of an image is more varied, and this
effect crosses over to generative models. Interestingly, we find that a higher dimensional
latent space has the best effect on reconstruction accuracy, rather than the use of an
11-norm in the loss term. This is due to the effect of the second term in the loss function
from equation (3.3) and indicates that higher dimensional spaces are better at capturing
‘memorability’. For the rest of this section we evaluate the results of the network with
a m = 32 dimensional latent space, given that this architecture performs the best as

measured by the p?” metric.
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Figure 3.20: Reconstruction accuracy for various image categories.

Figure 3.20 shows the reconstruction accuracy measured by p?P for each category in
the VISCHEMA dataset, over the 160 image test set. We find that the best performing
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category is that of Public Entertainment, with a correlation of 0.766, which is better
that the results from [2] which found that the Work-Home image category had the best
performance with a correlation of 0.677. A comparison with prior work is shown in Table
3.2.

Work Best Category p*P Worst Category | p?P Overall p?P
Previous Method | Work/Home 0.677 | Living Room 0.506 | 0.588
Our Method Public Entertainment | 0.766 | Big 0.449 | 0.57

Table 3.2: Comparison with Prior Work

The worst performing category for VMS reconstruction is the "Big" which contains
images of airport terminals with a correlation of 0.449. In general, we find that categories
that have high overall memorability tend to reconstruct better than the categories with
low overall memorability. Differences from prior work may also be due to generating
higher resolution images, which captures more detail in some categories yet causes more
divergence in categories with less available memorability information. We found that
the correlation between predicted VMS maps and saliency maps, provided by the Graph
Based Visual Saliency (GBVS) algorithm [56], to be 0.69 which agrees with other results
on the relationship between memorability and saliency [40, 2|. GBVS is a well used
saliency measure, but VMS maps offer more than saliency alone. When averaging on
all image categories and comparing with saliency, we found that false VMS maps have

a correlation of 0.625 while true VMS maps have a correlation of 0.704.

Memorability Results

We generate 800 predicted VMS maps for the 800 images in the VISCHEMA?2 dataset
and find that the distribution of memorability and false memorability agrees with that
of the original ground truth dataset, according to the results from Fig. 3.21 with Spear-
mans ranks of 0.929 and 1.0, respectively for p < 0.01. This is due to the similarity
of the datasets, but it also shows that the proposed model has successfully learned to
generate VMSs that agree on a category-wide scale despite being trained with no cat-
egory labels. Additionally, we find that in general the higher the memorability of an
image, the higher its own false memorability, as we can observe from the similarity of the
clusters of the latent space embeddings of the Memorability and those corresponding to

False Memorability, shown in Fig. 3.22a and 3.22b, respectively. Images that tend to be
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Figure 3.21: Comparison of the memorability results for a set of image categories between

the VISCHEMAZ2 and VISCHEMA datasets.

highly memorable also tend to be highly falsely memorable. In Fig. 3.23, three images
from VISCHEMAZ2 are shown on first line and their corresponding true and false VMSs

are shown on second and third line, respectively.

Predicted memorability scores for both VISCHEMA 1 and 2 datasets were obtained by
employing the AMNet network [44]. These scores were then compared to the memor-
ability metric used for evaluating visual schemas. No significant relationship was found
between the per-category memorability metrics and the predicted category memorabil-
ity scores aside from VISCHEMAZ2’s "Populated" category which had a Spearmans rank
correlation with the AMNet scores of 0.203 with p < 0.01. It appears that VMSs, even
predicted schemas, do not directly relate to predicted memorability scores for the same
images, and that unlike our VMS prediction model, predicted memorability scores may
not take fully into account what humans find memorable. It has been shown that deep
neural networks take the simplest approach possible to solving a problem [17], and it
is possible that memorability prediction models are working on factors that do not ne-
cessarily align directly with memorability if some other learned metric provides a ‘good
enough’ approximation. This could explain why predicted scores do not align with VMS

maps.

We also examine the relationship between the ground truth memorability scores and our
metric by predicting VMSs for a 10,000 image subset of the LaMem dataset, used in [44],

and estimating only the true memorability score for them. We then use the Spearmans
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Memorability False Memorability

-0.4

-02

-0.0

(a) Memorability (b) False memorability

Figure 3.22: VISCHEMA?2 Latent Space Embedding. Green represents memorability
and red represents false memorability, normalised between 0 and 1. Clustering of both
memorable, and falsely memorable images is evident. Features that lead to the gener-
ation of memorable VMS maps are placed near each other, as are features that lead to
the generation of VMS maps that indicate the scene is not so memorable.

rank to compare the ground-truth score and our metric. We find a rank correlation of
0.147 with p < 0.01, indicating that VMS maps and experimentally-based memorability

scores are weakly, but significantly, related.

3.3.3 Multi-Scale Information, Depth, and Self-Attention

We use the VISCHEMA PLUS dataset, with 1600 scene images and 1600 correspond-
ing memorability maps. We divide this dataset using a standard split of 70% training
set, 20% validation set, and a 10% test set which we use for analysis. Two images from

this dataset can be seen in the first column from Figure 3.24.

Prior work, including our own, evaluates the efficacy of VMS predictors with two dis-
tinct measures; the Pearson 2D correlation [2], and the mean squared error (MSE) [83].
We choose three additional probabilistic measures as evaluation measures in order to
evaluate our VMS predictors: Kullback-Leibler Divergence (KLD), Earth Mover Dis-
tance (EMD), and Histogram Similarity (SIM) [19], metrics commonly used to evaluate
saliency map models. We also employ the pixelwise Spearman rank correlation, S2P,

as the measure commonly used to evaluate memorability score predictors. The ‘best’
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Figure 3.23: Set of three images from VISCHEMAZ2 dataset and their predicted true
VMS and false VMS on second and third lines. We find empirically that false schemas
are often subsets of the true schema of the image that carries less information. For
example, an image is memorable due to the presence of a man feeding a calf, yet the
presence of just a man may lead to the false remembering of a scene.

metric depends on application; some applications may value a small mean squared error
distance, others a model that displays statistically similar behaviour to human ground
truth, even at the cost of a greater MSE. By selecting a variety of metrics, we offer future
work a comprehensive analysis of VMS prediction models, and the chance to build on a

model best suited to whichever future application is necessary.

The deconvolutional networks are trained for 100 epochs (after which there is no im-
provement against the validation set), and optimised via RMSProp using a learning rate
of n = 0.0001. Each deconvolutional network outputs a 28 x 28 pixel VMS map for a
given input image, as VMS maps are robust to rescaling. The VAEs are trained for 500
epochs, and output a VMS map at the same resolution as the input image. Features

from the pre-trained VGG16 network were L2 normalised before reaching the trainable
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Image Human Predicted

Figure 3.24: VMS maps showing memorable (green) and falsely memorable (red) re-
gions, for the images from the first column, are shown in the second column, and their
corresponding predictions on the third column.

layers. All networks were trained on a single NVIDIA 1080 Ti GPU.

The prediction results for the VMS memorability channel are provided in Table 3.3 and
those for the false memorability are shown in Table 3.4. In these tables, we denote by
MSB when considering multiscale blocks, attention (or att) where we use non-local neural
blocks, as described in Section 3.2.2, and ‘Depth,’” when using depth maps according to
Section 3.2.2. VAE latent spaces are denoted by L + the latent dimension |z|.

For memorability, the best performing straight deconvolutional networks were trained
with the KL Divergence loss from (3.4), which provides the best MSE performance from
all tested architectures. For the false memorability, a simple MSB-based network sets
the record for MSE, although attention-based MSB networks come close. These results
for MSE outperform prior work by a significant margin. The superior performance of
the KL-loss may explain why VAEs remain the best overall approach. With limited
data, it is not surprising that VAEs with a smaller latent-space ‘bottleneck’ perform
better. By combining the ability of VAEs to extract low-dimensional memorability /false-
memorability features with non-local neural networks long-range dependency capture,
the VAE-+Att L8 Model sets the state of the art results for four memorability metrics and
three false-memorability metrics. The baselines (VAE aside) performed poorly at both
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Table 3.3: Prediction results for the VMS memorability channel. SH: single-headed
output. KL: Kullback-Leibler Diver.

Model MSE| P?P 4 §2P4 KLD, EMD| SIM?}
CNN-deconv 7009 -0.03 0.03 2.1 159.67 0.4
MSB 86.79 -0.01 -0.06 131 1424 041
CNN-deconv SH 61.99 0.02 004 286 1476 04
MSB SH 69.84 0.14 021  1.04 19744 0.44

VAE (from 3.2.1) [83] 87.23 046 051 106  36.01  0.52

MSB-Attention 58.83 0.1 0.19 1.29 191.42 0.44
MSB-Depth 76.24  0.22 0.29 1.32 151.67 0.45
MSB-Depth-+Att 70.99 0.24 0.37 0.99 186.75 0.46
MSB-Attention SH 69.63 0.31 0.32 3.01 80.8 0.46
MSB-Depth SH 77.36  0.13 0.2 1.88 141.46 0.42
MSB-Depth+Att SH  67.98  0.24 0.4 1 187.83  0.46
MSB-Attention KL 53.78 0.22 0.29 - 179.93 0.46
MSB-Depth KL 67.3 0.31 0.44 - 157.02 0.48
MSB-Depth+Att KL~ 79.2 0.34 0.41 - 106.1  0.49
VAE L8 92.44 0.48 0.52 - 36.3 0.53
VAE L64 83.57  0.47 0.52 - 35.06 0.51
VAE L128 96.13 0.43 0.47 - 4722 049
VAE-+Att L8 87.65 0.49 0.53 - 34.17 0.53
VAE+Att L32 87.88  0.46 0.51 - 36.88  0.52
VAE-+Att L64 84.4 0.46 0.51 - 36.53  0.51
VAE+Att L128 91.31 0.44 0.48 - 4291 049

true memorability and false memorability prediction, as it can be seen from Tables 3.3
and 3.4.

The poorest performing architecture is the straight deconvolutional network. The initial
introduction of multi-scale blocks improves performance slightly, and producing a single
output improves performance significantly. Both the introduction of self-attention and
depth information improves memorability prediction, though depth information alone
causes significantly poorer performance when predicting false memorability. Depth and
attention modules combined exceed the performance of either one alone. With this
additional information, there is minimal difference between single-headed or dual-headed
approaches. As with prior work, the prediction of the false-memorability channel remains
significantly more difficult than that of memorability prediction. This is because false

memorability maps are more varied and less consistent than positive memorability maps.
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Table 3.4: VMS false memorability channel prediction results.

Model MSE| P2?P+4 §2P4 KLD| EMD] SIM?t
CNN-deconv 39.9  -0.05 -0.09 873 333 0.12
MSB 35.96 -0.12 -0.16 9.5 23.92  0.05
CNN-deconv SH 39.94 -0.13 -0.19 998 3729 0.08
MSB SH 38.54 -0.03 -0.03 812 22.64 0.11
VAE (from 3.2.1) [83] 75.66 0.34  0.37 185  36.38 0.36
MSB-Attention 3853 0.12 015 217  186.03 0.29
MSB-Depth 69.7  -0.07 -0.17 6.58 3552 0.15
MSB-Depth + Att 63.29 0.09  0.09 461  69.9 0.25
MSB-Attention SH 4715 0.09 009 577  63.22 024
MSB-Depth SH 57.89 -0.2  -0.32 95 32.09  0.07
MSB-Depth+Att SH  66.6  0.17  0.17 328 6742  0.28
MSB-Attention KL~ 3862 0.23 026 - 12224 0.33
MSB-Depth KL 4833  0.17 025 - 159.54 0.3
MSB-Depth+Att KL~ 57.76  0.07  0.08 - 114.91 0.26
VAE L8 8327 0.35 0.37 - 30.77  0.36
VAE L64 62.53 0.31 033 - 36.67  0.34
VAE L128 86.33 0.29 033 - 72.98  0.33
VAE-+Att L8 74.66 0.36  0.37 - 29.73  0.37
VAE-+Att 132 7341 034 037 - 35.61  0.36
VAE-+Att L64 67.86 0.33 036 - 47.24  0.36
VAE+Att L128 73.57 0.3 032 - 54.68  0.33

Nonetheless, incorporating self-attention mechanisms provides a significant improvement

to the performance, likely due to being able to capture longer-range dependencies. We

achieve a P2P of 0.49 for the positive memorability and 0.36 for false memorability
respectively, which exceeds all previous models tested on VISCHEMA dataset. While

single-score models have matched human-level consistency, with a baseline for human

VMS consistency of 0.69, VMS prediction still has a way to go before reaching the level

of single-score predictors.

3.3.4 A Dual-Feedback Approach

Here we discuss the implementation details required to train the dual-feedback network
and present prediction results over the VMS4k dataset. The Dual-Feedback VMS (DF-
VMS) Network is trained using the Adam optimiser [77] with a learning rate of 5 x 10~°
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CHAPTER 3. VISUAL MEMORY SCHEMAS

with 81 = 0.9 and B = 0.999. Each model is trained for 250 epochs on an Nvidia V100
GPU. The network is trained on two datasets. The first dataset is VMS4k, divided into
a train/validation/test split of 85%/5%/10%. Each input consists of a random batch of
scene images and their corresponding human annotated (ground truth) Visual Memory
Schemas. The second dataset is LaMem [75], with each training example consisting of
an input image (not necessarily a scene image) and its corresponding one-dimensional
memorability score. We train the network in a ‘tick-tock’ fashion, first on the LaMem
training set, then on the VMS4k training set, repeating each epoch until training is
complete. For our backbone we use either VGG16 or RESNETS50, pre-trained on the
imagenet dataset. The weights of the backbone architecture are not updated during
training. We empirically choose o« = 40~ which helps prevent the network focusing
on predicting scores over our primary objective; the VMS maps. The network takes
approximately 18 hours to train on a single V100 GPU. We evaluate our architecture
on VMS4k and use LaMem as an optional auxiliary feedback mechanism. There is no

two-dimensional memorability data associated with the LaMem dataset.

Image

Ground Truth

DF-VMS(Resnet)

DF-VMS(VGG)

Figure 3.25: Predicted VMS maps for the given scene images. Ground-truth maps come
from human data. Some human VMS maps contain false schemas (red), for visual-
isation purposes in this figure we only show predicted true (memorable) schemas. The
best performing DF-VMS variant employs a Resnet backbone, self-attention, multiscale-
information, and dual-feedback. VGG16 backbones do not capture the full spread of
memorability; instead focusing strongly on semantic regions. ResNet backbones, with
their richer feature extraction, perform better at VMS map prediction.

Results for reconstruction accuracy on VMS4k are shown in Table 3.5. While we obtain

BN

7



3.3. EXPERIMENTAL RESULTS

the best results with the ResNet50 backbone feature extractor, we include results using
the older VGG16 architecture for the purposes of comparison to prior work. In the
table, we show results for the previous best performing, variational autoencoder based
model, vins-VAE [83], on both the original VISCHEMA dataset, and on VMS4k. Our
DF-VMS model outperforms this model, even when vms-VAE is trained on our VMS4k
dataset (and thus benefits from the additional data) while using the older VGG16 as a
backbone for DF-VMS. Our analysis reveals that prior models are not capable of taking
advantage of our larger dataset. This drawback does not affect the proposed DF-VMS
approach. Our qualitative results indicate that DF-VMS models that use the VGG16
backbone tend to give overconfident memorability predictions over the semantic content
of the image, but do not capture the ‘spread’ of memorability across the image. To verify
that the model was not simply learning to activate on strong edges, we include results
for a baseline canny edge detector based approach. We find that this results in poor
performance compared to any of our networks; indicating that all models are learning

to detect ‘memorable regions’ rather than areas of strong edges.

Through our DF-VMS model we boost visual memory schema prediction performance
by 11.8% for true (memorable) schemas and by 8.6% for falsely memorable schemas
compared to prior work. In Fig. 3.25 we show a set of predicted examples for a variety
of both indoor and outdoor scene images along with their ground-truth human VMS
maps. Some human VMS maps (Ex. 1, Ex. 9) contain red areas that indicate regions
that lead to false remembering. See Fig. 3.26 for these examples with predicted false
memorability maps. While the VGG-backbone generates confident and clear predictions;
in practice, these fail to capture less memorable regions of the image, and overall a deeper
backbone leads to superior performance by offering features that capture regions which
do not contain the strongest memorable signal. For completeness (we do not focus on
score prediction), we include results for the LaMem test set from our auxiliary output.
We achieve reasonable results for this despite significant differences between the VMS4k
dataset (scene memorability) and the LaMem dataset (generic image memorability i.e.

frame-filling objects, faces, or people).

Ablation Testing To evaluate the impact of the various optional model improvements
(attention, dual feedback, multi-scale information) we train the best performing model
a further three times with a given aspect ezcluded (x) from the model, and show the

results in Table 3.5. In the table, -xA indicates attention excluded (i.e, not present in
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Image Ground Truth  Predicted False Image Ground Truth  Predicted False

Figure 3.26: Examples 1, 9, and additional exemplars with predicted false memorability
maps. As consistent with [83|, false schemas are often a subset of the true schema, and
are more difficult to predict.

Ex. 9

Ex. 11 §

the model), -xDF, dual-feedback excluded, and -xM, multiscale information excluded.
Additionally, we test performance purely on the auxiliary memorability loss by disabling
visual memory schema feedback (-xVMS). All ablation models were trained for the
same number of epochs as the original model. We find that in general disabling any
of these factors leads to poorer model performance, with the most drastic decrease oc-
curring when dual feedback is disabled, except for in the case of the relatively shallow
VGG16 backbone; in this case disabling dual feedback leads to an even greater perform-
ance increase over current SOTA. This is because the features extracted by the VGG16
network are not rich enough to support the additional constraints on learning imposed
by the LaMem feedback, and leads to an overall destabilising effect. However, in either
case both models still exceed current SoTA, and the deeper ResNet network does not
suffer from this destabilisation. The LaMem feedback appears to improve results in one
of two ways: 1.) by better predicting human ground truth in the memorable regions of
the image (DF leads to the network better understanding how semantic image features
relate to memorability) and 2.) by reducing erroneous predictions for regions of the
image that are unlabelled; neither memorable nor falsely-memorable. Hence, by em-
ploying existing large single-score memorability datasets as an auxiliary loss, an increase
(1.5%) in performance can be gained on sufficiently deep networks when predicting visual
memory schemas, without gathering more VMS data (a time consuming and expensive
task). Despite the differences between the VMS4k and LaMem dataset, the model has
learned additional features that relate to the memorable regions of scene images des-

pite the LaMem dataset not being scene-focused. Interestingly, disabling training on

79



3.4. CONCLUSION

Backbone | Method Dataset True P2d | False P2d | LaMem (p)
None Edge Detection VMS4k 0.234 0.216 -
VGG16 vms-VAE VMS4k 0.395 0.357 -
DF-VMS VMS4k + LaMem | 0.425 0.374 0.552
DF-VMS-R VMS4k + LaMem | 0.513 0.443 0.466
DF-VMS-R-xA VMS4k + LaMem | 0.497 0.435 0.444
ResNet50 | DF-VMS-R-xDF VMS4k 0.488 0.423 -
DF-VMS-R-xM VMS4k + LaMem | 0.497 0.418 0.446
DF-VMS-R-xVMS | LaMem - - 0.28

Table 3.5: VMS reconstruction results. True & False refer to memorable and falsely
memorable schemas (green/red in images). P2 is the Pearsons 2D correlation [2, 83].
LaMem performance measured by Spearmans Correlation (p). xA indicates no attention,
xDF no dual-feedback, xM, no multi-scale information, xVMS, score prediction only. A
dash in the table indicates the network does not compute that output. We include results
for both a modern backbone, ResNet50, and for a fair comparison with prior work, a
VGG16 backbone. A comparison with state-of-the-art is given against the current best
model; vins-VAE from [83].

VMS4k leads to worse single-score performance; indicating that spatial memorability
maps gathered from humans could be applied in future work to boost single-score pre-

diction performance.

3.4 Conclusion

In this chapter, we have developed both new visual memory schema datasets, and new
approaches for predicting visual memory schemas for arbitrary scene images. We show
that our initial VAE model is capable of predicting Visual Memory Schemas for a given
input image, and can generate both true and false VMS maps simultaneously at over ten
times the resolution of previous approaches. Moreoever, we find a very close correlation
between the ground truth per-category metrics and the predicted per-category metrics,
and finally show that current single-score memorability prediction does not appear to
correlate with ground truth or predicted VMS metrics, and that these metrics do have
a significant, but weak, positive correlation with ground truth memorability scores from
the LaMem dataset. This indicates that VMSs can provide additional information about
image memorability which is not traditionally captured by other memorability prediction

methods.

80



CHAPTER 3. VISUAL MEMORY SCHEMAS

Following on from this, we explored several different approaches for Visual Memory
Schema map prediction. We examined the effect of depth in the scene, self-attention
mechanisms, multi-scale blocks, and when varying the size of VAE latent-spaces for gen-
erating VMSes corresponding to both positive and false memory. We consider various
performance metrics for all models in order to set a baseline for future work. We achieve
state-of-the-art results for VMS prediction for deep learning architectures, such as VAEs
and CNNs, when considering non-local self attention. Finally, we develop DF-VMS, a
novel dual-feedback based Visual Memory Schema prediction model. DF-VMS model is
trained both on VMS4k, a scene dataset with two-dimensional memorability informa-
tion, and on an a single-score dataset, LaMem. Through ablation tests, we show that
prediction of VMS maps is significantly improved by allowing the model to learn from ex-
isting single-score datasets, and additionally through the inclusion of self-attention and
multiscale information. Interestingly, we also find that disabling memorability map feed-
back is highly detrimental to single-score prediction performance. Our model achieves
state of the art performance, exceeding all our previous approaches, when predicting
memorable or falsely memorable regions of a scene image, on a large memorability data-

set of over 4000 scenes and VMS maps.

However, our contributions do not lay solely in deep learning VMS prediction models.
By starting from an initial seed of 800 scenes, we first double this to 1600 images paired
with visual memory schemas that follow the paradigm of the original experiment. We
then develop a new continuous paradigm suitable for online experimentation that al-
lows us to gather VMS maps in much greater quantities, developing a dataset of over
4000 scenes and VMS maps. We find from this data that category differences that
are not immediately apparent from single score metrics appear when considering two-
dimensional metrics, and that through modern segmentation techniques, we identify a
human-readable "schema" for each category. That is, we extract the objects that, when
appearing together, make a scene memorable. Our VAE model allows us to inspect the
models learnt latent space and reason about whether scene features cause memorable im-
ages to group together, while exploring various theoretically promising techniques shows
that we can boost VMS prediction in a significant fashion by considering state of the
art computational methods. These techniques come together in our dual-feedback VMS
model, which, allow us to set a new state-of-the-art for visual memory schema predic-

tion, by taking advantage of existing large-scale single score memorability datasets. We
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now consider whether we can use these predictors for more than just predicting VMS

maps - can we instead use them to modulate human memory itself?
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CHAPTER 4

Modulating Human Memory

4.1 Introduction

As we have seen in Chapter 2, cognitive science research of human visual episodic memory
over the last few decades reveals both large storage capacity and a surprising ability to
retain detail [15, 16]. Recent work at the intersection between the fields of machine
learning and cognitive psychology have exposed another property of visual memory for
images: consistency between observers [69]. Showing a set of images to a human popu-
lation sample, most members of that sample will remember roughly the same subset of
images. This implies that to a certain extent, image memorability (i.e. how likely the
average person is to remember a given image) is an implicit property of the image itself.
Image memorability does not correlate strongly with simple image characteristics such
as colour, intensity, the number of objects present in the scene [69], or with attention,
and is robust to overt cognitive influence [6]. Rather, high-level scene attributes help
explain the memorability of images [68], such as the content of the image (for example
the presence of "a person") or the dynamics occurring in the captured scene ("throwing
a ball"). While memorability is affected very weakly by certain global features, such
as average image hue and contrast, semantic context plays a stronger role, explored in
[73]. These features are related to, but not completely explained by, objects present in
the image [40], and specifically, their location and size [8]. These findings have lead to
attempts to predict image memorability using computational tools, which find the best
predictor to be high-level semantics, such as the image scene category [68]. Later work

established the influence of scene category and contextual distinctiveness on memorab-
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ility [20], and current state-of-the-art models employ automatic deep feature extraction
via convolutional neural networks (CNN) [49, 44]. The field of image memorability pre-
diction has advanced to the point where CNN-based models can predict how likely an
image is to be remembered with human-level consistency (Spearman rank correlation
coefficient of p = 0.67) [49].

Initially the majority of research studies framed the problem of image memorability
prediction as regression to a one-dimensional score. Recent research results develop
an understanding of memorability as a two-dimensional property that varies across an
image, resulting in the extraction and analysis of cognitive relational patterns that cap-
ture the regions of scene images human observers deem memorable. These relational
patterns, known as Visual Memory Schemas (VMS) [2|, capture the cognitive repres-
entations and structures that humans use to organise and encode a given image into
memory, have high consistency between humans (p = 0.70), and a limited relation with
one dimensional single score predictors for memorability. VMS internal consistency
(measured via Pearsons 2D correlation) is higher than both VMS correlation with eye
fixations (P?P = 0.50) or saliency (P?” = 0.58) [83]. Compared to image memorabil-
ity prediction, fewer works tackle the task of modifying the memorability of images, or
that of generating images that are intended to be less or more memorable. Modifying
the memorability of face images was explored in [74], where it was found that active
appearance models [28] could be employed to adjust various facial features associated
with memorability. Deep generative models have also shown some success in modifying
image memorability, from face generation [121], to employing style transfer [120], to

transformer-based network capable of modifying the memorability of a seed image [49].

In this chapter, we present a generative model we call ‘MEMGAN’, capable of syn-
thesizing completely new photo-realistic scene images by using two-dimensional maps
of memorability. These maps are based upon cognitive relational patterns, which re-
veal the mechanisms humans employ to encode scene images in memory. We validate
this approach by performing a repeat-recognition human experiment, and find that our
generated images significantly modulate the memory performance of human observers.
When designing our approach, we set out to verify that visual memory schemas (VMS)
capture information that is memorable in an image to a sufficient degree to constrain a
generative model that can synthesise completely new scenes which in turn are able to

modulate human memory. We start with the analyses of the per-category consistency
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and the per-category memorability signal (measured by D-Prime) for the VISCHEMA
image datasets [133], and explore the relationship between consistency and memorabil-
ity in order to verify that VMS maps are suitable descriptors of memorability. We then
consider two deep learning generative adversarial techniques for generating memorable
images : based upon the Wasserstein loss metric [4], and a progressively growing net-
work. This approach allowed us to investigate what effect modifying the visual memory
schemas the scenes were based on, has on the generated images. The generative neural
network requires feedback on the memorability of its synthesised scenes during train-
ing time. The network generates hundreds of thousands of images during its training,
and memorability feedback is necessary for every generated image. To deal with this
constraint, we train a VMS prediction model based directly upon human data that can
produce VMS feedback for arbitrary scene images. The predictor learns which features
(from indoor scenes) make up a visual schema for our experimental kitchen scenes. It
is this feedback that constrains the generative model. We evaluate our generated scenes
via a human observer memory experiment, testing if our newly generated more memor-
able images are remembered better than the generated low memorability images. These
findings allow us to acquire new insights into the efficacy of modulating the performance
of human memory via images generated to activate specific visual memory schemas in

human observers.

Developing the capability to generate memorable scene images without requiring an
initial image seed has clear practical and theoretical applications. Such a technique could
be applied to create highly effective memorable advertisements, improve educational
tools, and there is also the potential for medical applications, such as tracking the
decline in memory of patients with advancing cognitive deficits by providing a targeted
baseline of memorability. A completely data driven approach such as this would provide
significant advances to the methods used in cognitive science for the study of mental

structures for the organisation of thought and behaviour employed by humans.

4.2 Results

4.2.1 VMS Consistency and Memorability

VMS maps capture spatial and relational components of episodic memory, and hence

contain additional information compared to single-score based image memorability meth-

85



4.2. RESULTS

ods. In order to evaluate the validity of the data driven VMS maps as image memor-
ability predictors we examine their image category consistency. We employ a method
from signal detection theory to extract a global ‘memorability’ signal for each category
for human observers and then evaluate the correlation between this global signal and
VMS map consistency. The evaluation is performed on both the VISCHEMA 1 dataset
[2], which consists of 800 images and their corresponding 800 2D memorability maps,
and the VISCHEMA 2 dataset [83], an expansion to VISCHEMA 1 which consists of

another 800 images and memorability maps.

Consistency
Category VISCHEMA 1 VISCHEMA 2
Isolated 0.556 0.447
Populated 0.624 0.562
Public Ent. 0.706 0.661
Work/Home 0.674 0.57
Kitchen 0.628 0.479
Living Room 0.568 0.446
Small 0.611 0.525
Big 0.637 0.595

Table 4.1: Vischema 1 and Vischema 2 consistency, per category. Certain categories of
images, such as kitchens or scenes involving public entertainment (playgrounds, theme
parks) are more consistent than others, such as the isolated category. Higher consistency
implies participants agreed on specific features that made the image memorable.

The VISCHEMA 1 and 2 datasets contain a variety of images, grouped in the following
categories : Isolated, Populated, Public, Entertainment, Work/Home, Kitchen, Living
Room, Small and Big. The consistency of the VMS maps, on a category-by-category
bases for both VISCHEMA 1 and 2 is presented in Table 4.1. The consistency is calcu-
lated by taking 25 splits of the data (one split creating two VMS maps for each image,
each built from an equal division of human annotation data) and correlating the resulting
VMS maps against each other, using the Pearson’s Correlation Coefficient. For all image
categories the correlation is positive, and in many cases, strongly positive as is the case
for the “entertainment” category, composed of images of fairgrounds and playgrounds.
Observers tend to agree with each other on which regions allowed them to remember

the image in the categories that show strong consistency signal.
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D-Prime

Category VISCHEMA 1 VISCHEMA 2
Isolated 1.008 0.692
Populated 1.47 1.197
Public Ent. 2.037 1.813
Work /Home 1.896 1.38
Kitchen 1.602 1.257
Living Room 1.725 1.252
Small 1.52 14

Big 1.741 1.7

Table 4.2: D-Prime analysis of human memory for each category in the Vischema 1
and Vischema 2 datasets. High values clearly indicate that the memory signal for the
given image category is strong and thus image memorability for human observers is
high. Certain categories have stronger signals than others, possibly due to easier or
more available encoding schemas for that category among the human participants.

D' = 2(HR) — z(FAR) (4.1)

In order to test that visual memory schemas can capture image memorability we calculate
the signal strength of the observers’ memory for the given images by using the sensitivity
index, also known as the D" (D-Prime) measure. The sensitivity index, D’ is a measure
from signal detection theory that represents the strength of a given signal, in our case
characterising the human observers ability to remember the given image. The equation
is shown in Equation 4.1, where z is the z-transform. The results for the D’ scores
are provided in Table 4.2 and similar to the consistency of memorable regions show
that not all image categories are equally memorable. Strong overall positive correlation
between image memorability measured with D’ and per category consistency of VMS
maps for both VISCHEMA 1 (p = 0.83, p < 0.05), and VISCHEMA 2 (p = 0.76, p
< 0.05) suggest a robust relationship between the two measures. When comparing this
correlation for each image in each category, we also see a positive correlation, shown
in Fig 4.1. The overall high VMS consistency and positive correlation with the image
memorability signal (measured by D’) indicates that VMS maps are a good descriptor
of image memorability. In the following we refer to the combined VISCHEMA 1 and 2
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Figure 4.1: Histogram showing the correlation between per image category consistency
for Vischema 1 and 2 datasets and human observers’ memory. Similar pattern of correl-
ations between datasets indicates the reliability of using Visual Memory Schemas.

datasets as the VISCHEMA PLUS dataset.

4.2.2 Generating Memorable Images Based on VMS Maps

In our study we start by developing two different deep learning network architectures for
generating memorable complex scenes, one based upon the Wasserstein GAN [4] capable
of producing images up to 128 x 128 pixels and the ProGAN architecture |70] architecture
capable of producing images of up to 256 x 256 pixels resolution. In order to generate
images of varying level of memorability we explore incorporating the data driven VMS
maps into the deep learning training and generation algorithm in two different ways. The
first is by considering it as a single score while the second is as a spatial map constraint
in the loss function used for training the deep learning models. We evaluated these two
different constraints in the Wasserstein GAN architecture by assessing whether the newly
generated images can produce a differential score when applying a computational single-
score artificial memorability predictor. Our ProGAN-derived architecture is capable of
generating images of a sufficient quality and resolution for human observer experiments,

with which we validate our approach.
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a) Generated images for the kitchen category. b) Generated images for cathedral and living room categories.

Figure 4.2: Generated images when fixing Z, where the sequence of generated images
is displayed from left to right, while the memorability M is varied from low to high.
Shown categories include kitchens, cathedrals, and living rooms.

Single-score constraint

The first implementation of VMS maps in a Wasserstein GAN architecture is in a form
of a single score that is based on the average intensity of the VMS map (i.e. observer
consistency) and is used to modify the memorability of the generated image. We hence
refer to our Wasserstein-based memorability generation network as W-MEMGAN. We
generate a range of images characterised by various levels of memorability, from low to
high, by fixing the generators latent code Z, which controls the semantic content of the
generated images, and varying the memorability input M to control the memorability

of the generated images.

The newly generated images are created in ascending memorability in order to examine
the variation space between exemplars of non-memorable and memorable images of a
given image. Figures 4.2a and 4.2b show the generated images for different examples
of scene from different scene categories, obtained by fixing Z while varying M from
low memorability to high memorability. Just from visual evaluation of the images it is
evident that clear differences emerge between images when increasing the memorability
constraint. We can observe in all the scenes from Figure 4.2a, that as memorability
increases, semantic details and a more realistic ‘kitchen-like’ appearance emerges. The
low memorability cases appear to display semantic ‘noise’ representing a collection of

mismatched features with loose spatial relations. The less memorable images may dis-
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Figure 4.3: Predicted low and high memorability for different memorability weighting
factors for a, considering @ = 0 (in Equation 4.4) as baseline. When increasing «, all
generated images have a higher memorability than the baseline. The most memorable
images overall are obtained with o = 25, but the best pairwise effect is achieved with
a = 10.

play the typical elements of a kitchen, but lack structure, or rather the correct spatial
relationship between the elements. It appears that by defining visual memory schemas
as constraints of memorability results not only in the appearance of memorable semantic
details, but also enforces spatial relationships between these details. This lends evidence
that VMS maps capture semantic details and structures which match learned schemas
held in human cognition. From Figure 4.2b we can observe that when increasing the
memorability, this results in a better image structure, clarity, and detail, resulting in

images that better match human cognitive schemas.

In order to evaluate the newly generated images in a more quantitative fashion we gen-
erate 2000 images by setting the memorability constraint M either to very low or to
very high. This results in the generation of pairs of images where only the memorability
information varies between the two generated images while having the same random seed
Z. These images are then evaluated using AMNet [44], an independent memorability
prediction network. AMNet predicts the memorability of images on a scale between
0 and 1.0, allowing us to calculate the difference between our population of intended
memorable and non-memorable generated images, while also allowing us to inspect the
difference between the newly generated paired images. The results in Figure 4.4a show
a statistically significant difference in memorability (p < 0.01) between the two pop-
ulations. Images generated to be memorable clearly show a trend to be predicted as
more memorable compared to the baseline population of low-memorability images. To
note is that not all the highly memorable generated images are themselves equally mem-
orable independent from the memorability modulation as we have seen when looking

at memorability across different scene categories. Thus, when examining the pairs of
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Figure 4.4: Differences in predicted memorability for low and highly memorable images
generated with W-MEMGAN.

our generated images, we find that as overall image memorability decreases, it becomes
more difficult to influence the memorability of certain scene image categories which are
already not particularly memorable. When the image generated to be memorable has
a predicted memorability above 0.65, then 79.5% of the pairs of memorable and non-
memorable images have a positive difference in memorability. When memorability falls
below 0.65, only 40.7% of the pairs have a positive difference in memorability, where a
‘positive difference in memorability’ indicates that the image generated to be memorable

is predicted as more memorable than the image generated to be non-memorable.

Spatial map constraint

A single score for an entire image does not capture spatial information about the mem-
orability in the scene. As VMS maps reveal, not all regions of the image are equally
memorable and in many cases memorability is concentrated on certain structures in-
side the image. We hypothesise that these carry semantic information that matches
corresponding cognitive structures (schemas) used by the observers to encode and then
retrieve information from long-term memory. It is highly unlikely that a single score
represents the entirety of the memorability of an image. There are most likely multiple
characteristics within an image associated and encoded with an episode of encountering

that image. Instead, we hypothesised based on numerous findings from Cognitive Sci-
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ence that how closely a viewed scene corresponds to a cognitive schema plays a role in
image memorability or rather how much is an image memorable to a human observer.
While single score methods might be able to predict image memorability, they do not
reveal anything about why the image is memorable for a human observer, or which ele-
ments in it cause that image to be remembered. We instead base this constraint on the
concept of a visual memory schema represented in two dimensions; an organisational
map of semantic elements shared amongst human observers that enable the encoding

and recognition of scenes.

This method naturally lends itself to a two-dimensional representation of image memor-
ability; the regions captured inside a visual memory schema map are thought to directly
represent the semantic elements that lead to that image’s encoding and recognition.
These elements correspond with schemas held in the brain; cognitive structures that
represent the typical elements (and arrangement of elements) of a scene. A human,
through life long experience and acquired knowledge, may construct a schema of a kit-
chen, learning that a kitchen may contain countertops, an oven, and kitchen appliances
(this is an example; real schemas are likely more complex and flexible). Scene images
that better match this mental schema in both arrangement and semantic presence have
an encoding advantage against kitchen scenes that lack these elements or arrangements.
Computational measures that employ visual memory schemas can be thought of as learn-
ing a method to replicate human scene memory that more closely mirrors the method

the human brain uses to encode scene images; the visual schema.

Hence, to take advantage of the 2D characteristics of VMS maps, we modify W-MEMGAN
to take as input a 10 x 10 pixel map describing the intended spatial memorability of
the generated image. The provided input are artificial VMS maps created using a deep
learning method trained on VISCHEMA 1 and 2 (VISCHEMA PLUS), similar to those
obtained from human observers.As with single-score VMS constrained memorability,
employing artificial 2D VMS maps to alter the memorability of generated images also
results in a statistically significant difference between populations of 1,000 generated
memorable and 1,000 generated non-memorable images, shown in Figure 4.4b. These
findings indicate that both single-score and spatial constraints extracted from the VMS
maps incorporated into our W-MEMGAN architecture are capable of modulating the
memorability of newly generated images evaluated by an artificial memorability predictor

such as AMNet. The non-spatial single-score implementation of the VMS results in a
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Figure 4.5: Memorable, shown within green boundaries and non-memorable, shown
within red boundaries generated image pairs. Foils are shown within blue boundaries.

greater effect size of the difference in memorability (0.19 vs 0.15, Cohens D) compared
to the spatial method. We postulate that this could be the result of additional difficulty
of integrating a spatial constraint compared to calculating a single score constraint for

the entire image.

To examine the effect of the feedback strength of the memorability feedback mechanism
we tested several different values for «, the hyper-parameter which controls the ‘strength’
of the mechanism and defines how strongly we intend memorability to affect our gener-
ated images. The effect of four different values of a: 0, 10, 25, and 50 on the prediction
of low and high memorability in generated images is shown in Figure 4.3). For a = 0,
the memorability predictor provides no feedback to the network, disabling the influence
of VMS maps and hence is used as a baseline. Best results are achieved for o = 10,
resulting in the clearest difference between high and low-memorability images and no-
ticeably above those of the baseline, Fig. 4.3a. Using an a = 25 resulted in generation of
images with high memorability scores but with reduced ability to discriminate between
the low and high memorable exemplars. Higher values for o prevent the W-MEMGAN
from distinguishing between high and low memorability images, instead just raising the
memorability of every image generated by the network, as shown by the results from
Figures 4.3b and 4.3c.
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Figure 4.6: Generated high-memorability images (left) and their low-memorability pairs
(right). VMS maps for each image are shown on the bottom row.

4.2.3 Human memory performance for generated images

We test the feasibility of directly modulating image memorability using VMS maps by
conducting a visual memory experiment with human observers. The images used in
the experiment were generated by our second architecture; based upon ProGAN [70]
combined with memorability feedback, which we term ‘MEMGAN’. MEMGAN enables
the creation of higher resolution images at a much higher quality than the W-MEMGAN
architecture. Based on our previous results, we weight the memorability constraint
to a value of a = 10, which gives the best partition between memorable and non-
memorable generated images. Examples of images generated are shown in Figure 4.5.
In the experiment, human observers were asked to view a stream of generated images
presented for 3 second each one at a time. Participants were asked to recognize images
they recognized as repeats and indicate upon identifying a repeat the areas in the image
that made them remember the image. This allowed us to evaluate the memorability of
generated scenes through the hit rate of the images (how often an image was successfully
recognized as a repeat) and the consistency of the VMS maps across observers (regions

in the image indicated as memorable areas, see the examples from Figure 4.6).

To determine how consistent our participants were with each other, we take 25 equal
splits of our visual memory schema map and hit data for each split, and then compare
them against one another. We find a hit-rate consistency of 0.3 (Spearmans p, p<.0001

for all splits) and an overall VMS map consistency of 0.38 (Pearson Linear Correlation
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Coefficient). The VMS map consistency is lower than the 0.67 presented in [2], but this
is expected given that our task contains only two different categories of images, and
is thus a very homogeneous stimulus set. Nonetheless, there exists a clear consistency

between participants.
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b) Comparison between the VMS intensity of images
generated to be high-memorability against those generated to
be low-memorability. Images sorted by ascending
memorability. VMS intensity correlates with overlapping
labelled memorable regions, and hence indicates more
memorable regions. There is a significant difference in VMS
memorability (p < 0.05, One-way ANOVA, Kruskal-Wallis,
Mann-Whitney U)

a) Comparison between the hit-rates HR of images generated
to be high-memorability against those generated to be low-
memorability. Images sorted by ascending memorability.
Significant difference in hit-rates (p < 0.05, One-way ANOVA,
Kruskal-Wallis, Mann-Whitney U)

Figure 4.7: Difference in memorability (HR and VMS Intensity) for generated image
populations. Degree 3 polynomial fitted for visualisation.

Differences in Observed Memorability for Generated Images

The evaluation of the hit rates for the generated high and low memorable images, (Figure
4.7a, shows that high memorable images result in both average higher hit rates (0.45 for
high and 0.39 for low memorable) and average higher false alarms rate (0.20 for high
and 0.16 for low memorable). However there is a statistically significant difference (p
<0.05) for the hit rates but not for the false alarms rates between generated images
as highly memorable and those with low memorability. This pattern of results, of a
robust difference in hit rates and a lower difference in false alarms, is expected [83, 38|
given that the same structures that enable easier encoding of a scene, also make it more
likely for a human to believe they have seen that scene. Indeed, within the VISCHEMA
image set with which the memorability evaluator was trained, a rise in memorability

corresponds with a rise in false memorability (p = 0.19, p < 0.001).
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Differences in Observed Visual Memory Schemas for Generated Images

Comparison of differences in Visual Memory Schemas between high and low memorab-
ility images required that we first condense each VMS map down to an average intens-
ity. Outliers beyond two standard deviations of the mean were excluded. This gives
us separate values for both images that were correctly recognised as seen before (true
memorability) and those misrecognised (false memorability). There is a statistically sig-
nificant difference (p <0.05, effect size 0.36 Cohens D) in the VMS memorability chan-
nel for highly memorable images vs low memorable images, with a robust Bayes factor
In(BF) = 1.117 indicating substantial evidence for the effect of modulating memorab-
ility (see Figure 4.7b. As before, there is no statistical difference for false memorability
between image catgeories. We also compared predicted VMS maps from the generator
network to those outlined by the human observers and found a Pearsons Correlation of
0.49 (p <0.05), a Spearman rank correlation of 0.5 (p <0.05), with a population average
mean-squared error of 58 between predicted and human-gathered VMS maps. These
results indicate that the relational memorability patterns used to generate the images
are effective in defining visual memory schemas in the same images, which correlates

positively with those indicated by human observers.

Image Pair Analysis

The results for both the hit rate and observed VMS’s are encouraging, and clearly show
a statistical difference between the overall populations of highly memorable and low
memorability generated images. However, the images were generated in pairs, with high
and low memorable versions of the same scene image, as defined by a fixed latent code,
and by modulated memorability, and thus can be compared as such. This requires the
evaluation of the pair-wise difference, between an image with the same latent code but
modulated memorability. Results indicate a statistically significant difference (p <0.02,

paired T-test, Wilcoxon signed-rank test) for both hit rates and VMS memorability.
Comparing our results with an independent computational predictor of mem-
orability

We also compare the results obtained on our human observer study with those of a recent
state-of-the-art memorability predictor [44], trained on the same dataset (LSUN, [142])
from which we drew the training data for our MEMGAN models. We find no significant
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Table 4.3: Comparison between MEMGAN and GANALYZE.

Method Primary Focus Log-odds increase Constraint ~ Seed Image Required? Pretrained Generator Required?
GANALYZE [49] | Objects/Animals  0.19 / step Single-score Yes Yes
MEMGAN Indoor Scenes 0.31 2D Map No No

correlation between the memorability scores calculated by the independent memorab-
ility predictor for our images with the experimentally obtained hit rates or VMS map
intensity of our images. This finding suggests that memorability predictors based only
on single-score models of memorability are missing important characteristics of human
visual memory, and that artificial predictors fail to predict human memory performance
for generated images. However, we do see a significant effect (p< 0.05, Paired T-test,
Wilcoxon signed-rank, Mann-Whitney U), when comparing paired predicted scores for
our generated high and low memorability images, which suggests computational predict-

ors can differentiate between populations of generated images.

Comparison with prior work

Comparison with prior work is made difficult due to both inter-experiment paradigm
differences and differences in the datasets employed by previous work compared to ours.
We cannot compare with work that examines face memorability, as memory for faces
employs a different mechanism than that of scenes [115]. The most sensible comparison
of our work is with that of Lore et al. [49], where a transformer is employed to shift the
memorability of images within the latent space of a BigGAN [18] network. However,
our experiment is more difficult than that of [49] for several reasons. Our stimulus
set is indoor scene focused, rather than consisting of objects and animals, and hence
is more homogeneous compared to [49]|, which makes remembering our images more
difficult [20]. Secondly, the gap between target and repeat is, on average, longer than
the longest gap in the memory experiment of [49], again making the task more difficult.
Thirdly, we must manipulate the semantic content of entire scenes, whereas in [49] the
differences in object memorability are due to changes in object size, brightness, object
centeredness, and object shape. Most of these factors cannot be manipulated to make
scenes more memorable. Henceforth this comparison should be taken with these key

paradigm differences in mind.

We employ the same method as in [49] to calculate the log-odds difference between our
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low and high memorability image sets for our scenes. In Table 4.3, we show the log-
odds increase, which captures how much more likely a "high memorability" image is to
be remembered by a human than a "low memorability" image. We also indicate the
memorability constraint type, whether an initial seed image is required to be modified,
and if a pretrained generator is necessary. We find the log-odds of remembering an image
in the "high" category increase by 0.31 compared to those from the "low" category.
Despite our harder memorability task, our results are comparable to that of [49], while
being able to train in only 14 days on 4x Nvidia 1080 Ti, compared to BigGAN requiring
15 days on 8x Nvidia V100s (significantly more powerful GPUs). Our approach also does
not require an initial "seed image" to modify. While the memorability of scenes and
objects cannot necessarily be directly compared, the log-odds increase being comparable
between both approaches is additional evidence that Visual Memory Schemas are good

descriptors of memorability.

4.3 Discussion

In this chapter we presented and evaluated a method of generating scene images con-
strained by a construct from cognitive science: visual memory schemas, and tested its
validity to modulate human episodic memory of images. The modelling of the VMSs
is data driven and based on human memory study. We directly manipulate the visual
schemas of images in a generative deep learning model (MEMGAN) and hence influence
the final memorability of generated images. To our knowledge this is the first example
of a generative model specifically trained from scratch to generate memorable scene
images employing two-dimensional memorability data gathered from human observer
experiments. Moreover, we double the size of an existing two-dimensional memorability
dataset, and for the first time investigate the relationship between VMS map consistency
and image memorability, along with presenting per-category consistency data for VIS-
CHEMA categories. Encouragingly, consistency values remain high for both the original
VISCHEMA dataset and our second replicated experiment, confirming the validity of

this approach of gathering two-dimensional memorability maps.

There is currently a limited number of existing approaches to the problem of modifica-
tion of image memorability. Sidorov et al. [121] examine various methods for altering the

memorability of images, from basic-photo editing techniques such as adjusting the sat-
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uration of the image, to the employment of an attention-based Generative Adversarial
Network (GAN) for generating memorable face photographs. The memorability data
used as input for training the GAN was drawn from artificial memorability predictors.
They find that both their altered and generated images produce changes to the arti-
ficially predicted memorability score of images but do not have any data on human
observers. This approach is similar to that from [120], in which a deep style-transfer
model was trained to automatically apply ‘filters’ such as sepia tones or saturation boost-
ers to images in order to boost said images memorability. In [49], Lore et al. develop
a transformer network that can be attached to an existing generator in order to ad-
just the memorability of generated images. While this approach does leverage existing
trained networks to generate photorealistic images, this is dependent upon the chosen
generator, and additionally requires a generated ‘seed’ image for the network to adjust.
As a feedback mechanism they employ single-score memorability predictors. They show
through human recognition trials that the images adjusted to be more memorable tend

to be empirically more memorable.

Prior approaches to memorability modification require a starting image (real or gen-
erated), and it is the memorability of this image that is then modified. We instead
desire to create an approach that can generate images without requiring this initial
seed image, and can instead synthesise recognisable scene images given only a latent
code and a desired memorability. As proof of concept that cognitive relational patterns
can serve as the basis for a generative network for memorable scene images we develop
and train an architecture that can synthesise low-resolution memorability-constrained
images. We evaluated the potential of both single-score VMS based memorability and
spatial memorability as a driving mechanism for scene image generation. The generated
images, despite low resolution and relatively poor quality, are capable of causing a signi-
ficant effect in a state-of-the-art third-party memorability prediction network that had
never previously seen the generated images. Further, by modifying the strength of the
memorability feedback mechanism our memorability constrained images can be made to
display both higher and lower image memorability compared to a baseline of generated
images where the memorability feedback network is disabled. Interestingly, placing too
much emphasis on the feedback network causes the network to lose discriminative power,
becoming unable to correctly generate images with high vs low memorability, yet gen-

erating images that were predicted to be much more memorable overall. This provides
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evidence that we can manipulate the memorability of generated images in a meaningful
way. Image memorability based on VMS maps appears to control both the emergence

of semantic details as well as the spatial relationships created between these details.

The final test of visual memory schemas as viable mechanisms for modulating image
memorability is whether our approach could functionally work with actual human ob-
servers and not only with computational memorability predictors. By integrating our
memorability evaluator and loss component with a more advanced generator allowed us
to influence the memorability of relatively high resolution, high-detail images. While
we lack the resources to generate high resolution photo-realistic images, the images we
do generate show clear structure, detail, and are certainly recognisable as belonging to
their intended category. From our results (and given that we based our model constraint
on visual memory schemas), we hypothesise that more memorable scenes better match
the cognitive schema of that scene contained within the human mind. In this work, we
observe that making a scene more memorable results in changes to the structure and
content of the generated scene compared to the same scene generated to be of a lower
memorability. We hypothesise these differences cause the image to become closer or fur-
ther from the mental representation (i.e, the schema) of that scene which is stored within
the human brain. However, it is unclear whether the differences in schema between high
and low memorability images also result in greater difficulties visually recognising the
image as an exemplar of its class. To test this, we employed a scene recognition deep
neural network (ResNet152 [58]) trained on the Places365 dataset [148| to categorize
every synthesised image. We find that in general the majority of images are classified as
their class (or a highly similar, related class, e.g, galley vs kitchen). For highly memor-
able generated images, 96% of images are correctly classified and for low memorability
generated images, 95% of them are correctly classified as kitchens by the scene recog-
nition network. There appears to be little difference in how visually recognisable the
generated images are as members of their class; and the demonstrated memorability
effect appears independent of visual recognizability. Given that human ability to cat-
egorize scene images generally exceeds that of neural networks; the recognizability scores
shown are best viewed as a lower bound. Additionally, as human memory is not contin-
gent upon resolution [127, 48, 139] and perfect photo-realism, the images we generate
serve well for their intended purpose. We show through human observer memory exper-

iment that the images we generate to be more memorable are more likely to be detected
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correctly as repeated images by humans. Additionally, we find that the false-alarm rate
of said images also increases, an encouraging sign that our images are truly modulated
by visual memory schemas, as the exact same effect appears in the VISCHEMA dataset
of real images. The cognitive schemas that aid the remembering of scenes also lead to
false remembering when presented with a memorable image modelled on the schema,
even if that image has never been seen before. Critically, we are able to generate mem-
orable images without requiring a seed image, such as the approach employed in [49],
and verify that two-dimensional maps of memorability can be employed to modulate

memorability, rather than relying on single-score approaches.

In summary, our results indicate we were able to both fool computational memorability
predictors, and manipulate human visual long-term memory via artificially generated
images, constrained with a two-dimensional visual memorability schema concept bor-
rowed from cognitive psychology, for which there are neural correlates [128]. It may
appear circular that we have constrained a model with visual memory schemas, (which
indicate memorable regions) and find that our generated images are indeed memor-
able. However, this only appears this way because the data shows an effect on human
memory; there was no guarantee that this was possible to accomplish. There is addi-
tionally no guarantee that the generative model would be able to be constrained by the
visual memory schemas. There is little work in this area (and none that examines the
visual schemas of generated images); and in essence the model is the test - investigating
whether it is, or it is not possible to use visual memory schemas to synthesise scenes
that can modulate human memory. We find that by employing VMS maps we are able
to generate completely new artificial scenes that cause a desired modulation of human
memory as tested by a human observer memory experiment. This has interesting im-
plications for the future study of image memorability, as well as real-world applications

for memorability research.

We have designed a neural network that appears to understand visual memory schemas to
a sufficient enough degree to use them to visibly change the output of a generated scene,
based upon a brand new, extrapolated or invented schema (of controllable memorability),
that we want the scene to match. The generative network is constrained by an artificial
VMS map predictor that can produce two-dimensional memorability maps for arbitrary
scene images; the greater the difference between the predicted VMS map and the target

VMS map for a synthesised scene, the more the network is penalised. As we have shown,
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when we constrain a synthesis network with a VMS predictor, we find that we are able
to generate scenes that affect human memory for those scenes, or rather, affect their the
performance on a memory test. We learn from this that visual memory schemas appear
a strong enough descriptor of what information humans encode into memory to enact

visible changes on the synthesised images based upon the input schema.

4.4 Methods

4.4.1 Memorability Estimation Feedback Network

The assessment of image memorability is performed by employing a Visual Memory
Schema prediction model developed in [83|, which is based on the Variational Autoen-
coder (VAE) |76] learning model. A VAE is made up of two convolutional networks:
the encoder aiming to extract a latent space representing the data, and the decoder
which aims to reconstruct the given data. Following training, given an image, the VAE
is used to predict its corresponding VMS map. We train this model on the VISCHEMA
PLUS dataset containing 1,600 image/VMS pairs. The output of this model is a two-
dimensional VMS map. This predicted VMS map is based upon the latent space of the
VAE, which corresponds to a learnt mapping of image features to memorability based
upon multiple human observations for the input image. We only consider the ‘mem-
orability’ channel of the VMS maps (true schemas), and do not make use of the ‘false
memorability’ (false schemas) information. For the given VMS data (x, the encoder of

the VAE infers a latent space z, by using the following loss function :

L(0,0) = = Egrqy(alx) 108 po(x|2)] + K L(g9(2|%)||p(2)), (4.2)

where the former term represents the log-likelihood of VMS reconstruction by using
the decoder network and the latter represents the Kullback-Leibler (KL) divergence
between the variational distribution gg(z|x) and the prior p(z) aiming to assess the
image reconstruction ability of the network. 6 and ¢ represent the parameters of the

VAE’s encoder and decoder networks, respectively.
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Figure 4.8: Memorability-constrained image generation model architecture. PixelNorm
and Minibatch Standard Deviation layers omitted for clarity.
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4.4.2 W-MEMGAN Architecture & Training

The diagram of the deep learning architecture used for generating memorable images is
shown in Figure 4.8. It consists of a Generator GG, a Discriminator D, and the mem-
orability feedback network M. While the generator creates memorable images, the
discriminator evaluates the ‘realness’ of the generated images, and the auxiliary mem-
orability network evaluates whether the memorability of the generated image matches
the memorability defined by a memorability constraint M. M in this case may either be
a two-dimensional target VMS map, or a single target memorability score. The image
generation network G, corresponding to the generator from WGAN, aims to synthesise
an image i using random variables Z as inputs, which defines the latent space of the
MEMGAN, while M acts as the memorability constraint :

I=G(zZ,M). (4.3)

The output of the generator is a generated image i, whose memorability score is as
close to M as possible. Both Z and M are drawn from Gaussian distributions. The
generator is constrained by both the discriminator D and by the memorability feedback
network M, which estimates the memorability map I,, = M(I). The discriminator D
is implemented as an improved Wasserstein GAN model [54] which employs a penalty

term on the discriminator loss yielding better performance and stability when compared
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to the classical GAN [51].

During the training, Z is sampled randomly from a Gaussian distribution, and M is
either sampled from the Gaussian distribution or Py, the distribution of possible target
VMS maps, depending whether the network is being trained for spatial memorability or
single-score memorability. When training the discriminator D, M is discarded, as it is
only necessary for training the generator, where it is used to calculate the memorability
loss. This has the effect of penalising the generator if the generated images are not of a
similar memorability to that defined by M. For example, if the image was intended to
be memorable while actually it is not memorable, the generator loss will increase. Each
training epoch consisted of 60,000 kitchen images drawn from the LSUN database [142],
and the network was trained for 500 epochs, which took approximately 8 days on 4 X
Nvidia 1080 Ti GPUs.

4.4.3 MEMGAN Architecture & Training
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Figure 4.9: Progressive generator with per-resolution memorability estimation.

The Wasserstein GAN based network does not generate memorable images at a suffi-
ciently high resolution and quality for human trials. Given the latent code Z and an
artificially generated target 2D visual memory schema (VMS) map V, the goal was to
generate a sufficiently realistic 256 x 256 pixel image from Z, whose VMS is close to that
of V. We hence combine the memorability feedback network with a more suitable gen-
erator architecture, that of the progressive GAN [70]. We draw V from P, the possible
target VMS maps.
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While aiming to obtain photo-realism is preferable, it is not a strong requirement for
our architecture and subsequent human observer experiment. As long as the image
generated is recognisably as a member of its target category, a human observer will
employ the correct visual schema when encoding the image into memory. This allows
us to reduce the capacity of the network compared to the original progressive GAN [70],
which results in an accelerated training time on the available hardware. A simplified (for
visualisation purposes) architecture is shown in Figure 4.9. The MEMGAN architecture
we develop bears superficial similarities to both ACGAN [101] and InfoGAN |25], though
rather than predicting discrete class labels or extracting interpretable dimensions in
an unsupervised fashion, it generates memorable images, without a prerequisite seed
image (such as those used in [49]), while being supervised by human observer-based
cognitive structures. The generative network architecture has specific processing blocks
for each image resolution, as can be observed in Figure 4.9. The output image of each
resolution block is passed through the memorability predictor as the network generates
more accurate images of increasing resolution. As each resolution block takes over the
information produced by the previous layer of processing blocks, the connection of those
blocks to the memorability predictor is dropped. This allows the memorability signal to
affect all resolutions of the generator during training. We only generate up to a resolution
of 256 x 256 to limit the computation time, which is ever increasing when attempting to
generate images of higher resolutions. The training time is reduced at the cost of losing
some detail by reducing the capacity of the 256 x 256 and 128 x 128 resolution blocks by
half. Finally we add a tanh activation function at the output, before merging different

resolution blocks, which aids stability.

We trained two deep generative networks in order to generate images for our human
memory experiment, one with a memorability constraint (MEMGAN) and another
without, whose purpose was to generate foil images. Both networks were trained for
200 epochs. Each resolution block was slowly introduced to the network over a duration
of ten epochs, and then trained for an additional ten epochs before the next resolution
block was introduced. Each of the first five resolution blocks of 128 x 128 pixels from
Figure 4.9, was shown a total of 4,800,000 images. The final block of 128 x 128 was
shown 2,400,000 images. These images were drawn from a dataset of 240,000 kitchen
scene images, and the same number of living room scene images, both drawn from the

LSUN database [142]. This allowed a suitable balance between resolution, quality, and
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required total training time. We follow the example set in [77] with the following para-
meters: Lr = 0.0015, 1 = 0, B2 = 0.99, e = 1 x 1078, Each of the two networks was
trained for 14 days on 4 x Nvidia 1080 Ti GPUs.

4.4.4 Loss functions

Both our memorable image generators are designed to use the same loss function, the
Wasserstein metric combined with a component which calculates the difference between
the desired and generated memorability for a given image. This training mechanism

works for both single-score and VMS map memorability training examples.

L=_E [D(G(zV)- E [D(x)]+Aossgp+a_ E [(ME)—v)?] (44)

Z~P, vy x~P, X~Pg,vPy

The loss function is designed to embed a memorability predictor and contains the follow-
ing components: a generator network GG, a discriminator D and memorability predictor
network M. Considering the latent code distribution P,, target VMS distribution Py,
real image distribution P,, predicted VMS distribution P,, and generated image distri-
bution P, based upon the latent code z and ¥ we define the loss function in Eq. (4.4).
The latent code Z is drawn from a Gaussian distribution and v from a distribution of
target VMS maps, where height, width, and intensity of VMS regions is drawn from a
uniform distribution. ALossg, refers to the gradient penalty loss in [138]. « controls the
strength of the memorability loss. [P, represents the probability of the generated data
and P, is the probability of the real data. The additional term controlled by the hy-
perparameter A prevents the gradients inside the discriminator from violating Lipschitz
continuity, whereas the first two terms evaluate the Earth-Mover distance between the
generated and real distributions. The additional memorability loss, combined with the
Wasserstein loss, constrains the image generation by both ‘realness’ and memorability

simultaneously.

4.4.5 Generating Images for Human Observer Experiments

We generated low-memorability and high-memorability kitchen images with our MEMGAN.

To avoid making the task too difficult, we also generate memorability-unconstrained im-
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ages of another interior scene category to act as foils in the memory experiment, living
rooms. Our target memorability-modulated images are generated in pairs, with a fixed
latent code Z per pair, varying the desired target VMS map between low and high mem-
orability (modulating memorability constraint M); for each highly-memorable image
there is a non-memorable image defined by the same latent code. We generated several
