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Abstract

Computational memorability prediction has allowed significant advances in the under-
standing of human visual memory; and in turn, advances in understanding what makes
an image memorable. Recently, this research has expanded to the second dimension,
with Visual Memory Schemas (VMS) maps revealing the specific regions in a scene
that lead to that scene being remembered. In this thesis, we explore the concept of
VMS maps in detail, develop new VMS datasets, novel models for VMS prediction,
explore whether human memory can be modulated with VMS maps, and finally invest-
igate the relationship between scene memorability and scene complexity. We propose
three new approaches for predicting visual memory schemas, starting with a variational
autoencoder-based model, before exploring the role of self-attention, multi-scale inform-
ation, and depth in the prediction of scene memorability. Based upon this work, we
develop a novel "dual-feedback" model that uses both VMS datasets and pre-existing
single-score memorability datasets to predict memorability maps for scene images, set-
ting a new state-of-the-art for VMS prediction. This work is supported by our efforts in
expanding VMS datasets; from the original 800 images, up to a dataset of over 4000+
scenes and VMS maps. We make use of our VMS predictors by integrating them with
generative models with the goal of synthesising scene images of controllable memorab-
ility. We test our generated scenes against real-world human observers and find that
images we synthesise to be more memorable have a greater hit-rate than images we
synthesise to be less memorable. Finally, we investigate the relationship between scene
complexity and scene memorability, developing novel techniques and architectures cap-
able of predicting how complex a human finds a scene, and ultimately finding that the
complexity of the scene plays a small, but significant role, in the memorability of that
scene.
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Key Terms

Complexity An intrinsic property of images, of which humans are capable of judging
consistently. Dependent upon both low-level textural features and high-level se-
mantic content. There is not yet an agreed-upon definition for complexity in the
context of human perception, though it’s computational counterparts are well un-
derstood..

Memorability An intrinsic property of images (often represented as a scalar value
between 0 and 1.0) that corresponds to how well that image is remembered, on
average, by humans. Does not relate strongly to many other image properties such
as interestingness or aesthetics, nor to human predictions of image memorability.
Mostly driven by the semantic content of the image..

Saliency The likelihood of an image area to draw the attention of the observer. A
saliency map reveals the areas of an image that humans fixate on first upon viewing
the image..

Scene Scene, in this work, refers to natural scenes. Specifically, a still image of a
common environment in which a person may reasonably be expected to have been
immersed. Kitchen, living room, golf course, and playground images are examples
of natural scene images. A collection of items (e.g, kitchen implements) arranged
on a table and photographed do not represent a scene as defined by this work,
nor do images of single objects (a toaster) or an image where a few prototypical
elements of the scene consume the vast majority of the frame (an image of a
fridge near a counter edge). The scene image typically displays the majority of
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Key Terms

prototypical elements common to that scene, where present, as well as captures
the overall structure of the scene (‘the whole kitchen’) in the still image..

Schema A mental construct characterising concepts and the relationship between them..

Semantics The high-level features present in the image that compose the scene, distinct
from low-level image features such as spatial frequencies, colour, or scene statistics.
The objects present (e.g, a chair) are considered semantic scene elements, as are
composite arrangements of objects (e.g, a dining table surrounded by chairs). The
scene category itself may also be considered a semantic feature of the scene..

Visual Memory Schema A cognitive representation of a scene, containing semantic
elements and the relationship between them, which facilitates encoding of said
scene. Scene images that more strongly match held visual memory schemas are
more strongly encoded. See Chapter 3.
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CHAPTER 1
Introduction

1.1 Motivation

Psychologists have long explored the characteristics of visual memory, investigating ca-
pacity and level of detail alongside accuracy and fallibility. However, until relatively
recently two significant questions remained without clear answers:

• What makes an image memorable - and why are some images more memorable
than others?

• Can we predict how well a human will recall having seen a given image, either with
classical or machine-learned models?

Solving this problem in its entirety would require not only an understanding of the
mechanisms of human visual memory, but also a method to understand and represent
an image such that memorable factors can be evaluated. It would further understanding
of why certain things are memorable, and not others, and provide insights into how the
brain processes memory and what it prioritises. It is only with the advent of recent
computational techniques that this problem has begun to become tractable. While
there has been clear progress towards predicting memorability, deciphering exactly what
causes an image to be memorable remains somewhat unclear; and so far defining an
image in the terms of its exact "memorable components" remains difficult.

While analysing and predicting memorability remains in the realm of research, potential
practical applications for this topic are numerous. Once memorability can be predicted,
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this goes a long way to allowing memorability to be altered. The most obvious applic-
ation is commercial, allowing for the memorability and hence efficacy of adverts to be
assessed rapidly and automatically. Educational aids can be evaluated to determine how
likely they are to be remembered, as can important public information and infographics.
There are also medical applications - a baseline memorability score for a set of images
could be used to track the decline of patients with cognitive diseases.

1.1.1 A Computational Approach

Recent advances in machine learning have led to techniques that allow computers to
replicate certain human cognitive abilities. In certain cases, such techniques provide
results indistinguishable from that of a human addressing the same cognitive task. It is
this replicative ability that is of interest in the area of memorability prediction. Without
computational assistance, predicting the memorability of an image is a nearly intract-
able problem. Not only are humans incapable of predicting which images are memorable,
large scale human prediction of hundreds of thousands of images would be an exceedingly
expensive, time consuming task. If a computer can be taught to emulate the function
of human memory, these issues vanish. Computational power allowing, rapid image
memorability prediction becomes possible. In the case of more complex models, determ-
ining why the model arrives at a given output can reveal hints about how human visual
memory functions. These complex computational models are not without their draw-
backs. They can provide stunningly accurate predictions, and even match human-level
performance, but their interior logic can be obscure and difficult to interpret.

Computational memorability prediction and analysis is a field just under a decade old.
In this relatively short time, memorability prediction has made progress in leaps and
bounds (the progress in analysis remains harder to quantify). Generally, memorability
prediction is framed as a regression task, the goal of which is to output a score, between
0 and 1, that indicates how likely that image is to be remembered by an ‘average per-
son’. Psychological experiments gather data on a set of images, determining how well
humans remember an image (often this takes the form of a repeat-recognition task). The
predicted values and the ground truth values are then compared to determine the degree
of consistency between them. If humans find one image generally more memorable than
another, the computational model of memory should reflect this. Like most research that
involves machine learning, this field rapidly grew to leverage the power of deep neural
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networks, the best of which are currently able to predict memorability scores with a
consistency close to that which groups of humans share with each other. These mod-
els have allowed the relationship between memorability and other psychological image
properties such as saliency, aesthetics, and interestingness to be evaluated. Neither of
these properties are capable of explaining the variance inherent in image memorability,
and in many cases, there is no relationship at all.

This research has shown that there is a high degree of consistency (ρ = 0.75) between
participants memory for images; in general, people will remember the same memorable
image, and forget the same non-memorable image. Low-level image features, such as
colour, intensity, or object counts do not correlate strongly with image memorability [69,
68]. Instead, high level semantic attributes such as image category, the contents of the
image [20], the objects present [40, 141], and scene dynamics and category [94] appear
to better correlate with image memorability scores. Features relevant to memorability
can be extracted through deep learning mechanisms [9] in order to predict memorability
scores [8, 44, 125] for images, with recent deep models reaching human-level performance.

1.1.2 Beyond Single-Score Metrics

Compared to overall memorability score prediction, there has been less research into
examining memorability across an image, rather than with a single summative score.
Probabilistic models have been created but lack a ground truth dataset to compare with.
The effect of the memorability of individual objects in an image has been examined,
but remains a much more difficult task due to need for segmentation of the image, a
notoriously difficult problem. Recent work on this topic moves away from memorability
score prediction towards a more complete model of visual memory. The Visual Memory
Schema (VMS) maps gathered via the VISCHEMA experiment define the regions of
an image that causes that image to be either remembered - or falsely remembered.
VMS maps are highly consistent (correlation histogram mean of 0.7) [2], indicative that
participants agree on which regions cause a given scene image to be remembered. This
work combines cognitive theories of visual memory with machine learning, and introduces
the concept of visual schemas. Visual schemas are mental structures that enable an
image to be remembered. These schemas allow generalisation about memorability across
different images in different categories, and across individuals, providing significantly
more information than a single score metric that describes memorability. With these
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schemas, an image can be defined in terms of its ‘memorable regions’. The elements
contained in these regions directly relate to that images’ memorability; that is, the
structure, objects, and semantic units contained within this region aid in that image
being remembered. However, predicting these schemas is more difficult than predicting
a score alone. Predicting a one-dimensional metric is easier than predicting a three-
dimensional schema which varies both spatially, and in intensity. Predictive efforts are
made more difficult by the lack of available training data: the only currently existing
dataset of Visual Memory Schemas and their corresponding scene images has only 800
images; a significantly lower amount compared to single-score memorability datasets
(which number in the tens of thousands of images).

With memorability score prediction now having a close correlation with inter-human
memorability scores, there is now the opportunity to start looking beyond score predic-
tion towards a finer-grained understanding of memorability. The VISCHEMA experi-
ment represents an initial step in this direction. However, there remains a long way to
go before the consistency between predictions about visual schemas and ground-truth
scores reach the same level as memorability score prediction. However, further invest-
igating visual schema generation for images could lead to models that better represent
human visual memory and hence improve overall understanding about memory. An-
other relatively unexplored avenue opened by computational memorability prediction
is examining the effects of attempting to modify images to improve or reduce their
memorability. This moves beyond asking what makes an image memorable, to actively
employing what we already know to create images that cause a direct change inside the
human visual long-term memory system. Much existing work in this field focuses on
either modifying existing images, or on those of face images which is a sample set dis-
tinct from those of the natural scenes. Recent advances in machine learning and image
generation, combined with maps that define which regions of images cause an image to
be remembered, open a path towards the generation of memorable images from scratch,
rather than modifying already existing images. Attacking this problem is an important
first step towards real-world applications of research into memorability.

1.1.3 Scene Complexity

The correlation between image memorability and several other perceptual characteristics
has already been examined, and few of these characteristics are capable of explaining
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scene memorability. This holds for aesthetics, ‘interestingness’, and colour properties.
However, the relationship between how complex a scene is and the memorability of that
scene remains relatively unexplored. Understanding scene complexity, and how humans
process and evaluate said complexity is a worthwhile endeavour by itself, leading us
towards a better understanding of the brain and its vision processing systems. Much
like image memorability, scene complexity suffers the same limiting factor of requiring
humans "in-the-loop" to extract data for any given scene; predictive models offer the
chance to evaluate complexity for any scene image, whether human data exists for that
image or not. Perceptual complexity itself has prior theoretical grounding, which defines
complexity as the intricacy or detail present in a line drawing [123], as the degree of
difficulty involved in generating a verbal description of a texture [60], or evaluates com-
plexity in context of aesthetics [35]. However, these measures do not specifically target
scene perception; with initial research on scenes [105] finding evidence that clutter and
mirror symmetry play a key role in visual complexity, along with openness and object
organisation [103].

There are direct applications of scene complexity understanding, from marketing applic-
ations (e.g; perhaps you want your advert to be easier to visually process and compre-
hend and thus less complex), to potential impacts for psychological experiments (you
may want all your visual stimuli to be of similar complexity to exclude a confounding
factor) to healthcare applications (the evaluation of cognitive processing disorders; how
easily a patient can process an image of known complexity). However, through the lens
of image memorability, scene complexity affords us an additional metric that may help
explain why some images are more memorable than others. A visual memory schema
captures the overall memorable semantics of the image; but complexity may offer the
ability to investigate how the overall detail present in the scene affects the memorability
of that scene. Two problems face this line of inquiry. One is the lack of existing data,
as there are very few scene datasets that exist with both memorability and complex-
ity annotations; and none suitable for large-scale machine learning. The other is that
factors that explain the complexity of scenes are not well understood, and that cur-
rently all complexity measures remain firmly in the single-score domain; with minimal
exploration of which regions in an image contribute to its perceived complexity.
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1.1.4 Research Direction

The research in this thesis focuses in three main directions, that each build on the
concept of Visual Memory Schemas. These directions are as follows:

1. VMS maps define the areas of an image that cause the image to be remembered
or falsely remembered. However, prediction of these maps is a difficult task and so
far has only been accomplished in a limited capacity. The current limitations of
generating these maps are examined, and improved methods of generating them
explored. This involves the development and application of more advanced ma-
chine learning techniques to the problem of VMS map generation, as well as the
creation of novel architectures/approaches. As the existing dataset is of limited
size, posing issues for existing machine learning methods, larger-scale VMS data-
sets will need to gathered. This further exploration of visual memory schemas with
modern deep learning techniques offers the potential to better understand what
makes images memorable.

2. It has recently become possible to create highly realistic images using generat-
ive models. Such generated images do not exist in the dataset used to train
the models, and can be considered ‘new’ images. Combining VMS map mod-
els with generative models could lead towards the generation of memorable or
non-memorable images. The generated images would be evaluated via human
memorability experiments in order to evaluate how well the model learned to gen-
erate memorable/non-memorable features in images. Successfully accomplishing
this further validates the VMS model of image memorability. The results of these
experiments would have interesting implications for the future of the applications
of memorability manipulation.

3. The relationship between memorability and complexity in scene images is not well
understood, and neither are the elements that contribute to the perception of a
scenes’ complexity. Visual memory schemas offer the opportunity to investigate
how the memorable regions of an image relate to that images’ complexity, and
increase our understanding of both memorability and complexity. However, as
no dataset currently exists that contains both scene complexity scores, labelled
regions, and memorability information, this data must first be acquired. Such
a dataset would ideally be large enough to afford the chance to develop neural
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network models capable of predicting scene complexity, and evaluation of this
model could lead to a better understanding of how humans perceive complexity.

1.2 Thesis Structure

The remainder of this thesis is organised into six chapters, and is intended to both
provide the reader with a background in computational memorability and complexity
prediction, and of the advances made during this research project. The chapters are
structured as follows:

Chapter 2 is intended to provide the reader with a general background in memory,
other perceptual image characteristics, and deep neural networks.

Chapter 3 first introduces the concept of a Visual Memory Schema in greater de-
tail, describes the existing dataset, and details the experiments conducted to gather
further data and better understand what that data reveals about scene memorability.
Secondly, the chapter explores progress made in developing neural network models of
visual memory schemas, and evaluates several differing techniques as applied to image
memorability prediction.

Chapter 4 presents a novel neural network model that combines work on predicting
VMS maps with that of generative models in an attempt to synthesise memorable or
non-memorable images. The chapter also details the design and results of a repeat-
recognition experiment to understand the efficacy of the model on human memory.

Chapter 5 describes a perceptual complexity experiment that gathers two-dimensional
complexity information from humans for a scene dataset, and operationalises several
psychologically grounded factors that explain the complexity ratings given by humans.
A neural model, combined with said factors reaches human-level performance for the
dataset. The influence of semantics is explored through examining the complexity of
inverted scenes.

Chapter 6 analyses the relationship between scene complexity and scene memorability.

And finally, Chapter 7 reviews the work as a whole, summarises the contributions of
the work, and discusses the potential future directions this research could be taken in.
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CHAPTER 2
Background

In this chapter we aim to give an overview of the fundamental concepts that this work
employs. This covers both the basics of human memory, foundational machine learning,
and perceptual image characteristics. These topics are vast, and cannot be covered in
their entirety; instead we focus on areas directly relevant to the work presented in this
thesis. From a psychological perspective, we briefly cover memory as a whole; then focus
explicitly on Visual Long-Term Memory (VLTM). On the computational side of things,
basic neural networks components, and common architectures used later in this work
are defined. This chapter is intended to serve as an overview; more detailed literature
sections that relate directly to discussed work are available at the start of each chapter,
where relevant.

2.1 A Brief Overview of Memory

It is well accepted that memory can be effectively modelled as a combination of two
different high level subsystems; that of semantic memory and that of episodic memory
[41]. Semantic memory contains things implicitly known, such as how to read, speak, and
perform arithmetic. In general, learned skills are recorded in semantic memory. Con-
trasting this, episodic memory records the autobiographical events of our lives. When
events and items from our past are recalled, this utilises the episodic memory store. As
disparate events can be separated by either (and both) time and space, this entails that
there is a degree of temporal-spatial tagging to information stored in episodic memory;
we can usually recall both the time and location of an event, and can additionally recall
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the temporal-spatial relationship between one event and others, for example, recalling
that you walked into the kitchen prior to walking into the living room. [129] adopts the
term ‘engram’ to refer to information encoded in specifically in episodic memory.

Semantic memory, however does not record events and experiences, instead storing rules,
symbols, concepts, and the relationship between them; thus providing the foundational
elements for storing implicit knowledge. Further differences arise when considering the
loss of information from either system, as well as the consequences of information re-
trieval. Episodic events appear far more readily lost than semantic knowledge ("one
does not forget how to ride a bike"), and understanding of what causes loss of semantic
knowledge lags behind the understanding of which conditions lead to loss of episodic
knowledge. No matter which system information is recalled from, the actual act of re-
calling is often entered into the episodic store (you remember remembering), providing
an interesting form of feedback between the two systems.

While these subsystems are often considered separately, Tulving [41] originally hypothes-
ised some degree of interdependence between them beyond that mentioned above. While
not all episodic encodings require an intervention of the semantic memory system, some
experiences may benefit from semantic store assistance; for example, a mathematician
may better remember a seminar talk than a lay-person due to semantic knowledge of
the presented formulas. The act of recalling was hypothesised to combine engram in-
formation with semantic store information in order to reconstruct the memory.

Since Tulving’s theory was written, much research has supported the distinction between
the two types of memory; and most convincing is neurological studies that find clear evid-
ence that the semantic and episodic stores can be damaged independently of each other.
However, Greenberg finds that semantic and episodic memory are in fact reasonably
intertwined, and damage to one system impedes the other[52], especially with regards
to the learning of new information. As Tulving hypothesised, the episodic store is in-
strumental in fast learning of semantic knowledge; and when this store is damaged, the
ability to learn new skills diminishes. In turn, when the semantic store is disrupted,
the ability to encode new episodic memories is similarly harmed; both memory stores
appear to support the other. While it is still possible to remember experiences with a
damaged semantic store, and to learn skills with a damaged episodic store, the ability
to do so is greatly below normal.
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This culminates in the conclusion that not only does the semantic store facilitate the
encoding of episodic memories, but that episodic memory also aids in the encoding of
semantic knowledge. That is, known skills help you to recall events, and recorded events
help you encode new skills. This entanglement of memory subsystems holds at retrieval
as well, with episodic memory providing a fast pathway for the efficient retrieval of
semantic knowledge; when episodic memory is impaired, semantic recall falters. When
the semantic store declines in functionality, while episodic memories can still be recalled,
these memories lack specific detail. Further decline leads to worse autobiographical recall
in general.

It has been known for a long time that memory is not perfect; and is not an exact, lossless
recording of data. Instead, episodic memory is widely considered to be reconstructive,
rather than reproductive. Tulving frames this as a ‘recoding’ of stored engrams; a
set of operations that takes place on the engram once it has already been encoded into
memory. Thus, remembered events are not reproduced exactly as they occurred. Instead,
memories may be pieced together from recorded fragments. Schacter [116] hypothesised
that the reason for this is that a constructive memory system can be re-purposed to
imagine future events, and that lack of a rote-recording system is a positive, rather than
a negative, and is in fact representative of an adaptive recording system. The past does
not repeat verbatim in the future, but it does echo, and being able to draw upon multiple
prior experiences aids in constructing adequate responses to future situations. Indeed,
similar brain regions activate when imagining the future versus remembering the past.
[116, 117]. We further examine the reliability of memory, and visual long-term memory
in general, in Section 2.2. In part, in this thesis we probe and model visual long-term
memory, a subset of episodic memory, by investigating the memorability of scene images
that are perceived and stored for longer than a few seconds.

2.2 Remembering Images

The human capacity for recognising images that we have seen at an early time appears
very large. Standing [126] evaluated the capacity of visual memory through a recognition
task with increasingly large amounts of images. In the largest experiment conducted,
10,000 images were shown to each participant. Standing found a linear relationship;
as the number of images shown increased, both the number of images remembered
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and the number of images forgotten increased, leading Standing to hypothesise that
the capacity of visual memory is ‘practically limitless’. It is generally assumed that as
memories move from working memory, to short term memory, to long term memory,
that the detail in the memory fades, leaving only a general gist of the image; such as
the category of the image, and general scene elements. While the capacity of visual
long-term memory appears very large, this could be an illusion - storing just the gist of
an image requires much less information than storing a detailed representation of the
image. This stored gist trace would be sufficient to determine which image you have
seen before when presented with multiple possible options, but recognition performance
would start to degrade when those options are semantically similar to each other. Brady
conducted a study to determine the capacity of detailed visual long term memory via a
2-Alternative Forced Choice methodology paired with three options - category distinct
foil, same category, different item foil, and same category, same item, different state
foil. 2,500 real world objects were used in the images shown. Despite the difficulty,
recognition performance remained high, dropping to only 87% in the most difficult case
[15]. Repeats of images were also tested, and identified correctly 96% of the time. It
follows from this that visual memory not only has a large capacity for images, but
that representations stored in visual memory are highly detailed. Brady places the
information-theoretic capacity of VLTM at approximately 228000 unique codes.

Cunningham, however, while agreeing on capacity, concludes that long-term memory
remains highly dependent on gist [33], and that the difference in memory performance is
often due to differences in testing techniques. Two Alternative Forced Choice, a common
choice for memory studies, where two images are compared and one must be chosen, may
not accurately reflect the memory stored in the brain, and it is unclear what influence
familiarity vs recollection has on the choice. Cunningham makes use of an ONR (old/new
recognition) test to reduce the effect of noisy or incomplete recollections leading to a
correct result regardless of quality of the memory stored. The Brady experiment was
replicated, finding that ONR performance degraded where 2AFC performance did not.
It appears that while the capacity of VLTM is large; this capacity is in fact highly
dependent upon stored gist traces as well as detailed representations. So far, these
experiments have examined the memorability of objects; it is natural to assume that
remembering scenes is more difficult, and that there is likely to be a fall in performance
when tasked to recall complex scene images. However, Konkle et al. [79] show that
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even tasked to remember 2,800 scene images, and shown same category-distractors,
recognition accuracy for scenes is high. This implies that scene memorability is high-
fidelity, and stores enough detail about a scene image for it be selected against other,
similar scenes. That is, more than just the scene category is preserved in visual long-
term memory. As memory for abstract images is very poor [80], it appears that some
kind of preexisting mental structure is required for this level of memory performance.

It has been found that VLTM is also subject to the level of processing (LOP) effect [5],
where deeper processing leads to better recognition. Here, level of processing refers to
the amount of additional processing undertaken when viewing a stimulus; for example,
judging the ‘intelligence’ of a face shown in a photograph. The LOP effect has primarily
been studied in faces; with somewhat mixed results. Generally, making some form of
judgement on a face enhances recognition of that face; though it is unclear exactly what
depth of processing is necessary to cause the effect. In some cases, tasks thought to
require deeper processing show less of an effect than shallower tasks. Recently, this
effect has been investigated beyond that of faces; examining the effect on images of
doors. The LOP effect was consistent for this image set, though modest, whereas in
the contrasting verbal processing experiment, effect size varied widely. Baddeley et al.
[5] relates this to the concept of affordance, where the relation of some concept to an
organism affords some possible action, such as a chair being capable of being used for
sitting, or as a potential weapon. Baddeley notes that rich encoding does not necessarily
lead to good recognition unless the coding is sufficiently complex enough to defeat similar
distractors. Hence, one reason the LOP effect appears relatively small for visual stimuli
is that discriminative features in the stimuli set used were not powerful enough to defeat
similar distractors present in that dataset. Verbal stimuli lend themselves more easily
to semantic elaboration when being deeply encoded, as they afford a rich tapestry of
related words and meanings. Door images, however, afford little to the observer, and
hence their encoding depends more upon perceptual features present in the image.

It would be incorrect to assume that an images memorability is a binary property.
While a single person may recall or forget an image, over a population, that image’s
memorability exists on a continuum; between ‘most likely to be recalled’ and ‘least
likely to be recalled’. Le-Hoa Vo [134] shows that these differences in intrinsic image
memorability appear rapidly after presentation of the image, and the longer the lag
between presentation and test, the greater the divergence between memorable and less-
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memorable images. Vo defines memorability as a function of the hit rate of the image,
where a hit corresponds to a previously shown image being recognised. The target
image could be repeated at any one of four ‘lags’ after that image was shown, which
correspond to how many images are shown in-between repetitions of the target image.
The shortest lag on average was 20 seconds, as each image was shown for two seconds
with a 500 millisecond fixation target in between, while the longest lag corresponds to
over ten minutes. Poorly memorable images show a decrease in recognition of 20% after
20 seconds. After ten minutes, this has decreased to 32% compared to the drop from
97% to 78% for highly memorable images. Vo also tracked pupillary response and blink
rate to gain an understanding of how cognitive load differs when recalling memorable
or non-memorable images. In this context, pupillary response refers to the change in
size of the pupil, and blink rate refers to how many blinks occur per measured time
period. Blink rates tend to decrease under high cognitive loads, while pupils dilate more
in response to ‘seen’ items vs new items. Poorly memorable images correspond with
increased pupillary responses and decreased blink rates. Vo states that the increased
pupillary responses mirror the greater cognitive load required for recollective processes,
and hence that poorly memorable images are more difficult to retrieve than memorable
images.

While the neural correlates of memory are still not well-understood, it does appear that
there exists a distinct processing stream associated with memory, that ‘tags’ viewed
stimuli for later encoding. Bainbridge et al. conducted a study employing fMRI ima-
ging paired with a task that involved dividing stimulus into male/female (for faces) or
indoor/outdoor (for scenes) [7]. No mention of memory was made to the participants.
After the scanning task, participants are tasked with a memory test that they were not
aware was coming. There was evidence of significant sensitivity in the ventral visual
stream and the medial temporal lobe to the memorability of viewed image. Forgotten
images when viewed again caused a similar stimulus to arise in the memorability-sensitive
brain regions as the first time the image was viewed. These brain regions are the same
brain regions that activate during first time viewing of the image. This processing
stream is termed ‘memorability’, as it appears responsible for determining whether a
given stimulus should be remembered. Memorability occurs beyond low-level perception
(no sensitivity in early visual cortex), and may ‘reflect the statistical distinctiveness of
a stimulus along a multidimensional set of axes’, and hence be used to tag stimuli for
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later memory encoding by the medial temporal lobe. Later work reinforces the idea of
a ‘perceptual trace’ of memorability, finding that signals associated with highly mem-
orable images propagate across several brain regions associated with high-level visual
processing [97]. The brain appears to be able to subject memorable stimuli to a deeper
level of visual processing than comparative low-memorability stimuli.

It is natural to assume that intending to remember an image improves how well that
image is remembered. Given a task, it makes sense that exerting effort at that task
will lead to better performance. Previous studies have shown little to no effect from
intending to remember images (although there is a significant effect when the stimuli
is verbal). Block et al. suggests this may be due to other effects overshadowing the
effect, such as the level of processing effect combined with rehearsal strategies [13].
To determine whether an effect exists when these confounding variables are excluded
pictorial stimuli are shown rapidly after one another, preventing either deep analysis or
rehearsal. Block found a significant intent to remember effect vs incidental remembering
when participants were tested with briefly presented, unrehearsable pictorial stimuli of
faces. This appears to indicate that the intent-to-remember effect only arises in the
most difficult cases. Evans and Baddeley [43] test this further, employing visual stimuli
that have distinctive detail removed. In the relevant case where an intent to remember
effect appeared, participants were tasked with remembering scenes of doors that had
potential diagnostic features removed. It may be the intent to learn helps in selection
of diagnostic features, or simply increases the amount of features encoded, and in most
cases is not required. Only in the most difficult cases is a conscious effort beneficial for
visual memory.

2.3 The Fallibility of Visual Memory

As we established in Section 2.1, episodic memory, and by way of inheritance, visual
long-term memory, is reconstructive, rather than reproductive. To reiterate, while visual
long-term memory clearly has a large, detailed capacity, it is by no means perfect. Errors
often occur, some due to the reconstructive nature of episodic memory, and others due to
perceptual errors that occur at sensory input. While this reconstructive ability is almost
certainly an evolutionary advantage, it does lead to an interesting defect; that of false
remembering. While it is obvious that during an image memorability experiment some
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images will almost certainly be forgotten, somewhat more surprising is that some images
will be marked as ‘remembered’ even if the participant has never seen that image before.
In fact, many of the previously examined studies show these ‘false recognition’ events.
In addition to this apparent tricking of the reconstructive visual memory system, there
also exists perceptual effects that alter stimuli almost as soon as they are received as
input. Most notable to that of image perception is the boundary extension effect; where
participants remember more of a scene than in fact they actually saw - constructing an
‘artificial’ boundary beyond the edges of the image.

While it is certainly interesting to learn about remembering, false remembering offers
the equally valuable opportunity to gain a better understanding of exactly how visual
long-term memory operates. Koutstaal et al. tested the recognition performance of older
and younger adults for detailed coloured pictures of objects, looking specifically at false
recognition [81]. While both older and younger adults showed significant false recognition
for each image category, older adults showed reduced recognition of unrelated targets
(targets not similar to the overall image category theme being tested), indicating they
relied more on conceptual/perceptual similarity, which Koutstaal believes is indicative
that only the gist trace of the image is being retained; thus making it easier to ‘false
alarm’ due to similar gist traces from similar images. Specifically, for within category
lures, older adults had a higher false alarm rate vs younger adults. This may indicate
that correct recognition of images is due to specific, detailed traces, but in the case
of false recognition, recognition defaults to a gist trace, sensitive to general semantics
present during the initial encoding of the viewed image.

While not strictly related to visual memory, episodic memory itself is vulnerable to ‘mis-
information’ where a memory is affected by post-encoding information. Loftus demon-
strates that being warned about misinformation does not necessarily avoid the damaging
effect of this new information [91]. Loftus goes on to show that it is possible, over several
weeks, to construct rich, detailed, and entirely false memories in participants. This is
demonstrated by holding a series of interviews with a participant about an event that
never occurred. As the interviews progress over the weeks, the false memory becomes
increasingly detailed. Given that entire false experiences can be implanted by a re-
searcher, it is not surprising that this occurs in the much more limited case of believing
to have seen an image. Interestingly, these false memories contain less detail [118], which
matches nicely with the later work of Koutstaal et al. [80]
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Other errors occur not during encoding, but at perception. The boundary extension
effect is where, upon viewing an image of a scene, and then later being asked to identify if
that same image is identical or zoomed in, participants commonly choose the ‘zoomed in’
option, suggesting that people construct the scene mentally beyond the actual boundaries
shown. Intraub shows that this effect takes place in only 1/20th of a second, and
hypothesises that this effect is an integral part of the perceptual system. Our senses
exist to let us construct the world around us, and the boundary extension effect appears
to ‘pre-empt’ parts of the world that may be likely to be looked at shortly [66]. Spano et
al later examined these boundaries further, and find that they persist even among people
with impaired hippocampuses [124], indicating that it is a brain-wide phenomena, and
not localised to one area associated with memory.

Much remains to be understood about false remembering from the perspective of visual
long-term memory. Just as it not entirely clear what causes certain images to be re-
membered over others, it is equally unclear as to what causes the false remembering
of certain images. The only thing that is clear is that human memory is certainly not
infallible, and that a complete model of visual memory would be capable of explaining
both why an image is memorable, and why an image might cause false remembering.
As we explore later, computational models have allowed great progress in the former;
the latter remains relatively unexplored. However, memorability is not the only charac-
teristic attributable to images, and the next section explores other perceptual measures
that may associate with memory.

2.4 Interestingness and Aesthetics

We have established so far that images can be remembered, and that how memorable
a given image is can vary. But memorability is not the only intrinsic characteristic
common to images. Images can be judged along multiple different perceptual axes, all of
which depend upon the content of the image. Most studied are those of interestingness
and aesthetics; both image properties consistent among observers, and which have been
shown to be capable of being modelled. While we will study image memorability itself
in more detail in Chapter 3, in this section we will briefly discuss these other perceptual
metrics, and whether how interesting, or pretty, an image is, has anything to do with
how well it is remembered.
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2.4.1 Interestingness

What causes images to be percieved as interesting? It could be their degree of aesthetic
attractiveness; asking whether ‘prettier’ images are more interesting. Turner et al. com-
pares the idea that interestingness relies on appraisal of a high degree of pleasantness
against the idea that stimuli can be interesting and unpleasant [1]. Participants were
asked to view paintings and rate them for emotional and cognitive responses on a bipolar
Likert scale. Turner found that ratings of pleasantness and ratings of interest were es-
sentially independent. Disturbing paintings tended to be appraised as more interesting,
though less enjoyable. At least in the case of paintings, it appears that interestingness
lacks a relationship with aesthetics, and that visual stimuli can be both unpleasant to
observe, yet interesting, and alternatively pleasant, but boring. Instead, it appears that
interestingness is a function of image content and composition. Dhar et al. examines
how well interestingness can be predicted by several high level attributes, including com-
positional, content, and sky-illumination attributes [37]. The work takes advantage of
measures of photographic quality commonly used among photographers, including op-
posing colors, low depth of field, and the two-thirds rule. These metrics, when used to
train a Support Vector Machine (see Section 2.5), performs extremely well at predicting
interestingness. Generally, more interesting images appear to be clearer depictions of
their category; with less interesting images being less clear or more cluttered.

But does the degree of interestingness of an image have anything to do with the memor-
ability of that image? While at a glance the assumption that interesting images are more
likely to be remembered makes sense, in practice, there is little relationship between the
two properties. Isola et al., in one of the first papers on computational memorability
[68] (see Chapter 3) briefly examines interestingness and memorability, and finds no
relation. Gygli et al. also finds that interesting images are not necessarily memorable
[55], and instead finds a negative correlation between how interesting an image is, and
the memorability score of the image. This may be due to an artifact of the dataset;
memorable but dull images appear to contain singular objects; whereas interesting im-
ages contain more detail, which may make them more difficult to recall. Interestingness
does correlate with "assumed memorability" ratings from the human participants, which
suggests that when estimating how memorable an image is likely to be, humans employ
interestingness as a metric; even though this does not actually predict memorability.
In contrast, aesthetics and interestingness are correlated with each other, contradicting
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Turners original findings. This may be because the dataset of images used by Gygli and
Isola lacked images specifically designed to be unpleasant. In order to facilitate com-
putational prediction of interestingness, Gygli introduces a measure of ‘unusualness’,
which defines how different an image is from its neighbours, and uses a similar metric
to determine how unusual selected patches in the image are in relation to each other,
hypothesising that a key aspect of how interesting an image is unusual features across an
image. This predictive measure, combined with aesthetics estimation and several other
metrics, including a complexity estimator, can predict interestingness with a strong cor-
relation to ground-truth scores. They find the most unusual images tend to be the most
interesting.

2.4.2 Aesthetics

Aesthetics in images generally refers to how ‘pleasing’ that image is to perceive. In this
context, we might consider a landscape photograph of rolling hills, lit by a deep orange
sunset highly aesthetic, and yet an image of a decaying garbage heap much less so. Being
capable of determining the aesthetics of images has several real-world applications, such
as image retrieval (‘find the best looking image in a database’), or as a teaching aid for
novice photographers. However, it is also of interest to cognitive scientists; determining
what causes images to be perceived as aesthetic, and which factors relate to aesthetics,
helps to reveal how the brain processes visual stimuli.

Dhar et al. uses their set of describable image attributes (previously used for interesting-
ness evaluation) and a dataset of 16,000 images with aesthetic ratings to train a support
vector machine. They find that the same attributes that lead to good estimations of
interestingness also lead to good aesthetic predictions, reinforcing the findings of Gygli
et al. that for photographs, aesthetics and interestingness are interrelated. Much like
interestingness, the predictive power of these high-level attributes is much greater than
previously studied low-level metrics such as contrast or brightness [71]. Murray and
Perronnin note a need for a large, diverse dataset for aesthetics reserach, and hence
introduce introduce AVA: A large scale database for aesthetics [98]. AVA contains over
250,000 images, combined with a variety of accompanying meta-data, including aesthetic
scores, semantic labels, and photographic style-related labels. They show that generic
models trained on a large-scale dataset outperform small-scale models that employ hand-
picked features, tested over the same dataset. They additionally find that images with
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the greatest variance in aesthetic ratings tended to be non-conventional photographs;
i.e, those more open to individual differences when it comes to personal interpretation
of the image.

Aside from these unconventional images, in general, real world scenes have consistent
aesthetic preference scores between individuals. However, abstract images are much more
specific to individual tastes. Vessel and Rubin compare scene preferences, abstract image
preferences, and abstract vs scene preferences [132]. They suggest that visual preferences
are driven by semantic content of stimuli, and shared semantic interpretations lead to
shared preferences. They confirm this by de-emphasising the semantic content of real
world scenes by intermixing real images with abstract in the image streams shown to
participants. In this condition, individual preferences arise, which they hypothesise is
caused by direct comparisons between previously viewed abstract images and real-world
images. Abstract images themselves may not span the same semantic context as real
world images, leading to less preference correlation; there is less ‘shared meaning’. The
lack of agreement between the preferences of abstract images means computationally
predicting aesthetic preference from a general dataset is likely to be more difficult than
predicting aesthetics of scene images; and that the performance of artificial prediction
of abstract art preference is unlikely to ever match that of real-world scene performance.

2.4.3 Relationship to Memorability

We have already seen above, in the work of both Isola et al. [68] and Gygli et al. [55] that
memorability has either no relation with interestingness, or a weak inverse correlation.
That is, how interesting an image is has apparently little to do with how well it will
be remembered. Khosla et al. introduces LaMem [75], a large image dataset composed
of several image subsets with various perceptual ratings. These subsets include ratings
for image popularity, ranked as the view-count of images drawn from Flickr, saliency,
taken from an image eye-fixation dataset, and emotions from the affective image dataset.
Ratings for aesthetics are taken from the AVA dataset. All subsets have memorability
ratings. Khosla et al. finds that these attributes, despite being high-level, have relatively
little to do with memorability.

Highly memorable images appear to be more popular, but aside from the most mem-
orable case, the difference disappears. The reason for this difference is not discussed,
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and appears unknown, though it is reasonable to consider that it may be due to context
effects (discussed further in chapter 3). Saliency shows a minor effect, with a difference
between the most and least memorable images; more memorable images contain more
consistent fixations between participants. This implies that memorable images contain
singular specific items to focus on (i.e an object), though this is may be an effect of the
dataset; remembering a single object is likely to be easier than remembering a scene
image.

The emotional content of the image appears related to its memorability, with strong neg-
ative emotions (disgust, anger, fear) being more easily remembered than other emotions.
The least memorable emotions seem to be pleasanter, such as awe, and contentment.
This matches findings in [68]. Interestingly, images rated as ‘amusing’ appear statistic-
ally similar in memorability to those with ‘disgust’ ratings. However, the images with
these ratings were drawn from a dataset specifically designed to contain images with
affective content; a dataset of scenes or objects are unlikely to have a strong emotional
component to their memorability.

Khosla et al. [73] find no relationship at all between aesthetics and memory; not even the
weak negative correlation that might be implied by aesthetics strong relationship with
interestingness. We can say with confidence that across a large and diverse dataset, that
how ‘pretty’ an image is has little to do with whether that image will be remembered.
In general, while image memorability has some limited relationships with other image
properties, none of these properties are capable of fully explaining the memorability of an
image, and certainly are not capable of describing memorability in all cases. Humans are
certainly capable of remembering images even if they do not cause a consistent emotional
response, or contain single objects to focus upon. This implies that memorability is a
distinct image property; intrinsic to the image itself. Later work on image memorability
takes advantage of relatively recent developments in both classical and neural-network
based machine-learning methods; the next section describes some of these techniques,
and their application to memorability prediction is discussed throughout this work.

2.5 Machine Learning

This section is intended to give an overview of some of the more common machine
learning techniques that are often applied to the problem of memorability prediction.
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This ranges from support vector machines (SVM), which used to rank among the most
commonly used, to convolutional neural networks and other, more esoteric networks that
are in use today.

2.5.1 Support Vector Machines

The technique that developed into what we today call a ‘Support Vector Machine’ was
originally proposed in 1992 by Boser et al. [14] as a method for finding the maximal
margin between ‘training patterns’ and a decision boundary. In other words, a support
vector machine (SVM) is a machine learning algorithm that attempts to learn a decision
boundary that divides a set of datapoints into different classes [32]. The ‘decision bound-
ary’ is the optimal hyperplane that can best divide the training data into their separate
classes. This hyperplane, by definition, has the greatest margin between the differing
classes in the data, and is constructed by the support vectors of the data. These support
vectors are those closest to the hyperplane (hence a subset of the input data), and as
such are instrumental in describing the direction and placement of the plane. So far, this
description works for binary classification; one hyperplane to divide two classes of data.
In the case of multi-class classification, the problem is broken down into multiple binary
classification problems; either finding multiple hyperplanes across the data, or determ-
ining a hyperplane capable of separating one class from all others. Most memorability
studies that make use of support vector machines in fact use them for support vector
regression (SVR). SVR operates in a very similar manner to a SVM, the only difference
being that the hyperplane is used for regression rather than classification.

Naturally, the use of a hyperplane implies that the data is linearly separable; that is, it
already exists in ‘clusters’ that between which, a straight line (in the two-dimensional
case) can be drawn. In practice however, complex real-world data is unlikely to exist in
this structured form. To solve this issue, SVMs employ the ‘kernel trick’ method [63].
This approach transforms the data (in whichever dimension it currently exists) into a
representation in a higher dimension. This allows a non-linear lower-dimensional feature
space to be restructured into a higher-dimensional linear feature space, which allows an
optimal hyperplane to be found.
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2.5.2 Feature Extraction

For support vector machines to function (and indeed, all machine-learning techniques)
they need to be provided with some form of input. For SVMs, this is rarely the ori-
ginal data; it is far more efficient to find some relevant features that capture whichever
characteristic is being predicted, extract them from the data, and use those instead.
Memorability prediction models tend to fall into two camps; those that make use of
more classical features, and those that make use of neural networks, either for final
classification, or as an entirely contained system. Older work, before the general rise
of deep neural networks tends towards classical features combined with support vector
machines. Newer models either use neural networks to extract features and then classify
based upon those features with an SVM, or are self-contained systems that use neural
networks for both feature extraction and prediction. It is hence worth providing an over-
view of what these classical features actually are, and how they are produced, before we
discuss computational memorability prediction in detail in Chapter 3.

Table 2.1 shows some of the most common types of classical features employed for mem-
orability prediction. Though not an exhaustive list, these features in some combination
show up in most classical models.

Graph-based visual saliency (GBVS) [56] is a computational model of human saliency -
i.e, how likely is it that an image feature will capture our attention, developed by Harel
et al. This model captures human behaviour with a receiver operating characteristic
(ROC) of 98% against human ROC; making GBVS a highly accurate model of human
attention. GBVS works by calculating the dissimilarity between a given region of the
image with other neighbouring regions. These regions are used as nodes in a graph,
where the transition cost between each node is based upon the similarity of each region.
Areas of the image are then highlighted with an intensity based upon the amount of time
a random walker would spend at a node before continuing. As crossing from a similar
region to a disjoint similar region is less likely, these areas are walked less versus nodes
that correspond to similar regions.

Histograms of oriented gradients (HOG) [34] calculates the direction of edges in an
image, which in turn captures the shapes present within the image. HOG is invariant
to geometric transforms aside from object orientation, and is generally used for object
detection. The structural similarity index (SSIM) compares two images and produces
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Acronym Full Name Graphic Reference

GBVS Graph Based Visual Saliency Harel 2007[56]

HOG Histogram of Oriented Gradients Dalal 2005[34]

SSIM Structural Similarity Index Wang 2004[137]

GIST N/A Oliva 2001[103]

SIFT Scale Invariant Feature Transform Lowe 2004[92]

Table 2.1: The most common feature extractors shared among memorability prediction
and analysis models.

a metric of how similar they are to one another. SSIM works upon various windows
extracted from the two images, and compares the averages, variances, covariances, and
dynamic ranges of three metrics; luminance, contrast, and structure (local intensity
patterns).

The GIST model [103] provides a computational representation of the ‘spatial envelope’
of an image; where the spatial envelope is a low dimensional representation of that scene.
Each dimension is based upon a perceptual feature that captures the spatial arrangement
and textural makeup present in the scene. This model is loosely related to ‘scene gist’
a low-level, relatively un-detailed representation of a scene that can be extracted in less
than 100ms. Rapidly determining the category of an image seen for very short amounts
of time; or being able to describe a few objects present in the scene and their surrounding
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context both involve the use of gist. The GIST model represents the scene as a set of
spectra along the various dimensions of naturalness, openness, roughness, expansion,
and ruggedness (pictured in Table 2.1). These spectra are generally similar for images
in the same category, and diverge for images in different categories.

Scale invariant feature transform (SIFT) [92] is a feature detection algorithm that can be
used to generate feature vectors that describes an image. SIFT functions by extracting
many scale-invariant keypoints from an image. Each keypoint is tagged with an assumed
orientation, which helps SIFT remain rotation invariant. The feature vector consisting
of extracted keypoints can then be used to match objects in a separate image to the
same object in the original image (as the keypoints will match, even if the object is
rotated or present at different scale). For computing memorability scores, the generated
SIFT keypoint vector is passed directly into an support vector machine without further
processing, and simply serves as description of the image.

2.5.3 Neural Networks

Neural networks have a history that stretches back over fifty years, and to cover every
variation and evolution of the basic concept would be impractical. Nonetheless, modern
neural networks share several defining features, and in this section we will briefly review
these shared functions upon which which the majority of neural networks rely on to
operate. A neural network is a set of connected artificial neurons. These neurons are
generally structured into distinct layers, with each layer receiving the output of the
preceding layer. As an input flows through a trained network from start to end, the
input signal is transformed by the weights and biases of the artificial neurons into an
output signal that represents some learned metric of the input, for example, the class of
the input sample. The simplest possible ‘neural network’ is the perceptron; essentially a
single artificial neuron [110]. This artificial neuron has a set of inputs x, a set of weights
W and a set of biases b. The output, y is computed through the relation y = σ(Wx+b).
σ represents an activation function; a function that non-linearly transforms the output.
This, much like an SVM, allows the perceptron to learn a hyperplane that separates the
data. In the case of linearly separable data, perceptrons are guaranteed to converge.
However, as with SVMs, most real-world data is not linearly separable, and in this case,
perceptrons will never converge.
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However, this relatively significant issue can be solved by stacking perceptrons into
layers, and feeding the output of the previous layer forward to the next. The aptly named
Multi-Layer Perceptron (MLP) represented the first step toward modern deep-learning,
and allows the additional layers of the network to learn non-linear transformations of the
data; much as the SVM kernel trick allows for non-separable low-dimensional data to be
projected as points in a separable higher-dimensional space. Multi-Layer Perceptrons are
powerful machines, and can be considered universal function approximators, indicating
that the calculation performed via the weights of a trained MLP can represent a large
assortment of functions. However, this does not imply that those weights can be learned;
simply that it is possible that some assortment of weights can exist to approximate a
given function.

In order for a neural network to be useful it must be trained. The weights and biases are
initially set to random values; and are thus highly unlikely to solve whichever task the
network is intended to solve. The process of updating these weights to values that allow
the network to solve an arbitrary task is known as training the network, and requires
two key components; a loss function, and an optimiser.

Loss Functions

The loss function of the network does nothing more than compare the current output
of the neural network to the desired output of the network, and return some metric
that indicates the difference between these two values. The choice of loss function is
relatively critical to the performance of the network; and there is no guarantee that
the loss function that works well for one task can be readily applied to a different task.
There is a wide variety of loss functions, far more than could be listed here. However,
a few are both common enough, and robust enough to different problems that they are
worth mentioning here. For classification problems, the categorical cross-entropy loss

λ(y, ŷ) = −
N∑

n=1

C∑
c=1

ycn · log(ŷcn) has seen extensive use. For categorical cross-entropy, the

label n with class c, ycn is a binary value (0 or 1) that determines whether the label is a
member of class c. The prediction ŷcn is a probability between 0 and 1 that label n is a
member of class c. The goal is to minimise the difference between the actual class label
and the predicted class label. The log function penalises large errors more than small
errors; which helps to prevent confident, yet incorrect predictions.
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For regression problems there are no class labels, so cross-entropy loss cannot be used.
The natural choice in this case is often Mean Squared Error (MSE), which penalises the
squared difference between the output of the network and the actual labels. The MSE
loss is defined as follows: λ = 1

n

∑n
i=1(Yi − Ŷi)

2. The MSE loss can easily be extended
to multiple dimensions, and such can be used to allow neural networks to find the error
in two-dimensional data (for example, learning to generate saliency maps). There are
many more possible loss functions, such as the variational loss found in autoencoder
models of the same name, and the Wasserstein and hinge losses found in GANs, which
will be discussed later.

Optimisers

Optimisers are algorithms responsible for the actual learning of the network; they update
the weights of each neuron based on the error provided by the loss function. However, the
optimiser needs to know which direction the weights should be changed in to minimise
the error. This is accomplished via the backpropagation algorithm. Backpropagation
itself is not an optimiser; instead, it is an algorithm that can calculate the gradient of
the loss function with respect to the current weights of the network. The optimiser uses
these gradients to ‘step’ along the weight gradients. Exactly how the optimiser uses the
provided gradients differs depending on the optimiser used; as with loss functions, there’s
a wide variety of possible choices for optimisation algorithms, some of which may work
better than others for certain problems. Generally however, they are all variations on
Stochastic Gradient Descent (SGD), an algorithm which calculates the loss gradient
for a random subset of the input data and updates the weights by an amount defined by
the step size (or learning rate). This has the effect of traversing the multidimensional
landscape defined by the loss function, with the goal of coming to rest in a ‘global
minimum’ - the set of weights with the lowest possible loss.

SGD and has mostly been superseded by more modern algorithms designed to reduce the
amount of iterations required by the network to converge. These include the RMSProp
algorithm, based upon the AdaDelta algorithm, which maintains a different, adaptive
learning rate for each parameter in the network. In the AdaDelta [145] algorithm, the
learning rate is based on continually accumulating gradients, which eventually results in
the learning rate shrinking to nothing. RMSProp solves this by keeping a decaying mov-
ing average of the calculated squared gradients; allowing it to focus on newer calculated
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gradients and avoid the learning rate diminishing. The Adam optimiser [77] likewise
maintains a decaying average of both previous gradients, and those gradients squared.
These additional parameters serve to simulate momentum; allowing the optimiser to
‘skip’ over local increases in loss if the loss has been decreasing up to that point. Adam
has seen successful use in many types of neural network architectures, from CNNs to
generative models; though it does come with its own hyperparameters that occasionally
need to be tuned to the problem at hand, complicating training.

2.5.4 Convolutional Neural Networks

Convolutional neural networks (CNN) are among the most common types of neural
networks seen today, and are likely responsible for the popularity of deep-learning. Be-
fore CNNs, machine learning problems involving images required carefully handcrafted
features, or were constrained to very small images. With CNNs, it suddenly became
possible to train a neural network to classify a wide variety of images with remarkable
accuracy. This developed into CNNs becoming the primary choice for object recog-
nition, image segmentation, and more. While usually known for their effectiveness at
image classification, they also often appear in any complex model where learning features
about spatially sensitive data is useful. In more recent studies examining memorability
prediction in particular, CNNs tend to dominate due to their ability to extract useful
features from image data.

A standard Multi-layer Perceptron network involves connections between each neuron
of one layer and all the neurons of the preceding layer. While this allows the network
to integrate global features (‘fully connected’ layers are still used for this purpose),
applying this model to high-dimensional data such as images, results in a network with an
enormous amount of connections. As all these connections need their weights updating,
the model quickly becomes computationally bound. Additionally, while images tend to
have spatial constraints on their structure, fully connected models have no concept of
spatial locality - each input is treated independently even when some spatial relationship
exists. E.g, an MLP can not learn to detect the "eye structure" in faces invariant of
where in the image the eye actually appears.

CNNs solve this problem by connecting each neuron with only a small window of the
input at a time, termed the ‘receptive field’ (See Fig 2.1) of the neuron. This window
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Figure 2.1: LeCunn et al’s LeNet - one of the first convolutional neural network archi-
tectures. The feature maps mentioned are analogous to filters. Dimensionality reduction
is accomplished through subsampling. [Fig. 2 in [87]]

‘slides’ over the image. This sparse connectivity means fewer weights are required to
learn the patterns in the data, as the receptive field does not have to cover the whole
image. This spatial constraint allows each neuron to learn to detect spatially local
features. In the case of the above (simplified) example, an "eye detector" may arise
in a neuron; that will activate whenever its receptive field encounters an eye in the
input. This detector is structured as a set of ‘filters’ that activate in response to given
patterns in the previous layers. As the input flows through the CNN network, these
filters become more powerful. Filters in early layers may detect lines, edges, or corners,
while later layers detect arrangements of these components - objects. Much in the
same way one might employ convolution with an edge-detection kernel to find edges
in an image, a convolutional neural network uses convolution with its filters to detect
whichever feature the network filters have learned it’s advantageous to detect. These
convolution operations give the network its name.

To help keep the number of computations required under control, and to force the
network to learn the most relevant features in the data, as the data is passed through
the network it usually undergoes some form of dimensionality reduction. The features
that survive the reduction process are considered to be the most important to solving
whichever task the network is being trained to perform; and generally, the deeper the
network, the more powerful, and more abstract, the representation of the input data
becomes. There are many forms of dimensionality reduction, but usually this takes the
form of some kind of pooling; often used is MaxPooling, which preserves the maximum
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value in the pooled regions, or AvgPooling which preserves the average value of the
pooled region.

As with multilayer perceptrons, convolutional neural networks generally have some form
of activation after each layer. Historically, both the logistic function and hyperbolic
tangent functions have been used, with the hyperbolic tangent (tanh) outperforming
the older logistic function. Unfortunately, both these activations tend to saturate where
large activations become locked to 1, and small activations locked to 0 (or -1). As
the error backpropagated through the network depends upon the derivative of these
functions, the lack of sensitivity leads to the vanishing gradient problem, where the
gradient needed to update the weights and keep the network learning tends towards
zero. Once this happens, training collapses. The Rectified Linear Unit (ReLU), defined
as RELU(z) = max(0, z) helps solve this issue by essentially being unbounded in the
positive direction. This helps prevent the vanishing gradient problem, while remaining a
non-linear function. However, if the output of a pre-activation neuron becomes negative
despite the input, it will be clamped to zero, and stay that way; never learning (a ‘dead’
neuron). An incremental update to the ReLU activation, the Leaky ReLU helps prevent
this by allowing small negative values to pass through the activation function; keeping
the advantages of ReLU without the issue of neurons becoming unable to learn.

2.5.5 Recurrent Neural Networks

Recurrent neural networks (RNN) are a form of neural network that maintains a ‘memory’
of the data that it has seen previously. This allows it to process information based not
only upon the current input, but also upon the previous input that it has seen at an
earlier time. This kind of neural network works best with data that has some natural
ordering, usually along a ‘time’ axis. This includes data such as text (recurrent networks
frequently form the backbone of natural language processing architectures) and audio.

A basic RNN architecture contains a hidden state that propagates forward, but has no
control over what this hidden state should contain. A more complex form of RNN,
the Long Short-Term Memory (LSTM) network [62] introduces the concept of learnable
‘gates’ that allow the network to learn which information should be persisted, and which
information can be safely forgotten. The ‘first’ gate in the LSTM learns what information
to accept into the LSTM core state, the second two gates decide what information to
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update that state with, and the final gate decides the output of the neuron. This allows
the network greater flexibility in deciding how best to adapt to the data it is being
shown. While standard RNNs are not widely used, LSTMs remain popular.

2.5.6 Additional Network Types

There are of course many more network types than just CNNs and RNNs, some of which
we discuss later in this thesis, such as the Variational Autoencoder (VAEs) (Chapter 3.2)
and Generative Adversarial Networks (GANs) (Chapter 4). While the building blocks of
these networks are mostly the same basic methods discussed in the preceding chapters,
these types of neural network are more specialised, and benefit from a contextual discus-
sion rather than a general overview. In general, modern neural network architectures,
whatever their application, tend to make use of either CNN or RNN components. If
a neural network is involved in processing images in any form, it is a safe assumption
that convolutional layers will be involved, and if the network needs to modify its output
based on previous input, recurrent layers are likely to make an appearance. In the next
section we will discuss transfer learning, and a few common neural network architectures
that see widespread use.

2.5.7 Transfer Learning & Common Architectures

When considering computational image memorability prediction, and indeed many other
domains, it rarely makes sense to develop and train a network completely from scratch.
After all, neural networks are expensive and time consuming to train. A sensible altern-
ative is retasking and extending an architecture that’s already been developed, and is
known to work well. If the pre-trained weights for that architecture are also available,
this could easily save a vast amount of computation time; there is no point re-training a
network for object detection for the purposes of memorability estimation, if there already
exists a network that performs object detection for the purpose of image classification!
All that is necessary is the network be re-tasked from classifying images to predicting
memorability. This is, in essence, transfer learning, where a network originally trained
for one task is re-trained for another.

As we have seen above, neural networks learn feature detectors of increasing power
throughout their layers. These detectors are abstract, and in a sufficiently complex image
classification network trained on a diverse dataset, could be responsible for detecting
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objects, animals, or people. It is only in the last few layers of the network that these
detectors are recruited for the purpose of determining image class (e.g, an airplane, a
boat, a beach). There is no reason these features cannot be employed for an entirely
different purpose; and there are several ways to accomplish this. In the simplest case,
the weights of the network can be frozen (not updated during training), with only the
last few layers left free to update. The network can then be trained on a different
dataset, and the layers responsible for integrating the features into a prediction will
learn to classify on the new dataset. In more complex cases, those layers can be entirely
removed and replaced with a stack of layers more suitable for the new task. In doing
so, as these new layers are the only layers that need to be trained, the network can be
trained much faster, and with less training data, on the new task than on it’s original
task. This has significant benefits when working in problem domains that benefit from
basic functionality (e.g the ability to detect objects), but do not have sufficient training
data to train object detectors from scratch in a deep neural network. We will now
briefly examine two popular convolutional neural network architectures that have seen
widespread use, and often form the "backbone" for applications that involve transfer
learning.

VGG

The VGG ("Visual Geometry Group") architecture [122] was influential enough that it
is still commonly used today, despite being nearly seven years old at time of writing.
The VGG network achieved state-of-the-art performance on the ILSVRC-2014, a large-
scale classification challenge based on the ImageNet dataset [36]. The challenge involves
classifying images into one of a thousand possible categories. The most common variant,
VGG16, uses 16 layers with trainable weights, and this notation holds for all other VGG-
type architectures. The convolutional layers use convolutions with a receptive field size of
3x3, and a stride of 1, which provides the ability to capture spatial directions in the input;
but are relatively computationally cheap. The last three layers of the network are fully
connected, with the final layer containing one thousand neurons which match to the one
thousand classes of the ILSVRC challenge. All layers use the Rectified Linear Unit non-
linearity. A trained VGG network contains deep features that lend themselves well to
other applications; in the original paper the network was transfer-learned across several
different datasets, showing good performance on each. Since then, any application that
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could make use of deep features that describe the semantic content of images has often
made use of the VGG network.

ResNet

While the VGG architecture was highly successful, it was constrained by an upper
limit on number of layers that the network could have before it became both too time-
consuming, and too unstable to train. Indeed, adding layer upon layer eventually leads
to the network eventually destabilising, with each layer added causing a decrease in final
training accuracy. This problem was eventually solved by an architecture we know now
as ‘ResNet’ - a network that contains residual connections [58]. These connections allow
much deeper networks to be easily trained; a well known variant has 152 trainable layers.
The residual connections themselves are implemented by way of shortcut connections
which ‘skip’ a subset of layers, adding the original input back to the processed output.
The hypothesis in the original paper suggests these skip connections, which act as an
identity operation of the original input, allow the network to choose to either add deeper
representation of the problem, or to continue with the original input if deeper repres-
entation causes a greater loss. Residual networks have set state-of-the-art performance
on a wide variety of image classification/object detection datasets, and have become
widespread. If a transfer-learning problem requires a more powerful representation than
the VGG architecture can provide, often a residual backbone is used instead. However,
even now, exactly why residual connections improve performance is not well-understood.
Interestingly, as the number of layers in a residual network increase, the individual re-
sponse of that layer decreases, suggesting there is some form of learnt normalisation
across the whole network that prevents destabilisation. While there have been improve-
ments to the architecture over the years since ResNets’ introduction, the basic principle,
that residual connections improve performance, remains the same.

2.6 A General Overview of Complexity

It is readily apparent that humans are capable of determining the complexity of a given
image; shown a blank canvas and an abstract painting, it is easy to identify the more
complex of the two. However, it is less clear how humans perceive the everyday com-
plexity in which they are immersed; that of the natural scene. Like memorability, image
complexity has also seen increasing focus on applying computational techniques in or-

33



2.6. A GENERAL OVERVIEW OF COMPLEXITY

der to model and understand how humans perceive the complexity of a given image.
However, before modern machine-learning based approaches, psychologists have long
attempted to understand which factors cause an image to be regarded as complex or
non-complex [12]. While the majority of these efforts are not scene focused, they non-
etheless reveal some clues on how the brain processes complexity in general. As discussed
earlier, image memorability appears to have both a gist trace and a detail trace. While
gist is relatively well understood [102, 104, 85], which features of the image contribute to
the detail trace in memory has had less examination. Could image complexity serve as
an analogue for the ‘detail’ level of the image, and in some manner interact with visual
memory? This is especially interesting to consider in the context of natural scene images;
perhaps the complexity of the scene affects how well that scene can be recalled. While
the relationship of aesthetics, interestingness, and other intrinsic image properties with
memorability is well understood, how image complexity relates to image memorability
is much less clear.

The origins of complexity theory and its relation to other image properties can be traced
back to the early 20th century, where G. D. Birkhoff defined an aesthetic measure [12]
as a ratio between the order and the complexity of an image, where complexity relates
to the count of elements and order relates to the count of regularities present. A few
decades later complexity is examined in the context of aesthetics [35], finding that for
very simple images (polygons) symmetry was a key determinant of rated complexity,
while later still complexity was redefined either as the detail present in a line drawing
of an image[123] or as the degree of difficulty in providing a verbal description of a
texture in by Heaps & Handel [60]. Heaps & Handel find complexity to be correlated
significantly with the structure, orientation, and repetitiveness of the texture. In this
case, structure refers to how much organisation vs randomness exist in the lines and
parts of the texture.

In 2004, Oliva et al. [105], in the first study to examine scenes explicitly, hypothesises
that complexity perception is affected both by the variety of objects in the scene, and
the variety of surface textures present. In an experiment to determine which factors
affect perception of complexity, they find that complexity could be modelled along two
main dimensions for interior scenes; that of mirror symmetry and that of clutter. A year
on, in 2005, Rigau et al. [108] proposes an information-theoretic framework for mod-
elling complexity, based upon Birkhoffs’ aesthetic measure, which partitions an image
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into several homogeneous regions then calculates the mutual information between these
regions. How this relates to human perceptual complexity was not explored, nor was
it explored in later work [109], which uses Kolmogorov complexity [78] as a potential
measure for image complexity. Kolmogorov complexity can most easily be understood as
the length of the shortest program to compute a given output on a universal computer;
i.e, the most compressed that output can be. Kolmogorov complexity is uncomputable,
but can be estimated by compression algorithms [108]. Random structures are difficult
to compress, so it has been suggested that the complexity of an image is related to the
structures in an image that lie somewhere on an axis between trivial regularity (the
’order’ of Birkhoff) and meaningless randomness; that is complete order and complete
randomness are similarly lacking in complexity [39].

To investigate the overlap between machine methods and human perception, Cardaci
et al. frame image complexity as a fuzzy process [21], and conduct a trial to evaluate
whether their computational method matches reported complexity values from human
observers for paintings. They extract local image features and build an entropy-based
distance function to determine how far a given image is from the simplest image in the
set. However, they define human perceptual complexity as related to the perceived time
to observe an image; and while they find a relation between their fuzzy measure and
perceived time, it is unclear what visual processes drive this. Yu et al. [143] instead
examine spatial information measures (such as edge magnitude) and find they correlate
with compression-based complexity measures [45]. However, these measures are often
tested on line drawings, polygons, or icon images; all of which are a long way from a
rich natural scene. Even paintings, while of interest for aesthetics perception, do not
reveal much about how scene complexity is perceived. Finally, in [95] it was found
that computational measures of complexity correlated with ratings of visual complexity,
and ratings of visual complexity correlated with measures of affect, but computational
complexity did not correlate with affect. That is, complex pictures tend to be rated
more ‘pleasant’ and ‘arousing’ than non-complex images, yet existing computational
techniques do not indicate this relationship exists. There appear to be minimal studies
that directly relate image complexity to image memorability, though one study suggests
that high complexity images may be more memorable than medium complexity images
[123].
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2.7 Summary

It is evident there is much yet to be understood about complexity perception; and even
more to understand about scene complexity perception. Later in this work, in Chapter 5
we discuss modern approaches to analysing and predicting image complexity, including
various methods that make use of deep learning. However, it is still unknown exactly
how image complexity and image memorability relate; and for scene images, there is
even less data. Later in the same chapter we explore the gathering of complexity data
purely for scenes, and discuss how this relates to those scenes memorability. In the
next chapter however, we will discuss how the memorability data for those scenes was
obtained and what this reveals about image memorability in general via a new approach:
the Visual Memory Schema.
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Visual Memory Schemas

While there have been several approaches to predicting the memorability of images
through computational means, until now these approaches have been limited to a single
‘score’ that defines how memorable an image is; without explaining why the image has
that score. In contrast, VMS Maps identify the regions in an image that cause a human
to be able to remember that image. For the first time, there exists a dataset that contains
two-dimensional human memorability data. However, due to the resources required to
gather this sort of data, the original dataset is limited, consisting of only 800 images;
making prediction of VMS maps difficult. In this chapter, we present the relevant
background needed to understand computational image memorability prediction, and
our efforts to expand available VMS datasets and VMS prediction methods. We explore
the differences in two-dimensional memorability information across categories, and for
the first time employ computational methods to quantify the semantic ‘units’ that make
up a Visual Memory Schema; that is, we find which arrangement of elements and objects
in a scene cause that scene to be remembered.

3.1 Background

Studies of human visual memory in psychology stretch back decades, but research em-
ploying computational methods to understand image memorability are relatively recent.
With an increase in computational power and an advancement in image processing tech-
niques, computational investigation into perceptual image properties became possible.
For the first time, large-scale crowd-sourced image memorability datasets could be ac-
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quired, and based on this data, early machine learning techniques could be employed
to learn from this data; and predict the memorability of a given image. As classical
techniques gave-way to deep learning, prediction accuracy has only increased; eventu-
ally reaching human-level performance. However, these methods (and the data on which
they are trained) give a single score for the entire image; and do not reveal what it is
about the image that causes it to be remembered. Later work introduces Visual Memory
Schemas, two dimensional memorability maps. Training computational models to learn
which parts of an image are memorable and which is not is significantly more complex
than single-score regression; and there is still a way to go before reaching human level
performance.

3.1.1 Computational Memorability

The first study to introduce the notion of large-scale computational memorability pre-
diction is that of Isola et al. in 2011. Isola developed a ‘memory game’[69] in which
workers on the Amazon Mechanical Turk platform were presented a series of images,
displayed for one second, with a 1.4 second gap in between. The workers were asked
to press the space bar when a repeated image was shown (a variant of the old/new
recognition test). Each series was 120 images long, which constituted a ‘level’ in the
game, and each participant could complete up to thirty levels. 665 participants played
the game. Of the images shown to the participants, 2222 images were targets, and 8220
images were fillers, which were not repeated. Participants were not shown ahead of time
which images were targets, and each target was repeated only once. Similarly, each filler
was only shown once. Each image was scored by an average of 78 participants, with
the mean memorability score lying around 67.5% (defined as the percentage of correct
recognitions), with a false alarm rate of 10.7%. Isola also found that when humans are
asked to predict if an image is likely to be memorable or not, the results were actually
weakly negatively correlated with memorability[68], indicating that humans are actually
very bad at determining whether an image is likely to be remembered or forgotten.

Critically, the Spearmans rank over 25 randomly split memorability trials is 0.75, indic-
ating a high degree of consistency between participants. Because of this high degree of
consistency, Isola hypothesised that there is in fact some intrinsic component to mem-
orability in images. If memorability had more to do with the participants viewing the
image than the image itself, then the overall consistency of memorability scores would
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be expected to be much lower (or perhaps nonexistent). Because of this consistency,
indicative that it is more to do with the image than the viewers, the memorability score
of an image should be able to be predicted by an algorithm. Isola developed a predict-
ive algorithm based upon classical global image features that included pixel histograms,
GIST, SIFT, HoG and and SSIM (detailed in Chapter 2.5). Together with a Support
Vector Regression (SVR) machine, the predicted scores had a rank correlation of 0.54
with the ground-truth human scores. Object statistics were also examined, finding that
simple statistics such as mean class coverage or the count of an object are not predictive
of memorability, though scene category did appear to summarise much of what made an
image memorable.

The first, and until much later, only investigation into memorability beyond a single
score was Khosla et al.’s [73] work into predicting memorable regions of a given image.
By examining selected regions, and predicting how likely said region is to be forgot-
ten or hallucinated, then pooling these feature maps into one overall map, the general
memorability of the image can be predicted. Khosla et al. use a probabilistic model to
simulate a ‘noisy memory process’, and hypothesise that the likelihood of an image be-
ing remembered is the distance between the actual image and a noisy degraded internal
representation. In the model, they define this distance as the inverse of that images
memorability score. Multiple descriptors are used for each feature region: gradient,
color, texture, saliency, shape, semantic. They achieve a Spearmans rank correlation of
0.5 between ground truth and predicted, though they do not predict a true memorabil-
ity score, only a ranking between images. Different regions have different memorability
scores, but how accurate these are for the region itself cannot be calculated, as no ground
truth region-memorability dataset existed at this time, and Khosla did not create one.
This means the accuracy of these ‘memorability maps’ cannot be verified against human
data.

Khosla later introduces the LaMem database [75], a dataset of 60000 images and a
memorability score for each image. This database is used to train a CNN to predict
memorability, reaching a rank correlation of 0.64. Rather than train the model from
scratch, Khosla used a pre-trained model and retrained it over the LaMem dataset,
terming the resulting model ‘MemNet’. The model was first pre-trained on both the
Places dataset (made up of over seven million labelled scenes) and the Imagenet dataset,
and used an AlexNet [3] backbone (which consists of eight layers, five convolutional

39



3.1. BACKGROUND

and three pooling). Interestingly, the network finds that faces and bodies correlate
strongly with memorability, while regions of natural scenes seem not to. This is the
first major application of a large-scale convolutional neural network to the problem of
memorability prediction, and achieves a rank correlation outperforming every hand-
picked method presented previously. Following this success, most image memorability
prediction methods involved neural networks to some degree; even if just as feature
extractors.

Dubey et al. [40] used a CNN pretrained on the Imagenet dataset for feature extraction
purposes. The features were then passed into an SVR machine for memorability score
prediction. Imagenet [36] is a vast database of images that is commonly used for pre-
training of neural networks, under the hypothesis that the same learned features that
work well for classifying images will also work well for predicting other image-related
characteristics. Dubey’s CNN model achieved a correlation of 0.7 with ground truth hu-
man scores, though this score may be artificially high due to the small amount of images
used (850). Dubey also combined this model with a semantic segmentation technique
that could extract individual objects from images, using it to predict the memorability
of these objects. This network had a much lower correlation of 0.39. However, as the
CNN alone performed well, the error in the prediction is more likely to do with errors
in the segmentation technique (a notoriously difficult problem) than with the prediction
network.

Figure 3.1: The AlexNet Architecture [3]. The second GPU processing stream is trun-
cated, but follows the same architecture as the first.

Lukavsky [94] explores the effect of an image being different from its neighbours, as
well as the effect of being in a different category to its neighbours. They accomplish
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this with a convolutional neural network known as ‘Places-CNN’, which is built upon
the AlexNet architecture and trained on the Places dataset [148] to classify images into
scene categories (compared to Imagenet, which tends to be object categories). First,
feature vectors are extracted by truncating the network prior to the final classification
step. Secondly, the L2 norm is used to compute the difference between extracted features
from two images. A smaller L2 norm means the semantic content of the image is closer
to each other, and thus the images are "in-context" with each other. This method was
used to computationally determine which images are out of context with others in the
dataset, and hence to explore the effects of context on memorability.

Yoon et al. [141] later examines the effect of spatial relationships upon memorability by
using both a neural network to segment objects from the image, and a neural network
to predict the memorability of those segmented areas. For memorability prediction,
Yoon used Khosla’s MemNet [75] to extract memorability-relevant features, and then
employed DilatedNet [149] to extract a segmented map of the scene. These features
were combined via a support vector regression machine, which was trained to infer the
memorability score. This model achieved a correlation of 0.66 with the ground truth,
close to the LaMem human split correlation of 0.68, and significantly more accurate than
Dubey’s earlier model.

Most early works were not "end-to-end" neural networks; rather than having a single
neural network that computes memorability scores, they instead used neural networks
for feature extraction, but passed these features into other algorithms to compute mem-
orability scores. In contrast, Squalli-Houssani et al. [11] develop an end-to-end neural
network that incorporates both CNN features and features from an image-captioning
system, intending to capture the powerful memorability-descriptive effects of semantics.
Squalli-Houssani accomplishes this by making use of an LSTM-CNN combination. The
CNN extract relevant images features, and the LSTM network uses these features to
infer likely combinations of words that describe the image - essentially, captions that
describe the semantic content of the image. These features are merged with standard
CNN features extracted using the VGG16 architecture. By combining these features
together, they achieve a final Spearmans correlation of 0.72 over the LaMem dataset.
However, to accomplish this images are divided into four distinct classes, from low to
high memorability, based upon their LaMem scores, turning memorability prediction
into a classification, rather than regression problem. It is generally easier to compute
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aggregated classes rather than a direct regression score, which explains the unusually
high performance.

Fajtl et al. also investigates the pairing of recurrent neural networks with convolutional
neural networks for the purposes of memorability prediction and develops a neural net-
work[44] that uses an iteratively generated attention based metric. This network uses an
LSTM to generate attention maps (three iterations provide the best results). It should
be noted that these attention maps are unrelated to what is typically known as ‘at-
tention’ in the cognitive science world; they are not models of saliency or eye fixation.
They instead determine which parts of the image the neural network should process. To
create these maps, a method known as ‘soft attention’ is used, which assigns a probab-
ility weight to every informational element in the feature maps of the network, rather
than only ‘attending’ to elements that are greater than some arbitrary boundary. These
probabilities determine how much the neural network weight the network should assign
to a given element, which in turn weights the future generation of attention maps. Fajtl
achieved a 0.677 Spearmans rank, very close to the 0.68 of human consistency.

The base of the network is a pretrained residual network. Features are extracted from
the penultimate layers of the network, and fed into the attention predictor and LSTM
network, whose iterative attention maps are then summed together. The LSTM hidden
state is mapped to the normalised memorability score of the input image to regularise
the final output. The loss function:

L = (ŷ − y)2 + λLα, (3.1)

is standard root mean squared error combined with a penalty λLα that encourages the
model to explore all image regions over the LSTM iterations, and prevent the algorithm
becoming ‘stuck’ in one spatial region. This penalty is a function of all activations over
the attention maps. While this approach certainly provides good overall results, the
improvement is relatively minor compared to the same network with attention features
disabled (0.663), indicating that learned deep features in a sufficiently complex network
remain the best predictor for memorability, and that likely the most critical elements
for memorability prediction is 1.) a sufficiently deep network and 2.) a sufficiently large
dataset.
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What can computational approaches tell us about memorability?

Image saliency defines regions of an image that draw an observers attention. Do high
levels of saliency influence how memorable an image is? Mancas found that eye fixa-
tion durations were longer the more memorable the image [96], and that congruency
between fixations is also higher for more memorable images vs less memorable images.
This is indicative of some link between attention and memorability. Mancas built upon
this by constructing a classifier that made use of attention-based features (saliency),
combined with Isola’s original image attributes, and found they improve image mem-
orability prediction. Even when 1512 of Isola’s feature dimensions were replaced with
17 attention based dimensions, overall Spearmans rank consistency between predicted
and ground truth was still higher than Isola’s model alone (0.479). Celikkale [23] later
explored combinations of semantic features (the scene category label), object features
(annotations on the image describing it’s object content) and dense visual features, such
as colour histograms, GIST, HOG, and SSIM (described in more detail in Section 2.5.2,
with a method that pools together salient regions in the image. Object level saliency
and bottom-up saliency maps are obtained and used for attention-based pooling of im-
age regions, that generates the final feature vector, and allowed Celikkale to achieve a
Spearmans rank correlation of 0.52 with the ground truth [23]. While it is clear that sa-
liency has a relation to memorability, it certainly does not fully explain it, as techniques
that predict using saliency remain far from the human level consistency.

In general, exactly how image content relates to the ‘memorability’ of that image is still
not well understood, and multiple feature dimensions (extracted from the image) are
required to provide a reasonable explanation of single-score image memorability [113].
The best descriptors of image memorability appear to be high level scene semantics,
those that deal with emotion, scene dynamics, actions, and demographics. Isola [67]
found that these attributes alone outperform all other tested feature extractors, with a
rank correlation of 0.51 with ground-truth scores. Combining these attributes with other
semantic predictors such as objects present and scene category boosts the final perform-
ance of the predictor to 0.54, which isn’t surpassed until neural network based methods
are developed. Taking a more fine-grained approach, Dubey et al. [40] found that indi-
vidual objects present in an image have varying degrees of memorability. Ground truth
memorability values for objects in images were obtained in similar fashion to Isola et al.
Participants played a ‘memory game’, though in this case shown images were masked,
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leaving only individual objects available for encoding. Object memorability has a high
consistency (Spearmans correlation of 0.76), which suggests that individual objects have
a level of memorability intrinsic to their structure.

Natural, outdoor scene images are some of the most difficult images to predict mem-
orability for, with machine techniques falling short of efforts to predict memorability
for both indoor scenes and object-focused images. Lu et al. [93] find that certain
Hue-Saturation-Value (HSV) values correlate with human memorability, and develop a
dataset that contains only natural scene images (such as forests and deserts). The HSV
feature contributes to memorability prediction of the natural scene images to a larger
degree than low-level predictors and the model overall outperforms Isola et al.’s model,
with the HSV feature resulting in an increase of 7.3% to the Spearmans rank correla-
tion between ground truth and predicted values. However, Lu’s dataset is very small,
consisting of only 258 images, and colour has been shown previously to be only weakly
predictive of memorability. The effect seen here is likely a result of the small dataset
combined with the difficulty of the task, but does indicate that in the absence of rich
descriptive features colour does play a small part in memorability.

Bylinskii et al. [20] find that images distinct to their context are remembered. For
example, in a dataset of deserts, a forest image may be better remembered as it stands
out against the context in which it has been presented. Bylinskii also finds that certain
image categories are more memorable than others, and that memorability rankings of
scene categories have a Spearmans rank of 0.68 over 25 half splits. Similarly, Isola found
that scene category alone had a correlation of 0.37 with ground truth memorability.
One possible explanation for variation in category memorability is that scene categories
with a greater amount of contextually distinct images appear to be more memorable; it
is potentially variety throughout the category that improves the memorability of that
category. An alternative explanation for variances in memorability could be due to
the perceived depth and motion of that image. Basavaraju et al. compute the depth
and motion of an image with optical flow and depth estimation methods. A set of
convolutional models were trained to predict memorability based on depth, motion, or
both. Neither the model based on depth or the model based on motion outperformed
the original MemNet CNN introduced by Khosla et al. However, when these features are
combined, this model slightly outperforms MemNet (0.64 vs 0.655) [9]. The issue here
may arise from lack of an accurate baseline. Both motion and depth of the images were
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found computationally, not drawn from the (unavailable) ground truth. If the calculation
of these factors is not accurate, it would be difficult to draw any conclusions about
memorability. Nonetheless, it appears even with potentially inaccurate depth/motion
estimations there is enough additional information to improve memorability prediction
performance.

3.1.2 Visual Memory Schemas

In cognitive science, a schema is a mental construct that facilitates the encoding of a
scene. For example, the average person may maintain a ‘kitchen’ schema that consists
of arrangements of common elements typically found in a kitchen. Viewed scenes that
better match this schema are therefore better encoded and retrieved. Visual Memory
Schemas represent a way of operationalising this idea of a ‘schema’ and extracting which
scene elements directly correspond to the mental structures that enable remembering of
the scene. Visual Memory Schemas were introduced recently in the work of Akagunduz
et al.[2] via the VISCHEMA Experiment, culminating in the creation and analysis of an
800 image scene dataset paired with 800 ‘Visual Memory Schema’ (VMS) maps. These
VMS Maps capture the regions in the scene images that cause a person to remember, or
falsely remember, that scene. In turn, these regions are thought to contain elements that
match the cognitive schema for that scene. The images and VMS maps have a resolution
of 700 pixels by 700 pixels and are full colour. For this dataset, images widely regarded in
the literature as being ‘highly memorable’ are excluded, by purposefully removing images
with recognisable landmarks, attention-drawing text, and people looking directly at the
camera. This results in a more stable dataset, as the memorability data for each scene
is more likely to be effected by scene semantic content rather than known memorable
features. In the VISCHEMA experiment, participants (n = 90) are asked to memorise
400 images drawn from the dataset, and then tested on another set of 400 images (of
which 200 are repeats and the other 200 are fillers) to determine how well those images
are remembered. Participants are asked to select on a scale between 0 and 100 how
confident they are that they have seen that particular image before. Over a certain
threshold (30) participants are asked to draw boxes on the image over the regions of the
image that they believe has caused them to remember that image. These maps are highly
consistent, with a Pearsons 2D correlation of 0.7 - participants agree on the areas that
caused the image to be recognised. VMS Maps hence are two dimensional probability
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distribution maps that indicate how likely a region in an image is to cause that image to
remembered or falsely remembered (Fig. 3.2). These maps represent cognitive elements,
shared among the participants that took part in the experiment (n = 90) that influence
the memorability of an image. Because of this spatial element, Visual Memory Schemas
allow analysis of which regions in an image causes a human to remember, or falsely
remember, that image.

Figure 3.2: An example from the VISCHEMA dataset produced in [2]

True VMS Maps, which indicate the areas that cause an image to be correctly re-
membered have a high level of consistency between randomised equal splits of the par-
ticipants, while False VMS maps, which indicate areas that cause an image to be falsely
remembered, have a lower level of consistency. From these data it appears that while it
is relatively easy to agree on what is memorable, regions that cause humans to believe
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they have seen an image, when in fact they have not, are more subjective. A VMS
Map of an image has a Spearmans correlation with the computed saliency (GBVS) of
that image (0.581), much lower than the correlation between participant VMS Maps
(0.7), indicative that saliency cannot fully explain what makes an image memorable.
Additionally, VMS Maps were compared with eye fixation data gathered at the same
time the experiment was conducted, and no significant correlation between eye fixations
and VMS maps was found. This clearly indicates VMS Maps clearly capture inform-
ation about memorability beyond that of simple attention-based metrics. True VMS
maps are more consistent than false VMS maps across observers, which is hypothesised
to be because the encoding of more easily remembered images relies upon more estab-
lished mental schemas, whereas falsely remembered images are more due to reliance on
individual experience.

Akagunduz et al. [2] employ transfer learning and five different neural network architec-
tures in order to determine the best combination for predicting combined VMS maps.
The five different pretrained networks were MemNet, and four VGG variations: VGG-S,
VGG-M, VGG16, and VGG19. The original classification layers of the networks are
removed, and new layers attached consisting of 3 256 neuron hidden layers and a 400
neuron output layer. Twenty-one variations on these architectures are tested, dependent
upon which final layer of the pretrained networks the new output network is appended
to. The final output of each network is a 20×20 pixel combined VMS map. Each network
is trained for each possible 80/20 split of the training data, and considering two possible
loss functions (The L1 and L2 norms). This results in 210 total different experiments.
They find that deeper layers in the neural architecture perform better at reconstructing
VMS maps, though interestingly the deepest layer in the network perform more poorly
compared to previous layers. This is hypothesised as being caused by the deepest layer
being fine tuned for image classification rather than VMS map reconstruction. The best
performing network is VGG19, and the best reconstructed category is ‘work-home’ with
a Pearsons 2D correlation of 0.677 with ground truth data.

3.2 Methodology

Predicting the memorability score for an image representing how likely a given image is
to be remembered by a human during a recognition test, is a difficult task - memorability
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has been shown to be associated with the semantic content of the image, a complex di-
mension to extract. With the advent of large memorability datasets that contain tens of
thousands of images paired with ground truth memorability scores, recent deep learning
models have succeeded in achieving close-to-human performance in predicting how likely
an image is to be remembered. Previous work in the arena of memorability prediction
has been engineered with the goal of predicting memorability scores for a given image.
Few research studies explored creating models capable of predicting the regions of an
image that contribute the most to an image’s memorability. These models’ predictions
of memorable regions lack a clear relation to the ground truth, as until very recently
no dataset of the regions that cause humans to find a given image memorable, existed.
In this section, we present the methodology of several approaches to predicting visual
memory schemas. We start with a variational autoencoder based approach, trained on
the original VISCHEMA dataset of 800 images. We then explore additional computa-
tional techniques which may aid in the prediction of visual memory schemas, and finally
we develop a novel architecture that incorporates these techniques, and makes use of
existing single-score memorability datasets. Results for all proposed approaches can be
found in Section 3.3.

3.2.1 Predicting Visual Memory Schemas with Variational Autoen-
coders

Autoencoders (AE) attempt to learn efficient latent-space encodings of the input data
that would allow its reconstruction from such an encoding. A variational autoencoder
(VAE) [76] is an extension of the AE, which has the training aim to maximise the lower
bound of the marginal log-likelihood of the data following encoding and reconstruction.
This means minimising the KL divergence between the posterior and a priori data dis-
tributions during the training. Rather than just learning a compressed encoding of the
data, a VAE learns a probability distribution that is an approximation of the true prob-
ability distribution of the underlying data. This allows a VAE to be used as a generative
model based on sampling in the latent space.

VAEs are made up of two components - an encoder which converts input data x into
a latent space representation z, and a decoder that converts a latent space variable
z back into data x′ akin to the input x. Convolutional neural networks (CNNs) are
used for implementing both the encoder and the decoder. The encoder is defined as
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a probabilistic machine qθ(z|x) that extracts a specific latent space code z where θ

represents the parameters of the encoder’ network. Meanwhile, the decoder maps the
information in a probabilistic sense defined by pϕ(x|z) in the opposite way from the code
z back to the data space x, where ϕ defined the parameters of the decoder network.
The encoder and decoder are related through the loss function which consists of two
components:

L(θ, ϕ) = −Ez∼qθ(z|x)[log pϕ(x|z)] +KL(qθ(z|x)||p(z)) (3.2)

where KL(·) represents the Kullback-Liebler divergence between the a priori distribution
of the latent space qθ(z|xi) and its estimated distribution p(z). The first term from
equation (3.2) represents the reconstruction loss and the second term regularises the
learnt distribution. The latter term helps the VAE to learn to group conceptually similar
data in the same regions of the latent space.

Here, we are aiming to develop a generative method for Visual Memory Schemas (VMS),
for a given input image (specifically, those of scenes). In our approach we aim to gen-
erate both true and false VMSs, simultaneously. This is defined as an image-to-image
translation problem by making use of an VAE consisting of two CNNs, with the first
one, the encoder designed to learn a mapping from an image to a latent code, while the
decoder to learn the mapping from that latent code to a VMS. Previous work [94, 46]
has shown that CNNs work well at extracting high-level image features that also allow
for the prediction of memorability [11]. CNNs such as VGG-16 network have also been
shown to be capable of learning to reconstruct VMS maps at some degree for certain
image categories [2]. We propose using VAE models which have good ability to learn
data classification in the latent space, as exemplified in Fig. 3.3. This model would
allow a good separation of the false and positive VMS encoding spaces and then for
the generation of dual channel VMS maps for generic scene input images corresponding
to true and false VMS structures in which given random memorable images produce
latent codes similar to those indicated experimentally by humans in memorable images.
Moreover, the learned latent space modelled by VAEs can be easily inspected in or-
der to find relations between the memorability and false memorability of images; and
to determine whether extracted deep neural network features are separable into those
that define high-memorability VMS maps, and those that define low memorability VMS
maps.
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Figure 3.3: Predicting VAEs in images using an autoencoder.

For the training we use a pre-trained VGG network architecture [122] for the encoder
after truncating the network before the classification step and using only the convolu-
tional layers. The final output of the VGG architecture will be connected to a dense
layer in order to compress the representation further, followed by the latent encoding.
In CNNs the deep features that would emerge capture structures of the objects in the
scene [147] and semantic structures [50] present in the input image.

The decoder benefits from being able to be simpler than the encoder. Whereas the input
of the encoder consists of real world scenes, the output of the decoder is a VMS map,
which consists of only two channels representing the spatial density of how likely a given
image region is to cause that image to be remembered. There is no benefit in using a
very deep architecture for the decoder, as we do not need to recreate any meaningful
semantic features in the output. Additionally, a simpler architecture keeps the number
of trainable parameters low, which is important when considering the low amount of
available training data.

The loss function for this model is similar to the standard VAE loss function from (3.2),
with the exception that in the reconstruction term, instead of reconstructing the original
image data, aims to reconstruct associated information, such as VMSs. If X is the set of
scene images and Y the set of associated VMS maps, with x ∈ X and y ∈ Y representing
corresponding images drawn from these sets, our loss function is:

L = −Ez∼qϕ(z|x)[log pΨ(y|z)] +KL(qθ(z|x)||p(z)) (3.3)

where Ψ represents the parameters associated with the VAE reconstructing the VMSs
data y at the end of the encoder. We additionally investigate replacing the reconstruction
term with the l1-norm as in [2].
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3.2.2 Exploring Visual Memory Schema Prediction with Multi-Scale
Information, Depth, and Self-Attention

We have shown that an artificial learning model, such as a Variational Autoencoder
(VAE) [76], can predict VMS maps for scene images (see results in Section 3.3). How-
ever, the family of models capable of specifically indicating regions from images which
are responsible for their memorisation, have not been studied in depth compared to
their single-score counterparts. Here we propose multiple different approaches to mem-
orability map prediction, examining the effects of multi-scale information, non-local self-
attention, the inclusion of depth information, and various combinations of these factors.
We also draw on evaluation metrics from visual saliency prediction in order to set a new,
comprehensive baseline for VMS map prediction.

To accomplish this, we developed a series of models capable of predicting visual memory
schemas for scenes, testing the influence of depth, self-attention, and multi-scale in-
formation. We examine both the impact of latent-space dimension on our variational
architectures, as well as develop standard deconvolutional models, and for each network
where feasible we test the effect of introducing self-attention and depth information.
Our goal is to discover both which techniques are applicable to VMS prediction, and to
set a variety of comprehensive baselines for future work.

Figure 3.4: End-to-end deconvolutional network showing single and dual headed outputs.
The height and width of the convolution filters is given above, while the channels are
given below the diagram. The dimensions of the output is given below each output.
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Figure 3.5: Multi-scale VMS predictor with multi-scale blocks (MSB) from [64].

Deep learning architectures

We choose three architectures as potential baselines against which to evaluate further
developments to our VMS predictor models. First, we choose a straightforward end-to-
end deconvolutional (CNN-deconv) architecture similar to that used in [2]. A pretrained
VGG16 network feeds features into five convolutional blocks, with upscaling at specified
intervals, as in the architecture shown in Figure 3.4. The output of the network is
represented by one (single-headed) or two (dual-headed) memorability maps. The former
generates a two-channel memorability map, while the latter generates both memorable
and falsely memorable maps as distinct outputs. All convolutional blocks use a filter
size of 3× 3 aside from the final outputs, which are 1× 1.

Structures that influence image memorability arise at various scales in the image. Given
the recent success of multi-scale information in finding conditional image correspond-
ences for image-retrieval [64], we employ a similar methodology for enabling a deep learn-
ing architecture with multiple scale analysis and assess its efficiency for visual memory
schema prediction. This multi-scale architecture replaces the three starting convolu-
tional blocks with two multi-scale blocks (MSB) in the architecture from Figure 3.5.
Finally, given the capabilities of image generation by VAEs [76], we also consider our
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VAE model, which was used for VMS prediction, presented above in Section 3.2.1

Figure 3.6: Multiscale architecture modified to embed depth-map information.

Loss function

Current state-of-the-art for VMS prediction is based upon variational autoencoding
(VAE) models. VAEs consist of two networks: an encoder and a decoder. The en-
coder estimates a latent space zzz corresponding to the given data xxx and the decoder
aims to reconstruct the data from the latent space encoding. As in [83], to predict
VMS maps we maximize the evidence lower bound (ELBO) on the sample log-likelihood
characteristic to the classical VAE [76] :

log p(xxx) ≥Ezzz∼qθ(zzz|xxx)[log pϕ(xxx|zzz)]−DKL[qθ(zzz|xxx)||p(zzz)] (3.4)

where pϕ(xxx|zzz) is calculated by the decoder of parameters ϕ and qθ(zzz|xxx) is an inference
model implemented by a neural network of parameters θ, which has Gaussian-specific
prior parameters {µ, σ} for its last layer’s outputs and DKL is the Kullback-Leibler (KL)
divergence, where

DKL[qθ(zzz|xxx)||p(zzz)] =
∫

qθ(zzz|xxx) ln
p(zzz)

qθ(zzz|xxx)
(3.5)

VAE models employ the standard variational loss DKL, where the first term reconstructs
the log-likelihood and the latter implements the Kullback-Leibler divergence between the
distribution qθ(zzz|xxx) and the prior p(zzz).

We consider three loss functions: binary cross-entropy, Kullback-Leibler (KL) divergence
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(shown to be effective for saliency map prediction [82]), and the ELBO loss (3.4). Ad-
ditionally, we expand the research undertaken in [83] by varying the size of the latent
space as |z| = {8, 32, 64, 128}, where | · | denotes the cardinality.

Studying the influence of depth in the scene

Previous research indicated the importance of depth in the scene for influencing the
memorability score prediction performance, according to Basavaraju et al., [8]. However,
whether this effect holds for visual memory schemas has not been explored. In the
experiments undertaken in this study we generate depth maps for our dataset using
MiDaS [86], a state of the art monocular depth estimation model. We concatenate
features learnt from depth images with the features from the original image with the
same dimension as shown in Figure 3.6 .

Introducing self-attention mechanisms

Cognitive structures that lend themselves to remembering are rarely single objects in an
image. Frequently, memorable regions are scattered throughout an image, or indicate an
arrangement of objects (such as for example that of a table surrounded by chairs in an
indoor scene) rather than a single object (a glass of water). A structural or semantical
representation of the scene can indicate additional memorisation clues [141]. Non-local
blocks [136] are designed to capture long-range dependencies by allowing the network to
determine which features should be attended to, across the entire input. In the following
we integrate the ‘Embedded Gaussian’ variant from [136] in order to determine whether
long-range modelling aids VMS map prediction.

Given the embedding spaces Wϕxxxi for the given input xxx, and the learnable weighting
hyperparameter λ and the re-introduction of original feature maps given in [146], the
self-attention output is given by:

yyy = λ softmax (xxxTW T
θ Wϕxxx)g(xxx) + xxx, (3.6)

where g(xxx) is a linear function of the input.

We combine the non-local blocks with our memorability predictors in the following
manners: in multi-scale architectures, after the first multi-scale block, after the second
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multiscale block + convolutional layer, and prior to the output (including in the archi-
tectures where we also consider the depth). In our variational architectures, we include
the non-local layer in the decoder, two layers before the output.

3.2.3 A Dual-Feedback Approach to Visual Memory Schema Predic-
tion

While we have expanded available visual memory schema datasets from just 800 images
to over 4000 (details in Section 3.3.1), compared to single score datasets, this is still a
relatively small amount of data. The LaMem dataset [75] contains 60,000 images paired
with single-score memorability data. Although these images are not scene-focused (and
may consist of objects, faces, or even animals), it would be advantageous if this data
could be taken advantage of from the perspective of two-dimensional memorability.
To that end, we design a new architecture that can be trained both on visual memory
schema and scene data, while also containing an auxiliary loss we can train on the LaMem
dataset, in the hope that the network can learn additional memorable features. These
features can then be re-used for identifying which regions of a scene cause that scene
to be remembered (or falsely remembered). In this section we describe the architecture
and loss function for a Dual-Feedback VMS Prediction Network.

Figure 3.7: Architecture of proposed Visual Memory Schema predictor with Dual Mem-
orability Feedback. Colors refer to layer types and are given in the legend.

Drawing on our results from Section 3.3.3, our architecture for visual memory schema
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prediction employs transfer learning, self-attention, and multi-scale information. To
take advantage of existing memorability datasets, we additionally employ a dual feed-
back mechanism and condition the network to predict both memorability maps and
memorability scores for input images. The architecture for the network is shown in Fig.
3.7. The network first extracts features from multiple scales in the backbone architec-
ture, optionally computes attention maps for these features, and finally combines these
multi-scale attention maps to predict the output map.

Multi-scale Feature Extraction We consider two backbone architectures: VGG16
[122] and RESNET50 [58], and employ these to extract semantic features from the input
images. As memorability information occurs at multiple different scales throughout
an image, we extract the semantic features at three different scales corresponding to
processing blocks in the backbone architecture. Given an input image In ∈ R224×224×3,
for each backbone we extract feature maps at S1 ∈ R56×56×256, S2 ∈ R28×28×512, and
S3 ∈ R14×14×512, where S1, S2, and S3 we call Scale 1, Scale 2, and Scale 3 respectively.
All scale images are passed through a 1 × 1 convolution for dimensionality reduction
resulting in S1, S2, S3 ∈ RC×Hs×Ws where C is hyperparameter defining the number of
desired feature maps for each scale, and Hs and Ws define the height and width of the
feature map at that scale.

Optional Self Attention Self attention has shown promise in single-score memorability
predictors [44]. We examine whether self-attention offers any benefit for memorability
map prediction. Given the embedding spaces Wϕxxxi for the given input xxx ∈ S1, S2, S3

[136], and the learnable weighting hyperparameter λ and the re-introduction of original
feature maps given in [146], the self-attention output is given by:

yyy = λ softmax (xxxTW T
θ Wϕxxx)g(xxx) + xxx, (3.7)

where g(xxx) is a linear function of the input. We compute self-attention maps for each
scale. Each embedding space is parameterised by a 1 × 1 convolution. If self-attention
is disabled, each block is replaced by a 3× 3 convolution with C channels.

Feature Concatenation & Dual Feedback Whether self-attention is enabled or
not, the multiscale feature maps are combined via channel-wise concatenation, giving
a singular weight matrix representing memorable features at the three scales. With
S1, S2, S3 ∈ RC×56×56, Sm = [S1, S2, S3], Sm ∈ R3C×56×56. This is followed by two
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output heads. The primary output consists of a 3 × 3 convolution followed by a 1 × 1

convolution that produces VMS map V for input image i, Vi ∈ R56×56×3. The auxiliary
head consists of two stacked 3×3 convolution + max pooling blocks, followed by channel-
wise global average pooling [88], and the output score Li ∈ (0, 1) ⊂ R is given by four
stacked fully connected layers with {F, F2 ,

F
4 , 1} neurons respectively. We choose F to be

256 and C to be 16, balanced for available compute budget, dataset size, and empirical
studies (a greater value for C did not lead to additional performance gains).

Loss Function

We train our predictor via the loss function given in Equation 3.8.

Loss(V,L) =
1

v

v∑
i=1

(Vi − V̂i)
2 + α

1

k

k∑
i=1

(Li − L̂2
i ) (3.8)

The first term represents the loss over the samples of ground truth and predicted memor-
ability maps, with V representing a predicted visual memory schema and V̂ representing
a ground-truth map. The second term contains the loss over ground truth and predicted
memorability scores, L and L̂ respectively. v and k represent sample populations of
training data. α is a weighting hyperparameter that controls the contribution of mem-
orability score feedback when training to predict visual memory schemas. This can be
set to 0 to disable dual feedback, and train on visual memory schema data alone.

3.3 Experimental Results

In this section we present the results for the proposed approaches given above. We
start with a detailed description of all the datasets used in this work, from the initial
VISCHEMA dataset, to those that we have developed over the course of this project.
We additionally quantify the elements that actually ‘make up’ a schema; providing a
human-readable description of mental schemas that aid in the remembering of scene
images. We then give results for the initial VAE-based model, over the original 800-
image VISCHEMA dataset, before examining potential model improvements on our
expanded 1600 image dataset. Finally, we show the results for our current deep learning
model over a new 4000+ image dataset of scenes and visual memory schemas.
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3.3.1 Visual Memory Schema Datasets

Over the course of the work presented in this thesis two new datasets consisting of
images and their corresponding VMS maps have been developed. In this section we will
describe these datasets, how they were gathered, and their nomenclature. We will also
explore the additional information we gain by taking a two-dimensional view of scene
memorability compared to a single-score approach. The datasets used in this work are
as follows:

• VISCHEMA

• VISCHEMA 2

• VISCHEMA PLUS

• VMS4k

VISCHEMA is the original dataset from the Akagunduz et al. experiment described
above. VISCHEMA 2 is a replica of that experiment, consisting of 800 new images
in the same categories as VISCHEMA, and with the same pre-processing paradigm
applied (images that contained obvious text, people looking at the camera, and obvious
landmarks were removed). VISCHEMA PLUS refers to these two datasets combined
into a single 1600 image/VMS Map dataset, representing a 100% increase in available
visual memory schema data. The available data was then further increased via the
VMS4k experiment, resulting in over 4000 total scenes with paired VMS maps.

3.3.1.1 VMS4k

Figure 3.8: Examples from the VMS4k Dataset. Green areas indicate that region caused
the image to be remembered, red areas indicate regions that caused an image to be falsely
remembered; indicated as seen despite never being shown to a participant.
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The full VMS4k dataset consists of 4000 images. These images are divided into two
categories: indoor scenes, and outdoor scenes. The images themselves are drawn from
the SUN dataset [140]. The indoor category is made up of 2000 images, the majority of
which are extracted from the SUN kitchen and living room categories, with additional
images from the conference room and airport terminal categories. These images provide
a general collection of commonly encountered indoor environments, with a focus on en-
vironments encountered day-to-day. The outdoor category is more varied, and contains
2000 images extracted from the house, skyscraper, amusement park, playground, pas-
ture, golf course, mountain, badlands, coast, and hill SUN categories. As environments
encountered outdoors tend to be more varied than those indoors, a wider variety of
images were collected for the purposes of the outdoor category.

Figure 3.9: Repeat-recognition experiment structure

While the original VISCHEMA experiment [2] used a two-phase in-person study/test
paradigm, we instead design a continuous image-stream experiment, similar to [75]. This
allows us to employ cloud-based experimentation platforms. Our dataset was divided
into image sequences of 600 images, consisting of 200 targets, 200 fillers (i.e. images that
were not repeated), and 200 repeats of the targets, yielding 20 distinct image sequences,
each seen by human observers. Target repeats were distributed throughout the sequence
such that there was an average of 300 images between the first showing of a target and its
repeats. Each image was shown to the participant for three seconds. Once an image in
the stream was indicated by the participant to have been remembered, they were asked
to annotate the image with the region(s) of the image that they believed caused them to
remember the image (Fig. 3.9). Participants were allowed to annotate multiple regions
in the images. In total, 93 participants undertook the experiment. Participants show
good memory performance for the images shown during the image sequences, (Fig. 3.10)
with the majority of participants showing a d-prime of over 2.0, indicating suitable
performance.
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Figure 3.10: Participant D-Primes reveal good memory performance for the shown im-
ages. No participants were excluded from the analysis.

Of these 4000 shown images, not every image in the sequence was either (1) recognised
as a repeat or (2) falsely recognised as a repeat. These images lack annotations, and
for the purposes of this dataset, can be safely ignored. After this process, this leaves
3,461 images with corresponding annotations indicating the regions that caused the
participants to remember that image. Examples from both the indoor and outdoor
categories with corresponding memorability maps are shown in Fig. 3.8. The VMS map
images consist of two channels; one containing regions labelled as memorable, and one
containing regions that are ‘falsely memorable’; i.e, regions that caused the participant to
false alarm on the image. In this work, we focus primarily on memorability, and concern
ourselves with the memorability channel of the visual memory schemas. However, the
dataset does contain false-memorability information that could be utilised in future
work. We are able to safely combine this dataset with existing VMS datasets for a total
of 4,261 image/VMS pairs (3,461 novel).
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Figure 3.11: True and false memorability for the VISCHEMA image set.

3.3.1.2 Category Differences

It is well known that memorability varies across categories; some are by default more
memorable than others. For the VISCHEMA dataset, the memorability (and false mem-
orability) of each category is shown in Fig. 3.11. In this case, we condense the visual
memory maps down to a single score based on the average value of each channel (either
memorability, or false memorability) of the map. This represents how consistent parti-
cipants were when annotating regions of the image as memorable, or falsely memorable.
However, in condensing this information down to a single score, the two-dimensional
aspect of the data is lost.

Two-dimensional memorability annotations allow us to understand not just which images
are memorable, but the differences between images that, on the surface, appear to have
the same level of memorability. Such a difference is obscured if a single-score perspect-
ive is taken. We investigate the difference between the two categories of scene images
(Fig. 3.12), and find no significant difference (p>0.05, one-way independent ANOVA)
in memorability, defined by per-image hitrate (correct detection of the target). There

61



3.3. EXPERIMENTAL RESULTS

Figure 3.12: There is no difference in memorability performance between categories as
measured by hit-rate or VMS intensity (an analogue for participant consistency).

is also no significant difference (p>0.05, one-way independent ANOVA) in participant
consistency for indoor or outdoor scene categories, defined by the average intensity of
the VMS memorability channel (0.157, indoor vs 0.159, outdoor). While prior work finds
memorability differences across categories (and indeed we show this for the VISCHEMA
dataset), in those cases the categories were significantly more fine-grained compared
to the coarseness of "indoor" or "outdoor". In this case, both categories can be con-
sidered ‘identically memorable’ - at least if just a single-score rating of memorability is
considered.

However, the two-dimensional annotations reveal more differences between the categor-
ies (Fig. 3.13, Fig. 3.14) than are immediately apparent from examining single-score
metrics. Indoor scenes had significantly more annotations (p<0.05, Kruskal-Wallis) per-
image than outdoor scenes, which show a clear bias towards lower counts of annotations;
that is, participants believe fewer regions of the image caused them to remember that
image compared to indoor scenes (Fig. 3.15). This suggests that despite the similar
overall memorability between the two categories, the memorability of outdoor scenes is
related to fewer semantic structures within the scene, whereas for indoor images, multiple
regions spread spatially across the scene together cause that scene to be remembered.

Beyond number of labelled memorable regions, we also find a significant difference
(p<0.05, Kruskal-Wallis) in the sizes of the memorable regions (Fig. 3.15) between
the two categories, with memorable regions in indoor scenes being significantly smaller,
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Figure 3.13: Outdoor scenes (right) show bias towards larger annotation areas compared
to indoor scene images (left).

Figure 3.14: Outdoor scenes (right) show a greater bias towards fewer per-image an-
notations than indoor scenes (left).

(size defined by percentage of image covered with annotation) than those from outdoor
scenes. Intuitively, this makes sense; outdoor scenes often portray grander vistas than
indoor scenes (a coastline, vs a kitchen) and as such have appropriately sized memorable
semantic structures. Hence, memorable indoor scene images appear memorable due to
multiple smaller regions (a combination and arrangement of multiple objects, e.g tables,
chairs, couches), while outdoor scene images are memorable due to larger, more singular
regions (a mountain; a coastline). These details are lost when VMS maps, and image
memorability in general, is treated as a singular score.
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Figure 3.15: The average annotations per-image is significantly greater for indoor, than
outdoor scenes (left), and there is a significant difference between the sizes of annotations
between indoor and outdoor regions (right).

Figure 3.16: MaskFormer architecture; a neural network that can be used for state-of-
the-art semantic segmentation, [Fig 2] from [26].

3.3.1.3 Quantifying the Schema

While visual memory schemas reveal the regions that drive scene memorability, and
hence represent the schema elements used to encode that image, it is difficult to go
from a VMS map to a human-understandable description of the schema. A person can
easily determine the objects and arrangement of elements contained within a memorable
region; but to do this over the entire VMS4k dataset would be intractable, both timewise
and financially. Instead, we would like to be able to computationally gather the scene
elements that have been captured within a memorable region. This is not an easy
task; the ground-truth images in VMS4k come with no pixel-level labels that reveal
which objects and semantic units (walls, skylines, floors, fields, etc) are contained in
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any given image. Extracting which objects and semantic units have caused an image to
be memorable, and generalising this over our VMS categories would allow us to extract
what is being contained within every memorable region in the dataset; revealing the
actual schemas being used to encode our scene images.

To do this, we employ the MaskFormer architecture [26] (Fig. 3.16). MaskFormer is a
semantic segmentation network. While an object-detection network may be tasked to
identify every object in a scene, and be able to delineate said objects with bounding
boxes, the goal of a semantic segmentation algorithm is to decompose an image into
a set of pixel-level labels, that identify exactly which object, or semantic unit, that
pixel belongs. MaskFormer takes a slightly different approach, instead attempting to
generate and classify binary masks, each of which segments out one part of the image.
A transformer component (‘transformer decoder’) [131] generates sets of class predictions
and mask embeddings via a multilayer perceptron (MLP). The pixel decoder extracts
per-pixel embeddings, which are combined with the output of the transformer decoder to
compute both a binary mask. The output of the MLP is used directly to generate class
predictions. The mask and class predictions are then combined via matrix multiplication
in the final module of the network. The network that we use for extracting the content
of memorable regions is pre-trained upon the ADE20k-Full dataset, with 847 classes. At
the time of writing, MaskFormer is both more efficient and more accurate than other
segmentation models.

Figure 3.17: ‘Semantic units’ contained within the regions of images that participants
have labelled as causing them to successfully remember that image.

Some examples of content found and labelled inside memorable regions of the VMS4k
dataset is shown in Fig. 3.17. While the predictions are not always perfectly accurate;
they are accurate enough that a reasonable picture of the schema for each image can
be seen. For example, in the image of a field; it is obvious that not one single element
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contributed to that image being remembered. Instead, it is the arrangement of the
house, with the trees, placed in a field with the sky as a background. These are the
scene elements that have matched with the mental schema held in the participants
which labelled this image, and aided in encoding of the scene. To extract a general
schema for each category, we ask which scene components commonly occur with each
other inside memorable regions; that is, which arrangement of elements most frequently
leads to a region of the image being labelled as causing recognition of the scene. We
do this by calculating the number of times each extracted element co-occurs with other
element(s) across all memorable regions in that image.

Figure 3.18: These objects frequently appear together inside the memorable regions
of an image, of that category. Limited to three objects; higher amounts of object co-
occurrences can be examined.

In Fig. 3.18 we show some examples of this procedure, for the kitchen and work-home
(pictures of houses, or office buildings) category. We limit this analysis to co-occurrences
of just three objects; higher amounts of objects can also be examined (see Appendix
A). Likewise, we only show the top five most frequent ‘schemas’. From this we can
determine that the most likely cause of encoding of a kitchen image is the presence
of cabinets, sinks, and stoves (greater than other arrangements of memorable kitchen
semantic units; e.g the presence of cabinets, stoves, and trays). For the work-home
category most frequent is buildings, skylines, and trees; whereas arrangements of trees,
grass, and plants appear to occur less frequently inside the regions that have caused
recollection of that image. These elements, appearing together, appear to capture the
‘schema’ used to encode scene images for a given category; we have gone from a mental
schema, to two-dimensional maps, and finally to human-understandable descriptions of
those schemas for each VISCHEMA category. While we have hypothesised that some
scenes are remembered better due to their content; and because they better match a held
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schema in a human observer, through quantifying that schema we can see that this does
in fact appear to be the case. Some arrangements of objects are labelled more frequently
as "causing the remembering of that image" than other arrangements of objects; across
entire categories of similar scenes.

3.3.2 Variational Autoencoder Approach

We train our variational network over the VISCHEMA dataset, and we also use the
images from the VISCHEMA2 dataset (ground-truth scores were not available at the
time of this study) for evaluating the model. We employed the LaMem dataset to
evaluate the relationship between VMS maps and single-score ratings. For the encoder
we use a pretrained VGG-16 network to extract a 7 × 7 × 512 representation of an
image, then compress this further using an n dimensional dense layer, which leads to a
latent space with a dimension of m. All parameters of the VGG network are frozen, by
considering learning rates set to 0 during training, to avoid damaging the deep features
while training on a small dataset such as ours. We employ data augmentation for
training due to the small size of the training set. Data augmentation involves various
realistic image manipulations, such as for example shifting the image either horizontally
or vertically by 0.1 of the total image width, zooming the image, and horizontal flipping,
which artificially increases the training data, and helps to reduce network overfitting.

Figure 3.19: Structure of the Decoder.

The decoder consists of a five layer upsampling network, shown in Fig. 3.19, that im-
plements transposed convolutions in order to convert the m-dimensional latent variable
space back into an image. We apply batch normalisation after every convolution and
employ l2 kernel regularisation [31], l = 0.02, and a learning rate of 0.0001. We use a
batch size of 32 and train the network for 250 epochs with 20 steps per epoch. In the
experiments we evaluate three different architectures considering: 1) n = 64 and m=8;
2) n = 64 and m=8 with an l1 reconstruction loss; 3) n = 128 and m=32. The input
and output of the entire architecture is a 224 × 224 image. The model is implemented
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in Keras1.

We evaluate reconstruction results of the original VISCHEMA dataset using both stand-
ard mean squared error (MSE) over all test images and the two dimensional Pearson
product-moment correlation coefficients ρ2D. We average the results on all true VMSs,
and false VMSs, separately. True VMSs represent the VMS map regions indicated by
participants in the experiments that represent what made them remember that image,
while false VMSs represent regions from images, falsely indicated by people that made
them remember those images. Actually those images have not been shown to them be-
fore. We obtain this metrics for all visual schemas and then evaluate the relation between
this metric and the more standard ‘memorability score’ provided in the LaMem dataset
[44]. The relationship between visual memory schemas and computational saliency is
also explored. Computational saliency maps for the VISCHEMA datasets are generated
via the Graph Based Visual Saliency (GBVS) algorithm [56].

Finally, we employ a single-score memorability prediction network and evaluate the re-
lation between the VISCHEMA datasets memorability scores of the predicted VMS and
the VMSs corresponding to the choices made by people, for both datasets, VISCHEMA
and the VISCHEMA2. For all evaluations of our memorability metrics and standard
memorability scores we follow prior work from [69], [75] and use Spearmans rank correl-
ation.

Latent Space VMS ρ2D MSE
Dimension (m)

32
True 0.545 92.54
False 0.369 70.526
All 0.57 85.379

8
True 0.513 90.812
False 0.333 64.228
All 0.53 83.472

8 and L1 norm in (3.3)
True 0.543 72.348
False 0.168 25.131
All 0.559 72.052

Table 3.1: Reconstruction accuracy for three deep learning architectures.

Table 3.1 shows the reconstruction results in terms of both MSE and Spearmans rank
1https://keras.io
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correlation, ρ2D. The network with an m=8 dimensional latent space and an l1-norm
component to its loss function has the overall best MSE, while the network with the
overall best Pearsons correlation with the ground truth is the network with a m=32 di-
mensional latent space. Our overall ρ2D results are slightly worse than those presented
in [2], though it should be noted that we generate both the true and false maps simul-
taneously. This allows us to investigate how well the individual true and false VMS are
reconstructed. In general, false VMS maps are more difficult to accurately reconstruct
than true VMS maps. This is likely due to the overall lower consistency between hu-
man observers for false VMS maps. While what is memorable tends to be well agreed
on among people, what causes false remembering of an image is more varied, and this
effect crosses over to generative models. Interestingly, we find that a higher dimensional
latent space has the best effect on reconstruction accuracy, rather than the use of an
l1-norm in the loss term. This is due to the effect of the second term in the loss function
from equation (3.3) and indicates that higher dimensional spaces are better at capturing
‘memorability’. For the rest of this section we evaluate the results of the network with
a m = 32 dimensional latent space, given that this architecture performs the best as
measured by the ρ2D metric.

Figure 3.20: Reconstruction accuracy for various image categories.

Figure 3.20 shows the reconstruction accuracy measured by ρ2D for each category in
the VISCHEMA dataset, over the 160 image test set. We find that the best performing
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category is that of Public Entertainment, with a correlation of 0.766, which is better
that the results from [2] which found that the Work-Home image category had the best
performance with a correlation of 0.677. A comparison with prior work is shown in Table
3.2.

Work Best Category ρ2D Worst Category ρ2D Overall ρ2D

Previous Method Work/Home 0.677 Living Room 0.506 0.588
Our Method Public Entertainment 0.766 Big 0.449 0.57

Table 3.2: Comparison with Prior Work

The worst performing category for VMS reconstruction is the "Big" which contains
images of airport terminals with a correlation of 0.449. In general, we find that categories
that have high overall memorability tend to reconstruct better than the categories with
low overall memorability. Differences from prior work may also be due to generating
higher resolution images, which captures more detail in some categories yet causes more
divergence in categories with less available memorability information. We found that
the correlation between predicted VMS maps and saliency maps, provided by the Graph
Based Visual Saliency (GBVS) algorithm [56], to be 0.69 which agrees with other results
on the relationship between memorability and saliency [40, 2]. GBVS is a well used
saliency measure, but VMS maps offer more than saliency alone. When averaging on
all image categories and comparing with saliency, we found that false VMS maps have
a correlation of 0.625 while true VMS maps have a correlation of 0.704.

Memorability Results

We generate 800 predicted VMS maps for the 800 images in the VISCHEMA2 dataset
and find that the distribution of memorability and false memorability agrees with that
of the original ground truth dataset, according to the results from Fig. 3.21 with Spear-
mans ranks of 0.929 and 1.0, respectively for p < 0.01. This is due to the similarity
of the datasets, but it also shows that the proposed model has successfully learned to
generate VMSs that agree on a category-wide scale despite being trained with no cat-
egory labels. Additionally, we find that in general the higher the memorability of an
image, the higher its own false memorability, as we can observe from the similarity of the
clusters of the latent space embeddings of the Memorability and those corresponding to
False Memorability, shown in Fig. 3.22a and 3.22b, respectively. Images that tend to be
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(a) VISCHEMA2 (b) VISCHEMA

Figure 3.21: Comparison of the memorability results for a set of image categories between
the VISCHEMA2 and VISCHEMA datasets.

highly memorable also tend to be highly falsely memorable. In Fig. 3.23, three images
from VISCHEMA2 are shown on first line and their corresponding true and false VMSs
are shown on second and third line, respectively.

Predicted memorability scores for both VISCHEMA 1 and 2 datasets were obtained by
employing the AMNet network [44]. These scores were then compared to the memor-
ability metric used for evaluating visual schemas. No significant relationship was found
between the per-category memorability metrics and the predicted category memorabil-
ity scores aside from VISCHEMA2’s "Populated" category which had a Spearmans rank
correlation with the AMNet scores of 0.203 with p < 0.01. It appears that VMSs, even
predicted schemas, do not directly relate to predicted memorability scores for the same
images, and that unlike our VMS prediction model, predicted memorability scores may
not take fully into account what humans find memorable. It has been shown that deep
neural networks take the simplest approach possible to solving a problem [17], and it
is possible that memorability prediction models are working on factors that do not ne-
cessarily align directly with memorability if some other learned metric provides a ‘good
enough’ approximation. This could explain why predicted scores do not align with VMS
maps.

We also examine the relationship between the ground truth memorability scores and our
metric by predicting VMSs for a 10,000 image subset of the LaMem dataset, used in [44],
and estimating only the true memorability score for them. We then use the Spearmans
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(a) Memorability (b) False memorability

Figure 3.22: VISCHEMA2 Latent Space Embedding. Green represents memorability
and red represents false memorability, normalised between 0 and 1. Clustering of both
memorable, and falsely memorable images is evident. Features that lead to the gener-
ation of memorable VMS maps are placed near each other, as are features that lead to
the generation of VMS maps that indicate the scene is not so memorable.

rank to compare the ground-truth score and our metric. We find a rank correlation of
0.147 with p < 0.01, indicating that VMS maps and experimentally-based memorability
scores are weakly, but significantly, related.

3.3.3 Multi-Scale Information, Depth, and Self-Attention

We use the VISCHEMA PLUS dataset, with 1600 scene images and 1600 correspond-
ing memorability maps. We divide this dataset using a standard split of 70% training
set, 20% validation set, and a 10% test set which we use for analysis. Two images from
this dataset can be seen in the first column from Figure 3.24.

Prior work, including our own, evaluates the efficacy of VMS predictors with two dis-
tinct measures; the Pearson 2D correlation [2], and the mean squared error (MSE) [83].
We choose three additional probabilistic measures as evaluation measures in order to
evaluate our VMS predictors: Kullback-Leibler Divergence (KLD), Earth Mover Dis-
tance (EMD), and Histogram Similarity (SIM) [19], metrics commonly used to evaluate
saliency map models. We also employ the pixelwise Spearman rank correlation, S2D,
as the measure commonly used to evaluate memorability score predictors. The ‘best’
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Figure 3.23: Set of three images from VISCHEMA2 dataset and their predicted true
VMS and false VMS on second and third lines. We find empirically that false schemas
are often subsets of the true schema of the image that carries less information. For
example, an image is memorable due to the presence of a man feeding a calf, yet the
presence of just a man may lead to the false remembering of a scene.

metric depends on application; some applications may value a small mean squared error
distance, others a model that displays statistically similar behaviour to human ground
truth, even at the cost of a greater MSE. By selecting a variety of metrics, we offer future
work a comprehensive analysis of VMS prediction models, and the chance to build on a
model best suited to whichever future application is necessary.

The deconvolutional networks are trained for 100 epochs (after which there is no im-
provement against the validation set), and optimised via RMSProp using a learning rate
of η = 0.0001. Each deconvolutional network outputs a 28 × 28 pixel VMS map for a
given input image, as VMS maps are robust to rescaling. The VAEs are trained for 500
epochs, and output a VMS map at the same resolution as the input image. Features
from the pre-trained VGG16 network were L2 normalised before reaching the trainable
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Figure 3.24: VMS maps showing memorable (green) and falsely memorable (red) re-
gions, for the images from the first column, are shown in the second column, and their
corresponding predictions on the third column.

layers. All networks were trained on a single NVIDIA 1080 Ti GPU.

The prediction results for the VMS memorability channel are provided in Table 3.3 and
those for the false memorability are shown in Table 3.4. In these tables, we denote by
MSB when considering multiscale blocks, attention (or att) where we use non-local neural
blocks, as described in Section 3.2.2, and ‘Depth,’ when using depth maps according to
Section 3.2.2. VAE latent spaces are denoted by L + the latent dimension |z|.

For memorability, the best performing straight deconvolutional networks were trained
with the KL Divergence loss from (3.4), which provides the best MSE performance from
all tested architectures. For the false memorability, a simple MSB-based network sets
the record for MSE, although attention-based MSB networks come close. These results
for MSE outperform prior work by a significant margin. The superior performance of
the KL-loss may explain why VAEs remain the best overall approach. With limited
data, it is not surprising that VAEs with a smaller latent-space ‘bottleneck’ perform
better. By combining the ability of VAEs to extract low-dimensional memorability/false-
memorability features with non-local neural networks long-range dependency capture,
the VAE+Att L8 Model sets the state of the art results for four memorability metrics and
three false-memorability metrics. The baselines (VAE aside) performed poorly at both

74



CHAPTER 3. VISUAL MEMORY SCHEMAS

Table 3.3: Prediction results for the VMS memorability channel. SH: single-headed
output. KL: Kullback-Leibler Diver.

Model MSE↓ P 2D ↑ S2D ↑ KLD↓ EMD↓ SIM↑
CNN-deconv 70.09 -0.03 0.03 2.1 159.67 0.4
MSB 86.79 -0.01 -0.06 1.31 142.4 0.41
CNN-deconv SH 61.99 0.02 0.04 2.86 147.6 0.4
MSB SH 69.84 0.14 0.21 1.04 197.44 0.44
VAE (from 3.2.1) [83] 87.23 0.46 0.51 1.06 36.01 0.52

MSB-Attention 58.83 0.1 0.19 1.29 191.42 0.44
MSB-Depth 76.24 0.22 0.29 1.32 151.67 0.45
MSB-Depth+Att 70.99 0.24 0.37 0.99 186.75 0.46
MSB-Attention SH 69.63 0.31 0.32 3.01 80.8 0.46
MSB-Depth SH 77.36 0.13 0.2 1.88 141.46 0.42
MSB-Depth+Att SH 67.98 0.24 0.4 1 187.83 0.46
MSB-Attention KL 53.78 0.22 0.29 - 179.93 0.46
MSB-Depth KL 67.3 0.31 0.44 - 157.02 0.48
MSB-Depth+Att KL 79.2 0.34 0.41 - 106.1 0.49

VAE L8 92.44 0.48 0.52 - 36.3 0.53
VAE L64 83.57 0.47 0.52 - 35.06 0.51
VAE L128 96.13 0.43 0.47 - 47.22 0.49
VAE+Att L8 87.65 0.49 0.53 - 34.17 0.53
VAE+Att L32 87.88 0.46 0.51 - 36.88 0.52
VAE+Att L64 84.4 0.46 0.51 - 36.53 0.51
VAE+Att L128 91.31 0.44 0.48 - 42.91 0.49

true memorability and false memorability prediction, as it can be seen from Tables 3.3
and 3.4.

The poorest performing architecture is the straight deconvolutional network. The initial
introduction of multi-scale blocks improves performance slightly, and producing a single
output improves performance significantly. Both the introduction of self-attention and
depth information improves memorability prediction, though depth information alone
causes significantly poorer performance when predicting false memorability. Depth and
attention modules combined exceed the performance of either one alone. With this
additional information, there is minimal difference between single-headed or dual-headed
approaches. As with prior work, the prediction of the false-memorability channel remains
significantly more difficult than that of memorability prediction. This is because false
memorability maps are more varied and less consistent than positive memorability maps.

75



3.3. EXPERIMENTAL RESULTS

Table 3.4: VMS false memorability channel prediction results.

Model MSE↓ P 2D ↑ S2D ↑ KLD↓ EMD↓ SIM↑
CNN-deconv 39.9 -0.05 -0.09 8.73 33.3 0.12
MSB 35.96 -0.12 -0.16 9.5 23.92 0.05
CNN-deconv SH 39.94 -0.13 -0.19 9.98 37.29 0.08
MSB SH 38.54 -0.03 -0.03 8.12 22.64 0.11
VAE (from 3.2.1) [83] 75.66 0.34 0.37 1.85 36.38 0.36

MSB-Attention 38.53 0.12 0.15 2.17 186.03 0.29
MSB-Depth 69.7 -0.07 -0.17 6.58 35.52 0.15
MSB-Depth+Att 63.29 0.09 0.09 4.61 69.9 0.25
MSB-Attention SH 47.15 0.09 0.09 5.77 63.22 0.24
MSB-Depth SH 57.89 -0.2 -0.32 9.5 32.09 0.07
MSB-Depth+Att SH 66.6 0.17 0.17 3.28 67.42 0.28
MSB-Attention KL 38.62 0.23 0.26 - 122.24 0.33
MSB-Depth KL 48.33 0.17 0.25 - 159.54 0.3
MSB-Depth+Att KL 57.76 0.07 0.08 - 114.91 0.26

VAE L8 83.27 0.35 0.37 - 30.77 0.36
VAE L64 62.53 0.31 0.33 - 36.67 0.34
VAE L128 86.33 0.29 0.33 - 72.98 0.33
VAE+Att L8 74.66 0.36 0.37 - 29.73 0.37
VAE+Att L32 73.41 0.34 0.37 - 35.61 0.36
VAE+Att L64 67.86 0.33 0.36 - 47.24 0.36
VAE+Att L128 73.57 0.3 0.32 - 54.68 0.33

Nonetheless, incorporating self-attention mechanisms provides a significant improvement
to the performance, likely due to being able to capture longer-range dependencies. We
achieve a P 2D of 0.49 for the positive memorability and 0.36 for false memorability
respectively, which exceeds all previous models tested on VISCHEMA dataset. While
single-score models have matched human-level consistency, with a baseline for human
VMS consistency of 0.69, VMS prediction still has a way to go before reaching the level
of single-score predictors.

3.3.4 A Dual-Feedback Approach

Here we discuss the implementation details required to train the dual-feedback network
and present prediction results over the VMS4k dataset. The Dual-Feedback VMS (DF-
VMS) Network is trained using the Adam optimiser [77] with a learning rate of 5×10−5
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with β1 = 0.9 and β2 = 0.999. Each model is trained for 250 epochs on an Nvidia V100
GPU. The network is trained on two datasets. The first dataset is VMS4k, divided into
a train/validation/test split of 85%/5%/10%. Each input consists of a random batch of
scene images and their corresponding human annotated (ground truth) Visual Memory
Schemas. The second dataset is LaMem [75], with each training example consisting of
an input image (not necessarily a scene image) and its corresponding one-dimensional
memorability score. We train the network in a ‘tick-tock’ fashion, first on the LaMem
training set, then on the VMS4k training set, repeating each epoch until training is
complete. For our backbone we use either VGG16 or RESNET50, pre-trained on the
imagenet dataset. The weights of the backbone architecture are not updated during
training. We empirically choose α = 40−1 which helps prevent the network focusing
on predicting scores over our primary objective; the VMS maps. The network takes
approximately 18 hours to train on a single V100 GPU. We evaluate our architecture
on VMS4k and use LaMem as an optional auxiliary feedback mechanism. There is no
two-dimensional memorability data associated with the LaMem dataset.

Figure 3.25: Predicted VMS maps for the given scene images. Ground-truth maps come
from human data. Some human VMS maps contain false schemas (red), for visual-
isation purposes in this figure we only show predicted true (memorable) schemas. The
best performing DF-VMS variant employs a Resnet backbone, self-attention, multiscale-
information, and dual-feedback. VGG16 backbones do not capture the full spread of
memorability; instead focusing strongly on semantic regions. ResNet backbones, with
their richer feature extraction, perform better at VMS map prediction.
Results for reconstruction accuracy on VMS4k are shown in Table 3.5. While we obtain
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the best results with the ResNet50 backbone feature extractor, we include results using
the older VGG16 architecture for the purposes of comparison to prior work. In the
table, we show results for the previous best performing, variational autoencoder based
model, vms-VAE [83], on both the original VISCHEMA dataset, and on VMS4k. Our
DF-VMS model outperforms this model, even when vms-VAE is trained on our VMS4k
dataset (and thus benefits from the additional data) while using the older VGG16 as a
backbone for DF-VMS. Our analysis reveals that prior models are not capable of taking
advantage of our larger dataset. This drawback does not affect the proposed DF-VMS
approach. Our qualitative results indicate that DF-VMS models that use the VGG16
backbone tend to give overconfident memorability predictions over the semantic content
of the image, but do not capture the ‘spread’ of memorability across the image. To verify
that the model was not simply learning to activate on strong edges, we include results
for a baseline canny edge detector based approach. We find that this results in poor
performance compared to any of our networks; indicating that all models are learning
to detect ‘memorable regions’ rather than areas of strong edges.

Through our DF-VMS model we boost visual memory schema prediction performance
by 11.8% for true (memorable) schemas and by 8.6% for falsely memorable schemas
compared to prior work. In Fig. 3.25 we show a set of predicted examples for a variety
of both indoor and outdoor scene images along with their ground-truth human VMS
maps. Some human VMS maps (Ex. 1, Ex. 9) contain red areas that indicate regions
that lead to false remembering. See Fig. 3.26 for these examples with predicted false
memorability maps. While the VGG-backbone generates confident and clear predictions;
in practice, these fail to capture less memorable regions of the image, and overall a deeper
backbone leads to superior performance by offering features that capture regions which
do not contain the strongest memorable signal. For completeness (we do not focus on
score prediction), we include results for the LaMem test set from our auxiliary output.
We achieve reasonable results for this despite significant differences between the VMS4k
dataset (scene memorability) and the LaMem dataset (generic image memorability i.e.
frame-filling objects, faces, or people).

Ablation Testing To evaluate the impact of the various optional model improvements
(attention, dual feedback, multi-scale information) we train the best performing model
a further three times with a given aspect excluded (x) from the model, and show the
results in Table 3.5. In the table, -xA indicates attention excluded (i.e, not present in
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Figure 3.26: Examples 1, 9, and additional exemplars with predicted false memorability
maps. As consistent with [83], false schemas are often a subset of the true schema, and
are more difficult to predict.

the model), -xDF, dual-feedback excluded, and -xM, multiscale information excluded.
Additionally, we test performance purely on the auxiliary memorability loss by disabling
visual memory schema feedback (-xVMS). All ablation models were trained for the
same number of epochs as the original model. We find that in general disabling any
of these factors leads to poorer model performance, with the most drastic decrease oc-
curring when dual feedback is disabled, except for in the case of the relatively shallow
VGG16 backbone; in this case disabling dual feedback leads to an even greater perform-
ance increase over current SoTA. This is because the features extracted by the VGG16
network are not rich enough to support the additional constraints on learning imposed
by the LaMem feedback, and leads to an overall destabilising effect. However, in either
case both models still exceed current SoTA, and the deeper ResNet network does not
suffer from this destabilisation. The LaMem feedback appears to improve results in one
of two ways: 1.) by better predicting human ground truth in the memorable regions of
the image (DF leads to the network better understanding how semantic image features
relate to memorability) and 2.) by reducing erroneous predictions for regions of the
image that are unlabelled; neither memorable nor falsely-memorable. Hence, by em-
ploying existing large single-score memorability datasets as an auxiliary loss, an increase
(1.5%) in performance can be gained on sufficiently deep networks when predicting visual
memory schemas, without gathering more VMS data (a time consuming and expensive
task). Despite the differences between the VMS4k and LaMem dataset, the model has
learned additional features that relate to the memorable regions of scene images des-
pite the LaMem dataset not being scene-focused. Interestingly, disabling training on
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Backbone Method Dataset True P2d False P2d LaMem (p)
None Edge Detection VMS4k 0.234 0.216 -
VGG16 vms-VAE VMS4k 0.395 0.357 -

DF-VMS VMS4k + LaMem 0.425 0.374 0.552

ResNet50

DF-VMS-R VMS4k + LaMem 0.513 0.443 0.466
DF-VMS-R-xA VMS4k + LaMem 0.497 0.435 0.444
DF-VMS-R-xDF VMS4k 0.488 0.423 -
DF-VMS-R-xM VMS4k + LaMem 0.497 0.418 0.446
DF-VMS-R-xVMS LaMem - - 0.28

Table 3.5: VMS reconstruction results. True & False refer to memorable and falsely
memorable schemas (green/red in images). P 2d is the Pearsons 2D correlation [2, 83].
LaMem performance measured by Spearmans Correlation (ρ). xA indicates no attention,
xDF no dual-feedback, xM, no multi-scale information, xVMS, score prediction only. A
dash in the table indicates the network does not compute that output. We include results
for both a modern backbone, ResNet50, and for a fair comparison with prior work, a
VGG16 backbone. A comparison with state-of-the-art is given against the current best
model; vms-VAE from [83].

VMS4k leads to worse single-score performance; indicating that spatial memorability
maps gathered from humans could be applied in future work to boost single-score pre-
diction performance.

3.4 Conclusion

In this chapter, we have developed both new visual memory schema datasets, and new
approaches for predicting visual memory schemas for arbitrary scene images. We show
that our initial VAE model is capable of predicting Visual Memory Schemas for a given
input image, and can generate both true and false VMS maps simultaneously at over ten
times the resolution of previous approaches. Moreoever, we find a very close correlation
between the ground truth per-category metrics and the predicted per-category metrics,
and finally show that current single-score memorability prediction does not appear to
correlate with ground truth or predicted VMS metrics, and that these metrics do have
a significant, but weak, positive correlation with ground truth memorability scores from
the LaMem dataset. This indicates that VMSs can provide additional information about
image memorability which is not traditionally captured by other memorability prediction
methods.
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Following on from this, we explored several different approaches for Visual Memory
Schema map prediction. We examined the effect of depth in the scene, self-attention
mechanisms, multi-scale blocks, and when varying the size of VAE latent-spaces for gen-
erating VMSes corresponding to both positive and false memory. We consider various
performance metrics for all models in order to set a baseline for future work. We achieve
state-of-the-art results for VMS prediction for deep learning architectures, such as VAEs
and CNNs, when considering non-local self attention. Finally, we develop DF-VMS, a
novel dual-feedback based Visual Memory Schema prediction model. DF-VMS model is
trained both on VMS4k, a scene dataset with two-dimensional memorability informa-
tion, and on an a single-score dataset, LaMem. Through ablation tests, we show that
prediction of VMS maps is significantly improved by allowing the model to learn from ex-
isting single-score datasets, and additionally through the inclusion of self-attention and
multiscale information. Interestingly, we also find that disabling memorability map feed-
back is highly detrimental to single-score prediction performance. Our model achieves
state of the art performance, exceeding all our previous approaches, when predicting
memorable or falsely memorable regions of a scene image, on a large memorability data-
set of over 4000 scenes and VMS maps.

However, our contributions do not lay solely in deep learning VMS prediction models.
By starting from an initial seed of 800 scenes, we first double this to 1600 images paired
with visual memory schemas that follow the paradigm of the original experiment. We
then develop a new continuous paradigm suitable for online experimentation that al-
lows us to gather VMS maps in much greater quantities, developing a dataset of over
4000 scenes and VMS maps. We find from this data that category differences that
are not immediately apparent from single score metrics appear when considering two-
dimensional metrics, and that through modern segmentation techniques, we identify a
human-readable "schema" for each category. That is, we extract the objects that, when
appearing together, make a scene memorable. Our VAE model allows us to inspect the
models learnt latent space and reason about whether scene features cause memorable im-
ages to group together, while exploring various theoretically promising techniques shows
that we can boost VMS prediction in a significant fashion by considering state of the
art computational methods. These techniques come together in our dual-feedback VMS
model, which, allow us to set a new state-of-the-art for visual memory schema predic-
tion, by taking advantage of existing large-scale single score memorability datasets. We
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now consider whether we can use these predictors for more than just predicting VMS
maps - can we instead use them to modulate human memory itself?
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CHAPTER 4
Modulating Human Memory

4.1 Introduction

As we have seen in Chapter 2, cognitive science research of human visual episodic memory
over the last few decades reveals both large storage capacity and a surprising ability to
retain detail [15, 16]. Recent work at the intersection between the fields of machine
learning and cognitive psychology have exposed another property of visual memory for
images: consistency between observers [69]. Showing a set of images to a human popu-
lation sample, most members of that sample will remember roughly the same subset of
images. This implies that to a certain extent, image memorability (i.e. how likely the
average person is to remember a given image) is an implicit property of the image itself.
Image memorability does not correlate strongly with simple image characteristics such
as colour, intensity, the number of objects present in the scene [69], or with attention,
and is robust to overt cognitive influence [6]. Rather, high-level scene attributes help
explain the memorability of images [68], such as the content of the image (for example
the presence of "a person") or the dynamics occurring in the captured scene ("throwing
a ball"). While memorability is affected very weakly by certain global features, such
as average image hue and contrast, semantic context plays a stronger role, explored in
[73]. These features are related to, but not completely explained by, objects present in
the image [40], and specifically, their location and size [8]. These findings have lead to
attempts to predict image memorability using computational tools, which find the best
predictor to be high-level semantics, such as the image scene category [68]. Later work
established the influence of scene category and contextual distinctiveness on memorab-

83



4.1. INTRODUCTION

ility [20], and current state-of-the-art models employ automatic deep feature extraction
via convolutional neural networks (CNN) [49, 44]. The field of image memorability pre-
diction has advanced to the point where CNN-based models can predict how likely an
image is to be remembered with human-level consistency (Spearman rank correlation
coefficient of ρ = 0.67) [49].

Initially the majority of research studies framed the problem of image memorability
prediction as regression to a one-dimensional score. Recent research results develop
an understanding of memorability as a two-dimensional property that varies across an
image, resulting in the extraction and analysis of cognitive relational patterns that cap-
ture the regions of scene images human observers deem memorable. These relational
patterns, known as Visual Memory Schemas (VMS) [2], capture the cognitive repres-
entations and structures that humans use to organise and encode a given image into
memory, have high consistency between humans (ρ = 0.70), and a limited relation with
one dimensional single score predictors for memorability. VMS internal consistency
(measured via Pearsons 2D correlation) is higher than both VMS correlation with eye
fixations (P 2D = 0.50) or saliency (P 2D = 0.58) [83]. Compared to image memorabil-
ity prediction, fewer works tackle the task of modifying the memorability of images, or
that of generating images that are intended to be less or more memorable. Modifying
the memorability of face images was explored in [74], where it was found that active
appearance models [28] could be employed to adjust various facial features associated
with memorability. Deep generative models have also shown some success in modifying
image memorability, from face generation [121], to employing style transfer [120], to
transformer-based network capable of modifying the memorability of a seed image [49].

In this chapter, we present a generative model we call ‘MEMGAN’, capable of syn-
thesizing completely new photo-realistic scene images by using two-dimensional maps
of memorability. These maps are based upon cognitive relational patterns, which re-
veal the mechanisms humans employ to encode scene images in memory. We validate
this approach by performing a repeat-recognition human experiment, and find that our
generated images significantly modulate the memory performance of human observers.
When designing our approach, we set out to verify that visual memory schemas (VMS)
capture information that is memorable in an image to a sufficient degree to constrain a
generative model that can synthesise completely new scenes which in turn are able to
modulate human memory. We start with the analyses of the per-category consistency
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and the per-category memorability signal (measured by D-Prime) for the VISCHEMA
image datasets [133], and explore the relationship between consistency and memorabil-
ity in order to verify that VMS maps are suitable descriptors of memorability. We then
consider two deep learning generative adversarial techniques for generating memorable
images : based upon the Wasserstein loss metric [4], and a progressively growing net-
work. This approach allowed us to investigate what effect modifying the visual memory
schemas the scenes were based on, has on the generated images. The generative neural
network requires feedback on the memorability of its synthesised scenes during train-
ing time. The network generates hundreds of thousands of images during its training,
and memorability feedback is necessary for every generated image. To deal with this
constraint, we train a VMS prediction model based directly upon human data that can
produce VMS feedback for arbitrary scene images. The predictor learns which features
(from indoor scenes) make up a visual schema for our experimental kitchen scenes. It
is this feedback that constrains the generative model. We evaluate our generated scenes
via a human observer memory experiment, testing if our newly generated more memor-
able images are remembered better than the generated low memorability images. These
findings allow us to acquire new insights into the efficacy of modulating the performance
of human memory via images generated to activate specific visual memory schemas in
human observers.

Developing the capability to generate memorable scene images without requiring an
initial image seed has clear practical and theoretical applications. Such a technique could
be applied to create highly effective memorable advertisements, improve educational
tools, and there is also the potential for medical applications, such as tracking the
decline in memory of patients with advancing cognitive deficits by providing a targeted
baseline of memorability. A completely data driven approach such as this would provide
significant advances to the methods used in cognitive science for the study of mental
structures for the organisation of thought and behaviour employed by humans.

4.2 Results

4.2.1 VMS Consistency and Memorability

VMS maps capture spatial and relational components of episodic memory, and hence
contain additional information compared to single-score based image memorability meth-
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ods. In order to evaluate the validity of the data driven VMS maps as image memor-
ability predictors we examine their image category consistency. We employ a method
from signal detection theory to extract a global ‘memorability’ signal for each category
for human observers and then evaluate the correlation between this global signal and
VMS map consistency. The evaluation is performed on both the VISCHEMA 1 dataset
[2], which consists of 800 images and their corresponding 800 2D memorability maps,
and the VISCHEMA 2 dataset [83], an expansion to VISCHEMA 1 which consists of
another 800 images and memorability maps.

Consistency
Category VISCHEMA 1 VISCHEMA 2

Isolated 0.556 0.447
Populated 0.624 0.562
Public Ent. 0.706 0.661
Work/Home 0.674 0.57
Kitchen 0.628 0.479
Living Room 0.568 0.446
Small 0.611 0.525
Big 0.637 0.595

Table 4.1: Vischema 1 and Vischema 2 consistency, per category. Certain categories of
images, such as kitchens or scenes involving public entertainment (playgrounds, theme
parks) are more consistent than others, such as the isolated category. Higher consistency
implies participants agreed on specific features that made the image memorable.

The VISCHEMA 1 and 2 datasets contain a variety of images, grouped in the following
categories : Isolated, Populated, Public, Entertainment, Work/Home, Kitchen, Living
Room, Small and Big. The consistency of the VMS maps, on a category-by-category
bases for both VISCHEMA 1 and 2 is presented in Table 4.1. The consistency is calcu-
lated by taking 25 splits of the data (one split creating two VMS maps for each image,
each built from an equal division of human annotation data) and correlating the resulting
VMS maps against each other, using the Pearson’s Correlation Coefficient. For all image
categories the correlation is positive, and in many cases, strongly positive as is the case
for the “entertainment” category, composed of images of fairgrounds and playgrounds.
Observers tend to agree with each other on which regions allowed them to remember
the image in the categories that show strong consistency signal.
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D-Prime
Category VISCHEMA 1 VISCHEMA 2

Isolated 1.008 0.692
Populated 1.47 1.197
Public Ent. 2.037 1.813
Work/Home 1.896 1.38
Kitchen 1.602 1.257
Living Room 1.725 1.252
Small 1.52 1.4
Big 1.741 1.7

Table 4.2: D-Prime analysis of human memory for each category in the Vischema 1
and Vischema 2 datasets. High values clearly indicate that the memory signal for the
given image category is strong and thus image memorability for human observers is
high. Certain categories have stronger signals than others, possibly due to easier or
more available encoding schemas for that category among the human participants.

D′ = z(HR)− z(FAR) (4.1)

In order to test that visual memory schemas can capture image memorability we calculate
the signal strength of the observers’ memory for the given images by using the sensitivity
index, also known as the D′ (D-Prime) measure. The sensitivity index, D′ is a measure
from signal detection theory that represents the strength of a given signal, in our case
characterising the human observers ability to remember the given image. The equation
is shown in Equation 4.1, where z is the z-transform. The results for the D′ scores
are provided in Table 4.2 and similar to the consistency of memorable regions show
that not all image categories are equally memorable. Strong overall positive correlation
between image memorability measured with D′ and per category consistency of VMS
maps for both VISCHEMA 1 (ρ = 0.83, p < 0.05), and VISCHEMA 2 (ρ = 0.76, p
< 0.05) suggest a robust relationship between the two measures. When comparing this
correlation for each image in each category, we also see a positive correlation, shown
in Fig 4.1. The overall high VMS consistency and positive correlation with the image
memorability signal (measured by D′) indicates that VMS maps are a good descriptor
of image memorability. In the following we refer to the combined VISCHEMA 1 and 2
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Figure 4.1: Histogram showing the correlation between per image category consistency
for Vischema 1 and 2 datasets and human observers’ memory. Similar pattern of correl-
ations between datasets indicates the reliability of using Visual Memory Schemas.

datasets as the VISCHEMA PLUS dataset.

4.2.2 Generating Memorable Images Based on VMS Maps

In our study we start by developing two different deep learning network architectures for
generating memorable complex scenes, one based upon the Wasserstein GAN [4] capable
of producing images up to 128×128 pixels and the ProGAN architecture [70] architecture
capable of producing images of up to 256 × 256 pixels resolution. In order to generate
images of varying level of memorability we explore incorporating the data driven VMS
maps into the deep learning training and generation algorithm in two different ways. The
first is by considering it as a single score while the second is as a spatial map constraint
in the loss function used for training the deep learning models. We evaluated these two
different constraints in the Wasserstein GAN architecture by assessing whether the newly
generated images can produce a differential score when applying a computational single-
score artificial memorability predictor. Our ProGAN-derived architecture is capable of
generating images of a sufficient quality and resolution for human observer experiments,
with which we validate our approach.
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Figure 4.2: Generated images when fixing Z, where the sequence of generated images
is displayed from left to right, while the memorability M is varied from low to high.
Shown categories include kitchens, cathedrals, and living rooms.

Single-score constraint

The first implementation of VMS maps in a Wasserstein GAN architecture is in a form
of a single score that is based on the average intensity of the VMS map (i.e. observer
consistency) and is used to modify the memorability of the generated image. We hence
refer to our Wasserstein-based memorability generation network as W-MEMGAN. We
generate a range of images characterised by various levels of memorability, from low to
high, by fixing the generators latent code Z, which controls the semantic content of the
generated images, and varying the memorability input M to control the memorability
of the generated images.

The newly generated images are created in ascending memorability in order to examine
the variation space between exemplars of non-memorable and memorable images of a
given image. Figures 4.2a and 4.2b show the generated images for different examples
of scene from different scene categories, obtained by fixing Z while varying M from
low memorability to high memorability. Just from visual evaluation of the images it is
evident that clear differences emerge between images when increasing the memorability
constraint. We can observe in all the scenes from Figure 4.2a, that as memorability
increases, semantic details and a more realistic ‘kitchen-like’ appearance emerges. The
low memorability cases appear to display semantic ‘noise’ representing a collection of
mismatched features with loose spatial relations. The less memorable images may dis-
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Figure 4.3: Predicted low and high memorability for different memorability weighting
factors for α, considering α = 0 (in Equation 4.4) as baseline. When increasing α, all
generated images have a higher memorability than the baseline. The most memorable
images overall are obtained with α = 25, but the best pairwise effect is achieved with
α = 10.

play the typical elements of a kitchen, but lack structure, or rather the correct spatial
relationship between the elements. It appears that by defining visual memory schemas
as constraints of memorability results not only in the appearance of memorable semantic
details, but also enforces spatial relationships between these details. This lends evidence
that VMS maps capture semantic details and structures which match learned schemas
held in human cognition. From Figure 4.2b we can observe that when increasing the
memorability, this results in a better image structure, clarity, and detail, resulting in
images that better match human cognitive schemas.

In order to evaluate the newly generated images in a more quantitative fashion we gen-
erate 2000 images by setting the memorability constraint M either to very low or to
very high. This results in the generation of pairs of images where only the memorability
information varies between the two generated images while having the same random seed
Z. These images are then evaluated using AMNet [44], an independent memorability
prediction network. AMNet predicts the memorability of images on a scale between
0 and 1.0, allowing us to calculate the difference between our population of intended
memorable and non-memorable generated images, while also allowing us to inspect the
difference between the newly generated paired images. The results in Figure 4.4a show
a statistically significant difference in memorability (p < 0.01) between the two pop-
ulations. Images generated to be memorable clearly show a trend to be predicted as
more memorable compared to the baseline population of low-memorability images. To
note is that not all the highly memorable generated images are themselves equally mem-
orable independent from the memorability modulation as we have seen when looking
at memorability across different scene categories. Thus, when examining the pairs of
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Figure 4.4: Differences in predicted memorability for low and highly memorable images
generated with W-MEMGAN.

our generated images, we find that as overall image memorability decreases, it becomes
more difficult to influence the memorability of certain scene image categories which are
already not particularly memorable. When the image generated to be memorable has
a predicted memorability above 0.65, then 79.5% of the pairs of memorable and non-
memorable images have a positive difference in memorability. When memorability falls
below 0.65, only 40.7% of the pairs have a positive difference in memorability, where a
‘positive difference in memorability’ indicates that the image generated to be memorable
is predicted as more memorable than the image generated to be non-memorable.

Spatial map constraint

A single score for an entire image does not capture spatial information about the mem-
orability in the scene. As VMS maps reveal, not all regions of the image are equally
memorable and in many cases memorability is concentrated on certain structures in-
side the image. We hypothesise that these carry semantic information that matches
corresponding cognitive structures (schemas) used by the observers to encode and then
retrieve information from long-term memory. It is highly unlikely that a single score
represents the entirety of the memorability of an image. There are most likely multiple
characteristics within an image associated and encoded with an episode of encountering
that image. Instead, we hypothesised based on numerous findings from Cognitive Sci-
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ence that how closely a viewed scene corresponds to a cognitive schema plays a role in
image memorability or rather how much is an image memorable to a human observer.
While single score methods might be able to predict image memorability, they do not
reveal anything about why the image is memorable for a human observer, or which ele-
ments in it cause that image to be remembered. We instead base this constraint on the
concept of a visual memory schema represented in two dimensions; an organisational
map of semantic elements shared amongst human observers that enable the encoding
and recognition of scenes.

This method naturally lends itself to a two-dimensional representation of image memor-
ability; the regions captured inside a visual memory schema map are thought to directly
represent the semantic elements that lead to that image’s encoding and recognition.
These elements correspond with schemas held in the brain; cognitive structures that
represent the typical elements (and arrangement of elements) of a scene. A human,
through life long experience and acquired knowledge, may construct a schema of a kit-
chen, learning that a kitchen may contain countertops, an oven, and kitchen appliances
(this is an example; real schemas are likely more complex and flexible). Scene images
that better match this mental schema in both arrangement and semantic presence have
an encoding advantage against kitchen scenes that lack these elements or arrangements.
Computational measures that employ visual memory schemas can be thought of as learn-
ing a method to replicate human scene memory that more closely mirrors the method
the human brain uses to encode scene images; the visual schema.

Hence, to take advantage of the 2D characteristics of VMS maps, we modify W-MEMGAN
to take as input a 10 × 10 pixel map describing the intended spatial memorability of
the generated image. The provided input are artificial VMS maps created using a deep
learning method trained on VISCHEMA 1 and 2 (VISCHEMA PLUS), similar to those
obtained from human observers.As with single-score VMS constrained memorability,
employing artificial 2D VMS maps to alter the memorability of generated images also
results in a statistically significant difference between populations of 1,000 generated
memorable and 1,000 generated non-memorable images, shown in Figure 4.4b. These
findings indicate that both single-score and spatial constraints extracted from the VMS
maps incorporated into our W-MEMGAN architecture are capable of modulating the
memorability of newly generated images evaluated by an artificial memorability predictor
such as AMNet. The non-spatial single-score implementation of the VMS results in a
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Figure 4.5: Memorable, shown within green boundaries and non-memorable, shown
within red boundaries generated image pairs. Foils are shown within blue boundaries.

greater effect size of the difference in memorability (0.19 vs 0.15, Cohens D) compared
to the spatial method. We postulate that this could be the result of additional difficulty
of integrating a spatial constraint compared to calculating a single score constraint for
the entire image.

To examine the effect of the feedback strength of the memorability feedback mechanism
we tested several different values for α, the hyper-parameter which controls the ‘strength’
of the mechanism and defines how strongly we intend memorability to affect our gener-
ated images. The effect of four different values of α: 0, 10, 25, and 50 on the prediction
of low and high memorability in generated images is shown in Figure 4.3). For α = 0,
the memorability predictor provides no feedback to the network, disabling the influence
of VMS maps and hence is used as a baseline. Best results are achieved for α = 10,
resulting in the clearest difference between high and low-memorability images and no-
ticeably above those of the baseline, Fig. 4.3a. Using an α = 25 resulted in generation of
images with high memorability scores but with reduced ability to discriminate between
the low and high memorable exemplars. Higher values for α prevent the W-MEMGAN
from distinguishing between high and low memorability images, instead just raising the
memorability of every image generated by the network, as shown by the results from
Figures 4.3b and 4.3c.
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Figure 4.6: Generated high-memorability images (left) and their low-memorability pairs
(right). VMS maps for each image are shown on the bottom row.

4.2.3 Human memory performance for generated images

We test the feasibility of directly modulating image memorability using VMS maps by
conducting a visual memory experiment with human observers. The images used in
the experiment were generated by our second architecture; based upon ProGAN [70]
combined with memorability feedback, which we term ‘MEMGAN’. MEMGAN enables
the creation of higher resolution images at a much higher quality than the W-MEMGAN
architecture. Based on our previous results, we weight the memorability constraint
to a value of α = 10, which gives the best partition between memorable and non-
memorable generated images. Examples of images generated are shown in Figure 4.5.
In the experiment, human observers were asked to view a stream of generated images
presented for 3 second each one at a time. Participants were asked to recognize images
they recognized as repeats and indicate upon identifying a repeat the areas in the image
that made them remember the image. This allowed us to evaluate the memorability of
generated scenes through the hit rate of the images (how often an image was successfully
recognized as a repeat) and the consistency of the VMS maps across observers (regions
in the image indicated as memorable areas, see the examples from Figure 4.6).

To determine how consistent our participants were with each other, we take 25 equal
splits of our visual memory schema map and hit data for each split, and then compare
them against one another. We find a hit-rate consistency of 0.3 (Spearmans ρ, p<.0001
for all splits) and an overall VMS map consistency of 0.38 (Pearson Linear Correlation
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Coefficient). The VMS map consistency is lower than the 0.67 presented in [2], but this
is expected given that our task contains only two different categories of images, and
is thus a very homogeneous stimulus set. Nonetheless, there exists a clear consistency
between participants.

Figure 4.7: Difference in memorability (HR and VMS Intensity) for generated image
populations. Degree 3 polynomial fitted for visualisation.

Differences in Observed Memorability for Generated Images

The evaluation of the hit rates for the generated high and low memorable images, (Figure
4.7a, shows that high memorable images result in both average higher hit rates (0.45 for
high and 0.39 for low memorable) and average higher false alarms rate (0.20 for high
and 0.16 for low memorable). However there is a statistically significant difference (p
<0.05) for the hit rates but not for the false alarms rates between generated images
as highly memorable and those with low memorability. This pattern of results, of a
robust difference in hit rates and a lower difference in false alarms, is expected [83, 38]
given that the same structures that enable easier encoding of a scene, also make it more
likely for a human to believe they have seen that scene. Indeed, within the VISCHEMA
image set with which the memorability evaluator was trained, a rise in memorability
corresponds with a rise in false memorability (ρ = 0.19, p < 0.001).
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Differences in Observed Visual Memory Schemas for Generated Images

Comparison of differences in Visual Memory Schemas between high and low memorab-
ility images required that we first condense each VMS map down to an average intens-
ity. Outliers beyond two standard deviations of the mean were excluded. This gives
us separate values for both images that were correctly recognised as seen before (true
memorability) and those misrecognised (false memorability). There is a statistically sig-
nificant difference (p <0.05, effect size 0.36 Cohens D) in the VMS memorability chan-
nel for highly memorable images vs low memorable images, with a robust Bayes factor
ln(BF ) = 1.117 indicating substantial evidence for the effect of modulating memorab-
ility (see Figure 4.7b. As before, there is no statistical difference for false memorability
between image catgeories. We also compared predicted VMS maps from the generator
network to those outlined by the human observers and found a Pearsons Correlation of
0.49 (p <0.05), a Spearman rank correlation of 0.5 (p <0.05), with a population average
mean-squared error of 58 between predicted and human-gathered VMS maps. These
results indicate that the relational memorability patterns used to generate the images
are effective in defining visual memory schemas in the same images, which correlates
positively with those indicated by human observers.

Image Pair Analysis

The results for both the hit rate and observed VMS’s are encouraging, and clearly show
a statistical difference between the overall populations of highly memorable and low
memorability generated images. However, the images were generated in pairs, with high
and low memorable versions of the same scene image, as defined by a fixed latent code,
and by modulated memorability, and thus can be compared as such. This requires the
evaluation of the pair-wise difference, between an image with the same latent code but
modulated memorability. Results indicate a statistically significant difference (p <0.02,
paired T-test, Wilcoxon signed-rank test) for both hit rates and VMS memorability.

Comparing our results with an independent computational predictor of mem-
orability

We also compare the results obtained on our human observer study with those of a recent
state-of-the-art memorability predictor [44], trained on the same dataset (LSUN, [142])
from which we drew the training data for our MEMGAN models. We find no significant
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Table 4.3: Comparison between MEMGAN and GANALYZE.

Method Primary Focus Log-odds increase Constraint Seed Image Required? Pretrained Generator Required?

GANALYZE [49] Objects/Animals 0.19 / step Single-score Yes Yes
MEMGAN Indoor Scenes 0.31 2D Map No No

correlation between the memorability scores calculated by the independent memorab-
ility predictor for our images with the experimentally obtained hit rates or VMS map
intensity of our images. This finding suggests that memorability predictors based only
on single-score models of memorability are missing important characteristics of human
visual memory, and that artificial predictors fail to predict human memory performance
for generated images. However, we do see a significant effect (p< 0.05, Paired T-test,
Wilcoxon signed-rank, Mann-Whitney U), when comparing paired predicted scores for
our generated high and low memorability images, which suggests computational predict-
ors can differentiate between populations of generated images.

Comparison with prior work

Comparison with prior work is made difficult due to both inter-experiment paradigm
differences and differences in the datasets employed by previous work compared to ours.
We cannot compare with work that examines face memorability, as memory for faces
employs a different mechanism than that of scenes [115]. The most sensible comparison
of our work is with that of Lore et al. [49], where a transformer is employed to shift the
memorability of images within the latent space of a BigGAN [18] network. However,
our experiment is more difficult than that of [49] for several reasons. Our stimulus
set is indoor scene focused, rather than consisting of objects and animals, and hence
is more homogeneous compared to [49], which makes remembering our images more
difficult [20]. Secondly, the gap between target and repeat is, on average, longer than
the longest gap in the memory experiment of [49], again making the task more difficult.
Thirdly, we must manipulate the semantic content of entire scenes, whereas in [49] the
differences in object memorability are due to changes in object size, brightness, object
centeredness, and object shape. Most of these factors cannot be manipulated to make
scenes more memorable. Henceforth this comparison should be taken with these key
paradigm differences in mind.

We employ the same method as in [49] to calculate the log-odds difference between our
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low and high memorability image sets for our scenes. In Table 4.3, we show the log-
odds increase, which captures how much more likely a "high memorability" image is to
be remembered by a human than a "low memorability" image. We also indicate the
memorability constraint type, whether an initial seed image is required to be modified,
and if a pretrained generator is necessary. We find the log-odds of remembering an image
in the "high" category increase by 0.31 compared to those from the "low" category.
Despite our harder memorability task, our results are comparable to that of [49], while
being able to train in only 14 days on 4x Nvidia 1080 Ti, compared to BigGAN requiring
15 days on 8x Nvidia V100s (significantly more powerful GPUs). Our approach also does
not require an initial "seed image" to modify. While the memorability of scenes and
objects cannot necessarily be directly compared, the log-odds increase being comparable
between both approaches is additional evidence that Visual Memory Schemas are good
descriptors of memorability.

4.3 Discussion

In this chapter we presented and evaluated a method of generating scene images con-
strained by a construct from cognitive science: visual memory schemas, and tested its
validity to modulate human episodic memory of images. The modelling of the VMSs
is data driven and based on human memory study. We directly manipulate the visual
schemas of images in a generative deep learning model (MEMGAN) and hence influence
the final memorability of generated images. To our knowledge this is the first example
of a generative model specifically trained from scratch to generate memorable scene
images employing two-dimensional memorability data gathered from human observer
experiments. Moreover, we double the size of an existing two-dimensional memorability
dataset, and for the first time investigate the relationship between VMS map consistency
and image memorability, along with presenting per-category consistency data for VIS-
CHEMA categories. Encouragingly, consistency values remain high for both the original
VISCHEMA dataset and our second replicated experiment, confirming the validity of
this approach of gathering two-dimensional memorability maps.

There is currently a limited number of existing approaches to the problem of modifica-
tion of image memorability. Sidorov et al. [121] examine various methods for altering the
memorability of images, from basic-photo editing techniques such as adjusting the sat-
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uration of the image, to the employment of an attention-based Generative Adversarial
Network (GAN) for generating memorable face photographs. The memorability data
used as input for training the GAN was drawn from artificial memorability predictors.
They find that both their altered and generated images produce changes to the arti-
ficially predicted memorability score of images but do not have any data on human
observers. This approach is similar to that from [120], in which a deep style-transfer
model was trained to automatically apply ‘filters’ such as sepia tones or saturation boost-
ers to images in order to boost said images memorability. In [49], Lore et al. develop
a transformer network that can be attached to an existing generator in order to ad-
just the memorability of generated images. While this approach does leverage existing
trained networks to generate photorealistic images, this is dependent upon the chosen
generator, and additionally requires a generated ‘seed’ image for the network to adjust.
As a feedback mechanism they employ single-score memorability predictors. They show
through human recognition trials that the images adjusted to be more memorable tend
to be empirically more memorable.

Prior approaches to memorability modification require a starting image (real or gen-
erated), and it is the memorability of this image that is then modified. We instead
desire to create an approach that can generate images without requiring this initial
seed image, and can instead synthesise recognisable scene images given only a latent
code and a desired memorability. As proof of concept that cognitive relational patterns
can serve as the basis for a generative network for memorable scene images we develop
and train an architecture that can synthesise low-resolution memorability-constrained
images. We evaluated the potential of both single-score VMS based memorability and
spatial memorability as a driving mechanism for scene image generation. The generated
images, despite low resolution and relatively poor quality, are capable of causing a signi-
ficant effect in a state-of-the-art third-party memorability prediction network that had
never previously seen the generated images. Further, by modifying the strength of the
memorability feedback mechanism our memorability constrained images can be made to
display both higher and lower image memorability compared to a baseline of generated
images where the memorability feedback network is disabled. Interestingly, placing too
much emphasis on the feedback network causes the network to lose discriminative power,
becoming unable to correctly generate images with high vs low memorability, yet gen-
erating images that were predicted to be much more memorable overall. This provides
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evidence that we can manipulate the memorability of generated images in a meaningful
way. Image memorability based on VMS maps appears to control both the emergence
of semantic details as well as the spatial relationships created between these details.

The final test of visual memory schemas as viable mechanisms for modulating image
memorability is whether our approach could functionally work with actual human ob-
servers and not only with computational memorability predictors. By integrating our
memorability evaluator and loss component with a more advanced generator allowed us
to influence the memorability of relatively high resolution, high-detail images. While
we lack the resources to generate high resolution photo-realistic images, the images we
do generate show clear structure, detail, and are certainly recognisable as belonging to
their intended category. From our results (and given that we based our model constraint
on visual memory schemas), we hypothesise that more memorable scenes better match
the cognitive schema of that scene contained within the human mind. In this work, we
observe that making a scene more memorable results in changes to the structure and
content of the generated scene compared to the same scene generated to be of a lower
memorability. We hypothesise these differences cause the image to become closer or fur-
ther from the mental representation (i.e, the schema) of that scene which is stored within
the human brain. However, it is unclear whether the differences in schema between high
and low memorability images also result in greater difficulties visually recognising the
image as an exemplar of its class. To test this, we employed a scene recognition deep
neural network (ResNet152 [58]) trained on the Places365 dataset [148] to categorize
every synthesised image. We find that in general the majority of images are classified as
their class (or a highly similar, related class, e.g, galley vs kitchen). For highly memor-
able generated images, 96% of images are correctly classified and for low memorability
generated images, 95% of them are correctly classified as kitchens by the scene recog-
nition network. There appears to be little difference in how visually recognisable the
generated images are as members of their class; and the demonstrated memorability
effect appears independent of visual recognizability. Given that human ability to cat-
egorize scene images generally exceeds that of neural networks; the recognizability scores
shown are best viewed as a lower bound. Additionally, as human memory is not contin-
gent upon resolution [127, 48, 139] and perfect photo-realism, the images we generate
serve well for their intended purpose. We show through human observer memory exper-
iment that the images we generate to be more memorable are more likely to be detected
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correctly as repeated images by humans. Additionally, we find that the false-alarm rate
of said images also increases, an encouraging sign that our images are truly modulated
by visual memory schemas, as the exact same effect appears in the VISCHEMA dataset
of real images. The cognitive schemas that aid the remembering of scenes also lead to
false remembering when presented with a memorable image modelled on the schema,
even if that image has never been seen before. Critically, we are able to generate mem-
orable images without requiring a seed image, such as the approach employed in [49],
and verify that two-dimensional maps of memorability can be employed to modulate
memorability, rather than relying on single-score approaches.

In summary, our results indicate we were able to both fool computational memorability
predictors, and manipulate human visual long-term memory via artificially generated
images, constrained with a two-dimensional visual memorability schema concept bor-
rowed from cognitive psychology, for which there are neural correlates [128]. It may
appear circular that we have constrained a model with visual memory schemas, (which
indicate memorable regions) and find that our generated images are indeed memor-
able. However, this only appears this way because the data shows an effect on human
memory; there was no guarantee that this was possible to accomplish. There is addi-
tionally no guarantee that the generative model would be able to be constrained by the
visual memory schemas. There is little work in this area (and none that examines the
visual schemas of generated images); and in essence the model is the test - investigating
whether it is, or it is not possible to use visual memory schemas to synthesise scenes
that can modulate human memory. We find that by employing VMS maps we are able
to generate completely new artificial scenes that cause a desired modulation of human
memory as tested by a human observer memory experiment. This has interesting im-
plications for the future study of image memorability, as well as real-world applications
for memorability research.

We have designed a neural network that appears to understand visual memory schemas to
a sufficient enough degree to use them to visibly change the output of a generated scene,
based upon a brand new, extrapolated or invented schema (of controllable memorability),
that we want the scene to match. The generative network is constrained by an artificial
VMS map predictor that can produce two-dimensional memorability maps for arbitrary
scene images; the greater the difference between the predicted VMS map and the target
VMS map for a synthesised scene, the more the network is penalised. As we have shown,
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when we constrain a synthesis network with a VMS predictor, we find that we are able
to generate scenes that affect human memory for those scenes, or rather, affect their the
performance on a memory test. We learn from this that visual memory schemas appear
a strong enough descriptor of what information humans encode into memory to enact
visible changes on the synthesised images based upon the input schema.

4.4 Methods

4.4.1 Memorability Estimation Feedback Network

The assessment of image memorability is performed by employing a Visual Memory
Schema prediction model developed in [83], which is based on the Variational Autoen-
coder (VAE) [76] learning model. A VAE is made up of two convolutional networks:
the encoder aiming to extract a latent space representing the data, and the decoder
which aims to reconstruct the given data. Following training, given an image, the VAE
is used to predict its corresponding VMS map. We train this model on the VISCHEMA
PLUS dataset containing 1,600 image/VMS pairs. The output of this model is a two-
dimensional VMS map. This predicted VMS map is based upon the latent space of the
VAE, which corresponds to a learnt mapping of image features to memorability based
upon multiple human observations for the input image. We only consider the ‘mem-
orability’ channel of the VMS maps (true schemas), and do not make use of the ‘false
memorability’ (false schemas) information. For the given VMS data (x, the encoder of
the VAE infers a latent space z, by using the following loss function :

L(θ, ϕ) = −Ez∼qθ(z|x)[log pϕ(x|z)] +KL(qθ(z|x)||p(z)), (4.2)

where the former term represents the log-likelihood of VMS reconstruction by using
the decoder network and the latter represents the Kullback-Leibler (KL) divergence
between the variational distribution qθ(z|x) and the prior p(z) aiming to assess the
image reconstruction ability of the network. θ and ϕ represent the parameters of the
VAE’s encoder and decoder networks, respectively.
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Figure 4.8: Memorability-constrained image generation model architecture. PixelNorm
and Minibatch Standard Deviation layers omitted for clarity.

4.4.2 W-MEMGAN Architecture & Training

The diagram of the deep learning architecture used for generating memorable images is
shown in Figure 4.8. It consists of a Generator G, a Discriminator D, and the mem-
orability feedback network M. While the generator creates memorable images, the
discriminator evaluates the ‘realness’ of the generated images, and the auxiliary mem-
orability network evaluates whether the memorability of the generated image matches
the memorability defined by a memorability constraint M. M in this case may either be
a two-dimensional target VMS map, or a single target memorability score. The image
generation network G, corresponding to the generator from WGAN, aims to synthesise
an image Î using random variables Z as inputs, which defines the latent space of the
MEMGAN, while M acts as the memorability constraint :

Î = G(Z,M). (4.3)

The output of the generator is a generated image Î, whose memorability score is as
close to M as possible. Both Z and M are drawn from Gaussian distributions. The
generator is constrained by both the discriminator D and by the memorability feedback
network M, which estimates the memorability map Îm = M(I). The discriminator D

is implemented as an improved Wasserstein GAN model [54] which employs a penalty
term on the discriminator loss yielding better performance and stability when compared
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to the classical GAN [51].

During the training, Z is sampled randomly from a Gaussian distribution, and M is
either sampled from the Gaussian distribution or Pt, the distribution of possible target
VMS maps, depending whether the network is being trained for spatial memorability or
single-score memorability. When training the discriminator D, M is discarded, as it is
only necessary for training the generator, where it is used to calculate the memorability
loss. This has the effect of penalising the generator if the generated images are not of a
similar memorability to that defined by M. For example, if the image was intended to
be memorable while actually it is not memorable, the generator loss will increase. Each
training epoch consisted of 60,000 kitchen images drawn from the LSUN database [142],
and the network was trained for 500 epochs, which took approximately 8 days on 4 ×
Nvidia 1080 Ti GPUs.

4.4.3 MEMGAN Architecture & Training

Figure 4.9: Progressive generator with per-resolution memorability estimation.

The Wasserstein GAN based network does not generate memorable images at a suffi-
ciently high resolution and quality for human trials. Given the latent code Z and an
artificially generated target 2D visual memory schema (VMS) map V, the goal was to
generate a sufficiently realistic 256×256 pixel image from Z, whose VMS is close to that
of V. We hence combine the memorability feedback network with a more suitable gen-
erator architecture, that of the progressive GAN [70]. We draw V from Pt, the possible
target VMS maps.
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While aiming to obtain photo-realism is preferable, it is not a strong requirement for
our architecture and subsequent human observer experiment. As long as the image
generated is recognisably as a member of its target category, a human observer will
employ the correct visual schema when encoding the image into memory. This allows
us to reduce the capacity of the network compared to the original progressive GAN [70],
which results in an accelerated training time on the available hardware. A simplified (for
visualisation purposes) architecture is shown in Figure 4.9. The MEMGAN architecture
we develop bears superficial similarities to both ACGAN [101] and InfoGAN [25], though
rather than predicting discrete class labels or extracting interpretable dimensions in
an unsupervised fashion, it generates memorable images, without a prerequisite seed
image (such as those used in [49]), while being supervised by human observer-based
cognitive structures. The generative network architecture has specific processing blocks
for each image resolution, as can be observed in Figure 4.9. The output image of each
resolution block is passed through the memorability predictor as the network generates
more accurate images of increasing resolution. As each resolution block takes over the
information produced by the previous layer of processing blocks, the connection of those
blocks to the memorability predictor is dropped. This allows the memorability signal to
affect all resolutions of the generator during training. We only generate up to a resolution
of 256×256 to limit the computation time, which is ever increasing when attempting to
generate images of higher resolutions. The training time is reduced at the cost of losing
some detail by reducing the capacity of the 256×256 and 128×128 resolution blocks by
half. Finally we add a tanh activation function at the output, before merging different
resolution blocks, which aids stability.

We trained two deep generative networks in order to generate images for our human
memory experiment, one with a memorability constraint (MEMGAN) and another
without, whose purpose was to generate foil images. Both networks were trained for
200 epochs. Each resolution block was slowly introduced to the network over a duration
of ten epochs, and then trained for an additional ten epochs before the next resolution
block was introduced. Each of the first five resolution blocks of 128 × 128 pixels from
Figure 4.9, was shown a total of 4,800,000 images. The final block of 128 × 128 was
shown 2,400,000 images. These images were drawn from a dataset of 240,000 kitchen
scene images, and the same number of living room scene images, both drawn from the
LSUN database [142]. This allowed a suitable balance between resolution, quality, and
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required total training time. We follow the example set in [77] with the following para-
meters: Lr = 0.0015, β1 = 0, β2 = 0.99, e = 1 × 10−8. Each of the two networks was
trained for 14 days on 4 × Nvidia 1080 Ti GPUs.

4.4.4 Loss functions

Both our memorable image generators are designed to use the same loss function, the
Wasserstein metric combined with a component which calculates the difference between
the desired and generated memorability for a given image. This training mechanism
works for both single-score and VMS map memorability training examples.

L = E
ẑ∼Pz ,v∼Pt

[D(G(ẑ,v))]− E
x∼Pr

[D(x))] + λLossgp + α E
x̂∼Pg ,v∼Pt

[(M(x̂)− v)2] (4.4)

The loss function is designed to embed a memorability predictor and contains the follow-
ing components: a generator network G, a discriminator D and memorability predictor
network M. Considering the latent code distribution Pz, target VMS distribution Pt,
real image distribution Pr, predicted VMS distribution Pv, and generated image distri-
bution Pg based upon the latent code ẑ and v̂ we define the loss function in Eq. (4.4).
The latent code ẑ is drawn from a Gaussian distribution and v from a distribution of
target VMS maps, where height, width, and intensity of VMS regions is drawn from a
uniform distribution. λLossgp refers to the gradient penalty loss in [138]. α controls the
strength of the memorability loss. Pg represents the probability of the generated data
and Pr is the probability of the real data. The additional term controlled by the hy-
perparameter λ prevents the gradients inside the discriminator from violating Lipschitz
continuity, whereas the first two terms evaluate the Earth-Mover distance between the
generated and real distributions. The additional memorability loss, combined with the
Wasserstein loss, constrains the image generation by both ‘realness’ and memorability
simultaneously.

4.4.5 Generating Images for Human Observer Experiments

We generated low-memorability and high-memorability kitchen images with our MEMGAN.
To avoid making the task too difficult, we also generate memorability-unconstrained im-
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ages of another interior scene category to act as foils in the memory experiment, living
rooms. Our target memorability-modulated images are generated in pairs, with a fixed
latent code Z per pair, varying the desired target VMS map between low and high mem-
orability (modulating memorability constraint M); for each highly-memorable image
there is a non-memorable image defined by the same latent code. We generated several
hundred pairs and additionally memorability-unconstrained images as foils. Foil images
and target image pairs suffering from extreme distortion were excluded from this study
to avoid differences in memorability being caused by drastic quality differences between
categories. In order to avoid any bias in the selection of images, if one image of a target
pair is of acceptable quality to be included in a human trial, then the other image of the
pair is automatically included as well. What is more there is little chance of biasing the
images for memorability one way or another, as it has been shown in prior studies that
humans cannot intrinsically predict the memorability of any given image [68].

We selected 100 pairs of high and low-memorability generated images, for 200 memorability-
constrained images overall. We additionally selected 200 generated living room scene
foils of suitable quality. The resulting 400 images were used as a stimulus set for the
human observer memory experiment that tested the validity of our memory modula-
tion. We quantified the image quality differences by employing the Fréschet Incep-
tion Distance (FID) [61] and note minimal differences between categories. The high-
memorability images have a FID of 108 and the low-memorability images a FID score
of 104, while the non-constrained images (foils) had a FID score of 88. Based on these
minimal differences, it is highly unlikely that differences in image quality are affect-
ing the memorability of our images. The VMS training datasets can be found at ht-
tps://www.cs.york.ac.uk/vischema/

4.4.6 Human Memory Experiment

With our stimulus set of generated images, we conduct a human recognition memory
experiment with 119 participants. Each participant saw one of ten unique sequences of
150 images, with 40 targets (i.e. repeats of once presented images in the sequence) per
sequence. Both foils and target images could be repeated. Each image was shown on-
screen for 3 seconds. Where an image was repeated, we ensured a minimum of at least
30 images between first showing and repeat (see Figure 4.10. Each sequence was viewed
on average by 12 different participants. Participants were asked to indicate by pressing
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Figure 4.10: Memorability experiment structure.

a button when an image they were viewing was a repeat. If they correctly indicated
a repeat it was considered a hit and if not, then a miss. When participants indicated
that they recognised a repeat, they were asked to annotate the regions in the image they
believe caused them to remember the image. This allowed us to gather two-dimensional
memorability maps for our generated images. Each sequence took approximately 9
minutes on average for a participant to complete. We then analyse these results through
several statistical tests, primarily a one-way independent Analysis of variance (ANOVA).
We also employ Mann-Whitney U tests to verify that our effect occurs in the intended
direction, and Kruskal-Wallis and Wilcoxon signed-rank tests to verify that our results
hold if distribution assumptions are relaxed. Critically, no single participant was shown
both the high-memorability and the low-memorability image of a given pair in the same
image stream. This prevented recognition of images by previously viewing the same
image with a different memorability value, rather than remembering a repeat of the
target. Participants were paid at a rate of $7.02 per hour using the crowdsourcing
platform Prolific, and prescreened such that all participants were between 18 - 65 years
of age and fluent in English. This experiment was approved by the Departmental Ethics
Committee of the Dept. of Psychology, University of York, UK, and follows relevant
guidelines given by that committee. Informed consent was given by participants, and
they were free to withdraw at any time.

4.4.7 Evaluating Scene Recognition Differences

To determine whether there was any difference in recognizability between high and low
memorability images that has arisen due to differences in their structure, we employ a
deep neural network. We select a ResNet152 model [58], which has been pretrained on

108



CHAPTER 4. MODULATING HUMAN MEMORY

the Places365 [148] dataset, such that it can classify images into one of 365 different
scenes. If the network predicts the image is a kitchen (or kitchen related) we record this
as a successful recognition of the scene. As the network predictions can be specific to
the type of kitchen (for example, the network is capable of differentiating a ‘galley’ style
kitchen from a ‘wet-bar’) we select a set of categories that closely relate to kitchens;
and assume any prediction in this set is a correct recognition that the image shown is
a kitchen. This subset consists of: ‘kitchen’, ‘wet_bar’, ‘galley’, ‘restaurant_kitchen’,
and ‘sushi_bar’. We then accumulate predictions by running all images from both the
low memorability category and high memorability category through this network, and
record the predictions. We find that the low memorability category has a recognition
rate (correct predictions) of 95%, and for high memorability, a recognition rate of 96%.

4.5 Summary

In this chapter we have presented and evaluated MEMGAN, a method of synthesising
scene images constrained by visual memory schemas. This application of both generative
networks and cognitive science allows us to directly manipulate the visual schemas of
generated images and hence influence their resulting memorability. We evaluate the
outputs of our model by conducting a memory experiment on human observers, finding
that scene images generated with high-memorability visual memory schemas result in
superior memory performance from the human participants, while low-memorability
visual schemas result in more forgettable images. Additionally, we show a high degree of
correlation between the predicted visual memory schemas of our generated images and
the real-world obtained visual memory schemas of human observers, indicating we were
able to manipulate human mental schemas towards those of our target schemas. This has
interesting implications for the future study of image memorability, as well as real-world
applications for image memorability research, and further validates the Visual Memory
Schema approach for the purposes of characterising human long-term visual memory. In
the next chapter, we turn to investigating another perceptual image characteristic; scene
complexity, which may relate to the memorability of that scene. We investigate how we
can extract, understand, and model human perception of scene complexity; asking which
elements contribute to a human perceiving a given scene as ‘complex’ or ‘simple’. Later,
in Chapter 6 we analyse the relationship between the memorability of a scene, and that
scenes’ complexity.
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CHAPTER 5
Perceptual Scene Complexity

5.1 Introduction

To eventually investigate whether complexity and memorability relate, we first need to
investigate how humans perceive complexity itself. It is obvious that humans can rapidly
evaluate the complexity of their surroundings; it is not difficult to determine whether
our surroundings are relatively simple, or contain some inherent level of complexity.
However, it remains relatively unknown which mechanisms underlie this perception; de-
termining these may lead to a better understanding of how the human visual system
operates, and how it processes scene complexity. In addition to theoretical advance-
ments, there are also numerous practical applications for the study and measure of
perceptual complexity. These include marketing applications (e.g; perhaps you want
your advert to be easier to visually process and comprehend, and thus less complex),
impacts for psychological experiments (you may want all your visual stimuli to be of
similar complexity to exclude a confounding factor) and healthcare applications (the
evaluation of cognitive image processing disorders; how easily a patient can process an
image of known complexity). The study of scene complexity may also help inform the
development of virtual reality environments; a simulated world desiring realism should
be capable of matching the complexity of real environments, without appearing too
simplistic, or overly complex. The development of complexity models allows the extrac-
tion of complexity values from scenes to take place automatically without requiring a
human-in-the-loop for each application. Without these models, the majority of practical
applications become significantly more difficult; requiring costly human intervention for
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every instance of the application.

As discussed in Chapter 2, the first apparent quantification of what humans might
perceive as complexity appears in the early 20th century [12], defined as the count of
elements in an image. Later work redefines complexity as the intricacy or detail present
in a line drawing [123], or as the degree of difficulty involved in generating a verbal
description of a texture [60], or evaluates complexity in the context of aesthetics [35].
However, these measures do not specifically target scene perception; with initial research
on complexity perception in scenes [105] finding evidence that clutter and mirror sym-
metry play a key role in visual complexity, along with openness and object organisation
(e.g. factors based upon scene gist research [103], where gist represents the general se-
mantic content of the scene). As computing systems became more powerful, and the
field of information science evolved; so too have definitions of complexity and techniques
for calculating it. We have already encountered some of these techniques in Chapter 2;
those which employ Shannon entropy of the image [144, 22], under the hypothesis that
more complex images have a greater level of entropy (or disorganization), and simpler
images contain more redundant information (and hence, lower entropy). Also discussed
was Kolmogorov complexity [78], another information theoretic measure. These entropy-
based measures appear to be one method of operationalising visual clutter [111], as the
more cluttered the image, the more disorganised the image, hence the greater entropy.
Naturally, information-theoretic measures are somewhat divorced from human percep-
tion. An image of random, coloured noise is high-entropy, yet meaningless to a human.

More recent research has turned to finding combinations of metrics that predict visual
complexity [30, 99]; some information theoretic, some more grounded in human percep-
tion. These models are capable of predicting human complexity scores with an accuracy
greater than any single predictor alone. The most recent work focuses on developing
neural models of perceptual image complexity, finding that visual complexity informa-
tion arises within the feature maps of deep convolutional networks [114], and similarly
that multiple regions across the brain are involved with the representation of the com-
plexity inherent in naturalistic stimuli [53]. Progress in understanding human perception
of visual complexity, especially in the area of natural scene perception [30], is made more
difficult by a lack of high-quality, varied scene datasets [99]. Existing datasets are either
small (sub-200 images) [29], or are object-focused, which leads participants to evaluate
the complexity of the object that fills the frame rather than the image as a whole. While
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object complexity likely contributes to the overall perception of complexity in a given
scene, in order to understand scene complexity these objects must be placed in the wider
context of their surroundings. Finally, drawing from image memorability research, it is
becoming more apparent that perceptual image characteristics, while often represented
as a single score for a given image, are better represented as two-dimensional properties
that vary across an image [2]. Currently, available datasets indicate that the complexity
rating a human may give is based on the entire image, which ignores the local properties
of complexity within that image.

Our aim is to address previous shortcomings by developing human observer based, high
quality, two-dimensional scene complexity datasets, and computationally operationaliz-
ing psychological measures of perceptual complexity. We choose four different metrics:
clutter, symmetry, entropy, and openness, each hypothesised or evidenced to have some
relation to complexity in prior work. We employ these measures to develop an un-
derstanding of exactly which perceptual factors account for human perception of visual
complexity, ‘factorising’ out the degree to which each metric helps to explain human vari-
ance in complexity ratings. Our primary dataset, which we call ‘Vischema-Complexity’
(VISC-C), is based upon a categorical scene dataset [2], and consists of 800 images with
800 complexity scores; giving a rating for each image, obtained from a human observer
study. In addition, critically, it contains 800 ‘complexity maps’ that capture the image
regions that participants find simple or complex; and for the first time reveal the image
areas that contribute to perceptions of scene complexity. We also introduce VISC-CI,
a complexity dataset of complexity scores and complexity maps from human observer
study of vertically flipped variants of our scene images. Vertical inversion results in des-
troying or damaging the semantic content present in an image [135, 100, 72, 42], when
perceived by a human, thus allowing the quantification of the effect of scene semantics
on perceptions of image complexity. Further we generalized our analysis to an existing
image set, BOLD5000 [24]. Finally, we develop and evaluate a neural network model
capable of simultaneously predicting complexity scores and two-dimensional complexity
maps. We examine which features these “black box” neural models have learned to as-
sociate with perceptual complexity by dissecting the network and examining individual
artificial neurons.
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5.2 Factorising Complexity

Upon review of studies investigating human perception of visual complexity it is evident
that multiple factors contribute to this perception, and in part some of these factors
can be operationalised with computational measures. However, It is difficult to ground
complex information-theoretic measures to human perception. As the first step in our
investigation, we instead define a set of four possible complexity measures (entropy,
clutter, symmetry and openness), chosen for both simplicity and their existing grounding
in cognitive psychology. We evaluate their success in explaining the variance inherent in
human complexity perception obtained from human observer experiments and recorded
in the VISC-C, VISC-CI and BOLD5000 datasets. As color has been found to show
contradicting results both as relating to complexity [30] and to not relating to complexity
[27], we err on the side of caution and include color as integral part of the factors we
examine where appropriate (clutter, symmetry, openness).

5.2.1 Clutter

Figure 5.1: Example of clutter algorithm working on a perceptually simple image and a
more complex scene, as rated by humans.

It is intuitive that the level of variation across an image would, in some fashion, be related
to the complexity of that image. Prior research has revealed that human perception of
clutter is one of the components that correlates with scene complexity [105]. There have
been various attempts to characterise clutter, primarily through information-theoretic
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measures [111]. Here, instead of an information-theoretic entropy-based approach, we
characterise clutter as the number of separable regions computed by a normalised graph-
cut of the region-adjacency graph of an image [119]. The normalised graph cut here
divides an image into a number of ‘perceptually distinct’ regions. This has the effect of
grouping similar parts of the image together into one average-color region. Our hypo-
thesis here is that images that are perceived to be more complex would be decomposed
into a greater number of distinct and separable regions, whereas simpler scenes are seg-
mented into less regions; as overall they contain more ‘perceptually similar’ parts. The
cost of dividing a graph into two disjoint regions is the summed weights of the edges
removed to cause the bisection. The optimal bisection of this graph is the bisection with
the lowest cost (i.e, that optimally separates two perceptually distinct regions). The
normalised cut of graph G = (V,E) into distinct sets A,B is given in Equation 5.1.
Cut(A,B) computes the sum of edge weights removed, and Assoc(A, V ) is the sum of
edge weights from A to all vertices in the region-adjacency graph.

Ncut(A,B) =
Cut(A,B)

Assoc(A, V )
+

Cut(A,B)

Assoc(B, V )
(5.1)

5.2.2 Patch-based Symmetry

Much of the research into how symmetry affects the perception of images is conduc-
ted with “global symmetry”. This is defined as the difference between two regions
of an image generated by bisecting the image either horizontally or vertically; equi-
valent to folding an image in half and determining how well each half matches the
other. When participants are asked to give rankings on the complexity of images, this
global symmetry of the image has been found to be a significant component of those
rankings [105], and evidently relates to complexity in some manner. Computation-
ally, most symmetry extraction methods focus on detecting the axis of symmetry of
objects, or for determining where rotational symmetry appears in an image [90, 57,
106]. These methods are object-focused, and hence provide less information about the
general symmetry present in a scene. Instead, we focus on extracting the symmetry
of patches across the image, a compromise between computationally intensive methods
that identify the symmetry of objects, and simpler methods that evaluate global bilat-
eral symmetry. Our approach in particular works well for scenes; whose main semantic
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details are often aligned in a horizontal plane. We hence define local patch symmetry
as the mean of the horizontal and vertical symmetry contained within arbitrary-sized
patches across the scene image. Given an image patch Nh×w×c

ij , at location (i, j),
we bisect the patch vertically giving (Ah×w

2
×c, Bh×w

2
×c), where Aij = Ni,0<j<w

2
and

Bij = Ni,w
2
<j<w, defining Fh(A) as the horizontal flip of A, the horizontal symmetry

of the patch is simply symh(N) =
√
(fh(A)−B)2. The vertical case is similarly

defined. Hence, sym(N) = Hsym
n +V sym

n
2 , and the overall symmetry of image I given

by sym(I) = 1
|K|

∑Icols/s−1

i=0

∑Irows/s−1

j=0 sym(Nh×w×c
i·s,j·s ) where K is the set of patches ex-

tracted, and s the stride.

5.2.3 Entropy

It is common in the literature on complexity to examine measures of entropy and the
relationship between entropy and complexity. For the sake of completeness, we consider
the Shannon entropy of the image histogram H = −

∑
k pklog2(pk) with pk representing

the probability of finding a pixel of k intensity over the image. Intrinsically, and certainly
for simplistic images, it’s generally expected that an increase in entropy corresponds with
an increase in perceived complexity.

5.2.4 Openness

Despite psychological evidence for the influence of scene openness [105] on complexity,
this factor remains relatively unexamined in computational approaches to perceptual
complexity. Images with clear horizon lines and lack of boundaries are said to be ‘open’
(e.g, a field), and scenes that lack these, to be closed (e.g, a photograph of a kitchen
taken perpendicular to a flat surface). We compute openness following the methodology
from [112], and predict openness scores for every image in our dataset.

5.3 Experiment 1 - Two Dimensional Complexity

To evaluate which factors relate to human perception of complexity, we conducted an ex-
periment on human observers, and tested our predefined computational measures against
human complexity ratings. The experiment was designed to capture both complexity
scores and two-dimensional annotations across a series of scene images. By evaluating
our computational measures against the same images, we can determine which factors
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explain human perception of complexity. We term the dataset resulting from this ex-
periment “VISC-C” for “VISCHEMA-COMPLEXITY.

Figure 5.2: A set of scenes sorted into ascending complexity, as rated by a group of
human observers. The images below the arrow reveal the regions that humans labelled
as complex (in blue) or simple (in red). Regions labelled as simple often contain textural
variation (e.g, grass in image 1, or the sky/clouds in image 3), yet are labelled simple
nonetheless.

5.3.1 Participants

A total of forty participants aged between 18 and 65, and fluent in English participated
in the experiment. There were no other preconditions. Participants were paid for their
participation and no personally identifiable information about participants was gathered
or stored by the authors. Participants were free to withdraw from the study at any time.
The experiment was approved by the ethics board of University of York, UK.

5.3.2 Materials

The stimuli used were images from the VISCHEMA: a categorical scene dataset ini-
tially gathered for the purposes of image memorability experiments [2]. The dataset
consists of 800 images with a resolution of 700 x 700 pixels. The image-set is divided
into eight classes of 100 images each, with each class corresponding to a commonly en-
countered scene category. Available classes are: kitchen, living-room, conference-room,
airport-terminal, work/home (containing images of houses/office buildings), public en-
tertainment (amusement parks/playgrounds), populated outdoor scenes (pastures/golf
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courses), and isolated outdoor scenes (mountains/badlands). Example images are shown
in Figure 5.2.

5.3.3 Procedure

The experiment was conducted online via Prolific [107], an online experimentation plat-
form. Participants were shown a continuous stream of 200 scene images and completed
the task at their own pace. For each image in the stream, they were first asked to
rate the complexity of the image on a scale between 0 (least complex) and 100 (most
complex). Once participants gave a rating, they were then asked to annotate the image.
Each participant was asked to annotate either complex regions or simplistic/simple re-
gions in the image. In no case was any participant asked to annotate both the simple
and complex regions of the same scene image. In this manner we acquire independent
annotations of both simple and complex regions for each of the images in the dataset.

Rather than employ a 2-Alternative Forced Choice paradigm, we designed a continuous
complexity experiment. In 2-AFC experiments, two images are compared, and the most
complex image selected. This both runs the risk of inducing comparative bias [130], and
additionally implies that comparisons must eventually be converted (via one of several
possible transformations) into a single rating. Even with a continuous paradigm, parti-
cipants may begin to reference prior images as a baseline for future images they view. A
participant that views a sequence of simplistic images and then a slightly more complex
image may over-rate the complexity of that image, and vice-versa. In our experiment,
every image stream shown to a participant was first randomised to minimise this effect
and avoid potential biasing issues [47] that may arise in 2-AFC style complexity ex-
periments; hence no two participants saw the same stream of images, and the average
complexity score and annotations for the image can be considered independent of the
context of the other images in the stream. We obtained 10 score ratings, and 10 annota-
tions for each of the 800 images (five complex annotations and five simple annotations).
A participant had to label at least one, and at most three, rectangular regions in an
image before continuing on to the next image.

5.3.4 Data Analysis

We employed a hierarchical regression analysis (HRA) to analyse the contribution of each
potential computational factor to perceived complexity, considering the contribution of
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the previous factors. We based our initial ordering of the factors on the order of their
singular degree of correlation with human complexity ratings. Manipulating the order
in which the factors were entered into the HRA, did not have any significant effect on
the result. Notably, we tested whether entropy or clutter as the first factor results in
decreased explanatory power of whichever factor is added second; and find that this
does not change the outcome of the analysis. Hence, we start with clutter, then in
turn add entropy, patch-based symmetry, and openness. The complexity score of any
given image is defined as an average of scores from participants who saw that image.
We concatenated all the per-image annotations into a singular two-channel ‘complexity
map’, which captures complexity in one channel, and simplicity in the other.

5.3.5 Results

Figure 5.3: The distributions
of human decided complexity
scores for the VISC-C dataset.

Figure 5.4: Relationship between annotation cover-
age, intensity, and complexity for scenes. As cover-
age and intensity of the complex channel increases; so
does the human complexity score ratings, and vice-
versa for simplicity.

Figure 5.3 shows that human complexity ratings follow a Gamma distribution across im-
ages, a property reasonably expected for a scene dataset. Most images are unlikely to be
either minimally or maximally complex. The mean complexity score for the images was
51.25, and the standard deviation was 13.14. We know from prior work that complex-
ity ratings given by humans for images are consistent. However, there is little data on
the consistency of complexity ratings purely for scene images, and whether participants
agree that the same regions of the scene are simple or complex. We evaluated both the
consistency of participant scores; and the consistency of our two-dimensional complex-
ity annotations. Participant consistency was measured by dividing the participant data
into two splits, and computing both complexity maps and scores from each half of the
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data. We compared the scores from each split via the Spearman’s correlation, and the
two-dimensional maps via the Pearson 2D Correlation (P2D), following prior literature
[2]. We evaluated 100 splits for the scores, and 25 splits for the complexity maps. Parti-
cipants show a strong agreement in their complexity scores (r = 0.72). They also saw a
good agreement on the complex regions of an image (P2D = 0.41), and to a lesser extent,
on the simple regions of the image (P2D = 0.27). From the score consistency data, we
can say that, on average, a random symmetrical split of human complexity ratings can
explain 51% of the variance of the other splits ratings; the other 49% is surmised to be
due to individual differences between participants.

To evaluate the two-dimensional annotations, we considered two properties; annotation
coverage, which we quantify as the percentage of the image covered by simple or complex
annotations, and the average intensity of the complex and simple channels. Intuitively,
we assumed that a more complex image should contain more complex annotations, and
a simple image should contain more simple annotations. The more intense these an-
notations in the complexity map, the more agreement exists between participants that
the indicated region is of consequence, and the more complex (or simple) the region.
We find that both annotation coverage and annotation intensity are strongly related to
the complexity scores given by the participants. Annotation coverage and intensity is
predictive of complexity score (multiple linear regression, R2 = 0.6, Figure 5.4) and is
indicative that the participants are labelling the images in-line with their scores. These
results indicate that our two-dimensional annotation maps are indeed capturing both
complexity and simplicity, and are strongly associated with “single-score” measures of
complexity.

The results of a hierarchical regression analysis are provided in Table 5.1. Our computa-
tional complexity factors explain approximately 36% of the variance inherent in human
complexity ratings. This is encouraging given that two disjoint sets of human complexity
ratings explain 51% of the variance in each set. Generally, we can say that any measure
that approaches or exceeds this ’target score’ of 51% captures complexity to the same
degree as the human visual system. Lastly, the results indicate that human complexity
ratings are well explained by both clutter, and patch-based symmetry, and that entropy
and openness contribute little. Visual clutter explains the most variance in complexity
scores, followed by local symmetry. It is intuitive that the more cluttered the scene,
the more complex the scene. Conversely, the more locally symmetrical features exist in
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Table 5.1: Results of a hierarchical regression analysis showing the contribution of each
potential complexity factor towards explaining variance (coefficient of determination,
R2) in complexity ratings for our VISC-C dataset. Together, clutter and symmetry
explain 36% of human complexity (disjoint sets of human ratings explain 51% of each
others variance). Entries in bold indicate significant increase in variance explained.
Standard error of each linear model (Lm. Std.) and residual sum of squares (RSS) are
reported for completeness, and is already incorporated into reported R2

Model RSS Adjusted R2 ∆R2 Lm. Std. Error Significance (p)

(constant) 29.35 - - 0.19 -
Clutter (C) 20.57 0.2983 0.2983 0.16 <0.001
C, Entropy (E) 20.55 0.2983 0 0.16 >0.05
C, E, Symmetry (S) 18.84 0.3557 0.0574 0.15 <0.001
C, E, S, Openness 18.82 0.3557 0 0.15 >0.05

the scene, the less complex the scene is rated; there is less locally novel information to
be processed. Entropy appears to have minimal explanatory power for perceptual scene
complexity, as does openness.

5.4 Experiment 2 - The Effect of Semantics

The aim of our second experiment was to investigate the role scene semantics play in
perception of scene complexity; we ask to what degree the participants’ complexity
ratings depend upon the semantic content of the scene. In order to investigate this,
we rotationally invert our image dataset, disrupting the processing of semantic content
for human observers. As with Experiment 1, we evaluated how our computational
factors explain the perception of complexity of inverted scenes by human observers.
These factors do not extract any semantic information from the scene. If they explain a
considerable amount of variance inherent in inverted complexity scores, then perceived
complexity for inverted images is very likely to be bottom-up driven and independent of
semantic meanings. We term the dataset resulting from this experiment “VISC-CI” for
“VISCHEMA-COMPLEXITY INVERTED”.
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5.4.1 Participants

A new group of 40 participants, aged between 18 and 65 years of age were recruited for
the second experiment. Participants were made aware they would be viewing inverted
images and their consent to participate was obtained prior to completing the experiment.
This experiment was approved by the ethics board of the University of York.

5.4.2 Materials & Procedure

The images and the procedure in this experiment was identical to Experiment 1 except
that the presented images were rotationally flipped, producing an inverted variant of
the scene. The data analysis employed in the experiment was the same as reported in
Experiment 1

5.4.3 Results

Figure 5.5: Relationship
between inverted scene com-
plexity and 2d annotation
metrics.

Figure 5.6: Complex/simple annotation coverage for
upright (VISC-C, top) and inverted (VISC-CI, bot-
tom) scenes. Coverage shows that much more of the
image is indicated as complex or simple when inver-
ted; despite low-level textural properties remaining
the same.

Complexity scores for inverted images show a mild skew towards being rated as more
complex (mean = 53.20, standard deviation = 13.31) compared to upright images. There
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was also a lower degree of agreement in complexity scores among observers compared to
upright images (r = 0.60). Despite these variations, complexity scores between upright
scenes and inverted scenes correlate strongly together (r = 0.77), which suggests even
when inverted (semantic structure disrupted) participants are still able to determine the
complexity of the image (though with a lower degree of inter-participant agreement).

While participants agreed to the same degree on the complex regions of inverted images
as they did for upright (P2D = 0.39), there was a lower degree of agreement between par-
ticipants for the simplistic regions (P2D = 0.17). This reflects the increased difficulty
of the task, and is an initial indication that destruction of semantic structure affects
complexity perception; especially in the case of determining what is simple. Participant
consistency is decreased compared to Experiment 1, with a split of human data explain-
ing 35% of the variance of its corresponding half (participant consistency of r = 0.59).

The two-dimensional annotation properties of the delineated regions (annotation size
and coverage) correlate strongly with given complexity scores (r = 0.66), but show a
significant skew towards a larger total annotation area (Figure 5.5) compared to upright
scenes. Interestingly, we find that by inverting the scene images we caused a significant
change in annotation coverage (Figure 5.6), with a greater percentage of the image being
indicated as complex or simple. This suggests that participants find it more difficult to
localise exactly what within the image is complex, or simple; defaulting to a global view
of complexity for the entire image. These results imply that for images lacking semantic
information, humans fall back to lower-level, global features when perceiving complexity,
but do make use of semantic content where it is present.

Our complexity factors explain 38% of the variance in complexity scores (Table 5.2);
exceeding the average human consistency of 35%. In this case; low-level classical features
appear to explain all the variance in the human ratings. Given that inverting the scene
damages the semantic information present in the image, we can hypothesise that the
remaining 15% of variance not captured in the case of upright scenes we observed in
Experiment 1 is due to the semantic structure of the scene images shown.
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Table 5.2: Results of a hierarchical regression analysis run on human complexity ratings
from the VISC-CI dataset (inverted scene images). The main contributors are clutter
and symmetry (38%), with minor contribution from openness. Entries in bold indicate
significant difference in variance explained. Std. Error is reported for completeness, and
is already incorporated into given R2

Model RSS Adjusted R2 ∆R2 Lm. Std. Error Significance (p)

(constant) 30.05 - - 0.19 -
Clutter (C) 20.59 0.314 0.314 0.16 <0.001
C, Entropy (E) 20.59 0.313 -0.001 0.16 >0.05
C, E, Symmetry (S) 18.80 0.372 0.059 0.15 <0.001
C, E, S, Openness 18.633 0.378 0.006 0.15 <0.01

5.5 Experiment 3 - Generalizing to a Different Dataset

Experiment 3 examines how well our computational factors generalize to another ex-
isting image set, BOLD5000. BOLD 5000 is a dataset of 4914 images for which there
is accompanying neuroimaging data primarily used for training and testing computer
vision models [24]. Available for this dataset is a set of complexity ratings, gathered by
researchers at the University of Toronto. This data is not yet publicly available. The
images in the dataset is an amalgamation of images from other different image sets as
follows: COCO, depicting objects [89], ImageNet, depicting diverse content of objects
and scenes [36], and scene images based on categories from SUN [140].

5.5.1 Participants

The data was gathered via 1118 participants from Amazon Mechanical Turk, who were
compensated for their participation. The participants were only recruited if they lived
in either in Canada or the USA, and had approval rates greater than or equal to 75%.
The experiment was approved by the University of Toronto Research Ethics Board.

5.5.2 Materials

For the purpose of the experiment, 4914 images from BOLD5000 were used. Each
image in the dataset has a resolution of 375 x 375 pixels. These images consist of
1999 images from COCO, 1915 images from ImageNet, and 1000 scene images based on
categories from SUN. Images from COCO were collected to depict objects and images
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from ImageNet either depict objects or scenes.

5.5.3 Procedure

The experiment collected complexity ratings from participants for selected images from
the BOLD5000 image set. The experiment ran on each participant’s computer using the
Inquisit [65] software. The images were pseudo-randomly assigned into groups such that
each image received ratings from 50 participants. The images were presented sequentially
in a random order to each participant and each participant viewed and rated 252 images.
Participants provide three different ratings for each image on a 5-point Likert scale.
Question 1 was: “How symmetric do you think this image is?”; Question 2: “How simple
or complex is this image?”; the response options were 1 = “very simple”, 2 = “simple”, 3
= “neutral”, 4 = “complex” and 5 = “very complex”. Lastly, Question 3: “How much do
you enjoy looking at this image?”. Participants needed to respond to all three ratings in
sequence before the next image appeared.

5.5.4 Data Cleaning

Exclusion criteria were established to ensure high data quality. To detect participants
always giving the same response, the variance of responses for each participant in a 15-
rating sliding window were computed. Participants with a variance less than or equal
to 0.2 on average were excluded. Also excluded were participants with average variance
between 0.2 and 0.5 and mean reaction time shorter than or equal to 250 ms. Data
from participants who did not finish the entire experiment were also discarded. These
criteria resulted in the exclusion of the data of 143 participants (12.8%). Data collection
continued until there were 50 valid ratings per image. For this study, only complexity
ratings for each of the images were considered. Ratings for complexity were converted
to z-scores separately for each participant by subtracting the mean of their responses
and dividing by the standard deviation. Z-scored ratings for each image were averaged
over participants for further use. We used this dataset, and conducted a hierarchical
regression analysis similar to that in Experiment 1 and 2, with complexity ratings as the
dependent variable and our computational factors as independent variables.
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Table 5.3: Hierarchical Regression Results for the BOLD5000 dataset. Best explanatory
model uses all factors, likely an effect of the more varied dataset, explaining 11.32% of
variance in complexity ratings. These factors come close to human consistency over the
dataset (one split of human ratings explains 12.67% of variance of the other split on
average).

Model RSS Adjusted R2 ∆R2 Lm. Std. Error Significance (p)

(constant) 90.994 - - 0.14 -
Clutter (C) 88.674 0.0253 0.0253 0.13 <0.001
C, Entropy (E) 84.238 0.0739 0.0486 0.13 <0.001
C, E, Symmetry (S) 82.176 0.0964 0.0225 0.13 <0.001
C, E, S, Openness 80.625 0.1132 0.0168 0.13 <0.001

5.5.5 Results

First, we evaluated the consistency in human complexity ratings over the BOLD5000
dataset. On average, a random split explains 11% of the variance in the other split after
normalization within each participant. The consistency in human ratings is lower in
this experiment than in Experiment 1 or 2. This is most likely caused by both the high
diversity in the image set, and due to the dataset being primarily object-focused; all of
which might result in lower consistency across participants compared to a scene dataset
that consists of commonly encountered natural scenes. A post-hoc analysis shows that
the rating consistency is higher in a subset of images that consists of scenes only. On
average, a random split in COCO images explains 6.6% of the variance in the other split;
a random split in ImageNet images explain 8.9% of the variance in the other split; and
a random split in scene images based on SUN explains 11% of the variance in the other
split.

The results of the hierarchical regression analysis are shown in Table 5.3. Our com-
putational complexity factors explain approximately 11% of the variance inherent in
human complexity ratings, which is close to the rating consistency across participants.
The hierarchical regression analysis shows that all four computational factors contribute
to explaining variance in human ratings. Compared with experiment 1 and 2, more
of the involvement of entropy and openness for ratings in this image set might be ex-
plained by the higher diversity of images from BOLD5000. Nonetheless, the results here
confirm results in experiment 1, that our computational factors are able to explain a
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large proportion of variance in human complexity ratings. It indicates that our analysis
is generalizable to a larger and more diverged set of images. The results also suggest
that while for scenes semantics appear to play a part, for diverse object-focused images,
low-level computational methods appear sufficient to explain human ratings.

5.6 Modelling Complexity

In Experiment 1 and 2 we established that annotation statistics for simple and complex
regions extracted by human observers are strongly associated with overall global image
complexity score, and that low-level computational measures explain a large proportion
of variance inherent in complexity ratings. We now examine the efficacy of employing
deep neural networks to predict both scene complexity scores and complexity maps.
Further we ask whether neural networks are capable of capturing the semantic compon-
ent of image complexity. Of interest is discovering whether deep neural networks learn
features which can be used in conjunction with classical clutter and symmetry features
in explaining human perception of image complexity. We develop a neural complexity
model that can predict 2D complexity maps and scores simultaneously.

5.6.1 Predicting Complexity Scores & Maps

Figure 5.7: Basic Complexity Prediction Architecture, with optional complexity map
prediction head.
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Figure 5.8: Examples of predicted complexity maps and their ground-truth counterparts
from the test set.

We performed transfer learning upon five architectures: VGG16, VGG19 [122], and Res-
netV2 [59, 58] with 50, 101 and 152 layers, to develop a different variants of complexity
prediction network; which we term ‘ComplexityNet’. Each network has its classifica-
tion head removed, and a four-layer convolutional regression head attached at a selected
point in the network (as shown in Figure 5.7). While there has been work towards the
artificial prediction of memorability maps [83], this remains unexplored for complexity
prediction. To resolve this, we include an optional fully-convolutional complexity map
prediction head, tasked to generate complexity maps for the input images. To evaluate
the effect of network depth on complexity prediction, we systematically attach the re-
gression head after each major processing block in each target network (results shown in
Figure 5.9). Each ComplexityNet variant is then trained for 100 epochs with RMSProp
(learning rate: 0.0001), and cross-validated on 8 splits of the data. From this cross-
validation, we obtain predictions for every image in the VISC-C dataset. When the
complexity map prediction head is enabled, the network is trained simultaneously with
both scores and maps as inputs. We use the standard mean squared error for both score
and map regression, and use ReLU activation functions throughout the network, aside
from each output, which terminates with a sigmoid activation. The training process
takes approximately six hours on a single NVidia Tesla V100.

Our complexity prediction model performs well at predicting complexity scores for scene
images. When considering complexity map prediction, ComplexityNet achieves good
performance for both scores and maps, with the best-performing model (when consider-
ing both scores and maps) achieving a Spearmans correlation of ρ = 0.67 with human
scores, and generating complexity maps that correlate with human complexity maps
(complex annotations: P 2D = 0.54, simple annotations: P 2D = 0.49). Samples of pre-
dicted complexity maps and their human observer-based maps can be seen in Figure
5.8, and prediction results from all tested architectures in Figure 5.10. More prediction
examples are available in the Appendix.
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Figure 5.9: Effect of network depth
on complexity score prediction perform-
ance. Performance peaks in the penul-
timate processing block of each model,
then plateaus.

Figure 5.10: Correlation with human
ratings for both scores and complexity
maps for different base network archi-
tectures.

5.6.2 What Neural Networks Learn about Complexity

Do neural networks learn mostly low-level features, or do they extract semantic features
with relations to complexity? To investigate whether neural networks learn features
orthogonal to low-level computational measures, we combine the previous results of our
hierarchical regression analyses with the predicted score outputs from our best perform-
ing ComplexityNet (based on RESNETv2-152). If the neural network adds little addi-
tional variance explained, we can assumed that the neural prediction is based primarily
on low level features. On the other hand, if the network can explain more variance inher-
ent in complexity in addition to low-level features, this implies the network is learning
semantic features that relate to complexity. To investigate this further, we employ net-
work dissection [10] to ‘take apart’ our neural model. This allows us to determine which
image features are important for complexity prediction, and to examine which image
features the network is considering when predicting complexity scores for scene images.
We dissect our best-performing ComplexityNet model, and examine each neuron from
the final convolutional layer of the complexity prediction head; 16 neurons in total. Each
neuron is assigned a set of images that best activate that neuron.

This neural network dissection reveals the images that activate each trained neuron
(shown in Figure 5.11). With this dissection we make our “black-box model” transparent,
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Figure 5.11: Images which activate a sample of neurons from the final layer of a com-
plexity prediction network. The network appears to learn both low-level and semantic
features.

and can analyse the features that each neuron in the output layer of the network searches
for in the input scene image. We find in the network an emergence of both neurons that
can detect low-level repeated features, such as checkerboard patterns or lined surfaces;
as well as neurons focused on semantic structures such as skies, architectural elements,
and road surfaces. Also interesting is the development of neurons that appear to detect
clutter and activate strongly for images which contain large amounts of assorted objects.
This is indicative of the importance of semantic information in complexity perception and
reinforces prior literature in finding visual clutter influences perception of complexity;
even inside neural networks modelled after human perception.

By combining our computational factors with the predicted score outputs from our
best performing ComplexityNet (based on RESNETv2-152) in a hierarchical regression
analysis, we can explain an additional 17% of complexity score variance, orthogonal to
global image features such as clutter and symmetry. In total, this explains a total of
52% of the variance inherent in human complexity, matching the variance that can be
explained in one set of human ratings by another randomly chosen set of human ratings.
This suggests that complexity perception functions as a combination of both global image
features (clutter, symmetry) and semantic information (architectural details, presence
of roads, or skies); and that to predict complexity accurately, both are necessary.

5.7 Discussion

In prior work it has been shown participants in general are capable of evaluating the
complexity of images in general. However, most complexity datasets are either small
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[29], consist of simple images designed to investigate low-level processing (polygons, line
drawings) [123, 60], or contain a mixture of images with only a small scene component
[114]. It remains unclear exactly which features contribute to human perception of the
complexity of scenes. Additionally, prior work tends to treat image complexity as a single
rating for the whole image; which may obscure details on how complexity varies across
a scene. In our studies, we specifically set out to both investigate scene complexity
as a property that may not be constant across a scene, and to determine how scene
complexity itself can be explained; including evaluating the effect of semantics. Here,
we define ‘semantics’ in the context of scene complexity as referring to the collection
of elements that give the meaning to the scene. Semantics provide a sense of context
to the scene being viewed. We develop two scene datasets, VISC-C (Experiment 1)
and VISC-CI (Experiment 2), for human perceptual scene complexity prediction and
understanding. Compared to prior scene datasets, ours consist of high-resolution, high
quality scenes images, are more varied, and include two-dimensional human annotations.

In Experiment 1 we find that the complexity ratings given by participants for our scene
images are highly consistent, with one human split of complexity ratings being able to
explain 51% of the variance in the other split. We also find that the two-dimensional
annotations given by participants correlate strongly with the participants ratings. From
this we can infer that the annotations (our complexity maps) are indeed capturing the
complexity in the image, and reveal that different regions of scenes do vary in their
perceived complexity. This two-dimensional dataset allows us to see that even in simple
scene images, there are complex regions; and in complex scenes, simple regions. To
determine whether we can explain the complexity of these scene images, we develop ex-
plainable, psychologically grounded computational measures for image complexity ana-
lysis. These computational measures are based in prior work that either hypothesises,
or has shown, that these measures may play a part in complexity perception, even if
this prior work does not directly involve scenes. Whereas in prior work with simpler im-
ages, entropy appears to play a role, for our scene images, we find no significant relation
with complexity scores. Instead, we find we can describe a majority portion of human
variance (36%) with our measures that are less information-theoretic; the clutter and
symmetry factors.

From the results of Experiment 1 we can conclude that some portion of human com-
plexity perception does appear to make use of lower level, global image properties. We
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hypothesise the remaining, unexplained variance is in fact the effect of the high-level
semantics of the scene. To investigate this, we conducted Experiment 2, a replica of Ex-
periment 1, except all images are rotationally inverted, known to damage the semantics
present in the image. Our results show that we can explain all human variance present
in complexity for inverted scenes with our global image measures that do not employ
semantics. This implies that when a scene is lacking in semantics, human perception
of complexity falls back to global image features. The fact that the annotations for the
inverted scenes also shows a lack of precise ‘localisation’ - that is, the annotations are
spread out over the entire image, also appears to support this. We then ask how we can
extract this semantic content, and use it for complexity prediction. To accomplish this,
we develop our ComplexityNet neural network model, trained to extract the semantic
features from images and re-task these features to predict both complexity scores, and
complexity maps.

To determine whether our results are generalizable, in Experiment 3 we compute our
global image properties for a large dataset of varied images (BOLD5000), only a small
proportion of which are scenes. While this dataset lacks two-dimensional annotations, it
does have complexity ratings for each image. Our results mirror that from Experiment
1, showing that global image features work well for explaining the variance in human
complexity ratings across this dataset. However, overall participant consistency is lower
than that of our scene dataset; in part due to the high variety of types of images, and
it’s primarily object-focused nature. The BOLD5000 dataset, rather than consisting of
varied scene images, also includes a vast array of different object photographs. Given
this variety in image type and content compared to our scene-focused datasets, it is
not surprising that we find all four of our computational factors become significant.
Semantics appear to play less of a role when considering the complexity of object-focused
images; as in general humans agree less on how complex objects are, compared to scene
images.

To fully understand whether semantic information aids in complexity perception, we
combined the output of ComplexityNet with our global image features, and find that we
can capture all of the human variance (52%) inherent in single-score complexity ratings.
However, neural networks are often ‘black boxes’; it is difficult to understand exactly
which image features the network is using to give its’ complexity prediction. By employ-
ing a ‘network dissection’ technique [10] to discover these features, we find that both
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low-level (checkerboards, lined surfaces, clutter) and semantic feature (sky, architectural
details) extractors arise in the neurons of such a model. These results are consistent
with what we observe from Experiment 1 and 2, that both global image features and
semantic structure appears necessary to model human complexity perception.

Conclusion

In this study we have developed three new datasets for the purposes of understanding
how humans perceive the complexity of scene images. Two of these datasets focus
entirely on scenes, and contain two-dimensional annotations that indicate the complex
or simple regions in these scenes. The other dataset is both large; and diverse. Through
state-of-the-art computational techniques we characterise human complexity as being
in part explained with ‘global image properties’ (clutter, symmetry, entropy, openness)
and by a ‘semantic’ part; which we capture with a neural network.

Global image properties explain a large proportion of human variance, and indeed all
variance of scenes where those have had their semantic content disrupted. With a neural
model and these properties combined, we can explain all the variance of human com-
plexity perception in our dataset of natural scene images. Through network dissection,
we have found that the network learns both global image features features and semantic
features that relate to scene complexity; and both are necessary to explain why humans
find some scenes complex, and some simple.
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CHAPTER 6
Complexity & Memorability

6.1 Introduction

As discussed previously in Chapter 2, visual long-term memory appears to encode both a
general ‘gist’ of the scene as well as specific details that enable a previously viewed scene
to be selected from an array of similar scenes [79]. The gist trace has been the focus
of much research [102, 104, 85] and captures rapidly extracted information (e.g, scene
category), providing a general, undetailed ‘overview’ of the scene. However, how scene
detail influences memory remains relatively unexplored. This may be due to the difficulty
in extracting detail itself; while the gist of a scene can be identified with rapid serial
visual presentation, no singular method exists for finding the detail trace. Recently, a
study by Evans & Baddeley [43] proposes a two-level processing model for scene memory,
while also employing visual complexity as an analogue for scene detail. The initial
processing stage of the two-level model is based on gist, extracting nothing more than
general image features, whereas the second stage facilitates encoding of idiosyncratic
scene elements. This work reveals that differences in image complexity appear to affect
how well a given image is remembered. Images of man-made scenes (indoor scenes etc,
assumed high complexity) are better remembered than natural scenes (outdoors, low
complexity). Additionally, in the case of door images with and without detail, those
doors with detail are better remembered than those without. In essence, the level of
detail present in a scene appears to directly affect the memorability of that scene. This
is somewhat reinforced by the work of Saraee et al. [114] who find that a computational
estimate of complexity is positively correlated with the average hit-rate of categories
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drawn from the FIGRIM dataset [20].

In this chapter we endeavour to explore the relationship between scene memorability and
scene detail more comprehensively than prior work. As has been shown in both earlier
work and this work, Visual Memory Schemas provide a good framework for understand-
ing the memorability of a scene. This allows us a strong, two-dimensional baseline from
which to investigate this relationship; detail and memorability can be examined across
an image. Prior work has operationalised ‘detail’ as corresponding to the level of per-
ceived complexity present in a scene; our work to understand perceptual complexity
has given us a robust two-dimensional dataset of scene complexity. Unlike Saraee et al.
[114] we will not be limited to computational estimations of scene complexity, and we
can go beyond the binary categorisations of ‘simple’ and ‘complex’ of Evans & Baddeley
[43], as our dataset has complexity information from human observers for every image.
We also have the opportunity to explore the relationship in greater detail than just hit
rate, as examined by Saraee et al.. Here, we examine whether complexity scores given
by humans corresponds with the memorability of scene images from the VISCHEMA
dataset, where we use the d-prime measure to encode memorability. We then break this
apart, examining the relationship between the two-dimensional complexity annotation
statistics we explore in Chapter 5 and both hit rate and false alarm rate of our scene
images. Finally, we explore how the complexity of image regions affect the memorabil-
ity of that region, and briefly investigate whether our computational metrics, that help
explain perceptual complexity also relate to scene memorability.

6.2 Complexity Ratings & Memorability

We first examine the relationship between our human complexity single-score ratings,
and compare against memorability scores also obtained from humans for the VISCHEMA
dataset. Each scene image in the 800 image dataset now has a two-dimensional Visual
Memory Schema, a two-dimensional Complexity map, single-score memorability inform-
ation (Hit rate, False alarm rate, and D-prime) and single-score complexity information
(a rating between 0 and 100). We begin by comparing the complexity ratings for each
image with the corresponding d-prime score for that image, and find a significant posit-
ive correlation (Figure 6.1). That is, as the participants complexity ratings increase, so
too do the memorability ratings for those scenes.
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Figure 6.1: Pearson’s correlation between ground-truth human complexity ratings and
ground-truth human memorability scores.

However, D-prime alone does not necessarily tell the whole story; is the rise in mem-
orability as complexity ratings increase carried by hit rate, false alarm rate, or both?
To determine this we compare complexity ratings separately with both the hit-rate and
false alarm rate for each image, shown in Figure 6.2. Both the relationship between
complexity ratings and hit rate, and complexity ratings and false alarm rate, is signi-
ficant. A rise in complexity ratings corresponds with a rise in hit rate (indicating the
image is more likely to be correctly recognised) as well as with a decrease in false alarm
ratings (indicating that the image is less likely to be falsely recognised, despite never
being shown). This suggests that complexity, and by inference, detail, has a role in
both increasing the likelihood of recognising an image, and decreasing incidences of false
recognition. A greater level of detail prevents a viewed scene being confused with a
previously encoded scene, as the detail provides more idiosyncratic information that can
be encoded. This helps to separate the encoded image from the viewed image and helps
reduce false recognition. The detail present may also facilitate correct recognition by
providing more features that can be encoded and later recalled.
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Figure 6.2: Pearson’s correlation between human complexity ratings and scene hit rates
(left) and false alarm rates (right)

6.3 Two-dimensional Statistics

To gain further understanding we can break down our singular complexity score by
examining the two-dimensional annotations for both complex image regions and simple
image regions. This allows us to determine which complexity-related characteristics
are responsible for a scene being remembered better by a human. For example, we
can ask if a scene is more memorable because it contains more agreement on complex
regions, larger complex regions, or if perhaps it’s related to the simple areas of the
image instead. We employ the same metrics to evaluate two-dimensional complexity
annotations as in Chapter 5, that is 1.) the average intensity of the complexity map
(for either complexity or simplicity) representative of consistency, and 2.) the amount of
image covered in annotations as a percentage. Generally, the greater the intensity and
coverage of the complex channel of the complexity map, the more complex the image,
and vice-versa for the simple channel. We first examine what these metrics tell us
about the memorability of scene images, then secondly we directly compare complexity
annotations to memorability annotations.

6.3.1 Complexity Annotations

In Figure 6.3 we show the relationship between scene memorability (both hit rate, and
false alarm rate) and the average intensity of the complexity channel of each image’s
complexity map. This intensity is analogous to participant agreement; the more an-
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Figure 6.3: Relationship between scene memorability (hit rate, left, and false alarm rate,
right) and complex channel annotation intensity. Pearsons correlation.

Figure 6.4: Relationship between scene memorability (hit rate, left, and false alarm rate,
right) and complex channel annotation coverage. Pearsons correlation.

notations overlapping on a single region, the greater the intensity of the channel. We
find that participant agreement on what in the image is complex has no significant re-
lationship with the hit rates of the image. However, there is a weak, but significant
negative correlation between complex channel intensity and false alarm rates. Turn-
ing to annotation coverage (Figure 6.4), we find that there is no relationship between
complex channel coverage and image memorability. In general, there is little evidence
that metrics that describe complex annotations specifically have much to do with scene
memorability; aside from possibly reducing instances of false recognition.
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6.3.2 Simplicity Annotations

Figure 6.5: Relationship between scene memorability (hit rate, left, and false alarm rate,
right) and simple channel annotation intensity. Pearsons correlation.

Figure 6.6: Relationship between scene memorability (hit rate, left, and false alarm rate,
right) and simple channel annotation coverage. Pearsons correlation.

We now show the relationship between simple annotations (annotations given by parti-
cipants to demarcate perceptually simple areas of the scene) and scene memorability. In
Figure 6.5 as above we show the relationship between memorability and average intensity
of the simple channel, while in Figure 6.6 we show the relationship between memorability
and simple annotation coverage of the scene. Unlike the two-dimensional complexity,
simple annotations show a significant correlation between average intensity (participant
agreement) and both hit rate and false alarm rate. Generally, the more agreed-on simple
regions in the scene, the lower the hit-rate, and the greater the false-alarm rate. For
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annotation coverage, while there is no relationship with hit-rate (i.e, more simple regions
across an image does not effect likelihood of correct recognition), there is a significant
relationship with false alarm rate.

6.3.3 Region Memorability

While comparing annotation statistics with single-score memorability data reveals some
interesting relationships between complexity and memorability, this still requires a con-
densing of two-dimensional information into one dimension. However, because our
data for both memorability and complexity is two-dimensional, we can directly com-
pare the two sets of maps (complexity/memorability). The memorability map data
(Visual Memory Schemas, Chapter 3) contains both a ‘true schema’ channel; indicating
regions that caused the scene to be correctly remembered, and a ‘false schema’ chan-
nel, indicating regions that cause false remembering. The complexity data (Complexity
Maps, Chapter 5) contains both a ‘complex’ channel indicating complex regions, and
a ‘simple’ channel indicating simple regions. Here, we directly correlate these different
two-dimensional maps together using the Pearsons 2D correlation [2]. The results are
shown in Table 6.1. All correlations are significant.

Table 6.1: Comparing correlation of two-dimensional regions between memorability data
and complexity data. All values significant.

Memorability False Memorability

Complexity Simplicity Complexity Simplicity
ρ 0.5 -0.06 0.34 -0.05

We find that there is a strong correlation between regions labelled as perceptually com-
plex, and both regions that caused participants to remember an image, and to falsely
remember an image. Simple regions are weakly, though significantly, negatively correl-
ated with memorability and false memorability. In general, it appears that for scene
images, complex regions appear to be a driving force for both recognising the scene, and
also falsely recognising the scene. Simple regions, however, do not lead to that region
being indicated as having caused a recognition, or a false recognition.
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6.4 Computational Methods

In this section, we briefly examine some computational methods to better understand
the relationship between complexity and memorability. First, rather than examining
each factor independently, we consider complexity as whole. Secondly, we evaluate how
well computational measures that work well for complexity can explain memorability.

6.4.1 Multi-factor Analysis

It appears evident that the complexity of a scene image has an effect on how likely that
scene image is to be remembered, forgotten, or even falsely remembered. To further
investigate the relationship we conduct a series of multiple linear regression analyses
considering one memorability metric (DPrime, hit rate, false alarm rate) with a series of
complexity metrics (Complex/Simple channel intensity, Complex/Simple channel cover-
age, and human complexity ratings). For our analysis, we remove the complex/simple
coverage factors due to multicollinearity concerns. While this will not affect the de-
scriptive power of the model, it can make interpretation of results more difficult. If
the purpose of the model is purely explanatory, we can capture a higher total variance
explained by including all factors. However, to determine which of these factors are rel-
evant, we employ a subset of our factors that maintain a good degree of independence.
A full table of results that includes all factors is included in Appendix D. We present
the results of this analysis in Table 6.2, and additionally show the effect of keeping all
factors (af) in the row titled ‘af-Adjusted R-Squared’.

We find that for DPrime, hit rate, and false alarm rate, complexity is capable of explain-
ing a small, yet significant portion of variance in memorability scores. For D-prime, we
can explain 5.6% of the variance (6.8% when including coverage metrics), and for hit rate
and false alarm rate, 4.9% and 1.5% respectively. Interestingly, we can explain much
less of the variance in false alarms with complexity than in hit rates, likely a result of
the greater degree of human variation in false alarms than in hit rates. For Dprimes and
hit rates, the most significant predictor are the human complexity ratings; though hit
rates benefit from complex channel intensity. For false alarm rates, the only significant
predictor from complexity is that of the average simple channel intensity.
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Table 6.2: Results of multiple linear regression, with Complex and Simple coverage
removed to avoid multicollinearity concerns. Coefficients for each variable are shown, as
is the coefficient of multiple regression (R) and variance explained (R-squared), as well
as the variance explained when including all factors (af-Adjusted). All regressions are
significant. Complexity can explain a small, but significant portion of variance inherent
in memorability data for DPrime, hit rate, and false alarm rate. Significant values shown
in bold, p <0: ***, 0.05: *

D-Prime Hit Rate False Alarm Rate

Constant 1.000 0.3156 0.098
Complex Intensity -0.051 -0.096* -0.014
Simple Intensity -0.360 0.01 0.061*
Complexity Scores 1.431*** 0.355*** -0.042

R 0.244 0.23 0.136
R-squared 0.06 0.053 0.018
Adjusted R-Squared 0.056 0.049 0.015
af-Adjusted R-Squared 0.068 0.06 0.027
Observations 800

6.4.2 Computational Metrics

In Chapter 5 we showed that two computational metrics, based on prior psychological
studies, perform well at explaining human perception of complexity. Given that it ap-
pears complexity and memorability have some relation, we now investigate whether these
computational metrics also show a relationship to scene memorability. We do this by
calculating the Pearson’s correlation between these metrics (computed for each image)
and the DPrime of each image. The results are shown in Figure 6.7.

We find clutter, which is positively correlated with complexity, is also positively correl-
ated with memorability as measured by DPrime. Symmetry, negatively correlated with
perceived complexity, is likewise also negatively correlated with memorability. Gener-
ally, the more clutter and less symmetry present in a scene, the more memorable that
scene should be; and vice versa.
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Figure 6.7: Relationship between clutter (left) and symmetry (right) computational
metrics and scene DPrime. All correlations significant.

6.5 Discussion

In this chapter we have made use of our previous work to investigate the question of
whether perceptual complexity could potentially account for the ‘detail’ trace in hu-
man memory. There is limited prior work that investigates the relationship between
complexity and memorability. One such study finds a potential relationship consider-
ing an artificial predictor of complexity [114] with hit rate, while another shows both
that man-made images appear to be remembered better than natural images, and that
door images with detail removed are remembered worse. For this study, scenes with
man-made features are considered complex, and scenes without, consisting of natural
features are considered simple. In our work, having ground-truth complexity scores for
scene images means we do not have to use an artificial predictor, nor divide images into
two categories of man-made or simple. Instead, we can directly compare complexity
data to memorability data for the same scene image.

Most importantly, we do indeed find a relationship between human complexity ratings
and human memorability data. There is a mild (0.239) but highly significant (p <0.001)
correlation between the single-score ratings given by participants regarding the scenes
complexity, and the DPrime score for that scene. It is evident that generally, the more
complex the scene, the more memorable that same scene. This relationship is carried
both in the hit rate and the false alarm rate of a given scene; the more complex the
image, the greater the likelihood of a correct recognition, and the lower the chance of
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an incorrect recognition. A greater level of detail present in a scene may provide more
potential features that can be encoded during the first time the image is viewed, which
helps to both correctly identify a repeat of the scene, while also helping to filter out
incorrect matches that lead to false recognition. Interestingly, prior work only finds that
detail (considered between groups of manmade vs natural scenes) is only carried in false
alarm scores [43]. By considering complexity at an image level, rather than a category
level, we leverage a more fine-grained approach in which results in the data pattern
shown here. Notably, we allow both for simple man-made images and complex natural
images, a distinction that may be lost through grouping.

Breaking down complexity into either ‘complex’ or ‘simple’ metrics based upon the
results of the two-dimensional complexity maps allows us to further investigate this re-
lationship. When looking only at one factor at a time, the amount of image covered in
complex annotations (indicating that a specific image region is a complex one) has no
relation to either the hit rate or the false alarm rate of the scene. Participant agree-
ment on complex regions likewise only appears indicative of reduced false alarm rate. In
other words, when participants are more likely to indicate the same region as complex
in a scene, that scene is also more likely to have reduced instances of incorrect recog-
nition. For the simple channel, the data shows an inverse pattern; the more agreement
on simple regions in the scene, the more likely that image is to be falsely recognised.
This also carries a small, but significant reduction in hit-rate. Generally, it appears
(when considered solo) that the simple regions in the image have more to do with the
memorability of that image than the complex regions. However, this is not necessarily
a complete picture. Examining the relationship between complexity-based annotations
and memorability-based annotations, it is evident that the complexity of the region ap-
pears to drive the memorability of that same region. In essence, while simplicity appears
to drive false-alarms up, when an image is correctly recognised, the regions that have
caused this correct recognition are, in part, related to the complexity of that region.
This pattern also appears for the ‘false schemas’; which also appear to be driven by
region complexity. It appears that even in a simple image, which should have a greater
incidence of false alarms, the effect that causes correct recognition of that image is still
partially to do with the complex regions present inside that scene. This makes sense,
given our prior data on complexity; even simple images can contain potentially complex
regions, a detail visible in our two-dimensional data.
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But how much of memorability can be explained with complexity-based measures? To
answer this we conducted a multiple linear regression, and find that in general we can
explain 5.6% of the variance of human memorability for scenes with factors selected to
reduce multicollinearity. If we relax this constraint, we can explain up to 6.8% of the
variance. This is not a large amount, but it is significant; from this data we can certainly
say that complexity, and hence detail, has something to do with the memorability of
scenes. It should be noted that complexity is not necessarily the be-all end-all of detail;
there could certainly be elements of ‘detail’ that are not captured in single-score and
two-dimensional metrics of ‘complexity’ - however, complexity appears to be a suitable
enough analogue to explain some of the variance in memorability. The data from the
multiple regression analysis supports that found previously; for memorability as defined
by DPrime, the significant predictor is that of the human complexity score ratings.
Breaking this apart into hit rate and false alarm rate reveals that for hit rate, the
primary predictor remains human complexity ratings, with a weak negative relationship
between complex agreement and scene hit rate. This may indicate that overly complex
scenes could actually suffer a decrease in memorability compared to those that strike
a middle-ground between complexity and simplicity. For false alarm rate, the only
significant predictor is how much participants agree on which image regions are simple.
This reinforces our earlier finding that more simplicity leads to more false alarms; though
the variance explained for false alarm rates is low, likely due to the inherently larger
variation in false alarms than in hit rates; the same problem that causes false schemas
to be more difficult to predict than true schemas.

Finally, given that the data so far is strongly indicative that complexity plays some role
in scene memorability, it would be unusual if metrics developed to explain complexity did
not also have some degree of correlation with memorability. We test this, and find that
our results for our clutter and symmetry metrics correlated against memorability data
show the same pattern that you would expect if they were correlated against complexity
data. Notably, that greater clutter increases scene memorability, and greater symmetry
decreases it. In general, it does appear that complexity, serving as an analogue for
detail in the scene, does indeed relate to memorability. It is clear that there is an
element of detail processing employed during scene encoding, and that detail can both
cause an effect in recognition, and in false recognition. Most convincing is the evidence
that pairs human complexity ratings to image DPrimes; with higher complexity comes
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higher DPrimes, and with lower complexity, lower DPrimes. Specifically, when a scene is
remembered, the memorable regions of that scene and the complex regions of that scene
appear related, whereas false recognitions appear to be linked to the overall simplicity
of the image. This adds to the so far relatively sparse body of work that attempts to
determine the effect of scene detail on human memory performance, and our results
both reinforce prior work, and provide new details on how complexity and memorability
relate to one another.

6.6 Summary

In this chapter we have drawn upon both Visual Memory Schemas and our prior work on
human complexity perception to investigate whether complexity and memorability are
related. We use complexity to operationalise ‘detail’, an element of scene images that
is hypothesised to assist in the encoding of images into visual long-term memory. We
compare memorability data and complexity data in several different methods, starting by
examining single-score ratings of complexity against single-score ratings of memorability,
before progressing to investigating what two-dimensional complexity information reveals
about human memorability. We find that complexity and memorability do indeed relate,
and that complexity can explain a small, but significant portion of the variance inherent
in scene memorability. Interestingly, while complexity appears to drive hit rates, and
simplicity, false alarm rates, there is some evidence that high agreement on complex
scene regions is negatively correlated with correctly recognising that scene.
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CHAPTER 7
Conclusion

In this chapter we conclude the thesis, starting by providing a summary of the main
research conducted in Section 7.1. We then discuss the general conclusions for this
research in Section 7.2, and examine possible directions this research could take in the
future in Section 7.4.

7.1 Thesis Summary

At the start of this thesis, in Chapter 1, we outline the motivation for conducting
research into scene memorability. Notably, we had three main aims for this work: first,
to examine potential avenues for improving visual memory schema map generation,
expanding VMS datasets, and to gain a greater understanding of what may make images
memorable. Secondly, to explore whether visual memory schemas could be employed to
synthesise scene images designed to be either memorable, or non-memorable, and to test
this effect in humans. Thirdly, and finally, we aimed to explore how humans perceive
the complexity of scene images, and then make use of complexity data as an analogue of
the ‘detail’ trace in human memory; exploring how memorability and complexity relate.

In Chapter 2 we set the scene for this research, presenting to the reader an overview of
human memory, exploring which image characteristics may or may not relate to image
memorability, before turning to general machine learning techniques and ending with a
general overview of complexity. To avoid overburdening the general background chapter,
beyond this, each chapter contains a specific literature survey that examines relevant
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prior work to that chapter. We identify several key areas and address them - 1) The
small overall VMS map dataset size. 2) The lack of techniques designed to predict VMS
maps. 3) Minimal prior work into attempting to control the memorability of scenes,
and none that do not require a starting ‘seed image’ to modify. 4) No exploration of
complexity perception as a property that varies across a scene. 5) Complexity has not
been examined as potentially serving as the ‘detail’ trace of scene memorability; and in
fact, the relationship between complexity and memorability has not been examined in
the case of ground-truth data existing for both.

7.1.1 Visual Memory Schemas

For Chapter 3 we start by noting that a significant challenge facing research into visual
memory schemas is the lack of suitable data. This hampers both investigative tech-
niques and machine learning models of scene memorability. To solve this issue, we first
replicate the original VISCHEMA experiment, doubling available data, before designing
a continuous paradigm that can be hosted online. This allowed us to eventually increase
available VMS data from 800 scenes/vms maps, to over 4000 scenes/vms maps. We use
this data to evaluate a variety of machine learning techniques, exploring a variational
approach, the effect of various hypothetically grounded techniques, before developing
a novel architecture that gives SoTA VMS map prediction performance. The data al-
lowed us to explore differences in memorability that are lost when scene memorability
is reduced to a single score.

7.1.2 Modulating Human Memory

In Chapter 4 we propose two GAN networks that integrate a VMS map predictor to
serve as an auxiliary ‘memorability loss’ for synthesised images. The purpose of these
networks are to investigate whether we can use VMS maps to create scene images of a
targeted memorability. This serves both as an interesting question in its own right, and
as a further validation of the VMS map approach. We find that we do appear to cause
a significant difference in hit rate between scenes generated to be low memorability vs
those generated to be high memorability. Post-hoc analysis finds little difference in either
the quality or the recognizability of these scenes, suggesting it is memory being affected.
Empirically, differences in structure between low and high memorability images can be
observed. Compared to prior work, our approach requires no initial seed image (we do
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not modify an existing image to be more or less memorable), no existing pre-trained
generator, and focuses entirely on complex indoor scenes.

7.1.3 Factorising Scene Complexity

We study how humans perceive complexity in Chapter 5. Encouraged by results in
two-dimensional memorability, we likewise go beyond single-score complexity and gather
complexity maps that reveal both perceived complex and perceived simple regions across
scene images. We find that metrics that describe these annotations perform well at de-
scribing the overall complexity rating given to the scene images we used as our source
dataset. By employing (and computationally operationalising) psychologically grounded
metrics of complexity we find we can describe a significant portion of human variance
with scene clutter and scene symmetry. Through a trained neural network (for semantic
extraction) we explain the remaining portion of complexity variance, and through results
on an inverted scene dataset settle on a two-pronged model of complexity; perception
relies on both global image characteristics and scene semantics. Through network dissec-
tion we find that the network has learned to detect both low-level patterns and semantic
scene elements, reinforcing this theory. Notably, we gather our complexity data on the
VISCHEMA dataset; creating for the first time a dataset that has both two-dimensional
memorability data and two-dimensional complexity data.

7.1.4 Complexity & Memorability

Finally, in Chapter 6 we make use of our prior work in scene complexity and ask whether
we can use complexity as an analogue for the detail trace of human memory. Prior work
has suggested that the degree of complexity in the scene may affect how memorable that
scene is, but until now no dataset existed that had both complexity and memorability
data for every data point. Prior work relies on either artificial predictors for complexity,
or on the reasonable assumption that manmade scenes are more likely to be complex,
and outdoor scenes more likely to be simple. In our work, however, we have ground-truth
human data that can be directly compared, and can directly explore the relationship
without needing to separate scenes into two different categories. We find that complexity
plays a small but significant part in scene memorability, and our global image features
that can explain part of complexity equally correlate with memorability.
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7.2 Conclusions

Here we provide some general conclusions from the work conducted in this thesis.

• By expanding available VMS datasets from 800 images to over 4000 we allow future
work to benefit from a significantly expanded amount of data, often which is the
limiting factor for machine learning approaches. We find that there are several dif-
ferences in scene memorability that only appear when considering two-dimensional
data, that are occluded when only considering a single-score representation of mem-
orability. Through state-of-the-art segmentation techniques we are able to extract
the ‘schema’ that visual memory schemas capture, for the first time determining
which elements appearing together in scene images correspond with recognition of
that scene. Through computational techniques, we move from a mental schema, to
an annotated scene image, to a human-readable description of that mental schema
that is suitable for quantitative analyses.

• We build upon our initial VMS prediction model, considering various alternative
techniques to improve VMS prediction. We finally develop upon a novel architec-
ture that makes use of both two-dimensional VMS data, as well as single-score
memorability data, of which there is a significantly larger amount. Combined with
the best-performing techniques that we isolate in a series of comprehensive tests,
this model sets the baseline for VMS prediction. Interestingly, while our model
was never intended to predict memorability scores for the single-score dataset, we
find that disabling two-dimensional memorability feedback significantly impairs
the ability of the model to predict single-dimensional memorability scores. This
serves as yet more evidence that the VMS approach is a suitable descriptor for
scene memory.

• By retasking VMS predictors and combining these with generative models we
endeavour to synthesise scene images that can modulate human memory. We
find that our images generated to be more memorable appear to be so, and vice-
versa with scenes generated to be less memorable. It appears that human memory
is susceptible to memorability-modulated artificially generated scene images, and
that visual memory schemas provide a powerful enough description of memory to
enable this.
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• Human perception of complexity appears two-fold, and how we perceive the com-
plexity of scenes is based both upon global image characteristics as well and the
semantics present in the image. We find we can explain a significant portion of
variance with our global image metrics, and for inverted scene images with dam-
aged semantics can explain all the variance. By using a neural network to capture
semantics that our global measures miss, we are able to explain all variance inher-
ent in human complexity perception. We develop a dataset of scenes that contain
both two-dimensional memorability information, and two-dimensional complexity
information that highlights which areas of scenes are perceived as complex, and
which are perceived as simple. We find these annotations correspond with the
overall ratings of complexity that humans give to these scene, and open the path
to a two-dimensional consideration of scene complexity.

• Finally, we find that complexity and memorability are related. While prior work
has shown that scenes thought to be simple are less memorable than complex
scenes, and has proven this with simpler images (doors with detail removed vs
the same doors unaltered), or investigated artificial metrics of complexity against
memorability, we here show the relationship with ground-truth data for both com-
plexity and memorability. We present a comprehensive investigation of complex-
ity against memorability, hypothesising that complexity may capture (or partially
capture) the ‘detail’ trace of human memory. We find we are able to explain a
small, but significant portion of variance in memorability with complexity, and
also find that image regions that lead to recognition are often complex. In es-
sence, leveraging our prior work in complexity perception we can say that the level
of complexity present in a scene is a significant element in determining whether
that scene will be remembered. Notably, we find that higher complexity images,
in general, show higher incidences of hit rates and low incidences of false alarm
rates; and that detail likely assists both recognition and reduces false recognition.
We finally show that computational metrics relevant for complexity are also rel-
evant for memorability, with scene clutter positively correlated with remembering
an image, and high amounts of local scene symmetry negatively correlated with
remembering.
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7.3 Limitations

There are some limitations to this work that should be considered. While we have made
progress in expanding available visual memory schema data, the amount of data remains
relatively small compared to other computer vision datasets. This makes training a
neural network challenging, due to both potential lack of variability, as well as the
risk of overfitting. While data augmentation can alleviate these concerns, it does not
perfectly resolve the issue. Additionally, while we endeavoured to use a wide variety of
scene types, there are natural limits to that breadth of the data we were able to gather.
For the original VISCHEMA dataset, the data is limited to eight categories; and for
VMS4k, the categories were constrained simply to ‘indoor’ and ‘outdoor’ in order to
ensure there was an equal amount of that type of scene in each category. The scene
types used to make up these categories were balanced as much as was feasible, but
perfect balancing was not possible, which may introduce some element of bias inside the
indoor and outdoor categories. This could be addressed with additional data.

In our studies we make use of behavioural data. This has some potential drawbacks; it
is expensive and time-consuming to gather, and has the potential to be influenced by
inherent biases and participant strategies. While for memorability data this issue is less
pronounced (recognition performance of a scene is easy to test) for complexity there is
no obvious test for performance. While participants agree on what in a scene is complex
or simple, and in the score rating given to that scene, it remains unknown exactly what
is being done by the participants when asked to rate complexity. This would require
further research, with different experimental paradigm.

When it comes to complexity, although participants are highly consistent; and their
ratings correlate with computational metrics, complexity as a visual concept lacks a
concrete definition. While memorability of a scene can be categorised as ‘how well
human observers can remember that scene’, a similar definition for complexity remains
elusive, with prior work suggesting that it is as simple as ‘the count of elements present’
or ‘the verbal difficulty in describing a texture’. For scenes, both these definitions fall
short; scenes are more than just their objects, and contain many and varied textures.
We know that humans can consistently rate complexity, that perception of complexity
appears to rely on both semantic and low-level features, and that in some fashion it is
related to human memory of scenes. Beyond this, there may be a rigorous definition that
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captures the data; or it may be an intrinsic feature of perception, similar to aesthetics
or interestingness.

7.4 Future Work

Thanks to the relatively broad nature of this research, there are multiple directions this
research could be taken in, both computational and psychological. Here, we describe a
few potential avenues relevant to future applications of this work.

• The most obvious extension is yet more visual memory schema data. Modern
single-score memorability datasets contain tens of thousands of datapoints; our
contribution still lags behind this. By gathering more data, either with the ori-
ginal paradigm or our crowdsourced alternative, offers the chance to improve ex-
isting models and gain further understanding around the nature of visual memory
schemas.

• We do not expect our dual-feedback model to be the be-all and end-all of visual
memory schema prediction. There is certainly a promising direction in taking
advantage of existing memorability datasets, and future approaches may wish to
consider not just one, but multiple existing datasets to aid in VMS prediction. We
kept our networks relatively shallow to best use available computing power; deeper
networks with additional data could result in a promising increase in VMS map
predictive performance. Likewise, while we found self-attention and multi-scale
information performed adequately, recent generic classification models have found
high levels of success with transformer based techniques; none of which have been
examined in the context of predicting the memorable regions of scenes.

• There is significantly more to explore when considering the modulation of human
memory with synthesised scenes. We were limited to a single indoor scene; there
is no reason this technique could not be applied to class-conditional GANs, and
explore the effect of altering the memorability of multiple outdoor and indoor
scenes, should compute resources be available. Additionally since we conducted
our study, there has been much progress in the area of generative networks; future
work may be able to approach photo-realism across a variety of scene categories.

• In our work we mostly explored memorability, or ‘true schemas’. However, we also
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have significant data on ‘false schemas’, or the areas that lead to false recognition
of a scene. False schemas are significantly harder to predict compared to false
schemas, and less consistent amongst humans. It would also be interesting to
develop models that can more accurately model false schemas; and compare these
to models of true schemas to determine which factors are relevant in triggering a
false recognition. The segmentation analysis of Chapter 3.2 could also be applied
to false schemas to determine which scene elements lead to a false recognition
compared to a true recognition.

• Finally, while we have examined complexity and memorability together, we have
only been able to do this for 800 scene images. It would be interesting to expand
available complexity data to match that of the two-dimensional memorability data,
and as such gain an even greater insight into the relationship between detail and
memory. There has been little investigation into the features contained within
complex or simple regions; further investigation into this may help reveal which
semantic elements being present are critical for a scene region to be perceived as
complex or simple.

7.5 Summary

In this thesis we have explored the memorability of scene images, leveraging a technique
known as a visual memory schema map, and developing new methods of computationally
predicting these maps. We gain insight into what contributes to these schemas through
computational techniques, and employ our predictors to find that we can in fact modulate
human memory with visual memory schemas. We develop a two-dimensional complexity
dataset and dissect human complexity into a variety of psychologically grounded metrics,
before using our data to investigate the relationship between visual memory and scene
complexity. In summary, we find that we can capture the detail trace of human memory
through complexity, and that detail has a small but significant impact on how well scene
images are remembered.
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APPENDIX A
Co-occurrences of Objects in Memorable Regions

Here we provide co-occurrence counts for n-objects that appear together inside the mem-
orable regions of images. These objects can be thought of together as providing a human-
readable representation of a schema that leads that scene to be remembered. Viewed
per-category these reveal the most memorable combinations of objects in that category;
and hence capture the ‘schema’ for an entire category at once. We provide graphs for
every category for 3, 5 and 7 object co-occurrences, each providing a greater level of
detail, but with more specificity.
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A.1 3 Objects

Figure A.1: These three objects frequently appear together inside the memorable re-
gions of an image, of that category. VISCHEMA Categories: Kitchen, Living Room,
Work/Home, Big

Figure A.2: These three objects frequently appear together inside the memorable regions
of an image, of that category. VISCHEMA Categories: Small, Isolated, Populated,
Public Entertainment
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A.2 5 Objects

Figure A.3: Five object co-occurrences, all categories.
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A.3 7 Objects

Figure A.4: Seven object co-occurrences. Kitchen, Living Room, Work/Home, Big
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A.3. 7 OBJECTS

Figure A.5: Seven object co-occurrences. Small, Isolated, Populated, Public Entertain-
ment

158



APPENDIX B
Images with Modulated Memorability

B.1 Additional MEMGAN Architecture Details

The following figures (figures B.1, B.2) are intended to support Chapter 4.

Figure B.1: Structure of generator and discriminator blocks, showing interpolation and
convolutional filter sizes. Similar structure to that of the standard progressive GAN.
All convolutional layers employ Leaky ReLU activation and weight-scaling [70]. We
find adding a hyperbolic tangent activation to the output of the interpolation layer to
improve training speed and stability.
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B.2. HIGH-MEMORABILITY IMAGES

Figure B.2: Flattened network diagram showing resolution and channels of each architec-
ture block. Every resolution block output is passed through the memorability estimator.

B.2 High-Memorability Images

Figure B.3: Additional exemplars of generated highly-memorable images.
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B.3 Low-Memorability Images

Figure B.4: Additional exemplars of generated low-memorability images. Low-
memorability images appear simpler, and often contain more “closed” perspectives, with
less variation across the image.
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APPENDIX C
Complex and Simple Images

The sections below contain additional examples from the complexity datasets gathered
during as part of this research. The last sections contains additional prediction results
for complexity maps from the complexity prediction neural network. The entire dataset
is available online1.

C.1 High Complexity Images

The following figures show the ten most complex scenes for both upright and inverted
scene images, and are intended to support Chapter 5. In all complexity map images,
blue areas represent complex regions, and red areas represent simple regions. All regions
are gathered from human annotations. Additionally, in the upper left hand corner, each
map contains the overall complexity score assigned to the scene.

1https://ccpl.hosted.york.ac.uk/research
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C.1.1 Upright Scenes

Figure C.1: Ten most complex upright scene images, as rated by humans. Complexity
maps for these images are placed in the same location as their corresponding image in
Figure C.2

Figure C.2: Complexity maps for the ten most complex upright scenes, showing complex
regions (blue) and simple (red) regions, as described by humans. Complexity score in
upper left-hand corner.
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C.1.2 Inverted Scenes

Figure C.3: Ten most complex inverted scene images, as rated by humans. Complexity
maps for these images are placed in the same location as their corresponding image in
Figure C.4

Figure C.4: Complexity maps for ten high-complexity inverted scene images. Note
increased annotation coverage compared to Figure C.2

C.2 Low Complexity Images

The following figures show the ten least complex scenes for both upright and inverted
images.
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C.2.1 Upright Scenes

Figure C.5: Ten least complex upright scene images, as rated by humans. Complexity
maps for these images are placed in the same location as their corresponding image in
Figure C.6

Figure C.6: Complexity maps for simplest upright scenes. Note prevalence of annotated
‘simple’ regions, matching low overall score.
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C.2.2 Inverted Scenes

Figure C.7: Ten least complex inverted scene images, as rated by humans. Complexity
maps for these images are placed in the same location as their corresponding image in
Figure C.8

Figure C.8: Complexity maps for least complex inverted scene images. Evidence for loss
of localisation ability compared to upright low-complexity scenes (Figure C.6)
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C.3 Additional Prediction Results

Figure C.9: Additional prediction results for complexity maps.
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APPENDIX D
MLR Table for Complexity/Memorability

This table is a supplement to Chapter 6 and shows results for a multiple linear regression
conducted over all complexity metrics vs scene memorability.

Table D.1: Results of multiple linear regression. Coefficients for each variable are shown,
as is the coefficient of multiple regression (R) and variance explained (R-squared). All
regressions are significant. Complexity can explain a small, but significant portion of
variance inherent in memorability data for DPrime, hit rate, and false alarm rate. Sig-
nificant values shown in bold, p <0: ***, 0.001: **, 0.05: *

D-Prime Hit Rate False Alarm Rate

Constant 0.9394 0.2588 0.07
Complex Intensity 0.0166 -0.002 -0.003**
Complex Coverage -0.724* -0.041 0.119***
Simple Intensity -0.0284** -0.005* 0.002
Simple Coverage 0.7745** 0.1818** -0.028
Complexity Scores 0.0015*** 0.004*** -0.0005

R 0.2714 0.256 0.181
R-squared 0.074 0.065 0.033
Adjusted R-Squared 0.068 0.06 0.027
Observations 800
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