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Abstract

Probabilistic model checking is a mathematically based technique widely used to verify whether

systems with stochastic behaviour satisfy their nonfunctional requirements, and to synthesise

new system designs that comply with such requirements. Nevertheless, the technique has a num-

ber of limitations. First, the validity of the verification depends on the accuracy of the models

being verified—with invalid verification results causing wrong software engineering decisions.

Second, the variant of the technique used to perform verification under parametric uncertainty

is computationally very expensive. Finally, the synthesis of stochastic models (corresponding

to desirable system designs/configurations) is typically only possible for simple requirement

combinations, and for discrete-time models.

This thesis provides solutions to these limitations. First, we introduce a method for the

efficient and accurate verification of nonfunctional requirements under parametric uncertainty.

This method collects additional data about the parameters of the verified model by unit-testing

specific system components over a series of verification iterations. The components tested in

each iteration are decided based on the sensitivity of the model to variations in the parameters

of different components, and the overheads (time or cost) of unit-testing these components.

Second, we extend the applicability of probabilistic model checking under parametric un-

certainty to larger models than currently possible by leveraging recent advances from the area of

parametric model checking.

Third, we propose a new method for synthesising Pareto-optimal Markov decision process

(MDP) policies that satisfy complex requirement combinations. These policies correspond to

optimal system designs or configurations, and are obtained by translating the MDPs into para-

metric Markov chains, and using search-based software engineering techniques to synthesise

Pareto-optimal parameter values that define optimal policies for the original MDP.

Finally, we present an approach for the synthesis of continuous-time Markov decision pro-

cess (CTMDP) policies—a problem not addressed by existing probabilistic model checkers.

This approach generates policies that define software-system configurations or cyber-physical

system controllers that meet predefined nonfunctional constraints and achieve optimal trade-offs

between multiple optimisation objectives.
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Chapter 1

Introduction

1.1 Probabilistic and parametric model checking

Computer systems and software are increasingly at the core of all human activity. The

complex hardware and software components of these systems must be designed with an

adequately high level of confidence in their integrity and correctness. Ensuring the cor-

rectness and integrity of these systems is a particularly essential task for safety-critical

and business-critical systems [1, 2]. System failures can expose human lives to dan-

ger or result in high financial losses [3–5]. Furthermore, manual analysis and inspec-

tion of those systems are costly, error-prone and take a substantial period of time [6].

One widely used approach to avoiding the limitations of such manual analysis is model

checking.

Model checking is a mathematically based technique that assists in assuring the

correctness of systems and has the ability to analyse the quality of service properties

of such systems [7]. It refers to an automated verification method that systematically

verifies that concurrent systems satisfy provided properties [8, 9]. In this method, sys-

tems are represented as a state transition model (e.g. Kripke structures or discrete-time

Markov chains), and properties are written in propositional temporal logic (e.g. linear
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temporal logic or probabilistic computation tree logic) [10]. Compared to other ap-

proaches, model checking is fully automatic and attempts to expose all possible system

situations [11]. It also provides a counterexample to illustrate a behaviour that violates

the evaluated property. The counterexample gives engineers a clear perception of the

error and often suggests a way to fix the problem [12].

Analysing nonfunctional properties (e.g. reliability and performance) for systems

has become crucial. However, traditional model checking approaches and tools are not

appropriate for real-world systems [13] because the traditional approaches produce ei-

ther "yes" or "no" to show that the analysed property is satisfied or violated, respectively,

and do not include a quantitative evaluation [14]. Consideration of the random aspects

of such systems is essential for fulfilling a quantitative analysis. Probabilistic model

checking is a formal verification technique capable of evaluating nonfunctional prop-

erties of systems whose behaviour is stochastic [15]. For instance, probabilistic model

checking has the ability to verify nonfunctional properties of a robot system, such as “the

time within which the robot completes a task should be at most three minutes”. Markov

models are used in probabilistic model checking to capture the stochastic behaviour of

systems. The most frequently utilised kinds of Markov models are discrete-time Markov

chain (DTMC), continuous-time Markov chain (CTMC) and Markov decision process

(MDP) [16]. Sometimes the state transition probabilities of these models are unknown

during system development, and therefore they are represented as parameters. This sort

of model is called a parametric Markov model, in which the analysis is through para-

metric model checking [17, 18].

In parametric model checking, parameters are used to specify some of the proba-

bility values and rewards of the model, as these values may only be known when the

modelled system is deployed and its behaviour and environment are monitored. Thus,

Kwiatkowska et al. [19] describe parametric model checking as a variant of model

checking in which “One or more values in definition of the model (for example, a tran-

sition probability) or in the property to be verified (for example, a time bound) are

3



provided as a parameter to the verification problem, rather than being instantiated to a

specific value.” These parameters may be unknown before run-time or may be config-

urable parameters of the system. The result of parametric model checking is an algebraic

expression for the analysed nonfunctional property.

1.2 Motivation

Despite its widespread adoption in the verification of software systems ranging from

service-based systems [20, 21] and software product lines [22] to robotic system con-

trollers [23, 24], probabilistic model checking (and its parametric model checking vari-

ants) have a number of limitations. Several of these limitations are particularly relevant

to the use of probabilistic and parametric model checking for the verification of synthe-

sis of software systems, which are the focus of this thesis. These limitations are detailed

in the following.

First, the validity of verifying a Markov model depends on how accurately the pa-

rameters of the model are estimated, and invalid verification results could cause wrong

software engineering decisions. Second, the recently proposed approach for probabilis-

tic model checking with confidence intervals [25] (which aims to address the first limi-

tation by supporting the verification of nonfunctional requirements of a software system

under uncertainty) is computationally very expensive, and thus does not scale to larger

Markov models.

Third, despite significant recent advances in the synthesis of MDP policies [26] that

correspond to, for example, software components that satisfy a set of nonfunctional re-

quirements, these synthesis techniques can only handle simple combinations of such

requirements. For instance, the latest version of probabilistic model checkers, such as

PRISM [27] and Storm [28], can synthesise Pareto-optimal policies for certain combi-

nations of two nonfunctional requirements, but not for three requirements or more.

Finally, current probabilistic model checkers cannot handle the synthesis of policies
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for continuous-time Markov decision processes (CTMDPs), which can be used for the

synthesis of software components with nonfunctional requirements that refer to timing

aspects of the system behaviour. An example of such requirements is ‘Minimise the

risk associated with a robotic mission over a one-hour time period, subject to the energy

consumption during that time not exceeding the capacity of the robot’s battery’.

The thesis addresses the limitations of probabilistic and parametric model checking

detailed above, under the following multi-part hypothesis:

1. We can lower the cost of the component testing required to apply formal verifica-

tion with confidence intervals to nonfunctional requirements of component-based

systems modelled as parametric Markov chains by focusing the testing on com-

ponents whose parameters have a bigger impact on the relevant system properties

(as opposed to testing all components similarly).

2. By integrating the efficient parametric model checking method from [17] into the

FACT [25] model checker with confidence intervals, it is possible to support the

verification of parametric Markov chain models that the current version of FACT

does not support.

3. The synthesis of MDP policies that satisfy combinations of constraints and opti-

misation objectives currently unsupported by the leading model checkers PRISM

and Storm can be handled by mapping the MDP models being analysed to para-

metric DTMCs and using metaheuristics to search for the required policies.

4. By encoding a CTMDP as a parametric CTMC, it is possible to obtain Pareto-

optimal policies corresponding to complex combinations of nonfunctional re-

quirements, either manually by using the probabilistic model checker PRISM

to analyse the resulting CTMC, or fully automatically by using the probabilis-

tic model synthesis tool EvoChecker [29].
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1.3 Research contributions

The thesis makes four research contributions, summarised as follows.

The first contribution is a tool-supported iterative approach for the efficient and accu-

rate verification of nonfunctional requirements under epistemic parameter uncertainty.

The approach is called VERACITY, and integrates confidence-interval quantitative veri-

fication with a new adaptive uncertainty reduction heuristic that collects additional data

about the parameters of the verified model by unit-testing specific system components

over a series of verification iterations. VERACITY supports the quantitative verification

of Markov chains, deciding the components tested in each iteration based on factors that

include the sensitivity of the model to variations in the parameters of different compo-

nents, and the overheads (e.g. time or cost) of unit-testing each of these components.

We show the effectiveness and efficiency of VERACITY by using it for the verification

of the nonfunctional requirements of a service-based system and a web application.

The second contribution is a method for efficient formal verification with confidence

intervals (eFACT) that extends the applicability of probabilistic model checking under

parametric uncertainty to larger models than currently possible by leveraging recent ad-

vances from the area of parametric model checking. Furthermore, eFACT can analyse

nonfunctional requirements to discover the highest confidence level αMAX at which the

requirement can be verified as satisfied or violated. It benefits engineers who are particu-

larly interested in measuring their software’s confidence over the analysed requirement.

Getting the value of αMAX (or a close approximation to it) enables essential decisions

to be made. For example, if a requirement can be demonstrated with the highest con-

fidence level of αMAX , then the system can be deployed with confidence (on the basis

that that requirement is met).

The third contribution is a new method for synthesising Pareto-optimal MDP poli-

cies that satisfy complex requirement combinations (e.g. the requirement that has more

than optimisation objectives with constraints). These policies correspond to optimal sys-
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Figure 1.1: Thesis structure

tem designs or configurations, and are obtained by translating the MDPs into parametric

Markov chains, and using search-based software engineering techniques to synthesise

Pareto-optimal parameter values that define optimal policies for the original MDP.

The final contribution is an approach for the synthesis of CTMDP policies—an im-

portant problem not handled by current probabilistic model checkers. The policies syn-

thesised by this approach correspond to configurations of software systems or software

controllers of cyber-physical systems (CPS) that satisfy predefined nonfunctional con-

straints and are Pareto-optimal with respect to a set of optimisation objectives. We illus-

trate the effectiveness of our method by using it to synthesise optimal configurations for

a client-server system, and optimal controllers for a driver-attention management CPS.

1.4 Structure of the thesis

The thesis is divided into four parts, as depicted in Figure 1.1. The first part intro-

duces the research area, motivation and contributions of the thesis in Chapter 1, and the

concepts, techniques and knowledge required to understand the thesis contributions in

Chapter 2.

7



The second part, comprising Chapters 3 and 4, presents the verification techniques

developed for the first two research contributions mentioned in the previous section.

Chapter 3 presents quantitative verification with an adaptive uncertainty reduction tech-

nique. The chapter describes the problem statement, the contribution and discusses the

results of the evaluation. Chapter 4 introduces efficient formal verification with confi-

dence intervals that enable the analysis of larger models than those handled by current

solutions.

The third part presents the synthesis techniques developed for the last two contribu-

tions in Chapters 5 and 6. Chapter 5 describes the first synthesis contribution and pro-

vides details about the problem being addressed, the new MDP policy synthesis method,

and then evaluates it using a suite of MDP benchmarks. Chapter 6 presents a CTMDP

policy synthesis approach that represents the last contribution of the thesis. It explains

the problem and the suggested approach, and discusses the results of the evaluation of

the approach.

In the last part of the thesis, Chapter 7 summarises the contributions of the thesis,

and Chapter 8 discusses future research directions.
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Chapter 2

Background

Analysing the properties of hardware and software systems is a necessary step towards

increasing the correctness of the systems. A widely used method for ensuring system

correctness is formal verification. To accomplish the analysis process, formal verifica-

tion requires a suitable mathematical model for the system being analysed and a lan-

guage appropriate for describing the properties.

This chapter introduces the fundamental concepts, tools, and approaches that sup-

ported the work undertaken to produce this thesis. Section 2.1 describes Markov mod-

els, with a focus on discrete-time Markov chains (DTMCs), which are used in Chap-

ters 3 and 4. It also describes Markov decision processes (MDPs), a stochastic modelling

paradigm that can be used to represent both probability and nondeterminism, that is used

in Chapter 5. Section 2.2 explains the probabilistic computation tree logic that is used to

express the nonfunctional properties of software systems whose behaviour is modelled

using DTMCs or MDPs. Sections 2.3 and 2.4 provide brief descriptions of probabilis-

tic model checking and parametric model checking. In Section 2.5, we present formal

verification with confidence intervals, which analyses parametric DTMCs by comput-

ing confidence intervals for properties of interest. Finally, in Section 2.6, we concisely

describe EvoChecker [29, 30], a search-based software engineering technique for prob-
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abilistic model synthesis used in several of the approaches introduced in the thesis.

2.1 Markov models

A Markov model is a state-transition system employed to model a system whose be-

haviour can be described as probabilistic (stochastic). Markov models can encode the

behaviour of a system into a determined number of states embodying various config-

urations of this system, and a set of transitions specifying the probabilities of moving

between these states. According to [31], stochastic processes can be viewed as extend-

ing the concept of the random variable to include time:

{X(t), t ∈ T}. (2.1)

A Markov process is a special category of stochastic process which meets the Markovian

property defined in (2.1). It assumes that the future status of a system can be specified

by the current status regardless of previous ones. In other words, the transition into the

following event depends only on the system’s existing event, not on the whole of the

previous events (the so-called memorylessness property of Markov chains) [32, 33].

The following formal definition of the Markovian property is adopted from [34].

Definition 2.1 A stochastic process {X(t)|t = 0,1,2,3, . . .} fulfils the Markov property

if:

P{Xt+1 = st+1|Xt = st ,Xt−1 = st−1, . . . ,X1 = s1,X0 = s0}= P{Xt+1 = st+1|Xt = st}

where s0, s1,. . . , sk are consecutive states of the random process.
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2.1.1 Discrete-time Markov chains

A discrete-time Markov chain (DTMC) is a type of probabilistic model used to model

discrete probabilistic systems [35]. It comprises a finite number of states describing a

system’s different phases and several transition possibilities determining the likelihood

that a phase moves from one single state to another.

A DTMC can model systems that are observed at discrete time periods because

transitions between states occur at discrete intervals. Furthermore, a DTMC can accept

a probabilistic choice and calculate the likelihood of building a transition between states

of a system [14]. The following formal definition was adapted from [14, 36]:

Definition 2.2 DTMC is a quadruple D = (S,s0,P,L) where:

- S is a finite set of states;

- s0 ∈ S is the initial state;

- P : S× S→ [0,1] is the matrix of state transition, where ∑s′∈S P(s,s′) = 1 for all

s ∈ S; and

- L : S→ 2AP represents a labelling function that allocates a number of AP to each

state s ∈ S. AP represents a finite set of atomic propositions.

The matrix element P(s,s′) provides the likelihood of a transition from state s to state

s′. A path (ω) to the DTMC is a sequence of states ω = s0,s1,. . . with P(si,si+1)> 0 for

all i ≥ 0. The path (ω) could be either finite or infinite. The first state of a path ω is

defined by the expression: ω(1). In general, we can define the nth state of path ω by

ω(n). If the path is finite, the last state for this path can be expressed as last(ω f in).

Example 2.1 The tele-assistance system (TAS) [21, 37] is a service-based system ap-

plication that aims to offer health care to chronically ill patients and elderly people in

the comfort of their homes. This system utilises a set of sensors mounted on a wearable
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Read vital data

Invoke medical 
analysis service

Invoke pharmcy 
service

Invoke alarm 
service

anInterruptibleActivityRegion

Pressing panic 
button

Figure 2.1: Activity diagram for tele-assistance system

device (e.g. a smartwatch) and can provide remote assistance offered by emergency,

health-care, and pharmacy services providers. Figure 2.1 shows an activity schematic

for the TAS that illustrates the workflow of the system. The TAS regularly takes the

patient’s vital signs and forwards them to a hired third-party medical service to analyse

the data. This system includes three main services:

1. Analysis service: This service analyses the patient’s vital and medical data, and

on the basis of the outcome of the analysis process, it may trigger an invocation

to other services (pharmacy or emergency services) to start their tasks.

2. Pharmacy service: If the analysis shows that the patient must change a dose of

12



medicine or use a new medicine, the pharmacy service is invoked.

3. Alarm service: The patient can immediately invoke an alarm service by pressing

a panic key on the wearable device. The alarm service can also be called by the

analysis service if the outcome of the data analysis deems that appropriate.

The TAS will be used as the first case study of our first contribution in Chapter 3.

The TAS can involve several scenarios. For instance, the response time of one of the

services could vary, a service could fail to respond, or a new feature could be added to

the system. By considering various types of actions for the TAS, it can be modelled as

a DTMC model, as shown in Figure 2.2. There are 11 states, and the initial state S0 has

a probabilistic branching to S2 with a probability of 1.0. The state S2 has a probabilistic

branching to S5 with a probability of 0.1, and to S3 with a probability of 0.9, and so on.

Also, based on this figure, the DTMC elements for this system can be summarised as

below:

- Set of states S = {S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10},

- Initial state s0 = S0,

- Set of atomic propositions AP= {initial,request,alarm,analysis,result, pharmacy,

f ailedAlarm, f ailedAnalysis, f ailedPharmacy,stop, f inal},

- Labelling function L : L(S0)= {initial},L(S1)= { f inal},L(S2)= request,L(S3)=

{analysis},L(S4)= {result},L(S5)= alarm,L(S6)= {pharmacy},L(S7)= { f ailedAlarm},

L(S8) = f ailedPharmacy,L(S9) = { f ailedAnalysis},L(S10) = {stop}.
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Figure 2.2: DTMC model of the tele-assistance systems (adapted from [38])

The state transition matrix P is:

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1.0 0 0 0 0 0 0 0 0

0 1.0 0 0 0 0 0 0 0 0 0

0 0 0 0.9 0 0.1 0 0 0 0 0

0 0 0 0 0.85 0 0 0 0 0.15 0

0 0 0 0 0 0.004 0.3 0 0 0 0.696

0 0 0 0 0 0 0 0.09 0 0 0.91

0 0 0 0 0 0 0 0 0.05 0 0.95

0 0 0 0 0 0 0 0 0 0 1.0

0 0 0 0 0 0 0 0 0 0 1.0

0 0 0 0 0 0 0 0 0 0 1.0

0.7 0.3 0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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2.1.2 Markov decision processes

A Markov decision process (MDP) is a mathematical framework used to solve and

model dynamic systems and decision-making problems that exhibit stochastic and non-

deterministic behaviour [31, 39]. It consists of five elements: states, transition probabil-

ities, actions, rewards, and decision epochs. It helps a decision-maker (e.g. an agent, or

a controller) choose an action depending on the system’s existing state (we will assume

the decision-maker is a software controller in this thesis). The consequence of this deci-

sion is either that the controller gains an immediate reward or incurs an immediate cost.

Then the system proceeds to the next state based on the transition probability related

to the selected action. At this time point, the controller faces the same situation, but it

could be in another state with other actions to select from. The rewards are utilised to

guide the synthesis of the controller to the objective, as the values of gained rewards

show the objective’s significance.

In an MDP, a controller or policy (π) selects the action when moving to the future

state. It uses a set of rules to decide which action should be taken at a particular time.

MDP policies can be of two types: deterministic and stochastic. A deterministic policy

uses the same single action each time when it reaches a specific state [40], i.e. π : S→A.

In contrast, a stochastic policy selects one of the available actions a available in state s by

using an associated discrete probability distribution; thus, π(s,a) is a probability such

that Σa∈A(s)π(s,a)= 1∀s∈ S , where A(s) is the set of actions available in state s [41, 42].

The optimal policy can be defined as a policy selecting the action that maximises the

profits/gains or minimises the cost/risk.

MDPs retain the Markovian property defined in Definition 2.1. The following formal

definition of MDPs is adopted from [43, 44]:

Definition 2.3 MDPs can be defined as a tuple M = (S,s0,A,∆,L), where:

- S: is a finite set of states in which every single state s ∈ S;
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- s0 ∈ S: is the initial state;

- A: is a countable set of actions, and each action a ∈ A;

- ∆ : S×A→ f (S) is a state transition function such that if ∀s ∈ S and a ∈ A, we

have ∑s′∈S ∆(s,a)(s′) ∈ {0,1}, where a zero sum indicates that the action a is

not available in state s (thus, f (S) is the set of functions containing all discrete

probability distributions over S and the “zero” function ∀s ∈ S .zero(s) = 0); and

- L : S → 2AP represents a labelling function that allocates a number of atomic

propositions from a set AP to each state s ∈ S.

"Cool"

"Overheated"

S1

S2

S3

A2  1.0

A1  0.5

A1  0.5

A2  0.5

"Warm"

A1  1.0

A2  0.5

Figure 2.3: Markov decision process example

Example 2.2 Assume that we have a mobile robot that has three states: cool (S1), warm

(S2), and overheated (S3). It also has two actions: (moving) f ast (A1) and (moving)

slow (A2). Figure 2.3 shows this example, adopted from [45]. In this example, S1 has

three outgoing transitions. One transition, designated as action A1, enables S1 to move

to itself, with a probability distribution of one. The other two transitions are designated
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as action A2, which allows S1 to either move to itself with a probability of 0.5, or move

to S2 with a probability of 0.5.

2.2 Probabilistic computation tree logic

Probabilistic Computation Tree Logic (PCTL) [46] is a type of temporal logic that is

extended from the computation temporal logic (CTL) [47]. We can use PCTL for rea-

soning about time and timing events [48] associated with DTMCs. PCTL replaces the

path quantifiers used in CTL with the probabilistic operator P ./ ρ(∗), where ./∈ {<

,≤,≥,>}, and ρ ∈ [ 0, 1] is a likelihood value that indicates the property require-

ments, such as "the chance of system failure occurring is at least 0.003". In other words,

temporal logic is used with cost, probabilities and rewards to analyse and describe the

nonfunctional (or quality of service, QoS) properties of the modelled system. For in-

stance, consider the TAS model explained in Sections 2.1.1 and 2.2. The PCTL formula

P≤0.05 [ F “ f ailedAlarm” ] means: from the initial state of the TAS model, the failure

of Alarm service state is reached with a probability that equals at most 0.05. Table 2.1

has additional examples of PCTL formulae for the TAS model.

Definition 2.4 A PCTL formula over an atomic proposition set AP has the general

form [35, 49]:

Φ ::= true | a ∈ AP | Φ ∧ Φ | ¬ Φ | P ./ρ [α]

α ::= X Φ | Φ ∪≤k Φ | Φ ∪ Φ where:

- Φ: indicates a state-formula;

- AP: is a set of atomic propositions;

./: is a logical operator and ∈ {<,≤,≥,>};

- ρ: is a probability threshold or bound and ∈ [0, 1];

- α: denotes a path-formula; and
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- k: Natural numbers, k ∈ N.

Definition 2.5 A cost/ reward augmented PCTL state-formula has the general form

([34]):

Φ ::= R ./r [I=k]|R ./r [C≤k]|R ./r [FΦ]

where:

- R ./r [I=k] : is the expected state reward at time step k that meets the constraint

specified by ./r;

- R ./r [C≤k] : gives the amount of expected accumulated reward up to time step k

that satisfies the constraint specified by ./r; and

- R ./r [FΦ] : is the expected cumulative reward before reaching the state φ that

satisfies constraint ./r.

Definition 2.6 The semantics of PCTL over a DTMC model D = {S,s′,P,L} is defined

as follow (adapted from [34]): For any state s ∈ S (or a path ω) satisfies a formula Φ,

the satisfaction relation |= can be defined inductively by:

s |= true ∀ s ∈ S

s |= a⇔ a ∈ L(s)

s |= ¬Φ⇔ s 2 Φ

s |= Φ1∧Φ2⇔ s |= Φ1 and s |= Φ2

s |= P ./ρ [φ ]⇔ ProbM(S,φ) ./ρ

ω |= XΦ⇔ ω[1] |= Φ

ω |= Φ1∪Φ2⇔∃i≥ 0(ω[i] |= Φ2 and ∀ j ≤ i.ω[ j] |= Φ1 )

The following path-formula ω could be used with a probabilistic path operator:

• XΦ represents the "next" formula that is true when Φ can be met in the next state;

• Φ1 ∪≤k Φ2 is the time threshold, "bounded until" formula that is satisfied contin-

uously at the time step t < k, and Φ2 is met at the time step t +1; and
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• Φ1 ∪Φ2 represents "unbounded until" formula. It corresponds to "bounded until",

however the time step threshold is equal to infinity t = ∞ .

Example 2.3 Consider the TAS model shown in Section 2.1.1 and Figure 2.2. The

following table illustrates a set of properties defined in PCTL format with their descrip-

tions.

Table 2.1: Some PCTL formulae for the TAS model

PCTL Formula Description

P≥0.03[F “ f ailedAlarm”]
The probability that Alarm service will fail
is at least 0.03

P≤0.15[¬ “done” U “ f ailedAnalysis”]
The probability that the system arrives at
“ f ailedAnalysis” state before reaching “done”
state is at most 0.15

P≤0.80[ true U≤65 “analysis”]
The probability of reaching “analysis” state
within 65 time units is at most 0.80

P =?[!“done” U “ f ailedService”]
The probability that the system is not done
before reaching “ f ailedService” state

P =? [F “analysis”]
The probability of the system, from the initial
state, of reaching “analysis” state

2.3 Probabilistic model checking

2.3.1 Overview

In 1981, the concept of model checking was proposed by Clarke and Emerson [50]. In

1982, Queille and Sifakis [51] proposed a similar concept to verify finite-state systems.

Model checking is a formal method used to check all potential system states and verify

the QoS, which provides significant advantages over traditional testing and simulation

methods [52]. It can detect system defects by applying a rigorous procedure in which

all possible actions of the system are fully examined. Model checking has become one

of the common practices to measure the quality of software systems [53]. The basic

aim of the model checking technique is to model a system as a finite number of states

19



machines and describe the specification in a temporal logic formula [54].

Model checking approaches were being implemented to verify systems that exhibit

stochastic behaviour, which led to the rise of the concept of probabilistic model check-

ing (PMC). PMC refers to a set of automated verification approaches used to model

uncertainties and the probability behaviour of stochastic systems [55]. It is a set of tech-

niques extended from model checking and intended to verify the correctness of proba-

bilistic systems. The systems can be represented in a state transition structure with a set

of probability values attached to the transitions [56].

Traditional model checking requires two inputs: captured system behaviour in a

high-level modelling formalism and one or more requirement specifications for the sys-

tem in temporal logic [57]. However, PMC encodes the transition probabilities be-

tween states rather than just the existence of transitions [15]. The modelling formal-

ism used for stochastic systems usually includes DTMC, a continuous-time Markov

chain (CTMC), MDP, and probabilistic automata. Specification requirements can be

expressed in PCTL or CTL. According to [58], the strength of PMC arises from its

ability to 1) construct a systematic and exhaustive probabilistic model, 2) discover all

potential scenarios of the system (involving best and worst case scenarios), and 3) pro-

duce precise quantitative values instead of approximate ones.

Several tools have been invented to uphold PMC algorithms and compute the al-

gebraic expressions for parametric Markov chain properties. Some of these tools are

described in the next section.

2.3.2 Probabilistic model checking tools

The probabilistic model checking tools described in this section are included because of

their simplicity of use, wide adoption, and the use of some of them in this PhD project.
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2.3.2.1 PRISM

PRISM [59, 60] is a frequently used, powerful model checking tool [61] that has been

used to analyse several systems in such contexts as power management systems, secu-

rity protocols, biological systems, communication, networks, multimedia protocols, and

randomised distributed algorithms. PRISM is a probabilistic symbolic model checker

developed by Kwiatkowska et al. [59] at the University of Birmingham. It can con-

struct and analyse three kinds of models that exhibit probabilistic behaviour: MDPs,

DTMCs, and CTMCs. It accepts various property specification languages, including

PCTL, PCTL*, and CSL. PRISM is open-source software that can be installed on Mac-

intosh, Linux, and Windows platforms and can be run through either a graphical user

interface or a command line [62].

2.3.2.2 Storm

Storm [28] is a PMC tool developed by Dehnert et al. [28] that can analyse four types

of models: DTMCs, CTMCs, MDPs, and Markov automata. It depends on symbolic

and numerical calculations and aids various types of solvers. Storm supports multi-

ple symbolic and explicit input formats, including probabilistic programs, generalised

stochastic Petri nets [63], dynamic fault trees [64], and PRISM [59] and JANI modelling

languages [65]. Storm’s flexible access provides APIs for C++ and Python, and it can

also be run from a command line [66]. It accepts PCTL and CSL specification languages

in addition to their extensions with rewards. Storm can be installed on Macintosh and

Linux OS platforms or can be used through a Docker container on all platforms.

2.3.2.3 MRMC

The Markov reward model checker (MRMC) [67] is one of the PMC software tools that

supports the analysis of discrete-time and continuous-time Markov rewards. MRMC

was developed by the RWTH Aachen University’s software modelling and verification
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group and the University of Twente’s formal methods and tools group. This tool is

implemented in C and can be run from a command line. MRMC supports four kinds

of models: DTMCs, CTMCs, discrete Markov reward models, and continuous Markov

reward models. It can be easily used as a back-end element for several tools such as the

PEPA Workbench [68], the performance modelling tool GreatSPN v2.0 [69], and the

STATEMATE toolchain [70].

2.3.2.4 VESTA

VESTA [71] is a probabilistic model checker that utilises statistical algorithms to anal-

yse Markov models. It can analyse two kinds of Markov models, CTMC and DTMC,

using properties written in PCTL, CSL or quantitative temporal expressions. VESTA

can be run through a command-line or operated using the designed user-interface. The

language used to develop this tool is Java.

2.4 Parametric model checking

Parametric model checking [17, 18] can be defined as a formal method to analyse

Markov chains with probabilities of transitions identified as rational functions over a

collection of continuous variables. These variables are the Markov model customisable

parameters that may be unknown before run-time, or may be configurable parameters of

the system. Parametric model checking can generate an algebraic expression for a given

PCTL-formalised property. It is supported by PMC tools such as PRISM and Storm,

and by verification tools like PARAM [72].

Daws [35] has developed a language-theoretic method to produce regular expres-

sions that define the probability of attaining a given set of states by using a state elimina-

tion algorithm. The algorithm transforms the parametric model into a finite automaton.

However, the regular expression of the finite automaton is restricted to nΘ(log n) where n

is the number of states [73]. A study by [18] reduced this limitation by applying a set
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Figure 2.4: TAS parametric model

of techniques to reduce the state space.

Several studies have been done on enhancing the effectiveness of parametric model

checking. A study done by [74] proposed an approach that applies a recursively hi-

erarchical decomposition of the analysed parametric model checker to reduce its com-

putation. This approach accelerates parametric model checking by different orders-of-

magnitude to previous approaches.

Example 2.4 Considering the TAS system example shown in Figure 2.2, if some states

have undetermined probabilities for their transitions to other states, we can redraw the

model as a parametric model, as shown in Figure 2.4.

Figure 2.4 shows a parametric model for the TAS in which the probabilities of three

states (green circles) are given as parameters, and they remain unknown until run-time.

The parameters pAlarm, pAnalysis, and pPharmacy indicate to the customisable pa-

rameters that they are unidentified before run-time. For instance, if the desired property

to analyse is “the probability of the system returning a failed service”, which is ex-
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pressed in PCTL as: P =? [F“ f ailedService”] , the PMC (such as PRISM) can produce

the algebraic expression for this property as

( 450 pAnalysis * pAlarm + 33750 pAnalysis * pPharmacy + 12500 pAlarm + 78300

pAnalysis - 125000 | 441 pAnalysis * pAlarm + 33075 pAnalysis * pPharmacy + 12250

pAlarm + 76734 pAnalysis - 125000 )

2.5 Formal verification with confidence intervals

Formal verification with confidence intervals [75] is a mathematically based technique

for the computation of confidence intervals for nonfunctional properties of systems with

stochastic behaviour. Given a parametric Markov chain M = (S,s0,P,L) that models the

behaviour of an SUV, a PCTL formula P=?[ · ] or R=?[ · ] corresponding to a nonfunctional

property of the SUV, and a confidence level α ∈ (0,1), the technique computes an α

confidence interval for the property.

To perform this computation, the technique also requires observations of the outgo-

ing transitions from all states with outgoing transition probabilities specified as rational

functions over unknown parameters of the SUV components. Assuming that Z ⊆ S is

the subset of all these states, the required observations are provided by a function

O : Z×S→ N (2.2)

that maps each pair of states (z,s)∈ Z×S to the number O(z,s) of transitions from state

z to s within a fixed period of time during which all outgoing transitions from z were

observed and counted. Given such observations, the confidence interval computation

is done in three stages. In the first stage, a confidence interval is calculated for each

parameter of the Markov chain. In the next stage, parametric model checking is used

to obtain a closed-form expression for the nonfunctional property.1 This expression is a

1Parametric model checking is supported by a growing number of model checkers, including
PARAM [72], PRISM [27], Storm [28] and ePMC/fPMC [17, 76].
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rational function over the SUV parameters, and is a byproduct of the technique exploited

by our VERACITY approach. Finally, in the third stage, the parameter confidence

intervals and the property expression are used to establish the confidence interval for

the nonfunctional property of interest. For a detailed description of the technique and

of a model checker that implements it see [75] and [25], respectively.

The number of available observations and the confidence level α used by the tech-

nique influence the width of the confidence interval. In particular, few observations

and large α values yield wide confidence intervals which may contain the lower or

upper bound that a nonfunctional requirement specifies for the property. In this case,

the verification of the requirement is not possible, and additional observations need to

be collected to allow the computation of a narrower confidence interval that does not

contain the bound.

Example 2.5 Consider the pDTMC model of the TAS shown in Figure 2.4. Assume

that the user wants to evaluate the probability of arriving at the ” f ailedAlarm” state

(S7), having started in the ”initial” state (S0). First, the user can provide the model for

the TAS in FACT-encoded format as follows:

1 dtmc

2

3 / / P r o b a b i l i t i e s o f s u c c e s s f u l s e r v i c e i n v o c a t i o n s

4 param do ub le pAlarm = 520 1 7 ;

5 param do ub le pPharmacy = 9500 170 ;

6 param do ub le p A n a l y s i s = 73820 1350 ;

7 / / known p r o b a b i l i t i e s o f d i f f e r e n t outcomes

8 c o n s t d ou b l e p _ a n a l y s e _ a l a r m = 0 . 0 0 4 ;

9 c o n s t d ou b l e p_ana ly se_Drug = 0 . 3 ;

10 c o n s t d ou b l e p _ a n a l y s e _ s k i p = 0 . 6 9 6 ;

11 c o n s t d ou b l e p_alarmReq = 0 . 1 ;

12 c o n s t d ou b l e p_ana lyseReq = 0 . 9 ;

13
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14 module T e l e A s s i s t a n c e

15 a : [ 0 . . 1 0 ] i n i t 0 ;

16 [ i n i t i a l ] ( a =0) −> 1 . 0 : ( a ’ = 2 ) ; / / r e q u e s t

17 [ f i n a l ] ( a =1) −> t r u e ; / / FINAL

18 [ r e q u e s t ] ( a =2) −> p_alarmReq : ( a ’ = 5 ) + p_ana lyseReq : ( a ’ = 3 ) ;

19 [ a n a l y s i s ] ( a =3) −> p A n a l y s i s 1 : ( a ’ = 4 )

20 + (1 − p A n a l y s i s 1 ) : ( a ’ = 9 ) ;

21 [ r e s u l t ] ( a =4) −> p _ a n a l y s e _ a l a r m : ( a ’ = 5 )

22 + p_ana lyse_Drug : ( a ’ = 6 )

23 + p _ a n a l y s e _ s k i p : ( a ’ = 1 0 ) ;

24 [ a l a rm ] ( a =5) −> pAlarm1 : ( a ’ = 1 0 ) + (1 − pAlarm1 ) : ( a ’ = 7 ) ;

25 [ pharmacy ] ( a =6) −> pPharm1 : ( a ’ = 1 0 ) + (1 − pPharm1 ) : ( a ’ = 8 ) ;

26 [ f a i l A l ] ( a =7) −> 1 . 0 : ( a ’ = 1 0 ) ; / / f a i l e d send a la rm

27 [ f a i l P h ] ( a =8) −> 1 . 0 : ( a ’ = 1 0 ) ; / / f a i l e d changed drug

28 [ f a i l A n ] ( a =9) −> 1 . 0 : ( a ’ = 1 0 ) ; / / f a i l e d a n a l y s i s

29 [ done ] ( a =10) −> 0 . 0 2 : ( a ’ = 1 ) + 0 . 9 8 : ( a ’ = 0 ) ;

30 endmodule

31

32 r e w a r d s " c o s t "

33 ( a =5) : 2 . 7 ; / / c o s t o f i n v o k i n g a la rm

34 ( a =3) : 0 . 0 3 ; / / c o s t o f i n v o k i n g a n a l y s i s

35 ( a =6) : 0 . 2 4 ; / / c o s t o f i n v o k i n g drug

36 e n d r e w a r d s

37

38 / / l a b e l s

39 l a b e l " done " = a =10;

40 l a b e l " f a i l e d A l a r m " = a =7;

41 l a b e l " f a i l e d S e r v i c e " = a = 7 | a = 8 | a =9;

42 l a b e l " f i n a l " = a =1;

43 l a b e l " a n a l y s i s " = a =3;

Note that in the above-mentioned format, the FACT parameter sets from lines 4 to 6,

pAlarm, pPharmacy, and pAnalysis, each have two transitions. Then the user writes
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Figure 2.5: Screenshot of the FACT result for the TAS model and a list of confidence levels
with their bounds

the property in a PCTL formula and provides the lowest and highest confidence levels.

The PCTL formula is written as:

P =? [F” f ailedAlarm”]

With the above-mentioned inputs, FACT can obtain the following algebraic expression

for this property by using PRISM:

(129050∗ pAlarm1−129050/126469∗ pAlarm1−151469)

Also, FACT can use the transition observations to compute the confidence intervals for

the expression parameters (pAlarm1 in this example). Figure 2.5 shows the result of

the FACT for this example. The table on its right is a list of confidence levels with their

bounds for the evaluated property, and the left-hand side is a graphical representation of

the result.
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2.6 EvoChecker probabilistic model synthesis

EvoChecker [29, 30] is a search-based technique and tool that automates the process

of verifying probabilistic models for various alternative structures and instances of the

system parameters. EvoChecker’s primary purpose is to investigate the space of alter-

natives to obtain a set of Pareto-optimal solutions for the tested system by using PMC

and multi-objective optimisation genetic algorithms. EvoChecker takes two inputs:

1. A probabilistic model in the PRISM modelling language extended with the fol-

lowing EvoChecker-specific constructs:

• ‘evolve 〈int or double〉 〈parameter-name〉[min..max]’, which is used

to define either integer or double parameters for the model with their values.

For example,

e v o l v e i n t x [ 1 . . 1 0 ] ;

The above declaration defines an integer parameter called x with range of

values from 1 to 10. Therefore, during the execution of EvoChecker, x will

assigned a value between 1 and 10.

• ‘evolve distribution 〈dist-name〉[min1,max1] . . . [minn,maxn]’,

which is used to define an m-element discrete probability distribution, and

declares the ranges of acceptable values for the elements of this distribution,

where

∀ j = 1,2, ...,m.[min j,max j]⊆ [0,1].

For example, the declaration below defines a discrete probability distribution

with two elements, y1 and y2:

e v o l v e d i s t r i b u t i o n y [ 0 . 3 . . 0 . 5 ] [ 0 . 7 . . 0 . 9 ] ;

• ‘evolve 〈module-name〉’, which is used to define different possible de-
signs for the model being analysed.
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e v o l v e module t e s t

m : [ 0 . . 4 ] ;

. . .

[ s l e e p 2 i d l e ] m = 3 −> (m’=m) ;

[ i d l e 2 s l e e p ] m = 3 −> (m’=m) ;

. . .

endmodule

2. A set of QoS requirements comprising n≥ 0 constraints of the form

propi ./i boundi

where ./ ∈ {<,>,=,≤,≥} and i = 1,2, . . .n, and a set of m ≥ 1 optimisation ob-

jectives of the form

M prop j

where M ∈ {minimise, maximise}, and j = 1,2, . . .m.

Given these inputs, EvoChecker uses multi-objective genetic algorithms such as

NSGA-II [77] and a probabilistic model checker such as PRISM or Storm to synthesise

Pareto-optimal sets of ‘evolve’ parameter values (and thus sets of probabilistic models

corresponding to designs or configurations of the modelled software system).

We do not provide full examples of EvoChecker-encoded sets of alternative proba-

bilistic models and Pareto-optimal models synthesised using EvoChecker in this section,

but multiple such examples can be found in Chapters 5 and 6.
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Verification Techniques
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Chapter 3

Quantitative verification with adaptive

uncertainty reduction

3.1 Introduction

The verification of dependability, performance, cost and other nonfunctional require-

ments of software systems [78, 79] needs to consider the stochastic nature of software

characteristics such as inputs, workloads, timeouts and failures. As such, stochastic

modelling paradigms ranging from Markov chains [20, 80] and probabilistic automata

[81, 82] to stochastic Petri nets [83, 84] are widely used to perform this verification.

However, ensuring that stochastic models are sufficiently accurate for the verification

results to be valid is very challenging. While the structure of the models can be ex-

tracted from the actual code [85] or from software artefacts such as activity diagrams

[38, 80], model parameters such as the probabilities, timing and other quantitative in-

formation annotating the model states and state transitions are affected by uncertainty.

These parameters need to be estimated using data obtained, for instance, from test-

ing the system components individually, or (for systems already in use) from system

logs. Point estimators such as the mean of the observed parameter values are typically
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used for this purpose. However, the point estimation of the uncertain model parame-

ters produces imprecise verification results, and risks causing invalid engineering deci-

sions [75, 86], especially when only few observations are available. In mature subjects

like medicine [87, 88] and in established engineering disciplines like civil [89] and me-

chanical [90] engineering, this risk is deemed unacceptable, and is mitigated by comput-

ing confidence intervals for the model parameters and the verified properties [91, 92].

In contrast, this risk is rarely considered in software performance and dependability en-

gineering. Instead, the research in this area focuses on devising new techniques, tools

and applications for the verification of stochastic models, under the strong assumption

that using point estimates for the model parameters is sufficiently accurate.

To address the risk of invalid decisions associated with this assumption, we in-

troduce VERACITY,1 a tool-supported approach for the quantitative verification of

Markov chains under epistemic parametric uncertainty2.

VERACITY builds on the previous research on computing confidence intervals for

the reliability, performance and other nonfunctional properties of a system [25, 75].

This computation uses a parametric Markov chain (i.e. a Markov chain with unknown

state transition probabilities) that models the system behaviour, and observations of the

system behaviour available from component unit testing, runtime monitoring or system

logs. However, when insufficient observations are available, these confidence intervals

are too wide to verify whether nonfunctional requirements that impose constraints on

such properties are satisfied. For example, as shown in Figure 3.5 later in this chap-

ter, the width of confidence intervals obtained at confidence level 95% for verifying

nonfunctional requirements of TAS is too large when the given number of observa-

tions is low. This width becomes narrower as additional observations are acquired. To

handle this frequently encountered problem efficiently, VERACITY obtains additional

observations by unit-testing specific system components over a series of adaptive un-

1quantitative VERification with Adaptive unCertaInTY reduction
2Uncertainty is termed epistemic when it is due to insufficient data (and therefore reducible by gath-

ering additional data), and aleatory when it is intrinsic to the analysed system (and therefore irreducible)
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certainty reduction iterations. The components tested in each iteration are decided using

a heuristic that takes into account multiple factors. These factors are detailed later in

this chapter, and include the sensitivity of the nonfunctional properties to variations in

the parameters of different components, the overheads (e.g. time or cost) of testing

each of these components, and the number of observations already available for each

component.

VERACITY supports both the verification of new system designs, and the verifi-

cation of planned updates to existing systems. Using VERACITY to decide whether a

new system should be deployed or not involves applying our approach with few or no

initial observations of the system parameters. Multiple uncertainty reduction iterations

are typically required to acquire sufficient observations of the parameters of the system

and to reach a decision in this case. In contrast, when deciding whether updated ver-

sions of specific system components should be adopted, VERACITY can exploit a large

number of initial observations of the parameters associated with the components not

being updated. Accordingly, fewer uncertainty reduction iterations are typically neces-

sary in this case, primarily to acquire observations of the parameters associated with the

updated components.

The contributions of the chapter are threefold. First, we introduce a new heuristic for

the efficient reduction of epistemic parametric uncertainty of Markov chains used in de-

pendability and performance software engineering. Second, we present a new approach

that integrates this heuristic with a recently proposed method for formal verification

with confidence intervals [25, 75], and a tool that implements the approach, automating

the verification of nonfunctional requirements under parametric uncertainty. Finally, we

present extensive experimental results showing: (i) the effectiveness of the VERACITY

verification approach during initial software development and software updating; and

(ii) the efficiency of the VERACITY uncertainty reduction compared to uncertainty re-

duction by uniformly testing all the components of the system under verification (SUV).

We organised the remainder of the chapter as follows. Section 3.2 introduces a moti-
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vating example that we then use to present our quantitative verification approach in Sec-

tion 3.3. Sections 3.4 and 3.5 describe the tool support we implemented for approach,

and the case studies we carried out to evaluate VERACITY, respectively. Finally, we

discuss related work in Section 3.6, and we conclude with a brief summary and we

suggest directions for future work in Section 3.7.

3.2 Motivating example

To motivate our VERACITY approach, we use a tele-assistance service-based system

(TAS) initially introduced in [37]. TAS aims to support a patient suffering from a

chronic condition in the comfort of their home by using: (i) a set of vital-sign monitor-

ing sensors mounted on a medical device worn by the patient; and (ii) remote assistance

services offered by emergency, medical and pharmacy service providers. Periodically,

the patient’s vital signs are measured by the wearable device, and a third-party medical

analysis service is invoked to analyse them in conjunction with the patient’s medical

record. Depending on the results of this analysis, TAS may confirm that the patient is

fine, may invoke a pharmacy service to request the delivery of different medication to

the patient’s home, or may invoke an alarm service. The invocation of the alarm service

is also triggered when the patient presses a panic button on the wearable device, and re-

sults in a medical team being dispatched to provide emergency assistance to the patient.

The activity diagram for the TAS workflow is shown in Figure 3.1, where we assume

that the operational profile of the system is known (e.g. from previous deployments)

and is given by the probabilities annotating the decision points from the diagram.

We suppose that a team of software engineers wants to verify whether the third-party

services they consider for the implementation of the TAS system satisfy—at 95% con-

fidence level—the nonfunctional requirements from the first two columns of Table 3.1.

We assume that the three services are yet to be tested, and therefore the success prob-

abilities pma, pph and pal for the medical analysis service, pharmacy service and alarm
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Invoke pharmacy service Invoke alarm service

Invoke medical analysis service

[stop (0.02)]

[continue (0.98)]

[patient requested alarm (0.1)]

[system requested analysis (0.9)]

[assistance needed (0.004][new medication needed (0.3)]

[patient is fine (0.696)]

Figure 3.1: TAS activity diagram, with the execution probability of each branch provided in
brackets after the guard expression for the branch.

Table 3.1: Nonfunctional requirements for the TAS system

ID Requirement PCTL formula

R1 The probability that an alarm failure ever
occurs during the lifetime of the TAS sys-
tem shall be below 0.26.

P<0.26[F alarmFail]

R2 The probability that the handling of a re-
quest by the TAS workflow ends with a
service failure shall be below 0.04.

P<0.04[¬done U serviceFail]

R3 The probability that an invocation of the
medical analysis service is followed by an
alarm failure shall be below 0.0003.

P<0.0003[¬done U
alarmFail{analysis}]

service, respectively, are unknown. As such, the Markov chain that the engineers can

use to verify the TAS requirements is parametric (Figure 3.2), and the three services

must be tested to observe how many of their executions succeed and how many fail (e.g.

by not finishing timely). With these observations, the engineers can use formal verifi-
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alarmFail

analysisFail

pharmacyFail

doneresult
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end
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s2
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s9 s100.1
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1−pma
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1−pph
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1−pal

0.696

0.3
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1

1

1

1

Figure 3.2: Parametric Markov chain modelling the TAS workflow (adapted from [38])

cation with confidence intervals (cf. Section 2.5) to compute 95% confidence intervals

for the probabilities from the three TAS requirements, which are formally expressed in

PCTL in the last column from Table 3.1. Furthermore, once enough observations are

available, these confidence intervals will be sufficiently narrow to ensure that the upper

bounds from the requirements in Table 3.1 (i.e. 0.26 for requirement R1, 0.04 for R2,

and 0.0003 for R3) fall outside the intervals, allowing the engineers to verify whether

the requirements are satisfied or not.

However, under the realistic assumption that service invocations take non-negligible

time, the engineers will want to complete this verification with as few invocations (i.e.

observations) of each service as possible.3 Deciding how many observations to obtain

for each service in order to complete the verification of the requirements with minimal

testing effort is very challenging. Our VERACITY verification approach addresses this

challenge as described in the next section.

3Minimising this testing effort is particularly important when the verification needs to be performed at
runtime, e.g. to find a suitable replacement for a failed component of a system, or when testing a system
component has some other cost associated with it (e.g. an invocation charge paid to the provider of a
service, or using battery energy on an embedded system).
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3.3 The VERACITY verification approach

3.3.1 Problem definition

Our VERACITY verification approach is applicable to systems comprising m > 1 com-

ponents that can be tested independently. We consider a component-based system whose

n≥ 1 nonfunctional requirements are of the form

propi ./i boundi, (3.1)

where, for all i ∈ {1,2, . . . ,n}, propi is a nonfunctional system property (e.g. reliability

or response time), ./i ∈ {<,≤,≥,>}, boundi ∈ R places a constraint on the accept-

able values of propi, and the i-th requirement can be expressed as a PCTL formula

P./iboundi[ · ] or R./iboundi[ · ] over a parametric Markov chain M = (S,s0,P,L). Given

such a system, the verification problem addressed by VERACITY is to verify whether

the n nonfunctional requirements (3.1) are satisfied at confidence level α ∈ (0,1):

1. with an overall testing cost that is as low as possible, and not exceeding a prede-

fined testing budget budget ∈ N;

2. by using a (possibly empty) initial set of observations given by an observation

function O0 : Z×S→ N with the semantics from (2.2); and

3. by obtaining additional observations through unit-testing the m system compo-

nents as required, where each unit test of the j-th component:

• generates one additional observation of an outgoing transition for every state

in a non-empty set Z j ⊂ Z, such that the state sets Z1, Z2, . . . , Zm are disjoint

and
⋃m

j=1 Z j = Z,

• has an associated cost cost j, that may represent testing time, resources, price,

or a combination thereof.
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Due to the epistemic uncertainty associated with this verification problem and to the

stochastic nature of the component-testing results, a strategy guaranteed to achieve a

minimum overall testing cost does not exist. We illustrate this limitation with an exam-

ple. Consider a system that uses two web services, A and B. This system implements a

simple workflow: first, it invokes service A, which is available with probability pA; next,

it invokes service B, which is available with probability pB; next, it stops. Suppose that

we want to establish whether the probability of successful invocation of both services is

at least 0.9 (i.e. whether pA pB ≥ 0.9) at confidence level α = 0.95. If the two unknown

probabilities are pA = 0 (i.e. service A is never available) and pB = 0.95, then allocat-

ing all the testing effort to unit-testing service A is the cheapest strategy for establishing

that the requirement is violated, as this strategy will quickly show that pA cannot be

large enough for the requirement to be satisfied. Conversely, if pA = 0.95 and pB = 0,

unit-testing only service B is the cheapest strategy. However, with no prior knowledge

about pA and pB, it is impossible to always choose the best testing strategy. Therefore,

our objective is to achieve an overall testing cost that is, on average, significantly lower

than the cost associated with uniformly testing all components. Furthermore, for prac-

tical reasons, we added the constraint that the overall cost does not exceed a predefined

testing budget budget ∈ N.

Example 3.1 Consider the TAS system from our motivating example. Its n = 3 non-

functional requirements R1–R3 from Table 3.1 are of the form in (3.1), are expressed as

PCTL formulae over the parametric Markov chain from Figure 3.2, and need to be veri-

fied at confidence level α = 0.95. The set of Markov chain states with unknown outgo-

ing transition probabilities is Z = {s2,s5,s6}, and the (empty) initial set of observations

is defined by the function O0(z,s) = 0 for any (z,s) ∈ Z× S. The system comprises

m = 3 components that can be tested independently: the medical analysis service (com-

ponent 1), the pharmacy service (component 2) and the alarm service (component 3).

Additionally, invoking one of these services once provides an additional observation of

an outgoing transition for the state in one of the disjoint sets Z1 = {s2}, Z2 = {s5} and

38



Additional
observations O′

1. Formal
verification with

confidence intervals

Confidence intervals
([li, ui])i=1..n;

Property expressions
(expr i)i=1..n

3. Additional unit
testing of system

components

2. Interval checking
& adaptive
uncertainty

reduction heuristic

Confidence
level α

Verification
result

Budget
exhausted

Initial
observations O0

Available
observations O

4. Observation
integration

Component costs (costj)j=1..m
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Additional
testing plan
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Figure 3.3: Iterative four-step process of the VERACITY quantitative verification with adaptive
uncertainty reduction

Z3 = {s6}, where Z1∪Z2∪Z3 = Z. Finally, to fully cast the task of verifying require-

ments R1–R3 in the format from our problem definition, we assume that a testing budget

budget= 150000 is available to complete the verification, and that the per-invocation

costs of testing the three services are cost1=1, cost2=1 and cost3=2, e.g. based on the

ratios between their mean execution times.

3.3.2 VERACITY verification process

To solve the problem from Section 3.3.1, VERACITY employs the iterative verification

process depicted in Figure 3.3. Each round (i.e. iteration) of this process comprises the

four steps described below.

In the first step, formal verification with confidence intervals [75] is used to compute

confidence intervals [l1,u1], [l2,u2], . . . , [ln,un] at confidence level α and (as a byprod-

uct, as explained in Section 2.5) closed-form expressions expr1, expr2, . . . , exprn for

the n properties from the nonfunctional requirements (3.1). The observations O used

to compute the n confidence intervals include the initial observations O0 and, starting
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with the second iteration, all the additional observations O′ obtained in the previous it-

erations of the process. If the observation set O0 is empty, then the confidence interval

[li,ui] computed for the i-th property in the first iteration is [0,1] or [0,∞), depending on

whether the i-th requirement is of the form P./iboundi[ · ] or R./iboundi[ · ].

In the second step, VERACITY checks whether the n confidence intervals are suffi-

ciently narrow to allow the verification of the nonfunctional requirements, and, if nec-

essary, plans additional testing of the m system components. The function sat : 1..n→

{true, false,undecidable} defined below is used to verify if the i-th requirement is satis-

fied, violated or insufficient observations are available to reach a decision (at confidence

level α):

sat(i) =



true, if (./i∈{<,≤}∧ui ./i boundi)∨

(./i∈{≥,>}∧ li ./i boundi)

false, if (./i∈{<,≤}∧boundi ./i li)∨

(./i∈{≥,>}∧boundi ./i ui)

undecidable, otherwise (i.e. if boundi ∈ [li,ui])

(3.2)

Figure 3.4 summarises the rationale for this definition, for the case ./i∈{<,≤}. Using

this function, the following decisions are made:

1. If ∀i = 1..n : sat(i) = true, then all requirements are satisfied, and the verification

process terminates with a positive result.

2. Otherwise, if ∃i = 1..n : sat(i) = false, then at least one requirement is violated,

and the verification process terminates with a negative result. The verification

process is ended as soon as a violated requirement is identified under the assump-

tion that the component modifications needed to resolve the violation will inval-

idate the verification results, so further testing effort before these modifications

are completed would be unjustified. Instead, all available observations of any

unmodified components can be exploited to re-verify all the requirements once
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li ui

bound i

(a) sat(i) = true

ui ./i bound i :

li ui

bound i

(b) sat(i) = false

bound i ./i li :

li ui

bound i

(c) sat(i) = undecidable

bound i ∈ [li, ui] :

Figure 3.4: When ./i∈{<,≤}, the i-th requirement (i.e. propi ./i boundi) is: (a) satisfied if
ui ./i boundi; (b) violated, if boundi ./i li; and (c) undecidable, if boundi ∈ [li,ui].

the modifications are in place. However, our VERACITY approach can be easily

adjusted to only deem the verification complete when a decision was reached on

every requirement, i.e. when ∀i = 1..n : sat(i) ∈ {true, false}.

3. Finally, if neither of the previous termination conditions apply, then additional

observations are needed to complete the verification. Two cases are possible in

this situation. First, in the case when the testing budget budget was fully utilised

in the previous VERACITY rounds, the process terminates with an inconclusive

‘budget exhausted’ result. Otherwise, testing budget is still available, and the

VERACITY adaptive uncertainty reduction heuristic detailed in Section 3.3.3 is

used to calculate the numbers of additional component observations nobs1, nobs2,

. . . , nobsm needed for the next round of the verification process, where

m

∑
j=1

nobs jcost j ≈ rbudget (3.3)

and rbudget ∈ [0,budget] is a parameter of the VERACITY approach called the

round budget.4 The heuristic is adaptive in the sense that these numbers of addi-

tional observations vary from round to round, as the heuristic takes into account

the actual observations from all the previous rounds (and any initial observations

4Equality cannot be always achieved in (3.3) because nobs1, nobs2, . . . , nobsm must take non-negative
integer values.
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that may be available). The maximum number of rounds for the verification pro-

cess is dbudget/rbudgete. Accordingly, larger round budgets yield fewer rounds,

and therefore less opportunity for adaptation but lower overheads (due to the fewer

rounds). In contrast, smaller round budgets lead to more rounds, which offer more

opportunity for adaptation but also come with higher overheads.

In the third step of the VERACITY process, nobs j tests of components j are carried

out for j = 1..m. As we will explain in Section 3.4, these tests can be fully automated,

or can be performed by a software engineer when requested by the VERACITY veri-

fication tool. The results of these tests are then encoded as an observation function O′

with the format from (2.2).

Finally, in the fourth and last step of VERACITY, the new observations O′ are inte-

grated with all the observations obtained in the previous rounds of the process and the

initial observations O0, and the combined set of all available observations O is used in

the next round of the verification process.

Example 3.2 For the three requirements for the TAS system from our motivating ex-

ample, ./1=./2=./3=<. Accordingly, the requirements will be verified as satisfied at

99% confidence level if the observations acquired over successive rounds of the VE-

RACITY verification process (and within the available budget) lead to the calculation

of 99% confidence intervals ([li,ui])i=1..3 that satisfy u1 < bound1, u2 < bound2 and

u3 < bound3. If, on the other hand, li ≥ boundi for any i ∈ {1,2,3} in one of the verifi-

cation rounds, the verification process will decide that requirement i is violated at 99%

confidence level, and will terminate in that round. Finally, if the testing budget is used

up before sufficient observations of the medical analysis, pharmacy and alarm services

are obtained to allow either of these decisions to be made, the verification process will

terminate with a ‘budget exhausted’ outcome.
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3.3.3 Adaptive uncertainty reduction heuristic

3.3.3.1 Desiderata

Before describing the VERACITY heuristic for partitioning the round testing budget

rbudget among the m system components, we present a set of desirable properties (i.e.

desiderata) that we propose for any such heuristic:

D1. The requirements verified as satisfied in previous rounds should not influence the

partition of the round budget.

D2. Reaching a resolution on undecidable requirements (i.e. on requirements with

boundi ∈ [li,ui], cf. Figure 3.4(c)) that are likely to be violated should be pri-

oritised when the round budget is partitioned. This desideratum captures the fact

that verifying a requirement as violated ends the verification process immediately.

Such requirements can be identified by noting that their boundi is very close to the

“wrong” end of the confidence interval [li,ui]. For instance, if boundi were much

closer to li that to ui in Figure 3.4(c), narrowing down the confidence interval

[li,ui] even slightly has a good chance (but is, of course, not certain) of showing

that requirement i is violated, and of terminating the verification process.

D3. If several undecidable requirements influence the partition of rbudget, undecid-

able requirements whose boundi value is closer to the middle of the confidence

interval [li,ui] should have a bigger influence. This desideratum reflects the fact

that the verification of such requirements is particularly affected by epistemic un-

certainty, as a significant narrowing of their confidence intervals is likely to be

needed in order to decide whether they are satisfied or violated.

D4. The rbudget fraction allocated to each component should reflect the sensitivity

of the properties prop1 to propn from (3.1) to the parameters of that component.

For instance, if the closed-form expression for the i-th requirement is expri =
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p1 + 0.01p2, where p1 and p2 are probabilities associated with components C1

and C2, respectively, component C1 should be allocated a larger rbudget fraction

than C2 (all other factors being equal).

3.3.3.2 Algorithm

The numbers of new component observations (nobs j) j=1..m, for each round of the VE-

RACITY verification process are computed by function NEWOBS from Algorithm 1.

This function takes the following arguments (cf. Figure 3.3):

• the round testing budget rbudget;

• the Markov chain M and the requirements (propi ./i boundi)i=1..n;

• the property confidence intervals ([li,ui])i=1..n and expressions (expri)i=1..n ob-

tained in the previous step of the round;

• the component testing costs (cost j) j=1..m and associated state sets with unknown

transition probabilities (Z j) j=1..m; and

• the observations O available at the start of the round.

The algorithm has three parts. In the first part (lines 2–7), it identifies the set of rele-

vant requirements R that will influence the partitioning of the round budget. According

to desideratum D1, the set of undecidable requirements U is obtained in line 2. Next,

the if statement from lines 3–7 checks whether boundi of any undecidable requirement

is much closer (i.e. 1/ε1 times closer) to the “wrong” end of the confidence interval

[li,ui] than to the “right” end, where:

• the “wrong” end of [li,ui] is the end beyond which requirement i is violated, i.e.

li if ./i∈{<,≤}, and ui otherwise, cf. Figure 3.4;

• the helper functions WRONG, RIGHT return the respective ends of [li,ui]; and
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Algorithm 1 Adaptive uncertainty reduction heuristic

1: function NEWOBS(rbudget, M, (propi ./i boundi)i=1..n, ([li,ui])i=1..n,
(expri)i=1..n, (cost j) j=1..m, (Z j) j=1..m, O)

2: U = {i ∈ 1..n | boundi ∈ [li,ui]} . desideratum D1
3: if ∃i ∈ U : |boundi−WRONG(./i,li,ui)|

|boundi−RIGHT(./i,li,ui)|
< ε1 then . desideratum D2

4: R←
{
argmini∈U

|boundi−WRONG(./i,li,ui)|
|boundi−RIGHT(./i,li,ui)|

}
5: else
6: R← U
7: end if
8: paramEstimate← ESTIMATEPARAMS(M,O)
9: (relevance j← 0) j=1..m

10: for i ∈ R do
11: weight = ui−li

max{|boundi−(li+ui)/2|,ε2} . desideratum D3
12: for j = 1 to m do
13: sens← ∑p∈PARAMS(M,Z j)

∣∣∣∂expri(paramEstimate)
∂ p

∣∣∣ . desideratum D4
14: relevance j← relevance j +weight · sens
15: end for
16: end for
17: for j = 1 to m do
18: nobs j←

⌊(
rbudget · relevance j

)
/
(
cost j ·∑m

k=1 relevancek
)⌋

19: end for
20: return (nobs) j=1..m
21: end function

• ε1 ∈ (0,1) is an VERACITY configuration parameter.

As explained in desideratum D2, requirements with this property are likely to be vio-

lated. Therefore, if any such requirements exist, only the requirement most likely to be

violated is retained in the relevant requirement set R (line 4). Otherwise, R is initialised

to include all the undecidable requirements (line 6).

The second part of the algorithm (lines 8–16) starts by using the observations O to

calculate estimates for each unknown transition probability (i.e. parameter) associated

with a state from Z =
⋃m

j=1 Z j (line 8). This calculation is performed by the auxiliary

function ESTIMATEPARAMS, which estimates the unknown transition probabilities be-

tween each state in z ∈ Z and each state s ∈ S using the observed transition frequency
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O(z,s)/∑s′∈S O(z,s′). The special case when ∑s′∈S O(z,s′) = 0 for one or more states

z ∈ Z may be encountered in the first round, as we allow an empty initial set of obser-

vations O0 (cf. Section 3.3.1). In this case, which we do not show in Algorithm 1 in

order to keep the pseudocode simple, ESTIMATEPARAMS raises an exception and the

round budget is split uniformly between the components whose state sets Z j include

states with zero observations.

Next in this part of the algorithm, a component relevance measure relevance j is first

initialised in line 9, and then updated with contributions corresponding to the relevant

requirements R by the for loop from lines 10–16. Each such contribution is the product

of two factors (line 14) that correspond to desiderata D3 and D4, respectively:

• weight, a factor calculated as the ratio between the width of the confidence inter-

val [li,ui] and the distance between boundi and the middle of the interval [li,ui]

(line 11, where a small VERACITY configuration parameter 0 < ε2� 1 is used

to prevent a division by zero); and

• sens, a measure of the sensitivity of expression expri to the epistemic uncertainty

affecting the parameters of component j, calculated by summing the absolute

value of the partial derivatives of expri with respect to every parameter of compo-

nent j (line 13), where the set of all such parameters is provided by the auxiliary

function PARAMS, and the partial derivatives are evaluated for the parameter val-

ues estimated in line 8.

The third and final part of the algorithm (lines 17–19) partitions the round budget

rbudget based on the relevance of each component. Thus, component j is allocated a

fraction of relevance j/∑
m
k=1 relevancek of the round budget; the number of new obser-

vations for component j is then calculated by dividing this rbudget fraction by the cost

cost j of testing the component once.

For improved readability, a couple of efficiency improvements are not included in

Algorithm 1. First, the function PARAMS and the partial derivatives required for factor
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sens (line 13) can be precomputed once (in the first round of the VERACITY verification

process), as the SUV parameters associated with a component do not change; only the

evaluations of the precomputed partial derivatives need to be done in each round, for the

new paramEstimate from that round. Second, ∑
m
k=1 relevancek from line 18 only needs

to be calculated once, e.g. immediately before the for loop that uses it.

With these improvements in place, the complexity of algorithm is O(mn), because of

the two nested for loops from lines 10–16 and 12–15, respectively. This is typically neg-

ligible compared to the complexity of the formal verification with confidence intervals

and the additional unit testing from steps one and three of the VERACITY verification

process, respectively.

Example 3.3 Figure 3.5 shows the difference between the verification of the TAS non-

functional requirements from Table 3.1 using the VERACITY verification process from

Figure 3.3 with: (a) our adaptive uncertainty reduction heuristic from Algorithm 1; and

(b) our heuristic replaced with a uniform splitting of the round testing budget among the

three system components. These results were obtained assuming that the unknown prob-

abilities from the Markov chain in Figure 3.2 were pal=0.94, pma=0.99 and pph=0.95, and

using random number generators to synthesise additional observations O′ based on these

probabilities in the additional unit testing step of the VERACITY verification process

from Figure 3.3. The verification was performed with a round budget rbudget = 5000,

unlimited overall testing budget, and the default values ε1 = 0.15 and ε2 = 10−6 for the

two parameters of the VERACITY heuristic from Algorithm 1.

The top three pairs of graphs from Figure 3.5 show how the 95% confidence intervals

([li,ui])i=1..3 (depicted as vertical lines) for the nonfunctional properties from the three

TAS requirements from Table 3.1. These confidence intervals become narrower as addi-

tional observations are obtained in each round of the verification process, until they are

narrow enough to fit completely under the boundi threshold (drawn as a horizontal line)

from their associated requirement, i.e. until ui < boundi. As soon as this condition is

met for a confidence interval [li,ui], that interval is not longer calculated in subsequent
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(a) VERACITY (b) uniform uncertainty reduction

Figure 3.5: Verification of the nonfunctional requirements for the TAS system from the moti-
vating example using (a) VERACITY adaptive vs. (b) uniform uncertainty reduction

verification rounds. When the condition is met for all three confidence intervals, the

epistemic uncertainty was reduced sufficiently to conclude that all requirements are sat-

isfied, and the verification process terminates successfully. As shown by these graphs,

VERACITY and the uniform uncertainty reduction method finish the verification of

each requirement after a different number of verification rounds, and VERACITY com-

pletes the verification of the entire set of requirements with an overall testing cost of

55,000 compared to a 127% higher overall testing cost of 125,000 for the approach
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based on uniform uncertainty reduction.

The bottom pair of graphs from Figure 3.5 shows the cumulative testing cost per

system component. When uniform uncertainty reduction is used, this cost is identical

for all components, and is growing linearly with the number of verification rounds. In

contrast, for the VERACITY approach, the cumulative cost grows at different rates for

different components. Furthermore, the rate of growth for any single component varies

across verification rounds because VERACITY continually adapts its partitioning of

the round budget to the observations acquired in previous rounds, and to the effect that

these observations have on confidence intervals ([li,ui])i=1..3.

3.4 Implementation

We implemented the VERACITY verification process as a Java tool built on top of the

existing FACT model checker [25]. The source code for the VERACITY tool is available

at https://gitlab.com/nnma500/veracity/-/tree/main.

3.4.1 High level diagram

VERACITY receives the model (i.e. the pDTMC model), requirements and confidence

level, as depicted in Figure 3.6. In addition, VERACITY can read the cost of each com-

ponent and initial observations from the model and reads the budget and round budget

from the configuration file. Next, VERACITY sends the model, the equivalent proper-

ties of the requirements and the confidence level to FACT to obtain confidence intervals

and algebraic expressions for each requirement. After that, VERACITY checks whether

the bound specified in each requirement is located inside the associated confidence in-

terval. If the bounds lies inside the intervals, VERACITY performs sensitive analyses

for each component and uses the result of these analysis and factors such as the cost of

testing the component and the round budget to suggest numbers of additional observa-
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Model
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Confidence level
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Result

End-user Automated unit 
testing script

Additional observations

Figure 3.6: High level diagram of the VERACITY

tions for each component. The suggested observations are obtained either by running

the automated unit testing script (if such a script is provided through the configuration

file) or from the end user. In the latter case, the user needs to run the tests manually and

to supply the outcome of the tests to VERACITY. Subsequently, VERACITY updates

the model with the new observations and sends the updated model to FACT to produce

new (narrower) confidence intervals. This process continues until one of the following

conditions is met: (i) one requirement is violated, (ii) all the requirements are satisfied,

or (iii) the total budget is exhausted.

3.4.2 Class diagram

We implemented VERACITY using seven classes that work together with FACT to

carry out the verification. These classes are depicted in Figure 3.7 and described as

follows:
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Figure 3.7: Class Diagram of the VERACITY

• MainVERACITY: This class represents the main class of our tool and receives

inputs, such as the pDTMC model and its requirements. It also accepts testing

parameters, such as round budget, budget and observation script, as inputs. This

class runs FACT for each property that appears in a requirement, manages the

rounds and budget, receives additional observations from the TestHeuristic class

and then updates the model with the new observations.

• ExperimentSettingUp: This class handles components with specific characteris-

tics, such as ID, cost and observations; an array list is used for this purpose.

• Execution: This class finds the location of the PRISM model checker on the local

machine, invokes MATLAB and assists in computing the confidence interval of

each property. The class is modified from the existing FactExecution class in

FACT. We removed unnecessary FACT code related to the GUI to ensure that the

tool supports a command line interface.

• Parameter: This class holds and manages the model components and their char-
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acteristics and assists in updating the observation of each component during the

execution of the VERACITY heuristic.

• Requirement: This class stores and provides access to information about a re-

quirement of the verified system.

• Requirements: This class stores and provides access to information about the

requirements of the verified system.

• TestingHeuristic: This core VERACITY class implements the heuristic that de-

termines the additional observations required for each component. It performs

sensitive analyses for each component to compute its importance and then uses

this information to calculate the number of additional required observations.

3.4.3 Use of the tool

The VERACITY tool takes as input: a parametric Markov chain M expressed in the

PRISM modelling language [27] and annotated with the component costs
(
cost j

)
j=1..m

and state sets
(
Z j
)

j=1..m, and with the initial observations O0; a set of PCTL-encoded

nonfunctional requirements; and a confidence level α .

The overall testing budget and round testing budget rbudget are specified via a con-

figuration file. In addition, this configuration file allows the user to optionally specify a

component testing script that the tool can execute with the command

testing-script j nobs j

in order to obtain nobs j additional observations for component j automatically in the

third step of the VERACITY verification process (cf. Figure 3.3). If provided, this script

needs to run nobs j unit-test against component j (e.g. by invoking the appropriate third-

party service for the TAS system from our motivating example), and to return the nobs j
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observations from these tests as a list of numbers of transitions from the states in Z j

to other states of the Markov chain M. Alternatively (i.e. if the testing script is not

provided), the tool asks the user to supply the required nobs j observations interactively

at each round of the verification process.

Our VERACITY tool uses the model checkers FACT [25] and PRISM [27], along

with MATLAB5, to compute the confidence intervals and property expressions in the

first step of the verification process. The heuristic employs the Java mathemati-

cal library mXparser [93] to assist in computing the derivative of algebraic expres-

sions for the sensitivity analysis. The tool is freely available on our project website

https://www.cs.york.ac.uk/tasp/VERACITY, along with detailed instructions and

all models, requirements and results of this chapter.

3.5 Evaluation

We evaluated VERACITY by performing an extensive set of experiments aimed at an-

swering the following research questions.

RQ1 (Effectiveness) Does VERACITY reduce the testing budget needed to verify a

set of nonfunctional requirements compared to the baseline approach that partitions the

testing budget of each verification round equally among the components of the SUV?

RQ2 (Cost awareness) How effective is VERACITY at reducing the testing budget

in scenarios where the SUV components have different testing costs?

5http://www.mathworks.co.uk/products/matlab
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RQ3 (Configurability) What effect does adjusting the round budget have on the over-

all testing cost6 and verification time of VERACITY?

To assess the generality of VERACITY, we performed our experiments within two

case studies that used software systems from different domains. The first case study

was based on the TAS system from our motivating example. In the second case study,

we applied VERACITY to the verification of an online shopping web application. This

system is introduced in Section 3.5.1, followed by descriptions of the experiments car-

ried out to address the three research questions in Sections 3.5.2, 3.5.3 and 3.5.4. To

enable the reproducibility of our results, we made all the models, properties and data

from our experiments available on the VERACITY project website https://www.cs.

york.ac.uk/tasp/VERACITY.

3.5.1 Online shopping web application

The system we used for the second case study is an online shopping application adapted

from [94]. We modelled the shopping process implemented by this application us-

ing a parametric Markov chain that comprises a combination of known and unknown

transition probabilities.7 The known transition probabilities correspond to application

components that have been in use for a long time, and for which the values of these

probabilities can be determined from application logs. In contrast, the unknown tran-

sition probabilities correspond to new versions of several components that the online

shopping company’s developers have re-implemented and want to evaluate through A/B

testing.

A/B testing [95–97] is a method for testing a new online application feature, or a

new implementation of an existing feature. Frequently used by leading companies like

6Note that this corresponds the minimum testing budget for which the verification completes with a
conclusive result as opposed to the budget being exhausted.

7Note that what we model here is the stochastic behaviour of the customer, not the stateful process
implemented by the web application. As such, using a Markov model for this purpose is suitable, as
further shown by the use of Markov chains to model web applications in recent projects including [25, 75].
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Table 3.2: Nonfunctional requirements for the online shopping application

ID Requirement PCTL formula

R1 The probability that customers complete the shop-
ping process successfully shall be above bound1.

P>bound1 [F success]

R2 The probability that the authentication compo-
nent fails shall be below bound2.

P<bound2 [F authFail]

R3 The average number of successful uses of new
components per shopping session shall exceed
bound3.

R>bound3 [F done]

Amazon, Facebook, Google and Microsoft, the method involves splitting the users of a

web application into two sets, such that one set of users is given access to a version of

the application that includes the new feature (or the new implementation of a feature),

while the other set continues to use the standard version of the application. In this way,

A/B testing allows companies to evaluate new features and components, and to decide

whether they should be included in the default version of online applications or not.

For our case study, we assume that the online shopping company wants to verify

whether the nonfunctional requirements from Table 3.2 would be satisfied if several

application components were to be replaced with new variants. Furthermore, we assume

that in order to limit the business loss that may occur if these requirements are in fact

violated, the company wants to perform this verification with as little A/B testing of

each of four new component implementations as possible.

The parametric Markov chain modelling the operation of the online shopping appli-

cation is shown in Figure 3.8. In the initial state (s0) of this Markov chain, a customer

attempts to login. We assume that the authentication web page is one of the components

for which a new implementation needs to be tested, and therefore the probability that the

customer can follow the authentication instructions and succeeds to login, denoted pa,

is unknown. If the authentication succeeds (state s2), the customer is identified either as

a returning customer (whose settings from the previous shopping session are restored,
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state s1) or as a new customer (for whom default settings are used, state s3). In both

cases, the customer searches for items to purchase (states s4/s6) and adds them to the

shopping basket (states s7/s9), until eventually all the required items are in the shop-

ping basket and the customer moves to checkout where he or she selects between two

shipping options: fast shipping (state s10) or standard shipping (state s12). We assume

that the probabilities of the incoming transitions into states s1, s3, s4, s6, s7, s9, s10 and

s12 are known (from the previous use of the web application) and have the values from

Figure 3.8.

However, we assume that the web application components for selecting the two

shipping options have been re-implemented, and therefore the probabilities pfs and pss

that the customer manages to use them successfully and to reach the payment state s11

are unknown. Likewise, we consider that a new version of the payment component

has been implemented, and that the probability pp that the customer manages to use it

successfully (and to move to the logout state s14) is unknown. Finally, we assume that

the logout involves the use of the same new authentication component that was used for
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Figure 3.8: Parametric Markov chain modelling the online shopping application. To enable the
verification of requirement R3 from Table 3.2, the model is augmented with a reward structure
that “counts” the successful uses of new components; this reward structure associates a reward
ρ(s2) = ρ(s11) = ρ(s14) = ρ(s16) = 1 with each state that follows after a successful use of a
new component (as shown in small squares next to these states) and zero rewards with the other
states and the state transitions of the Markov chain.
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login, and therefore its (unknown) probability of succeeding is pa.

3.5.2 RQ1 (Effectiveness)

For each of the two systems used in our evaluation, we examined a broad range of

simulated scenarios in which both the values of the unknown probabilities of the para-

metric Markov chain M from Figure 3.3 and the bounds from the nonfunctional re-

quirements (3.1) were randomly generated. In doing so, we ensured that the evaluation

covered a combination of:

1. scenarios in which all requirements were satisfied: (i) by a narrow margin, i.e. the

actual values of the properties from the nonfunctional requirements (3.1) were

close to their associated bounds; (ii) by a wide margin; and (iii) some by a narrow

margin and the others by a wide margin;

2. scenarios in which some of the requirements were satisfied and the remaining

requirements were violated by: (i) a narrow margin; (ii) a wide margin; and

(iii) some by a narrow margin and the others by a wide margin; and

3. scenarios in which all requirements were violated by: (i) a narrow margin; (ii) a

wide margin; and (iii) some by a narrow margin and the others by a wide margin.

We note that the values for the unknown probabilities of the parametric Markov chain

were required to establish the ground truth for the verification. These values remained

unknown to the verification process.

In all the experiments, we used the VERACITY tool in conjunction with a simu-

lated component-testing script with the characteristics described in Section 3.4. This

script emulated the outcome of unit testing the SUV components by using a separate

Java pseudorandom number generator for each component. To avoid any bias in the

comparison of VERACITY with the baseline approach mentioned in research question
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Figure 3.9: Testing budgets required to complete the verification of the TAS nonfunctional re-
quirements using the VERACITY and the uniform methods for partitioning the testing round
budget among the components of the TAS system. The wide range of budgets required to com-
plete the verification process for different scenarios reflects the variety of these scenarios: in
some scenarios, the TAS requirements are satisfied or violated by a wide margin (so less testing
is needed, as shown by the inset diagrams), whereas in others some or all of the requirements
are satisfied or violated by a narrow margin (so much more testing is needed).

RQ1, we used the same pseudorandom number generator seeds in the corresponding

experiments for the two approaches.

3.5.2.0.1 Case Study 1 (TAS) For the TAS system, we carried out experiments that

examined the effectiveness of VERACITY for a set of 33 scenarios that were randomly

generated as described at the beginning of this section. For each of these scenarios, the

verification of the TAS nonfunctional requirements was carried out at three confidence

levels: α = 0.90, α = 0.95 and α = 0.99. Finally, to answer research question RQ1,

two experiments were performed for each scenario and each confidence level α: one in

which we used the VERACITY uncertainty reduction heuristic, and one in which we

used the baseline approach that partitions the testing budget of each verification round

equally among the TAS components. In total, we performed 198 verification experi-

ments, corresponding to 33 scenarios × 3 confidence levels × 2 uncertainty reduction

methods.

The experimental results are shown in Figures 3.9 and 3.10, which compare the

58



minimum testing budgets required to complete the verification of the TAS requirements

using the two uncertainty reduction methods.

Figure 3.9 shows the minimum testing budget consumed to complete the verifica-

tion of the nonfunctional requirements for the TAS system using both VERACITY and

uniform (baseline) methods. The experiments where VERACITY consumed a lower

testing budget than the baseline method appear above the diagonal (shown as a dashed

line) and are depicted as green dots, whereas the experiments where VERACITY re-

quired a higher testing budget appear under the diagonal and are depicted as red trian-

gles. We can see that (i) the number of experiments above the diagonal line is greater

than the number of experiments below it, indicating that the consumed testing budget

is, in most cases, reduced by using the VERACITY method, and (ii) most experiments

below the diagonal are close to it, indicating that even when VERACITY is occasionally

outperformed by the baseline method, it is only by a small margin.

Figure 3.10 contains box plots for the (minimum) additional testing budget required

by the baseline method for three different confidence levels: 90%, 95% and 99%. We

notice from these box plots that the median (the line dividing each blue box) is always
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Figure 3.10: Additional testing budget required to complete the verification of the TAS non-
functional requirements when the round budget is partitioned using the uniform method instead
of the VERACITY method. To ensure readability, the upper part of the boxplots is truncated,
meaning that the outliers at 404%, 1200% and 18150% (for α = 0.90), and at 4252% and 6900%
(for α = 0.95) are not shown. No outliers exist below the bottom whisker of any of the boxplots.
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above 0 and increases when the confidence level is increased. That is, at 90%, 95% and

99% confidence levels, the uniform method requires more than 20%, 40% and 50% of

the testing budget used by VERACITY to carry out the verification.

These results show that VERACITY consistently outperforms the baseline method

by completing the verification process with smaller testing budgets for a great majority

of the scenarios and at all confidence levels. In a few scenarios, the baseline method

performs better than VERACITY (typically only marginally better). This is expected

given the stochastic nature of the verified system, and the fact that the verification starts

with no knowledge about the behaviour of the three TAS components. Finally, in a small

number of additional scenarios, VERACITY achieves only modest testing cost savings.

This is also expected, as the best way to reduce epistemic uncertainty in some verifica-

tion scenarios is to partition the round testing budget approximately equally among the

tested system components, and our approach manages to do this well.

The experimental results show that the testing budget reductions enabled by VE-

RACITY are particularly significant when the verification is carried out at higher confi-

dence levels. This is extremely useful for two reasons. First, in real-world scenarios, the

nonfunctional requirements of software systems should be verified with high levels of

confidence (e.g. α = 0.95 or even α = 0.99); deploying a system whose requirements

were only verified at a low confidence level introduces significant risks. Second, the

testing budget needed to complete the verification increases with the confidence level

α , as the epistemic uncertainty needs to be reduced much more in order to make de-

cisions with higher confidence. This increase of the required testing budget for larger

α values is clearly visible in the scales of the graphs from Figure 3.9. As such, the

scenarios in which VERACITYreduces the cost of testing the most are: (i) of particular

practical importance; and (ii) characterised by high testing costs, so the cost reductions

achieved by our uncertainty reduction method are especially beneficial.
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Figure 3.11: Testing budgets required to complete the verification of the WebApp nonfunctional
requirements using the VERACITY and the uniform methods for partitioning the testing round
budget among the components of the online shopping system.

3.5.2.0.2 Case Study 2 (Online shopping web application) To assess the effective-

ness of VERACITY for the online shopping web application (WebApp), we performed

a similar suite of experiments to those described for the TAS case study. This time, we

examined the ability of VERACITY to reduce testing costs compared to the baseline

uncertainty reduction method for the verification of 30 randomly generated scenarios.

In each of the 30 scenarios, the verification of the WebApp requirements was carried out

at three confidence levels (α = 0.90, α = 0.95 and α = 0.99), for both the VERACITY

and the uniform uncertainty reduction methods, giving a total of 180 experiments.

Figures 3.11 and 3.12 summarise the results of these experiments. Figure 3.11 shows

the minimum testing budget necessary to complete the verification process for the We-

bApp when using VERACITY and when using baseline methods. The green dots repre-

sent the experiments where VERACITY outperformed the baseline method and, hence,

consumed lower testing budget, while the red triangles depict the experiments where

the baseline completed the verification process with less testing budget than VERAC-

ITY. The box plots in Figure 3.12 represent the (minimum) additional testing budget

needed by the baseline method for verification in order to be equal to VERACITY. We

notice that to outperform VERACITY, the baseline method required more than 30%,

40% and 35% of the testing budget used by VERACITY at the confidence levels 90%,
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95% and 99%, respectively.

We notice that as for the TAS system, VERACITY successfully reduces the testing

cost required to complete the verification of the non-functional requirements, across a

wide range of testing cost needs (where small testing cost are needed when the require-

ments are satisfied or violated by a wide margin, and large costs when some or all of the

requirements are narrowly satisfied/violated). In the small number of scenarios where

the uniform round budget partitioning method achieves better results, the overall testing

cost is small, and the VERACITY-based verification is typically only marginally more

expensive. Again, many significant cost reductions occur when (i) the baseline method

budget is high and (ii) the requirements are verified at higher confidence levels. For

instance, all of the baseline method budgets above 400,000 from Figure 3.11 (one for

α = 0.90, four for α = 0.95, and three for α = 0.99) are at least halved by VERACITY.

3.5.3 RQ2 (Cost awareness)

In many practical situations, the costs of testing different components of a system are

different. This is likely to be true, for instance, when these costs represent the times
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Figure 3.12: Additional testing budget required to complete the verification of the WebApp
nonfunctional requirements when the round budget is partitioned using the uniform method
instead of the VERACITY method. To ensure readability, the upper part of the boxplots is
truncated at 300%, meaning that the outliers at 616% and 1344% (for α = 0.90) are not shown.
No outliers exist below the bottom whisker of any of the boxplots.
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required for the regression testing of a software system with several modified compo-

nents [98] or for testing different web services at runtime, and a limited overall time (i.e.

testing budget) is available to verify whether using these services as part of a service-

based system like TAS satisfies a set of nonfunctional requirements [20]. This is also

likely to be true the A/B testing of new features of an online application [95–97] like the

shopping application from Section 3.5.1, where these costs may represent the different

(expected) business impact of each of the new features not working as intended. While

a specific testing budget may be difficult to define in this second situation, it is easy to

see that the verification should be completed with as low a testing budget as possible.

To evaluate the usefulness of VERACITY in such situations, we repeated all the

experiments from Section 3.5.2 assuming different testing costs for the components of

the TAS and WebApp systems from our two case studies. To this end, we took each of

the 33 TAS verification scenarios and of the 30 WebApp verification scenarios, and we

assigned randomly generated testing costs in the interval [1,5] to the three TAS compo-

nents and the four WebApp components, respectively. The testing budgets required to

complete the verification process using the VERACITY and the baseline round-budget

partitioning methods in these scenarios with different component testing costs are com-

pared in Figures 3.13 and 3.14. As in the scenarios with the same testing costs for

all components, our VERACITY verification approach outperforms the baseline veri-

fication approach in the majority of the examined scenarios, often by a large margin.

As shown in Figure 3.14, this margin increases for larger confidence level value. This

increase is particularly significant for the TAS system, where the median additional test-

ing budget required by the baseline verification approach grows from 33% at α = 0.90

to 42% at α = 0.95, and 335% at α = 0.99. This growth is less pronounced but still

present for the WebApp system, where the median additional testing budget increases

from 16% at α = 0.90 to 26% at α = 0.95, and 38% at α = 0.99.

In the small number of scenarios where the baseline approach completes the verifica-

tion within a smaller testing budget, the difference between this approach and VERAC-
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Figure 3.13: Testing budgets required to complete the verification process using the VERAC-
ITY and the uniform methods for partitioning the testing round budget among the components
of the TAS and WebApp systems.

ITY is typically modest, and/or occurs for scenarios where both approaches perform the

verification with relatively small overall testing budgets.

3.5.4 RQ3 (Configurability)

The round testing budget rbudget is a key parameter of VERACITY. For very large

rbudget values, all the component observations needed to complete the verification of

the nonfunctional requirements are acquired in a small number of verification rounds,

or even in a single round. This is undesirable for two reasons. First, with only a few

verification rounds, VERACITY has limited opportunity to meaningfully adapt its par-
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Figure 3.14: Additional testing budget required to complete the verification of the TAS and
WebApp nonfunctional requirements when the round budget is partitioned using the uniform
method instead of the VERACITY method. To ensure readability, the upper part of the TAS
boxplots is truncated at 1200%, meaning that two TAS outliers at 12950% (for α = 0.90) and at
1984% (for α = 0.99) are not shown. No other hidden outliers exist for any of the boxplots.

titioning of the round budget to the system and requirements being verified. Second,

with extremely large verification rounds, many more observations than strictly needed

are likely to be acquired in the last verification round. Both of these drawbacks of very

large rbudget values can lead to VERACITY using larger overall testing budgets than

necessary.

Very small rbudget values are equally undesirable, also for two reasons. First, such

round budgets yield only a few additional observations in each round, so only small

sets of observations are available to guide the VERACITY round-budget partitioning in

the early verification rounds. As such, the adaptive partitioning of the round budget is
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Figure 3.15: Effect of varying the VERACITY round budget on (a) the number of verification
rounds; and (b) a normalised measure of the overall testing budget (see main text for details).
The plots show mean values and ranges over 10 randomly selected verification scenarios.

likely to be sub-optimal early in the verification process, and larger testing budgets may

be required overall. Second, very small round budgets require large numbers of verifi-

cation rounds, and these rounds can be computationally very expensive because of the

formal verification with confidence intervals step of VERACITY(̃cf. Figure 3.3). For

example, for the TAS and WebApp parametric Markov chains and requirements from

our case studies, the mean execution time for this step was 9.8s and 12s, respectively,

on a c5.2xlarge Windows Server 2019 Amazon EC2 instance with 3.00GHz Intel(R)

Xeon(R) Platinum 8124M CPU, and 16 GB of memory (further details about the VE-

RACITYẽxecution time are provided later in this section). Therefore, using many tens

or hundreds of rounds to complete the verification process could be unacceptable in

some scenarios (e.g. when the verification is done at runtime [94, 99, 100]).

To analyse these effects of rbudget, we randomly selected five of the TAS verifi-

cation scenarios and five of the WebApp verification scenarios from Section 3.5.2, and

we used VERACITY to verify the nonfunctional requirements of the two systems for
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each round budget value in RB ∈ {1250,2500,5000,10000, 20000,40000,80000}. The

experimental results are presented in Figure 3.15. First, the graph from Figure 3.15(a)

shows the effect of repeatedly doubling the round budget from an initial value rbudget =

1250 until a final value rbudget = 80000. The dashed line from this graph shows what

the “ideal” effect of increasing the round budget would look like, i.e. a halving of

the number of verification rounds each time when rbudget is doubled, from the base-

line of 100% for rbudget = 1250 to 50% of that baseline for rbudget = 2500, 25% for

rbudget = 5000, etc. In reality, the number of verification rounds is increasingly above

the ideal value as rbudget grows, until it is above this ideal value for all 10 verification

scenarios both for rbudget = 40000 and for rbudget = 80000. This indicates that very

large rbudget values increase the overall testing budgets required by VERACITY—a

finding that is further confirmed by Figure 3.15(b), which shows how the overall testing

budget necessary to complete the verification process increases with rbudget.

To summarise the very different overall testing budgets required for our 10 randomly

selected verification scenarios in a consistent way, Figure 3.15(b) considers the budgets

b1, b2, . . . , b7 associated with each verification scenario and the seven rbudget values

from RB, finds bmax = max{b1,b2, . . . ,b7}, and computes the percentages of bmax that

b1, b2, . . . , b7 correspond to, i.e. pb1 = 100b1/bmax, pb2 = 100b2/bmax, . . . , pb7 =

100b7/bmax. These “normalised” budgets show the round budget for which VERACITY

requires the highest overall testing budget (e.g. pb7 = 100 means that the highest overall

testing budget is needed when rbudget = 80000), and how the testing budgets for other

rbudget values compare to that (e.g. pb1 = 80 means that the overall testing budget for

rbudget = 1250 is 75% of the highest overall testing budget). Figure 3.15(b) shows how

the mean of these normalised budgets increases from pb1 = 75.5% for rbudget = 1250

to pb7 = 97% for rbudget = 80000. The variability of the budget values is very large

across the 10 verification scenarios from our experiments, except for the largest round

budget rbudget = 80000, which indicates that this round budget is consistently too large

across the majority of the scenarios.
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While the effects of using very large rbuget values are clear in Figure 3.15, noticing

the effects of small rbuget values requires a more careful analysis of the experimen-

tal results. A first observation we can make is that the experiments with the smallest

rbudget values of 1250, 2500 and 5000 used the largest number of verification rounds

(as expected, see Figure 3.15a) without delivering smaller mean overall testing budgets

than the experiments for rbudget = 10000 (see Figure 3.15b). In fact, the numerical

results show a very slight decrease in the mean overall testing budgets from 75.7% for

rbudget = 1250 to 75.5% for rbudget = 2500, 75.47% for rbudget = 5000 and 75.05%

for rbudget = 10000. Thus, very small rbudget values increase the cost of the com-

ponent testing without enabling VERACITY to adapt its partition of the round budget

more effectively.

The second undesirable effect of using small rbudget values is visible in Figure 3.16,

which depicts the end-to-end verification times for each of the five TAS verification sce-

narios and each of the five WebApp verification scenarios we used for the experiments

described in this section. As shown by the logarithmic-scale graphs from this figure,

the VERACITY execution times approximately double each time the round budget is

halved from rbudget = 10000 to rbudget = 5000, to rbudget = 2500 and, finally, to

rbudget = 1250. Even when VERACITY is used at design time and execution times of

close to 30 minutes (for rbudget = 1250) are acceptable, the results from Figure 3.15b

show that such long execution times yield no benefit, so very small rbudget are not

recommended.

3.6 Related work

The term uncertainty in software analysis and modelling has been greatly studied dur-

ing the past years, resulting in various kinds of uncertainty now broadly acknowledged

[101–105]. Studies such as [101, 105–107] provide multiple definitions of uncertainty,

which were categorized based on source (e.g. data and model structure) or nature (epis-
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Figure 3.16: Effect of varying the round budget on the VERACITY execution time (experiments
carried out on a c5.2xlarge Windows Server 2019 Amazon EC2 instance with 3.00GHz Intel(R)
Xeon(R) Platinum 8124M CPU, and 16 GB of memory).

temic or aleatory) level (e.g. statistical, recognised). When dealing with the verification

of performance, reliability, or other non-functional requirements, the term uncertainty

is often described as aleatory or epistemic uncertainty. The aleatory variability of pa-

rameters and indices is typically captured using stochastic modelling notations, while

the epistemic uncertainty, which refers to the behavior of system portions that are in-

trinsically unknown, requires ad-hoc methods.

The common goal of these approaches is to introduce analysis methodologies able

to produce satisfactory results even in presence of such type of uncertainty. For exam-

ple, [108–110] propose methods to be implemented at software design time to explore

the software compositions that satisfy the analysed properties. They used probability

distribution functions to model epistemic uncertainty and then evaluated the software

system’s robustness under uncertainty.

More recently, [111] focuses on understanding the influence of configuration options
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on performance and proposes an approach based on probabilistic programming that

explicitly models uncertainty for option influences and provides both a scalar and a

confidence interval for each prediction of a configuration’s performance. [112] presents

a method -based on closed mathematical formulas- for incorporating and evaluating

epistemic uncertainty of the input parameters of queueing models. A similar approach

to the study of uncertainty propagation in reliability models has been presented in [113].

A different philosophy in dealing with uncertainty involves the adoption of self-

adaptive systems. The amount of research that considers uncertainty in self-adaptive

systems has continuously grown over the last few years. For instance, the works [114–

116] on adaptive systems applied probabilistic models for reasoning about the changes.

Works in [117, 118] make use of self-adaptation to cope with uncertainty. [117] pro-

poses a combination of adaptation and evolution of software to make its behavior re-

silient to uncertainty, which in turn entails that the software system is sustainable, while

[118] focuses on the uncertainty surrounding the execution of cyber-physical produc-

tion systems. A different approach can be found in [119], where a control-theoretic

approach is adopted to handle uncertainty in self-adaptive software systems. Further-

more, the need for software systems to operate well under the existing uncertainties is

among the main waves that have pushed the research on self-adaptive systems [120],

although a perpetual assurance of goal satisfaction in self-adaptive systems is still an

open research challenge [121]. Most of these works consider uncertainty in the decision-

making process and proposes adaptation approaches that are able to guarantee the qual-

ity requirements under different and (possibly) unknown types of changes.

Our work lies in the area of the reduction of parametric epistemic uncertainty and in-

troduces an adaptive uncertainty reduction heuristic for performance and dependability

software engineering. The proposed heuristic is integrated into a new iterative approach

that exploits the adoption of formal verification with confidence intervals.

One of the key aspects of the proposed approach consists of the identification of the

system component for which additional data -to be obtained through testing- are needed.
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The selection of components to be tested in each iteration is based on a combination of

factors that include the sensitivity of the model to variations in the parameters of differ-

ent components, and the overheads of unit-testing each of these components. Reducing

the cost of the (reliability) testing phase by selecting key components to test is a topic

that has been analysed in the literature. For example, [122] tackles the question "When

to stop testing" by focusing on reliability and discussing the challenges and the poten-

tials related to existing software reliability models. Classical approaches in this domain

are based on operational profile [123], however operational profile is often unknown

and subject to changes. To overcome this problem, [124] proposes an adapting testing

schema that iteratively learns from test execution results as they become available, and,

based on them, allocates test cases to the most sensible parts. The assessment is then

performed adopting a second sampling strategy that provides the interval estimate of the

reliability computed during testing. A different approach that focuses on the allocation

of testing resources under uncertain conditions is presented in [125]. A multi-objective

debug-aware and robust optimization problem under uncertainty of data is proposed that

allows the evaluation of alternative trade-offs among reliability, cost, and release time.

3.7 Summary

We presented VERACITY, a tool-supported approach for the efficient verification of

nonfunctional requirements under uncertainty. VERACITY operates by acquiring infor-

mation about the components of the verified system through testing them individually

over a number of verification rounds. A user-defined testing budget specifies the amount

of testing performed in each round, and the partition of this budget among system com-

ponents is adapted from one round to the next in order complete the verification process

with a low overall testing cost. The heuristic used to compute this adaptive partition

considers factors such as the sensitivity of the verified requirements to the parameters

associated with different components, and the different cost (e.g. time, price or risk)
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of testing these components. The evaluation of VERACITY in case studies from the

areas of service-based systems and web applications showed that, on average, it sig-

nificantly reduces the overall testing cost required to complete the verification process

compared to uniformly the testing budget across all system components. This result

confirms part 1 of our hypothesis from Section 1.2.
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Chapter 4

Efficient formal verification with

confidence intervals

4.1 Introduction

Over the years, quantitative verification has been a powerful means of analysing the

performance, reliability, and other nonfunctional properties of systems. However, the

analysed system should be modelled carefully and accurately as a Markov model in or-

der to obtain a precise verification result. Building a Markov model for the system is

a time-consuming task because it requires determining the system’s states and the tran-

sitions between them, as well as the probabilities of these transitions. Establishing the

precise probabilities of transition is challenging [25] since probabilities can only be esti-

mated, with error margins, from run-time observations of the system, from system logs,

or based on input obtained from domain experts using a point estimate. Therefore, errors

in the estimation of probabilities could be cummulated by quantitative verification, and

can produce inaccurate outcomes due to the non-linearity of Markovian models [75].

Formal verification with confidence intervals (FACT) [25] resolves this limitation by

providing a confidence interval for the verification result rather than a single value.
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FACT is a probabilistic model checker that calculates confidence intervals for prop-

erties of parametric Markov chains that have observations for unknown transition prob-

abilities. The current FACT version invokes PRISM [59] to get the algebraic expression

for the targeted property of a parametric discrete-time Markov chain (pDTMC) model.

However, for many nontrivial models (i.e. models with more than a few states, transi-

tions and parameters), the algebraic expression is too large or too complex for FACT to

analyse successfully (i.e. the tool fails with an out of memory or timeout error). Thus,

FACT does not scale well to nontrivial pDTMCs.

To extend the capability of FACT, this chapter introduces efficient Formal verificAtion

with Confidence inT ervals (eFACT), a new model checker that is able to calculate such

confidence intervals for nontrivial pDTMC models. eFACT exploits efficient paramet-

ric model checking (ePMC) [17, 114], which uses domain-specific modelling patterns

in order to produce sets of closed-form subexpressions of the analysed properties, and

uses these subexpressions as terms in the main formula for the analysis of the whole

pDTMC model. ePMC derives an abstraction model from the original pDTMC. The

abstraction model consists of fragments, and each fragment represents a single state in

the abstraction model and a subset of states in the original model. The main formula is

the abstraction model’s algebraic expression, and the component formula is a formula

related to the fragment. In this way, eFACT computes the confidence intervals for each

closed-form expression, and then uses the obtained results to calculate the confidence

interval for the main formula. Furthermore, eFACT exploits a binary search technique

to enable engineers to efficiently obtain the highest confidence level at which a nonfunc-

tional requirement of a system can be confirmed as violated or satisfied—an important

feature unavailable in the FACT tool.

The objectives of this chapter are: (i) to integrate ePMC with FACT, (ii) to augment

the resulting solution through adding binary search to eFACT, and (iii) to perform ex-

periments within two case studies in order to evaluate eFACT and compare it to FACT.

The chapter is organised as follows. Section 4.2 explains how eFACT computes the
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confidence intervals for the properties of pDTMC models, then demonstrates the use

of binary search to find the required confidence level efficiently. Section 4.3 describes

the case studies used to evaluate eFACT. Next, Section 4.4 discusses the experimen-

tal results, and Section 4.5 compares our solution to other related work. Finally, Sec-

tion 4.6 briefly summarises this work.

4.2 Efficient formal verification with confidence inter-

vals

4.2.1 Computing confidence intervals for large pDTMC

To compute confidence intervals for a given pDTMC model and property, FACT obtains

algebraic expressions from PRISM and completes its process until confidence intervals

are produced. However, when the model is nontrivial (as explained in the previous

section), FACT cannot produce confidence intervals. eFACT aims to analyse nontrivial

pDTMC models with at least one unknown transition probability, provided that ob-

servations of unknown transitions exist. To achieve this purpose, we exploit a recent

advance in probabilistic model checking ePMC that produces closed-form expressions

(i.e. component formulae) for the property being analysed, and then combines them

into one main formula. eFACT analyses each expression separately to produce its con-

fidence intervals for the provided confidence levels. The confidence intervals of the

expression then substitute into the main formula. Therefore the outcomes of all expres-

sions contribute to calculating the confidence intervals for the analysed property of a

given pDTMC.

At a given confidence level α , computing confidence intervals for a large pDTMC

model consists of three main components: confidence interval quantitative verification,

ePMC [114], and substitution. The confidence interval quantitative verification is used
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Keys:
CI: Confidence Intervals
c_expr: Component Formula
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Figure 4.1: eFACT structure

to compute the confidence intervals for each fragment. ePMC is employed to decom-

pose the model. The substitution component is used to substitute all fragment outcomes

into the main formula of the original model.

Figure 4.1 illustrates in detail the steps followed to compute the confidence inter-

vals for a nontrivial pDTMC. First, the confidence interval quantitative verification will

receive the pDTMC model, property and a range of confidence intervals as inputs. Fol-

lowing this, the model and property are sent to ePMC to produce all possible formulae

(Steps 2 and 3 in the figure). There are two kinds of produced formulae: the com-

ponent formula (a closed-form expression) and the model formula. In the latter, the

component formula is a part of the model formula. In general, the formula represents

an algebraic expression related to the analysed property of the model. Figure 4.2 shows

an example of the two types of formulae. After that, the component formulae (denoted

as c_expr1,c_expr2,...,c_exprn in the figure) are sent to confidence interval quantitative

verification to compute their confidence intervals sequentially (Step 4). The outcomes
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Figure 4.2: A simple example of components and model formulae

of component formulae are sent to the substitution component to substitute their results

into the model formula (as shown in Steps 5 and 6). Finally, the model formula is sent

to the confidence interval quantitative verification unit to calculate the final confidence

intervals that will appear to the end-user.
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4.2.2 Determining the highest confidence level at which a require-

ment can be verified as satisfied or violated

As described in the previous chapter, when engineers use eFACT to compute confidence

intervals for a PCTL-encoded pDTMC property, they are often interested in comparing

these intervals with a bound that the property must satisfy as per the analysed system’s

nonfunctional requirement. Furthermore, they are particularly interested in finding the

highest confidence level αMAX at which the requirement can be shown as violated or

satisfied, given the available set of observations of the unknown pDTMC transitions.

For confidence levels α > αMAX , the observations available are insufficient to decide

whether the requirement is satisfied. Finding the value of αMAX (or a close approxi-

mation of it) enables important decision-making. For instance, if a requirement can be

shown to be satisfied at the highest confidence level αMAX = 0.99, then the system can

be confidently deployed (based on the requirement being met). In contrast, if a require-

ment can only be shown as satisfied at the highest confidence level αMAX = 0.75, the

decision of whether to deploy the system cannot be made. Further observations should

be obtained (e.g. by testing the relevant system components).

eFACT must compute a potentially very large number of confidence intervals at

different confidence levels α to find a close approximation of αMAX . eFACT is highly

inefficient in achieving this, given the overheads of formal verification with confidence

intervals. Therefore, we developed an efficient method (implemented in eFACT) for

computing this close approximation. This method employs a binary search to efficiently

approximate the highest confidence level αMAX .

Instead of slowly performing verification of each confidence level to find where the

requirement is satisfied or violated, the binary search algorithm will speed up the process

of achieving this. When the user inserts the model (with its nonfunctional requirement

and range of confidence levels), eFACT starts its work by verifying the first inserted

confidence level and computing its confidence intervals. Following this, it moves to the
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Figure 4.3: An example of using binary search in eFACT

last-inserted confidence level to calculate its confidence intervals. Now, there are two

confidence levels with their intervals, enabling eFACT to check whether the analysed

property requirement is located inside those intervals. If the requirement is located

inside all intervals, the process will terminate with a message stated that the requirement

is undecidable for the given range of confidence levels. Otherwise, eFACT moves to

the middle confidence level (e.g. if the range of confidence levels is between 89 and

99, then the middle level is 94) and computes its confidence intervals. eFACT then

checks the requirement’s position over the current confidence intervals and compares it

with the obtained ones over the confidence intervals from the first and last levels. The

confidence levels that lie between the middle confidence level and the other confidence

level, in which the requirement’s position matches its place in the middle level, will be

discarded. Again, eFACT moves to the middle of the remaining confidence levels and

repeats the same procedure until it determines the highest confidence level αMAX .

Figure 4.3 shows the result of the verification test, where eFACT is looking for the

confidence level at which the requirement is violated or satisfied. The test was con-
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ducted between confidence levels 0.85 and 0.99, where the increment step was 0.01.

Instead of completing 15 verification tests to find the required confidence level, we per-

formed six verification tests until the required result was found. The discarded area (red

area) has a list of confidence levels with intervals containing the requirement; there-

fore performing additional tests in this area is useless. The solution area (orange area)

is where the requirement’s position moves from outside the confidence intervals to be

inside the next intervals.

The pseudocode for the eFACT binary search is presented in Algorithm 2. Its EFFI-

CIENTFACT method receives five inputs: the pDTMC model (M ), the nonfunctional

requirement (req), the first confidence level (αstart), the last confidence level (αend) and

the distance between successive confidence levels (step). The algorithm begins with

the verification of the nonfunctional requirement at confidence level αstart (line 2). The

result of this verification could have one of three values: satisfied, unsatisfied (violated),

or undecidable (cf. Figure 3.4). After that, the verification result at confidence level αend

is obtained and compared to the verification result at confidence level αstart (line 3). If

the results are equal, the process ends with a decision showing that the maximum confi-

dence level for which a conclusive result can be obtained is αend , and returns this value

and the verification result (line 4).

If the results are not equal, and the difference between αstart and αend is greater

than step (line 6), the “middle” confidence level (αmid) will be calculated as shown in

line 7. In the next line, the algorithm performs verification at confidence level αmid ,

and if the result is undecidable, the αend value will be updated to the value of αmid .

Otherwise, the αstart will be updated to be αmid . This process will be repeated until the

difference between αstart and αend is less that step, and thus the condition of the “while”

loop becomes false. At this point, the algorithm will return the result (either satisfied or

violated) along with the last value of the confidence level αstart (line 14).
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Algorithm 2 Computing the verification result ∈ {SAT,UNSAT,UNDECIDABLE}
and—when result ∈ {SAT,UNSAT}—the maximum confidence level for which it is
achieved, where the confidence level bounds αstart and αend are both multiples of step

1: function EFFICIENTFACT(M ,req,αstart,αend,step)
2: result← VERIFY(M ,req,αstart)
3: if result = VERIFY(M ,req,αend) then
4: return (result,αend)
5: end if
6: while αend−αstart > step do
7: αmid← αstart+

⌊
αend−αstart

2·step

⌋
· step

8: if VERIFY(M ,req,αmid) = UNDECIDABLE then
9: αend← αmid

10: else
11: αstart← αmid

12: end if
13: end while
14: return (result,αstart)
15: end function

4.3 Case studies

4.3.1 Service-based systems

Service-based systems (SBSs) are applications that provide services dependent on or

connected to one another [126]. SBSs comprise internal system components and pos-

sible independent third-party components implemented as services. There are different

ways in which services can conduct operations similar to those of SBSs, with different

probabilities in their execution time (t1,..,tn), costs (c1,...,cn) and successes (p1,...,pn).

The following patterns are adopted from [17] and used to implement the SBS opera-

tions with n services equivalent to those operations:

1. SEQ (p1, t1,c1, ..., pn, tn,cn): There are n services invoked in order, terminated

after the last service or upon the first successful request.

81



2. SEQ-R (p1, t1,c1, ..., pn, tn,cn,r): This is similar to SEQ. However, if all service

invocations fail, the operation is re-executed from the first service with probability

r, or it fails with probability 1-r.

3. SEQ-R1 (p1, t1,c1,r1, ..., pn, tn,cn,rn): This is similar to SEQ. However, service i

will be re-invoked with probability ri if the invocation of this service fails.

4. PAR(p1, t1,c1, ..., pn, tn,cn): There are n services invoked simultaneously. The

operation will use the output of the first successful invocation.

5. PAR-R (p1, t1,c1, ..., pn, tn,cn,r): This is similar to PAR. However, if all service

invocations fail, the operation is re-executed with probability r, or it fails with

probability 1-r.

6. PROB (x1, p1, t1,c1, ...,xn, pn, tn,cn): There is a single service to request. The

probability that indicates the service i is xi, where Σn
i=1 xi =1.

7. PROB-R(x1, p1, t1,c1, ...,xn, pn, tn,cn,r): This is similar to PROB. However, if the

service invocations fail, the operation is re-executed with probability r, or it fails

with probability 1-r.

8. PROB-R1(x1, p1, t1,c1,r1, ...,xn, pn, tn,cn,rn): This is similar to PROB. However,

if the service invocations fail, the service is re-invoked with the probability of r,

or it fails with probability 1-r.

9. Combination: This is a combination of the above patterns.

To evaluate eFACT, a foreign exchange system (FX system) from the SBS area that

aims to assists the trader is adopted from [29]. As shown in Figure 4.4, the FX system

offers the trader two operational modes: expert or normal. The expert mode executes

the trade automatically when the transaction meets the customer’s objectives. It begins

with the market-watch component to obtain the current price of the chosen currency,
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Figure 4.4: Foreign Exchange System Workflow, from [29]

then it uses the technical-analysis component to assess the market and estimate the price

movement. The analysed outputs could be one of three options:

1. The transaction can be performed because the objectives that the traders set up

are satisfied;

2. The market watch component is re-invoked since the objectives were not met; or

3. The objectives are incorrect, and the Alarm unit will be triggered to warn the

trader.

Conversely, the FX system utilises the fundamental-analysis component in its nor-

mal mode to determine whether to conduct a transaction, retry the analysis or end the

session.

eFACT aims to analyse the following properties of the pDTMC model of the FX

system with multiple services (from 1 to 6), and under different patterns:
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1. P1: The possibility of completing a transaction successfully, written in the PCTL

format as P =? [F(state =WF_SUCC)];

2. P2: The estimated time to execute the transaction, written in the PCTL format as

R{“time”}=? [F((state =WF_SUCC)|(state =WF_FAIL))]; and

3. P3: The estimated cost of running the transaction successfully, written in the

PCTL format as R{“cost”}=? [F((state =WF_SUCC)|(state =WF_FAIL))].

4.3.2 Three-tier software architectures

The three-tier server [127], as shown in Figure 4.5, provides three services: web, database

and application. The services are hosted on four different physical servers (A, B, C, D)

and operate on different virtual machines (VMs). The system can be scaled-up to in-

clude more servers, VMs and service instances. This case study presents the following

three patterns:

1. Basic (B): Several tier instances are running on a server. If the server crashes, the

running tier instances are lost.

2. Virtualised (V): There are a number of tier instances, and each one is running on

its own virtual machine on a server.

3. Virtualised-M (VM): This is similar to the virtualised pattern. However, when

the server crashes, a monitor component can detect the crash before it occurs.

Therefore, the virtual machine can be migrated to other running servers.

If the engineers intend to evaluate the reliability of deploying options for the three-

tier software on different servers, they could evaluate the following properties:

1. P1: This measures the likelihood of the system failing within a determined time

due to all tier instances failing. It can be written in PCTL as P =? [F done &

f ail]; and
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Figure 4.5: Three-tier architecture with three services deployed on Cloud, from [127]

2. P2: This assesses the possibility of a single failure point during the analysis. The

PCTL encoded for this property is P =? [F done & sp f ].

4.4 Evaluation

We performed a set of experiments to compare eFACT and FACT using two case studies

from different areas. These case studies are described in Section 4.3. All experiments

were conducted on an OSX 10.14.6 MacBook Pro laptop with 8 GB 1600 MHz DDR3

RAM and CPU 2.5 GHz Intel Core i5 processor.

4.4.1 Experimental environment

eFACT was developed using Java and required installing the following tools and appli-

cations:

1. PRISM/Storm are model checkers used to analyse properties and produce alge-

braic expressions. eFACT was tested using PRISM v4.4 and Storm v1.5.1.
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2. MATLAB is used for computing confidence intervals, and the version used was

R2019a.

3. YALIMP [128, 129] is a MATLAB-based modelling language that was developed

by Johan Lofberg and contains several free and commercial solvers. It is used to

model and formulate both convex and non-convex optimisation problems. It is

invoked in the background by eFACT/FACT to obtain confidence intervals for the

verified requirement by solving a convex optimisation problem. Our experiments

were carried out using version 20210331 of YALMIP.

4. Gurobi [130] is an optimisation solver that YALMIP can invoke to solve the opti-

misation problem.

5. ePMC repository defines the model’s patterns and contains the expressions related

to the properties of the model.

4.4.2 Results

For the first case study of an SBS (as explained in Section 4.3.1), we carried out several

experiments to analyse three properties (P1, P2, P3), to produce the confidence inter-

vals at confidence levels from α = 0.90 to α = 0.99, and to record the execution time.

The analysis was carried out under different patterns and with different services. Table

4.1 summarises the results and shows the execution time (in seconds) taken to analyse

each property using eFACT and FACT. The table contains the following symbols:

• (T) denotes a timeout, which means that the execution time exceeded the pre-

defined time of 1800 seconds without completing the analysis.

• (T*) means the tool failed to produce an algebraic expression for the property

being analysed during the pre-defined time.
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• (-) indicates that we the experiment was skipped because the previous model was

smaller than the current one, and it could not be analysed (i.e., the tool failed to

compute the confidence intervals in the determined time frame).

As shown in Table 4.1, the execution time recorded for eFACT is better than FACT’s

execution time, except for the first row, where the model has a single service (SEQ

pattern with one service) and the algebraic expressions produced by PRISM for the

evaluated properties are simple. We note that to analyse the model from the first row,

eFACT requires more time because it needs to compute confidence intervals for the

component expressions (more than one expression) before substituting their results into

the model formula. Moreover, we notice that the difference is not so significant. The

table shows that eFACT took less time than FACT for the analysis of other patterns and

services. The last row in the table reports a minimum, maximum, mean and standard

deviation of the execution time for twenty models that had different combinations of

patterns with a variety of services. The results show that eFACT can produce confidence

intervals for all properties of the evaluated models, whereas FACT cannot.

In general, FACT fails to compute the confidence intervals because PRISM can not

produce the algebraic expressions of these models, or produces expressions that are

too large for the computation of confidence intervals to succeed. In contrast, eFACT

invokes ePMC to obtain multiple simpler expressions, evaluates each such expression

separately, and substitute the results of these multiple evaluations in the main formula

(which is also simpler than the monolithic formula that FACT operates with).

For the second case study, mentioned in Section 4.3.2, several experiments were per-

formed to evaluate two properties (P1,P2) and calculate the confidence intervals from

α=0.90 to α = 0.99. Table 4.2 illustrates the results for four models of four servers

using different deployment patterns (D). FACT takes less execution time to analyse the

model of deployment D1, which is found in the first row. The model is simple and

produces a small expression that FACT can handle. In deployment D2, the model has

some complexity (loop), and the expressions for both properties are too large. There-
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Table 4.1: The results of FX system, (the execution time is in seconds).

Pattern Services
eFACT FACT

P1 P2 P3 P1 P2 P3

SEQ

1 141.405 175.357 188.243 98.817 105.328 100.098
2 147.276 194.089 194.503 T T T
3 188.993 225.028 227.659 - - -
4 286.416 354.003 353.514 - - -

SEQ-R
2 197.213 284.967 282.978 T T T
3 253.189 348.103 355.679 - - -
4 1507.257 1314.996 1285.241 - - -

SEQ-R1
2 187.587 270.305 272.994 T* T T
3 222.844 322.971 322.634 - - -
4 423.71 501.281 510.492 - - -

PAR
2 141.299 189.637 185.0 T T T
3 186.318 269.309 221.306 - - -
4 290.874 384.679 296.634 - - -

PAR-R
2 199.079 299.229 280.785 T T T
3 248.545 380.596 337.698 - - -
4 1487.141 1787.865 1352.024 - - -

PROB
2 138.287 183.473 182.499 182.595 1130.434 1025.849
3 143.724 187.631 192.325 T T T
4 148.537 197.401 200.723 - - -

PROB-R
2 197.09 262.869 263.637 T T T
3 220.979 294.346 295.803 - - -
4 238.253 339.933 334.826 - - -

PROB-R1
2 186.974 262.863 260.842 T T T
3 216.312 293.574 294.891 - - -
4 230.583 337.127 345.044 - - -

Combination

Min 155.351 199.017 197.774 T T T
Max 292.297 290.975 286.386 - - -
Mean 177.582 231.562 222.059 - - -
Stdev 30.139 24.23 24.952 - - -

fore, FACT failed to analyse them before the allocated time ran out. eFACT is able to

handle this model because it deals with small component-level expressions. The third

row is for deployment D3, which is a loop-free model. We note that FACT can anal-

yse this model but requires a longer analysis time than eFACT. The last row shows the

superiority of eFACT, as FACT cannot analyse the properties of this model because the

algebraic expression was not produced within 1800 seconds.
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Table 4.2: The results of the multi-tiered system.

D
Number of
instances

Server
type

eFACT FACT

Server
A

Server
B

Server
C

Server
D

P1 P2 P1 P

D1 6 V V B B 203.266 214.387 94.088 86.317
D2 6 VM VM B B 331.342 359.419 T T
D3 10 V V V V 337.281 365.966 687.554 730.999
D4 10 VM VM VM VM 824.153 873.638 T* T*

In conclusion, eFACT is useful for analysing a pDTMC model in two situations.

First, when PRISM fails to produce the algebraic expression for the analysed model,

FACT also fails to produce a result since FACT uses PRISM as a back-end tool to

extract the algebraic expression. Second, when there is a time limit for obtaining the

confidence intervals, PRISM, MATLAB with YALMIP, or both may take too long to

complete their computations due to a large algebraic expression. As a result, FACT may

not meet this time limit. In contrast, eFACT has the ability to handle larger models, and

thus, it extends the use of quantitative verification of such models to fields in which the

usage of estimation error is not acceptable for non-trivial models.

4.5 Related work

Software engineers can exploit probabilistic model checking to analyse and assess the

reliability, correctness, potential performance and other key attributes of systems with

probabilistic behaviour. However, the model can be affected by the unquantified esti-

mation errors of transition probabilities, leading to uncertainty. Specifically, the prob-

abilities of transitions from one state to another in DTMC could be unrealistic since

statistical experiments calculate them. Multiple studies have been conducted to dimin-

ish the uncertainty that arises in DTMC models. The studies accomplished by [131, 132]

sought to capture this kind of problem. Kozine et al.[131] supposed that the probabil-
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ity value should be included between two bounds (upper and lower) instead of being a

specific value. They exploited the theory of interval-valued coherent prevision to gener-

alise discrete Markov chains and introduce interval-valued, discrete-time Markov chains

(IDTMCs). Skulj [132] attempted to refine the IDTMCs and develop consecutive steps

to make the IDTMCs suitable for models with generic convex sets of probabilities.

Benedikt et al. [133] applied upper and lower bounds on the complexity of calculat-

ing values for undetermined probabilities in the model checking of an interval Markov

chains that increase the likelihood of satisfying ω-regular specification. This work fo-

cuses on the pDTMC model, where some of their transitions are unknown but have

observations. FACT [25] has the same scope of our work but cannot handle nontrivial

models.

4.6 Summary

This chapter has introduced eFACT, a new model checker with confidence intervals

that utilise ePMC to compute the confidence intervals for nontrivial pDTMCs models.

In addition, eFACT can benefit engineers who want to establish the analysed pDTMC

model’s confidence level in the satisfaction or violation of a given nonfunctional re-

quirement. Our experimental results show that eFACT has better execution times than

the model checker FACT that it builds on, outperforming FACT in most cases, and there-

fore confirming part 2 of our hypothesis from Section 1.2. One of our work’s limitations

is that the model requires a repository of components’ equations and an abstract model

that needs a domain expert. However, this limitation can be resolved using a recently

introduced generic method for efficient parametric model checking [76].
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Part III

Synthesis Techniques
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Chapter 5

Markov decision process policy

synthesis for complex requirement

combinations

5.1 Introduction

As described earlier in Section 2.1.2, MDPs are widely utilised to support decision-

making in multiple domains, including in the development of software components (e.g.

software controllers) for a wide range of systems [134–138]. This chapter presents an

approach for synthesising Pareto-optimal MDP policies for software components with

nonfunctional requirements that include multiple constraints and optimisation objec-

tives. The rest of the chapter is organised as follows. Section 5.2 defines the problem

and describes the proposed approach for the synthesis, and the implementation steps are

provided in Section 5.3. Section 5.4 describes the MDP benchmarks we employed to

evaluate the approach. Finally, we discuss the related work in Section 5.5 and conclude

the chapter with a brief summary in Section 5.6.
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5.2 MDP policy synthesis approach

5.2.1 Problem definition

The nonfunctional requirements of a software system are often comprised of a combi-

nation of n≥ 0 constraints and m≥ 0 optimisation objectives. Constraints are nonfunc-

tional requirements with the format from Chapter 3, namely:

propi ./i boundi, (5.1)

where ./ ∈ {<,>,=,≤,≥} and i = 1,2, . . .n. Optimisation objectives are nonfunctional

requirements of the form

M prop j (5.2)

where M ∈ {minimise, maximise}, and j = 1,2, . . .m.

When MDPs are used to model a software system’s behaviour under development,

the MDP actions often correspond to the system’s alternative design options. In this

case, synthesising MDP policies corresponds to identifying designs that meet the n con-

straints and m optimisation objectives for the system (i.e. the system’s nonfunctional

requirements). With a single optimisation objective, this synthesis produces one such

design. Meanwhile, with multiple optimisation objectives, a Pareto-optimal set of poli-

cies is synthesised.

Modern probabilistic model checkers, such as PRISM, Storm and others, support

this process for simple combinations of PCTL-encoded requirements. In particular,

PRISM supports a simple combination of requirements. This is very useful but cannot

support MDP policies’ synthesis for the more complex combinations of requirements

encountered with many software systems. For instance, to find a Pareto curve for two-

objective properties using PRISM, the user should select the right maximum value of

iterations and/or correct numerical method. If this is not done, an error message will
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appear asking to change the configurations. PRISM will consume non-negligible time

to test each inserted configuration before the error message pops up.

Thus, the problem to be solved is the synthesis that the Pareto-optimal MDP policy

sets for systems with nonfunctional requirements comprising:

1. m≥ 2 optimisation objectives;

2. n≥ 0 constraints; and

3. the expected rewards that must be encoded using eventually operator (F) PCTL

properties.

5.2.2 Search-based software engineering approach to MDP policy

synthesis

In this section, we explain our approach in detail. The purpose of our approach to main-

tain the quantitative properties format used for a single-objective verification in MDP

and make them usable for multi-objective verification upon the user’s selection. There-

fore, we propose a transformation approach that can convert a given MDP model into a

parametric discrete-time Markov chain (pDTMC). Following this, a search-based tech-

nique will be conducted with verification to produce a Pareto front for various optimal

solutions.

MDP 
transformation

MDP Model

QoS properties

Search-based 
approach with 

verification

pDTMC Model

Transformed
properties

Pareto 
optimal 

solutions

Figure 5.1: Overview of MDP transformation approach
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Figure 5.1 depicts the main components of the MDP policy synthesis approach. It

comprises two main components: MDP transformation and search-based technique with

verification (EvoChecker is utilised for this purpose). As shown in this figure, there are

two inputs: the MDP model and two or more conflicting QoS properties. For example,

one property is for maximising success, and the other is for minimising the cost. These

inputs are transformed by MDP transformation into a readable format of both model

and properties to be read by EvoChecker to use them as inputs for producing the Pareto-

optimal policies or their approximations.
 

 

PRISM 
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Checker 
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Solution 
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Transition 

Matrix 
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Figure 5.2: Detailed MDP transformation approach

As illustrated in Figure 5.2, our approach requires determining all of the possible

Steps from an initial state to end states of a given MDP model. In other words, we

resolve nondeterministic choices (Steps) in which each state in the model is essentially

a probabilistic choice over successor states. To do that, we employ the PRISM model

checker tool, which receives the MDP model as input to obtain choices in the term

of the transition matrix (TM), which contains a finite number of rows and columns.

Figure 5.3 shows simple example of an MDP, its TM, and its equivalent pDTMC after

the transformation process. In this example, PRISM receives the shown MDP model

(left side of the figure) and produces its matrix with five columns for states, choices,

new states, probabilities and labels. The pDTMC generator can form four primary keys

taken from the first two columns (S and C) of this matrix. These primary keys are

00, 01, 10 and 20. Each key constructs a line in the equivalent pDTMC model, which

95



corresponds to lines 5–8 in the figure. For instance, line (1): [ ]u = 0&o1 = 0−> 0.1 :

(u′ = 1)+0.9 : (u′ = 2); is built from the first primary key 00 (taken from the first two

rows of the matrix). Line (1) is built as described in the following:

1. u is a symbol representing the name of a state in the equivalent pDTMC model.

In this line, u equals 0 (0 is the first digit of the primary key 00).

2. o1 is taken from the choice column (can be called option) at the matrix. In this

line, o1 equals 0 (the second digit of the primary key 00).

3. 0.1 : (u′ = 1) is taken from the first row of the matrix, which means moving from

s = 0 to s′ = 1 with p = 0.1. It is reflected in this line to capture the transition

probability (0.1) from the current state (u = 0) to the new one (u′ = 1).

4. 0.9 : (u′ = 2) is taken from the second row of the matrix, which means moving

from s = 0 to s′ = 2 with p = 0.9. It represents the transition probability (0.9) to

reach the new state (u′ = 2).

The second line in the equivalent pDTMC model (evolve int o1 [0..1]) represents an

EvoChecker statement that means the range of integer values assigned to o1 will be 0

or 1. In this example, there is only one option o1 because the matrix has only one state

for all available choices (i.e. s = 0 ∀ choices: 0 and 1). The fourth line in the equivalent

pDTMC model (u : [0..2] init 0;) means that we have three states from 0 to 2 taken from

the first column in the matrix (s = {0,1,2}).
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MDP model Transition 
matrix pDTMC model 

1  mdp 
2  module M 
3 s:[0..2] init 0;  
4 [a0] s=0 -> 0.5:(s'=1) + 0.5:(s'=2); 
5 [a1] s=0 -> 0.1:(s'=1) + 0.9:(s'=2); 
6  endmodule 

S C S’ P L 
0 0 1 0.1 a1 

0 0 2 0.9 a1 

0 1 1 0.5 a0 

0 1 2 0.5 a0 

1 0 1 1  
2 0 2 1  

 
Keys: 
S: State 
C: Choice 
S’: New state 
P: Probability 
L: Label 

1  dtmc 
2  evolve int x0 [1..2]; 
3  module M 
4 u:[0..2] init 0; 
5 [a1] u=0&x0=1-> 0.1:(u'=1) + 0.9:(u'=2); 
6 [a0] u=0&x0=2-> 0.5:(u'=1) + 0.5:(u'=2); 
7 [] u=1->1:(u'=1); 
8 [] u=2->1:(u'=2); 
9  endmodule 

 
 Figure 5.3: Example of an MDP, its TM and its equivalent pDTMC as used by the MDP policy

synthesis approach

Finally, the MDP model properties are updated to replace their original states with

matched states in the equivalent pDTMC model. Once the pDTMC and the transformed

properties are available, they will be inserted into EvoChecker to explore alternative

model designs and generate the Pareto-optimal policies.

5.2.2.1 Algorithm

In this section, we present the algorithm used to transform the MDP model into the

equivalent pDTMC. The transformation is performed by the function MDPTOPDTMC

from Algorithm 3, which takes as inputs the five elements of the MDP model being

transformed. Line 2 goes through each MDP state s and stores the indices of the actions

available in this state into a set Xs, as shown in line 3. Next, the for loop in lines 4–6

assembles the probabilities P(s,s′) of transitioning from state s to every state s′ ∈ S as

a sum parameterised by a variable xs with value domain Xs. This sum is constructed

such that, for any possible value xs = i ∈ Xs, it reduces to the probability of transition

between the same states (i.e., s and s′) within the original MDP when action ai is selected

in state s. To this end, the sum uses the ternary-operator expression (xs = i)?1 : 0,

which evaluates to 1 if xs = i or 0 otherwise. The tuple (S,s0,P,L) corresponding to the
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assembled pDTMC is returned in line 8. We note that this is a valid pDTMC because,

for any state s ∈ S and any xs = i, we have:

∑
s′∈S

P(s,s′) = ∑
s′∈S

∆(s,ai,s′) = 1.

To establish the complexity of our algorithm, we note that the for loop in lines 2–7

is executed once for each MDP state, and the body of the loop first assembles the set

Xs in linear, O(n), time and then iterates over each state s′ of the MDP in line 5, with

each such iteration requiring O(N) operations in the worst case (i.e. when all actions

are available in a state). Thus, this O(N) computation from line 5 is performed n2

times, where n is the number of states for the MDP model, giving an overall worst-case

complexity of O(n2N).

Algorithm 3 Algorithm for transforming an MDP (S,s0,A,∆,L) with action set A =
{a0,a1,a2, . . . ,aN} into a pDTMC (S,s0,P,L) with parameters {xs | s∈ S}; for any s∈ S,
the parameter xs can take discrete values in Xs = {i ∈ {0,1,2, . . . ,N} | ∆(s,ai) 6= zero},
which represents the set of action indices available in state s.

1: function MDPTOPDTMC(S,s0,A,∆,L)
2: for s ∈ S do
3: Xs = {i ∈ {0,1,2, . . . ,N} | ∆(s,ai) 6= zero}
4: for s′ ∈ S do
5: P(s,s′) = ∑i∈Xs[((xs = i)?1 : 0) ·∆(s,ai,s′)]
6: end for
7: end for
8: return (S,s0,P,L)
9: end function

5.3 Experimental setup

We carried out a set of experiments to evaluate our approach using different MDP mod-

els. These experiments were carried out on a Mac mini with the operating system Ma-

cOS Catalina, 3.2 GHz 6-Core Intel Core i7 CPU, and 32 GB of 2667 MHz DDR4
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memory. Installing the following tools is essential to run the experiments:

1. The PRISM model checker, which is required to get the transition matrix of the

MDP model, assists in the transformation process.

2. EvoChecker1, which is a tool that is built on top of PRISM and that combines

verification and optimisation of probabilistic models. The pDTMC produced by

the transformation in Algorithm 3 is provided as input to EvoChecker to find the

optimal solutions or their approximations.

The experiments presented in this chapter can be reproduced by following the steps

below:

1. Run the command

java -jar MDPtransformation.jar MDP_model_file MDP_properties_file

in a terminal to obtain the pDTMC model and associated property files;

2. Use the produced files from the previous step as inputs to EVoChecker to get the

Pareto-optimal policies for the original MDP.

3. Use Python3 and the Panda library2 to plot the Pareto diagram for the EvoChecker

results.

All the required files and case studies, along with detailed instructions to reproduce the

results, are available at https://gitlab.com/nnma500/mdptransformation.

5.4 Evaluation

We performed several experiments to evaluate our approach using MDP case studies ob-

tained from the PRISM benchmark suite website3. The experiments are divided into two
1https://www-users.cs.york.ac.uk/simos/EvoChecker/
2https://mode.com/python-tutorial/libraries/pandas
3www.prismmodelchecker.org/benchmarks/models.php#mdps
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Table 5.1: Output of PRISM and MDP transformation method

MDP model #States #Transitions
Decision
space
size

Property
PRISM
output

Our approach
output

CSMA 1036 1282 216
Pmin=? [ !"collision_max_backoff" U "all_delivered" ] 0.875 0.875

R{"time"}min=? [ F "all_delivered" ] 66.99 66.99
Pmax=? [ F "all_delivered" ] 1.0 1.0

Coin 272 492 2128
Pmax=? [ F "finished" ] 1.0 1.0

R{"steps"}max=? [ F "finished" ] 74.99 74.99
R{"steps"}min=? [ F "finished" ] 47.99 47.99

Firewire_abst 611 718 243 ∗320
R{"time"}max=? [ F "done" ] 298.961 280.473
R{"time"}min=? [ F "done" ] 135.25 135.25
R{"rounds"}min=? [ F "done" ] 1.0 1.0

Zeroconf 670 977 2149 ∗34
Pmax=? [ F (l=4 & ip=1) ] 0.001 0.001
R{"cost"}min=?[ F l=4 ] 9.019 9.02
R{"cost"}max=?[ F l=4 ] 9.059 9.058

sets: one set to validate the correctness of the MDP transformation and make compar-

isons between the results from PRISM and our approach. The other set of experiments

is to evaluate our approach for combinations of requirements that the model checker

PRISM cannot handle.

5.4.1 The first set of experiments

To compare the PRISM verification results for the original MDP models to the results

produced by our approach, we used several MDP models whose number of states and

transitions did not exceed 5000. We chose this threshold to ensure that the size of the

decision space (i.e. the number of combinations of parameter values possible for the

pDTMC) could be handled by our approach in a reasonable time since an even larger

decision space would be computationally expensive or infeasible because of the iterative

nature of the evolutionary approach. The assessment we carried out in [139] shows

that software engineering often requires the use of probabilistic models of this size or

smaller.

We ran the experiments with a population size of 100 and an evaluation size of 100

for the genetic algorithm used by EvoChecker. Table 5.1 shows the comparison be-

tween the verification results of various properties for different MDP models. The first

row of the table indicates the model name, the number of states, the number of tran-
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sitions, the decision space size, the property and the obtained results in the last two

columns. The results show that our approach produces similar results to PRISM. Our

approach deals with the problem as a search-based problem, as it employs EvoChecker

(which uses evolutionary algorithms) to find the results. Therefore, getting identical re-

sults to PRISM is not always guaranteed. We notice that in a small decision space, such

as the CSMA model, the results are identical. That means the approach has enough

opportunity to explore the decision space. However, with a large decision space, ob-

taining identical results is not guaranteed (e.g. firewire_abst), and this is because the

approach does not have enough chance to explore the whole solution space and needs

more iterations and more time. In general, the results of our approach are close to the

results produced by PRISM.

5.4.2 The second set of experiments

The second set of experiments were conducted to produce Pareto-optimal policies for

requirement sets with two and three optimisation objectives. These experiments are

described below.

CSMA/CD MDP benchmark

Carrier Sense Multiple Access/Collision Detection (CSMA/CD) is a protocol devised

to mitigate data collisions in the traffic sent by multiple stations within a network. It

enforces a pause at each station for a period before sending the data again [140]. We

performed experiments to obtain the optimal solution for two conflicting properties that

need to be optimised. Figure 5.4 depicts the Pareto front for the optimal policies for the

CSMA/CD MDP benchmark. The following are the properties that were analysed:

1. P1 – minimise the expected time for all messages to be sent:

R{“time”}min =? [F “all_delivered”]
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2. P2 – minimisr collision until all messages are delivered:

Pmin =? [!“collision_max_backoff ” U “all_delivered”]

 

Figure 5.4: Pareto front optimal policies for CSMA/CD MDP benchmark

Compared to PRISM, our approach produces the Pareto front curve, while PRISM

cannot. The error message produced by PRISM when we attempt to obtain the multi-

objective for this benchmark’s properties is shown in Figure 5.5. PRISM uses the multi

operator to compute the multi-objective of the two properties, as shown by:

multi(R{“time”}min =? [F “all_delivered”],

Pmin =? [“collision_max_backoff ” U “all_delivered”])

Figure 5.5: Error message in PRISM when attempting to compute multi-objectives
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WLAN MDP benchmark

IEEE 802.11 Wireless LAN (WLAN) is used to link devices via high-frequency radio

waves. The WLAN MDP models the competition between two devices to send data

simultaneously over the same channel [141]. Figure 5.6 illustrates Pareto-optimal poli-

cies for three properties as optimisation objectives and two properties as constraints

related to the WLAN MDP model benchmark, which cannot be obtained by PRISM.

The evaluated properties are:

1. P1: maximise the expected number of collisions before the two stations send their

messages correctly. The minimum expected number is always equal to zero. The

property is written in the PCTL format as:

R{“collisions”}max =? [F s1 = 12 & s2 = 12]

2. P2: minimise the expected time for both stations to send their messages correctly.

R{“time”}min =? [F s1 = 12 | s2 = 12]

3. P3: minimise the expected cost for both stations to send their messages correctly.

R{“cost”}min =? [F s1 = 12 & s2 = 12]

4. P4: the maximum expected number of collisions must be less than or equal to 3.0.

The property is written in the PCTL format as:

R{“collisions”}max <= 3.0[F s1 = 12 & s2 = 12]

5. P5: with probability greater than or equal to one, the two stations send their mes-

sages correctly. The property is written in the PCTL format as:

P >= 1.0[F s1 = 12 & s2 = 12]
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Figure 5.6: Pareto front associated with the optimal policies for the WLAN MDP benchmark

Team formation protocol model

This represents a model that captures the collaboration protocol for a multi-agent system

[142]. Figure 5.7 shows the Pareto-optimal policies for three properties associated with

the team formation protocol model. These properties specify conflicting optimisation

objectives, and the aim is to achieve optimal trade-offs among them. The properties are

as follows:

1. P1: maximise the probability of completing the first task successfully.

Pmax =? [F task1_completed]

2. P2: maximise the probability of successful team size until it completes all tasks.

R{”w_1_total”}max =? [C]

3. P3: maximise the probability of completing the second task successfully.

Pmax =? [F task2_completed]
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Figure 5.7: Pareto front associated with the optimal policies for the team formation protocol

Generating a Pareto curve for this benchmark and the above properties using the

PRISM model checker is not currently possible. The error message shown in Figure 5.8

appeared when we attempted to obtain the Pareto front using the multi PRISM operator:

multi(Pmax =? [ F task1_completed ],R”w_1_total”max =? [ C ],Pmax =? [ F

task2_completed ] ).

Figure 5.8: PRISM error message

5.5 Related work

The optimisation of multi-objective problems is actively researched in multiple do-

mains, such as artificial intelligence, operation research, and formal methods, involving

the MDP. General methods are applied in stochastic systems to discover optimal so-

lutions for conflicting objectives (e.g. colony optimisation [143]; simulated annealing

[144]; tabu search [145] and evolutionary algorithms [146]).

Several techniques and approaches have been proposed to perform the verification
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for MDP properties and analyse them to obtain a set of optimal solutions [147–151].

However, these studies focused on single-objective optimisation.

Several works have been conducted to synthesise the MDP policy and make trade-

offs between the analysed properties. Work done by [152] applied payoff value methods

on discount reward objectives and reduced the problem into linear programming (LP) to

generate the Pareto-optimal policies. Similarly, Brázdil et al. [153] utilised the payoff

methods and computed the average of a long run for expected rewards and satisfaction

properties to optimise the objectives. Ogryczak et al. [154] provided an approach rely-

ing on optimising a weighted ordered, weighted average of objectives to find the optimal

policy. Following this, they reformulated this problem by utilising an approach based

on LP. Forejt et al. [26] proposed a technique that utilised value iteration to produce

Pareto-optimal policies or their approximations. Finally, the recent work in [155] in-

troduced mixed-integer linear programming to obtain the approximation of the Pareto

curve for multi-objective requirements of a pure stationary policy with bounded mem-

ory. However, this work considers only requirements that have multiple optimisation

objectives and does not support constraints. In other words, this work considered un-

constrained optimisation problems, while our work supports constrained optimisation

problems, which are important in many real-world situations.

5.6 Summary

This chapter presented a new approach for synthesising MDP policies corresponding

to software system configurations that satisfy complex combinations of nonfunctional

requirements. The requirement combinations supported by the new approach can in-

clude both constraint-type requirements and optimisation objectives. Further, many of

them cannot be handled by existing probabilistic model checkers. In particular, our new

approach to the MDP policy synthesis can generate Pareto-optimal MDP policies for

requirement combinations with more than two optimisation objectives. It can also be
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applied for requirement combinations that include constraints. Neither of these complex

combinations of requirements is supported by existing model checkers. This confirms

part 3 of our hypothesis from Section 1.2.
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Chapter 6

Component synthesis for

continuous-time stochastic systems

6.1 Introduction

In the previous chapter, we introduced an approach for the synthesis of MDP poli-

cies corresponding to system configurations that satisfy complex combinations of non-

functional requirements. This approach supports such a synthesis for systems whose

stochastic behaviour can be modelled using discrete-time Markov models extended with

nondeterminism (i.e. MDPs). However, for many systems of practical importance, time

appears explicitly in the nonfunctional requirements, and therefore, it is not possible to

use MDPs for their modelling and synthesis. For these systems, the modelling of the

timing aspects is important, and this can only be achieved using continuous-time mod-

els. In this chapter, we present a method that extends the synthesis approach from the

previous chapter to continuous-time Markov models, supporting systems whose timing

properties need to be taken into account. Note that these continuous-time models are

akin to continuous-time Markov decision processes (CTMDPs) [156, 157]. However,

existing probabilistic model checkers do not support CTMDPs. Thus, the method intro-
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duced in this chapter encodes a CTMDP as a parametric continuous-time Markov chain

(pCTMC) that can then be employed to synthesise the required CTMDP policies either

(i) manually, by using a probabilistic model checker, or (ii) in a fully automated way, by

using the EvoChecker probabilistic model synthesis tool.

Another new aspect of the method provided in this chapter is its application to the

synthesis of: (i) Pareto-optimal configurations for a queue whose requests are handled

by a server with dual operating mode, and (ii) a software controller for a realistic human-

in-the-loop self-adaptive system. The latter system comes from the autonomous driving

domain and was adopted from the existing work in the Safety of Shared Control in

Autonomous Driving (SafeSCAD) project1.

The chapter is organised as follows. Section 6.2 introduces a running example that

is used to illustrate our new synthesis method. This is followed by a formal description

of CTMDPs in Section 6.3. Section 6.4 presents the synthesis approach, and Section 6.5

describes the utilised case studies. Finally, the chapter concludes with a brief summary

in Section 6.6.

6.2 Running example

We will illustrate the new method for the synthesis of CTMDP policies using a simple

queue as a running example. As shown in Figure 6.1, this queue consists of a single

server that services incoming requests. This system has a state space q = {0,1, . . . ,N},

where q denotes the number of requests that are waiting for service or being served, and

N > 0 is the maximum number of requests that the queue can process. Each request

arrives at a µ > 0 rate. Assume the server has two states: ready (s = 0) when the server

is free and ready to process a request from the queue, or busy (s = 1) when the server

has just serviced a request and needs to perform a clean-up operation before servicing

to another request. Each request can be processed by the server with one of two service

1www.york.ac.uk/assuring-autonomy/projects/safe-scad
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q = 2
s = 1

q=N−1
s = 1

q=N−1
s = 0

q = N
s = 1

µ

µ µ µ µ
µ

µ µ µ
µ µ

µµµ

γ γ γ γ γ
λ λ λ λ

λF λF λF λF

Figure 6.1: CTMDP model of a queue of size N > 0 with request arrival rate µ , and a server
that can process each request using one of two modes of operation: a “standard” mode with
service rate λ and a “fast” mode with service rate λF > λ ; the server needs to perform a clean-
up operation (with rate γ) after each serviced request. Note how two actions (corresponding
to the blue and red state transitions) are available in each state when the queue contains q > 0
requests, and the server is ready to process a request (i.e. s = 0).

rates: λF > 0 for fast mode or λ > 0 for standard mode. When the server is busy, the

arriving requests join the queue and wait until the server becomes available. If the queue

is full, the arriving request is dropped from the queue. Finally, we assume that the cost

of serving a request using the standard and fast modes of operation is c1 > 0 and c2 > c1,

respectively.

Given this queue, we suppose that the mode of operation (i.e. standard or fast) used

by its server for each queue size q ∈ {1,2, . . . ,N} needs to be determined such that the

following two constraints and two optimisation criteria are satisfied:

1. the number of requests dropped within a time period of length T should not exceed

a given bound MaxDropped,

2. the total cost for serving requests over a time period of length T should not exceed

a given bound MaxCost,

3. the expected queue length at time T should be minimised, and

4. the total costs for serving requests over a time period of length T should be min-

imised,

where T > 0 is a predefined period of time.
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6.3 Continuous-time Markov decision processes

Similar to MDPs, each state of a CTMDP has one or several associated actions such that

the outgoing transitions and for the state and their rates depend on the action selected in

that state. We use the following formal definition adapted from [156, 157].

Definition 6.1 A CTMDP is a tuple M = (S,s0,A,R), where:

• S is a countable set of states;

• s0 ∈ S represents the initial state;

• A is a finite set of actions; and

• R : S×A×S→ R≥0 is a transition rate function such that, for any states si,s j ∈ S

and any action a ∈ A, R(si,a,s j), specifies the rate of transition from state si to

state s j when action a is selected in state si.

We have R(si,a,s j) = 0 when s j = si, and ∑s j∈S R(si,a,s j) = 0 if action a is not avail-

able in state si. Finally, for any action a ∈ A available in state si, the probability that the

CTMC transitions leaves state si within t > 0 time units is given by 1−e−t·∑sk∈S R(si,a,sk),

and the probability that this transition is to state s j is given by R(si,a,s j)/∑sk∈S R(si,a,sk).

Example 6.1 The queueing system from the running example introduced in Section 6.2

can be modelled as a CTMDP M = (S,s0,A,R) with:

• state set S = {0,1, . . . ,N}×{0,1};

• initial state s0 = (0,0);

• action set A = {standard, fast}; and
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• transition rate function

R(si,a,s j) =



µ, if (si = (q,0)∧ s j = (q+1,0)) ∨

(si = (q,1)∧ s j = (q+1,1)∧a = standard)∨

si = s j = (N,0)∨ (si = s j = (N,1)∧a = standard)

λ , if si = (q,0)∧ s j = (q−1,1)∧a = standard

λF , if si = (q,0)∧ s j = (q−1,1)∧a = fast

γ, if si = (q,1)∧ s j = (q,0)

0, otherwise

for any si,s j ∈ S and a ∈ A.

To enable the analysis of a broader range of pCTMDP properties, the states and

transitions of a CTMDP can be annotated with rewards.

Definition 6.2 A reward structure over a CTMDP with state set S is a pair of real-valued

functions rX = (r1,r2), where r1 : S→ R≥0 is a state reward function that determines

the rate r1(s) at which the reward is acquired while the Markov model remains in state

s; and r2 : S×A× S→ R≥0 is a transition reward function that describes the reward

r2(si,s j) obtained each time a transition occurs from state si to state s j following the

selection of action a ∈ A in state si.

Example 6.2 Three reward structures need to be defined over the CTMDP from Exam-

ple 6.1 in order to analyse the properties associated with the two constraints and two

optimisation criteria from Section 6.2:

1. A “dropped” requests reward structure rdropped = (rd
1 ,r

d
2) where

rd
1(s) = 0
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for all states CTMDP states s ∈ S and

rd
2(si,a,s j) =

 1, if si = s j = (N,0)∨ si = s j = (N,1)

0, otherwise

for all s j,s j ∈ S and a ∈ A;

2. A “cost” rewards structure rcost = (rc
1,r

c
2) where

rc
1(s) = 0

for all states CTMDP states s ∈ S and

rc
2(si,a,s j) =


c1, if si = (q,0)∧ s j = (q−1,1)∧a = standard

c2, if si = (q,0)∧ s j = (q−1,1)∧a = fast

0, otherwise

for all s j,s j ∈ S and a ∈ A;

3. a “queue length” rewards structure rlength = (rl
1,r

l
2) where

rl
1((q,s)) = q

for all (q,s) ∈ S and

rl
2(si,a,s j) = 0

for all s j,s j ∈ S and a ∈ A.

As for Markov decision processes, the choice of which action from A to take in ev-

ery state s ∈ S of the CTMDP is assumed to be nondeterministic, and reasoning about

the behaviour of CTMDPs involves the use of policies. A policy resolves the nonde-

terministic choices of a CTMDP by choosing the action taken in every state. CTMDP

113



policies can be finite-memory, infinite-memory and memoryless. In this chapter, we con-

sider deterministic memoryless policies, meaning policies for which the same action is

chosen each time when a CTMDP state is reached. We use the term “policy” to refer to

this class of CTMDP policies for the remainder the chapter.

Definition 6.3 A (deterministic memoryless) policy of a CTMDP is a function σ : S→A

that maps each CTMPD state s ∈ S to an action from A that is available in state s.

Note that each such policy maps the CTMDP over which it is defined to a standard

CTMC with a transition rate matrix defined by R(si,s j) = R(si,σ(si),s j) for any states

si,s j ∈ S.

Finally, we use continuous stochastic logic (CSL) augmented with rewards [14]

to express the requirements (including constraints and optimisation objectives) for the

CTMDP policies to synthesise. These requirements include bounded and unbounded

probabilistic reachability, and several types of reward properties.

The following definition is adopted from [14], as below:

Definition 6.4 The syntax of CSL state-formulae Φ and path-formulae α over an atomic

proposition set a is described as

Φ ::= true | a | ¬ Φ | Φ ∧ Φ | P ./ρ [α] | S ./ρ [Φ]

α ::= XΦ | Φ∪I Φ

The cost/reward augmented CSL state formulae are described as

R ./r [C≤T ] | R ./r [I=T ] | R ./r [FΦ] | R ./r [S]

where:

./∈ {<,≤,≥,>} : is a logical operator;

ρ : is a probability threshold or bound and ∈ [0, 1];

S: represents the CTMC’s steady-state behaviour;

I: is a time interval that belongs to non-negative reals, where I = [0,∞);
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r: a reward constraint; and

T : is a time interval that belongs to non-negative reals.

According to [14, 158], the semantics of CSL over a CTMC model C = (S,s0,R,L)

is defined as follows:

Definition 6.5 Let s ∈ S and π ∈ PathsC(s) in a CTMC model, the satisfaction relation

|= can be defined as follows:

s |= true ∀ s ∈ S

s |= a⇔ a ∈ L(s)

s |= ¬Φ⇔ s 6|= Φ

s |= Φ1∧Φ2⇔ s |= Φi such that i = 1,2

s |= P ./ρ [α]⇔ ProbC(s |= α) ./ ρ

π |= XΦ⇔ π[1] |= Φ

π |= Φ1∪I Φ2⇔∃t ∈ I.(π@t |= α ∧ (∀t ′ ∈ [0, t).π@t ′ |= Φ)).

Example 6.3 The two constraints and two optimisation criteria for the queueing system

from our running example can be defined using rewards-extended CSL as follows:

1. Rdropped
=? [C≤T ]≤MaxDropped

2. Rcost
=? [C≤T ]≤MaxCost

3. minimise Rlength
=? [I=T ]

4. minimise Rcost
=? [C≤T ]

6.4 CTMDP policy synthesis approach

Our approach for (deterministic memoryless) CTMDP policy synthesis comprises two

steps. The input for the first step is a K-action CTMDP M = (S,s0,A,R) with A =

{a0,a1, . . . ,aK−1}. Using the notation Isi = {k ∈ {0,1, . . . ,K−1} | ∑s j∈S R(si,ak,s j) 6=
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0} to denote the set of indices of the actions available in state si ∈ S, this step builds

a pCTMC M′ = (S,s0,R) with a transition rate between states si ∈ S and s j ∈ S that is

given by

R(si,s j) = ∑
k∈Isi

equal(xsi,k)R(si,ak,s j), (6.1)

where xsi ∈ Isi is a parameter, and equal(a,b) = 1 if a = b and zero otherwise. Note that

fixing the value of each parameter xsi for the pCTMC M′ reduces it to a (non-parametric)

CTMC identical to the CTMC obtained for the policy of the original CTMDP that se-

lects action axsi
for each state si ∈ S. This process of obtaining a pCTMC from the orig-

inal CTMDP is summarised by the function CTMDPTOPCTMC from Algorithm 4.

This algorithm takes as input the elements of the CTMDP, and returns an equivalent

pCTMC in line 8. This pCTMC has the same state space S and initial state s0 as the

initial CTMDP, and the elements of its transition rate matrix R are assembled, for each

pair of states si,s j ∈ S, in line 5. The sum from this line corresponds to (6.1), and makes

use of the set of actions Isi available in state si, where this action set is obtained in line3.

Algorithm 4 CTMDP to pCTMC
1: function CTMDPTOPCTMC(S,s0,A,R)
2: for si ∈ S do
3: Isi = {k ∈ {0,1, . . . ,K−1} | ∑s j∈S R(si,ak,s j) 6= 0}
4: for s j ∈ S do
5: R(si,s j) = ∑k∈Isi

equal(xsi,k)R(si,ak,s j)
6: end for
7: end for
8: return (S,s0,R)
9: end function

In the second step of our method, we search the parameter space×si∈S Isi of the

pCTMC from step 1 for combinations of parameter values {xsi}si∈S, which reduce the

pCTMC to non-parametric CTMCs that satisfy a set of CSL-encoded requirements of

interest. Two options are available for performing this search. First, the pCTMC can be

encoded in the modelling language of the probabilistic model checking PRISM [27] for
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a manual analysis of the different combinations of parameter values using this model

checker. This option is suitable when only a small number of such combinations are

possible. Alternatively, the pCTMC can be encoded in the extended PRISM modelling

language used by the probabilistic model synthesis tool EvoChecker [159], and the mul-

tiobjective genetic algorithm search engine provided by this tool can be used to perform

an automated search for parameter value combinations that satisfy the requirements.

This option can handle very large search spaces. We illustrate the use of both options in

the next section.

6.5 Case studies

To evaluate the effectiveness of the CTMDP policy synthesis approach introduced in the

previous section, we applied it for two case studies. The first case study is based on the

simple queueing system from our running example. The second case study involves the

synthesis of a controller for managing the attentiveness of drivers of vehicles with Level

3 automated driving systems. We present these case studies in the following sections.

6.5.1 CTMDP policy synthesis for the queueing system

For this case study, we considered a version of the queueing system from our running

example with the parameter values N = 6, µ = 1.6, λ = 1.8, λF = 4, γ = 20, c1 = 1 and

c2 = 5. Figure 6.2 shows the pCTMC model obtained by applying our approach from the

previous section to the CTMDP from Example 6.1. To find the Pareto-optimal policies

that satisfy the objectives and constraints mentioned in Section 6.2 and encoded in CSL

in Example 6.3, we manually ran PRISM experiments covering all possible policies for

the CTMDP, meaning all combinations of (x1,x2, . . . ,x6) ∈ {0,1}6. The size of this

search space is 26 = 64 because we have six parameters with two types of service rates

(fast or standard). The Pareto front associated with the set of Pareto-optimal policies for

117



 

ctmc 
 
const int N = 6; 
const double mu = 1.6; 
const double lambda = 1.8; 
const double lambda_fast = 4; 
const double gamma = 20; 
 
module queue 
  q : [0..N] init 0; 
 
  [request]  q<N -> mu:(q'=q+1); 
  [dropped]  q=N -> mu:(q'=q); 
  [serve]    q>0 -> 1:(q'=q-1); 
endmodule 
 
const int x1; 
const int x2; 
const int x3; 
const int x4; 
const int x5; 
const int x6; 
 
module server 
  s : [0..1] init 0; 
 
  [serve]    s=0 & q=1 & x1=0 -> lambda:(s'=1); 
  [serve]    s=0 & q=1 & x1=1 -> lambda_fast:(s'=1); 
  [serve]    s=0 & q=2 & x2=0 -> lambda:(s'=1); 
  [serve]    s=0 & q=2 & x2=1 -> lambda_fast:(s'=1); 
  [serve]    s=0 & q=3 & x3=0 -> lambda:(s'=1); 
  [serve]    s=0 & q=3 & x3=1 -> lambda_fast:(s'=1); 
  [serve]    s=0 & q=4 & x4=0 -> lambda:(s'=1); 
  [serve]    s=0 & q=4 & x4=1 -> lambda_fast:(s'=1); 
  [serve]    s=0 & q=5 & x5=0 -> lambda:(s'=1); 
  [serve]    s=0 & q=5 & x5=1 -> lambda_fast:(s'=1); 
  [serve]    s=0 & q=6 & x6=0 -> lambda:(s'=1); 
  [serve]    s=0 & q=6 & x6=1 -> lambda_fast:(s'=1); 
  [prepare]  s=1 -> gamma:(s'=0); 
endmodule 
 
rewards "dropped" 
  [dropped] true : 1; 
endrewards 
 
rewards "length" 
  true : q; 
endrewards 
 
rewards "cost" 
  [serve] q=1 : (x1=0)?1:5; 
  [serve] q=2 : (x2=0)?1:5; 
  [serve] q=3 : (x3=0)?1:5; 
  [serve] q=4 : (x4=0)?1:5; 
  [serve] q=5 : (x5=0)?1:5; 
  [serve] q=6 : (x6=0)?1:5; 
endrewards 

N: queue size 
mu: request arrival rate 
lambda: standard mode service rate 
lambda_fast: fast mode service rate 
gamma: the clean-up operation rate 

This module models the queue, which is 
full when q=N. 

pCTMC parameters. Each parameter xi 

could have one of two values: 0 or 1. 
 

This module models the server. 
It has two rates of transition 
from s=0 to s=1:  
       – fast (when xi=1)  
       – standard (when xi=0).  

The "dropped" reward assigns a reward of 1 to transitions 
that model a request begin dropped (i.e. when q=N). 

"cost" reward assigning a reward of 1 for requests 
served in standard mode and a reward of 5 for 
requests served in  fast mode 

"length" reward measuring the queue size. 
 

Figure 6.2: The PRISM-encoded pCTMC model for the queuing system

the queuing system is shown in Figure 6.3. Obtaining this Pareto front through using

PRISM to analyse all 64 possible combinations of parameter values took 9.53 seconds

on a MacBook Pro computer with a 2.5 GHz Dual-Core Intel Core i5 processor and 8

GB of memory.
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Figure 6.3: Pareto front associated with the set of Pareto-optimal policies for the queuing system

6.5.2 CTMDP policy synthesis for the driver attentiveness manage-

ment controller

6.5.2.1 Background

Based on the J3016 standard [160], the automated driving system (ADS) is categorised

into six levels, ranging from level 0 (no automation) to level 5 (complete automation).

Vehicles equipped with ADS that provide partial automation (i.e. level 2) are currently

available from manufacturers. At the same time, regulators worldwide are considering

permissions for vehicles that offer levels 3 and 4. ADS requires that the driver fasten

the seat belt and be attentive enough to respond to commands and share control of the

vehicle running at autonomy levels 2 and 3. In addition, at level 4, the driver must inter-

vene in critical situations. The driver must be alert enough to moderate and control the

vehicle on time to avoid accidents at all levels. However, it is challenging to keep people

mindful when they supervise the operation of automated and autonomous systems.
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To improve drivers’ attentiveness levels while operating vehicles equipped with

ADS, [161] proposed an approach that utilises four phases, monitor–analysis–plan–execute

(MAPE), in a control loop. Our case study focuses on the planning phase, where we

utilised probabilistic model checking to synthesise the controller of this phase.

The ADS considered in this problem is subject to the automated lane-keeping system

(ALKS) regulations imposed by the United Nations. Drivers who fasten their seat belts

can activate the ALKS, which once activated can control the car’s speed, keep the vehi-

cle in its lane, detect the risk of collision and make an emergency manoeuvre to avoid

a collision. In addition, the ALKS regularly issues a transition demand that requires

the driver to take control of the vehicle. If there is no response, the system extends

the response time and reduces the vehicle speed. If the driver still does not respond,

they are deemed inattentive, and the ALKS will stop the vehicle safely. To this end, the

ALKS evaluates the driver’s attentiveness and availability continually. When the driver

is distracted or unavailable, the ADS can use haptic, optical and acoustic means to warn

the driver of the transition demand and enhance attentiveness.

6.5.2.2 Problem definition

The ADS from our case study considers n ≥ 2 levels of driver attentiveness, and can

employ two techniques when the driver is insufficiently attentive. The first technique

activates one or multiple alerts (out of m≥ 1 alerts), and the second reduces the vehicle

speed to one of q ≥ 1 available speed levels. As a result, the ALKS state at any given

time is defined by the following components:

1. The level of driver attentiveness l ∈ {0,1,2, . . . ,n−1}, where the driver is atten-

tive when l = 0 and inattentive when l = n−1.

2. The active alerts a=(a1,a2, . . . ,am)∈{0,1}m, where, for all i= 1,2, . . . ,m, ai = 1

if the i-th alert is active and ai = 0 if the i-th alert is inactive.
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3. The vehicle speed v ∈ {0,1, . . . ,q− 1}, where v = 0 corresponds to the vehicle

travelling at nominal speed, and v > 0 to lower vehicle speeds such that v = q−1

is the slowest speed for the car.

Using the notation L = {0,1, . . . ,n− 1}, Al = {0,1}m and V = {0,1, . . . ,q− 1}, the

ALKS state space is given by L×Al×V . Furthermore, consider the following measures

described over the ALKS state space:

1. nuisance ∈ R≥0: defines the nuisance undergone by the driver due to the active

alerts.

2. progress ∈ R≥0: represents the trip’s progress, which depends on the vehicle’s

speed.

3. risk ∈ R≥0: measures the risk incurred during the trip, which depends on the

driver’s attentiveness level and the vehicle’s speed.

Given this formalisation, the purpose of solving the driver attentiveness management

problem is obtaining the set of alerts to use in each ALKS state such that a Pareto-

optimal trade-off is achieved between minimising nuisance, maximising progress, and

minimising risk over a T -hour journey, where T > 0 is a parameter of the problem. A

controller that enforces these alerts dependent on the current ALKS state can then be

implemented.

6.5.2.3 CTMDP for the driver attentiveness management problem

We formalised the driver attentiveness management problem as a CTMDP policy syn-

thesis problem over the continuous-time MDP M = (S,s0,A,R) defined by:

• state set S = L×Al×V ×C, where C = {0,1} is a state component that indicates

when it is the controller’s turn to select a new combination of alerts to be activated

and the new speed to be used (when this component has a value of 1);
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• initial state s0 = (l0,a0,v0,c0) = (0,(0,0, . . . ,0),0,0), i.e. the driver is initially

attentive (l0 = 0), no alert is switched on initially (a0 = (0,0, . . . ,0)), the car starts

at nominal speed (v0 = 0), and the controller is not active (c0 = 0);

• action set A=Al×V , so that the selection of an action (a,v) will take the CTMDP

from its current state to the state in which the alerts specified by a are activated

and the speed v is adopted by the car; and

• transition rate function such that, for any CTMDP states si = (li,ai,vi,ci),s j =

(l j,a j,v j,c j) ∈ S and any action (a,v) ∈ Al×V , we have

R(si,(a,v),s j) =


rlil jai, if ci = 0∧ l j 6= li∧a j = ai∧ v j = vi∧ c j = 1

rc, if ci = 1∧ l j = li∧ (a j,v j) = (a,v)∧ c j = 0

0, otherwise

where rlil jai > 0 represents the rate at which the driver attentiveness level changes

from li to l j 6= li when the active alerts are ai, and rc > 0 is the (fast) rate at which

the controller switches on a new combination of alerts a and/or decides a new

speed v for the car.

We note that the rates rlil jai > 0 must be estimated by, for example, using data sources

such as:

1) the numerous available studies and surveys of driver attentiveness (e.g. [162–165]);

2) additional data from controlled experiments with drivers of ALKS vehicles; and

3) driver data collected during the actual driving of ALKS vehicles, such as by us-

ing a black-box solution similar to that already employed by many insurers of new

drivers [166, 167], either across a fleet of vehicles or for a specific driver.

Using the last data source enables both (i) the definition of personalised controller design

spaces for each driver and (ii) the continual updating of these design spaces to support
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the runtime synthesis of new SafeSCAD controllers when the transition rates for a driver

change significantly [168].

The three measures that appear in the problem definition from the previous section

(i.e. nuisance, progress and risk) are then defined as reward structures over this CTMDP:

1. A “nuisance” reward structure rnuisance =(rn
1,r

n
2), where rn

1((l,a,v,c))= nuisance(a)>

0, and rn
2(s1,s2) = 0 for all s1,s2 ∈ S.

2. A “progress” reward structure rprogress =(rp
1 ,r

p
2 ), where rp

1 ((l,a,v,c))= progress(v),

and rp
2 (s1,s2) = 0 for all s1,s2 ∈ S.

3. A “risk” reward structure rrisk = (rr
1,r

r
2), where rr

1((l,a,v,c)) = risk(l,v), and

rr
2(s1,s2) = 0 for all s1,s2 ∈ S.

Finally, the controllers that we want to obtain correspond to the CTMDP policies

that achieve Pareto-optimal trade-offs between the optimisation objectives defined by

the following CSL reward formulae:

1. minimise Rnuisance
=? [C≤T ]

2. maximise Rprogress
=? [C≤T ]

3. minimise Rrisk
=? [C

≤T ]

where T is the duration of the car journey (in hours).

6.5.2.4 Synthesis of Pareto-optimal controllers

To synthesise Pareto-optimal policies for the CTMDP and optimisation objectives from

the previous section, we first built an equivalent pCTMC as described in Section 6.4,

and then used the search-based software engineering tool EvoChecker [29, 159], which:

1. obtains the precise values of the three reward properties for any given CTMC

from the controller design space using a probabilistic model checker (the tool can

be configured to use PRISM [27] or Storm [28]); and

123



// Controller options specifying the next a v ∈ {000(2), 001(2), . . . , 111(2)} value
evolve int optionS,0 [0..7]; // when driver is semi-attentive and a v = 000(2)
. . .
evolve int optionS,7 [0..7]; // when driver is semi-attentive and a v = 111(2)
evolve int option I,0 [0..7]; // when driver is inattentive and a v = 000(2)
. . .
evolve int option I,7 [0..7]; // when driver is inattentive and a v = 111(2)

module Controller
c : [0..1] init 0; // 0 = controller inactive, 1 = controller active
a v : [0..7] init 0; // current alerts a and speed level v

// activate controller
[driver change] c=0 → (c′ = 1); // when driver state changes
[ ] c = 0 ∧ l 6= 0 → timerRate : (c′ = 1); // periodically if driver not attentive

// switch off alerts and use nominal speed if the driver is attentive (l = 0)
[ ] c = 1 ∧ l = 0 → controllerRate : (a v′ = 0)&(c′ = 0);

// controller actions for driver attentiveness level l = 1 (semi-attentive)
[ ] c = 1 ∧ l = 1 ∧ a v = 0 → controllerRate : (a v′ = optionS,0)&(c′ = 0);
. . .
[ ] c = 1 ∧ l = 1 ∧ a v = 7 → controllerRate : (a v′ = optionS,7)&(c′ = 0);

// controller actions for driver attentiveness level l = 2 (inattentive)
[ ] c = 1 ∧ l = 2 ∧ a v = 0 → controllerRate : (a v′ = option I,0)&(c′ = 0);
. . .
[ ] c = 1 ∧ l = 2 ∧ a v = 7 → controllerRate : (a v′ = option I,7)&(c′ = 0);

endmodule

Figure 6.4: Fragment of EvoChecker-encoded controller design space for m = 2 independent
alerts and q = 2 speed levels

2. synthesises a close approximation of the Pareto-optimal set of alert-speed combi-

nations by using a multi-objective genetic algorithm (MOGA) optimisation (the

tool can be configured to work with any of the NGSA-II [77], SPEA2 [169] or

MOCell [170] MOGAs).

To this end, we supplied EvoChecker with: (i) the pCTMC obtained from the CT-

MDP defined in the previous section and encoded in the high-level PRISM modelling

language [27] extended with EvoChecker constructs (these constructs are used to spec-

ify the possible values for the CTMC parameters), and (ii) the three CSL reward prop-
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Figure 6.5: Pareto front associated with the set of Pareto-optimal SafeSCAD controllers for
the controller design space instance, as synthesised in 98.58 s by EvoChecker configured to use
PRISM [27] and NSGA-II [77] (population size 7000 × 1000 iterations) and running on a 3.6
GHz Intel Core i3 Mac OSX 10.14.6 Mac mini computer with 16 GB of memory

erties specifying the optimisation objectives from our problem.

Figure 6.4 shows how the controller design space is expressed in this encoding.

Only a fragment of the encoding is shown, but we have made the entire encoding (and

all artifacts from this section) available for inspection at https://www.cs.york.ac.

uk/tasp/SafeSCAD/SEAMS21. Given the controller design space and the optimisation

objectives, EvoChecker synthesises a close approximation of the Pareto-optimal set of

SafeSCAD controllers, as well as the Pareto front associated with this set. Figure 6.5

shows the Pareto front obtained for the instance of the driver attentiveness management

problem with n = 3 levels of driver attentiveness, m = 2 alerts and q = 2 speed levels,

along with a driving time of T = 4 hours. Each element of this Pareto front corresponds

to a controller variant whose nuisance, risk and progress values from Figure 6.5 were

obtained by EvoChecker through formal verification using the Storm model checker.
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6.6 Summary

This chapter presented a synthesis approach for systems in which timing aspects need

to be considered, as time occurs explicitly in their nonfunctional requirements. These

systems can be modelled using CTMDPs. However, the current model checkers do not

support this type of Markov model. Thus, our method employs paramteric CTMCs to

encode CTMDPs, and then synthesises the Pareto policies either manually using PRISM

or in a fully automated manner using Evochecker. We used two case studies to produce

the Pareto-optimal associated with them, confirming part 4 of our hypothesis from Sec-

tion 1.2. The first is a simple queueing system with two rates, while the second is a

software controller from the self-adaptive area.
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Part IV

Conclusion and Future Research

Directions
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Chapter 7

Conclusion

Probabilistic and parametric model checking are widely adopted to verify software sys-

tems in various domains. However, current techniques have several limitations, includ-

ing those mentioned in Section 1.2. This chapter provides a brief summary and discus-

sion of the four contributions laid out in this thesis that were developed to alleviate these

limitations.

7.1 The VERACITY verification approach

The VERACITY verification introduced in Chapter 3 enables the efficient and accu-

rate verification of nonfunctional requirements under epistemic parameter uncertainty.

VERACITY integrates confidence interval quantitative verification with a new adaptive

uncertainty reduction heuristic that collects additional data about the parameters of the

verified model by unit-testing specific system components over a series of verification

iterations. VERACITY supports the quantitative verification of Markov chains, decid-

ing the components tested in each iteration based on factors that include the sensitivity

of the model to variations in the parameters of different components, and the overheads

(e.g. time or cost) of unit-testing each of these components.
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To evaluate the VERACITY method, we carried out an extensive set of experiments

with different scenarios (cf. Section 3.5.2) to assess its effectiveness and usefulness,

and we applied this method to two case studies from different fields to confirm its gen-

erality. In most experimental cases, VERACITY was successful at effectively reducing

the overall total testing cost compared to the baseline method. Furthermore, the ex-

perimental results showed that VERACITY is particularly effective at completing the

verification results with lower testing costs when confidence levels are high (e.g. 0.95

or 0.99). This is particularly useful because in the real world engineers strive to verify a

system’s nonfunctional requirements with a high degree of confidence before deploying

it, as deploying such a system with a low level of confidence in its compliance with

requirements constitutes a possible risk. Furthermore, verifying the nonfunctional re-

quirements of a system under certainty at a high confidence level requires a high testing

cost, and reducing this cost is beneficial.

7.2 Efficient formal verification with confidence inter-

vals

In Chapter 4, we introduced efficient formal verification with confidence intervals (eFACT).

eFACT increases the applicability of probabilistic model checking under parametric un-

certainty to larger models than currently handled by FACT. Moreover, eFACT allows

engineers to analyse the nonfunctional requirement to specify the highest confidence

level αMAX at which the requirement can be verified as satisfied or violated. This fea-

ture means that engineers can measure the confidence of their software system over the

analysed requirement and, based on that, decide whether to deploy the system. For in-

stance, the system can be deployed with confidence if the nonfunctional requirement

analysis has a high level of αMAX .

To evaluate eFACT, we used multiple pDTMC models. The experiments showed that
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eFACT can handle larger models than FACT, which is useful in two situations: when the

PRISM model checker cannot provide an algebraic expression for the evaluated property

(because FACT uses PRISM as a back-end to obtain the expression and accomplish the

verification), or when there is a time limit imposed for the verification and FACT cannot

complete the verification in a timely manner. Thus, the ability of FACT integrated with

ePMC to analyse larger models helps broaden the domain of applicability of quantitative

verification to include fields where the use of an estimation error is unacceptable for

non-trivial models.

7.3 MDP policy synthesis approach

The MDP policy synthesis approach developed in Chapter 5 addresses an important lim-

itation of current MDP synthesis techniques, namely their inability to synthesise Pareto-

optimal policies for certain combinations of three or more nonfunctional requirements.

The set of requirements can include multiple optimisation objectives, and it could have

one or more constraints. We proposed a new approach to synthesise MDP policies cor-

responding to software system configurations that meet complex combinations of non-

functional requirements. In particular, our new approach to MDP policy synthesis can

generate Pareto-optimal MDP policies for requirement combinations with more than

two optimisation objectives, and for requirements combinations that include constraints

such as the expected rewards to be encoded using the “eventually” operator PCTL prop-

erties, neither of which are supported by existing model checkers.

We first applied our approach to a range of MDP models and requirements that

PRISM can handle, in order to compare the results of our approach to the PRISM results,

and found them to be similar. We then successfully obtained the Pareto-optimal policies

for multiple MDP models and complex combinations of requirements. The policies

for these complex requirements cannot be produced by the current leading probabilistic

model checker, PRISM.
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7.4 Component synthesis for continuous-time stochastic

systems

In Chapter 6, we presented a CTMDP policy synthesis approach that addresses an im-

portant limitation of current probabilistic model checkers, i.e. their inability to handle

the problem of synthesing CTMDP policies. The proposed approach obtains Pareto-

optimal policies for complex nonfunctional requirements that correspond to configura-

tions of software systems or software controllers of cyber-physical systems.

We evaluated our approach using two case studies from different application do-

mains. The first case study was based on a simple queueing system with two service

rates to synthesise the complex requirements associated with Pareto-optimal policies.

The second case study came from a cyber-physical systems aiming to synthesise the

system controller that manages driver attentiveness. Our evaluation of both case studies

demonstrated that the approach can successfully obtain the Pareto front associated with

the optimal policies of those case studies. The results also showed that our approach

can handle synthesis problems from different application domains.
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Chapter 8

Future research directions

Multiple extensions can be explored and developed to further strengthen the probabilis-

tic model checking verification and synthesis techniques presented in the thesis.

8.1 Verification techniques

Multiple extensions of the VERACITY approach for the verification of nonfunctional

requirements under uncertainty are possible, including those summarised below.

A research direction worth exploring is to expand the set of factors underpinning our

VERACITY test-budget partitioning heuristic, in order to further improve its efficiency.

One such additional factor that may be particularly beneficial is the level of epistemic

uncertainty associated with each component: in each round, a larger fraction of the

testing budget should be allocated to components with higher levels of epistemic uncer-

tainty, i.e. to those for which fewer observations are already available. We envisage that

augmenting our heuristic with this factor will extend the applicability of VERACITY to

verification scenarios in which observations about a subset of the system components

are already available at the beginning of the verification process (e.g. from previous test-

ing of those components), but additional case studies need to be carried out to validate

132



this hypothesis.

Another important direction of future research for improving the applicability of

VERACITY is to consider the scenario in which some of the parameters that the veri-

fied requirements depend on are associated with the operational profile of the system,

i.e. with parameters whose epistemic uncertainty cannot be lowered by testing the com-

ponents of the system “at will”. Examples of such parameters include the number of

requests received by a web server in one hour, and the probabilities of these requests

being of different types. To some extent, VERACITY could handle this scenario by

associating such parameters with an “operational profile component” that is assigned

an infinite testing cost. Because this “component” will never be tested, the verifica-

tion problem may be undecidable, in which case VERACITY will (correctly) terminate

with a ‘budget exhausted’ outcome. However, this outcome will only be produced after

significant testing effort, some of which could be avoidable by noticing—before using

all the testing budget—that the operational profile uncertainty renders the verification

problem undecidable. It is therefore worthwhile extending VERACITY with the abil-

ity to report an ‘undecidable’ outcome (without exhausting the testing budget) in this

important verification scenario.

The efficient formal verification with confidence intervals model checking approach

described in Chapter 4 can handle larger parametric DTMCs than was previously pos-

sible, but requires the use of repositories of domain-specific modelling patterns. Cur-

rently, such models are only available for service-based systems and multi-tier software

architectures [114]. To extend the applicability of our approach, it can be integrated

with the recently introduced generic method for parametric model checking [76].

8.2 Synthesis techniques

The MDP and CTMDP policy synthesis approaches introduced in the thesis allow the

generation of deterministic policies for complex nonfunctional requirement combina-
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tions. However, the use of randomised policies (where the action selected in each MDP

or CTMDP state is chosen according to a discrete probability distribution over the avail-

able actions) can yield better system configurations and software controllers in many

scenarios. Further research is required to extend our policy synthesis approaches to

support the generation of randomised policies for both types of Markov decision pro-

cesses.

For the approach for synthesising Pareto-optimal CTMDP corresponding to soft-

ware system or discrete-event software controllers described in Chapter 6, it is impor-

tant to fully automate the application of the new method, and to evaluate it in a broader

range of case studies and scenarios.

Another research direction worth exploring is the integration of our MDP policy syn-

thesis approach with the safe reinforcement learning method proposed in [171]. Given

a very large MDP corresponding to a safety-critical planning or navigation problem, the

first step of this method requires the synthesis of safe abstract policies, i.e., policies that

satisfy a set of strict constraints for a much smaller, abstract MPD obtained by eliminat-

ing the safety-irrelevant parts of the original MDP. Using our policy synthesis approach

for this abstract MDP would result in a safe reinforcement learning solution that can

handle combinations of requirements of greater complexity than those supported by the

method from [171].

Finally, additional research is required to assess whether the good EvoChecker scal-

ability reported in [159] extends to our MDP and CTMDP policy synthesis approaches.

If necessary, one way to improve this scalability is to parallelise the execution of the

multi-objective genetic algorithms used by EvoChecker, so that the analyses of differ-

ent policies is carried out concurrently in every iteration of these algorithms, and the

Pareto fronts for each iteration are assembled through combining the results of these

separate analyses.
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