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‘Todder, you can trust math.’
Freer said ‘You heard it here first.’
Pemulis compulsively zipped and unzipped one of the covers. ‘Take a
breather, Keith. Todd, trust math. As in Matics, Math E. First-order
predicate logic. Never fail you. Quantities and their relation. Rates
of change. The vital statistics of God or equivalent. When all else
fails. When the boulder’s slid all the way back to the bottom. When
the headless are blaming. When you do not know your way about.
You can fall back and regroup around math. Whose truth is deductive
truth. Independent of sense or emotionality. The syllogism. The
identity. Modus Tollens. Transitivity. Heaven’s theme song. The
nightlight on life’s dark wall, late at night. Heaven’s recipe book.
The hydrogen spiral. The methane, ammonia, H2O. Nucleic acids. A
and G, T and C. The creeping inevibatility. Caius is mortal. Math
is not mortal. What it is is: listen: it’s true.’
‘This from a man on academic probation for who knows the length.’

David Foster Wallace, Infinite Jest
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Abstract

We present some results related to Zilber’s Exponential-Algebraic Closedness
Conjecture, showing that various systems of equations involving algebraic
operations and certain analytic functions admit solutions in the complex
numbers. These results are inspired by Zilber’s theorems on Raising to Powers.

We show that algebraic varieties which split as a product of a linear subspace
of an additive group and an algebraic subvariety of a multiplicative group
intersect the graph of the exponential function, provided that they satisfy
Zilber’s freeness and rotundity conditions, using techniques from tropical
geometry.

We then move on to prove a similar theorem, establishing that varieties which
split as a product of a linear subspace and a subvariety of an abelian variety A
intersect the graph of the exponential map of A (again under the analogues
of the freeness and rotundity conditions). The proof uses homology and
cohomology of manifolds.

Finally, we show that the graph of the modular j-function intersects varieties
which satisfy freeness and broadness and split as a product of a Möbius
subvariety of a power of the upper-half plane and a complex algebraic variety,
using Ratner’s orbit closure theorem to study the images under j of Möbius
varieties.

Keywords: abelian varieties, algebraic groups, Exponential-Algebraic Closed-
ness, exponential function, modular j-function, quasiminimality.

Mathematics Subject Classification: Primary: 03C65. Secondary: 11F03,
11L99, 14K12.
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R≥0 The non-negative real numbers.
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ginary part).
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znwn.
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and its Cartesian powers j : Hn → Cn.

expA The exponential map of the abelian variety A.
Γf The graph of the function f .
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z1, . . . , zn of a K-vector space.

V ∨ When V is a K-vector space, its dual (linear functions
from V to K).
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τC The complexification aff(τ)⊗ C of aff(τ).

Trop(W ) The tropicalization of the algebraic variety W ⊆ (C×)n

YΣ The toric variety associated to the polyhedral complex Σ.
Σ1 ∩st Σ2 The stable intersection of the polyhedral complexes Σ1 and

Σ2.
TxM The tangent space at the point x of the manifold M .
LA The Lie algebra (tangent space at identity) of the abelian

variety A.
dimS Dimension of the set S, usually in the sense of complex
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AW The amoeba of the algebraic variety W ⊆ (C×)n.
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Chapter 1

Introduction

1.1 Hand-Waving Introduction

A general theme in model theory, ever since its early development, has been
that the “best” structures in an axiomatizable class are the existentially closed
structures: those in which we can solve any equation that is solvable in some
extension.

So, for example, the rational numbers Q are a great example of linear order,
because however we take x < y we can find elements that are smaller than x,
larger than y, or that sit in between x and y: we say that (Q, <) is a dense linear
order without endpoints, and we know that it has excellent model-theoretic
properties.

However, if we add the field operations + and · to the language, then Q stops
being a nice structure: suddenly, it lacks elements such as the square root
of 2 which “should” be there, in the sense that we can find extensions of the
rational field which contain them. Of course, we can solve this problem by
moving to the real algebraic numbers, or to the reals: these are real closed
fields, they contain solutions to all polynomial equations of odd degree and to
all polynomial equations of even degree which can have one. Again, we have
an object with good model-theoretic properties.

If, on the other hand, we consider the rationals as a pure field, without the
ordering, there is no longer any reason why x2 + 1 = 0 should have no solution,
and therefore we should add elements to the field to solve all polynomial

1



2 Introduction

equations; on top of the real algebraic numbers, we need to add one element
(the square root of −1) and then close under the field operations to end up
with a field in which all non-constant polynomials are solvable, an algebraically
closed field. If we add the square root of −1 to the reals, we obtain the familiar
complex numbers.

As a consequence of the existential closedness property, the structures (Q, <),
(R,+, ·, <) and (C,+, ·) turn out to have well-behaved definable sets: if we can
define a set in one of these structures, in the relative language, then it is not
going to be a complicated set. For example, any subset of the reals that is
definable in the ordered field language is a finite union of points and intervals:
we will not be able to define the rationals, or a Cantor set, or even the integers.

In a sense, these examples say that these three very familiar mathematical
structures (Q,R, and C) are “the best” among some given classes (linear
orders, ordered fields, and fields respectively). In general, analysing classes of
structures it often happens that the best structures are also the more natural
ones: why should there be an ordered field with better properties than the real
numbers?

This poses a bit of a chicken-and-egg dilemma: are the natural structures
better for some intrinsic reason, or do they seem natural to us because the
human-driven evolution of mathematics has been built around them? It is true
that the real numbers are the best ordered field, but this is at least partly due
to the fact that the notion of ordered field has been built around them, and
perhaps there is a universe in which nobody cares about ordered fields and
there is some mathematical object unknown to us of the utmost importance.
This seems like a very interesting topic for a PhD thesis in the philosophy of
maths. This thesis is not that thesis, and we leave it to the reader to decide
whether this is a good or a bad thing.

Whatever the case may be, the fundamental question of this thesis can be
summarized as asking whether something similar can be said about the complex
exponential function. An exponential field is a field endowed with a group
homomorphism from its additive group to its multiplicative group. There
is an exponential field which is the “best” exponential field, in the sense
that its definable sets are well-behaved. Is that (isomorphic to) the field of
complex numbers, equipped with the usual exponential map? To answer this
question, we need to understand where the complex numbers sit with respect
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to existential closedness: can we find complex solutions to all the equations in
polynomials and exponentials which should have a solution?

This thesis aims to make a contribution towards the solution of this problem:
we find solutions to some systems of equations, and we do it because we want
to make sure that some functions are good in the sense that they do not
define bad sets. The way in which we do it is geometric: many people learn
in high school that solving a 2-by-2 system of linear equations is the same
thing as intersecting two lines in the plane, and what we do in this thesis is
solving systems of complex analytic equations by intersecting complex analytic
varieties.

1.2 Slightly Less Hand-Waving Introduction

This thesis is concerned with Zilber’s Exponential-Algebraic Closedness Con-
jecture and with some related problems.

The Exponential-Algebraic Closedness Conjecture predicts sharp sufficient
conditions for some systems of equations in polynomials and exponentials to be
solvable in the complex numbers. While the problem is essentially a problem
in complex geometry (we look for solutions to the equations by intersecting
complex analytic sets) its motivation is model theoretic: a theorem of Bays and
Kirby, building on work of Zilber, says that if the conjecture holds then the
complex exponential field Cexp is quasiminimal, meaning that all the subsets of
C which can be defined using polynomials and exponentials are either countable
or cocountable. Quasiminimality of Cexp would be a major result in the model
theory of analytic functions, with ties to the (now disproved) Trichotomy
Conjecture, hence the interest of model theorists in this question.

As the work on the complex exponential function progressed, several people
noticed the similarity of exp with other complex analytic functions, most
notably the exponential maps of semiabelian varieties and the modular j-
invariant. There are model-theoretically interesting questions that can be
asked about these functions too, and conjectures have been posed asking about
the solution of systems of equations which combine polynomials and these
analytic functions. Some of these systems will also be treated.

Let us remark that the original form of the conjecture, sometimes referred to
as Strong Exponential Algebraic-Closedness, is concerned with the existence of
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solutions that are “sufficiently generic”. Another feature of the theorem of Bays
and Kirby is that genericity properties are not required for quasiminimality of
Cexp. As a result, we will not worry about genericity of solutions, but focus
just on their existence.

1.3 Statements of the Main Results

The main results of this thesis are Theorems 3.7.8, 4.4.1 and 5.5.7. They all
have the same form: they say that the graph of a certain geometric function
f intersects an algebraic variety of the form L × W , where L is a subset
of the domain of f with some geometric property related to f , W is an
algebraic subvariety of the codomain of f , and the product L ×W satisfies
some conditions.

These results were inspired by a result of Zilber, from [Zil02] and [Zil15], that
Theorem 3.7.8 is an improvement of. We give the statement of the theorems,
without defining the terminology, and provide a brief indication of their proofs.

Theorem (Theorem 3.7.8). Let L×W be a free rotund subvariety of Cn×(C×)n

such that L ≤ Cn is a linear subspace and W ⊆ (C×)n is an algebraic variety.
Then L×W ∩ Γexp 6= ∅.

The proof of this theorem uses tropical geometry and the theory of amoebas,
distinguishing between the case in which L is defined over the reals and the
case in which it is not. We will see that if L is defined over the reals then it is
sufficient to find an intersection between L×W and the blurring of the graph
Γexp by the unit circle, in the sense of [Kir19b], and it will provide a sufficiently
good approximation; while if L is not defined over the reals then we need to
consider the behaviour of W near 0 and∞ to find sufficiently nice approximate
solutions. This theorem is a major improvement on Zilber’s [Zil02, Theorem 5]
and [Zil15, Theorem 7.2], which had much stronger assumptions on the linear
subspace L.

It should be noted, moreover, that Zilber’s work on this kind of statement was
motivated by model-theoretic considerations other than quasiminimality of
Cexp, and that this result has some model-theoretic consequences of its own.
Further discussion of this can be found in Sections 2.4 and 3.8.

Theorem (Theorem 4.4.1). Let A be an abelian variety of dimension g, expA :
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Cg → A its exponential map, L ≤ Cg a linear subspace and W ⊆ A an algebraic
variety such that the variety L×W is free and rotund.

Then L×W ∩ ΓexpA 6= ∅.

The proof of this theorem uses some facts from the homology of compact
manifolds, and intersection homology in particular: closed subgroups and
algebraic subvarieties of the abelian variety A can both be seen as homological
cycles, and we will see that under the assumptions in the statement of the
theorem the intersection between the closure of expA(L) and W “generically”
provides good approximations. Using o-minimality, we are able to show that
these approximations actually exist everywhere, and not just generically. This
theorem implies a older results of Ax, [Ax72b, Theorem 1 and Corollary]: in
work that predates Exponential-Algebraic Closedness, he proved Theorem 4.4.1
in the cases in which dimL = 1 or A is simple.

Theorem (Theorem 5.5.7). Let L×W be a free broad subvariety of Hn × Cn

with L a Möbius subvariety of Hn and W an algebraic variety in Cn.

Then L×W ∩ Γj 6= ∅.

The last main theorem concerns the modular j-function, and its proof uses
ergodic theory, and Ratner’s theorem in particular, to show that if L is a
free Möbius subvariety of Hn then j(L) is dense in Cn; with some complex
analysis we then conclude that L ×W intersects the graph of j. After this
theorem appeared in the preprint [Gal21], a more general result in the context
of Shimura varieties appeared in [EZ21].

1.4 Structure of the Thesis

We conclude this introduction with an overview of the topics of each chapter.

The first part of Chapter 2 introduces the problem of Exponential-Algebraic
Closedness from the model-theoretic point of view: we briefly discuss Zilber’s
Trichotomy Conjecture and the way in which its refutation led to the study of
the model theory of the exponential function; we describe, albeit informally,
both the axiomatization of Zilber’s exponential field B and of the first-order
theory of K-powered fields for some field K ⊆ C. In the final section of the
chapter we state various results that will be applied later on in the thesis: the
Ax-Schanuel Theorem, the Open Mapping Theorem and the Proper Mapping
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Theorem.

Chapter 3 contains the proof of the first main theorem, Theorem 3.7.8. We
introduce amoebas and tropical geometry and use them to prove the theorem;
we also discuss the model-theoretic consequences of this result.

Chapter 4 deals with the second main theorem, Theorem 4.4.1. We introduce
complex abelian varieties more or less from scratch, discuss their homology
and cohomology, introduce the Abelian Exponential-Algebraic Closedness
Conjecture and use everything to give a proof of the main theorem: we first
deal with the easier case in which expA(L) is dense in A, and then tackle the
more general question. We again discuss the model-theoretic consequences and
describe a future line of work.

Chapter 5 is about the modular j-function: again, we gather all the basic
facts concerning this function before moving on to discuss its similarities and
differences with exp, state the j-algebraic closedness conjecture and prove the
special case Theorem 5.5.7, the third main theorem of the thesis. In the last
section of the chapter we also sketch the proof of a partial result for the first
derivative of j.

Finally, Chapter 6 presents some ideas on how this work should progress, from
both the model-theoretic and the complex-geometric point of view.

The chapters of the thesis are quite independent of one another, with a few
exceptions here and there.

Subsection 2.3.4 and Section 2.5 are probably the only parts of Chapter 2 that
contain material which is needed to understand the results and proofs of the
latter chapters, while the rest of the chapter provides motivation and context.
It may be skipped by the reader who is already familiar with the problem, or
who for some other reason is very enthusiastic about finding complex solutions
to systems of equations involving analytic functions and does not need any
further context.

Some of the proofs in Section 4.3, which deal with abelian varieties, are similar
to their counterparts for the multiplicative group in Section 3.2, and therefore
it might be helpful to read Section 3.2 first; similarly, Sections 2.4, 3.8 and
4.5 are rather sequential and it would be confusing to mix them up; it should
however be pointed out that Chapters 3 and 4 make perfect sense even without
Sections 3.8 and 4.5.
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The goal of Section 5.3 is to explain why it makes sense to treat the j-function
and exp along similar model-theoretic lines, and therefore it would probably
feel a bit strange to read it without being familiar with the model theory of
exp.

Chapter 6 is about future work and therefore we recommend not reading it
before having had at least a look at the past and present work in the first five
chapters.



8 Introduction



Chapter 2

Background

2.1 Introduction

The main aim of this chapter is to introduce the topic of the thesis, the
Exponential-Algebraic Closedness Conjecture. In particular, in this chapter we
care about the model-theoretic motivation for the problem: while most of the
rest of the thesis will involve very little model theory, it is important to keep
in mind that the question is originally about definability and classification.

Therefore, the first two sections of this chapter will follow the historical path
of the problem: we will start in Section 2.2 by revisiting the ideas behind
Zilber’s Trichotomy Conjecture and Hrushovski’s counterexample, and move
on in Section 2.3 to sketch a description of the theory of the exponential field
B. This theory is not first-order, but it is uncountably categorical, and the
definable subsets of its models satisfy good geometric properties. Conjecturally,
its continuum-sized model B is isomorphic to the exponential field Cexp, and it
will hopefully be clear in what sense a positive answer to this question would
“save the spirit” of the Trichotomy Conjecture.

In Section 2.4 we will move to a slightly different topic, and discuss Zilber’s
work on a first-order class of structures with different model-theoretic properties
which should still contain a structure whose underlying set is the complex field
C, expanded by the appropriate predicates. The results of this thesis actually
provide new structures that fit in this class.

Finally, we will use Section 2.5 to list some miscellaneous results of geometric

9
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flavour which will be used across the thesis: most notably, the Ax-Schanuel
Theorem and Remmert’s Proper and Open Mapping Theorems from complex
analysis.

This chapter is written with the model-theoretically-inclined reader in mind,
and therefore it tends to take the most basic notions from model theory (such
as language, theory, structure, model) for granted and focus on the bigger
picture. The reader who for any reason has stumbled upon this thesis with little
interest in model theory, but wanting to learn about the complex-geometric
side of the problem, is very welcome and invited to focus on Subsections 2.3.3
and 2.3.4 and then move on to the next chapters. The reader who wants to
learn model theory is also very welcome, but encouraged to do so from one of
the excellent textbooks in the area such as [Hod93], [Mar06b], [TZ12], [Kir19a].

2.2 Zilber’s Trichotomy Conjecture

The prologue to this story is Zilber’s Trichotomy Conjecture on uncountably
categorical structures.

Definition 2.2.1. Let κ be an infinite cardinal. A theory T is κ-categorical if
it has exactly one model of cardinality κ up to isomorphism.

A structureM is κ-categorical if the full first-order theory ofM is κ-categorical.

Morley’s celebrated theorem on uncountably categorical theories is regarded
as the origin of modern model theory.

Theorem 2.2.2 ([Mor65, Theorem 5.6]). Let T be a countable first-order
theory. If T is κ-categorical for some κ > ℵ0, then it is κ-categorical for all
κ > ℵ0.

Example 2.2.3. There are three main examples of uncountably categorical
theories:

1. The theory of infinite sets in the language L = {=} of pure equality. In
this theory, models are determined up to isomorphism by their cardinality,
and thus the theory is κ-categorical for every infinite cardinal κ, including
ℵ0.

2. The theory of vector spaces over Q, in the language of abelian groups
expanded by a function symbol for multiplication by every scalar in Q.
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Models of this theory are determined by the cardinality of a base of
the vector space, and thus there are countably many non-isomorphic
countable models (one for each n ∈ ω + 1) and one model for every
uncountable cardinal.

3. The theory of algebraically closed fields of a fixed characteristic in the
language of rings. These theory behaves similarly to the theory of vector
spaces, with transcendence degree playing a role similar to that of linear
dimension in vector spaces: there is one countable algebraically closed
field of transcendence degree n for every n ∈ ω+ 1, and one algebraically
closed field of transcendence degree κ and size κ for every uncountable κ.

Zilber investigated uncountably categorical theories with the aim of determining
what are the features which give a theory this extremely strong property. He
gave the following answer:

The key factor is measurability by a dimension and high homogen-
eity of the structures. ([Zil01, p. 2]).

It is easy to see how these features present themselves in the structures described
in Example 2.2.3: each of the structures has a clear candidate for “dimension”
(respectively cardinality, linear dimension, transcendence degree), and the
structures are clearly homogeneous in the sense that given two sufficiently
generic elements it is easy to cook up an automorphism of the structure which
swaps them.

Recall that uncountable categoricity has strong ties to strong minimality.

Definition 2.2.4. Let M be a first-order structure. An infinite definable
subset S ⊆M is minimal if for every definable subset D of M , S ∩D or S \D
is finite.

S is strongly minimal if this property holds in every elementary extension of
M .

M is a minimal structure if it is a minimal subset of itself (every definable set
is finite or cofinite) and it is strongly minimal if all its elementary extensions
are minimal.

The following fact establishes the connection between uncountably categorical
theories and strongly minimal structures.
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Fact 2.2.5 ([BL71, Theorem 1 and Theorem 2]). Every strongly minimal
structure is uncountably categorical.

Every model of an uncountably categorical theory contains a strongly minimal
set.

Zilber’s famous Trichotomy Conjecture was an attempt to classify strongly
minimal theories. We state the conjecture although we do not introduce all
the terminology involved; we will only explain what its guiding principles were.

Conjecture 2.2.6 ([Zil84], Trichotomy Conjecture, disproved by Hrushovski).
The geometry of every strongly minimal structure M is either:

1. Trivial;

2. Non-trivial and locally modular;

3. Isomorphic to the geometry of an algebraically closed field K definable in
M .

We should note that Conjecture 2.2.6 does not actually appear in this form in
[Zil84], but it is the natural consequence of Theorem 3.1 and Conjecture B of
that paper.

Even the reader who is not familiar with model theory, but is familiar with
the natural numbers up to 3, will have noticed that Conjecture 2.2.6 suggests
a trichotomy and that the examples presented in Example 2.2.3 were three: in
fact, the geometry of infinite sets is trivial, the geometry of vector spaces is
locally modular and the geometry of an algebraically closed field is obviously
isomorphic to the geometry of an algebraically closed field. In fact, the spirit
of the trichotomy conjecture was that, while the examples discussed above are
not the only examples of strongly minimal uncountably categorical structures,
there should be a sense in which every other example fits into a classification
in which those three are the main specimens of each class. To use Zilber’s own
words,

[the conjecture] was based on the belief that logically perfect struc-
tures could not be overlooked in the natural progression of math-
ematics. ([Zil01, p. 3]).

As we mentioned above, Conjecture 2.2.6 was disproved in [Hru93] by Hrushovski,
who modified the classical Fraïssé amalgamation construction to come up with
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a strongly minimal set which does not fit into this classification. A very
approachable account of this construction is given by Ziegler in [Zie13].

Let us note, however, that the conjecture turned out to be true for many classes
of strongly minimal structures: Hrushovski and Zilber proved the conjecture in
the setting of so-called Zariski geometries (see [HZ96]), Peterzil and Starchenko
for o-minimal structures (see [PS98]), Hyttinen and Kangas for quasiminimal
classes (see [HK16]), Eleftheriou, Hasson and Peterzil for strongly minimal
expansions of 2-dimensional groups definable in o-minimal structures (see
[EHP21]), and many other authors are still proposing finer classifications as in
Baldwin and Verbovskiy’s recent preprint [BV21]. While the conjecture as it
was stated was false, it proved very influential in shaping the way in which the
community thinks about model theory, and its spirit was widely accepted as
correct.

2.3 Zilber’s Exponential Field

This section will be concerned with exponential fields.

Definition 2.3.1. An exponential field is a field F equipped with a group
homomorphism exp : F → F×.

Sometimes (e.g. in [Kir13]) exponential fields are defined in slightly different
ways, for example with exp defined on a Q-vector subspace of F rather than
on all of F , or with the additional requirement that exp is surjective. We will
take this definition as it seems the most natural one, it encompasses both C
and R with their usual exponentials, and it does everything we need it to.

Zilber defined quasiminimal structures as structures in which every definable
subset is countable or cocountable: they thus represent a generalization of
strongly minimal structures, although they obviously have rather different
features. For example, for easy model-theoretic reasons it does not make sense
to talk about quasiminimal theories, at least in a first-order setting.

Moreover, it is not completely clear what definable should mean here, as we will
see that non-first-order theories are quite important in this work. We overcome
this ambiguity by accepting the following definition of quasiminimality (see for
example [Kir19b, Definition 1.2]).

Definition 2.3.2. A structure M is quasiminimal if for every countable subset
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A of M and every subset S ⊆M , if S is invariant under Aut(M/A) then S is
countable or cocountable.

Zilber’s Quasiminimality Conjecture is that the complex exponential field is
such a structure - that every set that we can define in the complex numbers
using polynomials and exponentials is either countable or cocountable.

Conjecture 2.3.3 (Zilber’s Quasiminimality Conjecture, [Zil97]). The struc-
ture Cexp := (C,+,−, ·, 0, 1, exp) is quasiminimal.

The idea of the Quasiminimality Conjecture is that, just as we can get from
strong minimality of algebraically closed fields the good geometric theory of
definable subsets in higher dimension (namely algebraic varieties), if quasimin-
imality holds then the exponential-algebraic varieties which we can define in Cn

using polynomials and exponentials are well-behaved objects from a geometric
point of view. A failure of quasiminimality would very likely mean that the
real numbers are definable in Cexp, and therefore that the structure interprets
full second-order arithmetic - which would make its model theory about as
wild as it can possibly be, with no hope for a good geometry of definable sets.

As one approach to prove this conjecture, in [Zil05b] Zilber worked with the
Hrushovski amalgamation construction to obtain an exponential field B, called
the pseudo-exponential field, which is the unique model of cardinality 2ℵ0 of
a (non-first-order) uncountably categorical theory T all of whose models are
quasiminimal; Zilber’s work was then refined and improved by Bays and Kirby,
most notably in [BK18]. The natural conjecture, then, is that Cexp is a model
of T , and therefore by categoricity it is isomorphic to B.

The philosophical point which would emerge from a positive answer to this
question is that while Hrushovski’s counterexample does change the landscape
in the theory of strong minimality, it is still similar to an object that was not
“overlooked in the natural progression of mathematics”, the exponential field:
the problem was that first-order logic lacked the expressive power to describe
it. To use Zilber’s words once again,

Based on the analysis of pseudo-exponentiation, one would like
to conclude hypothetically that basic Hrushovski structures have
analytic prototypes. ([Zil01, p. 8]).

To know more about the comparison between the exponential field and the
Hrushovski counterexample the reader should consult [Zil01].
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In this section we will introduce the axioms of the pseudo-exponential field B
and comment on their status in the exponential field Cexp.

2.3.1 The Language

As we mentioned, the theory of B is not a first-order theory.

Definition 2.3.4. Let Lω1,ω(Q) denote the language Lω1,ω (which allows for
infinite conjunctions and disjunctions and finite quantifications) expanded by
the quantifier Q, where Qxϕ(x) is interpreted as “there exist uncountably
many x such that ϕ(x)”.

We will denote by Lexp the language of exponential rings (so the language of
rings expanded by one symbol for the exponential function) in the infinitary
logic Lω1,ω(Q).

We will introduce our axioms as axioms in this language, referring to an abstract
structure (F,+,−, ·, 0, 1, exp).

2.3.2 The Easy Axioms

The axioms of B can be gathered into six families, the first three of which are
the easiest to check. (Arguably, B has only one axiom since working in an
infinitary logic allows us to consider the conjunction of all the axioms as a
single Lω1,ω(Q)-sentence, but we still consider them as separate for clarity).

Definition 2.3.5. Denote by ACF0 the set of axioms which state that F is
an algebraically closed field of characteristic 0.

Definition 2.3.6. Denote by SE (Surjective Exponential) the axiom which
states that exp : F → F× is a surjective group homomorphism.

There is little to say about these two in the complex numbers: obviously C,
forgetting about the exponential, is an algebraically closed field of characteristic
0, and obviously exp : C → C× is a surjective group homomorphism. Note,
moreover, that so far we are still in first-order logic.

Definition 2.3.7. Denote by SK (Standard Kernel) the axiom which states
that ker(exp) is an infinite cyclic group, generated by a transcendental element.

This is the first step we take out of the first-order realm: we need Lω1,ω to
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require that

∃z

exp(z) = 1 ∧

∀x
exp(x) = 1→

∨
n∈Z

x = nz


and that the generator is transcendental. However, there is still no problem
in showing that the axiom holds in the complex numbers: the kernel of the
complex exponential is 2πiZ, and 2πi is clearly transcendental because π is.

2.3.3 The Schanuel Property

Schanuel’s Conjecture is a long-standing open problem in transcendental num-
ber theory; roughly, it poses a lower bound for transcendence of the exponential
function, predicting that n complex numbers z1, . . . , zn and their exponentials
should never lie on an algebraic variety defined over Q of dimension less than
n, unless z1, . . . , zn satisfy a Q-linear relation.

Conjecture 2.3.8 (Schanuel, see [Lan66, p. 30]). Let z1, . . . , zn ∈ C be complex
numbers. Then

trdeg(z1, . . . , zn, exp(z1), . . . exp(zn))− ldimQ(z1, . . . , zn) ≥ 0.

Some easy consequences of Schanuel’s conjecture are that e is transcendental
(trdeg(1, e) ≥ 1) and that π is transcendental (trdeg(iπ,−1) ≥ 1), which of
course are both classically known. However, if Schanuel’s conjecture were true
then we would also obtain

trdeg(e, π) = trdeg(1, iπ, e,−1) ≥ ldimQ(1, iπ) = 2

i.e. algebraic independence of e and π, which is not known and considered an
extremely hard problem in itself. As even what looks like an easy consequence
of Schanuel’s conjecture is far from being solved, number theorists believe that
a solution to Schanuel’s conjecture is still decades away.

A known case of the conjecture is the Lindemann-Weierstrass Theorem, which
amounts to Schanuel’s conjecture for algebraic numbers.

Theorem 2.3.9 (Lindemann-Weierstrass, [Lin82], [Wei85]). Let z1, . . . , zn ∈ C
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be algebraic. Then

trdeg(exp(z1), . . . , exp(zn)) ≥ ldimQ(z1, . . . , zn).

We will later discuss the geometric version of this statement, the Ax-Lindemann-
Weierstrass Theorem, which establishes that the Zariski closure of the exponen-
tial of an algebraic variety is a translate of an algebraic subgroup of (C×)n.

A corollary of the Lindemann-Weierstrass Theorem is Schanuel’s Conjecture
for n = 1.

Corollary 2.3.10. Let z ∈ C, z 6= 0. Then trdeg(z, exp(z)) ≥ 1.

Proof. If z is transcendental then it is obvious. If z is algebraic then it follows
from Theorem 2.3.9.

The transcendence axiom in the theory of B has the form of Schanuel’s Conjec-
ture.

Definition 2.3.11. Denote by SP (Schanuel Property) the set of axioms in
the language of exponential fields which state that for all n,

∀z1, . . . , zn ∈ F (trdeg(z1, . . . , zn, exp(z1), . . . , exp(zn)) ≥ ldimQ(z1, . . . , zn)) .

As we mentioned, it is very unlikely that it will be proved in the near future
that Cexp satisfies SP, and thus that Cexp ∼= B. However, not all hope to
get something model-theoretically meaningful is lost, as we see in the next
subsection.

2.3.4 Exponential-Algebraic Closedness

We come now to Exponential-Algebraic Closedness, the main question that
this thesis is concerned with. As we now need to start discussing the role of
algebraic varieties, let us note here that all the algebraic varieties discussed in
this thesis will be irreducible unless explicitly stated otherwise.

Exponential-Algebraic Closedness is (a generalization of) a dual version of
Schanuel’s Conjecture, in the following sense. As we mentioned, Schanuel’s
Conjecture predicts that points of the form (z1, . . . , zn, exp(z1), . . . , exp(zn))
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do not lie on algebraic subvarieties of Cn × (C×)n defined over Q of dimension
less than n, unless (z1, . . . , zn) lies in some rational subspace of Cn.

One might therefore ask whether given an algebraic variety of dimension larger
than n it does contain points of the form (z1, . . . , zn, exp(z1), . . . , exp(zn)).

Definition 2.3.12. We will use Γexp to denote the graph of any Cartesian
power of the exponential function, so

Γexp := {(z1, . . . , zn, w1, . . . , wn) ∈ Cn × (C×)n | wj = exp(zj) ∀j}.

As Γexp has dimension n, a naive guess might be that in fact it must intersect
all algebraic varieties of dimension at least n. This however soon proves not to
be the case.

Example 2.3.13. Let V ⊆ C2 × (C×)2 be the algebraic variety defined as

V :=
{

(z1, z2, w1, w2) ∈ C2 × (C×)2 | z1 − z2 = 0, w1w
−1
2 + 1 = 0

}
.

V has dimension 2. Assume there exists a point (z1, z2, w1, w2) ∈ V ∩ Γexp.
Then by definition we have

z1 = z2

w1 = −w2

exp(z1, z2) = (w1, w2)

which is clearly impossible, as it implies that w1 is equal to both w2 and −w2

without being 0.

It is quite clear what the problem in Example 2.3.13 is: since the variety V splits
as the product of two cosets of algebraic groups V1 ≤ C2 and V2 ≤ (C×)n, and
exp(V1) and V2 are in fact cosets of the same group, the required intersection has
to be empty. More generally, it seems plausible that if a variety V ⊆ Cn×(C×)n

is contained in a product of cosets of algebraic groups of Cn and (C×)n, at
least one of which is proper, then the behaviour of the exponential map on V
cannot really be expected to be “generic”.

All this is made precise by the notion of freeness. We introduce it in the
generality of exponential fields.
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Definition 2.3.14. Let V ⊆ Fn × (F×)n be an algebraic variety. Denote by
π1 : Fn × (F×)n � Fn and π2 : Fn × (F×)n � (F×)n the projections on the
domain and codomain of (the n-th Cartesian power of) exp.

We say that V is free if π1(V ) is not contained in any affine Q-linear subspace
of Fn and π2(V ) is not contained in any coset of an algebraic subgroup of
(F×)n.

We note that algebraic subgroups of the multiplicative group (F×)n are exactly
those defined by finitely many equations of the form wk1

1 · · ·wknn = 1 for
k1, . . . , kn ∈ Z. These are the images under the exponential map of Q-linear
subspaces of Fn.

Another condition, rotundity, ensures that not only the variety V is “big” in the
sense of dimensions, but that this property is preserved under taking algebraic
quotients.

Definition 2.3.15. Let V ⊆ Fn × (F×)n be an algebraic variety.

Let L ≤ Fn be a rational vector subspace, and let exp(L) be its image under
exp, an algebraic subgroup of (F×)n.

Denote by πL : Fn × (F×)n � Fn/L× (F×)n/exp(L) the algebraic quotient
map.

We say that V is rotund if for every such L,

dim(πL(V )) ≥ n− dimL.

For example, then, rotundity is asking that dimV ≥ n (obtained for L = 〈0〉).

We are now in a position to state the Strong Exponential-Algebraic Closedness
axiom. We first state the strong version.

Definition 2.3.16. Denote by SEAC (Strong Exponential-Algebraic Closed-
ness) the set of axioms in the language of exponential fields which states that
for all n, for every free and rotund variety V ⊆ Fn × (F×)n defined over a
subfield F0, there is a point in V ∩ Γexp that is generic in V over F0.

While SEAC is necessary to define the pseudo-exponential field, we will not
really be concerned with genericity questions in this thesis. Hence, we also
state the weaker version that we will work on.
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Definition 2.3.17. Denote by EAC (Exponential-Algebraic Closedness) the
set of axioms in the language of exponential fields which states that for all n,
for every free and rotund variety V ⊆ Fn × (F×)n,

V ∩ Γexp 6= ∅.

From the model-theoretic point of view, these are conditions of existential
closedness: they single out systems of equations that are “not obviously
contradictory” and stipulate that they must all be solvable in the structure.

The weak axiom became particularly relevant after the following theorem of
Bays and Kirby was established.

Theorem 2.3.18 ([BK18, Theorem 1.5]). If Cexp satisfies EAC, then it is
quasiminimal.

In light of what we discussed in Subsection 2.3.3, this is an extremely helpful
result: before this theorem was established Schanuel’s Conjecture seemed to
be an obstruction towards the proof of quasiminimality of Cexp unlikely to be
overcome; most people would probably have been happy with a result of the
form “if Schanuel’s Conjecture holds, then Cexp is quasiminimal”. Theorem
2.3.18, on the other hand, removes the dependence of quasiminimality on
Schanuel’s Conjecture: while proving that Cexp satisfies EAC seems by no
means easy, it is a problem on which it seems far simpler to make some progress.

A few special cases of EAC for the complex numbers are already known.

Theorem 2.3.19. Let V ⊆ C×C× be an algebraic curve whose projections to
C and C× are both infinite.

Then V ∩ Γexp 6= ∅.

This is a classical result, of which we show an easy proof to help the reader
familiarize with these objects.

Proof. Let f(z1, z2) : C× C× → C be the polynomial function which defines
V . To find an intersection between V and Γexp we then need to find a zero of
the function z 7→ f(z, exp(z)).

If f(z, exp(z)) 6= 0 for every z, then there is an affine function g such that
f(z, exp(z)) = exp(g(z)) for every z (see [Mar06a, Theorem 2.2]).
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This is only possible if the affine function is multiplication by a natural number
m, and f(z, exp(z)) = exp(mz). Therefore f(z1, z2) = zm2 , and the function
zm2 has no zeros on C× C× - thus V is empty.

In [Mar06a] Marker takes this forward and shows that if V is defined over Q then
V ∩ Γexp contains infinitely many points. By Schanuel’s Conjecture for n = 1
(Corollary 2.3.10) this implies that there are solutions which are generic in V ,
hence this is really a result about Strong Exponential-Algebraic Closedness.
In [MZ16] Mantova removes the assumption on the field of definition, proving
this theorem for any V ⊆ C× C×.

By π1 : Cn × (C×)n → Cn we again denote the projection to the first block of
n coordinates.

Theorem 2.3.20 (Brownawell-Masser, D’Aquino-Fornasiero-Terzo, Aslan-
yan-Kirby-Mantova). Let V ⊆ Cn× (C×)n be an algebraic variety, and suppose
dim(π1(V )) = n. Then V ∩ Γexp 6= ∅.

Note that the condition on the dimension of the projection implies that V
is rotund and that it satisfies the first half of the definition of freeness. The
theorem allows for varieties V such that π2(V ) is contained in a subgroup of
(C×)n.

As is noticeable from the multiple attribution, this theorem has been proved in
different forms and in different ways. The proofs of Brownawell-Masser ([BM17,
Proposition 2]) and D’Aquino-Fornasiero-Terzo ([DFT21, Theorem 3.6]) used
the Newton-Kantorovich approximation theorem, and therefore methods from
the theory of real analytic functions. The proof of Aslanyan-Kirby-Mantova
([AKM22, Theorem 1.5]) is based on methods from complex analysis, which
seem more natural.

Theorem 2.3.21 (Mantova-Masser). Let V ⊆ Cn × (C×)n be a free rotund
algebraic variety, and suppose dim(π1(V )) = 1. Then V ∩ Γexp 6= ∅.

This unpublished theorem is the “opposite” of Theorem 2.3.20: there, the first
projection of V needs to be dimensionally large and cover almost all of Cn,
while here it is as small as it can be (if it had dimension 0 then V could not be
free). The proof uses methods from the geometry of Riemann surfaces (hence
the need for the dimension of the projection to be 1).

These results are quite different from the main theorems of this thesis, which
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are concerned with algebraic varieties which split as products of a subvariety
of Cn and one of (C×)n. They are, however, a generalization of the following
result of Zilber, which we will come back to and discuss in more detail later on.

Theorem 2.3.22 (Zilber). Let V = L ×W where L ≤ Cn is a linear space
and W ⊆ (C×)n is an algebraic variety.

If V is free and rotund, and L is:

1. Defined over R, assuming a certain Diophantine conjecture, or;

2. Defined over a “generic” subfield K of the reals;

then V ∩ Γexp 6= ∅.

The theorem under assumption 1. is [Zil02, Theorem 5]; under assumption 2.
it is [Zil15, Theorem 7.2]. We postpone a discussion of these assumptions to
Subsection 2.4.3.

2.3.5 The Countable Closure Property

Finally, we need to deal with the Countable Closure Property. This is not
too hard to grasp intuitively, especially in the case of the complex numbers
in which it basically says that given a finite set of parameters X the set of
isolated solutions to systems of equations in polynomials and exponentials
with parameters in X is countable. However, this relies on a notion of isolated
which does not have an immediate analogue in the context of exponential fields
where there is no topology. This obstacle can be overcome by introducing a
notion of differentiability and looking at solutions of systems for which the
Jacobian determinant of the system does not vanish.

Definition 2.3.23. Let (F, expF ) be an exponential field.

The ring F [X1, . . . , Xn]E of exponential polynomials in n variables over F is the
smallest ring that contains F [X1, . . . , Xn] and is closed under a formal operation
exp which extends expF on the constants and such that exp(f(X) + g(X)) =
exp(f(X))exp(g(X)) for every f, g ∈ F [X1, . . . , Xn]E .

See [Kir10a, Section 2] for a justification of the existence of this object.

On the ring of exponential polynomials we can define formal derivations ∂
∂Xj

by
extending the formal derivations on polynomials by the rule ∂

∂Xj
(exp(Xj)) =

exp(Xj). Since every element of the ring is a composition of exponentials and
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algebraic operation, this is sufficient to define ∂
∂Xj

on F [X1, . . . , Xn]E using
the chain rule.

The goal of this construction is to introduce the notion of a Khovanskii system
of exponential polynomial equations.

Definition 2.3.24. Let F be an exponential field. A Khovanskii system over
F is a system of equations of the form

f1(z1, . . . , zn) = 0

f2(z1, . . . , zn) = 0
...

fn(z1, . . . , zn) = 0

where each fj ∈ F [X1, . . . , Xn]E , together with the inequality

∣∣∣∣∣∣∣∣∣
∂f1
∂X1

. . . ∂f1
∂Xn

...
. . .

...
∂fn
∂X1

. . . ∂fn
∂Xn

∣∣∣∣∣∣∣∣∣ (z1, . . . , zn) 6= 0.

Khovanskii systems are, in turn, necessary to define the notion of exponential
algebraicity.

Definition 2.3.25. Let X ⊆ F be a subset, and suppose a ∈ F . We say
that a is exponentially algebraic over X if there are x1, . . . , xn−1 such that
(a, x1, . . . , xn−1) is a solution to a Khovanskii system over F .

The set of the elements that are exponentially algebraic overX is the exponential
algebraic closure of X, denoted ecl(X).

Exponential algebraic closure is a pregeometry, a closure operator with good
model-theoretic properties similar to algebraic closure in algebraically closed
fields and linear span in vector spaces.

In particular, for example, sets that coincide with their exponential algebraic
closures will be algebraically closed fields with an exponential.

Definition 2.3.26. Denote by CCP (Countable Closure Property) the axiom
which says that for every finite subset X ⊆ F , ecl(X) is countable.
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Note that to state the axiom CCP we need the quantifier Q introduced in
Subsection 2.3.1.

We define a notion of exponential-algebraic independence which will be needed
later.

Definition 2.3.27. We will say that a tuple λ = (λ1, . . . , λn) ∈ Fn is
exponentially-algebraically independent over the set X if for every j, λj /∈
ecl({λ1, . . . , λj−1} ∪X).

If a tuple is exponentially-algebraically independent over ∅ then we simply say
it exponentially-algebraically independent.

As we mentioned above, in Cexp, if a tuple (a, x1, . . . , xn−1) solves a Khovanskii
system then it is an isolated solution of the system (although it should be noted
that the converse does not hold, as there are topologically isolated solutions
whose Jacobian determinant is 0, but that does not pose an issue). Given that
any system of exponential-polynomial equations in the complex numbers has at
most countably many isolated solution by analyticity of the functions involved,
and that there are only countably many Khovanskii systems over a finite set,
the CCP holds for Cexp (this is [Kir10a, Remark 3.4]).

2.3.6 The Axioms

We conclude by giving the full list of axioms.

Definition 2.3.28. Let ECF denote the following list of Lω1,ω(Q)-axioms in
the language of exponential fields:

(ACF0) F is an algebraically closed field of characteristic 0;

(SE) exp : F → F× is a surjective group homomorphism;

(SK) The kernel of exp is an infinite cyclic group, generated by a transcendental
element;

(SP) For all z1, . . . , zn ∈ F that are linearly independent over Q,

trdeg(z1, . . . , zn, exp(z1), . . . , exp(zn)) ≥ n;

(SEAC) Every free and rotund algebraic variety V ⊆ Fn × (F×)n defined over
a subfield F0 intersects the graph of the exponential in a point that is
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generic over F0;

(CCP) For every finite subset X of F , the exponential algebraic closure of X is
countable.

The statement most commonly referred to as Zilber’s Conjecture at the moment
is then the following.

Conjecture 2.3.29. Cexp satisfies the axiomatization ECF.

In particular, a positive answer to Conjecture 2.3.29 would imply a positive
answer to Conjecture 2.3.3.

2.4 Raising to Powers

2.4.1 Model-Theoretic Framework

We devote this section to a more careful discussion of Theorem 2.3.22, as the
main theorems of this thesis are at least inspired by it.

Part of the motivation for this theorem comes from the fact that it is possible to
give a first-order axiomatization of a class of structures for which the existential
closedness statement takes the form of Theorem 2.3.22. This is done in [Zil03]
and [Zil15].

More precisely, Zilber fixes a field K ⊆ C of finite transcendence degree and
defines a language LK which expands the language of Q-vector spaces by:

1. A binary equivalence relation E;

2. An n-ary predicate L for any subspace L of Cn defined over K;

3. An n-ary predicate EW for every algebraic subvariety W of (C×)n

definable over Q.

The interpretation of these symbols in C is that E(z1, z2) means exp(z1) =
exp(z2) (so z1 − z2 ∈ 2πiZ), L(z1, . . . , zn) means that (z1, . . . , zn) ∈ L and
EW (z1, . . . , zn) means that (exp(z1), . . . , exp(zn)) ∈W .

One can then define a first-order class of structures. Denoting the structure by
D, we require it to satisfy the axioms for a powered field with exponents in K,
or K-powered field, which we will denote by PK:

1. D is an infinite-dimensional vector space over K;
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2. For every predicate EW , ∀(x1, . . . , xn), (y1, . . . , yn), (∧ni=1E(xi, yi)) →
(EW (x1, . . . , xn)→ EW (y1, . . . , yn));

3. The quotient D/E is the multiplicative group of an algebraically closed
field of characteristic 0, and the predicates EW define its algebraic
varieties over Q.

We denote by CK the structure on the complex numbers which interprets these
predicates in the way described above.

We are interested in completions of the common theory of these structures.

Zilber gives such a completion in a way that is overall similar to the axiomatiz-
ation given in Definition 2.3.28, but which is first-order: to the axioms PK that
are described above, one adds a transcendence statement and an existential
closedness statement. The theory turns out to be superstable - a property that
model theorists will be familiar with and which is not needed in the rest of the
thesis, so we do not define it here.

We do not get here into the details of the abstract forms of the axioms, which
are discussed in detail in Sections 3, 4, and 5 of [Zil15]; we simply sum up the
main result of that paper in the following statements.

Theorem 2.4.1 ([Zil15, Theorem 6.9]). For any field K ⊆ C of finite tran-
scendence degree there is a complete superstable theory TK of powered fields
with exponents in K.

The axioms of these theory are the axioms PK, a transcendence statement and
an existential closedness statement.

Theorem 2.4.2 ([Zil15, Theorem 7.2]). The structure CK is a model of TK if:

1. There is a ∈ Cm (possibly m = 0) such that for all z1, . . . , zn,

ldimK(z1, . . . , zn/a) + trdeg(exp(z1), . . . , exp(zn)/exp(a)) ≥

≥ ldimQ(z1, . . . , zn/a);

2. For every free rotund variety of the form L×W where L ≤ Cn is a linear
space defined over the field K, exp(L) ∩W 6= ∅.
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2.4.2 Bays-Kirby-Wilkie Property

In this subsection we focus on 1. in Theorem 2.4.2, the transcendence statement.

It is a statement similar to Schanuel’s Conjecture. Bays, Kirby and Wilkie
studied something similar in [BKW10] and proved the following.

Theorem 2.4.3 ([BKW10, Theorem 1.3]). Let F be an exponential field, ker
the kernel of its exponential map, C an ecl-closed subset of F and λ ∈ Fm a
tuple that is exponentially-algebraically independent over C.

Then for all z ∈ Fn,

ldimQ(λ)(z/ ker) + trdeg(exp(z)/C, λ)− ldimQ(z/ ker) ≥ 0.

In [Zil15, Section 7], Zilber applies Theorem 2.4.3 with F = C, C = ecl(∅) and
λ ∈ Cm a tuple that is exponentially-algebraically independent independent
over ecl(∅). Then, writing K = Q(λ), one gets that for all z ∈ Cn,

ldimK(z/2πi) + trdeg(exp(z)/C, λ)− ldimQ(z/2πi) ≥ 0

and therefore

ldimK(z/2πi) + trdeg(exp(z))− ldimQ(z/2πi) ≥ 0.

We note that, by the Countable Closure Property for Cexp, ecl(∅) is countable,
and therefore many tuples λ ∈ Cm which are exponentially-algebraically
independent over ecl(∅) exist (although no explicit example is known).

Thus there are infinitely many examples of a field K for which the first clause
of Theorem 2.4.2 is satisfied.

2.4.3 Exponential-Algebraic Closedness

Let us now focus on the second clause of Theorem 2.4.2.

The statement is a weaker version of the Exponential-Algebraic Closedness
axiom for exponential fields (Definition 2.3.17): it does not ask for intersections
between Γexp and any variety V , but just with varieties which split as a product
of the form L×W .
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Example 2.4.4. Suppose L is defined by finitely many equations of the form
λj,1z1 + · · ·+ λj,nzn = 0 for j = 1, . . . , d, with λj,h ∈ K for every j, h, and that
W is defined by polynomial equations f1(w) = · · · = fn−d(w) = 0.

If (z, w) ∈ L × W ∩ Γexp, then z ∈ L, w ∈ W and w = exp(z); hence,
w ∈ exp(L) ∩W . Conversely, if w ∈ exp(L) ∩W then w = exp(z) for some
z ∈ L, and thus (z, w) ∈ L×W ∩ Γexp. Showing that L×W ∩ Γexp 6= ∅, then,
is equivalent to showing that exp(L) ∩W 6= ∅; we try to determine what the
set exp(L) looks like.

If w ∈ exp(L), then there is z ∈ L such that exp(z) = w; if z ∈ L then it
satisfies finitely many linear equations. Let λ1z1 + · · ·+ λnzn = 0 be one such
equation: if that holds, then

exp(λ1z1 + · · ·+ λnzn) = 1

and since exp is a group homomorphism

exp(λ1z1) · · · exp(λnzn) = 1.

We might then be tempted to write

(exp(z1))λ1 · · · (exp(zn))λn = 1,

but this only makes sense a priori if λj ∈ N for every j: if that is not the case,
then exp(z)λ may denote any determination of

exp(λ log(exp(z))),

so every complex number of the form

exp(λz + 2πkiλ)

for k ∈ Z. Note that if λ ∈ R\Q then {2πikλ+ 2πiZ | k ∈ Z} is a dense subset
of R/2πiZ.

Therefore, raising to the power λ for λ /∈ Z is a multivalued operator: if we
accept that, then it actually makes sense to write

exp(L) = {w ∈ (C×)n | wλj,11 · · ·wλj,nn = 1∀j = 1, . . . , d}.
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The topology of this space can vary quite a lot as we vary the coefficients λ in
C - for example, it can be closed or it can be dense in a semialgebraic subset
of the real algebraic group (C×)n. In Chapter 3 we will see examples of spaces
of this kind.

Zilber’s theorems from [Zil02] and [Zil15] (see Theorem 2.3.22 above) show
that L×W ∩ Γexp 6= ∅ if we impose some additional conditions on L.

In [Zil02], a Diophantine conjecture is assumed, the Conjecture on Intersection
with Tori or CIT. This is a primitive form of what is now known as the
Zilber-Pink Conjecture, and reads as follows.

Conjecture 2.4.5 ([Zil02, Conjecture 1]). Let W ⊆ (C×)n be an algebraic
variety.

Then there is a finite set T of translate of algebraic subgroups of (C×)n such
that if S is an algebraic subgroup of (C×)n and K is an irreducible component
of S ∩W with

dimK > dimS + dimW − n

then there is T ∈ T such that K is contained in T .

In other words, this conjecture says that atypical intersections between algebraic
varieties and algebraic subgroups are controlled by finitely many algebraic
subgroups. The Zilber-Pink Conjecture, which is now considered one of the
most important open problems in Diophantine geometry, is a generalisation of
this problem, asking to study atypical intersections in more general arithmetic
varieties than the multiplicative group. Zilber also investigated the relation
between Conjecture 2.4.5 and Schanuel’s Conjecture (see [Zil02, Proposition 5]).

Zilber’s result was the following.

Theorem 2.4.6 ([Zil02, Theorem 5]). Assume Conjecture 2.4.5. Let L×W
be a free rotund subvariety of Cn × (C×)n, with L ≤ Cn defined over R and
W ⊆ (C×)n an algebraic variety.

Then L×W ∩ Γexp 6= ∅.

We give a rough sketch of the proof strategy.

1. A theorem of Khovanskii is used to show that L ×W ∩ Γexp 6= ∅ for
“almost all” choices of W , in the sense that given any L×W there is a
family of varieties W = {W (a) | a ∈ A}, where A is a constructible set,
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such that W ∈ W and the set {a ∈ A | L×W (a) ∩ Γexp 6= ∅} is dense
in A (in the Euclidean topology).

2. Given a ∈ A such that W = W (a), there are then sequences {wj}j∈ω ⊆
(C×)n and {aj}j∈ω such that wj ∈ exp(L) ∩W (aj) for all j.

3. Using Conjecture 2.4.5, it is shown that there is a finite set ρ depending
on L and W of algebraic varieties such that the sequence {wj}j∈ω from
point 2. is convergent if it stays uniformly away from all the varieties in
ρ.

4. The particular form of the theorem of Khovanskii mentioned in 1. allows
to find approximating solutions in the “right” places: this means that
these sequences of approximating solutions converge.

Of course, Conjecture 2.4.5 is quite a big assumption to make. For this reason,
Zilber gave a second version of his result in [Zil15].

Theorem 2.4.7 ([Zil15, Theorem 7.2]). Let λ ∈ Rn ⊆ Cn be a tuple that is
exponentially-algebraically independent.

Let L ×W be a free rotund variety, where L ≤ Cn is a linear space that is
defined over Q(λ) and W ⊆ (C×)n is an algebraic variety.

Then L×W ∩ Γexp 6= ∅.

The proof of this theorem is similar to the proof of Theorem 2.4.6, but the use
of Conjecture 2.4.5 is replaced by a combination of a theorem of Laurent from
Diophantine geometry (the Mordell-Lang Conjecture for the multiplicative
group, [Lau83, Theorème 1]) and Theorem 2.4.3, the transcendence statement
from the previous section.

Theorems 2.4.6 and 2.4.7, together with Theorem 2.4.3, establish then that
for many fields K the structure CK satisfies the complete superstable theory
mentioned in Theorem 2.4.2.

The results in Chapter 3 of this thesis expand the class of fields with this
property, showing that the structure CK satisfies the second clause of Theorem
2.4.2 for every field K of finite transcendence degree.
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2.5 Some Results from Geometry

We conclude this chapter by gathering some results which will be used in the
rest of the thesis. As they are used across different chapters, it seems a good
idea to list them all here and refer to them later on.

2.5.1 Ax-Schanuel Theorems

Ax-Schanuel type statements measure the transcendence of some geometric
functions. The original statement was proved by Ax in [Ax71] for formal
differential fields and in [Ax72a] for exponential maps of algebraic groups: the
spirit of the result is that algebraic varieties and analytic subgroups of algebraic
groups “tend to be in general position”. These statements are two sides of the
same coin: the differential algebra side and the analytic geometry side of an
exponential coin.

We give the differential-algebraic version of the statement first.

Theorem 2.5.1 ([Ax71, Theorem 3]). Let Q ⊆ C ⊆ F be fields and ∆ a set
of derivations on F such that C ⊆

⋂
D∈∆ ker(D).

Let y1, . . . , yn, z1, . . . , zn ∈ F× be such that for all j = 1, . . . , n and every
D ∈ ∆ Dyj = Dzj

zj
and one of the following holds:

a. There are no k1, . . . , kn ∈ Z such that zk1
1 · · · zknn ∈ C, or,

b. y1, . . . , yn are Q-linearly independent modulo C.

Then
trdegC(y1, . . . , yn, z1, . . . , zn) ≥ n+ rk(Dyj)D∈∆,j=1,...,n.

Theorem 2.5.1 applies, for example, to a field of complex analytic functions with
linearly independent elements y1, . . . , yn, exp(y1), . . . , exp(yn) and ∆ = {D}
the usual derivation d

dz . Then D(exp(yj)) = exp(yj)Dyj , as we wanted.

We are more interested in the geometric version of the statement.

Theorem 2.5.2 ([Ax72a, Theorem 1]). Let G be an algebraic group defined
over C and identified with the Lie group of its C-points.

Let A be an analytic subgroup of G, K an analytic subvariety of A.

Let W be the Zariski closure of K. Then there exists an analytic subgroup B
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of G such that W,A ⊆ B and

dimK ≤ dimW + dimA− dimB.

We will need a consequence of this theorem for complex semiabelian varieties.

Definition 2.5.3. A semiabelian variety S is a commutative algebraic group
which is an extension of an abelian variety A by a torus T , so for which there
is an exact sequence

1→ T → S → A→ 0.

Definition 2.5.3 should be commented on. By a torus we mean a power of the
multiplicative group: as we will only deal with complex semiabelian varieties,
the reader is free to think of algebraic tori simply as complex algebraic groups
isomorphic to (C×)n. An abelian variety is a projective algebraic group: these
will be defined and studied in detail in Chapter 4. The reader who is not
familiar with complex abelian varieties, and who does not want to read ahead
before coming back to this chapter, is free to think of semiabelian varieties as
algebraic tori for the moment, and add the abelian varieties later.

An important feature of semiabelian varieties is that every complex semiabelian
variety S of dimension n has an exponential map expS : Cn → S: this is a
group homomorphism, an analytic universal covering map, and it satisfies a
certain differential equation. Most notable, of course, is the case S = C×, in
which the exponential is the usual complex exponential exp and the differential
equation is d

dz exp(z) = exp(z).

The graph of expS is an analytic subgroup of Cn × S, and therefore it makes
sense to apply Theorem 2.5.2 to it. In particular, Theorem 2.5.2 has the
following important consequence.

Corollary 2.5.4 ([Kir06, Theorem 8.1]). Let S be a semiabelian variety,
expS : Cn → S its exponential map, ΓexpS the graph of the exponential.

Let V ⊆ Cn×S be an algebraic variety, and K a positive dimensional irreducible
analytic component of V ∩ ΓexpS such that dimK > dimV − n.

Then there is L ≤ Cn a linear subspace such that exp(L) is an algebraic subgroup
of S and K is contained in a translate of L× exp(L).

Moreover, if C is some constructible set and {V (c) | c ∈ C} is a family of
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varieties, then there are finitely many linear spaces L1, . . . , Lk such that any
positive dimensional irreducible analytic component K of V (c) ∩ ΓexpS with
dimK > dimV (c) − n, for c ∈ C, is contained in a translate of one of the
algebraic subgroups Lj × exp(Lj).

A component with dimK > dimV − n, as in the statement of this Corollary,
is called an atypical component of the intersection. A component is typical
if it is not atypical. A careful reader will have noticed that this problem is
connected to Conjecture 2.4.5. We can derive an additional consequence of
Corollary 2.5.4:

Corollary 2.5.5 (See [Ax72a, Corollary 2]). In the set-up of Corollary 2.5.4,
let γ ∈ Cn × S be the point such that K ⊆ γ · (L × expS(L)). Then K is a
typical component of (V ∩ (γ · L× expS(L))) ∩ (Γexp|L)

The take-home message from this kind of statement is that algebraic varieties
tend to intersect ΓexpS in a typical way, and in fact the only case in which this
does not happen is when something prevents it - namely, when the component
is typical with respect to intersection in a smaller ambient space.

Finally, we recall the Ax-Lindemann-Weierstrass Theorem, a consequence of
the Ax-Schanuel Theorem which says that the Zariski closure of the exponential
of an algebraic variety is an algebraic group.

A proof is given for example in [PZ08, Theorem 2.1] for abelian varieties, but
the same holds for general semiabelian varieties.

Theorem 2.5.6 (Ax-Lindemann-Weierstrass Theorem). Let V ⊆ Cn be an
algebraic variety, S a semiabelian variety of dimension n. Then expS(V ) is
Zariski-dense in an algebraic subgroup of S.

2.5.2 Some Complex Analysis

Finally, we list some facts about complex analytic sets and maps between them.
Our standard reference on complex analytic sets is [Chi12], which we invite
the reader to consult for any doubts on the matter (especially Chapter 1 and
Appendix 2).

Definition 2.5.7. A continuous map f : X → Y of topological spaces is proper
if for every compact set K ⊆ Y , f−1(K) is compact.
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It is interesting to see when the subset of a Cartesian product has proper
projection on one of the coordinates.

Proposition 2.5.8 ([Chi12, 3.1]). Let X and Y be locally compact, Hausdorff
topological spaces, D ⊆ X and G ⊆ Y open subsets with G compact.

Let A be a relatively closed subset of D × G. The projection π : A → D,
(x, y) 7→ x, is proper if and only if A does not have limit points on D × ∂G.

Proof. (⇒) Suppose the projection is proper, and there is a sequence {aj}j∈ω ⊆
A such that a = limj aj ∈ D × ∂G. Since D and G are open, a /∈ D × G
(and therefore a /∈ A); however, since a ∈ D × ∂G the sequence {π(aj)}j∈ω
converges to some b ∈ D.

Then consider a compact neighbourhood U of b in D. We have that π−1(U) is
not compact, because a /∈ π−1(U) (it is not in the domain A of π) but it is the
limit of the aj ’s, which eventually lie in π−1(U).

(⇐) Suppose A does not have limit points on D × ∂G, and let K ⊆ D be a
compact set. Then π−1(K) is compact because any sequence in it that has
a limit in D has a limit in A, given that A is closed in D ×G without limit
points on D × ∂G.

Proper maps are important in complex analysis because they preserve ana-
lyticity of complex analytic sets. As usual, the dimension of the fibres of a
holomorphic map is relevant when we want to study the image of the map.

Definition 2.5.9. Let f : A → B be a holomorphic map between complex
analytic sets. For any z ∈ A, let dimz f denote the codimension of the fibre

dimz f := dimA− dim f−1(f(z))

and dim f the maximal such value,

dim f := max
z∈A

dimz f.

Theorem 2.5.10 (Remmert’s Proper Mapping Theorem, [Chi12, 5.8]). Let A
be a complex analytic set and Y a complex manifold, and suppose f : A→ Y

is proper.
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Then f(A) is an analytic subset of Y , and

dim f(A) = dim f

When the map is not proper there is not much that can be said about its
image; the best one can hope for is the following result.

Proposition 2.5.11 ([Chi12, 3.8]). Let A be a complex analytic set and Y a
complex manifold, and suppose f : A→ Y is holomorphic.

Then f(A) is contained in a countable union of analytic subsets of Y , of
dimension not exceeding dim f .

Of a similar flavour to the Proper Mapping Theorem is the Open Mapping
Theorem, which says that if the fibres of a map have the “right” dimension
then the map is open. The reader may recall the one variable version of this
fact from a basic course in complex analysis: in that case, the statement is
that any non-constant holomorphic map f : U ⊆ C→ C is open.

Theorem 2.5.12 (Open Mapping Theorem, [Chi12, Appendix 2, Theorem 2]).
Let A be a complex analytic set and Y a complex manifold. A holomorphic
map f : A→ Y is open if and only if dim f−1(z) = dimA− dimY for every
z ∈ f(A).

An immediate corollary of the Open Mapping Theorem is the following.

Corollary 2.5.13. Let A be a complex analytic set, Y a complex manifold,
f : A→ Y holomorphic and suppose f−1(f(z)) has dimension dimA− dimY .

Then there is an open neighbourhood U of z such that f is open on z.
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Chapter 3

Complex Exponential

3.1 Introduction

This chapter is devoted to the first result we want to show: a new version
of Theorem 2.3.22, which establishes Exponential-Algebraic Closedness for
all varieties of the form L ×W where L ≤ Cn is linear and W ⊆ (C×)n is
algebraic.

Theorem (Theorem 3.7.8). Let L×W be a free rotund subvariety of Cn×(C×)n

such that L ≤ Cn is a linear space and W ⊆ (C×)n is an algebraic variety.
Then L×W ∩ Γexp 6= ∅.

The proof uses tropical geometry, a relatively young branch of mathematics
which studies subvarieties of (C×)n, or more generally of toric varieties, and in
particular their behaviour near 0 and ∞. The main idea of tropical geometry,
which was already present in old work of Bergman ([Ber71]), is that this
behaviour can be described completely using finitely many semilinear subspaces
of Rn, which intuitively correspond to the “directions” in which points on the
variety approach 0 and ∞. This results in an object called the tropicalization
of a variety (Definition 3.3.12), a finite union of semilinear spaces.

Tropical geometry is closely related to the study of amoebas, the images of
algebraic varieties under the coordinatewise logarithm of the absolute value.
These are semianalytic subsets of Rn; there is a precise sense in which if we
“look at an amoeba from far away” what we end up seeing is not that different
from a tropicalization. This will be explained in Section 3.3.

37
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Concerning the linear space L, there is an important distinction to be made
between spaces that are defined over the reals and spaces that are not. In fact,
if we consider the coordinatewise real part map Re : Cn → Rn defined as

(x1 + iy1, . . . , xn + iyn) 7→ (x1, . . . , xn)

then we have that if L is defined over the reals it satisfies L = Re(L) + iRe(L);
if it is not, then it satisfies Re(L) � Re(L) + iRe(L). Moreover, if L is defined
over the reals and not contained in any rational space, and we denote by
S1 the unit circle {z ∈ C | |z| = 1} in the complex plane, then exp(L) is
dense in exp(L) · Sn1 ; if L is not defined over the reals, on the other hand, its
exponential might even be a closed analytic subset of (C×)n (an example of
this is the subspace of C2 defined by z2 = iz1, which is discussed in several
occasions in this chapter). We will see that this easy dichotomy has meaningful
consequences, and the proofs of Theorem 3.7.8 in the two cases are quite
different.

This chapter has something of a “back-and-forth” structure, as it moves between
sections on tropical geometry, sections on Exponential-Algebraic Closedness,
and sections which combine these things to get the main proofs. More precisely,
the structure of the chapter is as follows.

In Section 3.2 we make a few remarks on specific features of this form of the
Exponential-Algebraic Closedness problem.

Section 3.3 will be dedicated to the basic properties of amoebas and tropical
geometry.

Section 3.4 moves back to the study of systems of equations, explaining how
the systems corresponding to varieties of the form L×W can be traced back
to the so-called systems of “exponential sums equations”.

In Section 3.5 we see how to use the material from the previous sections to get
the main theorem when L is defined over the reals. These first five sections form
a self-contained exposition of the proof of this first instance of the theorem.

Section 3.6 takes things further, by introducing some results due to Kazarnovskii
which describe the interaction of complex spaces with tropical geometry.

In Section 3.7 we prove that L ×W ∩ Γexp 6= ∅ even when L is not defined
over the reals, thus completing the proof of the main result of this chapter.
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Finally, in Section 3.8 we tie the results of this chapter with those of Section
2.4, discussing how Theorem 3.7.8 implies that whether or not the structure
CK is a model of the theory TK depends only on the transcendence statement.

The main results of this chapter have already appeared in the preprint [Gal22a].

3.2 Exponential-Algebraic Closedness

As already outlined in the Introduction, our goal in this chapter is to establish
a stronger result than Theorem 2.3.22, which does not need any additional
assumptions on free rotund varieties of the form L×W in which L is linear.

We want to show that if L ×W is free and rotund, with L ≤ Cn and W ⊆
(C×)n, then L ×W ∩ Γexp 6= ∅. As we have already seen in Example 2.4.4,
L×W ∩ Γexp 6= ∅ if and only if W ∩ exp(L) 6= ∅, and to prove this we aim
to understand what exp(L) looks like as a subset of (C×)n. We begin by
examining two examples.

Example 3.2.1. Let

L√2 :=
{

(z1, z2) | z2 =
√

2z1
}
,

Li := {(z1, z2) | z2 = iz1}

and
W := {(w1, w2) ∈ (C×)2 | w1 + w2 + 1 = 0}.

The varieties L√2 ×W and Li ×W will serve as our recurring examples for
this chapter.

It is clear that both varieties are free: L√2 and Li are not contained in Q-linear
subspaces of C2, and W is not contained in an algebraic subgroup of (C×)2.
They are also both rotund (in fact, for subvarieties of C2 × (C×)2, freeness
implies rotundity).

Suppose we want to find an intersection between L√2×W and Γexp, the graph
of the exponential. Then we want to find a point (z1, z2, exp(z1), exp(z2)) in
L×W , which thus has to satisfy z2 =

√
2z1 and exp(z1) + exp(z2) = 1; this is

equivalent to finding a complex number z ∈ C such that exp(z)+exp(
√

2z)+1 =
0. By abusing notation, and writing w

√
2 to mean any determination of

exp(
√

2(logw)), we can see this as looking for a point w ∈ C× such that
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w + w
√

2 + 1 = 0.

The same reasoning, of course, can be applied to Li ×W , and thus we can see
intersecting that with Γexp to be equivalent to solving w + wi + 1 = 0.

The two situations are quite different from a geometric perspective, as we now
see. For a given number w ∈ C×, all the determinations of w

√
2 form a dense

subset of the set {z ∈ C× | |z| = |w|
√

2}. In fact, if w = ρ(cos θ + i sin θ) ∈ C×

for some ρ ∈ R>0 and θ ∈ [0, 2π[ then

exp−1(w) = {x+ iy ∈ C | ex = ρ ∧ y ∈ θ + 2πZ}.

Since
√

2Z+ Z is dense in R/Z, the set

exp(
√

2exp−1(w)) = {exp(
√

2x+ i
√

2y) ∈ C× | ex = ρ ∧ y ∈ θ + 2πZ} =

=
{
ρ
√

2(cos(
√

2(θ + 2kπ)) + i sin(
√

2(θ + 2kπ))) ∈ C× | k ∈ Z
}

is dense in {z ∈ C× | |z| = |w|
√

2 = ρ
√

2} as we wanted. We see then that
exp(L√2) is dense in

exp(L√2) · S2
1 =

{
(w1, w2) ∈ (C×)2 | |w2| = |w1|

√
2
}

where S1 denotes the unit circle {z ∈ C | |z| = 1} and the operation |w1|
√

2 is
well-defined, not multivalued, as it is a real power of a real number.

On the other hand,

exp(iexp−1(w)) = {exp(−y + ix) ∈ C× | ex = ρ ∧ y ∈ θ + 2πZ} =

=
{
eθ+2kπ(cos(ρ) + i sin(ρ)) ∈ C× | k ∈ Z

}
is an infinite discrete subset of C×. Thus exp(Li) is a closed, complex analytic
subgroup of (C×)2.

An important ingredient in our proofs will be a result by Kirby which combines
the Ax-Schanuel Theorem 2.5.2 with the Remmert open mapping theorem
2.5.12. We are going to apply it to the following function.

Definition 3.2.2 (δ-map of a variety). Let V be an algebraic subvariety of
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Figure 3.1: The exponential map identifies the multiplicative group C× with
the strip {z ∈ C | 0 ≤ Im(z) ≤ 2π}, glued with itself joining the outer lines: in
other words, the multiplicative group is a cylinder. With this interpretation,
the sets of all determinations of 1

√
2 and 1i are shown in the figure: in (a) we

see the dense sets of points obtained as (2πiZ) ·
√

2 + Z, in (b) the discrete set
−2πZ.
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Cn × (C×)n. The δ-map of V is the function

δ : V → (C×)n

which maps (v1, v2) ∈ V to v2
exp(v1) .

The following fact was established by Kirby in the proof of in [Kir19b, Propos-
ition 6.2 and Remark 6.3].

Fact 3.2.3. Suppose the variety V is free and rotund. Then there is a Zariski-
open dense subset V ◦ ⊆ V such that the δ-map of V is open on V ◦.

For varieties of the form L ×W , actually, something stronger holds and we
can say more about the structure of the set V ◦.

Proposition 3.2.4. Suppose L×W is a free rotund algebraic subvariety of
Cn × (C×)n, with L a linear subspace of Cn and W an algebraic subvariety
of (C×)n. Then there is a Zariski-open dense subset W ◦ ⊆ W such that the
δ-map of L×W is open on L×W ◦.

Proof. Suppose (l0, w0) ∈ L×W is a point around which δ is open; let UL be
a neighbourhood of l0 and UW be a neighbourhood of w0 such that δ|UL×UW is
open. Let l be any point in L, and VL = (l − l0) + UL a neighbourhood of l
that is a translate of UL. Then any open subset OV of VL × UW is a translate
by ((l− l0), 1) of an open subset OU of UL ×UW . This implies that δ(OV ) is a
translate, by exp(l − l0), of δ(OU ), so an open set.

Therefore if δ is open around (l0, w0), then it is open around any point of
L× {w0}. Thus the Zariski-open dense set of Fact 3.2.3 must be of the form
L×W ◦ for some Zariski-open dense subset W ◦ of W .

Moreover, we have that openness of the δ-map at a single point is sufficient to
prove rotundity.

Proposition 3.2.5. Let L×W be an algebraic subvariety of Cn× (C×)n, with
L a linear subspace of Cn and W an algebraic subvariety of (C×)n.

If there is a point at which the δ-map of L ×W is open, then the variety is
rotund.

Proof. Suppose Q is a linear subspace of Cn. Let πQ : Cn � Cn/Q and
πexp(Q) : (C×)n � (C)×/exp(Q) denote the projections; δ the δ-map of L×W ;
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δQ the δ-map of πQ(L)× πexp(Q)(W ).

Let (l, w) ∈ L×W . We see that

δQ(πQ(l), πexp(Q)(w)) =
πexp(Q)(w)
exp(πQ(l)) =

= w · exp(Q)
exp(l) · exp(Q) = w

exp(l) · exp(Q) = πexp(Q)(δ(l, w))

and therefore the square

L×W (C×)n

(C×)n/exp(Q)πQ(L)× πexp(Q)(W )

δ

πexp(Q)πQ × πexp(Q)

δQ

commutes.

Now let (l0, w0) ∈ L ×W be the point at which δ is open, so that there are
neighbourhoods UL ⊆ L of l0 and UW ⊆ W of w0 such that δ|UL×UW is an
open map. Then we see that

δQ(πQ(UL)× πexp(Q)(UW )) = πexp(Q)(δ(UL × UW ))

and the set on the right-hand side is the projection of an open set, and thus
it has to be open. Thus the set on the left-hand side is open too, and that is
only possible if dim πQ(L) + dim πexpQ(W ) ≥ n− dimQ as we wanted.

Using this fact together with a common procedure known as the Rabinovich
trick we can make a very useful reduction, proving that we can assume without
loss of generality that if L ×W is free and rotund then the δ-map is open
everywhere.

Lemma 3.2.6. Suppose L ×W is a free rotund algebraic variety, with L a
linear subspace of Cn and W an algebraic subvariety of (C×)n. Then there is a
free rotund subvariety L′×W ′ of Cn+1×(C×)n+1 such that the δ-map of L′×W ′

is open on all the domain, and if exp(L′) ∩W ′ 6= ∅ then exp(L) ∩W 6= ∅.

Proof. Since the set of points where δ is open is of the form L×W ◦, there is
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an algebraic function F : W → C such that δ is open around each point (l, w)
for which F (w) 6= 0. Let L′ := L× C and

W ′ :=
{
(w1, . . . , wn+1) ∈ (C×)n | (w1, . . . , wn) ∈W ∧ F (w1, . . . , wn) = wn+1

}
.

Note that F must have at least one zero; if it does not, then δ is already open
on L×W .

Consider then the variety L′ × W ′. It is clear that L′ is free. If W ′ were
not free, then its points would identically satisfy a relation of the form
wk1

1 · · ·w
kn+1
n+1 = c for integers k1, . . . , kn+1 and c ∈ C. In particular, kn+1

must be non-zero (otherwise W would not be free). Thus we have that
wn+1 = (c−1w−k1

1 · · ·w−knn )−
1

kn+1 ; this would mean that F does not have any
zeros on W , contradiction.

For rotundity we use Proposition 3.2.5. Given a point in L′ × W ′, which
therefore has the form (l1, . . . , ln+1, w1, . . . , wn+1) there are neighbourhoods
UL ⊆ L and UW ⊆ W of (l1, . . . , ln) and (w1, . . . , wn) respectively such that
the δ-map of L×W is open on UL × UW . Let UL′ := UL × C, and

UW ′ := {(w1, . . . , wn+1) ∈W ′ | (w1, . . . , wn) ∈ UW }.

The image of UL′ × UW ′ under the δ-map of L′ ×W ′ is then the Cartesian
product of an open subset of (C×)n by C, i.e. an open subset of (C×)n+1:
therefore the δ-map of L′ ×W ′ is open at all of its points, and therefore the
variety must be rotund.

Finally, it is clear that if (w1, . . . , wn+1) ∈ exp(L′) ∩W ′ then (w1, . . . , wn) ∈
exp(L) ∩W .

We introduce another assumption which simplifies the proofs: we may take
dimL = codimW , so that dimL×W = n when L×W ⊆ Cn × (C×)n.

Lemma 3.2.7. Let L×W be a free rotund variety in Cn×(C×)n. Then there is
a space L′′ ⊆ L such that L′′×W is free and rotund, and dimL′′+ dimW = n.

Proof. Let δ be the δ-map of L×W ; by rotundity, δ is open around some point
(0, w) ∈ L×W . This implies that there is a point z ∈ logW , with exp(z) = w,
which lies in an irreducible component of the set logW ∩ z + L of dimension
dimL + dimW − n, by Theorem 2.5.12. For a sufficiently generic subspace
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H ≤ Cn, of dimension 2n− dimL− dimW , we will have then that

dim(logW ∩z+L∩z+H) = dimL+dimW −n+2n−dimL−dimW −n = 0

and thus z is an isolated point in it. Therefore, the δ-map of (L ∩H)×W is
open at the point (0, w): the variety (L∩H)×W is then rotund by Proposition
3.2.5 and since we H is generic we may also take it to be free. Therefore
L′′ := L ∩H satisfies the lemma.

Thus in what follows we will, when necessary, assume freely that dimL =
codimW . This will not affect the generality of our statements.

3.3 Amoebas and Tropical Geometry

In this section we introduce the basics on amoebas and tropical geometry,
focusing on the interaction between the two and on the notion of stable
intersection. In the next sections we will show how this ties to the exponential-
algebraic closedness question for varieties of the form L×W . Amoebas will
be more important in the case in which L is defined over the reals, as then
we will see that finding a point in exp(L) ∩W is as hard as finding a point in
the intersection of the real part of L with the amoeba of W . Tropicalizations
will play a more important role in the case in which L is not defined over the
reals, as then we will need a precise understanding of the behaviour of W as
its points approach 0 or ∞, which will be given by tropical geometry.

3.3.1 Amoebas

Amoebas were introduced in [GKZ94, Chapter 6] as a tool to analyse the
behaviour near 0 and ∞ of subvarieties of (C×)n. A good survey on their
properties is [Mik04a].

Denote by Log : (C×)n → Rn the map

(z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|) .

Definition 3.3.1. Let W ⊆ (C×)n be an algebraic variety. The amoeba AW
of W is the image of W under the map Log.

Figure 3.2 shows a picture of an amoeba.
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Figure 3.2: The amoeba of the algebraic variety W defined by w1 +w2 + 1 = 0.
We see that the amoeba has three “tentacles”: the diagonal one corresponds
to the behaviour of W when w1 and w2 are both very big, and thus their
absolute values are roughly the same; the vertical one corresponds to points
for which w2 is very close to 0 (and thus its logarithm to −∞) and w1 to −1;
the horizontal one to points with w1 close to 0 and w2 to −1.

An amoeba is a closed proper subset of Rn. Much of the theory of amoebas has
been carried out for amoebas of hypersurfaces; however, we will use amoebas
of varieties of arbitrary codimension. For now, we only state the following
theorem, which will help us later on to establish the tie between amoebas and
tropical varieties.

Theorem 3.3.2 ([Pur08, Corollary 5.2]). Let W ⊆ (C×)n be an algebraic
variety, and I be the ideal of polynomials which vanish on W . Then

AW =
⋂
f∈I
Af

where Af denotes the amoeba of the hypersurface cut out by f .

3.3.2 Polyhedral Geometry

In this subsection we review a few basic facts on polyhedral geometry, so that
we have all the tools to discuss tropical varieties later on.
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(0, 0) (1, 0)

(0, 1)

Figure 3.3: This triangle is a polyhedron defined by x1 + x2 ≤ 1, x1 ≥ 0 and
x2 ≥ 0. The three sides are faces induced by the vectors (1, 1), (−1, 0) and
(0,−1).

We start by recalling some of the definitions, starting with the basic notion of
polyhedron.

Definition 3.3.3. A polyhedron is a subset of Rn of the form

{x ∈ Rn | Ax ≤ b}

where A is a d × n matrix with real entries and b ∈ Rd. If the matrix has
entries in Q and b ∈ Qd we will say the polyhedron is rational.

A bounded polyhedron is called a polytope.

A face of a polyhedron P with respect to some w ∈ Rn is a subset of P of the
form

facew(P ) := {x ∈ P | w · x ≥ w · y ∀y ∈ P}.

We will denote by aff(τ) the affine span of a polyhedron.

We will deal with sets of polyhedra that enjoy good coherence properties.

Definition 3.3.4. A polyhedral complex Σ is a set of polyhedra such that:

1. If P ∈ Σ then every face of P is in Σ;

2. If P1, P2 ∈ Σ, then P1 ∩ P2 is either empty or a face of both (and thus
an element of Σ).
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The union of all polyhedra of Σ is called the support of Σ and denoted |Σ|. We
will often abuse notation and write x ∈ Σ for x ∈ Rn to mean that x ∈ |Σ|, so
there is P ∈ Σ such that x ∈ P ; when P is a polyhedron, P ∈ Σ will literally
mean that P is one of the polyhedra of Σ.

The polyhedra in a polyhedral complex are called the cells of the complex; those
which are not contained in any larger polyhedra are the facets of the complex
and the faces of a facet which are not contained in any larger polyhedron in
the complex (other than the facet itself) are called the ridges of the complex.
Obviously, by a rational polyhedral complex we will mean a polyhedral complex
all of whose polyhedra are rational.

The type of polyhedral complex that we will mostly be interested in is the
normal fan of a polytope.

Definition 3.3.5. A cone in Rn is a polyhedron P for which there exist
v1, . . . , vk ∈ Rn such that

P =
{

k∑
i=1

λivi | λ1, . . . , λk ∈ R≥0

}
.

A fan is a polyhedral complex Σ such that all polyhedra in Σ are cones.

Definition 3.3.6. Let P be a polytope. The normal fan of P is the polyhedral
complex which contains for every face F of P the polyhedron obtained as the
closure (in the Euclidean topology on Rn) of the set

{w ∈ Rn | F = facew(P )} .

The (n− 1)-skeleton of the normal fan is the polyhedral complex obtained by
removing the polyhedra of dimension n from the the normal fan.

We will see in the next subsection that tropicalizations of algebraic varieties
are polyhedral complexes which enjoy strong structural properties.

We are also interested in the notion of mixed volume of a collection of polytopes.
First we recall how to perform standard operations on subsets of Euclidean
space.
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Figure 3.4: (The support of) the normal fan of the polytope of Figure 3.3:
the normal cone to the full triangle, which is the face of (0, 0), is the origin;
the normal cones to the sides of the triangles are the three half-lines; and the
normal cones to the three vertices of the triangles are the portions of space in
between the half-lines. Each of the normal cones (except the origin) has been
labelled to show which face of the polytope it is normal to. Considering only
the origin and the three half-lines, we obtain the 1-skeleton of the complex.
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Definition 3.3.7. Let A,B ⊆ Rn. The Minkowski sum of A and B is the set

A+B := {a+ b ∈ Rn | a ∈ A, b ∈ B}.

If λ ∈ R, then
λA := {λa ∈ Rn | a ∈ A}.

We define the normalized volume of a polytope P ⊆ Rn to be the standard
Euclidean volume multiplied by n!. This is so that the smallest simplex with
integer vertices in Rn has volume 1.

We then use the following fact. It is proved in [MS15, Proposition 4.6.3]
under the stronger assumption that the polytopes have integer vertices to draw
the stronger conclusion that the resulting polynomial has integer coefficients;
however, the same proof will yield the statement that we give here.

Proposition 3.3.8. Let P1, . . . , Pr be polytopes in Rn. The normalized volume
of the polytope λ1P1 + · · ·+ λrPr is a homogeneous polynomial in λ1, . . . , λr of
degree n.

This allows us to give the following definition of mixed volume.

Definition 3.3.9. Let P1, . . . , Pn be polytopes in Rn. The mixed volume of the
polytopes, denoted MV(P1, . . . , Pn) is the coefficient of the unique square-free
monomial λ1 · · ·λn in the polynomial obtained in Proposition 3.3.8.

We will see later on how to relate the mixed volumes of a collection of polytopes
to the intersection of the (n− 1)-skeletons of their normal fans.

3.3.3 Tropicalizations

Tropical geometry is the heart of this section. Here we will introduce tropical
varieties and show how to interpret them as limits of amoebas; we will also
state part of the Structure Theorem, a fundamental result in tropical geometry
which establishes structural properties of tropical varieties.

There are several equivalent ways to define tropical varieties. We choose the
approach based on initial forms of polynomials, as it is going to be the most
convenient one to discuss tropical compactifications later on (in Section 3.7).

The initial forms of a Laurent polynomial with complex coefficients can be
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thought of as limit forms that the polynomial takes when it is evaluated at
some point w ∈ (C×)n, some of whose coordinates approach 0 or ∞.

In the next definition we use multi-index notation: for k ∈ Zn, we use wk to
mean the monomial wk1

1 · · ·wknn .

Definition 3.3.10. Let x ∈ R, and let f be a Laurent polynomial in n

variables, so f ∈ C[w±1
1 , . . . , w±1

n ]. Write f as

f :=
∑
k∈S

ckw
k

for some finite subset S ⊆ Zn. The initial form of f with respect to x is the
polynomial

inx(f) :=
∑
k∈Kx

ckw
k

where Kx is the set

Kx := {k ∈ K | x · k ≥ y · k ∀y ∈ K}.

If I is an ideal in the ring of Laurent polynomials, then inx(I) denotes the set
of initial forms of polynomials in f .

Example 3.3.11. To see an example of how to take initial forms, consider the
polynomial f := w1 +w2 + 1. For this, the set K is the set {(1, 0), (0, 1), (0, 0)}.
Hence, it is easy to see that:

1. If x has x1, x2 < 0, then x · (0, 0) is bigger than x · (1, 0) and x · (0, 1);
thus the initial form of f is 1.

2. If x1 − x2 > 0 and x1 > 0, then the largest scalar product is x · (1, 0);
thus the initial form of f is w1.

3. Similarly, if x1 − x2 < 0 and x2 > 0 then we obtain w2 as an initial form.

4. If x1 = x2, and both are positive, the maximum is obtained twice as
x · (1, 0) = x · (0, 1). Therefore the initial form is w1 + w2.

5. If x1 = 0 and x2 < 0 then x · (1, 0) = x · (0, 0) and both are larger than
x · (0, 1), so the initial form is w1 + 1.

6. In the same way, if x2 = 0 and x1 < 0 then the initial form is w2 + 1.
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7. Finally, if x = (0, 0) then the initial form of f is f itself as all scalar
products are the same.

It is clear that the regions we chose form a partition of R2, and that they are
in fact the relative interiors of the polyhedra that we see in Figure 3.4.

The idea of initial forms is that if we plug in very large or very small values
for some of the variables of a polynomial, then the value of the polynomial has
no hope of being zero unless there are at least two monomials that are roughly
of the same size. Thus, most of the time, the value of the polynomial will be
decided simply by the fact that one of the monomials takes a much larger value
than the others. This motivates the following definition of tropical variety.

Definition 3.3.12. Let W ⊆ (C×)n be an algebraic variety, and let I be the
ideal of Laurent polynomials which vanish on W . Then the tropicalization
Trop(W ) of W is the subset of Rn defined as

{x ∈ Rn | inx(I) 6= 〈1〉}.

Remark 3.3.13. As the ideal is taken in the ring of Laurent polynomials, an
ideal is the whole ring if and only if it is generated by monomials, as these are
the invertible elements there. Hence the tropical variety of W can be defined
as the set of x’s for which the initial ideal of I is not a monomial ideal.

Example 3.3.14. It is clear at this point that the tropicalization of the
algebraic variety

W := {(w1, w2) ∈ (C×)2 | w1 + w2 + 1 = 0}

is the (n− 1)-skeleton of the polyhedral complex shown in Figure 3.4.

As we mentioned above, there are several ways to define tropical varieties,
the equivalence of which is known as the Fundamental Theorem of Tropical
Algebraic Geometry ([MS15, Theorem 3.2.5]). Here we state just part of it.

Theorem 3.3.15 ([MS15, Theorem 3.2.5]). Let W ⊆ (C×)n be an algebraic
variety, I the ideal of Laurent polynomials which vanish on W . Then

Trop(W ) =
⋂
f∈I

Trop(V (f))
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where V (f) denotes the hypersurface cut out in (C×)n by f .

Theorem 3.3.15 is obviously very similar to the corresponding result for amoebas
(Theorem 3.3.2). The comparison between the two allows us to make precise
the idea of tropical varieties being “nonstandard amoebas”, in the sense that
they can be thought of as amoebas where the base of the logarithm is infinite.

First, we recall what we mean by Hausdorff metric.

Definition 3.3.16. Let A,B ⊆ Rn be closed sets, and let d denote the standard
Euclidean metric on Rn. The Hausdorff distance between A and B is defined
as

dHaus(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

where d(x, Y ) denotes the usual Euclidean distance between the point x and
the set Y .

We will call Hausdorff topology the topology induced on the space of closed
sets of Rn by this metric, and we will say that a set S is the Hausdorff limit of
a sequence {Sj}j∈ω if the sequence converges to S in the Hausdorff topology.
It is clear by the definition that dHaus is a metric, not a pseudometric, and
therefore the topology is T2: Hausdorff limits are unique.

For t ∈ R, denote by Logt : (C×)n → Rn the map

(w1, . . . , wn) 7→ (logt |w1|, . . . , logt |wn|)

and for an algebraic variety W denote by AtW the image of W under Logt (so
that the usual map Log coincides with Loge and the usual amoeba AW with
AeW ).

The limit of the amoebas in base t of a variety, for t going to infinity, is the
tropicalization.

Theorem 3.3.17. For t → ∞, the sets AtW converge to Trop(W ) in the
Hausdorff metric.

Proof. An easy proof for hypersurfaces is given in [Mik04b, Corollar 6.4].
For varieties of arbitrary codimension it is a harder problem, see [Jon16,
Theorem A].
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We finish this section by reviewing a few more results in tropical geometry
which describe structural properties of tropical varieties.

Definition 3.3.18. A polyhedral complex is pure if all its facets (i.e. all the
polyhedra which are not faces of larger polyhedra in the complex) have the
same dimension.

Thus for pure complexes it makes sense to talk about the dimension of the
complex, meaning the dimension of the facets. Part of the Structure Theorem
asserts that the tropicalization of an algebraic variety of (complex) dimension
d is a pure polyhedral complex of (real) dimension d.

Theorem 3.3.19 (Part of the Structure Theorem, [MS15, Theorem 3.3.6]).
Let W ⊆ (C×)n be an algebraic variety of dimension d. Then Trop(W ) is a
pure polyhedral complex of dimension d.

Definition 3.3.20. Let Σ be a polyhedral complex, τ a polyhedron in Σ. The
star starτ (Σ) is the polyhedral complex formed by the polyhedra of the form

σ′ := {λ(x− y) | λ ≥ 0, x ∈ τ, y ∈ σ}

for each polyhedron σ ∈ Σ that τ is a face of (including τ = face0(τ)).

Example 3.3.21. If Σ is the 1-skeleton of the polyhedral complex in Figure
3.4, then the star of each half-line is the line that contains it.

We recall the result which states that the star of a cell in Trop(W ) is the
tropicalization of an initial variety of W and review some of its consequences.

Lemma 3.3.22 ([MS15, Lemma 3.3.7]). Let Σ be the polyhedral fan supported
on Trop(W ). Suppose τ ∈ Σ is a face, and w ∈ relint(τ). Then starτ (Σ) =
Trop(inw(W )).

As the star depends on the face, and not on the point, this implies that the
initial variety inw(W ) is constant as w varies in the relative interior of a face.
Therefore, we can give the following definition.

Definition 3.3.23. Let Σ be the polyhedral fan supported on Trop(W ), τ ∈ Σ.
We denote by Wτ the initial variety inw(W ) for every w ∈ relint(τ).

We should remark that initial varieties of irreducible varieties are not necessarily
irreducible.
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Note that if τ is a facet of Σ then by definition the star of τ in Σ is a linear
space (the linear span of τ) and therefore the tropicalization of the initial
variety Wτ is a subspace of Rn. This implies that Wτ is a finite union of cosets
of an algebraic subgroup of (C×)n.

Example 3.3.24. Thinking back about Example 3.3.11, we see how in that
case the four non-monomial initial forms of the polynomial correspond to the
four polyhedra in the 1-skeleton of the fan (three half-lines and the origin).

Finally, we consider the following proposition, according to which the initial
variety ofW ⊆ (C×)n with respect to the face τ is invariant under multiplication
by elements in the image under exp of the complex space generated by τ .

Proposition 3.3.25. Let W ⊆ (C×)n be an algebraic variety, τ ∈ Trop(W ) a
face of its tropicalization, τC the complex subspace of Cn generated by τ (seen
as a subset of Rn ⊆ Cn).

Then Wτ is invariant under translation by elements of exp(τC).

Proof. This is a consequence of [MS15, Corollary 3.2.13], which introduces a
notion of tropicalization for monomial maps and shows that monomial maps
commute with tropicalizations. Since quotienting by an algebraic subgroup of
(C×)n can be seen as a monomial map, this result implies that the dimension
of Wτ/exp(τC) is equal to the dimension of Wτ , which is therefore invariant
under translation by elements of exp(τC).

3.3.4 Stable Intersections

Finally, we introduce stable intersections, intersections between polyhedral
complexes which are preserved under small perturbations. Our approach is
slightly different from the one in [MS15, Section 3.6], as they also care about
the multiplicities of the polyhedra in a complex, which we have not defined
and will not need.

Hence, our definition of stable intersection will be as follows.

Definition 3.3.26. Let Σ1, Σ2 be polyhedral complexes in Rn. The stable
intersection of Σ1 and Σ2, denoted Σ1 ∩st Σ2, is the polyhedral complex
consisting of polyhedra of the form σ1 ∩ σ2, where σi ∈ Σi for i = 1, 2 and
dim(σ1 + σ2) = n.
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Σl

Figure 3.5: The stable intersection of the usual polyhedral complex Σ with the
line l is {0}: each facet intersects the line transversely. The stable intersection of
Σ with, say, the x-axis is still {0}: although the x-axis intersects the horizontal
facet, the Minkowski sum of the facet and the axis does not have dimension 2,
and so the intersection does not count towards the stable intersection.
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In “classical” tropical geometry, the main interest in stable intersections comes
from this fact, which ties the combinatorial definition to its geometric meaning.

Fact 3.3.27 ([MS15, Theorem 3.6.1]). Let W1,W2 ⊆ (C×)n be algebraic
varieties. Then Trop(W1) ∩st Trop(W2) 6= ∅ if and only if the set

{w ∈ (C×)n | w ·W1 ∩W2 6= ∅}

is Zariski-open dense in (C×)n.

We will see how to obtain a version of this fact for intersections of the form
exp(L) ∩W with L ≤ Cn, rather than W1 ∩W2.

To do so, we are going to need to connect the notion of stable intersection to
the mixed volume of a collection of polytopes. Thus, we conclude this section
by stating a theorem which goes in that direction.

Theorem 3.3.28 ([MS15, Theorem 4.6.9]). Suppose P1, . . . , Pr are polytopes
in Rn with integer vertices and Σ1, . . . ,Σr are the (n − 1)-skeletons of their
normal fans. Fix w ∈ Rn, and let Qi := facew(Pi).

Then w ∈ Σ1 ∩st . . . ∩st Σr if and only if for every J ⊆ {1, . . . , r} we have
dim

(∑
j∈J Qj

)
≥ |J |, if and only if the r-dimensional mixed volume of the

faces MV(Q1, . . . , Qr) is non-zero.

3.4 Exponential Sums Equations

In this section we introduce the framework of exponential sums equations. This
is a natural way to interpret the question of exponential-algebraic closedness
for varieties of the form L×W , and allows us to talk about Newton polytopes
and related objects.

Let
(Cn)∨ := {ϕ : Cn → C | ϕ is linear}

denote the usual dual space of the complex vector space Cn. Note that we
can easily talk about convexity in this space: given two functions ϕ1, ϕ2, the
segment between ϕ1 and ϕ2 is the set {(1− t)ϕ1 + tϕ2 | t ∈ [0, 1]}, and a set is
convex if it contains the segment between any two of its elements. As usual,
the convex hull of a set is the smallest convex set which contains it.
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Definition 3.4.1. An exponential sum is a function f : Cn → C of the form

z 7→
∑
ϕ∈S

cϕexp(ϕ(z))

where S ⊆ (Cn)∨ is a finite set, and cϕ ∈ C for each ϕ.

The Newton polytope of the exponential sum f is the convex hull of S in (Cn)∨.

Of course systems of exponential sums equations can take very different forms,
but we are only interested in the ones we can attach to varieties of the form
L×W .

A variety W ⊆ (C×)n is defined by a system of Laurent polynomial equations,
so equations of the form ∑

j∈S
cjw

j = 0

where S ⊆ Zn is a finite subset. It is clear that any Laurent polynomial can be
seen as an exponential sum of the form

∑
j∈S

cjexp(j · z) = 0

where j · z = j1z1 + · · ·+ jnzn denote the usual scalar product. The system
of exponential sums obtained from the Laurent polynomials which define W
clearly defines the complex analytic subset logW of Cn.

As for the linear space L ≤ Cn, this is defined by linear equations such as
λ1z1+· · ·+λnzn = 0. Clearly, the function ϕλ : (z1, . . . , zn) 7→ λ1z1+· · ·+λnzn
is an element of (Cn)∨, and therefore, L is the unique irreducible component
containing 0 of the complex analytic set defined by the exponential sums

exp(ϕλ(z))− 1 = 0.

This larger set is a countable union of translates of L.

Definition 3.4.2. Let L ≤ Cn be a linear space defined by equations ϕλ(z) = 0,
W ⊆ (C×)n an algebraic variety defined by equations ∑j∈S cjw

j .

The system of exponential sums attached to L×W is the system defined by the
corresponding equations of the form exp(ϕλ(z)) = 1 and ∑j∈S cjexp(j · z) = 0.

It is useful to associate a system of exponential sums to the variety L ×W
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because it allows us to give a characterization of rotundity of the pair in terms
of the Newton polytope of the system; this is similar to [Zil02, Lemma 3] (with
its converse) but we state it in a slightly different way.

Definition 3.4.3. Let V be a vector space of dimension n, and let A1, . . . , An

be finite subsets of V . We say that A1, . . . , An satisfy the Rado property if
there is a basis {v1, . . . , vn} of V such that vj ∈ Aj for each j.

This property is named after the classical result known as Rado’s Theorem on
Independent Transversals:

Theorem 3.4.4 ([Rad42, Theorem 1]). Let A1, . . . An be finite subsets of a
vector space V of dimension n. Then the span of

⋃
j∈J Aj has dimension at

least |J | for each subset J ⊆ {1, . . . , n} if and only if A1, . . . , An satisfy the
Rado property.

For a subspace L ≤ Cn, we denote as usual by L⊥ the subspace of the dual
space defined as

L⊥ := {ϕ ∈ (Cn)∨ | ϕ(z) = 0∀z ∈ L}.

For a polytope P ⊆ (Cn)∨, we denote by v(P ) the finite set of its vertices (its
0-dimensional faces).

Lemma 3.4.5. Let L ≤ Cn be a linear space of dimension d, and W ⊆ (C×)n

a variety of codimension d defined by polynomials f1, . . . , fd with Newton
polytopes P1, . . . , Pd. Let πL⊥ : (Cn)∨ � (Cn)∨/L⊥ denote the projection.

Then the variety L ×W is rotund if and only if πL⊥(v(P1)), . . . πL⊥(v(Pd))
satisfy the Rado property.

Proof. Suppose the projections of the vertex sets do not satisfy the Rado
property. Then by Theorem 3.4.4, after renumbering the polytopes there is k ≤
d such that πL⊥(P1), . . . , πL⊥(Pk) are contained in a subspace T ≤ (Cn)∨/L⊥

of dimension dimT < k. We may take T to be πL⊥(S), with S the span of
P1, . . . , Pk in (Cn)∨. Since all the sets v(Pj) are sets of integer vectors, S is
defined over Q.

Therefore, as dim(πL⊥(S)) < k, we must have dimS − dim(L⊥ ∩S) < k. As is
well-known, taking the annihilator of subspaces in (Cn)∨ yields spaces which
are isomorphic to spaces in Cn - namely, we canonically have that (L⊥)⊥ ∼= L
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and S⊥ is isomorphic to (and will then be identified with) a rational subspace
of Cn. Under these identifications we have (L⊥ ∩S)⊥ = L+S⊥. Then we have

dim(πS⊥(L)) = dimL− dim(L ∩ S⊥) =

= n− dimL⊥ − (n− dim(L⊥ + S)) =

= dimL⊥ + dimS − dim(L⊥ ∩ S)− dimL⊥ =

= dimS − dim(L⊥ ∩ S) = dim(πL⊥(S)).

Hence we have dim(πS⊥(L)) = dim(πL⊥(S)) < k.

Consider now the algebraic subgroup exp(S⊥) of (C×)n. Since S is the span
of polytopes P1, . . . , Pk, the quotient of the variety W under exp(S⊥) must
have codimension at least k, as the quotient of each of the hypersurfaces cut
out by f1, . . . , fk is still a hypersurface (cut out by a polynomial with Newton
polytope πS⊥(Pj)). Therefore,

dim(πexp(S⊥)(W )) ≤ dimS − k.

Hence, we find that there is a rational subspace S⊥ ≤ Cn such that

dim(πS⊥(L)) + dim(πexp(S⊥)(W )) < k + dimS − k = n− dimS⊥

which contradicts the definition of rotundity. Hence if the polytope projections
do not satisfy the Rado property then L×W is not rotund, establishing one
direction of the lemma.

Now assume the projections of the vertex sets of the polytopes satisfy the Rado
property, and let S⊥ ≤ Cn be the annihilator of some rational subspace S of
(Cn)∨ (we introduce S⊥ as an annihilator rather than by itself to maintain
consistency in the proof - this way, in both directions S⊥ is a subspace of
Cn and S of (Cn)∨). Consider the variety πexp(S⊥)(W ): this has dimension
dimS − k for some k ≥ 0.

After renumbering the polytopes we may assume that πS⊥(P1), . . . , πS⊥(Pk)
are Newton polytopes for πexp(S⊥)(W ). Replacing, if necessary, the polynomials
f1, . . . , fk by other elements of the ideal of polynomials which vanish on W we
may assume without loss of generality that P1, . . . , Pk ⊆ S: hence, by the Rado
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property of the sets πL⊥(v(P1)), . . . , πL⊥(v(Pk)), we have dim(πL⊥(S)) ≥ k.

We have proved above that dim(πL⊥(S)) = dim(πS⊥(L)), and as a consequence
dim(πS⊥(L)) ≥ k. Thus,

dim πS⊥(L) + dim πexp(S⊥)(W ) ≥ k + dimS − k = dimS = n− dimS⊥.

As S⊥ was arbitrary, this establishes rotundity of the variety.

Corollary 3.4.6. Let L ×W ⊆ Cn × (C×)n be a variety with L linear and
dimL+ dimW = n.

Then L ×W is rotund if and only if the Newton polytopes of the associated
system of exponential sums satisfy the Rado property. If L is defined over the
reals, this is equivalent to the polytope having non-zero mixed volume.

Proof. The first assertion is an immediate consequence of Lemma 3.4.5. For
the second one apply [MS15, Lemma 4.6.6], which ties mixed volume to the
Rado property.

3.5 Raising to Real Powers

In this section we establish the main result of the chapter for varieties of the
form L×W , where L is defined over the real numbers; we are going to do so
using a density property of sets of the form exp(L). Throughout this section,
even when not explicitly stated, we assume that the space L is defined over R
(we say it is R-linear, and more generally given a field K ⊆ C, by a K-linear
subspace of Cn we mean a subspace of Cn defined over K).

Recall that S1 denotes the unit circle {z ∈ C | |z| = 1}.

Proposition 3.5.1. Let L ≤ Cn be an R-linear space that is not contained in
any Q-linear space. Then exp(L) is dense in exp(L) · Sn1 .

Proof. Let Re(L) denote the set {Re(l) ∈ Rn | l ∈ L}. Since L is R-linear, we
have L = Re(L) + iRe(L).

Since L is not contained in any Q-linear subspace of Cn, Re(L) is not contained
in any Q-linear subspace of Rn. Therefore, exp(iRe(L)) is dense in Sn1 : to see
this, consider Sn1 as Rn/2πiZn, and exp(iRe(L)) as Re(L) + 2πiZn: as Re(L)
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is not contained in any rational subspace, this is not contained in any proper
closed subgroup, and is therefore dense. Thus the lemma holds:

exp(L) = exp(Re(L)) · exp(i(Re(L)))

which is dense in exp(L) · Sn1 .

The set exp(L) · Sn1 can easily be related to the material discussed in the
previous section.

Proposition 3.5.2. Let L be an R-linear subspace of Cn. Then:

1. exp(L) · Sn1 = Log−1(Re(L)).

2. If W is an algebraic subvariety of (C×)n, then AW ∩ Re(L) 6= ∅ if and
only if W ∩ exp(L) · Sn1 6= ∅.

Proof. Part 1 is straightforward: w ∈ exp(L) · Sn1 if and only if there is l ∈ L
such that

(|w1|, . . . , |wn|) = (|exp(l1)|, . . . , |exp(ln)|) =
(
eRe(l1), . . . , eRe(ln)

)
if and only if Log(w) ∈ Re(L).

Part 2 follows by a similar argument: both statements are true if and only if
there is (l, w) ∈ L×W such that w

exp(l) ∈ S
n
1 .

We will now see that thanks to Lemma 3.2.6 it is sufficient to intersect AW
and Re(L) to find an intersection between exp(L) and W .

Let (∗) denote the following assumption: for every free rotund variety of the
form L×W , Re(L) ∩ AW 6= ∅.

Lemma 3.5.3. Suppose assumption (∗) holds.

Then for every free rotund variety of the form L×W , exp(L) ∩W 6= ∅.

Proof. By Lemma 3.2.6, we can assume without loss of generality that the
δ-map of L ×W is open. By Proposition 3.5.2 and the assumption (∗), we
know that exp(L) · Sn1 ∩W 6= ∅. Clearly, this implies that the image im(δ) of
the δ-map intersects Sn1 . As im(δ) is open, this means that actually there is an
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open subset of Sn1 contained in im(δ): thus, as exp(iRe(L)) is dense in Sn1 , it
must be the case that im(δ) ∩ exp(iRe(L)) 6= ∅.

Hence there is a point (l, w) ∈ L×W such that w
exp(l) ∈ exp(iRe(L)) ≤ exp(L):

this implies that w ∈ exp(L).

Hence, Lemma 3.5.3 means that we only need to prove that the assumption
(∗) holds to establish the result.

Remark 3.5.4. The reader who is familiar with [Kir19b] will notice that
assumption (∗) says, in the language of that paper, that all free rotund
varieties L×W intersect the blurring of Γexp by Sn1 , and Lemma 3.5.3 says that
intersecting these varieties with the blurred graph is equivalent to intersecting
them with the actual graph.

To intersect Re(L) and AW we will use a classical result of Khovanskii to show
that given any free rotund pair L×W we can findW ′ such that exp(L)∩W ′ 6= ∅
and AW ′ = AW .

Recall from Definition 3.4.2 that if L ≤ Cn is a linear space and W ⊆ (C×)n

an algebraic variety, the system of exponential sums attached to L×W is the
system of equations:



exp(λ1,1z1) · · · exp(λ1,nzn) = 1
...

exp(λd,1z1) · · · exp(λd,nzn) = 1∑
j∈S1 cjexp(j · z) = 0

...∑
j∈Sn−d exp(j · z) = 0

We recall the definition of a coherent set of faces in a collection of polyhedra,
and of a shortening of a system. These can be found in [Kho91, Section 3.13]
(the set of faces is called concordant there) and in [Zil02, Section 6].

Definition 3.5.5. Let P1, . . . , Pk ⊆ Rn be convex polytopes. A coherent set
of faces of P1, . . . , Pk is a set of polytopes Q1, . . . , Qk for which there is w ∈ Rn

such that
Qj = facew(Pj)
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for each j.

Definition 3.5.6. Let f1 = · · · = fk = 0 be a system of exponential sums
equations. Let Pj be the Newton polytope of fj for each j, and suppose
Q1, . . . , Qk is a coherent set of faces of P1, . . . , Pk.

The shortening of the system associated to Q1, . . . , Qk is the system g1 = · · · =
gk = 0, where

gj =
∑

ϕ∈S∩Qj
cϕexp(ϕ(z))

for each j.

Note that by definition the Newton polytope of the exponential sum f ′j is Qj
for each j.

Example 3.5.7. A shortening describes the behaviour of the system of ex-
ponential sums as some of the variables approach infinity. As an example,
consider the exponential sums

f1(z1, z2) = exp(z1) + exp(z2)

f2(z1, z2) = exp(z1) + exp(z2) + 1.

Then P1 = conv{(1, 0), (0, 1)} and P2 = conv{(1, 0), (0, 1), (0, 0)}. P1 then has
three faces (the two points (1, 0) and (0, 1) and P1 itself), which are obtained
as facew(P1) for w equal to (−1, 0), (0,−1) or (1, 1) respectively.

It is easy to see that each of these induces a face of P2: face(−1,0)(P2) =
conv{(0, 0), (0, 1)}, face(1,1)(P2) = P1, and face(0,−1)(P2) = conv{(0, 0), (1, 0)}.
This means that there are three coherent sets of faces of P1 and P2, and thus
the system has three shortenings:

exp(z1) = 0

exp(z1) + 1 = 0

and exp(z2) = 0

exp(z2) + 1 = 0
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which are obviously inconsistent as 0 /∈ im(exp), and
exp(z1) + exp(z2) = 0

exp(z1) + exp(z2) = 0

which defines a curve.

Definition 3.5.8. Let G ⊆ Rn be an open set. A system of exponential sums
is non-degenerate at infinity in the domain Rn + iG if:

1. All solutions of the system in the domain are isolated;

2. All shortenings of the system do not have solutions in Rn + iG.

Solvability of non-degenerate at infinity systems of exponential sums has been
established long ago. In particular, we have the following result of Zilber.

Theorem 3.5.9 ([Zil02, Theorem 4] and subsequent discussion; see also [Kho91,
Theorem 3.13.1]). Let f1 = · · · = fn = 0 be a system of exponential sums. If
there are arbitrarily large balls G ⊆ Rn such that the system is non-degenerate
at infinity in Rn + iG, then the system has a solution.

We are going to show that given a variety L×W whose δ-map is open, there
is s ∈ Sn1 such that:

1. As·W = AW ;

2. The system of exponential sums associated to L× s ·W is non-degenerate
at infinity in Cn.

This will allow us to use Theorem 3.5.9 to find the intersection between Re(L)
and AW that we are looking for.

First of all, for a change, we notice a feature of varieties that are not rotund.
For this, we are going to use a simple property of holomorphic functions in
several variables.

Proposition 3.5.10. Let U ⊆ Cn be an open set such that U ∩ Rn 6= ∅, and
assume f : U → C is a non-zero holomorphic function. Then f does not vanish
on U ∩ Rn.

Proof. By induction on n. If n = 1, then it follows from the fact that zeros of
holomorphic functions are isolated.
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If n > 1, assume f vanishes on every point of U ∩ Rn. Let π : U → C be the
projection on the last coordinate, and π′ : U :→ Cn−1 the projection on the first
n−1 coordinates. For r ∈ π(U ∩Rn) consider the function fr : π′(π−1(r))→ C
defined by (z1, . . . , zn−1) 7→ f(z1, . . . , zn, r). Since f vanishes on U ∩ Rn, fr
vanishes on π′(π−1(r))∩Rn−1 for all r, and therefore by the inductive hypothesis
all functions fr are identically zero.

Therefore f vanishes on the set ⋃r∈π(U∩Rn) π
−1(r). As this has real codimension

1 in U , and the zero-locus of f must be a complex analytic set, f is identically
zero.

Corollary 3.5.11. Let f : (C×)n → C be a non-zero holomorphic function.
Then f does not vanish on any open subset of Sn1 .

Proof. Apply the previous proposition to the function f(exp(iz)) : U → C for
every U ⊆ Cn which intersects Rn.

Lemma 3.5.12. Let {Lj ×Wj | j ∈ ω} be a countable set of non-rotund vari-
eties, and let δj be the δ-map of Lj ×Wj for each j. Then Sn1 *

⋃
j∈ω im(δj).

Proof. By Proposition 2.5.11, the image of a complex analytic function f :
A→ B is contained in a countable union of complex analytic subsets of B, of
dimension at most dimA−min{dim f−1(b) | b ∈ B}.

In this case then consider δj : Lj×Wj → (C×)n. Since Lj×Wj is not rotund, its
image has empty interior, and the fibres of δj need to have positive dimension.
Thus, the image of each δj must be contained in a countable union of analytic
subsets of (C×)n of positive codimension. By Corollary 3.5.11, all of these
function do not vanish on open subsets of Sn1 : therefore the union of their
images cannot cover the whole set. This stays true if we consider countably
many δ’s at once.

We recall that for this kind of variety, w /∈ im(δ) is equivalent to exp(L)∩w−1 ·
W = ∅.

We now examine shortenings of systems associated to varieties of the form
L×W .

Lemma 3.5.13. Let f1 = · · · = fn = 0 be a system of exponential sums
equations associated to a variety of the form L×W , so for all j we have that
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fj can be rewritten as a Laurent polynomial (all exponents are integers) or it
has only two terms.

Then for any shortening of the system, one of the following holds:

1. There is j for which the shortened equation f ′j has the form exp(ϕ(z)) = 0,
and is thus inconsistent;

2. The shortened system is associated to L×Wτ for an initial variety Wτ

of W such that L×Wτ is not rotund.

Proof. Assume the first condition does not hold; then all faces in the coherent
set Q1, . . . , Qn which defines the shortening are positive dimensional. In
particular, all polytopes of the equations defining L appear among the Qj ’s,
and so the system defines L×W ′ for some initial variety W ′ of W .

However, all the faces are contained in translates of the same hyperplane,
and therefore the mixed volume MV(Q1, . . . , Qn) has to be zero by [MS15,
Lemma 4.6.6]. So the variety is not rotund by Corollary 3.4.6.

Thus we may prove the following result.

Lemma 3.5.14. Let L ×W be a free rotund variety whose δ-map is open.
Then there is s ∈ Sn1 such that the system defining L× s ·W is non-degenerate
at infinity in Cn.

Proof. Since the δ-map is open, all of its fibres are discrete: therefore all
intersections L∩ z+ logW are isolated, and the first condition in the definition
of non-degeneracy at infinity is satisfied for all systems associated to varieties
of the form L× w ·W for w ∈ (C×)n.

Consider now all shortenings of the system corresponding to L×W. We saw
in Lemma 3.5.13 that there are two kinds; let us focus on the second kind,
namely the one associated to L×Wτ for some initial variety Wτ of W.

This system defines (⋃
t∈T

t+ L

)
∩ logWτ

for a countable set T . Each translate t + L intersects logWτ if and only if
exp(t) ∈ im(δτ ) where δτ is the δ-map of L×Wτ .
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By Lemma 3.5.12, there is s ∈ Sn1 such that for each t ∈ T , s · exp(t) does not
lie in the image of δτ for each shortening of this kind: therefore, exp(t) does
not lie in the image of the δ-map of L× s−1 ·Wτ for every t ∈ T and for every
shortening.

Since s−1 ·Wτ = (s−1 ·W )τ , this means that all shortenings of the second kind
of the system are inconsistent. The shortenings of the first kind are always
inconsistent, as they equate the exponential of something to 0, and therefore
the system associated to L× s−1 ·W is non-degenerate at infinity in Cn.

It is immediate that if s ∈ Sn1 then As·W = AW . Therefore, we obtain the
desired point in Re(L) ∩ AW .

Lemma 3.5.15. Let L×W be a variety whose δ-map is open. Then Re(L) ∩
AW 6= ∅.

Proof. By Lemma 3.5.14, there is s ∈ Sn1 such that the system associated to
L × s ·W is non-degenerate at infinity in Cn; therefore by Theorem 3.5.9 it
has a solution.

If a point z solves this system, then Re(z) ∈ Re(L): the exponential sums
associated to L take the form exp(ϕλ(z)) = 1, and if ϕλ is a real function
then it needs to be the case that λ · Re(z) = 0. We have already noticed that
Re(z) ∈ As·W = AW , and therefore Re(z) ∈ Re(L) ∩ AW .

Theorem 3.5.16. Let L×W be a free rotund variety, L ≤ Cn linear defined
over the reals. Then exp(L) ∩W 6= ∅.

Proof. It follows from the combination of Lemmas 3.5.3 and 3.5.15.

The Rabinovich trick (which we have already used to show that the δ-map can
be assumed to be open) actually implies that the intersection between exp(L)
and W is Zariski-dense in W .

Corollary 3.5.17. Let L×W be a free rotund variety, L ≤ Cn defined over
the reals. Then exp(L) ∩W is Zariski-dense in W .

Proof. Let F : W → C be an algebraic function: then {w ∈W | F (w) 6= 0} is



Complex Tropical Geometry 69

a Zariski-open subset of W . Define

W ′ := {(w1, . . . , wn+1) ∈ Cn | (w1, . . . , wn) ∈ Cn ∧ wn+1 = F (w1, . . . , wn)}.

Then (L×C)×W ′ is a free rotund subvariety of Cn+1×(C×)n+1, and therefore
there is a point in exp(L×C)∩W ′, i.e. a point (w,wn+1) with w ∈ exp(L)∩W
and 0 6= wn+1 = F (w). Hence, w ∈ exp(L) ∩ {w ∈ W | F (w) 6= 0}, as we
wanted.

3.6 Complex Tropical Geometry

If we try to extend our result to all varieties of the form L × W with L

linear (so without any assumptions on the field of definition of L) we run
into some obvious issues - the first of which is the fact that, for such an L,
exp(L) is not dense in exp(L) · Sn1 . The easiest example of this is the space
L = {(z1, z2) ∈ C2 | z2 = iz1}: in this case exp(L) is a closed 1-dimensional
analytic subgroup of (C×)2, while exp(L) · S2

1 = (C×)2. This obviously makes
it harder to find good approximate solutions.

However, a second aspect to be taken into consideration is the fact that if L
is not defined over R then L � Re(L) + iRe(L); and in particular, dimC L <

dimRRe(L). Thus, if we are given a free rotund variety L×W , with dimL =
codimW , then we find that Re(L)∩st Trop(W ) must be a positive dimensional
polyhedral complex. Vaguely, this can be interpreted to mean that “there are
ways to make exp(L) and W approach infinity in the same direction”: in such
a direction, W will resemble one of its initial varieties Wτ , and if L×Wτ is
itself rotund (and therefore satisfies the open mapping property) then we have
good chances to use points in exp(L) ∩Wτ as approximate solutions of our
system.

To make this precise we need to generalize some notions from tropical geometry
so that they also handle this kind of variety: this has been done by Kazarnovskii
in [Kaz14b] and [Kaz14a]. In this section we review some of his notions, and
use them to derive the following result which will be used later on.

Theorem 3.6.1. Let L×W be a free rotund variety, with L linear not defined
over R. Then there is τ ∈ Trop(W ), dim τ > 0, such that:

1. L×Wτ is rotund;
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2. (Supp(Re(L) ∩st Trop(W )) ∩ relintτ 6= ∅.

This result will be given a geometric interpretation in the next section.

In what follows, let 〈z, w〉 denote the usual Hermitian product on Cn, so that
if z = (z1, . . . , zn) and w = (w1, . . . , wn) then 〈z, w〉 = z1w1 + · · ·+ znwn.

Remark 3.6.2. Identify z = (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn) with the
real vector (x1, y1, . . . , xn, yn) ∈ R2n. Then we have that Re (〈z, z′〉) coincides
with the real scalar product in R2n, as

Re(〈(x1 + iy1, . . . , xn + iyn), (x′1 + iy′1, . . . , x
′
n + iy′n)〉) =

= x1x
′
1 + y1y

′
1 + · · ·+ xnx

′
n + yny

′
n.

Definition 3.6.3. A piecewise-linear function on Cn is a function h : Cn → R
for which there are polyhedra P1, . . . , Pk ⊆ Cn ∼= R2n and vectors a1, . . . , ak ∈
Cn such that ⋃kj=1 Pj = Cn and h coincides with the function z 7→ Re(〈zj , aj〉)
on each polyhedron Pj .

Any R-linear function Cn → R is clearly piecewise-linear.

Definition 3.6.4. Let A be a non-empty closed convex subset of Cn. The
support function of A is the function hA : Cn → R defined by

hA(z) = sup{Re(〈z, a〉) | a ∈ A}.

The support function of a convex polyhedron is then clearly a piecewise-linear
function, whose domains of linearity form a polyhedral complex which coincides
with the normal fan to the polyhedron (and whose locus of non-differentiability
coincides with the (n− 1)−skeleton of such a fan).

In [Kaz14a] Kazarnovskii introduced a numerical invariant for collections of
polytopes in Cn, the pseudo-mixed volume, and used it to study tropical
properties of systems of exponential sums with complex exponents, with a
particular attention to the behaviour of stable intersections. He also proved
that non-vanishing of the pseudo-mixed volume is equivalent to a certain
occurrence of the Rado property - we will show in a bit how to tie this to
rotundity using Lemma 3.4.5.

Given a Laurent polynomial f ∈ C[w±1
1 , . . . , w±nn ], consider its Newton polytope
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P . We have seen how this is a subset of the dual space (Cn)∨: we can therefore
interpret the support function hP : (Cn)∨ → R as

hP (z) = {maxRe(ϕ(z)) | ϕ ∈ P}.

As the exponents of f are integer (and therefore real) numbers for any function
in P we will have ϕ(z + iv) = ϕ(z) for all v ∈ Rn: therefore, the domains of
linearity of hP are subsets of the form D + iRn for some polyhedra D ⊆ Rn.

On the other hand, consider the function z 7→ l1z1 + · · ·+ lnzn on Cn: this is a
point in (Cn)∨. Consider the convex hull of {0, (l1, . . . , ln)}: this is a segment
in (Cn)∨, orthogonal to the real hyperplane

H := {z ∈ Cn | Re(〈z, l〉) = 0}.

If (l1, . . . , ln) ∈ Rn, then H itself is invariant under translation by elements in
iRn.

Consider a linear space L ≤ Cn. Let Re(L)C := Re(L)⊗ C be the complexi-
fication of its real part (more generally, for every polyhedron τ ⊆ Rn we will
denote by τC the complexification aff(τ)⊗ C of its span). Every space L may
be written as L = Re(L)C ∩H for some H ⊆ Cn with Re(H) = Rn. Thus, the
equations defining L may be assumed to take the form



r1,1z1 + · · ·+ r1,nzn = 0
...

rk,1z1 + · · ·+ rk,nzn = 0

λ1,1z1 + · · ·+ λ1,nzn = 0
...

λn−d−k,1z1 + · · ·+ λn−d−k,nzn = 0

where the vectors (rj,1, . . . , rj,n) are in Rn and the corresponding equations
define Re(L)C and the vectors (λj,1, . . . , λj,n) are in Cn \ Rn. We denote by
hrj the function z 7→ 〈z, rj〉 and by hλj the function z 7→ 〈z, λj〉.

Consider the system of exponential sums associated to the variety L×W , in
the sense of Definition 3.4.2. We know how to attach to this system a set of
convex polytopes. For each of these polytopes, the locus of non-differentiability
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of the support function is a polyhedral complex. In particular, the corner locus
of hPj will be Σj + iRn where Σj denotes the tropicalization of the hypersurface
defined by the polynomial fj ; the corner locus of hrj (resp. hλj ) will be the
hyperplane defined by Re(〈z, rj〉) = 0 (resp. Re(〈z, λj〉)). We refer to these as
the collection of polyhedral complexes associated to the variety L×W .

Non-emptiness of the stable intersection of these complexes can be characterized
using the mixed Monge-Ampère operator. This is an operator which associates
to a tuple of k piecewise-linear functions on Cn a current, i.e. a linear functional
on the space of smooth compactly supported differential forms. We do not
get into the details, but rather refer the reader to [Kaz14a, Section 3]; the
main idea, which will be used in the upcoming proof, is that non-vanishing
of the mixed Monge-Ampère operator for the support functions of n convex
polytopes in Cn is equivalent to non-emptiness of the stable intersections of the
corresponding polyhedral complexes. This is essentially [Kaz14a, Theorem 3.1],
which establishes an isomorphism of rings between a ring of currents and a
ring of equivalence classes of polyhedral complexes, in which the product is
given by stable intersections.

Lemma 3.6.5. The stable intersection of the collection of polyhedral complexes
associated to the variety L×W is non-empty if and only if the variety L×W
is rotund.

Proof. By Lemma 3.4.5, rotundity is equivalent to the Rado property for the
collection of convex polytopes associated to L×W . By [Kaz14a, Corollary 3.3],
this collection has the Rado property if and only if the mixed pseudo-volume of
the polytopes is non-zero; by Theorem 3.5 in the same paper this is equivalent
to non-vanishing of the mixed Monge-Ampère operator on the collection of
support functions of the polytopes, and finally by [Kaz14a, Proposition 3.1]
this is equivalent to non-emptiness of the stable intersection.

As an aside, we note that going back to the case in which L is defined over
the reals this says that L×W is rotund if and only if Re(L)∩st Trop(W ) 6= ∅:
therefore a version of Fact 3.3.27 holds for this kind of variety, establishing that
the stable intersection between Trop(W ) and Re(L) (which acts as a sort of
“Trop(exp(L))”) can be lifted to an actual intersection between W and exp(L).

This allows us to prove the main result of this section, Theorem 3.6.1.
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Proof of Theorem 3.6.1. As L ×W is rotund, Lemma 3.6.5 guarantees that
the collection of polyhedral complexes associated to the variety has non-empty
stable intersection. This stable intersection is obviously a subset of the stable
intersection of any subset of the collection of polyhedral complexes: therefore,
it needs to be contained in the stable intersection of those complexes which are
loci of non-differentiability of R-linear functions, that is the stable intersections
of the tropical hypersurfaces Σj + iRn and the hyperplanes defined by Re〈rj , z〉
for rj ∈ Rn. If L were defined over the reals then these would be all the
complexes, and the stable intersection would turn out to be exactly iRn.

Since L is not defined over the reals, there is at least one complex linear
equation (and so at least one hyperplane not defined over R in the collection
of polyhedral complexes associated to L×W ). This does not contain iRn, and
therefore the stable intersection of the complexes cannot be of the form iT with
T an n-dimensional polyhedral complex in Rn. So let τ0 be any maximal cell of
the stable intersection: this contains, in its relative interior, a point of the form
x+ iy ∈ Cn with x 6= 0. Therefore x is in the support of Re(L) ∩st Trop(W );
let τ ∈ Trop(W ) be the cell such that x ∈ relint(τ).

Consider the variety L ×Wτ . As Wτ is an initial variety, its tropicalization
is equal to starτ (Trop(W )) (by Lemma 3.3.22); in other words it contains
cells with the same affine spans as the cells of Trop(W ) which contain τ .
Therefore, if the collection of complexes associated to L×W has non-empty
stable intersection, then so must the collection associated to L×Wτ : by the
converse implication of Lemma 3.6.5, then, L×Wτ is rotund.

So L×Wτ satisfies the statement.

3.7 Raising to Complex Powers

In this section we establish our main result, the existence of solutions to all
systems of equations associated to free rotund varieties of the form L ×W
with L linear.

To do so we are going to use Theorem 3.6.1 to show that in a suitable compac-
tification of (C×)n, W and exp(L) have got sequences of points with the same
limit, and that these sequences can be taken to avoid phenomena of asymptoti-
city. To make this clear, the first step is to give a geometric interpretation of
Theorem 3.6.1, explaining the second clause of the statement (the consequences
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of Re(L) ∩st Trop(W ) intersecting the relative interior of τ).

We will study compactifications of W which live in toric varieties.

Definition 3.7.1. A complex toric variety is a complex algebraic variety Y
for which there exists an embedding ι : (C×)n ↪→ Y for some n, such that:

1. The image of ι is an open dense subset of Y ;

2. There is a continuous action of (C×)n on Y which coincides with the
usual multiplication on the image of ι.

The three easiest examples of complex toric varieties are the torus C× itself,
with just one orbit of the multiplicative action, the affine line A1(C) with
the two orbits {0} and A1(C) \ {0} and the projective line P1(C) with orbits
{0}, {∞} and P1(C) \ {0,∞}. The theory of toric varieties is classical and
several books on the subject exist, such as [Ful93] and [CLS11].

A standard construction associates a toric variety to a polyhedral fan. We
refer the reader to [MS15, Section 6.1] or [NS13, Section 4] for details on this
construction and just recall that given the polyhedral fan Σ ⊆ Rn there is a
toric variety YΣ such that the action of (C×)n on YΣ has precisely one orbit Oτ
for each polyhedron τ ∈ Σ. Denoting by Tτ the algebraic subgroup of (C×)n

obtained as exp(τC), we have that the orbit Oτ is itself a torus, isomorphic
to (C×)n/Tτ : each point of Oτ is a point at infinity of a translate w · Tτ , and
different translates have different points at infinity.

Example 3.7.2. Consider once again the curve W = {(w1, w2) ∈ (C×)2 |
w1 + w2 + 1 = 0}: we know that Σ = Trop(W ) is a polyhedral complex
consisting of three half-lines and the origin. In this case, thus YΣ needs to
have four orbits. The orbit O0 coincides with (C×)2. The other three are
attached to the algebraic subgroups of (C×)2 defined by w1w

−1
2 = 1, w1 = 1

and w2 = 1 respectively. Thus, for example, YΣ contains a point at infinity
for each translate of the group defined by w1 = 1, of the form (c,∞) for some
c ∈ C×.

We are particularly interested, of course, in the case in which Σ is the tropical-
ization of a variety W . In that case Tevelev has defined and studied tropical
compactifications of varieties: the tropical compactification of W is a compact
subset of YTrop(W ). Again, we refer the reader to [Tev07], [MS15, Section 6.4] or
[NS13, Section 4] for details and just recall the following properties of tropical
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compactifications.

Theorem 3.7.3 (Tevelev, see [NS13, Lemma 12 and Corollary 13]). Let
W ⊆ (C×)n be an algebraic variety, and let Σ = Trop(W ). Then there is a
subvariety W ⊆ YΣ such that:

1. W is complete;

2. W ∩ O0 = W ;

3. For every τ ∈ Σ, Tτ acts by translation on the initial variety Wτ , and
Wτ/Tτ = W ∩ Oτ under the isomorphism (C×)n/Tτ ∼= Oτ .

In other words, limits of sequences in W belong to the orbits Oτ , and any such
sequence can be approximated by a sequence on the initial variety Wτ that
lies in just one translate of Tτ and has the same limit in YΣ.

As we mentioned above, we are going to use these objects to give a geometric
interpretation of Theorem 3.6.1.

Lemma 3.7.4. Let L×W be a free rotund variety, L linear not defined over
the reals. Let Σ = Trop(W ), and YΣ be the toric variety associated to the fan.
Then there is τ ∈ Σ, dim(τ) > 0, such that:

1. L×Wτ is rotund;

2. There exist s ∈ Sn1 and a sequence {s ·exp(lj)}j∈ω ⊆ (s ·exp(L))∩Wτ such
that limj s ·exp(lj) ∈ Oτ and the δ-map of L×Wτ is open at (0, s ·exp(lj))
for each j ∈ ω.

Proof. Let L×W be a free rotund variety, and take τ ∈ Trop(W ) to be the
polyhedron whose existence is granted by Theorem 3.6.1, so that L×Wτ is
rotund and Supp(Re(L) ∩st Trop(W )) ∩ relint(τ) 6= ∅.

Consider the initial variety Wτ . By Proposition 3.3.25, it is invariant under
translation by elements of exp(τC). The variety L×Wτ is not necessarily free
as Wτ may be contained in a translate of an algebraic subgroup (in fact, it
may even be such a translate) but we may assume that it is by restricting
the ambient space: if Wτ is contained in a translate a · exp(Q), where Q is
a Q-linear subspace of Cn, then we consider the variety (L ∩ Q) ×Wτ . Up
to a translation, an isomorphism of algebraic groups will take this to a free
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rotund subvariety of CdimQ × (C×)dimQ, so we can treat L×Wτ as if it were
free itself.

By Proposition 3.2.4, there is a Zariski-open dense subset (Wτ )◦ ofWτ such that
the δ-map of L×Wτ is open on L×(Wτ )◦. By Corollary 3.5.17, exp(Re(L)C) =
exp(L) · Sn1 intersects Wτ in a Zariski-dense subset, and therefore it must in
particular intersect (Wτ )◦; then, let w ∈ (Wτ )◦ be a point in this intersection,
so that w ∈ s0 · exp(L) for some s0 ∈ Sn1 . The δ-map, as we said, is open at
(0, w), and therefore there are neighbourhoods V of 0 in L and U of w in W
such that U

exp(V ) ⊆ im(δ) contains an open ball around w.

Since Re(L)∩relint(τ) 6= ∅, we may consider a sequence {tj}j∈ω ⊆ Re(L)C∩τC
such that limj∈ω exp(tj) ∈ Oτ (this follows from Theorem 3.7.3, since exp(tj) ∈
Tτ for each j). Hence, limj∈ω w · exp(tj) = w · limj∈ω exp(tj) ∈ Oτ as well,
since the multiplicative action of (C×)n on YΣ is continuous and Oτ is an orbit.
Also, exp(tj) · U ⊆Wτ for each j, given that Wτ is invariant under translation
by exp(τC).

Moreover, as {exp(tj)}j∈ω ⊆ exp(L) · Sn1 , for each j there is l0j ∈ L such
that exp(tj)·w

exp(l0j)
∈ Sn1 . By compactness of Sn1 , we may assume that the sequence{

exp(tj)·w
exp(l0j)

}
j∈ω

has a limit, call it s ∈ Sn1 .

Consider for each j the open set exp(tj)·U
exp(l0j)·exp(V ) = exp(tj)

exp(l0j)
· U

exp(V ) . As the set
U

exp(V ) was built to contain an open ball around w, for j sufficiently large we
must have s ∈ exp(tj)

exp(l0j)
· U

exp(V ) .

Therefore we can take a sequence {s · exp(lj)}j∈ω, where each exp(lj) lies in
exp

(
l0j

)
· exp(V ) ⊆ exp(L) and each s · exp(lj) belongs to exp(tj) ·U ⊆Wτ ; in

other words, so that {s · exp(lj)}j∈ω ⊆ s · exp(L) ∩Wτ , as required.

Corollary 3.7.5. Let L ×W be a free rotund variety, L linear not defined
over the reals, τ ∈ Trop(W ) as given by Lemma 3.7.4, U a neighbourhood
of the identity in (C×)n. Then there is a sequence {tj}j∈ω ⊆ τC such that
limj exp(tj) ∈ Oτ and exp(tj) · U ∩ exp(L) 6= ∅ for all j ∈ ω.

Proof. By replacing U by U ∩U−1 if necessary we assume that U is symmetric.

Consider the sequence {s · exp(lj)}j∈ω given by Lemma 3.7.4.
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As limj s · exp(lj) ∈ Oτ ∼= (C×)n/Tτ , there is a translate w · Tτ such that
limj s ·exp(lj) ·Tτ = w ·Tτ . Then we may assume that s ·exp(lj) ·U ∩w ·Tτ 6= ∅
for all j ∈ ω. Therefore, we automatically get that for all sufficiently large j’s,

s · exp(lj)
w

· U ∩ Tτ 6= ∅

s

w
· exp(lj) · U ∩ Tτ 6= ∅

and this implies that taking a subsequence if necessary we may assume

exp(lj) · U ∩ Tτ 6= ∅.

Hence, we can extract from each exp(lj) · U ∩ Tτ a point aj ∈ Tτ . Taking
a sequence {tj}j∈ω, where for each j we have exp(tj) = aj , we prove the
corollary.

Next we show that if we can take s in the statement of Lemma 3.7.4 to be the
identity (1, . . . , 1), then we can use the points in the sequence in exp(L) ∩Wτ

as approximations for points in exp(L) ∩W .

Lemma 3.7.6. Let L×W be a free rotund variety, L linear not defined over
the reals. Let Σ = Trop(W ), and YΣ be the toric variety associated to the fan.
Suppose there is τ ∈ Σ, dim(τ) > 0, such that:

1. L×Wτ is rotund;

2. exp(L) ∩Wτ contains a point w such that the δ-map of L×Wτ is open
at (0, w).

Then exp(L) ∩W 6= ∅.

Proof. Let w be the point given by Assumption 2. Take z ∈ exp−1(w).

Let L∗ be any subspace of Cn such that L⊕L∗ = Cn; let πL : Cn → Cn/L ∼= L∗

denote the composition of the projection on the quotient with the isomorphism
between Cn/L and L∗. Since the δ-map of L×Wτ is open at (0, w), the point
z is isolated in z + L ∩ logWτ : hence, there is a ball B1 around 0 in L such
that z + ∂B1 ∩ logWτ = ∅. Given B1, there must be a ball B2 around 0 in
L∗ such that for all x ∈ z +B1 +B2 ∩ logWτ , x+ ∂B1 ∩ logWτ = ∅: this is
because z + ∂B1 is compact and logWτ is closed, therefore if their intersection
is empty then it must be empty for all translates of z+∂B1 that are sufficiently



78 Complex Exponential

close to z. Let U denote the bounded open neighbourhood of 0 in Cn given by
B1 +B2.

By Proposition 2.5.8, then, the projection πL is proper as a map from z + U ∩
logWτ to πL(z) + B2: this is because z + U ∩ logWτ has no limit points on
z+∂B1 +B2∩ logWτ . We already know the projection is open on this domain,
and therefore it has to be surjective. In other words, (z + U ∩ logWτ ) + L =
z +B2 + L.

By Corollary 3.7.5, there is a sequence {tj}j∈ω ⊆ τC such that z+tj+U∩L 6= ∅
for all j ∈ ω.

It is easy to see that, since logWτ is invariant under translation by τC, (tj +
z + U) ∩ logWτ = tj + (z + U ∩ logWτ ) for each j. Hence, all the sets
U ∩ −(z + tj) + logWτ are equal to a set K. Note that, by the choice of the
sets B1 and B2, K ∩ (∂B1 +B2) = ∅.

On the other hand, as logW is not invariant under translation by τC, the sets
Kj := U ∩ −(z + tj) + logW may not be all equal; nevertheless, their closures
Kj converge in the Hausdorff distance to K. This means that for sufficiently
large j’s, Kj ∩ (∂B1 + B2) = ∅: if this were not the case, there would be a
point in K ∩ (∂B1 + B2). Therefore, for sufficiently large j’s, the map πL is
open and proper (again by Proposition 2.5.8) as a map from Kj into B2, and
therefore Kj + L = B2 + L: we assume this holds for all j.

Since Kj ⊆ −(z + tj) + logW , z + tj +Kj ⊆ logW . Also, z + tj +Kj + L =
z+ tj +B2 +L for all j’s. As (z+ tj +B2 +L)∩L 6= ∅ (it contains z+ tj +U ,
and thus a point which lies in logWτ ∩ L), we may thus conclude: there are
z′ ∈ z + tj +Kj ⊆ logW and l ∈ L such that z′ + l ∈ L, and thus z′ ∈ L.

Finally we set out to prove that the intersection with the original variety exists.
This is done by induction, exploiting first the simple geometric structure of
initial varieties of curves and then the fact that initial varieties are invariant
under translation by subgroups.

Proposition 3.7.7. Let L ×W be a free rotund variety with L linear not
defined over the reals and codimL = dimW = 1. Then there is τ ∈ Trop(W ),
dim(τ) > 0, such that:

1. L×Wτ is rotund;
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2. There is w ∈ exp(L) ∩Wτ such that the δ-map of L ×Wτ is open at
(0, w).

Proof. Let τ ∈ Trop(W ) be the polyhedron given by Lemma 3.7.4. The initial
variety Wτ is then a finite union of cosets of the subgroup Tτ . By rotundity of
L×Wτ , the δ-map of this variety is open (as Wτ has dimension 1, if it is open
on a Zariski-open dense subset then it is open everywhere) and therefore its
image is a subgroup of (C×)n with non-empty interior - that is, it is (C×)n.
Then exp(L) ∩Wτ 6= ∅, and the δ-map is open everywhere.

This allows us to establish our main result.

Theorem 3.7.8. Let L×W be a free rotund variety, L a linear space. Then
exp(L) ∩W 6= ∅.

Proof. We prove this by induction on the dimension of W .

Assume dimW = 1. If L is defined over the reals, then this follows from
Theorem 3.5.16. Otherwise, by Proposition 3.7.7 there is a point w ∈ exp(L)∩
Wτ with L×Wτ rotund, such that the δ-map is open around (0, w). Hence by
Lemma 3.7.6, exp(L) ∩W 6= ∅.

Now assume dimW > 1. Again, if L is defined over the reals then we apply
Theorem 3.5.16. Otherwise, consider the polyhedron τ ∈ Trop(W ) given by
Lemma 3.7.4: the initial variety Wτ is then invariant under translation by
the algebraic group Tτ . Consider then the quotients πτC(L) and πTτ (Wτ ):
their product is a rotund variety, and dim(πTτ (Wτ )) < dimW . It is not
necessarily free, as πTτ (Wτ ) might be contained in a translate of some algebraic
subgroup exp(Q) with Q a Q-linear space, but that is not an issue as then up
to a translation we may consider (πτC(L) ∩ Q) × πTτ (Wτ ) which is free and
rotund in the ambient space Q× exp(Q) (similarly to what we did in the proof
of Lemma 3.7.4). By the induction hypothesis, exp(πτC(L)) ∩ πTτ (W ) 6= ∅.
By applying the Rabinovich trick if necessary (as that does not change the
dimension of πTτ (W )) we may further assume that there is a point w in this
intersection such that the relevant δ-map is open at (0, w).

Therefore, there is (l, w) ∈ L ×Wτ such that the δ-map of L ×Wτ is open
at (l, w), and w

exp(l) ∈ Tτ . Since Wτ is invariant under translation by Tτ , this
implies that actually w

t ∈ exp(L)∩Wτ for some t ∈ Tτ , and the δ-map is open
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at
(
0, wt

)
- this is again implied by invariance of Wτ under Tτ , as if the δ-map

is open at (0, w) it must be open at every point of {0} × (w · Tτ ) by definition.
Hence, by Lemma 3.7.6, exp(L) ∩W 6= ∅.

Example 3.7.9. We conclude by testing this argument in the exampleiz1 − z2 = 0

w1 + w2 + 1 = 0

In this case obviously Re(L) = R2, and for every initial variety Wτ we have
that L×Wτ is rotund (the fact that the dimension is low makes it very easy
to check: rotundity of L×Wτ just means that logWτ and L are not parallel
as complex lines).

So let us fix an initial variety, say Wτ for τ the positive half-line spanned by
(1, 1). The initial variety Wτ is then defined by w1 + w2 = 0, and

logWτ = {(z1, z2) ∈ C2 | z1 − z2 ∈ (2Z+ 1)πi }.

The points of L ∩ logWτ are easy to find: solvingiz1 − z2 = 0

z1 − z2 = ikπ

for all odd k ∈ Z, one gets the points

2h+ 1
2 (π − iπ, π + iπ)

for all h ∈ Z. Considering those with h � 0, the points will be very close
to points in logW , and by “openness at infinity” of the δ-map this induces
intersections between logW and L.

Finally, let us note that the intersection is again Zariski-dense.

Corollary 3.7.10. Let L×W be a free rotund variety, L a linear space. Then
exp(L) ∩W is Zariski-dense in W .

Proof. By the same proof as Corollary 3.5.17.
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3.8 Model-Theoretic Consequences

We conclude this chapter by indicating the model-theoretic relevance of The-
orem 3.7.8.

In Chapter 2, with Theorems 2.4.1 and 2.4.2, we discussed Zilber’s results
on raising to powers. In particular, we saw how given a field K of finite
transcendence degree, the structure CK falls in a first-order axiomatizable class
of structures as long as it satisfies a transcendence statement and an existential
closedness statement.

While transcendence statements remain hard problems in general, and it
is complicated to say anything about them, Theorem 3.7.8 establishes the
existential closedness clause of Theorem 2.4.2 for every field K ⊆ C of finite
transcendence degree.

Therefore, we obtain the following.

Theorem 3.8.1. Let K ⊆ C be a field of finite transcendence degree, and TK
the theory associated to K by Theorem 2.4.1.

If there is a ∈ Cm (possibly m = 0) such that for all z1, . . . , zn,

ldimK(z1, . . . , zn/a) + trdeg(exp(z1), . . . , exp(zn)/exp(a)) ≥

≥ ldimQ(z1, . . . , zn/a)

then the structure CK is a model of TK .

In particular, if K = Q(λ) where λ ∈ Cn is exponentially-algebraically inde-
pendent over ecl(∅), then CK is a model of TK .

Proof. The first part is the immediate consequence of Theorems 2.4.2 and 3.7.8:
the former says that CK is a model of TK if it satisfies two statements, and
the latter proves the second statement for every K.

The second part follows from Theorem 2.4.3, which proves the transcendence
statement for fields of the form Q(λ) with λ an exponentially-algebraically
independent tuple.
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Chapter 4

Abelian Varieties

4.1 Introduction

In the previous chapters we have introduced Exponential-Algebraic Closedness
as a problem which concerns the complex exponential function. However, exp
shares many features with other functions in complex geometry; most notably,
if we consider C× as a complex Lie group then exp is its exponential map in
the sense of Lie groups (a holomorphic, surjective group homomorphism from
the tangent space to C× at identity into C×).

As such, it is worth asking whether it makes sense to ask similar questions for
other exponential maps of complex Lie groups. In this chapter we focus on the
exponential maps of complex abelian varieties.

Abelian varieties are projective algebraic groups; complex abelian varieties are
then compact complex Lie groups. This chapter discusses the Exponential-
Algebraic Closedness problem for abelian varieties, focusing on a specific case
that is inspired by Theorem 3.7.8. The structure of the chapter is as follows.

In Section 4.2 we introduce complex abelian varieties from scratch, reviewing
the basic results from their general theory, and take the chance to discuss
homology and cohomology in this setting, focusing on the role of homology
in intersection theory. We also devote a short subsection to an introduction
to o-minimality, a well-known subfield of model theory that we need some
results from. This section does not feature any new results, but we felt it was
important to fix all the notation and conventions; unfortunately, it was not
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possible to do this for everything, but we hope the references we point to are
sufficient.

In Section 4.3 we state the Exponential-Algebraic Closedness conjecture for
abelian varieties and present some examples. We take a short detour in
Subsection 4.3.1 to present some old but relatively little-known related results.

Section 4.4 contains the proof of the main result of this chapter.

Theorem (Theorem 4.4.1). Let A be an abelian variety of dimension g, expA :
Cg → A its exponential map, L ≤ Cg a linear subspace and W ⊆ A an algebraic
variety such that the variety L×W is free and rotund.

Then L×W ∩ ΓexpA 6= ∅.

All the terminology will be introduced in the first two sections, but even
without knowing it the reader will notice the similarity with the main result of
the previous chapter. We conclude the section with an example of intersection
between a variety of the form L ×W and the graph of the exponential of a
product of non-isogenous elliptic curves.

In Section 4.5 we compare this theorem to Theorem 3.7.8 from a model-theoretic
perspective: we saw in Chapter 2 and in Section 3.8 that from Theorem 3.7.8
one can extract the existential closedness statement of a certain first-order
theory and that, together with a transcendence statement, this implies that
a certain structure on the complex numbers is a model of this theory. It
had already been noted by Zilber in [Zil15] that model-theoretically speaking
the main results of that paper could be translated to the context of abelian
varieties; while we do not give the details of this translation we briefly comment
on how it works, leaving the full elaboration to future work.

Finally, in Section 4.6 we will discuss some work in progress towards a possible
improvement on the main theorem, aiming to replace the linear space L by an
algebraic variety V .

The main result of this chapter appears in the preprint [Gal22b]. The partial
result Theorem 4.4.7 appears in Section 2 of the preprint [Gal21].

4.2 Geometric Preliminaries
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Figure 4.1: The lattice Z + iZ in C. Each square with vertices of the form
m+in and side length 1, with only one horizontal and one vertical side included,
is a fundamental domain for Z+ iZ.

4.2.1 Complex Abelian Varieties

In this subsection we recall the basic facts on the geometry of complex abelian
varieties.

A lattice in the vector space Rn is a discrete subgroup of rank n. A compact
torus is a real Lie group of the form Rn/Λ, where Λ is a lattice in Rn.

The compact tori we are interested in are complex, so rather than in a space
of the form Rn we take our lattices in a complex space Cg.

Definition 4.2.1. A complex torus is a complex Lie group of the form Cg/Λ,
where Λ is a lattice in Cg ∼= R2g.

Given any complex torus Cg/Λ, a fundamental domain for Λ will be any
connected region F of Cg such that for every z ∈ Cg there is a unique v ∈ F
such that z − v ∈ Λ.

An easy example of a complex torus is the one-dimensional torus C/Z+ iZ,
which as a real Lie group is isomorphic to R2/Z2. A fundamental domain for
the lattice Z+ iZ is the square

{a+ ib ∈ C | 0 ≤ a < 1, 0 ≤ b < 1}.
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Definition 4.2.2. An abelian variety is a projective algebraic variety A

which admits a regular group structure, i.e. which admits a group operation
+ : A×A→ A that is described locally by polynomial maps.

Abelian varieties over the field of complex numbers are complex tori; in fact,
they can be characterized as the complex tori which admit an embedding into
a projective space Pn(C). This is the content of the following theorem, which
goes back to Riemann.

Theorem 4.2.3 (Riemann). Let A be an abelian variety. Then there is a
complex torus T = Cg/Λ such that T ∼= A as complex Lie groups.

We do not delve here into the beautiful theory surrounding this result, which
moves forward to characterize the complex tori which admit such an embedding
into projective space, and refer the reader to Section A.5 of [HS00, Section A.5]
for a proof of this result which omits some of the technical details, and to the
first four chapters of [BL04] for a more precise account. We are going to focus
on the map which witnesses the isomorphism between the abelian variety and
the complex torus, the exponential of A.

Definition 4.2.4. Let A be an abelian variety. The surjective holomorphic
group homomorphism expA : Cg → A with kernel a lattice Λ is the exponential
of A.

The exponential is a universal covering map and a group homomorphism; by
definition it has discrete kernel, and it satisfies a differential equation (see
[Mar00] and [Kir09] for details) hence it shares the main features of the complex
exponential function.

Moreover, Cg can be considered as the tangent space to A at identity. Since
abelian varieties are homogeneous spaces, we can embed the tangent at any
point of any variety in the tangent space at identity: more precisely, given an
algebraic subvariety W ⊆ A and a regular point w ∈ W , we will write TwW
for the tangent space to W at w and embed it into Cg by identifying it with
the tangent space at 0 to the variety −w +W . Therefore, we will always refer
to tangent spaces to points of W as linear subspaces of Cg.

We will often consider subvarieties of the tangent bundle of A, which by the
above is isomorphic to Cg ×A. We will use the same symbols (+,−, 0) to talk
about the group operations and the identity element on Cg, A, and Cg ×A: it
should be clear from context where we are performing the operation.
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Definition 4.2.5. An abelian subvariety of the abelian variety A is an algebraic
subvariety B of A which is also an (algebraic) subgroup of A.

In fact, if an algebraic subvariety B ⊆ A is a subgroup then the group structure
on B is automatically algebraic. The tangent space at identity to B, T0B, is a
subspace of Cg which serves as the domain for the exponential map expB: we
will denote it by LB, the Lie algebra of B.

Finally, we give the definition of a simple abelian variety (we are often going
to use it to discuss some easy cases of the statements we consider) and state
the Poincaré Complete Reducibility Theorem to stress the importance of this
notion.

Definition 4.2.6. Let A be an abelian variety. We say that A is simple if it
does not have any proper non-zero abelian subvarieties.

In other words, simple abelian varieties have no non-trivial algebraic subgroups.
The reader who is familiar with Chow’s Theorem will immediately see that
this implies that simple abelian varieties, being projective objects, do not have
complex analytic subgroups.

The Poincaré Complete Reducibility Theorem says that simple abelian varieties
can be used as “building blocks” for all abelian varieties, through the notion of
isogeny.

Definition 4.2.7. Let A and B be abelian varieties. An isogeny f : A→ B is
a surjective morphism of algebraic groups with finite kernel.

Theorem 4.2.8 (Poincaré Complete Reducibility Theorem, [HS00, Corol-
laryA.5.1.8]). Any abelian variety is isogenous to a product of powers of distinct,
pairwise non-isogenous simple abelian varieties.

4.2.2 Homology and Cohomology

We use this subsection to fix notation and conventions for the rest of the
chapter.

The homology theory we are going to use is singular homology. Thus, by
standard simplex in Rn we mean the set

∆ :=
{

(x1, . . . , xn) ∈ Rn | x1, . . . , xn ≥ 0 and
n∑
i=1

xi = 1
}
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while a simplex in the topological space X is a continuous map σ : ∆ → X;
chains are formal sums of simplices. A simplicial complex is a polyhedral
complex all of whose polyhedra are affinely isomorphic to the standard simplex.
Simplicial complexes are used to triangulate topological spaces.

Definition 4.2.9. A triangulation of the topological space X is a homeo-
morphism between X and a simplicial complex.

Given a simplex σ : ∆ → X of dimension n, the boundary of σ is the chain
obtained as the formal sum of the simplices σ′ : ∆′ → X, where each ∆′ is a
non-trivial, oriented face of the simplex ∆. The boundary map is defined on
chains by extending this function by linearity. A cycle is a chain with boundary
0. Two cycles C1 and C2 are homologous if there is a chain D whose boundary
is C1 −C2, and the n-th homology group is the group of cycles of dimension n
modulo this equivalence relation. Of course there are many texts where this is
discussed in great detail, for example [Hat02, Chapter 2].

In the case of abelian varieties (and in general in the case of tori), the structure
of the homology groups is particularly easy to compute: in an abelian variety
A of dimension g, the n-th homology group is a free abelian group of rank(

2g
n

)
. [BL04, Excercise 1.7] describes how to obtain a basis of each homology

group starting from the elements of the lattice; informally, we may say that
the n-th homology group is generated by the classes of some cycles that are
supported on each of the subgroups generated by n lattice elements. A formal
description of this requires the notion of Pontryagin product, which we do not
deal with.

The easiest case is of course the first homology group H1(A) ∼= Z2g: given a
basis {λ1, . . . , λ2g} of the lattice consider the simplices σj : [0, 1]→ A defined
as σj(t) = expA(tλj). The homology classes of these form a basis for H1(A).

As is the case in general with algebraic varieties, it is possible to triangulate
complex algebraic subvarieties of an abelian varieties. More precisely, we have
the following classical theorem (see for example [Hir75, Section 2] for a proof).

Theorem 4.2.10. Every algebraic set admits a triangulation.

We will therefore treat algebraic varieties as cycles: given a variety W and
a triangulation T , we can identify the variety with the cycle ∑σ∈T σ. The
choice of triangulation is only unique up to homological equivalence, but this
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is sufficient for our purposes.

The situation concerning cohomology is a bit more delicate, as we are going to
consider differential cohomology. We recall the definition of complex differential
form. We will follow the approach presented in [Wel80, Section I.3].

Recall that given a manifold of even dimensionM with tangent bundle TM , an
almost complex structure onM is a vector bundle automorphism J : TM → TM

such that J2 = −I where I is the identity. If we equip M with an almost
complex structure, we call it an almost complex manifold.

We start by examining complex-valued differential forms on real manifolds;
we will then see how to modify this notion to handle the case of almost
complex structures. Let M be a (real) differentiable manifold. Consider the
complexification TMc of its tangent bundle, so that TMc := TM ⊗R C. We
define the space of complex-valued differential forms of total degree r on M
as the space of infinitely differentiable sections of the r-th exterior power of
the cotangent bundle of M . In other words, a complex-valued differential
form ω on M of degree r associates to each point x ∈M a C-linear function
ωx : ∧r TxMc → C.

Now assume (M,J) is an almost complex manifold. We may extend J to a
C-linear bundle automorphism on TMc: for each x, the fibre of J is a linear
map Jx : TxM → TxM , and we may extend this to

Jx,c : TxM ⊗R C→ TxM ⊗R C

defined by Jx,c(z ⊗ α) = Jx(z)⊗ α. It is then still the case that J2
c = −I, but

since Jc is C-linear it has eigenvalues i and −i.

We can thus define the bundles of eigenspaces: let TM1,0 be the bundle of
eigenspaces for i and TM0,1 the bundle of eigenspaces for −i. This yields a
decomposition of the complexified tangent bundle, so that TMc = TM1,0 ⊕
TM0,1.

We can define fibrewise conjugation too:

Qx : TxM ⊗R C→ TxM ⊗R C

is defined by Qx(z ⊗ α) = z ⊗ α.
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Proposition 4.2.11. The bundles T 1,0M and T 0,1M are isomorphic under
Q.

Proof. We check this fibrewise, so let x ∈M be a point. If z⊗α ∈ T 1,0
x M then

it is an eigenvector for i of Jc,x, so

Jx,c(z ⊗ α) = Jx(z)⊗ α = i(z ⊗ α) = z ⊗ iα.

Therefore,
Jc,x(Qx(z ⊗ α)) = Jc,x(z ⊗ α) = Jx(z)⊗ α =

= Jx(z)⊗ α = z ⊗ iα = z ⊗ (−i)α = (−i)(z ⊗ α)

so Qx(z⊗α) is an eigenvector for −i of Jc,x. By linearity, since there is a basis
of T 1,0

x M of elements of the form z ⊗ α, we may extend this to all elements of
T 1,0
x M .

With a similar argument we can check that the square of Qx is the identity
(on T 1,0

x M): it swaps the eigenspaces of Jc.

In fact, considering TxM as a complex vector space using the almost complex
structure J (so i · z = J(z) by definition, for all z ∈ TxM) we have that
TxM ∼=C T 1,0

x M , the latter being a complex vector space because it is the
eigenspace of Jx,c for i, so that i · z ⊗ α = Jx,c(z ⊗ α) = z ⊗ iα for all
z ⊗ α ∈ T 1,0

x M . These two spaces will thus often be identified, with T 0,1
x M

identified with Q(TxM).

It is clear by the definition that Qx(Qx(z ⊗ α)) = z ⊗ α = z ⊗ α, so as we
should expect conjugation has order 2.

The decomposition into eigenspaces of TMc transfers over to a decomposition
of the complexified cotangent bundle, which we can use to study differential
forms.

Definition 4.2.12. A complex-valued differential form of type (p, q) (or (p, q)-
form for short) on the almost complex manifold M is a C∞ section of the
bundle

p∧
T ∗M1,0 ∧

q∧
T ∗M0,1

i.e. an infinitely differentiable function which assigns to each point in x a
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C-linear function
ωx :

p∧
TxM

1,0 ∧
q∧
TxM

0,1 → C.

The total degree of a form of type (p, q) is p+ q.

Every form ω of type (p, q) has a complex conjugate ω of type (q, p), defined by

ωx(vq ∧ vp) = ωx(Qx(vp) ∧Qx(vq)).

The wedge product of differential forms is defined locally as

(ω1,x ∧ ω2,x)

p1+p2∧
j=1

vj ∧
q1+q2∧
h=1

wh

 =

= k
∑

σ∈Sp1+p2 ,ρ∈Sq1+q2

sgn(σ)sgn(ρ)ω1,x(vσ,p1 ∧ wρ,q1)ω2,x(vσ,p2 ∧ wq,ρ)

where by vσ,p1 we mean that we apply the permutation σ to (1, 2, . . . , p1 + p2)
and then take the wedge product ∧p1

j=1 vσ(j); the analogous convention is used
for vσ,p2 , wρ,q1 , and wρ,q2 ; k is a positive rational coefficient which depends
only on p1, p2, q1, q2 and not on the differential forms.

Example 4.2.13. Given a complex manifold M , and a holomorphic function
f : M → C, the differential (1, 0)-form df is defined locally by (df)x(v) =
∇f(x) · v.

Of course, the most common way to use a differential form is to integrate it.
Let M be a complex manifold, U ⊆M and V ⊆ Cn open subsets, ϕ : V → U a
biholomorphism. Given coordinate functions z1, . . . , zn on U , we may consider
the differentials dzj , differential forms on U , and d(zj ◦ ϕ), differential forms
on V (defined as in Example 4.2.13).

Locally on U , a differential ω can be described by

ωz = f(z)dz1 ∧ · · · ∧ dzn ∧ · · · ∧ dz1 ∧ · · · ∧ dzn

for some holomorphic function f : U → C. The (n, n)-form ∧
j dzj ∧ dzj is

usually referred to as the volume element of M . Therefore, we may define
∫
U ω

as ∫
U
ω =

∫
U
f(z)dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn =
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=
∫
V

(f ◦ ϕ)d(z1 ◦ ϕ) ∧ · · · ∧ d(zn ◦ ϕ) ∧ d(z1 ◦ ϕ) ∧ · · · ∧ d(zn ◦ ϕ)

where the integral in the last term is the usual integral of a holomorphic
function in Cn.

The next proposition is an example of a useful property of (d, 0)-forms which
we will use later on.

Proposition 4.2.14. Let M be a complex manifold of dimension d, ω a
non-zero complex differential form of type (d, 0).

Then, if it is defined, ∫
M
ω ∧ ω 6= 0.

Proof. Cover M by open subsets. On any of these subsets U , fix coordinate
functions z1, . . . , zd: then there is a holomorphic function f : U → C ωx =
f(x)dz1 ∧ · · · ∧ dzd for all x ∈ U .

Then, ωx ∧ ωx is equal, up to multiplication by some positive rational (see the
convention for the wedge product above), to

f(x)f(x)dz1 ∧ · · · ∧ dzd ∧ dz1 ∧ · · · ∧ dzd

and therefore integrating ω on U is the same as integrating a positive function
times the volume element ∧j(dzj ∧ dzj). This gives a non-zero number. Sum-
ming over the open sets U will give the total integral on M : this is non-zero,
as all the contribution are equal to a positive real multiplied by the same
constant.

Integration can be easily extended to an operation on chains: we integrate
a form of total degree d on a d-dimensional simplex by integrating it on the
relative interior of its image, and extend this by linearity to the set of all chains.

As usual, there are notions of exterior derivative and of closed and exact
differential form. We will not get into detail on what these are precisely; we
are just interested in the following statement, which is obtained from the de
Rham isomorphism theorem.

Proposition 4.2.15 ([BL04, Proposition 1.3.5]). Let ω be any differential
form on A. Then there is a form ω′ invariant under translation by elements A
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such that for each cycle C ⊆ A ∫
C
ω =

∫
C
ω′.

Recall that a differential form ω of total degree d is decomposable if there exist
forms ω1, . . . , ωd of degree 1 such that ω = ∧d

j=1 ωj .

We shall now see that translation-invariant differential forms on abelian varieties
admit a basis which consists of decomposable forms.

Suppose B = {e1, . . . , eg} is a basis of Cg. Then the corresponding coordinate
functions are defined by taking vj(v) to be the coefficient of ej when we write
v = ∑g

j=1 vj(v)ej ; vj is the complex conjugate of vj .

The differentials of the coordinate functions, dvj and dvj , are then differential
forms of type (1, 0) or (0, 1) on Cg.

Proposition 4.2.16 ([BL04, Section 1.4]). Let v1, . . . , vg be complex coordinate
functions on Cg. Then:

1. The differentials dv1, . . . , dvg, dv1, . . . , dvg form a basis of the space of
complex-valued invariant differential 1-forms on A;

2. More generally, for every 0 ≤ n ≤ 2g the differentials
∧
dzI ∧ dzJ where

I and J are ordered subsets of {1, . . . , 2g} such that |I|+ |J | = n form a
basis of the space of complex-valued invariant differential forms of total
degree n on A.

In the following example we see some of these differential forms at work.

Example 4.2.17. Consider the elliptic curve A ∼= C/Z+ iZ. On C we have
complex differential forms dz = dx + idy ∈ H1,0(A;C) and dz = dx − idy ∈
H0,1(A;C).

Let C := exp ([0, 1]) where denote the image under the exponential map of the
horizontal segment in the complex plane. Then

∫
C dz =

∫
C dx+ i

∫
C dy = 1 =∫

C dz. If on the other hand we take the vertical segment C ′ := exp (i[0, 1]),
then

∫
C′ dz = i while

∫
C′ dz = −i.

Now let C ′′ be exp(S) where S is the circle of centre 1
2 + i

2 and radius 1
2 . If we

parametrize C ′ using a curve γ : [0, 1]→ S with γ(0) = γ(1) = i
2 which winds
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around C ′′ once, we have that∫
C′′
dz =

∫ 1

0
Re(γ(z))dx+ i

∫ 1

0
Im(γ(z))dy = 0 + i0 = 0.

Finally, if U ⊆ A is an open subset, for example exp(S) where S is the square
with vertices 0, 1

2 ,
i
2 and 1

2 + i
2 then

∫
U
dz ∧ dz =

∫
U

(−2idx ∧ dy) = − i2

(recall that this could not be 0, by Proposition 4.2.14).

We can use differential forms “dually” to vector subspaces of Cg, using them
to intuitively give a measure of oriented volumes of cycles.

Any real vector space T ⊆ Cg can be decomposed into the direct sum of a
(unique) complex vector space TC := T ∩ iT and a (not unique) totally real
space TR (so that TR ∩ iTR = 〈0〉).

Fix a base of T of the form {t1, it1, . . . , tp, itp, s1, . . . , sq}. For a point a ∈ A,
see T as a subspace of TaA ∼= Cg, and let v denote the element

p∧
j=1

tj ∧
q∧

k=1
sk ∧

p∧
j=1

Qa(tj) ∈
p+q∧

T ∧
p∧
Qa(T ).

We can thus associate to T a complex differential form ωT of degree (2g − p−
q, 2g − p). Consider, again for a fixed a ∈ A, a mapping

λa :
2g−p−q∧

T 1,0
a A ∧

2g−p∧
T 0,1
a A→

2g∧
T 1,0
a A ∧

2g∧
T 0,1
a A

defined by
2g−p−q∧
j=1

zj ∧
2g−p∧
k=1

wk 7→ v ∧
2g−p−q∧
j=1

zj ∧
2g−p∧
k=1

wk.

Fix a basis of Cg of the form {c1, c2, . . . , cg, ic1, . . . , icg}. Then ωT,a maps every
vector u in the domain of λa to the unique complex number ωT,a(u) such that
λa(u) = ωT,a(u)∧gj=1 cj ∧

∧g
k=1Qa(cj). It is clear that, in the way we have set

up things, the form depends on the choice of basis, and changing basis will
give a scalar multiple of the form.

The complex conjugate ωT is a form of degree (2g − p, 2g − p − q) defined
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analogously but with the basis element v defined as

p∧
j=1

tj ∧
q∧

k=1
Qa(sk) ∧

p∧
j=1

Qa(tj) ∈
p∧
T 1,0
a A ∧

p+q∧
T 1,0
a A.

It is then clear that for all a, and for all v in the appropriate symmetric power
of the tangent space TaA,

ωT,a(v) = ωT,a(Qa(v)).

Of course the fact that using this convention the degree of ωT is (d1, d2) with
d1 ≤ d2, while for ωT we have d2 ≤ d1, is purely coincidental and we could
have set up things the other way around.

Note that if T = TC, so if T is a complex space, q = 0 and thus ωT = ωT .

It is worth asking what these forms look like as products of 1-forms, using the
bases from Proposition 4.2.16.

Definition 4.2.18. Let B := {v1, iv1, . . . , vg, ivg} be a real basis of Cg, and
B′ ⊆ B. We then define

dB′ :=
∧

j|vj∈B′
dvj ∧

∧
j|ivj∈B′

dvj .

We call this the basis wedge of B′.

Proposition 4.2.19. Let T ≤ Cg be a real vector space, and suppose B =
B1 ∪ B2 is a real basis of Cg of the form {v1, iv1, v2, iv2, . . . , vg, ivg} and B1 is
a basis of T .

Then in the corresponding basis of the space of invariant forms, up to scalar
multiplication ωT = dB2.

Proof. We prove this by induction on the real codimension of T . If codimRT =
1, then we may write B = {v1, iv1, . . . , vg, ivg} with B \ {ivg} a real basis of T .

Then clearly for any a ∈ A, d(vg)a(v) 6= 0 if and only if Qa(v) /∈ T . Thus dvg
needs to be a scalar multiple of the form ωT . The same of course holds for dvg
if the basis of T is B \ {vg}.
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Suppose we know this for T of codimension n < 2g, and consider T of codi-
mension n+ 1. We write B as B1 ∪ B2.

Let b ∈ B2, and denote by T ′ the space generated by T and b: then ωT ′ =
d(B2 \ {b}). Up to scalar multiplication, then, ωT = ωT ′ ∧ db = dB2, as can be
verified directly by the definition of wedge product.

Let us now consider what these forms do when we integrate them on cycles in
the abelian variety A.

Proposition 4.2.20. Let T ≤ Cg be a real vector subspace of dimension 2g−d
with associated differential form ωT , and C ⊆ A be a cycle of (real) dimension
d.

If
∫
C ωT 6= 0, then there is a smooth point c ∈ C such that TcC ∩ T = 〈0〉.

Proof. If
∫
C ωT 6= 0 then there is a point c ∈ C such that ωT,c 6= 0. The linear

function ωT,c is defined on

2g−p−q∧
j=1

TcC ∧
2g−p∧
k=1

Qa(TcC)

as the wedge between an element of the domain and a basis wedge for some
basis B of T . Since the form is non-zero, there is an element of the domain on
which it is non-zero, which implies that TcC + T = Cg.

Proposition 4.2.20 has a partial converse in the case in which the cycle C is a
complex subvariety of A and the space T is complex.

Proposition 4.2.21. Let L ≤ Cg be a complex vector subspace of (real)
dimension 2g − 2d with associated differential form ωL = ωL, and W ⊆ A a
complex algebraic subvariety of (complex) dimension d.

If there is one point w ∈W with L ∩ TwW = 〈0〉, then
∫
W ωL 6= 0.

Proof. Since W is a complex variety, at each of its smooth points the tangent
space TwW is a complex vector space of complex dimension d. As we noted,
the form ωL is a (d, d) form.

If there is one point w ∈W with L∩TwW = 〈0〉, then the pullback of ωL to W
is a non-zero complex (d, d)-form on a complex projective variety of dimension
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d. Since there is a basis B of L that has the form {v1, iv1, . . . , vg−d, ivg−d}, we
may assume that ωL is the wedge product of a (d, 0)-form and its complex
conjugate. As pullbacks preserve wedge products, the same holds for the
pullback of ωL to W .

Therefore its integral needs to be non-zero, by Proposition 4.2.14.

Finally, let us recall the role of the cup product.

Definition 4.2.22. The cup product is the pairing on cohomology groups

∪ : Hj(M)×H i(M)→ H i+j(M)

defined on forms ω1 and ω2 in cohomology classes [ω1] and [ω2] as [ω1 ∪ ω2] =
[ω1] ∪ [ω2].

There are more general ways to define the cup product, but all we will need is
its duality with intersections, described in the next subsection. For proofs that
the cup product as we introduced it is well-defined see [Bre13, Section VI.4] or
[Hat02, Section 3.2].

4.2.3 Transversality and Intersections

In this subsection we gather some notions on transversality which we will
need later. In particular, we will focus on the Transversality Theorem and its
connections with intersection theory in homology. Even when not explicitly
stated, by “manifold” we always mean “smooth manifold”.

Definition 4.2.23 (Transversality for manifolds). Let M be a manifold, N1

and N2 submanifolds of M .

We say that N1 and N2 intersect transversely if for every x ∈ N1 ∩ N2,
TxN1 + TxN2 = TxM .

Definition 4.2.24 (Transversality for maps). Let M1 and M2 be manifolds,
f : M1 →M2 a smooth map, N a submanifold of M2.

We say that f is transverse to N , denoted f t N , if for every x ∈ f−1(N) we
have

Tf(x)N + im(dfx) = TxM2.

Note that both these definitions allow for degenerate “empty” cases: if N1 and
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N2 are disjoint then they intersect transversely, and if N ∩ im(f) = ∅ then
f t N .

In a torus (or more generally in a real Lie group), where we have a continuous
operation available, it is easy to relate the two notions of transversality.

Proposition 4.2.25. Let T be a real torus of dimension n, M and N sub-
manifolds of T . For a fixed t ∈ T , let f : M → T be the function m 7→ m− t.

Then M and t+N intersect transversely if and only if f t N .

Proof. Just by unpacking the definitions: M and t+N intersect transversely
if and only if for every x ∈M ∩ t+N , TxM + Tx(t+N) = Rn.

On the other hand, since f−1(N) = M ∩ t+N , this is the same condition for
f t N : for every x ∈ M ∩ t + N , TxN + im(dfx) = TxN + TxM , so it spans
the whole space if and only if M and t+N intersect transversely.

We now state the powerful Transversality Theorem.

Theorem 4.2.26 (Transversality Theorem, [Hir76, Theorem 3.2.1]). Let
M,S,N be manifolds, and consider a smooth map F : M × S → N . We
assume all these manifolds are without boundary.

For s ∈ S, denote by fs : M → N the map fs(m) := F (m, s).

If F is transverse to a submanifold N ′ ⊆ N , then for all s in an open dense
subset of S, fs is transverse to N ′.

Note that all the manifolds we work with are without boundary.

We want to use this statement to obtain information on genericity of transverse
intersections of submanifolds.

Corollary 4.2.27. Let M,N be submanifolds of a torus T . There is an open
dense subset O ⊆ T such that for all x ∈ O, M and x+N intersect transversely.

Proof. Consider the map F : M × T → T which maps (m, t) to m − t. The
result then follows from the combination of Theorem 4.2.26, which ensures that
ft t N for t generic in T , and Proposition 4.2.25 which compares transversality
of maps to transversality of manifolds.
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The importance of transverse intersections lies in their connection with homo-
logy theory. Namely, transversality represents a good notion of general position,
by which we mean that given homology classes α and β, the homology class of
the intersection of a representative of α and one of β does not depend on the
choice of representative, as long as they intersect transversely. More precisely:

Theorem 4.2.28 ([Bre13, Theorem VI.11.9]). Let M be a manifold, α and β
homology classes in H∗(M).

Then there is a homology class γ such that if A and B are smooth submanifolds
ofM , lying in α and β respectively, which intersect transversely, then A∩B ∈ γ.

This, however, poses a problem as not all homology classes are represented by
submanifolds. We cannot ignore this issue as we are going to work with the
homology classes of algebraic subvarieties of abelian varieties, and it may be
possible that such algebraic subvarieties are singular.

However, when working with complex varieties we do have more tools at hand.
For example, we know that complex algebraic varieties are stratified, in the
sense that we can decompose them as unions of smooth sets of increasing
dimension.

We recall the following famous result of Whitney. It is stated there as every
complex variety having a regular stratification, here we expand on that.

Theorem 4.2.29 ([Whi15, Theorem 19.2]). Let W be a complex algebraic
variety of dimension d. Then there exist W0, . . . ,Wd such that:

1. Each Wj is either empty or a smooth complex constructible set of dimen-
sion j;

2. W = W0 ∪ · · · ∪Wd.

In simple words, Theorem 4.2.29 says that we can decompose any algebraic
variety in a union of smooth (not necessarily closed) varieties of increasing
dimension: the singular locus of the variety is still well-behaved from an
algebraic and differential point of view, even though it consists of points where
the variety has some local irregularity.

We are going to use stratifications together with the notion of dimensional
transversality due to Goresky and Macpherson. This is weaker than usual
transversality, but we will see how it is enough for our purposes.
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Definition 4.2.30 ([GM83, Section 2.1]). Let M be a smooth manifold, and
suppose A and B are cycles in M .

We say that A and B are dimensionally transverse if dim(A ∩B) ≤ dimA+
dimB − dimM .

Remark 4.2.31. The definition in the Goresky-Macpherson paper is actually
more general than this, as it is developed in a setting in which the ambient
space is allowed to have singularities. Therefore, they define dimensional
transversality by requiring that the intersection is allowable, which roughly
means that not only the intersection has the expected dimension, but moreover
it interacts well with the singularities of the ambient space. Since we are only
going to consider subvarieties of abelian varieties, and abelian varieties are
smooth, this is not going to be a problem for us. Therefore we will stick with
Definition 4.2.30 when discussing dimensional transversality.

The interest of dimensional transversality is, as the reader might by now expect,
that if two cycles are dimensionally transverse then their intersection lies in
a homology class which only depends on the homology classes of the cycles.
This is the content of the following theorem.

Theorem 4.2.32 ([GM83, Theorem 1]). Let M be a manifold of dimension n.
There is a unique pairing

· : Hi(M)×Hj(M)→ Hi+j−n(M)

such that if C and D are dimensionally transverse cycles with C ∈ γ and
D ∈ δ, C ∩D ∈ γ · δ.

An interesting feature of this intersection product is that it corresponds to cup
product under Poincaré duality. We do not define Poincaré duality here, but
just recall that it is an isomorphism between homology and cohomology groups
of a compact manifold. The interested reader may consult [Hat02, Section 3.3]
for more details.

Lemma 4.2.33 ([GM83, Section 2.4]). Let M be a manifold of dimension n,
and suppose P : Hj(M)→ Hn−j(M) denotes the Poincaré duality isomorphism.

If α ∈ Hi(M) and β ∈ Hj(M) are homology classes, then P (α · β) = P (α) ∪
P (β).
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We are going to use this in the setting of abelian varieties, and in particular in
a situation in which the two cycles we are interested in are a subgroup and an
algebraic subvariety.

Lemma 4.2.34. Let A be an abelian variety of dimension g, T a closed
subgroup of A, W ⊆ A an algebraic variety of (complex) dimension d.

Then there is an open dense subset O of A such that for all a ∈ A, T and
a+W are dimensionally transverse.

Proof. Consider a stratification W = W0 ∪ · · · ∪Wd of d. Since each Wj is
smooth, by Corollary 4.2.27 there are open dense subsets O1, . . . , Od such that
for each a ∈ Oj , T and a+Wj are transverse.

Then their intersection has dimension dimR T+ 2j − 2g if it is non-empty (and
then dimR T + 2j − 2g ≥ 0). Since the Wj ’s are disjoint, it follows that if
a ∈

⋂d
j=0Oj

dim(T∩a+W ) = dim

 d⋃
j=0
T ∩ a+Wj

 ≤ dim(T∩a+Wd) ≤ dimR T+2d−2g

as we wanted.

Therefore we can take O := ⋂d
j=0Oj .

4.2.4 Definability and O-Minimality

We conclude this section by introducing some background on o-minimal geo-
metry. We are going to use these facts in the proof of the main result of this
chapter, which needs definability of Hausdorff limits. As it is sort of out of
tune with the rest of the work, and we expect the average reader of this thesis
to have a background in model theory and thus be probably already familiar
with o-minimality, we will not get too much into detail. The reader who wants
to know more about o-minimal structures, not just on the real numbers, should
consult the book [Dri98].

We follow Pila’s approach from [Pil11] to introduce o-minimal structures on
the reals.

Definition 4.2.35. An o-minimal structure on R expanding the real field is a
collection {Sn | n ∈ ω}, where each Sn is a set of subsets of Rn, which satisfies
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the following conditions:

1. Each Sn is a boolean algebra;

2. Sn contains every semi-algebraic subset of Rn;

3. If A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m;

4. If m ≥ n, π : Rm → Rn is the projection on the first n coordinates, and
A ∈ Sm, then π(A) ∈ Sn;

5. The boundary of every subset of S1 is finite.

O-minimal structures have played an important role in pure and applied model
theory over the past thirty years: for example, in the aforementioned paper
[Pil11] they were used to prove the André-Oort Conjecture. The structure
which we will use is the structure Ran.

Definition 4.2.36. The structure Ran is the smallest o-minimal structure on
R expanding the real field which contains every globally subanalytic subset of
Rn for each n.

As this is the only structure we are going to refer to, we will say that a set is
definable, rather than Ran-definable, if it lies in the structure.

The fact that this structure exists is due to Denef and van den Dries ([DD88,
Section 4]). It is obviously a structure which is suitable to talk about complex
abelian varieties, as expA is an analytic map on each neighbourhood of a
fundamental domain and hence definable there. Note that then, in particular,
we can treat closed subgroups of abelian varieties A as definable sets, as they
are images under expA of the intersection of a linear space with finitely many
fundamental domains.

Another important feature of definable set is that they admit triangulations.
The following, which is in a sense a generalization of 4.2.10, is known as the
Triangulation Theorem for definable sets.

Theorem 4.2.37 ([Dri98, Theorem 8.7.1]). Every definable set admits a
triangulation.

Therefore we may treat definable sets as cycles, and integrate differential forms
on them.

We are interested in Hausdorff limits of definable families of sets.
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Definition 4.2.38. A definable family of definable sets is a family of sets of
the form

{S(x) | x ∈ X}

where S ⊆ Rm+n, X ⊆ Rn and

S(x) := {s ∈ Rm | (s, x) ∈ S}

are all definable sets.

The tameness properties of o-minimal structures allow us to avoid patholo-
gical situations when taking Hausdorff limits of such definable collections. In
particular, such limits do not “blow up” in the sense that the dimension does
not increase. Recall that Hausdorff limits and Hausdorff distance have been
introduced in Chapter 3 (see Definition 3.3.16). We slightly generalize that
definition to take limits along definable curves.

Definition 4.2.39. Let S := {S(x) | x ∈ X} be a definable family of definable
sets. Suppose γ : [0, 1)→ X is a definable function. The limit of S along γ, if
it exists, is a set S such that for any sequence {tj}j∈ω ⊆ [0, 1) converging to 1,

S = lim
j∈ω

S(γ(tj)).

The following result follows from a theorem of Marker and Steinhorn on defin-
able types in o-minimal theories ([MS94, Theorem 2.1]), which was strengthened
by Pillay in [Pil94, Corollary 2.4]. A version for semialgebraic sets was es-
tablished by Bröcker in [Brö92, Corollary 2.8], while a direct geometric proof
appears in [KPV14, Corollary 2]. We refer the reader also to [LS04, Theorem]
and [Dri05, Theorem 3.1 and Proposition 3.2].

Theorem 4.2.40. Let {S(x) | x ∈ X} be a definable family of definable
compact sets over the set X ⊆ Rn. Suppose γ : [0, 1) → X is a definable
function. Then

S(1) := lim
t→1

S(γ(t))

exists, is a compact definable set, and

dimS(1) ≤ lim
t→1

dimS(γ(t)).
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We use Theorem 4.2.40 to establish that in the o-minimal setting intersection
homology works even better than it usually does.

Lemma 4.2.41. Let A be an abelian variety, W ⊆ A an algebraic subvariety
and T a closed subgroup of A.

Then W ∩ T contains a cycle which lies in the homology class {W} · {T}.

Proof. If W and T are dimensionally transverse (which in the smooth case
coincides with the usual notion of transversality) then the lemma holds by the
Goresky-Macpherson definition of the intersection pairing, Theorem 4.2.32.

By Lemma 4.2.34, this is the generic situation: there is an open dense subset
O of A such that for every a ∈ O the intersection a+ T ∩W is dimensionally
transverse.

Let γ : [0, 1] → A be a definable function with γ([0, 1)) ⊆ O and γ(1) = 0A.
We can choose γ so that γ(c1) + T 6= γ(c2) + T for all c1 6= c2 ∈ O: it suffices
to take γ : [0, 1]→ O + T ⊆ A/T, which is still a dense open set, and then lift
it to a curve in the original space.

For any c ∈ (0, 1), let

Sc :=
⋃

0≤t≤c
(γ(t) + T) ∩W.

Since all intersections (γ(t) +T)∩W are dimensionally transverse and pairwise
disjoint, it is clear that

dimR Sc = dimR T+ dimRW − 2g + 1

for every c ∈ (0, 1), and that denoting by Bc the intersection γ(c) + T ∩W for
c ∈ [0, 1), ∂Sc = B0 −Bc as a chain.

Let now S1 = limc→1 Sc and B1 = limc→1Bc. These are both Hausdorff
limits of definable families, and therefore by Theorem 4.2.40 the dimensions
do not increase: thus dimR S1 ≤ dimR Sc, and as S1 contains every Sc the
dimensions need to be equal; dimRB1 ≤ dimRBc, and a priori it could be
that dimRB1 < dimRBc (although a consequence of this lemma is that this is
only possible if the Bc’s are homologically trivial). Both S1 and B1 admit a
triangulation by Theorem 4.2.37.
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Claim: ∂S1 = B0 −B1.

Proof of Claim: Consider the definable set

{(s, c) | s ∈ Sc}

whose fibre above each c is Sc. By a consequence of the Trivialization Theorem
for o-minimal structures (see [Dri98, 9.2.1]) there is a simplicial complex K
such that (after reparametrizing γ to change the starting point if necessary)
for all c ∈ (0, 1), Sc is definably homeomorphic to K. Consider the resulting
simplices σj,c : ∆j → Sc (so each ∆j is a face of the standard simplex and each
σj,c is a continuous function).

The boundary map on simplices preserves limits, in the sense that limc→1 ∂σj,c =
∂σj,1: this is clear as ∆j is compact and σj,c is continuous. Therefore,

∂S1 =
M∑
j=1

∂σj,1 = lim
c→1

M∑
j=1

∂σj,c = lim
c→1

(B0 −Bc) = B0 −B1

so we are done.

This proves the claim.

Then B1 is homologous to B0, which is a dimensionally transverse intersection
and therefore lies in the correct homology class.

Remark 4.2.42. Lemma 4.2.41 fails in general: after [Bre13, Theorem VI.11.10]
an example is discussed in which the intersection of cycles A and B does not
contain any cycle which lies in the product homology class, although every
neighbourhood of the intersection does. In that case a curve of sin

(
1
x

)
-type is

used: this is a highly non-definable object.

4.3 Abelian Exponential-Algebraic Closedness

In this section we describe the problem of exponential-algebraic closedness in
the setting of abelian varieties.

As in the case of the complex exponential, the question is whether it is possible
to solve certain systems of equations involving polynomials and the exponential
map of an abelian variety. The geometric interpretation is given again through
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notions of freeness and rotundity which are different in form, but not in spirit,
from the corresponding notions in the case of complex exp.

Definition 4.3.1. Let A be an abelian variety of dimension g, V ⊆ Cg × A
an algebraic variety.

Let π1 and π2 denote the projections of Cg ×A on Cg and A respectively.

The variety V is free if π1(V ) is not contained in a translate of the Lie algebra of
a non-trivial abelian subvariety of A and π2(V ) is not contained in a translate
of a non-trivial abelian subvariety of A.

Given an abelian subvariety B ≤ A, denote by πB the projection πB : Cg×A→
Cg−dimB ×A/B.

The variety V is rotund if dim πB(V ) ≥ dimA/B for every abelian subvariety
B.

Note that since this definition quantifies over abelian subvarieties it becomes
almost trivial in the case of a simple abelian variety. If A is simple, then
V ⊆ Cg×A is free if and only if π1(V ) and π2(V ) are both positive-dimensional,
and it is rotund if and only if dimV ≥ g.

The conjecture is then that every free rotund algebraic variety intersects the
graph of the exponential function. While it is not stated there in this form, it
is implicit in [BK18, Sections 8 and 9].

Conjecture 4.3.2 (Abelian Exponential-Algebraic Closedness). Let A be an
abelian variety of dimension g, expA : Cg → A its exponential map, ΓexpA the
graph of expA.

For every free and rotund algebraic variety V ⊆ Cg ×A, V ∩ ΓexpA 6= ∅.

Part of the motivation for this conjecture ties back to the Quasiminimality
Conjecture: just as in the case of the complex exponential, we are interested in
this conjecture because if established it would imply that a certain structure
on the complex numbers is quasiminimal. In fact, Bays and Kirby have treated
this matter in a uniform way, using the construction of Γ-fields (see [BK18,
Section 3]): these are fields together with a predicate for a certain module which
mimics the behaviour of the graph of a transcendental group homomorphism
such as exp or the exponential of an abelian variety. One of the main results of
[BK18] (Theorem 1.7 there) is that Γ-fields give rise to categorical quasiminimal
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structures, and the goal is to show that the corresponding structures on the
complex numbers are isomorphic to Γ-fields.

We do not get into the details of this construction, but simply state its main
consequence.

Theorem 4.3.3 ([BK18, Sections 8 and 9]). Let A be a simple abelian variety.
If Conjecture 4.3.2 holds for all powers of A, then the structure (C,+, ·,ΓexpA)
is quasiminimal.

Therefore, just like Exponential-Algebraic Closedness, Conjecture 4.3.2 has
a model-theoretic motivation which ties it to the theory of quasiminimal
structures.

As in the case of the complex exponential function, rotundity has a direct
consequence on the geometry of the variety.

Definition 4.3.4. Let V ⊆ Cg ×A be an algebraic variety. The δ-map of the
variety V is the function δ : V → A defined by (v1, v2) 7→ v2 − expA(v1).

As in the case of the complex exponential, we then have the following:

Lemma 4.3.5. Let V ⊆ Cg × A be a free rotund variety, and let δ : V → A

map v = (v1, v2) to v2 − expA(v1).

Then there is a Zariski-open dense subset V ◦ ⊆ V such that for every v ∈ V , δ
is open at v.

The proof of this result is quite similar to Kirby’s proof of Fact 3.2.3, mentioned
in the previous chapter.

Proof. Let V ⊆ Cg × A and δ be as in the statement. δ is clearly a complex
analytic map, and therefore its fibres are complex analytic sets: if there is a ∈ A
such that δ−1(a) is a complex analytic subset of V of dimension dimV −g, then
the image of δ contains, around a, a g-dimensional complex analytic set, and
in particular the map is open on some neighbourhood of any point v ∈ δ−1(a).

The fibre δ−1(a) coincides with the set

{v ∈ V | δ(v) = a} = {(v1, v2) ∈ V | v2 − expA(v1) = a} =

= {(v1, v2) ∈ V | exp(v1) = v2 − a}
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and therefore it is a translate of the intersection ΓexpA ∩ (V − (0, a)).

Consider the family of varieties V := {V − (0, a) | a ∈ A}. By Kirby’s Uniform
Ax-Schanuel Theorem (Corollary 2.5.4 in this thesis) there is a finite collection
of abelian subvarieties C such that any irreducible component of any intersection
(V −(0, a))∩ΓexpA of dimension larger than dimV −g is contained in a translate
of the tangent bundle of some B ∈ C, γ + (LB ×B).

If B is minimal with this property, then

dim(γ + (LB ×B) ∩ (V − (0, a))) > dimV − g + dimB.

To see this, consider the variety VB := (LB × B) ∩ (−γ + V − (0, a)): as a
subvariety of LB ×B, and by minimality of B, it must satisfy

dim(VB ∩ ΓexpB ) = dimVB − dimB

as if it did not we could apply the uniform Ax-Schanuel Theorem in B and
obtain a smaller abelian subvariety. As dim(VB ∩ ΓexpB ) > dimV − g, we have
dimVB > dimV − g + dimB.

By rotundity, if πB denotes the quotient Cg ×A� Cg−dimB ×A/B we must
have

dim πB(V ) ≥ g − dimB

and therefore for almost all γ ∈ Cg ×A,

dim(γ + (LB ×B) ∩ (V − (0, a))) = dimV − g + dimB.

Therefore after removing a Zariski-closed proper subset of V we obtain a set
V ◦ ⊆ V , Zariski-open dense in V , such that for every point in V and every
abelian subvariety B we must have that

dim(γ + (LB ×B) ∩ (V − (0, a))) = dimV − g + dimB.

By the argument above, this implies that the δ-map of V is open at every point
of V ◦: if it were not, then the dimension equality would not be satisfied for
some abelian subvariety B ⊆ A.

As in the case of the complex exponential, when the variety has the form L×W
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we know more about the structure of the set V ◦.

Proposition 4.3.6. If L ≤ Cg is a linear space, W ⊆ A is algebraic, and
L×W is free and rotund, then there is a Zariski-open dense subset W ◦ of W
such that δ is open at every point of L×W ◦.

Proof. It is clear that if δ is open at (l, w), then it is open at (l′, w) for every
l′ ∈ L (by translation along L, as in the proof of Proposition 3.2.4). Since we
know the set of points where the map is open has to be Zariski-open, it can
only take the form L×W ◦.

As in the exponential case, Lemma 4.3.5 has a converse statement.

Lemma 4.3.7. Let L ≤ Cg be a linear space, W ⊆ A an algebraic variety and
δ the δ-map of L×W . If there is a point (l, w) ∈ L×W such that δ is open
at (l, w), then the variety L×W is rotund.

Proof. Let B ≤ A be an abelian subvariety, and let LB ∼= Cg−dimB ≤ Cg be
its tangent space at identity.

Let πB : Cg × A� Cg−dimB × A/B denote the quotient map. Consider also
the partial quotients p : Cg � Cg/LB and q : A� B. We need to show that
dim πB(L×W ) ≥ dimA− dimB.

If UL ⊆ L and UW ⊆ W are open subsets such that δ is open on UL × UW ,
then we have that δ(UL × UW ) is an open subset of A; thus q(δ(UL × UW )) is
an open subset of A/B.

Let δQ denote the δ-map of the variety p(L)× q(W ). It is clear that δQ ◦ πB =
q ◦ δ, as in the proof of Proposition 3.2.5: therefore, δQ(πB(UL × UW )) is
an open subset of A/B. This implies that dim(πB(UL × UW )) ≥ dim(A/B),
because the image of an analytic map cannot have larger dimension than its
domain. So rotundity holds.

In Lemma 3.2.6 we made a useful reduction, showing that we could assume
in that context that the δ-map is open, without losing any generality. The
technique in the proof of that lemma, the Rabinovich trick, is based on the
fact that C× has a “hole” where 0 should be: using that, we were able to hide
the whole subset of the variety on which δ was not open. Abelian varieties,
however, are compact and in particular they do not have any “holes” in that
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sense: therefore there is no hope of repeating the same procedure, and we have
to allow for varieties whose δ-map is open only locally.

We can however assume that dimL+ dimW = g.

Lemma 4.3.8. Let L×W be a free rotund variety in Cg ×A. Then there is a
space L′′ ⊆ L such that L′′ ×W is free and rotund, and dimL′′ + dimW = g.

Proof. The proof is exactly the same as the proof of Lemma 3.2.7, substituting
expA for exp and its inverse for log.

Therefore we will, in this chapter too, freely assume that dimL = codimW
when we need it.

Note that we can use the characterization of rotundity in simple varieties to
easily establish a partial result in that setting.

Proposition 4.3.9. Let A be a simple abelian variety, L ×W ⊆ Cg × A a
free rotund variety, with L ≤ Cg a linear space and W ⊆ A a smooth algebraic
variety.

Then expA(L) ∩W 6= ∅.

Proof. Let T = expA(L) (we will say more in Subsection 4.4.1 on what this
subgroup has to look like). Let δL denote the δ-map of L × W , and αT :
T×W → A the similar map (t, w) 7→ w − t.

Since T and W are compact subsets of A, the image of αT is compact and
hence closed; since A is simple and W is smooth, the Zariski-open subset of
W on which δL is open coincides with W . This is because the set on which
δL is not open was obtained in the proof of Lemma 4.3.5 as a finite union of
sets, each corresponding to an abelian subvariety of A; but A does not have
any non-trivial abelian subvarieties in this case.

If a ∈ im(αT) then there are (t, w) ∈ T ×W such that w − t = a. Consider
the variety (t+ L)×W : the δ-map of this variety is open around (t, w), and
therefore its image contains a neighbourhood of a; this image is contained in
im(αT), which therefore also contains a neighbourhood of a. Therefore im(δT)
is open and closed, so the map is surjective, and thus there is w ∈W ∩ T.

Since δL is open around (0, w), there are open neighbourhoods U0 of 0 in L and
Uw of w inW such that δL(U0×Uw) is an open neighbourhood of w in A. Thus
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its intersection with T is an open neighbourhood of w in T, and it contains points
of expA(L) (as it is dense in T). Therefore there are points (l′, w′) ∈ L×W
such that w′ − expA(l′) ∈ expA(L), and thus w′ ∈W ∩ expA(L).

There are not many results on this topic in the literature. The main one is
due to Aslanyan, Kirby and Mantova, and it is an analogue of Theorem 2.3.20
in this context.

Theorem 4.3.10 ([AKM22, Theorem 1.4]). Let A be an abelian variety of
dimension g, V ⊆ Cg ×A an algebraic subvariety such that the projection of V
to Cg has dimension g.

Then V ∩ ΓexpA 6= ∅.

4.3.1 Ancient History

In this subsection we gather some old notions and results which predate
exponential-algebraic closedeness, but are directly related to it.

Geometrically Non-Degenerate Subvarieties

First we discuss two notions of non-degeneracy, due to Ran, for subvarieties of
abelian varieties. This material is from [Ran80].

We denote by G(d, g) the Grassmannian, the set of all d-dimensional subspaces
of Cg. It is well-known that this can be given the structure of a complex
projective variety.

Definition 4.3.11. Let A be an abelian variety of dimension g, W ⊆ A an
algebraic subvariety of dimension d.

The Gauss map of W is the map γ : WReg → G(d, g) which maps each point
w ∈W to the tangent space TwW .

Definition 4.3.12. Let W ⊆ A be an algebraic variety. Let ν be the standard
embedding of the Grassmannian in a projective space. W is non-degenerate if
the image ν(γ(W )) of its Gauss map is not contained in any hyperplane.

It is useful to characterize non-degeneracy in terms of differential forms.

Lemma 4.3.13 ([Ran80, Lemma II.1]). Let W ⊆ A be an algebraic subvariety
of an abelian variety, with embedding ι : W ↪→ A. Then W is non-degenerate
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if and only if the pullback mapping ι∗ : Hd,0(A)→ Hd,0(W ) on forms of degree
(d, 0) is injective.

We are interested in a stronger notion of non-degeneracy, with a different
constraint on the kernel of the pullback on forms.

Definition 4.3.14. A variety W ⊆ A is geometrically non-degenerate if
the kernel of the pullback ι∗ : Hd,0(A) → Hd,0(W ) does not contain any
decomposable form.

The following characterization of geometrical non-degeneracy suggests that
this notion is related to rotundity.

Lemma 4.3.15 ([Ran80, Lemma II.12]). A variety W ⊆ A is geometrically
non-generate if and only if for every abelian subvariety B of A, with quotient
map πB : A→ A/B,

dim πB(W ) = min{dimW, dimA/B}.

We will make this connection explicit using another characterization of geo-
metrical non-degeneracy. Ran states it without proof, but we prefer to expand
on it for clarity.

Proposition 4.3.16. A variety W ⊆ A is geometrically non-degenerate if
and only if there is no subspace L ≤ Cg with dimL = codimW such that
L ∩ TwW 6= 〈0〉 for every w ∈WReg.

Proof. Suppose W ⊆ A is geometrically non-degenerate, and let L ≤ Cg

be a subspace with dimL = codimW . We know how to associate to L the
form ωL, which is a decomposable (d, d)-form; after multiplying it by a scalar
if necessary, we can write it as ω ∧ ω for some (d, 0)-form ω. Since W is
geometrically non-degenerate, the pullback ι∗(ω) of ω to W is non-zero and
therefore, by Proposition 4.2.14,

∫
W ωL =

∫
W ι∗(ω) ∧ ι∗(ω) 6= 0, which implies

by Proposition 4.2.21 that L intersects non-trivially some tangent space to W .

For the converse, assume that any space L of dimension equal to codimW
intersects transversely at least one tangent space to W . Then given any
decomposable holomorphic (d, 0)-form ω, we write it as dz1 ∧ · · · ∧ dzd for some
basis vectors z1, . . . , zd. The space L generated by {z1, . . . , zd} then has to
intersect W transversely at at least one point, and therefore the pullback of
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the form is non-zero.

If L is as described in Proposition 4.3.16, we say it witnesses geometrical
degeneracy of W .

We can then give two separate proofs of the following statement.

Lemma 4.3.17. Let L ≤ Cg, W ⊆ A with dimL = codimW . Then:

1. If W is geometrically non-degenerate, L×W is rotund;

2. If L×W is rotund then L does not witness geometrical degeneracy of W .

Proof. The first proof uses Lemma 4.3.7: if W is geometrically non-degenerate,
then there is a smooth point w ∈ W such that L + TwW = Cg. Clearly for
such a point the δ-map of L×W is open at (0, w), and therefore the variety
L×W needs to be rotund.

For the second statement, we have that if rotundity holds then for almost every
w ∈ W the δ-map is open at (0, w), and thus there must be at least one for
which TwW and L intersect transversely, as we want.

The second proof only uses the definition of rotundity with dimensional inequal-
ities and Ran’s work. In fact, in Footnote 2 of [Ran80] he notices how ifW is geo-
metrically degenerate then there must be B such that dimB−dim(L∩T0B) <
dimW − dim π(W ), where π : A→ A/B is the projection. But then consider
the following:

dimL+ dimB − dim(L ∩ T0B) < dimL+ dimW − dim π(W )

dimL− dim(L ∩ T0B) + dim π(W ) < dimL+ dimW − dimB

dim πB(L×W ) < dimA− dimB

which contradicts the definition of rotundity.

This shows that while rotundity originated in Zilber’s work as a model-theoretic
notion, similar concepts were already discussed in the literature on the geometry
of subvarieties of abelian varieties.
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Zeros of Theta Functions

We now move to a different topic and discuss a result of Ax, from [Ax72b].

We recall that a theta function for the lattice Λ is an entire function θ : Cg → C
which satisfies a functional equation of the form

θ(z + λ) = exp(gλ(z))θ(z)

for every λ ∈ Λ, where exp denotes the complex exponential function (not the
exponential map of the abelian variety isomorphic to Cg/Λ) and gλ is an affine
function.

The relevance of theta functions lies in the fact that for any such θ, by the
functional equation the zero locus

Zθ := {z ∈ Cg | θ(z) = 0}

is invariant under translation by points in the lattice. This means that expA(Zθ)
is a closed analytic subset of the abelian variety A ∼= Cg/Λ: as abelian varieties
are projective, it is therefore an algebraic hypersurface in A. More is actually
true: all algebraic hypersurfaces in A can be represented this way.

Theorem 4.3.18 (Poincaré, [HS00, Theorem A.5.2.2]). For every algebraic
hypersurface H ⊆ A there is a theta function θ such that H = expA(Zθ).

Poincaré’s theorem is actually more general - it applies to analytic divisors on
complex tori, with no need for algebraicity.

This means, in particular, that if an algebraic subvariety W ⊆ A is a complete
intersection (the intersection of codimW hypersurfaces) then logW is the
intersection of codimW zero loci of theta functions.

This ties the exponential-algebraic closedness problem to the following results
of Ax.

Theorem 4.3.19 ([Ax72b, Theorem 1]). Let θ be a reduced (see [Wei58]) theta
function for the lattice Λ, L a complex subspace of Cg of dimension 1. If the
restriction of θ to L is not constant, then it has infinitely many zeros.

More generally:

Theorem 4.3.20 ([Ax72b, Corollary]). Let θ1, . . . , θd be theta functions with
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respect to a lattice Λ for which the variety A ∼= Cg/Λ is a simple abelian variety.

Then θ1, . . . , θd have infinitely many common zeros on each linear subspace of
Cg of dimension d.

Clearly, Theorems 4.3.19 and 4.3.20 are related to exponential-algebraic closed-
ness.

Theorem 4.3.19 can be seen as studying sets of the form expA(L)∩W , where L
is a one-dimensional subspace of Cg and W a hypersurface. If θ is constant on
L, then L is contained in a translate of exp−1

A (W ): this means that L×W is
not rotund (actually, the Ax-Lindemann-Weierstrass Theorem 2.5.6 for abelian
varieties implies that exp(L) is contained in an abelian subvariety of A and
therefore the variety is also not free). The theorem thus states that the only
possible obstruction to finding zeros of a theta function on a one-dimensional
linear space amounts to a failure of freeness and rotundity, as we want.

As for Theorem 4.3.20, it essentially says that in simple varieties it is easy
to establish exponential-algebraic closedness for varieties of the form L×W
(although it only deals with the case in which W is a complete intersection).
This is similar to what we did in Proposition 4.3.9.

4.4 Abelian E.A.C. for Varieties of the form L×W

In this section we prove the main result of the chapter.

Theorem 4.4.1. Let A be an abelian variety of dimension g, L×W a free
rotund variety with L ≤ Cg a linear space and W ⊆ A an algebraic variety.

Then expA(L) ∩W 6= ∅.

We will prove Theorem 4.4.1 in full generality in Subsection 4.4.2. Before we
get there, we will give a simpler proof for a special case: the reader may guess
that if expA(L) is dense in A then it is somehow easier to find intersections
between it and W , as there are points of expA(L) in any open subset of A. We
will see that this is in fact the case.

4.4.1 The Dense Case

We begin by characterizing which subspaces of Cg have dense exponential.
This characterization is not new as it appears implicitly for example in [UY18a,
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Section 3], but we work out the precise statements.

As in Chapter 3, we endow Cg with the Hermitian product defined for z =
(z1, . . . , zg) and w = (w1, . . . , wg) as 〈z, w〉 = z1w1 + · · · + zgwg. As in the
previous chapter (see Remark 3.6.2) we note that Re (〈z, w〉) coincides with the
scalar product on R2g ∼= Cg, under the usual identification of (x1 + iy1, . . . , xg +
iyg) with (x1, y1, . . . , xn, yn).

We use this to define the dual of a lattice.

Definition 4.4.2. Let Λ be a lattice of rank 2g in Cg. The dual lattice Λ∗ is
the lattice defined by

Λ∗ := {θ ∈ Cg|Re (〈λ, θ〉) ∈ Z ∀λ ∈ Λ}.

We use the dual lattice to describe the real hyperplanes of Cg whose image in
Cg/Λ is closed.

Lemma 4.4.3 (See [UY18a, Section 3]). Let H be a real hyperplane in Cg.
Then H + Λ is closed in Cg/Λ if and only if H can be defined by an equation
of the form Re

(∑g
i=1 θizi

)
= 0 for θ = (θ1, . . . , θg) ∈ Λ∗.

Proof. As a real torus, Cg/Λ is isomorphic to R2g/Z2g. It is well-known that
the hyperplanes H of R2g which have closed image in the quotient are those
defined by a Q-linear equation, as these have a set of generators in Z2g; in
other words, H ∩ Z2g is a lattice in H. Hence, in the setting of Cg/Λ we must
characterize the spaces H for which H ∩ Λ is a lattice in H.

So suppose H∩Λ is a lattice in H. Then H contains 2g−1 linearly independent
elements of Λ, and there is an element of Λ∗ which is orthogonal to each of
those for the real scalar product. Then by Remark 3.6.2 we have the claim.

Conversely, suppose H is defined by an equation of the form above. Then H is
orthogonal to a space defined by an element of the dual, and so it is generated
by points in the lattice.

This property easily translates to complex hyperplanes.

Corollary 4.4.4. Suppose L is a complex hyperplane of Cg which cannot be
defined by an equation of the form

∑g
i=1 θizi = 0 for θ = (θ1, . . . , θg) ∈ Λ∗ (we
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say such an hyperplane is not defined over the conjugate of the dual lattice).
Then L+ Λ is dense in Cg/Λ.

Proof. If a complex linear space satisfies Re
(∑g

i=1 θizi
)

= 0 for coefficients
in Λ∗, then it must satisfy Im

(∑g
i=1 θizi

)
= 0, and hence the full equation∑g

i=1 θizi = 0. Hence if a complex linear hyperplane does not have dense
exponential, it is defined over the conjugate of the dual lattice.

Thus it is trivial to obtain the following lemma, which clears the picture for
general complex linear spaces.

Lemma 4.4.5. Let L be a complex linear subspace of Cg. Then L+ Λ is dense
in Cg/Λ if and only if L is not contained in a complex hyperplane defined over
the conjugate of Λ∗.

We provide explicit computations in the case of powers of an elliptic curve
E ∼= C/Λ, where Λ is a lattice of the form Z+ τZ for some complex number
τ = a+ ib.

Identifying C with R2, the lattice Λ is generated by the points
(

1
0

)
and

(
a

b

)
.

Clearly then a pair of generators of Λ∗ is given by
(

0
1
b

)
and

(
1
−a
b

)
. These

correspond to the complex numbers − i
b and 1 + ia

b . Note that, multiplying
both for ib, we obtain 1 and −a+ ib = −τ , which generate the conjugate of
Λ. Hence, in the case of powers of an elliptic curve, the conjugate of the dual
lattice is actually the original lattice up to multiplication by a scalar, and
Lemma 4.4.5 takes the following form.

Corollary 4.4.6. Let E ∼= C/Λ be an elliptic curve, L ≤ Cg a complex linear
space, exp the exponential map of the abelian variety Eg. Then exp(L) is dense
in Eg if and only if L is not contained in an hyperplane defined over Λ.

Recall that an elliptic curve E is said to have Complex Multiplication when its
endomorphism ring is strictly larger than Z, and that these are characterized as
the curves whose period lattice has the form Z+τZ for τ an imaginary quadratic
number (see [HS00, Example A.5.1.3]). Corollary 4.4.6 has a particularly nice
interpretation in this case. In fact, if E has CM, linear spaces defined over the
lattice are Lie algebras of abelian subvarieties of Eg, and the corollary can be
seen as stating that all free complex hyperplanes have dense exponentials.
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We now move to the proof of Theorem 4.4.1 for spaces which dense exponential.

Theorem 4.4.7. Let A,L,W be as in Theorem 4.4.1, and assume moreover
that L is not contained in hyperplanes defined over the conjugate of the dual
lattice.

Then expA(L) ∩W 6= ∅.

Proof. Let δ : L ×W → A be the δ-map of L ×W . By Lemma 4.3.5, there
is (l0, w0) ∈ L × W such that δ is open at (l0, w0). Then the image of δ
contains an open set U ; since expA(L) is dense there is l ∈ L such that
expA(l) ∈ im(δ) ∩ expA(L).

Thus we may find (l1, w1) ∈ L×W such that w1 − expA(l1) = expA(l). But
then w1 = expA(l) + expA(l1) ∈ expA(L).

4.4.2 The General Case

In this subsection we prove Theorem 4.4.1 in full generality. Therefore, for the
rest of the subsection, even when not explicitly specified the following notations
will be used:

1. A is an abelian variety of dimension g with exponential map expA : Cg →
A;

2. L ×W is a free rotund subvariety of Cg × A, with L ≤ Cg linear and
W ⊆ A an algebraic subvariety;

3. T = expA(L) is the closure of the exponential of L in A; it is a closed
subgroup of A, and T denotes the real subspace of Cg such that expA(T ) =
T;

4. δ : L×W → A is the δ-map of L×W , which maps (l, w) to w− expA(l);

5. The differential forms ωL and ωT are attached to the spaces L and T

respectively as in Subsection 4.2.2

We need to combine the results from Sections 4.2 and 4.3.

Proposition 4.4.8. Let L×W be a free rotund variety, and assume dimL+
dimW = g. Then

∫
W ωL 6= 0.
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Proof. By Lemma 4.3.5, the δ-map of L ×W is open on a set of the form
L×W ◦ with W ◦ ⊆ W Zariski-open dense. This implies that there exists at
least one point w ∈W such that TwW + L = Cg.

Therefore, by Proposition 4.2.21,
∫
W ωL 6= 0.

We now study the interaction between the differential forms ωT and ωL. Letting
d = dimW = codimL, we know that ωL is a form of degree (d, d), and since
L ≤ T the degrees of T need to be larger than those of L.

Proposition 4.4.9. There is a real vector subspace T ′ ≤ Cg such that L =
T ∩ T ′, and ωL = ωT ∧ ωT ′.

Proof. One may write a base {v1, . . . , vg} of Cg such that the corresponding
real basis B = {v1, iv1, . . . , vg, ivg} consists of bases B1 ⊆ B2 ⊆ B of L, T, and
Cg respectively, and such that B1 ∪ (B \ B2) is a basis of T ′.

This way, using Proposition 4.2.19 one sees that ωL is d(B \ B1), while ωT =
d(B \ B2) and ωT ′ = d(B \ (B1 ∪ (B \ B2))) (to see it is the form ωT ′ rather
than ωT ′ one has to compare the degrees).

Since clearly
(B \ B2) ∪ (B \ (B1 ∪ (B \ B2))) = B \ B1

we have that then ωT ∧ ωT ′ = ωL.

Moreover, we note that the cohomology class of ωT and the homology class of
T are essentially Poincaré duals.

Proposition 4.4.10. The cohomology class of ωT is a scalar multiple of the
Poincaré dual of the homology class of T.

Proof. This is essentially [BL04, Lemma 4.10.2].

We are now ready to examine the consequences of freeness and rotundity on
the homological level.

Lemma 4.4.11. Let L×W be a free rotund variety, and suppose the intersec-
tion T ∩W is dimensionally transverse.

Then
∫
T∩W ωT ′ 6= 0.
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Proof. By the cup product-intersection duality, we know that (up to multiplying
be a scalar if necessary)∫

T∩W
ωT ′ =

∫
A

[W ] ∧ ωT ∧ ωT ′ =
∫
W
ωL 6= 0

where [W ] is used to denote any form lying in the cohomology class that is
dual to the homology class of W . We have used Proposition 4.4.10 to note
that [W ] ∧ ωT = [W ∩ T].

By Lemma 4.2.41, even when T∩W is not a dimensionally transverse intersec-
tion it contains a cycle which lies in the product homology class. Therefore we
actually have the following.

Proposition 4.4.12. Let L×W be a free rotund variety. Then there are a
cycle C ⊆ T ∩W and a point c ∈ C such that TcC ∩ T ′ = 〈0〉.

Proof. By Lemmas 4.4.11 and 4.2.41, W ∩ T contains a cycle C such that∫
C ωT ′ 6= 0. By Proposition 4.2.20, this implies that there is c ∈ C such that
TcC and T ′ intersect transversely.

We are then ready to prove the main theorem of this chapter, Theorem 4.4.1.

Proof of Theorem 4.4.1. By Lemma 4.3.8, we may assume without loss of
generality that dimL+ dimW = g.

Since L × W is free and rotund, by Proposition 4.4.12 there are a cycle
C ⊆ T ∩W and a point c0 ∈ C such that Tc0C + T ′ = Cg. Note that

dimRC = dimR T + dimRW − 2g

and
dimR T

′ = 2g − dimR T + dimR L

therefore
dimR Tc0C + dimR T

′ = dimRW + dimR L = 2g.

Thus, Tc0C ∩T ′ = 〈0〉. Since L ≤ T ′, this implies in particular that Tc0C ∩L =
〈0〉.

Therefore,
dimR(Tc0C + L) = dimR Tc0C + dimR L =
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= dimR T + dimRW − 2g + dimR L = dimR T.

As both spaces are contained in T , then, we have that Tc0C + L = T .

This means that there is a neighbourhood U ⊆ C such that U + expA(L) is
open in T. Therefore, since expA(L) is dense in T , there is (l, c) ∈ L× C such
that c−expA(l) ∈ expA(L); and therefore c ∈ expA(L)∩C ⊆ expA(L)∩W .

Finally, we improve the result to show that actually the intersection between
expA(L) and W is Zariski-dense in W .

To do this, we are going to need a few preliminary results.

Proposition 4.4.13. Let L×W be a free rotund variety with dimL+dimW =
g. Then there is w ∈ expA(L) ∩W such that TwW + L = Cg.

Proof. Assume again, using Lemma 4.3.8, that dimL+ dimW = g.

Theorem 4.4.1 implies that there is w0 ∈ expA(L) ∩W such that δ is open
around (0, w0). Let U ⊆ W be a neighbourhood of w0 such that δ is open
on L × U . In every neighbourhood of w0 contained in U there are points of
expA(L), by density of expA(L) in its closure: therefore, expA(L) ∩ U is a
countable set with no isolated points.

Assume that for every point w ∈ expA(L)∩U , L+ TwW 6= Cg. Clearly the set
of points w ∈W for which L+ TwW 6= Cg is closed: thus, since expA(L) ∩ U
is countably infinite, w0 lies in a positive-dimensional set of points with this
property, and therefore δ cannot have discrete fibres and be open around (0, w0).
Therefore there must be a point w arbitrarily close to w0 with TwW +L = Cg:
in other words, if Tw0W + L 6= Cg but δ is open at (0, w0), then w0 is isolated
in the set of points with this property.

Recall that a subspace S ≤ Cn is totally real if S ∩ iS = 〈0〉, and that a
submanifold N of a complex manifold M is totally real if TnN is totally real
in TnM for every n ∈ N .

We then consider the following result on complex manifolds. It can be seen as a
geometric version of Proposition 3.5.10, which was concerned with holomorphic
functions which vanish on a specific totally real submanifold of Cn, i.e. Rn.
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Proposition 4.4.14. Let M be a complex manifold with dimM = n, N ⊆M
a totally real submanifold with dimRN = n, and f : M → C a holomorphic
function.

If f vanishes on N then f ≡ 0 on M .

Proof. Suppose f vanishes on N . Consider the complex submanifold M ′ ⊆M
defined by {z ∈M | f(z) = 0}

Then for every n ∈ N , TnN ⊆ TnM ′. Since TnN is a totally real subspace of
real dimension n, it cannot be contained in a proper complex subspace of TnM :
therefore, TnM ′ = TnM and as a consequence M ′ = M .

Lemma 4.4.15. Let L ×W be a free rotund variety. Suppose T is the real
subspace of Cg such that expA(T ) = expA(L), and let L := T + iT be the
smallest complex subspace of Cg which contains T .

Then every holomorphic function f : W → A which vanishes on expA(L) ∩W
vanishes on expA(L1) ∩W .

Proof. As usual we assume for simplicity that dimL+ dimW = g: if it is not,
we intersect L with generic hyperplanes to lower its dimension.

Let c := dimR(T ∩ iT )− dimR L. Then

dimR T = dimR L1 + c+ dimR L

2

and therefore at a point w ∈W ∩ expA(L) where TwW + L = Cg (as given by
Proposition 4.4.13) we have

dimR TwW ∩ T = dimRW + dimL1 + c+ dimR L

2 − 2g =

= dimRW

2 + c

2 + dimL1 − g.

Note that

dimR(TwW ∩ T ∩ iT ) = dimR TwW + dimR(T ∩ iT )− 2g =

= dimR TwW + c+ dimR L− 2g = c
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and

dimR(TwW ∩ T ) + i(TwW ∩ T ) = dimRW + c+ dimR L1 − 2g − c =

= dimRW + dimR L1 − 2g = dimR(TwW ∩ L1)

so TwW ∩ T is a totally real subspace of TwW ∩ L1 of half its dimension,
so it is not contained in any proper complex subspace. Therefore there is a
neighbourhood U ⊆ L1 of 0 such that expA(U) is complex manifold, andW ∩T
is at least locally a totally real submanifold of W ∩ expA(U), of dimension
dimR(W∩U)

2 (“locally” in the sense that there is a neighbourhood U ′ ⊆W of w
such that U ′ ∩ T is a totally real submanifold of the complex manifold U ′ ∩
expA(U)). Thus by Proposition 4.4.14, there is no holomorphic function which
vanishes on W ∩T unless it vanishes on W ∩U , and thus on W ∩expA(L1).

Lemma 4.4.15 is sufficient to establish Zariski-density of expA(L)∩W in W in
the case in which T + iT = Cg. To prove the more general case we need an
inductive argument.

Theorem 4.4.16. Let L×W be a free rotund variety. Then expA(L) ∩W is
Zariski-dense in W .

Proof. If T + iT = L1 � Cg, then let k = k(L) be the length of the following
chain of inclusions:

L = L0 ≤ T = T0 ≤ L1 ≤ T1 ≤ · · · ≤ Lk−1 ≤ Tk−1 ≤ Lk = Cg

where each Lj+1 = Tj+iTj is the smallest complex subspace of Cg that contains
Tj and each Tj+1 is the real subspace of Cg such that expA(Lj) = expA(Tj+1).
Note that all the inclusions are proper, except possibly the last one: if there
is a j such that Tj−1 = Lj then necessarily Tj−1 = Cg or the variety L×W
would not be free.

Lemma 4.4.15 then shows that every holomorphic function which vanishes on
W ∩ expA(L) vanishes on W ∩ expA(L1): this is the k = 1 case. Since k is
finite, repeated applications of the lemma show that no algebraic function can
vanish on expA(L) ∩W , which is therefore Zariski-dense in W .
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4.4.3 An Example

We present an example of a variety of the form L×W ; as it is necessary to
introduce more machinery than usual, we devote a whole subsection to this.

Recall (for example from [Hid13, Section 2.3.4]) that for every elliptic curve
E ∼= C/Λ there is a meromorphic function ℘ : C \ Λ → C, Λ-periodic with
double poles at each point of Λ such that E may be embedded in the projective

space P2(C) as the set of all points of the form


1

℘(z)
℘′(z)

 for z ∈ C \ Λ together

with the point at infinity


0
0
1

. In other terms, the exponential map of E has

the form

z 7→


1

℘(z)
℘′(z)


(the fact that it is a group homomorphism is [Hid13, Theorem 2.5.1]). The
function ℘ is called a Weierstrass ℘-function for E.

Consider then the lattices Λ1 = Z+ i
√

2Z and Λ2 = Z+ i
√

5Z. As
√

2 does not
lie in the Q-linear span of

√
5, the elliptic curves E1 ∼= C/Λ1 and E2 ∼= C/Λ2

are not isogenous. Let ℘1 and ℘2 denote the relative Weierstrass ℘-functions,

so that for j = 1, 2 a point in Ej has the form


1

℘j(z)
℘′j(z)

.
We can embed the product of the two elliptic curves in P8(C) using the classical
Segre embedding for product of projective spaces (see for example [HS00,
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Example A.1.2.6(b)]) so that a point in E1 × E2 ⊆ P8(C) has the form



1
℘2(z2)
℘′2(z2)
℘1(z1)

℘1(z1)℘2(z2)
℘1(z1)℘′2(z2)

℘′1(z1)
℘′1(z1)℘2(z2)
℘′1(z1)℘2(z2)



.

Consider a smooth curve W contained in E1 ×E2 that is the intersection of
E1×E2 with a hypersurface cut out in P8(C) by a polynomial F ∈ C[Z0, . . . , Z8].
Let moreover

L := {(z1, z2) ∈ C2 | z1 = z2}.

Suppose we want to find a point in L×W ∩ ΓE1×E2 : it corresponds to finding
z ∈ C such that the corresponding point in E1×E2 (which we may write using
the ℘-functions) satisfies the polynomial equation F = 0.

To do so, let us understand what expE1×E2(L) looks like. Since, as we already
noted,

√
2 does not lie in the Q-linear span of

√
5, we have that for every fixed

z ∈ C the set z+ i
√

2Z has closed image under the exponential of E1, while its
image under the exponential of E2 looks like the set z + i

√
2Z+ i

√
5Z, which

is dense in Re(z) + iR. Therefore the closure of expE1×E2(L) is the set

exp({(z1, z2) ∈ C2 | Re(z1) = Re(z2)}).

The homology argument then implies that expE1×E2(L)∩W 6= ∅: in algebraic
terms, there are x+iy1 and x+iy2 in C such that F (expE1×E2(x+iy1, x+iy2)) =
0, simply because expE1×E2(L) and W are closed subsets of E1 × E2 and the
intersection product of their homology classes is non-zero.

Then we may conclude by density: by openness of the δ-map (which in this
case holds everywhere on L×W , because they are both spaces of dimension
and codimension 1) we find (l, w) ∈ L × W (with w arbitrarily close to
(expE1×E2(x+ iy1, x+ iy2))) such that w− expE1×E2(l) ∈ expE1×E2(L), which
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Figure 4.2: As in the example, let Λ1 = Z+ i
√

2Z and Λ2 = Z+ i
√

5Z. Given
a point z = x+ iy ∈ C, the set of images under the exponential of points of the
form (z, z + λ) for λ ∈ Λ2 is dense in the set of images of points (z,Re(z) + y)
for y ∈ R. This is shown in this figure: for a fixed z ∈ C/Λ1 on the left, there
are infinitely many determinations on the right, densely filling the vertical line.

as usual implies that w ∈ expE1×E2(L) to begin with. Therefore, there is z ∈ C
such that w = expE1×E2(z, z), giving a zero of the system of equations under
discussion.

4.5 Model-Theoretic Consequences

Theorem 3.7.8 had its roots in a model-theoretic result (Theorems 2.4.1 and
2.4.2), so it is natural to wonder what is the model-theoretic relevance of
Theorem 4.4.1.

Zilber mentions this in the Introduction to [Zil15]:

[...] one can easily replace [the multiplicative group of a field] F×

by any semiabelian variety A and carry out the same construction
and axiomatisation since also a corresponding analogue of Ax’s
Theorem and its corollaries is available. ([Zil15, p. 4]).

We do not include here the full construction of the first-order theory that
corresponds to the theory TK of Theorem 2.4.1, and leave the elaboration to
future work; however, we point out its main features.

Fix a simple complex abelian variety A and a fieldK ⊆ C of finite transcendence
degree, and consider the ring End(A) of endomorphisms of A.

The language of the theory is then an expansion of the language of End(A)⊗Q-
vector spaces, which includes a predicate L for any K-definable subsets L of
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(Cg)n, a predicate EW for any algebraic subvariety W of An defined over the
field of definition of A, and a binary relation E. Just as in the case of exp, the
interpretation of these symbols in the structure on Cg is:

1. ∀x, y ∈ Cg, E(x, y) ↔ expA(x) = expA(y) (↔ x − y is in the lattice Λ
s.t. A ∼= Cg/Λ);

2. For L a definable subset of (Cg)n, ∀z1, . . . , zn ∈ Cg, L(z1, . . . , zn) ↔
(z1, . . . , zn) ∈ L;

3. ForW an algebraic subvariety of An, ∀z1, . . . , zn ∈ Cg, EW (z1, . . . , zn)↔
(expA(z1), . . . , expA(zn)) ∈W .

We denote the structure by (Cg)A,K .

It is worth stressing that the we do not take a predicate L for every subspace
of (Cg)n, but rather for every definable subset of (Cg)n in the structure Cg as
a vector space. So for example, if g = 2, then we do not take a predicate for

{(z1, z2) ∈ C2 | z1 = z2},

while we do take one for

{(z1, z2, z3, z4) ∈ C4 | (z3, z4) = (z1, z2)}.

This is because the theory is supposed to mimic the “raising to powers” idea,
and therefore the spaces that we add are supposed to work like the graphs of
“multivalued endomorphisms” of End(A).

One may then define a theory by giving axioms on a structure D, requiring
that it is a K-vector space, and that D/E has the same first-order theory
of the abelian variety A in the language with the quotients under E of the
predicates EW .

Again, one finds a completion TA,K of this theory that can be described by a
transcendence statement and an existential closedness statement. In particular,
the latter will take the by-now familiar form of “for all free rotund varieties
L ×W , there is (z1, . . . , zn) ∈ D s.t. L(z1, . . . , zn) ∧ EW (z1, . . . , zn)”. If we
take as D the structure on the space Cg the existential closedness statement
will amount to the following proposition.

Proposition 4.5.1. Let L ≤ (Cg)n be a K-definable subset, W ⊆ An an
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algebraic variety such that L×W is free rotund (as a subvariety of Cgn ×A).

Then L×W ∩ ΓexpAn 6= ∅.

This is obviously a corollary of Theorem 4.4.1, and therefore the structure
(Cg)A,K is a model of the theory TA,K if and only if it satisfies a transcendence
statement. It seems very likely that a theorem similar to Theorem 2.4.3 can be
established in the context of abelian varieties, and that therefore we can show
that (Cg)A,K is a model of the theory TA,K for a sufficiently generic choice of
K; again, we leave working out the full details to future work.

4.6 Future Work: The V ×W Case

We conclude this chapter by presenting some considerations towards the ex-
tension of Theorem 4.4.1 to varieties of the form V ×W , where V ⊆ Cg is an
algebraic variety and not necessarily a linear space. While we do not have
definitive results for this question, there are some preliminary remarks which
might be helpful to solve it in the future.

The idea is that given an affine algebraic variety V ⊆ Cg, neighbourhoods of
large points on the variety resemble open subsets of linear spaces.

Example 4.6.1. Two examples suggest that this intuition is correct.

If V = {(z1, z2) ∈ C2 | z1z2 = 1}, then the “large” points take the form
(
z, 1

z

)
where one of the coordinates is very large and thus the other one is close to 0.
If we take the first one to be large, then it is clear that

lim
z→∞

B(0, R) ∩
(
−
(
z,

1
z

))
+ V = B(0, R) ∩ {(z1, z2) ∈ C2 | z2 = 0}.

In plain terms, locally this variety stays close to the given line.

Similarly, if we consider V = {(z1, z2) ∈ C2 | z2 = z2
1}, in points of large

absolute value the second coordinate varies much faster than the first one. This
means that

lim
z→∞

B(0, R) ∩
(
−(z, z2) + V

)
= B(0, R) ∩ {(z1, z2) ∈ C2 | z1 = 0}.

Of course, these two examples are fundamentally different in that in the first
case the “horizontal line” defined by z2 = 0 acts as a “global asymptote” for V ,



Future Work: The V ×W Case 129

in the sense that the points on the variety are actually approaching the line. In
the second case, on the other hand, the asymptote only works “locally”: there
is no vertical line that V approaches without intersecting it.

This idea, of approximating the behaviour of V at infinity by linear spaces, is
made precise by the following theorem.

Theorem 4.6.2 (Peterzil-Starchenko, [PS18, Theorem 6.3]). Let A be an
abelian variety of dimension g with exponential map expA : Cg → A, and
V ⊆ Cg an algebraic variety.

Then there exist complex algebraic varieties C1, . . . , Ck and linear spaces
L1, . . . , Lk in Cg such that

expA(V ) = expA(V ) ∪
k⋃
j=1

expA(Cj + Lj)

and moreover:

1. dimCj < dimV for every j;

2. If Lj is maximal for inclusion among L1, . . . , Lk, then dimCj = 0.

We refer to the linear spaces L1, . . . , Lk as the asymptotes of V .

Ullmo and Yafaev conjectured in [UY18a] a version of this theorem without the
Cj ’s, according to which the behaviour of expA(V ) is determined by finitely
many linear asymptotes, and proved it in the case in which V is a curve (note
that in Theorem 4.6.2 the Cj ’s have dimension smaller than V , and thus they
are zero dimensional for V a curve). However, an example in Section 8 of
[PS18] shows that when the dimension of V is larger than 1 then the Cj ’s are
necessary.

While the proof of Peterzil and Starchenko is model-theoretic and uses non-
standard models of the theory of algebraically closed valued fields, a slightly
more general result has been proved by Dinh and Vu in [DV20] by complex-
analytic methods.

We also note that the structure of the limit set (finitely many varieties which
are invariant under translations by linear spaces, the maximal ones of which
are exactly translates of linear spaces) closely resembles the structure of the
tropicalization of an algebraic subvariety of (C×)n (finitely many varieties which
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are invariant under translations by algebraic subgroups, the maximal ones of
which are exactly translates of algebraic subgroups). While there are also some
obvious differences (for example the initial varieties in tropical geometry have
the same dimension as the original variety, while in the Peterzil-Starchenko
theorem there are examples of varieties with asymptotes of larger dimension)
it is possible that this similarity has some meaning, and we leave it to future
work to investigate it.

We would like to use Theorem 4.6.2 to prove the Abelian Exponential-Algebraic
Closedness Conjecture in the case in which the subvariety of Cg ×A has the
form V ×W , where V ⊆ Cg and W ⊆ A are algebraic varieties. A first attempt
would be to try to show that if the variety V ×W is rotund, then there is at
least one asymptote L of V such that L×W is rotund and thus expA(L) ∩W
is non-empty, and then try to lift the intersection to a point in expA(V ) ∩W .

However, this approach is trickier than it looks, as the asymptotes encode
information on the global behaviour of the variety, rather than its local aspect.

We explain what we mean with an example.

Example 4.6.3. Let A be the square of the elliptic curve E ∼= C/Z+ iZ, and
V := {(z1, z2) ∈ C2 | z2 = z2

1} the parabola in C2. Take as W the abelian
subvariety of A obtained as the exponential of the space

{(z1, z2) ∈ C2 | z1 = 0}.

The variety V ×W is not free, because W is an abelian subvariety, but it is
rotund which is enough to make our point here.

We have already discussed how, if we take points (z1, z2) ∈ V of large abso-
lute value, neighbourhoods of (z1, z2) in V resemble vertical lines: a slight
perturbation of z1 might cause z2 to move by a comparatively large amount.

[PS18, Example 4.6(2)] describes how this variety has only one asymptote:
the whole complex space C2. This asymptote is in particular rotund, but
it does not take an expert in exponential-algebraic closedness to notice that
expA(C2) ∩W = W 6= ∅.

Thus if we take any point w ∈W there is a sequence {(zj , z2
j )}j∈ω ⊆ V such that

expA(zj , z2
j ) converges to w; equivalently, the sequence {w − expA(zj , z2

j )}j∈ω
converges to 0 ∈ A.
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(0, 0)

(0, 1)

(1, 0)

Figure 4.3: This picture, although referred to the real torus R2/Z2 rather than
to a complex one, gives a good description of what is going on in Example
4.6.3: while locally on each single piece of the exponential of the parabola the
projection on the horizontal axis is open, it is clear that as the coordinates
become larger the curve looks more and more like a vertical line, and therefore
it “loses rotundity” at infinity.

However, if we suppose that (zj , z2
j ) → ∞ as j goes to infinity, we fix a

neighbourhood U of 0 in Cg and consider the sequence of open subsets of V
{Vj}j∈ω, where Vj := (zj , z2

j )+U ∩V , then we see that although expA(Vj)−W
is an open subset of A for every A, as j goes to infinity the set shrinks. At the
limit, it will coincide with W , and therefore there is no indication that the
approximating sets contain 0 as well.

In this case, obviously, we know how to get around this problem: since we can
pick the first coordinate of a point in V arbitrarily, we see that every point of
the form expA(m+ in,m2 − n2 + 2imn) lies in W . However, for more general
V and W the fact that V “loses rotundity locally”, even though the asymptote
maintains it, may pose a more substantial issue.

A partial solution to the problem described in Example 4.6.3 is given by the
notion of stabilizer given by Peterzil and Starchenko. We do not delve into
the definition of stabilizer, which uses model-theoretic notions ([PS18, Defini-
tion 3.12]) but we just note its most important feature, which we essentially
treat as the definition.

Fact 4.6.4 ([PS18, Section 3]). Let V ⊆ Cg be an algebraic variety. A stabilizer
for V in the sense of Peterzil-Starchenko is a linear subspace H ≤ Cg for which
there exist a sequence {vj}j∈ω of points in V and a neighbourhood U of 0 such
that

lim
j→∞

d((vj + U ∩ V ), (vj +H)) = 0



132 Abelian Varieties

where d denotes the usual Euclidean distance

Lemma 4.6.5 ([PS18, Lemma 4.10]). Every asymptote of V contains a stabil-
izer for V .

Stabilizers are more useful than asymptotes when it comes to exponential-
algebraic closedness.

Theorem 4.6.6. Let V ⊆ Cg and W ⊆ A be algebraic varieties such that
V ×W is free and rotund and there exists at least one stabilizer H for V such
that H ×W is rotund.

Then expA(V ) ∩W 6= ∅.

As this theorem is by no means definitive, and we hope to improve it in the
future, we only give a sketch of the proof.

Proof sketch. Since H×W is rotund, expA(H)∩W 6= ∅ and it is Zariski dense
in the intersection of W with the Zariski closure of expA(H).

So let w ∈ expA(H)∩W be such that the δ-map of H ×W is open on H ×UW
for some neighbourhood UW ⊆W of w.

By definition of stabilizer, then there are a positive real R and a sequence
{vj}j∈ω such that expA(vj) converges to w and the sequence {UV,j}j∈ω =
{vj − (B(vj , R) ∩ V )}j∈ω converges in the Hausdorff metric to an open subset
H0 = B(0, R) ∩H of H.

By choosing R appropriately, we can make sure that all the images of the δ-map
of V ×W restricted to the sets UV,j × Uw contain an open ball of fixed radius
around the point w − expA(vj). Therefore, as limj w − expA(vj) = 0, 0 will
eventually be contained in the image: this will give a point inW ∩expA(V ).



Chapter 5

The j-Function

5.1 Introduction

The third main result of this thesis is a theorem on the modular j-function.
This is an important function in number theory, a holomorphic function on
the upper half-plane H := {z ∈ C | Im(z) > 0} which classifies elliptic curves.
In fact, as we have seen in Chapter 4, every elliptic curve is isomorphic to a
complex torus, so a group of the form C/Λ; the lattice Λ can be taken to have
the form Z+ τZ for τ ∈ H. We denote by Eτ the elliptic curve isomorphic to
C/Z+ τZ.

It turns out that two elliptic curves Eτ1 and Eτ2 are isomorphic (as complex
algebraic groups) if and only if the two complex numbers τ1 and τ2 satisfy
a certain arithmetic relation (there are a, b, c, d ∈ Z such that ad − bc = 1,
and aτ1+b

cτ1+d = τ2). The j-function has the property that for all τ1, τ2 ∈ H,
j(τ1) = j(τ2) if and only if the elliptic curves are isomorphic: therefore, the
behaviour of the j-function is somehow influenced by the arithmetic relations of
elliptic curves. We will discuss this in more detail in Section 5.2, but hopefully
the reader can gather from this introduction that the j-function is a remarkable
object which sits at the crossroad of complex analysis, number theory, and
algebraic geometry.

The j-function is in some aspects similar to the complex exponential: it is a
transcendental function with countable, discrete fibres; a version of Schanuel’s
conjecture has been formulated for it.

133
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Conjecture 5.1.1 ([Ber02, Conjecture Modulaire]). Let z1, . . . , zn ∈ H be
non-special points which lie in distinct GL2(Q)+-orbits.

Then
trdeg(z1, . . . , zn, j(z1), . . . , j(zn)) ≥ n.

The definitions of special point and of the action of GL2(Q)+ on H will be
given below. However, the spirit of this conjecture is that, just as in the exp
case, the lower bound for transcendence of the function is given exactly by the
arithmetic relations that the function needs to preserve.

The similarities with the exponential function have led to many questions for
exp to be asked for j as well; of particular interest for us is the question of
j-Algebraic Closedness, an analogue of Exponential-Algebraic Closedness which
aims to determine sufficient conditions for systems that involve polynomials and
the j-function to be solvable in the complex numbers. This chapter contains
an introduction to this conjecture and a solution to a special case of it.

Theorem (Theorem 5.5.7). Let L×W be a free broad subvariety of Hn × Cn

with L a Möbius subvariety of Hn and W an algebraic variety in Cn.

Then L×W ∩ Γj 6= ∅.

The notions of freeness, broadness and Möbius variety will be introduced in
Sections 5.2 and 5.3. Γj denotes the graph of (the n-th Cartesian power of)
the j-function; since we will use Γ to denote the arithmetic group SL2(Z),
however, we prefer to avoid referring to Γj , and in fact the statement of the
theorem below is given in a slightly different equivalent way (which references
j(L) ∩W rather than L×W ∩ Γj). We gave the statement in this way in the
introduction to highlight the similarity with the main theorems of Chapters
3 and 4: just as in those cases, the theorem establishes that the graph of the
relevant transcendental function intersects a variety which splits as a product
L×W , where W is any algebraic subvariety of the codomain and L has a nice
geometric structure. We will say more about why this result is akin to the
“raising to powers” idea in the next section.

The structure of the chapter is as follows.

In Section 5.2 we introduce the modular j-function, describing some of its
properties such as its interplay with the action of SL2(R) on H by Möbius
transformation. We also introduce Möbius and weakly special subvarieties,
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objects of fundamental importance.

This will help us, in Section 5.3, to introduce the j-Algebraic Closedness
conjecture. We first take a short detour to discuss some similarities between
exp and j, and then state the conjecture.

In Section 5.4 we use Ratner’s theorem from ergodic theory to show that the
image under the j-function of a Möbius subvariety which is not contained in
any weakly special subvariety of Hn is dense in Cn in the Euclidean topology.

In Section 5.5 we prove the main result of this chapter.

Finally, in Section 5.6 we sketch the proof of a partial result which concerns
solutions of systems of equations that involve algebraic operations and the first
derivative of the j-function.

The work in this chapter has been greatly helped by Gareth Jones’s suggestion
to use Ratner’s Theorem to tackle Lemma 5.4.2. The author wishes to express
his gratitude.

The main results of this chapter have already appeared in Sections 3 and 4 of
the preprint [Gal21].

5.2 Geometric Preliminaries

Let H denote the complex upper half plane, i.e. the set {z ∈ C | Im(z) > 0}.
The special linear group SL2(R) acts on H by Möbius transformations, that is,

the matrix g =
(
a b

c d

)
acts on z ∈ H by mapping it to az+b

cz+d .

Remark 5.2.1. This action can actually be seen as a restriction of the action
by Möbius transformations of a larger group on a larger set, that of GL2(C)
on the Riemann sphere P1(C). This has two consequences that are of interest
for us.

The first one is that we can consider SL2(R) acting not just on H, but also on
R ∪ {∞}. This will be needed to give the definition of cusp.

The second one is that, while the action can be defined for any matrix in
GL2(C), it is clearly invariant by scalar multiplication, meaning that given
λ ∈ C and h ∈ GL2(C), hz = λhz for all z ∈ H; hence this can be seen as
an action of SL2(C). The situation is not exactly the same for real matrices:
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let GL2(R)+ := {h ∈ GL2(R) | det(h) > 0}. The action of SL2(R) can be
seen as the restriction of the action on the same space of GL2(R)+. We
will be especially concerned with matrices which up to scalar multiplication
have rational entries, as these define the only algebraic relations on H whose
algebraicity is preserved under the j-function. We will freely abuse notation
and consider the action of GL2(Q)+ on H, claiming that a matrix h ∈ SL2(R)
is in GL2(Q)+ when actually what we mean is that it is a scalar multiple of
such a matrix.

We introduce the notion of cusp.

Definition 5.2.2. Let Γ be a discrete subgroup of SL2(R). A cusp for Γ is a

point x ∈ R ∪ {∞} such that γx = x for every γ ∈ Γ of the form
(

1 t

0 1

)
for

some t ∈ R (such elements of SL2(R) are called parabolic).

For the rest of this section, let G = SL2(R) and Γ = SL2(Z).

Recall the following definition of commensurability of subgroups and the
characterization for commensurability of conjugates of Γ in G.

Definition 5.2.3. Two subgroups H and K of a group are commensurable if
H ∩K has finite index in both H and K.

Fact 5.2.4 ([Mil97, Lemmas 5.29 and 5.30]). Let g ∈ G. Then gΓg−1 and Γ
are commensurable if and only if g ∈ GL2(Q)+.

We recall the definition of the j-function, following [Mil97, Section I.4].

Definition 5.2.5. We say a function f : H→ C is Γ-invariant if for any γ ∈ Γ
and z ∈ H, f(γz) = f(z).

According to Definition 5.2.2, the only cusp for Γ is ∞. As the Γ-orbit of ∞
can easily be checked to be Q, studying the behaviour of a Γ-invariant function
at infinity is the same as studying it at any rational point.

Definition 5.2.6. Let f be a Γ-invariant function on H, D denote the open
unit disk. Then we can define f∗ : D \ {0} → C by f∗(exp(2πiz)) = f(z); this
is well-defined, because if z ∈ H then exp(2πiz) ∈ D \ {0} and if exp(2πiz1) =
exp(2πiz2) then z1 − z2 ∈ Z and thus f(z1) = f(z2) by Γ-invariance. We say f
is meromorphic (resp. has a pole of order n) at the cusp if f∗ is meromorphic
(resp. has a pole of order n) at 0.
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Figure 5.1: Some of the fundamental domains for the action of SL2(Z) on H:
the curved triangular shapes in the picture (including the degenerate ones with
one vertex at infinity) contain exactly one point for each SL2(Z)-orbit. There
are other fundamental domains, curved triangular shapes cut out by infinitely
many half-circles of smaller and smaller radius centred on the rational numbers.
The shaded area, included between the half-circle of centre 0 and radius 1 and
the half-lines defined by Re(z) = 1

2 and Re(z) = −1
2 , is often referred to as the

fundamental domain for this action.

Now we have everything that is needed to define the j-function.

Definition 5.2.7. The modular invariant j is the unique function j : H→ C
that is holomorphic, Γ-invariant, with a simple pole at the cusp and such that
j(i) = 1728 and j(exp( iπ3 )) = 0.

It is well-known that j establishes an analytic isomorphism between Γ\H (as
the action is by left multiplication, the quotient is usually written on the left)
and C. We will be studying intersections between images through j of certain
algebraic subvarieties of Hn and algebraic subvarieties of Cn.

Remark 5.2.8. It should be noted that technically the phrase “algebraic
subvarieties of Hn” is incorrect: the upper half-plane is not a ring, and therefore
we do not talk about polynomials whose indeterminates take values in H. We
abuse terminology and say that V is an algebraic subvariety of Hn to mean
that V is an irreducible component of W ∩Hn for some algebraic subvariety
W ⊆ Cn.

The varieties we will mostly be concerned with are Möbius varieties.

Definition 5.2.9. Let L be an algebraic subvariety of Hn. We say L is a
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Möbius subvariety if L can be defined just by using conditions of the form
zk = gzi for g ∈ G, i, k ≤ n and zi = τ for τ ∈ H, i ≤ n.

Example 5.2.10. The variety {(z1, z2) ∈ H2|z2 = z1 +
√

2} is a Möbius variety,

defined by z2 = gz1 for g =
(

1
√

2
0 1

)
.

Among Möbius varieties lie weakly special varieties.

Definition 5.2.11. An algebraic variety V ⊆ Hn is weakly special if it is a
Möbius subvariety of Hn such that for all i, j ≤ n such that an equation of the
form zj = gzi holds on V , we can assume g to be a matrix in GL2(Q)+.

As the name suggest, this is a generalization of a notion of special variety.

Definition 5.2.12. A special point in Hn is a point z = (z1, . . . , zn) ∈ Hn such
that each zi is an imaginary quadratic element.

A theorem of Schneider establishes the relevance of special points with respect
to the j-function.

Theorem 5.2.13 ([Sch37]). Let τ ∈ H. Then τ and j(τ) are both algebraic
numbers if and only if τ is imaginary quadratic.

Example 5.2.14. From Definition 5.2.7 we know that j(i) = 1728 and
j(exp(πi3 )) = 0, in accordance with Schneider’s Theorem.

Definition 5.2.15. A weakly special subvariety V ⊆ Hn is special if for every
i ≤ n such that V satisfies an equation of the form zi = c, c is an imaginary
quadratic point.

Equivalently, a weakly special variety is special if and only if it contains a
special point.

Just like special points are “bi-algebraic”, in the sense that they are the only
algebraic points in Hn whose algebraicity is preserved by j, weakly special and
special varieties are interesting because they are the only algebraic subvarieties
of Hn whose image under j is still an algebraic variety. This is the content of
a theorem of Ullmo and Yafaev.

Theorem 5.2.16 ([UY11, Theorem 1.2]). Let V be an algebraic subvariety
of Hn. Then j(V ) is an algebraic subvariety of Cn if and only if V is weakly
special, and j(V ) is defined over Q if and only if V is special.
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This does not explain what the image of a weakly special subvariety of Hn

looks like. For that, we need to introduce modular polynomials.

Lemma 5.2.17 ([Lan87, Theorems 5.2 and 5.3]). For each N ∈ N>0 there is
an irreducible polynomial ΦN ∈ Z[X,Y ] such that:

1. For every z1, z2 ∈ H such that ΦN (j(z1), j(z2)) = 0, there is g ∈ GL2(Q)+

with coprime integer entries and determinant N such that z2 = gz1;

2. Φ1(X,Y ) = X − Y , and for N ≥ 2, ΦN is symmetric of total degree at
least 2N .

Definition 5.2.18. For each N , the polynomial ΦN of Lemma 5.2.17 is known
as the N -th modular polynomial.

Varieties defined by modular polynomials and constant coordinates are then
obviously the counterparts in Cn of (weakly) special subvarieties of Hn.

Definition 5.2.19. An algebraic variety V ⊆ Cn is weakly special if it is
defined only by equations of the form ΦN (zi, zj) = 0 where ΦN is a modular
polynomial and zk = c for some c ∈ C.

A weakly special variety is special if it contains the image under j of a special
point.

It is clear from the definition and from Lemma 5.2.17 that (weakly) special
subvarieties of Cn are the images under j of (weakly) special subvarieties of
Hn.

5.3 j-Algebraic Closedness

5.3.1 Why j?

While there are evident reasons why the exponential maps of abelian and
semiabelian varieties were studied along the same lines as the complex expo-
nential (the similar geometric behaviour, the differential equation, the fact that
exp is itself the covering map of the semiabelian variety C×), a non-expert
might think that the j-function is quite different from exp and not see why
one should think that it obeys similar laws. That non-expert would not be too
far off the mark: the most obvious difference, for example, is that j is not a
group homomorphism, so the best algebraic properties of exp are lost.
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We therefore take this subsection, before we move on to state and analyse the
j-Algebraic Closedness Conjecture, to have a look at some parallels between j
and exp, to try to convince the skeptical non-expert that it is not a stretch
to regard this problem as part of the same family as Exponential-Algebraic
Closedness.

Arguably, the push that set this in motion was Pila and Tsimerman’s Ax-
Schanuel Theorem for j.

Theorem 5.3.1 (Ax-Schanuel for j, [PT16, Theorem 1.1]). Let V ⊆ Hn × Cn

be an algebraic variety, Γj the graph of j, and let U ⊆ V ∩ Γj be an irreducible
component with dimU > dimV − n.

Then the projection of U to Cn is contained in a weakly special subvariety.

This is an Ax-Schanuel Theorem in the sense that it does for j what Theorem
2.5.4 does for semiabelian varieties: it establishes that atypical intersections
between algebraic varieties and the graph of j are governed by modular relations,
just as atypical intersections between algebraic varieties and the graph of exp
are governed by group relations.

As we mentioned in Section 5.2, this should be considered in connection with
bi-algebraic geometry, in the sense of Klingler, Ullmo and Yafaev (see [KUY18]
for an exhaustive treatment of this topic). Weakly special subvarieties of Hn

are the only algebraic varieties whose image through the j-function is algebraic;
similarly, in a semiabelian variety of dimension n the image of an algebraic
subvariety of Cn through the exponential map is algebraic if and only if the
variety is the Lie algebra of a semiabelian subvariety. Hence, the existence
of varieties of this kind allows for the existence of atypical intersections; the
point of Ax-Schanuel statements is that there is no other reason why atypical
intersections exist.

As is the case for the Ax-Schanuel Theorem for exp, there are more general
versions of this statement which say a bit more about the atypical intersections
between algebraic varieties in Cn and special varieties; these are related to the
Zilber-Pink Conjecture.

Definition 5.3.2. Let W ⊆ Cn be an algebraic variety. An atypical subvariety
of W is an algebraic variety V ⊆ W which is an irreducible component of
an intersection W ∩ S, where S ⊆ Cn is a special variety, such that dimV >

dimW + dimS − n.
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We mentioned the Zilber-Pink Conjecture in Section 2.4, in connection with
the Conjecture on Intersections with Tori (Conjecture 2.4.5) as a statement
which predicts a tame behaviour of atypical intersections between algebraic
subvarieties and algebraic subgroups of (C×)n. Similarly, the conjecture for
the j-function predicts that there are finitely many atypical subvarieties in
any algebraic subvariety of Cn. While the conjecture is a very difficult open
problem, Theorem 5.3.1 leads to some partial results.

Theorem 5.3.3 (Weak Modular Zilber-Pink, [PT16, Theorem 7.1]). Let
W ⊆ Cn be an algebraic variety. Then W contains finitely many atypical
subvarieties with no constant coordinates.

Theorem 5.3.4 (Weak Modular Zilber-Pink for Parametric Families, [Asl21,
Theorem 7.9]). Let W ⊆ Cn+l be an algebraic variety; for w0 ∈ Cl, denote by
Ww0 the variety {w ∈ Cn | (w,w0) ∈W}.

There is a finite set T of special subvarieties of Cn such that for every w ∈ Cl

and every atypical subvariety with no constant coordinates V of Ww there is
T ∈ T such that V ⊆W ∩ T .

These theorems, and Theorem 5.3.4 in particular, should be compared to
Corollary 2.5.4 for semiabelian varieties, which said that atypical intersections
in a semiabelian variety can be traced back to the influence of finitely many
algebraic subgroups.

Theorem 5.3.1 led model theorists to consider the extent of the similarities
between the theory of the exponential and that of the j-function; the initial
idea to build a pseudo-j-function, similar to Zilber’s pseudoexponential, was
soon abandoned, but many analogies remained. In [Asl22], Aslanyan studied
the first-order theory of differential fields equipped with a function that behaves
like j, similarly to Kirby’s work on the exponential differential equation in
[Kir06] and [Kir09].

In particular, he defined notions of freeness and broadness for algebraic varieties
in these differential fields (similar to freeness and rotundity in fields with an
exponential) and conjectured that all free broad varieties intersect the graph of
the j-like function of the differential field. This conjecture was then established
by Aslanyan, Eterović, and Kirby ([AEK21, Theorem 1.1]). It was natural
to ask whether the same could be said about the “actual” j-function on the
complex numbers. This will be the topic of the next subsection.
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Let us note, before we move on, that analogues of Theorem 5.3.1 have been
proved in more and more general settings, most notably Shimura varieties
([MPT19, Theorem 1.1]) and variations of Hodge structures ([BT19, The-
orem 1.1]); Psapas has a version for general linear groups ([Pap19, Theorem]);
Blázquez-Sanz, Casale, Freitag, and Nagloo have proved in [Blá+21] some sim-
ilar statements in the differential-algebraic setting. There is a case to be made
for questions similar to Exponential-Algebraic Closedness to be considered for
all these structures; Eterović and Zhao have began to do so for Shimura variet-
ies in [EZ21]. There they state the conjecture in this context and generalize
to Shimura varieties results that were known for the j-function, including the
main theorem of this chapter that had already appeared in [Gal21].

5.3.2 The j-Algebraic Closedness Conjecture

As we mentioned, j-Algebraic Closedness was first considered in a setting of
differential fields; it was first stated for the complex j-function in [AK21],
where definition of freeness and broadness for subvarieties of Hn × Cn were
given, although similar questions were addressed in the earlier work [EH21] as
the “motivating questions” of the paper.

Definition 5.3.5. Let V ⊆ Hn × Cn be an algebraic variety; denote by
π1 : Hn × Cn � Hn and by π2 : Hn × Cn � Cn the projection maps.

We say that V is free if π1(V ) is not contained in a proper weakly special sub-
variety of Hn and π2(V ) is not contained in a proper weakly special subvariety
of Cn.

While reading this, the reader should keep in mind the definitions of freeness
from Chapter 2 for the complex exponential and from Chapter 4 for the
exponentials of abelian varieties, together with the discussion in Subsection
5.3.1: freeness there stipulated that the projections of the variety are not
contained in translates of algebraic subgroups or their Lie algebras, and we
know that these are exactly the “bi-algebraic” varieties for exp; this definition
does the same thing, considering Theorem 5.2.16.

As for the analogue of rotundity, broadness, it turns out to be more manageable.

Definition 5.3.6. For any ordered subtuple I = (i1, . . . , ik) of (1, . . . , n)
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(ordered in the sense that i1 < i2 < · · · < ik), let

πI : Hn × Cn � Hk × Ck

denote the coordinate projection

(z1, . . . , zn, w1, . . . , wn) 7→ (zi1 , . . . , zik , wi1 , . . . , wik).

A subvariety V ⊆ Cn ×Hn is broad if for all ordered subtuples I,

dim(πI(V )) ≥ k.

Rotundity asks that a variety satisfies countably many dimension inequalities
(except in the degenerate case of a simple abelian variety) as there are countably
many algebraic subgroups of a complex torus or of a non-simple complex abelian
varieties. Broadness, on the other hand, is the conjunction of only finitely
many conditions: this is because the bi-algebraic relations for j are the modular
ones and, model-theoretically speaking, their geometry is trivial and therefore
described by binary relations. This simplifies things a great deal.

Comparing things with the exponential function once again, we have that just
as free rotund varieties are expected to intersect the graph of exp, free broad
varieties are expected to intersect the graph of j. This is the content of the
next conjecture.

Conjecture 5.3.7 ([AK21, Conjecture 1.2]). Let V ⊆ Hn×Cn be a free broad
algebraic variety.

Then V ∩ Γj 6= ∅.

The first result which was established in this setting was in [EH21].

Theorem 5.3.8 ([EH21, Theorem 1.1]). Let V ⊆ Hn × Cn be an algebraic
variety with π1(V ) a Zariski-dense subset of Hn.

Then V ∩ Γj 6= ∅.

This was proved using Rouché’s Theorem from complex analysis, and it is an
analogue for j of Theorems 2.3.20 for exp and 4.3.10 for abelian varieties.
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5.3.3 Raising to Powers for j

In this subsection we will explain why the main theorem of this chapter,
Theorem 5.5.7, is akin to Theorem 3.7.8, the main theorem of Chapter 3. This
subsection is not necessary for the rest of the chapter, but we feel it adds a new
angle to the j-exp comparison which can help with the general understanding
of the problem.

We saw in Example 2.4.4 that given a linear subspace L of Cn, the set exp(L)
can be interpreted as the intersection of some graphs of multivalued functions;
as the easiest example, if L = {(z1, z2) ∈ C | z2 =

√
2z1} then exp(L) is the

set of all pairs of the form (w,w
√

2) where w
√

2 denotes any determination of
exp(
√

2 logw). In the following example we study what happens to the same
space (more correctly to its intersection with H2) under the j-function.

Example 5.3.9. First of all, consider the matrix g =
(

2 1
4 0

0 2− 1
4

)
∈ SL2(R).

Then for all z ∈ H,

gz = 2 1
4 z

2− 1
4

=
(
2

1
4 · 2

1
4
)
z =
√

2z.

This means that the variety L := {(z1, z2) ∈ H | z2 =
√

2z1} is a Möbius
variety.

We want to study j(L). If (w1, w2) ∈ j(L), then there is (z1, z2) ∈ L such
that j(z1, z2) = (w1, w2); therefore there is z ∈ H such that j(z) = w1 and
j(
√

2z) = w2. We know that the fibre j−1(w1) is equal to the SL2(Z)-orbit of
z: however, for all non-identity γ ∈ SL2(Z), gγ 6= γg and therefore j(gz) =
j(γgz) 6= j(gγz). This means that there are countably many different points
of the form

(j(z), j(gγz))

for γ ∈ SL2(Z). Therefore, j(L) is also the graph of a multivalued function
which associates to w all the determinations of j(g(j−1(w))), as j−1(w) varies
in some SL2(Z)-orbit.

Obviously, the argument in Example 5.3.9 applies to any Möbius variety:
therefore, images of Möbius varieties are intersections of graphs of multivalued
functions which are obtained by looking at different determinations of j−1.
From this perspective, the similarity between the main theorem of this chapter
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and Theorem 3.7.8 should be clear.

5.4 Density of Images of Möbius Subvarieties

The goal of this chapter is to show that free broad varieties of the form L×W ,
with L a Möbius variety, intersect the graph of j; as usual, this amounts to
showing that j(L) ∩W 6= ∅, and the first step to be taken is understanding
what j(L) looks like.

Freeness of L×W implies in particular that L is not contained in any weakly
special subvariety of Hn. As in this section we will be concerned with Möbius
varieties, and we could for the moment forget about the subvariety W ⊆ Cn,
we give a definition of freeness for Möbius variety for convenience (so that we
can say “let L be a free Möbius variety” rather than “let L ×W be a free
variety” when we have no use for W ).

Definition 5.4.1. A Möbius variety L ⊆ Hn is free if it is not contained in
any weakly special variety, i.e., if no coordinate is constant on L and for no
i, k ≤ n there is h ∈ GL2(Q)+ such that zk = hzi for all z ∈ L.

The goal of this subsection is to establish the following.

Lemma 5.4.2. Let L be a free Möbius variety. Then j(L) is dense in Cn in
the Euclidean topology.

Lemma 5.4.2 is an application of Ratner’s theorem on unipotent flows, first
proved by Ratner in [Rat91]. We will provide a proof for completeness; the
reader who is interested in this topic is referred to the exposition in [Mor05].
We also remark that a more general result, which applies to higher dimensional
Shimura varieties, has been obtained by Ullmo and Yafaev in [UY18b]; this is
relevant in generalizations of this work to the Shimura setting, as in [EZ21,
Theorem 1.3].

Recall that on a Lie group we can always define a left-invariant measure µ, the
Haar measure, which is unique up to multiplication by scalars. Among other
things, this is used to define lattices.

Definition 5.4.3. Let Γ be a subgroup of a Lie group G. A fundamental
domain for Γ is a measurable subset F of G such that ΓF = G and that γF ∩F
has measure zero for all non-identity γ ∈ Γ.
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Definition 5.4.4. A subgroup Γ of a Lie group G is a lattice in G if it is
discrete and it has a fundamental domain of finite measure.

There is an important link between the notions of lattice and commensurability
which will be needed later.

Proposition 5.4.5. Let Γ and Γ′ be lattices in G, ∆ be the diagonal of G2,
i.e. the group {(g, g) ∈ G2|g ∈ G}. Then the following are equivalent:

1. Γ ∩ Γ′ is a lattice in G;

2. (Γ× Γ′) ∩∆ is a lattice in ∆;

3. Γ and Γ′ are commensurable.

Proof. That 1 and 2 are equivalent is clear once we observe that (Γ× Γ′) ∩∆
is the set {(γ, γ) ∈ ∆|γ ∈ Γ ∩ Γ′}.

For the equivalence of 1 and 3 we have the more general property that a
subgroup L′ of a lattice L is a lattice if and only if [L : L′] is finite. To see
this, observe that a fundamental domain for L′ is given by the union of [L : L′]
fundamental domains for L; and hence it has finite measure if and only if
[L : L′] is finite.

We can now state (a form of) Ratner’s theorem. The following statement is
the combination of Theorem 1.1.14, Remark 1.1.15 and Remark 1.1.19 from
[Mor05].

Theorem 5.4.6 (Ratner’s Orbit Closure Theorem). Let G be a Lie group, Γ
a lattice in G, H a subgroup generated by unipotent elements.

Then for every x ∈ G, there is a closed subgroup S of G with the following
properties:

a. H ⊆ S;

b. Every connected component of S contains an element of H;

c. x−1Γx ∩ S is a lattice in S;

d. The double coset ΓxH is dense in ΓxS.

We will first apply the theorem to the case of G = SL2(R) and Γ = H = SL2(Z),
and then use this to extend this to powers of SL2(R).
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Lemma 5.4.7 (See [Mor05, Exercise 1.27]). Let g ∈ G. Then the double coset
ΓgΓ is discrete if and only if g ∈ GL2(Q)+, and it is dense otherwise.

Proof. First note that Γ is generated by the matrices s =
(

1 1
0 1

)
and t =(

1 0
1 1

)
, which are unipotent. Hence we consider the action of Γ on Γ\G by

right multiplication. Fix g ∈ G; by Ratner’s theorem there is a subgroup
S satisfying the properties listed in Theorem 5.4.6. Consider the connected
component of the identity S◦; this is a normal subgroup of S and, because
Γ ⊆ S, S◦ is normalized by Γ.

Since G is a simple Lie group (it does not have non-trivial connected normal
subgroups) and Γ is Zariski-dense in G as a consequence of the Borel density
theorem ([Mor05, Theorem 4.7.1]), the only connected subgroups of G that
are normalized by Γ are the trivial subgroup and G. Suppose S◦ = {I2}; then,
because every connected component of S contains an element of Γ, S = Γ. But
then g−1Γg ∩ Γ is a lattice in Γ, which amounts to say that g−1Γg and Γ are
commensurable by Proposition 5.4.5. By Fact 5.2.4 this is the case if and only
if g ∈ GL2(Q)+, so we must have S = G; then ΓgΓ is dense in ΓgG = G.

We now describe the full setting to which we want to apply the theorem.
Fix n ≥ 2 and let G = SL2(R)n−1 and Γ = SL2(Z)n−1. Consider now the
subgroup H = ∆(Γ), where by ∆ we mean the diagonal, i.e. the subgroup
{(γ2, . . . , γn) ∈ Γ | γ2 = · · · = γn}. (It will hopefully become clear later why
we start the enumeration at 2).

We can see H as a subgroup generated by unipotent elements by identifying G
with the subgroup of SL2n−2(R) of all matrices of the form


k2 O2 · · · O2

O2 k3 · · · O2
...

. . . · · ·
...

O2 · · · · · · kn


with each kn ∈ SL2(R), where each O2 denotes a 2 by 2 block of zeros, and
Γ and H with the corresponding subgroups. Then, as SL2(Z) is generated by

the unipotent elements s =
(

1 1
0 1

)
and t =

(
1 0
1 1

)
, H is generated by the
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matrices 
s O2 · · · O2

O2 s · · · O2
...

. . . · · ·
...

O2 · · · · · · s

 and


t O2 · · · O2

O2 t · · · O2
...

. . . · · ·
...

O2 · · · · · · t


and so it makes sense to apply the theorem on cosets of groups generated by
unipotent elements.

While representing Γ, G and H this way fits better with Ratner’s theorem, we
will stick with the previous definitions because they are equivalent and easier
to work with.

For the general case we are going to need two group-theoretic facts: Goursat’s
lemma and a proposition on normal subgroups of powers of simple Lie groups.

Fact 5.4.8 (Goursat’s Lemma, [Lan05, Exercise 1.5]). Let G1 and G2 be
groups, T a subgroup of G1 × G2 such that the projections πi : T → Gi are
surjective for i = 1, 2. Identify the kernel N1 of π1 with a normal subgroup of
G2, and the kernel N2 of π2 with a normal subgroup of G1.

Then the image of T in G1/N2 ×G2/N1 is the graph of an isomorphism.

We want to study subgroups of SL2(R)n−1, in order to understand which
subgroups are associated to elements of the group by Ratner’s theorem. First
we remark that closed normal subgroups are products of trivial subgroups and
copies of the group. Then we move on to study general connected subgroups,
and see that graphs of inner automorphisms are the only additional possibility.

Proposition 5.4.9. Let G be a simple Lie group, N E Gn a normal connected
subgroup. Then N is a product of trivial groups and copies of G.

Proof. Observe that if the k-th coordinate of an element is not the identity,
then it can be moved to any element of the group by conjugating by an element
that is the identity of all the coordinates except the k-th one.

This suggests that in order to move forward we need an understanding of the
group af automorphisms of SL2(R). This has a very clear description as follows.

Proposition 5.4.10. The Lie group automorphisms of SL2(R) are exactly the
automorphisms of the form g 7→ hgh−1 for matrices h ∈ GL2(R).
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Proof. It is clear that every conjugation induces an isomorphism. To see that
this is actually all of them we appeal to Section XV in Chapter IV of [Che46],
where it is shown that the group of automorphisms of a Lie group embeds in
the group of automorphisms of its Lie algebras, and Theorem 5 in Chapter
9 of [Jac79], where it is proved that all automorphisms of the Lie algebra of
SL2(R) are induced by conjugation by an element of GL2(R).

Proposition 5.4.11. Let S be a closed connected subgroup of G = SL2(R)n−1

such that all the projections πi : S → SL2(R) are surjective. Then if S 6= G

there are i, k ≤ n − 1 and an element h ∈ GL2(R) such that for all g ∈ S,
gk = hgih

−1.

Proof. We do this by induction on n, with the base case n = 3.

So suppose S ≤ SL2(R)2 is a proper Lie subgroup with surjective projections.
Then by Goursat’s lemma there are normal subgroups (the kernels of the
projections) N1 and N2 of SL2(R) such that the image of S in SL2(R)/N2 ×
SL2(R)/N1 is the graph of an isomorphism. If the kernels N1 and N2 are trivial,
then S is the graph of an automorphism of SL2(R). Since S is closed, it is a Lie
subgroup, and hence it must be the graph of a continuous automorphism; by
Proposition 5.4.10, these are given by conjugation by elements of GL2(R). The
only other non-trivial normal subgroup of SL2(R) is the group {I2,−I2}, and
in that case S would be given by the union of the graph of an automorphism ϕ

and the set of elements of the form (g,−ϕ(g)). However, this would contradict
the assumption that S is connected, so we are done.

Now suppose n > 3, and the result holds for n− 1. If S is a subgroup of G, see
it as a subgroup of SL2(R)n−2 × SL2(R). If the projection of S on SL2(R)n−2

is not surjective, then it is a proper subgroup and we can conclude by the
inductive hypothesis, so suppose it is surjective. Note that in this case any two
of the first n− 2 coordinates are not the graph of an automorphism.

We can now apply Goursat’s lemma to S as a subgroup of SL2(R)n−2×SL2(R),
since both projections are surjective, and find normal subgroups N1 and N2

such that the image of S in SL2(R)n−2/N2 × SL2(R)/N1 is the graph of an
isomorphism; again, N1 must be trivial (for the same reasons why it had to
be trivial in the base case: if it is SL2(R) then the projection is not surjective,
and if it is {I2,−I2} then the resulting subgroup is not connected) and N2 is
a proper subgroup of SL2(R)n−2. We focus on N2: this is a normal subgroup
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of SL2(R)n−2 such that the quotient SL2(R)n−2/N2 is isomorphic to SL2(R),
so by Proposition 5.4.9, and the assumption that S is connected, it must be
a product of n− 3 copies of SL2(R) and a trivial group, say at coordinate k.
Then S = {g ∈ SL2(R)n−1|gn−1 = hgkh

−1} for some h ∈ GL2(R).

In the proof of Lemma 5.4.7 we used the fact that connected subgroups of
SL2(R) that are normalized by Γ are indeed normal, so they cannot be non-
trivial as SL2(R) is a simple Lie group. The corresponding statement for powers
of SL2(R) and the diagonal action we are considering is then the following.

Proposition 5.4.12. Let S be a closed connected subgroup of SL2(R)n, and
suppose S is normalized by H = {(γ2, . . . , γn) ∈ SL2(Z)n−1 | γ2 = · · · = γn}.
Then either S is normal, or there are i, k ≤ n such that gi = gk for every
g ∈ S.

Proof. Let S be normalized by H, and suppose it is not normal. By restricting
to a subgroup of SL2(R)m for some m < n if necessary we can assume without
loss of generality that the projections are surjective. Then by Proposition
5.4.11 there are i, k ≤ n and h ∈ GL2(R) such that gk = hgih

−1 for every
g ∈ S. Hence it’s enough to prove this when n = 2, and the rest will follow
inductively.

So suppose S is a closed connected subgroup of SL2(R)2; in this case, H is
the diagonal of SL2(Z)2, and S is the graph of conjugation by some matrix
h ∈ GL2(R). Hence,

S = {(g, hgh−1) ∈ SL2(R)2 | g ∈ SL2(R)}.

Since S is normalized by H, for every γ ∈ SL2(Z) and g ∈ SL2(R) the point

(γgγ−1, γhgh−1γ−1)

belongs to S. However, as S is the graph of conjugation by h, it contains
exactly one point whose first coordinate is γgγ−1, i.e.

(γgγ−1, hγgγ−1h−1).

As this holds for all g and all γ, we can conclude that h commutes with all γ ∈ Γ.
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But then, by Zariski density of SL2(Z), it commutes with all of SL2(R), and
thus it is a scalar matrix; but then S is the diagonal of SL2(R), as required.

We are now in a position to prove the following lemma.

Lemma 5.4.13. Fix (g2, . . . , gn) ∈ G. If the Möbius subvariety L ⊆ Hn defined
by the conditions zi = giz1 for each i = 2, . . . , n is free, then the subgroup S
associated to (g2, . . . , gn) by Ratner’s theorem is G.

Hence, with notations as above for Γ and H, Γ(g2, . . . , gn)H is dense in G.

Proof. We do this by induction on n ∈ N \ {0, 1}, so the base case is n = 2.
In that case the variety is free if and only if g2 is not a scalar multiple of a
rational matrix, so we just need to apply Lemma 5.4.7.

Now assume n > 2, and suppose S is a proper subgroup of G. Consider the
connected component of the identity, S◦. This is a normal subgroup of S,
and since S contains H each coordinate of S◦ is normalised by Γ. Hence the
projections of S◦ are either SL2(R) or the trivial group. If the projection of
S◦ to the k-th component is trivial then, because every connected component
of S contains an element of H, πk(S) = SL2(Z). As g−1Γg ∩ Γ is a lattice in
Γ, this implies that g−1

k · SL2(Z) · gk and SL2(Z) are commensurable. Hence
gk ∈ GL2(Q)+, contradicting the assumption that L was free.

Therefore we may assume that all the projections are surjective. By Propos-
ition 5.4.11, then, there are two coordinates on which S is the graph of an
automorphism. Therefore it suffices to prove the Lemma for n = 3, as any
other case can be reduced to this one.

Suppose then that n = 3, so that G = SL2(R)2 and Γ = SL2(Z)2, and S is a
proper subgroup of G = SL2(R)2. Then S◦ must be the graph of the identity
by Proposition 5.4.12. Since every connected component of S must contain
an element of H, and H ⊆ ∆(R), S = ∆(R). By property c. in Ratner’s
theorem, g−1Γg ∩ ∆(R) is a lattice in ∆(R): but by Proposition 5.4.5 this
implies that g−1

2 · SL2(Z) · g2 and g−1
3 · SL2(Z) · g3 are commensurable. Hence,

SL2(Z) and g2g
−1
3 · SL2(Z) · g3g

−1
2 are commensurable and therefore g2g

−1
3 is

a scalar multiple of a rational matrix, contradicting the assumption that the
Möbius variety L was free. Hence, if L is free, then Γ(g2, g3)H is dense in
Γ(g2, g3)G = G, as required.
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We get density of j(L) as a corollary of Lemma 5.4.13. Note that, since free
Möbius varieties can be seen as products of one-dimensional Möbius varieties,
we just need to take care of this case and the extension will be immediate as
products of dense sets are dense.

Proof of Lemma 5.4.2. Suppose that

L = {z ∈ Hn|zi = giz1 for i = 2, . . . , n}

and let U be an open subset in Cn. Take the first projection U1 = π1(U),
and let z ∈ H be any point such that j(z) ∈ U1. Because j is surjective
and the action of SL2(R) on H is transitive and continuous, there is an open
subset O of SL2(R)n−1 such that (j(z), j(h2z), . . . , j(hnz)) ∈ U if and only if
(h2, . . . , hn) ∈ O. O is open, so by Lemma 5.4.13 there are γ, γ2, . . . , γn such
that (γ2gγ, . . . , γngγ) ∈ O. Then

(j(z), j(γ2gγz), . . . , j(γngγz)) = (j(γz), j(g2γz), . . . , j(gnγz)) ∈ j(L) ∩ U.

5.5 Intersections

We are now ready to prove the existence of intersections between images of
free Möbius subvarieties and algebraic subvarieties of Cn. The first easy, but
crucial, remark concerns the set of matrices that join two points in the upper
half plane via Möbius transformations.

Proposition 5.5.1. Let z1, z2 ∈ H, with zl = xl + iyl for l = 1, 2. Then for
any c, d ∈ R such that |cz1 + d|2 = y1

y2
, there are a, b ∈ R such that if g is the

matrix
(
a b

c d

)
∈ SL2(R), gz1 = z2.

Proof. Direct calculations show that

√y x√
y

0 1√
y

 i = x + iy, for all x and y.

Therefore, since the stabilizer of i is SO2(R), we find that for all θ:√y2
x2√
y2

0 1√
y2

( cos θ sin θ
− sin θ cos θ

) 1√
y1
− x1√

y1

0 √
y1

 z1 = z2
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and that the lower entries of the product matrix are − cos θ√
y1y2

and x1
cos θ√
y1y2

+
(sin θ)

√
y1
y2
. Therefore,

cz1 + d =
√
y1
y2

(sin θ − i cos θ).

This together with density of images of Möbius varieties is enough to prove
the existence of intersections in the case dimL = 1.

Lemma 5.5.2. Let L×W be a subvariety of Hn × Cn such that L is a free
Möbius variety of dimension 1, W is an algebraic variety, and dimL+dimW ≥
n. Then W has a dense subset of points of j(L).

We will obtain this as a corollary of a stronger result, which does not require
W to be an algebraic variety.

We recall the well-known argument principle from complex analysis, as we will
use it in our proof.

Theorem 5.5.3 (Argument Principle, [Ahl66, Theorem 5.20]). Let U ⊆ C be
a bounded open set, f a function that is holomorphic on U with no zeros on
∂U .

Then the number of zeros of f in U is equal to

1
2πi

∫
∂U

f ′(z)
f(z) dz.

Lemma 5.5.4. Let g2, . . . , gn ∈ SL2(R); V an open subset of Cn, f : V → C a
holomorphic function. Denote by W the zero locus of f . Then W has a dense
subset of points of the form (j(z1), j(g2z1), . . . , j(gnz1)).

Proof. Let L = {(z1, . . . , zn) | zi = giz1 for i = 2, . . . , n}.

If f is of the form Xi − c for some c ∈ C, without loss of generality we can
assume i = 1, and then the result follows directly from density of j(L): take z1

to be any element such that j(z1) = c, and if O is any open subset of Cn−1,
then we find γ2g2γ, . . . , γngnγ such that

(j(γ2g2γz1), . . . , j(γngnγz1)) ∈ O.
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Then the point (j(γz), j(g2γz), . . . , j(gnγz)) belongs to the open subset {c}×O
of W . Hence from now on we assume W has no constant coordinates.

Let w ∈W be a regular point such that no coordinate of w is 0 or 1728. Then
find a point z ∈ H such that j(z) = w, and find h2, . . . , hn ∈ SL2(R) such
that zi = hiz1 for i = 2, . . . , n; we denote by h the tuple (1, h2, . . . , hn). Then
consider the function F : H→ C, mapping z to f(j(z), j(h2z), . . . , j(hnz)): by
construction F (z1) = 0, so consider a small compact neighbourhood U of z1.

By density, there is a sequence {gi}i∈N, converging to h, such that each gi is a
tuple of the form

(gi2, . . . , gin) = (γi2g2γ
i, . . . , γingnγ

i)

for some γi, γi2, . . . , γin ∈ SL2(Z), where g2, . . . , gn are the matrices defining L.

Then consider the sequence of functions {Fi}i∈N, where each Fi is defined on
U as Fi(z) = f(j(z), j(gi2z), . . . , j(ginz)). It is then clear that

lim
i∈N

Fi(z1) = F (z1) = 0.

Now consider the derivative of F . Writing j(hz1) for the tuple

(j(z1), j(h2z1), . . . , j(hnz1)),

we have that
d

dz
F (z1) =

= ∂f

∂Y1
(j(hz1))j′(z1) + ∂f

∂Y2
(j(hz1))(j(h2z1))′ + · · ·+ ∂f

∂Yn
(j(hz1))(j(hnz1))′

where if hi =
(
a b

c d

)
, (j(hiz1))′ = j′(hiz1)

(cz1+d)2 .

It is clear that
{
d
dzFi(z1)

}
→i∈N

d
dzF (z1). Therefore if d

dzF (z1) 6= 0, then F
is not constant and thus for sufficiently large i the functions Fi(z1) are not
constant either. Thus we may assume neither F nor the Fi’s have zeros on ∂U .
Since F (z1) = 0, by the argument principle we have

∫
∂U

F ′(z)
F (z) dz 6= 0
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and therefore, by uniform convergence,∫
∂U

F ′i (z)
Fi(z)

dz 6= 0

for sufficiently large i. This implies that Fi has a zero in U .

Claim: Without loss of generality we can assume that d
dzF (z1) 6= 0.

Proof of Claim: Suppose d
dzF (z1) = 0. Because w = j(hz1) is a regular point

in W and no coordinate of w is 0 or 1728, the summands in d
dzF (z1) are not

all zero. Then in particular at least two of them are not zero, and so there is
l > 1 such that ∂f

∂Yl
(j(hzl)) j′(hlz1)

(cz1+d)2 6= 0. But then it is enough to change the
matrix hl, which we are free to do by Proposition 5.5.1: there is a matrix h′l
such that h′lz1 = hlz1, but (j(h′lz1))′ 6= (j(hlz1))′. This proves the claim.

Then we are done: for sufficiently large i apply the argument principle and
find z0 close to z1 such that Fi(z0) = 0, i.e., such that

f(j(z0), j(γ2g2γz0), . . . , j(γngnγz0)) = 0

for some γ, γ2, . . . , γn. Then (j(γz0), j(g2γz0), . . . , j(gnγz0)) ∈ j(L) ∩W .

Proof of Lemma 5.5.2. Apply Lemma 5.5.4 in the case where V = Cn and f
is a polynomial.

The following technical lemma will be used to prove the main result.

Lemma 5.5.5. Let W ⊆ Cn be an irreducible algebraic variety. There is
a non-empty Zariski open subset W ′ of W such that for any Möbius variety
L ⊆ Hn such that L×W is free broad, any intersection between L×W ′ and
the graph Γj of j is typical (i.e., dim((L×W ′) ∩ Γj) = dimL×W ′ − n).

Proof. Let I = (i1, . . . , ik) be a tuple of coordinates and consider as usual the
projection πI ; by abuse of notation we use πI to denote the projections on
both Hn, and Cn as it is clear from context where we are using it.

For any such projection there is a non-empty Zariski-open subset WI ⊆ W

such that for every w ∈WI , dim(π−1
I (πI(w))) = dimW − dim πI(W ).

By the weak modular Zilber-Pink theorem for parametric families, Theorem
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5.3.4, if we consider the family

{WwI | wI ∈ πI(W )},

there are finitely many weakly special subvarieties with no constant coordinates
of Cn (and hence a Zariski-closed subset SI of W ) such that any maximal
atypical component of one of the varieties WwI is contained in SI . Thus, define

W ′ := W \
⋃
I⊆[n]

(SI ∪WI).

Now let L be a Möbius variety such that L×W is free broad. Suppose U is
a bounded open subset of L whose image under j is analytic, that C is an
irreducible component of the intersection j(U) ∩W ′, and that

dimC > dimL+ dimW − n ≥ 0.

Now let I be the maximal subset of {1, . . . , n} for which coordinates with the
corresponding indices are constant on C; then consider its projection πI .

Now C is contained in a single fibre of πI ; consider the fibres Lc and Wj(c),
for some c ∈ HnI , and the complement I0 of the set I. The projection πI0 has
zero-dimensional fibres on Lc and on Wj(c), by maximality of I, so it preserves
dimensions. The component πI0(C) of the intersection

j(πI0(Uc)) ∩ πI0(Wc)

must have typical dimension: if it did not, it would give rise to an atypical
component of the intersection of L×W with the graph of j. By the Ax-Schanuel
Theorem for j (Theorem 5.3.1) it would then have to be contained in a weakly
special subvariety, but it cannot have constant coordinates, by maximality of
I, and it does not satisfy modular relations because we assumed that C is not
contained in W \W ′. Thus,

dimC = dim πI0(C) = dimLc + dimWj(c) − (n− nI) > dimL+ dimW − n

dimWj(c) > dimL− dimLc + dimW − nI .
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However, the fibre dimension theorem and broadness of the variety imply that

dimWj(c) = dimW − dim πI(W ) ≤ dimW − nI + dim πI(L).

Comparing these, we obtain:

dimW − nI + dim πI(L) > dimL− dimLc + dimW − nI

dimLc + dim πI(L) > dimL

which cannot hold as L is a Möbius variety. Therefore the component C cannot
be atypical, and any atypical component must be contained in W \W ′.

Finally, we note that just as in the case of the exponential function (Lemma
3.2.7) there is no harm in assuming that given a free broad subvariety L×W ⊆
Hn × Cn, dimL+ dimW = n.

Lemma 5.5.6. Let L×W be a free broad variety. Then there is an algebraic
subvariety W ′ ⊆W such that L×W ′ is free and broad and dimL+dimW ′ = n.

Proof. Let I = (i1, . . . , ik) be a tuple of coordinates and consider as usual the
projection πI ; again, it denotes the projections on both Hn and Cn.

By rotundity, dim πI(L) + dim πI(W ) ≥ k. Therefore, there is a Zariski-open
subset W ◦ of W such that locally around every point of W ◦ the restriction
of πI has image of dimension at least k − dim πI(L). Intersecting W with a
generic hyperplane which passes through one such point we can clearly maintain
freeness of the variety and the dimension inequality.

As there are only finitely many projections to check, we pick a hyperplane
which maintains the dimension inequality for each projection associated to an
ordered subtuple of (1, . . . , n). This brings down the dimension of W by one;
repeating this finitely many times we obtain a W ′ of dimension n− dimL.

We can now prove the main result.

Theorem 5.5.7. Let L×W be a free broad subvariety of Hn × Cn with L a
Möbius variety. Then W contains a subset of points of j(L) which is dense in
the Euclidean topology.
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Proof. We do this by induction on d = dimL. The case d = 1 is Lemma
5.5.2, so suppose the theorem holds for d, L has dimension d+ 1, and W has
dimension n− d− 1 (which we may do by Lemma 5.5.6).

By definition of Möbius subvariety, after reordering the coordinates if necessary
we can write L as a product L1×· · ·×Ld+1, where each Li is a one-dimensional
Möbius subvariety. There are numbers n1, n2 such that n1 + n2 = n, L′ :=
L1 × · · · × Ld is a d-dimensional Möbius subvariety of Hn1 and Ld+1 is a
1-dimensional Möbius subvariety of Hn2 ; let πi : Cn → Cni , for i = 1, 2 denote
the corresponding projections on the codomain. By broadness, π1(W ) has
dimension at least n1 − d, and hence by the inductive hypothesis it contains a
dense subset of points of j(L′); now there are two cases.

If dim(π1(W )) = n1 − d, then by the fibre dimension theorem any point w1 ∈
π1(W )∩ j(L′) has a fibre Ww1 of dimension at least dimW − (n1−d) = n2− 1.
Therefore by Lemma 5.5.4 π2(Ww1) has a dense subset of points of j(Ld+1),
and we are done.

If dim(π1(W )) = n1 − d + k for some positive k, then for a generic point
w ∈ π1(W ) the fibre Ww has dimension n2 − 1− k, so we cannot argue as in
the previous case.

As the variety L′ × π1(W ) is broad, by the inductive hypothesis and Lemma
5.5.6, we may assume L′ × π1(W ) intersects the graph of j in an analytic set
of dimension k′ ≥ k. Then, denoting by Γj the graph of j,

π−1
1 (L′ × π1(W ) ∩ Γj) = (L′ × Cn2)×W ∩ Γj

has dimension k′ + n2 − 1− k ≥ n2 − 1.

Now let U be a small open ball in L′, so that (j(U)× Cn2) ∩W is an analytic
set in j(U)× Cn2 , and πres denote the restriction of the second projection π2

to the set (j(U)× Cn2) ∩W .

Suppose that πres is finite: then it is proper. We prove this using Proposition
2.5.8. Given that πres is finite, there is a ball B ⊆ j(U) such that Ww2 ∩ j(U)×
Cn2 does not intersect the set ∂B × {w2}. As W ∩ j(U) × Cn2 is closed in
j(U)× Cn2 and πres is finite and hence open, this property actually holds in a
neighbourhood of w2; therefore, by Proposition 2.5.8, by taking U sufficiently
small we can make sure that the map πres is proper.
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So, under the assumption that πres is finite, we can apply the Proper Mapping
Theorem (Theorem 2.5.10), which states that the image of πres is an analytic
set. Since we proved j(U)×Cn2 ∩W has dimension at least n2−1, the image of
πres is either an open subset of Cn2 , or an analytic set in Cn2 of codimension 1;
either way, using density of j(Ld+1) in the first case and Lemma 5.5.4 otherwise,
we can find a point w ∈W ∩ j(U)× Cn2 such that π2(w) ∈ j(Ld+1); therefore
w ∈ j(L) ∩W , as we wanted.

Therefore, it remains to show that if we choose the ball U appropriately, then
the map πres is finite. Consider a generic point w2 ∈ π2(W ), and its fibre

Ww2 := {w ∈W | π2(w) = w2}.

Using once again broadness and the fibre dimension theorem, we know that

dimWw2 = dimW − dim π2(W ) ≤ n− d− 1− n2 + 1 = n1 − d.

Hence,
dimWw2 + dim(j(L′)× Cn2) ≤ n1 − d+ d+ n2 = n.

Therefore any positive dimensional intersection between these varieties is of
atypical dimension; by Lemma 5.5.5, it suffices to make sure that j(U)×Cn2∩W
is contained in the Zariski-open non-empty subset W ′ of W for this property to
be verified. This set clearly contains points of j(L′)×Cn2 , because π1(W )∩j(L′)
is dense in π1(W ), so we are done.

Example 5.5.8. Let L = {(z1, z2) ∈ H | z2 =
√

2z1} (we saw in Example 5.3.9
that this is a Möbius variety) and W = {(w1, w2) ∈ C2 | w1 + w2 + 1 = 0}.

Let (w1, w2) ∈W : for example, we might take w1 = w2 = −1
2 . We then find

z ∈ H such that j(z) = −1
2 . We may take it so that j′(z) 6= −1

2 : if it is equal,
we take some γz for which j′(γz) is different.

Ratner’s theorem says that we can find a sequence {gi}i∈ω in the double coset

ΓgΓ, with g =
(

2 1
4 0

0 2− 1
4

)
that converges to the identity.

It is then clear that {j(z) + j(giz) + 1}i∈ω converges to 0, and the sequence of
its derivatives converges to 2j′(z) + 1 6= 0 (because j′(z) 6= −1

2). Therefore by
applying the argument principle we may find some γ1gγ2 and some z0 close to



160 The j-Function

z such that j(z0) + j(γ1gγ2z0) + 1 = 0. Therefore, j(γ2z0) + j(gγ2z0) + 1 = 0,
and

(γ2z0, gγ2z0, j(γ2z0), j(gγ2z0)) ∈ L×W

as we wanted.

5.6 Derivatives of the j-Function

5.6.1 Background and Notation

We conclude with some remarks on extensions of the results in the previous
section to the first derivative of the j-function. Recall that j, j′ and j′′ are
algebraically independent, and therefore many results in this area (for example
the Ax-Schanuel Theorem) tend to consider them simultaneously. The methods
in this chapter seem to be insufficient to address the problems of systems of
equations which involve all functions simultaneously; however, they can be
employed to approximately solve systems of equations involving j′. We take
the chance to illustrate a slightly different technique in the proof.

First of all we remark that while j is a modular function, j′ and j′′ are not: j′

is a modular form of weight 2, and the transformation law for j′′ under the
action of SL2(Z) is more complicated. This means that the methods in the
previous section do not apply directly if we look for intersections of the form
j′(L) ∩W for L a Möbius subvariety of Hn.

Therefore to get more general results we need to work in jet spaces. The action
of SL2(R) on H induces an action on J2H, J2F is a fundamental domain for
the action of SL2(Z) and J2j is invariant under the action of SL2(Z), so this
seems like a better framework to work in.

We recall some general facts about jet spaces, and provide explicit computations
for the facts stated above.

Definition 5.6.1. Let M be a complex analytic manifold. The k-th jet space
of M for a natural number k is the space of equivalence classes of holomorphic
functions from a small neighbourhood of 0 ∈ C into M , identifying maps that
are equal up to order k.

We will only be interested in second jets, so we assume k = 2 in the following.

An element in J2H is then a triple (z, r, s), where z ∈ H, r, s ∈ C, that
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corresponds to the function f : U → H taking w to z + rw + sw
2

2 .

Jets are a functorial construction: given a map ϕ : M → N , there is an induced
map Jkϕ : JkM → JkN , that takes the equivalence class of the function

f : U →M to that of ϕ ◦ f . Therefore, if for a fixed g =
(
a b

c d

)
∈ SL2(R) we

consider the map g · (−) : H→ H, we can see what the action induced on J2H
is:

g · (z, r, s) =
(
az + b

cz + d
,

r

(cz + d)2 ,
s

(cz + d)2 −
2cr2

(cz + d)3

)

Similarly we have to consider the second jet of the j-function itself, which is
obtained as:

J2j(z, r1, r2) =
(
j(z), j′(z)r, j′′(z)r2 + j′(z)s

)
so that in particular for example J2j(z, 1, 0) = (j(z), j′(z), j′′(z)).

Using the transformation laws for j′ and j′′, i.e., for γ =
(
a b

c d

)
,

j′(γz) = (cz + d)2j′(z)

and
j′′(γz) = (cz + d)4j′′(z) + 2c(cz + d)3j′(z)

one can prove that J2j(γ · (z, r, s)) = J2j(z, r, s).

5.6.2 Intersections for j′

For simplicity, we deal with the case of a subvariety L×W of H2 ×C2, as this
implies the general case.

The fact that j′ is not SL2(Z)-invariant leads us to consider a blurring of
a Möbius subvariety. This is similar to what is done in [Kir19b] for the
exponential function and in [AK21] for j, but note that here the blurring is
not fixed, and it depends on the variety that we are considering.

Definition 5.6.2. Let L be the Möbius subvariety of H2 of points of the form
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(z, gz), for some g =
(
ag bg

cg dg

)
∈ SL2(R). Consider the tangent variety

L′ :=
{

(z1, z2, z3, z4) ∈ J1H2 | z2 = gz1, z3 = 1, z4 = 1
(cgz1 + dg)2

}
.

The blurring of L′ by SL2(Z) is the set L∗, defined as{
(z1, gz1, z3, z4) ∈ J1H2 | z3 = 1

(cγ(γ−1z1) + dγ)2 , z4 = 1
(cgγ(γ−1z1) + dgγ)2

}

where γ =
(
aγ bγ

cγ dγ

)
varies in SL2(Z) and gγ =

(
agγ bgγ

cgγ dgγ

)
.

Definition 5.6.2 needs to be explained. A point in the first jet of H2 carries
two bits of information: the first two coordinates give a point in H2, while the
second two coordinates refer to the direction from which the point is approached.
Hence, the variety L′ is the variety of points in L, where to each point we
associate the natural direction of the parametrization z 7→ (z, gz). When we
move to the blurred version L∗, its projection to the first two coordinates is
still the original Möbius variety L; however, each of these points is considered
together with the directions associated to the parametrizations z 7→ (γz, gγz),
for all γ ∈ SL2(Z).

Let T1j : J2H2 → C2 denote the composition π◦J1j, where π : J2C2 ∼= C4 → C2

is the projection on the third and fourth coordinate. Hence,

T1(j)(z1, z2, r1, r2) =
(
j′(z1)r1, j

′(z2)r2
)
.

This allows to prove the following proposition:

Proposition 5.6.3. Let L be a free Möbius subvariety of H2. Then T1j(L∗)
is dense in C2.

Proof. Let (w1, w2) be a point in C2. As j′ is surjective, find z1 such that

j′(z1) = w1, and h =
(
ah bh

ch dh

)
∈ SL2(R) such that j′(hz1)

(chz1+dh)2 = w2. Then, as

in the proof of Lemma 5.4.2, we can consider a sequence of matrices in ΓgΓ
that tends to h; denote a specific element of this sequence by γ1gγ. Then we
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just need to prove that
(
j′(z1), j′(γ1gγz1)

(cγ1gγz1+dγ1gγ)2

)
is in T1j(L∗). Consider the

point

z =
(
z1, γ1gγz1, 1,

1
(cγ1gγz1 + dγ1gγ)2

)
.

It’s clear that

J1j(z) =
(
j(z1), j(γ1gγz), j′(z1), j′(γ1gγz1)

(cγ1gγz1 + dγ1gγ)2

)

Since J1j is invariant under the action of SL2(Z), it is then sufficient to find
an element γ ∈ SL2(Z)2 such that γ · z ∈ L∗. Then of course we consider
γ = (γ, γ−1

1 ).

Claim: γ · z =
(
γz1, gγz1,

1
(cγz1+dγ)2 ,

1
(cgγz1+dgγ)2

)
.

Proof of Claim: It is immediate for the first three coordinates, the only issue
is on the fourth one. Using the well-known cocylce relation for automorphy
factors we obtain that

(cgγz + dgγz)2 = (cγ1gγz + dγ1gγ)2(cγ−1
1

(γ1gγz) + dγ−1
1

)2.

But the fourth coordinate of γ · z is

1
(cγ1gγz + dγ1gγ)2(cγ−1

1
(γ1gγz) + dγ−1

1
)2

which is then equal to
1

(cgγz + dgγz)2

proving the claim.

It remains to show that γ · z is indeed a point in L∗. The condition z2 = gz1 is
clearly satisfied. The second condition in the definition of the blurring is given
by 1

(cγ(γ−1γz1)+dγ)2 = 1
(cγz1+dγ)2 = z3. Similarly the last condition is satisfied.

This concludes the proof: the sequence T1j((gi)z1) approximates w2 and hence
T1j(L∗) is dense in C2.

Remark 5.6.4. The crucial piece of information is that while j′ is not a
modular function, it is a modular form of weight 2 for SL2(Z), and hence it
is easy to come up with the blurring that makes the density argument work.
This leads to speculations about similar results for modular forms in more
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generality - although we are not aware of any framework that could motivate
such an investigation.

We now close the argument, showing that given an open neighbourhood U

inside a complex algebraic variety W ⊆ C2, the intersection U ∩T1j(L∗) is non-
empty. While in the previous section we used transversality, that approach is
more complicated here as it requires explicit, hands-on computations involving
j′ and j′′ which are hard to solve. Instead, we go down a different road
and, recalling that the restrictions of j and its derivatives to fundamental
domains are definable in the o-minimal structure Ran,exp by well-known results
of Peterzil-Starchenko (see [PS04, Theorem 4.1]), we use o-minimality. In
particular, we will need the following result of Johns.

Theorem 5.6.5 ([Joh01, Theorem]). Let R = (R,<, ...) be an o-minimal
structure, U ⊆ Rn an open set, f : U → Rn a continuous, definable, injective
function. Then f is open.

We will also need an analogue for j′ of Proposition 5.5.1, giving that the fibre
of certain maps are one-dimensional subsets of SL2(R).

Proposition 5.6.6. Let (w1, w2) ∈ W . Then given z such that j′(z) = w1,
there is a definable one-dimensional subset H of SL2(R) such that for every

h =
(
a b

c d

)
∈ H, j′(hz)

(cz+d)2 = w2.

Proof. Fix w and z as in the statement. First we note that, as 1
|cz+d|2 = Im(hz)

Im(z) ,
j′(hz)

(cz+d)2 = w2 implies

|w2| =
∣∣∣∣ j′(hz)
(cz + d)2

∣∣∣∣ =
∣∣∣∣j′(hz) Im(hz)

Im(z)

∣∣∣∣ .
Hence, for h to satisfy (j(hz))′ = j′(hz)

(cz+d)2 = w2, it is necessary that

|j′(hz)|Im(hz) = |w2|Im(z).

Now let us consider the function ϕ : w 7→ j′(w)Im(w). By using the Fourier
series expansion of j,

j(z) =
∞∑

n=−1
cnexp(2πniz)
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where all cn’s are positive integers (see for example [Rad38]) we see that j′

takes imaginary values on iR≥1 and that its absolute value is strictly increasing;
a direct computation shows that the Jacobian of ϕ as a function R×R>0 → R2

is nonsingular on points of {0} × R≥1. Hence, as j′(i) = 0 and j′ has a simple
pole at infinity, for every x ∈ R≥0 there is a z ∈ iR≥1 such that |ϕ(z)| = x and
ϕ is open around z.

Then the definable set of w’s such that |j′(w)|Im(w) = |w2|Im(z) is non-empty
and one-dimensional. For each of these w’s, by Proposition 5.5.1, there is a
unique h ∈ SL2(R) such that hz = w and j(hz)′ = w2, so we obtain H as
required.

Lemma 5.6.7. Let W ⊆ C2 be a one-dimensional algebraic variety not con-
tained in the image through T1j of a weakly special variety, U ⊆ W an open
subset. Then there is an open subset O ⊆ SL2(R) such that for every h ∈ O,
there is a point in U of the form (j′(z), j(hz)′).

In particular, by the results in Section 5.4, O ∩ ΓgΓ 6= ∅ for every g that is
not a multiple of a rational matrix.

Proof. Let f be the polynomial definingW , and let S be a connected component
of the set

{(z, h) ∈ C× SL2(R) | f(j′(z), (j(hz))′) = 0}.

Denote by π1(S) the projection to C and by π2(S) the projection to SL2(R).

S is definable in Ran, exp. Since Skolem functions are definable in o-minimal
structures, there is a definable function F : π1(S) → SL2(R) that satisfies
(z, F (z)) ∈ S for each z ∈ π1(S). We can assume F is injective, as W is not
contained in the image of a weakly special variety, and therefore by Theorem
5.6.5 it is open on its image. Every point F (z) in the image has a small one-
dimensional neighbourhood V such that actually (z, v) ∈ S for every v ∈ V ,
by Proposition 5.6.6. Therefore π2(S) has non-empty interior, and we are
done.

Now the following analogue of Theorem 5.5.7 for j′ can be obtained by applying
the same argument.

Theorem 5.6.8. Let L×W be a free broad subvariety of Hn × Cn, with L a
Möbius subvariety of Hn and W an algebraic variety. Then W has a dense
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subset of points of T1(j(L∗)).



Chapter 6

Future Directions

6.1 Introduction

We conclude the thesis by mentioning some of the many open problems in
the area. The main end goal, of course, remains proving quasiminimality of
Cexp by way of Exponential-Algebraic Closedness: therefore, the next step is
to generalize the results of this thesis, and in particular those of Chapter 3,
to establish that the conjecture holds for larger and larger classes of algebraic
varieties. At the same time, we have seen the importance of existential-
closedness-type conjectures for other functions, and of course one would like to
make progress on those conjectures as well.

On the other hand, it should not be forgotten that the motivation for these
problems is model-theoretical: other than quasiminimality of Cexp there are
other questions that float around, concerning the search for other quasiminimal
structures and the model-theoretic analysis of transcendental functions.

In this chapter we collect some questions which we hope to make progress
on over the next few years. In particular, Section 6.2 focuses on questions
of model-theoretic flavours, while Section 6.3 lists some problems around
Exponential-Algebraic Closedness that should be treatable with the tools we
have now.

6.2 Model-Theoretic Directions

167
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6.2.1 Raising to Powers and Quasiminimality

The results of this thesis lean towards the complex-analytic side of the problem,
the concrete question of establishing the existence of solutions.

However, there are still many interesting model-theoretic aspects to be con-
sidered. The first question that comes to mind is the following: we have seen
how Theorem 3.7.8 is the existential closedness statement for some first-order
classes of structures, axiomatised by the theories TK as K ranges over the
finite transcendence degree subfields of C.

It should not be forgotten, though, that the natural setting for the model theory
of the exponential function is not first order logic: it would be interesting to
see whether Theorem 3.7.8 can be the existential closedness statement of a
theory in Lω1,ω(Q) with quasiminimal models. This possibility was mentioned
by Bays and Kirby in [BK18, Remark 3.12], where they comment on the fact
that they tried to incorporate this kind of structure in their work but ended
up taking another route and leaving it to future work. The model theory of
quasiminimal structures, after an initial promising phase of development (see
[Zil05a], [Kir10b], [Bay+14]) has lost some momentum in the last few years,
also due to the lack of meaningful examples. While the end goal is still to
prove that Cexp is quasiminimal, establishing the existence of a quasiminimal
raising to powers structure on C would be a meaningful stepping stone.

Question 6.2.1. Is Theorem 3.7.8 the existential closedness statement of a
theory of raising to powers in an infinitary logic and an appropriate language,
with quasiminimal models, satisfied by the complex numbers?

6.2.2 Raising to Powers for j

The reader might have noticed that while both Chapter 3 and 4 contain a
section called “model-theoretic consequences”, Chapter 5 does not, although its
main theorem is supposedly similar to the main theorems of the other chapter.

The reason for this is that so far we have been unable to find a convincing
model-theoretic framework to discuss raising to powers for j, i.e. we have been
unable to define a first-order theory which has Theorem 5.5.7 as its existential
closedness statement. The main obstacle can be explained as follows. In the
case of exp, the kernel of the exponential function is somehow an “internal”
object in models of the theory: we may define ker(exp) as {z ∈ C | E(z, 0)}
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(recall that in the language of TK E(z1, z2) is interpreted as exp(z1) = exp(z2))
and given any z0 ∈ C, the set {z ∈ C | E(z0, z)} is equal to z0 + ker(exp). This
means that all E-equivalence classes (i.e. all preimages of exp) are translates
of each other.

If we try to develop an analogue for j we see that the situation is different:
the obvious language for the structure is an expansion of the language of sets
with a GL2(Q)+-action which features, among others, an equivalence relation
J(z1, z2) which we interpret as j(z1) = j(z2). Since the action is then part of
the language, it is possible that the J-equivalence classes are different among
them (for example they might have different cardinalities). It is not clear what
the consequences of this fact are.

It is also worth noting that Eterović has established a transcendence result is the
style of Theorem 2.4.3 for “j-transcendental” numbers ([Ete18, Theorem 6.7])
and therefore if we had the theory it would probably be quite easy to show
that the complex structure is a model.

Question 6.2.2. Is there a first-order theory of “raising to powers” for j?

It should be noted that a model-theoretic analysis of j in similar terms but
with a different goal has been carried out in [Har13], where a categoricity result
is established for a two-sorted theory involving the j-function in an infinitary
logic.

6.3 Complex-Analytic Directions

On the other hand, there is still a lot to do in the purely complex-analytic
setting - that is, there are many cases of Exponential-Algebraic Closedness
which are yet to be solved. In this section we introduce some of the questions
which seem, to various extents, within reach.

6.3.1 The Product Case for exp

The first one is similar to what we described in Section 4.6.

Question 6.3.1. Let V ⊆ Cn, W ⊆ (C×)n be algebraic varieties, and suppose
the product V ×W is a free rotund variety of Cn × (C×)n.

Is V ×W ∩ Γexp 6= ∅?
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To tackle this problem we should first address the following question of Dinh
and Vu.

Question 6.3.2 ([DV20, Section 1]). Let V ⊆ Cn be an algebraic variety.

Is it true that there are real semi-algebraic sets C1, . . . , Ck and real vector
subspaces L1, . . . , Lk such that

exp(V ) = exp(V ) ∪
k⋃
j=1

exp(Lj + Cj)?

The reader will probably guess that this question springs out of an attempt to
generalize Theorem 4.6.2 to this setting: in fact, at the end of [DV20, Section 4]
a counterexample is given to the literal translation of Theorem 4.6.2 (with the
Cj ’s complex algebraic varieties and the Lj ’s complex linear subspaces) to the
complex exponential function. Hopefully, it is possible to prove Question 6.3.2,
perhaps using the o-minimal method of Peterzil and Starchenko from [PS18]
rather than the complex analytic approach of [DV20], and then use it together
with Theorem 3.7.8 to answer Question 6.3.1.

6.3.2 Linear First Projection

The second question was suggested by Martin Hils when the author gave a
talk in the Münster model theory seminar.

Question 6.3.3. Let V ⊆ Cn × (C×)n be a free rotund algebraic variety. Let,
as usual,

π1 : Cn × (C×)n � Cn

denote the projection to the first block of coordinates.

Suppose π1(V ) is (Zariski-dense in) a linear subspace of Cn.

Is V ∩ Γexp 6= ∅?

As an example, one may consider the variety V ⊆ C3 × (C×)3 consisting of
points (z, w) which satisfy the system:


z2 − λz1 = 0

f(z1, z2, z3, w1, w2, w3) = 0

g(z1, z2, z3, w1, w2, w3) = 0
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where f and g are polynomials which depend on all six variables and λ ∈/∈ Q.
Assuming f and g are chosen appropriately, the variety V has projection to
C3 of dimension 2, and does not split as a product - therefore it falls outside
of all the available E.A.C. results.

However, it seems plausible that since π1(V ) will be a Zariski-dense subset
of the linear space L that is defined by z2 = λz1, and we know how to find
intersections between exp(L) and π2(V ), we may perhaps find intersections
between Γexp and V . For instance, if λ ∈ R \ Q, then a good starting point
would be to study the geometry of the set

π2(V ) ∩ {w ∈ (C×)3 | |w2| = |w1|λ}

as the second projection of any intersection needs to lie in this set.

6.3.3 Semiabelian Varieties

As we saw in Chapter 2, the Ax-Schanuel Theorem can be stated in the gener-
ality of semiabelian varieties (Corollary 2.5.4). In fact, the E.A.C. conjecture
can be stated for general semiabelian varieties (this has been done for example
in [AKM22, Conjecture 1.3]), although this case has hardly been addressed
in the literature so far: [AKM22, Theorem 6.1] shows that the main theorem
of that paper (Theorem 2.3.20 in this thesis) holds when we consider the
exponential map of a split semiabelian variety, i.e. a semiabelian variety of the
form A× (C×)n where A is an abelian variety, and it is mentioned that it is
likely that the method can be extended to general semiabelian varieties.

Similarly, it would be interested to see if the results of this thesis can be
extended to the semiabelian setting: since Theorems 3.7.8 and 4.4.1 have a
similar formulation, but for algebraic tori and abelian varieties respectively, it
is natural to ask the following question.

Question 6.3.4. Let S be a complex semiabelian variety with exponential
map expS : Cn → S, L×W a free rotund subvariety of Cn × S with L ≤ Cn a
linear subspace and W ⊆ S an algebraic variety.

Is L×W ∩ ΓexpS 6= ∅?

The problem, of course, is that the methods of proof for Theorems 3.7.8 and
4.4.1 were completely different, and neither goes through in the semiabelian
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setting: we cannot use tropical geometry, because even its known generalizations
only deal with toric varieties and semiabelian varieties are not toric; and we
cannot use a homology argument because semiabelian varieties are not compact.
Therefore, new ideas are needed to deal with this version of the problem.

As an example, consider the semiabelian variety S := C× ×E, where E is an
elliptic curve; the exponential map is then exp : C2 → C× × E, which maps
(z1, z2) to (exp(z1), expE(z2)).

Given a non-constant algebraic function f : S → C, let

W := {w ∈ S | f(w) = 0}

and let moreover
L := {(z1, z2) ∈ C2 | z1 = z2}.

As usual, the first step to show that expS(L) ∩W 6= ∅ is to study the closure
expS(L). This can take different forms, depending on the elliptic curve E; we
give an example of this.

Let Λ ⊆ C be a lattice such that E ∼= C/Λ; we may assume that Λ has the
form Z+ τZ for some τ ∈ H.

Proposition 6.3.5. If τ = 2πi, then expS(L) is closed.

Proof. Suppose {lj}j∈ω is a sequence in L such that {expS(lj)}j∈ω has a limit
in S. Each lj has the form (zj , zj) for some zj ∈ C. Since the sequence is
convergent, the real parts of the zj ’s must converge to some x ∈ R (otherwise
the first coordinate of expS(lj) would diverge). We thus may substitute the
sequence {lj}j∈ω by a sequence of the form {(x+ iyj , x+ iyj)}j∈ω if necessary.

Now we know that {(iyj , iyj) + 2πiZ2}j∈ω must converge in R2/2πiZ2; clearly,
the limit is (y, y) + 2πiZ2 for some y ∈ R. Therefore {expS(lj)}j∈ω converges
to expS(x+ iy, x+ iy) ∈ expS(L), as we wanted.

It is possible, however, that expS(L) is not closed.

Proposition 6.3.6. If τ ∈ iR>0, but τ /∈ 2πiQ, then expS(L) is not closed.

Proof. Let τ = it for some positive t ∈ R. Consider the sequence {(x+ nit, x+
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nit)}n∈ω ⊆ L: this sequence is dense in the set

expS
({

(z1, z2) ∈ C2 | Re(z1) = Re(z2)
})

,

which is a closed set of real dimension 3.

Therefore, as we have seen, there are subtleties even in the split semiabelian
case that we do not know how to deal with yet. This will be the object of
future work.
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