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Abstract

The concepts of conformal covariance and chirality in 2 spacetime dimensions are for-
mulated and examined within the perturbative algebraic quantum field theory frame-
work. Firstly the qualitative features of themassless scalar field in 2 dimensions are ex-
amined, with a particular focus on the properties which are of general significance in
the study of 2-dimensional conformal field theories. A general condition for the exten-
sion of covariance under local isometries to conformal covariance is then formulated
for classical field theories, which is shown to quantise naturally for non-interacting
theories. Features such as primary fields are identified and discussed, leading to a
generalisation of the transformation law for the stress-energy tensor of the massless
scalar field. Finally, the topic of chirality is discussed. In particular, an emphasis is
placed on constructing chiral algebras as natural sub-theories of 2-dimensional confor-
mal field theories on globally hyperbolic Lorentzian manifolds. Cauchy surfaces are
used as a natural model for the co-dimension 1 spaces upon which chiral field config-
urations are defined, until in the final chapter we propose a method by which these
algebras may be described without such auxiliary data and in a model-independent
way.
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1

Introduction

Quantum field theory (qft) is a cornerstone of modern theoretical physics. Its predic-
tions have been validated to greater precision than any other theory in science, and it
is widely regarded as our most fundamental description of nature.

In spite of this significance, qft is still famously lacking a complete, mathematically
rigorous formulation. Around the mid 1960s, two distinct approaches were taken to
address this issue, to which almost all later attempts may trace a lineage. On the one
hand there is the description in terms of nets of local algebras due to Haag and Kastler
(of which the standard reference is [Haa96]). Alternatively, there is the construction
in terms of operator-valued distributions pioneered byWightman (which one may learn
more about in [SW00]).

An umbrella term for successors to the Haag-Kastler axiomatisation is algebraic
quantum field theory (aqft). Frequently, such successors adopt the perspective of locally
covariant qft, where one begins with a collection of spacetimes then assigns to each an
algebra of observables in a systematic manner. The crucial insight which connects
this idea to the net of local observables is that one should consider a suitable region
O within a spacetimeM as a spacetime in its own right.

Early successes of local quantum physics include an axiomatic renormalisation of
the stress-energy tensor [Wal77], leading to a conceptually clear account of the origins
of theCasimir effect in qft [Kay79]. It also soon became clear that aqftwas particularly
well suited to the study of qft on curved spacetimes [BFV03; HW01]. This provides a
semi-classical approximation to any hypothetically unified theory of quantum gravity
and leading to predictions such as the Unruh effect which states that, to a non-inertial
observer, the vacuum appears to be filled with thermal radiation. A particular conse-
quence of this general principle being Hawking radiation.

8



Chapter 1. Introduction 9

For all the insights aqft provides, it seems presently that the price to pay is a dearth
of constructive examples. Indeed, there are currently no known examples of interact-
ing aqfts in 4 spacetime dimensions. (Though the same could be said of any rigorous
description of qft.)

Some of the more recent developments in this field include perturbative algebraic
quantum field theory (paqft) [Rej16; BDF09], which addresses the issue of construction
by providing a general mathematical formulation of the techniques of perturbation
theory employed in qft by theoretical physicists. Whilst in general this construction
does not yield a fully-fledged aqft, in the case of the sine-Gordon model [BR18], it
has been shown that non-perturbative results can be recovered by paqft.

Where constructive, non-perturbative models appear most frequently is in space-
times of dimension 2 and in the presence of conformal symmetries. It is in this setting
where the Wightman formulation of qft has thrived. Physically, conformal field theo-
ries (cfts) occur in the description of phase transitions in condensed matter theory, as
the fixed points of Wilsonian renormalisation flow, and in string theory in the form
of sigma models. Of all the mathematical tools used in the study of 2d cft, vertex
operator algebras (voas) have had particular success. In addition to providing a rich
description of cft, voas have also found uses outside of mathematical physics, such
as in the proof of themonstrous moonshine conjecture [Bor92], as well as in the geometric
Langlands correspondence [Fre05].

Starting instead from the Haag-Kastler axioms, one arrives at a formulation of
2dcft in terms of conformal nets. In general, the extent of the relationship between
the Wightman and Haag-Kastler settings is currently not fully understood. However,
by restricting to more specific contexts one is typically able to make more meaning-
ful comparisons, and 2dcft is certainly no exception. Early results include the work of
Fredenhagen and Jörß [FJ96], inwhich it was shown thatWightman fieldsmay be con-
structed out of the observables of a conformal net. Later, Carpi, Kawahigashi, Longo
and Weiner [CKLW18] were able to show that voas satisfying an additional property
of strong locality (which includes most common examples) may be used to generate
a conformal net, from which the methods of Fredenhagen and JörSS can recover the
original voa. This correspondence has since been used to transfer results regarding
sub-theories in the voa setting to conformal nets [CGH19].

It is our intention in this thesis to provide a new perspective on the world of 2dcft
through the lens of paqft. We shall begin with a detailed account of the classical field
theory necessary in constructing any paqft. Next, we restrict to the theory we shall be
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focusing on for the majority of the thesis: the massless scalar field in two dimensions.
After quantising the classical theory, we discuss some of the distinctive characteristics
of this aqft, such as the sub-algebras satisfying the Heisenberg and Virasoro relations.

We then proceed to construct a general frameworkwithwhichwe can describe con-
formal symmetry in paqft. Firstly, we provide a condition under which the standard
symmetries (ormore accurately covariance) of a classical field theorymay be extended
to conformal covariance, and show that for non-interacting theories this property is pre-
served by quantisation.

This extended covariance then enables us to classify fields in our theories in terms
of how they respond to conformal transformations. From here we are able to recover
well-known results from 2dcft, such as the transformation law for the stress-energy
tensor of the massless scalar field.

Part II of the thesis is concerned with the formulation, in the framework of paqft,
of a phenomenon unique to 2dcft where the space of physical (on-shell) fields natu-
rally decouples into two distinct chiral sectors. Each sector possesses trivial dynamics,
and can be effectively described as being localised to a lower dimensional submanifold
of the original spacetime. After defining a chiral sector explicitly, we proceed to con-
struct its algebras of observables. Having done this, we are then able to see how these
algebras naturally describe a subtheory of the massless scalar field. Moreover, we will
be able to show that the algebraic operations on chiral fields are tightly constrained by
the conformal symmetry.

Finally, we usewhat we have learned of chirality in paqft to propose a definition of
chiral subalgebras which is independent of whichever model one uses to construct a
conformally covariant aqft. We show how our prior construction fits into this abstract
definition, and we are also able to use it to prove a model-independent result about
causality in chiral algebras.



2

Mathematical Preliminaries

In this section, we provide an account of the constructions of paqft relevant to our
discussion. For a more thorough exposition, the reader is directed towards [Rej16].

In particular, whilst we may, from time to time, discuss the possibility of interac-
tions in the classical theory, all of our quantum constructions shall be specific to the
free scalar field. In light of this, for the purpose of this thesis, the reader may interpret
the ‘p’ in paqft as either referring to the particular use of ~ as a formal parameter when
quantising in section 2.8, or more generally to our use of techniques and concepts cen-
tral to the development of paqft.

After reviewing some of the motivation and mathematical tools behind paqft, we
begin our constructionwith the kinematics (i.e. states and observables) of the classical
theory. Due to our use of deformation quantisation, this will also establish the observ-
ables of the quantum theory. Next, we address in Section 2.6 the matter of imposing
suitable dynamics on the system, using the concept of generalised Lagrangians. For an
appropriately chosen Lagrangian, we are then able to endow our space of observables
with a Poisson structure.

At this point, the algebra is decidedly ‘off-shell’, as the field configurations we con-
sider include those which do not satisfy the equations of motion. Therefore, in Sec-
tion 2.7, we make a detour to examine how, in the case of the free scalar field, our
construction does indeed recover the canonical (i.e. ‘equal-time’) Poisson bracket on-
shell. Here we also briefly explore the dg perspective of qft, where the algebra we
assign to each spacetime is instead a cochain complex such that the usual algebra of
observables is recovered as its cohomology in degree zero. This approach is at the
heart of the Costello-Gwilliam formalism [CG16] as well as descriptions of ‘higher’
qft as outlined in, for example, [BPSW21].

11
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Satisfied with our choice of Poisson structure, we then use it in Section 2.8 to de-
form the pointwise product of functionals into an associative product ?, which is anal-
ogous to the composition of operators in canonical quantisation. Once the quantum
algebra has been established, we discuss the comparison between classical and quan-
tum observables. The difficulty in ‘quantising’ classical observables is traditionally
known as the ordering problem. In an attempt to find the most natural solution to this
problem, we then introduce in Section 2.9 the concept of local covariance, where we re-
quire our theory to be defined in a coherent manner across multiple spacetimes. This
is so that we may be sure our ordering prescription is not dependent on the global
geometry of any particular spacetime (which local algebras should in principle be un-
aware of).

As a somewhat gentle introduction to many of the concepts we shall be using in
this thesis, we shall first discuss the difference between conventional constructions of
quantum mechanical/field theories and the approach we shall be taking.

To keep a common thread, we shall be focusing on the example of the simple har-
monic oscillator (sho) throughout the first few sections, where already we will be able
to see many concepts which survive mostly intact in the transition to qft.

2.1 why algebraic?

Arguably the most fundamental distinction between the formulation of quantum the-
ories employed in this thesis and the more common approach in theoretical physics is
that we focus on algebras of observables, rather than (Hilbert) spaces of states. Whilst
both are necessary for a complete description of a quantum theory in any formulation,
there are several arguments for why the algebras should have the priority.

• Many common constructions of quantum theories begin by defining algebraic
structures, before seeking a faithful representation of those structures on a suit-
able vector space. For instance, many students are first taught the relation [q̂, p̂] =
i~ before being told that q̂ψ(q) = qψ(q), p̂ = −i~∂q is a valid realisation of this
relation on L2(R).

• In quantummechanics we are usually comfortable working with Hilbert spaces
which decompose into a direct sum of invariant superselection sectors (for exam-
ple, the Clebsh-Gordan decomposition of a pair of j = 1/2 representations of
so(3)). However, in the typical Fock space construction of qft on Minkowski
spacetime, one’s observables can only act on the superselection sector of the vac-
uum state. By keeping the algebra separate from its representations (reducible
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or otherwise), it is much easier to study the behaviour of a theory in alternative
superselection sectors.

• Again in quantummechanical systems, one is often saved from the nuances of an
algebra of observables’ representations by the Stone von-Neumann theorem, which
(roughly speaking) states that all ‘nice’ representations of the canonical commu-
tation relations1 above are unitarily equivalent to the wavefunction representa-
tion on L2(R). However, this is not true in quantum field theory. In this setting,
particularly in curved spacetimes, it is more often the case that one has infinitely
many equally good, yet inequivalent representations to choose from.

Compared to the Hilbert-space approach, one has to determine which properties
an algebra should exhibit intrinsically, and which are merely products of a particular
choice of representation.

Ideally, one would only workwithC∗-algebras, a special class of Banach *-algebras
with an involution satisfying ||a||2 = ||a∗a||. The ur-example is the space B(H) of
bounded operators on a Hilbert space, where ∗ is the adjoint operation.

However, it is often the case in concrete examples (particularly in the setting of
deformation quantisation, which we shall discuss next) that such boundedness is dif-
ficult to satisfy. As such, the minimum one typically asks for is a ∗-algebra. This is an
algebra A (almost always over C in the context of qft) equipped with an involution
∗ : A → A and satisfying all the usual algebraic relations one would expect. In our
case, we will also usually assume that such ∗-algebras have a topology, with respect
to which, scaling, addition, multiplication and the involution are all continuous.

In the algebraic approach, rather than observables acting on states, states act on
observables. In particular we have

Definition 2.1.1. An algebraic state on a ∗-algebra A with multiplicative identity 1 is a
linear map ω : A → C such that

1. ω(1) = 1

2. ω(a∗a) ≥ 0∀ a ∈ A

For A = B(H), each vector ψ ∈ H with ||ψ|| = 1 defines an algebraic state A 7→
〈ψ,Aψ〉. Moreover, a density matrix ρ also defines an algebraic state by A 7→ Tr(ρA).

1Specifically, irreducible and strongly-continuous representations of theWeyl relations, which are a
formal exponentiation of the canonical commutation relations
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As such, for an observable quantity (i.e. self-adjoint) a ∈ A, we think of ω(a) as the
expectation value of a in the state ω.

2.2 deformation quantisation: overview

Now that we have discussed what it is we want to construct, namely a ∗-algebra of
quantum observables, we shall look at a simple example of the techniques we shall be
using to do so.

In the beginning, one typically has a phase space. Abstractly, this represents the
space of all possible initial conditions for whatever system we are studying. Con-
cretely, this is typically realised as the cotangent bundle T ∗X for some smoothmanifold
X . A point q ∈ X representing the initial position of a particle (or the collective posi-
tions of many particles), and a covector p ∈ T ∗

qX describing the initial momentum.

Consider the canonical Poisson structure on T ∗X , which in a suitable choice of
coordinates may be expressed as

{·, ·} : C∞(T ∗X)× C∞(T ∗X)→ R,

f, g 7→
n∑
i=1

( ∂f
∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
). (2.1)

Combined with a choice of Hamiltonian H ∈ C∞(T ∗X), it produces the equations of
motion ḟ = {H, f}, which one can solve uniquely for any initial data (q, p) ∈ T ∗X .
One of the best-understood examples of such a system is the simple harmonic oscillator
which, choosing suitable coordinates and parameters, has the Hamiltonian

H(q, p) = 1
2

n∑
i=1

(
q2
i + p2

i

)
. (2.2)

Ever since Dirac’s seminal work on the subject [Dir26], the Poisson bracket has
been a favoured starting point in the quantisation of classical theories. In the typical
telling, one ‘promotes’ the coordinates qi, pi to linear operators q̂i, p̂i on some Hilbert
spaceH such that

q̂ip̂j − p̂j q̂i = [q̂i, p̂j] = i~{̂qi, pj} = i~δij. (2.3)

We have already seen the Schrödinger representationwhere, forX = Rn,H = L2(Rn),
q̂i is the multiplicative operator ψ(q) 7→ qiψ(q), and p̂i = −i~∂qi

(each defined on a suit-
able domain, such as compactly supported smooth functions). In principle, the pro-
cess ofDirac quantisationwould involve extending this to an assignment of a (possibly
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unbounded) operator f̂ for every f ∈ C∞(T ∗X) such that

[f̂ , ĝ] = i~{̂f, g}. (2.4)

However, here we run into the first issue with this standard approach. A classic re-
sult [Gro46] states that, under certain physically reasonable assumptions, (2.4) can-
not hold for all f, g. In fact, inconsistencies occur as soon as one considers observables
such as q2p.

Part of the problem is readily apparent. Classically, there is no difference between
q2p, qpq or pq2, yet the same is not true for their quantum counterparts. Heuristically,
one needs to pick an order in which to place the quantised observables.

It turns out that a condition sufficient to specify an ordering map is that, ∀ a, b ∈
Rn,m ∈ N

̂(a · q + b · p)m = (a · q̂ + b · p̂)m.

We can even simplify this to the single rule ei(aq+bp) 7→ ei(aq̂+bp̂). One can show that this
prescription, known as theWeyl ordering, yields the average over all possible orderings
of a monomial qnpm, e.g. q2p 7→ 1

3 (q̂2p̂+ q̂p̂q̂ + p̂q̂2).

By identifying the vector (a, b) ∈ R2n with the linear observable (q, p) 7→ a · q+ b · p,
we can define the space of classical, polynomial observables as the symmetric algebra
over R2n, which we denote Sym(R2n).

One can show that the Weyl ordering then defines a linear isomorphism between
Sym(R2n)C, the complexified classical polynomials and the subalgebra of polynomial
quantum observables. 2 This means that we can also use the quantum operator prod-
uct to define a new product on Sym(R2n). The operator ? is defined such that f̂ ? g =
f̂ ĝ. Defining the commutator [·, ·]? with respect to ? yields a Poisson bracket on the
classical algebra known as the Moyal bracket. Note that, contrary to the objective of
Dirac quantisation, this is not proportional to our original Poisson bracket, but instead
satisfies

[f, g]? = i~ {f, g}+O(~2). (2.5)

We shall call any associative product ? satisfying (2.5) a deformation of the Poisson
bracket {·, ·}. One can show from our definition that the highest power of ~ appearing

2The Weyl transform can also be defined for more general observables, we only restrict to polyno-
mials for clarity.
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in f ? g is equal to the smallest of deg f and deg g, and is hence always finite. If we
wish to include non-polynomial observables, then in general wemay obtain an infinite
series in ~. If we can show that every such series converges, then the deformation is
said to be strict. Alternatively, we can assume that ~ is a formal parameter, in which
case, if the vector space of classical observables is Obscl, then the vector space for the
quantum algebra of observables is Obsq = Obscl[[~]]. We then say that the deformation
? is formal.

2.3 off-shell formalism

We now show a very different way of constructing the algebra of observables for the
simple harmonic oscillator. For simplicity we shall only consider the 1-dimensional
case. Recall that, after specifying a Hamiltonian, we established a correspondence
between points in the phase space T ∗X ' R2 and physical trajectories R→ R.

Let us now begin by considering the space of all conceivable trajectories. We define
the space E to comprise all the smooth maps R → R. We can distinguish the physical
trajectories from the non-physical via the principle of least action. For the simple har-
monic oscillator, the relevant quantity is the Lagrangian

L : E→ C∞(R), (2.6)

q 7→ 1
2

(q̇(t)2 − q(t)2). (2.7)

The integral of the resulting function is, formally, the action of the trajectory q. How-
ever, it is important to note that in general, the resulting function is not integrable over
R. We can remedy this by multiplying L[q] ∈ C∞(R) by an arbitrary function f which
is compactly supported to ensure the integral converges. The action is then formally re-
covered in the limit where f ≡ 1 on an arbitrary large time interval. We denote the
approximate actions by

L(f)[q] :=
∫ ∞

t=−∞

1
2
(
q̇(t)2 − q(t)2

)
f(t)dt. (2.8)

Even though we are unable to define a single action functional, we can still define a
variation principle unambiguously, we say that a trajectory q ∈ E is critical if

δS[q, q̊] := d

dε
L(f)[q + εq̊]|ε=0 (2.9)

vanishes for all loops q̊ ∈ E such that q̊ ≡ 0 outside some finite time interval [t0, t1] ⊂ R,
where f is chosen such that f ≡ 1 on [t0, t1]. (One can quickly check that the particular
choice of f doesn’t matter once this constraint is met.) In essence, we consider only
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perturbations of a trajectory which have fixed end-points t0 and t1, but we consider all
pairs of end-points simultaneously.

This condition yields the familiar equation of motion q̈ + q = 0. However, we now
want to consider the casewhere an extra term is added, namelyLint[q] :=

∫∞
−∞ q(t)g(t)dt

for some fixed g ∈ C∞
c (R). Adding this to L(f) leads to the inhomogeneous equation

of motion

q̈(t) + q(t) := Pq = g(t). (2.10)

Physically, if, for example, supp g = [ti, tf ], then this equation describes the sit-
uation where our simple harmonic operator is coupled to a driving force, which is
switched on at time ti, then later switched off at tf . If we assume that the oscillator
is initially at rest, a physically reasonable solution to this equation ought to satisfy
q(t) = 0, ∀ t < ti.

There exists a distinguished Green’s function ∆R(t, t′) such that

q(t) =
∫ ∞

t′=−∞
∆R(t, t′)g(t′)dt, (2.11)

is the desired solution. By Fourier methods, or otherwise, one can deduce that this
Green’s function is of the form ∆R(t, t′) = θ(t− t′) sin(t− t′), where θ is the Heaviside
step function.

This function is referred to as the retarded propagator of our theory. Its transpose is
the advanced propagator ∆A(t, t′) = ∆R(t′, t) = ∆R(t, t′) + sin(t− t′), which corresponds
to the scenario where the oscillator begins with some non-trivial motion that is later
arrested perfectly by the driving force at time tf .

The remarkable insight of Rudolph Peierls [Pei52] was that such advanced and
retarded responses to external forces can actually be used to define a Poisson structure.
We can identify C∞

c (R) with a family of linear observables on E where

f ↭
(
q 7→

∫
R
f(t)q(t)dt

)
.

We then define the Peierls bracket of two such observables as

{f, g} :=
∫
R2
f(t)∆(t− t′)g(t′)dtdt′, (2.12)

where ∆ = ∆R −∆A = − sin(t− t′).

The Peierls bracket can then be extended to the symmetric algebra Sym(C∞
c (R)) by

imposing the Leibniz rule {f, gh} := {f, g}h+g {f, h}. One can then confirm that this
yields a well-defined Poisson algebra.
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This algebra is degenerate, however, which ultimately stems from the fact that the
map

∆g(t) :=
∫
R

∆(t, t′)g(t′) dt′, (2.13)

from compactly supported functions to solutions, is not injective. It turns out that the
kernel of this map is precisely functions of the form Pg for g ∈ C∞

c (R). The ideal in
Sym(C∞

c (R)) generated by functions of this form is also an ideal of the Poisson bracket.
If we denote this ideal by I, then the quotient space Sym(C∞

c (R))/I, inherits a Poisson
structure from the Peierls bracket.

Theorem 2.3.1. There is an isomorphism of Poisson algebras between Sym(C∞
c (R))/I and

Sym(R2), where the former is equipped with the quotient Peierls bracket and the latter is
equipped with the canonical bracket.

Proof. It is sufficient to define a pair of maps C∞
c (R) ↔ R2 such that the kernel of the

forward map and the cokernel of the reverse map are both Ker∆.

The forward map is the easiest to define. For some fixed time t0 ∈ R, we send
f ∈ C∞

c (R) to the pair (∆f(t0), ∆̇f(t0)). Given that thismapdepends only on f through
∆f , it is clear that its kernel containsKer∆. The fact that this is the entirety of the kernel
follows from the uniqueness of solutions to the second-order ode Pq(t) = 0.

To see that this map yields a Poisson algebra homomorphism, we begin with the
canonical bracket on the image:

{(∆f(t0), ∆̇f(t0)), (∆g(t0), ∆̇g(t0))}can = ∆f(t0)∆̇g(t0)− ∆̇f(t0)∆g(t0). (2.14)

Expanding out the integrals and evaluating the derivatives, we have

∆f(t0)∆̇g(t0)− ∆̇f(t0)∆g(t0) =∫
R2

(sin(t0 − t′) cos(t0 − t′′)− cos(t0 − t′) sin(t0 − t′′)) f(t′)g(t′′)dt′dt′′.
(2.15)

By use of a standard trigonometric identity we can then simplify the integrand to
− sin(t′ − t′′)f(t′)g(t′′), which is precisely the integrand of the Peierls bracket, hence

{f, g}Pei =
{
(∆f(t0), ∆̇f(t0)), (∆g(t0), ∆̇g(t0))

}
can

(2.16)

The other direction is a little trickier, as there is no unique f corresponding to a
physical trajectory q(t). Firstly, given initial data (q0, p0) at a time t0, the corresponding
trajectory is given by

q(t) = q0 cos(t− t0) + p0 sin(t− t0). (2.17)
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We then need to find f ∈ C∞
c (R) such that ∆f(t) = q(t). Suppose we have some

f0 ∈ C∞
c (R) such that ∆f0 is not zero everywhere. This is guaranteed to exist, as we

can take for example f0 to be everywhere non-negative, with supp f0 ⊂ (0, π), which
would imply that ∆f0(0) > 0. Given ∆f0 6= 0, there must exist some g0 ∈ C∞

c (R) such
that

∫
R g0(t)∆f0(t) dt 6= 0. By rescaling f0, g0 as appropriate, we can then ensure that

{f0, g0}Pei = 1. By skew-symmetry of ∆, we also have that ∆f0 and ∆g0 are linearly
independent (if g0 = λf0 + h for h ∈ Ker∆, then {f0, g0}Pei = λ {f0, f0} = 0), hence
span the space of solutions to P . Thus, the map (a, b) 7→ af0 + bg0 is surjective up to
Ker∆, and preserves Poisson brackets.

Remark 2.3.2. Suppose we take f1, g1 to be linear combinations of f0, g0 from the above
proof such that ∆f1 = cos, ∆g1 = sin. We can then arrange all of the maps in the
following diagram

0 R2 R2 0

0 C∞
c (R) C∞

c (R) C∞(R) C∞(R) 0

0 R2 R2 0

Ω2

α+ Sol

P ∆

α

P

Π

Ω2

(2.18)

Where Sol is themap (2.17),Π : q(t) 7→ (q(t0), q̇(t0)),Ω2 : (q, p) 7→ (−p, q), andα, α+ are
(up to twisting by Ω2) the maps we needed to find for the above theorem. These maps
all depend on the choice of functions f1, g1. More precisely, α, Sol, and Π, depend on
their equivalence class modulo Ker ∆, whereas α+ depends on the particular choice of
representatives. The choice made at the beginning of this remark is particularly nice,
as Sol then carries the interpretation of solving an initial value problem at t = 0, but
other choices are equally valid This diagram is exact along rows (the kernel of any
horizontal map is the image of the one preceding it), and the composition of any two
vertical maps is an identity. In other words, this diagram constitutes a retract of exact
sequences.

After finding an appropriate α+ and establishing the resulting diagram commutes,
showing the Poisson brackets are preserved reduces to showing that∫

R
f(t)q(t) = (αf) · (Πq), (2.19)

for any q(t) ∈ KerP .
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As for the quantisation, it is possible to define a product ? on Sym(C∞
c (R)) such that

f ? g = fg + i~
2 {f, g} for f, g ∈ C

∞
c (R). However, by this point it is more useful to go

straight to the product we actually use in qft, which we shall introduce in section 2.8.

2.4 a primer on distributions

Distributions, sometimes referred to as generalised functions, arise naturally in any at-
tempt to study quantum field theory. As such, any rigorous treatment requires an
understanding of what operations are possible on distributions and why. In this sec-
tionwe provide a brief overview of themethods ofmanipulating distributions that we
shall make use of frequently throughout this work. We shall start by defining what a
distribution actually is, before studyingmethods of quantifying howdistributions ‘fail’
to be regular functions. This shall lead us the the concept of the wavefront set, which
we will then use to provide sufficient conditions for operations such as the pullback
and pointwise multiplication of distributions to be well-defined.

As a motivating example to keep in mind, we shall use the techniques developed
in this section to show that the generalised function u(x) = 1

x+i0+ can be squared, even
though distributions such as the Dirac delta δ(x) cannot.

Many of the technical details thatwe shall gloss over heremay be found in [Hör15],
alternatively, a recent pedagogical review is provided in [BDH14]. We shall also point
out relevant sections of these and other texts when the reader may wish for more
details than we provide in this overview.

2.4.1 Topologies on the Spaces of Functions

We have already been introduced to the space C∞(Rn) of smooth functions, as well as
its subspace C∞

c (Rn) of functions with compact support. From now on, we shall use
the notation due to Schwartz [Sch57] and denote these spaces by E(Rn) and D(Rn)
respectively.

For any open U ⊆ Rn we can equip E(U) with a topology by defining the family of
semi-norms

||ϕ||K,m :=
∑

|α|≤m
sup
x∈K
|∂αϕ(x)|, (2.20)

where K ⊂ U is compact, m ∈ N, α ∈ Nn is a multi-index (i.e. ∂α = ∂α1
x1 · · · ∂

αn
xn
), and

|α| := α1 + · · · + αn. Spelling it out, a sequence (ϕj)j∈N ⊂ E(U) converges to ϕ in this
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topology if and only if

||ϕj − ϕ||K,m → 0

for every pair K,m. The topology thus obtained is Fréchet [Rud91, §1.46], i.e. it is
metrisable and complete. Thiswill prove useful later, as the Fréchet property provides
a nice definition of a derivative, with which we shall be defining many operations on
our algebra of observables.

The definition of the topology on D(U) is a little more involved. Firstly, for any
compact setK ⊂ U , we shall define the topological spaceDU(K) as the set of smooth
functions f ∈ E(U) such that supp f ⊆ K, equipped with the subspace topology from
the inclusion DU(K) ⊂ E(U). Let K = {Kn}n∈N be a collection of compact sets such
that

1. Kn ⊂ Int(Kn+1),

2. ⋃n∈NKn = U .

We candefine the topology onD(U) as the final topologyunder the inclusionsDU(Kn) ⊂
D(U). To be precise, the topology on D(U) is the finest locally convex topology such
that each inclusionmap is continuous.3 Equippedwith this topology, we refer toD(U)
as the space of test functions on U .

We can now define the space of distributions on U as the topological dual of D(U),
that is, the space of continuous linear maps D(U) → R. We shall denote the space of
distributions byD′(U), and we shall denote the evaluation of a distribution u ∈ D′(U)
on a test function f ∈ D(U) by 〈u, f〉.

The above definition of the topology of D(U) is precise, albeit somewhat abstract.
Indeed it is entirely absent from [Hör15], where instead the following property of
distributions is taken as their definition (a proof of their equivalence may be found in
[Rud91, Theorem 6.8]).

Proposition 2.4.1. A linear map u : D(U)→ R is a distribution if and only if for all compact
subsets K ⊂ U , there exists constants CK ∈ R>0 and k ∈ N such that ∀ f ∈ DU(K)

| 〈u, f〉 | ≤ CK
∑

|a|≤k
||f ||K,α, (2.21)

where |α| := ∑n
i=1 αi.

3A topology on a vector space V is locally convex if (a) translations and scalings are continuous and
(b) the origin 0 ∈ V admits a neighbourhood basis comprising only convex sets.
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A corollary of this result is that every element of E(U) defines a distribution by
integration:

u : f 7→
∫
U
u(x)f(x)dnx. (2.22)

This follows from proposition 2.4.1 by setting k = 0 andCK =
∫
K u(x)dnx. By an abuse

of notation, we typically use u to denote both the function and the distribution. We
call any distributions which arise in this way regular.

The fact that E(U) embeds intoD′(U) is one reason we define distributions as dual
to functions with compact support. Whilst it might seem unusual to consider the
dual ofD(U) rather than of E(U), we shall soon see that the dual space of E(U) is also
a subspace ofD(U). We can also use this result to prove another, which demonstrates
why we must use such an unusual topology for D(U):

Proposition 2.4.2. Let f ∈ D(R) be any test function such that ∫R fdx = 1, the sequence of
functions fn(x) := n−1f(n−1x) ∈ D(R) for n ≥ 1 converges to zero in the topology of E(R),
but not in the topology of D(R).

Proof. As f is compactly supported |∂αf | is bounded for each α ∈ N. If |∂αf(x)| ≤ Cα,
then clearly, for any compact K ⊂ R, |fn|K,α ≤ n−(α+1)Cα, and hence |fn|K,α → 0 for
every K,α. Thus fn → 0 in the topology of E(U). To show this sequence does not
converge in the topology of D(R), consider the map u : f 7→

∫
R f(x)dx. By proposi-

tion 2.4.2, this is a regular distribution corresponding to the constant function u(x) = 1.
Clearly

∫
R fndx =

∫
R fdx = 1. Thus fn cannot converge to 0 in the topology of D(U),

as the continuity of u would necessarily imply limn→∞ 〈u, fn〉 = 0, which is not the
case.

2.4.2 Localisation of Distributions

It is often necessary to ask ‘where’ a given distribution is non-trivial. In the case of
a regular distribution u ∈ E(U), the answer should be the support suppu, which is
defined as the closure of the set {x ∈ U |u(x) 6= 0}. We will now extend this notion to
regular distributions. Firstly, given an open subset V ⊂ U , we can define an inclusion
ιV,U : D(V ) ↪→ D(U) such that ιV,U(f)(x) is f(x) for x ∈ V and 0 otherwise. We can
then define a restriction map rU,V : D′(U) → D′(V ) dual to this, i.e. 〈rU,V (u), f〉 =
〈u, ιV,U(f)〉.

Definition 2.4.3. The support of a distribution u ∈ D′(U) is the complement of the set
of points x ∈ U such that there exists a neighbourhood V of x for which rU,V u = 0.
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As desired, this definition coincides with the usual notion of support for regular
distributions. For an example of a singular distribution, the Dirac delta δ : f 7→ f(0)
has support {0}, which also matches the intuitive notion that the support comprises
all the points where a distribution is sensitive to the definition of the input function.
More generally, one can quickly show that, if suppu ∩ supp f = ∅, then 〈u, f〉 = 0.

A nice consequence of this definition is the following:

Proposition 2.4.4. Let E′(U) denote the continuous dual of E(U) with respect to its Fréchet
topology. There is a linear isomorphism between E′(U) and the subspace ofD′(U) comprising
distributions u such that suppu is compact.

Proof. See [Hör15, §2.3].

2.4.3 Defining the Wavefront Set

We will now work our way towards answering the question: ‘when can one multiply
a given pair of distributions?’ There is already a partial answer we can give without
too much work. Namely, if u ∈ D′(U) is a regular distribution, then we can define its
product with any v ∈ D′(U) to be 〈uv, f〉 := 〈v, uf〉.

Note that, in a similar fashion, we can also define the derivative of a distribution by
〈∂xi

u, f〉 := −〈u, ∂xi
f〉. (The minus sign is present so that this definition is consistent

with (2.22) when u is a regular distribution.)

For U = Rn, we can also define the Fourier transform for a certain class of dis-
tributions. The space S(Rn) of Schwartz functions (also called Schwartz space) is the
subspace of functions f ∈ C∞(Rn) such that

sup
x∈Rn
|xα∂βf(x)| =: ||f ||α,β <∞, (2.23)

where xα = xα1
1 · · ·xαn

n for α ∈ Nn and ∂β is defined similarly. The Fourier transform of
a Schwartz function is again Schwartz. We can then recall some relevant facts about
the Fourier transform of functions:

Proposition 2.4.5. Let f̂ denote the Fourier transform of a Schwartz function f ∈ S(Rn).
We use the convention that

f̂(ξ) :=
∫
Rn
f(x)e−iξ·xdnx. (2.24)

Then the following equations hold.
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1. f̂ ∗ g = f̂ · ĝ,

2. f̂g = (2π)−nf̂ ∗ ĝ,

3. ∫Rn f̂ g dnx =
∫
Rn f ĝ dnx,

4. ∫Rn f ḡ dnx = (2π)−n ∫
Rn f̂ ¯̂g dnx,

where ∗ denotes the convolution f ∗ g(x) =
∫
Rn f(y)g(x− y)dny, and the first two equalities

hold almost everywhere (i.e. they differ on a set of measure zero).

The first two properties suggest that products may be exchanged for convolutions
under the Fourier transform. This provides an intuitive picture for the Hörmander
product we shall be introducing shortly.

The third property motivates the definition of the Fourier transform of a distribu-
tion as 〈û, f〉 = 〈u, f̂〉.

By using the semi-norms (2.23), we can equip S(Rn) with a topology such that
the inclusions D(Rn) ⊂ S(Rn) ⊂ E(Rn) are continuous. We can also define the
continuous dual space S′(Rn), elements of which are referred to as tempered distri-
butions. It is then clear that the dual relations to the above inclusions hold, namely
E′(Rn) ⊂ S′(Rn) ⊂ D′(Rn).

Fourier transforms behave aswell as one could hope in Schwartz space. The Fourier
transform is a linear homeomorphism of S(Rn) [Hör15, Theorem 7.1.5], which one
can use to show that the transform on tempered distributions by the relation follow-
ing Proposition 2.4.5 is also a linear homeomorphism of S′(Rn) (where the topology
is the weak dual topology induced by S(Rn)). In fact, it is in the space of tempered
distributions that the well-known formula

1
(2π)n

∫
Rn
eixξdnξ = δ(x) (2.25)

can be given rigorous meaning.

Amore surprising result is that, for a compactly supported distribution u ∈ E(Rn),
the Fourier transform of u is regular. If we define the family of functions eξ(x) := e−iξ·x,
then û(ξ) = 〈u, eξ〉 is a regular function which agrees with the definition of û as a
tempered distribution. Moreover, û extends to an entire function on C, whose growth
rate is determined by ‘how singular’ u is.

All of these facts and more are collected in the Payley-Weiner-Schwartz theorem:
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Theorem 2.4.6. There is a one-to-one correspondence between entire functions F on Cn such
that ∀ z ∈ Cn, there exists constants C,N,B ∈ R such that

|F (z)| ≤ C(1 + |z|)NeB|Im(z)|, (2.26)

and u ∈ E′(Rn) such that F = û.

Moreover, u is regular if and only if for every N ∈ N there exists CN ∈ R>0 such that

|F (z)| ≤ CN(1 + |z|)−NeB|Im(z)|. (2.27)

A statementwith tighter estimates and aproof of this theoremcan be found in [Hör15,
Theorem 7.3.1].

The connection between the smoothness of a distribution and the growth rate of
its Fourier transform is the key to providing a precise mathematical formulation of
singular structure. We shall demonstrate this with an example: firstly, the Fourier
transform of the Dirac delta is δ̂(ξ) = 1, which extends trivially to an entire function.
However, this function fails to decay rapidly, which is a consequence of the fact that
δ is singular. Consider the distribution u = 1

x+i0+ introduced in the beginning, which
we can define more precisely as the map

〈u, f〉 := lim
ε↘0

∫
R

f(x)
x+ iε

dx. (2.28)

This distribution is tempered. Roughly speaking this is because u decays as 1/x as
x → ∞. As such, one can compute its Fourier transform, by contour integration or
otherwise, to be

û(ξ) = −2πiθ(ξ). (2.29)

This function is not itself smooth (because u does not decay rapidly), nevertheless
we can still observe that û fails to decay rapidly as ξ → ∞, but not as ξ → −∞. It is
precisely this asymmetry that enables us to define the pointwise product of u with
itself, where we cannot with δ. We can compute the convolution of ûwith itself as

(û ∗ û)(ξ) = −(2π)2
∫
R
θ(η)θ(ξ − η)dη,

= −(2π)2
∫ ξ

η=0
dη,

= −(2π)2ξθ(ξ)

= −(2π)û′(ξ).
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Fromwhich we may conclude, using proposition 2.4.5, that u2(x) = −u′(x). Note that
a similar attempt to define δ̂ ∗ δ̂ would fail, as the relevant integral is clearly divergent.

This provides the intuitive picture for how distributions can be multiplied. How-
ever, in order to formulate a more precise condition for multiplication, we need a
slightly different approach. For any pair of functions ϕ, ψ ∈ E(Rn), we can define
their tensor product in E(R2n) as the function (ϕ⊗ ψ)(x, y) := ϕ(x)ψ(y). The pointwise
product ϕψ is then given by the pullback of ϕ⊗ψ along the embedding ι∆ : x 7→ (x, x).

It turns out that one can similarly define the tensor product of distributions as a
map ⊗ : D′(U)×D′(V )→ D′(U × V ) such that

〈u⊗ v, f ⊗ g〉U×V = 〈u, f〉U 〈v, g〉V .

As D(U) ⊗D(V ) is sequentially dense in D(U × V ), with a little effort one can show
that this defined the tensor product entirely.

Thus, we can replace the problem of defining multiplication with the problem of
defining pullbacks of distributions along embeddings. To skip ahead a little, it turns
out that this is possiblewhenever the ‘directions’ of the singularities of the distribution
are not normal to the image of the embedding.

To make sense of this statement, we must define the direction of a singularity. Fol-
lowing [BDH14], and similarly to how we defined supports, we to make our defini-
tion backwards to ensure that the set of singular directions is closed. We also need
to make an auxiliary definition which effectively defines the topology on the space of
directions.

Definition 2.4.7. A conic neighbourhood of the point x ∈ Rn\{0} is a subset V ⊆ R\{0}
which is closed under multiplication by positive scalars, and which contains an open
set containing x.

Definition 2.4.8. For a tempered distribution u ∈ S′(Rn), we say ξ ∈ Rn \ {0} is
a regular direction if there exists a conic neighbourhood V of ξ such that û|V decays
rapidly. More precisely this means that for every N ∈ N there exists CN such that, for
every η ∈ V

|û(η)| ≤ CN(1 + |η|)−N

Conversely, ξ ∈ Rn \{0} is a singular direction if it is not a regular direction. We denote
by Σ(u) the set of all singular directions of u. (This is sometimes referred to as the
frequency set of u.)
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Example 2.4.9. For δ every direction is singular, hence Σ(δ) = R \ {0}. Whereas, for
u(x) = 1

x+i0+ , every ξ > 0 is regular, as û vanishes there, and every ξ < 0 is singular.
For any regular distribution v, by theorem 2.4.6, we clearly have Σ(v) = ∅.

As well as the direction of singularities, we also need to pay attention to their lo-
cations. It straightforward to show that, for any f ∈ D(U), f(x)δ(x) = f(0)δ(x). As
such,

Σ(fδ) =

R \ {0} if f(0) 6= 0,

∅ else.

The general form of this statement is that Σ(fu) ⊆ Σ(u), where this inclusion may be
proper if f vanishes ‘where’ u is singular. This allows us to localise the frequency sets
by introducing

Σx(u) :=
⋂

f(x) 6=0
Σ(fu). (2.30)

A useful side-effect of this definition is that, even though Σ(u) cannot be defined
for an arbitrary distribution u ∈ D′(Rn), for any f ∈ D(Rn), fu ∈ E(Rn), hence Σx(u)
is well defined for every x ∈ Rn. In fact, we can also define Σx(u) for u ∈ D′(U), x ∈ U ,
by using inclusion D′(U) ↪→ D′(Rn).

We are finally ready to define the wavefront set:

Definition 2.4.10. Let U ⊆ Rn be open. The wavefront set of a distribution u ∈ D′(U) is
the subset of U × Rn \ {0} given by

WF(u) :=
⋃
x∈U
{x} × Σx(u). (2.31)

The wavefront set allows us to distinguish different subspaces of D′(U) by impos-
ing constraints on their wavefront sets.

Definition 2.4.11. Let U ⊆ Rn be open, and let Γ ⊆ U × (Rn \ {0}) be a closed conic
set4. We then define the space

D′
Γ(U) = {u ∈ D′(U) |WF(u) ⊆ Γ} . (2.32)

This space is given a pseudo-topology (i.e. a definition of convergent sequences), where
a sequence (uj)j∈N ⊂ D′

Γ(U) converges to u ∈ D′
Γ(U) if and only if

4A set Γ ⊆ U × (Rn \ {0}) is called conic if (x, λξ) ∈ Γ, ∀ (x, ξ) ∈ Γ, λ > 0. A conic set Γ is open if
every point has a conic neighbourhood Γ′ ⊆ Γ, and closed if its complement is open.
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• | 〈u− uj, ϕ〉 | → 0 as j →∞ for every ϕ ∈ D(U),

• supξ∈V |ξ|N |ϕ̂u(ξ) − ϕ̂uj(ξ)| → 0 as j → ∞ whenever N > 0, ϕ ∈ D(U), and
V ⊆ Rn \ {0} such that (suppϕ× V ) ∩ Γ = ∅.

2.4.4 Operations on Distributions

Themain reason for introducing this notion of convergence is [Hör15, Theorem 8.2.3],
which states that, for every u ∈ D′

Γ, there is a sequence (uj)j∈N of test functions which
converges to u in D′

Γ(U). Given that the pullback of each uj along any smooth map
U → V is well-defined, this gives a potential definition for the pullback of u. This
potential is realised by the following [Hör15, p. 8.2.4]

Theorem 2.4.12. Let U and V be open subsets of Rn and Rm respectively, and let f : U → V

be a smooth map. Denote the normal set of f by

Nf =
{
(f(x), η) ∈ V × Rm | df txη = 0

}
.

Then, for every conic set Γ ⊆ V × (Rm \ {0}) such that

Γ ∩Nf = ∅,

one can define a map f ∗ : D′
Γ(V )→ D′

f∗Γ(U), where

f ∗Γ :=
{
(x, df txη) | (f(x), η) ∈ Γ

}
.

Moreover, this map is sequentially continuous in the sense of definition 2.4.11, and for u ∈
E(V ) we have that f ∗u = u ◦ f .

Proof. One can of course consult Hörmander. Alternatively, for a proof at a more re-
laxed pace one can instead see [BF09, §4.3].

There are many things we can learn from this result. Firstly, note that if f is a
diffeomorphism thenNf = V ×{0}, hence Γ∩Nf = ∅ for all Γ. From this we learn that
wavefront sets transform covariantly under a change of coordinates, hence we could
think of U ×Rn \ {0} as Ṫ ∗U , the cotangent bundle of U with the zero section removed.
This allows one to define the wavefront set without a preferred choice of coordinates,
hence we can also define the wavefront set of a distribution on a manifold by use of
charts.

In order to determine when the pullback of a tensor product of distributions u, v ∈
D′(U) along f(x) = (x, x) is well defined, we need to be able to estimate the wavefront
set of u⊗ v. This is done by [Hör15, Theorem 8.2.9], which we shall also state here.
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Theorem 2.4.13. For u ∈ D′(U), v ∈ D′(V ), the tensor product u⊗ v ∈ D′(U ×V ) satisfies

WF(u⊗ v) ⊆ (WF(u) ∪ 0U)× (WF(v) ∪ 0V ) \ 0U×V .

With all of the necessary results in place, we shall now demonstrate how the wave-
front set can be used to define multiplication.

Theorem 2.4.14. Let Γ1,Γ2 ⊆ Ṫ ∗U be two conic sets and denote

−Γ =
{
(x, ξ) ∈ Ṫ ∗U | (x,−ξ) ∈ Γ

}
.

If Γ1∩−Γ2 = ∅, then one can define the pointwise multiplication mapD′
Γ1(U)⊗D′(Γ2)(U)→

D′
Γ, where Γ =

{
(x, ξ + η) ∈ Ṫ ∗U | (x, ξ) ∈ (Γ1 ∪ 0U), (x, η) ∈ (Γ2 ∪ 0U)

}
. This coincides

with the usual pointwise product of functions when restricted to E(U) ⊆ D′
Γ1(U) ∩D′

Γ2(U).

Proof. As we have already mentioned, the strategy is to define the pointwise product
as the pullback of u ⊗ v along the diagonal embedding f : x 7→ (x, x). The conic set
containing WF(u⊗ v) is estimated by theorem 2.4.13, hence in particular we have, for
u ∈ D′

Γ1(U), v ∈ D′
Γ2(U)

WF(u⊗ v) ⊆ Γ3 := (Γ1 ∪ 0U)× (Γ2 ∪ 0U) \ 0U2 .

Now, rather than showing that Nf ∩ Γ3 = ∅, we can in fact skip ahead and go straight
to computing f ∗Γ3, as one can quickly show that f ∗Γ3 ∩ 0U = ∅ ⇒ Nf ∩ Γ3 = ∅.

We clearly have that, for (ξ, η) ∈ R2n, df tx(ξ, η) = ξ + η, hence

f ∗Γ3 = {(x, ξ + η) ∈ T ∗U | (x, x, ξ, η) ∈ Γ3}

This set intersects 0U if and only if there exists (x, ξ) ∈ Γ1 such that (x,−ξ) ∈ Γ2, i.e.
(x, ξ) ∈ Γ1 ∩ −Γ2. As we have assumed this set to be empty, this cannot be the case.
Hence f ∗Γ3 = Γ and the product is well-defined.

This is consistent with our earlier computation of u2 for u(x) = 1
x+i0+ , as in this

case one can show that WF(u) = {0} × R>0, hence WF(u) ∩ −WF(u) = ∅.

As a final fact, to recall the intuition behind defining our operations on distribu-
tions using Fourier transforms, we state [DB14, Lemma 3], which can be seen as a
generalisation of Parseval’s theorem.
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Lemma 2.4.15. Let Γ be a closed conic set in Ṫ ∗U , and let Λ =
{
(x, ξ) ∈ Ṫ ∗U | (x,−ξ) /∈ Γ

}
.

Further, denote E′
Λ(U) = {v ∈ E′(U) |WF(v) ⊆ Λ}, then the pairing

〈u, v〉 = 1
2πn

∫
Rn
ûϕ(ξ)v̂(−ξ)dnξ (2.33)

is well-defined, where u ∈ D′
Γ(U), v ∈ E′

Λ, and ϕ is any function in D(U) such that ϕ ≡ 1
on supp v.

2.5 classical kinematics

LetM be a smooth manifold (we shall specify dimension and topological constraints
later). For the theory of a real scalar field, we take our configuration space, E(M),
to be the space of smooth real-valued functions on M . (Note that the choice M =
R corresponds precisely to the configuration space of the simple harmonic oscillator
from section 2.3.)

More generally, we might consider the space of smooth sections of some vector
bundleE π→M , to which the following constructions can be readily generalised. Note
that this space is ‘off-shell’ in the sense that it includes field configurations which may
not satisfy any equations of motions later imposed by the dynamics.

Classically, observables are maps F : E(M) → C. Typically, we also assume them
to be smooth, with respect to an appropriate notion of smoothness which we shall
introduce shortly. The derivative of a functional at a pointϕ ∈ E(M) and in a direction
h ∈ E(M) is defined in the obvious way as

〈
F (1)[ϕ], h

〉
:= lim

ε→0

F [ϕ+ εh]−F [ϕ]
ε

, (2.34)

whenever this limit exists. If it exists for all ϕ, h ∈ E(M), and the map

F (1) : (ϕ, h) 7→
〈
F (1)[ϕ], h

〉
is continuous with respect to the product topology on E(M)2 then we say F is C1.

Higher derivatives of F are defined similarly by
〈
F (n)[ϕ], h1 ⊗ · · · ⊗ hn

〉
:= ∂nF [ϕ+ ε1h1 + · · ·+ εnhn]

∂ε1 · · · ∂εn

∣∣∣
ε1=···=εn=0

, (2.35)

wherever these limits exist. If ∀n ∈ N and ϕ ∈ E(M), F (n)[ϕ] exists, and the maps

F (n) : E(M)× E(Mn)→ C

(ϕ, h1 ⊗ · · · ⊗ hn) 7→
〈
F (n)[ϕ], h1 ⊗ · · · ⊗ hn

〉
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are all continuous thenwe sayF isBastiani smooth as discussed in, for example [BDLR18,
§II]. ForF a Bastiani smooth functional, following [BDLR18, Definition III.1], wemay
define its spacetime support as

suppF := {x ∈M | ∀U 3 x open , ∃ϕ ∈ E(M), ψ ∈ D(U) s.t. F [ϕ+ ψ] 6= F [ϕ]}
(2.36)

We shall denote by F(M) the space of Bastiani smooth functionals of the real scalar
field overM with compact spacetime support.

Various pieces of notation are commonly used when discussing functional deriva-
tives. For clarity, we collect some of them here. A consequence of the above definition
is that, forF a C1 functional,F (1)[ϕ] is an element of E′(M)C [BDLR18, §III], where the
superscript C denotes complexification. Hence the bracket 〈·, ·〉 in (2.34) can be seen
as denoting the canonical pairing, as defined in section 2.4. If M is equipped with a
preferred volume form F (1)[ϕ] may be given an integral kernel, typically written as5〈

F (1)[ϕ], h
〉

=
∫
M

δF [ϕ]
δϕ(x)

h(x) dVM . (2.37)

Finally, we introduce the map, for a C1 functional F , δ
δϕ

: F 7→ F (1).

Similarly to the n = 1 case, for a Bastiani smooth functionalF ∈ F(M), F (n)[ϕ] will
in general be a complex-valued, compactly-supporteddistribution ofnvariables [BDLR18,
proposition III.4], i.e. F (n)[ϕ] ∈ E′(Mn)C. Recall that we say this distribution is regular
if there exists f ∈ D(Mn) such that ∀h ∈ E(Mn)〈

F (n)[ϕ], h
〉

=
∫
Mn

f(x1, . . . , xn)h(x1, . . . , xn)dV n
M .

If F (n)[ϕ] is a regular distribution for every n ∈ N and ϕ ∈ E(M), then we say that F
is a regular functional, and we denote the space of regular functionals Freg(M).

Regular functionals are particularly convenient to work with, as we shall see when
defining the Poisson bracket and ? product later. However, they exclude many func-
tionals of physical interest, such as components of the stress-energy tensor in the case
of the scalar field. Thus, we next consider the subspace of F(M) consisting of local
functionals.

Following [Rej16], we define a functional F to be local if there exists an open cover⋃
α∈A Uα = E(M) such that, for ϕ ∈ Uα

F [ϕ] =
∫
M
fα
(
jkxϕ

)
dVM , (2.38)

5On Lorentzian manifolds, we always have the metric volume form. However, when we discuss
chiral fields later, we shall have to revisit this shortcut.
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where jkxϕ is the kth jet prolongation of ϕ at x, which is heuristically characterised by

jkxϕ = (ϕ(x),∇ϕ(x), . . . ,∇kϕ(x)),

i.e. the equivalence class of functions whose first k derivatives agree with ϕ at x, and
fα is some smooth, compactly-supported function on the kth jet bundle ofM , whose
fibres are the spaces of the aforementioned equivalence classes. We denote by Floc(M)
the space of local functionals onM , and by Fmloc(M) the space ofmultilocal functionals
the algebraic completion of Floc(M) under the pointwise product of functionals.

Whilst this is the best definition of a local functional, rather than getting deep into
the details of the definition, we simply state the properties which locality implies that
are most relevant for our purposes. Perhaps the most important such property [Rej16,
Remark 3.2] is that, for every n ∈ N, ϕ ∈ E(M), the support of F (n)[ϕ] (in the sense of
definition 2.4.3) is contained within the thin diagonal

∆n = {(x, . . . , x) ∈Mn}x∈M ,

and that its wavefront set is orthogonal to T∆n.

Notably this implies that, for n ≥ 2, these derivatives must either vanish or fail to
be regular. In other words, the intersection Freg(M)∩Floc(M) of functionals which are
both regular and local comprises only linear functionals of the form

Φ(f) : ϕ 7→
∫
M
f(x)ϕ(x) dVM ,

for f ∈ D(M).

Whilst it is possible to perform our classical and quantum operations on local func-
tionals, the result is typically not local. As such, we need a space of functionals which
is algebraically convenient, like Freg(M), but which also contains the physically impor-
tant subspace Floc(M). The space of microcausal functionals accomplishes this. How-
ever, unlike the previous classes of functionals, it cannot be defined on an arbitrary
manifold. Instead we require the structure of a spacetime, which we define in accor-
dance with [FV12, §2.1] as follows:

Definition 2.5.1. A spacetime is a tupleM = (M, g, o, t) such that (M, g) is an orientable
Lorentzian manifold (with metric signature (+,−,− · · · )) of some fixed dimension d,
o ⊂ Ωd(M) is an equivalence class of nowhere-vanishing volume forms, defining an
orientation, and t ⊂ X(M) is an equivalence class of timelike vector fields, where
t ∼ t′ ⇔ gx(tx, t′x) > 0 ∀x ∈M .
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Wewill typicallywriteF(M), Freg(M), andFloc(M) to refer to the respective spaces
of functionals associated to the underlying manifold ofM.

For any point x in a spacetimeM, we can define the closed past/future lightcone
of the cotangent space V ±(x) ⊂ T ∗

xM as comprising covectors k for which ĝx(k, k) ≥ 0
and ±k(tx) ≥ 0, for any t ∈ t, where ĝx is the metric induced on T ∗

xM by g. We can
then define the sub-fibre bundles V ± such that their fibres at x are V ±(x) respectively.

Using this, we call a functional F ∈ F(M) microcausal if it satisfies the microcausal
spectral condition

WF(F (n)[ϕ]) ∩
(
V
n
+ ∪ V

n
−

)
= ∅, (2.39)

Where the wavefront set of F (n)[ϕ] is just as we defined in section 2.4. The space of
microcausal functionals is denoted Fµc(M), and contains all regular and local func-
tionals [BFR19, Proposition 3.3].

The characteristic features of these spaces, as well as the relations between them,
are summarised in the following diagram.

F F (n)[ϕ] exists ∀n, ϕ

Floc supp
(
F (n)[ϕ]

)
⊆ ∆n Freg WF

(
F (n)

)
= ∅

Fµc WF
(
F (n)[ϕ]

)
∩
(
V
n

+ ∪ V
n

−

)
= ∅

2.6 classical dynamics

We shall now impose the dynamics in much the same way as was done for the sim-
ple harmonic oscillator in section 2.3. Recall that the foundational idea of this ap-
proach, due to Peierls [Pei52], is the formulation of a Poisson structure in terms of
the advanced and retarded responses of a field to perturbation. A construction of the
classical algebra of observables using the Peierls bracket was set forth in [DF03], and
developed in detail in [BFR19] More recent overviews may be found in, e.g. [Rej16,
§4] or [FR15, §5.1].
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This approach has the advantage of being independent of any particular reference
frame, and hence covariant under local isometries, (as will be explored further in sec-
tion 2.9) whilst still endowing our space of observables with a Poisson structure,

The existence of this Poisson bracket is indeed contrary to a common notion that
such a structure requires one to split a spacetime into ‘space’ and ‘time’.

As we saw in section 2.3, the problemwith an action functional as is typically writ-
ten is that their region of integration must be restricted to a compact subset of space-
time in order to guarantee a finite value is returned. A convenient way to achieve this
is to define a map L : D(M) → Floc(M), where the functional L(f) is interpreted
as the action functional with an introduced cutoff function f . Not every such map is
suitable however, the necessary criteria are outlined in the following definition (after
[Rej16, §4.1]).

Definition 2.6.1. A map L : D(M) → Floc(M) is called a generalised Lagrangian if it
satisfies the following conditions:

1. If f, g, h ∈ D(M) such that supp f ∩ supph = ∅ then

L(f + g + h) = L(f + g)− L(g) + L(g + h). (Additivity)

2. suppL(f) ⊆ supp f. (Support)

3. If β is an isometry of (M, g) which preserves orientation and time-orientation,
then for f ∈ D(M) and ϕ ∈ E(M),

L(f)[β∗ϕ] = L(β∗f)[ϕ]. (Covariance)

Remark 2.6.2. The additivity property is a weaker version of linearity, which still cap-
tures the concept that L depends only locally upon f . We will only make explicit use
of Lagrangians which are linear, but the more general definition may be necessary, for
example, when considering Yang-Mills theories or when following the Epstein-Glaser
renormalisation procedure, where f plays the role of a coupling constant, as well as
cutoff.

Additionally, we note that this definition refers to the spacetime support, suppF for
a functionalF . This is the closure of the set of points x ∈M such that, for allϕ ∈ E(M),
there exists some perturbation localised to a neighbourhood of x, say ψ ∈ D(U) for
some U 3 x, which changes the output of F , i.e. F [ϕ + ψ] 6= F [ϕ]. Distributions are
in particular linear functionals, and in this case the spacetime support coincides with
the support of a distribution we defined in section 2.4.
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The generalised Lagrangian we shall focus on is that of the Klein-Gordon field on
d-dimensional Minkowski space Md, which is given by

L(f)[ϕ] := 1
2

∫
Md

f
[
∂µϕ∂

µϕ−m2ϕ2
]

ddx. (2.40)

Heuristically, onemay think of the limit ofL(f) as f tends to aDirac delta δx as describ-
ing the Lagrangian density at x and, if f instead tends to the constant function 1, then
L(f) becomes the action functional S. However onemust bear inmind that, in general,
these limits may not (and typically will not) yield well-defined local functionals.

Definition 2.6.3. Given a generalisedLagrangianL, wedefine theEuler-Lagrange deriva-
tive (EL derivative for short) at a point ϕ ∈ E(M) as the distribution S ′[ϕ] such that〈

L(f)(1)[ϕ], h
〉

=: 〈S ′[ϕ], h〉 . (2.41)

where, h ∈ D(M) and f ∈ D(M) is chosen such that f−1{1} contains a neighbour-
hood of supph 6.

One canuse the additivity and support properties to verify thatS ′[ϕ] iswell-defined
(i.e. (2.41) is independent of the choice of f). A field configuration ϕ ∈ E(M) is called
on-shell if it’s EL derivative S ′[ϕ] vanishes as a distribution.

Different choices of generalised Lagrangian may yield the same EL derivative. If a
generalised LagrangianL0 satisfies suppL0(f) ⊆ supp df , then clearly its EL derivative
vanishes for all ϕ ∈ E(M). In such a case, we describe L0 as null. Clearly, adding L0

to an arbitrary generalised Lagrangian would not change its EL derivative. Given
this, we say that two generalised Lagrangians, L and L′ define the same action if their
difference is null, we denote this fact by [L] = [L′] =: S.

In the case where S is a quadratic action, i.e. it may be represented by a Lagrangian
L such thatL(f) is a quadratic functional for all f , then themapϕ 7→ 〈S ′[ϕ], h〉 is linear
in ϕ. We assume that this functional can be expressed in the form ϕ 7→ 〈Pϕ, h〉, where
−P is a normally hyperbolic differential operator, i.e. P is a second order differential
operator of the form ∇a∇a+ lower order terms. A more precise definition of normally
hyperbolic differential operators can be found in, e.g. [BGP07, §1.5]. As an example,
given the free field Lagrangian (2.40), P is simply the Klein-Gordon operator −(□ +
m2).

6We opt for a slightly stronger condition on f than found in, for example [BFR19, Definition 3.2].
This is ultimately insignificant, but it makes it easier to show that null Lagrangians (defined below)
have vanishing Euler-Lagrange derivatives.
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For interacting theories, one must take a further functional derivative, defining〈
L(f)(2)[ϕ], h⊗ g

〉
=: 〈S ′′[ϕ], h⊗ g〉 , (2.42)

where f−1 {1} contains a neighbourhood of supph or supp g (or both). By the Schwartz
kernel theorem [Hör15, Theorem5.2.1], wemay then express this in terms of an operator
Pϕ : D(M)→ D′(M), for each ϕ ∈ E(M)

〈S ′′[ϕ], h⊗ g〉 = 〈Pϕg, h〉 . (2.43)

For a broad class of physically relevant actions, Pϕ is a self-adjoint7, normally hyper-
bolic differential operator.

Definition 2.6.4. We refer to the equation Pϕφ = 0 for φ ∈ E(M) as the linearised
equations of motion at the configuration ϕ and, if such an operator exists for every ϕ ∈
E(M), we say that the action satisfies the linearisation hypothesis. If ϕ is an on-shell
configuration, then KerPϕ can be thought of as the tangent space at ϕ to the manifold
of on-shell configurations. Note that for a free action, P coincides with Pϕ for every
ϕ ∈ E(M).

In the study of pdes on Lorentzian manifolds, the global structure is often relevant.
In particular, for physically relevant pdes, where initial data cannot propagate faster
than the speed of light, one oftenwishes to place constraints upon the causal structure
of the spacetime. (It might be perfectly acceptable for a cannonball to wrap around
the universe and hit the back of the cannon from which it was fired, but perhaps the
impact shouldn’t happen before it was fired.) Indeed, there is an entire causal hierar-
chy [MS08] of conditions which make a spacetime more causally well-behaved. We
shall choose to sit right atop the hierarchy, and consider only those spacetimes which
are globally hyperbolic.

Definition 2.6.5. A Lorentzian manifoldM = (M, g) is globally hyperbolic if it posesses
a Cauchy surface, i.e. a subset Σ ⊂M such that every inextensible timelike curve inM
intersects Σ precisely once.

One can think of globally hyperbolic spacetimes as thosewhich admit global, albeit
non-canonical, decompositions into “space” and “time”. This is best exemplified by the
following result [BS03, Theorem 1.1].

7To be precise, we mean that Pϕ is formally self-adjoint, i.e.
∫

M fPϕgdVM =
∫

M gPϕfdVM for every
f, g ∈ D(M).
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Theorem 2.6.6. For any globally hyperbolic spacetimeM, there exists a smooth, spacelike
Cauchy surfaceΣ ofM and an isomorphismM' R×Σ, where the latter manifold is equipped
with the product metric g̃ = βdt2−h, where t : R×Σ→ R is the time function corresponding
to projection onto the first factor, and h is a symmetric tensor field on R×Σ which restricts to
a Riemannian metric on each hypersurface {t0} × Σ.

The key feature of globally hyperbolic spacetimes is the existence of Green hyper-
bolic differential operators P , characterised by the property that the equation Pϕ =
0 admits special fundamental solutions, called the advanced and retarded propagators
ER/A : D(M) → E(M). These maps are similar to the maps ∆R/A from section 2.3,
and are uniquely distinguished by the fact that, for any f ∈ D(M)

PER/Af = ER/APf = f, (2.44)
supp

(
ER/Af

)
⊆ J±(supp(f)). (2.45)

Here J±(K) denotes the causal future/past of K, i.e. the set of all points connected
to some point x ∈ K by a causal future/past directed curve respectively. For detailed
exposition of the theory of normally hyperbolic and Green hyperbolic differential op-
erators, we refer the reader to [Bär15] and [BGP07].

Each propagator is formally adjoint to the other in the sense that, for all f, g ∈
D(M)〈

f, ERg
〉

=
〈
g, EAf

〉
. (2.46)

Their difference E = ER−EA defines a map, known as the Pauli-Jordan function, from
D(M) to the space of solutions of Pφ = 0, which we shall use to define our Poisson
structure.

Note that we shall mostly be considering a free theory, governed by the single lin-
ear equation Pϕ = 0. However, to generalise to the interacting case, one need only
replace P with the linearised operator Pϕ defined by (2.43), and note that the funda-
mental solutions are then defined relative to this linearised operator.

Recall that the phase space of a free field theory is simply the space KerP of so-
lutions to the equations of motion. Traditionally, we identify this with the space of
Cauchy data on some fixed surface, i.e. the field strength and canonically conjugate
momentum at some fixed time. [BGP07, Proposition 3.4.7] states that all solutions
with spacelike-compact support may be expressed asEf for some f ∈ D(M) and also
that the kernel of this map is precisely P (D(M)). In other words, we can identify the
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space of physical field configurations with the quotient D(M)/P (D(M)). One could
then define the algebra of observables onM to be the space of smooth maps from this
space to C, which E naturally equips with a non-degenerate Poisson bracket. This is
not, however, the approach that we shall take, which we outline below.

Given two regular functionals F ,G ∈ Freg(M), we can use E to define a new func-
tional

{F ,G} [ϕ] :=
〈
F (1)[ϕ], EG(1)[ϕ]

〉
(2.47)

called the Peierls bracket of F and G, where we recall that F (1)[ϕ] and G(1)[ϕ] may be
identified with smooth test functions when F and G are regular. Local functionals
also possess this property, hence we can define the Peierls bracket of local functionals.
However, the result of this operation is not in general local, i.e. Floc(M) is not closed
under the Peierls bracket.

To obtain a closed algebra, we extend the domain of the Pauli-Jordan function to
include a suitable class of distributions. As shown in Appendix B, the pairing 〈f, Eg〉
is well defined if f and g are compactly-supported distributions satisfying the (n = 1)
wavefront set spectral condition (2.39). In particular, this means (2.47) is well de-
fined for F ,G ∈ Fµc(M), and one can show (Appendix B) that the result is again a
microcausal functional. Once it is established that {·, ·} is also a derivation over the
pointwise product of functionals, we may conclude that (Fµc(M), ·, {·, ·}) is a Poisson
algebra [BFR19, Theorem 4.1], which we shall denote P(M). This is our classical al-
gebra of observables, which we shall quantise by deformation in section 2.8.

Once again, we shall point out that this Poisson algebra is off-shell, in the sense that
the underlying space, Fµc(M), comprises functionals defined for all conceivable field
configurations ϕ, not only the critical points of the action. This is intentional, and in
the following section we shall see how it is possible from here to both recover the on-
shell algebra in a natural way, and in the same stroke describe any potential gauge
symmetries a theory may possess.

2.7 going on-shell

A well-known result [Kim93, (2.6)] states that, given a manifoldX with some closed
submanifold Y ⊆ X , there is an isomorphism

C∞(Y ) ' C∞(X)/I(Y ), (2.48)

where I(Y ) ⊆ C∞(X) is the ideal of functions vanishing on Y . The construction of the
Poisson algebra of on-shell observables may be regarded as an infinite-dimensional
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analogue of this isomorphism, where C∞(X) is replaced with Fµc(M). We define the
ideal IS ⊆ Fµc(M) to be the set of functionals which vanish for all on-shell configura-
tions, i.e. ∀F ∈ IS, Pϕ = 0⇒ F [ϕ] = 0. The following fact then tells us how to obtain
the dynamics on this subspace.

Proposition 2.7.1. The space IS is also an ideal with respect to {·, ·}.

Proof. (Sketch) This can be proved from (2.47) because, if ϕ is a solution, F ∈ IS , and
G ∈ Fµc(M) then ϕ+ εEG(1)[ϕ] is also a solution for any ε > 0, hence

F [ϕ+ εEG(1)[ϕ]] = 0, (2.49)

i.e. {F ,G}[ϕ] =
〈
F (1)[ϕ], EG(1)[ϕ]

〉
= 0, indicating that {Fµc(M), IS} ⊆ IS as desired.

For a more detailed proof, see [BFR19, Proposition 4.2].

We can thus construct the on-shell algebra as follows.

Definition 2.7.2. Given a globally hyperbolic spacetimeMwith an action S satisfying
the linearisation hypothesis, the on-shell algebra of observablesPon(M) is defined as the
space Fµc(M)/IS with the Poisson bracket given by

{[F ], [G]} := [{F ,G}] . (2.50)

One advantage of characterising the on-shell observables in this way is that it in-
volves linear, algebraic structures (namely Fµc(M) and IS) even when the underly-
ing space of on-shell field configurations may be complicated. It is also a first step
towards an alternative formulation of classical/quantum field theory in terms of dif-
ferential, graded algebras (dg-algebras), where the space of non-trivial symmetries of a
theory is described in much the same way as the space of on-shell observables. This
perspective is particularly useful when quantising gauge theories [Rej16, Chapter 7].

As a brief aside, we shall provide here a rough outline of this dg reformulation
of pAQFT. However, it is important to note that this formulation has not been fully
realised for the microcausal functionals we have been working with. As such, we
follow [GR19, §5.1] and work instead with the space Freg(M) of regular functionals
defined in section 2.5.

Recall that we called a field configuration ϕ on-shell precisely when 〈S ′[ϕ], h〉, van-
ished for all h ∈ D(M). We would like to find a suitable generalisation of the maps
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〈S ′[−], h〉 such that every element of IS(M) can be expressed in this way. We can think
of h as defining a vector field on E(M) by

Xh =
∫

M
h(x) δ

δϕ(x)
dVM. (2.51)

We can then express the above functionals as

〈S ′[−], h〉 = Xh · L(f), (2.52)

where f ≡ 1 on supph, and (Xh ·F)[ϕ] :=
〈
F (1)[ϕ], h

〉
is the natural action of the vector

field on a functional by derivation. The key idea for a dg formulation of paqft is that
it should be possible to obtain the entire ideal IS in this way, given the right notion of
a vector field.

For a rough overview, we begin by noting that, sections of the tangent bundle, using
the identification TE(M) ' E(M) ⊕ E(M), are Bastiani smooth maps X : E(M) →
E(M). In [Rej16], conditionswere given for suchmaps to behave as graded analogues
of microcausal functionals. The definition is too complex to give here. Suffice it to say
that the functional derivativesX(n)(ϕ) : E(Mn)→ E(M) are well defined, and can be
canonically identified with elements of E′(Mn+1) which have wavefront sets disjoint
from V

n+1
+ ∪ V n+1

− as in (2.39).

As with vector fields on finite-dimensional manifolds, wedge products of micro-
causal vector fields are then defined which, after taking a topological completion, pro-
duces the complex of microcausal polyvector fields, which we shall denote ∧• Vµc(M).
Importantly, one property of microcausal vector fields is that

suppX :=
⋃

ϕ∈E(M)
suppX(1)(ϕ) ∪

⋃
ϕ∈E(M)

suppX(ϕ)

is compact, where X(1)(ϕ) : E(M) → E′(M) has been identified with an element of
E′(M2) (again, refer to [Rej16] for details).

We can define a map δS : Vµc(M) → Fµc(M) by δS(X)[ϕ] :=
〈
L(f)(1)[ϕ], X(ϕ)

〉
,

where f ≡ 1 on a neighbourhood of the suppX . We call δS(X) the variation of the action
with respect to X .

The principle of critical action for ϕ ∈ E(M) can be expressed as the condition
that, δS(X)[ϕ] ≡ 0, ∀X ∈ Vµc(M). Hence, it is clear that all functionals which arise
as a variation of the action under a vector field must vanish on-shell, in other words,
δS(Vµc(M)) ⊆ IS(M).
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We cannowbegin to see aspects of the bv formalism (see, e.g. [Rej16, §4.3] formore
details) appearing if we extend δS : Vµc(M)→ Fµc(M) to form a cochain complex:

· · · δS−→
∧3

Vµc(M) δS−→
∧2

Vµc(M) δS−→ Vµc(M) δS−→ Fµc(M) −→ 0, (2.53)

where δS is defined in lower degrees via the graded Leibniz rule: for example, a ho-
mogeneous elementX ∧Y ∈ ∧2 Vµc(M) is mapped to δS(X ∧Y ) = δS(X)Y − δS(Y )X .
We call this the Koszul complex associated to δS , denoted K(δS).

It is, at this point, natural to askwhether or not there exists a physical interpretation
of H−1(K(δS)), or the cohomology in yet lower degrees. To answer the first, note that
for a vector field X , δS(X) = 0 implies that the infinitesimal transformation ϕ 7→ ϕ +
εX[ϕ] leaves the action invariant to first order in ε. As such, the kernel of δS in degree
−1 comprises infinitesimal generators of gauge symmetries8. The image of δS in degree
−1 contains vector fields of the form δS(X ∧ Y ) = δS(X)Y − δS(Y )X . In the physics
literature these are referred to as trivial gauge symmetries. They are, in a sense, less
insightful because they are defined the same way regardless of the action in question,
and also because they act trivially on shell. As such, we can regard H−1(K(δS)) as the
space of non-trivial gauge symmetries 9.

The above discussion motivates us to consider the complex ∧• Vµc as the primary
kinematical object of a physical theory, with δS representing the choice of dynamics.
This perspective is advantageous both in describing conformally covariant field the-
ories (where the generalised Lagrangian formalism proves inconvenient) as well as
in the formulation of chiral sectors of a 2d cft, where one may require choices of δS
which cannot arise from a generalised Lagrangian.

Finally, as an aside now that we have constructed our on-shell algebra, it is infor-
mative tomake a comparison to the ‘canonical’ bracket defined relative to some choice
of Cauchy surface Σ.

Definition 2.7.3 (Canonical Poisson Algebra). Let Σ ⊂ M be a Cauchy surface, we
define the associated canonical Poisson algebra as follows: The underlying vector space
Fcan(Σ) consists of functionals F : D(Σ) ×D(Σ) → C which are Bastiani smooth, the
arguments of this functional represent the initial field strength and momentum on
Σ of some on-shell field configuration. Given a pair F,G of such functionals, their

8Gauge in the sense that the perturbation of ϕ is always localised in some compact region. Other
definitions of gauge symmetry are available.

9In principle, one can go further [CG16, Introduction §3.2], interpreting elements of H−2(K(δS))
as ‘symmetries between symmetries’, however, such notions are tricky to formulate precisely and are
well beyond the scope of this thesis.
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canonical bracket is then defined as

{F,G}can[φ, π] :=
∫

Σ

[
δF [φ, π]
δφ(x)

δG[φ, π]
δπ(x)

− δG[φ, π]
δφ(x)

δF [φ, π]
δπ(x)

]
dVΣ. (2.54)

It is not immediately obvious why the Peierls bracket should be related to this
canonical bracket, other than because E parametrises the space of on-shell field con-
figurations. Especially as the canonical bracket requires a particular Cauchy surface
to be specified, a manifestly Lorentz non-covariant choice. However, by sending the
initial data (φ, π) ∈ E(Σ)× E(Σ), to their corresponding solution, one can construct a
map Fµc(M) → Fcan(Σ) which in turn yields a Poisson algebra homomorphism from
the on-shell Peierls bracket to the canonical [FR15, §3.2].

2.8 deformation quantisation

Having established our Poisson structure, the next step is to deform it to construct our
quantum algebra of observables. Here we take an approach that is analogous toMoyal-
Weyl quantisation, though the fact that our configuration space is infinite dimensional
will present extra difficulties particular to the quantisation of field theories. In partic-
ular, as is common in perturbative qft, our deformation shall be formal, meaning that
quantised products will be formal power series in ~, allowing us to ignore the issue of
proving convergence of our formulae.

For regular functionals F ,G ∈ Freg(M) we can define the star product of F and G
directly as

(F ? G)[ϕ] = F [ϕ]G[ϕ] +
∑
n≥1

(
i~
2

)n 1
n!
〈
E⊗n,F (n)[ϕ]⊗ G(n)[ϕ]

〉
. (2.55)

We may write this formula more concisely as

F ? G := m ◦ e
i~
2

〈
E,

δ
δϕ

⊗ δ
δϕ

〉
(F ⊗ G) , (2.56)

where m is the pointwise multiplication map m(F ⊗ G)[ϕ] := (F ⊗ G)[ϕ ⊗ ϕ] =
F [ϕ] · G[ϕ]. A general result [HR19, Proposition 4.5] states that this exponential form
guarantees ? is associative. As mentioned, this deformation is formal, meaning we
have actually defined a map ? : Freg(M) ⊗ Freg(M) → Freg(M)[[~]]. We can then de-
fine the ? product on Freg(M)[[~]] by linearity in the formal parameter.

Writing the first few terms explicitly, we seeF ?G = F ·G+ i~
2 {F ,G}+O(~2). Thus

the classical term of ? (i.e. the coefficient of ~0) is simply the pointwise product. The
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Dirac quantisation rule also holds modulo terms of order ~2, hence ? is a deformation
of the classical product in the sense of section 2.2. However, if we wished to apply
(2.56) to local functionals, divergenceswould appear. Consider for example the family
of quadratic functionals, for f ∈ D(M)

Φ2(f)[ϕ] :=
∫

M
f(x)ϕ2(x) dVx. (2.57)

A naïve computation of the star product for two such functionals would yield

Φ2(f) ? Φ2(g) “=”Φ2(f) · Φ2(g) + i~
2

{
Φ2(f),Φ2(g)

}
− ~2

2

∫
M2

f(x)E2(x; y)g(y) dVx dVy.
(2.58)

In general, theO(~2) term of this product is ill-defined if suppf ∩ suppg 6= ∅. Recalling
section 2.4, we can describe the problem as the fact that there exists (x, ξ) ∈ Ṫ ∗M2

such that (x, ξ), (x,−ξ) ∈WF(E).

The solution is tomakeuse of aHadamard distribution. Historically [KW91], Hadamard
distributions were characterised locally as having a singular part analogous to that
of 2-point function of the Minkowski vacuum (see (2.78)). It was later discovered
by Radzikowski [Rad96] that the Hadamard condition could be more elegantly ex-
pressed in terms of wavefront sets. We make this notion precise with the following
definition.

Definition 2.8.1. A complex-valued distributionW ∈ D′(M2)C is Hadamard if it satis-
fies the following properties [Rej16, §5.1]

H0 The wavefront set ofW satisfies

WF(W ) =
{
(x, y; ξ, η) ∈WF(E) | (x; ξ) ∈ V +

}
(2.59)

H1 W = i
2E +H, where H is a symmetric, real distribution.

H2 W is a weak bi-solution to P .

H3 W is positive semi-definite in the sense that, ∀ f ∈ D(M;C)
〈
W, f̄ ⊗ f

〉
≥ 0.

For our present purposes, the key consequence of this definition is that WF(W ) ⊆
V + × V −. Given that WF(F (n)[ϕ]) ⊆ Ṫ ∗Mn \

(
V
n
+ ∪ V

n
−

)
for any F ∈ Fµc(M), we can

then use lemma 2.4.15 (generalised to manifolds) to show that the pairing〈
W⊗n,F (n)[ϕ]⊗ G(n)[ϕ]

〉
is always well-defined for any pair F ,G ∈ Fµc(M), and ϕ ∈ E(M).
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A choice of Hadamard distribution yields a corresponding star product by

F ?H G := m ◦ e
〈
~W, δ

δϕ
⊗ δ
δϕ

〉
(F ⊗ G) . (2.60)

In contrast to the Peierls bracket, one cannot easily extend this formula to an inter-
acting theory by replacing W with a Hadamard distribution of the linearised theory.
In short this is because repeatedmultiplicationswould involve taking derivatives δ

δϕ
W ,

which means that the product will fail in general to be associative.

PropertyH1 ensures that ?H is a deformation in the sense of eq. (2.5)10. Moreover,
it implies that any freedom in the choice of aHadamard stateW lies solely in the choice
of its symmetric partH . As such, we shall denote byHad(M) the set of bi-distributions
H such that i

2E +H is a Hadamard distribution as per the above definition.

For every choiceH ∈ Had(M), ?H is an associative product on Freg(M). Moreover,
on this space it is isomorphic to ?: if we define the map αH : Freg(M)→ Freg(M) by

αHF = e
~
2

〈
H,

δ2

δϕ2

〉
F , (2.61)

thenαH (F ? G) = (αHF)?H (αHG) , for anyF ,G ∈ Freg(M) and the inverse of thismap
is simply α−H . Where ? and ?H differ, however, is that the latter can also be extended
to a well defined product on Fµc(M), as shown in appendix B.

On a generic globally hyperbolic spacetime, it is well-known [FNW81] that there
exist infinitely many Hadamard distributions, thus we need never fear that Had(M)
is empty. However, there is usually no natural way of selecting which H ∈ Had(M) to
use. Thus, whilst we can always construct a well defined algebra

(Fµc(M)[[~]], ?H) =: AH(M) (2.62)

for an arbitrary globally hyperbolic spacetimeM, it would be unnatural to define the
quantum algebra to be any particular such choice. Fortunately, the algebraic structure
of AH(M) is independent of the Hadamard distribution selected. If H,H ′ ∈ Had(M),
then

αH−H′ (F ?H′ G) = (αH−H′F) ?H (αH−H′G) , (2.63)
10As a brief overview of the other properties: H0 allows the star product to be defined for local

observables,H2 ensures that IS(M) is a 2-sided idealwith respect to ?H , andH3 ensures thatW defines
an algebraic state (once the quantum algebra of observables is constructed). For a more complete
account, see [Rej16].
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whereαH−H′ : AH′(M)→ AH(M) is defined just as in (2.61). As onemight expect, the
inverse of this map is αH′−H , hence all of our candidate algebras are in fact isomorphic
to one another. One way in which we can define the quantum algebra without any
undue preference to a particular Hadamard distribution is as follows:

Definition 2.8.2. The quantum algebra of the free field theory, denoted A(M), is a unital,
associative ∗-algebra whose elements are tuples (FH)H∈Had(M) such that FH ∈ Fµc(M)
and subject to the compatibility criterion

FH′ = αH′−HFH , (2.64)

with a product defined by

(FH)H∈Had(M) ? (GH)H∈Had(M) := (FH ?H GH)H∈Had(M) . (2.65)

Yet again, this algebra is intentionally off-shell. We define the on-shell theorymore-
or-less the same way as we did in the classical case.

Definition 2.8.3. The on-shell quantum algebra of the free field is defined as the space

Aon(M) :=
{
([F ]H)H∈Had(M) | (FH)H∈Had(M) ∈ A(M)

}
, (2.66)

where [F ] denotes the equivalence class of F with respect to the equivalence relation
F ∼ F + IS[[~]], and where the product on Aon(M) is given by

([F ]H)H∈Had(M) ? ([G]H)H∈Had(M) = ([F ?H G]H)H∈Had(M) . (2.67)

The underlying vector space is well-defined because αH′−H : IS[[~]] −→ IS[[~]] for
every pairH ′, H ∈ Had(M), and the product is well defined as IS[[~]] is an ideal with
respect to ?H for every H . Both of these facts are a consequence of property H2 of
Hadamard distributions.

It is important to bear in mind that, whilst we have deformed the classical alge-
bra Fµc(M) into a quantum algebra A(M), we have not yet specified a quantisation
map, embedding classical observables into the quantum algebra. We will need to es-
tablish such a map before computing commutation relations for the quantum stress
energy tensor in section 3.3. However, before considering what this map may be, it is
instructive to study how the construction we have just outlined varies as we change
the underlying spacetimeM.
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2.9 local covariance and normal ordering

We have deliberately said little about Poincaré covariance in the construction above.
The reason being that we take the perspective that covariance under any symmetries
a particular spacetime may enjoy is just a special case of a broader property we wish
to implement: namely local covariance. The concept of local covariance, introduced in
[HW01] and [BFV03], unites the representation of spacetime symmetries as automor-
phisms of the algebra of observables with the principle that an observable localised to
a region O ⊂M of a spacetime should be ‘unaware’ of the structure of the spacetime
beyond this region.

The foundational idea is that, if there exists a ‘suitable’ embedding of a spacetime
M into a spacetime N , then there should be a corresponding embedding (more pre-
cisely, an injective *-homomorphism) of observables A(M) → A(N ). A spacetime
symmetry is just a suitable embedding ofM into itself which also admits an inverse.
If the corresponding algebra homomorphism is similarly invertible, then we would
have, in particular, an action of the isometry group ofM on A(M) as desired.

To formulate local covariance more precisely, it is convenient to invoke the lan-
guage of category theory. (For an introduction to this language, see for example Chap-
ter 1 of [Lan98].)

To begin with, by specifying the suitable embeddings of spacetimes, we promote
the collection of globally hyperbolic spacetimes to a category, which is denoted Loc
and defined as follows:

• An object of Loc is a spacetimeM, as specified in definition 2.5.1, of a fixed di-
mension d.

• For a pair of spacetimesM = (M, g, o, t) and N = (N, g′, o′, t′), a morphism χ :
M→N is a smooth isometric embedding χ : M ↪→ N which is an isometry, i.e.
χ∗g′ = g, and admissible in the sense that χ(M) is causally convex in N , o = χ∗o′,
and t = χ∗t′.

Given a smooth map χ : M → N , there is a natural map F(M)→ F(N) defined by
F 7→ χ∗F := F◦χ∗. Note this map is well-defined because themap χ∗ : E(N)→ E(M)
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is continuous with respect to the Fréchet topology of each space11, hence

(χ∗F)(n) = F (n) ◦
(
χ∗, (χ⊗n)∗

)
: E(N)× E(Nn)→ C (2.68)

exists and is continuous whenever F (n) is, thus χ∗F is Bastiani smooth.

Proposition 2.9.1. Given a smooth embedding χ : M → N , the map χ∗ : F(M) → F(N)
described above is injective.

Proof. Suppose that F ,G ∈ F(M) satisfy χ∗F = χ∗G. As suppF ∪ suppG is compact,
we may find some f ∈ D(M) such that f |suppF∪suppG ≡ 1. For any ϕ ∈ E(M), we then
have ψ := χ∗(fϕ) ∈ D(N) ⊆ E(N) such that χ∗ψ coincides with ϕ on both suppF and
suppG. From this we may conclude F [ϕ] = F [χ∗ψ] = G[χ∗ψ] = G[ϕ] as required.

Each map χ∗ : F(M) → F(N) is an algebra homomorphism with respect to the
pointwise product of functionals. Moreover it is clear that, for χ = 1M , χ∗ = 1F(M),
and (χ ◦ ρ)∗F = F ◦ (χ ◦ ρ)∗ = F ◦ ρ∗ ◦ χ∗ = χ∗(ρ∗F), hence we say that F is a
functor from the category Loc to Alg, the category whose objects are algebras over C,
and whose morphisms are algebra homomorphisms.

We show later in Section 4.2 that even if χ preserves the metric only up to a scale,
then χ∗F is still microcausal whenever F is, hence χ∗ (Fµc(M)) ⊂ Fµc(N ) for all Loc
morphisms χ :M→ N . In fact, all of the different spaces of functionals specified in
section 2.5 are each preserved under the map χ∗, and thus may be considered func-
tors from Loc to a suitable category of observables, for instance the category of vector
spaces over C.

Next, we need to find a way to specify dynamics in a coherent way across all space-
times. This involves extending our definition of a generalised Lagrangian to that of a
natural Lagrangian. In categorical language, we can define a natural Lagrangian as a
natural transformation L : D⇒ Floc, such that for eachM ∈ Loc, LM is a generalised
Lagrangian as per definition 2.6.1. Here,D is the functor assigning each spacetime its
space of compactly-supported test functions, and to each morphism χ : M→ N the
map χ∗ : D(M)→ D(N ) defined by

χ∗f(y) =

f(χ−1(y)) if y ∈ χ(M),

0 else.
(2.69)

11To see this in the case where M, N are open subsets ofRn, note that, by repeated application of the
chain rule, we have ∂α

x ϕ(χ(x)) =
∑

β≤|α|(∂β
y ϕ)(χ(x))P|α|,χ(x), where P|α|,χ are some polynomials in

the components of χ and their derivatives of order atmost |α|. Thismeans there exists someCK,m,χ > 0
such that ||χ∗ϕ||K,m ≤ CK,m,χ||ϕ||χ(K),m, hence the map is continuous.
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Spelling this out, the naturality condition reduces to the condition that, for every
morphism of spacetimes χ :M→N , f ∈ D(M) and ϕ ∈ E(N )

LN (χ∗f)[ϕ] = LM(f)[χ∗ϕ], (2.70)

which is essentially a generalisation of the covariance condition appearing in defini-
tion 2.6.1. As an example, this condition is satisfied by the Klein-Gordon Lagrangian

LM(f)[ϕ] := 1
2

∫
M
f
[
g(∇ϕ,∇ϕ)−mϕ2

]
dVM (2.71)

where∇ is the gradient operator associated to the metric g ofM.

The Euler-Lagrange derivatives of LM and LN satisfy the condition that, ∀ϕ ∈
E(N ), h ∈ D(M)

〈S ′
N [ϕ], χ∗h〉 = 〈S ′

M[χ∗ϕ], h〉 , (2.72)

which is obtained simply by combining (2.70) with the definition (2.41) of the Euler-
Lagrange derivative.

In the case of the free scalar field, S ′
N [ϕ] = PNϕ, hence (2.72) impliesχ∗PN = PMχ∗.

In turn this means that, if we consider ER/A
N as maps D(N ) → E(N ) (and likewise

E
R/A
M ), then

E
R/A
M = χ∗E

R/A
N χ∗.

(See the proof of proposition 4.2.3 for an argument in the context of conformal embed-
dings, which may also be applied essentially unchanged to the isometric case.) From
here, it can explicitly verified (using (2.47) and (2.68)) that χ∗ : Fµc(M)→ Fµc(N ) is
a Poisson algebra homomorphism where each space is equipped with its respective
Peierls bracket. Thus, the assignment P : Loc → Poi outlined in the above section
is locally covariant. A similar argument in the case of conformal embeddings is also
given later in section 4.2.

We shall occasionally use the generic designation Obs to denote the category our
observables (either classical or quantum) belong to. Choices of Obs relevant to our
discussion include

• Vec, whose objects are vector spaces over C, and whose morphisms are linear
maps. This is the most generic space generally considered, and is appropriate
when one wishes to treat classical and quantum theories on an equal footing.
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• Poi the category of Poisson algebras and Poisson algebra homomorphisms. This
is the primary category of observables for classical theories.

• ∗-Alg, the category of topological ∗-algebras with continuous ∗-homomorphisms
between objects. We choose this as the target category of quantum theories, as
the perturbative nature of our construction requires us to consider unbounded
operators, else we would use instead the category of C∗-algebras.

• In each of the above cases, we may add a dg-structure, i.e. if Obs is any of the
above categories, Ch(Obs) comprises cochain complexes which in each degree
take values in Obs. Such categories are at the heart of the bv formalism in both
the classical and quantum case [GR19], [CG16].

A locally covariant field theory (classical or quantum) is then defined simply as a
functor from Loc→ Obs. Already this captures a lot of important features, such as the
representation of spacetime symmetries as automorphisms of the algebra of observ-
ables. Whilst one can go further by imposing additional axioms for such a functor to
satisfy, this general definition will suffice for our purposes. In particular, it is typically
required that all the morphisms in the aforementioned categories (with the exception
of Ch(Obs)) are taken to be injective. Equivalently, one instead require only those mor-
phisms in the image of the functor to be injective, thus this can be seen as a condition
either on the category or the functor.

We have already shown proposition 2.9.1 that this is the case for the classical func-
tor P, from which the injectivity of the homomorphisms for A readily follows when
they are introduced shortly.

The bv formalism outlined in the previous section can also be made locally co-
variant. Just like Fµc, we can promote Vµc to a functor Loc → Vec by defining the
morphism

(χ∗X)[ϕ] := χ∗(X[χ∗ϕ]),

where χ∗ on the right-hand side denotes the pushforward of test functions. (This is
another reason thatwe need to consider vector fieldswith compact support.) A choice
of natural Lagrangian then yields a natural transformation δS : Vµc ⇒ Fµc. From this
it follows that the construction of the Koszul complex K(δS) itself defines a functor
Loc→ Ch(Poi).

We have already sketched an explanation of how our construction of the classical
theorymay bemade locally covariant. IfH0 ∈ Had(N ), then one can show that χ∗H0 ∈
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Had(M), thus we can define a map A(χ∗H0)(M)→ AH0(N ) as just the linear extension
of χ∗ : Fµc(M)→ Fµc(N ) to formal power series in ~. This map satisfies

χ∗(F ?(χ∗H0) G) = χ∗F ?H0 χ∗G (2.73)

thus it defines a ∗-algebra homomorphism. The map Aχ : A(M) → A(N ) is then
given by(

Aχ (FH)H∈Had(M)

)
H0

= χ∗F(χ∗H0), (2.74)

which can be shown to satisfy the criterion (2.64), making themapwell-defined. With
these morphisms, we can then declare A : Loc→ Obs to be a locally covariant quantum
field theory.

Next, we turn to the topic of normal ordering. Recall from section 2.2 that an order-
ing prescription was a procedure for assigning classical observables their quantum
counterparts. In our case, we seek a map : − :M : Floc(M) → A(M), such that the ~0

coefficient of :F :M is F . Given our somewhat indirect definition of A(M), it is helpful
to outline here the general strategy for defining a normal ordering prescription, before
we turn our attention to any particular maps.

It is easiest to define a normal ordering prescription as a choice of map Floc(M)→
AH(M) for every H ∈ Had(M). Suppose we denote each map by F 7→ (:F :)H . Col-
lectively, they define a map Floc(M) → A(M) if, for every H,H ′ ∈ Had(M) and
F ∈ Floc(M)

(:F :)H = αH−H′(:F :)H′ . (2.75)

By choosing a fixed Hadamard state H0 ∈ Had(M), we can define a quantisation
map which has the physical interpretation of normal ordering ‘with respect to’ that
state. As indicated above, we first define a map Floc(M)→ AH(M) by

F 7→ αH−H0F =: (⦂F⦂H0)H . (2.76)

This clearly satisfies the criterion (2.75) above, and hence is a valid normal ordering
prescription. We may also characterise this prescription as the only consistent choice
such that the map Floc(M)→ AH0(M) is the inclusion of Floc(M) into Fµc(M)[[~]], the
underlying vector space of AH0(M).

Similar to our definition of a natural Lagrangian, a locally covariant ordering pre-
scription is defined to be a natural transformation from Floc to A. (Note that we must
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assume that the target category of each functor is Vec, as normal ordering is linear, but
not a homomorphism.) Explicitly, this naturality condition is realised by the equation,
for every admissible embedding χ :M→N ,

:χ∗F :N = Aχ (:F :M) . (2.77)

It is tempting to believe that a covariant prescription across all spacetimes can be
found by making a covariant choice of Hadamard state for each spacetime. However,
it is now a well-established fact that such a choice cannot be made consistently across
all spacetimes. (See the remarks following [HW01, definition 3.2] for a discussion
relevant to the scalar field, and [FV12, §6.3] for a more general result.)

The solution is to instead define an ordering prescription which depends upon
the Hadamard parametrix of the spacetime in question. Before the characterisation via
wavefront sets, due to [Rad96] and used in (2.59), Hadamard states were defined by
the ability to express them locally (i.e. in some neighbourhood of the thin diagonal
∆ ⊂ M2) in what is known as local Hadamard form. A precise description of the local
Hadamard condition for 4-dimensional spacetimes may be found in [KW91, §3.3].12

In dimension 2, a state with 2-point functionW (x, y) is said to be locally Hadamard if
there exists some neighbourhood ∆ ⊂ U ⊆M2 such that, ∀N ∈ N,

W (x; y) := − 1
4π

lim
ε↘0

(
VN(x, y) log

(
σε(x; y)
λ2

)
+ wN(x; y)

)
, (2.78)

where σ(x; y) is the world function, defined as half the squared geodesic distance be-
tween x and y, t is some choice of a time function (i.e. level sets of t are Cauchy
surfaces), σε is defined by

σε(x; y) := σ(x; y) + 2iε (t(x)− t(y)) + ε2, (2.79)

wN is some 2N + 1 times continuously differentiable function, and VN is a smooth
function which depends only on the metric ofM. We have omitted some subtleties in
the definition regarding geodesic completeness (i.e. the true domain of σ), for which
we again refer the readers to the precise definition given in the above reference.

The series of distributions W sing
N := W − wN , for N ∈ N, together constitute the

Hadamard parametrix, which is independent of the choice of state. The parametrix de-
fines a normal ordering prescription, first as a map Floc(M)→ AH(M)

(:F :M)H = lim
N→∞

αH−Hsing
N
F , (2.80)

12It has recently been discovered by Moretti [Mor21] that the definition given in this reference is in
need of slight modification. However, it is believed that none of the established results depending on
this definition are invalidated by this.
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where Hsing
N = W sing

N − i
2E. On analytic spacetimes, one can prove that the series

W sing
N converges to a distribution, albeit defined only on some neighbourhood of the

diagonal ∆ ⊂M2, necessitating the restriction to Floc. However, even on non-analytic
spacetimes this map is well-defined for any local functional F because the order N at
whichwemust truncate the series in (2.78) depends only on the order of the functional
F . This corresponds to the highest order derivative of a field configuration ϕ which
enters into the definition of F [ϕ], and is guaranteed to be finite [Rej16, §6.2.2]. For
instance, ifF has order n, thenαH−Hsing

N
F = αH−Hsing

n
F for allN ≥ n, thus the sequence

always converges after finitely many steps. From now on we shall suppress both the
truncation of the series, as well as the limit in (2.80). Insteadwe shall write (:F :M)H =
αH−HsingF , where one may interpret Hsing as Hsing

N for a sufficiently large N .

We can then verify that, for H,H ′ ∈ Had(M)

(:F :M)H = αH−HsingF = αH−H′ ◦ αH′−HsingF = αH−H′ (:F :M)H′ , (2.81)

i.e. the family of functionals
(

(:F :M)H
)
H∈Had(M)

satisfies the compatibility criterion
(2.64), hence the map :− :M : Floc(M)→ A(M) is well defined.

Crucially, the Hadamard parametrix is also locally covariant. If Hsing
M/N are the

(symmetrised) Hadamard parametrices for two spacetimesM, N , related by a Loc
morphism χ : M → N , then χ∗Hsing

N = Hsing
M . 13 Thus, we can use the fact that

(χ∗F)(n) [ϕ] = (χ∗)⊗nF (n)[χ∗ϕ], to show

αH−Hsing
N

(χ∗F) = χ∗
(
αχ∗(H−Hsing

N )F
)
. (2.82)

On the left hand side, we have simply (:χ∗F :N )H , whereas on the right hand side, once
we note that αχ∗(H−Hsing

M )F = αχ∗H−Hsing
M
F = (:F :M)χ∗H , we see that this is (Aχ:F :M)H

as required.

13This is a direct consequence of the fact that χ∗ : Had(N )→ Had(M).
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3

The Massless Scalar Field

Now that we have constructed both a classical and quantum algebra of observables,
and introduced several orderingmaps between them, wemay study their finer details
in an explicit example. As our ultimate goal is to understand conformal field theory
from the perspective of paqft, the massless scalar field is the obvious place to be-
gin. Moreover, owing to its flat geometry and compact Cauchy surfaces, the Einstein
cylinder E, defined as the image of 2D Minkowski space M2 under the identification
(t, x) ∼ (t, x + 2π), provides a natural and convenient setting in which to explore the
chiral aspects of the massless scalar field within the paqft framework.

In this section, we shall see how the quantum algebra of observables for the mass-
less scalar field contains a pair of Heisenberg algebras and a pair of Virasoro algebras,
one each for the left and right null-derivatives of the field. In the construction of the
Virasoro algebra, we shall also see that the principle of local covariance outlined in
Section 2.9 is necessary to recover the ‘radially-ordered’ form of the Virasoro algebra.
The argument involved in this re-ordering constitutes a mathematically rigorous form
of the known trick of identifying 1 + 2 + 3 + · · · = ζ(−1).

3.1 minkowski space

We begin by finding the causal propagator for the massless scalar field in Minkowski
space. From this we shall later obtain the propagator for the cylinder, and hence the
Poisson algebra P(E). Moreover we shall begin to see how the classical Poisson alge-
bra of the massless scalar field naturally contains two chiral subalgebras, which we
explore further in part II.

The equation of motion for the massless scalar field on Minkowski space is simply

(
∂2
t − ∂2

x

)
ϕ = 0. (3.1)

54
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This is easiest to solve ifwe adopt null coordinates u = t−x, v = t+x. The fundamental
solutions ER/A to (3.1) must then satisfy

4 ∂

∂u

∂

∂v
ER/A(u, v;u′, v′) = 2δ(u− u′)δ(v − v′). (3.2)

By inspection one can then deduce that the distributions

ER/A(u, v;u′, v′) = −1
2
θ(±(u− u′))θ(±(v − v′)) (3.3)

both satisfy (3.2) and have the desired supports. Taking their difference we find the
Pauli-Jordan function to be

E(u, v;u′, v′) = −1
2

[θ(u− u′)θ(v − v′)− θ(u′ − u)θ(v′ − v)] . (3.4)

We can rewrite this propagator in the form

E(u, v;u′, v′) = −1
4

[sgn(u− u′) + sgn(v − v′)] , (3.5)

where sgn(x) = θ(x)−θ(−x). In other words, we can decouple the u-dependent terms
from the v-dependent, defining the summands

E = E` + Er, (3.6)

such that E` (resp. Er) does not depend on v (resp. u).

This split is significant for functionals which depend on the field configuration ϕ
only through its left/right null derivative. If we indicate the action of the differential
operator ∂u on a functional F by (∂∗

uF)[ϕ] := F [∂uϕ], then the functional derivative of
∂∗
uF is given by

(∂∗
uF)(1)[ϕ] = −∂uF (1)[∂uϕ], (3.7)

where the first ∂u on the right-hand side is the derivative in the sense of distributions
[Hör15, §3.1]. Consequently, the Peierls bracket of two such functionals is

{∂∗
uF , ∂∗

uG}[ϕ] =
〈
(∂u ⊗ ∂u)E,F (1)[∂uϕ]⊗ G(1)[∂uϕ]

〉
. (3.8)

This equality motivates the construction of a new Poisson algebra, outlined in the fol-
lowing proposition:

Proposition 3.1.1. The space Fµc(M2), equipped with the pointwise product, and the bracket

{F ,G}` [ϕ] :=
〈
(∂u ⊗ ∂u)E,F (1)[ϕ]⊗ G(1)[ϕ]

〉
(3.9)

is a Poisson algebra, whichwe denoteP`(M2). Furthermore, themap ∂∗
u : Fµc(M2)→ Fµc(M2)

yields a Poisson algebra homomorphism P`(M2)→ P(M2).
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Proof. Firstly, note that (3.9) is well defined for F ,G ∈ Fµc(M) because WF((∂u ⊗
∂u)E) ⊆WF(E). Similarly, we also have that that all the estimates of WF

(
{F ,G}(n)

)
given in the proof of Proposition B.1 also hold for WF

(
{F ,G}(n)

`

)
. Thus, {F ,G}` is

microcausal for the same reason that {F ,G} is.

Next, we address the relation of this new bracket to the Peierls bracket. By replac-
ing ϕwith ∂uϕ in (3.9) and comparing with (3.8), it then follows that

(∂∗
u {F ,G}`) [ϕ] = {∂∗

uF , ∂∗
uG} [ϕ].

Note the right-hand side of this equation is well defined as

WF((∂∗
uF)(n)[ϕ]) = WF((−1)n∂u⊗nF (n)[∂uϕ]) ⊆WF(F (n)[∂uϕ]), (3.10)

hence Fµc(M) is preserved by ∂∗
u.

Finally, we must show that {·, ·}` satisfies the Jacobi identity. Let F ,G, and H all
be microcausal functionals. Consider

∂∗
u

({
F ,
{
G,H

}
`

}
`
+ · · ·

)
=
{
∂∗
uF ,

{
∂∗
uG, ∂∗

uH
}}

+ · · · ,

where · · · includes both remaining even permutations of F ,G, and H. The right-
hand side of this vanishes as the Peierls bracket satisfies the Jacobi identity. Because
∂u is surjective on E(M), ∂∗

u is injective on F(M). From this we may conclude that
{F , {G,H}`}` + · · · also vanishes, hence {·, ·} satisfies the Jacobi identity.

Note that, (∂u⊗ ∂u)Er = 0, hence the integral kernel of the differentiated propaga-
tor is

∂u∂u′E(u, v;u′, v′) = ∂u∂u′E`(u, v;u′, v′) = 1
2δ

′(u− u′). (3.11)

This form of the commutator can be seen as an example of the mutual locality of chiral
fields, [Kac98, Definition 2.3], a concept central to many theorems in the voa frame-
work We shall henceforth refer to {·, ·}` as the chiral bracket, and the analogously de-
fined {·, ·}r as the anti-chiral bracket.

In part II, we shall examine these chiral algebraic structures in detail, in particular,
we shall demonstrate how they can be placed on a one-dimensional space, close to the
notion that chiral fields ‘live’ on a single light-ray.

3.2 the heisenberg algebra on the cylinder

We shall now find the advanced and retarded propagators for the Einstein cylinder E.
If (u, v) denotes the null coordinates of a point in M2, then we define an equivalence
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relation on M2 by (u, v) ∼ (u + 2π, v − 2π). The Einstein cylinder is then defined as
the quotient space E = M2/ ∼, with the unique metric such that the covering map
π : M2 → E is a local isometry. We will write points in E as equivalence classes
[u, v] ⊂M2, where [u, v] = [u+ 2π, v − 2π].

The causal propagator for the cylinder may be obtained from the advanced and
retarded propagators of Minkowski spacetime using the method of images. Firstly,
note there is an isomorphism between E(M2)Z = {f ∈ E(M2) | f ◦ Tn ≡ f, ∀n ∈ Z}
and E(E). In the direction E(E)→ E(M2), this map is simply the corestriction of π∗ to
the space of Z invariants. If we denote the inverse of this isomorphism by π∗, then we
claim the retarded and advanced propagators on the cylinder are given by

E
R/A
E = π∗E

R/Aπ∗. (3.12)

For this map to be well defined, amongst other details, wemust show that the domain
ofER/A can be extended to the image π∗

(
D(E)

)
, and that the output ofER/Aπ∗ contains

only Z invariants. Proof of which can be found in appendix A.

That these maps are then the desired propagators follows from the relationship
between the equations of motion on the cylinder and Minkowski. Let U ⊆ M2 be a
sub-spacetime ofM2 and let ιU : U ↪→M2 be its inclusion intoM2. If U is small enough
that π ◦ ιU : U → E is an embedding, then we can show from (2.72) that

(π ◦ ιU)∗PE = PU(π ◦ ιU)∗. (3.13)

Furthermore, ιU is itself an isometric embedding, hence

ι∗UPM2 = PU ι
∗
U . (3.14)

Combining these equations, we find

ι∗Uπ
∗PE = ι∗UPM2π

∗. (3.15)

One can then show that M2 is covered by open sets U for which (3.15) holds, and
hence that π∗PE = PM2π

∗. By acting on the left-hand side of (3.12) with π∗PE and the
right-hand side with PM2π

∗, we are then able to see why these maps are fundamental
solutions to PE.

Throughout this section we shall use the chart (π|U)−1 : E → U , where U =
(0, 2π) × R ⊂ R2, in order to define integrals on E. As π(U) covers E up to a set of
measure zero, we have that, ∀ f ∈ D(E)∫

E
fdVE =

∫
U
π∗fdVM2 .
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Using the method of images (theorem A.2), which in this case states that EM2π∗ :
D(E) → E(M2) is well-defined and coincides with π∗EE, we can then write, for f, g ∈
D(E) ∫

E
f(EEg)dVE =

∫
U
π∗f(π∗EEg)dVM2

=
∫
U
π∗f(EM2π∗g)dVM2

=
∫
U×M2

π∗f(u, v)EM2(u, v;u′, v′)π∗g(u′, v′)dV2
M2

=
∑
k∈Z

∫
U×U

[
π∗f(u, v)EM2(u, v;u′ − 2πk, v′ + 2πk)

π∗g(u′ − 2πk, v′ + 2πk)
]
dV2

M2

=
∫
U×U

π∗f(u, v)

∑
k∈Z

EM2(u− 2πk, v + 2πk;u′, v′)

 π∗g(u′, v′)dV2
M2

(3.16)

Note that the infinite series converges because, for (u, v) ∈ U, (u′, v′) ∈ U ∩ supp π∗g,
there are only finitely many translates (u− 2πk, v+ 2πk) which are causally separated
from (u′, v′), beyond which we have E(u− 2πk, v + 2πk;u′, v′) = 0.

We can interpret the final line as an integral kernel for EE. Explicitly, this is

EE(u, v;u′, v′) =
∑
k∈Z

EM2(u− 2πk, v + 2πk;u′, v′),

= −1
2

(⌊
u− u′

2π

⌋
+
⌊
v − v′

2π

⌋
+ 1

)
. (3.17)

Once again, we see the characteristic splitting of the u-dependent and v-dependent
terms of EE, which we write EE = E`

E + Er
E, just as before.

Just as with Proposition 3.1.1, we can define a chiral bracket {·, ·}` on Fµc(E) using
(∂u ⊗ ∂u)EE instead of EE, yielding the chiral Poisson algebra P`(E). The proof that
P`(E) is a Poisson algebra and that ∂∗

u : Fµc(E)→ Fµc(E) is a Poisson algebra homomor-
phism carries over essentially unchanged fromM2. Recall that (∂u⊗∂u)E(u, v;u′, v′) =
0 whenever u 6= u′, hence if we apply the same operator to (3.17), only the k = 0 term
survives:

(∂u ⊗ ∂u)EE(u, v;u′, v′) = (∂u ⊗ ∂u)E`(u, v;u′, v′) = 1
2
δ′(u− u′). (3.18)

We shall perform our next set of calculations using {·, ·}`. In an effort to avoid
confusion, when we are working in P`(E), we shall denote the field configuration
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input to the functional by ψ. We think of ψ as ∂uϕ which is realised when we apply
the algebra homomorphism (∂∗

uF)[ϕ] = F [∂uϕ] = F [ψ].

We first define the family of functionals {An}n∈Z ⊂ F(E) by

An[ψ] := 1√
π

∫ 2π

u=0
einuψ(u,−u) du. (3.19)

Their derivatives are given by
〈
A(1)
n [ψ], h

〉
= 1√

π

∫ 2π

u=0
einuh(u,−u) du, (3.20)

for h ∈ D(E).

For ψ ∈ E(E), An[ψ] is simply the nth Fourier mode of ψ restricted to the t = 0
Cauchy surface Σ0 if we wind around the surface clockwise. These functionals are not
local (despite being linear) nor even microcausal because, one can show [BDH14, §4]
the wavefront set of A(1)

n [ψ] is the co-normal bundle to Σ0 and hence contains timelike
covectors in violation of the microcausal spectral condition.

A direct computation of the chiral bracket yields
{
An, Am

}
`
[ψ] = 1

π

∫ 2π

u=0

∫ 2π

u′=0
ei(nu+mu′)(∂u∂u′E`

E)(u,−u;u′,−u′) dudu′

= 1
2π

∫ 2π

u=0

∫ 2π

u′=0
ei(nu+mu′)δ′(u− u′) du′du′

= −inδn+m,0, (3.21)

hence{
An, Am

}
`

= −inδn+m,0, (3.22)

where we suppress the constant functional for convenience.

This demonstrates that the Lie algebra generated by the An with the Lie bracket
{·, ·}` is isomorphic to the Heisenberg algebra (also known as the oscillator algebra
[Kac98, §2.5]): this is the infinite dimensional Lie algebra over C with generators
{an}n∈Z , K subject to the relations

[an, am] = nδn+m,0K, [an, K] = 0.

Moreover, as ∂∗
u is a Poisson algebra homomorphism,we see that the algebra generated

by An := ∂∗
uAn with the Peierls bracket is also isomorphic to the Heisenberg algebra.
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Quantising this family of functionals is relatively simple. LetH ∈ Had(E) be some
Hadamard distribution. As the functionalsAn are linear, the definition of the ?H prod-
uct implies the Dirac quantisation rule is valid:[

An,Am
]
?H

= i~
{
An,Am

}
= ~nδn+m,0. (3.23)

Furthermore, αH′−H acts by identity on linear functionals, hence this result is indepen-
dent of our choice of a Hadamard state H .

Of course, there is nothing particularly special about the choice ofΣ0 as the Cauchy
surface. As we shall see in Part I, the functionals An are just one possible realisation
of a subalgebra of chiral observables of A(E), with every other Cauchy surface Σ ⊂ E

giving rise to an isomorphic subalgebra.

3.3 the virasoro algebra

As the Virasoro algebra arises from quadratic functionals, the ordering ambiguities
we could previously disregard become relevant, and we cannot so easily carry compu-
tations from Minkowski space over to the cylinder. To start, the classical functionals
are defined analogously to the An functionals. Again, we begin by defining a family
{Ln}n∈Z ⊂ F(E), by

Ln[ψ] :=
∫ 2π

u=0
einuψ2(u,−u) du.

Physically, the functionals Ln correspond to a mode decomposition of the uu compo-
nent of the stress-energy tensor, restricted to the t = 0 Cauchy surface. As before, we
shall compute the chiral bracket of Ln with Lm in order to obtain the Peierls bracket
for the functionals Ln := ∂∗

uLn (not to be confused with the natural Lagrangian).

For future reference, the functional derivatives of Ln are〈
L(1)
n [ψ], g

〉
= 2

∫ 2π

u=0
einuψ(u,−u)g(u,−u) du, (3.24a)〈

L(2)
n [ψ], g ⊗ h

〉
= 2

∫ 2π

u=0
einug(u,−u)h(u,−u) du. (3.24b)

Here again, the wavefront set of L(1)
n [ψ] is contained within the conormal bundle of

Σ0 and hence Ln is not microcausal. Moreover, we see that, like An, these functionals
are additive, which means that the support of L(2)

n , and hence that of L(2)
n , is contained

within the thin diagonal ∆2 ⊂ E2. This will be vital when we later apply the locally
covariant Wick ordering prescription outlined in Section 2.9 to these functionals.



Chapter 3. The Massless Scalar Field 61

The chiral bracket of Ln with Lm is given by

{Ln, Lm}`[ψ] = 2
∫ 2π

u=0

∫ 2π

u′=0
δ′(u− u′)einuψ(u,−u) · eimu′

ψ(u′,−u′) du du′

= −2
∫ 2π

u=0

[
inψ(u,−u) + (∂uψ)(u,−u)

]
ψ(u,−u)ei(n+m)u du,

= −i(n−m)
∫ 2π

u=0
ei(n+m)uψ2(u,−u) du

= −i(n−m)Ln+m[ψ], (3.25)

where the move from the second to the third line can be made by exploiting the skew-
symmetry of the equation under the interchange of n withm. Hence, we can already
see that the Ln under the chiral bracket generate a copy of the Witt algebra.

Next, we shall quantise theLn observables. Using (3.25), we can immediately note
that the O(~) term of [:Ln:, :Lm:] must be ~(n−m):Ln+m:, regardless of the quantisa-
tion map used. In order to determine the O(~2) term though, we must decide on a
particular choice of prescription.

As explained in Section 2.8, it is inconvenient to work directly with A(E). Instead,
we perform our computations in AH(E) for some suitable choice of Hadamard distri-
bution H . The simplest choice is to take H = WE − i

2EE, where WE is defined by the
integral kernel

WE(u, v;u′, v′) = 1
4π

∑
k∈Z∗

1
k

(
e−ik(u−u′) + e−ik(v−v′)

)
. (3.26)

Unlike the analogous (i.e. time-translation invariant) distribution for the massive
scalar field, WE does not define a vacuum state, owing to the presence of zero mode
solutions to the massless Klein-Gordon equation. However, this is no issue in the alge-
braic approach to qft, as the construction of our algebra of observables is independent
of any choice of ground state and, hence, of anyway inwhichwemay choose to handle
the problem of zero modes.

Moreover, we are concerned with the ? products of functionals which depend on
the field configuration ϕ only through one of its null derivatives. In effect, this means
we only depend onWE to define the 2-point function for the derivative field

(∂u ⊗ ∂u)WE(x; y) =
〈
(∂uϕ)(x)(∂uϕ)(y)

〉
ω
. (3.27)

Taking this derivative annihilates any zero-modes, thus there is no ambiguity in defin-
ing the integral kernel of (∂u ⊗ ∂u)WE.
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If we consider the ?H product of two functionals of the form ∂∗
uF , we find

((∂∗
uF) ?H (∂∗

uG)) [ϕ] =
∞∑
n=0

~n

n!
〈
[(∂u ⊗ ∂u)WE]⊗n ,F (n)[∂uϕ]⊗ G(n)[∂uϕ]

〉
. (3.28)

Analogously to Proposition 3.1.1, we can hence define a chiral subalgebra of ?H via
the following:

Proposition 3.3.1. The space Fµc(E)[[~]], equipped with the associative product ?H,` defined
by

(F ?H,` G)[ϕ] :=
∑
n∈N

~n

n!
〈
[(∂u ⊗ ∂u)WE]⊗n,F (n)[ϕ]⊗ G(n)[ϕ]

〉
, (3.29)

is a ∗-algebra, which we denote by AH
` (E). Moreover, the linear extension of ∂∗

u – defined in
Proposition 3.1.1 – to Fµc(E)[[~]] yields a ∗-algebra homomorphism AH

` (E)→ AH(E).

Proof. Just as in the classical case, because WF((∂u ⊗ ∂u)W ) ⊆ WF(W ), the closure
of Fµc(E)[[~]] under ?H,` is proved in exactly the same way as for ?H , as spelled out in
proposition B.2. That ∂∗

u intertwines ?H,` with ?H is verified by (3.28). Associativity
follows from injectivity of ∂∗

u and the associativity of ?H , because

∂∗
u(F1 ?H,` (F2 ?H,` F3)) = ∂∗

uF1 ?H ∂
∗
u(F2 ?H,` F3)

= (∂∗
uF1) ?H ∂∗

uF2 ?H ∂
∗
uF3 = ∂∗

u((F1 ?H,` F2) ?H,` F3)

Wemaynow compute the productLn?HE,`Lm. In the abstract algebra, this amounts
to computing ⦂Ln ⦂HE

? ⦂ Lm ⦂HE
. Later, we shall compare this to the product of the

covariantly ordered Ln.

As the Ln functionals are quadratic, the power series for their star product trun-
cates at O(~2). Thus, it may be written in full as

Ln ?HE,` Lm = Ln · Lm + ~
〈
[(∂u ⊗ ∂u)WE] , L(1)

n [ψ]⊗ L(1)
m [ψ]

〉
+ ~2

2
〈
[(∂u ⊗ ∂u)WE]⊗2 , L(2)

n [ψ]⊗ L(2)
m [ψ]

〉
.

(3.30)

First, let us consider the O(~) term〈
[(∂u ⊗ ∂u)WE] , L(1)

n [ψ]⊗ L(1)
m [ψ]

〉
=∑

k∈N

1
π

∫ 2π

u=0

∫ 2π

u′=0
ke−ik(u−u′)·einuψ(u,−u) · eimu′

ψ(u′,−u′) dudu′.
(3.31)
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We can simplify this slightly by reintroducing the An functionals. Upon doing so, we
find 〈

[(∂u ⊗ ∂u)W ] , L(1)
n [ψ]⊗ L(1)

m [ψ]
〉

=
∞∑
k=1

kAn−k[ψ]Am+k[ψ]. (3.32)

(Note that for any function ψ the above series is absolutely convergent as the smooth-
ness of ψ guarantees |An[ψ]| decays rapidly in n.)

For the commutator, we need only the anti-symmetric part of (3.32), which is
markedly simpler. For now, however, we proceed to compute the O(~2) term. To do
this, we need the following form of the squared propagator:

〈
[(∂u ⊗ ∂u)WE]2 , f

〉
= 1

16π2

∞∑
k=0

k∑
l=0

l(k − l)
∫
E2
e−ik(u−u′)f(u, v, u′, v′) dV 2. (3.33)

This can be obtained naïvely by just squaring (3.26) and applying the Cauchy prod-
uct formula. For a proof that this indeed converges to the correct distribution, see
Appendix C. We then find

1
2
〈

[(∂u ⊗ ∂u)WE]⊗2, L(2)
n [ψ]⊗ L(2)

m [ψ]
〉

= 1
8π2

∑
k∈N

k∑
l=0

l(k − l)
∫ 2π

u=0

∫ 2π

u′=0
e−ik(u−u′)einueimu

′ dudu′,

= 1
2
∑
k∈N

k∑
l=0

l(k − l)δn−k,0δm+k,0,

= n(n2 − 1)
12

θ(n)δn+m,0.

(3.34)

Hence, altogether we have

(Ln ?HE,` Lm) = Ln · Lm + ~
∞∑
k=1

kAn−k · Am+k + ~2

12
n2(n− 1)θ(n)δn+m,0. (3.35)

Next, we compute the commutator [Ln, Lm]?HE,`
Taking the anti-symmetric part of the

O(~2) term is straightforward: simply drop the θ(n). For (3.32), note that we canwrite

∑
k=1

kAn−kAm+k = 1
2

∑
k∈Z

kAn−kAm+k +
∑
k∈Z
|k|An−kAm+k

 . (3.36)

The first series is anti-symmetric under an interchange of n and m, whereas the lat-
ter is symmetric and can thus be disregarded. Next, we take two copies of the anti-
symmetric series, for the first copy we make the change of variables k 7→ (n− k), and
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for the second we choose k 7→ (k −m). Recombining these two copies we find∑
k∈Z

kAn−kAm+k = 1
2

(n−m)
∑
k∈Z

AkAn+m−k. (3.37)

By the second convolution theorem, this final series converges (up to a constant factor)
to the (n + m)th Fourier mode of ψ2. Thus, (3.37) is equal to (n −m)Ln+m, agreeing
with our earlier calculation using the chiral bracket {·, ·}`. Combining this with the
O(~2) term (3.34), we arrive at the Virasoro relations

[Ln, Lm]?HE,`
= ~(n−m)Ln+m + ~2

12
n(n2 − 1)δn+m,0. (3.38)

Using the ∗-algebra homomorphism ∂∗
u from Proposition 3.3.1, we can then conclude

that

[Ln,Lm]?HE
= ~(n−m)Ln+m + ~2

12
n(n2 − 1)δn+m,0. (3.39)

Finally, applying αH−Hcyl and using the identity (2.63) we obtain the commutation
relation

[⦂Ln⦂HE
, ⦂Lm⦂HE

] = ~(n−m) ⦂ Ln+m ⦂HE
+~2

12
n(n2 − 1)δn+m,0 (3.40)

in A(E), recalling that
(
⦂ Ln ⦂HE

)
H

= αH−HE
Ln.

It is curious that at this stagewe have commutators recognisable aswhat onemight
call the ‘planar’ Virasoro relations (for example [Kac98, (2.6.6)]) for a central charge
c = 1, despite the fact that all the functionals in question belong on the cylinder. We
will now compute the correction to these relations which occurs when adopting the
locally covariant Wick ordering prescription. In doing so, we shall see the result is the
‘radially ordered’ Virasoro relations.

Recall from section 2.9 that heuristically, locally covariant Wick ordering means
normal orderingwith respect to theHadamardparametrix. In the case of theMinkowski
cylinder, the Hadamard parametrix (2.78) is particularly simple. Locally the cylinder
is isometric to Minkowski space, hence the parametrix of the cylinder coincides with
that of Minkowski. For an arbitrary choice of length scale λ, the singular part of a
Hadamard distribution for the undifferentiated field ϕ is [BR18, (3.18)]

Hsing(u, v;u′, v′) = lim
ε↘0
− 1

4π
log

(
|(u− u′)(v − v′)|

λ2

)
. (3.41)

Here it is clear that the parametrix exists only locally, asHsing is not spacelike periodic.
Passing over to the differentiated field ψ, the singular term becomes

∂u∂u′Hsing(u;u′) = − 1
4π

1
(u− u′)2 . (3.42)
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For the cylindrical vacuum, we have

∂u∂
′
uHE(u;u′) = 1

4π
∑
k∈N

ke−ik(u−u′). (3.43)

We can think of the above series formally as the derivative of a geometric series. Re-
placing u − u′ with zε = u − u′ − iε makes this series absolutely convergent for ε > 0,
thus we can write the 2-point function as

∂u∂u′HE(u;u′) = 1
4π

lim
ε↘0

eizε

(1− eizε)2 . (3.44)

Performing an asymptotic expansion of this function near the coincidence limit u−u′ =
0, we find

∂u∂u′HE(u;u′) ≈ − 1
4π

1
(u− u′)2 −

1
4π

1
12

+O
(
(u− u′)2

)
. (3.45)

Whichprovides an explicit verification that the vacuumstate differs from the parametrix
only by the addition of a smooth, symmetric function. Moreover, this allows us to
calculate :Ln:E. As we are working in AHE(E), we need only compute the functional
(:Ln:E)HE

, which is given by

(:Ln:E)HE
= αHE−HsingLn

= Ln + ~
2
〈
HE −Hsing,L(2)

n

〉
= Ln + ~

2
〈
[(∂u ⊗ ∂u)(HE −Hsing)] , L(2)

n

〉
= Ln + ~

∫ 2π

u=0
einu [(∂u∂u′HE)− (∂u∂u′Hsing)] (u,−u;u,−u) du

= Ln −
~
24
δn,0. (3.46)

For a generic Hadamard state H ∈ Had(E) we then have

(:Ln:E)H = αH−HsingLn = αH−HE

(
αHE−HsingLn

)
= αH−HE

Ln −
~
24
δn,0 =

(
⦂ Ln ⦂HE

)
H
− ~

24
δn,0. (3.47)

In other words, the quantum observables :Ln:E and ⦂Ln⦂HE
in A(E) defined, respec-

tively, as the locally covariant Wick ordering and the normal ordering with respect to
the vacuum Hcyl of the classical functionals Ln, are related by a shift

:Ln:E = ⦂Ln ⦂HE
− ~

24
δn,0. (3.48)

With this shift we find, as expected, that the commutation relations of :Ln:E are

[:Ln:E, :Lm:E] = ~(n−m):Ln+m:E + ~2

12
n3δn+m,0. (3.49)
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Recall that ⦂ − ⦂HE
can be interpreted as normal ordering with respect to the vac-

uum HE. Moreover, we established the Hadamard parametrix Hsing of the cylinder
is effectively the 2-point function of the Minkowski vacuum, embedded into some
suitable neighbourhood of ∆ ⊂ E2. Accordingly, (3.38) computes the commutation
relations for Fourier modes of the stress-energy tensor normally ordered with respect
to HE, and (3.49) the same but ordered with respect to the Minkowski vacuum.

We note here that the procedure we have just outlined is in effect the derivation
of the Casimir effect given by Kay in [Kay79]. There, Wald’s axiomatic approach to
renormalising the expectation value of the stress-energy tensor [Wal77] is applied to
the Klein-Gordonmodel on the Einstein cylinder, which then produces the normal or-
dering formula (2.80), specifically for the components Tµν of the stress-energy tensor.

In the standard approach to cft in two dimensions, one typically imposes (3.38)
as the standard commutation relations for Laurent modes of the stress energy ten-
sor, here understood as a field over the complex plane in some precise sense. Then,
mapping the plane to the ‘cylinder’ via the map z 7→ eiz, one may obtain the radially
ordered commutation relations, concordant with (3.49). However, in our framework,
it does not make much sense to speak of a Virasoro algebra for the plane, as there
is no suitable notion of mode expansion for the stress-energy tensor when consid-
ering the constraint that functionals must be compactly supported (see the remark
preceding chapter 6). In fact, arguably the most significant differences between our
approach and the voa framework is that the latter relies on mode decomposition in
order to analyse the singularity structure of quantum fields, whereas we instead use
tools from microlocal analysis.

3.4 connection to zeta regularisation

There is a well known trick in the physicists’ literature to explain (3.48). Firstly, recall
thatwe canwrite a givenLn functional as an infinite series overAm functionals (which
is point-wise convergent) as:

Ln = 1
2
∑
k∈Z
Ak · An−k. (3.50)

The ?HE
product of two such functionals is

Ak ?HE
An−k = Ak · An−k + ~kθ(k)δn,0. (3.51)

In particular, for n 6= 0 thismeans thatAk ·An−k = Ak?HE
An−k.Hence, we can define a

family of observables {(L̃n)}n∈Z∗ ⊂ A(E) by replacing the classical, pointwise product
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in (3.50) with ?. This family would then coincide with {⦂Ln⦂HE
}n∈Z∗ . For n = 0, we

may still replace the pointwise product with ?HE
, but the ordering of the functionals is

now significant. Naïvely replacing the classical pointwise product · in (3.50) for n = 0
by the ? product yields the quantum observable

L̃0 = 1
2

∞∑
k=1
A−k ?HE

Ak + 1
2

0∑
k=−∞

A−k ?HE
Ak. (3.52)

Casting rigour aside, we could then ‘reorder’ L̃0 by moving everyAk in the second se-
ries to the left hand side of the product, which would produce the infamous divergent
series

L̃0 = 1
2
A0 ?HE

A0 +
∞∑
k=1
A−k ?HE

Ak + ~
2
∑
k∈N

k. (3.53)

The rigorous and covariantway of reorderingL0, aswe saw in the previous section,
is to apply the map αHE−Hsing . If we define wE(u) := (∂u ⊗ ∂u)

[
HE(u; 0) − Hsing(u; 0)

]
,

where we exploit translation invariance to write wE as a function of a single variable,
then we can write the normally ordered form of L0 as

αHE−HsingL0 = L0 + ~
2

lim
u→0

wE(u). (3.54)

By approximating both HE and Hsing by smooth functions, we can write

wE(u) = lim
ε↘0

[ ∞∑
n=0

ne−inue−nε −
∫ ∞

p=0
pe−ipue−pε dp

]
(3.55)

= lim
z→−iu

d

dz

[ 1
1− ez

+ 1
z

]
(3.56)

= lim
z→−iu

d

dz

[
−

∞∑
k=0

Bk

k!
zk−1 + z−1

]
(3.57)

= lim
z→−iu

d

dz

[ ∞∑
k=0

ζ(−k)
k!

zk
]
, (3.58)

where here Bk denotes the kth Bernoulli number. This explains the appearance of
ζ(−1) as u → 0 in the normal ordering of L0 without any recourse to intermediate
divergent series.

To close out this section, we make a brief remark about how our notion of normal
ordering corresponds to the procedure of shuffling creation operators past annihila-
tors, or similarly the normally ordered products of chiral fields [Kac98, (2.3.5)].

Consider the classical product of a collection of Ami
, the functional derivative of

this may be written
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(Am1 · · · Amk
)(1) =

k∑
i=1

(Am1 · · · Âmi
· · · Amk

)A(1)
mi
, (3.59)

where −̂ indicates omission. From this we may compute that

(Am1 · · · Amk
) ?HE

An

= Am1 · · · Amk
· An + ~

k∑
i=1

(Am1 · · · Âmi
· · · Amk

)miθ(−mi)δmi+n,0.
(3.60)

Note that the ith term in the sum vanishes if n ≤ mi. If n ≤ mi for every i ∈ {1, . . . k},
then we are only left with the ~0 term on the right hand side. Moving to the abstract
algebra A(E) by applying the formal map α−1

HE
, we then have

⦂Am1 · · · Amk
· An⦂HE

= ⦂Am1 · · · Amk
⦂HE

?An, (3.61)

where we make use of the fact that we can canonically identify linear classical ob-
servables with their quantum counterparts. Applying this procedure iteratively, if we
assume that the sequence i 7→ mi is monotonically decreasing, then we can write

⦂Am1 · · · Amk
⦂HE

= Am1 ? · · · ?Amk
, mi ≤ mi+1. (3.62)

Given that [Am,An] = 0 whenever m and n are either both negative or both positive,
we have recovered the familiar result that normal ordering moves Am ‘to the right’ if
m ≤ 0 and ‘to the left’ ifm > 0.



4

Conformally Covariant Field Theory

So far, our classical and quantum algebras of observables are insensitive to any con-
formal symmetries a given theory may possess. This is because the morphisms in Loc
are isometric embeddings, required to preserve the metric exactly. To study the con-
ditions for and consequences of conformal covariance, wemust relax this condition to
allow conformally admissible embeddings.

Definition 4.0.1. LetM = (M, g, o, t) and N = (N, g′, o′, t′) be a pair of spacetimes
(i.e. objects of Loc). A smooth embedding χ : M ↪→ N is conformally admissible if
χ∗o′ = o, χ∗t′ = t, and χ∗g′ = Ω2g, where Ω ∈ E(M) is some nowhere-vanishing
function known as the conformal factor.

The category CLoc – first introduced by Pinamonti in [Pin09] – is the natural set-
ting for the study of conformal field theories. It comprises the same objects as Loc,
but enlarges the collection of morphisms to conformally admissible embeddings. As
one might expect, we upgrade the concept of locally covariant field theory to locally
conformally covariant field theory simply by replacing the category Loc with CLoc. In
the next section, we show explicitly how this may be done for a large class of classical
theories, and for the conformally coupled scalar field in the quantum case.

It is worth noting that although in this thesis we focus primarily on the 1+1 di-
mensional case, the discussion which follows in §4.1 is applicable to spacetimes of
arbitrary dimension.

4.1 conformal lagrangians

In this section we shall outline the language necessary to identify a particular La-
grangian (more precisely, its corresponding action) as being conformally covariant.
In order to do so we must first introduce some notation.

69
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Definition 4.1.1. Let χ : M ↪→ N be a conformally admissible embedding with con-
formal factor Ω2. Given ∆ ∈ R, the weighted pushforward with respect to ∆ is defined
by

χ(∆)
∗ : D(M)→ D(N ),

f 7→ χ∗
(
Ω−∆f

)
, (4.1)

where χ∗ denotes the standard pushforward of test functions (2.69). Similarly, we
define the weighted pullback with respect to ∆ by

χ∗
(∆) : E(N )→ E(M),

ϕ 7→ Ω∆χ∗ϕ. (4.2)

In the following proposition, we collect some useful properties of these maps.

Proposition 4.1.2. Let χ ∈ HomCLoc(M;N ), and ρ ∈ HomCLoc(N ;O). Then,

1. ρ(∆)
∗ ◦ χ(∆)

∗ = (ρ ◦ χ)(∆)
∗

2. χ∗
(∆) ◦ ρ∗

(∆) = (ρ ◦ χ)∗
(∆)

3. For ϕ ∈ E(N ), f ∈ D(M)∫
N
ϕ
(
χ(∆)

∗ f
)

dVN =
∫

M

(
χ∗

(d−∆)ϕ
)
fdVM,

where d = Dim(M) = Dim(N ).

Proof. The first of these results is easiest to see as a consequence of the other two, thus
we defer its proof until the end.

Result 2 can be obtained by a direct computation. Firstly, note that if χ∗gN = Ω2
χgM,

and ρ∗gO = Ω2
ρgN , then the conformal factor for ρ ◦ χ is given by (ρ ◦ χ)∗gO = (Ωχ ·

χ∗Ωρ)2gM. If we select some arbitrary ϕ ∈ E(O), then

χ∗
(∆)

(
ρ∗

(∆)ϕ
)

= χ∗
(∆)

(
Ω∆
ρ ρ

∗ϕ
)

= (Ωχ · (χ∗Ωρ))∆ (χ∗ρ∗ϕ)

= (ρ ◦ χ)∗
(∆) ϕ.

To prove 3, first note that, because supp
(
χ

(∆)
∗ f

)
⊆ χ(M), we may restrict the first

integral to χ(M), where we may consider χ to be a diffeomorphism. Next, recall that
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a standard result for conformal transformations states χ∗(dVN ) = ΩddVM. From this
we find

χ∗
(
ϕ · (χ(∆)

∗ f) · dVN
)

= (χ∗ϕ) ·
(
Ω−∆f

)
·
(
ΩddVM

)
=
(
χ∗

(d−∆)ϕ
)
f dVM.

Finally, to prove 1, let f ∈ D(M) and take some arbitrary test function h ∈ D(O).
Then, consider

∫
O h

(
ρ

(∆)
∗ χ

(∆)
∗ f

)
dVO. Using the two results we have just established,

we see that∫
O
h
(
ρ(∆)

∗ χ(∆)
∗ f

)
dVO =

∫
M

(
χ∗

(d−∆)ρ
∗
(d−∆)h

)
f dVM

=
∫

M

(
(ρ ◦ χ)∗

(d−∆)h
)
f dVM

=
∫

O
h
(
(ρ◦χ)(∆)

∗ f
)

dVO.

Thus, as this holds for every choice of h ∈ D(O), we can conclude that ρ(∆)
∗ χ

(∆)
∗ f =

(ρ◦χ)(∆)
∗ f.

Using these definitions, we can then state the condition required for the theory
arising from a natural Lagrangian L to be conformally covariant.

Definition 4.1.3 (Conformal Natural Lagrangian). Let L : D ⇒ Floc be a natural La-
grangian as per Section 2.9. Suppose there exists ∆ ∈ R such that, for every con-
formally admissible embedding χ ∈ HomCLoc(M;N ), every ϕ ∈ E(N ), and every
f ∈ D(M)〈

S ′
M[χ∗

(∆)ϕ], f
〉

=
〈
S ′

N [ϕ], χ(∆)
∗ f

〉
, (4.3)

where S ′
M is the Euler-Lagrange derivative of LM as defined in (2.41). In this case, we

call L a conformal natural Lagrangian.

We can state this condition more elegantly by once again taking the bv perspective
where, instead of focusing on the natural Lagrangian L, we use its associated differ-
ential δS : Vµc ⇒ Fµc.

Firstly, we can use the weighted pullback to define a modification of the functor
assigning a spacetime its classical observables, Fµc. For ∆ ∈ R, let F(∆)

µc be a functor
CLoc → Vec which assigns to each spacetimeM its microcausal observables Fµc(M)
as usual, but assigns to χ ∈ HomCLoc(M;N ) the morphism

(F(∆)
µc χF)[ϕ] := F [χ∗

(∆)ϕ]. (4.4)
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Proposition 4.1.2 assures us these morphisms compose as they should. Moreover, by
using(

F(∆)
µc χF

)(n)
[ϕ] =

(
χ(d−∆)

∗

)⊗n
F (n)[χ∗

(∆)ϕ], (4.5)

we can see that the wavefront sets of functional derivatives are independent of the
choice of ∆. Then, by noting that the joint future/past lightcones V n

± are preserved
under pullback by χ, and are both preserved under pushforward by a conformal em-
bedding, the wavefront set spectral condition (2.39) is also preserved. Hence F(∆)

µc χ :
Fµc(M)→ Fµc(N ) as desired.

Similarly to Fµc, for any choice of weight ∆, we can define an extension V(∆)
µc :

CLoc→ Vec by(
V(∆)
µc χX

)
[ϕ] = χ(∆)

∗ (X[χ∗
(∆)ϕ]),

where χ(∆)
∗ is again theweighted pushforward of test functions. Recall that we defined

local covariance in the bv formalism as the condition that δS is a natural transformation
Vµc ⇒ Fµc, where each is a functor Loc → Vec. Similarly, (4.3) simply states that
such a theory is conformally covariant if the same collection of maps comprising δS
also define a natural transformation δS : V(∆)

µc ⇒ F(∆)
µc , where each is now a functor

CLoc→ Vec.

4.2 conformally covariant classical field theory

We can now see how the criterion for conformal covariance that has just been outlined
gives rise to classical dynamical structures which vary as onewould expect under con-
formal transformations. The first result compares the linearised equations of motion
on two spacetimes related by a conformally admissible embedding.

Proposition 4.2.1. Let L be a conformal natural Lagrangian which satisfies the linearisation
hypothesis (2.43). If χ ∈ HomCLoc(M;N ) and ϕ ∈ E(N ), then

χ(d−∆)
∗ PM[χ∗

(∆)ϕ] = PN [ϕ]χ(∆)
∗ , (4.6)

where each differential operator has been implicitly restricted to the space of test functions of
the appropriate spacetime.

Proof. The proof is effectively a direct computation. Let g ∈ D(M) and h ∈ D(N ).
Recall from the definition of PN that〈

PN [ϕ]χ(∆)
∗ g, h

〉
N

=
〈
S ′′

N [ϕ],
(
χ(∆)

∗ g
)
⊗ h

〉
N
. (4.7)



Chapter 4. Conformally Covariant Field Theory 73

This then allows us to employ (4.3) as〈
S ′′

N [ϕ],
(
χ(∆)

∗ g
)
⊗ h

〉
N

=
〈
LN (f)(2)[ϕ],

(
χ(∆)

∗ g
)
⊗ h

〉
= d

dε

〈
LN (f)(1)[ϕ+ εh], χ(∆)

∗ g
〉 ∣∣∣∣

ε=0

= d

dε

〈
S ′

N [ϕ+ εh] , χ(∆)
∗ g

〉
N

∣∣∣∣
ε=0

= d

dε

〈
S ′

M

[
χ∗

(∆)ϕ+ εχ∗
(∆)h

]
, g
〉

M

∣∣∣∣
ε=0

=
〈
PM

[
χ∗

(∆)ϕ
]
g, χ∗

(∆)h
〉

M

=
〈
χ(d−∆)

∗ PM[χ∗
(∆)ϕ]g, h

〉
N
, (4.8)

where f−1 {1} contains a neighbourhood of supp (χ(∆)
∗ g). Note that in the third line we

use (4.3) and, for the final equality, we use the fact that χ(d−∆)
∗ is the adjoint of χ∗

(∆). As
the choice of h is arbitrary, we may then conclude that the two operators coincide.

Remark 4.2.2. AsPN [ϕ] andPM[χ∗
(∆)ϕ] are both self-adjoint, we canwrite an equivalent

form of (4.6) for linear maps E(N ), namely

PM[χ∗
(∆)ϕ]χ∗

(∆) = χ∗
(d−∆)PN [ϕ]. (4.9)

Using this equation, we can immediately see that the solution spaces for these two
operators are closely related: if ψ is a solution to PN [ϕ], then χ∗

(∆)ψ is a solution to
PM[χ∗

(∆)ϕ].

Moreover if, for λ > 0, we takeN = (M,λ2gM, oM, tM), i.e. justMwith the metric
scaled by some factor λ2 and χ = IdM , then χ∗

(∆)ψ = λ∆ψ. This indicates that ∆ is
what is typically referred to in the literature as the scaling dimension of the field ϕ.

When a pair of normally-hyperbolic differential operators are related in the above
manner, we can similarly relate their fundamental solutions. The following proposi-
tion, which reduces to [Pin09, Lemma 2.2] in the particular case of the conformally
coupled Klein-Gordon field in 4D, establishes the conformal covariance of the Pauli-
Jordan function arising from a suitable conformal natural Lagrangian. To simplify
notation, we shall refer only to a single differential operator on each spacetime, i.e. we
suppress the dependence on an initial field configuration ϕ or χ∗

(∆)ϕ, though this does
not mean that the scope of the result is limited to free theories.

Proposition 4.2.3. Let χ ∈ HomCLoc(M;N ), and let PM, PN be a pair of symmetric, nor-
mally hyperbolic differential operators onM and N respectively such that

PMχ∗
(∆) = χ∗

(d−∆)PN . (4.10)
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If ER/A
M/N denotes the advanced/retarded propagator for PM/N as appropriate, then

E
R/A
M = χ∗

(∆)E
R/A
N χ(d−∆)

∗ . (4.11)

Proof. Recall that the advanced and retarded propagators of PM are uniquely deter-
mined by their compositionwithPM and their support properties. As such, we simply
need to establish that the operator on the right-hand side of (4.11) satisfies the relevant
criteria (2.44) and (2.45).

Firstly, if we act on this operator with PM we see

PM χ∗
(∆)E

R/A
N χ(d−∆)

∗ = χ∗
(d−∆)PNE

R/A
N χ(d−∆)

∗ .

By definition, PN ◦ ER/A
N = 1D(N ), and clearly χ∗

(d−∆)χ
(d−∆)
∗ = 1D(M), hence

PM
(
χ∗

(∆)E
R/A
N χ(d−∆)

∗

)
= 1D(M). (4.12)

If we denote by P c
M the restriction of PM to D(M), and likewise P c

N , by the sym-
metry of these operators, we have that

χ(d−∆)
∗ P c

M = P c
Nχ

(∆)
∗ .

Thus, acting on P c
M with our candidate propagator yields

χ∗
(∆)E

R/A
N χ(d−∆)

∗ P c
M = χ∗

(∆)E
R/A
N P c

Nχ
(∆)
∗ ,

which is again simply 1D(M).

Finally, we must determine the supports of these functions. Let f ∈ D(M). Note
that supp (χ(d−∆)

∗ f) = χ(supp f), hence, using the support property of ER/A

supp
(
E
R/A
N χ(d−∆)

∗ f
)
⊆ J±

N (χ (supp f)) .

Pulling this back toM, we have

supp
(
χ∗

(∆)E
R/A
N χ(d−∆)

∗ f
)
⊆ χ−1

(
J±

N (χ(supp f))
)
.

Conformally admissible embeddings preserve causal structure. In particular, if γ :
[0, 1]→M is a causal, future/past-directed curve, thenχ◦γ is also causal and future/past-
directed. This means that χ

(
J±

M(supp f)
)

= J±
N (χ(supp f)) . Hence our candidate

propagators also meet the desired support criteria, and must genuinely be the ad-
vanced and retarded propagators for PM as required.
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One can show that conformal invariance as defined in appendix D of [Wal10] im-
plies (4.10), given our assumption that PM and PN are both symmetric in the sense
that 〈f, PMϕ〉M = 〈PMf, ϕ〉M for all f ∈ D(M), ϕ ∈ E(M).

Similar to the case of (isometric) local covariance, the consequence of proposi-
tion 4.2.3 is that we can define a symplectomorphism from the solution space of PM to
that ofPN . Recall thatwe can identify the space of solutions toPM withD(M)/PM (D(M)).
If f, g ∈ D(M), then

〈f, EMg〉 =
〈
χ(d−∆)

∗ f, EN
(
χ(d−∆)

∗ g
)〉
. (4.13)

Moreover, from (4.6), it follows that χ(d−∆)
∗ (PM (D(M))) ⊆ PN (D(N )), hence χ(∆)

∗

yields awell-definedmapbetween the quotient spacesD(M)/PM (D(M))→ D(N )/PN (D(N )) .

As was the case in Section 2.9, this symplectomorphism of solution spaces in turn
gives rise to a Poisson algebra homomorphism relating the Peierls brackets for each
spacetime.

A quick calculation shows that the map F(∆)
µc χ defined in (4.4) is a Poisson algebra

homomorphism: for F ,G ∈ Fµc(M), ϕ ∈ E(N ) we have that
{
F(∆)
µc χF ,F(∆)

µc χG
}

N
[ϕ] =

〈(
F(∆)
µc χF

)(1)
[ϕ], EN (ϕ)

(
F(∆)
µc χG

)(1)
[ϕ]
〉

N

=
〈
χ(d−∆)

∗ F (1)[χ∗
(∆)ϕ], EN (ϕ)χ(d−∆)

∗ G(1)[χ∗
(∆)ϕ]

〉
N

=
〈
F (1)[χ∗

(∆)ϕ], EM(χ∗
(∆)ϕ)G(1)[χ∗

(∆)ϕ]
〉

M

=
(
F(∆)
µc χ {F ,G}M

)
[ϕ].

Wemay summarise the above results as ensuring that the following iswell-defined:

Definition 4.2.4 (Locally Conformally Covariant Classical Field Theory). For some
∆ ∈ R, let L be a conformal natural Lagrangian of weight ∆. The locally conformally
covariant classical field theory associated to L is a functorP : CLoc→ Poi, which assigns

• To every spacetimeM ∈ CLoc, the algebra Fµc(M) equipped with the Peierls
bracket {·, ·}M associated to the generalised Lagrangian LM.

• To every morphism χ ∈ HomCLoc(M;N ), the Poisson algebra homomorphism
F(∆)
µc χ.

Example 4.2.5 (The Conformally Coupled Scalar Field). The simplest example of a
conformal natural Lagrangian is that of the conformally coupled scalar field. For
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spacetimes of dimension d, this is given by, forM ∈ CLoc, f ∈ D(M), ϕ ∈ E(M)

LM(f)[ϕ] := 1
2

∫
M
f
[
gM (∇ϕ,∇ϕ)− ξdRMϕ2

]
dVM, (4.14)

where RM is the scalar curvature function for the spacetimeM and ξd = d−2
4(d−1) is the

conformal coupling constant.

In this case, we can see that the Euler-Lagrange derivative satisfies the desired
covariance property with ∆ = (d−2)

2 .

Even in this example we see the necessity of phrasing (4.3) in terms of variations
of the action. Naïvely, we may have assumed conformal covariance to be given by
LM(f)[χ∗

(∆)ϕ] = LN (χ(∆)
∗ f)[ϕ]. However, the presence of the test function f in the

above Lagrangian prevents the integration by parts necessary for this equation to hold.

4.3 conformally covariant quantum field theory

In order to discuss quantisation, we must return our attention to free field theories. In
doing so we can once again refer unambiguously to a single operator PM producing
the equations of motion onM.

We saw in section 2.8 that quantisation of a free field theory is achieved through
the use of arbitrarily selected Hadamard distributions for each PM. The covariance
of the quantum algebras was thus dependent on the fact that, given an admissible
embedding χ :M→N , the pullback of a Hadamard distribution on N by χ is again
aHadamard distribution onN . We have already seen that theweighted pullback of the
causal propagator on N is the causal propagator onM. The following proof, again
adapted from [Pin09], gives the corresponding result for Hadamard distributions.

Proposition 4.3.1. Let χ ∈ HomCLoc(M;N ) be a conformally admissible embedding with
conformal factor Ω, and let PM, PN be a pair of normally hyperbolic differential operators
satisfying

PMχ∗
(∆) = χ∗

(d−∆)PN .

IfWN : D(N )C → E(N )C is a Hadamard distribution for PN , then

WM := χ∗
(∆)WNχ

(d−∆)
∗ (4.15)

is a Hadamard distribution for PM.
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Proof. Firstly, (4.13) ensures that the anti-symmetric part of WM is i
2EM. Secondly,

by a direct computation, we can see that PMWM ≡ 0, hence WM is a distributional
solution to PM. Thirdly we clearly have that χ(d−∆)

∗ f =
(
χ

(d−∆)
∗ f

)
, hence positivity of

WM follows directly from that ofWN .

Thus, all that remains to be shown is thatWM has the appropriate wavefront set:

Considered as a distribution in D′(M2)C, WM is defined on the dense subspace
D(M)⊗2 ⊂ D(M2) by

〈WM, f ⊗ g〉 =
〈
WN , χ

(d−∆)
∗ f ⊗ χ(d−∆)

∗ g
〉
. (4.16)

This differs from the usual pullback χ∗WN only in the multiplication by the smooth
function Ωd−∆ ⊗ Ωd−∆, hence WF(WM) = WF ((χ∗)⊗2WN ).

At this point it is convenient to regard χ(M) as a spacetime in its own right, with
all the relevant data being that inherited from N by restriction. We then observe that
χ factorises as ι◦ξ, where the inclusion ι : χ(M) ↪→ N is an isometric embedding, and
ξ :M→ χ(M) is a conformal diffeomorphism. With this, we write χ∗WN = ξ∗ (ι∗WN ).
As ξ is a diffeomorphism, we know that WF (ξ∗ (ι∗WN )) = ξ∗WF(ι∗WN ), and, since ι
is an isometric admissible embedding WF(ι∗WN ) = Γχ(M), where ΓM = WF(W ) for
any (and hence every) Hadamard distributionW onM.

It is only left for us to show that ξ∗Γχ(M) = ΓM. Let (y1, y2; η1, η2) ∈ Γχ(M), and let
γ : (−ε, 1 + ε) be a null geodesic satisfying γ(0) = y1, γ(1) = y2, γ̇[(0) = η1, γ̇[(1) = η2.
It is then readily verified that ξ−1 ◦ γ is a null geodesic segment which demonstrates
(x1, x2; k1, k2) ∈ ΓM, where yi = ξ(xi), and ki = ηi ◦ dξ|xi

. Thus we see that ξ∗Γχ(M) ⊆
ΓM. Similarly, if γ̃ is a null geodesic segment demonstrating that (x1, x2; k1, k2) ∈ ΓM,
then γ := ξ ◦ γ̃ shows that (y1, y2; η1, η2) ∈ Γχ(M). From this we can conclude that
WF(WM) = WF(χ∗WN ) = ΓM, hence WM is indeed a Hadamard distribution for
PM.

If we, by a slight abuse of notation, writeWM = χ∗
(∆)WN , then the above proposi-

tion can be expressed as χ∗
(∆) : Had(N )→ Had(M). This map, together with the map

F(∆)
µc χ defined in the previous section, creates the algebra homomorphism required to

make the quantum theory conformally covariant.

Firstly we observe that, if HM is the symmetric part ofWM etc, then a quick com-
putation confirms that(

F(∆)
µc χF

)
?HN

(
F(∆)
µc χG

)
= F(∆)

µc χ (F ?HM G) .
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In other words, for a Hadamard distributionHN ∈ Had(N ), F(∆)
µc χ defines a ∗-algebra

homomorphism AHM(M)→ AHN (N ), using the notation introduced in (2.62).

To see that these maps define a homomorphism A(M)→ A(N ) note that, ifH ′
N ∈

Had(N ) and H ′
M := χ∗

(∆)H
′
N then, using (4.5), one can show that

αH′
N −HN ◦ F

(∆)
µc χ = F(∆)

µc χ ◦ αH′
M−HM , (4.17)

hence our homomorphisms are compatible with the isomorphisms between different
concrete realisations of A(N ) as required.

Thus we have shown that the following definition makes sense.

Definition 4.3.2 (The QuantumMassless Scalar Field). Let L : D⇒ Floc be the confor-
mal natural Lagrangian of themassless scalar field in spacetime dimension d, given by
(4.14). The locally conformally covariant quantum field theory associated to L is a functor
A : CLoc→ ∗-Alg, which assigns

• To every spacetimeM∈ CLoc, the algebra A(M) defined in Section 2.8.

• To every morphism χ ∈ HomCLoc(M;N ), the ∗-algebra homomorphism defined,
for F = (FH)H∈Had(M) ∈ A(M) and HN ∈ Had(N ), by

(AχF)HN
:= F(∆)

µc χ
(
Fχ∗

(∆)HN

)
,

where ∆ = d−2
2 .



5

Primary and Homogeneously Scaling Fields

5.1 framed spacetimes

Now that we have constructed the quantum theory of themassless scalar field, we can
begin comparing our formalism to the standard cft literature. In formulations of cft
descended from the Osterwalder-Schrader axioms, one defines a field ϕ(z, z̄), to be
primary with conformal weights (h, h̃) ∈ R2 if, for a holomorphic function z 7→ w(z)

ϕ(z, z̄) 7→
(
∂w

∂z

)h (
∂w̄

∂z̄

)h̃
ϕ(w(z), w̄(z̄)). (5.1)

In order to reach an analogous definition of a primary field within the aqft frame-
work,wemust equip our spacetimeswith frames. As amotivating example,Minkowski
space is naturally equippedwith the frame (in null coordinates) (du, dv). TheMinkowski
metric is then simply ds2 = du�dv, where� denotes the symmetrised tensor product.
A general conformal automorphism, χ, of Minkowski space can be written in the form

χ : (u, v) 7→ (µ(u), ν(v)), (5.2)

where either µ, ν ∈ Diff+(R) or Diff−(R). This is readily shown to be conformal as, for
any (u, v) ∈M2

χ∗(du� dv)(u,v) = µ′(u)ν ′(v)(du� dv)(u,v). (5.3)

Hence the conformal factor is the productΩ2(u, v) = µ′(u)ν ′(v). To generalise this split-
ting of the conformal factor to arbitrary globally-hyperbolic spacetimes, we introduce
a new category, which combines the conformal covariancewe have just describedwith
the idea of augmenting each spacetime with a frame, as may be found in, for example,
[Few18].

79
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Definition 5.1.1. The categoryCFLoc, consists of objects that are tuplesM = (M, (e`, er)),
whereM is a 2-manifold, and e`, er are a pair of 1-forms such that, ∀ p ∈M , {e`p, erp}
spans T ∗

pM , subject to the condition that the map

(M, (e`, er)) 7→ (M, e` � er, [e` ∧ er], [e` + er]) (5.4)

sends objects in CFLoc to objects in Loc.

A morphism χ : (M, (e`, er)) → (N, (ẽ`, ẽr))) is a smooth embedding χ : M ↪→ N

such that ifM andN are the spacetimes obtained in the abovemanner from(M, (e`, er))
and (N, (ẽ`, ẽr))) respectively, then χ ∈ HomCLoc (M;N ) . In other words, χ is a confor-
mally admissible embedding ofM intoN with respect to the metrics and orientations
induced by their coframes.

Remark 5.1.2. This definition is intentionally reminiscent of the category FLoc intro-
duced in [Few18]. However, we have not imposed the same rigidity condition that
χ∗ẽ`/r = e`/r. One reason is that this would mean we only have isometric embeddings
of the corresponding spacetimes, where insteadwewant conformally admissible embed-
dings. Moreover, as we shall see in the following proposition, the requirement that
the induced embedding of spacetimes be conformally admissible is sufficient strong
enough to imply a similar, albeit less rigid, action of χ on the frames.

As every 2Dglobally hyperbolic spacetime is parallelisable, eachmay be expressed
as the spacetime induced by some object of CFLoc, i.e. the map (5.4) is surjective. Fur-
thermore, from the definition of the morphisms in CFLoc, it is evident that this map
extends to a fully faithful functor p : CFLoc → CLoc, hence we have an equivalence
between the two in the sense of category theory.

Rather than relying solely on this equivalence, however, the following proposition
provides a test of whether an embedding χ : M ↪→ N is conformally admissible with
respect to the spacetime structure induced by the frames (e`, er) and (ẽ`, ẽr).

Proposition 5.1.3. Let M = (M, (e`, er)), N = (N, (ẽ`, ẽr))) be two objects in CFLoc, a
smooth embedding χ : M ↪→ N is then a CFLoc morphism between M and N if and only if
there exists a pair of smooth, everywhere-positive functions ω`, ωr ∈ E>0(M) such that

χ∗ẽ`/r = ω`/re
`/r. (5.5)

Proof. Suppose first that the embedding χ satisfies (5.5), then it is clearly conformal,
as

χ∗(ẽ` � ẽr) = Ω2(e` � er), (5.6)
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where the conformal factor is Ω2 = ω`ωr. To show it is admissible, consider first

χ∗[ẽ` ∧ ẽr] := [χ∗(ẽ` ∧ ẽr)] = [ω`ωr(e` ∧ er)] = [e` ∧ er], (5.7)

where the final equality comes from the fact that the product ω`ωr is everywhere pos-
itive. Hence, ω`ωr(e` ∧ er) defines the same orientation as e` ∧ er, establishing that χ is
orientation preserving.

Next, to show χ preserves time orientation, consider

χ∗(ẽ` + ẽr) = ω`e
` + ωre

r. (5.8)

For this 1-form to define the same time orientation as e` + er, first we need to prove it
is timelike. Let g = e` � er, then

g(ω`e` + ωre
r, ω`e

` + ωre
r) = 2ω`ωr > 0, (5.9)

hence it is everywhere timelike. Next, we need to show it is compatible with the orig-
inal orientation:

g(ω`e` + ωre
r, e` + er) = ω` + ωr > 0. (5.10)

Thus (5.5) is a sufficient condition for χ to be a conformally admissible embedding.

Conversely, let us now assume that χ is conformally admissible. Let ẽ`/r|χ(M) de-
note the restriction of ẽ`/r to the image ofM under χ. As χ is conformal, the pullback
of each of these 1-forms must be a null 1-form onM with respect to the induced met-
ric. At every point p ∈ M , this tells us that χ∗ẽ`|χ(M)(p) must be colinear with either
e`(p) or er(p). That it must be colinear with e`(p) in particular is due to the fact that χ
preserves orientation; a similar argument can then be made for ẽr. Thus we have two
functions ω`/r ∈ E>0(M) such that χ∗ẽ`|χ(M)(p) = ω`/re

`/r. Their product is the confor-
mal factor of χ and hence must be positive. Finally, for χ to preserve time orientation,
ω` and ωr must satisfy (5.10), thus each function must be everywhere-positive.

5.2 definition of primary fields

Using these frames, we can define a modified pushforward, similar to (4.1), except
now with a pair of weights (λ, λ̃) ∈ R2 specified. The weighted pushforward of a test
function f ∈ D(M) under a morphism χ : M → N with left/right conformal factors
ω`/r is given by

χ(λ,λ̃)
∗ f = χ∗

(
ω−λ
` ω−λ̃

r f
)
. (5.11)
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We then construct the functor D(h,̃h) : CFLoc → Vec, for (h, h̃) ∈ R2 as follows: for an
objectM ∈ CFLoc, define D(h,̃h)(M) = D(M), and for a morphism χ : M→ N:

D(h,̃h)χ(f) = χ(1−h,1−h̃)
∗ f. (5.12)

With this functor, we can finally define a primary field of weight (h, h̃) to be a natural
transformationΦ : D(h,̃h) ⇒ A, whereA : CFLoc→ Vec is a locally covariant qft, which
may or may not be the ‘pullback’ Ã ◦ p of some theory Ã : CLoc→ Vec. Explicitly, this
means that, ifM is the spacetime constructed fromM ∈ CFLoc according to (5.4), and
likewiseN arises from N ∈ CFLoc, then we have a pair of linear maps ΦM/N such that,
for any χ ∈ HomCFLoc(M;N), the following diagram commutes

D(M) D(N )

Ã(M) Ã(N )

D(h,̃h)χ

ΦM ΦN

Ãχ

(5.13)

Heuristically, we can see how this definition relates to (5.1) by taking the ‘limit’
of ΦM(f) as f → δx, the Dirac delta distribution localised at x ∈ M . Whilst there
is no guarantee that ΦM(f) converges in this limit, (5.12) does converge in the weak-∗
topology toω`(x)hωr(x)h̃δχ(x). Ifwe imagine for amoment thatΦM(x) := limf→δx ΦM(f)
is well-defined, the statement that Φ is primary with weights (h, h̃) implies

AχΦM(x) = lim
f→δx

ΦN

(
D(h,̃h)χf

)
= ω`(x)hωr(x)h̃ΦN(χ(x)). (5.14)

Recalling that, if χ : M2 →M2 is expressed in null coordinates as χ(u, v) = (µ(u), ν(v)),
thenω` = dµ/du andωr = dν/dv, we see thatwe have recovered a Lorentzian signature
analogue of (5.1) as desired.

We can also recover the physical interpretations of the sum and difference of h
and h̃, referred to as the scaling dimension ∆ and spin s of the field respectively. For
the scalar field, we have already encountered the scaling dimension as the number ∆
appearing in, for example, Definition 4.2.4. If we consider a field with spin s = 0, the
action of the corresponding D functor is

D(∆/2,∆/2)f = χ(2−∆)
∗ f. (5.15)

The right hand side of which is precisely the action of the functor D(∆) as defined in
[Pin09]. Hence, any primary field à la Pinamonti’s definition Φ : D(∆) ⇒ A defines a
primary field of spin 0 in our description: Φ̃ : D(∆/2,∆/2) ⇒ A ◦ p where Φ̃M := ΦM.
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Conversely, a choice of spin 0 primary field Φ̃ : D(∆/2,∆/2) ⇒ A ◦ p unambiguously
defines a natural transformation Φ : D(∆) ⇒ A. To see this, note that if M and M̃

represent different frames for the same spacetimeM = p(M) = p(M̃), then the iden-
tity morphism of the underlying manifold constitutes a CFLoc morphism M → M̃,
hence we can deduce from (5.13) that Φ̃M ≡ Φ̃

M̃
. In other words, a non-vanishing

spin represents an obstruction to a primary field in our sense being expressed in the
frame-independent manner of [Pin09].

Example 5.2.1. The null derivative of the scalar field defines a map ∂ΦM : D(M) →
Fµc(M)

∂ΦM(f)[ϕ] =
∫

M
f(x)(e`ϕ)e` ∧ er,

where e` is the vector field dual to er. To see that this is a primary field consider the
upper-right path through the diagram (5.13):

∂ΦN

(
D(h,̃h)χ(f)

)
[ϕ] =

∫
χ(M)

(
χ−1

)∗
(
ωh−1
` ωh̃−1

r f
)
· (ẽ`ϕ) ẽ` ∧ ẽr,

=
∫
M

(
ωh−1
` ωh̃−1

r f
)
· χ∗(ẽ`ϕ)

(
ω` ωre

` ∧ er
)
.

Next, using χ∗(ẽ`ϕ) = (χ∗ẽ`)(χ∗ϕ) = ω−1
` (e`χ∗ϕ) we have

∂ΦN

(
D(h,̃h)χ(f)

)
[ϕ] =

∫
M
ω`(x)h−1ωr(x)h̃f(x)(e`(χ∗ϕ))e` ∧ er.

To compare this with the lower-left path, we first observe that the algebra isomor-
phisms αχ∗H′−H all act by identity on linear functionals, thus ifF is linear, Aχ(F)[ϕ] =
F [χ∗ϕ]. Hence the observable we obtain in this way is

Aχ(∂ΦM(f))[ϕ] =
∫
M
f(x)(e`(χ∗ϕ))e` ∧ er.

By fixing (h, h̃) such that the diagram commutes, we can therefore conclude that ∂Φ
is a primary field of weight (1, 0). Similarly, if we consider the field ∂̄Φ, obtained by
acting with er instead of e`, we would obtain a primary field of weight (0, 1).

We can also consider the wide subcategory CFLoc0 comprising all the same space-
times, but only those embeddings for which the conformal factors ω`, ωr are constant.
This category contains all the morphisms of FLoc, which correspond to ω` = ωr = 1.
The additional morphisms are generated by the boosts and dilations, defined, for Λ ∈
R>0 by

bΛ : (M, (e`, er)) 7→ (M, (Λ−1e`,Λer)),

dΛ : (M, (e`, er)) 7→ (M, (Λe`,Λer)),
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where in each case, the smooth embedding inducing the morphism is simply IdM . A
homogeneously scaling field of weight (h, h̃) is then a natural transformationΦ : D(h,h̃)|CFLoc0 ⇒
A|CFLoc0 . In other words, Φ responds to boosts and dilations in the sameway a primary
field would.

Given the underlying manifold is unchanged, both D(h,h̃)(bΛ(M)) and D(h,h̃)(M),
are simplyD(M). Uponmaking this identification, wehave thatD(h,h̃)bΛ ' Λ−(h−h̃)1D(M)

and D(h,h̃)dΛ ' Λh+h̃−21D(M). Similarly, AbΛ ' AdΛ ' 1A(M), whereM is the space-
time corresponding to M. This reduces the test for a field Φ to scale homogeneously
to the equations

ΦbΛ(M)(Λ−(h−h̃)f) = ΦM(f), ΦdΛ(M)(Λh+h̃−2f) = ΦM(f). (5.16)

This concept is very similar to the concept of a quasi-primary field. However, one
should note that the group of CFLoc0 automorphisms ofM2 comprises only the proper,
orthochronous Poincaré transformations anddilations. This is strictly less than the full
group of Möbius transformations, PSL(2,R)× PSL(2,R) under which quasi-primary
fields transform nicely.

In order to describe the action of these Möbius transformations, note that the con-
formal compactificationM2 → S1×S1 is described in our framework by a conformally
admissible embeddingM2 ↪→ E, where the coordinate ũ on the cylinder is the complex
argument of 1+iu

1−iu , the image of the corresponding coordinate onMinkowski under the
Cayley map. Once this identification is made, Möbius transformations defined on the
projective line R ∪ {∞} by

u 7→ au+ b

cu+ d
,

a b

c d

 ∈ SL(2,R),

then yield well-defined CLoc automorphisms of E. However, even a transformation as
simple as u 7→ u + c for c ∈ R becomes highly non-trivial as an automorphism of the
cylinder.

As such, our concept of a homogeneously scaling field is strictly weaker than that
of a quasi-primary field. The concept still has some utility in its ability to specify the
spin and scaling dimension of field. The former, amongst other things, can quantify
the frame-dependence of a field, whilst the latter, with additional assumptions, can
be used to impose constraints on the Poisson brackets/commutators of pairs of fields.
It is likely that, one may be able to identify a subcategory of CLoc or CFLoc such that
the restricted automorphism group of E is the full group of Möbius transformations
one would expect. However, we shall not explore the issue further.
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5.3 examples of primary fields

For the massless scalar field, we identify several notable examples of primary and
homogeneously scaling fields below:

1. As demonstrated in the above example, the derivative fields ∂Φ and ∂̄Φ are
both primary. Taking higher derivatives will produce homogeneously scaling
fields of increasingweight: ∂n∂̄mΦ is homogeneously scalingwithweight (n,m),
though note that if both n andm are non-zero, this field vanishes on-shell.

2. Higher powers of primary fields are again primary classically, but when quan-
tised, they may fail to be even homogeneously scaling in general. The stress-
energy tensor is a special case, which we discuss in the remark below.

3. The (smeared) vertex operator eiaΦ
M (f) defined, for f ∈ D(M), a ∈ R by

eiaΦ
M (f)[ϕ] :=

∫
M
f(x)eiaϕ(x) dVol,

classically is neither primary nor homogeneously scaling. However, the covari-
antly normal-ordered field :eiaΦ: is a quantum primary with spin 0 and scaling
dimension ~a2

2π

To see this, consider the lower-left path of (5.13). For f ∈ D(M), ϕ ∈ E(N ),
H ∈ Had(M), and H ′ ∈ Had(N ), we have

Aχ
(
:eiaΦ(f):M

)
H′

[ϕ] =
∞∑
n=0

(
~
2

)n 1
n!

〈(
χ∗H ′ −Hsing

M

)⊗n
, eiaΦ

M (f)(2n)[χ∗ϕ]
〉
.

(5.17)

The functional derivatives of eiaΦ
M can be calculated straightforwardly, and yield,

for any n ∈ N〈(
χ∗H ′ −Hsing

M

)⊗n
, eiaΦ

M (f)(2n)[χ∗ϕ]
〉

=

(−a2)n
∫
M
eiaχ

∗ϕf(x)
(

lim
y→x

χ∗H ′(x; y)−Hsing
M (x; y)

)n
dVol

=
∫
M
eiaχ

∗ϕf(x)
(
− a2χ∗h′(x;x) + a2

4π
log(Ω(x))

)n
dVol.

(5.18)

Here, h′ is the smooth part of H ′, and the log(Ω(x)) term arises from the differ-
ence in the local Hadamard form (2.78) of χ∗H ′ and Hsing

M (see the following
remark for details). We can then express the action of the morphism Aχ as

Aχ
(
:eiaΦ(f):M

)
H′

[ϕ] = eiaΦ
M

(
fe

(
−~a2

2 (ι∆◦χ)∗h′
)
Ω~ a2

4π

)
[χ∗ϕ], (5.19)
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where ι∆(x) = (x, x), and we are using the linearity of eiaΦ
M in the test function to

extend it 1 to a map D(M)[[~]]→ Fµc(M)[[~]].
We can compare this to :eiaΦ

N :, where we have, for g ∈ D(N )

:eiaΦ
N (g):H′ [ϕ] =

∞∑
n=0

(
~
2

)n 1
n!
〈
h′⊗n, eiaΦ

N (g)(2n)[ϕ]
〉
,

=
〈
e−~a2

2 h
′
∆ , eiaΦ

N (g)
〉
,

= eiaΦ
N

(
ge−~a2

2 h
′
∆

)
[ϕ].

As eiaΦ is a classical primary field of scaling dimension 0, we have eiaΦ
M (f)[χ∗ϕ] =

eiaΦ
N (χ∗Ω−df)[ϕ], hence

Aχ
(
:eiaΦ

M (f):
)
H′

[ϕ] = :eiaΦ
N

(
D

(
ℏa2
4π

)
(f)

)
:H′ [ϕ]

as required.

Remark 5.3.1. The prefactor V in (2.78) is a little tricky. In order to analyse it effectively,
we can use ‘special double null coordinates’ [Bor98; Kay01] u′, v′ such that

ds2 = (1 + Au′2 +Bu′v′ + Cv′2 +O(3))du′dv′, (5.20)

where O(3) denotes terms of order at least 3 in u′ and v′. In this system, one can then
express VN for N ≥ 3 and massm as

VN(u′
1, v

′
1;u′

2, v
′
2) = 1− m2

2
(u′

2 − u′
1)(v′

2 − v′
1) +O(3). (5.21)

In any case we clearly see that the coincidence limit of V appearing when testing the
naturality of :eiaΦ: is 1. Moreover, we can use this form to prove that the normally
ordered stress-energy tensor :T : is homogeneously scaling. We already know the nec-
essary weights from the fact that T is a classical primary of weight (2, 0), hence for a
dilation dΛ, we must show that

:T :dΛ(M)(Λh+h̃−2f) = :T :M(f). (5.22)

We already know the classical terms agree, thus we need only check the O(~) term,
which reduces to the condition that〈

Hsing
dΛ(M) −H

sing
M , TM(f)(2)

〉
= 0. (5.23)

1In doing so, we avoid any necessity to prove summation and integration may be interchanged, or
that Exp(~(A + B log C)) = Exp(~A)CℏB . If one is not comfortable with such manipulations of formal
series, reassurance may be found in the fact that, if the field configuration ϕ is held fixed, and ~ is
chosen to be any positive number, then the series (5.17) converges absolutely, as a series of complex
numbers, to the right hand side of (5.19).
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Using the Hadamard recurrence relations [DB60], one can deduce that VN is invariant
under constant scalings, hence

Hsing
dΛ(M) −H

sing
M = VN(x, y) log(Λ2). (5.24)

Given that e` = e`,u′(u′, v′)∂u′ for some e`,u′ ∈ E(M), we can then use the above form for
VN to show that limx→y(e` ⊗ e`)VN(x, y) = 0, and hence that (5.23) holds ∀ f ∈ D(M).



6

The Stress-Energy Tensor of the Massless Scalar Field

A well known feature of chiral CFTs is the transformation law for the stress-energy
tensor, constrained by the famous Lüscher-Mack theorem [LM76] Here we shall show
explicitly that, for the free scalar field in 2DMinkowski space, the stress-energy tensor
satisfies precisely this transformation law. Moreover, we shall also see that there exist
analogous transformation laws on arbitrary globally-hyperbolic spacetimes.

Theuu component of the stress-energy tensor1 on a framed spacetimeM = (M, (e`, er)) ∈
CFLoc, is a distribution valued in Floc(M) defined, for f ∈ D(M), ϕ ∈ E(M) by

TM(f)[ϕ] := 1
2

∫
M
f · (e`ϕ)2e` ∧ er. (6.1)

Note that we can replace the test function f with a compactly supported distribution,
so long as its singularity structure is compatible with the constraint that TM(f) is a
microcausal distribution. In particular, the generators of the Virasoro algebraBn from
section 3.3 can be expressed as TE(fn), where the integral kernel of fn is einuδ(u+ v) in
the null-coordinates for the cylinder.

Classically, T is a primary field with conformal weight (2, 0), i.e. T : D(2,0) ⇒ P◦p,
whereP is the classical theory for the massless scalar field, as given in definition 4.2.4.

However, when quantised, :T : picks up obstructions which prevent the necessary
diagram from commuting in general.

Beforewe study the transformationproperties of the stress-energy tensor restricted
to Minkowski space, we are now in a position to address a comment made earlier
about finding generators of the Virasoro algebra onMinkowski space. OnMinkowski
space, one is often able to consider a broader class of test functions with which to

1We may also refer to Tuu as the chiral component of T , in which case Tvv would be the anti-chiral
component. For ease of notation, we consider only the chiral component, dropping the subscript.
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smear quantum fields. For instance, in Wightman field theory, one typically uses the
space of Schwartz functions S(Mn) defined above from proposition 2.4.5.

In particular, if one is able to extend the domain of TM2 : D(M2) → Floc(M2) to
include functions of the form (1 + iu)n−1(1 − iu)−n−1 for n ∈ Z, then one would ex-
pect [FST89, §2.3] the resulting observables to commute according to the Virasoro
relations (after quantisation). However, if we focus on the classical algebra, we can
quickly see that such observables are in fact simply the generators of the Einstein cylin-
der, pulled back toM2, adding further justification to our claim that the Einstein cylin-
der is the natural choice of spacetime to focus on in our framework.

Consider the Cayley map R→ S1 ⊂ C defined by u 7→
(
u−i
u+i

)
. Taking the complex

argument of this number, and applying the same map to v, we define a conformal
embedding M2 ↪→ E

χ(u, v) =
[
arg

(1 + iu

1− iu

)
, arg

(1 + iv

1− iv

)]
.

The image of this map is a maximal simply-connected causal diamond, containing
all but a singular point of the t = 0 Cauchy surface in E. Its conformal factors are
ω`(u, v) = ωr(v, u) = ∂u

(
arctan

(
−2u
u2−1

))
= 2

(1+iu)(1−iu) .

We shall discuss how precisely to place T ‘on a null-ray’ in part II. For now, it shall
suffice to say that we may identify T (f) with T (g) if

∫∞
−∞ f(u, v)dv ≡

∫∞
−∞ g(u, v)dv. In

particular, we define a family fn ∈ E(M2) by

fn(u, v) = 4π
v2 + 1

(1 + iu)n−1(1− iu)−n−1. (6.2)

This is equivalent in this new sense to the modes given above, and if we take its
weighted pushforward, we see that

D(2,0)χfn(u, v) = einu. (6.3)

If we assume that T is still natural under this expanded set of test functions, we may
then conclude that, up to equivalence PχTM2(fn) coincides with Bn.

In order to make our analysis more concrete, we restrict our attention to the sub-
category of CFLoc containing the single objectM2. Here, the locally covariant normal
ordering prescription : − :M2 is simply ⦂ − ⦂HM , where HM is the symmetric part of
the Minkowski vacuum. Hence, if we work in the concrete algebra AHM(M) we can
identify TM2(f) directly with its quantum counterpart with no modification.

Given a CFLoc morphism χ : M2 → M2, if the covariantly ordered field :T : was
primary, we would expect in particular that Aχ (:T :M2(f)) − :T :M2

(
D(2,0)χf

)
would
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vanish. Upon making the identification A(M2) ' AHM(M2) this term becomes

αχ∗HM−HM (TM2(f))− TM2

(
D(2,0)χf

)
. (6.4)

We already know that this vanishes in the classical limit ~ → 0, hence we only
need to compute theO(~) term. Recall that in null coordinates we can express a CFLoc
morphismM2 →M2 using a pair of functions µ, ν ∈ Diff+(R) by χ(u, v) = (µ(u), ν(v)).
Upon doing so we see〈

(χ∗HM2 −HM2), TM2(f)(2)
〉

=∫
R2
∂u∂u′

[
HM2(µ(u);µ(u′))−HM2(u;u′)

]
f(u)δ(u− u′) dudu′,

(6.5)

where we have integrated out v and v′ and defined f(u) :=
∫
R f(u, v) dv. It only re-

mains to determine
lim
u′→u

[
µ′(u)µ′(u′)(HM2)uu′(µ(u);µ(u′))− (HM2)uu′(u;u′)

]
=

lim
u′→u

[
µ(u)µ(u′)

(µ(u)− µ(u′))2 −
1

(u− u′)2

]
.

(6.6)

By Taylor expanding µ(u′) around u, one eventually finds that the limit exists and is
equal to

1
6

µ′′′(u)
µ′(u)

− 3
2

(
µ′′(u)
µ′(u)

)2
 =: 1

6
S(µ)(u), (6.7)

where S(µ) denotes the Schwarzian derivative of the function µ. From this it is clear
that :T : is not primary, as

Aχ (:T :M2(f)) = :T :M2

(
D(2,0)χ(f)

)
− 1

4π
~
12
〈S(µ), f〉 . (6.8)

Thus we recover the well-known result that, on Minkowski spacetime, the quan-
tum stress-energy tensor transforms almost as a primary of weight (2, 0), but is ob-
structed by an O(~) correction proportional to the Schwarzian derivative of the trans-
formation. We can now use our framework to generalise this result to any globally
hyperbolic spacetime. The failure for (5.13) to commute for χ ∈ HomCFLoc(M;N) is〈

S̃(χ), f
〉

= Aχ (:T :M(f))− :T :N
(
D(2,0)χ(f)

)
. (6.9)

Whilst the right hand side of this equation requires an arbitrary choice ofH ′ ∈ Had(N )
and ϕ ∈ E(N ), S̃ is actually independent of both of these choices. As in Minkowski
space, the classical term cancels and we are left to compute〈

S̃(χ), f
〉

= ~
2

[〈
χ∗H ′ −Hsing

M , TM(f)(2)
〉
−
〈
H ′ −Hsing

N , TN
(
D(2,0)χ(f)

)(2)
〉]
,
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where the choice of configuration ϕ has been suppressed as no remaining terms de-
pendon it. Ifwedefineh′ = H ′−Hsing

N , then one can show that
〈
h′, TN

(
D(2,0)χ(f)

)(2) 〉
=〈

χ∗h′, TM(f)(2)
〉
,which cancels with the smooth part of χ∗H ′, and hence

S̃(χ) = ~
2
ι∗∆
(
(e` ⊗ e`)

(
χ∗Hsing

N −Hsing
M

))
, (6.10)

where we are again using the embedding ι∆ : x 7→ (x, x) ∈ M2. If we take χ : M2 →
M2 to be as above, we then see that S̃(χ) = S(µ), hence the original Schwarzian deriva-
tive is recovered.

Note that the right-hand side of (6.9) can be defined for any confomally covariant
qft. A Lüscher-Mack theorem for paqft would then imply that, as a distribution, this is
equal to (6.10) up to multiplication by some constant, which we could then interpret
as the central charge of the theory. We stress that such a result has not yet been found,
however we intend to return to this issue in future work.



Part II

Chirality
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7

Where do Chiral Fields Live?

7.1 the geometry of chiral fields

An almost universal assumption in the study of conformal field theory in 2 dimen-
sions is that chiral fields ‘live’ on Riemann surfaces. This is a powerful assumption,
as it enables one to use the tools of complex analysis to tackle certain problems. For
instance, the tricky functional analysis of distributions is replaced by either complex
analysis or the algebraic manipulation of Laurent distributions.

The use of Riemann surfaces in chiral field theory is typically justified in one of
twoways: One can perform aWick rotation from 2dMinkowski spaceM2 to Euclidean
space. By introducing the complex variable z = x+it, this space is then identifiedwith
the complex plane. Conformal symmetry of the original theory suggests that only the
conformal class of the Riemannian metric dzdz matters. Thus, a more general theory
might be defined on an arbitrary Riemann surface. The fact that this Wick rotated
theory still describes what we began with is then a consequence of the Osterwalder-
Schrader theorem [OS73], which gives sufficient conditions for the n-point correlator
functions of the Wick rotated theory to be analytically continued back to the original
spacetime.

An alternative justification, found, for example in [Kac98, Chapter 1], begins by
describing a spacetime event using the null coordinates (u, v) = (t−x, t+x). Onemay
complexify each of these coordinates independently. This is possible in a conformally
symmetric Wightman qft because the null momentum operators Pu, Pv have a jointly
positive spectrum, allowing the translation operator ei(qPu+rPv) to be defined for values
of q and r lying in the upper complex half-planeH ⊂ C. This leads to an embedding of
M2 as the boundary ofH2 ⊂ C2. We then identify the chiral/anti-chiral fields as those
which depend on only one copy of H. By restricting attention to one or the other, the
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result is a conformally symmetric theory defined over H.

Since this story was developed, it has emerged that Lorentzian signature qft is
far from restricted to Minkowski spacetime. As we have seen, so long as a spacetime
M is globally hyperbolic, there exists a general method for constructing a ∗-algebra of
quantum observables A(M). (Even this requirement may be relaxed in certain cir-
cumstances, e.g. if the spacetime is locally globally hyperbolic in a particular sense
[Kay92].)

A crucial feature of aqft is that the algebra of observables is constructed before
a Hilbert space of states. This is preferable because, although for most physically
reasonable theories ‘vacuum-like’ states can always be found on globally hyperbolic
spacetimes, they cannot be obtained in a systematicmanner [Few15, Theorem5.4] and
such states ultimately depend on global geometric features, of which local observables
ought to be ignorant. However, this does mean that our approach must necessarily be
quite different to that which is usual in the study of 2dcft.

In this part of the thesis, we give a characterisation of chirality on any two-dimensional
globally hyperbolic Lorentzian manifold. To begin, we consider why the two stories
above are ill-suited for this generalisation.

The idea of Wick rotating the time coordinate seems appealing, however it is well
known that there is no analogue of the Osterwalder-Schrader theorem on curved
spacetimes. Moreover, as Wick rotation is defined on the level of correlator functions,
it is currently unknown how this procedure may be carried out in a purely algebraic
setting.

An attempt to analytically continue the translation operators also suffers from the
lack of a preferred state on curved spacetimes. In fact, by employing the joint spec-
trum of momentum operators, this approach assumes not only to the existence of a
preferred state, but in particular the existence of a highly symmetric preferred state.

However, there is one aspect of this second approach that can be generalised to
an arbitrary spacetime: as we shall see, it is possible to identify a chiral/anti-chiral
sector of a conformally covariant qftwhich is defined on a one-dimensional manifold,
without the use of a preferred system of coordinates.

Our first example of a chiral field arises from the theory of a massless scalar field
on 2d Minkowski spacetime. Recall that, in null coordinates, the equation of motion
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of this theory is simply

∂u∂vϕ =: Pϕ = 0. (7.1)

The solution of this equation is famously the sum of two terms: one which depends
only on the u coordinate and one solely dependent on v. To understand the geometry
of the spaces the decoupled coordinates describe, consider the Einstein cylinder E,
which we recall is defined as the quotient of M2 under the equivalence relation

(t, x) ∼ (t, x+ 2π). (7.2)

In null coordinates, all functions on the cylinder satisfy the periodicity conditionϕ(u−
2π, v + 2π) = ϕ(u, v). We can write a general solution of (7.1) as

ϕ(u, v) = ϕ`(u) + ϕr(v) + p

2π
(u+ v), (7.3)

where p ∈ R is a constant and each term ϕ`/r must be 2π periodic. In other words,
a general solution to the wave equation on the cylinder is determined by a pair of
functions ϕ`/r ∈ E(S1) and the constant p.

We can describe this phenomenon without coordinates in the following manner:
consider the map π` which sends an event (u, v) ∈ M2 to the line {(u, v′) ∈M2}v′∈R.
Each such line is determined uniquely by the choice of u, and the spaceM` of all such
lines is then diffeomorphic to R. Defining the analogous map on the cylinder, we
again have that π`[u, v] = π`[u, v′] for all v, v′, but we have a further identification that
π`[u, v] = π`[u + 2π, v], which tells us that the space E` of all such lines is actually
one-to-one with R/2πZ ' S1.

Thus we can describe solutions to the wave equation on either Minkowski space
or the cylinder in the same language: forM ∈ {M2,E}, letM`/r denote respectively
the spaces of right / left moving null rays, for instance

M2
` 3 γ =

{
(u0, v) ∈M2 | v ∈ R

}
(7.4)

for some fixed u ∈ R. We also denote by π`/r : M → M`/r the obvious surjections
onto these spaces. We can then write a class of solutions to the wave equation onM
as ϕ = π∗

`ϕ` + π∗
rϕr. 1

Wecandefine these spaces also on arbitrary spacetimes. Recall fromdefinition 2.5.1
that a spacetime is a tupleM = (M, g, o, t) comprising, in order, a manifold M , a

1Note that forM = E, this method only generates the solutions for p = 0. As we are only hoping
to find subalgebras of observables, it is not necessary to generate all the solutions to the equation of
motion. However, the missing solutions would have to be found if one wished to reconstruct the full
spacetimes’ observables from the chiral subalgebras.
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Lorentzian metric g on M , an orientation o (i.e. an equivalence class of nowhere-
vanishing 2-forms) and a time-orientation t (which may be defined as an equivalence
class of timelike vector fields which are all future-pointing).

Definition 7.1.1. Consider an inextensible null geodesic γ : R → M which is every-
where future-directed according to t. We can call γ left-moving if, for o ∈ o and t ∈ t,
o(t⊗ γ̇) < 0, otherwise we call γ right-moving.

Note, we never have o(t ⊗ γ̇) = 0, because γ being null implies γ̇ is never colinear
with t, and o is nowhere-vanishing, and hence non-degenerate.

Ifwe then identify reparametrisations (i.e. we consider only the image of a geodesic),
we can define a setM` of right-moving, inextensible null geodesics and similarlyMr,
the space of left-moving geodesics. Note the apparent mismatch is so that elements of
M` are identified by ‘left-moving’ coordinates onM and vice-versa. ForM∈ {M2,E},
these spaces are clearly analogous to the spaces of null rays introduced above. By a
slight abuse of the terminology, we shall refer to elements ofM`/r as ‘geodesics’. The
maps π`/r from before generalise to this setting by defining π`/r(x) ∈M`/r as the equiv-
alence class of the inextensible right/left moving null geodesic γ such that γ(0) = x.

As we are studying conformal field theories, it is necessary to know how these
spaces behave under the conformally admissible embeddings from definition 4.0.1. A
useful characterisation of conformal embeddings is that they preserve null geodesics.
The admissibility (i.e. orientation-preserving) property further indicates that left-
moving geodesics are mapped to left-moving geodesics and right to right. More pre-
cisely, we have the following proposition:

Proposition 7.1.2. Let χ :M→ M̃ be a conformally admissible embedding, then there exist
natural maps χ`/r :M`/r → M̃`/r such that

π̃`/r ◦ χ = χ`/r ◦ π`/r. (7.5)

Hence the maps π`/r define a functor CLoc → Man1
+, where Man1

+ is the category of smooth,
oriented 1-manifolds with smooth, oriented embeddings as morphisms.

Proof. From the definition of π`/r, we have that π`/r(x) = π`/r(x′) if and only if there is a
right/left-moving null geodesic γ connecting xwith x′. Asχ is conformally admissible,
χ ◦ γ will also be a right/left-moving null geodesic connecting χ(x) with χ(x′) hence
π̃`/r ◦ χ(x) = π̃`/r ◦ χ(x′). This means we can define χ`/r(γ) to be π`/r ◦ χ(x) for any x
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such that π`/r(x) = γ, as this definition does not depend on our choice of x. Clearly
this definition makes χ`/r injective, and satisfies (7.5).

Statements about smoothness and orientability can be verified once we have de-
fined the smooth structure and orientation onM`/r in the following discussion. For
now, we shall conclude by showing that, for a sequence of conformally admissible em-
beddingsM1

χ1→ M2
χ2→ M3, if we denote the corresponding maps to null geodesics

by πi,`/r : Mi → (Mi)`/r, and the maps we have just defined by χi,`/r : (Mi)`/r →
(Mi+1)`/r, then (χ2 ◦ χ1)`/r = χ2,`/r ◦ χ1,`/r.

Firstly, by (7.5), we have that π3,`/r ◦ (χ2 ◦ χ1) = (χ2 ◦ χ1)`/r ◦ π1,`/r. Secondly,
from the commutativity of the following diagram, we have that π3,`/r ◦ (χ2 ◦ χ1) =
(χ2,`/r ◦ χ1,`/r) ◦ π1,`/r.

M1 M2 M3

(M1)`/r (M2)`/r (M3)`/r

χ1

π1,`/r

χ2

π2,`/r π3,`/r

χ1,`/r χ2,`/r

As πi,`/r is surjective, it is also right-cancelative. Hence we may deduce from (χ2 ◦
χ1)`/r ◦ π1,`/r = (χ2,`/r ◦ χ1,`/r) ◦ π1,`/r the desired equality.

The spacesM`/r are somewhat awkward to work with directly. Instead it is easier
to note that, given a spacelike Cauchy surface Σ ⊂ M, the restriction π`/r|Σ becomes
a bijection. Because the elements ofM`/r are in particular inextensible causal curves
this is true even on an arbitrary globally hyperbolic spacetime2.

These maps endowM`/r with differentiable structures as well as orientations, in-
dependent of the choice of Σ. This is well-defined, as any pair of Cauchy surfaces
Σ,Σ′ ⊂M of the same spacetime are diffeomorphic to one another, as a consequence
of [BS03, Theorem 1.1]. In particular, we shall actually define the orientation ofM`

such that each diffeomorphism π`|Σ : Σ '→ M` reverses orientation, this is motivated
by the example of the t = 0 Cauchy surface Σ0 ⊂ M2, where the spatial coordinate
x ∈ Σ0 corresponds to the u = −x null ray in M2

` . Given χ :M→ M̃ from before we
2For the remainder of this thesis, we shall assume implicitly that all Cauchy surfaces are both

smooth and spacelike. (Recall that [BS03, Theorem 1.1] guarantees the existence of such Cauchy sur-
faces for every globally hyperbolic spacetime.)
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have that, for any Cauchy surface Σ ⊂M

χ`/r = π̃`/r ◦ χ ◦ π`/r|−1
Σ . (7.6)

From which we can deduce that each map is smooth and oriented.

However, despite each Σ inheriting a Riemannian metric fromM, it is clear that
different Cauchy surfaces would yield different metrics onM`/r, hence we must be
able to show that any algebra constructed on a Cauchy surface Σ is in some sense
independent of this metric.

In the sections that follow, we shall build a configuration space, and hence both
classical and quantum algebras of observables, using arbitrarily selected Cauchy sur-
faces as the underlying space. Clearly, it will be important to establish that our con-
structions do not depend in any significant way upon this choice.

Not only should we expect diffeomorphic Cauchy surfaces to yield isomorphic al-
gebras, but we should also expect a ‘reparametrisation invariance’, where any algebra
constructed over a surface Σ should carry an action of Diff+(Σ) by automorphisms.

It is well known that every 2d Lorentzian manifold is conformally flat, i.e. they are
locally conformally isometric toM2. However, this does notmean that every spacetime
is ‘the same as’ Minkowski from the perspective of a cft. A recent work by Benini,
Giorgetti and Schenkel [BGS21] explains in detail the manner in which the category
CLoc can be replaced by a skeletal category, the objects of which are justM2 and E.

Central to this discussion is the extension of the conformal flatness result, which
shows that all globally hyperbolic 2d Lorentzian manifolds can be embedded into one
of these two spacetimes in a particular way.

Theorem 7.1.3. Let Σ0 ⊂M0 denote the t = 0 Cauchy surface of either 2dMinkowski space
or the Einstein cylinder (i.e.M0 ∈ {M2,E}). Then, for any orientation-preserving diffeomor-
phism Σ ∼→ Σ0 where Σ ⊂M is a Cauchy surface of a 2d globally hyperbolic spacetime, there
exists a CLoc morphismM→M0 such that the following diagram commutes.

Σ Σ0

M M0

∼

(7.7)

Proof. In [BGS21, Theorem3.3], itwas shown, using [FM16, Theorem4.4] and [Mon14,
Theorem 2.2] for planar and cylindrical spacetimes respectively, that there exist CLoc



Chapter 7. Where do Chiral Fields Live? 99

morphisms χ0 : M → M0. In particular, in [FM16] an arbitrary Cauchy surface
Σ ⊂ M is selected such that Σ → Σ(0,1) := {(−x, x) ∈ M2 |x ∈ (0, 1)}, expressed
in null coordinates. As the image of M must be causally convex, it must be con-
tained within the diamond U = (−1, 0) × (0, 1). Given any choice of oriented dif-
feomorphism ρ1 : (0, 1) ∼→ R, one can construct a map χ1 : U → M2 by sending
(u, v) 7→ (−ρ1(−u), ρ1(v)). This map is clearly conformally admissible, as both ρ1(v)
and−ρ1(−u) are orientation preserving diffeomorphisms. A point of the form (−x, x)
is mapped to (−ρ1(x), ρ1(x)), hence Σ(0,1)

∼→ Σ0. Going back to our original Cauchy
surface Σ, if we are given an arbitrary diffeomorphism ρ : Σ ∼→ Σ0, then we can con-
struct χ1 from ρ1 = ρ ◦ χ0|−1

Σ(0,1)
. The desired embeddingM → M2 is then simply

χ1 ◦ χ0.

An important property of this embedding is that it can be expressed entirely in
terms of ρ. We can define maps πΣ

`/r :M→ Σ such that Σ ∩ π`/r(x) = {πΣ
`/r(x)}. One

then has that

χ(x) = (−ρ ◦ πΣ
` (x), ρ ◦ πΣ

r (x)), (7.8)

using null coordinates onM2. This is because χ(Σ∩π`/r(x)) = ρ(Σ)∩ π̃`/r(χ(x)), where
π̃`(u, v) = {(u, v′) ∈M2}v′∈R etc. This correspondence is represented visually in fig. 7.1.

We now consider the case where ρ : Σ ∼→ Σ0 ⊂ E is a compact Cauchy surface of a
spacetimeM. Let pΣ : Σ → Σ be the universal cover of Σ. BecauseM ' Σ × R, this
also defines a universal cover p : M →M which, given the pullback metric along p,
is also globally hyperbolic, with Σ as a Cauchy surface. If we now denote by Σ0 the
t = 0 Cauchy surface of Minkowski space, which is also the universal cover of Σ0 ⊂ E,
and by p0 : M2 → E and pΣ0 : Σ0 → Σ0 the canonical projections, we can construct the
commutative diagram

Σ Σ Σ0 Σ0

M M E M2

pΣ

ρ̄

ρ

pΣ0

p

χ

p0

(7.9)

where ρ̄ is a lift of ρ, and χ is the CLoc morphism corresponding to ρ̄ by the previous
argument. We would like to define χ :M→ E by χ(x) = p0 ◦ χ(x̄) for some p(x̄) = x.
Clearly this map is well defined if and only if χ is equivariant with respect to the
automorphisms of the covering maps, i.e. for every d : M → M such that p ◦ d = p,
there must be d0 : M2 →M2 such that p0 ◦ d0 = p0, and χ ◦ d = d0 ◦ χ.
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By definition ρ̄ is equivariant with respect to the automorphisms of pΣ and pΣ0 ,
where for both covering maps, such automorphisms are restrictions of the aforemen-
tioned d and d0. Spelling it out, this means that, for every dΣ : Σ → Σ such that
pΣdΣ = pΣ there exists d0 : Σ0 → Σ0 such that pΣ0dΣ0 = pΣ0 and

ρ̄ ◦ dΣ = dΣ0 ◦ ρ̄,

moreover, dΣ extends to a map d : M → M and likewise for dΣ0 . (In particular
d0(u, v) = (u− 2πn, v + 2πn), hence dΣ0(x) = x+ 2πn for some n ∈ Z.) Moreover, the
manner in whichM is constructed means that d is always an isometry preserving Σ,
hence πΣ

`/r ◦ d = dΣ ◦ πΣ
`/r. We can then use (7.8) to show that

χ ◦ d(x) = (−ρ̄ ◦ πΣ
` ◦ d(x), ρ̄ ◦ πΣ

r ◦ d(x))

= (−dΣ0 ◦ ρ̄ ◦ πΣ
` (x), dΣ0 ◦ ρ̄ ◦ πΣ

r (x))

= d0 ◦ χ(x), (7.10)

as required.

M

Σ

x

x` xr

χ

M2

Σ0

χ(x)

ρ(x`) ρ(xr)

Figure 7.1: A diagrammatic representation of (7.8), where we have used the short-
hand x`/r = πΣ

`/r(x). The dashed lines represent null geodesics, which are necessarily
preserved by the conformally admissible embedding χ.

One way of phrasing this result is that, any diffeomorphism Σ ∼→ Σ0, where Σ0 is
a Cauchy surface of M2 of E, can be extended such that its domain is the entirety of
M. If we instead have a diffeomorphism Σ ∼→ Σ̃ to a Cauchy surface of some other
spacetime M̃, then we can use theorem 7.1.3 to prove a weaker, but more general
extension as follows.

Corollary 7.1.4. LetM,M̃ be a pair of 2d globally hyperbolic spacetimes with Cauchy sur-
faces Σ, Σ̃ respectively. For any orientation-preserving embedding ρ : Σ ↪→ Σ̃, there exists an
open, causally convex subsetN ⊆M such that Σ is also a Cauchy surface ofN and ρ extends
to a CLoc morphism χ : N → M̃ such that the following diagram commutes.

Σ Σ̃

N M̃

ρ

∼

χ

(7.11)
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Moreover, if ρ is a diffeomorphism, then χ is Cauchy.

Proof. Suppose first that ρ is invertible. Choose a diffeomorphism ρ0 : Σ̃ ∼→ Σ0, where
Σ0 is a Cauchy surface for the appropriate choice ofM0 ∈ {M2,E} (it is implicit that
this and all following diffeomorphisms are orientation-preserving). This also pro-
vides a diffeomorphism ρ1 = ρ0 ◦ ρ : Σ ∼→ Σ0. Applying theorem 7.1.3 to both, we
obtain χ1, χ0 in the following diagram.

Σ Σ̃ Σ0

M̃ M0

M

ρ

∼
ρ0

χ0

χ1

(7.12)

We then consider the space N = χ−1
1 (χ0(M̃) ∩ χ(M)). This space is open and

causally convex as both χ1(M) and χ0(M̃) are, and each property is preserved by
intersection. We can also see that N contains Σ, as χ1(Σ) = ρ1(Σ) = ρ0(Σ̃) ⊂ χ0(M̃).
Given that χ1(N ) ⊆ χ0(M̃), we can also define the map χ := χ−1

0 ◦ χ1 : N → M̃,
because all CLoc morphisms are diffeomorphisms onto their images. Adding this into
the above diagram, we obtain

Σ Σ̃ Σ0

N M̃ M2

M

ρ ρ0

χ χ0

χ1

(7.13)

the commutativity of which demonstrates that χ is indeed a Cauchy morphism N →
M̃.

In the case where ρ is only an embedding, take Ñ ⊆ M̃ to be the Cauchy devel-
opment of ρ(Σ), which is the set of points x̃ ∈ M̃ such that every inextensible causal
curve through x̃ intersects ρ(Σ). Clearly Ñ is open and causally convex, and hence is a
sub-spacetime, with ρ(Σ) as a Cauchy surface. Then the preceding argument applies
by replacing M̃with Ñ .

The reason that diffeomorphismsM ⊃ Σ ∼→ Σ0 ⊂ M2 can be extended to the
entirety ofM is that, for any pair of points x, y ∈ Σ0, one can produce a null geodesic
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from each such that they intersect precisely once in M2. For example, if we express
Σ0 in null coordinates as the set Σ0 = {(−x, x) ∈ M2}x∈R, then a right-moving null
geodesic from xwill intersect a left-moving geodesic from y at the point (−x, y) ∈M2.
If we truncateM2 to events in the past of some Cauchy surface, say t = T for some T >

0, then this is no longer the case. If we consider Σ0 to also be a Cauchy surface of the
truncatedMinkowski spacetimeM2

t<T , the above theorem can extend the identitymap
in one direction, resulting in the inclusionM2

t<T →M2, but there exists no conformally
admissible embeddingM2 →M2

t<T which acts as identity on the t = 0 Cauchy surface,
as demonstrated by fig. 7.2.

Σt=0

Σt=T

x y

z

Figure 7.2: The null geodesics originating from x and y intersect in M2, but not
in M2

t<T . Thus any map M2 → M2
t<T which restricts to the identity on Σt=0 cannot

preserve null geodesics, and hence cannot be conformal.

We have thus established that oriented diffeomorphisms ρ : Σ ∼→ Σ̃ extend at
least partially to CLoc morphisms N → M. Notably, these morphisms are always
Cauchy, as the image of N always contains Σ̃. This is significant, because it means
that for theories satisfying the time-slice axiom, diffeomorphisms of Cauchy surfaces
yield isomorphisms of the corresponding algebras of observables. In the special cases of
M2 and E, the time-slice axiom is not even necessary, as diffeomorphisms of Cauchy
surfaces extend fully to CLoc isomorphisms of each spacetime. Finally, by consider-
ing the group Diff+(Σ), we shall later see that, by associating a chiral subalgebra to
a particular Cauchy surface Σ of a given spacetime, invariance of the algebra under
reparametrisations of Σ comes as a natural consequence of conformal covariance of the
full spacetime algebra.

In the following, we shall be constructing algebras on Cauchy surfaces which we
claim to capture a chiral (or anti-chiral) sector of the full algebra in question. In order
to show that our constructions are ‘natural’, we will effectively have to show that for
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every diagram of the form (7.11), there is a corresponding diagram of algebras. We
can lay the groundwork for a precise formulation of this principle with the following
definition.

Definition 7.1.5. The category CCauchy has as

• Objects: Pairs (Σ,M) such that Σ is a Cauchy surface ofM∈ CLoc.

• Morphisms: Pairs (ρ, χ) such that ρ : Σ → Σ̃ is a smooth oriented embedding,
χ ∈ CLoc(M,M̃) such that (7.11) commutes.

Remark 7.1.6. There are two natural functors out of CCauchy. Clearly we have Π2 :
CCauchy −→ CLoc, which sends (Σ,M) toM and (ρ, χ) to χ. The target category for
Π1, which forgets aboutM and χ, is CRie1, the category of Riemannian 1-manifolds
with smooth oriented embeddings (which are necessarily conformal) as morphisms.
Note that both functors are surjective. This is obvious for Π2, as every globally hyper-
bolic spacetimepossesses aCauchy surface. Given aRiemannian 1-manifoldΣ, we can
also easily construct a globally hyperbolic spacetimeMΣ := Σ × R with orientations
defined in the obvious way and a metric ds2 = dt2 − dx2, where dt is the coordinate
one-form on R, and dx is the metric volume form of Σ.

7.2 chiral configuration spaces

In this section we shall construct a model for the configuration space of chiral fields.
Similarly to the full spacetime, we refer to elements of this space as chiral field configu-
rations. The term ‘chiral field’ will instead be used for objects bearing a closer resem-
blance to the locally covariant fields of part I which we shall discuss in section 8.4.

Given a field configuration ϕ ∈ E(M2) satisfying the equation of motion ∂u∂vϕ = 0,
if we take its derivative with respect to u, we obtain a function that is independent
of v and vice-versa. Not only does this allow us to separate the left-moving term of
d’Alembert’s solution from the right-moving term, building our configuration space
from derivatives of scalar field on M2 allows us to avoid the well-known problems
which arise when trying to find a vacuum state for the massless scalar field [BFR17].

We would like to formulate statements such as ‘∂uϕ depends only on u’ without
explicit reference to our choice of coordinates. The first issue is that the operator ∂u
depends on a choice of frame. In chapter 5 we included such a choice as part of our
background spacetime data. However, the additional requirement that the resulting
function has only one independent variable allows us to define our chiral algebras
without the need to make any such choice.



Chapter 7. Where do Chiral Fields Live? 104

The Lorentzian metric on a spacetime M causes the cotangent bundle T ∗M to
naturally decompose asT ∗M = T ∗

`M⊕T ∗
rM, where, in null coordinates u, v, the fibres

of T ∗
`M and T ∗

rM are spanned by du and dv respectively. Let Π`/r : T ∗M→ T ∗
`/rM be

the projections onto each subbundle, the operation Π`d then sends ϕ 7→ ∂uϕdu. Note
that, even though we have described this splitting in terms of a frame, the splitting
itself depends only on the conformal class of the metric gM.

We now have a 1-form onM, but we would like a function onM`. Recalling our
discussion in the previous section, we may use a Cauchy surface Σ ⊂ M as a proxy
forM`. Restricting Π`dϕ to Σ, we may then map this to a smooth function by using
the Hodge star ∗Σ associated to the Riemannianmetric on Σ. Finally, noting that Σ has
the opposite orientation toM`, we multiply the resulting function by a factor of−1 to
account for this (see the example below).

Thus, altogether we have a map

∂Σ := (−1) · ∗Σi
∗
ΣΠ`d, (7.14)

where iΣ : Σ ↪→ M is the inclusion map. We shall henceforth refer to ∂Σ as the chi-
ral derivative corresponding to the Cauchy surface Σ ⊂ M. Similarly, we may also
define the anti-chiral derivative ∂̄Σ = ∗Σi

∗
ΣΠrd, though we will rarely use this, as most

statements concerning ∂Σ are readily generalised.

As an example, consider the Cauchy surface inMinkowski space expressed in null
coordinates as Σ = {(−s, γ(s))}s∈R for some γ ∈ Diff+(R). As we noted above, given
an arbitrary configuration ϕ ∈ E(M2), we have that Π`dϕ = (∂uϕ)du. After a quick
computation one can verify that, using the parametrisation of Σ given above, we have
that i∗Σdu = −ds, and the induced volume form on Σ may be expressed as dVΣ =√
γ′(s)ds. Thus, altogether we have

(−1) · ∗Σi
∗
ΣΠ`dϕ(s) = (∂Σϕ)(s) = 1√

γ′(s)
(∂uϕ)(−s, γ(s)). (7.15)

From this one can also show that, at least for Σ ⊂ M2, ∂Σ is surjective. We shall
soon see that this is true for arbitraryM, however we shall first address the question
of how these maps interact with our preferred spacetime transformations.

In part I, we discussed how the inclusion of conformal isometries in our collec-
tion of allowable morphisms necessitated more complicated transformations than the
standard pullback of smooth functions/sections of a fibre bundle. Interestingly, even
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though we are now considering one-dimensional Riemannian manifolds, the defini-
tion 4.1.1 of a weighted pullback carries over unchanged. Given a CCauchy morphism
(ρ, χ) from (Σ,M) to (Σ̃,M̃) such that χ∗g̃ = Ω2g, the restriction ρ has conformal factor
(Ω|Σ)2, in the sense that ρ∗g̃|Σ̃ = (Ω|Σ)2 g|Σ.

Definition 7.2.1. For ρ ∈ CRie1(Σ, Σ̃) such that ρ∗gΣ̃ = ω2gΣ, we define the weighted
pullback ρ∗

(µ) : E(Σ̃) −→ E(Σ) by

ρ∗
(µ)ψ := ωµρ∗ψ (7.16)

It turns out that, for µ = 1, these are precisely the maps required to preserve the
images of the ∂Σ operators, as demonstrated by the following proposition.

Proposition 7.2.2. Define the contravariant functor E(1) : CRie1 → Vec such that E(1)(Σ) =
E(Σ̃), and E(1)ρ = ρ∗

(1) : E(Σ̃)→ E(Σ). Then the morphisms ∂Σ : E(M)→ E(Σ) constitute
a natural transformation ∂ : E ◦ Π2 ⇒ E(1) ◦ Π1, i.e. for every CCauchy morphism (ρ, χ) :
(Σ,M)→ (Σ̃,M̃) the following diagram commutes.

E(Σ) E(Σ̃)

E(M) E(M̃)

ρ∗
(1)

∂Σ
∂

Σ̃

χ∗

(7.17)

Proof. The exterior derivative d commutes with the pullback along any smooth map,
and, by the definition of a CCauchy morphism, i∗

Σ̃
χ∗ = ρ∗i∗Σ. Similarly, Π` commutes

with all conformally admissible embeddings, leaving only the Hodge dual to check.
If ρ : X → Y is a conformal embedding of Riemannian n-manifolds with ρ∗gY =
Ω2gX , then the Hodge operator on p-forms behaves as ∗X ◦ ρ∗ = Ω2p−nρ∗ ◦ ∗Y [Bes87,
Theorem1.159 h)]. For p = n = 1we then get the necessary factor tomake the diagram
commute.

Remark 7.2.3. Just as in section 5.2, one can consider the case where M̃ = ΛM, i.e. the
underlying manifold is held fixed and the metric is scaled by some constant Λ2 ∈ R>0.
We may then take χ to be the identity map of the underlying manifold, whereupon
the map E(Σ̃) → E(Σ) in the above proposition becomes ψ 7→ Λψ. As such, the
physical interpretation of the above proposition is that the chiral boson ∂ϕ has a scaling
dimension of 1.

Finally, so that we may be sure that the chiral configuration space is not a proper
subspace of E(Σ), we have the following result.
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Proposition 7.2.4. For every (Σ,M) ∈ CCauchy, ∂Σ is surjective. Moreover, for every ψ ∈
E(Σ), there is a solution ϕ ∈ KerPM ⊂ E(M) such that ∂Σϕ = ψ.

Proof. For Σ0 ⊂M2, we can write the solution of ∂Σ0
ϕ = ψ explicitly as

ϕ(u, v) =
∫ u

0
ψ(−u′) du′. (7.18)

As ϕ only depends on u, this is clearly a solution to the equations of motion. By using
M2 as the universal covering space ofE, we get the corresponding result for theCauchy
surface Σ0 ⊂ E, however, we must add an extra step. If ψ in (7.18) is 2π-periodic (i.e.
it corresponds to a function in E(Σ0)) then ϕ(u− 2π, v+ 2π) = ϕ(u, v) +

∫ 2π
0 ψ(x)dx. In

other words, ϕ only defines a function on E if ψ is exact.

To solve this, we choose for the solution of ∂Σ0ϕ = ψ on the cylinder

ϕ(u, v) =
∫ u

0
ψ0(−u′) du′ + 1

2π

(∫ 2π

0
ψ(x) dx

)
(u+ v), (7.19)

where ψ0(x) = ψ(x)− 1
2π
∫ 2π

0 ψ(x′) dx′ is the ‘exact part’ of ψ. This is then clearly in the
form (7.3) of a general solution to the wave equation on a cylinder.

For an arbitrary element (Σ,M) ∈ CCauchy, we take a diffeomorphism ρ : Σ ∼→
Σ0, where as before Σ0 is the t = 0 Cauchy surface ofM0 ∈ {M2,E} as appropriate.
We can then solve ∂Σϕ = ψ for any ψ ∈ E(Σ) using the corresponding embedding
χ : M → M0. In particular, suppose that ∂Σ0ϕ0 = (ρ−1)∗

(1)ψ, where ψ is one of the
solutions constructed above, then

∂Σχ
∗ϕ0 = ρ∗

(1)∂Σ0ϕ0 = ψ. (7.20)

Moreover, as χ∗ maps KerPM0 → KerPM (c.f. remark 4.2.2), ϕ is also a solution to
the equations of motion as desired.

Remark 7.2.5. Whatwehave obtained in this section is a covariant surjection ∂Σ : E(M)→
E(Σ). Equations eq. (7.18) and eq. (7.19) tell us that we may interpret the image of
this space as corresponding to chiral solutions to the wave equation. With the caveats
that (i) constant solutions cannot be obtained from any splitting of ∂Σ and (ii) that,
on the cylinder, one cannot completely separate solutions depending only on u from
those depending only on v.

One reason for working with E(Σ) in spite of these caveats is that it is, topologi-
cally speaking, a very “nice” space to work with. In particular, as we shall see in the
following chapter, it is relatively easy to define spaces of functionals on E(Σ) analo-
gous to the microcausal functionals over E(M). We can then give these functionals
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a Poisson bracket, and see how the resulting algebra compares to the algebra P(M)
we constructed in section 2.6. With a little work, our covariant surjection ∂Σ will then
dualise to a covariant injection of the Poisson algebra defined on Σ into Pon(M).



8

Classical Observables

Now that we have identified our configuration space, and how it transforms under
appropriatemorphisms, we can begin to discuss the algebras of observables, and from
there the dynamics, of the massless scalar field.

8.1 classical chiral algebra

There are many ways we could begin to construct the chiral algebra of observables.
We shall begin by looking at a space common to all definitions: namely the regular,
linear observables.

We shall denote by {ΨΣ(f) | f ∈ D(M)} the family of linear observables

E(Σ)→ R, ψ 7→
∫

Σ
fψdVΣ. (8.1)

Naturally, we can also push these forward to maps ∂∗
ΣΨΣ(f) : E(M) → R, by ϕ 7→

ΨΣ(f)[∂Σϕ]. It is easy to see that ∂∗
ΣΨΣ(f) is both linear and continuous on E(M), i.e.

it is a distribution, thus we may attempt to compute a commutator of ∂∗
ΣΨΣ(f) with

∂∗
ΣΨΣ(g). However, even thoughΨΣ(f) is regular, ∂∗

ΣΨΣ(f) fails to be evenmicrocausal:
because its support lies entirely within Σ, its wavefront set lies normal to Σ, which in
particular means that it contains timelike covectors.

It shall be the purpose of later sections in this chapter to address the singularity of
these distributions. For now, we shall ignore this issue and attempt a naïve calculation
of 〈E, ∂∗

ΣΨΣ(f)⊗ ∂∗
ΣΨΣ(g)〉. (Recall that Hörmander’s results enabling computations

with distributions are sufficient, but not necessary.) Fortunately, it turns out this pair-
ing is well-defined, in brief because the differential operator in ∂Σ annihilates the v
dependent terms of E, yielding a more amenable wavefront set.

If we attempt to compute the Peierls bracket, we obtain

{∂∗
ΣΨ(f), ∂∗

ΣΨ(g)} = 〈(∂Σ ⊗ ∂Σ)E, f ⊗ g〉Σ2 . (8.2)

108
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In other words, the commutator function for chiral observables is simply (∂Σ ⊗ ∂Σ)E,
provided this is a well-defined distribution in D′(Σ2), which we shall henceforth de-
note by the shorthand EΣ.

On Minkowski space, the integral kernel of the Pauli-Jordan function may be ex-
pressed in null coordinates as

E(u, v, u′, v′) = −1
4

(sgn(u− u′) + sgn(v − v′)) . (8.3)

Taking Σ0 to be the t = 0 Cauchy surface, we may use (7.15) to compute the chiral
commutator function as

EΣ0(s, s′) = 1
2
δ′(s− s′), (8.4)

which is clearly well-defined. This agrees with (3.11), though now the reduced num-
ber of coordinates is expressed in a more geometric manner by taking the pullback of
(∂u ⊗ ∂u)E along an embedding of the 1-manifold Σ into the 2-manifold M2. Because
we also have an explicit definition for the causal propagator (3.17), we can similarly
show that its chiral derivative is well-defined.

We can then transfer the result from these two explicit examples to arbitrary space-
times. Let (Σ,M) ∈ CCauchy, and choose a diffeomorphism ρ : Σ ∼→ Σ0 ⊂ M0 ∈
{M2,E}. From proposition 7.2.2, we have that ρ∗

(1)∂Σ0 = ∂Σχ
∗. Given the conformal

covariance of the causal propagator (proposition 4.2.3), this implies

(ρ∗
(1) ⊗ ρ∗

(1))EΣ0 = (ρ∗
(1) ⊗ ρ∗

(1))(∂Σ0 ⊗ ∂Σ0)EM0

= (∂Σ ⊗ ∂Σ)(χ∗ ⊗ χ∗)EM0

=: EΣ. (8.5)

This tells us thatEΣ is awell-defineddistribution inD′(Σ2) as desired, and thatWF(EΣ) =
(ρ⊗2)∗WF(EΣ0).

Now that we have a bi-distribution on Σ, we can define a binary operation, for
F,G ∈ Freg(Σ), and ψ ∈ E(Σ) by

{F,G}Σ
` [ψ] =

〈
EΣ, F

(1)[ψ]⊗G(1)[ψ]
〉
. (8.6)

Similarly to the construction ofP(M), we may now ask if there exists a space of func-
tionals which is closed under this operation.

Proposition 8.1.1. Let Fc(Σ) be the space comprising functionals F : E(Σ)→ R such that

1. F is Bastiani smooth with respect to the Fréchet topology on E(Σ)
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2. WF(F (n)[ψ]) ∩
(
Ξn

+ ∪ Ξn
−

)
= ∅ where

Ξn
± = {(s1, . . . , sn; ξ1, . . . , ξn) ∈ T ∗Σn | ± ξi ≥ 0, 0 ≤ i ≤ 1} ,

and the sign of a covector is defined with respect to an arbitrary oriented coordinate on
Σ.

then {·, ·}Σ
` is a Poisson bracket on Fc(Σ). We denote the resulting Poisson algebraP`(Σ,M)

Proof. Note thatΞ1
+∩Ξ1

− = Ṫ ∗Σ, henceF (1)[ψ] is a regular distribution ∀F ∈ Fc(Σ), ψ ∈
E(Σ). This means that, for F,G ∈ Fc(Σ), the bracket (8.6) is well-defined. As such,
it remains to show that Fc(Σ) is closed under these operations, and that {·, ·}Σ

` has all
the properties of a Poisson bracket.

The fact that {·, ·}Σ
` is a skew-symmetric bilinear form follows immediately from

the definition, as does the fact that it is a derivation in each of its arguments. Rather
than directly proving that the Jacobi identity is satisfied, we shall later prove that
there is an injective homomorphism P`(Σ,M2) → P(M), thus the Jacobi identity on
P`(Σ,M2) follows from the same identity on P(M).

Thus all that remains is to show Fc(Σ) is closed under {·, ·}Σ
` . The argument here

proceeds along the same lines as the closure proof in appendix B, but we shall outline
the steps explicitly here.

It is sufficient to show that, ∀F,G ∈ Fc(Σ), ψ ∈ E(Σ), and k,m ∈ N,

WF
(〈
EΣ, F

(k+1)[ψ]⊗G(m+1)[ψ]
〉)
∩ (Ξ(k+m)

+ ∪ Ξ(k+m)
− ) = ∅, (8.7)

where 〈·, ·〉 pairs the first variable of EΣ with the first variable of F (k+1)[ψ] and the
second variable of EΣ with the first variable of G(m+1)[ψ] according to [Hör15, Theo-
rem 8.2.14].

For simplicity, we will suppress the ψ dependence of F (k+1)[ψ] and G(m+1)[ψ] for
the rest of this proof, and we shall also restrict our attention to Σ0 ⊂M2. We will also
use (sF ; ξ

F
) as short hand for an element of T ∗Σk+1 ' R2(k+1) etc. As F and G are

Bastiani smooth, F (k+1)⊗G(m+1) is compactly supported, we just have to consider the
set

WF(F (k+1) ⊗G(m+1)) •WF(EΣ) :={
(sF , sG; ξ

F
, ξ
G

) ∈ T ∗Σk+m | ∃ (r1, r2; η1, η2) ∈WF(EΣ),

(r1, sF , r2, sG; η1, ξF , η2, ξG) ∈WF(F (k+1) ⊗G(m+1))
}
,
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where WF(EΣ) := WF(EΣ) ∪ 0Σ2 , and 0X denotes the zero section of T ∗X . Firstly,
if this set avoids 0Σk+m , then the distribution in (8.7) is well-defined, in which case
WF(F (k+1) ⊗G(m+1)) •WF(EΣ) contains its wavefront set.

We need firstly the estimate [Hör15, Theorem 8.2.9]

WF(F (k+1) ⊗G(m+1)) ⊆WF(F (k+1))×WF(G(m+1)) \ 0Σk+m+2

and secondly the wavefront set of our commutator function

WF(EΣ) = {(r, r; η,−η) ∈ ṪΣ2},

which is readily obtained by inspection of (8.4). Suppose

(sF , sG; ξ
F
, ξ
G

) ∈ Ξk+n
± ∩

(
WF(F (k+1) ⊗G(m+1)) •WF(EΣ)

)
Unpacking the notation, this means there exists some (r1, r2; η,−η) ∈ WF(EΣ) such
that

(r1, sF ; η, ξ
F

) ∈WF(F (k+1)), (r2, sG;−η, ξ
G

) ∈WF(G(m+1))

with at least one of these covectors being non-zero. Suppose in particular that (sF , sG; ξ
F
, ξ
G

) ∈
Ξk+n

+ Because (r1, sF ; η, ξ
F

) /∈ Ξk+1
+ \0Σk+1 , we see that η ≤ 0. But then (r2, sG;−η, ξ

G
) /∈

WF(G(m+1)), hence (r2, sG,−η, ξG) ∈ 0Σm+1 . This in turn implies that (r1, sF ; η, ξ
F

) can-
not belong to WF(F (k+1)), hence (r1, sF , r2, sG; η1, ξF , η2, ξG) ∈ 0Σk+m+2 , which is dis-
joint from WF(F (k+1)⊗G(m+1))•WF(EΣ). As 0Σk+m ⊂ Ξk+m

+ , this automatically tells us
that Hörmander’s criterion is satisfied, hence the distribution in (8.7) is well-defined.
Similar reasoning to the above shows that Ξk+m

− is also disjoint from WF(F (k+1) ⊗
G(m+1)) ◦WF(EΣ), hence (8.7) holds.

Remark 8.1.2. The equation (8.6) can be expressed without coordinates as

〈(∂Σ ⊗ ∂Σ)E, f ⊗ g〉 = −1
2

∫
Σ
f(∗dΣg) dVΣ. (8.8)

Hence we may instead express the commutator function for the chiral bracket as
1
2 ∗ dΣ. This is consistent with (8.5) which, due to the non-uniqueness of ρ : Σ ∼→ Σ0,
implies that EΣ must be invariant under Diff+(Σ).

Finally, we shall examine how the algebras we have defined behave under confor-
mally admissible embeddings.
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Proposition 8.1.3. Let (ρ, χ) :M→ M̃ be a CCauchy morphism. Define

P`(ρ, χ) : P`(Σ,M)→ P`(Σ̃,M̃)

F 7→ F ◦ ρ∗
(1). (8.9)

Then P` defines a functor CCauchy→ Poi.

Proof. As ρ is an oriented embedding, one can fairly quickly convince themselves that
the sets Ξn

± are preserved by the induced maps ρ∗ : T ∗Σn → T ∗Σ̃n, thus Fc(Σ)→ Fc(Σ̃)
under this map.

To show this map is a Poisson algebra homomorphism, consider, for F,G ∈ Fc(Σ),
ψ̃ ∈ E(Σ̃)

{P`χF,P`χG}Σ̃
` [ψ̃] =

〈
EΣ̃, (P`χF )(1) [ψ̃]⊗ (P`χG)(1) [ψ̃]

〉
. (8.10)

Aquick calculation shows that
〈
(P`χF )(1) [ψ̃], f

〉
=
〈
F (1)[ρ∗

(1)ψ̃], ρ∗
(1)f

〉
. Then, recalling

Proposition 7.2.2, we have ρ∗
(1)∂Σ̃ = ∂Σχ

∗, from which we can deduce that

(ρ∗
(1) ⊗ ρ∗

(1))EΣ̃ = (∂Σ ⊗ ∂Σ)EM = EΣ, (8.11)

thus (8.10) becomes simply {F,G}Σ̃
` [ρ∗

(1)ψ̃] as desired.

8.2 comparison with peierls algebra

As we have already seen, direct comparison between chiral observables and observ-
ables of the full spacetime algebra is complicated by the fact that ∂∗

Σ : D′(Σ)→ D′(M)
fails to send regular distributions on Σ to microcausal distributions onM. Roughly
speaking, this is due to the fact that the restriction i∗Σ : Ω1(M) → Ω1(Σ) in (7.14) is
‘too sharp’.

In order to make comparisons, we therefore wish to find a more regular map,
which coincides with ∂Σ on-shell. We shall again begin with the example of the t = 0
Cauchy surface, Σ0 ⊂ M2. In null coordinates, and for ε > 0 we define the family of
maps

∂Σ0,ε : E(M2)→ E(Σ0)

ϕ 7→
∫
R
(∂uϕ)(−s, v)δε(−s+v

2 ) dv

where the family {δε}ε>0 constitute a nascent delta, i.e. each function is smooth, inte-
grates to 1, and satisfies supp δε = [−ε, ε]. In the limit as ε→ 0, these maps weakly con-
verge to ∂Σ0 in the sense that, for all f ∈ D(Σ), 〈∂Σ0,εϕ, f〉Σ0

→ 〈∂Σ0ϕ, f〉Σ0
. Moreover,
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if ϕ ∈ KerP , then ∂Σ0,εϕ = ∂Σϕ for every ε > 0. If we define the natural transformation
Πon : P⇒ Pon by

(Πon)M : Fµc(M)→ Fµc(M)/IS(M) (8.12)
F 7→ [F ], (8.13)

then (Πon)M2 ◦ ∂∗
Σ0,ε = (Πon)M2 ◦ ∂∗

Σ0,ε′ , ∀ ε, ε′ > 0.

Proposition 8.2.1. For every ε > 0, the map ∂∗
Σ0,ε : F(Σ0) → F(M2) defined such that

∂∗
Σ0,εF [ϕ] = F [∂Σ0,εϕ] yields an injective Poisson algebra homomorphism P`(Σ0,M2) →

P(M2).

Proof. Firstly, we must show that the image of Fc(Σ0) under ∂∗
Σ0,ε lies within Fµc(M2).

We initially restrict our attention to the linear, regular observables on Σ, which may
be identified with D(Σ0). Linearity and continuity are preserved by ∂∗

Σ0,ε, hence we
have a map ∂∗

Σ0,ε : D(Σ0) → D′(M2). This map has an associated Schwartz kernel
K ∈ D′(M2 × Σ0). We can then use this kernel to compute the wavefront sets of
functionals in the image of ∂∗

Σ0,ε, as ∀ϕ ∈ E(M2), h ∈ D((M2)n)〈
(∂∗

Σ0,εF )(n)[ϕ], h
〉

=
〈
K⊗n, h⊗ F (n)[∂Σ0,εϕ]

〉
(8.14)

where the first variable of each copy ofK is paired with a variable of h and so the rest
with F (n)[∂Σ0,εϕ]. We can then use [Hör15, Theorem 8.2.14] once again to estimate
WF((∂∗

Σ0,εF )(n)[ϕ]) given estimates for WF(K⊗n) and WF(F (n)[∂Σ0,εϕ]).

By inspection, and using the appropriate coordinates, the integral kernel K may
be written as

K(u, v, s) = −∂u
(
δ(u+ s)δε(u+v

2 )
)
, (8.15)

from which we may deduce that

WF(K) =
{
(u, v,−u; ξ, 0, ξ) ∈ Ṫ ∗(Σ0 ×M2)

}
. (8.16)

After some work, the corresponding estimate is then

WF((∂∗
Σ0,εF )(n)[ϕ]) ⊆

{
(u1, v1, . . . ,un, vn; ξ1, 0, . . . , ξn, 0) ∈ Ṫ ∗(M2)n |

(−u1, . . . ,−un; ξ1, . . . , ξn) ∈WF(F (n)[∂Σ0,εϕ])
}
.

(8.17)

The wavefront set condition on F (n)[∂Σ0,εϕ] then precludes the option that ξi all have
the same sign, which is precisely what we need to conclude that WF((∂∗

Σ0,εF )(n)[ϕ]) ∩
(V n

+ ∪ V n
− ) = ∅, i.e. ∂∗

Σ0,ε : Fc(Σ0)→ Fµc(M2).
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Having established this, the more straightforward task is to show that this map
preserves Poisson brackets. Spelling it out, we need to demonstrate that ∀F,G ∈
Fc(Σ0), ϕ ∈ E(M2)〈

E, (∂∗
Σ0,εF )(1)[ϕ]⊗ (∂∗

Σ0,εG)(1)[ϕ]
〉

=
〈
EΣ0 , F

(1)[∂Σ0,εϕ]⊗G(1)[∂Σ0,εϕ]
〉
. (8.18)

This simply amounts to the statement that (∂Σ0,ε ⊗ ∂Σ0,ε)E = (∂Σ0 ⊗ ∂Σ0)E. This is
easily verified by looking at the precise form (8.3) of E. However, note also that, as
a map, the image of E is in the kernel of the wave-operator P , hence ∂Σ0,εE = ∂Σ0E.
By skew-symmetry, we can also verify that acting on the second argument of E with
∂Σ0,ε behaves the same way.

Lastly, the fact that this map is injective is a direct consequence of the fact that ∂Σ0,ε

is surjective.

Finally, we can use our embedding theorems to create analogous embeddings for
the chiral algebra of an arbitrary element (Σ,M) ∈ CCauchy. Suppose (ρ, χ) : (Σ,M)→
(Σ0,M2) is a CCauchy morphism. Starting from the equation ∂Σχ

∗ = ρ∗
(1)∂Σ0 , we might

try to define a regularised chiral derivative for Σ by ∂Σ,ε = ρ∗
(1)∂Σ0χ∗, where we make

sense of the pushforward by only asking for χ∗ϕ(x) = ϕ(χ−1(x)) to hold in some
neighbourhood of Σ0. As ∂Σ0ϕ0 only depends on dϕ0|Σ0 , we see that ∂Σ,ε is well de-
fined. However, by smoothing out ∂Σ0 to ∂Σ0,ε, we increased the region it is sensitive
to. In order to make sense of ∂Σ0,εχ∗, we need to make sure that the support of ∂Σ0,ε is
containedwithin the image of χ. For the particular waywe have constructed ∂Σ0,ε, this
means that Imgχmust contain the t = ±εCauchy surfacesΣ±ε. In effect this is because
∂Σ0,ε defines a map E(U)→ E(Σ0) for any open, causally-convex neighbourhood U of
J −(Σε) ∩ J +(Σ−ε). Hence, for any embedding χ :M→ M2 such that χ(M) ⊃ U , we
can define ∂Σ0,ε ◦ χ∗ := ∂Σ0,ε(χ−1)∗, where χ−1 : χ(M) ∼→M.

This might seem simple, as we can make ε arbitrarily small. However, if we con-
sider the case whereM⊂ M2 is the space in between the Cauchy surfaces expressed
in (t, x) coordinates as Σ± = {(±e−x2

, x)}x∈R, then clearly there is no ε > 0 such that
Σ±ε ⊂M.

The solution in this case is to find a new conformal embeddingM ↪→ M2, which
‘expands’M to contain these Cauchy surfaces. We accomplish this using the following
proposition. Note that in the following, the relation≺ between subsets of a spacetime
M is defined such that U ≺ V if and only if there is no future-directed causal curve
inM from v ∈ V to u ∈ U , in which case we say that U is no later than V. For Cauchy
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surfaces Σ ≺ Σ′, this necessarily implies that every point Σ is either in the past, or is
spacelike separated from, every point in Σ′.

Lemma 8.2.2. LetM⊂M2 be an open, causally-convex neighbourhood of the t = 0 Cauchy
surface Σ0, and let Σ± be a pair of Cauchy surfaces ofM such that Σ− ≺ Σ0 ≺ Σ+. Then
there exists a CLoc morphism χ : M → M2, such that χ(Σ0) = Σ0 and χ(Σ−) ≺ Σ−1 ≺
Σ1 ≺ χ(Σ+), where Σ±1 are the t = ±1 Cauchy surfaces of M2.

Proof. For the purposes of this proof, it will be convenient to work in (t, x) coordinates
rather than our usual null (u, v) system. Given this, we can express each Cauchy sur-
face as Σ± = {(±t±(x), x)}x∈R for a pair of smooth functions t± satisfying t±(x) >

0, |t′±(x)| < 1∀x ∈ R.

The goal is to find some ρ ∈ Diff+(Σ0) such that its extension to an embedding
χ : M → M2 takes Σ+ to the future of Σ1 and Σ− to the past of Σ−1. If we consider
onlyΣ+ (i.e.we look at the special casewhere t+ = t−), thenweneed to show that t > 1
for every (t, x) ∈ χ(Σ+). Using (7.8), and noting that in our case πΣ0

`/r(t, x) = (0, x± t),
we can formulate the equivalent condition for ρ as

ρ(x+ t+(x))− ρ(x− t+(x)) > 2. (8.19)

One choice of ρwhich satisfies this inequality is

ρ(x) := 2
∫ x

x′=0

dx′

t+(x′)
. (8.20)

Note that ρ is well defined as we always have that t+(x) > 0, and from ρ′(x) = 2
t+(x) ,

we see that ρ ∈ Diff+(Σ0). To see that ρ satisfies the inequality (8.19), we substitute
our choice into the above expression to find

ρ(x+ t+(x))− ρ(x− t+(x)) = 2
∫ x+t+(x)

x−t+(x)

dx′

t+(x′)
= 4t+(x)
t+(x+ c)

, (8.21)

for some c ∈ (−t+(x), t+(x)), using the intermediate value theorem. Finally, using
|t′+(x)| < 1, we see that t+(x+c) ∈ (t+(x)−c, t+(x)+c) ⊂ (0, 2t+(x)), hence 4t+(x)/t+(x+
c) > 2 as required.

In the case where t− 6= t+, one can use similar arguments to show that

ρ(x) = 2
∫ x

x′=0

(
1

t+(x)
+ 1
t−(x)

)
dx′ (8.22)

is an element ofDiff+(R)which satisfies both the necessary inequalities: |ρ(x+t±(x))−
ρ(x− t±(x))| > 2.
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With that, we are finally able to establish howP`(Σ,M) embeds intoP(M) in the
general case.

Theorem 8.2.3. For every (Σ,M) ∈ CCauchy, there exists an injective Poisson algebra ho-
momorphism ∂∗

Σ,ε : P`(Σ,M) → P(M). Moreover, by selecting such a map for each object
in CCauchy, we obtain a natural transformation

∂∗
ε : P` ⇒ Pon ◦ Π2. (8.23)

Proof. To first define the maps ∂Σ,ε, we must treat topologically planar spacetimes sep-
arately from cylindrical spacetimes. So let us first suppose thatΣ ' R. We can define a
time function onM such that Σ = t−1{0}. Using this, we then specify a pair of Cauchy
surfaces Σ± ⊂ M by t−1{±1}. By taking a diffeomorphism ρ0 : Σ ∼→ Σ0 ⊂ M2, we
then obtain a CLoc morphismM → M2 by theorem 7.1.3. Let Σt0 denote the t = t0

Cauchy surface inM2. If there exists some ε > 0 such thatJ +(Σ−ε)∩J −(Σε) ⊂ χ0(M),
then already we can define the map ∂Σ0,εχ0∗ by the argument preceding lemma 8.2.2,
hence we can set ∂Σ,ε := ρ∗

(1)∂Σ0,εχ∗ : E(M)→ E(Σ).

If this is not the case, we simply apply lemma 8.2.2 to χ0(M) with Cauchy surfaces
χ0(Σ±), to obtain a new embedding χ : M → M2, whereupon we can use any value
ε ∈ (0, 1).

For Σ ' S1, we proceed along similar lines to before, defining a pair of Cauchy
surfaces Σ− ≺ Σ ≺ Σ+ and a diffeomorphism Σ ∼→ Σ0 ⊂ E extending to a CLoc
morphism χ : M → E. This time, however, due to the compactness of S1 we can
deduce that, if χ(Σ±) = {(±t±(x), x)}x∈R, then both t±(x) are bounded from below, as
Σ ∩ Σ± = ∅. In particular, there exists some ε > 0 such that Img t+ ∪ Img t− ⊂ (ε,∞),
hence χ(Σ−) ≺ Σ−ε ≺ Σ0 ≺ Σε ≺ χ(Σ+), and we may define ∂Σ,ε := ρ∗

(1)∂Σ0,εχ∗ :
E(M)→ E(Σ).

Now that we have maps between configuration spaces, we must now show that
they are Poisson algebra homomorphisms, and that they satisfy the desired naturality
condition. The fact that ∂∗

Σ,εF ∈ Fµc(M) follows from the fact that (χ−1)∗ : Fµc(M)→
Fµc(χ(M)). To show the map is Poisson, by following similar arguments to proposi-
tion 8.1.3 it suffices to show that (∂Σ,ε ⊗ ∂Σ,ε)EM = EΣ. This can be shown readily
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as

(∂Σ,ε ⊗ ∂Σ,ε)EM = (ρ∗
1 ⊗ ρ∗

1)(∂Σ0,ε ⊗ ∂Σ0,ε)Eχ(M)

= (ρ∗
1 ⊗ ρ∗

1)(∂Σ0,ε ⊗ ∂Σ0,ε)EM0

= (ρ∗
1 ⊗ ρ∗

1)EΣ0

= EΣ. (8.24)

where in the second line we have used the fact that the support of ∂Σ0,ε is within the
image of χ(M), where Eχ(M) coincides with EM0 .

Finally we consider the naturality. Let (ρ, χ) : (Σ,M) → (Σ̃,M̃) be a CCauchy
morphism. Suppose that we have constructed ∂Σ,ε and ∂Σ̃,̃ε. For simplicity we shall
also use ∂∗

Σ,ε to denote the map P`(Σ,M)→ Pon(M). To show that

P`(Σ,M) Pon(M)

P`(Σ̃,M̃) Pon(M̃)

∂∗
Σ,ε

P`(ρ,χ) Ponχ

∂∗
Σ̃,̃ε

(8.25)

commutes, we need only show that F [∂Σ,εχ
∗ϕ] = F [ρ∗

(1)∂Σ̃,̃εϕ], for every F ∈ P`(Σ,M)
and ϕ ∈ KerPM̃. Immediately we have that ∂Σ̃,̃εϕ = ∂Σ̃ϕ, and also χ∗ : KerPM̃ →
KerPM, hence ∂Σ,εχ

∗ϕ = ∂Σχ
∗ϕ. Thus, both functionals are equal to F [∂Σχ

∗ϕ] and the
diagram commutes.

Remark 8.2.4. There are several comments to make at this point.

Firstly, it is important to note that all of the arbitrary decision making that goes
into the definition of ∂∗

Σ,ε, namely the choice of diffeomorphism ρ : Σ ∼→ Σ0 and the
corresponding choice of ∂Σ0,ε is ultimately irrelevant as all choices result in the same
map P`(Σ,M)→ Pon(M) once we take the quotient by IS(M).

Secondly, even though we also include the full spacetimeM in our definition of
the algebraP`(Σ,M), it is important to note that this is mostly a bookkeeping device.
For instance, if Σ̃ = Σ, and χ is simply the inclusion forM⊂ M̃, then ρ is the identity
and P`(ρ, χ) is the identity on Fc(Σ).

Thus we have found a theory of lower dimensionality which still embeds naturally
into the full on-shell spacetime algebra. Of course, we would not expect a sensible
embedding into the off-shell algebra, as P`(Σ,M) is an algebra on the initial data for
solutions inM, hence it is intrinsically on-shell.
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Moreover, unlike the canonical algebra of Cauchy data which we discuss in the
following section, this embedding is done without the inclusion of an auxiliary field
(namely the conjugate momentum in the canonical algebra). Roughly speaking, this
is because one is able towrite a solution to thewave equation as a sum of two solutions
to first order pdes. In other words, it is a definitively chiral phenomenon.

8.3 comparison to equal time commutation relations

An alternative way of deciding the form of the chiral bracket is by comparison to the
canonical or equal-time Poisson bracket. In terms of integral kernels, and with respect
to a Cauchy surface Σ ⊂M, this might be typically written as

{Φ(x),Π(y)}Σ
can = δΣ(x,y), (8.26)

where x,y ∈ Σ and δΣ ∈ D′(Σ2) is the Dirac delta with support on the diagonal of Σ2.

To make this more precise, we define the space of Cauchy data on Σ to be C(Σ) =
D(Σ,R2), i.e. pairs of smooth functions onΣwith compact support. For each f ∈ D(Σ),
can then denote the regular linear observables on C(Σ) by

Φ(f)[ψ, π] =
∫

Σ
fψ dVΣ, Π(f)[ψ, π] =

∫
Σ
fπ dVΣ. (8.27)

On which we define the canonical Poisson bracket

{Φ(f),Π(g)}Σ
can =

∫
Σ
fg dVΣ. (8.28)

For the massless scalar field, if (φ, π) are the Cauchy data for a solution ϕ, then
φ = ϕ|Σ and π = ϕ̇|Σ, where ϕ̇ is the derivative of ϕ along the future-directed normal
vector toΣ. This suggests themap ρ± : C(Σ)→ E(Σ), defined by ρ±(φ, π) = 1

2(π∓∗dϕ),
sends Cauchy data to the associated chiral configuration .

If consider the chiral boson Ψ from (8.1), then the pullback of ΨΣ(f) along ρ+ is

(ρ∗
+ΨΣ(f))[φ, π] = 1

2

∫
Σ
(fπ − f ∗dϕ) dVΣ.

Noting that
∫

Σ f(∗dϕ)dVΣ =
∫

Σ fdϕ = −
∫

Σ ϕdf = −
∫

Σ ϕ(∗df)dVΣ, we can write this
pullback in terms of the observables in (8.27) as

ρ∗
+ΨΣ(f) = 1

2
(Π(f) + Φ(∗df)) . (8.29)
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We can then consider the pullback of the canonical Poisson bracket along this map,
which we may then express as

{ΨΣ(f),ΨΣ(g)}Σ
` =

{
ρ∗

+ΨΣ(f), ρ∗
+ΨΣ(g)

}Σ

can

= 1
4
{Π(f) + Φ(∗df),Π(g) + Φ(∗dg)}Σ

can

= 1
2
{Φ(∗df),Π(g)}Σ

can

= −1
2

∫
Σ
fdg.

Which agrees exactly with eq. (8.8).

8.4 chiral primary fields

We have already discussed in chapter 5, fields are a central aspect of any approach to
quantum field theory, however the precise definition of what a field is varies consid-
erably. Previously, we gave a definition of fields rooted in the principle of local covari-
ance, where theories are functors Loc→ Obs for some suitable category of observables,
and fields are natural transformations from the functor of test functions to the func-
tor describing the theory. By defining new spacetime categories which accounted for
conformal isometries, and suitably modifying the functor assigning spaces their test
functions, we could say that a field was primary if the naturality condition held for
this expanded set of morphisms.

In [Sch08, Chapter 9], Schottenloher provides a characterisation of primary fields
in 2d Euclidean cftwhich we summarise below. Firstly, similarly toWightman qfts, a
field is defined as a tempered distribution overCwith values in unbounded operators
on some Hilbert space. The condition for such a field to be primary (with weight µ)
can be formally expressed as the condition that, for every holomorphic map z 7→ w(z)

U(w)Φ(z)U(w)−1 =
(
dw

dz

)µ
Φ(w(z)) (8.30)

where U is a unitary representation of the holomorphic transformations on H. To
obtain the precise definition, one considers the infinitesimal transformation w(z) =
z + εw0(z), for a holomorphic map w0. Differentiating each side with respect to ε and
evaluating at ε = 0 then generates the correct equation. In particular, on the left one
obtains an action of holomorphic functions on unbounded operators by derivations.
This is assumed (as one of the axioms) to be generated by brackets/commutators with
the stress-energy tensor, which we explore in section 8.6. Recalling that Φ(x) is really
the integral kernel of a distribution, we can integrate both sides of (8.30) with some
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f ∈ S(C) to obtain

U(w)Φ(f)U(w)−1 = Φ(w(µ−1)
∗ f), (8.31)

where Φ(f) =
∫
C Φ(z)f(z) dz and

w(µ−1)
∗ f :=

(dw
dz

)µ−1

· f

 ◦ w−1 (8.32)

is a map S(C) → S(C). (To make this more precise, for w(z) = z + εw0(z), we may
take w−1(z) = z − εw0(z) in order to generate the correct infinitesimal action.)

Forgetting the trouble with extending these relations beyond the infinitesimal gen-
erators, we can use this relation to characterise primary fields as equivariant maps be-
tween two representations of the ‘conformal group’ of holomorphic functions. One
representation acting on B(H), the algebra of observables, the other acting on S(C),
the space of test functions.

We should nowbe clear and state that we do not have a complete definition of a chi-
ral primary field which unites these two perspectives. However, we can infer several
qualitative features, and by restricting the scope of our locally covariant construction,
we can obtain a partial definition of a chiral primary field.

We begin by noting how the characterisation of primary fields as equivariant maps
is very close to the definition of locally covariant fields as natural transformations.

Recall that, given any object c of a category C, there is a group AutC(c) comprising
the invertible morphisms c→ c. If we restrict our attention to this subcategory, a func-
tor F : AutC(c) → Vec is simply a representation of AutC(c) on the space F (c), and
a natural transformation F ⇒ G between two functors is a single map F (c) → G(c)
which is equivariant with respect to the two representations of AutC(c). Hence if we
consider just one framed spacetime M = (M, (e`, er)) ∈ CFLoc as in definition 5.1.1,
and take the group Aut(M) of conformally admissible diffeomorphismsM→M, then
D(µ,µ̃) defines a representation of Aut(M) on D(M), any functor A : CFLoc → Obs de-
fines a representation of Aut(M) onA(M), and a primary field of weight (µ, µ̃) defines
an equivariant map between the two.

Notably, we had to go fromCLoc to a new category, CFLocwhich assigns additional
data to each spacetime in the form of a global frame. In the spirit of [Few18], this is so
that tensor fields such as the stress-energy tensor may be separated into scalar compo-
nents. Aswedo notwish for the theory to depend on this additional data, we assumed
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that the functor CFLoc → Obs factorised into the composition of the surjective func-
tor p : CFLoc → CLoc, which forgets about the additional frame data, and a functor
CLoc→ Obs defining the theory.

It is at present unclear how this procedure generalises to the chiral setting for
an arbitrary globally hyperbolic spacetime. However, if we restrict our attention to
Minkowski spacetime, then we can continue our analysis further. We define the cate-
gory Cauchy(M2) as the full subcategory of CCauchy comprising objects (Σ, U) where
U ⊆M2 is open and causally convex.

We can implement theweightedpushforwards as a family of functorsD(µ)
` : Cauchy(M2)→

TVec such that D(µ)
` (Σ, U) = D(Σ), and for a morphism (ρ, χ) : (Σ, U) → (Σ̃, Ũ)

D
(µ)
` (ρ, χ)(f) := ρ∗(ω`|µ−1

Σ f), where χ∗du = ω`du. Lastly, we define the functor U :
Cauchy(M2) → CFLoc by U(Σ, U) = U , equipped with the canonical frame it inherits
fromM2. We can then relate our weighted representations using the following result

Proposition 8.4.1. For an object (Σ, U) ∈ Cauchy(M2), define the map η(Σ,U) : D(U) →
D(Σ) by

(η(Σ,U)h)(s) :=
∫
v∈R

h(−s, v)dv, (8.33)

where the coordinate s on Σ is obtained as the restriction of the map M2 → R; (u, v) 7→ −u.
Then η defines a natural transformation D(µ,0) ◦ U ⇒ D

(µ)
` , i.e. for every morphism (ρ, χ) :

(Σ, U)→ (Σ̃, Ũ), the following diagram commutes.

D(U) D(Σ)

D(Ũ) D(Σ̃)

η(Σ,U)

D(µ,0)χ D(µ)(ρ,χ)
η

(Σ̃,Ũ)

(8.34)

Proof. Suppose that Σ is sent to the interval I ⊆ R under the map (u, v) 7→ −u. We
can then express Σ as the graph {(−s, γ(s)) ∈ U}s∈I for some smooth embedding
γ : I ↪→ R. We can similarly express Σ̃ in terms of some γ̃ : Ĩ ↪→ R. Using (7.8), we
can write χ explicitly in null-coordinates as

χ(u, v) = (−ρ(−u), γ̃ργ−1(v)), (8.35)

where γ−1 : γ(I) → I, and we have identified ρ with a smooth embedding I ↪→ Ĩ
using our coordinate system. From this, we may calculate the conformal factors of χ
as

ω`(u, v) = ω`(u) = ρ′(−u), ωr(u, v) = ωr(v) = γ̃′(ργ−1(v))
γ′(γ−1(v))

ρ′(γ−1(v)). (8.36)
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In particular this means that ω`(−s, v) = ω`|Σ(s) = ρ′(s).

With our conformal factors suitably equated, we may now compute each path
around the above diagram. Let h ∈ D(M2), then

(ρ(1−µ)
∗ ◦ η(h))(s) = ω`|µ−1

Σ (s)
∫
v∈R

h(−ρ−1(s), v) dv

(η ◦ χ(1−µ,1)
∗ (h))(s) =∫

v′∈R
ω`(−ρ−1(s))µ−1ωr(γρ−1γ̃−1(v′))−1h(−ρ−1(s), γρ−1γ̃−1(v′)) dv′.

(8.37)

We then make the change of variables for the second integral v = γργ̃−1(v′), noting
that then dv = ωr(v)−1dv′ hence the two integrals are in fact equal.

Remark 8.4.2. What made this diagram commute were the facts that, firstly ω` de-
pended only on u, and hence could be taken out of the integral and secondly that
ωr depended only on v and naturally accounted for the change of variables necessary
to relate the integrals. Without a generalisation of these statements for a general mor-
phism of CFLoc, this argument cannot be readily generalised.

Given that Cauchy(M2) is a subcategory of CCauchy, we already have a classical
theory defined on it, P`|M2 : Cauchy(M2)→ Poi. Thus, for any natural transformation
Ψ : D

(µ)
` ⇒ P`|M2 , the maps η from the proposition 8.4.1, along with the natural

transformation ∂∗
ε : P` ⇒ Pon ◦ Π2 from theorem 8.2.3 can be composed horizontally

with Ψ to define a natural transformation

∂∗
ε ◦Ψ ◦ η : D(µ,0) ◦ U⇒ Pon ◦ p ◦ U. (8.38)

Unpacking the definition, this means that, for every conformally admissible embed-
ding χ : U −→ Ũ which restricts to a map ρ : Σ → Σ̃ between Cauchy surfaces, the
following diagram commutes.

D(U) D(Σ) P`(Σ, U) Pon(U)

D(Ũ) D(Σ̃) P`(Σ̃, Ũ) Pon(Ũ)

η(Σ,U)

D(µ,0)χ

Ψ(Σ,U)

D
(µ)
`

(ρ,χ)

∂∗
Σ,ε

P`(ρ,χ) Ponχ

η
(Σ̃,Ũ)

Ψ
(Σ̃,Ũ)

∂∗
Σ̃,̃ε

(8.39)

If one can then further show that, for any pair of Cauchy surfaces Σ, Σ̃ ⊂ U ,

∂∗
Σ,ε ◦Ψ(Σ,U) ◦ η(Σ,U) = ∂∗

Σ̃,̃ε ◦Ψ(Σ̃,U) ◦ η(Σ̃,U), (8.40)

then it is clear that we in fact have a natural transformation D(µ,0) ⇒ Pon ◦ p, i.e. a
primary field of weight (µ, 0) in the sense of section 5.2.
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As an example where this is the case, we can consider the chiral boson

Ψ(Σ,U)(f)[ψ] :=
∫

Σ
fψdVΣ. (8.41)

As we are working on-shell, (8.40) is satisfied if, ∀ϕ ∈ KerPM2 , h ∈ D(U)

Ψ(Σ,U)(η(Σ,U)h)[∂Σ,εϕ] = Ψ(Σ̃,U)(η(Σ̃,U)h)[∂Σ̃,̃εϕ]. (8.42)

By expanding out each definition, one can eventually show that these maps indeed
coincide, and that in fact they are equal to ∂ΦM2(h)[ϕ], the null derivative field from
example 5.2.1.

With this, we make our partial definition of a chiral primary field.

Definition 8.4.3. Let A` : Cauchy(M2) → TVec be a functor describing some locally
covariant theory. A chiral primary field of weight µ onM2 with values inA` is then defined
as a natural transformation D

(µ)
` ⇒ A`.

We can now show that, at least classically, monomials in the field strength satisfy
this definition, which is in agreement with section 5.3.

Example 8.4.4. For n ∈ N, and (Σ, U) ∈ Cauchy(M2) the maps Ψn : D(Σ) → P`(Σ, U)
defined by

Ψn
(Σ,U)(f)[ψ] :=

∫
I
f(s)ψn(s)γ′(s)

n
2 ds (8.43)

constitute a chiral primary field of weight n. Moreover ∂∗ ◦Ψn ◦ η = Πon ◦ ∂Φn.

To see this we must show that, for every commuting square

Σ Σ̃

U Ũ

ρ

χ

(8.44)

and every pair f ∈ D(Σ), ψ ∈ E(Σ̃)

Ψn
(Σ,U)(f)[ρ∗

(1)ψ] = Ψn

(Σ̃,Ũ)(ρ∗(ω`|µ−1
Σ f))[ψ]. (8.45)

Using the same coordinate system as in the proof or proposition 8.4.1, we can ex-
press the conformal factors in terms of (8.36) and hence write each side of this equa-
tion explicitly as

Ψn
(Σ,U)(f)[ρ∗

(1)ψ] =
∫

I
f(s)(ρ∗ψ)n(s)

(
γ̃′(ρ(s))
γ′(s)

)n
2
ρ′(s)nγ′(s)

n
2 ds, (8.46)

Ψn

(Σ̃,Ũ)(ρ∗(ω`|n−1
Σ f))[ψ] =

∫
Ĩ
ρ∗((ρ′)n−1f)(s̃)ψn(s̃)γ̃′(s̃)

n
2 ds̃, (8.47)
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from which we can clearly see the two expressions coincide.

Finally, if we take ϕ ∈ KerPU , then

∂Φn
U(f)[ϕ] =

∫
U
f(u, v)(∂uϕ)n(u) dudv

=
∫

I

(∫
R
f(u, v) dv

)
(∂uϕ)n(u) du

= Ψn(ηf)[∂Σϕ] (8.48)

where we have used the facts that ∂Σϕ(s) = 1√
γ′(s)

(∂uϕ)(−s, γ(s)), and supp (ηf) ⊆ I.
This demonstrates that ∂Φn and ∂∗ ◦ Ψn ◦ η define the same on-shell observable as
required.

However, we shall usually be able to work with a weaker definition, where this
behaviour is only observed with respect to isometries and dilations.

Definition 8.4.5. Define the subcategory Cauchy(M2)0 of Cauchy(M2) which contains
the sameobjects, but only thosemorphisms forwhichω` is constant. LetA` : Cauchy(M2)→
TVec as before. A homogeneously scaling locally covariant field of weight µ on M2 with val-
ues in A` is a natural transformation D

(µ)
` |Cauchy(M2)0 ⇒ A`|Cauchy(M2)0

Remark 8.4.6. What is typically missing from the locally covariant description (by de-
sign) is the continuity that an algebra-valued distribution enjoys. We have accounted
for this by making the target category of bothD

(µ)
` and the functor describing the the-

ory (e.g. P`) the category TVec of topological vector spaces. As we shall see in the
following section, adding in this requirement will allow us to apply our algebraic op-
erations, such as Poisson brackets, ?-products and commutators, to fields in order to
produce ordinary, C-valued distribution. The transformation properties of the fields
will then descend to the level of these distributions, allowing us to impose tight con-
straints.

To conclude this section, we shall demonstrate a property of fields satisfying the
above definition that shall be useful in later proofs.

Lemma 8.4.7. Let Ψ : D
(µ)
` |Cauchy(M)0 ⇒ P`|Cauchy(M2)0 be a locally covariant field on M2

with values in P`|Cauchy(M2)0 , then ∀ f ∈ D(Σ), supp Ψ(Σ,U)(f) ⊆ supp f .

Proof. Due to the linearity of Ψ(Σ,U), we may assume that supp f is connected, (oth-
erwise f is a finite sum of fi ∈ D(Σ) which have connected supports). Let Σf ⊆ Σ
be any open (in Σ), connected neighbourhood of supp f , then there exists an open,
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causally-convex neighbourhood Σf ⊂ Uf ⊆ U (which can be seen by taking the
intersection of any open, causally convex neighbourhood of Σf with U). Let us de-
note by (i, iU) the inclusion morphism (Σf , Uf )→ (Σ, U), then we can clearly see that
D

(µ)
` (i, iU) : D(Σf ) → D(Σ) is simply the pushforwards along the inclusion i, hence

f = D(µ)(i, iU)(f |Σ) = i∗f |Σ.

Using the naturality of Ψ, we may then write that

Ψ(Σ,U)(f) = Ψ(Σ,U)
(
D(µ)(i, iU)(f |Σ)

)
= P`(i, iU)

(
Ψ(Σf ,Uf )(f |Σ)

)
. (8.49)

From the definition of the morphism P`(i, iU), it is then clear that supp Ψ(Σ,U)(f) ⊆
Σf . Given that this holds for any open, connected neighbourhood of supp f , we must
conclude that supp Ψ(Σ,U)(f) ⊆ supp f .

Remark 8.4.8. Note that we only needed inclusion morphisms for this result. However,
as we shall not be dealing with any explicit examples of fields which do not scale
homogeneously, there is no need to introduce yet more notation in order to state the
most efficient version of this lemma.

8.5 constraints on chiral brackets

We have now seen several ways the Poisson bi-vector of the chiral algebra may be
obtained. In this section, we see that some generic assumptions about a conformal
field theory can yield tight constraints on the Poisson structure.

Other than the conformal covariance property, the key feature we shall be em-
ploying is Einstein causality. A classical theory P : Loc → Poi (or a quantum theory
A : Loc → Alg) satisfies Einstein causality if, for any pair N ,N ′ ∈ M of casually con-
vex open sets which are spacelike separated, the Poisson bracket (resp. commutator)
of any pair F ∈ P(N ), G ∈ P(N ′) vanishes.

It is in this section that we take advantage of our alternative definition of locally
covariant fields in section 8.4, as it enables us to use results from the theory of distri-
butions in our analysis. If we define a field with values in P`(Σ,M) (with no assump-
tions on covariance) as a linear continuous map Ψi : D(Σ) → P`(Σ,M) satisfying
supp Ψi

Σ(f) ⊆ supp f then we may show the following.

Proposition 8.5.1. Let Ψi and Ψj be a pair of fields with values in P`(Σ,M) such that, for
any ψ ∈ E(Σ), the Schwartz kernel Ki/j

ψ ∈ D′(M2) associated to the map f 7→ Ψi(f)(1)[ψ]
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satisfies WF(Ki/j
ψ ) ∩

{
(x, y, ξ, 0) ∈ Ṫ ∗M2

}
= ∅. Then the map

f ⊗ g 7→
{
Ψi

Σ(f),Ψj
Σ(g)

}Σ

`
[ψ] (8.50)

defines a distribution Eij
ψ ∈ D′(Σ2).

Proof. We can equip the underlying space Fc(Σ) of P`(Σ,M) with the topology τBDF ,
which is the initial topology with respect to the maps

Fc(Σn)→ E′
Ξn

(Σn)

F 7→ F (n)[ψ]

where the topology on E′
Ξn

(Σn) = {u ∈ E(Σn) |WF(u) ∈ Ξn} is theHörmander topology
[BDH16, p2], and the cones Ξn = Ξn

+ ∪ Ξn
− are defined in proposition 8.1.1. In partic-

ular, this combined with the assumption that f 7→ Ψi
Σ(f) is also continuous, implies

that

f 7→ ψiΣ(f)(1)[ψ] (8.51)

is a linear, continuous map D(Σ)→ D(Σ) ⊂ E′(Σ).

By the Schwartz kernel theorem, we may therefore identify the map (8.51) with
an element Ki

ψ ∈ D′(Σ2). We then claim that the desired distribution has the integral
kernel{

Ψi(z1),Ψj(z2)
}

[ψ] :=
∫

Σ2
E(y1, y2)Ki

ψ(z1, y1)Kj
ψ(z2, y2) dy1dy2 (8.52)

where Kj
ψ the corresponding distribution from Ψj

Σ. To show that this integral kernel
is well defined, we use [Hör15, Theorem 8.2.14], for which the necessary conditions
are

1. The map supp (Ki
ψ ⊗K

j
ψ) 3 (z1, y1, z2, y2) 7→ (z1, z2) is proper, i.e. the pre-image

of any compact set is compact.

2.
{
(y1, y2;−η1,−η2) ∈WF(E) | ∃ (z1, y1, z2, y2; 0, η1, 0, η2) ∈WF(Ki

ψ ⊗K
j
ψ)
}

= ∅.

The first of these follows from the fact that supp Ψi(f) ⊆ supp f , from which we
may deduce that supp (Ki

ψ ⊗K
j
ψ) ⊆ {(z1, z1, z2, z2) ∈ Σ4}(z1,z2)∈Σ2 , hence the projection

map is clearly proper. The second is then a consequence of the restriction on WF(Ki/j
ψ )

made in the hypothesis and [Hör15, Theorem 8.2.9].
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Remark 8.5.2. The technical condition on WF(Ki/j
ψ ) may appear restrictive. However,

if one considers the motivating example of such fields,

ΨP (f)[ψ] =
∫
R
f(x)P (ϕ(x), ∂xϕ(x), . . . , ∂nxϕ(x)) dx, (8.53)

where P is some polynomial with coefficients in E(R), then KP
ψ (x, y) is a polynomial

in δ(x − y) and its derivatives (with coefficients in E(R)). This means WF(KP
ψ ) is

orthogonal to the tangent bundle of ∆2 ⊂ M2, hence, in particular it satisfies the
condition set out in proposition 8.5.1.

For the remainder of this section, we shall assume that Σ = Σ0, the t = 0 Cauchy
surface of M2. This allows us to use both translation as well as dilation morphisms.
We do this primarily for convenience, as we can then easily formulate the condition of
homogeneous scaling. To generalise, we may either use the embedding results such
at theorem 7.1.3, or we could adopt a more geometric approach using the microlocal
scaling degree [BF00, §6] of the relevant distributions.

We can think of the map P`(Σ,M) → R given by evaluation at a fixed ψ ∈ E(Σ)
as a classical ‘state’. One of these states, namely ψ ≡ 0 is special in that it is invariant
under the action ofDiff+(Σ) = AutCCauchy(Σ). This is a classical realisation of the notion
that the vacuum state is invariant under conformal transformations. As such, one can
consider the following results as statements about the ‘vacuum expectation values’ of
the corresponding observables.

Proposition 8.5.3. Let Eij
0 (x, x′) =

{
Ψi

Σ(x),Ψj
Σ(x′)

}Σ

`
[0]. This distribution is translation

invariant, i.e. there exists a distribution inD(Σ0) (which we shall also denote Eij
0 by an abuse

of notation) such that Eij
0 (x, x′) = Eij

0 (x− x′).

Proof. Let tc : x 7→ x+ c be a translation operator on Σ0, it suffices to show that〈
Eij

0 , tc∗f ⊗ tc∗g
〉

=
〈
Eij

0 , f ⊗ g
〉

(8.54)

for all f, g ∈ D(Σ0). As we are only considering translations, we can ignore the con-
formal weights for the time being. Hence the covariance property of our fields reads

Ψi
Σ0(tc∗f) = P`tcΨi

Σ0(f). (8.55)

expanding out the left-hand side of (8.54), and making use of the fact that P`tc∗ is a
Poisson algebra homomorphism, we find〈

Eij
0 , tc∗f ⊗ tc∗g

〉
=
(
P`tc

{
Ψi

Σ0(f),Ψi
Σ0(g)

}Σ0

`

)
[0]. (8.56)
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Recall that these homomorphisms were defined by (P`ρF ) [ψ] := F [ρ∗
(1)ψ]. However,

in this case our choice of configuration is invariant under the action of all such mor-
phisms, hence we arrive at the desired equation.

Proposition 8.5.4. Eij
0 is supported on the diagonal {(x, x)}x∈Σ0

⊂ Σ2
0, hence it is of the form

Eij
0 (x, x′) =

n∑
k=0

ak

(
∂

∂x

)k
δ(x− x′), (8.57)

for some n ∈ N and ak ∈ R.

The first statement is actually a consequence of Einstein causality in the full theory,
as well as the fact that supp Ψi

Σ(f) ⊆ supp f , as was shown in lemma 8.4.7. As such,
we shall save the proof of this until theorem 10.2.3 The fact that a distribution on the
diagonal is necessarily of the form (8.57) is [Hör15, Theorem 2.3.4].

Nowwe have taken full advantage of the translation morphisms, we introduce the
dilation morphisms, for Λ > 0, mΛ : M2 → M2;x 7→ Λ · x. Clearly these preserve Σ0,
and we shall denote their restriction/co-restriction to Σ0 also bymΛ. The next result is
the first that utilises conformal covariance, which iswhy it is only now relevantwhether
or not the fields Ψi/j are primary.

First, we need to briefly introduce a new definition:

Definition 8.5.5. A distribution u ∈ D′(Rn) scales homogeneously with degree µ ∈ R if,
∀Λ > 0,m∗

Λu = Λ−µu or, in terms of integral kernels, u(Λx) = Λ−µu(x).

Proposition 8.5.6. If Ψi and Ψj are homogeneously scaling with weights µi, µj ∈ N respec-
tively, then Eij

0 scales homogeneously with degree µi + µj , hence

Eij
0 (x, x′) = a

(
∂

∂x

)µi+µj−1

δ(x− x′). (8.58)

Proof. First we consider the claim of homogeneous scaling. Similarly to the translation
invariance, it will suffice to show that〈

m∗
ΛE

ij
0 , f ⊗ g

〉
≡ Λ−2

〈
Eij

0 , (mΛ∗f)⊗ (mΛ∗g)
〉

=
〈
Eij

0 , f ⊗ g
〉

(8.59)

For the dilation morphisms introduced above, the conformal factor ω` is the constant
Λ−1, hence the naturality condition implies

Λµi−1Ψi
Σ0 (mΛ∗ (f)) = P`mΛΨi

Σ0(f), (8.60)
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where, sinceΛµi−1 is constant, we can simply pull it outsideΨi
Σ0 . Bringing these factors

over to the right-hand side, we find
〈
Eij

0 , (mΛ∗f)⊗ (mΛ∗g)
〉

= Λ2−µi+µj

(
P`mΛ

{
Ψi

Σ0(f),Ψi
Σ0(g)

}Σ0

`

)
[0]. (8.61)

Again, noting that our ‘state’ F 7→ F [0] is invariant under the P`mΛ morphisms, we
arrive at the desired equation.

A quick calculation shows that that the distribution (∂/∂x)kδ(x) scales homoge-
neouslywith degree 1+k. 1 Aswehave already establishedEij

0 to be of the form (8.57),
we see that all but one of these terms must vanish, leaving us with (8.58).

Finally, applying this result when Ψi = Ψj is the chiral boson, we get.

Corollary 8.5.7. The commutator of the chiral boson on Σ0 is proportional to δ′(x− x′).

Naturally, we already know this to be the case, but it is nevertheless significant
that conformal covariance alone determines everything except the constant of propor-
tionality. We shall see in section 9.3 that, for the chiral boson, even this constant can
determined using partial knowledge of the ope of Ψ with itself.

Remark 8.5.8. Note that δ(µi+µj−1) is skew-symmetric precisely when µi + µj is even.
This is clearly satisfied for the bracket of a field with itself given that its weight is
a natural number. Moreover, we can easily see how a similar result would look for
fermionic fields. If the Poisson bracket was suitably graded, then the bracket of a
fermionic field with itself would instead be a symmetric distribution supported on
the diagonal and would hence vanish unless the weight µwas a half-integer.

8.6 chiral stress-energy tensor and conformal symmetry

Another important example of a chiral primary field is the (chiral component of the)
stress-energy tensor. This is simply half the square of the chiral boson defined above,

TΣ(f)[ψ] := 1
2

∫
Σ
fψ2dVΣ. (8.62)

Note that the corresponding observable in the full algebra, given as an integral kernel,
is then ∂∗

ΣTΣ(x)[ϕ] = 1
2(∂Σϕ)2(x), so this is indeed the left-moving component of the

stress-energy tensor for the massless scalar field.
1The general result is that for δ ∈ D′(Rn), and α ∈ Nn a multi-index, the distribution ∂αδ scales

homogeneously with degree n + |α|
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It iswell-understood in the physical literature that spacetime symmetries are gener-
ated infinitesimally by the stress-energy tensor: either with the Poisson bracket in the
classical theory, or the commutator in the quantum theory. In the framework of locally
covariant qft, this fact is encapsulated by the principle of relative Cauchy evolution. The
concept is a littlemore subtle than in theWightman framework, as a generic spacetime
does not posess translation symmetries (which by Noether’s theorem would then be
associated to momentum operators).

In relative Cauchy evolution, rather than considering infinitesimal translations,
one instead perturbs the spacetime metric slightly, g 7→ g + εh for some compactly
supported symmetric tensor h. One then compares how the time-evolution of an ob-
servable O localised in the past of supph proceeds in the perturbed and unperturbed
spacetimes, the discrepancy is what we call the relative Cauchy evolution of O with
respect to εh. For more details, see [BFV03, §4.1]. Notably, in many examples, it has
been shown that relative Cauchy evolution is generated infinitesimally by the stress-
energy tensor.

In the present framework, we can demonstrate this explicitly with the following
result

Proposition 8.6.1. LetΣ ⊂ E be a Cauchy surface of the Einstein cylinder E and let h ∈ D(Σ)
such that the flow ρ(t) ∈ Diff(Σ) generated by the vector field h d/dx is orientation preserving
at every t where it is defined. Let Ψ be the chiral boson (8.1) and T be the chiral stress energy
tensor. Then

{TΣ(h),ΨΣ(f)}Σ
` = −ΨΣ(hf ′) = d

dt

(
P`ρ

(t)ΨΣ(f)
) ∣∣∣

t=0
. (8.63)

In other words, the Diff+(Σ) covariance of Ψ is generated by taking the Peierls bracket with T .

Proof. For the flow {ρ(t) ∈ Diff+(Σ)}t∈(−ε,ε) of a vector field X ∈ X(Σ), we can write
ρ

(t)
∗ f = (ρ(−t))∗f = f − tLXf +O(t2) where LX denotes the Lie derivative alongX . By

linearity of ΨΣ in the test function, we then have that

P`ρ
(t)ΨΣ(f) = ΨΣ(ρ(t)

∗ f) = ΨΣ(f)− tΨΣ(LXf) +O(t2). (8.64)

setting X = h d
dx
, we see that the second and third terms of (8.63) are equal.
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To establish the first equation we just compute the chiral Poisson bracket explicitly:

{T (h),Ψ(f)}Σ
` [φ] = −

∫
Σ
T (h)(1)[φ](x)dΨ(f)(1)[ϕ](x)

dx
dx

= −
∫

Σ
h(x)φ(x) df

dx
(x) dx

= −Ψ (hf ′) [φ].

In the future, it would be interesting to see if a more general result could be ob-
tained using relative Cauchy evolution. In the cft literature, it is common (e.g. [Sch08,
Definition 9.7]) to define primary fields in terms of their commutator (Poisson bracket
in our case, as we are still classical) with the stress-energy tensor. Given that a pri-
mary field ought to respond in a predictable way to a metric perturbation of the form
gM 7→ gM(1 + εh) for h ∈ D(M), one ought to be able to find constraints on its relative
Cauchy evolution. However, we shall not explore this issue further.

Now that we have studied the classical algebra in detail, in the following chap-
ter, we shall see that many of our constructions require only minimal adjustments to
obtain the analogous quantum constructions.



9

Quantisation of the Chiral Algebra

Now we turn our attention to the quantisation of the algebra constructed in the pre-
vious chapter. As one might expect, we start by finding a deformation of the algebras
P`(Σ,M). We then show how these algebras embed naturally into A(M) from part I.
Finally, we discuss how this chiral algebra can compute the operator product expansions
of both the chiral boson and the stress energy tensor, and comment on how the form
of these opes is constrained by scaling invariance.

9.1 the quantum chiral algebra

We shall start as we did when constructing the classical chiral algebra, namely by con-
sidering a pair of linear functionals Ψ(f),Ψ(g) for f, g ∈ D`/r(Σ). Firstly, ignoring
wavefront sets, ∂∗

ΣΨ(f) is a linear observable onM, thus we may attempt to compute
its ?H product, resulting in

∂∗
ΣΨ(f) ?H ∂∗

ΣΨ(g) = ∂∗
ΣΨ(f) · ∂∗

ΣΨ(g) + ~
〈
(∂Σ ⊗ ∂Σ)[ i2E +H], f ⊗ g

〉
Σ2
. (9.1)

Thus, similarly to the case of the chiral Poisson bracket, the product of linear ob-
servables is computed by the bi-distribution (∂Σ ⊗ ∂Σ)[ i2E + H] =: WΣ ∈ D′(Σ2),
where again we can verify this distribution is well-defined by combining proposi-
tion 4.3.1 and proposition 7.2.2 to obtain WΣ = (ρ∗

(1) ⊗ ρ∗
(1))WΣ0 , for a suitable choice

Σ ∼→ Σ0 ⊂ M0 ∈ {M2,E}. Moreover, precisely the same wavefront set condition
that caused Fc(Σ) to be closed as a Poisson algebra allows us to define a deformation
quantisation of that algebra via the following proposition:

Proposition 9.1.1. Let Σ ⊂ M be a Cauchy surface of some globally hyperbolic spacetime,
and let Fc(Σ) denote the space of functionals defined in proposition 8.1.1. Then, for any H ∈
Had(M), the space Fc(Σ)[[~]] equipped with the product

F ?H,` G[ψ] =
∞∑
n=0

~n

n!
〈
W⊗n

Σ , F (n)[ψ]⊗G(n)[ψ]
〉

(9.2)

132
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is a closed ∗-algebra, with involution given by pointwise complex conjugation.

Proof. The proof is comparable to that of Proposition 8.1.1. We won’t prove the more
elementary properties of a ∗-algebra, though we shall point out that associativity fol-
lows from the particular form of (9.2) [HR19, Proposition 4.5].

For well-definedness and closure we must show that, for every n,m > k ∈ N, the
map D(Σn)⊗D(Σm)→ D′(Σn+m−2k) defined by

f ⊗ g 7→
∫

Σ2k
WΣ(u1, uk+1) · · ·WΣ(uk, u2k)

f(u1, . . . , uk, u
′
1, . . . u

′
n−k)g(uk+1, . . . , u2k, u

′′
1, . . . u

′′
m−k) du1 · · · du2k

(9.3)

extends to a map

E′
Γn

(Σn)⊗ E′
Γm

(Σm)→ D′
Γn+m−2k

(Σn+m−2k) (9.4)

whereΓn = T ∗Σn\(Ξn
+∪Ξn

−) is the cone of allowablewavefronts fromProposition 8.1.1.

Looking in particular atWΣ0 , or in general by applying Hörmander’s pullback the-
orem to (Π`d⊗ Π`d)W along the embedding Σ× Σ ↪→M×M, we see that

WF(WΣ) =
{
(r, r; ξ,−ξ) ∈ Ṫ ∗Σ2 | ξ > 0

}
, (9.5)

where the sign of ξ is defined with respect to an arbitrary oriented chart on Σ. We
must now consider the set

(Γn+k × Γm+k \ 0Σn+m+2k) •WF(W⊗k
Σ ) :=

{
(sF , sG; ξ

F
, ξ
G

) ∈ T ∗Σn+m |

∃ (r1, r2; η,−η) ∈ T ∗Σ2k, (r11,r12, . . . , rk1, rk2; η1,−η1, . . . , ηk,−ηk) ∈WF(W⊗k
Σ ),

(r1, sF , r2, sG; η, ξ
F
,−ηξ

G
) ∈ (Γn+m × Γm+k \ 0Σn+m+2k)

}
.

If this set is disjoint from 0Σn+m , then the domain of (9.3) can be extended to the set
in (9.4), and if the set is disjoint from Ξn+m

± , then its codomain is also where we need
it. We only spell out the argument that the existence of a covector

(sF , sG; ξ
F
, ξ
G

) ∈ Ξn+m
+ ∩ (Γn+k × Γm+k \ 0Σn+m+2k) •WF(W⊗k

Σ )

leads to a contradiction. The remaining case (sF , sG; ξ
F
, ξ
G

) ∈ Ξn+m
− then follows from

an analogous argument.

Suppose (r1, r2; η,−η) ∈WF(W⊗k
Σ ) is thewitness for the statement (sF , sG; ξ

F
, ξ
G

) ∈
(Γn+k×Γm+k\0Σn+m+2k)•WF(W⊗k

Σ ). In particular, this means that (r1, sF ; η, ξ
F

) ∈ Γn+k.
However, as ηi ≥ 0, ∀ 1 ≤ i ≤ k, this is only consistent with (sF , sG; ξ

F
, ξ
G

) ∈ Ξn+m
+

if both ξ
F
and η vanish, the latter of which implies ξ

G
also vanishes, leading to the

contradiction.
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A routine calculation then shows that, for H,H ′ ∈ Had, one can define maps
βH′−H : Fc(Σ)[[~]]→ Fc(Σ)[[~]] analogously to (2.63),

βH′−HF =
∞∑
n=0

~n

2nn!
〈
(H ′

Σ −HΣ)⊗n, F (2n)
〉

(9.6)

which intertwine ?H,`with ?H′,`. We then define the quantum chiral algebra as follows:

Definition 9.1.2 (Quantum Chiral Algebra). Let Σ be a Cauchy surface of some glob-
ally hyperbolic spacetimeM, the quantum chiral algebra on Σ is the ∗-algebra defined
by

A`(Σ,M) =
{
(FH)H∈Had(M) ⊂ Fc(Σ)[[~]] | βH′−HFH = FH′

}
(9.7)

with product

(FH)H∈Had(M) ?` (GH)H∈Had(M) = (FH ?H,` GH)H∈Had(M). (9.8)

To a given CCauchy morphism (ρ, χ) : (Σ,M) → (Σ̃,M̃), we assign the map defined,
for H̃ ∈ Had(M̃) by

(A`(ρ, χ)F )
H̃

= F
χ∗H̃
◦ ρ∗

(1). (9.9)

Remark 9.1.3. Note that the map (9.9) is well-defined because: firstly, we have already
seen that F 7→ F ◦ ρ∗

(1) is a well-defined map Fc(Σ) 7→ Fc(Σ̃); secondly, the consistency
condition is satisfied, because〈

(H̃ ′
Σ − H̃Σ)⊗n, (F

χ∗H̃
◦ ρ∗

(1))(2n)
〉

=
〈

(ρ∗
(1))⊗2n(H̃ ′

Σ − H̃Σ), F (2n)
χ∗H̃
◦ ρ∗

(1)

〉
,

= 2n
(
dn

d~n
β
χ∗H̃′−χ∗H̃

F |~=0

)
◦ ρ∗

(1);

and lastly, using a similar equation to the above we can verify that A`(ρ, χ) is a homo-
morphism with respect to ?`.

Having defined the quantum chiral algebra, we must ask both how these algebras
vary as we change Cauchy surfaces, and how they relate to the full algebras A(M).
Both of these are addressed by the following theorem.

Theorem 9.1.4. For an object (Σ,M) ∈ CCauchy, any choice of map ∂Σ,ε : E(M) → E(Σ)
as defined in theorem 8.2.3 defines a map θΣ,ε : A`(Σ,M)→ A(M) by

θΣ,ε (FH)H∈Had(M) :=
(
∂∗

Σ,εFH
)
H∈Had(M)

(9.10)

Moreover, choosing such a map for every pair (Σ,M) yields a natural transformation θ :
A` ⇒ Aon ◦ Π2.
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Proof. Firstly, this map is well-defined because

αH′−H∂
∗
Σ,ε = ∂∗

Σ,εβH′−H , (9.11)

as can be verified by a direct computation using property H2 from definition 2.8.1 of
Hadamard distributions to conclude that (∂Σ,ε⊗∂Σ,ε)H = (∂Σ⊗∂Σ)H . Given this, most
of what remains to be shown follows directly from the corresponding classical result
theorem 8.2.3. For the first statement all that we really need to check is that each θΣ,ε

is a homomorphism of ? products. Looking at the coefficient of ~n, this requires one
to show that for every H ∈ Had(M) and n ∈ N〈

( i2E+H)⊗n, (∂Σ,εF )(n)[ϕ]⊗ (∂Σ,εG)(n)[ϕ]
〉

=
〈
[(∂Σ ⊗ ∂Σ)⊗n( i2E +H)]⊗n, F (n)[∂Σ,εϕ]⊗G(n)[∂Σ,εϕ]

〉
.

(9.12)

Similarly to before, we can show that, for u ∈ D′(M2n) for any n ∈ N,〈
u, (∂Σ,εF )(n)[ϕ]⊗ (∂Σ,εG)(n)[ϕ]

〉
=
〈
(∂Σ,ε ⊗ ∂Σ,ε)⊗nu, F (n)[∂Σ,εϕ]⊗G(n)[∂Σ,εϕ]

〉
.

(9.13)

which once again follows from the fact that both E andH are bi-solutions to the equa-
tions of motion.

Naturality is also essentially unchanged from the classical result. Let (ρ, χ) : (Σ,M)→
(Σ̃,M̃) be a CCauchy morphism. For the appropriate on-shell diagram to commute, we
need to show that, ∀ (FH) ∈ A`(Σ,M)

AχθΣ,ε(FH) = θΣ̃,̃εA`(ρ, χ)(FH) + IS(M̃), (9.14)

where we have suppressed the index set Had(M), and we have used the fact that
the ideal IS(M) can be identified unambiguously as a subspace of A(M̃). Using the
definition of each of these maps, this means we need that, for every H̃ ∈ Had(M̃),
ϕ ∈ KerPM̃

FH [∂Σ,εχ
∗ϕ] = FH [ρ∗

(1)∂Σ̃,̃εϕ],

where H = χ∗H̃ , which is precisely the same equation as in theorem 8.2.3.

9.2 operator product expansions

We now turn our attention to one of the central features of 2dcft: the operator product
expansion. We shall begin by summarising how they arise in Euclidean signature, then
continue to demonstrate how several of these equations arise in the Lorentzian setting.
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There exists a very powerful axiomatisation of the chiral sector of a conformally
invariant Wightman qft build upon the mathematical structure of vertex operator alge-
bras. For a comprehensive account of this framework, we refer the reader to [Kac98]
and [FB04]. However, we shall give a brief account here of the concepts of fields and
their opes, which are of central significance in this approach.

A field in a vertex operator algebra is defined as formal power-series a(z) = ∑
n∈Z anz

−n,
where an ∈ End(V ) for some complex vector space V (the space of states of the the-
ory) and subject to the condition that, for every v ∈ V , there exists N ∈ Z such that
anv = 0 ∀n ≥ N .

This definition can be connected to our previous notions of a field. If we express
a Laurent polynomial f ∈ C[z, z−1] as ∑n∈Z fnz

−n where only finitely many fn ∈ C
are non-zero, then one can think of a(z) as a distribution on this space with values in
End(V ), where the pairing is given by

〈a, f〉 :=
∑
n∈Z

anf−n. (9.15)

Given a pair, a(z), b(w) of such fields, one is often interested inwhether they aremu-
tually local. We can define the composition of a(z) with b(w) as∑n,m∈Z anbmz

−nw−m ∈
End(V )[[z, z−1, w, w−1]]. The fields are then said to bemutually local if, for someN ∈ N

(z − w)N [a(z), b(w)] = 0. (9.16)

One can then show [Kac98, Corollary 2.2] that this commutator is of the form

[a(z), b(w)] =
N−1∑
j=0

∂(j)
w δ(z − w)cj(w), (9.17)

for some cj(w) ∈ End(V )[[w,w−1]]. The distributions ∂(j)
w are then expressed as the

difference of boundary values of two holomorphic functions on open subsets of C2.
Both functions are written as (z − w)−(j+1), however the domain of the first instance
is taken to be the region |z| > |w|, whereas the domain of the second is |w| < |z|. The
OPE of a and b in either of these domains is then obtained by replacing each ∂(j)

w δ(z−w)
with the appropriate holomorphic function in (9.17). This is typically written

a(z)b(w) ∼
N−1∑
j=0

cj(w)
(z − w)j+1 . (9.18)
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This series differs from the actual product a(z)b(w) by a term referred to as the normally
ordered product :a(z)b(w):, which can be computed by a decomposition of a(z) and b(z)
into positive and negative frequency modes.

We have already seen a property similar to (9.16) in the classical theory. Recall that
the chiral bracket of the chiral bosonwith itself may be considered a bi-distribution on
Σ2 for any Cauchy surfaceΣ. In the theory of distributions used in paqft, the analogue
of this equation is the combined statement that a distribution u ∈ D′(R2) is supported
on the diagonal {x, x}x∈R ⊂ R2, and that it has a scaling degree N with respect to the
diagonal. Even generically, the axiom of Einstein causality, when restricted to a chiral
algebra on a Cauchy surface, implies that the Peierls bracket/commutator of two fields
has this property in a Lorentzian aqft.

We now turn our attention to the problem of finding an analogue of (9.18) in our
current framework. We shall discuss the general case shortly, however we shall begin
by computing several examples.

In order to be concrete, we restrict oncemore to spacetimeswhich are open, causally
convex subsets of Minkowski space. Suppose that Σ is a Cauchy surface of such a sub-
set U ⊆ M2. From now on, we shall always assume our Hadamard distributionW is
the restriction of

WM2(u, v, u′, v′) = lim
ε↘0

−1
4π

ln
(
−(u− u′)(v − v′) + iεt

Λ2

)
. (9.19)

For a Cauchy surface Σ = {(−s, γ(s))}s∈R of M2, we can write the chiral derivative of
WM2 as

WΣ(s, s′) = −1
4π

1√
γ′(s)γ′(s′)

(
− d

ds
PV

( 1
s− s′

)
+ iδ′(s− s′)

)
, (9.20)

where PV denotes the Cauchy principal value defined by
〈
PV

(
1
x

)
, f
〉

= lim
ε↘0

∫
R\(−ε,ε)

f(x)
x

dx.

We shall now adopt the shorthand

1
(s− s′)n+1 := 1

n!

(
− d

ds

)n
PV

( 1
s− s′

)
for the remainder of this section.

From (9.20)we can also get the formula forΣ ⊂ U ⊆M2 by a suitable restriction, as
every Cauchy surface ofU can be extended to a Cauchy surface ofM2. This Hadamard
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distribution gives us a concrete realisation of A`(Σ, U) as (Fc(Σ)[[~]], ?H,`) Let us take
a pair f, g ∈ D(Σ) with disjoint support. Using this realisation, the ? product of the
chiral boson evaluated on each test function is

(ΨΣ(f) ?H,` ΨΣ(g))[ψ] = (ΨΣ(f) ·ΨΣ(g))[ψ]− ~
4π

∫
R2

f(s)g(s′)
(s− s′)2 ds ds′, (9.21)

where the disjoint support allows us to drop the imaginary part of the O(~) term. In
the above expression there is nothing to stop us from taking a limit where f and g

converge to Dirac deltas with supports at a pair of fixed points s, s′. Doing so, we can
write

(ΨΣ(s) ?H,` ΨΣ(s′))[ψ] = ψ(s)ψ(s′)− ~
4π

1
(s− s′)2 . (9.22)

This is a smooth function on Σ2 \ ∆. If we restrict our attention to the term which is
singular as we approach the diagonal, we could then write

(ΨΣ(s) ?H,` ΨΣ(s′))[ψ] ∼ − ~
4π

1
(s− s′)2 (9.23)

As another example, we may define the chiral stress energy tensor by

TΣ(f)[ψ] := 1
2

∫
Σ
f(s)ψ(s)2

√
γ′(s) ds. (9.24)

Applying the same procedure to this field, we find

(TΣ(f) ?H,` TΣ(g)) [ψ] = TΣ(f) · TΣ(g)[ψ] + ~
4π

∫
R2

f(s)ψ(s)g(s′)ψ(s′)
(s− s′)2 ds ds′

+ ~2

32π2

∫
R4

f(s1)δ(s1 − s2)g(s3)δ(s3 − s4)
(s1 − s3)2(s2 − s4)2 ds1 · · · ds4.

(9.25)

Where we once again can allow f, g to approach deltas to obtain

(TΣ(s) ?H,` TΣ(s′)) [ψ] = 1
4
ψ(s)2ψ(s′)2 + ~

4π
ψ(s)ψ(s′)
(s− s′)2 + ~2

32π2
1

(s− s′)4 . (9.26)

Taylor expanding ϕ(s) around s′, we then obtain a well-known ope

ωHM2 ,ψ (TΣ(s) ?H,` TΣ(s′)) ∼ ~2

32π2
1

(s− s′)4 + ~
4π

2TΣ(s′)[ψ]
(s− s′)2 + ~

4π
T ′

Σ(s′)[ψ]
s− s′ , (9.27)

where T ′
Σ(g) := −TΣ(∗ΣdΣg).
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Now that we have seen some explicit examples, we can make some comments
about the general connection. In the voa formalism, the analysis of the products of
fields is enabled by the existence of a product

End(V )[[z, z−1]]⊗ End(V )[[w,w−1]]→ End(V )[[z, z−1, w, w−1]] (9.28)

from operator-valued distributions to operator valued bi-distributions. The purpose
of the following section is to explore the extent to which such an analysis can be re-
produced using the tools of paqft.

Recall that in the classical theory we had a topology on our algebra P`(Σ,M)
which was initial with respect to the differentiation maps Fc(Σ) → E′

Ξn
(Σn). This

topology naturally extends to each of the spaces Fc(Σ)[[~]], and we can further show
that the maps βH′−H : Fc(Σ)[[~]] → Fc(Σ)[[~]] are homeomorphisms with respect to
this topology [BDF09, §3.1], hence if we equipA`(Σ,M)with the initial topologywith
respect to the maps

(FH)H∈Had(M) 7→ FH0

for each H0 ∈ Had(M), then these maps are also homeomorphisms. In other words,
to check that a map into or out of A`(Σ,M) is continuous, one need only show that
this is the case for any of its concrete realisations. This fact is particularly convenient
when considering states of the form we define below.

Definition 9.2.1. A Gaussian state is a map ωH0,ψ : A`(Σ,M) → C[[~]], where H0 ∈
Had(M), ψ ∈ E(Σ), defined by

ωH0,ψ(FH)H∈Had(M) 7→ FH0 [ψ]. (9.29)

Remark 9.2.2. As we have already noted, evaluation maps are continuous in the Bas-
tiani topology, hence the map ωH0,ψ : A`(Σ,M)→ C[[~]] is also continuous.

Now that we have identified a suitable topology, we may define a field on Σ (with-
out any mention of local covariance) as any continuous, linear map Ψi : D(Σ) →
A`(Σ,M). For reasons we shall see in the following proposition, we shall also add the
constraint that

supp Ψi(f) ⊆ supp f, (9.30)

where the support of an observable (FH)H∈Had(M) ∈ A`(Σ,M) is defined as the union
of the supports of each coefficient of ~n of FH for any H ∈ Had(M). (This definition
makes sense as βH′−H does not affect the support.)
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Proposition 9.2.3. Let ωH,ψ : A`(Σ,M)→ C be a Gaussian state, and let Ψi,Ψj : D(Σ)→
A`(Σ,M) be a pair of fields. Then the map

f ⊗ g 7→ ωH,ψ
(
Ψi(f) ?Ψj(g)

)
(9.31)

defines a distribution on Σ2.

Proof. Given the topology we have defined on A`(Σ,M) all we must show is that, for
each n ∈ N, the map

f ⊗ g 7→
〈
( i2EΣ +HΣ)⊗n,Ψi(f)(n)[ψ]⊗Ψj(g)(n)[ψ]

〉
(9.32)

defines a distribution in D′(Σ2).

The argument follows a similar line to the classical case in section 8.5. Firstly,
we see that ∀H ∈ Had(M) the map f 7→ (Ψi(f))(n)

H [ψ] is a linear, continuous map
D(Σ) → E′

Ξn
(Σn). Hence, there is associated to it by the Schwartz kernel theorem a

distribution Ki
n,ψ ∈ D′(Σn+1). The distribution corresponding to the coefficient of ~n

in the ? product is then

dn

d~n
ωH,ψ(Ψi(z1) ?Ψj(z2))|~=0 =

∫
Σ2n

[
WΣ(y1, y2) · · ·WΣ(y2n−1, y2n)

Ki
n,ψ(z, y1, . . . , y2n−1)Kj

n,ψ(z, y2, . . . , y2n)
]

dy1 · · · dy2n.

whereWΣ = i
2EΣ +HΣ.

We must then check the same conditions for this composition as we did in sec-
tion 8.5. From supp Ψi(f) ⊆ supp f , we know Ψi(f)(n)[ψ] ⊆ (supp f)×n and hence{

(z, y1, . . . yn) ∈ suppKi
n,ψ | z ∈ U

}
⊆ Un+1,

which shows that the required projection is proper.

For the wavefront sets, we have that

(z, y1, . . . , yn; 0, η1, . . . , ηn) ∈WF(Ki
n,ψ)⇒ (y1, . . . , yn; η1, . . . , ηn) ∈ Ξn,

which in turn implies

(z1, z2, y1, . . . , y2n; 0, 0, η1, . . . η2n) ∈WF(Ki
n,ψ ⊗K

j
n,ψ)⇒

(y1, . . . , y2n; η1, . . . η2n) ∈ Ξ2n ⊆ Ṫ ∗Σ2n \ −WF(W⊗n
Σ ).

From which we may conclude that each composition is a well-defined distribution
coinciding with the coefficient of ~n in (9.32).
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We shall denote this distribution using its integral kernel

ωH,ψ
(
Ψi(s) ?Ψj(s′)

)
.

Proposition 9.2.4. The anti-symmetric part of the above distribution can be written as

ωH,ψ
([

Ψi(s),Ψj(s′)
]
?

)
and is supported on the diagonal ∆ ⊂ Σ2.

Proof. The fact that we can express the anti-symmetric part of the distribution in terms
of the commutator is just a consequence of the linearity of ωH,ψ. To show that it is sup-
ported on the diagonal, we use the condition (9.30) and note that any h ∈ D(Σ2 \∆)
can be approximated by a series f ⊗ g such that supp f ∩ supp g = ∅. We can then use
the chiral version of Einstein causality (which we prove in a general setting in theo-
rem 10.2.3) to show that [Ψi(f),Ψj(g)]? = 0 for each such f, g, hence the distribution
must send h to 0.

We can now provide an analysis similar to that of section 8.5 by limiting our atten-
tion to homogeneously scaling chiral fields on M2. As before, we shall consider the
Σ0 Cauchy surface, and the action of the dilation operators {mΛ : Σ0 → Σ0}Λ>0 and
translation operators {tc : Σ0 → Σ0}c∈R. Once again, we shall use tc,mΛ to refer to
both the automorphisms of Σ0 as well as the full spacetime M2.

If Ψi : D(µ)
` |Cauchy(M2)0 ⇒ A`|Cauchy(M2)0 be a homogeneously scaling locally covariant

field onM2 with values inA`, then in particular it responds to scalings and translations
as

Ψi
Σ0(Λs) = Λµ−1A`mΛ(Ψi

Σ0(s)), (9.33)
Ψi

Σ0(s+ c) = A`tc(Ψi
Σ0(s)). (9.34)

Proposition 9.2.5. The Gaussian state ωHM2 ,0 : A`(Σ0,M2) → C[[~]] is invariant with re-
spect to the action of the scaling and translation morphisms.

Proof. Translation invariance is trivial. Explicitly, the equation for scaling invariance
is satisfied if

Fm∗
ΛHM2 [0] = FHM2 [0]. (9.35)

This is satisfied for every F because βH′−H depends on the Hadamard distributions
only through their chiral derivatives. Given thatm∗

ΛHM2−HM2 = − 1
2π ln(Λ), the chiral

derivative of this term vanishes, hence βm∗
ΛHM2 −HM2 acts as the identity.
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Remark 9.2.6. It is worth noting that it was necessary for us to use the fact that chiral
observables are all defined in terms of the derivative field ∂Σϕ.

We may now state the quantum analogue of proposition 8.5.6, the proof of which
can be directly adapted from that of the classical result.

Proposition 9.2.7. Let Ψi,Ψj be a pair of homogeneously scaling locally covariant fields of
weights µi, µj onM2 with values in A`. Then

ωHM2 ,0
([

Ψi
Σ0(s),Ψj

Σ0(s′)
]
?

)
∝ δ(µi+µj−1)(s− s′). (9.36)

For the chiral boson, this reduces to the classical result we have already seen. How-
ever, we can also show that the chiral stress-energy tensor defined above is locally
covariant and homogeneously scaling with degree 2 on M2, (recall from Part I that
the quantised stress energy tensor is not primary). Hence this result also holds for
Ψi = Ψj = T , where we find that the expectation value of the commutator is pro-
portional to δ′′′(s − s′). This is a well-known result in the voa formalism, where the
constant of proportionality is known as the central charge, and is a vital parameter in
the characterisation of a 2dcft.

As before, none of this tells us anything we did not already know. Instead, it is the
style of argument we wish to emphasise. There is a generalisation of the notion of a
distribution scaling homogeneously with degree µ. The Steinmann scaling degree of a
distribution u ∈ D′(U), where U ⊆ Rn is an open subset such that λx ∈ U ∀x ∈ U, λ >
0, is defined as

sd(u) = inf
{
δ ∈ R | lim

λ→0
λδu(λx) = 0

}
. (9.37)

Note that if u scales homogeneouslywith degree µ, then sd(u) = µ, and if u is a regular
distribution, then by Taylor expanding u around x = 0 one finds that sd(u) ≤ 0. Whilst
we found in our two examples that the highest order term in ~ (equivalently the term
which did not vanish when evaluating at ψ = 0) was homogeneously scaling with
degree given by the degrees of our fields each term in the expansion of the opes has
a well-defined scaling degree which counts the power of (s − s′) appearing in the
denominator.

This suggest that in the future it may be possible to decompose the product of two
fields into a series of bi-distributions with decreasing scaling degrees. Truncating this
series at sd = 0 would then give the usual form of the ope modulo smooth terms.
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9.3 reconstructing the boundary term

To close out this section, we shall briefly comment on how the constants of propor-
tionality that appeared in our arguments from homogeneous scaling can be fixed by
constraints on wavefront sets.

Proposition 9.3.1. Let un ∈ D′(R \ {0}) be the regular distribution defined by the function
1

xn+1 . If un ∈ D′(R)C is an extension of un which also scales homogeneously with degree n+ 1,
then

un(x) = (−1)n

n!
dn

dxn

[
αδ(x) + PV

(1
x

)]
(9.38)

for some α ∈ C.

Moreover, the wavefront set of un is

WF(un) =


{0} × R<0 : α = iπ

{0} × R>0 : α = −iπ
{0} × R \ {0} : else

(9.39)

and for the values α = ±iπ, we may write un as

un(x) = (−1)n

n!
dn

dxn
lim
ε↘0

1
x∓ iε

. (9.40)

Proof. Firstly, note that (−1)n

n!
dn

dxn PV
(

1
x

)
is a well defined distribution on all of Rwhich

coincideswith un on the complement of {0}. It also scales homogeneouslywith degree
n+1, hence the difference between this distribution and any other extension of unmust
be proportional to δ(n)(x).

As ūn is a tempered distribution, we can compute itswavefront set by simply taking
its Fourier transform, which is

ûn(ξ) = (−iξ)n

n!
[α− iπ sgn(ξ)] . (9.41)

From this we can clearly see which values of α correspond to which wavefront set
in (9.39).

Similarly to our embedding ∂∗
Σ0,ε : Fc(Σ0) → Fµc(M2), we can use ∂∗

Σ0,ε to map
un(s − s′) ∈ D′(Σ2

0) to a distribution (∂∗
Σ0,ε)

⊗2un ∈ D′((M2)2). Again, we can compute
the wavefront set of this new distribution by considering its Fourier transform as a
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Schwartz distribution, which is

̂(∂∗
Σ0,ε)⊗2un(ξ, η) =− 4ξuηuδ̂ε(2ξv)δ̂ε(2ηv)

∫
R2
un(s− s′)ei(ξu−ξv)sei(ηu−ηv)s ds ds′,

(9.42)

=− 8πξuηu
[−i(ξu − ξv)]n

n!
δ̂ε(2ξv)δ̂ε(2ηv)·

[α− iπsgn(ξu − ξv)]δ(ξu − ξv + ηu − ηv) (9.43)

The presence of the δ̂ε terms means that this function decays rapidly for all neighbour-
hoods of directions in which ξv, ηv are non-zero. Next, if we consider (ξ0, 0, η0, 0) ∈
Ṫ ∗(M2)2 for ξ0 + η0 > 0, then we can find a conic neighbourhood Γ such that ξu − ξv +
ηu−ηv > 0, ∀ (ξ, η) ∈ Γ, hence the δ term ensures rapid decay. An analogous argument
holds for ξ0 + η0 < 0. Finally, we may find a conic neighbourhood Γ of (ξ0, 0,−ξ0, 0)
where ξ0 > 0 such that sgn(ξu − ξv) = 1, ∀ (ξ, η) ∈ Γ and hence we have rapid decay
precisely when α = iπ. Once again, a similar argument implies rapid decay in the case
ξ0 < 0 precisely when α = −iπ.

From this, we may define a coordinate-free condition to uniquely determine α,
namely

WF((∂∗
Σ0,ε)

⊗2un) ⊆WF(W ) (9.44)

whereW is a Hadamard distribution, if and only if α = −iπ.

Going the otherway, the Schwartz kernelK ∈ D′(Σ0×M2) associated to ∂Σ,ε allows
us to define a correspondence between subsets of Ṫ ∗M2 and subsets of Ṫ ∗Σ0

Γ 7→
{
(s, ξs) ∈ Ṫ ∗Σ0 |

∃ (u, v; ξu, ξv) ∈ Γ, (s, u, v; ξs, ξu, ξv, ) ∈WF(K)
} (9.45)

In two dimensions, the wavefront set of a Hadamard distribution factorises into two
disjoint components

WF(W ) = Γ` t Γr, (9.46)

where, inM2 we can write Γ` = {(u, v, u, v′; ξu, 0,−ξu, 0) | ξu > 0} and a similar expres-
sion for Γr. Under the correspondence associated toK, Γ` leads to a spectral condition
on Σ0

WF(u) =
{
(s, s; ξs,−ξs) ∈ Ṫ ∗Σ2

0 | ξs > 0
}
. (9.47)

It is this wavefront set condition which uniquely determines the constant of propor-
tionality α.
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It is interesting to note that the wavefront set spectral conditionmay be interpreted
as a ‘positivity of energy’ condition which is valid even on curved spacetimes. What
we have seen is that, given only knowledge of the “singular part” of the right hand
side of expressions such as (9.22) and (9.26), the analogous condition for states on
the chiral algebra is enough to uniquely determine their extensions as homogeneously
scaling distributions onD′(Σ2

0 \∆). One might argue that this is a somewhat artificial
scenario. However, in the formulation of qfts using factorisation algebras [CG16], the
product of observables (known as the factorisation product) is defined only for observ-
ables localised to disjoint regions, hence one would expect such distributions to arise
naturally in this setting.



10

Towards a Model Independent Definition of Chiral
Algebras

To conclude, we shall discuss how one might in general define the ‘chiral sector’ of a
generic aqft. For an on-shell algebra, we are able to provide a precise definition. We
shall see that our classical algebra fits this definition, and also that locality in the sense
of commutativity of chiral algebras localised in disjoint regions is implied by Einstein
causality in the full algebra.

10.1 definition

We need a category whose objects are connected sets of null geodesics of spacetimes.
It is similar in definition and purpose to the categoryCCauchy introduced earlier. How-
ever, this time we will be able to give a simpler definition by realising this structure as
a comma category.

Definition 10.1.1. Let A S−→ B T←− C be a pair of functors with common target. The
comma category (S ↓ T ) is the category such that

• Objects are triples (a, h, c) such that h ∈ B(S(a), T (c)).

• Morphisms (a, h, c)→ (a′, h′, c′) are pairs (f, g) ∈ A(a, a′)×C(c, c′) such that the
following diagram commutes.

S(a) S(a′)

T (c) T (c′)

Sf

h h′

Tg

(10.1)

Recall that in proposition 7.1.2 we established that the map π` : M → M` pro-
jecting a spacetimeM onto its space of right-moving null geodesics was ‘functorial’ in

146
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the sense that, for any χ ∈ CLoc(M,M̃), there was a map χ` such that π̃`χ = χ`π`,
where π̃` is the corresponding projection on M̃. In particular π` defines a functor
CLoc → Man+

1 where the latter category comprises connected, oriented 1-manifolds
with orientation-preserving smooth embeddings as morphisms.

One of the categories we shall use to define chiral algebras in a more generic set-
ting is the comma category (IdMan+

1
↓ π`) where IdMan+

1
denotes the identity functor.

Unpacking the definition, this means that an object of this category is defined by a
choice I ∈ Man+

1 , a spacetimeM∈ CLoc and an embedding i : I ↪→ π`(M). Similarly,
a morphism is a pair, I ρ−→ J ,M χ−→ N , of a smooth embedding and admissible
embedding respectively such that the following diagram commutes.

I π` (M)

J π` (N )

i

ρ χ

j

(10.2)

Definition 10.1.2. Let A : CLoc → Obs be an aqft with values in some suitable cat-
egory Obs. A chiral subalgebra of A is a functor Ac : Man+

1 → ∗-Alg and a functor
N : (IdMan+

1
↓ π`)→ (Ac ↓ A).

Explicitly, thismeans that for every square of the form (10.2), there is a commuting
diagram in Obs as follows.

Ac(I) A(M)

Ac(J ) A(N )

Acρ

Ni

Aχ

Nj

(10.3)

Remark 10.1.3. There is a degree of redundancy in this definition. If we asked only for
a functor (IdMan+

1
↓ π`) → (IdObs ↓ A), then this would automatically contain all the

information necessary to describe Ac.

For a comma category (S ↓ T ) we define the projection functors ΠA : (S ↓ T )→ A,
ΠC : (S ↓ T )→ C. Given a functor N : (IdMan+

1
↓ π`)→ (IdObs ↓ A), we can then define

Ac := ΠObs ◦N .

There is another equivalent characterisation of this definition. Given a diagram

B

A C

D

S

F

T

G
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there is a one-to-one correspondence between natural transformationsF ◦ΠA ⇒ G◦ΠC

and functors (S ↓ T ) → (F ↓ G). Applying this correspondence to definition 10.1.2,
the functor N defines a natural transformation Ac ◦ ΠMan+

1
⇒ A ◦ ΠCLoc, which bears

a close resemblance to definition 9.1.2 of a chiral algebra as a functor A` : CCauchy →
∗−Alg forwhichwe then found in theorem9.1.4 a natural transformationA` ⇒ Aon◦Π2,
where Π2 : CCauchy→ CLoc.

Secondly, this definition always admits a trivial subalgebra by takingAc(I) = 0 for
every I. In principle, one might define a chiral subalgebra as maximal if, in addition
to the above, it possesses the universal property that, for every alternative choice N ′ :
(IdMan+

1
↓ π`) → (A′

c ↓ A) there exists a unique functor I : (A′
c ↓ A) → (Ac ↓ A) such

that N ′ = N ◦ I . However, we shall not explore this idea further.

10.2 causality in chiral subalgebras

We now make use of this definition by proving that causality in the chiral sense is
guaranteed for any chiral subalgebra of an aqft satisfying Einstein causality. To make
this precise, we define each of these properties as follows.

Definition 10.2.1. An aqftA : CLoc→ ∗-Alg satisfies the Einstein causality axiom if, for
every diagram of CLoc morphismsM1

χ1−→M χ2←−M2 such that χ1(M1) is spacelike
separated from χ2(M2),

[Aχ1 (A(M1)) ,Aχ2 (A(M2))] = 0.

Definition 10.2.2. A functor Ac : Man+
1 → ∗-Alg is mutually local if for every I1

i1−→
I i2←− I2 such that i1(I1) ∩ i2(I2) = ∅,

[Aci1(Ac(I1)),Aci2(Ac(I2))] = 0.

Theorem 10.2.3. Let A : CLoc→ ∗-Alg be an aqft such that Aχ is injective for every CLoc
morphism χ, and let N : (IdMan+

1
↓ π`) → (Ac ↓ A) be a chiral subalgebra of A, then Ac is

mutually local if A satisfies the Einstein causality axiom.

Proof. Given I1
i1−→ I i2←− I2 as above, we shall construct a diagramM1

χ1−→ M χ2←−
M2 satisfying the conditions of definition 10.2.1 along with maps ρ : I → π`(M) and
ρi : I → π`(Mi) such that the following commutes.

I1 I I2

π`(M1) π`(M) π`(M2)

i1

ρ1 ρ

i2

ρ2

π`χ1 π`χ2

(10.4)
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We first constructM by choosing an arbitrary metric on I compatible with the pre-
existing orientation.M is then given by the manifold I ×Rwith metric gM = du�dv,
where du is the volume form on I induced by the metric, and dv is the canonical one-
form on R. By construction, there is a canonical isomorphism ρ : π`(M) '→ I given by
u 7→ [{(u, v)}v∈R].

Next, we take an arbitrary Cauchy surface Σ ⊂ M and define Σi = Σ ∩ π−1
` (ρ ◦

ii(Ii)) for i ∈ {1, 2}, where by π−1
` we mean in particular the preimage under the map

π` : M → ρ(I). The requisite spacetimeMi may then be obtained as the Cauchy
development D(Σi) (with the embedding χi being simply the inclusion map). This is
the set of events x ∈ M such that every inextensible causal curve intersecting x also
intersects Σi. A sketch of this situation is provided in fig. 10.1.

Note that Σ1 ∩ Σ2 = ∅ means that D(Σ1) and D(Σ2) must be causally disjoint:
supposewe have x1 ∈ D(Σ1), x2 ∈ D(Σ2) such that there is a causal curve γ connecting
the two. If we maximally extend γ, then it must intersect both Σ1 and Σ2 by definition
of the Cauchy developments. However, as Σ is a Cauchy surface, each inextensible
causal curve intersects it precisely once, thus x1 and x2 cannot be connected by any
causal curve.

We can also see that π`(Mi) = π`(Σi) = ρ◦ii(Ii). This means that if ρi = ρ◦ii|π`(Mi),
then π`χi◦ρi = ρ◦ii as required, as π`χi is simply the inclusionmap of π`(Mi) ⊆ π`(M).

We then apply the functor N to the above diagram, which gives

Ac(I1) Ac(I) Ac(I2)

A(M1) A(M) A(M2)

Aci1

Nρ1 Nρ

Aci2

Nρ2

Aχ1 Aχ2

(10.5)

Finally, from Einstein causality, we see that, for F ∈ Ac(I1), G ∈ Ac(I2),

Nρ([Aci1(F ),Aci2(G)]Ac(I)) = [Aχ1 ◦Nρ1(F ),Aχ2 ◦Nρ2(G)]A(M)

= 0.

Given that the morphisms Aχ are injective by hypothesis, we may also conclude that
[Aci1(F ),Aci2(G)]Ac(I) = 0 as required.

Remark 10.2.4. This definition does not actually depend on the conformal symmetry
ofA. In fact, a similar argument may be used in arbitrary dimensions to show that the
canonical algebra associated to a Cauchy surface Σ, defined as the limit of the inverse
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Σ

π−1
` (ρ ◦ i1(I1))

D(Σ1)
π−1
` (ρ ◦ i2(I2))

D(Σ2)

Figure 10.1: A sketch of Σ1, Σ2 and their Cauchy developments.

system of neighbourhoods of Σ, is local in much the same way, provided such limits
exist and can be assigned functorially.

It is also worth noting that the analogous proof for A` : CCauchy → Obs is even
simpler, as the necessary hypothesis amounts to the existence of a diagram of the form

Σ1 Σ Σ2

M1 M M2

ρ1 ρ2

χ1 χ2

(10.6)

such that ρ1(Σ1) ∩ ρ2(Σ2) = ∅, which already implies that χ1(M1) is causally disjoint
from χ2(M2).

Proposition 10.2.5. There exists a chiral subalgebra (Pc, N) of Pon.

Proof. Firstly, we define the algebra on I ∈ Man+
1 such that the underlying space is the

space of maps F : Ω1(I) → C which are Bastiani smooth and satisfy the wavefront
set condition specified in proposition 8.1.1. Note that both the definition of Bastiani
smoothness aswell as thewavefront set are not affected by changing domains toΩ1(I),
as both are defined with respect to a chart on I, which also provides an identification
Ω1(I) ' E(I). To avoid confusion, we shall use an alternative notation for the func-
tional derivatives of this algebra, namely

d

dε
F [j + εk]|ε=0 =:

∫
I

δF

δj
[j] ∧ k. (10.7)

Given our wavefront set condition, this means that δF
δj

[j] ∈ D(I).

The Poisson bracket of this algebra is then defined by

{F,G}I [j] :=
∫

I

δF

δj
[j] ∧ d

(
δG

δj
[j]
)
. (10.8)
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It is then straightforward to verify that, for a smooth, oriented embedding f : I → J ,
δ(f∗F )
δj

[j] = f∗
(
δF
δj

[f ∗j]
)
, and hence that

f∗ {F,G}I = {f∗F, f∗G}J .

We must now define the functor (IdMan+
1
↓ π`)→ (Pc ↓ Pon). For I ρ→M, we take

an arbitrary Cauchy surfaceΣ ⊂M, and a regularised chiral derivative ∂Σ,ε : E(M)→
E(Σ). Note that each Σ is also an object in Man+

1 , thus we can produce a sequence of
maps

Pc(I) Pc(Σ) P`(Σ,M) Pon(M),Pc(π`|Σ◦ρ) ∂∗
Σ,ε (10.9)

where the central map is defined by F [j] 7→ (ψ 7→ F [ψdVΣ]). The composition is
overall independent of our choices Σ and ∂Σ,ε if, for every other choice Σ′, ∂Σ′,ε′ , the
diagram

Pc(Σ) P`(Σ,M)

Pc(I) Pon(M)

Pc(Σ′) P`(Σ′,M)

Nρ

(10.10)

commutes (defining the arrow Nρ), where the vertical arrows are the respective ho-
momorphisms corresponding to (π`|−1

Σ′ ◦ π`|Σ) : Σ ∼→ Σ′. This is readily verified: the
left-hand triangle commutes by functoriality of Pc and the right-hand triangle com-
mutes by theorem 8.2.3.

We verify the commutativity of the inner square explicitly. If we take F ∈ Pc(Σ),
ψ ∈ E(Σ′), then applying the upper-right maps to F and evaluating at ψ we get
F
[
{(π`|−1

Σ′ ◦ π`|Σ)∗
(1)ψ}dVΣ

]
. Going instead through the lower-left corner of the square

results in F
[
(π`|−1

Σ′ ◦ π`|Σ)∗(ψdVΣ′)
]
. Recalling that (π`|−1

Σ′ ◦ π`|Σ)∗
(1)ψ = ωΣ(π`|−1

Σ′ ◦
π`|Σ)∗ψ, where (π`|−1

Σ′ ◦ π`|Σ)∗dVΣ′ = ωΣdVΣ, we see that these evaluations coincide,
concluding the proof.



Conclusion

The purpose of this thesis was to show that the general constructive toolkit of paqft
could be readily modified to describe conformal field theories in general and 2dcft in
particular. In light of this, the fact that many of our results should already be familiar
to anyone fluent in 2dcft is quite reassuring.

The novelty in these results lie both in their origins and the methods used in their
proof, which emphasise a geometric perspective that is also compatiblewith the causal
structure of the full spacetime. Agood example of this is the derivation of the Schwarzian
derivative term in chapter 6, where we in fact found a transformation law valid across
all spacetimes, which happened to coincide with the Schwarzian term when we re-
stricted our morphisms to Minkowski space. This lies in contrast to many standard
proofs which typically rely on the assumption that the underlying space one is work-
ing with is a compactified null-ray in Minkowski space.

Evenwhere our resultswere restricted toMinkowski, primarily in the discussion of
how one can constrain the Poisson brackets/commutators of homogeneously scaling
fields, many of the tools we used have well understood analogues on general space-
times, so it is not unreasonable to expect that the results too may have general ana-
logues.

Fields played a central role at many stages of our analysis. This is necessary if one
wishes to make any meaningful connections to formalisms which are based on the
Wightman axioms such at voas. Indeed, learning more about fields and their role in
paqft stands to be one of the key consequences of the work we have done here. Our
results are mostly preliminary, but they point towards a more general structure. For
instance, we were able to show in section 8.5 (and later section 9.3) that one of the
standard topologies placed on the classical (hence also the quantum) algebra allows
one to create distributions out of fields using the Poisson bracket (∗-product), with
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transformation properties of the fields descending to analogous properties of the dis-
tributions.

In this case, we were able to simplify the topological analysis involved by always
holding in place a fixed field configuration. If, in the future, one wished to make
sense of statements such as ‘the product of two fields is a distribution in two-variables
with values in the algebra of observables’, inspired by the product of fields in voas
End(V )[[z, z−1]]×End(V )[[w,w−1]]→ End(V )[[z, z−1, w, w−1]], then it is likely that one
would need to use a space of functionals with better topological properties than those
used in this thesis. A good candidate in this regardmight be the the space FDµc(M) of
functionals with controls on both the wavefront set and the dual wavefront set which
was introduced by Dabrowski in [Dab14]. It is in a setting such as this that one could
then begin to formulate more general statements about the opes of fields in paqft.

Another simplificationwemade in our study of fields occurredwhenwe restricted
our definition of chiral primary fields to open subsets of Minkowski space. Even this
case we were able to formulate, and take advantage of, local covariance. However, to
obtain a more general description one would need to determine what is the minimal
amount of auxiliary data required to specify a field as a map D(Σ) → P`(Σ,M), as
well as a coordinate independent analogue of the map h 7→

∫
v∈R h(u, v)dv. In any

case, perhaps more desirable would be an appropriate notion of a primary field for
the model-independent algebras we introduced in the final chapter.

As a final comment, we would like to discuss the way in which we described the
on-shell physics. Previously we noted that one should not expect the chiral algebra to
embed naturally into the off-shell algebra of the full spacetime, as the chiral algebra is
already on-shell. We resolved this matter by simply taking the appropriate quotient.
However, as we briefly remarked upon earlier in the thesis, there is extra data encoded
in the off-shell algebra, particularly when one considers a theorywith non-trivial sym-
metries.

Our definition of the chiral algebras A`(Σ,M) trivially extend to a dg variant (i.e.
with values in Ch(Alg)) by taking the cochain complex which is A`(Σ,M) in degree
zero, and which vanishes in all other degrees. From this perspective, we could then
say that the embeddingA`(Σ,M)→ A(M) is naturalmodulo exact terms. Wewould ex-
pect this formulation to be beneficial, for example, when treating theories with gauge-
symmetries, such as the WZWmodel.

On the topic of gauge symmetries, whilst we were able to find chiral subalge-
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bras which embedded naturally into the full algebra, we were unable to show that
a combination of the chiral and anti-chiral subalgebras was isomorphic to the on-
shell algebra. A simple argument for why this is the case involves the undifferenti-
ated field Φ(f) ∈ Freg(M). If we denote by 1 ∈ E(M) the constant function, then
Φ(f)[ϕ + c1] = Φ(f) + c

∫
M fdVM. However, both the chiral and anti-chiral deriva-

tives are insensitive to the addition of constants, hence any functional built from chi-
ral observables must be invariant under this action. If one treated ϕ 7→ ϕ + c1 as a
gauge symmetry, then it may be possible to construct an isomorphism between a com-
bination of chiral + anti-chiral algebras and the space of on-shell gauge invariant ob-
servables in the full spacetime algebra. This perspective would fit naturally into the
BV formalism in paqft, as one could simply form the Chevalley-Eilenberg complex
with respect to the derivation which encodes the infinitesimal action of this symme-
try Dc · F [ϕ] = d

dε
F [ϕ + εc1] =: cD · F [ϕ]. The 0th cohomology of the resulting BV

complex would then be the desired space of on-shell invariants. Hence we find yet
more motivation for a dg reformulation of our framework.



Part III

Appendices
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A

Method of Images

It is well-known that if a space Y can be expressed as the quotient of some other space
X under the action of some group (satisfying certain properties), thenwe can use this
relation in order to build Green’s functions on Y out of Green’s functions. Here we
give a coordinate-free account of some of the necessary results, then explain how this
method may be used to construct the retarded/advanced propagators of the cylinder
from those of Minkowski space.

Lemma A.1. Let P be a differential operator on a smooth manifoldM and let G : D(M)→
E(M) be a fundamental solution to P , i.e. PGf = GPf = f for all f ∈ D(M). For U ⊂M
open, define

M\ suppU G =
⋃
{V ⊂M open | supp f ⊂ V ⇒ (Gf)|U ≡ 0} . (A.1)

Let ϕ ∈ E(M), if there exists an open cover ⋃α∈A Uα = M such that, ∀α ∈ A, suppϕ ∩
suppUα

G is compact, then one can define a function Gϕ ∈ E(M) such that PGϕ = GPϕ =
ϕ.

Proof. We claim that the local definitions

Gϕ|Uα := G(ραϕ)|Uα ,

where ρα ∈ D(M) such that ρα ≡ 1 on suppϕ∩suppUα
G can be glued together to form

the desired map. Suppose α, β ∈ A such that Uαβ = Uα ∩ Uβ 6= ∅. One can quickly
verify that suppUαβ

G ⊆ suppUα
G ∩ suppUβ

G, hence ραϕ|Uαβ
= ρβϕ|Uαβ

. In particular
thismeans that supp ((ρα−ρβ)ϕ) ⊂M\suppUαβ

G and henceG(ραϕ)|Uαβ
= G(ρβϕ)|Uαβ

,
thus Gϕ is a well-defined function.

Next we note that, for every open U ⊆ M, we have U ⊂ suppU G. To see this, let
V = M\ suppU G hence, by definition, Gf |U ≡ 0, ∀ f ∈ D(V ). If there is an element
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x ∈ U∩V , there exists f ∈ D(V ) such that f(x) = 1. However, thiswould in turn imply
that f(x) = PGf(x) = P (Gf |U)(x) = 0. This contradiction implies U ∩ V = ∅, hence
U ⊂ suppU G. As such, wemay assume that the cover {Uα}α∈A satisfies Uα ⊂ suppUα

G

for every α.

In the above argument, we used the locality of differential operators, namely that
(Pψ)|U = (Pψ|U)|U for any ψ ∈ E(M). This also means that (PGϕ)|Uα = (ραϕ)|Uα . As
Uα ⊂ suppUα

G, for any x ∈ Uαwemust either have x ∈ suppϕ, inwhich case ρα(x) = 1,
or ϕ(x) = 0. In both cases, we have ρα(x)ϕ(x) = ϕ(x), hence (PGϕ)|Uα = ϕ|Uα . For the
same reasons, we have that (ρα(Pϕ))|Uα = (P (ραϕ))|Uα and hence (GPϕ)|Uα = ϕ|Uα

concluding the proof.

Theorem A.2 (The Method of Images). Let π : M̃ → M be a regular covering ofM by
M̃. Further, let P and P̃ be a pair of differential operators forM and M̃ respectively, such
that π∗P = P̃ π∗. Further, let G̃ be a fundamental solution to P̃ such that

1. There exists a covering ⋃α∈A Uα = M̃ such that, ∀K ⊂ M compact, π−1(K) ∩
suppUα

G̃ is compact,

2. ∀ ρ ∈ Aut(π), ρ∗G̃ = G̃ρ∗.

Then there exists a fundamental solution G for P such that π∗G = G̃π∗

Proof. Because supp π∗f = π−1(supp f), condition 1 tells us that G̃π∗f is well defined
and satisfies P̃ G̃π∗f = G̃P̃π∗f = π∗f

Next, 2 ensures that for any ρ ∈ Aut(π)

ρ∗G̃π∗f = G̃ρ∗π∗f = G̃(π ◦ ρ)∗f = G̃π∗f, (A.2)

i.e. G̃π∗f is a Aut(π) invariant, and hence can be expressed as π∗F for some F ∈ E(M).
As our choice of f was arbitrary, this defines a map f 7→ F , which is clearly linear. As
such we denote it G : D(M)→ E(M).

To show thatG is then a fundamental solution for P is a fairly mechanical process:

π∗PGf = P̃ π∗Gf = P̃ G̃π∗f = π∗f. (A.3)

From the injectivity of π∗, we may then conclude PGf = f . Next, using the same trick

π∗GPf = G̃π∗Pf = G̃P̃π∗f = π∗f, (A.4)
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which again shows GPf = f .

The following lemma shows how this applies to the equations ofmotion of a locally
covariant (classical) field theory.

Lemma A.3. Let L : D ⇒ Floc be a natural Lagrangian such that, for any M ∈ Loc,
ϕ ∈ E(M), 〈S ′′

M[ϕ], h⊗ g〉 = 〈PM[ϕ]h, g〉 where PM[ϕ] is some linear differential operator.
If M̃,M∈ Loc and π : M̃ →M is a surjective map such that for every x ∈ M̃, there exists
a subspacetime1 N 3 x such that π|N is an admissible embedding, then

π∗PM[ϕ] = PM̃[π∗ϕ]π∗. (A.5)

Proof. Recall that the naturality of L implies that, for every admissible embedding
χ :M ↪→ N , χ∗PN [ϕ] = PM[χ∗ϕ]χ∗. Applying this to the composed map π|N = π ◦ ι
and then to the inclusion ι : N ↪→M, we have, for ϕ ∈ E(M) and g ∈ D(M)

(π∗(PM[ϕ]g))|N = PN [(π∗ϕ)|N ](π∗g)|N
= (PM̃[π∗ϕ] π∗g)|N .

Given thatM̃ is covered byN ⊆ M̃ forwhich this holds, wemay conclude π∗(PM[ϕ] g) =
PM̃[π∗ϕ]π∗g as desired.

Given that the equations of motion are related in this way, we can now show that
the propagators are as well. For any K ⊂ M compact, there exist Cauchy surfaces
Σ± ⊂M such that Σ− ≺ K ≺ Σ+. This in turn implies π−1(Σ−) ≺ π−1(K) ≺ π−1(Σ+).
For a covering π : M̃ → M of globally hyperbolic spacetimes, the preimage of any
Cauchy surface Σ ⊂ M is again a Cauchy surface π−1(Σ) ⊂ M̃, as we will now show.
Let γ : R → M̃ be an inextendible timelike curve. Note that π (Img(γ) ∩ π−1Σ) =
Img(π ◦ γ) ∩ Σ. As π ◦ γ is also an inextendible timelike curve, there exists precicely
one t0 ∈ R such that π ◦ γ(t0) ∈ Σ, hence γ(t0) ∈ π−1(Σ). Given that γ(t) ∈ π−1(Σ)
only when π ◦ γ(t) ∈ Σ, we see that all inextensible timelike curves intersect π−1(Σ)
precisely once, indicating it is a Cauchy surface. Using a known result [San13], this
means that supp π−1K ∩ J (L) is compact for every compact set L ⊂M.

Finally, if ER/A

M̃
are the retarded/advanced propagators for PM̃, the support prop-

erties (2.45) of ER/A

M̃
imply that suppU E

R/A

M̃
= J ∓(U), where U is the closure of U .

Thus, if we take a cover of M̃ by precompact sets Uα, then supp π−1(K)∩ suppUα
E
R/A

M̃
is compact for each Uα as required by 1 of Theorem A.2.

1i.e. the inclusion N ↪→ M̃ is an admissible embedding of spacetimes
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Next, as gM̃ = π∗gM, Aut(π) comprises isometries of M̃, we also have ρ∗E
R/A

M̃
=

E
R/A

M̃
ρ∗ (see the discussion in the proof of proposition 4.2.3), satisfying condition 2 of

Theorem A.2.

We thus have a pair of propagators ER/A
M : D(M)→ E(M) which satisfy

π∗E
R/A
M = E

R/A

M̃
π∗. (A.6)

It is straightforward to verify that these satisfy the support criteria (2.45), hence they
are the retarded/advanced propagators forM.



B

Closure Proofs for Microcausal Functionals

Proposition B.1. LetM be a globally hyperbolic spacetime, let S be a quadratic action onM,
then {·, ·}S : Fµc(M)× Fµc(M)→ Fµc(M).

Proof. We shall only prove this fact forM ⊆ Rd, but it is possible to ‘patch together’
the results over an atlas for amore generalM. We begin by rephrasing Theorem 8.2.13
of [Hör15]:

Suppose that X ⊆ Rn, and Y ⊆ Rm. Let K ∈ D′(X × Y ) and u ∈ E′(Y ). Theorem
8.2.13 allows us to define a new distribution K ◦ u, with integral kernel

(K ◦ u)(x) =
∫
Y
K(x, y)u(y) dy, (B.1)

and estimate its wavefront set. Namely,K ◦ u exists whenever WF′(K)Y ∩WF(u) = ∅,
where

WF′(K)Y := {(y; η) ∈ T ∗Y \ 0Y | ∃x ∈ X, (x, y; 0,−η) ∈WF(K)} ,

is the wavefront set of K twisted with respect to Y (and 0Y denotes the zero section of
T ∗Y ).

Moreover, whenever K ◦ u does exist, we have

WF(K ◦ u) ⊆ {(x, ξ) ∈ T ∗X | ∃ (y, η) ∈WF(u) ∪ 0Y , (x, y; ξ, η) ∈WF(K)} (B.2)

Let F ,G ∈ Fµc(M), the mth functional derivative of their Peierls bracket can be
written, omitting the dependence on a field configuration ϕ ∈ E(M), as follows:

({F ,G}S)(m) =
∑

{J1,J2}∈Pm

[(
F (|J1|+1) ⊗ G(|J2|+1)

)
◦ E

]
sJ1,J2 , (B.3)
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where the sum runs over partitions J1 t J2 = {1, . . . ,m}, ◦ is the operation described
above, and sJ1,J2 : D(Mm) → D(Mm) is an operation permuting the variables of
a given test function according to a permutation σJ1,J2 ∈ Sm such that i ∈ J1 ⇒
σJ1,J2(i) ≤ |J1|. (As F (m) is permutation invariant as a distribution, this is a suffi-
cient characterisation of σJ1,J2 .) In fact, as we are only testing for microcausality, the
only property we need of these distributions is that, for 0 ≤ k ≤ m, the wavefront set
of
(
F (k+1) ⊗ G(m−k+1)

)
◦ E is disjoint from the cones V m

± , defined by

V
m

+ =
{
(x1, . . . , xm; ξ1, . . . , ξm) ∈ T ∗M| ξi ∈ V +(xi)∀ i ≤ m

}
, (B.4)

where V +(x) denotes the closed future/past lightcone in T ∗
xM, and similar for V m

− .

We set X = Mn, Y = M2, K = F (k+1) ⊗ G(m−k+1), and u = E. Using [Hör15,
Theorem 8.2.9], we can estimate WF(F (k+1) ⊗ G(m−k+1)) by

WF
(
F (k+1) ⊗ G(m−k+1)

)
⊆
(
WF(F (k+1)) ∪ 0Mk+1

)
×
(
WF(G(m−k+1)) ∪ 0Mm−k+1

)
, (B.5)

where 0M =M×{0} ⊆ T ∗Mdenotes the zero section ofT ∗M etc. Let (yF , yG; ηF , ηG) ∈
T ∗Y \ 0Y .

The wavefront set of the causal propagator, as may be found in [Rej16, §4.4.1], can
be written as

WF(E) =
{
(x, y; ξ, η) ∈ T ∗M2 | (x, ξ) ∈ V + ∪ V −, (x, ξ) ∼ (y,−η)

}
, (B.6)

where the relation (x, ξ) ∼ (y, η)means there exists a null geodesic γ : (0−ε, 1+ε)→M
(for some ε > 0) such that (γ(0), γ̇[(0)) = (x, ξ), and (γ(1), γ̇[(1)) = (y, η), where
v[ := gM(v, ·). However, for our purposes, we can use the much simpler estimate

WF(E) ⊂ (V + × V −) ∪ (V − × V +), (B.7)

i.e. if (x, y; ξ, η) ∈ WF(E) then either (x, ξ) ∈ V + and (y, η) ∈ V −, or (x, ξ) ∈ V − and
(y, η) ∈ V +.

Suppose there exists xF ∈Mk and xG ∈Mn−k such that

(xF , yF , xG, yG; 0,−ηF , 0,−ηG) ∈WF′
(
F (k+1) ⊗ G(m−k+1)

)
Y
,

then either ηF = 0, or (yF ; ηF) /∈ V ±. The same is also true of (yG; ηG), though
at least one of ηF and ηG must be non-zero. Thus we see that the intersection of
WF(F (k+1) ⊗ G(m−k+1)) with WF(E) must be trivial, as (yF , yG; ηF , ηG) ∈ WF(E) ⇒
(yF ; ηF), (yG; ηG) ∈ (V + ∪ V −) \ 0M.
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Thuswe can apply theorem 8.2.13 and conclude not only that (F (k+1)⊗G(m−k+1))◦E
is well defined, but also that its wavefront set has trivial intersection with both V m

+

and V
m

− . To see this, let (xF , xG; ξF , ξG) ∈ V
m

+ . Any (yF , yG; ηF , ηG) ∈ WF(E) ∪ 0Y
necessarily belongs also to either V + × V − or V − × V +. Suppose it is the former,
then, by microcausality, (xG, yG; ξG,−ηG) /∈WF(G(m−k+1)). Recalling (B.5), this means
there is only a chance that (xF , yF , xG, yG; ξF , ηF , ξG, ηG) ∈ WF(F (k+1) ⊗ G(m−k+1)) if
ξG and ηG are both zero. However, this still fails, as ηG = 0 ⇒ ηF = 0, which in
turn implies that (xF , yF ; ξF ,−ηF) /∈ WF(F (k+1)). The wavefront set estimate from
8.2.13 then allows us to conclude that (xF , xG; ξF , ξG) /∈WF

(
(F (k+1) ⊗ G(m−k+1)) ◦ E

)
.

Applying the corresponding argument to Γm− , we see that all derivatives of {F ,G}S
satisfy the requisite wavefront set condition to be declared microcausal.

Proposition B.2. LetM be a globally hyperbolic spacetime, P a normally hyperbolic operator
onM, andW = i

2E + H a Hadamard distribution for P , then Fµc(M)[[~]] is closed under
?H .

Proof. Let F ,G ∈ Fµc(M), themth derivative of the O(~n) term of F ?H G is,(
dn

d~n (F ?H G)|~=0
)(m)

=
∑

{J1,J2}∈Pm

[(
F (|J1|+n) ⊗ G(|J2|+n)

)
◦W⊗n

]
sJ1,J2 , (B.8)

where all notation is the same as in the previous proof, and the contraction ◦ is com-
puted in the expected way, namely

[(
F (|J1|+n) ⊗ G(|J2|+n)

)
◦W⊗n

]
(x1, . . . xm)

=
∫

M2n

[
F (|J1|+n)(x1, . . . x|J1|, y1, . . . yn)G(|J2|+n)(x|J1|+1, . . . xm, yn+1, . . . y2n)

W (y1, yn+1) · · ·W (yn, y2n)
]

dy1 · · · dy2n.

In order to apply theorem 8.2.13 to
(
F (k+n) ⊗ G(m−k+n)

)
◦ (χW )⊗n for 0 ≤ k ≤ m, we

must show that

WF′
(
F (k+n) ⊗ G(m−k+n)

)
Y
∩WF((χW )⊗n) = ∅,

where Y = M2n comprises the yi variables in the above integral. The justification of
this proceeds similarly to before. Firstly, we note the following estimate, obtained by
repeated application of 8.2.9 from [Hör15]

WF(W⊗n) ⊆ (WF(W ) ∪ 0M2)n \ 0M2n .

Hence, if (y1, . . . , y2n; η1, . . . , η2n) ∈ WF((χW )⊗n), then for each i ∈ {1, . . . , n}, either
ηi and ηn+i are both zero, or (yi; ηi) ∈ V + and (yn+i; ηn+i) ∈ V −, moreover, ηi must
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be non-zero for at least one i. Denote yF = (yi)ni=1 and yG = (yi)2n
i=n+1, and similarly

ηF and ηG . Then we have that (yF ; ηF) ∈ V
n
+, and (yG; ηG) ∈ V

n
−, hence neither can

(xF , yF ; 0,−ηF) belong to WF(F (k+n)), for any xF ∈Mk, nor (xG, yG; 0,−ηG) belong to
WF(G(m−k+n)), for any xF ∈Mm−k. 1

Nowwemust show that 8.2.13 precludesV m
± fromWF((F (k+n)⊗G(m−k+n))◦(χW )⊗n).

Let (xF , xG; ξF , ξG) ∈ V m
+∩WF((F (k+n)⊗G(m−k+n))◦(χW )⊗n), thenwemust have some

(yF , ηF), (yG, ηG) ∈ Ṫ ∗Mn such that (yF , yG; ηF , ηG) ∈ (WF((χW )⊗n) ∪ 0M2n) and

• (xF , yF ; ξF , ηF) ∈ (WF(F (k+n)) ∪ 0Mk+n),

• (xG, yG; ξG, ηG) ∈ (WF(G(m−k+n)) ∪ 0Mm−k+n),

• (xF , xG; ξF , ξG) /∈ 0Mm .

However, we have that (yF , yG; ηF , ηG) ∈ V n

+×V
n

−, hence (xG, yG; ξG,−ηG) ∈ V m−k+n
+ , so

this covectormust belong to the zero section. But then (yF , yG; ηF , ηG) ∈WF((χW )⊗n)∪
0M2n implies ηF also vanishes, hence (xF , yF ; ξF ,−ηF) ∈ V k+n

+ . Thus we cannot satisfy
all three conditions simultaneously, and are forced to conclude that

V
m

+ ∩WF((F (k+n) ⊗ G(m−k+n)) ◦ (χW )⊗n) = ∅.

To carry out the analogous argument for V m
− , one instead starts with the observa-

tion that

(xF , xG; ξF , ξG) ∈ V m

− and (yF , yG; ηF , ηG) ∈
(
WF((χW )⊗n) ∪ 0Y

)
⇒ (xF , yF ; ξF ,−ηF) ∈ V k+n

−

and proceeds accordingly.

This proves

WF
((

dn

d~n (F ?H G)|~=0
)(m)

)
∩ V m

± = ∅,

thus each coefficient of F ?H G is a microcausal functional.

1Note that here we required the tighter restriction on WF(W ) relative to E: if we had covectors
(yi; ηi) ∈ V + and (yj ; ηj) ∈ V −, for i, j ∈ {1, . . . , n}, then it might be possible to find (xF , yF ; 0,−ηF ) ∈
WF(F (k+n)), hence the above intersection would in general be non-empty, preventing us from proceed-
ing any further.



C

Squaring the Propagator

In this section, we explain in detail why the expression (3.33) for [(∂u ⊗ ∂u)WE]2 is
valid. To simplify notation, we shall write (∂u ⊗ ∂u)WE =: w, and denote by wN the
truncation of the series defining w to the first N terms.

Theorem 8.2.4 of [Hör15] gives the necessary conditions for the square of a distri-
bution to exist. However, it does not provide a convenient integral kernel with which
to evaluate such products on test functions. A good starting point to this end may
be found in [Hör71, Theorem 2.5.10], where it is stated that for any pair of cones
Γa,Γb ⊆ Ṫ ∗M such that Γa ∩ −Γb = ∅, the multiplication of distributions, consid-
ered as a map D′

Γa
(M) ×D′

Γb
(M) → D′(M) is sequentially continuous in each of its

arguments. In other words, if we take some fixed u ∈ D′
Γa

(M), and a sequence vn
converging to v in the sense of D′

Γb
(M), then u · vn weakly converges to u · v, and vice

versa for a sequence in D′
Γa

(M).

Let Γ ⊆ Ṫ ∗E2 be a cone which both contains WF(w) and satisfies Γ ∩ −Γ = ∅. We
can show that the smooth distributions wN obtained by truncating the sum appearing
in (3.26) converge to w in D′

Γ.

Firstly, we shall pick an open subset U ⊂ E2 which can be identified with an open
subset of R4. We shall only prove convergence for the restriction of wN to U , though
the full result follows from this with little trouble. Following [Hör15, Definition 8.2.2]
for sequential convergence, we must show that, for all χ ∈ D(U) and conic V ⊆ R4

such that suppχ× V ∩ Γ = ∅,

sup
ξ∈V

∣∣∣(1 + |ξ|)k (χ̂w(ξ)− χ̂wN(ξ))
∣∣∣→ 0 as N →∞.

If we choose our coordinates forU appropriately, we can express this Fourier trans-
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form as

χ̂w(ξ)− χ̂wN(ξ) =
∞∑

n=N+1
n
∫
U
χ(x)e−in(u,x)e−i(ξ,x) dx, (C.1)

where u = (1, 0,−1, 0) is a constant vector. If we set F (x) := −(u, x), then each integral
appearing in (C.1) can be expressed as Tχ(n, ξ) using the notation in [BF09, §4.3.2].
For any η > 0, (x, 0, y, 0;−η, 0, η, 0) ∈ WF(w), hence we cannot have dF ∗

xn = ξ for
ξ ∈ V , else this would violate the assumption that suppχ×V ∩Γ = ∅. This means the
conditions are met for the second estimate of corollary 2 from [BF09, §4.3.2], i.e. for
any k ∈ N

|Tχ(n, ξ)| ≤ Cχ,V,k(1 + n+ |ξ|)−2k ≤ C ′
χ,V,k(1 + n)−k(1 + |ξ|)−k,

for some appropriate choice of positive constants. This allows us to uniformly bound
the original expression in ξ as

sup
ξ∈V

∣∣∣(1 + |ξ|)k (χ̂w(ξ)− χ̂wN(ξ))
∣∣∣ ≤ C ′

χ,V,k

∞∑
n=N+1

(1 + n)1−k.

The series on the right converges for every k ≥ 3, and the upper bound for k = 3 also
provides an upper bound for k = 1 or 2.

Thus we can write, for f ∈ D(E2)〈
w2, f

〉
= lim

N→∞
〈wN · w, f〉 ,

which allows us to bring all summation outside of the integrals arising from the dual-
ity pairing. Noting thatwN is a smooth function for all finiteN , we can hence evaluate
this pairing directly as

〈
w2, f

〉
= lim

N→∞

∞∑
m=0

m
∫
E2
e−im(u−u′)

[
N∑
n=0

ne−in(u−u′)f(u, v, u′, v′)
]

dV 2

=
∞∑
n=0

∞∑
m=0

nm
∫
E2
e−i(n+m)(u−u′)f(u, v, u′, v′) dV 2,

where, a priori, the sum overmmust be performed first.

As f is smooth, the integral is rapidly decaying as a function of n + m, hence the
sum is absolutely convergent. Rearranging the double sum accordingly, it is then clear
that the sequence of partial sums

w2
N(u, v, u′, v′) :=

N∑
k=0

k∑
l=0

l(k − l)e−ik(u−u′) (C.2)

converges to w2 in the weak topology of D′(E2).
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