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Abstract  

 

 

 

Despite minuscule eyes and tiny brains, flying insects successfully perform remarkable 

behaviours with their limited visual system. In this thesis, I have investigated how the fruit fly 

(Drosophila melanogaster) responds to visual stimuli of different sizes and depths in a virtual 

environment. For tethered flying Drosophila, I analyse the orientation and robustness of 

perception to small objects and square gratings during innate, voluntary, and conditioned 

behaviours. My research aims to understand whether fruit flies respond behaviourally to objects 

smaller than their optical resolution limit and whether binocularity is used for small object 

detection.  

Recent work has highlighted that ultrafast photomechanical photoreceptor microsaccades 

beneath the lens may enhance the spatial resolution limit of the fly below the optical limit. 

Therefore, I investigated how fruit flies respond to extremely small singular objects and dark 

and light stripes (gratings) within their visual field. My results reveal that fruit flies respond 

behaviourally to stimuli smaller than the interommatidial angle (the angular separation between 

neighbouring lenses). Additionally, flies respond robustly to close and small patterns when the 

pattern subtends the same size on the retina but are presented as either close-small or far-big. 

Furthermore, flies show an innate attraction for a singular feature when presented with distinct 

2D or 3D small objects (ranging between 1-4°). Finally, learning experiments confirm that they 

can discriminate between these objects, although they fail to learn when one eye is occluded. 

Taken together, this supports the theory that fruit flies possess higher spatial resolution than 

predicted by their optics and use binocularity in close range.   

In summary, the results gathered in this thesis contribute to a new insight into the visually 

guided behaviours of insects in virtual environments. Among other findings, my results 

emphasise the importance of both eyes contribution to vision, enhancing the animals’ ability 

to see their world.  
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Chapter 1 

Introduction 

 

 

 

1.1  Invertebrate vision 

In a world deluged with information, animals use their sensory systems to gather knowledge 

about their surroundings. While no sensory system functions in isolation, vision is the foremost 

sensory input for many animals, providing a rapid and constant source of information to the 

observer (Warrant and Nilsson, 2006). Consequently, selection pressures must have actively 

shaped the early organisms' visual organs (Land and Fernald, 1992; Fernald, 2000) for better 

perception of the environment, improving survival for those with superior vision (Cronin et al., 

2014). Indeed, the invertebrates – animals with no backbone – have been found to possess high-

resolution vision (Nilsson, 2013) in fossils dated to the Cambrian explosion approximately 540 

million years ago (Land and Nilsson, 2012).  

To perform tasks and overcome visual challenges, animals use vision to guide their behaviour 

(Cronin et al., 2014). Examples of different visual challenges include the interception and 

capture of insect prey by aerial predators (Wardill et al., 2017); the detection and evasion of 

predators (de la Flor et al., 2017); the pursuit of potential mates (Somanathan et al., 2017); and 

the collection of nectar and pollen before relocating the nest in central place foragers (Goulson, 

1999). Thus, the visual system and the visual behaviours are inextricably entwined (Endler, 

1992). An animal's visually guided behaviours drive the selection pressures placed on the visual 

system, while the accuracy of the visual information mediates the effective execution of the 

behaviours. 

Consequently, studying the visual system in the context of these visual behaviours is essential 

even when the animal is removed from the wild. Natural behaviours - the typical behaviour 

that an animal would exhibit in the wild - can be readily studied by observing freely moving 

animals in their natural surroundings. Regardless, as has been undertaken within this thesis, 
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many aspects of visually guided behaviour can be better investigated within a laboratory setting 

where the exact visual information can be better controlled.  

This opening chapter explores the invertebrate visual system and the most relevant functional 

modalities of vision, to the use of virtual reality environments for measuring animal behaviour, 

and an overview of the aims and objectives of this thesis.   

 

1.1.1 Invertebrate visual system 

The insect visual system typically contains five visual organs; a pair of lateral compound eyes 

and a triplet of median ocelli (Buschbeck and Friedrich, 2008). This combination is 

characteristic of many insects, although an additional pair of visual organs - the H-B eyelet - 

are present in the fruit fly Drosophila melanogaster (Buschbeck and Friedrich, 2008). The 

ocelli are three (some species possess one or two) small single-chambered eyes located in the 

dorsal head cuticle as a small cluster (Yoon, Hirosawa and Suzuki, 1996). Historically, their 

exact function was difficult to determine (Wilson, 1978), though generally, it is now known 

that each forms a blurry image to aid in the animal's flight control (Stange et al., 2002). 

However, compound eyes are the focus of this thesis.  

Compound eyes 

The compound eyes are two large, multi-purpose eyes that capture the vast majority of the 

visual information facilitating many invertebrate behaviours (Land & Nilsson, 2012). The exact 

form differs between and within species, though it is usually almost spherical and covers a 

large visual field. Fruit flies, for example, sample about 85% of visual space (Buchner, 1971). 

The eye comprises many small hexagonal "facets" that form a convex structure on the eye's 

surface. Each facet is the outer layer of an individual optical unit called the ommatidium (pl. 

ommatidia), consisting of a transparent cornea, crystalline cone and photoreceptor cells. The 

photoreceptor cells (or photoreceptors as they are often called) are characterised by their rod-

like light-sensitive parts, the rhabdomeres, which in some species (with apposition eyes) fuse 

to form a single rod, the rhabdom (Fig. 1.1) (Land & Nilsson, 2012). The cornea focuses light 

- as an inverted image - from a small region of space onto the distal rhabdomere or rhabdom 

tips (their focal plane), with the rhabdomere/rhabdom functioning as a waveguide(s) 

maximising information capture from the incoming photon flux. Meanwhile, the crystalline 

cone is thought to function as a spacer due to its low and homogeneous refractive index.  
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Surrounding each ommatidium is a black screen of light-absorbing pigment to stop rays passing 

between ommatidia, thereby isolating each ommatidium (Yack et al., 2007). Each isolated 

sampling unit codes light information from a small region of visual space. Customarily, this 

region has been considered analogous to the 'pixel' within a camera image. So neighbouring 

ommatidia are thought to sample light from adjacent regions of space, collectively sculpting a 

mosaic of pixels to form the overall image (Shaw, 1984).       

 

Fig. 1.1 The compound eye. 

(left) Schematic of the overall structure of the compound eye, showing the arrangement of 

ommatidia (right) and a longitudinal cross-section of an ommatidium. Abbreviations show the  

cornea (c), crystalline cone (cc), pigment cell (pc), secondary pigment cells (sc), rhabdom (rh), 

retinula cells (rc), basal pigment cells (bp) and basement membrane (bm). Images adapted 

from Land & Nilsson, (2012) (left) and Warrant, (2019) (right). 

 

Consequently, the greater the number and density of ommatidia an invertebrate can possess, 

the more detail is captured in the image. The dragonfly is an extreme example of high 

ommatidia numbers, with approximately 30,000 units per eye compared to the 750 or 5,500 

found in the fruit fly and honeybee, respectively (Seidl and Kaiser, 1981; Srinivasan, 2011; 

Land and Nilsson, 2012). Such differences are presumably due to the ecological demands 

placed on the species. Indeed, the need to intercept prey mid-air is an evident selection pressure 
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for high acuity in dragonflies (Land, 1997). Resolvability is explored in more detail below (see 

1.1.2 Spatial vision).  

Photoreceptor cells 

A rod-like photoreceptor rhabdomere contains tens of thousands of specialised bristle-like 

membrane foldings called the microvilli (Hardie and Juusola, 2015). For example, a typical 

Drosophila photoreceptor has about 30,000 microvilli aligned along its inner length, jointly 

forming its tapering rhabdomere (Juusola and Hardie, 2001). Each microvillus is a fully 

compartmentalised photon sampling unit (Song et al., 2012). It contains all the necessary 

phototransduction molecules (G-protein cascade), including the light-sensitive pigment, 

rhodopsin, to convert photon absorptions to minute elementary electrochemical signals, the 

quantum bumps (Hardie and Juusola, 2015). Rhodopsin, which is abundant in microvilli, 

contains a colourless opsin protein, pocketing in a chromophore, retinal. In photon absorption, 

retinal photoisomerises while opsin tunes this reaction's spectral sensitivity (Briscoe and 

Chittka, 2001; Hardie and Juusola, 2015). Due to the high density of rhodopsin (Osorio, 2007) 

within the highly-dense microvilli, each rhabdomere or rhabdom has a higher refractive index 

than the surrounding medium (Shaw, 1984). Consequently, the rhabdomere/rhabdom encloses 

light within it, acting as a waveguide (Shaw, 1984; Hardie and Raghu, 2001).  

During light stimulation, the quantum bump waveforms, amplitudes and numbers across a 

photoreceptor's microvilli adapt rapidly to sum up its macroscopic response, i.e. a graded 

voltage change (Henderson, Reuss and Hardie, 2000; Juusola and Hardie, 2001; Juusola et al., 

2017). These graded voltage responses across the compound eyes represent the light patterns 

in the visual environment and are essential for forming images of the world and detecting 

motion (Land & Nilsson, 2012). As light enters the distal tip(s) of the rhabdomeres or a 

rhabdom and travels down the structure, it is contained by internal reflection (Land & Nilsson, 

2012). However, in the conventional theoretical models that assume an immobilised eye with 

static structures, the spatial information of the image is lost for each ommatidium as it travels 

down the rhabdom. In reality, the local photomechanical photoreceptor contractions across the 

eyes significantly reduce this spatial information loss, enabling more acute perception (Juusola 

et al., 2017; Kemppainen et al., 2022; see 1.1.3. Active vision, below). With each rhabdom 

only discriminating the intensity of the incident light, and each ommatidium only 

discriminating average intensity and colour (and often the polarisation) of the light in respect 
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to its neighbours (Warrant and McIntyre, 1993), insect compound eyes have been thought to 

provide a mosaic-like view of the world as mentioned above.  

The number of photoreceptor cells within an ommatidium varies between species, though it is 

common for an insect to possess eight cells (R1-R8). For example, Drosophila have the typical 

eight cells while honeybees have an additional cell (Land and Nilsson, 2012). The rhabdomeres 

of the six larger peripheral (outer) photoreceptor cells (R1-R6) extend the entire span of the 

cell body. In contrast, the rhabdomeres of the two narrower (inner) photoreceptors (R7-R8) at 

the ommatidium centre are arranged in tandem with R7 distal and R8 proximal (Warrant and 

Nilsson, 2006). Thus, there are only seven cells at any cross-section of the ommatidium (Fig. 

1.2D) (Braitenberg, 1967).  

If the rhabdomeres are arranged as a single waveguide, this is called a fused rhabdom (Fig. 

1.2B), as found in bees. This is when all the separate rhabdomeres are fused centrally. In 

contrast, if the rhabdomeres remain separated and transfer the light separately, this is called an 

open rhabdom (Fig. 1.2D), as found in flies (Osorio, 2007) (the differences in eye design are 

discussed more below). The open rhabdom increases exposure to light sevenfold with no loss 

in spatial resolution (Kirschfeld, 1967), beneficial for a crepuscular insect with bi-modal 

activity profiles such as fruit flies (Pegoraro et al., 2020). Thus they can gain an advantage over 

their predators and competitors during dawn and dusk (Land & Nilsson, 2012). 

In Drosophila, the outer photoreceptors (R1-R6) are thought to participate in various visual 

tasks, primarily motion vision and orientation mediating behaviours such as course control and 

landing (Braitenberg, 1967; Heisenberg and Buchner, 1977; Vogt and Desplan, 2007). In 

contrast, the inner pair of photoreceptors (R7-R8) primary function is presumably to 

differentiate colours (Trujillo-Cenóz, 1965), although they also contribute to motion perception 

(Wardill et al., 2012). The receptors share the same visual field and contribute information 

from the same point in space to the rhabdom, yet they do not necessarily supply the same 

information. The R1-R6 receptors express Rh1, which has peak sensitivities at 360 nm and 480 

nm (Stavenga, 2010) and specialises in vision at low light levels (Hardie, 1985). In contrast, 

R7 expresses one of two UV-sensitive rhodopsin (Rh3 or Rh4), and R8 can be sensitive to 

either blue light (Rh5) or green light (Rh6).  

In honeybees, the photoreceptors are sensitive to various wavelengths of light and categorised 

according to their spectral sensitivity. With a visual spectrum spanning 300 to 650nm (Frisch, 
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1914; Kühn & Pohl, 1921; Kühn, 1927), two receptors are maximally sensitive to ultra-violet 

(UV) light (340 nm), two are blue-sensitive (463 nm), and four yellow-green-sensitive (530 

nm) photoreceptors (Peitsch et al., 1992; Briscoe and Chittka, 2001). This variety seen in 

photoreceptor sensitivity ultimately enables insects to discriminate "colours," i.e. different light 

wavelengths (Briscoe and Chittka, 2001). Thus, flies and bees are trichromats, consistent with 

humans and many other insect species, although their spectral sensitivity is shifted towards 

shorter wavelengths of light (Menzel, 1979; Chittka, 1996).    

The optic lobes of flies comprise the lamina, medulla and lobula (Dyer, Paulk and Reser, 2011). 

To guide behaviour, neuronal circuits within the insect brain form perceptions from the visual 

information received from the sensory neurons (Behnia and Desplan, 2015). The axons from 

the R1-R6 photoreceptors project to neural columns and are received by large monopolar cells 

(LMCs) and the amacrine cell (AC) (Shaw, 1984). The larger L1 and L2 cells mediate key 

pathways for motion detection as they respond to on an off moving edges. Albeit in opposing 

directions with L1 perceiving back-to-front motion and L2 front-to-back (Vogt and Desplan, 

2007). The information is then transferred from the lamina innervating at different layers via 

several cell types to the medulla (Morante and Desplan, 2008). The R7-R8 cells circumvent 

this neuropil and make synaptic connections with their corresponding medulla column where 

motion and colour information integrate (Kirschfeld, 1967; Morante & Desplan, 2005). From 

this point, the information is carried throughout the rest of the visual pathway: lobula, lobula 

plate and central brain (Borst, 2009). The lobula plate has been studied extensively (Borst and 

Egelhaaf, 1989; Krapp, Hengstenberg and Egelhaaf, 2001). Lobula plate tangential cells 

(LPTC) are present in layers of the lobula plate and are sensitive to horizontal or vertical motion 

(Schnell et al., 2012; Borst and Helmstaedter, 2015) and so are associated with optomotor 

responses (Fujiwara et al., 2017; Kim et al., 2017).  

Eye designs 

Different optical designs evolve by natural selection due to different light intensities exerting 

selection pressure. Each design is categorised according to the structure and function of the 

optics and retina. The two most widespread designs are the focal apposition compound eye 

(and its variants) (Fig. 1.2) and the superposition compound eye (Land & Nilsson, 2012). 

Apposition eyes gather rays from a particular direction by focussing light from a single lens 

onto its fused rhabdom below (Fig. 1.2A and B). This design is commonplace among diurnal 

species living in bright habitats, like honeybees. Rays from a different origin are absorbed 
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within the screening pigment of the cell, functionally isolating the ommatidia from each other 

(Yack et al., 2007). In a trade-off between resolution and sensitivity, this eye design generally 

favours resolution and lacks sensitivity. In contrast, the superposition eye captures rays from 

multiple lenses and focuses them onto a single rhabdom (Land and Fernald, 1992). This design 

facilitates higher sensitivity levels and so is unsurprisingly typical of nocturnal species 

encountering low light levels (Frederiksen and Warrant, 2008). However, it is challenging for 

the optics to perfectly superimpose multiple images, limiting resolution (for review, see 

Warrant, 2017). Drosophila possess a variant of the apposition eye called the neural 

superposition compound eye (Fig. 1.2C). This design somewhat removes the limitations of the 

other eye types by possessing similar optics to the apposition eye, yet superimposing the images 

using neural mechanisms akin to the superposition eye. The neural superposition eye of D. 

melanogaster is of interest to this thesis. Since the above section (see Compound eyes) 

generally discussed the structure and function of the apposition eye, I shall provide more insight 

into the neural superposition eye.     

In the fly eye, the neural signals of eight receptor cells (R1-R8) from seven neighbouring 

ommatidia superimpose together in the same second-order cell of the lamina (Kirschfeld, 1976; 

Borst, 2009). This is possible as the fields of view of the six peripheral rhabdomeres in one 

ommatidium share the same view as the central rhabdomere of one of the neighbouring 

ommatidia. Likewise, the angle between adjacent ommatidia is identical to the angle of 

adjacent rhabdomeres within an ommatidium. However, this eye type does have a constraint. 

The separation between the distal tips of the rhabdomeres within an ommatidium has to be 

identical to the angle separating adjacent ommatidia. Because the rhabdomeres are very 

narrow, considerable light energy occurs outside the light-guide, i.e. 'leakage'. Consequently, 

there needs to be a substantial separation between rhabdomeres to prevent 'cross-talk' 

(Wijngaard and Stavenga, 1975). 

This eye design is the only design found within the Brachycera order - characterised by their 

reduced antennae segmentation –a suborder of Dipterans (higher flies) (Nilsson and Ro, 1994) 

to which the Drosophilidae family belongs (Wiegmann et al., 2003). An interesting optical 

phenomenon in Drosophila is the "deep pseudopupil". Each lens forms an upright virtual image 

of the seven distal rhabdomere endings in its focal plane (Franceschini, 1972). This 

phenomenon allows the analysis of the movement of photoreceptor microsaccades, as 

discussed in chapter 3.  
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Fig. 1.2 Two optical designs of compound eyes.  

(A) The focal apposition compound eye with (B) a fused rhabdom, typical of diurnal insects 

such as the honeybee Apis mellifera. (C) The neural superposition compound eye with (D) an 

open rhabdom, as found in the fruit fly Drosophila melanogaster. This design superimposes 

the neural signals of eight receptor cells from seven neighbouring ommatidia together in the 

lamina, this is possible as the six peripheral rhabdomeres in one ommatidium share the same 

field of view as the central rhabdomere of one of the neighbouring ommatidia. This facilitates 

higher sensitivity levels for the fruit fly which is active at dawn and dusk. Image redrawn and 

modified from Land & Nilsson, (2012). 
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1.1.2 Spatial vision 

Many behaviours are mediated by visual acuity, defined as the minimum angle that the eye can 

resolve spatial information. High acuity increases the image's resolution and thereby provides 

fine spatial detail. However, the two principal components of the eye - the optics and the retina 

- cause numerous physical limitations to the spatial resolving power of the eye (Warrant and 

McIntyre, 1993; Gonzalez-Bellido, Wardill and Juusola, 2011). Furthermore, light availability 

is a significant limitation since the eye's capability is irrelevant if insufficient photon capture, 

i.e. photon noise, restricts any discernible spatial detail. This is because any ambiguity over the 

intensity of a stimulus concurrently provides uncertainty about its spatial location (Warrant and 

McIntyre, 1993). 

Optical limitations 

Mallock (1894) first proposed that the arthropod eye produces a relatively poor image due to 

its small and imperfect optics. The poorer the optics, the worse the retinal image and 

consequent spatial resolving power of the eye. Optical limitations include spherical and 

chromatic aberration (Warrant and McIntyre, 1993). In both cases, parallel light rays are 

focused to a position behind the lens, i.e. the focal plane. However, due to the spherical surface 

of the lens, rays entering the periphery can focus closer behind the lens than rays entering at 

the centre, thereby focussing short of the focal plane and causing blurring and ultimately 

reducing image quality. Comparably, chromatic aberration can focus shorter wavelengths of 

light closer to the back of the lens than longer wavelengths to cause blurring (Warrant and 

McIntyre, 1993). 

Additionally, since the compound eye consists of tiny lenses, they have the fundamental design 

problem of diffraction. This occurs when light passes through an aperture, as it will slightly 

bend (i.e. diffract) at the edges (Land & Fernald, 1992). This arises due to light photons' dual 

properties, which are particles that behave like waves (Broglie, 1924). The smaller the lens, the 

more significant the effect of diffraction as light rays will spread more and restrict resolvability 

due to its wave-like properties (Land & Nilsson, 2012). Consequently, there will be a blurred 

pattern of light within the retinal image referred to as the "airy disk" (Land and Nilsson, 2012). 

The airy disk will reach a threshold of being too large with decreasing facet diameter. 

Therefore, to limit diffraction, either the lens size can be increased or the wavelength reduced 

(Land, 1997). Besides diffraction, smaller lenses also limit acuity as they ultimately allow 

fewer photons to pass through and be captured by the photoreceptors below (Snyder, Stavenga 

and Laughlin, 1977; Nilsson, 1989). 
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Photoreceptor limitations 

The size and number of rhabdoms are critical to the overall visual acuity of the insect. Spatial 

resolution is improved with narrow rhabdomeres since they collect light from a smaller 

receptive field within the scene. How rhabdom size influences acuity was studied in a 

comparative study of two miniature dipteran species, the fruit fly and the predatory killer fly 

(Coenosia attenuata) (Gonzalez-Bellido, Wardill and Juusola, 2011). The study highlighted 

that although the species have similar-sized lenses, the killer fly has three-to fourfold better 

acuity. Consequently, it is not the optical limitations influencing the differences in spatial 

resolution. Instead, as shown by electron microscopy, the much smaller rhabdomeres found in 

the killer fly contributed to their enhanced acuity, consistent with the ecological demand of 

their predatory lifestyle. Conversely, some photons will propagate outside the rhabdomere 

when very narrow (Snyder and Miller, 1977), potentially limiting the spatial resolving power.  

Interommatidial angle and acceptance angle 

The interommatidial angle (Δ𝜑) refers to the angular spacing between adjacent ommatidia (Fig. 

1.3) (Land, 1981, 1997). Smaller angles indicate more densely packed rhabdoms which have 

the potential for the eye to facilitate high spatial resolution (Snyder, Stavenga and Laughlin, 

1977). The precision in which light is split according to its direction of origin, i.e. resolution, 

determines how well an animal can see. The ratio of the facet diameter, D, compared to the 

eyes radius curvature, R, (∆φ≈d/r radians), determines the interommatidial angle and 

consequent ommatidia density. To improve the resolvability of the compound eye, a larger eye 

radius and smaller facet size would elicit a higher density of ommatidia and enhance resolution 

(Kirschfeld, 1976; Land & Fernald, 1992), but since the eyes surface is a finite area, it cannot 

have adaptations that maximise both resolution and sensitivity. Thus to limit trade-offs between 

resolution and sensitivity, one solution would be to increase the size and quantity of the 

sampling units, yielding an overall larger eye (Land & Fernald, 1992). However, the required 

size of a compound eye to match the resolvability of a camera-type eye would be unsupportable 

and impede biological fitness (Kirschfeld, 1976).  

In addition to the interommatidial angle, another critical parameter is the acceptance angle (Δρ) 

(Fig. 1.3). The angle is defined as the half-width of the photoreceptors receptive field (angular 

sensitivity) for each ommatidium (Warrant and McIntyre, 1993) and determined by the ratio of 

the rhabdom diameter, d, and the focal length of the ommatidium, f, (Δρ≈d/f radians) (Stavenga, 

2003; Frederiksen and Warrant, 2008). Thus, the interommatidial angle would represent the 

angular spacing between pixels on a camera image, and the acceptance angle would be the 
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angular size of each pixel. Consequently, smaller angles in both would imply better spatial 

resolution. 

A common approach is not to have a constant lens size across the eye but rather to vary the eye 

structure in different eye regions (Land, 1997). For example, when comparing interommatidial 

angles, in D. melanogaster, the angle ranges from 4° in the frontal area to 8° in the dorsal rim 

(Gonzalez-Bellido, Wardill and Juusola, 2011). Regions of smaller interommatidial angles and 

enlarged facets are called acute zones and are typically sex-specific. For example, male insects 

often possess acute zones to support chasing behaviour during sexual pursuit (Land & Eckert, 

1985). 

The structural and optical measurements provide valid estimates to determine the resolvability 

threshold of each species. This, along with the quality of the optics and the density of the 

sampling units. For example, the historical consensus is that Drosophila have low-resolution 

vision and experience considerable motion blur. Generally, this was believed due because of 

the limitations discussed above, including the interommatidial angle size, photoreceptor slow 

integration time (the speed of phototransduction reactions), and motion blur during saccadic 

behaviours (Land, 1997). Since the vast majority of the time the eye or the animal's 

surroundings are moving, motion blur restricts spatial resolution. The extent of blurring 

depends on the photoreceptors’ integration time limit and the angular velocity of the eyes 

relative to their surroundings (Srinivasan and Bernard, 1975; Land, 1995). Many insects 

experience blurring with angular velocities over 50° per second (Laughlin and Weckström, 

1993), which during flight is prevalent as high-speed movements can be up to thousands of 

degrees per second (Collett and Land, 1975). However, different adaptations have arisen to 

overcome the limitations brought about by motion blur. This includes acute zones (discussed 

above), saccadic and fixation behaviour (discussed below in Body saccades) and 

photomechanical contractions (microsaccades) (discussed below in Photomechanical 

photoreceptor microsaccades). Consequently, neural or physiological mechanisms may aid the 

optics and thereby enhance acuity beyond what is predicted by the optics alone. 
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Fig. 1.3 Two optical parameters that define visual acuity. 

The interommatidial angle (Δφ) is the angular spacing between adjacent ommatidia. The 

acceptance angle (Δρ) is the half-width of the angular sensitivity curve. Image reproduced with 

permission from Horridge, (2009).  

 

Spatial wavelength 

Various stimuli can be utilised for the behavioural assessment of an animal's visual system. 

Behavioural studies to determine the finest grating or single object thresholds an eye can detect 

can generally be referred to as the “minimum separable” or “minimum visible” (Land, 1997). 

First, linear square gratings are extended source stimuli of equally sized dark and light bars 
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repeating. The variability of the size and contrast of the bars is a valuable tool for testing the 

visual system of an animal (Warrant and McIntyre, 1993). The bar's size is commonly referred 

to as the spatial wavelength, the angle in degrees in which one cycle of the bars, i.e. one dark 

and one light pairing, subtends the eye, i.e. degrees/cycle. The animal will only resolve 

individual bars if each bar is projected onto separate photoreceptors (Land, 1997). The spatial 

frequency is the reciprocal of the spatial wavelength. Therefore, high spatial frequency gratings 

contain more inherent spatial detail as smaller bars are more tightly packed together, while low 

spatial frequency gratings contain less detail with coarser bars. Testing the limit of the visual 

system to respond to high spatial frequency bars is a useful experimental approach to measure 

the spatial resolution of the eye.   

Second, the smallest detectable single object can sometimes define acuity instead of the finest 

grating. This is because detecting small objects and small gratings offers different challenges 

and situations for the eye. In its natural environment, a single object, for example, maybe a 

virgin queen sighted by a drone, a grating, on the other hand, could be compared to general 

flora. Consequently, the smallest single object detectable by the eye is not necessarily identical 

to the finest grating visible.  

 

1.1.3 Motion and active vision 

Motion perception is the most studied visual modality in fruit flies. The elementary motion 

detector (EMD) was one of the earliest models on motion detection. Pioneered and first 

proposed by Hassenstein and Reichardt (1956), the generalised model computes motion 

direction centred on a non-linear correlation of the response between two adjacent 

photoreceptors to temporal luminance changes (Geurten et al., 2007). This is achieved by 

direction-selective amplification of the directional responses of the adjacent receptors after one 

has been delayed (Behnia and Desplan, 2015). Two pathways compute this, one detects light 

edges while the other detects dark edges (Maisak et al., 2013). The response is predicted by 

the model to not increase continuously with increasing velocity, but rather after going beyond 

the optimum velocity to then decrease in response. Additionally the model predict that this 

optimum velocity is not fixed but rather varies in response to the spatial wavelength of the 

pattern’s (Borst, 2000). As parameters were modified to fit new experimental observations then 

new models originated. The Barlow-Levick-model’ is almost identical (Barlow and Levick, 

1965), except brightness signal comparisons to calculate the direction of image velocity are 
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achieved by having two adjacent image points arrive simultaneously through a veto gate. The 

detectors null direction therefore corresponds with the motion direction, e.g. from right to left. 

Motion vison has many functions for an animal. As the animal moves through its environment 

the retinal image is in constant motion. The distribution of motion vectors, optic flow, depends 

on the specific movement that the animal performs, such as moving forward or sideways. Optic 

flow therefore is an invaluable source of information for visual course control (Lawson and 

Srinivasan, 2018).  

Vision can generally be divided into two types of systems, passive and active. Passive refers to 

object movement and the energy generation independent of the animal observer (Nelson and 

MacIver, 2006). Examples include the use of celestial visual cues to guide their behaviour. The 

dung beetle (Scarabaeus satyrus), for instance, has been found on a starlit night to use the 

Milky Way for straight-line orientation (Dacke et al., 2013). However, either as an alternative 

or combined with passive cues, the animal can also use their self-generated energy to extract 

information from their environment. 

Many examples of active sensing can be found in nature. For example, bats and dolphins have 

used 'sound' for echolocation by emitting sound energy (biosonar) into their environment to 

help with navigation and prey capture (Au and Simmons, 2007). 'Touch' has been utilised by 

many insects species, including stick insects (Carausius morosus) and crickets (Gryllus 

campestris, Gryllus bimaculatus) through their antennal movements (Horseman, Gebhardt and 

Honegger, 1997; Dürr, König and Kittmann, 2001). More to the point, there are numerous 

examples of animals utilising 'vision' for active sensing of their environment. I shall first 

discuss how animals use the self-generated energy of their body and head movements for active 

vision. I will then explore the more recent finding of photoreceptor microsaccades in 

Drosophila melanogaster, as this discovery is the motivation for the experiments in chapters 2 

and 3.     

Body saccades 

Human eyes can move independently from the head and body, using a fixate-and saccade (or 

gaze-and-shift) strategy (Land, 1992). However, unlike vertebrates, insects cannot move their 

eyes independently from their head as their eyes are fixed on the external surface of the head. 

However, this does not mean that invertebrates cannot achieve active vision. Flying or walking 

insects also perform fixation and saccadic behaviour by moving their entire head and body 

(Geurten et al., 2014; Mongeau and Frye, 2017). This entails rapid periods of stabilised gazing 
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intermittent with rapid shifts in gaze location (Collett and Land, 1975; Schilstra and Van 

Hateren, 1999; Van Hateren and Schilstra, 1999). 

Drosophila (and other flying insects) use head movements to stabilise the wide-field image, 

which helps steady the visual input and reduce motion blur (Hardcastle and Krapp, 2016). Fox 

and Frye (2014) found that head fixation impairs object fixation when the object is presented 

alongside ground motion. Wing steering responses follow both the figure and ground whilst 

the head follows only the ground. Suggesting the head movements are necessary for stabilising 

the image of ground motion during a visual tracking task (Fox and Frye, 2014). Additionally, 

these head movements shape and coordinate the flight motor response in flies during flight. 

Cellini and Mongeau (2020) found that head movements increase the wing gain and coordinate 

steering responses. Furthermore, head responses occur 40 ms sooner than wing responses, 

suggesting a temporal order of the head gathering visual information (through the compound 

eyes) to elicit the appropriate behaviour response (downstream wing steering responses). In 

addition to head and body movements, it has recently been shown that a pair of muscles within 

the eye cause saccade-like movement that may enhance vision (unpublished work presented by 

Lisa Fenk at the Fourth International Conference on Invertebrate Vision 2019). Furthermore, 

recent work has shown that Drosophila possess photomechanical photoreceptor movements as 

another form of active vision, to some extent comparable to the saccades of the vertebrate eye 

(Juusola et al., 2017). 

Photomechanical photoreceptor microsaccades 

Juusola and colleagues (2017) demonstrated that fruit fly photoreceptor cells rapidly contract 

to light in vivo (in intact living flies), as had been previously shown by Hardie and Franze 

(2012) ex vivo (in a petri dish). These contractions (or microsaccades) occur by cleaving PIP2, 

e.g. phototransduction, so photon capture self generates this form of active sensing (Hardie and 

Franze, 2012; Juusola et al., 2017). The contractions occur beneath the rigid optics (Fig. 1.4) 

and swing the photoreceptors backwards, forward, and side to side in a piston-like motion. 

Such cell contractions and elongations dynamically shift the x,y position and adjust the 

receptive field size, further focussing the light input spatially and temporally. Specifically, the 

phasic responses indicate an object’s movement over one photoreceptor’s receptive field to the 

next, thus encoding space in time. These findings suggest that fruit flies possess "hyperacute 

vision", defined as spatial resolving power better than what is predicted by the optical 

resolution limit. Notably, these local photomechanical microsaccades differ from the global 
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eye-muscle-induced micro-movements as intraocular muscles would move the retina as a 

whole in a single movement (Franceschini et al., 1991; Franceschini, 1997) which inspired the 

construction of hyperacute artificial light-sensors (Viollet, 2014) that has applications within 

visual stabilization and target tracking (Colonnier et al., 2015).  

The ultrafast microsaccade dynamics would then have the added effect of reducing image blur, 

an essential feature for continuously sampling light during the head and body's saccadic and 

fixation behaviour. However, this behaviour generates rapid angular velocity changes 

(Srinivasan and Bernard, 1975), which, together with Drosophila's relatively slow 

photoreceptor integration time (Juusola and French, 1997), suggests a blurred image. Indeed, 

the previous consensus is that flies would have essentially been blind during this behaviour 

because of this motion blur (Land, 1999). Nevertheless, the previously unknown mechanism of 

photoreceptor contractions explains the fly's potential ability to see a clear and high-resolution 

image (Juusola et al., 2017). When a fly was presented with high contrast bursts (rapid light 

changes and static periods) resembling a naturally lit scene, intracellular recordings revealed 

that R1-R6 captured up to four times more information than previous estimates (Juusola and 

Hardie, 2001). 

Furthermore, behavioural experiments investigating their optomotor response showed the adult 

female Drosophila responded to gratings as fine as 1.16°, approximately four times smaller 

than their interommatidial angle, and consistent with the intracellular recordings. The 

implications are that D. melanogaster spatial vision might be four-fold better than previously 

believed. Following from this research (Juusola et al., 2017), how the mechanics of the 

contractions occur globally over each eye has now been explored for the first time, suggesting 

that these contractions also provide short-range binocularity in Drosophila, to be discussed in 

more detail below (1.1.4 Binocular vision).  
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Fig. 1.4 Drosophila photoreceptor microsaccades enhance spatial resolving power. 

In vivo recordings show the lens is immobile (top) while the photoreceptors below contract to 

light input (bottom). The contractions occur beneath the rigid optics and swing the 

photoreceptors backwards, forward, and side to side in a piston-like motion. Such cell 

contractions and elongations dynamically shift the x,y position and adjust the receptive field 

size, further focussing the light input spatially and temporally. Grey bar indicates a light flash 

stimulation. Image reproduced with permission from  Kemppainen et al., (2022).  

 

 

Indeed, numerous studies support Juusola's  (2017) theory and go against the traditional view 

that Drosophila only see blurred low-resolution images. For example, Schneider et al. (2018) 

demonstrate with machine learning and modelling that Drosophila have visually distinct 

features that conspecifics can use for re-identifying each other. And Cruz, Pérez and Chiappe, 

(2021) (e.g. their Fig. 6C) show free-walking Drosophila reacting robustly and consistently to 

hyperacute 1° and 2.5° objects. Consequently, there is growing support that Drosophila 
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perform feats beyond the optical limit. This is perhaps unsurprising given the above factors and 

other behavioural examples of animals detecting objects smaller than the interommatidial 

angle, such as robber flies (Wardill et al., 2017) and killer flies (Wardill et al., 2015). 

So while head movements serve to stabilise the gaze to elicit wing steering responses (Cellini 

and Mongeau, 2020), photoreceptor movements seemingly serve to enhance the retinal image 

beyond the structural limitations, though their exact functional role remains to be investigated.  

 

1.1.4 Binocular vision 

Depth perception 

In a three-dimensional world, the ability to perceive depth is essential for many species. To 

identify whether an object is a target of interest, the animal must evaluate its properties and 

decide on the appropriate behavioural response dependent on its distance. For example, a 

predator needs to decide whether it is a suitable prey item, and the prey needs to decide whether 

it is predatory species it needs to evade (Prete and Mc Lean, 1996; Combes et al., 2012; 

Haselsteiner, Gilbert and Wang, 2014; Wardill et al., 2015). To evaluate this, the animal must 

first determine whether the object is small and close or large and far away, as either scenario 

can subtend the same angular size on the retina (Fig. 1.5A). Conversely, a small object, either 

close or far away, would subtend very different sizes on the retina (Fig. 1.5B). However, the 

images sampled by the retina are collected by a two-dimensional array of photoreceptors. 

Therefore, the "lost" three-dimensional (3D) information must be reconstructed perceptually 

from 2D retinal images by extrapolating depth cues that signify differences in object distance. 

These cues can be either monocular (one eye) or binocular (two eyes) and typically fit into 

three distinct categories; light transport, perspective and triangulation (Banks et al., 2016). 

Light transport involves shading and occlusion, while perspective includes looming and 

relative size. The latter category of triangulation entails motion parallax and binocular 

disparity. Motion parallax is the most common mechanism reported in invertebrates. The 

perceived speed an object moves across an animal's visual feed is determined by its distance 

from the observer. Thus, objects closer to the animal will appear to move faster and further 

than those farther away.  
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Invertebrate stereopsis 

In general, binocular disparity for depth perception in animals is much less common or 

demonstrated. Thus, its occurrence in invertebrate species is much less known.  Stereopsis, or 

stereo vision, functions to calculate object depth using the binocular disparity between two 

eyes. Thus, each eye simultaneously acquires a slightly different two-dimensional retinal 

image. These differences between images become evident once fused neuronally. From this, 

the object's distance can be calculated. However, this mechanism has been demonstrated in 

relatively few species. Traditionally, research into stereo vision has focussed on primates and 

other mammals (Nityananda and Read, 2017), encompassing both predatory (Ptito, Lepore and 

Guillemot, 1991) and prey species (Timney and Keil, 1999).  

Until recently, stereopsis had only been suggested in a single insect order, the mantises 

(Maldonado and Rodriguez, 1972). Utilising anaglyph glasses, Nityananda et al. (2016) 

demonstrated that praying mantis will attempt hunting behaviour when the observed stimulus 

is perceived to be within its catching range. However, inspired by the approach used in mantis, 

cuttlefish have been tested with anaglyph glasses and presented virtual prey items. Feord et al. 

(2020) found that cuttlefish detected and positioned themselves to strike prey more efficiently 

when binocular vision remained intact. Cuttlefish stereopsis is a much more recent finding 

(Feord et al., 2020), and so it is much less clear and the underlying mechanisms less understood.  

In both cases of invertebrate stereopsis, the animal utilised binocular mechanisms for the 

fundamental function of prey capture. Further investigation is needed to determine whether 

stereopsis appears in other invertebrate species. It may be surprising that recent theory suggests 

that the fruit fly may utilise stereo vision for short-range distance estimation (Kemppainen et 

al., 2022). The photoreceptor contractions that enhance acuity (Juusola et al., 2017) may also 

provide the fly with binocularity over a short range due to the global mechanics of the 

contractions. Kemppainen et al. (2022) show how microsaccades contract mirror-

symmetrically across both eyes in a back-to-front motion which calculates object distance via 

phasic disparity signals correlating into neural distance temporally.   
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Fig. 1.5 Depth cues in animals.  

(A) Close-small and far-big objects subtend the same angular size on the retina. This therefore 

makes it difficult to distinguish the distance to the object which animals need to overcome to 

minimize metabolic costs. (B) When close to the observer, more sampling units capture the 

object than when it is far away. As distance increases fewer ‘pixels’ will cover the object until 

it may only be covered by a single pixel.  Images reproduced with permission from (A) Wardill 

et al., (2015) and (B) Gonzalez-Bellido, Fabian and Nordström (2016).



21 

 

1.2  Measuring behaviour  

If the eyes are an instrument to see the world, then behaviours are a mechanism to interact with 

it. We can determine which visual cues they can perceive by measuring an animal's behavioural 

output. This section explores using virtual reality systems to isolate specific behaviours and 

visual cues from the optomotor response and object detection. In addition, to the ways, 

Drosophila can be conditioned to develop orientation preferences in a flight simulator.        

    

1.2.1 Using virtual reality 

Researchers can immerse animals in artificial environments through virtual reality (VR) 

systems to measure various visual behaviours (Schultheiss et al., 2017) (Fig. 1.6). Typically, 

animals are fixed in space, and their responses to artificial stimuli are quantified. Though it 

restricts natural behaviour, this approach increases animal and stimulus presentation control to 

yield novel insights into many research areas (Chouinard-Thuly et al., 2017). For example, 

understanding visual course control, the ability to select and sustain a specific orientation, and 

understanding motivation, i.e., the animal's goal by maintaining a particular orientation. The 

system of most relevance to this thesis is the flight simulator (see Chapter 2 & 3), which 

measures flying behaviour, which can be tested in both open and closed-loop paradigms 

(Schultheiss et al., 2017).   

A critical issue with behavioural observations of freely moving animals in a highly complex 

environment is demonstrating conclusively that the behaviour of interest results from specific 

stimuli and is not influenced by other factors. In this respect, the artificial setups of virtual 

reality systems have the advantage that well-defined stimuli can be presented to the animal, 

allowing a more systematic investigation into the different elements of visually guided 

behaviours. However, this comes at the price of understanding the animal's motivation and 

context-dependent behaviours performed in an artificial environment (Heisenberg and Wolf, 

1984). 

A useful setup, parallel to the measurements of attempted flight, is the use of a trackball to 

measure the walking behaviour of insects. Insects can engage their legs with the air-supported 

ball and attempt locomotion in response to the visual stimulus, whether presented within an 

LED matrix or light projected arena (Taylor et al., 2015). However, LED arenas are not as 

helpful in studying acuity, with size restrictions often being close in size to the interommatidial 
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angle (e.g. 3.75°, Salem et al., 2020). Thus, I used the torque meter with paper scenes, enabling 

much finer visual stimuli.  

                             

Fig. 1.6 Examples of measuring invertebrate behaviour using virtual reality. 

Image of a tethered American cockroach Periplaneta americana mounted on an air-supported 

trackball in a bespoke virtual reality systems. Insects can engage their legs with the air-

supported ball and attempt locomotion in response to the visual stimulus. Though it restricts 

natural behaviour, this approach increases animal and stimulus presentation control to yield 

novel insights into many research areas. Image reproduced with permission from Takalo et 

al., (2012). 

1.2.2 The optomotor response 

An instinctive behaviour that is not easily observed in the wild - but is an essential aspect of 

motor control - is the optomotor response (Srinivasan, Poteser and Kral, 1999). Many animals 

can move their eyes (optokinetic) in the same direction as motion. Insects, however, cannot 

independently move their eyes and so turn the entire body (optomotor). The behaviour is an 
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automatic turning to follow the movement of wide-field stimuli. It functions as a form of course 

control whenever the animal encounters unexpected or sudden deviations from its heading 

(Srinivasan, Poteser and Kral, 1999). For example, this may be a gust of wind blowing a 

honeybee leftward during a flight. In this case, the animal's optic flow would rotate from left 

to right across both eyes. Optic flow provides information about motion direction and object 

distance (Cronin et al., 2014). Insects typically encounter either translation (front-to-back optic 

flow) or yaw rotation (front-to-back in one eye, back-to-front in the other eye). Thus, to 

stabilise rotational optic flow, an insect will attempt to reduce the retinal slip of the flow field 

by maintaining a straight path (Götz, 1968). Therefore the honeybee example should fly 

rightward.  

Regardless of the optomotor response's function and visibility in nature, its use in a laboratory 

setting is unquestionable. Its effectiveness is akin to using the proboscis extension response 

(PER) protocol in honeybee learning and memory experiments (Giurfa and Sandoz, 2012). The 

optomotor response has been utilised in vision research as an effective behavioural measure in 

controlled experiments for measuring various aspects of vision (Fig. 1.7), including the role of 

ocelli (Honkanen et al., 2018), binocular interactions (Duistermars, 2012), the organisation of 

large-and small-field pathways (Duistermars et al., 2007) and dim-light vision (Nuutila et al., 

2020). Furthermore, von Gavel (1939) also demonstrated that flies responded to gratings 

smaller than the interommatidial angle, the first indication that the optical resolution limit did 

not limit Drosophila spatial resolving power. It is a behavioural response that will be robustly 

performed as long as the animal can see the movement of the environment as tested in Chapter 

2.  
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Fig. 1.7 Examples of measuring optomotor behaviour in animals. 

Dark and light bars presented (A) to the fruit fly Drosophila melanogaster and (B) honeybee 

Apis mellifera that turn their entire body (optomotor) to follow the movement of wide-field 

stimuli. This is an innate response that functions as a form of course control whenever the 

animal encounters unexpected or sudden deviations from its heading. Presenting different 

sized bars is a useful tool for measuring visual acuity.  

 

Historically, linear gratings (discussed above 1.1.2 Spatial vision (Spatial frequency)) have 

been used to elicit optomotor responses (Srinivasan, 1977). Early studies include von Gavel 
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(1939), who tested optomotor behaviour to different spatial wavelengths and contrasts. 

Interestingly, when the presented wavelength was approximately 9°, the turning response 

reversed as the flies turned in the opposite direction from the moving grating. In the dim light, 

this reversal shifted and now occurred with larger wavelengths. This reversal point was 

explained as a Moiré effect (Fig. 1.8). This phenomenon has been found in honeybees between 

5° and 10° (Kunze, 1961). Aliasing occurs when overlapping periodic textures are offset by a 

slightly different wavelength or angle. In behavioural measures of acuity in insects, the moiré 

effect is occurring between the interommatidial angle and the grating which is induced by the 

rotation of the gratings, which are perceived by the animal as a slowed down image rotation 

which then reverses in the opposite direction (Horridge, 2009a).  

                                               

Fig. 1.8 The moiré effect. 

Aliasing can occur when overlapping periodic textures are offset by varying spatial 

wavelengths or angles. When measuring acuity this can result in the animal perceiving 

movement in the opposite direction when viewing specific spatial wavelengths.  

 

To study the optomotor response of Drosophila eye mutants, Götz (1964) developed the yaw 

torque compensator, or so-called "Drosophila flight simulator". By measuring their turning 

tendency, i.e. the amount of force the fly exerts in its attempt to control its flight course, Götz 

was able to study the motion perception of the fly. In this and subsequent experiments, the fly 

is tethered at the torque meter (Fig. 1.9), i.e. it is never really making actual turns or performing 

saccadic shifts, and therefore is receiving no visual feedback. The fly's behaviour is restricted 

to one degree of freedom (i.e. rotation around the vertical body axis). The setup is configured 

to open-loop where the grating was under the experimenter's control and therefore was 

unpredictable to the animal. So while the yaw torque of the animal does not control the stimulus 

as it does in a closed-loop setting, the fly's torque is nevertheless analysed to assess how well 
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the animal can see the specific stimulus parameters. Flies do not fly in smooth curves in nature. 

Instead, they zig-zag (saccades), corresponding to torque spikes when tethered at the torque 

meter. As the fly receives no visual feedback and seemingly fails to achieve any goals, the 

responses generally decline in strength over repetitions and must be averaged.  

The simulator has been utilised to develop insight into visually guided behaviours. Such results 

are possible due to the fully automated control of the stimulus (e.g. speed, direction) in response 

to the precise torque output of the fly (e.g. yaw, thrust, pitch, roll). Theoretically, lots of 

different behaviour can be performed by the animal. However, the literature has mainly focused 

on yaw torque, which has been studied for over 50 years (Götz, 1964). Blondeau and 

Heisenberg (1982) designed a simple torque meter to measure pitch and roll. Dill, Wolf and 

Heisenberg, (1995) introduced a novelty choice experiment, a visual paired-comparison task 

that does not provide any reinforcement, and later studied how the central complex and 

mushroom bodies mediate the behaviour (Solanki, Wolf and Heisenberg, 2015). More recently, 

Toepfer, Wolf and Heisenberg (2018) investigated orientation behaviour in a flight simulator 

system where the visual stimulus was ambiguous. This setup is traditionally used with an 

unambiguous stimulus, adding a second texture that rotated opposite to the first texture could 

see how the fly used each frame of reference when selecting cues for flight direction.    

 

Fig. 1.9 Drosophila at the torque meter. 

Schematic of a tethered flying Drosophila at the torque meter presented with competing left 

and right stimuli. The attempted turns to the left and right (yaw torque) by the fly are measured 

in response to the stimuli. Image reproduced with permission from Tang and Juusola (2010).  
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In addition to studying the optomotor response of flying Drosophila, devices have been 

designed to record the turning behaviour of walking Drosophila, such as the "tread 

compensator" (Götz and Wenking, 1973) and "styrofoam ball" (Buchner, 1976). For example, 

a recent study developed a spherical projection system fitted with a trackball using a fisheye 

lens to project visual stimuli to the sphere's inner surface (Takalo et al., 2012). This was 

followed up by (Honkanen et al., 2014), using the same setup to measure the optomotor 

response of cockroaches. More recently, Honkanen et al. (2018) showed that besides the 

compound eyes, the ocelli play a vital role in the mechanism that elicits the optomotor response 

in cockroaches. The spherical projection system described above has been adapted for 

cockroaches, but it may be utilised for a more comprehensive array of smaller invertebrates 

with minor adjustments.  

1.2.3 Object detection and fixation  

Distinguishing small singular objects (or targets) amongst a complex visual environment is a 

challenging visual task.  Targets can be defined as a small object moving independently of its 

background, e.g. a fly moving through its environment, and can be tracked for various 

functions, including foraging or mating (Gonzalez-Bellido, Fabian and Nordström, 2016). 

Nevertheless, the compound eye with a relatively low spatial resolution still enables many 

insects to detect and then perform appropriate behavioural responses to the small object relative 

to its context. For example, during flight, animals perform a "gaze and saccade" strategy that 

includes periods of rapid movements (saccades) and fixations (gaze). When tracking a small 

object, either through saccades or fixations, the background image (wide-field) is shifted over 

the retina, creating an optic flow, while the object (small-field) remains relatively still on the 

retina as the animal attempts to track it. 

Consequently, this process was believed to arise from two functionally distinct visual 

pathways. A wide-field pathway which responds to optic flow and is associated with 

behaviours such as the optomotor response (discussed above) (Reichardt, Poggio and Hausen, 

1983) and a small-field pathway associated with smaller objects (Egelhaaf, 1985; Carroll, 

1993; Nordström, Barnett and O’Carroll, 2006; Barnett, Nordström and O’Carroll, 2007; 

Duistermars et al., 2007). These distinct visual pathways arise in early visual processing, 

diverging in lamina monocular cells (LMCs) directly downstream of the photoreceptors 

(Katsov and Clandinin, 2008).        
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Consequently, the insect visual system needs to segregate the relative movement of the object 

to distinguish it from the background (Nordström, Barnett and O’Carroll, 2006; Nordström and 

O’Carroll, 2009; Gonzalez-Bellido, Fabian and Nordström, 2016). Objects can remain 

obscured if it is stationary and matches the background texture, though if the object moves, it 

will suddenly become visible. Following on from the early optomotor experiments at the torque 

meter, this object detection has been shown behaviourally in Musca (Wehrhahn and Reichardt, 

1973; Virsik and Reichardt, 1976; Reichardt and Poggio, 1979; Reichardt, Poggio and Hausen, 

1983). 

The theory of "object fixation" by Reichardt and Poggio (1976) describes how an animal 

chooses a particular orientation relative to a specific reference point. This behaviour, or 

orientedness, functions to collect as much information about its current situation by continually 

gathering sensory data about objects. The stabilisation of a vertical "stripe" in the frontal part 

of the visual field was shown in the fly Musca (Reichardt, 1973). The stripe stabilisation in 

other parts of the fly's visual field is called "non-fixation" or "anti-fixation". However, the same 

pattern can be attractive or aversive. For example, when the vertical stripe is bright, and the 

arena background is dark, the fly avoids the stripe most of the time and performs anti-fixation 

behaviour (Heisenberg and Wolf, 1984). Behavioural studies have shown in freely walking 

flies, Drosophila melanogaster, that stationary stripes induce fixation behaviour (Reichardt 

and Wenking, 1969; Horn and Wehner, 1975; Wehner and Horn, 1975; Horn, 1978). Flies had 

their wings cut and were placed within a circular arena which was uniform except for a vertical 

stripe on the periphery. In most cases, flies walked towards the stripe, although occasionally 

flies would walk in the opposite direction (Wehner, 1972).  

In the flight simulator, the angular position of the pattern (a vertical stripe) is variable, while 

the fly's orientation is fixed in space. Flies have been shown to prefer flying towards vertical 

stripes (Heisenberg and Wolf, 1979), perhaps, due to the similarity with natural features from 

the world, such as plant stalks. This behaviour is independent of fly age, sex, and diet. It also 

does not depend on the contrast or intensity of the pattern but rather its size and shape (Wehner, 

1972; Horn and Wehner, 1975; Horn, 1978). Overall, it has been shown that dark stripes have 

a restricted "attractiveness" for flies when they are fixed in position and are walking or flying. 

However, for freely walking flies, this attractiveness is higher.  

In contrast to the attractiveness of stripes, when presented with small dots (or spots) (either 

circular or rectangular), flies have seemed to have an innate aversion to the stimulus (Maimon, 
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Straw and Dickinson, 2008; Cheng, Colbath and Frye, 2019). Small dots may be perceived as 

predators, despite small objects resembling attractive resources, such as a potential mate. Using 

an LED display, it has been reported that flies avoid a small target in odourless air. However, 

flies would reverse their aversion and steer towards the small target when paired with an 

attractive odour (Cheng, Colbath and Frye, 2019). Walking flies find a small black (10°x10°) 

square above the horizon as strongly repellent (Tanaka and Clark, 2020). The square pattern 

may not have the shape or angular velocity of a predatory species for the fly (e.g. dragonfly or 

bird), but the fly cannot pause to gather more knowledge about the object. We have seen that 

the same pattern can be attractive or aversive. Dot stimuli has typically been found to be 

innately repulsive, here I will test with smaller sized dots in chapter 3 to see whether the 

response is constant with size. 

With the vast amount of sensory information being gathered by an animal at any given moment, 

the nervous system would quickly be overwhelmed if it were to treat all information with equal 

importance. Furthermore, the brain size would restrict the ability to analyse and respond. 

Consequently, the brain separates the critical information from the irrelevant or less important 

by limiting actions to a momentarily selected fraction of the sensory information. Such is how 

humans can shift their attention to any part of their visual field without actually moving their 

fixation point (Warren and Warren, 1968). Drosophila in the torque meter can perform similar 

selective attention (Tang and Juusola, 2010). Under specific parameters, the flies restrict their 

responses to particular parts of the visual field, whether spontaneous or in response to other 

sensory stimuli (Wolf and Heisenberg, 1980; Tang and Juusola, 2010).  

It is difficult to understand the animal's motivational state when measuring spontaneous 

preferences for simple visual stimuli in a virtual reality system. One solution is to manipulate 

the animal's motivational state by conditioning a positive or negative attachment to the stimulus 

with learning assays.  

 

1.2.4 Learning at the torque meter 

There are multiple visual learning paradigms. Learning requires a closed-loop system. 

Consequently, yaw torque exerted by the fly to the left causes the clockwise rotation of the 

panorama, while yaw torque to the right causes anti-clockwise rotation ("negative" visual 

feedback for turning). The first to investigate operant pattern learning with flies tethered at the 
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torque meter was by Wolf and Heisenberg (1991) after experiments outside of the torque meter 

demonstrated associative learning in Drosophila melanogaster (Spatz, Emanns and Reichert, 

1974; Folkers and Spatz, 1981). The original and standard paradigm at the torque meter is a 

heat conditioning experiment (Fig. 1.10). The panorama for visual learning carries four equally 

distributed patterns in the centre of four quadrants (Q1-4), this, therefore, surrounds the fly in 

an alternating sequence of two types of pattern, for example, T patterns (conditioned stimulus, 

CS) (Dill, Wolf and Heisenberg, 1993; Tang et al., 2004; Liu et al., 2006) with an upright T 

(e.g. Q1 or Q3) and inverted T (e.g. Q2 or Q4). To then investigate whether the fly can 

discriminate between the type types of pattern, the fly receives heat punishment (unconditioned 

stimulus, US) (via a laser beam) if the fly orientates towards one pattern type (e.g. inverted T, 

CS+). The fly can quickly learn to avoid the pattern with the punishing pattern. This is 

remembered, and the fly prefers to orientate towards the non-punishing pattern (e.g. upright T, 

CS-), even after the heat is switched off permanently (memory test) (Wolf and Heisenberg, 

1991). The food composition and fly age are critical for learning (Guo et al., 1996). This setting 

is wholly artificial and would not realistically occur in any context in free flight in the wild. 

However, flies can still learn an association between heat and a pattern or orientation (Brembs 

and Heisenberg, 2000).     

Building on this, this same method has been used to continue studies into pattern learning (Dill, 

Wolf and Heisenberg, 1993, 1995; Dill and Heisenberg, 1995). Flies can discriminate between 

identical patterns (T), which are presented at differing heights (9° centre of gravity difference) 

(Dill, Wolf and Heisenberg, 1993). In addition to patterns, other features of learning 

demonstrated at the torque meter include a combination of patterns and colour (Brembs and 

Heisenberg, 2001) colour alone (Wolf and Heisenberg, 1997; Brembs and Hempel De Ibarra, 

2006; Brembs and Wiener, 2006) and yaw torque (Heisenberg and Wolf, 1993; Brembs and 

Heisenberg, 2000).  

This learning assay has been utilised to investigate other aspects for Drosophila vision, 

including the functional relationships in the brain (Dill, Wolf and Heisenberg, 1995; Wolf et 

al., 1998; Liu et al., 1999) and the learning and memory process (Xia et al., 1997; Xia et al., 

1997; Wang et al., 1998; Xia, Feng and Guo, 1998). 

Operant learning (can also be referred to as outcome learning) is based around reward and 

punishment learning (Heisenberg, 2015). The animal responds to a particular action with a 

specific behavioural response depending on the outcome. In such case, the animal relies on its 
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expectation of the future for what the outcome will be, for example, if it expects to receive pain 

when flying towards a particular pattern, it will respond by avoiding this pattern if it is able to 

learn the association. Flies store numerous parameters including size, colour, and elevation of 

the panorama for up to 48 hours (Xia et al., 1997). Wild-type flies are capable of generalizing 

pattern memory over different contexts (i.e. context-independent memory), which for flies with 

impaired mushroom-bodies is not possible (Liu et al. 1999). Mushroom bodies have been used 

in many studies of learning and memory in Drosophila and are necessary for associative 

olfactory conditioning (Belle and Heisenberg, 1994; Waddell and Quinn, 2001). The central 

complex in the invertebrate brain is considered to be the site of orientation behaviour, the 

integration of multiple sensory modalities and other ‘high-order’ processes (Liu et al., 2006; 

Ofstad, Zuker and Reiser, 2011). By silencing neurons that have projections to the ellipsoid 

body ( a substructure of the central complex) the ability for visual learning is greatly impaired 

(Ofstad, Zuker and Reiser, 2011), therefore specific circuits within the ellipsoid body are 

essential for visual learning. In general, little is known about the underlying neural circuits that 

mediate these behaviours, such as associative learning at the torque meter, but Drosophila is a 

powerful model organism for determining how such complex behaviours are driven by circuits 

in the brain.  
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Fig. 1.10 Visual learning in the flight simulator. 

Visual pattern learning of upright and inverse T-shaped black patterns using both colour and 

pattern stimuli to train associations to fly towards the CS- after receiving heat punishment. (A) 

The performance index (PI) shows no initial pattern preference during pre-training (green 

bars). During training (red checked bars), heat is delivered to the head and thorax of the fly 

for the CS+ (e.g. upright Ts). (B-E) During the memory test, the learning scores (PI 8/9) show 

that flies have a conditioned orientation preference for the CS- (e.g. inverse Ts) after learning 

associations of (B) colours and patterns presented together, (C) colours alone, (D) patterns 

alone, (E) or colours and patterns exchanged. This shows that when presenting patterns and 

colours together, the different stimuli can elicit similar learning association strengths. Image 

modified from Brembs and Heisenberg, (2001).
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1.3  Thesis overview 

Visual information is a primary source of sensory input for many animals. Despite their tiny 

eyes and brains, insects acquire and process a vast amount of information to guide their 

behaviour (Warrant and McIntyre, 1993). Due to their species-specific adaptations, the fruit fly 

Drosophila melanogaster can perform its required behavioural tasks. But how specifically do 

the eyes help guide the animal's behaviour? 

My research aims to understand how insects use the images generated from both their eyes to 

enhance their perception of the world and whether D. melanogaster see the world with higher 

resolution than previously believed. The fruit fly may seem an unlikely candidate for high 

acuity visual tasks, but it is possible to study their flying behaviour as they are very amenable 

to behavioural experiments and have already been shown to see fine patterns. Specific 

questions are: Does the optomotor response of the fly change in response to high-frequency 

gratings in different environment proximities? Is the fly's single target acuity comparable to 

the minimum separable threshold shown with gratings? Can the fly discriminate between small 

2D and 3D objects at close proximity, and are both eyes required for perceiving these changes 

in object depth? My overall research aim is to understand whether fruit fly acuity depends on 

the behavioural context and how insects use both eyes to enhance their detection of objects in 

their environment with behavioural analysis.  

An insect experiencing rotation will innately compensate by rotating itself in the same 

direction. This simple reflex stabilises the animal's vision when experiencing unexpected 

deviations within the environment. The relative difference in the strength of the optomotor 

response reflects the specific visual stimulus parameters used, i.e. its temporal frequency, with 

larger dark and light stripes, which are presumably easier to detect, eliciting more robust 

responses from the insect. However, the effect of changes in the object's proximity within the 

environment while maintaining the gratings' at a constant angular size is unknown. Thus, 

changing the viewing distance at which optomotor responses are measured may lead to 

interesting new insights into fly vision. In Chapter 2, I investigate the effect of temporal 

frequency and environment proximity on the dynamics of the optomotor response in the fruit 

fly. My results reveal that the fly responds to high spatial frequencies beyond the limits of the 

interommatidial angle, and when viewed at a closer distance, these higher frequencies elicit a 

more robust rotation. This ability allows flies to detect objects which subtend smaller angles in 
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the visual field with finer detail when the proximity of object is closer, indicating that they may 

possess myopic vision 

Most studies investigating fruit fly visual acuity have been conducted with gratings, and 

relatively little is known about their capacity for single target detection, particularly for small 

objects. In Chapter 3, I first investigate whether singular hyperacute objects (ranging from 1° 

to 4°) generates a behavioural response in fruit flies. Flies were presented with either a singular 

dot or a singular 3D object alongside two 2D dots. I found that flies would perform slight 

fixation behaviour towards a single hyperacute dot placed amongst a light bar within dark and 

light stripes. I also found that when flies were presented with one 3D object with the same area 

and contrast of two 2D objects, the 3D object was seemingly more salient to a fly than the 2D 

object. These results suggest that fruit flies can see small objects and distinguish their differing 

depths. 

To further investigate the perception of hyperacute objects in Chapter 3, I condition orientation 

preferences in fruit flies using similar 2D and 3D stimuli as the single object experiment. In 

addition to dots, I investigate the effect with a vertical bar (or stripes). The results demonstrate 

that slight differences in object depth were detectable for the insect. Flies discriminated 

between small 2D and 3D objects during conditioning, similar to the T-patterns control, even 

though it was presumably more difficult for the insect to discriminate hyperacute patterns. 

When one eye was occluded, the flies could still learn the control but failed to discriminate 

between the 2D and 3D objects. Furthermore, mutant flies with either the inner or outer 

photoreceptors non-functional were still able to learn in all conditions. These results support 

the hypothesis that fruit flies can perceive small objects within their environment and 

discriminate between changes in the object's depth. Moreover, that all photoreceptor cells 

contribute to this perception. Thus, in parallel with Chapter 2 and the first section of chapter 3, 

it suggests that fruit flies detect smaller environments with much more clarity than distal 

environments, advantageous for an insect experiencing highly cluttered environments.   
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Chapter 2 

Pattern size and distance predict optomotor behaviour in 
fruit flies 

 

 

 

 

Abstract 

Flying insects must acquire depth information for navigating a three-dimensional world. By 

perceiving the absolute distance of an object, the animal can then perform the appropriate 

behavioural response. For example, by eliciting pursuit and courtship behaviour for close-small 

objects (as in potential mates) or escape responses for far-big objects (as in predators). 

Optomotor behaviour has been thoroughly studied in virtual environments on tethered animals, 

yet little is known about the effect of environment proximity on the characteristics of the 

optomotor response. Here, I investigate whether fruit flies – with recently proposed short-range 

binocular mechanisms – respond more robustly to close-small stimuli, despite constant angular 

size cues between the tested distances. By performing open-loop experiments on tethered fruit 

flies within two different sized arenas, I found that the fly varies its optomotor behaviour 

depending on changing distance and temporal frequency. When square gratings are presented 

physically closer, the flies strengthen their optomotor response, but only for smaller spatial 

wavelengths (2.4° and 4.8°). This result shows that the eye’s distance from a nearby surface 

influences the perception of gratings that subtend small angles in the visual field. Thus, the 

fruit fly may possess myopic vision and see nearby conspecifics more clearly, than further 

away potential predators.   
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2.1  Introduction 

In a three-dimensional world, animals must acquire depth information to perform appropriate 

behavioural responses. This information can then help discriminate between small objects 

nearby or large objects far away (Nityananda et al., 2016). For example, a flying insect must 

acquire depth information to identify whether an object is a potential mate nearby or a large 

predator far away, which may subtend the same angle on the retina. Subject to calculating an 

object’s distance, an animal can then infer the size of any other object within its visual field 

(Cartwright and Collett, 1979). It can then reduce any potential risk from predators and 

minimize the metabolic cost associated with poor decision making (Maimon, Straw and 

Dickinson, 2008). However, this process is complicated as depth information is not intrinsically 

present within retinal images (Land & Nilsson, 2012).  

Many insects have specialised mechanisms encompassing monocular and binocular cues for 

distance estimation (Nityananda and Read, 2017). For example, stereopsis uses a binocular 

disparity cue between two retinal images to calculate the distance to an object. This 

correspondence has been well studied for vertebrate species, particularly in primates (for 

review, see Heesy, 2009). In contrast, only a few invertebrate groups have been shown to use 

their binocular overlap for stereopsis. Most notably, praying mantis use stereopsis to perform 

striking behaviours when prey is within its catch range (Nityananda, Tarawneh, et al., 2016). 

Much more recently, Feord et al. (2020) demonstrated that cuttlefish utilise binocular cues to 

speed up prey capture. Thus, it is unclear whether stereopsis is more common amongst insects 

than previously believed. However, most insects utilise other depth cues for depth perception. 

As such, the underlying mechanisms for stereopsis remain much less understood in insects 

(Land, 1999). Indeed, for insects, the dominant depth cue is considered to be motion parallax 

(Lehrer et al., 1988; Sobel, 1990), a monocular cue in which the animal’s self-motion changes 

the viewing perspective and displaces the images of nearby objects. Locusts, for example, 

perform peering behaviour before jumping towards an object (Sobel, 1990), while honeybees 

(Lehrer and Collett, 1994) and bumblebees (Riabinina et al., 2014) use motion parallax during 

learning flights to learn the position of the nest. Fruit flies also exploit it during walking 

(Wehner and Horn, 1975) and flying (Carbrera and Theobald, 2013) behaviours. 

The fruit fly Drosophila melanogaster is a model species within vision research. In classic 

studies, a flight simulator has been used to assess the visual capabilities of the fly (Götz, 1964; 

Heisenberg, Wonneberger and Wolf, 1978; Heisenberg and Wolf, 1979). Behavioural 
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experiments in tethered flies show that optomotor behaviour is performed in response to 

rotating dark and light gratings (Götz, 1964). Recently, the fruit fly has been shown to respond 

to gratings with a spatial wavelength as small as 1.16° (Juusola et al., 2017), which should not 

be possible when determined by the interommatidial angle of 4.5° (Gonzalez-Bellido, Wardill 

and Juusola, 2011). However, the fly uses ultrafast photomechanical photoreceptor 

microsaccades and stochastic refractory photon sampling, which enhances phasic contrast 

differences between objects, to see their environment with higher acuity than predicted by the 

optics (Juusola et al., 2017). 

Moreover, recent physiological experiments show that fly photoreceptor contractions sweep 

mirror symmetrically from back to front, and that the frontal photoreceptors’ receptive fields 

overlap at approximately 23.5°(Kemppainen et al., 2022). This overlap suggests the possible 

use of stereopsis (neural combination of the two retinal images from each eye) in fruit flies 

which would aid their depth perception for the nearby world (<70 mm). This effect is theorised 

to diminish at a range beyond 70mm as the error rate increases. Therefore, fruit flies potentially 

elicit a form of myopic vision where close objects are seen with more spatial details than 

blurred distance objects.  

Thus, while optomotor behaviour and depth perception have been investigated extensively, the 

use of optomotor behaviour to investigate an animal’s depth perception has not previously been 

reported. For example, in a flight simulator, the fly is fixed in space and unable to acquire 

typical depth cues associated with more natural flight conditions, such as translation cues from 

motion parallax. Therefore, the fly would have to utilise other depth cues to estimate the 

distance to an object.  

Despite their tiny eyes, flying insects utilise visual information to guide various behaviours, 

from flight control and navigation to locating mates and resources. One fundamental aspect of 

visual acuity is spatial resolution, traditionally measured as the eye’s capacity for resolving the 

gratings of dark and light bars (Warrant and McIntyre, 1993). For an animal to resolve a 

grating, adjacent dark and light bars (one cycle) must project onto the receptive fields of 

adjacent sampling units (Land and Nilsson, 2012). When presented with a finer grating, images 

of both the dark and light bars will fall on the same receptive field, thereby reducing its 

perceived contrast, which will cause the overall image to appear uniformly grey. Grating acuity 

is thus the spatial resolution of fine detail within the visual scene. 
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This study examined tethered fruit flies’ optomotor responses to oscillating dark and light 

gratings of varying amplitudes and frequencies, presented at two physical distances from the 

fly. The responses are compared for differences in strengths at two distances combined with a 

change in spatial wavelength. Because of the predicted stereo range in D. melanogaster, it is 

hypothesised that the optomotor responses performed at two distances would elicit variations 

as fruit flies may see the proximal grating surface with hyperacute stereopsis and the more 

distant grating surface in blurred 2D. For the 25 mm distance, the gratings were presented well 

within Drosophila’s estimated stereo vision range (0-70 mm) (Kemppainen et al., 2022). In 

contrast, for the 50 mm distance, the gratings are on the outer limit of the range. I predicted 

that fruit flies perform more robust optomotor responses to higher spatial frequencies when 

viewing from closer proximity.   

   

2.2  Materials and Methods 

2.2.1 Experimental animals 

Wild-type Berlin (WTB) Drosophila were provided by Björn Brembs (University of 

Regensburg). The flies were reared at 25°C with a 12-h light / 12-h dark cycle and fed on a 

molasses-based medium. 3-10 day old females were cold-anaesthetised for approximately 10 

min and then placed on a bespoke Peltier cooling stage. Here, individuals were tethered 

dorsally to a small copper-wire hook (0.06 mm Ø) positioned at the top of the thorax. The hook 

was at an approximate 20°-30° angle along the fly’s longitudinal body axis. This allows the fly 

to be suspended at an angle that replicates their free-flight aerodynamics (Dickinson and 

Muijres, 2016). A droplet of UV-light sensitive glue (Loctite) was positioned between the 

thorax and head to hold the hook and restrict independent head movements. Each fly was 

inspected under magnification for precise tethering and head restriction before being isolated 

in a small vial for a minimum 30 min recovery.  

Immediately before the hook tethering, a small group of flies had the left or right eye painted 

with non-toxic black acrylic paint (Winsor & Newton, Winton Oil Colour, Ivory Black – 

1414331). The paint covered the medial eye section to create quasi-monocular vision, as this 

section would be needed for binocular vision (stereopsis). Despite the occlusion, many flies 

could fly immediately after the preparation. Some flies, however, demonstrated visible 
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discomfort due to the paint and would repetitively rub the paint with their legs (during active 

flight or dangling). Consequently, these flies were excluded from the dataset.  

2.2.2 Flight simulator 

Experiments were performed using a bespoke flight simulator system utilising a torque meter 

(Wardill et al., 2012). The torque meter was positioned centrally in the upper opening of a 

cylindrical arena (transparent plastic cup; The University of Sheffield, Department of Chemical 

and Biological Engineering workshop) within the centre of the flight simulator. From the 

vantage point of the fly, this upper opening leaves some gap in the visual coverage, but all 

objects outside the arena were blacked out and not considered visible to the fly. 

A small clamp holds the fly’s hook (secured onto the thorax) to connect with the torque meter. 

The fly is now in a stationary position with a fixed orientation (Götz, 1964), unable to acquire 

visual feedback through translation or rotation. However, it can still freely beat its wings and 

move its legs, halteres, abdomen, and antennae. The fly’s attempted body rotations to the left 

or the right, i.e. its yaw torque, are transduced by the torque meter into an electrical voltage 

signal (1 kHz sampling rate). Then, a computer provides feedback to a stepping-motor attached 

beneath the arena's base, generating a bi-directional arena rotation surrounding the fly. On the 

inner surface of the arena wall, a high-resolution paper stimulus is presented. Data can then be 

analysed using custom-written software (Biosyst) (Juusola and Hardie, 2001).  

Surrounding the arena is a light diffuser in front of an outer ring-shaped light tube (spectral 

full-band: 350-900nm; Imperia fluorescent circular lamp 22 W 6,500 °K), providing uniform 

illumination of the stimuli without generating shadows. The system was mounted on a vibration 

isolation table and held within a Faraday cage which provided structural support for a black 

roller curtain to block outside light and enable access to the system.   

2.2.3 Arena size 

To investigate whether the optomotor behaviour of the fruit fly was affected by pattern 

distance, gratings were presented in two different sized arenas but kept at an almost identical 

angular size. Typically, a fly will perform visual course control behaviour (e.g. optomotor 

response) when receiving rotational movement signals. First, a group of flies (n = 15) were 

tested in a small arena (50 mm Ø), with the fly suspended centrally approximately 25 mm from 

the pattern. Second, flies (n = 15) were tested in a large arena (100 mm Ø), doubling the 

distance between the fly’s eye and pattern to approximately 50 mm. Both groups were 
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presented images that subtend azimuth ±360° coverage horizontally, and ±38° and ±40° 

vertically in the small and large arena, respectively. A single example fly was tested in both 

arenas. However, preliminary trials indicated that most flies could not perform consecutively 

in both arenas (due to energy expenditure), so this was not attempted during experiments. 

Larger females were selected by eye to ensure standardisation across all stimulus parameters 

in both groups. Large flies were chosen consistently (as opposed to small flies consistently) 

because they would fly better during the experiments (personal communication, Narendra 

Solanki). Additionally, with changing body size come pronounced differences in the optical 

quality between individuals as the optics dictate that the smaller the eye the poorer the vision 

(Land and Nilsson, 2012) with larger individuals having both superior sensitivity and resolution 

(Currea, Smith and Theobald, 2018).    

The small arena presented the dark and light gratings with a 1.0 contrast as seen from the fly. 

Contrast is defined as the physical contrast of a simple image such as gratings that assigns a 

contrast value between light and dark stripes. However, the large arena cannot be as brightly 

lit due to the structural limits of the flight simulator. The top portion of the large arena protrudes 

above the ring-light surrounding the arena, producing a lower contrast in this top region. 

Consequently, rotations in the large arena may theoretically produce weaker optomotor 

responses than the small cup because of dimmer light (Honkanen et al., 2014). However, in 

both arenas, flies were tethered at a constant height in relation to the ring-light (elevated 20 

mm from the arena base). Therefore, the flies would have experienced similar light intensities 

in both arenas and would not have been influenced by the dimmer top portion. More so, it is 

unlikely that flies will be overly sensitive to this slight contrast change within a particular 

region, as overall, it is a very bright light (Duistermars et al., 2007). 
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Fig. 2.1 The experimental setup. 

(A) A flying female fruit fly is tethered to a thin copper-wire hook between the head and thorax 

and connected to the torque meter within the centre of the flight simulator. (B) The flight 

simulator system shows the small arena, uniformly lit by the right-shaped light tube with 

diffusers. (C, D) Images of the small and large arenas, (C) gratings on the inner surface of 

the small arena approximately 25 mm from the fly’s eye, and (D) gratings presented in the 

large arena 50 mm from the fly’s eye. (E-G) Schematic illustration of how small-close patterns 

subtend the same angular size as big-far patterns.  

 

 

2.2.4 Experimental setup 

The flight simulator system was configured to an open-loop setting, meaning the experimenter 

controls pattern movement. One experimental run consisted of 8 s of interleaved rotation (Fig. 

2.2). Initiated with a 1 s static stimulus, followed by 2 s of rotational movement to the right 

(clockwise), then static again for 2 s, before 2 s of leftward rotational movement (anti-

clockwise), before concluding with another 1 sec static stimulus. Each 8 s stimulus was 

repeated 10-25 times. Trials were excluded if flies stopped flying or behaved erratically. There 

was no pause between trials other than preparing the subsequent stimulus resolution, 

approximately 30 s stimulus changeover time. 

The flies were presented with an extended source stimulus, i.e., a continuous panoramic grating 

of vertical dark and light bars. The bars were printed in black with a resolution of 1,200 × 1,200 

dots per inch (Sharp MX-5141) onto white paper of consistent quality. The visual stimulus was 
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then positioned on the inner surface of the arena. Thus, the pattern forms a 360° panorama 

along each fly’s vertical axis and rotates in the fly's horizontal plane. For each unique stimulus, 

flies were first tested with a slow (45°/s) pattern rotation followed by a fast (300°/s) rotation. 

In the small arena, flies were presented patterns with five spatial wavelengths (2.3°, 4.7°, 6.4°, 

12.9° and 25.7°). In the large arena, presented twice as far from the fly, five similar-sized spatial 

wavelengths were presented (2.4°, 4.9°, 6.9°, 13.8° and 27.7°). Thus, regardless of arena size, 

from each fly’s perspective, the gratings would be an almost identical angular width and appear 

as the same size within the fly’s visual field. The different stimuli were presented to each fly 

in a pseudorandom order. For clarity, these slightly different spatial wavelengths are labelled 

as the average 2.4°, 4.8°, 6.6°, 13° and 26°. In addition, two control stimuli (dark and light) 

were tested to confirm that airflow or other features did not influence optomotor behaviour. A 

white diffuser plastic arena was presented to a fly with or without white paper for the ‘light’ 

control, while in the ‘dark’ control, the same arena was presented but with the ring-light 

switched off to create complete darkness during the trails.  

Yaw torque responses are measured for distance, spatial wavelength and temporal velocity. In 

total, two different distances were tested, showing five different spatial wavelengths with two 

controls, presented at two angular velocities. Thus, a typical fly would see fourteen unique 

stimulus combinations, yielding twenty-eight unique combinations for the single example fly 

tested in both arenas. 
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Fig. 2.2 Optomotor protocol and stimuli. 

(A) One experimental run consisted of 8 s of interleaved rotation. Initiated with a 1 s static 

stimulus, followed by 2 s of rotational movement to the right (clockwise), then static again for 

2 s, before 2 s of leftward rotational movement (anti-clockwise), before concluding with another 

1 sec static stimulus. (B) (left) A flying female views the 2.4° stimulus from 25mm which has 

a physical size of 2mm for one cycle (one dark and one light bar) and is 4mm for the large 

arena (50mm). (right) The 4.8° stimulus has a physical size of 4mm in the small arena and 

8mm when use din the large arena.  
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2.2.5 Data analysis 

A fly’s optomotor behaviour expresses as a syn-directional, bi-phasic yaw torque response. 

The response peak is at the cessation of the first rotational movement before it gradually returns 

to its baseline, typically over a few seconds. However, since this return is not immediate and 

the static stimuli separating the two rotational movements is only 2 s, the torque response is 

only marginally recovered (10-70%) during the initiation of the second rotation. The second 

rotational movement is therefore not as robust as the first. Consequently, I analysed the 

maximum range (or peak-to-peak) of the yaw torque responses from each trial. This then gave 

the value of the range between the maximum response to the left rotation and the maximum 

response to the right rotation. All trials were pooled and averaged to make a single fly recording 

for each stimulus, reducing noise and arbitrary trends found within individual trials. For each 

fly, the stimulus were scaled by normalising to whichever stimulus elicited the most potent 

response. The normalised values were then averaged for the population for each stimulus. This 

approach helps to reveal the response’s underlying strength, as an individual’s response will 

vary over multiple repetitions to the same stimulus. The population responses for each stimulus 

can then be compared for differences. 

2.2.6 Statistics 

All statistical tests were performed using SPSS (IBM SPSS Statistics 26). Data were tested for 

normality using the Shapiro-Wilk test. To test whether flies responded to hyperacute patterns 

differently to the dark control, I used a one-way ANOVA with Dunnett’s post hoc test. To test 

between the different sized arenas, I used an independent samples t-test if there was a normal 

distribution. Otherwise, a Mann-Whitney test was used. A post hoc power analysis was 

conducted using G*Power version 3.1 (Faul et al., 2007) using the obtained sample size and 

effect size to determine the study’s power in Fig. 2.4. To investigate the effect of velocity on 

the turning direction for the 6.6° spatial wavelength, I used a paired-samples t-test.  

 

2.3  Results 

To study the effect of environment proximity on Drosophila optomotor behaviour, I analysed 

the torque responses of wild-type Berlin flies in two different sized arenas within a traditional, 

Drosophila flight simulator. Tethered flies attempt to prevent images from slipping on their 

retinae by following field rotations which generate yaw torque responses. The simulator was 
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arranged in an open-loop configuration, and the torque responses were pooled and averaged 

for each fly.  

 

2.3.1 Effect of distance on optomotor responses to small patterns 

To investigate the effect of distance on the fruit flies response to varying spatial wavelengths, 

flies were presented stimuli in a small (25 mm) or large (50 mm) arena. A single example fly 

was tested in both groups at both distances (Fig. 2.3). During slow rotation, the fly strengthened 

its response to hyperacute stimuli at shorter distances (Fig. 2.3B). In contrast, with fast rotation 

the larger arena elicited more robust optomotor responses (Fig. 2.3C and D).  

 

Fig. 2.3 Example fly performed differently when tested at two distances. 

A single fruit fly was tested for all stimuli at distances of 25 mm (blue line) and 50 mm (red 

line). (A, B) Under slow rotation (45°/s), the fly exhibits similar responses to the large pattern 

(A, 26°) but shows stronger responses to the small pattern (2.4°) when physically closer (B). 

(C, D) Under fast rotation (300°/s), the fly shows more robust responses to both patterns when 

tested in the large arena. Grey shading indicates the rotational period. Black arrows show the 

direction of rotation as viewed by the fly.      

 

The two groups tested at either distance support this result (Fig. 2.4). The mean strength of the 

optomotor responses was stronger under slow rotation (Fig. 2.4A, C, E, G) when presented in 
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the smaller arena (teal line) compared to the large arena (green line) for both the 4.8° pattern 

(Fig. 2.4A) and the hyperacute pattern (2.4°; Fig. 2.4A). These results were statistically 

different (4.8°: independent-sample t-test: t(28) = 3.02, P = 0.005; Fig. 2.4C; 2.4°: 

independent-sample t-test: t(28) = 3.17, P = 0.004; Fig. 2.4G). In contrast, under fast rotation 

speeds the mean strength did not differ significantly (4.8°:  independent-sample t-test: t(28) = 

0.57, P = 0.57; Fig. 2.4D; 2.4°: independent-sample t-test: t(28) = 0.4, P = 0.69; Fig. 2.4H).  

Taken together, this suggests that under slow rotation, arena size does significantly effect the 

optomotor response, while under fast rotation, this difference is removed. However, given the 

sample size (n =15 per group), a post hoc power analysis for both Fig. 2.4C and Fig. 2.4G 

(effect size d = 0.2 and a = 0.05) has shown if there were a difference between the small arena 

and large arena at fast rotation, as big as the difference observed under slow rotation, then I 

would have had a 13% chance of detecting it. It is therefore possible that the small sample size 

can explain why this difference was not observed under fast rotation.  

 

2.3.2 Large patterns elicit stable responses over two distances 

As predicted, the larger patterns, which are easily detected at both distances, do not elicit 

stronger optomotor responses when they are closer to the eye. This is consistent for both the 

slow (26°: Mann-Whitney test: U = 117.50, P = 0.838; Fig. 2.5C; 13°: Mann-Whitney test: U 

= 76.00, P = 0.14; Fig. 2.5G) and fast rotations (26°: Mann-Whitney test: U = 117.00, P = 0.87; 

Fig. 2.5D). However, although there is only a slightly stronger optomotor response for the 

larger arena for fast rotation for the 13° wavelength, it is statistically different (Mann-Whitney 

test: U = 171.00, P = 0.015; Fig. 2.5H).  
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Fig. 2.4 Small patterns elicit stronger optomotor responses when closer. 

The mean responses of fruit flies in different sized arenas (n = 15 small arena; n = 15 large 

arena) to 4.8° (A-D) and 2.4° (E-H) spatial wavelengths under slow rotation (left plots) and fast 

rotation (right plots). (A, C) Fruit flies exert more yaw torque when presented the 4.8° grating 

in the small arena (teal) compared to the large arena (green). (E, G) This is consistent with the 

2.4° grating. (B, D, F, H) In contrast, there is no difference in the mean strength of responses 

for pattern distance under fast rotation. Grey shading indicates the rotational period. Black 

arrows show the direction of rotation as viewed by the fly. Boxes indicate the 25-75% 

interquartile range, the white line indicates the median, the white box is the mean, whiskers 

represent the entire data spread, and red diamonds represent outliers. Asterisks indicate the 

level of significance: *P < 0.05, **P < 0.01, ***P < 0.001 and n.s. not significant.     
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Fig. 2.5 Large patterns elicit consistent optomotor responses. 

The mean responses of fruit flies in different sized arenas (n = 15 small arena; n = 15 large 

arena) to 26° (A-D) and 13° (E-H) spatial wavelengths under slow rotation (left plots) and fast 

rotation (right plots). (A-E, G) Fruit flies show similar optomotor responses to the changing 

wavelengths and speeds when viewing the patterns at different distances. (F, H) In contrast, 

although the results are similar to the other stimulus parameters, there is a statistical difference 

for stronger responses in the large arena for the 13° pattern (F). Grey shading indicates the 

rotational period. Black arrows show the direction of rotation as viewed by the fly. Boxes 

indicate the 25-75% interquartile range, the white line indicates the median, the white box is 

the mean, whiskers represent the entire data spread, and red diamonds represent outliers. 

Asterisks indicate the level of significance: *P < 0.05, **P < 0.01, ***P < 0.001 and n.s. not 

significant.     
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2.3.3 Fruit flies respond to gratings smaller than the interommatidial angle  

This study confirmed the results of Juusola and colleagues (2017) as fruit flies performed 

optomotor responses to gratings smaller than the interommatidial angle (Fig. 2.6). This was 

statistically different to the dark control (One-way ANOVA: F(2, 42) = 1.26, P ≤ 0.001; Fig. 

2.6C) for both the 2.4° (Post-hoc Dunnett: P ≤ 0.001) and 4.8° (Post-hoc Dunnett: P ≤ 0.001). 

Additionally, for the large arena, flies responded stronger to small stimuli than for the dark 

control (One-way ANOVA: F(2, 34) = 9.72, P ≤ 0.001; Fig. 2.6D), which differed statistically 

for the 2.4° pattern (Post-hoc Dunnett: P ≤ 0.001) and 4.8° wavelength (Post-hoc Dunnett: P = 

0.011).  

In contrast, the dark and light control stimuli (Fig. S1 and S2) evoked minimal responses. This 

result also confirms classic results that slow field rotations generate stronger responses than 

fast field rotations (blue vs green line) (Götz, 1964; Blondeau and Heisenberg, 1982). However, 

it is worth noting that slow field rotations were constantly tested before fast rotations (as 

different velocities were not the focus of the study), so less motivation or energy may be a 

factor in the fast rotation results.  
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Fig. 2.6 Fruit flies respond to hyperacute gratings.  

The strength of the optomotor response depends on the rotational velocity and spatial 

wavelength of the stimuli. (A, B) Slow rotations (45°/s; green line) elicit more robust responses 

than fast rotations (300°/s; blue line). Large patterns (26°) elicited the most robust responses 

at either rotational velocity or pattern distance (n = 15 small arena; n = 15 large arena). Grey 

shading indicates sizes smaller than interommatidial angle. (C, D) The mean responses and 

SEM show that small patterns (2.4° and 4.8°) elicit stronger optomotor responses than the 

dark control. Asterisks indicate the level of significance: *P < 0.05, **P < 0.01, ***P < 0.001 

and n.s. not significant.   
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2.3.4 Optomotor reversal is dependant on velocity and binocularity  

To study the turning direction of fruit flies with respect to a 6.6° pattern wavelength, I 

compared the optomotor response while the animal experienced various distances, velocities, 

and binocular or monocular vision (Fig. 2.7). In contrast to the other tested wavelengths, the 

6.6° pattern generated optomotor response dynamics in the opposite direction (reversal) of the 

field rotations at both distances under slow rotation (green line; Fig. 2.7A and B). It is essential 

to distinguish that these were not weak optomotor responses. Instead, they were strong 

responses against the patterns rotation direction. This finding was unsurprising as similar 

results have been previously reported and explained as spatial aliasing (Land and Nilsson, 

2012). Elementary motion detectors (Hassenstein and Reichardt, 1956) were previously 

believed to be subject to spatial aliasing due to their underlying architecture (Buchner, 1976) 

which was used to explain optomotor reversal behaviour. In contrast though, Tammero, Frye 

and Dickinson, (2004) show how EMDs in the front and rear field of view mediate responses 

with similar spatial properties which cannot be explained by spatial aliasing. However, the 

differences observed during slower field rotations was not observed during the faster rotation, 

and so there was a statistical difference between the two velocities for the small arena (paired-

sample t-test: t(14) = -6.39, P ≤ 0.001; Fig. 2.7C) and large arena (paired-sample t-test: t(14) = 

-6.76, P ≤ 0.001; Fig. 2.7D.  

Furthermore, when monocular flies (n = 9; Fig. 2.7E) were presented to the slow (45°/s) 

rotation, they ceased to reverse and instead performed normal responses. This was consistent 

for flies who had either the left eye (n = 5) or right eye (n = 4) painted. When the left eye is 

painted and the right eye is able to follow grating rotation leftward it is able to follow the 

movement more robustly than when the right eye is painted. This result is consistent with the 

finding that photoreceptor microsaccades globally sweep from back to front (Kemppainen et 

al., 2022). By painting the left eye whose saccades are moving against the pattern rotation, 

the fly now follows the rotation rather than turning in the opposite direction. When the right 

eye is painted the same effect occurs although less robustly. As the rightward rotation (where 

right eye painted flies would perform best) occurs a couple seconds after the leftward rotation, 

the response is not as strong because the fly has not returned to it baseline. Nevertheless, 

covering one eye of the fly consistently removes the reversal behaviour shown by normal flies. 

There is a significant effect when we compared the binocular flies to these monocular flies 

(Independent-sample t-test: t(24) = 4.79, P = 0.022; Fig. 2.7F). 
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During faster rotation (300°/s), flies perform typical syn-directional optomotor responses, 

consistent with expected behaviour. Therefore, to explore the effect of velocity more fully, a 

few flies (n = 4) were also tested with additional rotational velocities (100°/s, 200°/s and 500°/s; 

Fig. 2.7G), although the sample size was small and the strength of the response was weak due 

to the fast rotation and relatively small wavelength, the flies clearly showed a normal turning 

response. This finding is important as it suggests that it is not only the spatial wavelength that 

predicts the reversal (aliasing) behaviour but also the rotation speed, as it only occurred under 

a particular rotational velocity. Therefore, if spatial aliasing caused the optomotor reversal, it 

should occur similarly at all tested velocities. Clearly, this is not the case with Drosophila. 

Taken together (Fig. 2.7H), the results show that only with binocular vision at slow rotation do 

the majority of flies reverse (87%), under all other parameters (albeit with smaller sample 

sizes), nearly all flies (75% to 100%) perform normal responses. The percentage of animals 

turning with or against the grating direction was not significantly different between stimuli (chi-

square test: χ2 (5, 51) = 0.47, P = 0.052; Fig. 2.7H). These results suggest that it is not spatial 

aliasing because this should theoretically cause reversal behaviour for the 6.6° wavelength 

regardless of velocity and monocular vision. Instead, both eyes simultaneously viewing the 

pattern rotating at 45°/s is the crucial factor. Coincidentally, the mirror-symmetrical global 

movements of the photoreceptor microsaccades sweep from back to front at a similar velocity 

(45°/s - 50°/s). This suggests that rather than the size of the optics causing spatial aliasing, the 

speed of the photomechanical microsaccades moving mirror-symmetrically (at the opposite 

directions) in the left and right eye is causing perceptual aliasing when the grating rotation 

happens to match its velocity.  
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Fig. 2.7 Optomotor reversal is velocity-dependent. 

(A-D) When fruit flies (n = 15) view the 6.6° stimulus, the mean optomotor response is in the 

reversed direction during slow rotation (green) but is in the normal turning direction under fast 

rotation (blue). (E) Monocular flies (n = 9) viewing the 45°/s (slow) rotational velocity undertook 

normal optomotor responses with either the left eye (red, n = 5) or red eye painted (dark red, 

n = 4), (F) There was a significant difference between the optomotor response of binocular 

flies (green) and monocular flies (red) when tested in the small arena with slow rotation. (G) 

For a small group of flies (n = 4), the stimulus was also rotated at 100°/s, 200°/s and 500°/s, 

which showed the normal turning direction. (H) Binocular flies viewing the slow rotation 

predominantly reverse their turning direction (87%). In contrast, all other groups predominantly 
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perform following turning responses. If the reversal were explained by spatial aliasing, all 

groups should have turned in the opposite direction. Grey shading indicates the rotational 

period. Black arrows show the direction of rotation as viewed by the fly. Boxes indicate the 25-

75% interquartile range, the white line indicates the median, the white box is the mean, 

whiskers represent the entire data spread, and red diamonds represent outliers. Asterisks 

indicate the level of significance: *P < 0.05, **P < 0.01, ***P < 0.001 and n.s. not significant. 

Figure F ‘binocular’ data is replotted from E ‘slow’ data.    

 

2.4 Discussion 

In a previous experiment, behavioural results showed that tethered fruit flies performed 

optomotor turning responses to grating patterns of 1.16° at the torque meter (Juusola et al., 

2017). The data presented here confirm the validity of these findings as fruit flies elicited clear 

turning responses to follow the wide-field stimuli of 2.4° gratings (Fig. 2.6). Importantly, 

although a larger pattern, this is still considerably smaller than the interommatidial angle of 

4.5° in fruit flies (Gonzalez-Bellido, Wardill and Juusola, 2011). Therefore, approximately two 

pairs of light and dark bars will fall within the visual field of a single photoreceptor. Hence, 

dark and light bars do not need to fall on adjacent photoreceptors as predicted by the optics for 

eliciting optomotor behaviour. This result suggests that the minimum visual detection of 

gratings is well below the optical resolution limit.     

Distance and optomotor 

More importantly, for this study, the optomotor response was different at 25 mm and 50 mm 

for the 2.4° and 4.8° (Fig. 2.4). This would indicate a range of short-sightedness (or myopic 

vision) in Drosophila, where flies see the nearby world with more spatial resolving power. The 

fly cannot utilise motion parallax with head movements as the head is fixed. Otherwise, the 

patterns would move further and faster across the retina in the small arena. Indeed, with their 

theoretical model, Kemppainen and colleagues (2022) predict a < 70mm range where 

binocularity enhances acuity, which diminishes with distance as error rate increases 

(Kemppainen et al., 2022), thereby facilitating binocularity for short-range tasks before rapidly 

receding to monocular cues. The left and right eye microsaccades’ global mirror-symmetric 

(back-to-front) dynamic occurs at approximately 45°/s - 50°/s (Kemppainen et al., 2022). It is 

perhaps no coincidence that walking speed in Drosophila is as low as 1.5 cm/s and a typical 

fast run is 3.8 cm/s (Strauss and Heisenberg, 1990), which at a distance of 25 mm is 
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approximately 34°/s to 88°/s respectively, suggesting that this is adapted for visual courtship 

behaviours tracking the relatively small and slowly moving conspecifics. Indeed, since fruit 

flies are prey species, any pursuit behaviour or mate selection- requiring depth estimation - 

would likely be during courtship behaviour, which can assume the moving object's constant 

size and velocity. Indeed, the results for large patterns further suggest changes in acuity for 

changes in the proximity of the environment. Larger patterns that are considerably easier to 

detect promoted stable turning responses at both distances (Fig. 2.5). Supporting the idea that 

fruit fly photoreceptor microsaccades optimise vision for close-small objects without losing the 

ability to accurately respond to more coarse optic flow changes (Kemppainen et al., 2022). 

On the other hand, the fruit fly grating acuity may be superior within the laboratory setting. 

The flight simulator is a highly artificial experience for naïve fruit flies, and the stimulus is 

very simplistic and tested at high contrast. Therefore, the behaviour in this situation is unlikely 

to be ecologically the most relevant. In another experiment, a flight simulator is placed 

outdoors to enhance natural conditions for testing the migratory flight behaviour of the 

nocturnal Australian Bogong moth (Dreyer et al., 2018). This approach helps promote the 

desired natural conditions whilst unwanted sensory stimuli are best controlled. It would now 

be interesting to test the grating acuity (and single target acuity, chapter 3) in fruit flies if they 

were to be tested with respect to natural light levels outdoors. For example, as a crepuscular 

insect, the fruit fly could be tested in an outdoor flight simulator at dawn and dusk to compare 

behavioural performance to the laboratory conditions.  

Optomotor reversal 

The results show reversal behaviour for the 6.6° wavelength (Fig. 2.7). Since the early study 

on fruit flies by Lotte von Gavel (1939), it has been reported that a wavelength near 9° causes 

a reversal in their optomotor response. Indeed, similar findings have been found in other 

species. For example, the response reverses between 5° and 10° in honeybees (Kunze, 1961)). 

However, this has always been explained as a Moiré effect among the interommatidial angle 

and grating (Land and Nilsson, 2012). An alternative explanation is that the global dynamics 

of the photomechanical photoreceptor microsaccades influence the gratings' perception. Since 

the back to front dynamics of the microsaccades occurs at approximately 45°/s - 50°/s coincides 

with the slow rotational velocity of 45°/s. Consequently, as the microsaccades of one eye 

theoretically move in unison with the pattern rotation, the microsaccades in the other eye are 

moving against the pattern. This may cause a neural imbalance in the rotational optic flow 
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perception as one eye is velocity locked. This eye therefore has a much weaker signal with 

little contrast, while the eye moving against the pattern has high contrast and stronger signal. 

It is, therefore, possible that the reversal response originates from neural processes eliciting 

perceptual aliasing.  

Therefore, covering one eye of the fly should not inhibit the reversal response even though it 

may weaken it as the fly compensates for the defect. Regardless, the results show no weakened 

response but rather demonstrate a robust normal turning response to a 6.6° wavelength, i.e. 

occluding one eye reverses the reversal (Fig. 2.7E). This is supported by the monocular flies 

with different eyes painted. With the left eye occluded, the right eye is able to follow the 

leftward rotation more robustly than when the right eye is occluded. As expected for the 

rightward rotation there is the opposite effect as having the right eye occluded allows the left 

eye to follow the rotation. Albeit the second rotational movement is not as robust as the first 

since the torque response is only marginally recovered during the initiation of the second 

rotation due to the short 2 second interlude. Future studies can alter which direction the gratings 

are rotated towards first, so as to see directly compare the response for the initial stronger 

optomotor responses. Additionally, increasing the rotational velocity seemingly inhibits the 

reversed response and causes flies to innately perform the typical syn-directional response (Fig. 

2.7E). Optomotor responses to different rotational velocities have been described previously 

(Götz, 1964). However, it has not been applied to exploring optomotor reversal to the best of 

my knowledge. Instead, studies have focused on the spatial wavelength and different light 

levels with the shifting of reversal behaviour (Hecht and Wald, 1934). Consequently, a Moiré 

effect caused by the matched sampling of the interommatidial angle to the grating wavelength 

is unlikely to be the definitive explanation for this phenomenon.  

Future work 

Structural limits of this bespoke flight simulator system limited the arena size to a 100 mm 

diameter (i.e. the ‘large’ arena presenting patterns 50 mm from the eye). However, other sizes 

within this range could be tested in the future besides the 50 mm arena (i.e. the ‘small’ arena 

presenting patterns 25 mm from the eye). For example, the arena’s could increase by 5 mm 

increments (eye to pattern) to test the responses between these values and further understand 

the dynamics of distance and optomotor responses. On the other hand, arenas could become 

gradually smaller to investigate whether strengthened turning responses to small stimuli 

correlate with increasing proximity.  
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Furthermore, testing a wider variety of grating patterns smaller than the optical resolution limit 

would enhance the current findings. I tested approximately 2.4° in both arenas, and Juusola and 

colleagues (2017) tested 1.16° in a 25 mm arena, neither study did exploratory tests to 

determine the absolute detectable limit eliciting optomotor responses. However, preliminary 

data for fruit flies on a trackball suggests it may be as low as 0.5° (unpublished work; Keivan 

Razban Haghighi, Juusola lab). It would be particularly worthwhile to understand this limit for 

flying behaviour within the flight simulator system combined with the effect of distance.    

Conclusions 

The optomotor response of the fruit fly with differing stimuli distances strengthened when 

smaller patterns (2.4° and 4.8°) were presented closer to the eye. Close-small stimulus patterns 

elicit more robust optomotor responses at 25 mm than constantly sized patterns presented 50 

mm from the fly’s eyes. When presented with the larger spatial wavelengths (13° and 26°), 

which were presumably easier to detect due to their more prominent peak turning responses, 

distance did not affect the dynamic of the optomotor behaviour. When presented a stimulus 

pattern (6.6°) within the range reported for causing optomotor reversal, flies did indeed turn in 

the opposite direction when viewing both distances. However, as increasing rotational speeds 

and quasi-monocular vision demonstrate, this reversal can change to the typical syn-directional 

rotation associated with optomotor responses. This suggests that perceptual aliasing – initiated 

by the global dynamics of the photoreceptor microsaccades - rather than spatial aliasing (optics) 

is the cause of optomotor reversal. Taken together, this shows that pattern distance is an 

essential predictor of optomotor behaviour, specifically when testing high spatial frequencies 

associated with behavioural assessments of acuity.    
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Chapter 3 

Small object detection and discrimination in fruit flies 

 

 

 

Abstract 

Flying insects must detect and classify visual objects in their environment to respond suitably. 

Historically, it had been thought that because the fruit fly (Drosophila melanogaster) possesses 

somewhat coarsely faceted compound eyes, it would have comparatively limited optical acuity 

to accomplish this task. However, recent work suggests that ultrafast photoreceptor 

microsaccades enhance their eyes’ spatial resolution below their optical resolution limit. By 

measuring the perception of gratings, behavioural responses to patterns below the optical limit 

have been shown (see chapter 2), but little is known about the capacity for single target acuity. 

Furthermore, in certain stimulus conditions, small objects trigger innate aversion in fruit flies 

(especially when using LED-based panoramic flight arenas). However, it is unknown whether 

they respond differently to small and extremely small objects in more natural conditions.  Here, 

I investigate whether fruit flies can detect singular dark visual cues smaller than the visual field 

of a single ommatidium. By performing behavioural experiments on tethered flying flies at the 

torque meter, I found that flies have an innate attraction to a single dark object (1°) placed 

amongst a background of gratings (2.3° horizontal), thus, suggesting that flies classify them 

differently from larger objects of the same shape. When presented with a tiny 3D object (2.7°) 

hidden within a 2D object (3.9°) with the same area and contrast of two other 2D objects, flies 

found the 3D target more salient. Further results show that flies can learn to orientate towards 

either the 2D or 3D target but fail to learn when one eye is occluded, suggesting that the input 

from both eyes is required for effective small object detection. Moreover, visual detection of 

objects is achieved with either photoreceptor channel (R1-R6 vs R7/R8) alone but with reduced 

proficiency. Taken together, I show that fruit flies can behaviourally respond to extremely 

small singular visual cues of different depths, an ability that suggests both high acuity and 

binocularity for close-range behaviour.  
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3.1  Introduction 

Despite their presumed limited spatial acuity, insects can rapidly detect and categorise visual 

objects in their environment to act accordingly. For example, the fruit fly detects and responds 

to visual signals during courtship behaviour (Willmund and Ewing, 1982) and visually detects 

predators to produce defensive behaviours such as evasion (de la Flor et al., 2017). One 

proposed mechanism to aid this is innate responses to particular shapes and sizes (Maimon, 

Straw and Dickinson, 2008). For example, as with many other insects, long vertical objects are 

attractive to Drosophila (Reichardt and Wenking, 1969; Wehner, 1972). In contrast, small dark 

objects, such as circular and square LED stimuli, trigger an innate aversion response in fruit 

flies (Maimon, Straw and Dickinson, 2008; Theobald, 2019; Palavalli-Nettimi and Theobald, 

2020). However, little is known about whether flies detect and respond differently to tiny 

objects smaller than a single ommatidium’s visual field. 

The fruit fly is an unlikely model organism for the study of extreme acuity. It is of relatively 

tiny stature with few ommatidia (ca. 750 per eye) and a sizeable interommatidial angle of 4.5° 

(Gonzalez-Bellido, Wardill and Juusola, 2011). Such optic measurements imply little to no 

responses to visual objects much smaller. Nevertheless, recent work suggests that fruit flies 

possess enhanced acuity due to photomechanical photoreceptor microsaccades (Viollet, 2014; 

Colonnier et al., 2015; Juusola et al., 2017). Indeed, Keleş and Frye (2017) found that object 

detecting neurons in Drosophila show robust responses to an object only 2.2° in size, less than 

half the size predicted by the optical resolution limit for detection. This is similar to other 

species. For example, hoverfly neurons respond strongly to dark targets as small as 0.18° even 

though their optical resolution limit is approximately 1° (Nordström, Barnett and O’Carroll, 

2006). This paper showed that hoverfly small target motion detectors (STMDs) respond to 

small moving targets even when presented against a moving background, whereas previous 

papers had only focussed on detecting the velocity differences between the target and 

background (Nordström, Barnett and O’Carroll, 2006). Additionally, a biomimetic model 

predicts the detection of moving targets in a visual clutter (Wiederman, Shoemaker and 

O’Carroll, 2008). More so, robber flies have been found to intercept targets considerably 

smaller than the acceptance angle (Wardill et al., 2017). Wardill et al., (2015) show how killer 

flies use a matched filter ratio of a targets angular subtense and angular velocity to aid hunting 

their prey which is smaller than the photoreceptor acceptance angle. Acceptance angles larger 

than the optimal target size as found in Wardill et al., (2015) is likely preffered since larger 
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targets which cover several ommatidia cause lateral inhibition in STMDS (Nordström, 2012; 

Gonzalez-Bellido, Fabian and Nordström, 2016). It is therefore unsurprising that targets 

subtending the size of the optics are detectable to some animals and may be more common 

amongst other invertebrates. 

Additionally, research has highlighted that fruit flies have the neuronal capacity to re-identify 

individual conspecifics (Schneider et al., 2018), a possibly helpful feat during courtship 

behaviour. This visual task requires considerable resolving power, perhaps explaining the 

selection pressures placed on the fruit fly for high acuity. However, the distinct evolutionary 

advantage for this vision remains unclear, in contrast to aerial predators with a clear 

behavioural need (e.g. Wardill et al., 2017).  

Many insects use motion parallax to perceive depth (Sobel, 1990; Kral, 2003; Kim, Angelaki 

and DeAngelis, 2016). In contrast, only two invertebrates have been demonstrated to use 

stereopsis, the praying mantis and cuttlefish (Rossel, 2002; Nityananda, Tarawneh, et al., 2016; 

Feord et al., 2020). Nevertheless, continuing from Juusola and colleagues (2017), more recent 

work suggests that the left and right eyes’ photoreceptor microsaccades sweep mirror-

symmetrically from back to front, increasing their binocularity and providing depth 

information about nearby visual objects (Kemppainen et al., 2022). This is possible as the 

frontal photoreceptors’ receptive fields overlap at approximately 23.5° which may provide 

depth perception through the combination of retinal images from both eyes (Kemppainen et 

al., 2022). Thus, fruit flies may use motion parallax as a source of depth information for further 

away objects (Carbrera and Theobald, 2013) and binocularity for depth perception during 

close-range visual tasks (Kemppainen et al., 2022) Such nearby visual tasks may include 

courtship behaviour where for example females require sufficient visual stimulation (i.e. the 

red eye of the male) in order to become maximally sexually receptive (Willmund and Ewing, 

1982). 

Given the assumptions that photoreceptor microsaccades facilitate extreme acuity and 

binocularity for close-range behaviour, I hypothesise that fruit flies can detect small objects 

smaller than their optical limit and discriminate between objects of slightly different depths. 

On the other hand, if fruit flies cannot detect single objects of this size, this could indicate that 

single target acuity is not as high as grating acuity in fruit flies. In this work, I aimed to 

determine: (1) can fruit flies behaviourally respond to small (1-4°) 2D and 3D singular objects? 

(2) do flies continue to find small dots aversive when this small? (3) does this require binocular 
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vision? (4) and are all photoreceptors contributing? I show that: (1) fruit flies do respond in the 

presence of a single target, changing their orientation from a predominantly arbitrary heading 

to a more biased direction, (2) this heading is towards the object, suggesting an attraction to 

the single most salient feature, (3) with one eye occluded the flies cannot discriminate between 

the 2D and 3D patterns in learning experiments, and (4) do not perform as well with either 

photoreceptor channel switched off, but still respond robustly to the stimuli.      

 

3.2 Materials and Methods 

3.2.1 Experimental animals 

Wild type Berlin (WTB) Drosophila and visual mutants were prepared before the experiments, 

as described in Chapter 2. Adult females 3-10 days after eclosion were used in these 

experiments. Monocular flies were painted as previously described. 

Mutant flies included Rh1-rescue norpA36 flies (provided by Chi Hon Lee, Academia Sinica, 

Taiwan), which express blue-green-sensitive Rh1-rhodopsin which is present in the outer 

receptors only. These flies therefore sample with the outer retinula cells (R1-R6) but not with 

the inner cells (R7/8) to test how well the outer receptor channel alone enables the underlying 

hyperacuity observed by Juusola et al., (2017).  In contrast, ninaE8 and Rh3-6 flies (provided 

by Chi Hon Lee) have functional R7/8 cells but not outer cells. R7 receptors express UV-

sensitive Rh3 (R7 pale) or Rh4 (R7 yellow) while R8 cells express either blue sensitive Rh5 

(R8 pale) or green sensitive Rh6 (R8 yellow) (Sharkey et al., 2020). This is to test whether 

inner photoreceptor play a contributing role in hyperacute vision and so we inhibited input 

from the R1-R6 photoreceptor channel.  

Two blind mutants were used as a control, hdcJK910 and norpAP24 rescue flies (provided by 

Roger Hardie, University of Cambridge). Blind hdcJK910 mutant photoreceptors have normal 

phototransduction but cannot synthesise histamine (their neurotransmitter), making them 

perceptually blind. Consequently, electroretinograms (ERGs) lack On- and Off-transients 

associated with synaptic information transfer to interneurons. Blind norpAP24 mutants have 

faulty phospholipase-C molecules, which halts phototransduction PIP2 activation and therefore 

shows no electrical response to visible light. These blind mutants were used to test whether the 

results were due to vision, and validate that other cues such as olfaction were not influencing 

the results.   
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3.2.2 Single object detection in fruit flies 

In the first experiment, I investigated whether Drosophila can perceive objects smaller than the 

interommatidial angle using negative contrast stimuli (dark stimuli on a bright background). 

Flies were presented a small black 2D dot (1°) placed amongst a panoramic stripe scene of dark 

and light gratings (2.3° horizontal) (Fig. 3.1A and B). Their yaw torque signals, indicating 

visual orientation behaviour, were recorded over 8 min of closed-loop flight, i.e. the fly 

controlled the arena position as its yaw torque was measured and feedback to the motor 

spinning the arena. In the first trial, the single target was placed centrally (vertically and 

horizontally) amongst a single light bar within the centre of the visual scene; this ensured a 

180° distribution between the target and the paper-join (ends of the paper). To understand 

whether the paper-join was influencing orientation behaviour, I did additional stimuli moving 

the dot’s location relative to the paper-join. In these trials, the single target was positioned 

either to the left or right of the centre by 90°. In addition, gratings with the dot absent were 

used as a control. Thus, there were four different visual stimuli presented to the animals: 

‘central dot’ (0°), ‘left dot’ (-90°), ‘right dot’ (90°) and ‘no dot’ (control). The start position of 

the dot stimulus was randomised by 5 sec of open-loop bi-directional rotation at the initiation 

of the trial to ensure that all flies were not immediately facing the target. Each fly was presented 

the stimuli consecutively and in a randomised order.  

3.2.3 Combining 3D with 2D visual cues 

For experiment 2, to understand whether Drosophila can discriminate small objects with 

different depths, flies were presented with three black 2D dots (3.9°), one of which had a 

“camouflaged” 3D black pin (2.7°) placed within its centre. This dot size was chosen to provide 

sufficient coverage around the pin but remained below the optical resolution limit. The dots 

were visual features in an otherwise uniform white background (plain paper) (Fig. 3.1C and 

D). Flies were tested with the pin placed on either the central dot (‘central pin’, 0°), left dot 

(‘left pin’-90°) or right dot (‘right pin’90°) to investigate whether flies responded differently 

to the 2D dot with the 3D pin. The pin was 4 mm long from the tapered tip to its base. Thus it 

was approximately 21 mm from an individual’s fly’s eyes to the pin tip, compared to the 25 

mm to the 2D dots. Crucially, during the arena rotations generated by the fly, the pin 

continually pointed towards the arena centre (and fly). Thus, no subtended angles made the pin 

more visible to the fly, i.e. the pin was always viewed (relative to the fly) directly within the 

centre of the dot, even when its physical position moved rotationally. Thereby, if the fly can 

detect the presence of the 3D pin, it would have to use the increased binocularity due to the left 
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and right eye photoreceptor microsaccades. The experimental protocol was identical to 

Experiment 1. Individuals were recorded over 8 min of closed-loop unconditioned flight, with 

four different visual stimuli presented to the fly consecutively and presented in random order.  

 

 

Fig. 3.1 Single object experiments. 

(A, C) A fruit fly tethered at the torque meter within the flight simulator and (A) presented a 

small singular black dot (1°) placed centrally within a light bar amongst dark and light bars 

(2.3°). (C) A 4 mm black pin (2.7°) is placed centrally amongst one of three dots with a 90° 

distribution. (B, D) Schematic illustration of (B) the dot and (D) pin experiment. 

 

3.2.4 Small pattern learning 

This behavioural assay is based on previously described work investigating operant learning of 

Drosophila at the torque meter (Brembs, 2008). The test was an 18 min assay presenting a 

constant pattern over nine 2 min stages running sequentially. The fly’s yaw torque is used to 

control the angular position of the patterns. The experiment delivers heat punishment 
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(unconditioned stimulus, US) with an laser to the fly’s head when presented with the 

conditioned stimulus (CS). The laser was positioned 150 mm from the fly, placed 45° vertically 

and 25° horizontally to the left of the fly’s centre. This was done in accordance with previous 

learning experiments (personal communication, Narendra Solanki). The laser delivers pulses 

(∼200 msec pulse width at ∼4 Hz) when the fly is within the quadrant of the CS, this intensity 

of the beam is reduced to ensure the fly can survive. In that case, the tested Drosophila should 

learn to orientate away from the conditioned stimulus associated with heat (CS+) and instead 

fly towards the “safe” stimulus (CS-).  

During the pre-training (stages 1 and 2), the fly receives no reinforcement, and any naïve 

preference for one pattern can later be determined. During training (stages 3, 4, 6 and 7), the 

computer turns on the heat when one of the patterns is in the frontal visual field of the fly. 

During the test stages (stages 5, 8, 9), the fly receives no reinforcement, and we test the fly’s 

pattern preference for the CS- following heat punishment. Between every 2 min stage, the scene 

is rotated bi-directionally for a random duration lasting 5 s overall. This manoeuvre randomises 

the starting position of the panorama for each stage relative to the fly’s orientation. 

I tested the learning performance index (PI) for three different visual stimuli (Fig. 3.2) 

presented in a random order, two hyperacute tests incorporating 3D and 2D objects and a 2D 

pattern control. The control was the classic ‘T-shaped patterns’, which have been well 

described for eliciting pattern learning (Wolf and Heisenberg, 1991; Dill, Wolf and Heisenberg, 

1993, 1995; Dill and Heisenberg, 1995; Liu et al., 1998, 1999, 2006). This pattern consists of 

four black T-shaped patterns measuring 40° vertically and 40° degrees horizontally; the bar 

width was 10° wide. There were two pairs of each type of pattern within the visual scene for 

each stimulus (i.e. two upright and two inverted). Therefore, identical patterns (i.e. both upright 

Ts) were placed in opposing quadrants at 180° apart (from the midline of the pattern), with a 

90° separation between each pattern around the arena wall. For both hyperacute stimuli, I used 

the same 3D object as previously described in Chapter 3. First, four black 2D dots (3.9°) 

separated by 90°, two of the dots had the 3D object placed within them. So as with the 

alternating T-patterns, the dots alternated either with or without the 3D object. Second, an 

identical approach but now using vertical stripes (horizontal 3.9°, vertical 38°) with or without 

the 3D object present.    
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Fig. 3.2 Visual learning experiments. 

(A, B) Schematic illustration of the (A) visual stimuli presented to the fruit flies, (top) test stimuli 

includes (upper) a dot stimulus (3.9°) and (lower) a stripe stimulus (horizontal width 3.9°). In 

each, four black patterns (90° separation) are presented to the fly with two pins (3D objects) 

placed within alternating quadrants (180° separation). (bottom) The control stimulus is the 

classic T-pattern with alternating upright and inverse T-shaped patterns. (B) A fly views the 

stripe stimulus with a pin, either present or absent.       

Under software control, the scene was divided into four 90° quadrants aligned centrally with 

each physical pattern of the arena. The laser automatically turned on or off depending on which 

quadrant the CS+ was within. This switching occurred whenever the fly rotated the scene, 

crossed the invisible boundary from one quadrant, and entered another. Which pattern was the 

designated CS+ was randomised, although an effort was made to have both patterns the CS+ a 

broadly equal amount of times. The heat punishment was provided to the fly’s head with a 

pulsating infrared laser (825 nm, 150 mW), guided using a piezo 3-axis micromanipulator 

(Sensapex, Finland), directed from above (degrees) and slightly off centre (degrees) from 

directly in front of the fly. 

In contrast, traditionally, the heat punishment for this behavioural assay has been delivered 

from behind onto the head and thorax of the fly (Wolf and Heisenberg, 1991; Dill, Wolf and 

Heisenberg, 1993; Tang et al., 2004). This approach provided a higher PI score when a few 

control flies were tested with this method (Fig. S8). This finding suggests that heat punishment 

from behind delivers a more potent unconditioned stimulus. Regardless, throughout the 

learning experiments, I delivered the punishment from ahead of the fly. This choice was due to 
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the rigid setup of the flight simulator system, meaning the best way to minimise additional 

visual cues, e.g. experimenter activity and external light sources surrounding the faraday cage, 

was to have a fly facing inwards i.e. towards the laser. Despite previous work showing higher 

PI scores, the comparison between groups within these experiments is valid since I use the 

same approach consistently.    

3.2.5 Deep pseudopupil imaging 

For Rh1-rescue norpA36 flies, electroretinograms (ERGs) and deep pseudopupil imaging 

(performed by Joni Kemppainen) were undertaken immediately after the learning experiment. 

The deep pseudopupil imaging unexpectedly showed substantial variations in the 

photoreceptor microsaccade size of some individuals between their left and right eyes. This 

discovery highlighted that sometimes the mutants showed no lateral (sideways moving) 

photoreceptor microsaccades in one of their eyes (~10%). Of the 97 flies tested in the flight 

simulator (dots: 30; stripes: 30; t-patterns: 37), five escaped after behavioural assessment and 

before the eye could be imaged (stripes:1; t-patterns: 4), and a single fly (stripes) had no 

saccade movement in either eye. It is unclear why this fly had no saccade movement, yet it is 

likely due to development errors occurring in photoreceptor pivoting and anchoring for the 

Rh1-rescue norpA36 genotype (Kemppainen et al., 2022). Regardless, this phenomenon was 

helpful as it allowed me to categorise the flies into two additional subgroups (binosaccades and 

monosaccades) for analysis (see below).  

3.2.6 Data analysis 

All data collection and stimulus procedures were performed using custom-written MATLAB 

software. During the single object experiments, the panorama’s position relative to the fly’s 

fixed orientation was measured at 1 kHz and then given as the mean fixation probability. The 

optimal bin size was determined using Sturges’ rule (Sturges, 1926) (k = 1+3.22log(n)) for 

visualisation of the distribution. This rule gave an optimal number of 15 bins, giving a bin 

width of 24°. I rounded down to 20° bin widths over 18 bins for visual clarity. The thin 

(hyperacute) paper-join seemed to affect fly behaviour with varying levels of attraction, which 

suggested it was an unexpected visual cue.  

To compare whether flies preferred to fly towards the single dot or pin stimulus, I analysed 

each experiment in three ±90° bins from the object. These bins were the “left” section (-180° 

to 0°), the middle section (-90° to 90°) and the right section (0° to 180°). The mean probability 

within each bin was then compared to determine whether the section with the dot had a 
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statistically higher mean. For example, the central pin stimulus places the pin at 0° in the centre 

of the middle section (-90° to 90°). The two empty dots, meanwhile, are at -90° and 90°. Thus, 

they are placed within the centre of the left section (-180° to 0°) and right section (0° to 180°), 

respectively. I predicted the larger bin size (i.e. ±90°) would be required to determine whether 

any preference was shown to the single object. Indeed, if the fly were to detect the visual cue, 

it is such a small cue that the behavioural response would likely not be sufficient with a smaller 

bin size, e.g. ±25°. In contrast, I used ±30° bins to directly compare behaviour within a 

narrower range to compare the salience of the single dot or pin.  

Each tethered fly had a combined flight time of 32 min when considering all four 8 min stimuli, 

so some experienced flying problems. These interruptions were easily observable and 

characteristic as a fly stopped flying and either dangled or erratically moved its legs. Struggling 

animals were encouraged to fly again with air blows while the trail was paused. Otherwise, the 

trial was stopped for the few that experienced reoccurring flying problems (i.e. stopped flying 

>5 times during a 2 min stage), and the fly was excluded from the dataset. Most typically, flies 

in the dataset experienced no flying problems during the experiments.   

In learning experiments, I analysed the performance index (PI) for each of the 2 min stages. 

Performance indices were automated and recorded per millisecond in the computer storage. 

The performance index was calculated as the time the fly selected to orientate towards the CS+, 

minus the time the fly selected to orientate towards the CS-, divided by the total experiment 

time. Scores ranged from 1.0 (at all-times orientating towards the CS-) to -1.0 (at all-times 

orientating towards the CS+). Flies that spent an equal amount of time facing each pattern 

received a score close to 0. Which pattern was the designated CS+ was alternated for each new 

fly, thereby making each pattern the CS+ a broadly equal amount of times.   

Theoretically, the fly should have no naïve preference to either pattern during the initial stages 

(pre-training). However, it has previously been shown that flies sometimes demonstrate a naïve 

preference for the inverted T pattern over the upright T (Dill and Heisenberg, 1995; Solanki, 

Wolf and Heisenberg, 2015). Consequently, since experiment 2 shows voluntary orientation 

towards the pin, a naïve preference may be shown during the pre-training phase, whereas, 

during training the fly should actively avoid the heat punishment and produce a robust positive 

PI. For stage 5, the initial test, it is expected that the fly should now produce a positive score, 

having experienced the first two phases of training. However, we found that performance for 

this stage varied immensely between subjects. If the fly can see the patterns as expected during 
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the test stage, we predict a positive learning score, though not as strong as during the training 

stages.  

For the Rh1-rescue norpA36 flies with varying photoreceptor microsaccades, the data is 

analysed first as the whole population of flies, whose microsaccade category was unknown at 

the time of behavioural experiments. Second, the ‘binocular microsaccade’ flies, with normal 

R1-R6 phototransduction and symmetrical microsaccades globally across both eyes. Finally, 

‘monocular microsaccade’ flies with normal R1-R6 phototransduction but faulty 

microsaccades in one eye, producing asymmetrical monocular microsaccades. Therefore, a 

comparison could be drawn between normal or faulty microsaccadic movement and 

performance index during learning experiments.  

3.2.7 Statistics 

All statistical tests were performed using SPSS (IBM SPSS Statistics 26). Tests for normal 

distribution were performed using the Shapiro-Wilk test. To test whether the mean fixation 

within each section was statistically different during the single object experiments, I used either 

an independent samples t-test or a one-way ANOVA with Tukey’s post hoc test where 

appropriate. 

In learning experiments, many flies exhibited varied and arbitrary preferences during the first 

test phase (stage 5) compared to the following phases (stages 8 and 9). To ensure that 

comparisons were made during the most reliable phase of the experiment as to whether a fly 

learnt or not, I focussed on Stage 8 alone for statistical evaluation as it was the first stage after 

all the training phases had been completed and before the performance would reduce due to 

waning memory in stage 9. Therefore, the performance of the fruit flies during a single 

performance index (Stage 8) was statistically compared against zero using a two-tailed one-

sample t-test for each stimulus within the same group of flies.  

To test whether the performance indices for the dot and stripe stimuli differed from the control 

stimulus within a group, I used a one-way ANOVA with Dunnett’s post hoc test. An 

independent samples t-test or a one-way ANOVA with Sidak’s post hoc test compared the 

performance indices between fly groups. I used a chi-square test to compare the number of flies 

with a performance index high than 0.1 in stage 8. During the initial phases (stages 1 and 2), 

many flies showed less than 0.1 or -0.1, i.e. equal preference. Thus, I designated a score higher 

than 0.1 to indicate a trained bias for the CS-.   
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3.3  Results 

3.3.1 A small single visual cue 

The yaw torque of the animals was recorded in the flight simulator to study the spatial resolving 

power of fruit flies in respect to a single tiny target (Fig. 3.3) when presented with a black dot 

within gratings as the only visual cue. This experiment builds on the relatively simple 

optomotor behaviour by exploring the visual perception of the fly. Many flies maintained a 

weak attraction for heading towards the stimulus without reinforcement. When presenting the 

dot 180° from the paper-join (central dot), the fruit flies kept attempting to centre the dot within 

the frontal visual field, as shown by the mean fixation (Fig. 3.3B). Indeed, when the middle 

region (-90° to 90°) is compared to the control, it differs significantly (Independent-sample t-

test: t(38) = 4.29, P ≤ 0.001; Fig. 3.3G). Typically, it was observed that flies continuously 

changed heading direction but would repeatedly return towards the small dot and perform small 

saccadic behaviour on either side of the stimulus. Saccadic behaviours (rapid high angular 

velocity turns) are a common feature of tethered flight at the torque meter, as flies do not hold 

the scene immobile or turn it smoothly (Brembs and Heisenberg, 2000). On the other hand, 

many flies would perform anti-fixation behaviour and fly towards the paper-join.  

Next, to investigate whether fruit flies were biased by unknown visual cues or stimulus location 

within the system, the stimulus’s position was shifted by 90° relative to the paper-join to the 

left (left dot) and right (right dot). Similar to the central dot, fruit flies often changed direction 

but would return to the dot stimulus located at the left (Fig. 3.3A) (Independent-sample t-test: 

t(38) = 2.58, P = 0.014; Fig. 3.3F). In contrast, the right dot stimulus (Fig. 3.3C). did not differ 

significantly from the control for the right section (0-180°) (Independent-sample t-test: t(38) = 

1.77, P = 0.084; Fig. 3.3H). Nevertheless, flies predominantly kept an orientation to the right 

when the right dot was present (blue bar, Fig. 3.3E). Many flies maintained arbitrary headings 

throughout their flight when the singular visual cue was absent (no dot; Fig. 3.3D). However, 

it does show a peak between the paper-join and -90°. This finding suggests that the flies kept a 

chosen direction close to the paper-join when it was the only cue.  
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Fig. 3.3 Detecting and using a singular small visual cue to direct orientation. 

The mean fixation probability of 8 min flights of tethered Drosophila (n = 20) presented with a 

small black dot (1°) placed centrally within the light bar of a panorama of gratings (2.3°), 

providing a singular visual cue in an otherwise homogeneous scene. (A-C) The flies’ flight 

direction relative to the dot located at the (A) left, (B) central or (C) right position (relative to 
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the paper-join). The black dotted line shows the dot location. (D) The gratings are presented 

with the dot absent as a control. (E) The means of the left (red), central (black), and right (blue) 

dot locations have the mean of the control subtracted. The data shows that when the dot is 

present in a region, the flies prefer to orientate in that general direction. The coloured dotted 

lines represent the dot location for each stimulus. (F-H) Boxplots show that flies statistically 

prefer the left region (F, red box) and central region (G, black box) with the dot present, but 

this did not differ significantly for the right section (H, blue box). Boxes indicate the 25-75% 

interquartile range, the white line indicates the median, the white box is the mean, whiskers 

represent the entire data spread, and red diamonds represent outliers. Asterisks indicate the 

level of significance: *P < 0.05, **P < 0.01, ***P < 0.001 and n.s. not significant. Means are 

calculated over 20° bins.   

 

 

The slight preference for heading towards the dot stimulus suggests that fruit flies can detect 

single objects smaller than the optical resolution limit and find dots this small attractive. 

However, the behavioural response is not robust enough to suggest a strong attraction, as found 

for vertical stripes (Heisenberg and Wolf, 1979). 

To investigate whether flies were changing direction regarding the dot stimulus being located 

in different arena sections (relative to the paper-join), I analysed the mean orientation for each 

section for each stimulus (Fig. 3.4). A two-way ANOVA revealed a significant interaction 

between stimulus position and arena section, F(4, 171) = 12.49, P ≤ 0.001. The central dot 

stimulus was statistically different as shown by a Tukey post hoc test between the central region 

(with the dot) and left region (P = 0.023) but not with the centre and right regions (P = 0.984). 

When comparing the central section between all three stimuli, flies preferred to fly in this 

direction when the dot was present although this was not statistically different (Central dot vs 

left dot, P = 0.096; central dot vs right dot (P = 0.071); Fig. 3.4 middle box of all plots).  

 

When the dot was located at the left region (i.e. left dot stimulus), i.e. -180° to 0°, the flies 

preferred to fly in the general direction of the dot. This was not significant against the middle 

section (Post-hoc Tukey: P = 0.055) but it was statistically different against the right section 

(Post-hoc Tukey: P = ≤ .001). This finding was confirmed when comparing the left section for 

all three stimuli (Fig. 3.4 left box of all plots). There was a clear preference for the left section 

when the dot was present rather than absent (Post-hoc Tukey: left dot vs central dot (P = 0.012); 

left dot vs right dot (P ≤ 0.001).  
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Similar to what was observed with the left stimulus, Drosophila preferred to fly in the arena 

section with the dot for the right stimulus, though whether there a significant difference was 

inconsistent. There was no significant difference when comparing against the central region 

(Post-hoc Tukey: P = 0.258) but there was an effect  when comparing against the left (Post-hoc 

Tukey: P = 0.019) regions. The right region of the right stimulus did not differ with statistical 

significance as shown by a tukey post hoc from the central dot (P = 1.00). However, there was 

a clear difference compared to the left stimulus (P ≤ 0.001). Fig. 3.4 right box of all plots). 

These results confirm that (i) the flies can perceive the small visual cue and (ii) use that 

information for choosing a general flight direction in the flight simulator, possibly as it provides 

a reference point (or landmark) within the highly artificial environment. 

 

Fig. 3.4 Effect of dot position on orientation preference. 

The fixation behaviour of fruit flies (n = 20) viewing a small dot indicates a bias towards the 

single object when presented towards the left (boxes outlined in red), central (boxes outlined 

in black) and right stimulus (boxes outlined in blue). Shaded boxes indicate the dot location in 

each stimulus (left, red box; centre, black box, right, blue box). Boxes indicate the 25-75% 

interquartile range, the red line indicates the median, whiskers represent the entire data 

spread, and red diamonds represent outliers. Asterisks indicate the level of significance: *P < 

0.05, **P < 0.01, ***P < 0.001, n.s. not significant. Shaded boxes are replotted from Figure 3.3 

F, G and  H. Means calculated over 180° bins.    
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3.3.2 The use of a small depth cue  

The tested flies’ mean fixation probability was investigated to analyse whether a single 3D 

object was detectable and more salient than multiple 2D objects (Fig. 3.5). When presenting 

the pin 180° from the paper join (central dot) within the middle dot, Drosophila kept attempting 

to centre the pin by repeatedly returning towards the pin and performing saccadic behaviour on 

either side of the 3D object (Fig. 3.5B). When the middle region (-90° to 90°) is compared to 

the control, it differs significantly (Independent-sample t-test: t(38) = 4.89, P ≤ 0.001; Fig. 

3.5G). Similar to the central pin, fruit flies often changed direction but would return to the pin’s 

position when found at the left arena section (-180° to 0°) (Fig. 3.5A) (Independent-sample t-

test: t(38) = 2.33, P = 0.025; Fig. 3.5F) as well as the right section (0° to 180°) (Fig. 3.5C) 

(Independent-sample t-test: t(38) = 5.57, P ≤ 0.001; Fig. 3.5H). 

A slight preference is shown for the single pin object as with the single dot. This finding 

suggests that they can detect the changing depth of the pin and find it more salient. A possible 

interpretation is that the fly’s motivation is to attempt to escape the artificial environment and 

tether (Solanki, Wolf and Heisenberg, 2015). The pin perhaps is chosen as the best direction, 

viewing it as a landing site.    
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Fig. 3.5 Using a subtle depth cue within small objects for orientation.   

The mean fixation probability of 8 min flights of tethered Drosophila (n = 20) presented with a 

4mm black pin (2.7°) placed within the centre of one of three (90° separation) black 2D dots 

(3.9°). Presenting a singular depth cue amongst multiple visual cues. The flies’ flight direction 

relative to the pin located at the (A) left, (B) central or (C) right position (relative to the paper-
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join). The black dotted line shows the pin location. (D) No visual cues are presented as a 

control. (E) The means of the left (red), central (black), and right (blue) pin locations have the 

mean of the control subtracted. The data shows that when the pin is present in a region, the 

flies prefer to orient in that direction. The coloured dotted lines represent the pin location for 

each stimulus. (F-H) Boxplots show that flies statistically prefer the left (F, red box), central (G, 

black box) and right region (H, blue box). Boxes indicate the 25-75% interquartile range, the 

white line indicates the median, whiskers represent the entire data spread, and red diamonds 

represent outliers. Asterisks indicate the level of significance: *P < 0.05, **P < 0.01, ***P < 

0.001 and n.s. not significant. Means are calculated over 20° bins.   

 

 

To compare the fruit flies’ orientation preference between the changing pin positions, I 

analysed the mean fixation probability for each stimulus (Fig. 3.6). A two-way ANOVA 

revealed a significant interaction between stimulus position and arena section, F(4, 171) = 

20.43, P ≤ 0.001. The central dot stimulus was not statistically different as shown by a Tukey 

post hoc test between the central region (with the pin) and left region (dot only) (P = 0.754) 

but it was significant with the centre and right regions ( P ≤ .001). When comparing the central 

section between all three stimuli, flies preferred to fly in this direction when the dot was present, 

this was statistically different for the central dot vs left dot, P ≤ 0.001 (Post-hoc Tukey) but not 

against the right dot (Post-hoc Tukey: P = .354). Fig. 3.6 middle box of all plots). These 

findings suggest that fruit flies favour the dot with the pin present, although often the flies show 

an arbitrary preference to the three dots, so the mean fixation preferring the pin is not robust.  

When the pin is positioned to the left, i.e. -180° to 0°, the flies preferred to orient towards the 

left section compared to the central section (Post-hoc Tukey: P ≤ .001) and right section (Post-

hoc Tukey: P ≤ .001). As with the left dot, this preference was reaffirmed when comparing the 

left section for all three stimuli (Fig. 3.6 left box of all plots). There was a clear preference 

for the left section when the dot was present rather than absent (left vs middle, Post-hoc Tukey: 

P = .035; left vs right, Post-hoc Tukey: P ≤ .001).  

In contrast, the right pin did not differ significantly between the sections (Fig. 3.6 right plot) 

when testing against the middle section (Post-hoc test: P = .962) and left section (Post-hoc test: 

P = .997). When comparing the right region with the pin present or absent, there was no 

statistical difference against the middle pin (Post-hoc test: P = .208) but there was against the 

left pin (Post-hoc test: P ≤ .001) (Fig. 3.6 right box of all plots). 
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This finding indicates that while the right section did not attract the highest mean fixation 

during the right stimulus, it nevertheless had the highest fixation when comparing this section 

between the three different stimuli. Thus, this still suggests a preference to fixate the pin in all 

positions. As with the dot visual cue, this result suggests that it is the singular object that fruit 

flies generally choose to orientate towards, somehow deciding that this singular piece of visual 

information is more critical for choosing heading directions.  

 

Fig. 3.6 Effect of pin position on orientation preference. 

The fixation behaviour of fruit flies (n = 20) viewing a small pin and two dots indicates a bias 

towards the pin when presented towards the left (boxes outlined in red), central (boxes outlined 

in black) and right stimulus (boxes outlined in blue). Shaded boxes indicate the dot location in 

each stimulus (left, red box; centre, grey box, right, blue box). Boxes indicate the 25-75% 

interquartile range, the red line indicates the median, whiskers represent the entire data 

spread, and red diamonds represent outliers. Asterisks indicate the level of significance: *P < 

0.05, **P < 0.01, ***P < 0.001, n.s. not significant. Shaded boxes are replotted from Figure 3.5 

F, G and  H. Means calculated over 180° bins.     
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3.3.3 Preference for single 2D and 3D small visual cues 

To characterise fixation performance in the presence of either the single dot cue or single pin 

cue, I compared the dot (Fig. 3.3) and pin (Fig. 3.5) data together to analyse the performance 

(Fig. 3.7). When plotted together (Fig. 3.7A to F), the traces suggest a robust similarity in the 

salience of the respective objects. Visually, the most striking difference is for the right stimulus 

(Fig. 3.7A), which show a peak in the central section for the pin stimulus (blue), which is absent 

in the dot stimulus (red). This is most likely due to the empty dot present within this section 

for the pin stimulus, which is absent for the dot stimulus. 

The mean fixation probability does not significantly differ when the flies were presented with 

either visual cue for the left (Independent-sample t-test: t(38) = 1.95, P = 0.06; Fig. 3.7G), 

central (Independent-sample t-test: t(38) = -0.88, P = 0.38; Fig. 3.7H) and right stimulus 

(Independent-sample t-test: t(38) = 1.43, P = 0.16; Fig. 3.7I). This suggests that both cues are 

equally salient, indicating high acuity and binocularity in fruit flies.  

3.3.4 Constant orientation throughout the flight  

The mean fixation remained relatively constant when tested with dot stimuli throughout the 

flight time. This was indicated as there was no statistical difference for any of the four 2-min 

phases for the left dot (One-way ANOVA: F(3, 76) = 0.17, P = 0.92; Fig. 3.8E), central dot 

(One-way ANOVA: F(3, 76) = 0.63, P = 0.6; Fig. 3.8F), right dot (One-way ANOVA: F(3, 76) 

= 0.42, P = 0.74; Fig. 3.8G) or control (One-way ANOVA: F(3, 76) = 1.57, P = 0.2; Fig. 3.8H).  

Similar to what is observed with the dot cue, fruit flies kept a relatively stable orientation 

preference throughout the entire 8 min experiment for the left pin (One-way ANOVA: F(3, 76) 

= 0.39, P = 0.76; Fig. 3.9E), central pin (One-way ANOVA: F(3, 76) = 0.26, P = 0.85; Fig. 

3.9F), right pin (One-way ANOVA: F(3, 76) = 2.59, P = 0.06; Fig. 3.9G) and the control (One-

way ANOVA: F(3, 76) = 0.48, P = 0.7; Fig. 3.9H). This suggests that the information fruit 

flies’ place on the importance of the dot and pin stimulus remains stable over time within the 

flight simulator.  
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Fig. 3.7 Singular 2D or 3D objects, when tested separately, are equally salient. 

The mean fixation behaviour of Drosophila (n = 20) of 8 min flight periods when presented with 

either the small black dot (red) or small black pin (blue). The flies’ flight directions are relative 

to the singular landmark for the (A) left, (B) central and (C) right location. Means are calculated 

over 20° bins. Error bars indicate SEM. The black dotted line in A-F shows the dot and pin’s 

combined location. (G-I) Boxplots show no significant difference in the mean fixation between 

the dot and pin. Boxplots are the same data as shown in Fig. 3.3 and Fig. 3.5 for dots and 

pins, respectively. Boxes show the interquartile range, the white line indicates the median, the 

white box is the mean, whiskers represent the entire data spread, and red diamonds represent 

outliers. n.s. not significant. D-F Means calculated over 30° bins.  

 

 



79 

 

               

Fig. 3.8 Stable fixation in time when viewing a small single visual cue.  

The mean fixation of flies (n = 20) shows similar orientation when viewing the dot stimulus 

during the first, second, third and fourth 2 min phase of the 8 min flight for the left (A), central 

(B), right (C) and control (D). This indicates that whether the dot is present or absent, fly 

behaviour is relatively constant with no apparent difference between each phase. The black 

dotted line in A-C shows the dot location. Means are calculated over 20° bins. (E-H) Boxplots 

confirm that there is no statistical difference between the 2 min phases. Boxes show the 

interquartile range, the white line indicates the median, the white box is the mean, whiskers 

represent the entire data spread, and red diamonds represent outliers. n.s. not significant.     
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Fig. 3.9 Stable fixation in time when viewing a small single 3D object. 

The mean fixation of flies (n = 20) shows similar orientation when viewing the pin stimulus 

during the first, second, third and fourth 2 min phase of the 8 min flight for the left (A), central 

(B), right (C) and control (D). This indicates that whether the dot is present or absent, fly 

behaviour is relatively constant with no apparent difference between each phase. The black 

dotted line in A-C shows the dot location. Means are calculated over 20° bins. (E-H) Boxplots 

confirm that there is no statistical difference between the 2 min phases. Boxes show the 

interquartile range, the white line indicates the median, the white box is the mean, whiskers 

represent the entire data spread, and red diamonds represent outliers. n.s. not significant.    
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3.3.5 Learning small visual cues requires both eyes in fruit flies 

To study the visual learning of fruit flies concerning small 2D and 3D visual cues, the 

performance index of the animals was analysed at the torque meter when presented with dot or 

stripe stimuli with pins on alternating patterns. Associative learning at the torque meter has 

been described before for large 2D patterns (Wolf and Heisenberg, 1991, 1997; Brembs and 

Heisenberg, 2000). Many fruit flies, even though the visual cues were more challenging to 

distinguish than in T-patterns, learnt to avoid harmful stimuli and preferred heading directions 

towards the CS- (Fig. 3.10). When conditioned through heat punishment to either avoid or head 

towards the pin, binocular flies adjusted their orientation appropriately (Fig. 3.10A and B). On 

average, fruit flies had no naïve preference (stage 1 and 2, grey bar) towards either pattern for 

all stimuli (dot, -0.02 ± 0.18; stripe, -0.04 ± 0.3; control, 0 ± 0.28) (M±SD). In contrast, after 

all training stages the performance index during the first memory test (stage 8) increased 

significantly with respect to the dot stimulus (One-sample t-test: t(19) = 4.28, P ≤ 0.001; Fig. 

3.10A), stripe stimulus (t(19) = 3.61, P ≤ 0.001; Fig. 3.10B) and control stimulus (t(28) = 

4.16, P ≤ 0.001; Fig. 3.10C). The performance index was similar in the dot, stripe and control, 

so no significant difference was found (One-way ANOVA: F(2, 66) = 0.30, P = 0.74; Fig. 

3.10D). Example flies (n = 2) show exemplary associative learning (Fig. S4).  

The majority of fruit flies could learn, though it is only a subpopulation of animals that ever 

show learning behaviour. Fifteen out of 20 flies (75%, Fig. 3.10E) showed a mean performance 

index greater than 0.1 when presented with the dot stimulus, while 14 out of 20 (70%, Fig. 

3.10F) for the stripe stimulus, and 20 out of 29 fruit flies (69%, Fig. 3.10G) for the control. 

The remaining flies avoided the CS+ during training but failed to remember this association 

during the unconditioned test stage. This suggests an equal difficulty in discriminating between 

small and large cues in this flight simulator setup. 



82 

 

 

Fig. 3.10 Visual learning of fruit flies using small visual cues. 

(A-C) Performance indices of fruit flies over nine 2 min stages for dots (A; n = 20), stripes (B; 

n = 20) and T-patterns (C; n = 29). Grey bar shows pre-training and no pattern preference. 

White bar shows training and a strong preference for the CS-. The blue bar shows the memory 

test and a learned preference for the CS- in stages 8 and 9 for all stimuli. Error bars indicate 

SEM. (D) Boxplots is the same data as shown in stage 8 of A-C, which did not differ significantly 

between the stimuli. Boxes show the interquartile range, the grey line indicates the median, 

the white box is the mean, whiskers represent the entire data spread, and red diamonds 

represent outliers. Asterisks indicate the level of significance: *P < 0.05, **P < 0.01, ***P < 

0.001 and n.s. not significant. (E-G) Histogram of stage 8 performance indices of flies for the 

dot stimulus (E), stripe stimulus (F), and T-patterns (G). 
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To exclude any potential non-visual cues influencing the fruit flies’ behaviour, two blind 

mutants were tested (Fig. S5). During training, the flies slightly bias their direction to the non-

punishing pattern, although the means are lower than wild-type flies. This is as expected as 

visual input is not required for orientation (Wolf and Heisenberg, 1986). hdcJK910 mutants failed 

to direct their flight towards either pattern for all stimuli (Dots, One-sample t-test: t(19) = -

0.83, P = 0.42; Fig. S5A; stripes, One-sample t-test: t(19) = 0.49, P = 0.63; Fig. S5B; control, 

One-sample t-test: t(19) = -1.67, P = 0.11; Fig. S5C) as well as norpAP24 mutants (Dots, One-

sample t-test: t(19) = -0.06, P = 0.95; Fig. S5D; stripes, One-sample t-test: t(19) = -0.7, P = 

0.5; Fig. S5E; control, One-sample t-test: t(19) = -0.04, P = 0.97; Fig. S5F). The mean score 

of stage 8 differed with statistical significance to the wild-type flies for the dot stimulus 

(Independent-sample t-test: t(58) = 4.01, P ≤ 0.001; Fig. S5G left plot), stripe stimulus 

(Independent-sample t-test: t(58) = -3.95, P ≤ 0.001; Fig. S5G middle plot), and control 

(Independent-sample t-test: t(67) = 4.08, P ≤ 0.001; Fig. S5G right plot). Taken together, the 

bias to the non-punishing pattern by wild-type fruit flies after training show that this is visual 

learning as blind flies are incapable of learning the associations of the stimuli.  

Next, to investigate whether fruit flies relied on the visual input from both eyes to learn 

associations with the small 3D and 2D cues, the fly’s left or right eye was painted to block 

light. Unlike what was observed with normal (binocular) vision, fruit flies could not learn 

visual associations concerning the dot and stripe stimulus (Fig. 3.11). The orientation of the 

fruit flies shows no bias to the conditioned pattern for the dot stimulus (One-sample t-test: t(19) 

= -0.17, P = 0.87; Fig. 3.11A) as well as the stripe stimulus (One-sample t-test: t(19) = -0.25, P 

= 0.81; Fig. 3.11B). In contrast, the animal’s mean performance index exceeded 0.1 for the 

control stimulus (One-sample t-test: t(19) = 4.69, P ≤0.001; Fig. 3.11C). Compared to the 

binocular flies, there was a significant difference between stimuli (One-way ANOVA with 

Dunnet post hoc test: F(2, 57) = 8.08, P = 0.001; dot and control: P ≤ 0.002, stripe and control: 

P ≤ 0.002; Fig. 3.11D). Five out of 20 flies (25%, Fig. 3.11E) showed a mean performance 

index greater than 0.1 when presented with the dot stimulus, 7 out of 20 (35%, Fig. 3.11F) for 

the stripe and 14 out of 20 (70%, Fig. 3.10G) for the T-patterns.  
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Fig. 3.11 Monocular vision inhibits visual learning of small cues. 

(A-C) Performance index of fruit flies with one-eye painted over nine 2 min stages with respect 

to dots (A; n = 20), stripes (B; n = 20) and T-patterns (C; n = 20). Grey bar shows pre-training 

with no pattern preference. White bar shows training and a strong preference for the CS-. The 

red bar shows the memory test. Flies failed to learn dots stimulus (A) and stripe stimulus (B) 

but learned the control (C). Error bars indicate SEM. (D) Boxplots is the same data as shown 

in stage 8 of A-C, which differ significantly between the control and test stimuli. Boxes show 

the interquartile range, the grey line indicates the median, the white box is the mean, whiskers 

represent the entire data spread, and red diamonds represent outliers. Asterisks indicate the 

level of significance: *P < 0.05, **P < 0.01, ***P < 0.001 and n.s. not significant. (E-G) 

Histogram of stage 8 performance indices of flies for the dot stimulus (E), stripe stimulus (F), 

and T-patterns (G). 
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Next, the learning performance was compared between the binocular and monocular 

experiments. The score of the binocular flies tended to be higher during the training stages 

(3,4,6,7) (Fig. 3.12A to C). During the test, there was a significant difference for dots 

(Independent-sample t-test: t(38) = 3.25, P = 0.002; Fig. 3.12D) and stripes (Independent-

sample t-test: t(38) = 2.84, P = 0.007; Fig. 3.12E). In contrast, the mean performance index of 

binocular and monocular flies was similar during stage 8 (Fig. 3.12F), associated with large 

cues still being perceived with one eye painted. There was no significant difference between 

their mean performances (Independent-sample t-test: t(47) = -1.01, P = 0.32). In summary, the 

data shown in Fig. 3.12 show that fruit fly learning of small visual cues is affected by removing 

the visual input from one eye. This result suggests that Drosophila use the retinal images from 

both eyes for object detection at close distance, whether this remains constant when tested at 

greater distances from the eye remains to be investigated.   
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Fig. 3.12 Fruit flies use both eyes for learning small visual cues. 

(A, C) Performance index of binocular (blue) and monocular (red) fruit flies show decreased 

performance indices during training and test stages for monocular flies with respect to dots 

(A) (n = 20, binocular; n = 20 monocular) and stripes (B) (n = 20, binocular; n = 20 monocular). 

Similar scores are shown in the test stage for the T-patterns (C) (n = 29, binocular; n = 20 

monocular). Error bars indicate SEM. (D-F) The learning ability differed significantly for the 

small visual cues (D, E) but did not differ for the T-patterns (F). Boxes show the interquartile 

range, the grey line indicates the median, the white box is the mean, whiskers represent the 

entire data spread, and red diamonds represent outliers. Asterisks indicate the level of 

significance: *P < 0.05, **P < 0.01, ***P < 0.001. n.s. not significant. All binocular data as 

shown in Fig. 3.10, monocular data from Fig. 3.11. 

Traditionally, visual learning experiments at the torque meter have delivered the heat 

punishment from behind the fly, while here, the flies are hit by the laser from above and ahead 

due to the system setup. Therefore, an experiment was performed in which flies were presented 

the dot and control stimulus but were conditioned using the traditional method from behind 

Fig. S8. Subsequently, any different characteristics over the entire 18-min experiment can be 
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explored. This preliminary data suggests that flies perform better when hit from behind (Fig. 

S8F), yet there is no statistical difference (Dots, Independent-sample t-test: t(21) = -0.17, P = 

0.87; Fig. S8C; control (Independent-sample t-test: t(37) = -1.85, P = 0.07; Fig. S4F) likely 

due to the low sample size (dots, n = 3; control, n = 10) which limits the ability to interpret the 

data. Interestingly, the training stages have a lower performance index and greater variation 

during the behind method than the ahead method (Fig. S8D and E).  

3.3.6 Faulty microsaccades disrupt learning  

To investigate how each photoreceptor channel contributes to learning small visual cues, 

mutants with either the outer (R1-R6) or inner (R7/8) photoreceptors functional were tested. 

Surprisingly, Rh1-norpA rescue mutants tested for their functional R1-R6 photoreceptors 

sometimes show faulty or disrupted photoreceptor movements as found by deep pseudopupil 

recordings and ERGs. Consequently, Rh1-norpA mutants were subdivided into two groups. All 

flies with “normal” binocular mirror-symmetric lateral photoreceptor microsaccades (Fig. 

3.13) flies with normal phototransduction but monocular asymmetric lateral photoreceptor 

microsaccades (Fig. 3.14) with a comparison of two subtypes (Fig. 3.15). It is worth noting 

that since a separate investigator performed the imaging after the behavioural experiments, it 

was not known which group a fly would be placed in throughout the behavioural experiments. 

To quantify how microsaccades function affects visual learning, the flies tested with normal 

microsaccades were grouped for each stimulus (Fig. 3.13). The data of the mean performance 

index show that flies could visually learn to a statistical difference for the dot stimulus (n = 20, 

One-sample t-test: t(19) = 3.20, P = 0.005; Fig. 3.13A) and T-patterns (n = 20, One-sample t-

test: t(19) = 3.12, P = 0.006; Fig. 3.13C). The data for the stripe stimulus shows that although 

there was a bias for the CS-, which suggests visual learning, there was no statistical difference 

(n = 20, One-sample t-test: t(19) = 1.52, P = 0.15; Fig. 3.13B). Importantly, presenting different 

stimuli did not significantly change the learning performance (One-way ANOVA: F(2, 57) = 

0.13, P = 0.88; Fig. 3.13D). Indicating robust learning for small and large visual cues. Fourteen 

out of 20 flies (70%, Fig. 3.13E) showed a mean performance index greater than 0.1 when 

presented with the dot stimulus, while 9 out of 20 (45%, Fig. 3.13F) for the stripe stimulus, 

and 13 out of 20 flies (65%, Fig. 3.13G) for the control. 
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Fig. 3.13 Fruit flies require photoreceptor microsaccades to learn small visual cues. 

(A-C) Performance index of Rh1-norpA rescue mutants  with functional microsaccades in both 

eyes over nine 2 min stages for dots (A; n = 20), stripes (B; n = 20) and T-patterns (C; n = 20). 

Grey bar shows pre-training with no pattern preference. White bar shows training and a strong 

preference for the CS-. The light blue bar shows the memory test and a learned preference for 

the CS- in stage 8 for all stimuli. Error bars indicate SEM. (D) Boxplots is the same data as 

shown in stage 8 of A-C, which did not differ significantly between the stimuli. Boxes show the 

interquartile range, the grey line indicates the median, the white box is the mean, whiskers 

represent the entire data spread, and red diamonds represent outliers. Asterisks indicate the 

level of significance: *P < 0.05, **P < 0.01, ***P < 0.001 and n.s. not significant. (E-G) 

Histogram of stage 8 performance indices of flies for the dot stimulus (E), stripe stimulus (F), 

and T-patterns (G). 
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Next, to investigate whether faulty microsaccades in one eye inhibited learning, the flies were 

grouped for each stimulus (Fig. 3.14). Fruit fly orientation showed no bias for the conditioned 

stimulus associated with heat punishment for the dots (One-sample t-test: t(9) = -0.68, P = 0.52; 

Fig. 3.14A), stripes (One-sample t-test: t(8) = 1.01, P = 0.34; Fig. 3.14B) and control (One-

sample t-test: t(11) = -0.93, P = 0.37; Fig. 3.14C). Therefore, there is no statistical difference 

between stimuli (One-way ANOVA: F(2, 28) = 0.59, P = 0.562; Fig. 3.14D). Only 3 out of 10 

flies (30%, Fig. 3.14E) showed a mean performance index greater than 0.1 when presented 

with the dot stimulus, 4 out of 9 (44%, Fig. 3.14F) for the stripe and 4 out of 12 (33%, Fig. 

3.14G) for the T-patterns.  

Strikingly, even though flies with painted eyes still learnt the T-patterns (Fig. 3.11C), flies with 

faulty microsaccades showed much less ability to learn large visual cues in addition to small 

cues. Indeed, there is a significant difference between ‘painted’ and ‘faulty flies (Independent-

sample t-test: t(30) = 3.24, P = 0.003; Fig. S6 right plot). Yet, there is no statistical difference 

for the dots (Independent-sample t-test: t(28) = 0.69, P = 0.5; Fig. S6 left plot) and stripes 

(Independent-sample t-test: t(27) = -0.66, P = 0.51; Fig. S6 middle plot). This therefore 

suggests that the issue with the microsaccades may be a larger problem for the eye limiting 

there ability to learn even very large stimuli. 
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Fig. 3.14 Faulty photoreceptor microsaccades inhibit visual learning. 

(A-C) Performance index of Rh1-norpA rescue mutants  with faulty non-functional 

microsaccades in one eye, over nine 2 min stages concerning the dots (A; n = 10), stripes (B; 

n = 9) and T-patterns (C; n = 12). Grey bar shows pre-training with no pattern preference. 

White bar shows training and a strong preference for the CS-. The pink bar shows the memory 

test and a learned preference for the CS- in stages 8 and 9 for all stimuli. Error bars indicate 

SEM. (D) Boxplots is the same data as shown in stage 8 of A-C, which did not differ significantly 

between the stimuli. Boxes show the interquartile range. The grey line indicates the median. 

The white box is the mean. Whiskers represent the entire data spread. n.s. not significant. (E-

G) Histogram of stage 8 performance indices of flies for the dot stimulus (E), stripe stimulus 

(F), and T-patterns (G). 
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To explore this in further detail, the mean performance index of both groups were compared. 

The data shows that with fully functioning microsaccades, the orientation of the flies is strongly 

biased to the non-punishing pattern, unlike the monocular flies, for both the dots (Independent-

sample t-test: t(28) = 2.22, P = 0.04; Fig. 3.15D) and T-Patterns (Independent-sample t-test: 

t(30) = 2.51, P = 0.02; Fig. 3.15F). On the other hand, there was no significant effect for the 

stripe stimulus (Independent-sample t-test: t(27) = 0.63, P = 0.54; Fig. 3.15E) due to its lower 

performance index.   

Taken together, these results suggest that the photomechanical photoreceptor microsaccades 

facilitate the detection and visual learning of small visual cues and that when the microsaccades 

are missing or faulty, flies visual ability is greatly diminished as they find large visual cues 

challenging to distinguish. 
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Fig. 3.15 Visual learning is dependent on functional microsaccades. 

(A, C) Performance index of ‘binosaccades’ (light blue) and ‘monosaccades’ (pink) fruit flies 

show similar means during training and stage 9. Stage 8 is higher for binocular flies in dots 

(A) (n = 20, binosaccades; n = 10 monosaccades) and T-patterns (C) (n = 20, binosaccades; 

n = 12 monosaccades) but not for stripes (B) (n = 20, binosaccades; n = 9 monosaccades). 

Error bars indicate SEM. (D-F) Boxplots is the same data as shown in stage 8 of A-C, this 

highlights the difference for stage 8 for the dot (D) and control (F), but there is no statistical 

difference for the stripes (E). Boxes show the interquartile range, the grey line indicates the 

median, the white box is the mean, whiskers represent the entire data spread, and red 

diamonds represent outliers. Asterisks indicate the level of significance: *P < 0.05, **P < 0.01, 

***P < 0.001 and n.s. not significant. All binocular data as shown in Fig. 3.13, monocular data 

from Fig. 3.14. 
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3.3.7 Combination of inner and outer photoreceptors  

To determine whether the flies ability to see hyperacute objects is facilitated by the R1-R6 

receptors exclusively (Juusola et al., 2017) or whether the R7/8 receptors also contribute to the 

hyperacute vision, we tested flies with only either function R1-R6 receptors (motion vision 

channel) or R7/8 receptors (colour vision channel). To test the isolated contribution of the R1-

R6 photoreceptors, we used Rh1-rescue norpA36 flies, as Rh1 is present in the outer 

photoreceptors this allows them to function whilst isolating the inner photoreceptors. The R1-

R6 group was the same flies from the previous section (3.3.6), (i.e. combining both binosaccade 

and monosaccade flies). Additionally, a single fly with no microsaccades in either eye was in 

the dataset (stripes: n = 1) as well as 5 flies which escaped after the behavioural assessment but 

before the deep pseudopupil could be imaged.   

The animals developed a slight bias for headings for the dot stimulus (One-sample t-test: t(29) 

= 3.19, P = 0.003; Fig. 3.16A). When presented the stripe stimulus and control, the tested 

animals kept a heading slightly directed towards the CS-, though in both conditions there was 

not a significant effect (Stripes, One-sample t-test: t(29) = 1.90, P = 0.07, Fig. 3.16B; control, 

One-sample t-test: t(36) = 1.79, P = 0.08, Fig. 3.16C). Nonetheless, the mean performance 

index of all stimuli was not statistically different (One-way ANOVA: F(2, 94) = 0.09, P = 0.91; 

Fig. 3.16D), suggesting that overall animals were learning a bias for one pattern over the other. 

When analysing the frequency of learning, 17 out of 30 flies (57%, Fig. 3.16E) showed a mean 

performance index greater than 0.1 when presented with the dot stimulus, 14 out of 30 (47%, 

Fig. 3.16F) for the stripe and 20 out of 37 (54%, Fig. 3.16G) for the T-patterns. This suggests 

that the population consisted of approximately half very good learners and half bad learners. 

This may be explained by both the subpopulation of monocular flies and the expected small 

subpopulation of flies that do not learn.   
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Fig. 3.16 Outer (R1-R6) photoreceptors elicit learning. 

(A-C) Performance index of Rh1-rescue norpA36 flies over nine 2-min stages with respect to 

dots (A; n = 30), stripes (B; n = 30) and T-patterns (C; n = 37). Grey bar shows pre-training 

with no pattern preference. White bar shows training and a strong preference for the CS-. The 

blue bar shows the memory test and a slight preference for the CS- in stage 8 for all stimuli. 

This was statistically significant for the dot stimulus (A) but not the dot (B) or control (C). Error 

bars indicate SEM. (D) Boxplots is the same data as shown in stage 8 of A-C, which did not 

differ significantly between the stimuli. Boxes show the interquartile range, the grey line 

indicates the median, the white box is the mean, whiskers represent the entire data spread, 

and red diamonds represent outliers. Asterisks indicate the level of significance: *P < 0.05, **P 

< 0.01, ***P < 0.001 and n.s. not significant. (E-G) Histogram of stage 8 performance indices 

of flies for the dot stimulus (E), stripe stimulus (F), and T-patterns (G). 
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Next, the stimuli were presented to two mutant flies (ninaE8 and Rh3-6 flies) with only 

functional inner photoreceptors. To test whether the R7/R8 photoreceptors had an important 

role, we used two mutants with rescued R7/8 photoreceptor channels but inhbibited outer 

photoreceptors (R1-R6). To see how each mutant performed separately, their mean 

performance was compared (Fig. 3.17) before being pooled (Fig. 3.18) to then make 

comparisons with the R1-R6 data (Fig. 3.19). In general, fruit flies did change their direction 

after training and have a small bias in flight direction. In both mutants, there was a statistical 

difference for the stripe stimulus (ninaE8, One-sample t-test: t(14) = 3.29, P = 0.005; Fig. 

3.17B; Rh3-6, One-sample t-test: t(15) = 3.24, P = 0.006; Fig. 3.17E). Though this significance 

was not observed for the dot stimulus (ninaE8, One-sample t-test: t(14) = 1.89, P = 0.079; Fig. 

3.17A; Rh3-6, One-sample t-test: t(15) = 2.01, P = 0.06; Fig. 3.17D). Interestingly, for the T-

pattern stimulus ninaE8 mutants performed less well (One-sample t-test: t(14) = 1.43, P = 0.18; 

Fig. 3.17C), while Rh3-6 mutants did learn the control but not as high as with the stripes (One-

sample t-test: t(14) = 2.13, P = 0.05; Fig. 3.17F). The inconsistencies in this dataset open up 

the possibility that the inner photoreceptors might not contribute as much to small target 

detection, so the responses are not as robust in all conditions. Nevertheless, the data show for 

the first time that the inner photoreceptors in addition to the outer (Juusola et al., 2017), elicit 

behavioural responses to hyperacute visual cues. Furthermore, between mutant comparisons 

show that their mean performance indices are similar, and so there is some level of robustness 

in their response (Dots: Independent-sample t-test: t(29) = -1.18, P = 0.86; Fig. 3.17G left plot; 

stripes: Independent-sample t-test: t(29) = -0.42, P = 0.68; Fig. 3.17G middle plot; control: 

Independent-sample t-test: t(28) = -0.63, P = 0.53; Fig. 3.17G right plot). 

Next, as the two mutants did not significantly differ from each other, their  datasets were 

pooled together to analyse their precise contribution to visual learning. The mean 

performance index was greater than 0.1 for all stimuli (Dots, One-sample t-test: t(30) = 

2.81, P = 0.009; Fig. 3.18A; stripes, One-sample t-test: t(30) = 4.63, P ≤ 0.001; Fig. 3.18B; 

control, One-sample t-test: t(29) = 2.57, P = 0.02; Fig. 3.18C) and so did not differ 

significantly (One-way ANOVA: F(2, 89) = 0.80, P = 0.45; Fig. 3.18D). Seventeen out of 

31 (55%, Fig. 3.18D) for the dots, 14 out of 31 (45%, Fig. 3.18E) and 18 out of 30 (60%, 

Fig. 3.18D).  
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Fig. 3.17 Inner (R7/8) photoreceptors elicit learning. 

The performance index of mutant flies (A-C) ninaE8 (striped blue) and (D-F) Rh3-6 (light blue) 

that view a dot stimulus (A, D) (n = 15, ninaE8; n = 16, Rh3-6), a stripe stimulus (B, E) (n = 15, 

ninaE8; n = 16, Rh3-6), and T-pattern control (C, F) (n = 15, ninaE8; n = 15, Rh3-6), over nine 

2 min sections. The grey bar shows the pre-training indicating the fly has no preference for 

either pattern. The white bars show the training and a general preference for the CS-. The 

memory test shows a trend but no statistically different performance index for the dot stimulus 

and (A, D). Both learn for the stripe stimulus (B, E), but ninaE8 learn the control (C) while Rh3-

6 do not (F). Error bars indicate SEM. G is the same data as shown in stage 8 of A-F. The 

mean performance index of both mutants shows that there was no statistical difference in each 

mutants ability to learn the dot (left plot), stripe (middle plot) and T-pattern (right plot) stimuli. 

Boxes show the interquartile range, the black line indicates the median, the black box is the 

mean, whiskers represent the entire data spread, and red diamonds represent outliers. 

Asterisks indicate the level of significance: *P < 0.05, **P < 0.01, ***P < 0.001 and n.s. not 

significant.  
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Fig. 3.18 Pooled scores of mutants with inner (R7/8) photoreceptors. 

(A-C) Performance index of both R7/8 mutant flies over nine 2 min stages to dots (A; n = 31), 

stripes (B; n = 31) and T-patterns (C; n = 30). Grey bar shows pre-training with no pattern 

preference. White bar shows training and a strong preference for the CS-. The light blue bar 

shows the memory test and a learned preference for the CS- in stage 8 for all stimuli. Error 

bars indicate SEM. (D) Boxplots is the same data as shown in stage 8 of A-C, which did not 

differ significantly between the stimuli. Boxes show the interquartile range, the grey line 

indicates the median, the white box is the mean, whiskers represent the entire data spread, 

and red diamonds represent outliers. Asterisks indicate the level of significance: *P < 0.05, **P 

< 0.01, ***P < 0.001. n.s. not significant. (E-G) Histogram of stage 8 performance indices of 

flies for the dot stimulus (E), stripe stimulus (F), and T-patterns (G).
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To characterise visual learning in the presence of all or limited photoreceptor contribution, the 

mean performance index of each experiment was directly compared (Fig. 3.19C). The 

performance of flies did not show any significant differences for each stimulus (Dots, One-way 

ANOVA: F(2, 78) = 1.83, P = 0.17; Fig. 3.19D; stripes (One-way ANOVA: F(2, 78) = 1.27, P 

= 0.29; Fig. 3.19E; control (One-way ANOVA: F(2, 93) = 1.189, P = 0.31; Fig. 319F).  

 

Nevertheless, there is clear robustness in the response of all treatment groups. All 

photoreceptors functional produces consistently better learning performance. Interestingly, 

with the R7/8 mutants pooled, both the performance indices and learning frequency look 

similar to the R1-R6 data. This is in contrast to when the R7/8 mutants were analysed 

individually and seemed inconsistent. Instead, it suggests that both photoreceptor channels 

contribute more or less equally. Thus, producing the higher learning scores observed in wild-

type flies. In summary, these results suggest that flies detect small visual cues combining the 

visual information acquired from all photoreceptors.     
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Fig. 3.19 Combined photoreceptor channels enhance the learning of small visual cues 

in fruit flies. 

(A, C) Performance index of wild-type flies (R1-R8), mutants with only functional outer 

photoreceptors (R1-R6) and inner photoreceptors (R7/8). (A-C) Mean scores of flies during 

training and test stages shows a decrease in scores in respect to wild-type, outer and inner 

function. Error bars indicate SEM. (D-F) The learning ability shows a slight trend for a small 

reduction in performance, but this does not differ with statistical significance for dots (D) (R1-

R8, n =20; R1-R6, n = 30; R7/8, n = 31), stripes (E) (R1-R8, n =20; R1-R6, n = 30; R7/8, n = 

31), and the control (F) (R1-R8, n =29; R1-R6, n = 37; R7/8, n = 30). Boxes show the 

interquartile range, the grey line indicates the median, the white box is the mean, whiskers 

represent the entire data spread, and red diamonds represent outliers. n.s. not significant. 

Shaded boxes are replotted from Figure 3.10 (blue boxes), figure 3.16 (green boxes) and 

figure 3.18 (orange boxes).  
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3.4  Discussion 

Single object detection 

The results show that fruit flies – even with an interommatidial angle of 4.5° - detect and bias 

their heading choices towards a singular small visual cue (1°) in a virtual environment. This 

further supports that the optical resolution limit does not restrict the spatial resolution in flies 

(Gonzalez-Bellido, Wardill and Juusola, 2011; Juusola et al., 2017). Thus, optical 

measurements alone cannot predict single object resolution (Spaethe and Chittka, 2003). 

Whether the minimum single object threshold goes beyond 1° in fruit flies, as found in other 

flying insects such as the killer fly and robber fly (Wardill et al., 2015, 2017), remains to be 

investigated. 

The experiment shows that fruit flies are biased to choose a general flight direction towards the 

small dark dot (Fig. 3.3), although often flies choose arbitrary headings or fail to “follow” the 

dot location when shifted to the left or right. The former is similar to the finding with vertical 

stripes that also elicit fixation behaviour (Reichardt and Wenking, 1969; Wehner, 1972), 

although the headings towards the small dot in Fig. 3.3 are less robust than the stripes, possibly 

resulting from the reduced ease of detecting and fixating such a small visual cue. Furthermore, 

in previous experiments, a small dark dot (10°-30°) as seen in a coarse LED matrix is innately 

aversive (Maimon, Straw and Dickinson, 2008; Theobald, 2019; Palavalli-Nettimi and 

Theobald, 2020), whereas in these experiments, the same dot shape only much smaller (1°) led 

to either chosen headings in the general direction of the dot or arbitrary headings with a minimal 

preference for any direction. Altogether, this suggests that object shape alone does not predict 

the innate response elicited from the animal observer. Next, it will be interesting to present 

increasingly larger dots to the fruit flies to test at which size the fruit flies’ begin to find the 

stimulus aversive. 

Anti-fixation behaviour, i.e. flying 180° from dot, does occur, consistent with that observed in 

stripes (Heisenberg and Wolf, 1984), which suggests aversive behaviour. However, this often 

occurs during the central dot but not for either the left or right. Additionally, this anti-fixation 

behaviour occurs concurrently with fixation behaviour during a trial rather than replacing it. 

Thus, this indicates that the paper-join is the cue affecting their behaviour at this scene region 

and not anti-fixation in response to the dot cue. The paper-join may be perceived as a long 

vertical bar, which flies have been shown to have a strong attraction for (Maimon, Straw and 

Dickinson, 2008; Cheng, Colbath and Frye, 2019). Thus, it is not an aversion for the dot but an 
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attraction to a second slight visual cue. Interestingly, since the visual cue of the paper-join is a 

nominally broader dark or light bar, this difference is smaller than 1°. Therefore this also 

suggests high acuity.  

Small objects are more salient with depth cues 

The first experiment provided new insight into the behavioural response to a tiny single target, 

yet I also wanted to explore whether a 3D object, still smaller than the interommatidial angle, 

would be distinguished from 2D objects of the same area and contrast. Each of the three dots 

is smaller than the interommatidial angle, so detecting the depth of the pin within a dot would 

not be possible as predicted by the optical resolution limit, as each target would subtend an 

angle smaller than a ‘pixel’. Thus, each target would appear identical, with no dot being more 

salient than the other.  

The results show that flies presented with a small 3D object protruding from one of three dots 

showed increased attraction to the singular object (Fig. 3.5). This suggests that depth changes 

in small nearby objects can convey different messages of significance. Therefore, it has to keep 

a catalogue of the significance of each object for every pattern in the visual field. When 

presented with a 3D object in the middle, the fly shows a strong attraction to the object over 

the 2D dots. Similarly, when the pin is shifted to either the left or right dot, the fly fixates 

between the dot and paper join, seemingly using both as landmarks. However, as with the dot 

experiment, the right object does not show equally strong fixation behaviour (discussed further 

below). However, overall it suggests that both eyes are being used to detect the pin’s depth, as 

monocular cues would not distinguish it from the black dot behind.  

Given the pins small size, it falls within the corresponding receptive fields of a single 

photoreceptor from each eye. However, the sweeping nature of the corresponding left and right 

eye photoreceptors swinging back to front mirror-symmetrically creates disparity. As the pin 

moves side to side, corresponding with the fly’s yaw torque during saccadic turning behaviour, 

the pin moves in the same direction as the receptive field from one eye but the opposing 

direction of the receptive field in the other eye. Such movement would elicit phasic differences 

in the photoreceptor voltage responses (Song et al., 2012; Juusola et al., 2017). Fruit flies can 

then determine depth using the disparities of the neural image (Kemppainen et al., 2022). 

The mean fixation for the singular object is similar in both the dot and pin experiments (Fig. 

3.7), thus suggesting an equal salience under such artificial conditions for a singularly unique 
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object. Indicating that flies showed an innate tendency to orient towards the more salient object 

and were able to discriminate between the objects (Sareen, Wolf and Heisenberg, 2011).  

Contrast and hyperacute vision 

According to the theory before Juusola et al., (2017) a fly would not be able to detect the small 

(0.98°) black dot placed amongst a single light bar of 1.2° gratings as it would perceive a 

uniform grey colour (Fig. 6G, Kemppainen et al., 2022). Even though the object may fall within 

the field of view of a single ommatidium, that does not mean the proposed hyperacuity in fruit 

flies is the reason why we flies responded behaviourally to its presence as the retinal image, or 

‘pixel’ where the dot is located would have a slight contrast change even if it is considerably 

less than the original contrast of the object (for clarity see Fig 3. O’Carroll and Wiederman, 

(2014)). An alternative explanation for the results is therefore that the flies were detected 

contrast changes and it was not the result of hyperacuity.  

It does make the dot stimulus used in these experiments more akin to a point source than an 

extended source stimuli (Warrant and McIntyre, 1993). A point source is a stimulus which 

subtends an angle much smaller than the interommatidial angle while an extended source is 

larger, such as a grating. So in effect I am testing a point source placed within an extended 

source stimulus.   

The pin experiment shows that with a similar contrast (black pin hidden on the black dot), the 

fly performs very consistent behaviour to that with the single pin (Fig. 3.7). This lends support 

to the theory that the behaviour observed is in relation to Drosophila’s hyperacute vision. Were 

the results of the dot experiment due to contrast differences, then it seems unusual that the 

behaviour would have been comparable across both experiments. Nevertheless, future work 

could attempt to control the contrast of the dot to exclude this explanation. For example, a 

much weaker starting contrast (e.g. grey dot) would then have almost no contrast change when 

it is approximately 1° as the object's luminance is predicted to change to be limited to 

approximately 36% of its original luminance (O’Carroll and Wiederman, 2014). In addition, 

using different coloured objects with various Drosophila mutants may demonstrate whether 

hyperacuity is needed to detect the small object. This would be useful as when the contrast 

between an object and its background decreases it becomes more challenging to distinguish 

which in these experiments would require hyperacute vision for the fruit flies to respond 

behaviourally to them. 
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Visual acuity of gratings and single objects  

It may be assumed that grating acuity is a reliable predictor of single target acuity. Therefore, 

it may be expected that because of the optomotor responses to bars smaller than an individual 

sampling unit (Juusola et al., 2017), single objects this small would also be resolved by fruit 

flies. However, different physical and neurophysiological mechanisms may determine how 

well an animal can resolve a fine bar compared to a small object. More so, different visual 

behaviours will extract different information, not necessarily requiring the highest resolution 

(Land, 1997). The limitation to resolving bars has historically been linked to retinal sampling 

density, while contrast sensitivity limits the detection of single small targets (O’Carroll and 

Wiederman, 2014). Consequently, objects smaller than the interommatidial angle are still 

detectable with high contrast. This is the exact scenario of the dot stimulus presented to the 

flies in this experiment. Thus, one possible explanation for the slight fixation towards the dot 

may be the high contrast of the object and its edges compared to the background of the light 

bar, as opposed to the fruit flies resolving the fine spatial detail. However, the relatively stable 

fixation levels (albeit somewhat low) shown for the pin stimulus would contradict this 

interpretation. Indeed since the pin stimulus hides the object within a dot of the same contrast, 

there are no contrast cues in this experiment, and therefore, there should have been no 

preference for the pin. Consequently, it seems highly unlikely that high contrast elicited the 

fixation behaviour alone. Detailed mathematical modelling further supports this conclusion 

(Kemppainen et al., 2022). Nevertheless, it would be useful in future studies to test the response 

to varying dot parameters. 

Object size and attraction  

In previous experiments, flies have shown an innate aversion to small visual objects (Maimon, 

Straw and Dickinson, 2008; Cheng, Colbath and Frye, 2019; Tanaka and Clark, 2020). It is 

worth highlighting that an apparent, strong repulsion was exhibited in this prior work by the 

flies, which is a fundamentally different response to the weak attraction exhibited in the current 

experiments. So next, it is important to not only investigate if the flies can see the dot but 

instead to understand why the flies are slightly attracted to it? What is its identifiable function 

in the flight simulator, and what is the fly’s motivational state? 

The most apparent difference between this study and the previous findings is the actual size 

considered to be a “small” target and their use of LED arenas while I used paper stimuli. The 

pulse-width modulation present in LEDs may be affecting the fly behaviour. Here I tested a 

tiny dot at approximately one degree of a fly’s visual field, and previous studies tested object’s 
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at 5°-10° (Maimon, Straw and Dickinson, 2008), 10° (Tanaka and Clark, 2020) and 30° 

(Cheng, Colbath and Frye, 2019). While the reasoning for opposing responses to vertical stripes 

and large dots is reasonably clear, the varied responses to large dots and small dots are less 

clear. The fly has an object classification system that recognises stripes as a source of 

vegetation or landing/feeding sites and is advantageous for the fly to head towards (Maimon, 

Straw and Dickinson, 2008). On the other hand, large dots may indicate a head-on collision 

with another insect or an aerial predator, so innate aversion is beneficial. Alternatively, the 

used LED matrix stimuli may appear highly unnatural and scary to Drosophila. The setup used 

in this thesis with paper stimuli is no less artificial to the fly, however, differences between the 

stimuli may still yield different behavioural outputs. These findings show that fruit flies show 

a weak attraction to a tiny dot smaller than the receptive field of a single sampling unit. This 

suggests that stimulus size is critical in decision-making and not just shape.  

So, if flies think a large dot is representative of a predator, small dots may provoke attraction 

as it is likely to be a conspecific or unharmful insect. A conspecific is a potential mate or rival, 

so orientating towards it is beneficial, which in the simulator, it is observed as fixation or gaze 

stabilisation behaviour. Furthermore, if it were a predator, it would indicate that it was large 

and far away and not an immediate threat. However, since Chapter 2 indicates that more spatial 

detail will be discerned for physically closer objects, it is likely the fruit fly can immediately 

classify it as a small-close object instead of a large-far object, hence why there is still attraction 

behaviour instead of aversion. Further behavioural experiments could investigate the 

relationship between object size and the behavioural responses of attraction or avoidance. It 

will next be interesting to investigate when increased object size switches from attraction to 

aversion behaviour in fruit flies.  

It is difficult to interpret from a virtual environment what the visual behaviour indicates, and 

how once removed from a highly artificial environment and observed in its natural setting, this 

behaviour would function as. Indeed, unlike the exhaustive knowledge of wild honeybee 

behaviour (Srinivasan, 2010), we know very little about the wild behaviour of Drosophila to 

draw interpretations from their behaviour in a laboratory setting. Nevertheless, most likely 

fixation behaviour at the torque meter can be considered a short-range behavioural reflex to 

head in the direction of close objects. In the wild, this behaviour would rapidly progress into 

either obstacle avoidance or landing behaviour (Sareen, Wolf and Heisenberg, 2011). On the 

other hand, one explanation is that fruit flies are attempting to escape the highly artificial 
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scenario of being tethered at the torque meter (Guo et al., 1996) and should exhibit evasive 

behaviour by flying towards a salient object. For this, the fly has to arrive at its own “theory” 

of the current situation and the object’s significance (Heisenberg and Wolf, 1984). This is why 

flies may orientate towards the dot and why, given a choice between a singular pin and dots, 

favour the pin. 

However, regardless of how we interpret the fly’s goal, it will always be unattainable for the 

fly under such experimental conditions, so it is difficult to understand its motivational state. 

Furthermore, the flight simulator makes it challenging to distinguish between a stabilised 

course occurring regardless of any visual cues, and a chosen heading maintained by the fly in 

response to visual cues which are used as landmarks to guide orientation. Therefore, it is more 

challenging to study Drosophila orientation by measuring the spontaneous preferences for 

simple visual stimuli as in experiments 1 and 2. Stimuli as simple as this are less likely to elicit 

consistent behaviour unless flies are tested with either a more complex (naturalistic) scene or 

conditioned as in experiment 3.  

Less fixation for the ‘right section’  

There was less fixation behaviour towards the ‘right dot’ in contrast to the other stimuli (Fig. 

3.3C). This is particularly worth noting as the same trend occurred in the pin experiment (Fig. 

3.5C). Therefore, a possible explanation is that an artefact within the system was a common 

restrictive factor for this particular region across all experiments. It is likely due to a mechanical 

fault with the stepping motor attached to the arena base and rotating the drum. Post-analysis, I 

explored the flight simulator raw data because of this different result. This highlighted regular 

smooth arena rotation throughout, except for a tiny position (1°). Subsequently, the rotation 

would suddenly jump forward (approximately 15°) in a continuous direction of movement. 

Surprisingly, this issue varied and was not always present. Regardless, a small sub-section of 

the scene was passed by but not due to the fly’s choice. Consequently, it is the most likely 

reason why fixation behaviour was lower in this section. However, this was not a visible issue 

during testing as it appears identical to a torque spike of the fly and simply normal saccadic 

movement of the arena in response to the fly.  

Nevertheless, despite this likely mechanical issue, when comparing this specific right section 

between all stimuli, the mean fixation was higher when the dot (and pin) were present (right 

stimulus) rather than absent (left and central stimulus) for this region (Fig. 3.3E and 3.4). This 

indicates that the fly is still attempting to be in this section more frequently, despite this issue 
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limiting its ability to do so. It would be worthwhile in future studies with this bespoke flight 

simulator to resolve any mechanical fault and repeat or apply a similar experimental design to 

validate an equal preference for the right section.  

Possible limitation of head restriction  

Fixing the flies head rigid is the standard procedure when testing flies at the torque meter 

(Brembs, 2008). However, independent head movements help stabilise flight control (Cellini 

and Mongeau, 2020). Therefore, better performances may occur if the head remains 

unrestricted. Indeed, it has been shown that head movements maximise gaze stability in freely 

walking Drosophila presented with dots both smaller (1° and 2.5°) and larger (5° and 10°) than 

the interommatidial angle (Cruz, Pérez and Chiappe, 2021). However, the larger dots elicited 

better gaze stabilisation performances. This work supports my finding that flies can detect dots 

as small as 1°, but that performance becomes worse with decreasing size as the task becomes 

more difficult for the flies. Visual cues so small have not been tested before in the flight 

simulator. Therefore, in the flight simulator, continuing the method of head restriction likely 

put the flies at a disadvantage for such a challenging visual task. Fox and Frye (2014) found 

that head fixation impairs the ability to fixate an object (3.75° vertical bar which is comparable 

in size horizontally to the dots and almost identical the stripe stimuli used here) if there is also 

ground motion. This is also the case in the flight simulator as the arena floor rotates along with 

the rest of the arena. Consequently, it would have been helpful to compare head-free and head-

fixed flies at the onset of experiments. If better performances were to be shown by independent 

head movement, future experiments on Drosophila acuity within a flight simulator should 

adopt this head-free approach. 

Effect of time on attraction 

To investigate whether the fruit flies varied their chosen headings over the entire 8 min flight, 

I analysed their orientation on a finer temporal scale by looking at each 2 min phase of the 

flight for both the dot (Fig. 3.8) and pin experiments (Fig. 3.9). Numerous scenarios may have 

occurred. For example, in the first 2 min stage, when the fly was still naïve and adjusting to the 

simulator, either arbitrary and strong erratic flight occurred, or the flies may have chosen a 

fixed heading regardless of a visual cue. Furthermore, the fly may have detected the single 

object early on (e.g. 0-2 and 2-4 min), seemingly achieves no goal and ceases to fixate on it 

during the latter half of the flight (e.g. 4-6 and 6-8 min). In contrast, with erratic movement at 

first, it may take longer for the fly to notice the cues and slowly begin to choose a heading 

direction towards the object given time. Indeed, all the above scenarios seemingly occurred (as 
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can be best interpreted) as I observed individual flies in the simulator. However, as a population 

taken together, the results show that overall, fruit flies kept a relatively stable orientation 

throughout their tethered flight.  

Two eyes permit learning small visual cues 

I have also investigated operant visual learning of fruit flies in the virtual environment of the 

flight simulator using hyperacute depth cues. Using a well-established method (Brembs, 2008), 

heat punishment trains the fly to avoid one pair of patterns in favour of another. Traditionally, 

this approach has been explored for pattern discrimination (Dill, Wolf and Heisenberg, 1995), 

colour discrimination (Wolf and Heisenberg, 1997), combined pattern and colour (Brembs and 

Heisenberg, 2001) and yaw torque learning (Brembs and Heisenberg, 2000). However, to the 

best of my knowledge, neither hyperacute pattern learning nor depth discrimination has been 

investigated at the torque meter. Indeed, hyperacute patterns combined with depth 

discrimination has not been undertaken.   

The results show that fruit flies with normal binocular vision can be conditioned to discriminate 

hyperacute visual stimuli (Fig. 3.10A and B). On the other hand, visual learning was confirmed 

as visually impaired mutants failed to avoid the punishing patterns (Fig. S5). Furthermore, as 

reported previously in Drosophila, we found that flies can develop associations after training 

for large 2D objects (Dill, Wolf and Heisenberg, 1993) (Fig. 3.10C), which was used as a 

control to compare learning performance (Fig. 3.10D). However, flies could still learn the T-

patterns with one eye occluded (Fig. 3.11C). This result is consistent with the translation 

invariance shown at the torque meter (Tang et al., 2004). Here, flies could recognize visual 

patterns (e.g. T patterns) with one eye during a learning assay. 

In contrast, compared to normal binocular vision, flies cannot learn after training for either test 

stimuli with monocular vision (Fig. 3.11A and B). As in many learning paradigms, responses 

are highly variable. Some animals seemingly learnt having positive learning scores, while 

others lost all ability to learn without binocular cues. Consequently, as most flies seemed to be 

affected by the absence of binocular vision for the test stimuli, it suggests that both eyes are 

required to see small objects.  

A possible explanation is that the smaller stimuli were a more challenging task to discriminate 

with one eye occluded, resulting in most flies failing to learn. Nevertheless, monocular vision 

should have made it a more challenging task and presumably should have performed worst 
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even for the T-pattern. However, monocular flies surprisingly performed slightly better for the 

T-patterns than binocular flies. Though this did not differ significantly, it indicates robust 

learning for either vision type. This is supportive of previous work on monocularly deprived 

flies. For example, when testing the walking behaviour of monocular flies, most flies would 

turn to the side with the eye covered by paint, but within a few seconds, the fly would adjust 

and walk straight (Heisenberg and Wolf, 1984). This indicates that the visual guidance is 

imbalanced and requires time and practise to equilibrate it. Nevertheless, the flies can acquire 

this experience rapidly and seemingly compensate for the defect. Thus, this suggests that 

painting the eye is not overly disruptive to the flies ability for operant visual learning.          

Learning with normal or defective photoreceptor movements 

As the photomechanical photoreceptor microsaccades are proposed to be the mechanism giving 

rise to high acuity and binocularity, painting over the eye to remove their contribution seems a 

rather crude technique. Therefore, it was fortunate and beneficial to discover the variation in 

the microsaccades of Rh1-norpA rescue flies being tested due to the R1-R6 functioning alone. 

The length of movements of the photoreceptor cells varied considerably within and between 

eyes, as shown by deep pseudopupil imaging (Kemppainen et al., 2022). As such, some flies 

appeared to have no movements in one eye but normal (as best we currently interpret “normal”) 

movement in the other eye. The reason for this remains to be investigated. However, it is likely 

a developmental error for this mutant as it was not observed in wild-type flies.      

Flies with normal symmetrical microsaccades were able to learn all stimuli (Fig. 3.13) as 

expected because of the performance of wild type binocular flies. Conversely, the flies with 

monocular asymmetrical microsaccades did not learn (Fig. 3.14). This is consistent with 

simulations from Kemppainen et al. (2022), which predicts any asymmetry in the sampling of 

the photoreceptors would restrict binocularity. In contrast to the T-patterns painted flies, 

monocular microsaccade flies could not learn (Fig. 3.15F). Whatever cause the faulty 

microsaccades one eye, such as a developmental problem, must be an inherently larger problem 

for the individual when tested in visually guided behaviours. Future work may be better 

excluding this mutant in visual experiments either completely or until this issue is better 

understood. It is worth highlighting that this occurrence has not yet been observed in wild-type 

flies and so suggests a specific problem for this mutant. In summary, these results suggest that 

normal binocular photoreceptor microsaccades are required for operant visual learning of 

hyperacute 2D and 3D stimuli.  
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Both photoreceptor channels contribute to hyperacute vision 

Drosophila genetics were utilised to investigate the contribution of each photoreceptor subtype 

for this vision. Various mutants were used with specific subtypes switched off. Two visual 

mutants (norpAP24 and ninaE8) with only R7/8 photoreceptors were tested to confirm the 

robustness of learning scores. Importantly, this showed for the first time that the inner 

photoreceptor cells and the outer cells tested by Juusola and colleagues (2017) were able to 

detect hyperacute stimuli. This finding establishes that while R1-R6 input alone facilitates such 

vision, R7/8 input must be contributing. As expected this was less robust than in wild-types 

flies, since we already knew the outer photoreceptor played a role in hyperacute vision (Juusola 

et al., 2017) than if the inner photoreceptors were also contributing than it must be with less 

ability, which we observed in both the training and test stages (Fig. 3.17).The two mutants 

were consistent in their performance and did not differ from one another. Hence they were 

pooled together to make comparisons against wild-type and R1-R6 mutants.  

In reality, however, wild-type flies’ R1-R6 and R7/8 photoreceptors likely contribute more 

alone than determined by the visual mutants. In wild-type flies, the inner and outer 

photoreceptors move and contract in unison and simultaneously amplify each other, enhancing 

the microsaccade amplitude (Kemppainen et al., 2022). This is likely another reason why wild 

type flies with all photoreceptors performed better in the learning experiment (Fig. 3.19). It 

could be expected that the stripe stimulus would elicit better learning scores than the dot 

stimulus. This is because the stripes cover a much larger visual area (vertically) and may evoke 

stronger microsaccades than the smaller dot stimulus. However, the learning score for each 

stimulus is seemingly inconsistent, with no apparent trends for any fly group. Taken together, 

this establishes that both the outer and inner photoreceptors affect the fly’s ability for 

hyperacute stereopsis. However, the performance has reduced proficiency.  

The use of real object depth 

These studies used three-dimensional objects with real object depth to investigate Drosophila 

depth perception during single object and learning experiments. This is in contrast to typical 

binocularity studies, which have used either glass prisms or coloured filters to only give the 

impression of changing depth (Collett, 1996; Nityananda, Tarawneh, et al., 2016; Feord et al., 

2020). Indeed, this approach is common since using tangible objects to measure depth 

perception increases the likelihood of detecting unintended cues (not limited to visual cues), 

inadvertently contributing to behavioural performance. Therefore, a possible interpretation is 

that the other cues - such as motion parallax, chemosensory and anemotaxis - provided 
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information to the fruit flies to influence their heading direction and explain their seeming 

ability to discriminate between the 2D and 3D objects.    

As discussed above, head restriction potentially reduced the performance of flies to stabilise 

gaze on the small object. Nevertheless, by having the head-fixed, fruit flies could not use 

motion parallax cues to perceive depth, thereby ensuring that the fly could not utilise 

translational or rotational motion parallax to detect the 3D pin or perceive monocular cues to 

construct a neural image of the 3D object. Therefore, theoretically, the only movement is from 

the photoreceptor microsaccades to discriminate the pin.  

Furthermore, the pin’s rotational movements’ air currents could provide a non-visual cue. In 

that case, though, were anemotaxis to have any contributing factor to the learning performance, 

blind mutants would not have performed so poorly (Fig. S5). Additionally, differences in the 

chemosensory content of the paint (pins) and ink (dots) may have provided a cue. However, 

this possibility can also be excluded due to the performance of the blind mutants. Nevertheless, 

future experiments with similar stimuli could cover all patterns (both paint and ink) with a 

uniform outer shell (e.g. clear nail polish) to control any chemosensory differences. Shadows 

from the pin were also not providing a cue as the ring-shaped light tube provides uniform 

illumination of the stimuli without generating shadows. Alternatively, it is possible the pins 

were reflecting polarised or UV light which aided object detection. Polarised light is doubtful 

as all skylight was blocked out of the experimental room. Additionally, although also unlikely 

as effort was made to black out all light around the setup with a roller curtain, it is possible that 

there was UV reflection upon the 3D objects. Future studies could use UV flies as a control as 

they only express Rh3 rhodopsin (UV) and see UV but not green, learning scores could then 

be compared to wild-type flies to see any influence from UV reflection.   

Another possibility is that flies detected the 3D object because it was not camouflaged amongst 

the black pattern (dot or stripe). This could arise due to the manual preparation of the 3D object 

compared to a virtual stimulus, which is that the pin’s positioning is not perfect. Therefore, as 

it rotated, the fly may have seen the side of the object when it should have been hidden. 

However, the pin’s placement amongst a dot or stripe was inspected under magnification to 

ensure perfectly central placement and angular positioning. Furthermore, the stripe stimulus 

with full vertical coverage of the paper scene alleviates this concern as the pin is more easily 

placed amongst the dark background of the stripe. Nevertheless, future experiments could use 

larger dots with the pin to ensure the pin is convincingly obscured within the dot.  
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A behavioural need for high acuity and binocularity 

The most fundamental question is why fruit flies require high acuity and binocularity? Unlike 

other flying insects, it does not perform a vast repertoire of complex visual tasks such as aerial 

prey capture (Wardill et al., 2013). It has a tiny brain and eyes, even by insect standards. 

Besides, unlike the praying mantis, the only insect to conclusively have been shown to use 

stereopsis for prey capture (Nityananda, Tarawneh, et al., 2016), there is no specific task or 

apparent selection pressures that would have driven this adaptation in fruit flies.   

During flight, fruit flies rely on many sensory modalities for navigation (Currier and Nagel, 

2020), where close-range spatial details may not be as important. This may be true during 

walking behaviours, though it seems more likely that binocularity and high acuity may be most 

beneficial when performing walking behaviours. For example, walking is when flies perform 

their most complex visual behaviours (Heisenberg and Wolf, 1984). It seems likely that such 

behaviours are where selection pressures arose for enhanced resolvability. Therefore, it seems 

more prudent for any future stereopsis investigations to focus on the walking behaviours of the 

fruit fly rather than on flight. 

Furthermore, this finding raises an interesting question: how would males perform compared 

to females? Males arguably perform the more sophisticated visual behaviours, such as fighting 

during courtship behaviour (Heisenberg and Wolf, 1984). Females were used in this thesis as 

their larger size elicits better performance at the torque meter. Nevertheless, future work could 

attempt to investigate the performance of male fruit flies.  

These flight simulator experiments suggest that fruit flies use stereopsis to discriminate the pin 

stimulus. Nevertheless, more conclusive behavioural evidence would be required to make such 

a claim definitive. A possible series of experiments to strengthen the case would be an attempt 

to use the ‘anaglyph glasses’ as reported for the mantis and cuttlefish (Nityananda, Tarawneh, 

et al., 2016; Feord et al., 2020). However, very few behaviours can be elicited from the fly to 

make the glasses/filters a useful tool. However, if the fly performs more robust optomotor 

responses to physically closer fine gratings as the results in chapter 2 suggest, then attempts to 

test their optomotor behaviour may be suitable. For example, if the fly were fitted with glasses 

and the disparity altered so that the proximity of high spatial frequency gratings appeared to 

change on a virtual screen, the fly would produce stronger and weaker responses consistent 

with the results from the different sized arenas in the flight simulator.  
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Conclusions 

Fly responses to small visual cues within the flight simulator reveal that small patterns are 

detected and innately attractive to the fly when it is the most salient feature in the virtual 

environment. This is different from previously published work on larger (but still small) dots. 

This expands the potential role of shapes in the wild, demonstrating that size is an essential 

predictor for appropriate responses. The current chapter also suggests that binocularity enables 

the perception of small patterns of slightly different depths in fruit flies. Thus, fruit flies use 

motion parallax for further away objects and binocularity for close-range objects. Based on the 

findings of the previous and current chapter, it would appear that the proximity of the 

environment affects spatial resolving power and that different mechanisms contribute to depth 

perception.   
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Chapter 4 

Concluding remarks 

 

 

 

In conclusion, the results assembled in this thesis contribute to a better understanding of the 

visual performances of fruit flies in a virtual reality system. Alongside other results, I show 

that the optical resolution limit does not determine the minimum threshold for a behavioural 

response in the fruit fly. The findings show that the viewing range over which fruit flies respond 

to hyperacute gratings does influence the behavioural response. The flies appear to see patterns 

smaller than the interommatidial angle more clearly when viewed from a closer distance 

(chapter 2). This ability allows fruit flies to detect close-small objects with better clarity than 

large-far objects.  

In single object experiments, fruit flies maintain slight preferences to choose heading directions 

towards the singular most salient object (chapter 3: experiments 1 and 2). However, in the 

literature, they find larger objects of similar shapes innately aversive. Fruit flies thus categorise 

objects according to the relative size and not only to shape.  

Furthermore, I show that fruit flies can be conditioned to avoid hyperacute 2D or 3D objects 

with binocular vision, but the fly cannot learn when one eye is covered (chapter 3: 

experiments 3). Fruit flies likely use the disparity from photoreceptor microsaccades in each 

eye to detect and discriminate the small objects. Both the outer (R1-R6) and inner (R7/8) 

photoreceptors contribute to this ability but do so with less aptitude.  

The data I present in Chapter 3 may not provide any answers to the newly theorised stereopsis 

in regards to its neural mechanisms in fruit flies, but it does show behaviourally that Drosophila 

respond in a way that suggests stereo vision. Taken together, the results compiled in this thesis 

show that flies possess high acuity. They also suggest that flies are using binocularity for close-

range depth perception. However, more conclusive evidence would be required utilising both 

behaviour and neural approaches. Nevertheless, it is a first step providing a basis for future 

investigations.    
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Future directions  

The investigation of hyperacute stereopsis in Drosophila requires the development of 

behavioural experiments, especially in a lab where the research questions had to be developed 

around an existing piece of apparatus, the flight simulator. Unfortunately, this relatively old 

system was not initially developed with such ideas (3D stimuli) under consideration. The work 

from my PhD has established a visual stimulation setup and utilised recognised but effective 

behavioural paradigms and analyses to tackle new questions. Providing the foundation for 

future work attempting to characterise behavioural responses of Drosophila to small 2D or 3D 

patterns.  

One of the reasons I chose to measure optomotor behaviour at two different distances was 

because of the absence of any obvious stimuli problems associated with using a 3D pin 

(discussed below). I hoped to find differences in optomotor responses between two clearly 

different-sized arenas to serve as guidance for a more selective approach afterwards. I also 

intended to establish response properties to multiple spatial wavelengths smaller than the 

interommatidial angle rather than a single wavelength (2.4°) as this would highlight a much 

clearer dynamic of the detectability of small gratings. Issues arose with the construction of 

different-sized arenas due to inconsistencies with the existing small arena, thus time constraints 

left me unable to solve this and ultimately unable to measure different spatial wavelengths with 

the two different sized arenas I had available. Thus, future work should include a systematic 

analysis of the optomotor behaviour to numerous distances with an emphasise on sub-

interommatidial angle wavelengths.  

Our system utilises paper stimuli which may not be well suited to investigations into 

hyperacuity but is less convenient for studies into stereopsis. But it would be entirely possible 

to design systems that could be a modification of the existing techniques to test 3D vision. 

Methods commonly employed in mantis stereo research, such as the projection of stimuli to be 

perceived by the animal to be at different distances (Nityananda et al., 2018, 2019) are more 

challenging to apply to fruit flies due to a lack of effective behaviours that can be evoked. 

Enhanced control of the 3D test, such as 3D glasses and perceived depth rather than real-world 

3D objects, is required. With this setup, a screen or panel can be presented to the animal and 

rule out any of the possible cues and problems associated with using a real object (e.g. shadow, 

UV reflection). An ideal experiment would use the concept of chapter two to measure the 

optomotor response to changing depths. 
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 Our understanding of invertebrate stereopsis is almost exclusively based on the work with 

mantids utilising glass prisms (Collett, 1996) and ‘anaglyph’ glasses (Nityananda, Tarawneh, 

et al., 2016) in behavioural studies as well as in neuronal studies (Rosner et al., 2019). It is 

interesting to consider how a relatively expensive neural process such as stereoscopic vision 

may be present in an unlikely species like the fruit fly. The recent studies by Juusola et al., 

(2017) and Kempainnen et al., (2022) demonstrated the possibility that fruit flies perceive the 

nearby world in high resolution and use both eyes for enhancing depth perception, 

exemplifying the uncertainty of stereopsis being present in any other invertebrate. Furthermore, 

very little is known about the characteristics of photomechanical photoreceptor microsaccades 

and their existence in any other invertebrate species. Highlighting the need to expand the 

research of Kemppainen and colleagues (2022) using different techniques and developing new 

behavioural assays in Drosophila, as well as branching into new species to determine whether 

we can attribute photoreceptor contractions to any other invertebrate.     

Impact in the field 

The overall importance of this research is emphasised by the growing evidence of  Drosophila 

experiments investigating visually guided behaviour. Specifically, they respond to stimuli far 

smaller than their optics have traditionally predicted. Many in the field will view the results of 

this thesis and Kemppainen et al., (2022) with scepticism due to the chosen model organism. 

In the same vein as other invertebrate species, this should not be surprising as several species 

such as the robber fly and black fly have been shown to have acuity which surpasses their 

optics. However, to explore both hyperacute vision and stereo vision, the fly with its genetic 

toolbox may very well be a more advantageous model species. Gaining knowledge of a visual 

process such as stereo in a new species is essential to understanding the selection pressures 

which drive such a neural process. Thus, visual studies in fruit flies can go on to provide many 

novel insights into the field of vision research and neuroethology.   



116 

 



117 

 

Supplement figures 

 

Fig. S1 Optomotor responses of fruit flies presented gratings with different 
wavelengths at two distances under slow rotational velocity (45°/s). 

Each fly was presented with gratings of five different wavelengths and two control stimuli (light 

and dark) tested at either 25 mm (A; n = 15) or 50 mm (B; n = 15). Individuals were presented 

with each stimulus multiple times. Thin traces show the pooled optomotor responses of each 

fly. Thick traces show the population mean. Grey shading indicates the rotational period. Black 

arrows show the direction of rotation as viewed by the fly. 
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Fig. S2 Optomotor responses of fruit flies presented gratings with different 
wavelengths at two distances under fast rotational velocity (300°/s). 

Each fly was presented with gratings of five different wavelengths and two control stimuli (light 

and dark) tested at either 25 mm (A; n = 15) or 50 mm (B; n = 15). Individuals were presented 

with each stimulus multiple times. Thin traces show the pooled optomotor responses of each 

fly. Thick traces show the population mean. Grey shading indicates the rotational period. Black 

arrows show the direction of rotation as viewed by the fly. 
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Fig. S3 Example flies show a strong bias towards the small dot.   

Best performing individuals (n = 3) show an evident change in direction when accordingly 

presented with the dot to the left (A, E), centre (B, F) and right (C, G). (D, H) The flies show 

no fixation peak except near the paper-join for the control.  
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Fig. S4 Example flies of visual learning.  

(A, B) Performance indices of exemplary fruit flies for visual learning of the dot stimulus (A; n 

= 1) and control stimulus (B; n = 1). Grey bar shows no pattern preference during pre-training. 

White bar shows training and a strong preference for the CS-. The blue bar shows the memory 

test and a learned preference for the CS- in stage 8.   
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Fig. S5 Blind mutants confirm visual learning in fruit flies. 

The performance index of mutant flies (A-C) hdcJK910 (dark grey, n = 20 for each stimulus) and 

(D-F) norpAP24(black, n = 40 for each stimulus) that view (A, B) a dot stimulus, (C, D) a stripe 

stimulus, and (E, F) a control of T-patterns over nine 2-min sections. The grey bar shows the 

pre-training indicating the fly has no preference for either pattern, the white bars show the 

training and a general preference for the CS-, the memory test (dark grey and black) shows 

no learning in both mutants viewing all stimuli. Error bars indicate SEM. G is the same data as 

shown in stage 8 of A-F. The mean performance index of wild-type and blind mutants differed 

significantly for the dot stimulus (left plot), stripe stimulus (middle plot), and T-patterns (right 

plot). Boxes show the interquartile range, the grey line indicates the median, the white box is 

the mean, whiskers represent the entire data spread, and red diamonds represent outliers. 

Asterisks indicate the level of significance: *P<0.05, **P<0.01, ***P<0.001 and n.s. not 

significant.  
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Fig. S6 Monocular vision type and learning performance. 

The performance index of flies with different types of monocular vision. Either a painted eye 

(red) or faulty microsaccades in one eye (dark red) viewing the dot stimulus (left plot) (n = 20 

painted; n = 10, faulty), stripe stimulus (middle plot) (n = 20 painted; n = 9, faulty), and t-patterns 

(right plot) (n = 20 painted; n = 12, faulty). Painted fly data is the same shown in stage 8 of Fig. 

3.11, faulty fly data is from Fig. 3.14. The mean performance index of stage 8 shows no 

statistically significant difference for the dot stimulus and stripe stimulus. There is a significant 

difference between painted and faulty flies viewing the T-patterns. This shows that flies need 

both eyes to learn associations with the small visual stimuli. For large stimuli, painted flies still 

learn, but faulty flies do not. This indicates that disruption to the photoreceptor saccades 

strongly influences small object detection. Boxes show the interquartile range, the grey line 

indicates the median, the white box is the mean, whiskers represent the entire data spread. 

Asterisks indicate the level of significance: *P<0.05, **P<0.01, ***P<0.001 and n.s. not 

significant.  
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Fig. S7 Learning scores for all fly groups.  

Comparison of each fly genotype and phenotype performance during stage 8 for the dot 

(A), stripe (B) and control (C). Asterisks indicate the level of significance: *P<0.05, **P<0.01, 

***P<0.001 and n.s. not significant.   
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Fig. S8 Direction of heat punishment effects visual learning.  

Comparison of the learning score of fruit flies conditioned with the laser directed from ahead 

(current method, blue) or behind (classic method, red). Grey bar shows no pattern preference 

during pre-training. Mean performance index suggests robust learning for the ahead method 

(A, B) for dots (n = 20) and t-patterns (n = 29). Lower sample sizes in the behind method for 

dots (n = 3) and t-patterns (n = 10) suggest the flies can learn but with no statistical difference 

to the ahead method. White bar shows training and a strong preference for the CS-. Blue and 

red bars show the memory test and a learned preference for the CS- in stage 8. Error bars 

indicate SEM. C and F is the same data as shown in stage 8 (A-D). The mean performance 

index of ahead and behind method flies did not differ significantly for the dot stimulus (C) and 

T-patterns (F). Boxes show the interquartile range, the grey line indicates the median, the white 

box is the mean, whiskers represent the entire data spread, and red diamonds represent 

outliers. Asterisks indicate the level of significance: *P<0.05, **P<0.01, ***P<0.001. n.s. not 

significant. 
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